
Gerenciamento Baseado em Modelos da

Configuração de Sistemas de Segurança em

Ambientes de Redes Complexos

João Porto de Albuquerque Pereira

Tese de Doutorado

i

Instituto de Computação

Universidade Estadual de Campinas

Gerenciamento Baseado em Modelos da Configuração de

Sistemas de Segurança em Ambientes de Redes Complexos

João Porto de Albuquerque Pereira1

5 de julho de 2006

Banca Examinadora:

• Prof. Dr. Paulo Ĺıcio de Geus

IC-UNICAMP (Orientador)

• Prof. Dr. Joni da Silva Fraga

DAS-UFSC

• Prof. Dr. Edgard Jamhour

PPGIA-PUC-PR

• Prof. Dr. Ricardo Dahab

IC-UNICAMP

• Prof. Dr. Jacques Wainer

IC-UNICAMP

• Prof. Dr. Otto Carlos Muniz Bandeira Duarte (Suplente)

COPPE-UFRJ

• Prof. Dr. Edmundo Roberto Mauro Madeira (Suplente)

IC-UNICAMP

1Suporte financeiro parcial concedido por CAPES (Coordenação para Aperfeiçoamento dos
Programas de Ensino Superior) e DAAD (Serviço Alemão de Intercâmbio Acadêmico).

ii

 FICHA CATALOGRÁFICA ELABORADA PELA
 BIBLIOTECA DO IMECC DA UNICAMP

 Bibliotecária: Miriam Cristina Alves – CRB8a / 859

Pereira, João Porto de Albuquerque.

P414g Gerenciamento baseado em modelos da configuração de sistemas

de segurança em ambientes de rede complexos / João Porto de

Albuquerque Pereira -- Campinas, [S.P. :s.n.], 2006.

Orientador : Paulo Lício de Geus

Tese (doutorado) - Universidade Estadual de Campinas, Instituto de

Computação.

1. Redes de computadores – Medidas de segurança. 2. Redes de

computadores (Gerenciamento). 3. Modelagem de dados. 4. Internet

(Redes de computação). I. Geus, Paulo Lício de. II. Universidade

Estadual de Campinas. Instituto de Computação. III. Título.

Título em inglês: Model-based configuration management of security systems in complex
network environments

Palavras-chave em inglês (Keywords): 1. Computer networks – Security measures. 2.
Computer networks – Management. 3. Data modeling. 4. Internet (Computer networks).

Área de concentração: Sistemas de Computação/ Redes de computadores

Titulação: Doutor em Ciência da Computação

Banca examinadora: Prof. Dr. Paulo Lício de Geus (IC-UNICAMP)
 Prof. Dr. Joni da Silva Fraga (DAS-UFSC)
 Prof. Dr. Edgard Jamhour (PPGIA-PUC-PR)
 Prof. Dr. Ricardo Dahab (IC-UNICAMP)
 Prof. Dr. Jacques Wainer (IC-UNICAMP)

Data da defesa: 24/05/2006

Programa de Pós-Graduação: Doutorado em Ciência da Computação

iii

Gerenciamento Baseado em Modelos da Configuração de

Sistemas de Segurança em Ambientes de Redes Complexos

Este exemplar corresponde à redação final da Tese

devidamente corrigida e defendida por João Porto

de Albuquerque Pereira e aprovada pela Banca Ex-

aminadora.

Campinas, 24 de maio de 2006.

Prof. Dr. Paulo Ĺıcio de Geus

IC-UNICAMP (Orientador)

Tese apresentada ao Instituto de Computação,

unicamp, como requisito parcial para a obtenção

do t́ıtulo de Doutor em Ciência da Computação.

iv

c© João Porto de Albuquerque Pereira, 2006.

Todos os direitos reservados.

vi

Prefácio

Esta tese colige os resultados de pesquisas realizadas durante meu programa de doutoramento,

o qual se dividiu entre o Laboratório de Administração e Segurança de Sistemas (LAS) no Insti-

tuto de Computação da Universidade Estadual de Campinas (Unicamp) e o grupo de trabalho

de Redes e Sistemas Distribúıdos (Arbeitsgruppe Rechnernetze und verteilte Systeme) no Depar-

tamento de Informática da Universidade de Dortmund (Fachbereich Informatik der Universität

Dortmund) na Alemanha. Os trabalhos se realizaram sob a orientação do Prof. Dr. Paulo Ĺıcio

de Geus e do Prof. Dr. Heiko Krumm, que é co-orientador de facto desta tese, embora não

apareça formalmente nessa função por força de restrições de regulamento.

Devido a esse caráter inter-institucional e internacional, a pesquisa foi desenvolvida na ĺıngua

inglesa (lingua franca), que é, portanto, utilizada nos caṕıtulos centrais da tese — em grande

parte, versões revistas e estendidas de artigos anteriormente publicados. Uma introdução e um

resumo das conclusões (caṕıtulos 0 e 9, respectivamente) são, no entanto, oferecidos na ĺıngua

portuguesa com o intuito de dar uma visão geral das motivações e contribuições da pesquisa ao

leitor não proficiente em inglês.

Na impossibilidade de mencionar todas as várias pessoas que contribúıram para esta tese,

gostaria de agradecer aqui àquelas que tiveram participação direta em sua realização e com

as quais tenho o prazer de dividir os créditos dos acertos nela contidos (os desacertos vão

inteiramente por minha conta). Aos professores Paulo Ĺıcio de Geus e Heiko Krumm agradeço

por seus comentários, pelas trocas de idéias, pelas cŕıticas, pelas pacientes revisões e pelo apoio,

combinados a uma grande liberdade, fatores que possibilitaram e impulsionaram este trabalho.

A Holger Isenberg e René Jeruschkat agradeço pelo trabalho em conjunto no contexto de suas

teses de mestrado (Diplomarbeiten), que muito contribuiu para os resultados aqui alcançados.

Sou grato também aos membros da banca de avaliação (Prof. Dr. Joni da Silva Fraga, Prof.

Dr. Edgard Jamhour, Prof. Dr. Ricardo Dahab e Prof. Dr. Jacques Wainer) pelas importantes

cŕıticas e comentários, e a Helen Mary Murphy Peres Teixeira pela revisão de meus artigos.

Esse trabalho não se teria realizado sem o apoio abnegado e o companheirismo de Gabriela.

A gratidão que lhe devo está muito além da que posso aqui exprimir.

J. P. A. P., Campinas, junho de 2006.

vii

A Gualberto Cavalcante Porto

viii

Resumo

Os mecanismos de segurança empregados em ambientes de redes atuais têm complexidade cres-

cente e o gerenciamento de suas configurações adquire um papel fundamental para proteção

desses ambientes. Particularmente em redes de computadores de larga escala, os administradores

de segurança se vêem confrontados com o desafio de projetar, implementar, manter e monitorar

um elevado número de mecanismos, os quais possuem sintaxes de configuração heterogêneas e

complicadas. Uma conseqüência dessa situação é que erros de configuração são causas freqüentes

de vulnerabilidades de segurança.

O presente trabalho oferece uma sistemática para o gerenciamento da configuração de sis-

temas de segurança de redes que corresponde especialmente às necessidades dos ambientes com-

plexos encontrados em organizações atuais. A abordagem, constrúıda segundo o paradigma de

Gerenciamento Baseado em Modelos, inclui uma técnica de modelagem que trata uniformemente

diferentes tipos de mecanismos e permite que o projeto de suas configurações seja executado

de forma modular, mediante um modelo orientado a objetos. Esse modelo é segmentado em

Subsistemas Abstratos, os quais encerram um grupo de mecanismos de segurança e outras enti-

dades relevantes do sistema — incluindo seus diferentes tipos de mecanismo e as inter-relações

rećıprocas entre eles.

Uma ferramenta de software apóia a abordagem, oferecendo um diagrama para edição de

modelos que inclui técnicas de visualização de foco e contexto. Essas técnicas são particularmente

adaptadas para cenários de larga escala, possibilitando ao usuário a especificação de certa parte

do sistema sem perder de vista o contexto maior no qual essa parte se encaixa. Após a conclusão

da modelagem, a ferramenta deriva automaticamente parâmetros de configuração para cada

mecanismo de segurança do sistema, em um processo denominado refinamento de poĺıticas.

Os principais resultados deste trabalho podem ser sumarizados nos seguintes pontos: (i)

uma técnica de modelagem uniforme e escalável para o gerenciamento de sistemas de segurança

em ambientes complexos e de larga escala; (ii) um processo para o projeto de configurações

apoiado por uma ferramenta que inclui técnicas de foco e contexto para melhor visualização e

manipulação de grandes modelos; (iii) uma abordagem formal para a validação do processo de

refinamento de poĺıticas.

ix

Abstract

The security mechanisms employed in current networked environments are increasingly complex,

and their configuration management has an important role for the protection of these environ-

ments. Especially in large scale networks, security administrators are faced with the challenge of

designing, deploying, maintaining and monitoring a huge number of mechanisms, most of which

have complicated and heterogeneous configuration syntaxes. Consequently, configuration errors

are nowadays a frequent cause of security vulnerabilities.

This work offers an approach to the configuration management of network security systems

specially suited to the needs of the complex environments of today’s organisations. The approach

relies upon the Model-Based Management (MBM) paradigm and includes a modelling framework

that allows the design of security systems to be performed in a modular fashion, by means

of an object-oriented model. This model is segmented into logical units (so-called Abstract

Subsystems) that enclose a group of security mechanisms and other relevant system entities,

offering a more abstract representation of them. In this manner, the administrator is able to

design a security system—including its different mechanism types and their mutual relations—by

means of an abstract and uniform modelling technique.

A software tool supports the approach, offering a diagram editor for models, which includes

focus and context visualisation techniques. These techniques are particularly suitable to large-

scale scenarios, enabling a designer to precisely specify a given part of the system without losing

the picture of the context to which this part belongs. After the model is complete, the tool

automatically derives configuration parameters for each security mechanism in the system, in a

process called policy refinement.

The major results of this work can be summarised as follows: (i) definition of a uniform

and scalable object-oriented modelling framework for the configuration management of large,

complex network security systems; (ii) development of a configuration design process assistes by

a tool that implements focus and context techniques to improve visualisation and manipulation

of large models; (iii) a formal validation approach of the policy refinement process.

x

Contents

Prefácio vii

Resumo ix

Abstract x

0 Introdução 1

0.1 Organização da Tese . 3

1 Introduction 6

1.1 Organisation . 8

2 Basic Concepts and Related Work 10

2.1 Network Security Services . 10

2.1.1 Firewalls and Virtual Private Networks (VPNs) 11

2.2 Policy-Based Network Management . 12

2.3 Network Security Management Tools and Approaches 13

2.3.1 Rule-based Approaches . 13

2.3.2 Logic-based Approaches . 14

2.3.3 Trust Management Approaches . 15

2.3.4 Graphic and Analysis Tools . 15

2.3.5 Hierarchical Approaches . 16

2.4 Model-Based Management (MBM) . 17

2.4.1 Previous Work on MBM of Network Security Services 17

2.4.2 Scalability Problems . 19

2.4.3 Comparison between MBM and other works 20

2.5 Chapter Summary . 21

3 Research Approach and Goals 22

3.1 Conceptual Framework . 22

3.1.1 Network Security System Design . 24

3.2 Research Goals . 26

xi

3.3 Chapter Summary . 27

4 Modelling Framework and Usage 28

4.1 Meta-Model Definition . 28

4.1.1 Layers RO and SR . 29

4.1.2 The DAS level . 30

Concept of Abstract Subsystem (AS) . 30

Diagram of Abstract Subsystems (DAS) 31

4.1.3 Security Goals, Requirements and Assumptions 32

4.1.4 Expanded Subsystems . 33

4.2 Usage of the Modelling Framework . 34

4.2.1 Scenario Description . 34

4.2.2 Modelling the RO Level . 35

4.2.3 Modelling of Users, Services and Resources 37

4.2.4 DAS Modelling . 37

Segmentation into ASs . 38

Mapping of actors . 38

Mapping of mediators . 39

Mapping of targets . 39

Establishment of Structural Connections 40

4.2.5 Expanded Subsystems . 40

4.3 Chapter Summary . 42

5 Automated Refinement and Tool Support 43

5.1 Automated Policy Hierarchy Building . 43

5.1.1 Policy Support and Semantics . 44

5.1.2 Refinement RO/SR . 45

5.1.3 Refinement SR/DAS . 46

5.1.4 Refinement DAS/ES . 47

5.1.5 Configuration Parameter Generation . 49

5.2 Supporting Tool . 49

5.2.1 Extensions of this work . 51

5.3 Focus & Context . 51

5.3.1 Semantic Zooming . 51

5.3.2 Fisheye View . 52

5.3.3 Loosely Related Work . 54

5.4 Chapter Summary . 55

6 Formal Refinement Validation and Analysis 56

6.1 Formalism of the Model . 57

6.2 Validation Approach Overview . 61

xii

6.3 SR/DAS Congruence . 63

6.3.1 Refinement Consistency Conditions . 63

6.3.2 Structural Consistency Conditions . 67

6.4 DAS/ES Congruence . 68

6.4.1 Refinement Consistency Conditions . 68

6.4.2 Local Structural Consistency Conditions 69

6.4.3 Composition Consistency Conditions . 70

6.4.4 Generalisation Theorems and Lemma . 71

Security Assumption Lemma . 72

6.5 Model Representativeness Axioms . 73

6.5.1 Accesses and their abstract representations 73

6.5.2 Authentication and Enabled Accesses . 77

6.6 Validation Theorems . 79

6.6.1 Proof of VT1 . 79

6.6.2 Proof of VT2 . 80

6.7 Validation Soundness . 83

6.8 Refinement and Validation Analysis . 84

6.8.1 Analysis of the SR/DAS phase . 84

6.8.2 Analysis of the AS/ES phase . 85

6.8.3 Scalability Improvements . 86

Scalability on the Refinement . 86

Scalability on the Validation . 87

6.9 Chapter Summary . 88

7 Application Examples and Experimental Results 89

7.1 Simple Examples . 89

7.1.1 Firewall Example . 89

7.1.2 VPN Example . 90

7.2 Case Study . 92

7.2.1 Network Environment . 92

7.2.2 High-level Policies . 92

7.2.3 Incremental Configuration Design Process 94

RO level . 94

SR level . 95

DAS and ES levels . 96

7.3 Analysis of the Experimental Results . 98

7.3.1 Representation Improvements . 98

7.3.2 Editing, Navigation and Visualisation Improvements 99

Combining Semantic Zooming and Fisheye View 101

7.4 Chapter Summary . 102

xiii

8 Conclusion 104

8.1 Contributions of this work . 104

8.1.1 Modelling Framework . 105

8.1.2 Graphical Representation . 106

8.1.3 Refinement Algorithms and Validation . 107

8.1.4 Management Process and Implementation 108

8.2 Future Work . 109

9 Conclusão 111

9.1 Principais Contribuições . 111

9.1.1 Técnica de Modelagem . 112

9.1.2 Representação Gráfica e Protótipo . 113

9.1.3 Algoritmos de Refinamento e Validação 113

9.1.4 Processo de Gerenciamento e Implementação 115

9.2 Trabalhos Futuros . 116

Referencias Bibliográficas 118

A Refinement Algorithms 128

B Proof of the Generalisation Theorems 130

B.1 Proof of GT1 . 130

B.2 Proof of GT2 . 132

C Models of the Application Case 135

xiv

List of Figures

2.1 Common Meta-Model of Previous Work on MBM 18

2.2 Tool Interface . 20

3.1 Development Life-cycle of Network Security Systems 23

3.2 Zooming-in . 25

3.3 Zooming-out . 25

3.4 Complete System . 25

4.1 Meta-Model Overview . 29

4.2 Classes of the RO level . 29

4.3 Classes of the SR level . 30

4.4 Components of Abstract Subsystems . 31

4.5 Class Diagram of Levels RO, SR, DAS, and ES 33

4.6 Classes of the ES level . 34

4.7 Sample Network Scenario . 35

4.8 Model Example . 36

4.9 Expanded Subsystems internal network and dmz from Fig. 4.8 41

5.1 Policies and Security Requirements in the System 44

5.2 Example of Refinement RO → SR . 46

5.3 Example of Refinement SR→ DAS . 47

5.4 Example of Refinement DAS → ES . 48

5.5 Graphical interface of the supporting tool . 50

5.6 Semantic Zooming applied to an AS . 52

5.7 Fisheye view with variable and fixed radius . 53

5.8 Crossing of edges caused by distortion of fisheye view and its prevention 54

5.9 Visualisation of a DAS in the fisheye view . 55

6.1 Overview of Validation Condition Sets . 61

6.2 Relation between the SR level and the Real-world 62

6.3 Example of active security assumptions in a path 66

6.4 Example of correspondence between a service permission and an ATPermission . 68

6.5 Correspondence between accesses in the real environment and the SR level 76

xv

7.1 Simple firewall model after the refinement . 91

7.2 The configuration window for isakmpd 1 . 93

7.3 Simple VPN model after the refinement . 93

7.4 Case study model of the levels RO and SR . 95

7.5 Subsystems internal network and dmz from the case study and their relation to

the SR level . 97

7.6 DAS for the case study environment . 98

7.7 Fisheye view with focus centred at the source node 100

7.8 Fisheye view with focus centred at the target node 101

7.9 Fisheye view in combination with semantic zooming 102

C.1 Abstract and expanded view of subsystem “internal network” 135

C.2 Abstract and expanded view of subsystem “dmz” 136

C.3 Three-layered model for the case study . 137

xvi

Chapter 0

Introdução

A ampla utilização de computadores e tecnologias de comunicação de dados, conectados a uma

crescente Internet, requer a adoção de medidas de proteção para controlar o risco de ataques

através da rede. Com tal intuito são empregados os sistemas de segurança de redes, que podem

ser vistos como um conjunto de serviços de segurança, visando prover a operação e comunicação

seguras da rede, nos moldes ditados pela poĺıtica de segurança da organização. Cada um desses

serviços de segurança é implementado por um ou mais mecanismos de segurança.

Em consonância com as necessidades de proteção dos ambientes de rede atuais, as tecnologias

dos sistemas de segurança de redes têm-se complexificado significativamente. Aos tradicionais

firewalls [119] — baseados em filtragem de pacotes — incorporam-se mecanismos como Redes

Privadas Virtuais (VPNs) [103], associações criptográficas fim-a-fim — utilizando, por exemplo,

IPSec [57] —, gerenciamento descentralizado de confiança (decentralized trust management) [12,

11] e o uso de pontos de aplicação distribúıdos para uma poĺıtica global (firewalls distribúıdos)

[9, 51].

Em direção oposta, há um crescente esforço pela definição de padrões e normas para o projeto

de alto ńıvel da segurança da informação de organizações. Padrões como o ISO/IEC 17799:2000

[49] — derivado da primeira parte da norma britânica BS 7799 (Código de Prática para a Gestão

da Segurança da Informação)1 — especificam guias de conduta e conjuntos de melhores práticas

para a definição de controles de alto ńıvel de abstração relacionados à segurança da informação.

No entanto, a transição dessas poĺıticas e controles de segurança de alto ńıvel para a efetiva

implementação dos mecanismos é, na maioria das vezes, abrupta e sujeita a erros. O processo

usual parte de uma descrição em alto ńıvel de abstração diretamente para a implementação de um

sistema complexo, composto de diversos tipos de mecanismos — os quais possuem, na maioria

das vezes, sintaxes de configuração com idiossincrasias completamente discrepantes. Assim, o

administrador da segurança se vê confrontado com a complexa tarefa de ajustar corretamente as

configurações desses diferentes mecanismos, para que assegurem o cumprimento das poĺıticas de

sua organização. Como novas vulnerabilidades e técnicas de invasão são descobertas diariamente,

1Esse padrão foi traduzido para o português e incorporado como norma técnica da ABNT como NBR ISO/IEC
17799 [5].

1

2

os mecanismos necessitam, ainda, ser continuamente reconfigurados para acompanhar a evolução

das ameaças.

Enquanto que um progresso significativo foi alcançado na melhoria da tecnologia de segurança

de redes nos últimos anos, apenas uma modesta atenção tem sido dada à sua interface de

configuração. Há, de fato, alguns produtos com uma interface gráfica um pouco mais palatável.

Estes restringem-se, entretanto, a tipos particulares de mecanismos, não mitigando a árdua

tarefa da configuração da segurança como um todo. Na prática, o administrador da segurança

se vê obrigado a lidar com sintaxes de configuração complicadas e heterogêneas, a maioria das

quais não é intuitiva e, em alguns casos, até mesmo induz ao erro. (ver por exemplo [117]). A

situação é especialmente dramática em ambientes de larga escala, nos quais se torna muito dif́ıcil

obter uma visão global dos numerosos mecanismos de segurança empregados, os quais têm de

ser postos em harmônica cooperação. Nesse contexto, um único desajuste entre dois quaisquer

mecanismos pode deixar vulnerável todo o sistema. Além disso, a distância entre a especificação

das poĺıticas em alto ńıvel e a implementação torna dif́ıcil, também, a auditoria dos mecanismos

de segurança empregados, isto é, a verificação de que estes aplicam de fato as poĺıticas de alto

ńıvel especificadas.

Tendo em conta o cenário delineado, não deveria surpreender a conclusão do paradigmático

trabalho de Anderson: “a maioria das falhas de segurança se deve a erros de implementação

e gerenciamento”[3]. Além disso, a situação não parece ter evolúıdo satisfatoriamente, pois os

mesmos resultados foram confirmados aproximadamente dez anos depois num recente estudo

sobre três serviços de grande porte na Internet [78]. Este estudo conclui que os erros de con-

figuração constituem a maior categoria dos erros de operação – estes sendo, mesmo, a causa

mais freqüente de falha em dois dos três serviços analisados.

Por conseguinte, abordagens que ofereçam abstração, integração e ferramentas de suporte

ao gerenciamento da configuração de mecanismos de segurança são fundamentais para tornar

o processo de configuração menos sujeito a erros e mais efetivo. Dentro desse processo, quatro

tarefas básicas podem ser distinguidas do ponto de vista do administrador:

(i) o projeto do sistema de segurança, incluindo a definição das tecnologias e mecanismos a

serem empregados, assim como o posicionamento dos diferentes componentes dentro da

rede;

(ii) a implantação da configuração projetada no sistema real;

(iii) a manutenção da configuração, possibilitando a introdução de mudanças, de forma a obter

adaptabilidade em face a novos requisitos;

(iv) monitoramento do sistema durante a operação, assegurando um funcionamento compat́ıvel

com o comportamento esperado.

O presente trabalho abrange as três primeiras etapas do gerenciamento da configuração (para

trabalhos relativos ao monitoramento ver [118] e [30]). Apresenta-se aqui uma nova abordagem

ao problema da configuração de sistemas de segurança que oferece uma solução abrangente para

0.1. Organização da Tese 3

o gerenciamento das configurações de mecanismos nos ambientes de rede complexos e de larga

escala encontrados em organizações atuais.

Para apoiar a fase de projeto, emprega-se uma técnica de modelagem que viabiliza o projeto

modular do sistema de segurança a ser gerenciado, mediante um modelo orientado a objetos.

Esse modelo é segmentado em unidades lógicas (denominadas Abstract Subsystems, ou subsis-

temas abstratos) que abarcam um grupo de mecanismos de segurança e outras entidades rele-

vantes do sistema, oferecendo, também, uma representação mais abstrata deles. Dessa forma,

o administrador do sistema pode projetar um sistema de segurança – incluindo seus diferentes

tipos de mecanismos e suas relações mútuas – por meio de uma técnica de modelagem abstrata

e uniforme.

Uma ferramenta de suporte apóia a modelagem, provendo um editor gráfico de modelos. Esse

editor incorpora conceitos de foco e contexto – que são originários da pesquisa em visualização da

informação [18] –, através das técnicas visão olho-de-peixe (fisheye-view) [34] e zoom semântico

(semantic zooming) [60, 76]. Além disso, este trabalho se utiliza das abordagens de hierarquias

de poĺıtica [73] e gerenciamento baseado em modelos [63] para assistir às fases de implantação

e manutenção supra-citadas. Assim, um modelo do sistema organizado em diferentes ńıveis de

abstração proporciona uma modelagem assistida passo-a-passo pela ferramenta, culminando em

um refinamento automático2 das poĺıticas até a geração de parâmetros de configuração de baixo

ńıvel para os mecanismos. Logo, enquanto que este refinamento automático contempla a fase

de implantação da configuração, o suporte à fase de manutenção é provido pela possibilidade de

edição dos modelos e repetição do processo de geração automática.

Para assegurar que o comportamento do sistema resultante da configuração gerada estará

em conformidade com as poĺıticas abstratas definidas pelo usuário, este trabalho inclui também

uma validação formal do processo de construção de hierarquias de poĺıticas. A validação inicia

com a formalização do modelo gráfico em uma notação algébrica, a qual é então utilizada para

definir condições de consistência para que uma instância do modelo seja válida. Com o intuito

de analizar o efeito produzido pela configuração gerada sobre o ambiente de rede real, uma

série de axiomas são definidos para capturar as assunções que estão impĺıcitas na modelagem.

Em seguida, dois teoremas provam que as condições de consistência definidas — em conjunto

com os axiomas — são suficientes e necessárias para garantir a validade do refinamento, isto é,

elas implicam a corretude do refinamento. Prova-se, também, que os algoritmos de refinamento

e o esforço adicional necessário para a validação de instâncias do modelo tem um desempenho

satisfatório em relação ao crescimento dos modelos (escalabilidade), sendo, portanto, apropriados

para tratar os ambientes de rede complexos e de larga escala do mundo real.

0.1 Organização da Tese

Esta tese consolida e estende resultados de diversas publicações anteriores do autor [83, 85, 86,

87, 88, 89, 90, 91, 92]. Além disso, duas teses de mestrado foram co-orientadas pelo autor na

2O processo de refinamento de poĺıticas é também denominado “transformação de poĺıticas” (policy transfor-

mation) em alguns trabalhos da área como [115, 113].

0.1. Organização da Tese 4

Universidade de Dortmund (Alemanha) [53, 55] e também contribuem com resultados para o

presente trabalho. Como o conteúdo desta tese está relacionado em muitos pontos com esses

trabalhos anteriores, eles não serão explicitamente mencionados no texto — exceção feita em

referências a tópicos discutidos mais detalhadamente em alguma publicação em particular.

O restante desta tese está organizado nos seguintes caṕıtulos.

Caṕıtulo 1. Duplicata da atual introdução na ĺıngua inglesa.

Caṕıtulo 2. Conceitos básicos relativos ao domı́nio do problema tratado neste trabalho são

apresentados brevemente (e.g. serviços de segurança, mecanismos de segurança de redes)

e ferramentas e abordagens existentes para o gerenciamento de sistemas de segurança

são apresentadas e discutidas. Em particular, trabalhos anteriores em Gerenciamento

Baseado em Modelos (MBM, na sigla em inglês) — paradigma sobre o qual se assenta este

trabalho — são descritos detalhadamente e comparados a outras abordagens. Verifica-se,

também, os problemas que esses trabalhos demonstram no tratamento de ambientes de

rede complexos.

Caṕıtulo 3. Contextualização e definição do escopo de pesquisa deste trabalho. Um arcabouço

conceitual discute as fases do projeto de sistemas de segurança dentro do contexto maior

do projeto da segurança da informação. O objeto de pesquisa é localizado no ńıvel de

abstração de projeto e define-se objetivos espećıficos concernentes à obtenção de uma

abordagem escalável para o gerenciamento da configuração de sistemas de segurança.

Caṕıtulo 4. Uma técnica de modelagem é proposta através da definição de um meta-modelo

em três camadas. A principal novidade neste modelo é a introdução do Diagrama de Sub-

sistemas Abstratos (DAS, na sigla em inglês), um ńıvel de abstração baseado no prinćıpio

de divisão e conquista. Um cenário simples serve para exemplificar e discutir o uso prático

da técnica de modelagem desenvolvida.

Caṕıtulo 5. O suporte oferecido pela abordagem à representação de poĺıticas é analizado para,

então, discutir-se o processo de refinamento automático de poĺıticas. A ferramenta de

suporte implementada é também descrita, com ênfase nas técnicas de foco e contexto

incorporadas para aperfeiçoamento da navegação e visualização de grandes modelos.

Caṕıtulo 6. Uma abordagem formal para a validação do refinamento de poĺıticas é apresen-

tada. Como ponto de partida, critérios para a validação são selecionados e justificados,

e o meta-modelo é formalizado. Posteriormente, condições de consistência e axiomas são

definidos, permitindo a prova de teoremas de generalização e validação. O desempenho e

a significância da abordagem de validação proposta são também analisados.

Caṕıtulo 7. Discussão da aplicação prática dos resultados de pesquisa anteriores. Dois exem-

plos simples de utilização são apresentados e um caso de estudo realista, que considera um

ambiente de rede complexo, é analizado. Os resultados experimentais do estudo de caso

são apresentados e discutidos.

0.1. Organização da Tese 5

Caṕıtulo 8. Tece conclusões para o presente trabalho, discutindo os resultados obtidos e ofer-

ecendo posśıveis direções para trabalhos futuros.

Caṕıtulo 9. Resumo em português do caṕıtulo anterior.

Apêndice A. Apresentação sucinta dos algoritmos de refinamento desenvolvidos.

Apêndice B. Provas dos teoremas de generalização apresentados na Seção 6.4.4.

Apêndice C. Outros modelos do estudo de caso, omitidos na Seção 7.2.

Chapter 1

Introduction

The utilisation of computers and data communication networks is growing notably, thus making

them an essential resource to many kinds of organisations, as businesses, academic and govern-

mental entities. In order to offer protection against network-based attacks, a great variety of

security technologies and mechanisms is utilised in these networked environments.

As those security services and mechanisms are increasingly employed—attaining thereby

dazzlingly knotty scenarios—importance and costs of security management escalate. In this

scenario, the security administrator is faced with the complex task of setting up and fine-tuning

these mechanisms in order to correctly enforce the security policy of the organisation. Since new

vulnerabilities and intrusion techniques are discovered daily, the mechanisms’ configurations also

have to be continually adapted to accompany the evolution of the threats.

Whilst significant progress has been made on improving network security technology in

recent years, only quite modest attention has been given to its configuration management.

Though there are some products with a somewhat nicer graphical interface, these are restricted

to their own particular mechanism types and thus do not mitigate the laborious task of security

configuration as a whole. In practice, a security administrator must deal with a variety of

complex and heterogeneous configuration syntaxes, most of which are unintuitive and in some

cases even misleading (see [117] for instance). The situation is especially dramatic in large-scale

environments where it is very hard to have a global view of the numerous security mechanisms

that have to be put into harmonic cooperation. In these situations, a single maladjustment

between two mechanisms can leave the whole system vulnerable.

Taking the outlined scenario into account, it is not surprising that Anderson’s paradigmatic

work concluded that “most security failures are due to implementation and management er-

rors” [3]. Furthermore, this situation does not appear to have changed satisfactorily, since the

same results were confirmed nearly ten years later by a recent study on three large-scale Internet

services [78]. This work concluded that configuration errors are the largest category of operator

errors (these themselves the leading cause of failure in two of the three services studied).

Therefore, along with the recent research approaches that consider improving the usability of

security for the end-user (e.g. [2]), there is an urgent need to start treating security administrators

6

7

and operators as “first-class users” [78], in order to make configuration management less error-

prone and more effective.

From the standpoint of the system administrator, four basic tasks of the network security

configuration management can be distinguished:

(i) the design of the security system, including the definition of technologies and mechanisms

to be employed, as well as the placement of the diverse security components over the

network;

(ii) the deployment of the designed configuration into the real system;

(iii) configuration maintenance, enabling the introduction of changes to achieve adaptability

in face of new requirements;

(iv) monitoring of the system during run-time in order to assure compliance with expected

behaviour.

As far as monitoring system activities is concerned, recently interesting user-centred ap-

proaches have been developed, such as NVisionIP [118] and a more general one suggested by

Dourish and Redmiles [30]. This phase is not included in the scope of this work.

Instead, this work addresses the first three phases of the configuration management process.

A novel approach to the configuration problem is introduced, yielding a comprehensive solution

for the configuration management of security mechanisms found in the complex, large-scale

network environments of today’s organisations.

To support the design phase, a modelling technique was developed to allow the design of the

security system to be performed in a modular fashion, by means of an object-oriented system

model. This model is segmented into logical units (so-called Abstract Subsystems) that enclose a

group of security mechanisms and other relevant system entities, and also offer a more abstract

representation of them. In the abstract view the details are hidden and dealt with in the internal

specification of each subsystem, thereby improving the comprehensibility of the model. In this

manner, the system administrator is able to design a security system—including its different

mechanism types and their mutual relations—by means of an abstract and uniform modelling

technique.

A software tool supports the modelling process, providing a graphical editor to input the

models. This editor incorporates the concept of focus & context—that originated from research

on information visualisation [18]—through the diagram navigation and visualisation techniques

of fisheye-view [34] and semantic zooming [60, 76]. Combining the use of these techniques

with the modelling developed enables a scalable handling of large system models: the designer

can consider not only the system as a whole, visualising the interconnections and dependencies

between abstract representations of its various components in a Diagram of Abstract Subsystems

(DAS), but also examine and model each subsystem in detail, without losing the perspective of

its insertion in the entire system.

1.1. Organisation 8

This work also builds upon policy hierarchy [73, 115] and model-based management [63] ap-

proaches in order to assist the above-mentioned configuration management phases of deployment

and maintenance. It employs models of the system and its security policies that are organised

vertically in different abstraction layers—ranging from a business-oriented representation at the

uppermost level, down to the Diagram of Abstract Subsystems. This organisation affords a step-

wise, tool-assisted system modelling, along with an automated policy refinement (also known as

policy transformation or policy translation) that culminates in the generation of low-level con-

figuration parameters based on the model. While this guided derivation of low-level parameters

contemplates the deployment of the security configuration, its maintenance is supported by the

possibility of editing the models and repeating the automatic generation process.

Furthermore, in order to ensure that the system behaviour resulting from the generated

configuration upholds the abstract policies defined by the modeller, the present work includes a

formal validation approach for the policy hierarchy building process. The validation starts with

the formalisation of the graphical model using an algebraic notation, which is thus utilised to

define consistency conditions for a layered model to be valid. In order to reason about the effect

of the generated configuration on the real environment, a series of axioms are defined to capture

the assumptions that are implicit in the modelling. Subsequently, two theorems prove that the

defined conditions are sufficient and necessary to guarantee the validity of the refinement; i.e.

that they imply the refinement correctness. The refinement algorithms and the additional effort

needed to validate model instances are also proved to scale satisfactorily—being thereby suited

to realistic, large-scale environments.

1.1 Organisation

This work consolidates and extends research results from a number of previous publications [83,

85, 86, 87, 88, 89, 90, 91, 92]. Additionally, two diploma theses at the University of Dortmund [53,

55] were co-supervised by the author and contribute to the achievements here presented. Since

the content of the present work is related in many points to these previous works, they will

not be explicitly mentioned during the text—with the exception of references to topics further

elaborated in some particular publication.

As this work was developed within a cooperation between the State University of Campinas

(Unicamp) and the University of Dortmund in Germany, the body of this thesis is written in

English (common denominator), whilst this introduction (duplicated in the previous chapter)

and a summary of the conclusions are also presented in Portuguese. The reader who is proficient

in English shall concentrate exclusively on the part written in English without lost of content.

The remaining of this work is organised into the following chapters.

Chapter 2. The basic concepts within the domain of problems that this work addresses are

briefly presented (e.g. security services, network security mechanisms), and existing tools

and approaches to the management of security systems are discussed. Particularly, pre-

vious work on Model-Based Management (MBM)—the paradigm upon which the present

1.1. Organisation 9

work relies—are explained and compared to the other approaches. The scalability problems

of previous MBM work are also described. This chapter includes parts of the works [90, 92].

Chapter 3. Context and scope of this research work are defined by means of a conceptual

framework that discusses the phases of the security system design within the wider con-

text of the information security project (firstly presented in [85]). The research object is

localized in the design abstraction level, and specific goals to be pursued are defined in

order to achieve a scalable approach for the configuration management of security systems.

Chapter 4. A modelling framework is proposed that consists of a three-layered meta-model.

The main novelty of this model is the introduction of the Diagram of Abstract Subsystems

(DAS), an abstraction level based on the divide-and-conquer principle. A simple scenario

is used to exemplify and discuss the usage of the modelling framework developed. This

chapter encloses parts of [87, 90] and extends them.

Chapter 5. The policy support of the approach is analysed, and the policy refinement process—

which automatically yields configuration files for the managed mechanisms—is discussed

by means of an example. The supporting tool implemented is also described, with an

emphasis on the focus and context techniques incorporated to improve visualisation and

manipulation of large models. Parts of [83, 87] are the basis of this chapter.

Chapter 6. A formal approach to the policy refinement validation is presented. This approach

was briefly described in [91] and was further elaborated in [83]. The validation criteria con-

sidered are firstly selected and justified, and the meta-model is formalised. Subsequently,

consistency condition and axioms are defined, so that generalisation and validation theo-

rems can be proved. The performance and meaningfulness of the validation approach are

also analysed.

Chapter 7. The practicality of the research results achieved in the previous chapters is ex-

plained. Two simple utilisation examples are presented in detail and a realistic case study,

which considers a complex network environment, is analysed. The experimental results

gathered from a case study (that firstly appeared in [87, 90]) are presented and discussed.

