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Resumo

Problemas de acordo, como Consenso, Terminação Atômica e Difusão Atômica, são abstra-
ções comuns em sistemas distribuídos. Eles ocorrem quando os componentes do sistema
precisam concordar em reconfigurações, mudanças de estado ou em linhas de ação em ge-
ral. Nesta tese, investigamos estes problemas no contexto do ambiente e aplicações em que
serão utilizados. O modelo geral é o assíncrono sujeito a quebras com possível posterior re-
cuperação. Nossa meta é desenvolver protocolos que explorem esta informação contextual
para prover maior disponibilidade, e que se mantenham corretos mesmo que algumas das
prerrogativas do contexto tornem-se inválidas.

Na primeira parte da tese, exploramos a seguinte propriedade: mensagens difundidas
em pequenas redes tendem a ser entregues ordenada e confiavelmente. Nós fazemos três
contribuições nesta parte da tese. A primeira é a transformação de algoritmos conheci-
dos para o modelo quebra-e-pára, que utilizam a propriedade de ordenação mencionada,
em protocolos práticos. Isto é, protocolos que toleram perda de mensagens e recuperação
após a quebra. Nossos protocolos garantem progresso na presença de falhas, contanto que
mensagens sejam espontaneamente ordenadas freqüentemente. Na ausência de ordenação
expontânea, outras prerrogativas são necessárias para contornar falhas. A segunda contri-
buição é a generalização de um dos algoritmos citados acima em um modo de execução
“multi-coordenado” em um protocolo híbrido de consenso, que usa ou ordenação expon-
tânea ou detecção de falhas para progredir. Em comparação a outros protocolos, o nosso
provê maior disponibilidade sem comprometer resiliência. A terceira contribuição é a utili-
zação do modo multi-coordenado para resolver Consenso Generalizado, um problema que
generaliza uma série de outros e que, portanto, é de grande interesse prático. Além disso,
fizemos diversas considerações sobre aspectos práticos da utilização deste protocolo. Como
resultado, nosso protocolo perde desempenho gradualmente no caso de condições desfa-
voráveis, permite o balanceamento de carga sobre os coordenadores, e acessa a memória
estável parcimoniosamente.

Na segunda parte da tese, consideramos problemas de acordo no contexto de redes or-
ganizadas hierarquicamente. Em específico, nós consideramos uma topologia usada nos
data centers de grandes cooporações: grupos de máquinas conectadas internamente por
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links de baixa latência, mas por links mais lentos entre grupos. Em tais cenários, latência é
claramente um fator importante e reconfigurações, onerosas aos protocolos, devem ser evi-
tadas tanto quanto possível. Nossa contribuição neste tópico está em evitar reconfigurações
e melhorar a disponibilidade de um protocolo de acordo que é rápido a despeito de coli-
sões. Isto é, um protocolo que consegue chegar a uma decisão em dois passos inter-grupos

mesmo quando várias propostas são feitas concorrentementes. Além do uso da técnica
de multicoordenação, nós usamos primitivas de multicast e consenso para conter algumas
reconfigurações dentro dos grupos, onde seus custos são menores.

Na última parte da tese nós estudamos o problema de terminação de transações distri-
buídas. O problema consiste em garantir que os vários participantes da transação concor-
dem em aplicar ou cancelar de forma consistente as suas operações no contexto da transa-
ção. Além disso, é necessário garantir a durabilidade das alterações feitas por transações
terminadas com sucesso. Nossa contribuição neste tópico é um serviço de log que abstrai
e desassocia a terminação de transações dos processos que executam tais transações. O
serviço funciona como uma caixa preta e permite que resource managers lentos ou falhos
sejam reiniciados em servidores diferentes, sem dependências na memória estável do ser-
vidor em que executava anteriormente. Nós apresentamos e avaliamos experimentalmente
duas implementações do serviço.

x



Abstract

Agreement problems are a common abstraction in distributed systems. They appear when
the components of the system must concur on reconfigurations, changes of state, or in lines
of action in general. Examples of agreement problems are Consensus, Atomic Commitment,
and Atomic Broadcast. In this thesis we investigate these abstractions in the context of the
environment in which they will run and the applications that they will serve; in general,
we consider the asynchronous crash-recovery model. The goal is to devise protocols that
explore the contextual information to deliver improved availability. The correctness of our
protocols holds even when the extra assumptions do not.

In the first part of this thesis we explore the following property: messages broadcast
in small networks tend to be delivered in order and reliably. We make three contributions
in this part. The first contribution is to turn known Consensus algorithms that harness
this ordering property to reach agreement in the crash-stop model into practical protocols.
That is, protocols that tolerate message losses and recovery after crashes, efficiently. Our
protocols ensure progress even in the presence of failures, if spontaneous ordering holds
frequently. In the absence of spontaneous ordering, some other assumption is required
to cope with failures. The second contribution of this thesis is to generalize one of our
crash-recovery consensus protocols as a “multicoordinated” mode of a hybrid Consensus
protocol, that may use spontaneous ordering or failure detection to progress. Compared to
other protocols, ours provide improved availability with no price in resilience. The third
contribution is to employ this new mode to solve Generalized Consensus, a problem that
generalizes a series of other agreement problems and, hence, is of much practical interest.
Moreover, we considered several aspects of solving this problem in practice, which had not
been considered before. As a result, our Generalized Consensus protocol features graceful
degradation, load balancing, and is parsimonious in accessing stable storage.

In the second part of this thesis we have considered agreement problems in wide area
networks organized hierarchically. More specifically, we considered a topology that is com-
monplace in the data centers of large corporations: groups of nodes, with large-bandwidth
low-latency links connecting the nodes in the same group, and slow and limited links con-
necting nodes in different groups. In such environments, latency is clearly a major concern
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and reconfiguration procedures that render the agreement protocol momentarily unavail-
able must be avoided as much as possible. Our contribution here is in avoiding recon-
figurations and improving the availability of a collision fast agreement protocol. That is, a
protocol that can reach agreement in two intergroup communication steps, irrespectively to
concurrent proposals. Besides the use of a multicoordinated approach, we employed mul-
ticast primitives and consensus to restrict some reconfigurations to within groups, where
they are less expensive.

In the last part of this thesis we study the problem of terminating distributed trans-
actions. The problem consists of enforcing agreement among the parties on whether to
commit or rollback the transaction and ensuring the durability of committed transactions.
Our contribution in this topic is an abstract log service that detaches the termination prob-
lem from the processes actually performing the transactions. The service works as a black
box and abstracts its implementation details from the application utilizing it. Moreover, it
allows slow and failed resource managers be re-started on different hosts without relying
on the stable storage of the previous host. We provide two implementations of the service,
which we evaluated experimentally.
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Preface

This thesis describes my PhD work, initiated in 2003 at the State University of Campinas,
Brazil, under the supervision of Prof. Edmundo Madeira, and finished in 2008 at the Uni-
versity of Lugano, Switzerland, under the supervision of Prof. Fernando Pedone.1 During
this period I have worked on different problems, with different approaches, and in col-
laboration with other PhD students. The work, however, has always been on agreement
problems.

In the early “middleware” stage of my studies I implemented an agreement library fea-
turing the weak ordering based consensus algorithms presented in the third chapter of
this thesis. In modularizing the library and making the algorithms interchangeable with
a Paxos implementation, I began to understand what Mike Burrows allegedly meant with
“In my experience, all distributed consensus algorithms are either 1: Paxos, 2: Paxos with
unnecessary extra crust, or 3: broken.” While I do not completely agree with him, I be-
lieve that the formalism in which Paxos was specified is an invaluable tool to understand
and compare agreement algorithms. Mainly, the separation of concerns in it. The work
in [Camargos et al., 2006a] presented my “paxonized” weak ordering based protocols and
compared them with Paxos, the classic one.

Database replication came into play in my studies soon after I moved to Switzerland
and joined the work presented in [Camargos et al., 2006b]. Our transaction processing
protocol was very efficient, as long as the database using it could afford serializing the
execution of its transactions. The killer application for the protocol, which we then called
“sprint”, was an in-memory database.

When the new Sprint appeared, it was a cluster data management system, featuring
replication and partitioning of data, and my agreement library was an important part of it.
I rewrote the library to better fit the project, and it became a lightweight group communica-
tion library, later used in two other projects within our research group. Sprint is described
in [Camargos et al., 2007a], and the group communication within it was abstracted as the
log service presented in the last part of this thesis [Camargos et al., 2008b].

1This collaboration is the reason why the introduction and conclusion chapters are also presented in por-
tuguese.
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Given these good experiences, my work focused on optimizing agreement protocols to
specific scenarios, but in a more abstract way. First improving resilience with multicoor-
dination [Camargos et al., 2007b, Camargos et al., 2008a], then minimizing the effects of
concurrent proposals [Schmidt et al., 2007], and finally mixing both approaches to solve
agreement among groups.

To conclude, part of my work was done in collaboration with other researchers. In
this thesis, I focus on the work in which I have been the primary contributor. These are the
works presented in [Camargos et al., 2006a, Camargos et al., 2008a, Camargos et al., 2008b]
and the agreement protocol for groups introduced in this thesis.

[Camargos et al., 2006a] Camargos, L., Madeira, E. R. M., and Pedone, F. (2006a). Op-
timal and practical wab-based consensus algorithms. In Euro-Par 2006 Parallel Pro-

cessing, volume 4128 of Lecture Notes in Computer Science, pages 549–558, Berlin /
Heidelberg. Springer.

[Camargos et al., 2006b] Camargos, L., Pedone, F., and Schmidt, R. (2006b). A primary-
backup protocol for in-memory database replication. In NCA ’06: Proceedings of the

Fifth IEEE International Symposium on Network Computing and Applications, pages
204–211, Washington, DC, USA. IEEE Computer Society.

[Camargos et al., 2007a] Camargos, L., Pedone, F., and Wieloch, M. (2007a). Sprint: a
middleware for high-performance transaction processing. In EuroSys ’07: Proceedings

of the 2007 conference on EuroSys, pages 385–398, New York, NY, USA. ACM Press.

