
/

Gera~o e Indexa~ão de Dados
Espa~o- Temporais

Jefferson Rodrigues de Oliveira e Silva

Disserta~o de Mestrado

FICHA CATALOGRÁFICA ELABORADA PELA
BffiLIOTECA DO IMECC DA UNICAMP

Silva, Jefferson Rodrigues de Oliveira e

Si38g Geração e indexação de dados espaço-temporais I Jefferson

Rodrigues de Oliveira e Silva-- Campinas, [S.P. :s.n.], 1999.

Orientador : Mario A. Nascimento

Dissertação (mestrado) - Universidade Estadual de Campinas,

Instituto de Computação.

1. Banco de dados. 2. Sistemas de informação geográfica. I.

Nascimento, Mario Antonio do. II. Universidade Estadual de Campinas.

Instituto de Computação. IIl. Título.

Geração e Indexação de Dados Espaço-Temporais

Este exemplar corresponde à redação final da
Dissertação devidamente corrigida e defendida
por Jefferson Rodrigues de Oliveira e Silva e
aprovada pela Banca Examinadora.

Campinas, 26 de fevereiro de 1999.

\v~~~
Prof. Dr. Mario:. ~~ment~

Universidade Estadual de Campinas
(Orientador)

Dissertação apresentada ao Instituto de Com
putação, UNICAMP, como requisito parcial para
a obtenção do título de Mestre em Ciência da
Computação.

Instituto de Computação
Universidade Estadual de Campinas

Geração e Indexação de Dados Espaço-Temporais

Jefferson Rodrigues de Oliveira e Silva

26 de fevereiro de 1999

Banca Examinadora:

• Prof. Dr. Mario A. Nascimento
Universidade Estadual de Campinas (Orientador)

• Prof. Dr. Marcelo Gattass
Pontifícia Universidade Católica do Rio de Janeiro

• Prof. Dr. Luiz Eduardo Buzato
Universidade Estadual de Campinas

• Prof. Dr. Neucimar Jerônimo Leite (Suplente)
Universidade Estadual de Campinas

TERMO DE APROVAÇÃO

Dissertação defendida e aprovada em 26 de fevereiro de 1999,

pela Banca Examinadora composta pelos Professores Doutores:

Prof. Dr. Luiz Eduardo Buzato
IC- UNICAMP

Agradecimentos

Gostaria de expressar meus agradecimentos às pessoas que de uma forma ou de outra con
tribuiram para a conclusão de mais urna etapa em minha vida:

Minha Mãe, por ter estado sempre ao meu lado e por ter me proporcionado chegar
onde estou.

Meu orientador Mario A. Nascimento, pela orientação, ajuda e amizade.

Yannis Theodoridis, for the discussions and lessons learned from our joint work.

Meu Pai e meus Irmãos pelo cornpanherismo e incentivo sempre.

O pessoal da Comunidade Arroba, atual e os que passaram, que me aturaram nesses
dois anos.

Os amigos do IC, em especial ao pessoal do grupo de Banco de Dados.

Professores e Funcionários do IC.

FAPESP (processo 97/11205-8) e CAPES pelo apoio financeiro.

v

Abstract

The goal of the dissertation is the design, implementation and evaluation of an access struc
ture for spatiotemporal data. The dissertation is a collection of four papers written in
English, with an introduction and a conclusion written in Portuguese.

The first paper presents a survey of spatial data índices and traditional data persistent
índices. In addition, the paper describes a novel structure, the HR-tree, as well as its
algorithms to insert, delete, update and search data.

The second paper addresses the development of an algorithm to generate spatiotemporal
data, called GSTD (Generate Spatiotemporal Data). The algorithm allows the generation
of spatiotemporal data following A few statistical distributions for some user defined param
eters, that control, for example, the initial spatial location, the dinamicity of updates (in
time) and the spatial data movements.

The third paper presents a comparison of the HR-tree to two other structures. The first
one is a 3D spatial structure, based on the R-tree, that treats time as another dimension.
In that structure, the initial and end time of the objects have to be known beforehand. The
second one is basically a structure that combines two spatial structures, also based on the
R-tree: a 2D structure that indexes current objects (i.e., objects with an end time unknown)
and a 3D structure that indexes objects alread closed (i.e., objects with initial and end time
known).

The fourth and last paper describes an application of the HR-tree in another problem
domain, namely bitemporal data indexing.

The overall conclusion of this work is that the HR-tree has the best performance (when
compared to the other two structures) to answer spatial queries in a specific point in time
and for small time intervals, but the HR-tree is much bigger than the other two structures.
However, nowadays space requirements are not as problematic as response time, hence, we
believe the HR-tree is a good access structure for spatiotemporal data.

vi

Resumo

O trabalho de dissertação tem como objetivo o desenvolvimento, implementação e teste de
uma estrutura de acesso à dados espaço-temporais. A dissertação é uma coleção de quatro
artigos escritos em inglês, com uma introdução e uma conclusão escritas em português.

O primeiro artigo faz um levantamento de índices espaciais e índices persistentes de dados
tradicionais. Além disso, descreve uma nova estrutura, a HR-tree, bem como algoritmos para
inserir, remover, atualizar e consultar dados.

O segundo artigo trata da criação de um algoritmo para geração de dados espaço
temporais, chamado GSTD (Generate Spatiotemporal Data). O algoritmo permite a criação
de dados espaço-temporais seguindo algumas distribuições estatísticas para alguns parâmetros
definidos pelo usuário, que tratam, por exemplo, da localização espacial inicial, o tempo de
duração da instância de um objeto e movimentação dos dados espaciais.

O terceiro artigo apresenta uma comparação da HR-tree com outras duas estruturas.
A primeira é uma estrutura espacial 3D, baseada na R-tree, e trata o tempo como outra
dimensão. Nessa estrutura, o tempo inicial e final dos objetos têm que ser conhecidos antes
de serem inseridos. A segunda é basicamente uma estrutura que combina duas estruturas
espaciais, também baseadas na R-tree: uma estrutura 2D que indexa objetos correntes (com
tempo final desconhecido), e outra, uma estrutura 3D que indexa objetos já "fechados"
(tempos inicial e final conhecidos).

O quarto e último artigo descreve uma aplicação da HR-tree em um outro domínio de
problemas, mais precisamente indexação de dados bitemporais.

A conclusão geral do trabalho é que a HR-tree tem o melhor desempenho (quando com
parada às duas outras estruturas) em consultas espaciais em um ponto específico no tempo
e em intervalos pequenos de tempo, mas a HR-tree é muito maior que as outras duas. No
entanto, atualmente espaço não é um problema tão severo como o tempo de resposta, desse
modo acreditamos que a HR-tree é uma boa estrutura de acesso à dados espaço-temporais.

vi i

Sumário

Agradecimentos

Abstract

Resumo

1 Introdução

2 Uma Estrutura de Acesso à Dados Espaço-Temporais: HR-tree
2.1 Introduction
2.2 Enhancing R-trees with Time
2.3 Historical R-trees

2.3.1 Inserting an MBR into the Current R-tree
2.3.2 Deleting (logically) an MBR from the Current R-tree
2.3.3 Modifying a Single MBR in the Current R-tree
2.3.4 Querying the Current R-tree .

2.4 Directions for Future Research .
2.5 Acknowledgements

3 Geração Sintética de Dados Espaço-Temporais
3.1 lntroduction
3.2 Motivation
3.3 A set of operations and parameters

3.3.1 User requirements ..
3.3.2 Parameters involved
3.3.3 Distributions

3.4 The GSTD algorithm
3.4.1 Description of the algorithm
3.4.2 Examples of generated dabasets

3.5 Discussion and Related Work

Vlll

v

vi

vii

1

4
6
7

8
10
14
17
17
17
18

19
20
23
25
27
28
29

30
30
33
34

3.6 Conclusion and Future Work

4 Testes de desempenho da HR-tree
4.1 Introduction
4.2 Spatiotemporal Access Structures

4.2.1 3D R-tree .
4.2.2 2+3 R-tree
4.2.3 HR-tree . .

4.3 Data Generation .
4.4 Performance Comparison .

4.4.1 Storage Requirements
4.4.2 Index Building Cost .
4.4.3 Query Processing Cost

4.5 Summary and Future Research

36

39
41
44
44
45
46
48
49

50
52
53
57

5 Aplicação da HR-tree como estrutura de indexação de dados bi-temporais 61
5.1 Introduction 62
5.2 Related Work 63
5.3 The HR-tree for 2TBDs 65
5.4

5.5

Performance Analysis . .
5.4.1 Update Cost ...
5.4.2 Query Processing Cost
5.4.3 Storage Requirements

Conclusions

6 Conclusão

A Algoritmos básicos de inserção, remoção, atualização e consultas na HR-
tree

Bibliografia

ix

67
68
69
71

71

74

76

81

Lista de Tabelas

2.1 Notation used in the algorithms. 10

3.1 Parameters for generating time-evolving objects 29
3.2 Example files generated by GSTD . 38

A.1 Notation used in the algorithms. . . 77

X

Lista de Figuras

2.1 An R-tree evolving through time.
2.2 Physical and logical views of the Historical R-tree ..
2.3 Example of how insertion can affect the H-R-tree.
2.4 Example of how deletion can affect the H-R-tree.

8

9
13
13

3.1 Two-dimensional time-evolving spatial objects . . 21
3.2 The MBR of a moving object occupies a large portion of the data space . 24
3.3 Overlapping trees for two different time instants tO and tl. 25
3.4 Consecutive instances of a time-evolving object o and the corresponding pro-

jections . 28
3.5 Basic statistical distributions in two-dimensional space 29
3.6 The GSTD algorithm 32
3.7 Two-dimensional time-evolving spatial objects 33
3.8 Alternative scenarios for the location of an object between two timestamps 35

4.1 Example of the HR-tree approach. 47
4.2 Evolution of gaussianly distributed data points. 49
4.3 Evolution of skewedly distributed data points. . 49
4.4 Query MBRs with centers uniformly distributed. . 50
4.5 Indices' sizes. 51
4.6 HR-tree size using a batch oriented approach. 52
4. 7 Indexing building cost. 53
4.8 Query processing cost, small MBRs. . . 54
4.9 Query processing cost, medium MBRs. 55
4.10 Query processing cost, large MBRs. . . 55
4.11 Query processing overhead when using the batch oriented approach and large

MBRs. 56
4.12 Interval query processing cost, small MBRs. . 57
4.13 Interval query processing cost, medium MBRs. 58
4.14 Interval query processing cost, Iarge MBRs. 58

xi

4.15 Query processing cost, large MBRs.

5.1 The two variants of the 2R-tree approach.
5.2 A single HR-tree logically equivalent to multiple R-trees.
5.3 Cost of updates, 60/40 data file
5.4 Cost of * fpoint/point queries.
5.5 Cost of * /range/point queries.
5.6 Indices sizes.

XII

59

65
66
69
70
70
71

Capítulo 1

Introdução

Atualmente, uma grande variedade de aplicações faz uso de dados espaciais, tais como soft
ware de Projeto Auxiliado por Computador (CAD) e Sistemas de Informações Geográficas
(SIG). Algumas aplicações precisam manter informações passadas sobre objetos, de modo a
permitir consultas sobre a evolução no tempo de objetos espaciais, assim como sobre estados
passados do banco de dados.

Alguns exemplos de aplicações reais que necessitam controlar dados espaço-temporais
incluem armazenamento e manipulação de trajetórias de navios e aviões, previsões de tempo e
monitorização de tempestades e incêndios. Além disso, no campo da agricultura, produtores
e agências governamentais precisam manter informações de colheitas ao longo do tempo, para
tomada de decisões tais como onde usar pesticidas e/ ou prover financiamento à fazendeiros.
Tais aplicações necessitam de estruturas de acesso eficiente à dados espaço-temporais.

Diferentemente de estruturas de acesso à dados espaciais e de estruturas de acesso à
dados temporais, que são bem exploradas na literatura, estruturas de acesso à dados es
paço-temporais são pouco exploradas. Nós temos conhecimento de quatro estruturas que
consideram tanto as informações espaciais quanto as temporais de objetos. MR-trees e RT
trees [50], 3D R-trees [43] e mais recentemente Overlapping Linear Quadtrees [47]. Somente
a 3D R-tree foi implementada e testada, para um domínio de problema específico, indexação
em ambientes multimídia. Não temos conhecimento de testes de desempenho das outras
estruturas.

O objetivo principal da dissertação foi o projeto de uma estrutura de acesso à dados
espaço-temporais, chamada HR-tree (Historical R-tree). A HR-tree é baseada principalmente
em dois estudos: o primeiro é a proposta de uma estrutura de acesso à dados espaciais (R-tree
[15]) e o segundo uma proposta de uma estrutura persistente de acesso à dados tradicionais
(Overlapping B+ -tree [25]). Uma estrutura é dita persistente quando uma atualização cria
uma nova versão da estrutura enquanto versões antigas são mantidas e podem ser acessadas
[21]. Do mesmo modo que a Overlapping B+-tree, a HR-tree leva em consideração apenas o

1

2

tempo de transação de um objeto.
Em banco de dados temporais, o tempo pode ser classificado de duas formas: tempo de

validade e tempo de transação. Tempo de validade é o intervalo de tempo no qual um fato
ocorreu na realidade, ou seja, é o tempo que ocorreu no mundo real, independente do seu
armazenamento no banco de dados. Em tempo de validade, um fato pode ocorrer num futuro
conhecido. Tempo de transação é o intervalo de tempo no qual um fato foi armazenado no
banco de dados, ou seja, do momento em que foi inserido ao momento em que foi removido
[17]. Se um banco de dados suporta as duas dimensões de tempo, é chamado de bitemporal.

Além de propor a HR-tree, foi parte do trabalho de dissertação a implementação e teste
da estrutura, através de comparações com outras duas estruturas. A primeira (3D R-tree)
[43] indexa objetos 3D, sendo o tempo a terceira dimensão. A segunda (2+3 R-tree) utiliza
duas estruturas espaciais, uma 2D e outra 3D. A 2D mantém objetos espaciais correntes, ou
seja, seu tempo de transação final não é conhecido. Uma vez que esses objetos são atualizados
(fechados, ou seja, seu tempo de transação final é conhecido) são removidos da 2D e inseridos
na 3D, como objetos tri-dimensionais (sendo o tempo a terceira dimensão). A estrutura 2+3
R-tree é baseada na estrutura proposta em [20]. As duas estruturas são melhores descritas
no capítulo 4.

Para a validação e testes comparativos da HR-tree, era necessário a utilização de dados
espaço-temporais. A geração de dados espaciais sintéticos tem sido investigada na literatura
[14]. Porém, não conhecemos trabalhos relacionados à geração de dados espaço-temporais.
Deste modo, um trabalho desenvolvido na tese foi o estudo da geração sintética de dados
espaço-temporais. Um algoritmo para geração sintética de tais dados foi criado, e permite
a geração de conjuntos de dados seguindo algumas distribuições estatísticas para alguns
parâmetros definidos pelo usuário. Basicamente, os parâmetros tratam da localização es
pacial inicial, o tempo de duração da instância de um objeto e movimentação dos dados
espaciais.

Após termos desenvolvido uma primeira versão do algoritmo, foram realizados testes
comparativos entre a HR-tree, 3D R-tree e a 2+3 R-tree. Como é comum na área de
indexação, os testes avaliaram três fatores:

• tamanho do arquivo de índice gerado,

• número de páginas de disco acessadas na construção do índice,

• número de páginas de disco acessadas em consultas.

Foi parte do trabalho de dissertação ainda a aplicação da HR-tree em outro domínio de
problemas, a indexação de dados temporais. Os trabalhos mais recentes nessa área [5, 4,
21] utilizam estruturas espaciais (R*-tree [1]) na criação de índices bitemporais. De modo
semelhante, pensou-se na utilização da HR-tree para indexar dados temporais.

3

Esta dissertação de tese está organizada como uma coletânea de 4 artigos (capítulos 2,
3, 4, e 5), apresentados na sua forma original. O capítulo 2 apresenta um artigo que
descreve a estrutura de índice proposta, a HR-tree. O capítulo 3 apresenta o estudo para
geração sintética de dados espaço-temporais e o algoritmo desenvolvido. No capítulo 4
são apresentados testes comparando a HR-tree, a 3D R-tree e a 2+3 R-tree. O capítulo 5
apresenta a aplicação da HR-tree na indexação de dados bitemporais. Finalmente o capítulo 6
apresenta a conclusão da dissertação e possíveis extensões à mesma.

Capítulo 2

Uma Estrutura de Acesso à Dados
Espaço-Temporais: HR-tree

Prólogo

No primeiro artigo, é feita uma breve revisão bibliográfica de indexação de dados espaciais,
indexação persistente de dados tradicionais e é apresentada uma nova estrutura de indexação
de dados espaço-temporais, a HR-tree.

A HR-tree utiliza o conceito de overlapping trees [25], ou seja, dado duas árvores sendo
a segunda a evolução da primeira (isto é, a segunda é uma versão da primeira baseada nas
informações desta), a segunda é representada incrementalmente. Deste modo, apenas os
ramos modificados são armazenados, e os não modificados são compartilhados pela nova
versão.

R-trees [15] são as estruturas espaciais usadas como base de nosso trabalho. Portanto, a
HR-tree utiliza várias R-trees lógicas para manter as informações antigas e atuais de objetos
espaciais.

O artigo apresenta a estrutura da HR-tree, os algoritmos básicos de inserção, remoção e
atualização de objetos, além dos algoritmos para consultas espaço-temporais.

É preciso salientar que até a conclusão do artigo não tínhamos conhecimento de outras
estruturas de acesso a dados espaço-temporais. Desse modo, não é apresentada uma revisão
bibliográfica sobre tais estruturas. Essa revisão é apresentada nos artigos dos capítulos 3 e
4.

O artigo foi publicado nos anais do 1998 ACM Symposium on Applied Computing [27].

4

TOWARDS HISTORICAL R-TREES

Mario A. Nascimento
CNPTIA- EMBRAPA

P.O. Box 6041

13083-970 Campinas SP BRAZIL

mario@cnptia.embrapa.br

Jefferson R. O. Silva
IC- UNICAMP

P.O. Box 6176
13083-970 Campinas SP BRAZIL

972147@dcc. unicamp. br

Abstract

R-trees are the "de facto" reference structures for indexing spatial data, namely

the minumum bounding rectangles (MBRs) of spatial objects. However, R-trees, as
currently known, do not support the evolution of such MBRs. Whenever an MBR

evolves, its new version replaces the old one, which is therefore lost. Thus, an R-tree

always shows the current state of the data set, not allowing the user to query the spatial
database with respect to past states. In this paper we extend the R-tree in such a way
that old states are preserved, allowing the user to query them. The proposed approach
does not duplicate nades which were not modified, thus saving considerable storage
space. On the other hand, the query processing time does not depend on the number

of past states stored.

5

2.1. Introduction 6

2.1 Introduction

Managing multidimensional datais needed in many application domains, e.g., spatial databases
and geographical information systems [33]. In particular, indexing spatial data is of fore
most importance in many application domains, and indeed such an issue has been quite well
researched. Samet [33] and Gaede and Günther [11] present excellent surveys on the area.
However, it is hardly argueable that an structure has been more cited and used as a reference
than the R-tree [15]. The R+-tree [34] and the R*-tree [1] are well known R-tree derivatives,
where the R*-tree has been shown to be quite efficient. Recently, the Hilbert R-tree [18] and
the STR-tree [23] have been shown to have better "packing" capabilities. This is specially
useful for sets of data which are not very dynamic in nature. With the exception of the
R+ -tree, ali have the same basic structure. K -dimensional spatial objects are modeled by
their Minimum Bounding Rectangles (MBRs) - we assume, without loss of generality, that
K = 2. Subsets of the indexed MBRs are organized into overlapping subspaces, using a tree
hierarchy. They ali differ in the way the tree nodes are split (when overflown) and/or MBRs
are assigned to subspaces (i.e., nodes in tree).

