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Resumo

Segmentar uma imagem consiste em particioná-la em regiões relevantes para uma dada

aplicação (e.g., objetos e fundo). A segmentação de imagem é um dos problemas mais

fundamentais e desafiadores em processamento de imagem e visão computacional. O

problema da segmentação representa um desafio técnico importante na computação devido

à dificuldade da máquina em extrair informações globais sobre os objetos nas imagens (e.g.,

forma e textura) contando apenas com informações locais (e.g., brilho e cor) dos pixels.

Segmentação de imagens envolve o reconhecimento de objetos e o delineamento.

O reconhecimento é representado por tarefas cognitivas que determinam a localização

aproximada de um objeto desejado em uma determinada imagem (detecção de objeto),

e identificam um objeto desejado de entre uma lista de objetos candidatos (classificação

de objeto). Já o delineamento consiste em definir de forma precisa a extensão espacial do

objeto de interesse. No entanto, métodos de segmentação efetivos devem explorar essas

tarefas de forma sinérgica. Esse tema constitui o foco central deste trabalho que apresenta

soluções interativas e automáticas para segmentação. A automação é obtida mediante o

uso de modelos discretos que são criados por aprendizado supervisionado. Esses modelos

empregam reconhecimento e delineamento de uma maneira fortemente acoplada pelo

conceito de Clouds. Estes modelos são demonstrados no âmbito da neurologia para

a segmentação automática do cérebro (sem o tronco cerebral), do cerebelo, e de cada

hemisfério cerebral a partir de imagens de ressonância magnética. Estas estruturas estão

ligadas em várias partes, o que impõe sérios desafios para a segmentação. Os resultados

indicam que estes modelos são ferramentas rápidas e precisas para eliminar as intervenções

do usuário ou, pelo menos, reduzi-las para simples correções, no contexto da segmentação

de imagens do cérebro.
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Abstract

Segmenting an image consists of partitioning it into regions relevant for a given application

(e.g., objects and background). The image segmentation is one of the most fundamental

and challenging problems in image processing and computer vision. The segmentation

problem represents a significant technical challenge in computer science because of the

difficulty of the machine in extracting global informations about the objects in the images

(e.g., shape and texture) counting only with local information (e.g., brightness and color)

of the pixels.

Image segmentation involves object recognition and delineation. Recognition is

represented by cognitive tasks that determine the approximate location of a desired object

in a given image (object detection), and identify a desired object among candidate ones

(object classification), while delineation consists in defining the exact spatial extent of the

object. Effective segmentation methods should exploit these tasks in a synergistic way.

This topic forms the central focus of this work that presents solutions for interactive and

automatic segmentation. The automation is achieved through the use of discrete models

that are created by supervised learning. These models employ recognition and delineation

in a tightly coupled manner by the concept of Clouds. We demonstrate their usefulness

in the automatic MR-image segmentation of the brain (without the brain stem), the

cerebellum, and each brain hemisphere. These structures are connected in several parts,

imposing serious challenges for segmentation. The results indicate that these models are

fast and accurate tools to eliminate user’s intervention or, at least, reduce it to simple

corrections, in the context of brain image segmentation.
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1.5.2 Caṕıtulo 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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weight image Ŵ considering only the image-based component (λ = 0), and

(c) by combining it with the object-based weight (λ = 0.8), c = 2. . . . . . 16

2.4 Image M̂1, where the desired object is a family of bears. (a-b) An initial

marker selection and the corresponding membership image M̂1. (c-d) The

estimation improves as the user adds internal markers on the dark regions

of the object and external markers on the bright regions of the background

in M̂1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xix



2.5 (a) Path πt = πs · 〈s, t〉 indicates the extension of path πs by an arc (s, t) ∈
A. (b) A 4-neighborhood graph showing a path πt (dashed line) represented

in backwards, where P (t) is the predecessor node of t and R(t) is the root

pixel. (c) A forest P with two root nodes r1 and r2. . . . . . . . . . . . . . 22

2.6 (a) An initial marker selection for segmentation. (b-d) The IFT region

growing. (d) The regions meet each other at the object’s boundary. . . . . 23
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Caṕıtulo 1

Introdução

1.1 Introdução à segmentação de imagens

Segmentar uma imagem consiste em particioná-la em regiões relevantes para uma dada

aplicação. Comumente, objetos de interesse devem ser isolados dentro do domı́nio

da imagem, a fim de permitir a obtenção de informações significativas para uma

determinada aplicação. A segmentação de imagem é um dos problemas mais fundamentais

e desafiadores em processamento de imagem e visão computacional. Como conseqüência,

a segmentação da imagem tem muitas aplicações práticas, incluindo: percepção autônoma

de máquina, reconhecimento de caracteres, inspeção industrial automática e sistemas de

controle de tráfego.

Em publicidade, a segmentação de imagens naturais é usada na edição de fotos e

v́ıdeo, tal como para extrair objetos de primeiro plano de uma imagem e compô-los

em um novo fundo [8, 122]. Em imagens médicas, a grande variedade de tecnologias

de imagem (por exemplo, tomografia computadorizada, tomografia por emissão de

pósitrons, angiografia por ressonância magnética, ressonância magnética, ressonância

magnética funcional, SPECT, ultra-som) promoveu a prática da segmentação de imagem

na medicina [45, 18, 63, 90]. Quando as imagens são adquiridas para uma região do corpo

humano, geralmente há um sistema de objetos em estudo, que pode ser simplesmente um

conjunto de órgãos dentro dessa região. Esses órgãos podem ser isolados por métodos

de segmentação de imagem, a fim de cumprir os seguintes objetivos: medição de volume

de tecidos e outras informações quantitativas; o diagnóstico de uma doença, bem como

o planejamento do seu tratamento; a visualização de estruturas anatômicas; e educação

médica.

A principal dificuldade da segmentação está na falta de informação sobre os objetos

nas imagens. Isto é, dispomos de informações locais (e.g., brilho e cor) dos elementos da

imagem, também conhecidos como pixels, para resolver um problema que usa informações

1



2 Caṕıtulo 1. Introdução

globais (e.g., forma, posição relativa e textura) e que portanto envolve uma interpretação

de mais alto ńıvel.

Em métodos de segmentação puramente baseados na imagem, o lapso de uma descrição

global dos objetos na forma de um modelo matemático torna a identificação de objetos um

problema intranspońıvel, a menos que mediante assistência do usuário [59, 11]. Métodos

de segmentação podem ser, portanto, divididos em abordagens baseadas em modelo e

abordagens puramente baseadas na imagem.

Métodos baseados em modelo buscam suprir a carência de informações globais pelo

emprego de modelos estat́ısticos criados por aprendizado supervisionado. Um conjunto de

treinamento com instâncias do objeto é fornecido com a devida interação humana e esses

dados são registrados em um espaço de referência comum para formar o modelo. Modelos

de forma ativa [27] (ASM) e abordagens baseadas em atlas [51, 93, 89] são exemplos de

métodos baseados em modelo que têm sido utilizados, por exemplo, para a segmentação de

estruturas anatômicas do cérebro em imagens de RM [35, 52]. No entanto, o registro entre

a imagem e o modelo durante a segmentação por vezes também ignora informações da

imagem importantes, pelo ato de forçar os resultados a casarem com o modelo, enquanto

métodos baseados na imagem teriam melhor precisão nesse aspecto.

Segmentação de imagens envolve o reconhecimento de objetos e o delineamento [45].

O reconhecimento é representado por tarefas cognitivas que determinam a localização

aproximada de um objeto desejado em uma determinada imagem (detecção de objeto),

verificam o quão correto é um resultado de segmentação, e identificam um objeto desejado

de entre uma lista de objetos candidatos (classificação de objeto). Já o delineamento

consiste em definir de forma precisa a extensão espacial do objeto. Os seres humanos

superam geralmente computadores no reconhecimento de objetos, porém o oposto se

verifica no caso do delineamento. Enquanto o usuário pode freqüentemente resolver o

problema do reconhecimento através da simples seleção de pontos (sementes) ou por

meio de uma ação inicializadora apropriada, delineamento perfeitamente repet́ıvel é um

desafio devido à subjetividade do operador. Por outro lado, os computadores podem

executar delineamento com muito mais precisão usando abordagens baseadas na imagem,

mas a ausência de informação global torna o reconhecimento uma tarefa dif́ıcil. Isso

explica por que algumas abordagens interativas bem sucedidas combinam reconhecimento

pelo usuário com delineamento pelo computador de uma forma sinérgica, para uma

segmentação mais eficaz e infaĺıvel [44, 36, 17, 94]. Seguindo esse mesmo racioćınio, temos

que a sinergia entre as tarefas de reconhecimento e delineamento também se demonstra

importante para a segmentação automática, onde o usuário é substitúıdo por uma

abordagem baseada no modelo do objeto. O emprego da sinergia entre reconhecimento e

delineamento, na segmentação tanto interativa quanto automática, constitui o foco central

deste trabalho.
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1.2 Motivação

Este projeto tem por principal agente motivador as aplicações da segmentação no âmbito

da neurologia envolvendo a análise quantitativa de estruturas cerebrais a partir de

imagens de ressonância magnética (RM). Medidas de volume, textura e assimetria de

forma/textura podem ser utilizadas para relacionar alterações morfológicas com diversas

doenças, sendo útil nos seus diagnósticos e tratamentos [87, 12, 21, 104]. Essas técnicas de

análise, porém, requerem uma definição precisa da extensão tridimensional das estruturas

em estudo. Esta operação de segmentação de imagens consiste na atribuição de rótulos

aos elementos da imagem de modo a associá-los à diferentes estruturas. No entanto,

uma sequência espacial de fatias de RM forma uma imagem tridimensional (ou volume)

tipicamente composta por cerca de dez milhões de elementos também conhecidos como

voxels. Logo, em vista das dimensões do problema, a segmentação para a maioria das

estruturas cerebrais requer assistência exaustiva do usuário e, como conseqüência, o estudo

de doenças cerebrais por imagens de RM sofre de várias limitações. Neste sentido, torna-se

necessária a pesquisa por métodos automáticos e eficientes que favoreçam a análise em

larga escala de estruturas cerebrais, possibilitando o acompanhamento de alterações entre

controles e pacientes, ou mesmo entre diferentes fases do tratamento de um indiv́ıduo.

Os métodos desenvolvidos nesse trabalho têm por particular interesse a segmentação

de imagens de ressonância magnética do cérebro humano de forma automática, ou com

o mı́nimo de intervenção do usuário (FAPESP Proc. 05/59808-0). Este trabalho está

também relacionado com o programa FAPESP-CInApCe que conta com os professores do

Departamento de Neurologia da Faculdade de Ciências Médicas da UNICAMP e envolve

o estudo de epilepsia e doenças degenerativas [37].

1.3 Objetivos

Neste trabalho, visamos dar continuidade aos trabalhos de segmentação de imagem usando

grafos que exploram a Transformada Imagem-Floresta (IFT) [43]. Durante o mestrado,

vários operadores de imagem para segmentação [38, 42] foram projetados com base no

framework único da IFT, o que proporciona simplicidade e elegância. Um dos principais

objetivos desse trabalho é reduzir as intervenções do usuário no contexto da segmentação

de estruturas cerebrais em neurologia, estendendo as técnicas da IFT pelo emprego de

modelos discretos dos objetos.
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1.4 Visão Geral das Contribuições

Uma primeira contribuição desse trabalho, diz respeito a uma visão do problema da

segmentação que considera o delineamento como o resultado de duas etapas: realce e

extração. Do ponto de vista matemático, o problema da segmentação pode ser modelado

com base em grafos, onde o realce está associado à estimativa dos pesos das arestas,

enquanto a extração corresponde ao resultado de um algoritmo de delineamento para

partição ótima no grafo.

Os resultados de extração por algoritmos de delineamento dependem fortemente da

qualidade dos pesos das arestas considerados. No entanto, poucos trabalhos tratam

especificamente o problema da estimativa dos pesos, lhe conferindo a sua real importância.

Nos métodos tradicionais de segmentação [59, 11, 106, 124], a estimativa de peso dos

arcos é geralmente tratada como um simples processo incorporado, desconsiderando, em

muitos casos, as intervenções do usuário. Já em outros trabalhos [101, 100, 94] o realce e

a extração são concebidos de forma integrada e indiviśıvel elevando consideravelmente

a complexidade dos métodos, com impactos no desempenho e/ou dificultando o seu

entendimento.

Visando solucionar esses problemas, propomos um sistema para segmentação que trata

separadamente a questão da formulação dos pesos do grafo. Neste trabalho consideramos

essa separação de forma expĺıcita enquanto a separação de modo impĺıcito está sendo

investigada (i.e., o usuário não toma ciência de que a separação está sendo efetuada).

Logo, um módulo especializado no tratamento do problema da formulação dos pesos do

grafo é considerado neste trabalho. Esse primeiro módulo consiste em um procedimento

sinérgico no qual as ações do usuário são guiadas por uma resposta visual sobre a qualidade

dos pesos calculados (bloco 1 do diagrama da Figura 1.1). No caso automático, uma

abordagem customizada para a aplicação de interesse é adotada.

Tratando a estimativa de pesos separadamente temos as seguintes vantagens: a

separação favorece a análise comparativa entre diferentes algoritmos de delineamento a

partir do estudo teórico das suas propriedades no grafo, o que gera conclusões livres de

parcialidade; ela também nos permite um melhor entendimento sobre a real contribuição

que cada etapa exerce sobre os resultados finais da segmentação; com ela conseguimos

também depurar melhor os programas evitando erros de implementação; e comparações

emṕıricas mais justas entre os métodos são favorecidas, em vista do grafo base comum

que proporciona iguais condições iniciais. Com a separação da estimativa de pesos, temos

um segundo módulo para a extração interativa de objetos que explora a sinergia entre o

reconhecimento pelo usuário e o delineamento (bloco 2 da Figura 1.1). Avanços teóricos

e práticos são apresentados nessa área com base na Transformada Imagem-Floresta

(IFT) [43].
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Figura 1.1: Diagrama do sistema de segmentação proposto.

Para um dado grafo da imagem, métodos de segmentação automática podem

ser obtidos através da combinação sequencial de algum método espećıfico para

reconhecimento automático [121, 128], seguido por algum algoritmo de delineamento

que completa a segmentação [64, 52]. Recentemente, no entanto, alguns métodos

h́ıbridos [56, 67, 22] têm adicionado mais dinamismo ao processo, de modo que o

resultado do delineamento também influencia no reconhecimento e vice-versa (sinergia).

Estes métodos h́ıbridos propostos porém não são diretamente extenśıveis para imagens

multidimensionais, o que limita a sua aplicação.

Neste trabalho são propostos novos modelos h́ıbridos para segmentação automática

que são adequados aos problemas envolvendo imagens tridimensionais. Estes modelos

compõem um terceiro módulo representado pelos blocos 3 e 4 no diagrama da Figura 1.1

que mostra o sistema proposto, bem como o seu fluxo de funcionamento. Os modelos

são constrúıdos por aprendizado supervisionado a partir de uma base de treinamento com

imagens pré-segmentadas pelo especialista. Os resultados automáticos obtidos para novas

imagens são então verificados pelo especialista para posśıveis correções interativas em caso

de falhas. Os três módulos propostos são apresentados a seguir em maiores detalhes.

1. Sinergia na Estimativa de Peso das Arestas do Grafo. Os métodos de

segmentação normalmente fazem uso direto/indireto de algum conceito referente a grafos
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(a) (b) (c)

Figura 1.2: (a) Uma fatia de RM com marcadores para treinamento. (b) Visualização dos
pesos das arestas inicial. (c) Um considerável realce é obtido para a substância branca
através de aprendizado supervisionado dos marcadores.

da imagem, tais como o peso de aresta entre pixels. O peso pode representar diferentes

atributos funcionais tais como similaridade, função de velocidade, afinidade, custo,

distância, etc; dependendo dos frameworks usados, tais como watershed, level sets, fuzzy

connectedness, graph cuts, etc. O delineamento preciso por estes métodos com mı́nima

intervenção do usuário fortemente depende de uma estimativa adequada dos pesos das

arestas, que em geral deve levar em conta as informações dos objetos obtidas a partir de

marcadores selecionados pelo usuário durante a segmentação.

Informações de objeto extráıdas dos marcadores (e.g., padrão de intensidade, cor) são

cruciais para a melhoria da qualidade da estimativa dos pesos das arestas. No entanto, os

marcadores utilizados pelo algoritmo de delineamento para a extração nunca devem ser

utilizados na sua totalidade para recalcular os pesos, pois, muitas vezes, estes marcadores

devem ser escolhidos em regiões onde o objeto e o fundo têm propriedades semelhantes.

O recálculo dos pesos seguido por delineamento, com base nestes marcadores pode levar

a uma estimativa de pesos baseada em exceções. Isso gera um efeito colateral, afetando

outras partes da segmentação onde o usuário já estava satisfeito com os resultados, fazendo

o usuário perder o controle sobre o processo.

Essas questões são tratadas no Caṕıtulo 2 que apresenta um procedimento sinérgico

para estimativa do peso das arestas, onde o usuário traça marcadores dentro de cada

objeto (incluindo o fundo), os pesos das arestas são estimados a partir de atributos da

imagem e das informações dos objetos (pixels sob marcadores), e uma resposta visual

orienta a próxima ação do usuário (Figura 1.2). No caso automático, não dispomos

de marcadores pelo usuário e portanto adotamos uma abordagem customizada para a

aplicação de interesse que é descrita no Caṕıtulo 5.
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2. Sinergia entre Reconhecimento pelo Usuário e Delineamento. Em

segmentação sinérgica assistida por operador, o usuário geralmente adiciona/remove

marcadores (seed pixels, anchor boundary points) para o reconhecimento, enquanto o

delineamento subsequente é executado pelo computador em tempo interativo. Acurácia

torna-se um compromisso entre a paciência do usuário, para verificação e correção, e a

qualidade do delineamento.

A pesquisa nessa área consiste em buscar a redução do número de intervenções do

usuário necessárias durante o processo, conservando ou melhorando medidas de exatidão.

Ela compreende duas vertentes: estudos teóricos (Figura 1.3) e práticos (avaliação

emṕırica). Avanços nessas duas frentes de pesquisa são apresentados respectivamente nos

Caṕıtulos 3 e 4, que fundamentam a nossa opção preferencial por métodos de delineamento

baseados na IFT [43].
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(a) (b) (c) (d)

Figura 1.3: Avanços teóricos são obtidos pela análise das propriedades dos algoritmos nos
grafos derivados das imagens. (a) Um grafo com vizinhança 4 a ser segmentado tendo duas
restrições fortes (pontos maiores), onde o ponto branco deve pertencer ao objeto e o ponto
maior preto deve pertencer ao fundo. (b-c) Dois posśıveis resultados de segmentação. (d)
A solução por floresta de caminhos ótimos conforme será discutido no Caṕıtulo 3.

3. Sinergia entre Reconhecimento por Modelos e Delineamento. Esse terceiro

módulo compreende a automação do segundo módulo pela substituição das intervenções

humanas por modelos estat́ısticos dos objetos. A principal contribuição apresentada

corresponde a proposta de um conjunto de três modelos baseados no conceito de

Clouds. Esses modelos discretos são obtidos por aprendizado supervisionado e armazenam

informações globais sobre a forma dos objetos, as quais permitem segmentá-los nas

imagens com eficácia, explorando a sinergia entre reconhecimento e delineamento. Ou

seja, várias interações entre as informações do modelo e um algoritmo de delineamento são

usadas na definição do resultado final. Durante esse processo sinérgico, o delineamento é
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favorecido pelas informações de forma a priori provenientes do modelo, enquanto o critério

para reconhecimento é favorecido pelos objetos delineados (Figura 1.4).

Figura 1.4: (a) Um sistema de Clouds para três objetos mostrado no espaço de cores RGB.
(b-c) Valores obtidos pelo critério de reconhecimento para diversas posições do modelo
sobre uma imagem de entrada e o resultado final de segmentação.

Os modelos são apresentados utilizando o algoritmo de delineamento IFT-SC descrito

no Caṕıtulo 3 ao invés do algoritmo apresentado no Caṕıtulo 4, visto que esse último é

mais adequado no ambiente interativo.

Os modelos propostos foram validados na segmentação de diferentes estruturas

cerebrais. Com relação a tarefa de isolar o cérebro dos demais voxels em imagens de

RM-T1, dentre os três modelos propostos o modelo Cloud System Model demonstrou

melhores resultados tendo acurácias superiores as obtidas pela técnica padrão baseada

em atlas, dispońıvel no software SPM2, e também superiores as obtidas pela técnica

automática tree-pruning [9]. Os modelos propostos também se aplicam a outras estruturas

cerebrais e foram avaliados na segmentação automática 3D do cerebelo; e dos hemisférios

cerebrais. Essas estruturas estão conectadas em diversas partes, gerando um grave

desafio para estratégias simples de segmentação. No entanto, os métodos levam poucos

segundos por estrutura, executando em PCs modernos, e proporcionam bons resultados

que eliminam as intervenções do usuário ou, que ao menos as reduzem a simples correções

locais pela técnica [36]. Esses modelos são tratados detalhadamente no Caṕıtulo 5.

1.5 Organização da Tese

O texto desta tese está organizado agrupando os principais artigos publicados ou aceitos

para publicação como resultado da pesquisa realizada.
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1.5.1 Caṕıtulo 2

Este caṕıtulo (Synergistic Arc-Weight Estimation for Interactive Image Segmentation

using Graphs) inclui os resultados publicados na revista CVIU [83]. Resumidamente,

este método para realce de objetos pode ser descrito da seguinte forma. Para cada

pixel sob os marcadores selecionados pelo usuário, existe um vetor de caracteŕısticas

associado (e.g., brilho, textura), bem como o rótulo de objeto fornecido pelo marcador.

A partir dessas informações um valor de pertinência em relação a cada objeto é associado

a cada pixel da imagem por aprendizado supervisionado seguido de classificação fuzzy.

Os pixels sob marcadores formam portanto um conjunto de treinamento. No entanto, é

razoável esperar que o tamanho máximo do conjunto de treinamento seja limitado por

razões de eficiência. Logo devemos fazer o melhor uso posśıvel desse conjunto. Para isso

dividimos o conjunto de pixels sob marcadores em um conjunto de treinamento e outro

de avaliação. O conjunto de treinamento é então modificado a partir dos seus erros no

conjunto de avaliação usando o maior valor de pertinência como regra de classificação. A

acurácia após cada iteração de retreinamento nos fornece uma curva de aprendizado. Nesse

caṕıtulo, a associação dos valores de pertinência descrita é baseada na comparação das

diferentes concentrações de pontos de cada objeto no espaço de caracteŕısticas, que estão

inversamente relacionadas as distâncias aos k vizinhos mais próximos em cada objeto.

Alguns experimentos apresentados neste caṕıtulo mostram melhorias significativas na

segmentação interativa da substância branca em fatias 2D de RM-T1.

1.5.2 Caṕıtulo 3

Este caṕıtulo (Links Between Image Segmentation based on Optimum-Path Forest and

Minimum Cut in Graph) apresenta os resultados publicados no Journal of Mathematical

Imaging and Vision em 2009 [79]. Este artigo corresponde a um trabalho teórico que

relaciona métodos de segmentação baseados em floresta de caminhos ótimos [43] com

métodos de corte em grafo, dando o embasamento teórico que explica em parte o grande

sucesso do framework da IFT. Neste caṕıtulo é demonstrado que diferentes métodos

baseados na IFT oferecem resultados ótimos de segmentação sob dois pontos de vista:

como uma floresta de caminhos ótimos e como um corte mı́nimo no grafo de acordo com

uma medida de avaliação apropriada, que pode levar em conta também propriedades

dos objetos seguindo os pesos de aresta descritos no Caṕıtulo 2. Um outro importante

resultado apresentado neste caṕıtulo corresponde a prova da otimalidade por partes das

bordas de corte geradas pela IFT com competição entre sementes internas e externas.

Essa propriedade é essencial para conservar o controle do usuário durante correções

interativas, que podem ser rapidamente efetuadas pelo algoritmo da DIFT [36]. É também

mostrado que procedimentos adotados para contornar o viés existente no algoritmo de
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min-cut/max-flow levam a aproximações da IFT com competição entre sementes internas

e externas.

1.5.3 Caṕıtulo 4

Este caṕıtulo (Object delineation by κ-connected components) inclui os resultados

publicados no Journal on Advances in Signal Processing em 2008 [80]. Neste caṕıtulo

são apresentados avanços práticos no delineamento de objetos através da avaliação

emṕırica de operadores da IFT que combinam diferentes paradigmas. Os resultados

mostram a redução do número de intervenções do usuário necessárias para a conclusão

da segmentação interativa de diversas imagens médicas.

1.5.4 Caṕıtulo 5

Este caṕıtulo (Cloud Models: Their Construction and Employment in Automatic

MRI Segmentation of the Brain) inclui os resultados publicados em dois artigos

internacionais [81, 82], bem como uma extensão para o tratamento de múltiplos objetos

simultaneamente que leva a ganhos nos resultados em função do melhor aproveitamento

da informação de contexto no reconhecimento. Os modelos Clouds propostos nesse

caṕıtulo são criados por aprendizado supervisionado a partir de um conjunto de imagens

de treinamento, que contém instâncias dos objetos de interesse (bloco 3 da Figura 1.1).

Essencialmente, o modelo faz o papel do operador humano enquanto um algoritmo baseado

no grafo da imagem realiza o delineamento, e ambos operam de forma sinérgica, até que

um estado ótimo é alcançado (bloco 4 da Figura 1.1). Variações anatômicas acentuadas

das estruturas são modeladas pelo emprego de múltiplas nuvens e as informações a priori

da forma dos objetos são incorporadas na formulação dos pesos das arestas. Algumas das

vantagens destes métodos são: eles descartam o uso de registro durante treinamento

e segmentação; eles analisam toda a fronteira do objeto durante o delineamento e o

reconhecimento ao invés de apenas alguns pontos de controle como em [27]; e eles podem

ser facilmente estendidos para imagens multidimensionais. São apresentados experimentos

de validação em um conjunto de dados tridimensionais de RM composto por 40 indiv́ıduos

normais de ambos os sexos, na faixa etária de 16 a 49 anos, e também em 40 imagens de

pacientes.



