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Abstract

This dissertation is a collection of papers written in English, with an introduction and a
conclusion in Portuguese.

The first paper describes Guarani, a language-independent reflexive architecture, whose
run-time meta-level protocol permits a high degree of reuse of meta-level code. The protocol
was designed so as to provide, in a secure manner, flexibility and reconfigurability of meta-
level behavior of objects.

The second paper describes our implementation of this architecture through the modi-
fication of a free implementation of the Java™ Virtual Machine (JVM) Specification, but
keeping the Java Programming Language intact. With our approach, existing Java appli-
cations can be made reflexive, even if their source code is not available. We describe the
modifications we have introduced in the JVM, as well as the Java classes that complete
the implementation, and measure the impact of the modifications on the performance of
applications and the JVM.

The third paper is a tutorial directed to Java™ programmers who are willing to know and
use the features of Guarani. It covers the workings of Guarand, from basic interception
mechanisms to advanced topics, exposing some of the internal details of the implementation
of Guarana.

The fourth and last paper introduces MOLDS, a library of meta-level components suit-
able for building distributed applications, that we intend to implement on top of Guarana.
This library will explore Guarand’s features to combine independent meta-objects that im-
plement mechanisms such as replication, persistence, etc, in order to form complex meta-level
behavior, in a transparent way, from the point of view of the application programmer.
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Resumo

Esta dissertagdo ¢ uma colegio de artigos escritos em inglés, com uma introducgéo e uma
conclusdo em portugués.

O primeiro artigo descreve Guarand, uma arquitetura reflexiva independente de lin-
guagem, cujo protocolo de meta-nivel, em tempo de execugdo, permite um alto grau de
reutilizacdo de codigo de meta-nivel. O protocolo foi projetado de forma a prover, de forma
segura, flexibilidade e reconfigurabilidade do comportamento de meta-nivel de objetos.

O segundo artigo descreve nossa implementagio dessa arquitetura, através da modificagao
de uma implementacao aberta da Maquina Virtual de Java™, que mantém a linguagem de
programacio Java™ inalterada. Com nossa abordagem, aplicacdes Java™ pré-existentes
podem ser tornadas reflexivas, mesmo quando seu cddigo fonte néo estd disponivel. O artigo
descreve as alteracoes que fizemos a méiquina virtual, bem como as classes que completam a,
implementagdo. Além disso, ele apresenta medidas de degradacio de desempenho causadas
por nossas alteragoes.

O terceiro artigo é um tutorial dirigido a programadores Java™ que pretendam conhecer
e utilizar os recursos do Guarand. Ele cobre desde mecanismos bdsicos de interceptagio até
topicos avangados, expondo alguns detalhes internos da implementagio do Guarani.

O quarto e ultimo artigo apresenta MOLDS, uma biblioteca de componentes de meta-
nivel adequados para a construgdo de aplicactes distribuidas, que pretendemos implemen-
tar sobre 0 Guarana. Esta biblioteca explorard a capacidade do Guarana de combinar
meta-objetos independentes de modo a definir comportamentos de meta-nivel complexos, de
maneira transparente, do ponto de vista da aplicacao do nivel base.
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Capitulo 1

Introducao

Nosso objetivo original era criar um ambiente de desenvolvimento de sistemas distribuidos,
valendo-nos de técnicas de reflexdo computacional (38, 51] para implementar de maneira
transparente os diversos mecanismos tteis a essa categoria de aplicacoes.

Infelizmente (ou felizmente), dentre todas as plataformas reflexivas estudadas, citadas no
Capitulo 2, nenhuma delas satisfazia simultaneamente os requisitos que julgdvamos essenciais
para o desenvolvimento do ambiente almejado, tais como:

Ortogonalid‘ade: arquiteturas reflexivas que associam aspectos de geréncia 2 classe a que
um objeto pertence limitam a transparéncia do sistema, por exigirem alteracdo no
codigo do nivel base {criagdo de subclasses) para possibilitar diferenciagdo do compor-
tamento reflexivo para inst&ncias de uma mesma classe.

Reconfigurabilidade: a alteragdo dindmica de elementos de meta-nivel é bastante desejavel
na construcdo de sistemas que oferecam suporte a tolerdncia a falhas, em funcio da
possibilidade de reconfiguracio.

Nao-intrusao: a necessidade de alterar cédigo do nivel base para adicionar comportamento
reflexivo a objetos é extremamente indesejavel, por reduzir o grau de transparéncia
obtido; consideramos prejudicial até mesmo a possibilidade de o nivel base interagir
com o meta-nivel, por quebrar a separagio entre os niveis.

Reuso: a possibilidade de criar componentes de meta-nivel reutilizdveis em diferentes con-
textos é um requisito indispensavel para a construgdo do ambiente desejado, especial-
mente se esses componentes puderem ser combinados a fim de determinar comporta-
mentos reflexivos complexos.

Acettacao da linguagem: linguagens de propdsito geral, com vasta utilizagdo, sdo certa-
mente preferiveis em comparagdo com linguagens direcionadas a nichos especificos; a



auséncia de alteracdo & linguagem de programagao é também bastante desejdvel, a fim
de que aplicagées nao reflexivas possam ser beneficiadas pela introdugio de mecanismos
reflexivos sem alteragdo de seu c6digo.

Portabilidade: a implementagéo da plataforma reflexiva deve ser portdvel e inter-operavel,
a fim de possibilitar a implementagio de sistemas distribuidos heterogéneos.

Seguranca: a capacidade de reconfigurar dinamicamente o comportamento reflexivo de um
objeto abre iniimeras possibilidades, algumas delas possivelmente perigosas; para o de-
senvolvimento de aplicagGes confidveis, julgamos conveniente que se possam estabelecer
politicas de segurancga, a fim de evitar ou ao menos limitar os danos que reconfiguragdes
indesejadas possam causar.

Na falta de uma plataforma reflexiva que atendesse a esses requisitos, decidimos adiar a
criagdo do ambiente de desenvolvimento de sistemas distribuidos, em favor da definigio de
uma plataforma que favorecesse sua futura implementagao.

Adotamos Javal! como linguagem de programagio alvo, mas tomamos como objetivo a
especificagio de uma arquitetura reflexiva que pudesse ser implementada, com variados graus
de dificuldade, sobre plataformas reflexivas ji existentes. Assim surgiu Guarana.

Esta dissertagdo estd organizada na forma de uma coletinea de textos em formato de
artigos, alguns j4 publicados como relatérios técnicos, um deles aceito em workshop nacio-
nal. Para evitar repeticbes desnecessdrias, foram omitidos dos artiges os apéndices contendo
intrugdes sobre como obter o software e sua documentagio, apresentado no Apéndice A, e
os agradecimentos, transferidos para o corpo da dissertagéo.

No Capitule 2, apresenta-se o artigo que descreve a arquitetura reflexiva proposta para
atender aos diversos requisitos expostos anteriormente. No Capitulo 3, descrevemos a imple-
mentagao dessa arquitetura, que envolveu a modificagdo de uma maquina virtual Java que
permitia a livre distribui¢io de seu cédigo fonte. O Capitulo 4 consiste de um tutorial con-
tendo intimeros trechos de c¢édigo que exemplificam a utilizacdo dos principais mecanismos
da arquitetura do Guarana. Como retomada do objetivo original, o Capitulo 5 demonstra
como a arquitetura do Guarand permite uma implementagio simples de diversos servigos
de meta-nivel reutiliziveis e combindveis, adequados para a implementacio de aplicac6es
distribuidas confidveis. Encerra-se a dissertagio com a Conclusao, objeto do Capitulo 6.

1 Java & uma marca registrada da Sun Microsystems, Inc.



Capitulo 2

Arquitetura de Software

Prélogo

Neste primeiro artigo, apresentamos conceitos bésicos de reflexdo computacional, tais como
interceptagdo e materializagdo (reification) e apontamos limitagdes das diversas plataformas
reflexivas analisadas.

Em seguida, apresentamos o protocolo de meta-objetos do Guaran4, especificando o
comportamento esperado de meta-objetos e composers. Composers sdo meta-objetos que
delegam operagles para outros meta-objetos, a fim de combinar suas funcionalidades. Des-
crevemnos também o mecanismo de propagagio de meta-configuragdes para objetos criados
dinamicamente, que torna possivel que o meta-nivel seja totalmente transparente para o
nivel base. Definimos ainda as estratégias para a manutengiao de consisténcia das meta-
configuragoes, através de politicas de seguranga no meta-nivel.

Uma versdo anterior deste artigo estd disponivel como relatério técnico IC-98-14.
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Abstract

This text describes a reflective software architecture called Guarand. Its run-
time meta-level protocol has been designed to achieve a very high degree of flexibility,
reconfigurability, security and reuse of meta-level code. Composers are meta-objects
that can be used to combine meta-objects, that may themselves be composers, into
dynamically modifiable meta-configurations. Instances of a class may have different
meta-configurations, either determined explicitly or derived from the context in which
every single object was created.

A free Java!-based implementation of the language-independent Guarand reflective
architecture is currently available.

2.1 Introduction

As the size and complexity of systems increase, so does the need for mechanisms to deal with
such complexity. Object-oriented design is based on abstraction and information hiding

(encapsulation} [9, 29, 47, 48]. These concepts have provided an effective framework for

the management of complexity of applications. Within this framework, software developers

strive to obtain applications that are highly coherent and loosely coupled. High coherence

translates into narrow and easy-to-understand interfaces, as highly coherent components
tend to do just one thing, leading to functional simplicity and component autonomy. Loosely

*Islene Calciolari Garcia recebeu auxilio da FAPESP através da bolsa 95/1983-8.
1Java is a trademark of Sun Microsystems, Inc.
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coupled components are components that are connected by simple communication structures,
thus their relationships are easy to understand and less prone to domino effects caused
when errors occur at one location and propagate through the application. Unfortunately,
object-oriented design alone does not address the development of software that can be easily
adapted. Adaptebility and transparency of coupling is playing an increasingly important role
in the software development process, that is now carried out in a much more dynamic market
where requirement shifts force developers to adapt already existent software to originally
unforeseen conditions (requirements). The next two paragraphs review solutions that have
been proposed to these two problems, respectively. After presenting these solutions, we argue
that our reflective software architecture, Guaran, represents a step forward towards the
construction of open, easily adaptable applications.

The concept of open architectures [30, 31] has been proposed as a partial solution to the
problem of creating software that is not only modular, well-structured, but also easier to
adapt. Open architectures are based on the existence of an additional component {object)
interface that allows them—acting as servers—to dynamically adapt to new requirements
presented by their clients. Open architectures encourage a modular design where there is a
clear separation of policy, that is, what a module has been designed for, from the mechanisms
that implement a policy, that is, how a policy is materialized. Although open architectures
might seem to confront the modular design approach by exposing parts of their designs,
in fact, the opposite is valid. Open architectures may provide elegant solutions to the
design and implementation of highly adaptable software. In particular, the implementation
of system-oriented mechanisms such as concurrency control, distribution, persistence and
fault-tolerance can benefit from this approach to software construction.

Computational reflection [38, 51] (henceforth just reflection) has been proposed as a
solution to the problem of creating applications that are able to maintain, use and change
representations of their own designs (structural or behavioral). Reflective systems are able to
use self-representations to extend and adapi their computation. Due to this property, they
are being used to implement open software architectures. Additionally, the mechanisms used
to implement reflective systems can also be used to partially solve the problem of coupling
software components transparently. In reflective architectures, components that deal with
the processing of self-representation and management of an application reside in a software
layer called meta-layer or meta-level Components that deal with the functionality of the
application are assigned to a software layer called base-layer or base-level. The transparent
coupling of the base-level to its meta-level is implemented using interception mechanisms.
In object-oriented reflective systems, objects that reside in the meta-level and base-level are
called meta-level objects and base-level objects, respectively.

A comparative study of existent object-oriented reflective architectures reveal that some
associate every base-level object with a single meta-level object called meta-object [38, 58].
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Several offer class-wide reflective facilities: each class is associated with a single meta-
class [15, 16, 22, 32]. Some allow groups of objects to be attached to groups of meta-
objects (27, 40, 41, 42, 60], by giving every meta-object the responsibility for handling a
specific aspect of the system—object interaction. Also, hybrid models [39] exist.

Due to their inherent structure, the existing reflective architectures may induce develop-
ers to create complex meta-objects that, in an all-in-one approach, implement many policies
{management aspects) of an application or, alternatively, to construct coherent but tightly
coupled meta-objects and objects. Both alternatives harden reuse, maintenance, and adap-
tation of an application, especially of its meta-level, as it is where most of the adaptations
tend to occur in an open architecture. There is certainly room for improvement of the
mechanisms that give support to adaptation and transparent loose coupling.

This paper describes the reflective architecture of Guaranad, a flexible language-indepen-
dent meta-protocol that encourages the creation of highly coherent, loosely and transparently
coupled meta-level objects. An application developed within Guarana’s framework is easily
adapted to conform to new requirements, and the implementation of meta-level requirements
can be easily reused in other applications. Section 2.2 contains an introduction to compu-
tational reflection, as used to support open architectures. Section 2.3 describes the software
architecture and meta-level protocol of Guarand. Finally, in Section 2.4, we present some
conclusions and discuss future work.

Along the text, we are going use diagrams to illustrate the main characteristics of
Guarana. The graphical conventions used in these diagrams are those of UML {Unified
Modeling Language) sequential diagrams [47]. Figure 2.1 specifies the semantics of such
diagrams.

2.2 Computational Reflection

Computational Reflection [38, 51] is a technique that allows a system to maintain information
about itself (meta-information) and use this information to change its behavior (adapt).

This is achieved by processing in two well-defined levels: functional level (also known as
base level or application level) and management (or meta) level. Aspects of the base level are
represented as objects in the meta level, in a process called reification (Section 2.2.1). Meta-
level architectures are discussed in Section 2.2.2 and reflective languages in Section 2.2.3.
Finally, Section 2.2.4 shows the use of computational reflection in the structuring and im-
plementation of system-oriented mechanisms.
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The meta-diagram above shows the subset of the UML [47] sequence diagrams
notation (formerly known as interaction diagrams) we are going to use in this
paper. The first lines of the diagram define one column for each object. The
name of an object and the name of its class (or a superclass thereof, for the sake
of generalization) may be specified.

Time flows downwards. Method invocations are shown as arrows from the caller
to the callee. Until the callee returns, its time line is adorned with a rectangle.
The return is denoted with a short arrow adorned with a circle; the returned
value is specified just below the arrow. Nested invocations are represented by
wider rectangles.

The time line of an object that is created during the time span covered by the
diagram starts at the moment of the invocation of the pseudo-method create.
Sometimes, this pseudo-method will be explicitly split into invocations of the
pseudo-methods alloc and init: the former just allocates memory for the object;
the latter initializes (constructs) it.

'Figure 2.1: UML Sequence Diagrams
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2.2.1 Reification

For the meta level to be able to reflect on several objects, specially if they are instances of
different classes, it must be given information regarding the internal structure of objects. This
meta-level object must be able to find cut what are the methods implemented by an object,
as well as the fields (attributes) defined by this object. Such base-level representation, that
is available for the meta level, is called structural meta-information. The representation,
in form of objects, of abstract language concepts, such as classes and methods, is called
reification.

- Base-level behavior, however, cannot be completely modeled by reifying only structural
agpects of objects. Interactions between objects must also be materialized as objects, so that
meta-level objects can inspect and possibly alter them. This is achieved by intercepting base-
level operations such as method invocations, field value inquiries or assignments, creating
operation objects that represent them, and transferring control to the meta level, as shown
in Figure 2.2. In addition to receiving reified base-level operations from the reflective kernel,
meta-level objects should also be able to create operation objects, and this should be reflected
in the base level as the execution of such operations.

2.2.2 Reflective Architectures

In this Section we briefly summarize some of the drawbacks of existent reflective architec-
tures, that have motivated the creation of Guarand. Open C-++ [15, 16] and CLOS [32]
collapse all the meta-level processing in a single monolithic meta-object. However, there are
situations where several mechanisms related to independent requirements have to be com-
bined to serve a single object. The systems above encourage the all-in-one approach for the
implementation of these mechanisms in the meta-level, creating objects that are complex
and hard to adapt. Ideally, we would like to have a reflective architecture that would allow
developers to create several smaller and very coherent objects linked by simple couplings.
MetaXa [33] {formerly known as MetaJava), for example, allows multiple meta-objects to
form of a linked list whose tail is the base-level object, but it lacks a coordination mechanism
for allowing them to cooperate.

Apertos [59], MMRF [41, 42], CodA [40] and Iguana [27] base their reflective architecture
upon fine-grained coordinated meta-level objects. However, their meta-objects present dif-
ferent interfaces and interaction patterns, with tight coupling (interdependency). We believe
this architecture complicates usage and composition of meta-objects. The drawback due to
multiple interfaces can be weakened through the provision of a single narrow yet powerful
meta-object interface. In this paper, we are going to present such a narrow interface that
is easy to learn and simple to use, yet it supports mechanisms for easy composition and
reconfiguration of meta-objects through the provision of a loosely coupling pattern.
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A reflective kernel is responsible for implementing an interception mechanism.
The method invocation is reified as an operation object and passed for the callee’s
meta-object to reflect upon (handle). Eventually, the meta-object requests the
kernel to deliver the operation to the callee’s application object, by returning
control (as in the diagram) or performing some special meta-level action. Finally,
the result of the operation is reified and presented to the meta-object.

Figure 2.2: Reifying an operation
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2.2.3 Reflective Languages

Several object-oriented languages have already been designed or extended in order to support
reflection. Languages such as KRS (3-KRS [38]), LISP (3-LISP {50], CLOS [32]), ABCL
(ABCL/R (58] and ACBL/R2 [39]), AL-1/D (MMRF [41, 42]}, C-++ (Open C++ [15, 16
and Iguana [27]) and Java (MetaXa [33]) are examples of languages that provide varied levels
of support to reflection.

In a totally reflective system, any kind of meta-information should be modifiable, and
any such modification should reflect upon the base-level behavior, in a causally-connected
way [38]. Although changing reified operations is possible even in compiled languages, chang-
ing structural meta-information is usually possible only in interpreted languages. Some in-
terpreted reflective languages allow replacement interpreters to be written in the language
itself [38, 50, 58]. Such interpreters may change the behavior of the built-in interpreter, and
may themselves be interpreted by other replacement interpreters. These interpreters are
called meta-circular interpreters.

Extending non-reflective compiled languages to support reflection usually involves some
kind of source code preprocessing. Such preprocessing adds interception and control mech-
anisms, so that meta-objects are informed of operations sent to base-level objects and can
deliver operations to them. If the original language does not provide structural meta-
information, the preprocessor is also responsible for collecting it and arranging that it is
available to meta-level objects at run-time.

Some reflection techniques can be used in programming languages that offer none or
some very restricted form of the mechanisms used by reflective systems. These shortcomings
usually restrict the form of reflection implemented, limiting the tower of meta-objects [38] to
only two levels; the work by Bijnens et al [7] is an example of this restricted use of reflection.
Ideally, reflective software architectures should allow infinite tower of meta-objects to be
built, that is, objects have meta-objects, meta-objects have meta-meta-objects, and so on.

2.2.4 Transparency

In a reflective application, the base level implements the main functionality of an appli-
cation, while the meta level is usually reserved for the implementation of management re-
quirements, such as persistence [45, 53], location transparency [43], replication [16, 34], fault
tolerance [1, 2, 21, 20] and atomic actions [54, 55]. Reflection has also been shown to be use-
ful in the development of distributed systems 13, 37, 52, 59, 60] and for simplifying library
protocols [57].

Persistence [45, 53], for example, can be implemented through the interception of update
operations sent to an object. The intercepted operations are sent to the meta-level where the
object responsible for the persistence mechanism guarantees that changes made to the object
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are kept in stable storage. Transparency of locality [43] may be achieved by intercepting
operations addressed to proxies of objects in other address spaces: meta-level objects in the
caller’s address space would forward operations to meta-level objects located in the callee's
address space. Finally, the operation is performed and its result is sent back to the caller.

Reflective architectures can be used to create applications that attend to certain require-
ments and later evolve to comply with new requirements, added to or removed from its
specification, depending on how their environment evolves. As an example, consider the
case of an application whose objects are persistent but not replicated. Later, due to the
requirement of availability, some of its cbjects have to become replicated. Persistence and
replication, in a reflective architecture, can be implemented at the meta level of the architec-
ture. The addition of these mechanisms can be attained with varied degrees of transparency,
depending on the coupling and interception mechanisms offered by the architecture.

Being able to dynamically associate non-functional requirements to groups of objects of an
application, independently of the types of these objects, favors transparency and adaptability,
but may be costly in terms of performance.

2.3 The Meta-level Protocol of Guarana

One of the most important features of a reflective architecture is its meta-level protocol.
This is also valid for Guarand, its meta-level protocol is greatly responsible for the com-
munication and coupling pattern that induces software developers to create well-structured
and adaptable configurations of meta-objects.

This Section begins with an analysis of features of programming languages and/or ex-
isting reflective kernels that may ease the implementation of Guaran4 upon them. Next,
we present Guarand’s meta-level protocol, namely, meta-objects and composers and the
coupling patterns they induce on meta-objects. Then, we show how these components can
be combined to form meta-configurations. They are the key to the creation of highly co-
herent and loosely coupled—adaptable—implementations of well-structured object-oriented
designs. Finally, we discuss some security aspects of the Guarana reflective architecture.

2.3.1 The kernel of Guarana

'The basic architecture of Guarana, its kernel, can be implemented atop of any software plat-
form, with different levels of difficulty, depending on how close the mechanisms implemented
by the platform are to the mechanisms necessary to implement Guarani.

The kernel realizes the following basic mechanisms: (i} operation interception and reifica-
tion, (ii) dynamic binding and invocation for objects of the meta level, and (iii) maintenance
of the structural meta-information.
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2.3.2 Meta-Objects

We define a meta-object as a compoundable meta-level object responsible for implementing
part of the reflective behavior of an application. Each object may be directly associated
with either zero or one meta-obhject, called the primary meta-object of that object. Iis role
is to observe all operations addressed to its associated object, as well as their results. The
observation is guaranteed by the interception and reification mechanisms implemented in
the kernel.

A class can also be associated with a primary meta-object, that will observe all class-
related operations, and no instance-related ones. Thus, the meta-objects of classes and its
instances are independent of each other. Even if a class is associated with a meta-object, if
some of its instances are not, operations addressed to these instances will not be intercepted.

Software engineering techniques, inclusive object-oriented, recommend the design and
implementation of highly coherent and loosely coupled objects. One of the interesting at-
tributes of Guarand is its support for transparent loose coupling between objects. In
Guarand, unlike most of the other existent reflective architectures, base-level objects do
not refer to their meta-level counterparts; they are not allowed to obtain references to their
meta-objects. Coupling between object and meta-object is supported by the interception and
reification of operations and by a dynamic binding mechanism; the kernel method reconfigure
is responsible for binding objects to their meta-objects.

A primary meta-object inspects operations and reflects upon their contents, returning to
the kernel one of three possible outcomes:

1. a result, that will be regarded by the kernel as if it were produced by the actual
execution of the operation;

2. areplacement operation, that the kernel will deliver to the base-level object, discarding
the original one; or

3. none of the above, i.e., the kernel will deliver the original operation to the application
object.

