ks & e —
Este cxemplar Comesponds ; L3 o
Tesoif}:ss-:r:a;éo devidamenic oo ..-;‘m-“ g ™
[JO' T *;;a," .1_.".“1 4 \C- iy "
_ —h#__u_._._.* _X=t L
O aprovada pela Banca Emami.sors
Campinas. €S de J A
-] Ars 9 2
I COORDENADCRTESG GRADIAC 2 4
CPGC N '

Algoritmos para Problemas de Empacotamento

Eduardo Candido Xavier
Tese de Doutorado
BiBLIOTECA CENTRAL
i CESAR LLATTES
DESENVOLVIMENTO DE
COLECAO

UNICAMP

Instituto de Computagio
Universidade Estadual de Campinas

Algoritmos para Problemas de Empacotamento

Eduardo Candido Xavier'

3 de dezembro de 2006

Banca Examinadora:

Prof. Dr. Fldvio Keidi Miyazawa
Instituto de Computagio, Unicamp (Orientador)

Profa. Dra. Yoshiko Wakabayashi
Instituto de Matematica e Estatistica, USP

Prof. Dr. Horédcio Hideki Yanasse
Laboratério Associado de Computagido e Matemadtica Aplicada, INPE

Prof. Dr. Cid Carvalho de Souza
Instituto de Computagdo, Unicamp

Prof. Dr. Orlando Lee
Instituto de Computagio, Unicamp

! Auxilio financeiro da Capes e do CNPq

BiBLIOTECA CENTRAL
CESAR LATTES
DESEMVOLVIMENTO DE
COLECAO
UNICAMP

1

o _PC

AMADA T! \:-',ﬁ_, C vy

L 4
e b B

EX

FICHA CATALOGRAFICA ELABORADA PELA
BIBLIOTECA DO IMECC DA UNICAMP
Bibliotecaria: Mana Julia Milani Rodrigues — CRB8a / 2116

0o8C

B

Lo 100 o3

D_X

O_H.LL’.LLJ——

13 . Or—COx

D

T

L%]

.unws para problemas de empacotamento / Eduardo Candido
avier -- Campinas, [S.P. :sn], 2006

Onentador : Flavio Keidi Mivazawa
Tese (doutorado) - Universidade Estadual de Campmnas, Insttuto
de Computagio

1. Algontmos 2. Otimizagdio combinatoria. 3. Heunistica |
Mivazawa, Flaivio Keidi. II. Umversidade Estadual de Campinas
Instituto de Computacdo. I Titulo.

Titulo em inglés Algonthms for packing problems.

Palavras-chave em inglés (Kevwords). 1 Algorithms 2 Combinatonal optimization

3. Heunstics.

Area de concentragio: Teoria da Computagio

Titulagdo. Doutor em Ciéncia da Computagiio

Banca examimnadora: Prof. Dr. Flavio Keidi Mivazawa (IC-UNICAMP)
Profa Dra. Yoshiko Wakabavashi (IME-USP)
Prof. Dr Horacio Hideki Yanasse (LAC-INPE)
Prof Dr Cid Carvalho de Souza (IC-UNICAMP)
Prof. Dr Orlando Lee (IC-UNICAMP)

Data da defesa: 05/12/2006

Programa de Pos-Graduagio: Doutorado em Ciéncia da Computagio

Algoritmos para Problemas de Empacotamento

Este exemplar corresponde a redacio final da Tese
devidamente corrigida e defendida por Eduardo
Candido Xavier e aprovada pela Banca Examina-
dora.

Campinas, 5 de dezembro de 2006.

¢ .
Prof. Dr. Flavio gﬁ

Instituto de Computag@do, ¥nicamp (Orientador)

Tese apresentada ao Instituto de Computagio,
UNICAMP, como requisito parcial para a obtengio
do titulo de Doutor em Ciéncia da Computagao.

v

TERMO DE APROVACAO

Tese defendida e aprovada em 05 de dezembro de 2006, pela Banca
examinadora composta pelos Professores Doutores:
—t £ ITF 7

Profa. Dra. Yoshiko Wakabayashi
IME - USP |

/ T e

A_‘ f =
- _/"

Prof. Dr. Horacio Hideki Yanasse
C - INPE

; 7/ /
/’ 9‘&‘/‘-’7“_”’-’_/':-) ’4 / (< .‘_:é-":‘
~ Prof-Dr. Cid Cai'vam@Souza ‘
IC - UNICAMP

Prof. Dr. Orlando Lee
IC - UNICAMP

! %
‘: ':& f__r-;:“:”‘_"‘
Prof. Dr. Flavio Keidi Miyazawa
IC - UNICAMP i

(© Eduardo Candido Xavier, 2006.
Todos os direitos reservados.

Vi

Resumo

Neste trabalho estudamos diversos problemas de empacotamento considerados NP-dificeis. As-
sumindo a hipétese de que P # NP, sabemos que ndo existem algoritmos eficientes (complexi-
dade de tempo polinomial) exatos para resolver tais problemas. Uma das abordagens considera-
das para tratar tais problemas € a de algoritmos de aproximacao, que sio algoritmos eficientes e
que geram solugdes com garantia de qualidade. Neste trabalho apresentamos alguns algoritmos
aproximados para problemas de empacotamento com aplicagoes praticas. Outra maneira de se
lidar com problemas NP-dificeis ¢ o desenvolvimento de heuristicas. Neste trabalho também
apresentamos heuristicas baseadas no método de geracao de colunas para problemas de corte
¢ empacotamento bidimensional. Resultados computacionais sugerem que tais heuristicas sdo
eficientes e geram solugdes de muito boa qualidade.

Vil

Abstract

In this work we study several packing problems that are NP-hard. If we consider that P # NP,
we know that there are no efficient (polynomial time complexity) exact algorithms to solve
these problems. One way to deal with these kind of problems is to use approximation algo-
rithms, that are efficient algorithms that produce solutions with quality guarantee. We present
several approximation algorithms for some packing problems that have practical applications.
Another way to deal with NP-hard problems is to develop heuristics. We also consider column
generation based heuristics for packing problems. In this case, we present column generation
algorithms for some two dimensional packing problems and also present computational tests
with the proposed algorithms. The computational results shows that the heuristics are efficient
and produce solutions of very good quality.

Viii

A meus pais, Jodo e Dita,
meus irmdos Jose, Alexandre e César
e a Silvana.

Agradecimentos

Hoje considero a educagido uma das coisas mais importantes da minha vida. Passei quase vinte
e dois anos da minha vida freqiientando algum tipo de escola. Vinte e dois anos tentando fazer
com que eu ficasse educado, e eu ainda estou tentando. Pena que agora nao me resta outra coisa
anao ser estudar por conta propria. Considerando a importancia que dou a educacao, gostaria de
agradecer a todos aqueles que a influenciaram. Todos os professores do ensino bésico e médio,
professores da graduacdo na UFPR e da pds-graduagao na UNICAMP. Agradecimentos espe-
ciais vao para meu orientador de iniciacdo cientifica, Alexandre Direne e ao Renato Carmo por
me introduzir 4 Teoria da Computagdo. Também gostaria de agradecer aos excelentes profes-
sores que tive aqui na UNICAMP, e em especial a alguns, que na minha opinido estdo entre os
melhores professores que tive em minha vida: Célia de Mello, Cid de Souza, Flavio Miyazawa,
Ricardo Dahab e Orlando Lee. :

Eu tive a felicidade de nascer em uma familia que valoriza a educagdo, € meus mais Sinceros
agradecimentos vao para os meus pais Joao e Dita, por terem me proporcionado o melhor que
podiam, e aos meus irmdos (Alexandre, Zinho e César), que por serem mais velhos do que eu,
sempre tinham alguma coisa para me ensinar. Quando era crianga me recordo do Zinho, do
César e do Sandre, varias vezes me ensinando alguma coisa de matemadtica ou fisica, ou alguma
outra coisa que tinha davidas.

Algumas pessoas quando terminam o doutorado acabam por receber um doutorado duplo.
O primeiro ¢ outorgado pela instituicao onde estudou, e € dado na drea de estudo. O outro é
outorgado pela prépria pessoa, e € em arrogancia. Tive a sorte de ter um orientador que recusou
o segundo titulo. Por isso agradeco ao Flavio Miyazawa pelos quase 6 anos de ornentagao
produtiva e tranqiiila.

Agradeco a todos colegas e amigos do IC por terem tornado a pés-graduag@o mais divertida.
Nido vou citar nomes pra ndo esquecer de alguém, mas se vocé estd lendo isso, estes agradeci-
mentos vao para vocé.

Agradeco ao pessoal do Laboratério LOCO, e aos “irmdos” de orientagdo: André (Piazao),
Carlos (Louco), Evandro, Mamio (Rafael), Meira, Nilton (O Cara), e Victor.

Agradeco especialmente & minha noiva Silvana, pelo carinho, amor e amizade durante todos
estes anos.

Agradeco finalmente a toda populagao brasileira, especialmente a mais pobre que contribuiu
de forma involuntaria com as bolsas da CAPES e do CNPq que proporcionaram cemn: gue ¢u
fizesse este trabalho.

X1

Sabid que anda atrds de Jodo de Barro vira servente de pedreiro.

(Autor deconhecido)

Xil

Sumario

Resumo
Abstract
Agradecimentos

1 Introducao
11 ObigtiResdo THbaIB .. s csw s mps s i v Pe BT R VI W E TG ST 53 %
1.2 Oreamzocardo TORI0 . . vt 4 L8 @ S EB53 FE M EE G n S e 8 e d o do w

2 Preliminares
2.1 Probleids d¢ ERPacotaiien’ « cc cxwoaw s semaswmusmus s s

2.2 Alcoritmos dE APIOXimaghio «v: cs 9 88 50 SmERm FERIAE SRR
23 TUmResnltadosobre Contagem . . 5 s 9 i3 5587 095 nis nemoamgnss
2.4 Geracaode Colunast Lo e e e e e e

2AT O aleoritim BIIIEY & e o oo eom a5 3 68 E W w0 B WK N T D

2.4.2 O algoritmo Simplex com Geragdode Colunas
3 Resumo dos Resultados

4 Artigo: A One-Dimensional Bin Packing Problem with Shelf Divisions
BI TiIEon c 2 s s s A I Mg SRS BUIWESE ES WY R G B
@l NN ..vomusmssmas sembt @ s bl SFFGEREES
4.1.2 Simple LowerBounds
4.2 Hybrid versions of the First Fit and Best Fit Algorithms
4.3 An Asymptotic Polynomial Time Approximation Scheme
43.1 ‘“Thealgorithm ASBP, - ::5 55 257 5 5 eiGeamusosn a8
432 Thealgorithm ASBP.
Hid. (CorolidifpREMEKS c cosmasmers wem am s e m e ®E @RS @ ¥
45 ACKNOWISABEIiBNE « w s v cy w e s e s TV IS W RT I VI WP T BT WY %

vii

viii

E2N B b e

2

10
10
14

16

n

4.6 BibHGEREPRY . oo v s ncm s g v s e Gis w o B8R 8 @ e M W e e W E @ 37

Artigo: A Note on Dual Approximation Algorithms for Class Constrained Bin Packing

Problems 39
) DOSEEHEH « ¢ soca s v i ssw s s e S s W E A E P E DY B E e s 39
52 AMBIPTASTorthie CORBBRPPOBlEm . : ;s sisiomamidmenan &3 41
\.dual PTAS forthe CCBPProblem'. v ¢ v v v s v v o wiow v owme L
S8 BIBHOEIEPHY :© 2o scssmn smmh amd 5% e 5 N @ @ S8 5w 6 e 46
Artigo: The Class Constrained Bin Packing Problem with Applications to Video-on-
Demand 48
Bl SHUDUEIIERE o o oo 4 i 0 G b o o Pl S o T 5T s e ST P S ke 48
Bl OBRON o ouivomeams oms oo e as @@ s 4 & 9w 5w Bx S 49
612 REWEEWOIK . ::vczsvesmessnms goamads sesis 50
S R S R RN E RIS REE AR SRR B S &R 51
s.-~ Apphications of the CCBP Problem to Data Placement on Video-on-Demand
DIRENEESE o 9 S0 ol W R B 57 e S R RN T T N O T R 10 1) 2 52
6.3 Practical ApproxXimationAIgorthmg . « c ¢ v v v s s m n o5 v aw 0w s a s 53
64 TheCnUGECCBE PO «v s ssv v s s v m 98 a a3 €94 T & a o
6.4.1 Lower bounds for bounded space algorithms 57
642 TheFirst-FitAlgorithm 59
643 A 2.75-competitivealgorithm 61
65 AnAPTAS for Bounded NumberofClasses « : . < v v v u v s v v e vwws 63
A.5.1 The Algorithm of Dawande, Kalagnanam and Sethuraman 64
632 AnAPTASTorthe VOCCBEProblem v s n s waemismams s » 65
6.6 Experimental Results of the Practical Algorithms 69
6.7 Conclusioncand Fatme Work.. . « v s vo v v s s m s s w s e s o 8w e o < 73
68 BOUGEFIBHY i s caimis i s S a 33 R E NS 25 624 6 59T § 75
Artigo: A Note on the Approximability of Cutting Stock Problems 78
Wl IORORERN o i oo e e 2 o 0k Bl B e W e T W e B R 79
Bl NOGRON v v s v s n 5w s w5 S A ¥ G e 5w &8 S % W E N 80
7.3 One-dimensional Single Stock-Size Cutting Stock Problem 80
7.4 Two and Higher Dimensional Single Stock-Size Cutting Stock Problems . . . 83
iy DIDHOBEESRY . oohoo oo & oo o 5k u e W e K R 6 S RS S 84
Artigo: Algorithms for Two-Dimensional Cutting Stock and Strip Packing Problems
Using Dynamic Programming and Column Generation 87
) SNTEORORBEY o . 5 o x i e B R o B b e B A SR 88

8.2 The k-staged rectangular knapsack problem 90

8i2.1 DiISCIeHZAIONPOINS' = < 52,6 55 64 5 55, 65 S § 5 650 8 2 & 29 oo 92

8.2.2 Thek-stagedRKproblem 93

83 TheZUSProbBIEmE . o « v v wim = mim & 2w o 5 a0 6 m o 5 6w 8 0 m @ 0 5 =6 & @ 95
8.4 The 2CS problem with bins of differentsizes 99

8.5 The SP problem and the column generationmethod 100
§6 COMPIGIONAITESHNS < 5 c iz 5 i s I S SIS T ViR I M FFT M 3 5 &8 103
8.6.1 Computational results forthe RK problem 103

8.6.2 Computational results for the 2CS problem 107

8.6.3 Computational results for the BPV problem 114

8.6.4 Computational results for the SPproblem 118

8¢ Contldine oS . , : » srnimzsmsd A AmEs CAREITHEF R &8 8um o 122

88 BIDHOZIAPRY o x 0 v 5 o v v o s o s m o w oo m e 8 e e v e e 123

9 Conclusdes e Trabalhos Futuros 128
Bibliografia 131

XV

Lista de Tabelas

6.1
6.2

8.1
8.2
8.3
84
8.5
8.6
8.7
8.8
89
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.19
8.18
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27

Performance of the algorithms for Single-Disk. 71
Performance of the algorithms for Striped-Disk. 72
INSEANCES INTORMBUON. . « « o« 2 wv v v 0 0o o 6w s 6 oo oo on o asm s 105
Performance of the algorithm SDP for 2-, 3- and 4-staged patterns. 105
Performance of the algorithm SDP for 2-, 3- and 4-staged patterns with rotations. 106
Performance of the algorithm CG with 2-staged pattemns. 107
Performance of the algorithm CG” with 2-staged patterns. 108
Performance of the algorithm CG with 3-staged pattemns. 109
Performance of the algorithm CG” with 3-staged patterns. 109
Performance of the algorithm CG with 4-staged patterns. 110
Performance of the algorithm CG” with 4-staged patterns. 110
Performance of the algorithm CGR with rotations and 2-staged patterns. 111
Performance of the algorithm CGRP? with rotations and 2-staged patterns. . . . 111
Performance of the algorithm CGR with rotations and 3-staged patterns. 112
Performance of the algorithm CGR? with rotations and 3-staged patterns. . . . 112
Performance of the algorithm CGR with rotations and 4-staged patterns. 113
Performance of the algorithm CGR? with rotations and 4-staged patterns. . . . 113
Performance of the algorithm CGV? with 2-staged patterns. 114
Performance of the algorithm CGV? with 3-staged patterns. 115
Performance of the algorithm CGVRP with rotations and 2-staged patterns. . . 115
Performance of the algorithm CGV? with 4-staged patterns. 116
Performance of the algorithm CGVR?” with rotations and 3-staged patterns. . . 116
Performance of the algorithm CGVR?” with rotations and 4-staged patterns. . . 117
Performance of the algorithm CGS” with 2-staged patterns. 118
Performance of the algorithm CGS” with 3-staged patterns. 119
Performance of the algorithm CGS” with 4-staged patterns. 120
Performance of the algorithm CGSR? with rotations and 2-staged patterns. . . . 120
Performance of the algorithm CGSRP? with rotations and 3-staged patterns. . . . 121
Performance of the algorithm CGSR? with rotations and 4-staged patterns. . . . 121

Xxvi

Lista de Figuras

4.1
4.2
43
4
4.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

8.1
8.2

Example of a shelf packing of items intoonebin. 20
AL ASER . « v o s v d o @ mow § o w S a4 e N R S g 27
Algorithnt ASBP, WheR e +-Bis « conss s svw e o uawe s & 5% 28
HRIPEIMATEY.: s s 5 i R INE LI ETLE A B AUY A 0 E 5 30
Algorithm to obtain packings for items with size at least 32
An optimal solution for the given videoserver. 52
Thebins generaicd by the FF algorithm.. . . . « v v oo v one ws mmsio s o 60
RIGCHERBSAR.. 4w 5 Sve 5 avm & S & o S el TN S e o & il £ BH BB 62
Algorithm to obtain packings for items with size at least 2. 67
REAB WO =TT s v v amus oo s om 50 & 505 & % 9 06 5 966 5 % 3 904 73
Results with§ =05. RS EESE WE AR ERET 4 73
RO =, . cicosnvnmr b AR B IEH AN REETANN SR E % 74
T TS T 1 R s PR R P e 74
RERTE RISy, oot 5 w058 B R B 4 e e R e @ 75
(a) Non-guillotine pattern; (b) Guillotine pattern. 90
The optimal solution for gcutl3 found by the algorithm SDP with 3-staged pat-

terns. The small squares have dimensions (378,200) and the squares in the
bottom have dimensions (555, 496) and (555,755). 104

XVii

Capitulo 1
Introducao

Neste trabalho apresentamos algoritmos voltados para problemas de empacotamento. Mui-
tas das variagOes de problemas de empacotamento sido problemas de otimizag¢io que pertencem
a classe NP-dificil. Problemas de otimiza¢do, na sua forma geral, t€m como objetivo maximi-
zar ou minimizar uma funcio definida sobre um certo dominio. A teoria cldssica de otimizacdo
trata do caso em que o dominio € infinito. J4 no caso dos chamados problemas de otimizagdo
combinatéria, o dominio € tipicamente finito; além disso, em geral € facil listar os seus elemen-
tos e também testar se um dado elemento pertence a esse dominio. Ainda assim, a idéia ingénua
de testar todos os elementos deste dominio na busca pelo melhor mostra-se inviavel na pritica,
mesmo para instancias de tamanho moderado.

Como trabalho de doutorado fizemos um estudo na drea de otimiza¢ao combinatéria, mais
especificamente sobre problemas de empacotamento. Quando nos referimos a problemas de
empacotamento, estamos tratando de uma grande classe de problemas onde temos um ou mais
objetos grandes n-dimensionais, os quais chamamos de recipientes, e vérios objetos menores
também n-dimensionais os quais chamamos de itens. O nosso objetivo € empacotar itens den-
tro de recipientes maximizando ou minimizando uma dada fung¢io objetivo. Provavelmente os
dois problemas de empacotamento mais conhecidos sejam o problema de empacotamento uni-
dimensional (Bin Packing Problem) e o problema da mochila (Knapsack Problem). No primeiro
problema temos uma lista de itens e um nimero infinito de recipientes iguais. O objetivo € em-
pacotar todos os itens no menor nimero de recipientes possivel. No segundo problema, temos
um Unico recipiente € uma lista de itens, cada item com um determinado valor. O objetivo do
problema é empacotar itens da lista que maximizem a soma de seus valores.

Neste trabalho, assumimos a hipétese de que P # NP. Desta forma, tais problemas e
muitos outros problemas de otimizag@o que sdo NP-dificeis nao possuem algoritmos eficientes
exatos. Muitos destes problemas aparecem em aplicagdes priticas e ha um forte apelo econd-
mico para resolvé-los. Problemas de empacotamento possuem aplicacoes em diversas dreas
da Computagdo e Pesquisa Operacional. Podemos citar como exemplos, problemas em aloca-

2

Capitulo 1. Introdugao

¢ao de recursos em computadores ou problemas classicos de corte de matenais em indistrias
[37,42,36,17, 18, 19, 20, 21, 16].

Como ndo conseg :imos resolver tais problemas de forma exata ¢ eficiente, buscamos al-
ternativas que possam ser uteis. Existem varios métodos que sdo muito utilizados na pratica
como o uso de heuristicas, programacao inteira, métodos hibridos, redes neurais, algoritmos
genéticos, dentre outros.

O foco deste trabalho de doutorado estd no desenvolvimento de heuristicas para problemas
de empacotamento, principalmente aquelas em que conseguimos estabelecer uma razao, no pior
caso, entre a solu¢do devolvida pela heuristica e a solu¢@o 6tima. Tais heuristicas sdo comu-
mente char ! " “rmne de aproximagao. Neste caso, 0 algoritmo sacrifica a otimalidade
em ‘e 440 aproximada computdvel em tempo polinomial em relacio
ao tamanho da entrada. Em linhas gerais, algoritmos de aproximagio sido aqueles que nao ne-
cessarnamente produzem uma solucdo 6tima, mas solugdes que estdo dentro de um certo fator
da solugao 6tima. Esta garantia deve ser satisfeita para todas as instancias do problema. Desta
forma, devemos dar uma demonstracao formal deste fato. Também € nosso interesse o estudo
de heuristicas baseadas no método de geracdo de colunas. Muitos problemas de empacotamento

podem ser formulados « imas lineares que possuem um nimero muito grande de co-
lupas. ™ .csvlugao de tais programas lineares por métodos tradicionais se torna
imp .uiios destes programas lineares fornecem solugdes fraciondrias muito préximas

das solugdes inteiras. Com isso, hd um grande interesse em resolver tais sistemas lineares, e
usd-los para obter solugdes inteiras. Como o nimero de colunas € muito grande aplica-se o
método de geragao de colunas.

1.1 Objetivos do Trabalho

O principal objetivo deste trabalho € apresentar novos algoritmos para alguns problemas de
empacotamento. Para cada problema considerado também buscamos apresentar aplica¢oes pra-
ticas destes, de forma a se ter uma maior motivagdo por parte do leitor. Para alguns destes
problemas fizemos inclusive testes computacionais, demonstrando a aplicabilidade pratica de
alguns dos algoritmos propostos.

1.2 Organizacao do Texto

Esta tese estd organizada como uma coletanea de artigos. Uma das grandes vantagens desta
forma de apresentagdo é mostrar de forma direta os resultados obtidos na tese de doutorado.
Por outro lado, uma desvantagem € que pode haver repeti¢coes de defini¢des durante o texto.
De qualquer maneira optamos por esta forma de organizagdo. Cada artigo apresenta aplica-

1.2. Organizagdo do Texto 3

¢oes dos problemas considerados, bem como os algoritmos propostos. A seguir detalhamos a
organizagdo do texto.

No Capitulo 2 apresentamos algumas defini¢des e conceitos basicos que sdo usados nos
capitulos seguintes.

No Capitulo 3 fazemos um resumo dos principais resultados desta tese que correspondem
aos resultados dos capitulos seguintes.

Do Capitulo 4 até o Capitulo 8 apresentamos cinco artigos com os principais resultados

desta tese.
No Capitulo 9 apresentamos as conclusdes e trabalhos futuros.

Capitulo 2

Preliminares

Este capitulo contém, de forma resumida, defini¢cdes e no¢des basicas que serdo necessarias
no decorrer da leitura do trabalho. Primeiramente apresentamos conceitos e problemas bdsicos
de empacotamento. Em seguida, introduzimos definicdes basicas sobre algoritmos de aproxi-
macao, e discutimos brevemente algumas técnicas usadas no desenvolvimento de algoritmos
aproximados. Apresentamos ainda um resultado de andlise combinatéria que € utilizado fre-
quentemente neste trabalho e por fim apresentamos o algoritmo simplex e como ele pode ser
usado com o método de gerag@o de colunas.

2.1 Problemas de Empacotamento

Nesta sec@o descrevemos os principais problemas de empatotamento tratados nesta tese.

Nos problemas de empacotamento temos um ou mais objetos grandes n-dimensionais, os
quais chamamos de recipientes, e varios objetos menores também n-dimensionais os quais
chamamos de itens. O nosso objetivo € empacotar itens dentro de recipientes, de forma a
maximizar ou minimizar uma dada fungdo objetivo. No caso geral, tanto os itens quanto os
recipientes podem assumir qualquer forma, ou modelo (retangulos, esferas, formas quaisquer
etc.). O empacotamento deve ser feito de tal maneira que os itens nao ocupem um mesmo
espaco e que as capacidades do recipiente sejam respeitadas.

Uma tipologia para virios tipos de problemas de empacotamento foi feita por Dyckhoff [14]
€ mais recentemente uma nova tipologia foi proposta por Wiischer et al. [41].

Problemas de empacotamento sao muito comuns na inddstria € em problemas computaci-
onais. Em muitas aplicagdes, faz-se necessario cortar materiais (placas de metal, vidro, papel
ou tecido) em itens menores para se atender uma determinada demanda. Note que para deci-
dirmos como cortar 0 material, podemos supor que estamos empacotando os itens no material.
Como exemplos de problemas computacionais, citamos problemas de alocagio de tarefas em
computadores. Tais problemas podem ser vistos como problemas de empacotamento. Temos

4

2.1. Problemas de Empacotamento 5

varias tarefas, que correspondem a itens, e devemos alocéd-las a um conjunto de processadores
de modo a otimizar uma certa fungdo objetivo, como por exemplo, maximizar o peso das tare-
fas que podem ser processadas até um determinado momento. Neste caso, o problema consiste
em empacotar itens unidimensionais, que possuem um tamanho e um peso, em recipientes cujo
tamanho € dado pelo limite de tempo.

Problemas de empacotamento sdo comuns em nosso cotidiano. O famoso astronomo Johan-
nes Kepler, em 1611, ja se perguntava a melhor maneira de alocacio de esferas. Um feirante
que deseja empilhar laranjas por exemplo, pode se perguntar qual a melhor maneira de realizar
tal tarefa. O problema de empacotamento de esferas proposto por Kepler s6 teve uma solucao
confirmada formalmente em 1998 [38], em uma sequéncia de trabalhos feitos por Hales [23].

Definiremos agora trés problemas de empacotamento bédsicos que sdo tratados nesta tese.
Estes problemas serdo tratados com algumas restrigdes extras que sao apresentadas em cada
capitulo.

O primeiro problema, chamado bin packing, tem como entrada uma lista de itens L =
(ay,...,an), cada item com tamanho s(a;), € um nimero B que indica o tamanho de um
recipiente. Assumimos que para todo item g, € L, vale que s(a;) < B. Este problema consiste
em empacotar todos os itens de L no menor nimero possivel de recipientes, ou seja, devemos
achar uma parti¢do Py, ..., P, de L tal que ¢ seja minimo e Zaxer s(a;) < B, para cada parte
5

Existem as versoes em outras dimensdes deste problema, como bin packing bidimensional,
tridimensional etc. Nestes casos, os recipientes e os itens possuem tamanhos dados por uma
tupla que indica o seu tamanho em cada dimensao.

Podemos assumir ainda que cada item a; € L possui uma multiplicidade d;. Neste caso
devemos gerar um empacotamento que contém d; itens do #ipo a;, 2 = 1,..., m. Os problemas
com multiplicidade sd@o conhecidos na literatura como cutting stock.

Detalhes sobre algoritmos de aproximagao para este problema podem ser encontrados em
Coffman et al. [10]. Para o caso bidimensional pode-se consultar as resenhas de Lodi et al.
[29, 30].

O segundo problema € conhecido como knapsack, ou problema da mochila. Neste caso
temos apenas um recipiente de tamanho B, e uma lista de itens L = (ay,...,an) cada item
com tamanho s(a;) e valor p(a;). O objetivo do problema € empacotar um subconjunto dos
itens de L em um recipiente de tamanho B de tal forma que a soma dos valores destes itens
empacotados seja maximizada. Também podemos considerar as versdes multi-dimensionais
deste problema.

O problema, como foi definido, € conhecido como restrito, ou mochila 0/1. Neste caso, cada
item pode ser empacotado apenas uma vez. Na versdo ndo-restrita, um item a, € L pode ser
empacotado vérias vezes. Um esquema de aproximagdo para o problema restrito foi proposto
na década de 70 por Ibarra e Kim [26]. Maiores informagé6es sobre este problema podem ser

6 Capitulo 2. Preliminares

encontradas no livro de Martello e Toth [31].

O terceiro problema € conhecido como strip packing. Neste problema temos uma lista de
itens bidimensionais L = (ay,...,an), cada item a; com tamanho (z(a;), y(a;)), € uma faixa
de largura L e altura infinita. O objetivo do problema € empacotar todos os itens na faixa de
tal maneira que seja minimizada a altura total utilizada para empacotar os itens. Versoes multi-
dimensionais podem ser consideradas.

Dentre os diversos algoritmos propostos para este problema, destacamos um esquema de
aproximagdo apresentado por Kenyon e Rémila [27, 28], e algoritmos exatos como o proposto
por Martello er al. [32].

Neste trabalho, consideramos duas classes de algoritmos para problemas de empacotamento,
a classe online e a classe offline. Os algoritmos chamados offfine, sdo aqueles onde todos os da-
dos da instancia sd@o conhecidos pelo algoritmo de antemdo. Na classe de algoritmos chamados
online, 0s dados da instancia nao sdo conhecidos de antemao pelo algoritmo. Itens chegam com
o passar do ter “~vem ser empacotados assim que estiverem disponiveis. Muitos proble-
m -em esta caracteristica, e neste caso € preciso desenvolver algoritmos
onte. pala esies problemas. Um exemplo de problema online € o Bin Packing Online, que tem
a mesma defini¢do que o problema offline, com excecdo de que os itens a serem empacotados
chegam um por vez, de tal forma que um algoritmo para este problema deve empacotar um item
sem saber quais os proximos itens da lista.

2.2 Algoritmos de Aproximacao

4 Secao apresentamos a notagao utilizada e alguns conceitos bésicos sobre algoritmos de
aproximacao.

Dado um algoritmo A, para um problema de minimizagdo, se / for uma instancia para
este problema, denotamos por A(/) o valor da solugao devolvida pelo algoritmo A aplicado
a instancia /. Denotamos por OPT(/) o correspondente valor para uma solugdo 6tima de
I. Dizemos que um algoritmo A tem um fator de aproximagdo a, ou € a-aproximado, se
A(I)JOPT(/) £ a, para toda instancia /. No caso dos algoritmos probabilisticos, consi-
deramos a desigualdade E[A(I)]/OPT(/) < a, onde a esperanca E[A(])] é tomada sobre
todas as escolhas aleatdrias feitas pelo algoritmo. Estes limites de desempenho sao chamados
de absolutos. Em problemas de empacotamento € comum considerar aproximagoes assinto-
ticas. Neste caso dizemos que um algoritmo A tem fator de aproximacéo assintdtico a se
limopr(r—ee A(I)/OPT(I) < a. E importante ressaltar que algoritmos de aproximagio con-
siderados neste trabalho tém complexidade de tempo polinomial.

Do ponto de vista tedrico, os algoritmos de aproximacdo mais desejados sao aqueles que
obtém valores mais préximos possivel do valor 6timo. Dado um valor constante € > 0, € possi-
vel mostrar para varios problemas, que estes admitem algoritmos com fatores de aproximagao

2.2. ..coritmos de Aproximagao 7

(1 + €), no caso de problemas de minimizagio, e (1 — ¢€), no caso de problemas de maximi-
zagio, onde € pode ser tomado tdo pequeno quanto se queira. Chamamos estes algoritmos de
esquemas de aproximagdo polinomial ou PTAS (Polynomial Time Approximation Scheme) se
apresentarem tais fatores de aproximagdo e tempo de execu¢io polinomial na entrada. Chama-
mos de FPTAS (Fully Polynomial Time Approximation Scheme) o esquema de aproximagio que
tem tempo de execugao polinomial na entrada e em f Logo, dentre os dois tipos, os algoritmos
mais desejados sao os FPTAS.

Em problemas de empacotamento € também comum considerar esquemas de aproximacao
assintéticos. A definic@o € parecida com a que demos anteriormente para aproximagio as-
sintotica, mas neste caso deve valer a desigualdade limopr(r)—co A(1)/OPT(I) < (1 +).
Denotamos por APTAS (Asymptotic Polynomial Time Approximation Scheme) os algoritmos
que apresentarem tais fatores de aproximacao e tempo de execuc¢ao polinomial na entrada. De-

notamos por AFPTAS (Asymptotic Fully Polynomial Time Approximation Scheme) os APTAS
1

5

Uma outra forma de andlise de problemas NP-dificeis € a utilizagdo do conceito de apro-
ximagao dual proposto por Hochbaum e Shmoys [24]. Neste caso um algoritmo € dual apro-
ximado se ele consegue encontrar uma solug@o, ndo necessariamente vidvel, cujo valor € no
maximo o valor de uma solug@o 6tima. Neste caso, a medida de qualidade de aproximagao esta
ligada a qudo invidvel € a solugdo. Existem algumas situagdes na pratica nas quais as restrigoes
de viabilidade sdo flexiveis e o conceito de algoritmos de aproximagado duais podem ser utili-
zados. Neste caso o fator de aproximacdo € uma razao entre alguma inviabilidade da solugao
em relacdo a restrigdao de viabilidade. Por exemplo, no caso do problema bin packing, onde
todos os recipientes tém tamanho 1, um algoritmo que para qualquer instancia / do problema
encontra uma solug@o que usa O PT'(I) recipientes de tamanho 1.3 corresponde a um algoritmo
dual aproximado com fator de aproximagao 1.3.

No caso de algoritmos online o termo comumente utilizado para designar fator de aproxi-
magao € competitive ratio, que € a razao, no pior caso, entre o valor da solucao devolvida pelo
algoritmo sobre o valor de uma solugio 6tima para a versao offline do problema. No texto,
quando tratarmos de problemas online, usaremos o termo fator de aproximagao com 0 mesmo

que tém tempo de execugdo polinomial na entrada e em

significado de competitive ratio.

Ao projetar um algoritmo aproximado e provar que o mesmo tem um certo fator de apro-
ximac@o a, € interessante verificar se este fator de aproximagdo a demonstrado € o melhor
possivel. Para isto, devemos encontrar uma instancia cuja razao entre a solugao obtida pelo al-
goritmo e sua solugao 6tima € igual, ou tao préxima quanto se queira, de a. Neste caso, dizemos
que o fator de aproximagao « do algoritmo € justo.

Nos Gltimos anos surgiram vérias técnicas de cariter geral para o desenvolvimento de al-
goritmos de aproximacado. Algumas destas sdo: arredondamento de solugdes via programacao
linear, dualidade em programacao linear e método primal-dual, algoritmos probabilisticos (e

8 Capitulo 2. Preliminares

sua desaleatorizagdo) e programagao semidefinida (veja [15, 25, 39, 5]). Além disso, resulta-
dos sobre provas verificaveis probabilisticamente [2, 3, 4] permitiram obter vérios resultados
sobre a impossibilidade de aproximacoes.

Uma estratégia comum para se tratar problemas de otimizagdo combinaténa € formular o
problema como um programa linear inteiro e resolver a relaxagdo linear deste, uma vez que isto
pode ser feito em ter' olinomial. Programacao linear tem sido usado para a obtenc@o de
algoritmos aproximados através de diversas maneiras. Uma muito comum € o uso de arredon-
damentos das solugdes fraciondrias do programa linear. Outra técnica € resolver o sistema dual
do programa linear, em vez do primal, e em seguida obter uma solugdo com base nas variaveis
duais. Outra técnica mais recente, é o uso do método de aproximagao primal-dual, que tem sido
usado para obter diversos algoritmos combinatérios usando a teoria de dualidade em progra-
magcio linear. Neste caso, 0 método € em geral combinatério, ndo requerendo a resolucdo de
programas lineares e consiste de uma generalizacao do método primal-dual tradicional.

Ja no caso de algoritmos probabilisticos, o algoritmo contém passos que dependem de uma
secfi®ncia de bits aleatorios. . salise da soluc@o gerada pelo algontmo € calcu-
lada com base no valor esp ... E interessante observar que apesar do modelo
parecer restrito, a ma 14 dos algontmos probabilisticos pode ser desaleatorizada, através do
método das esperangas condicionais, tornando-se algoritmos deterministicos (veja [15, 5]). A
versdo probabilistica é, em geral, mais simples de se implementar e mais ficil de se analisar
que a correspondente versdo deterministica. Além disso, muitos dos algoritmos de aproxima-
¢do combinam o uso de técnicas de programacio linear com técnicas usadas em algoritmos
probabilisticos, considerando o valor das vanidveis obtidas pela relaxag@o linear como probabi-
lidades.

No caso da técnica de programagao semidefinida, temos um sistema de programacao mate-
matica para o problema, que ndo precisa ser estritamente linear. Em alguns casos € possivel ter
restrigoes nao lineares na formulag@o, como por exemplo restrigdes quadriticas. Se a formu-
lagdo for escrita sob certas condigdes, o problema pode ser resolvido em tempo polinomial. A
vantagem deste método é que muitos problemas podem ser representados através de modelos
de programacdo semidefinida, isto é, formulacdes ndo necessariamente lineares. Goemans e
Williansom [22] apresentaram uma forma bastante inovadora de se arredondar as solugoes de
um sistema quadrético, através do arredondamento probabilistico, considerando cada uma das
varidveis do sistema como um vetor na esfera unitéria.

Estas técnicas, tanto isoladamente como em conjunto, tém sido usadas nos Gltimos anos
com sucesso em diversos problemas de otimiza¢ao combinaténa.

