

 FICHA CATALOGRÁFICA ELABORADA PELA

 BIBLIOTECA DO IMECC DA UNICAMP
 Bibliotecária: Maria Fabiana Bezerra Müller – CRB8 / 6162

Vieira, Gustavo Maciel Dias

V673a Uma arquitetura de software para replicação baseada em consenso/

Gustavo Maciel Dias Vieira-- Campinas, [S.P. : s.n.], 2010.

Orientador : Luiz Eduardo Buzato.

Tese (doutorado) - Universidade Estadual de Campinas, Instituto de

Computação.

1.Sistemas distribuídos. 2.Algoritmos distribuídos. 3.Middleware.

4.Redes de computação - Protocolos. 5.Serviços na Web. I. Buzato,

Luiz Eduardo. II. Universidade Estadual de Campinas. Instituto de

Computação. III. Título.

Título em inglês: A software architecture for consensus based replication

Palavras-chave em inglês (Keywords): 1. Distributed systems. 2. Distributed algorithms.
3.Middleware. 4. Computer network protocols. 5. Web services.

Área de concentração: Sistemas de Computação

Titulação: Doutor em Ciência da Computação

Banca examinadora: Prof. Dr. Luiz Eduardo Buzato (IC – UNICAMP)
Prof. Dr. Francisco Vilar Brasileiro (CEEI – UFCG)
Prof. Dr. Jonida Silva Fraga (DAS – UFSC)
Prof. Dr. Fernando Pedone (Faculty of Informatics – USI)
Prof. Dr. Ricardo de Oliveira Anido (IC – UNICAMP)

Data da defesa: 17/11/2010

Programa de Pós-Graduação: Doutorado em Ciência da Computação

Instituto de Computação

Universidade Estadual de Campinas

Uma Arquitetura de Software para Replicação Baseada

em Consenso

Gustavo Maciel Dias Vieira1

Novembro de 2010

Banca Examinadora:

• Prof. Dr. Luiz Eduardo Buzato (Orientador)

• Prof. Dr. Francisco Vilar Brasileiro

Centro de Engenharia Elétrica e Informática — UFCG

• Prof. Dr. Joni da Silva Fraga

Departamento de Automação e Sistemas — UFSC

• Prof. Dr. Fernando Pedone

Faculty of Informatics — USI

• Prof. Dr. Ricardo de Oliveira Anido

Instituto de Computação — Unicamp

• Profa. Dra. Ingrid Eleonora Schreiber Jansch Pôrto (Suplente)

Instituto de Informática — UFRGS

• Prof. Dr. Edmundo Roberto Mauro Madeira (Suplente)

Instituto de Computação — Unicamp

• Prof. Dr. Arnaldo Vieira Moura (Suplente)

Instituto de Computação — Unicamp

1Apoio financeiro do CNPq, processo número 142638/2005-6.

v

Resumo

Esta tese explora uma das ferramentas fundamentais para construção de sistemas

distribuı́dos: a replicação de componentes de software. Especificamente, procuramos

resolver o problema de como simplificar a construção de aplicações replicadas que

combinem alto grau de disponibilidade e desempenho. Como ferramenta principal

para alcançar o objetivo deste trabalho de pesquisa desenvolvemos Treplica, uma

biblioteca de replicação voltada para construção de aplicações distribuı́das, porém

com semântica de aplicações centralizadas. Treplica apresenta ao programador uma

interface simples baseada em uma especificação orientada a objetos de replicação

ativa.

A conclusão que defendemos nesta tese é que é possı́vel desenvolver um suporte

modular e de uso simples para replicação que exibe alto desempenho, baixa latência

e que permite recuperação eficiente em caso de falhas. Acreditamos que a arquitetura

de software proposta tem aplicabilidade em qualquer sistema distribuı́do, mas é de

especial interesse para sistemas que não são distribuı́dos pela ausência de uma forma

simples, eficiente e confiável de replicá-los.

vii

Abstract

This thesis explores one of the fundamental tools for the construction of distributed

systems: the replication of software components. Specifically, we attempted to solve

the problem of simplifying the construction of high-performance and high-availability

replicated applications. We have developed Treplica, a replication library, as the main

tool to reach this research objective. Treplica allows the construction of distributed

applications that behave as centralized applications, presenting the programmer a

simple interface based on an object-oriented specification for active replication.

The conclusion we reach in this thesis is that it is possible to create a modular

and simple to use support for replication, providing high performance, low latency

and fast recovery in the presence of failures. We believe our proposed software ar-

chitecture is applicable to any distributed system, but it is particularly interesting

to systems that remain centralized due to the lack of a simple, efficient and reliable

replication mechanism.

ix

Agradecimentos

Uma tese, mesmo sendo feita por uma só pessoa, envolve muito mais trabalho do

que qualquer pessoa pode dar conta. Gostaria de agradecer a todos os companheiros

de trabalho que deram a sua contribuição para a construção deste trabalho, direta

ou indiretamente. Dentre estes, não posso deixar de agradecer por nome o meu

orientador Luiz E. Buzato por ter encarado comigo este desafio, sempre com uma

confiança inabalável em mim e em meu trabalho.

Outros me ajudaram sem me conhecer. Não vou parafrasear Newton pois não

acredito que cheguei a enxergar tão longe assim, mas sem dúvida me apoiei no ombro

de gigantes. Durante este trabalho tive a oportunidade de estudar o trabalho de

grandes pesquisadores e ser influenciado por eles. Esta foi a melhor parte desta

experiência e gostaria de ser capaz de retribuir esta ajuda deixando um pequeno

apoio aos que virão depois de mim, começando nesta tese e continuando nos meus

outros projetos de pesquisa.

Por fim, o mais importante, a minha famı́lia de perto e de longe. Eles foram o

meu suporte e sempre me ajudaram em momentos cruciais, mesmo sem entender

exatamente o que estava acontecendo. Agradeço à Candi pelo carinho, compreensão

e paciência, em uma intensidade que somente uma pessoa genuinamente especial

poderia dar. Agradeço também à ela e ao Vı́tor por criarem meu porto seguro, onde

os problemas não existiam e que estava sempre me esperando quando as coisas não

iam muito bem (e quando iam bem também). Agradeço aos meus pais e irmãos

pelo carinho e pelas demonstrações frequentes de apoio e confiança, as coisas mais

importantes para alguém que almeja terminar um projeto como este.

xi

Conteúdo

Resumo vii

Abstract ix

Agradecimentos xi

1 Introdução 1

1.1 Modelo Computacional . 2

1.2 Replicação Sı́ncrona . 3

1.3 Replicação Ativa e Consenso . 5

1.4 Paxos e Fast Paxos . 7

1.5 Contribuições e Organização da Tese . 11

1.6 Trabalhos Relacionados . 13

2 An Object-Oriented Specification for Active Replication Using Consensus 19

2.1 Introduction . 19

2.2 Treplica . 21

2.2.1 Motivation . 21

2.2.2 Overview . 23

2.2.3 System Specification . 24

2.3 An Object-Oriented Abstraction for Replication 26

2.3.1 Asynchronous Persistent Queue 27

2.3.2 Replicated State Machine . 29

2.4 Treplica by Example . 31

2.5 Treplica Implementation . 36

2.5.1 Replicated State Machine Implementation 36

2.5.2 Paxos Persistent Queue . 37

2.5.3 The Paxos Algorithm . 38

2.5.4 Paxos and Replication . 40

2.5.5 Treplica Software Architecture . 42

xiii

2.5.6 Support Modules . 43

2.5.7 Paxos Agents Modules . 49

2.6 Applications . 59

2.7 Performance . 60

2.8 Related Work . 61

2.9 Conclusion . 64

3 Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis 65

3.1 Introduction . 65

3.2 Treplica . 66

3.3 The TPC-W Benchmark . 68

3.4 RobustStore . 69

3.5 Evaluation . 70

3.5.1 Method . 70

3.5.2 Speedup . 73

3.5.3 Scaleup . 74

3.5.4 One crash, one autonomous recovery 75

3.5.5 Two crashes, autonomous recoveries 79

3.5.6 Two crashes, one autonomous, one delayed recovery 81

3.5.7 Discussion . 83

3.6 Related Work . 83

3.7 Conclusion . 85

4 The Performance of Paxos and Fast Paxos 87

4.1 Introduction . 87

4.2 Theory . 88

4.2.1 Paxos and Fast Paxos . 88

4.2.2 Performance Expectations . 91

4.3 Practice . 93

4.3.1 Treplica . 93

4.3.2 Experimental Setup . 94

4.3.3 Experiments . 95

4.3.4 Scale Up . 96

4.3.5 Speed Up . 97

4.3.6 Quorum Sizes . 98

4.3.7 Retries and Collisions . 99

4.3.8 Failures . 100

4.4 Related Work . 102

4.5 Conclusion . 102

xiv

5 On the Coordinator’s Rule for Fast Paxos 105

5.1 Introduction . 105

5.1.1 Fast Paxos . 106

5.2 Choosing Quorums . 108

5.3 Coordinator’s Rule . 109

5.4 Simplified Coordinator’s Rule . 110

5.5 Conclusion . 111

6 A Recovery Efficient Solution for the Replacement of Paxos Coordinators 113

6.1 Introduction . 113

6.2 Paxos . 115

6.2.1 Core Algorithm . 116

6.2.2 Stable Memory Requirements . 117

6.2.3 Liveness . 118

6.3 Original Coordinator Validation . 119

6.4 Seamless Coordinator Validation . 120

6.4.1 Activation Procedure . 121

6.4.2 Correctness . 123

6.5 Experimental Evaluation . 124

6.5.1 Method . 124

6.5.2 Induced Failures . 125

6.5.3 Intrinsic Failures . 129

6.6 Fast Paxos . 132

6.7 Related Work . 133

6.8 Conclusion . 134

7 Conclusão 137

7.1 Contribuições . 137

7.2 Trabalhos Futuros . 138

Bibliografia 140

xv

Lista de Tabelas

2.1 Parameters for congestion and flow control 54

3.1 One failure: performability . 77

3.2 One failure: accuracy . 79

3.3 Two overl. crashes: performability . 79

3.4 Two overlapped crashes: accuracy . 80

3.5 Delayed recovery: performability . 82

3.6 Delayed recovery: accuracy . 82

3.7 Paxos and Application Availability. 84

6.1 Average Performance of the Application under Induced Failures 129

xvii

Lista de Figuras

1.1 Paxos . 9

1.2 Fast Paxos . 10

2.1 Cluster Configurations for Replication . 25

2.2 Software Architecture of an Application 26

2.3 Active Replication Components . 26

2.4 The Hash Table Application . 31

2.5 Paxos Persistent Queue . 42

2.6 Speedup . 61

2.7 One Failure: 5 Replicas . 62

3.1 RobustStore components . 69

3.2 Experimental setup . 71

3.3 Speedup . 74

3.4 Scaleup for 1000 WIPS . 75

3.5 One failure: 5 replicas . 77

3.6 One failure: recovery times . 78

3.7 Two overlapped crashes . 80

3.8 Delayed recovery . 82

4.1 Scale up (2000 op/s) . 96

4.2 Speedup (4 Replicas) . 97

4.3 Speedup (8 Replicas) . 98

4.4 Paxos with Large Quorums . 99

4.5 Retries and Collisions . 99

4.6 Single Failure (8 replicas, 2000 op/s) . 101

6.1 Local View of an Agent . 117

6.2 Global View as Observed by a Coordinator 122

6.3 Process Faultload . 128

6.4 Network Faultload . 129

xix

6.5 Speedup (9 replicas) and Scaleup (3000 op/s) 131

xx

Capı́tulo 1

Introdução

A construção de sistemas confiáveis a partir de componentes não-confiáveis é o gran-

de objetivo de tolerância a falhas por software. O tema desta tese é a ferramenta fun-

damental para se conseguir este objetivo: a replicação de componentes de software.

Especificamente, procuramos resolver o problema de como simplificar a construção

de aplicações replicadas que combinem alto grau de disponibilidade e desempenho.

Disponibilidade e desempenho são objetivos que não necessitam de justificativa.

Idealmente, gostarı́amos que as aplicações nunca falhassem e pudessem atender a um

número infinito de usuários. Mais difı́cil de caracterizar é o problema da simplificação

da construção de aplicações disponı́veis. A simplicidade de uma aplicação é uma

propriedade de difı́cil quantização e, por consequência, de difı́cil verificação. No

entanto, se o programador não consegue entender o ambiente de programação com

qual trabalha, poucas são as chances de que a aplicação resultante seja altamente

disponı́vel.

Como ferramenta principal para alcançar o objetivo deste trabalho de pesquisa

desenvolvemos Treplica, uma biblioteca de replicação voltada para construção de

aplicações distribuı́das, porém com semântica de aplicações centralizadas. Treplica

apresenta ao programador uma interface simples baseada em uma especificação ori-

entada a objetos de replicação ativa. Isolados atrás desta especificação residem vários

mecanismos complexos que queremos esconder do programador, mas que são funda-

mentais para o eficiência da solução.

A conclusão que defendemos nesta tese é que é possı́vel desenvolver um suporte

modular e de uso simples para replicação que exibe alto desempenho, baixa latência

e que permite recuperação eficiente em caso de falhas. Esta abordagem pode ser utili-

zada tanto em subsistemas especı́ficos de grandes aplicações distribuı́das [19] quanto

em aplicações inteiras [20]. Aplicações personalizadas usadas internamente em em-

presas e instituições não possuem o mesmo porte de grandes aplicações de internet,

1

2 Capı́tulo 1. Introdução

mas possuem requisitos de disponibilidade semelhantes. Na prática, estes sistemas

são centralizados devido ao seu porte e à restrição de custos. Acreditamos que a ar-

quitetura de software proposta tem aplicabilidade em qualquer sistema distribuı́do,

mas é de especial interesse para estes sistemas que não são distribuı́dos pela ausência

de uma forma simples, eficiente e confiável de replicá-los.

Esta tese está organizada na forma de uma coletânea de artigos, descrevendo os

principais resultados da pesquisa. Nesta introdução fazemos um breve resumo so-

bre replicação em sistemas distribuı́dos e introduzimos a terminologia básica utili-

zada. Na Seção 1.1 definimos o modelo computacional adotado por Treplica. Nas

Seções 1.2 e 1.3 apresentamos os conceitos básicos de replicação. Na Seção 1.5 lista-

mos as contribuições desta tese e fornecemos um guia de leitura para o restante do

texto. A Seção 1.6 discute sucintamente um conjunto de trabalhos relacionado a esta

pesquisa.

1.1 Modelo Computacional

Todos os resultados desta tese supõem o modelo assı́ncrono de computação distribuı́da

incrementado com detectores de falhas. Neste modelo um sistema distribuı́do é com-

posto por processos que se comunicam exclusivamente por meio de mensagens en-

viadas por canais de comunicação. Vários processos podem residir em uma mesma

máquina, mas eles são considerados autônomos e somente se comunicam através de

troca de mensagens. Não existem memória compartilhada, um relógio global com-

partilhado ou um limite superior para o tempo de entrega de uma mensagem.

Este sistema assı́ncrono é sujeito a falhas. Os canais de comunicação podem falhar,

atrasando, perdendo ou mudando a ordem das mensagens. Porém, as mensagens não

são corrompidas e os canais de comunicação são justos. Ou seja, uma mensagem que

seja enviada infinitas vezes será certamente recebida em algum momento. Os pro-

cessos falham de acordo com o modelo falha-e-recuperação. Neste modelo processos

falham apenas por colapso, se recuperam e voltam a operação normal. Durante es-

tas falhas não são executadas ações que não estejam especificadas nos algoritmos e

os dados armazenados em memória persistente sobrevivem às sucessivas falhas e

recuperações. Estes dados estão disponı́veis para o processo quando da sua volta a

operação, mas todas as outras informações são perdidas.

É possı́vel ter uma ideia aproximada do estado de um processo através de um

serviço de detecção de falhas não confiável. Este serviço pode ser usado para desco-

brir se um processo está em operação normal ou se ele falhou e ainda não conseguiu

se recuperar. Porém, as respostas do serviço de detecção de falhas não são perfeitas

e o mesmo pode cometer vários erros. Ou seja, o detector de falhas pode indicar que

1.2. Replicação Sı́ncrona 3

um processo em operação falhou e vice versa. Mesmo assim, este serviço é fundamen-

tal para a existência de um algoritmo de replicação correto em sistemas distribuı́dos

assı́ncronos como veremos adiante.

Um modelo de falhas de processos alternativo é o modelo falha-sem-recuperação.

Neste modelo, o processos falham apenas por colapso e nunca mais se recuperam

durante a execução da computação. Não empregamos este modelo nesta tese, mas a

grande maioria dos resultados teóricos em replicação usa este modelo como base.

1.2 Replicação Sı́ncrona

Replicação é uma funcionalidade central para sistemas distribuı́dos tolerantes a fa-

lhas. A disponibilidade de dados replicados em vários processos aumenta o parale-

lismo e a confiabilidade do acesso a estes dados. Cada cópia da informação, chamada

de réplica, pode potencialmente ser acessada concorrentemente e a falha do processa-

dor onde esta cópia reside não deve interromper o funcionamento das outras réplicas.

Manter a consistência destas réplicas na presença de falhas nos processadores ou na

rede é um problema difı́cil e intricado.

Nesta tese estamos interessados no problema de replicação de dados usando ape-

nas mecanismos de software implementados em hardware de prateleira. Os dados

replicados sempre existem no contexto de uma aplicação que os utiliza. Mais precisa-

mente, estamos interessados em replicar o estado de um processo de aplicação. Estes

processos aceitam requisições de clientes e atendem a estas requisições consultando

e/ou alterando o seu estado. Estas requisições são chamadas operações. As operações

são procedimentos atômicos que executam completamente ou não são executados.

Durante a execução de uma operação, o cliente que a requisitou fica bloqueado a es-

pera de uma resposta. Por outro lado, o processo que a está executando pode executar

várias operações ao mesmo tempo se possuir mais de uma thread de execução.

Existem duas formas principais de se classificar estratégias de replicação de acordo

com a consistência dos dados replicados: sı́ncrona e assı́ncrona [44]. Na replicação

sı́ncrona o cliente só observa a execução de sua operação quando possı́veis atualiza-

ções foram ou serão garantidamente propagadas para todas as réplicas. Este modelo

de replicação garante consistência forte dos dados, mas implica em tempos maiores

para completar uma operação. Na replicação assı́ncrona o cliente pode observar o

término de uma operação mesmo que nem todas as possı́veis atualizações tenham

sido propagadas. Neste modelo a consistência não é garantida, mas a operação se

completa mais rapidamente.

Várias estratégias foram propostas para implementar replicação sı́ncrona, mas as

duas estratégias principais são primário-backup (primary-backup) e replicação ativa [45,

4 Capı́tulo 1. Introdução

92]. No modelo primário-backup, também conhecido como mestre-escravo, uma ré-

plica primária processa todos os pedidos de atualização dos dados replicados. Este

processo primário executa a atualização localmente e propaga o estado resultante para

o conjunto de réplicas backup passivas. Desta forma, a consistência da atualização dos

dados é garantida pela unicidade da réplica primária. Caso o primário falhe, uma das

réplicas escravas pode tomar o seu lugar. Na replicação ativa todas as réplicas execu-

tam as atualizações dos dados replicados. Neste modelo, supõe-se que cada réplica

opera como uma máquina de estados determinista de forma que as réplicas se man-

tenham idênticas ao executar as mesmas operações. A consistência de atualização de

dados é mantida por algum protocolo, executado pelas réplicas, que permita ordenar

totalmente as requisições.

A replicação primário-backup tem como grande vantagem a simplicidade do con-

ceito. Como apenas uma réplica executa as operações de atualização, o programa-

dor do servidor e do cliente pode considerar o sistema replicado como idêntico a

um sistema centralizado. Desta forma, não é necessário cuidado especial ao se pro-

jetar a aplicação, permitindo inclusive o uso de operações não-deterministas. Esta

simplicidade, no entanto, não se mantém quando é considerada a possibilidade de

falha da réplica primária. Neste caso, será necessário detectar e tratar este evento o

que aumenta consideravelmente a complexidade de implementação tanto do servi-

dor quanto do cliente. Na replicação ativa, a complexidade de detecção e tratamento

de falhas é embutida no protocolo de ordenação empregado, não trazendo comple-

xidade extra ao programador. Desta forma, falhas são transparentes e o conjunto

das réplicas continua provendo serviço enquanto um número mı́nimo destas conti-

nue funcionando. Por outro lado, o programador da aplicação deve garantir que as

suas operações são deterministas, de forma a poderem ser re-executadas em todas as

réplicas.

Em ambos os modelos de replicação sı́ncrona existe um custo inerente à replicação.

Na replicação primário-backup este custo é menor, correspondendo à transmissão de

informações aos escravos e ao fato que estes não podem atender às requisições. Na

replicação ativa este custo corresponde ao fato que todas as operações devem ser re-

executadas em todas as réplicas. Independente da estratégia adotada, implementar

replicação sı́ncrona na presença de falhas exige cuidados. No caso de replicação

primário-backup a falha do primário pode levar a uma situação onde apenas parte

das réplicas escravas recebeu a atualização. No caso de replicação ativa, a falha de

uma réplica pode fazer com que a mesma perca algumas atualizações de estado e

fique inconsistente em relação às demais. A redundância embutida nos algoritmos

de replicação que conseguem executar corretamente mesmo na presença de falhas de

rede e de processos é responsável pela complexidade e custo destas soluções.

1.3. Replicação Ativa e Consenso 5

Uma forma interessante de se entender as implicações do custo da replicação

sı́ncrona em relação à replicação assı́ncrona é através do Teorema CAP [43]. Este

teorema afirma que não é possı́vel obter mais do que duas das seguintes proprieda-

des ao mesmo tempo: consistência, disponibilidade ou tolerância a partições. Como a

ocorrência de partições é uma realidade inevitável na prática devido a falhas de rede

e de processos, temos que escolher entre consistência e disponibilidade.

Replicação sı́ncrona faz a escolha por consistência, abrindo mão da disponibilidade

em situações onde as réplicas não conseguem se coordenar. Replicação assı́ncrona

escolhe a disponibilidade, com suporte a modelos de consistência relaxados que exi-

gem reconciliação de dados. Desta forma, em sistemas modernos replicação sı́ncrona

é usada para guardar meta-dados [62], bloqueios (locks) [19] e outros dados cruciais

ao funcionamento do sistema. Por sua vez, replicação assı́ncrona é usada para guar-

dar o volume principal de dados [41]. Nesta tese estamos interessados apenas em

replicação sı́ncrona, pois este modelo de replicação mais se aproxima da semântica

usual de uma aplicação centralizada.

1.3 Replicação Ativa e Consenso

Se o projetista do sistema deseja privilegiar a consistência dos dados usando repli-

cação sı́ncrona, a estratégia de replicação ativa possui uma série de vantagens. Este

tipo de replicação permite uma consistência de dados equivalente a de uma única

cópia centralizada enquanto garante que várias réplicas tenham acesso ativo aos da-

dos. Por esta razão, esta estratégia tem sido utilizada com frequência em sistemas

modernos [19, 48, 49, 62]. A replicação ativa é o tema principal desta tese e nesta

seção detalharemos os seus conceitos fundamentais.

Replicação ativa (ou abordagem de máquina de estados) é uma estratégia de

replicação onde a aplicação é modelada como uma máquina de estados determinista.

As operações executadas pela aplicação correspondem a transições desta máquina de

estados e os eventos que geram estas transições são difundidos, na mesma ordem,

para todas as réplicas. O determinismo da máquina de estados garante que todas as

réplicas, se possuı́rem o mesmo estado inicial, permanecerão idênticas à medida que

as operações forem executadas. Replicação ativa foi proposta pela primeira vez por

Lamport [55] e foi detalhadamente descrita por Schneider [79].

Temos então duas tarefas principais relacionadas à construção de um sistema que

empregue replicação ativa: criação da máquina de estados e a difusão totalmente or-

denada de operações. A modelagem de uma aplicação como uma máquina de estados

determinista é um problema eminentemente centralizado, que tem como principal

dificuldade a remoção de não-determinismo da aplicação. A difusão de operações

6 Capı́tulo 1. Introdução

(mensagens) totalmente ordenadas para um grupo de réplicas é um problema bem

mais complicado, especialmente em sistemas distribuı́dos assı́ncronos. Em particular,

a difusão totalmente ordenada é equivalente ao problema de consenso nestes siste-

mas [28, 34] e este problema, por sua vez, é impossı́vel de ser resolvido mesmo que

somente um processo falhe [38].

Na prática, uma forma de se evitar a impossibilidade de resolução do problema

de consenso consiste em mudarmos o modelo de sistema de assı́ncrono para parci-

almente sı́ncrono [34]. Vários protocolos de difusão ordenada foram propostos para

diferentes modelos de sistema, que consequentemente oferecem diferentes garantias

de confiabilidade. Défago et al [33] apresentam um estudo amplo sobre estes protoco-

los, com uma taxonomia dos mecanismos fundamentais usados em sua especificação.

Dentre esses mecanismos, os protocolos de consenso representam uma das abstra-

ções mais interessantes. Consenso serve como base para a solução do problema da

difusão totalmente ordenada devido a equivalência entre os dois problemas [28]. O

que torna a abordagem de redução a consenso interessante é a sólida base teórica do

problema de consenso, que inclui provas de correção, resultados de impossibilidade e

algoritmos bem eficientes, mesmo com garantias fortes de entrega [33]. Um exemplo

do tipo de fundação teórica que podemos encontrar no problema de consenso é o

trabalho seminal de Chandra e Toueg em detectores de falhas [28]. Entre exemplos

de protocolos de difusão total eficientes baseados em consenso podemos citar [18, 28,

58, 71, 72, 73].

Grande parte da literatura sobre consenso e difusão totalmente ordenada con-

sidera o modelo de falhas falha-sem-recuperação, onde um processo falha e nunca

mais retorna à operação [33]. Dentro deste modelo, uma das soluções mais usadas

para resolver estes problemas de replicação é usar um mecanismo de comunicação em

grupo baseado em sincronia virtual. No modelo de sincronia virtual, um serviço de

pertinência ao grupo (group membership service) define grupos dinâmicos onde proces-

sos podem entrar e sair do sistema, tanto explicitamente ou devido a uma falha [14].

Todos os processos de um grupo mantêm uma cópia local da lista de membros deste

grupo, esta cópia local é a visão que o processo tem do grupo. A entrega de mensa-

gens é regida por estas visões.

Em sistemas de comunicação de grupo, o serviço de pertinência ao grupo age

como o mecanismo fundamental de tolerância a falhas, escondendo do programador

a necessidade de monitorar e tratar a ocorrência de falhas. Todas as mensagens envi-

adas durante a duração de uma visão são recebidas por todos os processos incluı́dos

nesta visão. Este serviço de entrega também provê, dentro de uma visão, várias ga-

rantias de entrega, incluindo ordenação total. No entanto, a pertinência ao grupo em

sincronia virtual possui um procedimento de detecção e recuperação de falhas muito

1.4. Paxos e Fast Paxos 7

rı́gido, como consequência do uso do modelo de falhas falha-sem-recuperação. Se

um processo falha, ele é removido da computação e só pode retornar a mesma após

a instalação de uma nova visão de processos ativos. Se o processo na verdade não fa-

lhou, mas foi erroneamente considerado falho, ele é forçado a desligar-se e a retornar

ao grupo para garantir a consistência [14].

Esta rigidez na detecção e tratamento das falhas não é inerente à interface de

programação de sincronia virtual, mas apenas às implementações atuais que usam o

serviço de pertinência ao grupo como base de tolerância a falhas. Um conjunto de

especificações para comunicação em grupo, com semântica idêntica a sincronia vir-

tual, mas implementadas com base em uma redução para o problema de consenso

são propostas por Schiper [78]. Uma grande vantagem desta abordagem é que a

solução resultante é mais resistente a falhas do subsistema de detecção de falhas [83].

Uma solução baseada em pertinência ao grupo força processos a saı́rem e retornarem

ao grupo quando sua falha é erroneamente detectada, diminuindo o desempenho.

Uma solução baseada em consenso é capaz de distinguir falhas transientes do sistema

de comunicação de falhas mais duradouras envolvendo subsistemas e processos, to-

mando a decisão de exclusão de um processo de um grupo com base na gerência

de recursos do sistema [30]. Por fim, soluções baseadas em consenso possuem uma

maior robustez, sendo capazes de progredir mesmo sob uma carga intensa e várias

falhas de temporização [82].

Em comparação com o modelo de falha falha-sem-recuperação adotado em sin-

cronia virtual, um modelo mais realista seria falha-e-recuperação. Aguilera et al. [4]

mostram diferentes detectores de falhas e algoritmos de consenso neste modelo, com

requisitos distintos de memória estável. Rodrigues e Raynal [76] apresentam um

algoritmo de difusão totalmente ordenada no modelo falha-e-recuperação que trata

consenso como um componente caixa preta e pode ser implementado com qualquer

algoritmo de consenso falha-e-recuperação.

1.4 Paxos e Fast Paxos

O algoritmo Paxos é uma solução completa para replicação ativa usando consenso

no modelo falha-e-recuperação [56]. Este algoritmo foi extensivamente estudado [16,

17, 59] e possui bom desempenho teórico [75]. Fast Paxos é uma variante de Pa-

xos que melhora a latência de obtenção de consenso para apenas dois passos de

comunicação [57]. Este é um algoritmo ótimo para o problema de consenso no mo-

delo falha-e-recuperação [58]. Nesta seção faremos uma breve descrição destes dois

algoritmos, focando no funcionamento de seus componentes principais. Descrições

completas de ambos podem ser encontradas em [57].

8 Capı́tulo 1. Introdução

Processos no sistema são agentes reativos que podem assumir vários papéis: um

proponente (proposer) que pode propor valores, um receptor (acceptor) que escolhe um

único valor ou um aprendiz (learner) que aprende o valor escolhido. Para resolver o

consenso, agentes do Paxos executam várias rodadas, onde cada rodada possui um

coordenador e é unicamente identificada por inteiro positivo, o número de rodada. Pro-

ponentes enviam a sua proposta para o coordenador que tenta alcançar consenso sobre

ela em uma rodada. O coordenador é responsável por essa rodada e é capaz de de-

cidir, após aplicar uma regra local, se outras rodadas tiveram sucesso ou não. A

regra local do coordenador é baseada em quóruns de receptores e exige que pelo me-

nos ⌊N/2⌋ + 1 receptores façam parte de uma rodada, onde N é o número total de

receptores no sistema [57].

Cada rodada acontece em duas fases, com dois passos cada, como ilustrado na

Figura 1.1:

• Na Fase 1a o coordenador envia uma mensagem convidando todos os receptores

a participar de uma rodada r. Um receptor aceita o convite apenas se ele não

aceitou participar de uma rodada s ≥ r, caso contrário ele ignora o convite.

• Na Fase 1b todo receptor que aceitou o convite responde ao coordenador a

última proposta votada por este receptor e a rodada em que este voto ocorreu,

ou null se ele nunca votou.

• Na Fase 2a, se o coordenador da rodada r recebeu respostas de um quórum de

receptores, ele analisa o conjunto de respostas recebidas e escolhe uma proposta

p que foi ou poderia ter sido decidida em rodadas com número menor que r.

Ele então pede a estes receptores para votar nesta proposta, ou caso ela seja null,

para votar em uma das propostas feitas pelos proponentes.

• Na Fase 2b, após receber um pedido para votar do coordenador, receptores

votam na proposta sugerida se eles não votaram em nenhuma rodada s ≥ r. Os

receptores votam enviando o número de rodada e a proposta aos aprendizes.

• Finalmente, um aprendiz descobre que uma proposta p foi escolhida se ele re-

cebe mensagens da Fase 2b de um quórum de receptores, todos votando em p

na mesma rodada r.

Fast Paxos muda Paxos permitindo que os proponentes enviem as suas propostas

diretamente aos receptores. Para conseguir isto, as rodadas são divididas em roda-

das rápidas e rodadas clássicas. Os quóruns usados por Fast Paxos são maiores do

que aqueles usados por Paxos e devem ter tamanhos apropriados para satisfazer os

1.4. Paxos e Fast Paxos 9

Figura 1.1: Paxos

requisitos da regra local. Especificamente, é possı́vel minimizar o número de recep-

tores em uma rodada rápida estipulando que tanto quóruns rápidos quanto clássicos

contenham ⌊2N/3⌋ + 1 receptores [57, 86].

Uma rodada de Fast Paxos acontece de forma similar a uma rodada de Paxos,

exceto que a Fase 2 é mudada, como ilustrado na Figura 1.2:

• Na Fase 2a, se o coordenador recebeu respostas de um quórum rápido de recep-

tores indicando que nenhum deles já votou, ele instrui os proponentes a pedir

diretamente aos receptores que votem em uma proposta de sua escolha.

• Na Fase 2b, após receber um pedido para votar feito por um dos proponentes,

os receptores votam em uma proposta.

Esta descrição de ambos os algoritmos considera apenas uma única instância de

consenso. No entanto, Paxos também define uma forma de entregar um conjunto de

mensagens totalmente ordenadas. A ordem de entrega destas mensagens é determi-

nada por uma sequência de inteiros positivos, tal que a cada inteiro corresponde

uma instância de consenso. Cada instância i terá um valor decidido, que corres-

ponde a i-ésima mensagem (ou conjunto ordenado de mensagens) a ser entregue

na sequência de mensagens. Cada instância de consenso é independente das demais

e várias instâncias podem estar em curso ao mesmo tempo. Para suportar o modelo

de falhas falha-e-recuperação, ambos os algoritmos exigem que os agentes armaze-

nem estado em memória não volátil [57]. Este estado é composto por um registro das

instâncias iniciadas, os números de rodadas usados e as propostas feitas e votadas,

entre outros dados.

10 Capı́tulo 1. Introdução

Figura 1.2: Fast Paxos

Em Paxos e Fast Paxos qualquer processo pode agir como o coordenador de uma

rodada enquanto ele seguir a regra para escolher uma proposta coerente com o re-

sultado das rodadas anteriores na Fase 2a. A escolha de coordenador e a decisão

de iniciar uma nova rodada de consenso são feitas com base em algum mecanismo

de temporização, uma vez que Paxos supõe um modelo computacional parcialmente

sı́ncrono para garantir liveness. Especificamente, a todo momento deve existir apenas

um coordenador ativo para garantir que o algoritmo progrida. Se dois ou mais proces-

sos iniciam agentes coordenadores, o algoritmo pode travar enquanto estes múltiplos

coordenadores competem pela atenção dos receptores com números de rodada que

crescem rapidamente. Por esta razão, a liveness do algoritmo depende de um proce-

dimento de seleção de coordenador. Este procedimento não precisa ser perfeito. A

correção do algoritmo nunca é comprometida se zero ou mais coordenadores estive-

rem ativos ao mesmo tempo. Porém, o procedimento de seleção de coordenador deve

ser robusto o suficiente para garantir que apenas um único coordenador esteja ativo

a maior parte do tempo. Chamamos o processo de colocar um novo coordenador em

operação de validação de coordenador.

Considerando a natureza concorrente das instâncias de consenso, uma otimização

comum é feita durante a validação de um novo coordenador. A Fase 1 em Paxos

e as Fases 1 e 2a em Fast Paxos são executadas apenas uma vez para todas as infi-

nitas instâncias de consenso ainda não usadas. O coordenador de Paxos “guarda”

estas instâncias para serem usadas no futuro, ou no caso de Fast Paxos, ele autoriza

os proponentes a usarem estas instâncias. A melhoria gerada por esta fatoração de

operações permite que Paxos alcance o consenso em apenas três rodadas de comu-

nicação e Fast Paxos em apenas duas rodadas de comunicação, como ilustrados nas

1.5. Contribuições e Organização da Tese 11

Figuras 1.1 e 1.2. Infelizmente, Fast Paxos nem sempre pode ser rápido. Os propo-

nentes podem propor valores diferentes de forma concorrente, causando uma colisão

de suas propostas. Adicionalmente, falhas de processos e de rede podem impedir

que uma rodada termine com sucesso. Vários mecanismos de recuperação podem

ser empregados para tratar colisões e falhas, mas a intervenção do coordenador será

necessária para iniciar mais uma rodada clássica [57].