Caṕıtulo 2

Synergistic Arc-Weight Estimation

for Interactive Image Segmentation

using Graphs

2.1 Introduction

In image processing and computer vision, there are several situations in which user

interaction becomes essential in obtaining effective image segmentation. The high-level,

application-domain-specific knowledge of the user is often required in medical image

analysis [45, 18, 63, 90] because of poorly defined structures, and in the digital matting

of natural scenes [8, 122], because of their heterogeneous nature.

Image segmentation involves two tightly coupled tasks: recognition and

delineation [45]. Recognition is the task of determining the approximate whereabouts of a

desired object in the image, while delineation completes segmentation by precisely defining

its spatial extent. Humans usually outperform computers in recognition, but the contrary

can be observed in object delineation. While the user can reduce recognition to a simple

click of the mouse inside the object, repeatable human delineation is challenging due to

human subjectivity. On the other hand, computers can be very precise, even when they

are not accurate, but often the absence of high-level object information (location, shape,

appearance) makes object recognition a difficult task for computers. In order to overcome

some of these shortcomings from both sides, some approaches have combined recognition

by the user with delineation by the computer in a synergistic way [44, 36, 17, 94]. This

topic forms the central focus of this paper.

In operator-assisted synergistic segmentation, the user usually adds/removes markers

(seed pixels, anchor boundary points) for recognition, while subsequent delineation is

performed by the computer in interactive time. Accuracy becomes a compromise between

11
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the user’s patience for verification and correction, and the quality of delineation. The

methods usually make direct/indirect use of some image-graph concept, such as arc weight

between pixels. The weight may represent different attribute functionals such as similarity,

speed function, affinity, cost, distance, etc; depending on different frameworks used, such

as watershed, level sets, fuzzy connectedness, graph cuts, etc. The accurate delineation by

these methods with minimum user intervention strongly depends on a suitable arc-weight

estimation, which usually takes into account image attributes and/or object information

often obtained from markers selected by the user during segmentation [17, 94]. Object

information is very crucial for improving the quality of arc-weight estimation. However,

the user’s actions need guidance from visual feedback about the quality of the arc weights.

Further, the markers used for delineation should never be used to recompute weights.

Very often, these markers need to be selected in regions where object and background

have similar properties. Weight recomputation followed by delineation based on these

markers may destroy other parts of the image where the user was already satisfied with

the segmentation results, making the user to lose control over the process.

We propose a synergistic approach for arc-weight estimation, which is separated from

the process of interactive image segmentation itself. As a training step, the user selects

markers inside each object, where image background is also considered as an object, guided

by a visual feedback about the quality of arc-weight estimation. The training markers

may be used to start object delineation, but markers selected during segmentation are

never allowed to modify arc-weight assignment. We use this approach as a basic step

in several image segmentation methods, such as those based on the min-cut/max-flow

algorithm [17] and approaches which can be easily implemented by the image foresting

transform (IFT) [43]. Note that our aim is not to compare segmentation methods, but

to show that several of them can benefit from a disciplined, systematic, objective, and

effective procedure for arc-weight assignment, followed by some proper approach-specific

adaptive procedure, such as the complement of the weights, owing to the nature of the

meaning of weights in some methods; or by some tuning procedure (e.g., non-maximal

suppression [79], increasing transformations [79], gradient orientation (Section 2.4.7)).

The visualization of the arc weights also allows the user to choose the most appropriate

method for a given image. For example, it is desirable in live wire that the arc weights

be lower along the object’s boundary than in the neighborhood around it [45, 44]; the

local affinities in relative-fuzzy connectedness [99] be higher inside and outside the object

than on its boundary; the gradient values in watershed transforms be higher for pixels on

the object’s boundary than in its interior and exterior [68, 11, 36]; the gradient values in

tree pruning be higher on the object’s boundary than in its interior, and, at least, in a

neighborhood in its exterior [9]; and the arc weights in graph-cut segmentation be lower

across the object’s boundary than in its interior and exterior [17, 106, 124]. Additionally,
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(a) (b) (c)

Figure 2.1: Euclidean adjacency relations for 2D images: (a) 4-neighborhood (ρ = 1), (b)
8-neighborhood (ρ =

√
2), and (c) extended adjacency to the 12 closest neighbors (ρ = 2).

energy minimization in [17] using the min-cut/max-flow algorithm from source to sink

nodes also requires higher arc weights between source and object pixels, lower arc weights

between source and background pixels, lower arc weights between sink and object pixels,

and higher arc weights between sink and background pixels. Clearly, the effectiveness of

these approaches suffers when the above desirable conditions are not satisfied, and this

explains why the visual feedback helps the user to choose the most appropriate method

for a given segmentation task.

To outline this paper: Section 2.2 presents the basic concepts on image graphs and the

terminology adopted in this paper. Arc-weight estimation is presented in Section 2.3 by

showing how to exploit image attributes and object information provided by user-selected

markers. Section 2.4 describes several interactive segmentation methods based on the

arc-weight assignment of Section 2.3, and the main advantages of the synergistic approach

are demonstrated in Section 2.5, including evaluation experiments with medical data from

two imaging modalities (CT and MRI). Our conclusions are stated in Section 2.6.

2.2 Basic Concepts on Image Graphs

An image Î is a pair (DÎ ,
~I) where DÎ ⊂ Zn is the image domain and ~I(s) assigns a

set of m scalars Ii(s), i = 1, 2, . . . , m, to each pixel s ∈ DÎ . This definition applies to

multi-dimensional and multi-parametric images. For example, {I1(s), I2(s), I3(s)} may be

the red, green and blue values of s in a color image Î. The subindex i is dropped for gray

images since it becomes awkward when m = 1.

An irreflexive adjacency relation A is a binary relation between distinct pixels. We

use t ∈ A(s) or (s, t) ∈ A to indicate that t is adjacent to s. Once A is fixed, the image Î
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As At
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Asource

Asink

(a) (b)

Figure 2.2: (a) A 2D image graph with 4-adjacent pixels s and t. (b) An extended graph
obtained by adding two terminal nodes (source o and sink b), which represent object and
background respectively.

can be interpreted as a graph (DÎ ,A), whose nodes are the image pixels and whose arcs

are the pairs (s, t) in A. For example, one can take A to consist of all pairs of pixels (s, t)

in the Cartesian product DÎ ×DÎ such that d(s, t) ≤ ρ and s 6= t, where d(s, t) denotes

the Euclidean distance and ρ > 0 is a specified constant (Figure 2.1).

A 2D image graph is illustrated in Figure 2.2a for ρ = 1. This graph topology can be

the same for any segmentation method based on optimum paths. The approach based on

the min-cut/max-flow algorithm can use this image graph extended by two virtual nodes,

source o and sink b, with arcs (o, s) and (s, b) connecting them to each pixel s ∈ DÎ

(Figure 2.2b). The arc weights w(s, t) of the image graph are estimated via training,

as described next, and the extended arc weights, w(o, s) and w(s, b), are estimated from

intermediate results of the training step, as explained in Section 2.4.5.

2.3 Synergistic arc-weight estimation

Arc-weight estimation takes into account image attributes and object information in order

to enhance the discontinuities between object and background. Let v be an algorithm

which extracts attributes (color, gradient, texture) from any pixel s ∈ DÎ and returns

a vector ~v(s). In the simplest case, we may take ~v(s) = ~I(s). However, the best set of

attributes depends on each given application 1. In the segmentation of natural scenes, for

example, one may exploit the Lab color space [127] and/or compute texture attributes

1The images used for arc-weight assignment in Figures 2.3, 2.4, 2.6, 2.10, and 2.14 are in the RGB
color space.



Caṕıtulo 2. Synergistic Arc-Weight Estimation for Interactive Image Segmentation 15

around each pixel from the results of the image convolved with a bank of filters [66, 73,

84, 69, 85]. Other options are discussed in Section 2.3.2. For c objects l = 1, 2, . . . , c,

including the background as object numbered c without loss of generality, the weight

w(s, t) assigned to each arc (s, t) ∈ A is a linear combination of an image-based weight

0 ≤ wi(s, t) ≤ K and an object-based weight 0 ≤ wo(s, t) ≤ K, which takes into account

all c objects.

w(s, t) = λwo(s, t) + (1− λ)wi(s, t), (2.1)

where 0 ≤ λ ≤ 1. The weights wi(s, t) exploit only image attributes to capture

discontinuities that may exist between homogeneous regions. The weights wo(s, t) take

into account the image attributes for pixels under selected markers, drawn by the user

inside each object l = 1, 2, . . . c. They aim to characterize the discontinuities existing

between each selected object and the rest of the image. The user can adjust the parameter

λ and add/remove markers to recompute the arc weights. The quality of the arc weights

is evaluated by visualizing a weight image Ŵ = (DÎ , W ), where

W (s) = max
∀t∈A(s)

{w(s, t)} (2.2)

for all s ∈ DÎ . Our aim is to make w(s, t) higher on the desired object boundaries than

inside the objects, so Ŵ must show a suitable boundary enhancement for a given image

(see Figure 2.3). The complement of w(s, t) may be used depending on the segmentation

method. The process of arc-weight assignment stops when the user is satisfied with the

boundary enhancement. The image-based weights wi(s, t) become more important (λ is

lower), when nearby objects have similar image properties (Figures 2.7 and 2.14).

The following sections describe how to define object-based and image-based weights

and discuss some implementation and customization issues.

2.3.1 Object-based weight assignment

Let d̂(s, t) ≥ 0 be the distance between the corresponding attribute vectors, ~v(s) and

~v(t), of two pixels s and t. One can use any distance function suitable for the defined

attributes. The most common is the vector norm ‖~v(t)− ~v(s)‖, which is the one used in

this paper, but some image attributes may require special distance algorithms [73, 85].

The pair (~v, d̂) then describes how the pixels of a dataset are distributed in the attribute

space and we call it a descriptor.

Let Sl ⊂ DÎ be the set of representative pixels (markers) selected by the user inside

each object l = 1, 2, . . . , c. A suitable descriptor should group pixels of distinct objects

in different regions of the attribute space, but the same object may be represented by
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(a) (b) (c)

Figure 2.3: (a) An image with markers selected inside and outside the object. (b)
The weight image Ŵ considering only the image-based component (λ = 0), and (c)
by combining it with the object-based weight (λ = 0.8), c = 2.

multiple clusters and pixels of distinct objects may fall in the same cluster. This explains

the importance of pixel connectivity for the success of segmentation. We define Ak,l as

a special adjacency relation in the attribute space between any pair of pixels (s, t), such

that, s ∈ DÎ , and t ∈ Sl is a k-nearest neighbor of s in the attribute space.

t ∈ Ak,l(s) if t ∈ Sl is a k-nearest neighbor of s ∈ DÎ . (2.3)

We expect that the mean distance d̄(s,Ak,l(s)) between s and its k neighbors in Sl,

l = 1, 2, . . . , c, be the smallest for pixels of the same object of s.

d̄(s,Ak,l(s)) =
1

k

∑

∀t∈Ak,l(s)

d̂(s, t). (2.4)

The fuzzy membership value µ(l | ~v(s)) can then be conjectured to be proportional to

the total mean distance
∑

d̄(s,Ak,i(s)) for i = 1, 2, . . . , c, and i 6= l.

µ(l | ~v(s)) ≈
(

K

c− 1

)

∑

∀i=1,2,...,c| i6=l d̄(s,Ak,i(s))
∑

∀i=1,2,...,c d̄(s,Ak,i(s))
. (2.5)

These membership values can be viewed through a set of images M̂i = (DÎ , Mi), i =

1, 2, . . . , c such that Mi(s) = µ(l = i | ~v(s)) for all s ∈ DÎ . For multiple objects, the user

should keep on drawing markers inside the dark regions of object i in each image M̂i,

i = 1, 2, . . . , c, until that object becomes brighter than the rest in this membership image.

For the sake of simplicity, all examples in this paper use only “object and background”
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(a) (b)

(c) (d)

Figure 2.4: Image M̂1, where the desired object is a family of bears. (a-b) An initial
marker selection and the corresponding membership image M̂1. (c-d) The estimation
improves as the user adds internal markers on the dark regions of the object and external
markers on the bright regions of the background in M̂1.

type of situation. In this case, µ(l = 1 | ~v(s)) = K − µ(l = 2 | ~v(s)), and then we can,

and need to, show only M̂1 with internal and external markers (Figure 2.4). As the user

adds markers, the estimation improves and the object becomes increasingly distinguished

(brighter) from the background (darker).

We could have estimated µ(l | ~v(s)) by Baye’s Theorem, by directly computing the

posterior probability P(l | ~v(s)) from the markers and the distances between s and its

neighbors in Ak,l(s) in the attribute space [34]. A similar approach to compute probability

density functions is described in [95]. We compared with that approach and the results

were equivalent to those obtained by Equation 2.5, which is simpler and more efficient.

Note that, according to Equation 2.5, for any pixel s the sum of µ(l | ~v(s)) for l =

1, 2, . . . , c is the maximum value K, as desired for a discrete surrogate of the probability

quantized into K levels.

The discontinuities between each object l and the rest of the image can be captured
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from a gradient vector ~Gl(s), defined for all s ∈ DÎ and computed as follows.

~Gl(s) =
∑

∀t∈A(s)

[µ(l | ~v(t))− µ(l | ~v(s))]~st, (2.6)

where ~st is the unit vector connecting s to t in the image domain. For a 2D Euclidean

adjacency A with ρ =
√

2, the gradient vector ~Gl(s) is estimated from the vectorial sum

of the first derivatives of µ(l | ~v(s)) along the 8 directions, rather than from the x and y

directions only.

For each arc (s, t) ∈ A, we compute the magnitude of the mean gradient vector of its

pixels and use it as the weight wo,l(s, t) with respect to the object l. The final object-based

weight wo(s, t) is considered to be the maximum of wo,l(s, t) among all objects.

wo,l(s, t) =

∣

∣

∣

∣

∣

~Gl(s) + ~Gl(t)

2

∣

∣

∣

∣

∣

(2.7)

wo(s, t) = max
l=1,2,...,c

{wo,l(s, t)}. (2.8)

The orientation of ~Gl(s) + ~Gl(t) can also be exploited to modify arc-weight assignment

(Section 2.4.7).

As the user adds markers, the size of the union set Z =
⋃

l=1,2,...,c Sl increases and

Equation 2.5 becomes computationally more expensive to assign membership values to

all pixels in DÎ . On the other hand, we do not need quantity, but quality, in choosing

pixels for Z. In order to choose the best representative pixels for each object from the

drawn markers, and, at the same time, to estimate the best parameter k, we use supervised

learning as described next.

Supervised learning from markers

The main idea is to reduce the size of Z by selecting a subset Z1 ⊂ Z of the most

representative pixels. These pixels are defined as those that maximize the classification

accuracy of the remaining set of pixels Z2 = Z\Z1, using the maximum µ(l | ~v(s)) as

the decision rule for the pixels s ∈ Z2 with respect to its neighbors Ak,l(s) ⊂ Z1 by

Equation 2.5.

The set Z is divided into two subsets, Z1 and Z2, by randomly selecting the same

percentage of pixels from each object. Set Z1 has a maximum size (e.g., 100 pixels).

When the number of seeds is less than that maximum size, we may divide Z into 50%

for Z1 and 50% for Z2. The maximum µ(l | ~v(s)) is used to classify the pixels in Z2.

This process is repeated for each k from 1 to kmax (Equation 2.9) in order to obtain the

best value of k for the given Z1. The misclassified pixels with the best k are randomly
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replaced by pixels of the same object in Z1. The whole process is repeated over a few

iterations T (e.g., T = 5) and the pair (Z1, k) of maximum accuracy is selected as output

(see Algorithm 1).

kmax = min
∀l=1,2,...,c

{ |Sl ∩ Z1|
2

}

. (2.9)

Algorithm 1 – Learning Algorithm

Input: Initial sets Z1 and Z2, number T of iterations, and the descriptor (v, d).

Output: The pair (Z∗
1 , k∗) of maximum accuracy.

Auxiliary: Arrays FP and FN of sizes c for false positives and false negatives, list M of

misclassified pixels and its auxiliary M∗, and array A of size T for the best

accuracies.

1. Compute kmax by Equation 2.9.

2. For each iteration i = 1, 2, . . . , T , do

3. Set Acc∗ ← 0.

4. For each k = 1, 2, . . . , kmax, do

5. M ← ∅.
6. For each class l = 1, 2, . . . , c, do

7. FP (l)← 0 and FN(l)← 0.

8. For each sample s ∈ Z2, do

9. Classify s with label 1 ≤ L(s) ≤ c, as described above.

10. If s ∈ Sl and L(s) 6= l, then

11. FP (L(s))← FP (L(s)) + 1.

12. FN(l)← FN(l) + 1.

13. M ←M ∪ t.

14. Compute Acc by Equation 2.12.

15. If Acc ≥ Acc∗, then

16. Acc∗ ← Acc, M∗ ←M , Z∗
1 ← Z1 and k∗ ← k.

17. Save (Z∗
1 , k∗) and set A(i)← Acc∗.

18. While M∗ 6= ∅
19. M∗ ←M∗\s
20. Replace s by a randomly selected pixel of the same

21. class in Z1.

22. Select the instance of (Z∗
1 , k∗) with maximum accuracy A(i), i = 1, 2, . . . , T .

Accuracy is measured, as suggested in [92], by taking into account the fact that objects

may have different sizes in Z2. If there are two objects, for example, with very different
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sizes and the classifier always assigns the label of the largest object, its accuracy will fall

drastically due to the high error rate on the smallest object. This accuracy is defined as

follows. Let N2(l) be the number of pixels of Sl in Z2. We first define

el,1 =
FP (l)

|Z2| −N2(l)
and el,2 =

FN(l)

N2(l)
, l = 1, . . . , c, (2.10)

where FP (l) and FN(l) are the number of false positive and false negative pixels (Lines

11–12), respectively. That is, FP (l) is the number of pixels from other objects that were

classified as being from the object l in Z2, and FN(l) is the number of pixels from the

object l that were incorrectly classified as being from other objects in Z2. The errors el,1

and el,2 are used to define

E(l) = el,1 + el,2, (2.11)

where E(l) is the partial sum error of object l. Finally, the accuracy Acc of classification

is expressed as

Acc =
2c−∑c

l=1 E(l)

2c
= 1−

∑c

l=1 E(l)

2c
. (2.12)

2.3.2 Image-based weight assignment

In general, one may use 0 ≤ d̂(s, t) ≤ K as the image-based weight wi(s, t) in Equation 2.1.

It is also possible to learn the posterior probability of a pixel (or arc) to be on a boundary

from local image attributes [74]. We present another interesting option based on image

smoothing at several scales.

Multscale image smoothing can be accomplished by linear convolutions with

Gaussians [66] and/or levelings [76, 119, 103, 102]. Except for Figure 2.15, the other

examples in this paper use sequences of opening by reconstruction and closing by

reconstruction, computed over each image band Ib, b = 1, 2, . . . , m, for disks of radii

r = 1, 2, . . . , S (e.g., S = 4 pixels). Gaussian filters provide smoother contours than

morphological reconstructions, but the latter may be preferable to better conserve the

natural shape indentations and profusions. In Figure 2.15, we illustrate the contour

smoothness obtained by Gaussian filters with means equal to 0 and standard deviations

σ = r
3

for scales r = 1, 2, . . . , S = 6 pixels.

Let ~vb(s) = (vb,1(s), vb,2(s), . . . , vb,S(s)) be the resulting pixel intensities vb,j(s), j =

1, 2, . . . , S, of the multiscale smoothing on the image band Ib, b = 1, 2, . . . , m. We compute

a gradient vector ~Gb(s) for each s ∈ DÎ and band b = 1, 2, . . . , m. The idea is the same
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as in Equation 2.6, where A may be Euclidean with ρ =
√

2.

~Gb(s) =
S
∑

j=1

∑

∀t∈A(s)

[vb,j(t)− vb,j(s)]~st (2.13)

wi(s, t) = max
b=1,2,...,m

{∣

∣

∣

∣

∣

~Gb(s) + ~Gb(t)

2

∣

∣

∣

∣

∣

}

. (2.14)

Note that, the gradients ~Gb(s) are filtered vectors, the gradient orientation of the

mean vector of maximum magnitude may be used to modify arc-weight assignment

(Section 2.4.7), and the best choice of attributes for a given image should be learned

from the selected markers and a database of descriptors. One can select, for example, the

descriptor which maximizes the accuracy in Algorithm 1.

2.4 Interactive segmentation methods

A segmentation result is represented by a label image L̂ = (DÎ , L), in which each label

1 ≤ L(s) ≤ c assigns a pixel s ∈ DÎ to one object out of c objects, including background.

For the sake of simplicity, we have considered the case of c = 2 in all examples of this paper.

All methods presented in this section have been well published, so we will present only a

short description with their graph parameters customized as a function of w(s, t) and µ(l |
~v(s)), although for other methods, different adaptive procedures may be required. The

methods based on optimum paths are described by using the image foresting transform

(IFT) [43]. We also describe the graph-cut approach based on the min-cut/max-flow

algorithm of [17]. What is novel in this section is the way these methods are used in

combination as tools in an interactive segmentation paradigm.

2.4.1 Image Foresting Transform

The image foresting transform (IFT) is a tool for the design, implementation, and

evaluation of image processing operators based on connectivity values among pixels [43].

In a given image graph (DÎ ,A), a path πt = 〈t1, t2, . . . , t〉 is a sequence of two or

more adjacent pixels with the terminus at a pixel t ∈ DÎ , πt = 〈t〉 being considered a

trivial path. A path πt is optimum under a path-value function f(πt), when f(πt) ≤ f(τt)

for any other path τt. The IFT computes an optimum-path forest P by minimizing (or

maximizing) Equation 2.15 for every t ∈ DÎ .

V (t) = min
∀πtin(D

Î
,A)
{f(πt)}, (2.15)
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where V (t) is the value of the optimum path with terminus t. The initial pixels of the

optimum paths are called roots of the forest. By starting with trivial paths πt = 〈t〉 for all

pixels t ∈ DÎ , the IFT algorithm (a generalized Dijkstra’s algorithm [28], which in practice,

executes in linear time in most cases) first identifies the forest roots (minima/maxima of

V ) and then propagates optimum paths to their adjacent pixels, continuing from these

nodes to their neighbors, and following a non-decreasing (non-increasing) order of path

values, according to the path-propagation rule below.

if f(πs · 〈s, t〉) < f(πt) then πt ← πs · 〈s, t〉, (2.16)

where πs · 〈s, t〉 indicates the extension of a path πs by an arc (s, t) ∈ A (Figure 2.5a).

These paths are represented in backwards, where P (t) indicates the predecessor node of

t in the path πt and R(t) is its root pixel for which P (R(t)) = nil (Figure 2.5b). An

optimum-path forest P is a function which takes every pixel to nil in a finite number of

iterations, such that all paths are optimum (Figure 2.5c).

t

π

P(t)

r
1

r
2

R(t) t

ts

π
s

(a) (b) (c)

Figure 2.5: (a) Path πt = πs · 〈s, t〉 indicates the extension of path πs by an arc (s, t) ∈ A.
(b) A 4-neighborhood graph showing a path πt (dashed line) represented in backwards,
where P (t) is the predecessor node of t and R(t) is the root pixel. (c) A forest P with
two root nodes r1 and r2.

The path-value functions define different IFT-based image operators, which are

reduced to a local processing operation on one or more of the output maps V , P , and

R [40, 39, 95, 92, 9, 110]. The IFT algorithm is an optimum region (path) growing

process from the roots of the forest (Figure 2.6). Variants can also gather on-the-fly other

information, such as a root label for each pixel [68, 36], the propagation order of the

pixels [80], the area of the wavefronts of same path value [80], and a graph-cut measure

for the border of the growing regions [41].

Particularly, the image segmentation methods described in the following sections adopt

a minimization of path-value functions f1 and f2, and some of their variants, such that
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the roots of the forest are constrained into the union set Z =
⋃

l=1,2,...,c Sl of selected

markers. We note that, these IFT algorithms run in linear time independently of |Z|.

f1(〈t〉) =

{

H(t) if t ∈ Z
+∞ otherwise.

f1(πs · 〈s, t〉) = max{f1(πs), w(s, t)} (2.17)

f2(〈t〉) =

{

H(t) if t ∈ Z
+∞ otherwise.

f2(πs · 〈s, t〉) = f2(πs) + w(s, t), (2.18)

where 0 ≤ H(t) < ∞ is a handicap value and 0 ≤ w(s, t) ≤ K is the fixed arc weight,

as described in Section 2.3. Function f1(πt) computes the maximum arc weight along πt

and f2(πt) computes the sum of the arc weights along πt.

(a) (b)

(c) (d)

Figure 2.6: (a) An initial marker selection for segmentation. (b-d) The IFT region
growing. (d) The regions meet each other at the object’s boundary.

2.4.2 Segmentation by differential IFT (DIFT)

Multiple objects can be obtained by competition among markers in Sl, l = 1, 2, . . . , c. By

assigning higher arc weights across the desired boundaries, the IFT with f1 (e.g., H(t) = 0)
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tends to propagate optimum paths inside the objects before they meet paths from seeds

of other objects at the image boundaries (Figure 2.6). Additional seeds are required

when this condition is not fully satisfied. Each seed r ∈ Z defines an influence zone

(optimum-path tree rooted at r) composed of the pixels that are more strongly connected

to r than to any other seed. Each object l is then defined by the union of the influence

zones with that label in L. This essentially incorporates approaches, such as the watershed

transform from markers [11, 68] and iterative relative-fuzzy connectedness [24]. The formal

relation that exists between these approaches is studied in [79, 6]. The same strategy with

f2 (e.g., H(t) = 0) would be a segmentation by weighted distance transform [8, 94].

In any case, the user may want to add/remove markers to correct the segmentation

results (Figure 2.7). Instead of computing one IFT from the beginning for each new

instance of seeds, the DIFT algorithm allows us to recompute the optimum-path forest

in time proportional to the number of pixels in the modified regions [36] (sublinear time

in practice).

