Protocolos Multicoordenados de Acordo
e o Servico de Log

Este exemplar corresponde a redacio final da
Tese devidamente corrigida e defendida por
Lasaro Jonas Camargos e aprovada pela Banca
Examinadora.

Campinas, January 28, 2009,

P
fiat P . 3

e ¥, Lol 18 han A

{ g;*i L RN R T T

Prof. Edmundo R.M. Madeira (Orientador)

FICHA CATALOGRAFICA ELABORADA PELA
BIBLIOTECA DO IMECC DA UNICAMP
Bibliotecaria: Miriam Cristina Alves — CRB8a / 5094

Camargos, Lasaro Jonas
Cl4p Protocolos Multicoordenados de Acordo e o Servigo Log/Lasaro

Jonas Camargos -- Campinas, [S.P. :s.n.], 2008.

Orientadores : Edmundo Roberto Mauro Madeira; Fernando Lopes

Pedone Junior.

Tese (doutorado) - Universidade Estadual de Campinas, Instituto de

Computagao.

1. Sistemas distribuidos. 2. Redes de computagdo — Protocolos. 3.
Problemas de Acordo. 4. Tolerancia a falha (Computagéo). I. Madeira,
Edmundo Roberto Mauro. II. Pedone Junior, Fernando Lopes. IIL

Universidade Estadual de Campinas. Instituto de Computagdo. IV.

Titulo.

Titulo em inglé€s: Multicoordinated Agreement Problems and the Log Service.

Palavras-chave em inglés (Keywords): 1. Distributed processing. 2. Computer network
protocols. 3. Agreement Problems. 4. Fault-tolerant computing.

Area de concentragio: Redes de computagio

Titulagdo: Doutor em Ciéncia da Computacdo

Banca examinadora:

Prof. Dr. Edmundo Roberto Mauro Madeira (IC-UNICAMP)
Prof. Dr. Ricardo Anido (IC-UNICAMP)

Prof. Dr. Francisco Brasileiro (UFCG)

Profa. Dra. Islene Calciolari Garcia (IC-UNICAMP)

Profa. Dra. Ingrid Jansch-Porto (UFRGS)

Data da defesa: 12/12/2008

Programa de Pos-Graduagéo: Doutorado em Ciéncia da Computagéo

TERMO DE APROVAGAO

Tese Defendida e Aprovada em 12 de dezembro de 2008, pela Banca

examinadora composta pelos Professores Doutores:

Prof. Dr. Francisco Vilar Brasileiro
DSC - UFCG

Prof?. Dr2. Ingrid Eleonora Schreiber Jansch Porto
DIA - UFRGS

Y Ol

Prof. Dr. Ricardo de Oliveira Anido
IC / UNICAMP.

(J)/)mfmaq_

Profe. Dr2. Is|e<n1§ Calciolari Garcia
IC / UNICAMP.

Prof. Dr. Edmundo Roberto Mauro Madeira
IC / UNICAMP.

Instituto de Computacao
Universidade Estadual de Campinas

Protocolos Multicoordenados de Acordo
e o Servico de Log

Lasaro Jonas Camargos

12 de Dezembro de 2009

Banca Examinadora:

Prof. Edmundo R.M. Madeira (Orientador)

Prof. Francisco Brasileiro
Universidade Federal de Campina Grande

Prof. Ingrid Jansch-Porto
Universidade Federal do Rio Grande do Sul

Prof. Islene Calciolari Garcia
Universidade Estadual de Campinas

Prof. Ricardo Anido
Universidade Estadual de Campinas

© Lasaro Jonas Camargos, 2009.
Todos os direitos reservados.

vii

Resumo

Problemas de acordo, como Consenso, Terminacdo Atémica e Difusdo Atomica, sdo abstra-
¢des comuns em sistemas distribuidos. Eles ocorrem quando os componentes do sistema
precisam concordar em reconfiguracoes, mudancas de estado ou em linhas de acdo em ge-
ral. Nesta tese, investigamos estes problemas no contexto do ambiente e aplicacées em que
serdo utilizados. O modelo geral é o assincrono sujeito a quebras com possivel posterior re-
cuperacdo. Nossa meta é desenvolver protocolos que explorem esta informacdo contextual
para prover maior disponibilidade, e que se mantenham corretos mesmo que algumas das
prerrogativas do contexto tornem-se invalidas.

Na primeira parte da tese, exploramos a seguinte propriedade: mensagens difundidas
em pequenas redes tendem a ser entregues ordenada e confiavelmente. NOs fazemos trés
contribui¢cdes nesta parte da tese. A primeira é a transformacdo de algoritmos conheci-
dos para o modelo quebra-e-pdra, que utilizam a propriedade de ordenacdo mencionada,
em protocolos praticos. Isto é, protocolos que toleram perda de mensagens e recuperagao
apods a quebra. Nossos protocolos garantem progresso na presenca de falhas, contanto que
mensagens sejam espontaneamente ordenadas freqlientemente. Na auséncia de ordenacao
expontanea, outras prerrogativas sdo necessarias para contornar falhas. A segunda contri-
buicdo é a generalizacdo de um dos algoritmos citados acima em um modo de execucéo
“multi-coordenado” em um protocolo hibrido de consenso, que usa ou ordenacdo expon-
tanea ou deteccdo de falhas para progredir. Em comparacdo a outros protocolos, 0 nosso
prové maior disponibilidade sem comprometer resiliéncia. A terceira contribuicdo é a utili-
zacdo do modo multi-coordenado para resolver Consenso Generalizado, um problema que
generaliza uma série de outros e que, portanto, é de grande interesse pratico. Além disso,
fizemos diversas consideracoes sobre aspectos praticos da utilizacao deste protocolo. Como
resultado, nosso protocolo perde desempenho gradualmente no caso de condicoes desfa-
voraveis, permite o balanceamento de carga sobre os coordenadores, e acessa a memoria
estavel parcimoniosamente.

Na segunda parte da tese, consideramos problemas de acordo no contexto de redes or-
ganizadas hierarquicamente. Em especifico, nds consideramos uma topologia usada nos
data centers de grandes cooporagdes: grupos de maquinas conectadas internamente por

ix

links de baixa laténcia, mas por links mais lentos entre grupos. Em tais cendrios, laténcia é
claramente um fator importante e reconfiguracdes, onerosas aos protocolos, devem ser evi-
tadas tanto quanto possivel. Nossa contribuicao neste tépico estd em evitar reconfiguragdes
e melhorar a disponibilidade de um protocolo de acordo que é rdpido a despeito de coli-
soes. Isto é, um protocolo que consegue chegar a uma decisdo em dois passos inter-grupos
mesmo quando vdrias propostas sdo feitas concorrentementes. Além do uso da técnica
de multicoordenacdo, nds usamos primitivas de multicast e consenso para conter algumas
reconfiguragdes dentro dos grupos, onde seus custos sdo menores.

Na ultima parte da tese nés estudamos o problema de terminacédo de transacoes distri-
buidas. O problema consiste em garantir que os varios participantes da transacdo concor-
dem em aplicar ou cancelar de forma consistente as suas operacdes no contexto da transa-
cdo. Além disso, é necessdrio garantir a durabilidade das alteragdes feitas por transacgdes
terminadas com sucesso. Nossa contribuicdo neste tépico é um servico de log que abstrai
e desassocia a terminagdo de transagdes dos processos que executam tais transagoes. O
servico funciona como uma caixa preta e permite que resource managers lentos ou falhos
sejam reiniciados em servidores diferentes, sem dependéncias na memoria estdvel do ser-
vidor em que executava anteriormente. Nés apresentamos e avaliamos experimentalmente
duas implementacdes do servigo.

Abstract

Agreement problems are a common abstraction in distributed systems. They appear when
the components of the system must concur on reconfigurations, changes of state, or in lines
of action in general. Examples of agreement problems are Consensus, Atomic Commitment,
and Atomic Broadcast. In this thesis we investigate these abstractions in the context of the
environment in which they will run and the applications that they will serve; in general,
we consider the asynchronous crash-recovery model. The goal is to devise protocols that
explore the contextual information to deliver improved availability. The correctness of our
protocols holds even when the extra assumptions do not.

In the first part of this thesis we explore the following property: messages broadcast
in small networks tend to be delivered in order and reliably. We make three contributions
in this part. The first contribution is to turn known Consensus algorithms that harness
this ordering property to reach agreement in the crash-stop model into practical protocols.
That is, protocols that tolerate message losses and recovery after crashes, efficiently. Our
protocols ensure progress even in the presence of failures, if spontaneous ordering holds
frequently. In the absence of spontaneous ordering, some other assumption is required
to cope with failures. The second contribution of this thesis is to generalize one of our
crash-recovery consensus protocols as a “multicoordinated” mode of a hybrid Consensus
protocol, that may use spontaneous ordering or failure detection to progress. Compared to
other protocols, ours provide improved availability with no price in resilience. The third
contribution is to employ this new mode to solve Generalized Consensus, a problem that
generalizes a series of other agreement problems and, hence, is of much practical interest.
Moreover, we considered several aspects of solving this problem in practice, which had not
been considered before. As a result, our Generalized Consensus protocol features graceful
degradation, load balancing, and is parsimonious in accessing stable storage.

In the second part of this thesis we have considered agreement problems in wide area
networks organized hierarchically. More specifically, we considered a topology that is com-
monplace in the data centers of large corporations: groups of nodes, with large-bandwidth
low-latency links connecting the nodes in the same group, and slow and limited links con-
necting nodes in different groups. In such environments, latency is clearly a major concern

xi

and reconfiguration procedures that render the agreement protocol momentarily unavail-
able must be avoided as much as possible. Our contribution here is in avoiding recon-
figurations and improving the availability of a collision fast agreement protocol. That is, a
protocol that can reach agreement in two intergroup communication steps, irrespectively to
concurrent proposals. Besides the use of a multicoordinated approach, we employed mul-
ticast primitives and consensus to restrict some reconfigurations to within groups, where
they are less expensive.

In the last part of this thesis we study the problem of terminating distributed trans-
actions. The problem consists of enforcing agreement among the parties on whether to
commit or rollback the transaction and ensuring the durability of committed transactions.
Our contribution in this topic is an abstract log service that detaches the termination prob-
lem from the processes actually performing the transactions. The service works as a black
box and abstracts its implementation details from the application utilizing it. Moreover, it
allows slow and failed resource managers be re-started on different hosts without relying
on the stable storage of the previous host. We provide two implementations of the service,
which we evaluated experimentally.

Xii

Preface

This thesis describes my PhD work, initiated in 2003 at the State University of Campinas,
Brazil, under the supervision of Prof. Edmundo Madeira, and finished in 2008 at the Uni-
versity of Lugano, Switzerland, under the supervision of Prof. Fernando Pedone.! During
this period I have worked on different problems, with different approaches, and in col-
laboration with other PhD students. The work, however, has always been on agreement
problems.

In the early “middleware” stage of my studies I implemented an agreement library fea-
turing the weak ordering based consensus algorithms presented in the third chapter of
this thesis. In modularizing the library and making the algorithms interchangeable with
a Paxos implementation, I began to understand what Mike Burrows allegedly meant with
“In my experience, all distributed consensus algorithms are either 1: Paxos, 2: Paxos with
unnecessary extra crust, or 3: broken.” While I do not completely agree with him, I be-
lieve that the formalism in which Paxos was specified is an invaluable tool to understand
and compare agreement algorithms. Mainly, the separation of concerns in it. The work
in [| presented my “paxonized” weak ordering based protocols and
compared them with Paxos, the classic one.

Database replication came into play in my studies soon after I moved to Switzerland
and joined the work presented in []. Our transaction processing
protocol was very efficient, as long as the database using it could afford serializing the
execution of its transactions. The killer application for the protocol, which we then called
“sprint”, was an in-memory database.

When the new Sprint appeared, it was a cluster data management system, featuring
replication and partitioning of data, and my agreement library was an important part of it.
I rewrote the library to better fit the project, and it became a lightweight group communica-
tion library, later used in two other projects within our research group. Sprint is described
in [], and the group communication within it was abstracted as the
log service presented in the last part of this thesis [1.

!This collaboration is the reason why the introduction and conclusion chapters are also presented in por-
tuguese.

xiii

Given these good experiences, my work focused on optimizing agreement protocols to
specific scenarios, but in a more abstract way. First improving resilience with multicoor-
dination [,], then minimizing the effects of
concurrent proposals [], and finally mixing both approaches to solve
agreement among groups.

To conclude, part of my work was done in collaboration with other researchers. In
this thesis, I focus on the work in which I have been the primary contributor. These are the
works presented in [, ,]
and the agreement protocol for groups introduced in this thesis.

[Camargos et al., 2006a] Camargos, L., Madeira, E. R. M., and Pedone, E (2006a). Op-
timal and practical wab-based consensus algorithms. In Euro-Par 2006 Parallel Pro-
cessing, volume 4128 of Lecture Notes in Computer Science, pages 549-558, Berlin /
Heidelberg. Springer.

[Camargos et al., 2006b] Camargos, L., Pedone, E, and Schmidt, R. (2006b). A primary-
backup protocol for in-memory database replication. In NCA '06: Proceedings of the
Fifth IEEE International Symposium on Network Computing and Applications, pages
204-211, Washington, DC, USA. IEEE Computer Society.

[Camargos et al., 2007a] Camargos, L., Pedone, E, and Wieloch, M. (2007a). Sprint: a
middleware for high-performance transaction processing. In EuroSys '07: Proceedings
of the 2007 conference on EuroSys, pages 385-398, New York, NY, USA. ACM Press.

[Camargos et al., 2007b] Camargos, L. J., Schmidt, R. M., and Pedone, E (2007b). Multi-
coordinated paxos: Brief announcement. In PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, pages 316-317, New
York, NY, USA. ACM Press.

[Camargos et al., 2008a] Camargos, L., Schmidt, R., and Pedone, E (2008a). Multi-
coordinated agreement protocols for higher availabilty. In NCA '08: Proceedings of
the Seventh IEEE International Symposium on Network Computing and Applications,
Washington, DC, USA. IEEE Computer Society.

[Camargos et al., 2008b] Camargos, L., Wieloch, M., Pedone, E, and Madeira, E. (2008b).
A highly available log service for transaction termination. In Proceedings of the seventh
International Symposium on Parallel and Distributed Computing (ISPDC 2008).

Xiv

Acknowledgements

This PhD is the culmination of a sequence of steps started several years ago. For supporting
me in the decision of starting each of these steps and getting to the next, I would like to
thank my family. Dona Ida, Ewe, Sebastido, Dona Neuza, “S6” Euripedes: esta conquista
também € sua.

Everybody says that the most important outcome of a Ph.D. is what you learn in the
process. For helping me learn, I would like to thank my advisors, Profs. Edmundo Madeira
and Fernando Pedone.

I would like to also thank everybody who in a way or another contributed and supported
me in finishing this PhD. For the discussions, feedback on my work, chats and laughs, and
for priceless dinners, I would like to thank all my lab-mates, colleagues, and friends that
I have made in Campinas, Lugano, and Seattle. The following is a list of some of them
in order of “appearance”: Herr, Pard, Bezerra, Claudio, Rodrigo, Bianca, Vaide, Marcin,
Nicolas, Marija, Dan, Avinash, Pino, Deniz, Avi, Alex, Aliaksey, and Amir.

XV

Contents

Resumo

Abstract

Preface

Acknowledgements

1

Introducao

1.1
1.2
1.3
1.4

Rodadas, Consensus e Problemasde Acordo.
Terminacdo de Transacgles v o vt ittt i e
Contribuiches i e
Organizaco v v v v v i e e e e e e e e e e e e e e e e e e e

Introduction

2.1
2.2
2.3
2.4
2.5

About Rounds, Consensus, and Agreement Problems

Transaction Termination v v v v v i i e e e e e e e e e e e
Contributions o e e e e e

Algorithmic Notation it e e

System Model e e

Multicoordinated Consensus

3.1

3.2

Consensus and the FLP Impossibility Result
3.1.1 Randomization and Spontaneous Ordering
3.1.2 Synchronism and Failure Detection.
3.1.3 Availability Issues of Leader Based Protocols
WAB-Based CONSENSUS . . . v ¢ v v v ot e et e e et e et e e et e e e e e
3.2.1 Weak Atomic Broadcast
3.2.2 BF-COMSENSUS . . . v v vttt et e e e e e e e e e e e
3.2.3 R¥CONSENSUS . . . v v v vttt e e e e

ix

xi

xiii

10
11
12
14
15

3.2.4 Correctness and LIVENESS v v v v v e e e e e e e e e e e e 29

3.3 Multi-Coordinated CONSENSUS« v v v v v v et et et e e e et et e e e 31
3.3.1 ClassicPaxos ittt e e 31
3.3.2 FastPaxos it e e 36
3.3.3 Multi-Coordinated Rounds and Coord-Quorums 40
3.3.4 Algorithm e 41
3.3.5 Correctnessand Liveness i 45

3.4 Final Remarks and Related Work 46

Multicoordinated Generalized Consensus and Generic Broadcast 49

4.1 OneProblemtoRule ThemAll 49

4.2 Generalized CONSENSUS . + « v v v v v v vt e e e e e e e e e e e e e e e e 51
4.2.1 C-STrUCES . . v v v e e e e e e e e e e e e e e e e e e e 51
4.2.2 Problem Definition 52

4.3 Generalized Paxos e e e e e 53

4.4 Multicoordinated Paxos i e e e e e 56
4.4.1 TheAlgorithm 57
4.4.2 The ProvedSafe Function 61
4.4.3 Availability and Load-Balancing with Multiple Coordinators 62
4.4.4 Collisions i i e e e e e 64
4.4.5 Reducingdiskwrites 66
4.4.6 Settingrounds and qUOTUMS v v v vt it e 67
4.4.7 Ensuring Livenesst 69

4.5 Multicoordinated Paxos as Generic Broadcast 72
4.5.1 Command Histories and Formal Definition 72
4.5.2 A Simple Command History 74
4.5.3 ARun of Generic Broadcast 76

4.6 Final Remarks and Related Work 76

Fast Agreement for Groups 79

5.1 Agreementin Networksof Groups 79

5.2 Collision-Fast PaX0S v v v v v it et e e e e e e e e 82
5.2.1 Value Mapping Setst i ittt 82
5.2.2 M-CONSENSUS .+t v v v vt et e e et e e e e e e e e e e e e e 83
5.2.3 Collision-Fast PAX0S o i v i it e e e e e 84

5.3 Multicoordination and Collision-Fast Paxos 85
5.3.1 BasicAlgorithm. 86
5.3.2 Adding Intra-group Reconfiguration 92
5.3.3 Correctnessand Liveness 94

5.4 Generalizing Collision-Fast Rounds 95

5.5 Final Remarks and Related Work 97
Log Service for Transaction Termination 99
6.1 LOogService i i e e e e e 99
6.2 Problem statement it e e e 102
6.3 TheLog Service it e e 103
6.3.1 The Log Service Specification 103
6.3.2 Termination and Recovery 105
6.3.3 COITECINESS . . v v v e 106
6.4 From the specification to implementations 107
6.5 Coordinated Implementationttt 108
6.5.1 OVeIVIEW . . o v vt e e e e e e e e e e e e e e e e 108
6.5.2 TheAlgorithm 109
6.6 Uncoordinated Implementation 112
6.6.1 OVeIVIEW ittt e e e e e e e e e e e e e e e 112
6.6.2 Algorithm 114
6.7 Evaluation e e 116
6.7.1 Analytical Evaluation 117
6.7.2 Experimental Evaluation 118
6.8 Final Remarks and Related Work 120
Conclusion 123
7.1 Contributions e e 123
7.2 Future Work e e 125
Conclusao 129
8.1 ContribuicOes e 129
8.2 Trabalhos FUtUros ittt e e e e e e e e e 131
Multicoordinated Paxos 135
A.1 Proof of Correctness i i ittt e e 135
A.1.1 Preliminaries 135
A.1.2 Abstract Multicoordinated Paxos 136
A.1.3 Distributed Abstract Multicoordinated Paxos 151
A.1.4 Multicoordinated Paxos i e 162
A 1.5 CollisSion ReCOVETrY v v v ittt e et e e e e e e e 168
A1.6 LIVENESS i it e e e e e e e e e e e 168
A.2 TLA" Specifications u vttt e 172

