
Geração de Conjuntos de Teste para Sistemas Reativos,

de Tempo-Real, e com Transformações de Contexto

Este exemplar corresponde à redação final da Tese

devidamente corrigida e defendida por Adilson

Luiz Bonifácio e aprovada pela Banca Examina-

dora.

Campinas, 16 de Dezembro de 2009.

Arnaldo Vieira Moura (Orientador)

Tese apresentada ao Instituto de Computação,

UNICAMP, como requisito parcial para a obtenção

do tı́tulo de Doutor em Ciência da Computação.

i

 FICHA CATALOGRÁFICA ELABORADA PELA

 BIBLIOTECA DO IMECC DA UNICAMP
 Bibliotecária: Crisllene Queiroz Custódio – CRB8 / 7966

Bonifácio, Adilson Luiz

Sigla Geração de conjuntos de teste para sistemas reativos, de tempo-real,

e com transformações de contexto / Adilson Luiz Bonifácio -- Campinas,

[S.P. : s.n.], 2009.

Orientador : Arnaldo Vieira Moura

Tese (Doutorado) - Universidade Estadual de Campinas, Instituto

de Computação.

1. Sistemas reativos. 2. Sistemas de tempo real. 3. Teste baseado

em modelos. 4. Software - Testes. I. Moura, Arnaldo Vieira. II.

Universidade Estadual de Campinas. Instituto de Computação. III.

Título.

Título em inglês: Generating test suites for reactive and real-time systems, with context transformations

Palavras-chave em inglês (Keywords): 1. Reactive systems. 2. Real-time systems. 3. Model-based testing. 4.
Software - Testing.

Área de concentração: Teoria da computação e Teste de sistemas

Titulação: Doutor em Ciência da Computação

Banca examinadora: Prof. Dr. Arnaldo Vieira Moura (IC-Unicamp)
Profa. Dra. Ana Cristina Vieira de Melo (IME-USP)
Prof. Dr. Jose M. Parente de Oliveira (DCC-ITA)
Profa. Dra. Eliane Martins (IC-Unicamp)
Prof. Dr. Luiz Eduardo Buzato (IC-Unicamp)

Data da defesa: 16/12/2009

Programa de Pós-Graduação: Doutorado em Ciência da Computação

Instituto de Computação

Universidade Estadual de Campinas

Geração de Conjuntos de Teste para Sistemas Reativos,

de Tempo-Real, e com Transformações de Contexto

Adilson Luiz Bonifácio1

Dezembro de 2009

Banca Examinadora:

• Arnaldo Vieira Moura (Orientador)

• Ana Cristina Vieira de Melo

Departamento de Ciência da Computação - IME - USP

• Jose M. Parente de Oliveira

Departamento de Ciência da Computação - ITA

• Eliane Martins

Instituto de Computação - UNICAMP

• Luiz Eduardo Buzato

Instituto de Computação - UNICAMP

• Adenilso da Silva Simão (Suplente)

Instituto de Ciências Matemáticas e de Computação - USP

• Ricardo de Oliveira Anido (Suplente)

Instituto de Computação - UNICAMP

1Suporte financeiro de: Bolsa do CNPq (processo 141978/2008-2) 2008–2009.

v

Resumo

O objetivo deste trabalho é prover métodos eficientes de geração de casos de teste para sis-

temas reativos crı́ticos. Sistemas dessa natureza compreendem sistemas de tempo real e com

transformações de contexto. Uma das técnicas mais usadas na geração de conjuntos de teste

tem sido a abordagem baseada em modelos formais. Neste caso, os formalismos fornecem uma

base sólida para que a atividade de teste seja efetuada de forma precisa e segura.

Este trabalho propõe a construção de modelos formais, métodos e técnicas, bem como es-

tratégias de teste, para dar suporte ao processo de geração automática de conjuntos de teste,

aplicáveis a sistemas complexos. Porém, o processo de geração de testes baseado em mode-

los se torna, muitas vezes, impraticável em aplicações reais, devido ao problema da explosão

combinatória de estados. Daı́ a necessidade de se encontrar modelos adequados que capturem

o comportamento desejado dos sistemas a serem testados, bem como a importância de se cons-

truir métodos que contornem o problema da explosão do espaço de estado, de maneira razoável,

permitindo que a geração de testes seja um processo aplicável a sistemas complexos.

Entre os modelos abordados neste trabalho estão: (i) as tradicionais Máquinas de Estados

Finito (FSM); (ii) uma extensão das FSM usando variáveis de contexto, as Máquinas de Estados

Finito Estendida (EFSM); (iii) a extensão temporizada de EFSM (TEFSM), que possui, não

apenas variáveis de contexto, mas também variáveis relógio; (iv) os modelos temporizados

com entradas e saı́das independentes, conhecidos como Timed I/O Automata (TIOA); e (v)

uma extensão proposta para TIOA, denominado Timed I/O Context Automata (TIOCA), para

compreender a evolução contı́nua de tempo e também as transformações de contexto.

Com relação a geração de testes baseada em tais modelos, foi proposto, primeiramente, uma

técnica de derivação de sequências de confirmação para TEFSM, usando model-checking. Em

seguida, foi proposta uma generalização para um método de geração de conjuntos completos

de teste usando FSM. Também foi desenvolvido um novo método de discretização do modelo

TIOA, provendo a base necessária para a geração de casos de teste usando os conceitos de

proposta de teste e produto sı́ncrono. Por fim, foi desenvolvida uma extensão do método de

discretização para TIOA também proposto neste trabalho, aplicado ao modelo TIOCA, permi-

tindo a geração de testes em sistemas com evolução contı́nua de tempo e fluxo de dados, usando

os conceitos de proposta de teste e produto de TIOCA.

vii

Abstract

This work aims to provide efficient test case generation methods for reactive and critical sys-

tems. In general, reactive and critical systems are real-time systems with context transforma-

tions. One of the most promising techniques for generating test suites is model-based testing.

The formalisms supply the basis to perform a precise and dependable testing activity. In this

scenery, our work proposes a construction of formal models, methods and techniques, as well

as testing strategies, to support the process of automatically generating test suites for complex

systems. However, the test generation process using formal models is usually infeasible in real

applications, due to the state space explosion. Therefore, we need to find out suitable models

to capture the system behaviors, and also to construct methods that can overcome the explosion

problem, in a reasonable way, allowing the generation of test suites for complex systems.

In this work we treat the following formal models: the conventional FSM; an extension of

FSM using context variables (EFSM); the proposed extension of EFSM (TEFSM) to capture

context variables and also clock variables; timed models, with disassociated input and output

actions, called TIOA; and the proposed extension for TIOA, so-called TIOCA, to capture con-

tinuous time evolution and context transformations.

In a first step of this work we proposed a technique to derive confirming sequences for

TEFSM, using model-checking. Next, a classical method to generate complete test suites was

generalized for FSM. We also proposed a new discretization method for TIOA models, allowing

the test case generation using test purpose and the synchronous product. Lastly, we extended

the discretization method for TIOA to obtain more compact grid automata for TIOCA models,

allowing the test case generation for systems with continuous time evolution and data flow

transformations, using the notion of test purpose and the product of TIOCA.

ix

“Everything is vague to a degree you do not realize

until you have tried to make it precise.”

Bertrand Russell

xi

À Fernanda, por seu amor, apoio e compreensão ao longo desta jornada.

Aos meus pais, pelo carinho e participação em todas as minhas conquistas.

xiii

Agradecimentos

Eu gostaria de agradecer a minha esposa por sempre ter me apoiado nas horas difı́ceis, aos meus

pais pelas oportunidades concedidas para que eu pudesse trilhar novos desafios, e a toda minha

famı́lia pela força e incentivo ao longo dessa difı́cil trajetória.

Agradeço principalmente ao Prof. Arnaldo, meu orientador, pela ajuda, seriedade e dedicação

durante o desenvolvimento deste trabalho.

Agradeço aos meus amigos pelo companheirismo e pela ótima convivência durante todo

este perı́odo.

Ao CNPq pelo suporte financeiro que possibilitou o desenvolvimento dessa pesquisa.

Aos professores, funcionários e colegas do Instituto de Computação, que de alguma forma

contribuı́ram para o desenvolvimento deste trabalho.

Aos colegas do Departamento de Computação da UEL pelo suporte e colaboração durante

o perı́odo de realização deste trabalho.

xv

Sumário

Resumo vii

Abstract ix

Agradecimentos xv

1 Introdução 1

1.1 Relato Cronológico . 3

2 Generalização do Método W 7

1 Introduction . 9

2 Related Works . 10

2.1 Finite State Machines . 10

2.2 FSM-based testing . 11

3 Transition Covers . 12

4 Equivalences and Stratified Families . 14

5 A m-complete Test Suite . 17

6 Characterization Sets . 19

7 The W-method as a Particular Case . 21

8 The Generalized Test Generation Method . 24

9 An Example . 25

10 Concluding Remarks . 26

References . 27

3 Discretização dos TIOA para a Verificação de Comportamentos 33

1 Introduction . 35

2 The TIOA model . 37

2.1 Timed words . 37

2.2 Clocks . 38

2.3 Timed Input Output Automata . 38

xvii

3 TIOA Discretization . 41

3.1 Bounded values and functions . 42

3.2 Grid automata . 46

4 Generating test cases based on test purposes 58

4.1 Test purposes . 58

4.2 The synchronous product . 60

4.3 Test case generation and the grid automaton 60

4.4 Applying timed test cases . 65

5 Related works . 67

6 Concluding Remarks . 68

References . 69

4 Derivando Sequências de Confirmação 75

1 Introduction . 77

2 Basic Formal Concepts . 79

2.1 Extended FSM Model . 79

2.2 Extended Timed Transition Systems 81

3 The Timed EFSM model . 83

3.1 Creating a TEFSM model from an ETTS and an EFSM model 83

3.2 The Operational Semantics for TEFSM models 84

3.3 Configuration Distinguishability in the TEFSM model 86

4 Timed Extended FSM Product . 86

5 Test Generation . 89

5.1 Conformance Testing . 90

5.2 Configuration Confirming Sequences 90

5.3 Model-checking . 91

6 An Example . 92

7 Concluding Remarks . 96

References . 96

5 Geração de Testes para Sistemas de Tempo e Contexto 103

1 Introduction . 105

2 Bounds and adjusted values . 106

2.1 Conditions and interpretations . 106

2.2 Bounded values and functions . 107

2.3 Adjusted values . 109

3 Timed I/O Context Automata . 109

3.1 An example . 109

3.2 The extended model . 111

xviii

4 TIOCA discretization . 115

4.1 Clock and context variable valuations 115

4.2 Grid automata and TIOCA . 116

4.3 Relationship between a TIOCA and its grid 118

5 Generating test cases . 119

5.1 Test case generation and the grid automaton 121

5.2 Applying test cases . 122

6 Related works . 123

7 Concluding Remarks . 124

References . 125

6 Conclusões 131

Bibliografia 133

xix

Lista de Tabelas

Capı́tulo 2

Capı́tulo 3

1 Invariants for the product . 61

Capı́tulo 4

Capı́tulo 5

xxi

Lista de Figuras

Capı́tulo 2

1 Specification M . 23

2 Implementation candidate M ′. 24

3 Machine specification M . 26

4 A especificação Mn. 30

5 A implementação M ′
n. 31

Capı́tulo 3

1 A BTDA model of a simple switch. 39

2 A TIOA model for a variation of the simple switch. 49

3 The partial grid automaton for Figure 2 (part 1 of 2). 50

4 The partial grid automaton for the TIOA in Figure 2 (part 2 of 2). 57

5 An example of test purpose for the switch system. 59

6 The product of a specification and a test purpose. 62

7 The partial grid automaton for Figure 6. 63

8 The framework to extract test cases. 65

9 The framework to test implementations: faulty property. 66

10 The framework to test implementations: desired property. 66

Capı́tulo 4

1 The TEFSM M . 93

2 The TEFSM product of M with itself. 94

Capı́tulo 5

1 A TIOCA model for a multimedia protocol. 110

2 The framework to test implementations: faulty property. 122

3 The framework to test implementations: desired property. 122

xxiii

Capı́tulo 1

Introdução

O processo de verificação e teste de sistemas reativos e de tempo real vem sendo largamente

estudado e pesquisado em Ciências da Computação. Entre as abordagens mais promissoras para

dar suporte a este processo está a geração automática de conjuntos de testes baseada em modelos

[12, 30, 39, 40]. Com o uso de formalismos adequados, requisitos e funcionalidades de sistemas

podem ser especificados através de modelos matemáticos. Por isso, vários formalismos têm

sido propostos para capturar o comportamento de sistemas computacionais e, a partir destes,

construir conjuntos de testes, seja para sistemas discretos, para sistemas temporizados puros, e

também para sistemas contendo variáveis de contexto. Porém, uma abordagem eficiente para

lidar com todos estes aspectos num mesmo formalismo permanece ainda como um desafio.

Fica claro que a maneira como um sistema é modelado, ou como as caracterı́sticas dos sis-

temas são capturadas pelo modelo, impactam no processo de geração de casos de teste. Outra

questão importante na atividade de teste está relacionada com a decisão de quando um sistema

está suficientemente testado e determinar, findo o teste, quantas falhas não cobertas, potencial-

mente, ainda permanecem no sistema. Em geral, para testes baseados em modelo, o objetivo

não é demonstrar a equivalência entre os modelos, já que isto é impraticável em aplicações re-

ais. A idéia é usar a noção de conformidade [17, 19] ao invés da equivalência, quando se trata

da geração de casos de teste usando modelos formais. O objetivo no teste de conformidade

[36, 38] é demonstrar se uma implementação candidata possui o mesmo comportamento ditado

pela especificação, seguindo algum critério [38].

Uma das linhas de trabalho desta tese focou as tradicionais Máquinas de Estados Finito

(FSM1) [13, 24, 41]. Para este modelo foi proposta uma generalização do tradicional método

W [11], gerando conjuntos completos de teste [24, 26, 32, 34]. Neste caso, os resultados

alcançados foram a generalização, que evita a computação de conjuntos caracterı́sticos com-

pletos para gerar casos de teste, além das provas formais para a validação do método, o que

permitiu mostrar que o método tradicional W é um caso particular do método generalizado.

1do inglês, Finite State Machines

1

2 Capı́tulo 1. Introdução

Com o objetivo de abordar sistemas de tempo real, avançamos para um modelo mais com-

plexo com caracterı́sticas dinâmicas e com restrições de tempo, chamado TIOA2 [14, 20]. Para

possibilitar a geração de casos de teste em TIOA, utilizamos a noção de autômatos grid [15, 16],

uma forma compacta para capturar a evolução contı́nua de tempo de maneira discreta. Neste

caso, apresentamos um método de discretização, que possibilitou a geração dos testes, usando

a noção de proposta de teste [19, 38] e de produto sı́ncrono [15]. Estes conceitos permitiram a

extração de execuções dos modelos, que são a base para a verificação de comportamentos entre

especificações e implementações.

Agora com o objetivo de gerar testes para sistemas ainda mais complexos, propusemos um

modelo chamado TEFSM3 [5, 6], capaz de capturar a noção de tempo e fluxo de dados, ao

mesmo tempo. O método proposto para TEFSM deriva testes usando a idéia de confirmação de

configurações. A extração é fundamentada na utilização de um algoritmo de model-checking [29],

onde os contra-exemplos obtidos para propriedades de falha são extraı́dos como sequências de

confirmação.

Como o modelo TEFSM apresentou uma alta complexidade na extração de casos de teste

devido ao número muito elevado de caminhos a serem explorados pelo algoritmo de model-

checking, optamos por um método que usasse a noção de discretização dos modelos. Além

disso, as TEFSM possuem entradas e saı́das associadas, uma herança da evolução a partir das

EFSM4 [10, 11, 13, 18, 27, 33], um modelo tradicional que captura o contexto dos sistemas.

Com isso a modelagem de sistemas reativos se torna limitada, já que a captura de eventos

autônomos pelo modelo, produzidos pelos sistemas, é imprescindı́vel. Por isso, mudamos a

abordagem para utilizar o modelo TIOCA5 [4], que representa tanto a evolução contı́nua de

tempo [14, 16] quanto as transformações no fluxo de dados [25, 31, 33, 42] dos sistemas. O

modelo TIOCA é uma evolução dos TIOA, que possui uma semântica de tempo bem definida.

Este fato, associado a uma definição mais clara e precisa das transformações de contexto que

propusemos ao modelo, nos permitiu elaborar um método capaz de gerar casos de teste de

modo eficiente para o modelo TIOCA. O método propõe uma nova técnica de discretização

para este modelo, e utiliza a noção de proposta de teste e do conceito de produto sı́ncrono

para a extração dos casos de teste. Além da técnica de extração apresentada, uma estratégia

de aplicação dos testes em implementações candidatas para se obter vereditos de conformidade

também foi elaborada.

A tese é composta por sete capı́tulos. O primeiro capı́tulo é formado por esta breve in-

trodução, seguido por uma seção que expõe a evolução cronológica do trabalho e contextualiza

todo esforço de desenvolvimento. Neste capı́tulo, apresentamos a conexão entre os artigos que

compõem esta tese.

2do inglês, Timed Input/Output Automata
3do inglês, Timed Extended Finite State Machines
4do inglês, Extended Finite State Machines
5do inglês, Timed Input/Output Context Automata

1.1. Relato Cronológico 3

O Capı́tulo 2 propõe uma generalização do tradicional método W, visando a geração de

conjuntos completos de teste sem a utilização de conjuntos caracterização. Seu conteúdo é

formado pelo artigo “A Generalized Model-based Test Generation Method”, apresentado na 6th

IEEE International Conferences on Software Engineering and Formal Methods (SEFM’08),

realizada em novembro de 2008, na Cidade do Cabo, África do Sul. O artigo foi publicado nos

anais da conferência, sob a responsabilidade do Institute of Electrical and Electronics Engineers

(IEEE). Uma extensão deste artigo, com resultados sobre a geração de testes para famı́lias

infinitas de FSM, pode ser encontrada no relatório técnico [8], intitulado “Exponentially more

Succinct Test Suites”.

O Capı́tulo 3 aborda a geração de casos de teste para sistemas temporizados, em particular

para o modelo TIOA. Uma nova técnica de discretização foi apresentada para permitir que casos

de teste sejam extraı́dos através da modelagem de propriedades especı́ficas dos sistemas. Esse

capı́tulo é composto pelo artigo intitulado “A New Discretization Method for Verifying Timed

System Compatible Behaviors”, submetido para o periódico Software Testing, Verification and

Reliability, da Wiley InterScience.

No Capı́tulo 4 é apresentada a geração de casos de teste baseada em configurações sus-

peitas, voltada para o modelo TEFSM. O capı́tulo é formado pelo artigo intitulado “Towards

Deriving Test Sequences by Model Checking”, publicado na revista Electronic Notes in The-

oretical Computer Science (ENTCS), da Elsevier Science Publishers. Uma versão preliminar,

intitulada “Conformance Testing by Model Checking Timed Extended Finite State Machines”,

foi apresentada no Brazilian Symposium on Formal Methods (SBMF 2006), realizado em se-

tembro de 2006, em Natal.

O Capı́tulo 5 apresenta um novo método de geração de testes através da discretização do mo-

delo TIOCA, que comporta aspectos de tempo e contexto. O método usa a noção de proposta de

teste, bem como o conceito de produto sı́ncrono, permitindo com que propriedades especı́ficas

dos sistemas sejam modeladas. O capı́tulo é composto pelo artigo intitulado “Generating Test

Suites for Timed Systems with Context Variables”, submetido para a IEEE International Con-

ference on Software Testing, Verification and Validation (ICST’10) que será realizada em Paris,

na França, de 06 a 09 de Abril de 2010.

No Capı́tulo 6 são apresentadas algumas conclusões e considerações finais. Sugestões de

trabalhos futuros também são oferecidas neste capı́tulo.

1.1 Relato Cronológico

Com o intuito de dar suporte e automatizar o processo de geração de conjuntos de testes para sis-

temas reativos crı́ticos, iniciamos o trabalho de pesquisa a procura de métodos eficientes, base-

ados em modelos, que pudessem ser aplicados a sistemas dinâmicos, com restrições temporais,

e também com transformações de contexto, representando o fluxo de dados desses sistemas.

4 Capı́tulo 1. Introdução

Os métodos de geração de casos de teste, usando a abordagem baseada em modelos, são de-

senvolvidos com o objetivo de verificar a conformidade entre implementações e especificações.

Neste caso, o conceito de conformidade deve seguir algum critério [38], mostrando que uma

implementação candidata possui o mesmo comportamento ditado pela especificação. De ma-

neira geral, utilizamos nesta tese, a idéia de execuções e sequências, temporizadas ou não,

com transformações de dados ou não, extraı́das dos modelos, para verificar se especificações e

implementações possuem comportamentos compatı́veis.

Num primeiro momento, o trabalho desenvolvido nesta tese focou a geração de testes usando

um modelo estendido das tradicionais FSM, chamado EFSM. O modelo proposto, chamado

TEFSM [5, 6], estendeu as EFSM, incorporando os aspectos de tempo e contexto ao modelo.

Aspectos de tempo capturam o comportamento dinâmico de um sistema, enquanto aspectos de

contexto modelam o fluxo de dados e suas transformações.

O esforço nesta direção foi propor uma técnica para confirmação de configurações numa

especificação, baseada na abordagem para EFSM [31]. A idéia foi fundamentada pelo uso

de algoritmos de model-checking. Através de uma configuração suspeita é possı́vel que cami-

nhos que levam o sistema a uma execução falha sejam capturados pelas sequências extraı́das

do produto da especificação com tal configuração suspeita. Uma configuração suspeita é uma

configuração do contexto, i.e. uma propriedade, da máquina de especificação que pode repre-

sentar um comportamento não desejável do sistema. Já que uma propriedade pode ser espe-

cificada por uma configuração suspeita, o produto é capaz de englobar o comportamento si-

multâneo de ambos os modelos. Com isso uma falha pode ser encontrada através do algoritmo

de model-checking, extraindo uma execução do produto, chamada de sequência de confirmação,

que representa um contra-exemplo para a propriedade de falha.

No entanto, algumas dificuldades foram encontradas, principalmente no que se refere ao

comportamento de sistemas reativos em aplicações reais. Um modelo formal, para ser o mais

fiel possı́vel na captura do comportamento de um sistema, deve permitir a ocorrência de even-

tos autônomos em resposta a eventos externos. Essa caracterı́stica permite modelagens mais

realistas no que se refere ao comportamento de um sistema crı́tico reativo. Outro ponto está

relacionado com a cobertura de falhas oferecida pelo método de geração de sequências de

confirmação para TEFSM. Um número muito grande de configurações suspeitas impossibi-

lita a representação de todas as falhas, recaindo sobre o problema de explosão combinatória

de estados. Para contornar esse problema, reconsideramos o passo anterior, o qual usava um

modelo complexo compreendendo tanto aspectos de tempo quanto de contexto.

Em face a essas dificuldades, o trabalho foi redirecionado para, primeiramente, atacar o

problema de geração de casos de teste visando um modelo mais simples, as tradicionais FSM

[13, 22, 23, 24, 35, 41]. Neste caso optamos por uma cobertura completa de falhas, desenvol-

vendo um método que pode gerar um conjunto completo de testes para o modelo em questão.

Propusemos uma generalização para o tradicional método W [11], de tal forma que podemos

1.1. Relato Cronológico 5

gerar um conjunto completo de testes [24, 26, 32, 34] sem o uso obrigatório de um conjunto

caracterização [7, 9]. Mostramos que é possı́vel obter conjuntos completos de teste para sis-

temas reativos modelados através de FSM somente com o uso de subconjuntos de qualquer

conjunto caracterização. Esse método evita a computação de conjuntos caracterização, bem

como a computação dos ı́ndices das especificações. Além do impacto que o método causa na

computação dos conjuntos de teste, mostramos também como refinar o método W a partir dessa

generalização, provando que o primeiro é na verdade um caso particular do método proposto.

Seguindo a idéia de um aumento gradual na complexidade dos modelos utilizados, prosse-

guimos passando para um novo modelo, chamado de TIOA [20, 14], que lida com especificações

temporizadas e restrições de tempo. O TIOA é capaz de especificar sistemas temporizados e

suas execuções, permitindo que a evolução contı́nua de tempo seja representada nos modelos.

O desafio neste caso foi ainda maior ao lidar com o problema de explosão de estados gerado

pela captura da evolução contı́nua de tempo. Para contornar tal problema, utilizamos a noção de

discretização com o objetivo de diminuir o número de estados representados no modelo final e

discretizado. Uma discretização clássica sobre os conhecidos timed automata resultam nos cha-

mados autômatos grid [15, 16], que se utilizam das tradicionais regiões de relógio [2, 28]. No

entanto, nossa proposta se diferencia da discretização clássica baseada em regiões de relógio,

pois permitimos que a granularidade do grid seja escolhida de forma mais flexı́vel. Essa fle-

xibilidade proporciona escolhas de granularidades que diminuem o número de estados gerados

no modelo discretizado. Provamos que mesmo um grid sendo obtido através de granularidades

mais flexı́veis, os modelos originais de TIOA podem simular homomorficamente seus corres-

pondentes grid, e vice-versa. Essa flexibilidade pode resultar na construção de autômatos grid

menores, já que não temos a obrigação de manter uma relação rı́gida entre a granularidade

escolhida e o número de variáveis relógio contidas no modelo original.

Este resultado forneceu a base para a geração de testes a partir do formalismo de TIOA.

Optamos pela noção de proposta de teste [19, 38] para que propriedades especı́ficas dos siste-

mas fossem modeladas. Propostas de teste e especificações de sistemas, modeladas por TIOA,

aliadas a outro importante conceito, o de produto, permitem a modelagem do comportamento

coordenado de ambos, e permitem a extração de execuções tanto dos sistemas quanto das pro-

postas de teste. Assim, de um autômato grid, obtido do produto, são extraı́das as execuções

que representam o comportamento coordenado, e por consequência resultam em execuções que

levam o sistema às propriedades de falha, ou às propriedades desejadas conforme o caso. Dessa

forma, é possı́vel extrair os conjuntos de teste para propriedades especı́ficas, e então usar o con-

ceito de conformidade para verificar se implementações candidatas seguem os comportamentos

modelados pela especificação e pela proposta de teste [40]. Adotamos neste trabalho [3] uma

estratégia de realimentação de sequências, baseada na idéia de subsequências de execuções [21]

para verificar a compatibilidade de comportamentos.

Com a experiência obtida do trabalho anterior, e o resultado de uma nova técnica de dis-

6 Capı́tulo 1. Introdução

cretização para TIOA, seguimos com o objetivo de gerar conjuntos de testes para um modelo

ainda mais complexo, que possa expressar tanto a evolução contı́nua de tempo [14, 16] quanto

as transformações no fluxo de dados [25, 31, 33, 42]. Nessa nova vertente propusemos um

modelo para englobar ambos os aspectos. Mais do que isso, esse novo modelo permite a in-

dependência dos eventos de entrada e saı́da, diferente do modelo TEFSM, onde as entradas e

saı́das estão intimamente associadas. De posse do novo modelo, denominado TIOCA, foi ne-

cessário desenvolver uma nova discretização para este formalismo [4, 15], inspirada na idéia

de discretização proposta para os modelos TIOA [3]. Novamente desviando da noção clássica

de regiões de relógio, os autômatos grid obtidos permitem a extração de conjuntos de teste dos

modelos discretizados. Lembrando que no modelo TIOCA lidamos tanto com variáveis relógio

quanto com as variáveis de contexto e suas transformações.

Preparando para a geração dos casos de teste, mostramos novamente que o modelo TI-

OCA [4] homomorficamente simula seus respectivos autômatos grid, e vice-versa. Com o ob-

jetivo de especificar propriedades especı́ficas dos sistemas, retomamos a noção de proposta de

teste, agora para o modelo TIOCA. O conceito de produto sı́ncrono para TIOCA também foi

definido de forma que o comportamento conjunto de uma especificação e de uma proposta de

teste possa ser capturado. A partir do método de discretização, da utilização da proposta de teste

e também do conceito de produto sı́ncrono, mostramos como extrair automaticamente conjun-

tos de teste. A estratégia de realimentação para TIOA foi adaptada para ser aplicada ao modelo

TIOCA, permitindo que vereditos de conformidade possam ser obtidos para implementações

candidatas [21, 40].

Com isso fechamos o objetivo principal proposto na tese, de elaborar um método para

geração de conjuntos de testes baseado em modelos, para sistemas crı́ticos e de tempo real,

com transformações de contexto.

Capı́tulo 2

Generalização do Método W

Prólogo

O teste de conformidade tem como objetivo demonstrar se o comportamento de uma implemen-

tação conforma com o comportamento da especificação de um sistema. Na geração de casos de

teste vários modelos formais podem ser usados como formalismo base. Neste trabalho usamos

o conhecido modelo FSM, largamente estudado na literatura.

Este trabalho apresenta uma generalização do método W, que usa a noção de conjunto

caracterização para a geração de conjuntos completos de casos de teste baseado no modelo

FSM. Um conjunto completo de teste garante uma cobertura completa de falhas no sistema

modelado. O novo algoritmo dessa generalização, denominado método G, é capaz de gerar

conjuntos completos de teste da mesma forma que o método W, porém na ausência de um con-

junto caracterização completo. Nesse sentido, o método proposto gera tais conjuntos usando

apenas subconjuntos de qualquer conjunto caracterização. Mostramos também que o método

W na verdade é um caso particular do método generalizado G.

Este capı́tulo é composto pelo artigo, “A Generalized Model-based Test Generation Method”,

que generaliza o método clássico W. O objetivo é mostrar que o método proposto é capaz de

gerar conjuntos de testes sem a presença de um conjunto caracterização. O artigo foi publicado

nos anais do 6th IEEE International Conferences on Software Engineering and Formal Methods

(SEFM’08), realizado na Cidade do Cabo, África do Sul, de 10 a 14 de Novembro de 2008.

7

A Generalized Model-based Test Generation Method

Adilson Luiz Bonifácio∗ Arnaldo Vieira Moura�
Computing Institute, University of Campinas

P.O. 6176 – Campinas – Brazil – 13081-970

adilson@ic.unicamp.br arnaldo@ic.unicamp.br

Adenilso da Silva Simão

Mathematic Science and Computing Institute, University of São Paulo

P.O. 668 – São Carlos – Brazil – 13560-970

adenilso@icmc.usp.br

Abstract

In this paper we present a generalization to the W-method [3], which can be used

for automatically generating test cases. In contrast to the W-method, this generalization

allows for test case generation even in the absence of characterization sets for the

specification. We give proofs of correctness for this generalization, and show how to

derive the original W-method from it as a particular case. Proofs of correctness for the

W-method, not given in the original paper, are also presented in a clear and detailed

way.

1 Introduction

Conformance testing aims at demonstrating that the implementation behavior conforms to the

behavior dictated by the specification [7, 20, 21]. In the literature, there are many model-based

test derivation methods for conformance testing of critical and reactive systems [4, 14, 22].

The problem of generating test cases for conformance testing has been intensively studied,

specially for models based on Finite State Machines (FSMs) [5, 9, 10, 11, 19, 23]. One of

the most well-known of these test generation methods is the W-method [3], which uses the

notion of characterization sets. The W-method was proposed for deterministic FSMs and it

has been widely investigated, and many variations have been developed around its main ideas

[11, 12, 13, 18].

∗Supported by CNPq grant 141978/2008-2�Supported by CNPq grant 472504/2007-0

9

10 Capı́tulo 2. Generalização do Método W

In this paper we present a generalization of the W-method. This generalization allows us to

derive a m-complete test suite without using a characterization set. A test suite is m-complete

if it guarantees a complete fault coverage[17], while considering deterministic FSM implemen-

tations with up to m states. In fact, our method can generate test suites using only subsets of

any characterization set. We discuss how to refine the generalization in order to arrive at the

original W-method, demonstrating that the latter is a particular case of our method. Proofs of

correctness are presented in a clear form, including the correctness for the original W-method.

This paper is organized as follows. In Section 2 we describe some work related to our

proposal, and we review some basic concepts. The concept of transition covers for FSMs is

presented in Section 3. In Section 4 we introduce equivalence in FSMs, and stratified families

of sets. The generation of a complete test suite is presented in Section 5. In Section 6 we

reconsider characterization sets. How to refine our method in order to obtain the original W-

method is described in Section 7. In Section 8 we present the algorithm for the generalized

method, and illustrate its usefulness with an example in Section 9. Finally, in Section 10, we

give some concluding remarks.

2 Related Works

This section reviews the FSM model and some important related notions. We also present more

details about the W-method and other variant model-based test generation methods, such as the

Wp and HSI methods.

2.1 Finite State Machines

The basic model used to capture a system behavior is the FSM. Formally, a FSM [8] is a system

M = (X, Y, S, s0, δ, λ) given by:

• a finite input alphabet, X;

• a finite output alphabet, Y ;

• a finite set of states, S;

• an initial state s0 ∈ S; and

• output and transition functions, respectively, λ : X × S → Y and δ : X × S → S.

Note that such a machine is deterministic and complete. A FSM is called complete if for

each state s of M , there is a transition from s with input symbol a, for every a ∈ X . A

deterministic FSM does not allow two different transitions going out of the same state with

identical input symbols.

2. Related Works 11

Successive applications of the transition function δ give rise to the extended transition func-

tion δ̂ : X⋆ × S → S, defined by

δ̂(ǫ, s) = s,

δ̂(aρ, s) = δ̂(ρ, δ(a, s)),where a ∈ X and ρ ∈ X⋆.

Here, ǫ will denote the empty word. For convenience, if δ̂(ρ, s1) = s2 we also write s1
ρ
→ s2.

We extend λ to λ̂ : X⋆ × S → Y ⋆ thus

λ̂(ǫ, s) = ǫ,

λ̂(aρ, s) = λ(a, s)λ̂(ρ, δ(a, s)),with a ∈ X , ρ ∈ X⋆.

Henceforth, unless mention to the contrary, we will assume that M and M ′ denote FSMs in

the form M = (X, Y, S, s0, δ, λ) and M ′ = (X, Y ′, S ′, s′0, δ
′, λ′). Note that M and M ′ have the

same input alphabet.

The reachability notion expresses the idea of starting at the initial state, traversing some

transitions, and reaching a target state.

Definition 1 A state s in a FSM M is reachable if and only if there exists ρ ∈ X⋆ such that

δ̂(ρ, s0) = s. •

We also say that λ̂(ρ, s) is the behavior of M from state s over the input sequence ρ. The

behavior of M over ρ is simply the behavior of M from s0 over ρ. A sequence ρ distinguishes

two states s1 and s2 ofM if ρ gives distinct behaviors for s1 and s2, that is, if λ̂(ρ, s1) 6= λ̂(ρ, s2).

2.2 FSM-based testing

Here, we briefly describe the basic W-method, which can be used for test generation using FSM

models. We also briefly describe the related Wp and the HSI methods.

The W-method The objective is to verify whether implementation models conform to a spec-

ification model, as characterized by the behavior responses generated by external stimuli [3].

Basically, the application of this method consists in two main steps, given a specification

FSM M and an implementation FSM M ′: (i) test sequences generation, based on M ; and (ii)

application of each test sequence to M and M ′, followed by a comparison of their respective

behaviors.

The technique uses characterization sets of M in order to obtain a complete set of test case

sequences. A characterization set, loosely speaking, can distinguish every pair of machine states

(see Section 6). Let W be a characterization set for M . In order to obtain the test sequences,

the W-method prefixes the sequences in W with certain sequences from X⋆, thus obtaining a

set Z containing extended sequences. Furthermore, the method also computes a cover set P for

M . Basically, applying sequences from P one can traverse any edge of M . The desired set of

test sequences is the product PZ. More details to be presented in the sequel.

12 Capı́tulo 2. Generalização do Método W

The Wp-method A related technique, the so called Wp-method [6], can potentially reduce

the total length of the test sequences generated by the basic W-method. Again, let W be a

characterization set for the specification model, M . For each state si of M , an identification

subset Wi ⊆ W is obtained. The idea is that for each state sj of M , with si 6= sj, there exists

an input sequence ρj ∈ Wi such that si and sj are distinguishable by ρj , and no other proper

subset of Wi has this property.

Then, a checking sequence for each state is prefixed to all sequences in the corresponding

identification set. A checking sequence for a given state is simply an input sequence reaching

that state, when starting at the initial state. It is proven [6] that the length of the resulting

test sequences may be shorter, compared to those sequences obtained using the complete PZ

concatenation of the basic W-method.

The HSI-method The HSI-method [16] uses the notion of trace-inclusion and a quasi-equiv-

alence relation to verify conformance between partial non-deterministic FSM implementations

and a given FSM specification. For that, so called harmonized sate identification sets are used

instead of the identification subsets used in the Wp-method. Whereas identification sets fixed

the sequences associated with a specific state si, a harmonized state identification set Di, is

constructed by taking prefixes of a characterization set W , but now allowing the reuse of a

same prefix for different states. Distinguishing sequences for states are then taken from the

intersection of Di-sets. The discussion in [16] affirms that shorter sequences can be found to

distinguish every pair of states in M .

3 Transition Covers

Let M be a FSM. A cover set P ⊆ X⋆ is required to exercise every transition in M , i.e., for

every transition δ(a, s) = r in M there must be ρ, ρa ∈ P such that δ̂(ρ, s0) = s. In this way,

we can obtain a behavior of M that reaches state s, and terminates by traversing the specific

edge from s to r, labeled by a.

The cover set notion is formalized next.