(a) (b)

(c) (d)

Figure 2.7: (a) A weight image Ŵ obtained from Figure 2.4 using λ = 0.4. (b) An initial
marker selection and segmentation. (c) An additional seed is inserted in order to include
the other bears. (d) The final segmentation after some small corrections.
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2.4.3 Segmentation by κ-connected components

User involvement can be reduced when we exploit other properties of the optimum paths

during the IFT algorithm [80]. The IFT with f1 (with H(t) = 0) propagates wavefronts

Wu(s) of iso-optimum-path value u around each seed s, following an increasing order of

values u = 0, 1, . . . , K. The maximal extent of a seed inside an object is defined by a κs

value as
⋃

u=0,1,...,κs
Wu(s) (Figure 2.8a). When the competition with external seeds fails

(or there is no external seeds) and an optimum path from s invades the background, it

usually crosses the boundary through its weakest link (arc with the lowest weight or leaking

arc), ramifies and conquers a large region of surrounding pixels with the same path value

κs +1 (Figure 2.8b). This background invasion is characterized by a considerable increase

of |Wu(s)|, which can be observed by displaying a curve of the total area
∑

∀s∈Sl
|Wu(s)| for

u = 0, 1, . . . , K during propagation (Figure 2.8c). A single area threshold 0% < T < 100%

on the size |Wu(s)| can be used to detect κs for all seeds s ∈ Sl and forbid the leaking

by stopping the region growing from s. The object is defined as the subset of pixels

which are more strongly κ-connected to its internal seeds than to any other (Figure 2.8d).

As discussed in Reference [79], a non-maximal suppression to make the weights in the

object’s boundary thinner is an adequate preprocessing that should be adopted in these

κ-connected methods.

Note that, since the internal seeds also compete among themselves, with distinct κs

values, the method can work even when leaking occurs before the object is fully segmented

(Figure 2.8b). The method usually reduces the number of external seeds required to

complete segmentation [80], and it is equivalent to the segmentation by differential IFT

when we increase the number of external seeds. That is, it is more general than the

previous approach.

2.4.4 Segmentation by tree pruning

Another idea to reduce/eliminate external seeds using the IFT with f1 (with H(t) = 0)

has been proposed in [38, 9]. In both approaches, the idea is to let the object and the

background get connected through the leaking arcs by computing the IFT from internal

seeds. The leaking arcs can be then detected interactively [38] or automatically [9]. By

removing their subtrees from the forest P , the remaining forest defines the object. The

first approach can handle multiple objects, but we will discuss here only the second

approach.

In [9], there is no competition with external markers. They are called an external

set B, which is used to detect all leaking arcs automatically. In most cases the set B is

the image’s border, but the user can also add external pixels to B or internal seeds, if

needed. The optimum paths that leak to the background are called leaking paths. They



26 Caṕıtulo 2. Synergistic Arc-Weight Estimation for Interactive Image Segmentation

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000  1200  1400

W
a
v
e
fr

o
n
t 
a
re

a
 (

%
)

Optimum-path values

(c) (d)

Figure 2.8: (a-b) The IFT region growing from internal seeds. There is a burst in the size
of the wavefront when an optimum path reaches the background. (c) The total wavefront
area for each optimum-path value u = 1, 2, . . . , K during propagation. (d) The resulting
segmentation with κ-connected components.

can be enhanced by displaying the number of descendants that each forest node has in B
(Figure 2.9a). Since the leaking paths are ramified after leaking, there is a considerable

decrease in the descendant number after the leaking arcs. The method can detect this

variation, remove the leaking arcs and output the object (Figure 2.9b). It has been shown

that segmentation by tree pruning is less sensitive to the heterogeneity of the background

than the watershed transform from markers [9].

2.4.5 Segmentation by graph cut

Approaches for graph-cut segmentation are based on objective functions that measure

some global property of the object’s boundary using the arc weights. The idea is to

assign weights to the arcs such that the minimum of this objective function corresponds

to the desired segmentation (i.e., a cut boundary whose arcs connect the nodes between

object and background).

Wu and Leahy [126] were the first to introduce a solution for graph cut using as
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(a) (b)

Figure 2.9: Example of license plate segmentation. (a) The original image overlaid by
the number of descendants in the background set B. (b) The resulting segmentation with
tree pruning.

measure the sum of the arc weights in the cut boundary. Their cut measure had a bias

toward small boundaries, and subsequently, other objective functions, such as average

cut [30], mean cut [124], average association [105], normalized cut [106], ratio cut [123],

and energy functions [17] have been proposed to circumvent this problem.

Interactive segmentation using the min-cut/max-flow algorithm [17, 63] uses extended

image graphs (Figure 2.2), where two terminal nodes o and b (source and sink) represent

object (l = 1) and background (l = 2), respectively, directly connected to all pixels

s ∈ DÎ by arcs (o, s) and (s, b). A variant of the min-cut/max-flow algorithm from source

to sink [48, 15] is then used to speed up computation of the minimum-cut boundary

according to the following equation:

E(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=2

K − w(s, t)

+
∑

∀s∈D
Î
| L(s)=1

w(s, b) +
∑

∀s∈D
Î
| L(s)=2

w(o, s), (2.19)

where w(s, b) and w(o, s) can be computed based on the membership values given in

Equation 2.5:

w(o, s) = α · µ(l = 1 | ~v(s)) (2.20)

w(s, b) = α · µ(l = 2 | ~v(s)). (2.21)
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Here, α ≥ 0 specifies the relative importance of the arcs with the virtual nodes versus

the arcs between pixels (Figure 2.10). As discussed in Reference [79], an interesting

adaptive procedure to improve this method is to penalize arcs between pixels with high

complemented weights by applying some increasing transformation (e.g., power functions,

the exponential function [64]). This is especially important for low α values since in this

case Equation 2.19 becomes almost the same as in Wu and Leahy [126] and it helps to

circumvent the undesirable bias.

(a) (b) (c)

Figure 2.10: Graph-cut segmentation with α = 20 and λ = 0.5. (a) Marker selection for
training and the result of segmentation. (b) The membership image M̂1 used in w(o, s)
and w(s, b). (c) The weight image Ŵ that reflects w(s, t).

If the algorithm fails in delineating the desired boundary, the user forces arc weights

with source and sink by adding markers inside and outside the object [17]. The problems

related to the simultaneous segmentation of multiple objects are discussed in [16].

2.4.6 Segmentation by IFT with graph cut

If the arc weights are higher on the desired boundary than inside the objects, then the

borders of the growing regions from internal seeds must merge and fit to the desired

boundary during the IFT propagation with f1 (with H(t) = 0). Such borders work as

cut boundaries and different cut measures may be computed on-the-fly for every instant

(propagation order of each pixel) during region growing (Figure 2.11a). Within this

considerably reduced search space, the minimum cut is expected to occur on the object’s

boundary (Figure 2.11b). The method has been evaluated for normalized cut, mean cut

and energy functions [41]. When the weight condition is not fully satisfied, the desired

cut is not a global minimum even within this reduced search space, but the user can add

more internal seeds. The reduction of the search space represents a considerable efficiency

gain with respect to some graph-cut approaches [106, 123].

We note that, a non-maximal suppression to tune the weights can help this method

by allowing a better fit to the boundaries during the internal region growing [79].
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Figure 2.11: Segmentation example of a MR-brain image. (a) The normalized cut versus
the pixel propagation order. (b) The respective segmentation.

2.4.7 Segmentation by live wire

In order to segment the object with live wire [44], the user selects a starting point on

the object’s boundary (point s1 in Figure 2.12a), and, for any subsequent position of the

mouse cursor, the method computes an optimum path from s1 to that position in real

time. As the user moves the cursor close to the boundary, the optimum segment snaps

on to it. The user can quickly verify the longest segment, as the one with terminus at

point s2 in Figure 2.12b, and deposit the mouse cursor at that position. The process is

then repeated from s2 until the user decides to close the contour (Figures 2.12c-d).

The closed contour is an optimum curve that is constrained to pass through a sequence

〈S(1),S(2), . . . ,S(N)〉 of N anchor points (seeds) on the object’s boundary, in that order,

starting from S(1) and ending in S(N), where each set S(i), i = 1, 2, . . . , N , has a single

pixel si and s1 = sN . The optimum curve that satisfies those constraints consists of

N − 1 segments πs2
, πs3

, . . . , πsN
, where each πsi

is an optimum path connecting si−1

to si. Therefore, we can solve this problem by N − 1 executions of the IFT and the

optimum contour can be obtained from the predecessor map P after the last execution.

For i = 2, 3, . . . , N , the IFT is computed using the initial point si−1 ∈ S(i−1) as seed,

8-adjacency relation and path-value function f3 (a variant of f2).

f3(〈t〉) =

{

V (t) if t ∈ πs2
∪ . . . ∪ πsi−1

+∞ otherwise
(2.22)

f3(πs · 〈s, t〉) = f3(πs) + (K −max{ ~G(s, t) · ~η(s, t), 0})a, (2.23)

where V (t) is the optimum path value of the previous executions, a > 0 (e.g., a =
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1.5), 0 ≤ | ~G(s, t)| ≤ K is the gradient vector estimated at the midpoint of arc (s, t),

and ~η(s, t) is the unit vector ~st rotated 90 degrees counter-clockwise. This formulation

favors segmentation on a single orientation, but allows longer boundary segments. We

use ~G(s, t) =
~Gl(s)+ ~Gl(t)

2
obtained from the membership map, but the image gradient

~G(s, t) =
~Gb(s)+ ~Gb(t)

2
of maximum magnitude for b = 1, 2, . . . , m is also an option, when

there are no training markers. The initial path value V (s1) = f3(〈s1〉) = 0 and we make

V (s1 = si) = +∞ to compute the last segment.

We note that, other variants of live wire can also take advantage of the proposed

arc-weight assignment [43, 58, 46, 57, 71, 54].

2.5 Experiments and Results

(a) (b)

(c) (d)

Figure 2.12: Contour tracking with live wire. (a) Initial point s1 is selected on the
boundary and the user moves the mouse. (b) A second point s2 is selected on the boundary.
(c-d) Final contour with 7 segments.

The examples in the previous sections have shown that the proposed process for

arc-weight assignment is useful in several image segmentation methods. The synergism

between the user and the computer offers some important advantages as well. Object
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(a) (b)

Figure 2.13: (a) Segmentation result of the watershed transform from markers considering
only the traditional image-based component (Figure 2.3b). (b) A better result is obtained
with less seeds, by the use of object-based weights (Figure 2.3c).

information is incorporated into arc-weight estimation under user supervision and control.

In traditional segmentation methods [59, 11, 106, 124], arc-weight estimation is usually

treated as a simple embedded process, disregarding, in many cases, the user interventions.

For example, the watershed from markers over the weight image (Figure 2.13a) can be

drastically improved by incorporating object information as presented in Section 2.3.1

(Figure 2.13b).

The arc-weight assignment process and computation without visual inspection by

the user makes it difficult to understand what part is contributing more to the final

segmentation result: arc-weight estimation or the segmentation algorithm. Hence, only

a common base strategy for arc-weight assignment, with the proper adaptive procedures,

allows fair comparisons among methods. For instance, it is easy to see that any approach

based on the weights of Figure 2.3b will be at a clear disadvantage when compared with

those based on the weights of Figure 2.3c.

Other approaches also incorporate object information into arc-weight estimation [17,

8, 94]. However, the absence of weight visualization and the use of segmentation

markers for both arc-weight estimation and delineation make the user lose control over

the segmentation process, when there exist ambiguities between object and background

properties. Figure 2.14, in which the bigger horse is the object of interest, provides an

illustration of this phenomenon. Figure 2.14a shows the DIFT segmentation from the same

markers used for training and delineation. The corresponding membership image M̂1 and

weight image Ŵ used for arc-weight assignment are shown in Figures 2.14b and 2.14c

(λ = 0.5). Note that the segmentation fails owing to the weak boundary between the

bigger and the smaller horses, which have similar image properties. Additional markers

can correct segmentation in a differential way (Figure 2.14d). However, arc weights
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should never be recomputed from the new markers. If we do that, the membership

image M̂1 gets destroyed (Figure 2.14e) and the segmentation results would not be

correct (Figure 2.14f). This explains the importance of having arc-weight estimation as a

separated training step from image segmentation. During training, the user should select

the most representative and distinguishable parts of the objects, and leave corrections

to the interactive segmentation session, in order to avoid arc-weight estimation based on

exceptions.

The visual feedback during training also assists the user in choosing the image

segmentation method which is likely to require less markers. Figure 2.15a illustrates the

DIFT segmentation of the left caudate nucleus in an MR-image, using the same markers

for training and delineation. The corresponding membership image M̂1 (Figure 2.15b)

and weight image Ŵ (Figure 2.15c) for λ = 0.5 indicate that the arc weights on the

object’s boundary are not strictly higher than inside and outside the boundary. However,

when they indeed are greater, only one internal seed and one external seed are enough to

complete segmentation by DIFT. Since this is not the case, segmentation would fail if we

remove the external marker on the lateral ventricle (dark part) and additional markers

are actually needed to refine the results shown in Figure 2.15a. However, arc weights

seem to be higher on the object’s boundary than inside. This favors other methods

such as segmentation by κ-connected components (Figure 2.15d), which provides the

desired segmentation with only one internal seed. The nearby boundaries with similar

properties would make more than two seeds required to complete segmentation with live

wire (Figure 2.15e). Graph-cut segmentation fails because object and background have

similar properties (Figure 2.15f). Correction in this case is impractical.

In order to validate the synergistic arc-weight estimation method, we need to show

that it can really improve accuracy and efficiency (in terms of the amount of user help

required) of a given segmentation method as compared to the direct approach based only

on wi, which does not require user assistance. We demonstrate this for one of the methods,

namely DIFT, described in Section 2.4.2, instead of evaluating all methods in this manner

since the latter is not likely to generate new insight. We used DIFT with (λ = 0.5) and

without wo (λ = 0) to segment different objects in 100 MRI and CT slice images. Among

these, 40 slice images came from MRI-T1 acquisition simulations of phantoms (available

at the BrainWeb site2 [25]), 40 slice images were selected from CT cervical spine studies

of 10 subjects, and 20 slice images came from CT thoracic studies of 10 subjects. This

gave us a total of 100 2D-segmentations for each method as shown in Table 2.1. Sample

objects are shown in Figure 2.16.

The ground-truth segmentations were available for each object and they were used to

compute the following accuracy measures: the normalized number of false positive pixels

2URL: http://www.bic.mni.mcgill.ca/brainweb/
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: (a) DIFT segmentation using the same markers for training and delineation.
(b-c) The respective membership image M̂1 and weight image Ŵ of the training (λ = 0.5).
(d) The correct segmentation is obtained with additional markers, which should never be
used to recompute weights. (e) The membership image M̂1 is destroyed if we recompute
weights from the additional markers, affecting (f) the result of segmentation.
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: (a) The same training markers are used to delineate the left caudate nucleus
by the DIFT algorithm. Additional markers are needed to refine segmentation. (b-c)
The corresponding membership image M̂1 and weight image Ŵ for λ = 0.5. (d-f)
Segmentations by κ-connected component, live wire and graph cut.

m1 = FP/(FP +TN), where FP +TN is the sum of the number of false positive and true

negative pixels, the normalized number of false negative pixels m2 = FN/(FN + TP ),

where FN + TP is the sum of the number of false negative and true positive pixels [113],

and Dice similarity [32]. Efficiency can be measured by the number of markers (marking

actions) required by the user to complete segmentation. The method with less markers

requires less user involvement. Note that, in interactive segmentation, accuracy depends

on the user’s patience for verification and correction. In practice, the user tends to stop

the corrective actions when the efforts needed to improve the results increase too much

relative to the returned improvement in accuracy. Therefore, high accuracy with less

number of markers is highly desirable. The mean and standard deviation of the accuracy

and efficiency measures estimated in our experiments are presented for the DIFT with

and without wo in Tables 2.2 and 2.3, respectively.

In order to simulate a real environment, the similarity measure should be maximized

as much as possible until the corrections become almost manual and impractical (i.e., until

only small differences distributed along the boundary remain). In the case of O1 with wo,

about 5− 10 markers are needed to achieve more than 90% of Dice similarity. This result

is already equivalent to the best obtained without wo (line 1 of Table 2.3), and can be

further improved by adding more markers for small corrections (line 1 of Table 2.2). For
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Object Description Modality #Images
O1 Spinal-vertebra CT 40
O2 White matter (N = 3% and INU = 20%) MRI-T1 20
O3 White matter (N = 5% and INU = 40%) MRI-T1 20
O4 Liver CT 20

Table 2.1: Description, imaging modality and number of slice images for each object used
in the experiments. Objects O2 and O3 use sample slices from phantoms with different
degrees of noise (N) and inhomogeneity (INU).

(a) (b) (c)

Figure 2.16: Sample slice images showing objects O1, O3 and O4. Object O2 is the same
as object O3, but on images with less noise and inhomogeneity.
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Dice m1 m2 #markers
Mean Std dev Mean Std dev Mean Std dev Mean Std dev

O1 0.9329 0.0115 0.00277 0.00073 0.0830 0.0256 17.8 5.5
O2 0.9767 0.0020 0.00732 0.00096 0.0205 0.0038 13.6 4.6
O3 0.9663 0.0028 0.01059 0.00186 0.0297 0.0039 18.7 4.9
O4 0.9841 0.0027 0.00293 0.00118 0.0180 0.0045 11.1 3.0

Table 2.2: Segmentation results using DIFT with wo (λ = 0.5).

objects O2 and O3, in general, only 4− 5 markers are sufficient to obtain more than 95%

of Dice when using wo, while three times more interactions are required without wo to

reach 90% similarity with the true segmentation. As we keep adding more markers, the

results converge to the values listed in Tables 2.2 and 2.3. In the case of O4, the results

with and without wo are very similar. We already have more than 91% of Dice similarity

with 3 markers and about 96% with 6 markers.

The results indicate that the use of wo usually provides higher accuracy and higher

efficiency. By considering the standard deviation, the DIFT with wo presented better

performance than the DIFT without wo in all cases, except in the case of object O4,

where both were equivalent. In all cases, it was enough to consider only two markers to

compute wo, and these markers were also used to start delineation (i.e., they are counted

in Table 2.2). The use of wo enhances the desired boundaries and suppresses unwanted

borders (see Figure 2.17). This explains the reduction of markers required to complete

segmentation, as verified in all cases (Tables 2.2 and 2.3). Since the remaining errors are

distributed along the boundary, the similarity measure for each object will vary according

with the perimeter/area ratio. Note that objects with complex shapes (O1) produce lower

similarity values as compared to simple shapes (O4).

Although we used the DIFT for the experiments, there may be more adequate methods

depending on the application. For example, the visual feedback during the training of

object O1 (Figures 2.18a-b) indicates that the graph-cut approach is likely to require less

markers. Note that object O1 contains several background parts (holes) inside it, and

at least one background seed at each hole will be required by the DIFT. Indeed, results

similar to those of line 1 in Table 2.2 can be obtained with the graph-cut approach by using

only two markers for training (Figure 2.18a) and four markers to remove the background

bones during delineation (Figure 2.18c). Note, however, that the use of wo is imperative in

the graph-cut approach. By choosing α = 40, the method becomes practically a threshold

on the membership map (Figure 2.18b) followed by corrections. This gives another strong

indication of the importance of wo.
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(a) (b) (c)

Figure 2.17: (a) Sample slice of object O2 with training markers. (b-c) The corresponding
weight images Ŵ for λ = 0 and λ = 0.5, respectively. By using wo a suitable boundary
enhancement is obtained for the white matter.

(a) (b) (c)

Figure 2.18: (a) Sample slice of object O1 with training markers. (b) The corresponding
membership image M̂1. (c) Graph-cut segmentation with α = 40 and λ = 0.5. The
background bones are easily removed using 4 markers with a larger brush.

Dice m1 m2 #markers
Mean Std dev Mean Std dev Mean Std dev Mean Std dev

O1 0.9058 0.0109 0.00347 0.00054 0.1219 0.0196 31.6 7.4
O2 0.9621 0.0039 0.01836 0.00316 0.0128 0.0030 26.0 9.5
O3 0.9562 0.0041 0.02064 0.00295 0.0168 0.0034 28.9 9.8
O4 0.9862 0.0024 0.00261 0.00081 0.0152 0.0034 13.4 3.5

Table 2.3: Segmentation results using DIFT without wo (λ = 0).
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2.6 Conclusion

We have presented an interactive method for arc-weight estimation, which can be

employed effectively by several graph-based segmentation approaches as we demonstrated.

Our method exploits in a synergistic way the human abilities for recognition and the

computer abilities for delineation. While the user draws markers inside each object

(including background), arc weights are estimated from image attributes and object

information (pixels under the markers), and a visual feedback guides the user’s next

action toward improving accuracy. Markers should be drawn on the most representative

and distinguishable parts of the objects in order to make arc-weight estimation effective.

The training markers can be used to start delineation and additional markers selected on

similar parts of the objects can correct segmentation, but they should never be used to

recompute weights that are estimated in the training step.

We validated the method by showing that the combination of object-based weights

with image-based weights usually improves accuracy and efficiency in interactive

segmentation, as compared to the same method with only image-based weights. More

recently, this approach for arc-weight estimation together with object delineation by

DIFT was also successfully used to improve object tracking in video, handling partial

occlusion, camera motion, and deformable objects [77]. In this approach, after interactive

image segmentation in a first frame, the method combines motion estimation with

automatic segmentation of the remaining frames using the proposed framework. In

interactive segmentation, the importance of weight visualization to choose the most

suitable segmentation approach was also evident from the examples presented in the

paper. The selection of the best image attributes, however, requires further investigation.

These attributes can be learned from the drawn markers. Another area that requires

further work, which is a current limitation of the method, is the user action of how to

draw the markers in an effective manner. This is at present somewhat of an art. Our

future work will focus on these directions.
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Links Between Image Segmentation

based on Optimum-Path Forest and

Minimum Cut in Graph

3.1 Introduction

Discrete Mathematics provides an elegant framework for image processing, rich of efficient

algorithms with proofs of correctness. As a consequence, many image segmentation

methods have been modeled as graph-search problems.

Two popular approaches exploit undirected and weighted image graphs, where the

pixels are the nodes, the arcs are defined by an adjacency relation, and the arc weights

are similarity values computed based on image properties. The first approach minimizes

a functional of the arc weights leading to a cut in the graph that separates object and

background [106, 17, 15, 123]. The second approach [43], called image foresting transform

(IFT), can reduce segmentation to the computation of an optimum-path forest according

to a connectivity function, which assigns a value to any path in the graph, including

trivial paths formed by a single node. That is, considering the maximum value among all

possible paths with terminus at each node, the optimum path is trivial for some nodes,

called roots, and the remaining nodes will have an optimum path coming from their most

strongly connected root, partitioning the graph into an optimum-path forest (disjoint

sets of optimum-path trees). Two distinct region-based segmentation paradigms, with

internal and external seeds (i.e., roots by imposition) and with only internal seeds, can

be solved by IFT. In the first paradigm, internal and external seeds compete with each

other for their most strongly connected pixels, such that the image is partitioned into

two optimum-path forests — one rooted at the internal seeds, defining the object, and

the other rooted at the external seeds, representing the background [68, 36]. The second

39
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paradigm solves segmentation by computing one optimum-path forest from only internal

seeds and applying some other criterion to cut optimum paths such that the remaining

forest defines the object [80, 9, 38, 41]. Indeed, both paradigms can be easily extended

to multiple objects, but we will focus on binary image segmentation (object/background)

with interactive seed selection. Some variants have also shown the importance of a hybrid

paradigm [80].

These approaches based on optimum-path forest and minimum cut in graph are

usually regarded to as unrelated. Recently, some links between them were clarified

for a particular case, in which an increasing transformation is applied to all arc

weights [1]. The present work advances the state of the art in graph-based image

segmentation by better clarifying the relation between these approaches. We theoretically

prove that some IFT-based methods from both paradigms, with internal and external

seeds and with only internal seeds, indeed minimize some graph-cut measures. These

IFT-based methods are closely related to popular segmentation approaches, such as

absolute-fuzzy connectedness (AFC) [116], relative-fuzzy connectedness (RFC) [115, 99],

iterative relative-fuzzy connectedness (IRFC) [24] and watershed transforms from markers

(WT) [11]. We clarify their differences and the advantages of the IFT-based approach.

These methods have been successfully used in many applications [62, 86, 114, 88, 52, 36,

112], which validates the importance of these theoretical results. In view of that, we also

extend the theorem stated in [1] by establishing the necessary conditions to its converse.

The results provide better understanding of the methods and help the selection of the

best algorithm for a given application.

Section 3.2 presents the basic notions on image graphs and Section 3.3 presents

the concepts about the IFT, which will be used for image segmentation based on

optimum-path forest in Section 3.4. The approach based on minimum cut in graph

is briefly described in Section 3.5. Sections 3.6, 3.7 and 3.8 present the theorems and

their corresponding proofs. Taking into account the theoretical results, some comparative

analysis involving methods from both approaches is carried out along the text, but in

Section 3.9 the analysis takes into account only IFT with internal and external seed

competition and the min-cut/max-flow segmentation. Our conclusions are stated in

Section 3.10.

3.2 Basic Concepts on Image Graphs

A multi-dimensional and multi-spectral image Î is a pair (I, ~I) where I ⊂ Zn is the image

domain and ~I(t) assigns a set of m scalars Ii(t), i = 1, 2, . . . , m, to each pixel t ∈ I. The

subindex i is removed when m = 1.

An adjacency relation A is a binary relation on I. We use t ∈ A(s) and (s, t) ∈ A to
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indicate that t is adjacent to s. Once the adjacency relation A has been fixed, the image

Î can be interpreted as a graph (I,A) whose nodes (or vertices) are the image pixels

in I and whose arcs are the pixel pairs (s, t) in A. We are interested in irreflexive and

symmetric relations. For example, one can take A to consist of all pairs of pixels (s, t) in

the Cartesian product I × I such that d(s, t) ≤ ρ and s 6= t, where d(s, t) denotes the

Euclidean distance and ρ is a specified constant (e.g., 4-neighborhood, when ρ = 1, and

8-neighborhood, when ρ =
√

2, in case of 2D images).