Xix

A.2.1 Helper Specifications, 172

A.2.2 Abstract Multicoordinated Paxos 176

A.2.3 Distributed Abstract Multicoordinated Paxos 179

A.2.4 Basic Multicoordinated Paxos 184

A.2.5 Complete Multicoordinated Paxos 188

B Log Service 199
B.1 Abstract Specification. 199
B.1.1 Constants it 199

B.1.2 Specification 200

B.1.3 COITECINESS ¢ vttt i e e e et e e e e e e e e e 206

B.2 Coordinated Implementation, 211
B.2.1 Specification 211

B.2.2 ImplementationProof 220

B.3 Uncoordinated Implementationo..... 225
B.3.1 Specification 225

B.3.2 Implementation Proof 235
Bibliografia 240

List of Tables

6.1 The cost of some commit protocols

6.2 Coord/Uncoord throughput ratio for 10ms latency

XXi

List of Figures

3.1
3.2

3.3

4.1

4.2

5.1

6.1

Spontaneous Order in WAB., 23
Dependencies among actions of proposer p, coordinator ¢, acceptor a and
learner [, for some round 7. — is the regular happens-before relation. 32
() is an i-quorum, R and S are k-quorums, and v and w are the values
accepted by acceptorsin QN Sand QNR. 38

A system of four acceptors and their accepted values. The two marked sets
of acceptors constitute QUOTUMS. v v v v v v vt e e e et e e e e e e 55
Multicoordinated round followed by a single-coordinated round: After a se-
ries of successful appends to the accepted c-hist, one conflict happens and
one coordinator changes to the single-coordinated mode to solve the con-
flict. Observe how learners learn different but compatible prefixes. The
dashed arrows show the leader polling the acceptors for their accepted c-hists. 77

Agents distributed in groups in a wide area network: a common setup for
corporative networks. Agents in a group G;,0 < i < m, are physically close
to each other. Agents in A are spread geographically. 80

Maximum throughput versus response time of TPC-C transactions. The num-
ber of clients is shown next to the curves. Disk writes at acceptors were

xxiii

Chapter 1

Introducao

Uma aplicacdo distribuida é composta por agentes que executam acdes locais e trocam
informacoes para, em conjunto, realizar tarefas globais. Tais agentes — servidores, proces-
sadores ou processos — freqiientemente precisam sincronizar suas acdes para garantirem
propriedades como: somente um agente tem acesso a certos recursos em dado momento;
todos agentes devem tornar permanente alguma mudanca de estado ou retroceder a algum
estado valido anterior; um determinado agente deve ser excluido de quaisquer interagdes
futuras. Sincronizar, neste contexto, ¢ um sinénimo para “entrar em acordo.”

Problemas de acordo tém sido ativamente pesquisados nos ultimos 30 anos, resultando
em uma literatura rica em algoritmos para diferentes modelos computacionais, limites su-
periores e inferiores e um numero imenso de publicacdoes. Entretanto, acreditamos que
ainda hé espago para melhorias, principalmente no que diz respeito a praticidade dos pro-
tocolos.

Nesta tese, nos focamos em protocolos prdticos para problemas de acordo em sistemas
distribuidos assincronos. Isto é, em protocolos que toleram falhas de participantes e possi-
vel recuperacdo dos mesmos; protocolos que exploram sincronismo e premissas otimistas
para progredir, mas que nao as requerem para permanecerem corretos e, mais importante,
que se adaptam quando as premissas se tornam invalidas; protocolos que exploram os re-
cursos providos pelas infra-estruturas de rede, as propriedades do ambiente computacional
em que rodam e as caracteristicas da aplicacdo a qual servem.

1.1 Rodadas, Consensus e Problemas de Acordo

Varios problemas de acordo tem o problema de Consenso distribuido como denominador
comum. Em tal problema, os agentes devem concordar em uma dentre um conjunto de pro-
postas. Algoritmos de consenso executam em estdgios que refletem a natureza do problema:
propostas precedem uma fase de deliberagédo, que precede o aprendizado da decisdo. Para

2 Chapter 1. Introdugdo

garantir tolerdncia a falhas, os algoritmos precisam ser capazes de tentar novamente este
ciclo, garantindo que a decisdo de qualquer ciclo prévio serd honrada em ciclos futuros.
Noés chamamos cada um destes ciclos de rodada.

A rodada mais rdpida que se tem executa da seguinte forma: inicialmente, os agentes
recebem propostas; eles entdo selecionam uma destas propostas como suas e as enviam uns
para os outros; finalmente, decidem-se pela proposta que tenha sido selecionada por pelo
menos um quorum de agentes. Para garantir que somente uma proposta seja “aprendida”
como decisdo, mesmo em um sistema assincrono, precisamos apenas que 0s quoruns sejam
sobrepostos, isto é, que tenham uma intersecao nao vazia. Desfazer empates no comeco de
uma nova rodada e identificar decisGes prévias, contudo, requer sobreposi¢des maiores ou
mais tempo de execucdo. Isto é, em geral, é necessdria uma fase a mais na execucdo do
protocolo ou todo conjunto de trés quoruns deve ter uma interse¢do néo vazia.

Sabe-se que é impossivel garantir o progresso de protocolos de consenso tolerante a
falhas em ambientes assincronos []. O algoritmo em duas fases des-
crito no paragrafo anterior, contudo, pode ndo terminar mesmo quando o sistema se com-
porta assincronamente e nenhuma falha ocorre. Se multiplas propostas sdo selecionadas
mas nenhuma é selecionada por um quorum completo, entdo nenhuma decisdo é obtida.
Este problema pode ser contornado com o auxilio de ordculos aleatdrios [,

] ou usando-se da ordem em que as propostas sdo entregues para oS agen-

tes [, ,]. Outra forma de
evitar o problema é selecionar um dos agentes para filtrar uma dentre as diversas propos-
tas feitas na rodada [,]. Assim, o problema passa a ser
selecionar tal agente, seja, eleicdo de lideres [1.

Embora a maioria dos algoritmos presentes na literatura da area especifique algoritmos
como um conjunto uniforme de agentes, na pratica os agentes desempenham tarefas bem
distintas: alguns fazem propostas, outros estdo apenas interessados na decisdo, e apenas
um subconjunto destes realmente desempenha a tarefa de decidir por um valor. Além
disso, hda um quarto grupo de agentes mencionado no paragrafo anterior: o conjunto de
coordenadores, responsaveis por coordenarem a execucdo das rodadas.

Coordenadores sdo especialmente interessantes por estarem diretamente relacionados
a disponibilidade dos algoritmos de consenso. Se multiplos coordenadores comec¢arem suas
rodadas em paralelo, pode acontecer de nenhuma rodada terminar com sucesso. Logo, um
unico coordenador deve ser escolhido. Por um lado, uma decisdo sé pode ser alcancada
com a participac¢do do coordenador da rodada, fazendo necessdria a eleicio de um novo
coordenador tdo logo o anterior falhe. Por outro lado, a deteccdo de falhas agressiva é
custosa em termos de recursos computacionais e mais propensa a erros. Além disso, a troca
de coordenadores apresenta outro problema: durante sua execucéo, o algoritmo ndo pode
prosseguir enquanto o novo coordenador contata os outros agentes para detectar decisoes

1.1. Rodadas, Consensus e Problemas de Acordo 3

prévias. Portanto, a troca de coordenadores deve ser evitada tanto quanto possivel.

Embora a discussdo de problemas de disponibilidade possa parecer frivola em um pri-
meiro momento, ela se torna relevante quando levamos em consideracdo como protocolos
de consenso sao usados na prdtica. Um exemplo tipico € a implementacdo de uma mdquina
de estados replicada [,]. Esta técnica consiste na implemen-
tacdo de servicos confidveis por meio de replicacdo de instancias simples do servico em
processadores com falhas independentes. As réplicas mudam de estado consistentemente
pela execucido de comandos deterministicos em seqiiéncia. A seqiiéncia em si é determi-
nada por instancias de consenso. Para tornar a implementacao eficiente, todas as instancias
executam em paralelo, compartilhando o mesmo coordenador eleito e sobrepondo a exe-
cucao de suas rodadas. Logo, indisponibilidade neste contexto significa que ndo uma mas
todas as decisbes serdo atrasadas.

Em vdrias instancias de replicacdo de mdquinas de estado e aplicacdes similares, alguns
comandos submetidos para as réplicas sdo comutdveis e ndo precisam ser ordenados. O uso
direto de consenso, que ndo captura tal propriedade, ordenaria tais comandos desnecessa-
riamente. O problema de Consenso Generalizado [1, que generaliza varios
outros problemas de acordo, captura a propriedade de comutabilidade e pode ser usado
para concordar ndo em uma seqiiéncia, mas em uma ordem parcial para os comandos.
Esta instancia de Consenso Generalizado é particularmente conhecida como Difusdo Ge-
nérica []. O tnico algoritmo de Consenso Generalizado do qual
estamos cientes sofre dos mesmos problemas de disponibilidade que apontamos anterior-
mente em algoritmos de consenso: ou ele usa quoruns maiores ou depende do lider da
rodada para garantir progresso.

O poder do Consenso Generalizado vem da habilidade de identificar propostas conflitan-
tes, como comandos nao comutaveis, de forma a ndo ordena-los desnecessariamente. Uma
abordagem alternativa é ignorar os conflitos a priori para entregar os comandos propostos
tdo logo quanto possivel e usar a informacdo sobre conflitos para ordenar os comandos a
posteriori. No problema de M-Consensus [], por exemplo, os agentes
concordam em uma funcio dos propositores para suas propostas ou um valor nulo. Por um
lado, porque um mesmo propositor ndo faz propostas distintas, decisdes podem ser alcan-
cadas rapidamente. Apds decidida, a funcao pode ser transformada em uma seqiiéncia dos
valores em sua imagem por um procedimento deterministico. Por outro lado, tal procedi-
mento geralmente requer uma funcdo com o dominio igual ao conjunto dos propositores.
Como somente um propositor pode propor por si mesmo, este requerimento limita a dispo-
nibilidade de M-Consensus aquela dos propositores, devendo o protocolo reconfigurar-se
em caso de muitas falhas.

4 Chapter 1. Introdugio

1.2 Terminacao de Transacoes

Em muitas aplicacOes distribuidas, principalmente em sistemas de gerenciamento de dados,
os problemas de acordo se apresentam na forma do problema de Terminacdo AtOomica.
Em esséncia, para terminar uma transacgao distribuida, cada participante vota commit para
tornar permanentes as operacoes da transagdo ou abort para cancelar seu efeito. Se todos
os participantes votam commit, entdo esta é a decisdo geral. Caso contrdrio, isto é, se
pelo menos um participante votar abort, a transacdo é cancelada. Para a maior parte dos
sistemas implementados na pratica, tal definicdo é muito restritiva por exigir que o voto
de todos os participantes seja contabilizado. Esta restricdo é relaxada no problema de
Terminacdo Atomica Nado-Bloqueante. Nesta variante do problema, uma transacdo pode
ser abortada se um participante é suspeitado de ter falhado. A garantia oferecida é entdo
a seguinte: se todos os participantes votarem commit e nenhum for suspeitado de falhar,
entdo a transacdo termina com sucesso. Nesta tese nds consideramos apenas esta versao
do problema de terminacéo.

Usado abrangentemente na prética, o protocolo de terminacdo Two-Phase Commit (2PC)
¢ ndo bloqueante na presenca de falhas de todos os agentes com exce¢do de um, o transac-
tion manager. O protocolo Paxos Commit, de Gray e Lamport []
¢ um protocolo de terminacdo atémica nao bloqueante no qual cada participante usa uma
instancia do algoritmos de consenso Paxos. Falhas sdo toleradas permitindo que partici-
pantes votem nas instancias de consenso uns dos outros. O papel do transaction manager
¢ simplesmente iniciar a terminacdo da transa¢do quando oportuno; se ele falha, os parti-
cipantes podem cancelar a transagdo a qualquer momento. O Paxos Commit exemplifica o
poder da reducdo do problema de Termina¢do Atomica para Consenso.

Mesmo que a atomicidade da transacdo seja garantida pelo protocolo de terminacéo,
se os participantes puderem esquecer as alteraces de transacdes terminadas com sucesso,
por exemplo por causa de falhas temporarias, entdo o sistema podera ser colocado em
um estado inconsistente. Logo, além de atomicidade, garantias de durabilidade podem
ser exigidas de protocolos de terminacdo. Isto é, a garantia de que todas as alteracdes
executadas por uma transacao bem sucedida serao refletidas nos estados futuros do sistema.
Em protocolos convencionais, a durabilidade é garantida pelo uso de memoria nao volatil
local a cada um dos participantes. Estes gravam as alteracdes e as aplicam novamente para
recuperar seus estados anteriores no caso de falhas. Um lado negativo desta abordagem
estd em associar a disponibilidade do participante com a disponibilidade do servidor que o
executa.

1.3. Contribui¢ées 5

1.3 Contribuicoes

Esta tese traz as seguintes contribuigoes.

Consenso Multicoordenado No contexto do problema de consenso, nds fazemos duas
contribuices. A primeira sdo dois protocolos, B*-Consensus e R*-Consensus, que utilizam
a propriedade de ordenacgdo espontanea em redes para resolver o problema de consenso
em sistemas quebra-e-recupera. Comparativamente, estes protocolos trocam resiliéncia por
laténcia. O protocolo B*-Consensus requer trés passos de comunica¢do para terminar e
tolera a falha de uma minoria de agentes. O protocolos R*-Consensus decide em dois
passos, mas tolera a falha permanente de menos que um terco dos agentes.

A segunda contribuicdo é a generalizacdo do B*-Consensus como um modo de execucéo
multicoordenado para protocolos de acordo. Neste modo, o coordenador de cada rodada
¢ substituido por quoruns de coordenadores ndo disjuntos. Contanto que pelo menos um
destes quoruns permaneca funcional, ndo hd necessidade de se iniciar uma nova rodada e
pagar o preco em disponibilidade decorrente da troca de coordenadores. Nds apresentamos
um protocolo de consenso multicoordenado que estende Fast Paxos []. O
protocolo pode alternar entre rodadas multicoordenadas e as ja existentes no Fast Paxos,
isto é, rapidas e classicas. Esta habilidade permite que o protocolo se adapte as mudancas
de configuracdo do ambiente em que executa, por exemplo, mudanca na largura de banda
disponivel, taxa de perda de mensagens, e variacao de carga.

Consenso Generalizado Multicoordenado A terceira contribuicdo é o uso de multico-
ordenacdo em protocolos de consenso generalizado. Enquanto o uso de informacao sobre
a semantica da aplicacdo minimiza a possibilidade de que coordenadores de uma mesma
rodada discordem, o uso de multiplos coordenadores minimiza a mudanca desnecessaria
de rodadas. Sendo assim, nosso protocolo de consenso generalizado é um sinergismo das
duas técnicas. Apresentamos esse algoritmo acompanhado de uma discussdo sobre vdrios
aspectos relevantes ao seu uso na pratica. Apresentamos ainda uma versao simplificada do
protocolo que resolve o problema de Difusdo Genérica [].

Acordo Multicoordenado entre Grupos A quarta contribuicio desta tese concerne o uso
de multicoordenac¢do em redes organizadas hierarquicamente. Em tais cenarios, o uso de
quoruns de coordenadores aumenta a disponibilidade mas ainda requer que mensagens
trafeguem por toda a rede para alcancar os quoruns. Espalhar os quoruns ndo minimiza
o problema, dado que estes devem se sobrepor. Nds apresentamos aqui um protocolo de
acordo multicoordenado que minimiza este problema dividindo os quoruns de coordenado-
res em sistemas parcialmente independentes e resolve o problema de M-Consensus. Mos-

6 Chapter 1. Introdugio

tramos também como o protocolo pode ser melhorado pelo uso recursivo de consenso e de
tecnologias de multicast.

Log Service Nossa ultima contribuicdo é a abstracdo das propriedades de terminagédo
atomica e duravel em termos de um Log Service. Tal servigo coleta as alteragdes executadas
por cada participante bem como seus votos (commit e abort), para todas as transacées em
que participaram. Quando votos suficientes sdo coletados, o servico determina o resultado
e informa os participantes a respeito. Definir a terminacdo de transacdes em termos do
nosso log service tem duas vantagens principais. Primeiro, as particularidades do sistema
se tornam irrelevantes para o protocolo de terminacdo. Segundo, a disponibilidade geral
dos participantes é melhorada pelo uso de uma implementacdo com alta disponibilidade do
servico. O servico também pode ser usado para migrar participantes falhos ou lentos para
servidores funcionais e/ou mais dependaveis. Como conseqiiéncia, os participantes podem
optar por guardar localmente seus logs para acelerar o processo de recuperagdo pds-falha
ou depender somente do servico de log para este fim.

Além da especificacdo abstrata, nés também apresentamos duas implementacées do ser-
vico. Ambas as implementacdes utilizam-se de consenso para atingir alta disponibilidade.
Contudo, elas o fazem de formas distintas e com implicacdes no desempenho da termi-
nacdo de transacOes e na recuperacdo poés falha de participantes. Na primeira implemen-
tacdo, ndo-coordenada, a votacdo ocorre de forma completamente distribuida, abstraindo
o Paxos Commit e, por extensdo, 2PC. Na segunda, coordenada, a votacdo é coordenada
por um agente coordenador facilmente substituivel. As duas abordagens abstraem a re-
lagdo custo/beneficio entre complexidade da comunicacdo versus o nimero de passos de
comunicacdo em protocolos de terminagdo. N6s comparamos ambos os protocolos analiti-
camente e experimentalmente com outros trabalhos relevantes na drea e mostramos que a
reducdo do numero de passos de comunicacdo as custas de um aumento da complexidade
da comunica¢do nem sempre implica em melhor desempenho.

1.4 Organizacao

Esta tese resultou do trabalho desenvolvido no contexto de uma colaborac¢édo entre a Uni-
camp e a Universidade de Lugano, na Suica. Para garantir a consisténcia entre as versdes
apresentadas em ambas as universidades, os capitulos seguintes correspondem ao texto
da vers,,0 sulAa, e portanto em inglfs, salvo pelas correAies feitas apUs a defesa no Bra-
sil. O Capitulo 2 apresenta a versdo em inglés desta introducdo, que contém um detalha-
mento do modelo computacional e da notacdo algoritmica adotados nesta tese. No Capi-
tulo 3 apresentamos nossos algoritmos de consenso baseados em ordenacdo esponténea,

1.4. Organizagdo 7

B*-Consensus e R*-Consensus, na Sec¢do 3.2. Ainda no mesmo capitulo, na Secéo 3.3, apre-
sentamos o nosso protocolo de consenso multicoordenado. No Capitulo 4, apresentamos o
protocolo multicoordenado de consenso generalizado, que denominamos Multicoordinated
Paxos. Na Secdo 4.5, mostramos como instanciar o Multicoordinated Paxos para resolver
o problema de difusdo genérica. No Capitulo 5, lidamos com o problema de acordo en-
tre agentes organizados em grupos. Apresentamos um protocolo simples para o problema
e posteriormente o estendemos para melhorar seu desempenho em cendrios particulares.
Discorremos sobre nossa ultima contribuicdo, a especificacdo do Log Service e suas duas im-
plementacoes, no Capitulo 6. O Capitulo 7 contém a versdo em inglés da conclusdo desta
tese, com uma discussdo final dos resultados apresentados bem como algumas possiveis di-
recOes para trabalhos futuros. A versdo em lingua portuguesa da conclusdo é apresentada
no Capitulo 8.

