

 FICHA CATALOGRÁFICA ELABORADA PELA

 BIBLIOTECA DO IMECC DA UNICAMP
 Bibliotecária: Maria Fabiana Bezerra Müller – CRB8 / 6162

Porto, João Paulo

P838t Técnicas e arquitetura para captura de traços e execução

especulativa/João Paulo Porto-- Campinas, [S.P. : s.n.], 2011.

Orientador : Guido Costa Souza de Araujo.

Tese (doutorado) - Universidade Estadual de Campinas, Instituto de

Computação.

1.Otimização. 2.Processamento paralelo (Computadores).

3.Compiladores (Programas de computador). I. Araujo, Guido Costa

Souza de. II. Universidade Estadual de Campinas. Instituto de

Computação. III. Título.

Título em inglês: Techniques and architecture for trace detection and speculative execution

Palavras-chave em inglês (Keywords): 1. Optimization. 2.Parallel processing (Electronic
computers). 3.Compilers (Computer programs).

Área de concentração: Arquitetura de Computadores

Titulação: Doutor em Ciência da Computação

Banca examinadora: Prof. Dr. Guido Costa Souza de Araujo (IC – UNICAMP)
Prof. Dr. Philippe Olivier Alexandre Navaux (UFRGS)
Dr. Maurício Breternitz Jr (AMD)
Prof. Dr. Luis Eduardo Buzato (IC – UNICAMP)
Prof. Dr. Edson Borin (IC - UNICAMP)

Data da defesa: 15/02/2011

Programa de Pós-Graduação: Doutorado em Ciência da Computação

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

✄

✂

�

✁

Instituto de Computação

Universidade Estadual de Campinas

Técnicas e Arquitetura para Captura de Traços e

Execução Especulativa

João Paulo Porto1

Fevereiro de 2011

Banca Examinadora:� Prof. Dr. Guido Costa Souza de Araujo (Orientador)� Prof. Dr. Philippe Olivier Alexandre Navaux

Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS)� Dr. Mauŕıcio Breternitz Jr.

Advanced Micro Devices, Austin, TX (AMD)� Prof. Dr. Luiz Eduardo Buzato

Instituto de Computação, Universidade Estadual de Campinas (UNICAMP)� Prof. Dr. Edson Borin

Instituto de Computação, Universidade Estadual de Campinas (UNICAMP)� Prof. Dr. Alexandro Baldassin (Suplente)

Instituto de Geociências e Ciências Exatas, Universidade Estadual de São Paulo

(UNESP)� Prof. Dr. Sandro Rigo (Suplente)

Instituto de Computação, Universidade Estadual de Campinas (UNICAMP)� Prof. Dr. Paulo Cesar Centoducatte (Suplente)

Instituto de Computação, Universidade Estadual de Campinas (UNICAMP)

1Suporte financeiro da CAPES, Intel Corporation e Microsoft Research

v

Resumo

É sabido que o modelo de desenvolvimento de micro-processadores baseado na extração

de Instruction-Level Parallelism (ILP) de código sequencial atingiu seu limite. Encontrar

soluções escaláveis e eficientes que permitam a manutenção de inúmeras instruções em

execução simultaneamente tem se mostrado um desafio maior que o imaginado.

Neste sentido, arquitetos e micro-arquitetos de computadores vêm buscando soluções

alternativas para o desenvolvimento de novas arquiteturas. Dentre as soluções existentes,

vêm ganhando força as baseadas na extração de Thread-Level Parallelism (TLP). Resu-

midamente, TLP é um tipo de paralelismo que tenta quebrar um programa sequencial em

tarefas relativamente independentes entre si para executá-las em paralelo.

TLP pode ser extráıdo por hardware ou software. Idealmente, uma solução h́ıbrida

deve ser utilizada, com o software realizando a identificação das oportunidades de extração

de TLP, e com o hardware provendo suporte para execução do código gerado. Com tal

solução de compromisso, o hardware fica livre da necessidade de especular, e o software

pode trabalhar com maiores garantias.

Nesta Tese, estudaram-se formas automáticas de paralelização e extração de TLP. Ini-

cialmente, focou-se em traces dinâmicos de execução de programas sequenciais. Técnicas

existentes (tais como MRET e Trace Trees) mostraram-se inapropriadas, de modo que

desenvolveu-se uma nova técnica chamada Compact Trace Tree (CTT), que mostrou-se

mais rápida que Trace Trees. Trace Tree (TT) também apresentam grande ńıvel de espe-

cialização de código (tail duplication), caracteŕıstica ausente em MRET.

Além de CTT, esta Tese apresenta Trace Execution Automata (TEA), um autômato

que representa traces de execução. Esta representação revelou, em nossos experimentos,

quase 80% de economia de espaço quando comparada com a representação usual.

A seguir, o foco da Tese foi voltado para laços de execução e para paralelização estática

de código sequencial através de Decoupled Software Pipeline (DSWP). Nosso primeiro

resultado nesta direção, usando Java, mostrou claramente que sem nenhum suporte em

hardware, a paralelização estática de programas poderia atingir um ganho de desempenho

médio de 48% nas aplicações paralelizadas.

Finalmente, a Tese propõe um modelo de execução paralelo baseado em DSWP que

vii

permite a consistência de dados entre as diversas threads de programas paralelizados.

Apesar de não avaliar esta arquitetura completamente, os resultados iniciais são promis-

sores. Além disso, o suporte necessário em hardware é simples e acomoda-se sobre o

protocolo de coerência de cache existente, sem alterações senśıveis no processador.

viii

Abstract

The usual, Insturction-Level Parallelism (ILP)-oriented, microprocessor development

model is known to have reached a hard-to-break limit. Finding scalable and efficient

solutions that keep several instructions on-the-fly simultaneously has proven to be more

difficult than imagined.

In this sense, computer architects and micro-architects have been seeking alternatives

to develop new architectures. Among all, the TLP-based solutions are gaining strength.

In short, TLP strives to break a sequential program into quasi-independent tasks in order

to execute them in parallel.

TLP can be extracted either by hardware or software. Ideally, a hybrid solution would

be employed, with the software being responsible to identifying TLP opportunities, and

the hardware offering support for the parallel code execution. With such solution, the

hardware is free from the heavy speculation burden, whilst the software can be parallelized

with more warranties.

In this Thesis, automatic parallelization and TLP strategies were studied. The re-

search first focused on dynamic execution traces. Existing techniques, such as MRET and

Trace Trees proved unsuitable for our goals, which led us to develop a new trace identifi-

cation technique called Compact Trace Trees, which showed to be faster than Trace Trees.

Compact Trace Trees also present trace specialization, which MRET lacks.

Besides Compact Trace Trees, this Thesis presents a new trace representation called

Trace Execution Automata, an automaton representing the execution traces. This tech-

nique revealed nearly 80% memory size savings when compared to the usual, code dupli-

cation representation.

Next, the Thesis’ focus shifted to parallelizing loops statically. Our initial result in

this direction, using Java and without any hardware support, clearly revealed that static

parallelization of sequential programs could reach a 48% average speedup when compared

to their sequential execution.

Finally, a new, Decoupled Software Pipelining-based execution model with automatic

data coherence amongst parallelized programśthreads is proposed by the Thesis. Despite

the lack of a full model evaluation, the initial results are promising. Differently from other

ix

proposals, the hardware support necessary for this architecture is simple and builds upon

the existing cache coherence protocol, without any modifications to this sensitive system

component.

x

Sumário

Resumo vii

Abstract ix

1 Introdução 1

1.1 Paralelismo em Traces . 2

1.1.1 Contribuições da Tese . 4

1.2 Paralelismo em Laços Usando Decoupled Software Pipeline 5

1.2.1 Técnicas Tradicionais de Paralelização de Laços 8

1.2.2 DSWP . 8

1.2.3 Contribuições da Tese . 15

1.3 Principais Contribuições . 16

1.4 Publicações . 16

1.5 Organização desta Tese . 17

2 Trabalhos Relacionados 19

2.1 Traces . 19

2.2 Thread-Level Speculation . 21

3 Compact Trace Trees in Dynamic Binary Translators 29

3.1 Introduction . 30

3.2 Background on Trace Trees . 31

3.2.1 Sample Trace Tree Creation . 33

3.3 Trace trees on DBT . 34

3.3.1 Detecting Anchors . 36

3.3.2 Indirect Branches . 36

3.3.3 Trace Expansion . 37

3.3.4 Code Duplication Due to Path Specialization 37

3.4 Compact Trace Trees on DBT . 37

3.4.1 Compact Trace Tree Creation Example 39

xi

3.5 Experimental Results . 39

3.5.1 TT on DBT . 41

3.5.2 CTT on DBT . 42

3.5.3 MRET, TT or CTT? . 43

3.5.4 Interesting Results . 45

3.6 Related and Previous Work . 46

3.7 Conclusions . 47

3.8 Acknowledgments . 47

Bibliography . 47

4 Trace Execution Automata in Dynamic Binary Translation 51

4.1 Introduction . 52

4.2 Motivation . 53

4.3 From Traces to TEA . 57

4.3.1 Building TEA out of Traces . 58

4.3.2 Recording TEA instead of Traces 59

4.4 Experimental Results . 61

4.4.1 Implementation Challenges . 63

4.4.2 Analyzing TEA’s Performance . 64

4.5 Previous and Related Work . 67

4.6 Conclusions and Future Work . 68

Bibliography . 68

5 Extending Decoupled Software Pipeline to Parallelize Java Programs 71

5.1 Introduction . 72

5.1.1 Contributions . 73

5.2 Previous Work . 73

5.2.1 A Survey on TLS . 75

5.3 Java-DSWP Parallelization . 77

5.4 The funpipe Package . 80

5.4.1 The funpipe.Pipeline.Stage Abstract Class 81

5.4.2 The funpipe.Pipeline Class . 82

5.4.3 The funpipe.CommunicationQueue Class 83

5.5 Experimental Parallelization . 84

5.5.1 Parallelizing the mpegaudio benchmark 85

5.5.2 Parallelizing the compress benchmark 88

5.6 Experimental Results . 88

5.6.1 Compress Evaluation . 89

5.6.2 Crypto.rsa Evaluation . 90

xii

5.6.3 Derby Evaluation . 91

5.6.4 Mpegaudio Evaluation . 93

5.6.5 Evaluating the Different Communication Queues Implementations . 93

5.7 Conclusions . 93

Bibliography . 94

6 Cache-Based Cross-Iteration Coherence for Loop Parallelization 97

6.1 Introduction . 98

6.2 Loop Parallelization and Execution . 100

6.3 Architecture . 102

6.3.1 The Iteration ID . 102

6.3.2 The Coherence Tags . 104

6.3.3 Committing and Squashing . 107

6.3.4 On L1 Pressure . 108

6.4 Experimental Evaluation . 108

6.4.1 Cache Size Requirements . 108

6.4.2 Synchronization Overhead . 110

6.5 Related Work . 110

6.6 Conclusions and Future Work . 113

Bibliography . 113

6.A Examples . 116

6.B Loop Detection and Selection . 119

6.C Proof of Correctness . 121

6.C.1 Lemma 1 . 121

6.C.2 Write After Write (WAW) . 121

6.C.3 Write After Read (WAR) . 122

6.C.4 Read After Write (RAW) . 124

7 Considerações Finais 127

7.1 Trabalhos Futuros . 128

Bibliografia 130

A Prova de Corretude – Consistência e Versionamento de Dados 137

xiii

Lista de Tabelas

1.1 Resumo das caracteŕısticas de MRET, TT e CTT 4

3.1 Average coverage for all experiments . 41

3.2 Total time on the framework (minutes) . 41

3.3 Average duplication . 42

3.4 Total memory usage (in MB) . 42

4.1 Size Savings with TEA . 62

4.2 TEA Runtime Aspects – Replaying . 64

4.3 TEA Runtime Aspects – Recording . 65

4.4 TEA Overhead for Various Configurations 66

5.1 The Selected Benchmarks . 84

5.2 Size of the Pipeline Stages Compared to the Sequential Loop 85

5.3 Setup Configurations . 88

6.1 Synchronization Overhead in a Quad-Core Processor 111

xv

Lista de Figuras

1.1 Exemplos de Traces de Execução . 3

1.2 Antes da Transição 5→ 7 . 6

1.3 Após a Transição 5→ 7 . 7

1.4 Laço com Iterações Independentes e sua Paralelização com DOALL. 9

1.5 Laço Paralelizado com DOACROSS. 10

1.6 Atualização de Elemento de Lista Ligada 11

1.7 Paralelização do Código da Figura 1.6 . 12

1.8 Bits Extra Utilizados para Consistência . 15

3.1 Sample function . 34

3.2 Sample Trace Tree creation . 35

3.3 Sample Compact Trace Tree creation . 40

3.4 181.mcf – SPEC2000 int . 43

3.5 256.bzip2 – SPEC2000 int . 44

3.6 Interesting results . 45

4.1 Code Snippet and Resulting Trace . 54

4.2 Optimization for Fig. 4.1 . 55

4.3 (a) Sample code. (b) CFG for the sample code. (c) MRET traces. 56

4.4 (a) DFA for MRET traces. (b) TEA for whole program. 57

5.1 DOALL loop . 73

5.2 Non-DOALL loops . 74

5.3 Examples for Definitions 5.3.1, 5.3.2 and 5.3.3 78

5.4 Forward and Backward Communication Example 79

5.5 Sample Loop . 80

5.6 A Sample 3-Stage Pipeline . 81

5.7 The funpipe Package Interface . 81

5.8 mpegaudio . 86

5.9 compress . 87

5.10 compress . 89

xvii

5.11 crypto.rsa . 90

5.12 derby . 91

5.13 mpegaudio . 92

6.1 A loop, its PSs and the pipelined execution. 100

6.2 Multicore System . 102

6.3 Core 0’s Written Data . 104

6.4 Keeping Track of Dependencies . 105

6.5 Avoiding Duplicated Cache Lines . 106

6.6 Cache Size Requirements . 109

6.7 Cache Size Requirements per Application 109

6.8 All possible cases. 117

6.9 Loop analysis and selection. 121

xviii

Lista de Algoritmos

3.2.1 Trace Tree Creation rules . 32

3.2.2 Trace Tree link rules . 33

3.4.1 Compact Trace Tree Creation rules . 38

3.4.2 Compact Trace Tree link rules . 39

4.3.1 Converting Traces to TEA . 60

4.3.2 Using TEA to Record Traces . 61

6.B.1Loop Detection Algorithm . 120

xix

Lista de Acrônimos

AFD Autômatos Finitos Determińısticos . 51

AMAS-BT Architectural and Micro-Architectural Support for Binary Translation . . . 29

CFC Componente Fortemente Conexa . 11

CFP Continual Flow Pipeline . 21

CMS Code Morphing Software . 20

CPR Checkpoint Processing and Recovery . 21

CTT Compact Trace Tree . vii

DSMTx Distributed SMTx . 14

DSWP Decoupled Software Pipeline . vii

E/S Entrada e Sáıda . 23

ECM Eliminação de Código Morto . 20

ESC Eliminação de Subexpressões Comuns . 20

GDP Grafo de Dependências do Programa . 11

GFC Grafo de Fluxo de Controle . 2

HTM Hardware Transactional Memory . 27

ICMC Inter-Core Memory Coherence . 25

ILP Instruction-Level Parallelism .vii

ISCA International Symposium on Computer Architecture . 1

JVM Java Virtual Machine . 16

LEI Last Executed Iteration .19

LLP Loop-Level Parallelism . 27

LNCS Lecture Notes in Computer Science . 51

MDT Memory Disambiguation Table . 24

MFET Most Frequently Executed Tail .19

MRET Most Recently Executed Tail . 2

MRET2 Two-pass MRET . 20

MSI Modified – Shared – Invalid . 18

MSSP Master/Slave Speculative Parallelization .28

MSI Modified – Shared – Invalid . 18

MESI Modified – Exclusive – Shared – Invalid . 27

xxi

MOSI Modified – Owner – Shared – Invalid . 137

NET Next Executed Tail . 2

PS-DSWP Parallel Stage DSWP . 13

RAW Read After Write . 23

SPAA Symposium on Parallelism in Algorithms and Architectures 97

SMP Symmetric MultiProcessors .23

Spec-DSWP Speculative DSWP .11

SVC Speculative Versioning Cache . 23

SMT Symmetric Multi-Threading . 28

SMTx Software Multi-threaded Transactions .14

TEA Trace Execution Automata . vii

TLP Thread-Level Parallelism . vii

TLS Thread-Level Speculation . 5

TLDS Thread-Level Data Speculation . 23

TT Trace Tree . vii

SMT Symmetric Multi-Thread . 28

UCP Unidade Central de Processamento . 1

VLIW Very-Long Instruction Word . 27

WAR Write After Read . 23

WAW Write After Write . 23

WiDGET Wisconsin Decoupled Grid Execution Tiles . 28

xxii

Caṕıtulo 1

Introdução

La Microarchitecure est Morte. Longue Vie à la Microarchitecture!.

A frase, t́ıtulo de um painel do International Symposium on Computer Architecture

(ISCA) de 2010, resume, de maneira magistral, o presente momento para arquitetura e

micro-arquitetura de computadores. A versão original (em francês Le Roi est mort. Vive

le Roi! – O Rei morreu. Vivas ao Rei!) é utilizada quando da ascensão de um monarca,

após o falecimento do monarca anterior, e denota a continuidade do governo.

É sabido que o desenvolvimento de processadores nos moldes empregados nas últimas

décadas chegou ao ápice, e que novas técnicas serão necessárias para que novos chips sejam

mais eficientes que seus predecessores, de modo que a velha micro-arquitetura morreu, e

novas abordagens fazem-se necessárias.

Existem muitas proposta de novos modelos de execução (veja a Seção 2.2), bem como

antigas idéias recicladas [19] para os novos tempos da micro-arquitetura. A existência

de tal variedade de abordagens aponta claramente para um ponto de inflexão no desen-

volvimento de processadores e, de certa forma, na maneira de se programar os novos

chips.

Por um longo tempo, o foco no aumento de desempenho dos computadores foi a Uni-

dade Central de Processamento (UCP). Manter mais de uma instrução em execução foi o

subterfúgio mais utilizado pelos arquitetos de computadores, no ińıcio em processadores

com pipeline em ordem [43] até os mais recentes processadores capazes de executar ins-

truções fora de ordem [61]. Este modelo foi posśıvel graças à evoluções micro-arquiteturais

e avanços nos processos de fabricação que permitiram a manutenção da tendência histórica

de dobrar a disponibilidade de transistores sem aumentar a área do chip, aumentando a

frequência de operação destes transistores.

Entretanto, operar em altas frequências aumenta a dissipação de potência de um chip.

Por exemplo, o processador Pentium® IV (mono-núcleo) chegou a dissipar até 115W [29]

(prescott @ 3.8 GHz). Assim, a Indústria adotou os processadores com múltiplos núcleos

1

2 Caṕıtulo 1. Introdução

como solução para os problemas enfrentados pelo modelo anterior.

Neste novo modelo, para aproveitar todo o potencial de processamento disponibilizado

pelas UCP, é necessária a programação expĺıcita em múltiplas linhas de execução (multi-

thread programming). Apesar dos esforços para popularizar e simplificar a programação

multi-threaded [14,53], a adoção deste novo modelo de programação tem sido lenta e mais

dif́ıcil do que o originalmente imaginado.

Nas Seções seguintes resume-se os problemas de pesquisa encontrados e as contri-

buições feitas por esta Tese.

1.1 Paralelismo em Traces

Traces são utilizados como forma de detectar regiões quentes em programas. Usualmente,

estas regiões consistem de algumas poucas instruções que são responsáveis por grande

parte do tempo de execução de programas. Além de pequenos, traces usualmente contém

apenas os caminhos efetivamente exercitados durante a execução.

Por estas duas razões, traces são ótimos candidatos à otimização. Por serem usual-

mente pequenos, os algoritmos de fluxo de dados empregados por otimizadores executam

rapidamente; por serem responsáveis por grande parte do tempo de execução, qualquer

ganho oriundo da otimização tende a ser potencializado.

Antes, porém, de iniciar o estudo em oportunidades de paralelização em traces,

estudaram-se técnicas de identificação dos mesmos. As técnicas Most Recently Executed

Tail (MRET) [16] (também conhecido por Next Executed Tail (NET)) e TT [18], utili-

zadas durante a pesquisa, estão brevemente explicadas abaixo. Descrita abaixo também

está a CTT [46], uma contribuição desta Tese. Veja a Seção 2.1 para outras técnicas.

Possivelmente a técnica mais conhecida para identificação de traces, MRET é também

a mais simples e a que apresenta o menor custo em tempo de execução. Para identificar

traces, MRET instrumenta as instruções (ou blocos básicos) do programa que são alvos de

saltos para trás (i.e., saltos cujo alvo estão em instruções prévias no código do programa).

MRET tende, desta forma, a instrumentar loop headers.

Assim que uma instrução é identificada como “quente” (i.e., executa além de um li-

mite determinado), todas as instruções executadas pelo programa devem ser marcadas até

que (1) o programa execute uma instrução previamente marcada; ou (2) o número de ins-

truções marcadas atinja um determinado limite. As instruções marcadas são consideradas

um trace de execução.

Por exemplo, o trace da Figura 1.1(b) representa os traces MRET decorrentes da

execução do programa (com os retângulos representando sequências de instruções com

uma única entrada e múltiplas sáıdas, i.e., super blocos), cujo Grafo de Fluxo de Controle

(GFC) está representado na Figura 1.1(a). Repare que os traces representados são capazes

1.1. Paralelismo em Traces 3

1

643

2

5

7

(a) CFG

1

7

5

3

2

5

4

6

(b) Traces MRET

7

1

6

7

1

7

1

5

3

2

5

4

(c) Trace Tree

5

3

2

5

4

1

7

1

7

6

(d) Compact Trace Tree

Figura 1.1: Exemplos de Traces de Execução

4 Caṕıtulo 1. Introdução

Tabela 1.1: Resumo das caracteŕısticas de MRET, TT e CTT
Técnica Especialização Duplicação

MRET Baixa Mı́nima
TT Alt́ıssima Alt́ıssima

CTT Alta Média

de capturar qualquer execução do programa.

Entretanto, MRET falha ao não ser capaz de identificar traces especializados da

execução do programa. Tal especialização é desejável para potencializar as possibilidades

de otimização. Por exemplo, note que não é posśıvel identificar com clareza se todas as

sáıdas do laço interno (aresta 5 → 7 no GFC original) passam pela aresta 1 → 6. Os

traces apenas indicam que tal aresta foi utilizada, não fornecendo informações adicionais

(e.g., se a última iteração do laço interno a executar for 2→ 4→ 5, então a aresta 1→ 6

nunca será exercitada).

Gal et al. [18] propõem Trace Tree (TT). Diferentemente de MRET, TT identifica

caminhos especializados da execução do programa. A forma de identificar instruções

quentes em TT é idêntica a de MRET; a condição de parada de gravação de TT, contudo,

é bem diferente.

TT marca as instruções executadas após a identificação de uma instrução quente até

que o fluxo de execução do programa retorne à primeira instrução marcada. Assim, em TT

as arestas de retorno (back edges) são impĺıcitas, sendo por isso representada com arestas

tracejadas nos traces da Figura 1.1(c), que ilustra uma posśıvel TT para a execução do

código na Figura 1.1(a).

Ao contrário de MRET, a TT representada não consegue capturar todos os fluxos

de execução posśıveis para o código original. Repare, em particular, que os ramos que

representam o laço externo (super blocos 7,1,6,7,1 e 7,1) podem crescer ilimitadamente.

Cientes destes problemas, os autores propõem heuŕısticas para limitar o crescimento da

árvore. Entretanto, em nossos experimentos, as heuŕısticas propostas foram ineficientes.

1.1.1 Contribuições da Tese

CTT (veja o Caṕıtulo 3 ou [46]) surgiu como uma técnica intermediária entre MRET e TT.

Nosso objetivo inicial era obter traces mais especializados que MRET e mais compactos

que TT. Para identificar o término de um trace, CTT identifica saltos para instruções que

iniciem um trace no caminho que vai da raiz do trace (i.e., o primeiro ramo identificado),

até o trace sendo gravado. Isso permite que CTT identifique outros laços além do laço

interno, permitindo uma representação mais compacta. A Tabela 1.1 resume as principais

caracteŕısticas de cada técnica.

1.2. Paralelismo em Laços Usando Decoupled Software Pipeline 5

A Figura 1.1(d) ilustra os traces que CTT gera. Note que a especialização de cami-

nhos permite identificar instruções que nunca serão executadas dependendo do fluxo de

execução do programa.

Outro resultado obtido por esta Tese foi o TEA (Caṕıtulo 4 ou [45]), uma nova forma

de representar traces que é independente da estratégia utilizada para identificá-los. TEA

representa um trace t como um autômato. Para criar um TEA T a partir de um trace t

existente, basta criar um estado Ei em T para cada instrução i de t, adicionando em T as

transições Ei

j
−→ Ej para todos os pares de instruções (i, j) de t tal que exista uma aresta

de fluxo de controle i→ j.

TEA não duplica código, executando as instruções originais do programa. As Figu-

ras 1.2 e 1.3 ilustram a TT da Figura 1.1(c) representada por um TEA. Na Figura 1.2,

o programa está prestes a fazer a transição 5 → 7, com o estado atual do autômato (e

a instrução correspondente à 5) em destaque; a Figura 1.3 mostra o programa após a

transição.

TEA pode ser atualizado dinamicamente para, por exemplo, indicar a detecção de um

novo trace. Partindo de um autômato vazio (i.e., um TEA somente com o estado “Código

Frio”) é posśıvel adicionar os traces detectados durante a execução de um programa. Com

isso, TEA pode ser utilizada como representação única em um ambiente de otimização

dinâmico.

O overhead em gerenciar a detecção, criação e otimização de traces exclusivamente

em software em tempo de execução mostrou-se elevado demais (veja os Caṕıtulos 4 e 3

para maiores detalhes) para que ganhos oriundos de otimização viessem a sobrepujá-lo.

Assim, o foco do estudo mudou para otimização estática de laços.

1.2 Paralelismo em Laços Usando Decoupled Soft-

ware Pipeline

A otimização estática de laços regulares é um problema resolvido (veja a Seção 5.2).

Entretanto, a paralelização de laços não regulares continua sendo um problema em aberto.

Existe ampla disponibilidade bibliográfica sobre hardwares especializados com suporte

a paralelização oferecendo, entre outros, mecanismos que garantem a coerência entre

as diversas linhas de execução do programa paralelo. Estas soluções são usualmente

chamadas de Thread-Level Speculation (TLS).

TLS é uma área da arquitetura de computadores que utiliza algum tipo de especulação

(de dados, de controle ou ambos) para aumentar o desempenho de aplicações. Como

a execução ocorre de forma especulativa, mecanismos para recuperação de falhas são

necessários para garantir a corretude da execução paralela.

6 Caṕıtulo 1. Introdução

1

643

2

5

7

(a) GFC

Código Frio

2

3 4

5

7

1

6

7

1

2

5

7

2

1

2

2

(b) TEA

Figura 1.2: Antes da Transição 5→ 7

1.2. Paralelismo em Laços Usando Decoupled Software Pipeline 7

1

643

2

5

7

(a) GFC

Código Frio

2

3 4

5

7

1

6

7

1

2

5

7

2

1

2

2

(b) TEA

Figura 1.3: Após a Transição 5→ 7

8 Caṕıtulo 1. Introdução

Em TLS esta Tese propõe um modelo de execução paralelo que, por sua regularidade,

simplifica o suporte necessário para execução. Uma prova de corretude para tal modelo

é apresentada no Apêndice A. Como o modelo de execução é baseado em DSWP, a

Seção 1.2.2 descreve esta técnica. Por serem utilizadas para a explicação de DSWP, as

técnicas tradicionais de paralelização DOALL e DOACROSS são ilustradas na próxima

Seção.

1.2.1 Técnicas Tradicionais de Paralelização de Laços

Tradicionalmente, as técnicas DOALL e DOACROSS são utilizadas para paralelizar

laços estaticamente. Das duas, DOALL é a mais simples: laços paralelizados com esta

técnica precisam que suas iterações sejam independentes entre si (i.e., não pode haver

dependências loop carried). A Figura 1.4(a) ilustra um laço que pode ser paralelizado

empregando-se DOALL. As arestas sólidas são arestas de fluxo de controle, e as arestas

pontilhadas representam dependências de dados.

DOALL é uma técnica escalável com o número de núcleos: o programa paralelo pode

identificar, em tempo de execução, quantos núcleos estão dispońıveis para execução do

laço, criando um número ótimo de threads.

DOACROSS é ligeiramente mais geral que DOALL: dependências entre iterações são

permitidas, sendo comunicadas em tempo de execução. A idéia básica por trás de DOA-

CROSS é gerar todas as dependências de iterações futuras o mais cedo posśıvel, iniciando

as novas iterações conforme suas dependências são satisfeitas. A Figura 1.5 ilustra um

laço que não pode ser paralelizado com DOALL: repare a dependência de dados 3 → 2.

Esta única aresta faz com que o laço da Figura 1.5(a) não possa ser tratado por DOALL,

enquanto a Figura 1.4(a) possa.

A Figura 1.5(b) ilustra a paralelização do laço apresentado na Figura 1.5(a). Diferen-

temente de DOALL, DOACROSS não é escalável com o número de núcleos: o código é

gerado com um número pré-determinado de threads necessárias para sua execução. No

exemplo da Figura, o número de threads assumido para paralelização é dois.

1.2.2 DSWP

DSWP foi inicialmente proposto por Ottoni et al. [41]. Neste trabalho, os autores intro-

duzem a nova técnica de TLS, descrevendo os algoritmos utilizados para geração de código

paralelo e o mecanismo de comunicação inter-thread. Além disso, os autores apresentam

uma extensa avaliação experimental da técnica, incluindo uma avaliação de tamanho e

latência de várias filas de comunicação. A avaliação foi feita utilizando-se um simulador

do processador Itanium® 2 [44] e o compilador IMPACT [4].

1.2. Paralelismo em Laços Usando Decoupled Software Pipeline 9

3

4

5

2

1

i = f(i)

i = i 0

(a) Sequencial

3

4

5

2

1

i = i 0

i = f(i+4) 3

4

5

2

1

i = i + 10

i = f(i+4) 3

4

5

2

1

i = i + 20

i = f(i+4) 3

4

5

2

1

i = i + 30

i = f(i+4)

(b) Paralelo

Figura 1.4: Laço com Iterações Independentes e sua Paralelização com DOALL.

10 Caṕıtulo 1. Introdução

3

4

5

2

1

(a) Sequencial

3

4

5

2

1

3

4

5

2

1

3

4

5

2

1

(b) Paralelo

Figura 1.5: Laço Paralelizado com DOACROSS.

1.2. Paralelismo em Laços Usando Decoupled Software Pipeline 11

...

for (node* n = theList; n != 0; n = n->next)

n->sum += 1;

...

(a) Sequencial – MIPS

...

start: beq $zero , $t1 , end (0)

nop (1)

lw $t2 , ($t1)4 (2)

addi $t2 , $t2 , 1 (4)

sw ($t1)4, $t2 (5)

j start (6)

lw $t1 , ($t1)8 (7)

end: ...

(b) Sequencial – MIPS

5

7

0

2

4

(c) Grafo de Dependências do
Programa

Figura 1.6: Atualização de Elemento de Lista Ligada

Como ilustração para DSWP, considere o laço apresentado na Figure 1.6(a), que per-

corre uma lista ligada somando 1 ao valor do campo sum. A Figura 1.6(b) mostra a

codificação do laço em linguagem de montagem do processador MIPS já com os delay

slots preenchidos. Os números entre parênteses indicam o ciclo em que as instruções

entrariam no pipeline, e são usados para identificá-las nos exemplos.

O Grafo de Dependências do Programa (GDP), apresentado na Figura 1.6(c), repre-

senta dependências de dados com arestas pontilhadas e dependências de controle com

arestas tracejadas. No GDP, vemos a existência de uma Componente Fortemente Co-

nexa (CFC) contendo a instrução 7. Ele mostra também a existência de duas cadeias de

dependências de dados: uma entre as instruções 2, 4 e 5, e outra entre as instruções 7 e

0. Há, ainda, dependências de controle entre as instruções 0 e 2 e 0 e 7.

O laço paralelizado utilizando-se DSWP é apresentado na Figura 1.7(a). Como é

posśıvel ver na Figura, DSWP gera dois estágios para o laço do exemplo, sendo o primeiro

responsável por caminhar na lista ligada e, o segundo, por atualizar os elementos da lista.

Note a existência de duas arestas entre o primeiro e o segundo estágio. Estas dependências

serão honradas em tempo de execução com as filas de comunicação entre os núcleos. Vale

ressaltar que as filas devem ser suficientemente rápidas para que a comunicação de dados

não inviabilize a técnica.

O próximo trabalho baseado em DSWP foi publicado por Vachharajani et al. [64] e é

chamado Speculative DSWP (Spec-DSWP). Os autores observaram que, apesar do bom

desempenho de DSWP, havia ainda desempenho que poderia ser extráıdo utilizando-se

especulação em dependências infrequentes que são removidas antes do compilador otimizar

12 Caṕıtulo 1. Introdução

0, 7

2, 4, 5

S
ta

ge
 1

S
ta

ge
 2

(a) DSWP

0, 7

2, 4, 5

S
ta

ge
 1

S
ta

ge
 2

(b) specDSWP

0, 7

2, 4, 52, 4, 5

S
ta

ge
 1

S
ta

ge
 2

(Ímpares)(Pares)

(c) PS-DSWP

0, 7

2, 4, 52, 4, 5

S
ta

ge
 1

S
ta

ge
 2

(Ímpares)(Pares)

(d) PS-DSWP & specDSWP

2, 4, 5

0, 7

2, 4, 5

S
ta

ge
 2

C
om

m
it

S
ta

ge
 1

(Ímpares)(Pares)

T
ry

−
C

om
m

it

(e) SMTx e DSMTx

Figura 1.7: Paralelização do Código da Figura 1.6

1.2. Paralelismo em Laços Usando Decoupled Software Pipeline 13

o código com DSWP. Nenhum suporte extra em hardware além da fila de comunicação é

necessário para Spec-DSWP, de modo que o código gerado deve ser capaz de detectar e

recuperar-se de falhas de especulação.

Continuando com o exemplo da lista ligada (Figura 1.6(b)), se a lista for suficiente-

mente longa, a dependência de controle para a sáıda do laço ocorre infrequentemente.

