Orientações Pfaffianas e o Furtivo Grafo de Heawood

Alberto Alexandre Assis Miranda

Dissertação de Mestrado

Instituto de Computação Universidade Estadual de Campinas

Orientações Pfaffianas e o Furtivo Grafo de Heawood

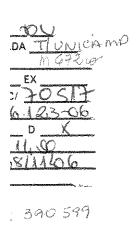
Alberto Alexandre Assis Miranda¹

23 de junho de 2006

Banca Examinadora:

- Prof. Cláudio Leonardo Lucchesi Instituto de Computação, Unicamp (Orientador)
- Prof. Marcelo Henriques de Carvalho
 Departamento de Computação e Estatística UFMS
- Prof. Orlando Lee
 Instituto de Computação, Unicamp
- Profa. Célia Picinin de Mello Instituto de Computação, Unicamp (suplente)

 $^{^{1}}$ Auxílio financeiro da FAPESP processo número 04/04589-0



FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO IMECC DA UNICAMP

Bibliotecária: Miriam Cristina Alves - CRB8a / 859

Miranda, Alberto Alexandre Assis.

M6720 Orientações pfaffianas e o furtivo grafo de Heawood / Alberto Alexandre Assis Miranda -- Campinas, [S.P.: s.n.]. 2006.

Orientador: Cláudio Leonardo Lucchesi.

Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação.

1. Teoria dos grafos. 2. Teoria dos casamentos. 3. Algoritmos. I. Lucchesi, Cláudio Leonardo. II. Universidade Estadual de Campinas. Instituto de Computação. III. Título.

Titulo em inglês: Pfaffian orientations and the elusive Heawood graph.

Palavras-chave em inglês (Keywords): 1. Graph theory. 2. Matching theory. 3. Algorithms.

Area de concentração: Teoria dos grafos.

Titulação: Mestre em Ciência da Computação

Banca examinadora: Prof. Dr. Cláudio Leonardo Lucchesi (IC-UNICAMP)

Prof. Dr. Marcelo Henriques de Carvalho (UFMS)

Prof. Dr. Orlando Lee (IC-UNICAMP)

Data da defesa: 07/08/2006

Programa de Pós-Graduação: Mestrado Acadêmico do Instituto de Computação

Orientações Pfaffianas e o Furtivo Grafo de Heawood

Este exemplar corresponde à redação final da Dissertação devidamente corrigida e defendida por Alberto Alexandre Assis Miranda e aprovada pela Banca Examinadora.

Campinas, 16 de agosto de 2006.

Prof. Cláudio Leonardo Lucchesi Instituto de Computação, Unicamp (Orientador)

Dissertação apresentada ao Instituto de Computação, UNICAMP, como requisito parcial para a obtenção do título de Mestre em Ciência da Computação.

TERMO DE APROVAÇÃO

Dissertação defendida e aprovada em 07 de agosto de 2006, pela Banca examinadora composta pelos Professores Doutores:

Prof. Dr. Marceld Henriques de Carvalho

DCE / UFfits:

Prof. Dr. Orlando Lee

IC / UNICAMP.

Prof. Dr. Cláudio Leonardo Lucchesi

IC / UNICAMP.

© Alberto Alexandre Assis Miranda, 2006. Todos os direitos reservados.

Resumo

Um grafo G que tem emparelhamento perfeito é Pfaffiano se existe uma orientação D das arestas de G, tal que todo circuito conforme de G tem orientação ímpar em D. Um subgrafo H de G é conforme se G-V(H) tem emparelhamento perfeito. Uma orientação de um circuito par é impar se numa dada direção de percurso do circuito o número de arestas que concorda com a direção é impar. Calcular o número de emparelhamentos perfeitos de um grafo, no caso geral, é NP-difícil [11, pág. 307]. No entanto, para grafos impar Pfaffianos, seu cálculo torna-se polinomial [11, pág. 319].

A caracterização de grafos bipartidos Pfaffianos, feita por Little, tem quase trinta anos [9]. No entanto, somente nos últimos anos apareceram algoritmos polinomiais para reconhecimento de tais grafos, por McCuaig [13] e independentemente por Robertson, Seymour e Thomas [14]. A solução para este problema resolve também uma série de problemas, muitos deles clássicos, em teoria dos grafos, economia e química, como descrito no artigo de McCuaig [13, págs. 16 a 35].

Nesta dissertação, apresentamos uma prova de corretude do algoritmo distinta das duas provas anteriormente conhecidas.

Abstract

A graph G that contains a perfect matching is Pfaffian if there is an orientation D of the edges of G, such that every conformal circuit of G is oddly oriented in D. A subgraph H of G is conformal if G - V(H) has a perfect matching. A circuit with an even number of edges is oddly oriented if the number of edges whose orientation in D agrees with any sense of traversal of the circuit is odd. Counting the number of perfect matchings of a graph is known to be NP-hard [11, page 307]. However, when restricted to Pfaffian graphs, this problem is solvable in polynomial time [11, page 319].

The characterisation of Pfaffian bipartite graphs, achieved by Charles Little, is almost thirty years old [9]. However, only recently, polynomial time algorithms for determining whether a bipartite graph is Pfaffian were discovered, by McCuaig [13] and independently by Robertson, Seymour and Thomas [14]. This problem's solution solves a lot of problems, some of them are quite famous, in graph theory, economy and chemistry, as described in McCuaig's article [13, pages 16 to 35].

On this dissertation, we present a new proof of the correctness of this algorithm distinct from the two previously known proofs.

Agradecimentos

Quero agradecer a todos que de uma forma ou de outra me ajudaram a chegar aqui.

Agradeço a meus pais, José Sebastião e Terezinha e à minha irmã, Adriana, pelo amor, carinho, e apoio que me ajudaram a ser o que sou.

Agradeço a minha namorada, Aline, por sempre ser minha carinhosa companheira mesmo com a distância.

Agradeço a minha amiga D. Yvette pelas inúmeras risadas e conselhos.

Agradeço a meus amigos Leonardo, Elias e Daniel, por animarem os fins de semana em que visito minha família.

Agradeço a meus amigos da Unicamp, Weber, Thiago, Gilmar, Candy, Gustavo, Martim, Luiz, Nilton, Eduardo, Celso, Jean, Juliana e Marcelo, pelas conversas na sala do café, pelas dicas e ajudas, e pela amizade.

Agradeço aos meus amigos da maratona, Vinícius, Thiago e Renato, pela diversão de codificar, viajar e competir, e aos novos maratonistas por continuarem com a tocha.

Agradeço aos professores e funcionário do IC que com suas aulas interessantes e clima fraterno no Instituto fizeram me interessar pela carreira acadêmica.

Agradeço à Fapesp pela bolsa.

Agradeço à banca pela paciência em ler esta dissertação.

Em especial, agradeço ao meu orientador, Lucchesi, pela amizade, apoio, dedicação e incontáveis horas de trabalho e insônia durante a sua aposentadoria dedicadas a me ajudar, sem o qual esta dissertação não teria se concluído.

Sumário

Resumo								
Al	Abstract							
Aş	grade	ecimentos	ix					
1	Intr	odução	1					
	1.1	Definição de Grafo Pfaffiano	1					
	1.2	Caracterizações de Grafos Pfaffianos	2					
	1.3	Resultados Conhecidos	3					
	1.4	Definição de Grafo Redutível	5					
	1.5	Teorema Principal	Ę					
	1.6	O algoritmo	Ę					
	1.7	Problemas Equivalentes	7					
	1.8	Organização da Dissertação	7					
2	Pré	-Requisitos	ę					
	2.1	Notações	Ć					
	2.2	Grafos Cobertos por Emparelhamentos	10					
	2.3	Grafos Bipartidos Cobertos por Emparelhamentos	11					
		2.3.1 Arestas Magras	18					
	2.4	Grafos Pfaffianos	21					
		2.4.1 Orientações Similares						
		2.4.2 Grafos Pfaffianos e Cortes Justos						
	2.5	O Grafo de Heawood						
	2.6	Grafos Planares						
3	4-Sc	omas	31					
	3.1	Presilhas e 4-Somas	31					
	3 9	Provilha Pfaffianas o A Somas	26					

4	O Teorema Principal						
	4.1	Demo	nstração do Teorema Principal	. 41			
		4.1.1	Os Três Lemas	. 42			
		4.1.2	O Grafo Furtivo	. 42			
5	Lema do Grafo de Heawood não Contido						
	5.1	Lema	do Grafo de Heawood não Contido	. 67			
6	Herança da Redutibilidade						
	6.1	Lema	da Herança da Redutibilidade	. 75			
		6.1.1	Znão contém vértice de contração de H	. 76			
		6.1.2	Z contém precisamente um vértice de contração de H	. 81			
		6.1.3	Z contém dois vértices de contração de H	. 86			
7	Lema da Não Planaridade das Contrações 99						
	7.1	Lema	da Não Planaridade das Contrações	. 99			
		7.1.1	Os Lemas Auxiliares	. 100			
		7.1.2	Análise de Casos do Lema da Não Planaridade das Contrações	. 105			
8	Cor	nclusão)	115			
Bibliografia							
Ín	dice	Remis	ssivo	118			
Lista de Asserções							

Lista de Tabelas

Lista de Figuras

1.1 1.2	O grafo de Heawood	6 6
2.1 2.2 2.3	As presilhas do Teorema 2.3.27	19 24 30
3.1	O grafo H_{10} , a 4-soma fina de três $K_{3,3}$'s. (o quadrilátero Q é mostrado em linhas pontilhadas)	32
3.2	O caso em que existe circuito M, N -alternado com aresta em $\partial(V(G_i) - V(Q))$, para duas parcelas G_i	38
4.1	Os grafos $G, H, H(\overline{x}) \in H(\overline{y})$	44
4.2	Os grafos $H(x)$ e $H(y)$	45
4.3	Um extensão de \tilde{H} a um desenho no plano do grafo $H(y)$ que não é planar,	
	como definido pelo Lema 4.1.12	46
$4.4 \\ 4.5$	A imersão planar $\tilde{H}(y)$ da prova do Lema 4.1.12	47
	aresta f e o conjunto Z ; à direita o grafo $G - e - f$	48
4.6	O grafo G quando um extremo v de f cujo grau é três pertence a um	
4.7	quadrilátero de $G-f$	49
	justos destacados	50
4.8	O grafo G quando a presilha G_0 de $G-f$ é um G_4	51
4.9	O grafo G quando ambas as presilhas G_0 e G_1 de $G-f$ são C_4 's	51
4.10	A imersão planar $\tilde{H}(y)$ da prova do Lema 4.1.12	54
4.11	O grafo G , o grafo de Heawood	56
4.12	O grafo $G,$ o grafo de Heawood	57
4.13	O grafo G no caso em que f não é incidente em vértice adjacente a x ou a	
	y, nem em x e nem em y	59

	O grafo G no caso em que f incide em adjacente de y em H , mas nao incide em adjacente de x em H , e não incide nem em x nem em y O grafo G no caso em que f incide em adjacente de x e em adjacente de y	61
	em H	62
4.10	O grafo G no caso em que f incide em y em H	65
5.1		68
5.2	, , , , , , , , , , , , , , , , , , , ,	68
5.3		69
5.4		70
5.5	· · · · · · · · · · · · · · · · · · ·	72
5.6	Caso 3.2: grafo G , em negrito os conjuntos X e Y e o circuito Q_2	73
6.1	O emparelhamento M de G^* , e o circuito C	78
6.2	O grafo G_{23}	79
6.3	O grafo G_{23} , mostrado junto à componente conexa I_1 , e os vértice de S	80
6.4	O grafo G_{23} , mostrado junto à componente conexa I_1 , os vértice de S e o	
	v	81
6.5	Grafo G no caso em que \overline{x} é o único vértice de contração da quádrupla	0.0
C		83
6.6	O grafo G e em negrito as arestas de um emparelhamento perfeito de H_k que define que v_1 e v_2 são H_k -conexos.	87
6.7		οι 91
6.8		91 93
6.9		95
6.10		97
7.1	Grafos G , H e H' , e algumas definições feitas: \overline{X} , $C - e$ e F	
7.2	Em destaque os vértices x_0 , \overline{x} , v_1 e v_2	U4
7.3	Grafo G nas duas possibilidades de tamanho de \overline{X} , com as nomenclaturas	0.5
7.4	definidas dos vértices de \overline{X}	
7.5	As duas possibilidades para o grafo G no Caso 1.2	
7.6	A extensão de \tilde{H} a uma imersão planar de $G-e$, no Caso 1.2.2	
7.7	Os grafos $G \in H' = (G - e)\{X \to x\}$, no Caso 2.1. Em destaque, os	
	circuitos Q e Q' e o emparelhamento perfeito de $H'-V(Q')$	10
7.8	O grafo G^* e as duas possibilidades de incidência da aresta f_1 : em y_1 ou	
	em s_1	12
7.9	O grafo G^* e os emparelhamentos M_1 , em negrito, e M_2 , em tracejado 1	13

Capítulo 1

Introdução

A idéia de usar Pfaffiano na teoria de emparelhamentos é devida a Tutte. Em seu livro "Graph Theory As I Have Known It" [18], ele descreve como chegou à idéia de usar Pfaffianos para determinar uma fórmula para o número de emparelhamentos perfeitos de um grafo. Apesar de não ter sido bem sucedido em encontrar essa fórmula, Tutte conseguiu utilizar identidades envolvendo Pfaffianos para demonstrar o seu teorema famoso que caracteriza grafos que têm emparelhamentos perfeitos [17].

Em 1975 Little [9] caracterizou grafos bipartidos Pfaffianos. No entanto, somente em 1999, McCuaig [13] e independentemente Robertson, Seymour e Thomas [14] criaram um algoritmo polinomial de reconhecimento de grafos bipartidos Pfaffianos. Aqui nesta dissertação, apresentamos uma prova de corretude deste algoritmo, distinta das duas provas anteriormente conhecidas.

O problema de se determinar se um grafo bipartido é Pfaffiano resolve uma série de problemas, alguns deles citados na Seção 1.7. A referência mais antiga de um problema cuja solução se dá por este algoritmo data de 1913, de acordo com McCuaig [13]. Até hoje, não se sabe se o problema de se decidir se um grafo não-bipartido é Pfaffiano está em NP.

1.1 Definição de Grafo Pfaffiano

Uma matriz $A = (a_{ij})$ é dita anti-simétrica se $a_{ij} = -a_{ji}$, para todo par de índices (i, j). Seja $A = (a_{ij})$ uma matriz anti-simétrica $n \times n$. Quando n é ímpar, $\det(A) = 0$. Por outro lado, quando n é par, existe um polinômio P := P(A) nos a_{ij} tal que $\det(A) = P^2$. Este polinômio é o chamado Pfaffiano de A e é assim caracterizado:

$$P := \sum \operatorname{sgn}(N) \ a_{i_1 j_1} a_{i_2 j_2} \dots a_{i_k j_k},$$

onde a soma é efetuada sobre o conjunto de todas as partições

$$N = (i_1 j_1, i_2 j_2, ..., i_k j_k) \text{ de } \{1, 2, ..., n\}$$

em k pares não ordenados, e sgn(N) é o sinal da permutação

$$\pi(N) := \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & \dots & 2k-1 & 2k \\ i_1 & j_1 & i_2 & j_2 & \dots & i_k & j_k \end{array}\right),$$

(veja, por exemplo, o livro de Lovász e Plummer [11][Capítulo 8]).

A definição do Pfaffiano de A acima independe da ordem em que os pares que constituem a partição N são listados. Como A é anti-simétrica, a ordem dos elementos de cada par também não influi no valor do Pfaffiano de A.

Seja G um grafo, D uma orientação de G, e A a matriz anti-simétrica de adjacência de D. Seja $N:=(i_1j_1,i_2j_2,\ldots,i_kj_k)$ uma partição de V(G) em pares não ordenados. Note que N induz um emparelhamento perfeito M de G se e somente se o produto $a_{i_1j_1}a_{i_2j_2}\ldots a_{i_kj_k}$ não é nulo. Nesse caso, dizemos que o sinal de M é igual ao produto $\operatorname{sgn}(N)\cdot a_{i_1j_1}a_{i_2j_2}\ldots a_{i_kj_k}$. Assim, se D for tal que todos os emparelhamentos perfeitos têm o mesmo sinal, então |P| é o número de emparelhamentos perfeitos de G. Dado que $|P|^2 = |\det(A)|$, então é possível computar |P| em tempo polinomial, neste caso. Em geral computar o número de emparelhamentos perfeitos de um grafo é NP-difícil. (Este fato é provado ao se reduzir a este problema o problema de se calcular o permanente de uma matriz de 0's e 1's, um problema NP-difícil [19].) A orientação D de G é Pfaffiano se todos os emparelhamentos perfeitos de G têm o mesmo sinal. O grafo G é Pfaffiano se admite uma orientação Pfaffiana.

1.2 Caracterizações de Grafos Pfaffianos

Existem várias definições equivalentes de grafos Pfaffianos. Nesta seção, enunciaremos algumas delas. Antes, daremos algumas definições auxiliares.

Seja D uma orientação das arestas de um grafo G. Seja T uma trilha de comprimento par de G. Seja p a paridade do número de arestas de T que concorda com D numa dada direção de percurso de T. Como T tem um número par de arestas, a paridade p é a mesma para as duas direções de percurso de T. Portanto, podemos definir a paridade da orientação de T em D como sendo igual a p. Diz-se que a orientação em D de T é *impar* se o número de arestas que concordam com uma dada direção de percurso de T for impar. Um subgrafo H de um grafo G é conforme se G - V(H) tem um emparelhamento perfeito.

Provas para os seguintes resultados podem ser encontradas no livro de Lovász e Plummer [11, Lemas 8.3.1 e 8.3.2].

Notação 1.2.1

Vamos denotar a operação de diferença simétrica por \oplus .

Lema 1.2.2

Seja D uma orientação de um grafo G, fixe uma enumeração arbitrária dos vértices de D. Sejam M_1 e M_2 dois emparelhamentos perfeitos de G. Seja k o número de circuitos de $M_1 \oplus M_2$ cuja orientação em D é par. Então,

$$\operatorname{sgn}(M_1) \cdot \operatorname{sgn}(M_2) = (-1)^k.$$

Teorema 1.2.3

Seja G um grafo, M um emparelhamento perfeito de G e D uma orientação de G. Então, as seguintes propriedades são equivalentes:

- D é Pfaffiana;
- todo emparelhamento perfeito de G tem o mesmo sinal de M em D;
- todo circuito conforme em G tem orientação ímpar em D;
- todo circuito M-alternado tem orientação ímpar em D.

Seja H um subgrafo conforme de G. Então, todo circuito conforme de H é um circuito conforme de G. Isto nos leva ao seguinte corolário.

Corolário 1.2.4

Seja D uma orientação Pfaffiana de um grafo G. Seja H um subgrafo conforme de G. Então, a restrição de D a H é Pfaffiana.

1.3 Resultados Conhecidos

Motivado por problemas externos à teoria dos grafos, Kasteleyn [7] demonstrou, em 1963, que todo grafo planar tem uma orientação Pfaffiana. O grafo $K_{3,3}$ é o menor grafo não Pfaffiano. Little [9] demonstrou, em 1975, que um grafo bipartido é Pfaffiano se e somente se não contém subgrafo conforme que é uma bissubdivisão de $K_{3,3}$. Uma subdivisão de um grafo é obtida substituindo-se arestas de um grafo por caminhos. Uma bissubdivisão é uma subdivisão onde todos os caminhos que substituem arestas tem um número par de vértices internos 1 . Obviamente, toda bissubdivisão de um grafo bipartido é bipartida. Este

¹Na literatura, uma bissubdivisão é chamada por alguns autores de subdivisão ímpar e por outros de subdivisão par. Por este motivo, a exemplo de McCuaig, decidimos utilizar bissubdivisão.

resultado de Little mostra que o problema de decidir se um dado grafo bipartido é Pfaffiano está em co-NP. Este resultado imediatamente sugere uma pergunta natural: decidir se o problema geral está ou não em NP. Vazirani e Yannakakis [20] mostraram, em 1989, que decidir se uma dada orientação de um grafo é ou não Pfaffiana é tão difícil quanto decidir se o grafo tem ou não uma orientação Pfaffiana. McCuaig [13], e, independentemente, Robertson, Seymour e Thomas [14], em 1998, descobriram um algoritmo polinomial para decidir se um grafo bipartido tem ou não uma orientação Pfaffiana.

Um grafo coberto por emparelhamentos é um grafo conexo e não trivial no qual toda aresta pertence a algum emparelhamento perfeito. Maiores detalhes sobre grafos cobertos por emparelhamentos podem ser encontrados nos trabalhos de Lovász [11, 10] e nos trabalhos de de Carvalho, Lucchesi e Murty [1, 2, 3]. O estudo de grafos Pfaffianos pode ser restrito aos grafos cobertos por emparelhamentos, de forma natural. As propriedades de grafos cobertos por emparelhamentos podem então auxiliar na compreensão das propriedades de grafos Pfaffianos.

Um corte justo em um grafo G coberto por emparelhamentos é um corte que contém precisamente uma aresta em cada emparelhamento perfeito do grafo. Seja $C := \partial(X)$ um corte não trivial em G. O grafo H obtido a partir de G pela contração de todos os vértices em X a um único vértice x é chamado de C-contração, e representado por $H:=G\{X\to x\}$. As duas C-contrações de G são $G\{X\to x\}$ e $G\{\overline{X}\to \overline{x}\}$. Caso G seja coberto por emparelhamentos e C um corte justo, ambas as C-contrações de G são cobertas por emparelhamentos. Naturalmente, se alguma das C-contrações ainda possui algum corte justo não trivial, a operação pode ser repetida até que os grafos obtidos sejam livres de cortes justos não triviais. Este processo denomina-se decomposição em cortes justos. Lovász [10] provou, em 1987, que a família de grafos resultantes de uma decomposição em cortes justos de um grafo coberto por emparelhamentos é única a menos de arestas múltiplas. Além disso, Little e Rendl [8] provaram, em 1991, que um grafo G coberto por emparelhamentos que tem um corte justo C é Pfaffiano se e somente se ambas as C-contrações de G são Pfaffianas. Sendo assim, pode-se reduzir o problema de se decidir se um grafo G coberto por emparelhamentos é Pfaffiano ao problema de se decidir se os grafos resultantes de sua decomposição em cortes justos são Pfaffianos. Sendo assim, podemos reduzir o problema de se decidir se um grafo é Pfaffiano aos grafos cobertos por emparelhamentos livres de cortes justos não triviais.

Os grafos cobertos por emparelhamentos livres de cortes justos não triviais são separados em duas classes: tijolos e presilhas. As presilhas são bipartidas, e os tijolos não são bipartidos. A decomposição em cortes justos de um grafo bipartido coberto por emparelhamentos produz somente presilhas. A decomposição de um grafo não bipartido coberto por emparelhamentos resulta em tijolos e presilhas. Sendo assim, o problema Pfaffiano se reduz no caso bipartido a presilhas e no caso geral a tijolos e presilhas. Maiores

informações podem ser encontradas no artigo "On the Number of Dissimilar Pfaffian Orientations of Graphs" [5]. Mais especificamente, o algoritmo de McCuaig, e de Robertson, Seymour e Thomas decide, em tempo polinomial, se uma presilha é Pfaffiana. No entanto, até hoje não se sabe nada sobre a complexidade de se decidir se um tijolo é Pfaffiano.

1.4 Definição de Grafo Redutível

Seja G um grafo coberto por emparelhamentos com bipartição $\{U, W\}$. Uma quádrupla Z de quatro vértices de G reduz G se:

- Z contém dois vértices em U e dois vértices em W;
- G-Z consiste de três ou mais componentes conexas.

Um grafo bipartido coberto por emparelhamentos G é redutível se alguma quádrupla de vértices de G reduz G e é irredutível caso contrário.

1.5 Teorema Principal

McCuaig [13] e independentemente Robertson, Seymour, e Thomas [14] descobriram um algoritmo polinomial para reconhecimento de grafos bipartidos Pfaffianos. Este algoritmo se baseia no seguinte teorema:

TEOREMA 1.5.1 (TEOREMA PRINCIPAL)

Seja G uma presilha simples Pfaffiana irredutível e não planar. Então, G é o grafo de Heawood.

Esta dissertação apresenta uma prova alternativa para o Teorema Principal.

1.6 O algoritmo

O algoritmo estudado, tendo como entrada um grafo J bipartido, determina se J é Pfaffiano. Inicialmente, o algoritmo reduz este problema a se decidir se as presilhas de J são Pfaffianas, como visto anteriormente.

Suponha que G seja uma presilha redutível. Então, G pode ser decomposto em três ou mais presilhas G_1, G_2, \ldots, G_n , de forma que G é Pfaffiano se e somente se G_1, G_2, \ldots, G_n são Pfaffianos. Esta redução pode ser repetida até que o conjunto de presilhas obtido tenha somente presilhas irredutíveis. Assim, o algoritmo reduz o problema Pfaffiano bipartido a presilhas irredutíveis. Por exemplo, o algoritmo reduz o problema de se decidir se a

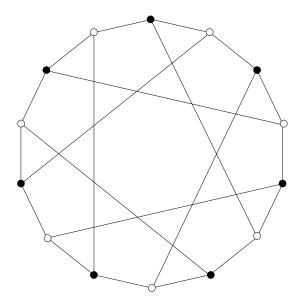


Figura 1.1: O grafo de Heawood.

presilha mostrada na Figura 1.2 é Pfaffiana ao problema de se decidir se as cinco presilhas menores mostradas são Pfaffianas.

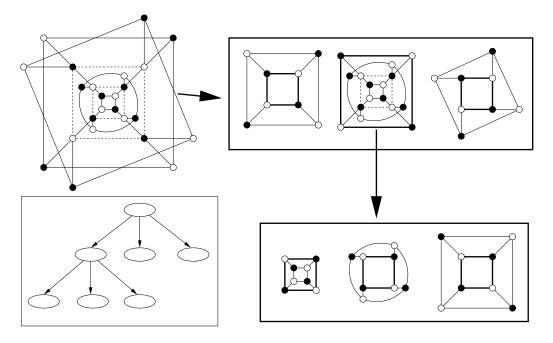


Figura 1.2: Redução a presilhas irredutíveis.

Todo grafo planar é Pfaffiano, como provado por Kasteleyn [7]. Pode-se testar se um grafo é planar em tempo linear. Sendo assim, o único caso restante a tratar é quando temos uma presilha irredutível não planar. Pelo Teorema Principal, este caso se reduz a verificarmos se a presilha é o grafo de Heawood a menos de arestas múltiplas.

1.7 Problemas Equivalentes

Existe uma quantidade enorme de problemas equivalentes ao problema de se decidir se um grafo bipartido é Pfaffiano. Um destes problemas é decidir se um dado grafo orientado tem ou não um circuito orientado par [20]. Outros problemas em física e química igualmente se resolvem pela solução do problema estudado [11][pág. 349-355].

Damos agora um segundo exemplo de aplicação. Chamamos de relação qualitativa entre duas variáveis o sinal da derivada de uma com relação à outra. Considere o seguinte problema. Dadas relações qualitativas entre variáveis econômicas, quais relações qualitativas podem ser deduzidas. Este problema foi proposto em 1947 por Samuelson na primeira edição de seu livro Foundations of Economic Analysis [15]. Novamente, a solução deste problema é feita pela aplicação do algoritmo de reconhecimento de grafos bipartidos Pfaffianos [13][pág. 12].

O artigo "Pólya's Permanent Problem" de McCuaig [13] contém uma lista mais completa dos problemas resolvidos pelo algoritmo estudado aqui.

1.8 Organização da Dissertação

No Capítulo 2, vários lemas e teoremas que serão usados durante o restante da dissertação são enunciados e têm suas provas demonstradas ou referenciadas. No Capítulo 3, teoremas relativos a grafos redutíveis, cruciais para a prova do algoritmo em questão, são enunciados e demonstrados. No Capítulo 4, o Teorema Principal, que diz que a única presilha simples Pfaffiana irredutível e não planar é o grafo de Heawood, é provado baseando-se nos Três Lemas, a serem provados nos capítulos seguintes. No Capítulo 5, o Lema do Grafo de Heawood Não Contido, que diz que nenhuma presilha simples Pfaffiana após a remoção de uma aresta tem o grafo de Heawood como uma de suas presilhas, é provado. No Capítulo 6, o Lema da Herança da Redutibilidade, que diz que se o Teorema Principal vale para grafos com menos vértices do que G, então G é redutível se uma presilha de G-e é redutível, é provado. No Capítulo 7, o Lema da Não Planaridade das Contrações, que diz que pelo menos uma das (C-e)-contrações de G-e não é planar, para toda presilha G simples Pfaffiana irredutível e não planar, é provado.

Capítulo 2

Pré-Requisitos

Neste capítulo, enunciaremos notações, lemas e teoremas importantes que serão usados durante toda a dissertação. Sempre que a demonstração do enunciado de um lema ou teorema dado não for trivial, será dada uma prova, ou uma referência.

Na Seção 2.1, definiremos notações que serão usadas, sem menção prévia, durante a dissertação. Na Seção 2.2, provaremos lemas relacionados a grafos cobertos por emparelhamentos. Na Seção 2.3, provaremos lemas relacionados a grafos bipartidos cobertos por emparelhamentos. Já na Seção 2.4, são dados lemas sobre orientações Pfaffianas. Na Seção 2.5, várias propriedades do grafo de Heawood são deduzidas. E finalmente, na Seção 2.6, várias propriedade específicas de grafos planares são demonstradas.

2.1 Notações

Notação 2.1.1

Sejam G um grafo, e X um subconjunto dos vértices de G. Então, $G\{X \to x\}$ é o grafo obtido de G pela contração de todos os vértices em X ao vértice x.

Notação 2.1.2

Sejam G um grafo, e x um vértice de G. Então, $H := G\{x \to X\}$ é o grafo obtido de G pela substituição de x pelos vértices de X, onde as arestas de G incidentes em x incidem em H em um vértice de X. Chamamos esta operação de expansão.

Notação 2.1.3

Seja G um grafo, e X um subconjunto dos vértices de G. Então, $\partial_G(X)$ é o conjunto das arestas de G com precisamente um extremo em X. Então, X e \overline{X} são as praias de $\partial_G(X)$.

2.2 Grafos Cobertos por Emparelhamentos

Um grafo G é coberto por emparelhamentos se ele tem pelo menos dois vértices, é conexo e toda aresta de G pertence a um emparelhamento perfeito de G.

O seguinte resultado pode ser facilmente deduzido. No entanto, uma prova pode ser encontrada no livro de Lovász e Plummer [11][pág. 145].

Lema 2.2.1

Todo grafo coberto por emparelhamentos com quatro ou mais vértices é 2-conexo.

O seguinte resultado pode ser facilmente deduzido da definição de corte justo. No entanto, uma prova pode ser encontrada no artigo "On the Number of Dissimilar Pfaffian Orientations of Graphs" [5][Proposição 2.2].

Lema 2.2.2

Seja G um grafo, $C := \partial(X)$ um corte justo de G. Então, G é coberto por emparelhamentos se e somente se cada C-contração de G é coberta por emparelhamentos.

Corolário 2.2.3

Toda praia de corte justo de um grafo coberto por emparelhamentos gera um grafo conexo. \Box

Lema 2.2.4

Seja G um grafo coberto por emparelhamentos. Seja $C_G := \partial_G(X_G)$ um corte justo não trivial de G. Seja $H := G\{X_G \to x_G\}$ uma das C_G -contrações de G. Suponha que $C_H := \partial_H(X_H)$ seja um corte justo de H. Então, C_H é corte justo de G.

Um grafo G coberto por emparelhamentos que contém um corte justo não trivial $C = \partial(X)$ pode ser decomposto nos grafos $H := G\{X \to x\}$ e $H' := G\{\overline{X} \to \overline{x}\}$. Esta operação pode ser aplicada repetidas vezes sobre a coleção de grafos resultantes até que a coleção de grafos obtida seja composta exclusivamente de grafos livres de cortes justos não triviais. Lembremos que definimos a coleção de grafos obtidos desta forma como decomposição em cortes justos de G. O seguinte Teorema, devido a Lovász [10], tem importância fundamental nesta dissertação. Muitas vezes seu uso é sub-entendido. Uma prova simples pode ser encontrada no livro de Schrijver [16, pág. 612-613], e a prova original no artigo de Lovász [10].

Teorema 2.2.5 (Teorema de Lovász)

Seja G um grafo coberto por emparelhamentos. O conjunto de grafos resultantes de uma decomposição em cortes justos de G é único a menos de isomorfismos e arestas múltiplas.

2.3 Grafos Bipartidos Cobertos por Emparelhamentos

O livro de Lovász e Plummer [11, Teorema 4.1.1] contém um resultado equivalente à seguinte afirmação.

Teorema 2.3.1

Seja G um grafo com bipartição $\{U,W\}$. Se |U|=|W| e G tem pelo menos quatro vértices, então as seguintes afirmações são equivalente:

- (i) O grafo G é coberto por emparelhamentos
- (ii) Para cada subconjunto não vazio X de U, se $|X| \leq |U| 1$ então $|N(X)| \geq |X| + 1$.
- (iii) Para todo $u \in U$, $w \in W$, o grafo G u w tem emparelhamento perfeito
- (iv) O grafo G tem emparelhamento perfeito, e para toda partição $\{U', U''\}$ de U e toda partição $\{W', W''\}$ de W, tal que |U'| = |W'|, o grafo G tem pelo menos uma aresta que liga U' a W''.

Demonstração:

- (i) \Rightarrow (ii): Suponha que G é coberto por emparelhamentos. Seja X um subconjunto não nulo de U. Como G tem emparelhamento perfeito, $|N(X)| \geq |X|$. Suponha, por absurdo, que vale a igualdade. Como X não é vazio, N(X) também não é vazio. Sejam $Y:=X \cup N(X)$ e $C:=\partial(Y)$. Toda aresta de C liga um vértice de N(X) a um vértice de N(X) a um vértice de N(X) e N(X)0 e N(X)1 e N(X)2 e N(X)3 e N(X)4 e N(X)5 e coberto por emparelhamentos, temos que N(X)6 e coberto por emparelhamentos, temos que N(X)6 e vazio. Além disso, grafos coberto por emparelhamentos são conexos. Portanto, como N(X)6 e vazio, temos que N(X)7 e vazio, temos que N(X)8 e vazio de N(X)9 e
- (ii) \Rightarrow (iii): Seja u um vértice de U, w um vértice de W. Seja H := G u w. Seja X um subconjunto não vazio de U u. Pela hipótese, $|N_G(X)| \ge |X| + 1$. Claramente, $N_G(X) w \subseteq N_H(X)$ Portanto, $|N_H(X)| \ge |N_G(X)| 1 \ge |X|$. Note que $\{U u, W w\}$ é uma bipartição de H. Além disso, |U u| = |W w|. Pelo Teorema de Hall, G u w tem emparelhamento perfeito. Esta conclusão vale para todo $u \in U$ e $w \in W$.
- (iii) \Rightarrow (i): Seja uw uma aresta de G. Pela hipótese, G-u-w tem emparelhamento perfeito, digamos M. Sendo assim, $M \cup \{uw\}$ é um emparelhamento perfeito de G que contém a aresta uw. Esta conclusão vale para toda aresta uw de G.

Para completar a prova deste caso, nossa tarefa se resume a mostrar que G é conexo. Suponha, por absurdo, que K e L são duas componentes conexas de G. Primeiramente, mostraremos que K tem vértices em ambas as partes da bipartição de G. Suponha, por absurdo, que $V(K) \cap U$ é vazio. Seja k_w um vértice de $V(K) \cap W$, e u um vértice em U. Então, $G-u-k_w$ tem emparelhamento perfeito $M(u,k_w)$. Sendo assim, $M(u,k_w)$ restrito a $K-k_w$ é emparelhamento perfeito de $K-k_w$. No entanto, K não tem vértice em U. Portanto, $V(K) = \{k_w\}$. Por hipótese, $V(G) \geq 4$, e |U| = |W|. Portanto, existe vértice $w' \in W - k_w$. Também, por hipótese, existe emparelhamento perfeito M(u,w') de G-u-w. No entanto, k_w é vértice isolado de G-u-w, uma contradição. Sendo assim, $V(K) \cap U$ e $V(K) \cap W$ não são vazios. Analogamente, $V(L) \cap U$ e $V(L) \cap W$ não são vazios. Ajuste a notação de forma que $|V(K) \cap U| \leq |V(K) \cap W|$. Sejam $u \in V(K) \cap U$, e $w \in V(L) \cap W$. No entanto, G-u-w não tem emparelhamento perfeito, pois $|V(K) \cap U - u| < |V(L) \cap W|$, uma contradição. De fato, G é conexo.

(ii) \Rightarrow (iv): Suponha que vale (ii). Suponha, por absurdo, que não vale (iv). Nesse caso, existe uma partição $\{U', U''\}$ de U e uma partição $\{W', W''\}$ de W, tal que |U'| = |W'|, e não existe aresta que liga U' a W''. Sendo assim, $N_G(U') \subseteq W'$, e portanto temos que $|N(U')| \leq |W'| = |U'|$. Isto contradiz (ii). Logo, (ii) \Rightarrow (iv).

(iv) \Rightarrow (ii): Suponha que vale (iv). Suponha, por absurdo, que existe um subconjunto não vazio X de U, com |X| < |U|, tal que $|N(X)| \le |X|$. Por hipótese, G tem emparelhamento perfeito. Portanto, |N(X)| = |X|. Sendo assim, $\{X, U - X\}$ é partição de U, e $\{N(X), W - N(X)\}$ é partição de W, com |N(X)| = |X|. Não existe aresta de X para W - N(X), uma contradição ao item (iv). Logo, (iv) \Rightarrow (ii).

Definição 2.3.2

Uma aresta e de um grafo coberto por emparelhamentos G é removível se o grafo G-e é coberto por emparelhamentos.

Corolário 2.3.3

Seja G um grafo coberto por emparelhamentos com pelo menos quatro vértices e bipartição $\{U,W\}$. Uma aresta e de G não \acute{e} removível se e somente se existe uma partição $\{U',U''\}$ de U e existe uma partição $\{W',W''\}$ de W, com |U'|=|W'| e e \acute{e} a única aresta que liga vértice de U' a vértice de W''.

Notação 2.3.4

Sejam G um grafo bipartido com bipartição $\{U,W\}$, e X um subconjunto dos vértices de G, tal que $|X \cap U|$ e $|X \cap W|$ sejam distintos. Então, definimos como X_+ ou X^+ o

conjunto dentre $X \cap U$ e $X \cap W$ que contém mais vértices. Analogamente, X_{-} ou X^{-} é definido como o conjunto dentre $X \cap U$ e $X \cap W$ que contém menos vértices. Dizemos que X_{+} é a parte majoritária de X e que X_{-} é a parte minoritária de X.

O seguinte resultado pode ser encontrado no artigo "On the Number of Dissimilar Pfaffian Orientations of Graphs" [5][Proposição 2.1].

Lema 2.3.5

Seja G um grafo coberto por emparelhamentos com bipartição $\{U, W\}$. Um corte C com praia X de G é justo se e somente se: (i) $|X \cap U|$ e $|X \cap W|$ diferem de exatamente um, e (ii) toda aresta de C é incidente em um vértice da parte majoritária de X.

O seguinte resultado pode ser facilmente deduzido a partir dos Lemas 2.3.5 e 2.2.2.

Lema 2.3.6

Os grafos resultantes da decomposição em cortes justos de um grafo bipartido coberto por emparelhamentos são todos bipartidos.

Definição 2.3.7

As presilhas de um grafo bipartido G coberto por emparelhamentos são as presilhas resultantes de uma decomposição em cortes justos de G.

O seguinte resultado, encontrado no livro de Lovász e Plummer [11], caracteriza presilhas:

Teorema 2.3.8

Seja G um grafo com bipartição $\{U,W\}$. Se |U|=|W| e G tem pelo menos seis vértices, então as seguintes afirmações são equivalentes:

- (i) O grafo G é uma presilha.
- (ii) Para cada subconjunto não vazio X de U, se $|X| \leq |U| 2$ então $|N(X)| \geq |X| + 2$.
- (iii) Para quaisquer dois vértices u_1 e u_2 em U e quaisquer dois vértice w_1 e w_2 em W, o grafo $G u_1 u_2 w_1 w_2$ tem um emparelhamento perfeito.

Corolário 2.3.9

Sejam G uma presilha com seis ou mais vértices e x e y vértices em partições diferentes de G. O grafo G - x - y é coberto por emparelhamentos.

Corolário 2.3.10

Sejam G uma presilha e e_1 e e_2 duas arestas não adjacentes de G. O grafo G tem um emparelhamento perfeito contendo e_1 e e_2 .

Corolário 2.3.11

Sejam G uma presilha com bipartição $\{U, W\}$, u um vértice de U e w um vértice de W. Então, o grafo G + uw é uma presilha.

O seguinte resultado é muito importante e é usado em toda a dissertação, muitas vezes sem sua menção explícita. Uma prova para este resultado pode ser encontrada no artigo "Ear Decompositions of Matching Covered Graphs" [1][Lema 3.2].

Corolário 2.3.12

Toda aresta de uma presilha com seis ou mais vértices é removível.

Corolário 2.3.13

Sejam G uma presilha com bipartição $\{U,W\}$ e X um conjunto de três vértices de G. Se X não é subconjunto de U, nem de W, então G-X é conexo.

<u>Demonstração</u>: Seja X um conjunto de precisamente três vértices, não todos em U, nem em W. Portanto, dois dos três vértices de X estão em um dentre U e W. Ajuste a notação de forma que $|X \cap U| = 2$. Portanto, $|X \cap W| = 1$.

Sejam u_1 e u_2 os vértices de $X \cap U$, w o vértice de $X \cap W$. Pela Corolário 2.3.9, $G - u_1 - w$ é coberto por emparelhamentos. Pelo Lema 2.2.1, $G - u_1 - w$ é 2-conexo. Logo, $G - u_1 - w - u_2$ é conexo. Ou seja, G - X é conexo.

Corolário 2.3.14

Toda presilha com seis ou mais vértices é 3-conexa.

Demonstração: Seja G uma presilha com seis ou mais vértices. O grafo G, coberto por emparelhamentos, é 2-conexo, pelo Lema 2.2.1. Suponha, por absurdo, que G não seja 3-conexo. Então, G tem dois vértices v_1 e v_2 tais que $G - v_1 - v_2$ é desconexo. Seja v_3 um vértice de G tal que $X := \{v_1, v_2, v_3\}$ tenha vértices em ambas as partes da bipartição de G. Pelo Corolário 2.3.13, G - X é conexo. Portanto, v_3 gera uma componente trivial de $G - v_1 - v_2$. Assim, $N(v_3) \subseteq \{v_1v_2\}$. Mas G é 2-conexo. Portanto, $N(v_3) = \{v_1, v_2\}$. Assim, $\partial(X)$ é justo em G. Além disso, $|V| \ge 6$. Logo, $\partial(X)$ não é trivial, uma contradição.

Corolário 2.3.15

Seja G uma presilha com seis ou mais vértices. Seja Z um subconjunto de V(G) com no máximo três vértices, sendo que Z tem no máximo dois vértices em cada parte da bipartição de G. Então, G-Z é conexo.

Corolário 2.3.16

Sejam G uma presilha e $e = x_0y_0$ uma aresta de G. Seja $C := \partial_G(X)$ um corte não trivial de G, tal que C - e é justo em G - e. Então, um dentre x_0 e y_0 está em X_- , o outro em \overline{X}_- .

<u>Demonstração</u>: O corte C-e é justo em G-e. Portanto, pelo Lema 2.3.5, uma parte da bipartição de X tem precisamente um vértice a mais do que a outra parte, e toda aresta de C-e incide na parte majoritária de X. Ajuste a notação, trocando X e \overline{X} se necessário, de forma que $x_0 \in X$. Suponha, inicialmente, que y_0 esteja em X. Neste caso, C = C - e. Portanto, toda aresta de C incide na parte majoritária de X. Portanto, pelo Lema 2.3.5, C é justo em G. Isto é uma contradição ao fato de G ser uma presilha. De fato, $y_0 \in \overline{X}$.

Suponha que x_0 esteja em X_+ . Nesse caso, tanto e como toda aresta de C-e incide em vértice da parte majoritária de X. Sendo assim, pelo Lema 2.3.5, C é justo em G, contradição. De fato, x_0 está em X_- . Analogamente, y_0 está em \overline{X}_- .

Corolário 2.3.17

Seja G uma presilha, e uma aresta de G, $C := \partial(X)$ um corte não trivial de G, tal que C - e é justo em G - e. Então todo emparelhamento perfeito de G contendo e tem precisamente três arestas em G.