Chapter 2

Introduction

In order to make an apple pie from scratch,
you must first create the universe.
Carl Sagan

A distributed application is a composite of agents that perform local actions and ex-
change information to cooperatively perform some global task. These agents—machines,
processors, or processes—are often required to synchronize their actions to meet some con-
sistency criteria: only one agent may access a given resource at any point in time; all must
commit the effect of their actions or rollback to a previous state; a certain agent must be
excluded from any future interactions. Synchronizing actions, here, is short for reaching
agreement.

Research on agreement problems has been an active field for at least thirty years and
resulted in many algorithms for different computational models, lower and upper bounds,
and an incredible amount of publications. Nonetheless, we feel that there is still room for
improvement, mainly concerning the practicality of algorithms.

The focus of this thesis is on practical protocols for agreement problems in distributed
asynchronous systems. That is, protocols that cope with failures of participants and their
posterior recover in a graceful way; protocols that explore synchronism and optimistic as-
sumptions to progress, but do not rely on them to remain correct and, more importantly,
that adapt when assumptions no longer hold; protocols that explore building blocks readily
available in todays infrastructures, properties of the environments in which they run, and
the characteristics of the application that they serve.

9

10 Chapter 2. Introduction

2.1 About Rounds, Consensus, and Agreement Problems

The Consensus problem, in which agents must agree on one out of a set of proposed val-
ues, subsumes many other agreement problems. Consensus algorithms perform in stages
that reflect the very nature of the problem: proposals precede a deliberation phase, that
precedes the learning of a decision. To be fault-tolerant, algorithms must be ready to retry
this cycle, guaranteeing that a decision in a previous cycle is honored in the next ones. We
call each of these tries a round.

The fastest general round has the agents collecting the proposals, selecting one as their
proposals, and exchanging their selections. Agents then decide for the proposal selected
by at least a quorum of agents. In an asynchronous system, we can rely on overlapping
quorums to ensure that no two different proposals are decided. Breaking a tie when starting
a new round and searching for previous decisions, however, requires larger overlappings—
in general, every three quorums must intersect—or more time—by searching in two phases
instead of one, simply overlapping quorums are enough.

While asynchronism may prevent the progress of any fault-tolerant consensus algo-
rithm [], the approach described in the previous paragraph may not
decide even when the environment behaves synchronously and no failure occurs. If multi-
ple proposals are selected, but no one is ever selected by a full quorum in any round, then
no decision is reached. Agents may circumvent this problem and eventually select the same
value with the aid of random oracles [,] or based on the order
in which the options are presented to them [, ,

]. An alternative is to to have one of the agents filter all but one
proposal in the round [,]. The problem then becomes
selecting this special agent [].

Although in the literature most algorithms are specified with a single set of agents,
in actual systems some agents are responsible for proposing values, some only care for
learning the decision, and just a subset of them actually work in reaching the agreement.
From the previous paragraph, there is yet another set of agents that coordinate rounds, the
coordinators.

Coordinators are of special interest in that they are tightly related to the algorithms’
availability. If multiple coordinators start their rounds in parallel, none may succeed in
reaching agreement. Hence, a single coordinator should be picked. On the one hand, a
decision can only be reached with such a coordinator’s participation, making it extremely
important to replace it as soon as it fails. On the other hand, aggressive failure detection
is resource consuming and error prone, and replacing a coordinator is not done without a
price: the algorithm will be unavailable while the new coordinator contacts the other agents
to determine any previously decided value. Therefore, replacement should be avoided as

2.2. Transaction Termination 11

much as possible.

While discussing availability issues due to coordinator replacement in a consensus in-
stance may seem frivolous at first, the impression fades when considered the way consen-
sus is used in practice. A typical example is the implementation of a replicated state ma-
chine [,]. This well known technique consists of implement-
ing reliable services by replicating simpler instances of the services on failure-independent
processors. Replicas consistently change their states by applying deterministic commands
from an agreed sequence. A consensus instance can be used to decide on each command of
the sequence. To make the implementation efficient, all instances may run in parallel, share
the same elected coordinator, and overlap parts of their rounds. Hence, being unavailable
means delaying not one, but all ongoing decisions.

In many replicated state machines and similar applications, some commands submitted
to the servers are commutable and do not have to be ordered. The straightforward use of
consensus, which does not capture this commutability property, would unnecessarily order
them. Generalized consensus [1, which in fact generalizes many agree-
ment problems, captures the notion of commutability and may be used to agree not on a
sequence, but on a partial order of commands. This particular instance of generalized con-
sensus is known as the generic broadcast problem []. The only
algorithm for generalized consensus, that we are aware of, has the same availability prob-
lems of consensus algorithms that we have pointed in the previous paragraphs: it either
uses large quorums or relies on a single round coordinator to ensure progress.

The power of generalized consensus and generic broadcast comes from identifying con-
flicting proposals, e.g., non-commutable commands, so that they do not have to be un-
necessarily ordered. A different approach is to ignore conflicts a priori to deliver them as
fast as possible and use the conflict information to order delivered proposals a posteriori.
For example, in M-Consensus [] agents agree not on a single value per
instance, but on a mapping from each proposer to its proposal or a nil value. On the one
hand, if no two proposals are made by the same proposer, then decisions can be reached
very fast and, after a full mapping is decided, a deterministic function may flatten the map-
ping into a sequence. On the other hand, because in general the deterministic function
requires a full mapping and because only a proposer can propose for itself, the availability
of M-Consensus protocols are bound to the availability of these proposers.

2.2 Transaction Termination

Many distributed systems’ agreement requirements may be seen as the more abstract atomic
commitment problem, most notably data management systems. In essence, to terminate a
distributed transaction, each participating resource manager votes to either commit or abort

12 Chapter 2. Introduction

the transaction. If all participants vote to commit the transaction, then this must be the final
outcome; if any participant votes for the abortion, then the transaction is aborted. For most
real systems, this definition of the problem is not practical since it requires the vote of every
participant to be accounted. This restriction is relaxed in non-blocking atomic commitment,
in which the transaction may be aborted if any participant is suspected of having crashed.
Commit must be guaranteed only if all participants vote to commit the transaction and
none is suspected of failure. In this thesis we consider this weaker problem.

Widely used in practice, the Two-Phase Commit protocol (2PC) is non-blocking in the
presence of failures of all but one agent, the transaction manager. Gray and Lamport’s Paxos
Commit [] is a non-blocking atomic commitment protocol in which
the casting of a vote is reduced to a Paxos consensus instance. Failures are naturally handled
by letting participants enforce termination of each other’s instances, and the transaction
manager is required only to trigger the termination upon completion of a transaction; if it
fails, resource managers simply abort the transaction. Hence, such a reduction to consensus
is very powerful.

Even when atomicity is enforced by the commit protocol, if resource managers are al-
lowed to forget the updates of a committed transactions, for example due to a temporary
failure, then the system may still get to an inconsistent state. Hence, besides ensuring
atomicity, a transaction termination protocol may be required to enforce the durability of
committed transactions. That is, to ensure that all changes done by committed transaction
are reflected by any future state of the database, in spite of any failures. In conventional
protocols, durability is achieved by having each resource manager store its updates in a
local stable media before voting. Should it fail, at recovery time the resource manager can
read the committed updates from the local storage and replay them to recover its previous
state. A drawback of this approach is that it couples the availability of the resource manager
with the availability of the server hosting it.

2.3 Contributions

This thesis makes the following contributions.

Multicoordinated Consensus Regarding the consensus problem, we have made two con-
tributions. The first contribution is a pair of protocols, namely B*-Consensus and R*-
Consensus, which explore spontaneous ordering to solve consensus in the crash-recovery
model. Comparatively, these protocols trade resilience for latency: B*-Consensus takes
three communication steps to finish and tolerates the permanent failure of any minority of
the agents. R*-Consensus decides in two steps, but tolerates less than one third of perma-
nent failures.

2.3. Contributions 13

The second contribution is the generalization of B*-Consensus as a multicoordinated
mode of execution for agreement protocols. In this mode, the coordinator of each round is
replaced by a set of overlapping quorums of coordinators. As long as at least one quorum
of coordinators is alive, there is no need to change rounds and incur in the temporary
unavailability resulting from it. We present a multicoordinated consensus protocol that
extends Fast Paxos [1, with its fast and classic modes. The protocol can
switch to different types of round and adapt to environment changes: slower network,
more message losses, higher or lower workload, and spontaneous message ordering.

Multicoordinated Generalized Consensus The third contribution is the use of multico-
ordination to solve generalized consensus. While the use of semantic information mini-
mizes the chances of the coordinators in the same round disagreeing, multicoordination
minimizes unwanted round changes. Hence, our protocol, Multicoordinated Paxos, is a
synergism of these techniques. We present the protocol along with a discussion of various
aspects of using it in practice, and present a simplified instantiation of the protocol that
solves the Generic Broadcast problem [].

Multicoordinated Agreement for Groups The fourth contribution regards the use of
multicoordination in hierarchically organized networks. In these scenarios, coordinator
quorums will increase availability, but will still require proposals to travel from all ends of
the network to reach the quorum. Spreading the quorums will not improve the situation
since quorums must be overlapping. We present a multicoordinated agreement protocol
that solves this problem by splitting coordinator quorums in partially independent systems,
and use the M-Consensus approach to reach agreement. We also show how this protocol
can be improved by a recursive use of consensus and multicast technology.

Log Service Our last contribution is to abstract the atomicity and durability problems
in transaction termination in terms of a Log Service. The service collects the updates per-
formed by each participant as well as their votes (commit and abort) for each transaction
they take part. When enough votes are collected, the service contacts the participants and
informs them the transaction outcome, based on the votes received. Defining transaction
termination in terms of our log service has two advantages. First, transaction termination
becomes oblivious to particularities of the system, taken care of or explored by the services
implementation transparently. Second, the overall availability of resource managers is im-
proved by using a highly available implementation of the service. As mentioned earlier, the
service can be used to migrate crashed or slow resource managers to functional and more
dependable hosts. As a consequence, resource managers may choose to asynchronously
store their state locally for later recovery or rely solely on the state kept at the log service.

14 Chapter 2. Introduction

Besides the abstract specification, we present two implementations of the log service.
Both implementations rely on consensus to achieve high availability in different ways, with
performance implications on both the termination of transactions and on the recovery of
resource managers. In the first implementation, uncoordinated, voting is completely dis-
tributed, abstracting Paxos Commit and, by extension, 2PC. In the second, coordinated,
voting is managed by an easily replaceable coordinator agent. The two approaches abstract
the trade-off “message complexity versus number of communication steps” between atomic
commit protocols. We compare both approaches analytically and experimentally to previ-
ous work in the area and show that reducing the number of communication steps at the
expense of increasing the message complexity not always leads to better performance.

2.4 Algorithmic Notation

In this thesis we present algorithms as state machines, specified in terms of atomic actions,
state functions, and operators. The notation we use to define each of them should to be
less ambiguous than the normally used pseudo-code, but more easily readable than the
TLAY [| specifications in which we have specified our main algorithms.

An action can only be executed if all of its pre-conditions are satisfied, in which case
we say that the action is enabled. An enabled action executes atomically and changes the
state machine accordingly. State functions evaluate some condition over the state of the
state machine and are useful to express properties; a state function that evaluates to a
boolean value is called a state predicate. Operators are functions that operate on a set of
parameters.

Agents are divided in sets according to their roles. Hence, checking if an agent plays a
given role is the same as checking its inclusion in the respective set. Agents keep their state
in variables indexed by their names. In the following specification, for example, the action
FlipIfZero is enabled for an agent a of type flipper that has its variable var[a] equal to 0. If
the action is executed, var[a] is flipped to 1.

Most keywords that we use have obvious meanings. For example, the If(a, b, c) operator
defined above evaluates to b if a is true and to ¢ otherwise. Another example is the pair LET
and 1N, which specifies the scope of a definition. In the definition of SumSeq(seq) above,
for example, Sum is defined as a recursive function that iterates over the elements of a
sequence summing them, but only inside SumSeq. For the sake of simplicity, we collapse
nested LET IN pairs into a single one and let each definition be in the scope of the next ones.

We represent sequences as tuples. We denote by LEN(s) the number of elements of
sequence s and by s[i] the i-th element of s. The sequence () is the empty sequence and
(a, b, c) is the sequence of elements a, b and ¢, in this order. When comparing sequences,

2.5. System Model 15

Algorithm 1 Notation example.
FlipIfZero(a) =
pre-conditions: - a € flipper
- var[a] =0

actions: - var[a] « 1
If(a,b,c) £ IF q THEN b ELSE c
SumSeq(seq) =
LET Sum(i) = 1F i = O THEN seq[i] ELSE seq[i] + Sum(i—1)

IN Sum(Len(seq))

. A
RandInt(min,max) = CHOOSE i :i € IA min < i < mazx

the symbol “_” matches any element. For example, (a, b) = (_, b) and (_, b) = (¢, b) even if
c# a.

The cHoosE v : C' operator is used to select some value v that satisfies condition C'. In
the definition of RandInt, for example, cHOOSE is used to select a random integer between
the min and maz values.

2.5 System Model

A distributed system is composed of a set of agents with well defined roles that cooperate to
achieve a common goal. In practice, an agent can be implemented by a process or collection
of them, by a processor, or any computation enabled entity. Moreover, any single entity that
implements one agent could also implement several. Reasoning in terms of agents allows us
to specify problems and algorithms more concisely and in terms of heterogeneous agents.

Distributed systems can be classified in different axis according to the way agents ex-
change information, the way they fail and recover, and the relative speeds at which they
perform computation. In this work we address asynchronous distributed systems in which
agents can crash and recover, and use unreliable communication channels to exchange
messages.

In asynchronous distributed systems there are no bounds on the time it takes an agent
to execute any action or for a message to be transmitted. We show that if such bounds exist,
then the protocols we present in this thesis ensure some liveness properties, if the number
of failures can be limited in time. Our liveness proofs require the bounds to exist but do
not require them to be known by any agent.

Even though we assume that agents may recover, they are not obliged to do so once they

16 Chapter 2. Introduction

have failed. For simplicity, an agent is considered to be nonfaulty iff it never fails. Agents
are assumed to have access to local stable storage which they can use to keep their state
in between failures. State not kept in stable storage is reset after a crash. Last, we assume
that agents do not execute any arbitrary step, i.e., we do not consider byzantine failures.

Although channels are unreliable, we assume that if agents keep retransmitting their
messages, then they eventually succeed in communicating with each other. We also assume
that messages are not duplicated and cannot be undetectably corrupted.

Chapter 3

Multicoordinated Consensus

3.1 Consensus and the FLP Impossibility Result

Distributed problems and algorithms are commonly described in terms of a task to be at-
tained by homogeneous agents. The standard specification of the consensus problem, for
example, states that “a set of agents must eventually agree on a value, in spite of a maxi-
mum number of failures”. As a result, algorithms for such problems are also given in terms
of homogeneous agents with similar behavior. Because processes play different roles in
real systems, we use a different approach and specify problems and algorithms in terms of
the roles which agents play. For example, in a client/server architecture, we refer to client
agents and server agents, or to sender and receiver in a mailing system.

In the case of consensus, we use three kinds of agents: proposer, learner, and accep-
tor. Because consensus subsumes many agreement problems, the same sets of agents
may also make sense it their specifications and, hence, we will adopt the same termi-
nology. To the best of our knowledge, specifications based on roles was introduced by
Lamport [].

In the consensus problem, agents must agree on a single value out of a given set of
proposals. Proposer agents issue proposals out of which one will become the decision.
Once a decision is reached, learners must become aware of its value. In the context of
a common distributed application, state machine replication, proposers can be thought of
as clients issuing commands and learners as the application servers that execute the de-
cided commands. For this reason, we interchangeably refer to proposals also as commands.
Clients might also be learners to know whether their issued commands were accepted by
the system to be executed.

Formally, the safety requirements of consensus are three [IE

Nontriviality: Any value learned must have been proposed.

17

18 Chapter 3. Multicoordinated Consensus

Stability: A learner can learn at most one value.
Consistency: Two different learners cannot learn different values.

While the safety requirements are stated in terms of proposers and learners, the live-
ness requirement is stated over the set of acceptors. This happens because, as we pointed
out, proposer and learner roles are associated with clients of applications, and it would be
unreasonable requiring them not to fail. Acceptors, conversely, are part of the application
infrastructure, and it is more reasonable to make reliability assumptions about them. We
call a quorum any finite set of acceptors that is large enough not to forbid liveness and
define the liveness requirement of consensus as follows:

Liveness: For any proposer p and learner [, if p, [, and a quorum () of acceptors are
nonfaulty and p proposes a value, then [eventually learns some value.

Under the assumed asynchronous crash-recovery model, it is well known that no fault-
tolerant consensus algorithm can ensure termination if there is the possibility of failures
[]. Phrased in terms of acceptors, this result implies that quorums must
equal the set of all acceptors. Hence, algorithms must make extra assumptions about the
system to ensure liveness if they must be fault-tolerant.

3.1.1 Randomization and Spontaneous Ordering

One way of circumventing the impossibility result is through the use of randomization. The
algorithm of Bracha and Toueg [], for example, rely on the fact
that, if agents keep exchanging messages in rounds, then there is a non-zero probability
that they will all eventually receive the same set of messages in some round. The authors
have called this property fair scheduling.

The algorithms of Rabin [] and Ben-Or [] employ random-
ization in a different way. In their algorithms, if agents have no reason to opt for some
proposal or another in some round, then they use a random bit generator to chose one.
Given that there is a non zero probability that all chose the same random bit, agreement is
reached with probability 1.

Pedone et al. [] later replaced the selection based on the random bit
generator used by Rabin [] and Ben-Or [] for a selection based on
the order in which messages are received. This is possible if, for every round, there is a non
zero probability that messages will be received in the same order. These properties, some-
how related to fair scheduling, are abstracted by weak ordering oracles [1.
In specific, the algorithms of Pedone et al. [], namely B-Consensus and

3.1. Consensus and the FLP Impossibility Result 19

R-Consensus in reference to Ben-Or and Rabin, use the weak atomic broadcast (WAB) or-
acle, which ensures that if processes keep exchanging broadcast messages then, in some
rounds, the first message received by all running agents is the same. In the same work,
the authors show that, with high probability, Ethernet broadcast satisfies the WAB specifi-
cation. The key idea behind spontaneous ordering is that at some point all acceptors will
accept the same value and a decision is achieved. Brasileiro et al.’ one step consensus pro-
tocol [], for example, may be seen an instance of R-Consensus where
each proposer is collocated with an acceptor, which its proposals reach with delay zero. If
enough proposers propose the same value simultaneously, then after zero communication
steps the same value may have been decided, taking just one extra communication step for
the decision to be learned.

WAB based protocols are interesting from a practical perspective since they do not make
any synchrony assumption. Nonetheless, B-Consensus and R-Consensus are of more theo-
retical than practical interest for their assumed failure and communication models: crash-
stop and reliable links. From a pragmatic perspective, agents should be capable of reinte-
grating the system after a crash and tolerate message losses, being able to make better use
of highly-efficient communication means (e.g., UDP messages).

Crash-Recovery WAB-Based Consensus

We have extended the protocols of Pedone et al. [] to the crash-recovery
model with fairly lossy channels. Moreover, we defined these extended protocols using
roles and relaxed the constraint that all agents run the same protocol as in the original
algorithms [1, which also differs our work from that of Brasileiro
[]. These protocols, which we have named B*-Consnesus and R*-
Consensus in reference to the algorithms in which they were inspired, are the first contri-
bution of this chapter.