Desta forma, o compilador pode especulativamente remover a dependência, 0 → 2, con-

forme mostrado na Figura 1.7(b), de modo que a comunicação entre os estágios será, neste

exemplo, diminúıda. Obviamente, o compilador deverá inserir código de compensação de-

vido à remoção da aresta de dependência.

O trabalho de Raman et al. [50] abandonou o suporte à especulação adicionado por

[64] e utilizou outro subterfúgio para aumentar o desempenho de DSWP. Após o código

paralelo ser gerado pelo compilador, a nova técnica, chamada Parallel Stage DSWP (PS-

DSWP), aplica otimizações clássicas como DOALL [31] e DOACROSS [13] aos estágios

gerados.

A Figura 1.7(c) mostra o resultado da aplicação da técnica de paralelização DOALL ao

segundo estágio do programa paralelizado com DSWP. No exemplo, fazer esta otimização

permite ao programa tolerar maiores latências no acesso à memória com o uso de uma

thread extra. Note que a aresta de dependência de controle está presente.

Uma extensiva análise do desempenho de DSWP pode ser encontrada em [51]. Neste

texto, os autores avaliam quais os fatores são posśıveis gargalos para que DSWP gere

código com o maior aumento de desempenho posśıvel. Os autores avaliam diversas confi-

gurações de processadores (de dois até oito núcleos) e várias configurações distintas para a

fila de comunicação. Eles introduzem uma nova variável nas análises: a banda dispońıvel

para o acesso à fila de comunicação. Os autores derivam expressões anaĺıticas que podem

ser utilizadas no momento da partição do programa em threads para determinar se o custo

de comunicação é tolerável.

O trabalho de Huang et al. [28] é semelhante à união de [50] e [64], com a diferença

que, neste novo trabalho, os autores aplicam outras técnicas de otimização aos estágios

do pipeline de threads além de DOALL, a saber, LOCALWRITE [23] e SpecDOALL [52].

A avaliação experimental deste artigo foi feita, diferentemente dos anteriores, em um pro-

cessador com oito núcleos comercial, logo, todo o suporte para as aplicações paralelizadas

foi provido em software.

A união de Spec-DSWP e PS-DSWP é ilustrada na Figura 1.7(d). Note que o segundo

estágio foi otimizado com DOALL e que a aresta de dependência de controle foi removida.

Todos os trabalhos envolvendo DSWP relacionados acima têm uma caracteŕıstica em

comum: eles assumem a disponibilidade de informações completas sobre os acessos à

memória realizados pelo código que será alvo da paralelização. Sem tal informação, o

compilador não é capaz de particionar o código em estágios. Ainda pior, não há nenhum

14 Caṕıtulo 1. Introdução

suporte, tanto em hardware quando em software, para detecção de falhas na atualização

da memória do programa.

Software Multi-threaded Transactions (SMTx), proposto por Raman et al. [49], executa

cada estágio do laço paralelizado em um processo distinto, diferentemente das propostas

anteriores, que utilizavam threads para executar os estágios. Em SMTx, cada iteração

do laço original é uma transação (uma Tx), sendo cada estágio gerado na paralelização

chamado de subTx. Há, ainda, dois outros estágios especiais cujas funções serão explicadas

nos parágrafos seguintes. Para um exemplo da arquitetura proposta por SMTx, veja a

Figura 1.7(e).

Inicialmente, todas as subTx possuem o mesmo mapeamento da memória virtual,

sendo que as páginas estão protegidas contra escrita. No momento em que uma subTx s

solicita uma escrita na página p, o sistema operacional cria uma nova página p′ (cópia de

p) para s. Assim, cada subTx executa isoladamente das outras. Caso o novo valor escrito

seja necessário em uma subTx t diferente de s, SMTx propõe um sistema de comunicação

de dependências entre subTx.

O código paralelo é também instrumentado de modo que todos os acessos à memória em

todas as subTx sejam armazenados em um log, cujas entradas consistem de três campos:

Operação (load ou store), Endereço e Valor.

Quando todas as subTxs de uma Tx terminam de executar, seus logs são combinados

para formar um único log. Uma subTx especial chamada Try-Commit recebe este log e o

processa. Tal processamento consiste em gravar o conteúdo do campo Valor em Endereço

(no caso de uma entrada do tipo store no log) ou verificar se o valor presente na memória

em Endereço é idêntico à Valor (loads). A lógica por trás deste processamento é que o log

contém os acessos à memória da mesma forma que eles seriam executados pelo programa

sequencial original. O resultado do processamento é informado a última subTx, chamada

Commit.

Commit utiliza o resultado do processamento do log de uma Tx para identificar se

execução paralela da iteração que gerou o log foi bem-sucedida ou não. O log de uma

Tx bem-sucedida é executado por Commit (i.e., as entradas do tipo store no log são

utilizadas para atualizar o conteúdo da memória) de modo a consolidar o estado do

programa sequencial. Uma Tx mal-sucedida dispara a recuperação de falhas.

SMTx foi proposto e avaliado para ser utilizado em computadores com múltiplos

processadores. Kim et al. [33] propõem Distributed SMTx (DSMTx), que é a generalização

de SMTx para execução em clusters de computadores onde o acoplamento não seja tão

forte. O custo de comunicação em tais ambientes é consideravelmente mais alto que em

computadores multiprocessados, de modo que os autores avaliam formas de buferização

de dados.

1.2. Paralelismo em Laços Usando Decoupled Software Pipeline 15

D V E

4−way
bucket

bucket
4−way

Old Cache Structure

(a) Cache com os Campos Adicionados

234
5678
9101112

1

0 0 1 1

(b) D – Dependências

234
5678
9101112

1

0 0 1 0

(c) V– Iteração

234
5678
9101112

1

1 0 1 1

(d) E – Dados Presentes

Figura 1.8: Bits Extra Utilizados para Consistência

1.2.3 Contribuições da Tese

As contribuições desta Tese em DSWP (Caṕıtulo 5) foram feitas usando Java em pro-

cessadores de prateleira. A fila de comunicação, indispońıvel nos ambientes de teste, foi

simulada em software usando diversas estratégias de sincronização. Contudo, os resulta-

dos mostraram que as diferentes estratégias não influenciam diretamente o desempenho

da aplicação. Em média, o aumento no desempenho das aplicações chegou à 48%. Os

problemas encontrados durante estes experimentos foram abordados no próximo traba-

lho.

Grande parte dos problemas oriundos da paralelização de código sequencial emer-

gem de acessos à memória: a dificuldade de determinar, incontestavelmente, se duas

instruções que acessam a memória endereçam posições distintas limita as possibilidades

de otimização. Além disso, a dificuldade em determinar se um conflito ocorreu (bem como

recuperar o estado do programa na eventualidade de um conflito) orientaram o estudo do

Caṕıtulo 6.

Como resultado, propõe-se ali um esquema de consistência de memória, baseado em

versionamento automático de dados nas caches dos processadores, e constrúıdo sobre o

protocolo de coerência de cache existente, sem alterações no mesmo. Alguns bits extras

são adicionados à cache, conforme ilustrado na Figura 1.8(a).

Os bits extra compõem três tags, cada uma com uma função distinta, cooperando para

manter a consistência em programas paralelizados (ou, ao menos, detectando violações da

semântica do programa sequencial). A lógica para gerenciar estas tags foi cuidadosamente

elaborada para ser simples e eficiente.

Na arquitetura proposta, cada iteração de laços paralelizados é representada univoca-

mente por um único bit. Para evitar a necessidade de grandes campos na cache (e nas

16 Caṕıtulo 1. Introdução

mensagens de coerência), a arquitetura proposta limita a quantidade máxima de iterações

ativas ao mesmo tempo. Além disso, utilizar um único bit simplifica a lógica necessária

para o versionamento.

D é utilizado para manter as dependências de uma dada linha da cache. Na Fi-

gura 1.8(b) a existência de dois bits 1 indica que a linha l atrelada àquele campo é

especulativa nas iterações correspondentes aos bits ligados. Quaisquer escritas a l nas

iterações indicadas em D indica uma violação da semântica do programa sequencial.

V é utilizado para indicar a qual iteração a linha pertence. Se todos os bits deste

campo forem zero, a linha atrelada a tag não é especulativa.

E é utilizado durante as operações do commit para evitar que a cache seja colocada

em um estado inválido com múltiplas entradas para o mesmo endereço da memória.

Colateralmente, E evita que a arquitetura proposta necessite de tráfego de rajada durante

commits.

1.3 Principais Contribuições

De forma sucinta, as contribuições desta Tese são:� Uma nova técnica de gravação de traces de execução de programas;� Uma representação mais compacta para traces;� Um algoritmo simples para paralelização de programas Java que, mesmo sem nenhum

tipo de suporte espećıfico da Java Virtual Machine (JVM), provê bons resultados;� Uma arquitetura paralela com suporte à paralelização automática de laços sem a

necessidade de profiling ; e� Uma prova de corretude para a arquitetura proposta sem a necessidade da criação

de um protocolo de coerência espećıfico.

1.4 Publicações

Durante a realização dos estudos desta Tese, foram publicados ou submetidos, em ordem

cronológica, os seguintes trabalhos:� J. P. Porto, Y. Wu, E. Borin e C. Wang. Compact Trace Trees in Dynamic Binary

Optimization. Aplicação de patente no USPTO sob o número # 20100083236.� J. P. Porto, G. Araujo, Y. Wu, E. Borin e C. Wang. Compact Trace Trees in

Dynamic Binary Translators. Em AMAS-BT 2009: 2nd Workshop on Architectural

and MicroArchitectural Support for Binary Translation. Junho de 2009. Austin,

Texas, EUA.

1.5. Organização desta Tese 17� J. P. Porto, G. Araujo, E. Borin e Y. Wu. Trace Execution Automata in Dynamic

Binary Translation. Em AMAS-BT 2010: 3rd Workshop on Architectural and Mi-

croArchitectural Support for Binary Translation. Junho de 2010. St.-Malo, França.� J. P. Porto, A. Oliveira, G. Araujo e M. Breternitz. Cache-Based Cross-Iteration

Coherence for Loop Parallelization. Em The 23rd ACM Symposium on Parallelism

in Algorithms and Architectures. Junho de 2011. San Jose, California, EUA. (Sub-

metido)� J. P. Porto e G. Araujo. Extending Decoupled Software Pipeline to Parallelize Java

Programs. Em Software Practice and Experience. (Submetido)

1.5 Organização desta Tese

Antes de descrever a organização do texto, uma pequena nota ao leitor. Esta Tese,

em concordância com as normas atuais que regem a pós-graduação da Universidade

Estadual de Campinas, possui partes do texto escritas em ĺıngua estrangeira, cor-

respondentes a artigos publicados ou submetidos a jornais cient́ıficos e conferências

internacionais. Ainda de acordo com esta norma, o conteúdo desses textos repro-

duz fielmente aqueles dos artigos originais. Contudo, a formatação dos mesmos foi

adequada para ficar compat́ıvel com o estilo do restante desse documento.

O Caṕıtulo 2 lista trabalhos anteriores relacionados à esta Tese. Nele são detalhadas

técnicas anteriores de TLS.

O Caṕıtulo 3 inicia a coletânea com o primeiro artigo publicado durante a pesquisa

deste trabalho. Nele, descreve-se uma nova técnica ara identificação de traces.

Durante os estudos sobre identificação de traces, desenvolvemos uma nova forma para

representação dos mesmos, que é descrita no Caṕıtulo 4.

O Caṕıtulo 5 apresenta uma extensão de DSWP para utilização em ńıvel de código-

fonte em Java. Nos experimentos realizados, nenhum suporte extra foi adicionado

à JVM. O trabalho de paralelização, embora tenha sido feito manualmente, foi de

extrema importância para o resultado final desta Tese por ter exposto os problemas

intŕınsecos à DSWP, em especial os problemas de alias de memória. As soluções

para os problemas encontrados neste estudo foram úteis para a arquitetura descrita

no Caṕıtulo 6.

O Caṕıtulo 6 apresenta a principal contribuição desta tese: uma arquitetura paralela

com suporte à execução de código paralelizado utilizando estratégias baseadas no

modelo DOPIPE [42] de paralelização como DSWP.

As conclusões da Tese são apresentadas no Caṕıtulo 7, que também lista trabalhos

futuros posśıveis.

18 Caṕıtulo 1. Introdução

O Apêndice A apresenta uma prova de corretude para o mecanismo de coerência

utilizado pela arquitetura proposta pelo Caṕıtulo 6. Esta prova utiliza protocolo

Modified – Shared – Invalid (MSI) de coerência de cache sem alterações.

Caṕıtulo 2

Trabalhos Relacionados

Neste Caṕıtulo, é feita uma revisão dos trabalhos anteriores em Traces (Seção 2.1) e

em paralelização não-tradicional de laços usando TLS (Seção 2.2). As técnicas de pa-

ralelização tradicionais, utilizadas para paralelização de laços regulares, são descritas na

Seção 5.2.

2.1 Traces

Ao contrário de TLS, a literatura a respeito de traces não é tão extensa e, os trabalhos,

não tão diversificados. Ainda assim, como uma importante parte deste trabalho, esta

Seção dedica-se a listar alguns trabalhos relacionados detecção e usos de traces.

Cifuentes et al. [10] propõem Most Frequently Executed Tail (MFET). Nesta técnica,

as arestas do GFC do programa são instrumentadas. MFET também instrumenta as

instruções alvos de salto para trás. Quando uma instrução é identificada como “quente”,

MFET utiliza a informação sobre a frequência de execução das arestas para determinar

o trace que deve ser formado.

Duesterwald et al. [16] propõem MRET. Assim como MFET, os ińıcios de traces são

identificados em instruções que são alvo de saltos para trás. Entretanto, MRET segue o

fluxo da execução do programa para determinar o trace a ser gravado. A idéia é evitar a

custosa instrumentação em todas as arestas do GFC do programa original.

Last Executed Iteration (LEI) [26], proposto por Hiniker et al., procura identificar

código quente mais significativo que MRET. Basicamente, a técnica utiliza um buffer

com os últimos saltos executados pelo programa. Uma entrada repetida neste buffer

indica a detecção de um loop header. Quando este loop header executar mais que um

número determinado de vezes, LEI grava a execução do programa até que um ciclo seja

formado, ou até que a execução do programa atinja um trace pré-existente.

Como MRET não é seletivo em relação ao caminho escolhido para gerar um trace,

19

20 Caṕıtulo 2. Trabalhos Relacionados

Two-pass MRET (MRET2)2 foi desenvolvida. Como o nome indica, ela é derivada de

MRET. Seu funcionamento é bem simples: ao invés de gravar um trace assim que seu

código se torna quente, MRET2 grava um trace potencial, e programa continua a executar

código normal. Quando um segundo trace for identificado, MRET2 faz a intersecção de

ambos os traces potenciais. Esta heuŕıstica tende a identificar caminhos mais significativos

para execução do programa.

Há uma ampla literatura de ambientes de otimização de código baseados em traces.

Por exemplo, Baraz et al. [6] introduz IA32-EL, um tradutor binário dinâmico que traduz

código x86 para execução em sistemas Itanium ®. Este tradutor otimizante mostrou

um desempenho superior à solução inicialmente empregada (i.e., uso de um núcleo de um

processador 386 para execução nativa de código x86). Este ganho de desempenho somente

foi posśıvel pois IA32-EL identificava traces de execução, armazenando-os em uma trace

cache para posterior otimização.

Dehnert et al. [15] descreve Code Morphing Software (CMS), a grande novidade da

Transmeta em seus processadores: ao invés de manter a compatibilidade com x86 em

hardware, uma camada de software (a CMS) foi utilizada. Desta forma, os engenheiros

do processador se viram livres das idiossincrasias de x86. CMS também mantém os traces

descobertos em uma trace cache, focando maior esforço de otimização nos traces mais

executados.

Digital FX!32, proposto por Hookway [27], é um subsistema presente nos sistemas

operacionais Windows NT 4.0 em sistemas Alpha para execução de aplicações x86 sem a

necessidade de recompilação para a nova arquitetura. Diferentemente dos trabalhos ante-

riores, FX!32 inicialmente interpretava as aplicações, instrumentando o código executado.

A otimização dos códigos mais executados era feita offline. As unidades de otimização

eram traces de execução.

Gal et al. [17] propõem TraceMonkey, um compilador dinâmico para JavaScript que

emprega TT para identificar código quente em aplicações Web. Compilar JavaScript

para execução nativa é extremamente interessante, haja vista a quantidade de código

JavaScript dispońıvel que pode beneficiar-se direta e automaticamente da compilação.

Em comum, todos estes trabalhos não identificam oportunidades de paralelização de

código em ńıvel de threads, optimizando, contudo, o código com otimizações tradicionais,

tais quais Eliminação de Subexpressões Comuns (ESC) e Eliminação de Código Morto

(ECM) [1, 39].

2USPTO #20070079293

2.2. Thread-Level Speculation 21

2.2 Thread-Level Speculation

Laços irregulares requerem técnicas mais poderosas de paralelização. Além da informação

estática sobre o código, estas técnicas requerem informações sobre a execução dos pro-

gramas. Usualmente, tais informações são obtidas com o emprego de instrumentação.

Entretanto, outros meios podem ser utilizados, tal como anotação do código-fonte. A

seguir, uma seleção de trabalhos anteriores em TLS.� Akkary et al. [2]: Uma interessante abordagem em hardware para TLS, que quebra

um programa sequencial em threads automaticamente. Para isso, o hardware procura

agressivamente por laços e chamadas de função que são usados para delimitar o ińıcio

de uma nova thread. Como estas são criadas antes dos valores de entrada (live-in)

estarem prontos, os autores propõe um esquema de predição de valores. Eles também

provêm e explicam o suporte para falhas de especulação.� Checkpoint Processing and Recovery (CPR) [3] e, posteriormente, Continual Flow

Pipeline (CFP) [57], introduzem micro-arquiteturas que são capazes de terminar

(em inglês, retire) instruções fora da ordem original do programa. Para tanto, os

autores introduzem novas estruturas nos processadores. Ambos os modelos baseiam

a execução no processamento de checkpoints. Estas micro-arquiteturas, no entanto,

apresentam elevado consumo de energia, inviabilizando-as. Hilton et al. [25], propõe

o uso do modelo de execução de processamento de checkpoints em processadores

in-order como forma de amenizar o custo de instruções de acesso à memória.� Balakrishnam et al. [5]: os autores propõem a multiplexação de um programa pelo

compilador e a demultiplexação pelo processador. Neste esquema, o compilador

determina, estaticamente, a relação de dependência entre métodos e funções de um

programa e expõe esta informação para o processador. Para executar o programa,

o hardware executa as funções que tem todas as suas dependências satisfeitas. A

medida que as funções terminam, novas dependências são satisfeitas e, assim, novas

funções estão aptas para serem executadas.� Bhowmik et al. [7]: Este trabalho descreve um compilador (baseado no compilador

SUIF [66]) que faz a decomposição de um programa sequencial em threads. Para

tanto, o compilador utiliza heuŕısticas e informações obtidas com instrumentação. A

avaliação experimental do compilador foi feita com um simulador que executa traces

de execução e, aparentemente, nenhum suporte especial em hardware foi necessário

para execução do código paralelo.

22 Caṕıtulo 2. Trabalhos Relacionados� Bridges et al. [8] discorre sobre a necessidade de especulação para que técnicas au-

tomáticas de paralelização consigam efetivamente extrair paralelismo de aplicações

irregulares. Após uma pequena revisão de DSWP os autores apresentam duas

anotações de código que estendem a semântica de estruturas sequenciais de lingua-

gens de programação tradicionais. A primeira anotação (@YBRANCH) indica sal-

tos condicionais (i.e., if s em linguagens de programação) não-determińısticos. Esta

anotação indica ao compilador que o código protegido pela condição (i.e., o corpo

do if) pode ser executado independente do resultado da condição. Esta anotação

inclui também a probabilidade com que o corpo do if deve ser executado. A se-

gunda anotação (@Commutative) é utilizada para anotar funções cuja ordem de

invocação no programa paralelo não precise ser idêntica à ordem do programa se-

quencial (funções de alocação de memória são, em teoria, comutativas).� Bulk [9, 62]: estes artigos descrevem uma maneira simples de verificar se um pro-

grama paralelizado viola a consistência sequencial durante a sua execução. Para

detectar tais violações, os autores propõem um esquema baseado em assinaturas dos

endereços de memória atualizados por cada uma das threads. Além das assinatu-

ras, um esquema de checkpoint dos registradores é utilizado de modo a ser posśıvel

a restauração do estado correto da aplicação em resposta a detecção de conflitos.

Nenhum suporte de software é proposto.� Cintra et al. [11]: este trabalho propõe uma arquitetura escalável para TLS. Os

autores criam seu próprio protocolo de coerência de cache para esta arquitetura.

Além disso, as operações de commit e squash são potencialmente lentas: a primeira

faz invalidação em rajada (burst-invalidate) de todos os dados quando do final de uma

thread, enquanto a segunda força a sincronização dos processadores que executam a

aplicação. Além disso, como os dados são invalidados ao término de uma thread, a

cache do sistema ficará potencialmente fria.� Collins et al. [12] propõe o uso de TLS para realização de pré-busca (pre-fetching)

de loads “delinquentes”. Um load é delinquente se é responsável por grande parte

das faltas no acesso à cache (em inglês, cache miss). Em outras palavras, este load

não é facilmente predito pelos mecanismos usuais de pré-busca. Para a avaliação,

os autores implementaram um compilador que, identificando um load delinquente,

emite código para a criação da thread responsável pela pré-busca dos dados. Al-

gum suporte de hardware também é necessário. Assim, os autores utilizaram um

simulador baseado em SMTSIM [63]. Os resultados mostram que eliminar os lo-

ads delinquentes é equivalente ao aumento de desempenho obtido pela utilização de

2.2. Thread-Level Speculation 23

memória penalidade de falha igual a zero (no original, zero-miss-penalty memories).� Sohi et al. propõe um modelo de execução hierárquica, o Wisconsin Multiscalar [56].

Neste modelo, o fluxo dinâmico das instruções é partido em tarefas (tasks). Para

isso, um hardware especializado prediz qual a próxima tarefa a ser executada e inicia

sua execução em algum processador livre. Esta predição pode falhar, levando ao

cancelamento de tarefas (task squashing) disparadas especulativamente. Neste mo-

delo, a tarefa mais antiga (i.e., criada antes de todas as outras tarefas executando

no sistema) é dita não especulativa e sempre termina. Neste contexto, Gopal et al.

propõe Speculative Versioning Cache (SVC) [20], que é um tipo de cache versionada

coerente. Organizado de maneira similar às caches em processadores Symmetric

MultiProcessors (SMP), SVC detecta acessos à memória que violem a semântica do

programa sequencial. SVC depende de um mecanismo centralizado que faz a busca

em uma lista de dados sempre que há uma falha de leitura à cache ou um acerto de

leitura (em inglês, cache hit) a um dado não especulativo.� Hydra CMP: Hammond et al. [21] descreve o processador SMP Hydra, que é com-

posto por quatro processadores MIPS. Além da cache privativa, Hydra provê também

uma grande cache compartilhada por todos os processadores. Fazendo a interligação

dos processadores com a cache compartilhada e com o restante do sistema (e.g.,

controlador de memória, controladores de Entrada e Sáıda (E/S) etc) existe um bar-

ramento largo o suficiente para acomodar um linha inteira de cache. Existe, ainda,

um barramento mais estreito utilizado tanto para fazer atualizações no ńıvel com-

partilhado da cache como para invalidar as cópias da linha sendo escrita nos outros

processadores. A arquitetura Hydra também oferece suporte à TLS adicionando

hardware especializados para tal, tanto nos núcleos como fora deles.� Thread-Level Data Speculation (TLDS) é proposto por Steffan et al. [58] como um

subterfúgio para aumentar a eficiência de TLS. Neste trabalho, os autores evitam

anti-dependências (Write After Read (WAR) e Write After Write (WAW)) forçando

os dados escritos especulativamente a residirem no primeiro ńıvel da cache, o que

limita a quantidade de dados escritos em modo especulativo. A detecção de conflitos

Read After Write (RAW) é feita quando da escrita de um dado em modo especu-

lativo simplesmente anexando (em inglês piggybacking) informações suficientes nas

mensagens do protocolo de coerência. Um suporte para Hydra similar foi proposto

por Hammond et al. [22] que adicionou a passagem (forwarding) automática de dados

entre threads especulativas, além de algumas melhorias como a ausência de tráfego

de rajada (burst traffic) ao término de threads especulativas. Apesar disso, o suporte

24 Caṕıtulo 2. Trabalhos Relacionados

descrito para Hydra requer um sofisticado suporte em hardware.� Johnson et al. [30] propõe um algoritmo para o particionamento de um programa

sequencial em threads. O algoritmo proposto opera em ńıvel de blocos básicos, utili-

zando informações estáticas e dinâmicas, estas obtidas com instrumentação, tentando

maximizar a quantidade de paralelismo que é exposta ao hardware, que deve obriga-

toriamente oferecer suporte à especulação, utilizando uma série de parâmetros tais

quais o tamanho das threads geradas, o desbalanceamento de carga (no original, load

imbalance) e a possibilidade de gerar cancelamentos por causa do escalonamento.� Alchemist [67] é um ambiente de instrumentação que identifica dinamicamente can-

didatos a pré-cômputo. Por exemplo, um comando if que execute após um comando

while e não dependa deste pode ser executado em paralelo com o mesmo. Apesar de

identificar os candidatos ao pré-cômputo, Alchemist não faz a paralelização automa-

ticamente, ficando a cargo do programador acatar ou não a sugestão do ambiente.

Um estudo mais detalhado de pré-cômputo é feito em [32] por Kim et al.. Neste

trabalho, os autores analisam diversos algoritmos em diversos compiladores. Este

trabalho requer um suporte minimo do hardware para a criação das threads, e não

requer nenhum suporte para consistência.� Krishnan et al. [34, 35] propõe neste artigo um sistema no qual o compilador é res-

ponsável por anotar o código binário com informações sobre o ińıcio e o fim de

regiões as quais devem ser paralelizadas pelo hardware em tempo de execução. Di-

ferentemente de grande parte dos trabalho que dependem de um compilador, neste

os autores analisam o código binário, e não o código-fonte da aplicação, o que torna

esta proposta uma alternativa para paralelização de código legado. O trabalho foca

na paralelização de laços internos e o hardware é responsável por criar as threads

para executar especulativamente iterações sucessivas de tais laços. As dependências

de registradores são honradas pelo processador com o uso de um hardware espećıfico

chamado synchronizing scoreboard. As dependências dinâmicas são tratadas por uma

tabela chamada Memory Disambiguation Table (MDT) que está localizada junto ao

último ńıvel da hierarquia de cache.� Madrilles et al. propõe Anaphase [36] como outra solução para suporte à execução

especulativa de threads. Este estudo focou no agrupamento de dois núcleos que

podem operar de maneira independente ou cooperativa. Para o modo cooperativo,

alguns bits são adicionados ao primeiro e ao segundo ńıvel (que é compartilhado) da

cache. Além deste suporte, o artigo introduz o módulo de coerência de memória entre

2.2. Thread-Level Speculation 25

núcleos (Inter-Core Memory Coherence (ICMC)). Este módulo é responsável por

garantir que as atualizações à memória ocorram da mesma forma como ocorreriam

se o programa fosse executado sequencialmente. O conjunto de dois núcleos, uma

memória cache compartilhada e um ICMC formam um tile. Neste artigo os autores

apresentam uma estimativa da área necessária para implementar o sistema proposto.� Marcuello et al. [37]: outra alternativa que depende unicamente do hardware para

paralelizar programas sequenciais. Como a maioria dos estudos de TLS, este foca em

laços, que não necessariamente são os laços internos de um programa. Como outras

abordagens exclusivamente em hardware, este trabalho faz especulação do fluxo de

controle para geração das threads, bem como para as dependências de dados. Aquelas

são feitas baseadas na observação de que a maior parte das iterações tende a seguir

o mesmo caminho dentro de um laço, enquanto estas são tratadas com o uso de uma

tabela para predição de valores.� Marcuello et al. [38]: Neste artigo, os autores apresentam uma alternativa para a

criação de threads para especulação. Os resultados experimentais mostram que o

sistema proposto (baseado em instrumentação) é mais eficiente que as heuŕısticas

tradicionais, que usualmente criam threads para executar iterações, continuação de

laços ou de subrotinas. Uma outra avaliação feita mostra que os preditores de valor

não precisam de esquemas elaborados caso o número de threads a serem criadas não

seja grande.� Pinot [40]: os autores propõem uma arquitetura para execução especulativa de

threads que conecta os núcleos do processador utilizando uma conexão em anel. Este

design foi escolhido pela simplicidade de implementação da rede em anel, bem como

pela alta velocidade que ela proporciona para a transferência de dados entre núcleos.

Esta eficiência na transferência de dados entre núcleos adjacentes é útil neste mo-

delo de execução, no qual cada thread cria um única outra thread para adiantar a

computação que seria executada na sua continuação. Também é descrito um suporte

em hardware para versionamento de memória como forma de aumentar o suporte

a várias granularidades de TLP. Para criar as threads antes de serem necessárias o

hardware faz predição de fluxo de controle. O hardware não é responsável por ex-

trair as threads: um otimizador offline, com base em informações de instrumentação,

delimita as threads no código do programa.� Prvulovic et al. [47] analisa as ineficiências de arquiteturas com suporte a execução

especulativa de threads e determinam que o custo de fazer commit, o esgotamento

26 Caṕıtulo 2. Trabalhos Relacionados

de espaço para armazenar dados especulativos e o tráfego de coerência gerado pela

especulação juntos dominam o custo de executar código especulativo. Para o pri-

meiro gargalo é proposta uma solução que permite ao commit não escoar os dados

especulativos para memória. Para o segundo gargalo (esgotamento de espaço para

dados especulativos) é proposta uma solução que permite que uma região da memória

principal seja utilizada como área de escape que pode ser redimensionada caso haja

necessidade. Por fim, para contornar o excesso de mensagens de coerência devido à

especulação, é proposta uma alteração no protocolo de coerência da cache que per-

mita ao processador identificar linhas de cache que não precisam de coerência fina,

diminuindo assim a quantidade de mensagens geradas pelo acesso a tais linhas.� Compilador Mitosis (Quiñones et al.) [48]: quando da criação de uma thread, a maior

parte das arquiteturas com suporte à TLS provê algum tipo de suporte em hardware

para materialização dos valores iniciais dos registradores do processador que execu-

tará a nova thread. Neste artigo, os autores propõem que esta geração seja feita por

p-slices – uma ou mais instruções que efetivamente calculam o valor dos registra-

dores vivos. Este código de prólogo pode facilmente negar os benef́ıcios oriundos

da paralelização. Para evitar que isso ocorra, os autores propõem heuŕısticas para

otimizar as p-slices. O commit ocorre quando a thread não-especulativa atinge o

ińıcio de uma thread especulativa. Neste ponto, o estado não especulativo é compa-

rado com o estado predito e, caso sejam idênticos, a thread não-especulativa termina

e a thread especulativa torna-se não-especulativa. Caso os estados sejam distintos,

a thread especulativa e todas as threads por ela geradas são canceladas e a thread

não especulativa continua a execução do programa, criando novas threads quando

necessário.� Raman et al. [49] propõe SMTx como forma viabilizar DSWP em processadores atu-

ais. Os autores propõem o uso do sistema de memória virtual dos processadores atuais

como forma de garantir que, no evento de uma falha de especulação, seja posśıvel

restaurar o estado correto do programa sequencial. Entretanto, esta estratégia ainda

depende de informações de instrumentação para funcionar corretamente: cabe ao

compilador identificar as dependências entre os estágios do pipeline.� Renau et al. [54]: TLS surgiu como uma alternativa aos processadores super-

escalares. A existência de múltiplos núcleos em um mesmo processador possibilita

que técnicas agressivas de otimização sejam empregadas para aumentar o desempe-

nho de aplicações. Entretanto, todo o suporte necessário para execução correta de

TLS era visto como algo que poderia consumir uma grande quantidade de energia

2.2. Thread-Level Speculation 27

se implementado. Contrariando o esperado, os autores mostram que, com algumas

otimizações em software e hardware, TLS pode ser eficiente em termos de consumo

de energia. O estudo também aponta algumas ineficiências inerentes à estilos de

projeto de sistemas com suporte à TLS para os arquitetos (e micro-arquitetos) de

hardware evitem-los.� Steffan et al. [59] faz uma proposta de hardware para TLS que diz ser escalável. O

esquema proposto é um composto de processadores que estão interligados através de

barramentos e de uma cache compartilhada. Apenas as iterações de laços são pa-

ralelizadas, de modo que a execução do código paralelo ocorre de forma semelhante

à execução paralela de um laço DOALL, exceto que, neste caso, podem haver de-

pendências entre as iterações, dependências estas que são honradas pelo hardware

em tempo de execução. A coerência entre as iterações é mantida por um protocolo

baseado em Modified – Exclusive – Shared – Invalid (MESI), mas com extensões

para o suporte à especulação. Contrariando o dito em [47], esta proposta necessita

do tráfego de rajada para fazer commits e squashs, de modo que estas operações

tendem a ser um fator limitante muito severo no desempenho geral do sistema.� O modelo Copy or Discard [60], proposto por Tian et al., é um exemplo de técnica de

TLS extremamente simples que não depende de nenhum suporte espećıfico em hard-

ware para funcionar. Ela trabalha paralelizando iterações de laços. A novidade neste

esquema é o modo como a especulação termina. Como o nome da técnica sugere,

terminar uma iteração é uma questão de copiar o estado especulativo de uma área

privativa alocada para cada thread ou simplesmente descartar o estado especulativo

de uma execução que falhe. Os autores apresentam técnicas para otimizar a cópia

dos valores da área privativa para a área compartilhada.� Voltron (Zhong et al. [68]): a proposta deste artigo não se limita à TLS. Os au-

tores propõe uma arquitetura que seja capaz de capturar três formas distintas de

paralelismo, a saber: paralelismo em ńıvel de instrução (em inglês, ILP), parale-

lismo em ńıvel de thread (TLP) e paralelismo em ńıvel de laço (Loop-Level Paralle-

lism (LLP)). Para o primeiro tipo de paralelismo (ILP), o sistema proposto faz a fusão

de núcleos de modo a criar um cluster para execução semelhante ao encontrado em

um processador Very-Long Instruction Word (VLIW). Para TLP e LLP o sistema

oferece um modo de execução desacoplado e com suporte a Hardware Transactio-

nal Memory (HTM). Entretanto, esta abordagem apresenta dois problemas, sendo

o primeiro deles a falta de suporte automático à coerência de dados (dependendo,

assim, de um compilador mais elaborado) e o segundo oriundo do fato de o modelo

28 Caṕıtulo 2. Trabalhos Relacionados

de fusão de núcleos (também aplicado em Wisconsin Decoupled Grid Execution Ti-

les (WiDGET) [65]) já ter sofrido cŕıticas quanto à sua eficiência [55]. Apesar destas

observações, este é um dos poucos trabalhos a abordar de maneira tão abrangente

os diversos tipos de paralelismo existente em aplicações sequenciais.� Zilles et al. [69] observam que uma pequena parte das instruções estáticas de um

programa tem um efeito negativo significativo no desempenho em tempo de execução

das aplicações dada a dificuldade em antecipar, com as técnicas atuais de pré-busca

ou predição de salto, seu comportamento dinâmico. Para contornar o problema, os

autores propõe um esquema de pré-aquecer o preditor de saltos ou a cache para estas

instruções problemáticas. Usando contextos ociosos de threads em processadores

Symmetric Multi-Thread (SMT) com algumas alterações, os autores propõe a pré-

execução de instruções problemáticas em paralelo com o programa principal. Esta

thread auxiliar é responsável por tolerar a grande latência destas instruções.� Master/Slave Speculative Parallelization (MSSP) é proposta por Zilles et al. [70].