Como Paxos oferece uma visão combinada de consenso e replicação ativa, ele

fornece um bom desempenho por minimizar o número de abstrações necessárias. Esta

simplicidade conceitual o coloca como solução ideal de replicação para os sistemas

onde replicação consistente é necessária, porém sem perder desempenho. Esta é, por

exemplo, a situação encontrada por sistemas replicados crı́ticos dentro de aplicações

distribuı́das maiores [26].

1.5 Contribuições e Organização da Tese

Esta tese está organizada como uma coletânea de artigos, refletindo as principais

contribuições do trabalho. Estas contribuições podem ser divididas em duas grandes

áreas: a biblioteca Treplica e contribuições ao conhecimento do algoritmo Paxos e Fast

Paxos.

A primeira parte trata da proposta de uma especificação de replicação ativa e a

sua implementação na forma da biblioteca Treplica. Nesta parte, descrevemos uma

forma simples de se construir aplicações replicadas e como este mecanismo foi imple-

mentado usando um algoritmo de consenso. Caracterizamos também o desempenho

e a confiabilidade desta abordagem, justificando a sua aplicabilidade. Esta parte é

composta pelos seguintes capı́tulos:

Capı́tulo 2: Este capı́tulo é composto pelo artigo “Implementation of an Object-Oriented

Specification for Active Replication Using Consensus” [89]. Este artigo descreve a

nossa proposta de uma especificação orientada a objetos para replicação e a sua

implementação na forma da biblioteca Treplica. Neste trabalho é descrita a ar-

quitetura de software de Treplica, as suas principais decisões de projeto e os

problemas que as motivaram. Por completude, é feita uma breve análise de

desempenho de Treplica que corresponde a um sub-conjunto dos dados apre-

sentados no Capı́tulo 3. O leitor pode pular esta análise (Seção 2.7) em uma

leitura completa da tese. Uma primeira versão deste artigo foi publicado nos

anais do 26o Simpósio Brasileiro de Redes de Computadores e Sistemas Dis-

tribuı́dos (SBRC 2008), Rio de Janeiro, Brasil [87]. A versão presente nesta tese é

uma versão substancialmente estendida, publicada como Relatório Técnico IC-

12 Capı́tulo 1. Introdução

10-26 do Instituto de Computação da Unicamp, que está atualmente em fase

final de preparo para submissão para avaliação no periódico Software: Practice

and Experience.

Capı́tulo 3: Este capı́tulo é composto pelo artigo “Dynamic Content Web Applications:

Crash, Failover, and Recovery Analysis” [20]. Este artigo mostra como falhas e

recuperações afetam o desempenho de um aplicação Web implementada com

Treplica. O desempenho é medido usando-se o benchmark TPC-W, aumentado

com medidas de disponibilidade. Os resultados obtidos mostraram um bom

desempenho, excelente escalabilidade e disponibilidade ininterrupta. Este artigo

foi publicado nos anais da 39th International Conference on Dependable Systems and

Networks (DSN 2009), Estoril, Portugal (doi:10.1109/DSN.2009.5270331).

A segunda parte trata das contribuições que fizemos ao conhecimento do algo-

ritmo Paxos e Fast Paxos. Nesta parte descrevemos três contribuições principais, que

incluem a caracterização do desempenho de Paxos e Fast Paxos, uma regra de con-

sistência simplificada para Fast Paxos e um procedimento otimizado de substituição

de coordenador para Paxos. Esta parte é composta pelos seguintes capı́tulos:

Capı́tulo 4: Este capı́tulo é composto pelo artigo “The Performance of Paxos and Fast

Paxos” [88]. Este artigo faz a caracterização do desempenho dos algoritmos

Paxos e Fast Paxos, os comparando em situações com e sem falhas. A avaliação

de desempenho foi realizada em uma ambiente de LAN e pudemos observar

que Paxos teve um melhor desempenho que Fast Paxos. Mais interessante foi a

observação que a violação da suposição otimista do Fast Paxos não foi a causa

desta diferença, mas sim violações de temporização. Este artigo foi publicado

nos anais do 27o Simpósio Brasileiro de Redes de Computadores e Sistemas

Distribuı́dos (SBRC 2009), Recife, Brasil.

Capı́tulo 5: Este capı́tulo é composto pelo artigo “On the Coordinator’s Rule for Fast

Paxos” [86]. Este artigo mostra uma análise da implementação da regra de

consistência do algoritmo Fast Paxos como implementada pelo processo co-

ordenador em função do número de processos no quórum. Com base nesta

análise, é proposta uma regra simplificada de consistência interessante para

implementação. Este artigo foi publicado no periódico Information Processing

Letters, volume 107, 2008 (doi:10.1016/j.ipl.2008.03.001).

Capı́tulo 6: Este capı́tulo é composto pelo artigo “A Recovery Efficient Solution for the

Replacement of Paxos Coordinators” [90]. Este artigo mostra uma otimização do

1.6. Trabalhos Relacionados 13

procedimento de substituição de um coordenador no algoritmo Paxos. O co-

ordenador é um agente fundamental para o funcionamento deste algoritmo

e a sua substituição pode levar o sistema a parar. Este trabalho apresenta

um procedimento de substituição de coordenador que provoca o mı́nimo de

perturbação nas operações do sistema. Uma observação interessante é que

mesmo na ausência de falhas de processos, a coordenação troca constantemente

em sistemas sobrecarregados o que torna esta otimização interessante. O ar-

tigo presente nesta tese é uma versão revisada do Relatório Técnico IC-10-13 do

Instituto de Computação da Unicamp, submetida para avaliação no periódico

Transactions on Parallel and Distributed Systems.

Além destes artigos, podemos citar um outro trabalho desenvolvido durante a

pesquisa de tese mas que não se encaixa na presente organização da mesma. O artigo

“Evaluation of a Read-Optimized Database for Dynamic Web Applications” [80] investiga

o uso de um banco de dados especializado para sistemas de data warehousing como

suporte para construção de aplicações Web. Este artigo foi publicado nos anais da

Fourth International Conference on Web Information Systems and Technologies (WEBIST

2008), Volume 1, Funchal, Portugal.

O Capı́tulo final da tese resume as contribuições apresentadas e mostra alguns

trabalhos futuros.

1.6 Trabalhos Relacionados

A idéia de se armazenar os dados na memória principal, utilizando um registro per-

sistente de operações como ummecanismo de tolerância a falhas, é descrita por Birrell

et al. [15]. A API atual do Treplica foi influenciada por Prevayler [95], especificamente

pelo uso que faz de caracterı́sticas de linguagens de programação modernas como

Java e C# para simplificar a implementação de mecanismos complexo e fornecer uma

API simples. Em comparação a estes dois sistemas centralizados, Treplica estende

esta abordagem de persistência baseada em registro de operações como base para

replicação.

Replicação de dados com alto nı́vel de consistência e desempenho tem sido usada

frequentemente em mecanismos de controle de sistemas distribuı́dos de grande es-

cala [19, 48, 49]. Estes sistemas exigem alguma forma de controlar a operação de um

número muito grande de processadores e serviços da forma mais autônoma possı́vel.

Estes mecanismos apresentam uma abstração de programação baseada em bloqueios,

além de servir como repositório consistente de configurações. Como o Treplica, mui-

tos destes sistemas utilizam o algoritmo Paxos para implementar replicação.

14 Capı́tulo 1. Introdução

O sistema de bloqueios Chubby é usado pela Google para controlar vários de seus

serviços [19]. Apesar de usar uma abstração de programação baseada em bloqueios,

Chubby possui várias caracterı́sticas estruturais similares ao Treplica, incluindo um

“registro tolerante a falhas” replicado usando Paxos, bem similar a uma fila persis-

tente [26]. Os autores argumentam que esta abstração é interessante e que pretendem

usar esta abstração para criar outros sistemas replicados no Google [26]. Chubby

é uma aplicação dedicada à gerência de bloqueios distribuı́dos e não exporta o seu

estado replicado como um serviço para outras aplicações. O Treplica, por sua vez,

fornece apenas o serviço de estado replicado, persistente e disponı́vel, sendo uma

ferramenta que pode ser usada para a construção de serviços de bloqueio similares

ou de outras aplicações especializadas. Chubby usa o algoritmo Paxos clássico para

implementar replicação, enquanto Treplica usa os algoritmos Paxos e Fast Paxos.

Um outro sistema de bloqueio distribuı́do é o FaTLease [48], parte do sistema

de arquivos orientado a objetos XtreemFS [47]. Como este sistema de arquivos uti-

liza bloqueios com uma granularidade bem pequena, o FaTLease deve ser bastante

eficiente. Para alcançar este objetivo o sistema emprega uma variante do algoritmo

Paxos otimizada para manter bloqueios com prazo de validade (leases). A otimização

consiste em operar apenas em memória principal, sem fazer uso da custosa memória

secundária. O algoritmo Paxos exige memória persistente para garantir a consistência,

mas FaTLease se esquiva desta exigência utilizando a validade dos bloqueios por ele

gerenciados. Como todo bloqueio tem um prazo de validade, existe um momento

no futuro onde todos os bloqueio não são mais relevantes. No FaTLease uma réplica

que falha só retorna ao sistema após esperar tempo suficiente para que todos os blo-

queios que ela poderia ter tomado conhecimento percam a validade. Desta forma,

esta réplica não precisa preservar estado algum. Como Chubby, FaTLease é uma

aplicação especı́fica para o problema de coordenação através de bloqueios de sistemas

distribuı́dos. Treplica por sua vez tem maior aplicabilidade, pois é uma biblioteca de

uso geral que pode construir outros tipos de aplicações. Treplica exige também dois

acessos a memória secundária para cada operação ordenada pelo sistema, o que im-

plica em um custo maior que o FaTLease. No entanto, a estratégia de recuperação do

FaTLease possui um impacto na disponibilidade do sistema devido ao perı́odo que

uma réplica deve esperar para se recuperar. Treplica, por sua vez, garante operação

continuada, com perda mı́nima de desempenho em caso de falha.

Zookeeper1 e Autopilot [49] são sistemas completos de coordenação de aglome-

rado, semelhantes ao Chubby mas com mais funcionalidades. Zookeeper possui

um conjunto simples de primitivas para sincronização, configuração, manutenção e

resolução de nomes. Ele fornece também um serviço de monitoramento deste sistema

1http://hadoop.apache.org/zookeeper/

1.6. Trabalhos Relacionados 15

de arquivos que pode ser usado como forma de comunicação e notificação. Autopi-

lot controla todos os aspectos de um aglomerado, como provisionamento de novos

serviços, instalação de aplicações, monitoramento e correção de erros e coordenação.

Ambos os sistemas são usados como ponto de controle central das aplicações dis-

tribuı́das em um aglomerado. Logo, eles são replicados para garantir operação inin-

terrupta destas aplicações em caso de falhas. Estes sistemas, de forma geral, provêem

um serviço mais especializado que o Treplica. Mesmo assim, é interessante observar

que os projetistas destes sistemas, devido a sua centralidade no aglomerado, decidi-

ram usar um mecanismo baseado em consenso para replicar os dados cruciais, e deci-

diram manter estes dados em memória principal usando a memória secundária para

tolerância a falhas. Estas são algumas das decisões de projeto adotadas no Treplica e

podemos afirmar que o Treplica poderia ser uma ferramenta adequada a construção

de sistemas de coordenação similares.

Uma alternativa ao uso de bloqueios distribuı́dos são as transações distribuı́das.

Camargos et al. [23] apresentam um sistema de terminação de transações distribuı́das

baseado em um registro persistente dos votos para abortar ou concluir a transação. A

especificação proposta abstrai detalhes sobre a implementação do serviço de registro

distribuı́do. Além disso, cada participante do sistema pode contar com o registro para

preservar os dados de suas transações e não precisa se preocupar com a persistência

de seus dados locais. Os autores fornecem duas implementações deste serviço, ambas

baseadas em consenso. A abstração de serviço de registro é similar a abstração de filas

persistentes usada pelo Treplica. Ambas soluções fornecem um registro persistente

e replicado de dados ordenados, permitindo que as aplicações usem este registro

para manter a sua consistência. Treplica tem aplicação mais geral, já que não define

semântica dos dados transportados e não é restrito à gerência de transações. O serviço

de registro persistente por sua vez roda exclusivamente um algoritmo de terminação

de transações.

Boxwood [62] é um arcabouço para a construção de aplicações de armazenamento

de dados distribuı́das. Os criadores deste arcabouço defendem o uso de estruturas

de dados genéricas e de mais alto nı́vel como fundação para a construção de siste-

mas distribuı́dos complexos. Uma das abstrações propostas consiste em um serviço

de consenso genérico usando Paxos. Este módulo é usado por vários componen-

tes do Boxwood, incluindo o seu gerente de bloqueios distribuı́dos. No entanto,

Boxwood é centrado em um domı́nio especı́fico de aplicação (armazenagem de da-

dos distribuı́dos) e provê uma interface de baixo nı́vel aos seus serviços, enquanto o

Treplica oferece uma interface de programação de mais alto nı́vel.

Na literatura há vários trabalhos que apontam de um lado a simplicidade con-

ceitual de Paxos e de outro lado a sua complexidade de implementação; o algoritmo

16 Capı́tulo 1. Introdução

exige que o projetista defina vários aspectos que foram propositadamente deixados de

lado em sua especificação teórica [16, 26, 59]. Como parte do trabalho de construção

do Treplica alguns destes aspectos são levantadas e definidos. Um outro trabalho

direcionando exclusivamente a descrição detalhada de uma implementação de Pa-

xos pode ser encontrado em [7]. Este artigo descreve todos os aspectos de um sis-

tema completo de replicação ativa usando Paxos, incluindo um estudo bem completo

do desempenho desta implementação. Nesta descrição são descritos mecanismos de

controle de fluxo e de congestionamento, procedimento de eleição de coordenador e

outros aspectos de implementação que não são usualmente detalhados. Os autores

observaram que estes mecanismos são considerados como apenas questões de en-

genharia, mas podem afetar o algoritmo, especialmente seus requisitos de liveness.

Nesta tese propomos uma abstração para programação de replicação ativa que in-

clui requisitos de persistência e apresentamos uma implementação desta proposta.

Desta forma, Paxos possui uma posição central no desenvolvimento deste texto, mas

o trabalho cobre uma gama de assuntos mais ampla.

Sistemas de comunicação em grupo fornecem um conjunto de primitivas que po-

dem ser usadas na construção de aplicações replicadas. Entre as ferramentas de maior

sucesso podemos citar Isis [12], Totem [68] e Transis [6]. Isis introduziu muitas das

idéias que influenciaram intensamente as ferramentas que o sucederam, incluindo

o modelo de programação baseado em sincronia virtual [13, 14, 39]. Horus [85]

foi o sucessor de Isis e introduziu uma arquitetura de software altamente modu-

lar e uma versão melhorada de sincronia virtual. Ensemble [84] e JGroups [9] são

reimplementações de Horus em ML e Java, respectivamente, e ambos são ativamente

mantidos e usados. Outras ferramentas de comunicação em grupo mais recentes,

também ativamente mantidas e usadas, são Spread [5] e Appia [67]. Devido à sua

intenção de combinar replicação e persistência, Treplica se distancia da organização

tradicional destes sistemas ao procurar adotar consenso como modulo fundamental

para construir aplicações replicadas.

A abstração de filas persistentes é bem similar ao padrão publish/subscribe de

comunicação de grupos de processos implementado em middleware orientados a men-

sagens (message oriented middleware; MOM) [10]. A troca de mensagens em MOM é

assı́ncrona, com a garantia que até processos defeituosos podem esperar receber todas

as mensagens enviadas, na mesma ordem vista pelos outros processos. Além de di-

fusão de mensagens, MOM permitem a construção de grafos elaborados para o fluxo

de mensagens e muitos executam conversões de formato destas mensagens enquanto

as mesmas são transportadas neste grafo. Como exemplos de MOM podemos citar

1.6. Trabalhos Relacionados 17

os produtos IBM WebSphere MQ2 e Apache ActiveMQ3. Estes sistemas são bem mais

pesados comparados com Treplica e são usualmente implementado sobre sistemas

de banco de dados centralizados, herdando destes sistemas o seu comportamento de

falhas. Treplica também é projetado para processos mais fortemente acoplados e não

provê fluxo explı́cito de mensagens nem conversões de formato.

Um domı́nio de aplicação que usa replicação de forma muito intensa é o de banco

de dados. O uso de replicação em banco de dados possui uma história longa, marcada

por técnicas e terminologia próprias [92]. No contexto desta tese, estas estratégias de

replicação são relevantes porque existe uma significativa sobreposição de conceitos

entre a visão transacional tı́pica de bancos de dados replicados e a invocação remota

de objetos distribuı́dos replicados [92].

Em banco de dados, replicação é usada primariamente como técnica de tolerância

a falhas. Servidores replicados são amplamente usados para proteger contra falhas

catastróficas, preservando o oferecimento de serviço. Raramente dados replicados são

usados como ferramenta para aumentar o desempenho do sistema, pelo contrário,

replicação é sempre vista como uma fonte de sobrecarga, necessária para a tolerância

a falhas [54]. Estudos abrangentes das estratégias de replicação adotadas em bancos

de dados podem ser encontradas nos trabalhos de Wiesmann et al. [91, 92].

As primeiras iniciativas de pesquisa em replicação de dados sı́ncrona em bancos

de dados foram baseadas em bloqueios distribuı́dos [11] ou algoritmos de quórum [2,

42]. Trabalhos posteriores propuseram o uso de difusão totalmente ordenada como

uma alternativa a bloqueios para a implementação de replicação sı́ncrona [3, 46, 54,

70]. O estudo de Wiesmann e Schiper [93] descreve estes protocolos a analisa o seu

desempenho. Uma das técnicas mais interessantes utiliza o conceito de certificação

de transações [70]. Nesta abordagem todas as escritas de uma transação são adiadas

até o momento do commit. Neste ponto, o conjunto de escritas é difundido para as

outras réplicas que validam a possibilidade de efetuar o commit usando o princı́pio de

isolamento de snapshot. Todas as réplicas recebem os conjuntos de escritas na mesma

ordem e o processo de certificação é determinista, logo todas tomarão as mesmas

decisões sem necessidade de coordenação.

Implementações que usam difusão totalmente ordenada para replicar banco de da-

dos podem ser encontradas nos sistemas de pesquisa Postgres-R [53], Tashkent [36] e

Tashkent+ [37]. No entanto, pouco destas e outras pesquisas está sendo efetivamente

aplicada em sistemas gerenciadores de banco de dados comerciais. Uma razão para

isto é que adaptar um sistema de banco de dados existente para suportar replicação

é uma tarefa muito complexa, levando-se em conta a quantidade de recursos já in-

2http://www-306.ibm.com/software/integration/wmq/
3http://activemq.apache.org/

18 Capı́tulo 1. Introdução

cluı́da em tais sistemas. Alguns pesquisadores propuseram uma solução para este

problema empregando middleware. Nestas abordagens os banco de dados convencio-

nais são executados sem alterações e são coordenados por uma camada de replicação

implementada como um adaptador de serviço. Dois exemplos desta abordagem são

Sequoia/C-JDBC [25] e Ganymed [74]. Ambos implementam a camada de abstração

de conectividade de banco de dados JDBC.

Uma forma comum de se fazer persistência e replicação de dados consiste em

usar bancos de dados replicados como repositório de dados e acessá-los usando os

mecanismos de consultas usuais, como o SQL. De forma oposta ao Treplica, estes

sistemas provêem uma solução pesada e custosa para o problema de replicação. Desta

forma, não são muito úteis como blocos fundamentais para a construção de sistemas

distribuı́dos confiáveis. Consideramos o Treplica como uma solução superior nestes

casos por oferecer uma interface mais enxuta de programação e por apresentar alto

desempenho, como argumentaremos nesta tese.

Capı́tulo 2

An Object-Oriented Specification for

Active Replication Using Consensus

Most of the software tools created so far to aid in the construction of distributed

applications addressed how to replicate data consistently in the presence of failu-

res, but without offering much relief for the problem of building a dependable and

long-running application. This paper describes our experience building Treplica, a

replication toolkit offering application developers a very simple programming model

based on an object-oriented specification for replication of durable applications. Tre-

plica simplifies the development of high-available applications by making transparent

the complexities of dealing with replication of data that must survive process crashes

and recoveries. These complexities are not negligible, and we believe we have found a

compelling way to address this problem under a simple-to-understand object-oriented

interface. We have used Treplica successfully to add fault tolerance to a implementa-

tion of the TPC-W benchmark and we have obtained very good performance, even in

the presence of failures.

2.1 Introduction

For more than three decades system developers have pursued the goal of connecting

off-the-shelf computers together using standard network resources to obtain a system

with better availability than any of its individual parts. The system obtained this way

has greater availability because it contains sub-systems to spare. For example, each

computer of the system can contain a copy of some critical process so that partial

computer failures are guaranteed not to make the system or the application it hosts

unavailable to its users. Unfortunately, the full potential of redundancy and repli-

cation can only be successfully harnessed if three main obstacles are overcome: (i)

19

20 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

performance, (ii) availability despite component failures and (iii) programming sim-

plicity.

These three seemly simple goals are very hard to reach in practice due to asynchro-

nous nature of distributed systems. Nonetheless, many solutions exist for replicating

data and services with many different suppositions regarding system models, repli-

cation guarantees and application behavior [45]. However, with the exception of data

intensive solutions for relational databases, few solutions tackle the problem of ma-

naging replication of applications whose services and data must be always available

for long periods of time. The designer of this class of distributed applications faces

the daunting task of maintaining consistency in the presence of unpredictable failures

and concurrency.

This paper discusses our experience in building and using Treplica, a replication

library that overcomes (i) by implementing consensus-based active replication and (ii)

by offering the application developers a very simple programming model based on

an object-oriented specification for replication. Treplica has been designed to be resi-

lient, transparent and efficient. Resiliency means that Treplica implements at its core

a replication protocol that gives applications the ability of tolerating crashes and re-

coveries of a subset of their replicated components without having to worry about the

consistency of the replicated state. Treplica guarantees resiliency through consensus-

based active replication, specifically the Paxos [56] algorithm. Transparency guaran-

tees that programmers can develop replicated distributed applications without having

to be concerned about how replication is actually implemented. In fact, application

programmers can program their stateful applications as a set of stateless objects. Con-

cerning efficiency, experimental results show that Treplica can provide the necessary

processing capacity to guarantee very good application response times.

In summary, Treplica simplifies the development of high-available applications by

making transparent many of the complexities related to consistent replication and re-

covery in the presence of failures. These complexities are not negligible; care must be

taken to correctly implement the replication algorithms, detect and manage failure,

perform recovery, among other issues [7, 26]. We believe we have found a compel-

ling way of factoring out these concerns under a simple-to-understand programming

interface. Treplica stands in the middle ground between the low-level flexibility of

message-based group communication toolkits and the extensive data processing ca-

pabilities of databases. The main contributions of this work are:

• The design and implementation of an object-oriented abstraction for replication

as a way to simplify the construction of dependable and long-lived applications.

• The use of consensus as a foundation for the implementation of this modular

2.2. Treplica 21

abstraction.

• The description of the software architecture of Treplica accompanied by a detai-

led discussion of our design choices and the problems that motivated them.

• The experimental validation of Treplica’s performance and availability. Treplica

shows good performance and uninterrupted service, even with multiple failures.

The remaining of this paper is structured as follows. Section 2.2 gives an over-

view of Treplica, goes in more depth in the rationale for its creation and outlines

its software architecture. Section 2.3 describes the object-oriented specification for

replication while Section 2.4 gives an example of how this specification is used in

Treplica to build a complete application. Section 2.5 goes into more detail on the

internal structure of Treplica, describing our implementation of the Paxos protocol.

Section 2.6 briefly describes the typical profile of applications built with Treplica and

Section 2.7 shows the performance attained by one such application, the TPC-W ben-

chmark. Section 2.8 discusses related work and Section 2.9 makes some concluding

remarks.

2.2 Treplica

2.2.1 Motivation

Replication is a crucial mechanism used in distributed systems to increase the sys-

tem reliability and performance. Active replication is a general technique to replicate

the internal state of processes that prioritizes consistency [79]. In active replication

all processes sharing the same state, called replicas, behave as deterministic state ma-

chines. All replicas share the same source of events that trigger transitions in their

underlying state machine. As a consequence, all replicas stay the same as long as they

process the same sequence of events.

There are many forms of implementing active replication. One of the more com-

mon is to employ a total order broadcast primitive to propagate events orderly among

the replicas [33]. As an example, take the usual situation of a set of servers providing

service to a set of clients. In this scenario, a client can broadcast its request to the

set of servers using the total order broadcast. All the servers will observe the request

at the same position in their events sequence and will perform the same operation,

yielding the same result. The client picks the first answer it receives. The conceptual

simplicity of active replication over a total order broadcast primitive makes it a very

used solution in practice.

22 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

However, it is necessary to consider the relationship between the properties of the

total order broadcast primitive and of the application being developed. In particular,

it is necessary to establish how the state of the total order broadcast relates to any

local state maintained by the application, specially in the presence of failures. By

definition persistent data survives failures, thus any information transmitted by the

total order broadcast primitive that do not survive failures is a potential source of

inconsistency for the application. To illustrate this point we take as an example the

more mature way to implement total order broadcast: virtual synchrony-based group

communication.

In the virtual synchrony model, message delivery is constrained by views of ope-

rational processes maintained by a group membership service [14]. This group mem-

bership service supports dynamic groups where processes join and leave the system,

either explicitly or due to a failure. This service acts as the basic fault tolerance mecha-

nism, hiding from the programmer the need to monitor the occurrence of failures. All

messages sent during the lifetime of a view are received by all processes encompassed

by it, and all message delivery guarantees such as total order are enforced. However,

group membership in virtual synchrony assumes a crash-no-recovery failure model.

If a process fails, it can only rejoin the computation when a new view is instated. If

the failure of a process is wrongly detected, the process is forced to shutdown and

rejoin the group to guarantee view consistency [14].

Whenever a process joins a group, creating a new view, it is assumed this is the

first time this process is seem by the group. That is, there is no explicitly defined

rejoin operation. Processes are assumed to be stateless and they must catch up with

the group state by means of a state transfer from another process in the group. This

behavior directly affects the type of failures supported by the application. Take for

example a distributed application where all replicas reside in the same cluster. If it

is possible to guarantee the whole set of replicas never crashes completely, one can

use the shared state maintained in the main-memory of these replicas to preserve the

application state. However, if one must tolerate whole cluster failures, some stable

storage must be used.

Specifically, each replica must store and update its complete state in disk to ac-

count for the situation it is the last one to fail in the cluster. During recovery of

a failed replica, it runs a protocol to determine if it is joining an existing group or

creating a new group. If it is joining, it should discard all its local state and restart

from the state currently held by the replicas in the group. Thus, all processes use

costly stable memory, but it is only necessary by a single process in the less likely

event of a total crash, instead of the more common occurrence of a partial crash. One

can circumvent this basic behavior by creating an application specific protocol that

2.2. Treplica 23

makes the state transfer more efficient. This can be accomplished by using as much

as possible the local persistent state held by a replica to complete the state held by a

view of processes. However, it rests on the programmer the hard task of designing

and implementing this protocol. Moreover, if a replica is wrongly suspected of having

failed, it still must restart its operation and discard all its local state.

Although we have used virtual synchrony as an example, the problem just descri-

bed comes from the necessity of synchronizing total order delivery state and appli-

cation state. In fact, all properties of the total order primitive being used and of the

resulting application must be cautiously matched, considering consistency suppositi-

ons, failure models and other aspects. This way, the lower level details contaminates

all the upper layers including the programming abstraction, making the task of the

application developer much harder.

2.2.2 Overview

Treplica is a replication library designed to provide a simple and object-oriented way

to build highly available applications. These applications can encompass the entire

system or be restricted to crucial sub-systems where performance, consistency and re-

liability are central. To reach this goal, we decomposed the problem of implementing

replication in components with simple and clearly defined interfaces. So, a developer

who wants to implement a replicated distributed application does not reason in terms

of messages, processes, failures or data items. Instead, he reasons about the execution

of the application operations, transitions of a replicated state machine, that are triggered

by events that are made available through an asynchronous persistent queue. Treplica is

an implementation of this object-oriented specification for replication.

We decided to expose the state machine component to the developer as a program-

ming tool using the reflection facilities of modern languages to encode and execute

state and state transitions. Using state machines as a concrete programming interface

is desirable because states and transitions are easily implemented as objects. Treplica

is implemented in Java, and in this language the application state is represented by

serializable objects and actions as runnable, serializable objects. The object-oriented

specification embodied by Treplica can easily be implemented in any other dynamic

language and, with some extra programming effort, in more traditional languages

such as C.

The main design decision underlying Treplica is to allow the programmer to con-

sider the application as being stateless, leaving the actual durability of the application

to the library. This decision is supported by the observation that the same require-

ments of active replication can be used to provide a simple but powerful persistence

24 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

mechanism. Active replication requires the application to perform actions that change

its state in a deterministic way. These actions are then broadcast, in the same order,

to all replicas that locally replay them. Within this same framework, we consider that

the actions aren’t only sent to the other replicas but logged to stable storage [15]; this

way it is possible to recover from failures by replaying the log. Determinism ensures

that after each recovery the application will restart in the same state it was before the

failure. For efficiency and ease of implementation, we require that the application fit

in main-memory, as we do not provide any means of selectively unloading parts of

the application state to secondary memory. With the current size and cost of main-

memory, we don’t consider this limitation to be a problem for the class of applications

that can benefit from using Treplica.

To support active replication in Treplica, we have decided to concentrate on con-

sensus-based total order algorithms for the crash-recovery failure model. The Paxos

algorithm and its variants are examples of specially suited algorithm of this class, as it

was created with active replication in mind. These algorithms are particularly interes-

ting because they provide the continuous delivery of messages to a replica even in the

presence of failures and recoveries. This allows Treplica to have a simpler software ar-

chitecture and increases its potential for good responsiveness in the presence of partial

failures. Moreover, these extra guarantees allow Treplica to avoid expensive coordi-

nation of the local application state and the shared state during recovery. Obviously,

relying on stronger guarantees implies a larger cost to deliver messages. However,

for this class of algorithms, this cost is related to writes to stable memory and these

writes are already required to ensure the application can survive catastrophic failures.

By combining the stable memory requirements of the application and the total order

primitive we were able to obtain a good failure-free performance that is minimally

affected by the occurrence of faults.

2.2.3 System Specification

The target platform for Treplica are commodity clusters. The main characteristic of

such clusters is that the nodes are connected by a high bandwidth and low latency

interconnect network that supports broadcast. The replicas exchange messages th-

rough this network to keep the shared state consistent while potentially serving client

requests. Throughout this paper, client is any process that does not have a copy of the

replicated state. Only replicas hold the replicated state and only them are able to use

Treplica services to query and change this state. Clients depend on the replicas, that

act as servers, to perform these actions in their behalf. In fact, clients often interact

with a higher level abstraction provided by the replicas and are unaware of the exis-

2.2. Treplica 25

tence of the replicated state. We call this higher level view of the set of replicas an

application.

Treplica does not restrict how the clients access the application or how their access

is load balanced among the replicas. The application is free to implement its service

in many ways, as long as the guarantees provided by Treplica are sufficient. For

example, it can serve remote clients using a RPC mechanism, it can implement a

web service, it can serve local clients through sockets, etc. Treplica does not dictate

or implement any such mechanism, leaving the designer free to choose the more

appropriate solution for a particular application. Figure 2.1 shows two examples of

possible cluster configurations. Figure 2.1(a) shows a setup where remote clients

connect to replicas in a cluster mediated by a load balancer acting as a reverse proxy.

Figure 2.1(b) shows a group of clients that share the cluster with the replicas and

access an application elected master.

(a) Clients access a load balancer (b) Clients access a master node

Figura 2.1: Cluster Configurations for Replication

The replicated application state is left under the control of Treplica. This way

the application programmer should not be concerned with replica management or

fault-tolerance implementation details, as shown in Figure 2.2. For simplicity of im-

plementation and performance, the entire replicated state must fit in main-memory.

However, this isn’t an intrinsic property of the design, only a characteristic of the cur-

rent implementation. More importantly, the application state must change only in a

deterministic and controlled way to accommodate active replication.

The architectural restrictions imposed by Treplica affect only the replicated state.

Usually, information kept by the application that only regards the local status of the

26 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

Figura 2.2: Software Architecture of an Application

connections with its clients are not replicated and are kept in local volatile memory.

Moreover, any data kept by the application that does not require replication or per-

sistence can be stored in any way required by the application designer.

2.3 An Object-Oriented Abstraction for Replication

Our proposal of an object-oriented abstraction for replication is based on two main

components: replicated state machine and asynchronous persistent queue. Figure 2.3 shows

the interface of these components and their relation to the application and to each

other.

Figura 2.3: Active Replication Components

The replicated state machine provides an abstraction to the operation of any de-

terministic application. It allows the maintenance of application state by stipulating a

simple interface for querying and modifying such state. This component is accessed

directly by the application that uses its services to hold, replicate and persist its state.

All these operations are performed transparently, and require no intervention from

2.3. An Object-Oriented Abstraction for Replication 27

the user of this component. The asynchronous persistent queue is an abstraction for

a persistent and fault tolerant object queue. It represents an ordered record of objects

sent to a group of processes, that is guaranteed to be available even if all processes in

this group fail. It can be used as a persistent log of events triggering transitions in the

distributed state machine. In fact, this component is more general and could be used

in other settings as it represents an abstraction for a consensus service, useful in other

contexts besides replication.

In the rest of this section we describe the specification of these two components.

Our description follows a bottom-up approach, starting with the asynchronous per-

sistent queue and then moving up to the replicated state machine. This way it is easier

to isolate the services provided by each component, how these services can be used

and the design decisions related to their provision.

2.3.1 Asynchronous Persistent Queue

Asynchronous persistent queues are a way for a group of processes to exchange ob-

jects. These objects are sent by any process connected to the queue and broadcast to

the others, totally ordered and with guaranteed delivery regardless of failures. This

behavior can be more precisely described by the following three properties:

• Objects are delivered in the same order to all processes.

• Objects are delivered to all processes, even if a process crashes and later recovers.

• Objects are persistent and survive crashes of all processes.

These properties are very similar to the properties of total order broadcast [33],

but state explicitly that a failed process that eventually recovers must also receive all

ordered objects. Each process that interacts with the queue component does so th-

rough a queue endpoint, bound to a specific queue. The primitives of the asynchronous

persistent queue component are very simple:

enqueue(object): Adds an object to the end of this queue, making it available to all

other processes.

dequeue(): Removes the next object from this queue.

The enqueue() method changes the state shared by all processes, the queue itself.

The contents of the queue should be consistently managed ensuring that all calls to

enqueue() in every process generate only a single ordering of all objects. Correspon-

dingly, every call to dequeue()made by the processes sharing a queue will reflect this

28 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

same order. Each queue endpoint has associated with it the object delivery history.

For instance, a new process joining a queue, using a new queue endpoint, will re-

ceive all objects ever sent to the queue. These objects are both local queued objects

or objects queued by other processes, and they may be stored locally or fetched from

the network. From the point of view of the client process, this distinction is irrele-

vant. Thus, by relying on the total order guaranteed by the queue and in the fact that

queues are persistent, individual processes can become replicas of each other using

active replication, while remaining in their perspective completely stateless.

To efficiently provide this high level abstraction to the client process, it is neces-

sary to define some mechanism to limit the number of objects in the queue. Suppose

a process fails after having executed for a considerable time and then recovers. It is

the responsibility of the queue to provide it with its recovery state in the form of an

object log that, in this case, can be very large. To reduce the size of this log one might

periodically take snapshots of the queue, save them to stable storage and rollback the

process to one of such snapshots when necessary. The problem with this approach is

that the persistent queue abstraction promises the application it will receive all objects

in a queue, regardless of failures. Our solution to this dilemma is what we call queue

controlled persistence, where a snapshot of the application is stored alongside with a

snapshot of the queue to stable storage. The queue handles the coordination of local

snapshots among all replicas and guarantees that each replica always sees a sequence

of objects consistent with its state. This means a process, remaining stateless, never

misses a single object even when just a subset of the objects are re-delivered in the

presence of failures and recoveries. This requires the process to put its state under

control of the persistent queue, by being instrumented with get and set state proce-

dures that are callable by the persistent queue implementation. Two extra primitives

are added to the persistent queue component to bind it with the entity responsible for

storing the application state and to control the checkpointing process:

bind(stateManager): Binds a process state, represented by its state manager, to a

queue endpoint. The state manager is any application component capable of

implementing the getState() and setState(state) primitives.

checkpoint(): Instructs the queue to save a current snapshot of its state, including

the process state.