3.1.2 Synchronism and Failure Detection

Several works have considered circumventing the impossibility of solving consensus by

assuming a partially synchronous model. Dolev et al. [] and Dwork et
al. |] have studied, classified, and determined minimal synchrony as-
sumptions needed to solve consensus. Christian and Fetzer [] have

shown that several synchronism assumptions are realistic to some distributed systems.
Chandra and Toueg [] introduced the concept of unreliable

failure detectors, or UFD, which encapsulate the synchrony assumptions needed to solve

consensus as abstract properties. These oracles provide possibly wrong information about

20 Chapter 3. Multicoordinated Consensus

the failures of agents. The weakest UFD that can be used to solve consensus, O/, ensures
two properties [IE

Eventual Weak Completeness all agents that permanently crash are eventually suspected
by a nonfaulty agent;

Eventual Weak Accuracy eventually, at least one nonfaulty agent will stop being suspected
by the other nonfaulty agents.

Another interesting failure detection abstraction is the 2 leader election oracle, intro-
duced and shown equivalent to &% by Chandra et al. []. Briefly,
Q ensures that nonfaulty agents eventually agree on the identity of some nonfaulty
agent, the leader. Failure detectors have been used to solve consensus in crash-stop
[, ,) :

], in crash-recovery [, ,
,], and byzantine settings [,
,) I.

In each of these algorithms, computation progresses as a sequence of rounds, each
of which is managed by a coordinator agent. The coordinators are the only agents that
send proposals to acceptors to get them decided; proposers resort to coordinators to have
their proposals considered. When a new round is started, its coordinator must determine
possibly previously decided values and use such a value, if existent, in the new round.
Moreover, a new round must prevent previous ones from deciding if they have not done
so yet. Hence, if rounds are indiscriminately started, no one may succeed in deciding any
value. To avoid such a scenario, one leader coordinator is selected to start new rounds using
a leader election oracle like . Because failure detectors can make mistakes, rounds may be
started even in absence of failures, which can prevent progress unless these mistakes cease
to happen.

3.1.3 Availability Issues of Leader Based Protocols

A proposal issued by the leader takes two steps to be decided and learned, in the best
scenario. One step to be propagated to the acceptors and one more from the acceptors to
the learners. From the point of view of regular proposers, one step more is required to send
their proposals to the leader. Hence, the leader becomes a single point of failure for every
round. When it fails, its failure must be detected, a new leader must be elected, and a new
round must be started. As we mentioned before, starting a round requires the new leader to
synchronize with acceptors to block previously started rounds; while this synchronization
is done, no decision can be reached.

3.2. WAB-Based Consensus 21

Fast Paxos [] extends the leader-based Paxos |], men-
tioned above, to allow proposers send their proposals directly to acceptors in some rounds,
reducing in one step the latency of the protocol in synchronous periods of the system and
in absence of failures. The price for these fast rounds, as opposed to the classic rounds in
the original protocol, is the possibility of different proposals being accepted in the same
round; we call this situation a collision. Collisions have two bad effects: first, they may
force the execution of a new round, with all the overhead of starting it, even in the absence
of failures; second, the simple possibility of collisions forces the leaders to synchronize with
more acceptors in starting each round and, therefore, fast rounds are less resilient. An exe-
cution of Fast Paxos with only fast rounds is equivalent to an execution of the R*-Consensus
protocol [].

Multicoordinated Rounds

We have introduced a multicoordinated type of rounds that minimize the depen-
dence on the coordinator and the availability problems resulting of this depen-
dence [,]. Multicoordinated rounds have
multiple coordinators, to which proposers send their proposals in parallel. As in the original
Paxos protocol, coordinators forward the proposals to acceptors; acceptors, however, only
take into consideration proposals forwarded by a quorum of the round coordinators. By
requiring these coordinator quorums to intersect, the protocol ensures that no two differ-
ent values will be considered on the same round and, hence, no collision happens on the
acceptors. Collisions, however, may occur at the coordinators if different proposals are sent
in parallel. These collisions are inherently less expensive than collisions on the acceptors in
that they can be handled without any stable storage access. We further discuss this aspect
of multicoordinated rounds in Section 4.4.4.

As with fast rounds and R*-Consensus, multicoordinated rounds and the B*-Consensus
protocol are somewhat equivalent. Our multicoordinated protocol, however, extends Fast
Paxos to have all three round types and allow coordinators to start rounds of either type at
any point during the execution. An implementation of the protocol can harness this prop-
erty to adapt to changes in the execution environment at runtime. The multicoordinated
consensus protocol is the second contribution of this chapter.

3.2 WAB-Based Consensus

In this section we present the WAB-based consensus algorithms B*-Consensus and R*-
Consensus []. These protocols execute as a sequence of rounds,
identified by natural numbers. In each round, proposers can make any number of propos-

22 Chapter 3. Multicoordinated Consensus

als. Acceptors can accept only a single proposal per round, and the goal of each round is
to have a value accepted by a quorum of acceptors, in which case we say that the value
has been chosen. The algorithms ensure that if a value is chosen at some round, then no
other round will chose a different value. Hence, a learner can safely learn a value that
has been chosen. To ensure that no two different values are chosen in any round, the al-
gorithms require that quorums intersect. This requirement is formalized by the following
assumption.

Assumption 1 (Quorum Requirement) If () and R are quorums, then Q) N R # 0.

In fact, any general algorithm for asynchronous consensus must satisfy a similar require-
ment, as shown by the Accepting Lemma in []. A simple way to satisfy this
requirement is define quorums as any majority of the acceptors. We use this approach in
this section for its simplicity.

B*-Consensus explores Assumption 1 to terminate in three communication steps in good
runs. By making the following stronger assumption, R*-Consensus can terminate in just two
steps. The assumption is easily satisfied by defining quorums with more than two thirds of
the acceptors.

Assumption 2 (Simple Fast Quorum Requirement) If (), R, and S are quorums, then)N
RN S #0.

We will explain how Assumption 2 is used once we have presented the algorithm. In
fact, a relaxed version of it would be enough, but that would unnecessarily complicate
the algorithm. We relax the assumption later, when reviewing the Fast Paxos protocol in
Section 3.3.2, from which point on all algorithms will assume the relaxed version.

Before presenting B*-Consensus and R*-Consensus, respectively in Sections 3.2.2 and
3.2.3, we describe Weak Ordering Oracles and, more specifically, the WAB abstraction used
in both algorithms.

3.2.1 Weak Atomic Broadcast

Weak ordering oracles [] provide best-effort message ordering guaran-
tees, that is, they try to deliver messages in some total order to all processes but cannot be
trusted to always perform this task. A WAB, or Weak Atomic Broadcast, is a weak order-
ing oracle defined by the primitives w-broadcast(k, m) and w-deliver(k, m), where k € N
defines a w-broadcast instance and m is a message. The invocation of “w-broadcast(k, m)
to S” broadcasts message m in instance k to the agents in S; w-deliver(k, m) w-delivers a
message m w-broadcast in instance k. WAB satisfies the following property:

3.2. WAB-Based Consensus 23

WAB If agents w-broadcast in an infinite number of instances to the agents in some set .S,
then for every instance k there is an instance &’ > k in which

Fairness every nonfaulty agent in S w-delivers a message, and

Spontaneous Order the first message w-delivered in instance %’ is the same for every
agent that w-delivers a message in k’.

Consider, for example, the use of WAB depicted in Figure 3.1, where w-broadcast and
w-deliver are noted as wb and wd, respectively. The two agents depicted by dashed lines
w-broadcast messages to the other processes. No agent crashes and no message is lost. In
instance 1, message m1 is the first w-delivered by one of the three receivers; the sponta-
neous order property is clearly not satisfied in this instance. In instance 2, however, the
first message w-delivered by all receivers is the same, m4, satisfying spontaneous ordering.
In instance 3, even though just one message is w-broadcast and spontaneous ordering is
attained, not all nonfaulty processes deliver the message. As long as this bad scenario does
not happen infinitely often in the subsequent instances, the WAB properties may still be

satisfied.

Figure 3.1: Spontaneous Order in WAB.

From a practical perspective, the behavior of IP-multicast in some local-area networks
(e.g., Ethernet), under reasonable loads, matches the WAB specification. In such environ-
ments, [P-multicast ensures that most broadcast messages are delivered in the same order
by all addressed nodes [1.

3.2.2 B*-Consensus

B*-Consensus (See Algorithm 2) has seven actions out of which the first three are performed
by all agents, the fourth is performed only by proposers, fifth and sixth only by acceptors,
and the last one by learners. Agents are divided in three sets, according to their roles:

24 Chapter 3. Multicoordinated Consensus

acceptors, proposers, and learners, and checking whether an agent may execute an action or
not is performed by checking its inclusion into these sets. We assume for now proposers is
a subset of are also learners.

The algorithm is defined in terms of four variables: rnd, prop, preAcc, and acc. Even
though some variables are particular to specific roles, to simplify the presentation we let
all agents have all variables. Variables not associated to an agent will remain in its initial
state throughout the execution of the protocol. We explain the function of each variable as
needed while explaining the actions.

Algorithm 2 B*-Consensus
12 Common Actions:

2 Start(a) = < Run at boot, but not at recovery.
3. actions:

4 rnd[a] < 0

s: propla] < none

6: preAcc[a] < none

7 accla] < none

8: Log(rnd[a],prop[a],preAcca], acc[a])

Recover(a) = < Run at recovery, but not at boot.

10: actions:
1: Retrieve(rnd[a], prop[a], preAcc[a],acc[a])

el

12 Skip(a) =
131 pre-conditions:
14: received (_, ¢, rnd, ..., prop) or w-delivered (“first”, q, rnd, prop)

15: rnd[a] # rnd
16: actions:

17: IF rnd[a] > rnd THEN

188 send (“skip”, a, rnd[a], prop[a]) to q
19: IF rnd[a] < rnd THEN

20: rnd[a] < rnd

21: prop[a] < prop

22: preAcc[a] < none

23: accla] < none

240 Proposer Actions:

N

A
s: Propose(a,v) =
26: pre-conditions:

7. a € proposers
28: propla] = none
20: actions:

s0. proplal] « v

31 w-broadcast (“proposal”, a,rnd[a], prop[a]) to acceptors

3.2. WAB-Based Consensus 25

Bootstrap and Recovery

Action Start(a) executes when a is started for the first time. It sets the data structures
to their initial values. The second action, Recovery(a) executes upon recovery, i.e., when
the agent is recovering from a crash. Initialization and recovery are easily discernible by
using stable storage. Agents write to and read from stable storage through Log and Retrieve
functions. The other actions in the algorithm run in response to the arrivals of messages.
However, they only run after the agent has been initialized or recovered.

For every agent a, variable rnd[a] has the highest-numbered round in which « has
taken part; initially, rnd[a] equals zero. If a is a proposer, prop[a] has the value a has
proposed in round rnd[a]; if a has not proposed any value, then prop[a] has its initial
value, none.

Skipping rounds

Rounds are started in sequence; only when a learner sees the end of a round, a new one
is started. If an agent has been down for some time or is too slow, it might be delayed
in the round progression. When an agent « in round rnd[a] receives a message sent in a
round rnd > rnd[a], it immediately jumps to rnd skipping rounds rnd[a] +1...rnd — 1,
rapidly catching up with the more advanced agents. However, not every value can be
proposed in every round, an agent skipping rounds must pick a value that is proposable in
this new round. After a round in which a value is decided, for example, only this value can
be proposed. Only agents that finished round rnd — 1 initially know which values can be
proposed in round rnd. Hence, processes skipping round rnd — 1 to rnd must learn from the
processes already in r about which values are valid proposals in r. In the algorithm, each
message carries a proposal valid in the round in which it was sent, so that other agents can
use it to skip round (this is the last field of each message).

The actual round skipping is performed by action Skip in the algorithm. This action
runs before the other actions have also been triggered by the receipt of messages. This way,
the process is able to jump to a higher round and then use the message to proceed in the
round. Although not specified to simplify the algorithm, this action runs only once for every
message received. The algorithms in [] can also skip rounds, but the
procedure is considerably more complicated than the one we present.

Proposing a Value

Proposers propose a value by executing the fourth action. Due to message losses and pro-
cess crashes, a consensus instance may not terminate in the first attempt, and may have to
be retried. At any time, proposers can retry a consensus instance if they believe that the

26 Chapter 3. Multicoordinated Consensus

previous attempt has failed; consistency is kept even if the previous attempt is still running.
Since we assume that proposers are also learners, they are able to learn that a round of the
algorithm has terminated. So, if a proposer does not learn the decision of the consensus it
has initiated after some time, it re-starts its execution by proposing in its current round.

Algorithm 2 B*-Consensus(continued)
32: Acceptor Actions:

331 PreAccept(a) =
34: pre-conditions:

35 a € acceptors
36: w-delivered (“proposal”,_, rnd[a], prop)
37: preAcc[a] = none

3s: actions:

391 preAccla] < prop

40: propla] < prop

41: Log(preAcc[a], rnd[a], prop[a])

42: send (“pre-accepted”, a, rnd[a], preAcc[a], prop) to acceptors

430 Accept(a) =

4: pre-conditions:

45: a € acceptors

46: Vge Q,|Q|=T[(n+1)/2], a received (“pre-accepted”, q, rnd[a], preAcc, prop)
47: actions:

48: LET M ={(“pre-accepted”, q,rnd[a], preAcc, prop): ¢ € Q}

49! IN

50: IFVm e M : m= (“pre-accepted”,_, rnd[a], preAcc,_)

51 THEN accla] < preAcc < Accepted preAcc.
52: ELSE accla] < T < Did not accept anything.
53: prop[a] < prop

541 log (accla], rnd[a], prop)

55: send (“accepted”, a, rnd[a], acc[a], prop[a]) to learners

s6: Learner Actions:

s7: Learn(a) =

ss: pre-conditions:

59: a € learners

60: Vge @,|Q|=[(n+1)/2], a received (“accepted”, ¢, nd[a], acc,-)
61: actions:

62: LET M ={(“accepted”, ¢, nd[a], acc,_): ¢ € Q}

63: IN
64: IFVYm e M :m= (“accepted”, ¢, rndala], acc,-) and acc # T
65: THEN decide acc

66: 1iF I(“accepted”, ¢, rnd[a], acc,_) € M : acc # T

67: THEN prop[a] < acc

68 rnd[a] « rnd[a] +1

3.2. WAB-Based Consensus 27

Accepting a Proposal

Acceptors in B*-Consensus accept proposed values in two steps. First, the value is pre-
accepted and then exchanged and compared with pre-accepted values of other acceptors.
Only then a value may be accepted. Actions PreAccept and Accept show these two steps.
Variables preAcc and acc store the acceptors’ currently pre-accepted and accepted values,
respectively.

Acceptors pre-accept values when they first w-deliver a “proposal” message in their
current round. Remember that agents may update their current rounds just before w-
delivering, through the Skip action. On pre-accepting a proposal prop received in a message
(“proposal”, q, mnd, prop), an acceptor a sets preAcc[a] to prop and logs it along with
rnd[a] and some proposal valid for round rnd[a], as for example the proposal just received.
These values are used to recover the process in case of a crash. In Section 4.4.5 we show
how this stable storage access can be avoided.

After pre-accepting a value, acceptors exchange these values with one another in mes-
sages with the “pre-accepted” tag. The goal is to determine if enough processes have
pre-accepted the same proposal. Each acceptor a collects [(n+ 1)/2] pre-acceptances,
including its own, where n is the number of acceptors in the system. This is shown in ac-
tion Accept. If all the [(n + 1)/2] pre-accepted values are equal to the same value preAcc,
then a accepts the value by setting acc[a] to preAcc. Otherwise, if the values differ, a sets
acc[a] to T to indicate that no value has been accepted in the given round. The update
of acc[a] is logged on stable storage as well as rnd[a] and a valid proposal, as done with
pre-acceptances. Finally, acceptors send their accepted values or T, if they did not accept
any value, to all learners using “accepted” messages.

Learning the Decision

Once learners have received [(n + 1)/2] “accepted” messages, they execute action Learn.
The first step in the action is to check whether all received “accepted” messages carry the
same accepted value acc. If that is the case, then acc has been chosen as the decision and
should be learned. The decision is also used as the proposal for the next round. If no value
has been decided, then learners look for any accepted value v # T to be used as a proposal
in the next round. If none is found, any value is used. The learner then increments its
round number so that its proposer counterpart starts the new round.

3.2.3 R*-Consensus

R*-Consensus (See Algorithm 3) has a structure very similar to B*-Consensus. The most
notable difference is that acceptors do not pre-accept proposals and check against each

28 Chapter 3. Multicoordinated Consensus

other. Hence, there is one fewer action in the algorithms as well as one fewer variable,
preAcc. In fact, except for the removal of preAce, the first four actions are the same as in
B*-Consensus. We therefore omit the explanation of these actions.

Algorithm 3 R*-Consensus
12 Common Actions:

. Start(a) = < Run at boot, but not at recovery.

N

actions:
rnd[a] < 0
propla] < none

&~ w

w

acc[a] < none

o

. Recover(a) = < Run at recovery, but not at boot.
actions:
Retrieve(rnd[a], prop[a], acc[a])
10 Skip(a) =
11: pre-conditions:
12: received (_, ¢, rnd, ..., prop) or w-delivered (“first”, q, rnd, prop)
13: rnd[a] # rnd
14: actions:

o ® N

15: 1F rnd[a] > rnd THEN

16: send (“skip”, a,rnd[a], prop[a]) to ¢
17: 1IF rnd[a] < rnd THEN

188 rnd[a] < rnd

19: propla] < prop

20: accla] < none

21: Proposer Actions:

A
22: Propose(a,v) =
230 pre-conditions:

24 a € proposers

2s: propla] = none

2: actions:

272 propla] «v

28: w-broadcast (“proposal”, a,rnd[a], prop[a]) to acceptors

Accepting a Proposal

In the R*-Consensus algorithm, an acceptor a directly accepts the first proposal it w-delivers
in its current round. As in B*-Consensus, the accepted value is logged along with rnd[a]
and prop[a], so that these values will not be forgotten in case of a crash. Acceptors then
send the accepted values to all learners in “accepted” messages.

3.2. WAB-Based Consensus 29

Learning the Decision

Instead of a simple majority of “accepted” messages as in B*-Consensus, learners in R*-
Consensus gather [(2n + 1)/3] messages for the same round as a precondition to action
Learn. As in the other algorithm, a value is learned (or decided) if all received messages
show the same value as accepted. If that is not the case, then a new round is started. If more
than half of the “accepted” messages indicate the same value, then this value is chosen as
the proposal for the next round and stored in the prop variable. If no value satisfies such a
condition, then any value can be used as proposal. In any case, rnd[a] is incremented.

Algorithm 3 R*-Consensus (continued)
20: Acceptor Actions:

s0: Accept(a) =
31 pre-conditions:

32: a € acceptors

33 w-delivered (“proposal”, g, rnd[a], prop)
341 acc[a] = none

35: actions:

36: acc[a] « prop

7. propla] < prop

38: Log(accla]l,rnd[a],prop[a])

39: send (“accepted”, a,™md[a], acc[a], prop) to learners

40: Learner Actions:

s Learn(a) =

42: pre-conditions:

432 a € learners

44: Vge Q,|Q=[(2n+1)/3], a received (“accepted”, ¢, rnd[a], acc, prop)
4s: actions:

46: LET M ={(“accepted”, ¢, md[a], acc, prop): ¢ € Q}

47: IN
48: IFVm e M : m= (“accepted”,_, rnda[a], acc,-) THEN

49: decide acc

50: IF 30,4, : for [(n+1)/3]m € M : m =(*accepted”,_,rnd[a], v,,4j,~) THEN
s proplal e vy

52: rnd[a] < rnd[a] +1

3.2.4 Correctness and Liveness

In this section we sketch the correctness and liveness proofs or R*-Consensus and B*-
Consensus. B*-Consensus and R*-Consensus are simplified versions of the Multicoordi-
nated Consensus, presented in Section 3.3, and of Multicoordinated Paxos, presented in

30 Chapter 3. Multicoordinated Consensus

Chapter 4. Hence, the formal proofs of correctness and liveness for Multicoordinated Con-
sensus and Multicoordinated Paxos, in the Appendix A, also serve as formal proofs for
B*-Consensus and R*-Consensus.