Outro tépico importante em algoritmos de aproximagao € a inaproximalidade de problemas.
Dado um certo problema , dizemos que este problema possui fator de inaproximalidade a,
se ndo existir um algoritmo a-aproximado para . Uma das maneiras para se demonstrar tais
resultados, é mostrar que se existir um algoritmo a-aproximado para um problema @, entao

2.3. ['m Resultado sobre Contagem 9

podemos resolver em tempo polinomial um problema ()’ que seja NP-dificil. Resultados im-
portantes nesta drea foram feitos com a utilizagdo de provas verificiveis probabilisticamente,
devido a Arora et al. [3, 4]. Para mais detalhes sobre resultados de inaproximalidade veja
[2, 5, 25, 39].

2.3 Um Resultado sobre Contagem

Nesta se¢do apreééntamos um resultado sobre contagem que € utilizado em diversas partes
desta tese. Problemas de contagem aparecem como um ramo da andlise combinatéria onde
busca-se descobrir uma expressdo que determina a quantidade de elementos de um determinado
conjunto. Uma visdo mais ampla sobre problemas de contagem e analise combinatéria pode ser
encontrada em [13].

Considere os seguintes problemas:

1. Qual o nimero de solugdes da inequagdo)., z; < d, onde d é um nimero inteiro
positivo e todas as varidveis z; sao inteiras nao negativas?

2. Dados n letras « e d letras 3, quantas palavras diferentes podemos formar com todas estas
letras permutando-as?

A principio, estes dois problemas podem parecer distintos, mas sao equivalentes. Podemos
fazer a seguinte associagdo para os dois problemas. Dada uma permutacao qualquer de n letras
o e d letras 3, o nimero de letras 3 a esquerda da primeira letra a corresponde ao valor da
varidvel z;. O nimero de letras J entre a i-ésima e (2 + 1)-ésima letras a corresponde ao valor
da variavel z;;.;, paral < i < n — 1. O nimero de letras 3 a direita da Gltima letra a ndo é
associado com nenhuma varidvel.

Para respondermos as duas questoes acima usaremos combinagdes. A combinagao (‘;) re-
presenta o niimero total de subconjuntos de d elementos de um determinado conjunto com n
elementos. O nimero destes subconjuntos € exatamente:

n!
(n—d)ld!
Dados n letras a e d letras 3, podemos enumerar as posi¢des onde cada letra pode aparecer.
As posigoes vao de 1 até n + d. O nimero de possibilidades de distribui¢ao das letras a nestas
posigdes ¢ dado por ("*?). Dado cada uma destas possibilidades, restam n + d — n posigoes

para serem preenchidas pelas letras [, o que nos da (g) possibilidades. Logo o numero total de
palavras diferentes que podemos formar com n letras o e d letras 3 € dado por

Ca Jig= = d=La)

10 Capitulo 2. Preliminares

O numero de configuracdes para os dois problemas propostos no inicio desta secao € dado
pela formula acima. Nesta tese, usamos este resultado no contexto de empacotamento. Suponha
que para uma determinada instancia do problema bin packing unidimensional, o namero total
de itens seja m e saibamos calcular o nimero total de configuracdes diferentes de recipientes.
N=nntamos por ¢ o ndmero total de configuracdes de recipientes.O namero total de solucdes

m+c
m)
De fato, note que o nimero maximo de recipientes utilizados em uma solug@o qualquer para

esiz instdncia € m. Associando cada configuracao : de recipiente a uma varidvel inteira z;,
estamos contando o nimero de possibilidades de solu¢des para uma equacao

> o <m,

i=1

. esta instancia € limitado por

e

onde ca. “.ias vezes a configuragio ¢ serd usada em uma solugio especifica.
Logo o numero de solugdes para esta instancia € limitado por

(m—!—(;) _ (m+c)

< (m + ¢)°.
m mle! i)

Note que se o nimero de configuragdes de recipientes for constante, o namero total de solugoes
para esta determinada instdncia € polinomial em relagdo ao tamanho da entrada.

2.4 1e Colunas

Nesta secao apresentamos de forma resumida o funcionamento do algoritmo simplex, e
como podemos resolver programas lineares com um numero muito grande de colunas utilizando-
se 0 método de geracdo de colunas. Maiores detalhes sobre programacao linear, o algoritmo
simplex e geracdo de colunas podem ser encontrados no livro de Bazaraa et al. [6].

2.4.1 O algoritmo Simplex

Considere o programa linear,

Min cx
sujeitoa Az =2©b (2.1
;20 J=Lu a0

onde A é uma matriz m x n de posto m, ¢ € um vetor de custos de tamanho n, b € um vetor de
tamanho m e z € um vetor de varidveis de tamanho n. Uma base B,, ., deste programa linear

2.4. Geragdo de Colunas 11

consiste em uma sub-matriz de 4 inversivel. Uma base € dita vidvel se B~'b > 0 (note que
B~'b é uma solugédo do programa linear).

A idéia do algoritmo simplex para resolugio de sistemas deste tipo esta fundamentada em
alguns resultados que relacionam bases vidveis e pontos extremos do poliedro descrito pelas m
restrigoes do sistemna.

Teorema 2.4.1 Se o programa linear (2.1) possui uma solugcdo otima com valor finito, entdo
existe um vértice do poliedro descrito pelas restri¢oes de (2.1), cujo valor é igual ao valor da
solugdo otima.

Em outras palavras o que o teorema nos diz, € que € suficiente nos concentrarmos nos
pontos extremos do poliedro pois se um programa linear possui uma solugdo 6tima finita, entao
podemos achar uma solug@o 6tima em algum vértice.

Seja B uma base viavel para (2.1). Seja zp as varnidveis correspondentes as colunas de B
(chamadas de varidveis bdsicas) e x as demais varidveis (chamadas varidveis ndo bdsicas)
correspondentes as colunas de uma matriz N de dimensdes m x (n — m). Fazendo zz = B~'b
e znx = 0, temos uma solucdo para o programa linear. Para cada base B possivel, associamos
esta com a solugdo (chamada solugdo bdsica) dada por zg = B~ 'be zy = 0. O préximo
teorema garante que cada uma das solugées bdsicas corresponde a um vértice, e que para cada
vértice do poliedro existe uma solug@o basica correspondente.

Teorema 2.4.2 Para cada vértice do poliedro do programa linear (2.1), existe uma (nao ne-
cessariamente unica) base viavel que corresponde a este vértice, e para cada base viavel existe
apenas um vértice correspondente a esta base.

A idéia do algoritmo simplex é partir de uma base vidvel inicial e fazer alteragdes de colunas
que levem a outras bases melhorando o valor da solugéo até um ponto em que possamos garantir
que estamos em uma solucdo 6tima, ou que o sistema € ilimitado (no caso em que a solugdo

pode ser melhorada o quanto quisermos).
-1

Suponha que temos uma solugdo basica () cujo valor da fungdo objetivo é

-1 -1
zo=c(BOb)=(cB,c~)(Bob) =cgB'b 2.2)

Temos que b = Az = Bz + Nz, e multiplicando esta equagio por B~" obtemos

zg = B b— B 'Nzy
B %%~ 3 .cp B 'asz, (23)
= b - ZJGR(?»’J)Z;

12 Capitulo 2. Preliminares

onde R é o conjunto dos indices das varidveis ndo bdsicas e b* = B~'b. O valor da funcao
objetivo pode ser reescrito da seguinte forma:

I

CpTpg + CNIN

cg(B~'b— > ser B~ 'a;z;) + > ,er T

caB b —cp) . cn B705%5 + 3 e n CiT; (2.4)
20 — ZjeR(cBB_la’J - ¢;)z,

%0 — Z;eﬂ(zi —6;)%;

e

]

orde » ncada 1 € Re 2y = cgB™lb.

Desta tormia, unlizando estas transformacdes podemos reescrever o sistema (2.1) da seguinte
forma:

S)z +zp =¥ (2.5)

Note que partimos de uma base viavel com solug@o (z g, zx) e reescrevemos o programa
linear de tal forma que a funcao objetivo tem um valor constante 2, menos um termo em fungado
das vanaveis ndo basicas, que tem valor zero dado que zy = (. Mas note que se para alguma
coluna a, de A tivermos

CBB_IG.J —Ci=2; — ¢ >0

podemos incrementar o valor da varidvel ndo basica z; correspondente, e melhorarmos o valor
da solugdo do programa linear. Se para todo j tivermos z; — ¢; < 0 entdo a solugdo basica
corresponde a uma solug@o 6tima. O valor ¢; — z; € conhecido como custo reduzido da coluna
7 e o vetor cp B~ corresponde ao vetor de solugdo dual do programa linear. Uma observagdo
interessante € que o custo reduzido das varidveis basicas € igual a zero. Para ver isso, note que

BB~ é aidentidade, e para uma coluna b, de B, temos que cg B~ b, = ¢,.

Seja k o indice de uma varidvel ndo basica cujo valor z; — ¢ seja positivo, Mantendo todas
as demais vandveis ndo basicas iguais a zero o sistema (2.5) pode ser reduzido a

z=2zy— (2 — Ck)Tk (2.6)

2.4. Geragdo de Colunas 13

e
&g, [b? ’” Yik
A b3 Yok
= ' - ' x 2.7
IBr b: y"k ’ ()
B g, -_ i b;n J L Ymik J

Note que se y,x < 0, entdo zp, deve aumentar seu valor a medida que z cresce. Se ;. > 0,
entdo z g, deve diminuir de valor a medida que z;. cresce. Para mantermos as restricdes de nao-
negatividade, z;. pode ser incrementada at€ o ponto em que a primeira varidvel bdsica assume
valor igual a zero. Examinando a equagdo (2.7), podemos ver que a primeira varidvel bdsica
a assumir valor zero a medida que z; aumenta é aquela correspondente a menor fracdo b} /v
para y.;. positivo. Podemos incrementar z; até o valor

*

b W
Ty = - = Minlsism { s * Yir > 0 } (_2.8)

Note que se y;; < 0 para todo ¢, entdo o sistema € ilimitado, pois a medida que incrementa-
mos z, as varidveis bésicas também sao incrementadas e o valor da funcdo objetivo decresce.
Quando z; € incrementada criamos uma nova solu¢ao basica onde a coluna a; da matriz A toma
lugar da coluna ap, . Temos entdo uma nova solugao cujos valores das varidveis bdsicas sdo

Zp, =bf—%b;, parai=1,2,...,m
Yrk
b-
I = A
Yrk

e todas as demais variaveis 1guais a zero.

Abaixo temos uma descri¢ao do algoritmo simplex. Maiores detalhes sobre o algoritmo,
sobre como achar uma base vidvel inicial, tratamento de degenerescéncia, ciclagem e outros
tépicos podem ser encontrados no livro de Bazaraa er al. [6].

Partindo de uma base B vidvel para o sistema (2.1) execute os seguintes passos.

1. Resolva o sistema Bz = bcuja tnica solugdo é zp = B~ 'b=b". Sejazg = b", 2y =0
e 2 = cpxrp. Prossiga para o proximo passo.

14 Capitulo 2. Preliminares

[he]

F 1 1 P— 1 a =4 i e =1 e — 1 e]
Resolva o sistema wB = cp cuja solugdo é w = cg B~". Calcule 2; — ¢; = wa; — ¢; para
todas as variaveis nao basicas. Seja

2 — ¢ = Max;ep {2; — ¢;}

onde R € o conjunto dos indices associados as varidveis nao basicas. Se 2z, —¢; < 0entéo
pare com a solugdo basica atual como uma solugéo 6tima. Caso contrario prossiga para o
proximo passo.

3. Resolva o sistema By, = ay, cuja solucgdo € y, = B~ la,. Se yr < O entdo pare pois
su :¢ao € ilimitada. Se yx £ O prossiga para o proximo passo.

4. Calcule o inc r da coluna a sair da base que € aquele que atem ao minimo
*

T s N %
e Mlﬂ]gzgm { e Yik = 0 } :

. amawi nserindo a coluna ey no lugar da coluna ag.. Volte ao passo 1.

2.4.2 O algoritmo Simplex com Geracao de Colunas

A idéia do algoritmo de geracdo de colunas € simular o algoritmo simplex, mas no passo 2 do
algoritmo, ao invés de calcularmos o custo z; — ¢; para cada uma das varidveis ndo bésicas,
resolvemos de forma indireta o sub-problema

Max;er {2; — ¢;} - (2.9)

Logo o algoritmo ndo mantém em memoria todas as colunas do programa linear, e na hora
de gerar uma coluna resolvendo o sub-problema (2.9) ndo ha uma verificagdo explicita de todas
as varidveis ndo basicas. Ressaltamos que a resolugdo de (2.9) implicitamente ndo € sempre
possivel mas para alguns problemas isto € possivel.

Como exemplo do método de geracdo de colunas vamos considerar o problema cutting stock
unidimensional (denotado por CS). Neste problema temos uma lista de itens L = (a3, ..., @),
com tamanhos (s(a;), ..., $(an)), um vetor de demandas para cada item (d, ..., d,,) e reci-
pientes (bins) de tamanho B. O objetivo do problema € gerar um empacotamento dos itens
suprindo todas as demandas utilizando a menor quantidade de recipientes possivel.

Chamamos de padrao, uma descri¢do de um empacotamento de itens em um recipiente.
Podemos considerar um padrdao p; = (pi;,...,Pm;) como um vetor onde cada posigao p;;
indica quantos itens do tipo ¢ estdo empacotados neste padrdo 7. Um padrio p; para ser valido
deve satisfazer > " | pi;8(a;) < B. Seja P uma matriz de dimensdes m X n que contém todos

2.4. Geragdo de Colunas 15

os tipos de padrdes possiveis como colunas. Note que o nimero de padrdes possiveis é muito
grande. Podemos formular o problema CS da seguinte forma

Min (1)-z
sujeitoa Pr=d (2.10)
.’L'_-’.'ZO j=1,...,-n.

Neste programa linear temos um vetor z de tamanho n, que indica quantas vezes cada padriao
deve ser utilizado em uma solugdo e (1) representa um vetor de uns com dimensao n. Note que
estamos minimizando o nimero de recipientes utilizados.

O custo de uma coluna j deste programa linear é

z;—c¢;=(1)B7'p; — 1.

Sejaw = (1)B~' e P o conjunto de padrdes possiveis. No passo 2 do algoritmo simplex temos
entdo que resolver o sub-problema

Max, p {wp; — 1},

onde cada padrio possivel deve satisfazer

Zp,js(a,-) < B.
=1

Note que se considerarmos p;; como vanaveis inteiras, o sub-problema acima corresponde
ao problema da mochila, ou seja, ao invés de considerarmos todos os padrdes possiveis, pode-
mos resolver o sub-problema acima como um problema da mochila descrito abaixo

Max wp-1
m
sujeito a z;:is(a.-) <B (2.11)
=1
p; 2 0, inteira, ¢=1,...,m.

onde p € um vetor de tamanho m de variaveis inteiras.

Podemos comegar a resolucio do programa linear (2.10) com uma base viivel correspon-
dente a matriz identidade I,,«,,, € o passo 2 do algontmo simplex € resolvido utilizando o
programa linear (2.11). Desta maneira, sempre mantemos na memoria apenas as colunas basi-
cas na resolugdo de (2.10), e o passo 2 do algoritmo simplex € resolvido de forma implicita sem
a necessidade de calcular o custo z; — ¢, para todas as variaveis nao bésicas.

FIBLIOTECA CENTRAL
CESAR LATTES
DESEMVOLVIMENTO DE
COLECAD
UNICAMP

Capitulo 3

Resumo dos Resultados

Neste capitulo descrevemos os principais resultados apresentados nesta tese. Cada um dos pré-
ximos capitulos desta tese representa um artigo com resultados originais desenvolvidos durante
o doutorado. Cada artigo apresenta aplicacdes dos problemas considerados, bem como algorit-
mos propostos parn tais nroblemas.

g 1tamos o problema que chamamos de Class Constrained Shelf Bin
Pua. ~sle problema € uma generalizag@o do bin packing onde itens tém classes
diferentes e devemos empacotar os itens separando-os por prateleiras.

Uma instincia para este problema consiste de uma tupla / = (L,s,c.d, A, B), onde L é
uma lista de itens, s e ¢ sdo fungdes de tamanho e classe sobre os itens de L, d é o tamanho
de uma diviséria, A ¢ o tamanho méximo de uma prateleira ¢ B é o tamanho dos recipientes.
Dado uma sub-lista L' € L denotamos por s(L') a soma dos tamanhos dos itens em L', i.e,
s(L') = 3 .c1 8(€). Um empacotamento P da instancia / para o problema CCSBP consiste
em um conjunto de recipientes P = {P;,..., P}, onde os itens em cada recipiente P, € P
estdo particionados em prateleiras {N{...., N. } tal que para cada prateleira N; temos que
s(N}) < A, todos os itens em N sdo de uma mesma classe e Y1 (s(N]) +d) < B.

Uma aplicag@o interessante do problema CCSBP pode ser encontrada no trabalho de Fer-
reira er al. [16] que introduziram este problema que aparece na inddstria de metais.

Apresentamos algoritmos baseados nas estratégias First Fit (Decreasing) ¢ Best Fit (Decre-
asing) para o problema CCSBP. Quando o nimero de classes diferentes ¢ limitado por uma
constante, apresentamos algoritmos com fatores de aproximagao assint6tico 3.4 e 2.445. Se
o numero de classes ndo € limitado por uma constante, mostramos algoritmos com fatores de
aproximagao absolutos iguais a4 e 3.

Por fim, para o caso em que o niimero de classes € limitado por uma constante, apresentamos
um APTAS para o problema CCSBP.

Uma versdo resumida deste artigo foi aceita para apresentagdo no GRAC0O2005 (2nd Brazi-
lian Symposium on Graphs, Algorithms, and Combinatorics) [44]. A versio completa apresen-

16

17

tada nesta tese, foi aceita para publicacdo em uma edig@o especial da revista Discrete Applied
Mathematics com artigos selecionados do congresso.

No Capitulo 5 consideramos dois problemas: 0 CCSBP e o problema bin packing com
restrigoes de classes, denotado por CCBP. Uma instancia deste dltimo problema é uma tupla
I = (L,s,¢,C,Q) onde L = (ay,.-.,a,) é uma lista com n itens, cada item a; € L com
tamanho 0 < s(a;) < 1eclasse c(a;) € {1....,Q}, e um conjunto de recipientes de tamanho
1 e C' compartimentos. Um empacotamento para esta instancia consiste em um conjunto de
recipientes P = {P,,..., P} tal que, para cada P, o nimero de classes diferentes de itens
empacotados em P; € no méximo C, e a soma dos tamanhos dos itens empacotados em P, é no
maximo 1. O objetivo do problema € encontrar um empacotamento de / que utiliza 0 menor
nimero de recipientes possivel.

Neste capitulo apresentamos esquemas de aproximacgdo duais para ambos os problemas. O
artigo que corresponde a este capitulo foi submetido para publicacdo em uma revista.

No Capitulo 6 apresentamos o problema bin packing com restricdo de classes (CCBP) com
aplicagcOes para um problema de construcdo de servidores de video sob demanda.

Para o problema online, consideramos dois casos: no primeiro caso, que chamamos de
limitado, dada uma constante k, um algoritmo pode manter ativo no maximo £ recipientes
durante sua execug¢ao (conhecido na literatura como k-bounded); no segundo caso um nimero
ilimitado de recipientes pode permanecer ativo. Um recipiente ativo € aquele que pode ser
usado para empacotar itens. Quando um recipiente se torna inativo, ele nao pode mais voltar a
ser ativo. Para o caso limitado, mostramos que n3o pode existir nenhum algoritmo com fator de
aproximagao constante. Além disso, mostramos que se os itens de uma instdncia tém tamanho
pelo menos £, entdo ndo existe algoritmo com fator de aproximagido melhor do que O(1/C¢).
Para o caso niio limitado mostramos um algoritmo online com fator de aproximagdo entre 2.666
£2.75.

Também apresentamos neste capitulo resultados para a versdo offline do problema. Quando
todos os itens tém tamanhos iguais, apresentamos um algoritmo (1 + 1/C')-aproximado. Para
0 caso paramétrico, quando os itens possuem tamanhos no maximo B/m (B € o tamanho do
recipiente), para algum inteiro m, apresentamos um algoritmo com fator de aproximacdo igual a
(1+1/C + 1/ min{C, m}). Implementamos alguns dos algoritmos apresentados e reportamos
resultados computacionais baseados em instancias que refletem o problema de construgio de
servidores de video sob demanda. Tais experimentos mostram que os algoritmos considerados
geram solugdes de muito boa qualidade.

Neste capitulo consideramos ainda a versdo do problema com recipientes de tamanhos va-
riados (VCCBP). Este problema foi estudado primeiramente por Dawande er al. [12, 11] onde
uma tentativa de um APTAS foi considerada, para o caso em que o nimero de classes diferentes
na entrada é limitado por uma constante. Mostramos que o algoritmo proposto por Dawande et
al. [12, 11] estd errado e entdo mostramos um APTAS para o problema.

18 Capitulo 3. Resumo dos Resultados

Os resultados deste capitulo foram apresentados no 12th Annual International Computing
and Combinatorics Conference (COCOON 2006) [45], e a versao apresentada aqui foi subme-
tida para publicacao em uma revista.

No Capitulo 7 apresentamos algoritmos de aproximagao para a versdo do problema bin pac-
king onde os itens possuem demandas, ou seja, para cada item existe uma multiplicidade que
indica quantos itens deste tamanho devem ser empacotados. Estes problemas sdo conhecidos
na literatura como problemas de cutting stock. Neste capitulo mostramos como adaptar varios
algoritmos de aproximacio desenvolvidos para problemas sem demanda para o caso onde ha
demanda. Mostramos que se um determinado algoritmo para um problema sem demanda tiver
uma determ nada propriedade, que denominamos de algoritmos comportados, entdo este algo-
ritmo podc sor transformado em outro para o caso com multiplicidades. Dentre os resultados
deste capitulo destacamos um esquema de aproximagdo assintotico para o problema curting

stock unidimensiona’ ;om fator de aproximagdo assintético igual 2.077 para
0 probic il wual. Os resultados deste capitulo aparecem em um artigo
aceito pu sta European Journal of Operational Research [8].

Finalme.. . .. _upitulo 8 apresentamos algoritmos para problemas de empacotamento bidi-

mensional. Os problemas considerados assumem cortes guilhotinaveis € em estagios. Apresen-
tamos algoritmos exatos para o problema da mochila bidimensional baseados em programagao
dindmica. Consideramos também o problema bin packing bidimensional com demandas e o
problema strip packing bidimensional com demandas. Para estes problemas apresentamos heu-
risticas baseadas no método de geragdo de colunas. Implementamos o0s algoritmos propostos
e reportamos os resultados computacionais obtidos com estes algoritmos. Tais resultados in-
dicam que estes algoritmos acham solu¢des de muito boa qualidade em tempos razodveis. Os
resultados deste capitulo, juntamente com resultados obtidos anteriormente por Cintra e Waka-
bayashi [9], fazem parte de um artigo aceito para publica¢do na revista European Journal of
Operational Research.

Capitulo 4

Artigo: A One-Dimensional Bin Packing
Problem with Shelf Divisions

E. C. Xavier’ F. K. Miyazawa’

Abstract

Given bins of size B, non-negative values d and A, and a list L of items, each item e € L with
size s, and class ¢., we define a shelf as a subset of items packed inside a bin with total items
size at most A such that all items in this shelf have the same class. Two subsequent shelves
must be separated by a shelf division of size d. The size of a shelf is the total size of its items
plus the size of the shelf division. The Class Constrained Shelf Bin Packing Problem (CCSBP)
is to pack the items of L into the minimum number of bins, such that the items are divided into
shelves and the total size of the shelves in a bin is at most B. We present hybrid algorithms
based on the First Fit (Decreasing) and Best Fit (Decreasing) algorithms, and an APTAS for the
problem CCSBP when the number of different classes is bounded by a constant C.
Key Words: Approximation algorithms, bin packing, shelf packing.

4.1 Introduction

In this paper we present approximation algorithms for a class constrained bin packing problem
when the items must be separated by non-null shelf divisions. We denote this problem by Class
Constrained Shelf Bin Packing Problem (CCSBP).

'An extended abstract of this paper was presented at GRACO2005 (2nd Brazilian Symposium on Graphs,
Algorithms, and Combinatorics) and appeared in Electronic Notes in Discrete Mathematics 19 (2005) 329-335.
This research was partially supported by CNPq (Proc. 470608/01-3, 478818/03-3, 306526/04-2 and 490333/04-4)
and ProNEx-FAPESP/CNPq (Proc. 2003/09925-5).

Instituto de Computagdo — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084-971 —
Campinas—SP — Brazil, {eduardo.xavier,fkm } @ic.unicamp.br.

19

20 Capitulo 4.

An instance for the CCSBP problem is a tuple / = (L, s,¢,d. A, B), where L is a list of
items, s and ¢ are size and class functions over L, d is the size of the shelf division, A is the
maximum size of a shelf and B is the size of the bins. Given a sublist of items L' € L we
denote by s(L’) the sum of the sizes of the items in L', i.e, s(L) = 3> .,/ S.. A shelf packing
P of an instance / for the CCSBP problem is a set of bins P = {P,...., P}, where the items
packed in a bin P, € P are partitioned into shelves { N}, ..., N} } such that for each shelf N}
we have that s(N}) < A, all items in N} are of the same class and Y _,(s(N}) +d) < B.
Without loss of generality we considerthat 0 < s, < Aand ¢, € Z7 foreach e € L.

The CCSBP problem is to find a shelf packing of the items of L into the minimum number
of hins. This problem is /N P-hard since it is a generalization of the bin packing problem: in
this case consider that the instance has just one class, A = B and d = 0. We note that the term
shel® s <= ther context in the literature for the 2-D strip packing problem. In this
ca staged packings divided into levels.

There are many practical applications for the CCSBP problem even when there is only
one class of items. For example, when the items to be packed must be separated by non-null

ivisions (inside a bin) and each shelf has a limited capacity. In Figure 4.1 we can see an
example of a shelf packing of items into one bin, with B = 60, A = 17, d = 3 and all items
of the same class. The CCSBP problem is also adequate when some items cannot be stored
in a same shelf (like foods and chemical products). In most of the cases, the sizes of the shelf
divisions have non-negligible width. Although these problems are very common in practice, to
our knowledge this is the first paper that presents approximation results for them.

|1 5 | s
<} .
Maximum weigth

supported by shelf
41 35 | 4 || 4 “ division: 17
- s ‘;;
5 “
|

1

N ER
l‘ o e Maximum total weight
| a— supported: 60

Figure 4.1: Example of a shelf packing of items into one bin.

An interesting application for the CCSBP problem was introduced by Ferreira et al. [4] in
the iron and steel industry. In this problem, we have raw material rolls that must be cut into
final rolls grouped by certain properties after two cutting phases. The rolls obtained after the
first phase, called primary rolls, are submitted to different processing operations (tensioning,
tempering, laminating, hardening etc.) before the second phase cut. Due to technological lim-
itations, pnmary rolls have a maximum allowable width and each cut has a tnmming process

4.1. Introduction 21

that generates a loss in the roll width. Each processing operation has a high cost which implies
items to be grouped before doing it, where each group corresponds to one shelf.

Given an algorithm A, and an instance / for the CCSBP problem, we denote by A(7) the
number of bins used by algorithm A to pack the instance / and by OPT(/) the number of bins
used in an optimal solution. The algorithm A is an a-approximation, if A(/)/OPT(/) < a, for
any instance /. In this case, we also say that A has an absolute performance bound a. In bin
packing problems, it is also usual to use the asymptotic worst case analysis. We say that A has
an asympiotic performance bound a if there is a constant /4 such that A(/) < aOPT(]) + 73
for any instance [.

Given an algorithm A,, for some € > 0, and an instance / for some problem P we denote

by A.(7) the value of the solution returned by algorithm A, when executed on instance /. We
say that A, for £ > 0, is an asymptotic polynomial time approximation scheme (APTAS) for
the problem CCSBP if there exist constants £ and K such that A.(I) < (1 +t=)OPT(]) + K
for any instance /.
Results: In this paper we present hybrid algonithms for the CCSBP problem, based on the First
Fit (Decreasing) and Best Fit (Decreasing) algorithms for the bin packing problem. When the
number of different classes is bounded by a constant, we show that the hybnd versions of the
First Fit and Best Fit algorithms have an asymptotic performance bound of 3.4 and the hybrid
versions of the First Fit Decreasing and Best Fit Decreasing algorithms have an asymptotic
performance bound less than 2.445. In the case where the number of different classes is part
of the input, we show that the hybrid versions of the First Fit and Best Fit algonithms have an
absolute performance bound of 4 and the hybnd version of the First Fit Decreasing algorithm
has an absolute performance bound of 3. At last, for the case when the number of classes is
bounded by a constant, we present an APTAS for the CCSBP problem.

Related Work: A special case of the CCSBP problem is the Bin Packing problem, which is
one of the most studied problems in the literature. Some of the most famous algorithms for the
bin packing problem are the algorithms FF, BF, FFD and BFD, with asymptotic performance
bounds 17/10, 17/10, 11/9 and 11/9, respectively. Fenandez de la Vega and Lueker [3] pre-
sented an APTAS for the bin packing problem. Dawande et al. (2], presented approximation
schemes for a class constrained version of the bin packing (CCBP), where bins can have dif-
ferent sizes and each bin is used to pack items of at most & different classes, and the number of
different classes in the input instance is bounded by a constant. Shachnai and Tamur [7], pre-
sented a polynomial time approximation scheme for a dual version of the problem CCBP also
for the case where the number of different classes in the input instance is bounded by a constant.
Shachnai and Tamir [8], considered a special case of an online class constrained bin packing
problem. In this case all items have the same size and must be packed without knowledge of
the next subsequent items of the input. We refer the reader to Coffman et al. [1] for a survey on
approximation algorithms for bin packing problems. In [11], we consider the knapsack version

22 Capitulo 4.

of the CCSEP problem, where each item e has also a value v,. The objective is to find a shelf
packing of a subset S of the items in just one knapsack (bin) of size K, such that the total
value of the iiems in S is maximum. We also give a PTAS for this problem. We remark that,
despite of the similarity of the problems, the techniques and algorithms used in this paper are
not related to the ones used in the knapsack version of the problem. Practical approaches for
the CCSBPF nroblem were considered by Ferreira et al. [4], that introduced the problem in the
iron and steel industry. Recently, the problem was considered by Hoto et al. [5] and Marques
and Arenales [6]. Hoto et al. [5], considered the cutting stock version of the problem where a
demand of items must be attended by the minimum number of bins. They use a column gener-
atior - heuristic algorithms are presented for a knapsack version of the
probi.

4.1 " Notation

Given an instance I = (L, s, ¢, d, A, B) for the CCSBP problem, we denote by n = |L| the
number of items in this instance. For any integer t, we denote by [t] the set {1,....t}. We
assume that each class belongs to the set [C]. We assume that C' is bounded by a constant,
unless otherwise stated. We denote by OPT,(/) the minimum number of non-null shelves in
an optimal packing of 7, and by OPT(7) the number of bins in this optimal solution. Given
a packing P = {P,,..., F;}, we denote by |P| = k the number of bins used in this packing,
and by N,(7) the number of shelves used in all bins of P. Given an algorithm .A we denote by
A(7) the number of bins used by the algorithm A to pack the instance /.

4.1.2 Simple Lower Bounds

The following facts present lower bounds for the number of bins used in any optimum solution
for the CCSBP problem.

Fact 4.1.1 Forany instance [= (L, s, c,d, A, B), we have

s(L)
> ;
OPT!) 2 157+ ana
Proof. Since [B/(d + A)] is an upper bound for the number of totally filled shelves in a bin,
the total items size in a bin is at most [B/(d + A)]A. 0

Fact4.1.2 Forany instance I = (L,s,c,d, A, B), we have
s(L) + OPT (1)d & s(L) + [s(L)/Ald
B = B '
Proof. The statement holds since [s(L)/A] is a lower bound for the number of shelves used in
any packing. a

OPT(I) >

4.2. Hvhuid versions of the First Fit and Best Fit Algorithms 23

4.2 Hybrid versions of the First Fit and Best Fit Algorithms

In this section we present hybrid versions of the First Fit (Decreasing) and Best Fit (Decreas-
ing) algorithms, for the classic bin packing problem. to the CCSBP problem. Without loss of
generality, we assume that all bins have capacity 1.

We briefly describe how these algorithms work for the classic bin packing problem. The
First Fit (FF) and the Best Fit (BF) algorithms pack the items of a given list L = (e;,...,)
in the order given by L. Assume that the items e;,...,e;, have been packed into the bins
By, B,, . .., By, each bin with capacity 1. To pack the next item e, the algorithm FF (resp. BF)
finds the smallest index j, 1 < j < k, such that s(B;) + s(e;) < 1 (resp. s(B;) is maximum
given that s(B;) + s(e;) < 1). If the algorithm FF (resp. BF) finds such a bin, the item e, is
packed into the bin B,. Otherwise, the item ¢; is packed into a new bin By.,. This process is
repeated until all the items of L have been packed.

The First Fit Decreasing (FFD) (resp. Best Fit Decreasing (BFD)) algonithm first sorts the
items of L in non-increasing order of size and then apply the algorithm FF (resp. BF). The
following result holds (see [1. 9]).

Theorem 4.2.1 For any instance I for the bin packing problem, we have

FF(I) < %OPT(I) +1. BE()< % OPT(I) +1,
FFD(/) < % OPT(I)+3, BED(I)< % OPT(I) + 3

and FFD(I) < EOPT([).

Now we can present the hybrid algorithms for the problem CCSBP.
Algorithms SFF, SBF, SFFD and SBFD: Given an instance [= (L, s, ¢, d, A, B), the algo-
rithm SFF (resp. SBF, SFFD and SBFD) uses the algorithm FF (resp. BF, FFD and BFD) to
pack all items of a same class into shelves of size A. The algorithm considers the size of each
generated shelf as the total items size in the shelf plus the size of the shelf division d. The set
of generated shelves are then packed into bins of size B using the algorithm FF (resp. BF, FFD
and BFD).

Given an instance [= (L. s,c,d. A, B) for the CCSBP problem, we denote by OPT A (/)
the minimum number of shelves of size A needed to pack L, where all items in a shelf have the
same class. Clearly OPTA(/) is a lower bound for the number of shelves used in any optimal

solution. That is, OPTA (/) < OPT(I).

Theorem 4.2.2 Let I be an instance for the CCSBP problem. If the number of classes in [is
bounded by C then

SFFE(I) < (3 + g) OPT(I)+2C, SBF(I)< (3+ g) OPT(I) + 2C.

24 Capitulo 4.

SFFD(J) < (2+ g)OPTU) +6C and SBFD(]) < (2+ %)OPT(I) +6C.

Proof. Let A’ be an algorithm in {FF. BF. FFD, BFD} such that
A'(I') < aOPT(I') + B

for anv instance /*~ ‘ne classic bin packing problem and let .A be the corresponding algorithm
in {& BFD}. Let I = (L.s,c,d, A, B) be an instance for the CCSBP prob-
lem. Consider tne packing P produced by the algorithm A for the instance /. We consider that
|P| > 1, otherwise P is optimum. On average, all bins in P are filled by at least 1/2 (including
shelf divisions), since the algorithms pack the shelves in such a way that any pair of bins have
total contents size greater than 1. We can conclude the following:

A(I)(1/2) £ s(L)+ Ny(P)d
< s(L)+ (aOPTA (1) + CB)d 4.1)
< s(L)+ (eOPT (1) + CB)d (4.2)
< a(s(L)+dOPT.(I))+CpBd
< aOPT(I) + C3, (43)

where (4.1) holds from Theorem 4.2.1, and (4.3) follows from Fact 4.1.2 and the fact thatd < 1.
O

Notice that any 2'e~=thm for the classic bin packing problem can be easily extended to an
algn v ptotic performance bound and that produces bins that on average
f ICase Lwas vl 1ts capacities. Therefore, the following result can be easily derived
as a generahization of the previous theorem.

Coroliary 4.2.3 Given an algorithm A’ for the bin packing problem, such that
A'(L) < aOPT(L) + 3
for any instance L, then there exists an algorithm A for the CCSBP such that
A(I) € 220PT(1) + 28C,
for any instance 1 of the CCSBP problem.

This result shows that when the number of classes is bounded by a constant we can obtain, using
an APTAS for the bin packing problem, algorithms for the CCSBP problem with asymptotic
performance bound as close to 2 as desired (although with high time complexity and with high
value of 3).

4.2. Hybnd versions of the First Fit and Best Fit Algorithms 25

Now we consider that the number of different classes is not bounded by a constant. Notice
that if a given algorithm A’ for the bin packing problem has absolute performance bound a,
then we can derive an algorithm A for the CCSBP problem with absolute performance bound
2a, even if the number of different classes of items is given as part of the input. Using the fact
that algorithms FF, BF and FFD have absolute performance bound 2, 2 and 3/2 respectively,
we can obtain the following result.

Corollary 4.2.4 Let I be an instance for the CCSBP problem, then
SFF(I) < 40PT(I), SBF(I) < 40PT(I) and SFFD(I) < 30PT(I),
even if the number of different classes is not bounded by a constant.

From the practical point of view, the size of the shelf division d is not so large compared
with A. The next theorem shows that if d 1s a small fraction of A, we can obtain a better
performance bound for the Best and First Fit strategies.

Theorem 4.2.5 Let I = (L,s,c,d, A, B) be an instancefor the CCSBP problem. If the num-
ber of classes in I is bounded by C andd = =, r > 1, we have

SFE(I) < (2 +) OPT(I)+2C, SBF()< (2+ ;—i) OPT(I) + 2C,

SFFD(I) < (2+ &~ ¢ ~)OPT(1) +6C, SBED(I) < (2+ &)OPT()+ 6C,

and SFFD(I) < (2+ =)OF‘T(I)
Proof. Let A’ be an algorithm in {FF, BF, FFD, BFD} such that
A'(I') < aOPT(I') + 3

for any instance I’ of the classic bin packing problem and let A the corresponding algorithm in
{SFF, SBF, SFFD, SBFD}. Let I = (L, s,c,d, A, B) be an instance for the CCSBP problem
and P the packing produced by the algorithm A for the instance /.