Definition 2 A set of input sequences C ⊆ X⋆ is a cover set for a FSM M if for every pair of

states s, r ∈ S and every input symbol a ∈ X , with δ(a, s) = r, there exist ρ, ρa ∈ C such that

δ̂(ρ, s0) = s. •

A cover set can be obtained by constructing a labeled tree for M . A labeled tree is a system

T = (N,A, lv, le), where N is a set of nodes, A is the set of edges, and lv : N → S and

le : A → X are labeling functions of nodes and edges, respectively. The nodes in the tree will

be labeled by states of M and edges will be labeled by symbols from X .

3. Transition Covers 13

Construction 3 A labeled tree for M , T = (N,A, lv, le), can be constructed as follows:

1. Initiate with N = {n0}, A = ∅, lv(n0) = s0 and le = ∅, where s0 is the initial state of M

and n0 is the root of T . We say that n0 has level zero in T .

2. Inductively, suppose T is already constructed up to level k ≥ 0. Level k+1 is constructed

by inspecting of nodes in level k from left to right:

(a) let n ∈ N be the next node to be inspected.

(b) if there already exists m ∈ N with lv(m) = lv(n), and m is at some level l < k in

T , then node n is ignored, and we take the next node at level k. Otherwise, for every

input a ∈ X and every r ∈ S with r = δ(a, lv(n)), we add a new node n′ to N , a

new edge (n, n′) to A, and define lv(n
′) = r and le(n, n

′) = a. We then proceed to

the next node in level k.

3. Step 2 is repeated if new nodes were added to T in the last iteration; otherwise, T is

completed. •

The process will always terminate since the set of states in M is finite. Depending on how

the symbols from X are selected, different trees can be obtained (see step 2b in Construction

3).

The next definition shows how to construct a required cover set.

Definition 4 Let T be a labeled tree for M . The set PT is defined by all words α ∈ X⋆ which

label paths in T , starting at the root. •

Note that ǫ ∈ PT . When T is clear from the context, we will use the simplified notation P

instead of PT .

We can now show that PT , from Definition 4, is a cover set for machine M . Before that, we

need a property of labelled trees.

Lemma 5 Let T = (N,A, lv, le) be a labeled tree for a FSM M , as given by Construction 3.

Let PT be the set obtained as in Definition 4. Let ρ ∈ X⋆ and s ∈ S be such that δ̂(ρ, s0) = s.

Then, there exists a node n ∈ N with lv(n) = s. Furthermore, there exists a sequence α ∈ PT
with δ̂(α, s0) = s and such that for every edge δ(a, s) = r we have αa ∈ PT .

Proof Directly from Construction 3. Details in [2]. •

Now we can enunciate the cover set property.

Corollary 6 Let T = (N,A, lv, le) be the labeled tree for a FSM M , as given by Construction

3. Let PT be the set obtained as in Definition 4. If every state of M is reachable, then the set

PT ⊆ X⋆ is a cover set for M .

14 Capı́tulo 2. Generalização do Método W

Proof Let δ(a, r) = s be an edge. As r is reachable, we have δ̂(ρ, s0) = r, for some ρ ∈ X⋆.

By Lemma 5, we have α, αa ∈ PT with δ̂(α, s0) = r, for some α ∈ X⋆. Thus, PT is a cover

set for M . •

4 Equivalences and Stratified Families

This section deals with state equivalence relations induced by the transition functions of the

extended machines. The next definition exposes those notions in a general context.

Definition 7 Let M and M ′ be two FSMs over the same input alphabet, X , and let s and s′ be

states of M and M ′, respectively.

1. Let ρ ∈ X⋆. We say that s is ρ-equivalent to s′ if λ̂(ρ, s) = λ̂′(ρ, s′). In this case, we write

s ≈ρ s
′. Otherwise, s and s′ are ρ-distinguishable and we write s 6≈ρ s

′.

2. Let K ⊆ X⋆. We say that s is K-equivalent to s′ if s is ρ-equivalent to s′, for every

ρ ∈ K. In this case, we write s ≈K s′. Otherwise, s and s′ are K-distinguishable and we

write s 6≈K s′.

3. Let k ≥ 0. We say that s is k-equivalent to s′ if s is Xk-equivalent to s′. Otherwise, s and

s′ are k-distinguishable. We write, respectively, s ≈k s
′ and s 6≈k s

′.

4. State s is equivalent to s′ if s is k-equivalent to s′, for every k ≥ 0. Otherwise, s and s′

are distinguishable. We write, respectively, s ≈ s′ and s 6≈ s′. •

We will avoid overloading the notation by indicating M and M ′ explicitly, e.g., in the form

≈M,M ′

k , since both machines will always be clear from the context. Definition 7, obviously, also

applies when M and M ′ are the same machine. In this case, it is easy to verify that all relations

defined above are, in fact, equivalence relations over the state set of the machine. Hence, each

such equivalence relation ≈Z gives rise to a partition [Z] of the state set S.

Definition 8 Let M be a FSM. The index of M , ιM , is the number of equivalence classes

induced by the ≈ relation over the states of M . •

Clearly, we will always have 1 ≤ ιM ≤ |S|, where S is the state set of M .

The next lemma gathers some simple observations.

Lemma 9 Let M and M ′ be two FSMs with states s and s′, respectively.

1. Let K ⊆ X⋆. If s ≈K s′, then s ≈L s
′, for every L with L ⊆ K. On the other hand, if

s 6≈K s′, then s 6≈L s
′, for every L with K ⊆ L.

4. Equivalences and Stratified Families 15

2. Let k ≥ 0. If s ≈k s
′ then s ≈l s

′ for every l with l ≤ k. On the other hand, if s 6≈k s
′,

then s 6≈l s
′, for every l with l ≥ k.

3. Let K,L ⊆ X⋆. If s 6≈K s′, then s 6≈KL s
′, for every L 6= ∅.

Proof Trivial. •

In the sequel, we will be considering specific sets of input sequences.

Definition 10 Let Zi ⊆ X⋆, i ≥ 0, where X is an alphabet. We say that {Zi}i≥0 is a stratified

family over X if

1. Z0 6= ∅; and

2. (X ∪ {ǫ})Zi = Zi+1, for every i ≥ 0. •

It is easy to see that these properties are independent of each other.

Another characterization for stratification is given as follows.

Proposition 11 Let Zi ⊆ X⋆, i ≥ 0, whereX is an alphabet and with Z0 6= ∅. Then, the family

{Zi}i≥0 is stratified if and only if Zk =
⋃k
j=0X

jZ0 for every k ≥ 0.

Proof Details can be found in [2]. •

The next result guarantees that certain sequences always have continuations in some of the

Zk sets.

Lemma 12 Let {Zi}i≥0 be a stratified family over X and let k ≥ 0. Then

1. Zk ⊆ Zj , for every j ≥ k; and

2. For every α ∈ Xj, with 0 ≤ j ≤ k, there exists β ∈ X⋆ such that αβ ∈ Zk.

Proof From Proposition 11, we deduce that Zi ⊆ Zi+1, for every i ≥ 0. A simple induction

establishes item (1). For item (2), since Z0 6= ∅, we take γ ∈ Z0. Since j ≤ k, we take

σ ∈ Xk−j. Hence, ασγ ∈ XkZ0. From Proposition 11 we conclude ασγ ∈ Zk. •

Let M be a FSM and let Z ⊆ X⋆ be a set of input sequences. We indicate by [Z] the

partition induced by Z (see observation after Definition 7) over the states of M , i.e, s ≈Z r if

and only if s, r ∈ w, for some w ∈ [Z]. Let [Z1] and [Z2] be two partitions over S. Then we

say that [Z2] refines [Z1] if and only if for all w2 ∈ [Z2] there exists some w1 ∈ [Z1] such that

w2 ⊆ w1.

The next result expresses properties of these partitions.

16 Capı́tulo 2. Generalização do Método W

Lemma 13 Let {Zi}i≥0 be a stratified family over the alphabet X of a FSM M . Then

1. [Zi+1] refines [Zi], for every i ≥ 0; and

2. if |[Zk]| = |[Zk+1]| for some k ≥ 0, then we must have [Zk] = [Zk+1] = [Zk+2].

Proof We show each item, in turn.

For item (1), assume that it does not hold for some i ≥ 0. Then we will have states s and r

such that s ≈Zi+1
r and s 6≈Zi

r. From Lemma 9(1) and Lemma 12(1) we deduce s 6≈Zi+1
r, a

contradiction.

Now we verify item (2). From item (1), we know that [Zk+1] refines [Zk]. Then [Zk] =

[Zk+1], otherwise we would have |[Zk]| < |[Zk+1]|. Again continuing by contradiction, assume

that [Zk+1] 6= [Zk+2]. Since [Zk+2] refines [Zk+1], we will have states r and s such that s 6≈Zk+2
r

and s ≈Zk+1
r. Hence, we obtain ρ ∈ Zk+2, with ρ = aβ and a ∈ X , and such that s 6≈aβ r. We

also conclude that aβ 6∈ Zk+1, otherwise we would have the contradiction s 6≈Zk+1
r. Therefore,

from Definition 10(2), we deduce aβ ∈ XZk+1, and so, β ∈ Zk+1.

Let s1, r1 ∈ S with s1 = δ(a, s), r1 = δ(a, r). If s1 6≈Zk+1
r1 then s1 6≈Zk

r1, because

we already know that [Zk] = [Zk+1]. Hence, we would have γ ∈ Zk with λ̂(γ, s1) 6= λ̂(γ, r1).

From Definition 10(1) we have XZk ⊆ Zk+1, and then aγ ∈ Zk+1. But,

λ̂(aγ, s) = λ(a, s)λ̂(γ, s1)

λ̂(aγ, r) = λ(a, r)λ̂(γ, r1).

Then we have λ̂(aγ, s) 6= λ̂(aγ, r), thus forcing the contradiction s 6≈Zk+1
r. We conclude that

s1 ≈Zk+1
r1.

Since β ∈ Zk+1, we deduce s1 ≈β r1. Again,

λ̂(aβ, s) = λ(a, s)λ̂(β, s1)

λ̂(aβ, r) = λ(a, r)λ̂(β, r1),

and, since we already have λ̂(ρ, s) 6= λ̂(ρ, r), we conclude that λ(a, s) 6= λ(a, r). From a ∈ X

and Lemma 12(2) we infer σ ∈ X⋆ with aσ ∈ Zk+1. Hence, we have s 6≈aσ r, contradicting

s ≈Zk+1
r. •

The next result gives the equality of successive partitions.

Corollary 14 Let {Zi}i≥0 be a stratified family over the input alphabet X of a FSM M . If

|[Zk]| = |[Zk+1]| for some k ≥ 0, then [Zk] = [Zk+l] for every l ≥ 0.

Proof When l = 0, the result is immediate. When l = 1 or l = 2, the result follows directly

from Lemma 13(2). Assume the result holds for every j, 0 ≤ j ≤ l, with l ≥ 2. We want to

show that the result holds for l + 1. From the induction, we have [Zk] = [Zk+l] and [Zk] =

[Zk+l−1]. Hence, [Zk+l−1] = [Zk+l]. Using Lemma 13(2), we obtain [Zk+l−1] = [Zk+l] =

[Zk+l+1]. Hence, [Zk] = [Zk+l+1], as required. •

5. A m-complete Test Suite 17

Now let M be a FSM with m states. Suppose we have a stratified family for X , {Zi}i≥0,

in which Z0 partitions the states of M in n ≤ m equivalence classes. We want to study the

partitions over states of M induced by the Zi sets, for i ≥ 0. The next lemma establishes the

basic result.

Lemma 15 Let M be a FSM with index m. Let {Zi}i≥0 be a stratified family for X such that

Z0 partitions the states of M in at least n ≤ m equivalence classes. Then |[Zi]| ≥ n + i, for

every i, with 0 ≤ i ≤ m− n.

Proof When i = 0 we have n + i = n and, from the hypothesis, |[Z0]| ≥ n, establishing the

base. Assume the result for every j, 0 ≤ j ≤ i, with i < m− n. We are going to show that the

result holds for i+ 1. If |[Zi]| ≥ n+ i+ 1 then |[Zi+1]| ≥ n + i+ 1 (from Lemma 13(1)), and

the induction is extended in this case.

Now, let |[Zi]| < n+ i+ 1. From the induction hypothesis we conclude that |[Zi]| = n+ i.

Since m ≥ n + i + 1 is the index of M , there exist nonequivalent states in M , r and s, with

r ≈Zi
s. Then, s 6≈Xk r, for some k ≥ 0 (see Definition 7). From Lemma 12(2), we conclude

s 6≈Zk
r. If k ≤ i, Lemma 12(1) would force Zk ⊆ Zi. Using Lemma 9(1) we would have

s 6≈Zi
r, a contradiction. Hence, k > i.

If |[Zi]| = |[Zi+1]| then, by Corollary 14, we get Zi = Zk, forcing again the contradiction

s 6≈Zi
r. Since [Zi+1] refines [Zi], we can not have |[Zi+1]| < |[Zi]|. We conclude that |[Zi+1]| >

|[Zi]|. But, since |[Zi]| = n+ i, we deduce the result desired, that is, |[Zi+1]| ≥ n+ i+ 1. •

Using this result, it will be easy to confirm that some Z ∈ {Zi}i≥0 will distinguish every

pair of nonequivalent states.

Corollary 16 Let M be a FSM with index m. Let {Zi}i≥0 be a stratified family for X such that

Z0 partitions the states ofM in at least n ≤ m equivalence classes. Then Zm−n will distinguish

every pair of nonequivalent states of M .

Proof From Lemma 15, it follows that |[Zm−n]| ≥ n + (m − n) = m. Since [Zm−n] is the

partition induced by Zm−n, we conclude that Zm−n partitions states of M in m classes. Since

M has index m, we conclude that Zm−n will distinguish every pair of nonequivalent states of

M . •

5 A m-complete Test Suite

Let M and M ′ be two FSMs operating over the same alphabet X . Machine M represents a

specification and M ′ represents a possible implementation. We want to obtain a set K ⊆ X⋆

such that s0 6≈ s′0 if and only if s0 6≈K s′0. Such a set K is a m-complete test suite, where m

18 Capı́tulo 2. Generalização do Método W

is an upper bound on the index of M ′. Given K, if we want to test whether M and M ′ have

distinct behaviors, it is enough to apply the sequences in K to both machines and compare the

corresponding output sequences.

We obtain the required set by combining a cover set for M with a stratified family for M ′.

The next lemma establishes an auxiliary result.

Lemma 17 Let M and M ′ be two FSMs operating over the same input alphabet, X . Assume

that M ′ has index m and that P is a cover set for M . Let Z ⊆ X⋆ be nonempty and such that

Z partitions the states of M ′ in at least m equivalence classes. If s0 ≈PZ s
′
0 and s0 6≈ s′0, then

there exist γ ∈ X⋆, s ∈ S, s′ ∈ S ′ such that δ̂(γ, s0) = s, δ̂′(γ, s′0) = s′ and s 6≈Z s
′.

Proof This proof can be found in [2]. •

Now we are in a position to enunciate the result which will give us the capability of testing

two machines for equivalence.

Theorem 18 Let M and M ′ be two FSMs operating over the same input alphabet, X . Assume

thatM ′ has indexm and that P is a cover set for M . Let Z ⊆ X⋆ be nonempty and such that Z

partitions states ofM ′ in at leastm equivalence classes. Then, s0 ≈ s′0 if and only if s0 ≈PZ s
′
0.

Proof If s0 ≈ s′0 then, trivially, s0 ≈PZ s
′
0.

For the opposite direction, assume s0 ≈PZ s′0. For the sake of contradiction, assume s0 6≈

s′0. From Lemma 17, we obtain β ∈ X⋆, s ∈ S and s′ ∈ S ′ with δ̂(β, s0) = s, δ̂′(β, s′0) = s′,

and s 6≈Z s′. We can assume, without loss of generality, that |β| is minimal. If β = ǫ, we

would have s = s0 and s′ = s′0, and then s0 6≈Z s′0. But, since ǫ ∈ P , this would force the

contradiction s0 6≈PZ s
′
0. We conclude that β = αa, with a ∈ X . Let r ∈ S and r′ ∈ S ′ with

δ̂(α, s0) = r, δ̂′(α, s′0) = r′, δ(a, r) = s and δ′(a, r′) = s′. Using the minimality of |β| we have

r ≈Z r
′.

On the other hand, since P is a cover set for M , from the edge δ(a, r) = s we obtain ρ ∈ P

and ρa ∈ P with δ̂(ρ, s0) = r. Let r′′ ∈ S ′ with δ̂′(ρ, s′0) = r′′. If we had r 6≈Z r
′′, we would

obtain γ ∈ Z with λ̂(γ, r) 6= λ̂′(γ, r′′). But then

λ̂(ργ, s0) = λ̂(ρ, s0)λ̂(γ, r) and

λ̂′(ργ, s′0) = λ̂′(ρ, s′0)λ̂
′(γ, r′′).

Hence, λ̂(ργ, s0) 6= λ̂′(ργ, s′0), giving the contradiction s0 6≈ργ s
′
0 with ργ ∈ PZ. We conclude

that r ≈Z r
′′.

Since we already have r ≈Z r
′, we obtain r′ ≈Z r

′′. Since Z partitions the states of M ′ in

m classes and m is the index of M ′, we conclude that r′ ≈ r′′. Now, from s 6≈Z s
′, we obtain

6. Characterization Sets 19

σ ∈ Z with λ̂(σ, s) 6= λ̂′(σ, s′). But,

λ̂(ρaσ, s0) = λ̂(ρ, s0)λ(a, r)λ̂(σ, s) and

λ̂′(ρaσ, s′0) = λ̂′(ρ, s′0)λ̂
′(aσ, r′′)

= λ̂′(ρ, s′0)λ̂
′(aσ, r′)

= λ̂′(ρ, s′0)λ
′(a, r′)λ̂′(σ, s′).

Then, λ̂(ρaσ, s0) 6= λ̂′(ρaσ, s′0). But ρaσ ∈ PZ and we would have s0 6≈PZ s
′
0, contradicting

the hypothesis. This concludes the proof. •

Combining the previous results, we have the following corollary, useful to determine whether

two FSMs have distinguishing behaviors.

Corollary 19 Let M and M ′ two FSMs operating over the same input alphabet, X . Assume

that M ′ has index m. Assume also that P is a cover set for M , that R ⊆ X⋆ is nonempty and

that it partitions the states of M ′ in at least n ≤ m equivalence classes. Then, s0 and s′0 are

equivalent if and only if s0 and s′0 are PZ-equivalent, where Z =
⋃m−n
i=0 X iR.

Proof Let Zk =
⋃k
i=0X

iR, k ≥ 0. From Proposition 11 we have that such family {Zk}k≥0

is stratified. From Corollary 16 we conclude that Z distinguishes every pair of nonequivalent

states of M ′. Then the result follows directly from Theorem 18. •

6 Characterization Sets

From the previous corollary, it might appear that Z and M are independent, since the only

hypothesis involving M , in that corollary, is that P is a cover set for M . But, in fact, there is a

relationship between Z and M . Before we expose the relationship between Z and M , we need

another auxiliary result.

Lemma 20 Let M and M ′ be two FSMs operating over the same input alphabet, X . Assume

that all states of M are reachable and that s0 ≈ s′0. Let Z ⊆ X⋆ be a set partitioning the states

of M ′ in m equivalence classes, where m is the index of M ′. Then Z distinguishes every pair

of nonequivalent states of M .

Proof Let s1, s2 ∈ S with s1 6≈ s2 and assume s1 ≈Z s2. Since all states of M are reachable,

we have ρ1, ρ2 ∈ X⋆ such that δ̂(ρi, s0) = si, with i = 1, 2. In M ′ we would have some

s′1, s
′
2 ∈ S

′ and with δ̂′(ρi, s
′
0) = s′i, where i = 1, 2.

Now let β ∈ Z. We have,

λ̂(ρ2β, s0) = λ̂(ρ2, s0)λ̂(β, s2)

λ̂′(ρ2β, s
′
0) = λ̂′(ρ2, s

′
0)λ̂

′(β, s′2)

20 Capı́tulo 2. Generalização do Método W

and, since s0 ≈ s′0, we obtain λ̂(β, s2) = λ̂′(β, s′2) and λ̂(ρ2, s0) = λ̂′(ρ2, s
′
0). Since β is

arbitrary, we conclude that s2 ≈Z s
′
2.

Similarly,

λ̂(ρ1β, s0) = λ̂(ρ1, s0)λ̂(β, s1)

λ̂′(ρ1β, s
′
0) = λ̂′(ρ1, s

′
0)λ̂

′(β, s′1),

and we conclude that s1 ≈Z s
′
1, together with λ̂(ρ1, s0) = λ̂′(ρ1, s

′
0).

Putting it together, and knowing that s1 ≈Z s2, we obtain s1 ≈Z s′2 and also s2 ≈Z s′1.

Hence, s′1 ≈Z s
′
2. But s′1 and s′2 are states of M ′ and so the hypothesis over Z gives s′1 ≈ s′2.

On the other hand, since s1 6≈ s2, we obtain σ ∈ X⋆ such that λ̂(σ, s1) 6= λ̂(σ, s2). Now,

λ̂(ρ1σ, s0) = λ̂(ρ1, s0)λ̂(σ, s1)

λ̂′(ρ1σ, s
′
0) = λ̂′(ρ1, s

′
0)λ̂

′(σ, s′1).

Hence, from λ̂(ρ1σ, s0) = λ̂′(ρ1σ, s
′
0) and λ̂(ρ1, s0) = λ̂′(ρ1, s

′
0), we deduce λ̂(σ, s1) = λ̂′(σ, s′1).

Similarly,

λ̂(ρ2σ, s0) = λ̂(ρ2, s0)λ̂(σ, s2)

λ̂′(ρ2σ, s
′
0) = λ̂′(ρ2, s

′
0)λ̂

′(σ, s′2),

and then λ̂(σ, s2) = λ̂′(σ, s′2). However, since we already know that s′1 ≈ s′2 and this leads to

the contradiction λ̂(σ, s1) = λ̂(σ, s2). This shows that the initial hypothesis was false. Hence,

whenever s1 6≈ s2 holds we must also have s1 6≈Z s2, establishing the result. •

A set in these conditions is called a characterization set of M .

Definition 21 Let M be a FSM and W a set of input sequences. W is a characterization set

for M if W distinguishes any pair of nonequivalent states of M . •

The required relation between M and Z says that Z is a characterization set of M , under

certain hypothesis.

Theorem 22 Let M and M ′ be two FSMs operating over the same input alphabet, X . Assume

that M ′ has index m and that P is a cover set for M . Assume also that W ⊆ X⋆ is nonempty

and partitions the states of M ′ in at least n ≤ m equivalence classes. If s0 ≈PZ s′0 then

Z =
⋃m−n
i=0 X iW is a characterization set for M .

Proof From Proposition 11 and from Corollary 16 we conclude that Z distinguishes every pair

of nonequivalent states of M ′. Since P is cover set for M , we conclude that every state of M

is reachable. From s0 ≈PZ s′0, together with Corollary 19, we deduce s0 ≈ s′0. Now we can

use Lemma 20 and obtain that Z distinguishes every pair of nonequivalent states of M . From

Definition 21, Z is a characterization set for M . •

7. The W-method as a Particular Case 21

It is also easy to see that the reverse does not hold. For that, let M and M ′ be two FSMs. It

is clear that W = X⋆ partitions the states ofM and M ′ in the maximum number of equivalence

classes. In this case, we will have Z = W = X⋆ and, obviously, Z is a characterization set for

M and M ′. But it is not the case that we will always have s0 ≈ s′0, as it is easy to construct a

counter-example.

Next result shows that, under relaxed conditions, when two FSMs are equivalents both must

have the same index.

Theorem 23 Let M and M ′ be two FSMs operating over the same input alphabet, X . Let n

and n′ be the index of M and M ′, respectively. Assume that all states from both FSMs are

reachable. If s0 ≈ s′0 then n = n′.

Proof For the sake of contradiction, and without loss generality, we will assume n < n′.

Let s′i ∈ S
′, 1 ≤ i ≤ n′, be states from each one of n′ equivalence classes induced by ≈ in

S ′. Since all states of M ′ are reachable, we obtain ρi ∈ X
⋆ with δ̂′(ρi, s

′
0) = s′i, 1 ≤ i ≤ n′. In

M , we will have some si ∈ S such that δ̂(ρi, s0) = si, 1 ≤ i ≤ n′. Since n < n′, without loss

generality, we can say that s1 ≈ s2.

Take any z ∈ X⋆. We have

λ̂(ρ1z, s0) = λ̂(ρ1, s0)λ̂(z, s1) and

λ̂′(ρ1z, s
′
0) = λ̂′(ρ1, s

′
0)λ̂

′(z, s′1).

Since s0 ≈ s′0, it follows that λ̂(z, s1) = λ̂′(z, s′1). Similarly, λ̂(z, s2) = λ̂′(z, s′2).

But since s1 ≈ s2, we obtain λ̂(z, s1) = λ̂(z, s2). Therefore, λ̂′(z, s′1) = λ̂′(z, s′2). Since

z ∈ X⋆ is arbitrary, we conclude that s′1 ≈ s′2, a contradiction given that s′1 and s′2 are in distinct

classes in M ′.

Hence, we must have n ≥ n′. Similarly, n′ ≥ n, and then n = n′. •

The same result indicates that when the≈ relation induces a different number of equivalence

classes in two FSMs, these machines can not be equivalent to each other (under the weak hy-

pothesis of Theorem 23). On the other hand, it is simple to obtain two nonequivalent FSMs, in a

such way that the≈ relation induces the same number of equivalence classes in both machines.

For details, see [2].

7 The W-method as a Particular Case

Consider the hypothesis of Theorem 22. We can show that W is a characterization set of M if

n is the index of M and the behaviors of both machines must match.

22 Capı́tulo 2. Generalização do Método W

Corollary 24 Let M and M ′ be two FSMs operating over the same input alphabet, X , and

assume that all states in M ′ are reachable. Assume further that M ′ has index m, that P is a

cover set for M and that M has index n. Assume also that W ⊆ X⋆ is nonempty and partitions

the states of M ′ in at least n ≤ m equivalence classes. If s0 ≈PZ s
′
0, where Z =

⋃m−n
i=0 X iW ,

then n = m, Z = W and W is a characterization set for M .

Proof Since s0 ≈PZ s′0, together with Corollary 19, we conclude that s0 ≈ s′0. Next, we

infer that n = m, from Theorem 23. Hence, Z = W . Therefore, by Theorem 22, W is a

characterization set for M . •

WhenW is a characterization set forM we can guarantee the partitioning ofM ′ in a number

of classes at least equal to the index of M , if the machines are to be PZ-equivalent.

Lemma 25 Let M and M ′ be two FSMs operating over the same input alphabet, X . Assume

that M ′ has index m, that M has index n and that P is a cover set for M , with n ≤ m. Assume

also thatW ⊆ X⋆ is a characterization set for M and that s0 ≈PZ s
′
0, where Z =

⋃m−n
i=0 X iW .

Then W partitions M ′ in at least n equivalence classes.

Proof We know thatM has n equivalence classes: Let C1, . . . , Cn be these classes. Let si ∈ Ci
and sj ∈ Cj, where 1 ≤ i < j ≤ n. Then since W is a characterization set for M , we have

si 6≈W sj. Since P is cover set of M , we have δ̂(ρ, s0) = si, for some ρ ∈ P . We also know

that δ̂′(ρ, s′0) = s′i, for some s′i of M ′. Since s0 ≈PZ s′0, we get si ≈Z s′i. Since W ⊆ Z,

then si ≈W s′i. In the same way, we have s′j of M ′ with sj ≈W s′j. Then we obtain s′i 6≈W s′j,

otherwise si ≈W sj . We conclude that W partitions M ′ in at least n ≤ m equivalence classes.

•

Now we can use Lemma 25 to show another version of Corollary 19, under the hypothesis

that the basic set of input sequences is a characterization set for the specification.

Theorem 26 Let M and M ′ be two FSMs operating over the same input alphabet, X . Assume

that M ′ has index m, that P is a cover set for M and that M has index n, with n ≤ m. Assume

also thatW ⊆ X⋆ is a characterization set for M and that s0 ≈PZ s
′
0, where Z =

⋃m−n
i=0 X iW .

Then s0 ≈ s′0.

Proof Assume s0 ≈PZ s
′
0. Use Lemma 25 to show that W partitions M ′ in at least n classes.

Now use Corollary 16 to show that Z partitions M ′ in m classes. Finally, use Theorem 18. •

The next result is the main postulate of the basic W-method, as given in [3].

Theorem 27 Let M and M ′ be two FSMs operating over the same input alphabet, X . Assume

that M ′ has index m, that P is a cover set for M and that M has index n, with n ≤ m. Assume

also that W ⊆ X⋆ is a characterization set for M . Then s0 ≈ s′0 if and only if s0 ≈PZ s′0,

where Z =
⋃m−n
i=0 X iW .

7. The W-method as a Particular Case 23

Figure 1: Specification M .

Proof If s0 ≈ s′0, then s0 ≈PZ s
′
0, trivially. For the other direction, use Theorem 26. •

In general, W need not be a characterization set for M (see Corollary 19). For the method

to work, we need only guarantee that M ′ will be partitioned in at least n equivalence classes

with n ≤ m, where m is the index of M ′. No relationship between W and M is needed. On the

other hand, when using the basic W-method directly, we need to obtain a characterization set

W for M , we need to know the index of M , and we also need to secure the relationship n ≤ m.

When W is not a characterization set for M , the method may fail, as shown by the following

example.

Example 28 The alphabet of M and M ′ is X = {a, b, c}. See Figures 1 and 2. It is easy to see

thatM has index n = 3, because s1 ≈ s3. The index ofM ′ ism = 3 since s′1 ≈ s′3 ≈ s′4. Hence

m = n, and we would be left with Z = W (see Theorem 27). Now take W = {ǫ}. A cover set

can be given by P = {ǫ, aa, ab, ac, ba, bb, bc, ca, cb, cc}. Then, PZ = PW = P . It is easy to

see that M and M ′ are PZ-equivalent. But s0 ≈ s′0 is not true. To see that, take α = bbb. We

have λ̂(α, s0) = 100 and λ̂′(α, s′0) = 101. Note how W induces only one equivalence class in

M ′. Therefore, clearly, W is not a characterization set for M . •

In general, it would be important to devise a mechanism by which we could obtain the

number of classes induced by W in M ′. First, because in this case we might avoid calculating a

characterization set forM when using our more general method. Secondly, we could potentially

reduce the size of the sequences in Z, when W partitions M ′ in k classes, with k > n, given

that Z =
⋃m−n
i=0 X iW .

24 Capı́tulo 2. Generalização do Método W

Figure 2: Implementation candidate M ′.

8 The Generalized Test Generation Method

Algorithm 1 presents the generalized model-based test generation method. The input parameters

are: M represents a system specification, M ′ is an implementation candidate for the specifica-

tion M , R is any set of input sequences, n is a lower bound on the number of classes induced

byR inM ′, and m is an upper bound on the index ofM ′. Thus, the method requires knowledge

of a lower bound on the number n of equivalence classes induced by R in the implementation

machine M ′, as well as an upper bound on the index m of M ′. In an extreme case, once can set

n = 1 and m = |S ′|, that is, set m to the number of states in M ′. Note that the implementation

M ′ is given as a black box. So, we do not have access to its internal structure, and the parame-

ters n and m must be estimated. As for the specification M , R may partition it in any number k

of classes. Of course, if M and M ′ turn out to be equivalent, then they will have the same index

and Z will, in fact, be a characterization set for both M and M ′.

If the condition n ≤ m is secured and it turns out that M and M ′ are not equivalent, the

algorithm produces a particular input sequence σ that is a witness to this fact, that is, M and M ′

display distinct behaviors over σ.

In order to apply the basic W-method (see Theorem 27) some extra effort must be applied

to compute the index of M as well as a characterization set for M .

In our proposal, we do not need characterization sets, nor is it necessary to inform the index

of the specification machine M . On the other hand, practical information about M can aid in

obtaining a good candidate for R. For example, based on the number of symbols in the input

9. An Example 25

Input: M , M ′, R, m, n1

begin2

Obtain a cover set P for M ;3

if n ≤ m then4

Compute Z =
⋃m−n

i=0
X iR;5

Compute PZ;6

else7

mesg: M and M ′ are not equivalent;8

return;9

end10

foreach σ ∈ PZ do11

Apply σ to M and to M ′;12

Obtain y = λ̂(σ, s0) and y′ = λ̂′(σ, s′
0
);13

if y 6= y′ then14

mesg: M and M ′ are not equivalent;15

mesg: σ is an input witness;16

return;17

end18

end19

mesg: M and M ′ are equivalents;20

return;21

end22

Algorithm 1: Generalized test generation algorithm.

alphabet and on the number of states and transitions in M , some distinguishing sequences can

be inserted into R. Then, it is easy to obtain the set Z using the notion of stratification. Clearly,

after obtaining the concatenation PZ, we can use this product to verify conformance between

the specification and several proposed implementations.

Note that the size of the PZ set depends on the algorithm used to obtain the cover set P . In

fact, this algorithm is polynomial in the size of M (see Section 3). Furthermore, it depends on

the choice of the set R and the bound m.

9 An Example

We apply the generalized algorithm to a simple example.

Example 29 Let a specification M be given as in Figure 3. Then M has k = 4 states, its

input alphabet is X = {a, b}, its output alphabet is Y = {0, 1}, and its transition function is as

depicted in the figure.

As we can see, some transitions over the input a produce either the output 0 or the output

1. Hence, there are at least two distinct classes. Now, if we use the sequences aa and ba there

is a good chance that such sequences can distinguish other states as well. Therefore, we take

R = {aa, ba} and assume that R partitions M ′, an implementation candidate, in at least n = 3

equivalence classes. If we accept m = 5 as a maximum on the number of states in M ′, we have

all input conditions for Algorithm 1 secured.

26 Capı́tulo 2. Generalização do Método W

Figure 3: Machine specification M .

Note that R is not a characterization set for M because we have states s0 and s1 in the same

equivalence class induced by R.

Next we calculate a cover set P for M . In the example, using the labeled tree construction

(see Section 3) we get P = {ǫ, a, b, aa, ab, ba, bb, aab, aaa}.

Now, with m = 5, n = 3 and R = {aa, ba}, we compute Z =
⋃m−n
i=0 X iR and obtain

Z = {aa, ba, aaa, aba, baa, bba, aaaa,

abaa, baaa, bbaa, aaba, abba, baba, bbba}.

Then, the concatenation PZ will count 56 sequences.

10 Concluding Remarks

The Finite State Machine (FSM) model is well established and has been intensively investigated

as a foundation for the automatic generation of test cases. The W-method is a well known

technique used to compute test sequences having FSMs as its basic formal model.

In this paper, our contribution is threefold. First, we generalized the basic W-method, avoid-

ing the computation of characteristic sets and indexes. Secondly, we demonstrated in a clear

way how the basic W-method follows from our generalized method. And finally, we presented

detailed proofs of correctness both of our algorithm, as well as for the main tenets of the basic

W-method, the latter being absent in the original work where it was introduced.

Note that some recent test generation methods, such as those presented in Section 2.2, have

to calculate a characterization set of the specification, in the same way as the basic W-method.

On the other hand, our method does not need characterization sets in order to generate test cases.

REFERENCES 27

We envisage that similar ideas can be used to extend and generalize other test case generation

techniques, such as the Wp and HSI methods.

As future steps we plan to integrate the results presented in this paper with extensions of the

basic FSM model, now also taking into account time constraints [1, 15].

References

[1] A. L. Bonifácio, A. V. Moura, A. da Silva Simão, and J. C. Maldonado. Towards deriving test

sequences by model checking. Electron. Notes Theor. Comput. Sci., 195:21–40, 2008.

[2] A. L. Bonifácio, A. V. Moura, and A. d. S. Simão. A generalized model-based test generation

method. Technical Report IC-08-014, Instituto de Computação, Universidade Estadual de Camp-

inas, Campinas, May 2008.

[3] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng.,

4(3):178–187, 1978.

[4] S. J. Cunning and J. W. Rozenblit. Automating test generation for discrete event oriented embedded

system s. J. Intell. Robotics Syst., 41(2-3):87–112, 2005.

[5] R. Dorofeeva, K. El-Fakih, and N. Yevtushenko. An improved conformance testing method. In

FORTE, pages 204–218, 2005.

[6] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection based on

finite state models. IEEE Trans. Softw. Eng., 17(6):591–603, June 1991.

[7] A. Gargantini. Conformance testing. In M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and

A. Pretschner, editors, Model-Based Testing of Reactive Systems: Advanced Lectures, volume 3472

of Lecture Notes in Computer Science, pages 87–111. Springer-Verlag, 2005.

[8] A. Gill. Introduction to the theory of finite-state machines. McGraw-Hill, New York, 1962.

[9] G. Gonenc. A method for the design of fault detection experiments. IEEE Trans. Comput.,

19(6):551–558, 1970.

[10] F. C. Hennie. Fault detecting experiments for sequential circuits. In FOCS, pages 95–110, 1964.

[11] R. M. Hierons. Separating sequence overlap for automated test sequence generation. Automated

Software Engg., 13(2):283–301, 2006.

[12] M. Krichen. State identification. In M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and

A. Pretschner, editors, Model-Based Testing of Reactive Systems: Advanced Lectures, volume 3472

of Lecture Notes in Computer Science, pages 87–111. Springer-Verlag, 2005.

[13] G. Luo, G. von Bochmann, and A. Petrenko. Test selection based on communicating nondetermin-

istic finite-state ma chines using a generalized wp-method. IEEE Trans. Softw. Eng., 20(2):149–

162, 1994.

[14] B. Nielsen and A. Skou. Test generation for time critical systems: Tool and case study. ecrts,

00:0155, 2001.

[15] A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in efsm testing. IEEE Trans.

Softw. Eng., 30(1):29–42, 2004.