At any time, but specially during the call to bind(), the state manager must gua-

rantee that it is able to take a meaningful snapshot of the process state and it is able

to replace the state with a snapshot provided by the queue. By correctly choosing an

appropriate snapshot, the local state of the client will be always consistent with the

2.3. An Object-Oriented Abstraction for Replication 29

next object to be received from the queue. This may require, if a process fails and

falls behind the others, that upon recovery the queue replace its local state with any

suitable snapshot obtained from the other replicas. This snapshot can either be in the

logical past or future of the state the process had when it crashed. Similarly, even if a

process just falls behind the other but does not fail, its state still can be changed by the

queue, but in this case only to a forward state. Thus, to support the strong guarantee

of queue persistence the application not only can be stateless, but it is required to

be stateless. Some control over the process of snapshot creation is provided by the

checkpoint() operation. This method is provided so the client process of the persis-

tent queue can influence the time a snapshot is taken, but the queue implementation

is free to implement its own checkpointing policy.

2.3.2 Replicated State Machine

Using the guarantees provided by the asynchronous persistent queues it is straight-

forward to build a set of replicas using active replication. It is possible to use the orde-

red sequence of objects provided by the queue component to implement the replicas.

This would require the application programmer to build some type of deterministic

state machine to use active replication, to convert operations on this state machine to

data, to build a monitoring subsystem to service the client requests synchronously,

and to create a state manager to handle the set and get state operations required by

the queue component. These are exactly the functions performed by the replicated

state machine component. This component provides a higher level abstraction that

supports the construction of replicated state machines with minimum effort.

The state machine component is a very simplified version of a finite state machine.

It does not concern itself with the definition of all states, transitions, conditions and

actions. It just treats the set of all states as a black box, and routes all external gene-

rated events to this black box. The state machine component is simply a framework

to event logging, where events generate changes in a deterministic state. If the appli-

cation requires a more complete implementation of a state machine, it is free to do so

by using the persistent queue component directly.

The replicated state machine component allows the state it manages to be chan-

ged only by executing actions. An action is a data item that represents an operation

to be performed on the stored state and its parameters. The existence of an action

represents the occurrence of an event that may trigger transitions in the underlying

state machine. The component doesn’t care how transitions are implemented, thus

an action must encode the conditions and operations that should be performed. Lo-

cally, each replica stores all its state in the replicated state machine and only changes

30 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

it using actions passed to the execute() method. The primitives provided by the

replicated state machine component are listed below:

create(initialState, queue): Creates a new state machine bound to a queue. An

initial state should be provided, because the replica that calls this method can

be the first one to bind to this queue.

getState(): Returns the current state of the state machine. A process can query this

state at will, but cannot change it.

execute(action): Executes an action on the distributed state, performing all neces-

sary steps to coordinate this change with the other replicas.

Once a state machine is created with a template initial state, the actual state of

the application is unknown and can change at any time. If the application wants

to consult its state, it should first obtain an updated version by calling getState().

The state can be queried at will, but changes can only be performed by creating

suitable actions and passing them to the execute() operation. Actions applied to the

state machine by the local client are only performed by the state machine after they

have been submitted to the asynchronous persistent queue component. The local

client of the state machine perceives the execution of the action as a call to a blocking

primitive. A successful return of the call guarantees that the action submitted has

been performed by this replica and the effects of such execution are visible in the

local state. As the underlying queue is asynchronous, the fact an action was executed

in one replica does not imply that it was performed in all replicas.

By its use of the asynchronous persistent queue all actions are made persistent

and the state held by this abstraction is under the management of the queue. The

create() operation can either start operating with the provided state or it can recover

some state from the queue. Once a suitable state is found and installed, all pending

actions in the queue are replayed and the state machine is ready to resume operations.

This means that, from the point of view of the client of the state machine component,

recovery is completely transparent. However, the client must be aware of this fact and

avoid keeping local state associated with the replicated object, that is, it not only may

be but it required to be stateless.

The replicated state machine component has only three simple primitives that im-

plement a well-defined and easy to use programming abstraction. Thus, the major

task a programmer will have to perform to use this abstraction is the definition of the

application state and of the actions that modify the state, regardless of state persis-

tence, state replication, checkpointing and recovery concerns. It is worth to note that

2.4. Treplica by Example 31

this step is usually carried out even for applications that do not have replicated state,

so it does not add complexity to the development process.

2.4 Treplica by Example

We now describe a simple application using Treplica to make clear the service provi-

ded by the abstract components. We focus in how these services can be used to create

a replicated application and how this application can be programmed using Treplica.

To this end, we develop a simple hash table application that maps a string key to a

value. This application exports its service to remote clients through a SOAP interface

composed of two simple methods: get(key) and put(key, value).

The software architecture of the complete application is very similar to the one

depicted in Figure 2.1(a). The application is replicated using Treplica, thus providing

dependable operation to its clients. The clients only know a single SOAP descriptor

and are unaware of the fact the application is replicated. Each replica is organized as

shown in Figure 2.4. The application interacts with Treplica using the replicated state

machine component described in the last section. The replicated data is managed by

Treplica, stored in the state machine component.

Figura 2.4: The Hash Table Application

We start the creation of the application by implementing its most basic data struc-

ture: the hash table. Using Treplica it is possible to create a distributed hash table by

simply extending the hash table implementation found in the Java standard library

(HashMap) and making it comply with the Treplica replication abstraction. The initial

step of this process is to define what constitutes the application state and how it can

be changed: the events and transitions. This example shows that we do not have to

explicitly define states and transitions. We simply define that the state is held by the

32 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

Java hash table as a black box and that its state is changed by method calls. These

calls are the events and their implementation encode the transitions.

Next, we must assert whether this component behaves as a deterministic state

machine. This is done by studying the contract of the object, by analyzing its methods

and, if available, by inspecting the source code. In general, objects that do not perform

I/O, don’t generate random numbers and don’t employ date and time are safe. This is

the case of the Java implementation of a hash table. If this was not the case, a simple

strategy for non-determinism removal can be used. All non-repeatable operations

are performed only once by a single replica and the results of these operations are

encoded as constant data in the actions.

Finally, we create a proxy class (ReplicatedMap) that holds an instance of the ori-

ginal object as its state and uses the Treplica state machine to replicate and persist it,

while at the same time presenting the same hash table interface. Example 1 shows a

fragment of the proxy class, with its constructor and the two most important methods.

This proxy architecture illustrates a common pattern of development using Treplica:

we first start with an existing object that encodes the data and functionality we want

to have replicated and wrap it in a Treplica aware layer. In this case, the object to be

replicated is an of-the-shelf component that is used as a black box, but this pattern is

applicable and recommended even if we have access to the object source code.

The ReplicatedMap class has as only attribute an instance of a replicated state

machine (Line 2). This object holds the state of the application, replicating it and

making it persistent. The constructor of ReplicatedMap initiates the state machine

using one of the factory methods provided by Treplica (Lines 4–8). In this particular

instance, a Paxos-based persistent queue is created and the state machine is bound to

this queue. The Paxos persistent queue is described in Section 2.5. An empty HashMap

is used as initial state and a path to a local directory is set as the stable memory

repository. The initial state provided will most certainly be replaced if a previous

instance of the ReplicatedMap class was created in the same local directory or if it

binds to an already existing queue. Other arguments of the factory method instruct

the queue to be created considering a specified maximum number of processes, an

expected round-trip time and if Paxos or Fast Paxos should be used.

The state stored in the state machine can change continually and, sometimes, the

actual object holding the state (the HashMap) may also change. So, before accessing

the state it is necessary to get hold of a current object reference by calling getState().

The method get(key) is implemented by simply obtaining a reference to the current

state and executing this operation directly, as it is just a query and does not change

the stored data (Lines 10–12). The put(key,value) method is much more interesting

(Lines 14–18). To implement this method we have created an object that holds the

2.4. Treplica by Example 33

Example 1 Proxy Class

01 public class ReplicatedMap<K, V> implements Map<K, V> {

02 private StateMachine stateMachine;

03

04 public ReplicatedMap(int nProcesses, String stableMedia)

05 throws TreplicaException {

06 stateMachine = StateMachine.createPaxosSM(new HashMap(), 50,

07 nProcesses, true, stableMedia);

08 }

09

10 public V get(Object key) {

11 return ((HashMap<K, V>) stateMachine.getState()).get(key);

12 }

13

14 public V put(K key, V value) {

15 try {

16 return stateMachine.execute(new PutAction<K, V>(key, value));

17 } catch (TreplicaException e) { throw new RuntimeException(e); }

18 }

19 }

34 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

equivalent action. This includes all data required for calling the method and the

definition of which particular method should be called. Example 2 shows the action

object for the put action of the hash table. This class holds the method parameters as

its attributes (Line 3), initialized by the object constructor (Lines 5–7). By the contract

of the Action interface, it implements the executeOn(state) method (Lines 9–12).

The caller of this method provides the current application state as argument and the

implementation performs the action using the data held in the attributes.

Example 2 Action Class

01 protected class PutAction<K, V> implements Action, Serializable {

02

03 private K key; private V value;

04

05 public PutAction(K key, V value) {

06 this.key = key; this.value = value;

07 }

08

09 public Object executeOn(Object state) {

10 Map map = (Map<K, V>) state;

11 return map.put(key, value);

12 }

13 }

The implementation of the other methods of the hash table are similar and are not

shown here. If they only query the values, they are implemented like get(key). If

the state is changed, the methods are implemented by means of an action object as

in put(key,value). The complete implementation of the proxy will yield a class that

can be used in place of any other map implementation in Java. The client of such class

doesn’t necessarily need to be aware that the object is replicated or persisted as long

as its semantics match that of the state machine abstraction, as described in the last

section.

Hidden in the ReplicatedMap lies all the integration between the application and

Treplica. The client facing part of the application can be built using any tool desi-

red. In this example, it is done using SOAP. A class implementing the functionality

exported by SOAP is shown in Example 3. This class is just another wrapper over

the hash table, restricted to the methods we want to export to the clients. The SOAP

management is done by an external tool (Axis1), setup with the service description

1http://ws.apache.org/axis/

2.4. Treplica by Example 35

shown in Example 4.

Example 3 A Hash Table Application Using SOAP

01 public class HashTableApplication {

02 private ReplicatedMap<String, String> table;

03

04 public HashTableApplication(int maxProcesses, String stableMedia)

05 throws TreplicaException {

06 table =

07 new ReplicatedMap<String, String>(maxProcesses, stableMedia);

08 }

09

10 public String get(String key) throws TreplicaException {

11 return table.get(key);

12 }

13

14 public String put(String key, String value) {

15 return table.put(key, value);

16 }

17 }

Example 4 Fragment of the SOAP Service Description

01 <service name="HashApp" provider="java:RPC" xmlns:hash="HashApp">

02 <parameter name="allowedMethods" value="*"/>

03 <parameter name="className" value="br.unicamp.HashTableApplication"/>

04 <parameter name="scope" value="application"/>

05 </service>

The SOAP framework works as an application server hosting the application and

insulating it from particulars of the SOAP protocol, such as connection establishment

and arguments marshaling. Thus, it keeps its internal data out of the reach of the ap-

plication and of Treplica. As this bookkeeping data is constant (interface description,

etc.) or volatile (connection status, etc.) this arrangement is permissible and desirable.

This shows how Treplica allows the application to freely organize the aspects of its

software architecture that are not related to replication.

36 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

2.5 Treplica Implementation

The asynchronous persistent queue and replicated state machine components form

the base of the replication service provided by Treplica. These two abstractions are

implemented as objects in the Java language, whose methods are very close to the pri-

mitives defined by the components. We have taken advantage of the object-oriented

features of the language to simplify the interfaces as much as possible. The most

noticeable strategy is that the objects transported by the persistent queue are seriali-

zable objects. That is, any object that can have its state automatically extracted by the

Java Virtual Machine can be transported by the queue. Also, actions of the replicated

state machine are simple serializable Java objects, modeled after the Command design

pattern [40]. The methods encoded in the actions are built to act on the state held by

the state machine using the data carried by the action as arguments.

2.5.1 Replicated State Machine Implementation

The replicated state machine component expects the higher level services provided by

an asynchronous persistent queue. As described in Section 2.3.2 the replicated state

machine doesn’t care about explicit transitions, it just executes actions on the stored

state. It is the responsibility of the client to implement, with the appropriate set of

actions, meaningful states and transitions.

To support these actions the state machine provides two main services: it manages

the binding of the state with the queue and it dispatches and executes actions. To keep

the local view of the replicated state bound with the persistent queue it is necessary

to implement a state manager. The state machine stores the replicated data for the

application, providing a state manager with the required semantics. The creation

of a state machine object automatically initiates the binding process, triggering any

necessary recovery steps in the queue.

To change the local state, applications create actions and call the execute()method

of the state machine. Once the action is ordered and executed on the local state, the

execute() operation returns values or throws exceptions just like a direct invocation

of the action. To effectively implement the replication, every action is sent to the

queue before it is executed on the internal state. After the queue orders the actions,

they are applied on the stored data by the state machine. As we assume the actions

change the state deterministically, all replicas will evolve in the same way as actions

are dequeued. Also, return values and exceptions are captured and routed to the

corresponding calling replica.

However, the persistent queue is asynchronous. This means that the queuing of

2.5. Treplica Implementation 37

an object does not guarantee it will be dequeued next. An arbitrary number of objects

may be dequeued before a just queued object is retrieved from the queue. Actually,

even objects queued locally can be dequeued in a distinct order than the one they were

queued. To provide a monotonic increasing view of the stored state, the execute()

operation of the state machine is a blocking operation. Once an application thread

calls this operation it is blocked until the action created by this operation is received

on the queue, it is executed and return values or exceptions are captured. The call

then returns as if these operations were performed atomically.

To support this method of operation the replicated state machine has one internal

thread dedicated to constantly receiving objects from the queue and to executing the

associated actions on the local state. This thread consults a local data structure with

action ids from all locally queued actions and decides if any local thread is blocked

waiting the just executed action. If a suitable thread is found, it is woken up and

return values or exceptions related to the execution of the action are routed to it.

This arrangement allows the application to use multiple threads to service its clients,

but Treplica guarantees that only one thread at a time executes operations on the

state machine and that locally competing threads will see a consistent order of action

execution.

2.5.2 Paxos Persistent Queue

The asynchronous persistent queue component depends on lower level abstractions:

read and write to stable storage and send and receive messages. The service provided

by these low level abstractions is not defined in the specification, and building a fault-

tolerant object delivery system using them is far from trivial. Thus, Treplica does not

assume a single implementation for the persistent queue component. It is defined as

a generic interface that can be implemented in many ways that satisfy the properties

outlined in Section 2.3.1.

Despite Treplica generality, we propose the use of consensus-based implementa-

tion for the persistent queue component. Specifically, our implementation in Treplica

uses the Paxos algorithm. This solution to the consensus problem requires the use

of stable memory in a way that allows it to be easily combined with the persistence

requirements of the application. Nonetheless, it is possible to implement a persistent

queue using other strategies. Besides Paxos, we have implemented prototype queues

using a virtual synchrony based group communication toolkit (JGroups2) and using

no replication at all for testing. Actually, the network and stable storage blocks in

Figure 2.2 only reflect our current Paxos-based implementation, as queues may have

2http://www.jgroups.org/

38 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

their own structural requirements.

The Paxos algorithm [56] is, at the same time, a solution to the consensus problem

and a mechanism for the delivery of ordered messages with the purpose of suppor-

ting active replication [79]. As such, it is a perfect semantic fit for implementing the

asynchronous persistent queue component. Paxos implements uniform consensus in

the crash-recovery failure model, thus it guarantees that any process that fails and

later recovers will still be able to reach consensus. A consequence of this guarantee

is that all processes must persist in stable memory information pertaining to the pro-

gress of the consensus instances. It is possible to directly derive all state pertaining to

the queue from this state. This offers a great advantage, as the cost required to ensure

strong consistency by using Paxos is the same that would be required to make the

asynchronous queue persistent.

Fast Paxos [57] is an optimistic variant of Paxos that saves a communication round

by assuming messages will be naturally ordered by the communication medium. Fast

Paxos exhibits the characteristics that make Paxos a good choice for the implementa-

tion of a persistent queue. Treplica uses Paxos and Fast Paxos in the main persistent

queue implementation (PaxosPersistentQueue) in such a way to selectively support

both variants. In the remaining of this section we describe the Paxos and Fast Paxos

algorithms, their suitability for the replication of persistent data and the implementa-

tion of a Paxos persistent queue.

2.5.3 The Paxos Algorithm

A full description of Paxos and Fast Paxos is beyond the scope of this paper, but we

offer here a simple description of their main properties as they relate directly to the

implementation. Full descriptions of both algorithms can be found in [57], including

the computational and failure models assumed.

Processes in the system are reactive agents that can perform multiple roles: a

proposer that can propose values, an acceptor that chooses a single value, or a learner

that learns what value has been chosen. To solve consensus, Paxos agents execute

multiple rounds, each round has a coordinator and is uniquely identified by a positive

integer, the round number. Proposers send their proposal to the coordinator that tries

to reach consensus on it in a round. The coordinator is responsible for that round

and is able to decide, by applying a local rule, if other rounds were successful or not.

The local rule of the coordinator is based on quorums of acceptors and requires that

at least ⌊N/2⌋ + 1 acceptors take part in a round, where N is the total number of

acceptors in the system [57]. Each round progresses through two phases with two

steps each:

2.5. Treplica Implementation 39

• In Phase 1a the coordinator sends a message requesting every acceptor to parti-

cipate in a round.

• In Phase 1b every acceptor that has accepted the invitation answers to the coor-

dinator with the value and round number of the last vote it has cast.

• In Phase 2a, if the coordinator has received answers from a quorum of acceptors,

it asks the acceptors to cast a vote for a suitable proposal.

• In Phase 2b, after receiving a request to cast a vote from the coordinator, accep-

tors cast their vote for the proposal.

• Finally, a learner learns that the proposal has been chosen if it receives Phase 2b

messages from a quorum of acceptors.

Fast Paxos changes Paxos by allowing the proposers to send proposals directly to

the acceptors. To achieve this, rounds are separated in fast rounds and classic rounds.

The quorums used by Fast Paxos are larger than the ones used by Paxos and can

assume many values that satisfy the requirements of the local rule. In particular, it is

possible to minimize the number of processes in a fast quorum ensuring that both a

fast and classic quorums contain ⌊2N/3⌋ + 1 processes [57, 86]. A Fast Paxos round

progresses similarly to a Paxos round, except that Phase 2 is changed:

• In Phase 2a, if the coordinator has received answers from a fast quorum of

acceptors indicating none of them has voted yet, it instructs the proposers to ask

the acceptors directly to cast a vote for a proposal of their choice.

• In Phase 2b, after receiving a request to cast a vote from one of the proposers,

acceptors cast a vote for a proposal.

This description of both algorithms considers only a single instance of consensus.

However, Paxos also defines a way to deliver a set of totally ordered messages. The

order of delivery of these messages is determined by a sequence of positive integers,

such as each integer maps to a consensus instance. Each instance i eventually decides

a proposed value, which is the message (or ordered set of messages) to be delivered

as the ith message of the sequence. Each consensus instance is independent from the

others and many instances can be in progress at the same time. To support the crash-

recovery failure model, both algorithms require the agents to store state in stable

memory [57]. The state is comprised of a record of the instances initiated, the round

numbers used and proposals made or voted, among other data.

In Paxos and Fast Paxos, any process can act as the coordinator as long as it follows

the rule for choosing a suitable proposal in Phase 2a. The choice of coordinator and

40 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

the decision to start a new round of consensus are made relying on some timeout

mechanism, as Paxos assumes a partially synchronous computational model to ensure

liveness. Specifically, there can be only one active coordinator at any given time to

ensure progress. If two or more processes start coordinator agents, the algorithm can

stall as the multiple coordinators compete for the attention of the acceptors with fast

increasing round numbers. For this reason, liveness of the algorithm resides on a

coordinator selection procedure. This procedure doesn’t need to be perfect. Safety

is never compromised if zero or more coordinators are active at any time. However,

the coordinator selection needs to be robust enough to guarantee that only a single

coordinator will be active most of the time. We call the creation of a coordinator agent

by a process, guided by the coordinator selection procedure, coordinator validation.

Considering the concurrent nature of the consensus instances, a common optimi-

zation is done during coordinator validation. Phase 1 in Paxos and Phases 1 and 2a

in Fast Paxos are run once for all the unused consensus instances at that time. In fact,

it is always guaranteed that an infinite number of instances are in this situation. The

coordinator in Paxos “saves” these instances for future use or, in Fast Paxos, it frees

the proposers to use these instances. The improvement brought about by this facto-

rization allows Paxos to achieve consensus in three communication rounds and Fast

Paxos in only two communication rounds. Unfortunately, Fast Paxos cannot always

be fast. Proposers can propose two different values concurrently, in this case their

proposals may collide. Also, process and communication failures may block a round

from succeeding. Different recovery mechanisms can be implemented to deal with

collisions and failures, but eventually the coordinator intervention may be necessary

to start a new classic round [57].

2.5.4 Paxos and Replication

The Paxos algorithm possesses many useful properties when used as a total order me-

chanism for active replication. It adheres to the crash-recovery failure model, ensuring

that replicas that fail by crashing can later recover and return to the computation. Mo-

reover, it implements uniform consensus, ensuring that even faulty replicas will see

the same global order of messages. To see why these properties are invaluable, we

will consider the progress of the system from the point of view of a failed replica.

In the event of a failure Paxos ensures us that the information in stable memory

is sufficient for a process to recover immediately, without any coordination with the

other processes. This is possible because the local stable storage of a process includes

always consistent status of all consensus instances. Thus, a process that experiences a

brief failure, such as a system reboot, just resumes operation normally after restoring

2.5. Treplica Implementation 41

its local state. Neither the recovering process or the other processes notice anything

unusual. This behavior is specially interesting if we consider that the process has not

failed at all, but was temporarily disconnected from the remaining of the replicas. As

expected, this situation isn’t distinguishable from a real failure and doesn’t require

any type of special action or coordination from the other replicas.

If the process is unable to recover or resume communication immediately, the sys-

tem will continue operation uninterrupted as long as the minimum number of correct

processes is maintained. The failed process still can recover without coordination, but

it may have missed a large number of messages and must catch up with the other

processes. This amounts to a type of coordination with the notable exception that

the system never blocks while the recovering process brings its state up to date. The

process may resort to some type of state transfer with a more up to date replica, but

during the execution of this process only the recovering process remains blocked. The

remaining replicas operate unaffected.

This happens because Paxos does not rely on a group membership service or

timeouts to decide if a process has failed. Actually, Paxos does not care about the

state of any specific process to function correctly and just requires a stable coordinator

and a possibly anonymous majority of working acceptors to progress. An optional

group membership module may run on top of Paxos [56], but the criteria it employs

to decide a process is to be excluded from the group can and should be distinct from

the criteria the underlying total order algorithm uses to decide if a message is or isn’t

to be expected from a suspect process. This observation is fundamental to understand

the high resilience to failures observed in the execution of Paxos (Section 2.7).

To support this level of resilience in the crash-recovery failure model, Paxos needs

to keep information in stable memory. Usually implemented with magnetic disks,

stable memory is very slow compared to volatile memory and adds significantly to

the latency of operations. This time penalty could be considered against the use of

Paxos for active replication. However, in Treplica we are interested in applications

where the replicated state must be stored persistently no matter the type of failure.

In particular, application state must survive a complete crash of the entire replica set.

Consequently, applications would need to access stable memory anyway to keep their

own state persistent. This stable memory requirement is completely independent of

the requirements of the total order algorithm used. Depending on the guarantees pro-

vided by this underlying algorithm, the application would have the additional work

of reconciling its persistent local state with the state of the message delivery in case

of failure. Fortunately, Paxos allows us to take a different approach. Instead of recon-

ciling total order algorithm and application state, we tie them together and manage

them as a unity. This is possible because Paxos must remember the state of any con-

42 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

sensus instances, and this state includes the messages proposed and decided. From

the contents of these messages it is trivial to obtain the application state. Thus, Paxos

is a very desirable algorithm to implement a persistent queue because its properties

combine performance that is resilient to failures and a unified view of replication and

persistence.

2.5.5 Treplica Software Architecture

The software architecture of the Paxos-based asynchronous persistent queue follows

very closely the agent decomposition used in the description of the algorithm, achi-

eving a very modular design. The queue implementation is composed by internal

classes performing the functionality of the four agents, assisted by generic support

modules. Figure 2.5 shows the main modules of the Paxos persistent queue.

Figura 2.5: Paxos Persistent Queue

The four Paxos agents are implemented in the following classes:

Learner Combines the proposer and learner agents in a single class responsible by

monitoring the flow of Paxos instances, converting them into objects and delive-

ring them to the queue.

Acceptor Acts as an acceptor.

Coordinator Acts as a coordinator.

Election Handles the leader election algorithm used to select a single coordinator.

These classes were designed to execute independently, making it possible to create

a Paxos process with only a subset of agents. Specifically, a process containing only

a Learner module could propose and learn values, effectively running a complete

2.5. Treplica Implementation 43

queue, without taking part in the consensus procedure. A process configured this

way could be used to increase the scalability of the system. However, this functionality

isn’t supported by the queue yet.

The main classes behave in a similar way to the agents they implement as they are

strictly reactive modules. They operate by processing messages addressed to them

by the Router class. As a consequence of this processing, these classes may send

new messages to the network, store information in stable memory or deliver ordered

objects to the application. These tasks are handled by the Secretary class, that offers

a uniform interface to all I/O required by the agent classes. The abstraction provided

by the Secretary class gives the agent class a way to send messages encoded in a

Message class and to access stable memory wrapped in a Ledger class. The Secretary

on its turn relies on the services of the Transport and ChangeLog classes to access

the underlying network and stable storage. These two classes provide abstractions

that shield the other modules of the persistent queue from implementation details.

We have implemented a Transport based on multicast over UDP/IP networks and a

ChangeLog based on a simple file system.

In the following sections we describe these modules in more detail. They are pre-

sented in a bottom-up manner, starting with the support modules and then describing

the Paxos agents. For each module we show its main function, how it interacts with

the other modules and the implications of its structure on the Paxos implementation.

To simplify this description, we name modules that depend on the a module being

described as its clients. The original Paxos specification leaves many details unspeci-

fied, specially regarding liveness constraints and optimizations. In the following text

we strive to make clear how we have implemented important open aspects of Paxos.

2.5.6 Support Modules

The support modules give an abstraction of the underlying system with clearly defi-

ned interface and service guarantees. These guarantees are very simple and can be

directly mapped to many types of networks and stable storage semantics. The major

motivation was to simplify the API used by the Paxos agents, hiding details about

process addressing, multicast and unicast message passing, stable storage allocation

and deallocation, main memory management, I/O management and error detection.

Transport The transport abstraction is defined by the Transport interface and repre-

sents a generic multicast transport. It allows its clients to send and receive unicast and

multicast messages, closely matching the network properties expected in an asynch-

ronous system. The messages are exchanged in an unreliable manner, and may be

44 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

delivered out of order, duplicated or may be lost. We have made the choice of defi-

ning the transport abstraction with so few guarantees motivated by two reasons: it

matches the network requirements of many consensus algorithms for asynchronous

systems, including Paxos, and it closely reflects the guarantees effectively provided

by our chosen network transport, UDP/IP.

Matching the algorithm requirements is important because we avoid duplication

of functionality. For example, as Paxos does not require reliable message delivery,

it includes a mechanism for message buffering and retransmission. Using a reliable

mechanismwould duplicate this mechanism. Moreover, the reliable delivery provided

by a transport such as TCP/IP only works for the crash-no-recovery failure model.

In the crash-recovery failure model, the consensus algorithm still needs to check if

messages were delivered even when using TCP. We understand the benefits of using

reliable transports, specially regarding point-to-point bulk transfers of data [1], but

we believe that algorithms like Paxos must evolve and be tuned to support multipoint

delivery of ordered data with the same efficiency, but respecting the chosen failure

models.

Besides message delivery properties, the transport abstraction defines a unified

view of unicast and multicast messages, with a supporting addressing scheme. In

brief, the same transport implementation is able to send, and more importantly, re-

ceive messages sent both to a process and to the multicast group comprised of all

processes in the system. Unicast addressing is done using an opaque transport id

created and managed by the transport implementation. Each process obtains its id

by a call to the getId() method of the transport. A process may exchange unicast

messages with any other process in the system as long as it knows its id, using the

sendMessage(Serializable, TransportId)method. Ids are simply data, and may be

exchanged inside regular messages. Thus, a process may announce its existence by

simply multicasting its id. A message can be multicast to all processes in the system

with the sendMessage(Serializable) method. The receiveMessage(int) method is

used to receive a message. It is a blocking primitive that blocks until a message is

received or a timeout expires.

The group of processes reached by multicasts is implicitly defined by the un-

derlying multicast primitive used by the transport implementation. This means that

the transport is required only to identify and send messages to a suitable set of pro-

cesses eligible to be part of the system, this being considered the set of “all processes”.

As an example of how this can be easily done, consider the UDP transport implemen-

tation. Its definition of all processes in the system is given by all processes that are

listening to a predefined multicast IP and port. This IP and port are configurable

parameters of the UDP transport. IP multicast routing infrastructure defines whose

2.5. Treplica Implementation 45

processes are effectively in the system. For instance, all processes linked to the same

local area network, without any intervening level 3 routers or firewalls, are in the same

system. This allows to trivially consider all processes in a cluster to be in the same

system and, with more elaborate routing configurations, to setup a system spanning

many distinct sites.

Note that this is completely different from a group membership service that de-

fines which processes are part of the system. If such service exists, it sits above the

transport and somehow filters messages received from processes not considered to be

in the group. Once again, this reflects the expected network behavior of protocols like

Paxos. They do not require the precise identity of processes, but only that a minimum

number of them be correct at any time. This also lays ground to build more sophis-

ticated architectures like the one proposed in [66], where the group membership is

built on top of consensus and not the other way around.

Change Log The change log abstraction shields the Paxos agents from the details

regarding stable storage. Basically, the service provided is that of a persistent log of

changes to an object, with support for checkpointing. In fact, the interface presented

to the programmer is very similar to a simple append-only file, but with explicit sup-

port for recovery. Changes to an object can be persistently appended to the end of

the log and the object can be later reconstructed by replaying these changes. Check-

pointing is used to improve the performance of reconstruction by storing the changes

interspersed with full copies of the object. As a file, the abstraction provides open()

and close()methods to prepare a change log for use. Once open, individual changes

are written with the writeChange(Serializable) method and checkpoints are writ-

ten with the writeCheckpoint(Serializable) method. The similitude with a file is

just an approximation to a common API for stable storage, but there is no need for

an explicit backing file to support actual implementations. Our main implementation

(DiskChangeLog) uses the local file system to implement the change log, keeping its

data in several files to speed the recovery.

The change log abstraction further deviates from a simple file as it provides active

support for recovery. Whenever a change log is open, all the information required

to reconstruct the underlying object is transferred to the module opening the change

log. This action is triggered by a call to the open(ChangeLogClient) method, that

requires a reference to a recovery client. The recovery is very simple. The most recent

checkpoint is read and passed to the recovery client. Once the client has loaded this

checkpoint, all subsequent changes are passed in turn to the client that must be able

to apply such changes. This way, the recovery client implements all recovery policy

while the recovery mechanism is driven by the change log. Recovery consistency is

46 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

guaranteed by the change log: all changes and checkpoints writes are atomic and a

failure automatically closes the change log. If a client wants to keep using the change

log, it must re-open it and, at its choice, perform recovery to the point of the last

successful change or detect the change whose write failed and rewrite it.

The reason we have chosen to abstract stable storage in the form of a change

log is simplicity and performance, but also the desire to experiment with alternative

forms of persistent storage. The append-only operation of the change log allows the

use of an underlying magnetic and solid state (flash) disk in its optimal sequential

access mode. Appending operations sequentially at the end of a file also simplifies

recovery, as it is never necessary to reconstruct a log in case of write failure. We

just create a new file and, as necessary for recovery, read the old file until the failure

point. Moreover, a simpler abstraction allows multiple implementations. We already

explored this possibility with a change log implementation that actually stores data in

the volatile memory of other processes in the system. In this ongoing research project

we are investigating the feasibility and reliability of such scheme.

Ledger The ledger is an abstraction to the stable state of the Paxos implementa-

tion. It is a common data structure, shared by all Paxos agents. The agents see

main-memory oriented methods defined in the Ledger interface, while a concrete im-

plementation has support for efficiently storing this information in stable storage. As

described in Section 2.5.3, it is possible to derive the state of the replicated process

from the state of the consensus instances stored in stable memory. Thus, the ledger

abstraction concentrates all data that is to be held in stable memory, making it easily

accessible from main-memory. The LoggingLedger is the object effectively made sta-

ble by the change log. To simplify the use of the change log, this implementation has

support for detecting and isolating changes made to its internal state. It can export

these changes and later recover its state by reapplying a set of previously exported

changes. The ledger stores the complete state of each individual consensus instance,

holding all data required by all types of agents. This way, it is possible for a process

to create new agents, such as a coordinator, without reloading the data structure.

Secretary The secretary abstraction presents a unified view of I/O for the Paxos

agents. It handles stable storage implementation using the change log and the ledger,

it handles message passing using the transport, and it handles the object queue used

to deliver objects to the application. The main reason this abstraction was created

wasn’t to isolate the agents from the underlying building blocks but to remove cos-

tly I/O operations from the thread executing the agents. Disk I/O in particular has

a great potential to reduce the throughput of any Paxos implementation because of

2.5. Treplica Implementation 47

two reasons. First, all changes written to stable storage must be flushed from any

intermediary caches before algorithm execution continues, to guarantee consistency.

Second, some steps of the algorithm can generate many stable memory writes. Con-

sidering that each flush operation takes around 1ms to complete and that a Paxos

round demands at least two stable memory writes, we add at least a 2ms latency to

all consensus instances. Moreover, all rounds must compete for access to the disk and

a round must add to its latency the time required to flush the data of rounds executed

before it. The secretary abstraction creates a way to solve this problem by removing

from the agents the task of effectively performing I/O.

Once I/O is handled only by the secretary, it is now possible to solve the problems

caused by many stable memory writes in a single operation and the lack of paralle-

lism among multiple rounds. This is done by queuing and grouping distinct logical

writes in a single physical write. This approach is advantageous because the size of

the data in a complete disk write, usually performed by a sync() system call, has

little impact on the operation latency. Making use of this observation, the secretary

implementation keeps continuously writing and flushing data to the disk, in a sepa-

rate thread, as long as there are requests waiting to be written. Requests that arrive

in the midst of a write are queued and wait for the next flush.

This approach streamlines access to the disk, but it doesn’t change the fact that

Paxos correctness is rooted in the stability of the information written to stable sto-

rage. What this means is that a thread executing an agent must block until the I/O

operations it has requested to the secretary are complete. To obtain parallelism in the

agent execution with this blocking behavior, we could manage many threads execu-

ting concurrently the agents. This is possible, but it requires complex concurrency

control to the common data structures and is prone to lock contention. Instead, we

have decided to run agents in a single thread with total control of the data structu-

res, simplifying concurrency control. However, this approach has the problem that it

serializes the execution of rounds if we were to maintain the simple blocking beha-

vior. The solution comes from the observation that rounds are independent in Paxos.

Thus, a single thread is capable of managing many rounds at a time if it can avoid

to be blocked for I/O, but instead changes rounds. The secretary allows exactly this

behavior by implementing asynchronous I/O operations.

These asynchronous operations work by creating a virtual barrier between the

actions an agent has performed and the actions that the other agents observe it to

have performed. An agent has three types of interaction with the outside world: it

sends messages to the network, it delivers objects to the application and it writes to

stable storage. In the Paxos algorithm messages can be lost, so a simple message send

isn’t binding. However, the stable write done before the message send is binding, to

48 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

allow the message to be recreated later. For example, in Phase 1b an acceptor, before

sending the coordinator its last vote, must record its participation in the round chosen

by the coordinator (Section 2.5.3). One way of ensuring that messages are only sent

after the write to stable memory is committed is to hold the messages sent by the

agent until the write is stable.