Chapter 8. Casts conclusions, discussing the accomplishments of this work and pointing out

to future work.

Chapter 9. Synopsis of the previous chapter in Portuguese.

Appendix A. Brief description of the refinement algorithms developed.

Appendix B. Proof of the generalisation theorems of Sect. 6.4.4.

Appendix C. Other models from the case study, which were omitted in Sect. 7.2.

Chapter 2

Basic Concepts and Related Work

The object of this work is the configuration management of network security systems. In this

context, network security systems are defined as a set of security services that supports the

secure operation and communication of networks, according to an organisation’s security policy.

Each one of these security services is implemented by means of one or more security mechanisms.

2.1 Network Security Services

Stallings [109] presents a useful classification of network security services, according to the

security requirements they cover, into the following categories:

Confidentiality: services that protect transmitted data from passive attacks;

Authentication: services to assure that the communication is authentic both in terms of cer-

tifying that the entities are who they claim to be at the communication initiation; and

that no third-party can impersonate one of the partners during the communication;

Integrity: services that assure that the message is received as sent;

Nonrepudiation: services that prevent either sender or receiver from denying a transmitted

message;

Access Control: services that limit and control the access to host systems and applications

via communication links;

Availability: services that prevent or recover from loss of availability of system elements due

to attacks.

A central task in the design of a network security infrastructure consists thus of selecting

and configuring mechanisms that implement the aforementioned services following the security

policy of an organisation [10, Ch.26]. Nevertheless, the task of securing a network goes further,

including for instance the hardening of configurations and hardware of workstations and servers,

frequent backups, application of security update patches (for a comprehensive treatment of the

subject see [36, 109, 21]). The concern of this work though is the design and management of

proper configuration for network security services—which is itself far from being a trivial task,

as argumented in Chapter 1.

10

2.1. Network Security Services 11

There are many security mechanisms both from different commercial vendors and from

the open-source community, such as end-to-end cryptographic associations (using, for instance,

IPSec [57]); authentication and authorisation services (like Kerberos [70, 59]); diverse monitor-

ing, logging and auditing systems; automated intrusion detection systems (IDS) and intrusion

prevention systems (IPS)—to name just a few (see [36, 109] for a comprehensive listing).

In this work, the implementation focuses on two well-established security mechanism types:

firewalls and virtual private networks; they will be succintly presented in the next sections.

However, the approach is expected to be general enough to be easily adapted to cover other

mechanisms.

2.1.1 Firewalls and Virtual Private Networks (VPNs)

Originally, the term firewall is used to name special walls that prevent fires from spreading

to other parts of a building [67]. This metaphor was applied in the network security world to

denominate special devices placed at the perimeter of a network, in order to protect this network

against threats coming from the outside world; i.e. mostly from the Internet [119].

Further, firewalls can be placed not only between the network of an organisation and the

public network, but also inside internal networks to isolate administrative domains (ADs). An

AD is defined as a collection of network resources under control of a single administrative entity,

with common security policy. Firewalls are today broadly defined as each device, software or

equipment organisation that controls network traffic [21].

Chewisck et al. [21] identify the following firewall types:

Packet Filters: the simplest and cheapest firewall type (as they are incorporated in most

routers), they discard packets depending on source and destination addresses, as well as

on port numbers and flags—but without considering context information;

Application-Level Filtering: they are specific for a particular application and examine in

detail the corresponding service at the application level (also known as proxies [84]);

Circuit-Level Gateways: they act at the transport level (TCP), acting as intermediary be-

tween client and server, and relaying packets received from one connection to the other

(e.g. SOCKS);

Dynamic Packet Filters: add a stateful inspection to the simple packet filtering functionality,

i.e. they keep track of the connection history, and can permit the traversing of packets

that belong to open connections—e.g. replies to UDP queries;

Distributed Firewalls : the newest firewall type, it is still on the research stage [9, 51]; the

main idea consists of making every host into a firewall that filters traffic to and from itself

according to a policy that is centrally defined.

Spafford and Schuba [102] present a reference model for firewalls that prescribes a funda-

mental set of functions required by firewall systems to enforce network domain security policies.

This set encloses five functions: (a) authentication function, (b) integrity function, (c) access

control function, (d) audit function, and (e) access enforcement function1.

1A loosely related work with a quite different scope is the firewall modelling utilising Petri nets formalism

2.2. Policy-Based Network Management 12

Virtual Private Networks (VPNs) [103, 21], in turn, are used to build virtual infrastruc-

tures on existing infrastructures. They enable an expansion of a protected (private) network to

encompass hosts that are outside the perimeter of the internal network. The communication

from these hosts is tunnelled using cryptography through an insecure environment (generally

the Internet) up to reaching the secure network, such that the external hosts behave virtually

as internal hosts. There are three types of VPNs [21]:

• Remote Branch Offices enable the networks of two branches of the same company that are

geographically separated to constitute a unique security perimeter and even to share the

same address space;

• Joint Ventures enable the cooperation between two different organisations, offering to one

of them access to certain services in the partner’s network without having to open the

services to everyone in the Internet;

• Telecommuting allows an employee to access resources of the organisation’s network from

home (or elsewhere) as if s/he would be physically at the office.

There are many firewall and VPN products on the market, from vendors such as Check

Point [112], Cisco [19], Lucent Technologies, Symantec, and Network Associates, to name just

a few (an updated list can be found at [44]). Open-source mechanisms also exist for different

platforms, e.g. the Linux NetFilter [77], OpenBSD packet filter pf [82], and VPN solution

isakmpd daemon [52] (the last two were used in this work).

2.2 Policy-Based Network Management

The approach of policy-based network management (PBNM) focuses on the automation of man-

agement tasks through management applications that perform tasks following the instructions

of management policy descriptions. According to [104] “a policy is a rule that defines a choice in

the behaviour of a system” and the separation of policies from the hard-coded implementation

of management applications permits the policy to be modified flexibly. Therefore the strategy

for managing the system can be changed dynamically. Policies can be enhanced and adapted

to changing conditions without changing the implementation of the management system. The

architecture of the policy-based management system is affected by the presence of policy enforce-

ment units, each near to a corresponding managed resource [114]. Such policies are distributed

and deployed to the units in the shape of dedicated descriptions.

A series of policy description languages already exist and standards are emerging in different

fields, e.g. [15, 29, 106, 113]. The Ponder language reflects a more general and comprising policy

approach [27]. Primarily it supports obligation and access control policies. Obligation policies

state conditions and related actions. They can be used to define the steps of active management

interventions. Access control policies provide elements for positive and negative authorization,

proposed in [101].

2.3. Network Security Management Tools and Approaches 13

information filtering, delegation, and orders to refrain. They can be used to define the ranges of

user, system and management actions. In connection with all policy elements, constraints can

be defined to limit their applicability. Moreover, Ponder supports the structuring of policies in

accordance to management domains and functions.

Policies to be supplied to and interpreted by resource-near enforcement units essentially

express management actions in a low-level, resource-oriented and efficiently executable form,

mostly following the “if condition then action” metaphor (e.g. [66]). Advantages of more

abstract and system-integral policy descriptions, however, have been recognized early. In par-

ticular, the approach of policy hierarchies proposes the employment of hierarchical abstraction

layers supporting the stepwise refinement of policies [73, 114]. Due to the increasing details and

resource dependence of low-level policies—without additional means—the refinements cannot be

computed mechanically. Further important design problems of management policies concern the

global consistency of those policies, which are composed of different parts. The parts can reflect

certain, but not necessarily orthogonal management aspects or are oriented at certain resources.

Therefore, especially in complex and heterogeneous networked systems, global policies tend to

contain incompatible or contradictory elements (see e.g. [56]).

2.3 Network Security Management Tools and Approaches

Though many of the firewall commercial products include configuration tools, they do not seem

to have the integrated security management as primary concern. Nevertheless, a series of mar-

ket product tools in this direction is slowly appearing, for example, the Checkpoint INSPECT

visual policy editor [20], Cisco manager [42], and the product independent Solsoft NP Tool [31].

Moreover, Microsoft’s Window-based group policy editor tool shows that the tool approach is

not restricted to security and access control policies but can also cover user management and

configuration management issues [4].

As for research work, there are already a number of different approaches that address the

configuration management problem. They are classified into groups and discussed in the next

sections.

2.3.1 Rule-based Approaches

Haixin et al. [39] present a policy-based framework for the automatic management of firewall

rules in large networks. This framework is based on an access control policy with three “levels

of abstraction”: organisational, global, and local. The rule syntax used in all the three layers

is a 3-tuple 〈source, destination, action〉, where source and destination are IP addresses (or

ranges) and action is accept/deny. Consequently, the three levels correspond only to different

topology levels, in which one is more general than the others but they do not have really different

abstraction levels.

Lee et al. [64] describe a framework to specify high-level firewall rules using Ponder [26], and

to implement such descriptions on reconfigurable hardware. It employs a two-level optimisation

2.3. Network Security Management Tools and Approaches 14

approach that allows software and hardware optimisations to proceed independently. Although

the representation syntax for policies is the powerful Ponder language, which supports the generic

definition of policies, the special policy types defined for this particular application are filtering

rules-like.

While solving the problem of generating packet filter rules from device-independent spec-

ifications, these approaches do not really offer an abstract view of the problem. Some of the

authors argue that the rules are defined in “high-level”, but they in fact deal with transport-

and network-level concepts like protocols and IP addresses, which are only grouped in domains.

The abstraction is thus reduced to independence of particular syntaxes, but the policies are still

expressed in a rule-based syntax similar to that of filtering rules in the form (event, action) or

yet “if condition then action” (like in [75]).

Yet one step closer to the packet filter rules, there are open-source tools that support multiple

flavours of packet filters, such as HLFL [43] and firewall builder [35]. Though these tools are

able to support uniformly a number of mechanisms using a single configuration syntax, they do

not model the topology. Further, their policy representation language has, in fact, roughly the

same level of abstraction as the filter languages.

2.3.2 Logic-based Approaches

Guttman [38] presents an approach that defines a security policy for a network in a logic-based

language, as a global policy about what packets can get where. It offers an additional method

for solving the localisation problem; i.e. to determine the filtering decisions of individual routers.

These decisions can be based only on local information. Additionally, an automated verification

method for the localisation problem is provided. However, Guttman’s approach does not provide

a separation of the policies from the network topology, i.e. between the architectural and the

security policy design tasks mentioned in Sect. 3.1. This makes policy editing and reuse much

harder, as policies and system model are intertwined.

Burns et al. [16] present a tool that given a security policy specified in prolog-based language

automatically checks that the configuration of a network with multiple firewalls adheres to the

policy. The network topology, mechanism configuration and behaviour are also represented

by logic assertions, so that a policy engine is able to verify the compliance of the a network

state with the specified policy. The wide scope of this approach requires a very comprehensive

modelling of network devices, capabilities, and configurations; the achievement of the ambitious

project’s goal depends on the success of this modelling. Though the authors are also concerned

about extending the work to cover the modular validation of policies, this approach is not so

mature like the preceding ones in this respect.

The logic-based approaches have the advantage of offering scalability gains and more com-

prehensive analysis capabilities, allowing the formal evaluation of system security properties.

However, the syntax used is both far from the expert system view and from a business view of

the problem, requiring extra training for the correct policy specification.

2.3. Network Security Management Tools and Approaches 15

2.3.3 Trust Management Approaches

Blaze, Ioannidis and Keromytis introduce in [13] a policy management scheme for IPSec based

on trust management. In the Strongman project [58], the authors present a more general solu-

tion in which multiple policy languages are used to specify security requirements for different

application domains. Those high-level policy specifications are compiled into a common inter-

mediate, assertion-based policy language KeyNote [11], such that different applications’ policies

can be composed. The focus here is to provide better support across application domains by

separating high and low level policies and to achieve scaling by the local enforcement of global

security policies.

A recent work of the same group introduces the concept of Virtual Private Services[50]. This

work also splits policy specification and policy enforcement, striving to provide local autonomy

within the constraints of a global security policy—which is also defined using the KeyNote

system. Further, virtual security domains are created, each with its own security policy. The

system is able to cope with scale and heterogeneity, by converting the global policy into a form

in which it can be enforced locally.

While focusing on the management of highly distributed systems, these approaches offer a

good treatment of issues like credential management, and policy delegation and distribution.

For the purposes of the present work though—i.e. the configuration management of network

security services within complex organisations—they make it hard for administrators to have an

understandable view of the organisation’s security policy, the network elements, and the relation

between them. This is due to the fact that the policy language used is not high-level enough to

provide an abstract, intelligible view of the problem.

2.3.4 Graphic and Analysis Tools

Firmato [6, 7] is a firewall management toolkit with: (1) an entity-relationship model containing

both the security policy and network topology, (2) a model definition language, which is used

as an interface to define an instance of the entity-relationship model, (3) a model compiler that

translates a model instance into firewall-specific configuration files, and (4) a graphical firewall

rules illustrator. The security policy modelling is executed in two phases. In the first phase,

the modeller should define roles and describe which services the roles are permitted to use,

regardless of its location on the network (i.e. a topology-independent phase) . In the second

phase, the administrator specifies the assignments of roles to actual hosts. The commercial

descendent of Firmato, the Lumeta system [116], includes extensions to initialise its topology

model automatically by interrogating routers, and to analyse and transform existing rule sets

discovering configuration weaknesses.

The role concept used in Firmato is similar to that of classical RBAC work [97], but per-

missions are associated to a pair of source/destination hosts, each of which has been assigned

a role. This association is somewhat unintuitive, since the initiator and the target hosts are

intertwined in the same abstract entity (roles). As for the rules illustrator, the picture produced

is of difficult understanding, since nested host groups are separately represented and connected

2.3. Network Security Management Tools and Approaches 16

by edges. Thus, the actual network topology is hard to recognise and the representation of large

models tends to get rapidly clumsy.

2.3.5 Hierarchical Approaches

The approaches presented in the previous section are mostly concerned with the technical view

of the management problem. They proceed bottom-up, starting from the mechanisms to be

configured and achieving representation languages that are too bound up with the mechanism

types initially considered. However, there are already some approaches that turn the problem

on its feet by starting from convenient abstract models that are able to address the management

problem from a business point of view.

The Power prototype [74] aims at supporting the building of policy hierarchies by means

of a tool-assisted policy refinement. In this prototype, the policy specification task is divided

into the definition of policy templates by an “expert”; and the use of the wizards to create a

business-level policy by a “consultant”. The tool is then able to refine the high-level policy

according to the templates and finally producing the configuration information for particular

devices. However, the complexity hidden from the consultant, must be faced by the expert, who

is expected to define the policy and refinement rules in a prolog-like language. It is not obvious

to me to which degree this process can be less error-prone than the mechanism configuration

itself.

Cuppens et al. [25] present a formal approach to specify network security policies based on

the the Or-BAC model, which is an extension of the Role-Based Access Control Model (RBAC).

They use a XML syntax to specify an abstract level network security policy, and a derivation

process that (1) distribute the abstract level network policy specification over several security

components, generating a set of generic firewall rules; and (2) compile the generic rules into

specific configuration files for the intended target platform. This work has the advantage of

using the formal syntax of access control models to represent policies, yielding a higher-level

view of the network policy based on organisations, roles, activities and views. However, the

network architecture is not modelled explicitly, but this information is implicitly distributed in

organisations and in the attribution of hosts to roles. This makes it hard for administrators to

get a picture of the modelled environment and of what is actually allowed by the model, bringing

difficulty also to the reuse of policies in different environments.

Both approaches lack analysis capabilities, so the problem of the correctness in the policy

refinement is left open; i.e. the question whether the generated lower-level policies uphold the

abstract policy remains not answered.

Another hierarchical approach is the Model-Based Management. Since the present work

relies upon this approach, it is expounded and analysed in contrast to the other related work in

the next section.

2.4. Model-Based Management (MBM) 17

2.4 Model-Based Management (MBM)

The term Model-Based Management (MBM) is used in this work to name the management

approach developed in works such as [62, 61, 63]. This approach consists of a particular type

of policy-based management that supports the building of policy hierarchies by means of an

interactive graphical design. It adopts concepts of object-oriented system design and relies

upon a model of the system that is vertically structured into a set of layers. The objects and

associations of a layer represent the system to be managed and security policies on a certain

abstraction level. Based upon the model, a policy refinement can be accomplished such that

configuration parameters for security mechanisms can be automatically derived. A software tool

is also provided to assist the modelling of system objects and policies, as well as to support

the automated policy refinement (for a more comprehensive explanation of the MBM approach

see [92]).

The approach was initially used in the management of backup services [62], and later applied

to the management of a series of network security services: packet filters (ipchains [100, 61]

and CheckPoint Firewall-1 [108]), VPNs [111, 63], Kerberos [94], firewall logs [40], and to the

integrated management of packet filters and VPNs [37]. Lück [68] offers an overview on the

previous work and advances in the formalisation of the model and in the formal proof of the

refinement correctness. The following section summarises the common model and main ideas of

these works.

2.4.1 Previous Work on MBM of Network Security Services

The structure of the model is shown in Fig. 2.1 (reproduced from [37]), where three abstraction

levels can be distinguished: Roles & Objects (RO), Subjects & Resources (SR), and Processes

& Hosts (PH). Each level is a refinement of the superordinated level in the sense of a “policy

hierarchy”. The uppermost level represents the business-oriented view of the network whereas

the lowest level is related to the technical view. The vertical subdivisions differentiate between

the model of the actual managed system (with productive and control elements) and the policies

that regulate this system. This last category encompasses requirement and permission objects,

each of which refers to the model components of the same level and expresses security policies.

The uppermost level (RO) is based on concepts from Role-Based Access Control (RBAC)

[97]. The classes in this level are:

Role: Roles in which people, who are working in the modelled environment, act.

Object: Objects of the modelled environment which should be subject to access control.

AccessMode: Ways of accessing objects.

The class AccessPermission allows the performer of a Role to access a particular Object in

the way defined by AccessMode. In order to reduce the amount of necessary AccessPermissions,

the classes RoleSet, ObjectSet e AccessModeSet were introduced.

2.4. Model-Based Management (MBM) 18

Figure 2.1: Common Meta-Model of Previous Work on MBM

An additional class Constraint was introduced to deal with special situations observed in

business-oriented policies and their representation by AccessPermissions. The Constraint class

is used to limit the number of Objects an AccessPermission applies to. A business policy example

that illustrates this need is “Dial-in-users are allowed to use the Workstation in their offices”.

Here, each role performer (a user accessing the network via dial-in server) is allowed to use only

the Workstation especially associated with him or her.

The second level (SR in Figure 2.1) consists of a more complex set of classes. Objects of

these classes represent: (a) people working in the modelled environment (User); (b) subjects

acting on the user’s behalf (Subject); (c) sets of roles which are appropriate for the associated

Subject (ActiveRoleSet); (d) services in the network that are used to access resources (Services)—

a service has references to all resources it is able to access; (e) resources in the network, either

real resources or Services, which in turn can be used as resources by other services (Resource);

and (f) relations (Relation), that are used to express associations between Users and Resources.

The ServicePermission class allows a subject to access a resource by using a service.

The SR level offers a transition from the business-oriented view, represented in RO level, to

a more technical perspective, service-based. This fact is due to the combined use of the service-

oriented management approach (see for instance [71]), achieving a relatively abstract view of

the management system—which is defined from the point of view of the services that it will

provide. Thus the system internal structure is not expressed in that level, but in the third level

(PH) of the model (Figure 2.1).

The lowest level (PH) is responsible for modelling the mechanisms that will be used to

implement the services defined in level SR. Therefore, it will have even more classes than before,

representing for instance the Hosts, with their respective network Interfaces, and the Processes,

that perform communicative actions relying on Sockets. LinkPermissions allow the transition of

packets between processes. The authors define several other classes that will not be mentioned

2.4. Model-Based Management (MBM) 19

here for the sake of brevity.

Whereas the two uppermost levels are common to all previous works on MBM, the third

one is specific to each application domain covered, comprising a different set of classes in each

case (although the sets are not disjoint). This fact reveals a good abstraction-level segmentation

since it was possible to keep the two uppermost levels homogeneous, even though dealing with

pretty different security applications.

To support tool-assisted interactive configuration of the mechanisms—e.g. packet-filters and

VPNs—specific graphical tools are supplied. The tools primarily consist of a graphical editor

(see Figure 2.2) with the following functions:

• Interactive construction of the model by selecting and positioning of model-elements asso-

ciations;

• Organisation of model-elements in folders;

• Checking of Model-dependent constraints;

• Configuration of attributes by means of property dialogues;

• Guided derivation of different permission variants through the model-hierarchy levels.

The editor allows the selection of classes from each level of the model. Associations between

two objects can be modelled by drawing an edge using the mouse. By selecting the menu item

‘Check Model’, the tool checks whether the model is complete and consistent in the sense of given

constraints. Moreover, dialogs ask for input where information for a model element is missing

or faulty. Therefore, these steps support interactive derivation of ServicePermissions from Ac-

cessPermissions, LinkPermissions from ServicePermissions, and the appropriate configuration

files from LinkPermissions.

Behind this refinement process there is a formal correctness proof [68]. For this purpose,

the model entities and assumptions on the relationships between these entities are formalised

using predicate logics. As such, theorems can be proved to ensure that the lower-level policies

generated uphold the abstract policies modelled. Consequently, the configuration files derived

will be in conformance with the high-level policies modelled.

2.4.2 Scalability Problems

A common problem of the existing applications of MBM occurs when dealing with larger systems,

since the model tends to lose much of its understandability, getting obscure due to the great

number of components (as attested in [37]). Indeed, it can be noted from the previous discussion

that the PH level—which shall depict the entire system, with its processes, hosts, network

interfaces etc.—has its complexity quickly increased as the size of the modelled system grows.

This fact is also illustrated in Fig. 2.2, which shows the model of a very simple scenario with

only one AccessPermission at the uppermost level: the workers of a company shall be allowed to

access the corporate web server. Despite the simplicity of this RO level, the model unfolds into

2.4. Model-Based Management (MBM) 20

Figure 2.2: Tool Interface

a considerable number of objects at the lowest level (bottom of Fig. 2.2), in order to represent

mechanisms like IP-masquerading, firewalls and load balancers.

Due to the simpleness of this example, the resulting model is still reasonable. However, it can

be noted that models of larger real environments tend to become quite confusing. Furthermore,

the refinement algorithms must consider this large number of model elements, for example, in

costly path discovery processes. This results in a restricted support for the realistic, complex

network environments of today’s organisations.

2.4.3 Comparison between MBM and other works

The Model-Based Management paradigm divides the configuration process in three abstraction

levels. This division has been shown to be adequate since it was possible to keep homogeneous

the two uppermost levels dealing with two different applications. Therefore, the abstraction

provided by MBM is advantageous in comparison to the graphical tool Firmato and to the rule-

based approaches analysed in Sect. 2.3, which are restricted to the particular network security

services they address. MBM, in contrast, is able to uniformly cover different services.

In MBM, policies are defined by the modeller only at the most abstract level, using the concise

notation of Role-Based Access Control models. This makes the policy specification process less

2.5. Chapter Summary 21

error-prone in comparison to the logic-based and trust management approaches described in

Sect. 2.3, which rely on lower-level policy languages that have a more complicated syntax. On

the other hand, MBM employs a central policy definition process, which is not beneficial in the

highly distributed and autonomous environments covered by trust management work. This is

not a critical issue for the purposes of the present work though, since an organisation is assumed

to have control over its own security policy definition.

Furthermore, MBM uses a static system model and thus does not offer the behavioural analy-

sis of network states striven by Burns et al. [16]. Nevertheless, MBM does support the analysis

of policy hierarchies, enabling the verification of the correctness of the generated low-level per-

missions against the high-level policies modelled—which is missing in the other hierarchical

approaches reviewed in Sect. 2.3. I believe that the policy hierarchy analysis is of greater im-

portance and perhaps it is indeed more feasible in complex environments than a comprehensive

network state analysis.

As for the system representation, the object-oriented modelling and the tool-assisted pol-

icy refinement supplied by MBM make the model development more comfortable and quality-

assured. The administrator is provided with a means for specifying an understandable system

model that is near from her/his mental picture of the network. Indeed, differently from the

graphical and analysis approaches of Sect. 2.3, the system model in MBM directly corresponds

to the actual network mechanisms. However, the existing applications of MBM have problems to

support realistic, large-scale environments, since the representation of large models gets rapidly

confused and the refinement algorithms do not scale adequately.

2.5 Chapter Summary

This chapter has introduced the network security services employed in current networks. Partic-

ularly, two security mechanism types were described, firewalls and VPNs. Further, the policy-

based management approach and previous work on the configuration management of network

security services were exposed and analysed. Pondering advantages and drawbacks, the Model-

Based Management (MBM) offers an adequate foundation to address the purposes of the present

work. Nevertheless, existing applications of the MBM paradigm have proved to have problems

in coping with large models.

Chapter 3

Research Approach and Goals

A paradigm shift is underway, and a

number of recent threads point towards a

fusion of security with software

engineering or at the very least to an

influx of software engineering ideas

Ross Anderson [3]

The first task in the management of network security services is the design of the adequate

network security infrastructure for an organisation, or the development of a network security

system. However, this task is not performed alone, but as a part of a complex and comprehensive

process: the information security project of the organisation. This chapter inverts the perspec-

tive of the previous one: the development of network security systems is observed not from the

point of view of the services to be configured (bottom-up), but rather within the context of the

organisation’s information security project as a whole (top-down).

In pursuit of this goal, a conceptual framework for the development of a network security

system is proposed [85]. The framework analyses the network security design in comparison

to the various abstraction levels and phases that constitute the development life-cycle of a

organisation’s information security project. Thus, the framework acts here both as a contextual

orientation and as an abstract requirements definition for the particular phase addressed by this

work: the network security system design.

3.1 Conceptual Framework

Figure 3.1 schematically illustrates the abstraction levels of the network security system devel-

opment cycle. This framework follows the classical software engineering “waterfall” life-cycle

paradigm [93], in which the development proceeds in top-down fashion. Besides, the frame-

work is also based on Sterne’s security policy classification [110] and on the concept of policy

hierarchies [73, 115].

22

3.1. Conceptual Framework 23

Information
Security Policy

Definition

Network
Security Design

Network
Security

Implementation

Security
Requirement

Analysis

Organisational Security
Policy

Architectural Design +
Design-level Security Policies

Mechanism Configuration
Parameters

Information Security
Policy Document

Figure 3.1: Development Life-cycle of Network Security Systems

The first phase of the framework (Figure 3.1) is theInformation Security Requirements De-

finition, which consists of the elaboration of the Information Security Policy Document with

the goal of providing “management direction and support for information security” [49]. The

network security system is just a small part (although an important one) of an organisation’s

information security infrastructure and must be considered together with “several other fields,

such as physical security, personnel security, operations security, communication security, and

social mechanisms” (Icove, cited by Schuba and Spafford [102]). Therefore, the definition of se-

curity policies in this phase must have a broad scope, usually done by performing an enterprise

business risk analysis following a guideline manual such as the ISO/IEC 17799 [49]. The final

product of this step is a document in natural language describing a set of high-level information

security policies and controls.

The next step, Information Security Requirement Analysis, consists of the (preferably for-

mal) representation of the previous high-level security policies, achieving a set of laws, rules,

and practices that regulate how an organisation manages, protects, and distributes information

resources. Compared to the previous phase, the analysis aims to establish how the security

3.1. Conceptual Framework 24

objectives previously gathered can be accomplished. The resulting set will be thereafter called

Organisational Security Policy—using a term proposed by Sterne [110].

This second phase is not always done with a formal approach—following Gödel’s definition

that a specification is formal if it is mechanically checkable [81, p. 14]—but there are benefits

that make it worth, e.g. a formal model can be analysed to detect conflicts between policies, and

its formal character eliminates ambiguities that may be present in the natural language high-

level policies. Despite the several research efforts that have been done on formal specification of

security requirements (since the seminal work of Bell and La Padula [8]) there still are important

technical challenges in this field—as pointed out by Rushby [95]—making this analysis not always

easy. Leiwo and Zheng [65] present a conceptual framework for dealing with high-level policies

using a formal approach, allowing conflict detection and harmonisation in a layered fashion.

The following phase is the Security System Design, which comprises the process of identifying

the aspects of the organisational security policy that can be automated and then selecting the

appropriate enforcement instruments: the security services1. The main goal of the present work

is to address this phase. In our context, only the technical security policies will be concerned

from this phase on. More specifically, the focus shall be on network domain security policies,

following the definition of Schuba and Spafford [102]: “a subset of a security policy, addressing

requirements for authenticity and integrity of communication traffic (...), authorisation require-

ments for access requests (...), and auditing requirements”. These four types of security policies,

namely authenticity and integrity, confidentiality, access control, and auditing, are the ones that

will be enforced by network security services such as packet filters, proxy agents [84], end-to-end

cryptographic associations [57], and logging agents (see Sect. 2.1).

The last phase of the framework, in turn, is the Network Security System Implementation.

It comprises the selection and configuration of the network security services already presented

in Sect. 2.1.

Since this work focuses on the design phase, it will be further elaborated in the next section.

3.1.1 Network Security System Design

The Network Security System Design task aims at creating a formal model of the system to be

actually implemented. This model must represent: (a) each security service that will be used;

(b) the interaction among different services; and (c) the link between each high-level security

policy and the corresponding components that will enforce it. For that purpose this phase can

be conceptually subdivided into two parts: the Security Policy Design and the Architectural

Design.

The Security Policy Design consists of achieving a set of policies characterised as being

near enough to technical implementation—that is, mechanically executable—but vendor- and

device-independent. A smooth transition from the policies in the previous phase (Information

1The first three levels of this framework (Figure 3.1) correspond, respectively, to the following types of policy
proposed by Sterne: “Security Policy Objective”, “Organisational Security Policy”, and “Automated Security
Policy” [110]. This author, however, does not explicitly mention hierarchical levels in his work.

3.1. Conceptual Framework 25

Security Requirement Analysis) to the set of policies in this level should be also provided, so that

the lower-level permissions can be traced back to the corresponding abstract policies. Further,

the configuration parameters of mechanisms in the implementation phase of the framework (see

Fig. 3.1) should be ideally automatically derived from the design-level security policies, in order

to improve the reliability of the system configuration.

The Architectural Design in turn aims at establishing the overall structure of the network

security system, by representing the several mechanisms that implement security services—such

as routers, workstations, packet filters, VPN gateways—and their interactions, i.e. the commu-

nication flows among them. This Architectural Design approach is inspired in that adopted by

most of software engineering methodologies [93, 107, 14], and is generally associated with the

improvement of quality attributes such as performance, reliability, modifiability, and maintain-

ability [107, Ch. 10].

A characteristic that can be borrowed from software engineering work on architectural design

is compositionality or hierarchical decomposition, defined as a mechanism that allows architec-

tures to describe systems at different levels of detail: complex structure and behaviour may be

explicitly represented or they may be abstracted away into a single component [72]. In this

manner, the model is capable of representing lower-level subsystems yet to be developed as a

black-box component in a high-level model. Those subsystems could then be independently

developed, in a top-down fashion development process also called refinement or zooming-in. A

bottom-up strategy might also be used: the development can begin with lower-level subsys-

tems and then go to the model of higher-level functionalities using the pre-defined lower-level

black-boxes—using abstraction or zooming-out.

A

B

D
C

A

B

D

C

Figure 3.2:
Zooming-in

Figure 3.3: Zooming-out Figure 3.4: Complete System

An example of these features can be found in the classical work of Harel that introduces

Statechart diagrams [41]. Figs. 3.2, 3.3 and 3.4 are adapted from that work and illustrate both

zooming-in and zooming-out. The first is presented in Fig. 3.2 and is achieved by looking ‘inside’

a given component D (in Harel’s work, a state), disregarding external interface for the time being.

Figure 3.3 is the result of zooming-out the system in Fig. 3.4, i.e. of eliminating the inside of

D by abstraction. Therefore, the compositionality feature is able to make the modelling process

more flexible and to produce models both more understandable and more scalable, as a result

3.2. Research Goals 26

of both zooming-in—considering only the elements inside a given component, and eliminating

thereby the complexity of all remaining components—and zooming-out—hiding the complexity

of the ‘inside’ of particular components to define the interactions among them in a more abstract

fashion.

Additionally, the architectural components must also be connected to the policies, so that

at the end of the design phase the overall structure of the network security system is precisely

defined by the architectural model, and the functional responsibility of each system component

is determined by a set of associated security policies. However, it is important that the definition

of policies and system architecture is done independently, so changes in one of this elements can

be propagated to the other without having to re-specifying the whole model.

3.2 Research Goals

By comparing the Model-Based Management (Sect. 2.4) paradigm and the framework previously

described, one can notice that MBM operates precisely in the abstraction level of the Network

Security System Design phase. As regards to policies, MBM offers an elegant solution for the

Security Policy Design tasks, since it provides not only an instrument for formalising the part

of the organisational security policy related to network services (by means of the RBAC model),

but also an automated refinement process that creates lower-level policies from the abstract ones.

As such, a guided and smooth transition from the highest-level to lower-level policies is supplied,

culminating with the automated derivation of configuration parameters for the network security

services.

Nevertheless, the features prescribed for the Architectural Design are not adequately covered

by the existing applications of MBM. In those works, the actual system is modelled in a 1:1

basis, i.e. to each element in the actual system there is an object in the model. As such, the

modeller cannot have an abstract and intelligible view of the system as whole. This is also the

cause of the scalability problems discussed in Sect. 2.4.2, since the system representation used

has its complexity increased at the same pace as the complexity increase of the real system.

A canonical way of addressing such problems is to use the “divide and conquer” approach

(from the Latin divide et impera); i.e. to break the problem into several subproblems that are

similar to the original problem but smaller in size, solve the subproblems separately, and then

combine these solutions to create a solution to the original problem [23, p. 12]. This approach

thus involves three steps:

(1) divide the problem into subproblems;

(2) conquer the subproblems by solving them;

(3) combine the solution to the subproblems into the solution for the original problem.

By applying this principle to network architectures, one can use the architectural design

technique of compositionality described in the previous section, such that the modularisation

of a system into smaller segments (divide) would allow us to deal with each of them in detail

separately (conquer). Then we would be able to reason about the whole system through a more

abstract view of the composition of those parts (combine).

3.3. Chapter Summary 27

Therefore, the driving idea of the present research work is to apply the divide and conquer

principle to the management of large-scale network security systems, relying upon the model-

based management paradigm on the one hand, and upon lessons learned from the architectural

design of software engineering techniques on the other hand. The focus is thus to provide the

security administrator with a practical approach for the configuration management of network

security systems which is suited to the large-scale, complex network environments found in

today’s organisations.

Specifically, this work strives to achieve the following goals:

1. an abstract modelling of the system architecture—which enables one to reason about the

system building blocks, about the interaction between blocks, and about the distribution

of policy participants over the system—combined with a detailed modelling of particular

model segments;

2. a graphical representation that encloses both modelling forms and the system policies,

providing thereby convenient visualisation and manipulation of large models;

3. policy refinement algorithms that are able to cope with large systems;

4. formal validation of the policy refinement correctness, which must also scale satisfactorily;

5. a software tool that assists the editing of models and that apply the refinement algorithms

to produce configuration parameters for security mechanisms.

3.3 Chapter Summary

This chapter has presented a conceptual framework to the development life-cycle of network

security systems. This framework contextualises the network security system design and subdi-

vides it into two tasks: the architectural design and the security policy design.

With basis on the conceptual framework and on the network security services and approaches

discussed in Ch. 2 on the other hand, specific research goals for the present work were defined.

The five selected goals concern the achievement of a scalable approach for the configuration

management of large-scale network security systems.

Chapter 4

Modelling Framework and Usage

This chapter introduces the modelling technique of this work by presenting its underlying meta-

model; i.e. by defining the common structure behind each model instance. The meta-model

defines each class that is available for the modeller, and also the connection possibilities between

classes. Said it another way, the meta-model lists for a class A all the other classes whose objects

can be connected to objects that pertain to A. The meta-model could also be called an ontology,

since it defines the entity classes and potential relationships between them in the “world” of this

work.

This chapter thus concerns the objects that shall be inputted by the modeller. After the

definition of the meta-model in the next section, Sect. 4.2 explains the usage of the modelling

framework by means of a test scenario. The model objects that are automatically generated in

the policy refinement process are not described in this chapter, but in Ch. 5.

4.1 Meta-Model Definition

Figure 4.1 depicts the three-layered structure of the meta-model. Each of the levels is a refine-

ment of the superior one in the sense of a “policy hierarchy” [73, 115]; i.e. as we go down from

one layer to another, the higher-level system’s view contained in the upper level is complemented

by the lower-level system representation, which is more detailed and closer to the real system.

Thus, the horizontal dashed lines of Fig. 4.1 delimit the abstraction levels of the model:

Roles & Objects (RO), Subjects & Resources (SR), and Diagram of Abstract Subsystems (DAS).

As for the vertical subdivision, it differentiates between the model of the actual managed system

(on the left-hand side) and the security policies that regulate this system (on the right-hand

side).

The two topmost levels are gathered from previous work on MBM [61, 63] and extended.

The RO level is based on concepts from Role-Based Access Control (RBAC) [32, 97] and the

second level (SR in Fig. 4.1) offers a system view defined on the basis of the services that will

be provided. They are both briefly described in Sect. 4.1.1.