In the alternatives 2 and 3, where the meta-object does not provide a result, it may signal
to the kernel that it intends to inspect or even to modify the result of the operation. In this
case, after the operation is performed, the kernel will reify its result and present it to the
primary meta-object. At this point, the primary meta-object may perform any appropriate
action. For example, it may compute a different result for the operation, and return it. The
kernel will only accept this modified result if the meta-object had indicated that it would
modify it.
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2.3.3 Composers

Guarani allows multiple meta-objects to be (indirectly) associated with an application
object. This design creates the problem of organizing the flow of intercepted operations
through the meta-objects. A specialized form of meta-object called composer is responsible
for the enforcement of the policies that give structure and order to the flow of operations
delegated to meta-objects.

Composers can be used to group meta-objects that are commonly used together, and
these groups can be composed further, forming recursive, potentially infinite, hierarchy of
meta-objects. These groups can be used as building blocks for setting up complex meta-level
configurations.

We have implemented a simple (yet very useful) type of composer: the sequential com-
poser. It organizes meta-objects in sequence, mostly like a stack: operations are fed to
meta-objects descending in the stack, whereas results are presented in the reverse order to
meta-objects that have requested to inspect them or to change them. Figure 2.3 illustrates
the behavior of a sequential composer.

A concurrent composer might have been implemented too: it would present an operation
to all meta-objects concurrently. Some may generate results or actions that conflict with
those generated by others. In order to cope with this situation a default adjudicator could be
provided: it would raise an exception to signal the conflict. Specializations of this composer
may add decision-making mechanisms to the adjudicator, so that it is able to solve some
conflicts.

Other more specialized composers can be implemented, as well as other generic implemen-
tations that handle conflicts in different ways, or that specify different policies for ordering
the flow of operations forwarded to meta-objects. Composers may also be used to filter
operations that need not be forwarded to certain meta-objects.

To guarantee adaptability, the design of Guarand precludes non-composer meta-objects
of maintaining direct references to other meta-objects. However, meta-objects may have to
interact. To illustrate the need for interaction, consider the case of a persistent aggregate
object. Making the whole aggregate persistent requires the application of the persistence
mechanism to each of the component objects. In this case, the meta-objects of each com-
ponent must communicate to ensure that all components have their state saved to stable
storage. Guarand implements a broadcast operation that can deliver arbitrary messages to
all meta-objects associated with an application object.

2.3.4 Meta—conﬁgﬁration management

When an application starts up, every object has an empty meta-configuration, that is,
no object is subject to reflection. The application may create objects and meta-objects,
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An operation op is intercepted by the kernel and passed to a sequential composer,
that is the primary meta-object of the target object of the operation. Next, the
composer forwards it to meta-object a, that indicates it is not interested in the
result of the operation. Then, to meta-object b, that produces a replacement
operation op2, suggesting it is interested in inspecting its result. Finally, the
replacement operation is presented to meta-object ¢, that returns a request to
modify the result. After the operation is delivered, its result res is presented to
meta-object ¢, that modifies the result to res2. Then, meta-object b is informed
of the replaced result res2, but meta-object a is not. It is interesting to note that
meta-objects a, b or ¢ could be composers themselves, delegating operations to
other meta-objects.

Figure 2.3: Sequential composition of meta-objects
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kernel m:MetaObject c:Composer
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This figure shows an arbitrary object issuing a request to change the primary
meta-object of object 0. The requester intends to have meta-object n as the
primary meta-object of o. However, meta-object m is the primary meta-object
of 0, so it can determine what the new meta-configuration is going to be, possibly
overruling the requester. Meta-object m decides to create a composer ¢, that will
delegate to both m and n, and returns this new composer, that becomes the
primary meta-object of object o.

Figure 2.4: Reconfiguring an object’s meta-configuration
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then associate them, by requesting the kernel of Guarand to reconfigure the object’s meta-
configuration with a given meta-object.

When a reconfiguration request is issued on a reflective object, i.e., one that already has
a non-empty meta-configuration, its existing meta-configuration is requested to determine
the new meta-configuration, based on itself and on the requested meta-configuration. It may
either (i) allow a complete replacement of itself with the suggested meta-configuration, (i)
reject any modifications, (iii) incorporate the suggested meta-configuration, or (iv) create a
completely new meta-configuration, as depicted in Figure 2.4. Note that, when the kernel
invokes the method reconfigure of the primary meta-object, it passes the primary meta-object
itself as an argument. This signals the meta-object it is the root of the reconfiguration that
should take place.

If the object whose meta-configuration was to be reconfigured had an empty meta-
configuration, a message with the object and its suggested meta-configuration will be broad-
cast to the meta-configuration of the object’s class, whose meta-objects may modify the
meta-configuration to be used. The message will also be broadeast to all superclasses of the
object’s class, so that any class will be able to reject or modify reconfiguration requests of
its previously non-reflective instances.

In addition to 2 mechanism to replaces the whole meta-configuration of an object, the
kernel of Guarand provides an additional method that allows the caller to specify which
meta-object should be looked for and replaced. This reconfiguration request traverses the
meta-configuration just like a broadcast message. Each meta-object should check whether it
is the root of the meta-configuration, and decide what to do with regard to the reconfiguration
request accordingly. A meta-object that is not the root of the meta-configuration request
will usually ignore it, returning itself. However, one that is the root should behave just like
the primary meta-object in Figure 2.4. Thus, in order to be able to replace a meta-object,
it is not necessary to know whether it is the primary meta-object or if some composer refers
to it.

Propagation of meta-configurations

‘The meta-level protocol of Guarana defines the way meta-configurations for newly-created
objects are established. Whenever a reflective object ¢ creates another object, say n, just
after the system allocates memory for n, but before it is initialized {constructed), the primary
meta-object of the creator meta(c) is requested to provide a primary meta-object for o.
meta(c) may create a new meta-object, return itself or even an empty meta-configuration. A
composer may delegate the configuration request to its component meta-objects, then create
and return a new composer for n that composes the meta-objects returned by them.

After the meta-configuration of n is established, a NewObject message is broadcast to
the meta-configuration of n’s class. With this mechanism, the components of the meta-
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configuration of a class can affect the meta-configurations of its instances, by issuing recon-
figuration requests.

In addition to the language-defined mechanism to create new objects, the kernel of
Guarana provides a method that creates a proxy object of a given class and associates
it with a specified primary meta-object. This method allocates memory for an object with-
out constructing an actual object there. This is useful for transparent distribution and for
re-instantiating objects previously saved in stable storage.

When a proxy is created, a message of type NewProxy (instead of NewObject) is broadcast
to the proxy object’s class before the suggested meta-object is associated with the proxy
object. Although NewProxy is a subclass of NewObject, these messages may be handled
differently. For example, meta-configurations of certain classes may prevent the creation of
proxy objects by throwing exceptions when presented NewProxy messages.

After the message is broadcast, the kernel of Guarana issues a reconfiguration request,
50 as to set up the suggested meta-object as the primary meta-object of the proxy. However,
during the broadcast, a different meta-configuration may have been established already.

2.3.5 Security

The need for what we call the security model of Guarand, in a reflective architecture,
is the same as for data encapsulation in an object-oriented architecture. By completely
hiding from the base level details of the implementation of the meta level, we help ensure
a proper separation of concerns between the application level and the management level.
Furthermore, by preventing arbitrary interactions of the base level with the meta level, we
make it possible to implement meta-objects and wverify their correctness, no matter what
base-level object they are associated with. For the same reasoning, we forbid meta-objects
from accessing objects they are not associated with.
Some design decisions that support these goals have been exposed already:

e it is not possible to obtain a reference to any meta-object associated with an object,
unless the meta-object itself is willing to provide such a reference;

s it is possible to request for a modification of the meta-configuration of an object without
previous knowledge of any of its component meta-objects, but any modification must
be approved by the existing meta-configuration;

s the meta-configuration of an object defines an execution context that can be propagated
to whatever additional objects this object creates;

¢ aclass is able to prevent instances that would violate internal security constraints from
being created.
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The hierarchical organization of meta-objects in a meta-configuration may be seen as
directed graph, but it is likely to be an acyclic one, and most likely it will be a tree. The
primary meta-object is the root of the tree, and composers are parents of meta-objects
they delegate to. This view suggests a natural definition of a hierarchy of control of meta-
level processing. Meta-objects closer to the root of the tree are able to filter out messages,
operations, results and reconfiguration requests, preventing that they reach untrustworthy
components of their subtrees. Furthermore, in the operation and result handling protocol, a
meta-object that is higher in the hierarchy may decide not to accept a replacement operation
or a result provided by a meta-object lower in the hierarchy.

" There is an additional issue regarding meta-level security, that has to do with the ability to
create meta-level representations of operations addressed to a base-level object. In principle,
only component meta-objects of the meta-configuration of an object should be able to create
operations addressed to that object. On one hand, this provides an apparently reasonable
security constraint that prevents any object from gaining privileged access to any other
object. On the other hand, this model may be excessively restrictive on some situations,
because such meta-objects might prefer to delegate their security privileges to other meta-
level objects. Furthermore, this model would provide an all-or-nothing authorization control:
the meta-objects of an object would be able to create any operation addressed to the base-
level object; that might be undesirable if we would rather restrict the set of operations
available for meta-objects.

Given this analysis, we have come up with a solution based on operation factories. The
primary meta-object of an object is given an operation factory, an object that is capable of
creating any operation addressed to the base-level object the meta-object is associated with.
It may distribute this operation factory to other meta-objects it delegates to, or to other
meta-level objects that may need to create operations addressed to the base-level object.
However, it may create another operation factory that refuses to create certain kinds of
operations, but that delegates valid requests to the operation factory it had access to. Then,
it may distribute such restricted operation factories to its sub-meta-objects.

With this model, the mechanism that controls the creation of operations resembles the
hierarchy of meta-objects, without requiring lower meta-objects to have references to higher
ones. A similar mechanism for result objects is not necessary, since results are always re-
turned by lower meta-objects to higher ones, whereas operations may be created and per-
formed.

An important fact to note is that an operation created in the meta-level is never per-
formed unless the primary meta-object associated with its target object determines so, when
requested to handle it. This is important because, even if an operation factory becomes
invalid—it does so whenever the primary meta-object changes—, an evil meta-object might
have created an operation while the operation factory was still valid. This operation will
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not be delivered to the target object before it is handled by the current object’s meta-
configuration. If the primary meta-object of a meta-configuration changes while an opera-
tion is being handled, an abort result will be presented to the previous primary meta-object,
and the operation handling is restarted with the new primary meta-object.

It is possible to create invalid operations—that refer to inexistent methods or fields, or
whose types or argument counts do not match the expected ones. Such operations might
have been rejected at operation creation time, but we decided to postpone this verification
to the moment just before the operation is delivered, or whenever a meta-object requests
so. The rationale is that one may create additional pseudo-fields or pseudo-methods in an
iject, that are only accessible from the meta level. Such invalid operations will never be
delivered to the target object: meta-objects should create suitable results or replacement
operations but, if they do not, the operation will fail, and its result will be an exception
indicating this failure. This feature has proven to be useful for creating pseudo arrays
that map into databases, for providing advanced overload resolution mechanisms and for
sharing data among meta-objects in a safer way than using broadcast messages—because
only the components of the meta-configuration or objects authorized by them may create
such operations.

An operation factory can be used to create do-nothing operations, that act as mere
placeholders until they reach a particular meta-object that replaces it with another operation.
This makes it possible for a meta-object to create an operation that will only be observed
by meta-objects that are placed after itself in a sequence of meta-objects.

2.3.6 Libraries of Meta-Objects

The meta-level protocol of Guarana was designed in a way that makes it possible to cre-
ate libraries of meta-objects that implement specific meta-level behaviors, and to easily
compose them into complex meta-configurations. A good example of this is MOLDS, a
Meta-Object Library for Distributed Systems, that provides meta-objects for persistence,
distribution, replication, atomicity and migration. Guarand and MOLDS are parts of a
larger project [10].

2.4 Conclusions

As a response to technological changes, such as the massive use of microprocessors, fast
networks and bit-mapped monitors, the software engineering process has moved from the
traditional sequential software production paradigm to an evolutionary model of software
development. The sequential approach will remain applicable to those problems in which
requirements are well defined and complexity is relatively low. Problems that do not fit
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into this category will very likely be subject to an adaptative or evolutionary software engi-
neering process. Object-orientation, openness and computational reflection offer promise of
shortening development cycles through reuse/adaptation of software developed and tested in
the previous iteration of the evolutionary development process. Guarand has been designed
to take the benefits of open and reflective software architectures a step further. We have
studied existent open software architectures and determined that they could be improved
through the use of composers and meta-objects that allow the implementation of highly
coherent and loosely coupled software [46]. Composers and meta-objects form a framework
that allows software developers to map a loosely-coupled and highly-coherent object model
into an implementation that preserves these properties. The preservation of structural and
communication properties in the implementation is essential to facilitate the application of
the evolutionary software engineering techniques.

We have implemented this software architecture by modifying the Kaffe OpenVM™,
an implementation of the Java Virtual Machine Specification [36] whose source code is dis-
tributed under the GNU General Public License. The Java programming language, on the
other hand, has not been changed at all: any program created and compiled with any Java
compiler will run on our implementation, and it will be possible to use reflective mechanisms
in order to adapt and/or extend them.



Capitulo 3

Implementacao

Prdlogo

No artigo a seguir, descrevemos concisamente a arquitetura de software do Guarand e
as classes utilizadas em sua implementagdo na linguagem Java; mais detalhes podem ser
inferidos a partir do tutorial do Capitulo 4 ou obtidos explicitamente na API disponivel na
home-page do Guarand, no endereco http://www.dcc.unicamp.br/~oliva/guarana.

Em maior grau de profundidade, relatamos as alteragoes efetuadas sobre o Kaffe, uma
méaquina virtual Java de distribuigao livre, para que ele oferecesse suporte para interceptagio,
materializacéo e criagdo de operagdes, conforme a especificacio do Guaran4, descrita no
Capitulo 2. Apresentamos também algumas medidas comparativas de desempenho, toma-
das a fim de avaliar o impacto do cédigo de interceptagio sobre o tempo de execugdo das

operagoes.

Uma nova versado deste artigo, com dados mais atualizados, serd publicada como relatério
técnico 1C-98-32.
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Abstract

Guarana is a reflective architecture that aims at simplicity, flexibility, security and
reuse of meta-level code. Tt is implemented as an extension of Kaffe OpenVM ™M, 5
free implementation of the Java'™ Virtual Machine.

We describe the Java classes that implement the meta-object protocol of Guara-
nd, and the modifications introduced in the virtual machine to intercept and reify of

operations.
Finally, we evaluate the performance impact of our modifications, and suggest some

optimizations that may be implemented in the future.

3.1 Introduction

Guarana is a software architecture for computational reflection [38, 51] that introduces a
runtime meta-object protocol that allows for dynamic compositicn of meta-objects in order
to build up potentially complex meta-level behavior. This leads to the development of
simple, coherent meta-objects. The possibility for their composition improves code reuse.
The fact that this composition can be established and modified at run time, on a per-object
basis, makes (Guarana flexible. Finally, its meta-object protocol provides controlled access
to the meta-level of an object, helping separate meta-level from base-level concerns, just
like encapsulation helps with the separation of interface from implementation in the object-
oriented paradigm.

*Islene Calciolari Garcia recebeu auxilio da FAPESP através da bolsa 95/1983-8.
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In the next section, we briefly describe the reflective architecture of Guarand. Section 3.3
contains a description of our implementation of this architecture, extending a freely-available
Javal Virtual Machine. In Section 3.4, we present some figures about the impact of Gua-
rand on the performance of applications, then we list some possible future optimizations in
Section 3.5. Finally, in Section 3.6, we summarize the main points of the text.

3.2 Reflective Architecture

This section assumes familiarity with concepts pertinent to computational reflection. Al-
though not strictly required, some familiarity with Guaran4 is desirable, as this section
serves only to introduce Guarand in a very concise manner. For a detailed explanation,
please refer toChapter 2.

Any object may be directly associated with at most one meta-object, called its primary
meta-object. If such an association exists, the kernel of Guarand will intercept and reify all
method invocations and field accesses made to the base-level object and present them to the
associated primary meta-object. This meta-object may reply with a result for the operation,
a replacement operation—to be performed instead of the requested one—, or a request to
observe or modify the result of the operation (or its replacement), after it is performed.

One of the actions that a meta-object may take when dealing with an intercepted oper-
ation or result is to delegate it to other meta-objects. When a meta-object plays the role of
delegator, it is called a composer. Composers have a central role in the reflective architecture
of Guarana: they are fundamental to allow the combination of several autonomous meta-
objects into a meta-configuration. As composers are themselves meta-objects, they may be
composed further, in a potentially infinite hierarchy. Furthermore, every meta-object, just
like any other object, can have its own meta-configuration, in another potentially infinite
orthogonal hierarchy.

There is no way for an object to find out what meta-object is its primary meta-object.
This impossibility is intentional: we believe that an object should not interact with its meta-
ohjects; it should not even be aware of their existence, otherwise the separation of concerns
between the levels would be broken. The meta level, on the other hand, is responsible for
controlling the base level, so a meta-object does know what objects are associated with it.

Meta-ohjects have privileged access to objects whose meta-configurations they belong to.
They can create operations that violate standard access control by using operation factories,
distributed whenever a meta-object is associated with the base-level object, and invalidated
as soon as the primary meta-object is replaced.

The composition structure determines a hierarchy of authority and control over the base-
level object. The primary meta-object is the highest authority, so it is able to restrict the

1Java is a trademark of Sun Microsystems, Inc.
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ability of their components to create operations or set their results. The identity of the
primary meta-object of an object is protected, so as to prevent this hierarchy from being
subverted. Thus, a meta-object is usually unable to tell whether it is the primary meta-object
of an object, since it is possible for a composer to hide from its components, by interacting
with other meta-objects just like the kernel of Guarand would.

Reconfiguration requests are also subject to the approval of the existing meta-configura-
tion. It is possible to request for the replacement of subsets of the meta-configuration of an
object, and it is up to the existing meta-configuration to determine the new meta-configu-
ration, that may be any combination of the requested meta-configuration with the existing
one.

The meta-configuration of a class can affect the meta-configuration of its instances in
two situations: (i) when a reconfiguration request is issued to an object that lacks a meta-
configuration, the meta-configuration of its class and of its base classes will be given the
opportunity to inspect and modify the requested meta-configuration, and (ii} when an object
is instantiated, the meta-configuration of the creator is requested to provide a meta.éconﬁgu-
ration for the new object, then the meta-configuration of the class of the new object is given
the opportunity to try to reconfigure it.

These two kinds of interactions with the meta-configuration of an object use a general
mechanism: broadcasting a message to all components of the meta-configuration of an ob-
ject. This allows for communication between meta-objects without requiring explicit mutual
references, and allows the inter-meta-object protocol to be extended without modifications
to the interface of class MetaObject.

3.3 Implementation

Most of Guarana was coded in Java, but some modifications in the Java Virtual Machine
were needed, in order to provide for interception of operations such as invocation of methods,
read /write from/to fields and array elements, creation of objects and arrays, entries and exits
from monitors.

In the next section, we describe the classes that implement the reflective architecture of
Guarand. Then, we list the modifications we have introduced in Kaffe OpenVM, a free?
implementation of the JVM developed at Transvirtual Technologies, so that it supports our
reflective architecture.

2The Kaffe OpenVM is distributed under the terms of the GNU General Public License.
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3.3.1 Classes and Interfaces

All the classes used in the implementation of Guarand are defined in the package BR.
unicanmp.Guarana.

Guarana

Class Guarana represents the kernel of Guarand. It provides methods for modifying meta-
configurations of objects (reconfigure}, broadcasting Messages to components of a meta-
configuration {broadcast), creating proxy objects (makeProxy) and performing operations
(perform). This last method is invoked as part of the interception mechanism: it runs the
operation handling protocol, i.e., it presents the reified operation to the primary meta-object
of the target object, delivers the operation to the target object, then, if requested, presents
the result to the primary meta-object.

Internally, some private native methods are used for obtaining and modifying the
primary meta-object of an object, and for delivering an operation to its target object.

Some standard Object methods would be useful for gathering information about base-
level objects from the meta-level. However, if meta-objects would invoke them directly,
these invocations would be intercepted, but then the meta-object might decide to invoke
the method again, and infinite recursion would result. Thus, the kernel of Guarana offers
alternate implementations of some of these methods, such as toString, hashCode and getClass.
They take a reference to a base-level object and produce the result that would be produced
by the invocation of the standard implementations of these methods, but they do not interact
with the base-level object, removing the risk of infinite recursion. A method getClassName,
that obtains the name of a given class, is also provided.

Operation

Every base-level operation addressed to an object or class whose meta-configuration is non-
null is reified as an Operation object. This class is mostly implemented in native code, for
performance reasons: it would be too expensive to wrap every non-object argument type
into an array of arguments.

This class provides methods for querying the operation about its nature (i.e., method or
constructor invocation, field read or write, monitor enter or exit, array length read or array
element read or write} and arguments (i.e., the target object, the Thread that created the
Operation, the method or eonstructor to be invoked, or the field or array index to be read or
written, and the invocation arguments or the value to be written).

There are methods for validating and performing operations. The former checks whether
an operation is consistent and can be performed in the base level (because it is possible to
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create inconsistent operation objects); the latter dispatches the operation for interception,
validation and execution.

This class also provides operations for checking whether an operation is a replacement
operation and what operations are directly or indirectly replaced by it.

An implementation of method toString, that fully describes the operation, is also pro-
vided.

Result

A Result object is implicitly created by the kernel of Guarand after an Operation is executed.
It provides methods for querying what Operation it refers to, as well as what is the actual
value of the result.

However, results can also be created by MetaObjects to modify the result of an operation,
by invoking the static methods returnT (where T is Object or a primitive type name) or
throwObject. If the kernel of Guarana receives a Result of the throwObject variant as the
result of an Operation, it throws or rethrows the contained Throwable, instead of returning
control to the caller.

Result objects serve yet another purpose: they can be used by MetaObjects to replace
operations, and to request permission to observe or modify the result of an operation after it
has been performed. This kind of Result will usually be created and returned by a MetaObject
as it handles an Operation.

This class is also irnplemented mostly in native code, in order to avoid as much as possible
wrapping primitive types.

MetaException

Whenever the interception of a base-level operation terminates by throwing an exception,
the kernel of Guarana creates a MetaException to encapsulate it. Since MetaException is a
subclass of RunTimeException, it can propagate through methods that have not declared it.

MetaObject

The class MetaObject is the root of the class hierarchy for every possible implementation of
meta-object. Methods for initialization (initialize) and termination (release), interception of
Operations, Results and Messages (handle), reconfiguration {(reconfigure) and configuration of
new objects (configure) can be overridden by its subclasses.

Although MetaObject is an abstract class, because its instances would not do anything
useful, there are no abstract methods. All methods implement reasonable defaults, so that
subclasses can focus on relevant methods only.
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Composer

A Composer is 2 meta-object that delegates operations, results and messages to other meta-
objects. Thus, it extends class MetaObject by adding two other methods, used to query
the Composer about which MetaObjects it delegates to. Subclasses may specialize method
getMetaObjectsArray so that it returns an array containing all MetaObjects it may delegate
to.