We divide the proof in two cases, according to the values of N(P) and OPT (/).
CASE 1: N(P) < OPT4(7). In this case, we have

AD)(1/2) < s(L)+ Ny(P)d
< s(L)+OPT,(I)d
<

OPT([), (4.4)

26 Capitulo 4.

where inequality (4.4) holds from Fact 4.1.2. That is,
A(I) < 20PT(1). 4.5)
CASE 2: N(P) = OPT,(7). In this case, we can follow the proof of Theorem 4.2.2 and obtain
inequality (4.2). That is,
A(I)(1/2) < s(L) + (2OPT,(I) + CB)d. (4.6)

Since on average each shelf generated by the algorithm A is filled by at least A /2 (not including
the shelf division). we have

“T(I) 2 s(L)

2 Ni(P)(A/2)

> OPT(I)A/2 = OPT(I)dr/2.

Thatis OPT,(/)d < (20PT(I))/r. Therefore, from inequality (4.6), we have
A(I)(1/2) s(L) + (aOPT. (1) + CB)d.

s(L) 4+ OPT(I)d + (a — 1)OPT4(I)d + C3d.

< OPT(I)+ "‘T—](zop'ru)) + CAd.

IA

< (1+ -2—(01_;1))013'1‘(!) + Cpd.
That is,
A(I) € (2+ -ﬂg’__—l))OPT(I) + 24C. 4.7
The theorem follows from inequalities (4.5), (4.7) and theorem 4.2.1. 0

The following proposition shows that the previous theorem presents an asymptotic perfor-
nat is tight for the algorithms SFF and SBF, when d is very small compared to
A.

Proposition 4.2.1 The asymptotic performance bound of the algorithms SFF and SBF is at
least 2, even when there is only one class.

Proof. Let I, = (L,s,c,d, A, B) be an instance with L = (e),...,€2,), € = 1/n,d = /2,
B=1,A=1/2and s(e;) = 1/2 — ¢ when i is odd and s(e,) = ¢ otherwise. Notice that
d = A/n. Also assume that all items have a same class. The SFF and SBF algorithms applied
over this instance generates n shelves, each one containing one item of size 1/2 — = and one
item of size =. The final packing generated by these algorithms has » bins, each one containing
one shelf. An optimal packing with n/2 + 1 bins can be obtained in such a way that n/2 bins
have two shelves each, one shelf with an item of size 1/2 — &, and the other shelf with two
items, one item of size 1/2 — = and another of size . The last bin contains the remaining items
of size . O

4.3. An Asymptotic Polynomial Time Approximation Scheme 27

4.3 An Asymptotic Polynomial Time Approximation Scheme

In this section we present an APTAS for the CCSBP problem when the number of different
classes is bounded by a constant C'.

The algorithm is presented in Figure 4.2 and is denoted by ASBP,. It considers two cases:
When ¢ > d + A, it uses an algorithm denoted by ASBP. and in the other case, it uses an
algorithm denoted by ASBP_. Notice that the algorithm ASBP receives as input a rescaled
instance so that the maximum shelf capacity is 1.

ALGORITHM ASBP,(L,s,c,d, A, B)
Input: List of items L, each item e € L with size s, and class c., maximum capacity
of a shelf A, shelf divisions of size d, bins of capacity B = 1.

Outpur: Shelf packing P of L.
Subroutines: Algorithms ASBP. and ASBP_.
1. Ife>d+ A then

P — ASBP.(L,s.c,d,A,B)

else
Scale the sizes d, A, B and s,, for each e € L, proportionally so that A = 1.
// The condition to enter in this case is now equivalent to ¢ < (d + A)/B.
P — ASBP/(L,s,c,d,A, B).

Return P.

NP ;e W

Figure 4.2: Algorithm ASBP..

The intuition to consider these two cases is that in the first case, we can pack shelves almost
optimally because the maximum size of a shelf is bounded by ¢, and then the bins can be filled
by at least (1 —¢). In the second case, since € < d + A, we can bound by a constant the number
of shelves used in each bin of an optimal solution. Then an enumeration step can be done to
guess the shelves that are used in an optimal solution and an almost optimal shelf packing can
be generated for large items. Small items are packed later using a linear programming strategy.
In the following two subsections we show that algorithms ASBP. and ASBP! are APTAS.

4.3.1 The algorithm ASBP.

In this section we show that the algorithm ASBP?, is an APTAS for its corresponding case. This
algorithm uses two subroutines: One is the FF algorithm and the other is an APTAS for the
one dimensional bin packing problem presented by Fernandez de la Vega and Lueker [3]. We
consider the version of this APTAS presented by Vazirani [10], which we denote by FL., for
which the following statement holds.

28 Capitulo 4.

Theorem 4.3.1 For any € > 0, there exists a polynomial time algorithm FL. to pack a list of
items L, each item e € L with size s, € [0,A], into bins of capacity A such that FL.(L) <
(1+2)OPTA(L) + 1, where OPT (L) is the minimum number of bins of capacity A to pack
L.

The algorithm ASBPY. is presented in Figure 4.3. Given an instance /, the algorithm ASBP.
first packs all items of the instance into bins of size A using the algorithm FL.. The algorithm
ASBP. considers each one of these bins of size A as a shelf, where the size of a shelf is its total
items size plus the size d of a shelf division. The algorithm ASBP. packs these shelves into
bins of size 1 using the algorithm FF.

ALGORITHM ASBP.(L,s,c,A,d, B)
Input: List of items L, each item e € L with size s, and class ¢., maximum capacity
of a shelf A, shelf divisions of size d, bins of capacity B = land £ > d + A.

Qutput: Shelf packing P of L.
Suhroutines: Algorithms FL. and FF.
1. Let L. be the set of items of class ¢ in L.
2. Foreachclass ¢ € [C] let P§ be the packing of L. obtained by the algorithm FL.
using bins of capacity A.

Let P be the union of the packings Pg, for each ¢ € [C].

Consider each bin D € Py as a shelf with size } ., se + d.

Let S be the set of shelves obtained from Pa.

Let P be the packing obtained with the algorithm FF to pack the shelves of S into

unit bins.
Return P.

R L

N

Figure 4.3: Algorithm ASBP. where £ > d + A.

The following statement holds for the algorithm ASBP..

Lemma 4.3.2 The algorithm ASBP., is an APTAS for the CCSBP problem when the given
instance I is suchthat B=1and =z > d + A.

Proof. In step 2, the algorithm obtains a packing P of items of class ¢ in L (items in L,) into
bins of capacity A using the algorithm FL.. By Theorem 4.3.1, we have

|PAl < (1+€)OPTa(L,) + 1. 4.8)

The algorithm then considers each bin in Pa as a shelf and obtains a shelf packing P using
the algorithm FF to pack these shelves into unit bins. Since £ > d + A, all bins of P, except

4.3. An Asymptotic Polynomial Time Approximation Scheme 29

perhaps the last, must be filled by at least 1 — &. So,
(ASBP.(L) — 1)(1 —¢) < s(L)+d|Pal

C
< s(L)+d) _((1+4&)OPTa(L:)+1)

c=1

C
(1+¢€)(s(L) +d) OPTA(L)) +dC
ce=]

< (1+e)(s(L) +dOPT,(1)) +dC (4.9)
< (1+¢)OPT(I)+C

IA

where inequality (4.9) is valid from Fact 4.1.2. Also notice that d < 1. Therefore, for any
0 <e<1/3 wehave

1+¢ &
1_£0P’I‘(I]+:+1

< (1+35)OPT(I) + 329 el

ASBP.(L) <

Notice that the running time of the algorithm ASBP only depends on the running times of
algorithms FL, and FF, and the value of C. Let Tgp(n, €) and T¢g(n, €) be the running times of
algorithms FL, and FF respectively. The running time of algorithm ASBP. is O(C Typ(n,€) +
T¥r(n,€)). Since the algorithms FL, and FF have polynomial time complexity in n for fixed z,
the complexity time of algorithm ASBP.. is also polynomial in n for fixed &. 0

4.3.2 The algorithm ASBP!

Now, assume that the algorithm ASBP, obtains a shelf packing with the algorithm ASBP..
Throughout this section, we consider that s., d, A and B is the rescaled instance, such that
A = 1. Notice that, the equivalent condition to enter in this case is

d+A d+1

£ < B = B (4.10)

Notice that the maximum number of shelves completely filled packed in a bin is at most

[22;] which from (4.10) is at most * + 1. Observe that if there is any bin with more than 2 + 2

shelves of a same class, it has at least two shelves of this class with total size at most A. In

this case, these two shelves can be combined into only one shelf. Without loss of generality we

consider that each bin, in a solution for the CCSBP problem, contains at most % + 2 shelves of
a same class.

In Figure 4.4 we present the algorithm ASBP!. The algorithm first obtains a pair (P, P)

where P, UP’, foreach P’ € P, is a packing of big items (items with size at least £%). This pair

30 Capitulo 4.

is obtained by the subroutine Ay y. For each packing P, U P’, P’ € P, the algorithm ASBP”
uses the subroutine SMALL to pack the items with size less than 2 into the packing P'. At
least one of the generated packings uses at most (1 + O(z))OPT(/) + O(1) bins as will be
shown latter. The algorithm returns the packing with the smallest number of bins.

ALGORITHM ASBP{(L, s,¢,d, A, B)

Inpur: List of items L, each item e € L with size s, and class ¢., maximum capacity
of a shelf A = 1, shelf divisions of size d, bins of capacity B and ¢ < (d +
A)/B.

Output: Shelf packing P of L.

Subroutines: Algorithms Apr and SMALL.

1. Let G bethe <ot af jtems e € L with size s, > % and S the set L \ G.

2. Let votuned from the algorithm Ay applied over the list
G
3. Foreach ¢ € Pdo
4. let @ be the packing obtained using the algorithm SMALL to pack S into
Q. i)
5. Let P beapackine P 110 where Q € P and |Q)| is minimum.
6. Retun ™

Figure 4.4: Algorithm ASBP.

In the next subsections we present the subroutines used by the algorithm ASBP.. The first
subroutine called Ay is used to generate a set of packings of big items. On the next subsection
we present an algorithm called SMALL used to pack small items (items with size smaller than
€?) in the packings of the big items generated by the algorithm A g. In the last subsection we
present the analysis of the algorithm ASBPZ.

Generating Packings for the Big Items

In this section, we present the algorithm A; r used to pack items with size at least € of a given
input instance /. This algorithm generates a set of packings such that at least one can be used to
pack the small items, such that the resulting packing has size at most (1+0(g))OPT(7)+0O(1).
This algorithm uses the linear rounding technique, presented by Fernandez de la Vega and
Lueker [3], and considers only items with size at least €. The algorithm Ay returns a pair
(P1,P), where P, is a packing for a list of very big items and PP is a set of packings for the
remaining items.

We use the following notation in the descoiption of the linear rounding technique: Given two
listsofitems X and Y, let X,,.. . Xgand Y}, ..., Ye be the partition of X and Y respectively

in classes, where X, and Y. have only items of class ¢ for each ¢ € [C]. We write X < Y if

4.3. An Asymptotic Polynomial Time Approximation Scheme 31

there is an injection f. : X. — Y. for each ¢ € [C] such that s(e) < s(f(e)) forall e € X..
Given two lists L, and L, we denote by L, || L, the concatenation of these lsts.

The algorithm Ay g uses three subroutines: Aspp, SFF, and Ag. The algorithm SFF was
presented in Section 4.2. In what follows we present the algorithms Asp 1, and Ag.
Algorithm A4, 1 : This is an algonthm used as subroutine to generate all possible packings with
at most f + 2 shelves of a same class, when the size of each item is bounded from below by a
constant and the number of distinct sizes in each class is upper bounded by a constant . The
algorithm may generate empty shelves (used latter to pack small items). The following lemma
guarantees the existence of such an algorithm.

Lemma 4.3.3 Given an instance I = (L,s,¢,d, A, B), with A = 1, where the number of
distinct items sizes in each class is at most a constant t, the number of different classes is
bounded by a constant C and each item e € L has size s, > €2, then there exists a polynomial
time algorithm that generates all possible shelf packings of L with at most f + 2 shelves of a
same class in each bin.

Proof. The number of items in a shelf is bounded by p = 1/z%. Given a class, the number of
different shelves for it is bounded by r' = (77 ;’“) and so, the number of different shelves is
bounded by r = C7’. Since the number of shelves in a bin is bounded by ¢ = C(f + 2), the
number of different bins is bounded by u = (":’). Notice that u is a (large) constant since all
the values p, g, r and u depends only on £, C and t which are constants.

Therefore, the number of all feasible packings is bounded by ("7“), which is bounded by

(n 4)", which in turn is polynomial in n. a
2t
Notice that the complexity time of the algorithm Axyy is O(nC@¢/a97V)

Algorithm Ag: Given two lists X and Y such that X < Y and a packing Py of Y, there exists
an algorithm, which we denoted by Agr (Replace), with input (Py, X), that obtains a packing
Py for X such that |Px| = |Py| as the next lemma guarantees.

Lemma 4.34 If X and Y are two lists with X < Y, then OPT(X) < OPT(Y). Moreover,
if Py is a shelf packing of Y then there exists a polynomial time algorithm Ag that given Py
obtains a shelf packing Px of X such that |Px| = |Py|.

Proof. The algorithm Ag sorts the lists X, and Y, for each ¢ € [C] in non-increasing order of
items size and then replaces in this order, each item of Y. in the packing Py by an item of X..
The possible remaining items of Y, are removed. 0

For any instance X, denote by X the instance with precisely | X | items with size equal to

the size of the smallest item in X. Clearly, X < X.

The algorithm Ay is presented in Figure 4.5. It consists in the following: Let G, ..., G¢
be the partition of the input list G into classes 1,...,C and let n. = |G,| for each class c.

32 Capitulo 4.

The algorithm Ay partition each list G, into groups G}, G2, ... G*. Let G' = UZ_,G.. The
algonithm generates a packing P; of G* using O(¢)OPT(/)+1 bins and a set P with polynomial
number of packings for the items in G\ G!. The packing P, is generated by the algorithm SFF
and the set of packings PP is generated using the algorithms Aspp and Ag.

ALGORITHM ALR(G)
Inpur: List G with n items, each item e € G with size s, > =2; maximum capacity
of a shelf A = 1, shelf divisions of size 4 and bins of capacity B.
Output: A pair (P,), where P, is a packing and PP is a set of packings, where P UP’
is a packing of G for each P’ € P.
Subroutines: Algorithms Axy,1,, SFF and Ag.
1. Panition G into list- /7 frreacn clese=1,...,C and let n, = |Gl
2. Partition each li: 1123] groups GL. G2, ..., Gk, such that

G} = G2 == G,
where |G| = g. = [ne’| forallj=1,...,k.— 1,

and |Géc| < 4
3 LeaG=UL Gl
4. Let P, be a packing of G' obtained by the algorithm SFF.
5. Let @ be the set of all possible packings obtained with the algorithm Aapp
over the list (G1|| .. |G Y| |GE] ... |G 7Y).
6. Let P be the set of packings obtained with the algorithm Ag over each pair
(QGH--- IGY |l IGEl - - |GEF). where Q € Q.

7. Rewm (P!, P).

Figure 4.5: Algorithm to obtain packings for items with size at least £°.

Denote by T'ar1, Tr and Tspp the time complexity of algorithms Aapr, Agr, and SFF re-
spectively. The time complexity of steps 1-3 of algorithm A; r 1s bounded by O(n log n). The
overall time complexity of algorithm Ay g is O(nlogn + Tspr + Tarr + TarLTw)- Since Tarr,
Ty and Tspr have polynomial time complexity in n for fixed &, the time complexity of algorithm
Ajpp is also polynomial in n for fixed .

The following statement holds for the packing P;.

Lemma 4.3.5 The packing P, for the items in G is such that
|Py| < 4 OPT(I) + 1.

Proof. First, consider the total items size packed in a bin T of some shelf packing. From Fact

4.3. An Asymptotic Polynomial Time Approximation Scheme 33

4.1.1 any optimum solution must satisfy

s(L) __ s(L)
OPT() 2 rprd £ ATTA — [B/(d+1)]

1 (L)
2B/(d+1)

> (4.11)

Notice that ZE:: n. = n. The algorithm SFF packs at least | B/(d + A)| shelves in each
bin, each shelf with at least one item. This means that each bin has at least | B/(d + A)| items,
except perhaps the last, each item with size at least £2 and at most 1. Since the group G, has at
most ne? items, the number of bins in the shelf packing 7, can be bounded as follows.

ne’ ne3 .{
Pl £ =
Pl < | Graean) = | B
ne’ es(L)
ol e Y. 8 W s
< *Bla+n T B !
< 4e OPT(I) +1, (4.12)
where the inequality (4.12) is valid from (4.11). O
Packing the Small Items

In this section we present an algorithm to pack the small items. If we only consider the big
items, at least one of the packings generated by the algorithm A g has basically the same
configuration of an optimal packing. That is, one of the generated packings has approximately
the same number of bins and approximately the same shelves (including empty shelves that are
used only for small items) of an optimal packing. Therefore the algorithm can guess how the
small items are packed into the shelves of this packing, leaving only a small fraction of small
items to be packed in new extra bins. Notice that a first approach to deal with the CCSBP
problem, would be to produce the packing of the big items and then try to pack small items
greedily. In the classic bin packing problem this approach works, since after packing the small
items in the bins, each bin is filled by at least (1 — €) of its capacity, except perhaps the last
bin. In the CCSBP problem this strategy may not work, since after packing the small items, the
packing could use more shelves. This way, each bin would not be filled with items by at least
(1 — €) of its capacity, since each bin also contains shelf divisions. To pack small items in the
shelves generated by the algorithm A;r we use a linear programming strategy. This approach
has an easier and clearer analysis leading to the APTAS.

The algorithm ASBP” uses a subroutine denoted by SMALL to pack small items (size less
than =?) into a given packing of big items. Let P = {P,,..., P.} be a shelf packing of a list of
items L and assume that we have to pack a set S of small items, with size at most £2, into P. The
packing of the small items is obtained from a solution of a linear program. Let N{°, ... Ni¢ be
the shelves of class ¢ in the bin P of the packing . For each shelf N}, define a non-negative

34 Capitulo 4.

vanable 2. The variable z’" indicates the total size of small items of class ¢ that is to be packed
in the shelf N}¢. Consider the following linear program denoted by LPS:

k € =
manZZJ:;‘
S(N¥) + 2l < AT T vie K], c€ [C), j € [mudl,
i}: Ly 4d) <B Vi€ [k]. (2)
e=1 3=1
_.im“ = §(5) vee[C), (3)
T e 50 vielkl, celC] jemd ()

where S, is the set of small items of class cin S.

Citify=in .at the amount of space used in each shelf is at most A and
constraini (2) guarantees that the amount of space used in each bin i1s at most B. Constraint (3)
guarantees that variables z* are not greater than the total size of small items.

Given a packing P, and a set S of small items, the algorithm SMALL first solves the linear
program LPS, and then packs small items in the following way: For each variable z'7 it packs,
while possible. the small items of class c into the shelf N, so that the total size of the packed

small iter = at most zi°. The possible remaining small items are grouped by classes and
p- k=~ SFF into new bins. The complexity time of algorithm SMALL
iS PULy v . . suiee e linear program LPS can be solved in polynomial time and the

algorithm SFF also has polynomial time.
The following lemma is valic for the algorithm SMALL.

Lemma 4.3.6 Let P be a shelf packing of a list of items L, where each bin of P has at most
2 2 + 2 shelves of a same class, G be the set of items in L with size at least 2% and S be the set
L \ G. Let G' be a list of items with G' < G and P be a packing of the items G’ U S obtained
from P as follows:

1. Let P, be the packing obtained from P removing the items of S.
Let P, be the packing of G’ using the algorithm Ag over the pair (Py,G’).
3. Let P be the packing obtained applying the algorithm SMALL over the pair (P,, S).

18

Then, we have |P| < (1+ 8Ce¢)|P| +C + L

Proof. Notice that |P;| = |P| and for each shelf N, in a bin of P, its corresponding shelf N
in Py is such that s(N]) < s(N,). If |P| = [P] then the lemma follows. So assume that the
algorithm SMALL uses additional bins to pack the items of S.

4.3. An Asymptotic Polynomial Time Approximation Scheme 35

Given a bin E, denote by ns(E) the number of shelves in £, ns.(E) the number of shelves
of class cin E, ss(E') the total size of small items in E and ss.(E) the total size of small items
of class cin E.

Consider the linear program LPS. An optimum solution for LPS leads to an optimal frac-
tional packing P* of the small items such that |P*| = |P|. Consider a bin P* of P* and P, the
corresponding bin in P. We first prove that the following inequality is valid,

ss(P’) — ss(P) < 4Ce. (4.13)

To prove (4.13), notice that ns.(P;) = ns.(P;) for each class c. Given a shelf N;¢ and
the corresponding variable z'%, the algorithm SMALL packs a set of items 77¢ in ;¢ such that
o —8(Ty) < & since a small item has size at most £2. Since each bin in P* has at most 2 + 2
shelves of a same class, we have for each class ¢ € [C]

s5eB) 2 3 (@) = s5(PY) = nso(B)e?

2 55.(F)— (% +2)e? > 55.(P) — 4.

Since the above inequalities are valid for each class we can conclude the proof of (4.13). From
(4.13), we know that the total size of small items packed in additional bins by SMALL with the
algorithm SFF, is at most 4Ce|P*| = 4Ce|P|. Denote by Q the set of additional bins. Each
shelf generated by the algorithm SFF is filled by at least A — =2, except perhaps in C shelves.
Therefore, the number of shelves in Q is at most [w‘lpl-l + C < 8C¢|P| + C + 1. Since

each additional bin has at least one shelf, the number of bins in Q is at most 8C¢|P| + C + 1.
Therefore, the number of bins in 7P is at most (1 + 8C¢)|P| + C + 1. O

Analysis of the Algorithm ASBP”

In this section we conclude the analysis of the algorithm ASBPZ. First, let T r and Ts be the
time complexities of algorithms A g and SMALL, respectively. Notice that the time complex-
ity of algorithm ASBP is dominated by steps 24, that have time complexity O (T g+ T1875s)-
Since the time complexity of algorithms Apg and SMALL is polynomial for fixed z, the time
complexity of algorithm ASBP? is also polynomial. The following lemma concludes the anal-
ysis of the algorithm ASBP?.

Lemma 4.3.7 The algorithm ASBP?, is an APTAS for the CCSBP problem when the given
instance I is such that A = 1, ¢ < (d + A)/B and the number of different classes is bounded

by some constant C.

36 Capitulo 4.

Proof. Given an instance | = (L, s,¢,d, A. B), with A = 1, let G be the set of items in L with
size at least =2 and S the set L \ G.

The items in G are packed by the algorithm Ay . It first partitions G into lists G, for each
class ¢ and then it partitions each list G, into groups G! > G? > ... > G%. From Lemma
4.3.7 the following inequality is valid for the list G* = UZ,GL.

|P;| < 4 OPT(I) + 1. (4.14)

The packing of the items in G2|| ... [|G¥1||... |GZ| ... ||GE is obtained from the set of all
possible packings of G1|| ... [|G¥=Y||.. . IGL]|. .. ||GE~ . Notice that

Gill..-IGE M| - IGEN. .. IGE™ = GRll ... IGY|| - IIGE . . |G -

Let @ be »n optimum shelf packing of I, O; the packing obtained from © without the items
. the possible empty shelves and O, the packing of O, rounding down each item
size to the corresponding item in

Glll... IGBT,..., I[GE]l ... ||G& ™.

Clearly, O, € P, where P is the set of packings generated by the algorithm Aypp. Let O be a
packing obtained from the algorithm Ay over the pair

(02,62 1G], G ... 1G5).

If @ 1s & pacxing obtained applying the algorithm SMALL over the pair (O,), we have from
Lemma 4.3.6 the following result.

Q< (1+8Ce)|O|+C+1=(14+8Ce)OPT(I)+C +1 (4.15)

Since the algorithm ASBP” obtains a packing P that uses at most the number of bins in P; U Q,
the theorem follows from inequalities (4.14) and (4.15). O

From lemmas 4.3.2 and 4.3.7, the following statement holds.

Theorem 4.3.8 The algorithm ASBP. is an APTAS for the CCSBP problem.

4.4 Concluding Remarks

In this paper we consider the CCSBP problem, a class constrained bin packing problem with
non-null shelf divisions. Although this problem has many practical applications, to our knowl-
edge, this is the first paper to present approximation results for it. We first presented hybrid

4.5. Acknowledgements 37

versions of the First Fit (Decreasing) and Best Fit (Decreasing) algorithms for the bin packing
problem to the CCSBP problem. When the number of different classes of items is bounded by a
constant C, we prove that the versions of the First Fit and Best Fit have asymptotic performance
bound 3.4 and the versions of the First Fit Decreasing and Best Fit Decreasing have asymptotic
performance bound 2.445. We also presented an APTAS for this same case whose running time

18 "
O(no{2;5)0llr’£2)c!c %

This algorithm is more of theoretical (rather than practical) interest since it has a high running
time (yet polynomial). When the number of classes is not bounded by a constant we show that
the algorithm SFFD has absolute performance bound 3.

4.5 Acknowledgements

We would like to thank the anonymous referees for the helpful suggestions which improved the
presentation of this paper.

4.6 Bibliography

l. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: a survey. In D. Hochbaum, editor, Approximation Algorithms for NP-hard
Problems, chapter 2, pages 46-93. PWS, 1997.

2. M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with
color constraints. First Brazilian Symposium on Graph, Algorithms and Combinatorics.
Eletronic Notes in Discrete Mathematics, 7:1-4, 2001.

3. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + € in
linear time. Combinatorica, 1(4):349-355, 1981.

4. J. S. Ferreira, M. A. Neves, and P. Fonseca ¢ Castro. A two-phase roll cutting problem.
European Journal of Operational Research, 44(2):185-196, 1990.

5. R. Hoto, M. Arenales, and N. Maculan. The one dimensional compartmentalized cutting
stock problem: a case study. To appear in European Journal of Operational Research.

6. F. P. Marques and M. Arenales. The constrained compartmentalized knapsack problem.
To appear in Computer & Operations Research.

7. H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained
packing problems. Journal of Scheduling, 4(6):313-338, 2001.

38

10.

11.

Capitulo 4.

H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical
Computer Science, 321(1):103-123, 2004.

. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res. Logis-

tics, 41:579-585, 1994.
V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

E. C. Xavier and F. K. Miyazawa. Approximation schemes for knapsack problems with
shelt divisions. Theoretical Computer Science, 352(1-3).71-84, 2006.

Capitulo 5

Artigo: A Note on Dual Approximation
Algorithms for Class Constrained Bin
Packing Problems

E. C. Xavier' F. K. Miyazawa®

Abstract

In this paper we present a dual approximation scheme for the class constrained shelf bin packing
problem. In this problem, we are given bins of capacity 1, and n items of @ different classes,
each item e with class ¢, and size s.. The problem is to pack the items into bins, such that items
of different classes must be packed in different shelves, inside the bin, that are separated by non-
null shelf divisions. We also present a dual approximation scheme for the class constrained bin
packing problem. In this problem, items must be packed in such a way that each bin contains at
most C different classes and has total items size at most 1. A dual approximation scheme may
produce infeasible packings but only within a small tolerance.
Key Words: Bin Packing, Approximation Algorithms.

5.1 Introduction

In this paper we study class constrained bin packing problems, that are generalizations of the
well known NP-hard bin packing problem. We first consider the class constrained shelf bin

!Corresponding author: para@ic.unicamp.br — Instituto de Computagdao — Universidade Estadual de Camp-
inas, Caixa Postal 6176 — 13084-971 — Campinas—SP — Brazil — Phone (+55)(19) 3788-5882.

*fkm@ic.unicamp.br — Instituto de Computagio — Universidade Estadual de Campinas, Caixa Postal 6176
— 13084-971 — Campinas—SP — Brazil — Phone (+55)(19) 3788-5882.

39

40 Capitulo 5.

packing (CCSBP) problem. In this problem we are given a tuple I = (L, s, ¢, Q,d, A), where
B = T a,) 1s a list of n items, each item a; € L with size 0 < s, < 1 and class
ca, € {1,....Q}. dis the size of a shelf division and A is the maximum size of a shelf. We are
also given a set of bins, each one with capacity 1.

Given a list or set of items S we denote by s(S) the total size of items in S, i.e. s(S5) =
ZeES Se-

A shelf packing P of an instance / for the CCSBP problem is a packing of the items in a set
of bins P = {P,,..., P.}, where the items packed in a bin P, € P are partitioned into shelves
L .. 5% } such that for each shelf S} we have that s(S?) < A, all items in Sj are of the same
class and 3 %, (s(S}) +d) < 1. The problem is to find a shelf packing that uses the minimum
number of bins.

We also consider the class constrained bin packing problem, which we denote by CCBP.
In this problem we are given a tuple / = (L.s,¢,C. Q) where L = (ay,...,a,) is a list of
n items, each item a; € L with size 0 < s,, < 1 and class ¢, € {1,..., @}, and a set of
bins, each one with capacity 1 and C compartments. A packing for instance / is a set of bins
P=1P,..s P, } such that the number of different classes of items packed in each bin P, is
at most C' and the total items size in each bin is at most 1. The problem is to find a packing of
instance / that uses the minimum number of bins.

In both problems we assume that @, the number of different classes in the input instance, 1s
bounded by a constant.

Given an algorithm A for the CCBP or CCSBP problem and an instance /, we denote by
A(I) the number of bins used by the algorithm to pack this instance. We denote by OPT(])
the number of bins used by an optimum solution to pack the instance /. In both notations the
problem considered will be clear from the context. Given an integer ¢, we denote by [t] the set
S

In [5], Hochbaum and Shmoys presented the concept of dual approximation algorithms
where one has to find an infeasible optimal solution, and the quality of the algorithm is measured
by how infeasible is the generated solution. There are some cases where the restrictions of
the problem are flexible in practice and the concept of dual approximation algorithms can be
applied.

A dual polynomial time approximation scheme (dual PTAS) for the CCSBP problem is an
algorithm that, for all instances 7, produces solutions that use at most OPT(/) bins, each bin
with size at most (1 + O(¢)) and each shelf of the bin with size at most (1 + O(s))A. A dual
PTAS for the CCBP problem is an algorithm that, for all instances /, produces solutions that
use at most OPT(/) bins, each bin with size at most (1 + O(¢)). In both cases £ is a fixed
parameter given to the algorithm.

Packing problems with class constraints have many applications in multimedia storage sys-
tems. resource allocation [15, 11,4, 7, 14, 16, 13, 3, 19] and in manufacturing systems [6, 9, 1].

5.2. A dual PTAS for the CCSBP Problem 41

The CCSBP problem appears in the iron and steel industry [2, 8, 10, 17, 18].

The CCSBP problem admits an asymptotic polynomial time approximation scheme [17]. A
knapsack version of this problem also admits a PTAS [18]. This paper is the first one to present
a dual PTAS for the CCSBP problem.

We also present a dual PTAS for the CCBP problem. Notice that a dual approximation
scheme for the CCBP problem was first presented by Shachnai and Tamir [12] also considering
that the number of different classes in the input instance is bounded by a constant. The com-
plexity time of their algorithm is O(n'%2/<%)_ In their paper they presented a dual PTAS using
techniques that group small items together. They also said: “We cannot adopt the technique
commonly used for packing, where we first consider large items and then add the small items”.
In this paper we show how to adopt the traditional technique and obtain a dual PTAS with an
casier analysis, also considering that @) is a fixed constant. Although the easier analysis, the
complexity time of our algorithm is O(TrC(%R0k1+: /")) where T is the complexity time
to solve a linear program (see Section 5.3).

In section 5.2 we present a dual PTAS for the CCSBP problem using traditional techniques,
and linear programming to pack small items. In section 5.3 we use these ideas to obtain a dual
PTAS for the CCBP problem. The analysis of it is easier than the one presented by Shachnai
and Tamir [12].

5.2 A dual PTAS for the CCSBP Problem

In this section we present a dual PTAS for the CCSBP problem.

Let I = (L,s,¢,@,d,A) be an instance for the CCSBP problem. We first present a dual
PTAS for the case where the maximum size of a shelf plus the shelf divisor satisfy A +d < «.

Hochbaum and Shmoys [5] presented a dual PTAS, which we denote by Ags, for the classi-
cal bin packing problem. Consider an algorithm that constructs a list of shelves S in a straight-
forward manner: For each class, it packs the items of this class using the algorithm Ays con-
sidering shelves as bins, each one with size A. Since the algorithm Ayg is a dual PTAS the
number of generated shelves by the algorithm is at most the number of shelves used in any op-
timal solution, which we denote by OPT(7);. Moreover each generated shelf has size at most
(1+2)A.

Given the list of shelves S, consider another algorithm that packs the shelves in the following
manner: It packs shelves (including the shelf divisors) in a bin until for the first time the total
size of packed shelves becomes greater than 1. Then it proceeds with a new bin. It is easy to
prove the following result for this algorithm.

Theorem 5.2.1 The presented algorithm is a dual PTAS for the CCSBP problem restricted to
instances where A + d < e.

42 Capitulo 5.

Proof. Notice that the algorithm packs all items in at most OPT(/), shelves and each shelf has
its size increased by a factor of at most =. The total size of items and shelf divisors that the
algorithm has to pack into bins is

s(L) + dOPT(I), < OPT(]).

Since the algonthm generated bins with size greater than 1, the algorithm packs all shelves in
at most OPT(/) bins. Since each shelf has size at most 2¢, each generated bin has size at most
(1+ 2¢). 0

On the remaining of this section we assume that A + d > . Notice that the maximum
number of shelves completely filled, that can be packed in a bin is at most [1<, that is at
monst 1 4+ 1. Observe that if there is any bin with more than % + 2 shelves of a same class, it has

'ves of this class with total size at most A. In this case, these two shelves can be
comitiin - one shelf. Without loss of generality we assume that each bin in a solution
for the CCSBP problem, contains at most 2 + 2 shelves of a same class.

Throughout the remaining of this section, we assume that s, foreach e € L, d, A and the
size of the bins are rescaled, such that A = 1. We denote by B the new size of the bins.

Let L, be the list of items with size greater than or equal to =% (big items) and let L, be
the remaining items in L (small items). We round down each item in L, as follows: each
item e € L, with size in the interval [e%(1 + £2)*,£%(1 + £?)**") has its size rounded down to
£?(1 + £2)", for i > 0. The rounded items have at most M = [log, .z, 1/?] different sizes.

Lemma 522 Let | = (L,s,c,Q,d,A) be an instance of the CCSBP problem where L =
Ly U L,, A =1, the number of distinct items sizes in Ly is at most a constant M, the number of
different classes is bounded by a constant Q, each item e € Ly, has size s, > €? and Ly = L\ Ly.
Then there exists a polynomial time algorithm that generates all possible shelf packings of L,
removing small items of the packing, with at most f + 2 shelves of a same class in each bin.
Moreover, each bin of each generated packing has an indication of the possible shelves that
may be used by further small items.

Proof. The maximum number of big items that can be packed in a shelf is bounded by p = 1/
Given a class, the number of different shelves for it is bounded by " = (”*‘;“"). including a
empty shelf that can be used latter to pack only small items. The number of different shelves
can be bounded by r = Qr’. Since the number of shelves in a bin is bounded by ¢ = Q(E +2),
the number of different bins is bounded by u = (?;"). Notice that u is a (large) constant since
all the values p, ¢. r and u depends only on ¢, @ and M which are constants.

Therefore, the number of all feasible packings is bounded by ("), which is bounded by
(n + u)*, which in turn is polynomial in n. O

In each generated packing, we then consider the onginal sizes of the big items, and in
this case, the total size of each shelf increases by a factor of at most ¢°. Since the maximum

5.2. .\ dual PTAS for the CCSBP Problem 43

number of shelves in a bin is bounded by Q(g— + 2), the size of each bin increases to at most
B+Q(2+2)

The algorithm generates a set, which we denote by I, of all possible packings of the rounded
big items. For each of these packings we then consider the big items with their original size. For
each packing in IP, the algorithm then packs small items using a solution from a linear program.
Let P = {P,..., P.} be a shelf packing of a list of items L, and suppose we have to pack a
list L, of small items, with size at most £2, into P. The packing of the small items is obtained
from a solution of a linear program. Let N; C {1,...,Q} be the set of possible classes that
are packed in the bin P and let ST°, . . ., S’f{jc be the shelves of class ¢ € N, in the bin P of the
packing P. For each shelf S°, define a non-negative variable z°. The variable z'° indicates the
total size of small items of class c that is to be packed in the shelf S;°. Denote by s(S}°) the
total size of big items already packed in the shelf Sj°. Consider the following linear program
denoted by LPS1:

k Nye
max}, >, > of

. ‘ i=1 ceN,; j=1
s(5F) +2f¥ <(1+€%)A Vi€ k], ce N, j€[ni], (1)
YD (s(S¥) + ¥ +d) < (1+2e%)B Vie k] (2) (@PS1)
ceN; =1
k nye
YO ¥ & () Vee [Q], (3)
=1 J=1
’ g >0 Vi€ k], c€ [Ny, j € [ni] (4)

]
where L¢ is the set of small items of class cin L.

Constraint (1) guarantees that the amount of space used in each shelf is at most (1 4 £2)A
and constraint (2) guarantees that the amount of space used in each bin is at most (1 + z?) B,
where T = Q(% + 2). Constraint (3) guarantees that variables z¢ are not greater than the total
size of small items. The number of variables in LPS1 is bounded by O(n@Q2/¢) and the number
of constraints is bounded by O(nQ@2/s + n + Q).

Given a packing P, and a list L, of small items, the algorithm first solves the linear program
LPS1, and then packs small items in the following way: For each vanable :sj,c the algorithm
packs, while possible, small items of class ¢ into shelf SI of the bin F,, so that the total size of
the packed small items is at most i + £°.

The algorithm returns a packing that uses the minimum number of bins and that packs all
items in bins of size at most (1 + (2 + 2)2:2Q)B.

Since @ and £ are constants, the size of PP is bounded by a polynomial in n. Since the
complexity time to solve LPS1 1s polynomial, the presented algorithm has a polynomial time
complexity. Now we conclude with the following theorem.

- Capitulo 5.

Theorem 5.2.3 The presented algorithm is a dual PTAS for the CCSBP problem when A+d >

i

Proof. Let O = {Py,..., P}} be an optimal packing for an instance / of the CCSBP problem
(notice that OPT(/) = k). Round down the big items according to the rounding we have
presented and remove the small items of O obtaining another packing O'. Clearly O" € P and
has an indication of the shelves of small items that were packed on it. When the algorithm packs
the big items with their original size, the size in each shelf of O’ increases by at most £2. Since
in the linear programming formulation we consider the size of each shelf as (1 + £2), there is
enouch rnom to pack all small items. So the variables z sums to the total size of small items. We
al: the size of each bin in the linear programming formulation as (1+ (2 +2)¢*Q) B,
o thert om to pack all shelves.