In this stage of our research we assume an R-tree has already been built by using algo
rithms from any of the R-tree derivatives, but the R+-tree. Regardless of how it was built,
we refer to such an structure as an R-tree, and we assume it obeys the following conditions
[15] (where a hyper-rectangle is an MBR):

• Every leaf (non-leaf) node contain between m and M index records (children) unless
it is the root;

• For each index record (I, Tid) in a leaf node, I is the smallest hyper-rectangle that
spatially contains the object represented by the indicated tuple Tid;

• For each entry (I, Cid) in a non-leaf node, I is the smallest hyper-rectangle that spa
tially contains the hyper-rectangles in the child node Cid;

• The root node has at least two children unless it is a leaf;

• Allleaves appear on the same levei.

For simplicity, and proof-of-concept, we base our algorithms for insertion, deletion and
updating on those by Gutmann [15]. MBRs can model objects which vary with time, one
trivial example is a farm which can be expanded or shrunk by selling or buying land. Similarly
new objects can begin or cease to exist. An R-tree indexes only the current MBR for each
object. Should any object evolve and have its MBR changed, the R-tree must delete the
old MBR and insert the new one (the one corresponding to the new instance of the object).
From that point on, no query will ever take into account that past instance of that particular

2.2. Enhancing R-trees with Time 7

MBR. In other words, R-trees as currently known, allow querying only the current state of a
spatial database. A trivial way to overcome such shortcoming would be to store ali previous
states of the R-trees. As we shall see shortly, this is not an acceptable, nor practical, solution.

The problem of indexing non-spatial objects (i.e., regular tu pies in a relation) over time
has been researched by many researchers in the temporal databases community. A thorough
survey can be found in [31]. However, to our knowledge no research has been published
regarding the temporalization of the R-tree. That is exactly the kernel of our contribution.

We assume the temporal attribute is transaction time. Transaction time interval is the
time an object has been stored in the data base [17]. Hence an MBR is considered stored in
the spatial database since the time it is input ad infinitum, or until the point it is updated or
deleted. This special feature prevents one of using the quite simple idea of considering time
as another spatial dimension, thus using the K + 1 dimensional space to index MBRs varying
over time. The problem is that the current MBR versions would have one of its "sides" being
extended continously (notice that the current point in time is always moving forward). Even
if one could somehow manage this variable side, it would imply a large overlap ratio among
the R-trees' subspaces (which does affect negatively the R-tree's performance).

Hence, this paper addresses the problem of querying and maintaing current and past
states of R-trees. To accomplish that the paper is organized as follows. The next Section
presents an overview of the rationale behind our approach, which we call Historical R-trees.
Section 3 discusses how the R-tree's algorithms need be changed to allow the realization of
the Historical R-trees. We conclude in Section 4, presenting some issues which are being
currently investigated and/ or have potential for future research.

2.2 Enhancing R-trees with Time

The technique we propose is inspired by an idea first presented by Burton and colleagues
[7, 6]. The authors proposed the use of overlapping trees to manage the evolution of text
files. Later, the idea was generalized by [25] to manage temporally evolving B+ -trees in
general. The basic idea behind those techniques was to keep current and past states of the
B+-trees by maintaing the original tree and replicating, from state to state, only the root
and the branches which reflect any changes. The unchanged branches were not replicated,
but rather were pointed to by the nodes in the new branch. The approach we propose is an
extension of the overlapping approach originally proposed by Manolopoulos e Kapetanakis
[25] for the B+ -trees, to the R-trees. We call such an approach Historical R-tree (H-R-tree
for short). In this paper we concentrate on managing it, rather than benchmarking it.

Let us illustrate the rationale supporting the H-R-tree with the following example. Con
sider the initial R-tree in Figure 2.1(a) at time TO. Suppose that at time T1 MBR 3 suffers
a modification resulting in MBR 3a. Likewise MBR 8 is modified at time T2 yielding MBR

2.3. Historical R-trees 8

123 456 789 l23a 456 789 123a 456 78a9

(a) R-tree at TO (b) R-tree at Tl (MBR 3 changed to 3a) (c) R-tree at T2 (MBR 8 changed to 8a)

Figure 2.1: An R-tree evolving through time.

8a. The three states (at TO, Tl and T2) of that particular R-tree are thus those shown in
Figures 2.1(a), (b) and (c) respectively. Note that in that particular example the subtree
rooted at node B did not change at all, nevertheless it was replicated in all three states.
Moreover, the subtree rooted at C (Al) did not change from TO (Tl) to Tl (T2), but the
whole subtree was replicated as well. It should be now clear that duplicating the whole tree
at each state is rather unpractical.

Let us now see how the same scenario would be handled by the H-R-tree. We assume an
array, called A, indexing the time points where updates occurred. The initial R-tree must
be kept full and it is pointed to by A[TO]. From TO to Tl MBR 3 changes, and as such
node A changes as well, after all its contents did change. This update propagates upwards
until the root node. At the end only the path {Rl, A, 3} needs to be updated, resulting the
new path {R2, Al, 3a}. Naturally, the R-tree at Tl is composed by the subtrees rooted at
Al, B and C. However, those rooted at B and C did not change at all, and thus need not
be replicated. Similarly, at time T2 the R-tree rooted at R3 is composed by those subtrees
roted at Al, B and Cl. Again, from Tl to T2, the subtrees rooted at Al and B did not go
under any modification and as such need not be replicated. The resulting H-R-tree at time
T2 is shown in Figure 2.2(a). Simple inspection shows that, even in a trivial example like
this, the H-R-tree is much smaller than the set of tree R-trees in Figure 2.1. Figure 2.2(b)
shows the logical view of the resulting R-tree at time T2, which is exactly the same one in
Figure 2.1(c).

It is important to stress that querying any version of the R-tree under the H-R-structure
is a matter of obtaining the correct R-tree root. Once this is done, using the array A[.],
the logical view is that of a standard R-tree, no complications are therefore added by the
approach we use to keep the R-tree's history.

2.3 Historical R-trees

In this section we discuss in detail how to modify the R-tree's algorithms in order to realize
the H-R-tree. Given the space constraints we omit certain details, which can be found in

2.3. Historical R-trees 9

l 2 3 4 5 6 7 8 9 3• .,
(a) Physical view, semantically equivalent to Figure 1, but using lhe Historical R-tree.

l 2 4 5 6 7 9 3a g,

(b) Logical view ofthe Historical R-tree state at time T3

Figure 2.2: Physical a.nd logical views of the Historical R-tree.

2.3. Historical R-trees 10

Guttman's original paper [15].
We draw particular attention to insertion and (!ogical) deletions of MBRs, modification

of MBRs can be accomplished by deleting the old version and inserting the new one. As we
argued above, querying any version of the R-tree is straightforward.

The H-R-tree is a structure composed by an array A of time values, which in turn point
to severallogical R-trees (see Figure 2.2). The H-R-tree structure is very similar to the other
R-tree derivatives. The difference, besides the existence of array A is that each nade contains
a timestamp t, representing the time that one nade was created. Any operation is always
performed onto the most current R-tree version, i.e., the one pointed to by A [t], and will
yield a new version, which is thus timestamped with t = now1

. From now on, we use the
notation presented in Table A.l.

Table 2.1: Notation used in the algorithms.

OR
A

R

On
O o
F

I

p

N.Nt
Q
L,LP,N,NN,NR,P,PP
now
pt

a pointer to the H-R-tree
the H-R-tree's array of time points
root node of a R-tree
MBR inserted in the H-R-tree
MBR removed from the H-R-tree
an entry in a R-tree nade
MBR associated to F

pointer associated to F

nade N's timestamp
queue of R-tree nades
pointers to R-tree nades
current point in time
most recent entry in A

2.3.1 Inserting an MBR into the Current R-tree

The Insert algorithm inserts a new MBR On into the most recent logical version of the
R-tree within the H-R-tree OR, thus creating a new R-tree version (whose nades will be
timestamped with now).

A new branch of the H-R-tree is created, in which On is placed. A new logical R
tree rooted at NR is created, and it is pointed to by A [now] . The algorithm first invokes
CreateBranch which descends the current R-tree rooted at R (which is pointed to by A [pt])

1In the temporal database literature (e.g. [38]), now is usually regarded as a variable. We, on the other
hand, use it only as a shorter name for ''the value of the current point in time".

2.3. HistoricaJ R-trees 11

to find the leaf node in which On will be placed. CreateBranch returns a root NR and a leaf
node L, where On isto be inserted. A[now] is then updated to NR, obtaining the most recent
logical version of the R-tree. (CreateBranch was adapted from the Guttman's ChooseLeaf
algorithm.)

Algorithm Insert(Dn, DR)
1. { create a new state in the H-R-tree }

if A[pt] < now
then create a new entry in A indexing now;

2. { create a root NR to insert On }
invoke CreateBranch to create a new logical

R-tree rooted at NR. The new logical R-tree
contains a leaf node L in which to place On;

3. { insert On in L }
if L has room for another entry

then insert Dn in L;
else remove L created by CreateBranch;

invoke SplitNode to obtain a new L
and LP containing On and all the
other entries of L removed;

4. { propagate split upwards }
if a split was performed

then Invoke AdjustTree on L, also passing LP;
5. { grow tree taller }

if node split propagation caused a root split
then create a new root NR whose children are

the resulting nodes resulting from the
root split;

adjust the entry in A to point to the new root NR;

Algorithm CreateBranch(Dn, OR)
1. { initialize }

set N to be the root pointed
i f N.Nt < now

then create a new node L;
copy all entries of N
set L.Nt = nov:;

set NR= L;
else set NR = N;

to by A[pt] in OR;

into L;

2.3. Historical R-trees

set L = N;
2. { leaf check }

if N is a leaf
then return NR and L;

3. { choose subtree }
let F be the entry in N whose rectangle F.I

needs least enlargement to include On. Break
ties by choosing the entry with the rectangle
of smalest area;

4. { create a new node of the new branch and
descending the tree }

set LP = L;
set N to be the node pointed to by F.p;
if N.Nt < now

then create a new node L;
copy all entries of N into L;
set L.Nt = now;
adjust the pointer F.p in LP to point

to L;
else set L = N;

5. { Loop until a leaf is reached }
repeat from step 2;

12

The SplitNode and AdjustTree procedures mentioned above are essentially the algo
rithms defined by Guttman [15]. SplitNode is used when a new object On is inserted into a
full node. In this case, ali the entries should be divided between two nodes. A small change
is needed in the original SplitNode Algorithm though, namely the algorithm must set the
timestamp of the newly created nodes. The AdjustTree ascends from a leaf node to the
root, adjusting the covering rectangles and propagating splits as necessary. It is interesting
to note that the logical view of the H-R-tree is that of a standard R-tree at some point in
time, such as now, and as such, node splits are handled as if we were manipulating a standard
R-tree.

Figure 2.3 shows an example where from TO to T1 a new MBR, Jabelled 7 was inserted.
The algorithm decided that it should be inserted in node B, which was already full. Therefore
a node split happened, resulting in nodes B1 and B2. As the root R1 was not full, no further
splitting is needed. From T1 to T2, no split is needed when MBR 8 is input into node A,
thus only a single branch (optimal case) is replicated.

Notice that in the worst case a node split is propagated all the way from leaf to root,

2.3. Historical R-trees 13

I 2 4 5 6 7 8

Figure 2.3: Example of how insertion can affect the H-R-tree.

Figure 2.4: Example of how deletion can affect the H-R-tree.

2.3. Historical R-trees 14

resulting in two (i.e., a constant and low number) branches being replicated. Therefore,
considering an R-tree uses O(n/B) space2 , the H-R-tree after u updates uses O(n/B +
ulog8 n) space. If ali previous R-tree states were kept O(un/ B) space would be required.

2.3.2 Deleting (logically) an MBR from the Current R-tree

The Delete algorithm removes an MBR Do from an H-R-tree DR at time A[pt]. A new entry
in A is created, indexing no~:. A new logical R-tree is created, which refiects the new state
of the R-tree without the MBR Do. After Oo is removed, Delete invokes a slightly modified
version of Guttman's CondenseTree algorithm to eliminate the node if it has too few entries
and to relocate its entries. These are re-inserted in the R-tree rooted at A [no~:]. The
CondenseTree algorithm also propagates node elimination upward as necessary, adjusting
covering rectangles. The only two modifications necessary in Guttman's CondenseTree are:
(1) in the insertion algorithm used to re-insert the entries removed, the Insert algorithm
described above must be used instead of the original one, and (2) a node containing entries
to be inserted in set Q is only removed ifits timestamp is no~:. A node will be removed only
if it was duplicated by the Delete algorithm, otherwise, it belongs to a previous state o f the
R-tree, and as such it should not be removed.

Algorithm Delete(Oo, DR)
1. { find the leaf node containing Oo}

set R to be the root pointed to by A[pt];
set Q, the queue of nodes already traversed,

to be empty;
invoke FindLeaf passing R to locate the leaf

node L containing Oo;
if L cannot be found

then stop;
2. { create a ne~: state in the H-R-tree }

create a ne~: entry in A ~:ith time value equal
to no~:;

3. {·create a ne1: branch ~:ithout Oo}
create a ne~: node LP;
set LP.Nt =no~:;
remove the first element of Q and put all of

its entries in LP;
set R = LP;
set A[no~:] to point to LP· ,

2 n is the number of indexed MBRs.

2.3. Historical R-trees

~hile Q is not empty
create a ne~ node L;
set L.Nt = no~;
remove the next element N of Q and put all

of its entries in L;
adjust the entry in LP pointing to N to point

to L;
set LP = L;

Remove Oo from L;
4. { adjust tree }

Invoke CondenseTree, passing L;
5. { shorten tree }

if the root node has only one child after the
tree has been adjusted

then make the child the ne~ root R;
adjust A[now] to point to R;

Algorithm FindLeaf(R)
1. { search subtrees storing the branch that

contains Oo }
if R is not a leaf
then for each entry F in R

if F.I overlaps Oo
then if R is not in Q yet

then Put R in Q;
let R be the root of the subtree

pointed to by F.p;
invoke FindLeaf passing R;

until Oo is found or all entries are checked;
if Do ~as not found and R ~as inserted in Q

then remove last R inserted into Q;
else check each entry to see if it matches Oo;

if Oo is found
then put R in Q;

return R;

Algorithm CondenseTree(R)
1. { initialize }

15

2.3. Historical R-trees 16

set N = L;
set Q, the set of eliminated nodes, to be empty;

2. { find parent entry }
if N is the root

then go to 6;
else let P be the parent of N;

let F be N's entry in P;
3. { eliminate under-full node }

if N has fewer than m entries
then delete F from P;

copy the entries of leaf nodes of subtree
rooted at N to set Q;

if N .Nt = now
then remove N;

4. { adjust covering rectangle }
if N has not been eliminated

then adjust F.I to tightly contain all entries
in N;

5. { move up one level in tree }
set N = P and repeat from 2;

6. { re-insert orphaned entries }
re-insert all entries of nodes in set Q;

Notice that the CondenseTree algorithm may re-insert m-1 MBRs in the current version
of the R-tree. Recall that m is the minimum number of entries occupied in any R-tree node.
Therefore, considering the algorithm Insertion presented earlied, in the worst case, Delete
yields 2 x (m-1) branches being replicated. It is worthwhile stressing that this is a constant
number.

As an illustration, Figure 2.4 shows an H-R-tree where from time TO to T1, MBR 6
was deleted. As B1 still remains with its minimum load (assuming m = 2), no further
modifcation is needed but replicating the branch that lead to MBR 6. From T1 to T2, MBR
4 is deleted and a more interesting situation arises. After deleting MBR 4 Bl falls under its
minimum load, and thus ali its entries must be re-inserted, freeing that node. Freeing that
node leave the root of the current R-tree with only one child, which cannot occur, again per
R-tree's definition. A new root (R3) is then created containing the remaining MBRs 1, 2
and 5.

2.4. Directions for Future Research 17

2.3.3 Modifying a Single MBR in the Current R-tree

Modifying an MBR in the current R-tree is rather trivial. Ali one needs to do is to remove
the current version of the MBR Do and insert the new version On using the algorithms Delete
and Insert already discussed.

Algorithm Modify(Oo, On, OR)
1. { Delete the current MBR version }

Invoke Delete passing Oo and OR;
2. { Insert the neY MBR version }

Invoke Insert passing On and OR;

We have already noted that another Modify algorithm could be devised. The main idea
is to forcefully enlarge or shrink the MBRs, higher in the tree, that involve the MBR being
modified. This would ensure that only one branch would be replicated per MBR modification.
The cost of such alterna tive is yet to be investigated.

2.3.4 Querying the Current R-tree

The Search algorithm finds al! MBRs in the H-R-tree OR that overlap the search windows
S. The search can be made in some specific past state of the R-tree or in the current state,
that is the R-tree pointed to by A [pt] The Search algorithm first finds the (R-tree) root in
the H-R-tree that is pointed to by A[t]. Mter that, Guttman's original Search algorithm is
used to find the MBRs that overlap the search windows S.

Search(S, t, OR)
1. { find the appropriate root R }

if t = now
then set R to be the node pointed to by A[pt];
else set R to be the node pointed to by A[t];

2. { find the MBRs which overlap S }
invoke Guttman's original Search algorithm

passing R;

For a discussion on how to query the R-tree we refer the reader to Guttman's original
paper [15], as no modifications (at ali) to the original algorithm are required.

2.4 Directions for Future Research

We have presented a systematic way to deal with modifications of an R-tree while preserving
ali of its previous states. While the resulting structure, which we named Historical R-tree

2.5. Acknowledgements 18

(H-R-tree) saves substantial space when compared to saving all previous R-tree states, it
does not degenerate query processing time. Future research is needed in several directions,
such as:

• Implementation and benchmarking of the H-R-tree, including the generation of spatial
temporal data;

• Using Z-order [29] along with the original Historical B+ -trees [25] to index spatial
temporal data (and consequently compare the result to the H-R-tree);

• Adapting the idea of Persistent B+-trees [22] to R-trees (and also compare the result
to the H-R-tree);

• Investigate how the proposed approach depends on the initial R-tree configuration
(recall one could use any of the R-trees, but the R+ -tree, algorithms to generate the
initial R-tree) and

• Determine how concurrency contrai algorithms are impacted in the proposed approach.

2.5 Acknowledgements

Mario A. Nascimento is also an invited lecturer at Institute of Computing of the State
University of Campinas (mario@dcc.unicamp.br). Jefferson R. O. Silva was supported by
CAPES.

Capítulo 3

Geração Sintética de Dados
Espaço-Temporais

Prólogo

O segundo artigo trata da geração de dados espaço-temporais sintéticos. Vários algoritmos
tem sido implementados para geração de dados espaciais estáticos (pontos ou retãngulos),
seguindo distribuições estatísticas pré-definidas. O mais relevante para nosso trabalho é [14].

Porém, quando a dimensão temporal é adicionada à objetos espaciais, a geração sintética
de dados passa a ser um problema mais complexo.