A very inefficient implementation of the previous method is provided, based on the Java
Enumeration returned by the abstract method getMetaObjects. Subclasses must implement
this method, so that the returned Enumeration iterates on all MetaObjects it may delegate
to. However, since an Enumeration may contain arbitrary Objects, some of them may be
used to provide additional control information about how and when the Composer delegates
to particular MetaObjects. However, there is no standardized form of control information.

SequentialComposer

This is a simple specialization of Composer that maintains an array of MetaObjects, and
delegates Operations and Messages (see below) to them sequentially. Results are also delegated
sequentially, but in the reverse order.

Besides implementing the standard MetaObject and Composer methods, SequentialCom-
poser provides static methods for delegating operations and results to subsets of a meta-
object array, as well as for configuring new objects.

Message

This is a Java interface that provides no methods at all. Only instances of classes that
implement this interface can be used as arguments to method broadcast of the kernel of
Guaranj, to exchange information with components of the meta-configuration of an Object.

This restriction was imposed to prevent arbitrary Objects from being broadcast to meta-
configurations. By requiring classes to be defined for new types of message, we avoid possible
ambiguities that might have arisen if implementors of different MetaObject had adopted
different meanings for predefined classes.

NewObject

This is an implementation of Message that stores a reference to an Object. An instance of
this class is created by the kernel of Guarand as part of the Object creation process, if the
instantiated class has a null meta-configuration.

After an Object is allocated and the meta-configuration of its creator determines its meta-
configuration, but before the constructor of the object is invoked, a NewObject Message is
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broadcast to the meta-configuration of the class of the new Object, so that the meta-config-
uration of the class can try to affect the meta-configuration of its instances.

The class NewObject implements a single method, that returns a reference to the newly-
created Object.

NewProxy

Just after creating a pseudo object, the method makeProxy of class Guarana creates a New-
Proxy Message and broadcasts it to the meta-configuration of the instantiated class. NewProxy
is.a subclass of NewObject, whose broadcast allows meta-configurations of classes to reject
the creation of proxy Objects by throwing RunTimeExceptions.

If the broadcast terminates successfully, method makeProxy will issue a reconfiguration
request to install the meta-object suggested by its caller as the primary meta-object of the
created proxy.

InstanceReconfigure

The kernel of Guarani broadcasts a Message of this class to the class of an object, as well
as to its superclasses, when it is asked to replace the primary meta-object of an object, but
the meta-configuration of the object is null.

Class InstanceReconfigure provides methods for obtaining references to the object and to
the suggested primary meta-object, as well as for modifying the suggested primary meta-
object.

After the Message is broadcast to the meta-configuration of all classes up to root of the
class hierarchy, the meta-object in the InstanceReconfigure Message is installed as the primary
meta-object, unless it has become null.

OperationFactory

An OperationFactory is associated with a single base-level Object, and it can be used by
a MetaObject to create Operations addressed to that Object. OperationFactories provide
methods for obtaining a reference to the base-level Object and for creating method and
constructor invocations, monitor enter and exit, field read and write, array length read,
array element read and write, and a special do-nothing operation placeholder (nop).

Operations can be created as replacement or stand-alone ones. In the former case, the
Operation to be replaced must be provided as an additional argument, and some validation
is performed. In the latter case, an Operation that can be performed independently of any
other is created.
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OperationFactoryFilter

This class specializes OperationFactory, so that it delegates operation creation requests to
another OperationFactory. Its methods can be overridden so as to restrict the set of Operations
that can be created.

HashWrapper

Hashtables are a powerful feature of Java, but using them for mapping base-level objects
to meta-level data such as operation factories, pending operations, etc, requires some care,
because the implementation of Hashtable invokes key object methods such as hashCode and
equals.

In order to avoid unintended interactions with base-level objects, a meta-level object
should wrap them with HashWrappers, that implement methods hashCode and equals with-
out invoking methods on the base-level object. Note that, if the base-level object specialized
any of these methods, the specializations would be disregarded, because HashWrapper simu-
lates the standard implementations of hashCode and equals. A standard implementation of
toString is offered too.

3.3.2 Changes to the Java Virtual Machine

In this section, we describe the modifications we have introduced in Kaffe OpenVM, for it
to support Guarana.

First of all, every Object had to contain a reference to its MetaObject. For the sake
of a simpler implementation, we have decided to add a field to the native description of
class Object, instead of trying to encode this reference in modified class descriptors. The
main drawback of this approach is that every object is augmented by one word; the main
advantage is that checking whether an object is reflective or not (i.e., is associated with a
non-null meta-configuration or not} is fast.

Classes are also Objects, thus they may also be associated with MetaObjects. The meta-
object associated with a class will receive operations addressed to the class object itself, as
well as operations involving static methods or fields of the class it represents. The reason
for this unification is that synchronized static methods acquire locks on the class object.
Therefore, if the meta-configuration of a class object could be different from the meta-conf-
iguration that handles static operations of the corresponding class, the semantics of class
monitors in Java would not have been properly modeled in the meta level.

The meta-object reference is hidden from Java programs; it is only accessible in the
implementation of the kernel of Guarana and in native code.

The bytecodes that originally just invoked non-static methods now check whether the
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target Object is associated with a MetaObject. If it is, after performing dynamic binding,
a method invocation Operation is constructed and performed, that is, operation handling,
actual execution and result handling take place. The yielded Result is then un-reified. The
bytecode used to invoke static methods was also modified, so that the Operation is inter-
cepted only if the class is associated with a MetaObject.

Bytecodes that used to read from and write to fields were changed so that, if the Object
(for non-static fields) or the class (for static fields) is associated with a MetaObject, the
Operation is intercepted.

 Bytecodes used for indexing arrays, both for reading and for writing, as well as the byte-
code for obtaining the length of an array, have been extended so that the array MetaObject
can intercept such Operations.

The bytecodes that allocate memory for Objects and arrays were changed so as to support
interception of object creation. After they allocate memory for the new Object, they request
the primary MetaObject of the creator of the new Object to configure it, a mechanism we
have named meta-configuration propagation.

The creator of an Object is determined based on the method in which the object allocation
bytecode appears. If it is a static method, the creator is the Class in which the method is
declared. Otherwise, the creator is the Object referred to by the keyword this, within that
method invocation.

After the new Object is configured, a NewObject Message is broadcast to the meta-config-

uration of the Class of the new Object.
Monitor-related bytecodes, as well as implicit entries and exits of object or class monitors
in synchronized methods, have been extended so that these Operations can be intercepted.

In addition to bytecodes, the native implementation of the Java Core Reflection API
and of the Java Native Interface had to be modified to support interception.

3.4 Performance

We have run some performance tests to try to evaluate the impact of introducing reflective ca-
pabilities into a Java interpreter. Our tests have been performed on four different platforms:
a single-processor 167 MHz SPARC Ultra 1 running Solaris 2.6, a dual-processor 200 MHz
SPARC Ultra Enterprise 2 running Solaris 2.5, a 100 MHz Pentium running RedHat Linux
5.0, and a 233 MHz Pentium Pro running RedHat Linux 5.0.

On each host, we have run the same Java program, under different interpreters and
configurations. A description of each configuration follows:

KJ- Kaffe just-in-time (JIT) compiler without Guarand.
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KJG Kaffe JIT compiler with Guarana.
JOK Sun Java Development Kit {JDK).
KI- Kaffe interpreter without Guarand.
KIG Kaffe interpreter with Guarand.

KJN Kaffe JIT compiler with Guarana, intercepting all operations with a do-nothing meta-
object.

KIN Kaffe interpreter with Guarand, intercepting all operations with a do-nothing meta-
object.

KJM Kaffe JIT compiler with Guaran4, intercepting and logging all operations, results,
messages, initializations and configurations with a Metalogger.

KIM Kaffe interpreter with Guaran4, intercepting and logging all operations, results, mes-
sages, initializations and configurations with a Metalogger.

Metalogger is an example of MetaObject, distributed with Guaran4, that logs a message
to the standard output every time one of its methods is invoked. Tt is useful for observing
the behavior of base-level objects associated with it.

We have used Kaffe 0.10.1, Guaran4 1.3,® and Sun JDK 1.1.6 (the official Solaris version
and the Linux port). Kaffe and Guarana were compiled with EGCS 1.0.3a, with default
optimization levels.

For each configuration, we have timed several different operations. Each operation was
timed by running it repeatedly inside a loop, with an iteration count large enough for elapsed
time in the loop to be greater than 1 second. Each test was run 50 times on each configuration
and platform, and the presented values are the average of the runs. All figures are given in
seconds. A change in the order of magnitude of the averages obtained is indicated by shifting
the figures to the left. As an example, observe Table 3.1. The program used to perform the
tests is a slightly modified version of the one distributed with Guarand 1.3.

We have also measured and averaged the compilation time of the test program itself, in
the configurations that do not involve meta-objects, so as to estimate the overall performance
impact on a real application caused by introducing the ability to intercept operations, without
actually intercepting them.

Section 3.4.19, page 46, contains a summarizing analysis of the data obtained during the
tests. In that section, Table 3.18 and Table 3.19 are used to present a less fragmented view
of the test data obtained so far.

Actually, both Kaffe and Guarana were updated to the snapshot of Kaffe released on June 27, 1998,
because this fixed a bug that would cause the Kaffe interpreter (without Guarana) to crash on x86, while
running the compilation test. This update did not introduce any other significant change.
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3.4.1 Empty loop

This test consists exclusively of a loop that decrements a variable until it becomes zero. It
does not trigger any reflective mechanism, as it only deals with a variable local to a method.
We have included the average times for the empty loop (Table 3.1) because they can be used
as a benchmark for the other tests, as they are also based on measures of the time consumed
by a loop that executes the block of instructions pertinent to this test. The times shown in
Table 3.1 correspond to the time for a single iteration in the loop.

Table 3.1: Empty loop

Conf 1586 1686 sparc ultral | sparc ultra2
KJ- 3.1le-8| 22e-8 6.0 e—8 5.0e—8
KJIG 3.1e-8 2.3 e-8 6.0 e—8 9.0 e—8
JDK 2.2 e-T7|20 e-7 3.0 e-7 2.5 e-T7
KI- 9.2 e~-7|585 e-7 6.2 e—-7 5.2 e-7
KiG | 1.0 e—6 [ 6.0 e-7 6.3 e—7 5.2 e-7
KJN 31e-8| 28e-8 6.0 e—8 5.0 e—8
KIN | 1.0 e—6 {59 e-7 6.3 e-7 52 e-T7
KIM 31e-8| 2.7e-8 6.0 e—8 5.0 e—8
KIM | 1.0 e—6 |59 e-7 6.3 e—T 5.2 e-T7

3.4.2 Empty synchronized block

The figures presented in Table 3.2 correspond to the time needed to enter and exit an
object’s monitor in a loop iteration. In the tests that involve meta-objects, both operations
are intercepted.

Introducing interception ability in these two operations did not require modification to
the definition of bytecodes, as Kaffe implemented monitorenter and monitorexit by calling
C functions through preprocessor macros lockMutex and unlockMutex. These macros were
also called just before entering and exiting a synchronized method.

We just had to redefine these macros so that alternate functions were called. These
functions test whether the object passed as argument is associated with a meta-object or
not. If it is, a monitor enter or exit operation object will be created, and perform of the
kernel of Guarana will be invoked to intercept it. If the meta-object reference in the object
is null, the original lock or unlock function will be called.
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Table 3.2: Empty synchronized block

Conf 1586 i686 sparc ultral | sparc ultra2
KJ- 25e—6 1.2 e-6 3.7 e—6 3.1e-6
KJG 2.8 e—6 1.3 e~6 4.1 e—6 3.4 e—6
JDK 2.9 e—~6 1.4 e—6 1.9 e~6 1.5 e—6
KI- 5.7 e—6 3.0 e—6 3.9 e—b6 49 e—-6
KIG 5.8 e—6 3.3 e—6 6.7 e—6 7.1 e—6
KJIN 28 e—4{ 13 e—-4 25 e—4 20 e—4
KIN 85 e-4| 28 e—4 41  e—4 39 e-4
KJIM 4.3 e—3 ] 1.6 e—3| 29 e—3| 2.0 e—3
KIM | 2.4 e—2 | 8.9 e—3J | 1.1 e—2 | 1.0 e—2

3.4.3 Invoking av static method

The numbers presented in Table 3.3 represent the amount of time spent on an invocation of
a static method that takes no arguments, and returns void. In the last four cases, the class
that declares the method is reflective, so the invocation is intercepted. In order to be able to
intercept this kind of invocation, we had to modify the definition of bytecode invokestatic.

Table 3.3: Invoking a static method

Conf i586 1686 sparc ultral | sparc ultra2
KJ- 1.4 e-7 1.0 e-7 1.9 e-7 1.5 e-7
KIG 2.2e-T7 1.2 e-7 2.5 e—T 2.1 e-7
JDK 3.1e-7 1.8 e-7 3.8 e-T7 3.2e-7
KI- 89 e—6 3.8 e—6 6.3 e—6 486 e—6
KIG 78 e—6 4.0 e—6 5.8 e—6 50 e-6
KJIN 1.8 e—4 7.4 e—5 1.4 e—4 9.1 e—5
KIN 4.1 e—4 1.5 e—4 2.3 e—4 2.1 e—4
KJM 2.6 e—3| 1.1 e—31|20 e-3 [ 1.1 e—3
KIM | 1.2 e—2| 4.1 e=315.3 e-3 (489 e—3

In the interpreted case, before invoking recursively the interpreter function to run the
static method, the bytecode would check whether the class whose method is to be invoked
is reflective, i.e., if it is associated with a meta-object. If not, normal execution proceeds,
otherwise a generic method invocation reification function is invoked. This function takes a
pointer to the target object (in this case, since the method is static, this pointer is null),
a pointer to the structure that describes the method to be invoked, a pointer to the top of
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the stack, onto which the arguments have been pushed, and a pointer to the stack slot where
the return value should be stored.

This function tests again whether a meta-object is associated with the target class (or
object); in general, a meta-object will be found, and an operation object representing the
method invocation will be created and performed. In order to create the operation object,
the argument list must be copied, so we must first parse the signature of the method in order
to find out how many stack slots the argument list takes, so that we do not copy too much
or too little. After the execution of the operation, the result is stored in the provided stack
slot.

* In the case of the Jjust-in-time compiler, native code is generated so that, before pushing
the method arguments onto the stack, the target class is tested for the existence of a meta-
object. If the method does not need to be intercepted, normal method invocation takes
place, otherwise, arguments are pushed onto the stack with an offset of two words, so that a
reference to the method to be called and a reference to the target object (null, in this case)
can be passed as the first two arguments. Then, an interception function is selected, based
on the return type of the called method.

These interception functions all call a generic method invocation function provided by
Kaffe. This function tests if the target class {or object) is reflective, and generates a direct
invocation of the target method or an invocation of yet another interception function, but
now a generic one. This function takes a pointer to the target object’s meta-object, a
pointer to the target object, a pointer to the method to be invoked, a va_1ist* containing
the arguments to be passed to the method, and a pointer to a union where the result of the
method should be stored. This function assumes the meta-object pointer is non-null, so it
always reifies the invocation. First, it parses the method signature to find out how many
stack slots it takes, then it allocates a memory area of appropriate size, then it copies the
method arguments into this area, parsing the signature again to use the appropriate types
to read the argument values from the va_list.

After the operation is performed, the result is stored in the provided union. The generic
method invocation function returns this value as a union, and the type-specific interception
function extracts the correct return value from this union and returns it.

3.4.4 Invoking a private method

Table 3.4 shows the cost of invoking a non-static private method of a potentially reflective
object. The invokespecial bytecode, used in this kind of invocation, is also used for
invoking constructors and, in some cases, final methods. It is the fastest non-static
invocation because it is statically bound. The invoked method, in our test case, has no
arguments besides the implicit this, and returns void.

1A va_list is a standard C structure that allows a function to accept a variable number of arguments.
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Table 3.4: Invoking a private method

Conf i586 i686 sparc ultral | sparc ultra2
KJ- 1.6 e—7 1.1 e-7 2.0e-T7 1.7 e—7
KJG 2.8 e—7 1.4e-7 25e-7 2.1 e-7
JDK 3.7 e—7 21e-7 4.7 e—7 3.9 e-7
KI- 9.4 e—6 39 e-6 52 e—6 44 e—6
KIG 7.2 e—6 42 e—6 54 e—6 46 e—6
KJIN 2.8 e—4 7.0 e=5| 1.0 e—4 9.8 e—5
KIN 4.6 e—4 1.5 e—4 2.4 e—4 2.1 e—4
KJM 6.4 e—31]1.0 e—3 1|23 e—31}114 e—3
KIM | 1.8 e—215.1 e—3 | 7.0 e—3]6.2 e—3

The implementation_of this bytecode was modified almost exactly as the previous one,
as the address of the method to be called is also known at JIT-compilation time. The only
difference is that, instead of passing null as the place-holder for the pointer to the target
object, the actual target object is passed.

3.4.5 Invoking a non-final method

Non-private non-static methods declared in classes (i.e., not in interfaces) are dynam-
ically bound on a per-object basis. Kaffe implements dynamic binding using a per-class
dispatch table, so that the element of the dispatch table corresponding to an overridden
method points to the most derived overrider. In Table 3.5, we present the amount of time
spent on invoking, with the invokevirtual bytecode, a do-nothing method that takes only
the implicit this argument and returns void.

The greatest difficulty for intercepting this bytecode was that, in JIT compiler mode,
the dispatch table only contained pointers to the native code generated for each method,
but Guarana needed pointers to the structures that describe methods. So, we modified
the format of the dispatch table, so as to accommodate our needs: it has become twice as
large, in JIT mode, because it contains pointers both to the native code and to the method
structure. If the target object is not reflective, the pointer to native code is loaded from
the dispatch table, otherwise, the pointer to the method structure is used to intercept the
method invocation, just like in the other invocation bytecodes.
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Table 3.5: Invoking a non-final method

Conf 1586 1886 sparc ultral | sparc ultra2
KJ- 1.2 e-6 9.3 e—7 5.9 e—7 5.0 e—7
KJG 1.1 e—6 4.0e-7 6.3 e—7 5.3 e—7
JDK 7.9 e—7 5.9 e-7 79e~7| 6.5 e—7
KI- 1.0 e—5 42 e—6 5.9 e-6 49 e-6
KIG 1.2 g—> 46 e—6 6.2 e—6 54 e—6
KJN 1.8 e—4 7.2 e—>5 1.2 e—4 1.2 e—4
KIN 4.4 e—4 1.5 e—4 2.3 e—4 2.0 e—4
KM 3.0 e—3 9.6 e—4 | 2.1 e—3 [ 1.4 e—3
KIM [ 1.5 e—215.1 e—3 174 e—3 | 6.3 e—3

3.4.6 Invoking an interface method

When the static type of an object (i.e., the type known at compile-time) is an interface
one, the bytecode used for a method invocation is invokeinterface. Dynamic binding is
much more expensive than in the invokevirtual case, because interface methods cannot
share a common index in a dispatch table. Hence, for every invocation, the requested method
name and signature must be looked up in the object’s class, as well as in its superclasses.
Although, in our example, dynamic binding ends up selecting the same method of the object
used in the previous test, the dynamic binding takes much longer, as we can observe in

Table 3.6.
Table 3.6: Invoking an interface method
Conf 1586 i686 sparc ultral | sparc ultra2
KJ- 26e—6 1.1e-6 1.9 e—6 1.6 e-6
KJG 2.7 e—6 1.2 e—6 20 e-6 1.7 e—6
JDK 14 e—86 1.1e—6 9.9 e-7 8.2e—7
KI- 14 e-5 52e—6 86 e—6 6.4 e—6
KIG 1.2 e-5 5.5e—6 80 e-6 7.0 e—6
KJN 2.2 e—4 7.3 e-b 1.5 e—4| 1.1 e—4
KIN 4.6 e—4| 1.6 e—4 | 2.3 e—4j 2.1 e—4
KIM 3.0 e-3| 96 e—4|138 e-3| 1.5 e—3
KIM | 1.6 e—2 | 5.2 e—3 | 7.6 e—3 | 6.3 e—3

Once again, the data provided by the JIT compiler runtime was not enough for intercept-
ing method invocations correctly: the function that would look up the interface method




J.4. Performance 37

and signature in the object’s class and its superclasses would return a pointer to the native
code of the selected method, but we needed a method structure. Thus, we have modified
the look up function, so that it would return the method structure and, if the method did
not have to be intercepted, we would load the address of the native code from the method
structure, just as the look up function would have done.

3.4.7 Loading a static field

In Table 3.7, we show how long it takes to load the value of a static int variable from of
a potentially reflective class into a local variable.

Table 3.7: Loading a static field

Conf i586 i686 sparc ultral sparc ultra2
KJ- 1.1e-7 3.2 e—8 6.6 e—-8 5.5 e-8
KIG 2.0 e~7 6.3 e~-8 1.9 e-7 1.6 e-7
JDK 3.3 e—7 2.8 e-7 46 eo-7 3.8 e-7
KI- 31 e—8 1.6 e—6 2.1 e—B 1.7 e—6
KiG 3.2 e-6 1.8 e—0 2.1 e—6 2.3 e—6
KJN 1.7 e—4 6.5 e—5H 1.2 e—4 9.5 e—9
KIN 4.0 e—4 1.4 e—4 2.1 e—4 1.9 e—4
KJM 2.3 e—3 6.9 e—4 | 1.6 e—-3| 1.1 e—3
KIM | 1.2 e—2 | 3.7 e—3 5.7 e—3 | 4.8 e—3

The Kaffe interpreter implements the getstatic bytecode by looking up the address of
the field in the field description structure and pushing its value onto the stack. A switch
statement selects the appropriate number of stack slots to allocate and the size of the data
to be copied. Moving the loaded value from the stack to the local variable takes another
bytecode, that is not modified at all.

For the getstatic bytecode to support interception, we have inserted the meta-object
test just before the switch statement; if no meta-object is available, the original code is
executed, otherwise, we run another switch statement that just allocates stack space for the
field to be loaded, and call a generic field load interception function, passing to it a pointer
to the class’ meta-object, a pointer to the class structure, a pointer to the class where the
field is declared (that is the same as the previous one, but is needed for non-static fields),
a pointer to the field structure, and a pointer to the stack slot where the value of the field
should be stored. This function assumes the meta-object is non-null, so it just creates an
operation object and performs it, storing the result of the operation into the provided stack
slot.
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The JT compiler is much faster, as it encodes the address of the field in the generated
code, and it selects the appropriate load and store instructions at compile-time. Furthermore,
the value loaded into a register needs not be immediately stored in the stack frame, if it
is going to be used in some other computation. Due to limitations in the JIT compiler,
though, the register that represents the Java stack slot cannot be the same that represents
the local variable: they represent different native stack slots. Furthermore, sooner or later,
the registers have to be spilled onto their native stack slots, even if they are not going to be
used in the future: Kaffe does not currently perform any kind of global analysis.

Introducing interception abilities in this bytecode has a rather high cost, because the test
for meta-object introduces new basic blocks in the program. Since Kaffe does not perform
global register allocation, it resets the state of all registers at the beginning of every basic
block and spills them all at block’s end. A simple optimization has allowed us not to reset
the register states before the field load operation, despite the branch just before it, but,
nevertheless, all registers are spilled after the field load, and, when the two branches merge
back, all registers are reset, so that the field value must be loaded back from the stack if it
is going to be used in the next few instructions.