From the algorithms, B*-Consensus and R*-Consensus ensure the Nontriviality criterium
in the consensus specification since no value besides the proposals are introduced in the al-
gorithms except from T, which is a value that cannot be decided. Consistency is ensured in
B*-Consensus for the following reason:

* Due to Assumption 1, only a single value may be accepted in action Accept of any
round by all agents in some quorum.

* If some quorum of acceptors accept the same proposal v in the same round, then
every learner that executes Learn sees at least one “accepted” message with v in
B*-Consensus. Hence, every learner that increments its round number does so after
setting v as the new proposal, and v becomes the only proposable value in the next
rounds.

e If there is a single value v proposed in some round, then all acceptors that accept
some value must accept v. Hence, by the end of the round, v will be the only decided
by any learner that decides, and the only proposal valid for the next rounds.

For a similar reason, Consistency also holds for R*-Consensus. That is

* Due to Assumption 1, only a single value may be accepted in action Accept of any
round by all agents in some quorum.

* If some quorum of acceptor accepts the same proposal v in the same round, then
every learner that executes Learn sees at least n/3 + 1 in R*-Consensus, due to As-
sumption 2. Hence, every learner that increments its round number does so after
setting v as the new proposal, and v becomes the only proposable value in the next
rounds.

* If there is a single value v proposed in some round, then all acceptors that accept
some value must accept v. Hence, by the end of the round, v will be the only decided
by any learner that decides, and the only proposal valid for the next rounds.

The same reasoning implies the Stability property. That is, after deciding on some value,
each learner can only decide again if for the same value.

By the definition of the Liveness property, no algorithm can ensure progress unless all
acceptors in some quorum are nonfaulty. If this condition is satisfied and actions are fairly
executed (i.e., they are eventually executed if they are frequently enabled.), then as soon
as the WAB properties hold in some round r a value v will be chosen. Once v is chosen,

3.3. Multi-Coordinated Consensus 31

any learner that finishes r choses v as its new proposal and any agent moving to a round
r’ > r only considers v as a valid proposal. Hence, even if the WAB properties do not hold
in rounds bigger than r, every learner that decides in r’ decides for v.

3.3 Multi-Coordinated Consensus

The Paxos consensus protocol [,] is a well known and largely
studied leader based consensus protocol. When starting each round of Paxos, the leader
checks if any decision was or may still be decided in any previously started round. If
this is the case, then the leader forwards this value to be accepted by the acceptors in
the new round. This inductively ensures that new rounds are always in accordance with
the decisions of previously started rounds. Fast Paxos [] is an extension
of Paxos in which the leader, after determining that no value could have been decided in
previous rounds, delegates to the proposers the task of sending proposals directly to the
acceptors. Hence, in Fast Paxos, the leader can decide to switch back and forth from a
classic Paxos round to a Fast Paxos round. (Henceforth, we refer to Paxos and its rounds as
Classic Paxos and classic rounds.)

In the same way that Fast Paxos extends Classic Paxos with fast rounds, which are
roughly equivalent to R*-Consensus rounds, we can extend Fast Paxos with B*-Consensus-
like rounds. In doing so, we create rounds in which the task of the leader is shared by
multiple coordinators, which never write on disk and therefore can be easily replaced by
another coordinator. Moreover, these new rounds, which we call multicoordinated, do not
require larger acceptor quorums as Fast Paxos does. Hence, we claim that our extended
protocol provides greater availability than Fast Paxos.

The best way to explain our protocol is by starting with Classic Paxos and adding support
to fast rounds, obtaining Fast Paxos, and then multicoordinated rounds. Hence, we start by
explaining Classic Paxos.

3.3.1 Classic Paxos

The rounds of Paxos and Fast Paxos are identified by round numbers (sometimes also called
ballot numbers [1) which are totally ordered by a relation < and in an infinite
number. Although there is a total order among round numbers, the execution of rounds
need not follow this order, and actions referring to different rounds may even interleave.
This is in opposition to our WAB-based consensus protocols, in which a round i is always
followed by round 7 + 1 (although delayed agents may skip some rounds). For now, we
assume that round numbers correspond to the set of natural numbers. In Section 4.4.5 we
discuss another type of round numbers and their interesting properties.

32 Chapter 3. Multicoordinated Consensus

We say that a value is chosen in a round r if a quorum of acceptors has accepted the
value in round r. Because the protocol assumes that Quorum Requirement (Assumption 1,
on page 22) is satisfied, it is ensured that only a single value can be chosen in any round.
In Classic Paxos, a round is divided into two phases: the first phase serves to identify
previously chosen values and the second phase tries to get some value chosen in the current
round. Each phase involves two actions: Phasela, Phaselb, Phase2a, and Phase2b. Actions
Phasela and Phase2a initiate each phase, while the actions Phaselb and Phase2b may be
seen as replies to the previous actions.

To orchestrate round executions, Paxos assumes a set of coordinator processes, besides
proposers, acceptors, and learners. Every round has a single coordinator, responsible for
starting each phase of the round, by executing actions Phasela and Phaselb.!

Two other actions complete the algorithm. The first, Propose, is executed by proposers
to propose a value. The second, Learn, is executed by learners to learn the decision of a
consensus instance.

Figure 3.2 presents the dependencies among actions in each round. It shows that a
learner [can only learn the decision of an instance after the execution of the two phases
of some round i. Besides, a learner / can only learn some value if some proposer p has
proposed it. Observe that the Propose action must happen before the second phase, but not
necessarily before the first phase. The importance of this property will be explained later.

Propose(p,v)

Phasela(c,i) —> Phaselb(a,i) —> Phase2a(c,i) —> Phase2b(a,i) —> Learn(l)

Figure 3.2: Dependencies among actions of proposer p, coordinator ¢, acceptor ¢ and
learner [, for some round i. — is the regular happens-before relation.

We now present an abridged version of the Classic Paxos specification along with a
description of each phase of the protocol. Actions are defined in terms of the set of variables
listed below. The function of each variable becomes clear from the explanation of the
actions. A coordinator ¢ keeps the following variable:

crnd[c] The current round of ¢, which is initially 0.
An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-numbered round « has heard of; initially
0.

In the original protocol, coordinators were drawn from the set of acceptors, not a different set of agents.

3.3. Multi-Coordinated Consensus 33

vrnd[a] The round at which « has accepted the latest value, initially O.
vval[a] The value a has accepted at vrnd[a], initially none.
Each learner [keeps only the value it has learned so far.

learned[l] The value learned by I, initially none.

Proposing a Value

A proposer agent a proposes a value v by executing action Propose(a,v). The action consists
simply of sending a (“propose”, v) message to all coordinators.

Phase One

The coordinator ¢ of round i executes action Phasela(c,i) to start the phase one of i. The
action consists of ¢ sending a message (“1a”, ¢, i) to each acceptor a asking a to take part
in round .

After receipt of message (“l1a”, c,i), acceptor a executes action Phaselb(a,i) to join
round :. a executes the action only if 7 is greater than any other round « has ever heard of,
where o has heard of j if it already executed actions Phaselb(a,j) or Phase2b(a,j). In this
case, a sends an (“1b”, 4, a,vrnd[a],vval[a]) message to ¢, where vrnd[a] is the highest-
numbered round in which « has accepted a value (or the initial state, if no value has been
accepted by a) and vval[a] is the value it accepted in vrnd[a] (or an invalid value none,
if no value has been accepted yet). The pre-condition of this action ensures that after it is
executed for round 7, acceptor a will not execute it for a round j such that j < i. As we
show in action Phase2b, this action also prevents a from accepting a value for a round j
lower than 7. This is a guarantee to ¢ that a will not change its mind about the latest value
accepted in a round number lower than i.

Phase Two

The second phase starts once the coordinator c receives (“1b”, a, i, vrnd, vval) messages for
the same round 7 from all acceptors a in a quorum () and executes action Phase2a(c,1).
In the action, ¢ sends message (“2a”, ¢, i,val) to the acceptors, where val is ¢’s selected
proposal defined as follows. If no “1b” message informed of a previously accepted value,
then c is free to select val among the proposals received directly from proposers. Otherwise,
c must pick a value that has been or might be chosen in a previous round to make sure that
no two different values will end up being chosen. This procedure ensures that if a value
v is chosen in round j, then no acceptor will ever accept a value other than v in a round

34 Chapter 3. Multicoordinated Consensus

Algorithm 4 Classic Paxos
1 Proposer Actions:

A

: Propose(a,v) =
pre-conditions:

a € proposers

A WD

5: actions:
6. send (“propose”, v) to coordinators
7. Phase One:

Phasela(a,i) =
9: pre-conditions:

®

10: a is the coordinator of round i
11 cnd[a] <i

12: actions:

138 send (“1a”, a, i) to acceptors

14: Phaselb(a,i) =
15: pre-conditions:

162 a € acceptors

17: rnd[a] <i

18: received message (“1a”, ¢, 1) from coordinator ¢
19: actions:

20: rnd[a] < i

21! send (“1b”, a, i, vrnd[a], vval[a]) to ¢

bigger than j. Since all coordinators have done the same for previously started rounds,
¢ must consider only the “1b” messages with the highest value of vrnd. Moreover, since
Paxos ensures that no two acceptors can accept different values at the same round, all such
messages are guaranteed to have the same value vval, which ¢ picks up. Hereinafter we use
pick a value when referring to the proposal selection performed by coordinator ¢ during a
Phase2a action, and say that a value is pickable in round i if no other value was or can still
be chosen at any round j < 7. In Algorithm 4, the picking of a value is executed by function
PickValue(c, Q,1).

The second part of phase two of round : is executed by the acceptors in reply to the
(“2a”, ¢, 1, val) message received from c. An acceptor a accepts the proposal val from c
if it has not heard of a round j greater than . The acceptor a then sends a message
(“2b”, a, i, val) to all learners. As we can notice, the fact that an acceptor only accepts
values at round ¢ sent by the coordinator of 7 in a phase “2a” message (which is the same
sent to all acceptors) ensures that no two acceptors accept different values at the same
round.

3.3. Multi-Coordinated Consensus 35

Learning a Value

If a learner [receives (“2b”, a, i, val) from each acceptor a in a quorum, then it knows that
val has been chosen and can be safely learnt. That is, val has been accepted by a quorum of
acceptors and any coordinator that starts a round bigger than 7 will pick val as its proposal.
[learns val by storing it on its learned[l] variable.

Algorithm 4 Classic Paxos (Continued)

27
282
291
30%

31

327

33.

341

351
361
37:
38:
39:
40:
41:
42:
43:
44:

452

46
47
4812
49

50.
51%

Phase Two:

. Phase2a(a,i) =

pre-conditions:

a is the coordinator of round i

crnd[a] <i

1@ : Q is a quorum and Yac € Q, a received (“1b”, ac, 1, rnd, val)
actions:

crnd[a] < i

cval[a] < PickValue(c, Q, 1)

send (“2a”, a, crnd[a], PickValue(c, Q)) to acceptors

PickValue(c,Q,i) =
LET ¥ = CHOOSE val : ¢ received (“1b”, ac, 1, k, val) from some ac € Q :
Vac' € Q,m’ ={“1v”, ac’, i, k’,_) c received from ac’: k' <k
IN IF v 7 none THEN val ELSE CHOOSE v: ¢ received (“proposal”, v) from some proposer

Phase2b(a,i) =
pre-conditions:
a € acceptors
rndla] <i
vnd[a] <i
received message (“2a”, ¢, i, val) from coordinator ¢
actions:
rnd[a] < i
vrnd[a] <« i
vval[a] < val
send (“2b”, a, i, val) to learners

Learn(a) =
pre-conditions:
a € learners
1@ : Q is a quorum and Yac € Q, a received (“2b”, ac, i, val)
actions:
learned[a] < val

36 Chapter 3. Multicoordinated Consensus

Ensuring Liveness

As described in the definition of Phaselb, executing that action for a given round prevents
the same acceptor from executing action Phase2b for any smaller round (See Figure 3.2.). If
different coordinators keep starting new rounds, it may happen that acceptors continuously
execute Phaselb for the new rounds before executing Phase2b for the smaller rounds, and
no value is ever chosen. To ensure liveness, a single coordinator must be entitled to start
new rounds; we call such coordinator the leader. When there is just one agent in the system
that believes itself to be the leader, then it will be able to start a round that is high enough
to overcome all previously started rounds and make it succeed. However, having a single
leader is just a liveness condition; safety is never violated no matter how many coordinators
incorrectly believe themselves to be the leader. (See the complete description of Paxos for
a formal proof of its liveness guarantees [1.)

Skipping Phase One

Since a coordinator sends the value to be accepted only at the beginning of phase 2, the
first phase of the algorithm can be executed before receiving any proposal. On a real
application, probably many consensus instances will be needed, and the leader can execute
phase 1 a priori for all consensus instances. Thus, the amortized latency for solving each
instance becomes only three messages steps if there are no failures and no other coordinator
interferes by starting a higher-numbered round: one step for the proposal to reach the
leader and two more for the second phase of the leader’s current round.

3.3.2 Fast Paxos

Fast Paxos [] is an extension of the classic algorithm in which acceptors may
accept proposals directly from proposers in some rounds, reducing the latency of reaching
a decision in one communication step in good scenarios. There are two main differences
between Fast and Classic Paxos that allow this optimization. First, in Fast Paxos, each round
has its own set of quorums; we call a quorum for round ¢ an i-quorum. The reason for this
is made clear later in this section (see Assumption 3, on page 38). Second, Fast Paxos has
two sorts of round: classic and fast. Classic rounds have the same structure as rounds in
Classic Paxos. Fast rounds share the first phase with classic rounds, but their second phase
differs slightly as we now explain.

Picking a Value in Fast Rounds

In a fast round i, after receiving the “1b” messages from an ¢-quorum, if the coordinator
is free to pick any value, it can delegate this task to acceptors; it does so by picking as

3.3. Multi-Coordinated Consensus 37

placeholder the special value Any and sending it in a “2a” message to the acceptors.

After receiving the “2a” message with the value Any, acceptor a waits for a message
(“propose”, v), in case it has not received one yet, and behaves as if it had received a mes-
sage (“2a”, ¢, i, v) from the coordinator ¢ of round . Hence, for Fast Paxos to work properly,
proposers should send their “propose” messages to both coordinators and acceptors.

In Fast Paxos, acceptors are still bound to accept just one value per round but, differently
from Classic Paxos, different acceptors can accept different values in the same fast round.
Hence, to ensure the property that if a value v is chosen at round 4, then no acceptor will
ever accept a value different from v at any round j such that j > i, we must revisit the rule
used by the coordinator of round ¢ to find pickable values after receiving the “1b” messages
from an i-quorum. That is, we must redefine the PickValue function.

Ensuring Safety with Fast Rounds

To understand how a coordinator picks a value in a fast round i, consider a run of the
algorithm in which the coordinator of ¢ has just received the “1b” messages for i from an
t-quorum (). There are three cases to analyze. First, if none of the received messages
has a valid proposal in the val field, then no value has been or might be chosen at lower-
numbered rounds, since there is no quorum that could have chosen such a value that does
not intersect with (). Therefore, any proposed value is pickable and it is up to ¢ to decide
whether to pick one or to let proposers propose directly.

If the first case does not apply, then let k& be the greatest value for rnd received amongst
the phase “1b” messages. If all messages in which rnd = k report the same value v as val,
it might be the case that v was or will be chosen at a round 5 < k Because the coordinator
of k was also aware of this fact, v is the only value that it could have sent to the acceptors.
Moreover, since any k-quorum must intersect () and acceptors a in () are sure to have
executed action Phaselb(a,i) for round i (i > k), no value different from v can be chosen
at k. Therefore, the coordinator can safely pick v in 1.

Now consider the third case, in which more than one value has been reported in the
phase “1b” messages with rnd = k (k still being the greatest value for vrnd reported in the
“1b” messages). This implies that the coordinator of k£ could pick any value and, hence, no
value was chosen or will be chosen at a round lower than k. As a result, the coordinator
must only figure out which of the values has been or might yet be chosen in k. There are
three subcases to consider with respect to the “1b” messages received with rnd = k:

1. There is no value v and k-quorum R such that, for every acceptor ¢ in ¢ N R, a
message (“1b”, a, i, k, v) was received from a. This implies that no value v has been
or might be chosen at £ since no k-quorum has even partially agreed on a value v at
k. In this case, any proposed value is pickable.

38 Chapter 3. Multicoordinated Consensus

2. There is only one value v such that, for some k-quorum R, a message of the form
(“1b”, a, i, k, v) has been received from every acceptor a in () N R. This means that
only value v has been or might be chosen at k£ depending on what the other acceptors
have accepted or might still accept. In this case, only v is pickable.

3. There are two different values v and w and two k-quorums R and S such that, for
every acceptor ¢ in () N R, a message (“1b”, a, 1, k, v) was received from a, and, for
every acceptor b in (NS, a message (“1b”, b, i, k, w) was received from b. This means
that either one of the values has been chosen or might still be chosen depending on
what the other acceptors in R and S accept at k. By the quorum requirement, R and
S have a non-empty intersection, which prevents both values from being chosen, but
if this intersection does not intersects (), then i’s coordinator cannot decide which
value is pickable. This case is depicted by Figure 3.3,

Figure 3.3: () is an s-quorum, R and S are k-quorums, and v and w are the values accepted
by acceptors in ¢ NS and Q) N R.

The way to avoid the third case is by strengthening the assumption made on the in-
tersection of quorums and making sure that the intersection of any two quorums R and S
as shown in case 3 above also intersects (). If this is ensured, the situation discussed in
case 3 will never happen. The Simple Quorum Requirement in Assumption 2 would suffice
here, but as we mentioned when defining it, it is stronger than really needed. The reason
is that it forces any three quorums to intersect. It was reasonable to make this requirement
for R*-Consensus, since it only has “fast” rounds. In Fast Paxos, which has classic and fast
rounds, the following requirement is enough:

Assumption 3 (Fast Quorum Requirement) For any rounds i and j:
e If Q is an i-quorum and S is a j-quorum, then Q N S # 0.

e If Q) is an i-quorum, R and S are j-quorums, and j is fast, then QN RN S # 0.

3.3. Multi-Coordinated Consensus 39

In the general case, this stronger assumption requires bigger quorums. If every set of
n — F acceptors is a quorum for a fast round (fast quorum, for short) and every set of n — F
acceptors is a quorum for a classic round (classic quorum), where n is the total number of
acceptors, then n must be greater than 2F + F' as well as greater than 2F'. These constraints
are achieved, for example, if every set of L%”J + 1 acceptors is a fast and classic quorum.
If classic quorums are defined to be any majority of acceptors, fast quorums must be as big
as PTHJ + 1 acceptors. It has been shown that any asynchronous consensus protocol that
allows a decision to be reached in two communication steps must satisfy similar quorum
requirements |] (Fast Learning Theorem).

Collisions and Collision Recovery

If two different values v and w are proposed in the same fast round ¢, it may be that none
gets chosen, even in the absence of failures or suspicions, due to collisions [1.
A collision happens when the acceptors of a fast quorum accept different values. In pes-
simistic scenarios, collisions will prevent any value from being chosen in a fast round. If
part of the acceptors accept v, part accept w, and the remaining never accept anything.
There are three ways to break the tie and recover from a collision, and all reduce to exe-
cuting a higher-numbered round. However, depending on how this new round is chosen,
latency can be reduced considerably.

Let us assume a collision has happened at round <. The simplest approach has i’s co-
ordinator ¢ to monitor the acceptors’ phase “2b” messages and start a new round from the
beginning after it learns the collision has happened. This approach is expensive as it takes
four communication steps to recover from the comflict.