Each arc (s, t) ∈ A has a fixed weight w(s, t) ≥ 0 which may be computed from

local image and object properties extracted from ~I and some global information (e.g.,

markers [83]). Graph-cut segmentation methods [106, 123, 17] usually assign lower weights

to arcs across the object’s boundary (i.e., an affinity measure between pixels s and t)

while some methods based on optimum-path forest [68] work with higher arc weights

across the object’s boundary (i.e., a dissimilarity measure). However, the latter may be

easily adapted to the first scheme [6] and, therefore, lower arc weights across the object’s

boundary will be considered without loss of generality. For example, one may use the

complement of a gradient magnitude (i.e., Imax − I(s)+I(t)
2

for a gradient image Î with

maximum value Imax). In this work we consider only undirected and weighted graphs.

That is, the adjacency relation is symmetric and w(s, t) = w(t, s) for all (s, t) ∈ A.

r
1

r
2t

s

(a)

π

s

(b)

t

(c)

tP(t)

πR( π )t

Figure 3.1: (a) Path πt = πs · 〈s, t〉 indicates the extension of path πs by an arc (s, t).
(b) A 4-neighborhood graph showing a path πt (dashed line) represented in backwards,
where P (t) is the predecessor node of t and R(πt) is the root pixel. (c) A spanning forest
P with two root nodes, r1 and r2.

For a given image graph (I,A), a path πt = 〈t1, t2, . . . , t〉 is a sequence of adjacent

pixels with terminus at a pixel t. A path is trivial when πt = 〈t〉. A path πt = πs · 〈s, t〉
indicates the extension of a path πs by an arc (s, t) (Figure 3.1a). All paths considered

in this work are simple paths, that is, paths with no repeated vertices (pixels).

A predecessor map is a function P that assigns to each pixel t in I either some other

adjacent pixel in I, or a distinctive marker nil not in I — in which case t is said to be
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a root of the map. A spanning forest is a predecessor map which contains no cycles —

i.e., one which takes every pixel to nil in a finite number of iterations (Figures 3.1b and

3.1c, where R(πt) is a root node and P (t) is the predecessor node of t in the path πt).

For any pixel t ∈ I, a spanning forest P defines a path πt recursively as 〈t〉 if P (t) = nil,

and πs · 〈s, t〉 if P (t) = s 6= nil.

3.3 Image Foresting Transform (IFT)

A connectivity function computes a value f(πt) for any path πt, usually based on arc

weights. Let Π(I,A, t) be the set of all paths in the graph (I,A) with terminus at t. In

this work, a path is optimum according to the following definition.

Definition 1 (Optimum path) A path πt is optimum if f(πt) ≥ f(τt) for any other

path τt ∈ Π(I,A, t).

By taking to each pixel t ∈ I one optimum path with terminus t, we obtain the

optimum-path value V (t), which is uniquely defined by

V (t) = max
∀πt∈Π(I,A,t)

{f(πt)}. (3.1)

The image foresting transform (IFT) algorithm solves the above optimization problem

by dynamic programming [43]. The IFT takes an image Î, a path-value function f and an

adjacency relation A; and assigns one optimum path πt to every pixel t ∈ I such that an

optimum-path forest P is obtained — i.e., a spanning forest where all paths are optimum.

However, f must be smooth, that is, satisfy Definition 2, as demonstrated in [43]. The

attributes of the forest include the map V , the roots R(πt), root labels L(t), and the

predecessor P (t) of t in the optimum path. The image operators are then reduced to a

local processing of these attributes [43]. If we consider ≤ instead of ≥ in Definition 1,

and minimize V (t) in Equation 3.1, we obtain a dual definition of optimality. To convert

a problem to its dual form, we simply have to invert the sign of the path-value function

(i.e., g(πt) = −f(πt)). It is important to state that the IFT was originally presented in

this equivalent dual form [43]. In this paper we consider the first schema (Definition 1

and Equation 3.1).

Definition 2 (Smooth path-value function) A path-value function f is smooth if for

any pixel t ∈ I, there is an optimum path πt which either is trivial, or has the form τs ·〈s, t〉
where
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(C1) f(τs) ≥ f(πt),

(C2) τs is optimum,

(C3) for any optimum path τ ′
s, f(τ ′

s · 〈s, t〉) = f(πt).

An interesting property of an optimum-path forest is that any path starting in a root

node is also a complete optimum path (path-value function must be smooth), according

to the following definition.

Definition 3 (Complete optimum path) A path πtn = 〈t1, t2, . . . , tn〉 is complete

optimum if all paths πti = 〈t1, t2, . . . , ti〉, i = 1, 2, . . . , n are optimum paths.

Note that, the applications for the image foresting transform (IFT) go beyond

region-based image segmentation [44, 40, 39]. In this work, however, we are only interested

in region-based image segmentation by IFT. It is also important to state that although we

are restricting our analysis to undirected graphs, the IFT can also handle segmentation

using directed graphs [43].

3.4 Region-based segmentation using IFT

The segmentation of an image is represented by a labeled image L̂ = (I, L), where L(t) = 1

for object pixels and L(t) = 0 for background pixels. Each segmentation defines an induced

cut boundary C in the graph.

Definition 4 (Induced cut boundary) The segmentation given by a labeled image L̂

defines an induced cut boundary in the graph, which is the set C of arcs (s, t) such that

L(s) = 1 and L(t) = 0.

We consider image segmentation from two seed sets, S1 and S0 (S1 ∩ S0 = ∅),
containing pixels interactively selected inside and outside the object, respectively. A

feasible segmentation must satisfy these sets of hard constraints.

Definition 5 (Feasible segmentation) The segmentation given by a labeled image L̂

is feasible if L(t) = 1 for all t ∈ S1 and L(t) = 0 for all t ∈ S0.

We are interested in the particular case of smooth path-value functions, the

monotonically decremental path-value function fmin. This function basically assigns to
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any path πt the minimum arc-weight along πt. Equation 3.2 presents it in the recursive

form.

fmin(〈t〉) =

{

wmax + 1 if t ∈ S1 ∪ S0

−∞ otherwise

fmin(πs · 〈s, t〉) = min{fmin(πs), w(s, t)}, (3.2)

where wmax represents the maximum arc-weight in the graph and the search for optimum

paths is constrained to start in S1 ∪ S0 (roots by imposition).

There are basically two distinct region-based segmentation paradigms by

optimum-path forest, with internal S1 and external S0 seeds and with only internal seeds

S1 (i.e., S0 = ∅).

3.4.1 IFT with only internal seeds

This region-based segmentation paradigm solves segmentation by computing one

optimum-path forest from only internal seeds and applying some pruning criterion to

cut optimum paths such that the remaining forest defines the object [80, 9, 38, 41]. We

focus on a particular method of this paradigm denoted by IFT-CT (IFT segmentation

by Connectivity Threshold), which is related to the classical method called absolute-fuzzy

connectedness (AFC) [116].

In IFT-CT, seeds are specified inside the object and the optimum-path value from the

seed set is computed to each pixel, such that the object is obtained by thresholding the

resulting connectivity map V (t) (Equation 3.1). The resulting segmentation is defined as

the maximal subset of I, leading to a feasible segmentation (Definition 5 with S0 = ∅),
wherein all pixels t are reached by optimum paths whose values V (t) are greater than or

equal to a given threshold κ (see Figure 3.2).

In AFC [116], the graph is implicitly defined by arcs with fixed weights computed by

a fuzzy affinity relation, which encodes both the adjacency relation A and the arc weights

w(s, t). While in IFT-CT, the adjacency relation and arc weights are defined separately.

For multiple seeds, a single linear-time execution of the IFT-CT is enough to compute the

connectivity map V (t). However, given that AFC does not allow connectivity through

zero-weighted arcs, their results may differ. Now, if we allow different arc weights for each

seed, function fmin is no longer smooth (Definition 2) [43]. In this case, the object must

be defined as the union of all individual IFT-CT segmentation results, computed for each

seed separately [80].

Several other methods exist [80, 9, 38, 41] with different pruning criteria, aiming to

improve IFT-CT. In [80], a variant is proposed with multiple κ automatic thresholds

leading to greater flexibility. Given that, the IFT algorithm computes optimum paths
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(a) (b)

Figure 3.2: (a) A 4-neighborhood graph, where the numbers indicate the arc weights and
the object is the shaded square. Two seeds are selected inside the object (bigger white
dots). (b) An optimum-path forest for the path-value function defined via Eq. 3.2. The
numbers inside the nodes indicate the values of the optimum paths (Eq. 3.1). The object
is obtained as the white dots after using a threshold κ = 3.

progressively from the seeds by extending optimum paths already computed [43], we

have an ordered region growing from the internal seeds. The analysis of the induced cut

boundaries along this ordered region growing is exploited as pruning criterion in [41],

with the advantage of being independent of parameters. However, this region growing of

the IFT from internal seeds may invade the background (i.e., the leaking problem) before

filling the entire object, causing the methods [41] and IFT-CT to fail and requiring more

seeds for correction. With regard to this issue, the methods [9, 38] are more robust. In

these latter methods, a combinatorial property of the forest is exploited to automatically

identify the leaking pixels (boundary parts which are crossed by optimum paths) and

eliminate their subtrees, such that the remaining forest defines the object [9, 38].

3.4.2 IFT with internal and external seeds

The method IFT-SC (IFT segmentation by Seed Competition) consists of the computation

of an optimum-path forest P using internal and external seeds, S1 and S0. Its

segmentation L̂ is defined as follows, where πt is the optimum path with terminus t

obtained from P .

L(t) =

{

1 if R(πt) ∈ S1,

0 otherwise.
(3.3)

From an optimum-path forest we obtain an image partition, where each seed is root of
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an optimum-path tree composed by pixels more strongly connected to that seed than to

any other, and ties are broken by some tie-breaking policy as discussed next. For a given

optimum-path forest, the object is defined as the union of all optimum-path trees rooted

at the internal seeds (see Figure 3.3).
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(a) (b)

Figure 3.3: (a) A 4-neighborhood graph, where the numbers indicate the arc weights and
the object is the shaded square. Four seeds are selected, two are inside the object (white
dots) and two are in the background (bigger black dots). (b) An optimum-path forest for
the path-value function defined by Eq. 3.2. The numbers inside the nodes indicate the
values of the optimum paths (Eq. 3.1). The label L(s) = 0 (black), or L(s) = 1 (white)
of each seed s is propagated to all pixels within its respective optimum-path tree.

As observed in reference [43], the optimum-path forest may not be unique. For

example, if all paths have the same value, then any spanning forest will be optimum.

Since path values are usually discrete, multiple solutions are common when the arc weights

are defined in a short range (Figures 3.4a-c). Ties between paths πt and τt from seeds

s1 = R(πt) and s2 = R(τt) with the same label ({s1, s2} ⊂ S1 or {s1, s2} ⊂ S0) are never

a problem, since they lead to exactly the same final segmentation result L̂. Hence, any

solution in this case is satisfactory. However, a special care has to be taken in the case of

seeds with different labels, which constitute the basis of the real tie zones as follows.

Definition 6 (Tie-zone pixel) A pixel t is a tie-zone pixel if there exist two complete

optimum paths πt and τt such that R(πt) ∈ S0 and R(τt) ∈ S1.

The tie zones are informally defined as maximal connected components of tie-zone

pixels, while some works just consider the union of all tie-zone pixels [5]. The following

more precise and formal definition of tie zone for path-value function fmin will be adopted

through the rest of this paper.

Definition 7 (Tie zone) A tie zone is a maximal set T of tie-zone pixels, which forms

a subtree in some optimum-path forest.
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Figure 3.4d shows an example of tie zones, where the tie zone pixels are highlighted

in gray. Every node t in an optimum-path forest can be seen as the root of a subtree,

which is composed by all nodes that are reached by optimum paths that pass through t in

this optimum-path forest. Consider the upper left node as coordinate (0,0) in Figure 3.4a

such that x-coordinates increase from left to right; and y-coordinates increase from top

to bottom. In Figure 3.4b, the nodes (2,1) and (3,3) are roots of optimum-path subtrees

composed by tie-zone pixels. Therefore, we have two tie zones in Figure 3.4d. In this

work we assume optimum-path forests such that each tie zone, that may be reached

from distinct labels (in different optimum-path forests), will receive just one of the labels.

This may be accomplished either by using a LIFO tie-breaking policy [43], or simply by

assigning a fixed label (1 or 0) to all tie zones (Figures 3.4b-c). Thus, when the partition

of ambiguous regions is important, this should be treated by means of a better arc-weight

estimation.
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(c) (d)

Figure 3.4: (a) A 4-neighborhood graph with one object seed (white dot) and one
background seed (bigger black dot). (b-c) Two possible optimum-path forests using
Eq. 3.2. The numbers inside the nodes indicate the values of the optimum paths (Eq. 3.1).
(d) Two tie zones having values 2 and 4 are shown in gray. The pixel (0, 3) with optimum
value 0 is not a tie-zone pixel, since it is unambiguously surrounded by a black influence
zone. Note that, any path leading to this node from the white dot also has value 0, but
these paths are disregarded since they are not complete optimum.

The IFT-SC formulation [68, 36] captures the essential features of the watershed
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transform from markers (WT) [11], although there is no unique and precise definition

for a watershed transform in the literature [96]. Indeed, it was proven that the tie zones

of the IFT-SC include all solutions predicted by many discrete definitions of WT [7].

An extensive discussion of the theoretical relations among several different types of

watersheds, and also their relation to minimum spanning forests can be found in [29].

The method IFT-SC is also closely related to relative-fuzzy connectedness (RFC) [115,

99]. However, in RFC the tie zones are left unassigned to either background or

foreground. Apart from this way to handle ties in RFC, the main difference between

these approaches resides in the fact that in RFC the optimum-path values (defined as

strength of connectedness in [115]) from the internal and external seeds are computed

independently for each seed. Hence, it is not possible to guarantee that the computed

paths from one seed are complete optimum (Definition 3) in relation to the other seeds

(i.e., in RFC an optimum path from a seed s1 to a target pixel t may pass through a region

having pixels more strongly connected to some other seed s2). This significantly increases

the number of ties, causing holes within the objects, and the iterative relative-fuzzy

connectedness (IRFC) [24] was proposed to circumvent this problem. It is basically an

iterative refinement strategy that imposes additional constraints based on the results

from previous iterations. What it essentially does is to penalize paths that are not

complete optimum in relation to the other seeds. Thus, disregarding the divergences

in the treatment of ties, IFT-SC and IRFC should give similar segmentation results, but

being the IFT-SC simpler and faster due to the simultaneous label propagation from all

seeds.

In fact, the main motivation for IFT-SC was to eliminate the choice of κ in IFT-CT,

favoring the simultaneous segmentation of multiple objects. Actually RFC can be viewed

as AFC with automatically calculated thresholds, one for each object [23]. On the other

hand, some variants have shown the importance of a hybrid IFT-based method which

includes competition among internal and external seeds, and simultaneous automatic

computation of multiple κ values per object [80]. The IFT can also extend these

methods, by using a more general definition for strength of connectedness based on smooth

path-value functions [43] (e.g., additive function [8, 94]) or even based on non-smooth

path-value functions (e.g., non-fixed arc weights [55]). However, in the last case, the IFT

results into a spanning forest which may not be optimal [43].

3.5 Graph-cut segmentation

Approaches for graph-cut segmentation are based on objective functions that measure

some global property of the object’s boundary from the arc-weight assignment

(Section 3.2). The idea is to assign weights to the arcs such that the minimum of this
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objective function (a graph-cut measure) corresponds to the desired segmentation (i.e., a

cut boundary whose arcs connect the nodes between object and background).

Wu and Leahy [126] were the first to introduce a solution for graph cut using as measure

the sum of the arc weights in the cut boundary (Equation 3.4). Their cut measure has

the bias toward small boundaries and other objective functions, such as average cut [30],

mean cut [124], average association [105], normalized cut [106], ratio cut [123], and energy

functions [17, 15, 60] have been proposed to circumvent this problem.

E1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w(s, t) (3.4)

Unfortunately, the problem of segmenting a desired object in a given image cannot

be simply reduced to finding a minimum of an objective function in the entire search

space, since false-cut boundaries due to similarities between object and background are

very common in practice. Indeed it was verified that even in a reduced search space that

includes the desired cut from the user’s point of view, it does not always correspond to

the minimum cut [41].

In view of this, two different strategies have been proposed in the literature. One

produces a hierarchical partition tree by recursively applying an unsupervised graph-cut

algorithm inside each partition obtained from the previous iteration and then delegating

the object recognition for a high-level method that analyzes this tree in a second step [106,

123]. The second strategy incorporates hard constraints (seed pixels) to reduce the search

space [17, 15]. Although the second strategy is mostly used in interactive segmentation,

where the hard constraints are provided by mouse clicks and drags, the hard constraints

may be implemented by probabilistic models (e.g., brain atlases in MRI [64, 52]) in order

to achieve automatic segmentation. Hence, the difference between these strategies, when

used for single object segmentation, is basically when the recognition is made: a posteriori

or a priori.

One of the main problems in the first strategy is that the minimum cut in a generic

graph is NP-hard, when we consider the entire search space [106, 123]. Heuristic solutions

still present poor computational performance [49] and their results are sometimes far from

the desired one [19]. The second strategy can benefit from the rich set of fast recognition

approaches available in the literature [121, 128, 82], which give the object’s approximate

whereabouts and location in the image, providing the hard constraints, and avoiding this

expansive tree computation. But on the other hand, the results may be heavily affected by

premature errors during this automatic setting of hard constraints. In fact, Sections 3.6

and 3.7 prove that IFT-SC and IFT-CT (Section 3.4) are indeed graph-cut approaches

under the second strategy.
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In the second strategy, we have graph-cut methods [17, 15] that extend the work of

Wu and Leahy [126] by adding two terminal nodes (source and sink) to the image graph,

which represent object and background, respectively. These nodes are directly connected

to all pixels by arcs whose weights reflect penalties for assigning a pixel to object and

background based on region properties (probability maps). A min-cut/max-flow algorithm

from source to sink [48] is then used to compute the minimum-cut boundary according

to the following equation:

E2(L̂) = E1(L̂)

+ λ





∑

∀s∈I| L(s)=1

Po(s) +
∑

∀t∈I| L(t)=0

Pb(t)



 (3.5)

where Po(s) and Pb(t) are the complement of the probability maps Po(s) and Pb(t) that

measure how well the intensities of pixels s and t fit into a known intensity model (i.e.,

histogram) of the object and background, respectively.

If the method fails in detecting the desired boundary, the user can impose the arc

weights with source and sink by selecting seed pixels inside and outside the object [17].

The running time of these algorithms is still polynomial [15] (i.e., typically O(mn2) where

m is the number of arcs and n is the number of nodes). It also has an ad-hoc parameter λ ≥
0 which specifies the relative importance of the region properties term versus the boundary

properties term. If λ is low their cut becomes the same as in Wu and Leahy [126], which has

a bias toward small boundaries, and if λ is high the method becomes very dependent on the

probability maps (Figures 3.5b-c). Moreover, the obtained segmentation (Figure 3.5d) is

not guaranteed to be connected with the seed sets in the image space, whenever object and

background present regions with similar features (Figure 3.5a). Therefore, this approach

seems to be more useful in applications where reliable probability maps are available [97].

Other possible solution is to raise the arc weights to the power of n (Equation 3.6),

considering w̃(s, t) = [w(s, t)]n instead of w(s, t) in Equation 3.4. As we increase the power

value n, larger boundaries are favored (Figures 3.5e-f), avoiding the need to compute the

probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (3.6)
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: (a) An image of peppers. (b-c) The probability maps Po and Pb for the bigger
pepper at the top. (d) The segmentation by graph-cut using Eq. 3.5 with λ = 2. (e-f)
Graph-cut results using Eq. 3.6 with increasing power values, 2 and 5, respectively.

Therefore, from the discussion above, we have two possible solutions to fix the

undesirable bias of E1. One is to consider E2 by changing the graph topology at the price

of losing the connectivity notion in the original graph (I,A), which makes the method to

behave like a threshold depending on λ [14]; and the second is to penalize arcs with high

weights w(s, t) by applying some increasing transformation, as the power of n in Ẽ1 or

as the exponential used in [64], but conserving the topology of the graph (I,A). In fact,

it will be proven in Section 3.8 the formal conditions under which optimum-path forest

by IFT-SC and graph-cut segmentation by Equation 3.6 produce the same results. Next,

Sections 3.6 and 3.7 show that the methods IFT-SC and IFT-CT based on optimum-path

forest are indeed graph-cut approaches, each with its own graph-cut measure.

3.6 IFT-SC as a graph-cut approach

The theorems assume an undirected graph, with fixed arc weights (Section 3.2) and will

be proven for object/background segmentation.

From an optimum-path forest we obtain an image partition in two disjoint sets with

distinct labels. Let Csc be any cut boundary induced by an IFT-SC segmentation L̂ with
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AπbAπa

BA

Xa Yb

Aw(a,b)

Figure 3.6: The dashed line represents a segmentation by an optimum-path forest with
the arc (a, b) in its cut boundary. The sets of nodes A and B represents internal and
external seeds respectively.

a single label for each tie zone. For any arc (a, b) ∈ Csc, at least one of the following

inequalities is true with the left-hand side being strictly lower than the right-hand side

(Figure 3.6).

fmin(πa · 〈a, b〉) < fmin(πb) (3.7)

fmin(πb · 〈b, a〉) < fmin(πa) (3.8)

This is a consequence of path optimality (Equation 3.1) for fmin (Equation 3.2) when

a single label is assigned to each tie zone. If all tie zones are assigned to the object then

Equation 3.7 holds. If all tie zones are assigned to the background then Equation 3.8

holds. In the case of LIFO tie-breaking policy, at least one of these inequalities will be

true for all arcs in the cut.

For example, assume that all tie zones were labeled to the background. If the extension

of path πb by the arc (b, a) has higher value than path πa, then this path πa is not optimum.

Otherwise if the extension of πb has the same value of path πa, then pixel a is in a tie

zone and should not be part of the object. Therefore, Equation 3.8 is the only valid

configuration left.

In fact we may conclude even more and consider the equations below instead of

Equations 3.7-3.8:

w(a, b) < fmin(πb) and w(a, b) ≤ fmin(πa) (3.9)

w(a, b) < fmin(πa) and w(a, b) ≤ fmin(πb) (3.10)
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When all tie zones are labeled to the background, the first inequality in Equation 3.10

can be proved by contradiction as follows. If w(a, b) ≥ fmin(πa) then fmin(πa · 〈a, b〉) =

fmin(πa). There are two possibilities, the extension of path πa by arc (a, b) has value

fmin(πa) > fmin(πb), or it has value fmin(πa) ≤ fmin(πb). If the first case is true, then πb is

not optimum leading to a contradiction. In the second case, we have that fmin(πb ·〈b, a〉) =

min{fmin(πb), w(b, a)} ≥ fmin(πa), since w(a, b) ≥ fmin(πa) and fmin(πa) ≤ fmin(πb), but

this is invalid according to Equation 3.8. Therefore, w(a, b) < fmin(πa) is the only

valid configuration. The second inequality in Equation 3.10 may also be proved by

contradiction. If w(a, b) > fmin(πb) then fmin(πb ·〈b, a〉) = fmin(πb), and a should belong to

the background, otherwise fmin(πa) > fmin(πb) and b could not belong to the background

since fmin(πa · 〈a, b〉) > fmin(πb). But a in the background leads to a contradiction proving

the second inequality given in Equation 3.10. See Figure 3.7 for an example in 1D.

Equation 3.9 can be proven in a similar way when all tie zones are labeled to the

object.

A

A
a
rc

 w
e
ig

h
t

A BbBa Bx

Aw(a,b)

By B
Atie zone

Aw(x,y)

6 6

3 3 3

8 8

Figure 3.7: A 1D example. All pixels in the tie zone are reached by paths from A and
B with the same optimum value 3. If this tie zone is labeled to the background (set B)
then a is reached from A with fmin(πa) = 6 and b is reached from B with fmin(πb) = 3.
Note that w(a, b) = 3 and the Equation 3.10 is valid (3 < 6 and 3 ≤ 3).

Theorem 1 (Optimum-path forest cut in IFT-SC) Any segmentation L̂ defined by

an optimum-path forest with path-value function fmin and with a single label value for

each tie zone (Definition 7) minimizes the graph-cut measure E3 defined by Equation 3.11

among all possible segmentation results (Definition 5).

E3(L̂) = max
∀(s,t)∈A| L(s)=1,L(t)=0

w(s, t) (3.11)
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Proof: We will prove the theorem in the case when all tie zones are labeled to the

background, the other case having essentially identical proof. Let Emin be the minimum

value of E3 defined by Equation 3.11 among all segmentation results satisfying the sets

of hard constraints S1 and S0 (Definition 5). Let Csc be the cut boundary induced

(Definition 4) by a segmentation L̂ obtained through IFT-SC with path-value function

fmin and let (a, b) be the arc with maximum weight w(a, b) in Csc (that is, E3(L̂) = w(a, b)).

For any path πt, let Arc(πt) be the set of all arcs within πt, or the empty set if πt is a

trivial path.

Any optimum cut Cmin, which minimizes the graph-cut measure E3 defined by

Equation 3.11 among all possible feasible segmentations, must contain at least one arc

from the set Arc(πa) ∪ {(a, b)} ∪ Arc(πb) in order to disconnect object and background

seeds (Figure 3.6). There are three possibilities:

1. Cmin ∩Arc(πa) is not empty.

2. Cmin ∩Arc(πb) is not empty.

3. (a, b) ∈ Cmin.

In case 1, the path πa will have one arc (x, y) ∈ Cmin. From Equation 3.11 we

may conclude that w(x, y) ≤ Emin and also that fmin(πa) ≤ Emin by the definition of

fmin (Equation 3.2). Putting everything together with Equation 3.10 we have w(a, b) <

fmin(πa) ≤ Emin, which implies that E3(L̂) < Emin. But this is not possible according to

the definition of Emin.

In case 2, the path πb will have one arc in Cmin and therefore we may conclude, in a

way analogous to what was done in case 1, that fmin(πb) ≤ Emin.

fmin(πb) ≤ Emin (3.12)

Assuming that Theorem 1 is false we have:

w(a, b) > Emin (3.13)

By combining the above hypothesis with Equation 3.10, we have fmin(πa) > Emin.