[Camargos et al., 2007b] Camargos, L. J., Schmidt, R. M., and Pedone, F. (2007b). Multi-
coordinated paxos: Brief announcement. In PODC ’07: Proceedings of the twenty-sixth

annual ACM symposium on Principles of distributed computing, pages 316–317, New
York, NY, USA. ACM Press.

[Camargos et al., 2008a] Camargos, L., Schmidt, R., and Pedone, F. (2008a). Multi-
coordinated agreement protocols for higher availabilty. In NCA ’08: Proceedings of

the Seventh IEEE International Symposium on Network Computing and Applications,
Washington, DC, USA. IEEE Computer Society.

[Camargos et al., 2008b] Camargos, L., Wieloch, M., Pedone, F., and Madeira, E. (2008b).
A highly available log service for transaction termination. In Proceedings of the seventh

International Symposium on Parallel and Distributed Computing (ISPDC 2008).
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Chapter 1

Introdução

Uma aplicação distribuída é composta por agentes que executam ações locais e trocam
informações para, em conjunto, realizar tarefas globais. Tais agentes – servidores, proces-
sadores ou processos – freqüentemente precisam sincronizar suas ações para garantirem
propriedades como: somente um agente tem acesso a certos recursos em dado momento;
todos agentes devem tornar permanente alguma mudança de estado ou retroceder a algum
estado válido anterior; um determinado agente deve ser excluído de quaisquer interações
futuras. Sincronizar, neste contexto, é um sinônimo para “entrar em acordo.”

Problemas de acordo têm sido ativamente pesquisados nos últimos 30 anos, resultando
em uma literatura rica em algoritmos para diferentes modelos computacionais, limites su-
periores e inferiores e um número imenso de publicações. Entretanto, acreditamos que
ainda há espaço para melhorias, principalmente no que diz respeito à praticidade dos pro-
tocolos.

Nesta tese, nos focamos em protocolos práticos para problemas de acordo em sistemas
distribuídos assíncronos. Isto é, em protocolos que toleram falhas de participantes e possí-
vel recuperação dos mesmos; protocolos que exploram sincronismo e premissas otimistas
para progredir, mas que não as requerem para permanecerem corretos e, mais importante,
que se adaptam quando as premissas se tornam inválidas; protocolos que exploram os re-
cursos providos pelas infra-estruturas de rede, as propriedades do ambiente computacional
em que rodam e as características da aplicação à qual servem.

1.1 Rodadas, Consensus e Problemas de Acordo

Vários problemas de acordo tem o problema de Consenso distribuído como denominador
comum. Em tal problema, os agentes devem concordar em uma dentre um conjunto de pro-
postas. Algoritmos de consenso executam em estágios que refletem a natureza do problema:
propostas precedem uma fase de deliberação, que precede o aprendizado da decisão. Para

1
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garantir tolerância a falhas, os algoritmos precisam ser capazes de tentar novamente este
ciclo, garantindo que a decisão de qualquer ciclo prévio será honrada em ciclos futuros.
Nós chamamos cada um destes ciclos de rodada.

A rodada mais rápida que se tem executa da seguinte forma: inicialmente, os agentes
recebem propostas; eles então selecionam uma destas propostas como suas e as enviam uns
para os outros; finalmente, decidem-se pela proposta que tenha sido selecionada por pelo
menos um quorum de agentes. Para garantir que somente uma proposta seja “aprendida”
como decisão, mesmo em um sistema assíncrono, precisamos apenas que os quoruns sejam
sobrepostos, isto é, que tenham uma interseção não vazia. Desfazer empates no começo de
uma nova rodada e identificar decisões prévias, contudo, requer sobreposições maiores ou
mais tempo de execução. Isto é, em geral, é necessária uma fase a mais na execução do
protocolo ou todo conjunto de três quoruns deve ter uma interseção não vazia.

Sabe-se que é impossível garantir o progresso de protocolos de consenso tolerante a
falhas em ambientes assíncronos [Fischer et al., 1985]. O algoritmo em duas fases des-
crito no parágrafo anterior, contudo, pode não terminar mesmo quando o sistema se com-
porta assincronamente e nenhuma falha ocorre. Se múltiplas propostas são selecionadas
mas nenhuma é selecionada por um quorum completo, então nenhuma decisão é obtida.
Este problema pode ser contornado com o auxílio de oráculos aleatórios [Rabin, 1983,
Ben-Or, 1983] ou usando-se da ordem em que as propostas são entregues para os agen-
tes [Pedone et al., 2002b, Pedone et al., 2002a, Camargos et al., 2006a]. Outra forma de
evitar o problema é selecionar um dos agentes para filtrar uma dentre as diversas propos-
tas feitas na rodada [Chandra et al., 1996, Lamport, 1998]. Assim, o problema passa a ser
selecionar tal agente, seja, eleição de líderes [Chandra et al., 1996].

Embora a maioria dos algoritmos presentes na literatura da área especifique algoritmos
como um conjunto uniforme de agentes, na prática os agentes desempenham tarefas bem
distintas: alguns fazem propostas, outros estão apenas interessados na decisão, e apenas
um subconjunto destes realmente desempenha a tarefa de decidir por um valor. Além
disso, há um quarto grupo de agentes mencionado no parágrafo anterior: o conjunto de
coordenadores, responsáveis por coordenarem a execução das rodadas.

Coordenadores são especialmente interessantes por estarem diretamente relacionados
à disponibilidade dos algoritmos de consenso. Se múltiplos coordenadores começarem suas
rodadas em paralelo, pode acontecer de nenhuma rodada terminar com sucesso. Logo, um
único coordenador deve ser escolhido. Por um lado, uma decisão só pode ser alcançada
com a participação do coordenador da rodada, fazendo necessária a eleição de um novo
coordenador tão logo o anterior falhe. Por outro lado, a detecção de falhas agressiva é
custosa em termos de recursos computacionais e mais propensa a erros. Além disso, a troca
de coordenadores apresenta outro problema: durante sua execução, o algoritmo não pode
prosseguir enquanto o novo coordenador contata os outros agentes para detectar decisões
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prévias. Portanto, a troca de coordenadores deve ser evitada tanto quanto possível.

Embora a discussão de problemas de disponibilidade possa parecer frívola em um pri-
meiro momento, ela se torna relevante quando levamos em consideração como protocolos
de consenso são usados na prática. Um exemplo típico é a implementação de uma máquina
de estados replicada [Lamport, 1978, Lampson, 2001]. Esta técnica consiste na implemen-
tação de serviços confiáveis por meio de replicação de instâncias simples do serviço em
processadores com falhas independentes. As réplicas mudam de estado consistentemente
pela execução de comandos determinísticos em seqüência. A seqüência em si é determi-
nada por instâncias de consenso. Para tornar a implementação eficiente, todas as instâncias
executam em paralelo, compartilhando o mesmo coordenador eleito e sobrepondo a exe-
cução de suas rodadas. Logo, indisponibilidade neste contexto significa que não uma mas
todas as decisões serão atrasadas.

Em várias instâncias de replicação de máquinas de estado e aplicações similares, alguns
comandos submetidos para as réplicas são comutáveis e não precisam ser ordenados. O uso
direto de consenso, que não captura tal propriedade, ordenaria tais comandos desnecessa-
riamente. O problema de Consenso Generalizado [Lamport, 2004], que generaliza vários
outros problemas de acordo, captura a propriedade de comutabilidade e pode ser usado
para concordar não em uma seqüência, mas em uma ordem parcial para os comandos.
Esta instância de Consenso Generalizado é particularmente conhecida como Difusão Ge-
nérica [Pedone and Schiper, 2002]. O único algoritmo de Consenso Generalizado do qual
estamos cientes sofre dos mesmos problemas de disponibilidade que apontamos anterior-
mente em algoritmos de consenso: ou ele usa quoruns maiores ou depende do líder da
rodada para garantir progresso.

O poder do Consenso Generalizado vem da habilidade de identificar propostas conflitan-
tes, como comandos não comutáveis, de forma a não ordená-los desnecessariamente. Uma
abordagem alternativa é ignorar os conflitos a priori para entregar os comandos propostos
tão logo quanto possível e usar a informação sobre conflitos para ordenar os comandos a

posteriori. No problema de M-Consensus [Schmidt et al., 2007], por exemplo, os agentes
concordam em uma função dos propositores para suas propostas ou um valor nulo. Por um
lado, porque um mesmo propositor não faz propostas distintas, decisões podem ser alcan-
çadas rapidamente. Após decidida, a função pode ser transformada em uma seqüência dos
valores em sua imagem por um procedimento determinístico. Por outro lado, tal procedi-
mento geralmente requer uma função com o domínio igual ao conjunto dos propositores.
Como somente um propositor pode propor por si mesmo, este requerimento limita a dispo-
nibilidade de M-Consensus àquela dos propositores, devendo o protocolo reconfigurar-se
em caso de muitas falhas.
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1.2 Terminação de Transações

Em muitas aplicações distribuídas, principalmente em sistemas de gerenciamento de dados,
os problemas de acordo se apresentam na forma do problema de Terminação Atômica.
Em essência, para terminar uma transação distribuída, cada participante vota commit para
tornar permanentes as operações da transação ou abort para cancelar seu efeito. Se todos
os participantes votam commit, então esta é a decisão geral. Caso contrário, isto é, se
pelo menos um participante votar abort, a transação é cancelada. Para a maior parte dos
sistemas implementados na prática, tal definição é muito restritiva por exigir que o voto
de todos os participantes seja contabilizado. Esta restrição é relaxada no problema de
Terminação Atômica Não-Bloqueante. Nesta variante do problema, uma transação pode
ser abortada se um participante é suspeitado de ter falhado. A garantia oferecida é então
a seguinte: se todos os participantes votarem commit e nenhum for suspeitado de falhar,
então a transação termina com sucesso. Nesta tese nós consideramos apenas esta versão
do problema de terminação.