Dur: of the small items we increase the size of each shelf by at most £2. Since
the maximuni uw.uoer of shelves in a bin is (2 + 2)@ then the total size of each bin is increased
toatmost B+ (2 +2)22Q < (1+ (3 + 2)262Q)B. O

5.3 A dual PTAS for the CCBP Problem

In this section we present a dual PTAS for the CCBP problem using the same ideas of the
previous section. This dual PTAS has an easier analysis than the one presented by Shachnai and
Tamir [12].

Let L, be the set of items in L with size at least ¢ (big items) and let L; be the remaining
items in L (small items). We round down each item in L; as follows: each item e € L; with
size in the interval [g(1 +¢€)*, £(1 + &)™) has its size rounded down to £(1 +¢)*, for 2 > 0. The
rounded items have at most M = [log,, .y 1/¢] different sizes.

It is not hard proof the following lemma that is similar to Lemma 5.2.2.

Lemma 5.3.1 Ler I = (L, s,¢,C, Q) be an instance of the CCBP problem where L = L, U L,
the number of distinct items sizes in Ly, is at most a constant M, the number of different classes
is bounded by a constant), each item e € Ly has size s, > ¢, and Ly, = L \ L. Then there
exists a polynomial time algorithm that generates all possible packings of L removing the small
items of the packing. Moreover, each bin of each generated packing has an indication of the
possible classes that may be used to pack the small items.

Proof. The number of big items that can be packed in a bin is bounded by ¥ = 1/¢. The number
of distinct types of big items is bounded by M @). The number of different configurations of bins
is bounded by 7’ = (""’H'LQ“), including the empty bin. If we also consider additional classes
to pack small items in each configuration, the number of different configurations is bounded by

5.3. A dual PTAS for the CCBP Problem 45

r = r'29, which is a constant. Notice that we only consider configurations that satisfy the class
constraints.

The number of all feasible packings is bounded by ("'"), which is bounded by (n + r)",
which in turn is polynomial in 7. O

We then consider the original size of the items in each of the generated packings. In this
case, the size of each bin increases by at most a factor of =.

The algorithm generates a set, which we denote by P, of all possible packings of the big
items. For each one of these packings the algorithm packs the small items in the following way:
Let P = {P,,..., P} be a packing of the list of items L, and suppose we have to pack a list
L of small items, with size at most £, into P. The packing of the small items is obtained from
a solution of a linear program. Let N, C {1,..., @} be the set of possible classes that may be
used to pack the small items in the bin P; of the packing P. For each class ¢ € N,, define a
non-negative vanable ... The variable z. indicates the total size of small items of class c to be
packed in the bin F,. Denote by s(F;) the total size of big items already packed in the bin P.
Consider the following linear program denoted by LPS2:

=1 ceN,
P, P <1 Vielk 1
s)+CEZM:: < (1+¢) € (k] (1) .
> oz <s(L3) Vee[Q), (2)
e >0 Vie[k,ce[N], ()

where L¢ is the set of small items of class ¢ in L.

Constraint (1) guarantees that the items packed in each bin satisfy its capacities and con-
straint (2) guarantees that the total use of variables z is not greater than the total size of small
items for each class c. In this linear program, the number of variables is bounded by n@ and
the number of constraints is bounded by n + Q.

Given a packing P, and a list L, of small items, the algorithm first solves the linear program
LPS2, and then packs small items in the following way: For each variable 7, it packs, while
possible, the small items of class ¢ into the bin P, so that the total size of the packed small
items is at most r, + £.

The algorithm returns a packing that uses the minimum number of bins and that packs all
items in bins of size at most (1 + (C + 1)¢). The number of packings in the set P can be
bounded by T} = O(n?9QUog1+1/6)""") Let T, be the worst complexity time to solve a linear
program LPS2. The complexity time of the entire algorithm can be bounded by O(7}75), which
is polynomial since @ and ¢ are constants and the complexity time 75 is polynomial.

46

Capitulo 5.

We conclude with the following theorem.

Theorem 5.3.2 The presented algorithm is a dual PTAS for the CCBP problem.

Proof. Let O = { P2, .cvy P} be an optimal packing for an instance / of the CCBP problem.
Round down the big items according to the rounding we have presented and remove the small
items of O obtaining another packing O'. Clearly O’ € P and has an indication of the classes
of small items that were packed on it. When the algorithm packs the big items with their
original size. the size of each bin in O’ increases by at most . Since in the linear programming
formulaton we consider the size of each bin as (1 + ¢), there is enough room to pack all small
iterms. So the variables z sums to the total size of small items.

aring the packing of the small items we increase the size of each bin by at most & for each

class in the hin So the total size of each bin is increased to at most (1 + (C' + 1)g). 0

5.4 Bibliography

L,

M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color
constraints. In Proceedings of the 1th Brazilian Symposium on Graph Algorithms and
Combinatorics, volume 7 of Electronic Notes in Discrete Mathematics, 2001.

J. S. Ferreira, M. A. Neves, and P. Fonseca e Castro. A two-phase roll cutting problem.
European J. Operational Research, 44:185-196, 1990.

S. Ghandeharizadeh and R. R. Muntz. Design and implementation of scalable continous
media servers. Parallel Computing Journal, 24(1):91-122, 1998.

L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algo-
rithms for data placement on parallel disks. In Proceedings of SODA, pages 223-232,
2000.

. D.S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedulling

problems: practical and theoretical results. journal of the ACM, 34(1):144-162, 1987.

. J. R. Kalagnanam, M. W. Dawande, M. Trumbo, and H. S. Lee. The surplus inventory

matching problem in the process industry. Operations Research, 48(4):505-516, 2000.

S.R. Kashyap and S. Khuller. Algorithms for non-uniform size data placement on parallel
disks. In Proceedings of FSTTCS, volume 2914 of Lecture Notes in Computer Science,
pages 265-276, 2003.

F. P. Marques and M. Arenales. The constrained compartmentalized knapsack problem.
To appear in Computer & Operations Research.

5.4. Bibliography 47

10.

11.

13.

14.

13.

16.

17.

18.

19.

M. Peeters and Z. Degraeve. The co-printing problem: A packing problem with a color
constraint. Operations Research, 52(4):623-638, 2004.

M. Arenales R. Hoto and N. Maculan. The one dimensional compartmentalized cutting
stock problem: a case study. 7o appear in European Journal of Operational Research.

H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack
problem. Algorithmica, 29:442—467, 2001.

H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained
packing problems. Journal of Scheduling, 4(6):313-338, 2001.

H. Shachnai and T. Tamir. Multiprocessor scheduling with machine allotment and paral-
lelism constraints. Algorithmica, 32(4):651-678, 2002.

H. Shachnai and T. Tamir. Approximation schemes for generalized 2-dimensional vector
packing with application to data placement. In Proceedings of 6th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems, RANDOM-
APPROX, volume 2764 of Lecture Notes in Computer Science, pages 165-177, 2003.

H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical
Computer Science, 321(1):103-123, 2004.

J. L. Wolf, P. S. Wu, and H. Shachnai. Disk load balancing for video-on-demand-systems.
ACM Multimedia Systems Journal, 5:358-370, 1997.

E. C. Xavier and F. K. Miyazawa. A one-dimensional bin packing problem with shelf
divisions. In 2nd Brazilian Symposium on Graphs, Algorithms, and Combinatorics,
volume 19 of Electronic Notes in Discrete Mathematics, 2005.

E. C. Xavier and F. K. Miyazawa. Approximation schemes for knapsack problems with
shelf divisions. Theoretical Computer Sciense, 352(1-3):71-84, 2006.

E. C. Xavier and F. K. Miyazawa. The class constrained bin packing problem with appli-
cations to video-on-demand. In Proceedings of the 12th Annual International Computing
and Combinatorics Conference (COCOON'06). volume 4112 of Lecture Notes in Com-
puter Science, pages 439448, 2006.

Capitulo 6

Artigo: The Class Constrained Bin Packing
Problem with 2 »nli-ations to
Video-on-Demand

E. C. Xavier’ F. K. Miyazawa’®

Abstract

In thi= naper we present approximation results for a class constrained bin packing problem that
has appucations to Video-on-Demand Systems. In this problem we are given bins of capacity B
with C' compartments, and 7 items of () different classes, each item ¢ € {1,...,n} with class ¢
and size s,. The problem is to pack items into bins, where each bin contains at most C different
classes and has total items size at most B. We present several approximation algorithms for
offline and online versions of the problem. The presented results are the best known to the
author’s knowledge.
Key words: Bin Packing, Video-on-Demand.

6.1 Introduction

In this paper we study the class constrained version of the well known bin packing problem,
which we denote by CCBP (Class Constrained Bin Packing). In this problem we are given
atuple I = (L,s,¢,C,Q) where L = (ay;. .-, a,) is a list of items, each item a; € L with

'A preliminary version of this paper appeared as an extended abstract in COCOON 2006, LNCS 4112. pp.
439448, 2006.

Instituto de Computagdo — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084-971 —
Campinas—SP — Brazil, {eduardo.xavier,fkm} @ic.unicamp.br.

48

6.1. Introduction 49

size 0 < 5,, < B and class ¢,, € {1,...,Q}, and a set of bins, each one with capacity B
and C' compartments. A packing P of L is a partition of the items into bins, where each bin
has total items size at most B and the number of different classes in each part is at most C.
The problem is to find a packing of L into the minimum number of bins. In the online version
of the CCBP problem the items must be packed in the order (a;,....a,), where each item a;
must be packed without knowledge of further items. We consider that 1 < C' < @, otherwise
the CCBP problem can be solved as the original bin packing, since if C = 1 then items of
different classes must be packed in different bins and if C' > @ then the class constraints are
irrelevant. We also consider the version of this problem with bins of different sizes. In this
case we have T' different bin sizes. The input instance is a tuple / = (L, s,¢, w, C, Q) where
TR ST (5 (N T} — R is a function of bins size. We assume w.l.o.g that foreach: € {1,...,T},
w(2) < B. In this case, the problem is to pack all items into bins such that the total size
of used bins is minimized. This problem is denoted by VCCBP (Variable Class Constrained
Bin Packing). Packing problems with class constraints have many applications in multimedia
storage systems, resource allocation [23, 19, 8, 13, 22,9, 21, 7] and in operations research like
manufacturing systems [12, 17, 5, 26, 27].

6.1.1 Notation

In the online case, the bins used to pack the items are classified as open or closed. An empty
bin 1s declared open when it receives its first item, and remains so until it is declared closed.
Only open bins may receive items. Once a bin is closed, it cannot be declared open again. We
consider the bounded and unbounded space versions for the online CCBP problem. In the -
bounded space problem an algorithm must keep at any time during its execution at most / open
bins. In the unbounded version an algorithm may keep an unbounded number of open bins.

Given an algorithm A for the CCBP problem and an instance /, we denote by A(J) the
number of bins used by the algorithm to pack this instance. We denote by OPT(/) the number
of bins used by an optimum (offline) solution to pack the instance I. The algorithm A has
an absolute approximation factor a, if for every 7 it satisfies A(/) < aOPT(/). It has an
o approximation factor if for every I, the algorithm produces a solution such that A(J) <
aOPT(I) + 3 where /3 is a constant. Given an algorithm 4., for some £ > 0, and an instance
I for some problem P we denote by A.() the value of the solution returned by algorithm
A. when executed on instance /. We say that A,, for ¢ > 0, is an asymptotic polynomial
time approximation scheme (APTAS) for the problem CCBP if there exist constants ¢ and 3
such that A.(I) < (1 + t£)OPT(J) + § for any instance /. An online algorithm A for a
minimization problem is said to have a competitive ratio « if there exists a constant [such that
A(I) < aOPT(7) + 3 for any instance /.

Let I be an instance of the CCBP problem and L be the list of items in /. We write that

50 Capitulo 6.

a € I with the same meaning of a € L, and we denote s(/) = s(L) = >_ ., s(a). Given an
integer M, we denote by [M] the set {1,..., M}.

Given two sequences L, = (ay, ..., a,)and L, = (by,...,b,), we denote the concatenation
of these two lists by L, || Ly, i.e, L, || Ly = (@1,---,@n, by, .. ., b,). Given a packing P we denote
by |P| the number of bins in P.

Throughout this paper, we use the terms color and class with the same meaning. We say
that a bin is colored if it contains items of C different classes. In this case, this bin cannot pack
any other item of a different class. A bin is said to be full if the total size of the items packed
mnside it 1s equal to B.

6.1.2 Related Work

A special case of the CCBP problem is the Bin Packing problem, which is one of the most
lems in the literature. Some of the most famous algorithms for the bin packing

.« the algonthms FF, BF, FFD and BFD, with asymptotic performance bounds 17/10,
7/10,11/9 and 11/9, respectively. We refer the reader to Coffman ez al. [2] for a survey on
approximation algorithms for bin packing problems. Fernandez de la Vega and Lueker [6] pre-
sented an APTAS for the bin packing problem. The online bin packing is also a well studied
problem. There are many online algorithms presented in the literature for the bin-packing prob-
lem. The algorithms FF, NF, and BF are online and were investigated by Ullman [24], Johnson
[10] and Johnson ez al. [11]. Subsequent papers proposed algorithms with better approximation
ratios that pack items according to interval sizes. Yao [28], and Lee and Lee [15] presented
the Harmonic and Refined Harmonic algorithms with competitive ratio 1.692 and 1.636 respec-
tively. To our knowledge the best online algorithm, with a competitive ratio of 1.58889, was
presented by Seiden [18]. The best lower bound for this problem is 1.54014 due to van Vliet
[25]. Recently the class-constrained versions of packing problems have obtained attention. In
[5, 4], Dawande ez al. claimed to present an approximation scheme for the offline VCCBP
problem when the number of different classes @ in the input instance is bounded by a constant.
In [20]. Shachnai and Tamir presented a dual polynomial time approximation scheme for the
offline class constrained bin packing problem (CCBP). They also consider that the number of
different classes in the input instance is bounded by a constant. In this case, given an instance
I, the problem is to find a packing of the items in at most OPT(/) bins, each bin with size
at most (1 + O(z))B. In [19], Shachnai and Tamir presented theoretical results for a Multiple
Knapsack problem with class constraints where all items have unit size. They introduce this
problem with applications to video-on-demand servers. Subsequently to this work, Golubchik
er al. [8) presented an approximation scheme to the problem. Later, Kashyap and Khuller [13],
also presented approximation schemes to the problem, but they consider that the class require-
ment of items are not equal to all classes. Shachnai and Tamir in [23], presented algorithms

6.1. Introduction 51

for the online CCBP problem when all items have equal size. In this case they provide a lower
bound of 2 to the problem and also algorithms that get a competitive ratio of 2.

6.1.3 Results

In this paper we generalize the work presented by Shachnai and Tamir [23], since we consider
the online CCBP problem where items can have different sizes. We show that the bounded
space online CCBP problem cannot have a constant competitive ratio. Moreover if any item of
the instance have size at least ¢ < B we show that there is no algorithm with competitive ratio
better than O(1/Ct). For the unbounded space problem we present an online algorithm with
competitive ratio in [2.666, 2.75]. We also present some results for the offline problem. When
all items have equal size, we present an (1 + 1/C)-approximation algorithm. When items
have size at most B/m, for some integer m:, we show an algorithm with approximation factor
(1+1/C + 1/ min{C, m}). Notice that we consider that the number of different classes Q is
part of the input in these cases. We implemented these practical algorithms and we also present
in this paper some experimental results for them. The experiments show that the algorithms
generate solutions of high quality and can be used in practice. The VCCBP problem was first
considered by Dawande er al. [5, 4] where a tentative of an APTAS was considered when @
is bounded by a constant. We observed that their algorithm does not lead to an APTAS as
claimed. First of all, they do a linear rounding step of the list of items L and then obtain an
optimal packing for the new list. Doing this they do not guarantee a packing for the original
items because of the class constraints. To pack the small items they use a First Fit strategy, and
claim that each bin (at most a constant number of bins), is filled by at least (1 —O(=)), but this is
also not true due to the class constraints. In this paper we show the points where their algorithm
fails and present an APTAS for the VCCBP problem for fixed). In the linear rounding step we
separate items by colors and generate all possible packings for the rounded items. To pack the
small items we use another strategy.

Organization: In Section 6.2 we present the application of the CCBP problem to data place-
ment of videos. In Section 6.3, motivated by the video-on-demand systems applications, we
present practical approximation algorithms for the CCBP problem considering that all items
have equal size. In Section 6.4, we present lower bounds for the competitive ratio of any al-
gonthm for the bounded space online CCBP problem. In this section, we also present online
algorithms, one of them with competitive ratio in [2.666, 2.75]. In Section 6.5 we present an
APTAS for the VCCBP problem when @Q is bounded by a constant. In Section 6.6 we show
experimental results of the practical algorithms shown 1n Section 6.3.

N
ra

Capitulo 6.

6.2 Applications of the CCBP Problem to Data Placement on
Video-on-Demand Servers

The first work to consider packing problems with class constraints as a data placement problem
was the one of Shachnai and Tamir [19]. They considered the knapsack version of the CCBP
problem. In this case)V’ bins are given, and the objective is to pack the maximum number of
items satisfying the class constraints in each bin. Suppose we have a server of videos with
N disks, each disk j € {1,..., N} with storage capacity C; and load capacity B;. That
is, each disk j can store C;, movies and can attend at most B, simultaneously requests for
videos. The problem is to construct a server such that, based on expected requests for movies
(computed by movies popularity), the number of attended requests is maximized. The total
load capacity of the server is By = ;\;1 B,. The movies considered to be stored in the

server are Fy, F5, ..., F; with popularity parameters p;.ps, . . ., py, Where Ele p; = 1. Given
these populanty parameters we compute expected requests for each movie at any time. These
expected requests are, for each 7, defined as r; = Brp;. Notice that Z{z , T = Br (we suppose
that each r; is an integer).

Consider for example that we have a server with two hard disks. Disk 1 has C; = 2 and
B; = 4 and disk 2 has C; = 2 and B, = 8. There are three movies F}, F; and Fj, with
popularity parameters p; = 1/4, p, = 1/4 and p; = 1/2. Computing the expected requests one
obtain r; = 3, r, = 3 and r3 = 6. One optimal solution is given in Figure 6.1. One copy of
movie F} is done in disk 1, a copy of movie F3 is done in disk 1 and 2, and a copy of movie Fj
is done in disk 2. Notice that not all load capacity of the disks can be used. We call a perfect

placement when all load capacity is used, 1.e, all requests are allocated.

Disk 2

Figure 6.1: An optimal solution for the given video server.

This problem was shown to be /N P-hard by Shachnai and Tamir [19]. Golubchik ez al. [8]
show that even if all disks are equal, i.e, have the same load and store capacities, the problem
remains NV P-hard.

We can also consider the following problem: given a set of requests for a set of movies,
construct a server using the minimum number of disks. This problem is N P-hard since, given
an instance for the data placement with N disks, a perfect placement exists, if and only if we

6.3. Practical Approximation Algorithms 53

can find a packing for all requests using at most NV disks. When all disks are equal, we can see
this data placement problem as a special case of the CCBP problem. In this case we have an
instance { = (L, s,c, C, @), where each item ¢ € L is a request for a load of class ¢; € @ (the
movie type). All items have the same size and C is the capacity of the disks, i.e, the number of
different movies that the disk can store. That is, we want to construct a video server storing the
videos and distributing all the requests minimizing the number of used disks.

6.3 Practical Approximation Algorithms

In this section we consider the problem where all items have unit size. As we saw, this problem
is N P-hard and has applications in the data placement problem for video-on-demand. In this
case, we can consider that items are given as a list of sets Uy, ..., Ug, where each set U; has n;
items of unit size with class 7. Each bin packs at most B items of at most C' different sets. The
problem is to pack all sets of items in the minimum number of bins. We say that a set of items
is totally packed in a bin if all of its items are packed in the bin, otherwise we say that a set is
partially packed. We also say that a bin packs entirely C sets, if C' sets are totally packed in the
bin.

We adapt here, an algorithm known as Moving-Window (MW) first presented by Shachnai
and Tamir [19] and also used later by Golubchik e al. [8] and Kashyap and Khuller [13]. In
these previous works the algorithm was considered for the knapsack version of the problem,
where one must have to pack the maximum number of items in a given number of bins.

Moving-Window (MW): The algorithm keeps a vector R = (R[1], R[2],. .., R|Q]) repre-
senting non-packed items in such a way that R[¢] is the number of remaining items to be packed
of some set U;. The vector is maintained in non-decreasing order of the values R[z] during all
the execution of the algorithm. If at any given moment, it is packed part of the items represented
by R[i], then the vector must be reordered.

In any iteration of the algorithm, it tries to pack C different sets creating a new bin. For
that, the algorithm keeps a window of C sets. At first, the window goes from R[1] to R[C]. If
Zil R[i] > B then the algorithm packs the corresponding sets of R[1], R[2],..., R[j], where
j < C'is the first index such that 3°7_, R[i] > B. Notice that R[j] may be partially packed. The
totally packed sets are removed from the vector. If 3 | R[i] < B then the algorithm moves
the window to the right, until that for the first time the window has C' sets such that their sizes
are greater than or equal to B. If this is the case, the C sets are packed and the vector R is
reordered (if the last considered set was partially packed). Then the algorithm restarts. If in
some iteration, the window reaches the end of the vector R, i.e, the C largest sets have total size
smaller than B, then the algorithm generates bins by packing entirely C sets in each bin, with
exception perhaps in the last bin that can pack less than C sets.

Let By, ..., By be the bins created by the algorithm MW in the order they were created.

54 Capitulo 6.

Let Ny be the number of full bins and N¢ be the number of bins that are not full which we call
colored. Let N = Np + N¢. Notice that bins By, ..., By,, are the full bins since when the
algorithm creates the first non-full bin, when the window reaches the end of R and the C largest
sets have total size smaller than B, then all other generated bins becomes non-full having C
different sets each except perhaps the last.

Lemma 6.3.1 If any of the first Ng bins produced by the algorithm MW packs less than C
different sets (classes), then the algorithm produces an optimal solution.

Proof. Let B, be the first bin, among the first N bins, that packs less than C different sets.
In this case, the window must start from R[1] and goes until R[;] for some j' < C' — 1. The
vector R is ordered such that R[;’] < R[j'+1] < ... < R[Q]. Therefore, any C' — 1 remaining
sets have total size greater than B. That is, even if the set R[j’| was partially packed, all other
created bins must be full, because the remaining items of a partially packed set with C' — 1 sets
ilave total size greater than 5. 0

This way, we consider that for each of the N first bins, the algorithm packs, in each itera-
tion, exactly C' different sets and that at most one of these sets is partially packed. Clearly, for
the remaining N¢ bins, all of them packs totally C' different sets except perhaps the last bin.

Let OPT(/) be the number of bins used by an optimal solution to pack instance /. We
assume that Ny < OPT(/) — 1, otherwise the algorithm generated an optimal solution. We
have the following result.

Lemma 6.3.2 After the MW algorithm has created the first OPT(I) bins, there exists at most
N sets to be packed.

Proof. Notice that the number of different sets must satisfy (¢ < OPT(/)C. Since each one
of the full bins packs C' different sets, where one of these sets may be partially packed, then
the algonthm partially packs at most Np sets. These partially packed sets can be seen as new
sets that are considered by the algorithm during its execution. That is, we can assume that the
algonthm packs at most @ + N different sets. Also remember that each one of the N colored
bins packs entirely C' different sets. Since each one of the first OPT(/) bins packs C different
sets and @ < OPT(/)C we conclude that it remains at most Ny sets that are packed in extra
colored bins. O
With this result we can give the approximation factor of the MW algorithm.

Theorem 6.3.3 The MW algorithm has an approximation factor of (1 + %) for the CCBP
problem when all items are equal sized.

Proof. Let I be an instance for the CCBP problem where all items have unit size. From Lemma
6.3.2, after the algorithm has generated the first OPT(/) bins, it remains at most N sets to be

6.3. Pracucal Approximation Algorithms 55

packed. Since each one of the generated bins packing these sets is colored, each bin entirely
packs C different sets and then, the number of extra bins created can be bounded by

Nr OPT(I)—1 OPT(I)
e e e s — = -
(C] < C +1 c 1/C +1.
We can bound the number of generated bins by OPT(7) + OPT(J)/C + 1. 0

Proposition 6.3.1 The bound of Theorem 6.3.3 is tight.

Proof. Consider that the input instance / consists of N(C — 2) big sets with 2p + 2 items each,
and 2N small sets with p items each. The bin capacity is B = (C — 2)(2p + 2) + 2p + 2 items.
Notice that (C' — 2) big sets with two small sets does not fill the bin capacity. When the MW
algonithm is executed over this instance, the first generated bin packs one small set, (C' — 2)
big sets entirely and another big set partially. The remaining items of the last packed big set
becomes a small set with p items. Notice that the MW algorithm generates N(C — 2)/(C —1)
bins by packing big sets and one small set that is a residual part of a big set. After that, remains
2N small sets that are packed in more 2/N/C bins. When NV and C increase enough, the number
of bins tends to N + N/C. An optimal pack of this instance uses /V bins. In this packing, each
bin packs (C' — 2) big sets and two small sets. O

Notice that the MW algorithm is based in a heuristic that tries to pack C different sets in
each bin. But the way the algorithm works, it tends to pack small and large sets in different bins.
A good heuristic is to pack large and small sets together, in such a way that each generated bin
has a good use of its capacity, while trying to pack C different sets in each bin. For that, we
propose a new algorithm that we call Modified-Moving-Window (MW').

Modified-Moving-Window (MW’): This algorithm is similar to the MW algorithm in such
a way that it also keeps a window of size C over a vector R = (R[1], R[2],..., R[Q]) that is
maintained ordered in non-decreasing order of the values R|[i]. The algorithm also moves a
window of size C' until the total size of the sets in the window contains B or more items.
In the MW’ algorithm, we consider that the vector R is a circular list. At first, the window
consists of the sets R[1],..., R[C]. If the total size of these sets is greater than or equal to
B, then the algorithm packs the sets R[1],..., R[j], where 7 < C is the first index such that

J_, R[i] = B, with the last set R[j]| probably partially packed. If the total size of these sets

is smaller than B then instead of doing a move to the right, as in the original MW algorithm,
the algorithm performs a move to the left and considers the sets R[Q)], R[1],..., R[C — 1]. The
algorithm performs moves to the left until the total size of the C' sets are greater than or equal
to B. In this case it packs the C sets and restarts. If the algorithm performs C moves to the left,
and then considers the largest C sets, and this sets have total size less than B, then the algorithm
generates a packing like the original MW algorithm, by packing entirely C' sets in each bin.

It is not hard to prove similar results to Lemma 6.3.1 and Lemma 6.3.2 to the MW’ algo-
rithm. Using the same arguments of Theorem 6.3.3 we can prove the following result.

56 Capitulo 6.

Theorem 6.3.4 The MW’ algorithm has an approximation factor of (1 + %) for the CCBP
problem where all items are equal sized.

Notice that this bound is tight since the algorithm MW’ generates the same solution gener-
ated by the algorithm MW for the instance presented in Proposition 6.3.1. The advantage of the
MW algorithm is to try to pack small sets with large ones trying to guarantee a good filling of
the bins, since it tries to pack the maximum number of small sets with large sets. To see this,
consider for example an instance / that consists of 2n small sets, each one with one item, n large
sets with 5 items each and n medium sets with 2 items each. Suppose B = 7 and C' = 3. The
MW algorithm first generates n bins by packing two medium sets and part of another large set.
After that, it generates 2n/3 new bins to pack the small sets. The MW’ algorithm first generates
n bins such that each one packs two small sets and a large set. The remaining medium sets are
packed in n/3 bins.

Another simple approach used to solve the problem is to use similar ideas of the well known
FFD, (BFD) algorithms (see Coffman er al. [2])

Algorithm FFD: The algorithm first sorts the sets Uy, . .., Uy, in non-increasing order of
their apply the FF algorithm in the list obtained concatenating these sets.

Theorem 6.3.5 The FFD algorithm has an approximation factor equal to 2 for the CCBP
problem when all items have unit size.

Proof. Let B,,.. ., By be the bins created by the algorithm, Ng be the number of full bins
and N¢ be the number of colored bins. Clearly, Ny < OPT and each bin that is not full must
be colored except perhaps the last generated bin. Also notice that two different bins that are
colored cannot have items of a same color. Since CNg/C < [Q/C] < OPT we get that
Ne < OPT. Then we can bound the number of generated bins by N < 20PT + 1. 0

Since this algorithm does not try to optimize the class usage in the packing, it can generate
poor quality packings. In fact, we show in the next proposition that the bound of Theorem 6.3.5
18 tight.

Proposition 6.3.2 The bound of Theorem 6.3.5 is tight.

Proof. Let I = (L,s.c,C.Q) be an instance to the CCBP problem where all items have unit
size. Let the size of the bins be B = C?. Suppose the input list of items consists of one big set
with C? items and C? small sets with one item each. The FFD algorithm first packs the big set
in C*/C? bins and the small sets in C?/C bins giving a total of 2C bins. An optimal solution
uses ' bins packing in each bin C? — (C — 1) items of the big set and C' — 1 small sets. The
remaining C'(C — 1) items of the big set, and C small sets can be packed in 2 extra bins. 0

Now we consider the case where items in each set may have different sizes. This case
is also interesting for applications of the data-placement problem to video-on-demand servers.

6.4. The ' . line CCBP Problem 57

Suppose that users have different network access speeds. In this case, requests for load resources
may have different sizes. This case can be mapped to the case in the CCBP problem where items
have different sizes. Also notice that even if the items have different sizes, in practical instances
it is expected that the size of the item is not too large. So. suppose that the maximum size of
an item is an integer bounded by B/m for some m > 1. Problems with this restriction are also
called parametric packing problems [16, 3]. Given an integer m, we denote this version of the
problem as Parametric Class Constrained Bin Packing (CCBP,,) problem.

Let / be an instance of the CCBP,, problem where each item has size bounded by B/m.
Consider that the input instance / consists of sets Uy, ..., Uy. We now present an algorithm to
pack this instance. Although items may have different sizes, consider that each item with size s
greater than 1 is broken into s unit size pieces. Now apply the MW algorithm for this modified
instance. Now consider this packing for the original items. For each full bin it may happen
that the last item packed is fractionally packed. For each bin where this happens, remove the
item of the bin. Notice that there are at most Ny items removed of the generated packing. For
these remaining items, generate new bins packing at least min{m, C'} items in each bin except
perhaps in the last bin.

Theorem 6.3.6 There exists an algorithm for the CCBP problem where each item has size at
most B/m, for some m > 1, with approximation factor equal to (1 + 1/ min{m, C} + 1/C).

Proof. From Theorem 6.3.3, the packing generated when items are fractionally packed uses at
most (1 + 1/C)OPT(]) + 1 bins. Notice that the number of items fractionally packed in this
packing is bounded by Nz, since the first Ny bins are the only ones that are full. These Nr
extra items can be packed in at most [N/ min{m, C'}| extra bins. O

6.4 The Online CCBP Problem

From now on, we consider that the capacity of the bin is B = 1, and each item e has size
0 < s, < 1. In this section we consider the online class constrained bin packing problem.
In this case each item in the list of items L = (a,,...,a,), is packed without knowledge of
subsequent items in the list. In subsection 6.4.1 we present lower bounds for any bounded
space algorithm, in subsection 6.4.2 we present and analyze an algorithm based in the First-
Fit strategy and finally in subsection 6.4.3 we present another online algorithm with better
competitive ratio.

6.4.1 Lower bounds for bounded space algorithms

In this section we present inapproximability results for the bounded space online CCBP prob-
lem. In this case, the basic strategy is to compare the result obtained by the algorithm with the

58 Capitulo 6.

optimum offline packing.

Theorem 6.4.1 Let [be a constant, then the I-bounded space online CCBP problem does not
admit an algorithm with constant competitive ratio.

Proof. Let A be an algorithm for the /-bounded space online CCBP problem. Consider an
instance /, such that |L| = n%l, Q@ = nl, and n is divisible by C. The list L have nl dif-
ferent classes and all items have size 1/Cn. Consider that L = L,||...||L,, where each
L, = (@y,...,ay)1s a sequence of nl items where each a; has class j.

Let t; be the time immediately after the algorithm has packed the list L;. At time t; the
algorithm A can have at most [open bins. Since each item of the first sequence 1s of a different
class, the algorithm uses at least nl/C' bins to pack L, where at least nl/C — [of these bins
are closed. When the packing of the list L, starts, the algorithm has at most [open bins that can
rack at most IC items of the sequence L.. To pack this sequence, the algorithm uses at least
(ln - 1C)/C he ~ther sequences Ly, ..., Ly,.

Therefore, : L, wie ulgontnn A uses at least

n(nl/C)—(n—1)l = nzfj'C —(n—=1)I

bins.
Since all items have size 1/Cn, an optimal offline solution can use at most /n/C bins, by
packing C'n items in each bin. Therefore, the competitive ratio must be at least

. nljC—(mn—-1)l _
m, nl/C -

O

In Theorem 6.4.1, items may have arbitrary small sizes. If all items have size at least &,

for some constant £, we may also obtain an inapproximability result using similar arguments.
Notice that in this case, any simple algorithm has a competitive ratio of 1/=.

Theorem 6.4.2 Let | and = < 1 be constants and consider instances for the CCBP problem
where each item has size at least . Then the online CCBP problem does not admit an algorithm
with competitive ratio better than O(1/Ce).

Proof. Suppose that 1/ divides n and we have the same instance presented in Theorem 6.4.1,
modified such that all items have size equal to £. In this case any algorithm uses at least n?l/C —
(n — 1)l bins. An optimal offline solution packs items of a given class in nz bins. To pack L an
optimal offline algorithm uses at most n?l< bins.
Therefore, the competitive ratio is at least
n?l/C nl-1 1

lim - = —.
n—oc nile n3ls Ce

6.4. The Unline CCBP Problem 59

O
Given these negative results, for the remaining of this section we only consider the un-
bounded space online CCBP problem.

6.4.2 The First-Fit Algorithm

Given an online algorithm A for the bin-packing problem, we can obtain an online algorithm
A* for the online CCBP problem in a straightforward manner. To pack the next item e, the
algorithm A* works as follows: Let ¢, be the class of the item e, B be the list of bins in the
order they were opened. Let B, be the list of bins of B, in the same order of B, where each bin
has at least one item of class ¢, or has items of at most C' — 1 different classes. The item e is
packed with algorithm A into the bins of B,.

One of the most famous algorithm for the bin-packing problem is the First-Fit (FF) algo-
rithm. This algorithm packs the next item into the first bin, in the order they were opened, that
has sufficient space for the item.

In this section we show that the competitive ratio of the algorithm FF* is in [2.7, 3]. We note
that the upper bound was previously shown by Dawande ez al. [4]. Notice that the algorithm
FF* 1s online, since it only looks for the item it is packing and it is unbounded since it keeps
all bins opened. In fact it closes a bin only if the bin is full. This algorithm is used in other
algorithms of subsequent sections.

Lemma 6.4.3 Let I be an instance for the online CCBP problem such that every item has size
at most €. Let P be the set of bins generated by the algorithm FF*, applied over the instance I,
that are filled by less than 1 — €. Then: (i) Each bin in P, which is not the last generated bin, is
colored. (ii) There is no items of a same color in two different bins of P.

Proof. Let B, be a bin in P, B the last bin created by the algorithm FF* and a; an item packed
in B;. Since B, is filled with less than 1 — £ and s(a;) < €, @; was not packed in B; because it
must be colored.

Now suppose there are two different bins B, and B, in P that are filled with less than 1 — ¢
and there are items a; € B;, ¢ = 1, 2 with the same class. Without loss of generality, consider
that B, was opened first. Since the maximum size of a, is £ and the algorithm FF" tries to pack
an item into the bins in the order they were opened, satisfying the size and class constraints, the
item a> would be packed in the bin B;. That is, a contradiction. O

The result of the next theorem can be found in the work of Dawande ez al. [4]. The idea
to prove this theorem is to consider separately bins that are filled by at least half of its capacity
and bins that are not. In the first case the number of bins is bounded by 20PT(7). In the later
case using Lemma 6.4.3 we can prove that all bins are colored, except perhaps the last, and then
using the fact that [Q/C'] < OPT(I), we can bound the number of used bins by OPT(/) + 1.

60 Capitulo 6.

Theorem 6.4.4 The algorithm FF” has a competitive ratio 3 for the online CCBP problem.

Now, we show that the algorithm FF* cannot have a competitive ratio better than 2.7. We
first give an intuitive Jower bound of 2.666 and then we present the lower bound of 2.7.

Theorem 6.4.5 There is an instance I,, withn items, n > 1, for the online CCBP problem such
that FF*(I,)/OPT([l,) — 2.666 as n — oc.

Proof. Let I be an instance with an input list of items L = L,||Ly||L.||Lqs. Let C be the
maximum number of classes allowable in each bin. The list L, = (ay,... ,a(c_new) is such
that each item q, hasclass 7, ¢ = 1,..., (C — 1)6/N and each item has size o, which is a very
ST st is followed by a list Ly = (by,....bgn), where each item b, has class
7= 6N — 1)+ 1, and size 1/7 + £. In the list L, = (cy,...,cen) each item ¢; has size
1/3 + ¢ and class r. Fina1l» the list Ly = (dy,...,dsn) each item d; has size 1/2 + ¢ and
class

¢ * algorithm packs the list L, in &{g_—l} bins, the list L, in N bins, the list L. in

and the list Ly in 6N bins. The Figure 6.2 presents the different bins in the packing
generated by the FF* algorithm.

Items size: a 1/7+¢ 1/34+¢ 1/2 +¢
Figure 6.2: The bins generated by the FF* algorithm.

An optimal (offline) solution uses at most 6N bins. This packing is obtained by packing one
item of L, one item of L., one item of L, and C — 1 items of the list L, in only one bin.
This gives a lower bound of
(C=16N | 19

- C _
vlci,IEoc N = 2.666.

g
The previous lower bound can be improved using an intricate instance presented by Johnson
et al. [11] that provides a lower bound of 1.7 for the FF algorithm in the bin packing problem.

6.4. The Online CCBP Problem 61

Theorem 6.4.6 The competitive ratio of the algorithm FF* is at least 2.7.