Since w(a, b) > Emin and fmin(πa) > Emin, from the definition of fmin (Equation 3.2), it is

also easy to see that:

fmin(πa · 〈a, b〉) = min{fmin(πa), w(a, b)} > Emin (3.14)

From Equation 3.12 we finally obtain:

fmin(πa · 〈a, b〉) > Emin ≥ fmin(πb) (3.15)
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But from these results, we reach a contradiction because πb will not be an optimum

path if Equation 3.15 holds. Therefore, hypothesis 3.13 with case 2 is false.

In case 3, from (a, b) ∈ Cmin we have that w(a, b) ≤ Emin (Equation 3.11). But

w(a, b) < Emin is not possible according to the definition of Emin. Hence, we have that

w(a, b) = Emin as we wanted to prove (Theorem 1).
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(c) (d)

Figure 3.8: (a) A 4-neighborhood graph with one internal seed (white dot) and one
external seed (bigger black dot). (b-c) Two optimum segmentation candidates for E3

(Eq. 3.11) satisfying the hard constraints. (d) The chosen solution by optimum-path forest
using Eq. 3.2, where the numbers inside the nodes indicate the values of the optimum
paths (Eq. 3.1).

For L̂ to be a segmentation by IFT-SC under the stated conditions, Theorem 1

is necessary but not sufficient. Figures 3.8a-d illustrate this aspect. Figure 3.8a

shows an image graph with two seed pixels. Figures 3.8b and 3.8c show two possible

segmentation results, satisfying these hard constraints. Both have the same optimum

cut E3(L̂) = 5 (Equation 3.11), but only Figure 3.8c corresponds to a segmentation by

IFT-SC (Figure 3.8d). Fortunately, there is another cut property that gives a stronger

characterization of an optimum-path forest segmentation by IFT-SC.

Theorem 2 (Piecewise optimum property in IFT-SC) Let Csc be any cut boundary

induced by a segmentation L̂ defined by an optimum-path forest with path-value function
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fmin and with a single label for each tie zone (Definition 7). Let E3 be also defined for a set

of arcs X as E3(X ) = max∀(s,t)∈X{w(s, t)}. For any subset Csub ⊂ Csc, let Csub be defined

as Csc\Csub. Any non-empty subset Csub ⊂ Csc minimizes E3(X ) among all possible set of

arcs X whose union X ∪ Csub defines an induced cut boundary of a feasible segmentation

(Definition 5).

For example in Figure 3.8, if we consider all arcs in the cut except the arc with weight

5 as being the subset, then the next greatest arc has value 4 in Figure 3.8b and value 2 in

Figure 3.8c. A valid IFT-SC segmentation will be one with the lower value (Figure 3.8d).

Aπv2Aπu1

BA

Xu1 Yv1 Xu2 Yv2

Xa
Yb

Figure 3.9: Two possible optimum cut boundaries are shown, both with optimum value in
Equation 3.11 given by w(a, b). The dashed lines represent the boundary pieces at issue,
with greatest weights given by w(u1, v1) and w(u2, v2) respectively.

Proof: We will prove the theorem in the case when all tie zones are labeled to the

background, the other case having essentially identical proof. Let Csub be a subset of

the arcs of Csc. Let’s consider two arbitrary sets of arcs X1 and X2 such that Xi ∪ Csub

defines a feasible segmentation (Definition 5), for i = 1, 2. Let the arcs (u1, v1) ∈ X1 and

(u2, v2) ∈ X2 be arcs with maximum weight within these sets (Figure 3.9). Theorem 2

states that a set Xi with lower maximum-weight should be selected. There are two cases,

w(u1, v1) < w(u2, v2) or w(u1, v1) > w(u2, v2).

In the first case we have that w(u1, v1) < w(u2, v2) and according to the theorem X1

should be picked. Let’s prove by contradiction and assume that X2 is the optimum-path

forest result by IFT-SC. From Equation 3.10 we know that the optimum path to pixel u2

from the internal seeds satisfies w(u2, v2) < fmin(πu2
) and from the hypothesis w(u1, v1) <

w(u2, v2), we may conclude that w(u1, v1) < fmin(πu2
). But πu2

must pass through X1

which implies a contradiction, since fmin(πu2
) ≤ w(u1, v1) by Equation 3.2.

Similarly, in the second case we have that w(u1, v1) > w(u2, v2) and according to the

theorem X2 should be picked. By assuming its logical negation we get a contradiction

like before by similar arguments. Hence, Theorem 2 holds as we wanted to prove.
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It is important to state that some graph-cut measures, such as the mean cut [124]

(Equation 3.16), are not piecewise optimum (see Figure 3.10). In these measures, changes

in one part of the boundary have a global effect, changing the understanding of what is

best in other parts. This instability is undesirable in interactive segmentation, because the

user loses control over segmentation when local interventions for correction may modify

other parts where the user was already satisfied with the segmentation results. Therefore,

the piecewise optimum property is indeed very important.

E4(L̂) =
E1(L̂)

∑

∀(s,t)∈A| L(s)=1,L(t)=0 1
(3.16)
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(a) (b)

Figure 3.10: Two possible segmentation results on the same 4-neighborhood graph, both
satisfying the hard constraints (bigger white and black dots). (a) The optimum solution

with minimum mean cut (4×5+8×1)
12

= 2.33. (b) The second solution has worse mean cut
(4×5+4×0)

8
= 2.50. Since 4×0

4
< 8×1

8
we may conclude that this graph-cut measure is not

piecewise optimum.

3.7 IFT-CT as a graph-cut approach

For a given image graph (I,A), the segmentation L̂ obtained by the IFT-CT with a

connectivity threshold κ, is feasible (Definition 5) with respect to the internal seeds in S1,

and its induced cut Cct has the following property:

E3(L̂) < κ (3.17)

Equation 3.17 states that all arcs in the cut Cct have values lower than κ. From the
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definition of IFT-CT, we have that fmin(πa) ≥ κ for any interior pixel a and optimum

path πa. If we assume that the above property (Equation 3.17) is false, then we have at

least one arc (a, b) ∈ Cct such that w(a, b) ≥ κ. From the definition of fmin (Equation 3.2)

we have that:

fmin(πa · 〈a, b〉) = min{fmin(πa), w(a, b)} (3.18)

Since fmin(πa) ≥ κ and w(a, b) ≥ κ, the above equation implies that fmin(πa · 〈a, b〉) ≥ κ.

But from the definition of IFT-CT, this also implies that pixel b must belong to the object

leading to a contradiction. Therefore, the property given in Equation 3.17 is true.

Figure 3.11 shows that there may be more than one feasible segmentation (Definition 5)

with induced cut boundary satisfying this property. Both results in Figures 3.11b

and 3.11d have E3(L̂) = 3 which is lower than κ = 4. In fact, the IFT-CT segmentation

L̂ is always given by the smallest region possessing the property given in Equation 3.17

(Figure 3.11b). To understand this, note that, the IFT-CT segmentation may be

obtained by removing from the original image graph (I,A) all arcs whose weights are

lower than κ, and by taking then the maximal connected components in the resulting

graph, such that they contain at least one seed pixel. This can be accomplished by a

simple breadth-first search from the internal seeds in the remaining graph. Since any

cut satisfying Property 3.17 will have all of its arcs removed, the breadth-first search

will stop when the first cut with this property is found. In fact, the implementation

which thresholds the connectivity map V (t) is more suitable for interactive segmentation,

because the user may change the value of κ with real-time response. That is, the map

V (t) encodes all possible IFT-CT results for any value of κ (Figures 3.11b-c).

Therefore, the cut Cct can be finally defined using the characterization from Theorem 3.

Theorem 3 (Optimum-path forest cut in IFT-CT) The segmentation L̂ defined by

the IFT-CT in a graph with fixed arc weights and using path-value function fmin minimizes

the graph-cut measure E5 defined by Equation 3.19 among all segmentation results

satisfying the internal hard constraints in S1 (Definition 5 with S0 = ∅).

E5(L̂) =
∑

∀s∈I| L(s)=1

1 + U
(

E3(L̂)− κ
)

·N (3.19)

where U is the unit step function (U(x) = 1 if x ≥ 0, and 0 otherwise) and N is the

total number of nodes/pixels. The second term in Equation 3.19 acts as a penalty which

makes impracticable cuts that do not satisfy Property 3.17. Among all possible results

satisfying Property 3.17, the first term in Equation 3.19 guarantees the selection of the

one with smallest area.
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(c) (d)

Figure 3.11: (a) A 4-neighborhood graph with one internal seed (white dot) and one
external seed (bigger black dot). (b-c) The IFT-CT results from the internal seed with
κ = 4 and κ = 3, respectively. Note that, κ = 4 gives the IFT-CT result with lowest
E3 value satisfying all initial hard constraints (E3(L̂) = 3). (d) The result by IFT-SC
also has E3(L̂) = 3. However, it is quite different from the IFT-CT due to the piecewise
optimum property (Theorem 2).

From Figure 3.11 it is clear that, this cut Cct does not have the piecewise optimum

property with respect to E3 (Theorem 2), since it always choose the smallest region. In real

applications, if the arc weights are computed based on a thick gradient (Figure 3.12a),

this may result in the lost of a narrow band around the object (Figures 3.12b-d). In

this sense, it seems that a non-maximal suppression to thin the edges is an adequate

preprocessing that should be adopted in IFT-CT. Therefore, the results of IFT-SC are in

general different from the ones obtained by IFT-CT for any threshold κ (Figures 3.11b-d

and Figures 3.12b-c). Another clear difference is regarding to the presence of holes inside

the objects, which may appear in IFT-CT.

3.8 The link with the min-cut/max-flow algorithm

A min-cut/max-flow algorithm from source to sink [48], with the internal seeds in S1

connected to the source and the external seeds in S0 connected to the sink, computes a
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(a) (b) (c) (d)

Figure 3.12: (a) A gradient image of the ventricles with thick edges. (b) The result of
IFT-CT by the selection of the best κ. (c) An improved result is obtained by IFT-SC.
(d) The XOR operation of the labels (in black) indicates a considerable divergence.

cut boundary which minimizes the graph-cut measure E1 defined by Equation 3.4 among

all possible segmentation results (i.e., method [17] with parameter λ = 0). The same

algorithm can be used to minimize Ẽ1 (Equation 3.6).

The graph-cut measures E1 (Equation 3.4) and Ẽ1 (Equation 3.6) naturally lead

to optimum solutions, that are also piecewise optimum. That is, for a given feasible

segmentation L̂, its induced cut boundary C is optimum, only if any of its subsets is also

optimum. For example, for a cut C, let Y ⊂ C be a fixed subset that is known to be part

of the optimum solution. Let K be the sum of all arc weights within this fixed set Y . The

cut C will be optimum only if X = C\Y is also optimum:

Emin = min
∀C







∑

∀(s,t)∈C

w(s, t)







= min
∀X





∑

∀(s,t)∈X

w(s, t) +
∑

∀(s,t)∈Y

w(s, t)





= min
∀X







∑

∀(s,t)∈X

w(s, t)







+ K

Finally, assuming Theorems 1 and 2, the next theorem completes the link between

IFT-SC and graph-cut segmentation based on the min-cut/max-flow algorithm, by

establishing the necessary conditions under which they produce exactly the same result

(i.e., the converse of a theorem presented in [1]). As shown in Section 3.5, the variant

Ẽ1 can circumvent the undesirable bias of the graph-cut measure E1 toward small
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boundaries and avoid the need to compute probability maps (Figures 3.5e-f). Indeed,

this and other similar variants (increasing transformations) have been used in practice to

improve graph-cut segmentation by emphasizing the differences between low and high arc

weights [64]. However, the next theorem indicates that such transformations make the

graph-cut segmentation to behave like IFT-SC, with more or less intensity, depending on

which transformation is used.

Theorem 4 (Equivalence for increasing transformation) Let L̂sc be a

segmentation by IFT-SC with path-value function fmin and let L̂flow be a segmentation

computed by a min-cut/max-flow algorithm, using the same sets of hard constraints S1

and S0 in the graph (I,A). In the absence of tie zones (Definition 7), there exists a real

finite number m such that, for any n ≥ m, the segmentation results L̂sc and L̂flow are

exactly the same when L̂flow is computed by using w̃(s, t) = [w(s, t)]n as arc weights.

Proof: By raising arc weights w(s, t) to the power of n (n > 1), we obtain new arc

weights w̃(s, t), preserving the order (Equation 3.20) and emphasizing their differences

(Equation 3.21).

w(s, t) > w(u, v) ⇔ w̃(s, t) > w̃(u, v) (3.20)

w(s, t)

w(u, v)
= K ⇔ w̃(s, t)

w̃(u, v)
= Kn (3.21)

Let Ẽ3 be the graph-cut measure E3 (Equation 3.11) obtained from Theorem 1 but

with w̃(s, t) in the place of w(s, t):

Ẽ3(L̂) = max
∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

= max
∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (3.22)

For any two distinct segmentation results L̂1 and L̂2, it is easy to see that:

E3(L̂1) < E3(L̂2) ⇔ Ẽ3(L̂1) < Ẽ3(L̂2) (3.23)

This is a direct consequence of the order being preserved (Equation 3.20) and,

therefore, the optimum-path forest segmentation results with path-value function fmin

are not affected by this increasing transformation [1].
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As we increase the value of n, the arc-weight ratio changes exponentially

(Equation 3.21). Clearly there will be a point (n ≥ m) where any arc weight w̃(s, t) will be

greater than the sum of all other arc weights w̃(u, v) having lower values (Equations 3.24

and 3.25).

∑

∀(u,v)| w̃(u,v)<w̃(s,t)

w̃(u, v)

w̃(s, t)

=
∑

∀(u,v)| w̃(u,v)<w̃(s,t)

[

w(u, v)

w(s, t)

]n

(3.24)

Since w(u, v)/w(s, t) < 1 it is easy to see that:

lim
n→∞

∑

∀(u,v)| w̃(u,v)<w̃(s,t)

[

w(u, v)

w(s, t)

]n

= 0 (3.25)

Therefore, for any two distinct segmentation results L̂1 and L̂2, we may conclude an

important result when n ≥ m:

Ẽ3(L̂1) < Ẽ3(L̂2) ⇒ Ẽ1(L̂1) < Ẽ1(L̂2) (3.26)

If the left-hand side of Equation 3.26 is true, then there is an arc in the cut boundary

of L̂2 with higher weight than all arcs in the cut of L̂1. This arc alone has greater value

than the sum given in Ẽ1(L̂1) (Equation 3.6). Therefore, disregarding the cases when

Ẽ3(L̂1) = Ẽ3(L̂2), we may conclude that, under the declared conditions, minimizing Ẽ3

or Ẽ1 should lead to the same results.

The case Ẽ3(L̂1) = Ẽ3(L̂2) always happens in the presence of tie zones. In Figure 3.13,

suppose that C1 has Ẽ3 = w̃(a1, b1) and C2 has Ẽ3 = w̃(a2, b2). If both boundaries have

optimum Ẽ3 values, then w̃(a1, b1) = w̃(a2, b2) and the entire region comprised in between

these two nested boundaries, C1 and C2, could be a tie zone. Although, both boundaries

are optimum according to Ẽ3 (Equation 3.22), in general only one is with respect to

Ẽ1 (Equation 3.6), depending on the values of the second greatest arcs w̃(u1, v1) and

w̃(u2, v2). We cannot guarantee that the best regarding to Ẽ1 (Equation 3.6) will be

chosen by the optimum-path forest algorithm. For example, if all tie zones are assigned

to the background, then C1 will be always chosen. Therefore, the equivalence between

these methods cannot be verified in the presence of tie zones.

Even in the absence of tie zones, the case Ẽ3(L̂1) = Ẽ3(L̂2) may still happen as



Caṕıtulo 3. Links Between Optimum-Path Forest and Minimum Cut 63

BA

Xa1
Yb1 Xa2

Yb2

Xu1
Yv1 Xu2

Yv2

C2C1

Figure 3.13: Two nested cut boundaries C1 and C2, with the same optimum cut value
Ẽ3 (Eq. 3.22) are shown. The weights w̃(a1, b1) and w̃(a2, b2) are the maximum within
their respective boundaries. The shaded area is a tie zone since w̃(a1, b1) = w̃(a2, b2).

occurred in Figure 3.8. However, in this case, the optimum Ẽ1 solution is guaranteed by

the piecewise optimum property (Theorem 2). For instance, for n = 2, Figure 3.8c has

Ẽ1 = 34 and Figure 3.8b has Ẽ1 = 43. In practice, tie zones are usually represented by a

few pixels for suitable arc-weight assignment, which makes this result really relevant.

3.9 Comparative analysis between the main

paradigms

Several comparisons among methods were already made along the previous sections. In

this section, we restrict our attention to IFT-SC and the min-cut/max-flow segmentation.

From the theoretical point of view, Theorem 4 states that, in the absence of tie zones, the

IFT-SC (Equation 3.11) is a particular case of the min-cut by max-flow (Equation 3.6).

Therefore, we have here an important intersection between the frameworks of the IFT

and the max-flow approach.

As pointed by Allène et al. [1], the value of power n in Equation 3.6 acts as a smoothing

term. However, in practice, if we decrease n, many important saliences are lost, such as

the cow’s paws in Figure 3.14. Note also that if smooth boundary is an important issue,

it always can be done on a second step by a shape filtering [39]. Therefore, the main

advantage of Ẽ1 over E3 concerns the E3 worst case, when the desired cut has some arcs

with maximum weight (i.e., gradient with perfect gaps (Fig. 3.15a)). In Ẽ1 these arcs

are avoided as much as possible by the selection of shortest cuts within the areas of low

image contrast (Fig. 3.15b), while E3 may fail if the seeds are provided closely inside and

outside the gaps (Fig. 3.15c).

On the other hand, Theorem 4 indicates that, in the absence of tie zones, the tricks used
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(a) (b)

(c) (d)

Figure 3.14: (a) The segmentation by IFT-SC using Eq. 3.2. (b-d) Results of the
min-cut/max-flow algorithm with increasing power values, 1,3 and 7 respectively.

to improve the results of the min-cut/max-flow algorithm by employing transformations

which emphasize the weight differences [64], lead in fact to approximations of the

IFT-SC segmentation. The minimum cut by the max-flow algorithm has also its own

implementation drawbacks. First, efficient implementations usually consider discrete arc

weights and, therefore, the method may suffer from integer overflow as we increase the

value of power n. For example, note that the best result of max-flow given in Figure 3.14d

required n = 7. A second issue is related to its efficiency, while IFT-based methods

have linear-time implementations [43], the max-flow algorithm is still polynomial [15] and

(a) (b) (c)

Figure 3.15: (a) A synthetic gradient image with gaps. (b) The result of min-cut/max-flow
algorithm. (c) The segmentation by IFT-SC using Eq. 3.2.
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is not extensive to simultaneous segmentation of multiple objects [1]. Therefore, from

the opposite point of view, the max-flow segmentation under the equivalence conditions

(Theorem 4) is, in fact, a limited implementation of IFT-SC, which does not output

neither the forest P nor the map V (t); it only gives the label image L̂.

Although the absence of tie zones (Definition 7) seems to be a very strong assumption,

we have noted for several real images that the tie zones either do not appear or are

represented by a few pixels, when we use a suitable arc-weight estimation [83]. In fact,

an upper bound for the error of assuming Theorem 4 always true for a sufficiently high

value of n is given by the tie zones, which can be computed as well. Note that a local

optimization of Ẽ1 restricted to these tie zones can further solve the problem.

3.10 Conclusions

We presented a self-contained paper with theoretical proofs of important existing

connections between relevant segmentation methods of the literature. It was proven

that some existing IFT-based methods indeed minimize the graph-cut measures E3 and

E5 (Theorems 1, 2 and 3). It was also shown that the absence of tie zones is the

necessary condition to the converse of the theorem stated in [1] (Theorem 4). However,

it is important to note that the relations presented here only apply to the path-value

function fmin and that the applications of the IFT go much beyond this particular class

of operator [43].

Theorem 1 shows that IFT-SC provides optimum segmentation results from two points

of view: as an optimum-path forest and as a minimum cut in the graph according to

measure E3, which can take into account both image and object properties by using the

arc weights as described in [83]. Theorem 2 shows that this optimality is even stronger,

given that it is also piecewise optimum. These results give the theoretical foundations to

explain the great success and popularity of IFT-SC [68, 36] and its related methods (e.g.,

WT [11], RFC [115, 99], IRFC [24]). The connectivity between pixels is a key concept,

which is naturally exploited by IFT-based methods. More recently, it has also been used

to overcome graph-cut shortcomings in a combined approach, called DijkstraGC [117].

Apart from such hybrid approaches, it was shown that, to fix the undesirable bias of

the min-cut algorithm toward small boundaries, we must change the graph topology or

change the arc weights by employing some increasing transformation that penalizes arcs

with high weights. The first solution comes with its own drawbacks, as discussed in

Sections 3.5 and 3.9, while the second solves the bias problem nicely and can be used

even when it is hard to obtain good probability maps for object and background [64]. On

the other hand, Theorem 4 indicates that these transformations are in fact making the

min-cut segmentation to behave like IFT-SC, with more or less intensity, depending on
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which increasing function is used. This indicates that segmentation methods based on

the min-cut algorithm should compare their approaches with IFT-SC in order to justify

the use of a more computationally expensive algorithm, especially for 3D applications, or

at least mention IFT-SC as a related method. Our paper clarifies many of these aspects,

presenting the definitions and theorems in a natural flow of evolution.

As future work, we intend to investigate ways to minimize tie zones by suitable

arc-weight assignment and to incorporate shape and appearance model for automatic

image segmentation.
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Object delineation by κ-connected

components

4.1 Introduction

Image segmentation has been a challenge which involves object recognition and

delineation. Recognition is represented by cognitive tasks that determine the approximate

location of a desired object in a given image (object detection), verify the correctness

of a segmentation result, and identify a desired object among candidate ones (object

classification). Delineation is the task that completes segmentation by defining the precise

spatial extent of the desired object in the image. Effective recognition requires object

properties while accurate delineation usually depends on image properties to distinguish

object and background.

In the context of interactive segmentation, a human operator performs the

recognition tasks and the computer performs delineation. In order to make these

approaches automatic, we must substitute the human operator by a mathematical model.

Model-based approaches have used object properties to build numerical, geometrical and

statistical models for segmentation [59, 27, 26], and for simple object detection [121]. Since

that a mathematical model usually acts worse than a human expert in the recognition

task, it is important to develop interactive methods, which minimize the user’s time and

involvement in the delineation process, such that their automation becomes feasible. For

example, we are interested in reducing the user intervention to simple selection of a few

pixels in the image.

Delineation methods are usually based on a functional of the arc-weights such as

graph-cut approaches [106, 17, 60, 15, 124] or based on a connectivity functional in the

form of a path-cost function [114, 99, 120, 11]. This work advances the state of the

art of delineation methods based on connectivity functional, being the recognition tasks

67
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performed by human operators.

Fuzzy connectedness/watersheds are image segmentation approaches based on seed

pixels, which have been successfully used in many applications [62, 86, 114, 88, 52, 112].

The relation between relative-fuzzy connectedness [99, 55, 115] and watershed transform

by markers [120, 11] has been pointed out in [43] and formally proved in [6]. They

are essentially the same method (one is the dual of the other), where the seeds are

specified inside and outside the object, each seed defines an influence zone composed

by pixels more strongly connected to that seed than to any other, and the object is

defined by the union of the influence zones of its internal seeds. In absolute-fuzzy

connectedness [116], a seed is specified inside the object and the strength of connectedness

of each pixel with respect to that seed is computed, such that the object is obtained

by thresholding the resulting connectivity image. Clearly, these approaches represent

two distinct region-based segmentation paradigms, with and without competition among

seeds.

We present extensions to these works, using the framework of the image foresting

transform (IFT) [43]— a general tool for the design, implementation, and evaluation of

image processing operators based on connectivity. In the IFT, the image is interpreted

as a graph, whose nodes are the image pixels and whose arcs are defined by an

adjacency relation between pixels. The cost of a path in this graph is determined by an

application-specific path-cost function, which usually depends on local image properties

along the path— such as color, gradient, and pixel position. For suitable path-cost

functions and a set of seed pixels, one can obtain an image partition as an optimum-path

forest rooted at the seed set. That is, each seed is root of a minimum-cost path tree whose

pixels are reached from that seed by a path of minimum cost, as compared to the cost of

any other path starting in the seed set. The IFT essentially reduces image operators to a

simple local processing of attributes of the forest [68, 39, 111, 36, 38].

The strength of connectedness of a pixel with respect to a seed is inversely related to the

cost of the optimum path connecting the seed to that pixel in the graph. In absolute-fuzzy

connectedness, the object can be obtained by selecting pixels reached from an internal

seed by an optimum path whose cost is less than or equal to a number κ. In this case, the

object is said a single κ-connected component (a minimum-cost path tree). The object

can also be defined as the union of all κ-connected components created from each seed

separately, which requires one IFT for each seed. In relative-fuzzy connectedness, seeds

selected inside and outside the object compete among themselves, partitioning the image

into an optimum-path forest, and the object is defined by the union of the optimum-path

trees rooted at its internal seeds. The initial appeal for relative-fuzzy connectedness

was the possibility to delineate multiple objects simultaneously, without depending on

thresholds. However, the use of thresholding together with seed competition provides a
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hybrid approach which turns out to be more efficient than the previous ones in many

situations. While the previous approaches either assume no competition with a single

value of κ for all seeds or eliminate κ for seed competition, we show that seeds with

different values of κ can considerably improve segmentation in both paradigms. Of course,

this comes with the problem of finding the values of κ for each seed, but we provide

automatic and user-friendly interactive ways to determining them.

Section 4.2 describes some definitions related to the IFT, making them more specific

for region-based image segmentation. For sake of simplicity, we will describe the methods

for gray-scale and two-dimensional images, but they are extensive to multi-parametric and

multi-dimensional data sets. The proposed variants and their algorithms are presented

in Sections 4.3 and 4.4. Section 4.5 demonstrates the improvements with respect to the

previous approaches. Conclusion and future work are presented in Section 4.6.