In order to intercept field load operations, different interception functions are used for
different field types. They take all arguments the generic field load interception function
take, except the pointer to the result stack slot: the result is returned by the type-specific
functions. They just call the generic field load interception function, passing them a pointer
to a local stack slot, then return the appropriate value extracted from this slot.

3.4.8 Writing to a static field

Table 3.8 gives the time needed to write the value of a zero-valued local variable in a static
int field of a potentially reflective class.

The modified bytecode, in this case, is putstatic. In the Kaffe interpreter implemen-
tation, it would just perform a switch statement, write the value on top of the stack onto
the field address, and pop it from the stack. Our modified implementation includes a meta-
object existence test. If a non-null meta-object is associated with the class that declares
the static field, a generic field write interception function is called. This function takes the
same arguments that the generic field load interception function expects, but, in this case,
the pointer to the stack slot contains the value to be written.

In the JIT compiler case, all the optimizations and overheads presented in the previous
section apply.

3.4.9 Loading a non-static field

The times needed to obtain the value of a field of type int from an object, that may be
reflective, and store it in a local variable, are displayed in Table 3.9.
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Table 3.8: Writing to a static field

Conf i586 i686 sparc ultral sparc ultra2

KJ- 1.3 e-7 3.5e-8 6.6 e—8 5.5 e—8
KIG 3.9 e-7 89e-8 1.4 e-7 1.2 e-T
JDK 3.4 e—7 3.1 e-T7 4.8 e-T 3.9 e-7
KI- 3.8 e—6 1.7 e—6 2.1 e—b 1.7 e—6
KIG 3.6 e—6 1.7 e—=06 2.1 e—6 2.3 e—6
KJIN 1.9 g4 6.4 e—5 1.1 e—4 9.3 e—5
KIN 4.0 e—4 1.4 e—4 2.1 e—4 1.9 e—4
KM | 39  e-3| 82 e—4 | 1.6 e-3 1.2 e—3
KIM | 1.2 e—2 | 3.9 e—3 1 5.5 e~-3 153 e—3

Table 3.9: Loading a non-static field

Conf 1586 1686 sparc ultral sparc ultra2
KJ- 6.9 e—8 4.2 e—8 6.0 e—8 5.0 e—8
KJG 1.2 e-7 9.7 e-8 1.6 e—7 14 e-7
JDK 3.3 e-7 26 e—7 55 e-7 4.5 e-T7
KI- 4.4 e—6 1.9 e—6 2.7 e—6 1.9 e—6
KIG 3.7 e—6 1.9 e—6 2.4 e—0 2.6 e—6
KJN 2.2 e—4 6.3 e—5 1.1 e—4 8.7 e—5
KIN 4.0 e—4 14 e—4 2.1 e—4 1.9 e—4
KJM 2.7 e—3 94 e-4119 e—3 |14 e—3
KIM [ 1.5 e—2|4.9 e—3|6.5 e—3|6.7 e—3

One of the two differences between the getfield bytecode, used in this case, and
getstatic, already described, has to do with the arguments passed to the interception
functions: in this case, the second argument is the object whose field is going to be loaded,
instead of a duplicated pointer to the class object.

The other difference is that, in the static case, the addresses of the class and of the
field are known at compile-time, so they are treated as constants in the compiled code; in
the non-static case, the address of the class is still used, as the third argument to the
interception function, but the address of the object is only known at execution time, and,
instead of the absolute address of the field, the field offset is encoded in the compiled code.
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3.4.10 Writing to a non-static field

Table 3.10 lists the duration of an operation that stores the value of a local variable, initialized

to zero, into an integer field of an object whose meta-object may be non-null.

Table 3.10: Writing to a non-static field

Conf i586 i686 sparc ultral sparc ultra2

KJ- 1.3 e-7 3.2e—8 5.4 e—8 4.5 e—8
KJG 9.3 e—T7 9.1 e-8 1.0 e-7 8.5e-8
JDK 3.6 e—7 2.9 e-7 5.5 e-7 4.6 e—7
KIi- 3.4 e—6 1.8 e—6 2.3 e—6 1.9 e—6
KIG 3.6 e—6 2.0 e—=8 4.7 e—6 2.6 e—6
KJN 1.7 e—4 6.8 e—5 1.1 e—4 9.1 e—5
KIN 4.0 . e—4 1.4 e—4 2.1 e—4 1.9 e—4
KIM 2.7 e—3 8.6 e—4 [ 1.9 e—3 1.3 e—3
KIM | 1.7 e—2 0.0 e=3 (7.0 e—3 | 6.7 e—3

One important difference between the putfield bytecode and the other field-related
bytecodes is that the stack position of the object whose field is to be written to depends
on the type of the field. For this reason, what used to be a single switch statement in the
implementation of Kaffe has been split into two separate ones: first, we find out where in the
stack the target object of the operation is located, so we can check whether it is reflective
or not. If it is not, the original switch statement stores the top of the stack onto the
object’s field. Otherwise, a field write interception function is called, just like the putstatic
does, except that the second argument is a pointer to the object, not to the class. The
additional switch statement affects only the interpreter, because, in the JIT compiler, it is
only evaluated at compile-time. Nevertheless, the discussions in the previous sections apply
to this bytecode too.

3.4.11 TLoading the length of an array

The time needed to load the length of a possibly reflective array of int, of length 1, into
a local variable, is presented in Table 3.11.

Although the length of an array is not properly a field of the array object, the code
produced by the original JIT compiler for the arraylength and the getfield bytecodes is
identical, as the length of an array is stored in a fixed offset of the object that represents
the array. On the interpreter, however, arraylength operation is much faster getfield,
because the offset of the length is known at interpreter compile-time, it does not have to
be looked up in a field structure.
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Table 3.11: Loading the length of an array

Conf i586 1686 sparc ultral | sparc ultra2

KJ- 7.0 e—8 4.3 e—8 6.0 e—8 5.0 e-8
KJG 1.3 e-7 0.6 e—8 16 e-7 1.3 e-7
JDK 3.7 e-7 2.7 e-7 54 -7 45 e—7
KI- 1.7 e—6 1.1 e—06 1.2 e—06 9.7 e-7
KIG 1.9 e—6 1.2 e—06 1.2 e—6 1.1 e—6
KJN 1.8 e—4 6.6 e—5 1.1 e—4 8.9 e—5H
KIN 3.9 e—4 1.4 e—4 2.1 g—4 1.8 e—4
KM | 31 e=3[ 78 e—4 [ 1.5 e—3| 06 e—4
KiM | 1.2 e—2 1] 3.8 e—3{bd e—3 148 e—3

As usual, we have added the meta-object existence test before the execution of the regular
array length operation. If the array is found to be reflective, both engines just call a function
that takes a pointer to the array object and returns the array length. This function tests
again whether the array is reflective. If its meta-object has become null, the length of the
array is returned immediately. Otherwise, an operation object is created and performed,
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then its result is returned. The JIT performance incurs in the register spilling and reloading
overhead in this case too.

3.4.12 Loading an element of an array

Storing in a local variable the first element of the array used in the previous section takes

the amount of time displayed in Table 3.12.

Table 3.12: Loading an element of an array

Conf i586 i686 sparc ultral sparc ultra?2

KJ- 1.1e-7 52e-8 1.0 e-7 9.0 e—8
KJG 2.3 e-7 1.2 e-7 1.9 e-7 1.6 e-T7
JDK 3.7e—7 2.3 e—T7 6.4 e-7 0.3 e—7
KI- 20 e—6 1.3 e—6 1.4 g—6 1.2 e—b6
KIG 2.2 e—6 1.3 e—6 1.6 e~—6 1.3 e—6
KJN 2.0 e~4 6.7 e—> 1.1 e—4 8.9 e—>
KIN 4.0 e—4 14 e—4 2.1 e—4 1.8 e—4
KIM 3.0 e—3 8.5 e—411.3 e—-3 | 1.3 e—3
KIM [ 1.2 ° e—2 [ 3.7 e—3 [ 5.5 e—3 | 5.0 e—3
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There are different array element load operations for each primitive type, and yet another
for object types. However, their implementations are identical, except for the calculation of
the offset from the beginning of the array and the actual element load instruction. Therefore,
there is no need to time all possible array operations. We have probably selected an int
array, accessed through the iaload bytecode, so as to save typing, since int is the shortest
type name in Java. The fact that it fits exactly in the registers of the tested platforms has
just made the results look worse, because there is no need for any conversion that might
have reduced the relative overhead introduced by Guarana.

We have introduced a meta-object existence test in all array load bytecodes before the
array bound check, so that the meta-level can make arrays seem larger than they actually
are. If a meta-object is associated with the array, interception occurs. In the interpreter
case, a generic array load interception function is called. It takes, as arguments, a pointer
to the array meta-object, a pointer to the array itself, the index of the array element to
be loaded, and the stack slot where it should be stored. The JIT, on the other hand, uses
specialized functions for each different type, that return the loaded values. Because of the
additional basic blocks, register spilling and reloading becomes necessary.

3.4.13 Writing to an element of an array

The figures in Table 3.13 represent the time spent by an operation that stores the value of
a zero-initialized local variable into the first element of the aforementioned array.

Table 3.13: Writing to an element of an array

Conf i586 i686 sparc ultral sparc ultra2

KJ- 1.0 e-7 5.8 e—8 3.3 e—8 7.7 e~&
KJG 6.0 e-7 1.2 e-7 1.5 e-T7 1.3 e-7
JBK 4.2 e--T 3.1 e-7 6.5 e-7 5.3 e-T7
KI- 2.0 e—6 1.2 e—6 1.4 e—B6 il e—6
KIG | 2.2 e—6 1.3 e—6 1.4 e—6 1.2 e—6
KJN 1.7 e—4 6.5 e—bH 1.1 e—4 9.7 e—bH
KIN 3.9 e—4 1.4 e—4 2.1 e—4 1.8 e—4
KJIM 2.4 e—3 8.7 e—4 [ 1.3 e—31{13 e—3
KIM | 1.4 e—2 | 4.0 e—3 | 5.8 e~-3 | 5.3 e—3

The only difference between the array load and the array store bytecodes is the direction
of the array element data. In this case, the interpreter calls a generic array store interception
function that takes a pointer to the stack slot that contains the value to be stored, and the
JIT compiler calls type-specific interception functions that take the value to be stored as an
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additional argument. Register management overhead due to additional basic blocks applies
too.

3.4.14 Creating objects

Creating an object involves allocating memory for an object and invoking its constructor,
that are two separate operations at bytecode level. Furthermore, if we were to run a test
program to time this operation, it would inevitably be influenced by the cost of garbage
collection. Since the garbage collector cannot be controlled reliably, because of different
object sizes and increased size of JIT-generated code, we have decided not to run this test.

The first bytecode involved in the creation of an object is new, that allocates the amount
of memory necessary for an object of a specified class and initializes all its fields with zeroes
and nulls, except its dispatch table, that is initialized to point to the dispatch table of its
class. This bytecode is implemented as an invocation of a function that takes a pointer to
a class and returns a pointer to the newly created object. We have modified this bytecode
so that it calls an alternate function that takes an additional argument: 2 pointer to the
creator of the new object. After this function calls the original object creation function, it
calls a generic meta-configuration propagation one.

This propagation function checks whether the creator has a meta-object. If it does, it
invokes method configure of that meta-object, then sets the new object’s meta-configura-
tion to the meta-object returned by this method. Afterwards, if the object’s class has a
non-null meta-configuration, a NewObject message is created and broadcast to the class’
meta-configuration, by invoking method broadcast of the kernel of Guarana.

If neither the creator nor the class are reflective, the reflection overhead in bytecode new
is minimal, and it is the same for both the interpreter and the JIT compiler.

The second bytecode involved in object creation is invokespecial, used to invoke the
new object’s constructor. We have already presented the overhead introduced in this oper-
ation in Table 3.4.

3.4.15 Creating arrays

There are two different bytecodes for creating arrays: one that creates arrays of primitive
types, and another that creates arrays of class types. The implementation of these bytecodes
is very similar, and both were modified exactly like bytecode new: the array creation function
calls gained an additional argument, a pointer to the array creator, and were changed so
as to call alternate functions that supported this additional argument. After invoking the
original array creation functions, they would call the generic meta-configuration propagation
function. Since arrays do not have constructors, the additional overhead due to constructor
invocation does not exist.
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3.4.16 Creating arrays of arrays

The multianewarray bytecode creates multi-dimensional arrays as a single operation. This
bytecode was modified in a slightly different manner: instead of creating an alternate function
that would call the original multi-array creation one, we have modified the function itself,
so that it would support an additional argument, a pointer to the array creator.

The rationale for this difference is that, just after creating the top-level array, the creator’s
meta-configuration must be propagated into this array, so that, when the sub-arrays are
created, the meta-configuration of the container array is already set up to propagate into
them.

3.4.17 Printing a String

As a first attempt to measure the overall impact of the introduction of reflection, we have
measured how long it takes for the System.err object to print the String ¢ ‘Hello world!?’’
and skip to the next line. The obtained times are listed in Table 3.14.

Table 3.14: Printing a String

Conf i586 i686 sparc ultral | sparc ultra?2
KJ- 3.5e—4 1.1e—4 1.9 e—4 1.5e—4
KJG 6.2 e—4 1.6 e—4 2.6 e—4 2.1 e—4
JDK 3.9e-4 2.0e—4 2.3e—4 1.9e—4
KiI- |29 e-3[10 e-3 1.4 e-3 1.} e-3
KIG | 3.1 e-3|1.0 e-3 14 e-3 1.3 e-3
KIN 6.0 e—4 1.6 e—4 2.7e—4 2.1 e—4
KIN {32 e-3|1.0 e-3 14 e-3 1.4 e-3
KJM 6.0 e—4 1.7e—4 2.9e—4 2.2 e—4
KIM [33 e-3[10 -3 1.4 e—3 1.4 e-3

No objects are created in this operation, so no garbage collection takes place. Further-
more, since neither class System nor object System.err are reflective, no interception takes
place.

3.4.18 Compiling a program

Timing the compilation of the test program with the various available interpreters has pro-
duced the figures in Table 3.15. We have not timed the executions with meta-objects,
because, at this point, we are only interested in measuring the overall performance penalty
introduced by the potential of intercepting operations.



3.4, Performance

Table 3.15: Compiling a program: total execution time

Conf | 1586 i686 sparc ultral | sparc ultra2
KI- [13 e+l | 43e+0 6.2 e40 9.2 e+0
KIG |24 e+l | 8.6et+0 1.0 e+1 8.4 e+0
JDK 86e+0| 3.9e+0 3.5 e+ 2.8 e+0
KI- |32 e+1|1.0 e+l 1.6 e+l 1.3 e+l
KIG | 3.3 e+l |11 e+l 1.6 e+l 1.4 e+l

On short-running applications like this, most of the time is spent on virtual machine
initialization and JIT compilation, not on running the application itself. The virtual machine
start-up, for example, involves executing very large array initialization methods, whose JIT-
compilation wastes a lot of memory and CPU cycles, because these methods are executed

only once.

Although a complex program, involving several similar classes, is being compiled, Ta-
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ble 3.16 shows that more than 50% of the total time was spent on JIT-compiling Java Core
classes and the Java compiler itself. Table 3.17 presents the differences between the total
time and the JIT-compilation time, that represents the time spent on running the actual ap-

plication. Hence, long running applications, that repeatedly run the same methods, should

present a reflection overhead similar to the relative overhead of this table.

Table 3.16: Compiling a program: JIT compilation time

Conf

ibg6 1686 | sparc ultral | sparc ultra2
KJ- 8.0 e+0 | 2.8 e+0 3.5 e+0 2.9 e+0
KJG [ 1.8 e+l ]| 7.2e+0 6.8 e+0 5.7 e+0

Table 3.17: Compiling a program: disregarding JIT-compilation time

Conf | 1586 i686 | sparc ultral | sparc ultra2
KJ- [ 5.1e+0} 1.5e+0 2.7 e+0 2.3 e+0
KIG [6.4e4+0] 1.4 e+0 3.4e4+0 2.7 e+0
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3.4.19 Overall analysis

In Table 3.18, we present the relative slow down caused by adding interception code to the
Kaffe interpreter all tested platforms. Table 3.19 contains the corresponding data for the
Kaffe JIT compiler. The listed figures are calculated from numbers with a higher precision
than the ones presented in the previous tables, so that rounding of those values does not
affect the figures in this table.

Table 3.18: Overall analysis (interpreter engine)

Table Number and Mnemonic | 1586 | 1686 | sparc ultral | sparc ultra2
3.1: emptyloop +9% | +8% +1% +1%
3.2: monitorenter/exit +2% | +7% +13% +45%
3.3: invokestatic -12% | +3% —8% +9%
3.4: invokespecial -23% | +8% +3% +4%
3.5: invokevirtual +18% | +7% +6% +9%
3.6: invokeinterface —14% | +6% 7% +8%
3.7: getstatic +2% | +8% +1% +31%
3.8: putstatic ~7% | +3% +0% +29%
3.9: getfield —14% | +4% -11% +35%

3.10: putfield +6% | +6% +104% +38%

3.11: arraylength +13% | +9% +5% +11%

3.12: iaload +11% | +7% +15% +15%

3.13: iastore +12% | +8% +4% +4%

3.14: println +7% | +0% +1% +17%

3.15: compile +3% | +2% +2% +13%

The table only compares executions that do not involve meta-objects, because, when
a meta-object intercepts an operation, the cost of the operation grows by some orders of
magnitude. In fact, intercepting a simple operation involves dozens of method invocations,
some of them implemented in native code that calls Java code. In addition to the fact that
Kaffe interface for calling Java from native code is very slow, we should also consider that
every intercepted operation causes the creation of an operation object and 2 result object,
that must be garbage collected, and garbage collection is slow and unpredictable.

In certain combinations of platform and engine, an operation executes faster on Guara-
nd than on the corresponding combination without it. This is quite hard to explain, since
Guarand always executes at least as much code as Kaffe does. The tests have been verified
50 as to ensure that the results are correct, and the generation of the tables from the test
runs is totally automated, so there is no place for human error. The better performance can
be attributed to factors such as improved fast-RAM cache hit rate or code alignment issues
(on x86).
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Table 3.19: Overall analysis (JIT-cbmpiIer engine)

Table Number and Mnemonic | 1586 i6868 | sparc ultral | sparc ultra2
3.1: emptyloop —0% +3% +0% +0%
3.2: monitorenter/exit +8% +9% +9% +10%
3.3: invokestatic +54% | +21% +35% +36%
3.4: invokespecial +73% | +26% +24% +25%
3.5: invokevirtual ~7% | —56% +6% +6%
3.6: invokeinterface +1% +2% +7% +8%
3.7: getstatic +86% | +98% +181% +182%
3.8: putstatic - +204% | +154% +109% +109%
3.9: getfield +77% | +130% +169% +171%

3.10: putfield +319% | +184% +88% +88%

3.11: arraylength +86% | +125% +159% +160%

3.12: iaload _ +101% | +131% +86% +71%

3.13: iastore +501% | +107% +62% +62%

3.14: printin +75% | +54% +40% +42%

3.15: compile +83% | +98% +64% +62%

3.16: compile-JIT +121% | +154% +96% +94%

3.17: compile-diff +24% —5% +24% +21%

The overhead introduced by interception on the interpreter engine is mostly small, be-
cause the interpreter is usually orders of magnitude slower than the test for existence of a
meta-object. The JIT, however, is severely affected by increased register pressure and addi-
tional register spilling and reloading. JIT-compilation costs have increased too, as our tests
have shown, but they have only affected the last two tests, because we ensure that a method
is JIT-compiled before we start timing its execution,

Although the interception code has introduced large penalties for invoking static and
private methods, the most common kind of invocation (non-final) causes a very small
overhead, and interface invocations are almost not affected at all. The bad results for all
load and store operations on the JIT engines are expected, for the reasons already presented.

Fortunately, in object-oriented applications, field and array operations are usually inter-
twined with method invocations and object creations. Since the latter operations have a
much smaller penalty, and they are one order of magnitude slower than the former ones,
the net performance penalty may be acceptable, as the introduction of reflective capabilities
may pay off.
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3.5 Future optimizations

The reflection overhead on the interpreter is almost negligible, so there is very little need to
worry about optimizing it any further. For the JIT code, there is little hope for similarly small
overheads, though. One possible approach would be to implement all operations, even field
and array ones, as invocations of dynamically generated JIT-compiled code. Then, instead
of having to load the meta-object reference before performing an operation, an extended
dispatch table would contain pointers to these JIT-generated functions, on non-reflective
objects, and to interceptor functions, in the case of reflective objects.

* Unfortunately, we do not think this solution would do very well: first, because we would
have to look up the dispatch table before executing every single operation, and the virtual
method invocation cost is currently much higher than non-virtual method invocation, so we
would end up increasing the cost of most operations, instead of reducing it.

Furthermore, invoking a function requires saving most registers on some ABIs, but this is
not required when contents of memory addresses are loaded directly, as field load operations
are currently implemented. In fact, the way Guarand is currently implemented means that,
whenever a field or array operation is performed, registers must be saved because it might be
necessary to invoke an interceptor function. A promising optimization involves not saving
registers at all in case no interception is necessary, and modifying the interception code so
that it leaves registers just like the original code would. This would decrease the cost of both
branches, because they currently save all registers and mark them all as unused before they
join to proceed to the next instruction. Furthermore, if the JIT compiler ever gets smarter
about global register allocation, the additional branches introduced by Guarand will not
get it confused.

One of the reasons why actually intercepting an operation is slow is that it always involves
creating two objects: the reified operation and the reified result. We might think of opti-
mizing away the instantiation of these objects, by defining specialized interceptor (handle)
methods for different kinds of operations and results. However, this would complicate the
meta-object protocol without solving the problem, because then, instead of instantiating
operations and results, it would be necessary to dynamically create instances of Method and
Field.

However, it might be possible to optimize away the construction of a result object, if it
is not requested. In the case of method invocations, we could also try to allocate a single
chunk of memory, to contain both the operation object and the argument list, instead of
allocating two chunks.

The most important optimization is in the native method invocation interface. Whenever
a method is invoked from native code, its signature is parsed several times, so as to calculate
its size, build an argument list, fill it in, then actually invoke the method. A lot of this work



3.6. Conclusions 49

could be done in advance, and, in the JIT engine, it would be possible to generate specialized
dispatchers, fragments of code that would take an argument list in a standard format and
call the desired method with the arguments properly converted to the calling convention.
In case of intercepting a method invocation, we could also have a pre-compiled interceptor,
that would reify the invocation much faster than the current code.

3.6 Conclusions

‘The implementation of the reflective architecture of Guarand required some modifications
in a Java interpreter, but not in the Java programming language. Thus, any program created
and compiled with any Java compiler will run on our implementation, and it will be possible
to use reflective mechanisms in order to extend them.

Unfortunately, our implementation depends on a particular interpreter, but we can prove
it is ¢mpossible to implement our meta-object protocol transparently in 100% Pure Java, due
to limitations related with native methods and bytecode verification.