Nesta abordagem, existe um processador mestre (Master) e vários processadores es-

cravos (Slaves). O programa principal, executado pelo processador mestre, é, na ver-

dade, uma aproximação do programa original que não necessariamente tem o mesmo

resultado do programa original. Executar o programa original é responsabilidade dos

processadores escravos. Assim, o programa aproximado cria threads verificadoras em

pontos determinados para que estas confirmem o resultado da especulação. Esta

abordagem possibilita a otimização agressiva do programa original, fazendo o caso

comum extremamente eficiente. Como forma de garantir o progresso da execução do

programa, o hardware pode, temporariamente, abandonar a especulação e executar

a versão exata (e sequencial) do código.

Caṕıtulo 3

Compact Trace Trees in Dynamic

Binary Translators

Prólogo

Neste trabalho inicial, estudaram-se duas técnicas conhecidas utilizadas para detecção

e gravação de traces. A primeira, conhecida como MRET ou NET [16], é uma técnica

que faz profiling apenas de blocos básicos que são alvos de back edges. Neste esquema,

quando um bloco torna-se quente (i.e., executa mais que um determinado número de

vezes) o trace é gravado acompanhado-se o fluxo natural do programa até que alguma

condição de término seja detectada. A segunda técnica é TT [18]. Uma grande diferença

entre TT e MRET é a restrição quanto ao término da gravação do trace: TT requer que

um trace termine com um desvio para o ińıcio do trace. Além disso, a tomada de sáıdas

laterais (side exits) em TT forçam a expansão do trace.

Por causa da expansão dos traces, TT apresenta potencial para um alto ńıvel de

duplicação de código (e, de fato, a duplicação observada foi alta) mas expõe mais opor-

tunidades de otimização. MRET é bem comportada no quesito duplicação, mas os traces

gerados são menos propensos à otimizações. Por causa disso, desenvolvemos uma técnica

h́ıbrida chamada CTT que apresenta um bom compromisso entre a alta especialização de

TT e a baixa duplicação de MRET.

O seguinte artigo foi apresentado na segunda edição da Architectural and Micro-

Architectural Support for Binary Translation (AMAS-BT) em junho de 2009 em Austin,

Texas, Estados Unidos. Derivado deste trabalho, há um pedido de patente (US PTO#

20100083236, Compact Trace Trees in Dynamic Binary Optimization) pendente.

29

30 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

Abstract

Trace Tree (TT) is a technique to collect program execution traces, which is commonly

used in JIT environments. Its main features are the ability to perform loop unrolling and

function inlining at no cost, while detecting application loop kernels. In this paper we

evaluate a TT implementation in a DBT environment. We show that, under DBT, trace

trees suffer from severe code duplication, considerably degrading its performance. In order

to take advantage of the TTs interesting features in DBTs, we propose a variation called

Compact Trace Trees (CTTs), which we show to be faster and to reduce code duplication.

3.1 Introduction

Binary compatibility has been the standard for the microprocessor industry for several

good reasons. First of all, maintaining binary compatibility implies the ability to run the

existing (legacy) code. System programmers also benefit from backward compatibility, as

previously acquired tool knowledge is still valid. For microprocessor architects, however,

legacy compatibility also means that a lot of effort has to be put into newer chip versions,

given that new products must run legacy code correctly, as if they were running in a

previous chip set generation.

On the other hand, binary compatibility can also be implemented by using a special

software layer. For example, in the Transmeta Crusoe [16] this is achieved by means of

the code morphing layer. Intel has also explored software binary compatibility by using a

tool called IA-32 EL [2], which allows x86 code to run on top of the Itanium processor.

As far as industry is concerned, dynamic binary translation, or simply DBT, is a

viable way to keep existing code running on newer systems until new software comes up

for the new processors. As a drawback, DBT adds a considerable amount of overhead

to legacy code execution. In order to amortize runtime overhead and to enable legacy

code to run faster on newer machines, the runtime system must be able to perform code

optimizations. Several techniques can be used, but knowing what to optimize is a key

feature in any DBT. Hot trace detection is a set of algorithms that try to find these so

called hot regions.

In order to achieve a low optimization overhead, while producing a decent runtime

performance, hot traces must capture the kernel of the running applications. Tying more

execution time to less code often means that translation and optimization will be much

faster, thus allowing for even higher speedups.

Several techniques can be used to detect hot regions, varying according to the over-

head they add to the running time. One well-known technique is MRET (Most Recently

Executed Tail [1, 8]), which combines backward edges (and super blocks’ side exits) to

3.2. Background on Trace Trees 31

target profiling. MRET adds little overhead, when compared to the basic block profiling

needed, for example, by the Most Frequently Executed Tail [7]). MRET fails, however, at

detecting application’s kernel, as the generated traces look like a dynamic CFG for the

running application.

Franz et al [12] described a technique called trace tree (TT). Their experimental results

show that TTs are capable of finding kernel-like traces. Also, the way trace trees are

created, functions tend to be inlined, loops unrolled, or even inverted. The inner loop,

where the program might spend most of its execution time, is likely to be discovered sooner

by the runtime environment. Optimizing this early-discovered traces is an excellent way

to hide optimizations’ overhead.

Unfortunately, trace trees can become potentially large due to its most notable char-

acteristic: every path in a TT must end with a branch instruction to the entry point of

the tree. To avoid this code explosion, long paths (i.e., paths longer than a maximum

allowed threshold L) are discarded. Although it is possible to define L for a specific ap-

plication, defining a general L requires a lot of effort. Also, defining L to be too small

limits the effectiveness of TTs. In order to address these issues we propose at this paper

the idea of Compact Trace Trees (CTTs), which is an extension of TTs which we show is

less sensitive to L than TTs.

This article is organized as follow: Sections 3.2 details the basic concepts behind

TTs. Section 3.3 describes our implementation of the TT technique in a DBT runtime

environment. Section 3.4 presents Compact Trace Tree, our relaxed approach to the TT

technique. Section 3.5 presents the experimental results and a comparative analysis of

TTs and CTTs. Previous and related work is discussed in section 3.6. Finally, section

3.7 presents the conclusions.

3.2 Background on Trace Trees

Trace trees were first implemented on a Java Virtual Machine(JVM) for PowerPC [17], to

support JIT compilation of an application most executed methods and loops. Algorithm

3.2.1 describes the rules for detecting trace trees. Before moving into the algorithm, some

definitions are needed.

DEFINITION 1. A trace tree T consists of several super blocks called tree-branches.

The tree-branches are created as a set of the original program’s basic block. The set of

basic blocks in a Trace Tree T is denoted by bbs(T).

DEFINITION 2. The first created tree-branch is called root of the TT, denoted by

root(T).

DEFINITION 3. The first basic block of the root of the TT is the anchor, denoted

anchor(T)

32 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

Algoritmo 3.2.1: Trace Tree Creation rules

Input: BB: the next basic block to be executed by the program
Input: T: the TT being created or expanded

1 if BB = anchor(T) then
2 return Success
3 else if current edge is a back edge then
4 if there are too many back edges in T then
5 return Abort
6 else
7 increment back edge count in T

8 else if BB is root for any TT in the program then
9 return Abort

10 else if adding BB to T makes it too big then
11 return Abort
12

13 add BB to T
14 return Continue

Algorithm 3.2.1, which is responsible for building the TT, is a very small automata,

and is invoked whenever a branch instructions transfer the control flow from one basic

block to another. It examines the current state (the parameter T) and decides whether

it (1) continues the TT creation / expansion; (2) successfully terminates the process; or

(3) aborts the process.

The first case happens when the algorithm reaches line 13. In that step, BB is added

to T , and becomes part of the tree-branch being built. Line 14 indicates to the runtime

environment that T is not yet completed, so the running program should continue to be

executed in single-step (one basic block at a time) mode.

The second online case happens at line 2. If the process reaches that state, then the

algorithm returns Success to the runtime environment to notify the successful creation or

expansion of T , and that T is ready to be linked.

The last case (failure) happens when the algorithm reaches a state that makes it

prohibitive to further record the trace. The algorithm then returns Abort to notify the

runtime that T should be discarded. The issues mentioned in section 3.1 happens when

the test on line 10 evaluates to true.

After a Success, T needs to be linked before it is ready to be used by the runtime

system. During link-time, side exit stubs are created and unnecessary jumps are removed

as shown in algorithm 3.2.2. The complete Trace Tree formation algorithm can be found

in [12], and the interested reader is advised to read it for all the details.

3.2. Background on Trace Trees 33

Algoritmo 3.2.2: Trace Tree link rules

Input: T: the TT being linked

1 foreach BB in bbs(T) do
2 if BB branches to anchor(T) then
3 link BB in T with the anchor
4 else if BB branches to tree-branch B of T then

// B was created to expand T
5

6 link BB with B

7 else
8 create side exit stub S
9 link B with S

3.2.1 Sample Trace Tree Creation

Consider the sample code in Figure 3.1(a). It scans a linked list in a loop, counting

the number of zero elements, and invoking functions func1 and func2 (not shown in the

example) for non-zero elements.

Considering the sample input in Figure 3.1(b), and assuming that the first element

on the list is large enough to trigger the TT creation, a tree-branch is created, like the

one shown in Figure 3.2(a). Notice that there is no back edge from block 15 to block 10,

as, in TTs, the last instruction in a tree-branch jumps back to the first instruction in the

tree, thus making back edges implicit.

After the creation of this first tree-branch, program execution continues from the first

instruction on it. However, this time, the side exit at node 10 is taken. What happens

now is somewhat particular to TTs: the structure is expanded. If the new tree-branch

conforms with the TT formation rules, then the newly created super block will be created

as a private tree-branch for the tree, and will end with a branch to the first instruction

in the TT. By doing so, the technique is capable of providing more detailed runtime

information about the paths taken by the application. In the example, after the first

expansion, the resulting tree can be seen in Figure 3.2(b).

After the inner loop finishes the execution, the side exit at node 15 is taken. When

this happens, the trace expansion module starts to record the new tree-branch. After

this expansion, the resulting trace can be found in Figure 3.2(c). Notice that nodes 17,

4 and 5 appear twice in this new tree-branch. This happens because of the “jump to the

header” condition: every TT tree-branch must end with a jump back to the trace header.

As a result, TTs might grow indefinitely, until a control transfer instruction jumps back

to the header. Thus, some trimming rules are required to limit the TT growth, such as

34 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

(1) int func(data* d, int* sum) {
(2) unsigned int i;
(3) int count = 0;
(4) while (d) {
(5) if ((*d).x == 0)
(6) ++count;
(7) else {
(8) i = (*d).x;
(9) do {
(10) if (i % 2)
(11) *sum = func1();
(12) else

(13) *sum = func2();
(14) --i;
(15) } while (i ¿ 0);
(16) }
(17) d = (*d).next;
(18) }
(19) return count;
(20) }

(a) Sample C code

next x x xx next next next

d 0 2 570

(b) The input data

Figure 3.1: Sample function

the maximum trace height, size or number of taken back edges.

Finally, the function will process the last node in the linked list, and the resulting tree

in figure 3.2(d) results.

3.3 Trace trees on DBT

One of the goals of this paper is to evaluate TTs using the SPEC2000 suite [21] running

in a native execution environment. To do that, we implemented TTs in a DBT research

framework, called StarDBT [22] developed by Intel. This framework is capable of running

the whole SPEC2000 suite, as well as regular applications like Mozilla Firefox. The

following sections gives an overview of our implementation, as well as describes some of

our design decisions.

3.3. Trace trees on DBT 35

10

11

14

15

(a) The root branch

10

11

14

15

13

14

15

(b) After first expansion

10

11

14

15

13

14

17

5

6

4

17

4

5

8

15

(c) After exiting the inner loop

10

11

14

15

13

14

17

5

6

4

17

4

5

8

8

15

(d) A possible trace tree

Figure 3.2: Sample Trace Tree creation

36 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

3.3.1 Detecting Anchors

One interesting problem our implementation rose is how to detect source file anchors on an

optimized binary. Since the compiler has the freedom to reorder basic blocks during code

generation, we can not rely on backward branches to detect source file dominators. An

obvious solution for this is to modify the compiler so basic blocks would not be reordered.

Although this is a feasible, it is not practical, and could mask the results, as we intend to

understand the technique behavior on native, fully optimized binaries.

Yet another solution would be to keep an array with the recently executed basic blocks.

This solution would work fine if it did not raise two issues. First, the array needs to be

traversed every time a control transfer instruction is executed. As the average basic block

is small, the array would be scanned every five or so instructions, considerably degrading

performance. The second issue is the array length. We have no means to predict how

many basic blocks we need to keep in order to detect the loops. If the array is not big

enough, and is used in a circular fashion, no anchor will eventually be found.

After evaluating these possibilities, we decided to use the backward branch heuristic.

If a backward branch occurs in the compiled program, then it is likely to be part of a loop

in the original source. Either that, or the profiled edge is not part of a loop, in which case

it is unlikely that it would trigger a trace creation. Our experimental observations show

that this approach works pretty well in practice.

3.3.2 Indirect Branches

On IA-32 architecture, indirect branches are hard to handle due to the processor’s byte

addressable memory, variable instruction size and no alignment requirement for the in-

structions. In other words, indirect jumps can jump anywhere into the processor’s address

space, so care must be taken when handling indirect branches on DBT systems.

Had the IA-32 ISA alignment restrictions or only fixed-size instructions, a table-based

address translation could be used (as in [23]) to perform instruction address lookup on

traces’ indirect branches. However, this table would be considerably large, possibly re-

quiring all (or even more) memory the computer can address.

To overcome this problem, our implementation keeps a list of possible targets for

each indirect branch in the trace which was executed at least once. Indirect branches

are generally not very common in the SPEC2000, with the exception of GCC and C++

programs, as indirect branches are used to implement virtual function calls. Thus our

experiments did not show a severe impact on the translated binary performance. Needless

to say, memory requirements were much lower and, most importantly, could be met.

Several techniques for handling indirect branches are described by Hisser et al. [15].

They perform several experiments regarding indirect branches and provide experimental

3.4. Compact Trace Trees on DBT 37

evidence that there is no best technique. In our system, we use a local version of the

Indirect Branch Translation Cache technique.

3.3.3 Trace Expansion

When dealing with the expansion of the trace, the variable size instruction on the IA-32

posed another obstacle to our implementation.

Every time a trace tree is linked, its side exits are compiled to branch to expansion

stubs. These stubs set up data needed for the trace expansion before switching to the

runtime environment that will actually start the expansion. Example of such data are

pointers to the current executing trace, that are used to patch after expansion.

To overcome this, we forced branches on side exit to use the 32-bit branch instruction

format. These instructions are generally 6 bytes long, as opposed to the 2-byte short

format. By using the long format, we added some overhead to the processors’ front-end

(decoding unit), as well as increased L1 cache usage. We could not identify other simpler

way to implement this feature and, since trace expansion is key to the TT technique, long

branches were used.

3.3.4 Code Duplication Due to Path Specialization

The way TTs were designed, every time a side-exit is expanded, a new tree-branch is

generated. This new tree-branch can be thought as an specialization since there will be

no join points (as shown in figure 3.2(d)). In other words, tail duplication might lead to

severe code duplication.

Unfortunately, as discussed in our experimental results (section 3.5.1), duplication was

somewhat high. In order to address this issue, we could either choose to have a smaller

dynamic coverage to keep the duplication (memory usage) low, or have a high duplication

level, thus increasing the coverage.

Tail duplication is an important transformation that enables some optimizations and

may expose parallelism [5, 19]. In order to still maintain tail duplication, and to avoid

some of the duplication, we propose a modified, less strict set of trace formation rules for

TTs. We named this relaxed form Compact Trace Trees (CTTs).

3.4 Compact Trace Trees on DBT

Compact trace trees were named compact as it is an attempt to have some interesting

features of TTs, while keeping duplication low. Before explaining our TT modification,

some definitions from TTs need to be relaxed.

38 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

Algoritmo 3.4.1: Compact Trace Tree Creation rules

Input: BB: the next basic block to be executed by the program
Input: B: the new tree-branch being created
Input: T: the CTT being created or expanded

1 if BB ∈ bbs(B) then
2 add B to T
3 return Success

4 else if BB ∈ anchor(path(B)) then
5 add B to T
6 return Success

7 else if BB is root for any TT in the program then
8 add B to T
9 return Success

10 else if adding BB to T makes it too big then
11 discard B
12 return Abort

13 else
14 add BB to B
15 return Continue

DEFINITION 1. A CTT consists of several super blocks called tree-branches. The tree-

branches are created as a set of the original program’s basic blocks. The set of basic blocks

in a tree-branch B is denoted by bbs(B).
DEFINITION 2. The first created tree-branch is called root of the CTT.
DEFINITION 3. Every tree-branch’s first basic block is an anchor. For a tree-branch

B, anchor(B) denotes its anchor.
DEFINITION 4. Path is the tree-branch sequence from the current tree-branch B to

the root, denoted by path(B).
The rules to create the CTTs based on the relaxed definition of TTs are shown in

Algorithm 3.4.1. When comparing it to the Algorithm 3.2.1, one can notice that there

is now only one condition that might make the trace creation/expansion to abort. The

relaxed conditions enable the implementation of a relaxed automata.

The link-time part of the implementation (algorithm 3.4.2) needed some small changes

to work. Line 3 needs to scan through a list of tree-branches to search for the successor

of all the branches it links.

Another interesting feature is found on line 6, where one CTT is linked with another

CTT. Notice that this link only allows one CTT to jump to the entry of another CTT.

The modifications we implemented make impossible to infer back edges for the trees.

In fact, a tree-branch might even end with a branch to a cold-block. This might happen

3.5. Experimental Results 39

Algoritmo 3.4.2: Compact Trace Tree link rules

Input: T: the CTT being linked

1 foreach B ∈ T do
2 foreach BB ∈ B do
3 if BB branches to an A anchor(path(B)) then
4 link BB with A
5 else if BB branches to any CTT C then
6 link BB with C
7 else
8 create side exit stub S
9 link BB with S

when the algorithm returns Success on line 3 of algorithm 3.4.1. Because of this feature,

all control flow edges must be explicitly represented in CTTs, as seen in Figure 3.3.

3.4.1 Compact Trace Tree Creation Example

The first two CTT tree-branches are created the very same way as previously seen on

Figures 3.2(a) and 3.2(b), so this step will not be shown this time. Figure 3.3(a) shows

the initial CTT right before the side exit at node 15 is taken. The Figure is presented

here to show the (now) non-implicit back edges.

When node 15’s side exit is taken, the trace expansion module starts recording a new

branch for the CTT.This time, however, when the application jumps back to instruction

17, the trace expansion module will detect this as a trace recording stop condition, and

will stop recording the branch. During link time, the jump to node 17 will be treated as

a jump to an anchor, and the resulting CTT is shown in Figure 3.3(b).

Now, when instruction 5 takes the side exit to instruction 8, trace expansion is triggered

again. The instruction that follows 8 is 10, which is the anchor of the root branch. This

way, expansion will be completed and the resulting CTT is shown in Figure 3.3(c).

3.5 Experimental Results

In order to compare TTs and CTTs, we ran experiments using both techniques and

different maximum tree heights values, where tree height is defined as the basic block

count from the root ‘s anchor of TT or CTT up to the farthest block from it.

Also, we ran experiments with the MRET trace formation rules. For MRET traces,

the maximum tree height served as a superblock size limit. Since MRET traces are not

40 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

10

11

14

15

13

14

15

(a) The root branch and the first
expansion

10

11

14

15

13

14

15

6

4

17

5

(b) The second expansion

10

11

14

15

13

14

15

6

4

17

5

8

(c) The final CTT

Figure 3.3: Sample Compact Trace Tree creation

expanded, this parameter would have no other logical meaning.

The experiments were ran under Ubuntu 8.04.1 running on an Intel Q6600 2.4 GHz,

with 4GB of RAM 1066MHz and two 500GB SATA disks. We used the 32 bit Linux

distribution since our DBT is targeted at IA32. The whole SPEC2000 suite was used,

under the reference input, and all the binaries were statically compiled, with optimization

level 2.

The parameter (tree height) ranged from twenty blocks to a hundred and twenty, in

twenty blocks steps. We also ran a special experiment with maximum tree height of five

blocks. Table 3.1 shows how dynamic coverage changes with this parameter. It also shows

that TTs and CTTs are sensitive to it. As expected, the greater the trace height, the

better the coverage.

Interesting enough, notice that MRET traces are not sensitive to the height. MRET

gets the higher coverage numbers of all techniques no matter the tree height is used (or

block count for MRET super blocks). As anticipated, TT shows the expected behavior of

increasing coverage as tree height becomes higher. It also exhibits an asymptotic behavior

around 80%. For CTT, coverage seems slightly better, as the asymptotic behavior shows

up around 86%.

Time spent within the runtime is shown in table 3.2. Again, MRET shows no sen-

sitivity with respect to the trace height. CTT seems to be stabilizing as the maximum

trace height is increased, which is good, since a large height would not affect the technique

much. TT however, seems to be suffering with the higher trees. A quick notice, regarding

the last two values for CTT on this table: they are smaller than the others since the last

3.5. Experimental Results 41

Block count CTT(%) MRET(%) TT(%)

5 50.53 97.70 48.79
20 74.72 97.59 67.42
40 81.97 97.62 74.32
60 82.78 97.63 76.13
80 85.05 97.60 76.37
100 85.56 97.60 76.94
120 85.64 97.60 77.88

Table 3.1: Average coverage for all experiments

Block count CTT MRET TT

5 105 68 97
20 96 68 96
40 117 68 115
60 137 68 162
80 137 68 264
100 141 68 225
120 145 68 242

Table 3.2: Total time on the framework (minutes)

instance of bzip2 could not finish. Had it finished, its runtime would be higher.

Table 3.3 shows the duplication numbers for our instances. As shown, our technique

fulfilled our primary goal to decrease duplication. Again, the last two entries for TT lack

the last bzip2 instances, being slightly different than what was expected.

Finally, table 3.4 indicates the memory usage for a complete run of the SPEC2000

suite. It is noticeable how memory usage increases for CTT and TT, as a higher trace

height was used. Again, the MRET implementation is independent of the parameter.

3.5.1 TT on DBT

Trace trees did not perform as well in DBT as it did on the Java Virtual Machine. The

technique seems to be really dependent upon a good estimate of trace height to achieve

good results. Selecting a small trace height value is bad, since it might lead the technique

to under-perform. For example, in Figure 3.4(a) the technique performed well until the

last three experiments. The only parameter that changed was the maximum trace height.

In the same benchmark, as shown Figure 3.4(b), duplication became an issue from

the fourth experiment on, and, if duplication rises, so does memory usage. Notice the

poor performance on Figure 3.4(a). Since duplication increases exponentially, the runtime

42 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

Block count CTT MRET TT

5 0.08 0.42 0.06
20 0.62 0.52 0.33
40 2.34 0.54 5.83
60 4.43 0.54 28.36
80 5.37 0.54 73.75
100 6.75 0.54 69.21
120 6.85 0.54 76.19

Table 3.3: Average duplication

Block count CTT MRET TT

5 939 980 939
20 989 989 963
40 1130 990 1205
60 1311 990 2105
80 1402 990 3498
100 1535 990 3407
120 1549 990 3700

Table 3.4: Total memory usage (in MB)

system takes much longer to create the TT.

The bzip2 benchmark also suffered with bad performance. As shown in Figure 3.5,

TT was not capable of finding loop kernels, and this led to the code explosion seen in

Figure 3.5(b).

Also, the technique suffered from the highest duplication (see table 3.3). Specifically

bzip2 had problems with the last two instances of the last two experiments: system

memory was exhausted. Since each experiment is composed of 3 instances, we only show

the data for the instance that finished the experiments.

The problems faced here by TT do not invalidate it as a trace technique. They just

show some aspects that need to be addressed by system writers if they want to use TT.

3.5.2 CTT on DBT

CTT successfully addresses the issues found with TT in our system. As tables 3.1, 3.2

and 3.3 show, CTT’s coverage was higher than TT’s, duplication was smaller, as was

execution time. It is interesting to notice that CTTs are less sensitive to a poor trace

height parameter, at least with respect to the execution time. Table 3.4 shows that CTT

consumed less memory than TT.

3.5. Experimental Results 43

Block Count

T
im

e
 (

s
)

5 20 40 60 80 100 120

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

CTT

MRET

TT

(a) Time

Block Count

D
u
p
lic

a
ti
o
n

5 20 40 60 80 100 120

0
.1

1
1

0
1

0
0

1
0

0
0

CTT

MRET

TT

(b) Duplication

Figure 3.4: 181.mcf – SPEC2000 int

Figure 3.4 shows that, with a high enough trace height parameter, CTT can behave

much like MRET. Particularly, Figure 3.4(a) shows that CTT was as fast as MRET.

However, Figure 3.5(b) shows that CTT can be very different from MRET, regarding

duplication. Overall, the technique is competitive (figure 3.5(a)) with MRET.

3.5.3 MRET, TT or CTT?

The three trace techniques are valid trace techniques that have their own advantages as

well as disadvantages. MRET is, by far, the fastest algorithm. Also, as expected, it is

not sensitive to trace size parameter, making it the ideal choice when there is no available

time for calibration. Unfortunately, it lacks tail duplication, and runtime analysis of the

44 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

Block Count

T
im

e
 (

s
)

5 20 40 60 80 100 120

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

CTT

MRET

TT

(a) Time

Block Count

D
u
p
lic

a
ti
o
n

5 20 40 60 80 100 120

0
.1

1
1

0
1

0
0

1
0

0
0

CTT

MRET

TT

(b) Duplication

Figure 3.5: 256.bzip2 – SPEC2000 int

generated dynamic CFG might be slow.

TTs tend to perform poorly on DBT systems. We observed that the technique is slow

and is not capable of detecting loop kernels (or even loops) in some applications. This

is unexpected as the previous results [12] were good, and might be explained by the fact

that an IA-32 DBT presents a much more challenging environment than a Java Virtual

Machine. TTs also suffers a performance hit when the tree height is too big.

CTTs is a good choice for DBTs. It provides an efficient algorithm runtime with good

coverage results, while keeping duplication at reasonable levels. Our experiments show

that CTTs will still perform well even if the selected tree height is larger than necessary,

thus eliminating the need to find its best value.

3.5. Experimental Results 45

Block count

C
o
v
e
ra

g
e

5 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

CTT

MRET

TT

(a) 197.parser – SPEC2000 int

Block count

C
o
v
e
ra

g
e

5 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

CTT

MRET

TT

(b) 255.vortex – SPEC2000 int

Figure 3.6: Interesting results

3.5.4 Interesting Results

Although all the techniques behaved consistently, some interesting results were found.

Two interesting results were selected and are show in Figure 3.6. They are briefly discussed

bellow.

Figure 3.6(a) shows that coverage may drop even if we increase the maximum trace

height. This result is counter-intuitive, since it is expected that, as the maximum allowed

trace height is increased, coverage increases as well. This may be happening because, with

a higher tree, the runtime environment keeps trying to create a long tree branch (which

ends up being aborted), while the runtime with the more strict rules gives up on the long

trace and end up detecting a smaller, more important trace. It is curious to notice that

46 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

both CTT and TT suffered the same problem, but at different tree height values.

Figure 3.6(b) shows two other interesting aspects. First, it looks like CTT coverage

would still increase as trace height increases. In other words, it seems that the loops in

vortex are big. In other words, CTT needs a big tree height to be able to capture the

whole loops.

Regarding the same benchmark, it is interesting to notice that, albeit being very

similar when compared to CTT, TT coverage did not increase much with the parameter

change. Here, the very restrictive branch to the anchor rule (line 7 of algorithm 3.2.1)

prevent the algorithm to find the loops.

Also, for both benchmarks shown in Figure 3.6, MRET performs perfectly, as it does

on most of benchmarks from SPEC200 suite (both floating point and integer benchmarks).

As a result MRET can be used as a upper bound on the maximum coverage that can be

obtained by CTT or TT.

3.6 Related and Previous Work

Dynamic binary translation is used in DAISY [9–11,13] to achieve compatibility between

two different architectures. The work is not tied to any particular architecture, thus

making the techniques suitable for almost any ISA available. Unlike DAISY, our system

translates IA-32 to IA-32. Also, the authors describe a page-based translation scheme,

whereas our system operates on classical basic blocks that have no page alignment re-

quirements.

The effects of tail duplication on hyperblock formation can be found on [18, 19]. In

addition to tail duplication, [18] performs head duplication to perform convergent hyper-

block formation.

Traces can be used to speed up system simulators (as described in [20]). Traces are

also good units for parallelization [3, 4].

Prior to Trace Trees, Havanki et al [14] used tree regions code generation units. How-

ever, the treegion scheduling was statically performed to generate code for wide issue

processors, whereas Trace Trees (and Compact Trace Trees) use a dynamic approach to

generate the trees.

Our framework use software profiling without hardware support to collect hot regions.

Chen et al. [6] describe hardware sampling to collect traces with a lower overhead.

3.7. Conclusions 47

3.7 Conclusions

This paper presents an evaluation of the Trace Tree technique running in a IA32 DBT. It

presents experimental evidences that the technique, as described previously, is not suited

for the challenges presented by both DBT and IA32.

This paper also presents a novel technique for trace construction that seems to perform

well under a DBT, being a middle ground between traditional MRET traces and Trace

Trees.

We also present experimental evidences that MRET is a good choice when no tail

duplication is needed, and when runtime performance must be high and memory usage

should be kept low. Also, MRET seems to be an upper bound estimate on trace techniques

behavior.

3.8 Acknowledgments

This work was partially sponsored by CNPq, CAPES and Intel Corporation. We would

like to thank Dr. Mauricio Breternitz Jr. for bringing TTs to our attention. We also would

like to thank the reviewers who helped improving this paper with invaluable suggestions.

References

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic opti-

mization system. SIGPLAN Not., 35(5):1–12, 2000.

[2] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skalesky, Y. Wang, and Y. Zemach.

IA-32 execution layer: A two phase dynamic translator designed to support IA-32

applications on Itanium®-based systems. In 36th International Symp. on Microar-

chitecture, pages 191–202, 2003.

[3] B. J. Bradel and T. S. Abdelrahman. The potential of trace-level parallelism in

java programs. In PPPJ ’07: Proceedings of the 5th international symposium on

Principles and practice of programming in Java, pages 167–174, New York, NY,

USA, 2007. ACM.

[4] B. J. Bradel and T. S. Abdelrahman. A study of potential parallelism among traces

in java programs. Sci. Comput. Program., 74(5-6):296–313, 2009.

[5] P. P. Chang, S. A. Mahlke, and W.-m. W. Hwu. Using profile information to assist

classic code optimizations. Softw. Pract. Exper., 21(12):1301–1321, 1991.

[6] H. Chen, W.-C. Hsu, J. Lu, P.-C. Yew, and D.-Y. Chen. Dynamic trace selection

using performance monitoring hardware sampling. In CGO ’03: Proceedings of the

48 Caṕıtulo 3. Compact Trace Trees in Dynamic Binary Translators

international symposium on Code generation and optimization, pages 79–90, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[7] C. Cifuentes and M. V. Emmerik. Uqbt: Adaptable binary translation at low cost.

IEEE Computer, pages 60 – 66, March 2000.

[8] E. Duesterwald and V. Bala. Software profiling for hot path prediction: less is

more. In Proceedings of the 9th International Conf. on Architectural Support for

Programming Languages and Operating Systems, pages 202 – 211, November 2000.

[9] K. Ebcioğlu and E. R. Altman. Daisy: Dynamic compilation for 100% architectural

compatibility. Technical Report RC-20538, T. J. Watson Research Center, May 1996.

[10] K. Ebcioğlu and E. R. Altman. Daisy: dynamic compilation for 100% architectural

compatibility. In ISCA ’97: Proceedings of the 24th annual international symposium

on Computer architecture, pages 26–37, New York, NY, USA, 1997. ACM.

[11] K. Ebcioğlu, E. R. Altman, M. Gschwind, and S. Sathaye. Optimizations and or-

acle parallelism with dynamic translation. In MICRO 32: Proceedings of the 32nd

annual ACM/IEEE international symposium on Microarchitecture, pages 284–295,

Washington, DC, USA, 1999. IEEE Computer Society.

[12] A. Gal and M. Franz. Incremental dynamic code generation with trace trees. Tech-

nical Report 06-16, Donald Bren School of Information and Computer Science, Uni-

versity of California, Irvine, November 2006.

[13] M. Gschwind, K. Ebcioğlu, E. Altman, and S. Sathaye. Binary translation and

architecture convergence issues for ibm system/390. In ICS ’00: Proceedings of the

14th international conference on Supercomputing, pages 336–347, New York, NY,

USA, 2000. ACM.

[14] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling for wide issue processors.

In HPCA ’98: Proceedings of the 4th International Symposium on High-Performance

Computer Architecture, pages 266–276, New York, NY, USA, 1998. ACM.

[15] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and B. R. Childers. Evalu-

ating indirect branch handling mechanisms in software dynamic translation systems.

In CGO ’07: Proceedings of the International Symposium on Code Generation and

Optimization, pages 61–73, Washington, DC, USA, 2007. IEEE Computer Society.

[16] A. Klaiber. The technology behind CrusoeTM processors. Tansmeta Corporation,

January 2000.

[17] R. Lougher. JamVM virtual machine, June 2009. jamvm.sourceforge.net.