Usado abrangentemente na prática, o protocolo de terminação Two-Phase Commit (2PC)
é não bloqueante na presença de falhas de todos os agentes com exceção de um, o transac-

tion manager. O protocolo Paxos Commit, de Gray e Lamport [Gray and Lamport, 2006]
é um protocolo de terminação atômica não bloqueante no qual cada participante usa uma
instância do algoritmos de consenso Paxos. Falhas são toleradas permitindo que partici-
pantes votem nas instâncias de consenso uns dos outros. O papel do transaction manager

é simplesmente iniciar a terminação da transação quando oportuno; se ele falha, os parti-
cipantes podem cancelar a transação a qualquer momento. O Paxos Commit exemplifica o
poder da redução do problema de Terminação Atômica para Consenso.

Mesmo que a atomicidade da transação seja garantida pelo protocolo de terminação,
se os participantes puderem esquecer as alterações de transações terminadas com sucesso,
por exemplo por causa de falhas temporárias, então o sistema poderá ser colocado em
um estado inconsistente. Logo, além de atomicidade, garantias de durabilidade podem
ser exigidas de protocolos de terminação. Isto é, a garantia de que todas as alterações
executadas por uma transação bem sucedida serão refletidas nos estados futuros do sistema.
Em protocolos convencionais, a durabilidade é garantida pelo uso de memória não volátil
local a cada um dos participantes. Estes gravam as alterações e as aplicam novamente para
recuperar seus estados anteriores no caso de falhas. Um lado negativo desta abordagem
está em associar a disponibilidade do participante com a disponibilidade do servidor que o
executa.
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1.3 Contribuições

Esta tese traz as seguintes contribuições.

Consenso Multicoordenado No contexto do problema de consenso, nós fazemos duas
contribuições. A primeira são dois protocolos, B*-Consensus e R*-Consensus, que utilizam
a propriedade de ordenação espontânea em redes para resolver o problema de consenso
em sistemas quebra-e-recupera. Comparativamente, estes protocolos trocam resiliência por
latência. O protocolo B*-Consensus requer três passos de comunicação para terminar e
tolera a falha de uma minoria de agentes. O protocolos R*-Consensus decide em dois
passos, mas tolera a falha permanente de menos que um terço dos agentes.

A segunda contribuição é a generalização do B*-Consensus como um modo de execução
multicoordenado para protocolos de acordo. Neste modo, o coordenador de cada rodada
é substituído por quoruns de coordenadores não disjuntos. Contanto que pelo menos um
destes quoruns permaneça funcional, não há necessidade de se iniciar uma nova rodada e
pagar o preço em disponibilidade decorrente da troca de coordenadores. Nós apresentamos
um protocolo de consenso multicoordenado que estende Fast Paxos [Lamport, 2004]. O
protocolo pode alternar entre rodadas multicoordenadas e as já existentes no Fast Paxos,
isto é, rápidas e clássicas. Esta habilidade permite que o protocolo se adapte às mudanças
de configuração do ambiente em que executa, por exemplo, mudança na largura de banda
disponível, taxa de perda de mensagens, e variação de carga.

Consenso Generalizado Multicoordenado A terceira contribuição é o uso de multico-
ordenação em protocolos de consenso generalizado. Enquanto o uso de informação sobre
a semântica da aplicação minimiza a possibilidade de que coordenadores de uma mesma
rodada discordem, o uso de múltiplos coordenadores minimiza a mudança desnecessária
de rodadas. Sendo assim, nosso protocolo de consenso generalizado é um sinergismo das
duas técnicas. Apresentamos esse algoritmo acompanhado de uma discussão sobre vários
aspectos relevantes ao seu uso na prática. Apresentamos ainda uma versão simplificada do
protocolo que resolve o problema de Difusão Genérica [Pedone and Schiper, 2002].

Acordo Multicoordenado entre Grupos A quarta contribuição desta tese concerne o uso
de multicoordenação em redes organizadas hierarquicamente. Em tais cenários, o uso de
quoruns de coordenadores aumenta a disponibilidade mas ainda requer que mensagens
trafeguem por toda a rede para alcançar os quoruns. Espalhar os quoruns não minimiza
o problema, dado que estes devem se sobrepor. Nós apresentamos aqui um protocolo de
acordo multicoordenado que minimiza este problema dividindo os quoruns de coordenado-
res em sistemas parcialmente independentes e resolve o problema de M-Consensus. Mos-
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tramos também como o protocolo pode ser melhorado pelo uso recursivo de consenso e de
tecnologias de multicast.

Log Service Nossa última contribuição é a abstração das propriedades de terminação
atômica e durável em termos de um Log Service. Tal serviço coleta as alterações executadas
por cada participante bem como seus votos (commit e abort), para todas as transações em
que participaram. Quando votos suficientes são coletados, o serviço determina o resultado
e informa os participantes a respeito. Definir a terminação de transações em termos do
nosso log service tem duas vantagens principais. Primeiro, as particularidades do sistema
se tornam irrelevantes para o protocolo de terminação. Segundo, a disponibilidade geral
dos participantes é melhorada pelo uso de uma implementação com alta disponibilidade do
serviço. O serviço também pode ser usado para migrar participantes falhos ou lentos para
servidores funcionais e/ou mais dependáveis. Como conseqüência, os participantes podem
optar por guardar localmente seus logs para acelerar o processo de recuperação pós-falha
ou depender somente do serviço de log para este fim.

Além da especificação abstrata, nós também apresentamos duas implementações do ser-
viço. Ambas as implementações utilizam-se de consenso para atingir alta disponibilidade.
Contudo, elas o fazem de formas distintas e com implicações no desempenho da termi-
nação de transações e na recuperação pós falha de participantes. Na primeira implemen-
tação, não-coordenada, a votação ocorre de forma completamente distribuída, abstraindo
o Paxos Commit e, por extensão, 2PC. Na segunda, coordenada, a votação é coordenada
por um agente coordenador facilmente substituível. As duas abordagens abstraem a re-
lação custo/benefício entre complexidade da comunicação versus o número de passos de
comunicação em protocolos de terminação. Nós comparamos ambos os protocolos analiti-
camente e experimentalmente com outros trabalhos relevantes na área e mostramos que a
redução do número de passos de comunicação às custas de um aumento da complexidade
da comunicação nem sempre implica em melhor desempenho.

1.4 Organização

Esta tese resultou do trabalho desenvolvido no contexto de uma colaboração entre a Uni-
camp e a Universidade de Lugano, na Suíça. Para garantir a consistência entre as versões
apresentadas em ambas as universidades, os capítulos seguintes correspondem ao texto
da vers„o suÌÁa, e portanto em inglÍs, salvo pelas correÁıes feitas apÛs a defesa no Bra-
sil. O Capítulo 2 apresenta a versão em inglês desta introdução, que contém um detalha-
mento do modelo computacional e da notação algorítmica adotados nesta tese. No Capí-
tulo 3 apresentamos nossos algoritmos de consenso baseados em ordenação espontânea,
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B*-Consensus e R*-Consensus, na Seção 3.2. Ainda no mesmo capítulo, na Seção 3.3, apre-
sentamos o nosso protocolo de consenso multicoordenado. No Capítulo 4, apresentamos o
protocolo multicoordenado de consenso generalizado, que denominamos Multicoordinated
Paxos. Na Seção 4.5, mostramos como instanciar o Multicoordinated Paxos para resolver
o problema de difusão genérica. No Capítulo 5, lidamos com o problema de acordo en-
tre agentes organizados em grupos. Apresentamos um protocolo simples para o problema
e posteriormente o estendemos para melhorar seu desempenho em cenários particulares.
Discorremos sobre nossa última contribuição, a especificação do Log Service e suas duas im-
plementações, no Capítulo 6. O Capítulo 7 contém a versão em inglês da conclusão desta
tese, com uma discussão final dos resultados apresentados bem como algumas possíveis di-
reções para trabalhos futuros. A versão em língua portuguesa da conclusão é apresentada
no Capítulo 8.



Chapter 2

Introduction

In order to make an apple pie from scratch,

you must first create the universe.

Carl Sagan

A distributed application is a composite of agents that perform local actions and ex-
change information to cooperatively perform some global task. These agents—machines,
processors, or processes—are often required to synchronize their actions to meet some con-
sistency criteria: only one agent may access a given resource at any point in time; all must
commit the effect of their actions or rollback to a previous state; a certain agent must be
excluded from any future interactions. Synchronizing actions, here, is short for reaching
agreement.

Research on agreement problems has been an active field for at least thirty years and
resulted in many algorithms for different computational models, lower and upper bounds,
and an incredible amount of publications. Nonetheless, we feel that there is still room for
improvement, mainly concerning the practicality of algorithms.

The focus of this thesis is on practical protocols for agreement problems in distributed
asynchronous systems. That is, protocols that cope with failures of participants and their
posterior recover in a graceful way; protocols that explore synchronism and optimistic as-
sumptions to progress, but do not rely on them to remain correct and, more importantly,
that adapt when assumptions no longer hold; protocols that explore building blocks readily
available in todays infrastructures, properties of the environments in which they run, and
the characteristics of the application that they serve.

9



10 Chapter 2. Introduction

2.1 About Rounds, Consensus, and Agreement Problems

The Consensus problem, in which agents must agree on one out of a set of proposed val-
ues, subsumes many other agreement problems. Consensus algorithms perform in stages
that reflect the very nature of the problem: proposals precede a deliberation phase, that
precedes the learning of a decision. To be fault-tolerant, algorithms must be ready to retry
this cycle, guaranteeing that a decision in a previous cycle is honored in the next ones. We
call each of these tries a round.

The fastest general round has the agents collecting the proposals, selecting one as their
proposals, and exchanging their selections. Agents then decide for the proposal selected
by at least a quorum of agents. In an asynchronous system, we can rely on overlapping
quorums to ensure that no two different proposals are decided. Breaking a tie when starting
a new round and searching for previous decisions, however, requires larger overlappings—
in general, every three quorums must intersect—or more time—by searching in two phases
instead of one, simply overlapping quorums are enough.