28 REFERENCES

[16] A. Petrenko and G. v. Bochmann. Selecting test sequences for partially-specified nondeterministic

finite state machines. In G. Luo, editor, IWPTS ’94: 7th IFIP WG 6.1 international workshop on

Protocol test systems, pages 95–110, London, UK, UK, 1995. Chapman & Hall, Ltd.

[17] A. Petrenko and N. Yevtushenko. Testing from partial deterministic fsm specifications. IEEE

Trans. Comput., 54(9):1154–1165, 2005.

[18] A. Rezaki and H. Ural. Construction of checking sequences based on characterization sets. Com-

puter Communications, 18(12):911–920, 1995.

[19] D. Sidhu and T. Leung. Experience with test generation for real protocols. In SIGCOMM ’88:

Symposium proceedings on Communications architectures and protocols, pages 257–261, New

York, NY, USA, 1988. ACM.

[20] D. P. Sidhu and T. kau Leung. Formal methods for protocol testing: A detailed study. IEEE Trans.

Softw. Eng., 15(4):413–426, 1989.

[21] J. Tretmans. Test generation with inputs, outputs, and quiescence. In T. Margaria and B. Stef-

fen, editors, Tools and Algorithms for Construction and Analysis of Systems, Second International

Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996, Proceedings, volume 1055 of Lec-

ture Notes in Computer Science, pages 127–146. Springer, 1996.

[22] J. Tretmans. Testing concurrent systems: A formal approach. In J. Baeten and S. Mauw, editors,

CONCUR ’99: Proceedings of the 10th International Conference on Co ncurrency Theory, volume

1664 of Lecture Notes in Computer Science, pages 46–65, London, UK, 1999. Springer-Verlag.

[23] H. Ural, X. Wu, and F. Zhang. On minimizing the lengths of checking sequences. IEEE Trans.

Comput., 46(1):93–99, 1997.

Epı́logo

Este capı́tulo apresentou a generalização do clássico método W para a obtenção de um con-

junto completo de casos de teste usando FSM. A generalização, chamada de método G, evita

a computação de conjuntos caracterı́sticos e dos ı́ndices das especificações na obtenção dos

conjuntos de teste.

O objetivo foi mostrar que o método proposto gera conjuntos completos de casos de teste na

ausência de conjuntos caracterı́sticos das especificações. Também foi mostrado no trabalho que

o método W é um caso particular do método proposto. Provas formais de tal resultado foram

apresentadas de forma clara e precisa.

Um outro resultado nesta linha foi uma extensão do artigo apresentado neste capı́tulo, vi-

sando a geração de conjuntos de testes para famı́lias infinitas de FSM.

Mostramos que existem famı́lias infinitas de FSM tais que a aplicação do método G produz

conjuntos de teste muito menores e mais compactos do que aqueles produzidos pelo método W.

Considere um alfabeto X e um conjunto de teste V ⊆ X⋆. O teste através do conjunto

V requer a observação do comportamento dos modelos de especificação e de implementação

sobre todos os elementos de V . Por isso, não é necessário considerar nenhum prefixo próprio

de V , já que o teste com a maior sequência já revelaria comportamentos de qualquer prefixo

menor.

Definition 30 Seja X um alfabeto e V ⊆ X⋆. Defina pff(V) como o conjunto de elementos

livre de prefixo de V , isto é,

pff(V) = {ϕ ∈ V |ϕϑ 6∈ V para todo ϑ ∈ X⋆ com ϑ 6= ε}.

A eficiência de um conjunto de teste V ⊆ X⋆ será medida através da soma dos tamanhos

de todos os elementos de pff(V).

Definition 31 Seja X um alfabeto e V ⊆ X⋆. Definimos

‖V ‖ =
∑

σ∈pff(V)

|σ|.

O resultado a seguir é útil nas computações.

29

Figura 4: A especificação Mn.

Lemma 32 Seja V1, V2 ⊆ X⋆, com V2 finito. Então pff(V1V2) = pff(V1 · pff(V2)). •

Claramente, todos os conjuntos de teste práticos são finitos, assim satisfazendo as condições

do lema e permitindo a computação de pff(V1V2) pelo cálculo de pff(V1 · pff(V2)) o qual é

potencialmente menor. Contudo, o próximo exemplo mostra que a condição de finitude sobre

V2 pode não ser relaxada.

Example 33 Seja V1 = {ab, a} e V2 = {c} ∪ {bcai | i ≥ 0}.

Então V1V2 = {ac, abc} ∪ {ab2cai, abcai | i ≥ 0}, e temos pff(V1V2) = {ac}. Também,

pff(V2) = {c} e então V1 · pff(V2) = {abc, ac} = pff(V1 · pff(V2)).

Sendo σ = abc temos σ ∈ pff(V1 · pff(V2)) e σ 6∈ pff(V1V2). Isso mostra que pff(V1 ·

pff(V2)) 6⊆ pff(V1V2) quando V2 não é finito. •

Agora, considere a especificação ilustrada na Figura 4, onde n ≥ 0 e X = {a, b}. Clara-

mente, a máquina tem n + 1 estados. Seja ρ = an+1. Temos λ̂(ρ, si) = 0n−i1i+1, para todo i,

0 ≤ i ≤ n. Daqui, λ̂(ρ, si) 6= λ̂(ρ, sj) se i 6= j, e podemos concluir que si 6≈ sj neste modelo,

para todo i, j, i 6= j, e 0 ≤ i, j ≤ n. Isso mostra que Mn é uma FSM mı́nima com ı́ndice n+ 1.

Podemos pegar W = {an+1} como um conjunto caracterização de Mn. Note que, além

disso, ‖W‖ é mı́nimo entre todos os conjuntos caracterização de Mn. Uma simples aplicação

da construção da árvore rotulada proposta em [8] dá uma cobertura de transição para Mn:

P = {ǫ} ∪ {aia, aib | 0 ≤ i ≤ n}.

O modelo de implementação, M ′
n, é obtido mudando a saı́da de apenas uma transição no

último estado de Mn. Veja a Figura 5. Pegamos m+ 1 = ⌈α · (n + 1)⌉, para algum parâmetro

α > 1. Isto é, o modelo de implementação tem até 100(α − 1)% mais estados do que a

especificação Mn. Então, se quisermos testar implementações com até 5% de estados a mais,

tomamos α = 1.05. Novamente, vemos facilmente que M ′
n é uma FSM mı́nima com ı́ndice

30

Figura 5: A implementação M ′
n.

m+ 1.

Considere o conjunto de sequências de entrada R = {amb}. Então λ̂′(amb, rj) = 0m−j1j+1,

para todo j, 0 ≤ j ≤ m. Daqui, ri 6≈R rj no modelo de implementação M ′
n para todo i, j

com i 6= j e 0 ≤ i, j ≤ m. Assim, R particiona os estados de M ′
n em k = m + 1 classes de

equivalência.

Agora, podemos comparar os conjuntos de teste que são obtidos usando o método G e o

método W. Indicamos os conjuntos Z construı́dos pelos métodos G e W por ZR e ZW , res-

pectivamente. Mostramos que a taxa
‖PZW ‖
‖PZR‖

cresce exponencialmente mais rápido, quando n

aumenta1.

Temos

ZR =

(m+1)−k⋃

i=0

X iR = {ǫ} · R = {amb}

PZR =
(
{ǫ} ∪ {aia, aib | 0 ≤ i ≤ n}

)
· {amb} = {amb} ∪ {aiaamb, aibamb | 0 ≤ i ≤ n}.

Por isso, mesmo contando todas as sequências em PZR, temos

‖PZR‖ ≤ (m+ 1) + 2(m+ 2)
m∑

i=0

i = (m+ 1)3 ≤ (α(n+ 1) + 1)3 ≤ 8α3n3,

assumindo n ≥ 2 e lembrando que α > 1.

Sobre o modelo de especificação Mn computamos

ZW =

(m+1)−(n+1)⋃

i=0

X iW =
ℓ⋃

i=0

X i{an+1},

onde ℓ = ⌈(n+1)(α−1)⌉. Então, todas as sequências na forma anb ρ an+1 estão em pff(PZW),

para todo ρ ∈ Xℓ. Note que anb está em P e tem tamanho máximo dentre todas as sequências.

1Usamos a notação padrão O e Omega grande da teoria de complexidade [37].

31

Assim, anb ρ an+1 tem tamanho máximo dentre todas as sequências em PZW . Daqui, podemos

escrever que ‖PZW‖ ≥ (2n+ 2 + ℓ)2ℓ ≥ n2n(α−1).

Agora, considere a taxa Qα(n) = ‖PZW ‖
‖PZR‖

. Claramente, temos que Qα(n) é Ω(2cn) para todo

c tal que n(α− 1)− nc > 0, isto é, para todo c tal que c < α− 1.

Concluı́mos que a famı́lia de pares de especificações e implementações Mn e M ′
n, respecti-

vamente, é tal que o método G gera conjuntos de teste que são exponencialmente mais efetivos

do que aqueles gerados usando o método W, desde que o parâmetro fixo α satisfaça α > 1.

Note que esta condição pode, potencialmente, aparecer quando os modelos Mn e M ′
n ocor-

rerem como submodelos em outras especificações e implementações, respectivamente. Note

também que podemos mudar livremente o alvo para todo b na implementação M ′
n e o resul-

tado ainda valeria. Isto é, o método G gera conjuntos de teste exponencialmente mais curtos

e podem ser usados para testar uma classe inteira de implementações. Similarmente, podemos

mudar livremente o alvo para todas as transições b no modelo de especificação Mn e ainda obter

o mesmo resultado.

Isto sugere uma alternativa na estratégia de teste. Usando conjuntos de teste menores pro-

duzidos pelo método G, com uma escolha sensata dos parâmetros, podemos testar um número

grande de modelos do conjunto de implementações candidatas, assumindo um limite superior

fixo para o número de estados nos modelos das implementações. No caso de algum modelo de

implementação passar no primeiro conjunto de teste, um conjunto de teste mais justo poderia ser

produzido para testar os modelos de implementações remanescentes num segundo passo. Para

este segundo passo conjuntos de teste completos poderiam ser construı́dos, com um esforço ex-

tra, através do método G com parâmetros mais justos, usando o método W original, ou qualquer

outro método com cobertura completa.

Mais detalhes e provas formais desse resultado podem ser encontrados no relatório técnico [8],

intitulado “Exponentially more Succinct Test Suites”.

O próximo capı́tulo apresenta uma técnica de geração de casos de teste para o modelo

TIOA, usando um novo método de discretização, além da noção de proposta de teste e pro-

duto sı́ncrono.

32

Capı́tulo 3

Discretização dos TIOA para a Verificação

de Comportamentos

Prólogo

A verificação de corretude em sistemas complexos através de métodos eficientes de geração de

casos de teste tem sido amplamente pesquisada. Neste trabalho, usamos a noção de teste base-

ado em modelos, representado aqui pelo modelo TIOA, um autômato temporizado com entradas

e saı́das autônomas. Daı́ a importância de se construir ferramentas que lidem com modelos que

capturem o comportamento de sistemas crı́ticos de tempo real. Porém, o grande problema das

técnicas e métodos de geração de casos de teste baseados em modelos formais, aplicado a siste-

mas complexos, é a explosão combinatória no número de estados, principalmente em sistemas

com caracterı́sticas temporais.

Com o objetivo de contornar tais problemas, este trabalho propõe uma forma de discretização

alternativa, usando o conceito de autômatos grid [15, 16]. No entanto, nossa proposta desvia

da discretização clássica usando regiões de relógio, onde uma relação rı́gida entre o número de

relógios e a granularidade escolhida para o grid deve ser mantida. Mais detalhes sobre uso das

clássicas regiões de relógio na discretização de modelos temporizados podem ser encontrados

em [1, 2, 28], aplicados aos clássicos modelos de timed automata.

Nessa proposta permitimos uma flexibilidade maior na escolha da granularidade usada na

discretização, proporcionando uma diminuição significativa no número de estados do grid pro-

duzido, e evitando a explosão do espaço de estado. Através desse novo método de discretização

mostramos que um modelo TIOA pode então simular seu respectivo grid, e vice-versa, para

garantir a conformidade dos resultados.

Na sequência apresentamos também uma estratégia para a geração e aplicação de casos

de teste em implementações candidatas usando o modelo discretizado, construı́do com o novo

método. Utilizamos a noção de proposta de teste para modelar propriedades especı́ficas do

33

sistema a ser testado. O conceito de produto de TIOA também é usado para modelar o compor-

tamento conjunto entre uma especificação e uma proposta de teste. Dessa forma, um autômato

grid pode ser obtido do produto, permitindo então que um conjunto de casos de teste seja ex-

traı́do do modelo discretizado. As sequências de teste podem assim ser aplicadas em implemen-

tações candidatas. Neste caso usamos uma estratégia de realimentação dos autômatos grid que

permite a verificação das propriedades encontradas nas implementações do modelo original.

Este capı́tulo é composto pelo artigo, “A New Discretization Method for Verifying Timed

System Compatible Behaviors”, que propõe um novo método de discretização para o modelo

TIOA. O objetivo é utilizar modelos discretizados para a extração de casos de teste de forma efi-

ciente. O trabalho mostra como conseguir a discretização sem usar a noção clássica de regiões

de relógio, diminuindo o número de estados do grid a ser manipulado. Além disso, apresen-

tamos uma estratégia para o teste de conformidade com implementações candidatas através de

sequências de teste extraı́das do modelo discretizado. O artigo foi submetido para a revista

Software Testing, Verification and Reliability (STVR) da Wiley InterScience.

34

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Relia. 2007;00:1-7 (DOI: 10.1002/000)

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/000

A New Discretization Method
for Verifying Timed System
Compatible Behaviors

Adilson Luiz Bonifácio∗,� Arnaldo Vieira Moura∗,�
Computing Institute, University of Campinas, Campinas, P.O.

6176, Brazil

SUMMARY

Devising formal techniques and methods that can automatically generate test suites for
timed systems has remained a challenge. In this work we use Timed Input/Output Au-
tomata (TIOA) as a formal specification model for timed systems. We propose and prove
the correctness of a new and more general discretization method that can be used to ob-
tain grid automata corresponding to specification TIOA, using almost any granularity of
interest. Such flexibility to find a suitable granularity opens the possibility for a more
compact construction of grid automata. We also show how test purposes can be used to-
gether with the specification TIOA in order to generate grid automata that captures the
behavior of both the specification and the test purpose. From such grid automata one can
algorithmically extract test suites that can be used to verify whether given implementa-
tions conform to the specification and reflect the properties modeled using test purposes.
Copyright © 2007 John Wiley & Sons, Ltd.

Received 06 November 2009; Revised 06 November 2009

KEY WORDS: Timed systems; Discretization; Test purpose; Timed test case generation.

1 Introduction

In order to verify the correctness of computational systems, automatic test case generation meth-

ods have been intensively investigated. One of the most important and promising among such

∗Correspondence to: Computing Institute, University of Campinas, Campinas, P.O. 6176, Brazil�E-mail: adilson@ic.unicamp.br�E-mail: arnaldo@ic.unicamp.br

Contract/grant sponsor: CNPq; contract/grant number: 141978/2008-2

35

36 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

techniques is model-based testing [1, 2, 3, 4]. Although mathematical models of system require-

ments and formally specified system functionalities allow for some automation in the process

of efficient generation of test suites, devising techniques and methods that properly deal with

critical and real-time systems has remained a challenge.

In this work we deal with timed system specifications and, in particular, with Timed In-

put/Output Automata (TIOA) [5, 6] which are a variant of the classical timed automata model

[7, 8, 9, 10]. TIOA models can be used to specify timed systems and their executions, allow-

ing continuous time evolution and discrete guarded transitions to be represented in the mod-

els. In order to obtain manageable representations for such models we use the notion of grid

automata [11, 9], and show how they can be automatically extracted from the original timed

models.

Discretization has already been proposed in connection with timed automata, in the form of

clock regions [7, 12]. Here, however, we propose a different and more general notion of dis-

cretization, using adjusted values and limiting boundaries. This new proposal allows for more

possibilities when choosing the granularities of interest. In fact, depending on the accuracy of

the physical system being modeled, a corresponding grid automaton can be obtained for almost

any desired granularity. Therefore, we can choose more adequate granularities for the prop-

erties under test, while exercising more control over the state space that results from the grid

construction. In contrast, other methods use a granularity that is a fixed function of the number

of clock regions.

In the next sections we expose the relationship between a specification TIOA and the cor-

responding grid automaton that results when the new discretization method is applied to the

former. We also present proofs of correctness showing that the TIOA homomorphically simu-

lates the grid automaton, and vice-versa. This forms the basis that will allow for the automation

of test case generation methods that use the grid automata as a basis.

In order to test implementations against given specifications, we use the notion of a test

purpose [13, 14]. A test purpose is a particular kind of TIOA that can be used to model specific

properties of the system under test. Given a specification TIOA and a test purpose, their joint

behavior is captured by computing the synchronous product of both models. Once the product

is obtained, we can apply the discretization method to it, thus obtaining a grid automaton. Test

sequences can then be automatically extracted from the resulting grid automaton. Having the

test suite, one can use conformance testing methods to verify whether implementations conform

to the desired behaviors modelled by the original TIOA specification and the test purpose [1].

In particular, one can use a trace inclusion strategy [15] to verify compatible behaviors.

This work is organized as follows. In Section 2, we define the TIOA model and some other

important concepts. In Section 3, we present the new discretization method. We start with some

basic concepts concerning bounding values and limiting functions in Subsection 3.1. Then, the

grid construction and its properties are presented in Subsection 3.2, establishing the correct-

2. The TIOA model 37

ness of the homomorphic relationship between the TIOA and its corresponding grid automaton.

Section 4 briefly discusses the process of generating timed test suites using the notions of test

purpose and synchronous product. In Section 5 we discuss some related works. Finally, some

concluding remarks appear in Section 6.

Mode details and omitted proofs of simple claims can be found in [16].

2 The TIOA model

In this section we define the Timed I/O Automata (TIOA) model. But first, we need the notions

of timed words, clock variables and clock conditions.

2.1 Timed words

Time instants and time delays will be taken from the set of non-negative rationals1, Q≥.

Definition 1 Let Σ be an alphabet. A timed word over Σ is a finite sequence 〈σ1, σ2, · · · , σn〉,

where n ≥ 0 and σi ∈ Σ ∪Q≥, for all i, 1 ≤ i ≤ n. •

For example, let Σ = {a, b, c, d}. Then 〈1, b, 2.3, d, d, 5.1, a〉 is a timed word over Σ, and so is

〈c, 5, a, 4〉. The intended interpretation is that a timed word like 〈1, c, 2, a〉 can be understood

as a symbol c arriving after one time unit and a symbol a arriving at 1 + 2 = 3 time units,

counting from the start. A time word like 〈1, c, a〉 can be interpreted as 〈1, c, 0, a〉, saying that

symbols c and a arrive at the same time, but with c preceding a. Also, syntactically, a timed

word like 〈1, c, 2, 5, a〉 is not the same as the timed word 〈1, c, 7, a〉, although they convey the

same intended information.

When there is no risk for confusion, we may also write σ1, σ2, . . . , σn, or even σ1σ2 . . . σn,

in place of 〈σ1, σ2, · · · , σn〉. The empty timed word will be denoted by ε. The set of all timed

words over Σ will be denoted by ΨΣ, or simply Ψ if there is no room for confusion. The

concatenation of timed words follows the standard definition for the concatenation of finite

sequences. That is, if ψ1 = 〈σ1, . . . , σn〉 ∈ ΨΣ and ψ2 = 〈σn+1, . . . , σn+m〉 ∈ ΨΣ, with

n,m ≥ 0, then ψ1 · ψ2 = 〈σ1 . . . σn, σn+1, . . . , σn+m〉. We may also write ψ1ψ2 instead of

ψ1 · ψ2. As an example, let ψ1 = 〈1, a, 2, 5, b, c, 3〉 and ψ2 = 〈4, a, d, 2〉. Then, we have

ψ1 · ψ2 = 〈1, a, 2, 5, b, c, 3, 4, a, d, 2〉.

1Q is the set of rationals, Q≥ is the set of non-negative rationals and Q> is the set of positive rationals.

38 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

2.2 Clocks

We will also need a set of clock variables, or clocks for short, denoted by C. The set of all clock

conditions, ΦC , is comprised by all expressions δ that can be finitely generated using the rules

δ := true | c ≤ τ | τ ≤ c | ¬δ | δ1 ∧ δ2,

where c is a clock variable and τ ∈ Q≥ is a time instant. We will take the usual liberties when

writing clock conditions, e.g., we may write c ≥ τ for τ ≤ c, or c < τ instead of ¬(τ ≤ c), or

τ1 ≤ c ≤ τ2 for (τ1 ≤ c) ∧ (c ≤ τ2). A clock interpretation over C is a partial function from

C into Q≥. A total clock interpretation over C is a clock interpretation over C whose domain2

is C. The set of all clock interpretations over C will be denoted by [C y Q≥], and [C → Q≥]

will denote the set of all total clock interpretations over C. Clearly, [C y Q≥] ⊆ [C → Q≥].

When the intended set C is clear from the context, we may write clock interpretation, or simply

interpretation, instead of clock interpretation over C.

Let δ ∈ ΦC and let ν ∈ [C y Q≥] be such that all clock variables occurring in δ are in

dom(ν). Then we say that ν satisfies δ, denoted by ν � δ, if δ evaluates to true when every

clock c is replaced by ν(c) in δ and the value of the resulting propositional logic sentence is

computed in the usual manner.

Let ν ∈ [C y Q≥] be an interpretation and let τ ∈ Q≥ be a time delay. The interpretation

ν + τ is defined as

(ν + τ)(c) =

{
ν(c) + τ if c ∈ dom(ν)

undefined otherwise.

Let µ ∈ [C y Q≥]. We define the interpretation ν ⊕ µ thus

(ν ⊕ µ)(c) =

µ(c) if c ∈ dom(µ)

ν(c) if c ∈ (dom(ν)− dom(µ))

undefined if c 6∈ (dom(ν) ∪ dom(µ)),

for all c ∈ C. That is, ν ⊕ µ assigns clock values first according to µ and, baring that, then it

assigns values according to ν, if at all possible. Note that when ν or µ is total, then so is ν⊕µ.

2.3 Timed Input Output Automata

The Timed I/O Automata (TIOA) model is based on the BTDA (Bounded Time Domain Au-

tomaton) model of Gawlick et al [5]. A BTDA is composed by states, action symbols, clock

variables, state invariants and transitions. The system progresses by a sequence of continuous

2dom(f) will denote the domain of a function f .

2. The TIOA model 39

time evolutions interrupted by discrete transitions [8, 17, 18]. During a continuous time evo-

lution, the state does not change and its invariant must stay verified at all instants. A discrete

transition is specified by a source and a target state, an action symbol, a transition guard and a

(partial) clock reset function. We now make these concepts precise.

Definition 2 A BTDA is a tuple (S, s0,Σ, C, ν0, Inv, T), where S is a finite set of states, s0 ∈ S

is the initial state, Σ is the set of action symbols, C is a set of clocks, ν0 ∈ [C → Q≥] is the

initial clock interpretation, where ν0(c) = 0 for all c ∈ C, Inv : S → ΦC maps states to state

invariants, and T is the set of transitions, where T ⊆ (S × Σ× ΦC × [C y Q≥]× S). •

The intended meaning for a transition (s, z, δ, θ, r) is that the machine can move to state r

from state s over the symbol z provided that the guard δ is enabled. Further, upon moving to

state r, the mapping θ ∈ [C y Q≥] indicates which clocks are reset and to which values. Note

that the formalism allows for clocks to be reset to any values, not just to zero.

As an example, Figure 1 shows a BTDA with one clock variable, c, and two action symbols,

Σ = {on, off }. The set of states is S = {q0, q1}, with the initial state q0 being marked by

an incoming arrow with no source node. The invariants are indicated right next to the corre-

sponding state; for example, Inv(q0) is c ≤ K, where we take K > 5. The remaining arrows

indicate transitions. Next to each arrow we can see the corresponding action symbol, the logical

expression is the transition guard and the attribution like notation indicates the clock resetting

partial map. For example, the transition from q0 to q1 would be written as (q0, on, c ≤ K, θ, q1),

where θ(c) = 0. In this transition the only clock is reset to zero. However we emphasize that

Figure 1: A BTDA model of a simple switch.

the clock variables can be reset to different values. This generalization is benefit when the aim

is to assign different values to different clock variables over a transition.

From now on, B will always denote a BTDA B = (S, s0,Σ, C, Inv, T), and we let any

decorations carry over uniformly to the components of B, e.g., B′ = (S ′, s′0,Σ
′, C ′, Inv ′, T ′).

40 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

In order to specify the movements of a BTDA, we need the notion of a configuration. A

configuration of a BTDA B is a pair (s, ν), where s ∈ S is a state and ν ∈ [C → Q≥] is a

total clock interpretation over C. The set of all configurations of B is denoted by ΓB , or simply

by Γ if no confusion can arise. The initial configuration is (s0, ν0), where ν0(c) = 0 for all

c ∈ C. We require that ν0 � Inv(s0). In order to ease the notation, when the set of clocks is

small we indicate a configuration simply by listing the corresponding state followed by a list

of the clock values, in some pre-arranged order. For example, from Figure 1 we can see that

(q0, ν) is a configuration, where ν(c) = 1.5. We may also write (q0, 1.5) to indicate this same

configuration.

We are now ready to specify the elementary moves of a BTDA.

Definition 3 Let B be a BTDA and let γi = (si, νi) ∈ ΓB , i = 1, 2, be two configurations of B.

We define:

1. Let τ ∈ Q≥ be a time delay. Then there exists a continuous movement from γ1 to γ2

over τ , denoted by γ1 →τ
γ2, if and only if : (i) s1 = s2; (ii) ν2 = ν1 + τ ; and (iii)

ν1 + η � Inv(s1) for all η, 0 < η ≤ τ . When τ is positive, we have a non-trivial

continuous movement.

2. Let x ∈ Σ be an action symbol. Then there exists a discrete movement from γ1 to γ2 over

x, denoted by γ1
x
→ γ2, if and only if there exists a transition (s1, x, δ, θ, s2) ∈ T such

that: (i) ν1 � δ; (ii) ν2 = ν1 ⊕ θ; and (iii) ν2 � Inv(s2). •

In a discrete movement the state changes while the clock interpretation remains fixed, except

for a subset of the clocks that are reset as indicated by the partial function θ. Moreover, we also

require that the corresponding transition guard is enabled and that the new clock interpretation

satisfies the invariant of the target state. By way of contrast, in a continuous movement, the

state does not change and the clock interpretation absorbs the delay τ . Note that the state

invariant must remain satisfied during the whole period of the continuous movement. As an

example, from Figure 1 we have: (q0, 0)
on
→ (q1, 0), (q1, 0) →

5
(q1, 5), (q1, 5)

off
→ (q0, 0), and

(q0, 0)→
1

(q0, 1).

Starting from a configuration, a timed word induces a movement in a BTDA.

Definition 4 Let B be a BTDA. The movement relation of B, ⊢
B

, is a binary relation over

ΨΣ × ΓB given by (ψ1, γ1) ⊢
B

(ψ2, γ2) if and only if ψ1 = 〈σ〉 · ψ2 and either (i) σ ∈ Q≥ and

γ1 →σ
γ2; or (ii) σ ∈ Σ and γ1

σ
→ γ2. •

The k-th power of ⊢
B

will be indicated by
k

⊢
B

, k ≥ 0, and its reflexive transitive closure by
⋆

⊢
B

.

As usual, we may drop decorations when no confusion can arise.

3. TIOA Discretization 41

As an example, consider the timed word ψ = 〈K/2, on, 3, on, 5, off , K/3〉 and the BTDA

in Figure 1. Then, we have

(
ψ, (q0, 0)

)
⊢

(
〈on, 3, on, 5, off , K/3〉, (q0, K/2)

)
⊢

(
〈3, on, 5, off , K/3〉, (q1, 0)

)

⊢
(
〈on, 5, off , K/3〉, (q1, 3)

)
⊢

(
〈5, off , K/3〉, (q1, 0)

)

⊢
(
〈off , K/3〉, (q1, 5)

)
⊢

(
〈K/3〉, (q0, 0)

)
⊢

(
ε, (q0, K/3)

)
.

Further, when (ψ, γ)
⋆

⊢ (ε, ρ) we also write γ
ψ

 ρ, or γ ρ when the particular timed word is

not relevant.

When γ
ψ

 ρ we say that ψ is a run starting at γ and ending at ρ. If, moreover, γ is the

initial configuration of the BTDA, then ψ is an execution ending at ρ. A configuration γ is

reachable if there is an execution ending at γ. Likewise, a state s is reachable if there is a

reachable configuration (s, ν), for some interpretation ν. Clearly, as can be seen from Figure 1,

we can write (q0, 0)
〈on,5〉

 (q1, 5), thus configuration (q1, 5) and state q1 are reachable. Also, it

is easy to see that configuration (q1, 6) is not reachable.

Timed I/O Automata [6] extend the BTDA model by partitioning the set of actions into input

and output actions. Input actions are considered stimulus from the environment while output

actions will be generated by the system.

Definition 5 A Timed Input/Output Automaton is a triple M = (B,X, Y) where:

1. B = (S, s0,Σ, C, ν0, Inv, T) is a BTDA, the subjacent BTDA of M , and

2. {X, Y } partitions Σ into a set X of input actions and a set Y of output actions. •

By letting X = {on} and Y = {off} in Figure 1 we partition the actions of the BTDA,

thereby obtaining a TIOA. From now on, M will always denote the TIOA (B,X, Y) and any

decorations will carry over uniformly to the components of M . The set of configurations of M ,

ΓM , as well as the notion of movements ofM are taken directly from the corresponding notions

for the subjacent BTDA B, as in Definitions 2 and 3.

3 TIOA Discretization

The number of test sequences for any TIOA is infinite, since these sequences are extracted

from distinct runs. Clearly, it is not practical to consider the set of all such sequences when

putting a system to the test. An alternative is to use some sort of discretization of the original

TIOA. Often, such discretizations lead to the notion of a grid automaton [11, 9] that is obtained

using the notion of clock regions and sampling graphs. We propose an alternative method for

42 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

discretizing TIOA, one that does not use the classical notions of clock regions and sampling

graphs. We note that with this new approach one can choose any discrete granularity in the

form 1/k, where k is a positive integer, independently of the number of clock regions in the

original TIOA.

We start by considering bounded values and bounded functions.

3.1 Bounded values and functions

In what follows, given t ∈ Q≥, we will denote the integral and fractional parts of t by ⌊t⌋ and

⌈t⌉, respectively. Hence, t = ⌊t⌋+ ⌈t⌉ always holds. We note the following simple facts.

Fact 6 Let x, y, z ∈ Q≥ and let k a positive integer. The following hold:

1. If x ≥ y then ⌊x⌋ ≥ ⌊y⌋.

2. If x = y + k then ⌈x⌉ = ⌈y⌉ and ⌊x⌋ = ⌊y⌋+ k.

3. If x = y + z then ⌈x⌉ =
⌈
⌈y⌉+ ⌈z⌉

⌉
and ⌊x⌋ = ⌊y⌋+ ⌊z⌋+

⌊
⌈y⌉+ ⌈z⌉

⌋
.

4. If ⌈x⌉ = ⌈y⌉ then ⌈x+ z⌉ = ⌈y + z⌉.

Proof Immediate from the definitions. •

Next, we turn to the notion of bounded interpretations.

Definition 7 Let L ∈ Q≥ be a bound. Let x ∈ Q≥ be a value, let A be a set and let α ∈ [A→

Q≥] be a function. We define

1. The L-bounded x value, denoted xL, is given by

xL =

{
x if x ≤ L

⌊L⌋+ ⌈x⌉ otherwise. •

2. The L-bounded α function, denoted αL, is obtained by letting αL(a) = (α(a))L, for all

a ∈ A.

The following simple facts are immediate.

Fact 8 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. Then:

1. ⌈xL⌉ = ⌈x⌉ and xL ≤ x.

2. If x < ⌊L⌋+ 1 then xL = x.

3. TIOA Discretization 43

3. xL < ⌊L⌋+ 1.

4. (xL)L = xL.

Proof Straightforward from the definitions and from Fact 6. •

The next proposition essentially states that the L-bound of a sum of terms is the same as the

L-bound of the sum of the L-bounds of the individual terms.

Proposition 9 Let L ∈ Q≥ be a bound and let x, y ∈ Q≥. Then

1. (x+ y)L = (x+ yL)L.

2. (x+ y)L = (xL + yL)L.

3. If x′ = x or x′ = xL and y′ = y or y′ = yL, then (x+ y)L = (x′ + y′)L.

Proof Follow easily from the definitions and from Fact 8. •

We can now extend these results to larger sums.

Proposition 10 Let L ∈ Q≥ be a bound and let xi ∈ Q≥ be values, for i = 1, . . . , n, with

n ≥ 1. Let yi = xi or yi = (xi)L, for i = 1, . . . , n. Then
(∑n

i=1 x
i
)
L

=
(∑n

i=1 y
i
)
L

.

Proof An easy induction on n, using Fact 8 and Proposition 9. •

A similar result holds when considering bounding functions.

Proposition 11 Let L ∈ Q≥ be a bound. Let W = {w1, . . . , wn} be a set, with n ≥ 1. Also

let ki ≥ 0 be integer constants, i = 1, . . . , n. Take α ∈ [W → Q≥]. Then
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1 kiαL(wi)

]

L
.

Proof Using Proposition 10 we get
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1

(
kiα(wi)

)
L

]

L
. Now,

[
kiα(wi)

]

L
=

[∑ki

j=1 α(wi)
]

L
and so, using Proposition 10 again, we obtain

[
kiα(wi)

]

L
=

[ki∑

j=1

(α(wi))L

]

L
=

[
kiαL(wi)

]

L
.

Putting it together, we have
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1

(
kiαL(wi)

)
L

]

L
. Finally, using Propo-

sition 10 once more, we get
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1 kiαL(wi)

]

L
, as desired. •

44 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

In order to obtain a finite number of clock interpretations in the grid automata, to be defined

shortly, we impose an upper bound on clock values. Consider a set of clocks C and a time

instant L ∈ Q≥. Then, for any clock interpretation ν ∈ [C → Q≥], the L-bounded clock

interpretation νL ∈ [C → Q≥] is constructed as in Definition 7. This notion is inspired by

the idea of clock regions [7, 19]. We also refer to νL as the clock interpretation ν bounded by

L. Note that we could have specified a different bound Lc for each clock c. In order to keep

the notation uncluttered, however, we will consider a single bound L for all clock variables. It

should be a simple matter to generalize all results to the case when some clock bounds may be

distinct.

The next proposition expresses the result of L-bounding time delays and clock resets.

Proposition 12 Let C be a set of clocks, let ν ∈ [C → Q≥] and and let L be a positive integer.

We have:

1. If η ∈ Q≥, then (ν + η)L = (νL + η)L.

2. If θ ∈ [C y Q≥], then (ν ⊕ θ)L = (νL ⊕ θ)L.

Proof Using Proposition 11, it is easy to show that (ν + η)L(c) = (νL + η)L(c), for all c ∈ C.

And, using Fact 8 it is easy to show that (ν ⊕ θ)L(c) = (νL ⊕ θ)L(c), for all c ∈ C. •

In the next two lemmas we present some useful relationships between limited interpreta-

tions, interpretations and evaluating conditions.

Lemma 13 Let C be a set of clocks and let αi, βi ∈ [C → Q≥], i = 1, 2, be clock interpre-

tations. Assume that βi = αi or βi = (αi)L for all i ∈ {1, 2}. Further, let I ∈ ΦC be a

clock condition and let L be a positive integer greater than all constants occurring in I . Then

α1 + α2
� I iff β1 + β2

� I .

Proof If I is true we are done. Assume now that I is not true.

From Fact 6 we know that βi(c) ≤ αi(c), for all c ∈ C and all i ∈ {1, 2}.

We treat first the four simple cases when I is (c ≤ τ), (c ≥ τ), ¬(c ≤ τ) or ¬(c ≥ τ).

CASE 1: I is (c ≤ τ), for some c ∈ C and some τ ∈ Q≥.

If α1 + α2
� I then (α1 + α2)(c) = α1(c) + α2(c) ≤ τ . Then β1(c) + β2(c) ≤ τ and so

β1 + β2
� I .

For the converse, assume β1(c) + β2(c) ≤ τ . From the hypothesis, β1(c) + β2(c) ≤ L.

If α1(c) > L then either (i) β1(c) = α1(c) > L, or (ii) β1(c) = (αi(c))L = ⌊L⌋ +

⌈α1(c)⌉ = L+⌈α1(c)⌉, sinceL is an integer. In any case, we contradict β1(c)+β2(c) ≤ L.

Similarly, we cannot have α2(c) > L. Hence, αi(c) ≤ L and we get βi(c) = αi(c),

for i = 1, 2. Then, since β1(c) + β2(c) ≤ τ , we also get α1(c) + α2(c) ≤ τ , and so

α1 + α2
� I .

3. TIOA Discretization 45

CASE 2: I is (c ≥ τ), for some c ∈ C and some τ ∈ Q≥.

First, let β1 + β2
� I . Then β1(c) + β2(c) ≥ τ and so α1(c) + α2(c) ≥ τ , since

αi(c) ≥ βi(c), i = 1, 2. Then, α1 + α2
� I .

For the converse, assume α1(c) + α2(c) ≥ τ . If α1(c) ≥ L + 1, then β1(c) = ⌊L⌋ +

⌈α1(c)⌉ = L + ⌈α1(c)⌉, since L is an integer. Thus, β1(c) ≥ τ , since L > τ from the

hypothesis. Hence β1(c) + β2(c) ≥ τ and so β1 + β2
� I .