Lema 2.3.18

Sejam G uma presilha, $e = x_0y_0$ uma aresta de G, e $\mathcal{C} := \{C_1, C_2, \ldots, C_r\}$, com $r \ge 1$, o conjunto de cortes justos de uma decomposição em cortes justos de G - e. Seja X_i subconjunto de V(G), tal que $C_i = \partial_G(X_i) - e$. Então, é possível ajustar a notação, complementando algumas praias de cortes de \mathcal{C} se necessário, tal que $X_1 \subset X_2 \subset \ldots \subset X_r \subset V(G)$. Além disso, o conjunto das presilhas de G - e é $\bigcup_{0 \le i \le r} G_i$, onde:

- $G_0 := (G e)\{\overline{X_1} \to \overline{x_1}\};$
- $G_i := (G e)\{X_i \to x_i\}\{\overline{X_{i+1}} \to \overline{x_{i+1}}\}, \text{ para } i = 1, 2, \dots, r-1;$
- $\bullet \ G_r := (G e)\{X_r \to x_r\}.$

Demonstração: Para $i=1,2,\ldots,r$, seja X_i uma das praias de C_i , para $i=1,2,\ldots,r$. Um dentre X_i e $\overline{X_i}$ contém x_0 . Ajuste a notação de forma que X_i contenha x_0 . Mostraremos agora que, para todo $j\in\{1,2,\ldots,r\}-i$, um dentre X_i e X_j é subconjunto próprio do outro. Sabemos que $x_0\in(X_i\cap X_j)$. Além disso, pelo Corolário 2.3.16, y_0 está em $\overline{X_i}\cap \overline{X_j}$. Como \mathcal{C} é o conjunto de cortes justos de uma decomposição em cortes justos, C_i e C_j não cruzam. Portanto, um dentre $X_i\cap \overline{X_j}$ e $\overline{X_i}\cap X_j$ é vazio. Se $X_i\cap \overline{X_j}$ é vazio,

então X_i é subconjunto de X_j . Se $\overline{X_i} \cap X_j$ é vazio, então X_j é subconjunto de X_i . Sendo assim, podemos ajustar a notação de forma que $X_1 \subset X_2 \subset \ldots \subset X_r \subset V(G)$.

Corolário 2.3.19

Sejam G uma presilha, e uma aresta removível de G e H uma presilha de G - e. Então H tem no máximo dois vértices de contração. Além disso, (i) se H tiver precisamente um vértice de contração, então o (único) extremo de e em V(H) está na mesma parte da bipartição do vértice de contração, (ii) se H tiver dois vértices de contração, estes vértices estão em partes distintas de sua bipartição.

Demonstração: O fato de que H tem no máximo dois vértices de contração vem diretamente do Lema 2.3.18. Suponha que H tenha precisamente um vértice de contração. Seja $X \subset V(G)$ tal que $H = (G - e)\{X \to x\}$. Pelo Corolário 2.3.16, precisamente um extremo de e, digamos y_0 , está em \overline{X}_- . Este vértice está na mesma parte da bipartição de G dos vértices de X_+ . Então, y_0 está na mesma parte da bipartição de H do vértice x.

Suponha, agora, que H tenha precisamente dois vértices de contração. Então, existem $X \subset V(G)$ e $Y \subset V(G)$, tais que $H = (G - e)\{X \to x\}\{Y \to y\}$. Pelo Corolário 2.3.16, um extremo de e está em X_- . Analogamente, um extremo de e está em Y_- . Como X e Y são disjuntos, O extremo de e em X_- é distinto do extremo de e em Y_- . Dessa forma, os vértices de X_+ estão em uma parte da bipartição de G distinta da parte contendo os vértice de Y_+ . Então, X e Y estão em partes distintas da bipartição de Y.

Notação 2.3.20

Considerando a notação utilizada no Lema 2.3.18, dizemos que G_i e G_{i+1} são presilhas consecutivas de G - e, para i = 0, 1, ..., r - 1. Além disso, dizemos que G_0 e G_r são presilhas externas, e que G_i , para i = 1, 2, ..., r - 1, são presilhas internas de G - e.

Lema 2.3.21

Sejam G uma presilha, e uma aresta removível de G e H uma presilha de G – e. Então, uma das seguintes afirmações acontece:

- $\bullet \ \ H = G e.$
- Seja $C_X := \partial_G(X)$ um corte não trivial de G, tal que o corte $C_X e$ é justo em G e e o grafo H é a $(C_X e)$ -contração $(G e)\{X \to x\}$ de G e. Então, $e \in C_X$ e o extremo de e não contraído está na mesma parte de x da bipartição de H.
- Sejam $C_X := \partial_G(X)$ e $C_Y := \partial_G(Y)$ cortes não triviais de G, tais que os cortes $C_X e$ e $C_Y e$ são justos em G e, e o grafo H é a $(C_X e)$, $(C_Y e)$ contração $(G e)\{X \to x\}\{Y \to y\}$ de G e. Então, $e \in (C_X \cap C_Y)$, e x e y estão em partes distintas da bipartição de H.

Demonstração: Pelo Corolário 2.3.19, G tem no máximo dois vértices de contração. Se \overline{H} não tem vértice de contração, então H=G-e é presilha. Sendo assim, H=G-e é a única presilha de G-e. Podemos, portanto, supor que H tem vértice de contração. Então, existe um corte não trivial $C_X:=\partial_G(X)$ de G, tal que o corte C_X-e é justo em G-e, e $H=(G-e)\{X\to x\}$. Pelo Corolário 2.3.16, um extremo de e está em X e o outro em \overline{X} . Portanto, $e\in C_X$. Além disso, C_X é não trivial, mas não é justo, enquanto C_X-e é justo. Portanto, e incide na parte minoritária de X. Ajuste a notação de forma que $X\cap U$ seja a parte minoritária de X. Então, os extremos de e estão em $X\cap U$ e $\overline{X}\cap W$. O vértice de contração x está na mesma parte da bipartição que a parte majoritária de X. Portanto, $x\in W$. Sendo assim, o vértice de contração está na mesma parta da bipartição que contém o extremo de e em H.

Suponha que H tenha dois vértices de contração. Então, existem cortes não triviais $C_X := \partial_G(X)$ e $C_Y := \partial_G(Y)$ de G, tais que os cortes $C_X - e$ e $C_Y - e$ são justos em G - e, e $H = (G - e)\{X \to x\}\{Y \to y\}$ de G - e, onde x e y são distintos vértices de H. Pelo Corolário 2.3.16, um extremo de e está em X e o outro em \overline{X} . Analogamente, um extremo de e está em Y e o outro em \overline{Y} . Sendo assim, um extremo de e está em $X \cap \overline{Y}$ e o outro em $\overline{X} \cap Y$. Portanto, e está em $C_X \cap C_Y$. Além disso, C_X é não trivial, mas não é justo, enquanto $C_X - e$ é justo. Portanto, e incide na parte minoritária de X. Analogamente, e incide na parte minoritária de Y. Ajuste a notação de forma que $X \cap U$ seja a parte minoritária de X. Portanto, como e liga as partes minoritárias de X e Y, temos que $Y \cap W$ é a parte minoritária de Y. No entanto, o vértice x está na parte da bipartição que contém a parte majoritária de X. Portanto, $x \in W$. Analogamente, $y \in U$. De fato, e está em $C_X \cap C_Y$ e os vértices de contração estão em partes distintas da bipartição de H.

Lema 2.3.22

Seja G uma presilha, $X \subset V(G)$ e $C := \partial(X)$ um corte de G, tal que $|X| \geq 3$ e $|\overline{X}| \geq 3$. Então, H := G[C] tem um emparelhamento de tamanho três.

Demonstração: Suponha, por absurdo, que o maior emparelhamento de H tenha tamanho no máximo dois. O emparelhamento máximo tem tamanho igual ao da cobertura mínima por vértices em um grafo bipartido. Portanto, existe um conjunto Y de vértices de H, com no máximo dois vértices, tal que H-Y não tem aresta. Sendo assim, toda aresta de H incide em vértice de Y. Ou seja, o corte $\partial_{G-Y}(X-Y) = \partial_{G-Y}(\overline{X}-Y)$ é vazio. Pelo Corolário 2.3.14, G-Y é conexo. Portanto, um dentre X e \overline{X} é parte de Y. Isto é uma contradição, uma vez que $|X| \geq 3$ e $|\overline{X}| \geq 3$. De fato, H tem emparelhamento de tamanho três.

2.3.1 Arestas Magras

Definição 2.3.23

Uma bicontração é uma operação aplicada sobre um grafo onde se contrai um vértice de grau dois e seus dois vizinhos a um único vértice.

Definição 2.3.24

O índice de uma aresta e é o número de extremos de e que têm grau três.

Definição 2.3.25

Seja e uma aresta de uma presilha G com mais de quatro vértices. A aresta e é dita magra se uma presilha pode ser obtida de G – e por k bicontrações, onde k é o índice de e.

Definição 2.3.26

Uma aresta magra e é dita verdadeiramente magra se a presilha obtida de G-e através de k bicontrações for simples.

Sejam G uma presilha com mais de quatro vértice e e uma aresta magra de G. Note que, como toda presilha com mais de quatro vértices é 3-conexa, os vértices de grau dois de G-e contraídos na bicontração são necessariamente incidentes em e. Note também que se e é magra, então G-e possui no máximo uma presilha interna.

Definiremos a seguir alguns grafos importantes que serão usados no enunciado de um importante teorema devido a McCuaig. Um prisma L_{2n} , com $n \geq 4$, é um grafo obtido a partir de dois circuitos disjuntos $C_1 := (u_0, u_1, \ldots, u_{n-1}, u_0)$ e $C_2 := (w_0, w_1, \ldots, w_{n-1}, w_0)$ pela adição das arestas $u_i w_i$, para todo i em $\{0, 1, \ldots, n-1\}$. O prisma L_{2n} é bipartido se e somente se n é par. Uma escada de Möbius M_{2n} é um grafo obtido a partir de um circuito par $C := (u_0, u_1, \ldots, u_{2n-1}, u_0)$ pela adição das arestas $u_i u_{i+n}$, para todo i em $\{0, 1, \ldots, n-1\}$, onde os índices são tomados módulo 2n. A escada de Möbius M_{2n} é bipartida se e somente se n é ímpar. Uma roda dupla B_{2n} , com $n \geq 4$, é um grafo obtido a partir de um circuito $C := (u_0, u_1, \ldots, u_{2n-3}, u_0)$, chamado de aro, e de dois vértices a0 e a1 fora do circuito, chamados de a2 fora do circuito, chamados de a3 fora do circuito, chamados de a4 fora do circuito. Vida Figura 2.1.

A definição utilizada por McCuaig para presilha exige que o grafo tenha pelo menos seis vértices. Nós utilizamos uma definição mais tolerante que aceita como presilha grafos com menos vértices. Portanto, para podermos utilizar o seguinte Teorema de McCuaig [12], precisamos restringi-lo a presilhas com pelo menos seis vértices.

Teorema 2.3.27

Toda presilha simples com pelo menos seis vértices distinta de roda dupla B_{2n} $(n \ge 4)$; distinta de prisma bipartido L_{4n} $(n \ge 2)$; e distinta de escada de Möbius bipartida M_{4n+2} $(n \ge 1)$, tem uma aresta verdadeiramente magra.

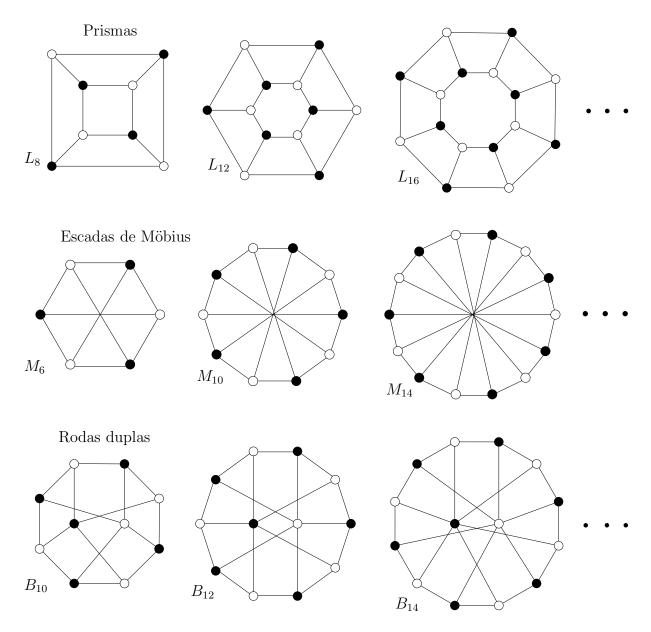


Figura 2.1: As presilhas do Teorema 2.3.27.

O Teorema seguinte é devido a Carvalho, Lucchesi e Murty [4] e tem papel muito importante na dissertação. Uma prova para este Teorema pode ser encontrada no artigo "How to Build a Brace" [4]. Pode ser também facilmente deduzida a partir do Teorema 2.3.27.

Teorema 2.3.28

Toda presilha com seis ou mais vértices tem uma aresta magra.

O Lema seguinte pode ser encontrado no mesmo artigo "How to Build a Brace" [4].

Lema 2.3.29 (Geração de Presilhas)

Seja H uma presilha com bipartição $\{A,B\}$. As seguintes operações resultam em uma presilha G:

- Sejam x e y vértices de H tais que $x \in A$ e $y \in B$. A presilha G é obtida de H pela adição da aresta xy.
- Sejam x e y vértices de H tais que x, y ∈ A, e o grau de x seja pelo menos quatro.
 Seja H' := H{x → {x₁, x₂}} tal que tanto x₁ como x₂ tenham dois vizinhos em H'.
 A presilha G é obtida de H' pela adição de um vértice x₀ e das arestas x₀x₁, x₀x₂ e x₀y.
- Sejam x e y vértices de H, tais que $x \in A$, $y \in B$ e cujos graus são pelo menos quatro. Seja $H'' := H\{x \to \{x_1, x_2\}\}\{y \to \{y_1, y_2\}\}\}$, tal que cada um dentre x_1, x_2, y_1 e y_2 tenham dois vizinhos, e pelo menos um vizinho em $V(H) \{x, y\}$. A presilha G é obtida de H'' pela adição de dois vértices x_0 e y_0 , e das arestas $x_0x_1, x_0x_2, y_0y_1, y_0y_2$ e x_0y_0 .

Lema 2.3.30

Toda roda dupla e todo prisma é planar.

Lema 2.3.31

Toda escada de Möbius bipartida é coberta por emparelhamentos.

Lema 2.3.32

Toda escada de Möbius bipartida é não Pfaffiana.

Demonstração: Seja G uma escada de Möbius bipartida M_{4n+2} . A prova será feita por indução em n. Se n=1, temos que $G=M_6=K_{3,3}$, um grafo não Pfaffiano. Então, podemos supor que G tem pelo menos dez vértices, ou seja $n\geq 2$. Adotaremos como hipótese de indução que M_{4m+2} não é Pfaffiana, para todo m< n. Seja $e=u_0w_0$ uma aresta radial de G. Então, os vértices u_0 e w_0 tem grau dois em G-e. Seja $U:=\{u_0,u_1,u_2\}$, onde u_1 e u_2 são os únicos vizinhos de u_0 em G-e, e $W:=\{w_0,w_1,w_2\}$, onde w_1 e w_2 são os únicos vizinhos de w_0 em G-e. Tanto (G-e)[U] como (G-e)[W] são caminhos de comprimento dois. Portanto, os cortes $\partial_G(U)-e$ e $\partial_G(W)-e$ são justos em G-e. Seja $H:=(G-e)\{U\to u\}\{W\to w\}$. De acordo com o Corolário 2.4.8, G é Pfaffiano somente se H é Pfaffiano. No entanto, H é uma escada de Möbius bipartida com 4n-2 vértices, e por hipótese de indução, H não é Pfaffiano. Então, o grafo G não é Pfaffiano.

2.4 Grafos Pfaffianos

Nesta seção são apresentados lemas e teoremas relacionados a grafos Pfaffianos. Em 1975 C. Little provou o seguinte teorema [9].

Teorema 2.4.1

Um grafo bipartido G é Pfaffiano se e somente se não existe um subgrafo H conforme de G que é uma bissubdivisão de $K_{3,3}$.

2.4.1 Orientações Similares

Sejam D_1 e D_2 duas orientações de um grafo G. Dizemos que D_1 e D_2 são similares se elas diferem precisamente nas arestas de algum corte de G. Os seguintes resultados podem ser encontrados no artigo "On the Number of Dissimilar Pfaffian Orientations of Graphs" [5]. Em particular, o seguinte lema é equivalente à Proposição 1.4 deste artigo.

Lema 2.4.2

Sejam D_1 e D_2 duas orientação similares de G. Então, D_1 é Pfaffiana se e somente se D_2 for Pfaffiana.

Teorema 2.4.3

Seja G um grafo coberto por emparelhamentos, e uma aresta removível de G, e D' uma orientação Pfaffiana de G – e. Se G é Pfaffiano, então existe precisamente uma extensão de D' a uma orientação Pfaffiana D de G.

Lema 2.4.4

Sejam D_1 e D_2 duas orientações Pfaffianas de um grafo bipartido G. Então, D_1 é similar a D_2 .

O seguinte resultado pode ser deduzido a partir do Corolário 3.6 do artigo "On the Number of Dissimilar Pfaffian Orientations of Graphs" [5].

Teorema 2.4.5

Seja G um grafo bipartido coberto por emparelhamentos, H um subgrafo conforme de G coberto por emparelhamentos, e D' uma orientação Pfaffiana de H. Existe uma extensão de D' a uma orientação Pfaffiana de G se e somente se G é Pfaffiano.

Lema 2.4.6

Seja D uma orientação Pfaffiana de um grafo bipartido G. Sejam u e w dois vértices de G em partes distintas da bipartição de G. Existe uma orientação Pfaffiana D' similar a D tal que u é fonte e w é sorvedouro.

Demonstração: Suponha que uw seja aresta de G, e que w seja a origem de uw. Neste caso, $D' := D \oplus \partial(u)$ é orientação Pfaffiana similar a D tal que u é origem de uw em D'. Ajuste a notação, trocando D e D' se necessário, de forma que se uw for aresta de G, sua origem em D seja u. Seja S o conjunto de arestas incidentes em u ou w cuja origem não é u e cujo destino não é w. A prova é feita por indução em |S|. Se |S| = 0, temos a orientação desejada. Seja f uma aresta de S. Como, pelo ajuste de notação anterior, uw não está em S, a aresta f tem um extremo v fora de $\{u,w\}$. Seja $D' := D \oplus \partial(v)$. Como u e w estão em partes distintas da bipartição de G, temos que v é adjacente a precisamente um dentre u e w. Então, f é a única aresta de $\partial(v)$ em S. Dessa forma, por indução, G tem uma orientação D'' similar a D' tal que u é fonte e w é sorvedouro. Como D' é similar a D, temos que D'' e D são similares. De fato, o lema é válido.

2.4.2 Grafos Pfaffianos e Cortes Justos

O Teorema seguinte é devido a Little e Rendl [8] [Teoremas 1 e 4]. Apesar do enunciado dos teoremas citados não implicarem diretamente o teorema a seguir, a prova apresentada no artigo implica. Este resultado também pode ser encontrado no artigo "On the Number of Dissimilar Pfaffian Orientations of Graphs" [5].

Teorema 2.4.7

Sejam G um grafo coberto por emparelhamentos, C um corte justo de G e G_1 e G_2 as duas C-contrações de G. Então, G é Pfaffiano se e somente se G_1 e G_2 são Pfaffianos. Além disso, se D_1 e D_2 são orientações Pfaffianas de G_1 e G_2 , respectivamente, e D_1 e D_2 são orientadas em C e concordam em C, então a extensão de D_1 e D_2 a uma orientação de G é Pfaffiana.

Corolário 2.4.8

Sejam G um grafo bipartido coberto por emparelhamentos Pfaffiano e e uma aresta removível de G. Então, todos os grafos de uma decomposição em cortes justos de G-e são Pfaffianos. Em particular, todas as presilhas de G-e são Pfaffianas.

A seguir, provaremos dois lemas que tem um papel fundamental na dissertação.

Lema 2.4.9

Seja G um grafo bipartido coberto por emparelhamentos Pfaffiano, seja R um conjunto de arestas adicionadas a G tal que $G^* := G + R$ é bipartido e coberto por emparelhamentos. Seja e uma aresta removível de G. Toda orientação Pfaffiana de $G^* - e$ tem uma extensão a uma orientação D^* de G^* cuja restrição a G é Pfaffiana.

<u>Demonstração</u>: Seja $D(G^* - e)$ uma orientação Pfaffiana de $G^* - e$. Note que o grafo G - e é conforme em $G^* - e$. Portanto, pelo Corolário 1.2.4, a restrição D(G - e) de $D(G^* - e)$ às arestas de G - e é Pfaffiana. De acordo com o Teorema 2.4.3, D(G - e) pode ser estendida a uma orientação D(G) Pfaffiana de G. Seja D a extensão comum de $D(G^* - e)$ e de D(G) a uma orientação de G^* . De fato, as restrições de D a G e $G^* - e$ são Pfaffianas.

Lema 2.4.10

Seja G um grafo coberto por emparelhamentos Pfaffiano. Seja H um grafo obtido a partir de G por contração de praias de cortes justos de G. Seja D(H) uma orientação Pfaffiana de H na qual todo vértice de contração de H é ou uma fonte ou um sorvedouro. Então G tem uma orientação Pfaffiana cuja restrição a H é igual a D(H).

Demonstração: Seja X uma praia de corte justo de G que é contraída em um vértice de \overline{H} , digamos x. Seja $H':=G\{\overline{X}\to\overline{x}\}$. Como G é Pfaffiano, H' é Pfaffiano, de acordo com o Teorema 2.4.7. Pelo Lema 2.4.6, H' tem uma orientação Pfaffiana na qual \overline{x} é fonte e outra na qual \overline{x} é sorvedouro. Por hipótese, $\partial(x)$ é orientado em D(H). Portanto, existe uma orientação D' de H' que concorda com D(H) em $\partial(X)$. Este argumento vale para toda praia X de corte justo de G. Seja D(G) a extensão de D(H) e das orientações Pfaffianas D' de $H' = G\{\overline{X}\to\overline{x}\}$ para cada praia de corte justo X de G a uma orientação de G. De acordo com o Teorema 2.4.7, D(G) é uma orientação Pfaffiana de G.

2.5 O Grafo de Heawood

Chamaremos de H_{14} o grafo de Heawood, mostrado na Figura 2.2. Considere as seguintes permutações:

```
\lambda(v) := v + 2 \mod 14
\rho := \{(0 \ 13 \ 12 \ 3 \ 4 \ 5) \ (1 \ 8 \ 11 \ 2 \ 9 \ 6) \ (7 \ 10)\}
\theta := \{(0) \ (1) \ (2) \ (3) \ (4 \ 12) \ (5 \ 13) \ (6 \ 8) \ (7) \ (9 \ 11) \ (10)\},
```

onde $(a\ b\ c)$ é uma órbita de uma permutação, significando que a permutação leva a em b, b em c e c em a. Olhando a Figura 2.2, podemos ver que estas permutações são automorfismos do grafo de Heawood. A permutação λ também será chamada de 2-rotação.

Lema 2.5.1

O grafo de Heawood é transitivo nos vértices.

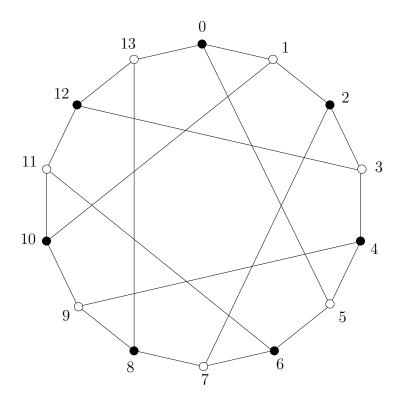


Figura 2.2: O grafo de Heawood.

Demonstração: A repetida aplicação de λ leva qualquer vértice par a 0. Analogamente, a repetida aplicação de λ leva qualquer vértice ímpar a 5. A permutação ρ leva o vértice 5 ao vértice 0. Portanto, todo vértice de H_{14} pode ser levado ao vértice 0 por aplicação de uma composição de automorfismos. Uma composição de automorfismos é um automorfismo. Portanto, para todo vértice v de H_{14} , existe um automorfismo que leva v a 0. A inversa de um automorfismo também é um automorfismo. Portanto, para todo par de vértices u, v de v

Definição 2.5.2

Um grafo G é P_n -transitivo se, para todo par de caminhos $P:=(p_0,p_1,\ldots,p_{n-1})$ e $Q:=(q_0,q_1,\ldots,q_{n-1})$, existe um automorfismo φ de G tal que $\varphi(p_i)=q_i$, para $i=0,1,\ldots,n-1$.

Lema 2.5.3

O grafo de Heawood é P_2 -transitivo.

<u>Demonstração</u>: Provaremos isto levando todo P_2 de H_{14} ao P_2 : (0,1). Seja (v,w) um P_2 de H_{14} . O grafo H_{14} é transitivo nos vértices, de acordo com o Lema 2.5.1. Portanto, podemos supor que v=0. Existem três possibilidades para w:

- w = 1. Nesse caso, (v, w) = (0, 1), como desejado.
- w = 13. Nesse caso, aplicamos ρ^4 , levando (0, 13) a (4, 5). Então, aplicamos λ^{-2} , levando (4, 5) a (0, 1), como desejado.
- w = 5. Nesse caso, aplicamos θ a (0,5), obtendo (0,13), que é um caso já tratado.

De fato, $H_{14} \in P_2$ -transitivo.

Lema 2.5.4

O grafo de Heawood é P_5 -transitivo.

Demonstração: Seja $p := (v_1, v_2, \ldots, v_i)$ um P_i de H_{14} , para i = 2, 3, 4, 5. Provaremos que H_{14} é P_i -transitivo levando qualquer P_i à porção final de (0, 1, 2, 3, 4). Pelo Lema 2.5.3, H_{14} é P_2 -transitivo. Ao provarmos que H_{14} é P_i -transitivo, adotaremos a hipótese de indução de que H_{14} é P_{i-1} -transitivo. Portanto, podemos levar $(v_1, v_2, \ldots, v_{i-1})$ à parte final de (0, 1, 2, 3) $(v_{i-1} \to 3, v_{i-2} \to 3, \ldots)$. Sendo assim, existem duas possibilidades para onde está o vértice v_i de p. Ele está ou em 4 ou em 12. Se v_i está em 4, levamos p à porção final de (0, 1, 2, 3, 4). Caso v_i esteja em 12, aplicamos o automorfismo θ , levando 12 a 4, e mantendo (0, 1, 2, 3) em (0, 1, 2, 3). Portanto, acabamos de levar p à porção final de (0, 1, 2, 3, 4). De fato, o grafo de Heawood é P_5 -transitivo.

Lema 2.5.5

O grafo de Heawood é P₅-transitivo, não planar, tem diâmetro três e cintura seis.

Demonstração: Pelo Lema 2.5.4, H_{14} é P_5 -transitivo. As pontes (0,5), (2,7) e (4,9) do circuito (0,1,2,3,4,5,6,7,8,9,10,11,12,13) cruzam-se mutuamente. Portanto, H_{14} não é planar. Como H_{14} é transitivo nos vértices, podemos nos restringir a calcular a distância máxima de um vértice de H_{14} ao vértice 0. Sendo assim, os vértice 1, 5 e 13 têm distância um. Todos os demais vértices pares são adjacentes a um dentre 1, 5 e 13. Portanto, os vértices ímpares distintos de 1, 5 e 13 tem distância três de 0. De fato, o diâmetro de H_{14} é igual a três.

Seja P um circuito qualquer de H_{14} . Como H_{14} é P_5 -transitivo, podemos supor que o trecho inicial de P é (0, 1, 2, 3, 4). Este caminho não tem corda. Portanto, não existe circuito de H_{14} com no máximo cinco vértices. Por outro lado, (0, 1, 2, 3, 4, 5, 0) é um circuito de H_{14} . Dessa forma, a cintura de H_{14} é igual a seis.

Corolário 2.5.6

Sejam v_0 e v_1 dois vértices adjacentes de H_{14} . Sejam v_0' e v_1' dois vértices adjacentes de H_{14} (possivelmente $\{v_0, v_1\} \cap \{v_0', v_1'\}$ não é vazio). Existe um automorfismo que leva v_0 a v_0' e v_1 a v_1' .

Demonstração: Este fato deriva diretamente de que H_{14} é P_2 -transitivo.

Corolário 2.5.7

Sejam v_0 e v_1 dois vértices não adjacentes de H_{14} em partes distintas da bipartição de H_{14} . Sejam v_0' e v_1' dois vértices não adjacentes de H_{14} em partes distintas da bipartição de H_{14} . (possivelmente $\{v_0, v_1\} \cap \{v_0', v_1'\}$ não é vazio). Existe um automorfismo que leva v_0 a v_0' e v_1 a v_1' .

Demonstração: Os vértices v_0 e v_1 estão em parte distintas da bipartição de H_{14} . Portanto, o caminho mínimo de v_0 a v_1 tem comprimento ímpar. No entanto, o diâmetro de H_{14} é três. Sendo assim, o caminho mínimo de v_0 a v_1 tem três arestas e quatro vértices. Seja P este caminho. Analogamente, seja P' o caminho com quatro vértices de v'_0 a v'_1 . Como H_{14} é P_4 -transitivo, existe automorfismo de H_{14} que leva P a P'. Este mesmo automorfismo leva v_i a v'_i , para i=1,2.

Corolário 2.5.8

Sejam v_0 e v_1 dois vértices de H_{14} em uma mesma parte da bipartição de H_{14} . Sejam v_0' e v_1' dois vértices de H_{14} em uma mesma parte da bipartição de H_{14} . (possivelmente $\{v_0, v_1\} \cap \{v_0', v_1'\}$ não é vazio). Existe um automorfismo que leva v_0 a v_0' e v_1 a v_1' .

Demonstração: Os vértices v_0 e v_1 estão numa mesma parte da bipartição de H_{14} . Portanto, o caminho mínimo de v_0 a v_1 tem comprimento par. No entanto, o diâmetro de H_{14} é três. Sendo assim, o caminho mínimo de v_0 a v_1 tem duas arestas e três vértices. Seja P este caminho. Analogamente, seja P' o caminho com três vértices de v'_0 a v'_1 . Como H_{14} é P_3 -transitivo, existe automorfismo de H_{14} que leva P a P'. Este mesmo automorfismo leva v_i a v'_i , para i=1,2.

Definição 2.5.9

Uma orientação D de um grafo com bipartição $\{U, W\}$ é bipartida orientada se ou (i) toda aresta de D tem sua origem em U, ou (ii) toda aresta de D tem sua origem em W.

Lema 2.5.10

Toda orientação bipartida orientada do grafo de Heawood é Pfaffiana.

<u>Demonstração</u>: Seja D uma orientação bipartida orientada de H_{14} . Numa orientação bipartida orientada, a paridade da orientação de um circuito é igual à paridade da metade dos vértices do circuito. Sendo assim, todo circuito de H_{14} com 4n + 2 vértices, para n inteiro, tem orientação ímpar em D. Analogamente, todo circuito com 4n vértices, para n inteiro, tem orientação par em D. A cintura de H_{14} é seis, de acordo com o Lema 2.5.5. Portanto, os circuitos de 4n vértices de H_{14} tem oito ou doze vértices.

Seja Q um circuito de H_{14} com oito vértices. Pelo Lema 2.5.4, H_{14} é P_5 -transitivo. Portanto, podemos supor que (1,2,3,4,5) é um segmento de Q. Suponha que (1,2,3,4,5,0) seja segmento de Q. Nesse caso, (0,1) não está em Q, pois Q tem oito vértices. Então, (10,1,2,3,4,5,0,13) é segmento de Q. No entanto, 10 não é adjacente a 13, contradição. De fato, (0,5) não está em Q. Portanto, (1,2,3,4,5,6) é segmento de Q. Suponha que (1,2,3,4,5,6,7) seja segmento de Q. O único vizinho de P_5 ainda não confirmado dentro de P_5 de P_5 estanto, nesse caso, P_5 seria segmento de P_5 No entanto, P_5 não é adjacente a P_5 em P_5 estanto, P_5 estanto, P_5 estanto a P_5 estanto, P_5 estanto de P_5 estanto, P_5 estanto, P_5 estanto de P_5 estanto, P_5 estanto de P_5 esta

Suponha, por absurdo, que existe um circuito C de H_{14} com doze vértices. Suponha, por absurdo, que C seja conforme. Sendo assim, $H_{14}-V(C)$ tem emparelhamento perfeito. No entanto, H_{14} tem precisamente quatorze vértices. Sendo assim, $H_{14}-C$ é composto por precisamente uma aresta. Seja e=vw tal aresta. O vértice w é adjacente a um vértice u_0 de C. Seja (u_0,u_1,u_2) um segmento de C. Pelo Lema 2.5.4, H_{14} é P_5 -transitivo. Portanto, (v,w,u_0,u_1,u_2) pode ser levado por um automorfismo a (0,1,2,3,4). Sendo assim, podemos supor que $H_{14}-V(C)$ é igual ao caminho (0,1). Dessa forma, (2,3,4) é segmento de C. Além disso, 2 tem três vizinhos em H_{14} , e o vizinho 1 não está em C. Portanto, (7,2,3,4) é segmento de C. Além disso, 5 tem somente dois vizinhos em $H_{14}-\{0,1\}$: 4 e 6. Portanto, (7,2,3,4,5,6) é segmento de C. Como C é circuito de tamanho doze, o vértice seguinte a 6 não é o vértice 7. O mesmo vale para 7. Sendo assim, (8,7,2,3,4,5,6,11) é segmento de C. Os vértices restantes são 9, 10, 12 e 13. Mas, a escolha do próximo vértice depois de 12 força a escolha do seguinte, definindo um circuito de tamanho dez, uma contradição. De fato, não existe circuito conforme de tamanho doze em H_{14} .

Sendo assim, todo circuito conforme de H_{14} tem orientação ímpar em D. De fato, D é Pfaffiana.

Lema 2.5.11

O grafo de Heawood é uma presilha Pfaffiana.

2.6. Grafos Planares 28

Demonstração: Pelo Lema 2.5.10, H_{14} é Pfaffiano. Seja $\{P, I\}$ a bipartição de H_{14} , tal que $0 \in P$. O grafo de Heawood tem pelo menos seis vértices. Portanto, podemos mostrar que H_{14} é presilha mostrando que para todo subconjunto não vazio X de P, tal que $|X| \leq |P| - 2$, temos que $|N(X)| \geq |X| + 2$. Seja X um tal subconjunto. Todo vértice de H_{14} tem três vizinhos. Portanto, se |X|=1, a propriedade vale. Suponha, portanto, que $|X| \geq 2$. Pelo Corolário 2.5.8, podemos supor que $0, 2 \in X$. Sendo assim, N(X) contém $\{1,3,5,7,13\}$, e a propriedade vale se $|X| \leq 3$. Suponha, agora, que |X| = 4. Seja w um vértice em $X - \{0, 2\}$. Então, w está em $P - \{0, 2\}$. No entanto, todo os vértices de $P - \{0, 2\}$ são adjacentes a um dentre 9 e 11. Portanto, N(X) contém $\{1, 3, 5, 7, 13, u\}$, onde $u \in \{9, 11\}$. Portanto, $|N(X)| \ge 6$, e a propriedade vale. Suponha, então que |X| = 5. Então, P - X tem precisamente dois vértices. De acordo com o Corolário 2.5.8, podemos ajustar a notação de forma que X não contenha 12 e 10. Sendo assim, $X = \{0, 2, 4, 6, 8\}$. Portanto, $N(X) = \{1, 3, 5, 7, 9, 11, 13\}$, e $|N(X)| = 7 \ge 5 + 2 = |X| + 2$. De fato, a propriedade vale em todos os casos. Portanto, H_{14} é presilha.

2.6 Grafos Planares

A primeira classe de grafos para a qual se resolveu o problema de se decidir se um grafo é Pfaffiano foi a classe dos grafos planares. O seguinte lema é devido a Kasteleyn [7].

Lema 2.6.1

Todo grafo planar é Pfaffiano.

Demonstração: Uma prova deste lema pode ser encontrada no livro escrito por Lovász e Plummer [11, Teoremas 8.3.3 e 8.3.4]. □

O seguinte lema é um resultado clássico e uma prova para ele pode ser encontrada no livro de Diestel [6][Proposição 4.2.5, pág. 72].

Lema 2.6.2

Seja G um grafo planar simples 2-conexo. Então toda face de G é delimitada por um circuito.

O seguinte resultado pode ser encontrado no artigo "Pólya's Permanent Problem" [13, Lema 42, pág. 47].

Lema 2.6.3

Toda face de um grafo bipartido planar coberto por emparelhamentos é delimitada por um circuito conforme.

2.6. Grafos Planares 29

O seguinte lema aparece como Lema 8.3.3 do livro de Lovász e Plummer [11].

Lema 2.6.4

Se D é uma orientação das arestas de um grafo planar conexo tal que todo circuito facial de D (exceto possivelmente o circuito que delimita a face infinita) tem um número ímpar de arestas no sentido horário, então em cada circuito, o número de arestas orientadas no sentido horário tem paridade oposta à paridade do número de vértices de D dentro do circuito. Dessa forma, D é Pfaffiano.

Corolário 2.6.5

A paridade da orientação de um circuito em uma orientação Pfaffiana de um grafo bipartido planar coberto por emparelhamentos é o oposto da paridade do número de vértices internos ao circuito numa imersão planar.

Demonstração: Seja G um grafo bipartido planar coberto por emparelhamentos, \tilde{G} uma imersão planar de G. Seja D uma orientação Pfaffiana de G. Seja F uma face de \tilde{G} . De acordo com o Lema 2.6.3, F é delimitada por um circuito Q conforme em G. Como Q é circuito conforme em G e D é Pfaffiana, a orientação de Q em D é impar. Portanto, o número de arestas de Q orientadas no sentido horário em D é impar. Este argumento vale para toda face de \tilde{G} . Seja Q' um circuito qualquer de G. Então, de acordo com o Lema 2.6.4, a paridade do número de arestas no sentido horário de Q' em D é o oposto da paridade do número de vértices de G dentro de G0. Como G0 é bipartido, G0 tem um número par de arestas, e a paridade do número de arestas de G1 no sentido horário em G2 é igual à paridade da orientação de G3.

Dizemos que duas imersões planares \tilde{G}_1 e \tilde{G}_2 de um grafo G são *iguais* se o conjunto de fronteiras que delimitam as faces de \tilde{G}_1 é igual ao conjunto de fronteiras que delimitam as faces de \tilde{G}_2 . Dizemos que um grafo planar tem uma *única* imersão planar se todas as suas imersões planares são iguais. O próximo resultado é um teorema clássico devido a Hassler Whitney [21].

Teorema 2.6.6

Um grafo simples planar 3-conexo tem uma única imersão planar.

Seja $\{U, W\}$ a bipartição de um grafo simples G. Seja H tal que V(H) = V(G) e $E(H) := \{uw : u \in U, w \in W, uw \notin E(G)\}$. Nesse caso, chamamos H de complemento bipartido de G. Note que G é o complemento bipartido de H.

Lema 2.6.7

O cubo é a única presilha simples planar com oito vértices, e a única presilha simples Pfaffiana com oito vértices.

2.6. Grafos Planares 30

Demonstração: Seja G uma presilha simples com oito vértices, e H o complemento bipartido de G. De acordo com o Corolário 2.3.14, o grau mínimo de G é três. Portanto, H tem grau máximo um. Sendo assim, H é um emparelhamento. Seja $\{U,W\}$ a bipartição de G, tal que $U = \{u_0, u_1, u_2, u_3\}$, e $W = \{w_0, w_1, w_2, w_3\}$. Mostraremos agora que se H é um emparelhamento perfeito, então G é o cubo. Suponha que H seja um emparelhamento perfeito. Ajuste a notação de forma que $u_i w_i$ seja uma aresta de H, para i = 0, 1, 2, 3. Sendo assim, $u_i w_j$ é aresta de G se e somente se $i \neq j$. Portanto, G é o cubo, como pode ser visto na Figura 2.3.

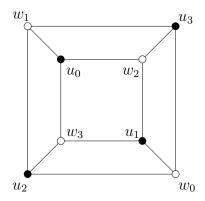


Figura 2.3: O grafo G, igual ao cubo, no caso em que H é um emparelhamento perfeito.

Suponha agora que G seja distinto do cubo. Então, H é um emparelhamento não perfeito. Portanto, H é um subgrafo do emparelhamento com quatro arestas. Ajuste a notação de forma que E(H) seja um subconjunto de $\{u_1w_1, u_2w_2, u_3w_3\}$. Sendo assim, o cubo mostrado na Figura 2.3 mais a aresta u_0w_0 é um subgrafo de G. Seja G' este subgrafo. Nesse caso, $G' - u_0w_3 - u_2w_0$ é uma bissubdivisão do $K_{3,3}$, onde $\{u_0, u_1, u_3, w_0, w_1, w_2\}$ é o conjunto de vértices de grau três da subdivisão, e (u_1, w_3, u_2, w_1) é o único caminho subdividido da bissubdivisão. Além disso, $G' - u_0w_3 - u_2w_0$ é conforme em G, pois $G' - u_0w_3 - u_2w_0$ tem o mesmo número de vértices que G. Então, de acordo com o Teorema 2.4.1, G não é Pfaffiano. Além disso, G não é planar. De fato, G é a única presilha simples com oito vértices planar, e a única presilha simples com oito vértices Pfaffiana.

Capítulo 3

4-Somas

Relembramos, a seguir, a definição de grafo redutível. Seja G um grafo coberto por emparelhamentos com bipartição $\{U,W\}$. Uma quádrupla Z de vértices de G reduz G se:

- Z contém dois vértices em U e dois vértices em W;
- G-Z consiste de três ou mais componentes conexas.

Um grafo bipartido coberto por emparelhamentos G é redutível se alguma quádrupla de vértices de G reduz G e é irredutível caso contrário.

Sejam $G_1, G_2, \ldots, G_n \ (n \ge 2)$ n grafos e Q um quadrilátero tal que:

- (i) para i = 1, 2, ..., n, o grafo G_i tem seis ou mais vértices;
- (ii) para quaisquer dois índices i, j tal que $1 \le i < j \le n, G_i \cap G_j = Q$.

Para cada subconjunto R (possivelmente vazio) de E(Q), o grafo $G := (\bigcup_{1 \le i \le n} G_i) - R$ é a (Q, R)-soma das n parcelas G_i . Se Q e R estão sub-entendidos, diz-se simplesmente 4-soma, ao invés de (Q, R)-soma. Se R é vazio, dizemos que a 4-soma é completa: nesse caso, G é a união das n parcelas. Se R = E(Q) então dizemos que a 4-soma é fina: nesse caso, nenhuma aresta de Q está em G. O grafo H_{10} , mostrado na Figura 3.1, é a 4-soma fina de três $K_{3,3}$'s.

É conveniente estendermos a definição de 4-soma para admitir o caso em que há apenas uma parcela, G_1 . Nesse caso, é necessário que Q seja um quadrilátero de G_1 e que G seja igual a $G_1 - R$.

3.1 Presilhas e 4-Somas

No grafo H_{10} , mostrado na Figura 3.1, nenhum emparelhamento perfeito de H_{10} contém tanto u_1w_1 quanto u_3w_3 . Portanto, $H_{10} - u_1 - u_3 - w_1 - w_3$ não tem emparelhamento

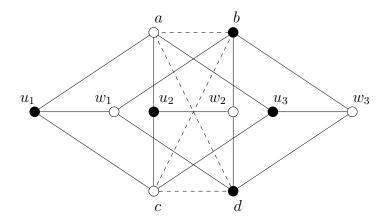


Figura 3.1: O grafo H_{10} , a 4-soma fina de três $K_{3,3}$'s. (o quadrilátero Q é mostrado em linhas pontilhadas)

perfeito. Sendo assim, H_{10} não é presilha, de acordo com o Teorema 2.3.8. O resultado seguinte implica que H_{10} é a única 4-soma de três ou mais presilhas que não é uma presilha, como provado por McCuaig [13, Lema 19].

Teorema 3.1.1

Seja G um grafo bipartido coberto por emparelhamentos que é uma 4-soma de $n \geq 2$ grafos bipartidos. Então,

- (i) se G é uma presilha, então cada parcela é uma presilha;
- (ii) se G não é uma presilha mas cada parcela é uma presilha, então $n \leq 3$ e a soma não é completa. Se, além disso, n = 3, então a soma é fina e $G = H_{10}$.