While asynchronism may prevent the progress of any fault-tolerant consensus algo-
rithm [Fischer et al., 1985], the approach described in the previous paragraph may not
decide even when the environment behaves synchronously and no failure occurs. If multi-
ple proposals are selected, but no one is ever selected by a full quorum in any round, then
no decision is reached. Agents may circumvent this problem and eventually select the same
value with the aid of random oracles [Rabin, 1983, Ben-Or, 1983] or based on the order
in which the options are presented to them [Pedone et al., 2002b, Pedone et al., 2002a,
Camargos et al., 2006a]. An alternative is to to have one of the agents filter all but one
proposal in the round [Chandra et al., 1996, Lamport, 1998]. The problem then becomes
selecting this special agent [Chandra et al., 1996].

Although in the literature most algorithms are specified with a single set of agents,
in actual systems some agents are responsible for proposing values, some only care for
learning the decision, and just a subset of them actually work in reaching the agreement.
From the previous paragraph, there is yet another set of agents that coordinate rounds, the
coordinators.

Coordinators are of special interest in that they are tightly related to the algorithms’
availability. If multiple coordinators start their rounds in parallel, none may succeed in
reaching agreement. Hence, a single coordinator should be picked. On the one hand, a
decision can only be reached with such a coordinator’s participation, making it extremely
important to replace it as soon as it fails. On the other hand, aggressive failure detection
is resource consuming and error prone, and replacing a coordinator is not done without a
price: the algorithm will be unavailable while the new coordinator contacts the other agents
to determine any previously decided value. Therefore, replacement should be avoided as
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much as possible.
While discussing availability issues due to coordinator replacement in a consensus in-

stance may seem frivolous at first, the impression fades when considered the way consen-
sus is used in practice. A typical example is the implementation of a replicated state ma-
chine [Lamport, 1978, Lampson, 2001]. This well known technique consists of implement-
ing reliable services by replicating simpler instances of the services on failure-independent
processors. Replicas consistently change their states by applying deterministic commands
from an agreed sequence. A consensus instance can be used to decide on each command of
the sequence. To make the implementation efficient, all instances may run in parallel, share
the same elected coordinator, and overlap parts of their rounds. Hence, being unavailable
means delaying not one, but all ongoing decisions.

In many replicated state machines and similar applications, some commands submitted
to the servers are commutable and do not have to be ordered. The straightforward use of
consensus, which does not capture this commutability property, would unnecessarily order
them. Generalized consensus [Lamport, 2004] , which in fact generalizes many agree-
ment problems, captures the notion of commutability and may be used to agree not on a
sequence, but on a partial order of commands. This particular instance of generalized con-
sensus is known as the generic broadcast problem [Pedone and Schiper, 2002]. The only
algorithm for generalized consensus, that we are aware of, has the same availability prob-
lems of consensus algorithms that we have pointed in the previous paragraphs: it either
uses large quorums or relies on a single round coordinator to ensure progress.

The power of generalized consensus and generic broadcast comes from identifying con-
flicting proposals, e.g., non-commutable commands, so that they do not have to be un-
necessarily ordered. A different approach is to ignore conflicts a priori to deliver them as
fast as possible and use the conflict information to order delivered proposals a posteriori.
For example, in M-Consensus [Schmidt et al., 2007] agents agree not on a single value per
instance, but on a mapping from each proposer to its proposal or a nil value. On the one
hand, if no two proposals are made by the same proposer, then decisions can be reached
very fast and, after a full mapping is decided, a deterministic function may flatten the map-
ping into a sequence. On the other hand, because in general the deterministic function
requires a full mapping and because only a proposer can propose for itself, the availability
of M-Consensus protocols are bound to the availability of these proposers.

2.2 Transaction Termination

Many distributed systems’ agreement requirements may be seen as the more abstract atomic
commitment problem, most notably data management systems. In essence, to terminate a
distributed transaction, each participating resource manager votes to either commit or abort
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the transaction. If all participants vote to commit the transaction, then this must be the final
outcome; if any participant votes for the abortion, then the transaction is aborted. For most
real systems, this definition of the problem is not practical since it requires the vote of every
participant to be accounted. This restriction is relaxed in non-blocking atomic commitment,
in which the transaction may be aborted if any participant is suspected of having crashed.
Commit must be guaranteed only if all participants vote to commit the transaction and
none is suspected of failure. In this thesis we consider this weaker problem.

Widely used in practice, the Two-Phase Commit protocol (2PC) is non-blocking in the
presence of failures of all but one agent, the transaction manager. Gray and Lamport’s Paxos
Commit [Gray and Lamport, 2006] is a non-blocking atomic commitment protocol in which
the casting of a vote is reduced to a Paxos consensus instance. Failures are naturally handled
by letting participants enforce termination of each other’s instances, and the transaction
manager is required only to trigger the termination upon completion of a transaction; if it
fails, resource managers simply abort the transaction. Hence, such a reduction to consensus
is very powerful.

Even when atomicity is enforced by the commit protocol, if resource managers are al-
lowed to forget the updates of a committed transactions, for example due to a temporary
failure, then the system may still get to an inconsistent state. Hence, besides ensuring
atomicity, a transaction termination protocol may be required to enforce the durability of
committed transactions. That is, to ensure that all changes done by committed transaction
are reflected by any future state of the database, in spite of any failures. In conventional
protocols, durability is achieved by having each resource manager store its updates in a
local stable media before voting. Should it fail, at recovery time the resource manager can
read the committed updates from the local storage and replay them to recover its previous
state. A drawback of this approach is that it couples the availability of the resource manager
with the availability of the server hosting it.

2.3 Contributions

This thesis makes the following contributions.

Multicoordinated Consensus Regarding the consensus problem, we have made two con-
tributions. The first contribution is a pair of protocols, namely B*-Consensus and R*-
Consensus, which explore spontaneous ordering to solve consensus in the crash-recovery
model. Comparatively, these protocols trade resilience for latency: B*-Consensus takes
three communication steps to finish and tolerates the permanent failure of any minority of
the agents. R*-Consensus decides in two steps, but tolerates less than one third of perma-
nent failures.
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The second contribution is the generalization of B*-Consensus as a multicoordinated
mode of execution for agreement protocols. In this mode, the coordinator of each round is
replaced by a set of overlapping quorums of coordinators. As long as at least one quorum
of coordinators is alive, there is no need to change rounds and incur in the temporary
unavailability resulting from it. We present a multicoordinated consensus protocol that
extends Fast Paxos [Lamport, 2004], with its fast and classic modes. The protocol can
switch to different types of round and adapt to environment changes: slower network,
more message losses, higher or lower workload, and spontaneous message ordering.

Multicoordinated Generalized Consensus The third contribution is the use of multico-
ordination to solve generalized consensus. While the use of semantic information mini-
mizes the chances of the coordinators in the same round disagreeing, multicoordination
minimizes unwanted round changes. Hence, our protocol, Multicoordinated Paxos, is a
synergism of these techniques. We present the protocol along with a discussion of various
aspects of using it in practice, and present a simplified instantiation of the protocol that
solves the Generic Broadcast problem [Pedone and Schiper, 2002].

Multicoordinated Agreement for Groups The fourth contribution regards the use of
multicoordination in hierarchically organized networks. In these scenarios, coordinator
quorums will increase availability, but will still require proposals to travel from all ends of
the network to reach the quorum. Spreading the quorums will not improve the situation
since quorums must be overlapping. We present a multicoordinated agreement protocol
that solves this problem by splitting coordinator quorums in partially independent systems,
and use the M-Consensus approach to reach agreement. We also show how this protocol
can be improved by a recursive use of consensus and multicast technology.

Log Service Our last contribution is to abstract the atomicity and durability problems
in transaction termination in terms of a Log Service. The service collects the updates per-
formed by each participant as well as their votes (commit and abort) for each transaction
they take part. When enough votes are collected, the service contacts the participants and
informs them the transaction outcome, based on the votes received. Defining transaction
termination in terms of our log service has two advantages. First, transaction termination
becomes oblivious to particularities of the system, taken care of or explored by the services
implementation transparently. Second, the overall availability of resource managers is im-
proved by using a highly available implementation of the service. As mentioned earlier, the
service can be used to migrate crashed or slow resource managers to functional and more
dependable hosts. As a consequence, resource managers may choose to asynchronously
store their state locally for later recovery or rely solely on the state kept at the log service.
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Besides the abstract specification, we present two implementations of the log service.
Both implementations rely on consensus to achieve high availability in different ways, with
performance implications on both the termination of transactions and on the recovery of
resource managers. In the first implementation, uncoordinated, voting is completely dis-
tributed, abstracting Paxos Commit and, by extension, 2PC. In the second, coordinated,
voting is managed by an easily replaceable coordinator agent. The two approaches abstract
the trade-off “message complexity versus number of communication steps” between atomic
commit protocols. We compare both approaches analytically and experimentally to previ-
ous work in the area and show that reducing the number of communication steps at the
expense of increasing the message complexity not always leads to better performance.

2.4 Algorithmic Notation

In this thesis we present algorithms as state machines, specified in terms of atomic actions,
state functions, and operators. The notation we use to define each of them should to be
less ambiguous than the normally used pseudo-code, but more easily readable than the
TLA+ [Lamport, 2002a] specifications in which we have specified our main algorithms.

An action can only be executed if all of its pre-conditions are satisfied, in which case
we say that the action is enabled. An enabled action executes atomically and changes the
state machine accordingly. State functions evaluate some condition over the state of the
state machine and are useful to express properties; a state function that evaluates to a
boolean value is called a state predicate. Operators are functions that operate on a set of
parameters.

Agents are divided in sets according to their roles. Hence, checking if an agent plays a
given role is the same as checking its inclusion in the respective set. Agents keep their state
in variables indexed by their names. In the following specification, for example, the action
FlipIfZero is enabled for an agent a of type flipper that has its variable var[a] equal to 0. If
the action is executed, var[a] is flipped to 1.