Our modifications have reduced the speed of the interpreter, but we believe the flexibility
introduced by the reflective capabilities outweighs this inconvenience. Furthermore, the per-
formance impact analysis has revealed the current hot spots in the interception mechanisms.
We expect to reduce this impact by implementing the suggested optimizations.
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de interacdes de meta-nivel. Finalmente, abordamos tépicos mais avancados, tais como me-
canismos de seguranc¢a e reconfiguracio dindmica. Oferecemos dicas para a implementagao
correta de alguns padrdes de interagiio entre meta-objetos e seus respectivos objetos de nivel
base.
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Abstract

This text is a tutorial for people interested in using our Java™-based implementa-
tion of Guarand, a reflective architecture that aims at flexibility, security and reuse of
meta-level code. It shows what kind of operations can be intercepted with Guarané
and how meta-objects can monitor and modify base-level behavior. It also introduces
composition of meta-objects, and discusses dynamic reconfiguration and management
of meta-configurations. Several tricks and internal details of the implementation are
exposed, through the use of numerous examples and detailed explanations.

4.1 Introduction

Guarand is a reflective architecture whose meta-object protocol allows reuse of meta-level
code through composition of meta-objects, in a simple, flexible and secure manner. It has
been implemented by modifying an open-source Java! Virtual Machine [36], but Guarani
does not require any change to the Java™ Programming Language [3, 26].

This text assumes some familiarity with the Java™ Programming Language and the re-
flective architecture of Guarand, as it contains several examples coded in Java that demon-
strate how to use the Application Programming Interface (API) of Guarana.

In Section 4.2, we describe what kind of base-level interactions can be intercepted
by Guarand. Section 4.3 considers the implementation of meta-objects, showing how to

*Islene Calciolari Garcia recebeu auxilio da FAPESP através da bolsa 95/1983-8.
1Java is a trademark of Sun Microsystems, Inc.
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enable and use these intercepted interactions. In Section 4.4, we discuss some details of the
implementation and present some advanced programming tips. Finally, in Section 4.5, we
summarize the topics presented.

4.2 Basics

Just like several other reflective architectures, Guarand’s reflective capabilities are based on
meta-objects intercepting interactions between objects. However, unlike other architectures,
we have not modified the original programming language. Thus, there is no compile-time
association of classes with meta-classes: the meta-level behavior of an object is orthogonal
to its class. Meta-objects can be dynamically associated with objects.

Instead of introducing the reflective capabilities of Guarana through the examination of
a complex application, we have decided to use a very simple meta-object, called Metalogger,
to explain the use of the reflective mechanisms implemented by Guarand. Metalogger
writes onto the console a descriptive log every time it is activated, due to interception or to
other kinds of meta-level interaction. The format of these logs is going to be explained as
they appear along the tutorial.

We provide several example programs, that are included in the latest releases of Guarana.
Line-numbered listings of the source files and outputs of their executions are provided. In
the text, we are going to refer to source lines with numbers between curly braces, such as
{1} or {3-5}, and to output lines with numbers between angle brackets, such as <4> or
<7-10>.

4.2.1 Start'iilg up

Let us take a look at a very basic example, that demonstrates how to associate an object
with a meta-object. Method main of Program 1, that is invoked when the program is started
as a Java application, creates an instance of class ConfBasic {7} and a MetaObject of class
Metalogger {8}. Then, it requests the kernel of Guarand, represented by the class Guarana
in package BR.unicamp.Guarana, to replace the null meta-object with the newly created
one, in the meta-configuration of object o {9}. Note, in the output of this program, Output 1,
that the reconfiguration has succeeded, since the Metal.ogger was initialized <1>: method
initialize is invoked just before a meta-object is associated with a base-level object.

The ugly string printed after the colon is the Java-standard String representation of the
base-level object the meta-object was just associated with. The name of the class of the
object is separated with an “@” sign from the memory address of the object, printed in
hexadecimal notation. We are going to refer to this String with the term object-id.

After the reconfiguration, method meth is invoked {10}. This invocation is intercepted
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Program 1 ConfBasic.java

public class ConfBasic {

int i = 3;

synchronized int meth(int j) {
returni 4+ j;

public static void main(String[ ] argv) {

ConfBasic 0 = new ConfBasic();

r BR.unicamp.Guarana.MetaObject mo = new MetaLogger();
9 BR.unica,mp.Gua.ra,na..Guarana.reconﬁgure(o, null, mo};

10 0.I = o.meth({1};

1

2

3

4

5 }
6

7

8

Initialize: ConfBasic@10de80 _
Operation: ConfBasic@10de80.ConfBasic.meth(int 1)
Operation: ConfBasic@10de80.<monitor enter>
Result: return null

Operation: ConfBasic®10de80.ConfBasic.i
Result: return 3

Operation: ConfBasic@10de80.<monitor exit>
Result: return null

Result: return 4

Operation: ConfBasicQ10de80Q.ConfBasic.i=4
Result: return null

H O W~ D Wk

I

Qutput 1: guarana ConfBasic

by the kernel of Guaran4 and presented to the Metalogger, that prints the object-id, the
method-id of the method to be invoked and the argument list <2>. A method-id is defined
as the name of the class where the method is defined, followed by a dot and the method
name. The name of the class is included to avoid ambiguities that might arise if a superclass
defined a method with the same name. The type of each argument is also printed, to remove
potential ambiguities due to overloaded methods.

Since this method is synchronized {3}, just before it starts running, a <monitor enter>
operation is intercepted <3> and performed. A Metalogger is programmed to request the
result of any operation it receives, and, even though monitor-related operations produce no
useful result, a null result is presented anyway <4>, as a notice that the monitor operation
was successful.

Since method meth adds the contents of field i with the value of the argument j {4}, it
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must read the value of field i. The Metalogger receives this operation too, and prints the
object-id and the field-id <5>. Analogously to the method-id, a field-id is defined as the
name of the class where the field is declared, followed by a dot and the field name. The
Metalogger also prints the result of the operation <6>: the value with which field i was
initialized {2}.

When the execution of method meth terminates, the lock associated with object o is
implicitly released, so a <monitor exit> operation is performed <T>, its result (null) is
printed <8>, and so is the result of the execution of method meth <¢>.

Finally, this result of the method is assigned to field i of object o {10}. The Metalogger
répresents the non-static field assignment operation as the object-id, the field-id, an as-
signment operator and the assigned value <10>. Since assignments produce no useful result,
the result of any such operation is null <11>.

4.2.2 Intercepting array operations

In addition to method invocations, field accesses and monitor operations, Guarana can
intercept operations on arrays, such as length, element read and element write. Program 2
presents a simple example of such interceptions; the example is accompanied by Output 2.

Program 2 ArrayBasic.java

1 public class ArrayBasic {

2 public static void main(String[ ] argv) {

3 Object[ ] array = new Object[3];

4 BR.unicamp.Guarana.MetaObject mo = new MetaLogger();
5 BR.unica.mp.Guarana..Guarana.reconﬁgure(array, null, mo);
6 array[0] = new Integer(array.length);

7 array(1] = array[0].toString();

8 array[2] = array.getClass().getClass();

9

0

10}

First, method main creates an array of 3 references to Objects {3}, then a Metalogger {4}.
Since any Java array is also an Object, it can be given a meta-configuration. The program
instructs the kernel of Guarana to associate the Metalogger with the array of Objects {5}.
The association is successful <1>. Note that the Java-standard String representation of an
array of a class type is composed by a left square bracket, a capital “L”; the name of the
class and a semicolon.
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Initialize: [Ljava.lang.Object;@l15ec8

Operation: [Ljava.lang.Object;@115ec8.length

Result: return 3

Operation: [Ljava.1ang.0bject;@115908[0]=java.1ang.Integer@1b9b68
Result: return null

Operation: [Ljava.lang.Object;@115ec8[0]

Result: return java.lang.Integer@lbSb6s

Operation: [Ljava.lang.Object;@115ecB{i]l=java.lang.String@lecd50
Result: return null

10 Operation: [Ljava.lang.Object;@l15ec8.java.lang.0Object.getClass()
11 Result: return java.lang.ClassQlae258

12 Cperation: {[Ljava.lang.Object;@115ec8[2]=java.lang.Class@31a58
13 Result: return null

DO W NN -

Output 2: guarana ArrayBasic

Next, the program obtains the length of the array, to compute the first argument to be
passed to the constructor of the new Integer {6}; this operation <2> and its result <3> are
intercepted (by the kernel of Guarand) and printed (by the Metalogger). The Integer object
is assigned to element 0 of the array {6}. This assignment is intercepted and printed <4>, as
s its null result <5>. The representation of an array element-id is intuitive, albeit visually
unpleasant: the array object-id is followed by the index of the array element between square
brackets. For an array assignment operation, the MetaLogger will print, after the element-id,
an assignment operator and the assigned value; in this case, an object-id.

Afterwards, method main reads the value just stored in array[0] <6-7>, invokes method
toString of the returned Integer {7} (not intercepted, because the Integer was not associated
with a meta-object), and assigns the returned String to element I of the array <8-9>.

Finally, the program invokes method getClass of the array object <10-11>, then invokes
method getClass of the returned Class object {8}. Note that the second invocation of getClass
is not intercepted, because the Class object that represents the class array of Objects has a
null meta-configuration. The result of this second invocation is stored in element 2 of the
array <12-13>. Observe that the Class reference returned as the result of the first invocation
of getClass <11> is different from the one stored in array[2] <12>; while the former is the
Object that reprents the class Object] ], the latter is the Object that reprents the class Class
itseif.

4.2.3 Intercepting class operations

Class (static) operations will be intercepted by the meta-configuration of the Class object
that represents the class, as in Program 3. First, the program instantiates ClassBasic {5}, and
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this instance will remain with a nul1 meta-configuration. Then, it creates a Metalogger {6}
and obtains a reference to the Class object that represents the class ClassBasic {7}, using
the class pseudo-field notation introduced in Java 1.1. In line {8}, it installs the Metalogger
as the primary meta-object of class ClassBasic, i.e., of the Class object that represents it.
Line <1> of Output 3 shows the association was successful.

Program 3 ClassBasic.java

1
.2
3
4
5
6
7
8

9
10
11
12
13
14

public class ClassBasic {
static void doNothing() {}
static synchronized void doNothing(boolean b) {}
public static void main(String] ] argv) {
ClassBasic 0 = new ClassBasic();
MetaLogger mo == new MetaLogger();
Class ¢ = ClassBasic.class;
BR.unicamp.Guarana. Guarana.reconfigure(c, null, mo);
c.hashCode();
o.hashCode();
doNothing();
o.doNothing(true}; // calls static method

}

[y
O OO0 d W

[y

Initialize: java.lang.ClassQddaS8

Operation: java.lang.Class@ddaS58.java.lang.0Object.hashCode()
Result: return 907864

Operation: ClassBasic.doNothing()

Result: return null

Operation: ClassBasic.doNothing(boolean true)
Operation: java.lang,Class@ddaS58.<monitor enter>
Result: return null

Operation: java.lang.Class@dda58.<monitor exit>
Result: return null

Result: return null

Output 3: guarana ClassBasic

Invocations of methods of the Class object {9} are intercepted and presented to the
Metalogger <2-3>. Note, however, that the meta-configuration of the class does not af-
fect the interception of operations on its instances: their meta-configurations are unrelated.
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Therefore, a method invocation of an instance of a reflective class (that is, a class whose
meta-configuration is not empty) would only be intercepted if the instance itself were reflec-
tive. In the example, Object o is not reflective, so the second invocation of hashCode is not
intercepted {10}.

Invocations of static methods, operations on static fields, and synchronization opera-
tions on a class (for instance, invoking a static synchronized method) are also presented
to the meta-object associated with the class represented by the Class object. For example,
the invocation of a static method {11} is intercepted and presented to the class meta-
configuration <4-5>. Even if the invocation expression appears to refer to a non-static
method, as in line {12}, if compile-time overload resolution selects a static method, the
operation is intercepted and presented to the meta-object of the class <6>, as is its re-
sult <11>. In this case, because the selected method is synchronized, monitor enter and
exit operations are also intercepted <7-10>.

4.2.4 Meta-configuration propagation

In the previous examples, meta- and base-level code are intertwined, that is, code that mod-
ifies meta-configurations and base-level code appear together, in the same class. This clearly
goes against the separation of concerns that can be attained through reflection. Fortunately,
Guarand provides mechanisms that allow a complete separation of the base and the meta
application.

The meta application starts first, and sets up meta-configurations for classes and objects
of the base application it is programmed to control. Then, it starts the base application.
From then on, the meta application will only regain control by intercepting operations ad-
dressed to base-level classes or objects associated with meta-objects it has installed.

The Metal ogger class, for example, can be used as a meta, application, because it provides
2 method main that creates a Metalogger and associates it with a class specified as its first
command-line argument. Then, it invokes method main of that class, passing to it the
remaining command-line arguments.

Program 4, for example, is a simple non-reflective application, that can be made reflective
by starting it as specified in the caption of Output 4. Method main of class Metalogger, the
meta application, associates a Metalogger with class PropagBasic <1, then invokes method
main of that class <2>, just like the Java interpreter would do if it had been started as
“java PropagBasic”.

The meta application can configure the base application so as to determine the meta-
configurations of dynamically created objects, due to the ability to intercept object creation
provided by Guarand. Whenever a class is instantiated, the primary meta-object of the
creator is requested to provide a primary meta-object for the new object, before the object is
constructed. If the object is created in a static method, its creator is defined as the class that
contains the static method; otherwise, the creator is the object whose non-static method
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Program 4 PropagBasic.java

public class PropagBasic {
public static void main(String[ ] argv) {
new PropagBasic(true);
}

PropagBasic(boolean another) {
if (another)
new PropagBasic(false);

000 ~1 G U )b

L —

Initialize: java.lang.Class@1b46d8

Operation: PropagBasic.main([Ljava.lang.String; [Ljava.lang.String;Q@1b9fa0)
Configure PropagBasic®134c28 based on java.lang.Class@1b46d8: propagated
Initialize: PropagBasic@134c28

Message: BR.unicamp.Guarana.NewObject@1f8410 for java.lang.Class@lb46ds
Operation: PropagBasic@134c28.PropagBasic(boolean true)

Operation: PropagBasic@134c28.java.lang.Object ()

Result: return null

Configure PropagBasic@134c78 based on PropagBasic@134c28: propagated
Initialize: PropagBasic@134c78

Message: BR.unicamp.Guarana.NewObject@1£8590 for java.lang.ClassQlb46ds
Uperation: PropagBasic@134c78.PropagBasic(boolean false)

Operation: PropagBasic@134c¢78.java.lang.Object ()

Result: return null

Result: return null

Result: return null

Result: return null

el N TG
DU W NP OW 00 MM W N

[
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Output 4: guarana Metalogger PropagBasic

was being executed.

In line {3}, a static method of class PropagBasic creates a new object, so the meta-
object of this class is requested to configure it <3>. Since Metaloggers are programmed
to propegaie into meta-configurations of new objects, the new object is associated with
a Metalogger too <4>. -Although it cannot be deduced from the output, no additional
Metalogger has to be created in this case. Since a single instance of Metalogger can handle
multiple base-level objects, the Metalogger just installs itself in the meta-configuration of
the new object.

After the meta-configuration of a new object is established, the meta-configuration of the
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class of the new object is informed of the instantiation, so that it can try to affect the meta-
configuration of the object. The mechanism used to inform the meta-configuration of the
class is one example of use of a general inter-meta-object communication facility that is part
of the meta-object protocol of Guarand: instances of classes that implement interface
Message can be broadcast by the components of the meta-configuration of any given object.
An instance of the class NewObject is thus broadcast to the meta-configuration of the class
PropagBasic, to notify the creation of an instance thereof <5>. When a Metalogger is
presented a Message, it will always print the the String representation of the Message (by
default, its object-id), the word “for” and the base-level object to whose meta-configuration
the Message was broadcast.

Only after the broadcast terminates, the constructor of the new object is invoked. Tt is
intercepted by the object’s meta-configuration <6>, as is the implicit invocation of the con-
structor of the base class <7> that, like any other constructor invocation, returns null <8>.

Since the constructor is invoked with a true argument {3}, the test in line {6} results
true, so a new PropagBasic object will be created {7}. Once again, the meta-object of the
creator (the first PropagBasic object) is implicitly requested to provide a meta-configuration
for the new object <9>, so the Metalogger propagates itself <10>. Then, a NewQObject
message is broadcast to the meta-configuration of the class of the new object <11>, and its
constructors are invoked <12-13>.

Finally, the outstanding invocations return: first, the two constructors of the second
object <14-15>, then the pending constructor of the first object <16, called in <6>, and
finally the method main <17>, called in <2>.

4.3 Intermediate

Up to this point, we have covered almost every kind of interaction between the kernel of
Guarana and meta-objects associated with base objects. From now on, we are going to
cover more complex interaction patterns, such as dynamic reconfiguration and meta-object
composition. Then, we are going to present real implementations of meta-objects.

4.3.1 Dynamic reconfiguration

We have already introduced the method reconfigure, provided by the kernel of Guaran.
However, there are some details that have yet to be presented. Program 5 and Output 5
uncover such details.

In this example, three Metaloggers are created {6-8}. In order to identify the output
produced by each Metal.ogger, each one is given a prefix, that will be inserted in the beginning
of every line it produces. The first of these Metaloggers, named cl, is associated with class
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Program 5 Reconfigure. java

1

import BR.unicamp.Guarana.Guarana;

2 class ReconfigureBase {}
3 public class Reconfigure extends ReconfigureBase {
4 public static void main(String[ | argv) {
5 final Metal.ogger
6 cl = new MetaLogger(}.setPrefix("cl: "),
7 a = new MetaLogger().setPrefix("a: "),
8 b = new MetaLogger().setPrefix("b: “);
9 Guarana.reconfigure(ReconfigureBase.class, null, cl);
10 final Reconfigure o = new Reconfigure();
11 Guarana.reconfigure(o, null, a); // ¢l lets a become primary
12 Guarana.reconfigure(o, null, b}; // o replaced with b
13 Guarana.reconfigure(o, b, a); // b replaced with o
14 Guarana.reconfigure(o, b, a); // tgnored by a |
15 Guarana.reconfigure(o, null, null); // b replaced with null
16 Guarana.reconfigure(o, a, b); // ignored by the kernel
17 }
18 }
1 ¢l: Initialize: java.lang.Class@ddab8
2 ¢l: Message: BR.unicamp.Guarana.InstanceReconfigure@ib9cb8 for java.lang.Cla
ss@ddab3s '
3 ¢l: Operation: java.lang.Class@ddab8.java.lang.Class.getSuperclass()
4 cl: Result: return java.lang.Class@30438
5 a: Initialize: Reconfigure®134c08
6 a: Reconfigure Reconfigure@134c08: Metalogger@ib88f0 -> MetaLogger@ib8938
7 b: Initialize: Reconfigure@134c08
8 a: Release: Reconfigure@134¢08
9 - b: Reconfigure Reconfigure@134c08: Metalogger@1b8938 -> Metalogger@lb8810
10 a: Imnitialize: Reconfigure@i34c08
11 b: Release: Reconfigure@134c08
12 a: Reconfigure ReconfigureQ134c08: MetaLogger@lb83f0 —> Metalogger@lb88i)
13 a: Reconfigure Reconfigure@134c08: Metalogger@ib88£f0 -> null
14 a: Release: Reconfigure@134c08

Qutput 5: guarana Reconfigure
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ReconfigureBase {9} <1>, a base class of Reconfigure {3}.

When the program instantiates class Reconfigure {10}, unlike in the previous example,
neither a configure request is issued nor a NewObject message is broadcast. These meta-level
operations do not take place because class Reconfigure, that is both the creator of the new
object and its class, has an empty meta-configuration, in spite of its superclass having a
non-empty one.

When the program reconfigures object o so that its meta-object becomes a {11}, a new
kind of message is broadcast <2>. Whenever an object whose meta-configuration is null
is reconfigured, an InstanceReconfigure message is broadcast to the meta-configuration of the
class of the object, then to the meta-configuration of its base class, and so on, up to the
root of the inheritance hierarchy. Thus, meta-objects that belong to meta-configurations
of classes may modify reconfiguration requests issued to its non-reflective instances. Note
that method getSuperclass is invoked on class ReconfigureBase <3-4>: this is the kernel of
Guarand moving up in the inheritance hierarchy.

Since, in this example, no meta-object modified the reconfiguration request, meta-object
a becomes the primary meta-object of o <5>. But another reconfiguration is soon re-
quested {12}. Since the base object is reflective already, the meta-configurations of its
classes do not participate in the reconfiguration process, only its primary meta-object does.

The kernel of Guarana replaces the null argument in the reconfiguration request with
a reference to the current primary meta-object before delegating the request to it, so the
Metalogger a prints a reference to itself on the left of the arrow in <6>, and a reference to
b on the right of the arrow. Although it might have ignored the request or modified it, we
can see it has accepted to be replaced, because b is initialized <7>, then a is requested to
release the object <8>. A release invocation takes place just after a meta-object is removed
from the meta-configuration of an object.

Instead of specifying null; we may name any particular meta-object as the second ar-
gument of a reconfigure request. In line {13}, a meta-object known to be the primary one
is specified <9>. However, in Guarand, a meta-object (called composer) may delegate
operations to others, so the second argument in the reconfiguration request can be used to
specify other meta-objects in the composition hierarchy.

When presented a reconfiguration request, a meta-object is supposed to return a meta-
object to replace it. In this example, b finds itself in the second argument <9>, and accepts to
be replaced with a, the third argument <10-11>. If it did not intend to be replaced, it should
have returned a reference to itself, even if the second argument of the reconfiguration request
were not a reference to itself—the kernel of Guarana does not care whether the references
compare equal, it will just replace a meta-object with the value it returns. Furthermore,
although the third argument is supposed to be the meta-object that intends to replace the
one passed as the second argument, it may be completely disregarded by the existing meta-
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objects, or used just as a hint to create the components of the new meta-configuration.

The program continues in line {14}, by repeating the reconfiguration request, but now
it is a that listens to it <12>. Since it does not match the second argument, it ignores the
reconfiguration request, returning itself. No initialization nor release takes place.

In line {15}, once again, the second argument to reconfigure is null, so the kernel of
Guarani passes the primary meta-object as the second argument. Thus, MetaLogger a
matches the request <13>, and accepts to be replaced with a null meta-object. No initial-
1zation takes place—it is pointless to initialize a null meta-object—, but the previous
meta-object is released <14>, and object o has become non-reflective again.

The final invocation of reconfigure {16} is ignored by the kernel of Guarand, because a
null meta-configuration would only match a request that had null as the second argument.

4.3.2 Composing meta-objects

The meta-object protocol of Guarand was designed so as to make it possible to create a
meta-object that interacts with other meta-objects just like the kernel of Guarana would,
providing them with operations, results, messages, initialization and release requests in a
way that these meta-objects may believe they are directly called by the kernel of Guaran4.

This special kind of meta-object is called a composer. The implementation of Guarana
includes a useful implementation of composer: the SequentialComposer. Essentially, it dele-
gates operations to an array of meta-objects, and delegates results to these meta-objects in
reverse order.

Program 6 creates an instance of class Composer {4}, two Metaloggers {6-7}, an array
containing these Metaloggers {8} and a SequentialComposer that delegates to them {9}. As
you may notice in Qutput 6, one of the MetalLoggers prefixes all lines it outputs with “a: ”,
and the other, with “b: ”. Lines <1-2>, for example, are printed when the composer is
associated with the Compose object {10}. When method initialize of the composer is invoked,
it delegates the initialization request to the meta-objects contained in the array passed to
its constructor.