Demonstração: Sejam G_1, G_2, \ldots, G_n as parcelas, e Q := (a, b, c, d, a) seu quadrilátero comum. Lembremos que a definição de 4-soma exige que cada parcela tenha pelo menos seis vértices. Para $i = 1, 2, \ldots, n$, seja $\{U_i, W_i\}$ a bipartição de G_i . Como Q é um quadrilátero de G_i , um dentre $\{a, c\}$ e $\{b, d\}$ é parte de U_i , e o outro é parte de W_i . Ajuste a notação de forma que, para $i = 1, 2, \ldots, n$, $\{a, c\} \subset U_i$ e $\{b, d\} \subset W_i$. Sejam $U := \bigcup U_i$ e $W := \bigcup W_i$. Então, $\{U, W\}$ é a bipartição de G.

prova do (i):

Suponha que G é uma presilha. Mostraremos que G_1 é uma presilha. Para tanto, podemos supor que G é uma 4-soma completa. De fato, se ab não é aresta de G, então G + ab também é presilha, de acordo com o Corolário 2.3.11. Além disso, G + ab também é uma 4-soma de n parcelas. Sendo assim, podemos supor que Q é um quadrilátero de G, e portanto G_1 é um subgrafo de G.

Sejam u_1, u_2 dois vértices quaisquer em U_1 , e w_1, w_2 dois vértices quaisquer de W_1 . Então, u_1 e u_2 estão ambos em U, e w_1 e w_2 estão ambos em W. Seja $X := \{u_1, u_2, w_1, w_2\}$. Por hipótese, G é presilha. Pelo Teorema 2.3.8, G - X tem emparelhamento perfeito M. Seja $M_1 := M \cap E(G_1)$. Se escolhermos X igual a V(Q), então M_1 é um emparelhamento perfeito de $G_1 - V(Q)$. Sendo assim, temos que $|U_1 - a - c| = |W_1 - b - d|$, e portanto $|U_1| = |W_1|$.

Consideremos agora um X qualquer. Então, M_1 é um emparelhamento (não necessariamente perfeito) de $G_1 - X$. Mostraremos agora que M_1 tem uma extensão a um emparelhamento perfeito de $G_1 - X$. Seja S o conjunto de vértices de $G_1 - X$ não emparelhados por M_1 . Então, $S \subseteq V(Q) - X$. Se S é vazio, então M_1 é emparelhamento perfeito de $G_1 - X$. Se S = V(Q), então $M_1 \cup \{ab, cd\}$ é emparelhamento perfeito de $G_1 - X$.

Podemos, portanto, supor que S é um subconjunto próprio não nulo de V(Q). Como $|U_1| = |W_1|$, temos que $|U_1 - X| = |W_1 - X|$. Portanto, o conjunto S contém um número par de vértices, metade dos quais em U_1 e metade em W_1 . Como S é um subconjunto próprio e não nulo de V(Q), temos que S consiste de precisamente dois vértices, um deles, u, em U_1 , e o outro, w, em W_1 . Então, uw é uma aresta de Q e também uma aresta de $G_1 - X$. Sendo assim, $M_1 \cup \{uw\}$ é um emparelhamento perfeito de $G_1 - X$.

Em todos os três casos, deduzimos que G_1-X tem um emparelhamento perfeito. Esta conclusão vale para todo conjunto X que consista de dois vértices em U_1 e dois vértices em W_1 . Como G_1 tem seis ou mais vértices, e $|U_1| = |W_1|$, temos, pelo Teorema 2.3.8, que G_1 é uma presilha. Analogamente, cada uma das parcelas é uma presilha. A prova da parte "somente se" está completa.

prova do (ii):

Suponha que cada parcela G_i é uma presilha, e que G não é presilha. Seja $C_X := \partial_G(X)$ um corte justo não trivial de G. Determinaremos agora algumas propriedades da praia X de C_X . Pelo Lema 2.3.5, podemos definir $A := X \cap U$ e $B := X \cap W$, onde |A| = |B| - 1 e cada vértice de A é adjacente somente a vértices de B em G. Para i = 1, 2, ..., n, seja $X_i := X \cap V(G_i)$, $A_i := A \cap V(G_i)$ e $B_i := B \cap V(G_i)$. Sejam

$$I := \{i: 1 \le i \le n, A_i - V(Q) \ne \emptyset\},$$

$$J := \{j: 1 \le j \le n, B_j - V(Q) \ne \emptyset\}.$$

Seja i um índice de I. Ajuste a notação de forma que $A \subseteq U$, e portanto $A_i \subseteq U_i$. Todo vértice de A é adjacente em G somente a vértices de B. Portanto, cada vértice de $A_i - V(Q)$ é adjacente em G_i somente a vértices de B_i . Como i está em I, $A_i - V(Q)$ é um subconjunto não nulo de U_i . Além disso, U_i contém dois vértices em V(Q). Portanto, $|A_i - V(Q)| \leq |U_i| - 2$. Pela hipótese, G_i é uma presilha. Portanto, pelo Teorema 2.3.8, $|N_{G_i}(A_i - V(Q))| \geq |A_i - V(Q)| + 2$. Por outro lado, como A é a parte minoritária

de X, todo vizinho de vértice em $A_i - V(Q)$ está em X, de acordo com o Lema 2.3.5. Sendo assim, $N_{G_i}(A_i - V(Q)) \subseteq B_i$. Desta forma, $|B_i| \ge |A_i - V(Q)| + 2$, e portanto $|A_i - V(Q)| \le |B_i| - 2$. Ou, em outras palavras,

$$|A_i - V(Q)| \le |B_i - V(Q)| - 2 + |B \cap V(Q)| \quad (\forall i \in I).$$
 (3.1)

O somatório da desigualdade 3.1 para todo i em I resulta em:

$$|A - V(Q)| \le \sum_{i \in I} |B_i - V(Q)| - |I| (2 - |B \cap V(Q)|).$$
 (3.2)

Considerando que pelo menos |J-I| vértices de B não estão presentes no conjunto $\bigcup_{i\in I} B_i - V(Q)$, temos que:

$$\sum_{i \in I} |B_i - V(Q)| \le |B - V(Q)| - |J - I|. \tag{3.3}$$

A soma de 3.2 e 3.3 resulta em:

$$|A - V(Q)| \le |B - V(Q)| - |J - I| - |I| (2 - |B \cap V(Q)|),$$
 (3.4)

que é equivalente a

$$|A - V(Q)| \le |B| - 2 - |J - I| - (|I| - 1)(2 - |B \cap V(Q)|). \tag{3.5}$$

A substituição de |B| por |A|+1 e a troca de lado de |A| em 3.5 resulta em:

$$|A - V(Q)| - |A| \le -1 - |J - I| - (|I| - 1)(2 - |B \cap V(Q)|). \tag{3.6}$$

A inversão de sinal e a troca de |A|-|A-V(Q)| por $|A\cap V(Q)|$ resulta em:

$$|A \cap V(Q)| \ge 1 + |J - I| + (|I| - 1)(2 - |B \cap V(Q)|).$$
 (3.7)

Se o conjunto I é vazio, então A é um subconjunto (não vazio) de V(Q). Se o conjunto I não é vazio, então o lado direito da desigualdade 3.7 é estritamente positivo, pois $2 - |B \cap V(Q)|$ é não negativo. Em ambos os casos, A contém um ou dois vértices em V(Q). Este fato tem duas conseqüências importantes. A primeira é que $J = \{1, 2, ..., n\}$. Isto se deve ao fato de que cada vértice q de V(Q) é adjacente a pelo menos um vértice de $V(G_i) - V(Q)$, para toda parcela G_i . Pelo Corolário 2.3.13 aplicado a $G_i - (V(Q) - q)$, o grafo $G_i - (V(Q) - q)$ é conexo, para todo $q \in V(Q)$. Sendo assim, o vértice de A em V(Q) tem vizinho em $B_i - V(Q)$, para toda parcela G_i . Portanto, $J = \{1, 2, ..., n\}$, e |J - I| = n - |I|. Desta igualdade com a desigualdade 3.7, temos que:

$$|A \cap V(Q)| \ge n + |I| + |B \cap V(Q)| - 1.$$
 (3.8)

A segunda conseqüência do fato de $A \cap V(Q)$ ser não vazio é que a mesma conclusão vale para a outra praia de C_X . Ou seja, \overline{X} também contém um vértice minoritário em V(Q). Portanto, $|B \cap V(Q)| \leq 1$. Em resumo, $A \cap V(Q)$ não é vazio mas B não contém vértice em V(Q). Portanto, G não é uma 4-soma completa. Sendo assim, o teorema é válido quando n = 2.

Suponha que $n \geq 3$. De 3.8 deduzimos que $|A \cap V(Q)| \geq 2 + |I|$. Sendo assim, I é o conjunto vazio, caso contrário $|A \cap V(Q)| \geq 3$, uma contradição. Como I é vazio, a desigualdade 3.8 implica que:

$$|A \cap V(Q)| \ge n + |B \cap V(Q)| - 1.$$

Como $n \geq 3$, temos que

$$|A \cap V(Q)| = 2$$
, $|B \cap V(Q)| = 0$ e $n = 3$.

Nossa tarefa se resume, agora, a provar que a 4-soma é fina e que todas parcelas são $K_{3,3}$. Caso dois vértices de Q sejam adjacentes em G, temos que um deles está em A, pois $|A \cap V(Q)| = 2$. Conseqüentemente, o outro estará em B. No entanto, $|B \cap V(Q)| = 0$, uma contradição. De fato, G não tem aresta cujos dois extremos estejam em V(Q). Portanto, G é 4-soma fina.

Para provarmos que cada parcela é um $K_{3,3}$, usaremos o fato de que, como I é vazio, o conjunto A está inteiramente contido em V(Q). Sendo assim, |A| = 2, e portanto |B| = 3. Sejam A' := U - X, e B' := W - X. Os argumentos aplicados aqui sobre X podem ser aplicados à outra praia de C_X : \overline{X} . Sendo assim, |B'| = 2 e |A'| = 3. Note que $U = A \cup A'$ e $W = B \cup B'$. Sendo assim, deduzimos que |U| = 5 = |W|, e |V(G)| = 10. Sabemos que $V(G_i) - V(Q)$ tem o mesmo número de vértices em U e em W. Portanto, $|V(G_i) - V(Q)| \ge 2$, para toda parcela G_i . No entanto, quatro vértices de G estão em G0. Portanto, G1 e cada parcela G2 tem precisamente seis vértices. A única presilha de seis vértices é o G3,3. De fato, G2 é uma 4-soma fina, e todas suas parcelas são G3,3 e quando G4 não é presilha. Portanto, se G5 não é presilha, G6 e o grafo G5.

Corolário 3.1.2

Seja G uma presilha que é uma (Q, R)-soma dos grafos de uma coleção \mathcal{G} de grafos bipartidos. Para cada sub-coleção \mathcal{G}' de \mathcal{G} e para cada superconjunto R' de R, a (Q, R')-soma G' dos grafos em \mathcal{G}' é um subgrafo conforme de G.

Demonstração: Cada parcela de G' também é uma parcela de G. Além disso, o conjunto de arestas E(Q) - R', que é o conjunto de arestas de G' em Q, é um subconjunto de E(Q) - R, que é o conjunto de arestas de G em Q. Portanto, G' é um subgrafo de G. Para provar que G' é conforme em G, seja G0 uma parcela em G2. Por hipótese, cada parcela

de \mathcal{G} é bipartido. Além disso, G é uma presilha. Pelo Teorema 3.1.1, S é uma presilha. Como Q é um quadrilátero de S, ele tem precisamente dois vértices em cada parte da bipartição de S. Como S é presilha, temos que S-V(Q) tem emparelhamento perfeito, pelo Teorema 2.3.8. Esta conclusão vale para cada parcela S em \mathcal{G} . O grafo G-V(G') é união disjunta dos grafos S-V(Q) para todo S que está em $\mathcal{G}-\mathcal{G}'$. Portanto, G-V(G') tem emparelhamento perfeito. Portanto, G' é subgrafo conforme de G.

3.2 Presilha Pfaffianas e 4-Somas

Teorema 3.2.1

Seja G uma (Q, R)-soma de $n \ge 2$ grafos bipartidos. Se a 4-soma é completa ou se $n \ge 3$, então G é uma presilha Pfaffiana se e somente se cada parcela é uma presilha Pfaffiana.

<u>Demonstração</u>: Sejam G_1, G_2, \ldots, G_n as n parcelas de G, e Q := (a, b, c, d, a) seu quadrilátero comum.

"parte somente se":

Suponha que G é uma presilha Pfaffiana. Mostraremos que cada parcelas G_i é uma presilha Pfaffiana. Pelo Teorema 3.1.1, cada parcela G_i é uma presilha. Provaremos, por indução em |R|, que cada parcela é Pfaffiana. Primeiramente, considere o caso em que G é uma 4-soma completa das n parcelas. Nesse caso, R é vazio. Portanto, pelo Corolário 3.1.2, G_i é subgrafo conforme de G. Sendo assim, pelo Corolário 1.2.4, G_i é Pfaffiano. Esta conclusão vale para toda parcela G_i de G, se G é uma 4-soma completa das G_i parcelas.

Podemos, portanto, supor que R não é vazio. Por hipótese, $n \geq 3$. Sejam e uma aresta de R, e S := R - e. Seja H a (Q, S)-soma dos n parcelas. O grafo H, que é igual a G + e, é uma presilha pelo Corolário 2.3.11. Nossa tarefa se resume a provar que H é Pfaffiano, pois uma vez tendo isso provado, pela hipótese de indução cada parcela é Pfaffiana. Seja D(G) uma orientação Pfaffiana de G. Seja D(H) uma extensão de D(G) que atribui uma orientação qualquer a e. Seja e0 sinal em e1 de todos os emparelhamentos perfeitos de e2. Se todos os emparelhamentos perfeitos de e3 que contém e4 tem sinal e4 em e5 em e6 Pfaffiana. Se todos os emparelhamentos perfeitos de e4 que contém e6 tem sinal e6 em e7 em e8 pfaffiana. Em ambos os casos, e9 em e9 faffiano.

Podemos, portanto, supor que H tem dois emparelhamentos perfeitos M e N, ambos contendo e, tal que o sinal de M é igual a s e o sinal de N é igual a -s. Pelo Lema 1.2.2, o grafo H tem um circuito M, N-alternado C cuja orientação em D(H) é par. Como e pertence a M, no máximo dois vértices de Q estão emparelhados por M com vértices de fora de Q. Além disso, $V(G_i) - V(Q)$ tem o mesmo número de vértices em cada parte de

sua bipartição. Portanto, no máximo um conjunto $\partial(V(G_i) - V(Q))$ tem aresta em M, para algum $i \in \{1, 2, ..., n\}$. Analogamente, no máximo um conjunto $\partial(V(G_j) - V(Q))$ tem aresta em N, para algum $j \in \{1, 2, ..., n\}$. Como $n \geq 3$, existe um $k \in \{1, 2, ..., n\}$, tal que $\partial(V(G_k) - V(Q))$ não tem aresta em $M \cup N$. Ajuste a notação de forma que $\partial(V(G_1) - V(Q))$ não tenha aresta em $M \cup N$. Sendo assim, C não tem vértice em $V(G_1) - V(Q)$.

Ajuste a notação de forma que e=ab. Sendo assim, como $e\in M\cap N$, temos que $\partial(V(G_1)-\{c,d\})$ não tem aresta em $M\cup N$. Pelo Corolário 2.3.13, $G_1-b-c-d$ é conexo. Portanto, existe uma aresta f com um extremo em a e o outro em $V(G_1)-V(Q)$. Seja M_1' um emparelhamento perfeito de G_1 que contém cd e f. O emparelhamento $M_1:=M_1'-cd$ satura todos os vértices de $V(G_1)-\{c,d\}$ e não contém e. Além disso, sabemos que $\partial(V(G_1)-\{c,d\})$ não tem aresta em $M\cup N$, e que C não tem vértice em $V(G_1)-V(Q)$. Portanto, $M':=(M\cap E(G[V(G)-V(G_1)+c+d]))\cup M_1$ é emparelhamento perfeito de V(G), tal que C é M'-alternado, e e não está em M'. Então, M' é emparelhamento perfeito de G=H-e. Dessa forma, G é circuito alternado de G, cuja orientação em D(G) é par. Isto é uma contradição à hipótese de que D(G) é Pfaffiana. De fato, H é Pfaffiano. Sendo assim, a afirmação segue por indução.

"parte se":

Suponha que cada parcela G_i é uma presilha Pfaffiana. O grafo $K_{3,3}$ não é Pfaffiano. Portanto, nenhuma parcela G_i é isomorfa ao $K_{3,3}$, mesmo desconsiderando-se arestas múltiplas. Pela hipótese, ou G é uma soma completa, ou $n \geq 3$. Sendo assim, pelo Teorema 3.1.1, G é presilha. A soma completa G^* das n parcelas também é presilha, pelo Corolário 2.3.11. O grafo G é subgrafo conforme de G^* . Portanto, pelo Corolário 1.2.4, para provarmos que G é Pfaffiano, basta provar que G^* é Pfaffiano.

Seja D(Q) a orientação Pfaffiana de Q, tal que a única aresta de Q que discorda do sentido (a,b,c,d,a) é a aresta ad. Pelo Teorema 2.4.5, para cada parcela G_i , existe orientação Pfaffiana $D(G_i)$ de G_i , tal que $D(G_i)$ restrito a E(Q) é igual a D(Q). Seja $D(G^*)$ a união de $D(G_i)$, para toda parcela G_i . Mostraremos, a seguir, que $D(G^*)$ é Pfaffiana.

Seja N a extensão de $\{ab, cd\}$ a um emparelhamento perfeito de G^* . Seja N' o emparelhamento $N \oplus E(Q)$. Como D(Q) é Pfaffiana e $D(G^*)$ estende D(Q), temos que os sinais de N e N' são iguais em $D(G^*)$. Seja M um emparelhamento perfeito qualquer de G^* . Mostraremos que $D(G^*)$ é Pfaffiana, provando que os sinais de M e de um dentre N e N' em $D(G^*)$ são iguais, para todo M.

Se todo circuito M, N-alternado é circuito de uma parcela G_i , então todos os circuitos M, N-alternados tem orientação ímpar em $D(G_i)$, pois $D(G_i)$ é Pfaffiana. Lembremos que $D(G^*)$ é a união dos $D(G_i)$, para toda parcela G_i . Sendo assim, pelo Lema 1.2.2 os sinais de M e N são iguais em $D(G^*)$.

Nesse caso, podemos supor que existe um circuito C de G^* que é M, N-alternado, tal que $C \cap \partial(V(G_i) - V(Q))$ não é nulo para pelo menos duas parcelas G_i distintas. Vide Figura 3.2. No entanto, $V(G_i) - V(Q)$ tem o mesmo número de vértices em cada parte da bipartição. Portanto, se M tem uma aresta em $\partial(V(G_i) - V(Q))$, M tem pelo menos duas arestas em $\partial(V(G_i) - V(Q))$, para qualquer parcela G_i . Além disso, N não tem aresta em $\partial(V(G_i) - V(Q))$. Sendo assim, como C é M, N-alternado, C tem aresta em $\partial(V(G_i) - V(Q))$, para precisamente duas parcelas G_i distintas. Vide Figura 3.2. Ajuste a notação de forma que G_1 e G_2 sejam estas parcelas. Sendo assim, C é o único circuito M, N-alternado não inteiramente contido em uma parcela. Portanto, todos os outros circuitos M, N-alternados tem orientação ímpar em $D(G^*)$.

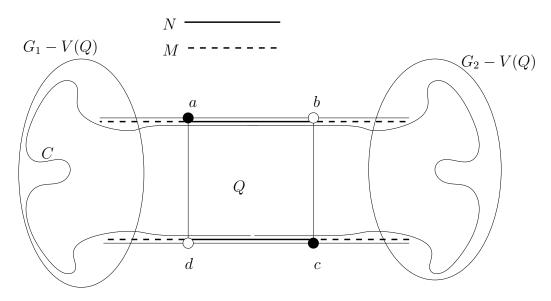


Figura 3.2: O caso em que existe circuito M, N-alternado com aresta em $\partial(V(G_i)-V(Q))$, para duas parcelas G_i .

tem seus extremos em b e c, o outro circuito de $C \oplus E(Q)$ está inteiramente contido em G_2 . Desta forma, todos os circuitos de M, N'-alternados estão inteiramente contidos em alguma parcela G_i . Portanto, os sinais de M e N' são iguais em $D(G^*)$.

Capítulo 4

O Teorema Principal

4.1 Demonstração do Teorema Principal

Já vimos que o grafo de Heawood é uma presilha Pfaffiana e não planar. O resultado a seguir mostra que o grafo de Heawood é irredutível.

Lema 4.1.1

O grafo de Heawood é irredutível.

<u>Demonstração</u>: Suponha, por absurdo, que o grafo de Heawood, H_{14} , é redutível. Pelo Lema 2.5.11, H_{14} é uma presilha Pfaffiana. Pelo Teorema 3.2.1, cada parcela de H_{14} é uma presilha Pfaffiana. A única presilha de seis vértices é o $K_{3,3}$, que não é Pfaffiano. Portanto, cada parcela de H_{14} tem pelo menos oito vértices. Seja n o número de parcelas. Então, $n \geq 3$. Portanto,

$$14 = |V(H_{14})| \ge 8n - 4(n-1) = 4n + 4 \ge 16.$$

Isto é uma contradição.

Assim, o grafo de Heawood é uma presilha simples Pfaffiana irredutível e não planar.

Nosso objetivo neste capítulo é provar que o grafo de Heawood é a única presilha simples, Pfaffiana, irredutível e não planar. Chamaremos de spin uma presilha Simples Pfaffiana Irredutível e Não planar. Assim, provaremos que o grafo de Heawood é o único spin.

TEOREMA 4.1.2 (TEOREMA PRINCIPAL)

Seja G uma presilha simples Pfaffiana irredutível e não planar. Então, G é o grafo de Heawood.

Demonstração do Teorema Principal: Suponha que G seja um spin. Nossa tarefa é demonstrar que G é o grafo H_{14} , o grafo de Heawood. Um grafo H é menor que G se:

- |V(H)| < |V(G)|, ou
- $|V(H)| = |V(G)| \in |E(H)| < |E(G)|$.

A demonstração é feita por indução. Adotaremos como hipótese de indução que se H é um spin menor que G, então $H = H_{14}$. Usaremos três importantes lemas, enunciados a seguir, cujas provas encontram-se em capítulos subseqüentes.

4.1.1 Os Três Lemas

Lema 4.1.3 (Lema do Grafo de Heawood Não Contido)

Seja G uma presilha simples Pfaffiana, e uma aresta de G. Então, nenhuma presilha de G-e é isomorfa ao grafo de Heawood, mesmo desconsiderando-se arestas múltiplas.

Lema 4.1.4 (Lema da Herança da Redutibilidade)

Seja G um spin, e uma aresta de G, e H uma presilha de G - e. Se o Teorema Principal vale para todo grafo menor que G, e se (i) o grafo H tem no máximo um vértice de contração, ou se (ii) a aresta e é magra, então H é irredutível.

Lema 4.1.5 (Lema da Não Planaridade das Contrações)

Seja G uma presilha Pfaffiana e irredutível e e uma aresta de G. Seja $C := \partial_G(X)$ um corte de G tal que C - e é justo em G - e. Se G - e não é planar, e $|\overline{X}| \leq 5$, então a contração $(G - e)\{\overline{X} \to \overline{x}\}$ não é planar.

Corolário 4.1.6

Seja G um spin, e e uma aresta de G. Então, G - e não \acute{e} planar.

O Lema do Grafo de Heawood Não Contido será demonstrado no Capítulo 5. O Lema da Herança da Redutibilidade será demonstrado no Capítulo 6. Finalmente, no Capítulo 7, será provado o Lema da Não Planaridade das Contrações.

4.1.2 O Grafo Furtivo

Mostraremos agora que se G é um spin, então G é o grafo de Heawood. A prova está organizada da seguinte forma. Inicialmente, mostraremos que G - e não é planar. Em seguida, veremos que toda aresta magra e de G tem índice 2, e todas as presilhas de G - e são planares. Depois, utilizando o Teorema de McCuaig (2.3.27), mostraremos que G tem uma aresta verdadeiramente magra e. Definiremos H como a presilha interna de

G-e. Em seguida, baseando-nos no Teorema de McCuaig e no Lema da Não Planaridade das Contrações, mostraremos que se H não tem aresta verdadeiramente magra, então G é o grafo de Heawood. Finalmente, mostraremos que H, de fato, não tem aresta verdadeiramente magra, provando assim o Teorema Principal, a menos dos três lemas da seção anterior.

Lema 4.1.7

Seja J uma presilha simples Pfaffiana não planar, $e = x_0y_0$ uma aresta de J. Então J - e não \acute{e} planar.

Demonstração: Suponha que J-e seja planar. Seja \tilde{K} uma imersão planar de J-e. Seja \tilde{F} a face de $\tilde{K}-x_0$ que contém x_0 em \tilde{K} . Toda presilha com no máximo quatro vértices é planar. Portanto, J tem pelo menos seis vértices. Então, pelo Corolário 2.3.14, J é 3-conexo. Sendo assim, $J-x_0$ é 2-conexo. Dessa forma, pelo Lema 2.6.2, \tilde{F} é delimitada por um circuito F. O vértice y_0 não está em F, caso contrário J seria planar, contradição. O grafo $J-x_0-y_0$ é coberto por emparelhamentos, de acordo com o Corolário 2.3.9. Ademais, \tilde{F} é uma face de $\tilde{K}-x_0-y_0$, delimitada por F. Portanto, pelo Lema 2.6.3, F é conforme em $J-x_0-y_0$. Sendo assim, F é conforme em J, devido à aresta e. Por outro lado, x_0 é isolado em \tilde{K} por F. Seja D uma orientação Pfaffiana de J. A orientação D-e de J-e é Pfaffiana. Portanto, pelo Corolário 2.6.5, a orientação de F em D-e é par. Logo, ela é par em D. Em resumo, F tem orientação par em D e é conforme em J. Isto é uma contradição à hipótese de que D é Pfaffiana. De fato, J-e não é planar. \Box

Lema 4.1.8

Seja e uma aresta de G, e H uma presilha de G-e. Se H tem no máximo um vértice de contração, ou se e é magra, então H é planar.

Demonstração: Seja H_0 o grafo simples subjacente de H. Pelo Teorema 2.4.7, H_0 é Pfaffiano. Pela hipótese de indução adotada, o Teorema Principal vale para todo grafo menor que que G. Portanto, de acordo com o Lema da Herança da Redutibilidade, H_0 é irredutível. Então, H_0 ou é um spin ou é planar. Pela hipótese de indução adotada, H_0 é um spin somente se H_0 é o grafo de Heawood. De acordo com o Lema do Grafo de Heawood Não Contido, H_0 não é o grafo de Heawood. Portanto, H_0 não é um spin. Sendo assim, H_0 é planar. Logo, H é planar.

Lema 4.1.9

Toda aresta magra e de G tem índice igual a 2, e a presilha interna de G - e é planar.

<u>Demonstração</u>: Seja e uma aresta magra de G, e seja H a presilha obtida de G-e por bicontrações. Pelo Lema 4.1.8, H é planar. Seja r o índice de e. Vamos mostrar que r é

dois. Pelo Lema 4.1.7, G-e não é planar. Portanto, G-e não é H. Então, r é distinto de 0. Sendo assim, G tem um corte $C:=\partial_G(X)$, tal que C-e é justo em G-e, e $\left|\overline{X}\right|=3$. Pelo Lema da Não Planaridade das Contrações, a (C-e)-contração $L:=(G-e)\{\overline{X}\to \overline{x}\}$ de G-e não é planar. Logo, L não é H. Então, r não é 1. Portanto, o índice de e é igual a 2. Nesse caso, H é a presilha interna de G-e e é planar.

Mostraremos agora que G tem uma aresta verdadeiramente magra. Para tanto, de acordo com o Teorema de McCuaig (2.3.27), basta provar que G nem é uma escada de Möbius bipartida, nem é um prisma bipartido e nem é uma roda dupla. Os prismas e as rodas duplas são planares. As escadas de Möbius bipartidas não são Pfaffianas, pelo Lema 2.3.32. Como G é Pfaffiano e não planar, temos que G tem uma aresta verdadeiramente magra.

Seja $e := x_0 y_0$ uma aresta verdadeiramente magra de G. A aresta e tem índice 2, de acordo com o Lema 4.1.9. Então, sejam $X := \{x_0, x_1, x_2\}$ e $Y := \{y_0, y_1, y_2\}$, onde x_1 e x_2 são os (únicos) vizinhos de x_0 em G - e, e y_1 e y_2 são os (únicos) vizinhos de y_0 em G - e. Sejam $C(X) := \partial_G(X)$ e $C(Y) := \partial_G(Y)$. Note que tanto C(X) - e como C(Y) - e são justos em G - e. Vide Figura 4.1.

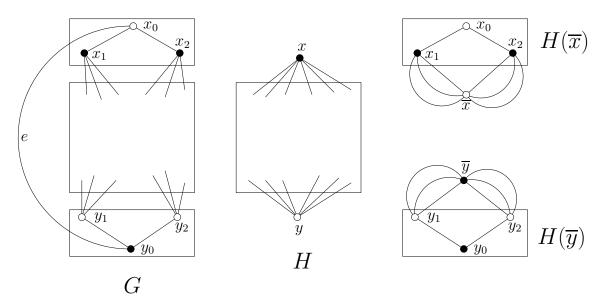


Figura 4.1: Os grafos G, H, $H(\overline{x})$ e $H(\overline{y})$.

Neste caso, temos que $H:=(G-e)\{X\to x\}\{Y\to y\},\ H(\overline{x}):=(G-e)\{\overline{X}\to \overline{x}\},\ e$ $H(\overline{y}):=(G-e)\{\overline{Y}\to \overline{y}\}$ são as presilhas de G-e. Note que H é a única presilha com dois vértices de contração. Sejam ainda $H(x):=(G-e)\{X\to x\},\ e$ $H(y):=(G-e)\{Y\to y\}.$ Vide Figura 4.2. Em resumo,

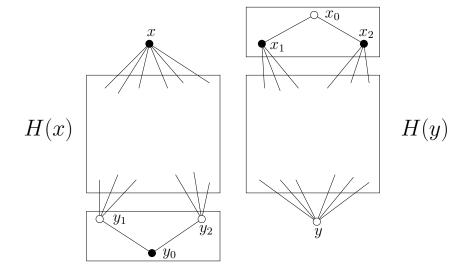


Figura 4.2: Os grafos H(x) e H(y).

Notação 4.1.10

- $X := \{x_0, x_1, x_2\} \ e \ C(X) := \partial_G(X);$
- $Y := \{y_0, y_1, y_2\} \ e \ C(Y) := \partial_G(Y);$
- $H := (G e)\{X \to x\}\{Y \to y\};$
- $\bullet \ \ H(\overline{x}):=(G-e)\{\overline{X}\to \overline{x}\}\ e\ H(\overline{y}):=(G-e)\{\overline{Y}\to \overline{y}\};$
- $H(x) := (G e)\{X \to x\} \ e \ H(y) := (G e)\{Y \to y\}.$

Lema 4.1.11

O grafo H tem dez ou mais vértices, e portanto G tem pelo menos quatorze vértices.

<u>Demonstração</u>: Sabemos que H(x) não é presilha, pois $\partial(Y)$ é um corte justo de H(x). Pelo Lema 4.1.7, G-e não é planar. Então, pelo Lema da Não Planaridade das Contrações, H(x) não é planar. Todo grafo bipartido com menos de seis vértices é planar. O único grafo simples bipartido com seis vértices e não planar é o $K_{3,3}$, uma presilha. Logo, H(x) tem pelo menos oito vértices. Então, H tem pelo menos seis vértices. No entanto, a única presilha simples com seis vértices é o $K_{3,3}$, que não é planar. Sabemos que H é planar. Sendo assim, H tem mais de seis vértices.

Mostraremos agora que H tem mais de oito vértices. O grafo H é simples, planar, tem mais de seis vértices e não é 3-regular (os vértices de contração têm grau maior do que três). De acordo com o Lema 2.6.7, a única presilha simples planar com oito vértices

é o cubo, que é 3-regular. Portanto, H tem mais de oito vértices. De fato, H tem pelo menos dez vértices, e G tem pelo menos quatorze vértices.

Como e é verdadeiramente magra, temos que H é simples. Sabemos que H é presilha planar, de acordo com o Lema 4.1.9. Além disso, de acordo com o Lema 4.1.11, H tem pelo menos dez vértices. Logo, H é 3-conexo, de acordo com o Corolário 2.3.14. Portanto, pelo Teorema de Whitney (2.6.6), H tem uma única imersão planar. Denotamos por \tilde{H} a única imersão planar de H.

Neste ponto, já mostramos que G tem uma aresta verdadeiramente magra e, e definimos H como a presilha interna de G-e. Sabemos também que H é planar. A seguir, provaremos um lema auxiliar e em seguida mostraremos, baseando-nos no Teorema de McCuaig e no Lema da Não Planaridade das Contrações, que se H não tem aresta verdadeiramente magra, então G é o grafo de Heawood. E no final do capítulo, mostraremos, finalmente, que H não tem aresta verdadeiramente magra, fechando assim a prova do Teorema Principal, a menos dos três lemas da seção anterior. O lema seguinte, baseando-se no Lema da Não Planaridade das Contrações, mostra a existência da situação mostrada na Figura 4.3.

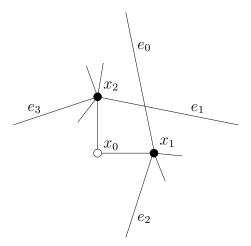


Figura 4.3: Um extensão de \tilde{H} a um desenho no plano do grafo H(y) que não é planar, como definido pelo Lema 4.1.12.

Lema 4.1.12

As arestas de $\partial_G(x_1) - x_1x_0$ não são contíguas na ordem cíclica de $\partial_H(x)$ ao redor de x em \tilde{H} . Vide Figura 4.3.

<u>Demonstração</u>: O grafo H é planar. Consideremos a ordem cíclica das arestas de $\partial_H(x)$ ao redor de x em \tilde{H} . Suponha, por absurdo, que as arestas de $\partial_G(x_1) - x_1x_0$ sejam contíguas

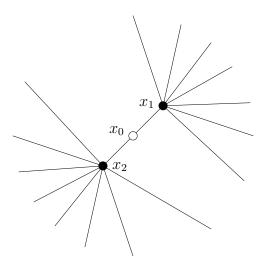


Figura 4.4: A imersão planar $\tilde{H}(y)$ da prova do Lema 4.1.12.

naquela ordem cíclica em \tilde{H} . Isto é, existe uma enumeração

$$(e_0, e_1, \ldots, e_{r-1}, e_r, \ldots, e_{s-1})$$

das arestas de $\partial_H(x)$ tal que a enumeração indica a ordem cíclica ao redor de x em \tilde{H} e as arestas de $\{e_0, e_1, \ldots, e_{r-1}\}$ incidem em x_1 em G e as arestas de $\{e_r, \ldots, e_{s-1}\}$ incidem em x_2 em G. Lembremos que $H(y) = (G-e)\{Y \to y\}$. Note que $H = H(y)\{X \to x\}$. Assim, H(y) pode ser obtido a partir de H pela expansão de x ao caminho (x_1, x_0, x_2) . Neste caso, podemos obter uma imersão planar do grafo H(y), a partir de \tilde{H} , pela expansão do vértice x ao caminho (x_1, x_0, x_2) . Vide Figura 4.4. No entanto, G - e não é planar, pelo Lema 4.1.7. Então, pelo Lema da Não Planaridade das Contrações, H(y) não é planar, uma contradição. De fato, as arestas de $\partial_G(x_1) - x_1x_0$ não são contíguas na ordem cíclica das arestas de $\partial_H(x)$ ao redor de x em \tilde{H} .

Chamamos a atenção do leitor para o fato de que há uma simetria entre x e y, e entre x_1 e x_2 e entre y_1 e y_2 . Portanto, analogamente ao enunciado do lema anterior, as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas na ordem cíclica de $\partial_H(x)$ ao redor de x em \tilde{H} , as arestas de $\partial_G(y_1) - y_1y_0$ não são contíguas na ordem cíclica de $\partial_H(y)$ ao redor de y em \tilde{H} e as arestas de $\partial_G(y_2) - y_2y_0$ não são contíguas na ordem cíclica de $\partial_H(y)$ ao redor de y em \tilde{H} .

Lema 4.1.13

A aresta e não pertence a quadrilátero de G que tenha vértice de grau três não incidente em e.

<u>Demonstração</u>: Suponha, por absurdo, que e pertença a quadrilátero Q de G que tenha vértice de grau três não incidente em e. Nesse caso, um vértice de $\{x_1, x_2\}$ está em Q e um vértice de $\{y_1, y_2\}$ está em Q. Ajustemos a notação de forma que x_1 e y_1 estejam em Q, e portanto sejam adjacentes. Pela hipótese de absurdo adotada, um dentre x_1 e y_1 tem grau três. Ajuste a notação de forma que x_1 tenha grau três em G.

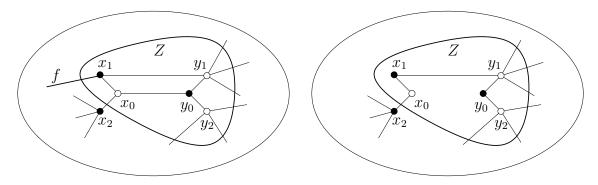


Figura 4.5: O caso x e y adjacentes em H com x_1 de grau 3: à esquerda o grafo G, a aresta f e o conjunto Z; à direita o grafo G - e - f.

Sendo assim, x_1 tem no máximo um vizinho fora de $Z := \{x_0, x_1, y_0, y_1, y_2\}$. Observe que $\{x_1, y_0\}$ é a parte minoritária de Z. Vide Figura 4.5. Seja f a aresta incidente em x_1 distinta de x_1y_1 e de x_1x_0 . Então, x_1 não tem vizinho fora de Z em G - f. Dessa forma, $C(Z) := \partial_G(Z)$ é corte não trivial de G, tal que C(Z) - f é justo em G - f. Vamos obter uma contradição ao Lema da Não Planaridade das Contrações, mostrando que a (C(Z) - f)-contração $H(z) := (G - f)\{Z \to z\}$ de G - f é planar.

A contração H(z) é igual à (C(Z)-f)-contração $(G-e-f)\{Z\to z\}$, pois ambos os extremos de e estão em Z. Além disso, $(G-e-f)\{Z\to z\}$ é igual ao grafo $(G-e-f)\{Y\to y\}\{\{y,x_1,x_0\}\to z\}$. Entretanto, $(G-e-f)\{Y\to y\}\{\{y,x_1,x_0\}\to z\}$ é isomorfo a $(G-e-f)\{Y\to y\}\{X\to x\}$, pois (y,x_1,x_0,x_2) é um P_4 do grafo $(G-e-f)\{Y\to y\}$, cujos vértices internos têm grau dois em $(G-e-f)\{Y\to y\}$. Assim, H(z) é isomorfo a $H-f=(G-e-f)\{Y\to y\}\{X\to x\}$, e portanto planar. Como, de acordo com o Lema 4.1.7, G-e não é planar, temos uma contradição ao Lema da Não Planaridade das Contrações.

Lema 4.1.14

Se f for uma aresta verdadeiramente magra de H e se um extremo v de f tem grau três em G, então v não pertence a quadrilátero de G - f.

<u>Demonstração</u>: Suponha, por absurdo, que exista um extremo v de f = vu, de grau três em G, e que pertença a um quadrilátero $Q = (v, r_1, t, r_2)$ de G - f. Vide Figura 4.6.

As arestas e e f não são adjacentes em G, pois f é uma aresta de H. A aresta e não está em E(Q), pois senão Q seria um quadrilátero de G que contém e e contém o vértice v não incidente em e cujo grau é três, em contradição ao Lema 4.1.13. Portanto, Q é um quadrilátero de G - e - f. Além disso, e não incide em vértice de V(Q), pois e é verdadeiramente magra de índice f em f.

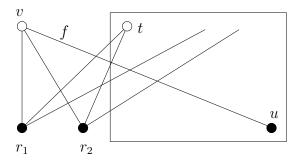


Figura 4.6: O grafo G quando um extremo v de f cujo grau é três pertence a um quadrilátero de G - f.

Chegaremos a uma contradição à escolha de f como aresta verdadeiramente magra, mostrando que f incide em um vértice de grau três de um quadrilátero de H-f. Mostraremos, inicialmente, que E(Q) induz um quadrilátero de H. Suponha que não. Então, como Q é quadrilátero de G-e-f, temos que dois vértices de V(Q) são contraídos a um único vértice de H. Os dois vértices pertencem a uma mesma parte da bipartição de G e são ambos adjacentes a um mesmo extremo de e. Isto implica que e não é verdadeiramente magra em G, uma contradição. De fato, E(Q) induz um quadrilátero Q_H de H.

Mostraremos agora que v é um vértice (de grau três) de Q_H . Suponha o contrário. Então, v está contraído em H. Sendo assim, ou v ou um vizinho de v é incidente em e. No entanto, v tem três vizinhos, dois deles $(r_1 e r_2)$ estão em Q, e o outro (u) é extremo de f. No entanto, vimos que e não pertence a Q e não incide em vértice de Q. Portanto, temos que e incide em u. Sendo assim, e é adjacente a f, uma contradição, pois f é aresta de f. De fato, f0 é um vértice (que não foi contraído) de f1. Sendo assim, o grau de f2 e igual ao seu grau em f3. Portanto, f4 incide no vértice f4 de f5 grau três de f6 que pertence ao quadrilátero f6. Isto é uma contradição à escolha de f7 como verdadeiramente magra em f6. De fato, se um extremo f7 tem grau três em f8, então f8 não pertence a quadrilátero de f6.

Seja f uma aresta de G. O grafo G - f não é uma presilha, pois G não tem aresta magra de índice 0, de acordo com o Lema 4.1.9. Utilizaremos durante o restante da prova a decomposição em cortes justos de G - f. Para tanto, adotaremos a notação do

Lema 2.3.18. Sendo assim, $C := \{C_1, C_2, \dots, C_r\}$, com $r \ge 1$, é o conjunto de cortes justos de uma decomposição em cortes justos de G - f. Além disso, X_i , para $i = 1, 2, \dots, r$ são subconjuntos de V(G), tais que $C_i = \partial_G(X_i) - f$, $X_1 \subset X_2 \subset \dots \subset X_r \subset V(G)$ e o conjunto das presilhas de G - f é $\bigcup_{0 \le i \le r} G_i$, onde G_i é um dentre:

- $G_0 := (G f)\{\overline{X_1} \to \overline{x_1}\};$
- $G_i := (G f)\{X_i \to X_i\}\{\overline{X_{i+1}} \to \overline{x_{i+1}}\}, \text{ para } i = 1, 2, \dots, r 1;$
- $\bullet \ G_r := (G f)\{X_r \to x_r\}.$

Vide Figura 4.7.

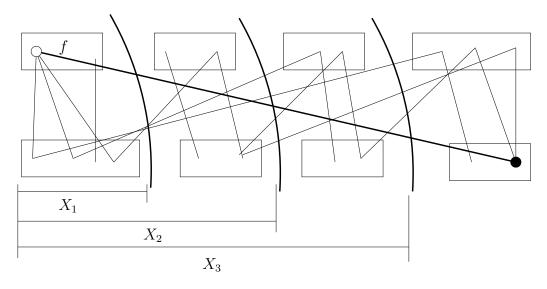


Figura 4.7: Um exemplo de decomposição em cortes justos de G-f com os cortes justos destacados.

Lema 4.1.15

Suponha que f seja uma aresta verdadeiramente magra de H, e que G_0 tenha precisamente quatro vértices. Então, G_1 tem mais de quatro vértices.

<u>Demonstração</u>: Suponha, por absurdo, que G_0 e G_1 tenham ambos quatro vértices. Lembremos que estamos adotando a notação utilizada no Lema 2.3.18. Então X_1 tem precisamente três vértices, e o extremo de f em X_1 , digamos r_0 , é o (único) vértice minoritário de X_1 . Vide Figura 4.8. Sejam r_1 e r_2 os demais vértices de X_1 . Assim, G restrito a X_1 é o grafo $K_{1,2}$.

Como G_1 também tem apenas quatro vértices, então $X_2 - X_1$ consiste de precisamente dois vértices, um em cada parte da bipartição de G. Vide Figura 4.9. Logo, $|X_2| = 5$, e r_0 é

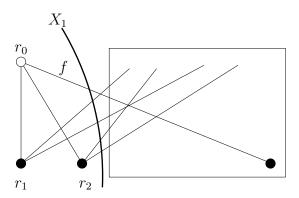


Figura 4.8: O grafo G quando a presilha G_0 de G - f é um C_4 .