Para que a HR-tree pudesse ser testada e comparada com outras estruturas, era necessário
a geração de dados espaço-temporais. Deste modo, parte do trabalho da dissertação foi o
estudo da geração desses dados, que resultou na construção de um algoritmo gerador de
dados espaço-temporais, denominado GSTD.

O algoritmo proposto trata basicamente de três características dos dados: (1) duração
da instãncia de um objeto; (2) deslocamento de um objeto e (3) mudança no tamanho de
um objeto.

O algoritmo permite ao usuário a configuração de . alguns poucos parâmetros seguindo
algumas distribuições estatísticas. Como pode ser visto no artigo, ajustando os parâmetros
de forma adequada, o usuário pode construir vários cenários diferentes. O artigo apresenta
ainda alguns exemplos de conjuntos de dados gerados utilizando-se o GSTD.

O artigo foi publicado como relatório técnico CH-99-01 1 no projeto ChoroChronos, uma
rede de pesquisa em sistemas de banco de dados espaço-temporais financiado pela comu
nidade européia, e foi submetido para publicação no 6th International Symposium on Spatial
Databases {SSD).

1 Disponível em http:/ jwww.dbnet.ntua.grj ~cboros/TRs/1999/1/report.ps.gz

19

On the Generation of Spatiotemporal Datasets

Yannis Theodoridis* Mario A. Nascimento+

*Computer Science Division
Dept. of Electrical and Computer Eng.
National Technical University of Athens

Zographou 15773, Athens, HELLAS
theodor@cs.ntua.gr

Abstract

Jefferson R. O. Silva+

+Jnstitute of Computing
State University of Campinas

PO Box 6041
13083-970 Campinas SP BRAZIL
{mario, 972147}@dcc.unicamp.br

An efficient benchmarking environment for spatiotemporal access methods should
at least include modules for storing synthetic and real datasets, collecting and running
access structures, and visualizing experimental results. Focusing on the dataset repos
itory module, a wide set of synthetic that would simulate a variety of reallife examples
in required. Severa! algorithms have been implemented in the past to generate static
spatial (point or rectangular) data, for instance, following a predefined distribution
in the workspace. However, by introducing motion, and thus temporal evolution in
spatial object definition, generating synthetic data tends to be a complex problem. In
this paper, we discuss the parameters to be considered by a generator for such type of
data, propose an algorithm, called "Generate..Spatio_Temporal.Data" (GSTD), which
generates sets of moving point or rectangle data that follow an extended set of dis
tributions, and visualize some of the results. The GSTD source code and illustrative
examples are currently available in the Internet 1

Keywords: spatiotemporal databases, benchmarking, data generators, indexing, ac
cess structures, query performance.

3.1 Introduction

A field of ongoing research in the area of spatial databases and Geographical Information
Systems (GIS) involves the accurate modeling of real geographical applications, i.e., appli
cations that involve objects whose position, shape and size change over time. Real world

1 Mirror sites: http:/ Jwww.dbnet.ece.ntua.gr/~theodorjGSTD/ and
http:/ Jwww.dcc.unicamp.br/~mario/GSTD/

20

3.1. Introduction 21

examples include storage and manipulation of trajectories, !ire or hurricane front monitor,
simulators (e.g. fiight simulators), weather forecast, etc.

Database Management Systems (DBMS) should be extended towards the efficient mod
eling and support of such applications. Towards this goal, recent research efforts have aimed
at:

• modeling and querying time-evolving spatial objects (e.g. [35, 10, 44]),

• designing index structures and access methods (e.g. [27, 47]),

• implementing appropriate architectures and systems (e.g. [48]).

In the recent literature, one can find work on formalization and modeling of spatiotem
poral databases and a wide set of definitions about spatiotemporal objects. In the rest of
the paper, we adopt the discrete definition for spatiotemporal objects that appears in [40]:

Definition: A spatiotemporal object, identified by its o_id, is a time-evolving spatial object,
i.e., its evolution (or 'history') is represented by a set ofinstances (o_id, s;, t;), where s; is the
location of object o at instant t; (s; and t; are called spacestamp and timestamp, respectively).

According to the above definition, a two-dimensional time-evolving point (region) is rep
resented by a line (solid) in three-dimensional space. Figure 3.1 illustrates two examples:
(a) a moving point and (b) a moving region, according to the terminology proposed in [10].
Although in the rest of the paper, we consider objects of dimensionality d = 2, extension to
higher dimensions is straightforward 2 .

y

X X

(a) moving point (b) moving region

Figure 3.1: Two-dimensional time-evolving spatial objects

One of the tasks that a Spatiotemporal Database Managernent Systern (STDBMS) should
definitely support includes the efficient indexing and retrieval of spatiotemporal objects. This

2Popular examples of spatial datasets with dimensionality d > 2 include, among others, virtual reality
worlds (d = 3) and feature-based image databases (usually d 2: 256).

3.1. Introduction 22

task demands robust indexing techniques and fast access methods for a wide set of possi
ble queries on spatiotemporal data. Either extensions of existing spatial access methods
[50, 43, 27, 47] or new 'from-the-scratch' methods could be reasonable candidates. All pro
posais, however, should be evaluated under extensive experimentation on real and synthetic
data. For instance, query processing and/ or index building time (either real wall-clock time,
or number of disk I/Os), space requirements and combinations thereof are ali possible pa
rameters against which one may want to evaluate a given index proposal.

Overall, there is a lack of consistent performance comparison among the proposed ap
proaches, with respect to the space occupied, the construction time, and the response time
in order to answer a variety of spatial, temporal, and spatiotemporal queries. Moreover, [52]
suggests that "experiments of indexing techniques should be based on benchmarks such as
standard sets of data and queries".

Following that, the general architecture of a benchmarking environment for spatiotem
poral access methods (STAMs) that is currently under design includes the following:

(a) a module that generates synthetic data and query sets, which would cover a variety
of reallife examples,

(b) a repository of real datasets (such as TIGER files for- static- spatial data),

(c) a collection o f access structures for experimentation purposes,

(d) a da tabas e o f experimental results, and

(e) a visualization tool that could be able to visualize datasets and structures, for
illustrative purposes.

Our study continues an attempt towards a specification and classification scheme for
STAMs initiated in [40]. Within the above framework, in this paper we concentrate on
module (a) and, in particular:

• discuss parameters that have to be taken into consideration for generating spatiotem
poral datasets, and

• propose an algorithm that generates datasets simulating a variety of scenarios with
respect to user requirements.

The rest of the paper is organized as follows: In Section 3.2 we discuss the motivation for
this study. Section 3.3 discusses the parameters that need to be taken into consideration.
An appropriate algorithm is presented in Section 3.4 together with example results and
applications. Section 3.5 discusses severa! issues that arise and surveys related work. Finally,
Section 3.6 concludes by also giving directions for future work.

3.2. Motivation 23

3.2 Motivation

In the literature, severa! access methods have been proposed for spatial data without, how
ever, taking the time aspect into consideration. Those methods are capable o f manipulating
geometric objects, such as points, rectangles, or even arbitrary shaped objects (e.g. poly
gons). An exhaustive survey is found in [12]. On the other hand, temporal access methods
have been proposed to index valid and/or transaction time, where space is not considered at
ali. A large family of access methods has been proposed to support multiversion / tempo
ral data, by keeping track of data evolution over time (e.g. assume a database consisting of
medicai records, or employees' salaries, or bank transactions, etc.). For a survey on temporal
access methods see [31].

To the best of our knowledge, there is a very limited number of proposals that consider
both spatial and temporal attributes of objects. In particular, MR-trees and RT-trees [50],
3D R-trees [43], and HR-trees [27] are based on the R-tree family [15, 1, 18] while Overlapping
Linear Quadtrees [47] are based on the Quadtree structure [32]. These approaches have the
following characteristics:

• 3D R-trees treat time as another dimension using a 'state-of-the-art' spatial indexing
method, namely the R-tree,

• MR-trees and HR-trees (Overlapping Linear Quadtrees) embed the concept of overlap
ping trees [25] into R-trees (Quadtrees) in arder to represent successive states of the
database, and

• RT-trees couple time intervals with spatial ranges in each nade of the tree structure
by adopting ideas from TSB trees [24].

The majority o f proposed spatioternporal access structures are based on the R-tree (one
exception is [47]), as such we focus on such structures anda short survey ofthe R-tree based
approaches follows.

Assuming time to be another dimension is a simple idea, since severa! tools for han
dling multidimensional data are already available [12]. The 3D R-tree implemented in [43]
considers time as an extra dimension in the original two-dimensional space and transforms
two-dimensional rectangles in three-dimensional boxes. Since the particular application con
sidered in [43] (i.e., multimedia objects in an authoring environment) involves Minimum
Bounding Rectangles (MBRs) that do not change their location through time, no dead space
is introduced by their three-dimensional representation. However, if the above approach were
used for moving objects, a lot of ernpty space would be introduced (Figure 3.2).

The approach followed by the RT-tree [50] only partially solves that problem. Time
information is incorporated, by means of time intervals, inside the (two-dimensional) R-tree

3.2. Motivation 24

t

y

X

A

Figure 3.2: The MBR of a moving object occupies a large portion of the data space

structure. Each entry, either in a leaf or a non-leaf RT-tree node, contains entries of the
form (S, T, P), where S is the spatial information (MBR), Tis the temporal information
(interval), and P is a pointer to a subtree or the detailed description of the object. Let T
= (t;, tj}, i ::; j, ti be the current timestamp and ti+1 be the consecutive one. If an object
does not change its spatial location from ti to ti+1 , then its spatial information S remains
the same, whereas the temporal information Tis updated to T', by increasing the interval
upper bound, i.e., T' = (ti, ti+1). However, as soon as an object changes its spatiallocation,
a new entry with temporal information T = (ti+l' ti+ i) is created and inserted in to the
RT-tree. This insertion strategy makes the structure mostly efficient for databases of low
mobility; evidently, if we assume that the number of objects that change is large, then many
entries are created and the RT-tree grows considerably. An additional criticism is based on
the fact that R-tree node construction depends on spatial information S while T plays a
complementary role. Hence the RT-tree is not able to support temporal queries (e.g. "find
all objects that exist in the database within it a given time interval").

On the other hand, MR-trees and HR-trees are influenced by the work on overlapping
B-trees [25]. Both methods support the following approach: different index instances are
created for different transaction timestamps. However, in order to save disk space, common
paths are maintained only once, since they are shared among the structures. The collection
of structures can be viewed as an acyclic graph, rather than a collection of independent tree
structures. The concept of overlapping tree structures is simple to understand and imple
ment. Moreover, when the objects that have changed their location in space are relatively

3.3. A set of operatíons and parameters 25

few, then this approach is very space efficient. However, if the number of moving objects
from one time instant to another is large, this approach degenerates to independent tree
structures, since no common paths are likely to be found. Figure 3.3 illustrates an example
of overlapping trees for two different time instants fQ and t1 . The dotted !ines represent links
to common paths / subpaths.

Figure 3.3: Overlapping trees for two different time instants tO and tl.

Among the aforementioned proposals, the 3D R-tree has been implemented and experi
mentally tested [43] using synthetic (uniform) datasets. The retrieval cost for severa! pure
temporal, pure spatial and spatiotemporal operators was measured and appropriate guide
lines were extracted. Recently, [28] compares the HR-tree with the 3D R-tree and another
structure, called 2+3 R-tree, using two R-trees and a rationale similar to the 2R approach
presented in [21]. The basic conclusion is that the HR-tree is far more efficient in terms of
query processing for time point queries while that is not true for time interval queries. Also,
the HR-tree may result in a rather large structure.

3.3 A set of operations and parameters

[40] discusses a list of specifications to be considered when designing and evaluating efficient
STAMs with respect to: (i) data types and datasets supported, (ii) issues on index construc
tion, and (iii) issues on query processing. While the second and third ones mainly address
the internal structure of a method and hence should be considered by STAM designers, the
first group of specifications highly affect the design of an efficient benchmarking environ
ment since they focus on data base characteristics for evaluation purposes. In particular, the
specifications that are addressed in [40] with respect to type (i) are the following:

3.3. A set of operations and parameters 26

• Spec 1: on the data type(s) supported. Appropriate STAMs could support either point
or non-point spatial objects. In some cases, point objects could be considered as special
cases of non-point objects but this depends on the underlying modeling.

• Spec 2: on the time dimension(s) supported. A second classification concerns the time
dimension(s) supported, i.e., valid and/or transaction time. Since at least one time
dimension should be supported, spatiotemporal databases are classified in valid-time,
transaction-time, and bitemporal ones.

• Spec 3: on the dataset mobility. Three cases are addressed, with respect to the motion
of objects and the cardinality ofthe dataset through time, namely evolving (i. e., moving
objects of a fixed cardinality through time), growing (i.e., static objects of varying
cardinality through time), and full-dynamic (i.e., moving objects of varying cardinality
through time) databases.

• Spec 4: on the timestamp features. Whether future instances could refer to past times
tamps or not leads to a distinction between chronological and dynamic databases, i.e.,
collections of objects' instances (o_id, s;, t;) that either have or not to obey the rule of
consecutive timestamps: t;+l > t;.

In the resto f the paper we study the case of temporally degenerate databases that obey the
rule of consecutive timestamps, i.e., for each object in the database, the following inequality
exists between the timestamp of the current instance t; and that of the next instance t;+1
to be inserted into the database: t;+l > t;. The term degenerate refers to the characteristic
that the valid time of object instances is identical to their transaction time. That is, an
object is valid as long as it exists in the database. The problem that arises when no such
rule exists3 is clarified through the following example: Consider that two instances (o_id, s;,
t;) and (o_id, s;, t;) of an object o have been inserted into the database (without a loss of
generality, we assume that t; < t;) and no instance (o_id, sk, tk) exists, such that t; < tk
< t;. Hence [t;, t;) is the valid (and transaction) time of instance i. Let now assume that
a new instance (o_id, St, tt) is inserted into the database, such that t; < t1 < t;. Due to
that action, (a) the valid time of instance i has to be changed from [t;, t;) to [t;, t1) and
(b) the validity interval of the new instance lhas to be set to [t1 , t;). No straightforward
support for those operations exists in current STAMs and, therefore, we currently leave that
case out of study. Note however, that this assumption is not made in the area of bitemporal
databases [31]. Indeed in bitemporal access structures the rule is that, by definition, only
transaction is monotonically increasing as discussed above. However, adding spatial features
to bitemporal data is still an open area for research.

3 Applicable to valid-time only since transaction-time always obeys that mie.

3.3. A set of operations and parameters 27

3.3.1 User requirements

Three (Specl to Spec3) out of the above four specifications are orthogonal to each other. On
the other hand, only the chronological case of Spec4 is supported in this study, as declared
earlier, and, as a result of that, we currently treat transaction- and valid- time under a
uniform platform. Hence, we distinguish among 12 different database families (e.g. a point
plus transaction-time plus evolving plus chronological database) according to the following
options:

• Specl: point vs. region database,

• Spec2: transaction- (ar valid-) vs. bitemporal database,

• Spec3: evolving vs. growing vs. full-dynamic database,

• Spec4: chronological database.

In order for the user of a benchmarking environment to generate a synthetic dataset,
he/she should be able to (a) select one among the above database options and, then (b) tune
the cardinality of the dataset and an appropriate set of parameters and distributions.

A fundamental issue on generating synthetic spatiotemporal datasets is the definition of
a complete set o f parameters that control the evolution of spatial objects. Towards this goal,
we first address the following three operations:

• duration o f an object instance, which involves change of timestamps between consecu
tive instances,

• shift o f an object, which involves change of spatial location (in terms of center point
shift), and

• resizing o f an object, in volves change of an object's size (only applicable to non-point
objects).

In a more general case, the latter one could be regarded as reshaping of an object, as
not only size but also shape could change. However, as the MBR is the most common
approximation used by índices, we only consider that case, and thus shape changes are not
an issue.

A description of each operation follows. In particular, the goal to be reached is the
calculation of the consecutive instances (o_id, s;, t;) of an object o (recall the definition
in Section 3.1) starting from an initial instance (o_id, s1, t1). We also assume that the
spatial workspace of interest is the unit square [0,1)2 and time varies from O to 1 (i.e., the
unit interval). For illustration reasons, in Figure 3.4 we visualize four instances of a time
evolving two-dimensional region object o and the corresponding projections on spatial plane
and temporal axis, respectively.

3.3. A set of operations and parameters 28

t t, t
(o_ id, ~. tJ

tg
id, ~ t,J

to.
t,

!J

(o_ id, .'\. tJ
X

!J

X

Figure 3.4: Consecutive instances of a time-evolving object o and the corresponding projec
tions

3.3.2 Parameters involved

The shift, the duration, and the resizing of an object's instance are represented by the
functions:

duration (o_id, interval, currenUimestamp, new_timestamp)
shift (o_id,tlcenter[J, current_spacestamp_center, new_spacestamp_center)

resizing (o_id, tl extent[], current..spacestamp_extent[], new_spacestamp_extent[]}
which calcula te new_timestamp (a numeric value), new_spacestamp_center (a 2-dimensional

point), and new_spacestamp_extentij (an array of 2 intervals), respectively, of an object o_id,
as functions ofthe respective current values and three parameters, namely interval, tlcenter{j,
and tlextent[J, respectively.

As an example, consider the object illustrated in Figure 3.4 and its initial position (o_id,
sr, t1). Each consecutive spacestamp .s; and timestamp t; (i= 2, 3, 4) depends on the
previous one, .s;_ 1 and t;_ 1 respectively, with respect to the following formulae: t; = t;_1 +

3.3. A set of operations and parameters 29

interval;, si.center.x = Si-l.center.x + .t.center;.X, and si.extent.x = si-l.extent.x + .t.extent;.X.
In summary, Table 3.1lists the parameters of interest and their corresponding domains.

Ali parameters should follow a (user-defined) distribution, such as the ones we discuss in the
following subsection.

Table 3.1: Parameters for generating time-evolving objects

Parameter Type Domain
interval number (0 .. 1)

.t.center[] 2-dimensional vector (-1..1)2

.D.extent[] 2-dimensional vector (-1..1)2

3.3.3 Distributions

A benchmarking environment should support a wide set of well-established initial data dis
tributions. Figure 3.5 illustrates three two-dimensional initial distributions, namely the
uniform, the gaussian, and the skewed one.

..
-· .. ··
. ~ . . .
.... : . - .

.'~>·· -.-~ .• •'
<}:';.~.i~- ;, : . ·--. '·.

~}:;'h·fi'z-~·, ,: ·~·-

Figure 3.5: Basic statistical distributions in two-dimensional space

In addition to the initial spatial distributions, there are severa! other parameters that
require some kind of statistical distribution, especially those mentioned above (.t.centerD,
interval, and .t.extent[]). Through careful use of, possibly different, distributions for the
above parameters one may simula te severa! interesting scenarios, for instance, using a random
distribution for the .t.center[i} as well as for the interval, ali objects would move equally fast
(or slow) and uniformly on the map; whereas using a skewed distribution for the interval one
would obtain a relatively large number of slow objects moving randomly, and so on. Also,
by properly adjusting the distributions for each .t. center{i}, one may control the direction of
the objects movement. For instance, by setting .t.center{i} = Uniform(0,1) V i, one would
obtain a scenario where the set of objects eventually converge to the upper-right comer of
the unit workspace, irrespectively from the initial distributions, but using the "adjustment"

3.4. The GSTD algorithm 30

approach (see subsection 3.4.1). Similarly, if one wants the objects moving towards some
specific direction (e.g. East), he/she can adjust f>.center and put lower and upper bounds
for the center's generated value, as will be discussed in detail in the following section.