4.2 Background

An image Î is a pair (DI , I) consisting of a finite set DI of pixels (points in Z
2) and a

mapping I that assigns to each pixel p in DI a pixel value I(p) in some arbitrary value

space.

An adjacency relation A is a binary relation between pixels p and q of DI . We use

q ∈ A(p) and (p, q) ∈ A to indicate that q is adjacent to p. Once the adjacency relation A

has been fixed, the image Î can be interpreted as a directed graph (DI , A) whose nodes

are the image pixels in DI and whose arcs are the pixel pairs (p, q) in A. We are interested

in irreflexive, symmetric, and translation-invariant relations. For example, one can take A

to consist of all pairs of pixels (p, q) in the Cartesian product DI×DI such that d(p, q) ≤ ρ

and p 6= q, where d(p, q) denotes the Euclidean distance and ρ is a specified constant (i.e.

4-adjacency, when ρ = 1, and 8-adjacency, when ρ =
√

2).

A path is a sequence π = 〈p1, p2, . . . , pn〉 of pixels where (pi, pi+1) ∈ A, for 1 ≤ i ≤ n−1.

The path is trivial if n = 1. Let org(π) = p1 and dst(π) = pn be the origin and destination

of a path π. If π and τ are paths such that dst(π) = org(τ) = p, we denote by π · τ the

concatenation of the two paths, with the two joining instances of p merged into one. In

particular, π · 〈p, q〉 is a path resulting from the concatenation of its longest prefix π and

the last arc (p, q) ∈ A.

A predecessor map is a function P that assigns to each pixel q ∈ DI either some other

pixel in DI , or a distinctive marker nil not in DI — in which case q is said to be a root

of the map. A spanning forest is a predecessor map which contains no cycles — in other

words, one which takes every pixel to nil in a finite number of iterations. For any pixel

q ∈ DI , a spanning forest P defines a path P ∗(q) recursively as 〈q〉, if P (q) = nil, or

P ∗(p) · 〈p, q〉 if P (q) = p 6= nil (see Figure 4.1a).
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org(P(q))*

p

q

(a)

0000000000 0000000000 2222222222 1111111111 2222222222 3333333333 1111111111 2222222222

2222222222 2222222222 8888888888 8888888888 7777777777 8888888888 2222222222 1111111111

9999999999 1111111111 8888888888 7777777777 6666666666 9999999999 1111111111 9999999999

9999999999 2222222222 7777777777 9999999999 8888888888 7777777777 3333333333 9999999999

1111111111 2222222222 2222222222 3333333333 2222222222 2222222222 3333333333 1111111111

0000000000 2222222222 1111111111 3333333333 0000000000 9999999999 2222222222 8888888888

(b)

2222222222 2222222222 2222222222 2222222222 2222222222 2222222222 2222222222 2222222222

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 2222222222 2222222222

7777777777 1111111111 1111111111 0000000000 1111111111 1111111111 2222222222 6666666666

7777777777 1111111111 1111111111 2222222222 2222222222 2222222222 1111111111 6666666666

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 2222222222

0000000000 1111111111 1111111111 1111111111 2222222222 7777777777 1111111111 6666666666

(c)

Figure 4.1: (a) The main elements of a spanning forest with two roots, where the thicker
path indicates P ∗(q). (b) An image graph with 4-adjacency, where the integers are the
image values I(p) and the bigger dots indicate two seeds. One is inside the brighter
rectangle and one is in the darker background outside it. Note that, the background also
contains brighter parts. (c) An optimum-path forest for fmax, with δ(p, q) = |I(q)− I(p)|.
The integers are the cost values and the rectangle is obtained as an optimum-path tree
rooted at the internal seed.

A pixel q is connected to a pixel p if there exists a path in the graph from p to q.

In this sense, every pixel is connected to itself by its trivial path. Since A is symmetric,

we can also say that p is connected to q, or simply p and q are connected. Therefore, a

connected component is a subset of DI wherein all pairs of pixels are connected.

A path-cost function f assigns to each path π a path cost f(π), in some totally ordered

set V of cost values, whose maximum element is denoted by +∞. A path π is optimum if

f(π) ≤ f(τ) for any other path τ with dst(τ) = dst(π), irrespective of its starting point.

The IFT establishes some conditions applied to optimum paths, which are satisfied by

only smooth path-cost functions. That is, for any pixel q ∈ DI , there must exist an

optimum path π ending at q which either is trivial, or has the form τ · 〈p, q〉 where

(C1) f(τ) ≤ f(π),

(C2) τ is optimum,

(C3) for any optimum path τ ′ ending at p, f(τ ′ · 〈p, q〉) = f(π).

The IFT takes an image Î, a smooth path-cost function f and an adjacency relation

A; and returns an optimum-path forest— a spanning forest P such that P ∗(q) is optimum
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for every pixel q ∈ DI . In the forest, there are three important attributes for each pixel:

its predecessor in the optimum path, the cost of that path, and the corresponding root

(or some label associated with it). The IFT-based image operators result from simple

local processing of one or more of these attributes.

For given seed set S ⊂ DI , the concept of strength of connectedness [116, 98] of a pixel

q ∈ DI with respect to a seed s ∈ S can be interpreted as an image property inversely

related to the cost of the optimum path from s to q according to the max-arc path-cost

function fmax:

fmax(〈q〉) =

{

0, if q ∈ S,

+∞, otherwise.

fmax(π · 〈p, q〉) = max{fmax(π), δ(p, q)}, (4.1)

where (p, q) ∈ A, π is any path ending at p and starting in S, and δ(p, q) is a non-negative

dissimilarity function between p and q which depends on image properties, such as

brightness and gradient (see Figures 4.1b and 4.1c).

One may think of smoothness as a more general definition for strength of

connectedness. In this work, we discuss only fmax because the comparison with previous

approaches and our practical experience in region-based segmentation, which shows that

fmax often leads to better results than other commonly known smooth cost functions.

4.3 Image segmentation by κ-connectivity

We assume given a seed set S either interactively, by simple mouse clicks, or automatically,

based on some a priori knowledge about the approximate location of the object. The

adjacency relation A is usually a simple 8-neighborhood, but sometimes it is important to

allow farther pixels be adjacent. This may reduce the number of seeds required to label

nearby components of a same object, such as letters of a word in the image of a text.

Some examples of δ functions for fmax are given below:
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δ1(p, q) = K

(

1− exp

(

− 1

2σ2
(I(p)− I(q))2

))

(4.2)

δ2(p, q) = G(q) (4.3)

δ3(p, q) = K

(

1− exp

(

− 1

2σ2

(

I(p) + I(q)

2
− I(s)

)2
))

(4.4)

δ4(p, q) = min
∀s∈S
{δ3(p, q)} (4.5)

δ5(p, q) = aδ1(p, q) + bδ3(p, q) (4.6)

δ6(p, q) =

{

δ3(p, q)(1 + ~g(p, q) · ~η(p, q)), if Er(p, q) > Dr(p, q),

K, otherwise
(4.7)

where K is a positive integer (e.g. the maximum image intensity), σ is an allowed intensity

variation, G(q) is a gradient magnitude computed at q, and I(s) is the intensity of a seed

s ∈ S, such that s = org(P ∗(p)) in δ3 and δ4 considers all seeds in S. The parameters

a and b are constants such that a + b = 1, and ~g(p, q) is a normalized gradient vector

computed at arc (p, q), ~η(p, q) is the unit vector of the arc (p, q), Er(p, q) and Dr(p, q) are

the pixel intensities at a distance r to the left and right sides of the arc (p, q), respectively.

The dissimilarity functions aim to penalize arcs that cross borders, by assigning higher

arc weights to them. We are interested in using the above functions under two possible

segmentation paradigms: with and without seed competition. Functions δ1 and δ2 assume

low inhomogeneity within the object. They represent gradient magnitudes with different

image resolutions and lead to smooth functions in both paradigms. In fact, fmax is smooth

whenever δ(p, q) is fixed for any (p, q) ∈ A. Function δ3 exploits the dissimilarity between

object and pixel intensities, being the object represented by its seed pixels. Although

fmax is smooth for δ3 with no seed competition, it may not be smooth in the case of

competition among seeds [43] (i.e. the IFT results a spanning forest, but it may be

non-optimal). This problem was the main motivation for δ4 [99]. However, sometimes

δ3 with seed competition provides better segmentation results than δ4 (see Section 4.5).

Function δ3 may also limit the influence zones of the seeds, when the intensities inside the

object vary linearly toward the background. Function δ5 reduces this problem, and in the

case of seed competition, one can also replace δ3 by δ4 in Equation 4.6. The basic idea in

function δ6 stemmed from [45], where the intensities on the left and right sides of each arc

are used to compute its weight, such that longer boundary segments are favored in only

one orientation (either clockwise or anti-clockwise). We are extending this idea to provide

oriented region growing. Function δ6 is suitable to objects, such as the cortex, composed

by intermediary intensities with respect to the intensities on both of its sides. For MR-T1

images of the brain, the GM intensities in the cortex are expected to be higher than the



Caṕıtulo 4. Object delineation by κ-connected components 73

(a) (b)

Figure 4.2: An MR-T1 image of the brain with one seed s inside the cortex. (a-b) The
maximum influence zones of s within the cortex for fmax with δ3 and with δ6, respectively.
The asymmetry of δ6 favors segmentation in anti-clockwise orientation, increasing the
influence zone of s.

intensities in one side (CSF) and lower than the intensities in the other side (WM). To

grow regions in anti-clockwise, we expect that the intensity Er(p, q) at a distance r to the

left (WM) of an arc (p, q) be higher than the intensity Dr(p, q) at the same distance r to

the right (CSF) of the arc. We favor or penalize the arc dissimilarities based on this rule

in δ6. The term ~g(p, q) · ~η(p, q) also penalizes arcs which cross boundaries. The result is

that a same seed s allows to delineate more pixels in the cortex with δ6 (Figure 4.2b),

following the anti-clockwise orientation, than with δ3 (Figure 4.2a). Other interesting

ideas of dissimilarity functions for fmax are presented in [116, 55, 101, 99, 100].

The basic differences between the formulations proposed in [55] and [99, 115] are

that (i) the former assumes δ(p, q) = δ(q, p) for all (p, q) ∈ A, and requires smooth

path-cost functions, and (ii) the later allows asymmetric dissimilarity relations (e.g. δ2),

and non-smooth cost functions (e.g. fmax with δ3 and seed competition). The strength

of connectedness between image pixels in (i) is a symmetric relation, while it may be

asymmetric in (ii). The main theoretical differences between our formulation and these

ones are presented next.
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4.3.1 Object definition without seed competition

We say that a pixel p is κ-connected to a seed s ∈ S, if there exists an optimum path π

from s to p such that f(π) ≤ κ. This κ-connectivity relation will be asymmetric whenever

the dissimilarity δ(p, q) is asymmetric.

An object is a maximal subset of DI wherein all pixels p are at least κ-connected

to one pixel s ∈ S. Similarly to the method presented in [116], the object is the

union of all κ-connected components with respect to each seed s ∈ S, which must be

computed separately. This makes fmax smooth for all dissimilarity functions described in

Equations 4.2- 4.7.

The algorithm described in [116] assumes that the object can be defined by a single

value of κ for all seeds in S. Figure 4.3a illustrates an example where this assumption

works. However, a simple change in the position of a seed can fail segmentation

(Figure 4.3b), because the influence zone of each seed inside the object is actually limited

by a distinct value of cost κ (Figure 4.3c). Moreover, the choice of seeds with distinct

values of κ usually reduces the number of seeds required to complete segmentation. This

situation is better understood when we relate the concepts of minimum-spanning tree and

minimum-cost path tree for fmax and symmetric κ-connectivity relations [1].

A minimum-spanning tree is a spanning forest P with a single arbitrary root, where the

sum of the arc weights δ(p, q) for all pairs (p, q) ∈ A, such that P (q) = p, is minimum, as

compared to any other minimum-spanning tree obtained from the original graph (DI , A)

(Figures 4.4a and 4.4b). If we remove the orientation of the arcs in Figure 4.4b, every

pair of pixels in P is connected by a path which is also optimum according to fmax

(Figure 4.4c). That is, the minimum-spanning tree encodes all possible minimum-cost

path trees for fmax. A κ-connected object with respect to a seed s can be obtained by

taking the component connected to s, after removing all arcs from P whose δ(p, q) > κ.

Suppose, for example, that the object is the brighter rectangle in the center of Figure 4.4a.

Figure 4.4c shows that only the left side of the rectangle is obtained with s1 and κ1 = 3.

If κ1 = 4, s1 reaches the right side of the rectangle but invades the background. The

rectangle can be obtained with three seeds and κ = 2. However, different values of κ

reduce the number of seeds to two, s1 with κ1 = 3 and s2 with κ2 = 2 (Figure 4.4d).

There may be many arcs connecting object and background in a minimum-spanning

tree. The choice of a single value of κ is equivalent to remove the arcs whose weight

δ(p, q) is minimum among those connecting object and background. This usually divides

the object into several κ-connected components (minimum-spanning trees) and the

segmentation will require one seed for each component. When we allow different values

of κ, the object components become larger, and consequently, the number of seeds is

reduced.
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(a) (b) (c)

Figure 4.3: A CT image of a knee where the patella can be segmented with two seed
pixels, s1 and s2, fmax with δ3, and without seed competition. (a) The result with a single
value of κ for both seeds. (b) The segmentation with a single value of κ fails when we
change the position of s1, because s1 requires a higher value of κ to get the brighter part
of the bone and B invades the background at this higher value of κ. (c) The result can
be corrected with distinct values of κ for each seed.

4.3.2 Object definition with seed competition

In [99, 55], seeds are selected inside and outside the object, and the object is defined by

the subset of pixels which are more strongly connected to its internal seeds than to any

other. This is the same as removing the arcs of maximum weight from the paths that

connect object and background in the minimum-spanning tree. For example, the rectangle

in Figure 4.4c is obtained by changing the position of s1 to any pixel in the background

and selecting s2 as shown in Figure 4.4d. The main motivation for this paradigm was to

eliminate the choice of κ, favoring the simultaneous segmentation of multiple objects.

We define the object as the subset of pixels which are more strongly κ-connected to

its internal seeds than to any other. That is, the seeds will compete among themselves

for pixels reached from more than one seed by paths whose costs are less than or equal to

κ. In which case, the pixel is conquered by the seed whose path cost is minimum. Note

that, even the internal seeds compete among themselves, and a distinct value of κ may be

required for each seed. When the seed competition fails, these thresholds should limit the

influence zones of the seeds avoiding connection between object and background, and the
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Figure 4.4: (a) An image graph with 4-adjacency, where the integers are the image values
I(p) and the bigger dot is an arbitrary pixel. The object of interest is the brighter rectangle
in the center. (b) A minimum-spanning tree computed from the arbitrary pixel, where
the integers for each pixel q are the arc weights δ(p, q) = |I(q)− I(p)|, for p = P (q). (c)
The minimum-spanning tree without arc orientation. A single seed s1 can not extract
the rectangle for any value of κ. (d) The rectangle can be obtained with two seeds and
distinct values of κ, s1 with κ1 = 3 and s2 with κ2 = 2.
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(a) (b) (c)

Figure 4.5: A CT image of the orbital region where the eye ball is obtained by seed
competition. (a) One internal seed and many external seeds are required for segmentation,
using fmax with δ4. (b) The segmentation fails when some of the external seeds are
removed. (c) A value of κ is used to limit the influence zone of the internal seed in parts
where the seed competition fails.

pixels do not conquered by any seed should be considered as belonging to the background.

In general, the use of distinct values of κ together with seed competition reduces the

number of seeds required to complete segmentation. Figure 4.5a shows an example where

many seeds have to be carefully selected in the background to delineate the object. The

segmentation fails when some of these seeds are removed (Figure 4.5b), but it works when

we limit the extent of the internal seed to some value of κ (Figure 4.5c).

The algorithms and the problem of determining these thresholds for the internal seeds

are addressed next.

4.4 Algorithms

The IFT uses a variant of Dijkstra’s algorithm [33] to compute three attributes for each

pixel p ∈ DI [43]: its predecessor P (p) in the optimum path, the cost C(p) of that path,

and the corresponding root R(p). In the algorithms presented in this section, we do not

need to create the predecessor map P and the root map R is only used in the case of seed

competition.

The IFT with fmax propagates wavefronts Wcst of same cost cst around each seed,

following the order of the costs cst = 0, 1, . . . , K. By assigning higher values of δ(p, q) to

arcs that cross the object’s boundary, the wavefronts fill first the object and, when they
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leak to the background, a considerable increase in their areas can be observed (Figures 4.6a

and 4.6b). That is, many pixels in the background are reached by optimum paths whose

cost is the lowest value δ(p, q) among the dissimilarities of the arcs (p, q) that cross the

boundary. This ordered region growing process is exploited to compute the values κs of

each seed s ∈ S automatically and interactively.

4.4.1 Automatic computation of κs

First consider the wavefronts around a seed s selected inside a given object. All pixels

p in the wavefront Wcst around s have optimum cost C(p) = cst, 0 ≤ cst ≤ K. If the

object is a single κ-connected component with respect to s, then there exists a threshold

κs, 0 ≤ κs ≤ K, such that the object can be defined by the union of all wavefronts Wcst,

for cst = 0, 1, . . . , κs. We can specify a fixed κs for this particular application, but this is

susceptible to intensity variations. Another alternative is to search for matchings between

the shape of the object and the shape of the wavefronts. One drawback is the speed of

segmentation, but this may be justified in some applications. A more complex situation

occurs when the object definition requires more than one seed pixel. Each seed defines

its own maximal extent inside the object and we need to match the shape of the object

with the shape of the union of their influence zones.

The approach presented here is much simpler and yet effective. It stems from the

previously mentioned observation about the areas of the wavefronts, when they invade

the background. The ordered region growing process of a seed s must stop when the size

of its wavefront of cost cst is greater than an area threshold 0% < T < 100%, computed

over the image size, and the value of κs is determined as max{cst − 1, 0}. The choice

of one value κs for each seed s ∈ S is then substituted by the choice of T , which limits

the maximum sizes of the wavefronts. This threshold can be verified by selecting internal

seeds and setting T = 99%. The total area of the wavefronts during propagation can

be displayed as a curve. A peak on this curve indicates the maximum possible value for

T at the instant of leaking. Some animations of this ordered region growing process are

provided in http://www.liv.ic.unicamp.br/demo/miranda-kconnected.avi.

The algorithms are presented for single object delineation without seed competition

and multiple object definition with seed competition.
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(a) (b) (c)

Figure 4.6: A CT image of the orbital region with one seed inside the eye ball. (a) A
wavefront of cost κ which represents the maximum extent of this seed inside the eye ball.
(b) The wavefront of cost κ + 1 shows a considerable augment in size when it invades the
background. (c) The pixel propagation order provides more continuous transitions of the
wavefronts to select κ, interactively.

Algorithm 2 – Single object definition without seed competition

Input: Image Î = (DI , I), adjacency A, internal seeds S, path-cost function fmax, and

the size threshold T .

Output: Binary image L̂ = (DI , L), where L(p) = 1, if p belongs to the object, and

L(p) = 0 otherwise.

Auxiliary: A priority queue Q, variables tmp, κ, cst and size, and cost map C defined in

DI .

1. For every pixel p ∈ DI , set L(p)← 0.

2. While S 6= ∅, do

3. For every pixel p ∈ DI , set C(p)← +∞.

4. Remove a seed s from S.

5. Set C(s)← 0, size← 0, cst← 0, κ← +∞, and insert s in Q.

6. While Q 6= ∅ and κ = +∞, do

7. Remove a pixel p from Q such that C(p) is minimum.

8. For every q ∈ A(p), such that C(q) > C(p), do

9. Set tmp← max{C(p), δ(p, q)}.
10. If tmp < C(q), then

11. If C(q) 6= +∞, then remove q from Q.

12. Set C(q)← tmp and insert q in Q.
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13. If C(p) 6= cst, then set size← 1 and cst← C(p).

14. Else, set size← size + 1.

15. If size > T then set κ← max{cst− 1, 0}
16. For every pixel p ∈ DI , do

17. If C(p) ≤ κ, then set L(p)← 1.

18. Remove any remaining pixels from Q.

Algorithm 3 – Multiple object definition with seed competition

Input: Image Î = (DI , I), adjacency A, path-cost function fmax, size threshold T , and

a labeled image L̂ = (DI , L), where L(p) = i, 0 ≤ i ≤ k, if p is a seed pixel

selected inside object i > 0 from k objects, being i = 0 reserved for seeds in the

background, and L(p) = −1 otherwise.

Output: A labeled image L̂ = (DI , L), where L(p) = i, 0 ≤ i ≤ k.

Auxiliary: Priority queue Q, variable tmp, and C, R, κ, size, and cst are maps defined

in DI to store cost and root of each pixel and threshold, wavefront size, and

wavefront cost of each seed, respectively.

1. For every pixel p ∈ DI , do

2. Set R(p)← p, size(p)← 0, cst(p)← 0, and κ(p)← +∞.

3. If L(p) = −1, then set C(p)← +∞ and L(p)← 0.

4. Else, set C(p)← 0 and insert p in Q.

5. While Q 6= ∅, do

6. Remove a pixel p from Q such that C(p) is minimum.

7. If κ(R(p)) = +∞ and L(R(p)) 6= 0, then

8. If C(p) 6= cst(R(p)), then set size(R(p))← 1 and cst(R(p))← C(p).

9. Else, set size(R(p))← size(R(p)) + 1.

10. If size(R(p)) > T , then set κ(R(p))← max{cst(R(p)) − 1, 0}.
11. If C(p) ≤ κ(R(p)), then

12. For every q ∈ A(p), such that C(q) > C(p), do

13. Set tmp← max{C(p), δ(p, q)}.
14. If tmp < C(q), then

15. If C(q) 6= +∞, then remove q from Q.

16. Set C(q)← tmp, R(q)← R(p), and insert q in Q.

17. For every pixel p ∈ DI , do

18. If C(p) ≤ κ(R(p)), then set L(p)← L(R(p)).

The priority queue Q can be implemented as described in [44, 47], such that each

instance of the IFT will run in time proportional to the number |DI | of pixels. Note that,

the first algorithm above stops propagation when the value κs of a seed s is found. In the
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case of seed competition, the root map is used to find in constant time the root of each

pixel in S. The influence zone of a seed s ∈ S is limited either when it meets the influence

zone of other seed at the same minimum cost or when the value κs of s is found.

One advantage of the presented algorithms as compared to classical segmentation

methods based on seed competition occurs when the object contains several background

parts (holes) inside it. In this case, the use of κs usually eliminates the need for at least one

background seed at each hole. On the other hand, some small noisy parts of the object

may not be conquered by the internal seeds due to the use of κs. The labeled image

can be post-processed, such that holes with area below a threshold are closed [75, 118].

The area closing operator has shown to be a very effective complement for the presented

algorithms. In many situations, the objects do not have holes and high area thresholds

can be used to reduce the number of internal seeds.

The animations in http://www.liv.ic.unicamp.br/demo/miranda-kconnected.

avi were created by using Algorithm 3. It is usually preferable with respect to

Algorithm 2, because it allows faster multiple object segmentation. Note that, a wavefront

of one seed can leak to the background before the object be fully filled by the wavefronts of

other seeds. Figure 4.7a illustrates an example where the leaking occurs for seed A before

the object be filled. The moment when κA = 324 is detected is shown in Figure 4.7b and

Figure 4.7c shows the instant when κB = 770 is detected. The figures show only a region

of interest of the original image, where the segmentation was done with T = 1%. The

final segmentation is shown in Figure 4.7d. Even when the dissimilarities are not higher

for arcs that cross the object’s boundary, Algorithm 3 can work either due to the seed

competition among internal seeds (parts of the object can be filled without leaking) or

due to the automatic κs computation, as shown in the example of Figure 4.7.

4.4.2 Interactive computation of κs

A first approach is to compute the IFT for every pixel p ∈ DI , such that the cost C(p)

of the optimum path that reaches p from S is found. In the case of seed competition,

the corresponding root R(p) ∈ S is also propagated to each pixel p ∈ DI . Then, the user

moves the cursor of the mouse over the image, and for each position q of the cursor, the

program displays the influence zone of the corresponding root s = R(q) ∈ S defined by

pixels p ∈ DI , such that C(p) ≤ C(q) and R(p) = R(q). This interactive process can be

repeated until the user selects a pixel q to confirm the influence zone of s (i.e. κs = C(q)).

The user can repeat this interactive process for each seed s ∈ S, in both paradigms.

One drawback of the method above is the abrupt size variations of the wavefronts

(Figures 4.6a and 4.6b) which makes the selection of pixel q sometimes difficult. We

circumvent the problem by exploiting the propagation order O(p) (a number from 1 to
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Figure 4.7: Segmentation of a caudate nucleus with two internal seeds, A and B. (a) The
leaking occurs before the object be filled. (b) The moment when κA = 324 is detected.
(c) The instant when κB is detected. (d) Final segmentation.

|DI |) of each pixel p removed from Q during execution of the IFT. Note that, a pixel p

propagates before a pixel q (i.e. O(p) < O(q)) when it is reached by an optimum path from

S, whose cost C(p) is less than the cost C(q) of the optimum path that reaches q. When

C(p) = C(q), we assume a first-in-first-out (FIFO) tie-breaking policy for Q. That is,

among all pixels with the same minimum cost in Q, the one first reached by an optimum

path from S is removed for propagation. Therefore, we also compute the propagation

order O(p) of each pixel p ∈ DI . When the user moves the cursor to a position q, the

program displays the influence zone of the corresponding root s = R(q) ∈ S defined by

pixels p ∈ DI , such that O(p) ≤ O(q) and R(p) = R(q). The rest of the process is the

same. Note that, although κs = C(q), only the pixels p in the wavefront WC(q) which have

O(p) ≤ O(q) are selected as belonging to the influence zone of s. This provides smoother

transitions between consecutive wavefronts (Figure 4.6c) as compared to the first idea.

The algorithms are presented below.

Algorithm 4 – Single object definition without seed competition

Input: Image Î = (DI , I), adjacency A, internal seeds S, and path-cost function fmax.