Proof. Consider an instance [such that each bin can pack at most C' different classes. The input
list L is the concatenation of four lists: L = L, || Ls||Lc|| Lg. In the list L, = (a1, ..., @snc-1))s
each item q; has class 7, for¢ = 1,...,5N(C — 1), and each item has size a, which is a very
small value. The list L, is followed by an instance similar to the one presented by Johnson et
al. [11] that provides a lower bound of 1.7 for the FF algorithm in the bin packing problem. In
the list Ly = (by, ..., bsn) each item b; has size 1/7 + y;, wherey; € R, fori =1,...,5N. In
the list L. = (¢y, . . . , csn) €ach item ¢; has size 1/3 + w;, where w; € R,for¢ =1,...,5N. In
the list Ly = (dy, ..., dsy) each item d; has size 1/2 + . All items in the lists Ly, L. and Ly
have class SN(C — 1) + 1.

The algorithm FF* generates a packing as the one presented in the proof of the Theorem
6.4.5, except that it packs only five items of the list L;, per bin. That is,

5N(C —1)

FF*(I) > ——
(2 2%

An optimal solution can use 5N + 2 bins (see [11]), packing one item of each list Ly, L, and

Ly and C — 1 items of the list L,.
Therefore, the competitive ratio of the algorithm FF” is at least

+ N +2.5N +5N.

o SN(C—1)/C+85N _

2.T.
N,C—o0 5N + 2

6.4.3 A 2.75-competitive algorithm

In this section we present an algorithm, which we denote by A¢ (Figure 6.3), with competitive
ratio in the interval (2.666, 2.75]

To prove the competitive ratio of the algorithm A¢, we use the following lemma (the proof
can be found in [16]).

Lemma 6.4.7 Suppose XY, z,y are real numbers suchthatz > 0and0 < X <Y < 1. Then

T+ y 1-X
<1+
max{z, Xz +Yy} ~ ¥

Theorem 6.4.8 Algorithm Ac has a competitive ratio of 2.75.

Proof.
Let L; the list of items packed in P;, forz =1, 2, 3.

62 Capitulo 6.

ALGORITHM Ac(L.s.c.C,Q)
Let P, — Q.fori = 1,23
Foreache € L do

if s(e) € (3,1] then k — 1.

if s(e) € (3, 3] then k — 2.

if s(e) € (0, 3] then k «— 3.

Let P, the sublist of bins in P, having items of class ¢(¢) or

with at most C' — 1 classes, preserving the order of the bins in 7.
) If nossible pack the item e into the bins P}, using the algorithm FF*.
“ise pack e into a new empty bin in Py

Retuin “‘PQHP;;.

O S aPe

Cd

Figure 6.3: Algorithm A¢.

Note that all bins of 7°; have exactly one item with size greater than ,_l, In fact we cannot

pack more th ~item of L, per bin. Therefore,
[P| < OPT(J) (6.1)
1
'2’|7’1| < s(Ly). (6.2)

The packing P, has exactly two items per bin, except perhaps the last, each item with size
at least 3. Therefore,

(1Pal = 1) < s(La). 63)

Let P} the set of bins in Py that are filled by at least £ and P} the remaining bins (i.e.,
Py =\ Pj). The following is valid

(P33 < s(L4). ©4)

where L is the set of items packed in P;. Let Ny = |P;| and Ng = |Ps| + |P3| — 1. Since
OPT(7) =2 s(I) = s(L;) + s(L»||L;) from inequalities (6.2)-(6.4) we have

OPT(]) s(I) 2 s(Ly) + s(La||L3)

2

2
1

> — —Npg. R

> QNA+3A5- (6.5)

From inequalities (6.1) and (6.5) we have

OPT(I) > max{Ny, 5Ns + gfvg}. 6.6)

6.5. An APTAS for Bounded Number of Classes 63

From Lemma 6.4.7 we have that

Na+ Np
max{!\f'_4, %J\"A -+ %!\"3}
< 1.750PT(I) + 1. (6.8)

1Py| + |Pa| + | P3|

A

OPT(I)+1 (6.7)

Now, consider the packing P;. Using a similar argument used in Lemma 6.4.3, we have
0 Q
[P§| —1< & < OPT()). (6.9)
The proof can be completed summing the inequalities (6.8) and (6.9).

Ae(l)

|P1| + [Pa] + P3| + | Py
< 1.750PT(I)+OPT(I)+2=2T750PT(]) + 2

]

Notice that the same instance used to prove a lower bound for the algorithm FF* in Theorem
6.4.5 can be used to prove a lower bound for the A¢ algorithm.

Theorem 6.4.9 There is an instance I for the online CCBP problem such that
Ac(I)/OPT(I) > 2.666.

6.5 An APTAS for Bounded Number of Classes

In this section we present an APTAS for the offline VCCBP problem. The input instance for
this problem is a tuple / = (L, s,¢,w,C, Q) where w : {1, ..., T} — R™ is a function of bins
size. The problem is to find a pack of all items minimizing the total size of used bins. In this
section we consider that the maximum size of a bin is 1 and that the number of different classes
@ in the input instance, is bounded by a constant.

In subsection 6.5.1 we present the algonithm of Dawande, Kalagnanam and Sethuraman
[5, 4] and show in what points their algorithm failed to be an APTAS. In subsection 6.5.2
we present an APTAS for the VCCBP problem. Given an £, we will show an algorithm A
that runs in polynomial time and produces a packing for a given instance such that A(/) <
(1 — O(£))OPT + 3, where 3 is a constant.

As was noticed by Dawande et al. [5, 4], we only use bins such that their size are at least <,
since this condition does not affect too much the cost of the solution, i.e, the algorithm remains
an APTAS.

64 Capitulo 6.

6.5.1 The Algorithm of Dawande, Kalagnanam and Sethuraman

In this section we give a brief description of the algorithm of Dawande ez al. [5, 4] and present
the points where their algorithm fails.

Let I = (L,s,c,w,C, Q) be an instance for the VCCBP problem and let L; be the items in
L with size at least £ (big items) and let L, be the remaining items in L (small items).

Let n = |L;|. The algorithm sorts the list L; in non-increasing order of size and partition this
list into groups (lists) L, ..., L, each one with [nz?] items except perhaps the last list that
can has less than [ne?] items. Call the first item in each group as the group-leader. Let L, be
the list having |L!| = |L,| items, where each item has size equal to the size of the group-leader
of Li. Let L' = Li|| ... || L}

For the list L' it is possible to generate all configurations of bins in constant time since the
number of different items size is bounded by a constant M, the number of different item colors
is also bounded by a constant @ and the maximum number of items that can be packed in a bin
is 1/22. Let t = MQ. Given an item size and an item color, denote by d, the number of items
of this type 2 € [t].

Let N be the total number of bin configurations. Let z; be a vaniable that represents the
number of times a configuration j € [N] is used in a solution, a;; be the coefficient that rep-
resents the number of times an item type ¢ € [{] is used in configuration j and w; the size of
the bin used in configuration j. The next step of the algorithm is to solve the following linear
program:

N
min E ?_UjIj
=1

N
> auz; 2d, viel] (1)
i=1

z; >0 Vie[N]. (2

(LP)

The algorithm solves this linear program and generates an integer solution by rounding up
the vaniables z. The solution is a packing for the list L' that is used to generate a packing for
the list L;,.

The next step of the algorithm is to pack the small items in the solution provided by the
linear program. To do this, it uses the FF* algorithm.

Dawande er al. [5. 4] claimed that this algorithm is an APTAS for the VCCBP problem.

The list L, was partitioned into lists L1 || ... || Las. Let LY be a list having |L!| = |L;| items,
where each item has size equal to the group-leader of the list L,;,, forz = 1,..., M — 1, and
L}, be an empty list. Let L” = LY|| ... || L} Clearly OPT(L") < OPT(L,).

6.5. An APTAS for Bounded Number of Classes 65

Dawande er al. claimed that the following relation is valid
OPT(L') < OPT(L") + [ne*] < OPT(Ly) + [ne?],

given the argument that L' and L” differ only in their first and last groups. This way, given a
packing for the list L” it is easy to construct a packing for the list L}|| ... ||L),. Since |L!| =
|L_,|,forz =2, ... M, and their items size are the same, although this seems to be true, notice
that the color of items of L] and L’ ; may be different. Then, it is not clear how to construct a
packing for Lj|| ... ||L), given a packing for L".

Let B be the number of bins used by their algorithm. After packing the small items using
the first-fit strategy, they claimed that at least B — [£] bins have residual capacity at most &.
This is also not true. Suppose all small items have different colors from the big items. It is easy
to construct examples where optimal packings for the big items given by the linear program
have all bins with C different colors and the residual space is larger than a given . This way no
small item will be packed in the bins given as solution by the linear program and then, all these
bins will have residual capacity greater than .

6.5.2 An APTAS for the VCCBP Problem

In this section we present an APTAS for the VCCBP problem. In the next subsection we show
how to pack big items doing a linear rounding for each different color. The algorithm to pack
the big items generates a polynomial number of packings for the big items, and also provide
information of how to pack small items. In the following subsection, we present an algorithm to
pack the small items that is based in the solution of a linear program. The algorithm generates
a polynomial number of packings such that at least one is very close to the optimal.

Packing Big Items with Linear Rounding

Let L, be the items in L with size at least 2 (big items) and let L, be the remaining items in
L (small items). In this section we show how to do the linear rounding for the big items and
generate a packing for them.

The algorithm that packs the list L;, which we denote by Apg, uses the linear rounding
technique, presented by Fernandez de la Vega and Lueker [6], and considers only items with
size at least £2. The algorithm Ay returns a pair (Pg, P), where Pg is a packing for a list of
very big items and [P is a set of packings for the remaining items of L.

For the use of the linear rounding technique, we use the following notation: Given two lists
of items X and Y, let X,,..., Xg and Y}, ..., Y be the partition of X and Y respectively in
colors, where X, and Y, have only items of color ¢ for each ¢ € [Q]. We write X < Y if there
is an injection f. : X, — Y, for each ¢ € [Q] such that s(e) < s({f(e)) forall e € X_.

66 Capitulo 6.

For any instance X, denote by X the instance with precisely | X| items with size equal to
the size of the smallest item in X . Clearly, X < X.

The Algorithm also uses the variant of the First-Fit (FF*) that we presented in section 6.4.2.

The algorithm Ay is presented in Figure 6.4. It consists in the following: Let L,,.... Lo
be the partition of the input list Z; into colors 1, ..., @ and let n, = |L,.| for each color ¢. The
algorithm Ay sorts each list L, in non-increasing order of size and then partition the list L,
into at most M = [1/*] groups L}, L2,..., LM where L, = L}||...||LY. Each group has
|n.2” | items except perhaps the last list (with the smallest items) that can have less than |n.?|
1tems.

Let Lp = u?:l Ll. The algorithm generates a packing Pp of the list Lg with cost at most
O(£)OPT(/) and a set P with a polynomial number of packings for the items in L; \ Lg. The
packing Pp is generated by the algorithm FF* with bins of size 1.

The algorithm generates a set of packings Q, of polynomial size, for the list (L_}|| con JEREE
[|... ILAI .. [|LE). This can be done in polynomial time as the next lemma guarantees.

Lemma 0.5.1 Given an instance I = (Ly,s.c,w,C,Q), where the number of distinct items
sizes of each color is at most a constant M, the number of different colors is bounded by a
constant () and each item e € Ly has size s. > £°, then there exists a polynomial time algorithm

that generates all possible packings of Ly. Moreover, each bin of each generated packing has
an indication of the possible colors that may be used by further small items.

Proof. The number of items in a bin is bounded by y = 1/=%. The number of distinct type
of items is bounded by M. The number of different configurations of bins is bounded by
= (””’;Q"‘ '). If we want to indicate the colors of small items that should be packed in each
configuration, the number of different configurations will be r = 729, which is a constant.
Notice that we only generate configurations that satisfy the color constraints.

For each given configuration, we pack it with the smallest bin that has enough space to pack

the configuration. The number of all feasible packings is bounded by ("7"), which is bounded

T

by (n +)", which in turn is polynomial in 7.]
Since f:: = L1 i=1,..., M —1 foreach color c, it is easy to construct a packing for the
list L[| ... [|LY] ... [[L3]| - - || LY, given a packing for the list

211 17 S| PO 7Y PO V75)
The following is valid for the packing Pg of the list L.
Lemma 6.5.2 w(Pg) < Q=0OPT(I).

Proof. Notice that the algorithm FF* packs at least one item per bin and since |Lg| < Qne® and
each item has size at least £2, we have |Lg| < QeOPT([).
0

6.5. An APTAS for Bounded Number of Classes 67

ALGORITHM Arr (L)
Input: List L, with n items, each item e € L, with size s, > 2.
Output: A pair (Pg,P), where Pp is a packing and PP is a set of packings, where Pp U P’ is a
packing of L; for each P’ € P.
1. Partition L, into lists L, foreach colorc = 1,...,Q and let n, = |L,|.
2. Sort each list L, in non-increasing order of items size.
3. Partition each list L, into M < [1/&*] groups L}, L2, ..., LY, such that

e i=1,... . M-1
where |L| = g. = [ne®] foralli=1,...,M -1,
and |LM| < ¢..

4. LetLp=uUZ Ll

Let Py be a packing of L obtained by the algorithm FF* with bins of size 1.

6. Let Q i the set _L all possible packings over the list
(B« o [|EZ=] s HEH siss ||Lg_l), according to Lemma 6.5.1.

n

7. Let P be the set of packings for the items in (L[... [|LY]|... ||L2Q|I ||Lg), using the
packings Q € Q.
8. Retum (Pp,P).

Figure 6.4: Algorithm to obtain packings for items with size at least 2.

Packing the small items

Observe that algorithm A r generates a packing for very big items that costs at most QeOPT([),
and a set IP of packings for the remaining big items. For a given packing P € PP, the algorithm
marked colors of small items that should be packed in each bin of P. To pack the small items
we use a solution given by a linear program.

Let P = {B,..., Bi} be a packing of the list of items L, and suppose we have to pack a
list L of small items, with size at most 2, into 7. The packing of the small items is obtained
from a solution of a linear program. Let N; C [Q] be the set of possible colors that may be
used to pack the small items in the bin B; of the packing 7. For each color ¢ € N, define a
non-negative variable . The variable ¢ indicates the total size of small items of color ¢ to be
packed in the bin B;. Denote by s(B;) the total size of items already packed in the bin B; and
by w(B,) the capacity of bin B,. Consider the following linear program denoted by LPS:

ey

{ “IBLIOTECA CENTRAL
L CESAR LATTES

{ 105EY VOLVIMENTO DE
;‘ CoLECAO

: _ UNICAMP

68 Capitulo 6.

k
ma.\'E E T,

1=1 ceN,;
s(B)+ Yzt <u(B) vielk] (1) @ps)
cEN;
Z . <3(S.) Ve e |[C],

where S, 1s the set of small items of color ¢ in S.

The constraint (1) guarantees that the items packed in each bin satisfy its capacities and
constraint (2) gua: atees that variables 7! is not greater than the total size of small items.

Given a packing P, and a list L, of small items, the algorithm first solves the linear program
LPS, and then packs small items in the following way: For each variable z. it packs, while
possible, the small items of color ¢ into the bin B,, so that the total size of the packed small
items 1s at most .. The possible remaining small items are packed using the algorithm FF*
mto new bins of size 1. The algorithm to pack small items has polynomial time, since the linear
program LPS can be solved in polynomial time.

The small items that are packed into new bins use at most

i' S(L) Za- Zceﬁ, ICJ e rpiegQ

= = 1 +[Q/C]

new bins, since each bin is filled by at least (1 — 2) except perhaps by at most [Q/C] bins.
The algorithm packs the small items in each packing P € P. In the end, the algorithm
generates another set of packings [’ for all items. At least one of the generated packings has
cost at most (1 + O(&))OPT(I) + [, for a constant 3. The algorithm returns the packing with
smallest cost.
Now we prove that the presented algorithm is an APTAS for the VCCBP.

Theorem 6.5.3 Let I = (L,s,c,w,C,Q), be an instance for the VCCBP problem. The pack-
ing P returned by the algorithm satisfy w(P) < (1+0(g))OPT(I) + B, where [is a constant.

Proof. Let O be an optimal packing for instance /. Let O’ be the packing without the small items
and with the big items rounded according to the linear rounding of algorithm Ay x. Assume that
each bin of O’ has an indication of the colors of small items used in the corresponding bin of
O. Clearly the packing O" € Q except that it can use smaller bins than the ones used in O.

When the algorithm generates a packing P for the list L7 || . .. [|L}|| ... ||L3 - . . || LY using
the packing O’ with items (L1|| ... ||-IT"‘_'|| I|L | [IILg"). it 1s true that w(P) < w(0)
since in 77 we probably use bins of smaller size for each given configuration of big items.

6.6. Experimental Results of the Practical Algorithms 69

Let P = {B,,..., B.}. Notice that we must have

"
w(0) 2 w(P) + (s(Ls) — Y_ > ab).

1=1 cEN,

The total size of small items that are packed into new bins is at most

k
(s(Ls) =)) 20) +IPlE*Q
i=1 ceN,
The algorithm packs small items in bins of size 1 obtaining a new packing P’. The total cost
of the packing P’ is

)~ Dot B :
w(P') < w(P)+|'(5() i i‘;%:"‘e“r}+(i?f§)]+[Q/C] (6.10)

(;UEOE)Q) 4 (|;’l_5;29) +[Q/C] +1 6.11)

w(0) = =Quw(0)
S U-a) T -

+[Q/C] + 1. (6.12)

The last inequality follows from the fact that |P| < |O| and the smallest size of a bin is . Using
this result, Lemma 6.5.2 and the fact that () is bounded by a constant we conclude the proof. O

6.6 Experimental Results of the Practical Algorithms

In this section we provide experimental results for the algorithms MW, MW’ and FFD pre-
sented in Section 6.3. As we mentioned, these algorithms were developed motivated by the data
placement problem in video servers. This problem is a special case of the CCBP problem. All
these algorithms were implemented in C and we made a series of practical tests with them.

The instance set is constructed in some way to represent the real problem. A movie in
MPEG format uses about 2Gbytes of space, and requires a transference rate of 3Mbits/sec
(384Kbytes/sec) [1]. Suppose that the server uses disks of 100Gbytes of capacity with trans-
ference rate of 60Mbytes/sec. In this case, each disk have storage capacity C' = 50 and load
capacity B = 160.

We call single-disk server, the systems that are constructed in such a way that a entire copy
of a movie is done in one disk. But most video servers uses striped-disks [1]. In this case, a
video is broken into several pieces and each one of these pieces is stored in a different disk. This
is done to increase the number of requests that can be attended by the system and to balance
the load capacity of the disks. Suppose for example that each disk have transference rate of

70 Capitulo 6.

60Mbytes/sec and storage capacity of 100Gbytes. Theoretically a disk can support 160 users
simultaneously. If we strip the movie along 3 disks, and assume that users requests over the time
are distributed uniformly among the three parts of the movie, then the striped-disk can support
480 simultaneously users requests to this movie. For our purposes, we can view each striped-
disk as one disk with storage capacity equal to 300Gbytes and load capacity equal to 480. In
practice it is better to use striped-disks to balance requests. Consider for example, a single-disk
server where a copy of a movie A is in disk 1 and a copy of a movie B is in another disk 2, and
there are 320 requests for the movie A and none to the movie B. The system becomes unable to
attend 160 requests to the movie A. In a striped-disk system, where the first half part of movie
A 1s stored in disk 1 while the last half part is stored in disk 2, it can attend more users if their
reguests are distributed along the movie in such a way that requests are divided through the two
disks.

We generate classes of instances represented by a tuple (@, N, T'). The value @ corresponds
to the number of different movies (different classes) and we consider that Q) € {250, 500, 1000}.
The value N is the number of requests to the movies (number of items), and we assume that
N ¢ {5000, 10000, 20000}. Finally the value 7" corresponds to the system type, where T is
cyual to SC for single-disk system or ST for striped-disk system. In the single-disk system, we
have C' = 50 and B = 160, and in the striped-disk system, we have C' = 150 and B = 480.

The requests for movies are generated using the Zipf distribution [14]. This distribution was
used previously to generate data for video-on-demand systems [1]. This distribution have the
property that the generated data have locality properties. In movie servers it is expected that
recent movies are the most requested ones. It is expected that most of the requests goes to a
small subset of movies in the server. The Zipf distribution have this property. Let ¢ be a small
positive number. The probability that the n-th movie among) movies will be requested is p,
given as

.

where
1

T S0y

As ¢ increases, the distribution becomes more localized and as ¢ decreases the distribution
becomes more uniformly. Considering @ = 1000, if § = 0.0, then 80% of the requests are to
approximately 20% of the movies. If § = 1.0, then 80% of the requests are to approximately
0.3% of the movies. When § = —1.0 we get the uniform distribution where each movie have
the same probability 1/¢) to be requested.

We present some experimental results in Tables 6.1 and 6.2. All results were obtained
in a few seconds. In the tests of these tables, we generate data using § € {0.0,0.5,1.0}, N €
{5000,20000} and @ € {250, 500, 1000}. The lower bound is given by max{[Q/CT, [N/B]}.
In Table 6.1 we consider single-disk system, and in Table 6.2 we consider the striped-disk sys-

6.6. Experimental Results of the Practical Algorithms 71

tem. We also performed tests with N = 10000 but we do not present the results here since
we get similar results to the tests with N = 5000 and N = 10000. We observe that the FFD
algorithm generate good results and it becomes better for the striped-disk system. But in com-
parison with the MW and MW’ algorithms it performs worse, since these algorithms generated
optimal solutions to all tests. The MW and MW’ shows to be very effective algorithms to be
used in practical instances to construct video-on-demand servers.

Single-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests
Dela Algonthm | Result | Lower Bound || Algonthm | Result | Lower Bound || Algorithm | Result | Lower Bound
FFD 32 FFD 34 FFD a2
§=0.0 MW 3 32 MW 32 32 MW 33 3
MW/ 32 MW 3 MW’ 3
FFD 74 FFD Q) FFD a8
=05 MW 32 32 MW 13 33 MW 36 6
MW’ 32 MW’ 33 MW 36
FFD 358 FFD 406 FFD 50
§=10 MW k] 33 MW 34 34 MW 372 372
MW’ 3 MW’ 34 MW’ 372
Single-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests
Dela | Algonithm | Result | Lower Bound || Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound
FFD 125 FFD 125 FFD 127
§=00 MW 125 125 MW 125 125 MW 126 126
MW’ 125 MW 125 MW’ 126
FFD 126 FFD 1294 FFD 138
§=05 MW 126 126 MW 126 126 MW 8 128
MW 126 MW’ 126 MW 128 |
FFD 128 FFD 133 FFD 143
5=10 MW 126 126 MW 128 128 MW 31 131
MW’ 126 MW’ 128 MW’ 131

Table 6.1: Performance of the algorithms for Single-Disk.

72 Capitulo 6.
Striped-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests
Delta Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound

FFD 11 FFD 12 FFD 14

4=0.0 MW 11 11 MW 11 11 MW 11 11
MW’ 11 MW’ 11 MW/ 11
FFD 12 FFD 13 FFD 16

4=0.5 MW 11 11 MW 11 11 MW 12 12
MW’ 11 MW il MW’ 12
FFD 12 FFD 14 FFD 17

6=1.0 MW 11 11 MW 12 12 MW 13 13
MW’ i1 MW’ 12 MW' 13

Stiped-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests
Delta Algorithm | Result | Lower Bound Algorithm | Result | Lower Bound Algorithm | Result | Lower Bound

FFD 42 FFD 42 FFD 43

=00 MW 42 42 MW 42 42 MW 42 42
MW’ 42 W 42 MW’ 42
FFD 42 B 43 FFD 46

§=05 MW 42 42 R 42 42 MW 43 43
MW’ 2 F 42 MW’ 43
FFD 43 3708 45 FFD 48

4d=1.0 MW 42 42 N 43 43 MW 44 44
MW’ 42 M 43 MW’ 44

Table 6.2: Performance of the algorithms for Striped-Disk.

In Figures 6.5 to 6.9 we present graphics of the results of the algorithms varying the disk
storage capacity. The results are given in the y-axis and the storage capacity of the bin is given
in the z-axis. In all these tests we consider the load capacity B = 160, the number of different
movies () = 250 and the number of requests equal to 5000. In Figure 6.5 (resp. 6.6, 6.7,
6.8, and 6.9) we use § equal to 1.0 (resp. 0.5, 0.0, —0.5 and —1). In the graphics the MW’
algorithm is denoted by MW2. The lower bound is given by max{[Q/C, [N/B]}. Notice
that the problem becomes easier as the distribution of requests becomes uniformly, i.e, the value
of & decreases. When é = —1.0 all algorithms generates solutions almost equal to the lower
bound. Another point is that the problem is harder when the capacity is small, as one could
expect. When the capacity becomes equal to approximately 10 the algorithms MW and MW’
produces optimal solutions. When we consider the capacity greater than 100, the algorithm
FFD generates optimal solutions (for ¢ equal to 1 and 0.5). The MW’ algorithm generates
better solutions than the MW algorithm in several instances for ¢ equal to 1.0, 0.5, 0.0 and
—0.5. Generally the solutions generated by the algorithm MW’ uses 2 or 1 less disks than
MW. Most of these better solutions were obtained with capacities between 2 and 8. It is also
interesting to notice that the MW algorithm generates a better solution than the MW’ algorithm
in one test, the one with § = —1 and capacity equal to 8. In this case the solution found by the
MW’ algorithm uses 34 disks while the solution generated by the MW algorithm uses 33 disks.

6.7. Conclusions and Future Work 73

“lower*

“mw*

q L
“mw - -
‘||| .

250

Result
3
T

Storage Capacity

Figure 6.5: Results with § = 1.

“lower”

Resull
2
Al

Figure 6.6: Results with § = 0.5.

6.7 Conclusions and Future Work

In this paper we present approximation algorithms for the online and offline class-constrained
bin packing problem. The problem is motivated by applications in the data-placement problem
to video-on-demand servers and applications in the cutting and packing area. For the online
problem we provide lower bounds for any bounded space algorithm and we also present an
algorithm for the unbounded version with approximation factor 2.75. For the offline problem we
present practical approximation algorithms for two special cases of the problem, with conditions

74 Capitulo 6.

.
-
. .
.
[

a
Liz
sl

700 |

150 ¢

Resulr

Storage Capacity

Figure 6.7: Results with § = 0.

Figure 6.8: Results with § = —0.5.

already considered in the literature: when all items have the same size and the parametenized
version of the problem. We also perform several tests with these practical algorithms. For the
instances we considered representing practical ones, the algonthms MW and MW’ obtained
optimal solutions. At last, we present an APTAS for the special case where the number of
different classes of the input instance is bounded by a constant.

6.8. Bibliography 75

250 ’—T— : . -
Tower ——
e —3
- -
MWE* ol
200 -
150
!
=
@
100
80 -
0 ‘ s ;
0 5 10 15 20

Storage Capacity

Figure 6.9: Results with § = —1.

6.8 Bibliography

1.

h

A. Chervenak. Tertiary Storage: An Evaluation of New Applications. PhD thesis,
University of California at Berkeley, Computer Science Division, 1994.

E. G. Coffman, Jr, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: a survey. In D. Hochbaum, editor, Approximation Algorithms for NP-hard
Problems, chapter 2, pages 46-93. PWS, 1997.

J. Csirik. The parametric behavior of the first-fit decreasing bin packing algorithm. Jour-
nal of Algorithms, 15:1-28, 1993.

M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color
constraints. Technical report, IBM, T.J. Watson Research Center, NY, 1998.

M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color
constraints. In Proceedings of the 1th Brazilian Symposium on Graph Algorithms and
Combinarorics, volume 7 of Electronic Notes in Dicrete Mathematics, 2001.

W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ¢ in
linear time. Combinatorica, 1(4):349-355, 1981.

S. Ghandeharizadeh and R. R. Muntz. Design and implementation of scalable continous
media servers. Parallel Computing Journal, 24(1):91-122, 1998.

76

10.

1.1

12.

13.

I5.

16.

7

18.

19.

Capitulo 6.

L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algo-
rithms for data placement on parallel disks. In Proceedings of SODA, pages 223-232,
2000.

P.S. Wu J. L. Wolf and H. Shachnai. Disk load balancing for video-on-demand-systems.
ACM Multimedia Systems Journal, 5:358-370, 1997.

D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System
Sciences, 8:272-314, 1974.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing, 3:299-325, 1974.

J. R. Kalagnanam, M. W. Dawande, M. Trumbo, and H. S. Lee. The surplus inventory
matching problem in the process industry. Operations Research, 48(4):505-516, 2000.

S.R. Kashyap and S. Khuller. Algorithms for non-uniform size data placement on parallel
disks. In Proceedings of FSTTCS, volume 2914 of Lecture Notes in Computer Science,
pages 265-276, 2003.

D. E. Knuth. The Art of Computer Progmmming.' Volume 3. Addison-Wesley, 1973.

C.C.Leeand D. T. Lee. A simple on-line bin-packing algorithm. J. Association Comput.
Mach., 32(3):562-572, July 1985.

F. K. Miyazawa and Y. Wakabayashi. Parametric on-line algorithms for packing rectan-
gles and boxes. European Journal on Operational Research, 150:281-292, 2003.

M. Peeters and Z. Degraeve. The co-printing problem: A packing problem with a color
constraint. Operations Research, 52(4):623—638, 2004.

S. S. Seiden. On the online bin packing problem. Journal of ACM, 49(5):640-671, 2002.

H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack
problem. Algorithmica, 29:442-467, 2001.

. H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained

packing problems. Journal of Scheduling, 4(6):313-338, 2001.

. H. Shachnai and T. Tamir. Multiprocessor scheduling with machine allotment and paral-

lelism constraints. Algorithmica, 32(4):651-678, 2002.

6.8. Bibliography 77

22.

28.

H. Shachnai and T. Tamir. Approximation schemes for generalized 2-dimensional vector
packing with application to data placement. In Proceedings of 6th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems, RANDOM-
APPROX, volume 2764 of Lecture Notes in Computer Science, pages 165-177, 2003.

. H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical

Computer Science, 321(1):103-123, 2004.

J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, 1971.

. A. van Vliet. An improved lower bound for online bin packing algorithms. Inform.

Process. Lett., 43:277-284, 1992,

E. C. Xavier and F. K. Miyazawa. A one-dimensional bin packing problem with shelf
divisions. In 2nd Brazilian Symposium on Graphs, Algorithms, and Combinatorics,
volume 19 of Electronic Notes in Discrete Mathemarics, 2005.

. E. C. Xavier and F. K. Miyazawa. Approximation schemes for knapsack problems with

shelf divisions. Theoretical Computer Sciense, 352(1-3):71-84, 2006.

A. C. Yao. New algorithms for bin packing. J. Association Comput. Mach., 27:207-227,
1980.

Capitulo 7

Artigo: A Note on the Approximability of
Cutting Stock Problems

G. Cintra? F. K. Miyazawa® Y. Wakabayashi* E. C. Xavier’

Abstract

Cutting stock problems and bin packing problems are basically the same problems. They differ
essentially on the variability of the input items. In the first, we have a set of items, each item
with a given multiplicity; in the second, we have simply a list of items (each of which we may
assume to have multiplicity 1). Many approximation algorithms have been designed for packing
problems; a natural question is whether some of these algorithms can be extended to cutting
stock problems. We define the notion of “well-behaved” algorithms and show that well-behaved
approximation algorithms for one, two and higher dimensional bin packing problems can be
translated to approximation algorithms for cutting stock problems with the same approximation
ratios. The results we show include the existence of an asymptotic approximation scheme for
the one-dimensional cutting stock problem and an algorithm with an asymptotic performance
bound of 2.077 for the two-dimensional cutting stock problem.

Key words: bin packing, cutting stock, approximation algorithm.

I'This research was partially supported by CNPq (Proc. 478818/03-3, 306526/04-2, 308138/04-0 and
490333/04-4), ProNEx—FAPESP/CNPq (Proc. 2003/09925-5) and CAPES.

“Faculdade de Computagao e Informatica, Universidade Presbiteriana Mackenzie, Sao Paulo-SP, Brazil.

iCorresponding author: Instituto de Computagao, Universidade Estadual de Campinas, Caixa Postal 6176, CEP
13084-971 , Campinas-SP, Brazil. fkm@ic.unicamp.br

4Instituto de Matemitica e Estatistica, Universidade de Sao Paulo, Sao Paulo-SP, Brazil.

Instituto de Computagdo, Universidade Estadual de Campinas, Campinas-SP, Brazil.

78

7.1. Introduction 79

7.1 Introduction

Cutting stock problems are of great interest, both from a theoretical and a practical point-of-
view. Their applications go from packing of items into boxes or containers, to cutting of fabrics,
hardboards, glasses, foams, etc. The exact computational complexity status of these problems
is unknown. It seems that the decision versions of these problems may not be included in NP
and that we can only assume that they lie somewhere below EXPSPACE.

In this paper we show that some approximation algorithms for bin packing problems give
rise to approximation algorithms for cutting stock problems. More precisely, according to the
typology proposed by Wischer, Haussner and Schumann [18], the problems we consider here
are the Single Bin-Size Bin Packing (which we abbreviate by SBSBP) and the Single Stock-Size
Cutting Stock (which we abbreviate by SSSCS). In d-dimensional SBSBP problems, we are
given a list L of n items, where each item ¢ € L is a d-dimensional parallelepiped, and we
are asked to pack the elements of L into a minimum number of unit-capacity d-dimensional
parallelepipeds. The items have to be packed orthogonally and oriented in all dimensions.
Furthermore, no two items can overlap in the packing. In d-dimensional SSSCS problems,
we are given additionally a (positive integer) demand d; (multiplicity) for each item i € L.
Therefore, SBSBP problems can be considered particular cases of SSSCS problems, where all
demands are equal to 1. Note, however, that although an instance / for a SSSCS problem can be
trivially translated to an instance I’ for the corresponding SBSBP problem, the size of / may
be exponential in the size of /. This means that such a trivial translation is not a good approach
to tackle SSSCS problems.

We denote by 1SSSCS, 2SSSCS and 3SSSCS the one, two and three-dimensional SSSCS
problems, respectively; and by 1SBSBP, 2SBSBP and 35BSBP the corresponding SBSBP
problems. For the latter, several approximation algorithms have appeared in the literature [12,
7,3, 1,13, 6,4, 5]. Curiously, despite the similarity of the problems, we did not find refer-
ences to approximation algorithms for SSSCS problems. Pioneering works on these problems
were carried out by Gilmore and Gomory [9, 10, 11] in the early sixties, and since them many
contributions have appeared [14, 15, 16, 17]. We refer the reader to Cheng et al. [2] for a survey.

In this note we discuss how to extend some approximation algorithms for SBSBP problems
to approximation algorithms for SSSCS problems through the notion of “well-behaved” algo-
rithm. In Section 7.3 we consider the 1SSSCS problem. We define the concept of well-behaved
algorithm and show that any well-behaved algorithm for the ISBSBP problem can be trans-
lated to an algorithm for the 1SSSCS problem. In Section 7.4 we mention how to obtain similar
results for higher dimensional SSSCS problems. We assume that the reader i1s familiar with the
algorithms for the 1SBSBP problem we mention here: NF (Next Fit), FF (First Fit), BF (Best
Fit), NFD (Next Fit Decreasing), FFD (First Fit Decreasing), BFD (Best Fit Decreasing), and
Hy: (Harmonic).

80 Capitulo 7.

7.2 Notation

An instance I = (L, s, d) of the 1SSSCS problem consists of a list L of elements, in which each
element e € L has size s, € (0,1] and demand d, € Z*; thus s = (s,)eer and d = (d.)ecs-
The number of items in the instance I, which we denote by || /||, is the sum }° _; d.. That s,
the number of items is at least the number of elements of L. The demand d, of an element e
indicates that there is a multiplicity of d. items of the element of size s,. We say that an item z
corresponding to an element ¢ € L is an item of rype e. That is, in the instance / there are d,
items of type e.

For any structure T, we denote by (T") the size in bits of the representation of 7". Given k
lists Q... ., Qi where Q; = (aj,...,a}), we denote by Q = @Q||... ||Qk the concatenation
of these lists, defined as the list Q@ = (a},...,a} ,...,af,... @k). The number of elements of
a list or a set S is denoted by |S]|.

IfL=(ay..., a,) then ezpand(L, s, d) denotes the list L' = (s{,...,85,87,.... 83),
where s} = s(a,), for 1 < j < d;. Given an instance L' of the ISBSBP problem, we denote by
condense(L') the triple (L, s, d), where L' = ezpand(L, s,d) and |L| is minimum.

For a given instance / = (L, s, d), a one-dimensional bin B can be represented (or de-
scribed) by a pair (Lg.dg), where Lg C L, 0 < dg(e) < d(e) for each e € Lg. We say that
such a pair (L, dg) 1s a bin rype for I. Clearly, (B) is bounded by a polynomial in (/).

The eg-partition (equal partition) of a list @ is the list (Qy,. .., Qx), where & is minimum
and () Q = (Q1]|...||Qx): (ii) e = €” fore’,e” € Q;, 1 < i < k. This definition also applies
to lists whose items are bins.

7.3 One-dimensional Single Stock-Size Cutting Stock Prob-
lem

The one-dimensional single stock-size cutting stock (1SSSCS) problem can be defined as fol-
lows:

Problem 1 (1SSSCS) Given an instance I = (L, s,d) as defined above, find a packing of the
items in I into the minimum number of unit-capacity bins.

A natural approach to obtain approximation algorithms for the 1SSSCS problem is to adapt
known algorithms for the 1SBSBP problem. As we mentioned before, the naive approach that
transforms a given instance / for the 1SSSCS problem into the list ezpand(]) and applies an
algorithm for the 1SBSBP problem on this list is flawed as both ezpand(/) and the size of
the packing that is produced may be exponential in the size of /. Of course, expansions of /
may be easily avoided, so the main concern is whether we can adapt the algorithms so as to

7.3. One-dimensional Single Stock-Size Cutting Stock Problem 81

produce solutions with short descriptions (that is, descriptions that are polynomial in the size
of I). Putting in a more general setting, we would like to address the following question: which
properties should an algorithm for the 1SBSBP problem satisfy in order to be transformable
into an algorithm for the 1SSSCS problem that produces a packing with a short description?
In what follows, we define the notion of well-behaved algorithm, and give an answer to this
question.