The third model layer (DAS) is the main contribution of this work. It aims at offering a

28

4.1. Meta-Model Definition 29

DAS

S & R

R & O

Managed System Policies

Figure 4.1: Meta-Model Overview

modular description of the system’s overall structure thereby improving the scalability of the

modelling technique.

4.1.1 Layers RO and SR

The topmost level of our model describes the system relying on the concept of roles; i.e. system

permissions are established based on functional roles in the enterprise, and then appropriately

assigned to users [32]. The main classes in this level are depicted on the top of Fig. 7.4 and

represent: Roles in which people who are working in the modelled environment act; Objects

that should be subject to access control; and AccessModes; i.e. the ways of accessing objects.

The class AccessPermission expresses an authorisation policy, allowing the performer of a Role

to access a particular Object in the way defined by AccessMode. Figure 4.2 shows the graphical

representation used for each of these classes.

Object AccessModeRole AccessPermission

Figure 4.2: Classes of the RO level

These classes correspond to and convey the same semantics of the equally named entities in

the RBAC terminology (see [97]). It should be noted that we represent RBAC Permissions by a

pair of an Object and an AccessMode (similarly to the decomposition of privileges into operations

and objects adopted by [33]). The many-to-many association between roles and permissions is

thus established by means of an AccessPermission and its associations with the corresponding

objects (Role, Object and AccessMode).

The second level (SR in fig. 4.1) offers a system view defined on the basis of the services that

will be provided; its set of classes is shown at the bottom of Fig. 7.4. Objects of these classes

represent: (a) people working in the modelled environment (User); (b) possible subjects acting

on the user’s behalf (SubjectTypes); (c) services in the network that are used to access resources

4.1. Meta-Model Definition 30

(Services); (d) the dependency of a service on other services (ServiceDependency); and also (e)

Resources in the network. The iconic representation used for each of these classes is shown in

Fig. 4.3.

ServiceDependencyService Resource ServicePermissionUser SubjectType

Figure 4.3: Classes of the SR level

Therefore, as regards the modelling of users, for each Role in the RO level related objects

of the classes User and SubjectType are defined in the SR level. Both terms users and subjects

refer to the equally named concepts of the RBAC terminology, and thus serve to complete the

RO level model in the sense of the reference model RBAC0 [97]. Note that for the sake of

simplicity this work does not include more advanced RBAC features such as constraints or role

hierarchies. These could be easily incorporated though, as shown in other work on MBM such

as [68].

The modelling of subjects (also named sessions in the RBAC literature [97]) adopted in this

work is somewhat particular. Traditionally, a subject is an automated entity in the system

that act on a user’s behalf, thus representing a particular session in which a set of roles is

simultaneously activated [97]. The MBM approach does not cover the role activation model of

RBAC, but rather only its prescriptive, static part. Nevertheless, the class SubjectType is used

to define the basic types of subjects that might take place in run-time, and for this reason the

suffix “type” is appended to the class name (for a further elaboration on this topic see [68]). A

SubjectType object is thus used to represent typical settings in which the user can act in the

system, e.g. “@office” or “@home”, representing the subjects that are activated by the user at

the office or resp. at home.

4.1.2 The DAS level

Concept of Abstract Subsystem (AS)

An Abstract Subsystem (AS) is an abstract view of a system segment; i.e. a simplified represen-

tation of a given group of system components. As such, an AS omits much of the detail that

is contained inside of it, presenting instead only the relevant aspects for a global view of the

system structure. These aspects are chosen based on a policy-oriented view of the system, which

is depicted in Fig. 4.4.

In this scheme, three types of elements can be distinguished: actors, mediators and targets.

The first type (actors) stands for groups of individuals in a system which have an active behav-

iour; i.e. they initiate communication and execute mandatory operations according to obligation

policies.

The second element type encloses Mediators, which intermediate communications, receiving

requests, inspecting traffic, filtering and/or transforming the data flow according to the authori-

sation policies. They can also perform mandatory operations based on obligation policies, such

4.1. Meta-Model Definition 31

Mediators

Target Domain

Actors Targets

Subject Domain

Policies

Obligation

Obligation Policies
Authorization Policies

Figure 4.4: Components of Abstract Subsystems

as registering information about data flows. The Targets, in turn, are passive elements; they

contain relevant information, which is accessed by actors.

Using this scheme as a foundation, we can now redefine an Abstract Subsystem as a non-

directed graph whose edges represent potential (bidirectional) communication between its nodes.

These nodes can be either of one of the three types mentioned above (actors, mediators and

targets) or connectors. This last type of component has been added to represent the interfaces

of one AS with another; i.e. to allow information to flow from, and to, an AS.

Diagram of Abstract Subsystems (DAS)

Relying upon the concepts presented in the preceding section, we now introduce a new abstrac-

tion level into the modelling of security systems: the Diagram of Abstract Subsystems (DAS).

This layer is located immediately below the service-oriented view of the system (SR level in

Fig. 2.1) and above the PH layer, which depicts the actual network mechanisms. Its main objec-

tive is to describe the overall structure of the system to be managed in a modular fashion; i.e. to

cast the system into its constituent blocks (ASs) and to indicate the connections between them.

Since these blocks consist of a policy-oriented, abstract representation of the actual subsystem

components (see Sect. 4.1.2), the DAS provides a concise and intelligible view of the system

architecture—in a similar sense as the one proposed in [85].

The DAS is formally a graph, comprised of ASs as nodes and edges which represent the

possibility of bidirectional communication between two ASs, as shown at the bottom of Fig. 4.8.

Thus, from a top-down perspective (i.e. from the SR level downwards) this diagram adds four

kinds of information to the precedent model:

1. the segmentation of the users, services and resources into subsystems;

2. the structural connections amongst elements and subsystems;

3. the structural connections amongst the different participants of a policy (actors, mediators

and targets);

4. mediators that are not directly related to SR level services but take part in the communi-

cation and filter or transform its data (e.g. firewalls).

4.1. Meta-Model Definition 32

On the other hand, from a bottom-up point of view, DAS substitutes the actual network

of mechanisms, giving an abstract and clear view of the system architecture, which is more

scalable and policy-oriented. Indeed, this diagram supports the reasoning about the structure

of the system vis-à-vis the executable security policies, thus making explicit the distribution of

the different participants of these policies over the system.

4.1.3 Security Goals, Requirements and Assumptions

In order to provide the model with more fine-grained information about accesses that the system

must allow, the modelling encloses an additional type of security policies: abstract security

goals1. The goals are defined at the RO level by SecurityGoal objects (Fig. 7.4). They extend

the RBAC model by abstractly representing the security properties that are required to access

an object or to perform a given access mode. The modeller thus defines a SecurityGoal by

attaching it a label (e.g. “Top Confidential” or “Mission Critic, 4x7 availability needed”), and

connecting Objects and AccessModes to the goal. In this manner, security goals complement the

authorisation policies expressed by AccessPermissions – which represent what must be allowed –

with qualitative information about how accesses must be performed (following thus the definition

of policy goals in [113]).

At the SR level, each SecurityGoal is assigned to a SecurityRequirement. This work follows

the standardised definition according to which a requirement is a description of a system service

or constraint needed to achieve a goal [48]. Thus, a SecurityRequirement details the security

properties that must be fulfilled to achieve the corresponding SecurityGoal. These properties

are expressed by a vector of security levels (natural numbers ranging from 1 to 4) with respect

to four categories: confidentiality, integrity, availability, and accountability. These categories

comprise a representative subset of the most common functional security requirements as stated

in standards like [22, 54] and are not intended to be exhaustive. Each 4-tuple of security level

values constitutes a security class (for instance, (1, 1, 1, 1) is the lowest possible class). Hence,

a SecurityRequirement specifies how a SecurityGoal should be accomplished by the system in

terms of the lowest security class that must be enforced for the related objects and access modes.

On the other hand, a model includes an additional type of objects in order to express the

security properties that an entity is assumed to assure: the SecurityAssumptions (see Fig. 7.4).

Similarly to the SecurityRequirements, SecurityAssumptions are also represented by a security

class. At the SR level, SecurityAssumptions are associated to each Service in order to repre-

sent the security class that the service provides; i.e. the security levels one can assume in a

communication that involves that service.

As for the DAS level, SecurityAssumptions are assigned to each AS in order to express the

security class that the elements inside an AS are assumed to share. This makes possible, for

instance, to model that one should expect higher confidentiality level of an internal network than

of a public network. Additionally, a modeller may assign a SecurityAssumption to individual

1The concepts of security goals, requirements and assumptions elaborated in this section have evolved from
the security vectors proposed in [94].

4.1. Meta-Model Definition 33

1

1
Role AccessPermissionAccessModeObject SecurityGoal

SecurityRequirement
UserSubjectTypeService SecurityAssumption
Actor Target

ConnectorMediator
UserCredentialProcess

ServiceDependency
Resource112 1

1 11 1
RO

SR

DAS

ES

Figure 4.5: Class Diagram of Levels RO, SR, DAS, and ES

Actors, Targets, or Mediators. The particular object is then assumed to have different security

properties than that of the other elements in the subsystem. Thus, as long as a given DAS

object does not have a directly associated SecurityAssumption, it is the assumed to warrant the

security class of the corresponding AS.

A class diagram encompassing the levels RO, SR, DAS, and ES is shown in Fig. 4.5. It

presents the main classes mentioned above and their reciprocal relations (for clearness, all the

multiplicities of the type “to many” are hidden in the associations of the figure).

4.1.4 Expanded Subsystems

Additionally, each AS in a DAS is also associated with a detailed view of the system’s actual

mechanisms. This expanded view is called Expanded Subsystem (ES) and encompasses classes

of objects that represent:

• computers of the system (or hosts);

4.2. Usage of the Modelling Framework 34

• credentials of the users, like login names or certificates;

• processes that take part in the communication corresponding to the policies;

• system objects that are manipulated by processes, e.g. data files;

• network connection entities, such as protocols, interfaces, and network segments.

Host Interface Link Process SystemObject Protocol ProtocolPermission

Figure 4.6: Classes of the ES level

The pictorial representations of some of these basic classes are shown in Figure 4.6. These

classes are used to define both the components of the system itself and the security mechanisms

employed to control the activity of the former. For the latter, special process classes are also

defined to handle each specific mechanism type supported.

Notice that the ES representation has a static character; i.e. it is a picture of the system

components and connections, but it does not include a behavioural description of their inter-

actions. Therefore, the modelling of processes is somewhat particular. A process object in the

ES level actually stands for a prototype of processes that might occur in the real environment.

One should thus see a process object not as a picture of a particular process executing in the

real world, but rather as an abstraction that holds the relevant common properties of all similar

processes that can be launched on a certain host.

4.2 Usage of the Modelling Framework

In order to make clear the modelling technique previously presented, this section presents the

modelling usage in a concrete network environment. Each step of the process is exemplified by

means of a test scenario, following described.

4.2.1 Scenario Description

The considered scenario is that of an enterprise network that is connected to the Internet, as

illustrated in Fig. 4.7. Our main goal is to design the configuration for the security mechanisms

that are required to enable and control web-surfing and e-mail facilities for the company’s office

employees. The employees are allowed to use the computers in the office in order to surf on the

Internet and to access their internal e-mail accounts, as well as to send e-mails to internal and

external addresses. As for the ongoing communication from the Internet, the security system

must enable any external user to access the corporate’s web site and to send e-mails to the

internal e-mail accounts.

Therefore, the highest-level security policies for this environment can be stated as follows:

4.2. Usage of the Modelling Framework 35

��������������
��������������
��������������
��������������

���������
���������
���������
���������

internal network DMZ Internet

public
web server

external
mail server

internal
mail server

workstations

�
�
�
�

�
�
�
�

Figure 4.7: Sample Network Scenario

P1: The employees may surf on the Internet from the computers in the office;

P2: The employees may read their internal e-mails from the office;

P3: The employees may send e-mail both to external and internal addresses;

P4: Users on the Internet may access the corporate web server;

P5: Users on the Internet may send e-mail to internal company’s mail addresses.

The three-layered model for this environment is shown in Fig. 4.8. We describe the main ele-

ments of the model layers SR and RO and their mutual relations in the next section. Thereafter,

the modelling of the DAS level is covered in detail in Sect. 4.2.4.

4.2.2 Modelling the RO Level

Since the highest level in our model is based on RBAC concepts, the designer starts the devel-

opment process by mapping the abstract policies, expressed in natural language, to the more

formal syntax of RBAC. Hence, each of the five policy statements of the previous section must

be expressed by objects of the types Roles, Objects, AccessModes and AccessPermissions, and

their relationships.

The top of Figure 4.8 shows the resulting model at the RO level for our considered scenario.

This level contains the following basic objects: the Roles “Employee” and “Anonymous Internet

User”, and the Objects “Internal e-mail”, “Website”, “Internet e-mail” and “Internet WWW”.

These objects are associated with AccesModes by means of five AccessPermissions (at the top,

on the right of Fig. 4.8), each of the latter corresponding to one of the abstract policy statements.

Thus, for instance, the AccessPermission “allow Internet surfing” models the policy statement

P1, associating the role “Employee” to “surfing” and “Internet WWW”. The other policy

statements are analogously modelled by the remaining AccessPermissions.

4.2.
U

sage
of

th
e

M
o
d
ellin

g
F
ram

ew
ork

36

DMZ
Internet

DAS

SR level

RO level

internal network

Figure 4.8: Model Example

4.2. Usage of the Modelling Framework 37

4.2.3 Modelling of Users, Services and Resources

The second step in the design process consists of the definition of the services that the system

must provide, the resources they need, and the users who may take advantage of them. As

regards the modelling of users, for each Role in the RO level related objects of the classes User

and SubjectType must be defined in the SR level. These two classes add information about each

user that is authorized to act in a certain role and the possible subjects that may take place in

the system.

For the test scenario, the User “Anonymous” and the SubjectType “@Internet” are defined

in association with the role “Anonymous Internet User”. For the role “Employee”, several User

objects are grouped in the TypedFolder2“Internal Users”, and the corresponding SubjectType is

“@main office”.

As for the modelling of services and resources, a Service object will be basically defined

for each AccessMode in the RO level, whereas an RO Object will be mapped to a Resource.

In case where more than one service is needed to provide access to a resource, this fact is

expressed by a ServiceDependency. This is what happens in our example model, for instance,

with the AccessMode “sending to the company” that is related to the Service “Mail-forwarding

service incoming e-mail”. This service must rely on the “Internal mail service” in order to

provide access to the resource “Internal message store” (which is associated with the RO Object

“Internal e-mail”). This fact is then represented by the connection of the two services to “Service

dependency association incoming e-mail”. On the other hand, a quite simple situation occurs

with the AccessMode “accessing” and the Object “Website” (RO level); in these cases the service

“WWW Service” and the resource “Web pages”, which are correspondingly associated to those

objects, are directly connected to each other.

4.2.4 DAS Modelling

The mapping from the SR level to the Diagram of Abstract Subsystems (DAS) involves

three steps: (i) the modularisation of the system in conformance with the respective network

scenario—i.e. the segmentation into Abstract Subsystems (ASs); (ii) the mapping of the

elements of the SR level (users, services, resources) to components inside each AS; and (iii) the

establishment of structural connections in the DAS, reflecting the associations between elements

inside an AS and those between ASs, which are performed by means of Connector objects

(Sect. 4.1.2). Subsequently, each AS can be expanded independently in order to achieve at

the PH level a detailed representation of its mechanisms, and thereby enabling the generation

of the corresponding configuration files. These steps will be described in turn in the following

sections.

2Typed folders are, as the name suggests, entities that simply group a number of elements of the same type,
in order to offer a more compact representation. Further details can be found in [37].

4.2. Usage of the Modelling Framework 38

Segmentation into ASs

The subdivision of the system into ASs shall be guided by the structural blocks of the analysed

environment. The abstract components of a DAS are thus aggregated according to the groups of

mechanisms that already exist in the real system, such as departments, workplaces and functions.

An important criterion to be considered is the semantic unity of an AS; i.e. the group of

mechanisms enclosed in an AS must have a common property that is clearly distinguishable.

As such, this property assures the cohesion of the AS, so that it thereby represents a logical

grouping identifiable in the real environment (like the ones previously mentioned), instead of

only consisting of a mere agglomeration of heterogeneous elements.

On the other hand, the modularisation criterion of coupling (also a classical measure in the

modularisation techniques of software engineering) should be taken into account in this context

as well. The more the elements enclosed in the detailed view of an AS are related exclusively to

elements of the same AS (and hence more independent from elements of other ASs), the more

concise will be the abstract representation offered by the DAS, since those internal connections

will be hidden. In this manner, a lower coupling between ASs improve the scalability of the

DAS.

Analysing the scenario illustrated in Fig. 4.7, the existence of a structural subdivision in

three segments is clear, namely: the internal network, the demilitarised zone (DMZ) and the

external network (the Internet). Therefore, the DAS for this example has an AS to each one of

these segments.

Mapping of actors

An actor will be basically created for each group of hosts/processes (inside a given AS) which

originates communication in order to act in conformance with a policy—which at the SR level

is called service permission. In this manner, the actor corresponds to the subject domain of this

permission, or, more precisely, to the part of the domain that is located in a given AS.

Nevertheless, actors can be shared by a number of different service permissions, as long as

they have the subject domain comprehended by the actor in common. This contributes to a

more compact representation, thus improving the scalability of the model.

In the SR level, the subject domain of service permissions is represented by User and Subject-

Type objects; thus each Actor will be connected to one or more pairs of these types of objects.

In the framework of model-based management, however, service permissions are not directly

modelled by the system designer but rather are automatically generated from AccessPermis-

sion objects located in the uppermost (RO) level. For this reason, the determination of the

system’s actors must start from an AccessPermission; thus taking the Role that is associated

with it and identifying its corresponding User and SubjectType objects (in the SR level). Sub-

sequently, one can create an Actor object that will contemplate the relevant AccessPermission

and, consequently, is also related to the service permission that will be generated from it.

Considering our test scenario, an Actor object “internal web clients” is created in the AS

“internal network” for the first policy—which is modelled by the first AccessPermission in

4.2. Usage of the Modelling Framework 39

Fig. 4.8, namely “allow Internet surfing” (AP1). Similarly, for the AccessPermission AP3 (“allow

sending e-mail”) the Actor “internal mail clients” is created in the same AS, whereas, in the AS

“Internet”, the actors “external mail sender” and “external web surfer” correspond respectively

to the objects “permit receiving e-mail” (AP2) and “permit access to own web” (AP4). The

AccessPermission “allow fetching e-mail” (AP5) can be covered by the previously created Actor

“internal mail clients”, since its subject domain is the same as that of AP3.

Mapping of mediators

As regards to Mediators, two types can be distinguished. Mediators of the first type are a re-

finement from services which perform the “middleman functions” described in Sect. 4.1.2, for

instance, proxies and mail forwarders. Therefore, they are achieved by means of a straight-

forward mapping from those services of the SR level, positioning them in the appropriate AS.

Indeed, a service can be covered by a number of Mediators, each one residing in a different AS.

On the other hand, a given Mediator object can map more than one service.

In our sample scenario, the “E-mail-Forwarder” Mediator, in the “DMZ” AS, stands for both

services of handling incoming and outgoing e-mails. As for the “internal network”, the “Web

proxy” Mediator maps the “WWWProxyService”.

The second type of Mediators consists of technical mechanisms that are not modelled in the

SR level but are required in order to control the communication; i.e. they transform and/or

filter it according to authorisation policies (like packet filters, IP-masquerading), or inspect the

data according to obligation policies (e.g. IDS, event monitors). In this manner, the system

designer shall create this type of mediators whenever these functionalities are required; i.e. a

Mediator object will then appear wherever a security mechanism like the previously mentioned

ones is to be placed in the respective actual network environment.

Examples of the second type of Mediators are illustrated in Fig. 4.8 by the objects “Firewall

1” e “Firewall 2”. They have been introduced into the AS “DMZ”, precisely in the place where

the firewalls are found in the scenario of Fig. 4.7.

Mapping of targets

Targets are obtained by a quite direct mapping from the pairs of Service and Resource objects

(in the SR level) which encompass a target domain of a service permission, or a part of this

domain that is placed in a given AS. In this way, each Target object must be connected to at

least one pair of Service and Resource in the SR level, but it can also be shared by different

service permissions; in the latter case, relations with other such pairs would be also present—this

sharing also contributes to the conciseness of the model. Conversely, each pair of Service and

Resource can be mapped to a number of Targets, each one located in different ASs—similar to

the case of Mediators.

Similar to the actors, the target identification must start by considering the AccessPermis-

sions in the RO level. Here, nonetheless, it is the Object related to a certain AccessPermission

4.2. Usage of the Modelling Framework 40

that is considered at first in order to establish then the corresponding Resource (SR level) and

the Service which provides access to it. Finally, we create a Target to map this pair of objects.

When applying this method to our test scenario, then for the policy P1 (Sect. 4.2) the

Target object “Internet web sites” is created to refine the pair of Service and Resource of

“Internet webservice” and “Internet web pages”, since the latter is related to the Object “Internet

WWW” (at the level RO) of AP1. It is worthwhile to note that, in this case, the Service refined

from the AccessMode “surfing” of AP1 , namely “WWW proxy service”, is different from the

one previously used as target; this only happens when there is a ServiceDependency between

these two Services. Indeed, the “WWW proxy service” cannot provide access to the Resource

“Internet web pages” by itself, but relies on the “Internet web service” to do it. This dependency

is modelled by the object “Dependency outgoing web” in the SR level (at the centre of Fig. 4.8).

Proceeding in the same manner, the targets “internal mail server” (“internal network”),

“Internet mail server” (“Internet”) and “Web server” (“DMZ”) map respectively the policies

modelled by AP2, AP3 and AP4. As for AP5, the Target “internal mail server” can be shared

with AP2; as such, there is no need to create another object.

Establishment of Structural Connections

In order to complete the model that has been formed thus far by the application of the procedures

of the latter sections, one needs to introduce the associations between objects of the DAS; i.e.

formally speaking, to add the edges of the graph. Such associations have a different meaning

compared to that of the associations between an element in the SR level and an object of the

DAS. While the latter represent abstraction refinements—in the sense of relating levels of a policy

hierarchy—the former represent structural connections; i.e. the possibility of communication in

the actual system. Despite this, only the connections that are relevant to the abstract view

of the system shall be depicted here; these are namely the associations that interconnect the

different participants of executable policies: actors, mediators and targets.

Once again, the establishment of these connections starts at an AccessPermission. Each of

the objects (in the DAS) that correspond to this permission is identified and then associations

are created in order to construct paths between the respective actors and targets, traversing the

necessary mediators. Whenever one of these paths enters or leaves an AS, Connector objects are

inserted at this point, representing the communication interfaces of the AS. Thus, the number

of Connectors in an AS corresponds to the number of available physical interfaces of the actual

system.

Proceeding in this manner with our test scenario, the Connector objects (rectangles) and

connection edges (lines) shown in Fig. 4.8 are obtained.

4.2.5 Expanded Subsystems

Starting from the model that has been produced thus far (Fig. 4.8), the next stage in the

model development is to expand each of the ASs separately. This means that, for each AS,

the mechanisms inside it shall be modelled according to the usual procedure described in [37],

4.2. Usage of the Modelling Framework 41

resulting in a detailed representation of these mechanisms; i.e. the PH level. Afterwards, the

associations between the PH level components with the objects in the AS have to be drawn,

thus establishing a relation of abstraction refinement.

Each Actor object of an AS must be then related to its corresponding Process- and UserID-

typed components in the PH level, such that the Actor performs the association of these compo-

nents with SubjectType and User objects in the SR level. As noted in Sect. 4.2.4, an Actor may

be used for more than one pair of SubjectType and User, thereby corresponding to several service

permissions. Hence, to avoid the burden of depicting all of the single associations amongst the

objects (of type User, SubjectType, UserID and Process) connected to each Actor, a table of

4-tuples containing these associations shall be used to store them.

The Mediator objects of an AS, in turn, are simply related to one or more Process-typed

components which implement the corresponding functionalities. With regards to Targets, each

of them is related to one or more pairs of Processes and Objects that provide the corresponding

services. Therefore, a Process in the PH level is related via a Target to a Service in the SR level,

whereas an Object is related in a similar fashion to a Resource.

Figure 4.9 shows the ESs corresponding to the ASs “internal network” and “dmz” (right).

The relation from actors, mediators and targets in the abstract representation AS (at the top)

to objects in the detailed view ES (bottom) is graphically indicated by edges. For instance,

the Actors “internal mail clients” and “internal web clients” in the “internal network” (on the

left-hand side) are related to objects to represent the corresponding processes that run in two

different workstations, as well as to the user credentials and login names of the users that may

take advantage of these processes.

Figure 4.9: Expanded Subsystems internal network and dmz from Fig. 4.8

In the AS “DMZ” (on the right-hand side), the Mediator “E-mail Forwarder” and the Target

4.3. Chapter Summary 42

“Webserver” are correspondingly mapped to processes and resources that implement them.

These objects in the ES that are directly assigned to AS entities are, in turn, related to a series of

other objects in order to provide the model with detailed information about the communication

– such as protocol stacks and the network interfaces (see bottom of Fig. 4.9). In this manner,

the correspondence between the abstract view of the system (AS) and its actual mechanisms is

established.

4.3 Chapter Summary

This chapter has presented a modelling technique for the management of security systems

(Sect. 4.1). The modelling achieves scalability by the segmentation of the system in Abstract

Subsystems, which enables the processes of model development and analysis to be performed in

a modular fashion.

In order to clarify the semantics and the practical use of the meta-model, a top-down ap-

proach to the modelling usage is described in Sect. 4.2. The systematic mapping from a service-

oriented system view to a Diagram of Abstract Subsystems was covered in detail, encompassing

the choice of elements to be represented in the abstract view, as well as the correspondence of

these elements to the actual mechanisms of the system. Each step in this processes is exemplified

by means of a test scenario.

Chapter 5

Automated Refinement and Tool

Support

After the modeller has achieved a valid model instance by following the principles explained in

the previous chapter, the supporting tool automatically builds a policy hierarchy by deriving

lower-level policy sets from the policies specified at the most abstract layer. This process is

termed in the literature policy refinement [73, 1] or policy transformation [115, 113]. This

work adopts the first of them. The next section elaborates on the policy support offered by the

modelling framework developed and presents the automated process of policy hierarchy building.

Thereafter, Sect. 5.2 briefly describes the common supporting tool of the MBM approach,

which was already existing in the beginning of the present work and was further developed both

by other research groups on MBM (e.g. the SIRENA project [47, 46]) and in the context of the

present work. The tool firstly assists the modelling by means of a diagram editor, and it then

executes the policy refinement process. At the end of this chapter, Section 5.3 presents the focus

and context techniques incorporated to the tool as a main contribution of the present work.

5.1 Automated Policy Hierarchy Building

The fully automated derivation of low-level, executable policies from a set of abstract specifica-

tions is, in the general case, not practical [105, 115]. Nevertheless, as our modelling is structured

in different abstraction levels, the analysis of the system’s objects, relationships and policies at a

certain abstraction level enables the generation of lower level policies, based also on the system’s

model at the lower level and on the relations between entities of the two layers. As such, the

model entities of a certain level and their relationships supply the contextual information needed

to automatically interpret and refine the policies of the same level. At the end of this refinement

process, configuration parameters are yielded for each system mechanism to be configured.

An overview on the hierarchical structure of the policies supported in our modelling is pre-

sented in Fig. 5.1. This figure emphasises the policies, so several other element types are omitted.

While boxes with rounded corners represent the model entities defined by the modeller (described

43

5.1. Automated Policy Hierarchy Building 44

RO level

transfer

Security

SR level

Services

Actors

Mediators

refinement

refinement

Assumptions

Targets

AS

DAS

Security

Policies

Assumptions

Security

Security

Assumptions

Path Security

Objects

Access Modes

Managed System

Security Goals
Access

Permission

Permission

Service

Requirements

Requirements
ATPermission

Figure 5.1: Policies and Security Requirements in the System

in Ch. 4), the objects generated during the automated refinement process are depicted as normal

rectangular boxes—they will be following explained in this chapter. As for the connecting lines,

the thicker, arrowed ones represent associations established automatically during the refinement

process, while the thinner lines with no arrows stand for the assignments given by the modeller.

Before presenting the refinement process developed in this work, the next section analyses the

policy support provided by the modelling and its semantics in comparison with a classification

framework [105].

5.1.1 Policy Support and Semantics

According to Sloman and Lupu [105], policies can be sorted into two basic types: authorisation

and obligation policies. Authorisation policies are used to define access rights for a subject

(management agent, user, or role) and can be either positive (defining the actions subjects are

permitted to perform on target objects) or negative (specifying the actions subjects are forbidden

to perform on target objects). As such, authorisation policies are used to define access control

rules implemented by several types of mechanisms in a network security system, such as packet

filters, Kerberos, and VPNs.

Obligation policies are, in turn, event-triggered condition-action rules that can be used to

define the activities subjects (human or automated manager components) must perform on

objects in the target domain; i.e. the duties of these subjects. In the network security context,

obligation policies can be used to specify the behaviour of mechanisms such as logging agents,

5.1. Automated Policy Hierarchy Building 45

intrusion detection systems (IDS) and watchdogs.

In the right hand columns of Fig. 5.1, one can notice that the policy refinement is subdivided

in two parallel tracks, corresponding to the two policy types supported by the modelling of this

work: security goals and requirements, and authorisation policies. In the uppermost model level

(RO), authorisation policies are represented by means of AccessPermission objects (Sect. 4.1.1).

The set of AccessPermissions is given by the modeller and acquires in this context a particular

meaning. On the one hand it defines the explicit permission for Roles to access Objects (in

the way defined by an AccessMode) – corresponding to positive authorisation policies. On the

other hand, MBM adopts closed policies [98]; i.e. the default decision of the reference monitor is

denial. This implies that all triples of Role, Object and AccessMode not belonging to the set of

AccessPermissions are forbidden. They thus implicitly define the negative authorisation policies

which the security mechanisms must as well enforce.

Moreover, as a particularity of the MBM approach that differentiates it from traditional

access control models, the high-level policies and system model additionally represent features

that the system to be managed must implement. As such, the positive and negative authorisation

policies for users—i.e. the user privileges, or things that users may do or not—are also to be

interpreted as obligation policies for the system—i.e. the system duties or things that the system

must support (allow) or not (forbid). All of these different connotations of policies at the highest

level must be propagated to the inferior levels by the policy refinement process.

As for explicitly defined obligation policies, these are not represented in MBM since the

modelling used in MBM builds upon RBAC (Sect. 2.4), which in its basic form does not enclose

obligation policies (referred to as duties in [97]). However, besides the above policy elements,

our modelling framework also includes an extension to the RBAC model by means of the classes

SecurityGoals, SecurityRequirements and SecurityAssumptions (Sect. 4.1.3). During the process

of policy refinement described in the sequence, the security levels warranted by mechanisms

(SecurityAssumptions) are thus checked against the security requirements prescribed in the

SecurityRequirements. As such, a SecurityRequirement with a high level of confidentiality could

determine, for instance, the decision between using an encrypted tunnel instead of plain text.

Another practical example occurs when a security mechanism that supports logging has this

functionality activated in order to fulfil the high traceability level required by the prescriptive

SecurityRequirement associated to the SecurityGoal of its corresponding AccessPermission. The

examples show that, though SecurityRequirements do not directly represent obligation policies,

the analysis of the security requirements they express can yield configuration parameters for

mechanisms that do correspond to the “need to do” aspects in the system, and hence to obligation

policies.

The following sections describe the step-wise refinement process for each model level in turn.

5.1.2 Refinement RO/SR

The automated refinement of authorisation policies starts from the analysis of the AccessPer-

missions in the RO level and their related objects in order to generate a set of corresponding

5.1. Automated Policy Hierarchy Building 46

permissions in the SR level. Thus, each triple of Role, AccessMode and Object (r, am, o) related

to an AccessPermission produces a set of 4-tuples (u, st, sv, r), each of which expresses an au-

thorisation for a SubjectType on behalf of a User to use a Service in order to access a Resource.

These tuples are represented by ServicePermission objects (see Fig. 5.1).

allow internet surfing

Employee

Internet WWWsurfing

internal user

@main office

internet webpages

WWW proxyservice

internet webservice

sp1

RO

SR

Figure 5.2: Example of Refinement RO → SR

A refinement example is shown in Fig. 5.2. The AccessPermission “allow internet surfing”

is refined into the ServicePermission “sp1” that associates the objects “internal user”, “@main

office”, “WWW proxyservice”, and “internet webpages”. Each of these elements refine the RO-

level objects that are related to the permission “allow internet surfing”, namely: “Employee”,

“surfing”, and “Internet WWW”, respectively.

In addition, a security requirement is also calculated for each generated ServicePermission.

This is accomplished by comparing the security classes assigned to the SecurityGoals of Object

and AccessMode that participate in the AccessPermission being refined (as Fig. 5.1 illustrates).

The SecurityRequirement results from choosing the maximum level for each vector dimension

between the values of the two security classes. For instance, if an Object has a security goal

assigned to the class (3, 3, 2, 1), and the AccessMode has a security goal assigned to (3, 1, 4, 2),

the resulting SecurityRequirement has the class (3, 3, 4, 2).

5.1.3 Refinement SR/DAS

Subsequently, the ServicePermissions are refined into ATPermission objects (actor-target per-

missions, ATP for short), which represent authorisation policies in a DAS (Sect. 4.1.2). Since

ATPs are paths in the DAS graph, this refinement phase consists of, for each ServicePermission

(u, st, sv, r), finding the shortest path between each Actor that is connected to the pair (u, st),

and each compatible Target that is connected to a pair like (svt, res). If the service sv has direct

access to the resource r, then svt—i.e. the service related to the Target—and sv will be the

same. Otherwise, sv must rely upon a dependency chain that leads to svt, in order to access r.

In this case, to each service that takes part in the dependency chain, a corresponding mediator

5.1. Automated Policy Hierarchy Building 47

must be found along the path between Actor and Target.

internet

internet websites

dmz

Firewall 1 Firewall 2

internal network

web proxy

internal web client

internal user

@main office

internet webpages

WWW proxyservice

internet webservice

FWService
sp1

atp1

SR

DAS

Figure 5.3: Example of Refinement SR→ DAS

A visualisable example for this refinement step is given in Fig. 5.3 (it is in fact a continuation

of the refinement in the previous section). For the ServicePermission “sp1’ ’ (top, at the

right hand side) the refinement algorithm determines the ATP “atp1” that starts in the Actor

“internal web clients” (this is indicated by the gray, dotted line from the ATP to the Actor) that

is connect to the “internal user” and “@main office”. The path traverses the Mediators “web

proxy”, “Firewall 1” and “Firewall 2” (as well as some connectors along the way), and ends in

the Target “internet web sites” (indicated by the dotted line from the latter to the ATP) that

is connected to the resource “internet webpages”. Notice that the mediator “web proxy” that

refines the “WWW proxy service” must be in the path, since there is a dependency chain for

this service to reach the resource “internet web pages”; otherwise, “atp1” could use the shortest

path that goes from “internal web clients” through the connectors directly to “Firewall 1”.

During the path discovery, the refinement algorithm also checks the security assumption of

the path against its security requirement, which in turn comes from the requirement that was

determined for the ServicePermission in the preceding step (as illustrated in Fig. 5.1). The

path security assumption reflects security levels that can be provided by all the elements along

the path, and it is calculated with basis on the assumptions of the individual objects and the

services that take part in the communication path, as illustrated in Fig. 5.1 (this topic is further

elaborated later on in Sect. 6.3.1). Only paths that comply with the requirements become ATPs;

thus, if the tool cannot find such a valid path to refine a ServicePermission, an error message

is presented to the user, so she/he can modify the system model to make it congruous to the

policies.

5.1.4 Refinement DAS/ES

The following refinement phase comprises the automated generation of policies that consider the

equipments and security mechanisms defined in the ESs. For this purpose, the tool generates

5.1. Automated Policy Hierarchy Building 48

for each ATP a corresponding Allowed Expanded Path (AEP) that represents an authorised

path in the expanded subsystem views. Each AEP connects a process (that refines an Actor)

to other processes (that refine the Mediators and the Target) through their related protocol

stack, interface, and network objects. Since the path discovery was already accomplished in the

previous refinement step, the refinement algorithm DAS/ES is quite simple. It just expands the

ATPs according to the related objects in the detailed view of the ESs.

internet

internet websites

web server

iis

web files

dmz

Firewall 1 Firewall 2

FW host 1 FW host 2

FWProcess 1 FWProcess 2

internal network

web proxyinternal web client

workstation 1

Firefox

workstation 2

IE

proxy server

eth0

 UserCredential

squid

atp1

aep1

ES

DAS

Figure 5.4: Example of Refinement DAS → ES

The ATP of the example in the previous section and one of its corresponding AEPs are

shown in Fig. 5.4. The path allowed by “aep1” is marked in the figure by thinner, dotted and

dashed arrows. It starts in the subsystem “internal network” with the process connected to

“workstation1”—which is related to the actor “internal web client”—and goes through protocol

stacks and network links up to the process in the “proxy server”—which is related to the mediator

“web proxy”. From this point, the path continues through protocols and links, flows to the

subsystem “dmz” traversing connectors and it then passes through two firewalls, reaching the

subsystem “internet” and its end point is thus the process related to the “web server”—which

is in turn associated with the target “internet websites”. For the same ATP, an additional AEP

similar to “aep1” is also generated, beginning in the process related to the “workstation2”; it is

omitted in Fig. 5.4.