Output: Binary image L̂ = (DI , L), where L(p) = 1, if p belongs to the object, and

L(p) = 0 otherwise.

Auxiliary: Priority queue Q, variables tmp, ord, and cost map C and propagation order

map O defined in DI .

1. For every pixel p ∈ DI , set L(p)← 0.
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2. While S 6= ∅, do

3. For every pixel p ∈ DI , set C(p)← +∞.

4. Remove a seed s from S.

5. Set C(s)← 0, ord← 0, and insert s in Q.

6. While Q 6= ∅, do

7. Remove a pixel p from Q such that C(p) is minimum.

8. Set O(p)← ord + 1 and ord← ord + 1.

9. For every q ∈ A(p), such that C(q) > C(p), do

10. Set tmp← max{C(p), δ(p, q)}.
11. If tmp < C(q), then

12. If C(q) 6= +∞, then remove q from Q.

13. Set C(q)← tmp and insert q in Q.

14. The user selects a pixel q on the image.

15. For every pixel p ∈ DI , do

16. If O(p) ≤ O(q), then set L(p)← 1.

Algorithm 5 – Multiple object definition with seed competition

Input: Image Î = (DI , I), adjacency A, path-cost function fmax, and a labeled image

L̂ = (DI , L), where L(p) = i, 0 ≤ i ≤ k, if p is a seed pixel selected inside

object i > 0 among k objects, being i = 0 reserved for seeds in the background,

and L(p) = −1 otherwise.

Output: A labeled image L̂ = (DI , L), where L(p) = i, 0 ≤ i ≤ k.

Auxiliary: Priority queue Q, variables tmp and ord, and C, R, O are maps defined in DI

to store cost, root and propagation order of each pixel, respectively.

1. Set ord← 0.

2. For every pixel p ∈ DI , do

3. Set R(p)← p.

4. If L(p) = −1, then set C(p)← +∞ and L(p)← 0.

5. Else, set C(p)← 0 and insert p in Q.

6. While Q 6= ∅, do

7. Remove a pixel p from Q such that C(p) is minimum.

8. Set O(p)← ord + 1 and ord← ord + 1.

9. For every q ∈ A(p), such that C(q) > C(p), do

10. Set tmp← max{C(p), δ(p, q)}.
11. If tmp < C(q), then

12. If C(q) 6= +∞, then remove q from Q.

13. Set C(q)← tmp, R(q)← R(p), and insert q in Q.

14. While the user is not satisfied.

15. The user can select a pixel q on the image.
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16. For every pixel p ∈ DI , do

17. If O(p) ≤ O(q) and R(p) = R(q), then set L(p)← L(R(p)).

4.5 Evaluation

We have selected 100 images from Magnetic Resonance (MR) and Computerized

Tomography (CT) data sets of 7 objects for evaluation (see Table 4.1 and Figure 4.8). Each

object consists of some slices that represent different degrees of challenge for segmentation.

The original images have been pre-processed to increase the similarities between pixels

inside the objects and the contrast between object and background. Each of four users

have performed segmentation over the 100 images using each of three methods, M1, M2,

and M3, with interactive seed selection (mouse clicks).

M1 Object delineation without seed competition and automatic/interactive

computation of κs. This method uses Algorithms 2 and 4. When M1 requires a

single κs for all seeds, it indicates that absolute-fuzzy connectedness (AFC) would

work.

M2 Object delineation with seed competition and automatic κs computation. This

method uses only Algorithm 3. We did not evaluate Algorithm 5, because

preliminary tests indicated that user intervention to add external seeds in

Algorithm 3 is simpler and more effective than to indicate κs in Algorithm 5.

M3 Object delineation with seed competition and without κs computation. As

mentioned in Section 4.1, relative-fuzzy connectedness (RFC) and watershed

transform by markers (WT) are the same method [6] (one is the dual of the other),

represented here by M3.

Therefore, the user can correct segmentation by adding/removing seeds in M1, M2

and M3, and in the case of M1, by pointing the mouse to the pixel, whose propagation

order indicates the correct κs implicitly (Section 4.4.2).

M1 aims to show two aspects about AFC: (i) a single κ for all seeds is not sufficient in

most cases and (ii) the problem of computing multiple κs thresholds can be easily solved

by a wavefront area threshold 0% < T < 100%, computed over the image size. Note that,

being M1 an extension of AFC, there is no situation where AFC works and M1 would

fail. M2 aims to reduce the number of required seeds with respect to M3 by automatic κs

computation. When this automatic procedure fails, M2 becomes M3. Therefore, in the

worst case, the efficiency of M2 should be the same of M3.
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Object Description Imaging Modality Number of Slices
O1 left eye ball CT-orbit 15
O2 left caudate nucleus MR-brain 15
O3 lateral ventricles MR-brain 15
O4 corpus callosum MR-brain 10
O5 patella CT-knee 15
O6 femur CT-knee 15
O7 white matter MR-brain 15

Table 4.1: Description, imaging modality and number of slices for each object used in the
experiments.

Given that M1 and M2 are extensions of AFC and RFC/WT, we expect that they

do not affect the accuracy of the original approaches, which is assumed to be good from

the results of several other works [62, 86, 114, 88, 52, 112]. The experiments then aimed

to show that M1 works in situations where AFC would fail, M1 and M2 require less user

interaction than M3, and the methods produce similar results.

The choice of parameters took a couple of minutes per object, by trying the methods

in a first slice. Then, the parameters were fixed to the rest of the slices. Note that, this

can be done only once for any given application (object of interest and imaging protocol).

We have chosen the best dissimilarity function for each object and method (Table 4.2).

We used the 8-neighborhood as adjacency relation A and set the wavefront area threshold

T to 1% of the image size (except for O2 where T = 0.5% in M1 and T = 0.2% in M2).

Since objects from O1 to O6 do not have holes, we set the area closing threshold to some

arbitrary high value (e.g. 500 pixels). The only exception was O7, whose the area closing

threshold could not be higher than 3 pixels due to its holes. In function δ2, we used the

magnitude of the Sobel’s gradient. The value of σ was 20 for all cases involving δ3 and δ4.

Note also that δ3 has been chosen in some situations involving seed competition, despite

fmax is not smooth.

Each object was represented by a set of l binary slices L̂i = (DI , Li), i = 1, 2, . . . , l,

where Li(p) = 1 for object pixels and 0 otherwise. Let L̂i and L̂′
i be the binary images

resulting from the segmentation of a same object slice using different methods. The

similarity between these results was measured by:

1.0 −
∑i=l

i=1

∑

∀p∈DI
Li(p)⊕ L′

i(p)
∑i=l

i=1

∑

∀p∈DI
Li(p) +

∑i=l
i=1

∑

∀p∈DI
L′

i(p)
, (4.8)
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(a) Left eye ball. (b) Left caudate nucleus. (c) Lateral ventricles

(d) Corpus callosum. (e) Pattela. (f) Femur.

(g) White matter.

Figure 4.8: (a)-(g) Results of slice segmentation of the objects from 1 to 7, respectively,
overlaid with the pre-processed images.
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Object M1 M2 M3
O1 δ3 δ2 δ2

O2 δ3 δ4 δ2

O3 δ3 δ3 δ3

O4 δ3 δ4 δ2

O5 δ3 δ4 δ4

O6 δ3 δ3 δ2

O7 δ3 δ3 δ3

Table 4.2: The dissimilarity functions used for each combination of object and method.

where ⊕ is the “exclusive or” operation (i.e. Li(p) ⊕ L′
i(p) = 1, if Li(p) 6= L′

i(p), and

0 otherwise). Given that we have four different users using three distinct methods, we

may assume that similarity values around 0.90 represent good agreement in delineation

(Figure 4.9).

The number of user interactions in M3 is the total number of seeds selected inside (NIS

- Number of Internal Seeds) and outside (NES - Number of External Seeds) the object.

In M1, the amount of user interaction is represented by the total number of interactive

κs detections (IKD) and NIS. The automatic κs detections (AKD) are chosen as much as

possible in order to reduce the number of user interactions. In M2, the number of user

interactions is computed as in M3, but the number of seeds is expected to be much less

due to automatic κs detection.

Instead of quantifying the number of user interactions for a fixed value of κ, we decided

to quantify the number of different κs values found in M1 for cases of multiple seeds. The

percentages of different κs values (PDK) are presented in Table 4.3, together with the

average number of interactions and similarity values among all users. Note that, O3 was

detected with a same value of κ, but the other objects required from 6.8% to 92.4% of

different κs values. O5 did not count because it was segmented with only one seed per

slice. Therefore, AFC would work only for O3 and O5. On average, M3 and M1 required

2.8 and 1.1 more user interactions than M2, respectively. The advantages of M1 and M2

over M3 increase in more complex situations, such as in the delineation of O7, where M3

required 6 times more user interactions than M1 and M2. Although the performances

of M1 and M2 have been equivalent, M2 is preferable because its extension to 3D does

not suffer from interactive κs indication and it can provide simultaneous segmentation of

multiple objects.

Table 4.4 shows in detail the average values of NIS, NES, IKD, and AKD for each

object and method. Note that, AKD varied from 59% to 100% of NIS, being on average

90% of NIS in M1 and 88% of NIS in M2. This demonstrates the effectiveness of
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(a) (b)

Figure 4.9: (a) A segmentation of the left caudate nucleus. (b) The result of dilating the
binary image with a circular structuring element of radius 1. The similarity value between
these two masks is 0.87. The differences in the experiments using distinct methods on
this object (O2) are less significant than this small dilation.

the proposed approach for automatic κs detection and explains the reduction of user

interactions in M1 and M2 with respect to M3. Note also that, the number of external

seeds was considerably reduced in comparison to M3. This is an important result for

future automation, because seed competition is sensitive to the location of the external

seeds due to the heterogeneity of the background.

4.6 Conclusions

We have presented four IFT-based algorithms for object delineation based on κ-connected

components with and without seed competition. They differ from the previous approaches

in the following aspects: computation of different values of κ for each seed, effective

automatic κs detection, and user-friendly κs computation, where the user moves the

cursor of the mouse to indicate the pixel whose propagation order defines the object.

The use of propagation order rather than the pixel cost is important to create smoother

transitions between possible objects, facilitating the user’s work. The new methods have

considerably reduced the number of user interactions in medical image segmentation with

respect to the previous approaches. We believe that these results are extensive to other

image types by suitable choice of pre-processing and dissimilarity function.

The interactive κs detection counted with real time response for every position of the
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M1 PDK M2 M3 M1,M2 M1,M3 M2,M3
O1 35.0 83.4% 29.5 77.6 0.965 0.969 0.962
O2 38.5 92.4% 29.3 38.8 0.904 0.890 0.915
O3 31.8 0.0% 31.3 61.3 0.992 0.932 0.935
O4 29.7 57.4% 27.5 46.8 0.922 0.914 0.918
O5 15.0 — 15.0 61.0 0.973 0.954 0.946
O6 26.3 27.1% 26.3 37.8 0.992 0.982 0.981
O7 47.5 6.8% 46.3 284.8 0.973 0.931 0.930

Table 4.3: The percentages of different κs values (PDK) in M1, the average numbers of
user interactions for each object and method, and the average similarity values between
different methods for a same object.

M1 M2 M3
NIS IKD AKD NIS NES AKD NIS NES

O1 30.7 4.3 26.4 18.0 11.5 13.0 26.8 50.8
O2 30.0 8.5 21.5 25.3 4.0 24.3 18.8 20.0
O3 30.0 1.8 28.2 30.3 1.0 30.3 30.3 31.0
O4 24.5 5.2 19.3 22.3 5.2 19.8 22.3 24.5
O5 15.0 0.0 15.0 15.0 0.0 15.0 44.0 17.0
O6 26.3 0.0 26.3 26.3 0.0 15.5 22.8 15.0
O7 47.5 0.0 47.5 46.0 0.3 46.0 66.0 218.8

Table 4.4: Average numbers of internal seeds (NIS), interactive κs detections (IKD),
external seeds (NES), and automatic κs detections (AKD).
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cursor, but this may not be feasible in 3D segmentation involving several slices. In this

sense, the algorithms based on interactive κs detection are more adequate for 2D/3D

segmentation in a slice by slice fashion, where seeds may be automatically propagated

along the slices. In such a case, the interactive κs detection can be used to correct

segmentation when the automatic detection of κs fails.

Seed competition with automatic κs detection (Algorithm 3) seems to be the most

promising approach. We are currently investigating two approaches for 3D segmentation

of medical images: (i) automatic segmentation with only internal seeds and automatic

κs detection, and (ii) interactive segmentation with automatic κs detection, where the

user can add/remove internal and external seeds, and subsequent IFTs are executed in a

differential way [36].
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Caṕıtulo 5

Cloud Models: Their Construction

and Employment in Automatic MRI

Segmentation of the Brain

5.1 Introduction

Image segmentation involves object recognition and delineation [83]. Recognition is

the task of determining an object’s approximate location in the image. Delineation

completes segmentation by defining the exact spatial extent of the object. Humans usually

outperform computers in object recognition, but the reverse is true for delineation. While

the user can often solve the recognition problem by simple point (seed) selection or by

an effective initialization action, precise delineation is challenging due to the intra and

inter operator subjectivity. On the other hand, computers can be very precise, even

when they are not accurate, but the absence of global information (e.g., an object model)

makes object recognition a difficult task for them. This explains why some successful

interactive approaches combine recognition by the user with delineation by the computer

in a synergistic way, for effective and foolproof segmentation [44, 36, 17, 94].

Segmentation methods can be roughly divided into model-based and image-based

approaches. Model-based methods create statistical models by employing supervised

learning. A training set of object’s instances is provided with appropriate human

interaction and these data are registered into a common reference space to form the

model. Active shape models [27] (ASM) and atlas-based approaches [51, 93, 89] are

examples of model-based methods that have been used for MR-image segmentation of

anatomic structures in the brain [35, 52]. Accurate registration is a separate problem

in these methods which is also required during segmentation. In ASM, landmarks have

to be selected on the surface of the training objects and their correspondence provides a

91
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statistical model of possible variations in shape. The registration between the image and

the model during segmentation also sometimes ignores important image information, by

the act of forcing the results to fit with the model. Brain atlases are usually created by

registration of training images based on certain landmarks (e.g., anterior and posterior

comissures) and deformation fields. In the reference space, image structures suffer from

different degrees of distortion, making the matching among corresponding voxels inexact.

Image-based methods in turn exploit image properties for more effective delineation, but

their lapses in global information makes object recognition an insurmountable problem.

In view of these dilemmas, some recent methods have addressed automatic

segmentation by combining model-based approaches for recognition with image-based

approaches for delineation [67, 22, 81, 82]. Essentially, the model plays the role of the

human operator while an image-based algorithm performs delineation, and both operate in

a synergistic way until an optimum state is reached. In this paper, we pursue our previous

work on object cloud models [81, 82] which present the following advantages: the cloud

models dismiss registration during training and segmentation; they take into account the

entire object’s boundary during delineation and recognition rather than only some control

points, as in [27]; and they can be easily extended to multidimensional images.

An object cloud model (OCM) was introduced in [81] as a triple comprising a fuzzy

object, a delineation algorithm, and a criterion function. It captures shape variations of

a given object to form an uncertainty region for its boundary. For any image position,

delineation is executed in the uncertainty region to obtain a candidate object and the

criterion function assigns a score to it. Image segmentation is defined by the candidate

with the highest score. In order to capture more shape differences, we proposed the cloud

bank model (CBM) in [82], which uses multiple clouds per object. In some applications,

however, multiple objects may define a cloud system by adding their relative position

into the model. This is the case of MR-T1 images of the brain and several other

medical imaging applications. Therefore, we propose in this paper the cloud system

model (CSM) to handle multiple objects simultaneously. The methods are compared for

the automatic MR-T1 image segmentation of: (S1) the brain (without stem), (S2) the

cerebral hemispheres, (S3) the cerebellum, and (S4 and S5) the right and left hemispheres.

In the literature, most approaches to segment S1-S5 are based on atlas registration

or surface-extraction techniques. CSM does not require registration and segments S1-S5

simultaneously, precisely and accurately. Besides, a quick evaluation of several other

tools revealed that CSM is much simpler and faster. For example, it is about 5 times

faster than BrainVisa [72], with no need for manual landmark specification. As compared

with the recent work in [65], which takes about 3 hours using deformable registration

and 17 atlases, the proposed approach is much simpler, faster and produces similar Dice

measures for S3. Other examples are SurfRelax [61], which takes about 6 minutes and
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requires image warping onto a template, CLASP1 and FreeSurfer [31], which take hours

to complete segmentation of S1-S5.

We present the general definitions of all object cloud models - OCM, CBM, and CSM

- in Section 5.2; instantiate them for brain MR-T1 image segmentation in Section 5.3;

discuss experimental results in Section 5.4; and state conclusions in Section 5.5. The

experiments show the advantages of CSM and improvements over our previous works

[81, 82] for this particular application.

5.2 Object Cloud Models

For a given object of interest (e.g., brain, cerebellum), a set of training images with the

object’s instances must be provided. These instances should capture among them shape

variations of that object in order to teach the computer how to recognize it in the image.

In atlas-based approaches [51], the images are registered to a chosen reference image by

finding a geometric transformation that best matches them according to a criterion of

similarity. During the registration process, the reference image remains fixed while the

others are deformed into its geometric space. Following this, the model is obtained as the

averaged image template together with the tissue distribution maps obtained by averaging

segmentations over all subjects. Suitable reference selection is itself a problem, since the

atlas can be biased towards the anatomy of the chosen image. Hence, this image should

be the one that best represents the anatomy of a population under study [93].

Suppose, instead of registering the training instances, we only translate their binary

segmentations on to a common reference point (geometric center) and compute their

average. This results in an image with a fuzzy appearance that resembles a cloud

(Figure 5.1a). From it we may obtain relevant shape informations such as prior boundary

knowledge (see Figure 5.1b and Section 5.2.3). Each cloud image also defines (i) an

interior region consisting of voxels that belong to all training instances, (ii) an exterior

region with voxels that do not belong to any instance, and (iii) an uncertainty region

composed of voxels that belong to some but not to all instances (Figure 5.1c).

The cloud model (OCM) is a triple that consists of a fuzzy object (cloud image), a

delineation algorithm A (this may be any algorithm, but, for the reasons mentioned earlier,

preferably an image-based approach), and a functional F . To segment a new image, the

cloud moves over the image and, for each position, algorithm A is executed inside the

uncertainty region to obtain a candidate segmentation. The functional is evaluated on this

segmentation to obtain a matching score for recognition, by taking into account local and

global object properties (e.g., shape and texture). The desired segmentation is expected

1URL: http://www.bic.mni.mcgill.ca/
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to be the one with maximum score [81] (Figures 5.2a-c). However, when the variability

in the training set is too high the shape information within the cloud image tends to

degenerate and the method loses precision. To circumvent this problem, we may separate

the training instances into groups (clusters) of high similarity in shape, rotation and size

(texture may be used as well). Each group defines its own cloud image resulting in a

bank of clouds, and the desired segmentation is expected to be the one with maximum

score among segmentations obtained from all individual clouds from this cloud bank model

(CBM) [82]. In this manner, the need to define a reference image is completely obviated.

As new images are added to the training set, they start new groups or are inserted in some

existing group (the groups may have overlap). In medical imaging and other applications

(e.g., license plate recognition), it is possible to acquire images as per a disciplined regimen

so that a small number of groups in the bank will suffice. Preprocessing, that depends

only on the image being processed, can also help in reducing the number of groups.

Note that delineation is constrained in the uncertainty region, and it also exploits

prior shape information (see Section 5.2.3) which are defined by the model. Recognition

is based on the functional, but it is applied to the delineated objects. Thus, the model

employs recognition and delineation in a tightly coupled manner [67].

Figure 5.1: (a) A coronal slice of the 3D cloud image of the cerebellum. (b) The
shape-based weight image. (c) Example of an uncertainty region over a slice of a test
image.

In the case of multiple objects, each object has its own OCM (or CBM), separately,

and the segmentation can follow independently, or in a hierarchical search. In this last

case, the search spaces for the internal objects are constrained by the larger objects that

subsume them (e.g., Figure 5.3, used in [81, 82]). However, in some applications (such as

medical), the arrangement among objects does not change, so it is possible to make better

use of contextual information, by computing their mean relative positions with respect to

a common reference point (centroid of all objects). As a result, we have a cloud system

(Figure 5.4a). To segment a new image, we consider the prior displacement knowledge in

order to fix the position of each object cloud relative to the moving reference point. For
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Figure 5.2: (a) An input image. (b) The recognition score for all positions. (c) The final
segmentation at the best location.

Figure 5.3: Hierarchical search for the brain structures S1-S5: S1 is the brain without the
brain stem, S2 represents the cerebrum, S3 is the cerebellum, and S4 and S5 are the right
and left cerebral hemispheres.

each search position, delineation is done inside the uncertainty regions of all object clouds,

and a combined score for recognition is obtained by the functional F . This simultaneous

treatment of multiple objects makes it less likely to miss the right position, due to the

better use of contextual information (Figures 5.4b-c) [22].

Again, when the variability of the training instances is too large, we can separate the

instances into groups of high similarity, but now we must also consider possible correlations

among the objects in terms of relative position, rotation, and size. This leads to a cloud

system model (CSM), which is formally presented below. The previous cloud models

(OCM,CBM) are subsumed by CSM as particular cases.

An image Î is a pair (I, ~I) where I ⊂ Zn is the image domain and ~I(p) assigns a

set of b scalars Ii(p), i = 1, 2, . . . , b, to each voxel p ∈ I. This definition applies to

multi-dimensional and multi-parametric images. We are interested in n = 3 and b ≥ 1.

The index i is removed when b = 1. For c objects l = 1, 2, . . . , c, a segmentation instance

is represented by a labeled image L̂ = (I, L), in which each label 1 ≤ L(p) ≤ c assigns a

voxel p ∈ I to one object out of c objects, and L(p) = 0 is used to designate background
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Figure 5.4: (a) A cloud system for c = 3 objects shown in RGB color space. (b) The
recognition score for all positions and (c) the final segmentation handling multiple objects
simultaneously.

voxels. A binary image B̂ = (I, B) may be used to represent each object such that

B(p) = 1 for object voxels and B(p) = 0 for background voxels.

Training instances are given as a set of labeled images L̂i = (Ii, Li), i = 1, 2, . . . , N .

Suppose these instances are separated into m groups of high similarity, as to be discussed

in Section 5.2.1. Each group is represented by a set Gg of images, g = 1, 2, . . . , m, such

that L̂i ∈ Gg if the image L̂i is in the gth group. Let B̂i,l = (Ii, Bi,l) be the binary image

of the lth object in the ith image (i.e., Bi,l(p) = 1 if Li(p) = l, and Bi,l(p) = 0 otherwise).

For any given object label l and group g, the average of the binary images B̂i,l for all i in

Gg, after translating them to a fixed reference point, creates a cloud image Ĉg,l = (C, Cg,l),

where Cg,l(p) ∈ [0, 1]. For any cloud, Cg,l(p) = 1 in its interior, 0 < Cg,l(p) < 1 in its

uncertainty region, and Cg,l(p) = 0 in its exterior. In the single object case (i.e., c = 1), the

method becomes the same as in CBM [82], and it becomes a single OCM [81] when c = 1

and m = 1. But in the case of multiple objects (i.e., c > 1), it also exploits the relative

positions among the objects within each group. For a given group g, the arrangement

of the object clouds is captured by the displacement vectors ~Dg,l, l = 1, 2, . . . , c, which

store the average positions of the object’s centroids in relation to their joint centroid for

all images in Gg.

~Dg,l =
1

|Gg|
∑

∀i|L̂i∈Gg

(

~Pi,l − ~Pi

)

, (5.1)

where |Gg| is the cardinality of the set Gg, ~Pi,l is the centroid’s coordinates of the object l

in the binary image B̂i,l, l = 1, 2, . . . , c, and ~Pi is the centroid’s coordinates of their union

in the label image L̂i. Note that this formulation also includes the single object case since
~Dg,l becomes the null vector when c = 1.

The following subsections provide more details about all relevant parts of the CSM,
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such as the grouping strategy, the object search, the graph assembly, the delineation

algorithm A, and the functional F . The model components and parameters are then

customized for the specific application of MR-T1 image segmentation of the brain as

described in Section 5.3.

5.2.1 Grouping

The grouping can be done by representing the training instances L̂i as nodes of a complete

graph; the arcs between L̂i and L̂j are weighted by a metric that valuates their similarity.

In the single object case (c = 1), we may consider the Dice similarity as this metric

after centralizing the training instances by their centroid vectors ~Pi,l (Figure 5.5a). In

the case of multiple objects (c > 1), we centralize the label images L̂i, i = 1, 2, . . . , N ,

by ~Pi and consider a combined similarity value (e.g., the mean Dice similarity among

corresponding object’s instances). The groups are then selected as maximal cliques [109],

wherein all pairs of training instances have similarity above a threshold. Thresholding

helps us to assure that only compatible data are used within the same cloud system,

and the size of the uncertainty regions can be controlled by the threshold (Figure 5.5b).

On the other hand, we must keep the number of groups as low as possible in order

to make the method computationally efficient. We start with N maximal cliques, such

that each contains one training image. Since these cliques may have overlap, we select

only a minimal subset of them that comprises all the images. In most cases this can

be accomplished by successively applying three simple rules: eliminate repeated cliques

(or cliques having all unselected nodes contained in some other clique), select all cliques

with at least one exclusive element, and ignore remaining cliques that have all elements

already selected. When this fails, there is a cycle of dependencies that may be broken by

arbitrarily selecting one of the remaining cliques, and then resuming the three rules.

Figure 5.5: (a) The training instances (c = 1) are mapped as nodes of a complete graph,
(b) the groups are selected as maximal cliques.

If there are only a few training images available, they may be complemented with

images created by random transformations (within acceptable limits) of the given images
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which capture variations that are likely to happen in the application.