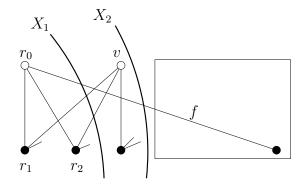


Figura 4.9: O grafo G quando ambas as presilhas G_0 e G_1 de G-f são C_4 's.

minoritário em X_2 . Seja v o vértice minoritário de X_2 distinto de r_0 . Este vértice somente é adjacente em G a vértices da parte majoritária de X_2 . Deduz-se que v é adjacente aos três vértices majoritários de X_2 . Portanto, $Q := (r_0, r_1, v, r_2)$ é um quadrilátero de G - f. Além disso, o extremo r_0 de f em Q tem grau três, em contradição ao Lema 4.1.14. De fato, G_0 e G_1 não têm ambos quatro vértices.

Teorema 4.1.16

Seja f uma aresta magra de H, tal que ou (i) f é verdadeiramente magra em H, ou (ii) o índice de f em G é menor do que 2. Então, f é uma aresta magra de G.

Demonstração: Seja i_G o índice de f em G, e i_H o índice de f em H. Seja b(G-f) o número de presilhas obtidas em uma decomposição em cortes justos de G-f. Analogamente, seja b(G-e-f) o número de presilhas obtidas em uma decomposição em cortes justos de G-e-f. Sabemos que $b(G-f) \leq b(G-e-f)$. Além disso, $b(G-e-f) = 3+i_H$, pois G-e tem três presilhas (dois C_4 's e H), e H-f tem $1+i_H$ presilhas. Por outro

lado, o índice de f em G é maior do que ou igual a i_H . Sendo assim, temos:

$$b(G - f) \le b(G - e - f) = 3 + i_H \le 3 + i_G. \tag{4.1}$$

Lema 4.1.17

O número de presilhas com mais de quatro vértices obtidas na decomposição em cortes justos de G-f é precisamente um.

Demonstração: Suponha, por absurdo, que duas presilhas obtidas na decomposição em cortes justos de G-f tenham mais de quatro vértices. A aresta e é magra em G, e f é magra em H. De acordo com o Lema 4.1.11, G tem pelo menos quatorze vértices. Então, H tem pelo menos dez vértices, e precisamente uma presilha obtida na decomposição em cortes justos de H-f tem mais de quatro vértices. Portanto, pelo Teorema de Lovász (2.2.5) precisamente uma presilha com mais de quatro vértices é obtida na decomposição em cortes justos de G-e-f. Sendo assim, temos que $b(G-f) \leq b(G-e-f)-1$, ou seja uma presilha de G-f se decompõe em pelo menos duas presilhas após a remoção de e. Então, pela Desigualdade 4.1 temos que $b(G-f) \leq b(G-e-f)-1 \leq 2+i_G$. Além disso, G-f tem pelo menos i_G presilhas com quatro vértices. Como G-f tem pelo menos duas presilhas com mais de quatro vértices, temos que $b(G-f) \geq 2+i_G$. Portanto, temos que:

$$2 + i_G \le b(G - f) \le b(G - e - f) - 1 \le 2 + i_G.$$

Sendo assim, b(G-f)=b(G-e-f)-1. Então, uma presilha de G-f se decompõe em duas presilhas, após a remoção de e. Além disso, G-f tem mais de uma presilha com mais de quatro vértices, enquanto G-e-f tem precisamente uma presilha com mais de quatro vértices. Portanto, precisamente uma presilha com mais de quatro vértices de G-f se decompõe em precisamente duas presilhas com quatro vértices após a remoção de e. No entanto, a única presilha simples que após a remoção de uma aresta se decompõe em duas presilhas com precisamente quatro vértices é o $K_{3,3}$. Então, uma presilha de G-f é o $K_{3,3}$, a menos de arestas múltiplas, que não é Pfaffiano, em contradição ao Corolário 2.4.8. De fato, no máximo uma presilha de G-f tem mais de quatro vértices. No entanto, vimos anteriormente que precisamente uma presilha G-e-f tem mais de quatro vértices. Então, precisamente uma presilha de G-f tem mais de quatro vértices.

Sendo assim, precisamente uma presilha da decomposição em cortes justos de G-f tem mais de quatro vértices. Seja J tal presilha. Adote a Notação do Lema 2.3.18 para a decomposição em cortes justos de G-f. Sendo assim, as praias dos cortes justos da decomposição em cortes justos de G-f são X_1, X_2, \ldots, X_r , tal que $X_1 \subset X_2 \subset \ldots \subset X_r \subset V(G)$. Além disso, G_0, G_1, \ldots, G_r são as presilhas obtidas da decomposição em cortes justos de G-f, onde G_i é um dentre:

- $G_0 := (G e)\{\overline{X_1} \to \overline{x_1}\};$
- $G_i := (G e)\{X_i \to X_i\}\{\overline{X_{i+1}} \to \overline{x_{i+1}}\}, \text{ para } i = 1, 2, \dots, r 1;$
- $\bullet \ G_r := (G e)\{X_r \to x_r\}.$

Como precisamente uma presilha de G-f tem mais de quatro vértices, temos que se b(G-f) é no máximo dois, a aresta f é magra em G. Então, podemos supor que b(G-f) é pelo menos três. Suponha, primeiramente, que b(G-f)=3. Então, G_0 , G_1 e G_2 são as presilhas de G-f. Se J é presilha interna de G-f, então f é magra em G. Podemos, portanto, supor que J é presilha externa de G-f. Ajuste a notação de forma que G_2 seja a presilha J. Nesse caso, G_0 e G_1 tem quatro vértices cada. Então, K_2 tem precisamente cinco vértices, e $J=(G-f)\{X_2\to x_2\}$. O grafo G-e não é planar, de acordo com o Lema 4.1.7. Portanto, de acordo com o Lema da Não Planaridade das Contrações, J não é planar. No entanto, pelo Lema 4.1.8, J é planar, uma contradição. Sendo assim, podemos supor que $b(G-f)\geq 4$.

Consideremos o caso em que $i_G \leq 1$. Vimos que $b(G-f) \leq b(G-e-f) \leq 3+i_G$, e portanto $b(G-f) \leq 4$. No entanto, supusemos que $b(G-f) \geq 4$. Portanto, temos que $4 \le b(G - f) \le b(G - e - f) \le 3 + i_G \le 4$, ou seja b(G - f) = b(G - e - f) = 4e $i_G = 1$. Sendo assim, G_0 , G_1 , G_2 e G_3 são as presilhas da decomposição de G - f. Como $i_G = 1$, uma presilha da decomposição de G - f com mais de quatro vértices é externa. No entanto, J é a única presilha de G-f com mais de quatro vértices. Sendo assim, podemos ajustar a notação de forma que $J = G_3$. Então, X_3 tem sete vértices. Vide Figura 4.10. Ajuste a notação de forma que $\{r_0, r_1, r_2\} = X_1, \{s_1, s_2\} = X_2 - X_1$ e $\{t_1, t_2\} = X_3 - X_2$ e que r_0 , s_1 e t_1 sejam os vértices da parte minoritária de X_3 . O vértice s_1 só é adjacente a vértices de X_2 , e tem pelo menos três vizinhos. Portanto, s_1 é adjacente a r_1 , r_2 e s_2 . Analogamente, t_1 tem três vizinhos em X_3 , sendo que um deles é t_2 . Portanto, dois vértices dentre r_1 , r_2 e s_2 são vizinhos de t_1 . Ajuste a notação, trocando r_1 com r_2 se necessário, de forma que t_1 seja adjacente a r_2 . Vimos anteriormente que b(G-f)=b(G-e-f)=4. Portanto, toda presilha de G-f é uma presilha após a remoção de e. Ambos os extremos de e tem grau três em G. Como $J = (G - f)\{X_3 \rightarrow x_3\}$ tem mais de quatro vértices, nenhum extremo de e está em $V(J)-x_3$. Portanto, ambos os extremos de e estão em X_3 em G. O grafo G-e-fé coberto por emparelhamentos. As arestas de $\{r_0r_1, r_0r_2, s_1s_2, t_1t_2\}$ não são removíveis em G-f, e portanto e não pertencem a este conjunto. Além disso, e não pertence a $\{r_1s_1, r_2s_1\}$, pois (r_0, r_1, s_1, r_2) seria quadrilátero contendo e, e contendo o vértice r_0 de grau três não incidente em e, em contradição ao Lema 4.1.13. Sendo assim, um extremo de e é o vértice t_1 . O outro extremo de e não está em $\{r_1, r_2\}$, pois (r_0, r_1, s_1, r_2) seria um quadrilátero de G-e com um vértice incidente em e, em contradição à escolha de e como verdadeiramente magra. Então, o outro extremo de e está em $\{s_2, t_2\}$. No entanto, t_1t_2

não é removível em G - f. Como G - e - f é coberto por emparelhamentos, temos que t_1s_2 é a aresta e. Nesse caso, $(t_1, s_2, s_1, r_2, t_1)$ é um quadrilátero de G, com o vértice s_1 de grau três não incidente em e, em contradição ao Lema 4.1.13. Sendo assim, podemos supor que $i_G = 2$.

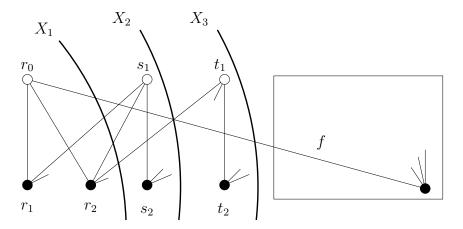


Figura 4.10: A imersão planar H(y) da prova do Lema 4.1.12.

Como $i_G = 2$, temos pela hipótese deste teorema que f é verdadeiramente magra em H. Além disso, também temos que $b(G - f) \ge 4$, e que precisamente uma das presilhas (a presilha J) de G - f tem mais de quatro vértices. Lembremos que adotamos a notação do Lema 2.3.18 para a decomposição em cortes justos de G - f. Então, G_0, G_1, \ldots, G_r , com $r \in \{4, 5\}$, é o conjunto de presilhas de G - f. Ajuste a notação, trocando G_0, G_1, \ldots, G_r com $G_r, G_{r-1}, \ldots, G_0$ se necessário, de forma que J não esteja em $\{G_0, G_1\}$. Sendo assim, G_0 e G_1 são presilhas de G - f com precisamente quatro vértices cada. Além disso, f é verdadeiramente magra em H. Isto é uma contradição ao Lema 4.1.15. Em resumo, todos os casos analisados ou nos levaram a uma contradição, ou à conclusão de que f é magra em G. De fato, se f tem índice menor do que f em f0 ou se f1 é verdadeiramente magra em f3 a aresta f2 é magra em f4.

TEOREMA 4.1.18

Se a presilha H não tem aresta verdadeiramente magra, então G é o grafo de Heawood.

Demonstração: A prova deste teorema está organizada da seguinte forma. Primeiramente, baseando-nos no Teorema de McCuaig, provamos que se H não tem aresta verdadeiramente magra, então H é igual à roda dupla B_{10} , com dez vértices. Em seguida, baseando-nos no Lema da Não Planaridade das Contrações, mais especificamente no Lema 4.1.12 derivado dele, mostramos que se H é igual ao B_{10} , então G é igual ao grafo de Heawood.

Lema 4.1.19

Se a presilha H não tem aresta verdadeiramente magra, então H é a roda dupla B_{10} .

Demonstração: Suponha que H não tenha aresta verdadeiramente magra. Como e é verdadeiramente magra em G, temos que H é simples. Portanto, de acordo com o Teorema de McCuaig (2.3.27), a presilha H é ou uma escada de Möbius bipartida ou um prisma bipartido ou uma roda dupla. Os vértices de contração de H têm grau pelo menos quatro. Portanto, H não é cúbico. Logo, H não é nem uma escada de Möbius, nem um prisma, que são cúbicos. O grafo H também não é B_8 , a roda dupla com oito vértices, pois esta é o cubo (que é cúbico). Portanto, H é uma roda dupla B_{2n} , para algum n natural maior do que quatro.

Para mostrar que H é o B_{10} , suponha, por absurdo, que H é um B_{2n} , para algum n > 6. Chegaremos a uma contradição mostrando que G tem uma aresta magra de índice 1, em contradição ao Lema 4.1.9. Os vértices $x \in y$, de contração em H, têm ambos grau quatro ou mais em H. Logo, x e y são os centros da roda dupla e estão portanto fora do aro. Então, podemos ajustar a notação de forma que H-x-y seja o circuito $F:=(u_0,w_0,u_1,w_1,\ldots,u_{n-2},w_{n-2},u_0)$ em que u_i é adjacente a x, e w_i adjacente a y, para $i=0,1,\ldots,n-2$. O vértice x tem pelo menos cinco vizinhos em V(F). Portanto, um dentre x_1 e x_2 tem em G pelo menos três vizinhos em V(F). Ajuste a notação de forma que x_1 tenha pelo menos três vizinhos em V(F). Ajuste também a notação dos vértices de F de forma que u_1 seja adjacente a x_1 . Seja g_1 a aresta de G cujos extremos são x_1 e u_1 . Os extremos de g_1 em H são x e u_1 . Além disso, $L:=(H-g_1)\{\{w_0,u_1,w_1\}\to w'\}$ é uma roda dupla B_{2n-2} , com 2n-2 vértices. Sendo assim, L é uma presilha. Dessa forma, g_1 é uma aresta magra de H, e de índice 1 em G, por definição. Portanto, de acordo com o Teorema 4.1.16, g_1 é aresta magra de G. Como g_1 tem índice 1 em G, temos uma contradição ao Lema 4.1.9. De fato, se H não tem aresta verdadeiramente magra, então H é igual à roda dupla B_{10} .

Mostraremos agora que se H é igual ao B_{10} , o grafo G é igual ao grafo de Heawood. Isto será feito derivando adjacências que o Lema 4.1.12 implica. Nosso plano é em seguida mostrar que H é igual a B_{10} , fechando assim a prova do Teorema Principal, a menos dos três lemas da seção anterior.

Lema 4.1.20

Se H é igual ao grafo B_{10} , então G é igual ao grafo de Heawood.

<u>Demonstração</u>: Em H, os vértices x e y têm grau pelo menos quatro, pois são de contração. Suponha que $H = B_{10}$. Então, x e y são os vértices de grau quatro de H. Então, H-x-y é igual a um circuito de tamanho oito. Podemos ajustar a notação de forma que este circuito seja $F := (u_0, w_0, u_1, w_1, u_2, w_2, u_3, w_3, u_0)$. De acordo com o Lema 4.1.12, as arestas de $\partial_G(x_1) - x_1x_0$ não são contíguas ao redor de x em \tilde{H} . Portanto, existe uma quádrupla de arestas $\{e_0, e_1, e_2, e_3\}$ incidentes em x tal que a ordem cíclica no corte $\partial(x)$ ao redor de x em \tilde{H} é e_0, e_1, e_2, e_3 , e e_0 e e_2 incidem em x_1 e e_1 e e_3 incidem em x_2 em G. Como x e y não são adjacentes, todas estas arestas incidem em x e em vértices de F. Portanto, temos que a ordem cíclica em F dos extremos destas arestas é igual à ordem cíclica destas arestas, pois H é simples. Sendo assim, podemos ajustar a notação de forma que e_i incide em u_i em H. Então, temos que x_1u_0, x_1u_2, x_2u_1 e x_2u_3 são arestas de G. Analogamente, podemos ajustar a notação de forma que y_1w_0, y_1w_2, y_2w_1 e y_2w_3 são arestas de G. Então, temos o grafo mostrado na Figura 4.11. Este grafo é isomorfo ao grafo de Heawood, ilustrado nas Figuras 4.11 e 4.12.

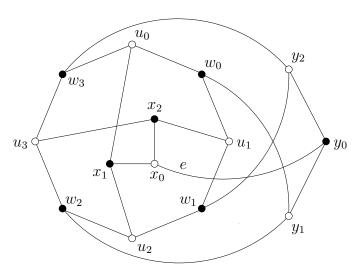


Figura 4.11: O grafo G, o grafo de Heawood.

De fato, se H não tem aresta verdadeiramente magra, então G é o grafo de Heawood, H_{14} .

Mostraremos a seguir que H não tem aresta verdadeiramente magra. Vimos anteriormente que, nesse caso, G é o grafo de Heawood. Sendo assim, a prova do Teorema seguinte completa a prova do Teorema Principal, a menos dos três lemas da Seção 4.1.1.

TEOREMA 4.1.21

A presilha H não tem aresta verdadeiramente magra.

<u>Demonstração</u>: Suponha, por absurdo, que f seja uma aresta verdadeiramente magra de \overline{H} . De acordo com o Teorema 4.1.16, f é magra em G. Pelo Lema 4.1.9, o índice de f é 2 em G. Sejam r_0 e s_0 os extremos de f em G. Então, r_0 tem dois vizinhos r_1 e r_2

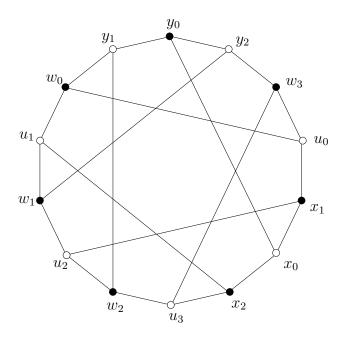


Figura 4.12: O grafo G, o grafo de Heawood.

em G, distintos de s_0 . Analogamente, s_0 tem dois vizinhos s_1 e s_2 em G, distintos de r_0 . Sejam $R := \{r_0, r_1, r_2\}$ e $S := \{s_0, s_1, s_2\}$. Então, $J := (G - f)\{R \to r\}\{S \to s\}$ é a presilha interna de G - f. Para chegarmos a uma contradição à hipótese de que f é verdadeiramente magra em H, analisaremos quatro casos, após a demonstração dos seguintes lemas auxiliares:

Lema 4.1.22

Se f não incide nem em x nem em adjacente de x, então $X \cap (R \cup S) = \emptyset$.

Demonstração: Como f é aresta de H, temos que f é distinta de e, de x_0x_1 e de x_0x_2 . Logo, f não incide em x_0 , e $r_0 \neq x_0$. Analogamente, $r_0 \neq y_0$. Por hipótese, f não incide em x, e portanto $r_0 \notin \{x_1, x_2\}$. Mostraremos agora que $x_0 \notin \{r_1, r_2\}$. Suponha que $x_0 \in \{r_1, r_2\}$. Nesse caso, r_0 seria adjacente a x_0 , e r_0 estaria em $\{x_1, x_2, y_0\}$, uma contradição às conclusões anteriores. Pela hipótese do caso, f não incide em adjacente de x. Portanto, $r_i \notin \{x_1, x_2\}$, para $i \in \{1, 2\}$. De fato, $R \cap X = \emptyset$. Analogamente, $S \cap X = \emptyset$.

Lema 4.1.23

Se f não incide em x, mas incide em adjacente de x, então podemos ajustar a notação de forma que $x_1 = r_1$ seja o único vértice de $X \cup R$ que pertença a mais de um conjunto dentre X, Y, R e S. Além disso, $x_1 = r_1$ não pertence a $Y \cup S$.

<u>Demonstração</u>: Por hipótese, f incide em vértice adjacente a x em H. Portanto, podemos ajustar a notação de forma que r_0 é adjacente a x em H. Sendo assim, um vértice do conjunto de vizinhos de r_0 ($\{s_0, r_1, r_2\}$) está em $\{x_1, x_2\}$. No entanto, pela hipótese do caso, f não incide em x, e portanto s_0 não está em $\{x_1, x_2\}$. Sendo assim, um vértice de $\{r_1, r_2\}$ está em $\{x_1, x_2\}$. Ajuste a notação de forma que $x_1 = r_1$. Como $x_1 = r_1$, temos que $\{y_1, y_2, x_0, r_0, s_1, s_2\}$ é uma parte da bipartição de $Y \cup X \cup S \cup R$, e $\{y_0, x_2, x_1 = r_1, r_2, s_0\}$ é a outra parte, como ilustrado na Figura 4.14.

Mostraremos agora que $R \cap X = \{x_1 = r_1\}$. Suponha, por absurdo, que r_2 esteja em X. Nesse caso, como $r_2 \neq r_1$ e r_2 e x_0 estão em partes distintas da bipartição de G, temos que $r_2 = x_2$. Então, $(r_0, r_1 = x_1, x_0, x_2 = r_2, r_0)$ é um quadrilátero de G - e com o vértice x_0 incidente em e, em contradição à escolha de e como verdadeiramente magra de índice 2 em G. De fato, $r_2 \notin X$. Suponha, por absurdo, que r_0 esteja em X. O único vértice de X na mesma parte da bipartição de r_0 é o vértice x_0 . Portanto, $r_0 = x_0$, e a aresta f incide em x_0 , em contradição ao fato de que f é aresta de H. De fato, $R \cap X = \{x_1 = r_1\}$.

Mostraremos agora que $S \cap (X \cup R) = \emptyset$. Suponha, por absurdo, que s_0 está em X. Os vértices de X que estão na mesma parte da bipartição de s_0 são x_1 e x_2 . No entanto, x_1 está em R, e S e R são disjuntos. Portanto, $s_0 = x_2$. Nesse caso, $(x_0, x_1 = r_1, r_0, s_0 = x_2, x_0)$ é um quadrilátero de G - e com o vértice x_0 incidente em e. Isto é uma contradição à escolha de e como aresta verdadeiramente magra de índice e em e. De fato, e0 e1. Suponha, por absurdo, que e1 esteja em e2. O único vértice de e2 na mesma parte da bipartição de e1 e2 o vértice e3. Então, e4 e5. Nesse caso, e6 e6 e7 e7 com o vértice e9 incidente em e8. Isto é uma contradição à escolha de e8 como aresta verdadeiramente magra de índice e8 de fato, e8 não está em e8. Sendo assim, e8 e9. Como e8 e9, temos que e9, temos que e9. Como e9, temos que e9, temos que e9.

Mostraremos agora que $Y \cap (X \cup R) = \emptyset$, e em seguida fecharemos a prova. Suponha, por absurdo, que y_0 esteja em R. Os vértices de R que estão na mesma parte da bipartição de y_0 são r_1 e r_2 . No entanto, r_1 está em X, e X e Y são disjuntos. Portanto, $y_0 = r_2$. Nesse caso, $(r_0, r_1 = x_1, x_0, y_0 = r_2, r_0)$ é um quadrilátero de G contendo e com o vértice r_0 de grau três não incidente em e. Isto é uma contradição ao Lema 4.1.13. De fato, $y_0 \notin R$. Suponha, por absurdo, que y_1 esteja em R. O único vértice de R que está na mesma parte da bipartição de y_1 é o vértice r_0 . Portanto, $y_1 = r_0$. Sendo assim, $(x_0, y_0, y_1 = r_0, r_1 = x_1, x_0)$ é um quadrilátero de G contendo e com o vértice $r_0 = y_1$ de grau três não incidente em e. Isto é uma contradição ao Lema 4.1.13. De fato, $y_1 \notin R$. Analogamente, $y_2 \notin R$, e portanto $Y \cap R = \emptyset$. Como, $X \cap Y = \emptyset$, temos que $Y \cap (X \cup R) = \emptyset$. Vimos que $S \cap (X \cup R) = \emptyset$, portanto $(X \cup R) \cap (Y \cup S) = \emptyset$. Além disso, $X \cap R = \{x_1 = r_1\}$. De fato, $x_1 = r_1$ é o único vértice de $X \cup R$ que pertence mais de um conjunto dentre X, Y, R e S.

Caso 1 A aresta f não \acute{e} incidente nem em x nem em y nem em vértice adjacente a x ou a y.

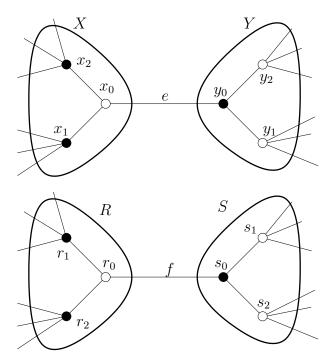


Figura 4.13: O grafo G no caso em que f não é incidente em vértice adjacente a x ou a y, nem em x e nem em y.

O grafo H é igual a $(G-e)\{X \to x\}\{Y \to y\}$. Como f tem índice 2 em H, $L:=(H-f)\{R \to r\}\{S \to s\}$ é a presilha interna de H-f. Sendo assim, L é obtido de G-e-f pela contração de cada um dos conjuntos disjuntos X, Y, R e S a um vértice cada. Vamos obter uma contradição ao Teorema de Whitney (2.6.6), obtendo duas imersões planares distintas para L e mostrando que L é simples e 3-conexo.

Sabemos que $H=(G-e)\{X\to x\}\{Y\to y\}$ é planar. Pelo Lema 4.1.12, as arestas de $\partial_G(x_2)-x_2x_0$ não são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} . Uma imersão planar M_1 de L pode ser obtida de $\tilde{H}-f$ pela contração das arestas dos caminhos (r_1,r_0,r_2) e (s_1,s_0,s_2) . Contração de arestas de uma imersão preserva a ordem cíclica das arestas

não contraídas em um corte. Portanto, as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas em $\partial_L(x)$ ao redor de x em M_1 .

Lembremos que J denota a presilha $(G-f)\{R \to r\}\{S \to s\}$. Como f é magra em G, temos que J é planar, de acordo com o Lema 4.1.9. Seja \tilde{J} uma imersão planar de J. Então, as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_J(X)$ ao redor de X em \tilde{J} . Uma imersão planar M_2 de L pode ser obtida de $\tilde{J}-e$ pela contração das arestas dos caminhos (x_1, x_0, x_2) e (y_1, y_0, y_2) . Contração de arestas de uma imersão preserva a ordem cíclica das arestas não contraídas em um corte. Portanto, as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas em $\partial_L(x)$ ao redor de x em M_2 .

Em resumo, temos uma imersão planar M_1 de L na qual as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas no corte $\partial_L(x)$ ao redor de x, e uma imersão M_2 de L na qual as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_L(x)$ ao redor de x. Sendo assim, L tem duas imersões planares distintas. No entanto, L é uma presilha 3-conexa e simples. Isto é uma contradição ao Teorema de Whitney (2.6.6). De fato, H não tem aresta verdadeiramente magra que não incida nem em x, nem em y e nem em adjacente de x ou de y.

Caso 2 A aresta f incide em vértice adjacente a y em H, mas não a vértice adjacente a x, e não incide nem em x nem em y.

Mostraremos agora que a situação de G é como mostrada na Figura 4.14, ou seja o vértice $y_1 = s_1$ é o único vértice que pertence a mais de um conjunto dentre X, Y, R e S. Sabemos que X e Y são disjuntos, e que R e S são disjuntos. Pela hipótese do caso, f não incide em x, nem em adjacente de x. Logo, de acordo com o Lema 4.1.22, $X \cap (R \cup S) = \emptyset$. Pela hipótese do caso, f incide em vértice adjacente a g, mas não incide em g. Portanto, pelo Lema 4.1.23 aplicado a g e g, podemos ajustar a notação de forma que g como g como lema 4.1.25 aplicado a g e g como pertence a mais de um conjunto dentre g como lema. Portanto, g como lema disso, g como g que pertence a g como lema. Portanto, g como lema conjuntos dentre g como lema em g como em g como

O grafo H é igual a $(G - e)\{X \to x\}\{Y \to y\}$. Como f tem índice 2 em H, $L := (H - f)\{R \to r\}\{S' \to q\}$ é a presilha interna de H - f, onde $S' := \{y, s_0, s_2\}$. Vamos obter uma contradição ao Teorema de Whitney (2.6.6), obtendo duas imersões planares distintas para L e mostrando que L é simples e 3-conexo.

Sabemos que $H = (G - e)\{X \to x\}\{Y \to y\}$ é planar. Pelo Lema 4.1.12, as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} . Uma imersão planar M_1 de L pode ser obtida de $\tilde{H} - f$ pela contração das arestas dos caminhos (r_1, r_0, r_2) e (y, s_0, s_2) . Contração de arestas de uma imersão preserva a ordem cíclica das arestas não contraídas em um corte. Portanto, as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas em

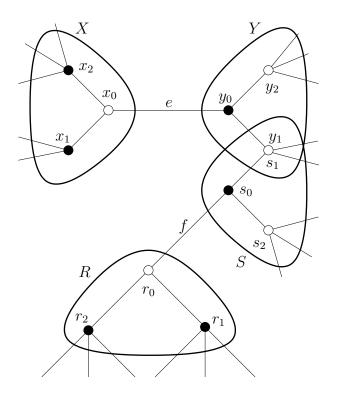


Figura 4.14: O grafo G no caso em que f incide em adjacente de y em H, mas não incide em adjacente de x em H, e não incide nem em x nem em y.

 $\partial_L(x)$ ao redor de x em M_1 .

Lembremos que J denota a presilha $(G-f)\{R \to r\}\{S \to s\}$. Como f é magra em G, temos que J é planar, de acordo com o Lema 4.1.9. Seja \tilde{J} uma imersão planar de J. Então, as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_J(X)$ ao redor de X em \tilde{J} . Uma imersão planar M_2 de L pode ser obtida de $\tilde{J}-e$ pela contração das arestas dos caminhos (x_1,x_0,x_2) e (s,y_0,y_2) . Contração de arestas de uma imersão preserva a ordem cíclica das arestas não contraídas em um corte. Portanto, as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas em $\partial_L(x)$ ao redor de x em M_2 .

Em resumo, temos uma imersão planar M_1 de L na qual as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas no corte $\partial_L(x)$ ao redor de x, e uma imersão M_2 de L na qual as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_L(x)$ ao redor de x. Sendo assim, L tem duas imersões planares distintas. No entanto, L é uma presilha 3-conexa e simples. Isto é uma contradição ao Teorema de Whitney (2.6.6). De fato, H não tem aresta verdadeiramente magra que não incida nem em x, nem em y e nem em adjacente de x, mas incida em adjacente de y.

Caso 3 A aresta f incide em vértice adjacente a x e em vértice adjacente a y, mas não

incide nem em x, nem em y.

Mostraremos agora que, nesse caso, temos a situação da Figura 4.15, ou seja os vértices $x_1 = r_1$ e $y_1 = s_1$ são os únicos vértices que pertencem a mais de um conjunto dentre X, Y, R e S. Sabemos que X e Y são disjuntos, e que R e S são disjuntos. Pela hipótese do caso, a aresta f é incidente em vértice adjacente a x em H, mas não é incidente em x. Portanto, de acordo com o Lema 4.1.23, podemos ajustar a notação de forma que $x_1 = r_1$ é o único vértice de $X \cup R$ que pertence a mais de um conjunto dentre X, Y, R e S. Além disso, por este mesmo lema, $x_1 = r_1$ não pertence a $Y \cup S$. Então, $X \cup R$ e $Y \cup S$ são disjuntos. Pela hipótese do caso, a aresta f é incidente em adjacente de g, mas não é incidente em g. Portanto, de acordo com o Lema 4.1.23, podemos ajustar a notação de forma que $g_1 = g_1$ seja o único vértice de g0 que pertence a mais de um conjunto dentre g1. Portanto, de acordo com o Lema 4.1.23, podemos ajustar a notação de forma que g2 seja o único vértice de g3. Além disso, o índice de g4 em g5 que pertencem a mais de um conjunto dentre g6. Além disso, o índice de g7 em g8 que pertencem a mais de um conjunto dentre g9. Além disso, o índice de g9 em g9 em g9 em g9 em g9. Além disso, o índice de g9 em g9. Além disso, o índice de g9 em g9

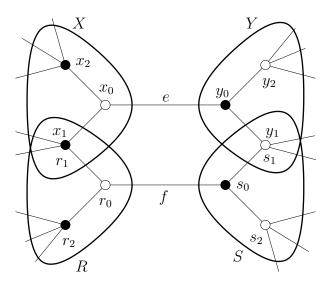


Figura 4.15: O grafo G no caso em que f incide em adjacente de x e em adjacente de y em H.

O grafo H é igual a $(G-e)\{X \to x\}\{Y \to y\}$, e $L := (H-f)\{R' \to p\}\{S' \to q\}$ é a presilha interna de H-f, onde $R' := \{x, r_0, r_2\}$ e $S' := \{y, s_0, s_2\}$. Vamos obter uma contradição ao Teorema de Whitney (2.6.6), obtendo duas imersões planares distintas para L e mostrando que L é simples e 3-conexo. A seguir enunciaremos um lema utilizado no restante da prova deste caso.

Lema 4.1.24

Seja $\tilde{L} := (\tilde{H} - f)\{\{x, r_0, r_2\} \to p\}\{\{y, s_0, s_2\} \to q\}$ uma imersão de L obtida de $\tilde{H} - f$ pela contração dos caminhos (x, r_0, r_2) e (y, s_0, s_2) aos vértice p e q, respectivamente. Seja F um subconjunto das arestas de $\partial_H(x) - xr_0$. Então, as arestas de F são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} se e somente se as arestas de F são contíguas em $\partial_L(p)$ ao redor de p em \tilde{L} .

Demonstração: Seja (e_0, e_1, \ldots, e_m) uma enumeração das arestas de $\partial_H(x)$, tal que a enumeração indica a ordem cíclica das arestas ao redor de x em \tilde{H} . Ajuste a notação de forma que $e_0 = xr_0$. Analogamente, seja (f_0, f_1, \ldots, f_n) uma enumeração das arestas de $\partial_H(r_2)$, tal que a enumeração indica a ordem cíclica das arestas ao redor de r_2 em \tilde{H} . Ajuste a notação de forma que $f_0 = r_0r_2$. Vide Figura 4.15. Sendo assim, é possível ajustar a notação, trocando (f_0, f_1, \ldots, f_n) por $(f_0, f_n, f_{n-1}, \ldots, f_1)$ se necessário, de forma que $(e_1, e_2, \ldots, e_m, f_1, f_2, \ldots, f_n)$ seja uma enumeração das arestas de $\partial_L(p)$, tal que a enumeração indica a ordem cíclica ao redor de p em \tilde{L} .

Suponha, primeiramente, que as arestas de F são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} , ou seja contíguas em (e_0, e_1, \ldots, e_m) . Então, existem i e j, tais que $1 \leq i \leq j \leq m$, e $F = \{e_i, e_{i+1}, \ldots, e_j\}$. Nesse caso, as arestas de $F = \{e_i, e_{i+1}, \ldots, e_j\}$ são contíguas em $\partial_L(p)$ ao redor de p em \tilde{L} , ou seja contíguas em $(e_1, e_2, \ldots, e_m, f_1, f_2, \ldots, f_n)$. Sendo assim, se as arestas de F são contíguas em \tilde{H} ao redor de p, elas são contíguas em \tilde{L} ao redor de p.

Suponhas, agora, que as arestas de F são contíguas em $\partial_L(p)$ ao redor de p em \tilde{L} , ou seja contíguas em $(e_1, e_2, \ldots, e_m, f_1, f_2, \ldots, f_n)$. No entanto, F é um subconjunto de $\{f_1, f_2, \ldots, f_n\}$. Portanto, existem i e j, tais que $1 \leq i \leq j \leq m$, e $F = \{e_i, e_{i+1}, \ldots, e_j\}$. Nesse caso, as arestas de $F = \{e_i, e_{i+1}, \ldots, e_j\}$ são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} , ou seja contíguas em (e_0, e_1, \ldots, e_m) . Sendo assim, se as arestas de F são contíguas em \tilde{L} ao redor de p, elas são contíguas em \tilde{H} ao redor de p. De fato, o lema é válido. \Box

Sabemos que $H = (G - e)\{X \to x\}\{Y \to y\}$ é planar. Pelo Lema 4.1.12, as arestas de $F := \partial_G(x_2) - x_2x_0$ não são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} . Note que F é um subconjunto de $\partial_H(x) - xr_0$. Uma imersão planar M_1 de L pode ser obtida de $\tilde{H} - f$ pela contração das arestas de (x, r_0, r_2) e de (y, s_0, s_2) . Sendo assim, pelo Lema 4.1.24, as arestas de F não são contíguas em $\partial_L(p)$ ao redor de p em M_1 .

Seja $J := (G - f)\{R \to r\}\{S \to s\}$. Como f é magra em G, temos que J é planar, de acordo com o Lema 4.1.9. Seja \tilde{J} uma imersão planar de J. Então, as arestas de $F = \partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_J(X')$ ao redor de X' em \tilde{J} , onde $X' := \{r, x_0, x_2\}$. O grafo L é igual a $(J - e)\{X' \to p\}\{Y' \to q\}$, onde $X' := \{r, x_0, x_2\}$ e $Y' := \{s, y_0, y_2\}$, como visto na Figura 4.15. Além disso, J - e restrito a X' é igual ao caminho (r, x_0, x_2) , e restrito a Y' é igual ao caminho (s, y_0, y_2) . Portanto, uma imersão

planar M_2 de L pode ser obtida de $\tilde{J}-e$ pela contração das arestas deste caminhos. Contração de arestas de uma imersão preserva a ordem cíclica das arestas não contraídas em um corte. Portanto, as arestas de $F = \partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_L(p)$ ao redor de p em M_2 .

Em resumo, temos uma imersão planar M_1 de L tal que as arestas de $F = \partial_G(x_2) - x_2x_0$ não são contíguas no corte $\partial_L(p)$ ao redor de p em M_1 , e uma imersão M_2 de L tal que as arestas de $F = \partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_L(p)$ ao redor de p em M_2 . Sendo assim, L tem duas imersões planares distintas. No entanto, L é uma presilhas 3-conexa e simples. Isto é uma contradição ao Teorema de Whitney (2.6.6). De fato, H não tem aresta verdadeiramente magra que não incida nem em x nem em y, mas incida em adjacente de x e em adjacente de y.

Caso 4 Nenhum dos anteriores.

Mostraremos inicialmente que, nesse caso, f incide em x ou em y em H. Como o Caso 1 não acontece, temos que f incide ou em vizinho de x, ou em vizinho de y, ou em x ou em y. Ajuste a notação de forma que f incida ou em f ou em vizinho de f. Se f incide em f0, a nossa afirmação é válida. Portanto, podemos supor que f1 não incide em f2. Sendo assim, f3 incide em vizinho de f3. Como o Caso 2 não acontece, temos que f4 incide ou em f6 ou em f7 vizinho de f8. Como o Caso 3 não acontece, temos que f8 não incide em vizinho de f9. De fato, f9 incide ou em f9 ou em f9. Ajuste a notação de forma que f9 incida em f9.

Mostraremos agora que, nesse caso, temos a situação da Figura 4.16, ou seja $y_0 = r_1$ e $y_1 = r_0$ são os únicos vértices que pertencem a mais de um conjunto dentre X, Y, R e S. Sabemos que X e Y são disjuntos e R e S são disjuntos. Como f incide em y em H, então um dentre r_0 e s_0 está em $\{y_1,y_2\}$. Podemos ajustar a notação de forma que $r_0 = y_1$. Nesse caso, y_0 é adjacente a r_0 . Então, y_0 está em $\{s_0, r_1, r_2\}$. No entanto, fnão é adjacente a e. Portanto, $y_0 \neq s_0$, e então $y_0 \in \{r_1, r_2\}$. Ajuste a notação de forma que $y_0 = r_1$. Sendo assim, $\{x_2, x_1, y_0 = r_1, r_2, s_0\}$ está em uma parte da bipartição de G, e $\{x_0, y_2, y_1 = r_0, s_1, s_2\}$ está na outra, como ilustrado na Figura 4.16. Suponha, por absurdo, que r_2 esteja em X. Então, como r_2 e x_0 estão em partes distintas da bipartição de G, temos que $r_2 \in \{x_1, x_2\}$. Sendo assim, $(r_2 = x_i, x_0, y_0 = r_1, y_1 = r_0, r_2 = x_i)$ é um quadrilátero de G contendo e com o vértice $r_0 = y_1$ de grau três não incidente em e. Isto é uma contradição ao Lema 4.1.13. De fato, $r_2 \notin X$. Então, como $R - Y = \{r_2\}$ e $X \cap Y = \emptyset$, temos que $Y \cup R$ e X são disjuntos. Suponha, por absurdo, que y_2 está em S. Então, como y_2 e s_0 estão em partes distintas da bipartição de G, temos que $y_2 \in \{s_1, s_2\}.$ Sendo assim, $(y_2 = s_i, s_0, r_0 = y_1, r_1 = y_0, y_2 = s_i)$ é um quadrilátero de G-e com o vértice $y_0=r_1$ incidente em e. Isto é uma contradição à escolha de ecomo aresta verdadeiramente magra de índice 2 de G. De fato, $y_2 \notin S$. Então, como

 $Y-R=\{y_2\},\ e\ R\cap S=\emptyset,\ temos\ que\ Y\cup R\ e\ X\cup S\ são\ disjuntos.$ Suponha, por absurdo, que s_0 esteja em X. Então, como s_0 e x_0 estão em partes distintas da bipartição de G, temos que $s_0\in\{x_1,x_2\}.$ Sendo assim, $(s_0=x_i,x_0,y_0=r_1,y_1=r_0,s_0=x_i)$ é um quadrilátero de G contendo e com o vértice $s_0=x_i$ de grau três não incidente em e. Isto é uma contradição ao Lema 4.1.13. De fato, $s_0\notin X$. Suponha, por absurdo, que s_1 esteja em X. Então, como s_1 está em parte da bipartição distinta da parte contendo $\{x_1,x_2\},$ temos que $s_1=x_0$. Então, $(s_1=x_0,y_0=r_1,y_1=r_0,s_0,s_1=x_0)$ é um quadrilátero de G contendo e com o vértice s_0 de grau três não incidente em e. Isto é uma contradição ao Lema 4.1.13. De fato, $s_1\notin X$. Analogamente, $s_2\notin X$. De fato, X e S são disjuntos. Vimos, anteriormente, que $(Y\cup R)$ e $(X\cup S)$ são disjuntos. Então, $y_0=r_1$ e $y_1=r_0$ são os únicos vértices que pertencem a mais de um dentre X, Y, R e S. Além disso, $y_0=r_1$ e $y_1=r_0$ não pertencem a $X\cup S$.

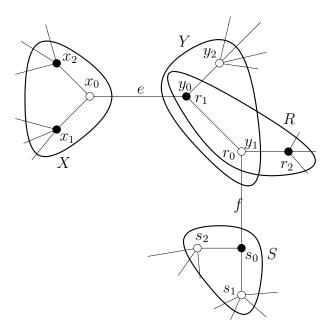


Figura 4.16: O grafo G no caso em que f incide em y em H.

O grafo H é igual a $(G-e)\{X \to x\}\{Y \to y\}$, e $L := (H-f)\{S \to s\}$ é a presilha interna de H-f. Sendo assim, L é igual a $(G-e-f)\{X \to x\}\{Y \to y\}\{S \to s\}$. Seja $K := (G-e-f)\{X \to x\}\{S \to s\}$. O grafo K pode ser obtido de L pela subdivisão da aresta yr_2 no caminho (y_2, y_0, y_1, r_2) . Subdivisão de aresta preserva a unicidade da imersão planar. Vamos obter duas imersões planares distintas de K. Em seguida, mostraremos que L é simples e 3-conexo. Como K tem uma única imersão planar se e somente se L tem uma única imersão planar, isto é uma contradição ao Teorema de Whitney (2.6.6).

Sabemos que $H = (G - e)\{X \to x\}\{Y \to y\}$ é planar. Pelo Lema 4.1.12, as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} . Uma imersão planar M_1 de K pode ser obtida de $\tilde{H} - f$ pela contração das arestas de (s_1, s_0, s_2) e pela subdivisão da aresta yr_2 no caminho (y_2, y_0, y_1, r_2) . Contração de arestas de uma imersão preserva a ordem cíclica das arestas não contraídas em um corte. Além disso, a aresta subdivida não está em $\partial_H(x)$. Portanto, as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas em $\partial_K(x)$ ao redor de x em M_1 .

Seja $J := (G - f)\{R \to r\}\{S \to s\}$. Como f é magra em G, temos que J é planar, de acordo com o Lema 4.1.9. Seja \tilde{J} uma imersão planar de J. As arestas de $\partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_J(X)$ ao redor de X em \tilde{J} . Uma imersão planar M_2 de K pode ser obtida de $\tilde{J} - e$ pela contração do conjunto X ao vértice x e subdivisão da aresta ry_2 no caminho (y_2, y_0, y_1, r_2) . Vide Figura 4.16. Contração de arestas de uma imersão preserva a ordem cíclica das arestas não contraídas em um corte. Além disso, a aresta subdividida não está em $\partial_J(X)$. Portanto, as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_K(x)$ ao redor de x em M_2 .