Definition 7.3.1 An algorithm A’ that receives an input list L' for the 1SBSBP problem is
well-behaved if it satisfies the following two properties:

P1. STABLE ORDER PROPERTY. The algorithm packs consecutively the equal-sized items that
are consecutive in the input list L'. More precisely, if (L, ..., L,) is an eq-partition of L'
then the algorithm packs the items of each L, consecutively. Formally, we may consider
that the algorithm behaves as follows:

1.1. Take (L",s,d) := condense(L’).
1.2. Take L := ezpand(L", s,d), where L" is a permutation of L".

1.3. Pack the items following the order given by L.
P2. GROUPING PROPERTY. To pack an item, the algorithm does the following.

2.0 Suppose (L, ...,L,) is an eg-partition of L, where L is the list mentioned in the
previous property. The algorithm A’ packs first the list L,.
2.1 Before packing the first item of a list L;,
2.1.1. let B = (B, Bs, ..., By) be the list of existing non-empty bins, in the order
they were generated.
2.1.2. Let (B,,...,B,) be the eq-partition of B.

Each list B; = (B},..., B;-l"') is said to be a group.

2.1.3. Let B, be a group with sufficiently many empty bins.
// New bins are obtained from this group.

2.2. To pack the first item e € L,
2.2.1. the algorithm packs e into a bin B} € B, for some j, such that either j < q
or(j=q+landt=1)
2.2.2. Now B! becomes the current bin and B, the current group.
2.3 While the list L; is non-empty, to pack the next item e € Ly,

2.3.1. if possible, packs e into the current bin B].

2.3.2. If A’ fails in the previous step and Bj'” € B; then A’ packs e into B_:'"".
Now, B! becomes the current bin.

82 Capitulo 7.

2.3.3. If A’ fails in the previous step, A’ packs e into a bin B}, for some group B;.
Now, B}, becomes the current bin and B, the current group.

It is not hard to check that NF, FF, BF, Hy, NFD, FFD, and BFD are well-behaved
algorithms. Now using this fact, and the concept of a short description of a packing, defined
below, we can derive our first result.

Definition 7.3.2 Let] = (L, s,d) be an instance for the 1SSSCS problem and P a packing of
1. A description of P is a list D of pairs (B, bg), where B = (Lg,dg) is a bin type for I and bg
.. the multiplicity of the bin type B in the packing P; and if B, is the number of items of type €
inthe bin * then 37 gy vcr bpB, = d. for any e € L. We say that D is a short description if
the bin types B are all distinct and (D) is polynomially bounded in (I).

Theorem 7.3.1 Let [be an instance for the 1SSSCS problem and A’ an algorithm for the
1SBSBP problem. If A’ is well-behaved, then there exists a polynomial time algorithm A that
produces a packing that is precisely the packing produced by A’ on the list expand([), differing
possibly only on the description of the packing.

Proof. Let] = (L.s,d), and L’ be the permutation of ezpand(/) that is obtained as a conse-
quence of the stable order property P1, after applying A’ to expand(/). Assumethat (L, Lg)
is the eq-partition of L',

Let (B,....,B,) be an eq-partition of the bins generated by algorithm A’ for the items
Li||...||L, and let B, be a list of sufficiently many empty bins. Clearly, the algorithm .4 may
use a short description of (B,, .. ., B,). Now, consider the packing of the items of the list Z; ;.
To pack the first item of L, the algorithm chooses a bin B} of a group B; = (Bj, ..., B;"' j
where j < ¢+ 1, and tries to pack the items of L, in the bins (B, ..., B;'"), consecutively.
If it fails t pack all items of L, in these bins, it continues in the same fashion moving to the
first bin of another group.

Suppose that B;,, .. ., B, is the sequence of groups in the list B = (B, ..., B,4;) (of bins)
in which the algorithm A’ has packed the items of L., in the order the packing has occurred.
Since A’ is a well-behaved algorithm, it packs the items in consecutive bins of each group. First
suppose that m > 1. In this case, after packing the items of L,., in the group B5;,, the number
of different bins increases by at most 1 (note that the packing of the items may start in any of
the bins of the group). After packing items of L., in the groups B,,, ..., B, _, . the number of
different bins does not increase. After packing the remaining items of L., in the group B, _,
the number of bins increases by at most 2. Therefore, the number of different bins after packing
the whole list L, increases by at most 3. When m = 1, the number of different bins increases
by at most 2.

Notice that with a simple calculation, the algorithm A can figure out how many items of
L,,, can be packed in a bin of a group B; and how many bins of this group it uses to pack

7.4. Two and Higher Dimensional Single Stock-Size Cutting Stock Problems 83

these items. After packing all the lists L;, L;, we can conclude that the number of different
bins is at most 3k. This shows that (mimicking the behavior of algorithm .A") we may design a
polynomial time algorithm A that produces a packing that has a short description. O

Denote by NF, FF., BF, Hyeo NFDo, FFD and BFD, the algorithms NF, FF, BF,
Hy, NFD, FFD and BFD, respectively, adapted for the 1SSSCS problem that generate pack-
ings with short descriptions.

Corollary 7.3.2 The algorithm NF (respectively N¥, FFy, BFs, Hye, NFDg, FFD and
BFD.) has asympiotic performance bound 2 (respectively 1.7, 1.7, 1.691..., 1.691..., 11/9
and 11/9). The bound for Hyy . holds when M — oc.

Considering the same ideas of short descriptions presented for the well-behaved algorithms,
we may also convert the AFPTAS of Fernandez de la Vega and Lueker [7] into an AFPTAS for
the 1SSSCS problem. That is, the following result holds.

Theorem 7.3.3 There exists an AFPTAS for the 1SSSCS problem.

7.4 Two and Higher Dimensional Single Stock-Size Cutting
Stock Problems

An instance I = (L, w,h,d) for the 2SSSCS problem consists of a list of elements L, each
element e € L with width w, € (0, 1], height h, € (0, 1] and demand d, € Z*. Most of the
notation we used in the context of the 1SSSCS problem can be extended easily to the context of
28SSCS, as for example, ezpand(L, w, h,d), condense(L), etc. For this problem we can also
define the concept of well-behaved algorithm. Although better definitions may be given, we
present a simple definition of well-behaved algorithm for the 2SSSCS problem, as this can be

extended easily to higher dimensions.

Definition 7.4.1 An algorithm A that receives an input list L for the problem 2SBSBP is well-
behaved if it satisfies the following properties:
Q1. STABLE ORDER PROPERTY. The behavior of the algorithm can be described as follows:
1.1. Take (L",w,h.d) := condense(L’).
1.2. Take L := ezpand(L",s,d), where L" is a permuzation of L".
1.3. Pack the items following the order given by L.

Q2. LEVEL ORIENTED PROPERTY. The strategy used by the algorithm o produce a packing
is the following:

84 Capitulo 7.

2.1 The algorithm generates a list L of levels using a well-behaved algorithm for the
ISBSBP problem.

2.2 The algorithm uses a well-behaved algorithm for the 1SBSBP problem to pack the
levels of L into unit-capacity two-dimensional bins.

Theorem 7.4.1 Let | be an instance for the 2SSSCS problem and A' an algorithm for the
2SBSBP problem. If A' is a well-behaved algorithm, then there exists a polynomial time algo-
rithm A that produces a packing that is precisely the packing produced by the algorithm A’ on
the list expand([), differing possibly only on the description of the packing.

One of the most famous algorithm for the 2SBSBP problem is the algorithm HFF (Hybrid
First Fit), presented by Chung, Garey and Johnson [3]. These authors proved that HFF has an
asymptotic performance bound of 2.125, and later Caprara [1] proved that this algorithm has an
asymptotic performance bound of 2.077. ... Frenk and Galambos [8] proved that the next fit
variant of the algonthm HFF, which we denote by HNF, has an asymptotic performance bound
of 3.382 The algorithm with the best known asymptotic performance bound for 2SBSBP,
which we denote by HC, is due to Caprara [1] and has bound 1.691 These three algorithms
are hybrid and use algorithms for the ISBSBP problem to pack items into levels and levels into
two-dimensional bins. Moreover, all algorithms for the 1SBSBP problem used as subroutines
have a corresponding version for the 1SSSCS problem, given by Corollary 7.3.2 or by Theorem
133

Corollary 7.4.2 There exists an algorithm HNF (resp. HFF, HC;) with asymptotic perfor-
mance bound 3.382 . . . (resp. 2.077 ..., 1.691..) for the 2SSSCS problem.

Most of the ideas presented here can also be extended to higher dimensions. In particular,
the 4.84-approximation algorithms of Li and Cheng [13] and of Csirik and van Vliet [6] can
be translated to algorithms for the 3SSSCS problem, as they generate packings that consist of
levels. We can prove that these algorithms are well-behaved and that the following holds.

Corollary 7.4.3 There exist algorithms for the problem 3SSSCS with asymptotic performance
bound 4.84.

7.5 Bibliography

1. A. Caprara, Packing 2-dimensional bins in harmony, In Proceedings of 43rd Symposium
on Foundations of Computer Science, IEEE Computer Society Press, 2002, pp. 490-499.

2. C. H. Cheng, B. R. Feiring, and T. C. E. Cheng, The cutting stock problem — a survey,
International Journal of Production Economics, 36(3)(1994) 291-305.

7.5. Bibliography 83

n

10.

11.

13.

14.

I5.

F. R. K. Chung, M. R. Garey, and D. S. Johnson, On packing two-dimensional bins,
SIAM Journal on Algebraic and Discrete Methods, 3(1982) 66-76.

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for
bin packing - an updated survey, in: G. Ausiello, M. Lucertini, and P. Serafini (Eds.),
Algorithms design for computer system design, Springer-Verlag, New York, 1984, pp.
49-106.

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for bin
packing: a survey, in: D. Hochbaum, (Eds.), Approximation Algorithms for NP-hard
Problems, PWS Publishing Company, Boston, 1997, pp. 46-93.

J. Csirik and A. van Vliet, An on-line algorithm for multidimensional bin packing, Op-
erations Research Letters, 13(3)(1993) 149-158.

W. Fernandez de la Vega and G. S. Lueker, Bin packing can be solved within 1 + € in
linear time, Combinatorica, 1(4)(1981) 349-355.

J. B. Frenk and G. Galambos, Hybrid next fit algorithm for the two-dimensional rectangle
bin packing problem, Computing, 39(1987) 201-217.

P. Gilmore and R. Gomory, A linear programming approach to the cutting stock problem,
Operations Research, 9(1961) 849-859.

P. Gilmore and R. Gomory, A linear programming approach to the cutting stock problem
- part II, Operations Research, 11(1963) 863-888.

P. Gilmore and R. Gomory, Multistage cutting stock problems of two and more dimen-
sions, Operations Research, 13(1965) 94-120.

N. Karmarkar and R. M. Karp, An efficient approximation scheme for the one dimen-
sional bin packing problem, In Proceedings of the 23rd Symposium on Foundations of
Computer Science, IEEE Computer Society Press, 1982, pp. 312-320.

K. Li and K-H. Cheng, A generalized harmonic algorithm for on-line multidimensional
bin packing, Technical Report UH-CS-90-2, University of Houston, 1990.

G. Scheithauer and J. Temo, The modified integer round-up property of the one-dimesional
cutting stock problem, European Journal of Operational Research, 84(3)(1995) 562-571.

P. H. Vance, Branch-and-price algorithms for one-dimensional cutting stock problem,
Computational Optimization and Applications, 9(3)(1998) 211-228.

86 Capitulo 7.

16. F. Vanderbeck, Computational study of a column generation algorithm for bin packing
and cutting stock problems, Mathematical Programming, 86(3)(1999) 565-594.

17. G. Wascher, An LP-based approach to cutting stock problems with multiple objectives,
European Journal of Operational Research, 44(2)(1990) 175-184.

18. G. Wischer, H. Haussner, and H. Schumann, An improved typology of cutting and pack-
ing problems, European Journal of Operational Research, this issue, 2006.

Capitulo 8

Artigo: Algorithms for Two-Dimensional
Cutting Stock and Strip Packing Problems
Using Dynamic Programming and Column
Generation

G. Cintra? F. K. Miyazawa® Y. Wakabayashi* E. C. Xavier’

Abstract

We investigate several two-dimensional guillotine cutting stock problems. We restrict our at-
tention to the variants of these problems where the cuts are k-staged. We also consider the
variants in which orthogonal rotations are allowed. We first present a dynamic programming
based algorithm for the Rectangular Knapsack (RK). Using this algorithm we solved all in-
stances of the RK problem found at the OR-LIBRARY, including one for which no optimal
solution was known. We also consider the Two-dimensional Cutting Stock (2CS) problem. We
present a column generation based algorithm for this problem that uses the first algorithm above
mentioned to generate the columns. We also investigate a variant of this problem where the bins
have different sizes. At last, we study the Two-dimensional Strip Packing (SP) problem. We

"This research was partially supported by CNPq (Proc. 478818/03-3, 306526/04-2, 308138/04-0 and
490333/04-4), ProNEx-FAPESP/CNPq (Proc. 2003/09925-5) and CAPES.

*Faculdade de Computagio ¢ Informatica, Universidade Presbiteriana Mackenzie, Sao Paulo-SP, Brazil.

*Instituto de Computagio, Universidade Estadual de Campinas, Campinas-SP, Brazil.

*Corresponding author: Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo-SP, Brazil.
yw@ime.usp.br

JInstituto de Computagao, Universidade Estadual de Campinas, Campinas-SP, Brazil.

87

88 Capitulo 8.

also present a column generation based algorithm for this problem that uses the second algo-
rithm above mentioned where staged patterns are imposed. In this case we solve instances for
two-, three- and four-staged patterns. We report on some computational experiments with the
algorithms of this paper. The results indicate that these algorithms seem to be suitable for solv-
ing real-world instances. We give a detailed description (a pseudo-code) of all the algorithms
presented here, so that the reader may easily implement these algorithms.

Key words: column generation, cutting stock, guillotine cutting, dynamic programming,
two-dimensional packing, strip packing

8.1 Introduction

Many industries face the challenge of finding solutions that are the most economical for the
problem of cutting large objects to produce specified smaller objects. Very often, the large
objects (bins) and the small objects (items) are two-dimensional and have rectangular shape.
Besides that, a usual restriction for cutting problems is that in each object we may use only
guillotine cuts, that is, cuts that are parallel to one of the sides of the object and go from one
side to the opposite one; problems of this type are called two-dimensional guillotine cutting
problems. Another usual restriction for these problems are the staged cuts. A k-staged cutting
is a sequence of at most & stages of cuts, each stage of which is a set of parallel guillotine cuts,
performed on the objects obtained in the previous stage. Clearly, the cuts in each stage must be
orthogonal to the cuts in the previous stage. We assume, without loss of generality, that the cuts
are infinitely thin.

In what follows, we define the problems we consider in this paper. In all of them, we assume
that at most k stages of guillotine cuts are allowed, even if is is not explicitely mentioned.

In the Rectangular Knapsack (RK) problem we are given a rectangle B = (W, H) with
width W and height A, and a list of m items (types of rectangles), each item ¢ with width w;,
height A;, and value v; (= 1,...,m). We wish to determine how to cut the rectangle B, so
as to maximize the sum of the values of the items that are produced. We assume that many
copies of the same item can be produced. We denote such an instance by / = (W, H, w, h, v).
Here, as well in the next problems, we assume that w = (wy,...,wy), A = (Ry,. .., hn),
and d = (dy,...,d,,) are lists. We use () to represent an empty list and the operator || to
concatenate lists.

The Two-dimensional Cutting Stock (2CS) problem is defined as follows. Given an unlim-
ited quantity of two-dimensional bins B = (W, H), with width W and height H, and a list of
m items (small rectangles) each item 2 with dimensions (w;, h,) and demand d; (z = 1,. . ., m),
determine how to cut the smallest number of bins B so as to produce d, unities of each item z.
An instance for the 2CS problem is denoted by I = (W, H, w, h, d).

We also consider the 2CS problem with variable bin sizes, that will be denoted by BPV.

8.1. Introduction 89

This problem is similar to the previous one: the difference is that we are now given a list of
two-dimensional bin types By, ..., By, each bin type B, with dimensions (W,, H;) and value
V) (there is an unlimited quantity of them). We want to determine how to produce d, unities of
each item ¢, 1 < ¢ < m, so as to minimize the sum of the values of the bins that are used. Such
an instance for this problem is denoted by I = (W, H,V,w, h,d), where W = (W,... W),
H=\(Hy, Hp)yand V ={Ws.; Vi)

The Two-dimensional Strip Packing (SP) problem is the following: given a two-dimensional
strip with width W and infinite height, and a list of m items (rectangles), each item 7 with
dimensions (w;, k;) and demand d;, 1 < 7 < m, determine how to produce d; unities of each
item z from the strip, so as to minimize the height of the part of the strip that is used. We require
that the cuts be k-staged, and that in the first stage (in which horizontal cuts are performed) the
distance between any two subsequent cuts must be at most // (a commom restriction in practice,
imposed by the cutting machines). An instance as above will be denoted by / = (W, H, w, h,d).

For all these problems, we consider variants with orthogonal rotations. Unless otherwise
stated, we assume that the items are oriented (that is, rotations of the items are not allowed).
The variants of these problems in which the items may be rotated orthogonally are denoted
by RK", BP", BPV" and SP". We also assume that, in all instances the items have feasible
dimensions, that is, each of them fit into the given bin (or some bin type) or strip.

This paper focuses on algorithms for the problems above mentioned. They are classical
hard optimization problems, interesting both from theoretical as well as practical point-of-view.
Most of them have been largely investigated. In the next sections we discuss these problems
and mention some of the results that have appeared in the literature.

We call each possible way of cutting a bin a cutting pattern (or simply pattern). To represent
the patterns (and the cuts to be performed) we adopt the convention that is generally used in this
context. We consider the Euclidean plane R?, with the zy coordinate system, and assume that
the width of a rectangle is represented in the z-axis, and the height is represented in the y-axis.
We also assume that the position (0,0) of this coordinate system represents the bottom left
corner of the bin. Thus a bin of width W and height H corresponds to the region defined by
the rectangle whose bottom left corner is at the position (0, 0) and the top right corner is at the
position (W, H). To specify the position of an item i in the bin, we specify the coordinates of
its bottom left corner. Using these conventions, it is not difficult to define more formally what
is a pattern and how we can represent one.

A guillotine pattern is a pattern that can be obtained by a sequence of guillotine cuts applied
to the onginal bin and to the subsequent small rectangles that are obtained after each cut (see
Figure 8.1).

Many practical applications have restrictions on the number of cutting stages to obtain the
final items, especially when the cost of the material to be cut is low compared to the industrial
cost involved in the cutting process. We say that a pattern is k-staged if it is obtained after

90 Capitulo 8.

Figure 8.1: (a) Non-guillotine pattern; (b) Guillotine pattern.

performing /& stages of cutting (an eventual additional stage is allowed in order to separate an
item from a wasted area). In Figure 8.1(b) we have a 3-staged (guillotine) pattern (We consider
that the gray area is a wasted area). Following other papers in the literature (see [12, 13, 46]),
we assume that the first cutting stage is performed in the horizontal direction, for all problems
on staged patterns.

This paper is organized as follows. In Section 8.2, we focus on the Rectangular Knap-
sack (RK) problem, where we present dynamic programming based algorithms to obtain exact
solutions for it.

Section 8.3 1s devoted to the Two-dimensional Cutting Stock (2CS) problem. We describe
two algonithms for it, both based on the column generation approach. One of them uses a
perturbation strategy to deal with the residual instances. We also consider the variant of the 2CS
problem in which orthogonal rotations are allowed. In Section 8.4 we study the BPV problem,
a variant of the 2CS problem where bins may have different sizes and values. In Section 8.5 we
study the Strip Packing (SP) problem. All algorithms based on the column generation approach
we present here make use of the exact algorithms of Section 8.2.

Finally, in Section 8.6 we report on the computational results we have obtained with the
presented algorithms, and in the last section we make some final remarks. The computational
tests show that the algorithms we describe here find solutions for medium size instances that
are very close to the optimum in small amount of time.

Observation: The results of this paper is an extension of the work done by Cintra [18],
where he presented column generation algorithms for the non-staged versions of the problems
RK, 2CS and BPV. In this paper we extend his work to consider staged patterns and also to the
SP problem. A paper containing the results presented here and the results presented by Cintra
[18] was submitted to a journal.

8.2 The k-staged rectangular knapsack problem

The Rectangular Knapsack (RK) problem has been largely investigated since the sixties. Gilmore
and Gomory [27, 28] studied this problem (on guillotine cuts) and they also introduced in 1965

8.2. The k-staged rectangular knapsack problem 91

the variant with k-staged cuts [29]. In 1972, Herz [31] presented a recursive algorithm to obtain
patterns, called canonical, making use of the so-called discretization points. Christofides and
Whitlock [15] showed a dynamic programming approach to compute the discretization points.
Some papers also consider exact tree search procedures [7, 39] for this problem. Arenales
and Morabito [3] proposed an exact branch and bound algorithm using an and-or-graph search
approach for non-guillotine patterns.

Wang [47] proposed an algorithm that generates cutting patterns combining smaller pieces
of patterns. Beasley [S5] proposed a dynamic programming approach using the discretization
points of Herz for both the non-staged and the staged versions of the problem. Recently, Belov
and Scheithauer [8] presented a branch and cut algorithm for a variant restricted to 2-staged
(oriented) patterns. Lodi and Monaci [36] also investigated the 2-staged version. For the variant
in which all items must be packed at most once, Jansen [33] obtained a (2 + ¢)-approximation
algorithm.

We describe now the algorithms we implemented for the RK problem. For that, we present
first some concepts and results. We basically implement the recurrence formulas proposed
by Beasley (using dynamic programming) combined with the concept of discretization points
defined by Herz [31]. This approach seems to be very effective: we could solve an instance of
the OR-Library whose optimal solution was unknown.

Let I = (W, H, w, h,v) be an instance of the RK problem. We consider that W, H, and the
entries of w and A are all integer numbers. If this is not the case, we can obtain an equivalent
integral instance simply by multiplying the widths and/or the heights of the bin and of the items
by appropriate numbers.

A discretization point of the width (respectively of the height) is a value ¢ <= W (respectively
j < H) that can be obtained by an integer conic combination of wy, ..., w,, (respectively

We denote by P (respectively @) the set of all discretization points of the width (respectively
height). Following Herz, we say that a canonical pattern is a pattern for which all cuts are made
at discretization points.

We note that it suffices to consider only canonical patterns (for every pattern that is not
canonical there is an equivalent one that is canonical). To refer to them, the following functions
will be useful. For a rational z < W, let p(z) := max(i |z € P, ¢ < z) and for a rational
y<Hletq(y) =max(j|j€Q, j <)

We denote by V(W, H, k, V), (respectively V (W, H, k, H)) the value of an optimal canoni-
cal guillotine k-staged pattern for a rectangle of dimensions (W, H) where the first stage of cut
is done in the vertical (horizontal) direction, i.e, the parameters H and V indicate the direction
of the first cutting stage: either horizontal or vertical. The recurrence formulas to calculate these
values are given in what follows. In this formula, v(w, k) denotes the value of the most valuable
item that can be cut in a rectangle of dimensions (w, &); it is 0 if no item can be cut in such a

92 Capitulo 8.

rectangle.

Viw, h,0,VorH) =v(w,h)
V(w, h,k, V) = max{V(w, h,k = 1, H), (V(v' k. k — 1. H) + V(p(w — '), bk, V) |w’ € P, w' < w/2},
V(w, bk, H) = max{V(w, h k —1,V), (V(w, k', k = 1,V) + V(w,q(h — k). k, ") | k' € Q, k' < h/2)}.

8.2.1 Discretization points

In this section we present, for completeness, an algorithm, called DDP (Discretization using
Dynamic Programming) to find the discretization points of the width (or height). The algorithm
is already known in the literature and a detailed description of this algorithm and other ones to
generate discretization points can be found in [18].

The presented algorithm finds the discretizations points of the width. To find the discretiza-
tion points of the height, it is only needed to consider the height of the items, inspite of the
width and to consider the height of the bin. The basic idea of this algorithm is to solve a knap-
sack problem in which every item ¢ has weight and value w; (¢ = 1,...,m), and the knapsack
has capacity W. The well-known dynamic programming technique for the knapsack problem
(see [23]) finds optimal values of knapsacks with (integer) capacities taking values from 1 to
W. It is easy to see that j is a discretization point if and only if the knapsack with capacity j
has optimal value ;.

Input: W, wy, ..., Wn.
Output: a set P of discretization points.
P = {0}.

For j=0to W doc; = 0.
Fori=1tomdo
Forj=w,to W
If ¢; < €j—w, +w;i then¢; = Cj—y;, +w;
Forj=1to W
Ifc; = jthen P =P U {j}.
Return P.

Algorithm 8.1: DDP

We note that the algorithm DDP requires time O(mW). The algorithm DDP i1s suited for
instances in which W is not very large. In all the computational tests, presented in Section 8.6,
we used the algorithm DDP to generate the discretization points.

8.2. The k-staged rectangular knapsack problem 93

8.2.2 The k-staged RK problem

In this section we present an exact algorithm to solve this problem and a variant where rotations
are allowed.

Let I = (W, H,w,h,v), withw = (w,,..., W), h = (hy, ..., hn) and v = (vy,...,%4),
be an instance of the problem RK.

We denote by P (respectively @) the set of all discretization points of the width (respec-
tively height). We denote by v(w, h) the value of the most valuable item that can be cut (or be
obtained without any cut) from a rectangle of dimensions (w, /), or 0 if no item can be cut (or
be obtained).

We describe in the sequel the algorithm SDP (Algorithm 8.2) that solves the recurrence
formulas proposed for the k-staged RK problem. In the description of this algorithm we assume
that the first stage of cuts is done in the horizontal direction.

Let wyin (respectively Ap;,) be the minimum width (height) of the items in the instance.
Let P, be the set of values 1 € P such thatz < W — wy,.,, and let Qg be the set of values j € Q
suchthat j < H — hpm. Let P, = P U{W}, and let Q, = QU { H}. We can use the sets P,
and @, instead of the sets P and @ in the above recurrence and possibly obtain an improvement
in the time to solve it, since no item can be to the right (respectively to the top) of a vertical
(respectively horizontal) cut done in a position greater than W — wpnn (H — Apin).

We have designed the algorithm in such a way that a pattern corresponding to an optimal
solution can be easily obtained. For that, the algorithm stores in a matrix, for every rectangle
of width p; € P, and height g; € @, which is the direction (horizontal or vertical) and the
position of the first guillotine cut that has to be made in this rectangle. In case no cut should be
made in the rectangle, the algorithm stores the item that corresponds to this rectangle.

When the algorithm SDP halts, we have that V'(k, ¢, j) contains the optimal value that can
be obtained in k stages for a rectangle with dimensions (p;, ¢;). Furthermore, guillotine(k, , 5)
indicates the direction of the first guillotine cut, and position(k, ¢, j), stores the corresponding
position (in the z-axis or in the y-axis) of the first guillotine cut. If guillotine(k,1,7) = nil,
then no cut has to be made in this rectangle. In this case, 2tem(i. j) (if nonzero) indicates which
item corresponds to this rectangle. The value of the optimal solution will be in V' (k, r, s), where
r=|P|and s = |@Q,].

The algorithm calculates the best solutions for the 1-staged problem and then uses this
information to calculate the best solutions of the 2-staged problem and so forth. There may
be a stage in which no cut has to be made: that happens when the best solution of a given stage,
say [, is the best solution of the previous stage [— 1. In this case, the value 'P’ is stored in the
corresponding entry of guillotine, indicating that the solution is given by the previous stage.

Consider that » > s. The attributions of value to the vanable ¢ can be done in O(log r) time
by using binary search in the set of the discretization points. But we can use a vector X (resp.
Y), of size W (resp. H), and let X (resp. Y;) contain p(z) (resp. g(7)). Once the discretization

94 Capitulo 8.

Input: An instance [= (W, H, w, h, v, k) of the k-staged RK problem.
Output: An optimal k-staged solution for /.

Letp; < ... < p,, be the points in P;.
Letq; < ... < g. be the points in Q.
Fori=1tor
Forj=1to3s
V(0,2,7) =max ({vy | 1 < f <m, wy < p,and by < g;} U {0}).
item(0,4,7) =max ({f |1 < f <m, wy <p,, hy < gyandvy=V(1,4,7)} U {0}).
guillotine(0, 4, j) = nil.
If kiseventhen A ="H else A ="V’
Forl=1tok
Fori=2tor
Fory=2tos
Vilaq) = Yiil— L3
guillotine(l,i,j) =P’
If A ="V’ then
n=max(f|1< f<sandg; < [%]).
Fory=1ton
t=max(f |1 < f<sandgs <gq; — q).
IfV(l,ij)<V({I-1,3,y)+ V(i,t) then
V(l,i,7) = V({I-1,i,y)+ V(,i,t), position(l,,) = g, and guillotine(l, 4, j) =

H”,
Else
n=max(f|[1< f<randp; < |&]).
Forz=1ton
t=max(f|1< f<randps <p;—ps).
IfV({,i,5) <V({I—1,z,7)+ V(¢ j) then
V(l,i,3) =V (I-1,z,7)+V(l,t,7), position(l,1, j) = p, and guillotine(l, i, j) =
NG

IfA="V'then A ="H else A ="V’.

Algorithm 8.2: SDP

points are calculated, it requires time O(W + H) to determine the values in the vectors X and
Y. Using these vectors, each attribution to the variable ¢ can be done in constant time and leads
to an implementation of the algorithm DP, using DDP as a subroutine, with time complexity
O(mW + mH + (%)("—;i) + (%)(53—2)) In any case, the amount of memory required by the
algorithm SDP is O(krs + W + H). We use this strategy in our implementation.

We can also use the algorithm SDP to solve the k-staged RK”™ problem, in which orthogonal

8.3. The 2CS problem 95

rotations of the items are allowed. For that, for each item 7 in /, of width w,, height k, and value
v;, we add another item of width h;, height w, and value v,, whenever w, # h;, w; < H and
h; < W. We denote the corresponding algorithm for this case by SDP".

8.3 The 2CS problem

We focus now on the Two-dimensional Cutting Stock (2CS) problem. Gilmore and Gomory [27,
28, 29] in the early sixties were the first to propose the use of the column generation approach
for this problem. They proposed the k-staged pattern version and also considered the BPV
problem, the variant of 2CS with bins of different sizes.

Alvarez-Vales, Parajon and Tamarit [2] also presented a column generation approach for the
2CS problem. They used the dynamic programming algorithm presented by Beasley and also
some meta-heuristic procedures. Puchinger and Raidl [42] investigated the 3-staged version:
they applied the column generation approach using either a greedy heuristic or an evolutionary
algorithm to generate columns.

Riehme, Scheithauer and Termno [44] designed an algorithm for the 2CS problem with ex-
tremely varying order demands. Their algorithm is also based on the column generation ap-
proach and is restricted to a 2-staged problem. Vanderbeck [46] also proposed a column gen-
eration approach for a cutting stock problem with several different restrictions. The solution
must be 3-staged and unused parts of some stock can be used later as a new stock. The problem
involves other practical restrictions.

For the special case in which the demands are all equal to 1 (also known as bin packing
problem) Chung, Garey and Johnson [16] presented the first approximation algorithm for this
problem, called HFF (Hybrid First Fit), shown to have asymptotic performance bound at most
2.125. Later, Caprara [11] proved that HFF has asymptotic performance bound at most 2.077;
and he also presented an 1.691-approximation algorithm (this is the best known result for this
problem). We observe that the algorithm HFF is a 2-staged algorithm, and therefore may be
used as a subroutine to any k-staged problem for k > 2. These results are for the oriented case.
When orthogonal rotations are allowed, Miyazawa and Wakabayashi [38] presented a 2.64-
approximation algorithm. For the particular case in which all bins are squares and rotations
are allowed, Epstein [25] presented a 2.45-approximation algorithm. In [19], we have shown
that some of the approximation algorithms for the bin packing problem can be modified for the
cutting stock problem. In this case the algorithms are of polynomial time and preserve the same
approximation factor of the original algorithms.

The column generation algorithms we presented in this section were developed by Cintra
[18], but for completeness we also present these algorithms here.

To discuss the column generation approach, let us first formulate the 2CS problem as an
ILP (Integer Linear Program). Let / = (W, H,w, h,d) be an instance for the 2CS problem.

96 Capitulo 8.

Represent each pattern j for the instance / as a vector p;, whose 7-th entry indicates the number
of times item ¢ occurs in this pattern. The 2CS problem consists then in deciding how many
times each pattern has to be used to meet the demands and minimize the total number of bins
that are used.

Let n be the number of all possible patterns for /, and let P denote an m x n matrix whose

columns are the patterns p, . . ., p,. If we denote by d the vector of the demands, then we have
the following ILP formulation: minimize) ,7_; x; subject to Pz = d and z; > 0 and z; integer
for i = 1,...,n. (The variable z, indicates how many times the pattern j is selected.)

e well-known column generation method proposed by Gilmore and Gomory [27] consists
11 solving the relaxation of the above ILP, shown below. The idea is to start with a few columns
and then generate new columns of P, only when they are needed.

minimize 1+ ...+ 2,
subject to Px=d (8.1)
IJ 2 U J B 11 ey 1.

We can use the algorithm SDP (for the RK problem) to generate new columns (with A£-staged
guillotine patterns). If w; is the dual value corresponding to each item ¢z, 1 < ¢ < m, then we
want a pattern that maximizes » ., ¥;2;, where z is the number of times item ¢ is used in the
pattern. We describe in the sequel the algorithm SimplexCGs that solves (8.1) (Algorithm 8.3).

Input: An instance I = (W, H, w, h, d) of the 2CS problem.
Qutpirt: An optimal solution for (8.1), where the columns of P are patterns for /.
Subrounine: The algorithm SDP for the RK problem.

1 r = d and B be the identity matrix of order m.

2 ooiveyT B = 17,

3 Generate a new column z executing the algorithm SDP with parameters W, H, w, h, y.
41f yTz < 1, return B and z and halt (z corresponds to the columns of B).

5 Otherwise, solve Bw = z.

6 Lett =min(% |1<j<m, w; >0).

Tlets=min(j |1<j<m, I =t).

8 For: = 1tomdo

8.1 Bz,s g
8.2If i = s then z; = t; otherwise, z; = z; — w;t.
9 Gotas 02,

Algorithm 8.3: SimplexCG,

We implemented this algorithm using subroutine SDP described in Section 8.2.

8.3. The 2CS problem 97

We describe now a procedure to find an integer solution from the solutions obtained by
SimplexCG,. The procedure is iterative. Each iteration starts with an instance / of the 2CS
problem and consists basically in solving (8.1) with SimplexCG, obtaining B and z. If z
is integral, we return B and z and halt. Otherwise, we calculate z¥ = (zj....,z},), where
x; = |z;| (¢ = 1,..., m). For this new solution, possibly part of the demand of the items is not
fulfilled. More precisely, the demand of each item that is not fulfilled is d} = d,~ """ | B, ;.
Thus, if we take d* = (d,d},), we have a residual instance [* = (W, H, w, h, d*) (we may
eliminate from 7* the items with no demand).

If some z; > 0 for some 7 € {1,...,m}, part of the demand is fulfilled by the solution
z*. In this case, we return B and z, we let / = /* and start a new iteration. If z¥ = 0 for all
i € {1,...,m}, no part of the demand is fulfilled by z*. We solve then the instance /* with the
algorithm M-HFF (Modified HFF) that corresponds to the algorithm HFF modified to consider
demands for the items, see [19]. We present in what follows the algorithm CG (Algorithm 8.4)
that implements the iterative procedure we have described.

Note that, in each iteration, either part of the demand is fulfilled or we go to step 4. Thus,
after a finite number of iterations the demand will be met (part of it eventually in step 4). In
fact, it is easy to prove that step 3.6 of the algorithm CG is executed at most m times (see [18]).

We observe that the algorithm M-HFF can be implemented to run in polynomial time,
see [19]. As its asymptotic performance bound is at most 2.077 (see [11]), we may expect
that using M-HFF we produce solutions of good quality.

Inpur: An instance I = (W, H, w, h, d) of the 2CS problem.
Qutput: A solution for /.
1 Execute the algorithm SimplexCG, with parameters W, H, w, &, d obtaining B and z.
2Fori=1ltomdoz! = |z;].
3If 27 > 0 forsomei, 1 < i < m,then
3.1 Return B and 27, . . ., z;, (but do not halt).
3.2Fori=1tomdo
321Forj=1tomdod; =d; — B, jz;.
33letm' =0, =(),h = ()andd = ().
34 Fori= 1ltomdo
34.11fd;, > Othenm' =m' + 1, v’ = o'||(w;), A’ = k'||(hi) and d' = d'||(d,).
3.5If m' = 0 then halt.
36Lletm=m/,w=w',h=~h,d=d and go tostep 1.
4 Return the solution of algorithm M-HFF executed with parameters W, H, w, &, d.

Algorithm 8.4: CG

We note that the algorithm CG can be used to solve the variant of 2CS, called BP”, in which

98 Capitulo 8.

orthogonal rotations of the items are allowed. For that, before we call the algonithm SDP, in step

We will call SimplexCG5 the vanant of SimplexCG, with this transformation. It should be
noted however that the algorithm M-HFF, called in step 6 of CG, does not use the fact that the
items can be rotated.

We use a simple algorithm for the vaniant of BP” in which all items have demand 1. This
algonthm, called First Fit Decreasing Height using Rotations (FFDHR), has asymptotic ap-
proximation bound at most 4, as have been shown by Cintra in [18]. Substituting the call to
M-HI¢ with a call to FFDHR, we obtain the algorithm CGR, that is a specialized version of
CG for the BP" problem.

We also tested another modification of the algorithm CG (and of CGR). This is the fol-
lowing: when we solve an instance, and the solution returned by SimplexCG, rounded down is

aal to zero, instead of simply submitting this instance to M-HFF (or FFDHR), we use M-HFF
(ur FFDHR) to obtain a good pattern, and update the demands; if there is some item for which
the demand is not fulfilled, we go to step 1. The good pattern used is the one with the largest
occupated area of the bin,

Note that, the basic i1dea 1s to perturb the residual instances whose relaxed LP solution,
rounded down, is equal to zero. With this procedure, it is expected that the solution obtained
by SimplexCG, for the residual instance has more variables with value greater than 1. The
algorithm CGP, described in what follows (Algorithm 8.5), incorporates this modification.