Similarly, when α2(c) ≥ L+ 1 the result also holds.

Now let αi(c) < L+ 1 = ⌊L⌋+ 1 for i = 1, 2. From Fact 8, we get βi(c) = αi(c) and so

β1(c) + β2(c) ≥ τ , and again β1 + β2
� I .

CASE 3: I is ¬(c ≤ τ), for some c ∈ C and some τ ∈ Q≥. Equivalently, we have α1 + α2
�

(c > τ). We proceed as in Case 2.

CASE 4: I is ¬(c ≥ τ), for some c ∈ C and some τ ∈ Q≥. Equivalently, we have α1 + α2
�

(c < τ). We proceed as in Case 1.

Let n ≥ 0 be the number of propositional connectives occurring in I . We proceed by

induction on n.

BASIS: n = 0. The result holds by Cases 1 and 2.

INDUCTION STEP: assume the result holds for all I with at most n propositional connectives,

where n ≥ 0. Now, take some I ∈ ΦC with n + 1 propositional connectives. We have

two cases:

Case I-1: I is δ1 ∧ δ2.

Since δi has at most n propositional connectives, i = 1, 2, from the induction hy-

pothesis we get α1 + α2
� δi iff β1 + β2

� δi, for i = 1, 2. Then, clearly,

α1 + α2
� I iff β1 + β2

� I .

Case I-2: I is ¬δ.

Then δ has n ≥ 0 propositional connectives. When n = 0, δ is (c ≤ τ) or (c ≥ τ),

and the result follows by Cases 3 and 4, respectively.

Assume now that n ≥ 1. We have two sub-cases:

I-2A: δ is ¬δ1 and δ1 has n − 1 propositional connectives. Then ¬δ is equivalent

to ¬¬δ1, that is, I is equivalent to δ1. We can use the induction hypothesis and

conclude that α1 + α2
� I iff β1 + β2

� I .

46 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

I-2B: δ is (δ1 ∧ δ2), that is, I is equivalent to (¬δ1) ∨ (¬δ2). Note that δ has n

propositional connectives. Then δi has at most (n − 1) propositional connec-

tives, that is, ¬δi has at most n propositional connectives, for i = 1, 2. Using

the induction hypothesis we get α1 + α2
� ¬δi iff β1 + β2

� ¬δi. Thus,

α1 + α2
� (¬δ1) ∨ (¬δ2) iff α1 + α2

� ¬δi for some i ∈ {1, 2} iff

β1 + β2
� ¬δi for some i ∈ {1, 2} iff β1 + β2

� (¬δ1) ∨ (¬δ2), completing

the proof. •

Lemma 14 Let C be a set of clocks and let ν ∈ [C → Q≥] and θ ∈ [C y Q≥] be clock

interpretations and let I ∈ ΦC be a clock condition. If ν ⊕ θ � I then νL ⊕ θ � I , when L is a

positive integer greater than all constants occurring in I .

Proof The argument is very similar to the proof of Lemma 13, but now treating clock resets

instead of clock displacements. Full details can be found in [16]. •

3.2 Grid automata

Given a TIOA M , in order to deal with a finite set of useful interpretations we choose a time

granularity and discretize the movements of M . The granularity has to be chosen in a such

way that neither it is too small, rendering the system almost continuous, nor is it too large,

making the approximations too coarse. Some works [11, 9, 12] consider a discretization step of

1/(n+ 1), if n = 1, and 1/(n+ 2), with n ≥ 2, where n is the number of clocks in M . In this

work we show how to use any granularity in the form g = 1/k, k being a positive integer, and

still obtain an adequate discretization. That is, even when choosing coarser granularities, once a

boundL is also chosen, the behavior of the original TIOA is still homomorphically reproducible

in the resulting grid, and conversely. Clearly, by using a granularity 1/k, with k << (n+1), the

resulting grid automaton will, potentially, have a much smaller number of grid states, thereby

significantly reducing the state space explosion problem.

We start with the notion of adjusted values.

Definition 15 Let g ∈ Q≥. Then

1. A value ℓ ∈ Q≥ is g-adjusted iff ℓ is an integer multiple of g.

2. Let C be a set of clocks. A clock condition δ ∈ ΦC is g-adjusted iff all constants occurring

in δ are g-adjusted values. A clock interpretation ν ∈ [C y Q≥] is g-adjusted iff ν(c) is

a g-adjusted value, for all c ∈ dom(ν). •

When the value g can be inferred from the context, we may write simply adjusted instead of

g-adjusted.

3. TIOA Discretization 47

Two following propositions say that extending g-adjusted clock interpretations, or resetting

a g-adjusted clock interpretation, always results in a new clock interpretation that is also g-

adjusted.

Proposition 16 Let g = 1/k, with k a positive integer, let L ∈ Q≥ be a g-adjusted value, and

let C be a set of clocks. Then

1. A value ℓ ∈ Q≥ is g-adjusted iff both ⌊ℓ⌋ and ⌈ℓ⌉ are g-adjusted values.

2. If ν ∈ [C y Q≥] is a g-adjusted clock interpretation, then νL is also a g-adjusted clock

interpretation.

3. If ν, η ∈ [C y Q≥] are g-adjusted clock interpretations and ℓ is a g-adjusted value, then

ν + ℓ and ν ⊕ η are also g-adjusted clock interpretations.

Proof Follows without effort from the definitions. •

Next, we show that any set of L-bounded clock interpretations is finite, provided that L is

properly adjusted.

Lemma 17 Let C be a set of clocks, and let g = 1/k with k a positive integer. Let R ⊆

[C y Q≥] be a set of g-adjusted clock interpretations, and let L ∈ Q≥ be a g-adjusted value.

Consider the L-bounded set RL = {νL | ν ∈ R}. Then |RL| ≤ (k⌊L⌋+ k)|C|.

Proof Consider some νL ∈ RL and some c ∈ C. Let t = νL(c). By Proposition 16, t is always

g-adjusted. Moreover, t < ⌊L⌋+ 1, by Fact 8. But ⌊L⌋ = ng, for some non-negative integer n,

and so ⌊L⌋+ 1 = ng+ (1/g)g = (n+ k)g. Hence, t can have at most n+ k distinct g-adjusted

values (counting from zero).

We conclude that any clock c ∈ C can be mapped to at most n+k distinct g-adjusted values,

by νL bounded interpretations. Therefore, there are at most (n+k)|C| distinct νL interpretations.

Since n = ⌊L⌋/g = k⌊L⌋, the result follows. •

Had we used a distinct g-adjusted bound Lc for each clock c, the lemma would yield the

bound |RL| ≤
∏
c∈C

(k⌊Lc⌋+ k).

Before defining the grid automaton, we introduce the notions of adjusted timed words and

adjusted TIOA.

Definition 18 Let Σ be an alphabet. A timed word 〈σ1, . . . , σn〉 ∈ ΨΣ is g-adjusted iff σi is a

g-adjusted value whenever σi ∈ Q≥, for all i, 1 ≤ i ≤ n. •

48 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

The set of all g-adjusted timed words over Σ will be denoted by Ψg,Σ. As before, we may drop

subscripts if there is no reason for confusion.

A TIOA will be said adjusted if both its guards and invariants are also adjusted. The notion

of an adjusted TIOA will be important in reducing the set of L-bounded interpretations to a

finite size.

Definition 19 LetM be a TIOA. ThenM is g-adjusted iff for all transitions (s, z, δ, θ, r) ∈ T we

have that δ is a g-adjusted clock condition and θ is a g-adjusted clock interpretation. Moreover,

for all states s ∈ S, we require that Inv(s) be a g-adjusted clock condition. •

A run over a g-adjusted timed word implies the g-reachability of the terminal configuration.

Definition 20 Let M be a g-adjusted TIOA, s ∈ S and ν ∈ [C → Q≥]. We say that (s, ν) is

g-reachable in M iff there is a g-adjusted timed word ψ ∈ Ψg,Σ, such that (s0, ν0)
ψ

M (s, ν).

•

The result obtained by the discretization of a TIOA M will be a labeled transition system,

called a grid automaton [9, 11].

Definition 21 Let g = 1/k with k a positive integer. Let M be a g-adjusted TIOA and let

L ∈ Q≥ be a g-adjusted value. Then the L, g-grid automaton, or simply L, g-grid, associated

with M is the labeled transition system constructed by Algorithm 2. •

Note that the input alphabet of the grid ML,g is formed by the set of all action symbols of M ,

together with the new symbol g. As usual, we may drop the qualifications L and g, when no

confusion can arise.

Consider the TIOA depicted in Figure 2. Note that we have two clocks. In some earlier

works [11, 9, 12] a granularity of 1
4
, or even smaller, must be used when discretizing a TIOA

with two clocks. Here, instead, we may choose coarser values. In fact, for this example we

will choose a granularity of g = 1
2

and a bound L = 6. Further, let K = 3 in Figure 2. Under

these assumptions, Figure 3 shows part of the grid automaton obtained from Algorithm 2, given

Figure 2 as the input TIOA.

The next result establishes that Algorithm 2 always terminates. Moreover, it also gives an

upper bound on the number of states in the resulting labeled transition system.

Lemma 22 Consider the procedure depicted as Algorithm 2. Then, it always halts with |SG| ≤

|S| ×
(
k⌊L⌋+ k

)|C|
.

3. TIOA Discretization 49

Input: A value g = 1/k, with k a positive integer; a g-adjusted TIOA1

M = (S, s,Σ, C, ν, Inv, T), and a g-adjusted boundary L ∈ Q≥.

Output: The L, g-grid ML,g = (SG, sG,ΣG, TG) associated with M .2

begin3

TG ← ∅ // the set of transitions;4

RS ← sG = (s, ν) // where ν(c) = 0 for all c ∈ C;5

HS ← ∅ // the set of visited states;6

while RS 6= ∅ do7

get a state (s, ν) from RS // choose a state;8

move (s, ν) from RS to HS;9

foreach (s, z, δ, θ, r) ∈ T do10

if ν � δ and ν ⊕ θ � Inv(r) then11

let η = (ν ⊕ θ)L ;12

add the transition ((s, ν), z, (r, η)) to TG ;13

add the state (r, η) to RS, if (r, η) 6∈ HS;14

end15

end16

if ν + h � Inv(s) for all 0 < h ≤ g then17

let η = (ν + g)L ;18

add the transition ((s, ν), g, (s, η)) to TG;19

add the state (s, η) to RS, if (s, η) 6∈ HS;20

end21

end22

SG ← HS;23

ΣG ← Σ ∪ {g};24

return;25

end26

Algorithm 2: Grid algorithm.

Figure 2: A TIOA model for a variation of the simple switch.

50 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

Figure 3: The partial grid automaton for Figure 2 (part 1 of 2).

Proof Since L is g-adjusted and g = 1/k, Lemma 17 states that there are at most
(
k⌊L⌋+k

)|C|

L-bounded distinct clock interpretations, that is, |[C y Q≥]L| ≤
(
k⌊L⌋ + k

)|C|
. Then, there

are at most |S| ×
(
k⌊L⌋ + k

)|C|
configurations of the form (s, νL), where s ∈ S and νL is an

L-bounded clock interpretation of M .

Notice that ν0, at line 5, is also g-adjusted and L-bounded, trivially. Then, using Proposi-

tion 16 and Proposition 16 we know that the interpretations constructed at lines 12 and 18 are

also g-adjusted. Clearly, then whenever a configuration (p, η) is added to RS at lines 14 and 20,

we have that η is a g-adjusted clock interpretation.

Note that at lines 14 and 20 a state (s, η) is added to RS only if it is not already in HS.

Thus, a state (s, η) ∈ S × [C y Q≥]L enters RS at most once. Since the loop at line 7 moves

one state (s, ν) from RS into HS, we conclude that the loop at line 7 executes for at most

|S| × (k⌊L⌋+ k
)|C|

times. Thus, clearly, the procedure halts and |HS| ≤ |S| × |[C y Q≥]L|.

From line 23, we get |SG| ≤ |S| ×
(
k⌊L⌋+ k + 1

)|C|
. •

Note that, when we specify a possibly different bound Lc for each clock c ∈ C, the number

of states in the grid automaton will be bounded by k|C| ×
∏
c∈C

(⌊Lc⌋+ k), which can be much

3. TIOA Discretization 51

smaller then k|C| × (⌊L⌋+ k)|C|, if we take the safe value L = max
c∈C
{Lc}.

Next, we want to prove that the grid and the corresponding TIOA display compatible be-

haviors, provided that the common input timed word is g-adjusted. But, before, we need to

consider grid movements.

Definition 23 Let MG be a grid automaton. The movement relation of MG, ⊢
G

, is a binary

relation over Σ⋆
G × SG given by (σ · ψ, s1) ⊢

G

(ψ, s2), with ψ ∈ Σ⋆
G and σ ∈ ΣG, if and only if

there is a transition (s1, σ, s2) ∈ TG. •

The k-th power of ⊢
G

will be indicated by
k

⊢
G

, k ≥ 0, and its reflexive transitive closure by

⋆

⊢
G

. When (ψ, γ)
⋆

⊢
G

(ε, ρ) we also write γ
ψ

G

ρ, or γ
G

ρ when the particular input grid word

is not relevant.

The next technical result will be useful later.

Lemma 24 Let M be a TIOA and let MG be the corresponding grid. Let L be a positive integer

greater than all constants occurring in M , and let g = 1/k with k a positive integer. Also, take

µ ∈ [C → Q≥] and p ∈ S with (p, µL) ∈ SG. Finally, assume that µ + η � Inv(p), for some

i ≥ 0 and all 0 < η ≤ ig. Then (p, ωL) ∈ SG and (p, µL)
gi

G

(p, ωL), with ω = µ+ ig.

Proof Recall that, over the grid alphabet, gi represents a sequence of length i containing only

g symbols. Define µj = µ + jg, for all j, 0 ≤ j ≤ i. It suffices to prove that3 (p, µjL) ∈ SG

and (p, µL)
gj

G

(p, µjL), for all j, 0 ≤ j ≤ i. Note that µiL = (µ + ig)L = ωL. We proceed by

induction on j ≥ 0.

BASIS: when j = 0 we get gj = ε. Then, trivially, (p, µL)
gj

G

(p, µL). We show µL = µjL. We

have µj = µ+ 0g = µ+ 0 = µ and so µjL = µL, as desired.

INDUCTION STEP: assume the result holds for some j, 0 ≤ j < i.

The induction hypothesis gives (p, µL)
gj

G

(p, µjL) and (p, µjL) ∈ SG. Note that (p, µjL) ∈

SG gives (p, µjL) ∈ HS at line 23 of Algorithm 2. Also, pairs are moved from RS into

HS one at a time at line 9. Hence, at some iteration, (p, µjL) was chosen at line 8. We

show that now line 17 applies.

Let 0 < η ≤ g. We show that µjL + η � Inv(p). We have 0 < jg + η ≤ (j + 1)g ≤ ig.

From the hypothesis we get µ + (jg + η) � Inv(p), that is (µ + jg) + η � Inv(p),

3Here, µj
L denotes (µj)L.

52 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

and so µj + η � Inv(p). Using Lemma 13 we get µjL + η � Inv(p), as desired. Thus,

Algorithm 2, lines 18–20, will put ((p, µjL), g, (p, ρL)) in TG, with ρ = µjL + g. So,

(p, µjL)
g

G

(p, ρL). Also, by line 20, (p, ρL) will be added to RS if it is not already in

HS. In any case, when the loop at line 7 terminates, we get (p, ρL) in HS and, by line 23,

(p, ρL) ∈ SG. Moreover, since (p, µL)
gj

G

(p, µjL), we also get (p, µL)
gj+1

G

(p, ρL). We

extend the induction by showing that ρL = µj+1
L . Since ρL = ((µj)L + g)L, using

Proposition 12 we get ρL = (µj + g)L = (µ+ jg + g)L = (µ+ (j + 1)g)L = (µj+1)L =

µj+1
L , as desired. •

Next, we want to guarantee that g-reachable configurations in a TIOA are states in the

corresponding grid.

Lemma 25 Let MG be a grid corresponding to a TIOA M and let L be a positive integer

greater than any constant occurring in M . If (s, ν) ∈ S × [C → Q≥] is g-reachable in M then

(s, νL) ∈ SG.

Proof Using Definition 20, we know that (s0, ν0)
ψ

M (s, ν) for some g-adjusted timed word

ψ ∈ Ψg,Σ. We proceed by induction on the length of ψ.

If ψ = ε then s0 = s and ν0 = ν. Algorithm 2, line 5, puts (s, ν) in RS. Now, the while

loop at line 7, together with lines 8 and 9, will put (s0, ν0) in HS. Then, by line 23, we get

(s, ν) ∈ SG.

Now, assume the result for any g-adjusted timed word ψ of length at most n, n ≥ 0. Take

ϕ ∈ Ψg,Σ and σ ∈ Σ ∪Q≥ with ψ = ϕ · 〈σ〉, where ϕ has length n.

From (s0, ν0)
ψ

M (s, ν) we obtain (s0, ν0)
ϕ

M (r, µ) and (r, µ)
〈σ〉

M (s, ν) for some r ∈ S

and µ ∈ [C → Q≥]. Since ψ is g-adjusted, we have that ϕ is g-adjusted. By the induction

hypothesis, we get (r, µL) ∈ SG. Then, (r, µL) ∈ HS (line 23). Clearly, from line 6 of

Algorithm 2, together with the while loop at line 7 and lines 8 and 9, we can conclude that

(r, µL) will be in RS. So, at some point, (r, µL) will be chosen at line 8.

We have two cases:

CASE 1: σ ∈ Σ.

Since (r, µ)
〈σ〉

M (s, ν) we must have in M a transition (r, σ, δ, θ, s), for some δ ∈ ΦC

and some θ ∈ [C y Q≥], where µ � δ and µ⊕ θ � Inv(s), with ν = µ⊕ θ.

From Lemma 14, we obtain µL⊕ θ � Inv(s) and, from Lemma 13, we get µL � δ. Since

(r, µL) will be chosen at line 8, from lines 12–14, the state (s, η), with η = (µL⊕θ)L, will

be put into RS, if it is not already in HS. In any case, by the loop at line 7, we will get

(s, η) in HS, and so by line 23 we will have (s, η) ∈ SG. But, using Proposition 12, we

3. TIOA Discretization 53

have η = (µL⊕ θ)L = (µ⊕ θ)L. Since ν = µ⊕ θ, we obtain η = νL and so (s, νL) ∈ SG,

as desired.

CASE 2: σ ∈ Q≥.

Since ψ is g-adjusted, σ is also g-adjusted. Hence, σ = kg, for some k ≥ 0. From

(r, µ)
〈kg〉

M (s, ν) we get s = r, ν = µ + kg and µ + η � Inv(r), for all 0 < η ≤ kg.

Since we already have (r, µL) ∈ SG, Lemma 24 gives (r, νL) ∈ SG, completing the proof.

•

Conversely, we show that all grid states correspond to g-reachable configurations in the

corresponding TIOA.

Lemma 26 Let MG be the grid corresponding to a TIOAM . Let L be a positive integer greater

than any constant occurring inM . If (s, ν) ∈ SG then there is a ρ ∈ [C → Q≥] and a g-adjusted

timed word ψ ∈ Ψg,Σ such that (s0, ν0)
ψ

M (s, ρ) and ρL = ν.

Proof From line 23 of Algorithm 2, we know that SG is the set HS when the loop at line 7

terminates. From line 6, HS starts empty and elements are added to it one at a time and only at

lines 14 and 20. Hence, it suffices to show that the result holds for all pairs (s, ν) added to RS

at these lines.

Let (ri, µi), i ≥ 0, be the elements added to RS, in order. Clearly, (r0, µ0) = (s0, ν0) by

line 5. Taking ψ = ε, the result is seen to hold for (r0, µ0). Note also that ν0 = (ν0)L, since

ν0(c) = 0, for all c ∈ C.

Assume the result holds for (rj , µj), for all 0 ≤ j < k, for some k ≥ 1. Consider (rk, µk).

Since k ≥ 1, (rk, µk) was added to RS at line 14 or at line 20. Hence, at that iteration, some

(rj , µj) with j < k was chosen at line 8. The induction hypothesis gives some ψ ∈ Ψg,Σ such

that (s0, ν0)
ψ

M (rj , ρ) and ρL = µj. There are two cases.

CASE 1: At line 14. Then, from lines 10 and 11, we get a transition (rj, z, δ, θ, rk) in T with

µj � δ and µj ⊕ θ � Inv(rk). From lines 12 and 14, µk = (µj ⊕ θ)L.

Since ρL = µj, we get ρL � δ and ρL ⊕ θ � Inv(rk). From Lemma 13 we get ρ � δ and

from Lemma 13, with η = 0, we have (ρL⊕θ)L � Inv(rk). From Proposition 12 we may

write (ρ⊕θ)L � Inv(rk) and so, from Lemma 13, with η = 0, we have (ρ⊕θ) � Inv(rk).

Collecting, we have (rj, z, δ, θ, rk) in T , ρ � δ and (ρ ⊕ θ) � Inv(rk). Then (rj, ρ)
z

M

(rk, ρ⊕ θ). Therefore, (s0, ν0)
ψ·〈z〉

M (rk, ρ⊕ θ).

We complete this case by showing (ρ ⊕ θ)L = µk. From Proposition 12, (ρ ⊕ θ)L =

(ρL ⊕ θ)L. Since ρL = µj and µk = (µj ⊕ θ)L, we get (ρ ⊕ θ)L = (µj ⊕ θ)L = µk, as

desired.

54 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

CASE 2: At line 20. Then from line 17 we obtain µj + η � Inv(rj), 0 < η ≤ g. And from

lines 18 and 20 we get µk = (µj + g)L and rk = rj , respectively. Since µj = ρL we

get ρL + η � Inv(rj) and so ρ + η � Inv(rj) by Lemma 13, for all 0 < η ≤ g. Then

(rj , ρ)
〈g〉

M (rj , ρ + g) and, since rj = rk we get (rj, ρ)
〈g〉

M (rk, ρ + g). Therefore,

(s0, ν0)
ψ·〈g〉

M (rk, ρ+ g).

We complete this case by showing that (ρ+g)L = µk. Since µk = (µj+g)L and ρL = µj,

we get µk = (ρL+g)L. Using Proposition 12, we conclude that µk = (ρ+g)L, as desired.

The induction is extended and we are done. •

The next definitions map adjusted timed words into grid words, and vice-versa.

Definition 27 Let Σ be an alphabet and let ψ ∈ Ψg,Σ be a g-adjusted timed word. The mapping

h : Ψg,Σ → Σ⋆
G is defined by letting h(ε) = ε, and for all ψ ∈ Ψg,Σ and all σ ∈ Σ ∪Q≥ :

h(ψ · 〈σ〉) =

{
h(ψ) · σ if σ ∈ Σ

h(ψ) · gk where σ = kg, for some k ≥ 0. •

Definition 28 Let Σ be an alphabet and let ψ ∈ Σ⋆
G be a grid word. The function ĥ : Σ⋆

G →

Ψg,Σ is defined by letting ĥ(ε) = ε and, for all ϕ ∈ Σ⋆
G and all σ ∈ ΣG, ĥ(ϕ · σ) = ĥ(ϕ) · 〈σ〉.

•

We note that ĥ(ψ) is also g-adjusted.

Proceeding, we show next that a grid automaton can homomorphically simulate the corre-

sponding TIOA over a g-adjusted timed word.

Theorem 29 Let MG be the grid corresponding to a TIOA M . Let s, r ∈ S and ν, ω ∈ [C →

Q≥] be such that (s, ν) is g-reachable in M with g = 1/k and k a positive integer. Also let ψ ∈

Ψg,Σ be a g-adjusted timed word, and L ∈ Q≥ be a positive integer greater than all constants

occurring in M . If (s, ν)
ψ

M (r, ω) then (s, νL), (r, ωL) ∈ SG and (s, νL)
h(ψ)

G

(r, ωL).

Proof Since (s, ν) is g-reachable inM , we get a g-adjusted timed word ψ′ such that (s0, ν0)
ψ′

M

(s, ν). Then (s0, ν0)
ψ′·ψ

M (r, ω). Since ψ′ ·ψ is also g-adjusted, (r, ω) is also g-reachable inM .

Thus, by Lemma 25, we get (s, νL), (r, ωL) ∈ SG. It remains to show that (s, νL)
h(ψ)

G

(r, ωL).

We proceed by induction on the length n ≥ 0 of ψ, noting that (s, ν)
ψ

M (r, ω).

3. TIOA Discretization 55

BASIS: when n = 0, we get ψ = ε and so s = r and ν = ω. Thus (s, νL) = (r, ωL) and we get

(s, νL)
ε

G

(r, ωL). Since h(ψ) = ε, the basis is complete.

INDUCTION STEP: assume the result holds for all g-adjusted timed words of length at most n.

Take ψ = ϕ · 〈σ〉, where ϕ has length n, and σ ∈ Σ ∪Q≥. Then, (s, ν)
ψ

M (r, ω) gives

(s, ν)
ϕ

M (p, µ) and (p, µ)
〈σ〉

M (r, ω).

By the induction hypothesis, (p, µL) ∈ SG and (s, νL)
h(ϕ)

G

(p, µL). Since, by definition,

h(ψ) = h(ϕ) · h(〈σ〉), it remains to show that (p, µL)
h(〈σ〉)

G

(r, ωL).

There are two cases: when σ ∈ Σ and when σ ∈ Q≥.

CASE 1: σ ∈ Σ.

Since (p, µ)
〈σ〉

M (r, ω), we must have a transition (p, σ, δ, θ, r) in M , with µ � δ,

ω = µ ⊕ θ, and ω � Inv(r). Recall that (p, µL) ∈ SG. Hence, at some point, Al-

gorithm 2 has chosen (p, µL) at line 8. From µ � δ, Lemma 13 gives µL � δ.

From µ ⊕ θ � Inv(r) and Lemma 14 we get µL ⊕ θ � Inv(r). Then Algo-

rithm 2, lines 12 and 13, adds ((p, µL), σ, (r, ρL)) to TG, where ρ = µL ⊕ θ. Hence,

(p, µL)
h(〈σ〉)

G

(r, ρL), since h(〈σ〉) = σ.

We complete this case by showing that ρL = ωL. Since ρL = (µL ⊕ θ)L, Proposi-

tion 12 gives ρL = (µ⊕ θ)L. Then ρL = ωL since ω = µ⊕ θ.

CASE 2: σ ∈ Q≥.

Since ψ = ϕ · 〈σ〉 is g-adjusted, we have that σ is also g-adjusted. Let σ = ig, for

some i ≥ 0. Moreover, since (p, µ)
〈ig〉

M (r, ω), we conclude that p = r, ω = µ+ ig

and µ + η � Inv(r), for all 0 < η ≤ ig. Since we already have (p, µL) ∈ SG,

Lemma 24 gives (p, ρL) ∈ SG and (p, µL)
gi

G

(p, ρL), with ρ = µ + ig = ω. But

h(〈σ〉) = gi and p = r. So, we have (r, ωL) ∈ SG and (p, µL)
h(〈σ〉)

G

(r, ωL),

completing the proof. •

In order to illustrate Theorem 29, consider the TIOA shown in Figure 2. We represent a

configuration (s, ν) of the TIOA by (s, t1, t2), where t1 = ν(c1) and t2 = ν(c2). Then, its start

configuration is (s0, 0, 0). Chose a granularity of g = 1
2
, and also choose K = 3 and L = 6.

Take the g-adjusted timed word α = 2on4on5off .

Computing over the input timed word α, from Figure 2 and starting at s0, 0, 0), we get

(s0, 0, 0)→
2

(s0, 2, 2)
on
→ (s1, 0, 2)→

4
(s1, 4, 6)

on
→ (s1, 0, 6)→

5
(s1, 5, 11)→ (s0, 0, 0)off.

56 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

The corresponding partial grid is depicted in Figure 3, and the morphism h gives the grid

word

h(α) = β = (
1

2
)4 on (

1

2
)8on(

1

2
)10off.

Now we apply β to the grid, starting the run at the state (s0, 0, 0). From Figure 3, the grid moves

as follows

(s0, 0, 0)

1

2

G

(s0,
1
2
, 1

2
)

1

2

G

· · ·

1

2

G

(s0, 2, 2)
on

G

(s1, 0, 2)

1

2

G

(s1,
1
2
, 5

2
)

1

2

G

· · ·

1

2

G

(s1, 4, 6)
on

G

(s1, 0, 6).

We continue following the grid movements in Figure 4:

(s1, 0, 6)

1

2

G

(s1,
1
2
, 13

2
)

1

2

G

(s1, 1, 6)

1

2

G

(s1,
3
2
, 13

2
)

1

2

G

(s1, 2, 6)

1

2

G

...

(s1,
9
2
, 13

2
)

1

2

G

(s1, 5, 6)
off

G

(s0, 0, 0).

Note that when, at state s1, clock c2 reaches the ⌊L⌋ + 1 = 6 + 1 = 7 boundary, then the

corresponding grid state goes from (s1, t, 6) to (s1, t+
1
2
, 13

2
), and back to (s1, t+1, 6), and then

cycles between 6 and 13
2

for the value of clock 2. When the value of the first clock reaches 5,

then a discrete movement is forced and both clocks are reset to zero.

The next theorem shows that a TIOA can also homomorphically imitate the corresponding

grid automaton.

Theorem 30 Let MG be the grid corresponding to a TIOA M and let g = 1/k with k a positive

integer. Let (s, ν), (r, ω) ∈ SG. Also let L ∈ Q≥ be a positive integer greater than all constants

occurring in M . If (s, ν)
ψ

G

(r, ω) for some ψ ∈ Σ⋆
G, then there are ρ, µ ∈ [C → Q≥] such that

(s, ρ)
bh(ψ)

M (r, µ), with ν = ρL and ω = µL.

Proof We proceed by induction on the length n ≥ 0 of ψ.

3. TIOA Discretization 57

Figure 4: The partial grid automaton for the TIOA in Figure 2 (part 2 of 2).

BASIS: when n = 0, we get ψ = ε, s = r and ν = ω. So, ĥ(ψ) = ε. Using Lemma 26, we get

ρ ∈ [C → Q≥] with ρL = ν. Take µ = ρ. Then (s, ρ)
bh(ψ)

M (r, µ). Moreover, ρL = ν

and µL = ρL = ν = ω, completing the basis.

INDUCTION STEP: assume the result holds for all grid words of length at most n. Take ψ =

ϕ·σ ∈ Σ⋆
G, where ϕ has length n and σ ∈ ΣG. Then, (s, ν)

ψ

G

(r, ω) gives (s, ν)
ϕ

G

(p, λ)

and (p, λ)
σ

G

(r, ω). By the induction hypothesis we get ν̂, λ̂ ∈ [C → Q≥], where ν̂L = ν

and λ̂L = λ, and such that (s, ν̂)
bh(ϕ)

M (p, λ̂). Since ĥ(ψ) = ĥ(ϕ) · ĥ(σ), it remains to

show that (p, λ̂)
bh(σ)

M (r, ω̂), for some ω̂ ∈ [C → Q≥], where ω̂L = ω.

There are two cases: when σ ∈ Σ and when σ = g.

CASE 1: σ ∈ Σ.

Since (p, λ)
σ

G

(r, ω), we must have a transition ((p, λ), σ, (r, ω)) in TG. From Al-

gorithm 2, lines 10 to 14, we have (p, σ, δ, θ, r) in T , for some δ ∈ ΦC , θ ∈ [C y

Q≥], and such that λ � δ, λ⊕ θ � Inv(r) and ω = (λ⊕ θ)L.

Since λ = λ̂L, we get λ̂L � δ. Using Lemma 13 we get λ̂ � δ. Also λ̂L⊕θ � Inv(r),

since λ⊕θ � Inv(r). Now, from Lemma 13 (with η = 0) we get (λ̂L⊕θ)L � Inv(r).

58 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

But (λ̂L ⊕ θ)L = (λ̂⊕ θ)L, using Proposition 12. Then (λ̂⊕ θ)L � Inv(r), and so

from Lemma 13 (with η = 0) we get λ̂⊕ θ � Inv(r).

Collecting, we have λ̂ � δ, λ̂⊕ θ � Inv(r) and (p, σ, δ, θ, r) ∈ T . Then (p, λ̂)
bh(σ)

M

(r, λ̂ ⊕ θ), since ĥ(σ) = σ. Let ω̂ = λ̂ ⊕ θ. To complete this case, we need

ω̂L = ω. But ω̂L = (λ̂⊕ θ)L = (λ̂L ⊕ θ)L, by Proposition 12. Since λ̂L = λ we get

ω̂L = (λ⊕ θ)L = ω, as desired.

Case 2: σ = g.

Since (p, λ)
g

G

(r, ω), we must have a transition ((p, λ), g, (r, ω)) in TG. From Al-

gorithm 2, lines 17– 20, we have p = r, ω = (λ + g)L, and λ + η � Inv(p), for all

0 < η ≤ g.

Fix any η, 0 < η ≤ g. Since λ = λ̂L, we get λ̂L + η � Inv(p). Using Lemma 13 we

get (λ̂L + η)L � Inv(p), and so (λ̂ + η)L � Inv(p), using Proposition 12. Hence

λ̂+η � Inv(p), using Lemma 13 again. Therefore, λ̂+η � Inv(p), 0 < η ≤ g. Then

(p, λ̂)
〈g〉

M (p, λ̂ + g). Since p = r, by letting ω̂ = λ̂ + g we get (p, λ̂)
bh(σ)

M (r, ω̂),

because ĥ(σ) = ĥ(g) = 〈g〉.

In order to complete this case, we need ω̂L = ω. But ω̂L = (λ̂ + g)L = (λ̂L + g)L
by Proposition 12. Since λ̂L = λ, we get ω̂L = (λ+ g)L = ω, as desired.

This concludes the proof. •

4 Generating test cases based on test purposes

In this section we use the notion of a test purpose [20] in order to generate test sequences for

TIOA. We also use the product of TIOA to capture the coordination between specifications of

real-time systems and test purposes. The latter models specific properties to be verified about

the original systems.

4.1 Test purposes

We start by noticing that several types of faults, or desired properties, of practical interest can

be modeled by a specific family of TIOA.

Definition 31 A TIOA is acyclic iff its subjacent directed graph, defined by taking states as

nodes and transitions as edges, is acyclic. A test purpose is an acyclic TIOA with two special

sets of states: a set F ⊆ S, of fail states, and a set D ⊆ S, of desired states, with F ∩D = ∅.

•

4. Generating test cases based on test purposes 59

Figure 5: An example of test purpose for the switch system.

A test purpose focuses on specific parts of the system, with the aim of verifying whether

the implementation meets certain properties. The fail states in F represent undesired, or fail,

properties of the system. Later, a test purpose can be combined with the specification TIOA

so that both are driven synchronously. Then, using the test purpose as a guide, one can extract

certain input test sequences that drive the specification and the test purpose to combined fail

states. Such a set of test sequences can then be applied to implementations in order to determine

if they also reach a fail condition. A similar reasoning applies to the desired states in D.

As an example, the acyclic TIOA depicted in Figure 5 is related to the specification TIOA

shown in Figure 1. Its intention is to verify whether the implementation accepts the input on

within three time units followed by another on symbol which arrives within five time units,

counting from the start. Then, the implementation must respond with an off symbol within no

more than ten time units from the start, and no less than five time units also from the start. In

this case, the special sets are F = {s3} and D = ∅.

Using test purposes one can focus on smaller parts of the specification model, thus avoiding

generating test cases for the whole system. Together with a test purpose, verifying an imple-

mentation requires that it satisfies both the specification model and the test purpose. This will

be formalized by constructing the (synchronous) product [21, 9] of the specification and the test

purpose. Next, in order to control the number of states, we obtain the grid automaton associ-

ated with the product [9]. Then, we can traverse the resulting grid searching down for faulty

or desired states, collecting along a set of input sequences. Test sequences are then derived

from these input sequences. The test sequences can, then, be used to test implementation can-

didates in order to identify desired behaviors or faults, when those have been modeled by the

test purpose.

60 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

4.2 The synchronous product

The intended meaning of a product of two TIOA is to force the synchronism between the partic-

ipating TIOA, whenever possible. For that, states in the product are modeled as pairs of states

from the participating TIOA. When a state (s1, s2) is in the product and there are transitions

out of s1 and of s2 on a same action symbol a, then these transitions must be taken in parallel.

In the product, this is modeled by inserting a transition out of (s1, s2), over the same symbol

a, and in such a way as to capture the effects of the individual transitions in the participating

TIOA. When only one of the states, s1 or s2, has an outgoing transition on a symbol a, then the

product reflects that action, while keeping the other state unchanged. Clearly, the initial state in

the product is the pair of initial states in the participating TIOA. Finally, in order to avoid clock

reset conflicts, we require that both sets of clocks in the participating TIOA to be disjoint.

The synchronous product is constructed algorithmically.

Definition 32 Let M1 and M2 be two TIOA, with C1 ∩ C2 = ∅. The synchronous product of

M1 and M2 is the TIOA M1 ⊗M2 constructed by Algorithm 3. If M2 is a test purpose, then a

state (s1, s2) in the product is a desired or fail state iff s2 is a desired or fail state, respectively,

in M2.

Algorithm 3 constructs the synchronous product for two TIOA by first pairing the initial

state of both participating TIOA in order to create the initial state of the product TIOA. Then,

the product transitions are constructed by an exhaustive search for new transitions and new

states in the product. We want a state (s1, s2) to be a fail state in the product when s2 is a fail

state in the purpose model. Similarly for the desired states.

Consider the specification given in Figure 1 and the test purpose given in Figure 5. The

resulting product is shown in Figure 6. The invariant conditions are shown in Table 1. Note that

(q0, s3, F) and (q1, s3, F) are the fail states in the product automaton. Also, note that some input

words that are accepted by the specification may not be accepted by the product, since particular

timing requirements in the specification may not be satisfied simultaneously by the test purpose.