When method another is invoked on the Compose object {11}, it is intercepted and
presented to the composer, that delegates first to meta-object a <3, then to meta-object
b <4>, and finally tells the kernel of Guarand to perform the Operation.

Method another just creates a new Compose object {14}, but this involves propagation of
meta-configuration. The SequentialComposer requests its meta-objects to configure the new
object <5-6>, then it creates a new SequentialComposer that delegates to the meta-objects
selected for the new object <7-8>.

Note that the invocations of the constructors of the new object are intercepted and
delegated to both meta-objects <9-12>>, then the results of the constructor invocations
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Program 6 Compose. java

1

import BR.unicamp.Guarana.x;
2 public class Compose {

3 public static void main(String{ | argv) {
4 Compose 0 = new Compose();
5 MetaObject
6 a = new MetaLogger().setPrefix(*a: "),
7 b = new MetaLogger(}.setPrefix("b: "),
8 mos[] = { b},
9 mo = new SequentialComposer(mos);
10. Guarana.reconfigure(o, null, mo);
11 o.another();
12 ]
13 Compose another(} {
14 return new Compose();
15 }
16 }
1 a: Initialize: Compose®134608
2 b: Initialize: Compose@1i34608
3 a: Uperation: Compose@134608.Compose.ancther()
4 b: Operation: Compose@134608.Compose.another()
5 a: Configure Compose@134cc8 based on Compose@134608: propagated
6 b: Configure Compose@134cc8 based on Compose®134608: propagated
7 a: Initialize: Compose@134cc8
8 b: Initialize: Compose@134cc8
9 a: DOperation: Compose@134cc8.Compose()
10 b: Operation: Compose@134c¢c8.Compose()
il a: Operation: Compose@134cc8.java.lang.Object()
12 b: Operation; Compose@i34cc8.java.lang.Object()
13 b: Result: return null
14 a: Resuls: return null
15 b: Result: return null
16 a: Result: return null
17 b: Result: return Compose@134cc8
18 a: Result: return Compose®134cc8

Output 6: guarana Compose
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(null) are presented to them, but first to b <13,15>, then to a <14,16>. This inversion is
a particular characteristic of SequentialComposer; other composers might do it differently.

Finally, the result of the invocation of method another is presented to the original com-
poser, that delegates it to the Metaloggers <17-18>.

4.3.3 Modifying results

In the next example, we are going to show an actual implementation of MetaObject. Pro-
gram 7 shows how a meta-object is supposed to handle intercepted operations and results,
and how it can modify the results of intercepted operations, afier its execution, or even
prevent their execution.

First, let us take an overview of the presented code. Two static variables are defined,
namely, hashCode and toString {3}. Variable hashCode is initialized {5~7} by searching class
Object for a method named “hashCode”, that does not take any argument—so the array of
classes that specify its argument list has length zero. Method getDeclaredMethod of class
Class returns an instance of class Method that represents this searched method. Variable
toString is initjalized similarly {8-10}. These variables will ease the verification of whether
operations correspond to invocations of the methods they represent.

The first method handle {12-19} is invoked by the kernel of Guarand (or by a com-
poser) before an operation (the first argument) is delivered to its target object (the second
one). Our implementation will check whether the operation is an invocation of any of the
two selected methods. Although it would be syntactically correct to compare the methods
using operator ==, the program would be semantically wrong, because there may be multiple
Method objects associated with a single method, and this operator only compares references.
Thus, the comparison must be performed using method equals, that compares the actual
values of the objects, that is, it yields true if, and only if, two Method objects correspond to
the same method of the same class. Note that our implementation does not test whether the
operation is a method invocation. Nevertheless, it is correct, because method getMethod of
class Operation returns null if the operation is not a method invocation, causing the compar-
ison performed by method equals to yield false. However, if the program invoked method
equals of object meth, passing hashCode or toString as arguments, it would be incorrect: a
NullPointerException would be raised for operations other than method invocations, because
meth would be null.

If the intercepted operation is an invocation of method hashCode {14}, the MetaObject
will produce a result for the operation {15}, so that the operation will never be delivered to
the target object for execution. Otherwise, if it is an invocation of method toString {16},
the MetaObject will request to be presented, and to possibly modify, the result of the oper-
ation {17}, after it is executed. For any other operation, the meta-object indicates it is not
interested in the result {18}.
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Program 7 ModifyResult.java

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

import BR.unicamp.Guarana.*;
public class ModifyResult extends MetaObject {

final static java.lang.reflect. Method hashCode, toString;
static {
try { hashCode =
Object.class.getDeclaredMethod("hashCode”, new Class[0]);
} catch (NoSuchMethodException e) { hashCode = null; }
try { toString =
Object.class.getDeclaredMethod("toString", new Class[0]);
} catch (NoSuchMethodException ) { toString = null; }
} :
public Result handle(final Operation op, final Object ob) {
final java.lang.reflect.Method meth = op.getMethod();
if (hashCode.equals(meth))

return Result.returnInt(0, op); // make it return 0
if (toString.equals(meth))

return Result.modifyResult; // asks for permission to modify it
return Result.noResult; // not interested in the result

}

public Result handle(final Result res, final Object ob) {
Operation op = res.getOperation();
if (toString.equals(op.getMethod()))
 return Result.returnObject("medified " // replace result
+ res.getObjectValue(), op);
return null;

public static void main(String] ] argv) {
Object 0 = new Object();
MetaObject] | mos = {
new MetaLogger().setPrefix("a: "),
new ModifyResult(}, _
new MetaLogger().setPrefix("b: ") };
Guarana.reconfigure(o, null, new SequentialComposer(mos));
System.out.printIn{o);

}
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The second method handle {20-26} is invoked after a result is produced for an operation,
either by its execution or by another meta-object. Our implementation just checks whether
the Operation the Result refers to {21} is an invocation of method toString {22}, in which
case it will return a new Result object, containing a modified String {23-24}. Otherwise, it
returns null, what is equivalent to returning the Result it was presented.

The execution of method main {27-35} produces Qutput 7. First, it creates an Ob-
ject {28} and associate it with a SequentialComposer {33} that delegates to a Metal og-
ger {30}, an instance of our implementation of meta-object {31} and another Metalog-
ger {32}. We may notice the configuration was successful from the initialization messages
printed by the Metaloggers <1-2>.

: Initialize: java.lang.Object®134893

: Initialize: java.lang.Object@134898

: Operation: java.lang.0bject@134898. java.lang.Object.toString ()

: Operation: java.lang.Object®134898.java.lang.Object.toString()

: Configure java.lang.StringBuffer@1f0£30 based on java. lang.0bject@134898:
not propagated

b: Configure java.lang.StringBuffer@1£f0f30 based on java.lang.Object@134898:
not propagated

: Operation: java.lang.Object@134898.java.lang.Object.getClass()

: Operation: java.lang.Object®134898.java.lang.Object.getClass()

Result: return java.lang.Class@30438

Result: return java.lang.Class@30433

Operation: java.lang.ObjectQ134898.java.lang.Object.hashCode()

Result: return O

Result: return java.lang.String@1£1410

: Result: return java.lang.String@if1f50

15 modlfled java.lang.0bject@0
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Output 7: guarana ModifyResult

Last thing method main does is to print the Object it has created to the standard output.
This requires representing the Object as a String, so method println invokes toString, as
logged by the Metaloggers <3-4>. Between <3> and <4>, the ModifyResult meta-object
was prrequested to handle the operation, but it produces no visible output.

The standard implementation of method toString concatenates, in a StringBuffer, the
name of the class of the object with an “@” sign and an hexadecimal representation of the hash
code of the object. Metaloggers do not propagate into meta-configurations of StringBuffers
to avoid excessive noise <5~6>, and the standard implementation of method configure in
class MetaObject does not propagate: it just returns null. The SequentialComposer notices
that none of its meta-objects propagated into the meta-configuration of the new object, and
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neither does it, so the StringBuffer gains an empty meta-configuration.

The method toString invokes getClass to find out what class the object belongs to <7-
10>, then invokes getName on this class, but does not produce any output, because the class
of the object, java.lang.Object, has an empty meta-configuration.

Then, the method toString obtains the hash code of the target object, by invoking method
hashCode <11>. When the ModifyResult meta-object is presented this operation {14}, it
provides a zero result for it {15}. Thus, meta-object b never sees the operation; the result
is presented to a <12> and returned as if the operation had yielded it.

. Finally, method toString returns the String representation of the StringBuffer that was
used to concatenate the class name, the “@” sign and the hash code of the object. Metalogger
b is presented this String as the result of the operation first <13>, then the ModifyResult
meta-object is. Instead of letting the result reach a unmodified, the ModifyResult meta-object
notices the original operation was an invocation of method toString, and concatenates the
string “modified ” to the original result. Note that the String object presented as result for
a <14> is not the same that was presented to b <13>.

Since both a and the SequentialComposer return the modified result, the modified String
is printed by method printin: it contains the “modified ” prefix, and the hash code after
the “@” sign is zero <15>.

4.3.4 Modifying operations

In addition to modifying results of operations, meta-objects can also create operations from
the meta level, as does Program 8. The subclass of MetaObject implemented in this example
assumes its instances will be associated with instances of the class defined in Program 9.

Like in the previous example, a few static variables are defined in ModifyOperation:
toString {3} denotes method toString of class Object {6-8}, whereas callSuper {4} denotes
the field callSuper of class ModifyOperationBase {9-11}.

This example introduces the class OperationFactory: it is used to create Operations ad-
dressed to base-level objects from the meta level. If a meta-object intends to create arbitrary
operations to objects it reflects upon, it must save the OperationFactory it is initialized with,
as does method initialize {14-15}.

Operation factories allow meta-objects to violate access control, giving them privileged
access even to private fields and methods of base-level objects. Furthermore, using operation
factories, it is possible to create and perform synchronization operations such as entering
and leaving an object’s monitor. Another ability provided by operation factories, explored
in our example, is to modify overload resolution and dynamic dispatching mechanisms.

Method handle {16-28} prints a description of every operation it is requested to handle,
just like the corresponding method of class Metalogger does. Note that method toString
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Program 8 ModifyOperation. java

1 import BR.unicamp.Guarana.s;
2 public class ModifyOperation extends MetaObject {

3

oo -] O Ul W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
39
36
37
38
39 }

static final java.lang.reflect.Method toString;
static final java.lang.reflect.Field callSuper;
static {
try { toString =
Object.class.getDeclaredMethod("toString", new Class[0]);
} catch (NoSuchMethodException €) { toString = null; }
try { callSuper =
ModifyOperationBase.class.getDeclaredField(" callSuper");
} catch (NoSuchFieldException ¢) { callSuper = null; }
}
OperationFactory opf = null;
public void initialize(final OperationFactory opf, final Object o)
{ this.opf = opf; }
public Result handle(final Operation op, final Object ob) {
System.out.println{"Operation: " + op);
if (op.isMethodInvocation()) try {
final java.lang.reflect.Method m = op.getMethod();
if (!toString.equals(m) && m.getName().equals("toString")
&& opf.read(callSuper).perform(}.get BooleanValue()) {
Operation newOp = opf.invoke(toString, new Object[0], op);
System.out.println("Replaced with: " + newOp);
return Result.operation{newOp, Result.inspectResultMode);
}
} catch (IllegalAccessException e) { }
return Result.inspectResult;

}
public Result handle(final Result res, final Object ob)
{ System.out.println{"Result: * + res); return null; }

public static void main(String[ ] argv) {
final Object oFalse = new ModifyOperationBase(false);
Guarana.reconfigure(oFalse, null, new ModifyOperation());
System.out.println("oFalse: " + oFalse);
final Object oTrue = new ModifyOperationBase(true);
Guarana.reconfigure(oTrue, null, new ModifyOperation());
System.out.println("oTrue: * + oTrue);
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Program 9 Modify0OperationBase. java

1 import BR.unicamp.Guarana.s*;

2 class ModifyOperationBase {

3 final private boolean callSuper;

4 public ModifyOperationBase(final boolean callSuper) {
5 this.callSuper = callSuper;
§

7

8

}

public String toString(} { return "derived method was called"; }

}

of class Operation does not invoke any method of the base-level object. If it did, these
interactions would have to be intercepted, possibly leading to infinite recursion. Instead of
calling method toString of the base-level Object, it calls an alternate method of the kernel of
Gmaran4, that emulates the execution of the former, without any interceptable interaction
with the Object.

After printing a description of the operation, method handle checks whether the operation
is a method invocation {18} of a method {19} named toString, but not the one implemented
in class Object {20}, and finally tests whether field callSuper of the base-level object is true
or false {21}.

This last condition illustrates one of the possible uses of operation factories: to create
operations from the meta level and perform them. In this case, the meta-object uses its Op-
erationFactory to ereate an Operation that reads the value of field callSuper, then performs it.
Note that, although field callSuper is private, the operation can be created and performed,
due to the fact that an operation factory gives privileged access to the object it refers to.
Also note that the target object of the operation is not specified: an operation factory is
associated with a base-level object when it is instantiated, and it can only create operations
addressed to that object.

After the field read operation is performed, its result is returned in a Result object, so
method getBooleanValue must be used to obtain its value. If it yields false, so does the whole
condition, and method handle terminates returning Result.inspectResult {27}. Otherwise, we
may observe the other use for an operation factory: to replace an operation that is being
handled.

In line {22}, the operation factory is requested to create an operation that will invoke
method toString of class Object, without any arguments—this is why the array of Objects is
created with length zero. But note that a third argument is passed to invoke: the operation
currently being handled.

When an operation is passed as the last argument to a method of an operation factory,
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the new operation will be a replacement operation, that is, it may be used to replace the
original operation. But it will only effectively replace the current operation if the method
handie returns a Result object containing the new Operation {24}. Such a Result object may
also contain a request to inspect {or modify} the result of the operation, after it is performed.

The other method handle {29-30} just prints every result it is presented, almost exactly
like the corresponding method of Metalogger does.

1 Operation: ModifyOperationBaseQ1b9328.ModifyOperationBase.toString()
2 QOperation: ModifyOperationBase@1b9328.ModifyOperationBase.callSuper
3 Result: return false

4 Result: return java.lang.String@lbeB830

5 oFalse: derived method was called

6 Operation: ModifyOperationBase@1e0350.Modify0perationBase.toString()
7 Operation: ModifyOperationBase@1e0350.Modify0UperationBase.callSuper
8§ Result: return true

9 Replaced with: Modify(OperationBase@1e0350.java.lang.0Object.toString()
10 Operation: Modify{perationBase@1e(350.java.lang.0bject.getClass()

11 Result: return java.lang.Class@1b2498

12 Operation: ModifyOperationBase@1e0350.java.lang.0bject.hashCode()

13 Result: return 1966928

14 Result: return java.lang.String@leb510

15 oTrue: ModifyOperationBase®1eQ350

QOutput 8: guarana ModifyOperation

Qutput 8 pre'é-ents the output produced by running method main {31-38}. First, it
creates an instance of ModifyOperationBase {32} with a false callSuper {3} (in Program 9),
associates it with an instance of a ModifyOperation meta-object {33}, then prints a String
representation of it preceded by “oFalse: " {34}.

In order to obtain the String representation of the Object, method toString is invoked,
and dynamic dispatching selects the implementation {7} in class ModifyOperationBase <1>.
The meta-object notices that a2 method named toString was invoked {20}, and creates an
operation to read field callSuper {21}. This operation is intercepted <23, despite the fact
that it was created in the meta level. The result is presented to the meta-object too <3>.
Since callSuper is false, the test performed by the meta-object {20-21} fails, so it lets the
operation pass unchanged {27}, and it returns the string hard-coded in method toString {7}
of class ModifyOperationBase <4, as shows the line printed {34} by method main <5>.

When an instance of ModifyOperationBase is created with a true callSuper {33}, however,
the meta-object behaves differently. Dynamic dispatching selects the derived implementa-
tion <6>, but now, the meta-object finds callSuper to be true <7-8>, so it replaces the
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invocation of method toString of class ModifyOperationBase with an invocation of method
toString of class Object {22-24}<9>. No further dynamic dispatching takes place, so the
standard implementation of method toString is really executed, as we can notice by the meth-
ods this execution invokes <10-13>. Finally, method toString returns <14, and method
main prints {37} the standard String representation of object oTrue <15>.

As a final note, we should observe that the meta-object of this example should never
be associated with more than one base-level object, because it can only store one operation
factory {13}. If it were ever associated with two or more objects, it would always read
field callSuper from the most recently initialized object, that might not be the target of the
operation being handled. If it tried to create a replacement operation for a different target
object, an exception would be thrown, but creating non-replacement operations has no such
restriction, so mistakes might have gone unnoticed.

4.3.5 Using messages

Guarani provides a mechanism that allows any object whose class implements interface
Message to be broadecast to the components of the meta-configuration of an object. This
allows communication between meta-level components without requiring them to be explic-
itly named or even known in advance. In Program 10, for example, defines a Message that
can be used to look for a meta-object in the meta-configuration of an object. It could be
easily modified to carry any kind of information to be given to a selected meta-object, or to
look for meta-objects that present a certain property, such as being an instance of a selected
class, instead of just comparing references.

When an instance of class AreYouThere is created, a meta-object to be looked for {4} must
be specified {5-7}, and wasThere is initialized to false {3}. A meta-object that understands
this kind of Message should invoke method lamHere {8-11} to flag its existence; if the given
reference is the desired one {9}, wasThere is set to true {10}. One could check whether
the meta-object was found by invoking method wasThere {12}, but method lookFor {13-17}
provides a more convenient interface for using this mechanism. It creates the AreYouThere
message {14}, broadcasts it to meta-configuration of the specified object {15}, then tests
whether the specified meta-object was found {16}.

Method main {18-31} instantiates a meta-object that can handle AreYouThere mes-
sages {19-24}, using the anonymous inner class notation introduced in Java 1.1. Method
handle {20-23} is invoked by broadcast of the kernel of Guarand; if the broadcast Message
is an instance of class AreYouThere {21}, it invokes method lamHere {22}.

Then, the program creates an object {25} and locks for the created meta-object in
its meta-configuration {26}. As expected, Output 9 shows it is not there <1>. Then,
method main reconfigures the object so that mo becomes its primary meta-object {27}.
After that, the program looks for it again {28}, and now it is found <2>. Finally, the object
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Program 10 AreYouThere. java

1 import BR.unicamp.Guarana.sx;
2 public class AreYouThere implements Message {

3 private boolean wasThere = false;
4 private final MetaObject mo;
5 public AreYouThere(final MetaObject mo) {
6 this.mo = mo;
7 }
8 public void TamHere(final MetaObject mo) {
9 if (this.mo == mo)
10 wasThere = true;
11 }
12 public boolean wasThere() { return wasThere; }
13 public static boolean lookFor(final MetaObject mo, final Object o) {
14 AreYouThere m = new AreYouThere(mo);
15 Guarana.broadcast(m, o);
16 return m.wasThere();
17 }
18 public static void main(String] | argv) {
19 final MetaObject mo = new MetaObject() {
20 public void handle(final Message m, final Object o) {
21 if (m instanceof AreYouThere)
22 ((AreYouThere)m).JamHere(this);
23 }
24 b
25 Object o = new Object(};
26 System.out.println(lookFor(mo, 0));
27 Guarana.reconfigure{o, null, mo);
28 System.out.println(lookFor(mo, o));
29 Guarana.reconfigure(o, mo, null);
30 System.out.printIn{lookFor(mo, 0));
31 }
32 }
1 false
2 true
3 false

Output 9: guarana AreYouThere
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is reconfigured again, so that its primary meta-object becomes nu1l {29}, and, once again,
the meta-object cannot be found any more {30} <3>.

4.3.6 Creating Proxies

Proxies are useful for at least two purposes: they can be used to represent objects from
different address spaces and as object shells in which real objects are going to be created or
reincarnated from persistent storage. In this example, we show how to turn a proxy, created
using a meta-level interface, into a real object.

" Program 11 defines class MakeProxy, a specialization of Meta Object, and two inner classes,
namely, Base {3} and Init {4}. Base is just an arbitrary base-level class that will be instan-
tiated from the meta-level, and Init is an implementation of Message we are going to use to
communicate with the MakeProxy meta-object.

Method main associates a Metalogger with prefix “c: ” with class Base {6-7}, as you
may see in Qutput 10 <1>>, then it creates an instance of an anonymous subclass of Se-
quentialComposer {8-16} that delegates to a Metal.ogger with prefix “o: ” and a MakeProxy
meta-object {9}. The sequential composer is specialized so that its method reconfigure {11-
15} accepts to be replaced {13} (the default implementation {14} will only accept reconfig-
uration requests for meta-objects it delegates to).

A proxy of class Base is created by invoking method makeProxy of class Guarana {17}.
Whenever a class is instantiated, the meta-configuration of the class is notified with a New-
Object message. However, when a proxy instance of a class is created, the broadcast message
is an instance of class NewProxy <2>, a subclass of NewObject, so that meta-objects of the
class can behave differently for proxy objects.

The makeProxy request also includes a MetaObject specification; after the NewProxy mes-
sage is broadcast, a reconfigure request is issued to install the specified MetaObject as the
primary meta-object of the proxy. If the meta-configuration of the class has already config-
ured the proxy with a meta-object, the reconfiguration request would be presented to this
meta-object. However, in our example, the proxy was not made reflective yet, so the meta-
configurations of the class of the proxy and of its superclasses will be given the opportunity
to modify the reconfigure request.

First, method reconfigure synchronizes on the Class object that represents the class of
the proxy <3-4>, to ensure that the reconfiguration is atomic (if the object were reflective
already, the synchronization would be performed on its primary meta-object). Then, an
InstanceReconfigure message is broadcast to class of the proxy <5>, then to its superclass,
and so on, as implied in <6,7>. Since no class meta-configuration modifies the reconfigure
request, the SequentialComposer is associated with the proxy and initialized. It propagates
the initialization to its component meta-objects <8>. Method initialize of our meta-object
saves the operation factory it is presented in opf {23-25}. When reconfiguration terminates,
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Program 11 MakeProxy. java

1 import BR.unicamp.Guarana.s;
2 public class MakeProxy extends MetaObject {

— -
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14
15
16
17
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29
23
24
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30
31
32
33
34 )

public static class Base {}
public static class Init implements Message {}
public static void main(String [ ] argv) {
Guarana.reconfigure(Base.class, null,
new MetaLogger().setPrefix("c: "});
MetaObject mo = new SequentialComposer(new MetaObject [ ] {
new MetaLogger(}.setPrefix("o: "), new MakeProxy()
ni
public MetaObject reconfigure
(final Object o, final MetaObject pre, final MetaObject pos) {
if (pre == this) return pos;
else return super.reconfigure(o, pre, pos);

}
b
Base o = (Base)Guarana.makeProxy(Base.class, mo);
Guarana.reconfigure(Base.class, null, null);
Guarana.broadcast(new Init{), o);
Guarana.reconfigure(o, null, null);
System.out.println{o);
Yoo
private OperationFactory opf;
public void initialize(final OperationFactory opf, final Object ob)
{ this.opf = opf; }
public void handle(final Message m, final Object ob) {
if (m instanceof Init) try {
final java.lang.reflect.Constructor
¢ = Base.class.getDeclaredConstructor(new Class{0]);
opf.construct(c, new Object[0]).perform();
} catch (NoSuchMethodException e) {
} catch (TllegalAccessException e} {}

}
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; Initialize: java.lang.Class@1b04f8

: Message: BR.unicamp.Guarana.NewProxyQle4728 for java.lang.Class@lb04f£8

: Operation: java.lang.Class@1b04f8.<monitor enter>

! Result: return null

: Message: BR.unicamp.Guarana.InstanceReconfigure@1e4770 for java.lang.Clas

5@1b041£3

ol W N
nnnnn

6 c¢: Operation: java.lang.Class@1b04f8.java.lang.Class.getSuperclass()
7 c: Result: return java.lang.Class@30438
8 o: Initialize: MakeProxy$Base@134ce8
9 c¢: Operation: java.lang.ClassQ1b04fB.<monitor exit>
10 ¢: Result: return null
11 ¢: Reconfigure java.lang.ClassQ@1b04f8: MetaLogger@1b9298 -> null
12 ¢: Release: java.lang.ClassQib04f8
13 o: Message: MakeProxy$InitQ@134d78 for MakeProxy$Base@134ce8
14 o: Operation: MakeProxy$Base@134ceB.MakeProxy$Base()
15 o: Operation: MakeProxy$BaseQ134ce8.java.lang.Object()
16 o: Result: retura null
17 o: Result: return null
o:

Release: MakeProxy$Base@134ce8
19 MakeProxy$Base@l34ce8

Output 10: guarana MakeProxy

so does the synchronization on the class of the proxy <9-10>.