Among the distributions supported and illustrated in Figure 3.5, the uniform distribution
only requires the minimum / maximum values while the other ones require extra parameters
to be tuned by the user. In particular, the gaussian distribution needs mean and variance
parameters as input and the skewed distribution needs a parameter to be declared, which
controls the "skewedness" of the distribution.

In the following section, we adopt the issues discussed earlier in order to present an
algorithm that generates synthetic spatiotemporal datasets for benchmarking purposes.

3.4 The GSTD algorithm

We propose an algorithm, called Generate_Spatio_TemporalJJata (GSTD), for generating
time-evolving (i.e., moving) point or rectangular objects. For each object o_id, GSTD gene
rates tuples of the format: (o_id, t, pz, p,), where tis the timestamp and pz (Pu) is the lower
(upper) coordinate point of the spacestamp. The GSTD algorithm is illustrated in Figure
3.6.

3.4.1 Description of the algorithm

GSTD gets several user-defined parameters as input:

• N and D correspond to the initial cardinality and density (i.e., the ratio of the sum of
the areas of data rectangles over the workspace area) of the dataset,

• starting_id corresponds to the initial id number of the objects,

• numsnapshots corresponds to the time resolution of the workspace,

• min_t and max_t correspond to the domain of the interval parameter,

• min_c[} and max_c[} correspond to the domain of the f>.center[} parameter,

• min_ext[} and max_ext[} correspond to the domain of the L::.extent[} parameter, and
generates severa! tuples for each object, according to the following procedure:

"Each object is initially active and, for each one, new instances are generated as long
as their timestamp t < 1; when all objects beco me inactive, the algorithm ends ".

During the initialization phase (lines 01-04), ali objects' instances are initialized, such
that their center points are randomly distributed in the workspace, based on the distr _init{)

3.4. Tbe GSTD algorithm 31

distribution, and their extensions are either set to zero (in case of point datasets) or calculated
according to extent(N,D) routine with respect to the input N and D p<Ú-ameters (in case of
non-point datasets).

During the main loop phase (!ines 06-27), each new instance of an object is generated as a
function ofthe existing one and the three parameters (interval, f:lcenter[J, f:lextent[]). Then,
invalid instances (i.e., those with coordinates located outside the predefined workspace) can
be manipulated in three alternative ways as described below.

In order for a new instance to be generated, the interval, f:lcenter[] and f:lextent[] values
are calculated by calling an RNG(distr(),min,max) routine, i.e., a random number generator
that generates random numbers between min and max following a predefined distr, which is
a statistical distribution, such as the ones discussed in subsection 3.3.3.

The print_instance function checks whether the current instance of an object has a time
stamp value greater than or equal to the value in next_snapshot. If so, the coordinates of the
instance (given by the old_instance variable) before the current instance are printed, using
the apropriated timestamp (which depends on the nexLsnapshot variable). In addition, the
value of the nexLsnapshot variable is properly adjusted. Otherwise, the current instance is
not output.

Obviously, it is possible that a coordinate may fali outside the workspace; GSTD manipu
lates ínvalíd instances according to one among three alternative approaches:

• the 'radar' approach, where coordinates remain unchanged, although falling beyond
the workspace,

• the 'adjustment' approach, where coordinates are adjusted (according to linear inter
polation) to fit the workspace, and

• the 'toroid' approach, where the workspace is assumed to be toroidal, as such once an
object traverses one edge of the workspace, it enters back in the "opposite" edge.

In the first case, the output instance is appropriately fiagged to denote that invalidity
but the next generated instance is based on that. On the other hand, in the other two cases,
it is the modified instance that is stored in the resulting data file and used for the generation
of the next one. Notice that in the 'radar' approach, the number of objects present at each
time instance may vary.

The three alternative approaches are illustrated in Figure 3.7 for the example of Fi
gure 3.4. For simplicity, only the centers are illustrated; black (grey) locations represent
valid (invalid) instances. In the example of Figure 3. 7a, the 'radar' fails to detect sa, hence
it is not stored but the next location S4 is based on that. Unlike 'radar', the other two
approaches calcula te a valid instance s3 ' to be stored in the data file which, in turn, is used
by GSTD for the generation of s4 . It is interesting to watch the behavior of s4 in Figure 3. 7c,

3.4. The GSTD algorithm

Generate_Spatio_Temporal_Data algorithm
Input: values N, starting_id, numsnapshots, D, min_t, max_t
arrays min_c [], max_c [], min_ext D, max_ext D
distributions distr_init(), distr_t(), distr_c(), distr_ext()

32

Dutput: instance (id, t, lower_left_point, upper_right_point), validity_flag
begin
01 for each id in range [starting_id .. N+starting_id] do

I* initialization phase *I
02 Set t = O, centerD = RNG(distr_initO, O, 1), extent[] = extent(N, D)
03 Set active = TRUE
04 end-for
05 Set step = 1 I numsnapshots
06 for each id in range [starting_id .. N+starting_id] do I* loop phase *I
07 Set next_snapshot = step
08 while active do

I* calculate delta-values and new instances *I
09 Set interval = RNG(distr_t(), min_t, max_t)
10 Set delta_center[] = RNG(distr_cO, min_cD, max_c[])
11 Set del ta_extent [] = RNG(distr_ext O, min_ext [] , max_ext D)
12 Set old_instance = instance
13 update_instance(instance)

f* check instances and output *I
14 if t > 1 then
15 active = FALSE
16 print_instance(old_instance,current[i] ,next_snapshot)
17 else //check instance validity and output
18 Set validity_flag = valid(instance)
19 if validity_flag = FALSE and approach <> 'radar' then
20 adjust_coords(instance, approach)
21 end-if
22 if t > next_snapshot then
23 print_instance(old_instance,current[i] ,next_snapshot)
24 end-if
25 end-if
26 end-while
27 end-for
end.

Figure 3.6: The GSTD algorithm

3.4. The GSTD algorithm 33

where the calculated location finally stored (s4 ') is actually identical to that in Figure 3. 7a,
as the effect of two consecutive calculations for s3 ' and S4'.

v v

X

s,

(a) 'radar' (b) 'adjustment'

v

(c) 'toroid'

Figure 3.7: Two-dimensional time-evolving spatial objects

3.4.2 Examples of generated dabasets

As mentioned earlier, real world exarnples of (point or region) spatiotemporal datasets in
clude trajectories of humans, animals, or vehicles, e.g. detected by a global positioning
system (GPS), digital simulations of flights or battles, weather forecast and monitoring of
fire or hurricane fronts. For instance, detecting vehicle motion by GPS and storing the whole
trajectory in a database is a typical every day life example. However, different motion sce
narios correspond to different datasets which an effi.cient structure should be evaluated on.
Random versus biased direction, fast versus slow motion are some of the pararneters that
result to totally different applications.

In this subsection, in order to simulate some of those scenarios, we present six example
datasets consisting of point or rectangle objects generated by GSTD. For ali files the fol
lowing parameters were set: N = 1000, D =O or 0.5 (for points or rectangles, respectively),
numsnapshots = 100. Illustrated snapshots correspond to t = O, 0.25, 0.50, 0.75, and 1.

Table 3.2 presents the non-fixed input parameters and the generated snapshots for each file.

3.5. Discussion and Related Work 34

Scenarios 1 and 2 follow the 'toroid' and 'radar' approach, respectively, to manipulate invalid
instances, while scenarios 3 through 6 follow the 'adjustment' approach.

Scenarios 1 and 2 illustrate points with initial gaussian distribution moving towards East
and NorthEast, respectively. In the former case, where the toroidal world model was used,
when the points traverse the right edge, they enter back in the left side of the map. Notice
that to force the points moving to the East, D.center{yj =O and D.center{x} > O. In the latter
case, where the 'radar' approach is simulated, the points move towards NorthEast and some
of them fali beyond the upper-right comer (some quite early due to their speed), in fact
some points move beyond the map. Notice that since D.center{} is always > O, those points
will never reappear in the map.

Scenario 3 illustrates the initially skewed distribution of points and the movement towards
NorthEast. As the 'adjustment' approach was used, the points concentra te around the upper
right comer. Scenario 4 includes rectangles initially located around the middle point of the
workspace, which are moving and resizing randomly. The randomness of shift and resizing is
guaranteed by the Uniform(min,max) distribution used for D.center[} and D.extent[j, where
abs(min)=abs(max) > O.

Finally, scenarios 5 and 6 exploit the speed parameter of a moving dataset as a function
of the GSTD input parameters. By increasing (in absolute values) the min and max values
of D.center[}, a user can achieve 'faster' objects while the same could happen by decreasing
the max_t value that affects interval. Thus, the speed of the dataset is considered to be a
meta-information since it could be derived by the knowledge of the primitive parameters.
Similarly, the direction of the dataset can be controlled, as presented in scenarios 1 through
3.

Altematively, if the user's application makes necessary the conjunction of two (or more)
scenarios, as for instance, a population of MBRs with only a small percentage of them
moving towards some direction and the rest ones being static, two individual scenarios can
be generated according to the above by properly setting the two starting_id input parameters
and then merged, which is a straightforward task Bottomline, by properly adjusting the
parameters of Table 3.1, one can yield a scenario that fits his/her needs.

3.5 Discussion and Related Work

An altemative straightforward algorithm for generating N time-evolving objects would in
clude the calculation of the spacestamp of each object at each snapshot, thus leading to an
output consisting of T = N . numsnapshots tuples. Our approach outperforms that since it
outputs a limited number T'oftuples (T' ~ T), i.e., the necessary ones in order to reproduce
the dataset motion.

However, a fundamental question arises: based on the knowledge of two instances (o_id,

3.5. Discussion and Related Work 35

S;, t;) and (o_id, si+1, t;+l) that correspond to consecutive timestarnps, what is the location
of an object at a time t;, such that t; < t; < t;+l ? As an exarnple, recai! the instances of
the object o illustrated in Figure 3.4. The status of its spacestarnp between e.g. t; and t;+1

is a "fuzzy" issue. Two alternatives may be followed:

• projection: the spacestamp is considered to be static and equal to the one at time t;,

• linear interpolation: the spacestarnp is considered to be moving with respect to a start
(at time t;) and an end- (at time t;+l) position.

Both alternatives find applications in real world; cadastral systems, on the one hand,
versus navigational systems, on the other hand, are popular examples. Figure 3.8 illustrates
the two alternative scenarios for the exarnple of Figure 3.4.

(o_id, s,, r3) (o _id, s3, r3J

(o_id, s2, tz) (o _id, s~ t,j

.Y .Y

(o_id, s, rt)

X

(a) projection (b) linear interpolation

Figure 3.8: Alternative scenarios for the location of an object between two timestamps

In any case, detecting the status of object o at a time instance during (t1, f:!) is an open
issue. We argue that the GSTD algorithm proposed earlier is independent of that issue.
Actually, it generates a series of instances regardless of such an issue. On the other hand,
it is a visualization tool or a STAM construction algorithm that needs to support one or
both alternative scenarios. Since in this study we are interested in spatiotemporal databases
that follow the rule of consecutive timestarnps, the knowledge of both the current and the
new instances of an object, as supported by GSTD (line 13), are suffi.cient to deal with both
alternatives.

3.6. Conclusion and Future Work 36

The need for independent platforms for benchmarking purposes or, in general, experiment
management has been already addressed in the past [37, 16]. Such a need arises when a
researcher aims to make a 'fair' performance study or experimentation without the dilemma
of building his/her own datasets for this purpose. Although extended related work is found
in traditional data base benchmarks and data generators (e.g. [2, 13]), in the field of spatial
databases it is very limited [36, 30, 14]. Moreover, when motion is introduced to support
spatiotemporal databases, to our knowledge, no related work exists.

The most relevant to our work is the 'A La Carte' benchmark [14]. It is a WWW-based
tool consisting of a rectangle generator that builds datasets based on user defined parameters
(cardinality, coverage, coordinates' distributions) and an experimentation module that runs
experiments on either user built or stored sample datasets (including parts of the Sequoia
2000 storage benchmark [37]). The module is actually a spatial join performance evaluator
that supports severa! spatial join strategies.

3.6 Conclusion and Future Work

STDBMS require appropriate indexing techniques on spatiotemporal data. Although con
ceptually the problem seems to be easy to solve, severa! issues arise when one attempts to
adopt a spatial indexing method to organize time-evolving objects by just adding an ex
tra dimension for time. Therefore, a limited number of STAMs have been proposed in the
literature as briefly surveyed in Section 3.2.

The effort towards the design and implementation of a benchmarking environment in
order to provide performance comparison of STAMs leads to the need of collecting a variety
of appropriate synthetic and real spatiotemporal datasets. However, in accordance to the
design of efficient methods, generating efficient synthetic datasets is not a straightforward
extension of generating spatial data, such as the ones that have been thoroughly used for
experimental purposes in the spatial database literature. At a first step, severa! specifications
that identify the type of the dataset have to be addressed and, at a second step, a set of
parameters and corresponding distributions have to be tuned by the user. More specifically,
we have discussed three operations, namely duration o f an object instance, shift and resizing
of an object (the latter one applicable to non-point objects) and derived a set of three
parameters, namely interval, t.center, and t.extent, which contra! the evolution of a spatial
object through time in satisfactory terms.

Based on those parameters, we have designed and implemented the GSTD algorithm
that generates sets of moving points or rectangles according to users' requirements, thus
providing a tool that simulates a variety of possible scenarios. Some of those scenarios have
been illustrated and discussed in Section 3.4. GSTD also includes alternative methodologies
to support invalid instances, i.e., those with coordinates falling outside the workspace.

3.6. Conclusíon and Future Work 37

This study continues the work initiated in [40] towards a full and interactive support tool
for designing, implementing, and evaluating access methods for the purposes of STDBMS.
We are currently working on a WWW environment to make GSTD available to ali re
searchers through the Internet (mirrar sites: http:j jwww.dblab.ece.ntua.gr/~theodor/GSTD/
and http:jjwww.dcc.unicamp.br/~mario/GSTD/). We are also investigating some addi
tional functionality on GSTD. For example, users may want to specify a movement fiow to a
specific point p in the workspace. Although, given the target p, it is not a complicate task, it
is a specific implementation to a specific scenario. We currently study the parameterization
of such specific scenarios by permitting GSTD input parameters to be (user-defined) func
tions rather than fixed values. Such an extension will enhance GSTD fiexibility to simulate
a variety of real applications.

Acknowledgements

Mario A. Nascimento was partially supported by CNPq (Process No. 300208/97-9) and
MCT /PRONEX's project "Advanced Information Systems". He is also with CNPTIA/ Em
brapa. Jefferson R. O. Silva was supported by FAPESP (Process No. 97 /11205-8). Yannis
Theodoridis was partially supported by the EC funded TMR project "CHOROCHRONOS:
A Research Network for Spatiotemporal Database Systems", contract number ERBFMRX
CT96-0056.

3.6. Conclusion and Puture Work

Distributions of Parameters

distr_init = Gaussian(O.S,O.l)
interval = Gaussian(O,O.S)

ãcenter[x] = Uniforrn(0,0.3)

âcenter [y]

Ãextent[x]

tt.extent(y]

Uniform(O,O)

Uniform(O, O)

Uniform(O, O)

Snapshots

scenario 1: points moving from center to East ('toroid' approach)

distr_init = Gaussian(O.S,O.l)

in~erval = Gaussian(O,O.S)

tt.center[x] Uniform(0,0.4)

licenter [y l Uniform (O, O. 4)

.âextent [x] Uniform(O, O)

àextent [y] Uniform(O, 0)

scenario 2: points moving from centerto NorthEast ('rada1J approach)

distr_init = Skewed(l)

interval = Gaussian(0,0.2)

.6.center[x] Uniform(0,0.3)

âcente:~:: [y] Uniform(O, o .3)

.âextent[x] Uniform(O,O)

àextent [y] Uniform(O, O)

scenario 3: points moving from SouthWest to NorthEast

distr_init Gaussian(O.S,O.l)

inter:val

Acenter[x)

Acenter[y]

Gaussian (0, O. S)

Uniform (-0. 2, O. 2)

Uniform (-0. 2, O. 2)

Aextent[x) =Uniform(-0.01,0.01)

Aextent[y) =Uniform(-0.01,0.01)

distr_init

interval

Acenter [x]

Acenter [y)

Aextent[x]

.&.extent [y]

distr_init

interval

Acenter: [x]

¢er [y)

&extent[x]

A.ext.ent [y I

scenario 4: rectangles moving (and resizing) randornly

Gaussian(O.S,O.l)

Gaussian{O,O.S)

Uniform(-0.2,0.2)

Uniform(-0.2,0.2)

Uniform(O, O)

Uniform(O, O)

scenario 5: points moving randomly (low speed)

Gaussian(0.5,0.1)

Gaussian (O, O. 5)

Uniform(-0.4,0.4)

Uniform(-0.4,0.4)

Uniforrn(O, O)

Uniform(O, O)

scenario 6: points moving randomly (high speed)

Table 3.2: Example files generated by GSTD

38

Capítulo 4

Testes de desempenho da HR-tree

Prólogo

O terceiro artigo apresenta um estudo comparativo entre a HR-tree [27], a 3D R-tree[43] e a
2+3 R-tree[20]. O artigo apresenta inicialmente uma motivação e uma revisão bibliográfica
sobre estruturas de acesso à dados espaço-temporais. As três estruturas são descritas de for
ma resumida, mostrando suas características. Em seguida são descritos os passos realizados
para geração dos dados utilizados no teste. O algoritmo descrito no capítulo 3 foi utilizado.
O artigo apresenta em seguida, de forma detalhada, os resultados obtidos na comparação.

Como é comum na área de indexação, três fatores foram avaliados nos testes:

• tamanho do arquivo de índice gerado

• número de páginas de disco acessadas na construção do índice

• número de páginas de disco acessadas em consultas

Verificou-se que a HR-tree foi muito superior às outras duas em consultas espaciais em
um ponto específico no tempo. Para consultas espaciais em intervalos de tempo, a HR-tree é
superior apenas para consultas com intervalos de tempo pequenos. A medida que o tamanho
do intervalo aumenta, a HR-tree perde sua vantagem em relação às outras duas estruturas.
No fator tamanho de índice, a HR-tree foi a que gerou maiores arquivos de índice, muito
acima das outras duas, que geraram arquivos de tamanho próximos uma da outra.

Para tentar diminuir o tamanho do índice gerado, foi explorada no artigo uma outra
abordagem, na qual objetos são atualizados não mais a cada instante no tempo, mas a cada
t instantes no tempo. Embora nessa abordagem as respostas às consultas tenham que ser
filtradas, a HR-tree continua como a melhor estrutura para consultas para pontos no tempo
e intervalos pequenos de tempo.

39

40

Uma versão anterior desse artigo foi publicado como relatório técnico IC-98-34 1 . O
artigo (na sua versão atual apresentada neste capítulo) foi submetido para publicação no 6th
International Symposium on Spatial Databases (SSD).