For instance, taking K = 5, the timed word “14
3
on” induces a run in the specification but not in

the synchronous product since the invariant at (q0, s0) requires c′ ≤ 3 and we have 14/3 > 3.

4.3 Test case generation and the grid automaton

We can generate timed test cases using the notion of a grid automaton extracted from the product

of the specification and the test purpose, given by their respective TIOA.

The grid automaton is obtained from the resulting product following the method presented

in Subsection 3.2. Then, test sequences are extracted by traversing the grid. The traversal

operation starts at the initial state of the grid and searches down until it finds fail or desired

4. Generating test cases based on test purposes 61

Input: TIOA M1 and M2 with C1 ∩ C2 = ∅.1

Output: The synchronous product MP = M1 ⊗M2.2

begin3

CP ← C1 ∪ C2 // the set of clock variables;4

XP ← X1 ∪X2, YP ← Y1 ∪ Y2, ΣP ← Σ1 ∪ Σ2 // action symbols;5

RS ← sP0 = (s1
0, s

2
0), InvP (sP0)← Inv1(s

1
0) ∧ Inv2(s

2
0) // initial state;6

TP ← ∅, HS ← ∅ // transitions and visited states;7

while RS 6= ∅ do8

Choose s = (s1, s2) from RS;9

Move s from RS to HS;10

foreach a ∈ Σ do11

if (si, a, δi, θi, si+2) ∈ Ti for some si+1 ∈ S, δi ∈ ΦCi
, θi ∈ [Ci y Q≥],12

i = 1, 2 then

let (p, q) = (s3, s4), δ = δ1∧ δ2, θ = θ1⊕ θ2, I = Inv1(s3)∧ Inv2(s4)13

end14

if (s1, a, δ1, θ1, s3) ∈ T1 for some s3 ∈ S, δ1 ∈ ΦC1
, θ1 ∈ [C1 y Q≥] and15

(s2, a, δ2, θ2, s4) 6∈ T2 for all s4 ∈ S, δ2 ∈ ΦC2
,θ2 ∈ [C2 y Q≥] then16

let (p, q) = (s3, s2), δ = δ1, θ = θ1, I = Inv1(s3) ∧ Inv2(s2)17

end18

if (s2, a, δ2, θ2, s4) ∈ T2 for some s4 ∈ S, δ2 ∈ ΦC2
, θ2 ∈ [C2 y Q≥] and19

(s1, a, δ1, θ1, s3) 6∈ T1 for all s3 ∈ S, δ1 ∈ ΦC1
,θ1 ∈ [C1 y Q≥] then20

let (p, q) = (s1, s4), δ = δ2, θ = θ2, I = Inv1(s1) ∧ Inv2(s4)21

end22

Add (p, q) to RS, let InvP (p, q)← I , add ((s1, s2), a, δ, θ, (p, q)) to TP ;23

end24

end25

SP ← HS;26

end27

Algorithm 3: Synchronous product.

Table 1: Invariants for the product

State Invariant

(q0, s0) (c′ ≤ 3) ∧ (c ≤ K)
(q1, s1) (c′ ≤ 5) ∧ (c ≤ 5)
(q1, s2) (c′ ≤ 10) ∧ (c ≤ 5)
(q0, s3) (c ≤ K)
(q0, s1) (c′ ≤ 5) ∧ (c ≤ K)
(q1, s3) (c ≤ 5)

62 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

Figure 6: The product of a specification and a test purpose.

states, depending on the nature of the test. Upon finding one such state, the corresponding test

sequence is output. A recursive traversal procedure is depicted in Algorithm 4. Clearly, the set

of all test sequences can be generated by a call in the form TestGeneration(s0, ǫ), where s0

is the initial state of the grid obtained from the product automaton and ǫ is the empty string.

TestGeneration(INPUT: state s of a grid MG; OUTPUT: A timed test sequence1

TTS;)

begin2

if s is a leaf then3

Write TTS;4

else5

foreach neighbor, r, of s reached over a transition on z do6

Concatenate z with TTS;7

TestGeneration(r,TTS);8

end9

end10

end11

Algorithm 4: The traversal algorithm TestGeneration.

Note that one can construct g-adjusted timed words from all grid words extracted from the grid

automaton, using the mappings given at Definition 27 and Definition 28. Note also that delay

transitions in the grid represent the continuous evolution in the original specification.

When the test purpose models desired behaviors, the verification process issues a “pass”

4. Generating test cases based on test purposes 63

Figure 7: The partial grid automaton for Figure 6.

verdict only when the implementation is shown to respect the specification and satisfy the test

purpose, for all sequences in the test suite. If, on the other hand, the testing if based on a

purpose automaton with fail states, then the verification process issues a positive verdict only

when the implementation satisfies the specification and also reaches a faulty state, for any of

the sequences in the test suite.

Revisiting the last example, on page 60, and taking with K = 5, we see that the sequence

β = 8
3
on 7

3
on5off is an execution at the product shown in Figure 6. If an implementation under

test conforms to the specification and the test purpose, we should be able to observe the same

behavior when β is applied in this implementation. In Figure 7 we present a partial grid automa-

ton extracted from the synchronous product shown in Figure 6, and where we have chosen a

granularity of 1
3
. Note that we have relabeled the states in the figure in order to keep the notation

uncluttered. Next, we can traverse the grid and extract grid words, as previously indicated by

Algorithm 4. For example, the sequence α = (1
3
)2on(1

3
)4on(1

3
)15off can be so extracted. Using

the reverse mapping of Definition 28 we obtain the product timed word 2
3
on 4

3
on5off . Some

other sequences that would be extracted from the grid and then mapped to timed words are:

64 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

1

3
on

14

3
on5off

2

3
on

13

3
on5off 1on4on5off

4

3
on

11

3
on5off

5

3
on

10

3
on5off 2on3on5off

7

3
on

8

3
on5off

8

3
on

7

3
on5off 3on2on5off .

Note that some sequences cannot be obtained by traversing the grid, although they might be

executions over the specification. For example, sequences onon4off and 2
3
on 13

3
on 17

3
off cannot

be extracted from the grid of Figure 6. The first one has a total elapsed time of less than five time

units after the last on and this is not allowed in the test purpose although it is a valid execution

in the specification model. In the second sequence, the last off symbol occurs more than five

time units after the previous on symbol, which is not allowed in the specification, even though

it is allowed in the test purpose.

In the testing process we supply input actions to reactive real-time systems and observe its

outputs. Then in order to drive a TIOA when testing properties, we need to supply it with a

sequence of timed input symbols. In order to extract the behavior of a run, we need to project a

timed word onto a subset of timed output actions.

Definition 33 Let Σ be an alphabet and let Υ ⊆ Σ. Let ψ = 〈σ1, . . . , σn〉, n ≥ 0, be a timed

word over Σ. The projection of ψ over Υ, denoted by ψ↓Υ, is the timed word over Υ given by

the concatenation ψ↓Υ = φ1 · φ2 · . . . · φn, where

φi =

{
〈σi〉 if σi ∈ ΨΥ,

ε otherwise.

A test sequence for a TIOA M is a timed word over its input actions, that is, an element of ΨX .

•

That is, the projection extracts only the actions in the subset of interest, together with timing

values. For example, ψ = 〈1, a, 2, b, 3, d, 4〉 is a timed word over {a, b, d}. Let Υ = {a, d} ⊆

{a, b, d}. Then ψ↓Υ = 〈1〉 · 〈a〉 · 〈2〉 · ε · 〈3〉 · 〈d〉 · 〈4〉 = 〈1, a, 2, 3, d, 4〉.

Test cases are timed words where only input action symbols can occur.

Definition 34 A test sequence for a TIOA M is a timed word over its input actions, that is, an

element of ΨX . •

Figure 8 illustrates a framework for extracting timed test cases.

Given a test sequence ψ and given a start configuration γ, we can discover all timed words

that have ψ as a projection over X , the set of input action symbols, and that produce a run

starting at γ.

4. Generating test cases based on test purposes 65

Test case generation

Test Cases

ExtractingGrid automaton
Traversal

Algorithm

Set of ψ Set of ψ↓X

Figure 8: The framework to extract test cases.

Definition 35 Let M be a TIOA and let ψ ∈ ΨX and γ ∈ ΓM . A support for ψ and γ is a timed

word ρ ∈ ΨM such that ψ = ρ↓X and γ
ρ

 µ, for some µ ∈ ΓM . •

That is, a support for an input timed word ψ and a configuration γ is a timed word ρ that drives

the TIOA from γ to some configuration µ, and such that the projection of ρ over the set of input

action symbols X is precisely ψ. The set of all supports for ψ and γ will be denoted by Λψ,γ .

When γ is the initial configuration of M , we also write Λψ. Clearly, any ρ ∈ Λψ is a run of M .

We can now define observables associated with a test sequence and a start configuration.

Definition 36 Let M be a TIOA and let ψ ∈ ΨX , γ ∈ ΓM . The (observable) behavior of M

from γ over ψ is the set {ρ↓X | ρ ∈ Λψ,γ}. •

We will denote by Oψ,γ the set of observable behaviors of M from γ over ψ.

For example, consider the test case ψ = 〈on, 5, L/2, on, 2〉 for the TIOA depicted in Fig-

ure 1. We have the timed word, or test sequence, ρ = 〈on, 5, off , K/2, on, 2〉 with ψ =

ρ↓X and (q0, 0)
ρ

 (q1, 2), as it is easy to verify. Because ρ↓Y = 〈5, off , K/2, 2〉, we put

〈5, off , L/2, 2〉 ∈ Oψ. It is clear that this is the only possibility for a timed word ρ with the

properties that (q0, 0)
ρ

 (s, t) and ψ = ρ↓X , for any state s ∈ {q0, q1} and any clock value

t ∈ Q≥. We conclude that Oψ = {〈5, off , K/2, 2〉}.

4.4 Applying timed test cases

An implementation behavior is investigated by performing experiments over it [1]. Such exper-

iments consist of applying stimuli to the implementation and observing its responses.

We obtain a set of timed test sequences by traversing the corresponding grid automaton

which, in turn, was obtained from the product between the specification and the test purpose.

Such test sequences are strings of input and output actions, as well as time delays. Timed test

66 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

Implementation Grid Automaton

Yes: fa
il fo

und

Not found

Testing an implementation: faulty property

ψ′ψ↓X

Figure 9: The framework to test implementations: faulty property.

Implementation Grid Automaton

Testing an implementation: desired property

Try ψ again

Yes: ψ′ is on the GridTake another ψ

No: ψ′ is not on the Grid

ψ′ Yes: ∀ψ′

on the Grid

ψ↓X

ψ↓X

Figure 10: The framework to test implementations: desired property.

cases then are extracted from the timed test sequences, by projecting such sequences on the set

of input action symbols. A test execution is obtained by applying a timed test case to an imple-

mentation and observing the respective responses. The output responses of the implementation

under test are then combined with the respective timed test cases. By this process, we obtain

test executions, also called runs, which combine input actions and time delays from the timed

test cases, together with time delays and observed outputs from the implementation.

Suppose that a test case is submitted to an implementation under test. Then, usually, a time

delay must pass before the next input action occurs, or before the next output action is observed.

Note that the time delay preceding an output symbol is not under the control of the observer,

and so we do not know in advance the exact instants when outputs will occur. In any case,

when forming test run, the time delay actually observed before an output symbol occurrence is

adjoined to the run being constructed, followed by the corresponding output symbol. When the

next action is an input action the time delay specified on the test case is under control of the

observer. In this case, this time delay, followed by the input symbol, is also adjoined to the run

being collected.

Using this approach, a set of runs can be collected by applying timed test cases over the can-

didate implementation. We can, then, verify if runs obtained from the implementation candidate

5. Related works 67

are also runs over the corresponding grid automaton. When a run from the implementation is

also a run over the grid, we can say that both models are in conformance, with respect to the

given test case.

When a faulty property is specified by the test purpose model, the product automaton will

contain special faulty states. The timed test cases extracted from the grid will be sequences

of input actions and time delays that lead to faulty states. We then collect runs over the im-

plementation using these timed test cases. By applying such runs back to the original grid, if

any of them reaches a faulty state, we can announce a positive test verdict, that is, a fault was

confirmed over the implementation. If all collected runs, when applied to the grid, do not reach

faulty states, then the test is deemed inconclusive. See Figure 9. On the other hand, when the

test purpose models a desired property, we must make sure that all runs, when applied to the

grid, terminate at desired states. In this case, the test is positive, otherwise it is inconclusive.

See Figure 10.

5 Related works

Many previous works have discussed formal methods to automatically generate test suites for

timed systems. We briefly describe some such related works.

In [18], Springintveld et. al. present an exhaustive and general testing method for timed

systems modeled by TIOA. They also use the notion of grid automata. However, this proposal

demands that grid automata represent all clock regions defined by a finite set of clock interpreta-

tions in the TIOA. The classical notion of clock regions imposes this strict relationship between

the number of clock variables present in the models and the granularity that must be chosen in

order to obtain the corresponding grid automaton. A potential problem here is the very large

number of test sequences that are generated after constructing grid automata.

In [9], En-Nouaary and Dssouli also discuss a model-based testing approach which uses test

purposes and synchronous products. However, their discretization technique is also based on the

classical notion of clock regions, thus imposing the same strict relationship between the number

of clocks and the granularity that must be chosen in order to obtain the corresponding discrete

automaton. Here, instead of constructing a grid automaton directly, the notion of a region graph

is first used to represent a possibly infinite transition system and, then, by a process of sampling,

a grid automaton is derived. However, it is not detailed how one could apply the timed test cases

that are generated.

Another test generation method based on TIOA is proposed in [22]. Test purposes are also

discussed following similar lines as in [9]. In these works, region graphs are also sampled in

order to obtain grid automata. But no guarantees are postulated about the algorithms presented

therein, which are used in an exhaustive test generation process. Also, dense time has but a

superficial treatment, making it difficult to see how to generate precise timed test cases when

68 Capı́tulo 3. Discretização dos TIOA para a Verificação de Comportamentos

combining test purposes and TIOA models.

In [23], Fouchal and co-workers discuss a test execution strategy similar to the one discussed

in this work. But, whereas our work deals with dense time in order to capture timed properties,

in [23] the notion of timed elements are used to imitate continuous time evolution, thus offering

no guarantees of accuracy about the extracted timed test sequences.

Another approach is taken in [24], where a conformance relation based on the ioco frame-

work is proposed. However, there is no mechanism to discretize the continuous behavior. As a

consequence, time evolution is not captured in appropriate manner for precisely testing timed

properties.

In [25], a black-box conformance testing for real-time systems is presented. It uses a sym-

bolic reachability graph to reduce the number of states and edges and, consequently, reducing

the number of test sequences. The same ioco framework as used in [24] is applied, and so the

same limitations for capturing continuous behavior of timed systems appear in this approach.

The idea of choosing “ticks” to capture continuous behavior is similar to choosing granulari-

ties. However, in [25], there are no guarantees about homomorphic simulations between grid

automata and the original TIOA, as given on our proposal.

Many similar approaches [26, 11, 6] use the classical notion of clock regions in order to

obtain grid automata. In these cases, if a large number of clock variables is present in models,

it will often lead to huge grid automata, due to the exponential number of clock regions that are

obtained, and the need to enforce the relationship between the number of clocks and the chosen

granularity. By contrast, our approach allows for an ample range of choice for appropriate

granularity values, thus leading to more controllable grid automata and to potentially more

manageable test suites.

6 Concluding Remarks

Many approaches have been proposed to automatically construct test suites for timed systems.

The problem is specially challenging since timed systems exhibit continuous time evolution

and, often, formal models techniques for dealing with such systems incur in the known state

explosion problem.

In this work we proposed a new way of discretizing timed system models. In the process,

we noticed that the classical notion of clock regions were unnecessary, giving rise to a more

general notion that allowed for an ample range of granularity values that could be chosen in the

discretization process. Since the specification is well-known by the tester, using this approach

we can choose adequate granularities to construct suitable grids, thus exercising more control

over the state space explosion problem without loss of accuracy. We also demonstrated that

the grid automaton obtained using our method was capable of homomorphically simulating the

original timed system, and vice-versa. This formed the basis for the development of automatic

REFERENCES 69

methods for generating test suites.

In order to test more specific system properties over the implementations, we made use of

the notion of timed test purpose models. Using the notion of a synchronous product between a

timed system and a timed purpose model, the discretization algorithm is able to generate a grid

automaton that reflects both the behavior of the original timed system, as well as the desired

properties specified by the timed test purpose model. From this grid automaton, one can then

automate the process of extracting test case sequences. Detailed proofs of correctness were

provided for all properties of interest.

As suggestions for expanding this work, we cite the possible representation of data flow

within the formal models, thus also capturing the idea of system context variables. With that

notion in place, one should be able to deal both with control flow and time evolution, as well as

with data flow issues, the latter being captured by context variables manipulations.

References

[1] Tretmans J. Model based testing with labelled transition systems. Formal Methods and

Testing, 2008; 1–38.

[2] Cunning SJ, Rozenblit JW. Automating test generation for discrete event oriented embed-

ded system s. J. Intell. Robotics Syst. 2005; 41(2-3):87–112, doi:http://dx.doi.org/10.1007/

s10846-005-3810-8.

[3] Nielsen B, Skou A. Test generation for time critical systems: Tool and case study. ecrts

2001; 00:0155, doi:http://doi.ieeecomputersociety.org/10.1109/EMRTS.2001.934021.

[4] Tretmans J. Testing concurrent systems: A formal approach. CONCUR ’99: Proceedings

of the 10th International Conference on Co ncurrency Theory, Lecture Notes in Computer

Science, vol. 1664, Baeten J, Mauw S (eds.), Springer-Verlag: London, UK, 1999; 46–65.

[5] Gawlick R, Segala R, Sogaard-Andersen JF, Lynch NA. Liveness in timed and untimed

systems. Automata, Languages and Programming, 1994; 166–177. URL citeseer.

ist.psu.edu/article/gawlick94liveness.html.

[6] En-Nouaary A, Dssouli R, Khendek F, Elqortobi A. Timed test cases generation based on

state characterization technique. RTSS ’98: Proceedings of the IEEE Real-Time Systems

Symposium, IEEE Computer Society: Washington, DC, USA, 1998; 220.

[7] Alur R, Dill DL. A theory of timed automata. Theoretical Computer Science 1994;

126(2):183–235. URL citeseer.ist.psu.edu/alur94theory.html.

[8] Alur R. Timed automata. CAV’99, no. 1633 in LNCS, 1999.

70 REFERENCES

[9] En-Nouaary A, Dssouli R. A guided method for testing timed input output automata. Test-

Com, 2003; 211–225.

[10] Cardell-Oliver R. Conformance tests for real-time systems with timed automata specifica-

tions. Formal Aspects of Computing 2000; 12(5):350–371. URL citeseer.ist.psu.

edu/385816.html.

[11] En-Nouaary A. A scalable method for testing real-time systems. Software Quality Control

2008; 16(1):3–22, doi:http://dx.doi.org/10.1007/s11219-007-9021-8.

[12] Larsen KG, Yi W. Time abstracted bisimulation: Implicit specifications and decidability.

LNCs 1994; 802:160–176.

[13] Tretmans J. Test generation with inputs, outputs, and quiescence. Tools and Algorithms

for Construction and Analysis of Systems, Second International Workshop, TACAS ’96,

Passau, Germany, March 27-29, 1996, Proceedings, Lecture Notes in Computer Science,

vol. 1055, Margaria T, Steffen B (eds.), Springer, 1996; 127–146.

[14] Gargantini A. Conformance testing. Model-Based Testing of Reactive Systems: Advanced

Lectures, Lecture Notes in Computer Science, vol. 3472, Broy M, Jonsson B, Katoen JP,

Leucker M, Pretschner A (eds.), Springer-Verlag, 2005; 87–111.

[15] Ghriga M, Frankl PG. Adaptive testing of non-deterministic communication protocols.

Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test sys-

tems VI, North-Holland Publishing Co.: Amsterdam, The Netherlands, The Netherlands,

1994; 347–362.

[16] Bonifácio AL, Moura AV. A New Timed Discretization Method for Automatic Test Gen-

eration for Timed Systems. Technical Report IC-09-31, Institute of Computing, University

of Campinas September 2009.

[17] Bonifácio AL, Moura AV, Simão AS, Maldonado JC. Conformance Testing by Model

Checking Timed Extended Finite State Machines. Brazilian Symposium on Formal Meth-

ods (SBMF’06), Natal, 2006; 43–58.

[18] Springintveld J, Vaandrager F, D’Argenio PR. Testing timed automata. Theor. Comput.

Sci. 2001; 254(1-2):225–257.

[19] Wang F. Efficient verification of timed automata with bdd-like data structures. STTT 2004;

6(1):77–97.

[20] Jeannet B, Jéron T, Rusu V. Model-based test selection for infinite-state reactive systems.

FMCO, 2006; 47–69.

REFERENCES 71

[21] Bonifácio AL, Moura AV, da Silva Simão A, Maldonado JC. Towards Deriving Test Se-

quences by Model Checking. Electron. Notes Theor. Comput. Sci. 2008; 195:21–40, doi:

http://dx.doi.org/10.1016/j.entcs.2007.08.025.

[22] Fouchal H. Conformance testing techniques for timed systems. SOFSEM, 2002; 1–19.

[23] Fouchal H, Petitjean E, Salva S. Testing timed systems with timed purposes. RTCSA ’00:

Proceedings of the Seventh International Conference on Real-Time Systems and Applica-

tions, IEEE Computer Society: Washington, DC, USA, 2000; 166.

[24] Briones LB, Brinksma E. A test generation framework for uiescent real-time systems.

FATES, 2004; 64–78.

[25] Krichen M, Tripakis S. Conformance testing for real-time systems. Form. Methods Syst.

Des. 2009; 34(3):238–304, doi:http://dx.doi.org/10.1007/s10703-009-0065-1.

[26] En-Nouaary A, Dssouli R, Khendek F. Timed wp-method: Testing real-time systems.

IEEE Trans. Softw. Eng. 2002; 28(11):1023–1038, doi:http://dx.doi.org/10.1109/TSE.

2002.1049402.

Epı́logo

Este capı́tulo apresentou a proposta de uma nova discretização de modelos temporizados. Mos-

tramos que não é necessário o uso das regiões de relógio para se obter uma discretização. Ofe-

recemos uma flexibilidade na escolha da granularidade que por consequência proporciona uma

diminuição significativa no espaço de estado gerado.

O objetivo do trabalho foi apresentar as provas de corretude da simulação entre o TIOA e

seu correspondente autômato grid. A partir do modelo discretizado, sequências de teste podem

ser extraı́das do grid para o teste de conformidade. As propriedades modeladas pelas propos-

tas de teste a serem verificadas nos sistemas são classificadas como de falha ou desejada, de

acordo com o foco do teste em questão. O critério de conformidade seguiu com uma estratégia

de verificação usando sequências extraı́das, tanto das aplicações realizadas nas implementações

candidatas quanto nas realimentações feitas nos autômatos grid que representam os TIOA ori-

ginais. Usando esta noção de teste mostramos que é possı́vel verificar se o comportamento

de ambos os modelos são compatı́veis, produzindo assim vereditos sobre as implementações

testadas com respeito as propriedades modeladas.

O próximo capı́tulo apresenta um modelo estendido de FSM, suportando variáveis de con-

texto, juntamente com um modelo de tempo, chamado TEFSM. O trabalho mostra como o

problema de confirmação de configuração pode ser reduzido ao problema de se encontrar ca-

minhos no produto de TEFSM, usando técnicas de model-checking para gerar seqüências de

confirmação.

73

Capı́tulo 4

Derivando Sequências de Confirmação

Prólogo

A geração de casos de teste baseado em modelos tem sido largamente usada na atividade de teste

de conformidade. Naturalmente em alguns casos, essa tarefa se torna altamente problemática

devido à explosão no número de estados, especialmente considerando aspectos como as propri-

edades temporais de sistemas crı́ticos.

Devido a essa complexidade, se faz necessário o uso de modelos formais e técnicas adequa-

das para manipular e contornar tal problema. Algumas técnicas de teste suportam a noção de

variáveis de contexto em seus modelos tanto quanto parâmetros de entrada de saı́da, permitindo

a representação de diferentes configurações do sistema. Já outras propostas incorporam a noção

de tempo, permitindo que a evolução contı́nua de tempo dos sistemas seja capturada.

Neste trabalho, usamos um modelo estendido de FSM, suportando variáveis de contexto,

juntamente com um modelo de tempo. Por isso, através dessa proposta podemos considerar

interações entre entradas e saı́das do modelo, bem como o instante em que esses eventos ocor-

rem. Neste caso, vale ressaltar que as entradas e saı́das ocorrem de maneira associada.

Este capı́tulo é composto pelo artigo, “Towards Deriving Test Sequences by Model Chec-

king”, que explora o problema de confirmação de configurações no modelo TEFSM. A idéia

é mostrar como o problema de confirmação de configuração pode ser reduzido ao problema

de se encontrar caminhos no produto de TEFSM. Quando nenhum caminho é encontrado para

uma propriedade especificada, técnicas de model-checking podem ser usadas para gerar uma

seqüência de confirmação. Neste trabalho mostramos como usar a noção de modelos na geração

de casos de teste, e como seqüências de confirmação podem ser aplicadas ao formalismo pro-

posto. O artigo foi publicado na revista Electronic Notes in Theoretical Computer Science

(ENTCS) da Elsevier Science Publishers. Uma versão preliminar deste artigo, intitulada “Con-

formance Testing by Model Checking Timed Extended Finite State Machines”, foi apresentada

e publicada no Brazilian Symposium on Formal Methods (SBMF 2006), realizado em Natal.

75

SBMF 2007

Towards Deriving Test Sequences by

Model Checking

Adilson L. Bonifácio1 Arnaldo V. Moura2

Computing Institute, University of Campinas

P.O. 6176 – Campinas – Brazil – 13081-970

Adenilso da Silva Simão3 José Carlos Maldonado4

Mathematic Science and Computing Institute, University of São Paulo

P.O. 668 – São Carlos – Brazil – 13560-970

Abstract
Model-based testing automatically generates test cases from a model describing the behavior of the system under
test. Although there exist several model-based formal testing methods, they usually do not address time constraints,
mainly due to the fact that some supporting formalisms do not allow a suitable representation of time. In this paper,
we consider such constraints in a framework of Timed Extended Finite State Machines (TEFSMs), which augment
the Extended Finite State Machine (EFSM) model by including a notion of explicit and implicit time advancement.
We use this extension to address conformance testing by reducing the confirming configuration problem to the
problem of finding a path in a TEFSM product.

Keywords: Model Checking, Timed EFSM, Conformance testing, Suspicious Configuration.

1 Introduction

Model-based testing comprises the automatic generation of efficient test cases using models of

system requirements, usually based on formally specified system functionalities. It involves the

(i) construction of a suitable formal model, (ii) derivation of test inputs, (iii) calculation of test

1adilson@ic.unicamp.br
2arnaldo@ic.unicamp.br
3adenilso@icmc.usp.br
4jcmaldon@icmc.usp.br

This paper is electronically published in

Electronic Notes in Theoretical Computer Science

URL: {www.elsevier.nl/locate/entcs}

77

78 Capı́tulo 4. Derivando Sequências de Confirmação

outputs, (iv) execution of test inputs over implementations, (v) comparison of the results from

the calculated test outputs and the implementation executions, and (vi) decision of whether

the testing should be stopped. All these tasks are tightly related to each other. For instance,

the way the model is written impacts on how test inputs can be generated. Moreover, the

decision of whether the implementation has already been tested enough depends on one’s ability

to determine how many undiscovered faults may remain in it. Usually the purpose of testing

is not to demonstrate that the implementation is equivalent to its specification, since this goal

is infeasible for most practical applications. Instead, this ideal equivalence is relaxed into a

conformance relation [13, 15]. The so-called conformance testing aims at demonstrating that the

implementation behavior conforms (in some sense) to the behavior dictated by the specification

[29].

The problem of generating test cases for conformance testing based on Finite State Machines

(FSMs) has already been investigated [7, 21, 28, 8, 14, 12]. However, there are many situations

in which the modeling of the system as a FSM is cumbersome, due to the state explosion

problem, or even impossible, due to the fact that there are some relevant aspects that can not

be properly expressed, e.g., the passage of time. Some extensions to the FSM model have

been proposed in order to overcome these problems [33, 6, 1]. Other extensions incorporate

notions like context variables and input/output parameters, allowing the succinct representation

of many different configurations [27]. Still others incorporate notions of time, allowing the

model to capture the evolution of time [24, 4, 36].

An Extended Finite State Machine (EFSM) can be thought of as a folded FSM [27]. Given

an EFSM, and assuming that domains are finite, it is possible to unfold it into a pure FSM

by expanding the values of its parameters and variables. The resulting FSM can be used with

FSM-based methods for test derivation with complete fault coverage, which means that all

fault possibilities can be exhausted. Nonetheless, in most practical situations, this approach is

unfeasible, mainly due to the state explosion effect [22, 27].

Time plays an important role in determining the acceptability of system behavior in many

system categories since not only the input/output relationship can be relevant, but also the period

of time when those events occur may be important. In such cases, it is mandatory to be able to

represent time constraints of the system, and to test whether a given implementation conforms

to these constraints. There are some formalisms that allow the representation of various time

related concepts, such as Timed Petri Nets [19] and Timed Automata [2, 1, 32, 11]. Nonetheless,

there are few, if any, methods that allow a satisfactory derivation of adequate test cases from

those models.

We are interested in model-based methods for testing systems with time constraints. In

particular, we are addressing the problem posed in tasks (i)-(iii) alluded to above, namely the

construction of an adequate formalism for modeling systems and the automatic generation of

test cases, as well as the determination of the expected outputs. These tasks are closely related,

2. Basic Formal Concepts 79

and should be considered together.

To this end, we define Timed EFSMs [5], or TEFSMs, by including the notion of explicit and

implicit time advancement in the EFSM formalism. Then, we can adapt some well-established

results, derived for FSMs and EFSMs, to the context of systems that require time constraints.

In particular, we address the problem of configuration confirmation for TEFSMs in the same

vein as done by Petrenko et al. for EFSMs [27]. In that work, it is shown how the problem of

configuration confirmation for EFSMs can be reduced to the problem of finding a path in an

EFSM product. By defining a property that states when no such a path exists, model-checking

techniques can be used to generate a confirming sequence. We show how the notion of prod-

uct machines and confirming sequences can be applied to the extended formalism of TEFSMs.

Given a configuration and a set of suspicious configurations, a confirming sequence is a se-

quence of (parameterized) inputs that allows us to distinguish the given configuration from

suspicious configurations by comparing outputs and, possibly, observing the time indicated in

each of the outputs. Finding a confirming sequence can also be seen as an extension of the state

identification problem [20, 16].

This paper is organized as follows. In Section 2 we present the concepts of EFSMs and

Extended Timed Transition Systems [7]. In Section 3 we introduce the Timed Extended FSMs.

The product of TEFSMs is presented in Section 4. In Section 5 we describe how the TEFSM

product can be used in a model-checking set-up, and illustrate this process with a simple exam-

ple in Section 6. Finally, in Section 7, we draw some concluding remarks and indicate possible

directions for future research.

2 Basic Formal Concepts

In this section, we give a brief overview of the formal concepts that are involved in this work.

First, we present EFSMs which are used to specify system requirements. Next, important as-

pects of extended timed transition systems are introduced.

2.1 Extended FSM Model

An EFSM is an extension of a conventional FSM. In contrast to FSMs, in the EFSM model we

have to consider other items [27], such as input and output parameters, and context variables.

Also, update and output functions, as well as predicates are defined over context variables and

input parameters.

Let X and Y be finite sets of input and output symbols. Let R be a finite set of parameter

symbols. For z ∈ X ∪ Y , we denote by Rz ⊆ R the set of parameters associated with z.

Also Dz denotes the set of parameter valuations associated with z. An element of Dz maps

Rz to some valuation domain. Similarly, let V be a finite set of context variable names, with

80 Capı́tulo 4. Derivando Sequências de Confirmação

DV denoting a set of valuations for V . At this point, there is no need to further specify the

valuation domains. An EFSM M over X , Y , R, V and the associated valuation domains is a

tuple (S, T, s0, λ0), where S and T are finite sets of states and transitions, respectively, s0 ∈ S

is the initial state, and λ0 is an initial context variable valuation. Each transition t ∈ T is a tuple

(s, x, P, op, y, up, s′), where:

• s, s′ ∈ S are the source and the target states of the transition, respectively;

• x ∈ X is the input symbol of the transition;

• y ∈ Y is the output symbol of the transition;

• P , op and up are functions defined over valuations of the input parameters and context

variables V , thus:

– P : Dx ×DV → {True, False} is the predicate of the transition;

– op : Dx ×DV → Dy is the output parameter function of the transition;

– up : Dx ×DV → DV is the context update function of the transition.

Given an input x and the set of input parameter valuations Dx, a parameterized input is a

pair (x, px), where px ∈ Dx. The parameterized outputs are defined in a similar way. A config-

uration of M is a pair (s, λ) ∈ S ×DV , where s is a state and λ is a context variable valuation.

A transition (s, x, P, op, y, up, s′) is enabled for a configuration (s, λ) and parameterized input

(x, px) if P (px, λ) evaluates to true.

The machine starts from the initial configuration and operates as follows. Upon receiving

an input along with the corresponding parameter valuation, and computes the predicates that

are satisfied for the current configuration. From among the presently enabled transitions one

will fire. By executing the chosen transition, the machine produces an output along with an

output parameter valuation using of the output parameter function. The latter is computed by

the output parameter valuation. The machine updates the current context variable valuation

according to the context update function, and moves from the source to the target state of the

transition.

An EFSM, furthermore, is considered to be:

• Predicate complete: for each pair (s, x) ∈ S × X , every element in Dx ×DV evaluates

at least one predicate to true among the set of all predicates guarding transitions leaving

s with input x;

• Input complete: for each pair (s, x) ∈ S ×X , there exists at least one transition leaving

state s with input x;

2. Basic Formal Concepts 81

• Deterministic: any two transitions leaving the same state and with the same input have

mutually exclusive predicates;

• Observable: for each state s and each input x, every outgoing transition from s on x has

a distinct output symbol.

2.2 Extended Timed Transition Systems

We can extend the original timed transition system (TTS) notion of [7] by associating a set of

clocks and invariant conditions with each state. All clocks in the model increase in an uniform

way, according to a global time frame [1, 2], and the corresponding invariant condition must

hold in the current state of the model.

First, we say how clocks behave during system evolution [1]. Let C be the set of clock

names (or clocks, for short), Φ(C) is the set of clock constraints δ in the form,

δ := c ≤ τ | τ ≤ c | ¬δ | δ1 ∧ δ2,

where c is a clock and τ ∈ Q5 is a time instant. A clock interpretation, ν, is a mapping from

C to Q. The set of clock interpretations is denoted by [C 7→ Q]. An interpretation ν over C

satisfies δ ∈ Φ(C), written ν � δ, iff δ evaluates to true when each clock c is substituted by ν(c)

in δ.

Let ν ∈ [C 7→ Q] be a clock interpretation. For τ ∈ Q, we define the clock interpretation

ν + τ , which maps each clock c to the value ν(c) + τ . Also, for K ⊆ C, [K 7→ τ]ν is the

clock interpretation that assigns τ ∈ Q to each clock c ∈ K and agrees with ν on the rest of the

clocks.

An Extended TTS (ETTS) is given by a tuple (S, s0, X, C, Inv,−→), where S is a finite

set of states, s0 ∈ S is the initial state, X is a finite set of events, C is a finite set of clocks,

Inv : S → Φ(C) maps states to invariant conditions, and −→ is a transition relation, where

−→⊆ (S ×X × 2C × Φ(C) × S). A configuration is given by a pair (s, ν), where s is a state

and ν is a clock interpretation. The initial configuration is given by (s0, ν0), where ν0(c) = 0,

for all c ∈ C, is the initial clock interpretation, and ν0 � Inv(s0). Given a configuration (s, ν),

a transition (s, x,K, δ, s′) indicates that from state s, receiving the input event x, and provided

that ν satisfies δ, the system may move to state s′, resetting all the clocks in K to zero. The

ETTS always starts in the initial configuration (s0, ν0), and with the (global) time set to zero.

A time sequence is a sequence τ̄ = τ0τ1τ2 . . ., where τi ∈ Q, i ≥ 0, τ0 = 0, and τi ≥ τi−1,

i ≥ 1. A timed sequence is a pair (x̄, τ̄), where τ̄ is a time sequence and x̄ = x0x1x2 . . . is

a sequence of input symbols. The intuitive idea is that the symbol xi occurs at time τi. Given

two configurations, (s1, ν1) and (s2, ν2), a time delay τ ≥ 0 and an input x, we say that (s2, ν2)

5Q is the set of rationals and Q>0 is the set of positive rationals.

82 Capı́tulo 4. Derivando Sequências de Confirmação

evolves from (s1, ν1) over τ and x, denoted by (s1, ν1)
x
→
τ

(s2, ν2), iff there is a transition

(s1, x,K, δ, s2) such that:

1. ν1 + η � Inv(s1) for all 0 ≤ η ≤ τ ,

2. ν1 + τ � δ,

3. ν2 = [K 7→ 0](ν1 + τ), and

4. ν2 � Inv(s2).

A sequence of configurations γ̄ = γ0γ1γ2 . . . is a run of M iff γ0 is the initial configuration

of M , and there is a timed input (x̄, τ̄) such that

γi−1
xi−→
θi

γi, where θi = τi − τi−1, i ≥ 1.