Assume now that numbers are discrete, that is, for any round i it is possible to deter-
mine the round / such that there is no round j, : < j < [. For simplicity, we refer to the
round subsequent to ¢ simply as ¢ + 1. If, besides being the coordinator of i, ¢ is also the
coordinator of i 4+ 1, then ¢ can exploit the fact that the information in “2b” messages sent
for round i is essentially the same that would be sent in “1b” messages for round i + 1 if
c sends “l1a” message for i. Hence, ¢ may skip the first phase and proceed directly to the
second phase of round ¢+ 1, incurring only two communication steps for collision recovery.
This second approach is called coordinated recovery.

As an extension of coordinated recovery, if round i’s “2b” messages are also sent to
the set of acceptors, they can try to guess the coordinator’s “2a” message for round i +
1. They do that by interpreting these “2b” messages for round 7 as “1b” messages for
round ¢ + 1 and applying the same algorithm that the coordinator uses to pick a value for
a phase “2a” message; as seen before, this algorithm is guaranteed to return a pickable
value. The acceptors then simulate the reception of a “2a” message with such a value.

40 Chapter 3. Multicoordinated Consensus

The advantage of this method is that it takes only one communication step to recover from
collisions. However, because there is no guarantee that the acceptors will pick the same
value, round 7 + 1 is required to be fast, allowing acceptors to accept different values but
risking in a new conflict. This third approach is called uncoordinated recovery. As explained
in [1, some strategies can be used to try to make them accept the same
value.

Observe that a run of Fast Paxos with only fast rounds that succeed each other by unco-
ordinated recovery is equivalent to running the R*-Consensus algorithm.

3.3.3 Multi-Coordinated Rounds and Coord-Quorums

While the expected latency of Classic Paxos is just three communication steps, in good runs,
this number quickly increases when the coordinator must be replaced. Although at a first
glance, the costs in replacing it consists only in the two communication steps needed to
execute the first phase of another round of the protocol, this is not necessarily true. In
large distributed systems, it is likely that just some of the nodes take part in the failure
detection to minimize its cost. Moreover, efforts have been made to make failure detection
as quiescent as possible []. These and other factors may impact on how
fast a new leader can be elected and new decisions can be reached. Therefore, relying on a
leader can significantly impact on the availability of a system implementing this approach.
In the Chubby lock service, for example, nodes run Classic Paxos to agree on leases to other
services; even though all nodes running the service are inside the same cluster, failures of
the leader account for most of the system downtime [].

On the one hand, the fast rounds of Fast Paxos seem to solve the problem: they do
not depend on a leader during normal execution and even reduce the expected latency
to learn a decision in good runs in one communication step. On the other hand, their
stricter requirements on quorum sizes may limit the overall resilience of the system and
hurt performance. Remember that with fast rounds the number of acceptors must be bigger
than 2F + F' (c.f. Assumption 3).

We propose a different approach to minimize the dependency on the leader: to extend
classic rounds to have multiple coordinators, making them more reliable while maintaining
their latency and the same acceptor quorum requirements.

This multicoordination approach stems from the realization that the tasks of pre-accepting
and of accepting values in the B*-Consensus protocol, presented in Section 3.2, serve very
different purposes. Pre-acceptances are meant to filter proposals only, but not choosing
them; choosing happens at the acceptance stage. These two tasks are exactly what coordi-
nators and acceptors do in Classic Paxos.

In the next sections we present a multicoordinated consensus protocol that extents the

3.3. Multi-Coordinated Consensus 41

Fast Paxos protocol with multi-coordinated rounds. The resulting protocol can switch from
classic, to fast, to multi-coordinated rounds to adapt to changes in the environment. Hence,
our protocol can be seen as a synergy of B*-Consensus and Fast Paxos.

In Chapter 4 we present a similar multi-mode protocol that solves the more complex
Generalized Consensus Problem, in which processes agree not on a single value but on a
continuously growing sequence of them, and give an instantiation of the protocol to solve
the Generic Broadcast problem [1.

Coordinator Quorums

In our protocol, rounds are still classified as in Fast Paxos, according to their minimum la-
tency: classic rounds, if they require three messages steps to finish, or as fast rounds, if they
may finish in two steps. However, in our extended protocol we relax the assumption that
each round has a single coordinator. All coordinators of a round perform the same tasks.
We divide the set of coordinators in coordinator quorums for rounds 7, or ¢-coordquorums
for short. We say that c is a coordinator of round i if it belongs to any i-coordquorum.

We change the behavior of the acceptors to accept a value v in a round ¢ only if such
value has been received from all coordinators in some i-coordquorum. Hence, the original
Classic Paxos rounds, with a single coordinator, are simply multicoordinated rounds with a
single one-element quorum of coordinators. Moreover, as discussed in Sections 3.3.1 and
3.3.2, in Classic and Fast Paxos, coordinators rely only on one value being accepted in any
classic round when they pick values. This invariant must also be kept in our multicoordi-
nated rounds in spite of coordinators being allowed to send different values to be accepted
by acceptors. We do so by requiring all coordinator quorums of a round to intersect, as
stated by the assumption below.

Assumption 4 (Coord-quorum requirement) For any two quorums of coordinators P and
Q for the same classic round, PN Q # 0.

Fast rounds can have multiple coordinators and Assumption 4 would place no restriction
upon them. However, since fast rounds are meant to avoid coordinators during normal
execution, we see no reason to have something different from a single coordinator for them
except in some very specific scenarios which we discuss in Section 4.4.4.

3.3.4 Algorithm

We now present the complete multicoordinated consensus algorithm. It is defined in terms
of the same variables as Fast Paxos, which we repeat below for completeness.
A coordinator ¢ keeps the following variable:

42 Chapter 3. Multicoordinated Consensus

crnd[c] The current round of c. Initially O.
An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-numbered round « has heard of. Initially
0.

vrnd[a] The round at which a has accepted the latest value. Initially 0.
vval[a] The value a has accepted at vrnd[a]. Initially none.
Each learner [keeps only the value it has learned so far.

learned[l] The value learned by /. Initially none.

Proposing a Value

As in Fast Paxos, proposals are sent to both coordinators and acceptors to allow the ex-
ecution of fast rounds. To minimize communication overhead, proposals may be initially
sent only to a quorum of coordinators and a quorum of acceptors. Observe that this is only
possible if multiple rounds share the same coordquorums and acceptor quorums, otherwise
proposers would not know where to send proposals, since they are oblivious to rounds.

Phase One

In the multicoordinated consensus protocol, any coordinator ¢ of a round 7 may start the
round by sending a (“1a”, ¢, i) message to the acceptors, asking them to take part in round
i. This happens in action Phasela(c,1).

In reply, an acceptor a executes Phaselb(a,i), as in the other Paxos protocols, if it has
not heard of any round bigger than i, as stated in the pre-conditions of the action. In this
case, a joins round ¢ by setting rnd[a] to i, and sends a message (“1b”, a, 7,vrnd[a],vval[a])
to all the coordinators of round i, where vrnd[a] is the highest-numbered round in which
a has accepted a value, and vval[a] is the value it accepted in vrnd[a]. If no value has
been accepted by a yet, then vrnd[a] equals its initial state and vval[a] equals an invalid
proposal, none.

By the pre-condition that rnd[a] < a and because the action sets rnd[a] to ¢, once exe-
cuted for 7, this action can only execute again for a bigger round number. Moreover, it also
forbids the execution of action Phase2b for a round smaller than .

3.3. Multi-Coordinated Consensus 43

Algorithm 5 Multicoordinated Consensus
1: Proposer Actions:

A

: Propose(a,v) =
pre-conditions:

a € proposers

A wWwN

s: actions:
6. send (“propose”, v) to coordinators U acceptors
7. Phase One:

s: Phasela(a,i) =
9: pre-conditions:

10: a € | Ji-coordquorum

11: crnd[a] <i

12: actions:

138 send (“1a”, a, i) to acceptors

14: Phaselb(a,i) =
15: pre-conditions:

16: a € acceptors

17: rnd[a] <i

18: received message (“1a”, ¢, i) from coordinator ¢
19: actions:

20: rnd[a] < i

21: send (“1b”, a, i, vrnd[a], vval[a]) to ¢

Phase Two

To start the second phase of round 7, coordinator ¢ executes action Phase2a(c,i) once it has
received (“1b”, a, 1,vrnd,vval) messages from every acceptor « in an i-quorum () and only
if it has not executed Phase2a(c,) already. In this action, ¢ sends a (“2a”, ¢, i, val) message
to the acceptors, where val is the value picked by ¢ to be accepted by the acceptors. val
is picked according to the “1b” messages ¢ received from acceptors in) in round :. This
procedure is defined as function PickValue(c, Q, 1) in Algorithm 6, and explained below:

* If none of the “1b” messages received from acceptors in () has a value different from
the invalid proposal none, then they have not and will not accept any value for any
round j < ¢. Since any j-quorum R must intersect (), by Assumption 1, no such
a quorum has or will succeed in choosing any value in j. Hence, ¢ can pick any
proposed value.

Otherwise, if some valid value was received by c, let k be the greatest round number vrnd
received amongst the “1b” messages received by c.

* If there exists a value v such that, for some k-quorum R, c received message (“1b”, a, i, k, v)

44 Chapter 3. Multicoordinated Consensus

Algorithm 5 Multicoordinated Consensus (Continued)
22: Phase Two:

2: Phase2a(c,i) =

240 pre-conditions:

1 ¢ € |Ji-coordquorum

26: crnd[c] <i

27: 1Q : Q is a quorum and Ya € Q, c received (“1b”, a, 1, rnd, val)
28 actions:

29: crnd[c] « i

30: cval[c] « PickValue(c, Q,1)
31: send (“2a”, ¢, crnd[c], PickValue(c, Q, 1)) to acceptors
32: PickValue(c, Q,1) is defined in Algorithm 6.

331 Phase2b(a,i) =
34: pre-conditions:

35 a € acceptors

36: rnd[a] <i

37: vrnd[a] < i

38 3C,val : C is an i-coordquorum and V¢ € C a received (“2a”, ¢, i, val) from ¢
39: actions:

40: rnd[a] < i

41: vrnd[a] < i

42: IF v # Any THEN wal[a] « val

43: ELSE Vvval[a] < CHOOSE v: a received (“propose”, v) form some proposer

44: send (“2b”, a, i, val) to learners

st Learn(l) =
4: pre-conditions:

47: [€ learners

48: 3@ : Q is a quorum and Yac € @, a received (“2b”, ac, i, val)
49: actions:

50: learned[l] « val

from every acceptor in ¢ € RN @, then c¢ picks v, since it may have been chosen by
the acceptors of R.

* If no such a value exists, then ¢ can pick any proposed value.

In the first and third cases, in which any value may be picked, if 7 is a fast round then
¢ can pick the special value Any, which tells acceptors to accept proposals directly from
proposers.

Once a round starts, it is on the interest of all agents to have it succeed. Hence, any
coordinator of round ¢ can start this round’s second phase even if it did not start phase
one and as long as it has received the “1b” messages required to execute action Phase2Za.

3.3. Multi-Coordinated Consensus 45

Algorithm 6 PickValue(Q) in Multicoordinated Consensus
1: PickValue(c,Q,1) =
2 LET k = CHOOSE r : ¢ received (“1v”, a, 4, r,-) from some a € @ and
Va' € Q,m =(“1b”,d’,4,7’,_) c received from a’: v’ < r}
3: rAcceptors(S,r) = {a:a € S and ¢ received (“1b”, a, 4, r,_) from a
rVals(S,r) = {v: ¢ received (“1b”, a,i,r, v) from a € S}

4
52 IN

6: IF AR, v # none : R is an i-quorum and Q N R € rAcceptors(Q, k) and rVals(Q N R, k) = {v}
7. THEN v

8 ELSE IF ¢ is a fast round THEN Any

9 ELSE CHOOSE v: received (“proposal”, v) from some proposer

This approach allows a round to finish even if the coordinator that just started it becomes
unavailable.

Acceptors accept values by executing action Phase2b(a,i), as in Fast Paxos. The only
difference is that in our multicoordinated consensus this action is enabled if ¢ has not
heard of a round greater than 7 and has received a message (“2a”, ¢, i,val) coming from
all coordinators in some i-coordquorum with the same value val. If i is a fast round and
val = Any, then a can accept any value sent in a “propose” message. If 7 is classic and,
therefore, val # Any, then a accepts val. After accepting value v, a sends the message
(“2b”, 4, v) to all learners.

Learning a Value

Learning a value happens exactly like in Fast and Classic Paxos. That is, a learner | executes
action Learn(l) when it receives a (“2b”, a, i, val) message from each acceptor a in an i-
quorum. The messages imply that val has been chosen and / can learn it by attributing it to
variable learned|[1].

3.3.5 Correctness and Liveness

From the explanation of our multicoordinated consensus algorithm, it should be clear that
it satisfies the safety properties of consensus mainly because, as Fast and Classic Paxos, it
ensures that rounds are consistent with previous decisions. It may seem that this is harder
to ensure in a multicoordinated round, since any of its coordinators can start the round, but,
in fact, the complexity is exactly the same. In a multicoordinated round, a proposal will be
accepted by an acceptor only if a quorum of coordinators has forwarded such a value. Since
all coordinator quorums intersect, only one value is accepted in such rounds. Coordinators
of rounds executed afterwards only contact the acceptors, as in the other versions of the
protocol, and are not influenced by the multiple coordinators of lower rounds.

46 Chapter 3. Multicoordinated Consensus

Regarding liveness, since our protocol is an extension of Fast Paxos and, as such, can
switch to single-coordinated rounds at any moment, it can ensure liveness under the same
conditions of Classic Paxos. That is, if a quorum of acceptors, a coordinator, a proposer,
and learner do not crash, then the learner will eventually learn the decision if there is
a single coordinator that believes itself to be the leader and the proposer proposes some
value. Nonetheless, it is interesting to understand what conditions allow a multicoordinated
round to finish.

Roughly speaking, a multicoordinated round ¢ will finish if its coordinator choses co-
ordquorums such that at least one coordquorum is composed of non-crashed coordinators,
no other round is started, and some proposal is made.

Because our consensus protocol is, in fact, a simplified instance of a more complex
protocol which we present in Chapter 4, satisfying the liveness conditions of the latter
will also satisfy the first’s. Hence, we defer a formal discussion about liveness when using
multicoordinated rounds to Section 4.4.7, where we formalize the liveness requirements of
the more complex protocol.

3.4 Final Remarks and Related Work

The literature on consensus algorithms is very extensive and some of which has been dis-
cussed in the first section of this chapter. For these reasons, here we focus on the work that
is closely related to ours, specially with regards to using spontaneous ordering.

Spontaneous ordering (or weak ordering oracles) and consensus algorithms using it
were introduced by Pedone et al. [,]. Their algo-
rithms, however, assumed crash-stop failures and reliable channels. In this chapter we have
presented improved versions of their algorithms that allow agents to recover after crashes
and messages to be lost, namely B*-Consensus and R*-Consensus. Moreover, we specify
the algorithms based on the specific roles played by the agents. B*-Consensus takes three
communication steps to reach a decision and requires a majority of stable processes to en-
sure progress. R*-Consensus can decide in two communication steps, but requires more
than two thirds of stable processes for progress. Both algorithms are optimal in terms of
communication steps for the resilience they provide.

The problem of consensus in the crash-recovery model was previously studied in various
other works [, , , ,

,]. In all of these approaches, the asynchronous

model was extended with unreliable failure detection or leader election oracles.

Fast Paxos [] is a hybrid algorithm with two round modes,
one that uses spontaneous ordering (fast), roughly equivalent to R*-Consensus, and an-
other that uses a leader election oracle (classic). In the last parts of this chapter we have

3.4. Final Remarks and Related Work 47

introduced an extension to Paxos with another mode that also uses spontaneous ordering,
namely, the multicoordinated mode. In the same way that fast mode is related to R*-
Consensus, the multicoordinated mode is related to B*-Consensus. That is, it is possible to
simulate a run of B*-Consensus with the multicoordinated mode.

Aguilera et al. [] have shown that, if the number of agents that
never crash (“always-up processes”) is bigger than the number of processes that eventually
remain crashed or that crash and recover infinitely many times, then consensus is solvable
without stable storage; without this assumption stable storage is required. As we do not
bound the number of processes that are allowed to crash, our algorithms must use stable
storage. Nonetheless, B*-Consensus and R*-Consensus use stable storage sparingly and
minimizing the actions execution time. The algorithms of Dolev et al.[]
and Oliveira et al.[] do exactly the opposite: they keep all their vari-
ables in stable storage. Aguilera et al.’s algorithm that relies on stable storage keeps just part
of the state in memory and also writes on stable storage twice per round [

Although the fast and multicoordinated modes may be seen as generalizations of R*-
Consensus and B*-Consensus, respectively, the stable storage usage of our multicoordinated
consensus protocol is wiser. First, coordinators never write on disk, since the number of co-
ordinators is not limited in the protocol and, hence, a failed coordinator can completely
forget its state and recover as a new one. Second, acceptors seldom have to write on disk
in the first phase, as we will show in the next chapter, in Section 4.4.5.

Lamport [] has summarized several lower bounds on how fast a fault-
tolerant consensus algorithm for asynchronous systems can be in terms of communication
steps. Roughly, if any value proposed by two or more proposers can be decided within
two communication steps, then less than a third of the acceptors can be unstable. To be
able to decide in three communication steps less than half of the acceptors can be unstable.
B*-Consensus, R*-Consensus, and consequently the fast and multicoordinated modes meet
these bounds. The classic mode of Classic Paxos may decide in two communication steps
and still tolerate permanent failures of any minority. However, only the value proposed by
the round’s coordinator can be decided in two steps; deciding on a value proposed by other
processes requires at least one message step more. This becomes obvious when considering
that the classic mode is, in fact, a particular instance of the multicoordinated mode.

Hurfin et al. [] presented an algorithm that has the same message
pattern as Paxos when phase one is skipped. Because it uses round robin to select the
coordinators (the rotating coordinator paradigm) the decision may be delayed when a co-
ordinator crashes and the successive one, according the round robin, is already crashed.
Compared to our multicoordinated consensus, the protocol also lacks the ability to dynam-
ically switch between execution modes. Aguilera et al.’s algorithm []
is also f < n/2 resilient and reaches decision within three communication steps, from the

48 Chapter 3. Multicoordinated Consensus

point of view of the coordinator.

Finally, Aguilera and Toueg [] have proposed a hybrid binary
algorithm (proposals are 0 or 1) that mixes failure detection and randomization to reach
consensus. The algorithm works as a series of classic rounds but in which the coordinator
selects a random bit when it is possible to pick any value. It is not clear how such an
approach would improve over the selection of a proposed value in non-binary consensus.

In summary, in this chapter we presented practical crash recovery WAB-based algo-
rithms and generalized one of them into a multicoordinated mode for a hybrid consensus
protocol. The multicoordinated mode increases the availability of the protocol by repli-
cating round coordinators. Although it replicates coordinators, the multicoordinated mode
does not diminishes the maximum number of permanent failures in the protocol, differently
from the fast mode; replicated coordinators do not need to be recovered, and are discarded
if suspected to have failed.

While improving the availability of a single consensus instance may be a minor im-
provement, it is just a logical step to improving the availability of long living protocols for
atomic and generic broadcast, or generalized consensus. In the next chapter we show how
to apply the technique into protocols for such problems and discuss practical aspects of the
multicoordinated mode.