Most keywords that we use have obvious meanings. For example, the If(a, b, c) operator
defined above evaluates to b if a is true and to c otherwise. Another example is the pair LET

and IN, which specifies the scope of a definition. In the definition of SumSeq(seq) above,
for example, Sum is defined as a recursive function that iterates over the elements of a
sequence summing them, but only inside SumSeq. For the sake of simplicity, we collapse
nested LET IN pairs into a single one and let each definition be in the scope of the next ones.

We represent sequences as tuples. We denote by LEN(s) the number of elements of
sequence s and by s[i] the i -th element of s . The sequence 〈〉 is the empty sequence and
〈a,b,c〉 is the sequence of elements a,b and c, in this order. When comparing sequences,
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Algorithm 1 Notation example.
FlipIfZero(a)

∆
=

pre-conditions: • a ∈ flipper

• var[a] = 0

actions: • var[a]← 1

If(a, b, c)
∆
= IF a THEN b ELSE c

SumSeq(seq)
∆
=

LET Sum(i)
∆
= IF i= 0 THEN seq[i] ELSE seq[i] + Sum(i− 1)

IN Sum(Len(seq))

RandInt(min, max)
∆
= CHOOSE i : i ∈ I∧min ≤ i ≤max

the symbol “ ” matches any element. For example, 〈a,b〉 = 〈 ,b〉 and 〈 ,b〉 = 〈c,b〉 even if
c 6= a.

The CHOOSE v : C operator is used to select some value v that satisfies condition C . In
the definition of RandInt, for example, CHOOSE is used to select a random integer between
the min and max values.

2.5 System Model

A distributed system is composed of a set of agents with well defined roles that cooperate to
achieve a common goal. In practice, an agent can be implemented by a process or collection
of them, by a processor, or any computation enabled entity. Moreover, any single entity that
implements one agent could also implement several. Reasoning in terms of agents allows us
to specify problems and algorithms more concisely and in terms of heterogeneous agents.

Distributed systems can be classified in different axis according to the way agents ex-
change information, the way they fail and recover, and the relative speeds at which they
perform computation. In this work we address asynchronous distributed systems in which
agents can crash and recover, and use unreliable communication channels to exchange
messages.

In asynchronous distributed systems there are no bounds on the time it takes an agent
to execute any action or for a message to be transmitted. We show that if such bounds exist,
then the protocols we present in this thesis ensure some liveness properties, if the number
of failures can be limited in time. Our liveness proofs require the bounds to exist but do
not require them to be known by any agent.

Even though we assume that agents may recover, they are not obliged to do so once they
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have failed. For simplicity, an agent is considered to be nonfaulty iff it never fails. Agents
are assumed to have access to local stable storage which they can use to keep their state
in between failures. State not kept in stable storage is reset after a crash. Last, we assume
that agents do not execute any arbitrary step, i.e., we do not consider byzantine failures.

Although channels are unreliable, we assume that if agents keep retransmitting their
messages, then they eventually succeed in communicating with each other. We also assume
that messages are not duplicated and cannot be undetectably corrupted.



Chapter 3

Multicoordinated Consensus

3.1 Consensus and the FLP Impossibility Result

Distributed problems and algorithms are commonly described in terms of a task to be at-
tained by homogeneous agents. The standard specification of the consensus problem, for
example, states that “a set of agents must eventually agree on a value, in spite of a maxi-
mum number of failures”. As a result, algorithms for such problems are also given in terms
of homogeneous agents with similar behavior. Because processes play different roles in
real systems, we use a different approach and specify problems and algorithms in terms of
the roles which agents play. For example, in a client/server architecture, we refer to client

agents and server agents, or to sender and receiver in a mailing system.

In the case of consensus, we use three kinds of agents: proposer, learner, and accep-

tor. Because consensus subsumes many agreement problems, the same sets of agents
may also make sense it their specifications and, hence, we will adopt the same termi-
nology. To the best of our knowledge, specifications based on roles was introduced by
Lamport [Lamport, 1998].

In the consensus problem, agents must agree on a single value out of a given set of
proposals. Proposer agents issue proposals out of which one will become the decision.
Once a decision is reached, learners must become aware of its value. In the context of
a common distributed application, state machine replication, proposers can be thought of
as clients issuing commands and learners as the application servers that execute the de-
cided commands. For this reason, we interchangeably refer to proposals also as commands.
Clients might also be learners to know whether their issued commands were accepted by
the system to be executed.

Formally, the safety requirements of consensus are three [Lamport, 2006b]:

Nontriviality: Any value learned must have been proposed.

17
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Stability: A learner can learn at most one value.

Consistency: Two different learners cannot learn different values.

While the safety requirements are stated in terms of proposers and learners, the live-
ness requirement is stated over the set of acceptors. This happens because, as we pointed
out, proposer and learner roles are associated with clients of applications, and it would be
unreasonable requiring them not to fail. Acceptors, conversely, are part of the application
infrastructure, and it is more reasonable to make reliability assumptions about them. We
call a quorum any finite set of acceptors that is large enough not to forbid liveness and
define the liveness requirement of consensus as follows:

Liveness: For any proposer p and learner l , if p, l , and a quorum Q of acceptors are
nonfaulty and p proposes a value, then l eventually learns some value.

Under the assumed asynchronous crash-recovery model, it is well known that no fault-
tolerant consensus algorithm can ensure termination if there is the possibility of failures
[Fischer et al., 1985]. Phrased in terms of acceptors, this result implies that quorums must
equal the set of all acceptors. Hence, algorithms must make extra assumptions about the
system to ensure liveness if they must be fault-tolerant.

3.1.1 Randomization and Spontaneous Ordering

One way of circumventing the impossibility result is through the use of randomization. The
algorithm of Bracha and Toueg [Bracha and Toueg, 1983], for example, rely on the fact
that, if agents keep exchanging messages in rounds, then there is a non-zero probability
that they will all eventually receive the same set of messages in some round. The authors
have called this property fair scheduling.

The algorithms of Rabin [Rabin, 1983] and Ben-Or [Ben-Or, 1983] employ random-
ization in a different way. In their algorithms, if agents have no reason to opt for some
proposal or another in some round, then they use a random bit generator to chose one.
Given that there is a non zero probability that all chose the same random bit, agreement is
reached with probability 1.

Pedone et al. [Pedone et al., 2002a] later replaced the selection based on the random bit
generator used by Rabin [Rabin, 1983] and Ben-Or [Ben-Or, 1983] for a selection based on
the order in which messages are received. This is possible if, for every round, there is a non
zero probability that messages will be received in the same order. These properties, some-
how related to fair scheduling, are abstracted by weak ordering oracles [Pedone et al., 2002b].
In specific, the algorithms of Pedone et al. [Pedone et al., 2002a], namely B-Consensus and
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R-Consensus in reference to Ben-Or and Rabin, use the weak atomic broadcast (WAB) or-
acle, which ensures that if processes keep exchanging broadcast messages then, in some
rounds, the first message received by all running agents is the same. In the same work,
the authors show that, with high probability, Ethernet broadcast satisfies the WAB specifi-
cation. The key idea behind spontaneous ordering is that at some point all acceptors will
accept the same value and a decision is achieved. Brasileiro et al.’ one step consensus pro-
tocol [Brasileiro et al., 2001], for example, may be seen an instance of R-Consensus where
each proposer is collocated with an acceptor, which its proposals reach with delay zero. If
enough proposers propose the same value simultaneously, then after zero communication
steps the same value may have been decided, taking just one extra communication step for
the decision to be learned.

WAB based protocols are interesting from a practical perspective since they do not make
any synchrony assumption. Nonetheless, B-Consensus and R-Consensus are of more theo-
retical than practical interest for their assumed failure and communication models: crash-
stop and reliable links. From a pragmatic perspective, agents should be capable of reinte-
grating the system after a crash and tolerate message losses, being able to make better use
of highly-efficient communication means (e.g., UDP messages).

Crash-Recovery WAB-Based Consensus

We have extended the protocols of Pedone et al. [Pedone et al., 2002a] to the crash-recovery
model with fairly lossy channels. Moreover, we defined these extended protocols using
roles and relaxed the constraint that all agents run the same protocol as in the original
algorithms [Camargos et al., 2006a], which also differs our work from that of Brasileiro
[Brasileiro et al., 2001]. These protocols, which we have named B*-Consnesus and R*-
Consensus in reference to the algorithms in which they were inspired, are the first contri-
bution of this chapter.

3.1.2 Synchronism and Failure Detection

Several works have considered circumventing the impossibility of solving consensus by
assuming a partially synchronous model. Dolev et al. [Dolev et al., 1987] and Dwork et

al. [Dwork et al., 1988] have studied, classified, and determined minimal synchrony as-
sumptions needed to solve consensus. Christian and Fetzer [Cristian and Fetzer, 1999] have
shown that several synchronism assumptions are realistic to some distributed systems.

Chandra and Toueg [Chandra and Toueg, 1996] introduced the concept of unreliable
failure detectors, or UFD, which encapsulate the synchrony assumptions needed to solve
consensus as abstract properties. These oracles provide possibly wrong information about
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the failures of agents. The weakest UFD that can be used to solve consensus, ✸W , ensures
two properties [Chandra et al., 1996]:

Eventual Weak Completeness all agents that permanently crash are eventually suspected
by a nonfaulty agent;

Eventual Weak Accuracy eventually, at least one nonfaulty agent will stop being suspected
by the other nonfaulty agents.

Another interesting failure detection abstraction is the Ω leader election oracle, intro-
duced and shown equivalent to ✸W by Chandra et al. [Chandra et al., 1996]. Briefly,
Ω ensures that nonfaulty agents eventually agree on the identity of some nonfaulty
agent, the leader. Failure detectors have been used to solve consensus in crash-stop
[Chandra and Toueg, 1996, Schiper, 1997, Hurfin and Raynal, 1999, Hurfin et al., 2002,
Dutta and Guerraoui, 2002], in crash-recovery [Lamport, 1998, Aguilera et al., 1998,
Hurfin et al., 1998, Lamport, 2001], and byzantine settings [Castro and Liskov, 1999,
Lampson, 2001, Zielinski, 2004, Martin and Alvisi, 2006].