In this case, we say that γ̄ is a run of M over (x̄, τ̄) from γ0.

Note that, in a timed sequence (x̄, τ̄), time evolves by (τi − τi−1) units from the moment

when xi−1 occurred until xi occurs (for i > 1). Intuitively a run captures the system evolution,

as follows:

1. it starts at state s0, with all clocks set to zero;

2. time evolves by τ1 − τ0 = τ1 units;

3. at instant τ1 the system changes to state s1 on input x1 while resetting clocks in K1 to

zero;

4. time evolves by another τ2 − τ1 units;

5. at instant τ1 + (τ2 − τ1) = τ2 the system changes to state s2 on input x2 while resetting

clocks in K2 to zero;

6. and so on.

We can see that:

• a change of state can only occur when the transition (s, x,K, δ, s′) is enabled, i.e., when

δ is satisfied in the present configuration;

• clocks can be reset to zero in any transition;

• any clock reading is the elapsed time since the last instant it was reset to zero; and

• all clocks increase uniformly according to a global time frame.

3. The Timed EFSM model 83

3 The Timed EFSM model

In the previous sections, we have presented two formalisms: EFSMs and ETTSs. While EFSMs

capture the relationships between inputs, outputs and context variables, ETTSs offer a treatment

of time evolution and its constraints. We observe that there are several methods and techniques

for deriving tests from (E)FSM models (e.g., [27, 17, 8, 26]). However, the derivation of test

cases from (E)TTSs is less established, although some works have considered it (e.g., [30, 7,

18]). It is worth combining both ETTSs and EFSMs formalisms in order to benefit from the

power of both models in terms of expressiveness. This section redefines the EFSM model in

order to capture real-time. We use the ETTS definition as inspiration for this purpose.

3.1 Creating a TEFSM model from an ETTS and an EFSM model

Let X be a finite set of inputs, Y be a finite set of outputs, C be a finite set of clocks, R be

a finite set of parameters, and V be a finite set of context variables. A Timed Extended Finite

State Machine, or TEFSM, M over X , Y , R, V , C, and the associated valuation domains is a

tuple (S, T, Inv, s0, ν0, λ0), where S and T are finite sets of states and transitions, respectively,

Inv is a finite set of invariant conditions associated with states and, s0 ∈ S is the initial state,

ν0 = [C 7→ 0] is the initial clock interpretation and λ0 is an initial context variable valuation.

In the TEFSM model: (i) the dynamic behavior is given by clocks and their resetting, as in the

ETTS model; and (ii) the data and control flow are given by parameters and context variables,

as in the EFSM model. A transition t ∈ T is expressed by a tuple (s, x,Q,K, op, y, up, s′),

where:

• s, x, s′ and K are as defined in the ETTS formalism; see Section 2.2;

• op, y, and up are as defined in the EFSM formalism; see Section 2.1;

• Q : Dx × [C 7→ Q]×DV → {True, False} is the predicate of the transition.

It can be seen that the TEFSM model comprises the EFSM formalism. That is, given a

EFSM M over X, Y,R, V and some valuation domains, as defined in Section 2.1, we can con-

struct a TEFSM model M̂ over the same sets X, Y,R, V and the corresponding domains, by

letting the clock set C be simply {c}. For each transition t = (s, x, P, op, y, up, s′) in M , we

define a transition t̂ = (s, x,Q,K, op, y, up, s′) in M̂ by letting Q(px, ν, λ) = P (px, λ), for any

(px, ν, λ) in Dx × [C 7→ Q]×DV . We also let K = ∅. Clearly, for any px ∈ Dx, λv ∈ DV and

any clock interpretation ν ∈ [C 7→ Q], we have that Q(px, ν, λv) is true iff P (px, λv) is true.

For each state s ∈ S in M , we define the invariant condition ˆInv(s) = (c ≥ 0) in M̂ . Clearly,

ν � ˆInv(s) for any ν ∈ [C 7→ Q] and s ∈ S.

Also, any ETTS model can be cast as a TEFSM model. For that, let M = (S, s0, X, C, Inv,

−→) be an ETTS model. Take a trivial common domain {0} for all parameters and context

84 Capı́tulo 4. Derivando Sequências de Confirmação

variables, a single output symbol Y = {o} and a single context variable V = {v}. For each

parameter z ∈ X ∪ Y , we define Rz = {z}. Then, the set of z-valuations is the singleton

Dz = {pz}, where pz maps z to 0, for all z ∈ X ∪ {o}. Similarly, DV = {λv}, where λv
maps v to 0. Now, a transition t = (s, x,K, δ, s′) in M gives rise to a corresponding transition

t̂ = (s, x,Q,K, op, o, up, s′) in M̂ , where:

• op maps (px, λv) to po;

• up maps (px, λv) to λv; and

• Q maps (px, ν, λv) to True iff ν � δ.

Here, the set of invariant conditions Inv for M is the same for M̂ . The initial state s0 in M̂ is

the same initial state s0 from M .

A configuration of a TEFSM M is a triple (s, ν, λ), where s is a state, ν is a clock interpreta-

tion and λ is a context variable valuation. The initial configuration is (s0, ν0, λ0), where s0 is the

initial state of M , ν0 is the initial clock interpretation of M and λ0 is an initial context variable

valuation of M . A configuration (s, ν, λ) is valid iff ν � Inv(s). Let Γ ⊆ S × [C 7→ Q]×DV

be the set of configurations of M .

3.2 The Operational Semantics for TEFSM models

Considering the dynamic behavior of ETTS models and the data and control flow of EFSM

models, we define the operational semantics of a TEFSM M as follows.

Definition 1 Let γi = (si, νi, λi) ∈ Γ, i = 1, 2, be two configurations ofM . There is an implicit

move from γ1 to γ2 iff

1. s1 = s2,

2. λ1 = λ2,

3. ν2 = ν1 + τ , for some τ ∈ Q>0, and

4. ν2 + η � Inv(s1), for all η, 0 ≤ η ≤ τ .

We denote such an implicit move by γ1 −→
τ

γ2.

Definition 2 Let γi = (si, νi, λi) ∈ Γ, i = 1, 2, be two configurations of M . Let (x, px) be a

parameterized input and (y, py) be a parameterized output. There is an explicit move from γ1 to

γ2 over (x, px) and yielding (y, py) iff there is a transition (s1, x, Q,K, op, y, up, s2) in T such

that:

3. The Timed EFSM model 85

1. ν2 = [K 7→ 0]ν1,

2. ν2 � Inv(s2),

3. Q maps (px, ν1, λ1) to True,

4. op maps (px, λ1) to py, and

5. up maps (px, λ1) to λ2.

We denote such an explicit move by γ1
χ/ξ
−→ γ2, where χ = (x, px) and ξ = (y, py).

Definition 3 Let γi = (si, νi, λi) ∈ Γ, i = 1, 2, 3; τ ∈ Q>0, (x, px) a parameterized input and

(y, py) a parameterized output. If γ1 −→
τ

γ2 and γ2
χ/ξ
−→ γ3, where χ = (x, px) and ξ = (y, py),

then we say that there is a move from γ1 to γ3 and indicate this by γ1
χ/ξ
−→
τ

γ3.

Some of the decorations over and under −→ may be dropped if they are clear from the context.

A parameterized input sequence is any sequence ρ̄ = ρ1ρ2 . . . where each ρi is a parame-

terized input. A parameterized timed input sequence, or timed input, is a pair (ρ̄, τ̄) where ρ̄

is a parameterized input and τ̄ is a time sequence. Similar definitions hold for parameterized

outputs. In particular a timed output is a parameterized timed output sequence.

A sequence of configurations γ̄ = γ0γ1γ2 . . . is a run of M iff there are a timed input (ρ̄, τ̄)

and a parameterized output sequence µ̄ such that

γi−1
ρi/µi
−→
θi

γi, where θi = τi − τi−1, for all i ≥ 1.

We say that the run is over the timed input (ρ̄, τ̄) and produces the timed output (µ̄, τ̄). We also

say that (µ̄, τ̄), or µ̄, is produced by M from γ0 in response to (ρ̄, τ̄).

Some notions from the EFSM and ETTS models are extended to the TEFSM model:

• A TEFSM M is said to be predicate complete if, from any configuration (s, ν, λ) and

given any parameterized input (x, p), there is a delay τ and a transition (s, x,Q,K, op, y,

up, s′) such that Q evaluates (p, ν + τ, λ) to True and ν + η � Inv(s), for all 0 ≤ η ≤ τ .

• The TEFSM M is complete if, for each state s there is a transition leaving s on any input

symbol x.

• We say M is deterministic if, for any configuration (s, ν, λ), any parameterized input

(x, p), and any time instant τ , there are no two different transitions (s, x,Q1, K1, op1, y1,

up1, s1) and (s, x,Q2, K2, op2, y2, up2, s2) such that bothQ1 and Q2 evaluate (p, ν+τ, λ)

to True.

86 Capı́tulo 4. Derivando Sequências de Confirmação

• And, we say M is observable if, for any configuration (p, ν, λ), any parameterized input

(x, p) there are no two transitions (s, x,Q1, K1, op1, y1, up1, s1) and (s, x,Q2, K2, op2, y2,

up2, s2) with y1 6= y2 and with Q1 and Q2 both evaluating (p, ν, λ) to True.

3.3 Configuration Distinguishability in the TEFSM model

Distinguishability of configurations in the Timed Extended Finite State Machine model is de-

fined over parameterized input sequences. Two configurations γ and γ′ of two distinct machines

M andM ′, respectively, are distinguishable over a timed input (ρ̄, τ̄) if the corresponding timed

outputs (µ̄, τ̄) and (µ̄′, τ̄ ′), produced by M and M ′ over (ρ̄, τ̄) from γ and γ′, respectively, are

not compatible, in a sense to be defined shortly. We also say that (ρ̄, τ̄) is a timed input separat-

ing those two configurations. We formalize these notions in the sequel, extending the definitions

in [27]. Given a context variable valuation λ and a set of variables U , the U-projection of λ is

the valuation obtained from λ by retaining the variables that are in the set U , denoted by λ ↓ U .

Similarly, for input symbols and their valuations, and for output symbols and the corresponding

valuations.

Definition 4 Let y and y′ be outputs of TEFSMs M and M ′, respectively. Let R and R′ be

the sets of parameters associated, respectively, with y and y′. The parameterized outputs (y, p)

and (y′, p′) are said to be compatible if y = y′ and p ↓ R′ = p′ ↓ R. Two parameterized

output sequences, (y1, p1) . . . (yk, pk) of M and (y′1, p
′
1) . . . (y

′
k, p

′
k) of M ′ are compatible if, for

all i = 1, . . . , k, the parameterized outputs (yi, pi) and (y′i, p
′
i) are compatible.

Intuitively, parameterized outputs are compatible when the output symbol is the same, and

the output valuation agrees on all common output symbols. Distinguishability of configurations

is defined as follows.

Definition 5 Given a timed input ᾱ = (ρ̄, τ̄), a configuration γ of M and a configuration γ′

of M ′ are distinguishable by ᾱ if parameterized output sequence produced by M from γ in

response to ᾱ is not compatible with any parameterized output sequence that can be produced

by M ′ from γ′ in response to ᾱ. The timed input ᾱ is said to be a sequence separating γ from

γ′.

4 Timed Extended FSM Product

In Section 5 we extend to TEFSMs the method for the derivation of configuration confirming

sequences defined in [27]. Since this method requires the notion of product machines, in this

section we present the necessary extension of that notion to TEFSMs.

4. Timed Extended FSM Product 87

In the product of TEFSMs, the occurrence of implicit transitions can be ignored, since the

global time frame which is used for all clock variables is the same for both TEFSMs. This

guarantees that the system evolution is maintained during implicit transitions.

Let M i = (Si, Invi, T i), i = 1, 2, and γi = (si0, ν
i
0, λ

i
0), i = 1, 2, be two TEFSMs and their

corresponding initial configurations. The product machine is denoted by M1 ×M2. We will

use superscript 1 to denote elements of M1, like R1 is the set of parameters for M1. Likewise,

superscript 2 will indicate objects associated with M2, like V 2 is the set of context variables of

M2. The superscript 1, 2 is reserved for the product machine M1 ×M2.

The set of input symbols of M1,2 is X1,2 = X1 ∪X2. Likewise, Y 1,2 = Y 1 ∪ Y 2. The set

of parameters of M1,2 is given by R1,2 = R1 ∪ R2, with the proviso that for all z ∈ R1 ∩ R2,

the valuations of z in M1 and M2 have a common domain. It is clear that we are using the

same parameter domains in M1,2 as they were in M1 and M2. For any z ∈ X1,2 ∪ Y 1,2, we let

R1,2
z = R1

z ∪ R
2
z . Note that, given a valuation r1,2

z for elements in R1,2
z we can get valuations

r1
z = r1,2

z ↓ R1
z and r2

z = r1,2
z ↓ R2

z , for machines M1 and M2, respectively, and, moreover,

r1,2
z = r1

z ∪ r
2
z . Similarly for clock interpretations and context variable valuations. We assume

that clocks and context variables are disjoint, i.e., C1,2 = C1 ∪ C2, with C1 ∩ C2 = ∅, and

V 1,2 = V 1 ∪ V 2, with V 1 ∩ V 2 = ∅. As for the valuation domains, they are the same as in

M1 as in M2. The set of states of M1,2 is given by S1,2 = S1 × (S2 ∪ {fail}), where fail is a

new state. The set of invariant conditions Inv1,2 of M1,2 maps S1,2 to Φ(C1,2), and it is given

by Inv1,2(s1, s2) = Inv1(s1) ∧ Inv
2(s2), for all (s1, s2) ∈ S

1,2. Moreover, Inv1,2(s1, fail) =

Inv1(s1), for all s1 ∈ S
1.

The initial configuration ofM1,2 will be given by γ1,2
0 = ((s1

0, s
2
0), (ν

1,2
0 , λ1,2

0)), where ν1,2
0 =

ν1
0 ∪ν

2
0 and λ1,2

0 = λ1
0∪λ

2
0. Note that we can take unions here, since clock and context variables

are disjoint in M1 and M2.

It remains to specify the transitions of M1,2. Let (si1, x, Q
i, Ki, opi, yi, upi, si2), i = 1, 2,

be transitions of M1 and M2, both with the same input x. In the following definition we will

be considering a parameterized input (x, p1,2
x), a clock interpretation ν1,2 and a context variable

valuation λ1,2, all for the machine M1,2. We also let p1
x = p1,2

x ↓ R1
x and p2

x = p1,2
x ↓ R2

x.

Likewise, we let ν1 = ν1,2 ↓ C1 and ν2 = ν1,2 ↓ C2, and also λ1 = λ1,2 ↓ V 1 and λ2 = λ1,2 ↓

V 2. There are two cases:

case 1: y1 = y2 and op1(p, λ) ↓ R1,2 = op2(p, λ) ↓ R1,2, for all (p, λ) ∈ Dx × DV where

R1,2 = R1
y1 ∩ R

2
y2 . That is, the output symbol is the same and the output valuations of

both transitions are the same on each common output parameter. We add two transitions

to T 1,2,

1. ((s1
1, s

2
1), x, Q,K, op, y

1, up, (s1
2, s

2
2)), where:

(a) Q(p1,2
x , ν1,2, λ1,2) = Q1(p1

x, ν
1, λ1) ∧Q2(p2

x, ν
2, λ2)

88 Capı́tulo 4. Derivando Sequências de Confirmação

(b) K = K1 ∪K2

(c) op(p1,2
x , λ1,2) = op1(p1

x, λ
1) ∪ op2(p2

x, λ
2). Recall that op1 and op2 coincide on

common output parameters and so we can safely take the union.

(d) up(p1,2
x , λ1,2) = up1(p1

x, λ
1) ∪ up2(p2

x, λ
2). Recall that V 1 ∩ V 2 = ∅.

2. ((s1
1, s

2
1), x, Q,K, op, y

1, up, (s1
2, fail)), where:

(a) Q(p1,2
x , ν1,2, λ1,2) = Q1(p1

x, ν
1, λ1) ∧ (¬Q2(p2

x, ν
2, λ2))

(b) K = K1

(c) op(p1,2
x , λ1,2) = op1(p1

x, λ
1)

(d) up(p1,2
x , λ1,2) = up1(p1

x, λ
1)

case 2: Else, when the output valuations or the output symbols do not match, we add the tran-

sition ((s1
1, s

2
1), x, Q,K, op, y, up, (s

1
2, fail)) to T 1,2, where:

1. Q(p1,2
x , ν1,2, λ1,2) = Q1(p1

x, ν
1, λ1)

2. K = K1

3. op(p1,2
x , λ1,2) = op1(p1

x, λ
1)

4. up(p1,2
x , λ1,2) = up1(p1

x, λ
1)

Moreover, if (s1
1, x, Q,K, op, y, up, s

1
2) is a transition of M1, we add to M1,2 the transition

((s1
1, fail), x, Q,K, op, y, up, (s

1
2, fail)).

Suppose that the product machine is in the state (s1
1, s

2
1), and on input (x, p1,2

x) we find

that M1, on state s1
1, has a transition on input (s1

1, p
1
x), where p1

x is the reduction of p1,2
x to the

parameters associated with x in M1. Similarly, M2, on state s2
1, has a transition on (x, p2

x).

Moreover, the output of these transitions agree on the output symbol y, and also on valuations

of any common output parameter of y in M1 and in M2. In this situation, we would want the

product machine M1,2 to enact both transitions of M1 and M2, componentwise. For that: (i)

the same clocks are reset; (ii) the output parameter valuations are copied from M1 and M2; and

(iii) both context updates are also carried over to M1,2. But we can only enable this action in

M1,2 if both transitions in M1 and M2 are enabled. This is case 1(i).

Otherwise, we consider the situation where the transition in M1 is enabled, but the one in

M2 is not. Here, we follow case 1(ii), and make the product machine M1,2 enact the behavior

of M1 using for that the first state component, while the second component is marked as fail,

thereby ignoring the transition from M2. Note that, in this scenario, M1 might have taken its

transition, whileM2 would be forbidden to do so, even when their external behavior would have

5. Test Generation 89

been indistinguishable. After the second state component is set to fail, M1,2 behaves essentially

as M1.

Finally, when the product machine is in state (s1
1, s

2
1), and we are considering an input

(x, p1,2
x), and we have picked two transitions from M1 and M2, starting respectively at s1

1 and

s2
1, and whose output symbols or output parameter valuations do not match as above, then we

proceed as in case 2. This is similar to case 1(ii) in that the second state component in M1,2 is

marked as fail, and M1,2 uses the first state component to behave as M1, from this moment on.

Consider configurations γi = (si, νi, λi) of machine M i, i = 1, 2. Let ρ̄ = (x̄, p̄x) be a

parameterized input sequence for M1 ×M2, and let ᾱ = (ρ̄, τ̄) is a timed input for M1 ×M2.

Note that, M1 and M2 can be the same machine with different initial configurations. We say

that ᾱ is a separating sequence for γ1 and γ2 iff there is a run γ̄ = γ0γ1 . . . of M1,2 over ᾱ,

where γ0 = ((s1, s2), ν1 ∪ ν2, λ1 ∪ λ2) and for some i ≥ 1, γi is a configuration of M1,2 whose

state is (s1
j , fail) for some s1

j ∈ S
1.

The problem of determining a separating sequence for two configurations of a given TEFSM

M can be reduced to a reachability problem. The reachability analysis is tractable but hard for

EFSMs [23]. Indeed, for TEFSMs it is intractable. This is due to the temporal aspect within

the new model. Another difficulty is the combinatorial explosion in the number of states in

product machines. Some approaches try to overcome this difficulty by relaxing their restrictions.

Approximation algorithms are also used when doing reachability analysis. Other approaches

adapted known algorithms in order to manipulate symbolic data structures [34, 9, 35].

Other simpler contexts [25, 3] present algorithms to obtain separating sequences. We pos-

tulate that these ideas can be adapted and extended in order to obtain separating sequences in

the TEFSM formalism. Such separating sequences would be the result of the test case gener-

ation procedure. Moreover, we have been working with the notion of automata discretization

in order to overcome the problem of infinite time instants. In addition, it is possible to modify

conventional algorithms to reduce the state space generated by the product machine. Another

alternative to obtain tractability in a timed approach for finding separating sequences is through

the use of suspicious configurations [5]. In this case, we can choose a set of suspicious states,

representing an important class fault, based on the expertise of test designers and on assump-

tions of implementations faults, as seen in [13, 31].

5 Test Generation

This section outlines the main concepts for test case generation. First, we present some discus-

sion on the main rationale of conformance testing. Second, we discuss the notion of confirming

configurations, and how it is applied. At last, we discuss deriving test sequences by model-

checking for TEFSMs.

90 Capı́tulo 4. Derivando Sequências de Confirmação

5.1 Conformance Testing

Conformance testing aims at determining whether an implementation behaves in accordance

with a given specification [21, 15]. In general, an implementation is regarded as a black box, of

which only input/output interfaces are known. In this situation, to verify whether an implemen-

tation is in conformance to a specification usually requires an infinite set of test cases in order to

exhaust all error possibilities in the implementation. To overcome this problem, one possibility

is to define a set of test hypotheses in order to reduce the number of test cases to be considered

[13]. Test hypotheses strike a balance between two conflicting aspects. On the one hand, test

hypotheses must be defined to be restrictive enough to render the method feasible and tractable.

On the other hand, these hypotheses must be as less restrictive as possible, in such a way to be

applicable to the largest possible set of implementations.

Conformance testing is guided by a conformance relation between the implementation and

the specification [13]. In order to decide whether an implementation is in conformance to

a specification, we observe the implementation’s outputs to some applied inputs. Considering

real-time systems, it must be also verified whether an implementation when stimulated by inputs

responds with the expected outputs within an allowed time interval.

The problem of using a conformance relation is the number of test sequences which should

be obtained in order to verify whether each possible implementation is in conformance to a

given specification. This problem is worse for timed systems, where there are infinite time

instants for a transition to occur. To overcome this problem, we also need to enforce certain

hypotheses about the implementation, as discussed in Section 5. This set of hypotheses will

reduce the number of possible faults to be considered over the implementation and will render

the method feasible in practical cases.

Several methods employ identification sequences to generate test cases from models. An

identification sequence has the property of determining the correctness of the configuration

reached after some input sequence is taken. Identification sequences may be defined as charac-

terization sets [8, 13], as distinguishing sequences [17] or as confirming configuration sequences

(CCSs) [27], depending on the model and the generation method. A CCS that is investigated in

this paper is a sequence that can increase the confidence that the correct configuration has been

reached in the implementation.

5.2 Configuration Confirming Sequences

A configuration confirming sequence (CCS) is a timed input that can be applied to the imple-

mentation in order to increase the confidence on its correctness. A CCS can be derived from the

product of two machines, one being a specification and the other an undesirable configuration.

However, unlike the FSM models where a finite set of undesirable configurations can be postu-

lated, with EFSM models and TEFSM models it is not possible, or desirable, to determine all

5. Test Generation 91

undesirable configurations. To overcome this problem, a finite set of suspicious configurations

is considered [27]. A set of suspicious configurations is derived from the specification to model

suspicious implementations which can potentially have faults, reflecting the test designer’s as-

sumptions about the implementation faults. The suspicious configurations are extracted from

the specification using a set of test hypotheses based on the fault model (e.g., [13]) and relying

on the test designer’s expertise.

These hypotheses define equivalence classes of implementations that must be put under

testing, and they are used to reduce the number of possible implementations that need to be

considered. In this work, we assume the following test hypotheses:

1. Specifications and suspicious implementations are modeled by TEFSMs;

2. The number of clocks in the specification must be less than or equal to the number of

clocks in the suspicious implementations; and

3. The same alphabets are used in both specification and suspicious implementations.

Given a configuration and a suspicious configuration, deriving a CCS can be reduced to the

problem of finding a path in the product of two distinct TEFSMs, or of the same core TEFSM

with distinct initial configurations. Such a sought path would run from the initial state to a fail

state. If the fail state can not be reached, then the suspicious configuration is equivalent to the

original configuration. However, if a fail state is reachable, the model-checking algorithm will

produce a counter-example, as a sequence of transitions that leads to this fail state [10]. This

sequence would make a test case for the suspicious configuration. However, it is still necessary

to identify in which moment each transition was taken, as well as the valuation of the input

parameters associated with each input symbol. Gathering of this information forms a set of test

cases. The test case is then used to exercise a real implementation, and the outputs are compared

with the outputs produced by the specification over the same data. If a disagreement is found

between corresponding outputs, then a fault has been identified.

5.3 Model-checking

Design errors frequently occur when conventional simulation and testing techniques are used

to check safety systems. Model checking is a set of techniques for the automatic analysis of re-

active and real-time systems. Some model checking algorithms have been modified to discover

such errors, thus providing more quality and accuracy in system verifications. In general, given

a transition system and a property, the model checking problem is to decide whether the prop-

erty holds or not in the model represented by the transition system. If not, the model checking

algorithm provides a counterexample, i.e. an execution over the model that violates the property

[23].

92 Capı́tulo 4. Derivando Sequências de Confirmação

Reachability analysis is a special kind of model-checking method that can be applied in a

formal model. In general, given a special state to be found in a model, the reachability analysis

decides if it is possible to move from the initial state to the final special state.

To summarize, to automatically test implementations based on a specification represented

by a machine M , the following steps are performed:

1. An empty set TC of test cases is defined.

2. Given a configuration γ of M , a set of suspicious configurations Γ is defined, based on

test hypotheses, fault models and some specific test engineer’s objectives.

3. For each suspicious configuration γs ∈ Γ, the product of M with itself is constructed,

having γ as the initial configuration of the first instance of M in the product, and having

γs as the initial configuration of the second instance.

4. Reachability analysis is carried out, in order to find a path to a fail state in the product

machine. If such a path is found, it is added to TC.

5. For each tc ∈ TC, a time and an input parameter valuation sequences are derived so as

to satisfy the predicates along the path specified by tc.

6. Each path in TC, with its associated data, is applied to the real implementation under

testing.

6 An Example

We are given two TEFSMs M and N , where M is a specification and N is a suspicious imple-

mentation of M . We obtain the product of these machines, M × N , by applying our method.

In this example, as is usual in practice, N has the same transitions as M . They differ only in

their associated initial configurations. Accordingly, we will denote the product by M0 ×M1,

where M0 is the specification and M1 is the suspicious configuration. The TEFSM M depicted

in Figure 1.

It has three states and seven transitions. The input set is {a, b} and the output set is {c, d, e}.

Furthermore, M has two clock variables, x and y, and one context variable w. There are no

parameters associated with the input symbols, i.e. Ra = Rb = ∅. Likewise, Rc = Rd = ∅.

For each state s in M , the control remains in s whenever its invariant condition is satisfied.

The output e has only one associated parameter. In this case, it is not necessary to name the

parameter. Instead, in Figure 1 and in the sequel we write e(w) to indicate that the current value

of the context variable w is to be assigned to the parameter associated with e. In the figure,

each arrow is labeled by a sequence of items. The first three are always the input symbol, the

6. An Example 93

a, x ≥ 5, {x, y}, c

b, x < 5, {x, y}, d

a,
y
>

16
∧

w
>

4,
{x
},

d,
w

:=
0 b, x

≤
1
∧

y
≥

17, {x, y}, e(w
)

a, x
>

1
∨

y
<

17, {x, y}, c

s1 s3

s2

a, x ≤ 4 ∧ w ≤ 4, {x}, c, w := w + 1
b, y ≤ 16, {x, y}, e(w)

Figure 1: The TEFSM M .

predicate function and the set of clocks to be reset in the transition, respectively. Next, comes

the output symbols, either c or d, and we write directly e(w) to indicate both the output symbol

and the value of its parameter. Finally, if the value of the context variable w is altered by the

transition, this is indicated by the attribution that appears at the end of the label; if the value of

w is not altered by the transition we simply omit the trivial expression w := w.

A configuration of M is given by a state, a clock interpretation and a context variable valua-

tion. Hence, a configuration of M will be denoted by (s, (n,m), k) indicating that the machine

is in state s, n and m are the values for the clock variables x and y, respectively, and k is the

value for the context variable w. The integers are selected as a common valuation domain. In

the configuration (s1, (3, 2), 4) the transition a, x ≤ 4 ∧ w ≤ 4, {x}, c, w := w + 1, from s1 to

itself, is enabled. Likewise, the transition b, y ≤ 16, {x, y}, e(w), from s1 to s3, is also enabled.

For the product, let M0 designate M with the initial configuration (s1, (0, 0), 2), and let M1

designateM with initial configuration (s1, (4, 2), 5). The TEFSM product ofM0×M1 is shown

in Figure 2. To simplify the notation in the example, we will use subscript i to denote items of

machine M i, for i = 0, 1, e.g. x1 represents the clock variable x of M1, while w0 denotes the

variable w in M0.

The initial configuration of M0 ×M1 is denoted by ((s1, s1), (0, 0, 2, 4), (2, 5)), where we

94 Capı́tulo 4. Derivando Sequências de Confirmação

s3fail

s1fail

s22

s33

s2fail

s11

b, x
0
<

5
∧

(x
1
≥

5), {x
0 , y

0 }, d

a, y
0
>

16
∧
y
1
>

16
∧
w

0
>

4
∧
w

1
>

4),

{x
0 , x

1 }, d, w
0
:=

0, w
1
:=

0

{x
0
, y

0
, x

1
, y

1
},
e(
w

0
),
e(
w

1
)

a
, x

0
>

1
∧
x 1
>

1
∧
y 0
<

17
∧
y 1
<

17
),

{x
0
, y

0
, x

1
, y

1
},
c

a, x0 > 1 ∧ y0 < 17 ∧ (x1 ≥ 1 ∨ y1 ≥ 17), {x0, y0, x1, y1}, c

b,
x 0

≤
1
∧
x 1

≤
1
∧
y 0

≥
17

∧
y 1

≤
17

),

a, x
0
≥

5
∧

(x
1
<

5){x
0 , y

0 }, c

{x
0
, x

1
},
c,
w

0
:=
w

0
+

1,
w

1
:=
w

1
+

1

a
, x

0
≤

4
∧
x 1

≤
4
∧
w

0
≤

4
∧
w

1
≤

4)
,

b,
y 0

≤
16

∧
(y

1
>

16
),
{x

0
, y

0
},
e(
w

0
)

b, x0 < 5 ∧ x1 < 5), {x0, y0, x1, y1}, d

b, x0 ≤ 1 ∧ y0 ≥ 17 ∧ (x1 ≥ 1 ∨ y1 ≤ 17), {x0, y0}, e(w0)

a, x0 ≥ 5 ∧ x1 ≥ 5), {x0, y0, x1, y1}, c

b, y0 ≤ 16 ∧ y1 ≤ 16), {x0, y0, x1, y1}, e(w0), e(w1)

a,
x 0

≤
4
∧
w
0
≤

4
∧

(x
1
>

4
∨
w
1
>

4)
, {
x 0
},
c,
w
0

:=
w
0
+

1

a, y
0
>

16
∧
w

0
>

4
∧

(y
1
≤

16
∨
w

1
≤

4), {x
0 }, d, w

0
:=

0

Figure 2: The TEFSM product of M with itself.

6. An Example 95

list first the items corresponding to M0, followed by the items associated with M1. Note that,

in the figure, states are represented by subscripts, e.g., the state (s1, s1) in the product is named

s11.

By inspection of the product, we can see that the input b enables the transition to fire, since

clock conditions on y0 and y1 are satisfied for the initial configuration. After that the transition

is taken, the new configuration is given by ((s3, s3), (0, 0, 2, 0), (0, 5)). It is easy to see that

neither input a nor input b will enable transitions to fire so as to reach, directly, a fail state.

Note that, every clock variable was reset to zero, and transition guards are excluding for clock

variables x0 and x1. If the input b occurs within less than 5 time units, the configuration becomes

((s1, s1), (0, 0, 2, 0), (0, 5)). Otherwise, if the time evolves for more than 5 time units, only the

input a could stimulate the machine to change configurations. The new configuration would

still be ((s1, s1), (0, 0, 2, 0), (0, 5)). Both transitions would drive the control back to the initial

state, where the transition stimulated by input b is the unique one enabled to fire. This cycle

would be executed repeatedly and a fail state would not be reached.

Another possibility is to take the transition on the input a. It is easy to see that the in-

put a separates the configurations (0, 0, 2) from (4, 2, 5). The final configuration reached is

((s1, fail), (0, 0, 3, 4), (2, 5)). On the other hand, the control can be kept within the state

(s1, s1), by a continuous time evolution. After that, the stimulation by input a enables the

transition to fire, and the configuration ((s1, s1), (1, 1, 2, 5), (3, 5)) can be reached. Then, the

transition from state (s1, s1), on input a and with associated predicate x0 ≤ 4∧w0 ≤ 4∧ (w1 >

4 ∨ x1 > 4) is enabled and takes the machine to the fail state (s1, fail). Here, only the clock

variable x0 is reset, and the context variable w0 is updated by one unit. The new configuration

will be ((s1, fail), (0, 1, 3, 5), (3, 5)). From here, we see that input a separates the configuration

(0, 0, 2) from (4, 2, 5), after some time passes. The new configuration that can be reached in

this case is ((s1, fail), (0, 1, 3, 5), (3, 5)).

If we consider another situation, where the initial configurations of M0 and M1, respec-

tively, are given by (0, 0, 2) and (4, 2, 4), another run of M0 ×M1 will also reach the fail state.

In this case, a reachability analysis shows that the fail state of M0 ×M1 can only be reached

when a sequence of one or two consecutive inputs a is applied.

In the example,M0 represents the specification,M1 represents a suspicious implementation,

and the productM0×M1 is used to find sequences of configurations that show non conformance

between a suspicious implementation and the specification. We can derive traces from the

reachability analysis of M0 ×M1. The resulting traces are runs that reach the fail state in the

product machine, starting from the initial configurations of the participating TEFSMs.

96 REFERENCES

7 Concluding Remarks

The ability to derive test cases from formal models opens the possibility that we can construct

more rigorous and dependable systems, by providing a sound basis for the validation of the

systems’ behaviors. There is a direct relationship between the kinds of systems that a given

model can deal with and the availability of methods for deriving test cases. The FSM and EFSM

models are well-established and have been intensively investigated. One important feature they

both lack is the ability to deal with time. In this paper we define TEFSMs as a model that

extends the EFSM model with the notion of time. From that, we discussed an extended method

for deriving configuration confirming sequences for TEFSMs, a step toward automating the

generation of test cases from these models.

Although we can argue that both the model and the generation method can be used, we do

not have answers for pragmatic questions, such as (i) how difficult is it to describe a system

using TEFSMs and (ii) how large are the models we can handle. To answer these questions, it is

necessary to deepen the investigations and implement adequate supporting software tools. We

are currently working in this direction.

Other aspects that can be investigated include how to allow time constraint to be defined

over outputs. We note that our definition does not deal with constraints that may reflect output

response that is not instantaneous. The input and output occur in the same time instant. We are

considering how this extension might impact the test case generation methods.

References

[1] Alur, R., Timed automata, in: CAV, number 1633 in LNCS, 1999, pp. 8–22.

[2] Alur, R. and D. L. Dill, A theory of timed automata, Theoretical Computer Science 126

(1994), pp. 183–235.

URL citeseer.ist.psu.edu/alur94theory.html

[3] Alur, R., M. McDougall and Z. Yang, Exploiting behavioral hierarchy for efficient model

checking., in: CAV, 2002, pp. 338–342.

[4] Behrmann, G., K. G. Larsen, J. Pearson, C. Weise and W. Yi, Efficient timed reachability

analysis using clock difference diagrams, in: Computer Aided Verification, 1999, pp. 341–

353.

URL citeseer.ist.psu.edu/article/behrmann99efficient.html

[5] Bonifácio, A. L., A. V. Moura, A. d. S. Simão and J. C. Maldonado, Conformance Testing

by Model Checking Timed Extended Finite State Machines, in: Brazilian Symposium on

Formal Methods (SBMF’06), Natal, 2006, pp. 43–58.

REFERENCES 97

[6] Campos, S. V., M. Minea, W. Marrero, E. M. Clarke and H. Hiraishi, Computing quan-

titative characteristics of finite-state real-time systems, in: Proc. 15th IEEE Real-Time

Systems Symp. (1994), pp. 266–270, san Juan, Porto Rico.

[7] Cardell-Oliver, R., Conformance tests for real-time systems with timed automata specifi-

cations, Formal Aspects of Computing 12 (2000), pp. 350–371.

URL citeseer.ist.psu.edu/385816.html

[8] Chow, T. S., Testing software design modeled by finite-state machines, IEEE Transactions

on Software Engineering 4 (1978), pp. 178–187.

[9] Cimatti, A., E. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani and A. Tacchella, Inte-

grating bdd-based and sat-based symbolic model checking., in: FroCos, 2002, pp. 49–56.

[10] da Silva, D. A. and P. D. L. Machado, Towards test purpose generation from ctl properties

for reactive systems., Electr. Notes Theor. Comput. Sci. 164 (2006), pp. 29–40.

[11] Dickhöfer, M. and T. Wilke, Timed alternating tree automata: the automata-theoretic

solution to the tctl model checking problem, in: 26th ICALP, LNCS 1644, 1999, pp. 281–

290.

URL citeseer.ist.psu.edu/article/dickhfer99timed.html

[12] Dorofeeva, R., K. El-Fakih and N. Yevtushenko, An improved conformance testing

method, in: Formal Techniques for Networked and Distributed Systems, Lecture Notes

in Computer Science 3731 (2005), pp. 204–218.

[13] En-Nouaary, A., R. Dssouli and F. Khendek, Timed wp-method: Testing real-time systems,

IEEE Trans. Softw. Eng. 28 (2002), pp. 1023–1038.