We say that a message, sent to the network or delivered to the application, is

dependent on the last write made to stable storage but not yet actually written by the

secretary. From the point of view of the other agents, the write never happened until

its dependent messages are delivered. That is, a message can only be delivered after

all stable memory writes that precede it causally [55] are flushed to disk. Whenever

a write completes, the secretary unblocks the dependent messages and send them to

the other agents. Meanwhile, the agent that created the dependent messages is free

to keep processing new messages, making further changes to the stable storage and

sending additional messages as long as it has work to do. If the writes are held back

indefinitely, the system will eventually stop. However, there will be a steady flow of

concurrent rounds to be processed to keep the non I/O bound thread of the agents

busy most of the time. Put in another way, in our solution the agents do not block for

I/O, but external effects of their actions do.

Another function of the secretary is to manage the creation of checkpoints for

recovery. As the secretary concentrates all I/O, it is able to freeze all operations of a

queue and, as a consequence, the application. This way, it can obtain a snapshot of

all relevant data structures and of the application. As explained in Section 2.3, the

application is accessed through its state manager, the other data structures are under

control of the secretary. The secretary also generates and handles a Paxos id, uniquely

identifying this process.

Router The router is a simple but vital module of the Paxos persistent queue. It

binds all agents together and provides them with their main thread. Its function is

to run the main loop of the Paxos implementation, receiving messages from the un-

derlying transport and, according to their type, routing them to the appropriate agent

for processing. This way, agent execution is sequential and shared data structures

such as the ledger do not need concurrency control. Also, this single thread monitors

a central timer and generates timer events to the agents that need it. As explained pre-

viously, the message processing code of the agents is free of long running or blocking

operations. This way, agents are programmed as simple event handlers in a asyn-

chronous event-based processing architecture. Additionally, the router is responsible

for instantiating the agents and the appropriate supporting modules, handling initial

configuration of the Paxos persistent queue.

2.5. Treplica Implementation 49

2.5.7 Paxos Agents Modules

Paxos agents effectively implement the Paxos algorithm. They implement behaviors

described in the algorithm specification and are responsible for its correct operation.

They use the support modules described in the previous sections, adhering to the

processing model of asynchronous event-based message handlers that create stable

memory dependent external events. This section describes their functionality and

also documents our solutions for the gaps found in the Paxos specification.

Election

This agent is responsible for the leader election protocol required by Paxos to make

progress. It exposes to its clients the interface of a Ω failure detector. Briefly, this

failure detector requires that any election agent trusts one process in the system as

correct and that there is a time after witch all election agents trust the same pro-

cess [27]. If we make this trusted process run a coordinator agent, we eventually have

only a single coordinator agent running as required to ensure Paxos liveness. The

election agent doesn’t require the clients to poll its service to notice leadership chan-

ges. Specifically, it detects when the process running the agent is the elected leader

and initiates a coordinator agent in response to this event. Conversely, it detects when

the process stops being a leader and stops the coordinator agent.

Stable Leader Election Any unreliable election procedure is appropriate for Paxos

correctness as long as it implements Ω. This procedure must combine a mechanism

to elect a single process with some type of heartbeat-based failure detector [31] as

processes and communication links may fail. Moreover, as many Paxos instances

are to be executed in sequence, it makes sense to avoid arbitrary leader changes and

keep the same coordinator instance elected at all times. Thus, stability is important

requirement in the implementation of the election service. We have implement an

election procedure that is a variant of the algorithm proposed by Larrea et. al. [60].

To function properly, our protocol requires all links incident to a non-faulty process

to be eventually timely in both directions. This effectively makes link failures to be

equivalent to process failures, the most common failure situation in clusters. Besides

being simple to implement, this protocol has the advantage of only requiring the

regular sending of a constant size broadcast message to maintain a single leader once

it is elected.

Our leader election algorithm modifies the algorithm of Larrea et. al. in two im-

portant ways: it supports an unknown set of processes and it implements leader stabi-

lity. Consistently with the transport abstraction of the network provided to the Paxos

50 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

agents, the election agent assumes a completely interconnected network of anony-

mous participants. Anonymous means a single process does not know beforehand

how many other processes there are in the system or their identity, but processes do

have a unique identifier and they can discover each other by exchanging broadcast

messages. Leader stability guarantees that once the system behaves synchronously

long enough to elect a leader process, this process won’t be demoted during synch-

ronous operation and will always be (re)elected leader after periods of asynchronous

operation as long as it does not fail.

The algorithm works as follows. All processes listen for election messages and

keep a local timer. Whenever a process receives an election message that indicates a

process with higher priority is requesting leadership, the process records the sending

process as leader and behaves as a follower. If the timer expires and the process has

not received any message from a higher priority process, it assumes it is the leader and

starts sending election messages advertising its leadership. The leader process does

not expect confirmation from the followers, the absence of competition indicates an

implicit success of its leadership bid. In our particular implementation, the local timer

is configured to expire in a time sufficient for two election messages to be received. If

the network behaves synchronously and no messages are lost, after a round of election

messages are sent by all contending leaders only the process with the higher priority

will still consider itself a leader and only this process will keep on sending election

messages.

A careful choice of process priority is required for the election protocol to function.

At a minimum, it is necessary for all priorities to be unique to allow only one process

to possess the higher priority from all contending processes. To this end, the process

priority contains a unique Paxos id provided by the secretary. However, uniqueness

isn’t enough to ensure stability as a process with higher Paxos id can demote an

elected leader. To achieve stability we have defined the priority to be a pair (uptime,

id), where uptime is an integer counter incremented every time a leader process tries

to renew its leadership. The uptime counter is initialized to 0 every time a process

starts or recovers. The process with the highest counter, that is, the process that stayed

most time as leader without crashing, is the process with the highest priority. In case

of identical uptime values, Paxos id is used to break the tie.

Learner

The learner agent in Treplica implements the functionality of the learner and proposer

agents in the Paxos algorithm. It is responsible for processing requests from the per-

sistent queue client, creating suitable proposals to order these requests, monitoring

2.5. Treplica Implementation 51

the proposals until they are ordered and delivering ordered proposals as objects to

the persistent queue client. To understand why we have combined the functionality

of these two agents in the same module, it suffices to observe the activities performed

by this agent. It is possible to classify the first two tasks as pertaining to the proposer

agent only and the last task to fall under the activities of the learner. Nonetheless,

the third task is fundamental to the correct operation of our implementation of the

Paxos persistent queue and it requires knowledge held by both proposer and learner.

This happens because we support both Paxos and Fast Paxos in the same implemen-

tation and Fast Paxos removes from the coordinator agent the sole responsibility of

proposing consensus values.

Stateless Proposals In Fast Paxos, at a minimum, it falls on the proposer the selec-

tion of an unused consensus instance, the proposal of a client request in this instance

to the acceptors and the detection that a proposal has completed or has failed. The

last step is necessary because the proposer must be able to forward a failed proposal

to the coordinator, which restarts the consensus instance with a classic round number.

Moreover, even in Paxos, the proposer faces the problem of making sure every request

made by a client translates into exactly one ordered proposal, without repetitions. It

could rely on the coordinator to ensure this, relaying to it not proposals but client

requests. However, the coordinator can fail before sending a proposal in a suitable

consensus instance or the message containing the request may never arrive. In this

case, the proposer must resend the request to the coordinator until it is ordered. This

only shifts part of the problem to the coordinator, that now must check every request

it has received to see if it wasn’t already ordered, without actually relieving the pro-

poser from the task of monitoring the sequence of ordered proposals looking for its

pending requests.

We solve this problem by completely shifting from the coordinator to the learners

not only the task of creating a proposal from a client request and monitoring it, but

also the selection of an appropriate consensus instance. A learner receives requests to

be ordered from its client and queues them until it is ready to create a new proposal.

When this happens, it selects from its local view of the consensus instances a non-

started instance. In Fast Paxos, this means that the learner can submit the proposal to

be voted by the acceptors immediately. When running Paxos, it forwards the proposal

to the coordinator to be decided in the consensus instance it has selected. Either way,

the acceptors broadcast their votes directly to the learners and it is their responsibility

now to check if the created proposal is decided in the position specified by the selected

consensus instance in a timely fashion.

This proposal monitoring is easier now, as a learner only has to observe the specific

52 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

consensus instance it has selected. If another proposal is decided in this instance, the

learner selects a new non-started consensus instance and tries again. Meanwhile,

the coordinator has not to monitor the proposals it manages, it just tries to decide

proposals in the indicated consensus instances. Obviously, it won’t violate Paxos

consistency to satisfy the learner request, and informs the learner when the selected

consensus instance isn’t actually free for use. This behavior of the coordinator is

exactly the same in Fast Paxos, but the coordinator is only called to action when

a collision or timeout occurs. This way, both learner and coordinator can manage

the flow of proposal requests in a stateless way. Consensus instance consistency still

requires stable storage, but a request is managed only in main-memory.

Gap Detection The learner monitors only the proposals it has created, but it receives

votes and computes the consensus decision for all instances. These values are ordered

according to the predetermined consensus instances numbers and delivered sequen-

tially to the client as soon as they are decided. This delivery is done by adding values

to a queue, while the client removes elements from this same queue. Actually, from

the point of view of the client, this queue is the asynchronous persistent queue itself.

Consensus instances, however, are not decided sequentially. Due to lost messages or

collisions, a gap of undecided instances may appear before a decided instance. These

gap instances prevent values decided in subsequent instances of being delivered to

the client. Thus, to force the decision of gaps a learner tries to pass a null proposal,

sending it to the coordinator as usual. If these gaps are already decided but the lear-

ner is unaware of it, the coordinator will tell the learner so. If the decision isn’t known

to the coordinator, it will start a new round. This round, according to the consistency

guarantees of Paxos, will discover if a sufficient number of acceptors have decided

any proposal in this instance. In the unlikely event that nothing was decided yet, the

null proposal will be decided. However, this proposal will be ignored by all learners

and not delivered to the client.

A learner must ensure that some value is eventually decided in all consensus

instances it knows to be active, be it a gap or not. This is controlled by a timeout me-

chanism that resends proposals to the coordinator if the particular consensus instance

where it was originally sent isn’t decided. As the learner is responsible for selec-

tion of the intended consensus instance for a proposal, the operation performed by

coordinator upon the receipt of this message is idempotent. As an optimization the

coordinator checks to see if this consensus instance is already in progress or decided

and notifies the learner. This behavior is identical in Paxos and Fast Paxos, that is,

the learner can always ask the coordinator to pass a proposal in a specific consensus

instance if it detects a problem. This covers a special case in Fast Paxos: a collision.

2.5. Treplica Implementation 53

Collisions In Treplica, learners detect collisions as they tally the votes cast by the

acceptors. These votes can be to distinct proposals if two or more learners have

concurrently initiated the same consensus instance. If the number of acceptors that

have not cast a vote yet isn’t enough to win a majority for the most voted proposal,

a learner detects a collision. It then restarts immediately this consensus instance

by sending a request to the coordinator. Lamport describes several other strategies

to resolve collisions [57], but we have decided to use this simple restart procedure

because of the low overhead associated with running single classic Paxos rounds and

the fact that the number of collisions observed in practice is very low [88].

Congestion and Flow Control Since the learner is responsible for starting consen-

sus rounds directly or through the coordinator, it is also responsible for any type of

congestion or flow control. Intuitively, congestion and flow control have the objective

of avoiding the saturation of the transmission capacity of a link or the processing ca-

pacity of a CPU, respectively. When saturated these resources tend to provide less

service than when just below their maximum nominal capacity. The general mecha-

nism to attaining this type of control for network applications is to limit the rate

messages are generated by individual processes. This rate limiting can be done using

explicit readings of the load on the network or CPU, or be based on indirect mea-

sures like the latency of messages or message loss. However, due to its distributed

and fault-tolerant nature, Paxos presents some subtle difficulties to both flow and

congestion control.

By design, a subset of all processes are allowed to fail in Paxos, and they can take

an arbitrarily long time to recover. This directly impacts flow control as it is impossible

for a process to distinguish if any of the other processes are slow or failed. This means

that a process should never wait a slow process to avoid being blocked indefinitely

by a crashed one. Congestion control seems to be immune to this effect as a process

can observe and control the rate it creates its new proposals. Nevertheless, it is still

necessary to ensure that the rate chosen by any single process will provide a “fair”

allocation of the available link bandwidth. Again we return to the same problem: a

fast process can never be sure a slow process hasn’t actually failed and it can’t wield

to it, because a failed process may never request the released resource.

We consider adaptive congestion and flow control mechanisms that solve these

problems to be very interesting research areas. We have not had the chance to rese-

arch on suitable policies for congestion and flow control, but we have implemented

in Treplica a rich mechanism capable of supporting many interesting policies. The

mechanism defines a maximum number of pending proposals per learner, a maxi-

mum size for a proposal and a maximum number of queries for gaps in the instance

54 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

sequence. The maximum number of pending proposals is the basic tool for conges-

tion control. It limits the rate new proposals are created and sent for vote by the

learners, by forcing them to wait the complete approval of a proposal to create a new

one once its local maximum was reached. This mechanism takes full advantage of the

fact that learners are responsible for proposal creation. Each learner is able to control

its maximum number of proposals independently and the coordinator doesn’t need

to monitor this quantity.

When a learner reaches its maximum number of pending proposals, subsequent

client requests are queued waiting for a proposal to complete. When this happens, the

learner creates a proposal containing more than one client request, ordered by arrival

time. Under high client load, the size of the request queue can grow very fast, so the

learner limits the number of requests that are packed in a proposal. This is controlled

by the proposal maximum size. A leaner creates a new proposal by concatenating

client requests until the maximum size is reached or the request queue empties.

The final congestion and flow control mechanism has to do with filling gaps in the

consensus instance sequence. A single learner cannot deliver the ordered requests to

its client if there are undecided consensus instances before decided instances. This

is particularly relevant when a crashed process tries to recover and discovers a large

subset of instances whose outcome is unknown. A naive learner might try and decide

null on all instances at once, overloading the network and the coordinator. To avoid

this we define a maximum number of queries sent to the coordinator for filling gaps in

the consensus instance sequence. This is similar to the maximum number of pending

proposals, but can usually be larger because the gap filling process is faster than a

full Paxos round for decided instances.

Currently the parameters that control maximum number of pending proposals,

maximum proposal size and maximum number of gap filling queries are fixed. The

values used were experimentally obtained; the current values are given in Table 2.1.

Pending Proposals 2
Proposal Size 10kB
Gap Queries 100

Tabela 2.1: Parameters for congestion and flow control

2.5. Treplica Implementation 55

Coordinator

The coordinator is a Paxos agent responsible for ensuring the prompt conclusion of

consensus instances. It receives messages from the learners asking to pass a propo-

sal in a selected consensus instance, starts or resumes an appropriate round for this

instance and monitors its conclusion. As explained in the previous section, the coor-

dinator does not monitor individual proposals, but instead it ensures that a consensus

instance reaches a single decided value. The actions of the coordinator when starting a

new round for a consensus instance are central to the safety guarantees of Paxos and

the timeliness of these actions is central do the liveness properties of Paxos. Thus, this

agent is a very important part of any Paxos implementation.

Seamless Validation To perform these vital coordination tasks effectively, any co-

ordinator agent created goes through a validation process. During this validation,

the coordinator starts all infinite consensus instances and completes the Phase 1 of

the algorithm for them. This way, in Paxos all instances that have never progressed

beyond Phase 1 in any previous round can be started directly in Phase 2 as soon as the

coordinator receives a proposal from a learner. This activation process is even more

important in Fast Paxos, in which rounds can only be decided in a fast way if they

have their Phase 1 previously completed by the coordinator.

The traditional specification of the validation process requires the coordinator to

be brought up to date with the state of the consensus instances held by a quorum of

processes. As a consequence, the coordinator blocks as it performs the required state

transfer and the execution of consensus instances is interrupted. We have implemen-

ted an optimized version of the validation process that avoids tying up the coordinator

more than the minimum necessary. Our method works by splitting validation in two

concurrent activities: activation and recovery proper. It turns out, only activation is

strictly required for a coordinator to be able to start Phase 1 of all uninitiated consen-

sus instances. Our improved procedure provides seamless coordinator validations,

with reduced coordinator blocking and less disruptive performance oscillations. A

more complete description of this optimization can be found in [90].

Fail Fast Rounds Another optimization found in Treplica implementation of Paxos

reduces the number of rounds required for a coordinator to successfully validate.

Whenever a validating coordinator fails to receive a quorum of responses to its vali-

dation request before a timer expires, it assumes the validation has failed and creates

a new round with a larger round number. However, if this failure was motivated by

a previous coordinator that has created a much larger round number before being

56 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

demoted, it may take a long time before the new coordinator can produce a round

large enough if it naively increases the round number. A simple solution to this pro-

blem is for the acceptors to send the coordinator a special message indicating they

are unable to reply to the round number just received because they have replied to a

larger round number. This way, the validating coordinator knows how large its round

number must be and, if no two contending coordinators are active at the same time,

uses this number to successfully validate. This approach has the added benefit that

the acceptor can use this message to inform the coordinator of any situation where a

round number cannot be acted upon because of another larger round number. This

way, a coordinator can actually discover if its status as single coordinator is being

contended before a timeout.

Instance Management Once activated, a coordinator can begin processing messages

from the proposers asking it to pass a proposal. Even in Fast Paxos, where the propo-

sers act independently, proposal requests are still sent to the coordinator if they fail

to be decided in a fast round. When a proposal arrives, the coordinator first checks

to see if the selected instance is decided or is in progress. If it is in progress the coor-

dinator does nothing. If the instance is decided the coordinator informs the proposer

of the instance outcome using a special message. If the instance is neither decided or

in progress, the coordinator starts Phase 2 of the Paxos algorithm or Phase 1 of the

Fast Paxos algorithm. That is, for Paxos the coordinator continues the round started

during the validation. For Fast Paxos, the coordinator assumes the proposal has failed

and immediately starts a new round.

After deciding how to process a new proposal, the coordinator receives and pro-

cesses the remaining Paxos messages exactly as described in Section 2.5.3. As descri-

bed above, the coordinator won’t restart a consensus instance in progress if it receives

any proposal request for the same instance. This happens because this instance is

now under the coordinator control, and it will monitor and keep retrying it until it

decides any value. The coordinator maintains a timer for each instance, and initiates

a new round, with a greater round number, each time this timer expires. The propo-

sers should not be allowed to influence this timing. They will maintain local timers

for their proposals, but the coordinator refusal in restarting an instance in progress

allows both timers to be integrated.

Coordinator Self-Stabilization During normal operation of the Paxos algorithm

there should be only a single coordinator. However, the leader election procedure

can make mistakes and another process can briefly believe itself to be a coordina-

tor. This process j will then start a coordinator that will compete with the correct

2.5. Treplica Implementation 57

coordinator in process i, generating increasing round numbers. This is a momentary

situation that is caused by election procedure mistakes, not by any real process or

network failure. As such, it is important for the system to self-stabilize after these

instability periods. This is specially relevant if we consider that such unstable periods

are quite frequent under heavy load [90].

If the leader election module in process i effectively detects it has momentarily

lost the leadership and deactivates the coordinator, this recovery is automatic. This is

equivalent to an actual failure. Once the system stabilizes, i will re-validate its coordi-

nator agent and a large enough round number will be promptly discovery. However,

if the leader election module in i doesn’t recognize any contending coordinator, the

coordinator in j could have finished validation with a larger round number. After the

election module stabilization, the coordinator in i continues processing unaware of

the fact it has effectively lost the coordination position and that no acceptor will reply

to its current round number. If this happens, Paxos consistency isn’t violated, but

all proposals with the round number from the original validation of the coordinator

in i will fail. As a consequence, after a costly timeout a new round will have to be

enacted in full. This has a severe impact on the throughput of the system. To avoid

this problem, and ensure proper stabilization after failure detector mistakes, we adopt

a simple solution. Whenever an acceptor receives a Phase 2a message and ignores it

because of a larger round number, it sends the coordinator a special message indica-

ting this fact. When this message is received, the coordinator restarts, acquiring per

the rules of validation a new large enough round number.

In Fast Paxos the problem is more subtle. A possible result of a contended co-

ordination is a set of proposers that assume they can send proposals directly to the

acceptors using a round number from the coordinator in i. Because of the competi-

tion from the coordinator in j, proposals coming directly from the proposers with this

round number will timeout. This happens because there won’t be enough acceptors

that agree to vote on these proposals. Only after a timeout the coordinator interven-

tion is requested, and it will eventually decide the instance. However, fast rounds are

impossible and the coordinator is oblivious to this fact. To fix this, the coordinator re-

sends at regular intervals the round number it has associated with its last validation.

This effectively renews the authorization it has made for this round number to be

used directly by the proposers. If an acceptor notices one of these notifications with a

smaller round number it informs the coordinator. As in Paxos, when this message is

received, the coordinator restarts, acquiring a new large enough round number.

58 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

Acceptor

The acceptor is an agent responsible for voting in consensus instances according to the

Paxos algorithm. This agent reflects very closely the behavior of Paxos described in

Section 2.5.3. It concerns itself mostly with the safety of the algorithm. The acceptor

waits for Phase 1a messages starting a new consensus round and answers them, if

appropriate, with an account of the vote it has cast last. This enables a round to

proceed and the acceptor casts a vote in this round when it receives a suitable Phase

2a message. In Treplica this behavior has only two small changes that increase the

performance of the system: the acceptor reduces a vote to small constant size message

and it actively warns the coordinator of decided consensus instances.

Constant Size Votes Usually, a Phase 2b message carries the round number and

the proposal being voted. This way, any learner listening to broadcast votes can

compute, independently, the outcome of any round. However, this is wasteful of

network resources as the same proposal is sent once in the Phase 2a message and n

additional times, once for each of the n acceptors in a quorum. A solution to this

problem implemented in Treplica is to configure the acceptor to send only a unique

identifier of the proposal in its Phase 2b messages. This identifier is generated by

the learner agent that created and submitted the proposal. This way, proposals are

uniquely identified in the votes and it is possible to discover the outcome of the

round as long as it is possible to map this identifier to the actual proposal. To this

end, learners are also changed to monitor Phase 2a messages and keep a local cache

of proposals presented for voting, indexed by proposal id. The end result is that the

Phase 2b messages, that account for the larger number of messages send in a Paxos

round, are reduced to two integers: the round number and the proposal identifier.

Succeed Fast Rounds Another improvement is the reduction of the number of mes-

sages required for a coordinator to finish an election for an already decided consensus

instance. A coordinator can always enact a complete Paxos round with all its phases,

regardless of the state of a consensus instance. If this consensus instance is already

decided, the coordinator will always compute a majority of votes selecting the already

decided proposal. This happens frequently in Fast Paxos whenever a process hosting

the coordinator looses many messages and its local learner has to catch up on the de-

cided consensus instances. To short circuit this process, an acceptor agent warns the

coordinator of a decided consensus instance by broadcasting the decided value. Thus,

the coordinator and any learner that may have missed the voting can now discover

the decision for this consensus instance without requiring a complete election.

2.6. Applications 59

2.6 Applications

Virtually all distributed applications require replication. The amount and importance

of replicated state to the application varies, depending on consistency requirements

and overall cost. Keeping all information replicated consistently is potentially very

costly and may limit the system efficiency or availability [43]. Thus, it is extremely

important to be able to replicate data consistently and integrate this data with the rest

of the components of the system. Due to its modularity, Treplica can be used as a tool

to assist in the construction of practically all types of distributed applications.

As described in Section 2.2, Treplica can help in creating complete applications,

programmed as if they were centralized. For example, good candidates for repli-

cation using Treplica are web applications that use a database for data storage and

sharing. In general, these applications do not use all properties of a relational data-

base and only use it as a convenient way of persisting data. As a consequence, these

applications end up needlessly tied to a centralized point of failure. Treplica can offer

a more direct programming abstraction to persistence while providing replication and

fault tolerance. We expect Treplica to be a viable option to build an enterprise wide

application or a small scale Internet shop. We analyze the performance of Treplica in

one of these applications in Section 2.7.

Another way Treplica can be used is in the construction of a central coordina-

tion point for more loosely coupled components. A simple way to coordinate the

access of a shared resource by several independent agents is through the use of locks

and leases [56, 59]. The replicated state machine is the perfect abstraction to build

a cluster of reliable lock servers that can be accessed through a RPC interface. For

example, distributed file systems maintain large amounts of data stored on stable

storage, replicated for fault tolerance and reliable access. Due to the amount of data

and to the performance requirements, this involves only two or three replicas with a

primary-backup scheme. Nonetheless, the state of these replicas can be controlled by

a replicated state machine, such as the identity and status of the replicas are always

consistently updated and made available to both file system replicas and clients. The

Google File System [41] and Chubby [26] are systems built with this software archi-

tecture. Apart from a small prototype, we have not extensively tested Treplica in a

similar environment. Nonetheless, we believe Treplica would fit nicely in a similar

architecture because of its simple design and performance. More data about Treplica

performance can be found in [88, 90]. While these works do not put Treplica perfor-

mance in the perspective of a standard benchmark, they give an idea of the expected

Treplica performance.

60 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

2.7 Performance

We have made an extensive study of Treplica performance, in the context of a small

scale Internet shop. This application, called RobustStore, is an implementation of

the TPC-W benchmark [81] using Treplica. We use TPC-W as a benchmark for a

complete application running on Treplica, in such way that the real systems that TPC-

W is expected to assess are faithfully represented by our experimental setup. The

complete performance analysis, including details of the experimental setting, can be

found in [20]. We reproduce in this section a brief description of TPC-W metrics and

key Treplica performance charts.

The TPC-W benchmark specifies all the functionality of an on-line bookstore, defi-

ning the access pages, their layout, and image thumbnails, the database structure. The

bookstore application is based on a standard three-tier software architecture. TPC-W

defines three workloads that are differentiated from each other by varying the ratio

of browsing (read access) to ordering (write access) in the web interactions. Perfor-

mance is measured in web interactions per second (WIPS), with web interactions response

time (WIRT) as a complementary metric. An example of a read-only interaction is the

search for books by a given author, while an example of an update interaction is the

placement of an order. The shopping profile specifies that 80% of the accesses are

read-only and that 20% generate updates. The browsing profile specifies that 95% of

the accesses are read-only and that only 5% generate updates. Finally, the ordering

profile fixes a distribution where 50% of the accesses are read-only and 50% generate

updates.

In the remaining of this section we show two of the experiments we designed

using this benchmark. The first experiment (Speedup) characterizes the scalability of

the application, increasing the number of replicas in the system and the load handled

by them. The second experiment (One Failure) shows the resiliency to failures of

the application, injecting a failure that disables a replica. The experiments were car-

ried out in a cluster with 18 nodes interconnected through the same 1Gbps Ethernet

switch. Each node has a single Xeon 2.4GHz processor, 1GB of RAM, and a 40GB disk

(7200 rpm). The software platform used is organized with Fedora Linux 9, OpenJDK

Java 1.6.0 virtual machine, Apache Tomcat 5.5.27 and HAProxy 1.3.15.6.

Speedup The speedup experiment evaluates the maximum possible increase in per-

formance obtained when RobustStore’s scale goes from 4 to 12 replicas. Figure 2.6

shows the speedup values obtained for the three workloads and an initial state size

of 500MB. It is possible to observe that RobustStore scales well, specially with a large

proportion of reads. Write performance is still good and it indicates the application

2.8. Related Work 61

can handle gracefully varying load profiles.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 4 5 6 7 8 9 10 11 12

W
IP

S

Number of replicas

browsing
shopping
ordering

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8 9 10 11 12

W
IR

T
 (

m
s
)

Number of replicas

browsing
shopping
ordering

Figura 2.6: Speedup

One Failure In the one failure experiment one process is crashed 270 seconds in

a 600 seconds run. The crash is immediately followed by the automatic triggering

of recovery by a local replica watchdog. Figure 2.7 shows the behavior of a five-

replicas RobustStore for the three workload profiles. The application throughput can

be characterized as very resilient and stable in the presence of the crashes, failover,

and recoveries used in the experiments. In this and other dependability experiments

we have performed RobustStore loses less than 13% of its average performance during

recovery in the worst case [20].

2.8 Related Work

The idea of main-memory storage, with a persistent operations log used as a fault

tolerance mechanism, is described by Birrell et al. [15]. The current API of Treplica

was influenced by the Prevayler [95] persistence layer, specifically in its use of featu-

res of modern dynamic languages like Java and C# to simplify implementation and

provide a more straightforward API. Compared to these centralized systems, Treplica

goes a step further as it uses this operation-based persistence approach as a basis for

replication.

Data replication with strong consistency has been frequently used as basis for

control mechanisms in large scale distributed systems [19, 48, 49]. These systems

62 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600
W

IP
S

time (s)

rbrowsing c

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

shopping c r

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

ordering c r

Figura 2.7: One Failure: 5 Replicas

require some mechanism to control the operations of a large number of processors

and services as autonomously as possible. These mechanisms present a lock based

programming abstraction coupled with a configuration data repository. Similarly to

Treplica, many of these systems use the Paxos algorithm to implement replication.

The Chubby locking service is used to power a myriad of distributed applications

at Google [19]. Although a locking system is a different type of abstraction, Chubby

shares many architectural features with Treplica, including a “persistent log”, very

similar to a persistent queue. The designers of Chubby state the intention of using this

queue abstraction for the construction of other distributed applications [26]. Chubby

is a special purpose application used to provide lock services and doesn’t export its

internal replicated state service. In comparison Treplica exports only the replicated

state service, a base where locking primitives can be build upon. Chubby uses the

Classic Paxos algorithm to implement replication, while Treplica uses both the Classic

and Fast Paxos variants.

Other distributed locking and distributed control systems are FaTLease [48] (part

of the XtreemFS object-oriented file system [47]), Zookeeper3 and Autopilot [49]. All

these systems are used as control centers for distributed applications operating in

a cluster. As such, they are replicated to ensure uninterrupted operation of these

applications in the presence of failures. These systems provide a more specialized

3http://hadoop.apache.org/zookeeper/

2.8. Related Work 63

service than Treplica. Nonetheless, it is interesting to observe that the designers of

these systems decided to employ a consensus-based mechanism to replicate vital data.

Moreover, this data is kept in main memory, using stable memory as an accessory

for fault tolerance. These are design decisions similar to the ones we have made

in Treplica. We expect Treplica to be an excellent tool for the constructions of such

systems.

Boxwood is a framework for the construction of distributed storage applicati-

ons [62]. Boxwood creators advocate the use of generic data structures as a foundation

where to build more complex distributed systems. One of the proposed abstractions

is a generic consensus service based on Paxos. This module is used by several other

Boxwood components, including its distributed locks manager. Boxwood is focused

in one domain of application (file systems and databases) and provides a more low

level interface to its services, while Treplica offers a higher level programming API.

It is common in the literature the acknowledgment that Paxos, despite its sim-

plicity, is full of subtleties that increase the complexity of an actual implementa-

tion [16, 26, 59]. A work that deals exclusively with a detailed description of a Paxos

implementation can be found in [7]. This paper describes all aspects of a complete

state machine replication using Paxos. Also, it presents a fairly complete study of

the performance of the described implementation. The authors describe mechanisms

for flow and congestion control, leader election and other implementation aspects not

usually detailed. They observe that these mechanisms are generally considered to be

implementation details, but that in fact they are central to the maintenance of many

algorithm properties, specifically its liveness. With Treplica, we have proposed and

implemented a modular abstraction for active replication including requirements for

persistence. This way, Paxos is central for the development of Treplica but it encom-

passes a broader theme: object-oriented replication.

Group communication toolkits provide a service of message diffusion to a group of

processes according to diverse ordering guarantees. Many of these systems exist, from

the original Isis [12], to JGroups [9], Spread [5] and Appia [67], to list a few. The central

idea behind these toolkits is the virtual synchrony [13, 14] application programming

model. Treplica shares similar goals with these systems but does not implement the

virtual synchrony model, nor does it support many message ordering guarantees,

only a totally ordered message sequence. Treplica is designed to offer a simpler

programming abstraction with built in support for persistence, thus the application

programmer is free from the difficult task of guaranteeing state consistency. In a way,

Treplica can be seen as a higher-level abstraction than group communication, and

these toolkits could be used to create an implementation of the Treplica API.

The asynchronous persistent queues abstraction is very similar to the publish /

64 Capı́tulo 2. An Object-Oriented Specification for Active Replication Using Consensus

subscribe pattern of communication for process groups implemented in message ori-

ented middleware (MOM) [10]. The message exchange in MOM is asynchronous and

even a failed or inoperative processes can expect to be delivered all messages sent,

in the same order seen by all the other processes. Besides message diffusion, MOM

allows the construction of elaborate message flow graphs and may perform message

format conversion as messages are transported through this graph. Examples of such

systems are the IBM WebSphere MQ4 and Apache ActiveMQ5 products. These sys-

tems are heavy-weight compared to Treplica and are usually implemented on top of a

centralized relational database, inheriting the failure behavior of these systems. Also,

Treplica is designed for more tightly coupled processes and transports application

objects. As a consequence, it does not provide explicit message flow and message

format conversions.

2.9 Conclusion

Correct, efficient and resilient replication of applications is a hard problem faced by

many programmers of distributed applications. Unfortunately, there is limited sup-

port for completely handling replication in face of process failures and recoveries in

the tools currently used for the construction of such applications. To address this pro-

blem we have created an object-oriented specification for replication and implemented

it in the Treplica library. This paper described the object-oriented specification propo-

sed and the software architecture of its implementation.

The advantages of using the proposed object-oriented specification for replication

are twofold. First, it makes transparent to the programmer much of the complexity

of dealing with a highly-available application. Second, it allows the middleware ef-

fectively implementing the replication to optimize many factors now outside of the

programmer reach. In Treplica we use extensively this property to employ consensus-

based active replication to effectively get application durability for free, after paying

the cost of replication. The observed performance of the final system is a good indi-

cation of the success of this approach.

4http://www-306.ibm.com/software/integration/wmq/
5http://activemq.apache.org/

Capı́tulo 3

Dynamic Content Web Applications:

Crash, Failover, and Recovery Analysis

This work assesses how crashes and recoveries affect the performance of a replicated

dynamic content web application. RobustStore is the result of retrofitting TPC-W’s

on-line bookstore with Treplica, a middleware for building dependable applications.

Implementations of Paxos and Fast Paxos are at the core of Treplica’s efficient and

programmer-friendly support for replication and recovery. The TPC-W benchmark,

augmented with faultloads and dependability measures, is used to evaluate the beha-

viour of RobustStore. Experiments apply faultloads that cause sequential and con-

current replica crashes. RobustStore’s performance drops by less than 13% during

the recovery from two simultaneous replica crashes. When subject to an identical

faultload and a shopping workload, a five-replicas RobustStore maintains an accu-

racy of 99.999%. Our results display not only good performance, total autonomy

and uninterrupted availability, they also show that it is simple to develop efficient

recovery-oriented applications using Treplica.

3.1 Introduction

In this work, we evaluate how crashes, failovers, and recoveries affect the performance

and availability of RobustStore, a highly available dynamic content web application.

RobustStore has been implemented by retrofitting the stand-alone on-line bookstore

specified by TPC-W [81] with Treplica, a middleware for building dependable applica-

tions [87]. Thus, the assessment of RobustStore is, in fact, the assessment of the fitness

of Treplica as a high-availability support for dynamic content web applications. The

TPC-W benchmark, augmented with faultloads and dependability measures, is used

to evaluate the behaviour of RobustStore.

65

66 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

The process of recovering failed replicas is a main concern for highly available

applications because it has a negative impact on their availability and reliability. Re-

covery time is primarily a function of application state size, so a larger application

state should have a larger negative impact on the application, leading to performance

loss. One could expect even more pronounced performance oscillations in scenarios

with multiple overlapping crashes followed by multiple recoveries. We show that

this is not the case for RobustStore. In fact, even in the worst case failure scenarios

performance stays close to the levels delivered before the failures occurred.

Experiments apply faultloads that cause sequential and concurrent replica crashes.