It is worthwhile noticing that the compliance with security requirements must not be checked

in this phase, since it was already verified for the abstract path (ATP) . Indeed, an AEP contains

only processes that are related to the abstract entities in the corresponding ATP, whose security

properties were already checked. The premise is that only processes are active elements that

must be controlled, and passive objects, like protocols and links, must not be considered—a

classical assumption in access control models [96] (off course, problems like covert channels are

5.2. Supporting Tool 49

not addressed here).

5.1.5 Configuration Parameter Generation

In the last phase of the refinement process, a special back-end function for each mechanism

type supported is executed. It analyses the characteristics of each AEP that passes through

the mechanisms of a type (such as communication protocols, addresses, and ports) to produce

corresponding low-level, device-dependent configuration parameters. Clearly, the configuration

for a given mechanism must allow only the accesses corresponding to the AEPs that traverses

the mechanism.

For instance, considering “aep1” of the example in the previous section (Fig. 5.4), a back-

end function for a specific web proxy software would analyse the path and converts it into

configuration parameters for the proxy mechanism in the host “proxy server” in order to allow the

access. Another specific back-end function would then analyse “aep1” and generate configuration

files for the two firewalls in the “dmz” subsystem; i.e. it would produce packet-filter rules that

correspond to the characteristics of the path (addresses involved, protocol, ports, connection

orientation etc.). In this work, back-ends to the OpenBSD pf packet filter, and the VPN daemon

isakpmd were implemented. They are presented later on in Sect. 7.1.

5.2 Supporting Tool

The Model-Based Management is supported by a generic tool called MoBaSeC (Model-Based

Service Configuration). The architecture of this tool is defined in such a way, so that different

applications of MBM are covered by the same common tool. The details of each application are

defined by means of a meta-model, i.e. a set of classes that specify the node classes of each layer,

the allowed connections between classes, and the consistency rules to which each model instance

must comply. These rules can define the properties whose values must be set (i.e. mandatory

properties), the allowed range for values, the minimum and/or maximum number of connections

to objects of a given class, or any other consistency restriction concerning the model entities. In

addition to that, the meta-model also encloses the implementation of refinement algorithms that

generate lower-level policies for a model instance (as the ones described in the next section). As

such, the same basic tool (MoBaSeC) can be used to support the management of an arbitrary

application context, as long as there is a meta-model that defines the structure for models in

that particular context.

MoBaSec is implemented in Java and basically consists of an object-oriented graph editor

whose interface is shown in Fig. 5.5 (for a comprehensive explanation of the tool see [68]). To

define a model instance, the user simply selects one of the classes available in the meta-model

that are shown in the panel “Nodebox” (at the centre in the left hand side), and creates a new

object of this class in a window that contains a view of the model instance (in the right hand side

at the centre). Connections between two objects are thus established by dragging-and-dropping

edges to connect the objects. Furthermore, objects have properties that can be set in a special

5.2. Supporting Tool 50

Figure 5.5: Graphical interface of the supporting tool

panel (at the bottom in the left hand side). The property values provide both general information

about the objects (e.g. names and descriptions) and, for some classes, special information that

will be used in the configuration files generation, such as IP-addresses and port numbers.

Furthermore, the tool checks the consistency rules defined in the meta-model in order to

ensure that the model instance is valid. The verification of basic rules is performed on-the-fly

as the user inputs the model objects and properties—e.g. whether a connection between two

objects is allowed. Once the model is complete, a menu item can be used to trigger a more

comprehensive model checking, in which a number of general consistency rules are applied, and

the problems found are listed in a separated panel (in the right hand side at the bottom of

Fig. 5.5). In this manner, the user receives immediate feedback and can correct the problems

before the policy refinement takes place.

MoBaSeC also relies upon the Model-View-Controller architectural pattern [17], according

to which the model should be separated from its graphical representation. Consequently, the

user might define different model views that, for instance, can filter some of the objects, so

he/she is able to better visualise given parts of the model.

5.3. Focus & Context 51

5.2.1 Extensions of this work

To support the modelling technique previously described, a specific meta-model has been de-

veloped for this work. This meta-model consists of a set of classes and methods that define (1)

the possible model elements and their potential connection to other element types, (2) consis-

tency checks to be applies to model instances (as described in Ch. 6), and (3) the refinement

algorithms that implement the procedure described in Sect. 5.1.1. Implementation details can

be found in [53] and especially in [55].

Furthermore, in order to enhance the handling of large models, the tool also incorporates

the focus and context techniques semantic zooming and fisheye views. They will be explained

in the next section.

5.3 Focus & Context

The term focus & context refers to techniques that allow a user to centre his view on a part of

the model that is displayed in full detail (focus), while at the same time perceiving the wider

model surroundings in a less detailed manner (context). According to Card et. al [18], they rely

on three premises: a) the user needs both the overall picture and a detailed view; b) there may

be different requirements for the information in the detailed view than in the overall picture;

c) both displays may be dynamically combined into a single view. The major advantage of

using these principles is the improved space-time efficiency for the user; i.e. the information

displayed per unit screen area is more useful and, consequently, the time required to find an

item of interest is reduced as it is more likely to be already displayed [76].

We employ the focus & context concept within two different methods. First, it is applied to

the structure of compounded elements of the model, i.e. to the model entities that aggregate

a group of simple objects. This application explores the exhibition of these entities in different

levels of detail and is called semantic zooming. Second, we employ a visualisation technique that

relies on a specific graphical projection of the model into the two-dimensional Euclidean space,

which is called fisheye view. The next sections describe each of these techniques in turn.

5.3.1 Semantic Zooming

The concept of semantic zooming [76, 60] is based on the ability to display model objects in

different abstraction levels, depending on their distance from the focus. Thus, objects inside the

focused region of a diagram are exhibited in their full detailed form, whereas objects located

at the borders are shown in the most simplified way. The regions between these two extremes

are displayed with intermediary levels of detail. In this manner, the presented information is

selectively reduced by adjusting the level of detail in each region to the user’s interest in this

region, a basic principle for focus & context techniques. However, in the particular case of

semantic zooming, the different levels of detail employed are not related to graphical properties

of the objects, but rather to the kind of information that they represent; i.e. to their semantics.

5.3. Focus & Context 52

Figure 5.6: Semantic Zooming applied to an AS

In our context, there are two classes of compounded objects to which semantic zooming is

applied: typed folders and Abstract Subsystems. A typed folder is an object that aggregates a

group of objects of same class (or type), for the sake of the conciseness of the representation .

On the other hand, Abstract Subsystems contain objects of various classes (see Sect. 4.1.2) and

may also enclose typed folders. In both cases, the level of detail shown can be changed by the

selective display of internal objects.

In the simplest situation, two different representations of typed folders are available: a

closed (all internal objects are hidden) and an open folder view. As for the ASs, three different

levels of abstraction are used: i) a full detailed view that includes all the internal objects; i.e.

both the abstract and the expanded view; ii) an abstract representation encompassing only the

objects pertaining to the abstract view; and iii) a “closed” view in which all internal objects are

not displayed. These three different representations are shown in Figure 5.6, with decreasing

abstraction levels that range from closed folder view (left) to a complete detailed view (right).

5.3.2 Fisheye View

The term fisheye view is used for the type of projection created by a fisheye lens used in

photography. This type of lenses achieves a 180◦ field of view and is uncorrected. It results in an

optical enlargement of objects near the centre in relation to those at the borders. This feature

emulates the human visual perception, which by the effect of the eye movements has a clear

focused area and a gradual loss of visual resolution in the direction of the peripheral regions. A

fisheye view combines thereby a complete image overview with a gradual degradation of detail

that increases with the distance from the focus—and it is thus well suited to implement the

concept of focus & context. In contrast to semantic zooming, the fisheye view manipulates the

size of the objects in order to change the amount of information displayed.

An early formalisation of the fisheye view for data visualisation is presented by Furnas [34]

and a practical application for graph visualisation is offered by Sarkar and Brown [99]. The

latter offers the improvement of providing a self-adaptable view with a variable radius (rmax)

for the focused area to be enlarged. In contrast to a view with fixed radius, the variable radius is

defined dynamically as the distance between the focal point and the image borders. Figure 5.7

shows the advantage of using the technique of variable radius (left): it provides a bigger enlarged

5.3. Focus & Context 53

Figure 5.7: Fisheye view with variable and fixed radius

focus area than the fixed radius view (right).

For this reason, we employ a variable radius approach in which the focus area can also be

freely moved by the user throughout the model. In this way, objects within the focused area

are displayed in an enlarged scale whereas the others become gradually smaller as they are

approach the model borders. The modeller is thereby still able to perceive the context in which

he is working whilst at the same time useless details are suppressed by optical miniaturisation.

The transformation function we use (gathered from [99]) is defined with basis on the distance

r between the centre of the view and the coordinate that should be projected:

f(r) = rmax

(v + 1) r
rmax

r
rmax

+ 1

In this expression, the distortion parameter v ≥ 0 controls the relative enlargement of the

focused area in relation to the surroundings. The variable radius rmax is the length of the radius

r extended up to the border of the visible view area.

As a trade-off between efficiency and quality of the graphical projection, the edges of the

models are drawn as lines, as illustrated in Figure 5.7 (left) and are not continuously transformed

into curves, as illustrated in Figure 5.7 (right). While the use of curved edges in the fisheye

view would improve its graphical quality, the algorithmic complexity for accomplishing this

is undesirably high. For curved edges, the coordinates of each pixel on the edge need to be

calculated by the transformation function each time the focus is moved by the user. In the

context of modelling networks with nodes and edges, it suffices for edges to be drawn as straight

lines. No photo-realistic fisheye view is needed as they aim only to represent a connection

between two nodes.

Nevertheless, a slight approximation towards curved edges is still needed in order to prevent

the crossing of edges, which would be prejudicial to the comprehensibility of the model. Such

crossing may happen during a fisheye view due to the change in the topology of nodes and

5.3. Focus & Context 54

Figure 5.8: Crossing of edges caused by distortion of fisheye view and its prevention

edges that occurs as a side effect of the different distortion suffered by the central areas and

the surroundings. This, in combination with the representation of edges as straight lines, can

lead to new crossings of edges, such as the one illustrated in Figure 5.8 between the two marked

nodes. Thus, our drawing function prevents the crossings by inserting temporary intermediate

points in the edges, as exemplified by the dotted marked edge in the same figure.

A similar problem takes place in the graphical display of the AS model elements that are

drawn as simple rectangular boxes by the graphical library we employ. For a photo-realistic

fisheye view these boxes should also be transformed. However, taking into account the compu-

tational costs involved, in our context the much simpler approach of not transforming them is

sufficient. Figure 5.9 shows the resulting visual effect of the fisheye view for a DAS. The focus

in this figure is located on the leftmost AS, which is displayed in a larger scale in comparison to

the scales of the other ASs (gradually reduced as one goes to the right).

5.3.3 Loosely Related Work

Though there are several applications of focus & context techniques for improving the usability

of generic graph editors (including the recent applications to UML in [76] and the more generic

approach in [60]), as far as I could investigate, they have not yet been used in the context of

model visualisation and navigation for network security system design.

In a wider context, Damianou et al. [28] present a set of tools for the specification, de-

ployment and management of policies specified in the PONDER language [26]. This language

supports the definition of management and security policies and is based on domains, which are

hierarchical structures used to group managed objects. The tool prototype includes a domain

5.4. Chapter Summary 55

Figure 5.9: Visualisation of a DAS in the fisheye view

browser that uses the fisheye view technique to handle large structures. While centring the

approach in the policies, this work does not provide a representation of the architecture of the

system to be managed, making it hard for the system designer to associate the policies with

his/her mental model of the system. A further work by these authors offers an approach to the

implementation and validation of PONDER policies for Differentiated Services using the DMTF

CIM [29] to model network elements [69]. CIM concentrates on the modelling of management

information (e.g. device’s capabilities and state) while our model represents the whole rele-

vant structure of the managed system together with the management components, producing a

graphical representation understandable to the security administrator.

5.4 Chapter Summary

This chapter elaborates on the policy refinement that is automatically performed by the tool,

once the modelling process is complete. Firstly, the supported policy types are analysed and their

relation with the other abstraction level entities is established. Then, the refinement process

trough the different model levels is explained. This process culminates with the configuration

parameter generation for each security mechanism modelled.

Section 5.2 presents the tool support offered by the MBM: the MoBaSec tool. The extensions

implemented in the context of this work were described. In particular, Sect. 5.3 describes the

focus and context techniques incorporated to enhance the visualisation and manipulation of large

models.

Chapter 6

Formal Refinement Validation and

Analysis

The consistency among abstraction levels of a policy hierarchy is a crucial issue. Only if the

policy sets at the different levels are in perfect harmony, one can trust the system behaviour

resulting from the application of the lowest-level policies to be in conformance with the specified

abstract goals. Specifically, an automated policy refinement process as the one described in

the previous section is only of practical use if we can be certain that the generated lower-level

policies adhere to the abstract policies defined by the modeller.

Following the observations of Abrams and Bailey [1] and Sloman and Lupu [105], it is im-

portant to ensure the following properties:

Completeness: the desired behaviour specified in an abstract manner (i.e. the abstract positive

policies) is completely implemented at the lower levels;

Consistency: all the actions enabled at the lower-level do not contradict the high-level un-

desired behaviour specification; i.e. the possible system behaviour is constrained by the

abstract negative policies.

Note that completeness concerns positive policies, whilst consistency deals with negative policies.

As such, these two properties are complementary and provide thereby the criteria necessary and

sufficient to ensure the propagation of the meanings conveyed by policies and system model in

the MBM approach (see Sect. 5.1.1).Thus, this work assumes that the fulfilment of these two

criteria attests the correctness or validity of the policy refinement.

Therefore, the main goal of the present chapter is to validate the automated refinement

described in Section 5.1.1; i.e. to prove that the application of the policy refinement to a

model instance always complies with the aforementioned validation criteria. Since the refinement

correctness between the levels RO and SR was already extensively studied by Lück [68], the

topmost abstraction level (RO) is let out of the scope of the analysis here. The validation

presented as follows is thus based on an analysis of the policy refinement that starts from the

SR level. On the one hand, the analysis considers a complete model after the policy refinement,

56

6.1. Formalism of the Model 57

which is composed of both a group of system objects and a policy set for each of the levels SR,

DAS, and ES. On the other hand, another important issue to be analysed is the effect on the

real world that the implementation of the lowest-level policy set has.

The validation approach of this work consists of establishing a series of consistency condi-

tions that the model must fulfil in order to be valid. These consistency conditions concern both

policies and system objects, and are expressed in terms of relations among the various model

objects and classes. Subsequently, two theorems are presented to prove that the defined con-

ditions are sufficient and necessary to guarantee the validity of the refinement process. These

theorems establish a connection between the input for the refinement process and its output. In

this respect, the input consists of the system view and the policies at the most abstract level

considered (SR), whilst the ultimate output is the possible system behaviour that results from

using the configuration parameters produced.

Firstly, the next section presents a formalism of the relevant model entities and relationships.

This formalism will serve as a basis for all subsequent sections. Thereafter, Section 6.2 gives a

detailed overview over the validation approach as whole, in order to guide the reader throughout

the remaining sections of this chapter.

6.1 Formalism of the Model

In the formalism used in this work, each class in the meta-model is represented by a set, whilst

each object of that class is then an element of the corresponding set. For instance, the User

Class is formalised by the set U , and an user object “Tom” is represented by an element, say u,

such that u ∈ U . As appears in this example, a notation convention adopted here is that each

set is denoted in capital letters, and the elements in lower case letters. Moreover, the default

name for an arbitrarily chosen element of a given set will be the lower case version of the set’s

name.

The possible connections between two or more classes in the meta-model is then represented

by a relation on those sets that formalise the classes. Each particular instance in such relation

thus represents one or more edges in the model. As a convention, whenever an element x of a

set in a given level is associated to another element y of a set in the immediate superior layer,

we say that x is a refinement from y. Consider, for instance, the relation of refinement that

exists between a User and a SubjectType, in the SR level, and an Actor in DAS. The sets that

formalise these classes are correspondingly U , St and A. Each actor refines a pair user-subject

type (see Sect. 4.2.4), so that a relation RA ⊆ A × U × St is defined, in order to formalise

this fact. For example, suppose that an actor a ∈ A is associated to the user u ∈ U and to

the subject type st ∈ St in the model (as in the left hand of Fig. 6.4). Thus, this association

is formalised by the tuple (a, u, st) ∈ RA, and we say that a is a refinement from u, and also

that a is a refinement from st, or yet that a is a refinement from (u, st). Notice also that, as

a convention, the refinement relations are named beginning with the letter R followed by the

refining class; i.e. the class (in the lower abstraction level) that refines the other class or classes.

In addition to these formal entities that are directly derived from the model, some auxiliary

6.1. Formalism of the Model 58

sets and functions are also defined in order to ease the notation of the expressions in the following

sections.

Following these principles, the following definitions formalise the meta-model entities that

are relevant for the policy refinement validation presented later on.

Definition 6.1.0.1. The SR level has the following components:

• U, St, Sv, R, disjoint sets respectively encompassing objects of the classes User, Subject-

Type, Services, and Resources;

• SvDep ⊆ Sv × Sv ×R, a partially ordered relationship to express that a service depends

on another to access a resource;

• SP ⊆ U × St× Sv ×R, a set of ServicePermission objects (see Sect. 5.1.1).

Along with the set of positive authorisation policies SP (Sect. 5.1.3), we also define a set

of negative authorisation policies SP , which is complementary to the former one. This second

set is due to the semantic of closed policies that ServicePermissions have in our modelling (see

Sect. 5.1.2).

Definition 6.1.0.2. The set of negative authorisation policies for the SR level is defined as

follows.

SP = {x ∈ U × St× Sv ×R | x /∈ SP}

Definition 6.1.0.3. The DAS level comprises the following elements:

• A, M, T, C, Su, sets enclosing respectively Actors, Mediators, Targets, Connectors, and

Subsystems.

• DAS = (V, E), where V = (A ∪ M ∪ T ∪ C), and E is a set of undirected edges that

connect the nodes in V (definition for the DAS graph itself);

• sub : V → Su, a function that gives the subsystem to which a certain element of V is

assigned in the model.

Definition 6.1.0.4. A local DAS path is a path in the DAS graph that is completely contained

into a single subsystem; i.e. it spans one subsystem. The set of local DAS paths is defined as

follows.

LP =
{

〈v1, . . . , vn〉 | v1, . . . , vn ∈ (A ∪ M ∪ T) ∧ sub[v1] = · · · = sub[vn]

∧ (vj , vj+1) ∈ E for j = 1, 2, . . . , n− 1
}

The set P encloses all DAS paths ; i.e. each element of P is either a local DAS path (in LP)

or it spans x > 1 subsystems and has the recursive form 〈p1, c1, c2, p2〉, where:

(i) p1 ∈ LP is local DAS path, such that p1 = 〈v1, . . . , vk〉;

6.1. Formalism of the Model 59

(ii) p2 ∈ P is a DAS path that spans x− 1 subsystems, such that p2 = 〈vk+1, . . . , vm〉;

(iii) c1 and c2 are connectors such that (vk, c1), (c1, c2) and (c2, vk+1) are edges of DAS (i.e.

they are elements of E).

The set ATP contains the authorisation policies at the DAS level. Each element of ATP is

a DAS path between an Actor a and a Target t; i.e. it has the form 〈v1, . . . , vn〉 ∈ P , where

v1 = a and vn = t.

Definition 6.1.0.5. The security requirements and assumptions (see Sect. 4.1.3) are defined by

the following elements:

• SL := {1, 2, 3, 4}, the set of security levels;

• SC ⊆ SL4, the set of security classes (4-tuples of security levels);

• sr : SP → SC, a function that gives the security class required by a ServicePermission;

• sa : Sv ∪ Su ∪ V → SC, a function that returns the security assumptions of services,

subsystems, and elements in DAS.

Definition 6.1.0.6. Suppose sc1 and sc2 are security classes in SC, such that sc1 = (l1, l2, l3, l4)

and sc2 = (m1, m2, m3, m4). Thus the following operations are defined:

• sc1 ≤ sc2 is the partial order in SC that comes from the product order of the ordinary

integer ordering; i.e. li ≤ mi for i = 1, 2, 3, 4;

• sc1 ⊔ sc2 = (n1, n2, n3, n4) means that if li ≥ mi then ni = li, otherwise ni = mi for

i = 1, 2, 3, 4;

• sc1 ⊓ sc2 = (n1, n2, n3, n4), means that if li ≤ mi then ni = li, otherwise ni = mi for

i = 1, 2, 3, 4.

Definition 6.1.0.7. The associations between elements of SR and DAS are defined as:

• RA ⊆ A×U×St, representing abstraction refinements from a pair of User and SubjectType

objects to an Actor ;

• RM ⊆M × Sv, refinements from Services to Mediators;

• RT ⊆ T × Sv ×R, refinements from Service and Resource pairs to Targets;

• RATP ⊆ ATP × SP , refinements from service permissions to ATPs.

Definition 6.1.0.8. The ES level has the following elements:

6.1. Formalism of the Model 60

• Uc, Pc, H, So, Nc, sets correspondingly enclosing objects of the types: UserCredentials,

Processes, Hosts, SystemObjects, and NetworkConnection (this encloses protocols, network

interfaces, network segments, etc.);

• ES := (W, F), where W = (Uc ∪ Pc ∪ H ∪ So ∪ Nc), and F is a set of the directed

edges that connect nodes in W .

Definition 6.1.0.9. A local ES path is a path in the ES graph that is completely contained

into a single subsystem; i.e. it spans one subsystem. The set of local ES paths is defined as

follows.

LEP = {〈v1, . . . , vm〉 | v1, . . . , vm ∈W ∧ (vi, vi+1) ∈ F for 1 ≤ i < m}

The set EP contains all expanded paths in a model; i.e. paths formed by the concatenation

of local ES paths through pairs of connectors. Each element of EP is thus either a local ES

path (i.e. an element of LEP) or a path that spans x > 1 subsystems and has the recursive

form 〈ep1, c1, c2, ep2〉, where:

(i) ep1 ∈ LEP is a local ES path, such that ep1 = 〈v1, . . . , vk〉;

(ii) ep2 ∈ EP is an expanded path that spans x−1 subsystems, such that ep2 = 〈vk+1, . . . , vm〉;

(iii) c1 and c2 are connectors such that (c1, c2) ∈ E, (vk, c1) ∈ NcC, and (vk+1, c2) ∈ NcC.

The set AEP of Allowed Expanded Paths (Sect. 5.1.5) is the subset of EP whose elements

represent policies in the ES level; i.e. the elements of AEP are the expanded paths that the

system must allow.

Definition 6.1.0.10. The associations between elements of the ESs and DAS are defined by

the following relations:

• RUc ⊆ Uc×A× U , refinements from Actors and Users to credentials;

• RPc ⊆ Pc×A ∪ M ∪ T , refinements from Actors, Mediators or Targets to processes;

• RSo ⊆ So× T , refinements from Targets to system objects;

• NcC ⊆ Nc× C, connections between network connection objects and Connectors;

• RES ⊆W × V , general refinements from components of DAS to ES nodes;

• RAEP ⊆ AEP ×ATP , refinements from ATPs to AEPs;

• sub : W → Su, overriding of function sub to map the association of ES nodes to subsys-

tems.

6.2. Validation Approach Overview 61

6.2 Validation Approach Overview

Figure 6.1 depicts the overview of the condition sets we define in the following sections. Each

of these sets is represented by a bold line with arrows pointing to the related model entities;

the numbers beside indicate the section in which the set is defined. Thus, we first establish the

consistency conditions for a valid refinement from the SR level to the DAS in Section 6.3. These

conditions are subdivided into two groups: refinement consistency conditions and structural

consistency conditions. The first subgroup is presented in Section 6.3.1 and contains conditions

that validate the DAS policy set (ATP) in comparison to the two types of policies at the

SR level: service permissions (SP) and security requirements (SR). The structural conditions

(Section 6.3.2), in turn, establish the compatibility of the DAS structure (i.e. the managed

system representation) with the ATP policy set.

AS3AS2AS1DAS

ES1 ES2 ES3

ES

ATP

AEP

SP + SRSR

Managed System Policies

6.3.1

6.4.1

6.3.2

6.4.26.4.26.4.2

6.4.3 6.4.3 6.4.4

Figure 6.1: Overview of Validation Condition Sets

Subsequently, Section 6.4 analyses the relation between the DAS and the Expanded Sub-

systems level (ES). Three subgroups of conditions are defined here: refinement consistency con-

ditions, local structural consistency conditions, and composition consistency conditions. The

conditions of the first group are presented in Section 6.4.1 and validate the ES policy set (AEP)

in comparison to ATP . As at the previous level, the second subgroup (Section 6.4.2) also

comprises structural conditions, but this has an important difference: due to the segmented

structure of the ES level, these conditions have a local scope. They aim at checking whether

the abstract view of each subsystem (AS) corresponds to the subsystem elements in the ex-

panded view (ES), and are thus restricted to consider the elements within the boundaries of

6.2. Validation Approach Overview 62

each subsystem in turn. Section 6.4.3 presents the composition consistency conditions, which

validate the interconnection between ESs. Furthermore, we prove in general (by means of the

theorems in Section 6.4.4) that the local conditions can be generalised relying on the assertion

of the composition conditions. Since these theorems do not have to be checked for each model

instance as the other condition sets do, they are represented in Fig. 6.1 by a dotted line that

points both to the AEP set and to the whole ES level.

In order to prove that the conditions are able to validate a model, we examine thereafter

the application to a real environment of the configuration generated using the policy refinement

process. Section 6.5 presents assumptions about the model capability of representing the real

world environment, so called model representativeness axioms. Thus, with basis on these axioms

and on the consistency conditions, we prove two theorems in Section 6.6:

VT1: For each policy in the SR level, the system enables all accesses in the real world that

correspond to the policy ;

VT2: To each possible access in the real world there is a corresponding policy at the SR level.

SP

b
a

SP

c

SR level Real World

EAc

Figure 6.2: Relation between the SR level and the Real-world

These two theorems establish a relation between the input for the refinement process (the

policies of the SR level) and its output (the possible accesses in the real world). This relation

can be represented by the Venn diagram of Figure 6.2. The input is depicted on the left-hand

side by the SP set of service permissions (i.e. the positive authorisation policies), and its

complementary set SP with the negative authorisation policies (see Sect. 6.1). On the right-

hand side, the output is represented by the set of enabled accesses (EAc); i.e. all potential

accesses in the real world that are enabled by the whole security system. The arrows connect

each of these accesses with its corresponding abstract representation in the sets SP and SP . In

fact, security requirements are also part of the input, but they can be seen in this scheme as

a restriction of the relation of abstract representation, such that an access in the real world is

6.3. SR/DAS Congruence 63

only represented by an element of the SR level if the security assumptions of the former comply

with the security requirements of the latter.

In Fig. 6.2, valid elements of each set are represented by black or gray circles (for the input

and output, respectively), while white circles stand for invalid elements; i.e. elements that will

not be present if the refinement is valid. Indeed, VT1 assures that each element of SP will

have all of its corresponding accesses in the real world enabled (i.e. they will pertain to EAc).

Therefore, a SP element such as a, which does not have a related element in EAc, will not exist

if VT1 holds (considering all SP elements have at least one corresponding access in the real

world, see Axiom 2 in Sect. 6.5). Conversely, the existence of elements such as b and c in EAc

would violate VT2. The element b represents a possible real-world access that has an abstract

representation in the SR level which do not pertain to the policy set SP – thus contradicting

VT2. As for c, it stands for an access that does not have an abstract representation at all, and

that is just as well forbidden by VT2.

To conclude the validation, Sect. 6.7 makes considerations about the validation soundness

and Sect. 6.8 then analyses the verification complexity of the conditions defined.

6.3 SR/DAS Congruence

6.3.1 Refinement Consistency Conditions

The refinement validation from SR level to DAS must assert the consistency between the two

levels in respect to both authorisation policies and security requirements. For this purpose, this

first group of conditions concerns the refinement relation RATP (Def. 6.1.0.10) between the

set of authorisation policies at SR (SP) and the homologous set in DAS (ATP). To improve

legibility, I will interchangeably use henceforth the terms service permission, SR permission,

and the symbol sp to refer to elements in SP ; i.e. to policies in the SR level. Analogously, the

terms DAS permission and ATPermission, and the symbol atp shall all indicate an element of

the DAS policy set ATP .

Before presenting the first condition, the predicate atcomp is following introduced in order

to capture the compatibility between actors and targets of the model. A compatible pair actor-

target will have corresponding processes associated to protocol stacks that contain the same

protocol types and differ only in the connection direction (outgoing for actors and incoming for

targets). Thus, they will effectively be a potential communication pair.

Definition 6.3.1.1. The predicate atcomp : A×T → {0, 1} denotes whether a pair actor-target

is compatible; i.e. whether the actor and the target are effectively able to communicate.

In order to facilitate the notation of service dependencies, the condition relies also on the

following auxiliary predicate.

Definition 6.3.1.2. The predicate dep : Sv × Sv × R → {0, 1}, indicates if a service depends

on another to access a resource. It is recursively defined as follows.

6.3. SR/DAS Congruence 64

dep[sv1, sv2, r] =



















1 if sv1 = sv2

∨ (sv1, sv2, r) ∈ SvDep

∨
(

∃ sv3 ∈ Sv : (sv1, sv3, r) ∈ SvDep ∧ dep[sv3, sv2, r]
)

0 otherwise

The first refinement consistency condition aims at establishing that for each SR permission

the model contains a corresponding DAS permission, so that all the authorisation policies in the

SR level are structurally feasible in the DAS level. Consequently, all accesses in the DAS which

are related to service permissions will be completely enabled by corresponding elements of the

ATP policy set.

Condition 6.3.1.1. Let sp = (u, st, sv1, r) be a service permission in SP . For each actor

a ∈ A that refines the pair user-subject type (u, st), and each target t ∈ T that refines a pair

service-resource like (sv1, r), given that a and t are compatible, the set ATP must contain a

DAS permission atp that connects a to t and is related to sp through RATP . Formally stated:

∀ sp ∈ SP, a ∈ A, t ∈ T, sv2 ∈ Sv :

sp = (u, st, sv1, r) ∧ (a, u, st) ∈ RA ∧ (t, sv2, r) ∈ RT ∧ atcomp[a, t] ∧ dep[sv1, sv2, r]⇒

∃ atp ∈ ATP, atp = 〈a, . . . , t〉 : (sp, atp) ∈ RATP

Notice that sv1 and sv2 may be different in case of a service dependency, i.e. if sv1 must

rely upon other services to get access to the resource r (see Sect. 5.1.3). If the service sv1 has

direct access to r, then sv1 and sv2 will be the same (see Def. 6.3.1.2).

The second condition conversely asserts that to each DAS permission in the set ATP , a

corresponding SR permission must exist in the model. This is important so that the enabled

actions in DAS can be traced back to the abstract policies that authorise them. Additionally,

the condition also prevents a given DAS permission to authorise actions forbidden by a negative

policy in the SR level; for each atp is required to be mapped to an authorising service permission.

Condition 6.3.1.2. Let atp = 〈a, . . . , t〉 be an ATPermission in ATP . Suppose there is a

user u ∈ U , a subject type st ∈ St, two services sv1, sv2 ∈ Sv, and a resource r ∈ R, such

that a refines (u, st), and t refines (sv1, r). Thus, the set SP must contain a service permission

sp = (u, st, sv2, r) that is related to atp through RATP and the service sv1 must have access

to r by a dependency chain that passes through sv2 (sv1 and sv2 may also be the same, see

Def. 6.3.1.2). Formally stated:

∀ atp ∈ ATP, u ∈ U, st ∈ St, sv1, sv2 ∈ Sv, r ∈ R :

atp = 〈a, . . . , t〉 ∧ (a, u, st) ∈ RA ∧ (t, sv2, r) ∈ RT ∧ dep[sv1, sv2, r]⇒

∃ sp ∈ SP, sp = (u, st, sv2, r) : (sp, atp) ∈ RATP

6.3. SR/DAS Congruence 65

Subsequently, the third condition shall validate the correspondence of pairs (atp, sp) con-

tained in the relation RATP . This correspondence is established by checking not only the

structural connections between the system objects related to atp and sp, but also by ensuring

the satisfaction of service dependencies and the fulfilment of security requirements.

The fulfilment of security requirements demands closer examination. In this respect, the

first point to be considered is that security assumptions of services that are related to the DAS

elements along a given path are assumed to be active throughout the whole path. As such,

the security assumptions associated to services are used to model situations in which a certain

service, with particularly desirable security properties, is employed to improve the security level

of the whole communication path. For instance, a packet filter with activated logging may

improve the traceability of all communication flows that pass through it1.

The security class that results from the combination of the security assumptions of all the

services related to elements along an ATPermission is called overall security assumption. It is

denoted by the function osa.

Definition 6.3.1.3. Let atp = 〈v1, . . . , vn〉 be an element of ATP and Sva ⊂ Sv the set of

services associated to the elements of atp, such that Sva = {sv | (vj , sv) ∈ RM ∨ (vj , sv, r) ∈ RT

for some 1 ≤ j ≤ n} . The function osa : ATP → SC is thus defined as:

osa[atp] =
⊔

sv∈Sva

sa[sv]

The combination of the security classes is performed in this definition by a generalisation

of the binary operator ⊔ declared in Def. 6.1.0.6. It selects the greater security level indepen-

dently for each dimension of the security classes; i.e. for each category of security requirement

considered (see also Sect. 4.1.3). Thus, the resulting security class reflects the joint work of all

the services involved.

We turn our attention now to the security class assured by a given individual DAS element in

the context of a ATPermission. There are three security assumptions that must be considered:

a) the overall security assumption of the ATPermission; b) the security assumption associated

to the subsystem to which the element pertains (i.e. the security properties expected from

the environment wherein the individual is located); and c) the security class assigned to the

node itself (represented by its corresponding assumption). These three sources of information

about security properties correspond to different protection layers that build upon each other.

Although separately modelled, they are all active at the same time in a given component of the

real system. Therefore, the security class effectively active in a certain DAS object is the result

of the combination of the the security classes from (a), (b), and (c) – just like a chord is the

sonorous effect of various tones simultaneously produced.

The security class that a DAS node can assure in the context of an ATPermission is thus

henceforth called effective security assumption, and it is denoted by the function esa.

1In fact, encryption services that are related to Virtual Private Network mechanisms are not active in the
whole path, but rather in the subpath between two VPN gateways. However, since the formalism here proposed
can be simply adapted to reflect this fact, it is assumed, for the sake of conciseness, that all service assumptions
act throughout the whole path

6.3. SR/DAS Congruence 66

Definition 6.3.1.4. Let v be a DAS node, such that atp ∈ ATP contains v. The function

esa : V ×ATP → SC is thus defined as:

esa[v, atp] = sa[v] ⊔ sa
[

sub[v]
]

⊔ osa[atp]

To finish the consideration of security assumptions in this track, let us analyse now the

security properties that a path as a whole can be expected to assure. At this plane, we follow

the principle according to which a security chain is only as strong as its weakest link. However,

since security assumptions enclose 4 categories of requirements, the assumption of a whole path

cannot be picked up from a single object. Rather, the weakest security level for each category

must be determined independently among the effective security assumptions of each element

along the path. As such, the security assumption of the path reflects common properties shared

by all of its participating elements.

The security class that can be assured in the context of an ATPermission is thus denoted

by the function psa.

Definition 6.3.1.5. The path security assumption of an ATPermission represents the security

class that all elements along the path can provide. It is given by the function psa : ATP → SC.

Let atp = 〈v1, . . . , vn〉 be an element of ATP , thus:

psa[atp] =
l

1≤j≤n

esa[vj , atp]

This definition relies upon a generalisation of the binary operator ⊓ declared in Def. 6.1.0.6.

It selects the lowest values independently for each dimension of the security classes – thus yielding

the desired result for the whole path.

esa[v3,p]=2

osa[p] = 2

esa[v4,p]=3esa[v1,p]=4

psa[p]=2

esa[v2,p]=2

sa[v2]=2sa[v3]=1

sa[sub2]=1

sa[v2]=2

sa[sub1]=2

v4v3v2v1

sa[v1]=4

sa[sub3]=3

Figure 6.3: Example of active security assumptions in a path

6.3. SR/DAS Congruence 67

Figure 6.3 illustrates the previous concepts with a path example and its associated security

assumptions. The path p comprises four nodes (v1–v4) which are distributed over three different

subsystems (sub1, sub2 and sub3). The gray tones reflect the security assumption of each

element, such that the darker is the background colour of a given object the higher (stronger) is

the security level that it can provide (notice that the security classes consist of a vector of four

levels, but in this example only one level is considered for the sake of clearness). For instance, the

node v1 is assumed to ensure level 4 (sa[v1]=4) even though the subsystem to which it belongs

has an assumption of level 2 only (sa[sub1]=2). The effective security level that v1 is assumed

to provide in the path is then a combination of the previous two levels with the overall path

assumption of p – which is of level 2; i.e. osa[p]=2 – resulting in an effective security assumption

of level 4 (esa[v1,p]=4). On the other hand, the nodes v2 and v3 are the weakest in the path

since their effective security assumption amount only to level 2. Consequently, the path security

assumption of p is also of level 2; i.e. psa[p]=2.