In each of these algorithms, computation progresses as a sequence of rounds, each
of which is managed by a coordinator agent. The coordinators are the only agents that
send proposals to acceptors to get them decided; proposers resort to coordinators to have
their proposals considered. When a new round is started, its coordinator must determine
possibly previously decided values and use such a value, if existent, in the new round.
Moreover, a new round must prevent previous ones from deciding if they have not done
so yet. Hence, if rounds are indiscriminately started, no one may succeed in deciding any
value. To avoid such a scenario, one leader coordinator is selected to start new rounds using
a leader election oracle like Ω. Because failure detectors can make mistakes, rounds may be
started even in absence of failures, which can prevent progress unless these mistakes cease
to happen.

3.1.3 Availability Issues of Leader Based Protocols

A proposal issued by the leader takes two steps to be decided and learned, in the best
scenario. One step to be propagated to the acceptors and one more from the acceptors to
the learners. From the point of view of regular proposers, one step more is required to send
their proposals to the leader. Hence, the leader becomes a single point of failure for every
round. When it fails, its failure must be detected, a new leader must be elected, and a new
round must be started. As we mentioned before, starting a round requires the new leader to
synchronize with acceptors to block previously started rounds; while this synchronization
is done, no decision can be reached.
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Fast Paxos [Lamport, 2006a] extends the leader-based Paxos [Lamport, 1998], men-
tioned above, to allow proposers send their proposals directly to acceptors in some rounds,
reducing in one step the latency of the protocol in synchronous periods of the system and
in absence of failures. The price for these fast rounds, as opposed to the classic rounds in
the original protocol, is the possibility of different proposals being accepted in the same
round; we call this situation a collision. Collisions have two bad effects: first, they may
force the execution of a new round, with all the overhead of starting it, even in the absence
of failures; second, the simple possibility of collisions forces the leaders to synchronize with
more acceptors in starting each round and, therefore, fast rounds are less resilient. An exe-
cution of Fast Paxos with only fast rounds is equivalent to an execution of the R*-Consensus
protocol [Camargos et al., 2006a].

Multicoordinated Rounds

We have introduced a multicoordinated type of rounds that minimize the depen-
dence on the coordinator and the availability problems resulting of this depen-
dence [Camargos et al., 2007b, Camargos et al., 2008a]. Multicoordinated rounds have
multiple coordinators, to which proposers send their proposals in parallel. As in the original
Paxos protocol, coordinators forward the proposals to acceptors; acceptors, however, only
take into consideration proposals forwarded by a quorum of the round coordinators. By
requiring these coordinator quorums to intersect, the protocol ensures that no two differ-
ent values will be considered on the same round and, hence, no collision happens on the
acceptors. Collisions, however, may occur at the coordinators if different proposals are sent
in parallel. These collisions are inherently less expensive than collisions on the acceptors in
that they can be handled without any stable storage access. We further discuss this aspect
of multicoordinated rounds in Section 4.4.4.

As with fast rounds and R∗-Consensus, multicoordinated rounds and the B∗-Consensus
protocol are somewhat equivalent. Our multicoordinated protocol, however, extends Fast
Paxos to have all three round types and allow coordinators to start rounds of either type at
any point during the execution. An implementation of the protocol can harness this prop-
erty to adapt to changes in the execution environment at runtime. The multicoordinated
consensus protocol is the second contribution of this chapter.

3.2 WAB-Based Consensus

In this section we present the WAB-based consensus algorithms B*-Consensus and R*-
Consensus [Camargos et al., 2006a]. These protocols execute as a sequence of rounds,
identified by natural numbers. In each round, proposers can make any number of propos-
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als. Acceptors can accept only a single proposal per round, and the goal of each round is
to have a value accepted by a quorum of acceptors, in which case we say that the value
has been chosen. The algorithms ensure that if a value is chosen at some round, then no
other round will chose a different value. Hence, a learner can safely learn a value that
has been chosen. To ensure that no two different values are chosen in any round, the al-
gorithms require that quorums intersect. This requirement is formalized by the following
assumption.

Assumption 1 (Quorum Requirement) If Q and R are quorums, then Q ∩R 6= ;.

In fact, any general algorithm for asynchronous consensus must satisfy a similar require-
ment, as shown by the Accepting Lemma in [Lamport, 2006b]. A simple way to satisfy this
requirement is define quorums as any majority of the acceptors. We use this approach in
this section for its simplicity.

B*-Consensus explores Assumption 1 to terminate in three communication steps in good
runs. By making the following stronger assumption, R*-Consensus can terminate in just two
steps. The assumption is easily satisfied by defining quorums with more than two thirds of
the acceptors.

Assumption 2 (Simple Fast Quorum Requirement) If Q , R, and S are quorums, then Q∩
R ∩ S 6= ;.

We will explain how Assumption 2 is used once we have presented the algorithm. In
fact, a relaxed version of it would be enough, but that would unnecessarily complicate
the algorithm. We relax the assumption later, when reviewing the Fast Paxos protocol in
Section 3.3.2, from which point on all algorithms will assume the relaxed version.

Before presenting B*-Consensus and R*-Consensus, respectively in Sections 3.2.2 and
3.2.3, we describe Weak Ordering Oracles and, more specifically, the WAB abstraction used
in both algorithms.

3.2.1 Weak Atomic Broadcast

Weak ordering oracles [Pedone et al., 2002b] provide best-effort message ordering guaran-
tees, that is, they try to deliver messages in some total order to all processes but cannot be
trusted to always perform this task. A WAB, or Weak Atomic Broadcast, is a weak order-
ing oracle defined by the primitives w-broadcast(k ,m) and w-deliver(k ,m), where k ∈ N
defines a w-broadcast instance and m is a message. The invocation of “w-broadcast(k ,m)
to S ” broadcasts message m in instance k to the agents in S ; w-deliver(k ,m) w-delivers a
message m w-broadcast in instance k . WAB satisfies the following property:
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WAB If agents w-broadcast in an infinite number of instances to the agents in some set S ,
then for every instance k there is an instance k ′ ≥ k in which

Fairness every nonfaulty agent in S w-delivers a message, and

Spontaneous Order the first message w-delivered in instance k ′ is the same for every
agent that w-delivers a message in k ′.

Consider, for example, the use of WAB depicted in Figure 3.1, where w-broadcast and
w-deliver are noted as wb and wd, respectively. The two agents depicted by dashed lines
w-broadcast messages to the other processes. No agent crashes and no message is lost. In
instance 1, message m1 is the first w-delivered by one of the three receivers; the sponta-
neous order property is clearly not satisfied in this instance. In instance 2, however, the
first message w-delivered by all receivers is the same, m4, satisfying spontaneous ordering.
In instance 3, even though just one message is w-broadcast and spontaneous ordering is
attained, not all nonfaulty processes deliver the message. As long as this bad scenario does
not happen infinitely often in the subsequent instances, the WAB properties may still be
satisfied.
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Figure 3.1: Spontaneous Order in WAB.

From a practical perspective, the behavior of IP-multicast in some local-area networks
(e.g., Ethernet), under reasonable loads, matches the WAB specification. In such environ-
ments, IP-multicast ensures that most broadcast messages are delivered in the same order
by all addressed nodes [Pedone et al., 2002b].

3.2.2 B*-Consensus

B*-Consensus (See Algorithm 2) has seven actions out of which the first three are performed
by all agents, the fourth is performed only by proposers, fifth and sixth only by acceptors,
and the last one by learners. Agents are divided in three sets, according to their roles:
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acceptors, proposers, and learners, and checking whether an agent may execute an action or
not is performed by checking its inclusion into these sets. We assume for now proposers is
a subset of are also learners.

The algorithm is defined in terms of four variables: rnd , prop, preAcc, and acc. Even
though some variables are particular to specific roles, to simplify the presentation we let
all agents have all variables. Variables not associated to an agent will remain in its initial
state throughout the execution of the protocol. We explain the function of each variable as
needed while explaining the actions.

Algorithm 2 B*-Consensus
1: Common Actions:

2: Start(a)
∆

= ⊳ Run at boot, but not at recovery.

3: actions:
4: rnd[a]← 0

5: prop[a]← none

6: preAcc[a]← none

7: acc[a]← none

8: Log(rnd[a], prop[a], preAcc[a], acc[a])

9: Recover(a)
∆

= ⊳ Run at recovery, but not at boot.

10: actions:
11: Retrieve(rnd[a], prop[a], preAcc[a], acc[a])

12: Skip(a)
∆

=

13: pre-conditions:

14: received 〈 ,q , rnd , . . . ,prop〉 or w-delivered 〈“first”,q , rnd ,prop〉
15: rnd[a] 6= rnd

16: actions:
17: IF rnd[a]> rnd THEN

18: send 〈“skip”,a, rnd[a],prop[a]〉 to q

19: IF rnd[a]< rnd THEN

20: rnd[a]← rnd

21: prop[a]← prop

22: preAcc[a]← none

23: acc[a]← none

24: Proposer Actions:

25: Propose(a, v)
∆

=

26: pre-conditions:
27: a ∈ proposers

28: prop[a] = none

29: actions:
30: prop[a]← v

31: w-broadcast 〈“proposal”,a, rnd[a],prop[a]〉 to acceptors
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Bootstrap and Recovery

Action Start(a) executes when a is started for the first time. It sets the data structures
to their initial values. The second action, Recovery(a) executes upon recovery, i.e., when
the agent is recovering from a crash. Initialization and recovery are easily discernible by
using stable storage. Agents write to and read from stable storage through Log and Retrieve

functions. The other actions in the algorithm run in response to the arrivals of messages.
However, they only run after the agent has been initialized or recovered.