In order to avoid excessive noise in the output, the Metalogger is removed from the meta-
configuration of class Base {18}«11-12>, then we broadcast an Init message to the meta-
configuration of the proxy {19}<13>. When method handle {26-33} is invoked, it notices
the Message is an Init message {27}. So it looks up a constructor taking no arguments in
class Base {28-29}, creates an operation that invokes that constructor and performs it {30}.
This invocation is intercepted <14>, and so is the implicit invocation of the constructor of
the superclass {15}, as well as their null results <16-17>.

Finally, method main removes the composer from the meta-configuration of the ob-
ject {20}<18>, and the object becomes a regular non-reflective object, indistinguishable
from any object created with a new expression. Just to probe the behavior of the object, we
print its String representation {21}<19>.

It is worth noting that invoking a constructor on a proxy is not strictly necessary. When
the object is going to be used only as a proxy, no operation would ever reach it, so there is no
reason to construct a real object. But even if this is not the case, and the object will actually
execute operations, constructor invocation may be skipped, and fields may be initialized, if
necessary, by creating and performing operations from the meta level.
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4.4 Advanced

In this section, we are no longer going to present full executable examples: they would be too
long and complex. Instead, we are going to discuss some advanced issues regarding meta-
configuration management and security, using small code snippets for illustrative purposes
only.

4.4.1 Meta-objects with restricted access

When a meta-object is initialized, it is given an operation factory that may allow it to create
operations for the base level object from the meta-level. However, composers may initialize
meta-objects they delegate to with operation factories that restrict the kind of operations
they can create. The primary meta-object is always initialized with an operation factory
that provides full access to the base-level object (unless the meta-object is reflective itself,
and its own meta-object modifies the invocation of initialize).

In Program 12, for example, we present an implementation of OperationFactory that
throws lllegalAccessExceptions {8,15} when requested the creation of any operation that ac-
cesses private fields {7,14}. The constructor of this class takes another OperationFactory as
argument {4}, and the default implementation of methods from class OperationFactoryFilter
delegate requests to the operation factory given as the constructor argument {9,16}.

This allows the creation of a hierarchy of operation factories that resembles the hierar-
chy of composers and meta-objects, except that composers refer to their children, whereas
operation factories refer to their parents. Thus, the identity of meta-objects higher in the
composition hierarchy is protected from lower ones.

However, OperationFactoryFilters carry a potential security hole: if a child meta-object
is able to associate a meta-object with an OperationFactoryFilter, it may be able to obtain
a reference to the OperationFactory the filter delegates to, as this reference is stored in a
private field of it. Thus, we have associated a meta-object with class OpFactNoPrivate {19
27} that prevents its non-reflective instances from being reconfigured {20-23} and rejects
any reconfiguration that might remove itself from the meta-configuration of its class {24-26}.
This is accomplished by handling messages of type InstanceReconfigure {21} and removing
any meta-object they might carry into the meta-configuration of its instances {22}, and by
always returning this for any reconfiguration request {26}.

This meta-object does not take care of meta-configurations introduced by meta-configura-
tion propagation, though: if the meta-object that creates this operation factory is reflective,
its meta-configuration may freely propagate into the meta-configuration of the operation
factory, spoiling the offerred protection mechanism.



4.4. Advanced 77

Program 12 OpFactNoPrivate.java
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import java.lang.reflect.x;
import BR.unicamp.Guarana.x;
public class OpFactNoPrivate extends OperationFactoryFilter {

public OpFactNoPrivate(final OperationFactory opf) { super(opf); }
public Operation read(final Field field, final Operation op)
throws IllegalAccessException, Illegal ArgumentException {
if (Modifier.isPrivate{field.getModifiers(}))
throw new IllegalAccessException("access denied");
else return super.read(field, op);
}
public Operation write(final Field field, final Object value,
final Operation op)
throws TllegalAccessException, Illegal ArgumentException {
if (Modifier.isPrivate(field.getModifiers(}))
throw new IllegalAccessException("access denied");
else return super.write(field, value, op);
}
static {
Guarana.reconfigure(OpFactNoPrivate.class, null, new MetaObject() {
public void handle(final Message m, final Object o) {
if (m instanceof InstanceReconfigure)
((InstanceReconfigure)m).setMetaObject(null);

. public MetaObject reconfigure
(final Object o, final MetaObject m, final MetaObject n)
{ return this; }

Hi

4.4.2 Multi-object meta-objects

Meta-objects sometimes have to interact with multiple base-level objects. Some are stateless,
in the sense that they do not need to store any information about base-level objects they
interact with, so they may safely disregard methods initialize and release.

Other meta-objects, like the one presented in Program 13, must maintain information
regarding several objects, for example, in order to create operations for all those objects.
This could be redesigned so as to have single-object meta-objects only, but this stricter
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requirement may lead to complicated solutions, so we have decided to support stateful multi-
object meta-objects.

Program 13 MultiMeta. java

1 import BR.unicamp.Guarana.x;

2 import java.util.Hashtable;

3 public abstract class MultiMeta extends MetaObject {

4 protected Hashtable objDict = new Hashtable();

5 protected static class ObjData {

6 public OperationFactory opf;

7 public int initcount = 1;

8 public ObjData({OperationFactory opf) { this.opf = opf; }
9 public synchronized void initialize(OperationFactory opf)

10 { this.opf = opf; +-+initcount; }

11 public synchronized boolean release() { return -—-initcount == 0; }
12 }

13 public synchronized void

14 initialize(final OperationFactory opf, final Object ob) {
15 final HashWrapper obw = new HashWrapper(ob);

16 final ObjData od = {(ObjData)objDict.get(obw);

17 if (od # null) od.initialize(opf);

18 else objDict.put{obw, new ObjData(opf));

19 }

20 public synchronized void release(final Object ob) {

21 final HashWrapper obw = new HashWrapper{(ob);

22 final ObjData od = (ObjData)objDict.get{obw);

23 if (od # null && od.release()}

24 objDict.remove(ob};

25 }

26 }

‘The easiest way to maintain information about multiple objects is to create a Hashtable
that maps an object to the information stored about the object {4}. However, the imple-
mentation of hash table compares objects by invoking method equals, and obtains their hash
codes by invoking method hashCode. When these methods are invoked, they are likely to be
intercepted, and this may lead to infinite recursion.

In order to avoid this kind of problem, Guarans provides the class HashWrapper, that
should be used to wrap references to base-level objects used as keys in hash tables. Hash-
Wrappers only compare references to objects, instead of invoking method equals, and use the
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hash code returned by method hashCode defined in class Guarana, that emulates the behavior
of method hashCode of class Object without interacting with the object.

Another problem that multi-object meta-objects must be aware of is garbage collec-
tion: storing references to base-level objects in meta-objects may prevent objects from
being garbage collected. Assume, for example, that meta-object m belongs to the meta-
configurations of objects ol and 02, so m stores explicit references to them. Assume ol is
referred by other active objects, but 02 is not. Under normal conditions, 62 would be candi-
~date for garbage collection. However, since 01 holds an implicit (possibly indirect) reference
to m, and m holds a reference to 02, 02 will not be considered unreachable.

" The only way to solve this problem would be to use weak references, but this concept is
not supported as of release 1.1 of the Java API [56]. Since it will be available in the next
release of the Java API, in the future, we may decide to modify HashWrapper so that it only
stores weak references to objects.

The implementation in Program 13 handles multiple invocations of initialize and release,
that may take place at reconfiguration time. For each base-level object, the most recently
provided operation factory is maintained {6}, as well as a count indicating the difference
between the number of invocations of initialize and the number of invocations of release {7}.
When the meta-object is initialized {13-19}, the base-level object is wrapped in a Hash-
Wrapper {15} and looked up in the objDict Hashtable {16}. If the object is listed in the
objDict already, method initialize of the object data {9} is executed, so as to save the new
operation factory and increment the initialization count {10}. If the object was not listed
in the objDict yet, a new ObjData object is created and registered in the objDict {18}.

When method release {2025} is invoked, the object is also wrapped {21} and looked up
in the objDict {22}. If it is not found {22}, something must be wrong, but the error condition
is ignored. If it is found, method release of the ObjData {11} is performed to decrement the
initcount. When this counter reaches zero, the meta-object was told to release the object as
many times as it was initialized, so it can remove the object from the objDict {24).

4.4.3 Coping with replaced operations

There are two issues to care about, regarding replaced operations. First, there is the com-
poser issue: a composer must only accept replacement operations that actually replace the
operation it requested a component meta-object to handle. Similarly, replacement results
should refer to the same operation the replaced result referred to.

The other issue has to do with stateful meta-objects. A meta-object must be aware that
it may be presented results of operations it was never requested to handle or whose results
it was not interested in. This may be caused by reconfiguration, composer laziness (not re-
membering whether the meta-object requested for a result or not) or operation replacement.
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The reconfiguration problem might be avoided if composers refused or delayed reconfigu-
rations while there were pending operations, but this deadlocks if the thread that is handling
an operation requests a reconfiguration. Another solution, that fixes the second problem too,
is to implement composers that remember what meta-objects should be presented the results
for each operation.

But this leads to the third problem: the result handed to the composer may refer to
an operation that replaced the operation the composer was originally requested to han-
dle. Therefore, composers, and meta-objects in general, that intend to match results with
operations, should store a reference to the original operation, instead of any replacement
thereof. For this reason, every Operation provides methods to find out whether it is a re-
placement (isReplacement), the replaced operation (getReplaced) and the original operation
{getOriginal}, that iterates through the replaced operations until it reaches the original op-
eration.

A replacement operation must have result types compatible with operations it replaces,
i.e., the result type of the replacement must be implicitly convertible to the result type of
the replaced operation, and the exception types that may propagate out of the replacement
operation must be convertible to exception types that might propagate out of the replaced
operation.

However, there is one exception to this rule: it is possible to create untyped placeholder
operations using method nop of class OperationFactory. These operations are intended to be
replaced with actual operations by some meta-object, usually the one that created it. This
is useful to simulate operations intended to be intercepted only by meta-objects located
after its creator in the operation handling sequence. When the meta-object receives the
placeholder, it returns the actual intended operation as a replacement of the placeholder.
With regard to the return value, it may either let it remain unchanged or replace it with,
say, an exceptional value.

It should also be noted that it is possible to create other invalid operations from the meta-
level. For instance, it is possible to create a method invocation operation with arguments
that cannot be converted to the expected parameter types, or an assignment operation to a
field that does not exist in the target object. However, before any operation is delivered to
the base object, it is validated, and an exceptional result is produced if validation fails.

One possible use of this feature is to create pseudo methods and fields, that are introduced
by meta-objects, and do not exist in the base level. Pseudo-objects of type Method and Field
can be created {makeProxy) and used to identify such inexistent operations.

A more interesting application of this feature is to extend arrays. For example, meta-
objects can arrange for arrays to seem to contain more (or less) elements, or even to grow
or shrink on demand. Elements of a persistent array, for example, can be reincarnated on
demand, instead of all at once.
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4.4.4 Reconfiguration details

Guarana goes to a great length to ensure that meta-level reconfigurations are atomic, and
that operations are only delivered to the base-level object after its current primary meta-
object has been requested to handle the operation. Two methods of class Guarana participate
in this effort: reconfigure and perform.

Method reconfigure tries to ensure that reconfigurations are atomic. This is attained
by synchronizing the reconfiguration operation either on the object’s primary meta-object,
if it is not null, or on the class the object belongs to. In either case, after entering the
synchronized block, if the primary meta-object has changed already, the block is left and
entered again, until it holds a lock on the current primary meta-object or class object.

The reconfiguration will take place while the lock is held, so that no other thread can
start a reconfiguration on the same object. First, if the primary meta-object is currently
null, the class meta-configuration and its superclasses are presented an InstanceReconfigure
message; otherwise, the current meta-object is presented a reconfigure request.

Whatever the method, it will end up returning the candidate primary meta-object. Before
establishing this candidate as the new primary meta-object, Guaran4 will test whether the
primary meta-object changed. This is possible because the InstanceReconfigure message or
the reconfigure request may have caused some meta-object to decide to reconfigure the same
object. If the meta-object is found to have changed, the candidate meta-object is simply
discarded. Otherwise, it will be initialized with a still invalid operation factory.

If, during the initialization, the primary meta-object reference changes, the candidate
meta-object is just requested to release the object and the reconfiguration terminates. Oth-
erwise, the candidate meta-object is finally installed as the new primary meta-object, and
the previous meta-object is told to release the object.

At the moment the primary meta-object is modified, the operation factory presented
to the previous meta-object and any other operation factories based on it are immediately
invalidated. This ensures that meta-objects removed from a meta-configuration cannot create
new operations.

However, an evil meta-object might have already created an operation for later (ab)use
before it was removed from a meta-configuration. It will be able to request Guarani to
perform it. However, even operations created from the meta-level are subject to interception,
so the new primary meta-object will be requested to handle the operation, and it may refuse
to let the operation reach the object.

But the previous meta-object might have foreseen the new meta-object’s refusal, and it
could have already requested Guarand to perform the operation, and it could be delaying
the execution of the operation by not returning from method handle.

In order to prevent this kind of misbehavior, before delivering any operation to a base-
level object, method perform will check whether the primary meta-object is still the same
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that was requested to handle the operation. If it has changed, and the original meta-object
requested the result of the operation, it is presented a null thrown result. After that, the
new primary meta-object is requested to handle the operation. This process repeats until
the meta-configuration becomes stable, that is, the primary meta-object remains unchanged
while it handles the operation.

After the operation is delivered to the base-level object, the result is presented (if re-
quested) to the meta-object that was requested to handle it, even if the primary meta-object
has already changed, and the old one will not be able to do much with the result.

4.5 Conclusion

By studying this tutorial, you should have learned how to code meta-objects so as to monitor
and extend the behavior of base-level objects. You should have understood the protocol for
handling operations and results, the protocol for dynamic reconfiguration. You may also have
seen some utility for the message broadcasting mechanism, as well as the meta-configuration
propagation protocol.

You may have gained some insight on how composers are supposed to behave, and how
they can prevent untrustworthy meta-objects from entering the meta-configuration of objects
they control, or how to let them in, albeit preventing them from creating unwanted operations
or ignoring their results.

Despite its length, this tutorial does not present a single whole picture; instead, it shows
several small examples that we hope are enough for one to be able to start using Guarana,
gaining experience with it and possibly mastering it with the advanced discussions.



Capitulo 5

Aplicagoes

Proélogo

Apés uma descrigdo dos poderes reflexivos oferecidos pela arquitetura do Guarand, o artigo
deste capitulo descreve maneiras de implementar, de forma elegante e transparente, diversos
servigos de meta-nivel relevantes para o desenvolvimento de aplicacbes distribuidas confidveis.

As descrigbes de servigos sdo o inicio dos trabalhos de desenvolvimento da biblioteca
de meta-objetos que intitula o artigo, ¢ vem sendo objeto de intensos estudos e trabalhos
de implementagdo, com participagio de alguns alunos de graduagio de pds-graduacio do
Laboratério de Sistemas Distribuidos do Instituto de Computagao da UNICAMP. A biblio-
teca pretende explorar ao méximo as possibilidades de (de)composigio de comportamento
de meta-nivel e reconfiguragio dinimica oferecidas pelo Guarana.

Uma versdo anterior deste artigo foi publicada nos Anais do 1T Workshop em Sistemas
Distribuidos, realizado em Curitiba, PR, de 17 a 19 de junho de 1998, apds sua primeira
edi¢do como relatério técnico IC-98-15.
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Abstract

This paper presents a library of meta-objects suitable for developing distributed
systems. The reflective architecture of Guarand makes it possible for these meta-
objects to be easily combined in order to form complex, dyramically reconfigurable
meta-level behavior. We briefly describe the implementation of Guarand on Javal.
Then, we explain how several meta-level services, such as persistence, distribution,
replication and atomicity, can be implemented in a transparent, reconfigurable and
flexible way.

Resumo

Este artigo apresenta uma biblioteca de meta-objetos adequada para o desenvolvi-
mento de sisternas distribuidos. A arquitetura reflexiva Guarand torna possivel que
esses meta-objetos sejam facilmente combinados, a fim de desempenhar comportamen-
to de meta-nivel complexo e reconfiguravel dinamicamente. Descreve-se sucintamente
a implementacio de Guarand em Java™. Em seguida, explica-se como virios ser-
vigos de meta-nivel, como persisténcia, distribuigao, replicagao e atomicidade, podem
ser implementados de forma transparente e flexivel.

*Islene Calciolari Garcia recebeu auxilio da FAPESP através da bolsa 95/1983-8.
1Java is a trademark of Sun Microsystems, Inc.
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5.1 Introduction

Computational reflection {38, 51] (henceforth just reflection) has proven to be a useful sup-
port mechanism for building distributed systems in a transparent way [1, 2, 7, 13, 16, 21,
20, 34, 37, 43, 43, 53, 54, 52, 59, 60]. Guaran4d is a reflective software architecture that
alms at encouraging the reuse of reflective solutions. It provides simple mechanisms for
combining multiple meta-objects into the meta-level configuration of a single object. These
meta-objects may implement mechanisms such as those required to provide distribution,
persistence, replication, atomicity, etc.

This paper is organized as follows. In Section 5.2, we briefly describe our implementation
of the reflective architecture of Guarani atop of the Kaffe Open VM™, freely-available
Java Virtual Machine. Then, we introduce MOLDS, a library of meta-objects that provide
essential features for developing reliable distributed systems. Finally, in Section 5.4, we
summarize the benefits of designing and implementing a library such as MOLDS atop of
Guarand, and describe the current state of development of both Guarand and MOLDS.

5.2 The Java-based implementation of Guarana

Java [3, 26] is a simple yet powerful object-oriented language. Java classes are compiled into
high-level object-oriented cross-platform bytecodes, that can be executed on Java Virtual
Machines (JVM). Since the specification of the JVM [36] is open, anyone can implement
it, so Java has become available on several different hardware platforms; freely-modifiable
and redistributable source code for some of these implementations is available at no cost.
The reflective architecture of Guarana was implemented on top of one of these platforms,
namely the Kaffe OpenVM.

In Guarand, every Java object may be directly associated with zero or one meta-object,
called the object’s primary meta-object. An object that is associated with a meta-object will
be called a reflective object. Every operation addressed to a reflective object is intercepted,
reified (represented) as a meta-level object, and presented to the object’s primary meta-
object.

By operation, we mean methods and constructors invocations, monitor (synchronized)
enter and exit operations, field reads and writes. Since Java arrays are objects too, array
elements reads and writes, as well as array length reads, are considered operations too.

When a meta-object is presented an operation, it may reply with (i) a result for the
operation, (ii) an alternate operation, to be performed instead of the one requested by the
base-level, or (iii) a request for the original operation to be performed. Unless it provides a
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result itself, it may request to be presented the result of the operation after it is performed,
or even to be able to modify this result.

Meta-objects, instances of subclasses of the class MetaObject, can be made reflective too,
by associating them with other meta-objects, what leads to the so-called potentially infinite
tower of meta-objects [38].

Class Composer, one of the standard specializations of MetaObject, is the key concept
introduced by the meta-object protocol of Guarana. A composer is a meta-object that dele-
gates operations and results to other meta-objects. Composers may delegate to meta-objects
sequentially, or concurrently, or following whatever policy fits the needs of a developer. A
sample composer is provided that delegates operations to the elements of an array of meta-
objects, and delegates results to the same meta-objects in the reverse order.

Some of the component meta-objects of a composer can be composers themselves, what
leads to a hierarchical organization of the meta-objects directly or indirectly associated with
a base-level object. This organization, called the object's meta-configuration, is orthogo-
nal to the tower of meta-objects; each meta-object may have its own independent meta-
configuration. Furthermore, a meta-object may belong to the meta-configuration of more
than one object.

Associating an object with its primary meta-object is an operation provided by the kernel
of Guarana. In fact, this operation is so general that it allows any meta-object in a meta-
configuration to be replaced with another. Any reconfiguration must be approved by the
previous meta-configuration; if the base-level object was not reflective, its class is informed
about the reconfiguration request, and may prevent it.

Objects created by reflective objects have their meta-configurations determined by their
creator’s meta-configuration. Furthermore, the meta-configuration of the class of the new
object is notified before the object’s constructor is invoked, so that it may try to modify
the meta-configuration of its new instance. The kernel of Guarand makes it possible to
create pseudo-objects, that are uninitialized instances of a given class. These objects may be
turned into real objects by invoking a constructor or initializing its fields, but it may remain
a. pseudo-object and be used, for example, as a proxy of an object in a separate address
spaces. The meta-configuration of the class the pseudo-object belongs to is also notified, so
it may modify the pseudo-object’s meta-configuration, or even prevent the creation of the
pseudo-object.

This notification is done by using another operation provided by the kernel of Guarana:
any instance of a class that implements the interface Message can be broadcast to (possibly)
all component meta-objects of a meta-configuration of an object. Such an operation is
necessary because, for security reasons, we made it impossible to obtain a reference to the
primary meta-object of an object. Furthermore, we believe this helps maintaining a clear
separation of concerns between the base and the meta level, just like encapsulation encourages
good object-oriented design.
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Guarand provides an interface that allows arbitrary Operation objects to be created
in the meta-level; even operations that would violate encapsulation can be created and
performed by using this interface. However; for the sake of security, such operations must
be created using OperationFactory objects, that are given to meta-objects whenever they are
associated with an object. This ensures that only component meta-objects of an object’s
meta-configuration, and meta-level objects trusted by them, can obtain privileged access to
this object. Composers may distribute restricted operation factories to meta-objects they
delegate to.

5.3 Reusable Meta-Objects for Distributed Systems

The meta-level protocol of Guarana was designed in a way that makes it possible to create
meta-objects that implement specific meta-level behaviors, and to easily compose them into
complex meta-configurations. In this section, we delineate how some meta-level services for
distributed computing can be implemented in Guarani.