Finally, relying upon the considerations above we can define the third refinement consistency

condition as follows.

Condition 6.3.1.3. Let sp = (u, st, sv, r) be a service permission in SP and atp ∈ ATP an

ATPermission, such that sp = (u, st, sv, r), atp = 〈v1, . . . , vn, 〉, and the two are related by

RATP ; i.e. (atp, sp) ∈ RATP . Hence the following propositions must hold:

(i) the actor a ∈ A must refine the pair user-subject type (u, st);

(ii) the target t ∈ T must refine a pair service-resource like (svt, r);

(iii) actor a and target t must be compatible (Def. 6.3.1.1);

(iv) the path security assumption of atp must fulfil the security requirements of sp;

(v) for each service svd on which sv depends to provide the resource r, either svd is the service

svt related to the target, or a mediator that refines svd must be found along atp.

Formally stated:

∀ atp ∈ ATP, sp ∈ SP : atp = 〈v1, . . . , vn, 〉 ∧ sp = (u, st, sv, r) ∧ (sp, atp) ∈ RATP ⇒

(v1, u, st) ∈ RA ∧ (vn, svt, r) ∈ RT ∧ atcomp[a, t] ∧ sr[sp] ≤ psa[atp]

∧ ∀ svd : dep[sv, svd, r]⇒ svd = svt ∨ ∃ vj : (vj , svd) ∈ RM for 1 < j < n

A generic example of a service permission sp and its corresponding atp is shown in Figure 6.4.

Each of the required items in Cond. 6.3.1.3 can be seen to be satisfied by atp – except the security

class compliance which is not depicted by objects, but is represented in their properties.

6.3.2 Structural Consistency Conditions

The following conditions impose structural restrictions for the connections among DAS elements

and SR elements, and also in relation to the ATP policy set of the DAS level.

6.4. DAS/ES Congruence 68

ta m

ru st svdsv

svdep

sp

atp

Figure 6.4: Example of correspondence between a service permission and an ATPermission

Condition 6.3.2.1. Let a ∈ A be an actor in the model. Thus, there must exist a user u ∈ U

and a subject type st ∈ St, such that a is associated to the pair (u, st). Formally stated:

∀ a ∈ A⇒ ∃ u ∈ U, st ∈ St : (a, u, st) ∈ RA

Condition 6.3.2.2. Let t ∈ T be a target in the model. Thus, there must exist a service

sv ∈ Sv and a resource r ∈ R, such that t is associated to the pair (sv, r). Formally stated:

∀ t ∈ T ⇒ ∃ sv ∈ Sv, r ∈ R : (t, sv, r) ∈ RT

Condition 6.3.2.3 (DAS Edge Minimality). Let v1, v2 ∈ V be two nodes in DAS, such that

there is an edge connecting them. Thus, there must be some permission atp ∈ ATP that contain

the edge (v1, v2).

∀ v1, v2 ∈ V : (v1, v2) ∈ E ⇒ ∃ atp ∈ ATP : 〈v1, v2〉 ⊆ atp

Condition 6.3.2.4. Let v1, v2 be two vertices in DAS which are not connectors, and c1, c2 ∈ C

be two connectors. Suppose there is a DAS path that connects v1 to v2 passing through c1

and c2. Thus, there must exist a permission atp ∈ ATP that includes the path 〈v1, c1, c2, v2〉.

Formally stated:

∀ v1, v2 ∈ (V − C), c1, c2 ∈ C : 〈v1, c1, c2, v2〉 ∈ P ⇒ ∃ atp ∈ ATP : 〈v1, c1, c2, v2〉 ⊆ atp

6.4 DAS/ES Congruence

6.4.1 Refinement Consistency Conditions

Definition 6.4.1.1. Consider a DAS path ap ∈ P in an expanded path ep ∈ EP (see

Defs. 6.1.0.4 and 6.1.0.9). Let ap = 〈v1, . . . , vn〉, and let e1, . . . , em be the ordered sequence of

6.4. DAS/ES Congruence 69

processes and connectors of ep; i.e. the sequence of the elements in ep in the order they occur,

such that ei ∈ Pc ∪ C, for 1 < i < m. The predicate expand : P × EP → {0, 1} is true if an

expanded path is a valid expansion of a DAS path, and is defined as follows.

expand[ap, ep]⇔ m = n ∧
(

(ei, vi) ∈ RPc ∨ ei = vi

)

for 1 ≤ i ≤ m

Condition 6.4.1.1. Let atp = 〈a, . . . , t〉 be an element of ATP . Suppose there are two processes

pca, pct ∈ Pc, such that pca refines the actor a and pct refines the target t. Thus, an allowed

expanded path aep = 〈pca, . . . , pct〉 must exist in AEP , such that aep is a refinement and a

valid expansion of atp. Formally stated:

∀ atp ∈ ATP, pc1, pc2 ∈ Pc : atp = 〈a, . . . , t〉 ∧ (pca, a), (pct, t) ∈ RPc⇒

∃ aep ∈ AEP, aep = 〈pca, . . . , pct〉 : (aep, atp) ∈ RAEP ∧ expand[aep, atp]

Condition 6.4.1.2. Let aep be an allowed expanded path in AEP . Thus, an atp must exist in

ATP such that aep refines and is a valid expansion of atp. Formally stated:

∀ aep ∈ AEP ⇒ ∃! atp ∈ ATP : (aep, atp) ∈ RAEP ∧ expand[aep, atp]

6.4.2 Local Structural Consistency Conditions

The following auxiliary predicates are defined to improve legibility of the conditions presented

later in this section.

Definition 6.4.2.1. An expanded path in the model (Def. 6.1.0.9) is said compatible if it

represents a valid path; i.e. if it connects processes through valid protocol stacks, and connectors.

The predicate compatible : EP → {0, 1} indicates whether an expanded path is compatible.

This predicate is not formally defined, since it depends on model details that are not for-

malised, such as which protocol stacks are compatible, and which process types may be traversed

(i.e. which can act as a gateway). All those details are irrelevant for the purposes of this vali-

dation and are thus abstractly treated by means of the above predicate.

Definition 6.4.2.2. A local ES path (Def. 6.1.0.9) is said locally connected if it connects two

processes and is compatible. This fact is denoted by the predicate lconn : LEP → {0, 1},

formally defined as follows.

lconn[p]⇔ pc1, pcn ∈ Pc ∧ v2, . . . , vn−1 ∈ (W − Pc) ∧ compatible[p]

Now, a first set of conditions deal with the refinement relations DAS/ES.

Condition 6.4.2.1. Let v be an actor or target in DAS. Thus, a process pc ∈ Pc must exist

that refines v. Formally stated:

∀ v ∈ A ∪ T ⇒ ∃ pc ∈ Pc : (pc, v) ∈ RPc

6.4. DAS/ES Congruence 70

Condition 6.4.2.2. Let m be a mediator in M . Thus, a unique process pc ∈ Pc must exist

that refines v. Formally stated:

∀ m ∈M ⇒ ∃! pc ∈ Pc : (pc, m) ∈ RPc

Condition 6.4.2.3. Let pc be a process in Pc. Thus, an element in DAS must exist that is

refined by pc. Formally stated:

∀ pc ∈ Pc⇒ ∃! v ∈ A ∪ M ∪ T : (pc, v) ∈ RPc

Condition 6.4.2.4. Let uc be an user credential in Uc, a be an actor in A and u be a user

in U , such that uc refines (a, u). Thus, a subject type st ∈ St must exist, such that a refines

(u, st). Formally stated:

∀ uc ∈ Uc, a ∈ A, u ∈ U : (uc, a, u) ∈ RUc⇒ ∃ st ∈ St : (a, u, st) ∈ RA

The following conditions are then related to the correspondence between DAS edges and

local ES paths.

Condition 6.4.2.5. Let v1, v2 ∈ V be elements of DAS, and let pc1, pc2 be processes in the

corresponding ES, such that there is a DAS edge (v1, v2) ∈ E, pc1 refines v1 and pc2 refines v2.

Thus, a local ES path must exist that connects pc1 to pc2 and is locally connected (Def. 6.4.2.2).

Formally stated:

∀ v1, v2 ∈ V, pc1, pc2 ∈ Pc : (v1, v2) ∈ E ∧ (pc1, v1), (pc2, v2) ∈ RPc⇒

∃ p = 〈pc1, . . . , pc2〉 : lconn[p]

Condition 6.4.2.6. Let pc1, pc2 ∈ Pc be two processes that are connected by a locally-

connected ES path p (Def. 6.4.2.2). Thus, two DAS nodes v1, v2 ∈ V must exist such that

pc1 refines v1, pc2 refines v2, and there is a DAS edge (v1, v2) ∈ E. Formally stated:

∀ p = 〈pc1, . . . , pc2〉 : lconn[p]⇒ ∃ v1, v2 ∈ V : (pc1, v1), (pc2, v2) ∈ RPc ∧ (v1, v2) ∈ E

6.4.3 Composition Consistency Conditions

The following auxiliary predicate is used in the conditions presented later in this section.

Definition 6.4.3.1. An expanded path (Def. 6.1.0.9) is considered connector connected if it is

compatible and connects a process of a subsystem to another process in an adjacent subsystem

(through a pair of connectors) without traversing other processes along the way. Formally stated:

cconn[p]⇔ p = 〈w1, . . . , wk, c1, c2, wk+1, . . . , wn〉 :

w1 ∈ Pc ∧ wn ∈ Pc ∧ w2, . . . , wn−1 ∈ (W − Pc− C) ∧ compatible[p] ∧ c1, c2 ∈ C

∧ 〈w1, . . . , wk〉 , 〈wk+1, . . . , wn〉 ∈ LEP ∧ 〈vk, c1, c2, vk+1〉 ∈ EP

6.4. DAS/ES Congruence 71

Conditions analogous to that of the previous section are thus defined to deal with the corre-

spondence between DAS edges and connector-connected paths.

Condition 6.4.3.1. Let v1, v2 ∈ V be two DAS elements that pertain to adjacent subsystems,

such that they are linked by a pair of connectors, i.e. the DAS contains he path 〈v1, c1, c2, v2〉.

Suppose that pc1, pc2 ∈ Pc are processes such that pc1 refines v1 and pc2 refines v2. Thus, a

connector-connected path must exist that goes from pc1 to pc2. Formally stated:

∀ v1, v2 ∈ V, c1, c2 ∈ C, pc1, pc2 ∈ Pc :

〈v1, c1, c2, v2〉 ∈ P ∧ (pc1, v1), (pc2, v2) ∈ RPc⇒ ∃ p = 〈pc1, . . . , pcn〉 : cconn[p]

Condition 6.4.3.2. Let pc1 and pc2 be two processes that are connected by a connector-

connected path p. Thus, two DAS nodes v1, v2 ∈ V must exist such that pc1 refines v1, pc2

refines v2, and the model contains the DAS path 〈v1, c1, c2, v2〉. Formally stated:

∀ p = 〈pc1, . . . , pc2〉 : cconn[p]⇒ ∃ v1, v2 ∈ V, c1, c2 ∈ C :

(pc1, v1) , (pc2, v2) ∈ RPc ∧ 〈v1, c1, c2, v2〉 ∈ P

6.4.4 Generalisation Theorems and Lemma

In order to prove that the local and composition conditions are sufficient to validate the abstract

refinement from the DAS to the ES level, we must consider now these layers as a whole, thus

achieving a generalised result from the previous considerations (as illustrated in Fig. 6.1).

Firstly, we define a generalised predicate with basis on Defs. 6.4.2.2 and 6.4.3.1.

Definition 6.4.4.1. A path is considered connected if it is either locally connected (Def. 6.4.2.2)

or connector connected (Def. 6.4.3.1). This fact is denoted by the predicate conn : EP → {0, 1},

formally defined as: conn[p]⇔ lconn[p] ∨ cconn[p].

We can then proceed to generalising the previous results, by means of the following theorems.

Theorem 6.4.4.1 (GT1). Let dp be an expanded path in the model, such that it is contained in

some allowed expanded path (i.e. dp ⊆ aep ∈ AEP) and assume pc1, . . . , pcm is the sequence of

processes in dp. In this case, the model contains a connected path between each pair of successive

processes in the sequence pc1, . . . , pcm. Formally stated:

∀ dp ⊆ aep ∈ AEP : pc1, . . . , pcm is the sequence of processes in dp⇒

∃ p = 〈pci, . . . , pci+1〉 : conn[p] for 1 ≤ i < m

Theorem 6.4.4.2 (GT2). Let pca, pcb ∈ Pc be two processes such that there is a connected path

p in the model from pca to pcb. In this case, the model contains an allowed expanded path aep

6.4. DAS/ES Congruence 72

that encloses p; i.e. aep allows the connection from pca to pcb through exactly the same processes

along the path p. Formally stated:

∀ pca, pcb ∈ Pc : ∃ p = 〈pca, . . . , pcb〉 ∧ conn(p)⇒ ∃ aep ∈ AEP :

pc1, . . . , pcm is the sequence of processes in aep

∧ pca = pci ∧ pcb = pci+1 for some 1 ≤ i < m

Since the proofs for these theorems are quite long, they are presented in Appendix B for the

sake of legibility.

Security Assumption Lemma

Analogously to the DAS level, we must now consider the security assumption of an AEP . The

auxiliary function esa′ is defined to denote the effective security assumption that processes and

connectors can assure in the context of an AEP (similarly to the function esa of Sect. 6.3.1).

Definition 6.4.4.2. Let e be a process or connector that is contained in the path aep ∈ AEP ,

and let atp ∈ ATP be the ATPermission related to aep; i.e. (aep, atp) ∈ RAEP . The function

esa : Pc ∪ C × AEP → SC denotes the effective security assumption that e can assure in the

context of aep and is defined as follows.

esa′[e, aep] =

{

esa[e, atp] if e ∈ C

esa[v, atp] if e ∈ Pc, where (e, v) ∈ RPc

Notice that Cond. 6.4.2.3 implies that a related DAS element v must exist to each ES process,

thus assuring a value for the function esa′ in the second case of the definition above.

The security class that can be assured in the context of an AEP is denoted by the function

psa′ (similarly to the function psa of Def. 6.3.1.5).

Definition 6.4.4.3. The path security assumption of an AEP represents the security class that

all elements along the path can provide. It is given by the function psa′ : AEP → SC. Let aep

be an element of AEP , such that e1, . . . , em is the sequence of elements of aep that pertain to

Pc ∪ C (i.e. only processes and connectors along the path), thus:

psa′[aep] =
l

1≤i≤m

esa′[ei, aep]

Now, we are able to prove the following lemma (as the proof for the lemma is small, it is

presented here directly after the statement).

Lemma 6.4.4.3. Let aep ∈ AEP be an allowed expanded path and atp ∈ ATP an ATPermis-

sion. If aep is a refinement of atp then both can assure the same security levels; i.e. the path

security assumption of aep is equal of that of atp. Formally stated:

∀ aep ∈ AEP, atp ∈ ATP : (aep, atp) ∈ RAEP ⇒ psa′[aep] = psa[atp]

6.5. Model Representativeness Axioms 73

Proof. Let us consider without loss of generality an allowed expanded path aep ∈ AEP and

an ATPermission atp ∈ ATP , such that (aep, atp) ∈ RAEP . Let atp = 〈v1, . . . , vn〉 and let

e1, . . . , em be the sequence of processes and connectors of aep. According to Def. 6.4.4.3 thus

follows that:

psa′[aep] =
l

1≤j≤m

esa′[ej , aep] (6.1)

Since aep is related to atp, from Cond. 6.4.1.2 results that expand[aep, atp] must be valid. Then

relying upon the definition of expand (Def. 6.4.1.1), we conclude that for each ej in the equation

above, if it is a process then there is an associated vj in atp – i.e. (ej , vj) ∈ RPc – and then

the definition of esa′ implies esa′[ej , aep] = esa[vj , atp]. On the other hand, if ej is a connector,

then ej = vj and esa′[ej , aep] = esa[vj , atp] also holds. Therefore, Eq. (6.1) can be rewritten as:

psa′[aep] =
l

1≤j≤m

esa[vj , atp]

And this is exactly what results from the definition of psa[atp] (Def. 6.3.1.5).

6.5 Model Representativeness Axioms

In this section we consider the relationship between a model instance and the environment

in the real world that the model aims at representing. The intent is to identify the underlying

assumptions one must postulate about the model representativeness; i.e. the expected capability

of the model to accurately reflect the real environment it depicts. Said on another way, our

concern here is to determine key aspects in the real world that must be correctly captured by

the model, so that the policy refinement process produces a trustworthy result.

To accomplish this goal, the first step is the formalisation of the relevant entities of the real

world that are not present in the model. Subsequently, axioms define the required relations

between the formalised real entities and modelled objects.

6.5.1 Accesses and their abstract representations

As explained in Sect. 6, the main interest of this validation relies upon examining the ultimate

output of the policy refinement process; i.e. the accesses that might take place in the real-world

environment. In this respect, the relevant sets are formalised by the following definition.

Definition 6.5.1.1. The real environment comprises the following sets:

• Ac, the set of all potential accesses in the real-world environment that must be considered;

• EAc ⊆ Ac, the subset that contains those accesses that are enabled by the security system.

The expression potential access in the real world that must be considered means a potential

communication flow in the real-world environment that starts from an initiator process and

is directed to another (responding) process – it is henceforth simply called access in the real

6.5. Model Representativeness Axioms 74

environment, for the sake of conciseness. An access enabled by the security system, in turn,

indicates a communication flow which is allowed to pass trough all security mechanisms along

the network path between the initiator process and the responding process.

The explanation above already anticipates the relation between access in the real world

and the lowest model level (ES). Indeed, if an access in the real environment stands for a

communication flow between processes, these processes should be represented in some expanded

subsystem of the corresponding model instance. Moreover, within the scope of a given access, the

initiator process is actually acting on behalf of a user, which is identified in the real environment

by means of a user credential. The responding process of the same access, on the other hand, is

performing some operation on a particular system object. As such, user credentials and system

objects are also connection points between accesses in the real environment and the model

instance. These considerations are formalised by our first axiom as follows.

Axiom 1. Each access in the real environment is associated to a 4-tuple (uc, pci, pcr, so), where

uc ∈ Uc is the user credential associated to the initiator process pci ∈ Pc, and pcr ∈ Pc is the

responding process that in turn handles the system object so ∈ So. Thus, the set Ac can be

represented as a relation on the respective ES-level sets:

Ac ⊆ Uc× Pc× Pc× So

It is worthwhile to remember here that a process in the ES level represents a prototype for

actual processes that might be started in the real environment (Sect. 4.1.4). As such, the relation

established by Axiom 1 between processes and accesses in the real environment imposes that

the later will also stand for the prototype of actual accesses, or as we put it above, for potential

accesses in the system that share some common properties. These common properties are thus

each of the 4-tuple dimensions mentioned in Axiom 1.

Hence, the axiom establishes that each access to be considered can be described in terms of

system objects in this way: the processor pci on behalf of the user credential uc communicates

with the process pcr that manipulates the system object so. But we can just as well describe

the access by means of the corresponding abstract entities like this: the user u logged in the

system as the subject type st is using the service sv in order to access the resource r. And

these two quite different expressions refer to one and the same phenomenon in the real world

– an access – tough each one of them at a different abstraction level. Thus, we must establish

a means of formalising this correspondence, by connecting accesses in the real environment to

abstract entities of the model. This job is accomplished by the following definition.

Definition 6.5.1.2. The correspondence between an access in the real environment and the SR

level is denoted by the function abstract-rep : Ac → U × St× Sv × R. The 4-tuple (u, st, sv, r)

returned by the function is the abstract representation of a given access in the set Ac.

The reader may be asking his/herself at this point: why is the access mapped to a repre-

sentation at the SR level? Why not another model level? This choice is not arbitrary; instead,

it is due to the fact that the SR level is the topmost level considered in the validation (see the

6.5. Model Representativeness Axioms 75

beginning Section 6). As such, the SR representation offer the reference for the expected system

behaviour in the context of the present validation.

The use of a function to map this relation is also by no means accidental. The assumption

behind it is that for each access in the real environment there is one unique abstract represen-

tation at the SR level. Conversely, each 4-tuple (u, st, sv, r) can be the abstract representation

of one or more real accesses. Indeed, for each such 4-tuples there will be usually several corre-

sponding potential accesses in the real environment; for an abstract entity represents, in general,

a group of similar lower-level objects.

An additional point that is worth mentioning here is that the service dependencies of the

SR level (see Sect. 6.3.1) are by purpose let out of analysis in this section and in the validation

theorems of the next section. This is done in order to simplify the assumptions and proofs, such

that one can more clearly perceive their intent and meaning. Nevertheless, these results and

assumptions could be simply changed to cover dependencies by the adding of extra conditions

to the statements. Therefore, letting dependencies out does not consist of a limitation for the

validation presented here.

From this background, we can reinterpret the set SP of policies in the SR level. Since its

elements are 4-tuples in the form (u, st, sv, r) that represent positive authorisation policies, the

set can be seen to enclose the abstract representations of those accesses that must be enabled in

the real environment. As such, each element of SP must have a corresponding potential access

(otherwise the policy could not be enforced); i.e. each service permission must be an abstract

representation of some element of Ac. This fact is formalised by the following axiom.

Axiom 2. Each element of SP is the abstract representation of at least one access in the real

environment in the set Ac. Formally stated:

∀ sp ∈ SP ⇒ ∃ ac ∈ Ac : sp = abstract-rep[ac]

In addition to that, we must now analyse the model structure that reflects the relation

of abstract representation defined above. In order to yield valid results, the model structure

must correctly represent the correspondence between each access in the real environment and its

abstract representation at the SR level. For each 4-tuple (uc, pci, pcr, so) that stands for an access

in the real environment, the model structure must thus connect the objects in each dimension

of that tuple with the objects of the corresponding abstract representation in the SR level; i.e.

with the objects of the corresponding 4-tuple (u, st, sv, r). The connection is established through

actor and targets as illustrated in Figure 6.5. Hence, an actor a is connected to both the pair

user credential and initiator process (uc, pci), and to the pair user and subject type (u, st) –

thus establishing the correspondence between them. Analogously, a target t is connected both

to the pair responding process and system object (pcr, so) and to the pair service and resource

(sv, r).

Therefore, a well-defined model instance must contain in its structure one such connection

between each access and the corresponding abstract representation. This fact is formalised by

the following axiom.

6.5. Model Representativeness Axioms 76

u st sv
r

a t

uc pci pcr so

SR

DAS

Real System

ES/

Figure 6.5: Correspondence between accesses in the real environment and the SR level

Axiom 3. The model structure represents correctly the correspondence between accesses in the

real environment and their abstract representations. Let (uc, pci, pcr, so) ∈ Ac be an access in

the real environment, such that the 4-tuple (u, st, sv, r) is its abstract representation at the SR

level. The model structure must thus contain:

(i) an actor that is connected to both the pair user credential and initiator process (uc, pci),

and to the pair user and subject type (u, st);

(ii) a target that is connected both to the pair responding process and system object (pcr, so)

and to the pair service and resource (sv, r);

(iii) actor a and target t must be compatible (see Def. 6.3.1.1);

(iv) a host that is connected both to the responding process pcr and to the system object so.

Formally stated:

(u, st, sv, r) = abstract-rep [(uc, pci, pcr, so)]⇔

∃ a ∈ A, t ∈ T : (a, u, st) ∈ RA ∧ (t, sv, r) ∈ RT ∧ atcomp[a, t]

∧ (uc, a, u) ∈ RUc ∧ (pci, a), (pcr, t) ∈ RPc ∧ (so, t) ∈ RSo ∧ samehost[pcr, so]

In order to simplify the notation, the axiom relies upon the predicate samehost defined as

follows.

Definition 6.5.1.3. The predicate samehost : Pc × So → {0, 1} denotes if a process and a

system object are connected to the same host. It is defined as:

samehost[pc, so]⇔ ∃ h ∈ H : (h, pc), (h, so) ∈W.

6.5. Model Representativeness Axioms 77

6.5.2 Authentication and Enabled Accesses

We must now examine the circumstances in which an access is enabled by the system in the real

environment. For this purpose, let us first define some predicates in order to reflect the relevant

facts in the real environment.

Definition 6.5.2.1. The following predicates map the system behaviour in the real environment:

• can-use : Uc×Pc→ {0, 1} denotes whether a user credential can be used to launch a given

process in the real environment. It is defined as:

can-use[uc, pc] =

{

1 if the credential uc can be used to access process pc;

0 otherwise.

• can-handle : Pc×So→ {0, 1} denotes whether a process is able to handle a system object

in the real environment. It is defined as:

can-handle[pc, so] =

{

1 if the process pc can handle the system object so;

0 otherwise.

In respect to the possibility of a user credential to start a process in the real environment, the

assumption is that the actors in the model represent all such possibilities; i.e. a given credential

is able to start a certain process in the real environment if, and only if, both are connected to

the same actor in the model. The following axiom formalises this assumption.

Axiom 4. A credential uc ∈ Uc is able to start the process pc ∈ Pc in the real environment if,

and only if, there is an actor a ∈ A in the model such that uc and pc are both connected to a.

Formally stated:

can-use[uc, pc]⇔ ∃ a ∈ A, u ∈ U : (uc, a, u) ∈ RUc ∧ (pc, a) ∈ RPc.

Note that this axiom requires that the system be able to identify and authenticate correctly

the user credential, and that the privileges for starting processes be enforced in conformance

with the modelled actors. As in most access control models (as pointed out by Sandhu [96]), this

work assumes that identification and authentication of users take place in a secure and correct

manner, and the main concern is with what happen afterwards.

Analogously, a process is assumed to be able to access a system object if, and only if, both are

connected to the same host and to the same target in the model. Here the criterion of the same

host has to be introduced to avoid pairs of process and system object which tough connected

to the same target, are placed in different machines. The following axiom thus formalises the

assumption.

Axiom 5. A process pc ∈ Pc can manipulate a certain system object so ∈ So in the real

environment if, and only if, both pc and so reside in the same host and are connected to the

same target t ∈ T in the model.

can-handle[pc, so]⇔ samehost[pc, so] ∧ ∃ t ∈ T : (pc, t) ∈ RPc ∧ (so, t) ∈ RSo.

6.5. Model Representativeness Axioms 78

We can now proceed to analyse accesses that are enabled by the system in the real environ-

ment. In this respect, the system is assumed to enforce correctly the system view defined at the

lowest model level (ES); i.e. the mechanisms of the real-world environment are expected to only

permit the passing through of those communication flows that correspond to allowed expanded

paths in the model. These assumption requires the correct implementation of the configuration

according to the lowest-level policies in the model. It is formalised by the following axiom.

Axiom 6 (Correct Implementation). Suppose the real-world system enables an access eac ∈

EAc, such that eac = (uc, pc1, pcn, so). Let pc1, . . . , pcn be the sequence of processes along the

communication path between the initiator process pc1 and the responding process pcn. The

following propositions must hold:

(i) the credential uc can be used to access the process pc1;

(ii) process pcn can handle the system object so;

(iii) there is an allowed expanded path aep ∈ AEP in the model, such that aep = 〈pc1, . . . , pcn〉;

i.e. aep contains exactly the same process sequence pc1, . . . , pcn of eac.

Formally stated:

∀ eac ∈ EAc : eac = (uc, pc1, pcn, so)⇔

can-use[uc, pc1] ∧ can-handle[pcn, so] ∧ ∃ aep ∈ AEP : aep = 〈pc1, . . . , pcn〉

To complete the analysis of an access in the real environment, one must also consider the

security class within which the access takes place. This security class depends on the security

assumptions of all the processes along the communication flow between the initiator process and

the responding process. First, we must then define a function to map these security assumptions

as follows.

Definition 6.5.2.2. The function pc-esa : Pc×Eac→ SC gives the effective security assump-

tion of a process in the context of an enabled access in the real environment.

Subsequently, since Axiom 6 implies that for each enabled access (say eac) there is a corre-

sponding allowed expanded path in the model (say aep), each process along the communication

path of eac is assumed to enforce the same security class as that assured by the corresponding

process object in the context of aep – i.e. the effective security assumption of Def. 6.4.4.2 in

Sect. 6.4.4. This assumption follows from a correct attribution of security classes to objects in

the model. The model must be consistent with respect to the classification of model objects, so

that the effective security assumption of processes correspond to the security properties of the

entities in the real environment. The following axiom formalises this assumption.

Axiom 7. Let eac ∈ EAc be an enabled access in the real environment, such that eac =

(uc, pc1, pcn, so) and pc1, . . . , pcn is the sequence of processes along the communication path

between the initiator process pc1 and the responding process pcn. Assume aep ∈ AEP to be

6.6. Validation Theorems 79

an allowed expanded path in the model that corresponds to eac; i.e. both eac and aep have

exactly the same process sequence pc1, . . . , pcn (Axiom 6 guarantees the existence of such a

path). Therefore, each process in the sequence is assumed to enforce the same security class in

the real environment as that of the effective security assumption assured by the corresponding

process object in the context of aep. Formally stated:

∀ eac ∈ EAc, aep ∈ AEP : eac = (uc, pc1, pcn, so), aep = 〈pc1, . . . , pcn〉 ⇒

pc-esa[pcj , eac] = esa′[pcj , aep] for 1 ≤ j ≤ n

Finally, we must consider the security class one can expect of an access as a whole. Analogous

to the functions psa and psa′ (Defs. 6.3.1.5 and 6.4.4.3), the security assumption of the access

must reflect the security class that all the elements along the path are able to enforce. This is

denoted by the following function.

Definition 6.5.2.3. The function acc-psa : Eac→ SC gives the path security assumption of an

enabled access in the real environment; i.e. the security class that all elements within the scope

of an allowed communication flow in the real environment can provide. Let eac be an element

of EAc, such that eac = (uc, pc1, pcn, so) and pc1, . . . , pcn is the sequence of processes in the

communication flow of eac, thus:

acc-psa[eac] =
l

1≤j≤n

pc-esa[pcj , eac]

6.6 Validation Theorems

With basis on the axioms of the previous section, the validation theorems proposed in Section 6.2

are formalised and proved in the next sections.

6.6.1 Proof of VT1

Validation Theorem 1 (VT1). For each policy in the SR level, the system enables all accesses

in the real environment that correspond to the policy. Formally stated:

∀ sp ∈ SP, ac ∈ Ac : sp = abstract-rep[ac]⇒ ac ∈ EAc

Proof. To prove the general theorem’s assertion, let us consider, without loss of generality, a

service permission sp1 and its related set of accesses in the real environment Asp1, such that:

sp1 ∈ SP, sp1 = (u1, st1, sv1, r1), Acsp1 := {ac ∈ Ac | sp1 = abstract-rep[ac]}

Axiom 2 implies that Acsp1 is not empty, so let us consider, again without loss of generality, an

element ac1 of Acsp1, such that ac1 ∈ Acsp1, and ac1 = (uc1, pci1, pcr1, so1). Our goal is to prove

that ac1 ∈ EAc; i.e. that the access will be enabled by the system. Therefore, as the element

were generally chosen, the result can be generalised, and VT1 will be thereby proved.

6.6. Validation Theorems 80

Since sp1 = abstract-rep(ac1), Axiom 3 thus implies:

∃ a1 ∈ A, t1 ∈ T : (a1, u1, st1) ∈ RA ∧ (t1, sv1, r1) ∈ RT ∧ atcomp[a1, t1] (6.2)

∧(uc1, a1, u1) ∈ RUc ∧ (so1, t1) ∈ RSo ∧ samehost[pc, so] (6.3)

∧ (pci1, a1), (pcr1, t1) ∈ RPc (6.4)

By applying Cond. 6.3.1.1 to Eq. (6.2) it thus follows that there is an ATPermission between

the actor a1 and target t1:

∃ atp1 ∈ ATP, atp1 = 〈a1, . . . , t1〉 : (sp1, atp1) ∈ RATP

Therefore, Cond. 6.4.1.1 implies that from the expression above follows that:

∀ w1 ∈ Pc, wm ∈ Pc : (w1, a1) ∈ RPc ∧ (wm, t1) ∈ RPc⇒

∃ aep ∈ AEP, aep = 〈w1, . . . , wn〉 : expand[aep, atp1]

Hence, considering Eq. (6.4) it results in that the universal quantifier in the previous expression

also applies to the processes pci1 and pcr1, so that:

∃ aep1 ∈ AEP, aep1 = 〈pci1, . . . , pcr1〉 : expand[aep1, atp1] (6.5)

Axiom 4 implies that from (uc1, a1, u1) ∈ RUc in Eq. (6.3), and (pci1, a1) ∈ RPc in Eq. (6.4) it

thus follows:

can-use(uc1, pci1) (6.6)

Analogously, Axiom 5 implies that from (so1, t1) ∈ RSo ∧ samehost[pc, so] in Eq. (6.3) and

(pcr1, t1) ∈ RPc in Eq. (6.4) we can conclude:

can-handle(pcr1, so1) (6.7)

By applying Axiom 6 to Eqs. (6.5), (6.6), and (6.7) it thus comes that ac1 ∈ EAc; i.e. the

access is enabled by the system in the real environment.

6.6.2 Proof of VT2

Validation Theorem 2 (VT2). For each enabled access in the real environment there is a

corresponding policy at the SR level. Formally stated:

∀ ac ∈ EAc⇒ ∃ sp ∈ SP : sp = abstract-rep[ac] ∧ sr[sp] ≤ acc-psa[ac]

Proof. Let us consider, without loss of generality, an enabled access in the real world ac1 ∈ EAc,

such that ac1 = (uc1, pci1, pcr1, so1). First, we must prove that the abstract representation of

ac1 pertains to the service permissions in SP . Thereafter, the security class of ac1 must be

6.6. Validation Theorems 81

shown to comply with the security requirement of the corresponding service permission. In

order to demonstrate the first goal, from Axiom 6 we conclude that:

can-use[uc1, pci1] (6.8)

can-handle[pcr1, so1] (6.9)

∃ aep1 ∈ AEP : aep1 = 〈pci1, . . . , pcr1〉 (6.10)

By applying Cond. 6.4.1.2 to Eq. (6.10) it follows that a corresponding ATPermission must

exist in the model:

∃! atp1 ∈ ATP, atp1 = 〈a1, . . . , t1〉 : expand[aep1, atp1] (6.11)

On the other hand, from Eq. (6.8) and Axiom 4 it comes that:

∃ a ∈ A, u ∈ U : (uc1, a, u) ∈ RUc ∧ (pci1, a) ∈ RPc

The definition of the predicate expand (Def. 6.4.1.1) and Eq. (6.11) imply that (pci1, a1) ∈ RPc.

But Cond. 6.4.2.3 asserts that there is only one Actor associated to each process, so that the

expression above can only be true for a = a1 and u = u1. Thus it can be reformulated as follows.

(uc1, a1, u1) ∈ RUc ∧ (pci1, a1) ∈ RPc (6.12)

By applying Cond. 6.4.2.4 to actor a1 and user u1 it follows that there must be a related subject

type in the model:

∃ st ∈ St : (a1, u1, st) ∈ RA (6.13)

Considering now Eq. (6.9), Axiom 5 implies that:

∃ t ∈ T : (pcr1, t) ∈ RPc ∧ (so1, t) ∈ RSo ∧ samehost[pcr1, so1]

Analogously to the actor argument, Def. 6.4.1.1 and Eq. (6.11) imply that (pcr1, t1) ∈ RPc. Since

Cond. 6.4.2.3 asserts that there is only one Target associated to each process, the expression

above can only be true for t = t1, so that it can be rewritten as follows.