[14] Fujiwara, S., G. V. Bochmann, F. Khendek, M. Amalou and A. Ghedamsi, Test selection

based on finite state models, IEEE Transaction on Software Engineering 17 (1991).

[15] Gargantini, A., Conformance testing, in: M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker

and A. Pretschner, editors, Model-Based Testing of Reactive Systems: Advanced Lectures,

Lecture Notes in Computer Science 3472 (2005), pp. 87–111.

[16] Gill, A., “Introduction to the theory of finite-state machines,” McGraw-Hill, New York,

1962.

[17] Gonnenc, G., A method for the design of fault detection experiments, IEEE Transactions

on Computing 19 (1970), pp. 551–558.

98 REFERENCES

[18] Higashino, T., A. Nakata, K. Taniguchi and A. R. Cavalli, Generating test cases for a

timed i/o automaton model, in: Proceedings of the IFIP TC6 12th International Workshop

on Testing Communicating Systems (1999), pp. 197–214.

[19] Hirai, T., An application of temporal linear logic to Timed Petri Nets, in: Proceedings of

the Petri Nets’99 Workshop on Applications of Petri Nets to Intelligent System Develop-

ment, 1999, pp. 2–13.

[20] Krichen, M., State identification, in: M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker and

A. Pretschner, editors, Model-Based Testing of Reactive Systems: Advanced Lectures, Lec-

ture Notes in Computer Science 3472 (2005), pp. 87–111.

[21] Krichen, M. and S. Tripakis, Black-box conformance testing for real-time systems, in:

Model Checking Software: 11th International SPIN Workshop, number 2989 in Lecture

Notes in Computer Science, Barcelona, Spain, 2004, pp. 109–126.

[22] McMillan, K. L., “Symbolic Model Checking: An Approach to the State Explosion Prob-

lem,” Kluwer Academic, 1993.

[23] Merz, S., Model checking: A tutorial overview, in: F. C. et al., editor, Modeling and

Verification of Parallel Processes, Lecture Notes in Computer Science 2067, Springer-

Verlag, Berlin, 2001 pp. 3–38.

[24] Møller, J. B., Simplifying fixpoint computations in verification of real-time systems (2002).

URL http://citeseer.ist.psu.edu/540135.html

[25] Nr, B., M. Dickhofer and T. Wilke, The automata-theoretic method works for TCTL model

checking (1998).

URL http://citeseer.ist.psu.edu/44733.html

[26] Offutt, A. J., Y. Xiong and S. Liu, Criteria for generating specification-based tests,

in: Fifth IEEE International Conference on Engineering of Complex Computer Systems

(ICECCS ’99), Las Vegas, NV, 1999, pp. 41–50.

[27] Petrenko, A., S. Boroday and R. Groz, Confirming configurations in EFSM testing, IEEE

Trans. Softw. Eng. 30 (2004), pp. 29–42.

[28] Petrenko, A. and N. Yevtushenko, Testing from partial deterministic fsm specifications,

IEEE Transactions on Computers 54 (2005).

[29] Tretmans, J., Test generation with inputs, outputs, and quiescence., in: T. Margaria and

B. Steffen, editors, Tools and Algorithms for Construction and Analysis of Systems, Second

REFERENCES 99

International Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996, Proceedings,

Lecture Notes in Computer Science 1055 (1996), pp. 127–146.

[30] Tretmans, J., Testing concurrent systems: A formal approach, in: J. Baeten and S. Mauw,

editors, CONCUR’99 – 10th Int. Conference on Concurrency Theory, Lecture Notes in

Computer Science 1664 (1999), pp. 46–65.

[31] Wang, C.-J. and M. T. Liu, Generating test cases for efsm with given fault models., in:

INFOCOM, 1993, pp. 774–781.

[32] Wang, F., Efficient verification of timed automata with bdd-like data structures., STTT 6

(2004), pp. 77–97.

[33] Wang, F., Formal verification of timed systems: A survey and perspective., Proceedings of

the IEEE 92 (2004), pp. 1283–1307.

[34] Wang, F., Symbolic parametric safety analysis of linear hybrid systems with bdd-like data-

structures, Software Engineering, IEEE Transactions on 31 (2005), pp. 38–51.

[35] Wang, F., Under-approximation of the Greatest Fixpoints in Real-Time System Verifica-

tion, ArXiv Computer Science e-prints (2005), pp. 1060–+.

[36] Wang, F., G.-D. Hwang and F. Yu, Tctl inevitability analysis of dense-time systems., in:

CIAA, 2003, pp. 176–187.

Epı́logo

Neste capı́tulo foi apresentada, em detalhes, uma abordagem de teste de conformidade para a

geração de casos de teste baseado em confirmação de configurações. O objetivo foi a geração

de testes para modelos de contexto e tempo. Neste estudo o modelo TEFSM proposto pos-

sui entradas e saı́das associadas, e permite a especificação de sistemas temporizados, onde as

restrições de tempo, em que ocorrem esses eventos, são importantes.

Os resultados alcançados compõem um primeiro passo na direção de se obter um modelo

formal que capture a noção de tempo, juntamente com as transformações de contexto dado pelo

modelo EFSM. Neste trabalho optamos pela técnica de model-checking para que caminhos no

produto de TEFSM sejam encontrados, de tal forma que uma configuração suspeita resulte num

contra-exemplo dado pela aplicação do algoritmo de model-checking.

No entanto, a proposta não aborda uma cobertura completa de falhas, e também não permite

a ocorrência de eventos independentes, entre ações de entrada e saı́da. Por isso o interesse por

mecanismos formais que possam fornecer uma melhor cobertura de falhas bem como flexibili-

zar a ocorrência autônoma de eventos de entrada e saı́da em sistemas reativos.

O próximo capı́tulo apresenta uma abordagem, também de discretização, porém, aplicada

a modelos temporizados com transformações de contexto. Neste caso, o modelo, chamado

TIOCA, é uma evolução dos TIOA, e a abordagem é diferente daquela apresentada para o

modelo TEFSM, que evoluı́ram das EFSM.

101

Capı́tulo 5

Geração de Testes para Sistemas de Tempo

e Contexto

Prólogo

Este trabalho foca a atividade de teste baseada em modelos, na busca por métodos eficientes de

geração de casos de teste para sistemas crı́ticos complexos. Neste caso a proposta utiliza um

novo modelo, mais expressivo e complexo, chamado TIOCA, um autômato temporizado com

variáveis de contexto, que também possui parâmetros associados às entradas e saı́das, e permite

além da evolução contı́nua de tempo, também as transformações de contexto. Nesta direção,

não se conhece até então abordagens que lidem com aspectos de tempo e contexto ao mesmo

tempo, como explorado neste trabalho.

A geração de casos de teste para tal modelo recai, novamente, no problema de explosão do

número de estados, visto que agora, além do tempo contı́nuo, temos as variáveis de contexto,

aumentando a complexidade dessa tarefa.

Para solucionar o problema da explosão de estados, propomos uma nova discretização base-

ada na discretização desenvolvida para TIOA. Ambas as propostas evitam a tradicional aborda-

gem baseada nas regiões de relógio. Com isso, a relação de simulação entre o comportamento

do modelo original e o seu correspondente autômato grid é estabelecido, o que nos dá a base

para a geração dos testes. Mostramos então que modelos TIOCA podem simular de maneira

homomórfica os seus respectivos grid, e vice-versa.

De posse do modelo discretizado, desenvolvemos uma técnica para a geração e aplicação

dos casos de teste em implementações candidatas. Usamos também as propostas de teste para

modelar propriedades especı́ficas do sistema, bem como o conceito de produto para TIOCA.

Assim, a extração dos testes ocorre sobre o produto discretizado que por sua vez são aplicados

em implementações candidatas. Com a estratégia de realimentação das sequências, obtidas das

implementações, nos autômatos grid, podemos verificar se as execuções encontradas são as

103

mesmas do modelo original. A relação entre o modelo original e o grid, dada pela simulação

apresentada com provas detalhadas neste trabalho, garante a verificação de compatibilidade dos

comportamentos dos modelos.

Este capı́tulo é composto pelo artigo, “Generating Test Suites for Timed Systems with Con-

text Variables”, que apresenta um novo método de discretização para o modelo TIOCA, per-

mitindo a geração de casos de teste para sistemas de tempo e contexto. A idéia é utilizar um

modelo discretizado e evitar a explosão combinatória de estados, gerando conjuntos de teste

de forma eficiente. O artigo foi submetido para a IEEE International Conference on Software

Testing, Verification and Validation (ICST’10), que será realizada em Paris, França, de 06 a 09

de Abril de 2010.

104

Generating Test Suites for Timed Systems

with Context Variables

Adilson Luiz Bonifácio
Computing Institute, University of Campinas

Campinas, Brazil
adilson@ic.unicamp.br

Arnaldo Vieira Moura
Computing Institute, University of Campinas

Campinas, Brazil
arnaldo@ic.unicamp.br

Abstract – Model-based formal methods have been widely used for testing critical and re-
active systems. Some aspects of reactive systems are captured by the notion of data flow and
interactions with the environment. Conventional timed models allow for the continuous evolu-
tion of time variables. We propose a new timed context automata to model complex systems, one
that simultaneously features time evolution and context variable transformations. We propose
a generalized strategy to discretize such models. From the resulting discrete automata we can
automatically generate test suites that can be used to verify whether candidate implementations
conform to given specifications.

keywords - Timed systems; Discretization; Context transformations; Timed context test case
generation;

1 Introduction

The process of verifying and testing complex computational systems have been intensively

investigated. Model-based testing has been one of the most promising techniques among those

used to automatically generate test suites for complex systems [1, 2, 3, 4]. Several formalisms

have been developed to automatically construct test suites for pure timed systems as well as for

systems with only context transformations. An approach to deal with these aspects in the same

model has remained elusive.

Here we treat complex systems that obey both time requirements and also satisfy data flow

transformations, with both these aspects being resolved within the same formal model. Tra-

ditionally, Timed Input/Output Automata (TIOA) [5, 6, 7], a variant of the classical timed au-

tomata model [8, 9, 10], have been used to express continuous time evolution. In order to also

capture data flow effects, we extend the TIOA model by introducing context variables. The new

formalism, Timed Input/Output Context Automata (TIOCA), allow for both continuous time

evolution [11, 12] and data flow transformations [13, 14, 15, 16].

In order to extract test suites from these models we propose a new discretization mechanism

using the notion of grid automata [11, 17, 18], but now including also data flow transforma-

tions. The discretization technique is inspired by ideas proposed in [7], but deviates from the

traditional approach based on classical clock regions [8, 19] which treat only the continuous

time evolution aspects. Also, notably, the discretization technique now allows for a much wider

105

106 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

range of granularity choices and, furthermore, makes precise the notion of simulation bound-

aries. With that, it is then possible to precisely establish the relationship between the original

system behavior and the corresponding grid automaton, when the former moves away from the

established boundaries. More specifically, we show that TIOCA homomorphically simulates

their corresponding grid automata, and vice-versa.

In order to specify which system properties will be subjected to testing we use the notion of

test purpose models [20, 21]. The joint behavior of a specification and a test purpose is captured

by their synchronous product. After discretizing the product, we can automatically extract test

suites. Such test suites, when applied to implementation candidates result in complete runs from

which test conformance verdicts can be finally obtained [1].

In Section 2, we discuss bounded values and bounded functions. In Section 3, we present

the TIOCA model. Section 4 presents the new discretization technique. Section 5 discusses the

process of generating test suites using the notions of test purposes and the synchronous product.

It also shows how to apply test cases to obtain test verdicts. In Section 6 we briefly survey some

related works. Finally, some concluding remarks appear in Section 7.

Full proofs of all claims can be found in [18].

2 Bounds and adjusted values

In this section, we define the notion of bounded values and bounded functions. The latter will be

used to limit the excursions of discretized timed automata up to a pre-defined boundary. We also

introduce the notion of a set of variables and the corresponding set of rational conditions that

can be derived from them. Such conditions will be used to specify both guards along transitions

as well as state invariants. In order to keep the number of states of a timed model under control,

we will use the notion of discretized automata. Although discretization is introduced in a later

section, it will depend on the notion of adjusted values, which is also defined in this section.

2.1 Conditions and interpretations

In what follows, the set of rationals will be denoted by Q≥. Given t ∈ Q≥, we will denote the

integral and fractional parts of t by ⌊t⌋ and ⌈t⌉, respectively.

Let C be a finite set of symbols, also called variables. A variable interpretation, or simply

an interpretation, over C is a partial function from C into Q≥. A total variable interpretation,

or just a total interpretation, over C is a variable interpretation over C whose domain1 is C.

The set of all interpretations and total interpretations over C, respectively, will be denoted by

[C y Q≥] and [C → Q≥].

The set of all conditions over variables is defined next.

1dom(f) will denote the domain of a function f .

2. Bounds and adjusted values 107

Definition 1 Let C be a set of variables. The set of all variable conditions, ΦC , is comprised

by all expressions δ that can be finitely generated using the rules

δ := true | c ≤ τ | τ ≤ c | ¬δ | δ1 ∧ δ2,

where c is a variable and τ ∈ Q≥. •

We will take the usual liberties when writing variable conditions, e.g., we may write c ≥ τ for

τ ≤ c, or c < τ instead of ¬(τ ≤ c), or τ1 ≤ c ≤ τ2 for (τ1 ≤ c) ∧ (c ≤ τ2).

Satisfiability is treated in the usual way.

Definition 2 Let δ ∈ ΦC and ν ∈ [C y Q≥] with all variables occurring in δ in dom(ν). Then

ν satisfies δ, denoted ν � δ, if δ is true when every variable c is replaced by ν(c) in δ and the

resulting propositional logic sentence is evaluated in the usual manner. •

We now define how to displace an interpretation.

Definition 3 Let ν ∈ [C y Q≥] and τ ∈ Q≥. Then (ν + τ)(c) = ν(c) + τ if c ∈ dom(ν), or

undefined otherwise, for all c ∈ C. •

That is, ν + τ just adds τ to all values under ν. Another important operation is interpretation

overruling.

Definition 4 Let ν, µ ∈ [C y Q≥]. We define (ν ⊕ µ)(c) as µ(c) if c ∈ dom(µ), as ν(c) if

c ∈ (dom(ν)− dom(µ)), or undefined otherwise, for all c ∈ C. •

That is, ν⊕µ assigns values first according to µ and, baring that, then it assigns values according

to ν, if at all possible.

2.2 Bounded values and functions

We turn to the notion of bounded interpretations.

Definition 5 Let L ∈ Q≥ be a bound. Let x ∈ Q≥ be a value, let A be a set and let α ∈ [A y

Q≥]. Define

1. The L-bounded x value, denoted xL, is given by: (i) x, if x ≤ L; or (ii) ⌊L⌋ + ⌈x⌉,

otherwise.

2. The L-bounded α function, denoted αL, is obtained by letting αL(a) = (α(a))L, for all

a ∈ A. •

108 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

We could have specified a different bound Lc for each variable c. In order to keep the notation

uncluttered, however, we will consider a single bound L for all variables. It should be a simple

matter to generalize any of the following results to the case when some variable bounds may be

distinct.

The next two propositions state that the L-bound of a sum of terms is the same as the L-

bound of the sum of the L-bounds of the individual terms.

Proposition 6 Let L ∈ Q≥ and let xi ∈ Q≥, for i = 1, . . . , n, with n ≥ 1. Let yi = xi or

yi = (xi)L, for i = 1, . . . , n. Then

(n∑

i=1

xi
)
L

=
(n∑

i=1

yi
)
L
. •

Proposition 7 Let L ∈ Q≥ be a bound and let W = {w1, . . . , wn} be a set, with n ≥ 1. Also

let ki ≥ 0 be integer constants, i = 1, . . . , n. Take α ∈ [W → Q≥]. Then

[n∑

i=1

kiα(wi)
]

L
=

[n∑

i=1

kiαL(wi)
]

L
. •

The next proposition examines the result of L-bounding displaced and overruled interpreta-

tions.

Proposition 8 Let C be a set of variables, L a positive integer, η ∈ Q≥ and ν, θ ∈ [C → Q≥].

Then (ν ⊕ θ)L = (νL ⊕ θ)L and (ν + η)L = (νL + η)L. •

Function addition takes its usual meaning. The next lemma says that satisfiability of variable

conditions is oblivious to L-bounding operands in function additions.

Lemma 9 Let C be a set of variables, αi ∈ [C → Q≥], and βi = αi or βi = (αi)L, i = 1, 2.

Let I ∈ ΦC and let L be a positive integer greater than all constants occurring in I . Then

α1 + α2 � I iff β1 + β2 � I . •

A similar result holds when overruling.

Lemma 10 Let C be a set of variables, I ∈ ΦC , L a positive integer greater than all constants

occurring in I and ν, θ ∈ [C y Q≥]. If ν ⊕ θ � I then νL ⊕ θ � I . •

3. Timed I/O Context Automata 109

2.3 Adjusted values

When discretizing a formal model, we will need to choose proper granularities. In the dis-

cretized model, all constants will be adjusted, or integer multiples of the granularity. In this

section, we treat the notion of adjusted values.

Definition 11 Let g ∈ Q≥ and C a set of variables. A value x ∈ Q≥ is g-adjusted iff it is

an integer multiple of g. A condition δ ∈ ΦC is g-adjusted iff all constants occurring in δ

are g-adjusted. An interpretation ν ∈ [C y Q≥] is g-adjusted iff ν(c) is g-adjusted, for all

c ∈ dom(ν). •

A simple fact about adjusted values follow.

Proposition 12 Let g = 1/k, k a positive integer. Let C be a set of variables. Let L, ℓ ∈ Q≥

and ν, η ∈ [C y Q≥] be g-adjusted. Then νL, ν + ℓ and ν ⊕ η are g-adjusted. •

Any set of L-bounded interpretations is finite, provided that L is properly adjusted.

Lemma 13 Let C be a set of variables, and let g = 1/k with k a positive integer. Let R ⊆

[C y Q≥] be a set of g-adjusted interpretations, and let L ∈ Q≥ be g-adjusted. Let RL =

{νL | ν ∈ R}. Then |RL| ≤ (k⌊L⌋+ k)|C|. •

Using a g-adjusted boundLc for each variable c, the bound would be |RL| ≤
∏
c∈C

(k⌊Lc⌋+ k).

3 Timed I/O Context Automata

In this section we introduce the notions of context variables and of input and output parame-

ters [13], extending the classical timed automaton model. Context variables play the role of

common variables in ordinary programming. They can enter into expressions and can be as-

signed to. Input parameters will be used to read in values passed down by the environment.

Similarly, values computed by the system can be passed back to the environment.

3.1 An example

A timed automaton that captures the behavior of a simple multimedia system is presented in

[17]. The protocol operates by receiving image frames followed by their respective sound

tracks, the latter being supposed to arrive within two time units after the preceding image frame.

After the arrival of a sound track, the protocol must send an acknowledgment in no more than

three time units after the reception of the image frame and no more than two time units after

110 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

Figure 1: A TIOCA model for a multimedia protocol.

receiving the sound track. A reset message moves the system back to the initial state, so that

it can await for the next image frame. Such a message must be issued no more than three time

units after the image frame arrives and no more than two time units after the corresponding

sound track arrives. When the input sound track does not follow the image frame within two

time units, the system times out, issues an error message and goes back to the initial state.

We extended the multimedia protocol, now allowing for context variables, as depicted in

Figure 1. The extended model has four states, namely s0, s1, s2 and s3. The set of clocks is

C = {c1, c2}, and the state invariants are Inv0 = (c1 ≤ 2), Inv1 = (c1 ≤ 2), Inv2 = (c1 ≤

2 ∧ c2 ≤ 3), and Inv3 = (c1 ≤ 2 ∧ c2 ≤ 3). The set of input actions is X = {img, snd, rst},

and the set of output actions is Y = {err, ack}. The intended meaning for the input symbols

img and snd is the arrival of an image frame and of a sound track, respectively. The output

symbol err signals an error, and the output symbol ack sends an acknowledgement signal back

to the environment.

There are seven transitions, indicated by the arrows in the diagram. At each transition, we

first indicate the corresponding action symbol. The action symbol may be followed by a list of

guards, given within parentheses. The form of the guards pertinent to each type of transition

will be detailed shortly. When there are no guards, the list is simply omitted. In the example,

at the transition from s1 to s2 there is a clock guard in the form (c1 < 2). At the transition

from s3 to s0 there are no guards. Next, after the list of guards, the set of clocks to be reset is

given between braces. All resets move the corresponding clocks back to zero, with the other

clocks remaining unchanged. If there are no clocks to reset, the clock reset list is omitted. In the

example, at the transition from s1 to s2, only clock c1 is reset to zero. There are no clock resets in

the transition from s2 to s3. The last item at each transition indicates the corresponding context

variable transformation. In the example, the set of context variables is V = {w, v}. As we can

see from the diagram, at the transition from s0 to s1, the context variable transformation is the

3. Timed I/O Context Automata 111

expression w := w + 1. The intended meaning of such an expression, besides the assignment,

is that the other context variable, v, remains unchanged when this transition is taken. When

all context variable transformations are omitted, as in the transition from s2 to s0, it should be

understood that all variables remain unchanged when that transition is taken.

In this simple example, there are no input parameters. There are four transitions associated

with some output action symbol in Y = {err, ack}. The transitions associated with err send

no values back to the environment. In the transition on ack, from s2 to s3, the notation ack[w, v]

indicates that the current values of the variables w and v are passed back to the environment.

In the sequel, we give more details about the use of input parameters and values passed back to

the environment.

3.2 The extended model

Timed I/O automata are defined in [7]. In addition, we need a finite set R of input parameters,

or parameters for short. Let X and Y be the set of input and output symbols, respectively.

Each input action symbol will have a particular set of parameters associated to it. We denote by

Rx ⊆ R the set of parameters associated with input symbol x, for all x ∈ X . Each parameter

will have a value from Q≥ associated to it, given by a parameter valuation in [Rx → Q≥]. The

set of Rx conditions will be denoted simply by Φx. Recall Definitions 1 and 2. Returning to the

example at Section 3.1, we have X = {img, snd, rst}, Y = {err, ack} and R = ∅.

Proceeding, we consider a set V of context variables, all of which take values in Q≥. Again,

from Definitions 1 and 2 we obtain the sets of context variable valuations [V y Q≥] and [V →

Q≥], together with the set of context variable conditions ΦV and the notion of satisfiability

λ � δ, for a context variable valuation λ and a context variable condition δ. In the example, the

set of context variables is V = {w, v}.

When taking a discrete transition on an input symbol x, the model can also redefine the

context variable values according to an expression involving input parameter values associated

to x and the current values of the context variables. In order to capture this effect, we associate

with each discrete transition on an input symbol x a map that takes a pair (ρ, λ), where ρ ∈

[Rx → Q≥] and λ ∈ [V → Q≥], and returns another context variable valuation in [V → Q≥].

We define the set of all such mappings thus

Fx =
{
κ | κ : [Rx → Q≥]× [V → Q≥]→ [V → Q≥]

}
.

In the example, since there are no input parameters associated to img, we get Rimg = ∅. Since

V = {w, v}, we obtain

Fimg =
{
κ | κ : {∅} × [{w, v} → Q≥]→ [{w, v} → Q≥]

}
.

Similarly, Fsnd = Frst = Fimg.

112 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

Collecting, a discrete transition over an input action symbol x moves the machine from a

state s to a state r, provided that certain guard conditions over clocks, input parameters and

context variables are satisfied. Also, the machine can reset some clock values and redefine

some context variable values. The new clock values are constants specified directly in the

transition. The new context variable values are computed from the input parameter values and

from the current values of the context variables. We can express these conditions by saying that

a discrete transition over an input action symbol x is a member of the set

S × {x} × ΦC × Φx × ΦV × [C y Q≥]× Fx × S.

As an illustration, take the transition from s0 to s1, over the input action symbol img in

Figure 1. The clock guard is (c1 < 2) and the input parameter guard is true, which is not

listed. The context variable guard is also not listed and so it is also taken as true. The set

{c1, c2} says that both clocks are reset to zero when the transition is taken. This can be specified

by a mapping ν ∈ [C y Q≥] where ν(c1) = ν(c2) = 0. Finally, the new value of the context

variablew is defined by the expressionw := w+1. An appropriate mapping κ for this transition

has the form

κ : {∅} ×
[
{w, v} → Q≥

]
→

[
{w, v} → Q≥

]
,

where κ(∅, λ)(w) = λ(w) + 1 and κ(∅, λ)(v) = λ(v).

We have an analogous situation with discrete transitions over output action symbols. The

only difference is that, now, some context variables have their values returned back to the en-

vironment. In general, if the current context variable valuation is λ, the machine will output a

partial valuation given by ξ(λ), where ξ is a mapping specified in the transition. The set of such

mappings is defined thus

HP
y =

{
ξ | ξ ∈ [V → Q≥]→ [V y Q≥]

}
,

where y is the output symbol. In the example, the transition from s2 to s3 specifies the output

symbol as ack[w, v] indicating that the values of the context variables w and v will be returned

unmodified to the environment. In this case, the output mapping ξ would be just the identity,

that is, ξ(λ) = λ, for all λ ∈ [V → Q≥]. In the transition from s1 to s0, the output symbol

is written as err, and we do not pass values to the environment. In this case, ξ(λ) = ∅, for all

λ ∈ [V → Q≥]. Also, when an output transition is taken, the values of the context variables

may be modified. We model this by a mapping χ that takes a total context variable valuation

and returns another total context variable valuation. That is, we specify a mapping from the set

HT
y =

{
χ |χ ∈ [V → Q≥]→ [V → Q≥]

}
,

where y is the output symbol. In the example, no output transitions modify the values of context

variables, and so χ(λ) = λ, for all λ ∈ [V → Q≥], at all output transitions.

3. Timed I/O Context Automata 113

Putting it all together, we say that on a discrete transition over an output action symbol y

the machine moves from a state s to a state r, provided that certain clock and context variable

conditions are satisfied. Upon taking the transition, clocks may be reset, context variable values

are returned and may have their values modified. The clock reset values are constants specified

directly at the transition. The values to be returned and the new context variable values are

specified by choosing specific transformation mappings. That is, a discrete transition over an

output action y is a member of

S × {y} × ΦC × ΦV × [C y Q≥]×HP
y ×H

T
y × S.

We can now define the new timed I/O context automaton.

Definition 14 A Timed I/O Context AutomatonM is given by a tuple (S, s0,Σ, C, ν0, Inv, R, V,

λ0, TX , TY), where S is the set of states, s0 ∈ S is the initial state, Σ = X ∪ Y is the alphabet

with X ∩ Y = ∅, C is the set of clocks, ν0 ∈ [C → Q≥] is the initial clock valuation with

ν0(c) = 0 for all c ∈ C, and Inv ∈ [S → ΦC] gives the invariant at each state. The set of

parameters is R, the set of context variables is V and λ0 ∈ [V → Q≥] is the initial context

variable valuation, where λ0(v) = 0 for all v ∈ V . The set of transitions over input actions

satisfies

TX ⊆
⋃

x∈X

(S × {x} × ΦC × Φx × ΦV × [C y Q≥]× Fx × S),

where Fx is the set of context update of x, given by

Fx = {κ | κ : [Rx → Q≥]× [V → Q≥]→ [V → Q≥]},

and Rx ⊆ R is the set of input parameters associated to x. Finally, the set of transitions over

output actions satisfies

TY ⊆
⋃

y∈Y

(S × {y} × ΦC × ΦV × [C y Q≥]×HP
y ×H

T
y × S),

where HP
y = {ξ | ξ ∈ [V → Q≥] → [V y Q≥]}, and HT

y =
{
χ |χ ∈ [V → Q≥] → [V →

Q≥]
}

, all y ∈ Y . •

A transition in TX is a tuple (s, x, δ1, δ2, δ3, θ, κ, r) saying that the machine can move from

state s to state r over the input symbol x provided that the guards δ1, δ2, and δ3, over clock

variables, input parameters and context variables, respectively, are all enabled. Further, upon

moving to state r, the mapping θ ∈ [C y Q≥] indicates which clocks are reset and to which

values. Finally, κ ∈ Fx denotes the context variable update function, mapping input parameter

114 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

valuations and context variable valuations into new context variable valuations. A transition in

TY is a tuple (s, y, δ1, δ2, θ, ξ, χ, r) specifying that the machine can move from state s to state

r over the output action symbol y, provided that the guards δ1 and δ2, over clock variables

and context variables, respectively, are enabled. Further, upon moving to state r the mapping

θ ∈ [C y Q≥] gives which clocks are reset and to which values. Lastly, ξ ∈ HP
y specifies

values to be passed to the environment, and χ ∈ HT
y returns the new values of the context

variables.

In order to specify successive moves of a TIOCA we need the notion of timed words.

Definition 15 Let M be a TIOCA and let Υ ⊆ Σ. Then ΨΥ =
{
(x, ρ) | x ∈ X ∩Υ, ρ ∈ [Rx →

Q≥]
} ⋃{

(y, ρ) | y ∈ Y ∩Υ, ρ ∈ [V y Q≥]
}

, is the set of all actions over Υ. A timed word for

M is a sequence ψ = 〈σ1, . . . , σn〉, where n ≥ 0 and σi ∈ ΨΣ ∪Q≥, 1 ≤ i ≤ n. •

In particular, ΨX and ΨY are the sets of input and output action valuations, respectively, of M .

We denote the set of all timed words for M by ΨM . The empty timed word will be denoted by

ε. The concatenation of timed words follows the standard string concatenation definition.

A configuration for a TIOCA M is a triple (s, ν, λ), where s ∈ S, ν ∈ [C → Q≥] and λ ∈

[V → Q≥]. In the initial configuration, s is the initial state, ν is the initial clock interpretation

and λ is the initial context valuation of M . Let ΓM denote the set of configurations of M .

We can now define the semantics of a TIOCA.

Definition 16 LetM be a TIOCA and let γi = (si, νi, λi) ∈ ΓM , i = 1, 2, be two configurations

of M .

1. Let τ ∈ Q≥. There exists a continuous move from γ1 to γ2 over τ , denoted by γ1 →τ
γ2, if

and only if : (i) s1 = s2; (ii) ν2 = ν1 + τ ; (iii) ν1 + η � Inv(s1) for all η, 0 < η ≤ τ ; and

(iv) λ2 = λ1.

2. Let (x, ρ) ∈ ΨX . There is a discrete move from γ1 to γ2 over (x, ρ), iff there is (s1, x, δ1, δ2,

δ3, θ, κ, s2) ∈ TX such that: (i) ν1 � δ1, ρ � δ2 and λ1 � δ3; (ii) ν2 = ν1 ⊕ θ and

ν2 � Inv(s2); and (iii) λ2 = κ(ρ, λ1). We denote this move by γ1
(x,ρ)
→ γ2.

3. Let (y, µ) ∈ ΨY . There is a discrete move from γ1 to γ2 over (y, µ), iff there is (s1, y, δ1, δ2,

θ, ξ, χ, s2) ∈ TY such that: (i) ν1 � δ1 and λ1 � δ2; (ii) ν2 = ν1 ⊕ θ and ν2 � Inv(s2);

and (iii) µ = ξ(λ1) and λ2 = χ(λ1). We denote this move by γ1
(y,µ)
→ γ2. •

Decorations over and under −→ may be dropped.

The movements of a TIOCA can now be specified.

4. TIOCA discretization 115

Definition 17 Let M be a TIOCA. The movement relation of M , ⊢M⊆ (ΨM ×ΓM) is such that

(〈σ〉 ·ψ, γ1) ⊢M (ψ, γ2), with σ ∈ (ΨM ∪Q≥) and ψ ∈ ΨM , iff either (i) σ ∈ Q≥ and γ1 →σ
γ2;

or (ii) σ ∈ ΨΣ with γ1
σ
→ γ2. •

When (ψ, γ) ⊢M (ε, ϕ) we also write γ
ψ

M ϕ, or γ M ϕ when ψ is not relevant. When

γ
ψ

M ϕ we say that we have a run starting at γ and ending at ϕ over ψ. A configuration γ is

reachable if there is an execution ending at γ. Also, a state s is reachable if there is a reachable

configuration (s, ν, λ), for some clock interpretation ν and some context variable valuation λ.

4 TIOCA discretization

In order to obtain TIOCA discretizations, we need to discretize both clock and context variable

values.

4.1 Clock and context variable valuations

From now on, L,K ∈ Q≥ are the clock and context variable boundaries, respectively. Recall

Definition 5. We could have used distinct Lc, Kv for c ∈ C and v ∈ V , but it would only

overload the notation. It is easy to generalize the next results when distinct Lc and Kv are used.

Mappings in HP
y and in HT

y will obey a linear form.

Definition 18 Let V be a set of variables and let ξ map [V → Q≥] into [V y Q≥]. Then ξ is

fully linear iff for all λ ∈ [V → Q≥] and v ∈ dom(ξ(λ)) there is an integer constant b, and a

set of integer constants {aw |w ∈ V } with

ξ(λ)(v) =
[∑

w∈V

awλ(w)
]

+ b. •

Mappings κ ∈ Fx will obey a bi-linearity condition.

Definition 19 Let V be a set of variables and R a set of parameters. Let κ map [R → Q≥] ×

[V → Q≥] into [V y Q≥]. Then κ is fully bi-linear iff there are fully linear mappings ξ1,

from [V → Q≥] into [V y Q≥], and ξ2 from [R → Q≥] into [V y Q≥], such that κ(ρ, λ) =

ξ1(λ) + ξ2(ρ), for all ρ ∈ [R→ Q≥] and all λ ∈ [V → Q≥]. •

The next facts expose the behavior of linear mappings.

Fact 20 Let V be a set of variables. Let ξ be a fully linear mapping from [V → Q≥] into

[V y Q≥]. Then ξK(λ) = ξK(λK), for all λ ∈ [V → Q≥]. •

116 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

Fact 21 Let V be a set of variables,R a set of parameters and κ a fully bi-linear mapping from

[R→ Q≥]× [V → Q≥] into [V y Q≥]. Then κK(ρ, λ) = κK(ρK , λK), for all ρ ∈ [R→ Q≥]

and all λ ∈ [V → Q≥]. •

We adopt the following assumption.

Assumption 22 Let M be a TIOCA. All mappings in Fx are fully bi-linear, for all x ∈ X , and

all mappings in HP
y ∪H

T
y are fully linear, for all y ∈ Y . •

4.2 Grid automata and TIOCA

First, we fix some notation. Recall Definition 11.

Assumption 23 Clock and context grid units will be in the forms g = 1/k and h = 1/ℓ, with k

and ℓ positive integers, respectively. •

A TIOCA is adjusted when all constants occurring in its definition are properly adjusted.

Definition 24 A TIOCAM is [g, h]-adjusted iff for all (s, x, δ1, δ2, δ3, θ, κ, r) ∈ TX , (s, y, δ1, δ3,

θ, ξ, χ, r) ∈ TY we have that δ1, θ are g-adjusted, and δ2, δ3 are h-adjusted. Further, for all

s ∈ S, Inv(s) is g-adjusted. •

Applying update functions over h-adjusted parameter and context valuations always results

in h-adjusted valuations.

Proposition 25 If M is a [g, h]-adjusted TIOCA then ξ(λ) and κ(ρ, λ) are h-adjusted, all y ∈

Y , x ∈ X , κ ∈ Fx, ξ ∈ HP
y ∪H

T
y , λ ∈ [V → Q≥] and ρ ∈ [Rx → Q≥]. •

A timed word is adjusted if all its time instants and all its parameter values are properly

adjusted.

Definition 26 A timed word 〈σ1, σ2, . . . , σn〉 is [g, h]-adjusted iff σi is g-adjusted when σi ∈

Q≥, and ρ is h-adjusted when σi = (z, ρ) ∈ ΨΣ, all i ∈ {1, . . . , n}. •

The set of all [g, h]-adjusted timed words will be denoted by Ψ[g,h].

The [g, h]-reachability of configurations is defined next.

Definition 27 Let M be a [g, h]-adjusted TIOCA, s ∈ S, ν ∈ [C → Q≥], λ ∈ [V → Q≥]. Then

(s, ν, λ) is [g, h]-reachable iff (s0, ν0, λ0)
ψ

M (s, ν, λ) with ψ ∈ Ψ[g,h]. •

Now we can define the grid corresponding to a TIOCA.

4. TIOCA discretization 117

Input: L, K ∈ Q≥; k, ℓ positive integers, g = 1/k, h = 1/ℓ; [g, h]-adjusted TIOCA M .1

Output: Grid MG = (SG, sG,ΣG, TG).2

let ΨK
z = {(z, ρK)|(z, ρ) ∈ Ψ{z}}, z ∈ Σ;3

begin4

let sG = (s, ν0, λ0); TG ← ∅; HS ← ∅; RS ← sG ;5

while RS \HS 6= ∅ do6

get a (s, ν, λ) from RS \HS; move (s, ν, λ) to HS;7

foreach (s, x, δ1, δ2, δ3, θ, κ, r) ∈ TX do8

if ν � δ1 and λ � δ3 and ν ⊕ θ � Inv(r) then9

let η = (ν ⊕ θ)L;10

foreach (x, ρ) in ΨK
x do11

if ρ � δ2 then12

let µ = κK(ρ, λ)13

add ((r, ν, λ), (x, ρ), (r, η, µ)) to TG;14

add (r, η, µ) to RS, if (r, η, µ) /∈HS;15

end16

end17

end18

end19

foreach (s, y, δ1, δ2, θ, ξ, χ, r) ∈ TY do20

if ν � δ1 and λ � δ2 and ν ⊕ θ � Inv(r) then21

let η = (ν ⊕ θ)L; ρ = ξK(λ); µ = χK(λ);22

add ((s, ν, λ), (y, ρ), (r, η, µ) to TG;23

add (r, η, µ) to RS, if (r, η, λ) /∈ HS;24

end25

end26

if ν + h � Inv(s) for all 0 < h ≤ g then27

let η = (ν + g)L;28

add ((s, ν, λ), g, (s, η, λ)) to TG;29

add e (s, η, λ) to RS, if (s, η, λ) /∈ HS;30

end31

end32

SG ← HS, ΣG ← {g} ∪
⋃
z∈Σ

ΨK
z ;

33

return;34

end35

Algorithm 5: Grid algorithm.