For example, RobustStore’s performance drops by less than 13% during the recovery

from two simultaneous replica crashes. When subject to an identical faultload and

a shopping workload, a five-replicas RobustStore maintains an accuracy of 99.999%.

The good performance, total autonomy and uninterrupted availability displayed by

RobustStore in the experiments indicate that Treplica offers an efficient support for

the construction of highly available distributed applications.

The remainder of the paper is structured as follows. Section 3.2 describes Treplica,

and its use of Paxos [56] and Fast Paxos [57]. Treplica has been designed with perfor-

mance, modularity and ease-of-use as primary objectives. The toolkit offers two very

simple programming abstractions for programmers: state machine and asynchronous

persistent queue. Section 3.3 summarizes the features of TPC-W, a web application

benchmark widely accepted by industry and academia. In Section 3.4 we show how

we have dealt with non-determinism, randomness, and database substitution during

the development of RobustStore. Section 3.5 measures how the performance and

availability of RobustStore is affected by crashes, failovers, and recoveries. Section 3.6

brings a summary of research that is related to our work. Section 3.7 summarizes our

results and contributions.

3.2 Treplica

This section describes the features of Treplica that are relevant to this work; additional

information can be found in [87]. Treplica supports the construction of highly avai-

lable applications through either the asynchronous persistent queue or the state machine

programming interfaces. The main programming abstraction is the persistent queue,

a totally ordered collection of objects with the usual enqueue(Object) and Object

dequeue() methods. Enqueue(Object) is, for efficiency reasons, implemented as an

asynchronous primitive. Object dequeue() has a synchronous (blocking) semantics,

as usually provided by queue implementations available in programming libraries.

Persistence means that a replica bound to a queue can crash, recover and bind again

3.2. Treplica 67

to its queue, certain that the queue has preserved its state and that it has not missed

any additional enqueues made by any other active replicas. Thus, by relying on the

total order guaranteed by the queue and the fact that queues are persistent, indivi-

dual processes can become active replicas while remaining stateless; the persistence

of their state has been delegated to the queue.

The asynchronous persistent queue is implemented using the Paxos [56] and Fast

Paxos [57] algorithms. These algorithms were chosen because they were designed

to provide continuous operation of the application under the occurrence of partial

failures, without requiring the programmer to use reconfiguration protocols. As a

consequence of our choice, Treplica transparently transfers to the application the re-

siliency qualities of these algorithms. In particular, for N processes the configuration

of Treplica used in this work uses Fast Paxos as long as ⌈3N/4⌉ processes are wor-

king. If fewer processes than ⌈3N/4⌉ but at least ⌊N/2⌋ + 1 are available, Treplica

falls back on Paxos. If fewer than ⌊N/2⌋ + 1 processes are operational, the algorithm

blocks until enough failed processes have recovered.

To ease the task of creating replicated applications out of the objects (operations)

held by the asynchronous persistent queue, Treplica provides a higher level abstrac-

tion that supports the construction of replicated state machines. The state machine

programming interface does not contain explicit support for the definition of states,

events (transitions), conditions, and actions. Instead, it considers an application a

black-box component whose public methods (interface) implement the set of events,

conditions, and actions of a deterministic state machine. The application programmer

uses the state machine programming interface of Treplica to treat all events, con-

ditions, and actions as generic actions—Java objects—that can be managed by the

asynchronous persistent queue and delivered to the application for execution.

A newly (re-)activated state machine sets its state to a consistent state. After that,

the only way to change the state of the replica is through the execution of actions

triggered at the replica by the execute() method of Treplica’s state machine. At any

moment it is possible to obtain a snapshot of the most recent consistent state of a state

machine by invoking its getState() method.

Actions invoked at one replica are guaranteed to be performed by it only after they

have been converted into a message and enqueued into the asynchronous persistent

queue for delivery to the other replicas. The original invoker of the action sees its

execution as a call to a (synchronous) blocking method. A successful return of the call

guarantees that the action has been performed by the invoker’s replica and that the

effects of the execution are now visible in the local state.

68 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

Recovery: Suppose a replica crashes and some time later recovers. Initially, a sta-

teless instance of the application is created and its constructor, in turn, instantiates a

state machine and invokes its getState() method. The method getState() interacts

with the replica’s asynchronous persistent queue. It is the responsibility of the asyn-

chronous persistent queue to provide the recovering replica with the state to which it

must be reset, in the form of a locally obtained checkpoint and an associated suffix of

the queue’s history. After resetting its state to that of the checkpoint, the recovered

replica rejoins the remaining replicas. The queue’s suffix necessary to complete the

re-synchronization of the recovered replica is learned from the active replicas using

Paxos. As soon as the queue re-synchronization ends, the recovered replica is ready

to proceed as if it had not crashed. From the point of view of the programmer, all that

needs to be done is to call getState(), the rest is transparently handled by Treplica.

3.3 The TPC-W Benchmark

The TPC-W benchmark specifies all the functionality of an on-line bookstore, defining

the layout of access web pages, application semantics and the database structure. The

bookstore application is based on a standard three-tier software architecture. En-

terprises [81] and Universities [36, 37, 64] have extensively used implementations of

TPC-W to assess the performance of machines, operating systems, and databases

as supports for web services. The TPC-W implementation created at University of

Wisconsin-Madison [21] has been used as the basis for our experiments. Performance

is measured in web interactions per second (WIPS), with web interactions response time

(WIRT) as a complementary metric. TPC-W defines three workload profiles that dif-

fer from each other by varying the ratio of book browsing interactions (read access)

to book ordering interactions (write access). The shopping workload profile specifies

that 80% of the accesses are read-only and that 20% generate updates. The browsing

profile specifies that 95% of the accesses are read-only and that only 5% generate up-

dates. Finally, the ordering profile defines a distribution where 50% of the accesses are

read-only and 50% updates. TPC-W names each of these workload profiles differently

to make clear from the metric name which workload has been used in every experi-

ment. The unit name WIPS is assigned to the shopping workload profile, WIPSb is

used for the browsing profile and WIPSo for the ordering profile.

During an experiment, workloads are generated by remote browser emulators

(RBE). To emulate the behaviour of human interactions, the RBE specification includes

a think time, defined by TPC-W as 7 seconds. Thus, the number of web interactions

per second (WIPS) generated by a set of emulated RBEs is given by #RBEs/think time.

TPC-W also has a very strict definition of database model (conceptual and physical)

3.4. RobustStore 69

and of the type and amount of data generated to populate the database.

3.4 RobustStore

In this Section, we summarize the changes we made to the implementation of the

TPC-W online bookstore [21] to implement RobustStore. The method described here

is general enough to guide the retrofitting of any application with Treplica. The steps

are the following: (I) determination of the application state to be replicated; (II) review

of the application methods that change the state and their transformation into deter-

ministic actions. In the case of RobustStore, we had to deal with the non-determinism

generated by calls to date and time system functions, and random number generation.

The retrofitted application is structured as shown in Figure 3.1.

Figura 3.1: RobustStore components

Task (I) requires the design of an object model to represent the application objects

that are going to be replicated. In the case of the online bookstore, we devised an

object model composed by 9 classes that represent the entities and relations of TPC-

W’s online bookstore conceptual model. These classes and their instances represent

the critical state of the bookstore and as such have to be programmed using the state

machine abstraction provided by Treplica. The methods of these classes represent

all the database functionality required by the bookstore. The original bookstore was

structured as a set of web components (servlets) that accessed the database through

a facade class (TPCW Database) that served as a higher-level abstraction for the actual

database. RobustStore has kept this structure intact, but the facade class now uses

Treplica’s state machine to execute operations equivalent to the original SQL transac-

tions. The conversion of the facade class demanded 0.5 man-month. In total, about

2300 lines of code were changed. The final program had 3145 lines of code, 147 less

70 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

than the original implementation. We did not have to change the code of the servlets,

remote browser emulator or any other support program.

Task (II) has to do with non-determinism removal. The use of random numbers,

dates and time is not a problem for a centralized system, but it is a problem for a

replicated system. For example, whenever a new book order is created the order

creation time is set to the current time. If each replica read its local clock inside the

create order method to obtain the timestamp of the order, then each of the replicas

would very likely stamp its order with a different timestamp. To avoid this, the code

in the facade responsible for the creation of actions in the state machine reads its local

clock before the action is created, and passes the resulting timestamp as an argument to

the action’s constructor. This simple procedure guarantees that every replica receives

an order with exactly the same timestamp. Calls to random number generators are

handled in the same way. For example, to generate the value of the discount applied

to orders of a new customer, the random number generator is called before the action

that creates a customer is instantiated and the value is passed as a parameter to the

action.

It is important to note that the retrofit of TPC-W’s bookstore with Treplica—

execution of tasks (I) and (II)—did not require the programmer to think about re-

plication, persistence, or the replica recovery process.

3.5 Evaluation

In this Section, we seek answers to four questions. First, how long can RobustStore

be expected to run without interruption? Second, how much service can RobustStore

be expected to deliver during failure-free and failure-prone operation periods? Third,

what accuracy can be expected of RobustStore in the presence of crashes, failovers,

and recoveries? Fourth, what level of human intervention is necessary to maintain

RobustStore operational? We devised four sets of experiments to gather results asso-

ciated with these questions. The first set contains speedup and scaleup experiments

that show how RobustStore behaves in deployments of different scales. The other sets

assess the dependability of RobustStore using the three TPC-W workloads and three

different faultloads.

3.5.1 Method

The experiments were carried out in a cluster with 18 nodes interconnected through

the same 1Gbps Ethernet switch. Each node has a single Xeon 2.4GHz processor,

1GB of RAM, and a 40GB disk (7200 rpm). The software platform used is organized

3.5. Evaluation 71

with Fedora Linux 9, OpenJDK Java 1.6.0 virtual machine, Apache Tomcat 5.5.27 and

HAProxy 1.3.15.6.

Figura 3.2: Experimental setup

The cluster has been divided into three disjoint sets of nodes as shown in Fi-

gure 3.2. The first set is composed by 5 client nodes that run the RBEs. Each client

node holds the same number of RBEs. Instantiation and finalization of RBEs is done

by a user initiated script, that computes and starts the exact number of RBEs neces-

sary to generate the desired workload. Performance metrics are written by the RBEs

into log files stored in the local disk. The second set contains from 4 to 12 server re-

plicas that run the bookstore application. Each node of this set runs a copy of Tomcat

that serves both static and dynamic web content. The application itself uses Treplica,

as described in Section 3.4 and is configured to write only to the local disk. The fi-

nal set contains only one node and runs the reverse proxy HAProxy, that has a load

balancing module. The HAProxy is responsible for the failover mechanism. First, it

actively queries the state of all of the server replicas using an HTTP probe. If it senses

a replica is down (after 4 unsuccessful tries), it removes it from its servers list until

it is probed active again. Second, requests are balanced among the server replicas

using a hash mechanism based on unique client identifiers that are included in all

interactions. If a server fails during the execution of a client request, HAProxy will

close the connection and the client will observe an error.

RobustStore does not rely on a database, but the changes we have made to the

application do not affect the data stored or the transactional semantics of the original

application interactions. As a consequence, our experiments maintain the value of all

experimental parameters as recommended by TPC-W, with one minor exception. To

reduce the number of RBEs effectively required to provide a given load we changed

72 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

the default 7s think time of the TPC-W specification to 1s. With a 7s think time the

workloads generated by the RBEs of the 5 client nodes were not sufficient to saturate

RobustStore. It is important to note that shorter think times do not change either the

read to write ratios nor the probabilistic characteristic of the workloads. Even with the

reduced think time, we still had to set aside 5 nodes only to generate load. This left a

maximum of 12 nodes to hold replicas, but this number is sufficient to emulate most

commercial deployments of replicated application servers. Thus, the real systems that

TPC-W is expected to assess are faithfully represented by our experimental setup.

The replicas were populated using the standard TPC-W population procedure,

with 10,000 items and 30, 50 and 70 emulated browsers, even tough we instantiated

a larger number of RBEs. The parameter number of browsers was chosen to generate

initial application state sizes of 300MB, 500MB, and 700MB, respectively. For the most

write intensive profile (ordering) the average state size at the end of the measurement

interval was approximately 550MB, 750MB, and 950MB, respectively. This respects

the experimental requirement that all state must fit into main-memory. This is impor-

tant to guarantee as much as possible that the performance variations observed are

solely related with Treplica’s activity on the network and on the disk. For all experi-

ments the ramp-up, measurement interval and ramp-down periods follow TPC-W’s

specification; they were set to 30 seconds, 9 minutes and 30 seconds, respectively.

The TPC-W benchmark consists of a system specification, a workload and a metric.

A dependability benchmark consists of a system specification, a faultload, a workload

and a metric. Thus, to turn TPC-W into a dependability benchmark we added to it

a faultload and metric specifications [35]. The faultload consists of environment or

operator generated faults injected at precise times; all machines had their clock syn-

chronized using NTP with clock skew smaller than 100ms. The time of failure was

chosen to guarantee that full recovery of all failed replicas was observed within the

experiment measurement interval. The abrupt server shutdown (crash) has been emu-

lated by killing the application server at the operating system level. The abrupt server

reboot (initiates a recovery) has been emulated by re-instantiating the application ser-

ver. Re-instantiation of application servers is carried out automatically by a simple

watchdog process that monitors the application server and re-instantiates it as soon

as it detects the crash.

The dependability measures used in the experiments are availability, performabi-

lity, accuracy, and autonomy [35]. The system under test is available when it is able

to provide the service requested by the workload. Availability is defined as the ra-

tio between the time the application is operational and the total duration of the run.

Performability gives an idea of the impact of failures on the performance of the appli-

cation. It is defined as as the ratio between the average performance (AWIPS) during

3.5. Evaluation 73

the failure free period of the measurement interval and the average performance du-

ring the period of recovery. Accuracy is defined as the ratio between the number of

requests with error and the total number of requests of the experiment. Autonomy is

defined as the ratio between the number of human interventions required to restart a

failed replica and the number of faults injected.

3.5.2 Speedup

Speedup experiments evaluate the maximum possible increase in performance ob-

tained when RobustStore’s scale goes from 4 (baseline system) to 12 replicas. The

relative speedup for a k-replicated RobustStore is defined by Sk = πk/π4, where πk

is the performance of a k-replicated application. Figure 3.3 shows the speedup values

obtained for the three workloads and an initial state size of 500MB. For example, for

the browsing workload, S8 ≈ 1.59, S10 ≈ 1.81, and S12 ≈ 1.97; the addition of four

replicas to the baseline system increases its performance by nearly 60%. Treplica’s su-

blinear speedups are a function of the costs associated with Paxos and Fast Paxos: the

message complexity, latency complexity and the latency derived from writing data to

stable storage. Thus, the different read/write ratios defined by the workloads pose

increasing demands on Treplica’s efficiency in terms of network and stable storage.

Web interactions that only read values can be executed without resorting to the total

order broadcast. This is the case of browsing workload that has only 5% of updates,

so 95% of requests (reads) can be fulfilled locally. Also, the small proportion of up-

dates reduces access to disk. So, in this case the good speedup observed (Figure 3.3

browsing) can be explained by (i) the read-bound workload; (ii) the main-memory re-

sidence of the state; and (iii) the light use of the asynchronous persistent queue (total

order).

The shopping workload generates 20% of updates, meaning that total order is

going to be invoked for at least 20% of operations. In this scenario, the speedup is

practically identical to the speedup obtained with the browsing workload. The main-

tenance of the good speedup for shopping can be explained by the same factors used

to explain it for the browsing workload, despite the fact that the shopping load has

four times the number of updates of the browsing workload. Here, the replicas can no

longer be considered independent of each other due to their heavier use of the asyn-

chronous persistent queue (Paxos). Each replica added produces a performance gain

of ≈11.3%, with an associated increase in response time of ≈4.29%. The shopping

workload is TPC-W’s reference workload. So, Treplica continues to speed up well when

subject to TPC-W’s reference workload, but there must be a workload threshold after

which the cost of uniform total-ordering impedes the maintenance of the good spee-

74 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

dups observed so far. Figure 3.3 shows that the ordering workload has by far crossed

the threshold. In this case, RobustStore’s S8 has dropped to ≈1.29. The change can be

explained by the growth in the costs related to Treplica that now has to totally order

half of the requests. Each replica added yields a performance gain of ≈5.35%, at the

expense of a ≈37% increase in the average response time.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 4 5 6 7 8 9 10 11 12

W
IP

S

Number of replicas

browsing
shopping
ordering

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8 9 10 11 12

W
IR

T
 (

m
s
)

Number of replicas

browsing
shopping
ordering

Figura 3.3: Speedup

3.5.3 Scaleup

Figure 3.4 shows how the system scales for a fixed workload of 1000 WIPS and in-

creasing number of replicas. This measurements serve as a baseline to later assess

the behaviour of Treplica in the presence of partial failures. An initial replica size of

300MB is used; this size has been chosen to minimize as much as possible interfe-

rences caused by swapping. A perfectly scalable system should show an horizontal

scaleup line. The determination of the scaleup curves shown by RobustStore for each

workload is important as it characterizes its behaviour when the scale is changed.

To determine the curves we used regression analysis. The best fit for every set of

points is given by a straight line, plotted in gray (confidence coefficients omitted)

along the scaleup values (Figure 3.4). Additionally, we can ask ourselves how th-

roughput (WIPS) is related to response time (WIRT). Correlation analysis of the two

variables for each workload reveals that they are linearly correlated, with correlation

coefficients: r2 = 0.8788 for browsing, r2 = 0.9976 for shopping, and r2 = 0.9958 for

ordering. The case r2 = 1.0 corresponds to the maximum possible linear association

between WIPS and WIRT, meaning that all data points will lie exactly on a straight

3.5. Evaluation 75

line. Thus, we have a system that has performance linearly correlated to response

time and that scales up linearly. In Section 3.5.4 we use these observations to explain

the behaviour of RobustStore after a crash.

RobustStore shows an ideal scaleup for the browsing workload, for the same re-

asons RobustStore shows a good speedup for browsing. For the shopping profile,

RobustStore’s scaleup is sublinear but with a gradual linear decrease in performance,

approximately 0.85% per replica added, with a correspondent average increase of

WIRT of ≈27.3% (Figure 3.4). This is a good characteristic, showing that the expected

impact of Treplica on the performance is constant as the system scales up. In fact,

the actual cost of Treplica is smaller than 0.85% for this workload, because the costs

inherent to RobustStore and its execution environment (JVM and Tomcat) were not

subtracted from the 0.85%. For the ordering profile, each replica added to the confi-

guration causes a constant performance drop of ≈2.1%, with an expected increase in

WIRT of ≈25.9% per replica added (Figure 3.4).

 700

 750

 800

 850

 900

 950

 1000

 4 5 6 7 8 9 10 11 12

W
IP

S

Number of replicas

browsing
shopping
ordering

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 5 6 7 8 9 10 11 12

W
IR

T
 (

m
s
)

Number of replicas

browsing
shopping
ordering

Figura 3.4: Scaleup for 1000 WIPS

The speedup and scaleup results characterize the behaviour of RobustStore in the

absence of failures, but our main focus is not on raw performance but on what hap-

pens to performance and other important dependability indicators when RobustStore

is subject to crashes.

3.5.4 One crash, one autonomous recovery

For the first experiment, one crash was injected at t = 270s, followed by the automatic

triggering of recovery by the local replica watchdog. Figure 3.5 shows the behaviour

76 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

of a five-replicas RobustStore for the three workload profiles. As expected, all curves

show a performance drop. Let us start with the curve for the ordering workload.

There is a short (≈14s) and sharp (≈700 WIPS) drop in performance. This load surge

is caused by the HTTP proxy redistribution of the excess load among the active re-

plicas. What is interesting to note is that after this short period, the recovery is still

going to last for another 113s, but the average performance is already close to the per-

formance before the failure. RobustStore’s linear correlation between WIPS and WIRT

(Section 3.5.3) can be used to analyse what happens in this scenario. Due to the corre-

lation, a good estimate of the worst case WIRT can be obtained by simply considering

WIPS as inversely proportional to WIRT. For example, in Figure 3.5, to estimate the

latency at t=275s (the bottom of the deepest valley for the ordering workload) we can

subtract ≈140WIPS from 841.4 average WIPS (Table 3.1, line 5/o, column failure-free

AWIPS) to obtain the magnitude of the performance drop: ≈700WIPS. Thus, in the

worst case, the latency at t=275s is estimated as ≈700ms. Before the crash it was

≈50ms, as estimated by the regression line in the scaleup WIRT (Figure 3.4) for 5

replicas. The value sampled by the RBE for the interval of 5s that includes the valley

shows a latency of ≈613ms. In Figure 3.5 it is possible to observe that the browsing

and shopping workloads have much lower variability, so do, in the same proportion,

the response times associated with them.

Table 3.1 contains the performability measurements for this experiment. Column

R/P shows the replication degree and workload profile. For example, 5/b means

five replicas, browsing workload. The variability of the load is characterized by the

coefficient of variation (CV): the ratio of the standard deviation of the workload to

its mean. The column PV shows the Performance Variation as a percentage of the

failure-free AWIPS. Line 5/b shows that RobustStore delivers an average 977.4 WIPSb

with a CV of 0.01, almost no variation, during a failure-free run. It also shows that

during the recovery period the performance drops to 898.28 WIPSb (-8.1%); a small

drop. For the shopping profile PV is smaller than 4% during recovery; performance

remains practically stable during recovery. The CV values show that the browsing

and shopping workloads have low variability, meaning that the PVs can be trusted

to have been caused by the recovery. This is not the case for the ordering workload,

with a CV of ≈0.20 for 5/o, and ≈0.33 for 8/o, they render the average WIPS useless

as indicators of performance variation. The only resource available in this case is

the WIPS histogram (Figure 3.5). There, it is possible to confirm that there was a

performance drop during recovery, and that performance went back to its pre-crash

level after the end of the recovery, but the estimated magnitude of performance drop

during recovery, ≈13%, cannot be trusted due to the high CVs (Table 3.1, line 5/o,

column PV).

3.5. Evaluation 77

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600
W

IP
S

time (s)

rbrowsing c

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

shopping c r

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

ordering c r

Figura 3.5: One failure: 5 replicas

failure free recovery
R/P AWIPS CV AWIPS CV PV (%)
5/b 977.4 0.01 898.28 0.01 -8.1
5/s 928.1 0.06 884.46 0.07 -4.7
5/o 841.4 0.20 732.33 0.24 -12.9
8/b 985.3 0.01 980.4 0.01 -0.5
8/s 916.8 0.01 903.88 0.09 -1.4
8/o 790.8 0.33 761.74 0.34 -3.7

Tabela 3.1: One failure: performability

78 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

As expected, the recovery times grow as the replica size grows. Figure 3.6 shows

the recovery times for all one-failure experiments for three initial sizes of replica state

(300MB, 500MB, and 700MB). For any replication degree, it is clear that recovery times

grow faster for the browsing and shopping profiles, than they do for the ordering

profile. This can be explained by the way recovery is handled by Treplica. Once a

replica is rebooted, the application rebinds to its asynchronous persistent queue and

requests the loading of the most recent checkpoint from stable memory. In parallel,

the asynchronous persistent queue starts the recovery of the operations that have been

enqueued by the remaining replicas since its failure, its backlog. For the browsing

and shopping profiles the cost of queue resynchronization is relatively smaller than

the cost of loading the most recent checkpoint from disk, so parallelization helps but

still the time to recover is dominated by the loading of the checkpoint from disk. For

the ordering profile, both state transfers become larger. In this case, the parallelization

of the tasks contributes to a noticeable reduction of the total time of recovery, leveling

the recovery times as we move across different state sizes, and reducing the impact

of Treplica on RobustStore’s performance during recovery. For the next experiments

we have omitted the recovery times to save space, but the same recovery pattern was

observed.

300
500

700 b

s

o

 40
 60
 80

 100
 120
 140 recovery time (s)

5R
8R

size (MB)

profile

recovery time (s)

Figura 3.6: One failure: recovery times

Table 3.2 shows the accuracy of RobustStore in the presence of one crash. Clearly,

RobustStore produces very few erroneous outputs when subject to one crash-recover

failure.

3.5. Evaluation 79

replicas browsing shopping ordering
5 99.999 99.999 99.985
8 99.999 99.999 99.986

Tabela 3.2: One failure: accuracy

3.5.5 Two crashes, autonomous recoveries

In this set of experiments RobustStore is subject to two concurrent crashes, followed by

autonomous recoveries of the crashed replicas. The replicas to be crashed were chosen

at random and crashed at t=240s and t=270s. The WIPS histogram (Figure 3.7) shows

small performance losses during recovery for all three workloads. For the browsing

profile, the first replica crashed becomes operational at t = 303s, approximately 63s

after the crash. The second replica re-joins RobustStore at t=336.8s, 66.8s after it

crashed. In a little more than a minute the two replicas, with state sizes greater than

500MB, had already rejoined RobustStore. The shopping and ordering profiles also

show that RobustStore recovers gracefully from the concurrent crashes even when

exposed to increasingly write-intensive workloads. Table 3.3 shows that the largest

PV is inferior to 5%, a drop that can be considered small given the adverse crash

scenario generated by the faultload. The CVs for the ordering profile are high and

similar to the ones observed before for one crash. Table 3.4 shows that RobustStore

has maintained a high accuracy when submitted to concurrent crashes. From the

point of view of maintainability and autonomy, RobustStore has so far shown that

it can recover fully automatically, to a good extent due to its reliance on the simple

recovery mechanism offered by Treplica (Section 3.2).

failure free recovery
R/P AWIPS CV AWIPS CV PV (%)
5/b 971.5 0.02 942.24 0.02 -3.0
5/s 910.4 0.09 876.58 0.09 -3.7
5/o 841.5 0.21 801.96 0.22 -4.7
8/b 982.8 0.01 962.6 0.01 -2.0
8/s 907.9 0.01 891.32 0.01 -1.8
8/o 787.1 0.33 763.96 0.34 -2.9

Tabela 3.3: Two overl. crashes: performability

80 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

r1 r2

5R 500MB browsing

c1 c2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

5R 500MB shopping

c1 c2 r1 r2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

5R 500MB ordering

c1 c2 r1 r2

Figura 3.7: Two overlapped crashes

replicas browsing shopping ordering
5 99.998 99.993 99.978
8 99.999 99.998 99.978

Tabela 3.4: Two overlapped crashes: accuracy

3.5. Evaluation 81

3.5.6 Two crashes, one autonomous, one delayed recovery

The last experiment has been designed to show how Treplica influences the perfor-

mance of RobustStore in a scenario where a replica recovers long after it crashed.

This is an important issue for Treplica because of how Paxos and Fast Paxos work.

During the downtime of the crashed replica, the active replicas have delivered a large

number of operations to the application. This means that the recovering replica is

going to have to load the checkpoint from stable memory and spend a larger period

learning (state transfer) from the other replicas, before it re-synchronizes itself and

can resume normal operation. In this scenario (Figure 3.8), both replicas are crashed

at t=240s. The recovery of one of the crashed replicas is triggered automatically. The

recovery of the second replica is triggered manually at t=390s. Consider the shopping

profile. At this moment, the first failed replica has already ended its recovery process,

that took ≈70s. The throughput curve shows that the recovery process implemented

by Treplica has a small impact on performance of RobustStore for all workloads. Ta-

ble 3.5 does not contain the CV values because they are very similar to the CV values

obtained for the other two faultloads. Consider, for example, the shopping workload

and five replicas. The impact on performance for the first failure is similar to the one

verified in the case of two concurrent crashes. During a period of time RobustStore

operates with 3 replicas, then the first failed replica recovers, taking RobustStore to 4

replicas. In the scaleup experiments using failure-free runs, we have observed that the

addition of a replica causes an average performance drop of ≈8%. So a four-replicas

RobustStore should perform an average 8% better. Recall that this reasoning is only

valid because of the very low CVs shown by the shopping workload. The AWIPS

during the period from r1 to r2 is 902.78 WIPS. The four-replicas RobustStore does

not perform better because it is still processing the backlog of operations created by

the two simultaneous failures, but it has recovered to a performance level that is only

1.4% below the performance before the crashes; the shopping workload has a CV =

0.09. The second recovery affects even less the performance of RobustStore, because

the extra broadcasts demanded by the recovering replica to re-synchronize itself with

the active replicas are processed concurrently by Treplica (Paxos). The consequence

of this characteristic of Treplica is a reduced impact on performance stability, at the

expense of a longer recovery time. (Figure 3.8). The same reasoning is valid for the

other workloads, but, as stated before, the values of PV for the ordering profile are

not valid because of the high variability of this workload. During these experiments,

RobustStore’s accuracy (Table 3.6) remained high and consistent with the accuracies

found in the previous experiments.

82 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

r1 r2browsing c1||c2 u2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

shopping c1||c2 r1 r2u2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

ordering

c1||c2

r1 r2u2

Figura 3.8: Delayed recovery

no failures recovery R1 recovery R2
R/P AWIPS AWIPS CV (%) AWIPS CV (%)
5/b 966.6 858.49 -11.1 919.58 -4.8
5/s 915.3 813.09 -11.2 905.89 -1.0
5/o 821.2 603.31 -26.5 852.12 +3.8
8/b 985.1 949.3 -3.63 948.65 -3.7
8/s 915.0 864.94 -5.5 906.01 -1.0
8/o 785.6 686.67 -12.6 802.08 +2.1

Tabela 3.5: Delayed recovery: performability

replicas browsing shopping ordering
5 99.990 99.988 99.957
8 99.998 99.995 99.974

Tabela 3.6: Delayed recovery: accuracy

3.6. Related Work 83

3.5.7 Discussion

Four questions were posed at the beginning of this Section. 1. How long can RobustS-

tore be expected to run without interruption? In the presence of only benign crashes,

as assumed, RobustStore will remain operational forever. 2. How much service can

RobustStore be expected to deliver during failure-free and failure-prone operation pe-

riods? RobustStore’s throughput can be characterized as very resilient, and stable in

the presence of the crashes, failover, and recoveries used in the experiments. We have

carried out 18 dependability experiments, 6 for each faultload specified. For each

replication factor (5 or 8) three initial sizes of RobustStore replicas were instantiated

(300, 500, and 700MB). All these experiments have shown that RobustStore loses less

than 13% of its average performance during recovery in the worst case, which occurs

with the faultload that injects two concurrent crashes, later followed by autonomous

recoveries. The longest recovery occurred in the experiment with two crashes and

delayed recovery of one replica. It took the second recovering replica about 180s to

become operational in a setting with 8 replicas, ordering profile, and a 700MB state

size. During the 180s recovery the average throughput practically remained at the

same level displayed during the failure-free period. For the shopping profile, the

profile considered by TPC-W as the one that best approximates the behaviour of a

dynamic content web service, RobustStore worst average performance loss is inferior

to ≈4.0%. 3. What accuracy can be expected of RobustStore in failure-prone execu-

tions? Very high, three 9s, in the worst case. 4. What level of human intervention

is necessary to maintain RobustStore operational? None, when subject to the faultlo-

ads presented here, RobustStore has shown total autonomy. The combined effect of

high accuracy, throughput resilience, and full autonomy allows the conclusion that

RobustStore is indeed a highly available dynamic content web application.

3.6 Related Work

Paxos and recovery. Here we comment on work whose applications were built upon

middleware that uses uniform repeated consensus (total order broadcast) [33]. Speci-

fically, we are interested in toolkits that implement Paxos [56]. Examples of applicati-

ons that satisfy this criteria include a lock service [19], data center management [49],

data storage systems [62, 77], database replication [37], a distributed hash table sys-

tem [51], and dynamic content web services [32, 69]. The projects listed in Table 3.7

have successfully employed the state machine approach [55] and uniform total order

broadcast based on Paxos to replicate critical application state, with systems often

combining different replication mechanisms to obtain the required degree of relia-

84 Capı́tulo 3. Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

bility and performance. A key aspect of all papers listed in Table 3.7 is that their

experiments were primarily designed to assess performance, not dependability, with

the exception of FAB that shows fault-tolerance results for disk arrays. Most of the

systems opted for the traditional message passing interface to expose Paxos, with the

exception of Chubby. By contrast, we have opted to present uniform total order using

a queue abstraction; queues are simple and widely-used objects.

There is much research on mechanisms to make dynamic content web applications

highly available with emphasis on their performance improvement. Various reliable

data management solutions have already been used, from file-based implementations

(e.g., [29]) to database-based implementations (e.g. [22, 37, 8]). Tashkent’s experiments

(Table 3.7) were carried out using a dynamic web content application. Sprint, FAB,

and Chubby (Table 3.7) can be used as supports to build highly available dynamic

content web applications.

Institution Project Name Paxos 1st Publ.
Classic Fast Date

HP FAB [77] • 2004
Microsoft Boxwood [62] • 2004
EPFL/USI Tashkent [36] • 2006
Microsoft Autopilot [49] • 2007
Google Chubby [19] • 2007
USI Sprint [22] • 2007
UNICAMP Treplica [87] • • 2008

Tabela 3.7: Paxos and Application Availability.

Replicated databases and recovery. Liang and Kemme [61] compare two recovery

strategies: (i) total versus (ii) partial copy of the database. They assess the trade-offs of

(i) and (ii) in runs where a single failure occurs. Manassiev [64] reports, using TPC-W

and a faultload with a single crash, on the availability of a multiversion master-slave

in-memory database that tolerates a single failure. They show that it is possible to

reduce the impact of recoveries on the availability of the replicated database. Treplica

offers a simpler recovery and failover solution that does not require the maintenance

of hot backups for fast failover. Wu and Kemme [94] consider different recovery stra-

tegies depending on the failure scenario: (i) a single failed replica must be recovered

or (ii) all replicas have to be recovered.

3.7. Conclusion 85

3.7 Conclusion

We have presented a dependability analysis of RobustStore, a highly available dyna-

mic content web application built upon Treplica. Treplica’s programming interface,

based on only 8 methods, simplifies the programming tasks associated with the cons-

truction of highly available applications, relieving the programmer of important con-

cerns related to the recovery. We like to consider Treplica as Paxos made simple in

practice, a great benefit for developers of highly available applications. The experimen-

tal results show that RobustStore/Treplica performs well in the presence of crashes

and recoveries, showing very good performance stability, continuous availability and

high accuracy. They also contribute to a better understanding of the impact of Paxos

and Fast Paxos when used as building blocks of a replication middleware.

From the point of view of dependability benchmarking, we have shown that not

all workloads of TPC-W can be used as off-the-shelf indicators in dependability ex-

periments. The coefficient of variation of the browsing and shopping workloads war-

rant them as good workloads for dependability assessment. Unfortunately, the same

cannot be said about the ordering workload because of its high variability. This short-

coming of TPC-W can motivate further research on the development of dependability

benchmarks for dynamic content web applications.

Capı́tulo 4

The Performance of Paxos and Fast

Paxos

Paxos and Fast Paxos are optimal consensus algorithms that are simple and elegant,

while suitable for efficient implementation. In this paper, we compare the perfor-

mance of both algorithms in failure-free and failure-prone runs using Treplica, a ge-

neral replication toolkit that implements these algorithms in a modular and efficient

manner. We have found that Paxos outperforms Fast Paxos for small number of re-

plicas and that collisions are not the cause of this performance difference.

4.1 Introduction

The construction of highly available asynchronous systems is intrinsically linked to

solutions to the problem of consensus, because this problem is equivalent to a very

powerful communication primitive: total order broadcast [28]. Among the consensus

algorithms available, Paxos [56] and Fast Paxos [57] have recently been used to im-

plement important systems [26] for at least the following reasons: (i) they implement

uniform consensus; (ii) they are simple and elegant; and (iii) they are efficient. In the-

ory, the number of communication rounds and the message complexity required by

Paxos and Fast Paxos to reach consensus should be the determinant factors of their

expected performance [75]. Fast Paxos, with smaller theoretical latency, should be

faster and Paxos should be more resilient, by tolerating a larger number of failures.

Fast Paxos reduces latency by being optimistic, that is, if the messages exchanged to

reach consensus happen to be in a favorable order, then it is fast. This is the picture

painted by theory. Practice can paint different pictures. Junqueira et al. [52] have pin-

pointed a scenario where Paxos shows a smaller overall consensus latency, if one of

the communication steps is always much slower than the others. Their results serve

87

88 Capı́tulo 4. The Performance of Paxos and Fast Paxos

well to illustrate that determining the practical performance of Fast Paxos and Paxos

can be a challenging task whose answers depend on careful experimentation.