(pcr1, t1) ∈ RPc ∧ (so1, t1) ∈ RSo ∧ samehost[pcr1, so1] (6.14)

Cond. 6.3.2.2 then asserts that for the Target t1 there are related service and resource objects

at the SR level:

∃ sv ∈ Sv, r ∈ R : (t1, sv, r) ∈ RT (6.15)

Now, by selecting the subject type st1 ∈ St to satisfy Eq. (6.13), and the service sv1 ∈ Sv

and target t1 ∈ T from Eq. (6.15) we conclude that:

(a1, u1, st1) ∈ RA ∧ (t1, sv1, r1) ∈ RT (6.16)

6.6. Validation Theorems 82

By applying Cond. 6.3.1.2 to Eqs. (6.16) and (6.11) it comes that there is a related service

permission in the model:

∃ sp1 ∈ SP, sp = (u1, st1, sv1, r1) : (sp1, atp1) ∈ RATP

Therefore, Cond. 6.3.1.3 implies that the pair actor-target of atp1 is compatible (i.e.

atcomp[a1, t1]). This fact together with Eqs. (6.16), (6.13), (6.12), and (6.14) fulfil all

the conditions of Axiom 3. We then conclude that sp1 is the abstract representation of the

enabled access ac1:

sp1 = abstract-rep[ac1]

Only the compliance with the security requirements remains yet to be proved; i.e. the second

part of the theorem: sr[sp1] ≤ acc-psa[ac1]. In this respect, Def. 6.5.2.3 implies that:

acc-psa[ac1] =
l

1≤j≤n

pc-esa[pcj , ac1] (6.17)

Where pc1, . . . , pcn is the process sequence of both the communication flow of access ac1 and the

allowed expanded path aep1 (Axiom 6), with pc1 = pci1 and pcn = pcr1. Axiom 7 thus implies

that for each process in the sequence:

pc-esa[pcj , ac1] = esa′[pcj , aep1] for j ≤ i ≤ n

By substituting this expression in Eq. (6.17) it results in:

acc-psa[ac1] =
l

1≤j≤n

esa′[pcj , aep1] (6.18)

But according to Def. 6.4.4.3:

psa′[aep1] =
l

1≤i≤m

esa′[ei, aep1]

Where e1, . . . , em is the sequence of elements of aep1 that pertain to Pc ∪ C; i.e. only the

processes and connectors along the path. If we separate the two types of elements that are

considered in this expression, it becomes:

psa′[aep1] =
l

1≤j≤n

esa′[pcj , aep1] ⊓
l

1≤k≤o

esa′[ck, aep1] (6.19)

Where c1, . . . , co is the sequence of connectors in the expanded path aep1. Thus, since the

operator ⊓ always select the minimum values for each security class dimension (see Def. 6.1.0.6

in Sect. 6.1), by comparing Eqs. (6.18) and (6.19) we conclude that psa′[aep1] is either equal

acc-psa[ac1], if all connectors have greater values than the minimum levels among the processes;

or otherwise psa′[aep1] will be less than acc-psa[ac1], that is:

psa′[aep1] ≤ acc-psa[ac1] (6.20)

On the other hand, Lemma 6.4.4.3 implies that psa′[aep1] = psa[atp1]. Since Cond. 6.3.1.3

imposes that sr[sp1] ≤ psa[atp1], from Eq. (6.20) it results in that sr[sp1] ≤ acc-psa[ac1].

6.7. Validation Soundness 83

6.7 Validation Soundness

Analysing the two validation theorems demonstrated in the previous section, one can conclude

that they ensure the compliance of the policy sets with the validation criteria defined in the

beginning of Sect. 6. Indeed, VT1 implies that the real system enables all accesses in the real

world that correspond to the SR level policies specified, such that the completeness criterion is

thereby satisfied. As for the satisfaction of consistency, VT2 asserts that for each possible access

in the real world, a corresponding policy exists at the SR level model. These criteria are cited

in the literature as the most important to assure the refinement correctness in a multi-layered

policy hierarchy (see, for instance, [1] and [105]). Indeed, in the particular context of this work,

the criteria ensure that the special meaning conveyed by policies and system model—i.e. at the

same time representing the positive and negative prescriptions for system duties and for user

privileges (see Sect. 5.1.1)—be propagated and maintained from from one abstraction level to

its immediate inferior neighbour.

Therefore, the formal proofs mean that: provided a model (including system and policy

representation after a process refinement) fulfils the defined condition sets, and this model

accurately represents a real-world environment (i.e. the axioms hold), one can conclude that

the generated output—i.e. the possible system behaviour that results from using the generated

configuration—is exactly in conformance with the input—i.e. the system view and the policies

at the most abstract level considered (SR). As such, the whole system can be seen to act as a

reference monitor in the access control terminology [98], which allows only those accesses enabled

by the access control policies.

Note that the accesses in the real world are not represented in the model, since the modelling

technique used in this work is based on a static picture of the system. As such, policy semantics

and system behaviour are not explicitly/formally modelled (as in the work of Burns et al. [16],

analysed in Sect. 2.3), but rather implicitly assumed. The model representativeness axioms

of Sect. 6.5 thus serve to making explicit the assumptions that are implicit in the modelling,

thereby allowing us to draw conclusions about the system functioning behind the model. In this

manner, the axioms reflect assumptions concerning both the correct modelling of the real world

entities, and the correct implementation of the normative model elements.

Security goals and requirements, in turn, should be actually seen as a prescription of modes

in which accesses may take place. They complement the access control policy adding contex-

tual information, having thus a subordinate character, i.e. in isolation, they do not have a

meaning for their own, but they only acquire significance together with an access permission by

modifying (restricting) the modelled authorisation. As such, they act just like adverbs in the

natural language, which are used to imprint a different connotation to verbs and adjectives2.

Consequently, the security requirements and assumptions in this work are not to be directly

compared with clearances and labels of traditional mandatory policies in lattice-based access

control models [96], as the latter have a much stronger, independent character (although there

is off course some resemblance between the two concepts).

2I thank Prof. Krumm for suggesting me this precise and beautiful metaphor.

6.8. Refinement and Validation Analysis 84

Furthermore, the requirement support is let flexible enough, so that it is possible to address

the needs of different scenarios, depending on how fine-grained and comprehensively one would

like to verify the requirement assurance by the system. For instance, a modeller may expand the

categories above to encompass all functional classes prescribed by the Common Criteria [22],

adjusting the vector dimension and the level range in order to map families and components in

each one of that classes. For the purpose of the present work tough, the simplified approach

adopted is sufficient.

6.8 Refinement and Validation Analysis

From the standpoint of the practical application, the consistency conditions defined in Sect. 6

can be sorted into three groups. The first condition group is checked on the fly as the modeller

defines the objects and associations in the diagram. Each condition in this group reflects a simple

relation between objects in the model and it is checked either: a) whenever a object is created;

b) whenever a new association between two objects is defined—i.e. a new edge is drawn in the

diagram; c) whenever the modeller launches the menu option “Check Model” in the tool. As

such, this first group consists of the pre-conditions for the algorithm of the respective refinement

step (SR/DAS or DAS/ES). Furthermore, since these conditions are tested together with the

model input, the computational cost for their verification is insignificant (in comparison with

the time that the modeller needs to draw the model).

The second condition group comprises conditions that must be present in the model after

the execution of the refinement algorithm in a given step. As such, they are the post-conditions

for the respective refinement algorithm and thus assumed to be achieved by the algorithm.

Consequently, the effort for their “verification” is in fact the computational complexity of the

refinement algorithm itself.

The third group is composed by additional conditions that must be verified after the refine-

ment algorithm is performed. Therefore, the computational effort to test the conditions in this

third group is actually the real cost of the validation here proposed; i.e. the validation overhead.

In the following sections, each of the conditions defined in Sect. 6 is assigned to one of

the three aforementioned groups, and the verification complexity of the conditions of the third

group is analysed in detail, as well as the running time for the refinement algorithms. This is

performed in two parts, in such a way that each part corresponds to a refinement step through

the abstraction layers. In this manner, the next section presents the analysis of the refinement

SR/DAS. Subsequently, the conditions and algorithms concerning the refinement DAS/ES are

then examined in Sect. 6.8.2. Finally, the scalability of the whole checking process is evaluated

in Sect. 6.8.3.

6.8.1 Analysis of the SR/DAS phase

In this phase, the following conditions can be assigned to the first two groups:

• Pre-conditions: structural conditions 6.3.2.1, and 6.3.2.2

6.8. Refinement and Validation Analysis 85

• Post-conditions: refinement conditions 6.3.1.1, 6.3.1.2, 6.3.1.3.

Thereafter, only Condition 6.3.2.3 must be extra verified after the execution of the refinement

algorithm of this phase. The checking consists, for each edge of a DAS, of ensuring that this

edge is used in at least one of the ATPs in the set generated policy set. As such, if we make

the refinement algorithm mark, during its execution, the DAS edges it uses(with no extra time

penalty), the verification effort for this condition will be simply to check for each edge whether

it is marked—thus linear to the amount of DAS edges, i.e. O(|E|).

As for the refinement algorithm SR/DAS itself, it consists of a variation of the modified

Dijkstra algorithm for single-source shortest path discovery [23, Ch. 25], including particularities

of the DAS representation such as the fact that a path may traverse mediators but not actors

and targets (the refinement algorithms are listed in Appendix A). Since a path discovery must

be performed for each compatible pair Actor -Target, we can overestimate the running time for

the algorithm by considering that a search is executed for all pairs of actors and targets in the

model. Thus, the algorithm is O(|A| · |T | ·E lg V), as the cost for each path discovery with the

modified Dijkstra algorithm is O(E lg V) [23, p. 530].

6.8.2 Analysis of the AS/ES phase

For the AS/ES phase, the algorithm must be in conformance with the following conditions:

• Pre-conditions: local structural conditions 6.4.2.1, 6.4.2.2, 6.4.2.3 and 6.4.2.4;

• Post-conditions: refinement conditions 6.4.1.1 and 6.4.1.2.

In order to implement the conditions that must be additionally tested—namely, conditions

6.4.2.5, 6.4.2.6, 6.4.3.1, and 6.4.3.2—let us consider an auxiliary data structure called process

connection matrix PCM = (xij) that consists of a n × n matrix in which n is the number of

processes and each element xij represents the fact the process pci is connected to the process pcj

in the ES model; i.e. conn[pci, pcj]. From the definition of the predicate conn (Def. 6.4.4.1), one

can conclude that the matrix will include processes that are both locally connected and those

connected through connectors.

A PCM matrix will be then constructed for each expanded subsystem separately. The first

step is to take an ES subgraph for a particular subsystem s and generate an auxiliary graph

ES′ = (W ′, F ′) that encloses all elements of s and additionally also the processes in the adjacent

subsystems that are linked through connectors to elements of s. As such, the PCM matrix is

in fact a subset of the transitive closure of ES′ that only contains the processes. It can be thus

calculated using the Floyd-Warshall algorithm in time O(|W ′|3) [23, Ch. 26].

Using these auxiliary structures, the verification of the validation conditions is quite straight-

forward. We must just take each pair of processes in PCM and, if they are connected there must

be a corresponding edge in DAS between the related objects (Conds. 6.4.2.6 and 6.4.3.2); oth-

erwise, the edge must not exist—thus satisfying Conds. 6.4.2.5, 6.4.3.1, as all involved elements

in DAS must be connect to at least one process from Conds. 6.4.2.1 and 6.4.2.2. Therefore, the

6.8. Refinement and Validation Analysis 86

cost for this checking is O(n2), since n2 lookups for edges in DAS will be performed (which we

can consider to be executed in constant time).

The total running time for the validation of one subsystem is determined by the cost of the

PCM construction O(|W ′|3), since n is the number of processes which is always a subset of W ′

(thus n2 = o(|W ′|3)). The process described above must be applied to each subsystem si in the

system, so that the total time required will be bounded by the sum:
∑

∣

∣W ′
i

∣

∣

3
, (6.21)

where |W ′
i | is the number of elements of the auxiliary graph of the subsystem si. Notice that the

processes of adjacent subsystems must be only added to the auxiliary graph of one of them (i.e.

they “flow” in just one direction through connectors), so that the sum above is overestimated.

Let us analyse now the refinement algorithm of this phase. It consists of, for each edge of

the ATPs like (v1, v2), finding a local path between the ES processes that refine v1 and v2. But

we can use the same Floyd-Warshall algorithm of the validation above to calculate at the same

time a matrix with the local shortest-paths between each pair of processes in a subsystem, with

the same asymptotic behaviour as before (in fact, just with a very tight additional constant

time, see [23, Ch. 26]). Hence, the path determination is performed with constant time in

the refinement phase (just looking at the matrix generated by the validation), so the DAS/ES

refinement running time is O(E).

6.8.3 Scalability Improvements

Comparing the two refinement phases previously analysed, we observe that the SR/DAS phase

has a global character with respect to subsystems—i.e. paths that span the whole DAS must be

found, and the extra condition is related to all edges in the graph—whilst the DAS/ES step is

performed locally—i.e. only local paths and local connections are considered, except from the

immediate vicinity of the connectors. This asymmetry is due to the fact that, for the DAS/ES

step, the theorems and the lemma of Sect. 6.4.4 ensure that the local and composition conditions

can be generalised to the whole ES level. Moreover, since the results are proved formally, it is not

needed to check them for each particular model instance, but only the local and compositions

conditions. This asymmetric character supplies the basis for the scalability gains achieved by

this approach, as explained in the following sections.

Scalability on the Refinement

The first type of scalability gain achieved by our approach can be shown by comparing the

refinement algorithms. In this respect, the phase SR/DAS is quite costly: O(|A| · |T | · E lg V),

since paths must be discovered in the whole DAS graph (see Sect. 6.8.1). As we discussed in

Sect. 6.8.2, the refinement effort for the DAS/ES step is only O(E), as long as results from the

validation process are exploited (the validation costs will be analysed later on in the next section).

Therefore, the total running time for the refinement is dominated by the costly path discoveries

of the SR/DAS phase. However, this path discoveries must only consider the abstract and less

6.8. Refinement and Validation Analysis 87

numerous DAS elements instead of dealing with all the elements contained in the expanded

subsystems.

To make the advantage of the DAS approach clear, let us compare this result with the

procedure without using the DAS level, as that employed by previous work on model-based

management of security systems like [68, 37]. In this case, the set of service permissions (at

the SR level) has to be refined into the PH level, which corresponds to a graph comprising all

ESs in our methodology. A path discovery procedure similar to that described in Sect. 6.8.1 is

executed, in order to find out the allowed paths between processes, but it must now consider all

elements of the detailed view, so that the cost for each path discovery is O(W lg F) using the

modified Dijkstra algorithm. Analogously to Sect. 6.8.1, we can thus estimate the total running

time as O(Pca · Pct ·W lg F), where Pca and Pct are the number of processes in the system

that act as actors and targets, respectively3.

Therefore, the scalability gain in the refinement process achieved by using a DAS is deter-

mined by the following relation:
|A| · |T | · E lg V

Pca · Pct · F lg W
(6.22)

The number of vertices and edges in a DAS, and particularly the number of actors and

targets, will heavily depend on intrinsic characteristics of the modelled environment, such as

the entities to be modelled and the possibility of subdividing and grouping them, so that we

cannot establish a general coefficient from the aforementioned expression. However, observing

that each DAS element is usually defined to group various objects in the ES level, it is clear that

the refinement in a DAS will consider a smaller amount of elements (this hypothesis is confirmed

by the experimental data presented in Sect. 7.3.1).

Scalability on the Validation

The total cost of the validation process is dominated by the local validation DAS/ES (Sect. 6.8.2)

which is much more expensive than the simple SR/DAS checking (Sect. 6.8.1)—i.e. quite the

opposite situation in contrast with the refinement costs. As in the previous section though, this

fact also contributes positively for the scalability of the approach. Indeed, the local consistency

conditions are restricted to consider only the elements inside the boundaries of one subsystem in

turn—with the exception of the elements of the neighbour subsystems which are directly linked

to connectors—so the analysis process can be split up and can be performed independently on

each subsystem, improving thereby the scalability of the validation.

In contrast, in the case in which the DAS layer does not exist, the analysis must consider all

the elements of the detailed view, so that the verification effort using the same Floyd-Warshall

algorithm (i.e. analogously to Sect. 6.8.2) would be bounded by |W |3. To compare this with

the total validation cost for the AS/ES validation given by Eq. 6.21, we must observe that |W |,

3Actually, in [37] the path discovery is performed on an auxiliary graph in which each protocol stack is grouped
in a single node. This reduces a little the number of elements that must be considered in the search. Nevertheless,
since this reduction affects only protocol objects and do not influence the overall model growth behaviour, I will
not take it into account here.

6.9. Chapter Summary 88

i.e. the number of ES elements, is actually the sum of the elements in each ES |W ′
i | (with a

small overlap of some processes which is not considered here). Thus the relation between the

validation costs with and without the DAS is bounded by:

|W ′
1|

3 + |W ′
2|

3 + · · ·+ |W ′
sn|

3

(|W ′
1
|+ |W ′

2
|+ · · ·+ |W ′

s|)
3

, (6.23)

where s is the number of subsystems in the model. Although the asymptotic behaviour of both

terms is cubic, one can perceive from Eq. 6.23 that the more subsystems a model has, the faster

is the validation performed in relation to the approach without the DAS intermediary layer.

Furthermore, with DAS the analysis of subsystems can be parallelised, achieving even more

significant performance gains.

6.9 Chapter Summary

This chapter offers a formal approach to the validation of policy hierarchies that use DAS

for the configuration management of network security systems. In the pursuit of this goal,

two criteria were selected to ensure the correctness of the refinement: the completeness and

consistency among the different policy sets in the hierarchy. Based on these criteria, a number

of condition sets were defined for the refinement phases from the SR level to the Diagram of

Abstract Subsystems (DAS), and from the DAS to the Expanded Subsystems. As regards to

this last phase, the structural conditions must only concern elements inside the same subsystem,

for their validity in the whole level is assured by means of generalisation theorems and a lemma.

Subsequently, model representativeness axioms were defined that formalise the implicit as-

sumptions behind the model. Relying upon axioms and conditions, two validation theorems were

thus proved that ensure the compliance between the resulting system behaviour and the system

view and the policies at the most abstract level considered (SR). The meaning and soundness

of the validation approach were also discussed in Sect. 6.7. The two theorems correspond to the

elected validation criteria of completeness and consistency, so that once a model complies with

the conditions defined and the axioms hold true, the refinement process is correct.

Furthermore, the computational effort required by the verification of the defined conditions

and by the refinement algorithms have been analysed. The DAS level is expected to bring

scalability gains both to the refinement and to the validation.

Chapter 7

Application Examples and

Experimental Results

This chapter analyses the practical application of the research approach developed in this work.

Firstly, two simple examples are completely explained. Thereafter, a comprehensive case study

of a fictitious yet realistic environment is described and experimental results are analysed. The

environment is in fact an extension of the simple test scenario of Sect. 4.2, in order to address

an enterprise network, composed of a main office and branch office, that is connected to the

Internet.

7.1 Simple Examples

Two basic examples are following presented to illustrate the back-end functions implemented in

the context of this work: the OpenBSD pf packet filter, and the VPN daemon isakpmd for the

same operating system. They are presented in the next sections in turn.

7.1.1 Firewall Example

Figure 7.1 shows a simple firewall model. The RO level allows the employees to surf in the

internet, and the security goal and associated requirements are low, such that they have no

influence on the refinement process. Thus, the actor “Client” is allowed by the ATPermission to

access the target “Webserver” via the mediator “Firewall”. The AEP (allowed expanded path)

is derived from ATPermission (see Sect. 5.1), so that the generated configuration for the pf

packet filter on the right hand column of Fig. 7.1 reflects the information contained in AEP. In

the “VARIABLES” section, the network interface names are associated to aliases that will be

later used in the filter rules of section “FILTER”. In this section, one rule for each interface is

created, in order to allow the traversing of packets from IP 192.168.1.2 to the Webserver with

address 192.168.2.2 and port number 80. The only difference between the two rules is the

connection direction: $interfaceNo1 (em0) must accept the incoming connections (pass in),

89

7.1. Simple Examples 90

whereas $interfaceNo2 (em1) must enable these connections to pass out. Since pf has stateful

capabilities, i.e. it is a dynamic packet filter (Sect. 2.1.1), the option keep state makes the

packets in the reverse direction that belong to the same connection to be automatically allowed.

7.1.2 VPN Example

As in the previous example, the intent here is to enable employees to access the company’s inter-

nal web server. In this case though, the server is located at another network that is connected

to the workstations’ network via Internet, as shown in Fig. 7.3. The security requirements as-

sociated to the service and resource of this example require security levels that are not fulfilled

when the communication is performed directly through the Internet (see Sect. 6.3.1), since the

security assumption of the AS “Internet” (1,1,1,1) is lower than the requirements (2,2,2,2).

Thus, the tool automatically chooses the path that connects the main office with the branch

office via a VPN tunnel established by the two VPN gateways.

In the case the requirements would be fulfilled without the VPN tunnel—for example, if the

requirements were set to (1,1,1,1)—the refinement algorithm would choose the shortest path

from actor “intern client” to target “webserver”, which bypasses the two VPN gateways. As

such, no configuration for the processes “isakmpd 1” and “isakmpd 2” would be generated.

The processes will be configured only when there is an allowed communication flow that passes

through them.

In the example of Fig. 7.3, the path <intern Client, VPN Gateway 1, Cbranch, Cinet, Cmain,

VPN Gateway 2, Webserver> is able to fulfil the requirements due to the Tunnel <VPN Gateway

1, Cbranch, Cinet, Cmain, VPN Gateway 2>, which is established by the “EncryptionService”.

In order to generate the configuration files from the derived AEP, the properties of the

involved objects must be provided as follows.

• For the Certificate, the property distinguished Name must be set with the name of the

Certificate Authority that signs the certificate. In the example:

/C=de/ST=NRW/L=Dortmund/CN=RootCA

• The IP address used for the communication with the other gateways must be inputted in

the corresponding property of the IPSec protocol object that is associated to the VPN

process. The value for the process “isakmpd 1” in the example is: 192.168.1.1.

• The network address and network mask of the network to which the VPN gateway is

connected must be provided in the corresponding properties. In the example, for the

process “isakmp1” the values are respectively: 10.1.0.0, 255.255.0.0.

Figure 7.2 shows the configuration file isakmpd.config generated for the process “isakmp1”.

Additionally, the tool generates further information that is presented in the hidden tabs of the

configuration in Fig. 7.2: (1) the tab Read me contains instructions for activating the VPN

gateway; (2) the tab certify contains a script that generates certificates; (3) the tab Policy sets

7.1.
S
im

p
le

E
x
am

p
les

91

file: pf.conf

VARIABLES

loopback = "lo0" # Loopback Device

interfaceNo1 = "em0"

interfaceNo2 = "em1"

OPTIONS

set block-policy return

set debug urgent

scrub in all

FILTER

pass in quick on $interfaceNo1 proto tcp

←֓ from 192.168.1.2 to 192.168.2.2 port

80 ←֓ keep state flags S/SA

pass out quick on $interfaceNo2 proto tcp

←֓ from 192.168.1.2 to 192.168.2.2 port

80 ←֓ keep state flags S/SA

f irefoxUserCredential

Web Client Server

Webserver

192.168.1.2 192.168.2.2

apache

Client

Website

192.168.1.1 192.168.2.1

em0 em1

Firewall

FWHost

p f

internal user @office

employee

allow internet surfing

surfing web SecurityGoal

SecurityRequirementWWWService WebPages ServicePermission

SR_max

SA_max

ATPermission

AEP

Figure 7.1: Simple firewall model after the refinement

7.2. Case Study 92

the distinguished name; (4) tab pf.conf disables all the traffic that do not correspond to the

allowed VPN communication to pass through the VPN gateway.

7.2 Case Study

The considered scenario in the case study is that of an enterprise network, composed of a

main office and branch office, that is connected to the Internet. Our main goal is to assist the

security administrator in the task of designing the configuration for the security mechanisms

that are required to enable and control web-surfing and e-mail facilities for the company’s office

employees. The employees are allowed to use the computers in the main and branch offices in

order to surf on the Internet and to access their internal e-mail accounts, as well as to send

e-mails to internal and external addresses. In addition to that, they may also retrieve their

e-mails from home. As for the ongoing communication from the Internet, the security system

must enable any external user to access the corporate’s web site and to send e-mails to the

internal e-mail accounts.

7.2.1 Network Environment

The network environment considered encompasses the following main segments:

Main Office The company’s headquarters, where a pool of 8 workstations is available for com-

mon use of employees. Furthermore, the company has an internal mail server, a web proxy

(for logging of web activity and performance optimisation), and a LDAP directory server

that contains information about remote access users;

DMZ The Demilitarised Zone contains servers that should be accessed from outside. A Mail

Forwarding Server is used to forward mail from inside to outside and vice versa. A cluster

of 5 webservers is employed to guarantee availability and performance of the content made

available for public access via web. Additionally, a Radius server is also placed at the DMZ

to allow the employees to access internal network facilities via Internet. Two firewalls are

used to control, respectively, the accesses from the internal network to the DMZ, and from

this to the Internet.

Branch Office At the branch office, another pool of workstations is available for employees.

The branch office network is protected by a simpler firewall and a VPN gateway that

logically melts the branch with the main office.

Remote Access Points Employees can access the internal network from home or elsewhere

via Internet. This access shall be performed under a VPN connection.

7.2.2 High-level Policies

The highest-level security policies for this environment can be summarised in the following

statements:

7.2.
C

ase
S
tu

d
y

93

Figure 7.2: The configuration window
for isakmpd 1

internet (1,1,1,1)

main office (2,2,2,2)

VPN 2

 VPN Gateway 2

certificate 2

isakmpd 2

webserver

ht tpd website

server

192.168.1.2 10.2.0.200

em0

8 0

branch office (2,2,2,2)

PC

VPN 1

intern client

 VPN Gateway 1
UserCredential

certificate 1

isakmpd 1

opera

192.168.1.1

10.1.0.100

pcn0

@main office internal user

employee

webpagesWWWService

allow internet surfing

internet wwwsurfing

SecurityGoal

SR (2,2,2,2)EncryptionService

ServicePermission

SR_max (2,2,2,2)

SA_max (1,1,1,1)

ATPermission

ADP

Figure 7.3: Simple VPN model after the refinement

7.2. Case Study 94

P1: The employees may surf on the Internet from the computers in the main and branch offices;

P2: The employees may read their internal e-mails from the main office, from the branch office,

and from home;

P3: The employees may send e-mail both to external and internal addresses;

P4: Users on the Internet may access the corporate web server;

P5: Users on the Internet may send e-mail to internal company’s mail addresses.

7.2.3 Incremental Configuration Design Process

Having as input the above abstract policy statements and previously described scenario, the

configuration design process evolves through the following steps:

1. modelling of the abstract policy (at RO level of fig. 4.1);

2. definition of the system services and their relations to the abstract elements of the preced-

ing step (SR level of fig. 4.1);

3. modelling of the relevant system elements and their abstract representations (i.e. the Ab-

stract Subsystems) as well as their relations to the objects of the service-oriented system’s

view;

4. refinement of the high-level policies at the RO level through the other abstraction levels,

culminating with the generation of the low-level configuration parameters for the security

mechanisms.

This steps can be performed according to the spiral development process [93]: a given subset

of system and of the policies is firstly chosen and the four steps above are executed considering

only that subset. The development proceeds by iterating the steps in order to consider an

increasing part of the system and policies, so that at the end a complete model is thereby

produced. In the context of this work, the incremental process can be based on the subdivision

into Abstract Subsystems, such that the designer starts with a given subsystem and the local

policies to it—i.e. the policies for which the actor, target and mediators are enclosed in the

considered subsystem. Thereafter, one subsystem is added in turn, together with the policies

related to the set of subsystems considered so far, up to reaching a complete model.

The next sections describe the model resulting from this process for the case study environ-

ment.

RO level

The top of Figure 7.4 shows the resulting model at the RO level for our considered scenario.

The basic objects are: the Roles “Employee” and “Anonymous Internet User”, and the Ob-

jects “Internal e-mail”, “Website”, “Internet e-mail” and “Internet WWW”. These objects are

7.2. Case Study 95

SR level

RO level

Figure 7.4: Case study model of the levels RO and SR

associated with AccesModes by means of five AccessPermissions (at the top, on the right of

fig. 7.4), each of the latter corresponding to one of the abstract policy statements of the previ-

ous section. Thus, for instance, the AccessPermission “allow Internet surfing” models the policy

statement P1, associating the role “Employee” to “surfing” and “Internet WWW”. The other

policy statements are analogously modelled by the remaining AccessPermissions.

SR level

In our example, the User “Anonymous” and the SubjectType “@Internet” are defined in associ-

ation with the role “Anonymous Internet User”. For the role “Employee”, several User objects

are grouped in the TypedFolder “Internal Users” (see Sect. 5.3.1), and three SubjectTypes are

defined: “@main office”, “@branch office” and “@remote access”. These objects map the three

types of session that can be established by an employee in the considered scenario, depending

on his physical location.

Regarding the modelling of services and resources, in turn, the AccessMode “sending to

the company” (RO level) is refined by the Service“Mail-forwarding service incoming e-mail”.

This service must rely on the “Internal mail service” in order to provide access to the resource

“Internal message store” (which is associated with the RO Object “Internal e-mail”). This

fact is then represented by the connection of the two services to “Dependency incoming e-mail”.

Similar situations occur with the services “Mail-forwarding service outgoing” and “WWW Proxy

service”, which depend correspondingly on “Internet mail-service” and “Internet web service”.

On the other hand, a quite simple situation occurs with the AccessMode “accessing” and the

Object “Website” (RO level); in these cases the service “WWW Service” and the resource “Web

7.2. Case Study 96

pages”, which are correspondingly associated to those objects, are directly connected to each

other.

Additionally, services and resources are also defined in order to represent more technical

features of the system that are not modelled in the RO level. In our example the services

“Communication-encryption service”, “Radius service” and “LDAP service” fall into this cate-

gory.

DAS and ES levels

The bottom of Figure 7.5 shows the expanded view of the ASs “internal network” (left) and

“dmz” (right). In the latter, there are objects representing hosts and processes for each security

mechanism to be used in this segment: two firewalls, a mail forwarder (to avoid exposition of the

internal mail server), a radius server (to provide remote access), a VPN gateway and two web

servers. Each one of these processes is connected through the adequate protocol stack—modelled

by a series of interconnected corresponding protocol objects—to their network interfaces. The

host objects representing the mail forwarder and the web servers are additionally connected

to objects that map the physical assets they store; i.e. mail files and web pages. The object

“UserCredential” represents a group of credentials to which the “X509Certificate” is assigned in

order to map the cryptographic certificate required by the VPN process “Encryption Process”.

The expanded view of the “internal network” follows the same pattern, as do the other ASs that

are omitted in Figure 7.5.

Subsequently, the abstract view of each AS must be defined by the creation of objects for

Actors, Mediators, Targets and Connectors, and their associations to the objects of the SR level

must be established. This is accomplished by classifying the behaviour of the elements of the

expanded view into one of these classes; i.e. by recognising which role they play in the security

policies.

The Actors “internal mail clients” and “internal web clients” (see fig. 7.5) are created in the

“internal network” to map the processes of this subsystem with active behaviour in our example

(they are the agents of the policies P1 and P2 respectively). They are also both connected

to the objects in the SR level that map the same behaviour: the TypedFolder “Internal Users”

and the SubjectType “@main office”. Due to their intermediary or supporting functions, the

Mediators “Web proxy” and “LDAP Server” are created and connected to the corresponding

processes in the expanded view; they also connect these processes with the appropriate services

in the SR level (i.e. the objects “WWW proxy service” and “LDAP Service”). The Target

“Internal mail server” is then used to represent the passive character of its related objects “Mail

Server” and “Internal Mail Files”, also associating these to the service “Internal mail service”

and the resource “Internal message store” in the SR level. As for the Connectors, they are

inserted in order to represent communication possibilities between ASs and thus correspond to

the physical interfaces of the actual system.

Proceeding in an analogous manner for all of the remaining ASs in our example, a complete

DAS is achieved and the whole system model is complete. Figure 7.6 presents the DAS obtained

7.2.
C

ase
S
tu

d
y

97

Figure 7.5: Subsystems internal network and dmz from the case study and their relation to the SR level

7.3. Analysis of the Experimental Results 98

internal network

remote access point

branch office’s network

Internetdmz

Figure 7.6: DAS for the case study environment

for this environment. It is composed by five ASs, representing the logical network segments

of the described scenario: “internal network”, “dmz”, “Internet”, “branch office’s network”

and “remote access point”. The Actors, Targets and Mediators of each of these AS and their

interconnections through Connectors and structural connections are also depicted in Fig. 7.6.

Pictures of the model’s overview for the application case and of theExpanded Subsystems for the

ASs “internal network” and “dmz” are given in the Appendix C.

7.3 Analysis of the Experimental Results

The following sections analyse in turn two types of enhancements achieved by the methodology

proposed in this work: the improvements related to the modelling and representation of complex

systems, and those improvements concerning the handling of large models.

7.3.1 Representation Improvements

Analysing the model for this realistic application case (Fig. 7.6), one can clearly perceive the

advantages brought forth by the DAS level. Although the detailed information of the ES level

encompasses more than 500 objects—representing, for instance, 8 hosts and credentials for 30

users in the internal network, 8 hosts in the branch office’s network and a cluster of 5 web servers

in the “dmz” (see Appendix C)—the abstract representation of the DAS (Fig. 7.6) consists of

only 32 objects altogether. Therefore, it can be noticed that the modelling through abstract

subsystems offers concrete advantages in the conciseness and understandability of the model.

Furthermore, since the environment in this application case is an extension of the test scenario

7.3. Analysis of the Experimental Results 99

used in Sect. 4.2, it is possible to compare them, in order to identify the growth behaviour of a

DAS. The number of ES objects (which depict the mechanisms of the actual system, and thus

reflect the growth of the system itself) increased from 95 in the simple test scenario to 540 in

the realistic application case (i.e. a growth of almost 470%). The number of DAS elements, in

contrast, rose from 19 (Fig. 4.8) to 32 (Fig. 7.6)—i.e. a growth of only less than 69%. We thus

conclude that the size of a DAS does not increase in the same pace as the number of elements

in the ES level (and thus as the system’s mechanisms), but rather the DAS’s growth is much

slower. This makes clear the scalability gain afforded by the DAS in the support of large models.

Since the number of elements both in the DAS and in the ES levels heavily depend on in-

trinsic characteristics of the environment modelled (such as the entities to be modelled and the

possibility of subdividing and grouping them), an unrestricted generalisation of these quantita-

tive results is not possible. Nevertheless, in qualitative terms, similar gains can be expected in

the modelling of other large-scale networked environments; for they are similar to the typical

scenarios presented here.

7.3.2 Editing, Navigation and Visualisation Improvements

In order to edit specific parts of large models (such as the one used for our case study), a

user must rely on model cut-out enlargement techniques; i.e. on zooming. However, with the

standard method of zooming that is based on linear enlargement of a fixed-size model cut-out,

the model navigation and visualisation are problematic. The problems do not concern the linear

enlargement itself, but rather the steps required by the user. In this respect, the benefits brought

forth by the fisheye view technique can be best seen by considering the execution of a simple

design task. Let us first consider what happens when we use a zoom based on linear enlargement,

then subsequently consider the use of a non-linear enlargement and fisheye view.

The task consists of connecting an object in the area of the model that is currently edited to

another located at the opposite extreme of a large model. In this case, “large” means that the

whole model does not fit into the screen when scaled to a size that makes its editing possible

for the user. With the standard zooming method the user needs to perform the following steps:

1. Scale down, in order to be able to see the entire model;

2. Estimate the locations of the target and source objects in the out-zoomed view, and the

angle of the edge needed to connect them;

3. Enlarge the area around the source object, in order to be able to select it;

4. Select the source;

5. Drag a new edge from the source into the direction of the previously estimated angle (the

enlarged region of the model moves automatically following the mouse);

6. Stop the dragging once the target can be seen on the screen;

7.3. Analysis of the Experimental Results 100

Figure 7.7: Fisheye view with focus centred at the source node

7. Drop the edge on the target object to mark it as the endpoint.

On the other hand, with the use of a fisheye view only the following steps are needed:

1. Activate the fisheye view mode;

2. Select the source object, which is displayed inside the enlarged focus area (Figure 7.7);

3. Drag a new edge from the source into the direction of the target, whose location can be

simultaneously seen in the down-scaled surroundings; (the focus follows the mouse during

this process, so that the target can eventually be seen in detail);

4. Drop the edge on the target object (the area around the target is enlarged as shown in

Figure 7.8).

Therefore, using a fisheye view reduces the number of steps needed by almost half and has

an even greater reduction of the amount of time required by the user to accomplish the task.

The latter is due to the fact that abrupt switching between the different scaled views requires

a certain time for the user to orientate him/herself. Furthermore, the usage is immediately

7.3. Analysis of the Experimental Results 101

Figure 7.8: Fisheye view with focus centred at the target node

intuitive, since the user never loses of sight the full context of the model and the non-linear

adaptive scaling seems “natural” in contrast to the sharp border between linear enlarged cut-

outs and their surroundings.

Combining Semantic Zooming and Fisheye View

Since the two focus & context techniques previously introduced (see Sect. 5.3) operate on or-

thogonal subjects—namely, fisheye view on graphics and semantic zooming on structure—their

combined use is reasonable. They do not influence each other and have no side effects that could

be detrimental to the use of the other.

We perform this combination by using the scale factor resulting from the fisheye transfor-

mation function to set a level of detail attribute on each compound element of the model (i.e.

ASs and TypedFolders). The value of this attribute is then used to adjust the abstraction level

which is used to display a given element. The result of this is that the greater the difference

between the scale of the focused area and that used to display the element, the higher is the

non-linearity in the display of that element. As the distance between the focus and a certain

7.4. Chapter Summary 102

Figure 7.9: Fisheye view in combination with semantic zooming

object increases, this object is gradually represented in a more abstract view—which per se

has a smaller graphical representation—and also graphically miniaturised by the fisheye view

function. Thus, a larger focused area is made possible even if the context is still visible, which

leads to an optimisation of the screen space.

Figure 7.9 shows the combined use of the techniques applied to the DAS of the model in

our example. The AS “branch office’s network” has the focus and is displayed in a higher scale

and in its full level of details, allowing the edition of its elements. The AS “Internet” pertains

to a close context and is shown in its abstract representation, gradually smaller in size; whereas

the miniaturised and “closed” views of the ASs “dmz”, “internal network” and “remote access”

save screen space while still enabling the user to perceive their existence.

7.4 Chapter Summary

This chapter has explained the practical application of the methodology developed in this work

by means of two simple examples and a realistic case study. The examples cover the two mecha-

nisms for which back-end functions were developed in order to generate configuration parameters:

the pf packet filter and the VPN daemon isakpmd, both from the OpenBSD operating system.