[18] B. A. Maher, A. Smith, D. Burger, and K. S. McKinley. Merging head and tail

duplication for convergent hyperblock formation. In MICRO 39: Proceedings of the

39th Annual IEEE/ACM International Symposium on Microarchitecture, pages 65–

76, Washington, DC, USA, 2006. IEEE Computer Society.

References 49

[19] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective

compiler support for predicated execution using the hyperblock. In MICRO 25:

Proceedings of the 25th annual international symposium on Microarchitecture, pages

45–54, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[20] W. S. Mong and J. Zhu. Dynamosim: a trace-based dynamically compiled instruction

set simulator. In ICCAD ’04: Proceedings of the 2004 IEEE/ACM International

conference on Computer-aided design, pages 131–136, Washington, DC, USA, 2004.

IEEE Computer Society.

[21] The SPEC Corporation. www.spec.org.

[22] C. Wang, S. Hu, H. Kim, S. R. Nair, M. Breternitz, Z. Ying, and Y. Wu. Stardbt: An

efficient multi-platform dynamic binary translation system. In Asia-Pacific Computer

Systems Architecture Conference, 2007.

[23] E. Yardimci. Exploiting parallelism to improve the performance of sequential binary

executables. PhD thesis, University of Irvine, Carlifornia, 2006.

Caṕıtulo 4

Trace Execution Automata in

Dynamic Binary Translation

Prólogo

Após a detecção, Traces são usualmente criados duplicando-se o código que os defi-

nem. Esta representação impĺıcita foi a responsável pelos números obtidos para TT

no Caṕıtulo 3 e que levaram à necessidade do desenvolvimento da CTT. Entretanto, é

posśıvel utilizar uma representação impĺıcita para traces.

Neste trabalho, publicado na terceira edição da AMAS-BT em junho de 2010 em Saint-

Malo, França, propôs-se uma representação para traces baseada em Autômatos Finitos

Determińısticos (AFD) chamada TEA. Além de mais compacta que a representação usual,

TEA pode ser utilizada como forma de serialização de traces de modo que estes sejam

reutilizados.

Além da apresentação acima mencionada, este trabalho aguarda publicação em volume

da série Lecture Notes in Computer Science (LNCS) publicado pela editora Springer.

51

52 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

Abstract

Program performance can be dynamically improved by optimizing its frequent execution

traces. Once traces are collected, they can be analyzed and optimized based on the

dynamic information derived from the program’s previous runs. The ability to record

traces is thus central to any dynamic binary translation system. Recording traces, as

well as loading them for use in different runs, requires code replication to represent the

trace. This paper presents a novel technique which records execution traces by using

an automaton called TEA (Trace Execution Automata). Contrary to other approaches,

TEA stores traces implicitly, without the need to replicate execution code. TEA can

also be used to simulate the trace execution in a separate environment, to store profile

information about the generated traces, as well to instrument optimized versions of the

traces. In our experiments, we showed that TEA decreases memory needs to represent

the traces (nearly 80% savings).

4.1 Introduction

Dynamic Binary Translators (DBTs) rely on information about the dynamic behavior

of a program to improve its performance. This is done by detecting and optimizing

code fragments, known as hot code, which accounts for the largest share of the program

execution time.

To optimize hot code, a DBT might use a trace selection technique. Several techniques

have been proposed in the literature [1, 3, 5, 9, 15] which address the same issue: how can

hot code be easily selected (i.e. with the least possible overhead)? The description of

such techniques, as well as their advantages or disadvantages are beyond the scope of this

paper, which describes a technique to record and replay traces.

The Trace Execution Automata technique uses a Deterministic Finite Automaton

(DFA) to map executing instructions to instructions or basic blocks in previously recorded

traces. When operating in recording mode, our technique builds a DFA that represents

basic blocks (or instructions) from traces. During the replay mode, the transition between

instructions in the executing program are mapped to transitions in the DFA, which turns

into a precise map from the currently executing instructions to the represented basic

blocks (or instructions) in the DFA. We found this technique useful in multiple contexts,

among them:� Building traces in one system, e.g. by using a DBT, and collecting statistics and

profiling information for them on a second system, e.g. by replaying the traces on a

cycle accurate simulator.

4.2. Motivation 53� Building and profiling traces without the need for actual trace construction (e.g

without the need for code replication, code linking and original code patching). This

is useful when collecting accurate profiling information before the actual traces code

is generated. It is also useful when investigating trace formation techniques because

it enables us to focus on the trace formation techniques without concerning about

the trace code compilation correctness.� Storing trace shape and profiling information for reuse in future executions.

This paper is organized as follows. Section 4.2 presents a motivation for TEA. Sec-

tion 4.3 discusses how traces and DFAs are related to each other and shows how to build

DFAs out of traces. Section 4.4 describes our experimental evaluation of TEA. Section 4.5

lists the previous work on trace recording techniques. Finally, Sect. 4.6 concludes the pa-

per and presents the future works.

4.2 Motivation

Dynamic binary translation usually relies on dynamic profiling information to record and

aggressively optimize traces. In this section we show why collecting accurate profiling

information before building the actual traces may be challenging.

The code on Fig. 4.1(a) adds one hundred words from the array pointed to by esi to

the array pointed to by edi. Although simple, this optimized code presents a challenge

to runtime environments which could eventually optimize it: the values in the registers

are not known until the application is executed, and might even change across different

executions.

Assuming that the code was executed, and the loop it contains was detected as hot

code, the trace of Fig. 4.1(b) comes up.

With Algorithm 4.3.1 it is possible to create a DFA to simulate that trace’s execution.

That DFA can now be loaded into a profiling tool (such as our profiling tool described in

Sect. 4.4) and the profile information for the traces can be gathered.

An obvious question we are yet to answer is why not collecting the profile information

as the traces are recorded. The simple, straightforward answer is that it might be easier to

implement the trace recording algorithm in an environment where gathering profile data

is substantially harder than in another environment. In our experiment, recording the

traces was easily done in our DBT environment [19], whereas gathering profile information

was easier under Pin [14] as the profile code was ordinary C functions instead of assembly

language stubs.

Now, assume that traces are optimized using the profile information collected by re-

playing the DFA. For example, let’s suppose the optimizer unrolled the trace by a factor

54 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

$$begin: xor ecx, ecx

$$header: cmp ecx, 100

jeq $$done

$$end: ret

$$body: mov eax, [esi+ecx*4]

add [edi+ecx*4], eax

inc ecx

jmp $$header

(a) CFG

$$trace.header:

$$trace.body:

cmp ecx, 100

jeq $$done

mov eax, [esi+ecx*4]

add [edi+ecx*4], eax

inc ecx

jmp $$trace.header

(1)

(2)

(3)

(4)

(5)

(6)

(b) Trace

Figure 4.1: Code Snippet and Resulting Trace

4.2. Motivation 55

$$trace.header.1:

$$trace.body.1:

cmp ecx, 400

jeq $$done

mov eax, [esi+ecx]

add [edi+ecx], eax

mov eax, [esi+ecx+4]

add [edi+ecx+4], eax

add ecx, 8

jmp $$trace.header.1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(a) Trace After Unrolling

$$trace.header.1:

$$trace.body.1:

cmp ecx, 100

jeq $$done

mov eax, [esi+ecx*4]

add [edi+ecx*4], eax

inc ecx

jmp $$trace.header.2

(1)

(2)

(3)

(4)

(5)

(6)

$$trace.header.2:

$$trace.body.2:

cmp ecx, 100

jeq $$done

mov eax, [esi+ecx*4]

add [edi+ecx*4], eax

inc ecx

jmp $$trace.header.1

(A)

(B)

(C)

(D)

(E)

(F)

(b) Duplicated Trace

Figure 4.2: Optimization for Fig. 4.1

56 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

jmp $$T1.begin

$$header:
cmp [edx], ecx
jne $$next

$$begin:
cmp [edx], 0
jeq $$end

(1) cmp [edx], 0
(2) jeq $$end

$$begin:

$$header:
(3) cmp [edx], ecx
(4) jne $$next

$$inc:
(5) inc eax

$$next:
(6) mov edx [edx+4]
(7) jmp $$begin

$$end:
(8) ret

$$next:
mov edx [edx+4]
jmp $$begin

$$end:
ret

$$T2.inc:
inc eax

$$T2.next:
mov edx [edx+4]
jmp $$T1.begin

$$end:
ret

(b) (c)(a)

$$inc:
inc eax

$$T1.begin:
cmp [edx], 0
jeq $$end

$$T1.header:
cmp [edx], ecx
jeq $$T2.inc

$$T1.next:
mov edx [edx+4]

Figure 4.3: (a) Sample code. (b) CFG for the sample code. (c) MRET traces.

of two as seen on Fig. 4.2(a). There are now two options to determine the new profiling

option.

The first option (the easy one) is to conservatively propagate the profiling information

for the new instructions. For example, assume that instructions (3) and (4) in Fig. 4.1(b)

alias. If this information is conservatively propagated to the unrolled trace, this informa-

tion is likely to constrain any further optimizations.

The second, hard option, is to recollect the profiling information. The DFA can not be

used to simulate the unrolled loop. Since it does not generate specialized code, the state

for the trace would find no corresponding executable code in the executable. However, it

is possible to easily work around this: the trace can be duplicated instead of unrolled.

The duplicated trace is shown in Fig. 4.2(b).

The resulting DFA after the trace has been duplicated can be safely loaded along-

side the original program for profiling. This new profile data can then be used after

unrolling: instructions (C) and (D) in Fig. 4.2(b) are the same as instructions (3) and (4)

in Fig. 4.2(a), thus the collected profile information can be used to optimize the unrolled

loop. With the new, specialized information the runtime can accurately optimize the

code.

The use for the DFA in profiling can be thought as the ability to label duplicate

instructions differently for every copy of it in the running program.

4.3. From Traces to TEA 57

$$begin

$$T1.next:
$$T2.inc:

$$T2.next:

$$T1.begin:

$$T1.header:

$$T1.next:
$$T2.inc:

$$T2.next:

$$T1.begin:

$$T1.header:

NTE

$$next

$$next

$$header

$$inc

$$begin

(a)

$$next

$$next

$$header

$$inc

$$begin$$end

$$begin

(b)

$$begin

Figure 4.4: (a) DFA for MRET traces. (b) TEA for whole program.

4.3 From Traces to TEA

In this section we illustrate the relationship between Traces and DFAs and provide an

algorithm to build TEA out of traces.

Suppose that a runtime system that builds traces1 using the MRET (Most Recently

Executed Tail) strategy [1, 5] is running the compiled code shown, as x86 assembly lan-

guage, in Fig. 4.3 (a). That piece of code scans a linked list structure pointed to by

register edx and updates eax with the number of times that the value in ecx appears on

the list. It might take a few iterations for the runtime system to identify the hot code and

invoke the trace recording subsystem. The generated traces heavily depend on the trace

selection strategy used as well as on the program’s input data. Figure 4.3 (c) shows two

traces (T1 and T2) that could eventually be recorded by using the MRET trace selection

strategy. Trace T1 is formed by the basic blocks $$begin, $$header and $$next, while

trace T2 is formed by the basic blocks $$inc and $$next.

In our examples, we use the format $$Ti.block when referring to a block that belongs

to a trace. This format allow us to distinguish blocks that are duplicated (e.g. $$T1.next

and $$T2.next) and avoid confusion with the original block name (e.g. $$next). A trace,

or a collection of traces, implicitly defines a DFA. As an example, the DFA for traces

on Fig. 4.3 (c) can be seen on Fig. 4.4 (a). Each node in the DFA represents a basic

block that is part of a trace. The transitions between nodes represent the control flow

in the traces. The label in a transition indicates the address, or the Program Counter,

that triggers such transition. Notice that the automaton for the trace does not contain

the transition from $$T1.begin to $$end. This happens because basic block $$end does

not belong to any trace, therefore this transition does not represent control flow inside or

between traces.

1the word trace will be used from now on as a synonym for hot traces

58 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

Suppose that the traces at Fig. 4.3 (c) represent all the hot code for the sample

program. To generate a DFA for the whole program all transitions must be accounted

by the automaton, including transitions to and from hot code. To model this whole

program DFA, a special state labeled NTE, which stands for No Trace being Executed,

is generated. The program is on the NTE state whenever it is not executing any trace.

Transitions from NTE to traces are labeled with the traces’ start addresses. Transitions

from traces to NTE represent control flow between traces and cold code. We call the

whole program DFA generated from the execution traces and the NTE state TEA. For

this sample program, the TEA is represented on Fig. 4.4 (b). The TEA is logically similar

to the dynamic control flow graph (DCFG) for the traces seen on Fig. 4.3 (c). TEA,

however, contains just the state information, whereas the DCFG contains code replication.

TEA also models the whole program execution with the aid of the NTE state, while the

DCFG only represents the hot code.

The generated TEA can be used to replay trace executions without running actual

trace code. As an example, we could re-execute the program at Fig. 4.3 (a) on a different

system and replay the MRET traces execution by feeding the program counter into the

generated TEA. The TEA states provides an accurate mapping from the current program

counter to the previously recorded traces. For instance, during the re-execution of the

sample program, if the current program counter points to $$next we can precisely tell

whether it corresponds to the execution of the original $$next, $$T1.next or $$T2.next

by looking at the TEA current state.

The following two sections presents an algorithm that, given a set of traces, builds the

corresponding TEA (Sect. 4.3.1) and provides some insights on how TEA can be used

online to record traces (Sect. 4.3.2).

4.3.1 Building TEA out of Traces

The initial motivation for TEA was the ability to generate traces in one environment and

to load and execute them in another. This simple problem becomes hard when the two

different environments are extremely different. TEA enabled us to generate the traces

in one system, and execute them on another system. Algorithm 4.3.1 shows how we

converted the generated traces to TEA, but first, some definitions are needed.

Definition 4.3.1. A Basic Block (BB) is a sequence of instructions with a single entry

point and a single exit point.

Usually a BB is terminated by a branch instruction. However, different runtime sys-

tems detect basic blocks differently. For instance, on Fig. 4.3 (a) some runtime system

might be able to identify block $$inc as a basic block, even though it does not end in a

branch instruction. Usually, however, DBTs merge blocks $$inc and $$next. Notice that

4.3. From Traces to TEA 59

either way, Definition 4.3.1 correctly identifies BBs. Since each BB might be on several

different traces and, depending on the recording algorithm, might appear several times

on the same trace, there should be a way to uniquely identify each BB on the traces.

Definition 4.3.2. A Trace Basic Block (TBB) is an instance of a BB in a trace. Each

occurrence of a BB will generate a unique TBB.

Given Definition 4.3.2, even if BB b occurs several times in the set of traces of a

program, it is possible to distinguish between the different instances of b. As an example,

Fig. 4.3 (c) shows two MRET traces, T1 and T2, with two different instances of BB$$next: $$T1.next and $$T2.next.

Definition 4.3.3. A Trace is a collection of TBBs and the control flow edges between

them.

Definition 4.3.3 encompasses many different kinds of traces, from traces made of su-

perblocks2 to Trace Trees [9]. With the previous definitions, it is possible to explain

Algorithm 4.3.1 and to prove its correctness.

The first step in Algorithm 4.3.1, lines 1 to 2, initializes the TEA with a single state

(NTE) and an empty set of transitions. As discussed, the NTE state represents the

execution of basic blocks (or instructions) that does not belong to traces. The next step,

lines 3 to 5, adds the states to represent the TBBs. Since each TBB is unique, and exactly

one state is created for each TBB, the resulting TEA has the following property:

Property 4.3.1. The resulting TEA is capable of representing the execution of every

TBB.

The third step, lines 6 to 17, adds the transitions between the states together with the

labels that trigger the transitions. First, it adds the transitions that originates at TBBs

(lines 7 to 14) by processing the TBBs successor basic blocks. If the successor of the

TBB is not a block in a trace, a transition from the TBB to NTE is added, representing

a transition from the trace to cold code. Finally, it adds the edges between the state

NTE and the TBBs, representing the start of traces execution (lines 15 to 17). Thus the

following holds:

Property 4.3.2. The resulting TEA contains all transitions for every TBB represented.

Properties 4.3.1 and 4.3.2 ensure the resulting TEA models the exact behavior of the

program’s traces, thus proving the algorithm correctness.

4.3.2 Recording TEA instead of Traces

As previously mentioned, TEA can be used as a online technique for trace recording. It is

built by Algorithm 4.3.2, which is invoked every time the running program finishes a BB

2a superblock is a single-entry, multiple-exit sequence of instructions

60 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

Algoritmo 4.3.1: Converting Traces to TEA

Input: Ts: The set of Traces in a Program
Output: TEA: the TEA

1 TEA.States ← {NTE}
2 TEA.Transitions ← ∅

3 foreach T ∈ Ts do
4 foreach TBB ∈ T do
5 TEA.States ← TEA.States

⋃
{TBB}

6 foreach T ∈ Ts do
7 foreach TBB ∈ T do
8 foreach Successor S of TBB do
9 if S is a trace block then

10 TEA.Transitions ← TEA.Transitions
⋃

11 {TBB → S, Label(S)}

12 else
13 TEA.Transitions ← TEA.Transitions

⋃

14 {TBB → NTE, Label(S)}

15 foreach TBB ∈ EntryBlocks(T) do
16 TEA.Transitions ← TEA.Transitions

⋃

17 {NTE → TBB, Label(TBB)}

18 return TEA

execution but before the next BB is executed. Trace recording is expressed as a three-

state State Machine. The possible states are “Initial”, “Executing” and “Creating”,

each of which with its own well-defined rule.

State “Initial” is executed before the program starts its real execution. It simply sets

up an empty TEA (i.e. a TEA with only the NTE state) and indicates that the program

is in the “Executing” state.

In the “Executing” state the application is either running cold code or executing a

previously created trace. Depending on the trace recording rules (line 7) the state machine

switches to the “Creating” state.

Trace recording takes place in the “Creating” state. Again, depending on the algo-

rithm being used for trace selection, the state machine decides whether or not to end trace

recording (line 12).

4.4. Experimental Results 61

Algoritmo 4.3.2: Using TEA to Record Traces

Input: Current: The BB Previously Executed
Input: Next: The Next BB to be Executed
Input: State: The Recording Algorithm’s Current state

1 switch State do
2 case Initial
3 InitializeTEA(TEA)
4 State ← Executing

5 case Executing
6 ChangeState(TEA, Current, Next)
7 if TriggerTraceRecording(Current, Next) then
8 StartCreatingTrace(Current, Next)
9 State ← Creating

10 case Creating
11 AddTBBToTrace(Current, Next)
12 if DoneTraceRecording(Current, Next) then
13 FinishTrace(Current, Next)
14 State ← Executing

4.4 Experimental Results

For this paper, our goals were (1) to evaluate how TEA would decrease memory required

to represent traces; (2) to evaluate how effective TEA is for replaying previously recorded

traces on unmodified program executables; and (3) to evaluate TEA’s effectiveness as a

trace recording tool itself. All the experiments were executed in Ubuntu 9.10 in a virtual

machine running under Windows 7 in a Core i7 EE 975 with 12 GB of DDR3 1333 MHz

DRAM. Our experimental setup included two different DBT frameworks, pin [14] and

StarDBT [19].

Pin is a well-known runtime environment which allows programmers to develop their

own profiling tool (called “pintools”) composed of instrumentation and analysis routines.

Pin offers a rich set of APIs that offers great flexibility. It is indeed a very important tool

for binary translation experiments, among other uses. For this paper, we implemented

a pintool that loads traces from a input file and uses the traces for program execution.

Our tool is also capable of recording traces if they are not available prior to program

execution.

StarDBT is a DBT runtime environment which translates IA-32 to IA-32. It is less

flexible than Pin, but it offers a greater control over how instrumentation and analysis

are done. It was used as a baseline for memory requirements to represent traces. The

generated traces were also used by our pintool during the “trace replaying” experiment.

62 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

Table 4.1: Size Savings with TEA

benchmark
MRET CTT TT

DBT TEA Savings DBT TEA Savings DBT TEA Savings
168.wupwise 329 81 75% 64 14 78% 63 14 78%

171.swim 538 110 79% 998 205 79% 193 38 80%
172.mgrid 671 138 79% 940 198 79% 278 61 78%
173.applu 648 124 81% 1005 187 81% 437 76 82%
177.mesa 583 127 78% 605 126 79% 238 56 76%
178.galgel 1011 238 76% 2083 463 78% 1766 388 78%
179.art 354 90 75% 441 110 75% 322 82 75%

183.equake 442 108 74% 683 157 77% 529 130 75%
187.facerec 674 152 73% 989 211 79% 535 114 79%
188.ammp 551 130 76% 903 197 78% 341 73 78%
189.lucas 113 19 83% 542 103 81% 673 124 81%
191.fma3d 1446 336 77% 1445 294 80% 419 91 78%

200.sixtrack 2162 500 77% 3055 613 80% 1148 225 80%
301.apsi 1346 304 77% 2119 423 80% 695 135 81%
164.gzip 2110 533 75% 51601 11318 78% 598533 143665 76%
175.vpr 1918 457 76% 13893 3093 78% 30687 7298 76%
176.gcc 53203 13147 75% 204203 44728 78% 89358 18917 79%
181.mcf 360 86 76% 855 224 74% 3430 908 74%

186.crafty 1980 493 75% 105018 22224 79% 14829 2998 80%
197.parser 3352 867 74% 25231 5534 78% 17202 3489 80%
252.eon 6217 1007 84% 10218 1677 84% 3732 554 85%

253.perlbmk 17333 4031 86% 78361 16819 79% 48287 9774 80%
254.gap 3183 684 79% 9869 1969 80% 6836 1358 80%

255.vortex 14854 3426 77% 17478 3497 80% 2188 488 78%
256.bzip2 1031 257 75% 59053 13177 78% 1801870 351738 80%
300.twolf 1632 408 75% 9848 2297 77% 7008 1518 78%

GeoMean 77% 79% 79%

Table 4.1 shows the data regarding the size needed to represent the traces. We recorded

traces using three different techniques: MRET, CTT (Compact Trace Trees) [15] and TT

(Trace Trees) [9]. Previous work by Porto et al. [15] showed that memory requirements for

the three techniques were different from one another. We wanted to evaluate if TEA was

sensitive to the technique. The columns labeled “DBT” indicate the memory requirements

(in KB) to represent the recorded traces, whereas the columns “TEA” indicate the memory

requirements (also in KB) to represent traces using TEA. The “Savings” column indicates

the memory usage savings achieved by representing traces with TEA instead of the usual

strategy (i.e. replicating the code) to be around 80%. TEA achieves this space savings

by avoiding code specialization for trace representation.

Table 4.2 shows the runtime aspects of trace replaying. We again compare our TEA

implementation in the Pintool against our “baseline”, which are the StarDBT collected

traces. The “coverage” columns show how much runtime instructions were executed inside

the traces. The “time” column under TEA shows the amount of time needed to replay

4.4. Experimental Results 63

the traces in our pintool, and under DBT shows the amount of time needed to record the

traces in DBT. Since the table displays information about trace replaying, it is expected

that the coverage for TEA is slightly higher than DBT’s coverage since our tool will

execute less cold code. This is true for all but one benchmark: 177.mesa. The 0.2%

difference in coverage on this particular benchmark occur since Pin and StarDBT use

slightly different algorithm to detect individual instructions. Nevertheless, the results are

close enough to be considered valid.

Regarding “Time”, it is noticeable that TEA presents a somewhat high overhead when

compared to DBT’s execution. There are at least two reasons for this difference. The

first reason is the way Pin inserts the instrumentation code to manipulate the TEA.

Usually, pin will insert function calls to the pintool’s instrumentation routines, which

adds considerable overhead to the program’s execution. The other reason is related to

TEA’s transition function. Every branch instruction is proceeded by a call to a function

that eventually searches for the target trace in some sort of data structure. By replicating

code to represent the traces, DBT does not need a transition function. The results on

this Table (as well as the ones on Table 4.3) were collected with an optimized transition

function. The optimizations are described in Sect. 4.4.2.

Table 4.3 shows the data regarding to our experiment on TEA’s ability to record traces.

For this experiment, we implemented the MRET [1,5] trace strategy in our pintool. The

columns in the table have the same meaning as they have on Table 4.2, except “Time”

which means “recording time” for both Pin and DBT. Again, the recorded traces present

a slightly different coverage and take more time to record. The reasons for the later are

the same as the ones for the replaying experiment. The reasons for the former are the

difference in how StarDBT and Pin count runtime instructions as well as subtle algorithm

implementation differences.

4.4.1 Implementation Challenges

The most challenging issue faced during the experiments was related to how dynamic

basic blocks are identified. StarDBT identifies a TBB as starting at an address which

is target of a branching instruction and ending in a branch instruction. Besides this

heuristic, Pin also create dynamic basic blocks on some unexpected instructions (e.g.

x86’s cpuid) and instructions with REP prefixes. To address this issues, our pintool

inserts the instrumentation code on the taken and fall through edges instead of at the

beginning of the TBBs. This guarantees that our pintool will see the same transitions

StarDBT saw during trace recording.

Another small issue is related to instruction count. StarDBT counts every instruction

to be one instructions, even if it is an instruction with a REP prefix that will iterate

64 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

Table 4.2: TEA Runtime Aspects – Replaying

Benchmark
TEA DBT

Coverage Time Coverage Time
168.wupwise 100% 2209 100% 151

171.swim 100% 614 100% 100
172.mgrid 100% 802 100% 144
173.applu 100% 725 100% 79
177.mesa 99.8% 1105 100% 87
178.galgel 100% 1412 100% 175
179.art 99.8% 1881 99.5% 110

183.equake 100% 324 100% 38
187.facerec 100% 1189 100% 95
188.ammp 100% 1558 100% 125
189.lucas 90.4% 670 89.3% 86
191.fma3d 94.2% 636 94.1% 98

200.sixtrack 99.1% 1358 99.1% 129
301.apsi 100% 1560 100% 134
164.gzip 99.8% 2913 99.6% 157
175.vpr 100% 1441 99.9% 97
176.gcc 98.1% 2160 97.6% 203
181.mcf 99.9% 635 99.9% 48

186.crafty 95.6% 2058 95.5% 146
197.parser 100% 3482 100% 163
252.eon 91.0% 9417 90.9% 814

253.perlbmk 83.3% 4890 82.9% 253
254.gap 88.3% 2186 87.9% 111

255.vortex 99.4% 3188 99.3% 242
256.bzip2 99.9% 2077 99.9% 117
300.twolf 100% 2977 100% 181

GeoMean 97.5% 1559 97.4% 129

some times. Pin, on the other hand, creates a loop for these instructions, and counts each

instruction of each iteration as one instruction. For this reason, the number of dynamic

instructions seen by StarDBT and Pin are slightly different. This is why Tables 4.2 and

4.3 do not show instruction count, but coverage instead.

4.4.2 Analyzing TEA’s Performance

The numbers presented in this paper show that our implementation of TEA poses a heavy

overhead for programs. Before collecting these results, we experimented with several

different implementations for the transition function. This Sect. describes the changes

our pintool underwent to improve its performance.

Table 4.4 contains six different entries for each benchmark. The first column (“Na-

tive”) indicates the native performance numbers for the benchmarks. For each benchmark,

every entry is normalized with respect to this value, thus all entries in this column being

4.4. Experimental Results 65

Table 4.3: TEA Runtime Aspects – Recording

Benchmark
TEA DBT

Coverage Time Coverage Time
168.wupwise 99.7% 2697 100% 151

171.swim 100% 617 100% 100
172.mgrid 100% 867 100% 144
173.applu 100% 767 100% 79
177.mesa 96.9% 1332 100% 87
178.galgel 100% 1513 100% 175
179.art 100% 1827 99.5% 110

183.equake 100% 308 100% 38
187.facerec 99.3% 1391 100% 95
188.ammp 99.8% 1539 100% 125
189.lucas 100% 667 89.3% 86
191.fma3d 100% 662 94.1% 98

200.sixtrack 100% 1583 99.1% 129
301.apsi 99.2% 1627 100% 134
164.gzip 99.7% 3003 99.6% 157
175.vpr 99.9% 1454 99.9% 97
176.gcc 99.4% 2172 97.6% 203
181.mcf 99.9% 612 99.9% 48

186.crafty 99.7% 2112 95.5% 146
197.parser 100% 3607 100% 163
252.eon 97.5% 15352 90.9% 814

253.perlbmk 99.8% 4407 82.9% 253
254.gap 99.9% 2267 87.9% 111

255.vortex 99.1% 3568 99.3% 242
256.bzip2 99.8% 2168 99.9% 117
300.twolf 100% 2982 100% 181

GeoMean 99.6% 1654 97.4% 129

1.00.

The remaining five entries are all related to program execution under Pin. The column

“Without Pintool” indicates the slowdown of running the benchmark under Pin without

any pintool loaded. In other words, it indicates Pin’s overhead alone, which turned out

to be low. Column “Empty” reports the overhead to run the application with TEA with

an empty set of traces. For these numbers, no traces were recorded by our Pintool at

runtime.

The remaining three columns report the results for loading and replaying traces under

three different scenarios. For each benchmark, every experiment use the same set of traces.

Column “No Global / Local” indicates that a local cache was used to speed up transitions

from one trace to another while no auxiliary data structures were used to speed up trace

look up (the traces were kept in a linked list) when the local cache misses. The “Global /

No Local” experiment used the global B+ tree to speed up trace look up, while no local

caching scheme was employed. The last column, “Global / Local”, shows the results when

66 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

Table 4.4: TEA Overhead for Various Configurations

Benchmark Native
Under Pin

Without
Empty

No Global / Global / Global /
Pintool Local No Local Local

168.wupwise 1.00 1.54 43.43 23.57 26.83 19.47
171.swim 1.00 1.04 6.33 4.61 6.15 4.44
172.mgrid 1.00 1.25 5.00 4.12 5.69 3.74
173.applu 1.00 1.09 11.73 6.70 9.90 6.40
177.mesa 1.00 1.25 31.41 29.02 18.61 12.94
178.galgel 1.00 1.06 7.97 5.45 8.33 4.80
179.art 1.00 1.22 30.28 17.05 26.93 18.30

183.equake 1.00 1.15 11.53 6.01 8.94 6.14
187.facerec 1.00 1.27 21.34 18.27 17.47 11.62
188.ammp 1.00 1.05 19.61 9.94 14.79 10.22
189.lucas 1.00 1.12 15.50 7.21 9.84 7.48
191.fma3d 1.00 1.24 10.41 6.52 7.35 5.73

200.sixtrack 1.00 1.00 11.78 6.84 11.10 5.83
301.apsi 1.00 1.11 13.56 11.50 14.44 8.31
164.gzip 1.00 1.34 45.81 22.91 34.46 22.13
175.vpr 1.00 1.18 30.44 16.64 20.72 14.80
176.gcc 1.00 3.93 81.18 278.39 64.43 43.64
181.mcf 1.00 1.04 17.55 9.69 15.65 10.14

186.crafty 1.00 2.60 56.54 51.12 48.96 32.79
197.parser 1.00 2.13 49.02 26.67 39.07 22.10
252.eon 1.00 4.17 62.48 94.77 42.65 30.96

253.perlbmk 1.00 2.97 94.68 60.21 83.72 55.55
254.gap 1.00 2.53 73.82 45.11 57.92 40.04

255.vortex 1.00 2.30 70.89 223.68 44.22 30.63
256.bzip2 1.00 1.51 37.17 20.24 27.76 18.93
300.twolf 1.00 1.15 30.34 16.98 28.10 17.49

GeoMean 1.00 1.50 25.27 18.52 20.33 13.53

both the global B+ tree and the local cache were used.

The auxiliary structures are very important in the TEA’s transition function, which

is the responsible for most of TEA’s overhead. In fact, the first TEA implementation

employed no auxiliary data structures for speeding up trace look up. The numbers for this

particular experiment (which would be the “No Global / No Local” column in Table 4.4)

were not collected since the slowdown was over 2 orders of magnitude from the native

execution.

Our first attempt to speed up the transition function was the global B+ tree. The

results were interesting, but the overhead was still very high. Later, we implemented the

local cache to avoid going to the global trace container every time the system needed to

search for a trace. Again, the results improved over the previous data. This configura-

tion (“Local / Global”) was used to collect all the data for the Recording / Replaying

experiment.

4.5. Previous and Related Work 67

We also investigated whether or not the global B+ tree was important to the overall

performance. The experimental data shows that, while the local cache is more important

than the global B+ tree, the B+ tree is important as well. A comparison between columns

“No Global / Local” and “Global / Local” clearly indicates a performance improvement

when using the more optimized global container. Particularly, GCC and Vortex experience

a severe slowdowns without the global indexing structure.

The data on the “Empty” column report a counter intuitive result. Having no traces

to simulate should be faster than having several traces. However, the numbers do make

sense, as the transition function is optimized for the common case (i.e. executing hot

code). TEA performs more work to switch states while in cold code than it does while

in hot code. This run had the global B+ tree and did not have any local caches (local

caches are pointless outside of traces in our implementation anyway).

4.5 Previous and Related Work

Traces are closely related to dynamic binary translation and dynamic compilation tech-

niques. Suganuma et al. [18] presented a complex JIT compiler for a production level Java

Virtual Machine. Unlike previous approaches, that used method boundaries for JITing,

they implemented a multi-level compilation strategy and use dynamic compiler to dynam-

ically form “regions”, which are their runtime system’s compilation unit. Zaleski et al. [21]

presented an extensible JIT compiler which uses traces as compilation units.

Several trace recording strategies exist on the literature. MFET (Most Frequently Ex-

ecuted Tail) [3] instruments edges in the dynamic program execution to detect frequently

executed paths. MRET (Most Recently Executed Tail) [1,5] instruments back edges only,

thus posing less runtime overhead than MFET. TT [9] record traces which always end

with a branch to an “anchor”, generally a loop header. CTT [15] tries to address the code

duplication experienced by TTs by allowing branch targets within a path to be any loop

header in that path.

Another use for traces in JIT compilers is described by Gal et al. [10]. They use

Trace Trees [9] as compilation units for the SpiderMonkey JavaScript Virtual Machines.

Besides all the complication in a JVM JIT compiler, the authors face more challenges

since JavaScript is dynamically typed.

Besides those well-known uses, recently Wimmer et al. [20] used traces to perform

phase detection. A program phase is identified when the created traces are stable (i.e.,

there is a low trace exit ratio). Whenever program execution start to take side exits more

often, the program is said to be in an unstable (i.e. between phases).

Several well-known optimization systems have employed traces to capture program’s

code locality. Examples of these environments are Dynamo [1], FX!32 [12] and the IA-32

68 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

Execution Layer [2].