In this work, we address the challenge of assessing Paxos and Fast Paxos effici-

encies in practice in a LAN setting. We decided to start our study in the LAN envi-

ronment because it houses most of the applications requiring the use of Paxos [26].

The evaluation presented here was only possible because we have programmed and

tested both algorithms while building Treplica [87], a general replication toolkit that

can be instrumented to generate the indicators necessary to assess the performance

of these consensus algorithms. Our assessment method is based on looking at what

the theory prescribes for the behaviour of the algorithms to design experiments that

are intended to observe whether or not the prescribed behaviour occurs in practice.

Examples of aspects assessed include number of messages ordered, latency of messa-

ges, quorum sizes and collisions. We have experimentally found, among other results,

that Paxos outperforms Fast Paxos for small number of processes. Surprisingly, this

isn’t caused by unjustified optimism in Fast Paxos, but by the network and the extra

load generated by the uncoordinated activities of its processes.

The remaining of the paper is organized as follows. Section 4.2 details the theo-

retical aspects of Paxos and Fast Paxos and the key differences between them. The

prescriptions listed here were used as a guide for the design of the experiments. Sec-

tion 4.3 describes our experimental setup, the experiments, and the results obtained.

It also contains our assessment of the results and what they mean when contrasted

with the theoretical predictions. We conclude the paper with a section on related

work and a few concluding remarks.

4.2 Theory

Informally, the consensus problem consists in all processes in a distributed system

proposing an initial value and all processes eventually deciding on the same value

from the ones proposed. In this section we describe how Paxos and Fast Paxos solve

consensus and we argue that there are many factors found in real systems that can

affect their performance expectations.

4.2.1 Paxos and Fast Paxos

We give here a brief description of Paxos and Fast Paxos, to create a guide for the

experiments. Full descriptions of both algorithms can be found in [57], including

the computational and failure models assumed by them. Processes in the system

are reactive agents that can perform multiple roles: a proposer that proposes values,

4.2. Theory 89

an acceptor that chooses a single value, or a learner that learns what value has been

chosen.

To solve consensus, Paxos agents execute multiple rounds, each round has a coor-

dinator and is uniquely identified by a positive integer. Proposers send their proposed

value to the coordinator that tries to reach consensus on it in a new round. The co-

ordinator is responsible for that round and is able to decide, by applying a local rule,

if previous rounds were successful or not. The local rule of the coordinator is based

on quorums of acceptors and requires that at least ⌊N/2⌋+ 1 acceptors take part in a

round, where N is the total number of processes in the system [57, 86]. Each round

progresses through two phases with two steps each:

• In Phase 1a the coordinator sends a message requesting every acceptor to parti-

cipate in round i. An acceptor accepts the invitation if it has not already accep-

ted to participate in round j ≥ i, otherwise it declines the invitation by simply

ignoring it.

• In Phase 1b every acceptor that has accepted the invitation answers to the coor-

dinator with a reply that contains the round number and the value of the last

vote it has cast for a value, or null if it has not voted.

• In Phase 2a, if the coordinator of round i has received answers from a quorum

of acceptors then it executes its local rule on the set of values suggested by

acceptors in Phase 1b and picks a single value v. It then asks the acceptors to

cast a vote for v in round i, if v is not null, otherwise the coordinator is free to

pick any value and picks the value proposed by the proposer.

• In Phase 2b, after receiving a request to cast a vote from the coordinator, accep-

tors can either cast a vote for v in round i, if they have not voted in any round

j ≥ i, otherwise, they ignore the vote request. Votes are cast by sending them

together with the round identifier to the learners.

• Finally, a learner learns that a value v has been chosen if, for some round i, it

receives Phase 2b messages from a quorum of acceptors announcing that they

have all voted for v in round i.

Fast Paxos changes Paxos by allowing the proposers to send proposed values di-

rectly to the acceptors. To achieve this, rounds are separated in fast rounds and classic

rounds. Fast and classic rounds have different quorums with properties such that the

local rule of the coordinator is still able to detect if a previous round was successful.

These quorums are larger than the ones used by Paxos and can assume many values

90 Capı́tulo 4. The Performance of Paxos and Fast Paxos

that satisfy the requirements of the local rule. In particular, it is possible to mini-

mize the number of processes in a fast quorum ensuring that both a fast and classic

quorums contain ⌊2N/3⌋ + 1 processes. Another option is to minimize the number

of processes in classic quorums requiring the same number of processes as in Paxos

(⌊N/2⌋+ 1) but requiring ⌈3N/4⌉ processes in the fast quorums [57, 86]. A Fast Paxos

round progresses similarly to a Paxos round, except that Phase 2 is changed:

• In Phase 2a, if the coordinator of round i has received answers from a quorum

of acceptors then it executes its local rule on the set of values suggested by

acceptors in Phase 1b and picks a single value v. It then asks the acceptors to

cast a vote for v in round i, if v is not null, otherwise, if i is a fast round the

coordinator sends a any message to the proposers indicating that any value can

be chosen in round i. In this case, the proposers can ask the acceptors directly

to cast a vote for a value v of their choice in round i.

• In Phase 2b, after receiving a request to cast a vote from the coordinator (if the

round is classic) or from one of the proposers (if the round is fast), acceptors

can either cast a vote for v in round i, if they have not voted in any round j ≥ i,

otherwise, they ignore the vote request.

The above description of both algorithms considers only a single instance of con-

sensus. However, these algorithms are more commonly used to deliver a set of totally

ordered messages, where a sequence of repeated instance of consensus maps to a pre-

defined position in the message ordering. In this case, it is possible to run Phase 1

and Phase 2a only once for all still unused instances. This factorization of phases is

carried out immediately after the election of a coordinator. At this point, most of the

consensus instances have not been started yet, allowing the coordinator in Paxos to

“save” these instances for future use or, in Fast Paxos, allowing it to send Phase 2a

any messages.

The improvement brought about by this factorization allows Paxos to achieve con-

sensus in three communication rounds and Fast Paxos in only two communication

rounds. Moreover, in Fast Paxos once the coordinator sends the any messages, con-

sensus can be reached without the need of further coordinator intervention. Unfortu-

nately, Fast Paxos cannot always be fast. Proposers can propose two different values

concurrently, in this case their proposals may collide. Also, process and communica-

tion failures may block a round from succeeding. Different recovery mechanisms can

be implemented to deal with collisions and failures, but eventually the coordinator

intervention may be necessary to start a new classic round [57]. In both algorithms,

any process can act as the coordinator as long as it follows the rule for choosing a

value, if any, that is proposed in Phase 2a. The choice of coordinator and the decision

4.2. Theory 91

to start a new round of consensus are made relying in some timeout mechanism, as

both Paxos and Fast Paxos assume a partially synchronous computational model to

ensure liveness.

4.2.2 Performance Expectations

Before discussing the performance characteristics of Paxos and Fast Paxos experimen-

tally, it is useful to map the theoretical notion of broadcast onto the actual primitive

available in the experimental setup: high speed wired local area networks (LAN). The

technology most often used to implement these LANs is Ethernet, in one of its several

variations. Because of this heritage, it is commonly assumed that LANs use some sort

of shared medium that must be collectively managed by the stations connected to the

network. As a consequence, LANs messages can be broadcast to all stations with the

same latency of sending a single message and, due to the shared nature of the me-

dium, only one of such broadcasts can happen at the same time. This characteristic is

very desirable, specially for optimistic algorithms such as Fast Paxos. However, not

all variants of Ethernet work through a shared medium. In particular, 100Mbps and

1Gbps Ethernet are usually implemented with a full-duplex dedicated twisted-pair

link connecting each station to a central switch in a star topology. In these networks

communication is centrally arbitrated by the switch and there is no need for stations

to manage access to the medium. This setup has many advantages to point to point

communication, including full-duplex communication at full speed and a maximum

aggregated bandwidth larger than the individual bandwidth of any link. Broadcast is

still available, but it is not as straightforward as it was in the shared medium case. In

these networks broadcast is just a single message multiplied by the switch and put in

the dedicated medium of each station. As such, every one of these messages traverses

a different queue and can potentially be ordered differently from other concurrent

broadcasts and unicasts. Moreover, it is not uncommon for IP stacks to deliver locally

a broadcast message even before it reaches the network interface.

Within this environment, what are the main differences between Paxos and Fast

Paxos concerning the expected performance of both algorithms? Paxos requires 3 com-

munication rounds for each instance of consensus while Fast Paxos needs only 2

communication rounds. Moreover, Fast Paxos doesn’t require the active participation

of a single process, the coordinator, in all instances of consensus. However, Fast Paxos

requires the participation of a larger number of active processes than Paxos and the

performance advantage of Fast Paxos is only realized in the optimistic case where

there is no conflict. Considering these properties, it might be tempting to conclude

that as long as the optimistic ordering of messages expected by Fast Paxos holds this

92 Capı́tulo 4. The Performance of Paxos and Fast Paxos

algorithm has the performance advantage. For each of the potential advantages of

each algorithm we list now some reasons why this isn’t necessary true:

Communication rounds: The main claim for the theoretical performance of Fast Pa-

xos is that two communication rounds are better than three. However, both

Paxos and Fast Paxos contain a communication step where all processes in a

quorum broadcast a message at the same time. No matter how efficient the

switch is, all these broadcasts will have to be serialized as they are transferred to

all destination ports and they will be received as k individual messages. In this

case, we can conceivably fold in a communication round all processing latency,

but the propagation and transmission latency must be counted individually.

That is, communication complexity is important.

Single coordinator: All Paxos messages must be relayed through a single coordinator.

Although this process isn’t a single point of failure, it is a potential performance

choke point. Fast Paxos might perform better if load on the coordinator is high,

but the centralizing nature of the coordinator can act as more robust way to

decide on an order for the messages than relying on chance.

Larger quorums: Fast Paxos requires larger quorums and this has the direct con-

sequence that the algorithm tolerates less process failures. Depending on the

selection of quorums Fast Paxos can revert to Paxos quorums (⌊N/2⌋ + 1) if

consensus is not optimistically reached, but this requires even larger quorums

for the optimistic case. This fact has performance implications. Larger quorums

require more messages to be successfully and timely delivered for consensus

to be reached, making Fast Paxos vulnerable to network overload and timing

violations.

Collisions: Fast Paxos is optimistic. It succeeds in two communication rounds as

long as messages are naturally ordered. But, in switched LANs broadcasts are

implemented as many messages send to each station, not necessarily ordered. If

only a majority of these messages are ordered, consensus will be reached but will

require more messages to be timely received. If not even a majority of messages

is ordered, a collision occurred and consensus is not possible. There is nothing

in the network that orders messages. If they arrive ordered it is more likely that

they were not sent concurrently in the first place, thus collisions increase as the

message rate increases [72].

Observing the uncertainties related to each supposed advantage of Fast Paxos, it is

possible to reach the conclusion that these two algorithms are basically incomparable

4.3. Practice 93

without a clear characterization of the network properties. In the next section we

present a set of experiments designed to extract data on this characterization for our

target high speed local networks.

4.3 Practice

This section presents the basic organization of Treplica and where Paxos and Fast

Paxos were used in the toolkit. Here, we also present the experiments we have carried

out to assess Fast Paxos and Paxos, their results, and what they indicate in relation to

the expected behaviour indicated by theory.

4.3.1 Treplica

Treplica is a replication toolkit that simplifies the development of high-available ap-

plications by making transparent the complexities of dealing with replication and

persistence. We present here the basic organization of Treplica and where Paxos and

Fast Paxos fit in the toolkit. Additional information on Treplica can be found in [87].

Treplica supports the construction of highly available applications through either the

asynchronous persistent queue or the state machine programming interfaces. A queue

is a totally ordered collection of objects with the usual enqueue and dequeue operations.

Persistence guarantees that a process can crash, recover and bind again to its queue,

certain that the queue has preserved its state and that it has not missed any additional

enqueues made by any active replicas. An asynchronous persistent queue maintains

a history of the objects it has ever held since its creation. Thus, by relying on the

total order guaranteed by the queue and in the fact that queues are persistent, indivi-

dual processes can become active replicas while remaining stateless; the persistence

of their state has been delegated to the queue. The state machine programming inter-

face leverages the persistent queues to provide a simple abstraction of an object that

only changes state through deterministic command objects. To use this abstraction,

applications must adhere to the state machine approach [55, 79].

To provide these two programming abstractions and still be able to provide rea-

sonable performance, Treplica uses a uniform total order delivery mechanism built on

top of Paxos. The uniformity of the consensus component is fundamental to the ef-

ficiency of Treplica. Usually, uniform consensus algorithms are more expensive than

non-uniform consensus algorithms [33], however the higher price paid by such algo-

rithms simplify tremendously the task of synchronizing persistent data local to the

replica, specially in the case of failure. It also allows for a natural way to aggregate

the local stable storage of each replica in a global persistent store, without requiring

94 Capı́tulo 4. The Performance of Paxos and Fast Paxos

any single replica to assume special duties. In Treplica the ledger abstraction of Paxos

is the central data structure of the whole toolkit. As a consequence, there is just a thin

software layer between the application and the Paxos implementation. Thus, Treplica

doesn’t add much overhead to the algorithm and our performance data is very close

to a “pure” Paxos implementation.

However, there are two factors that characterize and separates the data obtained

with Treplica from other Paxos implementations: state machine execution and opera-

tion parallelism. First, we made our experiments using the state machine abstraction

of Treplica, so our response times are not equivalent to the consensus latency, but

operation execution latency. This means that, on top of the consensus latency, we

have to add the processing time required to apply the command object to the local

replica. As described in the next section, we selected an application such as to mini-

mize this cost, but nevertheless this latency is present. Second, as the state machine

abstraction requires sequential execution of command objects, we must employ paral-

lelism internally in Treplica to avoid the critical path comprised by the Paxos ordering

and command execution to become a bottleneck. Thus, we try as much as possible

to pack many command objects in the same Paxos message, without adding to the

overall latency. This way, a multithreaded application can obtain a higher throughput

but the final response time deviates further from the basic consensus latency. As our

objective is to relatively compare Paxos and Fast Paxos, these effects can be factored

out as they affect both implementations equally. Moreover, both Paxos and Fast Paxos

are implemented by the same code inside Treplica, actually a Fast Paxos implemen-

tation that can be configured to generate only classic rounds, behaving exactly like

Paxos. Thus, all implementation details are shared by the two algorithms and the

comparison obtained is as fair as possible.

4.3.2 Experimental Setup

The experiments were carried out in a cluster with 18 nodes interconnected through

the same 1Gbps Ethernet switch. Each node has two Intel Xeon 2.4GHz processors,

1GB of RAM, and a 40GB disk (7200 rpm). System software in each node include

Fedora Linux 9 and OpenJDK Java 1.6.0 virtual machine. We used 4 to 16 nodes in

our experiments and each node operated as a server replica and as a load generator.

The server replicas run a simple replicated hash table. The application is a wrapper

over the standard Java hash table implementation, with the same API, but adding

replication and persistence support through Treplica. As such, only operations that

change the internal state of the hash table employ Treplica, the read only operations

are executed directly. Treplica is configured in the server replicas to use local disk as

4.3. Practice 95

its persistent data store, and no network activity is expected of each node beyond the

one generated by Treplica.

The load generation consists in a sequence of put operations, where each operation

associates a sequential integer with a random 5 character string. It would be possible

to interleave read with writes in our load, creating distinct usage profiles. However,

due to the simplicity of the application, this probably would only increase the obser-

ved performance by the proportion of reads used as they are orders of magnitude

cheaper than writes. Thus, we decided to concentrate on a load composed only of

hash table writes to analyze the data as if Treplica were the only possible bottleneck.

The generated load is measured in operations per second (op/s) and is generated

with a fixed rate divided equally among all the load generators of the system. Server

replicas and load generators share the same hosts, but care was taken to ensure that

the load generation wasn’t competing with the application processing and that the

specified load rate was being generated.

4.3.3 Experiments

Based on the performance expectations of Paxos and Fast Paxos listed in Section 4.2.2

we devised five experiments and four metrics to compare both algorithms:

Scale up: For a fixed generated load of 2000 op/s we increase the scale of the system

from 4 to 16 replicas. For each point we count the load served in op/s and the

average response time for each operation.

Speed up: For a fixed number of 4 and 8 replicas we increase the generated load from

100 op/s to 4000 op/s. For each point we count the load served in op/s and the

average response time for each operation.

Quorum size: We perform the scale up and the 8 replicas speed up experiments with

a modified version of Paxos that uses a larger quorum than necessary (⌊2N/3⌋+

1). We count the load served in op/s.

Retries and collisions: We extract the number of failed consensus instances and col-

lisions from the scale up and the 8 replicas speed up experiments. We count

the number of failed consensus rounds and the number of collisions per total

consensus rounds.

Failures: For a fixed number of 8 replicas and a fixed load of 2000 op/s we simulate

the failure of a non-coordinator replica or a coordinator replica. We count the

load served in op/s.

96 Capı́tulo 4. The Performance of Paxos and Fast Paxos

We run all experiments with Paxos, Fast Paxos with large fast quorums (⌈3N/4⌉)

and Fast Paxos with small fast quorums (⌊2N/3⌋ + 1). The scale up and speed up

experiments were intended to give a general performance evaluation, and can be used

to assess if the smaller number of communication rounds required by Fast Paxos and

the fact that this algorithm doesn’t have a single performance bottleneck make it more

efficient. The quorum size experiment allows us to measure the cost of waiting and

processing a larger number of messages to achieve consensus, indicating if the larger

quorums required by Fast Paxos are acceptable. The retries and collisions experiment

will show the number of retried consensus instances, an indication of the number

of lost messages and timing failures that can be used to quantify the cost of larger

quorums and of a single coordinator. This experiment also shows the proportion

of collisions found in the other experiments to make explicit the cost that Fast Paxos

pays for being optimistic. The failures experiment shows how both algorithms handle

failures and if a single coordinator can negatively affect the performance of Paxos in

case of failure.

4.3.4 Scale Up

Figure 4.1 shows the data for the scale up experiment with a constant load of 2000

op/s. The chart on the left shows the served operations per second as a function of

the number of replicas in the system. The chart on the right shows the response time

for the same points.

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 4 6 8 10 12 14 16

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Number of Replicas

Fast Paxos
Fast Paxos (small)

Paxos

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 4 6 8 10 12 14 16

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Number of Replicas

Fast Paxos
Fast Paxos (small)

Paxos

Figura 4.1: Scale up (2000 op/s)

The most striking observation from this experiment is that Paxos outperforms Fast

Paxos for small replica numbers. Up until 7 replicas Paxos is better, and with more

4.3. Practice 97

than 7 replicas both are roughly the same. Many factors can justify this behavior, as

pointed in Section 4.2.2, but we believe it is caused by the stabilizing effect the single

coordinator creates in the system, reducing timing violations. To fully justify this sup-

position we need to analyze the data from the quorum size and retries experiments.

Another interesting behavior is the fact that Fast Paxos increases its performance up

to a maximum at about 9 replicas. Again, we believe this effect is related to timing

violations and we justify it using the data for the retries experiments. Both variants of

Fast Paxos fare similarly in all replica configurations, with a slight advantage for the

large quorums version. This indicates that the quorum size has a role in the perfor-

mance of the algorithms but it isn’t a very important one. Once more, this explanation

will be verified by the quorum size experiment data. Average response time grows

with the number of replicas and all algorithms tested have roughly similar numbers.

This is mostly a consequence of the fact that many operations are being ordered in

the same Paxos instance and that the load generated is dependent on the load served.

4.3.5 Speed Up

Figure 4.2 and Figure 4.3 show data for the speed up experiment for 4 and 8 replicas,

respectively. In both figures, the chart on the left shows the served operations per

second as a function of the rate of generated operations per second. The chart on the

right shows the response time for the same points.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1000 2000 3000 4000

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Load Generated (op/s)

Fast Paxos
Fast Paxos (small)

Paxos
 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Load Generated (op/s)

Fast Paxos
Fast Paxos (small)

Paxos

Figura 4.2: Speedup (4 Replicas)

For both 4 and 8 servers the increasing tendency of served operations is similar.

The served load rises linearly, following the generated load, up until a peak point

where it stabilizes. This was expected and shows that the performance difference

98 Capı́tulo 4. The Performance of Paxos and Fast Paxos

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1000 2000 3000 4000

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Load Generated (op/s)

Fast Paxos
Fast Paxos (small)

Paxos
 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Load Generated (op/s)

Fast Paxos
Fast Paxos (small)

Paxos

Figura 4.3: Speedup (8 Replicas)

among the algorithms, when present, only shows after the peak load is reached. Be-

fore that point Paxos and Fast Paxos should behave the same way, only trading places

as the number of replica increases as shown in the scale up experiment. The latency

charts are more interesting. Latency also rises to reach a plateau, but much faster

in the case of 4 replicas and even surpassing it in the 8 replicas case. This is explai-

ned by the fact that many operations are bundled in the same consensus instance,

and such instances are fairly costly. In our data sets a little more than 150 consensus

instances are completed per second in the best case. Thus, when the load is light a

less aggressive bundling takes place and latency suffers. This is a property of our

implementation and not necessarily will be found in other environments.

4.3.6 Quorum Sizes

To test the effect of quorum sizes we run the scale up and 8 replicas speed up expe-

riments using a modified version of Paxos that uses quorums of ⌊2N/3⌋ + 1 replicas

and compare it with regular Paxos. Figure 4.4 shows the data obtained.

Data from this experiment confirms that quorum sizes aren’t a relevant factor for

performance when the number of replicas is moderate (less than 15). This is also true

for the scale up experiment and the two variants of Fast Paxos. Two factors justify

this finding. First, with the total number of replicas in the 4 to 15 range, the absolute

difference in the cardinality of quorums is very small, two replicas at most. Second,

timing violations are more probable if a learner has to receive a message from more

processes. This second hypothesis is confirmed by the data collected on consensus

rounds retries presented next.

4.3. Practice 99

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 4 6 8 10 12 14 16

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Number of Replicas

Paxos
Paxos (large)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1000 2000 3000 4000

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Load Generated (op/s)

Paxos
Paxos (large)

Figura 4.4: Paxos with Large Quorums

4.3.7 Retries and Collisions

Figure 4.5 shows the number of retried consensus instances for Paxos and Fast Paxos

and the number of collisions for Fast Paxos observed in the scale up and 8 replicas

speed up experiments. Both numbers are presented as relative values to the total

number of consensus instances executed.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 6 8 10 12 14 16

E
v
e
n
ts

 /
 I
n
s
ta

n
c
e

Number of Replicas

Paxos Retries
Fast Paxos Retries

Fast Paxos Collisions

 0

 0.05

 0.1

 0.15

 0.2

 0 1000 2000 3000 4000

E
v
e
n
ts

 /
 I
n
s
ta

n
c
e

Load Generated (op/s)

Paxos Retries
Fast Paxos Retries

Fast Paxos Collisions

Figura 4.5: Retries and Collisions

This experiment produced vital information about the performance of Paxos and

Fast Paxos. The optimism of Fast Paxos could be considered its weak spot and could

justify its inferior performance with fewer processes. However, our data shows that

collisions do occur but they are responsible for only a small percentage of the retried

consensus instances of Fast Paxos. Lost messages or, more likely, timing violations are

100 Capı́tulo 4. The Performance of Paxos and Fast Paxos

responsible for the most part of consensus failures. Each consensus failure triggers

a regular Paxos consensus round, even for Fast Paxos, and this round is costly as it

must execute all 2 phases of the algorithm. The number of failed consensus attempts

in Fast Paxos is sometimes 3 times larger than in Paxos and can account for the

decreased performance. The cause of these timing violations is probably the fact that

timeouts in Fast Paxos are managed by all replicas at the same time. Any replica that

believes a consensus round should have been finished alerts the coordinator that in

turn starts a full Paxos round, thus we multiply the possibility of a timing violation

by the number of replicas in the system. In Paxos, only the coordinator decides when

a round must be retried. It may not be more accurate, but the possibility of timing

failure is smaller. Moreover, even when a conflict does not arise in a Fast Paxos round,

it may be possible for the processes in the system to observe a “partial conflict” where

some, but less than a majority, of replicas vote for a different operation. In this case,

more messages must be timely received for the consensus to be reached, increasing

the chance for timing violations. While this accounts for Fast Paxos limitations, it is

still necessary to explain why Paxos loses its advantage at about 8 replicas. The first

cause is that the single coordinator only acts as a stabilizing factor as long as it is not

overloaded. As soon as the coordinator gets overloaded it starts dropping messages

and prematurely restarting consensus rounds.

4.3.8 Failures

Figure 4.6 shows one execution with 8 replicas and load of 2000 op/s that suffers

the failure of a single replica. The failure is simulated by killing the replica at the

operating system level and by immediately re-instantiating it back in operation. The

charts in the left show the failure of a regular replica and the charts in the right

show the failure of the coordinator replica. In all charts the first vertical bar shows

the moment when the replica is forcibly shutdown and the second bar shows the

moment when the replica finishes its local recovery and starts to coordinate with the

other replicas.

In both cases it is possible to notice that failure itself doesn’t impact the throughput

of the system. This is reasonable considering the data from the scale up experiment;

less replicas can potentially give more performance. The interesting observations is

that it is the replica reintegration that negatively affects the throughput of the system.

When a replica finishes its local recovery it has only learnt the operations up to the

moment of its failure, and must catch up with the others replicas. This process puts

demand on the network and on the coordinator as all missed decisions are relayed to

the recovering replica. Another intriguing aspect is the large difference in local reco-

4.3. Practice 101

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Time (s)

Fast Paxos

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Time (s)

Fast Paxos (small)

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Time (s)

Paxos

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Time (s)

Fast Paxos

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Time (s)

Fast Paxos (small)

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

L
o
a
d
 S

e
rv

e
d
 (

o
p
/s

)

Time (s)

Paxos

Figura 4.6: Single Failure (8 replicas, 2000 op/s)

very times between a normal replica and a coordinator replica. Due to the observed

fast local recovery, a normal replica easily reintegrates in the system and only creates

minimal disruption. The failure of the coordinator replica isn’t felt any differently by

the system, as a new coordinator is promptly elected, but the local recovery of the

coordinator replica takes a longer time. This happens due to the larger state held in

memory by the coordinator, that requires more information to be brought back from

disk on recovery. As a very damaging side effect, the longer a replica stays out of

the computation for any reason, the longer its reintegration will take and larger the

disruption caused by it will be. Finally, all tested algorithms displayed a very similar

behavior under failures, even when the coordinator has failed. This indicates that the

coordinator only affects the performance of Paxos as a bottleneck in the steady state.

In the presence of failures, coordinator election is performed without interrupting the

operations flow.

102 Capı́tulo 4. The Performance of Paxos and Fast Paxos

4.4 Related Work

Paxos and Fast Paxos are well understood algorithms, but until recently, seldom im-

plemented. A very clear and concise description of both algorithms can be found

in [57]. The theoretical performance of Paxos is described in detail in [75]. Probably

due to the lack of actual implementations, one of the first works to delve in the Pa-

xos performance employed simulation [83], and compared Paxos to Chandra-Toueg

rotating coordinator consensus algorithm [28].

Recently, motivated by the need of dependable coordination services for scalable

distributed systems, Paxos implementations are becoming more common and works

analysing their performance are being published. The Chubby system used at Google

is described in [26], with some basic performance figures. A detailed description of a

Paxos implementation encompassing all aspects of a complete state machine replica-

tion system can be found in [7]. In this work it is presented a fairly complete study

of the performance of the described implementation under different state machine

replication suppositions. A description of a variant of the Paxos algorithm optimized

for the implementation of a distributed lock management system and an analysis of

its performance can be found in [48].

All of the above cited works evaluate only Paxos. The only work we have kno-

wledge of that attempts to quantitatively compare Paxos and Fast Paxos is [52]. This

work employs simulation to study a particular configuration where Fast Paxos doesn’t

have a better consensus latency than Paxos. Restricted as the studied configuration

might be, this work showed for the first time that increased latencies of individual

messages can drastically change the behavior of Paxos and Fast Paxos.

4.5 Conclusion

We have presented a comparative analysis of the performance of Paxos and Fast Paxos

in the context of high speed local area networks. We have discovered scenarios where

Paxos has lower latency than Fast Paxos and we showed evidence of the cause of such

behavior. To the best of our knowledge this is the first such comparison.

Our experimental data indicates that Paxos is faster for a small set of replicas and

owns its performance to the stability provided by its single coordinator. The Paxos

coordinator makes fewer timeout mistakes, needs to retry consensus rounds less often

and is immune to collisions, however it can be overloaded by a large number of repli-

cas. Fast Paxos suffers from timing failures and lost messages, but its lack of reliance

on a single coordinator allows it to operate more efficiently with more replicas. We

have also discovered that quorum sizes and collisions aren’t very determinant in the

4.5. Conclusion 103

relative performance of these algorithms and that the single coordinator of Paxos isn’t

particularly affected by failures.

As replication is used as a device for fault tolerance, the fact that Fast Paxos is

more effective with a larger number of replicas is effectively cancelled by the fact

that it requires larger quorums of active replicas to function. For example, a system

using Paxos needs 7 replicas to tolerate 3 replica failures while Fast Paxos requires 12

replicas to guarantee the same resilience. Thus, unless Fast Paxos can be made more

efficient in its use of the available network, avoiding the timing failures observed, its

use is hardly justified.

Capı́tulo 5

On the Coordinator’s Rule for Fast

Paxos

Fast Paxos is an algorithm for consensus that works by a succession of rounds, where

each round tries to decide a value v that is consistent with all past rounds. Rounds

are started by a coordinator process and consistency is guaranteed by the rule used by

this process for the selection of v and by the properties of process sets called quorums.

We show a simplified version of this rule for the specific case where the quorums are

defined by the cardinality of these process sets. This rule is of special interest for

implementors of the algorithm.

5.1 Introduction

The problem of deciding a single value out of a set of values proposed by processes is

known as the consensus problem. This problem is easy to solve in the absence of failu-

res, but it is impossible to solve in an asynchronous distributed system even if a single

process fails by permanently stopping [38]. A better approximation of the failures that

processes of a real distributed system can suffer is the one where processes stop but

may later recover. Unfortunately, the impossibility also holds for these systems. One

of the ways to get around the impossibility is to design algorithms that do not violate

their safety requirements while the system behaves asynchronously and are certain to

make progress if the system behaves partially synchronously for periods long enough

to satisfy the progress requirements. Designing consensus algorithms for the asyn-

chronous crash-recovery model is a difficult task of practical interest and probably

Paxos [56] and Fast Paxos [57] are the most studied solutions so far.

Fast Paxos solves the consensus problem through a succession of rounds that lead

to the choice of the consensus value. In each round a distinguished process, the coor-

105

106 Capı́tulo 5. On the Coordinator’s Rule for Fast Paxos

dinator, is responsible for picking a single value using a rule that is based on quorums

of processes. Quorums of successive rounds are used to guarantee that if a single va-

lue has been chosen or might ever be chosen in previous rounds then the same value

is going to be chosen in the current round. Thus, quorums are fundamental to the

correctness of Fast Paxos because they are ultimately responsible for the validity of

consensus.

Lamport [57] shows how quorums can be characterized using the cardinality of

sets of processes, defining what minimum number of processes represents a quorum.

However, he defines the coordinator’s rule in terms of quorum sets and general set

operations. This complete characterization of the coordinator’s rule is perfect for the

purposes of his work, but it does not address thoroughly the needs of a programmer

who wants to implement it. Therefore, the main contributions of this paper are (i) an

interpretation of the Fast Paxos coordinator’s rule only in terms of the cardinalities of

quorum sets, and (ii) its simplification. The simplified interpretation is efficient, easier

to implement and test; it can help developers to create reliable implementations of Fast

Paxos. This is important, as the use of Fast Paxos to build fault-tolerant applications

is bound to require the execution of a very large number of consensus instances.

5.1.1 Fast Paxos

Before detailing the coordinator’s rule, it is useful to give a very brief overview of Fast

Paxos; a complete description of it can be found in [57]. The algorithm is easier to

explain in terms of reactive agents that represent a role, such that a single process can

enact multiple agents, with each one of them playing a different role. An agent can

enact one of the following main roles: a proposer that can propose values by sending

them to acceptors, an acceptor that chooses a single value, or a learner that learn what

value has been chosen.

To solve consensus, Fast Paxos agents execute multiple rounds, each round has

a coordinator and may be either a fast round or a classic round. Positive integers

are used to uniquely identify rounds, each identifier determines the coordinator and

indicates the round type: fast or classic. Regardless of its type, each round progresses

through two phases with two steps each:

• In Phase 1a the coordinator sends a message requesting every acceptor to parti-

cipate in round i. An acceptor accepts the invitation if it has not already accep-

ted to participate in round j ≥ i, otherwise it declines the invitation by simply

ignoring it.

• In Phase 1b every acceptor that has accepted the invitation answers to the coor-

dinator with a reply that contains the round number and the value of the last

5.1. Introduction 107

vote it has cast for a value, or null if it has not voted.

• In Phase 2a, if the coordinator of round i has received answers from a quorum

of acceptors then it executes its rule on the set of values suggested by acceptors

in Phase 1b and picks a single value v. It then asks the acceptors to cast a vote

for v in round i, if v is not null, otherwise, if the round is fast the coordinator

sends a any message to the proposers indicating that any value can be chosen in

round i. In this case, the proposers ask the acceptors to cast a vote for a value v

of their choice in round i.

• In Phase 2b, after receiving a request to cast a vote from the coordinator or from

one of the proposers, acceptors can either cast a vote for v in round i, if they have

not voted in any round j ≥ i, otherwise, they ignore the vote request. Votes are

cast by sending them together with the round identifier to the learners.

• Finally, a learner learns that a value v has been chosen if, for some round i, it

receives Phase 2b messages from a quorum of acceptors announcing that they

have all voted for v in round i.

As Fast Paxos agents may crash and recover, they must save their state in stable

memory so that agents, once recovered, can remember the votes they have cast earlier.

The sequence of steps described above imply that a learner can only learn the value

of consensus after a period of at least four message delays. If numerous executions

of Fast Paxos are required, then it is possible to run Phase 1 and Phase 2a only once

for all these instances. This factorization of phases is carried out immediately after

the election of a coordinator. At this point, most of the consensus instances have not

been started yet, allowing the coordinator to send Phase 2a any messages. The impro-

vement brought about by this factorization allows consensus in two message delays,

making Fast Paxos an optimal consensus algorithm [58]. Unfortunately, Fast Paxos

cannot always be fast. Proposers can propose two different values concurrently, in

this case, their proposals may collide. Also, process and communication failures may

block a round from succeeding. Different recovery mechanisms can be implemented

to deal with collisions and failures, but eventually the coordinator intervention may

be necessary to start a new round [57]. Any process can act as the coordinator as long

as it follows the rule for choosing a value, if any, that is proposed in Phase 2a.

As already mentioned, quorums are fundamental for Fast Paxos. Quorums are set

of processes and each round has a set of quorums associated with it, classic quorums

for a classic round and fast quorums for a fast round. For the proper operation of

the algorithm, quorums have to satisfy properties on the sets of processes that form

them. Specifically, any two quorum sets must have a non-empty intersection and any

108 Capı́tulo 5. On the Coordinator’s Rule for Fast Paxos

quorum and any two fast quorums from the same round must also have a non-empty

intersection [57]. There are many ways to define quorums, but a very interesting one

from the point of view of process fault tolerance is the definition based only on the

number of processes contained in each quorum. The definition of quorum using this

parameter is straightforward and is described in Section 5.2.

The coordinator’s rule determines how a coordinator can consistently start a new

round, after collecting information about previous rounds from the acceptors. That

is, for each round i the coordinator is about to start, it must know if a value v had

been decided or might have been decided in previous rounds j < i. The coordinator’s

rule of Fast Paxos must take into account that in a fast round, more than one value

might have been proposed and voted concurrently. Quorums are defined to guaran-

tee that only one, if any, of the conflicting proposed values is selected through the

application of the coordinator’s rule. Section 5.3 presents the original coordinator’s

rule as defined in [57] and then shows how this rule can be effectively implemented

using a cardinality-based definition of quorums. Section 5.4 brings our derivation of

a simplified cardinality-based coordinator rule, it is stricter than the one presented in

Section 5.3, but it is easier to understand and to implement. Section 5.5 closes the

work by commenting on the practical value of our main result: a simplified coordina-

tor’s rule for Fast Paxos.