1 Disponível em http:/ fwww.dcc.unicamp.br/ic-tr-ftp/1998/98-34.ps.gz

Access Structures for Moving Points

Mario A. Nascimento Jefferson R. O. Silva

Institute of Computing
State University of Campinas

PO Box 6041
13083-970 Campinas SP BRAZIL
{mario, 972147}@dcc.unicamp.br

Abstract

Yannis Theodoridis

Computer Science Division
Dept. of Electrical and Computer Eng.
National Technical University of Athens

Zographou 15773, Athens, HELLAS
theodor@cs.ntua.gr

Severa! app!ications require management of data which is spatially dynamic, e.g.,
tracking of battle ships or moving cells in a blood sample. The capability of handling
the temporal aspect, i.e., the history of such type of data, is also important. This pa
per presents and evaluates three temporal extensions of the R-tree, the 3D R-tree, the
2+3 R-tree and the HR-tree, which are capable of indexing spatiotemporal data. Our
experimenta explore severa! parameters, and show that the HR-tree is the winner, in
terms of query processing cost, for time point and small time interval window queries.
On the other hand, its performance deteriorates as the length of the time interval in
creases. However, the main side effect of the HR-tree is its storage requirement, which
is much larger than that of the other approaches. To reduce that, we explore a batch
oriented updating approach, at the cost o f some overhead during query processing time.
To our knowledge, this study constitutes the first extensive experimental comparison
of access structures for moving points.

Keywords: spatiotemporal databases, indexing, access structures, benchmarking.

4.1 Introduction

The primary goal of a spatiotemporal database is the accurate modeling of the real world;
that is a dynamic world, which involves objects whose position, shape and size change over
time [40]. Reallife examples that need to handle spatiotemporal data include storage and
manipulation of ship and plane trajectories, fire or hurricane front monitor and weather
forecast. Geographical information systems are also a source for spatiotemporal data. For
instance, in the agricultura! domain, land owners as well as government agencies must keep

41

4.1. Introduction 42

track of crop situation over time to take decision as such to where use pesticides and/ or
provide financing to farmers. To take another example, consider a series of snapshots taken
from a satellite. This type of data, possibly after some treatment, is clearly spatiotemporal
data. As yet another example domain, consider the problem of vídeo (or multimedia in
general) database management. Objects that appear in each frame can be considered two
dimensional moving objects, upon which one may want to keep track over time or exploit
relationships among them. Summarizing, a "database application must capture the time
varying nature of the phenomena they model" [51, Ch. 5]. Spatial phenomena, hence spatial
databases, are no exception, therefore spatiotemporal databases should fiorish as current
technology makes it more feasible to obtain and manage such type of data ([9] is a good
example of that trend).

Among the many research issues related to spatiotemporal data, e.g., query languages
and management of uncertainty [48], we focus on the issue of optimizing access structures,
hence speeding up query processing. Despite the fact that there is much work done on the
of area of access structures for temporal [31] and spatial data [12], not much has been done
regarding spatiotemporal data. This paper deals with this very point.

In particular, we focus on access structures that maitain the whole 'history' of each
moving object and are able to answer queries of the type "which objects were located within
a specific area at a specific time instance (or during a specific time interval)". This class of
access structures currently includes a very limited number of proposals; to our knowledge,
there exist only five, namely MR-trees and RT-trees [50], 3D R-trees [43], and more recently,
HR-trees [27] and Overlapping Linear Quadtrees [47], based on the popular R-trees [15, 34, 1,
18] and Quadtrees [33]. On the other hand, there exist (also a limited number of) proposals
aiming at supporting queries that deal with the future, i.e., "which objects will (certainly
or probably) be located within a specific area after (or within) a certain time". This class
of access structures usally store current location and some extra information (such as speed
and direction) to make safe predictions for the future locations of objects [19, 48]. Although
we admit that both applications are of equal importance, in this paper we only consider the
former class.

In [40], a set of seven criteria were proposed to characterize spatiotemporal data and
access structures in the class of interest:

1. Data types supported: whether it supports points andjor regions;

2. Temporal support: whether the supported temporal dimension is that of valid time,
transaction time or both;

3. Database mobility: whether the changes in cardinality or the spatial position of the
data items, or both, can change over time;

4.1. Introduction 43

4. Data loading: whether the data set is known a priori or not, whether only updates
concerning the current state can be made or whether any state can be updated;

5. Object representation: which abstraction (e.g., MBR.s) is used to represent the spatial
objects.

6. Temporal treatment: whether it support special actions such as packing or purging
(vacuuming) spatial data as time evolves.

7. Query support: whether it is able to process not only pure spatial and temporal queries,
but also queries which are spatiotemporal in nature.

After the directions above, and for the purposes of this paper, we assume spatiotemporal
data specified as follows:

• The data set consists of two-dimensional points, which are moving within the unit
square;

• Updates are allowed only in the current state of the database;

• The timestamp of each point's version grows monotonically following a transaction
time pattern, and

• The cardinality of the data set remains fixed as time evolves.

Regarding the indexing structures, no packing or purging of data is assumed. Finally they
must provide support to process at Ieast two types of queries: (1) containment queries with
respect to a time point; and (2) containment queries with respect to a time interval. By
containment query we mean one where, given a reference MBR, ali points lying inside such
MBR should be retrieved.

Hence, according to the terminology in [40], this paper considers data bases of the point/transaction
time/evolving/chronological class. For simplicity, throughout the paper we assume the two
dimensional space, although extending the presented arguments for higher dimension is not
problematic. Also, instead of a new access structure, we investigate how to extend a very
well known one, namely the R-tree [15, 34, 1, 18].

The remainder of the paper is organized as follows. In Section 4.2 we detail the access
structures which we will compare. Next, in Section 4.3, the methodology used to generate
spatiotemporal data is discussed. Section 5.4 presents and discusses the experiments we
perform regarding space requirements, update and query performance. Finally, the paper is
closed with a summary of our findings and directions for future research.

4.2. Spatiotemporal Access Structures 44

4.2 Spatiotemporal Access Structures

As mentioned earlier, we are aware of only five access structures that consider both spatial
and temporal attributes of objects, namely MR-trees and RT-trees [50], 3D R-trees [43],
HR-trees [27] and Overlapping Linear Quadtrees [47].

In the RT-tree the temporal information is kept inside the R-tree nodes. This is in
addition to the traditional content of the R-tree nodes. On the other hand searching in the
RT-tree is only guided by the spatial data, hence temporal information plays a secondary
role. As such queries based solely on the temporal domain cannot be processed efficiently, as
they would required a complete scan of the database. No actual performance analysis was
reported in [50].

The 3D R-trees, as originally proposed in [43], use standard R-trees to index multimedia
data. The scenario investigated is that of images and sound in a multimedia authoring envi
ronment. In such a scenario it is reasonable to admit that the temporal and spatial bounds
of the indexed objects are known beforehand. Aware of that fact the authors proposed two
approaches, called the simple and the unified scheme. In the former one, a two-dimensional
R-tree indexes the spatial component of the data set, and an one-dimensional R-tree indexes
the temporal component. Query processing is performed using both trees and performing
the necessary operations between the two returned answer sets. The latter approach uses a
single three-dimensional R-tree and treats time as another spatial dimension. The authors
conclude that the advantage of using one or the other approachis a matter of trade-off based
on how much often purely spatial or temporal queries are posed relatively to spatiotemporal
ones.

The Overlapping Linear Quadtrees, the MR-trees and the HR-trees are ali based on the
concept of overlapping trees [25]. The basic ideais that, given two trees where the younger
one is an evolution1 of the older one, the second one is represented incrementally. As such
only the modified branches are actually stored, the branches that do not change are simply
re-used. The Overlapping Linear Quadtrees, as the name implies are based on Quadtrees
[33] and as such are not constrained to index only MBRs. The MR-trees and the HR-trees
are very similar in nature and we comment on the HR-tree in more details shortly. Indeed,
next we discuss the three access structures we investigate in the remainder of this paper.

4.2.1 3D R-tree

The structure we discuss here is based on the 3D R-tree proposed in [43]. The most straight
forward way to index spatiotemporal data is to consider time to be another axis, along
with the traditional spatial ones. Using this rationale, an object which lies initially at

1 By evolution we mean a further version based on some changes upon the same data set.

4.2. Spatiotemporal Access Structures 45

(xi, Yi) during time [ti, t;) and then lies at (x;, Y;) during [t;, tk) can be modeled by two
line segments in the three-dimensional space, namely the !ines: [(xi, Yi, ti), (xi, Yi, t;)) and
[(x;, Y;, t;), (x;, y;, tk)), which can be indexed using a three-dimensional R-tree.

This idea wor ks fine if the end time of ali such !ines are known. For instance consider
in the above example that the object moves from its initial position to the new one but
is to remain there until some time not known beforehand. Ali we know is that it lies in
its new position until now, or until changed, no further knowledge can be assumed. The
very problem of what now or until changed means is complex enough by itself (refer to [8]
for a thorough discussion on the topic). To make things simpler we assume that now (or
until changed) is a time point sufliciently far in the future, about which there is no further
knowledge.

What matters to our discussion is that standard spatial access structures are not well
suited to handle such type of "open" !ines. In fact, one cannot avoid them. It is reasonable
to assume that once the position of an spatial object is known, it is unknown when (and if)
it is going to move. As such ali current knowledge would yield such open !ines, which would
render known spatial access structures, e.g., R-trees, of little use. Recently, [5] investigated
that problem in the context of temporal databases and proposed appropriate extensions to
R*-trees.

One special case where one could overcome such an issue is when ali movements are
known a priori. This would cause only "closed" !ines to be input, and thus the above problem
would not exist. In the comparisons we make !ater in the paper using this structure, which
we simply refer to as 3D R-tree, we shall make such an assumption. One feature that may
favor such an approach is that any R-tree derivative could be used.

4.2.2 2+3 R-tree

One possible way to resolve the above issue is to use two R-trees, one for two-dimensional
points, and another one for three-dimensionallines (hence the name 2+3 R-tree). A sim
ilar idea has been proposed in [20] in the context of bitemporal databases. In that paper
bitemporal ranges with open transaction time ranges were kept under one R-tree (called
front R-tree) as a line segment. Whenever a open transaction time range were closed it
would become a closed rectangle, which was to be indexed under another R-tree (called back
R-tree), after removing the previously associated line segment from the front R-tree. In the
2+3 R-tree whenever the end time of an object's position is unknown it is indexed under a
two-dimensional R-tree, keeping the start time of its position along with its id. Note that
the original R-tree (or any of its derivatives) keep only the object's id (or a pointer to the
actual data record) and its MBR in the leaf nodes. The two-dimensional R-tree used in this
approach is thus minimaly modified.

Once the end time of an "open" object's current state (i.e., position) is known, we are able

4.2. Spatiotemporal Access Structures 46

to construct its three-dimensionalline as explained above, insert it into the three-dimensional
R-tree and delete the existing entry from the two-dimensional R-tree.

Using the example above: from time t; until the time point immediately before2 ti the
object is indexed under the two-dimensional R-tree. At time tj, it moves, as such, (1) the
point (x0 ,y0) is deleted from the two-dimensional R-tree, (2) the line [(x0 ,y0 ,t;), (x0 ,y0 ,ti))
is input into the three-dimensional R-tree, and, finally, (3) the point (x1 , y1) is input into the
two-dimensional R-tree. Keep in mind that the start time of a point position is also part of
the information held along with the remainder of its data.

It is important to note that now, both trees may need to be searched, depending on the
time point with respect to which the queries are posed. Similar to the case of the 3D R-tree
any of the proposed R-tree derivatives could be used, provided that the leaf nodes of the
two-dimensional one is minimally modified as discussed above.

A final remark should be done. The 2+3 R-tree is the dynamic version of the 3D R
tree. That is to say that the two-dimensional R-tree serves the single purpose of holding the
current (i.e., open) intervals. Should one know ali movements a priori the two-dimensional
R-tree would not be used at ali, hence the 2+3 R-tree would be reduced to the 3D R-tree
presented earlier.

4.2.3 IIFl-tree

The two approaches above have drawbacks. The first suffers from the fact that it cannot
handle open-ended !ines. The second, while able to overcome that problem, must search two
distinct R-trees for a variety of queries. In this section we present the HR-trees [27], which
is designed to index spatiotemporal data as classified earlier.

Consider again the example in Section 4.2.1. At time t; one could obtain the current
state (snapshot) of the indexed points, build and keep the corresponding two-dimensional
R-tree, repeating this procedure for tj and tk. Obviously, it is not practical to keep the
R-trees corresponding to ali actual previous states of the underlying R-tree. On the other
hand it is reasonable to expect that some (perhaps the vast majority) of the indexed points
do not move at every timestamp. Consequently R-trees may have some (or many) nodes
identical to the previous version. The HR-tree explores this, by keeping ali previous states
(snapshots) of the two-dimensional R-tree only logically.

As an illustration consider the two consecutive (with respect to their timestamps) R-trees
in Figures 4.l(a) and (b), which can be represented in a more compact manner as shown in
Figure 4.1(c). Though it is just a simple example, it is easy to see that much space could
be saved if one could re-use the nodes that did not change from a given state to. the next
one. Note that with the addition of an array A one can easily access the R-tree hejshe

2We assume, without loss of generality, that the time domain is isomorphic to the rationals.

4.2. Spatiotemporal Access Structures 47

1 2 3 4 5 6 7 8 9

(a) R-tree at TO

A

1 2 3 4 5 6 7 8 9 3a

1 2 3a 4 5 6 7 8 9

(b) R-tree at TI (c) HR-tree Jogically equivalent bo both R-trees in (a) and (b)

Figure 4.1: Example of the HR-tree approach.

desires. Perhaps most important, is that once the root node of the desired R-tree for a
given timestamp is obtained, query processing cost is the same as if ali R-trees where kept
physically.

Notice however that it is desirable to keep the number of newly created branches as low
as possible. For that reason some R-tree variants are not suitable to serve as HR-tree's
framework, notably, the R+-tree [34] and the R*-tree [1]. In the forrner the MBRs are
"clipped" and one single MBR rnay appear in severa! internai nodes, therefore increasing the
nurnber o f branches to be created in each incrementai R-tree. Likewise, the R* -tree, avoids
node splitting by forcing entries re-insertion, which is likely to affect severa! branches, hence
enlarging the HR-tree.

Arnong the other altematives, we have found the Hilbert R-tree [18] to be very suitable
for our purposes and use it as HR-tree's base!ine. From now on, unless explicitly mentioned
otherwise, we use the term R-tree(s) to refer to the Hilbert R-tree(s) as originally defined.

The overall ideais that upon insertion of a new point version (i.e., its new location) a new
branch has to be created with ali of its nodes are timestamped with the current timestamp,
and then the new point is inserted in this branch's leaf node. AI! nodes which were not
modified at ali from last timestamp are simply re-used. For instance, Figure 4.1(c) represent
the resulting HR-tree when a new data point is inserted and which were to fali within the
leaf node 3 of the R-tree in Figure 4.1(a). A similar idea is used to delete a point frorn

4.3. Data Generation 48

the HR-tree. As commented above, querying the HR-tree is a simple matter of retrieving
the appropriate logicall R-tree root through the array A. The interested reader can find ali
HR-tree's algorithms detailed in [28].

4.3 Data Generation

From the seven issues presented in the introduction of the paper, it is quite clear that
the first four are mostly related to the data sets while the last three are more related to
spatiotemporal access structures.

Hence, with respect to the first four itens, we characterize our data as follows:

• The data type being indexed is that of points.

• The supported temporal dimension is that of transaction time, the new position of any
given point always has a begin-time greater than the end-time of the previous position;

• The data points are evolving, i.e., the number of moving points are kept fixed and

• Only the current state (snapshot) can be updated.

The access structures in turn are categorized as:

• Able to index points or regions, the last ones would be abstracted by MBRs;

• No purging or vacuuming of data is assumed and

• Queries based on spatial, temporal or spatiotemporal predicates can be processed,
although not ali with the same efficieny in ali structures.

For the data generation itself, we have build GSTD3 [41], a spatiotemporal data generator
where the user can tune severa! parameters to obtain data sets which fulfills his/her needs.
Some of them are: the initial data distribution, the amount of time a point is going to rest
at the same location (interval), the distance it will move (shift) and how it is going to move
in the space. For the initial data distribution we have experimented the cases of uniform,
gaussian and skewed distributions.

AI! datais initially generated assuming a two-dimensional unit square. Any point moving
out of such square has its coordinates adjusted to fit in the workspace. We also assume that
the interval follows a gaussian distribution and the shift and direction follow the uniform
one.

3 URLs: http: I lwww .dblab. ece .ntua.grl ~theodoriGSTDand http: I l;r,;w .de c. unicamp. brl~marioiGSTD.

4.4. Performance Comparison 49

To illustrate how datais generated and how it evolves, Figure 4.2 (4.3) shows an initial
data set using the gaussian (skewed) distribution, and four "snapshots" taken after 25, 50,
75 and 100 timestamps. It is easy to note that after 100 timestamps the initial distribution
becomes quite c!ose to a uniform one. This feature will allow us to investigate how dependent
of the initial spatial data distribution the access structures are. Naturally, data points which
were initially randomly distributed, remain randomly distributed as time evolves .

. ·, ·. · .. :: ··- . . ' .. · ..
. t.:

Figure 4.2: Evolution of gaussianly distributed data points .

!.' •• : •• . . :· ~~ ...
):'. . .

""'"'"'""''-"·J-~~t.:;.~-.~!.

Figure 4.3: Evolution of skewedly distributed data points.

4.4 Performance Comparison

AB pointed out above our main concern is to investigate the performance yielded by the
3D R-tree, the 2+3 R-tree and the HR-tree when indexing moving points. Recall that
in arder to use the 3D R-tree one mnst know the whole history in advance. While some
applications, such as digital battle field, may use previously recorded snapshots, their online
versions always involve the now parameter. To overcome that problem, one may use the
2+3 R-tree approach discussed in Section 4.2.2. In any case, we decided to include the 3D
R-tree as a yardstick. Both the 3D and 2+3 R-trees are Hilbert R-trees in nature (recai!
that the HR-tree also uses the Hilbert R-tree as its basis).

Our experiments were performed on a Pentium li 300 Mhz PC running LINUX with 64
Mbytes of core memory. The disk pages, i.e., tree nades, use 1,024 bytes·and ali programs
were coded using GNU's C++ compi!er. Although this paper presents quantitative results

4.4. Performance Comparison 50

(a) Small MBRs (a) Mediwn MBRs (a) Large MBRs

Figure 4.4: Query MBR.s with centers uniformly distributed.

using only a data set cardinality of 100,000 data points, results using other values can be
obtained elsewhere [28]. All objects timestamps fell within the unit time interval [0, 1] with
a granularity of 0.01, i.e., 100 distinct and equally spaced timestamps could be identified.
Three initial spatial distributions were investigated: uniform, gaussian and skewed. The
GSTD parameters were set in such a way that the points could move freely and therefore
the final distributions tend to the uniform one (see Figures 4.2 and 4.3). The queries were
uniformly distributed, and three different area sizes were used, denoted respectively as small,
medium and large MBR.s, and shown in Figure 4.4. The difference in the generation of the
queries is that they are not points, but MBR.s. Recall that we are interested in queries
of the type "which are the points contained in a given region at (or during) a time point
(interval)". The same set of two-dimensional queries are three-dimensionalized by "adding"
a third temporal axis to make containment queries with respect to a time interval. For each
time point or interval we ran 100 queries and computed the averages obtained.

Next we show the obtained results regarding storage requirements, index building cost
and query processing cost (the last two measured in terms of disk I/O).

4.4.1 Storage Requirements

Figure 4.5 shows how large each of the structures are after indexing the initial 100,000
data points, and ali their evolutions, i.e., after 100 timestamps, as a function initial spatial
distribution. It is clear that the qualitative behavior of either structure does not seem to
depend upon the initial distribution of the spatial data.