All the previously mentioned systems work with user mode code. More complicated

DBT systems can translate system level code. For instance, DAISY [6, 7, 11] is a com-

patibility layer which translates PowerPC code to an underlying VLIW systems. The

Transmeta CMS [4] is the compatibility layer on the top of the Crusoe [13] microproces-

sor. They both utilize some sort of trace recording to select hot code. Both system could

have applied TEA as a tool for dynamic trace recording.

On the hardware side, traces have been used for high-bandwidth instruction fetch [16].

The Pentium IV processor [8] implements a trace cache. High-bandwidth instruction fetch

is achieved since logically contiguous instructions in the instructions stream are placed

adjacent to one another in the trace cache. This high-bandwidth cache was needed due

to the high clock frequencies that the processor achieved [17]. TEA is different from trace

caches since it does not require instructions to be contiguous on the instruction stream.

4.6 Conclusions and Future Work

This paper presents TEA, a technique that uses Deterministic Finite Automata (DFA) to

map executing instructions to instructions or basic blocks in previously recorded traces.

We list multiple contexts in which TEA is useful and we discuss the implementation

challenges and solutions when implementing TEA on StarDBT and Pin frameworks.

Our experimental results show that the resulting TEA’s transition lookup operation

plays a fundamental role on TEA’s performance. For this paper, we implemented the

lookup operation with the help of a auxiliary look up data structures, which is searched

whenever there is a transition from cold code to hot cold, or when there is a transition

from one trace to another. In the future, we will investigate other techniques to optimize

the transition lookup operation and amortize TEA’s cost.

References

[1] Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-

tion system. SIGPLAN Not. 35(5), 1–12 (2000)

[2] Baraz, L., Devor, T., Etzion, O., Goldenberg, S., Skaletsky, A., Wang, Y., Zemach,

Y.: Ia-32 execution layer: a two-phase dynamic translator designed to support ia-32

applications on itanium®-based systems. In: MICRO 36: Proceedings of the 36th

annual IEEE/ACM International Symposium on Microarchitecture. p. 191 (2003)

[3] Cifuentes, C., Emmerik, M.V.: Uqbt: Adaptable binary translation at low cost.

Computer 33(3), 60–66 (2000)

References 69

[4] Dehnert, J.C., Grant, B.K., Banning, J.P., Johnson, R., Kistler, T., Klaiber, A.,

Mattson, J.: The transmeta code morphing�software: using speculation, recovery,

and adaptive retranslation to address real-life challenges. In: CGO ’03: Proceedings

of the international symposium on Code generation and optimization. pp. 15–24

(2003)

[5] Duesterwald, E., Bala, V.: Software profiling for hot path prediction: less is more.

In: ASPLOS-IX: Proceedings of the ninth international conference on Architectural

support for programming languages and operating systems. pp. 202–211 (2000)

[6] Ebcioğlu, K., Altman, E.R.: Daisy: dynamic compilation for 100% architectural

compatibility. In: ISCA ’97: Proceedings of the 24th annual international symposium

on Computer architecture. pp. 26–37 (1997)

[7] Ebcioğlu, K., Altman, E.R., Gschwind, M., Sathaye, S.: Optimizations and oracle

parallelism with dynamic translation. In: MICRO 32: Proceedings of the 32nd annual

ACM/IEEE international symposium on Microarchitecture. pp. 284–295 (1999)

[8] Friendly, D.H., Patel, S.J., Patt, Y.N.: Putting the fill unit to work: dynamic opti-

mizations for trace cache microprocessors. In: MICRO 31: Proceedings of the 31st an-

nual ACM/IEEE international symposium on Microarchitecture. pp. 173–181 (1998)

[9] Gal, A., Franz, M.: Incremental dynamic code generation with trace trees. Tech.

Rep. 06-16, Donald Bren School of Information and Computer Science, University of

California, Irvine (November 2006)

[10] Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M.R., Kaplan,

B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E.W., Reitmaier, R.,

Bebenita, M., Chang, M., Franz, M.: Trace-based just-in-time type specialization

for dynamic languages. In: PLDI ’09: Proceedings of the 2009 ACM SIGPLAN

conference on Programming language design and implementation. pp. 465–478 (2009)

[11] Gschwind, M., Ebcioğlu, K., Altman, E., Sathaye, S.: Binary translation and archi-

tecture convergence issues for ibm system/390. In: ICS ’00: Proceedings of the 14th

international conference on Supercomputing. pp. 336–347 (2000)

[12] Hookway, R.: Digital fx!32: Running 32-bit x86 applications on alpha nt. In: COM-

PCON ’97: Proceedings of the 42nd IEEE International Computer Conference. p. 37

(1997)

[13] Klaiber, A.: The technology behind CrusoeTM processors. Tansmeta Corporation

(January 2000)

[14] Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with

dynamic instrumentation. In: PLDI ’05: Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and implementation. pp. 190–200 (2005)

70 Caṕıtulo 4, Trace Execution Automata in Dynamic Binary Translation

[15] Porto, J.P., Araujo, G., Wu, Y., Borin, E., Wang, C.: Compact trace trees in dynamic

binary translators. In: 2nd workshop on architectural and micro-architectural support

for binary translation (AMAS-BT’09) (2009)

[16] Rotenberg, E., Bennett, S., Smith, J.E.: Trace cache: a low latency approach to

high bandwidth instruction fetching. In: MICRO 29: Proceedings of the 29th annual

ACM/IEEE international symposium on Microarchitecture. pp. 24–35 (1996)

[17] Sprangle, E., Carmean, D.: Increasing processor performance by implementing deeper

pipelines. SIGARCH Comput. Archit. News 30(2), 25–34 (2002)

[18] Suganuma, T., Yasue, T., Nakatani, T.: A region-based compilation technique for

dynamic compilers. ACM Trans. Program. Lang. Syst. 28(1), 134–174 (2006)

[19] Wang, C., Hu, S., Kim, H., Nair, S.R., Breternitz, M., Ying, Z., Wu, Y.: Stardbt:

An efficient multi-platform dynamic binary translation system. In: Asia-Pacific Com-

puter Systems Architecture Conference. pp. 4–15 (2007)

[20] Wimmer, C., Cintra, M.S., Bebenita, M., Chang, M., Gal, A., Franz, M.: Phase

detection using trace compilation. In: PPPJ ’09: Proceedings of the 7th International

Conference on Principles and Practice of Programming in Java. pp. 172–181 (2009)

[21] Zaleski, M., Brown, A.D., Stoodley, K.: Yeti: a gradually extensible trace interpreter.

In: VEE ’07: Proceedings of the 3rd international conference on Virtual execution

environments. pp. 83–93 (2007)

Caṕıtulo 5

Extending Decoupled Software

Pipeline to Parallelize Java

Programs

Prólogo

Após o trabalho inicial com traces o foco da pesquisa sofreu uma pequena alteração.

Ao invés de detectar código quente online, passou-se a identificar os laços significativos

para execução do programa. Esta mudança ocorreu devido ao grande overhead para o

gerenciamento online de traces em software.

Como as otimizações estáticas tradicionais são dependentes do desempenho de um

único núcleo, e como a indústria mudou o paradigma de desenvolvimento de processadores

para múltiplos núcleos, buscou-se um tipo de otimização que utilize mais efetivamente os

recursos disponibilizados por tais arquiteturas.

DSWP [41] é uma técnica de TLS com resultados promissores. Iniciaram-se os estudos

desta etapa com a paralelização manual de quatro benchmarks do SPECjvm2008. Os

resultados desta avaliação encontram-se no artigo a seguir, submetido para publicação na

revista Software Practice and Experience.

71

72 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

Abstract

Programmers can no longer rely solely on micro-architectural nor technology improve-

ments to have their programs running faster. In today’s multi-core chips, parallel code

need to be explicitly written in order to extract any benefits from the extra available

processing power. In this paper we discuss a simple yet effective technique for program

parallelization, based on Decoupled Software Pipeline (DSWP). DSWP is a recent tech-

nique proposed to parallelize program loops at the binary level, which works well only

under fast inter-core communication. In this paper we propose and evaluate a software

inter-core communication scheme which enables DSWP in Java applications. We analyze

three memory communication queues implementations and show experimental results that

reveal an average 48% speedup on some SPCjvm2008 benchmarks.

5.1 Introduction

Power and energy constraints on contemporary microprocessor designs have broken the

trend of relying solely on micro-architectural optimizations and semiconductor technology

advancements to improve single threaded performance. To overcome this challenge, Chip

Multi-Processors(CMP) have been adopted as the mainstream solution. In CMPs, to

better utilize the available resources, programs must be explicitly parallelized.

Parallel programming is neither easy nor intuitive [1, 2]. Since parallel software runs

nondeterministically, debugging can be a challenging task, even for experienced program-

mers. Automatic parallelization strategies can ease multi-threaded development. Un-

fortunately, automatic program parallelization has been successful only in very specific

cases, as in scientific computing and regular loops. Moreover, today’s most ubiquitous

multi-core chips (x86) are CMP processors with no particular support for fast inter-thread

communication (a feature needed by most of the general parallelization techniques), which

is required to be done through memory. Therefore, the implementation of fast communi-

cation mechanism through memory is a central issue in order to improve the final program

performance.

Although several contributions on automatic thread extraction techniques in hard-

ware have been made by the academia (Section 5.2.1 surveys some of them), the industry

has been reluctant to adopt them due to many factors, amongst them being uncertainty

about real world energy requirements and real benefits, hardware complexity and gen-

eral programmability issues. This creates the need for software-based thread extraction

techniques.

5.2. Previous Work 73

n+1

2

4

1

3

(a) sequential

n+4

2

4

1

3

n+4

2

4

1

3

n+4

2

4

1

3

n+4

2

4

1

3

Core 1 Core 3Core 2 Core 4

(b) parallel

Figure 5.1: DOALL loop

5.1.1 Contributions

This paper proposes jDSWP (Java-DSWP), a simple Java parallelizing technique, based

on Decoupled Software Pipelining (DSWP) [3]. It extends DSWP to source-level Java

programming without the need for any special hardware nor Java Virtual Machine

(JVM) support. We evaluated the proposed technique with four benchmarks from the

SPECjvm2008 [4] suite and observed promising speedup numbers with very little added

programming complexity.

This paper is organized as follows. In Section 5.2, background information about pro-

gram parallelization is provided . Section 5.3 presents the parallelization strategy we used

in our experiments. Section 5.4 details our inter-thread communication mechanism (on

Section 5.4.3) and explains the interface of the framework built to conduct the experi-

ments (Sections 5.4.1 and 5.4.2). Section 5.5 shows the actual parallelization work done in

two SPEC jvm2008 benchmarks. Experimental results are presented in Section 5.6 while

the conclusions are shown in Section 5.7.

5.2 Previous Work

Automatic loop parallelization has been well studied for a long time. There are at

least three different types of loop parallelization strategies: DOALL, DOACROSS and

DOPIPE. The DOALL parallelization [5] is applicable when a loop presents no loop car-

ried dependencies. The maximum achievable speed up scales with the number of cores.

Figure 5.1 (a) shows a sequential loop with no loop carried dependencies. In that Figure,

74 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

2

4

1

3

(a) sequential

2

4

1

3

2

4

1

3

Core 1 Core 2

(b) DOACROSS

2

1

3

Core 2

4

Core 1

(c) DOPIPE

Figure 5.2: Non-DOALL loops

and (throughout the paper unless otherwise stated) solid arrows represents control-flow

edges while dotted arrows represent data-flow edges. Figure 5.1 (b) shows the parallel

execution of a DOALL loop using four cores. Notice how n+1 was transformed into n+4.

If the loop was to be executed in a processor with more cores, the loop would simply

be replicated in the other cores, and the loop step would be appropriately changed. Al-

though very efficient, this technique is not applicable to most real world applications as

loops tend to have loop carried dependencies.

Figure 5.2 (a) depicts a loop which is very similar to the loop presented in Fig-

ure 5.1 (a). A more detailed look reveals that Figure 5.2(a) contains a loop carried

dependency (the dotted edge 3→ 1), which constrains the use of the DOALL paralleliza-

tion. For this reason, other parallelization techniques were proposed.

DOACROSS parallelization [6] allows loops to have loop carried dependencies, which

are communicated between the cores as they are computed in the loop body. Figure 5.2 (b)

shows the DOACROSS parallelization of the loop in Figure 5.2 (a). The dotted edge

3→ 1 indicates that data communication between the threads is necessary. DOACROSS

parallelization is effective, but it creates dependencies between the threads, which might

limit the loop’s runtime performance.

DOPIPE parallelization [7] (Figure 5.2 (c)) splits each loop iteration into two or more

threads. The dependencies between the threads are only allowed to be communicated

5.2. Previous Work 75

forward, thus avoiding cyclic dependencies. Since the code is rewritten at compile time,

just as is the DOACROSS case, the generated code does not benefit from an increased

number of cores as a DOALL loop would. In other words, if the code was parallelized

with two threads, there will be no benefit if the program is run in systems with more than

two cores.

More recently, Zhang et al. proposed Alchemist [8], which is a profiling tool that

identifies potential program constructs that are amenable to parallelization. It locates

program structures (e.g. if statements, while statements) which can be executed in par-

allel with one another. It does not automatically convert a sequential program into an

equivalent parallel one.

Java parallelism is not new. The Java Development Kit (starting with version seven)

supports the “divide and conquer” strategy. Using this strategy, a complex, large instance

of a problem can be divided into two or more smaller, simpler instances (the “divide” part)

which are individually solved. The individual results can then be merged to obtain the

final result (the “conquer” part). In comparison, our technique works by splitting loop

bodies across threads.

Java parallelism can also be achieved by clustering machines together. Although

several different machines could be connected to the cluster, the JVM presents itself to

the application as a single virtual machine. The Terracotta Infrastructure [9] is an example

of such virtual machine. Although inherently parallel, this virtual machine does not add

any parallel processing constructs to the Java Language Specification [10] nor to the Java

Virtual Machine Specification [11]. Differently from this strategy, our experiments were

executed in a regular virtual machine running on a multi-core computer.

Lithium [12] presents a skeleton based framework for writing parallel Java. One of its

templates (called Pipeline) is very similar to the framework we used to parallelize Java

applications, though it does not provide any mechanism to detect and enable DSWP

parallelism.

5.2.1 A Survey on TLS

All the above mentioned approaches are software based parallelization. Parallelism may

also be harvested through the use of specialized hardware. In this domain, Thread Level

Speculation (TLS) has been extensively studied and has been shown to be a promising

technique. In summary, TLS techniques usually speculate (predicts) data or control in-

formation ahead of time. All the following techniques have in common the need of some

hardware support. By contrast, the technique proposed in this paper has been tested on

commodity hardware widely available, not requiring any special support besides the few

classes described in Section 5.4.

76 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

Ottoni et al. [3, 13–15] proposed DSWP, which is a type of DOPIPE parallelization.

DSWP is an automatic thread extraction technique that relies on a small communication

queue between cores to communicate inter-thread values. Actual program parallelization

is done by a static compile. While they reported interesting numbers, the need for hard-

ware support (the communication queue) might impair DSWP usage in today’s multi-core

processors (particularly x86 CMP computers.)

Dynamic multi-threading was proposed by Akkary & Driscoll [16] as an automatic,

hardware-based approach to extract threads out of sequential code. In this execution

model, the hardware aggressively seeks loops and function calls on the instruction stream

to generate new execution threads. Since the hardware spawns the threads aggressively

in advance, the live in values for the newly spawned threads are likely unavailable, thus

the hardware is responsible to speculate on them.

Checkpoint Processing and Recovery (CPR) [17] and Continual Flow Pipelines

(CFP) [18] recognized that the committing instructions in program order is a severe

performance restriction for Out-of-Order processors. The authors propose and evalu-

ate a computer micro-architecture capable of out-of-order commit while preserving se-

quential execution semantics. They do not extract threads. CPR/CFP and TLS try to

boost program performance with out-of-order instruction commit. Unfortunately, the pro-

posed architecture proved to be very power-demanding. To mitigate that, in-order CFP

(iCFP) [19] allows instructions to commit out-of-order in a simple, pipelined processor.

This approach is useful to tolerate long-latency loads.

A compiler support for automatic thread extraction is described in [20]. Hybrid pre-

dictors [21] are used to speculate on unavailable live-ins. The authors avoid the need of

more extensive hardware support by using comprehensive profile information. The lack

of hardware support for miss-speculation recovery demands a conservative approach, as

any violation of original program semantics will be unrecoverable.

BulkSC [22] and Bulk [23] augments the available checkpoint capabilities of modern

processors with a TLS mechanism to detect memory ordering violations in threaded ap-

plications. The proposed mechanism is based on signatures of the accessed addresses. It

also adds a centralized arbiter which is responsible for checking the signatures nd detect-

ing conflicts. Upon a conflict, the hardware rolls back to the latest valid checkpoint and

resumes program execution.

Hydra [24] is a CMP processor composed by four MIPS cores. The authors, recog-

nizing the adding more cores to the processor without specialized support for speculation

hardens parallelization efforts, limiting overall chip programmability. To address that

they propose a coherence hardware which detects sequential violations and recover from

misspeculations. The parallelized code is therefore not constrained to safe parallelization.

Kim & Yeoung [25] carry out a comprehensive study on pre-execution code. They

5.3. Java-DSWP Parallelization 77

evaluate several different pre-execution algorithms running on several different compilers.

Unlike most approaches, the required hardware support is not responsible for maintaining

data coherence: the authors only assume that the underlying hardware has a minimal

support for thread creation.

Krishnam & Torrellas [26] proposed a TLS architecture and a binary analyzer. The

later is responsible for statically analyze binary program (which makes it useful for legacy

application when the source code is not available) and determine inner loop boundaries,

while the former executes the annotated program. In this architecture, register depen-

dencies are honored at runtime (rather than at compile time as in other approaches)

by a synchronizing scoreboard, while memory dependencies are honored by the Memory

Disambiguation table(MDT).

Marcuello & González [27] describe a TLS hardware which uses simplified heuristics for

thread creation and value prediction. Thread creation focus on loops (not necessarily inner

loops), and use execution traces to speculate on the dynamic behavior of the parallelized

loop. Value prediction is accomplished by means of a value prediction table.

Sohi et al. [28] propose a hierarchical execution model, the Wisconsin Multiscalar.

This model uses a specialized hardware to predict the control-flow. It is called hierarchi-

cal execution model because each thread spawns another thread, thus creating a thread

hierarchy. Upon detection of miss-speculation, the offending thread and all of its descen-

dants are squashed. Execution progress is guaranteed because of the existence of a single,

non-speculative task (the oldest task) which is never be squashed.

Master/Slave Speculative Processing [29] speeds up program execution by making

the common case fast. In this execution model, there is a master processor, which is

responsible for running an “approximation” of the sequential program as well as to start

“slave” threads. The “slave” threads run the original, sequential code and are responsible

to assert that the program executed by the “master” processor is correct.

5.3 Java-DSWP Parallelization

As in DSWP, jDSWP (Java-DSWP) divides loops into loop-carried independent code

fragments, which are then used to define a set of pipeline stages. Each stage is executed

as an independent thread reading its inputs from the previous stage and sending its

outputs to the next stage. In order to better describe the jDSWP parallelization strategy,

we first introduce some concepts.

Definition 5.3.1. In the Control-Flow Graph (CFG), an edge is interesting iff� It has a call (function, procedure or method invocation) as its source; and� The called function does not change loop-carried values.

78 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

foo()

a = f(a)
foo():

 x = g(a)

(a)

bar()

bar():

a = f(a)

 x = g(a)

 y = g(a)

(b)

car()

 x = g(a)
car():

a = f(a)

(c)

Figure 5.3: Examples for Definitions 5.3.1, 5.3.2 and 5.3.3

The dashed edges with solid heads in Figure 5.3 (a) is an interesting edge: its source

is a call instruction and the target function is not responsible for any updates to loop-

carried definitions. Figure 5.3 (b) shows an example of an interesting edge in the presence

of loop-carried values: bar reads a but does not update it, thus not violating any condition

in Definition 5.3.1. Finally, Figure 5.3 (c) shows an example where the called function

assigns a new value to a’s loop-carried dependence. This violates the second condition for

an edge to be considered interesting.

Definition 5.3.2. A return edge is an edge in the CFG that represents the return control-

flow of a function which was invoked by an interesting edge. For each interesting edge,

there may be more than one return edge.

In Figures 5.3 (a) and 5.3 (b), the dashed edges with a unfilled head represent return

edges. Figure 5.3 (c) contains no return edges as it contains no interesting edges.

Definition 5.3.3. A potential block is either

1. the target of a return edge; or

2. dominated by a potential block.

and contains no update to loop-carried values.

The only potential block in the previous examples can be found in Figure 5.3 (a).

Figure 5.3 (b) does not contain a potential block, as the return edge’s target updates a,

which is a loop-carried variable.

Given the previous definitions, jDSWP source level parallelization works as follows:

1. Identify the interesting edges on the target loop

2. For each interesting edge from the previous step, identify the corresponding return

edges.

3. For each return edge, identify the potential blocks.

4. Let F be the set of every function f which is the target of an interesting edge.

5. For each function f in F , remove f from F if its outputs either:

5.3. Java-DSWP Parallelization 79

Stage 1 Stage 2 Stage 3

Figure 5.4: Forward and Backward Communication Example

(a) define a loop-carried dependency; or

(b) are used after the return edge in a non-potential block.

Each function f selected as amenable to parallelization can be extracted from the loop

body and moved into its own pipeline stage. f ’s potential blocks (i.e., its continuation)

can also be moved to f ’s stage, or to any stage following f , as long as f ’s potential blocks

do not update any loop carried dependency. Marking a function as not amenable to

parallelization in step 5 is important to avoid backward communication in the pipeline.

Backward communication is likely to “re-couple” the (decoupled) pipeline stages, thus

increasing the communication overhead and possibly creating circular dependencies among

threads. Only forward communication is allowed in the proposed parallelization strategy.

To illustrate these two types of communication direction, see Figure 5.4: each stage is

executed in a different processor; the black squares represent producer statements (i.e.,

statements that generate some value) and the circles represent consumer statements. The

solid edge represents forward communication while the dotted edge represents backward

communication.

Figure 5.5 illustrates our approach with three (non-exhaustive) examples. In Fig-

ure 5.5 (a) there is an outer loop which invokes f(), which then invokes g().

Figure 5.5 (b) illustrates an example where g() was independent from the rest of the

loop. This is the case when, for example, g() is a log function. In this case, removing

the log output from the application’s loop might yield a significant speedup, as logs are

usually written to disk.

Figure 5.5 (c) depicts a scenario where f’s tail (the code f executes when g returns) is

not part of any loop-carried dependencies in the main loop. In such case, the parallelized

application can execute f’s tail outside the main loop. This is beneficial for the parallelized

application since it is likely to increase the maximum speedup.

Figure 5.5 (d) shows the result of applying our technique to the DOALL loop of

Figure 5.5 (a). Since DOALL loops can not have loop-carried dependencies, every call

edge becomes an interesting edge.

80 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

A1()

f()

A2()

g()

F1()

F2() G2()

G1()

(a) Sequential loop

A1()

f()

A2()

F1()

G2()

G1()

g()

F2()

Core 1 Core 2

(b) g’s Invocation Pipelined

A1()

f()

A2()

g()

F1()
G1()

G2()

F2()

Core 1 Core 2

(c) g’s Invocation and a Potential

Block Pipelined

F1()

G2()

A1() G1()

Core 1 Core 3Core 2

F2()

Core 5Core 4

A2()

(d) A DOALL Loop Pipelined

Figure 5.5: Sample Loop

5.4 The funpipe Package

As explained above, jDSWP parallelizes an application by creating a pipeline of loop-

carried independent stages. Given the pipeline logic does not change from application to

application (although each stage logic changes), a package called funpipe was created to

handle the application-independent features of the pipeline.

This package contains several classes, but only two of them are visible: the

funpipe.Pipeline class and the funpipe.Pipeline.Stage class. The later is an ab-

stract class which must be specialized by the programmer to define each stage in the

pipeline, and is described in Section 5.4.1, while the former implements a pipeline of

funpipe.Stages and is explained in Section 5.4.2.

Section 5.4.3 exposes some of the inner details of the class funpipe.Communication-

5.4. The funpipe Package 81

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Pipeline

Stage 1

Stage 2

Stage 3

input()

output()

Figure 5.6: A Sample 3-Stage Pipeline

Queue which, as its name suggests, implements a communication queue. This queue is

used by the funpipe.Pipeline class to create communication channels between stages.

As an analogy with pipelines in computer architectures, the communication queues can

be seen as FIFO pipeline registers.

A high-level overview of a three-stage pipeline is shown on Figure 5.6. The variable

logic in at is stage is contained within the dashed squares in the figure (labeled Stages

1 through 3). The motif-decorated squares represent the communication queues between

the stages. The dotted arrows depict the data flow between the stages.

package funpipe;

public final class Pipeline

{
public static abstract class Stage

{
public abstract void stage() throws Exception;

protected void finish();

protected Object input();

protected Object output();

}

public Object input(Object data);

public Object output();

public void shutdown();

public static Pipeline createPipeline

(final Pipeline.stage... stages);

}

Figure 5.7: The funpipe Package Interface

5.4.1 The funpipe.Pipeline.Stage Abstract Class

Each application demands its own set of pipeline stages. Nevertheless, stages do share

some characteristics like communication and thread management. For this reason, the

funpipe package provides the abstract class funpipe.Pipeline.Stage which already

82 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

implements these common features, thus easing the parallelization process. Its interface

is shown in Figure 5.7.

To communicate to its adjacent stages the funpipe.Pipeline.Stage class provides

to communication channels. The input() channel receives data from the previous Stage

(or from outside the Pipeline). The output() channel provides the channel to send data

to the next Stage (or outside the Pipeline). These members are protected, and should

not be made available outside the stage.

To implement a Stage, the programmer needs to override the funpipe.Pipe-

line.Stage.stage() abstract method. This method does not receive any parame-

ters, thus any information necessary for the stage should be received either by con-

structors or (preferably) using the stage’s input() channel. Furthermore, the stage()

method is repeatedly invoked by the pipeline if the pipeline’s execution is not com-

pleted, so the programmer does not need to implement a non-stopping loop. If any

post-processing action is required, the programmer can override the protected method

funpipe.Pipeline.Stage.finish().

5.4.2 The funpipe.Pipeline Class

This class isolates the logic related to the pipeline, and its interface is also shown in

Figure 5.7. It was designed so the programmer cannot tamper with any of the inner

details once a pipeline is created. E.g., the programmer has no power to change the

stage ordering after the funpipe.Pipeline.createPipeline() method is invoked. The

pipeline class automatically sets up the necessary communication queues so that the stages

can communicate.

If the pipeline needs any inputs the programmer can use the funpipe.Pipeline.in-

put() method. This channel binds to the input of the first stage in the pipeline. Also,

if the pipeline generates any output, the programmer can retrieve it using the output()

method.

Once the pipeline is no longer needed, the programmer must invoke the funpipe.Pipe-

line.shutdown() method to relinquish the Pipeline’s resources. This methods sends

a special token to the first pipeline stage, which propagates the signal to the second

stage and so on. The shutdown() method waits until every stage has finished its execu-

tion (which includes the execution of the possibly overridden finish() method) before

returning to its caller.

The pipeline implemented for this experiment has a very simple communication scheme

implicitly shown in Figure 5.6: each stage can only write to the next stage, and can only

read data from the previous stage. There is no support for data forwarding (move data

backwards in the pipeline) or bypassing (move data between non-adjacent stages.)

5.4. The funpipe Package 83

The lack of support for bypassing is intentional: implementing a complex communica-

tion network connecting all the cores can become expensive (specially when the number

of cores increase.) In this simple implementation, the values need to go through each

pipeline stage until it reaches the destination stage. For example, a value generated in

Stage 1 that will be used by Stage 3 must go through Stage 2 before reaching its final

destination. By carefully implementing the communication protocol between the stages,

it is possible to mitigate the penalty for the lacking of bypass mechanisms.

Data forwarding moves the data backwards in the pipeline (i.e, forward in time.)

jDSWP carefully generates the stages to avoid this kind of dependency since they are not

supported.

5.4.3 The funpipe.CommunicationQueue Class

Although it is a known fact that memory is much slower than the processor, the lack of

fast communication mechanisms between cores in modern x86 processors leaves memory

as the fastest communication alternative between threads. Hence, one of the goals of

our work was to identify efficient mechanisms for queue communication between pipeline

stages.

Our framework included three different types of communication queue. The first

implementation (called “Busy-waiting” throughout Section 5.6) makes no use of Java’s

synchronized mechanism, thus avoiding the overhead of suspending/resuming threads,

as well as avoiding switching back and forth to/from the operating system.

The second implementation (“Lock-free”) utilizes a lock-free FIFO queue. It relies on

Java’s synchronization methods (synchronized, Object.wait() and Object.notify())

to suspend the thread when appropriate (reading from an empty queue or writing to a full

queue.) We named this implementation “Lock-free” since in the regular scenarios (reading

a non-empty or writing to a non-full queue) reads and writes can occur concurrently and

safely.

The last implementation (“Lock”) marks all methods in the funpipe.Communication-

Queue class as synchronized, thus serializing all accesses to the communication channels.

To select between the three different types of communication queues without the need

to recompile the source code, we implemented a CommunicationQueue factory which,

based on a property specified in the command line, instantiates the correct queue.

These methods were implemented to evaluate the impact of the queue operation in the

overall pipeline performance. Our assumptions were that the “Busy-waiting” implemen-

tation would outperform the other two implementations, and that the “Synchronized”

implementation would be the slowest of the three. Contrary to our assumptions, all the

implementations were roughly equivalent. For a detailed analysis refer to Section 5.6.5.

84 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

Table 5.1: The Selected Benchmarks

Benchmark
Maximum
Speedup

Parallelization Changes

compress 1.73
Split the main loop so that there is a “compress” and a

“decompress” stage

crypto.rsa 1.06
Split the main loop in three stages: “encrypt”,
“decrypt” and “check”; System.array copy()

statements were needed between stages

derby 1.56
Split the main loop into three pipeline stages, where
the second and the third stages are parts of a inner

loop from the main loop

mpegaudio 1.04
Removed the checksumming from the main loop;

added an Object.clone() statement

5.5 Experimental Parallelization

We picked a subset of the SPECjvm2008 suite [4] programs to evaluate the potential

of jDSWP. Programs were selected based on the availability of loop-carried free code

fragments within its most significant loop.

Table 5.1 shows the benchmarks we used in our experiments. The column Maximum

Speedup indicates the maximum achievable speedup for each benchmark. In other words,

it is an upper bound for the achievable speedup due solely to parallelization. This number

was obtained separately for each benchmark by first measuring the dynamic size of the

candidate loop. Afterwards, we delimited the stages in the sequential source code and

measured the dynamic size of the each stage (see Table 5.2). Since the dynamic size

of the longest stage dominates the overall execution time of the parallelized loop, the

maximum speedup is calculated by Equation (5.1) (Amdhal’s Law), where ParallelSize

is the dynamic size of the longest stage and SequentialSize is the dynamic size of the

loop to be parallelized.

MaximumSpeedupparallelization =
1

1− ParallelSize
SequentialSize

MaximumSpeedupparallelization =
SequentialSize

SequentialSize − ParallelSize
(5.1)

It is worthwhile to notice that Section 5.6 do present some performance numbers

above this theoretical upper bound. Although at first glance this may seem odd, it is

perfectly explainable: the upper bound calculated by Equation 5.1 refers to theoreti-

cal performance limit achievable using exclusively the parallelization strategy (thus the

5.5. Experimental Parallelization 85

Table 5.2: Size of the Pipeline Stages Compared to the Sequential Loop

Benchmark
Stages

1 2 3
compress <1% 58% 42%
crypto.rsa 5% 95% <1%

derby 1% 64% 35%
mpegaudio 96% 4% N/A

name MaximumSpeedupparallelization). Modern JVMs, however, optimize the execution

with runtime optimizations like Just-in-Time (JIT) Compilation. Therefore, when run-

ning parallelized applications with JIT enable, the overall runtime performance speedup

included benefits from both JITing and parallelization.

Next two subsections briefly explain how we parallelize two out of the four studied

applications. The other two benchmarks were parallelized in a similar fashion.

5.5.1 Parallelizing the mpegaudio benchmark

As it can be seen in Figure 5.8 (a), mpegaudio’s main loop is very simple. First, a chunk

of data is read from the input stream into a buffer (an array of fixed size). Then, the

data is converted into an MPEG audio format. Finally, the program calculates the CRC

of the converted data.

The parallelized loop is shown in Figure 5.8 (b). The first stage is responsible for

reading the data as well as converting it to the MPEG format. The second stage is

responsible for calculating the CRC (the updateCRC32() method invocation) of the en-

coded data, which is communicated through the available communication channel (the

communication statements are underlined in Figure 5.8 (b)). Although very simple, this

parallelization was effective, yielding up to 4% speedup in non-JITted executions (which

is the MaximumSpeedupparallelization.)

Mpegaudio was parallelized in just a few minutes. The only needed change was the

invocation of method Object.clone() (in italic in Figure 5.8 (b)) to clone the buffer

returned by SampleBuffer.getBuffer() so that it could be used by the second stage of

the pipeline without data hazards.

The need to duplicate buffers was a recurrent issue. Programmers still think very

carefully about memory management, even in garbage collected environments. This de-

cision makes sense when memory is a scarce resource. In today’s world, however, many

systems over 2 GB of memory. Programmers need to learn to carefully waste1 memory

on some program spots to avoid false dependencies between unrelated code and ease the

1carefully waste, not leak

86 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

while (decodedFrames < FRAME LIMIT &&

(h = stream.readFrame()) != null)
{

decodedFrames++;

updateCRC32(

crc,

((SampleBuffer)

decoder.decodeFrame(h,stream)

).getBuffer()

);

stream.closeFrame();

}

(a) Sequential

Pipeline.Stage s1 = new Pipeline.Stage() {
@Override

public void stage() throws Exception {
CRC32 crc = (CRC32) input();

short[] buffer = (short[]) input();

updateCRC32(crc, buffer);

}
};

Pipeline p = Pipeline.createPipeline(s1);

while (decodedFrames < FRAMES LIMIT &&

(h = stream.readFrame()) != null) {
decodedFrames++;

p.input(crc);

p.input(

((SampleBuffer) decoder.

decodeFrame(h, stream))

.getBuffer().clone());

stream.closeFrame();

}

p.shutdown();

stream.close();

(b) Parallel

Figure 5.8: mpegaudio

5.5. Experimental Parallelization 87

for (int i = 0; i < LOOP COUNT; ++i)

{
for (int j = 0; k < FILES NUMBER; ++j)

{
Source source = SOURCES[j]

Buffer comprBuffer, decomprBuffer;

comprBuffer = compress(source);

decomprBuffer =

uncompress(comprBuffer);

Context.getOut().print(...);

Context.getOut().print(...);

Context.getOut().print(...);

}
}

(a) Sequential

Pipeline.Stage s1 = new Pipeline.Stage() {
@Override

public void stage() throws Exception {
int j = (Integer)this.input();

PrintStream out = (PrintStream) this.input();

Source source = SOURCES[j];

Buffer comprBuffer = compress(source);

this.output(comprBuffer);

this.output(out)

}
};

Pipeline.Stage s2 = new Pipeline.Stage() {
@Override

public void stage() throws Exception {
Buffer comprBuffer = (Buffer) input();

PrintStream out = (PrintStream) input();

Buffer decomprBufer =decompress(comprBuffer);

out.print(...);

out.print(...);

out.println(...);

}
};

Pipeline p = Pipeline.createPipeline(s1, s2);

for (int i = 0; i < LOOP_COUNT; i++) {
for (int j = 0; j < FILES_NUMBER; j++) {

p.input(j);

p.input(Context.getOut());

}
}

p.shutdown();

(b) Parallel

Figure 5.9: compress

88 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

Table 5.3: Setup Configurations

CPU RAM Operating System HT?