5.2 Choosing Quorums

The quorum requirements for Fast Paxos assert that: (a) any two quorums must have

non-empty intersection, (b) any two fast quorums and any classic or fast quorum from

the same round have a non-empty intersection [57]. We can satisfy these conditions

by considering only the number of process in each quorum, where N is the number

of acceptors, and F and E are the maximum number of failed acceptors in classic

and fast rounds, respectively [57]. A classic quorum is formed by N − F acceptors

and N − E acceptors form a fast quorum. As the requirements for fast quorums are

always stricter than those for classic quorums, we can always assume that E ≤ F. The

quorum conditions [57] are then stated as:

N > 2F (5.1)

N > 2E + F (5.2)

For a fixed N, F and E can be chosen in various different ways and a natural way of

choosing them is by maximizing one or the other [57]. As we have E ≤ F, maximizing

5.3. Coordinator’s Rule 109

E leads to E = F. Thus, we can satisfy the system only with N > 3F and:

N > 3F ⇔ F < N/3 ⇔ F ≤ ⌈N/3⌉ − 1

For this case, the cardinality of any classic quorum (|Qc|) or fast quorum (|Q f |), ex-

pressed only as a function of N, is:

|Qc| = |Q f | ≥ N − ⌈N/3⌉ + 1 ≥ ⌊2N/3⌋ + 1

If instead we maximize F, the limit for its value is given by the Equation 5.1, thus:

N > 2F ⇔ F < N/2 ⇔ F ≤ ⌈N/2⌉ − 1

In this case E must be chosen to satisfy Equation 5.2, considering the value of F we

have just chosen:

N > 2E + F ⇔ N > 2E + ⌈N/2⌉ − 1 ⇔ 2E ≤ N − ⌈N/2⌉ ⇔ E ≤ ⌊N/4⌋

For this case, the cardinality of any classic quorum (|Qc|) and fast quorum (|Q f |),

expressed only as a function of N, is:

|Qc| ≥ N − ⌈N/2⌉ + 1 ≥ ⌊N/2⌋ + 1

|Q f | ≥ N − ⌊N/4⌋ ≥ ⌈3N/4⌉

5.3 Coordinator’s Rule

The original coordinator’s rule for Fast Paxos [57] is:

let Q be any i-quorum of acceptors that have reported their last votes to the

coordinator.

vr(a) and vv(a) be the round and the value voted by acceptor a.

k be the largest value of vr(a) for all a ∈ Q.

V be the set of values vv(a) for all a ∈ Q with vr(a) = k.

O4(v) be true iff there is a k-quorum R such that vr(a) = k and vv(a) = v

for all a ∈ (Q ∩ R).

if k = 0 then let v be any proposed value.

else if V contains a single element

then let v equal that element.

else if there is some w ∈ V satisfying O4(w)

then let v equal that w (unique).

else let v be any proposed value.

110 Capı́tulo 5. On the Coordinator’s Rule for Fast Paxos

We now show how this rule can be interpreted in terms of the cardinality-based

quorum definitions presented in the previous section. When k = 0 or V contains a

single element the rule is trivial to evaluate no matter the quorum implementation

used. However, the evaluation of O4(w) is more complex because it requires the eva-

luation of all possible intersections Q ∩ R for all k-quorums R. Considering only the

cardinality of the quorums involved we have that O4(w) is true if at least |Q ∩ R|

acceptors voted for w for some R. As we don’t know, and don’t want to know, all

possible quorums R, we must consider the smallest possible |Q∩ R|, assuming as im-

plied by O4(w) that all acceptors outside of Q also voted for w in ballot k. Considering

that V can only contain more than one element if k was a fast round, we have two

situations: i is a classic quorum or i is a fast quorum. Let T be the number of votes

for the value w in V. If we want T to be at least as large as the smallest |Q ∩ R| then

we have:

T ≥

{

N − E− F if i is classic

N − 2E if i is fast

O4(w) can now be evaluated by simply counting the number of votes for w in V.

So, any value w that satisfies the condition above satisfies O4(w) and is by definition

unique. Considering that E < (N− F)/2 from Equation 5.1, when i is a classic round,

we have:

T ≥ N − E− F ⇒ T > N − (N − F)/2− F ⇔ T > (N − F)/2 ⇔ T ≥ ⌊|Qc|/2⌋ + 1

Similarly, for the case where i is a fast round we have:

T ≥ N − 2E ⇒ T > N − E− (N − F)/2 ⇔ 2T > N − E + (F− E)

⇒ T > (N − E)/2 ⇔ T ≥ ⌊|Q f |/2⌋ + 1

In all cases T is at least as large as ⌊|Q|/2⌋ + 1, so if any value w satisfies O4(w),

then it has been voted in round k by a majority of processes inside the quorum Q.

5.4 Simplified Coordinator’s Rule

We have shown that a value w satisfies O4(w) if this value has been voted in round

k by a majority of acceptors in Q. We can use this observation to derive a simplified

coordinator’s rule for Fast Paxos. First, the fact that w has been voted by a majority in

Q implies that it is the value most often voted in V. Thus, we can check this condition

before testing if w satisfies O4(w), obtaining an equivalent coordinator’s rule.

if k = 0 then let v be any proposed value.

5.5. Conclusion 111

else if V contains a single element

then let v equal that element.

else if there is a single w ∈ V voted most often

then if w satisfies O4(w)

then let v equal that w.

else let v be any proposed value.

else let v be any proposed value.

If w does not satisfy O4(w), we are free to choose any value as v. We use this

freedom to always select the most often voted w. We have now removed some freedom

from the coordinator, but all values w that satisfy O4(w) are correctly selected. We

can remove the O4(w) test, obtaining the following rule:

if k = 0 then let v be any proposed value.

else if V contains a single element

then let v equal that element.

else if there is a single w ∈ V voted most often

then let v equal that w.

else let v be any proposed value.

If V contains a single element, then this element surely has been voted most often

than any other element in V. Thus, we can remove the single element test, giving our

final simplified rule:

if k = 0 then let v be any proposed value.

else if there is a single w ∈ V voted most often

then let v equal that w.

else let v be any proposed value.

5.5 Conclusion

We have showed how the coordinator’s rule of Fast Paxos [57] can be simplified by

resorting exclusively to counting the number of votes for each of the proposed values.

Our rule is more restrictive than the original rule, as for some consensus instances

it forbids the coordinator of freely choosing any value when he would be allowed

otherwise by the original rule. However, the restriction imposed by the simplification

does not lead to any disadvantage because if some value received votes in a previous

round and the consensus value isn’t decided yet, it is reasonable to consider that

the coordinator will try to decide on that value first. Our simplified rule is easier to

112 Capı́tulo 5. On the Coordinator’s Rule for Fast Paxos

implement, has the advantage that it is independent of the type of a round (fast or

classic), and it has to consider only the cardinality of the quorum Q.

Capı́tulo 6

A Recovery Efficient Solution for the

Replacement of Paxos Coordinators

In Paxos, failures can cause the replacement of its coordinator. The replacement of

the coordinator, in its turn, leads to a temporary unavailability of the application

implemented atop Paxos. Solutions to the unavailability problem have been sought

because of the widely recognized utility of Paxos as a building block of fault-tolerant

distributed applications. So far, the problem has been addressed by reducing the

coordinator replacement rate through the use of better failure detection derived from

stable leader election algorithms. We have observed that the recovery process of the

newly elected coordinator’s state is at the core of the unavailability problem. Thus, in

this paper we present a new solution to the problem that allows the recovery to occur

concurrently with new consensus rounds. We show that our solution has a very small

impact on the communication and message complexity of Paxos. Experimental results

show that our solution effectively solves the temporary unavailability problem. The

main benefit of our solution for the application is its uninterrupted execution with

better performance.

6.1 Introduction

Paxos [56] is a consensus algorithm for asynchronous distributed systems; it relies

on a key agent, the coordinator, to ensure its safety. The algorithm also guarantees

liveness as long as there is one, and only one, coordinator. When Paxos is used

to decide multiple instances of consensus, as in the case of the delivery of totally

ordered messages, the requirement of a single coordinator can hinder its progress.

The reasons for this are the higher workload processed by the coordinator [24] and

the inherent cost of replacing the failed coordinator [26]. The coordinator faces higher

113

114 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

CPU and I/O loads than the other Paxos agents because of its main task. It acts as a

sequencer and processes all application messages that need to be ordered. It does so

by initiating many consensus instances and keeping track of their outcome.

Even when the coordinator can handle the higher workload without compromising

the overall performance of the fault-tolerant application, it is still subject to failures

that eventually will cause its replacement. Coordinator replacement is carried out in

two steps: a new coordinator is elected, and then it is validated [56]. Coordinator

election is handled by any unreliable leader election mechanism that is equivalent to

an Ω failure detector [27]. The unreliability of this mechanism means that it can erro-

neously change coordinators many times, but it will select a single coordinator even-

tually. Coordinator validation requires the new coordinator to have its role ratified by

a majority of Paxos agents. To achieve this, the new coordinator has to receive a po-

tentially large prefix of the current state of each member of this majority. Validation

ensures that the new coordinator is up to date with the state of all active consensus

instances. A newly elected coordinator can resume its activities only after the comple-

tion of validation. Thus, the replacement of a coordinator triggers a costly operation

that is inevitably going to happen many times in the presence of partial failures and

incomplete or inaccurate failure detection. The temporary unavailability problem occurs

because normal Paxos operation can only be resumed after a successful validation.

The periods of unavailability are a real concern for fault-tolerant systems based

on Paxos. Burrows [19] provides a concrete example of the troubles caused by the

replacement of Paxos coordinators in a production system. Finding suitable soluti-

ons for the temporary unavailability problem is an interesting research challenge with

practical implications. The most common way to mitigate the unavailability problem

is to devise a mechanism that makes it harder to replace the coordinator. Malkhi et

al [63] have proposed a failure-detector based on an election procedure with built-in

leader stability. Using this procedure a coordinator is only replaced if it isn’t able to

effectively perform its actions. Another approach is to grant an implicit lease to the

current coordinator [26]. This ensures it won’t be demoted needlessly, but increases

the time it takes to detect an actual failure. However, these approaches only miti-

gate the problem of coordinator replacements caused by inaccurate failure detection.

They cannot really help in the event of a real coordinator failure and the ensuing

coordinator replacement.

In this paper we show an alternative approach to solving the temporary unavai-

lability problem that stems from breaking coordinator validation in two concurrent

activities: activation and recovery. Coordinator activation corresponds to the actual

ratification of a coordinator by a majority. We show that it is possible to reduce the

information necessary to activate the new coordinator to a single integer. In fact, we

6.2. Paxos 115

show that the coordinator doesn’t need to rebuild the complete state of a majority of

processes before it can resume its work, it just needs to discover the highest consensus

instance that a majority of processes agrees is free to use. This can be done using only

a single exchange of fixed size messages, allowing the new coordinator to resume

operation in a very short time. Coordinator recovery then becomes a secondary task

that can take much longer to finish, but that does not block the application during the

validation. The result is a much briefer coordinator validation whose time is limited

primarily by the activation time. The coordinator’s state recovery, the longer step,

occurs while the coordinator is already managing new consensus instances. From

the point of view of the application our new procedure guarantees coordinator re-

placements with less disruptive performance oscillations, namely, seamless coordinator

validations.

Experimental results show that our concurrent validation procedure guarantees

progress with increased throughput in the presence of coordinator replacements cau-

sed by process failures. While these coordinator replacements happened, we have

observed the uninterrupted operation of the application, a clear indication that our

validation procedure solves the temporary unavailability problem. Additionally, we

have observed that failure detector mistakes can trigger the replacement of a coor-

dinator, even if there are no process failures. The results of this set of experiments

show that the new coordinator validation procedure increases the throughput of the

application even when there are no process failures. In short, the results show that

our coordinator validation mechanism makes coordinator replacement seamless to

the application and increases its performance.

The paper is structured as follows. In Section 6.2 we give an overview of the

Paxos algorithm and introduce the terms used throughout the paper. Section 6.3

discusses the original coordinator validation procedure of Paxos. Section 6.4 describes

our seamless coordinator validation procedure and prove its correctness. Section 6.5

discusses the results of the experiments carried out to compare the original with the

seamless validation procedure. Section 6.6 analyzes the applicability of our results

to the Fast Paxos algorithm. Section 6.7 describes related work. Section 6.8 provides

concluding remarks.

6.2 Paxos

Informally, the consensus problem consists in each process of a distributed system pro-

posing an initial value and all processes eventually reaching a unanimous decision on

one of the proposed values. The Paxos algorithm is both a solution to the consensus

problem and a mechanism for the delivery of totally ordered messages that can be

116 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

used to support active replication [79]. In this section we give a summarized des-

cription of Paxos and make explicit the key role performed by the coordinator. Full

descriptions of the algorithm can be found in [56, 57].

6.2.1 Core Algorithm

Paxos is specified in terms of roles and agents; an agent performs a role. Different

implementations of Paxos may choose different mappings between agents and the

actual processes that execute them. Agents communicate exclusively via message

exchanges. The usual asynchronous crash-recovery computation model is assumed.

The roles agents can play are: a proposer that can propose values, an acceptor that

chooses a single value, or a learner that learn what value has been chosen. To solve

consensus, Paxos agents execute multiple rounds, each round has a coordinator and

is uniquely identified by a positive integer. Proposers send their proposed value to

the coordinator that tries to reach consensus on it in a round. The coordinator is

responsible for that round, and is able to decide, by applying a local rule, if any other

rounds were successful or not. The local rule of the coordinator is based on quorums

of acceptors and requires that at least ⌊N/2⌋+ 1 acceptors take part in a round, where

N is the total number of acceptors in the system [57]. Each round progresses through

two phases with two steps each:

• In Phase 1a the coordinator sends a message requesting every acceptor to par-

ticipate in round r. An acceptor accepts the invitation if it has not already

accepted to participate in round s ≥ r, otherwise it declines the invitation by

simply ignoring it.

• In Phase 1b, every acceptor that has accepted the invitation answers to the co-

ordinator with a reply that contains the round number and the value of the last

vote it has cast for a proposed value, or null if it has never voted.

• In Phase 2a, if the coordinator of round r has received answers from a quorum

of acceptors, it analyzes the set of values received and picks a single value v. It

then asks the acceptors to cast a vote for v in round r, if v is not null, otherwise

the coordinator is free to pick any value and picks the value proposed by the

proposer.

• In Phase 2b, after receiving a request from the coordinator to cast a vote, accep-

tors can either cast a vote for v in round r, if they have not voted in any round

s ≥ r, otherwise, they ignore the vote request. Votes are cast by sending them

and their respective round identifiers to the learners.

6.2. Paxos 117

• Finally, a learner learns that a value v has been chosen if, for some round r, it

receives Phase 2b messages from a quorum of acceptors announcing that they

have all voted for v in round r.

This description of the algorithm considers only a single instance of consensus.

However, Paxos also defines a way to deliver a set of totally ordered messages. The

order of delivery of these messages is determined by a sequence of positive integers,

such that each integer maps to a consensus instance. Each instance i eventually deci-

des a value v and this value is the message (or ordered set of messages) to be delivered

as the ith message of the sequence. The value v is input by the proposers, and they

can either select a suitable i from their local view of the instance sequence or ask the

coordinator to select i from its view. Each consensus instance is independent from

the others and many instances can be in progress at the same time. In fact, for any

agent its local view of the set of all instances can be divided in three proper subsets:

the decided instances, the undecided instances that were initiated (Phase 1a) and the

infinite set of uninitiated instances. Figure 6.1 shows an example of the status of the

consensus instances as seem by an agent. In this example the set of decided instan-

ces is {1, 2, 4}, the set of undecided instances is {3, 5, 7} and the set of uninitiated

instances is N \ {1, 2, 3, 4, 5, 7}.

Figura 6.1: Local View of an Agent

6.2.2 Stable Memory Requirements

Paxos assumes a process failure model where agents crash and later recover. When a

process crashes, it loses all state it has stored in its local volatile memory. Unfortuna-

tely, key information must be restored exactly as it was before the crash to guarantee

the correctness of the algorithm. Thus, parts of the local state are recorded into stable

memory that can be recovered after a crash. Access to stable storage is usually slow,

so its use must be minimized. The coordinator must store the value of the last round

it has started, say crndc, to ensure it won’t start the same round twice [57]. Similarly,

each acceptor must store in stable memory:

• rnda: the last round they have taken part (Phase 1a);

• vrnda: the last round where they have cast a vote;

118 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

• vvala: the value of the vote cast in vrnda (Phase 2a).

The stable memory requirements for the set of consensus instances in Paxos are

the same for a single instance, but multiplied by the number of instances. Thus, each

agent must store an array of instances, where for each instance i it records rnda[i],

vrnda[i], vvala[i] and crndc[i]. Additionally, the learner agent may store dvall[i], the

value decided in instance i, but this isn’t strictly necessary as a new successful round

will yield the same value. Usually, all agents are implemented in each process and

agents may use the information stored by other agents to implement optimizations.

For instance, a coordinator can inform proposers that their selected instance number

i is already decided, or similarly, acceptors can inform a coordinator that an instance

i it is about to start is already decided.

6.2.3 Liveness

In Paxos, any process can act as the coordinator as long as it correctly chooses a value,

if any, that has been proposed in Phase 2a. There can be only one active coordinator

at any given time for the algorithm to ensure progress. If two or more processes start

coordinator agents, the algorithm can stall while the multiple coordinator candidates

cancel each other rounds with fast increasing round numbers. For this reason, liveness

of the algorithm resides on a coordinator selection procedure. This procedure doesn’t

need to be perfect. Safety is never compromised if zero or more than one coordinator

are active at any time. However, the coordinator selection needs to be robust enough

to guarantee that only a single coordinator is active most of the time.

It is clear that the coordinator in Paxos has a very important role, as all successful

consensus instances must be started (Phase 1) and lead to completion (Phase 2) by

a coordinator. After receiving all Phase 1b messages the coordinator discovers that

no value was previously voted for most of the consensus instances. This is expected

as only rounds that happen after failed rounds carry a potentially decided value. It

is possible to use this observation to reduce the latency to reach consensus through

a validation procedure. During validation the coordinator tries to start a new round

for all uninitiated consensus instances concurrently. If successful, the coordinator is

then able to use this round to continue any instance directly from Phase 2. This way,

it is possible to reduce from five to three message delays the time required to reach

consensus [57].

6.3. Original Coordinator Validation 119

6.3 Original Coordinator Validation

We now describe in more detail how validation is performed in the original Paxos

specification [56]. During validation a coordinator selects a round number r and

starts all consensus instances at the same time with a single message, as the Phase 1a

message carries only the round number. If r is large enough, acceptors will respond to

this message with a finite number of Phase 1b messages with the actual votes and an

infinite number of Phase 1b messages with no votes. Lamport [56] notes that only the

finite set of messages containing an actual vote need to be sent back to the coordinator,

framed in a single physical message. No message has to be sent to the coordinator for

each of the infinite instances that have had no vote yet. The coordinator processes all

Phase 1b messages received and it assumes that the infinitely many omitted messages

correspond to Phase 1b messages with no vote. All messages received or presumed

voteless are processed as usual and a suitable value will be selected to be voted for

each instance, or the instance will be marked free (no previous value) and will be used

when necessary. This way a coordinator can start the Phase 2 of any free instance as

soon as it receives a proposal, and consensus for this instance can be reached in three

message delays [57].

This validation procedure requires the coordinator to learn the status of all decided

and undecided consensus instances of a quorum of acceptors to determine the exact

identities of the infinite uninitiated consensus instances. So, the combined state of a

quorum of acceptors represents the state footprint a new coordinator must recover

to be able to start passing new consensus instances. To reduce the footprint of the

recovery state, it is possible to determine a point dc in the instance sequence as seen

by the coordinator such that all instances i, with i ≤ dc, belong to the decided set.

The point dc doesn’t necessarily determine all instances in the decided set, but this

isn’t necessary. The coordinator can then indicate the prefix dc of the instances it

already knows are decided and the acceptors need only send information about larger

instances [56]. This combined message is finite, but even with the footprint reduction

it can be very large and must be fully recovered so the coordinator can (1) discover

all instances this acceptor has voted and (2) use this information to infer the set of

instances the acceptor has not voted. Moreover, the coordinator must expect complete

responses from a quorum of acceptors before it can complete Phase 1 for all instances.

While this happens, the coordinator remains blocked and no progress is possible.

120 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

6.4 Seamless Coordinator Validation

Our proposal for a seamless coordinator validation is based on the observation that

validation can be broken in two concurrent activities: activation and recovery. Acti-

vation is the procedure where acceptors inform the newly elected coordinator about

the instances they have not voted. Recovery is the procedure where the coordina-

tor’s view of the consensus instances is updated, it learns the outcome of decided

instances, and initiates rounds for the undecided ones. This compound view of the

validation procedure is interesting because only activation is required to be finished

before a coordinator can resume its activities. Recovery, while necessary, does not

pose any restriction on the coordinator’s use of uninitiated consensus instances. This

happens because a coordinator doesn’t need to immediately start the consensus ins-

tances that belong to the undecided set. For these instances, the coordinator doesn’t

know whether it can instantly input a value or not, as a consequence, it can learn

their status later, during recovery. In order to use this fact to create a more efficient

validation we have to devise an activation procedure that avoids the transfer of the

finite, but possibly very large, set of decided and undecided consensus instances that

make up the recovery state. Before we describe how the coordinator can achieve this

economy in the state transferred from the acceptors, it is important to understand

why the coordinator doesn’t need to have knowledge of the status of the consensus

instances currently in progress to function.

If we look at the sequence of round numbers effectively used in a consensus ins-

tance, it is possible to notice that these numbers are distinct and increasing but that

they need not to be sequential. In fact, if they are partitioned among the processes

in a way that gives each process equal chance of having a larger number; so they are

never sequential. Thus, a coordinator picks a round number, say i, to be any round

number larger than crndc[i], but not necessarily crndc[i] + 1. From this simple obser-

vation it is easy to see that if the coordinator only records the largest round number

initiated for all instances it is guaranteed to be able to always choose a larger round

number for any individual instance when necessary. In this case, the stable memory

footprint of the coordinator can be reduced to the memory necessary to store a single

integer crndc, no matter how many instances of consensus were ever initiated by it.

Clearly, the coordinator still must keep track of the progress of the rounds it initiates,

including the round numbers of the rounds in progress, but this information may be

stored in volatile memory.

This simple modification makes clear the fact that the coordinator doesn’t concern

itself with the decided or proposed values of consensus, but only with the proper

initiation and progress of rounds. It still computes the Phase 2a rule, but can do

6.4. Seamless Coordinator Validation 121

so only in volatile memory. Furthermore, the coordinator can still keep this very

compact view of the sequence of consensus instances even when it shares a process

with other agents. For example, to avoid starting a round for an already decided

instance of consensus, the coordinator can query the stable memory of its co-located

learner. In this setup, the coordinator depends on the functionality of other agents

to implement optional functionality, but still requires just a single integer in stable

storage to guarantee safety.

In general, the maintenance of only a very small state in stable memory will require

the coordinator to query the acceptors on all extra information it needs to complete

a consensus round. More importantly, it depends on the information held by the ac-

ceptors to execute the activation procedure and be able to start rounds immediately.

Then, it is crucial to understand the view of the consensus instances held by each

acceptor. Recall that in Paxos, each acceptor keeps a persistent history of its execu-

tion with the following variables for each consensus instance i: rnda[i], vrnda[i] and

vvala[i]. Each instance i is initially inactive and belongs to the uninitiated set, their

corresponding variables have been initialized as null. As Paxos progresses, values

computed by the agents are stored in the fields of the consensus instances and they

pass to the set of active but undecided instances. Eventually, a consensus is reached

for an instance and it is promoted to the decided set. As instance identifiers are pic-

ked by the proposers from the set of positive integers in strict incremental order, it is

possible to establish a point fa in the instance sequence, as viewed by acceptor a, such

that every instance i, i ≥ fa, has not received a vote yet. It is also possible to find the

identifiers of instances smaller than fa that have also not received a vote yet, but we

know for sure that all instances larger than or equal to fa have never received a vote.

For example, in the local state depicted in Figure 6.1 we have fa = 8.

6.4.1 Activation Procedure

The seamless coordinator validation is based on an activation procedure that deter-

mines a point fQ of the Paxos consensus history that is consistent with points fa of

the local histories of each acceptor a of a quorum Q. The detailed steps executed by

the activation procedure are as follows:

1. The coordinator sends an Activation Phase 1a message, with round number r

starting all instances.

2. When an acceptor a receives this message it computes its fa. If r is larger than

the last ballot used in another activation or there was no previous activation, then

122 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

a sends a single Activation Phase 1b message containing its fa, meaning that it

is sending Phase 1b messages for all instances i ≥ fa and only for these instances.

3. As soon as the coordinator has received Activation Phase 1b messages from a

quorum Q of acceptors, it computes fQ to be the largest of the fa received, for

each a ∈ Q. It then considers that it has received a Phase 1b message with no

votes from all acceptors in Q for instances i ≥ fQ, and from this point on it

proceeds as the original Paxos.

Figure 6.2 shows an example of the activation process for four acceptors a1, a2, a3
and a4. Assuming all of them are able to take part in the activation, they compute fa
respectively as fa1 = 5, fa2 = 7, fa3 = 8 and fa4 = 7. The coordinator computes fQ = 8

and ends its activation.

Figura 6.2: Global View as Observed by a Coordinator

The seamless coordinator activation presented here requires considerably less in-

formation to be propagated from the acceptors to the coordinator. It takes one bro-

adcast from the coordinator containing the round number and Q unicasts from the

acceptors to the coordinator containing a single integer fa. This contrasts with the

original coordinator validation [56] where the activation and recovery are handled

sequentially. In the original validation the coordinator broadcast is answered by Q

unicasts containing all previous votes for consensus instances dc < i < fa, as des-

cribed in Section 6.3. Each vote contains, besides the round number, the contents

of the actual application messages (or ordered set of messages) voted in one specific

consensus instance. It is not difficult to see that the handling of the transmission,

reception and processing of these messages can have a considerable cost for Paxos.

Most important, while the sequential validation is underway Paxos stops delivering

application messages, generating the unavailability problem.

6.4. Seamless Coordinator Validation 123

6.4.2 Correctness

The correctness of the seamless coordinator activation is derived from the correctness

of individual Paxos consensus instances. Although in its first step the coordinator ini-

tiates many instances at once, each one of them complies strictly with Paxos protocol

and with the proofs contained in [56]. So, in this section, we show that the activation

procedure we have devised does not perform any operation forbidden by the original

Paxos.

The analysis for the first step (Section 6.4.1) is straightforward. Any process that

considers itself the coordinator can start a round for any consensus instance, as long as

the rules of Paxos for the selection of a new round number are respected. The sending

of an Activation message containing the command to start all rounds, if setup with a

suitable round number, doesn’t violate any of the Paxos invariants.

The correctness of the second step depends on the following facts regarding the

behavior of an acceptor: (i) it can always determine the fa point, (ii) it respects the

original Paxos rules when answering Phase 1a messages, and (iii) it doesn’t violate

the algorithm liveness. The uniqueness of fa follows from the observation that we

can always find an instance larger than the last instance voted because the number of

voted instances is finite and there is an infinite number of instances. We can consider

the larger instance found as the frontier to the remaining infinite number of instances

identified by i ≥ fa that can be treated as a single instance I, with respect to the stable

memory storage requirements. This is possible because the only way an instance i

can leave the set determined by I is by leaving the uninitiated set, but this leads by

construction to i < fa. This means that, as successive coordinator activations lead

to evaluations of fa, initiated instances stop being represented by I and are treated

as regular instances. Thus, as we run Paxos for this especial instance I, as part of

the activation, we are executing Paxos for all instances i ≥ fa. Acceptor a is able to

decide whether to answer or not the Activation Phase 1a message of the coordinator

by comparing r with the value of rnda[I] and it does so by using a single message, and

recording the new value of rnda[I]. What remains to be done now is to ensure that the

activation process does not violate liveness by proceeding only with instances i ≥ fa.

From the Paxos algorithm, an acceptor can refrain from answering a message (for

example, if it refers to a smaller round), so once a determines fa it is free to ignore

the requests for instances i < fa. Clearly, not answering to a message indefinitely

could cause a liveness violation, but as fa is always defined, the Activation Phase 1a

message is eventually answered. Also, the instances i < fa are subsequently treated as

instances and a sends timely answers for Phase 1a messages not related to activation.

In the third step, we must show that the determination of fQ allows for the correct

evaluation of the coordinator’s rule. In any Paxos round, the coordinator is only free

124 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

to set an arbitrary value to an instance if it receives only null votes from all acceptors

in a quorum. For any given acceptor a, the coordinator considers that it has received

a null vote for all instances i ≥ fa. The coordinator receives answers from a quorum

Q and establishes the point fQ to be the largest fa, for all acceptors a ∈ Q. It is

easy to see that only for instances at least as large as fQ a full quorum of null votes

is received. All instances smaller than fQ will miss at least one vote to complete a

quorum. The coordinator then can treat all instances i ≥ fQ as started and free to use.

This leaves many instances i < fQ, that are not yet decided, from the acceptors where

fa < fQ. These instances will be treated normally later, as they are not required for

the coordinator operation.

6.5 Experimental Evaluation

The seamless coordinator validation allows activation and recovery to occur concur-

rently. It is reasonable to suppose that the added concurrency will reduce considera-

bly the time taken to setup a new coordinator, allowing Paxos to fulfill its function as a

support for highly-available applications without interruption. We have designed two

sets of experiments to assess our hypothesis. One set compares the performance of

the two versions of coordination validation, original and seamless, in the presence of

induced coordinator and network failures. The other set investigates the performance

of the same coordinator validation versions during executions where processes do

not fail, but adverse conditions associated with the environment where Paxos exe-

cutes make the failure detector misbehave triggering coordinator replacements. The

results of both sets of experiments show that the seamless coordinator validation gua-

rantees that Paxos does not stop delivering ordered messages during the replacement

of a coordinator, providing a significant performance increase for the application. In

the next section we provide an outline of the experiments, with an emphasis on the

components used and parameters that are shared by both sets of experiments. The

description of experimental conditions and setup that are specific to each experiment

set are described in the following two sections.

6.5.1 Method

Our tests were made using Treplica, a modular total-order broadcast toolkit that im-

plements Paxos and Fast Paxos [87]. Treplica has been designed to be easily instru-

mented to generate the measurable indicators necessary to assess the performance of

Paxos. The toolkit provides a programming interface that allows the construction of

applications that adhere to the state machine replication approach.

6.5. Experimental Evaluation 125

Our experimental method consists in comparing the relative performance of two

coordinator validation procedures. So, to minimize any possible effect of the applica-

tion execution upon the performance measurements we have devised an application

that performs very simple operations: a hash table. The object that is replicated using

Treplica is a wrapper around the original Java hash table implementation that turns

it into a replicated and persistent object. The workload is exclusively composed of

a sequence of hash table put operations, where each operation associates an integer,

sequentially incremented, with a random five character string. Read operations were

ruled out because they do not represent a significant cost for Paxos. This way, we have

a workload that is homogeneous in terms of system resource use and that is always

guaranteed to make Treplica the only sub-system of the experiment responsible for

the performance variations observed. Treplica is configured to use the local disk of

the computing system where replica is executed as its persistent data store, so disk

accesses do not trigger any network usage. This way we guarantee that the network is

used only to carry the messages exchanged by the replicas as a consequence of Paxos

activity.

The experiments were carried out in a cluster with 18 nodes interconnected th-

rough the same 1Gbps Ethernet switch. Each node has a single Intel Xeon 2.4GHz

processor, 1GB of RAM, and a 40GB disk (7200 rpm). The software platform is com-

posed of Fedora Linux 9 and OpenJDK Java 1.6.0 virtual machine (JVM).

6.5.2 Induced Failures

In the first set of experiments we measure the performance of the application while

coordinator failures are induced through the controlled injection of faults. The process

that runs the coordinator agent is killed, restarted, and elected coordinator again.

During the time the coordinator stays down the remaining correct processes advance

many consensus instances. Once restarted, the coordinator will have to restore part

of its state from the local stable storage and part from remote acceptors.

Workload

Server replicas and workload generators share the same hosts, but care has been taken

to ensure that the load generation wasn’t competing with the application processing

and that the specified workload was being generated. The generated load is measured

in operations per second (op/s) and is generated at a fixed rate equally divided among

all the load generators of hosts that do not fail. This way, the load is unaffected by

failures.

126 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

For all experiments we run a system with 5 replicas under a continuous load of

1000 op/s for 10 minutes. The first 90 seconds and final 30 seconds are discarded as

ramp up and ramp down time, for a total of 8 minutes of steady-state performance.

During the ramp up time the caches of the JVM are being filled up and the just-in-time

compiler is generating optimized code. During the ramp down time some operations

can be left incomplete as the replicas are brought down. For each faultload (process

and network), and for each type of validation procedure (original and seamless) we

have performed 10 distinct runs and recorded the average performance in operations

per second, continuously throughout the entire execution time.

Faultload

To enable the controlled occurrence of a coordinator crash followed by its recovery,

we have changed the coordinator selection procedure implemented by Treplica to

always choose as the coordinator the process p f with the largest identifier. This is

easily accomplished by replacing the original leader election algorithm of Treplica by

a simple priority-based leader election that assigns the highest priority to p f . With the

new coordinator selection process in place, it is possible to determine which node and

process is the host of the coordinator. This way, the fault injector can be setup to inject

the desired fault into the right environment component (process or network interface)

at the desired moment. All time labels used in the text and figures are relative to the

beginning of the steady-state execution time.

Process faultload: The JVM that hosts process p f is brought down at t=30s and re-

mains down for 30s, until t=60s. Once the JVM is restarted it is going to take

around 90s for the Paxos agents to perform local recovery.

Network faultload: The network interface of the computer where p f is executing is

brought down at t=30s and after 90s it is brought up again, at t=120s.

All faults are injected at the operating system level, using automated scripts that

do not require any human intervention during the duration of the experiment.

Results

Figures 6.3 and 6.4 show the data for the process and network failure scenarios, res-

pectively. For both faultloads we observe the same general behavior. As expected,

performance is affected by the recovery of the replica brought down by the fault in-

jector. Moreover, for the original validation procedure the throughput of the system

is effectively zero during recovery while for the seamless coordinator validation it is

6.5. Experimental Evaluation 127

also greatly reduced but maintains itself, on average, at about 20% of the average per-

formance displayed during the failure-free periods. The observation of the results for

the process and network faultloads shows that in both cases the seamless coordinator

validation has prevented the application from stopping completely.

We proceed by carrying out the analysis of the effects of the process faultload.

At t=30s the coordinator is brought down (Figures 6.3 (a) and (b), label d). At this

moment, a new coordinator is elected, the one with the highest process identifier

among the remaining Paxos agents, validations take place, and normal processing is

resumed. The coordinator validation resulting from this replacement does not have

a disruptive impact on the performance of the application because the replicas that

remained operational had a very similar state. Thus, the recovery phase of the newly

elected coordinator represents a small processing overhead. In fact, results shown

in [20] allow us to say the performance of the replicated application is inversely pro-

portional to the scale of the system. This explains the performance increase observed

right after t=30s, when environment is scaled down to 4 replicas. The results confirm

that the combined effects of increased performance and relative small recovery state

have minimized the effects of the coordinator replacement. At t=60s (Figure 6.3, label

u) the JVM of the failed coordinator is restarted but it takes some time, until approxi-

mately t=150s, for its Paxos agents to be back into activity because of the time it takes

to restart the environment and read its state from stable storage. An election happens

and is followed either by an original coordinator validation (Figure 6.3 (a)) or by a se-

amless coordinator validation (Figure 6.3 (b)). The state of the re-activated coordinator

is far behind from the state of the replicas that remained functioning correctly. In the

case of the original coordinator validation the coordinator is only going to resume

its normal activities after it has finished its recovery, the unavailability caused while

recovery takes place can be observed in Figure 6.3 (a). By contrast, the concurrency

introduced by the seamless coordinator validation guarantees the availability of the

application during the replacement of coordinators (Figure 6.3 (b)). Table 6.1 shows

the average performance of the original and seamless versions of coordinator valida-

tion during these experiments with their respective coefficient of variations (CV), that

are within the 5% accuracy.