One result not shown in the figure is that, as expected, the HR-tree approach does save
space when compareci to the extreme case of physically storing all (100) R-trees. In fact, the
average savings amounted to over 33%.

More interesting however, is the fact that the 3D R-tree and the 2+3 R-tree use roughly
the same storage and are much smaller than the HR-tree. This is due to the fact that severa!
branches of the "virtual" R-trees are duplicated in the HR-tree. Indeed, the more dynamic

4.4. Performance Comparison 51

225
210
195
180 HR-tree -·-·-··
165 2+3R-tree-

3D R-tree ·
150

~ 135 .c ::;: 120 ~

1l 105 c;;
90
75
60
45
30
15
o

Unifonn Gaussian Skewed
Initial Spatial Distributions

Figure 4.5: Indices' sizes.

the data points, the smaller the savings in the HR-tree with respect to storing all R-trees
separately.

In order to alliviate this shortcoming we experimented the following approach. Instead
of indexing ali movements at the very timestamp when they happen, one could use a batch
oriented approach. The idea is to collect all movements into a buffer and from time to time
flush out all of them into the same virtual R-tree. For instance, consider points locations
which would originally be indexed under timestamps t, t + 1 and t + 2. Using such an
approach all such points could be indexed at time t + 2. The tradeoff in doing this is that
one may not be able to query only the time point of interest. In the example just presented
querying time point t + 1 wou!d require retrieving the (virtual) R-tree at time t + 2, and
consequently filter the answer properly. In other words, such batching may yield false-hits.
We investigate this trade-off in more details shortly.

Figure 4.6 shows the obtained results when all movements were indexed at their exact
tirnestamp (as in Figure 4.5), and at every two and three timestamps (which we refer to as
double and triple approach). The gains were about 30% and 45% respectively. Note that
even though the HR-tree became smaller it still remains larger than the other two structures.
Fortunately, as we shall see shortly, the imposed overhead due to the false-hits is not likely
to be as high (depending on the query size).

4.4. Performance Comparison 52

Uniform Gaussian Skewed
Initial Spatial Distributions

Figure 4.6: HR-tree size using a batch oriented approach.

4.4.2 Index Building Cost

One interesting aspect to consider is the cost (in terms of disk I/Os) needed to construct
the índices. Figure 5.3 shows such an information for all three initial distributions after
indexing 100,000 data points and their evolutions. As expected the 2+3 R-tree is the one
which takes more time (i.e., I/Os) to be built. This is dueto the fact that whenever a point
moves, there is an insertion (of the new version) and a deletion (of the previous position)
on the two-dimensional R-tree, and one insertion of a line (the previous position history)
on the three dimensional R-tree. The HR-tree appears as the runner-up as at least one
complete branch is updated from one timestamp to another one (assuming at least one point
moved). The 3D R-tree on the other hand is the most economical alternative, given that
if all point movements are known a priori4

, only one three-dimensional line is inserted per
point movement and no deletions occur.

Unlike in the case for the índices sizes, the batching approach yields only some marginal
improvements (when used for the HR-tree) regarding update cost.

4Recall however the restrictions of such an a.ssumption for severa! applications, a.s discussed earlier.

4.4. Performance Comparison 53

16

HR-tree -·-·--
2+3R-tree-

12
3DR-tree ·

-

"O

" ~ ~
" " ál 8
~

~
p..

4

: ' o
Uniform Gaussian Skewed

Initial Spatial Disttibutions

Figure 4.7: Indexing building cost.

4.4.3 Query Processing Cost

There are two cases to consider, one when the query is posed with respect to a specific time
point and another when a time interval is considered. We consider each one in turn, starting
with the case of a fixed reference time point query. The U, G and S labels in x-axis of
the following figures denote the initial Uniform, Gaussian and Skewed spatial distribution
respectively. The results shown are the average number of I/Os obtained when querying
time points O, 0.25, 0.5, O. 75 and 1.

Figures 4.8, 4.9 and 4.10 show the results obtained when querying each structure, at the
timestamps described above, and using the small, medium and large query MBRB respec
tively.

Our conjecture that the HR-tree would require substantially smaller query processing
time was shown to be true in ali cases. When the temporal part of the query is a point, the
tree that corresponds to that timestamp (e.g., the R-tree pointed by A[Tl] in Figure 4.l(c))
is obtained and the query processing is exactly the same one of a range query in· a single
standard R-tree. On the other hand, for both the 3D and 2+3 R-tree the whole structure is
involved in the query processing, thus increasing significantly the query processing cost.

One noteworthy result is obtained when querying the 2+3 R-tree at time 1, i.e., that
end of the indexed temporal window. When a query is posed against that time point, the
3D R-tree answer (recall that the 2+3 R-tree is composed by a two anda three-dimensional

4.4. Performance Comparison

"O

" ~
:J
~ p..

70

65

60

55

50

45

40

35

30

25

20

15

10

5

o I i
U G S

1=0.00

li

I r

U G S
1=0.25

:

I : i
'

U G S
1=0.50

HR-tree ·······
2+3R-tree-
3D R-tree ·

I i

I : I i 1

: '
I I

U G S
1=0.75

U G S
1=1.00

Figure 4.8: Query processing cost, small MBRs.

54

two R-trees) is empty. This happens because there is no object with an end time equal
to 1 and thus ali the answers come from the 2D R-tree, where there is always a current
version for ali indexed points. In fact, when querying time point 0.99, i.e., the indexed
timestamp immediately before the last one, the 2+3 R-tree would require over 130% more
I/Os than necessary when querying time point 1. Therefore the good performance obtained
when querying that particular timestamp is by no means typical. Finally, it also became
clear that the size of the query MBR affects ali structures equally.

It is now necessary to measure the trade-off posed when one used the double or triple HR
tree approach as discussed earlier (we noted earlier that such approach was able to reduce
the HR-tree's size). Figure 4.11 shows the results when querying large query MBRs at time
points O, 0.25, 0.5, 0.75 and 1 (the results were qualitatively the same for small and medium
sized queries, and are not shown to save space). The difference in the curves for the original
and the double and triple approach represents the number of pages which were read due to
the batching, i.e., overhead pages. The average overhead was 17% for small queries, 20%
for medium queries and 30% for large queries. It is important to note that despite such
overhead the HR-tree still remains the overall faster index structure (compare Figure 4.10
to 4.11). The only exception we noted is the performance of the 2+3 R-tree when querying
time point 1, which is, as argued earlier, an atypical result.

Next we proceed to investiga te how the structures perform when querying a time interval

4.4. Performance Comparison

95
90
85
80
75
70
65
60

""âl 55
!l 50
~ 45
~
"" 40

35
30
25
20
15
10
5
o

;

U G S
t;O.OO

:

:I

U G S
(;0.25

:

U G S
(,:0.50

HR-tree ·······
2+3R·tree-
3D R-tree ·

I! 1/

i

'

••

! i
•

U G S
(;0.75

:
l

: •

U G S
t;J.OO

Figure 4.9: Query processing cost, medium MBRs.

160
150
140
130
120
110
100

"' 90 " " ~
~ 80

E 70
60

50
40
30
20
!O
o

U G S
t;O.OO

: :

U G S
!=0.25

HR-tree ·······
2+3R·tree-
30 R·tree ·

\

• :

',
i :

:

.
:

UGS UGS U G S
!=1.00 (,:0.50 1=0.75

Figure 4.10: Query processing cost, large MBRs.

55

4.4. Performance Comparison

60

50

40

30

20

10

o

original HR-tree ·······
double HR-tree -

triple HR-tree ·

I, .
I'

I:

I i

U G S
1=0.00

: :

'

:

U G S
1=0.25

: :

:
i

: : :
'

U G S
1=0.50

'

:
'

: i
:

'I i !
U G S

1=0.75

'

I i

li
'

: j

1\

: : ' i

U G S
1=1.00

56

Figure 4.11: Query processing overhead when using the batch oriented approach and large
MBRs.

instead of a point. Figures 4.12, 4.13 and 4.14 illustrate the query processing cost when
varying the average length of the queried time interval. Such a length is measured in number
of consecutive timestamps. That is, we measured the structure's performance when the time
interval was up to 10% of the total (unit) time window length. Larger intervals were not
investigated as the curves shown already presented a c!ear trend.

While the HR-tree is well suited to search a time point, i.e. it searches a single (virtual)
R-tree, for time intervals it has to traverse as many logical R-trees as many indexed time
points are covered by that interval. As a result the HR-tree loses its relative advantage
relatively fast with the increase in the queried interval length. In fact, this is worsened by
the increase in the query MBR area.

Figure 4.15 shows that the batching approach, as expected, yields some overhead at query
processing time which is now harmful (comparing to the performance delivered by the other
structures). That is, batching updates does not seem worthwhile for the case of querying
time intervals.

4.5. Summary and Future Research

50

45

40

35

-o 30
1i
~ 25
"" "'

""" 20

15

10

5

o

HR-tree -·-·-··
2+3R-tree-
3D R-tree ·

i

, I :

i

•

U G S
length:3

;

:

i

; .

U G S
length:6

:

i

:
.

U G S
length:lO

Figure 4.12: Interval query processing cost, small MBRs.

4.5 Summary and Future Research

57

-

In this paper we raised the issue that despite the fact that applications dealing with spa
tiotemporal data are gaining strength, not much has been done regarding implementation
andfor extensions of appropriate database management systems. Towards that goal our
contribution was to propose and investigate access structures for spatiotemporal data.

To the best of our knowledge it is the first performance study for spatiotemporal access
structures, unlike the areas of temporal [31] and spatial [12] indexing methods where an
extensive experimentation and comparison is found in the literature. In the particular field
that we discuss in this paper, it was only [43] that compared alternative schemes based on
R-trees with respect to analytical cost models proposed in [39].

We investigated three R-tree based structures: the 3D R-tree, the 2+3 R-tree and the
HR-tree. We have discovered, after severa! experiments, that:

• The less dynamic the data set, the higher the storage savings yielded by the HR-tree
when compared to the ideal (from the query processing perspective) but impractical (in
terms of disk storage demand) solution of having alllogical R-trees physically stored;

• The 3D and 2+3 R-trees tend to be much smaller than the HR-tree;

• The use of a batching approach at update time is capable of reducing substantially the

4.5. Summary and Future Researcb

"' "' !l

" ..,
bll

"' "-<

"' "' !l

&,
~

100

90

80

70

60

50

40

30

20

10
i

o

HR-tree ---·-··
2+3R-tree-
3D R-tree ···

U G S
1ength=3

:

:

i
I

i
I :

i

i

:
:
i

i : : ; ' i
U G S U G S

1ength=6 1ength=10

Figure 4.13: Interval query processing cost, medium MBRs.

190
180
170 HR-tree ------
160 2+3R-tree-
150 3D R-tree ·

140
130
120

i
: 110

100

i 90
80

I
70
60
50
40

i

30
20 .

: 10 i o '
u G s u G s u G s

1ength=3 1ength=6 1ength=10

Figure 4.14: Interval query processing cost, large MBRs.

58

4.5. Summary and Future Research

225
210
195
180
165
150

-e 135
" 1: 120

~ 105
~ 90

75
60

45
30
15
o

:

original HR-tree ····--
double HR-tree -

triple HR-tree ·

i .
:

U G S
length=3

. ! •

U G S
length=6

•

•

.

!

.

I

.

j :

U G S
length=lO

Figure 4.15: Query processing cost, large MBRs.

HR-tree's size, yielding some overhead at query processing time.

59

• When querying a specific time point the HR-tree offers a much better query processing
time than the 3D and 2+3 R-trees. In fact, it offers the sarne performance as if ali
logical R-trees were physically stored. The overhead imposed by the batching approach
is acceptable as the HR-tree remains the best performer;

• If instead of a time point a time interval is queried, the HR-tree loses its advantage
rather quickly with the increase in the length of the queried time interval. In such a
case the batching approach overhead for the HR-tree is hardly worthwhile.

Considering that with current technology storage is much less of a problem than time to
query data, we consider the HR-tree a good candidate access structure for spatiotemporal
data when most queries are posed with respect to a time point or a very short time range.
On the other hand, when both short and long time interval queries are probable, the other
two structures are also good candidates. We also have to notice that, unlike HR-tree and
2+3 R-tree, 3D R-tree are not capable of supporting on-line spatiotemporal applications
that involve the now (or until changed) parameter [8].

The present paper has not dealt specifically with how the above structures behave with
respect to movement direction and speed and the use of caching structures and policies.
For instance, suppose that instead of spreading in the space, ali points move coordinately

4.5. Su=ary and Future Research 60

towards the same direction, how would each access structure support this ? Also a few points
may move much faster than the others (or vice-versa), is that a feature that will affect the
structures' performance ? These and severa! other questions are currently being investigated.
An issue which needs further research has to do with the abstraction of the data set. In
this paper we used data points, but it is easy to foresee that severa! application domains
(e.g., land information systems [49]) may require the management of spatial regions. For the
particular case of MBRs the structures proposed in this paper could be used. We conjecture
that their strengths and limitations would remain, but further research is needed to confirm
such belief.

As a further step, each structure's performance is planned to be analytically explored,
in correspondence with the R-tree analysis for selection and join queries that appears in
[42]. Both directions, extensive experimentation and analytical work, converge on building
a spatiotemporal benchmarking environment consisting of real and synthetic data sets and
access structures for evaluation purposes.

Acknowledgernents

Mario A. Nascimento was partially supported by CNPq (process number 300208/97-9 and
PRONEX's project "SAI: Advanced Information Systems") and is also with CNPTIA -
Embrapa. Jefferson R. O. Silva was supported by FAPESP (process number 97 /11205-8).
Yannis Theodoridis was supported by the EC funded TMR project "CHOROCHRONOS:
A Research Network for Spatiotemporal Database Systems", contract number ERBFMRX
CT96-0056. We also thank Timos Sellis for fruitful discussions and comments on earlier
drafts of the paper.

Capítulo 5

Aplicação da HR-tree como estrutura
de indexação de dados bi-temporais

Prólogo

O quarto e último artigo trata da aplicação da HR-tree em indexação de dados bitemporais.
O artigo inicialmente faz um levantamento do problema de indexação em banco de dados
bitemporais e dos trabalhos relacionados. Em seguida, falamos da nossa motivação para
a aplicação da HR-tree nesse problema e descrevemos como a utilizamos para a indexação
bitemporal, assim como a estrutura com a qual foi comparada. A geração dos dados utilizados
nos testes é descrita e finalmente o artigo apresenta os resultados obtidos.

Os fatores avaliados nos testes foram os mesmos apresentados no capítulo 4. Basicamente,
os resultados obtidos foram: (1) para consultas o desempenho da HR-tree foi bem superior,
chegando a ser 80 % mais rápida; (2) também na construção do índice, a HR-tree mostrou-se
superior à 2R-tree; (3) já para tamanho do índice gerado, a HR-tree gera índices maiores
que a 2R-tree. Utilizando uma política de inserção em batch, o tamanho do índice gerado
pela HR-tree é reduzido, e o desempenho em consultas é praticamente mantido.

Esse artigo foi publicado como relatório técnico TimeCenter TR-381 . Uma versao revisada
foi submetida ao 11'h IEEE Symposium on Scientific and Statistical Database Management.

1 Disponível em http:(fwww.cs.auc.dk(research(DBS/tdb/TimeCenter/TimeCenterPublications(TR-
38.ps.gz

61

An Incrementai Index for Bitemporal Databases

Jefferson R. O. Silva Mario A. Nascimento
Institute of Computing

State University of Campinas
P.O. Box 6176

13083-970 Campinas SP BRAZIL
{972147, mario}@dcc.unicamp.br

Abstract

Bitemporal databases record not only the history of tuples in temporal tables,
but also record the history of the data bases themselves. Indexing structures, which
are a criticai issue in traditional databases, became even more criticai for bitemporal
databases. We address this problem by investigating an incrementai indexing struc
ture based on R-trees, called the HR-tree, which was originally aimed at spatiotemporal
databases. We have found that the HR-tree is much more efficient (up to 80% faster)
than previously proposed approaches based on two R-trees when processing transac
tion time point based queries. As for size, the HR-tree was found to be better suited
for medium to large sized batch updates, otherwise it is prone to be quite large.

Keywords: temporal databases, indexing, access structures, R-trees.

5.1 lntroduction

Temporal databases have been the object of quite some research regarding many aspects and
much has been published in the field [46]. It has been recognized that two dimensions of
time need to be supported by a database management system (DBMS) in order to enhance
the temporal modeling capabilities of a database. These two time dimensions are the valid
time (the time range when the fact is true in the modeled world) and transaction time (the
time range when the fact is logically stored in the database). A third dimension, user-defined
time, is also needed for modeling purposes, but need not be supported by the DBMS [17].
A Bitemporal Database (2TDB) is thus one which supports both valid time and transaction

62

5.2. Related Work 63

time. In such a case one is allowed to ask queries based on different (past and possibly
future) states of the data base and/ or tuples.

Our goal in this paper is to investigate the efficiency of an index structure originally
designed for spatiotemporal databases, the HR-tree, [27, 28], for indexing 2TBDs. In spa
tiotemporal databases, one must index not only the spatial extents of objects, which we refer
to as spacestamp1

, but also their evolutions as time progresses. The current spacestamp is
the one stored until it is changed. Hence we assume it is stored until the current point in
time, denote by now. As such the transaction time of the spacestamps are now-relative [5].
On the other hand we assume that the valid-time of those spacestamps are not now-relative,
i.e., they are known in advance.

As an example of a spatiotemporal scenario that fits the above requirements consider
satellite imagery. Each image about a certain area has a well-defined valid time, and each
such image is stored until the next one is obtained. Note that even in the case where a new
image is not obtained in due time the valid time of the current one is likely to expire due to
the very nature of moving objects (e.g., ships, planes, hurricanes) down in Earth. That is,
every image has a pre-defined valid time, and a transaction time which is now-relative.

Note that if we simply replace the notion of spacestamps for the notion of regnlar tuple
attributes we obtain a 2TBD. In other words, instead of assigning valid time to spacestamps
we do so for a set of regular tuple's attributes. This simi!arlty is the motivation we use to
investigate the HR-tree's performance when indexing 2TDBs.

The rest of this paper is organized in the following manner. Section 5.2 reviews previously
proposed approaches. Section 5.3 presents briefly the HR-tree structure. In Section 5.4 we
discuss how we generated data sets for evaluating the HR-tree and also present the results we
obtained. Section 5.5 concludes the paper with a summary and offers directions for further
work.

5.2 Related Work

While a reasonable number of papers have been published on the issue of indexing either
valid time or transaction time databases, only a handfull have addressed the problem of
indexing 2TDBs [31]. In what follows we review some of the approaches proposed recently,
most based on R-trees [15]: the M-IVTT [26], the Bitemporal Interval Tree, Bitemporal
R-Tree, the 2R-tree [21], the GR-tree [5] and the 4R-tree [4].

The M-IVTT (Multiple Incrementai Valid Time Trees) is a two levei hierarchical index
based on B+-trees. In the upper levei, one tree indexes the transaction time of events, having
its leaves pointing to valid time trees. Underneath this transaction time tree there is a forest

1 A spacestamp can be either a N-dimensional MBR (Minimum Bounding Rectangles), a point or any
other appropriate abstraction.