Core i7 975 3.33GHz 12 GB
Windows Seven

Yes
No

Ubuntu 9.10
Yes
No

Core2 Duo P8600 2.4 GHz 2 GB
Windows Seven No

Ubuntu 9.10 No

Atom N260 1.6GHz 1 GB
Windows Seven Yes

Ubuntu 9.10 Yes

parallelization effort.

5.5.2 Parallelizing the compress benchmark

Figure 5.9 (a) shows compress’ main loop’s structure. It works by first compressing the

data in a temporary buffer (comprBuffer), uncompressing it to yet another temporary

buffer (decomprBuffer), and outputting details about them.

This simple loop led to a three stage pipeline (see Figure 5.9 (b)), with the first stage

being responsible to iterate the original loops. The second stage performs the actual data

compression, with the third stage being responsible to decompress the data.

This benchmark would be amenable to DOALL parallelization if the inputs were not

read from a file (this read operation is not shown on Figure 5.9 (a)). Compress is a good

example of why DOPIPE parallelization is powerful: it allows loops with IO operations

to be parallelized since the IO operations will be deterministically invoked. Neverthe-

less, parallel loops should not perform IO operations if squashes are possible due to the

difficulty (and sometimes impossibility) of rolling back IO operations.

5.6 Experimental Results

The different hardware setups used to collect the experimental data are listed on Table

5.3. The experiments were run using similar software configurations. All the operating

systems were 64-bit versions except on the Atom processor, as the available system was

not 64-bit capable. All data were collected using Sun’s 32-bit JDK 1.6.0 18. By using the

32-bit JVM, we ensured that all experiments were subject to the same software limitations.

Sections 5.6.1, 5.6.2, 5.6.3 and 5.6.4 analyze each benchmark individually. The speedup

given in all charts are always compared to a sequential, non-JITted execution of the

5.6. Experimental Results 89

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(a) Atom

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

No HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(b) Core2

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT No HT HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(c) Core i7

busy−waiting

non−synchronized

synchronized

Max Parallel Speedup

JIT Only

(d) Legend

Figure 5.10: compress

benchmark. Section 5.6.5 analyzes the role that the different communication queue im-

plementations played on the overall parallel program performance.

5.6.1 Compress Evaluation

The compress benchmark parallelization is previously explained in Section 5.5.1. Fig-

ure 5.10 shows the results we collected for this benchmark.

The first interesting result we collected is the low performance speedup due to JIT

compilation (the solid grey line on the charts.) On the other hand, the parallel speedup

upper bound is high, which means that, for this benchmark, jDSWP parallelization should

be preferred over JITing if this was a choice the programmer had to make.

For the Atom platform (Figure 5.13 (a)), the actual program speedup shown at runtime

90 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(a) Atom

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

No HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(b) Core2

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT No HT HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(c) Core i7

busy−waiting

non−synchronized

synchronized

Max Parallel Speedup

JIT Only

(d) Legend

Figure 5.11: crypto.rsa

is much lower than the potential speedup. This is expected as this benchmark employs

a three-stage pipeline and the system only have two processing elements. Actually, we

expected that the runtime performance of the parallelized application would be slower

than the sequential version, thus the speedup is somewhat unexpected.

The Core2 (Figure 5.13 (a)) and Core i7 (Figure 5.13 (a)) performance figures, while

being better than observed in the Atom platform, are still below the maximum potential

speedup. This is possibly due to communication overhead. Nevertheless, the parallel

performance outperforms JIT compilation.

5.6.2 Crypto.rsa Evaluation

Crypto.rsa exhibits a low parallel speedup upper bound (see Figure 5.11.) This arises

5.6. Experimental Results 91

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(a) Atom

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

No HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(b) Core2

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT No HT HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(c) Core i7

busy−waiting

non−synchronized

synchronized

Max Parallel Speedup

JIT Only

(d) Legend

Figure 5.12: derby

from the low dynamic coverage of the selected loop. This benchmark contains long sequen-

tial steps that are not amenable to jDSWP parallelization strategy. In this benchmark,

the potential benefits from JITing are higher.

Running the parallelized benchmarks without JIT compilation led to no observable

benefit or, even worse, execution slowdowns in all the platforms. Nevertheless, the com-

bination of JIT and parallelization overcame the benefits of JITing alone. Moreover, JIT

potentialized the benefits from parallelization, specially on the more powerful Core i7

platform.

5.6.3 Derby Evaluation

Derby is yet another benchmark that was parallelized using a three-stage pipeline, as

92 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(a) Atom

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

No HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(b) Core2

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

jDSWP

jDSWP+JIT

HT No HT HT No HT

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Windows Ubuntu

(c) Core i7

busy−waiting

non−synchronized

synchronized

Max Parallel Speedup

JIT Only

(d) Legend

Figure 5.13: mpegaudio

compress was. This time, however, the predicted slowdown on the Atom platform (Fig-

ure 5.12 (a)) was visible. Derby features a more unbalanced pipeline when compared to

compress (which benefited from the three-stage parallelization). Besides, derby’s small-

est stage accounts for at least 1% of the loop’s total workload. Therefore, it is likely that

the effects of task switching are more apparent, thus significantly degrading performance.

The Core2 system (Figure 5.12 (b)), like the Atom platform, contains two processing

elements. Differently from the Atom, the Core2 features two independent execution cores.

Besides, the Core2 system is not designed for low-power computing, thus performing faster

than the power-efficient (but slower) Atom. When run under Windows 7, the parallel,

non-JITed derby performance was similar to the baseline execution. Under Ubuntu,

however, the parallel, interpreted execution performed much worse than the baseline.

5.7. Conclusions 93

The Core i7 (Figure 5.12 (c)) platform experienced the same issues experienced by the

core2 system. Nevertheless, the more powerful execution cores delivered more performance

at runtime than its predecessor.

5.6.4 Mpegaudio Evaluation

The mpegaudio parallelization was discussed in Section 5.5.1. The experimental results

are shown in Figure 5.13.

As previously discussed, theMaximumSpeedupparallel upper bound is small as the

only parallelization opportunity observed was moving the CRC checksumming from the

application’s most significant loop to its own pipeline stage. A similar effect would be

achieved by invoking the updateCRC32() method asynchronously.

The parallelization was effective on every system but the Atom. On the Core2 system,

as well as on the Core i7 system, the parallelization effects were increased when used

with JIT compilation. Without JIT compilation, the performance on those systems were

roughly equivalent to the sequential execution with JIT enabled.

5.6.5 Evaluating the Different Communication Queues Imple-

mentations

This paper evaluated three different communication queues implementation. As described

in Section 5.4.3, our assumptions were that a communication queue which does not rely on

expensive synchronization mechanisms (e.g., suspending a thread upon necessity) would

perform faster than other implementations relying on those heavy supports.

A thorough review of the results presented in this Section, however, pinpoints that

the communication queue implementation is nearly irrelevant to the overall parallel per-

formance.

It is possible that the thread imbalance (see Table 5.2) actually helped to mitigate the

effects of the communication queue implementation: a less loaded thread is suffers most

communication overhead, while the more heavily loaded threads are performing useful

computations. Therefore, the less loaded threads hide the communication latency from

other (busier) threads.

5.7 Conclusions

In this paper, we have proposed jDSWP, a simple yet effective source-level parallelization

technique for Java applications. Our experimental data shows that, even in the absence

of hardware support for inter-thread communication, program parallelization is possible.

94 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

The experimental data we collected also shows that the communication channel’s im-

plementation does not play a big role on the parallel application’s overall runtime perfor-

mance. Nevertheless, to avoid unnecessary communication overheads, the communication

channels should be carefully and efficiently implemented.

We also observed the need for Synergy between the parallel application and the runtime

environment executing it. The processor is not the only parameter that needs to be

evaluated when a program is to be parallelized. Other variables (e.g., the operating system

and the Java Virtual Machine) are just as important. Therefore, static parallelization (as

done in the paper) is not the best solution for program parallelization if the resulting

application is to be deployed across multiple different environments.

References

[1] Bocchino Jr RL, Adve VS, Adve SV, Snir M. Parallel Programming Must Be De-

terministic by Default. HotPar 2009: First USENIX Workshop on Hot Topics in

Parallelism, 2009; 836–884.

[2] Lee EA. The Problem with Threads. Technical Report, University of California,

Berkeley 2006.

[3] Ottoni G, Rangan R, Stoler A, August DI. Automatic Thread Extraction with De-

coupled Software Pipelining. MICRO 38: Proceedings of the 38th annual IEEE/ACM

International Symposium on Microarchitecture, 2005; 105–118, doi:http://dx.doi.org/

10.1109/MICRO.2005.13.

[4] Standard Performance Evaluation Corporation. SPECjvm2008.

http://www.spec.org/jvm2008 2008.

[5] Lundstorm SF, Barnes GH. A Controlable MIMD Architecture. ICPP ’80: Interna-

tional Conference on Parallel Processing, 1980; 19–27.

[6] Cytron R. DOACROSS: Beyond Vectorization for Multiprocessors. ICPP ’86: Inter-

national Conference on Parallel Processing, 1986; 836–884.

[7] Padua DA. Multiprocessors: Discussion of Some Theoretical and Practical Problems.

Technical Report, Department of Computer Science, University of Illinois, Urbana,

IL 1979.

[8] Zhang X, Navabi A, Jagannathan S. Alchemist: A Transparent Dependence Distance

Profiling Infrastructure. CGO ’09: Proceedings of the 2009 International Symposium

on Code Generation and Optimization, 2009; 47–58, doi:http://dx.doi.org/10.1109/

CGO.2009.15.

[9] Terracotta, Inc. The Definitive Guide to Terracotta. Apress, 2008.

[10] Gosling J, Joy B, Steele G, Bracha G. The JavaTM Language Specification. 3rd edn.,

Addison Wesley, 2005.

References 95

[11] Lindholm T, Yellin F. The JavaTM Virtual Machine Specification. 2nd edn., Prentice

Hall, 1999.

[12] Danelutto M, Teti P. Computational Science – ICCS 2002, chap. Lithium: A Struc-

tured Parallel Programming Environment in Java. Lecture Notes in Computer Sci-

ence, Springer Berlin / Heidelberg, 2002; 844–853.

[13] Raman E, Ottoni G, Raman A, Bridges MJ, August DI. Parallel-stage Decoupled

Software Pipelining. CGO ’08: Proceedings of the 6th Annual IEEE/ACM Inter-

national Aymposium on Code Generation and Optimization, 2008; 114–123, doi:

http://doi.acm.org/10.1145/1356058.1356074.

[14] Rangan R, Vachharajani N, Ottoni G, August DI. Performance Scalability of Decou-

pled Software Pipelining. ACM Transactions on Architecture and Code Optimization

2008; 5(2):1–25, doi:http://doi.acm.org/10.1145/1400112.1400113.

[15] Vachharajani N, Rangan R, Raman E, Bridges MJ, Ottoni G, August DI. Speculative

Decoupled Software Pipelining. PACT ’07: Proceedings of the 16th International

Conference on Parallel Architecture and Compilation Techniques, 2007; 49–59, doi:

http://dx.doi.org/10.1109/PACT.2007.66.

[16] Akkary H, Driscoll MA. A Dynamic Multithreading Processor. MICRO 31: Proceed-

ings of the 31st Annual ACM/IEEE International Symposium on Microarchitecture,

1998; 226–236.

[17] Akkary H, Rajwar R, Srinivasan ST. Checkpoint Processing and Recovery: Towards

Scalable Large Instruction Window Processors. MICRO 36: Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchitecture, 2003; 423.

[18] Srinivasan ST, Rajwar R, Akkary H, Gandhi A, Upton M. Continual Flow Pipelines.

SIGPLAN Notes 2004; 39(11):107–119, doi:http://doi.acm.org/10.1145/1037187.

1024407.

[19] Hilton AD, Nagarakatte S, Roth A. iCFP: Tolerating All-level Cache Misses in In-

Order Processors. HPCA 2009: IEEE 15th International Symposium on High Per-

formance Computer Architecture, 2009; 431–442.

[20] Bhowmik A, Franklin M. A General Compiler Framework for Speculative Multi-

threading. SPAA ’02: Proceedings of the 14th Annual ACM Symposium on Parallel

Algorithms and Architectures, 2002; 99–108, doi:http://doi.acm.org/10.1145/564870.

564885.

[21] Wang K, Franklin M. Highly Accurate Data Value Prediction Using Hybrid Predic-

tors. MICRO 30: Proceedings of the 30th Annual ACM/IEEE International Sympo-

sium on Microarchitecture, 1997; 281–290.

[22] Ceze L, Tuck J, Montesinos P, Torrellas J. BulkSC: Bulk Enforcement of Sequential

Consistency. SIGARCH Computer Architecture News 2007; 35(2):278–289, doi:http:

//doi.acm.org/10.1145/1273440.1250697.

96 Caṕıtulo 5, Extending Decoupled Software Pipeline to Parallelize Java Programs

[23] Torrellas J, Ceze L, Tuck J, Cascaval C, Montesinos P, Ahn W, Prvulovic M. The

Bulk Multicore Architecture for Improved Programmability. Communications of the

ACM 2009; 52(12):58–65, doi:http://doi.acm.org/10.1145/1610252.1610271.

[24] Hammond L, Hubbert BA, Siu M, Prabhu MK, Chen M, Olukotun K. The Stanford

Hydra CMP. IEEE Micro 2000; 20(2):71–84.

[25] Kim D, Yeung D. A Study of Source-level Compiler Algorithms for Automatic Con-

struction of Pre-Execution Code. ACM Transactions on Compututer Systems 2004;

22(3):326–379, doi:http://doi.acm.org/10.1145/1012268.1012270.

[26] Krishnan V, Torrellas J. A Chip-Multiprocessor Architecture with Speculative Mul-

tithreading. IEEE Transactions on Computers 1999; 48(9):866–880.

[27] Marcuello P, González A. Clustered Speculative Multithreaded Processors. ICS ’99:

Proceedings of the 13th International Conference on Supercomputing, 1999; 365–372,

doi:http://doi.acm.org/10.1145/305138.305214.

[28] Sohi GS, Breach SE, Vijaykumar TN. Multiscalar Processors. SIGARCH Computer

Architecture News 1995; 23(2):414–425, doi:http://doi.acm.org/10.1145/225830.

224451.

[29] Zilles C, Sohi G. Master/Slave Speculative Parallelization. MICRO 35: Proceedings

of the 35th annual ACM/IEEE international symposium on Microarchitecture, IEEE

Computer Society Press: Los Alamitos, CA, USA, 2002; 85–96.

Caṕıtulo 6

Cache-Based Cross-Iteration

Coherence for Loop Parallelization

Prólogo

Depois dos estudos de traces (Caṕıtulos 3 e 4) e da avaliação dos potenciais benef́ıcios que

TLS pode propiciar (Caṕıtulo 5), este Caṕıtulo apresenta uma arquitetura que possibilita

o uso seguro de técnicas automáticas de paralelização, oferecendo o suporte necessário

para a detecção de violações à semântica do programa original (sequencial), bem como

automaticamente fazendo a comunicação de dados de memória entre os processadores.

O artigo abaixo foi submetido ao Symposium on Parallelism in Algorithms and Archi-

tectures (SPAA) para apresentação em 2011.

97

98 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

Abstract

This paper proposes an architecture model that enables the parallel execution of loop

iterations in multicore architectures, using DOPIPE based compilation techniques (e.g.

DSWP). The proposed architecture supports runtime detection of sequential consistency

violations across parallel loop iterations, while allowing for light-weight commit and

squash operations. This is achieved by adding extra tag bits to the cache, and a small

separate logic. No changes on pre-existing cache-coherence protocols are required. The

impact of the extra cache bits is fairly small, and can be amortized as transistor count

continues to increase. To evaluate such impact, cache size requirements per iteration have

been measured for SPEC CINT 2000 loops, revealing a dynamic footprint compatible

with the caches found in modern processors.

6.1 Introduction

Multicore chips have been adopted as a solution to the power-wall limits encountered in

modern microprocessor clock rates. From the chip manufacturers’ perspective, multicores

are an effective solution, as they offer the possibility of improving transistor count, while

maintaining power density/consumption under control. They are now used in a range of

devices from mid-level laptops to servers, a trend which seems to be here to stay.

For servers, multicore are a natural solution, as they enable more tasks to be handled

at a single time, thus increasing the overall system throughput. Moreover, through virtu-

alization they allow a single physical machine to host multiple virtual servers, thus saving

space and decreasing data-centers’ energy requirements.

In desktops, multicore helps to improve the overall system usability. Users can have

some heavy-weight background tasks, such as powerful anti-virus and intelligent Internet

firewalls running alongside with productivity applications without any perceivable slow-

downs due to processor overload. Unfortunately, there is a limit on the number of ready

process in a desktop system, a side effect of how many tasks one user can simultaneously

manage. After this limit has been reached, increasing the core count will simply not ben-

efit desktop users at all. This can, of course, can be overcome by program parallelization,

either manually or automatically.

It is widely known that manual program parallelization, or thread programming, is

hard, error-prone and difficult to debug [3, 11]. Despite of libraries that aid program

parallelization [7, 21] and debugging [12], the average computer programmer is just not

ready for the challenge. On the other hand, decades of parallel compiler research, although

offered good solutions to scientific data-intensive programs, has not been able to effectively

parallelize general-purpose programs.

6.1. Introduction 99

Many techniques which combine parallel compiling techniques with architecture sup-

port have been proposed to enable general-purpose program parallelization. DSWP [16]

aims at extracting parallel loop fragments and spreading them into cores using commu-

nicating queues. Although it has shown very good performance numbers, it is somewhat

bounded by the ability of the technique to detect aliasing at compile/run time. Hard-

ware support for Thread-Level Speculation (TLS) has also been proposed [5, 8, 24] in

order to enable compilers to extract more parallelism by aggressively reordering memory

operations. This hardware supports detecting memory ordering violations at run-time

and squashing the offending threads. However, none of these approaches is suitable for

DOPIPE [17]-based techniques, as they can either yield incorrect results or be very ineffi-

cient. Moreover the above cited techniques require expensive changes in the cache or the

cache-coherence protocol to be effective.

In this paper we propose an architecture model that enables the execution of parallel

loop code, generated using any DOPIPE [17]-based technique (e.g., DSWP). Our model

supports the runtime detection of sequential consistency violations in the parallelized code,

while allowing efficient commit and squash operations, without the need to traverse any

auxiliary structures or increase memory burst traffic. This is achieved without changing

the hardware of the cache controller or the cache-coherence logic.

Our technique basically adds a few extra tags into the program cache lines, requiring

a fairly small logic to support its operation. This hardware does not affect the coher-

ence logic. The added tags are used for three major purposes: (i) keeping track of the

status of speculative data; (ii) allowing for loop-carried data versioning; (iii) enforcing

memory data dependencies. The impact of the extra bits is fairly small, and will be cer-

tainly amortized as transistor counts continue to increase with technology. The proposed

scheme allows efficient detection of runtime memory ordering violations, while allowing

true memory dependencies (read after write) to be honored. Moreover, this scheme can be

built on top of most invalidation-based cache coherence protocols without affecting it. In

addition, we do have a formal proof of the mechanisms’ correctness, which can be found

on Appendix 6.C. To evaluate the impact of multiversioning, we measured the dynamic

cache size pressure resulting from relevant SPEC CINT 2000 loops, and show that they

are smaller then the cache sizes found in modern processors.

This paper is divided as follows. Section 6.2 describes a simple, DOPIPE-based par-

allelization technique, and Section 6.3 describes an architecture with support for correct

execution of the parallelized loops. In Section 6.4, some loops of the SPEC CINT 2000

were analyzed in order to determine if there would be any pressure on the cache size.

Section 6.5 presents previous work that is related to this paper, and Section 6.6 presents

our conclusions and research directions. Appendix 6.A provides examples that show how

the memory data forwarding support works, and how miss-speculation is detected, and

100 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

r1 = ld(r2)
r3 = ld(r1 + 4)
r4 = r1 + 4
st(r1 + 4) = r2
r6 = ld(r5)
r5 = r6 +4
r1 = r1 + 8
st(r3) = r4
r2 = ld(r2 + 16)

a1
b1
a2
c1
c2
c3
a3
d1
a4

(a) Loop

a1

a2

a3

a4

b1

c1

c2

c3

d1

}

}
}
}

A

B

C

D

(b)
PSs

.

...

A1
B1
C1
D1
A2
B2
C2
D2

(c) Sequential Execution

A B

C D

(d) Data Dependency Graph

C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4C

1
2
3
4
5

Step
Core

A5 B4 C3 D2

A2 B1
A1A1

A3 B2 C1
A2 B1
A1

A4 B3 C2 D1
A3 B2 C1
A2 B1
A1

A4 B3 C2 D1
A3 B2 C1
A2 B1
A1

1

(e) Parallel Execution

Figure 6.1: A loop, its PSs and the pipelined execution.

Appendix 6.B presents our strategy to detect and select loops. Appendix 6.C presents

the versioning mechanism’s proof of correctness.

6.2 Loop Parallelization and Execution

DOPIPE loop parallelization works by identifying sequences of parallel sections (PS), as

depicted in Figure 6.1. PSs need not to be contiguous instructions in the loop’s instruc-

tion stream. Finding these sections is usually done by identifying Strongly Connected

Components (SCC) [25] of the Control/Data-Flow Graphs, but any other heuristic can

be used.

The loop in Figure 6.1(a) is divided into PSs which were computed using SCCs. Our

model assumes that executing the original sequential loop is equivalent to executing the

reordered loop shown in Figure 6.1(b), in which the instructions were rescheduled so as

to keep instructions belonging to each PS together. For example, instructions a1, a2

and a3 are grouped together into a node labeled A. Notice on Figure 6.1(b) instructions

belonging to each PS grouped together.

Figure 6.1(c) depicts the sequential execution of the loop. In that Figure, Ai represents

the execution of PS A at iteration i. The same applies for Bi, Ci and Di.

The reordered loop scheduling is not arbitrary. Figure 6.1(d) shows the Data De-

pendence Graph (DDG) for the loop’s PSs ’ static (i.e., register) dependencies. An edge

X → Y in the DDG means that node X produces a value consumed by Y . Notice that

6.2. Loop Parallelization and Execution 101

the DDG contains no cycles. As DSWP, our model assumes the DDG is acyclic, meaning

that it can be topologically sorted [6]. Any topological sort for the DDG represents a

valid scheduling for the loop. In the example, there are 3 different topological sorts; in

theory any of them is a valid scheduling (see Section 6.3.3).

Figure 6.1(e) illustrates how the loop’s execution evolves on a quad-core system imple-

menting our execution model. Initially, it executes the first step of the parallel execution,

which only contains A1 (i.e., iteration 1’s PS A). After step one completes, step two,

comprised of A2 and B1, starts. This is followed by step three (A3, B2, C1). The fourth

step (A4, B3, C2, D1) is the first one to fill all the cores with one loop stride. If this step

terminates, all the PSs for iteration 1 (of the sequential loop) will have been (successfully)

executed, meaning that iteration 1 has completed (i.e., iteration 1 commits). Iteration

2 will commit in the following step. This process continues until the last PS of the last

iteration completes its execution and commits.

This example assumes that the speculation (i.e., the parallel execution) was successful.

For this specific example, using the topological sort A → B → C → D might actually

work: since the DDG is built with static dependencies, there are no guarantees that the

parallel code will preserve the memory ordering which occurs in the sequential execution.

In principle, dynamic (i.e., memory) dependencies could be identified with profiling.

Perfect profiling information (i.e., information about every runtime dependency observed

by the program) requires heavy-weight profiling, and is generally not applicable to non-

academic benchmarks and test-cases. As noted by [5,24], conservative code parallelization

is not a solution either, as it will miss several optimization opportunities due to false

dependencies. Moreover, if the conservative analysis misses a dependency, the resulting

parallel program would run fast but incorrectly.

The ability to recover from miss-speculations is central to architectures intended for

parallel execution of sequential code. Despite the existence of previous work in this area

(see Section 6.5), most proposed solutions have either (overly) complicated hardware

support for miss-speculation handling (not good if project complexity is to remain low)

or assume that perfect profiling information is available.

To bridge this gap, we propose the architecture described in the Section 6.3. There,

we propose simple additions to the cache that allow a processor to efficiently identify

miss-speculations due to memory ordering violations. The same mechanism allows the

processor to identify runtime dependencies that do not violate the loop’s sequential mem-

ory ordering. The proposed mechanism is light enough to allow support for efficient

committing and squashing while not introducing any significant overhead to the cache

controller. Moreover, it can be built on top of most invalidation-based cache coherence

protocols.

102 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

...

Core 1 Core 2 Core 3 Core n...

...Inclusive Shared Cache

Interconnection Bus

(a) Architecture

D V E

4−way
bucket

bucket
4−way

Old Cache Structure

(b) New Cache Line

Figure 6.2: Multicore System

6.3 Architecture

Figure 6.2(a) depicts a hardware design implementing our execution model. It features

n cores connected by an Interconnect Bus (IB) similar to current multicore architecture

implementations, and an inclusive, coherent, cache hierarchy employing an invalidation-

based cache coherence protocol.

Besides the coherence messages (e.g., downgrading), the IB has another role on our

execution model. As indicated in Section 6.2, each step comprises PSs from different

iterations executing on distinct cores. Our model assumes the hardware is capable of

synchronizing the start of the PSs ’s execution on every core, contrasted to DSWP [16]

which assumes decoupled execution of the PSs . Since core synchronization might cause

performance degradation, we are currently investigating an asynchronous model, which is

left for future work (see Section 6.6).

Our model assumes that register dependencies are honored statically by code genera-

tion, so it only needs to assert memory dependencies, which is accomplished by augment-

ing the cache lines with Cross Iteration Coherence Tags. The following Sections describe

the architecture in details.

6.3.1 The Iteration ID

Our execution model runs different PSs from different loops at the same time, thus re-

quiring the ability to separate iterations apart. The simplest scheme to achieve that is to

generate an unique ID for each iteration that starts execution. This approach may not be

6.3. Architecture 103

the best solution as it requires an upper bound on the iteration ID so that the ID can be

represented in the hardware. Moreover, to check for conflicts, the system will need several

comparators, incurring in a potentially high area (and power) overhead, and possibly of

affecting the cache circuit’s critical path.

Due to its synchronous nature, our execution model presents an upper bound on the

number of active iterations at any step of an n-core system: there may be at most n

different active loop iterations at any given step. Because of this feature, it is possible to

use a log2(n)-bit wide iteration ID. We chose an n bit tagging scheme which represents

the iteration ID with a single bit on. As we will explain in Section 6.3.3, this decision

simplifies the implementation of commit and squash operations.

Revisiting Section 6.2’s example (Figure 6.1(e)), the first iteration (which starts at step

1) is labeled 1000. Iteration 2 (starting at step 2) is labeled 0100. Similarly, iteration 3 is

labeled 0010. After iteration 4 (whose ID is 0001), the IDs are recycled, thus iteration 5 is

labeled 1000 etc. This recycling is possible since there are at most 4 iterations active per

step, and thus iterations 1 (ID 1000) and 5 (ID 1000) will never be active simultaneously.

For an n-core machine implementing our model, the ID for any iteration i at any loop

can be calculated by Equation 6.1. In practice, each core just need to know its current

iteration ID as the next ID is deterministically produced by a rotate right.

ID(i) = 1000b >> ((i− 1) mod n) (6.1)

Recycling IDs has a drawback: it creates ordering issues among the IDs. In the

example, is iteration 0001 logically before or after iteration 1000? The answer depends

on the current meaning of the IDs. If 1000 represents iteration 1 and 0001 represents

iteration 4, then 1000 < 0001. However, if 1000 represents iteration 5, then obviously

1000 > 0001. To address this issue, we rely on the fact that, in our execution model, a

core’s ID determines the core’s relative position related to the other cores.

For instance, Core 1 is aware that there can be no on-the-fly iteration logically after

its current iteration. Likewise, Core 2 knows that there is at most one on-the-fly iteration

logically after its current iteration, and so on, up to core 4, which is aware that every

on-the-fly iteration is logically after its current iteration. With that in mind, it is always

possible to determine, for each core, the set of previous (and later) on-the-fly iterations.

For example, assume that Core 3 is currently running iteration 0010 and it needs to

decide if iteration 0100 happened before or after 0010. Core 3 knows that two iterations

after 0010 have already started, so, since every ID is unique at any given point in time, it

knows that iterations 0001 and 1000 are logically later than its current (0010) iteration.

Since iteration 0100 is neither 0001 nor 1000, than it must be logically earlier than 0010.

104 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

0 1
1
0

0
0

0
0
1

0
0
0

X
Y
Y

V ADDR

Figure 6.3: Core 0’s Written Data

6.3.2 The Coherence Tags

Figure 6.2(b) shows two buckets of a 4-way set associative cache. The Figure represents

the Coherence Tags as three n-bit tags named D, V and E. Each tag plays a distinct role

in our system explained in Sections 6.3.2, 6.3.2 and 6.3.2.

V: Iteration ID

V is used by the system to indicate that a data has been speculatively written to. This

field is filled with the iteration ID of the writing core.

Figure 6.3 shows three examples of cache entries and their respective V tag. Assume,

for example, that Figure 6.3 represents the state of Core 3’s cache of Figure 6.1 after

executing D1, D2 and D3. From Figure 6.3, it is possible to tell that both iterations 1

(1000) and 3 (0010) stored into Y, while iteration 2 (0100) stored into address X. The

example shows that the same address (Y) can now be present in more than one cache line.

While they have the same address, their speculative address is different, since one data

was produced at iteration 1 (1000) and the other is at iteration 3 (0010). We will use the

notation Y1000 to represent the speculative address Y in iteration 1000. Y0010 represents

the speculative address Y in iteration 0010.

Any value at V other than 0000 indicates a speculative cache line which can be neither

evicted from the cache, nor written back to memory. The latter should be clear: no

speculative data should be allowed to drain to memory, while the former cannot happen

because it would require a write back to memory.

D: Speculative Dependency

D is used to detect memory ordering violations. The system uses D to hold information

about the interval in which a cache line is speculative. For example, Figure 6.4(a) shows

the V tag for data X after C4 writes it. A7 reads X, which creates the speculative address

X0010. The D tag for X0010 is shown on Figure 6.4(b), and it represents the speculation

interval for X0010 (in the example, the speculation interval is [4, 6)). Any modification to X

at any iteration in the speculation interval triggers a miss-speculation recovery. Memory

ordering violations are detected by Equation 6.2.

6.3. Architecture 105

A7

X

D

C4

0 0 0 1 X

V

(a) Write at C4

A7

X

D

C4

0 0 0 1 X

V

1 1 10

(b) Read at A7

1 1 0 0 X

D

1

5

2 3 4

6 7 8

1 1 0 1 X

D

(c) After Iteration 4 Commits

Figure 6.4: Keeping Track of Dependencies

D AND ID(i) 6= 0 (6.2)

Recycling IDs might create an issue for D though. After the bits are set, the hardware

has no notion of whether ID 0001 now represents iteration 8, or if it still represents

iteration 4. If it now represents iteration 8, any stores to X0001 occurred logically after

the read of X0010 and should not cause the hardware to signal a memory ordering violation.

To overcome this, the hardware clears the D’s bits upon committing an iteration. For

example, if iteration 0001 commits, the hardware must clear the bits in D that represent

the committing iteration. By assuring this is done before the next step starts, the ID can

be safely recycled.

E: Duplicated Cache Entries Tag

Keeping multiple versions of speculatively written addresses avoids anti-dependencies

among different iterations just like register renaming does for out-of-order processors.

It does, however, create an additional issue for an architecture implementing our execu-

tion model: prior to the commit of an iteration that stored to location X, there may be

a previous, non-speculative version of X in the cache (see Figure 6.5(a) for an example).

The hardware must address this situation to avoid duplicated non-speculative data in the

cache and other issues that might arise from this.

One alternative solution is to burst-invalidate every line that becomes non-speculative.

This naive solution imposes a large burden on the memory controller, as it must be able

to handle (possibly) large burst write requests, as every evicted dirty line must be written

back to memory. In addition, burst invalidated, non-speculative data might be requested

by any processor, which would require the system to fetch the data from memory, thus

affecting performance negatively. Another alternative would be to look up, upon commit,

for any non-speculative data already in the cache and invalidate the lines which could

cause a conflict. This solution is also not desirable since it would be hard to efficiently

implement it (both performance- and power-wise).

106 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

0 0 0 0

0010

X

X

V

?

(a) Commit and Dupli-
cate

0 X

X

?

V E

0

0 1

0 0

0 0

0

0 0

1 0

0 0

0

(b) Before Store 0001

1 1

1

1 X

X

X

V E

0 0 0 0

000

0 0 0

1

0 1 0

000

0 0 0

(c) Store 0001

?

X

X

V E

000

0 0 0

000

0 0 0

1

1

0

0

(d) Commit 0100

0

?

?

X

V E

0 0 0 0 0 00

(e) Commit 0001

Figure 6.5: Avoiding Duplicated Cache Lines

To tackle this problem, we propose the E tag. Every bit on E is used to represent

the presence, in the cache, of another data with the same address but with a different

speculative address. For example, Figure 6.5(b) shows the state of a cache which contains

two copies of location X: one non-speculative version (i.e., with its V set to 0000) and

one speculative version for iteration 0100. Note the E on the same Figure.