7.4. Chapter Summary 103

For the case study, an incremental design process was proposed that is centred around the

system administrator. We have followed the application of the four steps this process entails to

an example scenario, which consists of a realistic case study.

The experimental results achieved have shown that concrete gains in the understandability

and scalability of the modelling of large-scale systems can be expected from the employment of

the approached developed in the present work. The scalability was improved both in respect to

the representation and to the visualisation and manipulation of large models.

Chapter 8

Conclusion

This work has proposed a design process for the configuration management of network secu-

rity systems that is especially concerned with large-scale environments, aiming to bridge the

gap between high-level security policies and the configuration parameters of mechanisms. This

process is based on the model-based management paradigm and relies upon a multi-layered

system model that contains different abstraction levels, by means of which the abstract policy

representation is gradually brought into a more concrete view of the system.

The next sections discuss successes, partial successes and limitations of the present work and

relate them to the goals set out to be pursued (Sect. 3.2).

8.1 Contributions of this work

The main contributions of this research work can be summarised as follows:

• a modelling technique for the management of security systems that achieves scalability

by the segmentation of the system in Abstract Subsystems, enabling the process of model

development and analysis to be performed in a modular fashion;

• tool support for comfortable model editing that implements focus and context techniques

to improve the handling of large models, allowing the designer to define in detail a certain

model part without losing sight of the system as a whole;

• a multi-layered modelling process in which the abstract policy representation is gradually

brought into a more concrete system view, bridging the gap between high-level security

policies and real system implementations;

• an automated policy refinement process that suits the needs of large-scale, complex en-

vironments and derives lower-level policies from the abstract policy set defined by the

modeller, eventually yielding configuration parameters for security mechanisms;

104

8.1. Contributions of this work 105

• a scalable validation approach for the policy refinement, which includes a formalism of

the model, the establishment of consistency conditions, and the proof of the refinement

correctness;

• a realistic case study that shows the practicality and the concrete advantages brought forth

by this work.

8.1.1 Modelling Framework

The main novelty introduced by this work is the application of the divide-and-conquer approach

to the modelling of network security systems through the so-called Abstract Subsystems. The

modelling of a given network segment is thereby subdivided into three steps: (1) the detailed

definition of the network mechanisms in the Expanded Subsystem; (2) the establishment of an

abstract view of those mechanisms by grouping them into actor, target, and mediator objects; (3)

the definition of the interaction among abstract subsystems in a Diagram of Abstract Subsystems

(DAS). As such, the modeller must deal with the mechanisms’ complexity only on a local basis

for each subsystem—i.e. in steps (1) and (2)—whereas in step (3) the system as a whole is

considered by means of an understandable and abstract overall representation of the system’s

architecture, which directly corresponds to an administrator’s mental model of the system.

Whilst the first two steps rely upon modularisation to address complexity, the third step reflects

the composition of the modules.

Modularisation has been used to improve programming of large-scale systems since a long

time. The modelling framework proposed here builds upon the well-known principle of informa-

tion hiding, in which “every module (...) is characterised by its knowledge of a design decision

which it hides from all others. Its interface or definition [is] chosen to reveal as little as possible

about its inner workings”—as stated by Parnas in his classical paper On the Criteria to be Used

in Decomposing Systems into Modules [80]. Indeed, in the present work each Abstract Subsys-

tem hides details about its inner features (i.e. network topology, hosts, processes, protocols,

etc.), providing instead a policy-oriented view of them which allows the administrator to rea-

son about the distribution of policy participants over the system. Moreover, the sorting out of

network objects into Actors, Mediators and Targets fulfils a general user requirement detected

by Yurcik et al. [118] while evaluating state-of-the-art security operation tools: the profiling of

distinguishable classes of the computers on the network by their activity type.

Therefore, it is my belief that the modelling framework proposed here contributes towards

bringing the benefits of modularisation to the management of network security systems. Still

according to Parnas’s work [80], the benefits expected from modularisation are:

(1) managerial—development time should be shortened because separate groups would work

on each module with little need for communication;

(2) product flexibility—it should be possible to make drastic changes to one module without

a need to change others;

(3) comprehensibility—it should be possible to study the system one module at a time. The

whole system can therefore be better designed because it is better understood.

8.1. Contributions of this work 106

This work has not directly addressed the first of these benefit types. Though the modelling

framework offers the modularisation features required for independent groups to work on the

same model, the technical instruments to fully enable the managerial benefits are let as future

work. On the other hand, the experimental results gathered in this work show that the modelling

with Abstract Subsystems do bring benefits of the second and third types. The flexibility gain is

exemplified by the incremental development process proposed in Sect. 7.2.3: while working on a

particular subsystem, the designer can firstly concentrate only on the elements of the subsystem,

and after that define the abstract interactions with the others. The same applies for maintaining

the system model, since local changes can be made without altering the global abstract view.

The advantages on the comprehensibility mentioned by Parnas can also be clearly seen in the

case study analysed in this work. The DAS not only provided a compact and understandable

representation of the architecture of a large system, but the abstract representation has been

shown to grow at a pace slower than that of network objects (Sect. 7.3.1). Just as in programming

though, the benefits of modularisation depend on the characteristics of the problem treated, and

on a reasonable dose of the modeller’s design competence. However, I hope the examples and

discussion in this thesis can serve as parameters for achieving in future models benefits similar

to those achieved here.

8.1.2 Graphical Representation

The tool prototype that was implemented also combines the modelling framework developed

with focus & context techniques, substantially improving the navigation and visualisation of

large models. Indeed, the combined use of the techniques fisheye view and semantic zooming

addresses the primary interface requirement of security operators discovered by Yurcik et al.

while evaluating state-of-the-art security operation tools: the need for an overall situational

awareness of an entire network [118]. Section 7.3.2 shows how these techniques were associated

to the modelling framework developed in order to improve the navigation and visualisation of

large system models, thereby allowing the designer to define in detail a certain part of the model

without losing sight of the system as a whole.

While the graphical system representation developed here provides the administrator with an

understandable and scalable view of the system architecture, a partial success has been achieved

in the representation of policies. In DAS, policies are represent by allowed paths in the graph

from an actor to a target (ATPermissions), allowing the administrator to have a comprehensible

view of the allowed network traffic. As the number of allowed path grows though, it is hard

to find a reasonable graphical representation that do not overload the screen and makes it not

ununderstandable. In this work, the option chosen was to filter out ATPermissions, presenting

only one path at once—which I think its a step in the right direction. However, it would be

nice if the tool could automatically select and present at the same time all the paths that are

derived from the same policy of the upper levels (AccessPermissions and ServicePermissions),

enabling the administrator to trace which allowed paths correspond to a certain abstract policy.

In the current stage, this is only manually possible. As regards permissions at the ES level

8.1. Contributions of this work 107

(allowed expanded paths), the situation is yet more complex, as they are much more numerous.

The enhancement of the policy graphical representation is thus let for future research, and some

ideas about it are presented later on.

8.1.3 Refinement Algorithms and Validation

This work has successfully developed a policy refinement process appropriate to the needs of

large-scale environments. The automated derivation of lower-level policies was proved to be

tractable by algorithms with reasonable running times. Moreover, the refinement algorithms

developed here are expected to perform faster than the ones used in previous work on MBM,

since they must only consider the abstract and thus less numerous DAS elements, instead of

dealing with all the elements contained in the expanded subsystems (Sect. 6.8.3).

As mentioned previously, the exact gain attained by the abstract representation depends

on idiosyncrasies of the modelled environment, so that it is not possible to achieve general

quantitative results in this respect. Nevertheless, the analysis shows that relying upon data from

the environments modelled so far—and assuming that this data are significant representatives

for other similar environments—the introduction of the DAS layer can be expected to make the

refinement process to perform faster and to scale better than the approach without using DAS.

An important accomplishment of the present work is the model formalisation and the es-

tablishment of conditions for the correctness of the policy refinement; i.e. for ensuring that the

generated lower-level policies uphold the abstract policies defined by the user. The criteria of

completeness and consistency were selected, so that the normative meaning conveyed by policies

and system model in this work (analysed in Sect. 5.1.1) can be propagated from one abstraction

level to its immediate lower neighbour. Based on these criteria, a number of condition sets

were established that concern: (i) the relation between elements of policy sets of two adjacent

abstraction levels (refinement conditions); and (ii) system objects at a given abstraction level as

compared both with the system objects at the immediate superior level, and with policies at the

same layer (structural consistency conditions). Such conditions were defined for the refinement

phases from the SR level to the DAS level, and from DAS to the Expanded Subsystems.

The tool checks a group of these validation conditions on-the-fly as model objects are defined

and on user’s demand whenever she or he chooses the menu option ‘Check Model’. A second

condition group is tested along with the refinement process, and yet another group is applied

after the refinement. These conditions are thus capable of validating the multi-layered struc-

tural architecture of the system vis-à-vis the security policies prescribed. As a matter of fact,

experience has shown that in practice the modelled network systems are frequently not capable

of enforcing the given high-level policies. In such cases, the validation conditions defined here

cannot be satisfied, and the tool indicates the model elements which violate the policies. In this

manner, the modeller receives valuable information to do the necessary modifications on the

system in order to make it congruous to the policies.

Furthermore, the computational effort required by the verification of the defined conditions

has been analysed. In this respect, the DAS level affords the splitting up of the system analysis,

8.1. Contributions of this work 108

i.e. it enables the validation to be performed in a modular fashion, which is more appropriate

when dealing with large models. Indeed, the structural conditions DAS/ES have a local scope

and are thus restricted to consider only the elements inside the boundaries of one subsystem

in turn, so that the analysis process can be performed independently on each subsystem. The

system-wide validity of those local conditions is proved by means of generalisation theorems and

a lemma, which do not have to be checked for each particular model instance. Therefore, the

more complex a system is, the more beneficial will be the introduction of DAS in the validation

cost, since the complexity of all subsystems but one is hidden during the execution of each local

test.

In order to be able to reason about the system behaviour that results from the application

of the generated configuration, model representativeness axioms were also defined that formalise

the implicit assumptions behind the model. These axioms state assumptions concerning both

the mapping of real world entities by the model objects (correct modelling) and the effective

application of normative aspects in the model to the real system (correct implementation).

Relying upon axioms and conditions, two validation theorems have been proved to ensure

the compliance between the resulting system behaviour and the system view and the policies at

the most abstract level considered (SR). The two theorems directly correspond to the elected

validation criteria of completeness and consistency. Consequently, the formal proofs mean that,

provided that a model fulfils the defined condition sets, and that this model accurately reflects

a real-world environment (i.e. the axioms hold), the system behaviour enabled by the generated

configuration is expected to be exactly in conformance with the system view and the policies

at the most abstract level. This is an important result for the reliability of the configuration

produced, and for the meaningfulness of the approach in general. It makes sure that the system

mechanisms are configured in a proper way, so that the combination of their particular actions

does yield the global enforcement of the abstract policies, i.e. that they collectively behave as

an integrated system.

8.1.4 Management Process and Implementation

Along with the improvements discussed above concerning the modelling and the graphical repre-

sentation, the approach used also makes possible a practical management process. This process

has a twofold input: (a) a set of high-level policies; and (b) information about the network re-

sources and their use. Having these two elements on hand, the administrator is able to develop

the model incrementally, adding one subsystem in turn, up to completing the model. During

the model editing, the user is assisted by the tool with the visualisation, handling, and checking

features previously discussed. The incremental model development proposed by this work can be

used not only in a top-down fashion (as described in detail here) but also bottom-up: sometimes

the existence of a network element might be the evidence of the need for an additional policy

not yet modelled.

This approach has proved its practical relevance in the case study analysed. It has been

successfully employed to the integrated configuration management of packet filters and VPN

8.2. Future Work 109

gateways of a realistic, complex network environment. Back-end functions were implemented

for the corresponding mechanisms of the OpenBSD operating system (pf and isakmpd), covering

the basic functions of these mechanisms.

It is also anticipated that the modelling effort will be reduced in applications of the technique

to other environments, since the models here achieved can be used as templates. After some effort

with diverse environments, a library of templates could be gathered and allow a typical modeller

only to adapt the expanded view of subsystems to meet the intended network environment,

possibly having to add some specific policies to the existing ones.

8.2 Future Work

This work could be extended and enhanced in a number of ways, including the following.

Modelling Features The high-level policy modelling proposed here is based on the simplest

Role-Based Access Control model that exists. It could thus be extended to enclose features

of more comprehensive RBAC models, such as role hierarchies and constraints, and even

to incorporate more elaborated extensions of RBAC such as the UCONABC usage control

model [79] and the Generalised-RBAC (GRBAC) [24]. The SIRENA project [47, 45] shows

that the MBM approach can be profitably used with the GRBAC to address requirements

of dynamic environment conditions. The combination of these extensions with the scalable

modelling framework proposed here could thus yield interesting results.

Policy Representation As mentioned in the previous section, the representation of policies

at the lower levels of the model could be improved. Since these policies are generated

automatically by the tool, a promising direction to investigate is the grouping of lower-

level policies based on the high-level policies they refine. I think an automated navigation

mechanism that allows the administrator to track the effect on the network traffic caused by

a given high-level policy would be a most valuable resource. This should not be difficult

to achieve from the current stage of the tool, although its execution offers interesting

challenges.

Usability Currently there is a growing concern about bringing nearer the research communities

of security and human-computer interfaces (HCI). I believe that this is a very promising

research direction, and that the present work makes a step into the direction of making

the security management closer to the human administrator. Indeed, the models used here

are intuitive and directly match the administrators’ system mental model. An interesting

extension of the present work would be to further investigate this in an inter-disciplinary

approach, by performing usability studies to identify the needs of administrators, and by

running tests in order to evaluate our prototype tool and approach.

Topology Discovery The gathering of information about network devices, links, and worksta-

tions could be partially automated by interrogating the system relying upon management

8.2. Future Work 110

protocols such as SNMP. This would improve the modelling by eliminating possible errors

in this respect, and would reduce the modeller’s effort, which is especially interesting in

large-scale environments when combined with good lay-out algorithms for producing the

final graphical representation.

Coverage The approach here presented could be extended to cover other functionalities of fire-

walls, VPNs, and other security mechanisms, such that they would be simultaneously and

uniformly managed with the modelling framework proposed. Previous work on Model-

Based Management indicates that the approach is able to cover both more firewall func-

tionalities (e.g. Network Address Translation) and other mechanisms (e.g. Kerberos, web

proxies). In fact, since the modelling framework represents policies at the lowest-level as

allowed network flows, it should be quite straightforward to convert the flows into config-

uration parameters for most security services which perform some sort of access control

based on certain communication characteristics.

Chapter 9

Conclusão

Este trabalho propôs uma abordagem para o gerenciamento da configuração de sistemas de

segurança de redes que é especialmente concebido para suprir as necessidades de ambientes

complexos e de larga escala. O processo se pauta pelo paradigma do gerenciamento baseado

em modelos, utilizando um modelo em camadas do sistema que contém diferentes ńıveis de

abstração, e através do qual uma representação em alto ńıvel da poĺıtica de segurança é grad-

ualmente vertida em uma visão mais concreta do sistema. Dessa forma, preenche-se a lacuna

existente atualmente entre as poĺıticas de segurança de uma organização expressas em alto ńıvel

e os parâmetros de configuração dos mecanismos.

9.1 Principais Contribuições

Os principais resultados alcançados no conjunto dos trabalhos que integram esta pesquisa podem

ser sumarizados nos seguintes pontos:

• desenvolvimento de uma técnica de modelagem para o gerenciamento de sistemas de se-

gurança, a qual obtém escalabilidade mediante a segmentação do sistema em subsistemas

abstratos (Abstract Subsystems), possibilitanto que os processos de desenvolvimento e

análise sejam executados de maneira modular;

• implementação de um protótipo de ferramenta gráfica para edição de modelos, a qual

incorpora técnicas de foco e contexto para a melhorar o tratamento de grandes modelos,

permitindo que o projetista defina em detalhes uma certa parte do modelo sem perder de

vista o sistema como um todo;

• um processo automático de refinamento de poĺıticas adequado às necessidades de ambientes

complexos de larga escala, o qual deriva poĺıticas de mais baixo ńıvel a partir do conjunto de

poĺıticas em alto ńıvel definidas pelo usuário, produzindo afinal parâmetros de configuração

para mecanismos de segurança;

111

9.1. Principais Contribuições 112

• uma abordagem escalável para a validação do refinamento de poĺıticas, que inclui a for-

malização do modelo, o estabelecimento de condições de consistência, e a prova formal da

corretude do refinamento;

• um processo de modelagem em camadas, no qual uma representação abstrata das poĺıticas

é vertida gradualmente um uma visão mais concreta do sistema, preenchendo assim a

lacuna entre poĺıticas de segurança de alto ńıvel e as configurações de mecanismos de

segurança nos sistemas reais;

• um estudo de caso realista que evidencia a relevância prática e as vantagens concretas

proporcionadas por este trabalho.

As próximas seções discutem resumidamente os sucessos totais ou parciais e as limitações

dos resultados obtidos no presente trabalho.

9.1.1 Técnica de Modelagem

A principal novidade introduzida por este trabalho é a aplicação do prinćıpio de divisão e con-

quista (divide et impera) na modelagem de sistemas de segurança de redes, através dos assim

chamados Subsistemas Abstratos (Abstract Subsystems). A modelagem de um certo segmento

de rede é então subdividida em três etapas: (1) a definição detalhada dos mecanismos de rede

nos Subsistemas Expandidos; (2) o estabelecimento de uma visão abstrata daqueles mecanismos,

agrupando-os em objetos dos tipos actor, target e mediator ; (3) a definição d interação entre

subsistemas em um Diagrama de Subsistemas Abstratos (DAS na sigla em inglês). Dessa forma,

o usuário lida com a complexidade dos mecanismos apenas localmente em cada subsistema —

isto é, nos passos (1) e (2) — enquanto que no passo (3) o sistema como um todo é apreciado

mediante uma representação geral compreenśıvel e abstrata de sua arquitetura, a qual corre-

sponde diretamente ao modelo mental que o administrador tem do sistema. Enquanto que as

duas primeiras etapas empregam modularização para lidar com a complexidade, a terceira cor-

responde à composição dos módulos — técnicas tradicionais usadas na programação de sistemas

de larga escala.

Assim, o presente trabalho traz benef́ıcios da modularização para o gerenciamento de sistemas

de segurança de redes — particularmente, para o projeto da configuração de mecanismos —,

tais como:

Flexibilidade No processo de desenvolvimento incremental (ver Seção 7.2.3), o projetista pode

concentrar-se primeiramente apenas nos elementos de um subsistema em particular, e de-

pois definir a interação deste subsistema com os outros de maneira abstrata. O mesmo se

aplica para a manutenção posterior do modelo, pois mudanças locais podem ser implmen-

tadas sem alterar a visão abstrata do sistema todo.

Compreensibilidade O ńıvel DAS provê uma representação compacta e inteliǵıvel da arquite-

tura de um sistema de grande porte, que, além disso, provou ter crescimento assintótico

mais lento do que a taxa de crescimento dos objetos de rede (Seção 7.3.1).

9.1. Principais Contribuições 113

Não obstante, assim como em programação, os benef́ıcios da modularização dependem de

caracteŕısticas do problema tratado, e em uma boa dose de competência de design por parte

do projetista. Esse trabalho espera, entretanto, ter oferecido em seus exemplos e discussões

parâmetros para que se obtenha benef́ıcios similares àqueles obtidos aqui em futuros modelos.

9.1.2 Representação Gráfica e Protótipo

A ferramenta protótipo implementada combina a técnica de modelagem desenvolvida com

técnicas de foco e contexto, melhorando substancialmente a navegação e a visualização de

grandes modelos. Com efeito, o uso combinado das técnicas fisheye view (visão olho-de-peixe) e

semantic zooming (zoom semântico) e da técnica de modelagem aqui apresentada permite que

o projetista defina em detalhes uma certa parte do sistema sem perder de vista a arquitetura

do sistema como um todo, ou seja, mantendo-se consciente do contexto maior em que está

trabalhando. Ao término do desenho do sistema, a ferramenta executa, então, um processo

de refinamento que produz automaticamente arquivos de configuração para os mecanismos de

segurança.

Enquanto que a representação gráfica desenvolvida oferece ao administrador uma visão es-

calável e compreenśıvel do sistema, em relação a poĺıticas um sucesso parcial foi alcançado. No

DAS as poĺıticas são representadas por caminhos no grafo (ATPermissions) — cada um dois

quais autoriza um actor a acessar um target —, proporcionando ao administrador uma repre-

sentação compreenśıvel do tráfego de rede permitido. No entanto, na medida em que o número

de caminhos permitidos cresce, torna-se dif́ıcil encontrar uma representação gráfica razoável, ou

seja, que não sobrecarregue a tela e que se mantenha inteliǵıvel. Neste trabalho, a opção escol-

hida foi filtrar ATPermissions, apresentando apenas um caminho por vez — o que nos parece

ser um passo na direção correta. Contudo, seria interessante se a ferramenta pudesse seleciona

automaticamentee apresentar ao mesmo tempo todos os caminhos que são derivados de uma

mesma poĺıtica de ńıvel mais alto (AccessPermissions ou ServicePermissions), possibilitando

ao administrador rastrear que caminhos permitidos na rede correspondem a certas poĺıticas ab-

stratas. No estado atual de implementação isso é posśıvel, porém apenas manualmente. Em

relação a permissões no ńıvel ES (allowed expanded paths), a situação é ainda mais complexa,

pois eles tendem a ser mais numerosos. Um aperfeiçoamento da representação gráfica de poĺıticas

é deixado, portanto, para trabalhos futuros, e algumas idéias a esse respeito são apresentadas

adiante (Seção 9.2).

9.1.3 Algoritmos de Refinamento e Validação

O presente trabalho desenvolveu um processo de refinamento de poĺıticas apropriado às neces-

sidades de ambientes de rede de larga escala. A derivação automática de poĺıticas de ńıvel mais

baixo provou ser tratável por algoritmos com tempo de execução razoável. Além disso, espera-

se que os algoritmos de refinamento desenvolvidos tenham desempenho melhor do que aqueles

usados em trabalhos anteriores em gerenciamento baseado em modelos. Isso se deve ao fato de

que, no presente trabalho, os algoritmos necessitam apenas considerar os elementos abstratos,

9.1. Principais Contribuições 114

e por isso mesmo menos numerosos, do ńıvel DAS, ao invés de lidar com todos os elementos

contidos nos subsistemas expandidos (Seção 6.8.3).

Como mencionado anteriormente, o ganho exato advindo da técnica de modelagem depende

das idiossincrasias do ambiente modelado, de forma que não se pode obter resultados quantita-

tivos gerais a esse respeito. Entretanto, a análise mostra que, com base em dados dos ambientes

modelados até o momento — e assumindo que esses dados provêem de representantes significa-

tivos para outros ambientes similares —, pode-se esperar que a introdução do ńıvel DAS faça

com que o processo de refinamento seja executado mais rapidamente do que a abordagem sem

usar o DAS, e tenha seu desempenho menos afetado pelo crescimento do sistema, isto é, tenha

maior escalabilidade.

Um resultado importante obtido por este trabalho é a formalização do modelo e o estabelec-

imento de condições para a corretude do refinamento de poĺıticas, ou seja, para assegurar que as

poĺıticas de baixo ńıvel geradas sejam conformes às poĺıticas abstratas definidas pelo usuário. Os

critérios de completude e consistência foram selecionados, de forma que o significado normativo

adquirido por poĺıticas e pelo modelo do sistema neste trabalho (analisados na Seção 5.1.1) possa

ser propagado de um ńıvel de abstração para seu vizinho imediatamente inferior. Baseado nesses

critérios, grupos de condições foram estabelecidas concernentes: (i) à relação entre elementos de

conjuntos de poĺıticas de dois ńıveis de abstração adjacentes (condições de refinamento); e (ii) à

comparação entre objetos do sistema frente aos objetos de sistema no ńıvel superior, assim como

frente às poĺıticas do mesmo ńıvel (condições de consistência estrutural). Tais condições foram

definidas para as fases de refinamento do ńıvel SR para o DAS, e deste para os Subsistemas

Expandidos do ńıvel ES.

A ferramenta verifica algumas dessas condições on-the-fly, à medida que os objetos do modelo

são definidos, e sob demanda do usuário, sempre que este aciona a opção correspondente no menu.

Um segundo grupo de condições é testado durante o processo de refinamento, enquanto que um

último grupo é aplicado depois do refinamento. Essas condições são, assim, capazes de validar a

arquitetura em camadas do sistema vis-à-vis as poĺıticas de segurança prescritas. Na verdade, a

experiência tem mostrado que na prática os sistemas modelados são freqüentemente incapazes

de assegurar o cumprimento das poĺıticas de alto ńıvel definidas. Nesses casos, as condições de

validação definidas não são satisfeitas e a ferramenta indica os elementos do modelo que violam

as poĺıticas. Dessa forma, o projetista recebem nesse processo informações valiosas sobre as

modificações necessárias para tornar o sistema congruente com as poĺıticas.

Além disso, o esforço computacional requerido para verificação das condições foi analisado.

Nesse respeito, a camada DAS proporciona uma segmentação da análise do sistema, isto é, ela

possibilita que a validação seja executada de forma modular — a qual é mais apropriada para

lidar com grandes modelos. De fato, as condições estruturais da relação entre os ńıveis DAS/ES

possuem escopo local, restringindo-se portanto a considerar apenas os elementos contidos nas

fronteiras de um subsistema por vez (com exceção apenas daqueles diretamente relacionados a

conectores), de forma que o processo de análise pode ser realizado independemente para cada

subsistema. A generalização da validade dessas condições locais para o sistema todo foi provada

através de teoremas e lemas, os quais obviamente não necessitam ser testados para cada instância

9.1. Principais Contribuições 115

de modelo em particular. Por conseguinte, quanto mais complexo for um sistema, maior será o

benef́ıcio advindo da introdução do DAS no custo total da validação, pois durante a aplicação de

um teste local em um subsistema em particular, a complexidade de todos os demais subsistemas

é desconsiderada.

Com o intuito de poder analizar o comportamento do sistema resultante da aplicação da

configuração gerada, axiomas sobre a representatividade do modelo (model representativeness

axioms) foram definidos para formalizar as assunções impĺıcitas. Esses axiomas refletem pre-

missas concernentes tanto ao mapeamento de entidades no mundo real por objetos do modelo

(modelagem correta), quanto à efetiva aplicação dos aspectos normativos do modelo no sistema

real (implementação correta). Com base nos axiomas e nas condições, dois teoremas foram

provados para assegurar a conformidade do comportamento resultante do sistema com a visão

do sistema e as poĺıticas do ńıvel mais abstrato considerado (ńıvel SR). Os dois teoremas cor-

respondem diretamente ao critérios de validação escohlidos, a saber completude e consistência.

Logo, as provas formais significam que, dado que um modelo satisfaça as condições definidas e

que esse modelo reflita corretamente o ambiente do mundo real (ou seja, que os axiomas val-

ham), pode-se esperar que o comportamento do sistema possibilitado pela configuração gerada

esteja em plena conformidade com a visão do sistema e as poĺıticas no ńıvel mais alto de ab-

stração. Este resultado é importante para a confiabilidade das configurações produzidas e para

a significância da abordagem em geral, pois ele garante que os mecanismos do sistema sejam

configurados de maneira adequada. Assim, a combinação de das ações de cada mecanismo em

particular resultará efetivamente na aplicação global das poĺıticas de segurança abstratas, ou

seja, os mecanismos agirão coletivamente como um verdadeiro sistema integrado.

9.1.4 Processo de Gerenciamento e Implementação

Além das vantagens concernentes à modelagem e à representação gráfica que foram discutidas

acima, a abordagem utilizada possibilita também um processo prático de gerenciamento. Esse

processo como entrada: (a) um conjunto de poĺıticas de alto ńıvel; e (b) informações sobre os

recursos de rede e seu uso. De posse desses dois elementos, o administrador pode desenvolver

o modelo de maneira incremental, adicionando um subsistema por vez até completar o mod-

elo. Durante a edição do modelo, o usuário é assistido pela ferramenta com as capacidades de

visualização, manipulação e verificação descritas previamente.

Essa abordagem teve sua relevância prática confirmada no estudo de caso analizado. Ela foi

aplicada com sucesso para o gerenciamento integrado das configurações de filtros de pacote e

VPNs (redes privadas virtuais, na sigla em inglês) em um ambiente de rede realista e complexo.

Módulos backend especiais foram implementados para gerar parâmetros de configuraçao para

os mecanismos correspondentes no sistema operacional OpenBSD (pf e isakpmd), cobrindo as

funcionalidades básicas desses mecanismos.

9.2. Trabalhos Futuros 116

9.2 Trabalhos Futuros

Este trabalho pode ser estendido e aperfeiçoado de diversas formas, incluindo as seguintes.

Modelagem A modelagem de poĺıticas de alto ńıvel proposta aqui se baseia no mais simples

modelo de Controle de Acesso Baseado em Papéis (Role-Based Access Control, RBAC)

existente. Ela poderia, então, ser estendida para abarcar caracteŕısticas de modelos mais

abrangentes, como hierarquias de papéis e restrições (constraints), e até mesmo para in-

corporar extensões mais elaboradas do RBAC como o modelo de controle de utilização

UCONABC [79] e o Generalised-RBAC (GRBAC) [24]. O projeto SIRENA [47, 45] mostra

que o paradigma MBM pode ser empregado em conjunto com o GRBAC para lidar com

requerimentos de condições de ambiente dinâmicas. A combinação dessas extensões com

a modelagem escalável proposta no presente trabalho poderá produzir resultados interess-

santes.

Representação de Poĺıticas Como mencionado na seção anterior, a representação de

poĺıticas nos ńıveis inferiores do modelo pode ser aperfeiçoada. Como essas poĺıticas são

geradas automaticamente pela ferramenta, uma direção de investigação promissora é o

agrupamente de poĺıticas de mais baixo ńıvel com base nas poĺıticas de alto ńıvel que as

primeiras refinam. Um mecanismo de navegação automático que permita o admistrador

rastrear o efeito no tráfego de rede causado por uma certa poĺıtica de alto ńıvel seria um

recurso de grande valia. Isso não deve ser de dif́ıcil obtenção a partir o estado atual da

ferramenta, embora sua execução ofereça desafios interessantes.

Usabilidade Atualmente há uma preocupação crescente em aproximar as comunidades de

pesquisa de segurança e de interfaces humano-computador. Essa é uma direção de pesquisa

muito promissore, e o presente trabalho dá um passo na direção de torna o gerenciamento

da segurança mais próximo do administrador humano. Com efeito, os modelos desenvolvi-

dos aqui são intuitivos e correspondem diretamente ao modelo mental que administradores

têm do sistema. Uma posśıvel extensão do presente trabalho poderia investigar essa relação

em uma abordagem interdisciplinar, através de estudos de usabilidade para identificar as

necessidades de administradores e avaliar a ferramenta protótipo e a abordagem.

Topologia A obtenção de informações sobre dispositivos de rede, conexões e máquinas pode

ser parcialmente automatizada, mediante buscas na rede utilizando protocolos de geren-

ciamento como o SNMP. Além de reduzir o esforço do projetista, essa automatização

eliminaria a possibilidade de erros na modelagem. Isso seria especialmente produtivo em

ambientes de larga escala, desde que combinado com bons algoritmos de layout automátco

para produzir a representação gráfica final.

Cobertura A abordagem proposta pode ser estendida para cobrir outras funcionalidades de

firewalls e VPNs e outros mecanismos de segurança, de forma que fossem eles gerenciados

simultaneamente e uniformemente através da modelagem desenvolvida aqui. Trabalhos

9.2. Trabalhos Futuros 117

anteriores em Gerenciamento Baseado em Modelos (MBM) indicam que a abordagem é

capaz de cobrir não somente outras funções de firewalls (e.g. Network Address Translation

em [37]), como também outros mecanismos de segurança (e.g. Kerberos em [94]). Na

verdade, como a técnica de modelagem representa poĺıticas no ńıvel mais baixo em forma

de fluxos de rede permitidos, deveria ser relativamente fácil converter esses fluxos em

parâmetros de configuração para a maioria dos serviços de segurança que executam algum

tipo de controle de acesso com base em certas caracteŕısticas da comunicação.

Bibliography

[1] M. Abrams and D. Bailey. Abstraction and refinement of layered security policy. In

M. Abrams, S. Jajodia, and H. Podell, editors, Information Security : An Integrated Col-

lection of Essays, pages 126–136. IEEE Computer Society Press, Los Alamitos, California,

USA, 1994.

[2] A. Adams and M. A. Sasse. Users are not the enemy. Communications of ACM, 42(12):40–

46, 1999.

[3] R. J. Anderson. Why cryptosystems fail. Communications of ACM, 37(11):32–40, 1994.

[4] S. Anderson-Redick, et al. System Policy Editor. O’Reilly and Associates, 2000.

[5] Associação Brasileira de Normas Técnicas, Rio de Janeiro. NBR ISO/IEC 17799:2000,

Tecnologia da informação—Código de prática para a gestão da segurança da informação,

2000.

[6] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall management

toolkit. In Proc. 20th IEEE Computer Society Symposium on Security and Privacy, 1999.

[7] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall management

toolkit. ACM Transactions on Computer Systems, 22(4):381–420, November 2004.

[8] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations and

model. Technical Report M74–244, MITRE Corporation, Bedford, MA, USA, 1975.

[9] S. M. Bellovin. Distributed firewalls. ;login: magazine, special issue on security, November

1999.

[10] M. Bishop. Computer Security: Art and Science. Addison Wesley, 2002.

[11] M. Blaze, J. Feigbaum, J. Ioannidis, and A. Keromytis. The keynote trust management

system version 2. RFC 2704. Internet Engineering Task Force, September 1999.

[12] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceedings

1996 IEEE Symposium on Security and Privacy, Oakland, CA, May 1996.

118

BIBLIOGRAPHY 119

[13] M. Blaze, J. Ioannidis, and A. D. Keromytis. Trust management for IPSec. ACM Trans-

actions on Information and System Security (TISSEC), 5(2):95–118, May 2002.

[14] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.

Addison-Wesley, 1999.

[15] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam,

M. Nottingham, C. von Riegen, and J. Shewchuk. Web Services Policy Framework (WS-

Policy). Version 1.1, September 2004.

[16] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosenbluth, A. Surendran,

and D. M. Jr. Automatic management of network security policy. In DARPA Information

Survivability Conference and Exposition (DISCEX II’01), volume 2, 2001.

[17] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture, Volume 1: A System of Patterns. Wiley, 1996.

[18] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in Information Vi-

sualization: Using Vision to Think. Series in Interactive Technologies. Morgan Kaufmann

Publishers, San Francisco, CA, 1999.

[19] D. W. Chapman and A. Fox. Cisco Secure PIX Firewalls. Cisco Press, 2001.

[20] Check Point Software Technologies Ltd., Redwood City, Calif. Check Point Software

Revolutionizes Internet Security Management, January 2000. Checkpoint press release,

see: http://www.checkpoint.com/press/2000/vpe012400.html.

[21] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls and Internet Security:

Repelling the Wily Hacker. Addison-Wesley, 2nd edition, 2003.

[22] Common Criteria Project. Common Criteria for Information Technology Security Evalu-

ation (CC 2.2), Part 2: Security functional requirements, January 2004.

[23] T. H. Cormen, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill

Higher Education, 2001.

[24] M. J. Covington, M. J. Moyer, and M. Ahamad. Generalized role-based access control for

securing future applications. In 23rd National Information Systems Security Conference

Proceedings, 2000.

[25] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miége. A formal approach to specify

and deploy a network security policy. In Formal Aspects in Security and Trust (FAST

2004), 2004.

[26] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: A language for specify-

ing security and management policies for distributed systems—the language specification.

BIBLIOGRAPHY 120

Technical Report DoC 2000/1, Imperial College of Science, Technology and Medicine,

London, UK, 2000.

[27] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification lan-

guage. In E. L. M. Sloman, J. Lobo, editor, Proc. IEEE Workshop Policy 2001: Policies

for Distributed Systems and Networks, number 1995 in Lecture Notes in Computer Science,

Heidelberg, 2001. Springer Verlag.

[28] N. Damianou, N. Dulay, E. Lupu, M. Sloman, and T. Tonouchi. Tools for domain-based

policy management of distributed systems. In IEEE/IFIP Network Operations and Man-

agement Symposium (NOMS2002), pages 213–218, Florence, Italy, 2002.

[29] Distributed Management Task Force (DMTF). Common Information Model (CIM) Ver-

sion 2.9, January 2005. http://www.dmtf.org/standards/cim/cim schema v29.

[30] P. Dourish and D. Redmiles. An approach to usable security based on event monitoring and

visualization. In NSPW ’02: Proceedings of the 2002 workshop on New security paradigms,

pages 75–81. ACM Press, 2002.

[31] Enterprise Management Associates. Solsoft NP: Putting security policies into practice.

White Paper, 2000. http://www.solsoft.com/library/ema profiler.pdf.

[32] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceeedings of 15th NIST-NCSC

National Security Computer Conference, Baltimore, MD, 1992.

[33] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based access control model and

reference implementation within a corporate intranet. ACM Transactions on Information

and System Security, 2(1):34–64, February 1999.