5.2. Related Work 64

ofValid Time Trees (VTTs.) Each VTT indexes the valid time of ali records existing at that
point in (transaction) time. Dueto potentially large demand for space, only some VTTs are
kept full, along with sufficient information (patches) on how to reconstruct any of the other
ones.

The Bitemporal Interval Tree (BIT), the Bitemporal R-tree (BRT) and 2R-tree structures
index closed valid time ranges and now-relative transaction time objects. The BIT and BRT
follows the partia!-persistent methodology. In a partially persistent structure only the newest
version of an object can be modified, whereas in an ephemeral structure old versions of an
object are discarded when an update occurs. The authors modify an ephemeral memory
based structure with good worst-case performance in to the BIT, which is disk based, partially
persistent and well paginated. The BRT makes an R*-tree [1] a partially persistent directed
acyclic graph of pages. The structure is then formed by severallogical R-trees, representing
the evolution of objects in the transaction time sense.

The 2R-tree uses two R-trees (named front and back R-trees) to index bitemporal data.
The bitemporal domain is mapped to a two-dimensional space (valid time x transaction
time) as follows. An object with an unknown transaction end time is stored in the front R
tree as a line. Recai! that in this approach the valid time ranges are bounded and, naturally,
the transaction start time is always known. Once this object is updated, it is removed from
the front R-tree and is inserted into the back R-tree as a rectangle. Figure 5.1(a) shows an
example of this approach. The front R-tree indexes two objects, inserted at (transaction)
time T and T' and which are still current in the database, i.e., bear an open transaction end
time. The back R-tree, on the other hand, indexes two other objects which were current in
the database during [T, T'] and [0, T'] respectively.

Note, however, the valid time interval can be transformed into a point in a three
dimensional space (valid start time x valid end time x transaction time). Likewise the
rectangles formerly in the back R-tree are now transformed in three-dimensional segments.
Figure 5.1(b) shows how the temporal data in Figure 5.1(a) would be indexed using such
transformation. The advantage of using such a point based approach is that the amount of
overlap among the indexed objects is diminished, hence the underlying R-trees can offer a
better performance.

The GR-tree and 4R-tree index both now-relative valid and transaction time. The GR
tree extends the R*-tree [1] to store both static tuples (with closed valid and transaction time
ranges) and growing objects (with either valid or transaction end time unknown). In this new
tree, the indexed objects in its nodes can be either a growing rectangle or a growing stair
shape object, in addition to the standard MBRs supported by the R*-tree. By storing such
growing objects, the dead space among objects in the GR-tree is decreased when compared
to using the R*-tree and hence it becomes much more efficient.

To reduce dead space, the 4R-tree maps a growing rectangle into a closed line and a

5.3. The HR-tree for 2TBDs 65

TI (front R-tree) TI (back R-tree)

T' T'

D T T

s E s· E' VT s E S' E' VT

(a) The interval based 2R approach (2Ri)

TI (jront R-tree) TI (back R·tree)

T' T'

••
T . T

·•
.. E E' VTe .E E' VTe

·s

S'

VTs VTs

(b) The point based 2R approach (2Rp)

Figure 5.1: The two variants of the 2R-tree approach.

growing stair-shape object to a point. Using such a transformation the proposed approach
is able to use "off-the-shelf' R-trees (which is the main goal of the proposal). Indeed, the
objects are indexed in four R*-trees, depending on whether their valid and transaction end
time are open or not. Ai; objects are updated they may move between such R*-trees like in
the 2R-tree approach. In fact, it is interesting to note that in the case of bitemporal data
with no now-relative valid time the 4R-tree reduces to the 2R-tree.

Even though we have not discussed, in ali approaches above incoming queries should be
modified accordingly, further details can be found in the original papers.

5.3 The HR-tree for 2TBDs

Ai; most other proposals the HR-tree is also based on R-tree. The HR-trees were designed
as a spatiotemporal indexing structure, as such, let us use a spatiotemporal scenario as a
motivation. Consider an object O which lies at spacestamp So during time [to, ti) and then
lies at spacestamp S1 during [t1 , t 2) and so on and so forth. These ''movements" charac-

5.3. The HR-tree for 2TBDs 66

terize different states (snapshots) of the spatiotemporal database. One trivial way to index
such states would be to build an R-tree for each of them. Although this is obviously not
a practical solution, it is reasonable to assume that sibling R-trees may have some (poten-.
tially many) identical nodes. The HR-tree explores this, by keeping ali previous states of
the two-dimensional R-tree only logically instead of physically. This is achieved by allowing
consecutive instances of R-tree to overlap, i. e., to share nodes. This idea was also proposed in
[25] but for B+ -trees in the context of (single dimension) temporal data bases. As an illustra
tion consider the two consecutive (with respect to their timestamps) R-trees in Figure 5.2(a)
and (b), which can be represented in a much more compact manner as the HR-tree shown
Figure 5.2(c). In this example ali objects (at the leafnode levei) but object 3 are current in
the database as of time Tl and as such have their transaction end time open (i.e, equal to
now). Object 3 on the other hand has its transaction time equal to [TO, Tl), meaning that
a query posed at transaction time Tl traverses the logical R-tree rooted at R2 and does not
"see" object 3, as one would expect.

I 2 3 4 5 6 7 8 9

(a) R-tree at TO

A

I 2 3 4 5 6 7 8 9 3a

123a 456 7 8 9

(b) R-tree at TI (c) HR-tree logically equivalem bo both R-trees in (a) and (b)

Figure 5.2: A single HR-tree logically equivalent to multiple R-trees.

Although it is just a simple example, it is easy to see that much space could be saved
by re-using the nodes that did not change from a given state to the next one. Note that
with the addition of a simple structure A (an array in the figure, but which could be a
B-tree if warranted) the root node of the desired R-tree, current for a given timestamp,
can be obtained quickly, and thus the query processing cost is the same as if ali R-trees

5.4. Performance Analysis 67

where kept physically. This becomes handy in the case of transaction time point queries.
However, should one query a transaction time range, then severallogical R-trees would need
to be searched, which could be costly. Details about the HR-tree structure as well as its
companion algorithms can be found in [27, 28].

As argued earlier in the paper it is rather simple to use the HR-tree to index 2TDBs with
now-relative transaction time. Bounded valid time ranges can be considered degenerate two
dimensional MBRs, which the R-tree can handle well, and thus also the HR-tree. Given
that, the overall ideais to: (1) index the initial set of tuples under an HR-tree; and (2) as
tuples are updated new branches under the HR-tree are created.

Note that it is highly desirable to keep the number of newly created branches in the
HR-tree as low as possible. For that reason some R-tree variants are not suitable to serve
as HR-tree's framework, notably, the R*-tree [1]. That structure avoids node splitting by
forcing re-insertion, which is likely to affect several branches, hence "swelling" the HR-tree.
A similar reasoning also applies to the R+ -tree [34] which may duplicate entries. Among the
other alternatives, we have found the Hilbert R-tree2 [18] to be suitable for our purposes and
use it as HR-tree's baseline. It does not yield duplication, avoids re-insertion and is indeed
reported to be quite efficient.

As the BRT, BIT, 2R-tree, GR-tree and 4R-tree the HR-tree is based on R-trees. Unlike
the GR-tree and 4R-tree, and like the BRT and BIT, the HR-tree was not designed to handle
now-relative valid time. Differently than the 2R-tree and 4R-tree, the HR-tree maintains
only one single structure. A unique feature of the HR-tree is that it is able to query each
indexed database state (logical R-tree) as if it was stored individually. This provides a very
good query processing time, with very little, if any, overhead, unlike ali other structures.
There is, however, the price of a potentially large overhead in space. We investigate this
issue, among others, in the next section.

5.4 Performance Analysis

We now present some of the results obtained when investigating the HR-tree's performance.
As the papers proposing the BRT, BIT, GR-tree and 4R-tree did, we will use the 2R-tree
approach (described in Section 5.2), as references against which we compare our proposal
in fact, we will use both approaches, the interval based (which we refer to as 2Ri) and the
point based (which we refer to as 2Rp). Ali R-trees used in the experiments, including the
one used as a basis for the HR-tree, are Hilbert R-trees implemented as described in [18].

As usual in this area we focus on three main issues: update cost, query processing cost and
storage requirements (the first two are measured in terms of disk I/Os). Before discussing

2 Note that HR-tree should not be confused with a shorthand for Hilbert R-tree, in fact, HR-tree stands
for Historical R-tree.

5.4. Performance Analysis 68

the figures obtained let us sketch how the data sets we used were generated. Some of the
following criteria have been inspired by [21, 5].

We have used only data sets with closed valid time ranges, that is, the initial and end
valid time are known. Ali the data sets have 100,000 updates (insertions o r deletions). Each
indexing structure is initially populated with 5,000 insertions, which is followed by 95,000
insertions/ deletions. Three differents groups of data sets were generated, each one having
different insertions/deletions ratios, namely: 60/40, 75/25 and 90/10. From now on we
refer to these groups as the 60/40, 75/25 and 90/10 (data) files, respectively. Finally, each
data group has four files, varying the number of updates per transaction timestamp, we
experimented this number being 100, 500, 1,000 and 5,000. This reflects how better (or
worse) a given structure handle different sizes o f batch updates per transaction timestarnp.
Notice that this implies in data files having from 1000 to 20 transaction timestarnps.

Without loss of generality ali time values are real numbers between O and 1. This is due
to the implementation of the Hilbert R-tree (thus the HR-tree) we currently have and is not
a limitation of the structures presented. The average length of the valid time ranges is 0.05
(i. e., 5% of the maximum timespan) and it was generated using an exponential distribution.

5.4.1 Update Cost

The first issue investigated was the cost for updating the indexing structures. Figure 5.3
presents the average number of disk pages accessed per update in ali three structures for
the 60/40 data files. The HR-tree has the lowest average I/O per update, followed by the
2Rl and 2Rp. Ali structures benefit (though not considerably) from having a larger batch
of updates per transaction timestamp. The HR-tree outperforms the 2R approach because
at each transaction timestamp the logical R-tree updated in the HR-tree is smaller than
the R-tree updated by the 2R approach. In the HR-tree just one logical R-tree is "visible"
per transaction timestamp, whereas in the 2R approaches ali updates regardless of their
transaction timestamp are "visible" under the same structure. Therefore the HR-tree can
be updated more effi.ciently. As for the two other data files (75/25 and 90/10) we noticed
that as the insertions/deletions rate increases, the HR-tree requires slightly more I/Os, while
both variations of the the 2R improve their performance. In fact, we also observed that for
the 90/10 data file the 2Rl performs nearly as well as the HR-tree.

In general, the lower the insertions/ deletions ratio, the better the HR-tree's relative
performance. This was indeed verified in the remaining of the experiments. This can be
explained as follows. The higher the number of deletions per transaction timestamp the
higher the likelihood that nodes already modified in those transaction timestamps (by the
deletions) can be re-used. Hence, new nodes need not be created, enhancing update time.
When there is a much larger the number of insertions (relative to the number of deletions)
there is a higher probability that new nodes need be created, hence consuming disk I/Os.

5.4. Performance Analysis

10 .-.-.-----------------,
9 HR-tree-+--
8 2Ri ·+··-

7 •··s- ~~P_"

6
~~"~----- -+------------------ -------- --- -- -------

5'---.,
4 ~-----------------J

3
2
1

0<---J'---L..-----------'
0.10.5 1 5
Updates per transaction timestamp(x 1000)

Figure 5.3: Cost of updates, 60/40 data file

5.4.2 Query Processing Cost

69

To query the data indexed, we have performed transaction time point and valid time
point/range queries, denoted respectively as * fpointfpoint and * /rangefpoint queries, after
simplifying the notation introduced in [45]. In both cases, the transaction time is randomly
chosen from one of the transaction timestamp indexed. For the * fpointfpoint case the valid
time is a random time point within [0, 1). For* /rangefpoint queries, the queried time length
has also an exponential distribution with average equal to 0.05. Each query file created has
250 queries and the average figures are the ones reported.

As note earlier the HR-tree may not yield good performance when querying transaction
time ranges, i.e., queries of the type: * fpoint/range and */range/range. Indeed, this was
verified in [28] in the context of spatiotemporal databases. As such, we chose not to deal
with such type of queries in this paper.

Figure 5.4 presents the average number of disk pages accessed per query in point queries
for the 60/40 data files. The HR-tree has the best query performance, requiring about
68% less disk access than the 2Rp, which was expected to be the best of the 2R based
implementations. As discussed above, for the 75/25 and 90/10 data files, the HR-tree's loses
some of its relative advantage. Nevertheless it still offers the best query performance, being
about 50% and 33% faster than the 2Rp, respectively.

Figure 5.5 depicts the results for * /rangefpoint queries, using the 60/40 date file and
both the indexed and query ranges with average lengths of 5% of the maximum timespan.
Consistently, the HR-tree yield the best performance, being about 77% faster, than the 2Rp
which again outperforms the 2Ri. The HR-tree remains the best struture when using the
75/25 and 90/10 data files, being at least 50% faster than the 2Rp.

We have also experimented smaller and large query ranges, with average length o f 1% and

5.4. Performance Analysis

600 ,-,-,.----------,

540 r
480
420
360

HR-tree ---
2Ri -+---

2Rp --E>---·

300 ---+-- --+--------------. ---------------------------=

240
180 ·--EJ------8--------------- -------------------------
120

60~~~--------~

OL.......L--L-----------..1
0.10.5 1 5
Updates per transaction timestamp(x 1000)

Figure 5.4: Cost of * fpointfpoint queries.

600 ,-,-,.----------,

540

480
420
360
300
240

180
120

HR-tree-
2Ri -+---
2Rp __ , __ _

--+-----+--------------------------- ---------------

----e:r----a------------- ------------------------------------

60~~4-----------------1

Ol.......L--L----------..1
~1~5 1 5
Updates per transaction timestamp(x 1000)

Figure 5.5: Cost of * /rangefpoint queries.

70

10% of the maximum timespan. For the 1% case, the performance was virtual!y the same
as the one obtained in the * fpointfpoint case (Figure 5.4). When using larger queries we
noticed that the relative advantage of the HR-tree becomes even larger. In fact, it becomes
over 80% faster than the 2Rp and the 2Rp's curve becomes closer to the 2Ri's. While in
Figure 5.5 the 2Rp is about 33% faster than the 2Ri, when querying Jarger ranges (twice as
large in this case) this advantages falls to around 15%. When querying points (Figure 5.4 or
short va!id time ranges (the 1% case) the 2Rp was over 40% faster than the 2Ri. This shows
that the gain obtained by indexing points instead of ranges (thus diminishing the degree of
overlap) may be Jost when querying large regions. This behavior was observed when using
the 75/25 and 90/10 data sets as well, where again the HR-tree, which is always the faster
index, loses its relative advantage as the ratio of insertions/ deletions increases.

5.5. Conclusions 71

5.4.3 Storage Requirements

Figure 5.6 shows the size of the indexes created, for the 60/40 data file. The 2Ri and
2Rp structures have a linear behavior as the number of updates per transaction timestamp
increases since the number of objects indexed, i.e., the number of updates, in the structure
does not increase. On the other hand, the larger the number of updates per transaction
timestamp the lower the size of HR-tree. As argued earlier, this is so because less tree
branches are duplicated. This leads us to claim that the HR-tree is not suitable for scenarios
with a low number of updates per transaction timestamp, even though the performance
does not change nearly as much, and the HR-tree is consistently the faster index. The 2Ri
implementation yields an index sligthly smaller than the 2Rp one. In the 2Ri, objects in
the two dimensional space are stored, insted of the 2Rp, which stores three dimensional
objects. This implies in more objects per page in the 2Ri against the 2Rp, which means
a lower index structure. For the 75/25 and 90/10 data files the results were qualitatively
similar. Quantitatively, however, the HR-tree's curve shifts up faster with the increase in
the insertion/ deletion rate.

5.5 Conclusions

110 r-..--..,------------,
100
90
80
70
60
50 1-
40
30
20
10

HR -tree -&---

2Ri -+---

2Rp ··"····

o ,.,,~.--.~~,···~'"""~"""~""""'""""w•••~"•••···o;;;;o

0.10.5 1 5
Points indexed per transaction(x 1000)

Figure 5.6: Indices sizes.

Dueto some similarity between spatiotemporal and bitemporal objects, we have investigated
the use of a spatiotemporal index structure, the HR-tree to the 2TDB indexing problem.
Using the 2R-tree [21] as a reference, we focused mainly on indexing bounded (i.e., not now
relative) valid time ranges and now-relative transaction time. Performance was measured
upon queries of type * jpoint/point and * /rangejpoint. The structures query performance
and sizes were investigate with respect to: number of updates per transaction timestamp;

5.5. Conclusions 72

insertions/ deletions ratio; and size of the queried valid time ranges. Even though we do not
deal with the indexing and querying of non-temporal data, e.g., keys, either the HR-tree and
the 2R-trees (as well as ali other R-tree based structures) could be used for such a task.

Regarding the above variables we noticed that as the number of updates per transaction
timestamp increases, the HR-tree's size diminishes, indicating that HR-tree is better suited
for batch updates. Likewise the lower the ratio insertion/deletion of objects the better it
is for the HR-tree. Overall, the HR-tree has a good update performance. The only case
where it nearly tied with the 2R approach happened when the number of insertions was
much bigger than the number of deletions. For ali data files and queries investigated, the
HR-tree yielded consistently the best search performance, requiring, most of the time, less
than half of the I/Os required by the best 2R-tree approach. Size-wise, the HR-tree is very
dependent on the update rate. The more updates per transaction timestamp, the smal!er
the resulting tree.

Severa! applications may present such high update rate characteristic, e.g., in the bank
ing/financial domain. With current technology one could have updates bearing very fine
transaction timestamps, say milliseconds. However, it is hardly reasonable to consider that
queries will be posed using such a fine granularity. As such ali transactions happening within,
say a minute, could bear the same transaction timestamp and be inserted into the index in
a batch mode. We believe that this rationale would also apply to other application domains.
Another possibility, requiring some smal! further processing at update time, would be to
collect ai! incoming transactions along with their original (fine grain) timestamps in a buffer
and index ali the updates in that buffer at pre-specified time intervals. In such a case, if the
user poses a query with respect to a lower leve! timestamp than the one actually indexed
(say milliseconds instead of minutes) then false-hits would likely need to be filtered out of
the query's answer. Notice that such filtering would avoid access to actual data records (i. e.,
useless I/ Os). The user could then experiment with differents time granularities in order to
decrease false-hits at the possible expense of obtaining a larger (but fast nevertheless) index.

As the BTR was also compared to the 2R approach, an indirect comparison between
the HR-tree and BRT performance presented in [21] seems to indicate that the structures
may have comparable search performance for the queries investigated in this paper. We
should make clear though that the BRT experiments assume one single update per trans
action timestamp. Such an update rate would render the HR-tree unfeasibly large. We
only conjecture that the HR-tree may be comparable to the BRT in the case of reasonably
sized batch updates. Even though the GR-tree and 4R-tree were also compared against the
2R-trees a direct comparison between those and the HR-tree cannot be easily made as those
structures assume now-relative valid time, which is not the case of the HR-tree.

Future research should focus on: (i) investigating how the HR-tree performs when in
dexing now-relative valid time (perhaps after some modification in its structure); (ii) in-

5.5. Conclusions 73

vestigating the effect of cache structures; (iii) designing a benchmarking data set against
which previously proposed structures could be evaluated and compared and; (iv) investigat
ing whether the overlapping approach could be used with other range indexing structures
(e.g., [3]).