For every agent a, variable rnd[a] has the highest-numbered round in which a has
taken part; initially, rnd[a] equals zero. If a is a proposer, prop[a] has the value a has
proposed in round rnd[a]; if a has not proposed any value, then prop[a] has its initial
value, none.

Skipping rounds

Rounds are started in sequence; only when a learner sees the end of a round, a new one
is started. If an agent has been down for some time or is too slow, it might be delayed
in the round progression. When an agent a in round rnd[a] receives a message sent in a
round rnd> rnd[a], it immediately jumps to rnd skipping rounds rnd[a] + 1 . . . rnd − 1,
rapidly catching up with the more advanced agents. However, not every value can be
proposed in every round, an agent skipping rounds must pick a value that is proposable in
this new round. After a round in which a value is decided, for example, only this value can
be proposed. Only agents that finished round rnd− 1 initially know which values can be
proposed in round rnd. Hence, processes skipping round rnd− 1 to rnd must learn from the
processes already in r about which values are valid proposals in r . In the algorithm, each
message carries a proposal valid in the round in which it was sent, so that other agents can
use it to skip round (this is the last field of each message).

The actual round skipping is performed by action Skip in the algorithm. This action
runs before the other actions have also been triggered by the receipt of messages. This way,
the process is able to jump to a higher round and then use the message to proceed in the
round. Although not specified to simplify the algorithm, this action runs only once for every
message received. The algorithms in [Aguilera et al., 1998] can also skip rounds, but the
procedure is considerably more complicated than the one we present.

Proposing a Value

Proposers propose a value by executing the fourth action. Due to message losses and pro-
cess crashes, a consensus instance may not terminate in the first attempt, and may have to
be retried. At any time, proposers can retry a consensus instance if they believe that the
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previous attempt has failed; consistency is kept even if the previous attempt is still running.
Since we assume that proposers are also learners, they are able to learn that a round of the
algorithm has terminated. So, if a proposer does not learn the decision of the consensus it
has initiated after some time, it re-starts its execution by proposing in its current round.

Algorithm 2 B*-Consensus(continued)
32: Acceptor Actions:

33: PreAccept(a)
∆

=

34: pre-conditions:
35: a ∈ acceptors

36: w-delivered 〈“proposal”, , rnd[a],prop〉
37: preAcc[a] = none

38: actions:
39: preAcc[a]← prop

40: prop[a]← prop

41: Log(preAcc[a], rnd[a], prop[a])

42: send 〈“pre-accepted”,a, rnd[a],preAcc[a],prop〉 to acceptors

43: Accept(a)
∆

=

44: pre-conditions:
45: a ∈ acceptors

46: ∀q ∈ Q , |Q |= ⌈(n + 1)/2⌉, a received 〈“pre-accepted”,q , rnd[a],preAcc,prop〉
47: actions:

48: LET M ={〈“pre-accepted”,q , rnd[a],preAcc,prop〉: q ∈ Q}
49: IN

50: IF ∀m ∈ M : m = 〈“pre-accepted”, , rnd[a],preAcc, 〉
51: THEN acc[a]← preAcc ⊳ Accepted preAcc.

52: ELSE acc[a]←⊤ ⊳ Did not accept anything.

53: prop[a]← prop

54: log (acc[a], rnd[a],prop)
55: send 〈“accepted”,a, rnd[a],acc[a],prop[a]〉 to learners

56: Learner Actions:

57: Learn(a)
∆

=

58: pre-conditions:

59: a ∈ learners

60: ∀q ∈ Q , |Q |= ⌈(n + 1)/2⌉, a received 〈“accepted”,q , rnd[a],acc, 〉
61: actions:
62: LET M ={〈“accepted”,q , rnd[a],acc, 〉: q ∈ Q}
63: IN

64: IF ∀m ∈ M : m = 〈“accepted”,q , rnda[a],acc, 〉 and acc 6= ⊤
65: THEN decide acc
66: IF ∃〈“accepted”,q , rnd[a],acc, 〉 ∈ M : acc 6= ⊤
67: THEN prop[a]← acc

68: rnd[a]← rnd[a] + 1



3.2. WAB-Based Consensus 27

Accepting a Proposal

Acceptors in B*-Consensus accept proposed values in two steps. First, the value is pre-
accepted and then exchanged and compared with pre-accepted values of other acceptors.
Only then a value may be accepted. Actions PreAccept and Accept show these two steps.
Variables preAcc and acc store the acceptors’ currently pre-accepted and accepted values,
respectively.

Acceptors pre-accept values when they first w-deliver a “proposal” message in their
current round. Remember that agents may update their current rounds just before w-
delivering, through the Skip action. On pre-accepting a proposal prop received in a message
〈“proposal”,q , rnd ,prop〉, an acceptor a sets preAcc[a] to prop and logs it along with
rnd[a] and some proposal valid for round rnd[a], as for example the proposal just received.
These values are used to recover the process in case of a crash. In Section 4.4.5 we show
how this stable storage access can be avoided.

After pre-accepting a value, acceptors exchange these values with one another in mes-
sages with the “pre-accepted” tag. The goal is to determine if enough processes have
pre-accepted the same proposal. Each acceptor a collects ⌈(n + 1)/2⌉ pre-acceptances,
including its own, where n is the number of acceptors in the system. This is shown in ac-
tion Accept. If all the ⌈(n + 1)/2⌉ pre-accepted values are equal to the same value preAcc,
then a accepts the value by setting acc[a] to preAcc. Otherwise, if the values differ, a sets
acc[a] to ⊤ to indicate that no value has been accepted in the given round. The update
of acc[a] is logged on stable storage as well as rnd[a] and a valid proposal, as done with
pre-acceptances. Finally, acceptors send their accepted values or ⊤, if they did not accept
any value, to all learners using “accepted” messages.

Learning the Decision

Once learners have received ⌈(n + 1)/2⌉ “accepted” messages, they execute action Learn.
The first step in the action is to check whether all received “accepted” messages carry the
same accepted value acc. If that is the case, then acc has been chosen as the decision and
should be learned. The decision is also used as the proposal for the next round. If no value
has been decided, then learners look for any accepted value v 6= ⊤ to be used as a proposal
in the next round. If none is found, any value is used. The learner then increments its
round number so that its proposer counterpart starts the new round.

3.2.3 R*-Consensus

R*-Consensus (See Algorithm 3) has a structure very similar to B*-Consensus. The most
notable difference is that acceptors do not pre-accept proposals and check against each
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other. Hence, there is one fewer action in the algorithms as well as one fewer variable,
preAcc. In fact, except for the removal of preAcc, the first four actions are the same as in
B*-Consensus. We therefore omit the explanation of these actions.

Algorithm 3 R*-Consensus
1: Common Actions:

2: Start(a)
∆

= ⊳ Run at boot, but not at recovery.

3: actions:
4: rnd[a]← 0

5: prop[a]← none

6: acc[a]← none

7: Recover(a)
∆

= ⊳ Run at recovery, but not at boot.

8: actions:
9: Retrieve(rnd[a], prop[a], acc[a])

10: Skip(a)
∆

=

11: pre-conditions:

12: received 〈 ,q , rnd , . . . ,prop〉 or w-delivered 〈“first”,q , rnd ,prop〉
13: rnd[a] 6= rnd

14: actions:
15: IF rnd[a]> rnd THEN

16: send 〈“skip”,a, rnd[a],prop[a]〉 to q

17: IF rnd[a]< rnd THEN

18: rnd[a]← rnd

19: prop[a]← prop

20: acc[a]← none

21: Proposer Actions:

22: Propose(a, v)
∆

=

23: pre-conditions:
24: a ∈ proposers

25: prop[a] = none

26: actions:
27: prop[a]← v

28: w-broadcast 〈“proposal”,a, rnd[a],prop[a]〉 to acceptors

Accepting a Proposal

In the R*-Consensus algorithm, an acceptor a directly accepts the first proposal it w-delivers
in its current round. As in B*-Consensus, the accepted value is logged along with rnd[a]

and prop[a], so that these values will not be forgotten in case of a crash. Acceptors then
send the accepted values to all learners in “accepted” messages.
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Learning the Decision

Instead of a simple majority of “accepted” messages as in B*-Consensus, learners in R*-
Consensus gather ⌈(2n + 1)/3⌉ messages for the same round as a precondition to action
Learn. As in the other algorithm, a value is learned (or decided) if all received messages
show the same value as accepted. If that is not the case, then a new round is started. If more
than half of the “accepted” messages indicate the same value, then this value is chosen as
the proposal for the next round and stored in the prop variable. If no value satisfies such a
condition, then any value can be used as proposal. In any case, rnd[a] is incremented.

Algorithm 3 R*-Consensus (continued)
29: Acceptor Actions:

30: Accept(a)
∆

=

31: pre-conditions:
32: a ∈ acceptors

33: w-delivered 〈“proposal”,q , rnd[a],prop〉
34: acc[a] = none

35: actions:
36: acc[a]← prop

37: prop[a]← prop

38: Log(acc[a], rnd[a], prop[a])

39: send 〈“accepted”,a, rnd[a],acc[a],prop〉 to learners

40: Learner Actions:

41: Learn(a)
∆

=

42: pre-conditions:

43: a ∈ learners

44: ∀q ∈ Q , |Q |= ⌈(2n + 1)/3⌉, a received 〈“accepted”,q , rnd[a],acc,prop〉
45: actions:

46: LET M ={〈“accepted”,q , rnd[a],acc,prop〉: q ∈ Q}
47: IN

48: IF ∀m ∈ M : m = 〈“accepted”, , rnda[a],acc, 〉 THEN

49: decide acc

50: IF ∃vmaj : for ⌈(n + 1)/3⌉m ∈ M : m =〈“accepted”, , rnd[a],vmaj , 〉 THEN

51: prop[a]← vmaj

52: rnd[a]← rnd[a] + 1

3.2.4 Correctness and Liveness

In this section we sketch the correctness and liveness proofs or R*-Consensus and B*-
Consensus. B*-Consensus and R*-Consensus are simplified versions of the Multicoordi-
nated Consensus, presented in Section 3.3, and of Multicoordinated Paxos, presented in
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Chapter 4. Hence, the formal proofs of correctness and liveness for Multicoordinated Con-
sensus and Multicoordinated Paxos, in the Appendix A, also serve as formal proofs for
B*-Consensus and R*-Consensus.