Figure 6.5(c) shows what happens on the cache after iteration 0001 stores into location

X. Notice that the non-speculative entry for X contains the bitmask 0101, which indicates

the existence of X0100 and X0001 on the cache. X0100 entry indicates that X0001 exists on

the cache, and likewise for X0001.

Figure 6.5(d) shows what happens to the cache upon iteration 0100’s commit. The

non-speculative entry is invalidated and, if necessary, written-back to memory. X0001’s E

had its bit 2 set, but it was neither invalidated nor written-back to memory since it is still

speculative and it may not drain to memory. Finally, Figure 6.5(e) shows iteration 0001

committing, thus invalidating the previous non-speculative line. This scheme only writes-

back to memory when not doing so would create duplicated lines on the cache, thus

avoiding bursty traffic and preserving spacial locality. To completely eliminate bursty

traffic, the hardware could, upon commit of the speculative line Xi, propagate the dirty

state of a non-speculative line X (that is to be evicted because of Xi’s commit) to Xi.

6.3. Architecture 107

6.3.3 Committing and Squashing

Committing in our execution model means that the speculation of a loop iteration was

successful (i.e., had the same outcome as if it had been executed sequentially). As shown

in the preceding Sections, committing an iteration is just a matter of clearing the right

bits on the D, V and E tags.

Squashing occurs in response to a miss-speculation, which can occur due to:

• Cache overflow: the running (parallel) loop requested data from memory and there

is no cache entry available for that data. This might occur if every entry that is a

fit for the new data is populated with speculative (non-evictable) data. Section 6.4.1

provides experimental data which shows that the cache size requirements are within

reasonable sizes;

• A memory ordering violation: the parallelized code did not honor the memory de-

pendencies of the sequential code. In this case, the runtime system should invoke a

recovery scheme;

• Hardware / software exceptions: since invoking interrupt (or exception) handlers

means exiting the current loop, it makes no sense to continue the parallel execution;

and

• False Sharing: this occurs because of the per-line management versioning. Although

compiler techniques can mitigate false sharing [9], like [5, 8], we do have a solution

for this problem which uses two bits per word. However, as this involves additional

design complexity, we omit these per-word bits in this paper for simplicity.

Squashing is simply discarding the (wrongfully executed) speculative code. To ac-

complish this, the architecture must restore the sequential register state, and it must

invalidate every speculative cache line (i.e., lines with a non-zero Vtag) without writing

them back. After this sequential state is restored, some policy must be employed. For

example, the processor might just restart the parallel execution. It could also jump to a

user-defined after-squash handler which would decide if parallel execution is to resume,

or if parallel execution is not moving forward, execute the code sequentially. All these

policies are hardware independent and their evaluation is left for future work.

Our execution model assumes the compiler generates correct sequential code. Using

the example from Figure 6.1, if the compiler schedules A→ C → B → D (a valid DDG’s

topological sort), the generated code will be incorrect because the compiler moved the

store to r1 + 4 (PS C) before a load of that same address on PS B.

Since miss-speculations are possible in our execution model, at least one core should

be capable of performing checkpoints (e.g., the core that commits the iterations). Since

the memory state is kept consistent by the cache, the core only needs to checkpoint

the sequential register state so that, upon miss-speculation, the sequential state of the

108 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

sequential application can be fully restored.

After this overview of our execution model and an architecture implementing it, Sec-

tion 6.A will provide some examples of the data forwarding (and memory ordering viola-

tions). While not a formal proof of correctness, we expect that the examples explore all

the possible situations in a parallel system like the one described in the paper.

6.3.4 On L1 Pressure

Modern high-end processors heavily rely on a fast cache subsystem to quickly provide

needed data upon request. Increasing L1 size would potentially change its access time,

which could negatively impact its performance. For example, Intel’s latest high end

processor employs a 3-level cache hierarchy, with a secondary cache level between L1

(which is fast and small) and the third cache level (L3, slow but large). Any technique

that increases L1 usage and imposes more pressure on it is likely to hinder other benefits.

Furthermore, usually L1 access path is one of the critical determinants of a processor’s

cycle time [14].

Keeping multiple versions of the same cache line would, in theory, increase the pressure

on L1. However, with our execution model, only one version of the speculative data is

necessary at the L1 cache level: the line “belonging” to the iteration currently running

on its processor. Other versions can safely be evicted from L1, and lower levels, as long

as it does not drain from the last cache level into memory.

6.4 Experimental Evaluation

This Section evaluates two different yet important aspects of this project. Section Sec-

tion 6.4.1 evaluates the pressure on the cache size, which proved to be fairly small for the

bast majority of the experiments. Section Section 6.4.2 evaluates the performance impact

of synchronizing the cores.

6.4.1 Cache Size Requirements

Before venturing any further on this particular project, we needed some sort of upper

bound on the requirements on the cache size. Obviously, if the size requirements were

unrealistic, the whole project would be undesirable as it depends on the ability to hold

(probably) large amounts of data on the cache. To evaluate this need, we used the

SPEC2000 benchmark compiled with GCC version 4.4.1-4ubuntu9 with -O3 optimization

level under Ubuntu 9.10 running the Linux Kernel 2.6.31-6 on a Core i7 with 12GB of

DDR3 RAM.

6.4. Experimental Evaluation 109

#
 o

f
L
o
o
p
s

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

1
6
k

3
2
k

6
4
k

1
2
8
k

2
5
6
k

5
1
2
k

1
M

B

>
1
M

B

10

20

40

60

80

100

(a) Maximum

#
 o

f
L
o
o
p
s

6
4
B

2
5
6
B

5
1
2
B

1
K 2
k

4
k

>
4
k

10

20

40

60

(b) Average

Figure 6.6: Cache Size Requirements
1
6
4
.g

z
ip

1
7
5
.v

p
r

1
7
6
.g

c
c

1
8
1
.m

c
f

1
8
6
.c

ra
ft

y

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n

2
5
3
.p

e
rl

b
m

k

2
5
4
.g

a
p

2
5
5
.v

o
rt

e
x

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

0.2

0.4

0.6

0.8

1.0

Cold Code

< 1 K

< 32 K

< 1 MB

>= 1 MB

Figure 6.7: Cache Size Requirements per Application

We implemented a pintool [13] which is capable of collecting the runtime memory

requirement for the selected loops’ iterations. Loop selection is described in Appendix 6.B.

Figure 6.6 shows the cache size requirements for the loops’ iterations, with Fig-

ure 6.6(a) showing the maximum and Figure 6.6(b) showing the average size requirement.

Each bar on the charts represent one different cache size requirement. For example, the

first bar on Figure 6.6(a) shows that 98 of the analyzed loops accessed (read or wrote)

at most 1K per iteration. The second bar of the same graph report that 9 loops accessed

more than 1K but less than 2k. The meaning for Figure 6.6(b) is the same, but the scale

is different.

The largest memory footprint we observed was 7MB per iteration for 254.gap. This

means that, in order to allow that benchmark to be parallelized and executed in a quad-

core processor implementing our execution model, 28MB are necessary. This requirement

varies if different loops are profiled. So, if the 28MB are not available, the program-

mer/compiler can choose a different loop to parallelize.

Nevertheless, most loops we analyzed require a fairly small amount of memory (less

than 32KB per iteration) that already fits into commercially available processors’ cache.

Figure 6.7 shows the analyzed code’s coverage for each benchmark. We also separated

110 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

that information in four different cache size requirements: less than 1 K, more than 1K

but less than 32K, less than 1 MB and more than 1 MB. We also show the “Cold Code”

size (i.e., code executed outside the profiled loops) for completeness. This chart shows

that we selected loops that are meaningful for the benchmark’s execution. It also shows

that most of dynamic code run with mild memory footprint (32 KB or less), which might

be used as an indicator that extremely large caches are not necessary for the average case.

6.4.2 Synchronization Overhead

Perhaps the most unique feature of our approach, namely core synchronization, is also

the most controversial. Several issues arise from core synchronization. The first is “How

hard is it to synchronize the cores?” Yet another important question is “How much per-

formance is lost due to synchronization?” While the former question is hard to answer

without a HDL model, the later can be assessed with a simulator. Therefore, we aug-

mented the SESC simulator [23] with synchronization capabilities. We also implemented

communication channels to enable the execution of pipeline-like parallelization. We then

implemented a synthetic application with a parameterizable workload. The idea was to

have a simple program which could have been used to collect experimental data regarding

core synchronization. Table 6.1 contains this experimental data.

Four different workloads were used for the simulation. The first workload, labeled

“Balanced Stages” in Table 6.1 is composed of 4 PSs with the exactly same dynamic

workload. “2x-Stage” is a workload composed of three equally-sized PSs and a different

PS that is twice as big as the other three PSs . Likewise, “4x-Stage” contains one stage

four-times bigger than the other three PSs . Finally, “Unbalanced 40x-Stage” contains one

PS that is forty times bigger than the other PSs . This last workload was intended to

assess the synchronization overhead with highly unbalanced PSs . Columns “Synch” and

“Asynch” shows the speedups relative to the sequential execution in a the same processor

type (OoO or in-order). Column “’Impact’ shows the core synchronization impact.

As Table 6.1 summarizes, the effect of synchronizing the core wears off with higher

workloads. Nevertheless, the performance impact is negligible even for the small workloads

since it is no greater than 0.9%. The boldface entry in the Table pinpoints a scenario

where the core synchronization was beneficial (even though by a negligible margin).

6.5 Related Work

The Decoupled Software Pipeline (DSWP) [10, 19] execution model, which is a kind of

DOPIPE [17] parallelization strategy, has been shown to be a promising [20] technique to-

wards irregular loop automatic parallelization. Despite the promising results, the authors

6.5. Related Work 111

Table 6.1: Synchronization Overhead in a Quad-Core Processor

Workload
OoO InOrder

Synch Asynch Impact Synch Asynch Impact

Balanced
Stages

Small 3.7510 3.7567 0.001523 3.4593 3.4608 0.000425
Medium 3.9822 3.9823 0.000024 3.6001 3.6002 0.000113
Large 3.9938 3.9939 0.000012 3.6099 3.6099 0.000010

2x-Stage
Small 2.4710 2.4734 0.000966 2.2130 2.2134 0.000182

Medium 2.4926 2.4926 0.000013 2.4957 2.4957 0.000008
Large 2.5412 2.5412 1.000002 2.2566 2.2566 0.000005

4x- and
2x-Stage

Small 2.0020 2.0029 0.000409 1.7844 1.7846 0.000110
Medium 1.9951 1.9951 0.000006 1.9978 1.9978 0.000006
Large 1.9968 1.9969 0.000032 1.9997 1.9997 0.000059

Unbalanced
40x-Stage

Small 1.0718 1.0723 0.000495 0.9525 0.9528 0.000240
Medium 1.0726 1.0726 0.000006 0.9524 0.9524 0.000004
Large 1.0726 1.0727 0.000004 0.9524 0.9524 0.000003

do not provide any support for memory aliasing, which impairs its wide adoption.

The interest in Thread Level Speculation (TLS) has grown in the past years since the

multicore architecture became mainstream, so the literature is plentiful. For example,

BulkSC [4] and Bulk [26] employ a light-weight, signature-based support for memory

aliasing detection and no support for memory versioning is provided, which requires task

squashes upon conflict detection.

Bhowmik et al. [2] describes a general framework to allow TLS execution. Differently

from our approach, they allow tasks to be created at any point and out-of-order. They

also require profiling, which is not necessary for correct program execution in our proposed

hardware, although it can improve the parallel code generation.

An architectural support for TLS was proposed by Steffan et al. [24]. While this ap-

proach can potentially scale up to large machine sizes, it modifies the cache coherence

protocol by introducing new states, transitions and coherence messages, making it less

attractive. Furthermore, it generates bursty traffic on commits and additional coherence

messages upon speculative stores to dirty cache lines. This proposed design also relies on

a special hardware module that, upon each task commit, sequentially requests ownership

for a group of cache lines whose addresses are stored in a buffer. Thus, besides generat-

ing bursty traffic, because in the meantime the processor stalls, execution is slower and

consumes more energy [22]. Our approach does not suffer of any of these problems.

Another scalable approach, proposed by Cintra et al. [5], also modifies the cache

coherence protocol. In addition, squashes and commits perform many potentially slow

operations; some of them involving different execution nodes. Commits also involve bursty

traffic generation between L1, L2 and memory, and walks through a whole group of

cache lines. Squashes requires both walks through a whole group of cache lines and

a synchronization of all the nodes in a barrier. Moreover, the whole system relies on

112 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

Memory Disambiguation Tables (MDT) that not only must me accessed and searched on

every speculative cache misses and thread squashes, but also can cause thread stalls when

it is full and a new entry must be allocated. Furthermore, a MDT must be informed on

every load issued by a thread, whether it hits or misses in L1. Finally, this scheme does

not allow dirty data to remain in L1 or L2 across speculative thread initiations, what

makes each new thread start with a cold cache (except for non-speculative data). Again,

our proposed architecture does not present any of these problems.

The hardware support for TLS proposed by Gopal et al. [8], though not scalable to

large machine sizes, generates neither a bursty traffic on commits, nor additional coherence

messages upon speculative stores to dirty cache lines. However, it still not only modifies

the cache coherence scheme, but also makes use of a control unit to predict the tasks

to be assigned to each processor, introducing task squashes when mispredicted tasks are

detected. In addition to that, this proposal introduces a centralized hardware mechanism

responsible for managing all the speculative execution, which represents a single point of

failure. Finally, upon every cache miss and even reads that hit a committed cache line,

this introduced centralized hardware must traverse a linked list of versioned cache lines

spread over all the processor’s caches. None of these issues are present in our design.

Moreover, in all of these proposals, each processor’s cache retains only the last value

written by this processor to a cache line, what is not suitable for executing applications

parallelized for pipelined execution models, possibly yielding incorrect results.

One issue against TLS support on chip multiprocessors (CMP) is its low energy ef-

ficiency. Renau et al. [22] showed that with some energy-saving optimizations this TLS

support may become rather energy-efficient. These optimizations comprehend both the

compiler and the architecture. Although our focus here is not energy-centric, we may see

that almost all the energy-consumption problems addressed by the proposed architectural

optimizations are naturally solved by our proposed design. One of the optimizations aims

to avoid walking through a group of cache lines changing their states in task squashing

and commits, and on finding an available tag (ID) to version data. Another proposed

optimization is making this tag size short, in order to reduce the energy required in com-

parisons. Finally, Renau et al. [22] points the multiple cache line versions provided when

a processor requests a line and the invalidation of all the older versions of a committed

line when it is evicted as major problems affecting energy efficiency. Our approach does

not have any of these problems, what tends to make it rather energy-efficient.

Recently, Raman et al. [18] proposed STMX, a novel scheme that utilizes unix pro-

cesses and x86 virtual memory protection to enable DSWP on commodity hardware.

While presenting promising numbers, this approach heavily relies on profile information

for correct operation. Moreover, STMX lacks a mechanism to forward data across differ-

ent PSs in different iterations, therefore narrowing the range of applications amenable to

6.6. Conclusions and Future Work 113

parallelization.

6.6 Conclusions and Future Work

This paper introduced some techniques to aid automatic, safe program parallelization. In

particular, it proposed a data versioning scheme that allows the hardware to dynamically

identify memory ordering violations.

The proposed model expects the cores to be able to synchronize their execution on

stage boundaries, which can be challenging to implement. We already have an envisaged

asynchronous model which does not require this expensive core synchronization mecha-

nism, and we are in the process of proving its correctness.

We provided experimental data to evaluate how large a cache would have to be in

this kind of system, and we concluded that most meaningful loops actually require just a

few bytes per iteration on the cache. We also concluded that the memory requirements

are directly related to the quality of the selected loops. Regarding synchronization,

we assessed that the runtime overhead is negligible, but we did not assessed the design

complexities.

The proposed architecture is based on the addition of extra tags into the cache and

very simple logic which does not require any changes to the underlying cache coherence

protocol or the cache controller.

References

[1] A.M.D. AMD64 architecture programmer’s manual volume 2: System programming.

A.M.D., 2010.

[2] Anasua Bhowmik and Manoj Franklin. A general compiler framework for speculative

multithreading. In SPAA ’02: Proceedings of the fourteenth annual ACM symposium

on Parallel algorithms and architectures, pages 99–108, 2002.

[3] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel programming must be de-

terministic by default. In First USENIX Workshop on Hot Topics in Parallelism

(HotPar), 2009.

[4] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: bulk en-

forcement of sequential consistency. SIGARCH Comput. Archit. News, 35(2):278–289,

2007.

[5] M. Cintra, J.F. Mart́ınez, and J. Torrellas. Architectural support for scalable spec-

ulative parallelization in shared-memory multiprocessors. In ISCA ’00: Proceedings

of the 27th annual international symposium on Computer architecture, pages 13–24,

2000.

114 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

[6] T.H. Cormen. Introduction to algorithms. The MIT press, 2001.

[7] L. Dagum and R. Menon. Open MP: An Industry-Standard API for Shared-Memory

Programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.

[8] S. Gopal, TN Vijaykumar, J.E. Smith, and G.S. Sohi. Speculative versioning cache.

In HPCA ’98: Proceedings of the 4th International Symposium on High-Performance

Computer Architecture, pages 195–205, 1998.

[9] Hwansoo Han and Chau-Wen Tseng. Improving compiler and run-time support for

irregular reductions using local writes. In Languages and Compilers for Parallel

Computing, volume 1656 of Lecture Notes in Computer Science, pages 181–196. 1999.

[10] J. Huang, A. Raman, T.B. Jablin, Y. Zhang, T.H. Hung, and D.I. August. Decoupled

software pipelining creates parallelization opportunities. In CGO ’10: Proceedings of

the 8th annual IEEE/ACM international symposium on Code generation and opti-

mization, pages 121–130, 2010.

[11] E.A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[12] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: Architectural Support for Debug-

ging and Dynamically Avoiding Multi-variable Atomicity Violations. In ISCA ’10:

Proceedings of The 37th International Symposium on Computer Architecture, 2010.

[13] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. In PLDI ’05: Pro-

ceedings of the 2005 ACM SIGPLAN conference on Programming Language Design

and Implementation, pages 190–200, 2005.

[14] S.L. Min, J. Kim, C.S. Kim, H. Shin, and D. Jeong. V-P cache: a storage efficient

virtual cache organization. Microprocessors and Microsystems, 17(9):537–546, 1993.

[15] A.N. Moudgal and B.M. Kuttanna. Apparatus and method to prevent overwriting

of modified cache entries prior to write back, 2001.

[16] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic

thread extraction with decoupled software pipelining. In MICRO 38: Proceedings of

the 38th annual IEEE/ACM International Symposium on Microarchitecture, pages

105–118, 2005.

[17] D. A. Padua. Multiprocessors: Discussion of some theoretical and practical problems.

Technical report, Department of Computer Science, University of Illinois, Urbana,

IL, 1979.

[18] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I.

August. Speculative parallelization using software multi-threaded transactions. In

Proceedings of the fifteenth edition of ASPLOS on Architectural support for program-

ming languages and operating systems, pages 65–76, 2010.

References 115

[19] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I.

August. Parallel-stage decoupled software pipelining. In CGO ’08: Proceedings of

the sixth annual IEEE/ACM international symposium on Code generation and opti-

mization, pages 114–123, 2008.

[20] Ram Rangan, Neil Vachharajani, Guilherme Ottoni, and David I. August. Perfor-

mance scalability of decoupled software pipelining. ACM Trans. Archit. Code Optim.,

5(2):1–25, 2008.

[21] J. Reinders. Intel threading building blocks. O’Reilly, 2007.

[22] J. Renau, K. Strauss, L. Ceze, W. Liu, S.R. Sarangi, J. Tuck, and J. Torrellas.

Energy-efficient thread-level speculation. IEEE Micro, 26(1):80–91, 2006.

[23] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis Ceze,

Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos. SESC simulator,

January 2005. http://sesc.sourceforge.net.

[24] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry. A scalable approach to thread-

level speculation. ACM SIGARCH Computer Architecture News, 28(2):1–12, 2000.

[25] R. Tarjan. Depth-first search and linear graph algorithms. In Conference Record

1971 12th Annual Symposium on Switching and Automata Theory, pages 114–121.

IEEE, 1971.

[26] Josep Torrellas, Luis Ceze, James Tuck, Calin Cascaval, Pablo Montesinos, Wonsun

Ahn, and Milos Prvulovic. The bulk multicore architecture for improved programma-

bility. Commun. ACM, 52(12):58–65, 2009.

116 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

6.A Examples

For the cases of this section we use the MOSI [15] invalidation-based cache coherence

protocol for simplicity. The extension for the MOESI [1] protocol, which is used by the

AMD multiprocessors, is straightforward.

The cases of Figure 6.8 show all the possible situations (see Figure 6.8(a)) which may

occur when B6 reads a data X. There are 5 possible cases corresponding to when/where

the data provided to B6 was produced, and in all of these cases, we show that the system

causes a rollback if a read-after-write (RAW) dependence is violated, what means that our

execution model is correct. The bit vector shown below the grid of each case in Figure 6.8

corresponds to the D tag of BX6
(X6 cache line at core B) after core B got the requested

data.

Case 1. Data was produced at the same iteration and core.

Figure 6.8(b) shows what happens when a read operation requests a value that was

written by the same core at the same iteration of the read. In Figure 6.8(b) B6 reads X,

but X has already been written at B6. Notice that when this write took place, BX6
went

to state M. Now, when B6 reads X, this cache line can only be either in M or O (in case

another core asked for this modified value). BX6
cannot be in S or I because only B is at

iteration 6 in this step and thus no other core could have written to X at iteration 6 (this

would change the state of BX6
) after B6 wrote to X. Therefore, this read will be satisfied

by a cache hit, and this is obviously the correct value for this read. Also notice that since

no bit is set in the D tag of BX6
(D is shown below the grid), there will be no rollbacks

because of this read.

It is important to notice that a read will never “think” that a data was produced

at the same iteration when it was not. For example, one may naively think that, since

iterations 2 and 6 share that same address (both BX2
and BX6

are represented by BX0100
)

and we implement lazy commits (when iteration 2 commits, BX2
is neither written back

immediately, nor invalidated), a read at B6 could be satisfied by a cache hit because

iteration 2 left the cache line BX0100
in M or O states (again, both BX2

and BX6
are

represented by BX0100
). However, when iteration 2 committed, BX2

was changed into BX0

and until core B reads or writes to X at iteration 6 (i.e., at B6), cache line BX6
does not

even exist. Therefore, if there are any reads preceding a write at B6, the first of these

reads will not find an X6 cache line at core B, causing a cache miss and then being treated

by the following cases.

Case 2. Data was produced at the same iteration at another core.

Figure 6.8(c) shows the same read, but this time assuming that the most appropriate

value (notice that the “most appropriate” value is the closest value in sequential execution

order that has already been produced by the time of the read) comes from iteration 6

6.A. Examples 117

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������������
������������
������������
������������

������������
������������
������������
������������

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

��
��
��
��

A4

A5

A6

A7

A8

B3

B4

B5

B6

B7

C2

C3

C4

C5

C6

D1

D2

D3

D4

D5

A B C D

Case 1

Case 2

Case 3

Case 4

Step
Core

4

5

6

7

8

(a) All the cases

A6

A7

A8

A9

A10

B5

B7

B8

B9

C4

C5

C6

C7

C8

D3

D4

D5

D6

D7

2 3 4

B6
M −> M
O −> O

0 0 0 0

1
5 6 7 8

(b) Case 1.

A4

A5

A7

A8

B3

B4

B5

B6

B7

C2

C3

C4

C5

C6

D1

D2

D3

D4

D5

1 2 3 4

I −> S

A6

M −> O
O −> O

5 6 7 8

0 0 0 0

(c) Case 2.

A5

A6

A7

A8

B3

B4

B5

B6

B7

C2

C4

C6

D1

D2

D3

1 2 3 4
5 6 7 8

1 0 0 1

A4

M −> O
O −> O

I −> S I −> M I −> M

D5
I −> M
S −> M

C3

C5 D4

(d) Case 3.

A4

A5

A6

A7

A8

B3

B4

B5

B7

C2

C3

C4

C6

D1

D2

D3

S −> M

M −> OI −> S

1 2 3 4

B6 C5

S −> M
I −> M

D4
O −> O

I −> M
D5

1 0 0 1

5 6 7 8

(e) Case 4.

A6

A7

A8

A9

A10

B5

B6

B7

B8

B9

C4

C5

C6

C7

C8

D3

D4

D5

D6

D7

B A D D C B A A D C BC

1 2 3 4 1 2 3 4 1 2 3 4

i

iii

ii

5 6 7 8

1 0 0 1 1 0 0 0 0 0 0 0

5 6 7 8 5 6 7 8

i ii iii

(f) Detailed execution.

Figure 6.8: All possible cases.

(the core does not matter). If core A provides X6, A must have this cache line either

in M or O, by the coherence protocol. Since the provided X comes from iteration 6, no

bit in the D tag of BX6
will be set, and therefore there will be no rollbacks because of

this read. This is the expected behavior every time the most appropriate value for a

read has been produced at the same iteration, since this value must be the correct one

for this read. Also, in such cases, the coherence protocol naturally guarantees that the

most recent value produced at this iteration will always be provided because the cache

line with the most recent value will be the only one (at iteration 6) in M or O states. For

example, if C6 reads X and X was written at both A6 and B6, the value written at B6

will be provided because when B6 wrote to X, the coherence protocol invalidated AX6
.

Notice that we are not modifying the coherence protocol as these actions are already part

of it.

Case 3. Data was produced at another iteration in a previous execution step.

118 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

This case (Figure 6.8(d)) illustrates a read operation executed at B6, where the most

appropriate value was produced at A4. As in case 2, AX4
must be either in M or O , i.e.,

it is the most recent value produced at iteration 4. Notice that bits 4 and 5 were set in

the D tag of BX6
because of this read, as the read value came from iteration 4. A rollback

of iteration 6 should occur due to this read if X is written at either iteration 4 or 5, and

that’s exactly what happens: iteration 6 will only be rolled back when core B detects a

write to X performed at either iteration 4 or 5 because these bits are set in BX6
’s D tag.

In addition, one should notice the following:

• Bits 4 and 5 will only be unset when iterations 4 and 5 (respectively) are committed

and that’s exactly when these iterations cannot write anything else to X, so X6 is

“safe” now.

• Iterations that share the same bits in D tags (for example, the same bit is shared by

iterations 1, 5, 9 etc.) will never interfere to each other because when iteration 5 is

started, iteration 1 has already committed and when iteration 9 starts, iteration 5 has

also committed. A similar reasoning can be used for bit 4 as well.

• After B6 reads X, the first eventual write to X performed at either iteration 4 or 5

will appear on the bus, so B will detect it. Take for example iteration 5: the first

time C5 writes to X (C5 has not written to X yet, otherwise this value would be more

appropriate than the one that came from iteration 4), if C5 has already read X, CX5

must be in state S (as this is the first write to X at C5, CX5
couldn’t have gone to

M); otherwise, CX5
does not even exist yet. Therefore, the first write to X at C5 will

generate a bus transaction.

Case 4. Data was produced at another iteration in the current execution step.

This case, illustrated by Figure 6.8(e), is similar to case 4. Here, when B6 reads X,

D4 has already written to X, and this is the most appropriate value for B6’s read. After

getting the value, bits 4 and 5 are set in the D tag of BX6
. Therefore, writes to X at

iterations 4 or 5 should cause a rollback. For iteration 5, an eventual first write to X at C5

(notice that C5 has not written to X yet, otherwise this value would be more appropriate

than the one written at D4) will go on the bus by the same reason outlined in the last

bullet of case 3. The same reasoning can be used for D5 and DX5
. For iteration 4, core

D is the only one that can still write to X; but since bit 4 is set in the D tag of BX6
, and

core D must generate a bus transaction in order to perform another write to X (when D4

sent DX4
to B6, this cache line went to O), the system will behave correctly.

Finally, Figure 6.8(f) shows the time evolution of the system. Initially, B6 reads X,

and the most appropriate value comes from iteration 4. Obviously, by the time X is

requested, neither C5 nor D4 have written to X, because both would be more appropriate

than the value provided. In step (i), only cores C and D can cause a rollback because of

6.B. Loop Detection and Selection 119

B6’s read; notice that these bits are correctly set in the D tag of BX6
(the evolution of

this D tag is shown below the grid in Figure 6.8(f)). In step (ii), since iteration 4 has

just committed, only D5 can cause a rollback because it’s the only one that still may

write to X at iteration 5. In step (iii) iterations 4 and 5 have already committed and

the bits in the D tag of BX6
are all in zero; but now there are no more possible conflicts

because of B6’s read. Again, notice that the bit corresponding to iteration 5, for example,

is not influenced by iterations 1 or 9 because when iteration 5 started, iteration 1 had

just committed, and when iteration 9 starts, 5 has already committed.

6.B Loop Detection and Selection

This Appendix describes how loops were identified (Section 6.B) and selected (Section 6.B)

for the experiment in Section 6.4.1. The experimental setup is the same presented in

Section 6.4.1.

Identifying the Loops

We did not modify the compiler to output the loop structure, so we had to collect this

some other way. We implemented a pintool [13] that dynamically identifies the program’s

loop structure using Algorithm 6.B.1. BB (Basic Block) is a single-entry, single-exit

sequence of instructions.

The idea behind Algorithm 6.B.1 is to keep a stack of BBs that are currently not

identified to be part of a loop. Whenever the program is about to execute a BB that is

currently on the stack, Algorithm 6.B.1, Line 4 identifies that this BB is in S, thus being

a loop header. The stack is popped (Algorithm 6.B.1, Line 4) and the popped blocks are

considered part of the loop. This is true because no duplicated BB is kept on the stack.

The first occurrence of a duplicated BB pops the stack up to the duplicated BB , which is

accomplished by the loop starting at Algorithm 6.B.1, Line 4. Algorithm 6.B.1, Line 16

ensures that BB would be considered a loop header in the future. The simple case (BB

not in the stack) is handled by Algorithm 6.B.1, Line 1.

Selecting Loops

After identifying the loops, we profiled every loop in order to gather execution statistics.

The issue faced here is that, in our execution model, once a loop is selected for paral-

lelization, all of its inner loops will be part of the parallelized code. This may not be the

ideal scenario.

Figure 6.9 shows simple examples of what we called a Loop Graph (LG). LG is a graph

where nodes represent loops in the program and edges represent the “is outer loop with

120 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

Algoritmo 6.B.1: Loop Detection Algorithm

Input: BB: BB that is about to be executed
Input: S: A Stack of previously executed BBs
Output: Loop: The identified loop

1 if BB /∈ S then
2 S.push(BB)
3 return LoopNotIdentified

4 else
5 Last ← Nil First ← Nil
6 repeat
7 Current ← S.pop
8 Loop ← Loop

⋃
{Current}

9 if Last = Nil then
10 First ← Current
11 else
12 Add edge from Current to Last
13 Last ← Current

14 until Current = BB ;

15 Add Edge from Last to First
16 S.push(BB)
17 return LoopIdentified

respect to” relation (e.g., an edge from node A to node B indicates that A is an outer

loop with respect to B). On Figure 6.9, the nodes’ labels are “A(N)”, where A is the

loop ID and N is the loop dynamic coverage of the entire program without considering

its inner loops coverages.

Figure 6.9(a) shows the LG as collected by our pintool. This graph contains an SCC

with loops 1, 2 and 3. It also contains a join node (i.e., a node with multiple predecessors).

To analyze this data, and to select the loops for the next phase, we implemented a tool

that reads the identified loops, merges all the nodes in an SCC and finally splits all the

join nodes. The resulting graph is a DAG (Direct Acyclic Graph),

Next, our tool looks for the DAG’s roots in order to determine whether or not that

root should be selected for profiling. Here, we use a simple heuristic: if the root’s coverage

is smaller than the sum of its successors’ coverage, the root is not a good candidate for

profiling. Its immediate successors are then considered for profiling.

For example, on Figure 6.9(b), root node (1,2,3) (i.e., the resulting node after collaps-

ing the SCC) has a very low coverage, so it is not considered as a candidate for profiling.

As node (1,2,3) is discarded, nodes 4 and 5 become potential candidates for profiling,

since they are now roots of their on trees. Node 4 will eventually be selected for profiling

6.C. Proof of Correctness 121

1(0.0010)

4(0.5000)2(0.0013)

3(0.0014) 6(0.0300)5(0.0500)

9(0.0500)8(0.2000)7(0.1000)

(a) Before Analysis

4(0.5000)

6(0.0300) 8(0.1000)8(0.1000)

9(0.0500)

7(0.1000)

5(0.0500)

1,2,3(0.0037)

(b) During Analysis

4(0.5000)

6(0.0300)8(0.2000)

9(0.0500)
7(0.1000)

(c) After Analysis

Figure 6.9: Loop analysis and selection.

since its coverage (50%) is greater than its inner loops’ coverage summed up. Node 5, on

the other hand, will not be selected since its inner loops’ coverage (20%) is greater than

its own coverage (5%). The selected loops to be profiled are depicted in Figure 6.9(c).

6.C Proof of Correctness

In this Appendix, we present a formal proof of correctness for our idea. Throughout the

Appendix, n is the number of cores.

6.C.1 Lemma 1

The first write to location x performed by core c at iteration i generates a bus

transaction.

Proof: When iteration i starts in the system, V’s bit (i mod n) is set to 0 for every

location x in the cache of all the cores. This happens because iteration (i−n) mod n has

just committed. But now, when core c writes for the first time to x at i, the bit i mod n

is still set to 0, since it would be set to 1 only if this core had already written to x at an

iteration y such that i − n < y < i and y mod n = i mod n. Obviously such y doesn’t

exist.

6.C.2 Write After Write (WAW)

All we need to prove in this section is that when a location x is written at iteration i:� The value written is invalidated by a posterior write to the same location at the same

iteration.� The value written is not invalidated by any other posterior write to same location at

another iteration.

122 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

For the first item, when core c writes to x for the last time at iteration i, it must put

c’s cache line 〈x, i mod n〉 in M state (if it’s not already in M). If c has to send this value

to satisfy any posterior read in the system, this line goes to O state. It will only go to

I state if there is a write on the bus to location 〈x, i mod n〉 before i commits. But if

another core writes to x at iteration i, it will have to generate a bus transaction for a write

to 〈x, i mod n〉, since this core has to put this line in M state and c has the same line in

M, O or S states. Since this write occurs at iteration i, obviously it’s before i commits,

and c’s cache line 〈x, i mod n〉 will be invalidated. Alternatively, one may notice that any

posterior write to the same location must occur in another core in a posterior step. Since

any core executes iteration i just once, by this time, Lemma 1 guarantees that c’s cache

line 〈x, i mod n〉 will be invalidated.