Chapter 4

Multicoordinated Generalized Consensus
and Generic Broadcast

4.1 One Problem to Rule Them All

Many applications can be implemented on top of total order (or atomic) broad-
cast [], which enforces agreement on an ever growing se-
quence of values. One approach to solving this problem is to use infinitely many con-
sensus instances, one for each position in the sequence. Using a fast algorithm in each
instance is prohibitive due to collisions, which may happen even during the stable periods
of executions—i.e., without failures or suspicions. In a state machine replication scenario,
for example, a collision may happen if two commands are proposed concurrently to the
same instance of consensus. In many systems, however, commands may commute and
there is no need for totally ordering them since the final state is the same independently
of the order in which they are applied. Consensus, as applied to state machine replication,
is too strong to capture this notion and a collision may happen even if the two concurrent
proposals are commutable.

Generic Broadcast [,] is a general-
ization of atomic broadcast in which agents agree not on a sequence, but on a partial order
of commands. The partial order must be such that any pair of conflicting commands are
ordered, where two commands are conflicting according to some meaningful conflict re-
lation (e.g., if they do not commute). A generic broadcast protocol may harness such a
conflict relation to mitigate the effects of collisions and efficiently implement state machine
replication. By defining the conflict relation such that any or no pair of commands conflict,
generic broadcast becomes atomic broadcast or reliable broadcast, respectively.

An even more general problem, Generalized Consensus, is defined in terms of a data
structure called command structure, or simply c-struct. The basic operation performed on a

49

50 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

c-struct is appending commands to it. Depending on the c-struct instantiated, generalized
consensus solves a different agreement problem. Reliable broadcast, for example, is an in-
stance of Generalized Consensus whose c-structs are simple sets. Limit the set’s cardinality
to one and the problem degenerates to consensus; add ordering to the set and the problem
becomes generic or atomic broadcast.

Multicoordinated Paxos

We are aware of only one generalized consensus protocol, by Lamport | 1.
This protocol, namely Generalized Paxos, is based on Fast Paxos and inherits its two execu-
tion modes. As a result, Generalized Paxos suffers from the same availability limitations of
Fast Paxos when compared to our multicoordinated consensus: it either relies on a leader
or requires bigger acceptor quorums. Again as Fast Paxos, Generalized Paxos is amenable to
multicoordinated execution or, equivalently, our multicoordinated consensus is amenable
to “generalization”. In the next section we present our multicoordinated version of Gener-
alized Paxos, namely Multicoordinated Paxos.

Besides its generality, Multicoordinated Paxos has some interesting features from a prac-
tical point of view:

* it allows an infinite number of coordinators to be used in a run, which completely
eliminates the need to recover these agents;

* it allows very efficient usage of stable storage, as coordinators do not write on disk
(since they are not recovered), and acceptors only write once per round in the absence
of failures, even if wrong failure suspicion happens; and,

* it allows load balancing at the coordinators and acceptors.

We discuss these and other topics in Sections 4.4.3-4.4.6.

Since Multicoordinated Paxos solves Generalized Consensus, with an appropriate c-
struct it also solves Generic Broadcast. In Section 4.5, we introduce one simple but power-
ful appropriate c-struct. To the best of our knowledge, there are three extensions to the
original generic broadcasts algorithm [], those of Pedone and
Schiper [], Aguilera et al.[], and Zielinski
[]. We compare Multicoordinated Paxos with these works in Section 4.6.

4.2. Generalized Consensus 51

4.2 Generalized Consensus

4.2.1 C-Structs

Before presenting Multicoordinated Paxos, we formally define c-structs and the Generalized
Consensus problem. The definitions and notation used here are borrowed from Lamport’s
work [].

A c-struct set CStruct is defined by a tuple (Cmd, 1,e), where Cmd is the set of com-
mands that compose the c-structs of CStruct, L is a “null” c-struct, and e is an operator that
appends a command from Cmd to a c-struct of CStruct, and by a set of five axioms listed
later. More generally, a c-struct v is in CStructif v=_1e C and C € Umd,orifv=we C,
w € CStruct and C' € (U'md. For example, one could create a c-struct set where c-structs are
subsets of Cmd, L is the empty set, and v e (' simply adds element C to the current value
of v. Another c-struct set could have c-structs as partially ordered sets, L as the empty set,
and v e (' as an operation that extends partially ordered set v with command C' by making
(' succeed (with respect to the partial order) any conflicting element of v, given an external
conflicting relation over Cmd—a c-struct set that could capture the notion of commutable
commands.

Before we present the five axioms of a c-struct set, some definitions are necessary. A
finite sequence with elements C;, is represented by (C}, C,,..., C,,). Seq(S) is defined to be
the set of all (finite) sequences whose elements are in the set S (with possible repetitions
of elements in the sequence). Moreover, we use the term c-seq when referring to a finite
sequence of commands—that is, an element of Seq(Cmd). We can now extend the operator
e to a c-struct v and a c-seq (C},..., C,,) as follows:

v if m=0,

ve(Crees Cn) = { (veC))e((C,,...,C,) otherwise

We say that c-struct w extends c-struct v or v is a prefix of w, and note as v T w, iff
there exists a c-seq o such that w = v @ o. Given a set T of c-structs, we say that c-struct
v is a lower bound of T iff v C w for all w in T. A greatest lower bound (glb) of T is a
lower bound v of T such that w E v for every lower bound w of 7', and we represent it
by MT. Similarly, we say that v is an upper bound of T iff w E v for all w in T'. A least
upper bound (lub) of T is an upper bound v of T such that v E w for every upper bound
w of T, and we represent it by LIT. If C is a reflexive partial order on the set of c-structs
and a glb or lub of T exists, then it is unique. For simplicity of notation, we use v M w and
v U w to represent M{v, w} and U{v, w}, respectively. Two c-structs v and w are defined to
be compatible iff they have a common upper bound, and a set S of c-structs is compatible
iff its elements are pairwise compatible.

52 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

We say that c-struct v is constructible from a set P of commands if v = 1 e o, for some
c-seq o containing all elements of P. Moreover, we say that v contains command C if v is
constructible from some set P of commands such that C' € P. We define Str(P) to be the
set of all c-structs constructible from subsets of P for some set P of commands—that is,
Str(P) = {Leo : 0 € Seq(P)}.

A c-struct set CStruct must satisfy the five axioms below.

CS0. VC € Cmd, w € CStruct : we C € CStruct

CS1. CStruct = Str(Cmd)

CS2. C is a reflexive partial order on CStruct.

CS3. For any set P C Cmd and any c-structs u,v, and w in Str(P):

* vMuw exists and is in Str(P).
 If v and w are compatible, then v LI w exists and is in Str(P).

o If {u, v, w} is compatible, then u and v Ll w are compatible.

CS4. For any command C € Cmd and compatible c-structs v and w in CStruct, if v and w
both contain C' then v M w contains C.

CS0-CS2 are basic requirements to satisfy the properties just described. CSO says that by
extending any c-struct in CStruct with any command in the respective Cmd set, the obtained
result is a c-struct in CStruct; CS1 requires c-structs to be well formed; and CS2 forces any
CStruct set to have a glb and a lub. CS3 and CS4 are necessary for Generalized Paxos and
similar algorithms to ensure the safety and liveness properties of Generalized Consensus,
described next. Roughly, CS3 says that the lower bound of any two c-structs only contains
commands contained in the two c-structs; the same is valid for the upper bound, if it exists.
CS4 states that the upper bound of two c-structs contains all their commands in common.

4.2.2 Problem Definition

We can now generalize the original definition of consensus to deal with a c-struct set instead
of single absolute values. The problem is defined in terms of a c-struct set CStruct which,
as shown in the previous section, is based on a null value 1, a set Cmd of commands,
and an operator e. Proposers propose commands in Cmd and we let learned[l] be the c-
struct learner [has learned (initially 1). Generalized Consensus is defined by the following
properties:

Nontriviality: For any learner [, learned[l] is always a c-struct constructible from some
subset of the proposed commands.

4.3. Generalized Paxos 53

Stability: For any learner [, if the value of learned[l] at any time is v, then v C learned[l]
at all later times.

Consistency: The set {learned[l] : [is a learner} is always compatible.

Liveness: For any proposer p and learner [, if p, [, and a quorum () of acceptors are
nonfaulty and p proposes a command C, then learned[l] eventually contains C.

4.3 Generalized Paxos

Generalized Paxos is an extension of Fast Paxos to solve Generalized Consensus. The algo-
rithm has the advantage that, by the problem definition, a collision is not characterized if
two acceptors accept different but compatible c-structs. In such a case, both acceptors can
later extend their accepted c-structs so that they converge to the same one (since compati-
ble c-structs have a common upper bound). C-struct sets like command histories with com-
mutable commands, explained in Section 4.5, might have very few incompatible c-structs,
which reduces the chances of a collision to happen and favors the use of fast rounds.

Generalized Paxos relies on the Fast Quorum Requirement (Assumption 3, on page 38).
It assumes that acceptors have initially accepted L at round 0, lower than any other round.
Since Multicoordinated Paxos extends Generalized Paxos, we just overview the protocol’s
actions in here and explain them in detail when discussing Multicoordinated Paxos. Gener-
alized Paxos has the following actions.

Propose(p, C) Executed by proposer p to propose command C' € Cmd. In the action, p sends
a (“propose”, C') message to all coordinators and acceptors. (The same as in Classic
Paxos.)

Phasela(c,i) Executed by any coordinator ¢ of round i to start round 7. In the action, ¢
sends a message (“1a”, ¢, i) to each acceptor a asking a to take part in round 4. (The
same as in Classic Paxos, except that values are now c-structs.)

Phaselb(a,i) Executed by acceptor a to join round 7 upon reception of message (“1a”, i),
if 1 is greater than any other round a has ever heard of. In this case, a sends a mes-
sage (“1b”, a, i,vrnd,vval) to the coordinator of round ¢, where vrnd is the highest-
numbered round in which « has accepted a c-struct and vval is the c-struct it accepted
in vrnd. As before, this action also prevents a from executing the same action for a
round smaller than or equal to 7, and from accepting a c-struct for a round smaller
than . (The same as in Classic Paxos.)

54 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

Phase2Start(c,i) In this action, coordinator ¢ of round i, after receiving a “1b” message
for round ¢ coming from each acceptor in an i-quorum (), picks a c-struct and sends
it to acceptors to be extended during the round. Picking a c-struct in Generalized
Consensus is like picking a value in Fast-Paxos or in our multicoordinated consensus
algorithm: if the c-struct was possibly chosen in some round j < i, the c-struct must
be picked. As before, a c-struct is said to be chosen if it was accepted by all acceptors
of some quorum of any round. The difference is on what accepted means. In the Clas-
sic Paxos, acceptors accept single values, but in Generalized Paxos, when an acceptor
accepts a c-struct, it automatically accepts all of its prefixes. Hence, when picking a
value, the coordinator must consider not only the complete c-structures accepted, but
also their prefixes.

Suppose for example that ¢ has received (“1b”, a, 7, j, v,) messages from a quorum
of three acceptors a;,1 < k < 3. Also, assume for simplicity that the c-struct used is
a total order of commands, easily represented by a sequence, and that the messages
had the following c-structs: v, = (a, b, c, e, f), v, = (a, b, ¢c,d) and v3 = (a, b, c, €, d).
Observe that, since the three acceptors form a quorum, both the sequences (a), (a, b)
and (a, b, ¢) were chosen and might have been learned. Hence, ¢ is obliged to pick
the three c-structs to use in the second phase of the algorithm. Hence, ¢ picks the
longest c-struct, of which the others are prefixes; in fact, (a, b,) is the longest prefix
of all received c-structs.

Suppose now that there is another quorum in the system, formed by acceptors a,, as,
and a,. The two quorums are represented graphically in Figure 4.1, below. If q,
has accepted any sequence in round k that extends (a, b, ¢,), then such a sequence
was also chosen and should be picked by c. Since ¢ never heard from q,, it has no
option but to behave safely and pick sequence (a, b, ¢,). Since a; and ay disagree
about which command should be the fifth in the sequence, (a, b, ¢, €) is the shortest
sequence that extends all possibly chosen sequences.

Generalizing from the previous two paragraphs, once the coordinator receives the
“1b” messages from a quorum of acceptors, it picks the c-struct that extends the
largest prefix of the c-structs seen (i.e., its glb), which was already chosen, and their
smallest possibly chosen extensions (lub). This c-struct is then sent to the acceptors
to ensure that if a c-struct v has been chosen at some round j and w is accepted by
some acceptor at a higher-numbered round, then v C w. As before, for coordinator c
to gather the set of all possibly chosen c-structs in previous rounds, it suffices to look
at the “1b” messages with the highest-numbered vrnd value. More formally, let £ be
such a round number. There are only two cases to consider.

4.3. Generalized Paxos 55

_______________ {a,b,cen)

peE—— E =3

{a,b,c,d)

(a,b,c.e,

Figure 4.1: A system of four acceptors and their accepted values. The two marked sets of
acceptors constitute quorumes.

First, if there is no k-quorum R such that, for every acceptor a in RN (), ¢ has received
a “1b” message from a with vind = k, then c is assured that no c-struct has been or
might be chosen at k. Moreover, the algorithm ensures that if a c-struct v has been
chosen at a round j < k, then any value w accepted at k satisfies v C w. Therefore, c
can pick any c-struct received in one of the “1b” messages in which vrnd = k.

If the first case does not apply, then, for every k-quorum R such that ¢ has received
a “1b” message with virnd = k from every acceptor in R N @), ¢ calculates the glb
of the c-structs vval received in such messages and adds it to a set I" initially empty.
After that, I" will contain all c-structs that have been or might be chosen at lower-
numbered rounds. The second condition of the Fast Quorum Requirement ensures
that I" is compatible and, therefore, has a least upper bound LI" that can be safely
picked by c.

After picking a c-struct val based on the previous two cases, ¢ sends a message
(“2a”, ¢, i,val) to all acceptors.

Phase2bClassic(a,i) Upon receiving a (“2a”, ¢, i, val) message from the coordinator, accep-
tor a accepts the forwarded c-struct like in Fast Paxos. That is, if k£ is highest-
numbered round a has heard of and k£ < i, then a accepts val and sends message
(“2b”, 4, val) to every learner.

In Generalized Paxos, however, coordinators may send a “2a” message to acceptors
with some c-struct, and later request the acceptors to accept an extension of such
c-struct. This is done in action Phase2aClassic, explained below. To cope with this
extension requests, the pre-conditions of action Phase2bClassic are extended as fol-
lows. Upon receiving a (“2a”, ¢, i,val) message from coordinator ¢, a accepts val iff:
k < iV (k=1iAwvEval), where k is the highest-numbered round « has heard of and
v is the latest c-struct accepted by a.

56 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

Phase2aClassic(c,i) This action is executed by coordinator ¢ of round i to request accep-
tors to accept an extension of a previously forwarded c-struct. Hence, it is executed
by coordinator ¢ only if it has already sent a phase “2a” message for round : to the
acceptors. This action is performed only for a classic round ¢; for fast rounds, accep-
tors can extend their accepted c-structs themselves, as shown in action Phase2bFast,
below.

Let (“2a”, i,val) be the latest phase “2a” message c¢ has sent for round 7 and let newval
be val e o for some c-seq o of proposed values received in “propose” messages. In
this action, ¢ simply sends a message (“2a”,i,newval) to all acceptors, requesting
them to extend what they had previously accepted with o.

Phase2bFast(a,i) By executing this action, acceptor a appends a command to its previously
accepted c-struct. This action is enabled iff i is fast, ¢ is the highest-numbered round «
has heard of, a has already accepted a value in ¢, and a has received a (“propose”, C)
message. Let v be the latest value a has accepted in i; a accepts v e C' and sends
message (“2b”, 1, v e (') to every learner.

Learn(l) Leaner [executes this action to extend its previously learned c-struct. The action
is executed by [after it receives a phase “2b” message for some round ¢ from each
acceptor in an i-quorum. Let v be the glb of the values received in such messages; [
sets learned[l] to learned[l] Uv.

In Generalized Paxos, a round i starts by the round coordinator executing action Phasela(c,1).
Acceptors then should execute action Phaselb(a, i), followed by the execution of Phase2Start(c, 1)
by ¢ and Phase2aClassic(a,i) by the acceptors. After this point, the execution depends on
whether : is fast or classic. If 4 is classic and proposers keep proposing new commands to
the coordinator, then the coordinator continuously executes Phase2aClassic(c, 1) with longer
c-structs, followed by acceptors executing Phase2bClassic(a,i). If ¢ is fast and proposers
keep proposing, then acceptors execute Phase2bFast(a,i) to append the proposals to their
accepted c-structs. In any case, learners continuously execute Learn(l) to learn the c-struct
accepted and its extensions.

4.4 Multicoordinated Paxos

We now explain Multicoordinated Paxos, our multicoordinated generalized consensus al-
gorithm. Round numbers are defined as in the multicoordinated consensus protocol. The
algorithm assumes a c-struct set CStruct, the Fast Quorum Requirement (Assumption 3) for
quorums of acceptors, and the Coord-quorum Requirement (Assumption 4) for quorums of
coordinators.

4.4. Multicoordinated Paxos 57

As in Generalized Paxos, we ensure that if a c-struct v is chosen at a round i, then any
c-struct w that is accepted by any acceptor at some round j > ¢ extends v (v E w). This is
guaranteed by the coordinators of a round due to the rule used by the coordinators to pick
a value based on the phase “1b” messages received from a quorum of acceptors (explained
in Section 4.3, action Phase2Start(c,i)). In Multicoordinated Paxos, we embody the rule in
function ProvedSafe(Q, 1bMsg). Before explaining the function in Section 4.4.2, we present
the Multicoordinated Paxos algorithm.

4.4.1 The Algorithm

Algorithm 7 shows the basic atomic actions that compose Multicoordinated Paxos, which
always ensure safety. To ensure liveness as well, some extra pre-conditions must be imposed
on the actions. The required changes in the algorithm are presented in Section 4.4.7.

Variables

The algorithm manipulates a set of six variables associated to the roles that agents play. The
variables are initiated as if the first phase of the smaller round available, which we assume
to be 0, has already been executed. Proposers have no special variable. The variables of a
coordinator c are the following:

crnd[c] The current round of c. Initially, O.

cval[c] The latest c-struct ¢ has sent in a phase “2a” message for round crnd[c]. Initially L.
An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-numbered round « has heard of. Initially
0.

vrnd[a] The round at which « has accepted the latest value. Initially 0.

val[a] The c-struct o has accepted at vrnd[a]. Initially L.
Each learner [keeps only the c-struct it has learned so far.
learned[l] The c-struct currently learned by /. Initially L.

As the other Paxos protocols, Multicoordinated Paxos defines actions for agents to pro-
pose, interact to chose c-structs, and learn the chosen c-structs, and the actions are executed
in phases. The proposition of a command, however, is not associated to any round and can
be executed at any time.

58 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

Algorithm 7 Multicoordinated Paxos
1: Proposer Actions:

21 Propose(p,C) =

3. pre-conditions:

4. a € proposers

s: actions:

6. send (“propose”, C) to coordinators U acceptors
7. Phase One:

s: Phasela(c,i) =
9: pre-conditions:

0: ¢ € |Ji-coordquorum

11 crnd[c] < i

12: actions:

13: send (“1a”, ¢, i) to acceptors

14: Phaselb(a,i) =
15: pre-conditions:

162 a € acceptors

17: rnd[a] < i

188 received (“1a”, ¢, 1) from coordinator ¢

19: actions:

20: rnd[a] < i

21: send (“1b”, a, i, vrnd[a], vwal[a]) to | i-coordquorum

22: Phase Two:

2s: Phase2Start(c,i) =
240 pre-conditions:

1 ¢ € |Ji-coordquorum

26: crnd[c] <1i

27: 3@ : Q is a quorum and Va € Q, c received (“1b”, a, 1, rnd, val)
28: actions:

29! crnd[c] « i

30: cval[c] « PickValue(c, Q,1)

31: send (“2a”, ¢, crnd[c], cval[c]) to acceptors

s2: PickValue(c,Q,i) =
33: LET 1bMsg = flz)=m: c received m =(“1b”, a,4,_,_,_), a € Q
3. IN CHOOSEV:V € ProvedSafe(Q, 1bMsg)

Phase One

The first phase of Multicoordinated Paxos is similar to the other protocols: a coordinator
willing to start a round sends a “1a” message to the acceptors and waits for their replies.
The only difference is that in our protocol multiple coordinators may start the same round
simultaneously. Acceptors reply to “la” messages with “1b” messages, if they have not
joined any bigger round.