[34] G. W. Furnas. Generalized fisheye views. In Proceedings of ACM CHI’86 Conference on

Human Factors in Computing Systems, Visualizing Complex Information Spaces, pages

16–23, 1986.

[35] Firewall builder. http://www.fwbuilder.org, 2006. Accessed in March, 2006.

[36] S. Garfinkel and G. Spafford. Practical Unix & Internet Security. O’Reilly & Associates,

Sebastopol, CA, 2nd edition, 1996.

[37] G. Geist. Model-based management of security services: Integrated enforcement of poli-

cies in company networks. Master’s thesis, University of Dortmund, Germany, 2003. in

German.

[38] J. D. Guttman. Filtering postures: local enforcement for global policies. In SP ’97:

Proceedings of the 1997 IEEE Symposium on Security and Privacy, page 120, Washington,

DC, USA, 1997. IEEE Computer Society.

BIBLIOGRAPHY 121

[39] D. Haixin, W. Jianping, and L. Xing. Policy-based access control framework for large net-

works. In ICON ’00: Proceedings of the 8th IEEE International Conference on Networks,

pages 267–272, Washington, DC, USA, 2000. IEEE Computer Society.

[40] C. Hansen. Modellbasiertes Management: Korrelation von Firewall-Logs mit abstrakten

Policies. Master’s thesis, University of Dortmund, Germany, 2002.

[41] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):231–274, June 1987.

[42] S. Hinrichs. Policy-based management: Bridging the gap. In Proceedings of the 15th

Annual Computer Security Applications Conference, Phoenix, AZ, USA, 1999.

[43] HLFL: High-level Firewall Language. http://www.hlfl.org/, 2006. Accessed in March,

2006.

[44] ICSA Labs. Certified firewall products. http://www.icsalabs.com/html/

communities/firewalls/certification/rxvendors/index.shtml, 2006. Accessed in

March, 2006.

[45] S. Illner, H. Krumm, I. Lück, A. Pohl, A. Bobek, H. Bohn, and F. Golatowski. Model-

based management of embedded service systems - an applied approach. In Proc. 20th Int.

IEEE Conf. on Advanced Information Networking and Applications (AINA2006), vol-

ume 2, pages 519–523, Vienna, April 2006. IEEE Computer Society Press.

[46] S. Illner, H. Krumm, A. Pohl, I. Lück, D. Manka, and T. Sparenberg. Policy controlled

automated management of distributed and embedded service systems. In T. Fahringer and

M. H. Hamza, editors, Proceedings of the IASTED International Conference on Parallel

and Distributed Computing and Networks, pages 710–715, Innsbruck, Austria, February

2005. IASTED, ACTA Press.

[47] S. Illner, A. Pohl, and H. Krumm. Security service adaptation for embedded service sys-

tems in changing environments. In Proceedings of the 2nd IEEE International Conference

on Industrial Informatics (INDIN’04), pages 457–462, Berlin, Germany, 2004.

[48] Institute of Electrical and Electronics Engineers, New York. IEEE Standard Glossary of

Sof tware Engineering Terminology, 1990.

[49] International Organization for Standardization. ISO/IEC 17799:2000, Information

technology—Code of practice for information security management, 2000.

[50] S. Ioannidis, S. M. Bellovin, J. Ioannidis, A. D. Keromytis, and J. M. Smith. Design and

implementation of virtual private services. In WETICE ’03: Proceedings of the Twelfth

International Workshop on Enabling Technologies, page 269, Washington, DC, USA, 2003.

IEEE Computer Society.

BIBLIOGRAPHY 122

[51] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a distributed

firewall. In ACM Conference on Computer and Communications Security, Athens, Greece,

2000.

[52] isakmpd - ISAKMP/Oakley a.k.a. IKE key management daemon. OpenBSD Manual

Pages. Available at: http://www.openbsd.org/, 2006. Accessed in March, 2006.

[53] H. Isenberg. Skalierbarer werkzeuggestützter Entwurf der Sicherheitsdienste großer ver-

netzter IT-Systeme. Master’s thesis, University of Dortmund, March 2005. English title:

Scalable Tool-assisted Design of Security Services in Large-scale Computer Networks.

[54] ITU-T Telecommunications Standardization Sector of International Telecommunication

Union. X.810 – Security Frameworks for Open Systems: Overview, November 1995.

[55] R. Jeruschkat. Modellbasierte Policy-Verfeinerung für Sicherheitsdienste großer vernetzter

IT-Systeme. Master’s thesis, University of Dortmund, March 2006. English title: Model-

based Policy Refinement for Security Services in Large-scale Computer Networks.

[56] B. Kempter and V. A. Danciu. Generic policy conflict handling using a priori models. In

J. Schönwälder and J. Serrat, editors, Ambient Networks: 16th IFIP/IEEE International

Workshop on Distributed Systems: Operations and Management, DSOM 2005, volume

3775 of Lecture Notes in Computer Science, pages 84–96, Berlin Heidelberg, Germany,

October 2005. Springer-Verlag.

[57] S. Kent and R. Atkinson. Security architecture for the internet protocol. RFC 2401.

Internet Engineering Task Force, 1998.

[58] A. Keromytis. STRONGMAN: A Scalable Solution to Trust Management in Networks.

PhD thesis, University of Pennsylvania, Pennsylvania, November 2001.

[59] J. Kohl and C. Neuman. The kerberos network authentication service (V5). RFC 1510,

Internet Engineering Task Force, Sept. 1993.

[60] O. Köth and M. Minas. Structure, abstraction, and direct manipulation in diagram editors.

In M. Hegarty, B. Meyer, and N. H. Narayanan, editors, Diagrammatic Representation

and Inference, Second International Conference (Diagrams 2002), volume 2317 of Lecture

Notes in Computer Science, Callaway Gardens, GA, USA, 2002. Springer.

[61] I. Lück, C. Schäfer, and H. Krumm. Model-based tool-assistance for packet-filter design.

In E. L. M. Sloman, J. Lobo, editor, Proc. IEEE Workshop Policy 2001: Policies for

Distributed Systems and Networks, number 1995 in Lecture Notes in Computer Science,

pages 120–136, Heidelberg, 2001. Springer Verlag.

[62] I. Lück, M. Schönbach, A. Mester, and H. Krumm. Derivation of backup service man-

agement applications from service and system models. In B. S. R. Stadler, editor, Active

BIBLIOGRAPHY 123

Technologies for Network and Service Management, Proc. DSOM’99, number 1700 in Lec-

ture Notes in Computer Science, pages 243–255, Heidelberg, 1999. Springer Verlag.

[63] I. Lück, S. Vögel, and H. Krumm. Model-based configuration of VPNs. In R. Stadtler and

M. Ulema, editors, Proc. 8th IEEE/IFIP Network Operations and Management Symposium

NOMS 2002, pages 589–602, Florence, Italy, 2002. IEEE.

[64] T. K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu, and N. Dulay. Compiling policy

descriptions into reconfigurable firewall processors. In FCCM ’03: Proceedings of the 11th

Annual IEEE Symposium on Field-Programmable Custom Computing Machines, page 39,

Washington, DC, USA, 2003. IEEE Computer Society.

[65] J. Leiwo and Y. Zheng. A framework for the management of information security. In

Information Security – Proceedings of the First International Workshop, number 1396 in

Lecture Notes in Computer Science, Heidelberg, DE, 1997. Springer–Verlag.

[66] J. Lobo, R. Bhatia, and S. Naqvi. A policy description language. In Proc. 16th Nat. Conf.

on Artificial Intelligence (AAAI-99), pages 291–298. MIT Press, 1999.

[67] LONGMAN Dictionary of Contemporary English. Pearson ESL, 4th edition, 2003.

[68] I. Lück. Model-based Security Service Configuration. PhD thesis, University of Dortmund,

Germany, To Appear in July 2006.

[69] L. Lymberopoulos, E. Lupu, and M. Sloman. Ponder policy implementation and validation

in a CIM and differentiated services framework. In IFIP/IEEE Network Operations and

Management Symposium (NOMS 2004), Seoul, Korea, April 2004.

[70] Massachusetts Institute of Technology. Kerberos: The network authentication protocol

(current release: krb5-1.4.3). http://web.mit.edu/kerberos/www/, 2006. Accessed in

March, 2006.

[71] D. McBride. Successful deployment of it service management in the distributed enterprise.

White Paper, Hewlet-Packard Company, 1998.

[72] N. Medvidovic and R. N. Taylor. A classification and comparison framework for software

architecture description languages. Software Engineering, 26(1):70–93, 2000.

[73] J. D. Moffett and M. S. Sloman. Policy hierarchies for distributed system management.

IEEE JSAC Special Issue on Network Management, 11(9), 11 1993.

[74] M. Mont, A. Baldwin, and C. Goh. POWER prototype: Towards integrated policy-based

management. In J. Hong and R. Weihmayer, editors, Proc. IEEE/IFIP Network Opera-

tions and Management Symposium (NOMS2000), pages 789–802, Hawaii, USA, 2000.

BIBLIOGRAPHY 124

[75] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy Core Information Model

(PCIM), Version 1: Specification. Internet Engineering Task Force, February 2001. RFC

3060.

[76] B. Musial and T. Jacobs. Application of focus + context to UML. In T. Pattison and

B. Thomas, editors, Australian Symposium on Information Visualisation, (invis.au’03),

volume 24 of Conferences in Research and Practice in Information Technology, pages 75–

80, Adelaide, Australia, 2003. ACS.

[77] Linux Netfilter homepage. http://www.netfilter.org, 2006. Accessed in March, 2006.

[78] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet services fail, and what

can be done about it. In 4th USENIX Symposium on Internet Technologies and Systems

(USITS’03), 2003.

[79] J. Park and R. Sandhu. The uconABC usage control model. ACM Trans. Inf. Syst. Secur.,

7(1):128–174, 2004.

[80] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commun.

ACM, 15(12):1053–1058, 1972.

[81] C. N. Payne. Handbook for the Computer Security Certification of Trusted Systems, chapter

The Security Policy Model. NRL Technical Memorandum 5540:080A. Naval Research

Laboratory, Washington, D. C., USA, Jan 1995.

[82] PF: The OpenBSD packet filter. http://www.openbsd.org/faq/pf/, 2006. Accessed in

March, 2006.

[83] J. Porto de Albuquerque. Scalable model-based policy refinement and validation

for network security systems. Technical Report IC-06-005, Institute of Computing,

University of Campinas. Available at: http://www.ic.unicamp.br/∼jporto/report

formalisation.pdf, April 2006.

[84] J. Porto de Albuquerque and P. L. de Geus. Agentes ‘proxy’: Conceitos e técnicas de

implementação. In III Simpósio de Segurança em Informática - SSI’2001, São José dos

Campos, SP, October 2001. [Proxy Agents: Concepts and Implementation Techniques].

[85] J. Porto de Albuquerque and P. L. de Geus. A framework for network security system

design. WSEAS Transactions on Systems, 2:139–144, January 2003.

[86] J. Porto de Albuquerque, H. Isenberg, H. Krumm, and P. L. de Geus. Gerenciamento

baseado em modelos da configuração de sistemas de segurança em redes de larga escala.

In V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais,

pages 174–187, Florianópolis, Brazil, September 2005.

BIBLIOGRAPHY 125

[87] J. Porto de Albuquerque, H. Isenberg, H. Krumm, and P. L. de Geus. Improving the con-

figuration management of large network security systems. In J. Schönwälder and J. Serrat,

editors, Ambient Networks: 16th IFIP/IEEE International Workshop on Distributed Sys-

tems: Operations and Management, DSOM 2005, Barcelona, Spain, October 24-26, 2005,

Proceedings, volume 3775 of Lecture Notes in Computer Science, pages 36–47, Berlin Hei-

delberg, Germany, October 2005. Springer-Verlag.

[88] J. Porto de Albuquerque, H. Krumm, and P. L. de Geus. Modelagem de sistemas de

segurança em ambientes de redes de larga escala. In Anais do 23o. Simpósio Brasileiro de

Redes de Computadores (SBRC), Fortaleza, Brazil, May 2005.

[89] J. Porto de Albuquerque, H. Krumm, and P. L. de Geus. Modellierung von netzsicher-

heitsystemen umfangreicher vernetzter it-infrastrukturen. In A. B. Cremers, R. Manthey,

P. Martini, and V. Steinhage, editors, INFORMATIK 2005 - Informatik LIVE! Band 2,

Beiträge der 35. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Bonn, 19. bis

22. September 2005, volume 68 of Lecture Notes in Informatics, pages 633–637, Bonn,

Germany, September 2005. GI.

[90] J. Porto de Albuquerque, H. Krumm, and P. L. de Geus. On scalability and modularisation

in the modelling of security systems. In S. D. C. di Vimercati, P. F. Syverson, and

D. Gollmann, editors, Computer Security - ESORICS 2005, 10th European Symposium on

Research in Computer Security, Milan, Italy, September 12-14, 2005, Proceedings, volume

3679 of Lecture Notes in Computer Science, pages 287–304, Berlin Heidelberg, Germany,

September 2005. Springer-Verlag.

[91] J. Porto de Albuquerque, H. Krumm, and P. L. de Geus. Policy modeling and refine-

ment for network security systems. In 6th IEEE International Workshop on Policies for

Distributed Systems and Networks (POLICY 2005), 6-8 June 2005, Stockholm, Sweden,

pages 24–33, Washington, DC, USA, June 2005. IEEE Computer Society.

[92] J. Porto de Albuquerque, H. Krumm, P. L. de Geus, and R. Jeruschkat. Scalable model-

based configuration management of security services in complex enterprise networks. Sub-

mitted to Computer Networks, Elsevier, July 2006.

[93] R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 5th

edition, 2001.

[94] G. Rothmaier. Model-based security management: Abstract requirements, trusts areas,

and configuration of security services. Master’s thesis, University of Dortmund, Germany,

2001. in German.

[95] J. Rushby. Security requirements specifications: How and what? In Symposium on Re-

quirements Engineering for Information Security (SREIS), Indianapolis, IN, March 2001.

[96] R. S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–19, 1993.

BIBLIOGRAPHY 126

[97] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models. IEEE Computer, 29(2):38–47, 1996.

[98] R. S. Sandhu and P. Samarati. Access control: Principles and practice. IEEE Communi-

cations, 32(9), September 1994.

[99] M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. In Proceedings of

ACM CHI’92 Conference on Human Factors in Computing Systems, Visualizing Objects,

Graphs, and Video, pages 83–91, 1992.

[100] C. Schäfer. Modell- und Policy-basiertes Sicherheitsmanagement: Administration von

Firewall-Konfigurationen. Master’s thesis, University of Dortmund, Germany, 2000.

[101] C. L. Schuba. On the Modeling, Design and Implementation of Firewall Technology. PhD

thesis, Department of Computer Sciences, Purdue University, December 1997.

[102] C. L. Schuba and E. H. Spafford. A reference model for firewall technology. In ACSAC

’97: Proceedings of the 13th Annual Computer Security Applications Conference, page 133,

Washington, DC, USA, 1997. IEEE Computer Society.

[103] C. Scott, P. Wolfe, and M. Erwin. Virtual Private Networks. O’Reilly & Associates, 2nd

edition, 1998.

[104] M. Sloman. Policy driven management for distributed systems. Journal of Network and

Systems Management, 2(4):333–360, 1994.

[105] M. Sloman and E. C. Lupu. Security and management policy specification. IEEE Network,

Special Issue on Policy-Based Networking, 16(2):10–19, March/April 2002.

[106] Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, and B. Moore. Policy Quality of Service

(QoS) Information Model. Request for Comments 3644. Internet Engineering Task Force,

November 2003.

[107] I. Sommerville. Software Engineering. Addison-Wesley, 6th edition, 2000.

[108] T. Sparenberg. Modellbasiertes Sicherheitsmanagement: Systematische Administration

aktueller Firewall Produkte. Master’s thesis, University of Dortmund, Germany, 2001.

[109] W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice Hall,

Inc., Upper Saddle River, NJ, USA, 2nd edition, 1998.

[110] D. F. Sterne. On the buzzword security policy. In IEEE Symposium on Security and

Privacy, Oakland, California, USA, 1991.

[111] S. Vögel. Modellbasiertes Sicherheitsmanagement: Automatisierte Konfiguration von

virtuellen privaten Netzen. Master’s thesis, University of Dortmund, Germany, 2001.

BIBLIOGRAPHY 127

[112] D. D. Welch-Abernathy. Essential Checkpoint Firewall-1: An Installation, Configuration,

and Troubleshooting Guide. Addison-Wesley, 2002.

[113] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,

M. Carlson, J. Perry, and S. Waldbusser. Terminology for Policy-Based Management.

Internet Engineering Task Force, November 2001. RFC 3198.

[114] R. Wies. Policies in network and systems management — formal definition and architec-

ture. Journal of Network and Systems Management, 2(1):63–83, 1994.

[115] R. Wies. Using a classification of management policies for policy specification and policy

transformation. In A. S. Sethi, Y. Raynaud, and F. Fure-Vincent, editors, Integrated

Network Management IV, volume 4, pages 44–56, Santa Barbara, CA, 1995. Chapman &

Hall.

[116] A. Wool. Architecting the lumeta firewall analyzer. In 10th USENIX Security Symposium,

pages 85–97, Washington D.C., 2001. USENIX.

[117] A. Wool. The use and usability of direction-based filtering in firewalls. Computers &

Security, 23:459–468, 2004.

[118] W. Yurcik, J. Barlow, K. Lakkaraju, and M. Haberman. Two visual computer network

security monitoring tools incorporating operator interface requirements. In ACM CHI

Workshop on Human-Computer Interaction and Security Systems (HCISEC), Fort Laud-

erdale, Florida, USA, April 2003.

[119] E. D. Zwicky, S. Cooper, and D. B. Chapman. Building Internet Firewalls. O’Reilly and

Associates, Sebastopol, CA, 2nd edition, 2000.

Appendix A

Refinement Algorithms

Algorithm 1 defines the refinement process from SR to DAS; i.e. the generation of a set of ATPs

for each service permission in SP . Hence, for each Actor that refines the User and SubjectType

associated with the service permission sp being refined (line 2), the algorithm executes the

auxiliary function findpaths() (line 6) providing as parameter the set of Targets related to sp.

This set comprises Targets in two different cases: a) if the Service sv (associated to sp) has

direct access to the Ressource r, the related Target will refine these two objects through the

relation RT (line 4); b) if there is a service dependency, then the related Target will refine r

and another Service sd, on which sv depends to access r through the relation SvDep (line 5).

Notice that, for the sake of notation conciseness, the service dependency is henceforth restricted

to one level.

The function findpaths(P, a, T), in turn, is a straightforward adaptation of the classical

modified Djikstra algorithm for discovery of single-source shortest paths [23, Ch. 25]. It returns

the set P of all paths between the initial node a and any node in the destination set T and

is thus not shown in details here. In the sequence, the algorithm verifies each path found by

invoking the function testpath(); if the path is considered valid, its security requirement is set as

the one of the related service permission (line 9) and it is then added to the ATP set (line 10).

Algorithm 2 presents the testpath(p, sp) function, which takes as input the path p to be

tested and the corresponding service permission sp. The path shall be tested into two different

aspects: i) satisfaction of service dependencies; and ii) compatibility between Actor and Target.

In the for -loop of lines 2–6, the service dependencies related to the permission are checked.

The loop then tests if, for each service dependency, a corresponding mediator is present in the

path (line 3). In the negative case, the path is considered invalid.

The second test applied to the path verifies the compatibility of the related Actor (say a)

and Target (say t); i.e. it tests whether the protocol and connection orientation defined for

a in the AS expanded view matches the corresponding definitions for t. In the case there is

a mediator along the path, the compatibility is tested first from the Actor to the Mediator,

and then from this to the Target ; for the Mediator can here act as a gateway. For instance, in

Fig. 4.9 of Sect. 4.1.4, the process “Netscape” (of host “WS2”) is assigned to the protocol “http”,

128

129

Algorithm 1 Refinement SR→ DAS

1: for all sp(u, st, sv, r) ∈ SP do
2: for all a : (a, u, st) ∈ RA do
3: P ← ∅ {set of path candidates}
4: T ← {t : (t, sv, r) ∈ RT} ∪
5: {t : (t, sd, r) ∈ RT ∧ (sv, sd, r) ∈ SvDep} {set of targets related to sp}
6: findpaths(P, a, T)
7: for all p ∈ P do
8: if testpath(p, sp) then
9: sr[p]← sr[sp]

10: ATP ← ATP ∪ p
11: end if
12: end for
13: end for
14: end for

Algorithm 2 Function testpath(p, sp : (u, st, sv, r)) : boolean

1: sa[p]← sa[sv]; testpath← true
2: for all sd : (sv, sd, r) ∈ SvDep do {tests service dependencies}
3: if ∄ m : (m, sd) ∈ RM and m ∈ p then
4: testpath← false
5: end if
6: end for
7: if not path compatible(p) then
8: testpath← false
9: end if

and the diamond near the latter indicates that the former will initiate the communication (i.e.

has outgoing orientation). The corresponding Actor “internal web clients” is hence compatible

with the Mediator “Webproxy”, since the process “Squid-Proxy” assigned to the latter is as

well connected to a “http” protocol, but has an incoming orientation. The algorithm for this

verification is trivial and is thus omitted here.

The interested reader may find a more detailed explanation of the refinement algorithms and

of the configuration generation back-ends in [55].

Appendix B

Proof of the Generalisation

Theorems

B.1 Proof of GT1

The proof of this theorem is based on an induction on the number of ASs for which the assertion

is valid. For the basis, let us consider a path dp1 that is a subpath of some aep1 ∈ AEP , such

that dp1 is completely enclosed inside a single AS; i.e. dp1 ∈ LEP (Definition 6.1.0.9). Thus all

processes along dp1 pertain to the same AS, and the basis hypothesis can be stated as

dp1 ⊆ aep1 ∈ AEP : pc1, . . . , pcm is the process sequence in dp1

∧ sub[pc1] = sub[pc2] = · · · = sub[pcm] (B.1)

Hence, applying this hypothesis to Cond. 6.4.1.2 follows that there is a corresponding abstract

path ap1 in DAS, such that

ap1 ⊆ atp1 ∈ ATP, ap1 = 〈v1, . . . , vm〉 : expand[dp1, ap1]

The definition of the predicate expand (Definition 6.4.1.1) implies that

(ei, vi) ∈ RPc ∨ (ei = vi) for 1 ≤ i ≤ n (B.2)

Where e1, . . . , en is the sequence of processes and connectors of dp1. But the hypothesis in

Eq. (B.1) states that all elements of dp1 pertain to the same AS, so that the structure of AEP

elements (described in Definition 6.1.0.9) implies that there are no connectors in dp1 (i.e. n = m).

Hence, the right-hand term of the disjunction in Eq. (B.2) is false for all elements—since only

connectors can be contained in both an element of ATP and an element of AEP . Equation (B.2)

then becomes

(pci, vi) ∈ RPc for 1 ≤ i ≤ m (B.3)

130

B.1. Proof of GT1 131

Considering now a pair of subsequent DAS elements in ap1, said vj and vj+1, Cond. 6.4.2.5

asserts that:

∀ pca, pcb ∈ Pc : (pca, vj) ∈ RPc ∧ (pcb, vj+1) ∈ RPc⇒

∃ p = 〈pca, . . . , pcb〉 : lconn[p] (B.4)

Clearly, the universal quantifier in Eq. (B.4) implies that also for pcj and pcj+1 that are respec-

tively connected to vj and vj+1 by Eq. (B.3):

∃ p = 〈pcj , . . . , pcj+1〉 : lconn[p] (B.5)

Since pcj and pcj+1 were chosen without loss of generality, Eq. (B.5) is valid for each pair

of subsequent processes in dp1. Definition 6.4.4.1 asserts that a local-connected path is also

connected, so that we prove, as intended, that for the basis case:

∃ p = 〈pci, . . . , pci+1〉 : conn[p] for 1 ≤ i < m

For the general case, let us assume:

dp2 ⊆ aep ∈ AEP : pc1, . . . , pco is the process sequence in dp2, dp2 spans k ASs (B.6)

The induction hypothesis then reads:

Theorem 6.4.4.1 is valid for all dp ⊆ atp ∈ ATP : dp spans up to k − 1 ASs (B.7)

Proceeding in analogy with the basis case, from Eq. (B.6), Cond. 6.4.1.2, and Definition 6.4.1.1

follows that there is a corresponding ap2 in DAS, such that:

ap2 ⊆ atp2 ∈ ATP, ap2 = 〈v1, . . . , vp〉 : (ei, vi) ∈ RPc ∨ (ei = vi) for 1 ≤ i ≤ p (B.8)

Where e1, . . . , ep is the sequence of processes and connectors of dp2. Now let us consider that

er = vr is the first connector in this sequence (thus e1 = pc1, . . . , er−1 = pcr−1, since they

are all processes), and dsp1 is the subpath that contains the first elements of dp2 until process

pcr−1. According to the Definition 6.1.0.9, dsp1 is thus completely enclosed in one subsystem;

i.e. sub[pc1] = sub[pc2] = · · · = sub[pck−1]. Furthermore, the same Definition 6.1.0.9 implies

er+1 = vr+1 is also a connector, and pertains to a different subsystem. Hence, we can apply the

basis case to dsp1, achieving that:

∃ p = 〈pcj , . . . , pcj+1〉 : conn[p] for 1 ≤ j < r − 1 (B.9)

Now, consider dsp2 the subpath of dp2 that starts at process er−1, passes through the connectors

er and er+1 and ends at the subsequent process er+2. From Eq. (B.8) there is a corresponding

DAS subpath in ap2:

asp1 = 〈vr−1, vr, vr+1, vr+2〉 : (vr−1, vr) ∈ E ∧ (vr, vr+1) ∈ E ∧ (vr+1, vr+2) ∈ E (B.10)

B.2. Proof of GT2 132

And:

(er−1, vr−1) ∈ RPc ∧ er = vr ∈ C ∧ er+1 = vr+1 ∈ C ∧ (er+1, vr+1) ∈ RPc (B.11)

Thus, applying Eq. (B.10) to Cond. 6.4.3.1 comes:

∀ pcx, pcy ∈ Pc : (pcx, vx) ∈ RPc ∧ (pcy, vy) ∈ RPc⇒

∃ p = 〈pcx, . . . , pcy〉 : cconn[p] (B.12)

Clearly, the universal quantifier in Eqs. (B.12) and (B.11) imply that:

∃ p = 〈er−1, . . . , er+2〉 : cconn[p] (B.13)

Since er−1 = pcr−1 and er+2 = pcr (er and er+1 are connectors), and relying upon Defini-

tion 6.4.4.1 we can then extend Eq. (B.9) to:

∃ p = 〈pcj , . . . , pcj+1〉 : conn[p] for 1 ≤ j < r (B.14)

Now, let dsp3 be the subpath of dp2 that goes from er+2 = pcr to the end (ep). Since Eq. (B.6)

states that dp2 spans k subsystems, and dsp3 is the result of removing the subpath contained

in the first subsystem of dp2 (i.e. the subpath 〈e1, . . . , er〉), dsp3 thus spans k − 1 subsystems.

Hence, the induction hypothesis Eq. (B.7) can be applied to dsp3 achieving that:

∃ p = 〈pcl, . . . , pcl+1〉 : conn[p] for r ≤ l < n (B.15)

Therefore, from Eqs. (B.14) and (B.15) follows:

∃ p = 〈pcj , . . . , pcj+1〉 : conn[p] for 1 ≤ j < n

B.2 Proof of GT2

Relying upon Definition 6.4.4.1, the theorems’ assertion can be expanded into two subgoals to

be proved:

∀ pcx, pcy ∈ Pc : ∃ p1 = 〈pcx, . . . , pcy〉 ∧ lconn(p1)⇒ ∃ aep1 ∈ AEP :

pc1, . . . , pcm is the sequence of processes in aep1

∧ pcx = pci ∧ pcy = pci+1 for 1 ≤ i < m (B.16)

And:

∀ pcz, pcw ∈ Pc : ∃ p2 = 〈pcz, . . . , pcw〉 ∧ cconn(p2)⇒ ∃ aep2 ∈ AEP :

pc1, . . . , pco is the sequence of processes in aep2

∧ pcz = pcj ∧ pcw = pcj+1 for 1 ≤ j < o (B.17)

B.2. Proof of GT2 133

Beginning with Eq. (B.16), from Cond. 6.4.2.6 follows:

∃ vx, vy ∈ V : (pcx, vx) ∈ RPc ∧ (pcy, vy) ∈ RPc ∧ (vx, vy) ∈ E (B.18)

Cond. 6.3.2.3 and Eq. (B.18) thus imply:

∃ atp1 ∈ ATP : 〈vx, vy〉 ⊆ atp1 (B.19)

Therefore, if we consider atp1 = 〈v1, . . . , vn〉 then vx = vi and vy = vi+1 for some 1 ≤ i < n.

Now, from Cond. 6.4.1.1 follows:

∀ w1 ∈ Pc, wm ∈ Pc : (w1, v1) ∈ RPc ∧ (wm, vn) ∈ RPc⇒

∃ aep ∈ AEP, aep = 〈w1, . . . , wn〉 : expand[aep, atp1] (B.20)

We must analyse now four different subcases to cover the different positions that the elements

vi and vi+1 may occupy in atp1. In the first subcase i = 1 and i+1 = n, thus from the definition

of ATP (Definition 6.1.0.3) follows that vi = v1 ∈ A (it is an Actor) and vi+1 = vn ∈ T (it

is a Target). Thus, the universal quantifier in Eq. (B.20) implies, that also for pcx and pcy

correspondingly related to vx = vi and vy = vi+1 by Eq. (B.18):

∃ aep1 ∈ AEP, aep1 = 〈pcx, . . . , pcy〉

In the second case, i > 1 and i + 1 < n, and Definition 6.1.0.3 implies vi ∈ M and vi+1 ∈ M

(both are Mediators). Hence, Condition 6.4.2.2 implies that there is only one process related to

each mediator, so that from Eq. (B.18), Eq. (B.20) and Definition 6.4.1.1 (definition of function

expand) follows that:

∃ aep1 ∈ AEP, aep = 〈w1, . . . , pcx, . . . , pcy, . . . , wn〉 (B.21)

The third and fourth cases (namely i = 1 ∧ i+1 < n; and i > 1 ∧ i+1 = n) can be analogously

demonstrated by a combination of the two previous cases.

Now, to prove Eq. (B.17) we must apply Cond. 6.4.3.2, achieving:

∃ vz, vw ∈ V, c1, c2 ∈ C : (pcz, vz) ∈ RPc ∧ (pcw, vw) ∈ RPc

∧ (vz, c1) ∈ E ∧ (c1, c2) ∈ E ∧ (c2, vw) ∈ E (B.22)

From Eq. (B.22) and Cond. 6.3.2.4 comes:

∃ atp2 ∈ ATP : 〈vz, c1, c2, vw〉 ⊆ atp2 (B.23)

Therefore, if we consider atp2 = 〈v1, . . . , vn〉 then vz = vk, c1 = vk+1, c2 = vk+2, and vw = vk+3

for some 1 ≤ k < n− 3. From Cond. 6.4.1.1 thus follows:

∀ w1 ∈ Pc, wo ∈ Pc : (w1, v1) ∈ RPc ∧ (wo, vn) ∈ RPc⇒

∃ aep ∈ AEP, aep = 〈w1, . . . , wo〉 : expand[aep, atp2] (B.24)

B.2. Proof of GT2 134

Hence, four analogous subcases to the ones in the first part of this proof must be considered,

in order to cover the different positions that vz and vw may occupy in atp2 (namely i) k =

1 ∧ k + 3 = n; ii) k > 1 ∧ k + 3 < n; iii) k = 1 ∧ k + 3 < n; and iv) k > 1 ∧ k + 3 = n).

Proceeding in the same manner as before, we can prove for all four subcases that:

∃ aep2 ∈ AEP, aep2 = 〈w1, . . . , pcz, . . . , pcw, . . . , wo〉

Appendix C

Models of the Application Case

We present here some of the models obtained for the application case analysed in Sect. 7.3. The

growth in the complexity of the ES level is made clear from the comparison of the models of the

AS “internal network” in the realistic application case (Fig. C.1) with that in the test scenario

(left hand of Fig. 4.9), and similarly for the AS “dmz” (compare Fig. C.2 with the right hand

of Fig. 4.9).

Figure C.1: Abstract and expanded view of subsystem “internal network”

In contrast, the superior levels of the modelling show a slower growth behaviour, and hence

more scalability. Figure C.3 presents the three-layered model for the application case (compare

with Fig. 4.8).

135

136

Figure C.2: Abstract and expanded view of subsystem “dmz”

137

Figure C.3: Three-layered model for the case study

	Prefácio
	Resumo
	Abstract
	0 Introdução
	0.1 Organização da Tese

	1 Introduction
	1.1 Organisation

	2 Basic Concepts and Related Work
	2.1 Network Security Services
	2.1.1 Firewalls and Virtual Private Networks (VPNs)

	2.2 Policy-Based Network Management
	2.3 Network Security Management Tools and Approaches
	2.3.1 Rule-based Approaches
	2.3.2 Logic-based Approaches
	2.3.3 Trust Management Approaches
	2.3.4 Graphic and Analysis Tools
	2.3.5 Hierarchical Approaches

	2.4 Model-Based Management (MBM)
	2.4.1 Previous Work on MBM of Network Security Services
	2.4.2 Scalability Problems
	2.4.3 Comparison between MBM and other works

	2.5 Chapter Summary

	3 Research Approach and Goals
	3.1 Conceptual Framework
	3.1.1 Network Security System Design

	3.2 Research Goals
	3.3 Chapter Summary

	4 Modelling Framework and Usage
	4.1 Meta-Model Definition
	4.1.1 Layers RO and SR
	4.1.2 The DAS level
	Concept of Abstract Subsystem (AS)
	Diagram of Abstract Subsystems (DAS)

	4.1.3 Security Goals, Requirements and Assumptions
	4.1.4 Expanded Subsystems

	4.2 Usage of the Modelling Framework
	4.2.1 Scenario Description
	4.2.2 Modelling the RO Level
	4.2.3 Modelling of Users, Services and Resources
	4.2.4 DAS Modelling
	Segmentation into ASs
	Mapping of actors
	Mapping of mediators
	Mapping of targets
	Establishment of Structural Connections

	4.2.5 Expanded Subsystems

	4.3 Chapter Summary

	5 Automated Refinement and Tool Support
	5.1 Automated Policy Hierarchy Building
	5.1.1 Policy Support and Semantics
	5.1.2 Refinement RO/SR
	5.1.3 Refinement SR/DAS
	5.1.4 Refinement DAS/ES
	5.1.5 Configuration Parameter Generation

	5.2 Supporting Tool
	5.2.1 Extensions of this work

	5.3 Focus & Context
	5.3.1 Semantic Zooming
	5.3.2 Fisheye View
	5.3.3 Loosely Related Work

	5.4 Chapter Summary

	6 Formal Refinement Validation and Analysis
	6.1 Formalism of the Model
	6.2 Validation Approach Overview
	6.3 SR/DAS Congruence
	6.3.1 Refinement Consistency Conditions
	6.3.2 Structural Consistency Conditions

	6.4 DAS/ES Congruence
	6.4.1 Refinement Consistency Conditions
	6.4.2 Local Structural Consistency Conditions
	6.4.3 Composition Consistency Conditions
	6.4.4 Generalisation Theorems and Lemma
	Security Assumption Lemma

	6.5 Model Representativeness Axioms
	6.5.1 Accesses and their abstract representations
	6.5.2 Authentication and Enabled Accesses

	6.6 Validation Theorems
	6.6.1 Proof of VT1
	6.6.2 Proof of VT2

	6.7 Validation Soundness
	6.8 Refinement and Validation Analysis
	6.8.1 Analysis of the SR/DAS phase
	6.8.2 Analysis of the AS/ES phase
	6.8.3 Scalability Improvements
	Scalability on the Refinement
	Scalability on the Validation

	6.9 Chapter Summary

	7 Application Examples and Experimental Results
	7.1 Simple Examples
	7.1.1 Firewall Example
	7.1.2 VPN Example

	7.2 Case Study
	7.2.1 Network Environment
	7.2.2 High-level Policies
	7.2.3 Incremental Configuration Design Process
	RO level
	SR level
	DAS and ES levels

	7.3 Analysis of the Experimental Results
	7.3.1 Representation Improvements
	7.3.2 Editing, Navigation and Visualisation Improvements
	Combining Semantic Zooming and Fisheye View

	7.4 Chapter Summary

	8 Conclusion
	8.1 Contributions of this work
	8.1.1 Modelling Framework
	8.1.2 Graphical Representation
	8.1.3 Refinement Algorithms and Validation
	8.1.4 Management Process and Implementation

	8.2 Future Work

	9 Conclusão
	9.1 Principais Contribuições
	9.1.1 Técnica de Modelagem
	9.1.2 Representação Gráfica e Protótipo
	9.1.3 Algoritmos de Refinamento e Validação
	9.1.4 Processo de Gerenciamento e Implementação

	9.2 Trabalhos Futuros

	Referencias Bibliográficas
	A Refinement Algorithms
	B Proof of the Generalisation Theorems
	B.1 Proof of GT1
	B.2 Proof of GT2

	C Models of the Application Case