Em resumo, temos uma imersão planar M_1 de K tal que as arestas de $\partial_G(x_2) - x_2x_0$ não são contíguas no corte $\partial_K(x)$ ao redor de x em M_1 , e uma imersão M_2 de K tal que as arestas de $\partial_G(x_2) - x_2x_0$ são contíguas no corte $\partial_K(x)$ ao redor de x em M_2 . Sendo assim, K tem duas imersões planares distintas. No entanto, K é obtido de L através de uma subdivisão de uma aresta em um caminho. A subdivisão de uma aresta em um caminho preserva a unicidade da imersão planar. Então, L tem mais de uma imersão planar. O grafo L é uma presilha 3-conexa e simples. Isto é uma contradição ao Teorema de Whitney (2.6.6). De fato, nenhum dos casos é possível.

Em resumo, a hipótese de absurdo de que H tem uma aresta verdadeiramente magra nos levou a contradições em todos os casos. De fato, a presilha H não tem aresta verdadeiramente magra.

Sendo assim, H não tem aresta verdadeiramente magra, pelo Teorema 4.1.21 anterior. Então, de acordo com o Teorema 4.1.18, o grafo G é igual ao grafo de Heawood, como queríamos demonstrar. Sendo assim, a prova do Teorema Principal estará completa logo que as provas para os três lemas enunciados na Seção 4.1.1 sejam feitas. Isto será feito nos capítulos seguintes.

Capítulo 5

Lema do Grafo de Heawood não Contido

Neste Capítulo, mostraremos que se G é uma presilha simples Pfaffiana, nenhuma presilha de G - e é isomorfa ao grafo de Heawood.

5.1 Lema do Grafo de Heawood não Contido

O Lema seguinte foi enunciado anteriormente no Capítulo 4 com o nome de Lema do Grafo de Heawood não Contido, ou Lema 4.1.3.

Lema 5.1.1

Seja G uma presilha simples Pfaffiana, $e = x_0y_0$ uma aresta de G. Então, o grafo simples subjacente de qualquer presilha de G - e não é isomorfo ao grafo de Heawood.

<u>Demonstração</u>: Suponha, por absurdo, que H seja uma presilha de G-e cujo grafo simples subjacente é isomorfo ao grafo de Heawood. Considere a enumeração dos vértices de H mostrada na Figura 5.1. Seja D(H) uma orientação bipartida orientada de H. De acordo com o Lema 2.5.1, D(H) é Pfaffiana. Além disso, todo vértice de H é ou uma fonte ou um sorvedouro. Portanto, de acordo com o Lema 2.4.10, D(H) pode ser estendida a uma orientação D(G-e) de G-e. Pelo Teorema 2.4.5, D(G-e) pode ser estendida a uma orientação Pfaffiana D(G) de G.

Como D(H) é bipartida orientada, todo circuito de tamanho n, com $n \equiv 0 \mod 4$, de H tem orientação par em D(H). Em particular, Q := (1, 2, 3, 4, 5, 6, 10, 11, 1) tem orientação par em D(H). Caso Q seja um circuito de G, sua orientação em D(G) também é par. Analisaremos vários casos e, em cada um deles, ou mostraremos que Q é conforme em G, ou que Q é parte de um circuito conforme de G cuja orientação em D(G) é par, em contradição ao Teorema 1.2.3. Assim, provamos o lema.

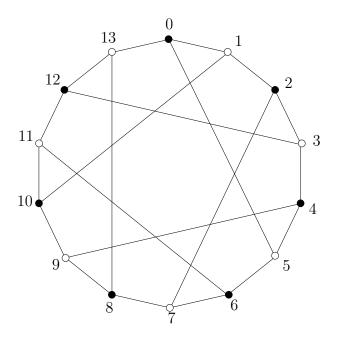


Figura 5.1: O grafo de Heawood.

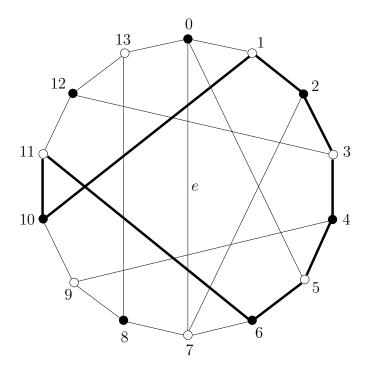


Figura 5.2: O grafo de Heawood mais a aresta e, e em negrito Q. Caso 1.

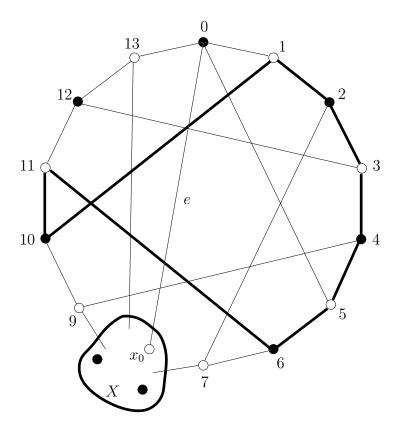


Figura 5.3: Caso 2: grafo G, em negrito o circuito Q e o conjunto X.

De acordo com o Corolário 2.3.19, H tem no máximo dois vértices de contração. Sendo assim, temos três casos a analisar: H tem zero, um ou dois vértices de contração.

Caso 1 O grafo H não tem vértice de contração.

Como H não tem vértice de contração, então G = H + e. Pelo Corolário 2.5.6, podemos supor que e = (0,7). Nesse caso, $\{(0,7),(8,9),(12,13)\}$ é emparelhamento perfeito de G - V(Q). Sendo assim, Q é circuito conforme em G, cuja orientação em D(G) é par. Portanto, pelo Teorema 1.2.3, D(G) não é Pfaffiana, uma contradição.

Caso 2 O grafo H tem precisamente um vértice de contração.

Nesse caso, tanto o vértice de contração como o outro extremo da aresta e estão na mesma parte da bipartição de H, de acordo com o Corolário 2.3.19. Lembremos que $e = x_0y_0$. Ajuste a notação de forma que $H = (G - e)\{X \to x\}$, e que $x_0 \in X$. Pelo Corolário 2.5.8, podemos supor que x = 8, e que $y_0 = 0$, como visto na Figura 5.3. Seja M a extensão de $\{e, (12, 13)\}$ a um emparelhamento perfeito de G. Pelo Corolário 2.3.17, M tem precisamente três arestas em $\partial(X)$. É fácil ver que $N_G(X) - X = \{0, 7, 9, 13\}$, conforme ilustrado

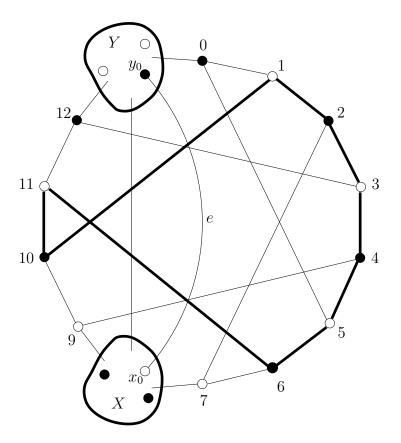


Figura 5.4: Caso 3.1: grafo G, em negrito o circuito Q e os conjuntos X e Y.

na Figura 5.3. O vértice 13 está emparelhado por M com o vértice 12, fora de X. Portanto, os vértices 0, 7 e 9 são precisamente os vértices de V(G)-X emparelhados por M com vértices de X. Dessa forma, M restrito a $G[X \cup \{0,7,9,12,13\}]$ é emparelhamento perfeito deste grafo. Por outro lado, $V(Q) = V(G) - X - \{0,7,9,12,13\}$. Sendo assim, Q é circuito conforme em G, cuja orientação em D(G) é par. Portanto, pelo Teorema 1.2.3, D(G) não é Pfaffiana, uma contradição.

Caso 3 O grafo H tem precisamente dois vértices de contração.

Dividiremos este caso em dois subcasos: (i) os vértices de contração são adjacentes em H (ii) os vértices de contração não são adjacentes em H.

Caso 3.1 Os dois vértices de contração de H são adjacentes.

Lembremos que $e = x_0y_0$. Ajuste a notação tal que $H = (G - e)\{X \to x\}\{Y \to y\}$, $x_0 \in X$, e $y_0 \in Y$. Por hipótese, x e y são adjacentes em H. Portanto, pelo Corolário 2.5.6, podemos supor que x = 8 e y = 13, conforme ilustrado na Figura 5.4. Sejam

 $C := \partial_G(X \cup Y), C_X' := C \cap \partial_G(X)$ e $C_Y' := C \cap \partial_G(Y)$. Ambos X e Y têm pelo menos três vértices. Portanto, $|X \cup Y| \geq 6$. A presilha H é isomorfa ao grafo de Heawood (a menos de arestas múltiplas), logo possui quatorze vértices. Assim, G - X - Y tem doze vértices. Sendo assim, pelo Lema 2.3.22, C tem um emparelhamento de tamanho três. Como $C = C'_X \cup C'_Y$, um dentre C'_X e C'_Y tem um emparelhamento de tamanho dois. Ajuste a notação de forma que C_X' tenha um emparelhamento M_X de tamanho dois. Seja M uma extensão de M_X a um emparelhamento perfeito de G. Os vértices 7 e 9 são os únicos extremos de arestas de C'_X fora de X, pois as demais arestas de $\partial_G(X)$ possuem um extremo em Y. Portanto, tanto 7 como 9 são incidentes em arestas de $M \cap C'_X$. Por outro lado, $\partial(X) - e$ é justo em G - e. Então, pelo Corolário 2.3.17, a aresta e está em M e é a única aresta de $M \cap \partial(X)$ além das arestas com extremos em 7 e 9. Além disso, como $e \in M, M \cap \partial(Y)$ tem precisamente três arestas. Destas, somente e tem extremo em X. Portanto, tanto 0 como 12 estão emparelhados por M com vértices de Y. Dessa forma, M restrito a $G[X \cup Y \cup \{0,7,9,12\}]$ é emparelhamento perfeito deste grafo. Por outro lado, $V(Q) = V(G) - X - Y - \{0, 7, 9, 12\}$. Sendo assim, Q é circuito conforme em G, cuja orientação em D(G) é par. Portanto, pelo Teorema 1.2.3, D(G) não é Pfaffiana, uma contradição.

Caso 3.2 Os dois vértices de contração de H não são adjacentes.

Lembremos que $e = x_0 y_0$. Ajuste a notação de forma que $H = (G - e)\{X \to x\}\{Y \to y\}$, $x_0 \in X$, e $y_0 \in Y$. Pelo Corolário 2.3.19, os vértices de contração estão em partes distintas da bipartição de H. Por hipótese, x e y não são adjacentes. Portanto, pelo Corolário 2.5.7, podemos ajustar a notação de forma que x = 6 e y = 13, conforme ilustrado na Figura 5.5. Seja M uma extensão de $\{e, (10, 11)\}$ a um emparelhamento perfeito de G. Pelo Corolário 2.3.17, M tem precisamente três arestas em $\partial(X)$. Por outro lado, é fácil ver que $N(X) - X = \{y_0, 5, 7, 11\}$. No entanto, 11 está emparelhado por M com o vértice 10, fora de X. Então, y_0 , 5 e 7 são precisamente os vértices de V(G) - Xemparelhados por M com vértices de X. Sendo assim, $M' := M \cap E(G[X \cup N(X) - 11])$ é emparelhamento perfeito de $G[X \cup N(X) - 11]$. Analogamente, seja N uma extensão de $\{e, (4,5)\}$ a um emparelhamento perfeito de G. Pelo mesmo argumento anterior, temos que $N' := N \cap E(G[X \cup N(X) - 5])$ é emparelhamento perfeito de $G[X \cup N(X) - 5]$. Portanto, $M' \oplus N'$ é subgrafo de $G[X \cup N(X)]$. Além disso, 5 e 11 são os únicos vértices de grau um em $M' \oplus N'$. Dessa forma, $G[X \cup N(X)]$ tem um caminho M', N'-alternado Pcujos extremos são 5 e 11. Note que M restrito a $G[X \cup N(X)] - V(P)$ é emparelhamento perfeito deste grafo.

Mostraremos agora que o circuito $Q_1 := P \cdot (11, 10, 9, 4, 5)$ é conforme em G. Vide Figura 5.5. Já vimos que $G[X \cup N(X)] - V(P)$ tem emparelhamento perfeito. Portanto, para provarmos que Q_1 é conforme em G, basta mostrar que $G - V(Q_1) - X - N(X)$

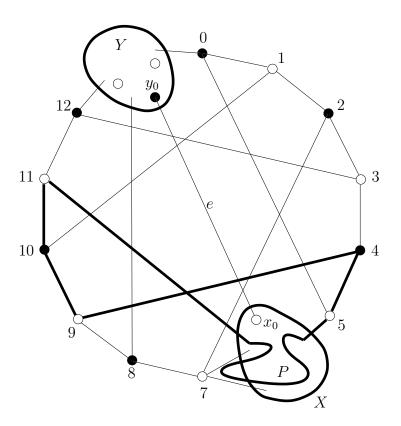


Figura 5.5: Caso 3.2: grafo G, em negrito os conjuntos X e Y e o circuito Q_1 .

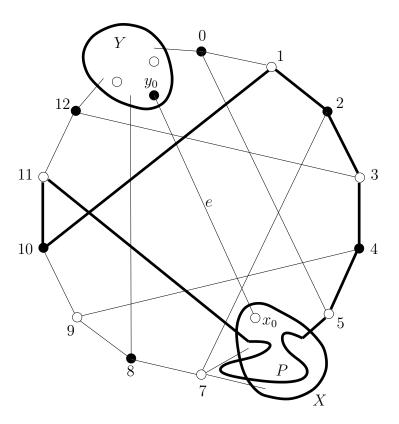


Figura 5.6: Caso 3.2: grafo G, em negrito os conjuntos X e Y e o circuito Q_2 .

tem emparelhamento perfeito. No entanto, $G - V(Q_1) - X - N(X)$ é igual ao grafo $G[(Y - y_0) \cup \{0, 1, 2, 3, 8, 12\}]$, como ilustrado na Figura 5.5. Definiremos agora um emparelhamento perfeito deste grafo. Seja M_1 uma extensão de $\{e, (0, 1)\}$ a um emparelhamento perfeito de G. Pelo Corolário 2.3.17, M_1 tem precisamente três arestas em $\partial(Y)$. Por outro lado, é fácil ver que $N(Y) - Y = \{x_0, 0, 8, 12\}$. No entanto, 0 está emparelhado por M_1 com o vértice 1, fora de Y. Então, x_0 , 8 e 12 são precisamente os vértices de V(G) - Y emparelhados por M com vértices de Y. Além disso, x_0 está emparelhado por M com y_0 . Sendo assim, M_1 restrito a $G[(Y - y_0) \cup \{0, 1, 2, 3, 8, 12\}]$ é emparelhamento perfeito deste grafo. De fato, Q_1 é conforme em G.

Mostraremos agora que o circuito $Q_2 := P \cdot (11, 10, 1, 2, 3, 4, 5)$ é conforme em G. Vide Figura 5.6. Já vimos que $G[X \cup N(X)] - V(P)$ tem emparelhamento perfeito. Portanto, para provarmos que Q_2 é conforme em G, basta mostrar que $G - V(Q_2) - X - N(X)$ tem emparelhamento perfeito. No entanto, $G - V(Q_2) - X - N(X)$ é igual ao grafo $G[(Y - y_0) \cup \{0, 8, 9, 12\}]$, como ilustrado na Figura 5.6. Seja M_2 uma extensão de $\{e, (8, 9)\}$ a um emparelhamento perfeito de G. Pelo Corolário 2.3.17, M_2 tem precisamente três arestas em $\partial(Y)$. Por outro lado, é fácil ver que $N(Y) - Y = \{x_0, 0, 8, 12\}$.

No entanto, 8 está emparelhado por M_2 com o vértice 9, fora de Y. Então, x_0 , 0 e 12 são precisamente os vértices de V(G)-Y emparelhados por M com vértices de Y. Além disso, x_0 está emparelhado por M com y_0 . Sendo assim, M_2 restrito a $G[(Y-y_0) \cup \{0,8,9,12\}]$ é emparelhamento perfeito deste grafo. De fato, Q_2 é conforme em G.

Veremos agora que um dentre Q_1 e Q_2 tem orientação par em D(G). A restrição de D(G) a H é bipartida orientada. Sendo assim, o caminho (5,4,9,10,11) tem orientação par. Como $Q_1 = (5,4,9,10,11) \cdot P$, temos que a orientação de Q_1 em D(G) é igual à orientação de P. Analogamente, o caminho (5,4,3,2,1,10,11) tem orientação ímpar. Como $Q_2 = (5,4,3,2,1,10,11) \cdot P$, temos que a orientação de Q_2 em D(G) é diferente da orientação de P. Em resumo, a orientação de Q_1 é distinta da orientação de Q_2 em D(G). Sendo assim, um dentre Q_1 e Q_2 tem orientação par. No entanto, vimos anteriormente que tanto Q_1 como Q_2 são conformes em G. Então, pelo Teorema 1.2.3, D(G) não é Pfaffiana, uma contradição. De fato, o lema é válido.

Capítulo 6

Herança da Redutibilidade

Neste capítulo, mostraremos que se uma presilha H de G-e é redutível, onde G é presilha e e é uma aresta removível de G, então se (i) H tem no máximo um vértice de contração, ou se (ii) e é uma aresta magra, então G é redutível se o Teorema Principal vale para todo grafo com menos vértices do que G. Como conseqüência disto, temos que, dado um spin G, e uma aresta magra e, toda presilha de G-e é irredutível, sob a hipótese de indução do Teorema Principal. O Lema da Herança da Redutibilidade, que será provado na seção seguinte, foi enunciado anteriormente como Lema 4.1.4

6.1 Lema da Herança da Redutibilidade

Relembremos a definição de redução. Seja G um grafo coberto por emparelhamentos com bipartição $\{U,W\}$. Uma quádrupla Z de vértices de G reduz G se:

- Z contém dois vértices em U e dois vértices em W, e
- G-Z consiste de três ou mais componentes conexas.

Uma presilha G é redutível se alguma quádrupla de vértices de G reduz G, e é irredutível caso contrário. O seguinte lema foi enunciado no Capítulo 4.

LEMA 6.1.1 (LEMA DA HERANÇA DA REDUTIBILIDADE)

Seja G um spin, e uma aresta de G, e H uma presilha de G - e. Se o Teorema Principal vale para todo grafo menor que G, e se (i) o grafo H tem no máximo um vértice de contração, ou se (ii) a aresta e é magra, então H é irredutível.

<u>Demonstração</u>: Suponha, por absurdo, que o enunciado do lema é falso. Então, podemos supor que o Teorema Principal vale para grafos menores do que G, e que uma quádrupla Z de vértices de H reduz H. Logo, temos que H é uma (Q,R)-soma de

parcelas H_1, H_2, \ldots, H_n , com $n \geq 3$, onde $Q = (q_0, q_1, q_2, q_3, q_0)$, e V(Q) = Z. Seja $J_k := H_k - V(Q)$, para $k = 1, 2, \ldots, n$. Se necessário, uma parcela pode ser trocada por duas ou mais de forma que J_k seja conexo, para $k = 1, 2, \ldots, n$. Portanto, podemos supor que J_k é conexo, para $k = 1, 2, \ldots, n$. De acordo com o Teorema 3.2.1, H_i é presilha Pfaffiana, para $i = 1, 2, \ldots, n$.

A prova deste lema será dividida em três lemas. Cada um destes lemas contempla um caso do Lema da Herança da Redutibilidade. Os enunciados dos lemas são os seguintes:

Lema 6.1.2

Sejam G um spin, e uma aresta de G, H uma presilha de G-e, e Z uma quádrupla de vértices de H. Se Z não contém vértices de contração de H, e se o Teorema Principal vale para presilhas menores do que G, então Z não reduz H.

Corolário 6.1.3

Sejam G um spin, e uma aresta G, H uma presilha de G-e, e Z uma quádrupla de vértices de H. Se Z contém precisamente um vértice de contração de H, então Z não reduz H.

Lema 6.1.4

Sejam G um spin, e uma aresta de G, H uma presilha de G - e, e Z uma quádrupla de vértices de H. Se Z contém dois vértices de contração de H, a aresta e é magra, e o Teorema Principal vale para todo grafo com menos vértices que G, então Z não reduz H.

6.1.1 Z não contém vértice de contração de H

Analisaremos agora o caso em que Z não contém vértice de contração de H.

Lema 6.1.5

Sejam G um spin, e uma aresta de G, H uma presilha de G-e, e Z uma quádrupla de vértices de H. Se Z não contém vértices de contração de H, e se o Teorema Principal vale para presilhas menores do que G, então Z não reduz H.

<u>Demonstração</u>: Suponha, por absurdo, que Z reduza H. Lembremos que, nesse caso, H é uma (Q, R)-soma de $n \geq 3$ presilhas Pfaffianas H_1, H_2, \ldots, H_n , onde $Q = (q_0, q_1, q_2, q_3, q_0)$ e V(Q) = Z. Além disso, $J_k = H_k - V(Q)$ é conexo, para $k = 1, 2, \ldots, n$. Por hipótese, o conjunto Z não contém vértice de contração.

Sejam x_0 e y_0 os extremos de e. A presilha H tem zero, um ou dois vértices de contração. Defina os conjuntos X e Y de vértices de G, e os vértices x e y de H, de modo que $H = (G - e)\{X \to x\}\{Y \to y\}, x_0 \in X, y_0 \in Y$ e:

- ullet se H tem dois vértices de contração então tanto X quanto Y tem pelo menos três vértices;
- se H tem apenas um vértice de contração, então X tem pelo menos três vértices, $Y = \{y_0\}$ e $y = y_0$;
- se H não tem vértice de contração, então $X=\{x_0\},\,x=x_0,\,Y=\{y_0\}$ e $y=y_0$.

Para k = 1, 2, ..., n, podemos expandir de volta o(s) vértice(s) de contração de H pertencentes a J_k , se houver, obtendo assim um grafo que denotaremos I_k . Então, I_1, I_2, \ldots, I_n são as componentes conexas de G - e - Z. Os extremos de e não estão ambos em um mesmo I_k , senão G-V(Q) teria pelo menos três componentes conexas. Sendo assim, ajuste a notação de forma que x_0 esteja em I_2 e y_0 em I_3 . Nesse caso, $J_2 = I_2\{X \to x\}$ e $J_3 = I_3\{Y \to y\}$. Seja H^* a (Q,\emptyset) -soma de H_1, H_2, \ldots, H_n . De acordo com o Teorema 3.2.1, H^* é Pfaffiano. Seja $G^* := G + R$. Então, $H^* = (G^* - e)\{X \to x\}\{Y \to y\}$. Pelo Corolário 2.3.19, se tanto x como y forem vértices de contração, então eles estão em partes opostas da bipartição de H^* . Portanto, pelo Lema 2.4.6, H^* tem uma orientação Pfaffiana $D(H^*)$ na qual: (i) x é uma fonte se x for vértice de contração, e (ii) y é um sorvedouro se y for um vértice de contração. Por outro lado, nenhuma aresta de R tem extremo em $X \cup Y$. Sendo assim, tanto $(G^* - e)\{\overline{X} \to \overline{x}\} = (G - e)\{\overline{X} \to \overline{x}\}$ como $(G^{\star} - e)\{\overline{Y} \to \overline{y}\} = (G - e)\{\overline{Y} \to \overline{y}\}$. Além disso, sabemos que G - e é Pfaffiano. Então, $(G^{\star} - e)\{\overline{X} \to \overline{x}\}$ tem orientação Pfaffiana $D_{\overline{x}}$ na qual \overline{x} é sorvedouro. Analogamente, $(G^{\star}-e)\{\overline{Y}\to \overline{y}\}$ tem orientação Pfaffiana $D_{\overline{y}}$ na qual \overline{y} é fonte. Seja $D(G^{\star}-e)$ a extensão de $D(H^*)$ unido com $D_{\overline{x}}$ se x for vértice de contração de H^* e com $D_{\overline{y}}$ se y for vértice de contração de H^* a uma orientação de $G^* - e$. Pelo Teorema 2.4.7, $D(G^* - e)$ é orientação Pfaffiana de $G^{\star} - e$. Pelo Lema 2.4.9, $D(G^{\star} - e)$ pode ser estendida a uma orientação $D(G^{\star})$ de G^{\star} cuja restrição a G é Pfaffiana.

Lema 6.1.6 A orientação $D(G^*)$ é Pfaffiana.

<u>Demonstração</u>: Seja M_0 um emparelhamento perfeito de G-e, e s o sinal de M_0 em $D(G^*)$. Seja M um emparelhamento perfeito de G^* . Provaremos que o sinal de M é igual a s. Caso e não pertença a M, temos que M é emparelhamento perfeito de G^*-e . Nesse caso, como $D(G^*)$ restrita a G^*-e é Pfaffiana, temos que o sinal de M é igual a s. Portanto, podemos supor que $e \in M$. Se M não tem aresta em R, então M é emparelhamento perfeito de G. Nesse caso, como $D(G^*)$ restrita a G é Pfaffiana, o sinal de M é igual a s.

Dessa forma, podemos supor que $e \in M$ e que $M \cap R \neq \emptyset$. Para k = 1, 2, ..., n, o grafo I_k tem o mesmo número de vértices em cada parte de sua bipartição. Além disso, a aresta e tem um extremo em I_2 e outro extremo em I_3 . Portanto, um vértice $v_2 \in V(I_2)$

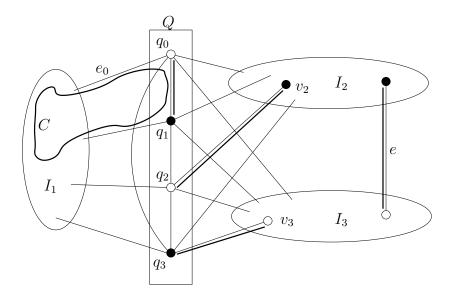


Figura 6.1: O emparelhamento M de G^* , e o circuito C.

e um vértice $v_3 \in V(I_3)$ estão emparelhados por M com vértices de Q, e v_2 e v_3 estão em partes distintas da bipartição de G. Vide Figura 6.1. Ajuste a notação de q_0 , q_1 , q_2 e q_3 , de forma que q_2v_2 e q_3v_3 estejam em M. Como M tem aresta em R, temos que q_0q_1 está em M. Seja $N := M \cap E(H_1) + q_2q_3$ um emparelhamento perfeito de H_1 contendo q_0q_1 e q_2q_3 . Seja N' um emparelhamento perfeito de H_1 contendo q_2q_3 e e_0 , onde e_0 tem um extremo em q_0 e outro em I_1 . Seja C o circuito N, N'-alternado contendo e_0 . Como q_2q_3 está em $N \cap N'$, temos que C não tem aresta com extremo nem em q_2 nem em q_3 . Além disso, $M \cap E(H_1) + q_2q_3 = N$. Sendo assim, C é M-alternado.

O conjunto $M' := M \oplus E(C)$ é emparelhamento perfeito de G^* que não contém arestas em R. Vejamos agora a orientação de C em $D(G^*)$. O circuito C é um circuito conforme em H_1 . Como H_1 é conforme em H^* , temos que C é conforme em H^* . Além disso, $D(H^*)$ é Pfaffiana. Portanto, C tem orientação ímpar em $D(H^*)$. Por outro lado, $D(H^*)$ é a restrição de $D(G^*)$ às arestas de H^* , e C também é circuito de G^* . Portanto, a orientação de C em $D(G^*)$ é ímpar. Sendo assim, o sinal de M' em $D(G^*)$ é igual ao sinal de M. No entanto, M' não tem aresta em R. Portanto, o sinal de M' em $D(G^*)$ é igual a S. Dessa forma, o sinal de M em $D(G^*)$ é igual a S. Dessa forma, o sinal de S0 en S1.

O grafo $G^* - V(Q)$ tem pelo menos duas componentes conexas: I_1 e a componente conexa contendo os vértices de I_2 e I_3 . Sendo assim, G^* é uma (Q, \emptyset) -soma de $H_1, G_{23}, H_4, \ldots, H_n$, onde G_{23} é a restrição $G^*[V(I_2) \cup V(I_3) \cup V(Q)]$. De acordo com o Teorema 3.2.1, G_{23} é uma presilha Pfaffiana. Vide Figura 6.2.

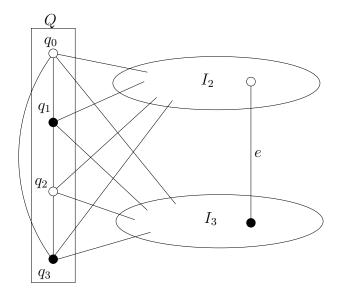


Figura 6.2: O grafo G_{23} .

Primeiramente, mostraremos que G_{23} não é planar. Suponha, por absurdo, que G_{23} seja planar. Seja \tilde{G}_{23} uma imersão planar de G_{23} . Consideremos as pontes do circuito Q em $G_{23}-e$. De acordo com o Corolário 2.3.15, $H_k-q_{i+1}-q_{i+2}-q_{i+3}$ é conexo, para k=2,3 e i=0,1,2,3. Portanto, existem arestas em G_{23} de cada um dentre q_0 , q_1 e q_2 para vértices em I_2 e para vértices em I_3 . Vimos anteriormente que I_2 e I_3 são conexos. Portanto, I_2 faz parte de uma ponte de Q em $G_{23}-e$ que contém q_0, q_1 e q_2 . Analogamente, I_3 faz parte de uma ponte de Q em $G_{23}-e$ que contém q_0, q_1 e q_2 . Então, a ponte contendo I_2 cruza com a ponte contendo I_3 . Sendo assim, I_2 em I_3 estão em regiões distintas de $\tilde{G}_{23}-e$ delimitadas por Q. No entanto, a aresta e tem um extremo em I_2 e outro em I_3 . Portanto, e cruza com Q em \tilde{G}_{23} , uma contradição. De fato, G_{23} não é planar.

O grafo G_{23} contém o quadrilátero Q. Portanto, G_{23} não é isomorfo ao grafo de Heawood, de acordo com o Lema 2.5.5. Pela definição de G_{23} , este grafo tem menos vértices do que G. Pela hipótese deste lema que estamos a provar, o Teorema Principal vale para G_{23} . Portanto, como G_{23} não é o grafo de Heawood, G_{23} não é um spin. Em resumo, G_{23} é uma presilha Pfaffiana não planar e distinta do Heawood que não é um spin. Portanto, G_{23} é redutível. Seja S uma quádrupla de vértices de G_{23} que reduz G_{23} . Então, $G_{23} - S$ tem pelo menos três componentes conexas.

Mostraremos agora que os vértices de Q-S pertencem a uma mesma componente conexa de $G_{23}-S$. Suponha, por absurdo, que um vértice v e um vértice v' de Q-S estejam em componentes conexas distintas de $G_{23}-S$. Sendo assim, Q-S tem pelo

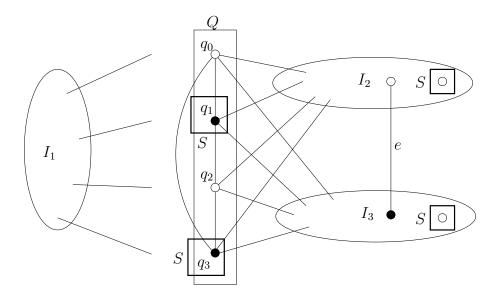


Figura 6.3: O grafo G_{23} , mostrado junto à componente conexa I_1 , e os vértice de S.

menos duas componentes conexas. Como Q é um quadrilátero, temos que S contém precisamente dois vértices em Q, ambos na mesma parte da bipartição de G_{23} . Ajuste a notação de forma que $S \cap V(Q) = \{q_1, q_3\}$. Sendo assim, nossa tarefa se resume a mostrar que existe caminho de q_0 a q_2 em $G_{23} - S$. Sabemos que q_0 e q_2 têm vizinho em I_2 e em I_3 . Além disso, I_2 e I_3 são conexos. Portanto, S contém vértice em I_2 , senão existiria um caminho de q_0 a q_2 em $G_{23} - S$ passando por I_2 . Analogamente, I_3 tem vértice em S. Vide Figura 6.3. Temos dois casos a analisar: um dentre I_2 e I_3 não tem vértice de contração, ou ambos têm vértice de contração.

Caso 4 Um dentre J_2 e J_3 não tem vértice de contração.

Ajustando a notação, suponha que J_3 não tem vértice de contração. Então, S contém precisamente três vértices em H_3 . Portanto, pelo Corolário 2.3.15, $H_3 - S$ é conexo. Sendo assim, existe caminho de q_0 a q_2 em $H_3 - S$. Por outro lado, J_3 não tem vértice de contração, ou seja $H_3 - S$ é subgrafo de $G_{23} - S$. Dessa forma, os vértices de Q - S estão numa mesma componente conexa de $G_{23} - S$.

Caso 5 Tanto J_2 quanto J_3 tem vértice de contração.

Seja $\{U, W\}$ a bipartição de G_{23} , tal que $q_1 \in U$. Seja $\{U', W'\}$ a bipartição de H^* tal que $q_1 \in U'$. Ajuste a notação trocando J_2 e J_3 se necessário de forma que o vértice de contração y de J_3 esteja em W'. Seja s_3 o vértice de S em I_3 . Suponha, inicialmente, que s_3 não esteja em Y. Então, $H_3 - S$ é conexo, de acordo com o Corolário 2.3.15. De acordo

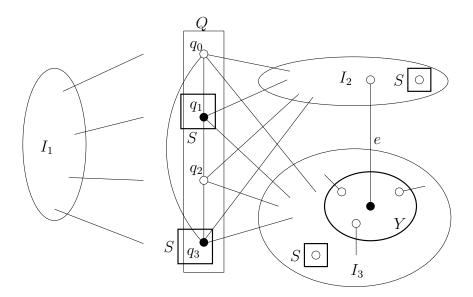


Figura 6.4: O grafo G_{23} , mostrado junto à componente conexa I_1 , os vértice de S e o conjunto Y.

com o Corolário 2.2.3, $I_3[Y]$ é conexo. Portanto, q_0 e q_2 são ligados em $G_{23} - S$. Sendo assim, podemos supor que o vértice de S em I_3 está em Y. Nesse caso, $H_3 - q_1 - q_3 - y$ é conexo, de acordo com o Corolário 2.3.15. Portanto, $G_{23} - S$ tem caminho de q_0 a q_2 . De fato, em todos os casos analisados chegamos à conclusão de que os vértices de Q - S pertencem a uma mesma componente conexa de $G_{23} - S$.

Sejam L_1 e L_2 duas componentes conexas de $G_{23} - S$ que não contém vértices em Q - S. O grafo $G^* - S$ tem pelo menos três componentes conexas: L_1 , L_2 e a componente contendo os vértice de I_1 . Nesse caso, tanto G^* como G são redutíveis, uma contradição. De fato, o lema é válido.

6.1.2 Z contém precisamente um vértice de contração de H

Provaremos a seguir um lema que implica o caso em que Z contém precisamente um vértice de contração em H. Faremos isto pois este resultado mais forte será usado na prova do Lema da Não Planaridade das Contrações.

Lema 6.1.7

Sejam G uma presilha Pfaffiana irredutível, $e=x_0y_0$ uma aresta de G, e $C:=\partial_G(X)$ um corte não trivial de G, com C-e justo em G-e, e $x_0\in X$. Sejam $H:=(G-e)\{\overline{X}\to \overline{x}\}$, e $\{U,W\}$ a bipartição de H. Seja $Z\subseteq V(H)$, tal que $\overline{x}\in Z$, e $|Z\cap U|=2=|Z\cap W|$. Seja H^* o grafo bipartido obtido de H pela adição de arestas com ambos os extremos em

Z, de forma que $H^*[Z]$ seja um quadrilátero. Suponha que H^* é Pfaffiano e H-Z tenha emparelhamento perfeito. Seja c o número de componentes conexas de H-Z. Então, $c \leq 2$, com igualdade somente se e não incide em vértice de Z.

Corolário 6.1.8

Sejam G um spin, e uma aresta G, H uma presilha de G-e, e Z uma quádrupla de vértices de H. Se Z contém precisamente um vértice de contração de H, então Z não reduz H.

<u>Demonstração</u>: Suponha, por absurdo, que Z reduza H. Lembremos que, nesse caso, H é uma (Q, R)-soma de $n \geq 3$ presilhas Pfaffianas H_1, H_2, \ldots, H_n , onde $Q = (q_0, q_1, q_2, q_3, q_0)$ e V(Q) = Z. Além disso, $J_k = H_k - V(Q)$ é conexo, para $k = 1, 2, \ldots, n$. Seja H^* a (Q, \emptyset) -soma de J_1, J_2, \ldots, J_n . De acordo com o Teorema 3.2.1, H^* é uma presilha Pfaffiana.

Tenha H um ou dois vértices de contração, G tem um corte $D := \partial(Y)$ (possivelmente trivial), com $Y \subseteq X$, tal que D-e é justo em G-e, e $H=(G-e)\{\overline{X} \to \overline{x}\}\{Y \to y\}$. Por hipótese, \overline{x} é o único vértice de contração de H em Z. Portanto, se y é vértice de contração, y não pertence a Z. Se y não é vértice de contração (Y é trivial), podemos ajustar a notação de forma que y não pertença a Z. A (D-e)-contração $J:=(G-e)\{\overline{Y}\to \overline{y}\}$ de G-e é Pfaffiana e coberta por emparelhamentos, pois D-e é justo em G-e. Seja $L:=(G-e)\{\overline{X}\to \overline{x}\}$. Note que H e J são as duas (D-e)-contrações de L. Como y não pertence a Z, temos que Z é um subconjunto dos vértices de L. Seja L^* o grafo bipartido obtido de L pela adição de arestas com ambos os extremos em Z, de forma que $L^{\star}[Z]$ seja um quadrilátero. As duas (D-e)-contrações de L^{\star} são H^{\star} e J. Portanto, L^{\star} é Pfaffiano, de acordo com o Teorema 2.4.7. Como H é presilha, o grafo H-Z tem emparelhamento perfeito, de acordo com o Teorema 2.3.8. Seja M um emparelhamento perfeito de H-Z. Seja f a aresta de M incidente em y. Seja N um emparelhamento perfeito de J contendo f. Então, $M \cup N$ é um emparelhamento perfeito de L - Z. Em resumo, $L = (G - e)\{\overline{X} \to \overline{x}\}, L^*$ é Pfaffiano e L - Z tem emparelhamento perfeito. Sendo assim, de acordo com o Lema 6.1.7, L-Z tem no máximo duas componentes conexas. O grafo H-Z pode ser obtido de L-Z pela contração de Y a um vértice. Portanto, H-Z tem no máximo tantas componentes conexas quanto L-Z. Sendo assim, H-Ztem no máximo duas componentes conexas, em contradição à hipótese de absurdo de que Z reduz H. De fato, Z não reduz H no caso em que Z tem precisamente um vértice de contração de H.

Demonstração do Lema 6.1.7: Suponha, por absurdo, que Z contenha precisamente um vértice de contração de H e que ou (i) Z reduza H, ou (ii) e incida em vértice de Z e H - Z seja desconexo. Sejam J_1, J_2, \ldots, J_n , com $n \geq 2$, as componentes conexas de H - Z. Se

 x_0 pertence a J_i , para algum $i \in \{1, 2, ..., n\}$, então $n \geq 3$. Sendo assim, ajuste a notação de forma que x_0 não pertença a J_1 nem a J_2 . A seguir, provaremos a Proposição 6.1.9 que mostra que precisamente um vértice de \overline{X} é adjacente a vértices de $V(J_1) \cup V(J_2)$, e que este vértice está em \overline{X}_+ . Seja v este vértice, e seja $\{q_1, q_2, q_3\} = Z - \overline{x}$. Então, $G - \{v, q_1, q_2, q_3\}$ tem pelo menos três componentes conexas: J_1 , J_2 e a componente contendo $\overline{X} - v$. Sendo assim, G é redutível, uma contradição. De fato, o Lema 6.1.7 é válido.

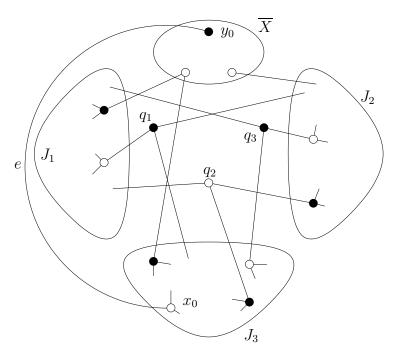


Figura 6.5: Grafo G no caso em que \overline{x} é o único vértice de contração da quádrupla redutora V(Q) de H.

Proposição 6.1.9

O conjunto \overline{X} tem somente um vértice adjacente a vértices em $V(J_1) \cup V(J_2)$, e este vértice está em \overline{X}_+ .

Demonstração: Seja f uma aresta que liga \overline{X} a $V(J_1) \cup V(J_2)$. Como $V(J_1) \cup V(J_2)$ está em X, temos que f está em C. Pelo ajuste de notação anterior, x_0 não pertence a $V(J_1) \cup V(J_2)$. Portanto, f está em C - e. Como C - e é justo em G - e, o extremo de f em \overline{X} está em \overline{X}_+ . Este argumento vale para toda aresta que liga \overline{X} a $V(J_1) \cup V(J_2)$. Suponha, por absurdo, que \overline{X} tenha pelo menos dois vértices adjacentes a vértices de $V(J_1) \cup V(J_2)$. Chegaremos a uma contradição à hipótese de que G é Pfaffiano. Seja $\{q_1,q_2,q_3\} = Z - \overline{x}$. Pelo Corolário 2.3.13, $G - \{q_1,q_2,q_3\}$ é conexo. Portanto, existe

vértice v_i de \overline{X} adjacente a vértice de J_i , para i=1,2 (possivelmente $v_1=v_2$). Se $v_1=v_2$, então, pela hipótese de absurdo adotada, existe vértice v' distinto de $v_1=v_2$ adjacente a vértice de $V(J_1) \cup V(J_2)$. Nesse caso, ajuste a notação de forma que v' seja adjacente a vértice de J_2 , e defina v' como o novo v_2 . Em resumo, podemos ajustar a notação de forma que $v_1 \neq v_2$, e que v_i seja adjacente a vértice de J_i , para i=1,2.

Sejam $G':=G+v_1q_1+v_1q_3+v_2q_1+v_2q_3$, e $C':=\partial_{G'}(X)$. Seja $H':=(G'-e)\{\overline{X}\to\overline{x}\}$ uma das (C'-e)-contrações de G'-e. Seja $Q:=(\overline{x},q_1,q_2,q_3,\overline{x})$ quadrilátero formado pelos vértices de Z tal que $H+E(Q)=H^*$ seja bipartido. Cada aresta de $\{v_1q_1,v_1q_3,v_2q_1,v_2q_3\}$ tem em H' os extremos \overline{x} e q_i , para algum $i\in\{1,3\}$. Ou seja, as arestas adicionadas são múltiplas de arestas de E(Q). Por hipótese, $H^*=H+E(Q)$ é Pfaffiano. Portanto, H'+E(Q) e H' são Pfaffianos. Seja $(G'-e)\{X\to x\}$ a outra (C'-e)-contração de G'-e. Cada aresta de $\{v_1q_1,v_1q_3,v_2q_1,v_2q_3\}$ tem em $(G'-e)\{X\to x\}$ os extremos x e v_i , para algum $i\in\{1,2\}$. O vértice v_i é adjacente a vértice de J_i , para i=1,2. Como $V(J_i)\subset X$, temos que v_1x e v_2x estão em $(G-e)\{X\to x\}$. Portanto, $(G'-e)\{X\to x\}$ é igual a $(G-e)\{X\to x\}$, a menos de arestas múltiplas. Como $(G-e)\{X\to x\}$ é Pfaffiano, $(G'-e)\{X\to x\}$ é Pfaffiano. Sendo assim, ambas as (C'-e)-contrações de G'-e são Pfaffianas.

Sendo assim, pelo Lema 2.4.6, H' tem uma orientação Pfaffiana D(H') na qual \overline{x} é um sorvedouro. Analogamente, $(G'-e)\{X\to x\}$ tem uma orientação Pfaffiana na qual x é uma fonte. Então, pelo Teorema 2.4.7, a extensão D(G'-e) dessas orientações a G'-e é Pfaffiana. Pelo Lema 2.4.9, D(G'-e) pode ser estendida a uma orientação D(G') de G' cuja restrição a G é Pfaffiana. Pelo Teorema 2.4.3, D(H') pode ser estendida a uma orientação $D(H^*)$ Pfaffiana de $H^*=H'+E(Q)$. Seja s o sinal de todo emparelhamento perfeito de G-e em D(G'). A seguir, mostraremos um emparelhamento perfeito de G que tem sinal -s em D(G), em contradição à conclusão de que D(G) é Pfaffiana.