5.3.1 Persistence

A persistent object {4, 12] is one whose lifetime spans the application that created it. The
state of persistent objects can be stored in files, databases or long-running processes. An
object can be made persistent by simply adding a persistence meta-object to its meta-
configuration.

A persistence meta-object may be implemented using two different approaches: i) it may
intercept all field update operations, and update the persistent storage accordingly, possibly
in background; or ii) it may update the persistent storage only when the persistent object
is no longer used by the running application.

Whatever the choice, every object must be given a unique identifier, that can be used for
maintaining references from one persistent object to another, as well as for reincarnating an
object from persistent storage into a running application. This unique identifier might be
maintained by the persistence meta-object itself, however, a unique identifier may be useful
for other purposes, so we recommend the creation of a separate identification meta-object.

Whenever an object-type field of a persistent object is assigned to, the referred-to object
must also be made persistent, otherwise it will not be possible to recreate the complete
state of the referring object afterwards. This can be accomplished by probing the meta-
configuration of this object with a broadcast message. If no persistence nor identification
meta-object exists in the object’s meta-configuration, the object must be reconfigured so as
to become persistent, or the field assignment must be denied by throwing an exception.

In order to reincarnate a persistent object, there are two possible approaches: (i) the
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persistence meta-library may provide a method, that can be called from the base level, that
reincarnates an object, given its unique identification; or (ii) a base-level reflective con-
tainer, that represents the persistent storage, may be used to reincarnate persistent objects
transparently.

An object is reincarnated by creating a pseudo-object, whose fields are filled in from the
persistent storage. Reincarnation of referred objects can be done on demand, as they are
accessed from the base level. Even fields might be reincarnated individually. The imple-
mentation of such meta-object would be much more complicated, but it may pay off if the
object’s state is large enough.

5.3.2 Replication

Object replication [49] may be used in order to increase availability and fault-tolerance of
an object. If one replica fails, others may keep the object running.

There is a very simple way of implementing replication with Guarana. Every replica
executes methods and reads fields without exchanging information with other replicas. Field
modifications, however, are broadcast to all replicas in a totally-ordered [8] way, so that
all replicas perform field writes in the same sequence. Synchronization operations must be
subject to the same total order.

Other replication mechanisms may broadcast method invocations and even field read
operations to multiple replicas, then run an election algorithm to select a result. However,
this introduces some problems that are hard to solve. For example, when one replicated
object interacts with another, the interaction must occur as if the objects were not replicated
at all. So, when 6ne replicated object invokes another, all the individual invocations must
be identified as replicas of a single invocation, and the operation must be performed only
once on each replica of the invoked object.

5.3.3 Distribution

Implementing transparent interaction between objects located in separate virtual machines
was made easy by the introduction of pseudo-objects. An approach similar to that taken
for persistence may be used to locate remote objects. There are differences: (i) instead of
locating objects in a database, they will be searched for in a distributed name server (what
might be viewed as a database, after all); and (ii) instead of reincarnating the object, a
proxy of the remote object is created, as a pseudo-object.

Whenever an operation is requested to the proxy, its distribution meta-object marshals
the operation and sends a message through a network channel to a meta-object located in the
actual target object’s address space. This meta-object just creates an operation equivalent
to the requested one and delivers it for meta-level interception. As soon as a result for
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the operation is available, it is marshaled and returned to the proxy’s meta-object, that
unmarshals the result and returns it as the result of the operation.

This facility may be used as a basis for having distributed replicas. Instead of imple-
menting inter-meta-object communication in the replication meta-objects themselves, now
we just have to keep proxies to remote replica’s meta-objects in every address space so that
they can communicate. This is not an overkill, since group communication protocols usually
require every member of the group to know every other member.

5.3.4 Caching.

Having to send every single operation addressed to a remote object through the network
may cause serious negative impact on the performance of an application. On the other
hand, replicating an object may introduce too much overhead for an object that is frequently
updated.

An intermediate solution may be achieved by caching the contents of fields of an ob-
ject in proxy objects. These fields could be updated periodically, or when synchronization
operations take place. Update operations in the proxy object might not need to be immedi-
ately forwarded to the actual object (or replicas [35]). This is somewhat dependent on the
requirements of the application, but it may prove to be very useful in certain situations.

A caching meta-object can be easily implemented as a composer that selectively delegates
operations to a distribution meta-object.

5.3.5 Migration

Objects such as mobile agents [5] may have to move from one address space to another. This
may be achieved by creating a replica of the moving object in the target address space, then
removing the replica from the source address space.

However, this may be too costly a way to migrate an object. Another, potentially faster,
approach is to have a meta-object that stops delivering operations to the object as soon
as it decides the object must migrate. Then it marshals the complete internal state of
the object and sends it to a remote meta-object that is going to become a member of the
migrated object’s meta-configuration. It creates a pseudo-object and fills in its fields with
the marshaled image of the object. At this point, the original object will have become a
proxy object, that simply forwards operations to the migrated object, until the proxy is
garbage collected.

If an object migrates many times, an operation may have to flow through several proxies
before it reaches the actual object. In this case, it may be useful to have an algorithm that
notices whether an object migrated any further, and sets up a short-cut to the most recently
known location of the object from then on [19].
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We should note that there is some overlap of the migration and the persistence func-
tionalities. After all, a persistent object may be implemented by migrating it to and from
a long-running server process. On the other hand, migration could be easily implemented
by storing the mobile object in persistent storage, then reincarnating it in another address
space. '

Instead of implementing one mechanism on top of another, we believe the correct ap-
proach is to factor out the common functionality required by both mechanisms, and imple-
ment the differences as specializations. Meta-objects that implement caching may also share
functionality with these two mechanisms.

5.3.6 Accounting

Meta-objects for accounting can be easily associated with arbitrary objects. One may count
the invocations of a particular method, or updates of a field, or even complex multi-object
patterns of interaction. Classes can be configured so that all instances are given appropriate
accounting meta-objects.

5.3.7 Monitoring

In addition to the ability of maintaining information about base-level objects, it may be
useful for meta-objects to interact with base-level objects from the meta level.

It is possible to interconnect otherwise independent objects through meta-objects. This
can be used to implement the Model-View-Controller (MVC) [25] pattern, connecting a
model object with its views transparently: the control can be totally implemented in the
meta-level [17].

We might also use meta-objects that implement Statecharts [28] to model and control
the behavior of base-level objects. Transitions in the Statechart could be triggered by the
interception of operations or results; there may be additional conditions for the transition
to take place, involving the state of the base-level object as well as internal meta-object
state [11).

Monitoring multiple distributed objects may require the construction of consistent global
snapshots [14, 18, 23, 24]. Algorithms for obtaining consistent global snapshots can be
implemented completely in the meta-level.

5.3.8 Atomicity

Atomic actions [6] involve three properties: (i) serializability, that ensures that the execution
of concurrent atomic actions is equivalent to at least one serial execution; (it) atomicity, that
is, either all its effects become visible, or none do; and (iii) permanence of effect.
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The last property requires objects involved in an atomic action to be kept in stable
storage, so that, even if one of the hosts running a distributed atomic action fails, its effects
are permanent.

The atomicity property requires a global coordination of all objects involved in an atomic
action. If the atomic action is committed, all objects involved must have its states made
persistent; if it aborts, all objects must be reverted to the states previous to the beginning
of the atomic action.

The serializability property requires some kind of concurrency control en operations.
There are optimistic and pessimistic policies. Pessimistic algorithms rely on locking for en-
suring serializable executions; optimistic ones let separate atomic actions operate on separate
copies of objects, and check for serializability at commit time.

Atomic actions may be totally controlled at the base level, for example, by providing a
class AtomicAction that- takes an instance of the Java standard class Runnable as its con-
structor argument. The method run of this argument is then executed inside the atomic
action. If it terminates successfully, the transaction is committed; if it throws an exception,
the atomic action may abort.

Concurrency control may take place transparently, at the meta level, using whatever
selected policy. However, if it is a pessimistic one, it should be possible to pre-declare locks,
for example, from both the base and the meta level.

Instead of explicitly creating and managing atomic actions in the base level, certain
objects may be configured as atomic ones [55], so that every operation on that object is
performed inside an independent atomic action. Tt may be useful for meta-level control of
atomic actions to.be able to specify that a particular operation should be performed inside
a given atomic action, as a nested atomic action or sharing data with other threads running
the same transaction.

5.4 Conclusion

The design of Guarana was largely influenced by detected needs of a library like MOLDS.
In fact, we have only started Guarana because no other reflective platform we knew could
provide the modularization, composition, reconfiguration and security features demanded
by such a library. The choice of Java as the programming language has just made things
easier, because of the existing basic reflection capabilities and of the libraries for developing
networked applications.

We believe MOLDS will become a very powerful and sound framework for developing
distributed applications, but its components still have to be detailed further and imple-
mented.

This library is a basic part of a larger project [10]. The only similar project we have
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known to date is Apertos [59, 60], a reflective operating system. We should note, however,
that it is based on a slightly more limited reflective model, specifically targeted at operating
system development.



Capitulo 6

Conclusao

Apés um longo tempo de maturagdo, em que sofreu intimeras reformulagdes, a arquitetura
reflexiva do Guarand finalmente atingiu um alte grau de estabilidade e coeréncia. Com
isso, foi possivel concluir uma primeira implementagéo j4 em fevereiro deste ano. A partir de
entao, novas versoes foram criadas, & média de uma por més, corrigindo os intimeros erros das
primeiras versoes, introduzindo pequenas alterages, com objetive de facilitar a utilizagio da
plataforma, melhorar seu desempenho e atualiza-la em relagio a avancos introduzidos nas
versOes mais recentes do Kaffe Open VM.

O fato de o Guarana ser distribuido livremente, sob a GPL (General Public License) do
projeto GNU, além do grande volume de documentagio disponivel, toda escrita em inglés,
temn favorecido a aceitagdo desta implementagdo do Guarand na comunidade nacional e
internacional. Além dos diversos alunos do Instituto de Computagio da UNICAMP que
tém baseado seus trabalhos nesta plataforma, temos noticia de pesquisadores de algumas
universidades brasileiras, como Universidade de Sio Paulo e Universidade Federal do Par4,
e até mesmo de uma empresa multinacional (ParaGraph Inc., empresa associada & Silicon
Graphics Inc.), que tém manifestado interesse em utilizar Guarand como ambiente de apoio
para a construgdo de aplicagtes reflexivas.

Atribuimos o crescente uso do Guarand 3 linguagem escolhida para a implementacio,
cuja utilizagdo encontra-se em franca expanséo, e ao fato de possibilitar a implementacio
de servigcos de geréncia de forma transparente, modular, reutilizivel e segura, e com um
desempenho razodvel.

Queremos crer que, 4 medida em que o trabalho for divulgado, através de anvincios ainda
nao realizados em listas de e-mail e newsgroups, além de publica¢des em periddicos de boa
vigibilidade, esta procura 'sé venha a crescer. Vale mencionar que, trés dias apds a defesa
desta dissertagdo, recebemos comunicagéo sobre a aceitacio de um artigo sobre o modelo
de composicdo de meta-objetos do Guarana [44] num workshop da OOPSLA’98, uma das
maiores conferéncias do mundo na 4rea de computagéo.
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Come trabalhos futuros, podemos citar as otimizacoes propostas no Capitulo 3, isto é,
(i) preservar o estado dos registradores em caso de ndo interceptacio de operagdes envol-
vendo campos ou elementos de arrays e (ii} criar interceptadores e acionadores de métodos
especializados, que nao incorram no custo adicional de interpretar a assinatura dos métodos
correspondentes a cada interceptacdo. Pretendemos implementar essas otimizacdes em futu-
ro proximo.

Finalmente, o trabalho futuro de maior destaque serd a estruturacio e a implementacio
parcial da biblioteca MOLDS, que consiste no objeto de estudo do programa de doutora-
mento recém-iniciado.



Apéndice A

Obtendo Guarana e MOLDS

Informagdo adicional a respeito do Guaranda pode ser obtida na Home Page do Guaran4,
na URL http://www.dcc.unicamp.br/~oliva/guarana/. O cédigo fonte de sua imple-
mentagdo, baseada no Kaffe OpenVM, documentagio on-line e artigos completos estdo dis-
poniveis. MOLDS estd em estdgio inicial de projeto mas, quando vocé ler esta dissertacéo,
pode haver informagfo mais atualizada na Home Page do Guarana. Tanto Guarand quan-
to MOLDS sao free software, distribuidos sob os termos da GNU General Public License,
mas suas especificagbes sdo abertas, portanto implementacdes independentes podem ser dis-
tribuidas com licencas distintas.

Additional information about Guarand can be obtained in the Home Page of Guarana,
at the URL http://www.dcc.unicamp.br/~oliva/guarana/. The source code of its im-
plementation atop of the Kaffe OpenVM, on-line documentation and full papers are available
for download. MOLDS is currently in early design stage, but, when you read this paper,
there may be updated information in the home page of Guarand. Both Guarand and
MOLDS are Tree Software, released under the GNU General Public License, but their
specifications are open, so non-free clean-room implementations are possible.

95



- Referéncias Bibliograficas

1] G. Agha, S. Frglund, R. Panwar, and D. Sturman. A Linguistic Framework for Dynamic
) )

[2]

3]
[4]

[5]

[6]

(8]

[9]

[10]

Composition of Dependability Protocols. In DCCAS8 — Third IFIP Working Conference
on Dependable Computing for Critical Applications, pages 197-206, Sept. 1993.

M. Ancona, G. Dodero, V. Gianuzzi, A. Clematis, and M. L. Lisboa. Reflective Ar-
chitectures for Reusable Fault-Tolerant Software. In PANEL’95 — XXI Conferéncia
Latino—Americana de Informdtica, Mar. 1996.

K. Arnold and J. Gosling. The Jave Programming Language. Addison-Weslley, 1996.

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Morrison. An
approach to persistent programming. Computer Journal, 26(4):360-365, Dec. 1983.

Y. Berbers, B. De Decker, and W. Joosen. Infrastructure for mobile agents. In Seventh
ACM SIGOPS European Workshop: System Support for Worldwide Applications, pages
173-180, 1996.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

S. Bijnens, W. Joosen, and P. Verbaeten. A reflective invocation scheme to realise
advanced object management. In Object-Based Distributed Programming ECOOP 93
Workshop, July 1993.

K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures.
ACM Transactions on Computer Systems, 5(1):47-76, Feb 1987.

G. Booch. QObject Oriented Analysis & Design. Benjamin Cummings, second edition,
1994.

L. Buzato, H. Liesenberg, C. R. R. Anido, and M. de Toledo. Uma arquitetura de
software para o desenvolvimento de aplicagées distribuidas confidveis. In First Workshop
on Distributed Systems (WoSid 96}, Salvador, BA, Brasil, May 1996.

96



REFERENCIAS BIBLIOGRAFICAS 97

[11] L. E. Buzato. Management of Object-Oriented Action-Based Distributed Programs.
Ph.D. Thesis, University of Newcastle upon Tyne, Department of Computer Science,
Dec. 1994.

[12] L. E. Buzato and A. Calsavara. Stabilis: A Case study in Writing Fault-Tolerant
Distributed Applications Using Persistent Objects. In A. Albano and R. Morrison,
editors, Proceedings of the Fifth International Workshop on Persistent Object Systems,
Workshops in Computing, pages 354-375, San Miniato, Italy, Sept. 1992. Springer-
Verlag.

(13} R. H. Campbell, N. Islam, D. Raila, and P. Madany. Designing and Implementing
Choices: An Object-Oriented system in C++. Commun. ACM, 36(9):117-126, Sept.
1993.

[14] M. Chandy and L: Lamport. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computing Systems, 3(1):63-75, Feb. 1985.

(15] S. Chiba. A metaobject protocol for C++. In OOPSLA 95, volume 30, pages 285-299,
QOct. 1995.

[16] S. Chiba and T. Masuda. Designing an extensible distributed language with a meta-level
architecture. In N. Nierstrasz, editor, ECOQOP’93, pages 482-501, 1993.

[17] M. G. Coelho, C. M. F. Rubira, and L. E. Buzato. Uma abordagem reflexiva para a cons-
trucao de frameworks para interfaces homem-computador. In X7 Simpdsio Brasileiro
de Engenharia de Software (SBES’97), pages 115130, Fortaleza, CE, Oct. 1997.

[18] R. Cooper and K. Marzullo. Consistent Detection of Global Predicates. SIGPLAN
Notices, 26(12):167-174, Dec. 1991.

f19] M. S. et al. SSP chains. In Symposium on Principles of Distributed Computing. acm,
1992.

[20] J.-C. Fabre, V. Nicomette, T. Pérennou, and Z. Wu. Implementing Fault Tolerant
Applications using Reflective Object-Oriented Programming. In 25th Simposium on
Foult-Tolerant Computing Systems, pages 291-311, Pasadena, CA, June 1995.

[21] J. C. Fabre, T. Perennou, and L. Blain. Meta-object Protocols for Implementing Reliable
and Secure Distributed Applications. Technical Report LASS-95037, Centre National
de la Recherche Scientifique, Feb. 1995.

[22] J. Ferber. Computation reflection in class-based object-oriented languages. OOPS-
LA’89, 24(10), Oct. 1989.



REFERENCIAS BIBLIOGRAFICAS 98

[23] 1. C. Garcia and L. E. Buzato. Asynchronous Construction of Consistent Global
Snapshots in the Object and Action Model. In Proceedings of the 4th Iniernational
Conference on Configurable Distributed Systems, Annapolis, Maryland, EUA, May 1998.
IEEE. Available as Technical Report IC-98-16.

[24] I C. Garcia and L. E. Buzato. Cortes consistentes em aplicacdes distribuidas. Technical
Report IC-98-17, Instituto de Computacdo, Universidade Estadual de Campinas, Apr.
1998.

[25] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, first edition, 1983.

[26] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Java Series.
Addison-Wesley, Sept. 1996. Version 1.0.

[27] B. Gowing and V. Cahill. Meta-object protocols for C++: The Iguana approach. In
Proceedings of Reflection 96, pages 137-152, San Francisco, USA, Apr. 1996.

(28] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, pages 231-274, Aug. 1987.

{29] 1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering - A Use Case Driven Approach. Addison-Wesley/ACM Press, Reading,
Mass., 1992.

[30] G. Kiczales. Towards a new model of abstraction in software engineering. In IMSA’92
Workshop on Reflection and Meta-level Architectures, 1992.

[31] G. Kiczales. Beyond the black box: Open implementation. IEEE Software, Jan. 1996.

[32] G. Kiczales, J. des Riviéres, and D. G. Bobrow. The Art of the Metaobject Protocol,
chapter 5,6. MIT Press, 1991.

[33] J. Kleinéder and M. Golm. MetaJava: An efficient run-time meta architecture for Java.
In International Workshop on Object Orientation in Operating Systems — IWO0O0S'96,
Seattle, Washington, Oct. 1996. IEEEL.

[34] J. Kleindder and M. Golm. Transparent and adaptable object replication using a reflec-
tive Java. Technical Report TR-14-96-07, Universitdt Erlangen-Niirnberg: IMMD IV,
Sept. 1996. '

[35] R. Ladin, B. Liskov, and L. Shrira. Lazy replication: Exploiting the semantics of distri-
buted services. In Proceedings of the 9th ACM Symposium on Principles of Distributed
Computing, pages 43-57, Quebec City, Quebec, Canada, Aug 1990.



REFERENCIAS BIBLIOGRAFICAS 99

[36) T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Java Series.
Addison-Wesley, Jan. 1997.

(37] P. W. Madany, N. Islam, P. Kougiouris, and R. H. Campbell. Reification and reflection
in C++: An operating systemn perspective. Technical report, University of Illinois at
Urbana-Champaign, Mar. 1992.

[38] P. Maes. Concepts and experiments in computation reflection. ACM SIGPLAN Notices,
22(12):147-155, Dec. 1987.

[39] S. Matsucka, T.-Watanabe, Y. Ichisugi, and A. Yonezawa. Object-oriented concurrent
reflective architectures. In ECOOP 91, July 1991.

[40] J. McAffer. Meta-level programming with CodA. In ECOOP’95, pages 190-214, Aug.
1995.

[41] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A distributed programming sys-
tem with multi-model reflection framework. In IMSA’92 International Workshop on
Reflection and Meta-level Architecture, Nov. 1992.

[42] H. Okamura, Y. Ishikawa, and M. Tokoro. Metalevel decomposition in AL-1/D. In Ist
International Symposium on Object Technologies for Advanced Software (ISOTAS’93),
Nov. 1993.

[43] K. Okamura and Y. Ishikawa. Object Location Control Using Meta-level Programming.
In ECOOP 94, pages 299-319, 1994.

[44] A. Oliva and L. E. Buzato. Composition of meta-objects in Guarand. In Workshop on
Reflective Programming in C++ aend Jave, OOPSLA 98, Oct. 1998.

[45] A. Paepcke. PCLOS: A flexible implementation of CLOS Persistence. In ECOOP 88,
pages 3 74-389, Aug. 1988.

[46] R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 4th
edition, 1997.

[47] Rational Software Corporation. Unified Modeling Language v1.0.1, Jan. 1997.

[48] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Destng. Prentice Hall, 1991.

(49] F. B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299-319, Dec. 1990.



REFERENCIAS BIBLIOGRAFICAS 100

[50] B. C. Smith. Reflection and semantics in lisp. In ACM POPL ’84, pages 23-35, 1984.

{51] B. C. Smith. Prologue to “Reflection and Semantics in a Procedural Language”. PhD
Thesis Prologue, 1985.

[52] R. Stroud. Transparency and reflection in distributed systems. In 5th European SIGOPS
Workshop, on Medels and Paradigms for Distributed Systems Structuring, Mont Saint-
Michel, France, Sept. 1992. ACM SIGOPS, IRISA, INRIA-Rennes.

[53] R. J. Stroud and Z. Wu. Using meta-objects to adapt a persistent object system to
meet applications needs. In 6th SIGOPS European Workshop on Matching Operating
Systems to Applications Needs, 1994.

[54] R. J. Stroud and Z. Wu. Using Metaobject Protocols to Implement Atomic Data Types.
In ECOOP’95 — 8th European Conference, pages 168-189, Aug. 1995,

[55] R. J. Stroud and Z. Wu. Using metaobject protocols to satisfy non-functional require-
ments. In C. Zimmermann, editor, Advances in Object- Oriented Metalevel Architectures
and Reflection, chapter 3, pages 31-52. CRC Press, 1996.

[56] Sun Microsystems Computer Corporation, Mountain View, CA, USA. Java API Docu-
mentation, Dec. 1996. Version 1.1.

[37] K. Ushijima, S. Chiba, and T. Masuda. Meta-level programming for simplifying library
protocols. In ISOTAS’'96 (Submitted to), 1996.

[68] T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent language.
In OOPSLA’88, volume 23, pages 306315, Sept. 1988.

[59] Y. Yokote. The Apertos reflective operating system: The concept and its implementa-
tion. In Proceedings OOPSLA ’92, ACM SIGPLAN Notices, volume 27, pages 414-434,
Oct. 1992

[60] Y. Yokote, F. Teracka, and M. Tokoro. A reflective architecture for an object-oriented
distributed operating system. In ECOOP 89, 1989.