Input: Aninstance [= (W, H,w, h.d) of 2CS.
Qutpur: A solution for /.
1 Execute the algorithm SimplexCG; with parameters W, H, w, i, d obtaining B and z.
2Fori=1tomdoz! = |z;].
31fz; > 0forsomez, 1 <1 < m,then
3.1 Return B and z7, .. ., z},, (but do not halt).
3.2For:=1tomdo
3.2.1For j = 1tomdo d; = d; — B; ;z].
Idletm/ =0, =(),h=()andd =().
34 Fori=1tomdo
34.11fd, > Othenm’ = m' + 1, v’ = w'||(w;), A’ = b'||(h,) and d' = d'||(d;).
3.5 If m’ = 0 then halt.
36letm=m',w=w'h=Ah",d=d and go to step 1.
4 Return a pattern generated by the algonthm M-HFF, executed with parameters
W, H,w, h,d, that has the smallest wasted area, and update the demands.
5 If there are demands to be fulfilled, go to step 1.
Algorithm 8.5: CG”

8.4. The 2CS problem with bins of different sizes 99

It should be noted that with this modification we cannot guarantee anymore that we have to
make at most m + 1 calls to SimplexCGs,. It is however, easy to see that the algorithm CG? in
fact halts, as each time step 1 is executed, the demand decreases strictly. After a finite number
of iterations the demand will be fulfilled and the algorithm halts.

8.4 The 2CS problem with bins of different sizes

In this section we adapt the algorithm CG for the BPV problem. Let / = (W, H, V, w, h, d) be
an instance of the BPV, where W = (Wy,... , Wy), H = (H,,...,Hy) and V = (V4,...,}})
are lists of size b indicating the height, width, and value of each bin type i, 1 < 7 < b. We
can also represent each pattern j of the instance [as a vector p;, whose 2-th entry indicates the
number of times item ¢ occurs in this pattern. The BPV problem consists then in deciding how
many times each pattern has to be used to meet the demands and minimize the total value of the
bins that are used. Let n be the number of all possible patterns for /, and let P denote an m x n

matrix whose columns are the patterns py, .. ., p,. If we denote by d the vector of the demands,
then the following is an ILP formulation for the BPV problem: minimize 7_, Vjz; subject to
Pz = dand z; > 0 and z; integer for j = 1, ..., n. (The variable z; indicates how many times

pattern j is selected and V; is the value of the bin type used in pattern j). The following is the
corresponding relaxed formulation.

minimize iz +... + V2,
subjectto Pzr=d (8.2)
220 F=l005M

In this case, we can also use the algorithm SDP to produce guillotine patterns. If y; is the
dual value corresponding to each item z, 1 < 2 < m, then we want a pattern that maximizes
S yizi, where z, is the number of times item ¢ is used in the pattern. But in this case we
have to solve the SDP problem to each possible bin size j, and a column j enters in the basis if
L vz >V

The algorithms of this section are an extension of the algorithms of the previous section. A
more detailed description of these algorithms was done by Cintra [18].

We describe in the sequel the algorithm SimplexCGg; that solves (8.2) (Algorithm 8.6). In
this algorithm, we have a vector f of size m that indicates the bin associated with each column
of the matrix B. This way, we can reconstruct a solution considering the vector f, and the
entries of B, guillotine and position. In the algorithm SimplexCG; we used subroutine SDP to
solve the RK problem.

100 Capitulo 8.

Input: An instance / = (W, H, V w, h.d) of the BPV problem.
Output: An optimal solution for (8.2), where the columns of P are the patterns for /.
Subroutine: The algorithm SDP for the RK problem.

1 Let f be a vector of size m where f, is the smallest index of j such that w; < W, and h, < H,.
2 Let r = d and B be the 1dentity matrix of order m.
3 Solve y"B = V.
4For:=1tobdo
4.1 Generate a new column 2 executing the algorithm SDP with parameters W, H,, w, k. y.
421fy"2 > V,, go to step 6.
5 Return 3, f and = and halt (2 corresponds to the columns of B).
6 Solve Bw = z.
7Letr=min(5;:- [1€j5<m, w;>0).
8lets=min(j|1<j<m, 2 =t).
9let f, =1 *
10 For: = 1tom do
161 B, = 2.
10.2 If : = s then x; = t; otherwise, T; = z; — w;t.
11 Go to step 3.

Algorithm 8.6: SimplexCG,

The algonthm CGV (Algorithm 8.7) that solves the BPV problem using the algorithm
SimplexCG; is very similar to the algorithm CG of Section 8.3, and therefore we omit the
details.

We also considered the variants of the algorithm CGV, when we may have orthogonal rota-
tions, and when the residual instance is solved with a perturbation method. In the latter case,
to generate a pattern we use a bin for which the fraction H—J’-;;: (for ¢ = 1,...,b) attains the
minimum value.

8.5 The SP problem and the column generation method

The strip packing problem is mostly considered in the literature for the special case in which
the demands are all equal to 1. Many approximation algorithms have been proposed for this
problem. Coffman, Garey, Johnson and Tarjan [21] presented the algonthms NFDH and FFDH
for the oriented case with asymptotic performance bounds 2 and 1.7, respectively. Algorithms
with better performance bounds were obtained by Baker, Brown and Katseff [4] and also by
Kenyon and Rémila [34]): 5/4 and (1 + €). Recently, a2 PTAS for the SP problem with rotations
was obtained by Jansen and van Stee [32]. In 2005, Seiden and Woeginger [45] presented an

8.5. The SP problem and the column generation method 101

Input: An instance I = (W, H, V, w, h, d) of BPV.
Output: A solution for /.

1 Execute the algorithm SimplexCG, with parameters B, w, A, d obtaining B, b and z.
2Fori=1tomdo z; = |z;].
3Ifz} > 0forsomei, 1 < i< m,then
3.1Return B, band z},. ...z}, (but do not halt).
32Fori=1tomdo
3.2.1For j = 1tomdod, = d; — B;;z].
33Letm' =0,K = (), w'=()andd = ().
34Fori=1tomdo
34.11fd, > Othenm' = m' + 1, w' = w'||(w;), A = h'||(h:) and d' = d'||(d,).
3.51If m' = 0 then halt.
36Lletm=m'w=w' ,h=~h',d=d and gotostep 1.
4Let V* = min (g% |i = 1,...,b) and j = min (i | g% = V*).
5 Return the solution of algorithm M-HFF executed with parameters W;, H;, w, h, d.

Algorithm 8.7: CGV

analysis of the quality of a k-stage guillotine strip packing versus a globally optimum packing.
They showed that for £ = 2 no algorithm can guarantee any bounded asymptotic performance
ratio. When k = 3 (resp. k = 4) an asymptotic performance ratio arbitrarily close to 1.69103
(resp. 1) can be obtained. Although some of the approximation algorithms above have bounds
very close to 1, most of these results are more of theoretical relevance. Other approaches include
genetic algorithms [40], branch and bound and integer linear programming models [35, 37].

All algorithms for the SP problem mentioned above consider that each item has demand 1.
Although the column generation approach can be easily applied to the problem SP, it is less
investigated under this approach. One of the main advantages of this approach is the possibility
to consider larger values of demands, as this case has many industrial applications.

Let I = (W, H,w, h,d) be an instance of the SP problem. We consider that the first cut
stage is done in the horizontal direction of the strip; furthermore, two subsequent cuts must be
at a distance at most H. We call H-pattern a pattern corresponding to a packing between two
subsequent horizontal cuts (that has to be at a maximum distance f1).

Let p1, po, . - -, Pn be the set of all possible H-patterns. Denote by H; the height of the H-
pattern p; and let P be the matrix whose columns are the patterns py, pa, . . ., pn. In this case, the
following 1s an ILP formulation for the SP problem: minimize Z;’___l H,z; subjectto Pr = d
and z; > 0 and z, integer for j = 1,...,n. To solve this [LP we can use the same approach
we used for the problem BPV. In fact, we can reduce the SP problem to the BPV problem. For
that, note that each H-pattern with height H; corresponds to a bin with dimensions (W, H;) and

102 Capitulo 8.

value precisely H;.

LetQ = {q1,--+, gs } be the set of all discretization points of the height H (this will be the
maximum height of the bins).

For 2-staged cutting patterns, we can consider / as the maximum height of an item, that
1s, H = max(h;...., hy,). In this case, Q is the set of the heights of the items. If there are s
different heights, we have H-patterns (bins) with width W, = W and height H,,for1 <: < s.

The algorithm we propose to solve the SP problem, called CGS, uses basically the algorithm
CGV with two modifications. First, the residual instance 1s solved with the algorithm FFDH.
Second, every call to the algorithm SimplexCGjy solves only one instance of the RK problem,
consisting of a knapsack of size (W, H).

We note that, looking at the entries of V', guillotine and position produced by algorithm
SDP (algorithm for the staged RK problem) we can obtain solutions for each height in Q: we
just have to access positions (W, &,) of these variables, for each b, € Q, 1 < i < s, This last
modification is very important, as s can be very large and solving instances of the RK problem
for each of the s different bins would consume a lot of time. We did not use this 1dea for the
BPV problem since it is not always better to solve only instances of RK with the largest bin
dimensions.

Note that, in the BPV problem, the instances may consist of bins of different widths. Con-
sider, for example, an instance consisting of z bins: one bin with size (r, r2), another one with
size (r?, r) and some other z — 2 bins with dimensions smaller than r, for some integer . If
we call the algorithm DP for a bin of dimensions (2, %) and assume that the number of dis-
cretization points is linearly proportional to the dimensions of the bin, then the algorithm will
consume time O(kr®). But if we solve for each of the bins, the algorithm will consume time
O(kxr®).

The reader should note that the first cutting phase is done automatically by the column
generation algorithm by choosing the best bins in a solution. Therefore, the algorithm SDP is
called with the first cutting phase in the vertical direction and one cutting phase less than the
number of stages of the instance.

We implemented the algorithm CGS and its variant CGS" (for the orthogonal rotation case)
and CGS” with a perturbed residual instance. In the algorithm CGS” a good way to perturb the
instance is to generate a level by the algorithm FFDH with minimum wasted area (considering
the height of the level). When rotations are allowed we use an algorithm, which we denote by
FFDHR2, to generate a perturbed instance. This algorithm works like the algorithm FFDH, but
if an item cannot be packed in any of the existing levels then the algorithm tries to pack it in the
other orientation before creating a new level.

8.6. Computational results 103

8.6 Computational results

In the next subsections we present the computational results obtained with the implementations
of the algonthms we have described. All algorithms were implemented in C language. The
computational tests were run on a computer with processor Intel Pentium IV, clock of 1.8GHz,
memory of 512Mb and operating system Linux using the LP solver CLP (COIN-OR Linear
Program Solver) [22].

For all problems we have performed computational tests considering staged guillotine pat-
terns with and without orthogonal rotations. Following other papers in the literature (see
[12, 13, 46]), we assume that the first cutting stage is performed in the horizontal direction.

8.6.1 Computational results for the RK problem

The performance of the algorithm SDP was tested with the instances of RK available in the
OR-LIBRARY' (see Beasley [7] for a brief description of this library). We considered the 13
instances of RK, called gcutl, ... gcutl3 available in this library. For all these instances, with
exception of instance gcutl3, optimal solutions had already been found [5]. We considered the
the SDP algorithm with the number of stages k € {2,3,4}.

In [20], Cintra and Wakabayashi already found an optimal solution for instance gcut/3, but
considering non-staged patterns. Using the algorithm SDP we found optimal solutions for the
instance gcutl3 for the staged patterns considered. We notice that the solution found with 3-
staged patterns already corresponds to an optimal solution without restriction on the number
of stages. This solution was found in less than 22 seconds and is shown in Figure 8.2. In all
these instances the value of each item is precisely its area. Caprara and Monaci [14] and Fekete
and Schepers [26] could not find an optimal solution for this instance in 1800 seconds in recent
machines (a Pentium I1I 800MHz and Pentium IV 2.8GHz with 1Gb of memory, respectively).
We recall that their approaches are for the more general setting in which the cuts need not be
guillotine. We note that, in this general case, our approach can be used to obtain a lower bound.

Since the algorithm solves all instances of the OR-LIBRARY in a few seconds, we construct
other four instances (gcutl4 — gcutl7) based on the available instances. We join the items
instance gcutl3 with the items of instances gcut9, gcut10, gcurli and gcul2, obtaining the new
instances. For each one of these new instances we considered a knapsack with size (3500,3500).
In Table 8.1 we give some information about the instances.

The computational results are shown 1n Table 8.2. The column “Waste” shows —for each
solution found— the percentage of the area of the bin that does not correspond to any item. The
column “Time” indicates the time required to solve the instance; the entry 0 indicates that the

Vhetp:#imsemga.ms.ic.ac.uk/info htm!

104 Capitulo 8.

Figure 8.2: The optimal solution for gcut!3 found by the algorithm SDP with 3-staged patterns.
The small squares have dimensions (378, 200) and the squares in the bottom have dimensions
(555, 496) and (555, 755).

time required 1s less than 0.000001 seconds. On the average, the waste for 2-staged patterns was
less than 1% larger than the waste for 4-staged patterns. The space utilization comparing 3- and
4-staged patterns are very close. The solutions that differs in waste are the solutions of instances
geut8, geutl4, geutlS, geutl6 and gcutl7. Moreover, all solutions found with 4-staged patterns
of instances gcut! through gcutl3 also correspond to optimal solutions for the unrestricted case
as one can compare to the results in [20].

To run tests for the case in which orthogonal rotations are allowed, we considered the in-
stances gcutl,. . .,gcutl7, and named them correspondingly as gcutlr,. . .,gcutl7r (meaning that
rotations are allowed). The performance algorithm SDP for these instances is presented in table
8.3. We remark that, comparing with the problem without rotations, for some instances the time
increased and the waste decreased (on the average less than 1%), as one would expect.

For these instances, we can also note that the solutions with 4-staged patterns correspond
to optimal solutions for the unrestricted case (see [20]) except for instance gcut/4r. The dif-
ferences on space utilization from the 3-staged to the 4-staged patterns are also very small,
differing in the instances gcut3r, gcut8r, gcutl4r, gcutlSr and gcutl6r.

8.6. Computational results

105

Quantity | Dimensions

Instance | of items of the bin r s

geutl 10 (250, 250) 28 9

geut2 20 (250, 250) 39 52

geut3 30 (250, 250) 81 42

geutd 50 (250, 250) 85 84

geuts 10 (500, 500) 19 27

geutb 20 (500, 500) 34 42

geut? 30 (500, 500) 66 33

gcut8 50 (500, 500) 97 136

gcut9 10 (1000, 1000) | 31 11

geutl0 20 (1000, 1000) | 29 55

geutl] 30 (1000, 1000) | 69 109

geutl2 50 (1000, 1000) | 155 124

gcutl3 32 (3000, 3000) | 1457 | 2310

geutld 42 (3500, 3500) | 2390 | 2861

geutls 52 (3500, 3500) | 2422 | 2933

geutlé 62 (3500, 3500) | 2559 | 2943

gcutl? 82 (3500, 3500) | 2676 | 2953

Table 8.1: Instances information.
Quant. 2-staged 3-staged 4-staged
of | Dimensions | Optimal Time | Optmal Time | Optimal Time

Inst. items | of the bin Solunon | Waste (sec) Solution | Waste (sec) Solution Waste (sec)
geutl 10 (250, 250) 56460 9.66% 0 56460 9.66%] 56460 9.66% 0
geut2 2 (250, 250) 60076 3.878% 4] 60536 3.142% 0 60536 3.142% 0
geutd 30 (250, 250) 60133 3.787% 0 61036 2.342% 0 61036 2.342% 0
geutd 50 (250, 250) 61698 1.283% 0 61698 1.283% 0.01 61698 1.283% 0
geuts 10 (500, 500) 246000 1.600% 0 246000 1.600% 0 246000 1.600% 0
geuth 2 (500, 500) 235058 | 5977% 0 238998 | 4.401% 0 238998 4.401%]
geut? 30 (500, 500) 242567 | 2973% 0 242567 | 2.973% 0 242567 2973% | 0.017
goutd 50 (500, 500y 245758 | 1.697% 0 245758 1.697% 0 246633 1.347% | 0.071
geu9 I | (1000, 1000) | 971100 |2.890% 0 971100 | 2.890% (i} 971100 2.890% 4]
geutl0 | 20 | (1000, 1000) | 982025 | 1.798% | O | 982025 |1798% | O | 982025 |1.798% | 0O
geutl | 30 | (1000, 1000) 92:__638 2.536% 0 980096 1.990% 0 980096 1.990% 0
geutl2 | 50 | (1000, 1000) | 977768 |2.223% | 0.01 979986 | 2.001% 0 979986 2.001% | 001
zeutld | 32 | (3000, 3000) | 8906216 | 1.042% | 21.82 | 8997780 |0.025% | 32.98 2997780 | 0.025% | 43.72
geutld | 42 | (3500, 3500) | 12216788 | 0.271% | 12455 | 12239634 | 0.085% | 175.96 | 12242100 | 0.064% | 264.41
geutls | 52 | (3500, 3500) | 12215614 | 0.281% | 137.21 | 12239904 | 0.082% | 189.53 | 12242100 | 0.064% | 289.98
geutl6 | 62 | (3500, 3500) | 12210837 | 0320% | 177 21 | 12243100 | 0.056% | 239.24 | 12244511 | 0.045% | 371.60
acutl? 82 (3500, 3500) | 12232948 | 0.139% | 223.13 | 12246422 | 0.029% | 290.07 | 12246694 | 0.027% | 456.00

Table 8.2: Performance of the algorithm SDP for 2-, 3- and 4-staged patterns.

106 Capitulo 8.

Qty. 2-staged 3-staged 4-staged
of | Dimensions | Optimal % Time Optimal % Time | Optimal % Time
Inst. items| of the bin Solution Waste (sec) Solution Waste (sec) Solution Waste (sec)
geutlr Yol (250, 250) 58136 6.982 0 58136 6.982 0 58136 6.952 0
gcutr 20 | (250,250) 60611 3.022 i} 60611 3.022 0 60611 3.022 0
gcutdr | 30 (250, 250) 60485 3.224 0 61399 1.762 0 61626 1.398 0
gcutdr | S0 (250, 250) 62265 0.376 0.01 62265 0376 0.01 62265 0.376 0.01

geutdr 10 (300, 500) 246000 1.600 0 246000 1.600 0 246000 1.600 0
geutbr 20 (500, 500) 240951 3.620 0 240951 3.620 0 240951 3.620 0

geut?r 30 (500, 500) 245866 1.654 0.01 245886 1.654 0.01 245866 1.654 0
geutdr | 50 (500, 500) 247260 1.096 0.01 247462 1.015 0.02 247787 0.885 0.02
geutdr 10 | (1000.1000) | 971100 2.890 0 971100 2.890 0 971100 2.890 0
geutlOr | 20 | (1000, 1000) | 982025 1.798 0 982025 1.798 0 982025 1.798 0
geutllr | 30 | (1000. 1000) | 980096 1.990 0.02 980096 1.990 0.03 980096 1.990 0.04
geutl2r | 50 | (1000, 1000) | 988694 1.131 0.03 988694 1.131 0.05 988694 1.131 0.06

geutl3r | 32 | (3000, 3000) | 8997780 0.025 106.3 | 9000000 0.0 129.64 | 9000000 00 226.75
geutldr | 42 | (3500, 3500) | 12240515 | 0.077% | 322.77 | 12247700 | 0.019% | 418.26 | 12247796 | 0.018% | 702.19
geutl5r | 52 | (3500, 3500) | 12242904 | 0.058% | 337.27 | 12248176 | 0.015% | 437.72 | 12250000 | 0.000% | 72521
geutlér | 62 | (3500, 3500) | 12243100 | 0.056% | 368.20 | 12249625 | 0.003% | 46592 | 12250000 | 0.000% | 800.53
geutl7r | 82 | (3500, 3500) | 12242998 | 0.057% | 393.52 | 12250000 | 0.000% | 495.39 | 12250000 | 0.000% | 829.92

Table 8.3: Performance of the algorithm SDP for 2-, 3- and 4-staged patterns with rotations.

8.6. Computational results 107

8.6.2 Computational results for the 2CS problem

We did not find instances for the 2CS problem in the OR-LIBRARY. We tested the algorithms

CG and CG” with the instances gcut!, ..., gcutl2, associating with each item 7 a randomly
generated demand d, between 1 and 100 (varying demands). We called these instances gcutld,
o geutl2d.

In the tables of the results, LB denotes the lower bound (given by the rounded up solution
of (8.1)) for the value of an optimal integer solution.

We used the algorithm CG? with subroutine SDP and k = 2, 3, 4.

The tests for this case are presented in tables 8.4-8.9. For all tests, the algorithms CG and
CGP obtained solutions in a small amount of time.

Solution Difference Columns | Solution | Improvement
Instance | of CG LB from LB | Time (sec) | Generated | of M-HFF | over M-HFF
geutld 295 295.0 | 0.000% 0.03 19 322 8.39%
geut2d 345 3450 | 0.000% 0.37 137 360 4.17%
geut3d 343 3420 | 0292% 1.10 388 374 8.29%
geutdd 845 845.0 | 0.000% 4.02 828 878 3.76%
geutdd 207 207.0 | 0.000% 0.03 19 224 7.59%
geutéd 375 3750 | 0.000% 0.14 77 395 5.06%
geut7d 600 600.0 | 0.000% 0.59 278 642 6.54%
gcut8d 720 720.0 | 0.000% 3.35 592 765 5.88%
geut9d 135 135.0 | 0.000% 0.07 48 141 4.26%
geutl0d 315 315.0 0.000% 0.14 79 328 3.96%
geutlld 349 349.0 | 0.000% 0.68 224 375 6.93%
geutl2d 676 675.0 | 0.148% 4.03 660 722 6.37%

Table 8.4: Performance of the algorithm CG with 2-staged patterns.

For the 2-staged cutting, the algorithms CG and CG” obtained optimum solutions for all
instances, except for two of them (on the average, the difference from LB was 0.036%). When
compared to the solution of M-HFF, the improvement was 5.93% on the average. This is a great
improvement, since M-HFF is also restricted to 2-staged patterns.

For the 3-staged problem, algorithm CG?, found one more optimal solution (gcur!0d) com-
paring to the results of algorithm CG. For the 4-staged case the algorithm CG found a better
solution to instance gcutd7d than the one found by the algorithm CG”. On the other hand the
algorithm CG” found an optimal solution to instance gcut/ ld while CG does not.

The algorithms had a good performance both in terms of the quality of the solution and in
terms of the time required. The improvement of the algorithm CG” for the 4-staged case, over
M-HFF was, on the average, 8.89%, for example.

108

Capitulo 8.

Solution Difference Columns | Solution | Improvement
Instance | of CG LB from LB | Time (sec) | Generated | of M-HFF | over M-HFF
gcutld 295 295.0 | 0.000% 0.03 21 322 8.39%
geut2d 345 345.0 | 0.000% 0.45 173 360 4.17%
geut3d 343 3420 0.292% 131 534 374 8.29%
geutdd 845 845.0 | 0.000% 5.99 1506 878 3.76%
geutsd 207 207.0 | 0.000% 0.03 21 224 7.59%
gcutbd 375 375.0 | 0.000% 0.16 86 395 5.06%
gcut7d 600 600.0 | 0.000% 0.71 357 642 6.54%
gcut8d 720 720.0 | 0.000% 3.50 693 765 5.88%
gcutod 135 135.0 | 0.000% 0.08 57 141 4.26%
geutlOd 315 315 0.000% 0.21 122 328 3.96%
gcutl 1d 349 34¢ 0.000% 0.79 289 375 6.93%
gcutl2d 676 6750 | 0.148% 5.28 1167 722 6.37%

Table 8.5: Performance of the algorithm CG” with 2-staged patterns.

We also tested the algorithms with rotations on the instances gcutldr,. .., gcutl2dr. See
tables 8.10-8.15.
Notice that the algorithm CGR?” obtains better solutions than the algorithm CGR in several
instances. For the algorithm CGR?, in the 2-staged case, the difference from the lower bound
was 0.220%, on the average and the improvement over the FFDHR algonthm was 10.14%.
These numbers are very close to the ones we can obtain for the 3- and 4-staged version.

8.6. Computational results

Solution Difference Columns | Solution | Improvement
Instance | of CG LB from LB | Time (sec) | Generated | of M-HFF | over M-HFF
gcutld 294 2940 | 0.000% 0.04 24 322 8.70%
geut2d 345 345.0 | 0.000% 0.34 101 360 4.17%
geutdd 333 333.0 | 0.000% 0.87 285 374 10.96%
geutdd 837 836.0 | 0.120% 5.44 1015 878 4.67%
geutsd 198 197.0 | 0.508% 0.05 29 224 11.61%
geut6d 344 3430 | 0.292% 0.20 100 395 1291%
geut7d 591 591.0 | 0.000% 0.46 203 642 7.94%
geut8d 692 690.0 | 0.290% 7.02 985 765 9.54%
gcut9d 132 131.0 | 0.763% 0.08 49 141 6.38%
geutl0d 294 293.0 | 0341% 0.12 58 328 10.37%
geutlld 331 3300 | 0.303% 142 379 375 11.73%
geutl2d 673 672.0 | 0.149% 432 601 722 6.79%

Table 8.6: Performance of the algorithm CG with 3-staged patterns.

Solution Difference Columns | Solution | Improvement
Instance | of CG LB fromLB | Time (sec) | Generated | of M-HFF | over M-HFF
geutld 294 294.0 | 0.000% 0.04 26 322 8.70%
geut2d 345 345.0 | 0.000% 0.38 135 360 4.17%
geutdd 333 333.0 | 0.000% 1.30 506 374 10.96%
geutdd 837 836.0 | 0.120% 8.19 1878 878 4.67%
geutdd 198 197.0 | 0.508% 0.06 41 224 11.61%
geutbd 344 343.0 | 0.292% 0.22 113 395 12.91%
gcut’d 591 591.0 | 0.000% 0.52 229 642 7.94%
geut8d 692 690.0 | 0.290% 8.88 1563 765 9.54%
geut9d 132 131.0 | 0.763% 0.10 70 141 6.38%
geut10d 293 293.0 | 0.000% 0.13 73 328 10.67%
geutl ld 331 3300 | 0.303% 228 710 375 11.73%
geutl2d 673 672.0 | 0.149% 495 885 722 6.79%

Table 8.7: Performance of the algorithm CG” with 3-staged patterns.

109

110

Capitulo 8.

Solution Difference Columns | Solution | Improvement
Instance | of CG LB fromLB | Time (sec) | Generated | of M-HFF | over M-HFF
gcutld 294 294.0 0.000% 0.04 23 322 8.70%
geut2d 345 345.0 | 0.000% 0.46 133 360 4.17%
geutdd | 332 3320 | 0.000% 0.87 260 374 11.23%
geutdd | 837 836.0 | 0.120% 4.27 668 878 4.67%
geutsd 198 197.0 | 0.508% 0.05 28 224 11.61%
geut6d 344 343.0 | 0.292% 0.19 98 395 12.91%
geut7d 592 591.0 | 0.169% 0.27 103 642 7.79%
geut8d 691 690.0 | 0.145% 9.68 1247 765 9.67%
gcut9d 131 131.0 | 0.000% 0.05 35 141 7.09%
geut10d gk 293.0 0.341% 0.14 70 328 10.37%
gcutl Id 53 330.0 | 0.303% 1.26 285 375 11.73%
gcutl2d 673 672.0 | 0.149% 5.06 640 722 6.79%

Tahle 8.8: Performance of the algorithm CG with 4-staged patterns.

Solution Difference Columns Solution | Improvement
Instai.. of CG LB from LB | Time (sec) | Generated | of M-HFF | over M-HFF
geutld 294 294.0 | 0.000% 0.04 25 322 8.70%
gcut2d 345 345.0 | 0.000% 0.49 157 360 4.17%
geutdd 332 332.0 | 0.000% 1.76 621 374 11.23%
geutdd 837 836.0 | 0.120% 7.27 1606 878 4.67%
geut5d 198 197.0 | 0.508% 0.06 40 224 11.61%
gcuted 344 3430 | 0.292% 0.26 136 395 1291%
geut7d 593 591.0 | 0.338% 0.61 295 642 7.63%
gcut8d 691 6900 | 0.145% 10.33 1539 765 9.67%
gcutdd 131 131.0 | 0.000% 0.08 %) 141 7.09%
geutl0d 294 293.0 | 0341% 0.17 93 328 10.37%
geutl 1d 330 330.0 | 0.000% 1.88 535 375 12.00%
gcutl2d 673 672.0 0.149% 5.70 927 722 6.79%

Table 8.9: Performance of the algorithm CG” with 4-staged patterns.

8.6.

Computational results

Solution Difference Columns | Solution | Improvement
Instance | of CG LB fromLB | Time (sec) | Generated | of M-HFF | over M-HFF
geutldr 291 291.0 | 0.000% 0.03 2] 291 0.00%
geut2dr 283 282.0 | 0.355% 3.01 263 314 9.87%
geut3dr 318 3160 | 0.633% 2.83 580 347 8.36%
geutddr 837 836.0 | 0.120% 5.50 722 846 1.06%
geutSdr 175 175.0 | 0.000% 0.07 33 198 11.62%
geutbdr 302 302.0 | 0.000% 0.44 156 371 18.60%
geut7dr 543 5420 | 0.185% 0.69 178 623 12.84%
geut8dr 650 650.0 | 0.000% 6.76 602 734 11.44%
geut9dr 126 125.0 | 0.800% 0.07 38 143 11.89%
gcutl0dr 271 2700 | 0.370% 0.37 128 301 9.97%
geutl ldr 300 2990 | 0.334% 6.15 388 342 12.28%
geutl2dr 602 601.0 | 0.166% 21.55 835 696 13.51%

Table 8.10: Performance of the algorithm CGR with rotations and 2-staged patterns.

Solution Difference Columns | Soluton | Improvement
Instance | of CGR? | LB fromLB | Time (sec) Generated | of FFDHR | over FFDHR
geutldr 291 291.0 | 0.000% 0.05 26 291 0.00%
geut2dr 283 282.0 | 0.355% 3.69 359 3l4 9.87%
geutddr 317 3160 | 0.316% 4.35 1023 347 8.65%
geutddr 837 836.0 | 0.120% 9.47 1523 846 1.06%
geutSdr 175 175.0 | 0.000% 0.09 45 198 11.62%
geutbdr 302 302.0 | 0.000% 0.45 166 371 18.60% -
geut7dr 543 5420 | 0.185% 0.72 193 623 12.84%
geut8dr 650 6500 | 0.000% 6.85 630 734 11.44%
geut9dr 126 1250 | 0.800% 0.10 61 143 11.89%
geut10dr 271 270.0 | 0.370% 045 177 301 9.97%
geutl 1dr 300 2990 | 0.334% 8.32 677 342 12.28%
geutl2dr 602 6010 | 0.166% 2455 1207 696 13.51%

Table 8.11: Performance of the algorithm CGR” with rotations and 2-staged patterns.

112 Capitulo 8.
Solution Difference Columns | Solution | Improvement
Instance | of CGRP | LB from LB | Time (sec) | Generated | of FFDHR | over FFDHR
geutldr 291 291.0 | 0.000% 0.04 22 291 0.00%
geut2dr 283 2820 | 0.355% 3.50 256 314 9.87%
geut3dr 315 313.0 | 0.639% 3.28 585 347 9.22%
geutddr 836 836.0 | 0.000% 6.62 782 846 1.18%
geutSdr 175 1740 | 0.575% 0.10 48 198 11.62%
geutbdr 302 301.0 | 0.332% 0.78 228 371 18.60%
geut7dr 544 542.0 0.369% 1.63 350 623 12.68%
geut8dr 651 650.0 | 0.154% 11.92 716 734 11.31%
gecut9dr 123 122.0 | 0.820% 0.08 39 143 13.99%
geut10dr 270 270.0 | 0.000% 0.35 89 301 10.30%
geutlldr 299 298.0 | 0.336% 5.99 321 342 12.57%
geutl2dr 603 601.0 | 0.333% 35.15 976 696 13.36%
Table 8.12: Performance of the algorithm CGR with rotations and 3-staged patterns.
Solution Difference Columns | Solution | Improvement
Instance | of CGRF | LB from LB | Time (sec) | Generated | of FFDHR | over FFDHR
geutldr 291 291.0 | 0.000% 0.05 27 29] 0.00%
geut2dr 283 282.0 | 0.355% 4.24 331 314 9.87%
geut3dr 315 313.0 | 0.639% 5.13 1056 347 9.22%
gcutddr 836 836.0 | 0.000% 9.67 1344 846 1.18%
geutSdr 175 1740 | 0.575% 0.14 69 198 11.62%
geutbdr 301 301.0 | 0.000% 1.04 330 371 18.87%
geut7dr 543 542.0 | 0.185% 2.10 509 623 12.84%
geut8dr 651 650.0 0.154% 13.57 967 734 11.31%
geut9dr 123 1220 | 0.820% 0.10 53 143 13.99%
geut10dr 270 270.0 | 0.000% 0.35 92 301 10.30%
geutl ldr 299 298.0 | 0.336% 6.41 417 342 12.57%
geutl2dr 602 601.0 | 0.166% 35.66 1142 696 13.51%

Table 8.13: Performance of the algorithm CGRF with rotations and 3-staged patterns.

8.6. Computational results 113

Solution Difference Columns | Solution | Improvement
Instance | of CGR? | LB from LB | Time (sec) | Generated | of FFDHR | over FFDHR
geutldr 291 291.0 | 0.000% 0.05 21 291 0.00%
geut2dr 283 282.0 | 0.355% 1.95 174 314 9.87%
geut3dr 315 313.0 | 0.639% 3.05 439 347 9.22%
geutddr 836 836.0 | 0.000% 6.41 583 846 1.18%
geutSdr 175 1740 | 0.575% 0.13 53 198 11.62%
geutbdr 302 301.0 | 0.332% 0.54 147 371 18.60%
gcut7dr 543 542.0 | 0.185% 1.87 348 623 12.84%
geut8dr 652 650.0 | 0.308% 14.51 691 734 11.17%
geut9dr 123 1220 | 0.820% 0.09 42 143 13.99%
geut10dr 270 270.0 | 0.000% 0.45 103 301 10.30%
geutl ldr 299 298.0 | 0.336% 11.84 386 342 12.57%
geutl2dr 603 601.0 | 0.333% 40.92 903 696 13.36%

Table 8.14: Performance of the algorithm CGR with rotations and 4-staged patterns.

Solution Difference Columns Solution | Improvement
Instance | of CGR? | LB from LB | Time (sec) | Generated | of FFDHR | over FFDHR |
geutldr 291 291.0 | 0.000% 0.05 26 291 0.00%
gcut2dr 283 282.0 | 0.355% 222 274 314 9.87%
geut3dr 314 3130 | 0.319% 6.85 1103 347 9.51%
gcutddr 836 836.0 | 0.000% 12.81 1446 846 1.18%
geutSdr 175 1740 | 0.575% 0.14 65 198 11.62%
geutbdr 302 301.0 | 0.332% 0.74 230 371 18.60%
geut7dr 542 542.0 | 0.000% 2.46 568 623 13.00%
gcut8dr 651 650.0 | 0.154% 18.35 1159 734 11.31%
gecut9dr 123 122.0 | 0.820% 0.11 58 143 13.99%
gecutl0dr 270 270.0 | 0.000% 0.44 109 301 10.30%
gcutl ldr 299 298.0 | 0.336% 20.08 996 342 12.57%
gcutl2dr 602 601.0 | 0.166% 47.96 1535 696 13.51%

Table 8.15: Performance of the algorithm CGR? with rotations and 4-staged patterns.

114 Capitulo 8.

8.6.3 Computational results for the BPV problem

We have tested the algorithm CGV” with the instances gcutld,. . ., geutl2d, defining three dif-
ferent bins. For each bin in the original instances, we define two others. Given an instance,
let (W, H) be the bin dimensions of this instance. In our modified instances, one bin has di-
mensions (1.2W,0.8H) and the other has dimensions (1.1W,0.9H). The value of each bin
corresponds to its area W x H.

For the k-staged version of he BPV problem, we present tests for the algorithm CGV? with
k = 2,3,4 (see tables 8.16-8.18). We do not present the results of the algorithm CGV since
CGV? got better results in several instances.

Solution Difference Columns
Instance | of CGV? LB from LB | Time (sec) | Generated
geutld 14880000 | 148228125 0.386% 0.58 397
geut2d 16820625 | 16740781.3 0.477% 1.31 492
geut3d 20267500 | 20149803.6 0.584% 21.83 7877
geutdd 46591875 | 46523511.2 0.147% 60.56 11569
geutSd 42022500 | 41667500.0 0.852% 0.17 110
geutbd 78167500 | 77621562.5 0.703% 0.96 539
geut7d | 124257500 | 1239465625 | 0.251% 2.90 1316
geut8d 161575000 | 161074884.1 | 0.310% 23.67 3958
geut9d 131830000 | 130802500.0 | 0.786% 0.12 86
geutlOd | 262470000 | 260444166.7 | 0.778% 0.81 434
geutlld | 304440000 | 303137516.6 | 0.430% 18.58 6926
geutl2d | 611230000 | 609519416.7 | 0.281% 36.65 5452

Table 8.16: Performance of the algorithm CGV? with 2-staged patterns.

For k = 2 (resp. 3 and 4) the difference of the solution obtained by the algorithm from the
lower bound was of 0.498% (resp. 0.505% and 0.437%) on the average. The algorithm CGV?
with k& = 3 (resp. k& = 4) has an increase of 84, 56% (resp. 143.68%) of computational time
when compared with & = 2, on the average.

When orthogonal rotations are allowed in the BPV problem, we note that it becomes harder
to solve the instances. We can see that the large instances require several minutes to be solved.
See tables 8.19-8.21.

8.6. Computational results

Solution Difference Columns
Instance | of CGV? LB from LB | Time (sec) | Generated
geutld 14880000 | 14822812.5 0.386% 0.45 310
geut2d 15768125 | 156799729 0.562% 6.37 2587
geut3d 19914375 | 19830115.7 0.425% 8.72 3086
geutdd 46413750 | 46269759.9 0.311% 103.53 19002
geutSd 41737500 | 41517500.0 0.530% 0.70 493
geut6d 74440000 | 73967812.5 0.638% 3.96 2116
geut7d | 123135000 | 122531666.7 | 0.492% 9.16 3940
geut8d 155612500 | 155267743.8 | 0.222% 91.62 15493
geutdd | 130730000 | 129600000.0 | 0.872% 0.18 119
geutl0d | 254160000 | 252596666.7 | 0.619% 1.61 1030
geutlld | 295270000 | 292967500.0 | 0.786% 17.35 5627
geutl2d | 603220000 | 6018482143 | 0.228% 66.44 9763

Table 8.17: Performance of the algorithm CGV? with 3-staged patterns.