The second item is easy. A cache line 〈x, i mod n〉 is invalidated only when there’s a

write on the bus to the same location of this line. But after i, the next iteration that

could write to same line is i + n, and when this iteration is put in the “pipeline”, i has

just committed.

6.C.3 Write After Read (WAR)

If core c reads location x at iteration i, but the correct value for this location (the one

that should be read by this iteration) is written in a posterior moment somewhere in the

system, we show that iteration i won’t be committed. Therefore, we need to show two

things:

1. When the correct (or a more appropriate) value of x for i is written at iteration j,

the bit (j mod n) is set to 1 in D of c’s cache line 〈x, i mod n〉, and since j < i, i

won’t commit.

2. When the value of item 1 is written by a core, this core generates a bus transaction.

Proof 1: First of all, we’ll prove that the value read may not come from iteration i and

therefore may not be satisfied by a cache hit. Thus the correct bits for conflict detection

will be set to 1.

Notice that this read must occur before any write to the same location x at iteration

i in core c, otherwise the location would already have the correct value for the read (no

other value could be more appropriate than this one), contradicting the hypothesis that

the correct value has not been written yet.

Now, we show that this read operation is not satisfied by a cache hit, thus generating

a bus transaction. Such transaction would not occur only if c’s cache line 〈x, i mod n〉

were in M, O or S states and V’s i mod n bit of the same cache line in the same core

were set to 1. However, when iteration i − n committed (this already happened since i

is in execution), this bit was set to 0. Thus, this bit would be set to 1 only if in core c

6.C. Proof of Correctness 123

at some iteration y, i − n < y ≤ i and y mod n = i mod n, x was read or written. But

since y mod n 6= i mod n ∀ y in the range (i − n, i), we conclude that y = i. We have

just proved that c didn’t write to location x at iteration i before the read. So, the only

lasting possibility is that c has already read x at i; this possibility does exist for all the

read operations, except for the first. Therefore, the first read operation in c at i must

have generated a bus transaction, and that’s all we need to prove because all the reads to

location x executed in core c at i before any write operation to the same location in c at

i must get the same value of the first read. So, the values got by these subsequent reads

are right if the first read got the right value, and are wrong otherwise.

Furthermore, one should notice that the most appropriate value will not come from

iteration i because otherwise this would be the correct value, contradicting the hypothesis

that the correct value has not been written yet.

Now that the most most appropriate (but incorrect!) value for location x has been

read by c at i, suppose that this value was written somewhere in the system at iteration

k (which is the next iteration to commit if the value came from memory, i.e. it’s not a

speculative value). Notice that D’s bits in the range [k mod n, i mod n) of c’s cache line

〈x, i mod n〉 would not be set to 1 only if k mod n = i mod n. But since k is at least the

next iteration to commit (in the case when x’s correct value comes from memory) and

i−n has already committed, k > i−n. Also, because i+n has not entered the “pipeline”

yet, k < i + n. We have just proved that k 6= i; therefore k mod n 6= i mod n, and the

referred bits are set.

Now c’s cache line 〈x, i mod n〉 has its D’s bits in the range [k mod n, i mod n) set

to 1. Thus, i will cause a rollback because of this read only when a write to location x

appears on the bus, and this write comes from the execution of a iteration w such that

w mod n is in the range of these bits set to 1.

Suppose that when x is written at j, the bit (j mod n) is set to 0 in D of c’s cache

line 〈x, i mod n〉. It means that sometime between the read executed at i and this write

at j, some iteration y such that y mod n = j mod n was committed. Let’s suppose, for

contradiction, that such y iteration does exist.

Obviously, y < j, since j is being executed now. In addition, when the read operation

was executed at i, i − n had already been committed, which gives us y > i − n. But

i > j ⇒ i − n > j − n, and since y > i − n, these give us y > j − n. However, ∄ y such

that j − n < y < j and y mod n = j mod n, and the item 1 is proved.

Proof 2: Let’s say that the incorrect value came from core q, iteration k, and the

correct (or a more appropriate) value will be written by core p at iteration j. Now we

have two possibilities:� The correct (or more appropriate) value will be written in a future step.� The correct (or more appropriate) value will be written in the current step.

124 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

The fist case is trivially satisfied by Lemma 1. The second case may be further divided

into two subcases:

1. The incorrect value read by i had been written in some step behind.

2. The incorrect value read by i had been written in the current step.

Again, the first subcase is trivially satisfied by Lemma 1. For the second subcase,

notice that q 6= c, since otherwise the correct value would have already been written,

contradicting the hypothesis that the correct value had not been written yet. Now, if

k = j, p = q and this core’s cache line 〈x, k mod n〉 went to O state by the time this

core sent the incorrect value to i. When this core writes the same location at iteration k

again, there will be a bus transaction since this line (now in O state) must go to the M

state before the write may be performed. Finally, if k 6= j, p 6= q. But notice that when

c asked for the value of x, if 〈x, k〉 was chosen, it’s because 〈x, j〉 hadn’t been written yet

(otherwise the last would be the more appropriate). Therefore, when 〈x, j〉 is written,

Lemma 1 guarantees that a bus transaction will be generated.

6.C.4 Read After Write (RAW)

In this case, core c reads location x at iteration i, and the correct value has already been

written. The proof is divided in the following three exclusive cases:� If core c has already written x at i (then this is the correct value).� Else if another core has already written x at i (then this is the correct value).� Else, the correct value was written by some core at an iteration k such that k < i

In the first case, c’s cache line 〈x, i mod n〉 has the most appropriate value and this is

the correct one (by the WAW proof). Thus, we need to prove:

1. The read will be a cache hit (therefore there will be no bus transaction) and this

read will get the correct value.

2. There will be no rollback of i because of this read.

Proof 1: When c’s cache line 〈x, i mod n〉 was written by c at i, it was sent to M state,

and after that, it would go to I state only if another core p 6= c had written x at i mod n.

But since in this step only c is at i and there is no other core in an iteration y such that

y mod n = i mod n, that’s not possible, and c’s cache line 〈x, i mod n〉 is not in I.

Proof 2: There will be no rollback because of this read because no D’s bit of c’s cache

line 〈x, i mod n〉 will be set to 1.

For the second case, the last core that wrote to x at i has the most appropriate value

and this is the correct one (by the WAW proof). So we need to prove:

1. The first read will ask for the most appropriate value on the bus (subsequent reads

will use the same value through cache hits).

6.C. Proof of Correctness 125

2. The core that wrote to x at i the last has its cache line 〈x, i mod n〉 in a valid state

and thus it will be sent (and this line has the correct value by the WAW proof).

3. There will be no rollback of i because of this read.

Proof 1: There won’t be a cache hit because when i − n committed V’s bit i mod n

of c’s cache line 〈x, i mod n〉 was set to 1, and since c didn’t write to x at i, this bit is

still set to 1 when this read is executed in c at i (this bit would be set to 0 only if some

iteration y such that i− n < y < i and y mod n = i mod n wrote to x before this read in

c at i. But since such y doesn’t exist, the bit is set to 1). Therefore, there will be a bus

transaction asking for x’ value.

Proof 2: The last core that wrote to x (and therefore this is the correct value for c’s

read at i) is the only one that has cache line 〈x, i mod n〉 in M state if someone does, and

if no one has this line in M state, it’s the only one that has it in O state. Thus, this core

will send the last value that was written to x (which is the correct one for the c’s read at

i).

Proof 3: i will not be rolled back because of this read because no D’s bit of c’s cache

line 〈x, i mod n〉 will be set to 1.

For the last case, we need to prove:

1. The first read will ask for the most appropriate value on the bus (subsequent reads

will use the same value through cache hits).

2. The core that wrote to x at k the last has its cache line 〈x, k mod n〉 in either M or

O states and thus it will be sent (and this line has the correct value by the WAW

proof).

3. There will be no rollback of i because of this read.

Proof 1: There won’t be a cache hit by the same reason outlined in proof 1 of the

second case above. So, core c will generate a bus transaction asking for x’s value and

since the correct value has already been written, this value is going to be the chosen one.

Proof 2: To show this, suppose that the correct value was written at iteration k by

core p. This core’s cache line 〈x, k mod n〉 would be in I state only if another core q wrote

to x at some iteration y such that y mod n = k mod n. Also, y is obviously one of the n

uncommitted iterations (there are only n uncommitted iterations at anytime), and so is

k (k is at least the next iteration to commit if x’s correct value comes from memory). It

follows that y = k. Notice then that if p = q, p’s cache line 〈x, k mod n〉 is in either M or

O states. On the other hand, p 6= q is impossible because this contradicts the assumption

that the correct value was written at iteration k by core p.

Proof 3: Upon receiving the (correct) value for x, c’s cache line 〈x, i mod n〉 has its D’s

bits in the range [k mod n, i mod n) set to 1. Therefore, i will be rolled back because of this

read only if there is a write to x at a iteration y such that y mod n ∈ [k mod n, i mod n)

before i commits. Suppose, for contradiction, that such y does exist.

126 Caṕıtulo 6, Cache-Based Cross-Iteration Coherence for Loop Parallelization

Notice that y > i − n because the D’s bits (in the range [k mod n, i mod n)) are set

to 1 when x is read at i and by this time i − n has already been committed. Since the

value came from iteration k, k > i−n (even if the value comes from memory, k would be

at least i− n +1). But if y > i− n, y mod n ∈ [k mod n, i mod n) and k ≤ i, then y ≥ k.

In addition, one should notice that when iteration i + n begins (is put in the “pipeline”),

i will have already been committed by the end of the preceding step. Since the write

at y must be performed before i commits, y < i + n. Thus, as we have k ≤ y < i and

y mod n ∈ [k mod n, i mod n), there are two possibilities:� k ≤ y < i� k + n ≤ y < i + n

In the first case, the value written to x at y is more appropriate for i. But since this

write occurs after the value of x is asked at i, there’s a contradiction with the hypothesis

that the correct value had been written before c asked for the value at i.

For the second case, if k + n ≤ y < i + n, when y writes, y − n will have already

been committed. Therefore, D’s bit y mod n will represent y. But, as was shown above,

k > i− n and we have k + n > i. Since y ≥ k + n > i, i won’t be rolled back because of

this write.

Caṕıtulo 7

Considerações Finais

Inegavelmente, La Microarchitecture est Morte. Os desafios enfrentados pelos micro-

arquitetos para aumentar o desempenho de aplicações sequenciais claramente apontam

para a necessidade de soluções diferentes das adotadas atualmente pela Indústria.

Apesar de inúmeras propostas, tanto pela Indústria quanto pela Academia, não se

visualiza claramente uma solução definitiva de longo prazo. Existem apostas em vários

modelos distintos de execução: processadores assimétricos, aceleradores, chips reconfi-

guráveis, múltiplos núcleos dentre vários.

TLS é mais um modelo. As contribuições da Academia neste campo foram muito

extensas mas, no momento da escrita desta Tese, nenhuma solução conseguiu convencer

a Indústria a apostar neste modelo de computação. A grande dificuldade em adotar

TLS como solução de facto para continuidade no desenvolvimento de processadores é

garantir a eficiência das soluções propostas que, em sua maioria, apostam pesadamente

em especulação de dados e controle (o que pode não ser adequado para para garantir

benef́ıcios reais em aplicações no mundo real), requerendo usualmente suporte espećıfico

e complexo em hardware.

O trabalho apresentado nesta Tese, em particular a arquitetura proposta no Caṕıtulo 6,

difere da ampla maioria da bibliografia dispońıvel em TLS: ao abandonar sofisticados hard-

ware de especulação e detecção de violações, espera-se que a dificuldade em uma eventual

transição Academia – Indústria seja amenizada. Conforme explicado no Caṕıtulo 6, os

mecanismos propostos são leves e de simples implementação.

Qualquer que seja o novo (ou novos) modelo de desenvolvimento adotado, novas

técnicas serão necessárias. Apesar de ainda não estar claro quais serão estas técnicas,

tudo indica que serão, essencialmente, arquiteturais. Assim, Longue Vie à la Architec-

ture!

127

128 Caṕıtulo 7. Considerações Finais

7.1 Trabalhos Futuros

Desde que arquitetura de computadores tornou-se quantitativa [24], todo projeto ou pro-

posta na área precisa, invariavelmente, de um simulador. Apesar de ser imposśıvel, apenas

com o simulador, provar a corretude de uma proposta, mostrar números que validem uma

idéia é praticamente essencial para a pesquisa em arquitetura de computadores. Assim, o

primeiro e mais óbvio trabalho futuro é a implementação do modelo proposto no Caṕıtulo 6

em um simulador.

Na verdade, este projeto já está, no momento da escrita desta Tese, sendo implemen-

tado como projeto de mestrado de um aluno do Instituto de Computação da Unicamp.

Espera-se que este simulador esteja pronto até o final do primeiro semestre de 2011.

Outro trabalho futuro é implementar o suporte em compilador para geração de código

paralelo. Ter um compilador capaz de gerar o código paralelo é fundamental para uma

melhor avaliação do modelo por permitir que uma maior quantidade de instâncias de

testes sejam feitas em um menor espaço de tempo. Além disso, a disponibilidade de um

compilador possibilita a avaliação experimental de diversos algoritmos de paralelização.

A pesquisa realizada supôs que todos os núcleos no processador são homogêneos. Uma

extensão das idéias aqui apresentadas pode ser a avaliação de um sistema heterogêneo.

Por exemplo, além de núcleos de propósito geral, o processador pode contar com núcleos

especializados (e.g., aceleradores f́ısicos, criptográficos, FPGAs . . .). Esta arquitetura

heterogênea pode ser utilizada em sistemas espećıficos (e.g., video games, home theaters

e sistemas embarcados). Outra variação interessante seria o uso de processadores com

suporte a SMT. Ter todos os estágios do programa paralelizado executando no mesmo

núcleo pode diminuir o tráfego de snooping na arquitetura do Caṕıtulo 6, bem como

simplificar a lógica para sincronização.

O modelo proposto não avalia o desempenho do sistema na presença de multitarefa

e interrupções. Por exemplo, se uma interrupção ocorrer durante a sincronização dos

núcleos, não é claro qual a melhor poĺıtica deve ser empregada. A interface do sistema

operacional com processadores operando em conjunto deve ser estudada.

Como a implementação do modelo descrito nesta tese adiciona bits à cache do pro-

cessador, seria interessante avaliar a possibilidade de utilizar estes bits extras para outras

técnicas. Por exemplo, seria interessante identificar potenciais usos do modelo proposto

com memória transacional.

Conforme a tecnologia avançar, o custo do gerenciamento online de traces pode dimi-

nuir drasticamente. Por exemplo, o automato descrito no Caṕıtulo 4 poderia ser utilizado

pelo processador para a identificação dos traces. Isto ocorrendo, seria interessante ver

como um compilador dinâmico seria capaz de paralelizar traces de execução. Comparar

este otimizador dinâmico com o estático seria um resultado natural deste projeto.

7.1. Trabalhos Futuros 129

Na área de confiabilidade, a arquitetura proposta pode ser integrada à TEA. Neste

sistema, conforme o programa avança na computação, o processador pode “anotar” os

acessos à memória no TEA do programa. Quando uma transição de estado ocorrer, um

núcleo verificador reexecuta o código do estágio anterior, comparando os seus resultados

com as anotações no autômato. Uma divergência indicaria a existência de algum pro-

blema, e alguma ação de correção pode ser tomada. O versionamento dos dados na cache

garantiria que ambas as threads teriam acesso ao mesmo estado da memória.

Referências Bibliográficas

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and

Tools, 2006.

[2] H. Akkary and M. A. Driscoll. A Dynamic Multithreading Processor. In MICRO 31:

Proceedings of the 31st Annual ACM/IEEE International Symposium on Microarchi-

tecture, pages 226–236, 1998.

[3] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing and Recovery:

Towards Scalable Large Instruction Window Processors. In Proceedings of the 36th

annual IEEE/ACM International Symposium on Microarchitecture, pages 423–, 2003.

[4] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier, B.-C. Cheng,

P. R. Eaton, Q. B. Olaniran, and W.-m. W. Hwu. Integrated Predicated and Spec-

ulative Execution in the IMPACT EPIC architecture. In ISCA ’98: Proceedings of

the 25th Annual International Symposium on Computer Architecture, pages 227–237,

1998.

[5] S. Balakrishnan and G. S. Sohi. Program Demultiplexing: Data-flow based Spec-

ulative Parallelization of Methods in Sequential Programs. SIGARCH Computer

Architecture News, 34(2):302–313, 2006.

[6] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skalesky, Y. Wang, and Y. Zemach.

IA-32 Execution Layer: A Two Phase Dynamic Translator Designed to Support IA-

32 Applications on Itanium®-based Systems. In MICRO 36: Proceedings of the 36th

annual IEEE/ACM International Symposium on Microarchitecture, pages 191–202,

2003.

[7] A. Bhowmik and M. Franklin. A General Compiler Framework for Speculative Multi-

threaded Processors. IEEE Transactions on Parallel Distributed Systems, 15(8):713–

724, 2004.

[8] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August. Revisiting

the Sequential Programming Model for the Multicore Era. IEEE Micro, 28(1):12–20,

2008.

[9] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of Se-

quential Consistency. SIGARCH Computer Architecture News, 35(2):278–289, 2007.

131

132 REFERÊNCIAS BIBLIOGRÁFICAS

[10] C. Cifuentes and M. V. Emmerik. UQBT: Adaptable Binary Translation at Low

Cost. Computer, 33:60–66, March 2000.

[11] M. Cintra, J. F. Mart́ınez, and J. Torrellas. Architectural Support for Scalable Spec-

ulative Parallelization in Shared-memory Multiprocessors. In ISCA ’00: Proceedings

of the 27th Annual International Symposium on Computer Architecture, pages 13–24,

2000.

[12] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P.

Shen. Speculative Precomputation: Long-range Prefetching of Delinquent Loads.

SIGARCH Computer Architure News, 29(2):14–25, 2001.

[13] R. Cytron. DOACROSS: Beyond Vectorization for Multiprocessors. In ICPP ’86:

International Conference on Parallel Processing, pages 836–844, 1986.

[14] L. Dagum and R. Menon. Open MP: An Industry-Standard API for Shared-Memory

Programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.

[15] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber,

and J. Mattson. The Transmeta Code Morphingtm Software: Using Speculation,

Recovery, and Adaptive Retranslation to Address Real-life Challenges. In CGO ’03:

Proceedings of the International Symposium on Code Generation and Optimization,

pages 15–24, 2003.

[16] E. Duesterwald and V. Bala. Software Profiling for Hot Path Prediction: Less is

More. In ASPLOS 9: Proceedings of the 9th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 202–211, 2000.

[17] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Ka-

plan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,

M. Bebenita, M. Chang, and M. Franz. Trace-based Just-in-time Type Specializa-

tion for Dynamic Languages. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN

conference on Programming Language Design and Implementation, pages 465–478,

2009.

[18] A. Gal and M. Franz. Incremental Dynamic Code Generation with Trace Trees.

Technical Report 06-16, Donald Bren School of Information and Computer Science,

University of California, Irvine, November 2006.

[19] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna, F. Merchant, B. Patel,

M. Taufique, and H. Samarchi. A Sub-1W to 2W Low-Power IA Processor for Mo-

bile Internet Devices and Ultra-Mobile PCs in 45nm Hi-κ Metal Gate CMOS. In

ISSCC ’08: The IEEE International Solid-State Circuits Conference 2008. Digest of

Technical Papers., pages 256 –611, 2008.

[20] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning Cache. In

HPCA ’98: Proceedings of the 4th International Symposium on High-Performance

Computer Architectures, pages 195–205, 1998.

REFERÊNCIAS BIBLIOGRÁFICAS 133

[21] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun.

The Stanford Hydra CMP. IEEE Micro, 20(2):71–84, 2000.

[22] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support for a Chip

Multiprocessor. SIGOPS Operating Systems Review, 32(5):58–69, 1998.

[23] H. Han and C. Tseng. Improving Compiler and Tun-time Support for Irregular

Reductions using Local Writes. Languages and Compilers for Parallel Computing,

pages 181–196, 1999.

[24] J. Hennessy, D. Patterson, and D. Goldberg. Computer Architecture: a Quantitative

Approach. Morgan Kaufmann, 2003.

[25] A. Hilton, S. Nagarakatte, and A. Roth. iCFP: Tolerating all-level Cache Misses in

in-order Processors. In HPCA 2009: IEEE 15th International Symposium on High

Performance Computer Architecture, pages 431–442, 2009.

[26] D. Hiniker, K. Hazelwood, and M. D. Smith. Improving Region Selection in Dynamic

Optimization Systems. In MICRO 38: Proceedings of the 38th annual IEEE/ACM

International Symposium on Microarchitecture, pages 141–154, 2005.

[27] R. Hookway. Digital FX!32: Running 32-bit x86 Applications on Alpha NT. In

COMPCON ’96: Proceedings of the 42nd IEEE Computer Society International Con-

ference, pages 37–42, 1997.

[28] J. Huang, A. Raman, T. Jablin, Y. Zhang, T. Hung, and D. August. Decoupled

Software Pipelining Creates Parallelization Opportunities. In CGO ’10: Proceedings

of the 8th Annual IEEE/ACM International Symposium on Code Generation and

Optimization, pages 121–130, 2010.

[29] Intel Corporation. Intel®Pentium® IV Processor 6xx Se-

quence and Intel®Pentium® IV Processor Extreme Edition.

http://www.intel.com/Assets/PDF/datasheet/306382.pdf. Acessado em 23 de

Novembro de 2010.

[30] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut Program Decomposi-

tion for Thread-level Speculation. In PLDI ’04: Proceedings of the ACM SIGPLAN

2004 Conference on Programming Language Design and Implementation, pages 59–

70, 2004.

[31] K. Kennedy and J. Allen. Optimizing Compilers for Modern Architectures: a

Dependence-based Approach. Morgan Kaufmann Publishers Inc. San Francisco, CA,

USA, 2001.

[32] D. Kim and D. Yeung. A Study of Source-level Compiler Algorithms for Auto-

matic Construction of Pre-execution Code. ACM Transactions on Computer Systems,

22(3):326–379, 2004.

134 REFERÊNCIAS BIBLIOGRÁFICAS

[33] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August. Scalable Speculative Par-

allelization on Commodity Clusters. In MICRO 43: Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 1–12, 2010.

[34] V. Krishnan and J. Torrellas. Hardware and Software Support for Speculative Exe-

cution of Sequential Binaries on a Chip-Multiprocessor. In ICS ’98: Proceedings of

the 12th International Conference on Supercomputing, pages 85–92, 1998.

[35] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Architecture with Speculative

Multithreading. IEEE Transactions on Computers, 48(9):866–880, 1999.

[36] C. Madriles, P. López, J. M. Codina, E. Gibert, F. Latorre, A. Martinez, R. Martinez,

and A. Gonzalez. Boosting Single-thread Performance in Multi-core Systems Through

Fine-grain Multi-threading. SIGARCH Computer Architecture News, 37(3):474–483,

2009.

[37] P. Marcuello and A. González. Clustered Speculative Multithreaded Processors. In

ICS ’99: Proceedings of the 13th International Conference on Supercomputing, pages

365–372, 1999.

[38] P. Marcuello and A. Gonzalez. Thread-Spawning Schemes for Speculative Multi-

threading. In HPCA ’02: Proceedings of the 8th International Symposium on High-

Performance Computer Architecture, pages 55–64, 2002.

[39] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997.

[40] T. Ohsawa, M. Takagi, S. Kawahara, and S. Matsushita. Pinot: Speculative Multi-

threading Processor Architecture Exploiting Parallelism over a Wide Range of Gran-

ularities. In MICRO 38: Proceedings of the 38th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 81–92, 2005.

[41] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic Thread Extraction

with Decoupled Software Pipelining. In MICRO 38: Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 105–118, 2005.

[42] D. A. Padua. Multiprocessors: Discussion of Some Theoretical and Practical Prob-

lems. Technical report, Department of Computer Science, University of Illinois, Ur-

bana, IL, 1979.

[43] D. Patterson and J. Hennessy. Computer Organization and Design: the Hard-

ware/Software Interface. Morgan Kaufmann Pub, 2009.

[44] D. A. Penry, D. I. August, and M. Vachharajani. Rapid Development of a Flexible

Validated Processor Model. In In Proceedings of the 2005 Workshop on Modeling,

Benchmarking, and Simulation, 2005.

[45] J. P. Porto, G. Araujo, Y. Wu, and E. Borin. Trace execution automata in dynamic

binary translation. In 3rd workshop on architectural and micro-architectural support

for binary translation (AMAS-BT’10), June 2010.

REFERÊNCIAS BIBLIOGRÁFICAS 135

[46] J. P. Porto, G. Araujo, Y. Wu, E. Borin, and C. Wang. Compact trace trees in

dynamic binary translators. In 2nd workshop on architectural and micro-architectural

support for binary translation (AMAS-BT’09), June 2009.

[47] M. Prvulovic and M. J. Garzarán. Removing Architectural Bottlenecks to the Scala-

bility of Speculative Parallelization. In ISCA ’01: In proceedings of the 28th Annual

International Symposium on Computer Architecture, pages 204–215, 2001.

[48] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González, and D. M.

Tullsen. Mitosis Compiler: an Infrastructure for Speculative Threading based on

Precomputation Slices. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages 269–279, 2005.

[49] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative Paral-

lelization Using Software Multi-threaded Transactions. In ASPLOS ’10: Proceedings

of the fifteenth edition of ASPLOS on Architectural Support for Programming Lan-

guages and Operating Systems, pages 65–76, 2010.

[50] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. Parallel-stage De-

coupled Software Pipelining. In CGO ’08: Proceedings of the 6th Annual IEEE/ACM

International Symposium on Code Generation and Optimization, pages 114–123,

2008.

[51] R. Rangan, N. Vachharajani, G. Ottoni, and D. I. August. Performance Scalability

of Decoupled Software Pipelining. ACM Transactions on Architecture and Code

Optimization, 5(2):1–25, 2008.

[52] L. Rauchwerger and D. Padua. The LRPD Test: Speculative Run-time Paralleliza-

tion of Loops with Privatization and Reduction Parallelization. SIGPLAN Not.,

30(6):218–232, 1995.

[53] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[54] J. Renau, K. Strauss, L. Ceze, W. Liu, S. R. Sarangi, J. Tuck, and J. Torrellas.

Energy-Efficient Thread-Level Speculation. IEEE Micro, 26(1):80–91, 2006.

[55] P. Salverda and C. Zilles. Fundamental Performance Constraints in Horizontal Fusion

of In-Order Cores. In HPCA ’08: The 14th IEEE International Symposium on High

Performance Computer Architecture, pages 252–263, 2008.

[56] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar Processors. SIGARCH

Computer Architure News, 23(2):414–425, 1995.

[57] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual Flow

Pipelines. In Proceedings of the 11th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, pages 107–119, 2004.

[58] J. Steffan and T. Mowry. The Potential for Using Thread-Level Data Speculation to

Facilitate Automatic Parallelization. In HPCA ’98: Proceedings of the 4th Interna-

tional Symposium on High-Performance Computer Architecture, pages 2–13, 1998.

136 REFERÊNCIAS BIBLIOGRÁFICAS

[59] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable Approach to

Thread-level Speculation. SIGARCH Comput. Archit. News, 28(2):1–12, 2000.

[60] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or Discard Execution Model

for Speculative Parallelization on Multicores. In MICRO 41: Proceedings of the 41st

Annual IEEE/ACM International Symposium on Microarchitecture, pages 330–341,

2008.

[61] R. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM

Journal of Research and Development, 11(1):25–33, 1967.

[62] J. Torrellas, L. Ceze, J. Tuck, C. Cascaval, P. Montesinos, W. Ahn, and M. Prvulovic.

The Bulk Multicore Architecture for Improved Programmability. Communications

of the ACM, 52(12):58–65, 2009.

[63] D. Tullsen. Simulation and Modeling of a Simultaneous Multithreading Processor.

In 22nd Annual Computer Measurement Group Conference, pages 819–828, 1996.

[64] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August.

Speculative Decoupled Software Pipelining. In PACT ’07: Proceedings of the 16th

International Conference on Parallel Architecture and Compilation Techniques, pages

49–59, 2007.

[65] Y. Watanabe, J. D. Davis, and D. A. Wood. WiDGET: Wisconsin Decoupled Grid

Execution Tiles. SIGARCH Computer Architecture News, 38(3):2–13, 2010.

[66] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K.

Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF:

An Infrastructure for Research on Parallelizing and Optimizing Compilers. SIGPLAN

Notices, 29(12):31–37, 1994.

[67] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A Transparent Depen-

dence Distance Profiling Infrastructure. In CGO ’09: Proceedings of the 7th Annual

IEEE/ACM International Symposium on Code Generation and Optimization, pages

47–58, 2009.

[68] H. Zhong, S. A. Lieberman, and S. A. Mahlke. Extending Multicore Architectures to

Exploit Hybrid Parallelism in Single-thread Applications. In HPCA ’07: Proceedings

of the 2007 IEEE 13th International Symposium on High Performance Computer

Architecture, pages 25–36, 2007.

[69] C. Zilles and G. Sohi. Execution-based Prediction using Speculative Slices. In ISCA

’01: Proceedings of the 28th Annual International Symposium on Computer Archi-

tecture, pages 2–13, 2001.

[70] C. Zilles and G. Sohi. Master/Slave Speculative Parallelization. In MICRO 35:

Proceedings of the 35th Annual ACM/IEEE International Symposium on Microar-

chitecture, pages 85–96, 2002.

Apêndice A

Prova de Corretude – Consistência e

Versionamento de Dados

Suponha um sistema com n processadores e caches privativas cuja coerência é mantida

pelo protocolo Modified – Owner – Shared – Invalid (MOSI). Suponha também que haja

ao menos um ńıvel de memória cache compartilhado. Suponha, ainda, que a hierarquia

de cache deste sistema implementa os vetores T1, T2 e T3.

Lema A.0.1. Uma leitura de uma linha de cache L não causa squash.
Na ausência de escritas, leituras são sempre seguras, de modo que elas sempre podem

executar e nunca falham devido ao estado atual da cache. Desta forma, a detecção de

violação da semântica sequencial é feita quando da escrita de dados na memória.

Lema A.0.2. A cache do sistema comporta todos os dados de iterações pendentes.
Isto é necessário para garantir que dados especulativos fiquem contidos dentro do

processador, de modo a garantir que a memória esteja sempre com os valores corretos

para a última iteração executada com sucesso.

Proposição A.0.1. A leitura da linha L durante a iteração i, denotada Li, satisfeita pelo

encaminhamento de Lj, com j < i, define T1 de Li como T1 = {x : j ≤ x ∧ x < i}.

Teorema A.0.1. Os elementos do conjunto T1 da Proposição A.0.1 contém os elementos

suficientes e necessários para detecção de conflitos RAW.

Demonstração. Necessidade: Suponha que T1 contém um elemento k que não é necessário

para a detecção de conflitos. Considere o conjunto T ′

1
= T1 − {k}. Desta forma, uma

atualização da linha Lk não será identificada como violação. Entretanto, pela definição

de T1, a iteração k ocorre no intervalo [j, i) e, portanto, indicam a utilização errônea de

Lj quando da leitura de Li. Assim, não pode haver tal T ′

1
.

137

138 Apêndice A. Prova de Corretude – Consistência e Versionamento de Dados

Demonstração. Suficiência: Suponha que exista a linha Lk no sistema e que k /∈ T1. Se

k < j, então escritas em Lk não afetam Li pois são anteriores à Lj . Se i < k, então k

ocorre logicamente após i, de modo que escritas em Lk não afetam Li. Se j ≤ k ∧ k < i,

então, obrigatoriamente, k ∈ T1. Se k = i, nenhum conflito ocorre pois acessos à memória

dentro de uma mesma iteração ocorrem na ordem do laço sequencial.

Teorema A.0.2. Ao ler uma linha Li que não está presente na cache, é suficiente e

necessário que T1 de Li seja T1 = {x : o ≤ x
∧

x < i}, onde o é o identificador da iteração

mais antiga pendente.

Demonstração. Uma leitura de uma linha da memória é equivalente a ler um dado da

última iteração que terminou. Neste caso, toda escrita ao dado em iterações anteriores à

iteração que requisitou a linha indicam uma violação da semântica sequencial. A prova

de suficiência e necessidade são idênticas aos do Teorema A.0.1.

Corolário A.0.1. Dependências do tipo RAW são corretamente satisfeitas ou um conflito

é detectado.

Demonstração. Uma dependência não ser satisfeita implica T1 não contém todos os ele-

mentos necessários para detecção de dependências, o que é absurdo.

Corolário A.0.2. Dependências do tipo RAW não são espuriamente detectadas.

Demonstração. Um conflito espúrio detectado indica a existência de elementos excedentes

em T1, o que é absurdo, já que T1 é mı́nimo.

Lema A.0.3. Por ser uma cache versionada, anti-dependências WAW e WAR são na-

turalmente evitadas.

O uso de uma cache versionada é semelhante à renomeação de registradores. Da mesma

forma, anti-dependências de memória são resolvidas alocando-se múltiplas entradas para a

mesma linha de cache como se endereços idênticos de iterações distintas fossem distintos.

Proposição A.0.2. Uma escrita à linha Li é segura, ou o protocolo de coerência enviará

um pedido de acesso exclusivo.

139

Demonstração. Suponha que um processador p escreve em Li. Dois cenários são posśıveis.

Ou p tem acesso exclusivo à Li ou p não tem acesso exclusivo à Li.

Se p não tem acesso exclusivo à Li ele o requisitará enviando uma mensagem aos

outros processadores. Esta mensagem, existente no protocolo original, será utilizada para

detecção de conflitos.

Se p tem acesso exclusivo à Li, a operação de escrita é segura e nenhuma mensagem

de coerência é necessária.

Suponha, agora, que Li pode ser exclusivamente acessada e que existe uma linha Lj

que é afetadas por escritas em Li. Tal linha só pode existir se Li foi utilizada na leitura

de Lj ou se existe uma linha Lk tal que k < i e i < j. Se tal Lk de fato existe, então,

obrigatoriamente, quando do pedido de leitura de Lj , Li não exista. Se existisse, Li

seria mais apropriada para a leitura de Lj e teria sido usada, saindo do estado de acesso

exclusivo. Como ela não existia, quando Li for escrita o sistema, obrigatoriamente, o

protocolo enviaria uma mensagem de coerência para obtenção do acesso exclusivo.