Seja M a extensão de $\{v_1q_1, v_2q_3\}$ a um emparelhamento perfeito de G'. Sejam $Q' := (v_1, q_1, v_2, q_3, v_1)$, e $M' := M \oplus E(Q')$. O circuito Q' tem quatro arestas e está inteiramente contido no corte G' - e. Como G' - e é orientado em D(G'), a orientação de Q' é par em D(G'). Portanto, um dentre M e M' tem sinal -s em D(G'). Ajuste a notação de q_1 e q_3 de forma que M tenha sinal -s em D(G').

Mostraremos a seguir que M não tem aresta em $\partial_{G'}(V(J_i))$, para i=1,2. Pelo Corolário 2.3.17, as arestas e, v_1q_1 e v_2q_3 são as únicas arestas de C' em M. Portanto, x_0 , q_1 e q_3 são os únicos vértices de X emparelhados por M com vértices de \overline{X} . Seja $T:=(V(Q)-\overline{x})\cup\overline{X}$. Note que H-Z é igual a G-T. Se $x_0=q_2$, então nenhuma aresta de M está em $\partial_{G'}(J_i)$, para i=1,2, pois os vértices de T somente estão emparelhados entre si em M. Sendo assim, podemos supor que x_0 é distinto de q_2 . Então, temos que x_0 está em uma componente conexa K de G-T. Por hipótese, toda componente conexa de G-T=H-Z tem emparelhamento perfeito. Seja $\{U',W'\}$ a bipartição de G tal

que $x_0 \in U'$. Então, K tem o mesmo número de vértices em U' e em W'. Sendo assim, como $x_0 \in U'$, um vértice w em W' de K está emparelhado por M com vértice de fora de K. Então, w está emparelhado por M com vértice de T. No entanto, w não é um dos três vértices $(x_0, q_1 e q_3)$ emparelhados por M com vértice de \overline{X} . Além disso, $q_1, q_3 e w$ estão na mesma parte da bipartição de G. Portanto, q_2w_1 está em M. Sendo assim, os vértices T estão emparelhados por M somente com vértices de $T \cup V(K)$. Pelo ajuste de notação anterior, J_1 e J_2 são distintos de K. Portanto, temos que nenhuma aresta de M está em $\partial_{G'}(J_i)$, para i=1,2.

Encontraremos agora um circuito M-alternado Q_1 contendo v_1q_1 inteiramente contido em $G'[V(J_1) + v_1 + q_1]$, cuja orientação em D(G') é ímpar. Seja w_1 um vértice de J_1 adjacente a v_1 . Seja M_1 uma extensão de $\{v_1w_1, q_3v_2\}$ a um emparelhamento perfeito de G'. Como M_1 tem duas arestas em C' - e, a aresta e está em M_1 . Pelo Corolário 2.3.17, x_0 , w_1 e q_3 são os únicos vértices de X emparelhados por M_1 com vértices de \overline{X} . Pelo ajuste de notação inicial, temos que x_0 não está em J_1 . No entanto, sabemos que J_1 tem o mesmo número de vértices em U' e em W'. Portanto, existe um vértice u_1 em U' de J_1 emparelhado por M_1 a um vértice de $T - \overline{X}$ em W', ou seja a um dentre q_1 e q_3 . Como q_3v_2 está em M_1 , temos que q_1u_1 está em M_1 . Então, q_1 é o único vértice em W fora de J_1 emparelhado por M_1 com vértice de J_1 . Sendo assim, $\{v_1w_1, u_1q_1\}$ é o conjunto de arestas de M_1 em $\partial_{G'}(V(J_1))$.

Por hipótese, cada componente conexa J_i de H-Z tem emparelhamento perfeito. Seja $M(J_i)$ um emparelhamento perfeito de uma componente J_i . Defina N_1 como sendo $M_1 \cap E(G'[V(J_1) + v_1 + q_1]) + q_2q_3 + \bigcup_{i=2}^n M(J_i)$, um emparelhamento perfeito do grafo H' + E(Q). Defina N como sendo $M \cap E(G'[V(J_1) + v_1 + q_1]) + q_2q_3 + \bigcup_{i=2}^n M(J_i)$, um emparelhamento perfeito de H' + E(Q). Seja Q_1 o circuito N_1, N -alternado que contém v_1q_1 . Sendo assim, Q_1 é conforme em H'+E(Q). Lembremos que $D(H^*)$ foi definido como uma orientação Pfaffiana de H' + E(Q) que estende D(H'). Portanto, a orientação de Q_1 em $D(H^*)$ é impar. Além disso, Q_1 não contém aresta do conjunto $\{q_1q_2, q_2q_3\}$, que é o conjunto de arestas que estão em E(Q), mas não necessariamente estão em E(H'). Portanto, a orientação de Q_1 é impar em D(H'), orientação Pfaffiana de H'. No entanto, D(H') é uma restrição de D(G'). Assim, a orientação de Q_1 em D(G') é impar, e os únicos vértices de Q_1 fora de J_1 são v_1 e q_1 . Então, como Q_1 é N-alternado, e N contém a restrição de M às arestas de $G'[V(J_1) + v_1 + q_1]$, temos que Q_1 é M-alternado. Portanto, Q_1 é conforme em G' e sua orientação é impar em D(G'). Dessa forma, o sinal de $M' := M \oplus E(Q_1)$ em D(G') é igual ao sinal de M, que é igual a -s. Analogamente, existe um circuito M-alternado Q_2 cujos vértices fora de J_2 são v_2 e q_3 , e cuja orientação em D(G') é impar. Como $V(Q_1) \subseteq V(J_1) + v_1 + q_1$, e $V(Q_2) \subseteq V(J_2) + v_2 + q_3$, temos que $V(Q_1) \cap V(Q_2) = \emptyset$. Portanto, $M'' := M' \oplus E(Q_2)$ é emparelhamento perfeito de G'cujo sinal é -s em D(G'). No entanto, nenhuma aresta de $\{v_1q_1, v_1q_3, v_2q_3, v_2q_1\}$ está em

M''. Portanto, M'' é um emparelhamento perfeito de G, cujo sinal em D(G'), e portanto em D(G), é -s. Mas, G-e tem emparelhamento perfeito com sinal s em D(G). Isto é uma contradição à conclusão anterior de que D(G) é Pfaffiana. De fato, \overline{X} tem somente um vértice adjacente a vértices de J_1 e J_2 , e este vértice está em \overline{X}_+ .

6.1.3 Z contém dois vértices de contração de H

A afirmação do Lema a seguir é válida mesmo quando é relaxada a restrição da aresta e ser magra. No entanto, este resultado foi omitido pois a prova do Teorema Principal é possível somente com esta versão restrita do Lema, e a prova para esta versão é mais simples.

Lema 6.1.10

Seja G um spin, e uma aresta magra de G, H uma presilha de G-e, e Z uma quádrupla de vértices de H contendo dois vértices de contração de H. Se o Teorema Principal vale para todo grafo menor que G, então Z não reduz H.

<u>Demonstração</u>: Suponhamos, por absurdo, que Z reduza H. Lembremos que, nesse caso, H é uma (Q, R)-soma de $n \geq 3$ presilhas Pfaffianas H_1, H_2, \ldots, H_n , onde Q é o circuito $(q_0, q_1, q_2, q_3, q_0)$ e V(Q) = Z. Além disso, $J_k = H_k - V(Q)$ é conexo, para $k = 1, 2, \ldots, n$. Por hipótese, o conjunto Z tem dois vértices de contração, digamos x e y. De acordo com o Corolário 2.3.19, x e y estão em partes distintas da bipartição de H. Ajuste a notação de forma que $x = q_1$ e $y = q_2$. Assim, $Q = (q_0, x, y, q_3, q_0)$. Para i = 0, 1, 2, 3, seja

$$Q_i := \left\{ \begin{array}{l} \{q_i\}, \text{ se } q_i \text{ não \'e v\'ertice de contração de } H \ (i=0,3) \\ \text{ o conjunto de v\'ertices de } G \text{ contra\'edos no v\'ertice } q_i \text{ em } H, \text{ c. c. } (i=1,2). \end{array} \right.$$

Definição 6.1.11

Sejam $v_i \in Q_i$, e $v_{i+1} \in Q_{i+1}$, onde os índices são tomados módulo quatro, e k um inteiro, 1 < k < n tais que:

- v_i é ligado por uma aresta e_i de G a um vértice w_i de J_k ;
- v_{i+1} é ligado por uma aresta e_{i+1} de G a um vértice w_{i+1} de J_k .

Vide Figura 6.6. Se H_k tem um emparelhamento perfeito que contém e_i , e_{i+1} , e a aresta $q_{i+2}q_{i+3}$ de Q, então diz-se que v_i e v_{i+1} são H_k -conexos. Representa-se por $v_i \stackrel{k}{\sim} v_{i+1}$. Estendemos esta definição para o caso em que v_i e v_{i+1} são adjacentes em G. Nesse caso, dizemos que v_i e v_{i+1} são H_k -conexos para todo k.

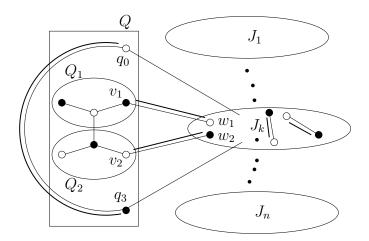


Figura 6.6: O grafo G e em negrito as arestas de um emparelhamento perfeito de H_k que define que v_1 e v_2 são H_k -conexos.

Como a aresta e é magra em G, temos que Q_1 consiste de três vértices, digamos x_0 , x_1 e x_2 , e Q_2 consiste de três vértices, digamos y_0 , y_1 e y_2 , onde x_0 e y_0 são os extremos de e. Além disso, Q_0 e Q_3 são unitários.

Notação 6.1.12

Chamaremos de T o conjunto $\bigcup Q_i$.

Definição 6.1.13

Seja G^* a presilha obtida de G pela adição das arestas em

$$\Delta := \{ uw : \exists j, u \stackrel{j}{\sim} w; u, w \in \bigcup Q_i \} - E(G).$$

Definição 6.1.14

Dizemos que uma aresta $f = v_i v_{i+1}$ de $E(G^*)$ tem cor k se $v_i \stackrel{k}{\sim} v_{i+1}$.

Definiremos a seguir uma orientação para G^* que restrita tanto a G como a $G^* - e$ é Pfaffiana. Para tanto, mostraremos que $(G^* - e)\{Q_1 \to x\}\{Q_2 \to y\}$, $(G^* - e)\{\overline{Q_1} \to \overline{x}\}$ e $(G^* - e)\{\overline{Q_2} \to \overline{y}\}$ são Pfaffianos. O conjunto $\{x_0\}$ é a parte minoritária de Q_1 , e $\{y_0\}$ é a parte minoritária de Q_2 . Os vértices x_0 e y_0 não têm vizinhos em J_k , para $k = 1, 2, \ldots, n$. Portanto, nenhuma aresta de Δ incide nem em x_0 nem em y_0 . Então, como tanto Q_1 como Q_2 são praias de cortes justos de G - e, tanto Q_1 como Q_2 são praias de cortes justos de $G^* - e$. Sendo assim, a aresta e também é magra em $G^* - e$, e de índice e. Além disso, a presilha interna de e0 e isomorfa, a menos de arestas múltiplas, a e1. Seja e1 a e2 e isomorfa, a menos de arestas múltiplas, a e3 cordo com o Teorema 3.2.1, e4 e isomorfa.

é presilha Pfaffiana. Note que $H^* = H + R$, e que $H^* = (G^* - e)\{Q_1 \to x\}\{Q_2 \to y\}$. Além disso, $(G^* - e)\{\overline{Q_1} \to \overline{x}\}$ e $(G^* - e)\{\overline{Q_2} \to \overline{y}\}$ também são Pfaffianos. Então, pelo Lema 2.4.6, H^* tem uma orientação Pfaffiana $D(H^*)$ na qual x é fonte e y é sorvedouro. Por este mesmo lema, $(G^* - e)\{\overline{Q_1} \to \overline{x}\}$ tem uma orientação Pfaffiana na qual \overline{x} é sorvedouro. Analogamente, $(G^* - e)\{\overline{Q_2} \to \overline{y}\}$ tem uma orientação Pfaffiana na qual \overline{y} é fonte. Portanto, pelo Teorema 2.4.7, $G^* - e$ tem uma orientação Pfaffiana $D(G^* - e)$ tal que Q_1 é uma fonte de $\partial(Q_1)$ e Q_2 um sorvedouro de $\partial(Q_2)$. Pelo Lema 2.4.9, $D(G^* - e)$ pode ser estendida a uma orientação $D(G^*)$ de G^* cuja restrição D(G) a G é Pfaffiana. Além disso, x é fonte e y é sorvedouro na restrição de $D(G^*)$ a H^* .

A restrição de $D(G^*)$ a $G^* - e$ é Pfaffiana. Seja s^* o sinal em $D(G^*)$ dos emparelhamentos perfeitos de $G^* - e$. A restrição de $D(G^*)$ a G também é Pfaffiana. Seja s o sinal em $D(G^*)$ dos emparelhamentos perfeitos de G. Todo emparelhamento perfeito de G - e é um emparelhamento perfeito tanto de $G^* - e$ quanto de G. Portanto, $s^* = s$.

Lema 6.1.15

Seja $v_i \in Q_i$ um vértice adjacente a vértice de J_k . Então, existe um vértice $v_{i+1} \in Q_{i+1}$, adjacente a vértice de J_k , tal que v_i e v_{i+1} são H_k -conexos.

Demonstração: Como, por hipótese, v_i é adjacente a vértice de J_k , existe uma aresta e_i com um extremo v_i e outro extremo em J_k . Em H_k , a aresta e_i incide em q_i . Como H_k é uma presilha, todo par de arestas não adjacentes de H_k pertence a um emparelhamento perfeito. Seja M_k um emparelhamento perfeito de H_k contendo as arestas e_i e $q_{i+2}q_{i+3}$. Seja e_{i+1} a aresta de M_k incidente em q_{i+1} . Uma simples contagem nos mostra que e_{i+1} liga v_{i+1} a um vértice de J_k . Então, v_i e v_{i+1} são H_k -conexos.

Lema 6.1.16

Para i = 0, 1, 2, 3 e para k = 1, 2, ..., n, o conjunto Q_i contém um vértice adjacente a vértice de J_k .

<u>Demonstração</u>: O grafo H_k é uma presilha, em que Q é um quadrilátero. Então, pelo Corolário 2.3.15, $H_k - (V(Q) - q_i)$ é conexo, para i = 0, 1, 2, 3. Logo, q_i é adjacente em H_k a vértice em J_k . Então, algum vértice de Q_i é adjacente em G a vértice em J_k .

Lema 6.1.17

Para i = 0, 1, 2, 3, todo vértice de Q_i^+ é adjacente em G^* a algum vértice de Q_{i-1} e a algum vértice de Q_{i+1} .

<u>Demonstração</u>: Seja v um vértice de Q_i^+ . Suponhamos, inicialmente, que v seja adjacente em G a vértices em V(G) - T. Seja k, $1 \le k \le n$ tal que v é adjacente a vértice de J_k . Então, pelo Lema 6.1.15, v é H_k -conexo a algum vértice w de Q_{i+1} . Logo, em G^* , v e w

são adjacentes. Analogamente, pode-se mostrar que se v é adjacente em G a vértices de em V(G) - T, então v é adjacente em G^* a vértice de Q_{i-1} .

Vamos considerar agora o caso em que v não é adjacente em G a nenhum vértice em V(G)-T. Como Q_0 e Q_3 são unitários, então i=1 ou i=2, pelo Lema 6.1.16. O grafo G^* é presilha. Portanto, o vértice v tem três ou mais vizinhos em G^* . Por outro lado, dado que $N(v) \subseteq T$, temos que $N(v) \subseteq \{x_0, q_0, y_1, y_2\}$. Sendo assim, v é necessariamente adjacente a um vértice de Q_2 . Por outro lado, $G^*-y_1-y_2-x_2$ é conexo, pelo Corolário 2.3.15. Portanto, x_1 é adjacente a q_0 , caso contrário $G^*[\{x_1, x_0, y_0\}]$ seria uma das duas ou mais componentes conexas de $G^*-y_1-y_2-x_2$, contradição. \square

Lema 6.1.18

Para i = 0, 1, 2, 3, v um vértice de Q_i^+ , w um vértice de Q_{i+1}^+ e para k = 1, 2, ..., n, pelo menos um dentre v e w é adjacente a vértice de $V(G) - T - V(J_k)$.

Demonstração: Por absurdo. Suponha que nem v nem w é adjacente a vértices de $V(G) - T - V(J_k)$. Ajuste a notação de forma que k = 3. Então, nenhum vértice de J_1 , nem de J_2 , é adjacente a v nem a w. Assim, o conjunto $Z' := (\bigcup Q_i^+) - v - w$ consiste de quatro vértices, e G - Z' tem três ou mais componentes conexas: J_1, J_2 e a componente conexa que contém v. Ademais, seja $\{U, W\}$ a bipartição de G. Metade dos vértices de $\bigcup Q_i^+$ estão em U, a outra metade em W. Os vértices v e w pertencem a partes distintas de $\{U, W\}$. Assim, Z' contém dois vértices em U e dois vértices em W. Logo, Z' reduz G, contradição.

Lema 6.1.19 (Lema da Descarga)

Seja f uma aresta de Δ de cor k. Seja M um emparelhamento perfeito de G^* contendo f, tal que $M \cap \partial(V(J_k)) = \emptyset$. Então, G^* tem um emparelhamento perfeito M' tal que:

- $M' \cap \Delta = (M \cap \Delta) f;$
- $M' \cap \partial(V(J_{\ell})) = M \cap \partial(V(J_{\ell}))$, para todo ℓ distinto de k;
- o sinal de M' é igual ao sinal de M em $D(G^*)$.

Demonstração: Sejam v_i e v_{i+1} os extremos de f. Ajuste a notação de forma que $v_i \in Q_i$ e $v_{i+1} \in Q_{i+1}$. Por hipótese, $M \cap \partial(V(J_k)) = \emptyset$, e portanto $M \cap E(J_k)$ é emparelhamento perfeito de J_k . Assim, $N := M \cap E(J_k) + q_i q_{i+1} + q_{i+2} q_{i+3}$ é emparelhamento perfeito de H_k . Como f tem cor k e pertence a Δ , então existem arestas e_i e e_{i+1} , que em G ligam, respectivamente, v_i e v_{i+1} a vértice em J_k , e que pertencem, juntamente com $q_{i+2}q_{i+3}$, a um emparelhamento perfeito N' de H_k . Então, $(e_i, q_i q_{i+1}, e_{i+1})$ é parte de um circuito N, N'-alternado Q'. Como $q_{i+2}q_{i+3}$ pertence a $N \cap N'$, temos que Q' tem seus vértices

em $V(J_k) + q_i + q_{i+1}$. Além disso, e_i e e_{i+1} incidem em G^* em v_i e v_{i+1} , respectivamente. Portanto, $Q^* := Q' - q_i q_{i+1} + f$ é circuito M-alternado de G^* , inteiramente contido em $G^*[V(J_k) + v_i + v_{i+1}]$.

Seja $M' := M \oplus E(Q^*)$. A validade das duas primeiras propriedades no enunciado do lema seguem imediatamente. Para completar a demonstração, resta mostrar que a orientação de Q^* em $D(G^*)$ é ímpar. O grafo H_k é conforme em H^* . Dado que $D(H^*)$ é Pfaffiana, segue que sua restrição $D(H_k)$ a H_k é Pfaffiana. Assim, a orientação do circuito Q' em $D(H_k)$ é ímpar. Logo, sua orientação em $D(H^*)$ também é ímpar. Por outro lado, $D(H^*)$ é restrição de $D(G^*)$ a H^* . Além disso, a aresta f em $D(G^*)$ sai de v_i e entra em v_{i+1} se e somente se a aresta q_iq_{i+1} em $D(H^*)$ sai de q_i e entra em q_{i+1} . Assim, a orientação de Q^* em $D(G^*)$ é igual à orientação de Q' em $D(H^*)$. De fato, a orientação de Q^* é ímpar em $D(G^*)$.

Lema 6.1.20 (Lema da Carga)

Seja M um emparelhamento perfeito de G^* tal que $|M \cap \partial(V(J_k))| = 2$. Então, G^* tem um emparelhamento perfeito M' tal que:

- $M' \cap \partial(V(J_k)) = \emptyset;$
- $M' \cap \partial(V(J_i)) = M \cap \partial(V(J_i))$, para todo $j \neq k$;
- o sinal de M' é igual ao sinal de M em $D(G^*)$.

Demonstração: Sejam e_i e e_j as arestas de M em $\partial(V(J_k))$, $v_i \in Q_i$ e $v_j \in Q_j$, respectivamente, seus extremos fora de $V(J_k)$. Então, j=i+1 ou j=i-1. Ajuste a notação de forma que j=i+1. No grafo H_k , o conjunto $N:=(M\cap E(J_k))\cup\{e_i,e_{i+1},q_{i+2}q_{i+3}\}$ é um emparelhamento perfeito. Logo, v_i e v_{i+1} são H_k -conexos. Seja f a aresta de G^* cujos extremos são v_i e v_{i+1} . Em H_k , a aresta f tem os extremos q_i e q_{i+1} . Seja N' a extensão de $\{f,q_{i+2}q_{i+3}\}$ a um emparelhamento perfeito de H_k . Então, f pertence a um circuito N,N'-alternado Q'. Como $q_{i+2}q_{i+3}$ pertence a $N\cap N'$, temos que Q' tem seus vértices em $V(J_k)+q_i+q_{i+1}$. Sendo assim, as arestas de Q' induzem um circuito M-alternado Q^* em G^* , cujos vértices estão em $V(J_k)+v_i+v_{i+1}$.

Seja $M' := M \oplus E(Q^*)$. A validade das duas primeiras propriedades no enunciado do lema seguem imediatamente. Para completar a demonstração, resta mostrar que a orientação de Q^* em $D(G^*)$ é ímpar. O grafo H_k é conforme em H^* . Dado que $D(H^*)$ é Pfaffiana, segue que sua restrição $D(H_k)$ a H_k é Pfaffiana. Assim, a orientação do circuito Q' em $D(H_k)$ é ímpar. Logo, sua orientação em $D(H^*)$ também é ímpar. Por outro lado, $D(H^*)$ é restrição de $D(G^*)$ a H^* . Além disso, a aresta f em $D(G^*)$ sai de v_i e entra em v_{i+1} se e somente se f em $D(H^*)$ sai de q_i e entra em q_{i+1} . Assim, a orientação de Q^*

em $D(G^*)$ é igual à orientação de Q' em $D(H^*)$. De fato, a orientação de Q^* em $D(G^*)$ é impar.

A seguir, provaremos um resultado que tem importância fundamental para a prova deste caso do Lema da Herança da Redutibilidade.

Lema 6.1.21

Em G^* não existem duas arestas adjacentes que ligam vértice de Q_1 a vértice de Q_2 .

Demonstração: Por absurdo. Suponhamos que existam tais arestas. Ajuste a notação de forma que x_1 seja adjacente em G^* tanto a y_1 quanto a y_2 . Vide Figura 6.7. Pelo Lema 6.1.17, y_1 e y_2 são ambos adjacentes a q_3 . Para $k=1,2,\ldots,n$, seja M_k um emparelhamento perfeito de J_k . O conjunto $(\bigcup_k M_k) \cup \{e,q_0x_2\}$ pode ser estendido a um emparelhamento perfeito de G^* de duas maneiras: ou acrescentamos as arestas x_1y_1 e y_2q_3 ou acrescentamos as arestas x_1y_2 e y_1q_3 , obtendo, respectivamente, M e M'. Por definição de $D(G^*)$, o corte $\partial(Q_2)$ é orientado. Portanto, o quadrilátero gerado por x_1 , y_1 , y_2 e q_3 tem orientação par. Os emparelhamentos M e M' têm sinais distintos. Ajuste a notação de forma que M tenha sinal -s, onde s é o sinal comum em $D(G^*)$ dos emparelhamentos perfeitos tanto de G quanto de $G^* - e$.

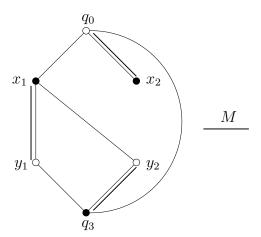


Figura 6.7: Ilustração da demonstração do Lema 6.1.21. As arestas duplas são de M.

Vamos obter uma contradição mostrando que o sinal de M é s. Para tanto, vamos mostrar que é possível atribuir três cores distintas, dentre suas cores, para as três arestas q_0x_2 , x_1y_1 e y_2q_3 . De fato, suponhamos que seja possível atribuir as três cores. Pelo Lema da Descarga 6.1.19 aplicado às arestas dentre q_0x_2 , x_1y_1 e y_2q_3 que pertencerem a Δ , o sinal de M em $D(G^*)$ é igual ao sinal de um emparelhamento M' de G^* que não tem aresta em Δ . Nesse caso, M' é emparelhamento de G. Então, o sinal de M' em

 $D(G^*)$ é igual a s, o sinal de todo emparelhamento perfeito de G em $D(G^*)$. Logo, M também tem sinal s em $D(G^*)$, uma contradição. A demonstração do lema se reduz assim à demonstração da possibilidade de atribuição de três cores distintas, dentre suas cores, às arestas q_0x_2 , x_1y_1 e y_2q_3 .

Vamos inicialmente mostrar que a aresta q_0x_2 tem uma cor c_0 e a aresta x_1y_1 tem uma cor c_1 tais que $c_0 \neq c_1$. Esta afirmação é certamente verdadeira se uma das arestas tem mais de uma cor. Em particular, isto ocorre se uma das arestas pertence a G. Suponhamos portanto que q_0x_2 tenha apenas uma cor c_0 . Pelo Lema 6.1.15, y_2 não é adjacente a nenhum vértice em J_k , para todo $k \neq c_0$. Pelo Lema 6.1.18 aplicado a x_2 e a y_1 , existe um k distinto de c_0 tal que y_1 é adjacente a vértice em J_k . Pelo Lema 6.1.15, y_1 é H_k -conexo a x_1 ou a x_2 e este vértice deve ser adjacente a vértice em J_k . Mas x_2 não é adjacente a vértice de J_k . Logo, $x_1 \stackrel{k}{\sim} y_1$, com k distinto de c_0 . De fato, a afirmação vale com $c_1 = k$. Analogamente, a aresta x_1y_1 tem uma cor c'_1 e a aresta y_2q_3 tem uma cor c'_2 tais que $c'_1 \neq c'_2$.

Ajuste a notação de forma que $c'_1 = 1$ e $c'_2 = 2$. Se q_0x_2 tiver cor fora de $\{1, 2\}$, então a atribuição das três cores pode ser feita. Podemos então supor que q_0x_2 não tem cor fora de $\{1, 2\}$. A seguir, analisaremos dois casos. Em ambos mostraremos que é possível atribuir as três cores distintas para q_0x_2 , x_1y_1 e y_2q_3 , provando assim o lema.

Caso 1 A aresta q_0x_2 tem cor 2, a mesma cor de y_2q_3 .

Se um dentre q_0x_2 e y_2q_3 tiver cor fora de $\{1,2\}$, então a atribuição das três cores pode ser feita. Podemos então supor que nem q_0x_2 nem y_2q_3 tem cor fora de $\{1,2\}$. Pelo Lema 6.1.15, nem x_2 nem y_2 é adjacente a vértice de J_k , para k fora de $\{1,2\}$. Portanto, pelo Lema 6.1.16, x_1 é adjacente a vértice de J_3 . Então, pelo Lema 6.1.15, $x_1 \stackrel{3}{\sim} y_1$ e y_1 é adjacente a vértice de J_3 . Mas, pelo Lema 6.1.18, pelo menos um dentre x_2 e y_2 é adjacente a vértice de J_k , para algum $k \neq 2$. Concluímos que um desses vértices é adjacente a J_1 . Portanto, pelo Lema 6.1.15, uma das arestas q_0x_2 e y_2q_3 tem também a cor 1. Novamente, as três cores distintas podem ser atribuídas, pois x_1y_1 tem cor 3, um dentre q_0x_2 e y_2q_3 tem cor 1, e o outro cor 2.

Caso 2 A aresta q_0x_2 tem cor 1.

Sabemos que q_0x_2 não tem cor fora de $\{1,2\}$. Além disso, o caso anterior não se aplica. Portanto, podemos supor que q_0x_2 tem apenas a cor 1. Pelo Lema 6.1.15, o vértice x_2 não é adjacente a nenhum vértice de J_k , para $k \neq 1$. Pelo Lema 6.1.18 aplicado a x_2 e y_1 , existe c distinto de 1 tal que y_1 é adjacente a vértice em J_c . Pelo Lema 6.1.15, a aresta x_1y_1 tem cor c, e x_1 é adjacente a vértice de J_c . Se c for distinto de 2, então pode-se atribuir as três cores distintas. Portanto, podemos assumir que c = 2. Assim, y_1 é adjacente apenas a vértices de J_1 e de J_2 . Pelo Lema 6.1.16, y_2 é adjacente a vértice

de J_3 . Pelo Lema 6.1.15, y_2q_3 tem a cor 3. Assim, a aresta q_0x_2 tem a cor 1, a aresta x_1y_1 tem a cor 2 e a aresta y_2q_3 tem a cor 3, e novamente é possível atribuis as três cores distintas. De fato, o lema é válido.

Lema 6.1.22O grafo $G^*[T]$ é o cubo.

Demonstração: As arestas x_0x_1 , x_0x_2 , x_0y_0 , y_0y_1 e y_0y_2 estão presentes em G e em G^* , pois e é uma aresta magra de índice 2. As arestas q_0x_1 , q_0x_2 , y_1q_3 e y_2q_3 pertencem a G^* pelo Lema 6.1.17. Também pelo Lema 6.1.17, q_0q_3 está em G^* . Vide Figura 6.8. Para completar a demonstração, resta mostrar que G^* tem, além da aresta e, precisamente duas arestas que ligam Q_1 a Q_2 , e que essas arestas não são adjacentes. De acordo com o Lema 6.1.17, x_1 tem em G^* um vizinho em Q_2 . Ajuste a notação de forma que x_1y_1 seja aresta de G^* . Novamente pelo Lema 6.1.17, x_2 tem em G^* um vizinho em Q_2 . Pelo Lema 6.1.21, x_2 e y_1 não são adjacentes. Logo, x_2 é adjacente a y_2 . Finalmente, pelo Lema 6.1.21, estas são as únicas duas arestas de G^* que ligam vértice de Q_1^+ a vértice de Q_2^+ .

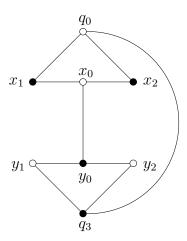


Figura 6.8: Algumas arestas de $G^*[T]$.

NοταςÃο 6.1.23

Ajustamos a notação de forma que x_1y_1 e x_2y_2 sejam arestas de G^* .

Notação 6.1.24

Denotamos por Θ o grafo $G^{\star}[T-x_0-y_0]$, um hexágono com uma corda. Vide Figura 6.9.

Lema 6.1.25

A aresta x_1y_1 tem uma cor c_1 e a aresta x_2y_2 tem uma cor c_2 tal que $c_1 \neq c_2$.

Demonstração: Pelo Lema 6.1.18 aplicado a x_1 e y_1 , deduzimos que um dentre x_1 e y_1 é adjacente a vértice de J_{c_1} , para algum $c_1 \in \{1, 2, ..., n\}$. Sabemos que nem x_1y_2 nem x_2y_1 são arestas de G^* . Portanto, x_1y_1 tem cor c_1 . De acordo com o Lema 6.1.18 aplicado a x_2 e y_2 , temos que um dentre x_2 e y_2 tem um vizinho em um J_{c_2} , para $c_2 \neq c_1$. Então, analogamente a x_1y_1 , temos que x_2y_2 tem a cor c_2 .

Notação 6.1.26

Ajustamos a notação de forma que x_1y_1 tenha cor 1 e x_2y_2 tenha cor 2.

Lema 6.1.27

O grafo G^* é Pfaffiano.

<u>Demonstração</u>: Lembremos que s foi definido como o sinal comum em $D(G^*)$ dos emparelhamentos perfeitos de G e de G^*-e . Seja M um emparelhamento perfeito de G^* . Mostraremos que o sinal de M em $D(G^*)$ é igual a s. Se M é emparelhamento perfeito de G ou se M é emparelhamento perfeito de G^*-e , então o sinal de M é igual a s. Sendo assim, podemos supor que M contém e, e contém aresta em Δ .

Para $k=1,2,\ldots,n,\,J_k$ tem o mesmo número de vértices em cada parte da bipartição de G^\star . Assim, $M\cap\partial(V(J_k))$ tem um número par de elementos. As arestas de $\partial(T)$ são todas incidentes a vértice de Θ . Assim, $|M\cap\partial(T)|\leq 6$. Ademais, as arestas de Δ pertencem a Θ . Assim, dado que M contém aresta em Δ , deduzimos que $|M\cap\partial(T)|\leq 4$. A seguir, analisaremos vários casos que dependem do número de arestas em $M\cap\partial(V(J_k))$, chegando em todos eles à conclusão de que o sinal de M em $D(G^\star)$ é igual a s, provando desta forma o lema.

Caso 1
$$M \cap \partial(V(J_k)) = \emptyset$$
, para $k = 1, 2, ..., n$.

Nesse caso, todos os vértices de T estão emparelhados por M entre si. Além disso, sabemos que e é aresta de M. Portanto, M restrito a Θ é emparelhamento perfeito de Θ . De acordo com o Lema 6.1.22, Θ é um hexágono com uma corda, como mostrado na Figura 6.9. Note que Δ é um subconjunto de $E(\Theta)$.

Suponha inicialmente que q_0q_3 esteja em M. Nesse caso, $M \cap E(\Theta)$ é igual ao conjunto $\{q_0q_3, x_1y_1, x_2y_2\}$. No entanto, pelo Lema 6.1.25, x_1y_1 tem cor 1, e x_2y_2 tem cor 2. Pelos Lemas 6.1.16 e 6.1.15, temos que q_0q_3 tem cor 3. Além disso, M não tem aresta em $\partial(V(J_k))$, para $k=1,2,\ldots,n$. Sendo assim, aplicando-se o Lema da Descarga 6.1.19 sobre as arestas q_0q_3, x_1y_1 e x_2y_2 que pertencerem a Δ , temos que o sinal de M em $D(G^*)$ é igual a s.

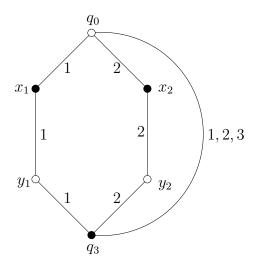


Figura 6.9: O grafo Θ e algumas das cores de suas arestas.

Sendo assim, podemos supor que q_0q_3 não está em M. Nesse caso, ou q_0x_1 ou q_0x_2 está em M. Ajuste a notação, trocando x_1 com x_2 e y_1 com y_2 se necessário, de forma que q_0x_1 esteja em M. Nesse caso, $M \cap E(\Theta)$ é igual a $\{q_0x_1, x_2y_2, y_1q_3\}$. Seja $C := (q_0, x_1, y_1, q_3, q_0)$ quadrilátero de G^* . Mostraremos agora que a orientação de C em $D(G^*)$ é impar. A restrição de C a H^* é igual a Q. Além disso, sabemos que $D(H^*)$ é uma restrição de $D(G^*)$. Portanto, a orientação de C em $D(G^*)$ é igual à orientação de Q em $D(H^*)$. Por outro lado, H^* é uma presilha. Além disso, todo quadrilátero de uma presilha é conforme. Portanto, Q é conforme em $D(H^*)$. Também sabemos que $D(H^*)$ é orientação Pfaffiana de H^* . Sendo assim, a orientação de Q em $D(H^*)$ é impar. Dessa forma, a orientação de C em $D(G^*)$ é impar. Então, $M' := M \oplus E(C)$ tem sinal em $D(G^*)$ igual ao sinal de M. No entanto, M' contém q_0q_3 e não tem aresta em $\partial(T)$. Portanto, conforme visto no parágrafo anterior, o sinal de M' é igual a S em $D(G^*)$. Assim, o sinal de M também é igual a S.

Caso 2
$$|M \cap \partial(V(J_k))| \leq 2$$
, para $k = 1, 2, \dots, n$.

Suponha que o caso anterior não acontece. Assim, existe k tal que $|M \cap \partial(V(J_k))| = 2$. Dessa forma, pelo Lema 6.1.20 aplicado a cada índice k tal que $|M \cap \partial(V(J_k))| = 2$, G^* tem um emparelhamento perfeito M' que não contém aresta em $\partial(V(J_k))$, para $k = 1, 2, \ldots, n$, e cujo sinal em $D(G^*)$ é igual ao sinal de M. Então, pelo caso anterior, o sinal de M' em $D(G^*)$ é igual a s. Assim, o sinal de M em $D(G^*)$ é igual a s.

Caso 3 Nenhum dos anteriores.

Suponha que os casos anteriores não acontecem. Portanto, existe um índice k tal que $|M \cap \partial(V(J_k))| \ge 4$. Por outro lado, vimos anteriormente que $|M \cap \partial(T)| \le 4$. Sendo assim, $|M \cap \partial(V(J_k))| = 4$ e $M \cap \partial(V(J_\ell)) = \emptyset$ para todo índice ℓ distinto de k.

Mostraremos, inicialmente, que toda aresta de Θ tem pelo menos duas cores. Pelo Lema 6.1.18 aplicado a x_1 e y_1 , temos que um dentre x_1 e y_1 tem um vizinho em J_ℓ , para $\ell \neq 1$. Ajuste a notação de forma que x_1 seja um tal vértice. Então, pelo Lema 6.1.15, x_1 é H_ℓ -conexo a y_1 ou y_2 . No entanto, pelo Lema 6.1.22, x_1y_2 não é aresta de G^* . Sendo assim, x_1y_1 tem cor ℓ . Dessa forma, tanto x_1 como y_1 tem vizinho em J_ℓ e em J_1 . Então, tanto q_0x_1 como y_1q_3 tem as cores 1 e ℓ . Em resumo, q_0x_1 , x_1y_1 e y_1q_3 tem duas cores distintas. Analogamente, q_0x_2 , x_2y_2 e y_2q_3 tem duas cores distintas. Pelos Lemas 6.1.16 e 6.1.15, q_0q_3 tem cor j, para $j=1,2,\ldots,n$. De fato, toda aresta de Θ tem pelo menos duas cores.

Como $|M \cap \partial(T)| = 4$, temos que M tem precisamente uma aresta em Θ . Seja vw esta aresta. Como $|M \cap \partial(V(J_k))| = 4$, temos que vw tem uma cor i distinta de k. Sendo assim, M não tem aresta em $\partial(V(J_i))$. Portanto, pelo Lema da Descarga 6.1.19, M tem sinal s em $D(G^*)$. De fato, o lema é válido.

Para $k = 1, 2, \dots, n$, seja

$$N_k := N(V(J_k)) \cap V(\Theta)$$
.

Lema 6.1.28

Se $N_k \neq V(\Theta)$ então $N_k = \{q_0, x_1, y_1, q_3\}$ ou $N_k = \{q_0, x_2, y_2, q_3\}$.

Demonstração: Suponhamos que $N_k \neq V(\Theta)$. Então, $V(\Theta) - N_k$ contém um dos vértices x_1, y_1, x_2 e y_2 . Ajuste a notação de forma que $x_1 \notin N_k$. Mostraremos agora que $y_1 \notin N_k$. Suponha o contrário. Pelo Lema 6.1.15, existe x_i , com i=1 ou i=2, tal que $y_1 \stackrel{k}{\sim} x_i$ e $x_i \in N_k$. Como $x_1 \notin N_k$, deduzimos que i=2 e $y_1 \stackrel{k}{\sim} x_2$. Assim x_2 e y_1 são adjacentes em G^* , em contradição ao Lema 6.1.22. De fato, nem x_1 nem y_1 pertencem a N_k . Logo, $N_k \subseteq \{q_0, x_1, y_1, q_3\}$. Pelo Lema 6.1.16, vale a igualdade. A demonstração do lema está completa.

Corolário 6.1.29

Existe uma componente conexa J_k de H - V(Q) tal que todo vértice de Θ é adjacente a vértice de J_k .

<u>Demonstração</u>: Suponhamos, por absurdo, que $|N_k| < 6$, para k = 1, 2, 3. Então, pelo Lema 6.1.28, podemos ajustar a notação, tal que

$$N_1 = \{q_0, x_1, y_1, q_3\} = N_2.$$

Nesse caso, o grafo $G-N_1$ tem pelo menos três componentes conexas: J_1 , J_2 e a componente conexa contendo e. Então N_1 reduz G, uma contradição. De fato, existe índice k tal que $N_k = V(\Theta)$.

Seja ℓ um índice tal que $N_{\ell} = V(\Theta)$. Seja $L := G^* - \bigcup_{k \neq \ell} V(J_k)$. Sendo assim, $L = G^*[T \cup V(J_{\ell})]$. Vide Figura 6.10.

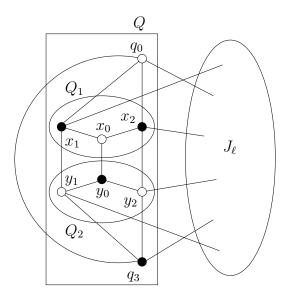


Figura 6.10: O grafo L.

Lema 6.1.30

O grafo L é uma presilha redutível Pfaffiana e não planar.

Demonstração: Mostraremos que L é presilha, mostrando que L pode ser obtido de H_{ℓ} por uma operação de geração de presilhas, de acordo com o Lema 2.3.29, mediante a expansão de q_1 e de q_2 . Para tanto, basta mostrar que, em L, cada um dos quatro vértices x_1, x_2, y_1 e y_2 tem grau três ou mais, com pelo menos um adjacente fora de $\{x_0, x_1, x_2, y_0, y_1, y_2\}$. Para i = 1, 2, o vértice x_i é adjacente a q_0 , a x_0 e a algum vértice de J_{ℓ} . Portanto, em L, x_i tem grau três ou mais, e é adjacente a um vértice de fora de T. Afirmação análoga vale para y_i , i = 1, 2. Sendo assim, pelo Lema 2.3.29, L é uma presilha.

Mostraremos, a seguir, que L é redutível e Pfaffiana. Para $k=1,2,\ldots,n$, seja $M(J_k)$ emparelhamento perfeito de J_k . Sabemos que $D(G^*)$ é Pfaffiana. Além disso, $\bigcup_{k\neq\ell} M(J_k)$ deixa L conforme em G^* . Portanto, $D(G^*)$ restrita a L é Pfaffiana. Seja $C:=(q_0,x_1,y_1,q_3,y_2,x_2,q_0)$ o hexágono de Θ . Vide Figura 6.10. Uma das pontes de C é a aresta q_0q_3 . Outra ponte contém o caminho (x_1,x_0,y_0,y_2) . Por definição, J_ℓ é conexo. Os vértices x_2 e y_1 são ambos adjacentes a vértices em J_ℓ . Portanto, J_ℓ faz parte de uma

ponte de C contendo x_2 e y_1 . Sendo assim, C tem três pontes que se cruzam duas a duas. Dessa forma, L não é planar. Além disso, L tem o quadrilátero $(q_0, x_1, y_1, q_3, q_0)$. Portanto, L não é isomorfo ao grafo de Heawood. Em resumo, L é presilha Pfaffiana, não planar e distinta do grafo de Heawood. Além disso, L tem menos vértices do que G. Pela hipótese do Lema da Herança da Redutibilidade (que estamos a provar), o Teorema Principal vale para L. Portanto, L é redutível.

Lema 6.1.31

Todo conjunto que reduz L reduz também G.

<u>Demonstração</u>: Suponhamos que existe um conjunto S de quatro vértices de L, dois em cada parte da bipartição de L, tal que L-S tem três ou mais componentes conexas. Mostraremos que G-S também tem três ou mais componentes conexas.

Vamos inicialmente mostrar que S-T não é vazio. Para tanto, suponha o contrário. O grafo L[T], igual a $G^*[T]$, é o cubo, uma presilha. Assim, L[T]-S tem um emparelhamento perfeito. Logo, L[T]-S, um grafo com quatro vértices, tem uma ou duas componentes conexas. Uma de suas componentes conexas tem vértices em Θ . Todo vértice de Θ é adjacente a vértices de J_{ℓ} . Por definição, J_{ℓ} é conexa. Assim, L-S tem uma ou duas componentes conexas, contradição. De fato, S-T não é vazio.