The injection of faults at the networking component causes no harm to the state

stored in the local volatile storage of the agents. This implies that the returning coor-

dinator has the advantage of not having to pay the cost of stable storage access during

its recovery. The network faultload isolates the coordinator for a period of 90s, from

the moment labeled d up to u in the Figures 6.4 (a) and (b). Different from what occurs

with the process faultload, there is almost no delay between the moment the replica

is brought back up and the moment it becomes the host of the new coordinator. The

128 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

average performance of the application during these runs is approximately 800 op/s

(Table 6.1). Thus, on average, as soon as the isolated coordinator is reconnected it

is going to receive recovery states from at least a quorum of acceptors, these states

will have sizes proportional to the approximately 72000 (800op/s× 90s) operations

delivered to the application during the isolation period. The amount of work deman-

ded from the coordinator to receive and process such a large amount of data explains

the application’s heavy performance drop (Figure 6.4). Once again the recovery of

the coordinator’s state causes the temporary unavailability of the application. In the

case of the seamless coordinator validation the application almost stops, but only for

a very brief time. Despite this, it is possible to observe the positive effect the seam-

less coordinator validation has on the performance of the application during recovery

(Table 6.1).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

P
e
rf

o
rm

a
n
c
e
 (

o
p
/s

)

Time (s)
 (a)

Original

d u

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

P
e
rf

o
rm

a
n
c
e
 (

o
p
/s

)

Time (s)
 (b)

Seamless

d u

Figura 6.3: Process Faultload

These results allow us to conclude that the seamless coordinator validation intro-

duced here definitely improves the availability of the application supported by Paxos

in the presence of a coordinator failure and recover. It is worth observing that the du-

ration of the recovery (width of the valleys) is practically identical for the original and

seamless graphs. This is expected as the recovery time is proportional to the size of

the state that has to be recovered. The average throughput of the 10 runs for each ex-

periment are listed in Table 6.1, with the corresponding coefficients of variation (CV).

The minimum number of runs required per experiment to guarantee an accuracy of

5% for the performance measurements with a confidence level of 99% is 4 [50].

6.5. Experimental Evaluation 129

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

P
e
rf

o
rm

a
n
c
e
 (

o
p
/s

)

Time (s)
 (a)

Original

d u

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

P
e
rf

o
rm

a
n
c
e
 (

o
p
/s

)

Time (s)
 (b)

Seamless

d u

Figura 6.4: Network Faultload

Faultload Original (op/s) CV Seamless (op/s) CV
Process 732.66 0.0136 795.44 0.0376
Network 783.28 0.0186 814.15 0.0176

Tabela 6.1: Average Performance of the Application under Induced Failures

6.5.3 Intrinsic Failures

The first set of experiments showed that the seamless coordinator validation is bet-

ter than the original coordinator validation in the presence of coordinator failures.

In this set of experiments we would like to verify whether the seamless validation is

worthwhile in relation to the original validation when intrinsically occurring transient

failures are the adversary of Paxos. Intrinsic failures that occur at the host environ-

ment of the replicated application can misguide the failure detectors of each Paxos

replica. For example, a failure detector can report a correct coordinator as having

crashed due to a transient communication delay or due to a delayed execution of a

thread. Irrespective of the underlying causes, failure detector mistakes trigger co-

ordinator changes. As with the first set of experiments, we could have designed a

faultload and a workload that would induce the failure detectors to fail. Instead, we

have decided to pursue an indirect but more realistic approach: accelerate the rate

of occurrence of intrinsic failures by overloading the application’s host environment.

The increased number of transient failures should increase the likelihood of failure

detector mistakes, this, in their turn, should trigger validations and should allow the

measurement of any performance differences between the two versions of Paxos, if

they exist.

130 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

Workload

As for the first set of experiments, the measure used to discriminate between the two

versions of coordinator validation is the performance of the replicas. The experiments

rely on speedup and scaleup trials to subject the environment to increasingly higher

workloads. The configurations used for the speedup and scaleup are as follows:

Speedup: For a fixed number of 9 replicas, the workload varies from 100 op/s to 3000

op/s in steps of 400 op/s.

Scaleup: For a fixed workload of 3000 op/s, the scale of the system goes from 3 to 15

replicas in steps of 2 replicas.

Both configurations were run for 10 minutes for each data point. For the same

reasons stated for the first set of experiments, the first 90 seconds and final 30 seconds

are discarded as ramp up and ramp down time, yielding a total of 8 minutes of steady-

state runtime. For each data point in each workload (speedup and scaleup) and for

each type of coordinator validation (original and seamless), we have measured the

performance of the replicas in operations per second as the average of five distinct

runs. Care has been taken to verify that none of the processes failed during the runs.

Thus, any coordinator replacement will have to result from a failure detector mistake,

and measurable differences between runs can be attributed to the relative efficiency

of the validation strategies being compared.

Results

Figures 6.5(a) and 6.5(b) shows the data for the scaleup and speedup experiments,

respectively. In the speedup trials, both the seamless and original coordinator vali-

dations have statistically identical performance for all but the 3000 op/s workload.

This can be explained by the small state a coordinator will have to obtain during

recovery. Contrary to the induced failures experiments, the runs of the intrinsic fai-

lures experiments are free of process crashes. Thus, it is reasonable to expect a fairly

good synchronization to be maintained by the replicas for most of the workloads. By

synchronization we mean that all replicas have a very similar view of the decided,

undecided and uninitiated consensus instances. Both versions of coordinator valida-

tion show similar performance across all of the speedup runs because the main reason

behind the validation unavailability problem is related to the time it takes to recover

the state of a replica. As the recovery state is small, the advantage of the seamless

validation over the original validation procedure should also be small.

6.5. Experimental Evaluation 131

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000

P
e
rf

o
rm

a
n
c
e
 (

o
p
/s

)

Workload (op/s)
 (a)

Original
Seamless

 1500

 1600

 1700

 1800

 1900

 2000

 3 5 7 9 11 13 15

P
e
rf

o
rm

a
n
c
e
 (

o
p
/s

)

Number of Replicas
 (b)

Original
Seamless

Figura 6.5: Speedup (9 replicas) and Scaleup (3000 op/s)

In the scaleup trials the seamless coordinator validation has performance similar to

the performance of the original coordinator validation up to 7 replicas. At these scales,

the same analysis used to explain the speedup results is valid. For scales ranging

from 9 to 15 replicas the seamless coordinator validation outperforms the original

coordinator validation. Interestingly enough the first scale where this happens is

the same as the one observed for the speedup trials (9 replicas, 3000 op/s). The

behavior of both versions of coordinator validation can be explained by two factors.

The first is that the mistakes induced by the failure detectors are now going to affect

increasingly larger subsets of the replicas. So, larger sets of acceptors are going to

initiate validations concurrently. In the worst case this process can take more replicas

out of their relative synchronization, making their states diverge. The second factor is

related to Paxos itself. As the scale increases so does the minimum number of replicas

required by Paxos to activate the new coordinator. This means that a larger number

of recovery states has to be transferred and processed by the new coordinator, at least

from a quorum of acceptors. For example, for 13 replicas the coordinator will have

to process recovery states from at least 7 replicas, but it will very likely receive 13

responses. As the scale increases, in the absence of process crashes, the combined

effect of the two factors cause the growth of the recovery states. In these scenarios,

as expected, the advantage represented by the parallelism introduced by the seamless

coordinator validation shows its effectiveness and outpaces the original coordinator

validation.

132 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

6.6 Fast Paxos

Fast Paxos is a variant of Paxos that reduces the overall latency of the consensus

rounds, measured in communication delays, by allowing the proposers to send pro-

posed values directly to the acceptors. To achieve this, rounds are separated in fast

rounds and classic rounds. Fast and classic rounds have different quorums associated

with them, with properties such that the coordinator is still able to detect if a previous

round was successful, even if the round was directly conducted by the proposers. Fast

Paxos quorums are larger than the ones used by Paxos. For example, a possible con-

figuration has both fast and classic quorums containing ⌊2N/3⌋ + 1 acceptors, from

a set of N acceptors [57]. A Fast Paxos round is very similar to a Paxos round, except

that Phase 2 is changed to:

• In Phase 2a, if the coordinator of round r has received answers from a quorum of

acceptors, it analyzes the set of values received and picks a single value v. It then

asks the acceptors to cast a vote for v in round r, if v is not null. Otherwise, if r

is a fast round the coordinator sends a any message to the proposers indicating

that any value can be chosen in round r. In this case, the proposers can ask the

acceptors directly to cast a vote for a value of their choice in round r.

• In Phase 2b, after receiving a request to cast a vote from the coordinator (if the

round is classic) or from one of the proposers (if the round is fast), acceptors can

either cast a vote for v in round r, if they have not voted in any round s ≥ r,

otherwise, they ignore the vote request.

Coordinator validation is central to the performance of Fast Paxos. When a new

coordinator runs validation, it completes Phase 1 and Phase 2a of the algorithm for

all undecided consensus instances. It then sends a collective any message authorizing

the proposers to initiate any of these instances. Proposer initiated instances can reach

consensus in only two communication latencies without the need of further coordina-

tor intervention [57]. Unfortunately, Fast Paxos cannot always be fast. Proposers can

propose two different values concurrently, in this case, their proposals may collide.

Also, process and communication failures may block a round from succeeding. Dif-

ferent recovery mechanisms can be implemented to deal with collisions and failures,

but eventually the coordinator intervention may be necessary to start a new classic

round [57].

The way Fast Paxos bypasses the coordinator to reduce communication latency

removes coordinator validation from the critical processing path required to decide

a consensus round. So, one might assume that the reduced role of the coordinator

means that there is no need to optimize the coordinator’s operation. However, even

6.7. Related Work 133

in this restricted role, the coordinator still oversees all activity of the algorithm and

ensures that instances are decided timely in the presence of collisions or message

loss. Moreover, Fast Paxos can only be fast if a suitable coordinator has successfully

performed validation, instructing the proposers on how to proceed. Thus, coordinator

validation must be quick in the presence of process or network failures, so the system

can resume operations in its coordinator-free state.

Seamless coordinator validation is easily adapted to Fast Paxos. During activation

the coordinator decides if it will start all unused instances with a classic or fast con-

sensus round. If it decides for a classic round, the procedure is exactly the same as

described in Section 6.4. If it decides to start fast rounds, it must wait until it receives

Activation Phase 1b messages from a fast quorum QF of processes. It them compu-

tes fQF
as described in Section 6.4 and sends a any message informing the proposers

that instances i ≥ fQF
are prepared and free to use. In essence, the activation step

of the seamless coordinator validation doesn’t deal with the specific steps required to

complete a consensus round. It only divides the consensus instances in sets in a way

that it is possible to act on the infinite set of unused instances with a simple message

exchange representing Phase 1 of the complete Paxos or Fast Paxos algorithm. This is

clearly visible in the simple way the mechanism can be adapted to Fast Paxos.

6.7 Related Work

The importance of the coordinator replacement procedure was observed by Chandra

et al. during the design and operation of the Chubby distributed lock system [26].

The designers of this system decided to make it harder for a replica to loose its coor-

dinator status at the cost of slower detection of process failures. This is justified by the

low incidence of observed process failures. In general, coordinator stability is consi-

dered the best way to deal with the cost of coordinator replacement. For example, the

leader election algorithm proposed by Malkhi et al. captures precisely the network

connectivity requirements of a working coordinator while guaranteeing stability du-

ring failure-free operation [63]. Ensuring stability makes sure a working coordinator

will operate for the larger time possible, distributing in time the cost of replacement.

However, even the cleverly designed algorithm of Malkhi et al. cannot ensure stability

if its weak network connectivity requirements aren’t met, even if it only happens for

a brief time. In this case, a faster validation procedure is desired.

The fact that Paxos requires a single coordinator is at the root of the unavaila-

bility problem. This single process will eventually fail, or be mistakenly taken for

failed, requiring a new coordinator to take its place. Another approach was taken by

Camargos et al. and consists in not relying in a single one but on a group of coordi-

134 Capı́tulo 6. A Recovery Efficient Solution for the Replacement of Paxos Coordinators

nators [24]. Their justification is that multiple coordinators make the algorithm more

resilient to coordinator failures without requiring the use of Fast Paxos and its larger

quorums. The resulting algorithm is considerably complex and increases the number

of messages exchanged between the acceptors and the group of coordinators. Our

simpler seamless coordinator validation procedure has similar coordinator resilience

if we consider the whole set of replicas that can act as a coordinator as a coordinator

group where only a master is active at any time and master changes are very cheap.

6.8 Conclusion

In this paper we have shown a novel way to avoid the temporary unavailability pro-

blem caused by Paxos coordinator replacements. Our solution is based on the ob-

servation that the validation of a new coordinator is composed of two activities: ac-

tivation and recovery. We have shown that only the completion of the activation is

strictly required before the coordinator can resume its operation. This fact has led us

to a seamless coordinator validation has two important characteristics. First, it allows

activation and recovery to be performed concurrently. Second, it reduces the informa-

tion required to activate the new coordinator to a single integer exchanged between

the acceptors.

We have verified experimentally that the seamless coordinator validation avoids

the temporary unavailability problem in the presence of process crashes, providing

uninterrupted operation for the application built atop Paxos. We have also obser-

ved the seamless coordinator validation performs better than the original validation

in scenarios where only intrinsic transient failures make the failure detectors trigger

validations. This second set of results showed that the seamless coordinator valida-

tion is particularly interesting in environments that change their number of replicas

dynamically.

Finally, the seamless coordinator validation have other implications for the rese-

arch on failure detectors for Paxos. Our enhanced validation procedure removes the

restriction that the occurrence of validations must be avoided. In this case, instead

of using more complex stable leader elections, it is possible to use very simple leader

election mechanisms to choose the new coordinator. A fairly imprecise leader election

procedure, but one that responds fast to failures or is simpler to implement, can be

used without hindering the performance of Paxos. Actually, one can even consider

election procedures that decide which process becomes the new leader not only ba-

sed on the detection of failures but also on other factors, such as the load experienced

by the replicas at the moment of the election. In summary, the seamless validation

procedure is not only effective, it encourages research on the combined use of failure

6.8. Conclusion 135

detectors and load balancers to create more adaptive versions of Paxos.

Acknowledgments

The authors thank Prof. W. Zwaenepoel, EPFL, for his support, and Olivier Cramieri,

also from EPFL, for his readiness to help with the management of the cluster.

Capı́tulo 7

Conclusão

7.1 Contribuições

Nesta tese exploramos o problema de como simplificar a construção de aplicações

replicadas que sejam capazes de prover alto grau de disponibilidade e desempenho.

Neste trabalho desenvolvemos a biblioteca Treplica, implementando uma interface de

programação simples baseada em uma especificação orientada a objetos de replicação

ativa. Os resultados obtidos com esta abordagem foram muito promissores e acredi-

tamos ter criado um suporte modular e de uso simples para replicação que pode ser

usado como primitiva básica para a construção de sistemas distribuı́dos confiáveis.

Esta tese apresenta as seguintes contribuições:

Especificação orientada a objetos para replicação: Nós propusemos a idéia de apre-

sentar ao programador de aplicação uma abstração orientada a objetos para

replicação como forma de simplificar a construção de aplicações confiáveis.

Treplica: Nós descrevemos Treplica, uma implementação da especificação abstrata

de replicação.

Consenso como base para replicação: Nós propusemos o uso de consenso como a

fundação para a implementação da especificação abstrata de replicação.

Estudo de confiabilidade: Nós realizamos uma análise de desempenho e confiabili-

dade de uma aplicação completa construı́da com o Treplica. Nós observamos

que a aplicação resultante possui um bom desempenho, mesmo na presença de

falhas e recuperações.

Estudo de desempenho: Nós caracterizamos o desempenho dos algoritmos Paxos e

Fast Paxos sob várias situações comuns em redes locais de alta velocidade.

137

138 Capı́tulo 7. Conclusão

Regra do coordenador de Fast Paxos: Nós desenvolvemos uma regra simplificada de

consistência a ser usada pelo processo coordenador no algoritmo Fast Paxos.

Esta regra simplifica consideravelmente implementações do algoritmo.

Troca de coordenador em Paxos: Nós desenvolvemos um procedimento otimizado

para substituição de um coordenador no algoritmo Paxos. Esta regra reduz

consideravelmente o custo associado à troca de coordenador, potencialmente

alterando o consenso sobre a importância de um único coordenador para este

algoritmo.

7.2 Trabalhos Futuros

O trabalho iniciado neste tese levantou algumas questões interessantes a serem abor-

dadas em trabalhos futuros.

Paxos exige apenas uma rede com troca não confiável de mensagens e pode em-

butir, como parte das suas garantias de liveness, mecanismos para retransmissão de

mensagens. Aplicado-se o princı́pio fim a fim, não é aconselhável replicar estas funci-

onalidades em camadas inferiores da pilha de protocolos de comunicação. Contudo,

muitas das implementações de Paxos ignoram esta observação e usam serviços de

entrega confiáveis [65], o que gera um impacto de desempenho. Uma razão disto é

que a configuração dos parâmetros de entrega de mensagens embutidas no Paxos é

algo difı́cil, como observamos durante a implementação de Treplica.

Uma solução para este problema é a parametrização de Paxos como um pro-

tocolo de rede, que garante entrega confiável de mensagens, ordenadas, para um

grupo de processos. Esta parametrização deve incluir configurações como timeouts,

tamanho de buffers, protocolos de controle de fluxo e congestionamento, etc. Muitas

destas configurações podem ainda apresentar comportamento adaptativo, refletindo

condições variáveis da rede subjacente. Este trabalho deve vir acompanhado de mo-

delos de desempenho teóricos e experimentos para comprovar a sua validade.

Um outro problema bem interessante é uma possı́vel mudança da estratégia de

construção de ferramentas de comunicação em grupo. A principal abstração de to-

lerância a falhas da esmagadora maioria destes sistemas é um mecanismo de per-

tinência a grupo [12]. Na nossa opinião, o principal problema desta abordagem é

ligar de forma inseparável a pertinência ao grupo ao mecanismo de detecção de fa-

lhas. É razoável se supor que um processo que falhe possa permanecer no grupo até

a sua recuperação. Ou então um processo correto pode deixar o grupo mas continuar

operando após a sua saı́da.

O uso de consenso provê uma forma elegante de se resolver este problema, já

7.2. Trabalhos Futuros 139

que os algoritmos que resolvem este problema exigem um conhecimento muito me-

nos preciso sobre o conjunto de processos corretos no sistema para funcionar [28].

Adicionalmente, um sistema de pertinência ao grupo pode ser construı́do sobre o

mecanismo de consenso, de forma completamente independente em relação ao me-

canismo de detecção de falhas. Este mecanismo pode ainda orientar o processo de

coleta de lixo do estado dos processos, tornado a recuperação mais eficiente. Pesquisa

neste problema deve incluir o estudo de algoritmos e mecanismos que permitem a

implementação da semântica tradicional de comunicação de grupo neste ambiente e

a efetiva implementação de um protótipo.

Bibliografia

[1] T. Abdellatif, E. Cecchet, and R. Lachaize. Evaluation of a group communication

middleware for clustered J2EE application servers. In DOA 2004: Proceedings

of the 2004 International Symposium on Distributed Objects and Applications, pages

1571–1589, Agia Napa, Cyprus, Oct. 2004.

[2] D. Agrawal and A. E. Abbadi. The generalized tree quorum protocol: an efficient

approach for managing replicated data. ACM Trans. Database Syst., 17(4):689–717,

1992.

[3] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic broad-

cast in replicated databases (extended abstract). In Euro-Par ’97: Proceedings of

the Third International Euro-Par Conference on Parallel Processing, pages 496–503,

Passau, Germany, 1997. Springer-Verlag.

[4] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the

crash-recovery model. Distrib. Comput., 13(2):99–125, 2000.

[5] Y. Amir, C. Danilov, and J. R. Stanton. A low latency, loss tolerant architecture

and protocol for wide area group communication. In DSN ’00: Proceedings of the

2000 International Conference on Dependable Systems and Networks, pages 327–336,

Washington, DC, USA, 2000. IEEE Computer Society.

[6] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: a communication subsystem

for high availability. In FTCS-22: Twenty-Second International Symposium on Fault-

Tolerant Computing, pages 76–84, Boston, MA, USA, July 1992.

[7] Y. Amir and J. Kirsch. Paxos for system builders. In LADIS ’08: Proceedings of

Large-Scale Distributed Systems and Middleware, New York, Sept. 2008.

[8] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent

replication for scaling back-end databases of dynamic content web sites. In Mid-

dleware, 2003.

141

142 BIBLIOGRAFIA

[9] B. Ban. Design and implementation of a reliable group communication toolkit

for java. Technical report, Cornell University, 1998.

[10] G. Banavar, T. D. Chandra, R. E. Strom, and D. C. Sturman. A case for mes-

sage oriented middleware. In Proceedings of the 13th International Symposium on

Distributed Computing, pages 1–18, London, UK, 1999. Springer-Verlag.

[11] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, Boston, MA, USA, 1987.

[12] K. P. Birman. The process group approach to reliable distributed computing.

Commun. ACM, 36(12):37–53, 1993.

[13] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in distributed sys-

tems. In SOSP ’87: Proceedings of the eleventh ACM Symposium on Operating systems

principles, pages 123–138, New York, NY, USA, 1987. ACM Press.

[14] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures.

ACM Trans. Comput. Syst., 5(1):47–76, 1987.

[15] A. D. Birrell, M. B. Jones, and E. P. Wobber. A simple and efficient implementa-

tion of a small database. In SOSP ’87: Proceedings of the eleventh ACM Symposium

on Operating systems principles, pages 149–154, New York, NY, USA, 1987. ACM

Press.

[16] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Deconstructing Paxos. SI-

GACT News, 34(1):47–67, 2003.

[17] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Reconstructing Paxos. SIGACT

News, 34(2):42–57, 2003.

[18] F. V. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. Consensus in one com-

munication step. In PaCT ’01: Proceedings of the 6th International Conference on

Parallel Computing Technologies, pages 42–50, London, UK, Sept. 2001. Springer-

Verlag.

[19] M. Burrows. The Chubby lock service for loosely-coupled distributed systems. In

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation,

2006.

[20] L. E. Buzato, G. M. D. Vieira, and W. Zwaenepoel. Dynamic content web appli-

cations: Crash, failover, and recovery analysis. In DSN 2009: 39th International

BIBLIOGRAFIA 143

Conference on Dependable Systems and Networks, pages 229–238, Estoril, Lisbon,

Portugal, June 2009.

[21] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An architectural evaluation

of Java TPC-W. In HPCA ’01: Proceedings of the Seventh International Symposium on

High-Performance Computer Architecture, pages 229–240, Monterrey, Mexico, 2001.

[22] L. Camargos, F. Pedone, and M. Weiloch. Sprint: a middleware for high-

performance transaction processing. In EuroSys2007: Proceedings of the 2nd Eu-

ropean Conference on Computer Systems, pages 1–14, Mar. 2007.

[23] L. Camargos, M. Wieloch, F. Pedone, and E. Madeira. A highly available log ser-

vice for transaction termination. In ISPDC ’08: Proceedings of the 2008 International

Symposium on Parallel and Distributed Computing, pages 335–342, Washington, DC,

USA, July 2008. IEEE Computer Society.

[24] L. J. Camargos, R. M. Schmidt, and F. Pedone. Multicoordinated agreement pro-

tocols for higher availabilty. In NCA ’08: Proceedings of the 2008 Seventh IEEE Inter-

national Symposium on Network Computing and Applications, pages 76–84, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[25] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clus-

tering middleware. In USENIX 2004 Annual Technical Conference, FREENIX Track,

pages 9–18, 2004.

[26] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering

perspective. In PODC ’07: Proceedings of the twenty-sixth annual ACM symposium

on Principles of distributed computing, pages 398–407, New York, NY, USA, 2007.

ACM Press.

[27] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for

solving consensus. J. ACM, 43(4):685–722, 1996.

[28] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed

systems. J. ACM, 43(2):225–267, 1996.

[29] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system

for structured data. ACM Trans. Comput. Syst., 26(2):1–26, 2008.

144 BIBLIOGRAFIA

[30] B. Charron-Bost, X. Défago, and A. Schiper. Broadcasting messages in fault-

tolerant distributed systems: The benefit of handling input-triggered and output-

triggered suspicions differently. In SRDS ’02: Proceedings of the 21st IEEE Sympo-

sium on Reliable Distributed Systems, pages 244–249, Washington, DC, USA, 2002.

IEEE Computer Society.

[31] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure

detectors. IEEE Trans. Comput., 51(5):561–580, 2002.

[32] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly avai-

lable key-value store. In Proc. of 21st ACM SIGOPS Symp. on Operating Systems

Principles, pages 205–220, 2007.

[33] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algo-

rithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

[34] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed

for distributed consensus. J. ACM, 34(1):77–97, 1987.

[35] J. Durães, M. Vieira, and H. Madeira. Dependability benchmarking of web-

servers. In Proc. of 23rd Computer Safety, Reliability, and Security Int. Conf., pages

297–310, 2004.

[36] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: uniting durability with tran-

saction ordering for high-performance scalable database replication. In EuroSys

2006: Proceedings of the 1st European Conference on Computer Systems, pages 117–

130, New York, NY, USA, 2006. ACM Press.

[37] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+: Memory-aware load ba-

lancing and update filtering in replicated databases. In EuroSys 2007: Proceedings

of the 2nd European Conference on Computer Systems, 2007.

[38] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed con-

sensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[39] R. Friedman and R. van Renesse. Strong and weak virtual synchrony in Horus. In

SRDS ’96: Proceedings of the 15th Symposium on Reliable Distributed Systems (SRDS

’96), page 140, Washington, DC, USA, 1996. IEEE Computer Society.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Longman Inc., 1995.

BIBLIOGRAFIA 145

[41] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. SIGOPS Oper.

Syst. Rev., 37(5):29–43, 2003.

[42] D. K. Gifford. Weighted voting for replicated data. In SOSP ’79: Proceedings of

the seventh ACM symposium on Operating systems principles, pages 150–162, New

York, NY, USA, 1979. ACM Press.

[43] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[44] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and

a solution. In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international

conference on Management of data, pages 173–182, New York, NY, USA, 1996. ACM

Press.

[45] R. Guerraoui and A. Schiper. Fault-tolerance by replication in distributed sys-

tems. In Ada-Europe ’96: Proceedings of the 1996 Ada-Europe International Conference

on Reliable Software Technologies, pages 38–57, London, UK, 1996. Springer-Verlag.

[46] J. Holliday, D. Agrawal, and A. E. Abbadi. The performance of database repli-

cation with group multicast. In FTCS ’99: Proceedings of the Twenty-Ninth Annual

International Symposium on Fault-Tolerant Computing, pages 158–165, Washington,

DC, USA, June 1999. IEEE Computer Society.

[47] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Marti,

and E. Cesario. The XtreemFS architecture—a case for object-based file systems

in grids. Concurr. Comput. : Pract. Exper., 20(17):2049–2060, 2008.

[48] F. Hupfeld, B. Kolbeck, J. Stender, M. Högqvist, T. Cortes, J. Marti, and J. Malo.

FaTLease: scalable fault-tolerant lease negotiation with Paxos. In HPDC ’08:

Proceedings of the 17th international symposium on High performance distributed com-

puting, pages 1–10, New York, NY, USA, 2008. ACM.

[49] M. Isard. Autopilot: automatic data center management. SIGOPS Oper. Syst. Rev.,

41(2):60–67, 2007.

[50] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, Inc.,

1991.

[51] Y. Jiang, G. Xue, and J. You. Toward fault-tolerant atomic data access in mu-

table distributed hash tables. In Proc. of First Int. Multi-Symp. on Computer and

Computational Sciences, 2006.

146 BIBLIOGRAFIA

[52] F. Junqueira, Y. Mao, and K. Marzullo. Classic Paxos vs. Fast Paxos: caveat

emptor. In HotDep’07: Proceedings of the 3rd workshop on on Hot Topics in System

Dependability, page 18, Berkeley, CA, USA, 2007. USENIX Association.

[53] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to

implement database replication. In VLDB ’00: Proceedings of the 26th International

Conference on Very Large Data Bases, pages 134–143, San Francisco, CA, USA, 2000.

Morgan Kaufmann Publishers Inc.

[54] B. Kemme and G. Alonso. A new approach to developing and implementing

eager database replication protocols. ACM Trans. Database Syst., 25(3):333–379,

2000.

[55] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, 1978.

[56] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,

1998.

[57] L. Lamport. Fast Paxos. Distrib. Comput., 19(2):79–103, Oct. 2006.

[58] L. Lamport. Lower bounds for asynchronous consensus. Distributed Computing,

19(2):104–125, June 2006.

[59] B. W. Lampson. How to build a highly available system using consensus. In

WDAG ’96: Proceedings of the 10th International Workshop on Distributed Algorithms,

pages 1–17, London, UK, 1996. Springer-Verlag.

[60] M. Larrea, A. Fernández, and S. Arévalo. Optimal implementation of the weakest

failure detector for solving consensus. In SRDS ’00: Proceedings of the 19th IEEE

Symposium on Reliable Distributed Systems, page 52, Washington, DC, USA, 2000.

IEEE Computer Society.

[61] W. Liang and B. Kemme. Online recovery in cluster databases. In EDBT ’08: Pro-

ceedings of the 11th international conference on Extending database technology, pages

121–132, New York, NY, USA, 2008. ACM.

[62] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou. Boxwood:

Abstractions as the foundation for storage infrastructure. In OSDI ’04: 6th USE-

NIX Symposium on Operating Systems Design and Implementation, 2004.

BIBLIOGRAFIA 147

[63] D. Malkhi, F. Oprea, and L. Zhou. Ω meets Paxos: Leader election and stability

without eventual timely links. In DISC ’05: Proceedings of the 19th International

Conference on Distributed Computing, volume 3724 of Lecture Notes in Computer

Science, pages 199–213. Springer, 2005.

[64] K. Manassiev and C. Amza. Scaling and continuous availability in database ser-

ver clusters through multiversion replication. In Int. Conf. on Dependable Systems

and Networks, 2007.

[65] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building efficient replicated

state machines for WANs. In OSDI ’08: Proceedings of the 8th USENIX Symposium

on Operating Systems Design and Implementation, 2008.

[66] S. Mena, A. Schiper, and P. Wojciechowski. A step towards a new generation of

group communication systems. In Middleware 2003, volume 2672 of Lecture Notes

in Computer Science, pages 414–432, Rio de Janeiro, Brazil, 2003. Springer.

[67] H. Miranda, A. Pinto, and L. Rodrigues. Appia: A flexible protocol kernel

supporting multiple coordinated channels. In ICDCS ’01: Proceedings of the

The 21st International Conference on Distributed Computing Systems, pages 707–710,

Washington, DC, USA, Apr. 2001. IEEE Computer Society.

[68] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-

Papadopoulos. Totem: a fault-tolerant multicast group communication system.

Commun. ACM, 39(4):54–63, 1996.

[69] J. Ostell. Databases of discovery. Queue, 3(3):40–48, 2005.

[70] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach.

Distrib. Parallel Databases, 14(1):71–98, 2003.

[71] F. Pedone and A. Schiper. Handling message semantics with generic broadcast

protocols. Distrib. Comput., 15(2):97–107, 2002.

[72] F. Pedone and A. Schiper. Optimistic atomic broadcast: a pragmatic viewpoint.

Theor. Comput. Sci., 291(1):79–101, 2003.

[73] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Solving agreement problems with

weak ordering oracles. In EDCC-4: Proceedings of the 4th European Dependable

Computing Conference on Dependable Computing, pages 44–61, London, UK, Oct.

2002. Springer-Verlag.

148 BIBLIOGRAFIA

[74] C. Plattner and G. Alonso. Ganymed: Scalable replication for transactional web

applications. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX internati-

onal conference on Middleware, pages 155–174, New York, NY, USA, 2004. Springer-

Verlag New York, Inc.

[75] R. D. Prisco, B. Lampson, and N. Lynch. Revisiting the PAXOS algorithm. Theo-

retical Computer Science, 243(1-2):35–91, 2000.

[76] L. Rodrigues and M. Raynal. Atomic broadcast in asynchronous crash-recovery

distributed systems and its use in quorum-based replication. IEEE Transactions

on Knowledge and Data Engineering, 15(5):1206–1217, 2003.

[77] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. Spence. FAB: building dis-

tributed enterprise disk arrays from commodity components. SIGPLAN Not.,

39(11):48–58, 2004.

[78] A. Schiper. Dynamic group communication. Distributed Computing, 18(5):359–

374, Apr. 2006.

[79] F. B. Schneider. Implementing fault-tolerant services using the state machine

approach: a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[80] A. Supriano, G. M. D. Vieira, and L. E. Buzato. Evaluation of a read-optimized

database for dynamic web applications. In WEBIST 2008: Proceedings of the Fourth

International Conference on Web Information Systems and Technologies, Volume 1, vo-

lume 1, pages 73–81, Funchal, Madeira, Portugal, May 2008. INSTICC Press.

[81] TPC. TPC Benchmark W Specification, Feb. 2002.

[82] P. Urbán, X. Défago, and A. Schiper. Chasing the FLP impossibility result in a

LAN or how robust can a fault tolerant server be? In SRDS ’01: Proceedings of the

20th IEEE Symposium on Reliable Distributed Systems, pages 190–193, New Orleans,

LA, USA, Oct. 2001. IEEE Computer Society.

[83] P. Urbán, N. Hayashibara, A. Schiper, and T. Katayama. Performance comparison

of a rotating coordinator and a leader based consensus algorithm. In SRDS ’04:

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems,

pages 4–17, Washington, DC, USA, 2004. IEEE Computer Society.

[84] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building

adaptive systems using Ensemble. Softw. Pract. Exper., 28(9):963–979, 1998.

BIBLIOGRAFIA 149

[85] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: a flexible group communi-

cation system. Commun. ACM, 39(4):76–83, 1996.

[86] G. M. D. Vieira and L. E. Buzato. On the coordinator’s rule for Fast Paxos.

Information Processing Letters, 107:183–187, Aug. 2008.

[87] G. M. D. Vieira and L. E. Buzato. Treplica: Ubiquitous replication. In SBRC ’08:

Proc. of the 26th Brazilian Symposium on Computer Networks and Distributed Systems,

Rio de Janeiro, Brasil, May 2008.

[88] G. M. D. Vieira and L. E. Buzato. The performance of Paxos and Fast Paxos. In

SBRC ’09: Proc. of the 27th Brazilian Symposium on Computer Networks and Distribu-

ted Systems, pages 291–304, Recife, Brasil, May 2009.

[89] G. M. D. Vieira and L. E. Buzato. Implementation of an object-oriented specifi-

cation for active replication using consensus. Technical Report IC-10-26, Institute

of Computing, University of Campinas, Aug. 2010.

[90] G. M. D. Vieira, I. C. Garcia, and L. E. Buzato. Seamless Paxos coordinators.

Technical Report IC-10-13, Institute of Computing, University of Campinas, Apr.

2010.

[91] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database repli-

cation techniques: a three parameter classification. In SRDS ’00: Proceedings of

the 19th IEEE Symposium on Reliable Distributed Systems (SRDS’00), pages 206–215,

Nürnberg, Germany, Oct. 2000. IEEE Computer Society.

[92] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding

replication in databases and distributed systems. In ICDCS ’00: Proceedings of the

The 20th International Conference on Distributed Computing Systems, pages 464–474,

Washington, DC, USA, Apr. 2000. IEEE Computer Society.

[93] M. Wiesmann and A. Schiper. Comparison of database replication techniques ba-

sed on total order broadcast. IEEE Transactions on Knowledge and Data Engineering,

17(4):551–566, Apr. 2005.

[94] S. Wu and B. Kemme. Postgres-R (SI): Combining replica control with concur-

rency control based on snapshot isolation. In Data Engineering, 2005. ICDE 2005.

Proceedings. 21st International Conference on, pages 422–433, 2005.

[95] K. Wuestefeld. Do you still use a database? In OOPSLA ’03: Companion of

the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, pages 101–101, New York, NY, USA, 2003. ACM Press.