5.2.2 Locating objects

Let Î = (I, I) be an image to be segmented. For each search position with coordinates

given by ~p, each cloud image Ĉg,l is positioned with its center at ~q = ~p + ~Dg,l, and its

uncertainty region is projected over a set of voxels U ⊂ I. That is, the displacement

vectors ~Dg,l are used to fix the cloud’s position for each object relative to the moving

search point ~p. Then, for each position ~p of a search region, a score Fl is obtained for

each label l = 1, 2, . . . , c, by analyzing the candidate segmentations computed by the

delineation algorithm for each cloud in a given cloud system. A combined score for

recognition is obtained by the functional F , such as the mean value (
∑c

l=1 Fl) /c. This

process is repeated for all groups, and the best location among all groups is selected as

the final result.

A multiscale search can be used to speed up this recognition task, by starting the search

at the lowest resolution and refining the best detected locations in the higher resolutions.

During this refinement in the higher resolutions, we may also allow each cloud of a cloud

system to move independently from the others in order to have more flexibility.

5.2.3 Arc-weight estimation for delineation

Image-based delineation algorithms usually make direct/indirect use of some image-graph

concept, and their success strongly depends on a suitable arc-weight estimation, which

usually takes into account image attributes and/or object information obtained by

supervised learning [83]. For the given image Î = (I, I) to be segmented, we associate a

weight image Ŵ = (I, W ) which is in turn associated with a graph (I,A). The graph’s

nodes are the voxels p ∈ I and arcs (p, q) ∈ A are defined between 6-neighbors. For

convenience, we store the weights in voxel resolution and use their interpolated values

during execution for the graph. That is, each arc (p, q) ∈ A is weighted by the mean value

w(p, q) = W (p)+W (q)
2

. The weight W (p) assigned to each voxel p ∈ I is a linear combination

of an image-based weight Wi(p), an object-based weight Wo(p), and a shape-based weight

Ws(p) provided by the cloud model.

W (p) = λiWi(p) + λoWo(p) + λsWs(p), (5.2)

where λi + λo + λs = 1. The weight Wi(p) aims at capturing discontinuities that may

exist between homogeneous regions and is taken as the magnitude of an image gradient.

The weights Wo(p) take into account prior knowledge about the intensities of the objects

under consideration in order to characterize the discontinuities that exist between them
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and the rest of the image. This weight is usually application-dependent (see Section 5.3.2),

although some general techniques exist to estimate them [83]. The weight Ws(p) encodes

prior shape information obtained from each cloud image Ĉg,l (Figure 5.1a) by computing

its gradient magnitude for all groups and labels (Figure 5.1b). It is combined with the

other weights as each cloud moves over the image (i.e., each cloud has its own Ws(p)),

usually with a low λs value since its major role is only to discriminate regions with poorly

defined borders.

5.2.4 Delineation algorithm

For delineation, we use an algorithm called IFT-SC (IFT segmentation by Seed

Competition) which is based on the image foresting transform [43] (IFT) and is supported

by the theoretical foundations given in [79].

For each search position, each cloud image Ĉg,l defines an uncertainty region as a set

U ⊂ I of voxels (Figure 5.1c). The interior and exterior regions contain boundary voxels,

which have at least one voxel in U as a 6-neighbor. These boundary voxels form one

internal set Si and one external set Se of seeds for the IFT-SC. A path π in the image

graph (I,A) is a sequence of adjacent voxels 〈p1, p2, . . . , pn〉. For the given set of seeds

S = Si ∪ Se, the cost of a path π is defined by a path-cost function. The considered cost

functions are:

f1(π) =

{

maxi=1,2,...,n−1 w(pi, pi+1) if p1 ∈ S
+∞ otherwise

(5.3)

f2(π) =

{

∑

i=1,2,...,n−1 [w(pi, pi+1)]
η if p1 ∈ S

+∞ otherwise
(5.4)

When U contains the object’s boundary (Figure 5.1c), it is expected that the arc

weights within U are higher on the object’s boundary than inside and outside it. The

seed sets Si and Se compete for voxels in U , such that a voxel receives label L(p) = 0 if

the minimum-cost path comes from Se, and label L(p) = l otherwise. The object is then

defined as the union between the interior of the cloud and the voxels with labels L(p) = l

in U .

The IFT solves this minimization problem by computing an optimum-path forest — a

function P which contains no cycles and assigns to each node q ∈ I either its predecessor

node P (q) ∈ I in the optimum path with terminus q or a distinctive marker P (q) = nil 6∈
I, when 〈q〉 is optimum (i.e., q is said to be a root of the forest). The cost functions

by Eq. 5.3 and 5.4 force the roots to be in S (Figure 5.6). As we change the parameter

η > 0 in f2, we obtain a whole family of solutions that includes f1 as a special case in

the limit when η → ∞. This is noticeable from the empirical results shown in [82]. We
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note that, f2 usually imposes more regularization to the object’s boundary than f1, but

on the other hand, f1 fits to the protrusions and indentations of the boundary better

than f2. The IFT-SC is especially important, because our model is being projected to

allow user’s intervention for small corrections if necessary, and it was shown in [79] that

the boundaries obtained by the IFT-SC with path-cost function f1 are also piecewise

optimal. This property is essential to conserve user control during interactive corrections

as discussed in [79], and these corrections can be quickly performed by using the DIFT

algorithm [36].
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(a) (b)

Figure 5.6: IFT-SC example: (a) A 4-neighborhood graph, where the numbers indicate
the arc weights. Three seeds are selected, one is internal (white dot) and two are external
(black dots). (b) An optimum-path forest for the path-cost function f1. The numbers
inside the nodes indicate the costs of the optimum paths, which are stored in a predecessor
map P . The label L(q) = 0 (black), or L(q) = l (white) of each seed q is propagated to
all pixels within its respective optimum-path tree.

5.2.5 Functional for recognition

The functional F should be the one that best discriminates the objects under

consideration, being consequently application-dependent. Several delineation algorithms

are already based on some sort of functional, like for example a graph-cut measure [17].

Indeed, the IFT-SC with path-cost function f1 also optimizes a graph-cut measure

according to [79]. A question may be raised concerning the use of the same functional

for both delineation and recognition score. This is usually not the best option, because

the functionals for delineation are in general designed to best match boundary properties,

while the recognition functional could be far more complex, taking into account more

global information, such as the shape details and internal information. The functional

used for brain segmentation is discussed in Section 5.3.3.
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5.3 Application to brain segmentation

In this work, we consider the segmentation of the brain structures S1-S5 as summarized

in Figure 5.3. The segmentation of the left and right cerebral hemispheres enables

the investigation of asymmetries in shape and texture which may be related to several

degenerative diseases. The separation of the cerebellum makes its analysis possible

independently of the rest of the brain, which is important in understanding the

relationships between aging and the decline in cognitive functioning [65]. The hemispheres

are connected through the corpus callosum. The cerebellum is connected to the rest of the

brain through the brain stem and through its top due to partial volume. The absence of a

clear boundary between these structures poses a challenge for segmentation (Figure 5.7).

(a) (b)

Figure 5.7: (a) The cerebellum is connected to the cerebrum through the brain stem. (b)
The cerebral hemispheres are connected through the corpus callosum.

This application of MR brain image segmentation perfectly fits the requirements for

the CSM model. The images are acquired in a well controlled environment, where the

patient remains lying in a horizontal position without moving. In extreme cases (e.g.,

Claustrophobia) even mild sedation may be adopted. Hence, only a small number of

clouds will suffice as desired.

5.3.1 Preprocessing & grouping

As stated in Section 5.2, preprocessing that depends only on the image being processed can

help in reducing the total number of groups required. The MR-T1 images are interpolated

to the same cubic dimensions (0.98mm3) and aligned by the mid-sagittal plane [10] (MSP).

This approach is fast (a few seconds), free of parameters, and independent of templates.

Interpolation and alignment reduces the number of groups by reducing the data variability,

and the MSP also reduces the search region. Note that, the MSP alignment operation

does not depend on any reference image. For grouping, we used the methodology of

Section 5.2.1, with the combined similarity threshold of 0.8.
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5.3.2 Arc-weight estimation

In this application, we may take advantage of the fact that most of the brain structures

are surrounded by CSF in order to emphasize their boundaries. However, owing to the

intensity non-standardness among images, and also the inhomogeneity, the partial volume

effects, and their interplay [70], it is difficult to characterize the exact intensity profile of

the CSF in advance. But we may still enforce a more specific intensity interval which

is more likely to contain the transition from CSF to GM. Consider t1 as a lower bound

of the CSF intensity, and t2 as a lower bound for the white matter. We can accentuate

the intensity slope in the interval [t1, t2] by considering the filtered image Î ′ = (I, I ′) as

follows.

I ′(p)=







I(p) if I(p) < t1
(1− γ)t1 + γ · I(p) if I(p) ∈ [t1, t2]

(t2 − t1)(γ − 1) + I(p) otherwise

(5.5)

where γ > 1 defines the new slope value (e.g., γ = 5), such that differences within

[t1, t2] in the original image Î become higher in Î ′. Subsequently, we consider a simple

application-specific weight Wo(p) that emphasizes dark voxels close to bright areas in

the filtered image Î ′. For all voxels p ∈ I, Wo(p) is computed as the sum of differences

I ′(q)− I ′(p) for all brighter voxels q (i.e., I ′(q) > I ′(p)) in a small neighbourhood around

p. Thus, a suitable emphasis is obtained in the superior part of the cerebellum, and

the transitions from GM to WM become weakened (Figure 5.8). In the experiments we

considered t1 as the Otsu’s optimal threshold (which gave a good lower bound for the

CSF in all cases), and we considered t2 as the mean intensity in Î considering only values

above t1. The other weights Wi(p) and Ws(p) are computed as discussed in Section 5.2.3,

Ws(p) being especially important to complete poorly defined borders (Figure 5.7).

(a) (b)

Figure 5.8: (a) The image-based weight Wi, (b) the object-based weight Wo.
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5.3.3 Recognition functional & delineation algorithm

The previous versions [81, 82] used the mean-cut measure [124] as the functional Fl, since

it provides a good summary of the object’s boundaries, being free of any undesirable bias.

In this work, we improve on this functional by including a penalty factor based on our

application-specific knowledge. The likelihood of having image intensities below t1 inside

the brain structures is supposed to be very low. Therefore, if the proportion of voxels

below t1 is high, among all voxels achieved for the object from U , then this is a strong

indication that the cloud is poorly positioned.

With respect to the delineation algorithm, some works [64] propose the use of a

graph-cut algorithm with an increasing transformation (i.e., the exponential function).

But since we have a potent arc-weight estimation strategy which also includes prior shape

information (filling any gaps on the object’s boundary), a graph-cut algorithm under

this scenario will theoretically lead to an approximation of the IFT-SC according to [79].

Hence, it is preferable to use the faster IFT-SC algorithm.

Algorithm 6 below performs the IFT-SC delineation and functional computation Fl

simultaneously for any given image location. It takes time proportional to the number

of voxels in U (sublinear), when the priority queue Q is implemented properly [44].

For multiple objects, the scores Fl are combined as F = (
∑c

l=1 Fl) /c, as discussed in

Section 5.2.2.

Algorithm 6 – Delineation algorithm for f1

Input: Image Î, weight image Ŵ , adjacency A, seed sets Si and Se, and uncertainty

region U .

Output: Label map L initially zeroed, an optimum-path forest stored in a predecessor

map P initially with nil and functional Fl = 0 initially.

Auxiliary: Cost map c initially zeroed, variables cst, object acquisitions oa = 0, penalty

acquisitions pa = 0 and cut size sz = 0 initially, priority queue Q initially

empty, and status map s to indicate when a voxel has been inserted in Q (1),

has never been inserted in Q (0), or has been removed from Q (2).

1. For all p ∈ U , set c(p)← +∞ and s(p)← 0.

2. For all p ∈ Si, set L(p)← l, s(p)← 1, and insert p in Q.

3. For all p ∈ Se, set L(p)← 0, s(p)← 1, and insert p in Q.

4. While Q is not empty, do

5. Remove from Q a voxel p such that c(p) is minimum.

6. Set s(p)← 2.

7. For each q such that (p, q) ∈ A, do

8. If c(q) > c(p), then
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9. Compute cst← max{c(p), W (p)+W (q)
2 }.

10. If cst < c(q), then

11. If s(q) = 1, remove q from Q.

12. Set c(q)← cst, L(q)← L(p).

13. Set P (q)← p.

14. Insert q in Q and s(q)← 1.

15. Else

16. If s(q) = 2 and L(q) 6= L(p), then

17. Set Fl ← Fl + W (p)+W (q)
2 .

18. Set sz ← sz + 1.

19. If L(p) = l, then

20. Set oa← oa + 1.

21. If I(p) < t1, then set pa← pa + 1.

22. Set Fl ← (Fl/sz)× (1− pa/oa).

Lines 1–3 initialize maps and insert seed voxels in Q. Lines 4–14 compute the maps L,

c and s during the IFT. The main loop computes an optimum path cost from the seeds to

every node p in a non-decreasing order of values (Lines 4–14). At each iteration, a path

of minimum cost c(p) is obtained in P when we remove its last voxel p from Q (Line 5).

Lines 7–14 evaluate if the path that reaches an adjacent voxel q through p is cheaper than

the current path with terminus q and update Q, c(q), s(q), L(q) and P (q) accordingly.

The remaining lines compute the functional Fl on-the-fly.

Note that, before changing position of U , the maps and auxiliary variables can be

reinitialized in sublinear time, such that the search for a desired object can be done more

efficiently. The above algorithm can be easily modified for f2 if we substiture line 9 by

cst← c(p) +
[

W (p)+W (q)
2

]η

.

5.3.4 Multiple object search

Instead of making a hierarchical search (i.e., the pipeline of Figure 5.3) as in [81, 82],

we made the search simultaneously for the three objects S3, S4 and S5, as described in

Section 5.2.2. Later, object S2 is obtained as S4∪ S5, and S1 as S3∪ S4∪ S5. The search

was constrained only inside the MSP, and we also used a multiscale strategy to speed up

the recognition task by using a three-level Gaussian pyramid.
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5.4 Results

We have first evaluated the method on the MRI datasets of 40 normal subjects from both

genders, in the age range from 16 to 49 years. The images were acquired with a 2T Elscint

scanner and voxel size of 0.98 × 0.98 × 1.00 mm3. We used the leave-one-out approach

to compute the mean and standard deviation of the Dice similarity measure between the

ground truth and the automatic segmentation (Figures 5.10 and 5.9). Table 5.1 shows

the results for different methods. The CSM model was executed with four groups, using

path-cost function f1, and with arc weights computed using λi = 0.15, λo = 0.75, and

λs = 0.10. The obtained results are considerably superior to those of OCM [81], especially

for the cerebellum; and are also much more precise (i.e., lower standard deviation) than

the previous CBM [82]. The simultaneous search of multiple objects is also faster than

the hierarchical search used in [81, 82]. The mean execution time per group using a 3GHz

Pentium IV PC was 27.5 sec, while the hierarchical search took 41 sec. Therefore, the

total mean execution time per data set to segment all objects is 110 sec. We also note

that our results for brain segmentation S1 are considerably superior to those reported

in [9] for tree pruning [9] and SPM2 [50] (mean errors of 9.4% and 14.1%, respectively),

the latter being a widely used template-based approach for medical research. This is

especially notable concerning the removal of the brain stem.

We also conducted experiments with 40 patient images which were acquired

post-surgery, some of which had strong morphological changes (Figure 5.11). In this

case, some special care has been taken. After training on the 40 controls, we considered

a greater degree of contingency in the size of U , and we also applied a post-processing

operation to clear peripheral voxels below t1. For 38 images the results were similar

to those for controls, and their worst 5 images had the mean and standard deviation

of Dice similarity for S3, S4 and S5, respectively of 94.52% ± 0.68%, 96.84% ± 0.38%,

and 96.21% ± 0.87%. The other two remaining images had larger errors and required

interactive repairing by the DIFT algorithm [36].

OCM [81] CBM [82] CSM
Obj. Mean S.dev Mean S.dev Mean S.dev
S1 96.49 0.51 97.06 1.06 97.37 0.46
S2 96.60 0.51 97.20 1.21 97.59 0.48
S3 92.31 1.22 94.39 0.95 94.97 0.84
S4 95.47 0.44 96.66 1.36 97.16 0.48
S5 95.37 0.60 96.43 1.16 97.05 0.55

Table 5.1: Mean (%) and standard deviation (%) of the Dice similarity.
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Figure 5.9: Segmentation results by Cloud System Model and the provided ground truth,
shown as 3D renditions.

5.5 Conclusion

We have presented model-based approaches for automatic image segmentation, which

employ recognition and delineation in a tightly coupled manner. The previous approaches,

called OCM [81] and CBM [82], are particular cases of the proposed method, named Cloud

System Model (CSM). The three methods were compared for automatic MR-T1 image

segmentation of several brain structures. The results indicated that CSM is more precise

and more accurate than OCM and CBM for this particular application. CSM is simpler

and faster than other approaches commonly used in the literature in brain research. It

can also be easily implemented in parallel, taking advantage of machines with multiple

processors and cores.

Our future work will include evaluation of CSM using other medical imaging

modalities, employing better quality images from a 3T MRI scanner, segmenting

sub-cortical brain structures, and other image analysis applications.
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Figure 5.10: Sample slices from control subjects with segmentation results.
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Figure 5.11: Sample slices from patients with segmentation results.



Caṕıtulo 6

Conclusões e Trabalhos Futuros

6.1 Contribuições & Desafios

Nesta tese foram apresentadas várias contribuições com publicações que tratam os

diferentes subproblemas que compõem o problema maior da segmentação. Os métodos

desenvolvidos foram demonstrados no âmbito da medicina com aplicações importantes na

segmentação de estruturas cerebrais em imagens volumétricas de ressonância magnética

T1. Relembramos, porém, que os métodos apresentados também se aplicam a outros

domı́nios de aplicação, tal como demonstrado pelos vários exemplos envolvendo imagens

naturais que foram apresentados ao longo dos caṕıtulos. O sistema proposto apresenta três

módulos que englobam as diferentes etapas da segmentação, desde a concepção do grafo

da imagem, passando por análises teóricas dos principais algoritmos em grafo, chegando

até ao delineamento automático por modelos de objetos. As principais contribuições e

dificuldades encontradas em cada uma dessas três áreas são sumarizadas abaixo.

1. Estimativa Sinérgica de Peso das Arestas do Grafo. No Caṕıtulo 2, nós

apresentamos um método interativo para estimar o peso das arestas, que realça as

dissimilaridades entre objeto e fundo, tornando o processo de extração de objetos mais

eficaz.

O método pode ser utilizado efetivamente por várias abordagens de segmentação

baseadas em grafos como demonstramos. Nosso método explora de forma sinérgica

as habilidades humanas de reconhecimento e as capacidades do computador para o

delineamento. Enquanto o usuário desenha marcadores dentro de cada objeto (incluindo

o fundo), pesos de arco são estimados a partir de atributos de imagens e informações dos

objetos (pixels sob os marcadores), e uma resposta visual guia a próxima ação do usuário

visando melhorar a acurácia.

Os marcadores devem ser traçados sobre as partes mais representativas e distintas
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dos objetos, a fim de tornar a estimativa de pesos eficaz. Os marcadores de treinamento

podem ser utilizados para iniciar o delineamento e marcadores adicionais selecionadas nas

partes semelhantes dos objetos podem ser usados para corrigir a segmentação, mas estes

últimos nunca devem ser utilizados para recalcular os pesos que foram estimados na etapa

de treinamento.

Um desafio importante nessa área de pesquisa trata-se de como incorporar a

informação espacial da localização dos marcadores no processo de realce de modo a

ampliar o poder de discriminação entre objeto e fundo. Isto é, muitas vezes objeto e

fundo possuem sobreposições no espaço de caracteŕısticas que poderiam ser resolvidas

através da informação espacial no domı́nio da imagem. Porém, por outro lado é desejável

que o realce seja o menos senśıvel posśıvel em relação ao posicionamento dos marcadores.

Conciliar esses aspectos divergentes é um desafio. Outro ponto diz respeito aos meios

pelos quais a separação entre os marcadores usados nas etapas de realce e extração possa

ser feita de maneira automática e transparente ao usuário. O emprego de estruturas de

indexação para acelerar o cálculo da componente supervisionada dos pesos é outro aspecto

a ser considerado.

2. Avanços Teóricos em Algoritmos de Delineamento. No Caṕıtulo 3 foram

apresentados um conjunto de teoremas que fundamentam a nossa opção preferencial por

métodos de delineamento baseados na IFT [43]. Teorema 1 mostra que o algoritmo IFT-SC

oferece resultados ótimos de segmentação sob dois pontos de vista: como uma floresta de

caminhos ótimos e como um corte mı́nimo no grafo de acordo com a medida E3, que pode

levar em conta tanto propriedades da imagem quanto do objeto segundo os pesos de aresta

descritos no Caṕıtulo 2. Teorema 2 mostra que essa otimalidade é ainda mais forte, dado

que ela é também ótima por partes (piecewise optimum). Já o Teorema 4 mostra que

procedimentos para contornar o viés existente no algoritmo de min-cut/max-flow levam

a aproximações do IFT-SC. Estes resultados dão a base teórica para explicar o grande

sucesso e popularidade do IFT-SC [68, 36] e seus métodos relacionados (e.g., WT [11],

RFC [115, 99], IRFC [24]).

No entanto, o método IFT-SC carece de restrições de suavidade e regularização das

bordas na sua formulação. Nos experimentos do artigo [82] testamos uma variante com

função de custo de caminho aditiva que proporcionou bordas mais regulares. Outra idéia

é tratar a regularização das bordas através de um pós-processamento espećıfico que leva

em conta conhecimentos da aplicação. Esse é um campo importante de pesquisa a ser

explorado, embora o próprio modelo dos objetos proporciona em parte regularização das

bordas.
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3. Sinergia entre Modelo dos Objetos e Delineamento. No Caṕıtulo 5, foi

apresentado um conjunto de modelos baseados no conceito de Clouds, bem como uma

extensão para múltiplos objetos chamada Cloud System Model, que melhorou os resultados

em uma tarefa dif́ıcil, envolvendo a segmentação de estruturas cerebrais em imagens

de MR-T1. Os métodos também podem ser facilmente implementados em paralelo,

aproveitando-se das máquinas com múltiplos processadores. Os modelos baseados em

Clouds parecem ser estratégias h́ıbridas simples mas poderosas que atingem automação

no reconhecimento e no delineamento, por tecê-las como tarefas fortemente acopladas.

Durante o desenvolvimento desse modelo, surgiram algumas dificuldades no caso de

múltiplos objetos. Nossa primeira implementação considerava a execução simultânea do

algoritmo de delineamento para todos objetos, tirando proveito desse recurso suportado

pelo algoritmo da IFT-SC. Isto é, os voxels sementes de todos objetos competiam ao

mesmo tempo durante a propagação dos caminhos ótimos. Isso gerou vários problemas.

Primeiro, as regiões de incerteza tiveram que ser classificadas de acordo com os objetos

envolvidos de modo a impedir que sementes de outros objetos as conquistassem. Por

exemplo, se uma região do modelo era do objeto 1 para alguns dados do treinamento e

dos objetos 2 ou 3 para os demais dados, então essa região era considerada como incerteza

do tipo 1-2-3. Logo, sementes do objeto 4 eram impedidas de disputar essa região. Isso,

por sua vez, gerou alguns problemas topológicos de regiões ilhadas que não recebiam o

rótulo correto. Portanto, a solução final adotada foi executar o delineamento para cada

objeto separadamente, levando em conta as suas disposições espaciais relativas, e depois

calcular uma pontuação de reconhecimento conjunta. Essa solução é também mais flex́ıvel

permitindo que grafos com pesos personalizados para cada objeto sejam empregados.

6.2 Outras Contribuições

Vários outros artigos foram publicados ao longo da tese. A técnica de poda de árvores [38],

desenvolvida durante o mestrado, foi aperfeiçoada com um algoritmo de detecção de

pontos de poda mais robusto e independente de parâmetros ad-hoc. Esse resultado foi

apresentado no SIBGRAPI de 2006 [78], e uma versão estendida foi publicada no Journal

of Mathematical Imaging and Vision em 2007 [9]. Essa técnica foi avaliada na segmentação

automática do cérebro, mas não elimina tronco e medula, funcionando como técnica de

skull stripping apenas. Logo, esses resultados são inferiores aos apresentados nessa tese.

Outro artigo de segmentação publicado no peŕıodo combinava medidas de corte em grafo

diversas com a IFT [41]. Este trabalho foi um primeiro passo importante no entendimento

prático das relações existentes entre diferentes métodos em grafo, o que motivou a escrita

dos teoremas do Caṕıtulo 3.

Também nesse peŕıodo, a primeira versão de um classificador de padrões por floresta
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de caminhos ótimos (OPF) foi publicada em conferência internacional [91]. Em vista dos

bons resultados que foram obtidos por esse classificador OPF, em comparação com outros

classificadores populares tais como redes neurais e SVM, dois artigos [107, 108] foram

publicados em conferências internacionais avaliando o uso do OPF para a estimativa

de pesos do grafo seguindo as idéias chaves descritas no Caṕıtulo 2. Foram publicados

também artigos sobre descritores e análise de formas [3, 4] e uma versão estendida em

revista desses trabalhos foi aceita para publicação na Pattern Recognition [2].

6.3 Extensões Futuras

Há diversas oportunidades para aperfeiçoar o sistema proposto de segmentação, dentre as

quais:

• Avaliar os modelos Clouds em um número maior de pacientes e controles, em

imagens de melhor qualidade a partir de um scanner de 3T.

• Estender esses modelos para imagens multimodais (por exemplo, T2, PD).

• Ampliar o alcance desses modelos, para segmentar outras estruturas do cérebro, tais

como o núcleo caudado e o hipocampo. As medições volumétricas do hipocampo

segmentado, podem então ser utilizadas na detecção e quantificação de atrofia do

hipocampo [20, 125, 53], que está relacionada com a epilepsia do lobo temporal [13].

• Estender os teoremas do Caṕıtulo 3 para grafos direcionados.

• Incorporar a informação da orientação das bordas dos objetos nos modelos Clouds.

• Paralelizar os métodos de modo a tirar proveito das arquiteturas novas contendo

múltiplos processadores.

• Demonstrar os métodos em outros domı́nios de aplicação de modo a popularizar as

técnicas empregadas.
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