118 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

Definition 28 Let M be a [g, h]-adjusted TIOCA. The grid automaton associated with M is the

labelled transition system constructed by Algorithm 5. •

Algorithm 5 always terminates and there is a bound on the number of states in the labelled

transition system.

Lemma 29 Algorithm 5 halts with |SG| ≤ |S| ×
(
k⌊L⌋+ k

)|C|
×

(
ℓ⌊K⌋+ ℓ

)|V |
. •

Again, if we had different Lc and Kv values, the number of states in the grid would be bounded

by |S| ×
∏
c∈C

(k⌊Lc⌋+ k) ×
∏
v∈V

(ℓ⌊Kv⌋+ ℓ), which can be much smaller then |S| ×
(
k⌊L⌋ +

k
)|C|
×

(
ℓ⌊K⌋+ ℓ

)|V |
, if we take the safe values L = max

c∈C
{Lc} and K = max

v∈V
{Lv}.

Now, we want to argue that a TIOCA and its grid display compatible behaviors. A grid

word in Σ⋆
G induces a movement in the grid automaton in a usual way. Remember that a grid

word carries the symbol g, as well as h-adjusted valuations (z, ρ) ∈ ΨΣ.

Definition 30 Let MG be the grid automaton corresponding to a TIOCA M . The movement

relation of MG, ⊢
G

, is a binary relation over Σ⋆
G × SG given by (〈σ〉ψ, s) ⊢

G

(ψ, r) if and only

if there is a transition (s, σ, r) in MG. •

We may write γ
ψ

G

ρ instead of (ψ, γ)
⋆

⊢
G

(ε, ρ), and γ
G

ρ when ψ is not relevant.

4.3 Relationship between a TIOCA and its grid

All [g, h]-reachable configurations are states in the grid.

Lemma 31 M is a TIOCA and MG its associated grid. Let L,K be positive integers greater

than any constant occurring in M . If (s, ν, λ) ∈ S× [C → Q≥]× [V → Q≥] is [g, h]-reachable

in M then (s, νL, λK) ∈ SG. •

Grid states correspond to reachable configurations.

Lemma 32 Let MG be the grid corresponding to a TIOCA M . Let L,K be positive integers

greater than any constant occurring in M . If (s, ν, λ) ∈ SG then there are µ ∈ [C → Q≥], ω ∈

[V → Q≥] and a [g, h]-adjusted parameterized timed word ψ ∈ Ψ[g,h] such that (s0, ν0, λ0)
ψ

M

(s, µ, ω), with µL = ν and ωK = λ. •

The next definition maps adjusted timed words into grid words. Recall Definition 26.

5. Generating test cases 119

Definition 33 Let M be a TIOCA. Define the basic mappings: (i) every g-adjusted time value

ig ∈ Q≥, with i ≥ 0, is mapped to the grid word gi ∈ Σ⋆
G; and (ii) every symbol (z, µ) ∈ ΨΣ

is mapped to (z, µK). Define the morphism f : Ψ[g,h] → Σ⋆
G by extending these basic mappings

in the usual way. •

Now, a grid simulates the corresponding TIOCA.

Theorem 34 M is a TIOCA. Let L,K ∈ Q≥ be greater than all constants occurring in M , and

let MG be the grid of M . Let s, r ∈ S, ν, ω ∈ [C → Q≥] and λ, µ ∈ [V → Q≥] be such that

(s, ν, λ) is [g, h]-reachable in M . If (s, ν, λ)
ψ

M (r, ω, µ) then (s, νL, λK), (r, ωL, µK) ∈ SG

and (s, νL, λK)
f(ψ)

G

(r, ωL, µK). •

And also a TIOCA imitates the corresponding grid.

Theorem 35 MG is the grid of a TIOCA M . Let L,K ∈ Q≥ be greater than all constants

occurring in M . Let (s, ω̂, µ̂), (r, ω, µ) ∈ SG with (s, ω̂, µ̂)
ψ

G

(r, ω, µ), some ψ ∈ Σ⋆
G. Then

there are α, α̂ ∈ [C → Q≥], β, β̂ ∈ [V → Q≥] and ψ̂ ∈ Ψ[g,h], such that (s, α̂, β̂)
bψ

M (r, α, β),

with ω̂ = α̂L, ω = αL, µ̂ = β̂K , µ = βK and f(ψ̂) = ψ. •

5 Generating test cases

We want to generate test cases using test purposes.

Definition 36 A TIOCA is acyclic iff the subjacent graph defined by its states as nodes and

transitions as edges is acyclic. A test purpose is an acyclic TIOCA with fail states F ⊆ S and

desired states D⊆S, with F∩D=∅. •

We construct the synchronous product algorithmically.

Definition 37 Let M1, M2 be TIOCA, with C1 ∩ C2 = ∅, and V1 ∩ V2 = ∅. The synchronous

product of M1 and M2 is constructed by Algorithm 6. •

Algorithm 6 first pairs the initial states of both TIOCA to get the initial state of the product.

Product transitions are obtained by searching down for new states and transitions.

A state (s1, s2) is a fail state in the product when s2 is a fail state in the purpose model.

Similarly for desired states.

Definition 38 Let M1 be a TIOCA and M2 a test purpose. In Definition 37, (s1, s2) is a desired

or fail state iff s2 is a desired or fail state, respectively, in M2. •

120 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

Input: TIOCA M1, M2 with C1 ∩ C2 = ∅, V1 ∩ V2 = ∅.1

Output: The synchronous product MP .2

begin3

CP ← C1 ∪ C2; RP ← R1 ∪R2; VP ← V1 ∪ V2;4

ΣP ← Σ1 ∪ Σ2; RS ← sP0 = (s1
0, s

2
0); InvP (sP0)← Inv1(s

1
0) ∧ Inv2(s

2
0); TP ← ∅,5

HS ← ∅;
while RS \HS 6= ∅ do6

choose s = (s1, s2) from RS \HS;7

move s from RS to HS;8

foreach a ∈ X do9

if (si, a, δ1
i , δ

2
i , δ

3
i , θi, κi, si+2) ∈ TX

i , i = 1, 2 then10

add (s3, s4) to RS;11

let InvP (s3, s4)← Inv1(s3) ∧ Inv2(s4);12

add ((s1, s2), a, δ1
1 ∧ δ1

2 , δ
2
1 ∧ δ2

2 , δ
3
1 ∧ δ3

2 , θ1 ⊕ θ2, κ1 ⊕ κ2, (s3, s4)) to TX
P ;13

end14

if (si, a, δ1
i , δ

2
i , δ

3
i , θi, κi, si+2) ∈ TX

i for some si+2 ∈ S, and15

(sj , a, δ1
j , δ

2
j , δ

3
j , θj , κj , sj+2) 6∈ TX

j for all sj+2 ∈ S, with i 6= j, i, j ∈ {1, 2}
then

if i=1 then (p, q)=(s3, s2)16

else (p, q)=(s1, s4);17

add (p, q) to RS;18

let InvP (p, q)← Inv1(p) ∧ Inv2(q);19

add ((s1, s2), a, δ1
i , δ

2
i , δ

3
i , θi, κi, (p, q)) to TX

P ;20

end21

end22

foreach a ∈ Y do23

if (si, a, δ1
i , δ

2
i , θi, ξi, χ, si+2) ∈ T Y

i , i = 1, 2 then24

add (s3, s4) to RS;25

let InvP (s3, s4)← Inv1(s3) ∧ Inv2(s4);26

add ((s1, s2), a, δ1
1 ∧ δ1

2 , δ
2
1 ∧ δ2

2 , θ1 ⊕ θ2, ξ1 ⊕ ξ2, χ1 ⊕ χ2, (s3, s4)) to T Y
P ;27

end28

if (si, a, δ1
i , δ

2
i , θi, ξi, χi, si+2) ∈ T Y

i for some si+2 ∈ S, and29

(sj , a, δ1
j , δ

2
j , θj, ξj , χj , sj+2) 6∈ T Y

j for all sj+2 ∈ S, with i 6= j, i, j ∈ {1, 2},
then

if i = 1 then (p, q) = (s3, s2) else (p, q) = (s1, s4);30

add (p, q) to RS;31

let InvP (p, q)← Inv1(p) ∧ Inv2(q);32

add ((s1, s2), a, δ1
i , δ

2
i , θi, ξi, χi, (p, q)) to T Y

P ;33

end34

end35

end36

SP ← HS;37

end38

Algorithm 6: Synchronous product for TIOCA.

5. Generating test cases 121

After the grid construction, test sequences are extracted by traversing the grid. The traversal

operation starts at the initial state of the grid and searches down until it finds fail or desired

states, depending on the nature of the test. Upon finding one such state, the corresponding test

sequence is output. A recursive traversal procedure is depicted in Algorithm 7. Clearly, the set

of all test sequences is generated by a call in the form T iocaTestGeneration(s0, ǫ), where s0

is the initial state of the grid and ǫ is the empty string.

TiocaTestGeneration(INPUT: state s of a TIOCA grid MG; OUTPUT:1

Parameterized timed test sequence PTTS;)
begin2

if s is a leaf then3

Write PTTS;4

else5

foreach neighbor, r, of s reached over a transition on σ do6

PTTS ← {σ} · PTTS;7

TiocaTestGeneration(r,PTTS);8

end9

end10

end11

Algorithm 7: The traversal algorithm for TIOCA.

5.1 Test case generation and the grid automaton

The grid automaton is obtained from the resulting product by applying the method of Section 4.

After the grid construction, test sequences are extracted by recursively traversing it. The traver-

sal starts at the initial state and searches down until it finds fail or desired states, depending

on the nature of the test. Upon finding one such state, the corresponding path from the initial

state is output as a test sequence, the recursion returns one level and starts down another branch.

One can then construct [g, h]-adjusted timed words from all grid words extracted from the grid

automaton using the mapping given at Definition 33.

In order to drive a TIOCA, we supply it with a sequence of time delays and input symbols.

In order to extract its behavior, we need to project timed word onto the set of output actions.

Definition 39 Let Σ be an alphabet and Υ ⊆ Σ. Let ψ = 〈σ1, . . . , σn〉, n ≥ 0, be a timed

word over Σ. The projection of ψ over Υ, denoted ψ↓Υ, is the timed word over Υ given by

ψ↓Υ = φ1 · φ2 · . . . · φn, where φi = 〈σi〉 ∪Q≥ if σi ∈ ΨΥ ∪Q≥, or ε otherwise. •

That is, the projection extracts only the actions in the subset of interest, together with timing

values.

Test cases are timed words where only input actions occur.

Definition 40 A test sequence for a TIOCA M is any timed word ψ such that ψ = ψ↓X . •

122 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

Implementation Grid Automaton

Yes: fa
il fo

und

Not found

Testing an implementation: faulty property

ψ′ψ↓X

Figure 2: The framework to test implementations: faulty property.

Implementation Grid Automaton

Testing an implementation: desired property

Try ψ again

Yes: ψ′ is on the GridTake another ψ

No: ψ′ is not on the Grid

ψ′ Yes: ∀ψ′

on the Grid

ψ↓X

ψ↓X

Figure 3: The framework to test implementations: desired property.

5.2 Applying test cases

An implementation behavior is investigated by applying stimuli to it and observing its responses

[1].

We obtain a set of test sequences by traversing the corresponding grid automaton which, in

turn, was obtained from the product between the specification and the test purpose. Such test

sequences are sequences of input and output actions, as well as time delays. Test cases are then

extracted from the test sequences by projecting the latter onto input actions.

A test execution is obtained by applying a test case to an implementation and observing

its responses. The outputs of the implementation are then combined with the respective test

case. By this process, we obtain test executions, also called runs, which combine input actions

and time delays from the test cases, together with time delays and observed outputs from the

implementation.

Suppose that a test case is submitted to an implementation under test. Then, usually, a time

delay must pass before the next input action occurs, or before the next output action is observed.

Note that the time delay preceding a output symbol is not under the control of the observer, and

so we cannot know in advance the exact instants when outputs will occur. In any case, when

collecting a test run, the time delay actually observed before an output symbol is adjoined to the

run being constructed, followed by the corresponding output symbol. When the next action is

6. Related works 123

an input symbol, the time delay specified on the test case is under control of the observer. This

time delay, followed by the input symbol, is also adjoined to the run being collected. So, a set of

runs can be collected by applying test cases over the candidate implementation. After that, we

apply such runs again to the corresponding grid automaton. We can, then, verify if runs obtained

from the implementation candidate are also runs over the corresponding grid automaton.

When a faulty property is specified by the test purpose model, the product automaton will

contain special faulty states. So, the test cases extracted from the grid will be sequences of input

actions and time delays that lead to faulty states. We then collect runs over the implementation

using these test cases. When applying such runs back to the original grid, if any of them reaches

a faulty state, we can announce a positive test verdict, that is, a fault was confirmed over the

implementation. If all runs do not reach faulty states, then the test is deemed inconclusive. See

Figure 2.

When the test purpose models a desired property, we must make sure that all runs applied to

the grid terminate at desired states. In this case, the test is positive, otherwise it is inconclusive.

See Figure 3.

Note that, in this approach, we test implementations by resubmitting runs back to the grid

automaton. If we assume that the grid automaton is fully constructed and is kept in memory,

then we can efficiently submit a run to the grid. As a second alternative, avoiding the full

grid construction, we can use the grid construction algorithm to resubmit collected runs to the

grid. When dealing with fault properties, avoiding the full grid construction can be a reasonable

alternative, since we only need one hit.

6 Related works

Many works have discussed formal methods to automatically generate test suites for complex

systems. Depending on specific characteristics of the target systems we can find either tech-

niques that deal only with time, or methods applicable to systems with context variables and no

time relationships. Now we briefly describe some such works.

En-Nouaary and Dssouli discuss a test case generation method in [11]. This method is based

on timed automata specifications and test purposes, and uses the notion of synchronous product.

However, their discretization technique is based on the classical notion of clock regions, thus

imposing a strict relationship between the number of clock variables present in the models and

the granularities that must be chosen in order to obtain the corresponding grid automaton. Also,

instead of constructing a grid automaton directly, the notion of a region graph is first used to

represent a possibly infinite transition system. Then, by a process of sampling, a grid automaton

is derived and from this automaton test sequences can be extracted. Further, continuous time

evolution is modeled by means of clock variables only, and context variables are not allowed.

Fouchal [22] proposes another method based on timed automata and test purposes, as sug-

124 Capı́tulo 5. Geração de Testes para Sistemas de Tempo e Contexto

gested in [11]. In Fouchal’s proposal, region graphs are also used and are likewise sampled in

order to obtain grid automata. Algorithms are used in an exhaustive test generation process,

but no guarantees of correctness are offered. It is difficult to realize how precise are the timed

test sequences that are obtained, specially when the original models are combined with test

purposes. These models, also, do not deal with context variables.

In [23], Fouchal and co-workers present a test strategy similar to the one discussed here.

Although both strategies are related, our work deals explicitly with dense time in order to cap-

ture timed properties, whereas in [23] a notion of timed elements is used to imitate continuous

time evolution, in a process that offers no guarantees of accuracy of the test suites. Once again,

context transformations and returning values to the environment are not considered.

Similar approaches appeared in [12, 17, 24], none of them dealing with context transfor-

mations. All of them use the classical notion of clock regions to obtain grid automata from

which test case sequences can be extracted. But the large number of clock variables in typical

models often lead to huge grids, due to the exponential number of clock regions and the need

to enforce the strict relationship between the number of clocks and the chosen granularities. In

contrast, our approach allows for an ample range of choices for appropriate granularity values,

thus leading to more controllable grid automata and to more manageable test suites.

Petrenko and co-workers [13] offer a different approach. Their aim is to verify whether a

test sequence yields the same outputs when applied to suspicious configurations. Suspicious

configurations are obtained with the aid of expertise from system testers. Further, no treatment

of continuous time evolution is provided on that proposal. In our work we can model both

fail and desired system behavior, accommodating more general techniques for testing systems.

Also, in contrast, we can handle timed systems with context variables.

Jeannet and co-workers [15] use the ioSTS formalism for specification models. In this work

an enumeration approach of data values is used in order to avoid the state space explosion

problem. But, since a discretization method is not used, it is problematic to capture continuous

time evolution in an appropriate manner in these models, thus making it difficult to test timed

properties. Moreover, the method can incur in high costs when calculating constraints using

approximations in order to find test sequences. Further, the formal model and the proposed

method do not deal simultaneously with timed requirements and context transformations.

7 Concluding Remarks

Methods and techniques for automatically generating test cases for critical and reactive systems

have been proposed, many of which based on formal methods. Some deal with continuous time

evolution, others allow some form of data flow. But a single formalism for treating both these

issues simultaneously has been lacking. In this work we propose a method to automatically

generate and apply test suites for timed systems with context variables.

REFERENCES 125

The basic formal model here used is the Timed Input/Output Context Automaton (TIOCA),

a generalization of the earlier Timed Input/Output Automaton (TIOA). Then, a general way

of discretizing TIOCA was discussed and proven correct. This discretization technique avoids

the classical notion of clock regions, and allows for an ample range of granularity values that

could be chosen in the discretization process. The grid automaton thus obtained is capable

of homomorphically simulating the original timed context system, and vice-versa. This lead

to automatic method for generating test suites for systems that exhibit both continuous time

evolution as well as context transformations. Full proofs of all claims can be found in [18].

In order to model specific system properties, we used the notion of test purpose models.

Together with the notion of synchronous product, the discretization algorithm was able to gen-

erate grid automata that reflect both the behavior of the original timed context system, as well

as properties specified by the test purpose. By automating the extraction of test cases from this

grid automaton, the desired test suites were then constructed.

As for further studies along these lines, we can suggest a formal development of the notion

of conformance testing. More efficient processes could be explored by considering the con-

structing of the grid automaton on-the-fly while extracting test sequences. The grid algorithm

could also be used implicitly when testing runs. As another suggestion, shorter test suites might

be obtained by factoring out common subwords from test cases.

References

[1] J. Tretmans, “Model based testing with labelled transition systems,” in Formal Methods

and Testing, 2008, pp. 1–38.

[2] S. J. Cunning and J. W. Rozenblit, “Automating test generation for discrete event oriented

embedded system s,” J. Intell. Robotics Syst., vol. 41, no. 2-3, pp. 87–112, 2005.

[3] B. Nielsen and A. Skou, “Test generation for time critical systems: Tool and case study,”

ecrts, vol. 00, p. 0155, 2001.

[4] J. Tretmans, “Testing concurrent systems: A formal approach,” in CONCUR ’99: Pro-

ceedings of the 10th International Conference on Co ncurrency Theory, ser. Lecture Notes

in Computer Science, J. Baeten and S. Mauw, Eds., vol. 1664. London, UK: Springer-

Verlag, 1999, pp. 46–65.

[5] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory of Timed I/O Automata

(Synthesis Lectures in Computer Science). Morgan & Claypool Publishers, 2006.

[6] R. Gawlick, R. Segala, J. F. Sogaard-Andersen, and N. A. Lynch, “Liveness in timed and

untimed systems,” in Automata, Languages and Programming, 1994, pp. 166–177.

126 REFERENCES

[7] A. L. Bonifácio and A. V. Moura, “A New Timed Discretization Method for Automatic

Test Generation for Timed Systems,” Institute of Computing, University of Campinas,

Tech. Rep. IC-09-31, September 2009.

[8] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer Science, vol.

126, no. 2, pp. 183–235, 1994.

[9] R. Alur, “Timed automata,” in CAV’99, ser. LNCS, no. 1633, 1999.

[10] R. Cardell-Oliver, “Conformance tests for real-time systems with timed automata specifi-

cations,” Formal Aspects of Computing, vol. 12, no. 5, pp. 350–371, 2000.

[11] A. En-Nouaary and R. Dssouli, “A guided method for testing timed input output au-

tomata,” in TestCom, 2003, pp. 211–225.

[12] A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi, “Timed test cases generation

based on state characterization technique,” in RTSS ’98: Proceedings of the IEEE Real-

Time Systems Symposium. Washington, DC, USA: IEEE Computer Society, 1998, p.

220.

[13] A. Petrenko, S. Boroday, and R. Groz, “Confirming configurations in efsm testing,” IEEE

Trans. Softw. Eng., vol. 30, no. 1, pp. 29–42, 2004.

[14] C.-J. Wang and M. T. Liu, “Generating test cases for efsm with given fault models.” in

INFOCOM, 1993, pp. 774–781.

[15] B. Jeannet, T. Jéron, and V. Rusu, “Model-based test selection for infinite-state reactive

systems,” in FMCO, 2006, pp. 47–69.

[16] A. Petrenko and N. Yevtushenko, “Testing from partial deterministic fsm specifications,”

IEEE Trans. Comput., vol. 54, no. 9, pp. 1154–1165, 2005.

[17] A. En-Nouaary, “A scalable method for testing real-time systems,” Soft. Quality Control,

vol. 16, no. 1, pp. 3–22, 2008.

[18] A. L. Bonifácio and A. V. Moura, “Generating test suites for timed systems with context

variables,” Institute of Computing, University of Campinas, Tech. Rep. IC-09-38, October

2009.

[19] K. G. Larsen and W. Yi, “Time abstracted bisimulation: Implicit specifications and decid-

ability,” j-LECT-NOTES-COMP-SCI, vol. 802, pp. 160–176, 1994.

REFERENCES 127

[20] J. Tretmans, “Test generation with inputs, outputs, and quiescence.” in Tools and Algo-

rithms for Construction and Analysis of Systems, Second International Workshop, TACAS

’96, Passau, Germany, March 27-29, 1996, Proceedings, ser. Lecture Notes in Computer

Science, T. Margaria and B. Steffen, Eds., vol. 1055. Springer, 1996, pp. 127–146.

[21] A. Gargantini, “Conformance testing,” in Model-Based Testing of Reactive Systems: Ad-

vanced Lectures, ser. Lecture Notes in Computer Science, M. Broy, B. Jonsson, J.-P. Ka-

toen, M. Leucker, and A. Pretschner, Eds., vol. 3472. Springer-Verlag, 2005, pp. 87–111.

[22] H. Fouchal, “Conformance testing techniques for timed systems,” in SOFSEM, 2002, pp.

1–19.

[23] H. Fouchal, E. Petitjean, and S. Salva, “Testing timed systems with timed purposes,” in

RTCSA’00: Seventh International Conference on Real-Time Systems and Applications.

Washington, DC, USA: IEEE Computer Society, 2000, p. 166.

[24] A. En-Nouaary, R. Dssouli, and F. Khendek, “Timed wp-method: Testing real-time sys-

tems,” IEEE Trans. Softw. Eng., vol. 28, no. 11, pp. 1023–1038, 2002.

Epı́logo

Um dos objetivos deste trabalho foi propor um modelo para capturar tanto a evolução contı́nua

de tempo quanto as transformações de contexto de um sistema. O modelo formal, estendido

dos TIOA, são autômatos temporizados com contexto denominados TIOCA.

Visando a geração de testes, usando o modelo TIOCA, se fez necessária a discretização de

tais modelos. Essa proposta foi discutida e provada de maneira clara e precisa, de forma que a

nova discretização pudesse obter autômatos grid mais compactos. Como consequência, casos

de teste podem ser extraı́dos dos modelos discretizados, visto que os autômatos grid são capazes

de simular de maneira homomórfica os modelos originais, e vice-versa.

Além da discretização, também usamos no trabalho a noção de proposta de teste para que

propriedades especı́ficas pudessem ser modeladas, diminuindo o número de testes a serem ge-

rados. Por consequência dessa abordagem usamos um algoritmo para a obtenção do produto de

TIOCA. A partir daı́ apresentamos uma estratégia de automação da extração de casos de teste

usando o grid construı́do do produto entre a especificação e a proposta de teste.

Assim, o objetivo deste capı́tulo foi apresentar uma proposta para tornar o processo de

geração de teste para sistemas complexos mais eficiente. O próximo capı́tulo apresenta algumas

considerações finais, as conclusões da tese e possı́veis direções de trabalhos futuros.

129

Capı́tulo 6

Conclusões

A derivação de casos de teste usando modelos formais permite a construção e verificação rı́gida

de sistemas crı́ticos de maneira confiável. Nota-se que existe uma relação muito próxima entre

os tipos de sistemas que um dado modelo formal pode lidar e métodos disponı́veis que derivam

os conjuntos de testes. Daı́ o interesse em métodos eficientes de geração de casos de teste

baseado em modelos para sistemas computacionais. Um dos modelos abordados nesta tese

foram os tradicionais FSM, e algumas extensões, tais como as EFSM que englobam a noção de

fluxo de dados através de variáveis de contexto.

Com o objetivo de gerar testes para um modelo mais complexo capaz de capturar não apenas

o fluxo de dados, mas também a evolução contı́nua de tempo de sistemas de tempo real, foi

proposto um novo modelo, denominado TEFSM, para lidar com ambos os aspectos. O método

de derivação de sequências de confirmação proposto para TEFSM foi estendido de uma técnica

usada em EFSM.

Porém, o modelo TEFSM possui entradas e saı́das associadas, não permitindo que eventos

externos influenciem as ações dos sistemas, gerando eventos observáveis para o meio externo.

Além disso, a complexidade de se expressar propriedades de tempo e contexto num mesmo

modelo, e também de aplicar uma abordagem de model-checking para a extração, nos levou a

reconsiderar a estratégia inicial. Redirecionamos então o trabalho para, primeiramente, focar o

problema de geração de casos de teste para as tradicionais FSM.

Nessa nova abordagem generalizamos o tradicional método W que gera conjuntos comple-

tos de teste para FSM. O método W tem como base o uso de conjuntos caracterização. Mostra-

mos que o método W, na verdade, é um caso particular do nosso método G, e que também evita

a computação de conjuntos caracterização, bem como dos ı́ndices das especificações. Des-

tacamos que a demonstração dos resultados foi apresentada de forma clara, contendo provas

detalhadas de corretude dos algoritmos. Como trabalhos futuros nesta direção, idéias similares

poderiam ser usadas para estender e generalizar outros métodos de geração de casos de teste,

tais como os métodos Wp e HSI.

131

132 Capı́tulo 6. Conclusões

Com a questão da geração de testes melhor fundamentada, usando um modelo formal mais

simples, avançamos para um modelo mais complexo que captura o aspecto de tempo. Sur-

giu então a proposta de geração baseado no modelo TIOA, onde usamos uma nova técnica

de discretização, desviando da discretização clássica através de regiões de relógio. Essa nova

discretização possibilita uma diminuição considerável no número de estados do grid construı́do,

já que usamos uma relação mais flexı́vel na escolha da granularidade utilizada no processo de

discretização. Mostramos que dado um modelo TIOA, este é capaz de simular o respectivo grid

construı́do usando nosso método, e vice-versa. Este resultado serviu como base para a geração

de casos de teste, visando propriedades especı́ficas de um sistema. Através da noção de pro-

posta de teste e do conceito de produto sı́ncrono de TIOA foi possı́vel utilizar uma estratégia de

realimentação dos modelos para realizar o teste de conformidade. A proposta de teste é utili-

zada para especificar propriedades importantes de um sistema, enquanto o produto nos permite

capturar o comportamento coordenado de uma especificação e uma propriedade modelada.

Um aprimoramento nesta linha seria o uso de uma estratégia on-the-fly na técnica de reali-

mentação de subsequências. Outro ponto seria a utilização de uma representação simbólica das

sequências de teste, resultando numa diminuição significativa das sequências temporizadas a

serem manipuladas.

Com os resultados anteriores alcançados para o modelo TIOA, retomamos o objetivo prin-

cipal da geração de testes para um modelo de tempo e contexto. Definimos então um novo

modelo, chamado TIOCA, capaz de modelar aspectos de tempo e transformações de dados.

Conseguimos estender a discretização do modelo TIOA, de forma a obter um grid para o mo-

delo TIOCA. Provamos também que o modelo TIOCA é capaz de simular seu correspondente

autômato grid, construı́do com essa proposta, e vice-versa. Com essa base sólida, estendemos

os conceitos de geração de teste, proposto para TIOA, aplicados agora sobre o modelo TIOCA.

Baseado na idéia de realimentação de sequências, mostramos como obter os vereditos de con-

formidade quando implementações candidatas são testadas.

Sugerimos como trabalhos futuros nessa linha, o desenvolvimento formal da noção de con-

formidade usando realimentação de sequências. Além disso, processos mais eficientes para

explorar a construção de autômatos grid de modo on-the-fly e extrair sequências de teste, se-

riam de grande valia. Novamente, para essa generalização poderı́amos também considerar a

construção implı́cita das execuções de teste, usando estruturas simbólicas de representação.

Isso permitiria a fatoração de subsequências comuns entre casos de teste gerados.

Referências Bibliográficas

[1] R. Alur. Timed automata. Em CAV’99, número 1633 in LNCS, 1999.

[2] Rajeev Alur e David Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

[3] Adilson Luiz Bonifácio e Arnaldo Vieira Moura. A New Timed Discretization Method

for Automatic Test Generation for Timed Systems. Relatório Técnico IC-09-31, Institute

of Computing, University of Campinas, September de 2009.

[4] Adilson Luiz Bonifácio e Arnaldo Vieira Moura. Generating test suites for timed systems

with context variables. Relatório Técnico IC-09-38, Institute of Computing, University of

Campinas, October de 2009.

[5] Adilson Luiz Bonifácio, Arnaldo Vieira Moura, Adenilso da Silva Simão, e José Carlos

Maldonado. Towards deriving test sequences by model checking. Electron. Notes Theor.

Comput. Sci., 195:21–40, 2008.

[6] A. L. Bonifácio, A. V. Moura, A. S. Simão, e J. C. Maldonado. Conformance Testing

by Model Checking Timed Extended Finite State Machines. Em Brazilian Symposium on

Formal Methods (SBMF’06), pp. 43–58, Natal, setembro de 2006.

[7] Adilson Luiz Bonifácio, Arnaldo Vieira Moura, e Adenilso da Silva Simão. A generalized

model-based test generation method. Em Antonio Cerone e Stefan Gruner, editores, Sixth

IEEE International Conference on Software Engineering and Formal Methods, SEFM, pp.

139–148, Cape Town, South Africa, 10–14, nov de 2008. IEEE Computer Society.

[8] Adilson Luiz Bonifácio, Arnaldo Vieira Moura, e Adenilso da Silva Simão. Exponentially

more succinct test suites. Relatório Técnico IC-09-07, Institute of Computing, University

of Campinas, March de 2009. In English, 27 pages.

[9] Adilson Luiz Bonifácio, Arnaldo Vieira Moura, e Adenilso da Silva Simão. A gene-

ralized model-based test generation method. Relatório Técnico IC-08-014, Instituto de

Computação, Universidade Estadual de Campinas, Campinas, maio de 2008.

133

134 REFERÊNCIAS BIBLIOGRÁFICAS

[10] Rachel Cardell-Oliver. Conformance tests for real-time systems with timed automata spe-

cifications. Formal Aspects of Computing, 12(5):350–371, 2000.

[11] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions

on Software Engineering, 4(3):178–187, 1978.

[12] Steven J. Cunning e Jerzy W. Rozenblit. Automating test generation for discrete event

oriented embedded system s. J. Intell. Robotics Syst., 41(2-3):87–112, 2005.

[13] R. Dorofeeva, K. El-Fakih, e N. Yevtushenko. An improved conformance testing method.

Em Formal Techniques for Networked and Distributed Systems, volume 3731 de Lecture

Notes in Computer Science, pp. 204–218. Springer, 2005.

[14] A. En-Nouaary, R. Dssouli, F. Khendek, e A. Elqortobi. Timed test cases generation based

on state characterization technique. Em RTSS ’98: Proceedings of the IEEE Real-Time

Systems Symposium, p. 220, Washington, DC, USA, 1998. IEEE Computer Society.

[15] Abdeslam En-Nouaary. A scalable method for testing real-time systems. Soft. Quality

Control, 16(1):3–22, 2008.

[16] Abdeslam En-Nouaary e Rachida Dssouli. A guided method for testing timed input output

automata. Em TestCom, pp. 211–225, 2003.

[17] Abdeslam En-Nouaary, Rachida Dssouli, e Ferhat Khendek. Timed wp-method: Testing

real-time systems. IEEE Trans. Softw. Eng., 28(11):1023–1038, 2002.

[18] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, e A. Ghedamsi. Test selection

based on finite state models. IEEE Transaction on Software Engineering, 17(6), junho de

1991.

[19] A. Gargantini. Conformance testing. Em M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker,

e A. Pretschner, editores, Model-Based Testing of Reactive Systems: Advanced Lectures,

volume 3472 de Lecture Notes in Computer Science, pp. 87–111. Springer-Verlag, 2005.

[20] R. Gawlick, R. Segala, J. F. Sogaard-Andersen, e N. A. Lynch. Liveness in timed and

untimed systems. Em Automata, Languages and Programming, pp. 166–177, 1994.

[21] Mohammed Ghriga e Phyllis G. Frankl. Adaptive testing of non-deterministic communi-

cation protocols. Em Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop

on Protocol Test systems VI, pp. 347–362, Amsterdam, The Netherlands, The Netherlands,

1994. North-Holland Publishing Co.

REFERÊNCIAS BIBLIOGRÁFICAS 135

[22] G. Gonnenc. A method for the design of fault detection experiments. IEEE Transactions

on Computing, 19:551–558, 1970.

[23] F. C. Hennie. Fault detecting experiments for sequential circuits. Em FOCS, pp. 95–110,

1964.

[24] R. M. Hierons. Separating sequence overlap for automated test sequence generation. Au-

tomated Software Engg., 13(2):283–301, 2006.

[25] Bertrand Jeannet, Thierry Jéron, e Vlad Rusu. Model-based test selection for infinite-state

reactive systems. Em FMCO, pp. 47–69, 2006.

[26] M. Krichen. State identification. Em M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, e

A. Pretschner, editores, Model-Based Testing of Reactive Systems: Advanced Lectures,

volume 3472 de Lecture Notes in Computer Science, pp. 87–111. Springer-Verlag, 2005.

[27] M. Krichen e S. Tripakis. Black-box conformance testing for real-time systems. Em

Model Checking Software: 11th International SPIN Workshop, número 2989 in Lecture

Notes in Computer Science, pp. 109–126, Barcelona, Spain, abril de 2004.

[28] K. G. Larsen e W. Yi. Time abstracted bisimulation: Implicit specifications and decidabi-

lity. j-LECT-NOTES-COMP-SCI, 802:160–176, 1994.

[29] Stephan Merz. Model checking: A tutorial overview. Em F. Cassez et al., editor, Mode-

ling and Verification of Parallel Processes, volume 2067 de Lecture Notes in Computer

Science, pp. 3–38. Springer-Verlag, Berlin, 2001.

[30] Brian Nielsen e Arne Skou. Test generation for time critical systems: Tool and case study.

ecrts, 00:0155, 2001.

[31] Alexandre Petrenko, Sergiy Boroday, e Roland Groz. Confirming configurations in efsm

testing. IEEE Trans. Softw. Eng., 30(1):29–42, 2004.

[32] Alexandre Petrenko e Gregor v. Bochmann. Selecting test sequences for partially-specified

nondeterministic finite state machines. Em Gang Luo, editor, IWPTS ’94: 7th IFIP WG

6.1 international workshop on Protocol test systems, pp. 95–110, London, UK, UK, 1995.

Chapman & Hall, Ltd.

[33] Alexandre Petrenko e Nina Yevtushenko. Testing from partial deterministic fsm specifi-

cations. IEEE Trans. Comput., 54(9):1154–1165, 2005.

[34] Ali Rezaki e Hasan Ural. Construction of checking sequences based on characterization

sets. Computer Communications, 18(12):911–920, 1995.

136 REFERÊNCIAS BIBLIOGRÁFICAS

[35] D. Sidhu e T. Leung. Experience with test generation for real protocols. Em SIGCOMM

’88: Symposium proceedings on Communications architectures and protocols, pp. 257–

261, New York, NY, USA, 1988. ACM.

[36] Deepinder P. Sidhu e Ting kau Leung. Formal methods for protocol testing: A detailed

study. IEEE Trans. Softw. Eng., 15(4):413–426, 1989.

[37] Michael Sipser. Introduction to the Theory of Computation. International Thomson Pu-

blishing, 1996.

[38] Jan Tretmans. Test generation with inputs, outputs, and quiescence. Em Tiziana Margaria

e Bernhard Steffen, editores, Tools and Algorithms for Construction and Analysis of Sys-

tems, Second International Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996,

Proceedings, volume 1055 de Lecture Notes in Computer Science, pp. 127–146. Springer,

1996.

[39] Jan Tretmans. Testing concurrent systems: A formal approach. Em J.C.M Baeten e

S. Mauw, editores, CONCUR ’99: Proceedings of the 10th International Conference on

Co ncurrency Theory, volume 1664 de Lecture Notes in Computer Science, pp. 46–65,

London, UK, 1999. Springer-Verlag.

[40] Jan Tretmans. Model based testing with labelled transition systems. Em Formal Methods

and Testing, pp. 1–38, 2008.

[41] Hasan Ural, Xiaolin Wu, e Fan Zhang. On minimizing the lengths of checking sequences.

IEEE Trans. Comput., 46(1):93–99, 1997.

[42] Chang-Jia Wang e Ming T. Liu. Generating test cases for efsm with given fault models.

Em INFOCOM, pp. 774–781, 1993.