Acknowledgments

Jefferson R. O. Silva was supported by FAPESP (Process 97 /11205-8). Mario A. Nascimento
was partially supported by CNPq (Process 300208/97-9) and is also a researcher with Em
brapa (mario@cnptia.embrapa.br). This research was developed as part ofMCT/PRONEX's
project SAL The authors thank S. Saltenis and C. S. Jensen for their constructive comments.

Capítulo 6

Conclusão

Essa dissertação teve corno proposta principal a criação e avaliação de urna nova estrutura
de acesso à dados espaço-temporais.

O capítulo 2 apresentou a estrutura proposta, além dos algorítrnos básicos para inserção
e remoção de dados, e consultas espaço-temporais.

O capítulo 3 investigou o problema de geração sintética de dados espaço-temporais, ap
resenta um algoritmo (GSTD) para geração de tais dados, dá exemplos de conjuntos de
dados gerados com o algoritmo e apresenta as bases de urna arquitetura para um ambiente
de benchrnarking para estruturas de acesso à dados espaço-temporais.

No capítulo 4 apresentou-se o trabalho de comparação da HR-tree com a 2+3 R-tree e 3D
R-tree. Os dados utilizados foram gerados sinteticamente, utilizando-se o algoritmo GSTD.
Basicamente, as seguintes conclusões podem ser tiradas:

• A HR-tree apresenta urna performance muito superior às outras duas em respostas à
consultas espaciais em um ponto específico no tempo,

• Para consultas espaciais em intervalos de tempo, a HR-tree é superior à 2+3 R-tree e
3D R-tree para intervalos de tempo pequenos,

• A 3D R-tree é a estrutura que utiliza menos I/Os na construção de índices, sendo
seguida pela HR-tree e 2+3 R-tree,

• A HR-tree gera arquivos de índice muito maiores que a 2+3 R-tree e a 3D R-tree. Urna
abordagem diferente foi utilizada na inserção dos dados de forma a reduzir o tamanho
do índice gerado pela HR-tree. Verificou-se urna diminuição de até 45% no tamanho.
Nessa abordagem, há um overhead no número de páginas de disco lidas pela HR-tree
em consultas. No entanto, verificou-se que mesmo assim a HR-tree continua a ser a
melhor estrutura em consultas espaciais em pontos específicos no tempo,

74

75

• Quanto mais estático o ambiente sendo indexado, ou seja, quanto menos atualizações
por timestamp forem realizadas, menor o arquivo de índice gerado pela HR-tree.

O capítulo 5 aborda o problema de indexação de dados bitemporais. A HR-tree foi
utilizada como estrutura de acesso à dados bitemporais e comparada com outra estrutura
(2R-tree) proposta em [20]. As seguintes conclusões podem ser tiradas:

• A HR-tree apresenta uma performance muito superior à 2R-tree em respostas à con
sultas em um ponto específico no tempo,

• Para a construção do índice, a HR-tree também é superior à 2R-tree, acessando menos
páginas de disco,

• A HR-tree gera arquivos de índices bem maiores que a 2R. Porém, adotando-se uma
técnica de inserção em batch, foi possível diminuir o tamanho do índice gerado pela
HR-tree e ainda assim manter sua superioridade em consultas.

De forma resumida, consideramos como contribuições da dissertação os seguintes pontos:

• Desenvolvímento, implementação e avaliação de uma nova estrutura de acesso à dados
espaço-temporais, a HR-tree,

• Desenvolvimento e implementação de um gerador de dados espaço-temporais sintéticos,
disponível via www1

• Testes de desempenho da HR-tree com duas outras estruturas,

• Aplicação da HR-tree em outro domínio de problemas, a indexação de dados bitempo
rais.

Alguns trabalhos podem ser feitos continuando o trabalho feito nessa dissertação. Con
sideramos como possíveis extensões os seguintes pontos: (i) novos testes da HR-tree, con
siderando outros tipos de dados, como MBRs ou dados mistos (MBRs e pontos); (ii) avaliar
como cache afeta o desempenho da HR-tree; (iii) estudar políticas de ''merging" e "purging";
(iv) criação de uma lista ligando versões de um mesmo objeto, de modo a permitir responder
consultas sobre históricos de objetos; (v) criação do ambiente de benchmarking proposto no
capítulo 3- basicamente é a criação de um site que contenha (a) um módulo gerador de da
dos (GSTD), (b) um repositório de conjuntos de dados reais, (c) um conjunto de estruturas
de acesso, (d) um banco de dados com resultados experimentais e (e) uma ferramente para
vísualização de dados gerados com o GSTD.

1 http:/ fwww.dbnet.ece.ntua.gr /-theodor/GSTD/ e http:/ fwww.dcc.unicamp.br/-mario/GSTD /

Apêndice A

Algoritmos básicos de inserção,
-remoçao,

HR-tree
atualização e consultas na

Os algoritmos apresentados no artigo do capítulo 2 são algoritmos que definem a HR-tree
sobre uma R-tree [15]. Porém, como pode ser visto no artigo do capítulo 4, a HR-tree foi
implementada utilizando-se a Hilbert R-tree[18] como estrutura espacial base.

Desse modo, esse capítulo apresenta os algoritmos necessarios para inserção, remoção,
atualização e consultas de dados na HR-tree.

São permitidos atualizações na HR-tree em batch, ou seja, várias atualizações em um
mesmo instante de tempo.

O algoritmo AdjustTree é o algoritmo original da Hilbert R-tree [18]. O algoritmo Han

dleOverfiow é basicamente o algoritmo original da Hilbert R-tree, com uma pequena al
teração: quando um nó irmão do nó que está recebendo a nova entrada é usado pelo algoritmo
e sua marca de tempo é menor que now, então o nó deve ser duplicado.

A notação usada é apresentada na Tabela A.l.

Algorithm HR-Insert(On, HR)
1. { create a new state in the HR-tree }

if A[pt] < now
then create a new entry in A indexing now;

2. { create a root NR to insert On }
invoke CreateBranch(On, HR) to create a new logical R-tree rooted at NR.
The new logical R-tree contains a leaf node L in which to place On;

3. { insert On in L }
if L has room for another entry

then insert On in L;

76

Tabela A.l: Notation used in the algorithms.

HR
A

R

On
Do

F

p

N.Nt
L,LP,N,NR
s
sw
now
pt
t
it,et

ponteiro para a HR-tree
o vetor de tempo da HR-tree
nó raiz de uma R-tree
MBR inserido na HR-tree
MBR removido da HR-tree
uma entrada em um nó da R-tree
ponteiro associado à F
marca de tempo do nó N
ponteiros para nós da R-tree
conjunto de nós da árvore
um MBR representando uma janela de consulta
ponto corrente no tempo
entrada mais recente em A
uma entrada de tempo indexada em A
início e fim de um intervalo de tempo

77

else invoke HandleOverflow(L, On). A new leaf may be created if split
was done.

4. { propagate split upwards }
form a set S that contains L, its cooperating siblings and the new leaf

node, if any.
invoke AdjustTree(S).

5. { grow tree taller }
if node split propagation caused a root split

then create a new root NR whose children are the nodes resulting from
the split;

adjust the entry in A to point to the new root NR;

Algorithm HR-CreateBranch(On, HR)
1. { initialize }

set N to be the root pointed to by A[pt] in HR;
if N.Nt < now

then create a new node L;
copy all entries of N into L;
set L.Nt = now;
set NR = L;

else set NR = N;
set L = N;

2. { leaf check }
if N is a leaf

then return NR and L;
3. { choose subtree }

78

let F be the entry with the minimum hilbert value grater than the hilbert
value of On

4. { create a new node of the new branch and
descending the tree }

set LP = L;
set N to be the node pointed to by F.p;
if N.Nt < now

then create a new node L;
copy all entries of N into L;
set L.Nt = now;
adjust the pointer F.p in LP to point to L;

else set L = N;
5. { Loop until a leaf is reached }

repeat from step 2;

Algorithm HR-Delete(Oo, HR)
1. { find the leaf node containing Oo}

set R to be the root pointed to by A[pt];
perform an exact match search to find the leaf node L that contain Oo.
duplicate the branch that contains L if necessary.
set the timestamp of the nodes duplicated as Now;
if L cannot be found

then stop;
2. {create a new state in the HR-tree if necessary }

if the root was duplicated
create a new entry in A with time value equal to now;
Remove Oo from L;

4. if L underflows
then borrow some entries from s cooperating siblings.

duplicate the siblings if their timestamp < now
if all the siblings are ready to underflow

then merge s+1 to s nodes.
duplicate them if their timestamps < now

adjust the resulting nades.
5. { adjust tree }

form a set S that contains L and its cooperating siblings (if underflow
has occurred).

invoke AdjustTree(S).
6. { shorten tree }

if the root node has only one child after the tree has been adjusted
then make the child the new root R;

adjust A[now] to point to R;

79

Usando os algoritmos acima é fácil implementar o movimento de um ponto de sua lo
calização corrente para uma nova posição em um dado instante de tempo. Basta remover
o ponto de sua posição corrente e inseri-lo na nova posição. O correspondente algoritmo é
apresentado a seguir:

Algorithm HR-Move(Oo, On, HR)
1. { Delete the current MBR version }

Invoke Delete passing Do and HR;
2. { Insert the new MBR version }

Invoke Insert passing On and HR;

A seguir são apresentados dois algoritmos para consulta de dados espaciais (i) em um
instante específico de tempo e (ii) em um intervalo de tempo, respectivamente.

Algorithm HR-SearchPoint(S, t, HR)
1. { find the appropriate root R }

if t = now
then set R to be the node pointed to by A[pt];
else set R to be the node pointed to by A[t];

2. { find the MBRs which overlap S }
invoke original Hilbert Search algorithm

passing R;

Algorithm HR-SearchRange(S, it, et, HR)
1. { find the appropriate root R at time it (initial time) }

if it = now
then set R to be the node pointed to by A[pt];
else set R to be the node pointed to by A[it];

2. { find the MBRs which overlap S }
set t to be it

while (t <= et)
invoke original Hilbert Search algorithm passing R;
set t to be the next time in A[.];
set R to be the node pointed to by A[t];

80

Referências Bibliográficas

[1] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An effi.cient
and robust access method for points and rectangles. In Proceedín9s oj the 1990 ACM
SIGMOD Intematíonal Conferencee on Mana9ement of Data, pages 322-331, June 1990.

[2] D. Bitton, D. J. DeWitt, and C. Thrbyfill. Benchmarking database systems: A system
atic approach. In Proceedings ofthe 9th Conference on Very Large Data Bases (VLDB),
1983.

[3] G. Blankenagel and R. H. Güting. Externai segment trees. Algoríthmíca, 12(6):490-532,
1994.

[4] R. Bliuju:te et ai. Light-weight indexing of general bitemporal data. Technical Report 30,
TimeCenter, 1998.

[5] R. Bliujute et al. R-tree based indexing of now-relative bitemporal data. In Proc. of
the 24th Intl. Conf. on Very Large Databases, pages 345-356, August 1998.

[6] F. W. Burton et al. Implementation of overlapping B-trees for time and space effi.cient
representation of collection of similar files. The Compute; Joumal, 33(3):279-280, 1990.

[7] F. W. Burton, M. W. Huntbach, and J. Kollias. Multiple generation text files using
overlapping tree structures. The Compute; Joumal, 28(4):414-416, 1985.

[8] J. Clifford et al. On the semantics of "NOW" in temporal databases. ACM Transactíon
on Database Systems, 22{2):171-214, June 1997.

[9] Informix Corp. Developing datablade modules for informix dynamic server with uni
versal data option. White paper, 1998.

[10] M. Erwig, R. H. Guting, M. Schneider, and M. Vazirgiannis. Abstract and discrete
modeling of spatio-temporal data types. In Proc. of the 6th ACM Intl. Workshop on
Geo9raphical Informatíon Systems (ACM-GIS), 1998.

81

REFERÊNCIAS BIBLIOGRÁFICAS 82

[11] V. Gaede andO. Günther. Multidimensional access methods. To appear in ACM Com
puting Surveys. http: I /www. wiwi .hu-berlin.de/~gaede/survey .rev .ps. Z, 1997.

[12] V. Gaede andO. Günther. Multidimensional access methods. ACM Computing Surveys,
30(2):123-169, June 1998.

[13] J. Gray, P. Sundaresan, S. Englert, K. Backlawski, and P. Weinberger. Quickly gener
ating billion-record synthetic databases. In Proceedings of ACM SIGMOD Conference,
1994.

[14] O. Gunther, V. Oria, P. Picouet, J. M. Saglio, and M. Scholl. Benchmarking spatial
joins 'a la carte. In Proceedings of the 10th Intemational Conference on Scientific and
Statistical Database Management {SSDBM), 1998.

[15] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD Intemational Conferencee on Management of Data, pages
47-57, Jun 1984.

[16] Y. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti. Zoo: A desktop experiment
management. In Proceedings ojthe 22nd Conference on Very Large Data Bases (VLDB),
1996.

[17] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and R. Snodgrass. A consensus glossary
of temporal database concepts. ACM SIGMOD Record, 23(1):52-64, Jan 1994.

[18] L Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractais. In
Proceedings of the 20th Very Large Databases Conference (VLDB'94), pages 500-509,
Santiago, Chile, 1994.

[19] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. Technical
Report UCR-CS-98-06, University of Califomia, Riverside, December 1998.

[20] A. Kumar, V. J. Tsotras, and C. Faloutsos. Access methods for bi-temporal databases.
In Proceedings oj the Intemational Workshop on Temporal Databases, pages 235-254,
1995.

[21] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing access methods for bi-temporal
databases. IEEE Transactions on Knowledge and Data Engineering, 10(1):1-20, 1998.

[22] S. Lanka and E. Mays. Fully persistent s+-trees. In Proceedings oj the 1991 ACM
SIGMOD International Conjerencee on Management of Data (SIGMOD'91}, pages 426-
435, Denver, USA, May 1991.

REFERÊNCIAS BIBLIOGRÁFICAS 83

[23] S. T. Leutenegger, M. A. Lopez, and J. Edgington. STR: An efficient and simple
algorithm for R-tree packing. In Proceedings ofthe 13th IEEE Intemational Conference
on Data Engineering {ICDE'97}, pages 497-506, Birmingham, UK, April 1997.

[24] D. Lomet and B. Salzberg. Access methods for multiversion data. In Proceedings o f the
ACM SIGMOD Conference, pages 315-324, June 1989.

[25] Y. Manolopoulos and G. Kapetanakis. Overlapping B+-trees for temporal data. In
Proceedings of the 5th Jerusalem Conference on Information Technology, pages 491-

498, August 1990.

[26] M. A. Nascimento, M. H. Dunham, and R. Elmasri. M-IVTT: An index for bitemporal
databases. In Proc. ojthe 7th Intl. Conf. on Databases and Expert Systems Applications,
pages 779-790, September 1996.

[27] M. A. Nascimento and J. R. O. Silva. Towards historical R-trees. In Proc. o f the 1998
ACM Symposium on Applied Computing, pages 235 - 240, February 1998.

[28] M. A. Nascimento, J. R. O. Silva, and Y. Theodoridis. Access structures for moving
points. Technical Report 33, TimeCenter, 1998.

[29] J. Orestein. Spatial query processing in an object-oriented data base system. In Pro
ceedings ofthe 1986 ACM SIGMOD Intemational Conferencee on Management of Data,
pages 326-336, May 1986.

[30] J. Patel et ai. Building a scalable get-spatial dbms: Technology, implementation and
evaluation. In Proceedings of ACM SJGMOD Conference, 1997.

[31] B. Salzberg and V. J. Tsotras. A comparison of access methods for temporal data.
Technical Report 18, TimeCenter, 1997. To appear in ACM Computing Surveys.

[32] H. Samet. The quadtree and related hierarchical data structures. ACM Computing

Surveys, 16(2):187-260, 1984.

[33] H. Samet. The Design and Analysis of Spatial Data Strucutures. Addison-Wesley,
Reading, MA, 1990.

[34] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi
dimensional objects. In Proceedings o f the 13th Very Large Databases Conference, pages
507-518, September 1987.

[35] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving
objects. In Proceedings. of the 13th IEEE Conference on Data Engeneering {ICDE),
1997.

REFERÊNCIAS BIBLIOGRÁFICAS 84

[36] M. Stonebraker, J. Frew, and J. Dozier. The sequoia 2000 project. In Proceedings of
the 3rd International Symposium o Advances in Spatial Databases (SSD), 1993.

[37] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The sequoia 2000 storage bench
mark. In Proceedings of ACM SIGMOD Conference, 1993.

[38] A. Tansel et ai., editors. Temporal Databases: Theory, Design and Implementation.
Benjamin/Cummings, Redwood City, USA, 1993.

[39] Y. Theodoridis and T. Sellis. A model for the prediction of R-tree performance. In Proc.
o f the ACM Symposium on Principies o f Database Systems, pages 161- 171, June 1996.

[40] Y. Theodoridis, T. Sellis, A. Papadopoulos, and Y. Manolopoulos. Specifications for
efficient indexing in spatiotemporal databases. In Proceedings o f the 1Oth International
Conference on Scientific and Statistical Database Management {SSDBM), pages 123-
132, July 1998.

[41] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the generation of spatiotem
poral datasets. Technical Report TR CH-99-01, Chorochronos, 1999.

[42] Y. Theodoridis, E. Stefanakis, and T. Sellis. Efficient cost models for spatial queries us
ing R-trees. Technical Report 03, Chorochronos, 1998. To appear in IEEE Transactions
on Knowledge and Data Engineering.

[43] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for large
multimedia applications. In Proceedings of the 3rd IEEE Conference on Multimedia
Computing and Systems (ICMCS), pages 441 - 448, June 1996.

[44] N. Tryfona. Modeling phenomena in spatiotemporal applications: Desiderata and so
lutions. In Proc. o f the 9th International Conference on Database and Expert Systems
Applications (DEXA), 1998.

[45] V. J. Tsotras, C. S. Jensen, and R. T. Snodgrass. An extensible notation for spatiotem
poral index queries. ACM SIGMOD Record, 27(1):47-53, 1998.

[46] V. J. Tsotras and A. Kumar. Temporal database bibliography update. ACM SIGMOD
Record, 25(1):41-51, 1996.

[47] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Overlapping linear
quadtrees: a spatio-temporal access method. In Proc. o f the 6th ACM Intl. Workshop
on Geographical Information Systems (ACM-GIS), November 1998.

REFERÊNCIAS BIBLIOGRÁFICAS 85

[48] O. Wolfson, B. Xu, S. Charnberlain, and L. Jiang. Moving objects databases: Issues
and solutions. In Proc. ofthe 10th International Conference on Scientific and Statistical
Database Management {SSDBM), pages 111 - 122, July 1998.

[49] M. F. Worboys. A unified model for spatial and temporal information. The Computer
Journal, 1(37):26-34, 1994.

[50] X. Xu, J. Han, and W. Lu. RT-tree: An improved R-tree index structure for spatiotem
poral databases. In Proceedings of the 4th International Symposium on Spatial Data
Handling {SDH), pages 1040- 1049, 1990.

[51] C. Zaniolo et a!., editors. Advanced Databases Systems. Morgan Kauffman, San Fran
cisco, USA, 1997.

[52] J. Zobel, A. Moffat, and K. Ramarnohanarao. Guidelines for presentation and compar
ison of indexing techniques. ACM SIGMOD Record, 25(3):10-15, 1996.