Solution Difference Columns
Instance | of CGVR? LB from LB | Time (sec) | Generated
geutldr 13908750 | 13828125.0 0.583% 0.67 416
geut2dr 15474375 | 15432371.3 0.272% 37.05 4616
geut3dr 19436875 19310805.3 0.653% 45.33 12159
geutddr | 44905000 | 44767392.4 0.307% 166.68 21902
geutddr | 40382500 | 40087187.5 0.737% 0.74 341
geutbdr 71162500 | 70839625.0 0.456% 5.49 2411
geut7dr | 115312500 | 1148177163 | 0.431% 56.78 13326
geut8dr | 153410000 | 152634892.3 | 0.508% 394.05 28128
geut9dr | 121040000 | 119568000.0 | 1.231% 1.14 756
geutlOdr | 249260000 | 247872857.1 | 0.560% 5.68 1545
geutl Idr | 289430000 | 286973906.4 | 0.856% 290.64 23447
geutl2dr | 564650000 | 562898801.3 | 0.311% 690.59 28565

Table 8.19: Performance of the algorithm CGVR? with rotations and 2-staged patterns.

115

116

Capitulo 8.

Solution Difference Columns
. Instance | of CGV? LB from LB | Time (sec) Gcnerat_cd_

geutld | 14880000 | 148228125 | 0.386% | 0.44 307

geut2d 15730625 15673933.2 0.362% 8.03 3163
geut3d 19864375 19769831.3 0.478% 40.23 12327
geurdd 46343750 | 46257603.4 0.186% 125.23 18410
gcutdd 41737500 | 41517500.0 0.530% 0.68 489

geutbd 74187500 | 73967812.5 0.297% 2.27 1005
geut7d 122745000 | 122295271.7 0.368% 9.09 a71s
geut8d 155832500 | 1552217108 | 0.393% 117.61 17864
geut9d 129360000 | 128389230.8 0.756% 1.01 727

geutlOd | 254130000 | 252565036.2 | 0.620% 2.76 1649
geutlld | 294200000 | 292879166.7 | 0.451% 33.78 8413
geutl2d | 602360000 | 5998512500 | 0.418% 68.63 7886

Table 8.18: Performance of the algorithm CGV? with 4-staged patterns.

Solution Difference Columns
Instance | of CGVR?P LB from LB | Time (sec) | Generated
geutldr 13823750 | 13790625.0 0.240% 0.70 407
geut2dr 15158750 | 15083409.1 0.499% 33.76 2676
geut3dr 19235000 | 19120561.8 0.599% 45.67 8410
geutddr 44672500 | 446273914 0.101% 307.66 31450
geutSdr 38887500 | 38456458.3 1.121% 242 1044
geutbdr 70090000 | 69717232.1 0.535% 12.23 3892
geut7dr | 115220000 | 1146058122 | 0.536% 52.29 10316
geut8dr | 151917500 | 1514676098 | 0.297% 502.60 32303
geut9dr | 120290000 | 119104183.0 | 0.996% 041 210
geutlOdr | 247580000 | 2465525000 | 0.417% 5.55 2065
geutl 1dr | 283940000 | 282079863.6 | 0.659% 269.26 16320
geutl2dr | 561610000 | 559820015.8 | 0.320% 1003.48 39675

Table 8.20: Performance of the algorithm CGVR? with rotations and 3-staged patterns.

8.6. Computational results

117

Solution Difference Columns
Instance | of CGVR? LB from LB | Time (sec) | Generated
geutldr 13823750 | 13790625.0 0.240% 0.83 415
geut2dr 15161875 | 15083409.1 0.520% 46.73 3010
geut3dr 19181875 | 19118423.5 0.332% 96.76 16255
geutddr | 44723750 | 44575105.3 0.333% 253.43 27104
geutSdr | 38890000 | 38454765.6 1.132% 4.72 1662
geutédr | 70192500 | 69599732.1 0.852% 10.45 2639
gcut7dr | 114867500 | 114503487.9 | 0.318% 70.18 12339
geut8dr | 151745000 | 1514623129 | 0.187% 605.13 30285
geut9dr 119730000 | 118806666.7 0.777% 2.73 1198
geutlOdr | 248620000 | 246552500.0 | 0.839% 9.25 3409
geutlldr | 283560000 | 281851974.2 | 0.606% 628.87 27379
geutl2dr | 561640000 | 559820015.8 | 0.325% 1328.03 32554

Table 8.21: Performance of the algorithm CGVR?” with rotations and 4-staged patterns.

BIBLIOTECA CENTRAL
CESAR LATTES
DESEN VOLVIMENTO DE
COLECAO
UNICAMP

118 Capitulo 8.

8.6.4 Computational results for the SP problem

For the problem SP, we have used the instances gcurld.. . .,gcurl2d considering the maximum
distance between two horizontal cuts of the strip as the width of the bin.

Although the instances for the SP problem required considerably more time than the (same)
mstances for the 2CS problem, the corresponding times required by the latter were still small
and acceptable in practice.

The results for algorithm CGS” for 2-, 3- and 4-staged cutting are shown in tables 8.22,
8.23 and 8.24, respectively. The lower bound corresponds to the optimal fractional solution of
formulation 8.2.

Solution Difference | Average Columns | Solution | Improvement
Instance | of CGS” LB from LB | Time (sec) | Generated | of FFDH | over FFDH
gcutld 51604 | 51583.0 0.041% 0.06 43 54323 5.01%
gcut2d 77436 | 77369.5 0.086% 026 141 77436 0.00%
geut3d 80206 | 801125 0.117% 4.50 1479 83529 3.98%
gcutdd 196480 | 1964225 | 0.029% 3.74 702 205250 427%
gcutsd 91177 | 91177.0 | 0.000% 0.04 29 96693 5.70%
geut6d 168148 | 1679875 | 0.096% 0.18 93 181578 7.40%
geut7d 243241 | 2430760 | 0.068% 0.65 232 259462 6.25%
gcut8d 332924 | 332669.3 | 0.077% 3.57 534 344732 3.43%
gcut9d 122836 | 1225325 | 0.248% 0.08 66 129706 5.30%
gcutlOd | 272919 | 272680.5 0.087% 0.22 119 286790 4.84%
geutlld | 315026 | 3147475 | 0.088% 1.50 332 338271 6.87%
geutl2d | 573806 | 573590.0 | 0.038% 8.88 610 605126 5.18%

Table 8.22: Performance of the algorithm CGS” with 2-staged patterns.

For the 2-staged problem, all instances were solved in less than 10 seconds. On the av-
erage, the difference between the solutions found by the algorithm an the lower bound was
only 0.081% and an optimal solution for instance gcur5d was found. The improvement of the
algorithm CGS” over FFDH was, on the average, of 4.85%. These improvements are very
significant, since algornithm FFDH also produces 2-staged solutions.

For the 3-staged problem, the most difficult instance (gcur/2) take 151 seconds to be com-
pleted. On the average, the difference between the solutions found by the algorithm and the
lower bound was 0.113% and the average improvement over FFDH was 7.66%.

For the 4-staged problem, the difference between the solutions found by the algorithm CGS”
an the lower bound was 0.116% and the improvement over FFDH was 7.74%, on the average.

We also performed tests when orthogonal rotations are allowed. The results of the tests
can be found 1n tables 8.25, 8.26 and 8.27. On the average, the difference between the solu-
tions found by the algorithm CGSR? and the lower bound was 0.114%, 0.204% and 0.261%

8.6. Computational results
Solution Difference | Average Columns | Solution | Improvement
Instance | of CGS” LB fromLB | Time (sec) | Generated | of FFDH | over FFDH
geutld 51432 51332.8 0.193% 0.25 188 54323 532%
gcut2d 77436 77369.5 0.086% 031 116 77436 0.00%
gcut3d 77790 77728.7 0.079% 10.51 3297 83529 6.87%
gcutdd 195307 | 1952495 0.029% 8.40 1233 205250 4.84%
gcutsd 87249 87164.4 0.097% 0.09 61 96693 9.77%
geutbd 158137 | 1581045 0.021% 0.32 132 181578 1291%
geut7d 236508 | 236412.8 0.040% 1.28 319 259462 8.85%
geut8d 310748 | 3104938 0.082% 42.55 4861 344732 9.86%
gcut9d 120479 | 119988.6 | 0.409% 0.33 245 129706 7.11%
geutlOd | 260388 | 260259.5 | 0.049% 0.33 131 286790 9.21%
geutlld | 305348 | 304918.0 | 0.141% 9.96 1386 338271 9.73%
geutl2d | 559870 | 5591325 | 0.132% 151.08 9748 605126 7.48%

Table 8.23: Performance of the algorithm CGS” with 3-staged patterns.

respectively for the 2-, 3- and 4-staged problem. Comparing with the solutions generated by the
FFDHR2 we obtain on the average an improvement of 11.62%, 13.41% and 13.42% respectively

for the 2-, 3- and 4-staged problem.

120 Capitulo 8.
Solution Difference | Average | Columns | Solution | Improvement
Instance | of CGS” LB fromLB | Time (sec) | Generated | of FFDH | over FFDH
geutld 51432 | 513328 | 0.193% 023 178 54323 5.32%
geut2d 77436 | 773695 | 0.086% 0.40 126 77436 0.00%
geut3d 77446 | 77287.0 | 0.206% 19.80 4516 83529 7.28%
geutdd 195307 | 1952495 | 0.029% 9.70 1118 205250 4.84%
geutsd 87249 871644 0.097% 0.11 62 96693 9.77%
geutbd 158137 | 1581045 | 0.021% 0.40 149 181578 12.91%
geut7d 236508 | 2364128 | 0.040% 1.48 314 259462 8.85%
geut8d 310672 | 310493.8 | 0.057% 47.28 4544 344732 9.88%
geut9d 119861 | 119426.2 | 0.364% 0.20 131 129706 7.59%
geutlOd | 260388 | 2602595 | 0.049% 0.39 132 286790 921%
geutlld | 305348 | 3049180 | 0.141% 13.80 1557 338271 9.73%
gcutl2d | 559159 | 5585319 | 0.112% 201.51 10422 605126 7.60%
Table 8.24: Performance of the algorithm CGS” with 4-staged patterns.
Solution Difference | Average | Columns Solution Improvement
Instance | of CGSR LB fromLB | Time (sec) | Generated | of FFDHR2 | over FFDHR2
geutldr 50612 50589.0 0.045% 0.10 54 54323 6.83%
geut2dr 60311 60192.0 0.198% 1.18 347 74744 19.31%
geut3dr 77385 | 772963 | 0.115% 5.88 1193 83529 7.36%
geutddr 175996 | 1759304 | 0.037% 32.11 3501 191383 8.04%
geutSdr 78530 78370.8 0.203% 0.56 235 96530 18.65%
geutbdr 138207 | 1380410 | 0.120% 0.97 224 181578 23.89%
geut7dr 226312 | 226163.8 | 0.066% 3.28 531 244742 7.53%
geut8dr | 300696 | 300499.3 | 0.065% 2954 1419 326197 7.82%
geut9dr 119584 | 119417.0 | 0.140% 0.22 102 129657 7.77%
goutlOdr | 236531 | 236278.2 | 0.107% 1.20 193 265322 10.85%
geutlldr | 286164 | 2856616 | 0.176% 10.53 555 326275 12.29%
geutl2dr | 549751 | 549181.6 | 0.104% 130.30 2908 605126 9.15%

Table 8.25: Performance of the algonthm CGSR” with rotations and 2-staged patterns.

8.6. Computational results

121

Solution Difference | Average Columns Solution Improvement
Instance | of CGSR LB fromLB | Time (sec) | Generated | of FFDHR2 | over FFDHR2
geutldr 50433 50329.0 0.207% 0.44 250 54323 7.16%
geut2dr 59369 59138.7 0.389% 491 1220 74744 20.57%
geut3dr 75447 752275 0.292% 80.03 11692 83529 9.68%
gcutddr 173796 | 173588.0 | 0.120% 127.54 11925 191383 9.19%
geutSdr 74885 747060 | 0.240% 0.40 140 96530 242%
geutbdr 135952 | 1354509 | 0.370% 4.77 1227 181578 25.13%
geut7dr | 221258 | 2211375 | 0.054% 7.39 847 244742 9.60%
geut8dr 204465 | 294188.3 | 0.094% 353.28 13965 326197 9.73%
geutSdr 116404 | 115994.6 | 0.353% 0.55 231 129657 10.22%
geutlOdr | 233321 | 2332537 | 0.029% 2.14 211 265322 12.06%
geutlldr | 278144 | 2774523 | 0.249% 232.55 7009 326275 14.75%
geutl2dr | 541926 | 5416105 | 0.058% 1179.61 20669 605126 10.44%

Table 8.26: Performance of the algorithm CGSR? with rotations and 3-staged patterns.

Solution Difference | Average | Columns Solution Improvement
Instance | of CGSR LB fromLB | Time (sec) | Generated | of FFDHR2 | over FFDHR2
geutldr 50433 50329.0 0.207% 047 255 54323 7.16%
geut2dr 59420 59124.5 0.500% 10.75 2222 74744 20.50%
geut3dr 75396 75162.2 0.311% 50.26 7261 83529 9.74%
geutddr 173687 | 1735343 | 0.088% 259.84 20740 191383 9.25%
gcutSdr 74717 74391.0 0.438% 0.46 155 96530 22.60%
gcutbdr 135952 | 1354509 | 0.370% 6.17 1332 181578 25.13%
geut7dr 221258 | 2211375 | 0.054% 8.19 791 244742 9.60%
geut8dr 204578 | 294188.1 | 0.133% 764.96 23291 326197 9.69%
geut9dr 116296 | 115927.8 | 0.318% 0.51 164 129657 10.30%
geutlOdr | 233582 | 233066.7 | 0.221% 524 376 265322 11.96%
geutlldr | 278362 | 2772307 | 0.408% 206.29 5251 326275 14.68%
geutl2dr | 541998 | 5415400 | 0.085% 935.73 12450 605126 1043%

Table 8.27: Performance of the algorithm CGSR?” with rotations and 4-staged patterns.

122 Capitulo 8.

8.7 Concluding remarks

In this paper we presented algorithms for the RK, 2CS, BPV and SP problems and their variants
RK", BP", BPV™ and SP" (where orthogonal rotations of the items are allowed) using guillotine
staged patterns.

For the RK problem we presented the (exact) pseudo-polynomial algorithms SDP for k-
staged patterns. We have also mentioned how to use SDP to solve the problem RK".

We extend the work of [18] by using column generation based algorithms to solve the 2CS
and BPV problems using staged patterns, and also extended these algorithms to solve the SP
problem. These algorithms use, as subroutines, the algorithm SDP to generate the columns.
The algorithms combines different techniques: Simplex method with column generation, an
exact algorithm for the discretization points, and approximation algorithms for the last residual
instance. An approach of this nature has shown to be promising, and has been used to tackle
the one-dimensional cutting stock problem [48, 17].

The algorithm for the SP problem was obtained adapting the algorithm for the BPV problem.
We have used the same strategy used in the algorithms for the 2CS and BPV problems. The
residual instances were solved with an approximation algorithm (FFDH) or another algorithm
we proposed (called FFDHR2) when rotations are allowed.

For almost all instances tested, the algorithms that use a perturbation method found solutions
of a slightly better quality than CG (respectively CGR) at the cost of a slight increase in the
running time.

A natural development of our work would be to adapt the approach used in the algorithm
CG for the version with arbitrary orthogonal cutting patterns (the cuts need not be guillotine).
One can find an initial solution using homogeneous patterns; the columns can be generated
using any of the algorithms that have appeared in the literature for the two-dimensional cutting
stock problem with value [6, 3]. To solve the last residual instance one can use approximation
algorithms [16, 11, 34].

One can also use column generation for the variant of 2CS in which the quantity of items
in each bin is bounded. This variant, proposed by Christofides and Whitlock [15], is called
restricted two-dimensional cutting stock problem. Each new column can be generated with
any of the known algorithms for the restricted two-dimensional cutting stock problem with
value [15, 41], and the last residual instance can be solved with the algorithm M-HFE. This
restricted version with guillotine cut requirement can also be solved using the ideas we have
Jjust described: the homogeneous patterns and the patterns produced by M-HFF can be obtained
with guillotine cuts, and the columns can be generated with the algorithm of Cung, Hifi and Le
Cun [24].

As a final remark we mention that we did not use a heuristic procedure to solve the column
generation step. Therefore, we could obtain optimal fractional solutions for all the instances

8.8. Bibliography 123

we have considered. These optimal fractional solutions yielded excellent lower bounds for the
optimal solutions, which turned out to be in most of the tests, very close to the solutions found
by the algorithms.

We performed many tests and compared the solutions obtained for the different variants of
the problems. On average, we noted an increase in computational time and decrease of space
occupation when we considered 2-, 3- and 4-staged patterns, as well as when rotations were
considered. It 1s interesting to note that very few papers consider 4-staged patterns. Finally,
we observe that for all tests performed, the algorithms we implemented found optimal or quasi-
optimal solutions 1n a reasonable amount of time, showing that they may be useful for practical

purposes

8.8 Bibliography

1. Ilan Adler, Nimrod Megiddo, and Michael J. Todd. New results on the average behavior
of simplex algorithms. Bull. Amer. Math. Soc. (N.S.), 11(2):378-382, 1984.

2. Ramon Alvarez-Valdes, Antonio Parajon, and Jose M. Tamarit. A computational study
of LP-based heuristic algorithms for two-dimensional guillotine cutting stock problems.
OR Spektrum, 24(2):179-192, 2002.

3. M. Arenales and R. Morabito. An AND/OR-graph approach to the solution of two-
dimensional non-guillotine cutting problems. European Journal of Operational Re-
search, 84:599-617, 1995.

4. B. S. Baker, D. J. Brown, and H. P. Katseff. A % algorithm for two-dimensional packing.
Journal of Algorithms, 2:348-368, 1981.

5. J. E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting. Journal
of the Operational Research Society, 36(4):297-306, 1985.

6. J. E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure.
Operations Research, 33(1):49-64, 1985.

7. J. E. Beasley. OR-Library: distributing test problems by electronic mail. Journal of the
Operational Research Society, 41(11):1069-1072, 1990.

8. G. Belov and G. Scheithauer. Models with variable strip widths for two-dimensional
two-stage cutting. www.math.tu-dresden.de/ ~capad/PAPERS/03-varwidth.pdf, 2003.

9. Karl-Heinz Borgwardt. Probabilistic analysis of the simplex method. In Mathematical
developments arising from linear programming (Brunswick, ME, 1988), volume 114 of
Contemp. Math., pages 21-34. Amer. Math. Soc., Providence, RI, 1990.

124

10

11

13.

14.

15.

16.

17.

18.

19.

Capitulo 8.

Andreas Bortfeldt. A genetic algorithm for the two-dimensional strip packing problem
with rectangular pieces. European Journal of Operational Research, 172:814-837, 2006.

A. Caprara. Packing 2-dimensional bins in harmony. In Proc. of 43rd Symposium on
Foundations of Computer Science, pages 490-499, 2002.

A. Caprara, A. Lodi, and M Monaci. An approximation scheme for the two-stage, two-
dimensional bin packing problem. In A.S. Schulz W.J. Cook, editor, Proceedings of the
Ninth Conference on Integer Programming and Combinatorial Optimization (IPCO'02),
pages 320-334. Springer-Verlag, 2002.

A. Caprara, A. Lodi, and M. Monaci. Fast approximation schemes for two-stage, two-
dimensional bin packing. Mathematics of Operations Research, 30(1):150-172, 2005.

A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations
Research Letters, 32:5-14, 2004.

N. Chnistofides and C. Whitlock. An algonthm for two dimensional cutting problems.
Operations Research, 25:30—44, 1977.

F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins.
SIAM J. Algebraic and Discrete Methods, 3:66-76, 1982.

G. F. Cintra. Algoritmos hibridos para o problema de corte unidimensional. In XXV
Conferéncia Latinoamericana de Informatica, Assungao, 1999.

G. F. Cintra. Algoritmos para problemas de corte de guilhotina bidimensional. PhD
thesis, Instituto de Matemadtica e Estatistica, Sio Paulo, 2004.

G. FE. Cintra, F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier. Approximation
algorithms for cutting stock problems. European Journal of Operational Research, to

appear.

G. F. Cintra and Y. Wakabayashi. Dynamic programming and column generation based
approaches for two-dimensional guillotine cutting problems. In Proceedings of WEA
2004: Workshop on Efficient and Experimental Algorithms, volume 3059 of Lecture
Notes in Computer Science, pages 175-190. 2004.

. E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds

for level oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:808-826, 1980.

8.8. Bibliography 125

29.

30.

31.

32.

33.

34.

35.

. COIN-OR Linear Program Solver. An Open Source code for solving linear programming

problems, http://www.coin-or.org/Clp/index.html.

. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to algorithms. MIT Press, Cambridge, MA, second edition, 2001.

Van-Dat Cung, Mhand Hifi, and Bertrand Le Cun. Constrained two-dimensional cut-
ting stock problems a best-first branch-and-bound algorithm. Inz. Trans. Oper. Res.,
7(3):185-210, 2000.

L. Epstein. Two dimensional packing: The power of rotation. In Proc. of the 28th Inter-
national Symposium of Mathematical Foundations of Computer Science, volume 2747 of
Lecture Notes on Computer Science — LNCS, pages 398-407. Springer—Verlag, 2003.

. S. P. Fekete and J. Schepers. An exact algorithm for higher-dimensional orthogonal

packing. Operations Research, to appear.

. P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem.

Operations Research, 9:849-859, 1961.

. P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem

- part II. Operations Research, 11:863-888, 1963.

P. Gilmore and R. Gomory. Multistage cutting stock problems of two and more dimen-
sions. Operations Research, 13:94-120, 1965.

M. Hifi. Exact algorithms for the guillotine strip cutting/packing problem. Computers &
Operations Research, 25(11):925-940, 1998.

J. C. Herz. A recursive computational procedure for two-dimensional stock-cutting. /BM
J. Res. Dev., pages 462469, 1972.

K. Jansen and R. van Stee. On strip packing with rotations. In Proc. of the ACM
Symposium on Theory of Computing, pages 755-761, 2005.

K. Jansen and G. Zhang. On rectangle packing: maximizing benefits. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 204-213,
2004.

C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25:645-656, 2000.

A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional level packing
problems. Journal of Combinatorial Optimization, 8:363-379, 2004.

126

36.

37.

38.

39.

40.

41.

43.

44,

46.

47.

Capitulo 8.

A.Lodi and M. Monaci. Integer linear programming models for 2-staged two-dimensional
knapsack problem. Mathematical Programming, 94:257-278, 2003.

S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing problem.
INFORMS Journal on Computing, 15(3):310-319, 2003.

F. K. Miyazawa and Y. Wakabayashi. Packing problems with orthogonal rotations. In
Proc. of Latin American Theoretical INformatics., volume 2976 of Lecture Notes in Com-
puter Science, pages 359-368, Buenos Aires, Argentina, 2004. Springer-Verlag.

R. Morébito, M. Arenales, and V. F. Arcaro. An and-or-graph approach for two-dimensional
cutting problems. European Journal of Operational Research, 58:263-271, 1992.

E. A. Mukhacheva and A. S. Mukhacheva. The rectangular packing problem: Local
optimum search methods based on block structures. Automation and Remote Control,
65(2):101-112, 2004.

J. F. Oliveira and J. S. Ferreira. An improved version of Wang’s algorithm for two-
dimensional cutting problems. European Journal of Operational Research, 44:256-266,
1990.

. J. Puchinger and G. R. Raidl. An evolutionary algorithm for column generation in integer

programming: an effective approach for 2d bin packing. In Proc. of Parallel Problem
Solving from Nature - PPSN VIII, volume LNCS 3242, pages 642-651. Springer-Verlag,
2004.

J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-dimensional
bin packing. European Journal of Operational Research, to appear.

J. R. Riehme, G. Scheithauer, and J. Terno. The solution of two-stage guillotine cutting
stock problems having extremely varying order demands. European Journal of Opera-
tional Research, 91:543-552, 1996.

5. 8. S. Seiden and G. J. Woeginger. The two-dimensional cutting stock problem revisited.

Mathematical Programming, 102(3):519-530, 2005.

E Vanderbeck. A nested decomposition approach to a 3-stage 2-dimensional cutting
stock problem. Management Science, 47:864-879, 2001.

P. Y. Wang. Two algorithms for constrained two-dimensional cutting stock problems.
Operations Research, 31:573-586, 1983.

8.8. Bibliography 127

48. G. Wischer and T. Gau. Heuristics for the integer one-dimensional cutting stock problem:
a computational study. OR Spektrum, 18:131-144, 1996.

49. G. Wischer, H. Haussner, and H. Schumann, An improved typology of cutting and pack-
ing problems, European Journal of Operational Research, to appear.

Capitulo 9
Conclusoes e Trabalhos Futuros

Neste trabalho apresentamos algoritmos para diversos problemas de empacotamento. O princi-
pal foco do trabalho foi o desenvolvimento de algoritmos de aproximag@o e heuristicas baseadas
no método de geracdo de colunas.

No Capitulo 4 apresentamos o problema que chamamos de Class Constrained Shelf Bin
Packing (CCSBP). Este problema € uma generalizagdo do problema bin packing onde itens tém
classes diferentes e devemos empacotar os itens separando-os por prateleiras. Este problema
possui aplicagoes na inddstria de metais [16]. Apresentamos algoritmos aproximados praticos
para este problema, e também um esquema de aproximag@o para o caso em que o numero de
classes diferentes € limitado por uma constante. Como trabalho futuro permanece em aberto a
questdo da existéncia de um esquema de aproximacao para o caso onde o nimero de classes faz
parte da entrada.

No Capitulo 5 consideramos dois problemas: o CCSBP ¢ o problema bin packing com res-
tricdes de classes. Apresentamos esquemas de aproximagao duais para ambos os problemas.
Neste caso buscamos solugdes para a versdo dual, que podem ser invidveis para o problema
original, usando no maximo a quantidade de recipientes de uma solugdo 6tima da versao ori-
ginal. A medida da qualidade da solugdo gerada esta relacionada com o grau de inviabilidade
da solugdo. Como possivel trabalho futuro pode-se tentar propor esquemas de aproximagoes
duais com complexidade de tempo mais baixa, ja que a complexidade de tempo dos algoritmos
propostos € muito alta.

No Capitulo 6 apresentamos o problema bin packing com restri¢cao de classes, denotado por
CCBP, com aplicagdes para um problema de construcio de servidores de video sob demanda.
Apresentamos algoritmos aproximados priticos para este problema e exibimos resultados de
testes computacionais com tais algoritmos. Também apresentamos algoritmos aproximados
para a versdo online do problema. Por fim, apresentamos um esquema de aproximagdo para
0 caso em que o nimero de classes diferentes da entrada € limitado por uma constante. Aqui
também fica em aberto a existéncia de um esquema de aproximagao quando o namero de classes

128

129

diferentes faz parte da entrada. Um esquema de aproximagio para este problema pode levar
a um esquema de aproximagdo para o problema CCSBP. Por outro lado, um resultado de
inaproximabilidade também pode ajudar a construir um resultado semelhante para o problema
CCSBP.

No Capitulo 7 apresentamos algoritmos de aproximag@o para a versao do problema bin
packing onde os itens possuem demandas, problemas que sdo conhecidos na literatura como
problemas de cutting stock. Neste capitulo mostramos como adaptar varios algoritmos de apro-
ximacgao desenvolvidos para problemas sem demanda para o caso onde ha demanda para os
itens. Dentre os resultados deste capitulo destacamos um esquema de aproximagao assintotico
para o problema cutting stock unidimensional e um algoritmo com fator de aproximagio as-
sintético 2.077 para o problema cutting stock bidimensional. Neste ponto, destacamos que a
complexidade computacional do problema de curting stock esta em aberto. Apesar de sabermos
que este problema é NP-dificil, ndo se sabe se a versao de decisdo do problema estd em NP.

Finalmente no Capitulo 8, apresentamos algoritmos para problemas de empacotamento bi-
dimensional. Nestes problemas s@o considerados cortes guilhotindveis e em estagios. Apresen-
tamos algoritmos exatos para problema da mochila bidimensional baseados em programagao
dinamica. Consideramos também o problema bin packing bidimensional com demandas e o
problema strip packing bidimensional com demandas. Para estes problemas apresentamos heu-
risticas baseadas no método de gerac@o de colunas. Um possivel ponto para trabalhos futuros €
estender os algoritmos descritos para problemas tridimensionais. Para tanto, deve-se construir
algoritmos eficientes para o problema da mochila tridimensional, que serd usada na parte de
geracao de colunas.

Algoritmos de aproximacao sdo vistos por muitas pessoas como resultados tedricos sem
grande aplicabilidade prética. Nesta tese apresentamos alguns algoritmos aproximados prati-
cos e fizemos alguns testes computacionais (ver Capitulo 6). Os resultados destes testes mos-
tram que tais algoritmos produzem solugdes de excelente qualidade, podendo ser utilizados na
pritica. Virios algoritmos aproximados sdo de fécil implementacdo e em geral produzem so-
lucdes cujos valores estdo muito mais proximos do étimo do que os fatores de aproximagao
demonstrados [39, 43]. Tais algoritmos podem ser usados inclusive como heuristicas primais
em algoritmos exatos (veja [1] como exemplo).

Também hd um grande interesse de investigacdo tedrica relacionada a algoritmos de apro-
ximagdo. Neste caso busca-se saber, para um determinado problema, qual o melhor fator de
aproximagio que pode ser obtido por um algoritmo para este problema. Nesta linha pode-se
projetar algoritmos aproximados ou provar resultados de inaproximabilidade [25, 5, 39]. A par-
tir de tais resultados criou-se uma teoria de complexidade baseada em classes de aproximacao
(veja por exemplo [5]). Tais resultados trazem uma maior fundamentag@o tedrica para a questao
de se P é igual a NP. Hoje sabemos, por exemplo, que a existéncia de algum FPTAS para uma
enorme quantidade de problemas equivaleria a mostrar que P = NP. Com os recentes resul-

130 Capitulo 9. Conclusées e Trabalhos Futuros

tados sobre provas verificiveis probabilisticamente [2, 3, 4], sabemos que diversos problemas
ndao admitem sequer aproximagao constante a menos que P = NP.

Nesta tese também investigamos heuristicas baseadas no método de geracdo de colunas. A
grande vantagem desta abordagem ¢ trabalhar com programas lineares que fornecem limitantes
duais muito proximos do 6timo. Para o problema curting stock unidimensional existe uma
conjectura famosa, para a formulagdo correspondente a apresentada no Capitulo 7 (formulagao
8.1), conhecida como MIRUP (Modified Integer Round-Up Property) que diz o seguinte: O
valor de uma solugdo inteira 6tima para uma instancia / do cutting stock unidimensional é
no méaximo o teto da fungdo objetivo do programa linear adicionado de 1. Virios resultados
corroboram com esta conjectura [34, 35, 40]. Para o caso bidimensional com cortes em dois
estigios Riehme er al. [33] apresentam uma versido da conjectura MIRUP, (mas neste caso
adiciona-se 2 ao valor do teto do programa linear) e resultados computacionais dando suporte a
conjectura. Uma maior investigagdo da qualidade do limitante dual fornecido pela formulagao
8.1 para o problema bidimensional pode ser um interessante trabalho. Como vimos no Capitulo
7, as heuristicas propostas, baseadas na solucdo deste programa linear, obtiveram excelentes
resultados.

Referéncias Bibliograficas

[1] C. E. Andrade, FE. K. Miyazawa, and E. C. Xavier. Um algoritmo exato para o problema
de empacotamento bidimensional em faixa. In Anais do XXXVIII Simpdsio Brasileiro de
Pesquisa Operacional, volume em CD, pages 1-12, 2006.

[2] S. Arora and C. Lund. Hardness of approximations. PSW Publishing, 1997.

[3] S. Arora, C. Lund, R. Motwani, and M. Szegedy. Proof verification and intractability
of approximation problems. In Proc. 33th IEEE Annual Symposium on Foundations of
Computer Sciense, pages 106-113, 1998.

[4] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. In
Proc. 33th IEEE Annual Symposium on Foundations of Computer Sciense, pages 2-13,
1992.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and approximation: combinatorial optimization problems and their approxi-
mality properties. Springer-Verlag, 1999.

[6] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network Flows.
John Wiley & Sons, 1990.

[7] J. E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure.
Operations Research, 33(1):49-64, 1985.

[8] G. FE Cintra. F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier. A note on the approxi-
mability of cutting stock problems. European Journal of Operational Research, to appear,
http://dx.doi.org/10.1016/j.ejor.2005.09.053.

[9] G. E Cintra and Y. Wakabayashi. Dynamic programming and column generation ba-
sed approaches for two-dimensional guillotine cutting problems. In Proceedings of WEA
2004: Workshop on Efficient and Experimental Algorithms, volume 3059 of Lecture Notes
in Computer Science, pages 175-190. 2004.

131

132 REFERENCIAS BIBLIOGRAFICAS

[10] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin
packing: a survey. In D. Hochbaum, editor, Approximation Algorithms for NP-hard Pro-
blems, chapter 2, pages 46-93. PWS, 1997.

[11] M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color
constraints. Technical report, IBM, T.J. Watson Research Center, NY, 1998.

[12] M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color
constraints. In Proceedings of the Ith Brazilian Symposium on Graph Algorithms and
Combinatorics, volume 7 of Electronic Notes in Discrere Mathematics, 2001.

[13] J. P. dos Santos and M. P. Mello. Introducd@o a Andlise Combinatdria. Unicamp, 2002.

[14] H. Dyckhoff. A typology of cutting and packing problems. European J. Operational
Research, 44:145-159, 1990.

[15] C. E. Ferreira, C. G. Fernandes, F. K. Miyazawa, J. A. R. Soares, J. C. Pina Jr., K. S.
Guimaraes, M. H. Carvalho, M. R. Cerioli, P. Feofiloff, R. Dahab, and Y. Wakabayashi.
Uma introdugdo sucinta a algoritmos de aproximagdo. Coloquio Brasileiro de Matematica
—IMPA, Rio de Janeiro-RJ, 2001.

[16] J. S. Ferreira, M. A. Neves, and P. Fonseca e Castro. A two-phase roll cutting problem.
European J. Operational Research, 44:185-196, 1990.

[17] S. Ghandeharizadeh and R. R. Muntz. Design and implementation of scalable continous
media servers. Parallel Computing Journal, 24(1):91-122, 1998.

[18] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem.
Operations Research, 9:849-859, 1961.

[19] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem
- part Il. Operations Research, 11:863—-888, 1963.

[20] P. Gilmore and R. Gomory. Multistage cutting stock problems of two and more dimensi-
ons. Operations Research, 13:94-120, 1965.

[21] P. Gilmore and R. Gomory. The theory and computation of knapsack functions. Operati-
ons Research, 15:1045-1075, 1967.

[22] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the Association
for Computing Machinery,42:1115-1145, 1995.

REFERENCIAS BIBLIOGRAFICAS 133

[23] T. C. Hales. A proof of the kepler conjecture. Annals of Mathematics, 162(3):1065-1185,
2005.

[24] D.S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedulling
problems: practical and theoretical results. journal of the ACM, 34(1):144—-162, 1987.

[25] D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Pu-
blishing Company, 1997.

[26] O.H. Ibarra and C.E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the Association for Computing Machinery, 22:463-468, 1975.

[27] C. Kenyon and E. Rémila. Approximate strip packing. In 37th Annual Symposium on
Foundations of Computer Science, pages 31-36, 1996.

[28] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25:645-656, 2000.

[29] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin packing
problems. Discrete and Applied Mathematics, 123:379-396, 2002.

[30] A. Lodi, S. Martello, and D. Vigo. Two-dimensional packing problems: A survey. Euro-
pean Journal of Operational Research, 141(2):241-252, 2002.

[31] S. Martello and P. Toth. Knapsack problems: algorithms and computer implementations.
John Wiley & Sons, Inc, 1990.

[32] Silvano Martello, Michele Monaci, and Daniele Vigo. An exact approach to the strip-
packing problem. INFORMS Journal on Computing, 15(3):310-319, 2003.

[33] J. R. Richme, G. Scheithauer, and J. Terno. Numerical investigations on the mirup of the
2-stage guillotine cutting stock problem. Technical Report MATH-NM-17-1995, Techn.
Univ. Dresden, 1995.

[34] G. Scheithauer and J. Temo. The modified integer round-up property of the one-
dimesional cutting stock problem. European J. Operational Research, 84:562-571, 1995.

[35] G. Scheithauer and J. Terno. Theoretical investigations on the modified integer round-
up property for the one-dimensional cutting stock problem. Oper. Res. Ler., 20:93-100,
1997.

[36] H. Shachnai and T. Tamir. Multiprocessor scheduling with machine allotment and paral-
lelism constraints. Algorithmica, 32(4):651-678, 2002.

134 REFERENCIAS BIBLIOGRAFICAS

[37] H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical
Computer Science, 321(1):103-123, 2004.

[38] N.J. A. Sloane. Kepler's conjecture confirmed. Nature, 395(6701):435, 1998.
[39] V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[40] G. Wiischer and T. Gau. Two approaches to the cutting stock problem. In IFORS 93
Conference, 1993.

[41] G. Wischer, H. Haussner, and H. Schumann. An improved typology of cutting and pac-
king problems. To Appear in European Journal of Operational Research,

[42] J. L. Wolf, P. S. Wu, and H. Shachnai. Disk load balancing for video-on-demand-systems.
ACM Multimedia Systems Journal, 5:358-370, 1997.

[43] E. C. Xavier and F. K. Miyazawa. Practical comparison of approximation algorithms for
scheduling problems. Pesquisa Operacional, 24(2):227-252, 2004.

[44] E.C. Xavier and F. K. Miyazawa. A one-dimensional bin packing problem with shelf divi-
sions. In 2nd Brazilian Symposium or Graphs, Algorithms, and Combinatorics (GRACO
2005), volume 19 of Electronic Notes in Discrete Mathematics, 2005.

[45] E. C. Xavier and F. K. Miyazawa. The class constrained bin packing problem with appli-
cations to video-on-demand. In Proceedings of the 12th Annual International Computing
and Combinatorics Conference (COCOON'06), volume 4112 of Lecture Notes in Compu-
ter Science, pages 439448, 2006.