Assim, $|S-T| \leq 3$. Pelo Corolário 2.3.15, $G^*[T] - S$ é conexo. Logo, todos os vértices de T-S pertencem a uma mesma componente conexa de L-S. Portanto, L-S tem duas componentes conexas, L_1 e L_2 , que não contêm vértices de T. Assim, G^*-S tem pelo menos três componentes conexas; L_1 , L_2 e a componente conexa que contém os vértices de T-S. Então, S reduz G^* e portanto reduz G.

Pelo Lema 6.1.30, o grafo L é redutível. Seja S uma quádrupla que reduz L. Pelo Lema 6.1.31, S reduz G, uma contradição. Em resumo, se G é um spin, e uma aresta magra de G, H é uma presilha de G-e com dois vértices de contração em uma quádrupla Z, e o Teorema Principal vale para grafos menores do que G, então Z não reduz H. \square

Dividimos o Lema da Herança da Redutibilidade em três outros lemas. Estes três lemas acabam de ser provados. Temos assim que o Lema da Herança da Redutibilidade é verdadeiro.

Capítulo 7

Lema da Não Planaridade das Contrações

Provaremos neste Capítulo o Lema da Não Planaridade das Contrações, como prometido no Capítulo 4.

7.1 Lema da Não Planaridade das Contrações

Lema 7.1.1 (Lema da Não Planaridade das Contrações)

Seja G uma presilha Pfaffiana, irredutível. Seja $C := \partial_G(X)$ um corte (possivelmente trivial) de G tal que C - e é justo em G - e. Se G - e não é planar, e $|\overline{X}| \leq 5$, então a contração $(G - e)\{\overline{X} \to \overline{x}\}$ não é planar.

Demonstração do Lema da Não Planaridade das Contrações: Por hipótese, G - e não é planar. Então, se $|\overline{X}| = 1$ a afirmação é válida. Portanto, podemos supor que $|\overline{X}| > 1$. Ajuste a notação de forma que $e = x_0 y_0$, e que $x_0 \in X$. Sejam

$$H := (G - e)\{\overline{X} \to \overline{x}\}$$
 e $H' := (G - e)\{X \to x\}$

as duas (C-e)-contrações de G-e. A única presilha simples com quatro vértices é o C_4 , que é planar. A única presilha simples com seis vértices é o $K_{3,3}$, que não é Pfaffiana. Como G é Pfaffiana e não planar, G tem pelo menos oito vértices. No entanto, de acordo com o Lema 2.6.7, a única presilha simples Pfaffiana com precisamente oito vértices é o cubo, que é planar. Portanto, G tem pelo menos dez vértices. Por hipótese, $|\overline{X}| \leq 5$. Como $|V(G)| = |X| + |\overline{X}|$, temos que $|X| \geq 5$. Sendo assim, H tem pelo menos seis vértices.

Como G é presilha Pfaffiana, temos que tanto H como H' são Pfaffianos. Pelo Lema 2.4.6, H tem uma orientação Pfaffiana D(H) na qual \overline{x} é um sorvedouro. Analogamente, H' tem uma orientação Pfaffiana D(H') na qual x é uma fonte. Então, pelo

Teorema 2.4.7, D(H) e D(H') podem ser estendidos a uma orientação Pfaffiana D(G) de G.

Na Seção 7.1.1, vamos demonstrar lemas auxiliares e, posteriormente, na Seção 7.1.2, obter contradições numa análise de casos, deduzindo que H não é planar. Esta dedução será feita por absurdo, supondo que H é planar. É importante ressaltar que alguns dos lemas da Seção 7.1.1 adotam a hipótese de absurdo.

7.1.1 Os Lemas Auxiliares

Lema 7.1.2

O grafo $H - x_0$ é 2-conexo.

<u>Demonstração</u>: O grafo H é coberto por emparelhamentos, portanto, pelo Lema 2.2.1, H é 2-conexo. Suponha, por absurdo, que $H-x_0$ tenha um vértice v tal que $H-x_0-v$ seja desconexo. Então, $Z:=\{x_0,v\}$ é uma 2-separação de H. Se v e \overline{x} são distintos, então Z é uma 2-separação de G, uma contradição ao Corolário 2.3.14. Podemos portanto supor que $v=\overline{x}$. Seja $\{U,W\}$ a bipartição de H, tal que $x_0\in U$. Então, pelo Corolário 2.3.19, $Z\subset U$.

Sejam K_1, K_2, \ldots, K_n , com $n \geq 2$, as componentes conexas de H - Z. Seja F_i um emparelhamento máximo do subgrafo de H gerado por $\partial_H(V(K_i))$. Como |Z| = 2, temos que $|F_i| \leq 2$. Vamos agora definir emparelhamento perfeito N_i , para $i = 1, 2, \ldots, n$, de H tais que $F_i \subseteq N_i$. Se $|F_i| = 1$, então basta tomar para N_i qualquer emparelhamento perfeito de H que contém a aresta de F_i . Podemos então supor que $|F_i| = 2$. Seja M_i um emparelhamento perfeito de G que contém ambas as arestas de F_i . Uma das arestas de F_i incide em x_0 , logo $e \notin M_i$. Assim, M_i é emparelhamento perfeito de G - e. Então, $N_i := M_i \cap E(H)$ é emparelhamento perfeito de H, tal que H0.

Sabemos que $Z \subset U$. Portanto, para i = 1, 2, ..., n, uma simples contagem mostra que $|V(K_i) \cap W| = |V(K_i) \cap U| + |N_i \cap \partial_H(V(K_i))|$. Pela otimalidade de F_i temos que $|N_i \cap \partial_H(V(K_i))| = |F_i|$. Assim,

$$|V(K_i) \cap W| = |V(K_i) \cap U| + |F_i|,$$
 (7.1)

$$|W| = \sum_{i=1}^{n} |V(K_i) \cap W|,$$
 (7.2)

$$|U| = |Z| + \sum_{i=1}^{n} |V(K_i) \cap U|.$$
 (7.3)

Do fato que |W| = |U|, deduzimos que $\sum_{i=1}^{n} |F_i| = |Z|$. Como $n \ge 2$, e $|F_i| \ge 1$, temos que n = 2 e $|F_i| = 1$, para i = 1, 2. No entanto, o emparelhamento máximo de um corte é igual à cobertura mínima de arestas por vértices. Portanto, um vértice v_i de H incide em

todas as arestas de $\partial_H(V(K_i))$. Sendo assim, ou $H-v_i$ é desconexo, ou K_i-v_i é vazio. Como H é 2-conexo, temos que K_i-v_i é vazio, e portanto $|V(K_i)|=1$. Este argumento vale para i=1,2. Sendo assim, H-Z tem duas componentes com um vértice cada uma. Sendo assim, H tem apenas quatro vértices. Vimos anteriormente que $|V(H)| \geq 6$. Então, temos uma contradição. De fato, $H-x_0$ é 2-conexo.

Suponha, por absurdo, que H seja planar. Seja \tilde{H} uma imersão planar de H. Seja \tilde{F} a face de $\tilde{H}-x_0$ que contém x_0 em \tilde{H} . Vimos anteriormente que H tem pelo menos seis vértices. Sendo assim, pelo Lema 7.1.2, $H-x_0$ é 2-conexo. Portanto, pelo Lema 2.6.2, \tilde{F} é delimitado por um circuito F. Esta situação está ilustrada na Figura 7.1.

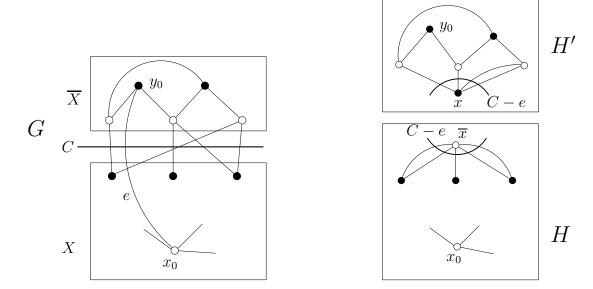


Figura 7.1: Grafos G, H e H', e algumas definições feitas: \overline{X} , C - e e F.

Seja F_G o subgrafo de G induzido pelas arestas de F. É possível que F contenha arestas que são paralelas (em C). Diferentes escolhas de imersões planares \tilde{H} de H podem gerar \tilde{F} 's diferentes, e portanto F's diferentes (mas iguais a menos de arestas múltiplas). A escolha de \tilde{H} deverá ser feita de acordo com o seguinte critério:

- se possível, fazer F_G ser um circuito;
- se não for possível que F_G seja um circuito, fazer, se possível, com que os extremos de F_G sejam adjacentes a y_0 .

Em todos os casos, F_G é uma trilha de comprimento par. Portanto, a paridade de sua orientação em D(G) está bem definida.

Lema 7.1.3

Se H é planar, então a orientação de F_G é par em D(G).

Demonstração: Suponha que H seja planar. Seja \tilde{H} uma imersão planar de H. A orientação D(H) é orientação Pfaffiana de H, e F isola precisamente um vértice (o vértice x_0) em \tilde{H} . Portanto, a orientação de F é par em D(H), de acordo com o Corolário 2.6.5. Como D(H) é a restrição de D(G) a E(H), o número de arestas de F_G que concorda em D(G) com um dado sentido de percurso de F_G é par.

Seja v um vértice em $X-V(F)-x_0$ adjacente a vértice em \overline{X} , e seja $H(v):=H-x_0-v$. Dizemos que um emparelhamento perfeito M(v) de H(v) é bom se sua restrição a F é emparelhamento perfeito de F. Denotamos por $\mathcal{M}(v)$ o conjunto dos emparelhamentos perfeitos bons de H(v).

Lema 7.1.4

Suponha que H seja planar. Então, H(v) tem um emparelhamento bom M. Além disso, se F_G for um circuito, e se f denotar a aresta de $M \cap C$, então o extremo em G de f em \overline{X} é o único vértice de \overline{X} adjacente a v em G.

Demonstração: Lembremos que, pela Notação 2.3.4, \overline{X}_+ é definido como a parte majoritária de \overline{X} , e \overline{X} é definido como a parte minoritária de \overline{X} . O corte C não é justo em G, mas C-e é um corte justo de G-e. Portanto, pelo Lema 2.3.5, e incide em vértice da parte minoritária de X. Então, $x_0 \in X_-$. Por definição, v é adjacente a \overline{x} . Portanto, vincide em aresta de C-e, e assim pertence a X_+ . Assim, x_0 e v estão em partes distintas da bipartição de G. Logo, o grafo $G' := G - x_0 - v$ é coberto por emparelhamentos, de acordo com o Corolário 2.3.9. Seja $C' := \partial_{G'}(\overline{X})$. Como C - e é justo em G - e, temos que toda aresta de C-e incide em vértice de \overline{X}_+ . Além disso, C' é subconjunto de C-e, pois G' não contém o extremo x_0 de e. Portanto, toda aresta de C' tem um extremo em \overline{X}_+ . O conjunto \overline{X} é um subconjunto de V(G'), pois nem x_0 nem v estão em \overline{X} . Então, de acordo com o Lema 2.3.5, \overline{X} é praia de corte justo de G', e portanto C' é justo em G'. Sendo assim, pelo Lema 2.2.2, H(v), uma das C'-contrações de G', é coberto por emparelhamentos. Portanto, pelo Lema 2.6.3, F, um circuito que delimita uma face de $\tilde{H} - x_0 - v$, é conforme em $H - x_0 - v = H(v)$. Portanto, existe emparelhamento perfeito M de H(v), cuja restrição a F é emparelhamento perfeito de F. Ou seja, o emparelhamento perfeito M é bom em H(v).

Para completar a prova do lema, mostraremos que o extremo em G de f em \overline{X} é o único vértice de \overline{X} adjacente a v em G. Para tanto, suponha o contrário. Então, v é adjacente a algum vértice w de \overline{X} que não é incidente em f. Mostraremos agora que M + vw + e pode ser estendido a um emparelhamento perfeito de G. Seja M' a extensão de $\{f, vw\}$ a um emparelhamento perfeito de G. Seja N o emparelhamento perfeito de G

obtido pela união de M, $M' \cap E(G[\overline{X}])$ e $\{vw, e\}$. Sendo assim, N é um emparelhamento perfeito de G que é uma extensão de M + vw + e. Como M é bom em H(v), temos que a restrição de N a F é emparelhamento perfeito de F. Por hipótese, F_G é um circuito. Logo N restrito a F_G é emparelhamento perfeito de F_G . Portanto, o circuito F_G é conforme em G. Por outro lado, a orientação de F_G é par em D(G), de acordo com o Lema 7.1.3. Logo, D(G) não é Pfaffiana, uma contradição. De fato, o lema é válido.

Lema 7.1.5

Se H for planar, então $|(V(F)) \cap N_H(\overline{x})| \le 2$, com igualdade se e somente se \overline{x} está em V(F).

Demonstração: Suponha, por absurdo, que o enunciado do Lema é falso. Vamos definir dois vértices, v_1 e v_2 de V(F), ambos adjacentes a \overline{x} , e que definem em F dois segmentos, F_1 e F_2 , ambos contendo vértices internos distintos de \overline{x} . Se \overline{x} não está em V(F), como o enunciado é falso, \overline{x} tem dois ou mais vizinhos em V(F). Sejam v_1 e v_2 dois vizinhos de \overline{x} em V(F). Se \overline{x} está em V(F), \overline{x} tem pelo menos dois vizinhos em V(F). Como o enunciado é falso, \overline{x} tem três ou mais vizinhos em V(F). Dois destes vizinhos são vizinhos de \overline{x} em F. Seja v_2 um vizinho de \overline{x} em G que não é vizinho de \overline{x} em F. Seja v_1 outro vizinho qualquer de \overline{x} em F. Em ambos os casos, tanto F_1 quanto F_2 , os segmentos de F definidos por v_1 e v_2 , contém vértice interno distinto de \overline{x} , como mostrado na Figura 7.2. Seja $Z := \{\overline{x}, v_1, v_2, x_0\}$. No grafo H - Z, os conjuntos $V(F_1) - Z$ e $V(F_2) - Z$ são ambos não vazios, pois tanto F_1 quanto F_2 contém vértice interno distinto de \overline{x} . Além disso, v_1 e v_2 incidem em F, um circuito que delimita uma face de $H - x_0$. Portanto, $V(F_1) - Z$ e $V(F_2) - Z$ não são conexos em H - Z. Logo, H - Z é desconexo.

Como v_1 e v_2 compartilham circuito facial com x_0 , temos que $H^* := H + x_0v_1 + x_0v_2$ é planar, e portanto Pfaffiano. Além disso, H^* contém o quadrilátero $Q := (\overline{x}, v_1, x_0, v_2, \overline{x})$. Portanto, H + E(Q) é Pfaffiano. Note que Z = V(Q). Mostraremos agora que H - V(Q) tem emparelhamento perfeito. Sejam w_1 e w_2 dois vértices de \overline{X}_+ . Pelo Corolário 2.3.11, $G' := G + w_1v_1 + w_2v_2$ é presilha. Seja M um emparelhamento perfeito de G' contendo w_1v_1 e w_2v_2 . Como M tem duas arestas em G (as arestas w_1v_1 e w_2v_2), temos que w_1v_1 , w_2v_2 e e são todas as arestas de M em G, de acordo com o Corolário 2.3.17. Então, x_0, v_1 e v_2 são os únicos vértices de X emparelhados por M com vértices de \overline{X} . Então, a restrição de M a $E(G - \overline{X} - x_0 - v_1 - v_2)$ é emparelhamento perfeito de $G - \overline{X} - x_0 - v_1 - v_2$. No entanto, H - V(Q) é igual a $G - \overline{X} - x_0 - v_1 - v_2$, e portanto H - V(Q) tem emparelhamento perfeito. Em resumo, H - V(Q) é desconexo, e tem emparelhamento perfeito. Além disso, H + E(Q) é Pfaffiano, e incide em vértice de Q, e \overline{x} está em Q. Isto é uma contradição ao Lema 6.1.7. De fato, o vértice \overline{x} tem em H um número de vizinhos em V(F) menor do que ou igual a dois, com igualdade se e somente se \overline{x} está em V(F).

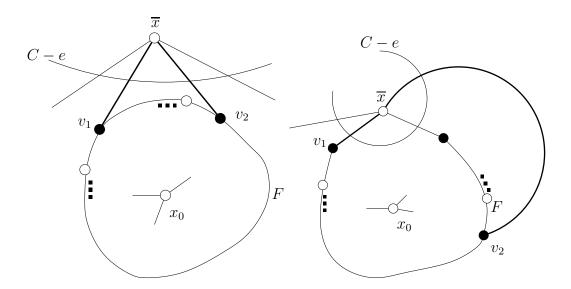


Figura 7.2: Em destaque os vértices x_0 , \overline{x} , v_1 e v_2 .

Analisaremos, agora, as adjacências dos vértices de \overline{X} .

Lema 7.1.6

É possível ajustar a notação de forma que:

- Se $|\overline{X}| = 3$, então $\overline{X} = \{y_0, y_1, y_2\}$ e $\{y_0y_1, y_0y_2\}$ é o conjunto de arestas de $G[\overline{X}]$; além disso, tanto y_1 quanto y_2 tem pelo menos dois vizinhos em X.
- Se $|\overline{X}| = 5$, então $\overline{X} = \{y_0, y_1, y_2, s_0, s_1\}$ e $\{y_0y_1, y_0y_2, s_0y_1, s_0y_2, s_0s_1\}$ é o conjunto de arestas de $G[\overline{X}]$; além disso, tanto y_1 como y_2 tem pelo menos um vizinho em X, e s_1 tem pelo menos dois vizinhos em X.

Demonstração: No caso em que $|\overline{X}| = 3$, a validade da afirmação é imediata. Suponha, agora, que $|\overline{X}| = 5$. Sendo assim, \overline{X}_- tem dois vértices, e \overline{X}_+ tem três vértices. O vértice y_0 está em \overline{X}_- . Seja s_0 o outro vértice de \overline{X}_- . Sejam y_1 , y_2 e s_1 os vértices de \overline{X}_+ . O vértice s_0 somente é adjacente em G - e a vértices de \overline{X}_+ . Mas s_0 tem grau três ou mais em G, e não incide em e. Logo, s_0 é adjacente aos três vértices de \overline{X}_+ . Analogamente, o vértice y_0 é adjacente a pelo menos dois vértices de \overline{X}_+ . Ajuste a notação de forma que y_0 seja adjacente a y_1 e y_2 . Os vértices de \overline{X}_+ tem pelo menos três vizinhos em G. Como \overline{X}_- tem somente dois vértices, temos que cada vértice de \overline{X}_+ tem pelo menos um vizinho em X. Então, os vértices s_0 e x são adjacentes a todos os vértices de \overline{X}_+ em $(G - e)\{X \to x\}$. O grafo $(G - e)\{X \to x\}$ é Pfaffiano e portanto não pode ser o $K_{3,3}$. Sendo assim, y_0 e s_1 não são adjacentes. De fato, o Lema é válido.

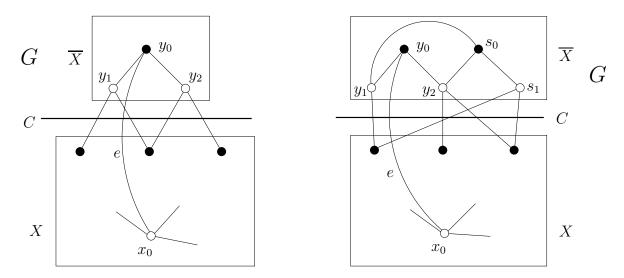


Figura 7.3: Grafo G nas duas possibilidades de tamanho de \overline{X} , com as nomenclaturas definidas dos vértices de \overline{X} .

7.1.2 Análise de Casos do Lema da Não Planaridade das Contrações

Demonstrados os lemas na seção anterior, vamos agora completar a demonstração do Lema da Não Planaridade das Contrações, adotando como hipótese de absurdo que H é planar. Analisaremos três casos. Em todos os casos chegaremos a uma contradição, demonstrando assim o Lema.

Caso 1 O grafo F_G é um circuito.

Nesse caso, temos três alternativas. Uma delas é que F seja um circuito de G[X]. Caso isto não ocorra, temos que \overline{x} está em F, e portanto um vértice de \overline{X}_+ , digamos z, está em F_G . Nesse caso, temos duas possibilidades. Ou $z \in \{y_1, y_2\}$, ou $|\overline{X}| = 5$, e $z = s_1$.

Caso 1.1 O vértice \overline{x} não está em F.

Nesse caso, F é circuito de G[X]. Seja Z o conjunto de vértices de \overline{X} adjacentes em G-e a vértices de X-V(F). Mostraremos que $|Z| \geq 2$. Suponha, por absurdo, que |Z| < 2. Pelo Lema 7.1.5, no máximo um vértice de F é adjacente a \overline{x} em H. Vamos remover de G no máximo três vértices: (i) o vértice y_0 , (ii) o vértice de Z, se existir, e (iii) o vértice de F adjacente a \overline{x} em H, se existir. É fácil ver que a remoção desses vértices desconecta G, em contradição ao Corolário 2.3.15. De fato, $|Z| \geq 2$.

Seja $Z = \{z_1, z_2, \dots, z_m\}$, com $m \ge 2$. Para i = 1, 2, seja u_i um vizinho em G - e de z_i em X - V(F). Esta situação está ilustrada na Figura 7.4. Pelo Lema 7.1.4, existe um

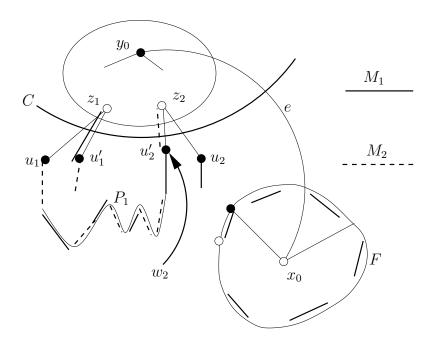


Figura 7.4: G com os emparelhamentos M_1 e M_2 , e os vértices definidos na prova.

emparelhamento perfeito bom M_i de $H(u_i)$. A restrição de M_i a F é um emparelhamento perfeito de F. Seja f_i a aresta de M_i em C. De acordo com o Lema 7.1.4, z_i incide em f_i . Seja u_i' o extremo de f_i em X. Ainda de acordo com o Lema 7.1.4, $N_G(z_1) \cap X - V(F)$ e $N_G(z_2) \cap X - V(F)$ são disjuntos. Portanto, u_1 , u_1' , u_2 e u_2' são quatro vértices distintos. Para $i=1,2,\ u_i$ é o único vértice de $H-x_0$ não coberto por M_i . Portanto, existe um caminho M_1, M_2 -alternado P em H que vai de u_1 a u_2 . Seja P_1 o segmento maximal de P em $H-\overline{x}$ que contém u_1 . Seja u_2 o extremo de u_1 diferente de u_1 . Por paridade, $u_2 \neq u_1'$. Portanto, ou $u_2 = u_2$ ou u_2 é incidente na aresta u_2 0 emparelhamento u_2 0. Seja u_2 1 en u_2 2 en u_2 3 en u_2 4 en u_2 5 en u_2 6 en u_2 6 en u_2 6 en u_2 7 en u_2 8 en u_2 9 e

Caso 1.2 O vértice \overline{x} está em F.

Nesse caso, F_G tem precisamente um vértice. Adotemos a notação do Lema 7.1.6. Sejam v_1 e v_2 os dois vizinhos de \overline{x} em F. Vide Figura 7.5.

Lema 7.1.7

O vértice de F_G em \overline{X} é o único vértice de \overline{X} adjacente a mais de um vértice de X. Além disso, os demais vértices de \overline{X}_+ não são adjacentes a vértices de $X - v_1 - v_2$.

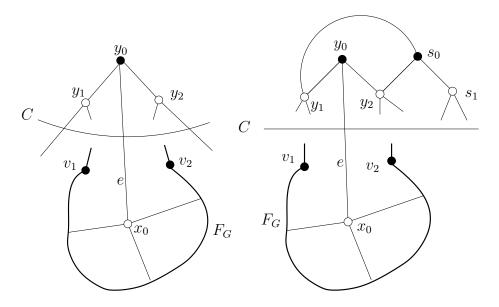


Figura 7.5: As duas possibilidades para o grafo G no Caso 1.2.

Demonstração: O vértice w_1 de \overline{X} em F_G é adjacente a v_1 e a v_2 , pois F_G é um circuito, pela hipótese do caso. Mostraremos, inicialmente, que nenhum outro vértice de \overline{X} é adjacente a ambos v_1 e v_2 . Suponha, por absurdo, que um vértice w_2 de \overline{X} , com $w_2 \neq w_1$, é adjacente tanto a v_1 como a v_2 . Nesse caso, $Q := (v_1, w_1, v_2, w_2, v_1)$ é um quadrilátero de G inteiramente contido em C - e. Por definição de D(G), o corte C - e é orientado em D(G). Como Q está inteiramente contido em C - e, sua orientação é par em D(G). Por outro lado, todo quadrilátero de uma presilha é conforme. Em particular, Q é conforme em G. Portanto, D(G) não é orientação Pfaffiana de G, uma contradição. De fato, precisamente um vértice de \overline{X} é adjacente a ambos v_1 e v_2 .

Sendo assim, se um vértice w_2 de $\overline{X}-w_1$ não tem vizinho fora de $X-v_1-v_2$, então w_2 tem no máximo um vizinho em X. O vértice y_0 é o único vértice de \overline{X}_- adjacente a vértice de X, e y_0 tem somente um vizinho em X. Portanto, a prova deste lema pode ser reduzida a se mostrar que nenhum vértice de \overline{X}_+-w_1 tem vizinho em $X-v_1-v_2$. Suponha, por absurdo, que w_2 seja um vértice de \overline{X}_+-w_1 adjacente a um vértice v em $X-v_1-v_2$. De acordo com o Lema 7.1.5, v não está em F. Como w_2 está em \overline{X}_+ , temos que $v\in X_+$. Portanto, v é distinto de x_0 . Sendo assim, v está em $X-V(F)-x_0$. De acordo com o Lema 7.1.4, H(v) tem um emparelhamento bom M. Como M restrito a F é emparelhamento perfeito de F, temos que a aresta f de M em G incide em G0, o vértice de G0 em G0 incide em G1.4, o único vizinho de G2 em G3. Então, novamente de acordo com o Lema 7.1.4, o único vizinho de G3 em G4 em G5 em G6 em G6 um vizinho em G7. Então, o vértice de G8 em G9 en G9 em G9 e

Caso 1.2.1 Um vizinho de y_0 em \overline{X} está em F_G .

Como a notação do Lema 7.1.6 foi adotada, um dentre y_1 e y_2 está em F_G . Ajuste a notação de forma que y_1 esteja em F_G . Então, pelo Lema 7.1.7, y_1 é o único vértice de \overline{X} adjacente a mais de um vértice de X. Se $|\overline{X}| = 3$, pelo Lema 7.1.6, y_2 tem dois vizinhos em X. Então, podemos supor que $|\overline{X}| = 5$. Nesse caso, pelo Lema 7.1.6, s_1 tem dois vizinhos em X. Isto é uma contradição. De fato, o Caso 1.2.1 não acontece.

Caso 1.2.2 O caso anterior não acontece.

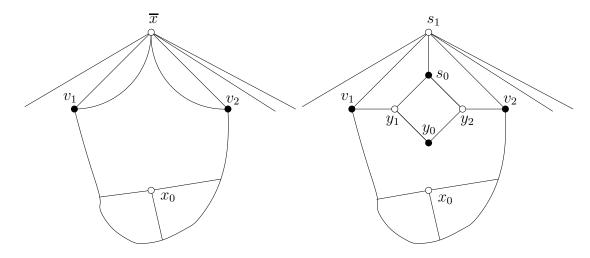


Figura 7.6: A extensão de \tilde{H} a uma imersão planar de G-e, no Caso 1.2.2.

Pela hipótese do Caso 1.2, \overline{x} está em F, e F_G é um circuito. Como o Caso 1.2.1 não acontece, um vértice de $\overline{X}_+ - y_1 - y_2$ pertence a F_G . Sendo assim, $|\overline{X}| = 5$ e s_1 está em F_G . De acordo com o Lema 7.1.7, cada um dentre y_1 e y_2 tem pelo menos um vizinho em X. Além disso, pelo Lema 7.1.4, y_1 e y_2 tem no máximo um vizinho em X cada, e estes vizinhos estão em $\{v_1, v_2\}$. Ajuste a notação de forma que y_1 seja adjacente a v_1 . Mostraremos, agora, que y_2 é adjacente a v_2 . Suponha, por absurdo, que y_2 seja adjacente a v_1 . Nesse caso, v_1 é o único vértice de X adjacente a vértice em $\{y_1, y_2\}$. Então, $\{v_1, s_1, x_0\}$ é uma cobertura das arestas de C. Portanto, $G - \{v_1, s_1, x_0\}$ é desconexo. No entanto, v_1 e s_1 estão em partes distintas da bipartição de G. Isto é uma contradição ao Corolário 2.3.15. De fato, v_2 é o único vizinho de y_2 em X e v_1 é o único vizinho de y_1 em X. Sendo assim, a imersão planar \tilde{H} de H pode ser estendida a uma imersão planar de G - e, em contradição à hipótese do lema, como visto na Figura 7.6.

Caso 2 O grafo F_G não é circuito.

Caso 2.1 O caminho F_G tem um extremo não adjacente a y_0 .

Como F_G não é circuito, \overline{x} está em V(F). Como F_G tem um extremo não adjacente a y_0 , temos que $|\overline{X}| = 5$, e que F_G incide em s_1 . Sejam v_1 e v_2 os vizinhos de \overline{x} em F. Pela hipótese do caso, s_1 é adjacente a um dentre v_1 e v_2 . Ajuste a notação de forma que s_1 seja adjacente a v_2 .

Lema 7.1.8

O corte C - e de G - e inclui um emparelhamento M de G - e com três arestas, que cobre v_1 e contém a aresta s_1v_2 .

Demonstração: Vamos inicialmente mostrar que C-e inclui um emparelhamento M de G com três arestas. Suponha, por absurdo, que este não é o caso. Então, existe um conjunto Z de vértices, com $|Z| \leq 2$, que cobre as arestas de C-e. Assim, G-e-Z é desconexo. Logo, $G-Z-x_0$ e $G-Z-y_0$ são ambos desconexos, pois tanto X como \overline{X} tem pelo menos cinco vértices. Isto é uma contradição ao Corolário 2.3.15. De fato, C-e inclui um emparelhamento com M três arestas. Mas \overline{X} tem apenas três vértices incidentes em arestas de C-e: y_1, y_2 e s_1 . Portanto, M cobre \overline{X}_+ .

Vamos agora mostrar que podemos escolher M contendo s_1v_2 . Pelo critério utilizado na escolha de F, e dado que F_G não é um circuito, s_1 não é adjacente a v_1 . Então, v_1 é adjacente a um vértice de $\overline{X}_+ - s_1$. Seja w um tal vértice. É claro que $w \in \{y_1, y_2\}$. Como F_G não é um circuito, w não é adjacente a v_2 . Suponha que o vértice w' de $\overline{X}_+ - s_1 - w$ seja adjacente a v_2 . Neste caso, v_1w e v_2w' são arestas de G, e poderíamos escolher \tilde{H} e \tilde{F} de forma que s_1 não fosse extremo de F_G , em contradição à escolha de F_G . De fato, s_1 é o único vértice de \overline{X} adjacente a v_2 . Suponha que $s_1v_2 \notin M$. Então, v_2 não é coberto por M. Sendo assim, podemos trocar a aresta de M incidente em s_1 pela aresta s_1v_2 .

Sendo assim, podemos supor que s_1v_2 está em M. Mostraremos agora que, além disso, podemos escolher M que cubra v_1 . Suponha que M não cubra v_1 . Como F_G não é um circuito, v_1 não é adjacente a s_1 . Logo, v_1 é adjacente a y_1 ou y_2 , digamos y_1 . Então, podemos substituir a aresta de M incidente em y_1 por y_1v_1 . De fato, M é um emparelhamento de tamanho três de J contendo s_1v_2 que cobre v_1 .

Seja M emparelhamento como enunciado no lema anterior. Ajuste a notação de forma que y_1 seja o vértice de \overline{X}_+ emparelhado por M com v_1 . Seja v o vértice de $X-v_1-v_2$ emparelhado por M com y_2 . Sem perda de generalidade, y_1 e s_1 são os extremos de F_G . Então, pelo Lema 7.1.5, v está em X-V(F). Como y_2 está na mesma parte da bipartição de x_0 , temos que v está em $X-V(F)-x_0$. Então, de acordo com o Lema 7.1.4, $H(v)=H-x_0-v$ tem um emparelhamento perfeito N cuja restrição a F é emparelhamento perfeito de F. Ajuste a notação, trocando N com $N \oplus E(F)$ se necessário, de forma que y_1v_1 seja aresta de N. Então, $M:=N+x_0y_0+vy_2+s_0s_1$ é

emparelhamento perfeito de G. Vide Figura 7.7. Seja $Q := F_G + (s_1, s_0, y_1)$. Note que Q é um circuito de G. A restrição de M a Q é um emparelhamento perfeito de Q. Portanto, Q é conforme em G. Então, a orientação de Q em D(G) é ímpar, pois D(G) é Pfaffiana. De acordo com o Lema 7.1.3, a orientação de F_G é par em D(G). Então, temos que a orientação de (s_1, s_0, y_1) é ímpar em D(G). Seja $Q' := (s_1, s_0, y_1, x, s_1)$ quadrilátero de $(G - e)\{X \to x\}$. Vide Figura 7.7. Por definição de D(H'), o vértice x é fonte em D(H'). A orientação Pfaffiana D(H') de H' é uma restrição de D(G). Portanto, a orientação de Q' é par em D(H'). Por outro lado, $\{y_0y_2\}$ é emparelhamento perfeito de H' - V(Q'). Então, Q' é conforme em H'. Isto é uma contradição à escolha de D(H') como orientação Pfaffiana de H'. De fato, o Caso 2.1 não se aplica.

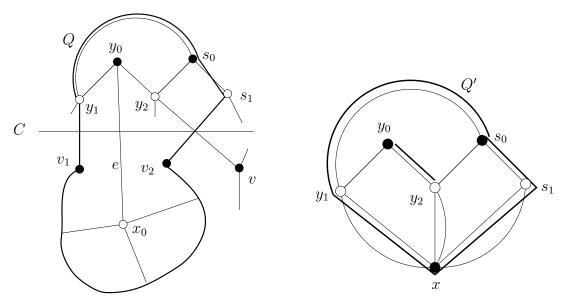


Figura 7.7: Os grafos G e $H' = (G - e)\{X \to x\}$, no Caso 2.1. Em destaque, os circuitos Q e Q' e o emparelhamento perfeito de H' - V(Q').

Caso 2.2 Os extremos de F_G são os vértices y_1 e y_2 .

Ajuste a notação de forma que y_1 seja adjacente a v_1 e y_2 adjacente a v_2 . Sejam $e_1 = v_1y_1$ e $e_2 = v_2y_2$. Lembremos que \tilde{H} é uma imersão planar de H. Para i=1,2, os vértices x_0 e v_i são ambos incidentes em \tilde{F} . Então, $H^\star := H + x_0v_1 + x_0v_2$ é planar. Seja $G^\star := G + x_0v_1 + x_0v_2$. Nenhuma das arestas de $E(G^\star) - E(G)$ está em $\partial_{G^\star}(X)$. Portanto, C - e é um corte justo de $G^\star - e$. Então, H^\star e H' são as (C - e)-contrações de $G^\star - e$. Mostraremos a seguir que G^\star é Pfaffiano.

Lema 7.1.9 A presilha G^* é Pfaffiana.

<u>Demonstração</u>: O grafo H^* é planar, e portanto Pfaffiano. Pelo Lema 2.4.6, H^* tem uma orientação Pfaffiana na qual \overline{x} é um sorvedouro. Analogamente, H' tem uma orientação Pfaffiana na qual x é uma fonte. Portanto, pelo Teorema 2.4.7, a extensão $D(G^* - e)$ dessas orientações a uma orientação de $G^* - e$ é Pfaffiana. Pelo Lema 2.4.9, $D(G^* - e)$ pode ser estendida a uma orientação $D(G^*)$ de G^* , cuja restrição a G é Pfaffiana. Além disso, x é uma fonte na restrição de $D(G^*)$ a H'. Mostraremos que $D(G^*)$ é Pfaffiana.

Seja N um emparelhamento perfeito de G-e. Seja s o sinal de N em $D(G^*)$. Vamos mostrar que todo emparelhamento M de G^* tem sinal s. As arestas x_0v_1 , x_0v_2 e a aresta e são adjacentes. Portanto, M tem no máximo uma dessas três arestas. Se M contém a aresta e, então M é um emparelhamento perfeito de G. Sendo assim, como $D(G^*)$ restrita a G é Pfaffiana, temos que o sinal de M em $D(G^*)$ é s. Portanto, podemos supor que M não contenha e. Então, M é emparelhamento perfeito de G^*-e . Como $D(G^*)$ restrita a G^*-e é Pfaffiana, temos que o sinal de M é s. Portanto, todo emparelhamento perfeito M tem sinal s em $D(G^*)$, e $D(G^*)$ é Pfaffiana. De fato, G^* é Pfaffiano.

Uma ordem cíclica (g_1, g_2, \ldots, g_n) de um subconjunto das arestas de um corte C' de um grafo G é uma ordem cíclica planar se existe uma imersão planar de G na qual a ordem cíclica (g_1, g_2, \ldots, g_n) acontece em C'.

Lema 7.1.10

O corte $C - e - e_1 - e_2$ contém duas arestas f_1 e f_2 , tais que f_1 e f_2 não são adjacentes em G, a ordem cíclica (e_1, e_2, f_2, f_1) é planar em H^* , e a ordem cíclica (e_1, e_2, f_1, f_2) é planar em H'.

Demonstração: Vamos considerar o conjunto γ^* das ordens cíclicas planares $(e_1^*, e_2^*, \dots, e_r^*)$ de $\partial(\overline{x})$ em H^* , tais que $e_1^* = e_1$ e $e_2^* = e_2$. Analogamente, seja γ' o conjunto das ordens cíclicas planares (e_1',e_2',\ldots,e_r') de $\partial(x)$ em H', tais que $e_1'=e_1$ e $e_2'=e_2$. Vamos escolher uma ordem c^* de γ^* e uma ordem c' de γ' tais que o prefixo comum $(e_1^{\star} = e_1^{\prime}, e_2^{\star} = e_2^{\prime}, \dots, e_n^{\star} = e_n^{\prime})$ seja o maior possível. É claro que $u \geq 2$, pois (e_1, e_2) é prefixo de ambas c^* e c'. Também é verdade que u < r, caso contrário as ordens cíclicas c^{\star} e c' coincidiriam e G-e seria planar, uma contradição. Seja f_1 a aresta que segue e'_u em c' e f_2 a aresta que segue e'_u em c^* . Por hipótese, f_1 e f_2 são distintas. Suponha que f_1 e f_2 sejam adjacentes em G. Nesse caso, f_1 e f_2 são múltiplas em um dentre H' e H^{\star} . Portanto, suas posições em um dentre c' e c^{\star} podem ser trocadas, fazendo com que $e'_{u+1}=f_1=f_2=e^\star_{u+1}$. Sendo assim, $(e^\star_1,e^\star_2,\ldots,e^\star_u,f_1=f_2)$ é um prefixo comum a c^\star e c'maior do que $(e_1^{\star}, e_2^{\star}, \dots, e_u^{\star})$, em contradição à escolha de c^{\star} e c'. De fato, f_1 e f_2 não são adjacentes, não pertencem a $\{e_1, e_2\}$ e aparecem na ordem cíclica (e_1, e_2, f_2, f_1) em C - eao redor de \overline{x} na imersão H^* , e na ordem cíclica (e_1, e_2, f_1, f_2) em C - e ao redor de x na imersão H'. Então, o Lema é válido.

Sejam f_1 e f_2 como definidos no Lema 7.1.10. As arestas e_1 , e_2 , f_1 e f_2 incidem todas em vértices de \overline{X}_+ . No entanto, \overline{X}_+ tem precisamente três vértices. Portanto, pelo menos duas arestas dentre e_1 , e_2 , f_1 e f_2 são incidentes em um mesmo vértice de \overline{X}_+ . Sabemos que e_1 e e_2 não são adjacentes. Pelo Lema 7.1.10, as arestas f_1 e f_2 também não são adjacentes. Além disso, a ordem cíclica (e_1, e_2, f_1, f_2) é planar em H'. Logo, e_1 e f_1 não são incidentes em um mesmo vértice de \overline{X} , nem e_2 e f_2 são incidentes em um mesmo vértice de \overline{X} . Podemos então concluir que ou e_1 e f_2 , ou e_2 e f_1 são incidentes em um mesmo vértice de \overline{X} . Ajustemos a notação, trocando e_1 com e_2 e f_1 com f_2 se necessário, de forma que e_2 e f_1 sejam incidentes em um mesmo vértice de \overline{X} . Vide Figura 7.8.

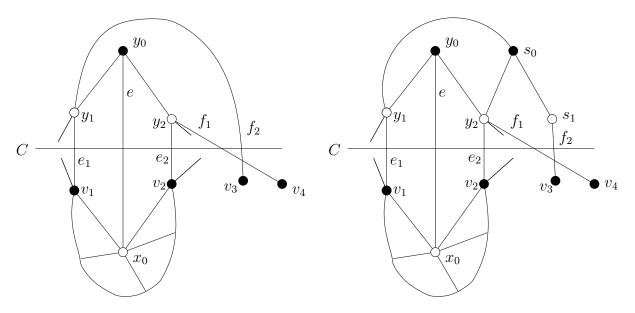


Figura 7.8: O grafo G^* e as duas possibilidades de incidência da aresta f_1 : em y_1 ou em s_1 .

Seja M um emparelhamento perfeito de G contendo e_1 e e_2 . Seja N um emparelhamento perfeito de G contendo f_1 e f_2 . Sejam w_i o extremo de f_i em X, para i=1,2. Seja $L:=G[M\oplus N][X]$. Os vértices de L tem grau 0,1 ou 2. Os vértices de grau menor do que dois em L são precisamente os vértices de $\{v_1,v_2,w_1,w_2\}$. Assim, L se decompõe em circuitos e caminhos, sendo que $\{v_1,v_2,w_1,w_2\}$ é o conjunto dos vértices de L que são extremos de caminhos na decomposição de L. Para i=1,2, seja P_i o caminho em L cuja origem é v_i .

Vamos agora mostrar que P_1 e P_2 são disjuntos. O vértice v_2 não é interno em P_1 , pois seu grau em L é menor do que dois. O vértice v_2 não é origem de P_1 , pois v_1 e v_2 são distintos. O vértice v_2 não é término de P_1 , pois v_1 e v_2 pertencem à mesma parte da bipartição de G, e qualquer caminho M, N-alternado que ligasse v_1 a v_2 teria comprimento

ímpar (já que nem v_1 nem v_2 incidem em aresta de M em L). Assim, P_1 não é o caminho da decomposição de L que contém v_2 , e portanto P_1 e P_2 são disjuntos.

Vamos agora mostrar que P_i liga v_i a w_i , para i=1,2. O caminho P_1 não contém v_2 . Logo seu término é w_1 ou w_2 . Suponha, por absurdo, que seu término é w_2 . Então P_2 , que é disjunto de P_1 , liga v_2 a w_1 . Mas, a ordem cíclica (e_1, e_2, f_2, f_1) é planar em H^* . Como v_2 não pertence a P_1 , então concluímos que w_1 pertence a P_1 . O vértice w_1 não é o término w_2 de P_1 , pois $w_1 \neq w_2$. O vértice w_1 não é interno em P_1 , pois seu grau em L é menor do que 2. Finalmente, se $w_1 = v_1$ então o grau de w_1 em L é zero, o que força $w_2 = v_1 = w_1$, o que é uma contradição. De fato, P_i liga v_i a w_i , para i=1,2, e P_1 e P_2 são disjuntos.

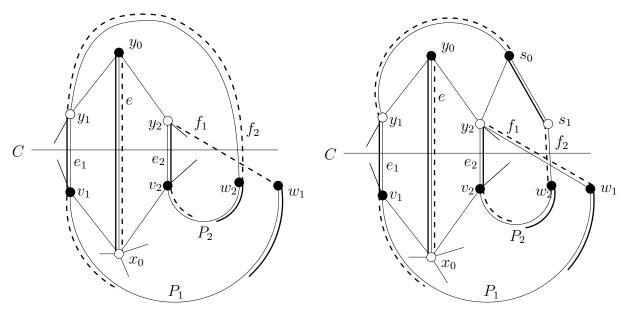


Figura 7.9: O grafo G^* e os emparelhamentos M_1 , em negrito, e M_2 , em tracejado.