4.4. Multicoordinated Paxos 59

Algorithm 7 Multicoordinated Paxos (Continued)
35: Phase2aClassic(c,i) =
3. pre-conditions:

a1 ¢ € |Ji-coordquorum

38: crnd[c] =i

39: 1 is a classic round

40! c received (“propose”, C)

41: actions:

42: cval[c] « cval[c] e C

43 send (“2a”, ¢, crnd[c], cval[c]) to acceptors

4: Phase2bClassic(a,i) =
4s: pre-conditions:

46: a € acceptors

47: rnd[a] <i

48: iL: L is an i-coordquorum and V¢ € L a received (“2a”, ¢, i,-)
49: vrnd[a] < i or vval[a] is compatible with M{v : a received (“2a”, ¢, i, v), ¢ € L}
so: actions:

51 LET LVals = {v:a received (“2a”, c,i,v), ¢ € L}

52: IN

53: IFvrnd[a] =4

541 THEN vval[a] < vval[a] U (MLVals)

s5: ELSE vval[a] < ML2aVals

56: vrnd[a] <« 4

57 rnd[a] < i

s8: send (“2b”, a, i, val) to learners

so: Phase2bFast(a)
60: pre-conditions:

61: a € acceptors

62: rnd[a] is a fast round

63: rnd[a] = vrnd[a], and

64: a has received a (“propose”, C') message

6s: actions:

66: walla] < wal[a]e C

67: send (“2b”, vrnd[a], vval[a] ® C) to learners

6s: Learning:

60 Learn(l) =

70: pre-conditions:

718 [€ learners

72! 1@ : Q is a quorum and Yac € Q, a received (“2b”, ac, 1, val)
73: actions:

741 LET Q2Vals = {v : | received m =(“2b”, a, %, v), a € Q}

75: IN learned[p] <« learned[p] U (MQ2bVals)

The goal of this phase is to notify acceptors about the beginning of a new round, so
that they do not accept values for smaller ones, and to gather information about accepted

60 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

c-structs to execute the second phase.

Phase Two

After receiving replies from a quorum of acceptors, coordinators can start the second phase
of the protocol: irrespectively to whether the round is classic or fast, a coordinator of the
round picks a c-struct in action Phase2Start() and sends it to the acceptors. The c-struct
picked extends all c-structs already chosen and contains as many commands as possible;
the procedure is formalized in the next section.

If the round is classic, then the coordinator will append other commands to the initially
picked c-struct and send it to the acceptors. If the round is fast, the acceptors extend the
c-structs themselves. What differentiates Multicoordinated Paxos from Generalized Paxos
is that, in the first, multiple coordinators may execute this phase in parallel in the same
round.

Learning a Value

Learning is performed in action Learn. It consists simply of extending the already learned
c-struct with suffixes from the accepted c-structs. As the learned c-struct is extended, its
commands can be processed by the application according to its semantics.

Hence, in a general execution scenario, the following sequence of actions is expected to
happen only when a new round starts, due to failures or collisions, which is supposed to be
seldom:

1. One (or more) coordinators will execute action Phasela(c,i) for some high enough
round 7.

2. Acceptors will acknowledge it by executing action Phaselb(a,1).

3. All coordinators in i-coordquorums will then execute Phase2Start(c,i), which will
trigger the execution of Phase2bClassic(a, i) by the acceptors.

During the rest of the round, a simpler execution pattern takes place. If the round is
fast, then

1. proposers execute Propose(p,C), and
2. acceptors execute Phase2bFast(a).
If the round is classic (multicoordinated or not), then

1. proposers execute Propose(p,C),

4.4. Multicoordinated Paxos 61

2. the round coordinators execute Phase2aClassic(c), and
3. acceptors execute Phase2bClassic(a,).

In any case, learners repeatedly execute Learn(l).

4.4.2 The ProvedSafe Function

In this section we define the ProvedSafe function through which coordinators pick c-structs
on the Phase2Start of new rounds. The function has two parameters: (), a set of acceptors,
and 1bMsg, a mapping from every acceptor a in () to a “1b” message sent by a. If () is an
i-quorum and every acceptor « in () has sent “1b” message 1bMsg[a] with field rnd equal
to 7, which is mapped from a in 1bMsg, then ProvedSafe(Q, 1bMsg) returns a set of c-structs
that are pickable for round .

The function is formally defined as follows. For convenience and simplicity of the expla-
nation, we assign aliases to the fields of “1b” messages: given a message m =(“1b”, a, ¢, vval, vrnd),
we refer to the five fields of m as m.type, m.sndr, m.rnd, m.vval, and m.vrnd, respectively.

Definition 1 (Proved Safe) For any set of acceptors (), and mapping 1bMsg from each ac-
ceptor in () to a phase “1b” message, let:

e vals(S) = {1bMsg[al.vval : a € S}
Set of vval values sent by acceptors in S C Q).

e vrnds = {1bMsg[al.vrnd : a € Q}
Set of vrnd values sent in all “1b” messages.

o k = Maz(vrnds)
Highest-numbered round in vrnds.

e kacceptors = {a € Q: 1b6Msg[a].vrnd = k}
Set of acceptors that sent “1b” messages with vrnd equal to k.

e QinterR = {QNR: Ris a k-quorum }
Set of intersections between () and every k-quorum R.

« QinterRAtk = {S € QinterR : S C kacceptors}
Intersections of interest: those in which all elements sent “1b” messages with vrnd equal
to k.

e T = {M(vals(inter)) : inter € QinterRAtk}
glb’s of the values sent in the “1b” messages, for every intersection of interest.

62 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

Then ProvedSafe is defined as follows:

A

ProvedSafe(Q,1bMsg) = 17 QinterRAtk = {} THEN vals(kacceptors)
ELSE {UI'}

The function implements the rule explained in Section 4.3, action Phase2Start. That is,
if there is no k-quorum R for which all acceptors in RN have sent “1b” messages for round
¢ with field vrnd equal to £, then any value that has been reported in “1b” messages with
vrnd = k is pickable. Otherwise, the Fast Quorum Requirement ensures that all elements
of the set I' are extensions of any chosen c-struct. Even more, due to the properties of
c-structs, I" is compatible. As a result, its lub exists and is pickable. Hence, the lub, which
contains as many commands as possible, should be picked and sent on “2a” messages to
the acceptors.

In [], Lamport discusses how to deal efficiently with large c-structs and
all the ideas presented there can be directly applied to our algorithm. The complexity of cal-
culating lubs, glbs, and verifying the compatibility of c-structs will depend on the c-struct set
being used. Most c-struct sets we are aware of (e.g., those presented in [D
admit relatively simple implementations of these operations. The complexity of calculating
function ProvedSafe also depends on how quorums are defined and it can be simplified if
quorums are defined as any set of processes of a certain size (e.g., majority sets).

4.4.3 Availability and Load-Balancing with Multiple Coordinators

The main problem of single-coordinated rounds as compared to multicoordinated ones has
to do with availability. If the coordinator of a single-coordinated round crashes, time must
be spent with the identification of the failure (usually done through timeouts), the election
of a new coordinator, and the execution of the first phase of a higher-numbered round,
before normal execution can be resumed. The optimization of these tasks may also effect
performance or availability. For example, aggressive failure detection may trigger false
suspicions, and simple leader election algorithms can elect a crashed process or more than
a single leader at a time. If a round has multiple quorums of coordinators, a single failure
will not require immediate round change. Hence, we have introduced multicoordinated
rounds as a way to circumvent the aforementioned availability problems.

A simple implementation of Multicoordinated Paxos would have a fixed number of co-
ordinator processes in every round and define coordinator quorums of multicoordinated
rounds as any majority of them so that the Coordquorum Requirement is satisfied. In such
a case, the failure of any minority of the coordinators leaves at least one quorum of coordi-
nators still available and, therefore, able to forward proposals to the acceptors.

One could argue that fast rounds also do not rely on a single coordinator during normal
execution, since acceptors can accept proposals directly from proposers. However, the Fast

4.4. Multicoordinated Paxos 63

Quorum Requirement imposes stricter restrictions on how fast quorums are defined, which
also affects availability since fewer failures are tolerated.

The existence of multiple quorums of both coordinators and acceptors also enables im-
plementations with better load balance than Classic Paxos. Recall that in Classic Paxos all
commands must go through the current leader (round coordinator) and, depending on the
system load, this might be a performance bottleneck. In Multicoordinated Paxos, for a com-
mand C' to be learned in multicoordinated rounds, it must be forwarded by a coordinator
quorum and accepted by an acceptor quorum only. If there are multiple coordinator and
acceptor quorums, no acceptor or coordinator needs to process all commands proposed. A
simple way to distribute the load has the proposer p of a command C' choose, randomly or
through some uniformly distributed function, a quorum of coordinators and a quorum of
acceptors for C'. p sends the “propose” message only to the chosen coordinator quorum,
with the chosen quorum of acceptors piggybacked in the message since all coordinators
in the quorum must forward C' to the right acceptors. The coordinators send their “2a”
message with C only to the indicated quorum of acceptors, which accept C' and send phase
“2b” messages to the learners. If not all learners need to learn about (', the same approach
can be used, forwarding with C' the set of learners to which the phase “2b” messages should
be sent.

Fast rounds also allow distributing the load over the set of acceptors. As before, how-
ever, the stricter quorum requirement implies a worse distribution. If fast rounds are com-
posed of [(3n+ 1)/4] acceptors, where n is the total number of acceptors (a necessary
condition if any majority of the acceptors is a quorum for a classic round), then it is not
hard to verify that every acceptor will have to process more than 3/4 of the proposed
commands. In multicoordinated rounds, if any majority of the coordinators of a round 1
is an i-coordquorum and any majority of acceptors is an i-quorum, then the load can be
distributed so that each coordinator processes at most (1/2 + 1/nc) of the proposed com-
mands, where nc is the total number of coordinators for round ¢, and each acceptor accepts
at most (1/2 4 1/n) of the proposed commands. It is true that in this scenario, each com-
mand must be dealt twice (first by the coordinators and then by the acceptors), but the
coordinators’ action is much cheaper since it does not involve disk writes, as we show later.

Doing this sort of load balancing does not jeopardize availability. The optimistic use
of a single quorum only does not mean that the other quorums cannot be used. A clever
implementation would resort initially to a single quorum of coordinators and acceptors. If
the command is not learned after some time has elapsed (triggered by a timeout or a failure
suspicion), then other quorums might be used. This wait time can be set to a minimum since
they will never trigger a round change as discussed in the beginning of this section.

Finally, it is clear from the algorithm that the sets of coordinators and acceptors need
not have the same number of elements. Actually, in many cases it might be better to have

64 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

more acceptors than coordinators in a round. Note that the set of coordinators for round
¢ can be completely different from the set of coordinators of round j # i, but this is not
the case for acceptors since they must be queried in every new round to check whether a
value has already been chosen at some previous round. Moreover, the acceptors’ task of
accepting a value is more expensive than the coordinators’ task of forwarding it, since the
former requires a disk write but the latter does not. As a result, implementations might
use a high number of acceptors to improve the system’s resilience or performance (due to
load balancing). But an equally high number of coordinators for a round increases only
the availability of that round, and the load balancing will not be as effective since the
coordinators’ task is cheaper. For a small system, a configuration with 5 acceptors in total
and 3 coordinators for multicoordinated rounds (with different sets of coordinators for
different rounds) sounds plausible, since it tolerates the failure of any two processes and
does not introduce temporary unavailability if a single coordinator crashes.

4.4.4 Collisions

Multicoordinated rounds have a drawback that does not exist in single-coordinated ones—
collisions. In multicoordinated rounds, a collision happens when commands proposed con-
currently arrive at the coordinators in different orders and this leads to their forwarding of
incompatible c-structs. If no coordinator quorum forwards c-structs whose glb can extend
the values previously accepted by the acceptors, the round is stuck since no new command
can get accepted.

This is a different type of collision than the one that may occur in fast rounds, explained
in Section 3.3.2. In fast rounds, a collision happens when acceptors accept incompatible
c-structs that cannot further extend the values learned by learners so far. In this case, how-
ever, acceptors pay the price of accepting commands that will never be learned, which does
not happen in collisions of multicoordinated rounds. This is a major difference between the
two kinds of collisions since acceptors must write on stable storage every time they accept
a value but coordinators do not have to, as we explain in Section 4.4.5.

The mechanisms to solve collisions in the original Fast Paxos algorithm presented in Sec-
tion 3.3.2, which guessed the values of “1b” messages for round 7 + 1 out of “2b” messages
for round 7, cannot be directly applied to Generalized Paxos. This happens because accep-
tors are allowed to append commands to their c-structs at will in fast rounds and, hence,
unless the coordinator asks the acceptors to move to the next round, it could wrongly guess
the latest acceptances of acceptors and pick a bad c-struct for the next round. If no other
algorithm exists, the techniques we present below for multicoordinated rounds can be used
at the cost of one extra communication step for the acceptors to identify the collision in
the c-structs they have accepted. Another possibility consists of explicitly starting a new

4.4. Multicoordinated Paxos 65

higher-numbered classic single-coordinated round from the beginning after its coordinator
identifies the collision.

In multicoordinated rounds, collision identification can be done by the acceptors when
they receive the phase “2a” messages from the coordinators of a classic round . If two
coordinators of the same ¢-coordquorum send “2a” messages for round ¢ with incompatible
c-structs, acceptors execute action Phaselb(a,i+ 1) as if they had received a phase “1a”
message for round ¢ + 1. What comes next will depend on whether round ¢ + 1 is classic or
fast.

If round 7 + 1 is classic and enough acceptors identify the collision, which will normally
happen if messages are not lost and processes do not crash, then the coordinators of round
i + 1 will execute action Phase2Start(c,i+ 1) based on the received messages, followed
by one or more executions of action Phase2aClassic(c). Thus, the collision in round 7 will
be resolved with only two extra communication steps (as compared to the usual three of
a classic round). Clearly, to avoid that another collision happens when the coordinators
start round 7 + 1, it is advisable to have it as a single-coordinated round. After some
time of normal execution, if conflicting commands stop being proposed, the coordinator of
round ¢ + 1 can start a multicoordinated round again. This approach is a variation of the
coordinated recovery presented in [1.

If round 7 + 1 is fast, performance can be improved by setting i + 1-coordquorums
wisely. Since the Coord-quorum Requirement does not place any restriction on fast rounds,
we can define that any single acceptor by itself constitutes a coordinator quorum for a fast
round (playing both roles—acceptor and coordinator). When a coordinator of round 7 + 1
(which is also an acceptor) executes actions Phase2Start(c,i+ 1) and Phase2aClassic(c),
it can locally accept the values supposedly sent in the “2a” messages, without actually
sending them. This approach can resolve collisions with only one extra communication
step. However, new collisions might happen when the round ¢ + 1 is started. This is a
variation of the uncoordinated recovery presented in [], which also presents
some interesting ideas to avoid having collisions when round i + 1 is started. We do not
cover them here because the use of a fast round to recover from a collision in a classic one
does not seem to be of practical use. We just present the idea of the uncoordinated recovery
mechanism for completeness.

One might ask herself if there can be some kind of round that does not rely on a single
coordinator but in a coordquorum and still avoid collisions. In the most general case, its
existence would contradict the FLP result since quorums could be defined to tolerate a
single failure and the absence of collisions would mean that liveness can be achieved in
such rounds.

66 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

4.4.5 Reducing disk writes

Assumption 4, on page 41 imposes no restriction on coordinator quorums of different
rounds. If it is always possible to start new rounds with any set of coordinator quorums,
coordinators are not required to write on stable storage. A coordinator that crashes and
later recovers could just be seen as a new coordinator in the system, which is easily imple-
mented by having an “incarnation” counter associated with its identifier. In the following
we explain how new rounds can be created with any set of coordinator quorums.

Consider round numbers as records of the form (Count, Id, RType, S), where Count is a
natural number, /d is a coordinator’s unique identifier, R7ype is a natural number, and S is
a set of coordinator quorums. Rounds are uniquely identified by the first three fields of the
record and totally ordered by comparing these fields lexicographically. Field S is merely
informative and is not taken into consideration when comparing two rounds. Using this
approach, when the current leader wants to start a new round, it can simply define the four
fields according to its current knowledge. By setting Count properly, it can always create
a round higher-numbered than any other it has seen before. Id identifies the coordinator
that created the round and possibly the one responsible for coordinated recovery. RType
tells the round type, being O for fast and bigger integers for classic. Finally, S identifies all
valid coordinator quorums for the new round.

Since Assumption 3 requires that quorums of different rounds intersect, acceptors can-
not lose their state after a crash and assume a different identity upon recovery. This hap-
pens because the values accepted by acceptors cannot be forgotten, or the algorithm’s safety
would be compromised. Therefore, these values must always be stored on stable storage,
incurring a disk write (or equivalent operation) whenever an acceptor executes a Phase2b
action. As a result, acceptors are not as easily replaceable as coordinators and more com-
plex strategies must be used [,].

Action Phaselb also changes the internal state of an acceptor and, at a first sight, this
seems to imply that Phaselb must also write on disk. However, an acceptor ¢ may store
rnd[a] only in main memory as long as, after recovering from a crash, it manages to initial-
ize rnd[a] with a higher value than the previous one. We propose this to be done as follows:
field Count, previously described in this section, can be composed of a major and a minor
component, MCount and mCount. When an acceptor executes Phaselb for some round, if
MCount equals the previous value in rnd[a], it changes rnd[a] in volatile memory only;
otherwise, it writes it on disk. During recovery, the acceptor simulates the reception of a
“la” message with an MCount higher than the one it has on disk. To get values accepted
by the recovered acceptor, coordinators will be forced to use higher rounds. In the normal
case, acceptors write on disk only once, when they are started. In the presence of failures,
this strategy results in one extra disk write at each acceptor, per recovery.

4.4. Multicoordinated Paxos 67

4.4.6 Setting rounds and quorums

The schema used to define round numbers presented in the previous section, that is, as a
vector of the form (MCount:mCount, Id, RType, S), should fit most application scenarios.
However, there are some specific cases in which this schema should be adapted for better
performance. There are two main points on doing these adaptations: the likeliness of
collisions and how they are recovered, and what type of round follows each other.

For example, if collisions are frequent in the system, then fast rounds should not be
used because the recovery cost could outweigh the economy provided by fast rounds. If fast
rounds are used in conjunction with coordinated recovery, then they should be followed by
single-coordinated rounds. In the case of uncoordinated recovery, fast rounds should be
followed by multicoordinated fast rounds. (See Section 4.4.4.)

In the case of the example, where some fast rounds should be followed by other fast
rounds, using the record described above would force the use of rounds with different Id
or Count field. Because recovery relies on a process knowing exactly what is the next round
number, this schema would not work. A possible solution is to change how the field RType
is interpreted. For example, letting all RType in the range O to 5 be interpreted as fast,
instead of simply 0, and allowing a round number to be incremented without changing any
but the RType field.

The set of coord-quorums can be defined at run-time, considering the status of the
system when a new round is created. To ensure liveness, multicoordinated rounds should
be followed by single-coordinated rounds (See Section 4.4.7). However, this transition
does not have to be abrupt and could be done through a series of multicoordinated rounds
with smaller quorums, minimizing the risk of collisions while still allowing the benefits of
multicoordination.

Below we present a few general scenarios and discuss how round numbers and quorums
could be defined for them. These scenarios are not necessarily disjoint, and real worl