Seja Q o circuito M, N-alternado de G que contém e_1 . Então, Q contém v_1 e portanto P_1 é um caminho em Q. Logo, $f_1 \in E(Q)$. Mas, f_1 incide em y_2 , portanto e_2 também pertence a E(Q). Assim, as quatro arestas e_1 , e_2 , f_1 e f_2 pertencem a E(Q) e os caminhos P_1 e P_2 são ambos caminhos em Q. Dessa forma, $e_1 + P_1 + f_1 + e_2 + P_2 + f_2$ é um segmento de Q. Além disso, como $e \in M \cap N$, temos que $\{e_1, e_2, f_1, f_2\}$ é precisamente o conjunto de arestas de Q em C. Sendo assim, o segmento de Q que vai de y_1 a f_2 sem passar por e_1 está inteiramente contido em $G[\overline{X}]$. Seja K o subgrafo de G^* induzido pelos vértices de $V(Q) \cup \{x_0, y_0\}$. A restrição de M a K é emparelhamento perfeito de K, portanto M restrito a $G^* - V(K)$ é emparelhamento perfeito de $G^* - V(K)$. Então, K é conforme em G^* . Além disso, K é uma bissubdivisão de $K_{3,3}$, onde o conjunto de vértices de grau três de K é $\{x_0, y_0, v_1, v_2, y_1, y_2\}$. Isto pode ser observado na Figura 7.9. Portanto, G^* tem uma

bissubdivisão conforme de $K_{3,3}$. No entanto, bissubdivisões de $K_{3,3}$ não são Pfaffianas. Sendo assim, pelo Corolário 1.2.4, G^* não é Pfaffiano. Isto é uma contradição à conclusão anterior. A hipótese de que H é planar nos levou em todos os casos a contradições. De fato, H não é planar.

Capítulo 8

Conclusão

O algoritmo de reconhecimento de grafos bipartidos foi descoberto e provado independentemente por McCuaig [13] e por Robertson, Seymour e Thomas [14]. As duas provas são bastante diferentes. Nesta dissertação, apresentamos uma prova alternativa para o algoritmo. Esta prova utiliza métodos distintos dos utilizados nas duas provas anteriormente conhecidas.

Referências Bibliográficas

- [1] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty. Ear decompositions of matching covered graphs. *Combinatorica*, 19:151–174, 1999.
- [2] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty. On a conjecture of Lovász concerning bricks. I. The characteristic of a matching covered graph. *J. Combin. Theory Ser. B*, 85:94–136, 2002.
- [3] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty. On a conjecture of Lovász concerning bricks. II. Bricks of finite characteristic. *J. Combin. Theory Ser. B*, 85:137– 180, 2002.
- [4] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty. How to build a brace. Technical Report 05-014, Instituto de Computação, UNICAMP, Brasil, 2005. Veja também www.ic.unicamp.br/~lucchesi/brace-tr.pdf.
- [5] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty. On the number of dissimilar Pfaffian orientations of graphs. *Theor. Inform. Appl.*, 39:93–113, 2005.
- [6] R. Diestel. *Graph Theory*, volume 173 of *Graduate Texts in Mathematics*. Springer-Verlag, 1996.
- [7] P. W. Kasteleyn. Dimer statistics and phase transitions. J. Math. Phys., 4:287–293, 1963.
- [8] C. Little and F. Rendl. Operations preserving the pfaffian property of a graph. *Austral Math. Soc.*, Series A(50):248–257, 1991.
- [9] C. H. C. Little. A characterization of convertible (0, 1)-matrices. J. Combin. Theory Ser. B, 18:187–208, 1975.
- [10] L. Lovász. Matching structure and the matching lattice. *J. Combin. Theory Ser. B*, 43:187–222, 1987.

- [11] L. Lovász and M. D. Plummer. *Matching Theory*. Number 29 in Annals of Discrete Mathematics. Elsevier Science, 1986.
- [12] W. McCuaig. Brace generation. J. Graph Theory, 38:124–169, 2001.
- [13] W. McCuaig. Pólya's permanent problem. The Electronic J. of Combin., 11, 2004.
- [14] N. Robertson, P. D. Seymour, and R. Thomas. Permanents, Pfaffian orientations and even directed circuits. *Ann. of Math.* (2), 150:929–975, 1999.
- [15] P. A. Samuelson. Foundations of Economic Analysis. Atheneum, New York, 1971.
- [16] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. volume A, paths, flows, matchings, chapter 1-38. Springer, 2003. Schrijver.
- [17] W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107–111, 1947.
- [18] W. T. Tutte. *Graph Theory as I Have Known It.* Number 11 in Oxford Lecture Series in Mathematics and its Applications. Clarendon Press, Oxford, 1998.
- [19] L. Valiant. The complexity of computing the permanent. *Theoretical Computer Science*, 8:189–201, 1979.
- [20] V. V. Vazirani and M. Yannakakis. Pfaffian orientation of graphs, 0,1 permanents, and even cycles in digraphs. *Discrete Applied, Math.*, 25:179–180, 1989.
- [21] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of Mathematics, 54(1):150-168, Janeiro 1932. http://links.jstos.org/sici?sici=0002-9327%28193201%2954%3A1%3C150%3ACGATCO%3E2.0.CO%3B2-X.

Índice Remissivo

aresta	presilhas de, 13, 119
magra, 18, 122	redutível, 5, 74
removível, 12, 119	subgrafo conforme, 2
verdadeiramente magra, 18, 122	
aro, 18	imersão
	igual, 29
bicontração, 18, 122	única, 29
bissubdivisão, 3	índice, 18, 122
centro, 18	majoritária, 13, 119
circuito	matriz
orientação de, 2	anti-simétrica, 1
complemento bipartido, 29	minoritária, 13, 119
conforme, vii	1 / 1 1 110
C-contração, 4	ordem cíclica planar, 110
$G\{X \to x\}, 9, 118$	orientação
$\partial_G(X)$, 9, 118	similar, 21
corte justo, 4	orientação
decomposição em, 4	bipartida orientada, 26, 125
110	ímpar, vii, 2
diferença simétrica, 3, 117	parcela, 31
emparelhamento perfeito	permutação
sinal de, 2	sinal de, 2
expansão, 9, 118	Pfaffiano
CAPAIIS40, 5, 110	polinômio, 1
grafo	Pfaffiano, Pfaffiana
coberto por emparelhamentos, 4, 10	grafo, 2
conforme, vii	orientação, 2
irredutível, 5, 74	presilha, 4
menor, 41	- ,
Pfaffiano, 2	consecutiva, 16, 121
Pfaffiano, vii	externa, 16, 121
,	interna, 16, 121

ÍNDICE REMISSIVO 119

```
reduzir, 5
similar, 21
soma
4-soma, 31
4-soma
completa, 31
fina, 31
(Q, R)-soma, 31
spin, 40
subdivisão, 3
tijolo, 4
transitivo
P_n-transitivo, 24, 124
```

Lista de Asserções

Notação 1.2.1
Vamos denotar a operação de diferença simétrica por \oplus .
Lema 1.2.2 {lem:parity:circuit} 3
Seja D uma orientação de um grafo G , fixe uma enumeração arbitrária dos vértices de D . Sejam M_1 e M_2 dois emparelhamentos perfeitos de G . Seja k o número de circuitos de $M_1 \oplus M_2$ cuja orientação em D é par. Então,
$\operatorname{sgn}(M_1) \cdot \operatorname{sgn}(M_2) = (-1)^k.$
Teorema 1.2.3 {thm:define-pfaffian} 3
Seja G um grafo, M um emparelhamento perfeito de G e D uma orientação de G . Então as seguintes propriedades são equivalentes:
ullet D é Pfaffiana;
ullet todo emparelhamento perfeito de G tem o mesmo sinal de M em D ;
\bullet todo circuito conforme em G tem orientação ímpar em $D;$
\bullet todo circuito $M\text{-alternado}$ tem orientação ímpar em $D.$
Corolário 1.2.4 {cor:conformalPfaffian}
Seja D uma orientação Pfaffiana de um grafo G . Seja H um subgrafo conforme de G . Então, a restrição de D a H é Pfaffiana.
Teorema 1.5.1 5
(Teorema Principal) Seja G uma presilha simples Pfaffiana irredutível e não planar. Então, G é o grafo de Heawood.

Notação 2.1.1 9
Sejam G um grafo, e X um subconjunto dos vértices de G . Então, $G\{X \to x\}$ é o grafo obtido de G pela contração de todos os vértices em X ao vértice x .
Notação 2.1.2 9
Sejam G um grafo, e x um vértice de G . Então, $H := G\{x \to X\}$ é o grafo obtido de G pela substituição de x pelos vértices de X , onde as arestas de G incidentes em x incidem em H em um vértice de X . Chamamos esta operação de $expansão$.
Notação 2.1.3 9
Seja G um grafo, e X um subconjunto dos vértices de G . Então, $\partial_G(X)$ é o conjunto das arestas de G com precisamente um extremo em X . Então, X e \overline{X} são as praias de $\partial_G(X)$.
Lema 2.2.1 {lem:mc-2-connected}
Todo grafo coberto por emparelhamentos com quatro ou mais vértices é 2-conexo.
Lema 2.2.2 {lem:mc-cut-mc}
Seja G um grafo, $C := \partial(X)$ um corte justo de G . Então, G é coberto por emparelhamentos se e somente se cada C -contração de G é coberta por emparelhamentos.
Corolário 2.2.3 {cor:mc-cut-connected}
Toda praia de corte justo de um grafo coberto por emparelhamentos gera um grafo conexo. \Box
Lema 2.2.4
Seja G um grafo coberto por emparelhamentos. Seja $C_G := \partial_G(X_G)$ um corte justo não trivial de G . Seja $H := G\{X_G \to x_G\}$ uma das C_G -contrações de G . Suponha que $C_H := \partial_H(X_H)$ seja um corte justo de H . Então, C_H é corte justo de G .
Teorema 2.2.5 {thm:lovasz-tight-cut}
(Teorema de Lovász) Seja G um grafo coberto por emparelhamentos. O conjunto de grafos resultantes de uma decomposição em cortes justos de G é único a menos de isomorfismos e arestas múltiplas.
Teorema 2.3.1 {thm:bipartite:mc:char, item:Gmc, item:NX>=X+1,
$\verb item:G-u-v:pm , item:A1-A2-B1-B2 $
Seja G um grafo com bipartição $\{U,W\}$. Se $ U = W $ e G tem pelo menos quatro vértices, então as seguintes afirmações são equivalente:
(i) O grafo G é coberto por emparelhamentos
(ii) Para cada subconjunto não vazio X de U , se $ X \leq U - 1$ então $ N(X) \geq X + 1$.

(iii) Para todo $u \in U, w \in W,$ o grafo $G - u - w$ tem emparelhamento perfeito
(iv) O grafo G tem emparelhamento perfeito, e para toda partição $\{U', U''\}$ de U e toda partição $\{W', W''\}$ de W , tal que $ U' = W' $, o grafo G tem pelo menos uma arest que liga U' a W'' .
Definição 2.3.2
Uma aresta e de um grafo coberto por emparelhamentos G é $removivel$ se o grafo G – é coberto por emparelhamentos.
Corolário 2.3.3 {cor:removable:bipartite} 1
Seja G um grafo coberto por emparelhamentos com pelo menos quatro vértices e bipartição $\{U,W\}$. Uma aresta e de G não é removível se e somente se existe uma partição $\{U',U''$ de U e existe uma partição $\{W',W''\}$ de W , com $ U' = W' $ e e é a única aresta que lig vértice de U' a vértice de W'' .
Notação 2.3.4 {not:X+-}
Sejam G um grafo bipartido com bipartição $\{U,W\}$, e X um subconjunto dos vértice de G , tal que $ X \cap U $ e $ X \cap W $ sejam distintos. Então, definimos como X_+ ou X^+ conjunto dentre $X \cap U$ e $X \cap W$ que contém mais vértices. Analogamente, X ou X^- definido como o conjunto dentre $X \cap U$ e $X \cap W$ que contém menos vértices. Dizemo que X_+ é a parte majoritária de X e que X é a parte minoritária de X .
Lema 2.3.5 {lem:tight:bipartite}
Seja G um grafo coberto por emparelhamentos com bipartição $\{U,W\}$. Um corte C con praia X de G é justo se e somente se: (i) $ X \cap U $ e $ X \cap W $ diferem de exatamente um e (ii) toda aresta de C é incidente em um vértice da parte majoritária de X .
Lema 2.3.6
Os grafos resultantes da decomposição em cortes justos de um grafo bipartido coberte por emparelhamentos são todos bipartidos.
Definição 2.3.7
As $presilhas$ de um grafo bipartido G coberto por emparelhamentos são as presilhas resultantes de uma decomposição em cortes justos de G .
Teorema 2.3.8 {thm:brace:char, item:Gbrace, item:NX>=X+2,
item:G-u1-u1-w1-w2:pm}
Seja G um grafo com bipartição $\{U,W\}$. Se $ U = W $ e G tem pelo menos seis vértices então as seguintes afirmações são equivalentes:
(i) O grafo G é uma presilha.

(ii) Para cada subconjunto não vazio X de U , se $ X \leq U - 2$ então $ N(X) \geq X + 2$.
(iii) Para quaisquer dois vértices u_1 e u_2 em U e quaisquer dois vértice w_1 e w_2 em W , o grafo $G - u_1 - u_2 - w_1 - w_2$ tem um emparelhamento perfeito.
Corolário 2.3.9 {cor:brace-x-y-mc}
Sejam G uma presilha com seis ou mais vértices e x e y vértices em partições diferentes de G . O grafo $G-x-y$ é coberto por emparelhamentos.
Corolário 2.3.10 {cor:brace-2-extensivel}
Sejam G uma presilha e e_1 e e_2 duas arestas não adjacentes de G . O grafo G tem um emparelhamento perfeito contendo e_1 e e_2 .
Corolário 2.3.11 {cor:brace+e=brace}
Sejam G uma presilha com bipartição $\{U,W\}$, u um vértice de U e w um vértice de W . Então, o grafo $G+uw$ é uma presilha.
Corolário 2.3.12 {cor:brace>=6=>edge-removable}
Toda aresta de uma presilha com seis ou mais vértices é removível.
Corolário 2.3.13 {cor:brace-3}
Sejam G uma presilha com bipartição $\{U,W\}$ e X um conjunto de três vértices de G . Se X não é subconjunto de U , nem de W , então $G-X$ é conexo.
Corolário 2.3.14 {cor:brace-3-connected}
Toda presilha com seis ou mais vértices é 3-conexa.
Corolário 2.3.15 {cor:brace-321}
Seja G uma presilha com seis ou mais vértices. Seja Z um subconjunto de $V(G)$ com no máximo três vértices, sendo que Z tem no máximo dois vértices em cada parte da bipartição de G . Então, $G-Z$ é conexo.
Corolário 2.3.16 {cor:g-presilha-C-e-separa-x0-y0}
Sejam G uma presilha e $e = x_0 y_0$ uma aresta de G . Seja $C := \partial_G(X)$ um corte não trivial de G , tal que $C - e$ é justo em $G - e$. Então, um dentre x_0 e y_0 está em X , o outro em \overline{X} .
Corolário 2.3.17 {cor:brace-e-match-e-tight-cut}
Seja G uma presilha, e uma aresta de G , $C := \partial(X)$ um corte não trivial de G , tal que $C - e$ é justo em $G - e$. Então todo emparelhamento perfeito de G contendo e tem precisamente três arestas em G .

Lema 2.3.18 {lem:ordem-total-G-e}
Sejam G uma presilha, $e=x_0y_0$ uma aresta de G , e $\mathcal{C}:=\{C_1,C_2,\ldots,C_r\}$, com $r\geq 1$, o conjunto de cortes justos de uma decomposição em cortes justos de $G-e$. Seja X_i subconjunto de $V(G)$, tal que $C_i=\partial_G(X_i)-e$. Então, é possível ajustar a notação, complementando algumas praias de cortes de \mathcal{C} se necessário, tal que $X_1\subset X_2\subset\ldots\subset X_r\subset V(G)$. Além disso, o conjunto das presilhas de $G-e$ é $\bigcup_{0\leq i\leq r}G_i$, onde:
• $G_0 := (G - e)\{\overline{X_1} \to \overline{x_1}\};$
• $G_i := (G - e)\{X_i \to x_i\}\{\overline{X_{i+1}} \to \overline{x_{i+1}}\}, \text{ para } i = 1, 2, \dots, r - 1;$
$\bullet \ G_r := (G - e)\{X_r \to x_r\}.$

Sejam G uma presilha, e uma aresta removível de G e H uma presilha de G-e. Então H tem no máximo dois vértices de contração. Além disso, (i) se H tiver precisamente um vértice de contração, então o (único) extremo de e em V(H) está na mesma parte da bipartição do vértice de contração, (ii) se H tiver dois vértices de contração, estes vértices estão em partes distintas de sua bipartição.

Considerando a notação utilizada no Lema 2.3.18, dizemos que G_i e G_{i+1} são presilhas consecutivas de G - e, para i = 0, 1, ..., r - 1. Além disso, dizemos que G_0 e G_r são presilhas externas, e que G_i , para i = 1, 2, ..., r - 1, são presilhas internas de G - e.

Sejam G uma presilha, e uma aresta removível de G e H uma presilha de G - e. Então, uma das seguintes afirmações acontece:

- \bullet H = G e.
- Seja $C_X := \partial_G(X)$ um corte não trivial de G, tal que o corte $C_X e$ é justo em G e e o grafo H é a $(C_X e)$ -contração $(G e)\{X \to x\}$ de G e. Então, $e \in C_X$ e o extremo de e não contraído está na mesma parte de x da bipartição de H.
- Sejam $C_X := \partial_G(X)$ e $C_Y := \partial_G(Y)$ cortes não triviais de G, tais que os cortes $C_X e$ e $C_Y e$ são justos em G e, e o grafo H é a $(C_X e), (C_Y e)$ contração $(G e)\{X \to x\}\{Y \to y\}$ de G e. Então, $e \in (C_X \cap C_Y)$, e x e y estão em partes distintas da bipartição de H.

Lema 2.3.22 {lem:brace-3-match}
Seja G uma presilha, $X \subset V(G)$ e $C := \partial(X)$ um corte de G , tal que $ X \geq 3$ e $ \overline{X} \geq 3$. Então, $H := G[C]$ tem um emparelhamento de tamanho três.
Definição 2.3.23
Uma $bicontração$ é uma operação aplicada sobre um grafo onde se contrai um vértice de grau dois e seus dois vizinhos a um único vértice.
Definição 2.3.24
O \acute{indice} de uma aresta e é o número de extremos de e que têm grau três.
Definição 2.3.25
Seja e uma aresta de uma presilha G com mais de quatro vértices. A aresta e é dita $magra$ se uma presilha pode ser obtida de $G-e$ por k bicontrações, onde k é o índice de e .
Definição 2.3.26
Uma aresta magra e é dita $verda de iramente magra$ se a presilha obtida de $G-e$ através de k bicontrações for simples.
Teorema 2.3.27 {thm:truly-thin}
Toda presilha simples com pelo menos seis vértices distinta de roda dupla B_{2n} $(n \ge 4)$; distinta de prisma bipartido L_{4n} $(n \ge 2)$; e distinta de escada de Möbius bipartida M_{4n+2} $(n \ge 1)$, tem uma aresta verdadeiramente magra.
Teorema 2.3.28
Toda presilha com seis ou mais vértices tem uma aresta magra.
Lema 2.3.29 {lem:brace-gen}
• Sejam x e y vértices de H tais que $x \in A$ e $y \in B$. A presilha G é obtida de H pela

- adição da aresta xy.
- Sejam x e y vértices de H tais que $x, y \in A$, e o grau de x seja pelo menos quatro. Seja $H' := H\{x \to \{x_1, x_2\}\}$ tal que tanto x_1 como x_2 tenham dois vizinhos em H'. A presilha G é obtida de H' pela adição de um vértice x_0 e das arestas x_0x_1 , x_0x_2 e x_0y .
- Sejam x e y vértices de H, tais que $x \in A$, $y \in B$ e cujos graus são pelo menos quatro. Seja $H'':=H\{x \to \{x_1,x_2\}\}\{y \to \{y_1,y_2\}\}$, tal que cada um dentre $x_1,\,x_2,$ y_1 e y_2 tenham dois vizinhos, e pelo menos um vizinho em $V(H)-\{x,y\}$. A presilha

G é obtida de H'' pela adição de dois vértices x_0 e $y_0,$ e das arestas $x_0x_1,x_0x_2,y_0y_1,y_0y_2$ e $x_0y_0.$
Lema 2.3.30 {lem:roda-prisma-planar} 20
Toda roda dupla e todo prisma é planar.
Lema 2.3.31
Toda escada de Möbius bipartida é coberta por emparelhamentos. $\hfill\Box$
Lema 2.3.32 {lem:escada-mobius-nao-pfaffian}
Teorema 2.4.1 {thm:caracteriza-pfaffian}
Um grafo bipartido G é Pfaffiano se e somente se não existe um subgrafo H conforme de G que é uma bissubdivisão de $K_{3,3}$.
Lema 2.4.2 {lem:similarPfaffian}
Sejam D_1 e D_2 duas orientação similares de G . Então, D_1 é Pfaffiana se e somente se D_2 for Pfaffiana.
Teorema 2.4.3 {thm:unique-extension}
Seja G um grafo coberto por emparelhamentos, e uma aresta removível de G , e D' uma orientação Pfaffiana de $G-e$. Se G é Pfaffiano, então existe precisamente uma extensão de D' a uma orientação Pfaffiana D de G .
Lema 2.4.4 {lem:similar-bipartido}
Sejam D_1 e D_2 duas orientações Pfaffianas de um grafo bipartido G . Então, D_1 é similar a D_2 .
Teorema 2.4.5 {thm:existence-extension-conformal}
Seja G um grafo bipartido coberto por emparelhamentos, H um subgrafo conforme de G coberto por emparelhamentos, e D' uma orientação Pfaffiana de H . Existe uma extensão de D' a uma orientação Pfaffiana de G se e somente se G é Pfaffiano.
Lema 2.4.6 {lem:similar-source-sink}
Seja D uma orientação Pfaffiana de um grafo bipartido G . Sejam u e w dois vértices de G em partes distintas da bipartição de G . Existe uma orientação Pfaffiana D' similar a D tal que u é fonte e w é sorvedouro.
Teorema 2.4.7 {thm:little-cut-extension}
Sejam G um grafo coberto por emparelhamentos, C um corte justo de G e G_1 e G_2 as duas C -contrações de G . Então, G é Pfaffiano se e somente se G_1 e G_2 são Pfaffianos.

Além disso, se D_1 e D_2 são orientações Pfaffianas de G_1 e G_2 , respectivamente, e D_1 e D_2 são orientadas em C e concordam em C , então a extensão de D_1 e D_2 a uma orientação de G é Pfaffiana.
Corolário 2.4.8 {cor:little-cut}
Sejam G um grafo bipartido coberto por emparelhamentos Pfaffiano e e uma aresta removível de G . Então, todos os grafos de uma decomposição em cortes justos de $G-e$ são Pfaffianos. Em particular, todas as presilhas de $G-e$ são Pfaffianas.
Lema 2.4.9 {lem:orientacao-canonica-Gstar} 23
Seja G um grafo bipartido coberto por emparelhamentos Pfaffiano, seja R um conjunto de arestas adicionadas a G tal que $G^\star:=G+R$ é bipartido e coberto por emparelhamentos Seja e uma aresta removível de G . Toda orientação Pfaffiana de $G^\star-e$ tem uma extensão a uma orientação D^\star de G^\star cuja restrição a G é Pfaffiana.
Lema 2.4.10 {lem:estende-contracao}
Seja G um grafo coberto por emparelhamentos Pfaffiano. Seja H um grafo obtido a partir de G por contração de praias de cortes justos de G . Seja $D(H)$ uma orientação Pfaffiana de H na qual todo vértice de contração de H é ou uma fonte ou um sorvedouro. Então G tem uma orientação Pfaffiana cuja restrição a H é igual a $D(H)$.
Lema 2.5.1 {lem:hea-vert-trans}
O grafo de Heawood é transitivo nos vértices.
Definição 2.5.2
Um grafo G é P_n -transitivo se, para todo par de caminhos $P:=(p_0,p_1,\ldots,p_{n-1})$ e $Q:=(q_0,q_1,\ldots,q_{n-1})$, existe um automorfismo φ de G tal que $\varphi(p_i)=q_i$, para $i=0,1,\ldots,n-1$.
Lema 2.5.3 {lem:hea-p2-trans}
O grafo de Heawood é P_2 -transitivo.
Lema 2.5.4 {lem:hea-p5-trans}
O grafo de Heawood é P_5 -transitivo.
Lema 2.5.5 {lem:H14properties}
O grafo de Heawood é P_5 -transitivo, não planar, tem diâmetro três e cintura seis.
Corolário 2.5.6 {cor:hea-sym-e}
Sejam v_0 e v_1 dois vértices adjacentes de H_{14} . Sejam v_0' e v_1' dois vértices adjacentes de H_{14} (possivelmente $\{v_0, v_1\} \cap \{v_0', v_1'\}$ não é vazio). Existe um automorfismo que leva v_0 a v_0' e v_1 a v_1' .

Corolário 2.5.7 {cor:hea-sym+e}
Sejam v_0 e v_1 dois vértices não adjacentes de H_{14} em partes distintas da bipartição de H_{14} . Sejam v_0' e v_1' dois vértices não adjacentes de H_{14} em partes distintas da bipartição de H_{14} . (possivelmente $\{v_0, v_1\} \cap \{v_0', v_1'\}$ não é vazio). Existe um automorfismo que leva v_0 a v_0' e v_1 a v_1' .
Corolário 2.5.8 {cor:hea-sym-uu} 26
Sejam v_0 e v_1 dois vértices de H_{14} em uma mesma parte da bipartição de H_{14} . Sejam v_0' e v_1' dois vértices de H_{14} em uma mesma parte da bipartição de H_{14} . (possivelmente $\{v_0, v_1\} \cap \{v_0', v_1'\}$ não é vazio). Existe um automorfismo que leva v_0 a v_0' e v_1 a v_1' .
Definição 2.5.9 26
Uma orientação D de um grafo com bipartição $\{U,W\}$ é bipartida orientada se ou (i) toda aresta de D tem sua origem em U , ou (ii) toda aresta de D tem sua origem em W .
Lema 2.5.10 {lem:hea-dir-bip}
Lema 2.5.11 {lem:H14Pfaffian} 27 O grafo de Heawood é uma presilha Pfaffiana. 27
Lema 2.6.1 {lem:planar-Pfaffiano} 28
Todo grafo planar é Pfaffiano.
Lema 2.6.2 $\{lem: 2-conexo-face-circuito\}$
Lema 2.6.3 {lem:mc-face-conforme}
Toda face de um grafo bipartido planar coberto por emparelhamentos é delimitada por um circuito conforme.
Lema 2.6.4 {lem:paridade-Q-v-interno} 29
Se D é uma orientação das arestas de um grafo planar conexo tal que todo circuito facial de D (exceto possivelmente o circuito que delimita a face infinita) tem um número ímpar de arestas no sentido horário, então em cada circuito, o número de arestas orientadas no sentido horário tem paridade oposta à paridade do número de vértices de D dentro de circuito. Dessa forma, D é Pfaffiano.
Corolário 2.6.5 {cor:plan-par}
A paridade da orientação de um circuito em uma orientação Pfaffiana de um grafo bipartido planar coberto por emparelhamentos é o oposto da paridade do número de vértices internos ao circuito numa imersão planar.

Teorema 2.6.6 {thm:planar-3-conexo} 29
Um grafo simples planar 3-conexo tem uma única imersão planar.
Lema 2.6.7 {lem:cubo-unico-planar-pfaffian-8}
Teorema 3.1.1 {thm:braces-4-sum-braces, item:brace-down, item:brace-up} 32 Seja G um grafo bipartido coberto por emparelhamentos que é uma 4-soma de $n \geq 2$ grafos bipartidos. Então,
(i) se G é uma presilha, então cada parcela é uma presilha;
(ii) se G não é uma presilha mas cada parcela é uma presilha, então $n \leq 3$ e a soma não é completa. Se, além disso, $n=3$, então a soma é fina e $G=H_{10}$.
Corolário 3.1.2 {cor:summand-conformal}
Teorema 3.2.1 {thm:pfaffian-braces-sum} 36
Seja G uma (Q,R) -soma de $n\geq 2$ grafos bipartidos. Se a 4-soma é completa ou se $n\geq 3$ então G é uma presilha Pfaffiana se e somente se cada parcela é uma presilha Pfaffiana.
Lema 4.1.1 41
O grafo de Heawood é irredutível.
Teorema 4.1.2
(Teorema Principal) Seja G uma presilha simples Pfaffiana irredutível e não planar Então, G é o grafo de Heawood.
Lema 4.1.3 {lem:G-e:has-heawood}
${f Lema~4.1.4~\{lem:heranca-redutibilidade\}~\dots}$
(Lema da Herança da Redutibilidade) Seja G um spin, e uma aresta de G , e H uma presilha de $G - e$. Se o Teorema Principal vale para todo grafo menor que G , e se (i) o grafo H tem no máximo um vértice de contração, ou se (ii) a aresta e é magra, então H é irredutível.

Lema 4.1.5 {lem:j-e-contracao-nao-planar}
(Lema da Não Planaridade das Contrações) Seja G uma presilha Pfaffiana e irredutível e e uma aresta de G . Seja $C:=\partial_G(X)$ um corte de G tal que $C-e$ é justo em $G-e$. Se $G-e$ não é planar, e $\left \overline{X}\right \leq 5$, então a contração $(G-e)\{\overline{X}\to \overline{x}\}$ não é planar.
Corolário 4.1.6 {cor:lnpc}
Seja G um spin, e e uma aresta de G . Então, $G-e$ não é planar.
Lema 4.1.7 {lem:g-e-nao-planar}
Seja e uma aresta de G , e H uma presilha de $G-e$. Se H tem no máximo um vértice de contração, ou se e é magra, então H é planar.
Lema 4.1.9 {lem:e-magra-tipo-2-planar-so} 43
Toda aresta magra e de G tem índice igual a 2, e a presilha interna de $G-e$ é planar.
Notação 4.1.10 {not:H+xy}
• $X := \{x_0, x_1, x_2\} \in C(X) := \partial_G(X);$
• $Y := \{y_0, y_1, y_2\} \in C(Y) := \partial_G(Y);$
$\bullet \ H := (G - e)\{X \to x\}\{Y \to y\};$
• $H(\overline{x}) := (G - e)\{\overline{X} \to \overline{x}\} \in H(\overline{y}) := (G - e)\{\overline{Y} \to \overline{y}\};$
• $H(x) := (G - e)\{X \to x\} \in H(y) := (G - e)\{Y \to y\}.$
Lema 4.1.11 {lem:G-14v}
O grafo H tem dez ou mais vértices, e portanto G tem pelo menos quatorze vértices.
Lema 4.1.12 {lem:quadrupla-nobre}
As arestas de $\partial_G(x_1) - x_1x_0$ não são contíguas na ordem cíclica de $\partial_H(x)$ ao redor de x em \tilde{H} . Vide Figura 4.3.
Lema 4.1.13 {lem:e-fora-quadrilatero}
A aresta e não pertence a quadrilátero de G que tenha vértice de grau três não incidente em e .

Lema 4.1.14 {lem:f-incide-quad-g3}
Se f for uma aresta verdadeiramente magra de H e se um extremo v de f tem grau três em G , então v não pertence a quadrilátero de $G - f$.
Lema 4.1.15 {lem:2-c4-ruim}
Suponha que f seja uma aresta verdadeiramente magra de H , e que G_0 tenha precisamente quatro vértices. Então, G_1 tem mais de quatro vértices.
Teorema 4.1.16 {thm:f-magra-H-magra-G-2cond}
Seja f uma aresta magra de H , tal que ou (i) f é verdadeiramente magra em H , ou (ii) o índice de f em G é menor do que 2. Então, f é uma aresta magra de G .
Lema 4.1.17
O número de presilhas com mais de quatro vértices obtidas na decomposição em cortes justos de $G-f$ é precisamente um.
Teorema 4.1.18 {thm:h-sem-vm-g-h14}
Se a presilha H não tem aresta verdadeiramente magra, então G é o grafo de Heawood.
Lema 4.1.19 {lem:h-sem-vm-b10}
Se a presilha H não tem aresta verdadeiramente magra, então H é a roda dupla B_{10} .
Lema 4.1.20 {lem:h-b10-g-h14}
Se H é igual ao grafo B_{10} , então G é igual ao grafo de Heawood.
Teorema 4.1.21 {thm:f-nao-vm-H}
A presilha H não tem aresta verdadeiramente magra.
Lema 4.1.22 {lem:x-rs-disjuntos}
Se f não incide nem em x nem em adjacente de x , então $X \cap (R \cup S) = \emptyset$.
Lema 4.1.23 {lem:x-r-1-xr-ys-0}
Se f não incide em x , mas incide em adjacente de x , então podemos ajustar a notação de forma que $x_1 = r_1$ seja o único vértice de $X \cup R$ que pertença a mais de um conjunto dentre X, Y, R e S . Além disso, $x_1 = r_1$ não pertence a $Y \cup S$.
Lema 4.1.24 {lem:contiguo-H-L}
Seja $\tilde{L} := (\tilde{H} - f)\{\{x, r_0, r_2\} \to p\}\{\{y, s_0, s_2\} \to q\}$ uma imersão de L obtida de $\tilde{H} - f$ pela contração dos caminhos (x, r_0, r_2) e (y, s_0, s_2) aos vértice p e q , respectivamente. Seja F um subconjunto das arestas de $\partial_H(x) - xr_0$. Então, as arestas de F são contíguas em $\partial_H(x)$ ao redor de x em \tilde{H} se e somente se as arestas de F são contíguas em $\partial_L(p)$ ao redor de p em \tilde{L} .

Lema 5.1.1
Seja G uma presilha simples Pfaffiana, $e=x_0y_0$ uma aresta de G . Então, o grafo simples subjacente de qualquer presilha de $G-e$ não é isomorfo ao grafo de Heawood.
Lema 6.1.1
(Lema da Herança da Redutibilidade) Seja G um spin, e uma aresta de G , e H uma presilha de $G-e$. Se o Teorema Principal vale para todo grafo menor que G , e se (i) o grafo H tem no máximo um vértice de contração, ou se (ii) a aresta e é magra, então H é irredutível.
Lema 6.1.2
Corolário 6.1.3 76
Sejam G um spin, e uma aresta G , H uma presilha de $G-e$, e Z uma quádrupla de vértices de H . Se Z contém precisamente um vértice de contração de H , então Z não reduz H .
Lema 6.1.4
Sejam G um spin, e uma aresta de G , H uma presilha de $G-e$, e Z uma quádrupla de vértices de H . Se Z contém dois vértices de contração de H , a aresta e é magra, e o Teorema Principal vale para todo grafo com menos vértices que G , então Z não reduz H .
Lema 6.1.5 {lem:heranca-redutibilidade-b}
Sejam G um spin, e uma aresta de G , H uma presilha de $G-e$, e Z uma quádrupla de vértices de H . Se Z não contém vértices de contração de H , e se o Teorema Principal vale para presilhas menores do que G , então Z não reduz H .
Lema 6.1.6
A orientação $D(G^{\star})$ é Pfaffiana.
Lema 6.1.7 {lem:heranca-redutibilidade-a-unido} 82
Sejam G uma presilha Pfaffiana irredutível, $e=x_0y_0$ uma aresta de G , e $C:=\partial_G(X)$ um corte não trivial de G , com $C-e$ justo em $G-e$, e $x_0\in X$. Sejam $H:=(G-e)\{\overline{X}\to \overline{x}\}$, e $\{U,W\}$ a bipartição de H . Seja $Z\subseteq V(H)$, tal que $\overline{x}\in Z$, e $ Z\cap U =2= Z\cap W $. Seja H^* o grafo bipartido obtido de H pela adição de arestas com ambos os extremos em Z , de forma que $H^*[Z]$ seja um quadrilátero. Suponha que H^* é Pfaffiano e $H-Z$ tenha emparelhamento perfeito. Seja c o número de componentes conexas de $H-Z$. Então, $c\leq 2$, com igualdade somente se e não incide em vértice de Z .

Corolário 6.1.8
Sejam G um spin, e uma aresta G , H uma presilha de $G-e$, e Z uma quádrupla de vértices de H . Se Z contém precisamente um vértice de contração de H , então Z não reduz H .
Proposição 6.1.9 {prp:lhr-a-unido} 83
O conjunto \overline{X} tem somente um vértice adjacente a vértices em $V(J_1) \cup V(J_2)$, e este vértice está em \overline{X}_+ .
Lema 6.1.10 {lem:heranca-redutibilidade-c}
Seja G um spin, e uma aresta magra de G , H uma presilha de $G-e$, e Z uma quádrupla de vértices de H contendo dois vértices de contração de H . Se o Teorema Principal vale para todo grafo menor que G , então Z não reduz H .
Definição 6.1.11
Sejam $v_i \in Q_i$, e $v_{i+1} \in Q_{i+1}$, onde os índices são tomados módulo quatro, e k um inteiro, $1 \le k \le n$ tais que:
• v_i é ligado por uma aresta e_i de G a um vértice w_i de J_k ;
• v_{i+1} é ligado por uma aresta e_{i+1} de G a um vértice w_{i+1} de J_k .
Vide Figura 6.6. Se H_k tem um emparelhamento perfeito que contém e_i , e_{i+1} , e a aresta $q_{i+2}q_{i+3}$ de Q , então diz-se que v_i e v_{i+1} são H_k -conexos. Representa-se por $v_i \stackrel{k}{\sim} v_{i+1}$. Estendemos esta definição para o caso em que v_i e v_{i+1} são adjacentes em G . Nesse caso, dizemos que v_i e v_{i+1} são H_k -conexos para todo k .
Notação 6.1.12 87
Chamaremos de T o conjunto $\bigcup Q_i$.
Definição 6.1.13
Seja G^{\star} a presilha obtida de G pela adição das arestas em
$\Delta := \{ uw : \exists j, u \stackrel{j}{\sim} w; u, w \in \bigcup Q_i \} - E(G).$
Definição 6.1.14
Dizemos que uma aresta $f = v_i v_{i+1}$ de $E(G^*)$ tem $cor k$ se $v_i \stackrel{k}{\sim} v_{i+1}$.
Lema 6.1.15 {lem:vi-vi1-conexo}
Seja $v_i \in Q_i$ um vértice adjacente a vértice de J_k . Então, existe um vértice $v_{i+1} \in Q_{i+1}$, adjacente a vértice de J_k , tal que v_i e v_{i+1} são H_k -conexos.

Lema $6.1.16$ {lem:Qi-adj-Ik}88
Para $i=0,1,2,3$ e para $k=1,2,\ldots,n,$ o conjunto Q_i contém um vértice adjacente a vértice de J_k .
Lema 6.1.17 {lem:Qi+-adj-Qi-1}
Para $i=0,1,2,3$, todo vértice de Q_i^+ é adjacente em G^* a algum vértice de Q_{i-1} e a algum vértice de Q_{i+1} .
Lema 6.1.18 {lem:H-red-2v-red} 89
Para $i=0,1,2,3,v$ um vértice de Q_i^+,w um vértice de Q_{i+1}^+ e para $k=1,2,\ldots,n$, pelo menos um dentre v e w é adjacente a vértice de $V(G)-T-V(J_k)$.
Lema 6.1.19 {lem:descarga1} 89
(Lema da Descarga) Seja f uma aresta de Δ de cor k . Seja M um emparelhamento perfeito de G^* contendo f , tal que $M \cap \partial(V(J_k)) = \emptyset$. Então, G^* tem um emparelhamento perfeito M' tal que:
• $M' \cap \Delta = (M \cap \Delta) - f;$
• $M' \cap \partial(V(J_{\ell})) = M \cap \partial(V(J_{\ell}))$, para todo ℓ distinto de k ;
• o sinal de M' é igual ao sinal de M em $D(G^*)$.
Lema 6.1.20 {lem: carga}
• $M' \cap \partial(V(J_j)) = M \cap \partial(V(J_j))$, para todo $j \neq k$;
$ullet$ o sinal de M' é igual ao sinal de M em $D(G^{\star})$.
Lema 6.1.21 {lem:H-red-x1y2-nao}
Lema 6.1.22 {lem:H-red-cubo} 93
O grafo $G^{\star}[T]$ é o cubo.
Notação 6.1.23 93
Ajustamos a notação de forma que x_1y_1 e x_2y_2 sejam arestas de G^* .
Notação 6.1.24 93
Denotamos por Θ o grafo $G^{\star}[T-x_0-y_0]$, um hexágono com uma corda. Vide Figura 6.9.

$Lema 6.1.25 \{lem: H-red-xiyi-cor-i\} \dots 94$
A aresta x_1y_1 tem uma cor c_1 e a aresta x_2y_2 tem uma cor c_2 tal que $c_1 \neq c_2$.
Notação 6.1.26
Ajustamos a notação de forma que x_1y_1 tenha cor 1 e x_2y_2 tenha cor 2.
Lema $6.1.27$ 94O grafo G^* é Pfaffiano.
Lema 6.1.28 {lem:H-red-q0xiyiq3} 96
Se $N_k \neq V(\Theta)$ então $N_k = \{q_0, x_1, y_1, q_3\}$ ou $N_k = \{q_0, x_2, y_2, q_3\}$.
Corolário 6.1.29
Existe uma componente conexa J_k de $H-V(Q)$ tal que todo vértice de Θ é adjacente a vértice de J_k .
Lema 6.1.30 {lem:H-red-L-redutivel}97O grafo L é uma presilha redutível Pfaffiana e não planar.
Lema 6.1.31 {lem:H-red-L-red-G-red} 98
Γ odo conjunto que reduz L reduz também G .
Lema 7.1.1
(Lema da Não Planaridade das Contrações) Seja G uma presilha Pfaffiana, irredutível. Seja $C:=\partial_G(X)$ um corte (possivelmente trivial) de G tal que $C-e$ é justo em $G-e$. Se $G-e$ não é planar, e $ \overline{X} \leq 5$, então a contração $(G-e)\{\overline{X} \to \overline{x}\}$ não é planar.
Lema 7.1.2 {lem:H-x0-2-conexo}
O grafo $H - x_0$ é 2-conexo.
Lema 7.1.3 {lem:par-FG} 102
Se H é planar, então a orientação de F_G é par em $D(G)$.
Lema 7.1.4 {lem:Mv-F-conforme} 102
Suponha que H seja planar. Então, $H(v)$ tem um emparelhamento bom M . Além disso, se F_G for um circuito, e se f denotar a aresta de $M\cap C$, então o extremo em G de f em \overline{X} é o único vértice de \overline{X} adjacente a v em G .
Lema 7.1.5 {lem:NH(y)<=2}
Se H for planar, então $ (V(F)) \cap N_H(\overline{x}) \le 2$, com igualdade se e somente se \overline{x} está em $V(F)$.
Lema 7.1.6 {lem:adj-Xb-lem-lnpc}104
É possível ajustar a notação de forma que:

em H'.

- Se $|\overline{X}| = 3$, então $\overline{X} = \{y_0, y_1, y_2\}$ e $\{y_0y_1, y_0y_2\}$ é o conjunto de arestas de $G[\overline{X}]$; além disso, tanto y_1 quanto y_2 tem pelo menos dois vizinhos em X.
- Se $|\overline{X}| = 5$, então $\overline{X} = \{y_0, y_1, y_2, s_0, s_1\}$ e $\{y_0y_1, y_0y_2, s_0y_1, s_0y_2, s_0s_1\}$ é o conjunto de arestas de $G[\overline{X}]$; além disso, tanto y_1 como y_2 tem pelo menos um vizinho em X, e s_1 tem pelo menos dois vizinhos em X.

Lema 7.1.7 {lem:FG-unico}
O vértice de F_G em \overline{X} é o único vértice de \overline{X} adjacente a mais de um vértice de X . Além lisso, os demais vértices de \overline{X}_+ não são adjacentes a vértices de $X - v_1 - v_2$.
Lema 7.1.8 109
O corte $C-e$ de $G-e$ inclui um emparelhamento M de $G-e$ com três arestas, que cobre v_1 e contém a aresta s_1v_2 .
Lema 7.1.9
A presilha G^{\star} é Pfaffiana.
Lema 7.1.10 {lem:cruzamento-no-corte} 111
O corte $C - e - e_1 - e_2$ contém duas arestas f_1 e f_2 , tais que f_1 e f_2 não são adjacentes em G , a ordem cíclica (e_1, e_2, f_2, f_1) é planar em H^* , e a ordem cíclica (e_1, e_2, f_1, f_2) é planar