From the algorithms, B*-Consensus and R*-Consensus ensure the Nontriviality criterium
in the consensus specification since no value besides the proposals are introduced in the al-
gorithms except from ⊤, which is a value that cannot be decided. Consistency is ensured in
B*-Consensus for the following reason:

• Due to Assumption 1, only a single value may be accepted in action Accept of any
round by all agents in some quorum.

• If some quorum of acceptors accept the same proposal v in the same round, then
every learner that executes Learn sees at least one “accepted” message with v in
B*-Consensus. Hence, every learner that increments its round number does so after
setting v as the new proposal, and v becomes the only proposable value in the next
rounds.

• If there is a single value v proposed in some round, then all acceptors that accept
some value must accept v . Hence, by the end of the round, v will be the only decided
by any learner that decides, and the only proposal valid for the next rounds.

For a similar reason, Consistency also holds for R*-Consensus. That is

• Due to Assumption 1, only a single value may be accepted in action Accept of any
round by all agents in some quorum.

• If some quorum of acceptor accepts the same proposal v in the same round, then
every learner that executes Learn sees at least n/3+ 1 in R*-Consensus, due to As-
sumption 2. Hence, every learner that increments its round number does so after
setting v as the new proposal, and v becomes the only proposable value in the next
rounds.

• If there is a single value v proposed in some round, then all acceptors that accept
some value must accept v . Hence, by the end of the round, v will be the only decided
by any learner that decides, and the only proposal valid for the next rounds.

The same reasoning implies the Stability property. That is, after deciding on some value,
each learner can only decide again if for the same value.

By the definition of the Liveness property, no algorithm can ensure progress unless all
acceptors in some quorum are nonfaulty. If this condition is satisfied and actions are fairly
executed (i.e., they are eventually executed if they are frequently enabled.), then as soon
as the WAB properties hold in some round r a value v will be chosen. Once v is chosen,
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any learner that finishes r choses v as its new proposal and any agent moving to a round
r ′ ≥ r only considers v as a valid proposal. Hence, even if the WAB properties do not hold
in rounds bigger than r , every learner that decides in r ′ decides for v .

3.3 Multi-Coordinated Consensus

The Paxos consensus protocol [Lamport, 1998, Lamport, 2001] is a well known and largely
studied leader based consensus protocol. When starting each round of Paxos, the leader
checks if any decision was or may still be decided in any previously started round. If
this is the case, then the leader forwards this value to be accepted by the acceptors in
the new round. This inductively ensures that new rounds are always in accordance with
the decisions of previously started rounds. Fast Paxos [Lamport, 2006a] is an extension
of Paxos in which the leader, after determining that no value could have been decided in
previous rounds, delegates to the proposers the task of sending proposals directly to the
acceptors. Hence, in Fast Paxos, the leader can decide to switch back and forth from a
classic Paxos round to a Fast Paxos round. (Henceforth, we refer to Paxos and its rounds as
Classic Paxos and classic rounds.)

In the same way that Fast Paxos extends Classic Paxos with fast rounds, which are
roughly equivalent to R*-Consensus rounds, we can extend Fast Paxos with B*-Consensus-
like rounds. In doing so, we create rounds in which the task of the leader is shared by
multiple coordinators, which never write on disk and therefore can be easily replaced by
another coordinator. Moreover, these new rounds, which we call multicoordinated, do not
require larger acceptor quorums as Fast Paxos does. Hence, we claim that our extended
protocol provides greater availability than Fast Paxos.

The best way to explain our protocol is by starting with Classic Paxos and adding support
to fast rounds, obtaining Fast Paxos, and then multicoordinated rounds. Hence, we start by
explaining Classic Paxos.

3.3.1 Classic Paxos

The rounds of Paxos and Fast Paxos are identified by round numbers (sometimes also called
ballot numbers [Lamport, 1998]) which are totally ordered by a relation< and in an infinite
number. Although there is a total order among round numbers, the execution of rounds
need not follow this order, and actions referring to different rounds may even interleave.
This is in opposition to our WAB-based consensus protocols, in which a round i is always
followed by round i + 1 (although delayed agents may skip some rounds). For now, we
assume that round numbers correspond to the set of natural numbers. In Section 4.4.5 we
discuss another type of round numbers and their interesting properties.
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We say that a value is chosen in a round r if a quorum of acceptors has accepted the
value in round r . Because the protocol assumes that Quorum Requirement (Assumption 1,
on page 22) is satisfied, it is ensured that only a single value can be chosen in any round.
In Classic Paxos, a round is divided into two phases: the first phase serves to identify
previously chosen values and the second phase tries to get some value chosen in the current
round. Each phase involves two actions: Phase1a, Phase1b, Phase2a, and Phase2b. Actions
Phase1a and Phase2a initiate each phase, while the actions Phase1b and Phase2b may be
seen as replies to the previous actions.

To orchestrate round executions, Paxos assumes a set of coordinator processes, besides
proposers, acceptors, and learners. Every round has a single coordinator, responsible for
starting each phase of the round, by executing actions Phase1a and Phase1b.1

Two other actions complete the algorithm. The first, Propose, is executed by proposers
to propose a value. The second, Learn, is executed by learners to learn the decision of a
consensus instance.

Figure 3.2 presents the dependencies among actions in each round. It shows that a
learner l can only learn the decision of an instance after the execution of the two phases
of some round i . Besides, a learner l can only learn some value if some proposer p has
proposed it. Observe that the Propose action must happen before the second phase, but not
necessarily before the first phase. The importance of this property will be explained later.

Phase1b(a,i)Phase1a(c,i) Phase2a(c,i)

Propose(p,v)

Learn(l)Phase2b(a,i)

Figure 3.2: Dependencies among actions of proposer p, coordinator c, acceptor a and
learner l , for some round i . → is the regular happens-before relation.

We now present an abridged version of the Classic Paxos specification along with a
description of each phase of the protocol. Actions are defined in terms of the set of variables
listed below. The function of each variable becomes clear from the explanation of the
actions. A coordinator c keeps the following variable:

crnd[c] The current round of c, which is initially 0.

An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-numbered round a has heard of; initially
0.

1In the original protocol, coordinators were drawn from the set of acceptors, not a different set of agents.
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vrnd[a] The round at which a has accepted the latest value, initially 0.

vval[a] The value a has accepted at vrnd[a], initially none.

Each learner l keeps only the value it has learned so far.

learned[l] The value learned by l , initially none.

Proposing a Value

A proposer agent a proposes a value v by executing action Propose(a, v). The action consists
simply of sending a 〈“propose”,v〉 message to all coordinators.

Phase One

The coordinator c of round i executes action Phase1a(c, i) to start the phase one of i . The
action consists of c sending a message 〈“1a”,c, i〉 to each acceptor a asking a to take part
in round i .

After receipt of message 〈“1a”,c, i〉, acceptor a executes action Phase1b(a, i) to join
round i . a executes the action only if i is greater than any other round a has ever heard of,
where a has heard of j if it already executed actions Phase1b(a, j) or Phase2b(a, j). In this
case, a sends an 〈“1b”, i ,a, vrnd[a], vval[a]〉 message to c, where vrnd[a] is the highest-
numbered round in which a has accepted a value (or the initial state, if no value has been
accepted by a) and vval[a] is the value it accepted in vrnd[a] (or an invalid value none,
if no value has been accepted yet). The pre-condition of this action ensures that after it is
executed for round i , acceptor a will not execute it for a round j such that j < i . As we
show in action Phase2b, this action also prevents a from accepting a value for a round j

lower than i . This is a guarantee to c that a will not change its mind about the latest value
accepted in a round number lower than i .

Phase Two

The second phase starts once the coordinator c receives 〈“1b”,a, i ,vrnd ,vval〉 messages for
the same round i from all acceptors a in a quorum Q and executes action Phase2a(c, i).
In the action, c sends message 〈“2a”,c, i ,val〉 to the acceptors, where val is c’s selected
proposal defined as follows. If no “1b” message informed of a previously accepted value,
then c is free to select val among the proposals received directly from proposers. Otherwise,
c must pick a value that has been or might be chosen in a previous round to make sure that
no two different values will end up being chosen. This procedure ensures that if a value
v is chosen in round j , then no acceptor will ever accept a value other than v in a round
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Algorithm 4 Classic Paxos
1: Proposer Actions:

2: Propose(a, v)
∆

=

3: pre-conditions:
4: a ∈ proposers

5: actions:
6: send 〈“propose”,v〉 to coordinators

7: Phase One:

8: Phase1a(a, i)
∆

=

9: pre-conditions:

10: a is the coordinator of round i
11: crnd[a]< i

12: actions:
13: send 〈“1a”,a, i〉 to acceptors

14: Phase1b(a, i)
∆

=

15: pre-conditions:
16: a ∈ acceptors

17: rnd[a]< i

18: received message 〈“1a”,c, i〉 from coordinator c

19: actions:
20: rnd[a]← i

21: send 〈“1b”,a, i ,vrnd[a],vval[a]〉 to c

bigger than j . Since all coordinators have done the same for previously started rounds,
c must consider only the “1b” messages with the highest value of vrnd. Moreover, since
Paxos ensures that no two acceptors can accept different values at the same round, all such
messages are guaranteed to have the same value vval, which c picks up. Hereinafter we use
pick a value when referring to the proposal selection performed by coordinator c during a
Phase2a action, and say that a value is pickable in round i if no other value was or can still
be chosen at any round j < i . In Algorithm 4, the picking of a value is executed by function
PickValue(c, Q, i).

The second part of phase two of round i is executed by the acceptors in reply to the
〈“2a”,c, i ,val〉 message received from c. An acceptor a accepts the proposal val from c

if it has not heard of a round j greater than i . The acceptor a then sends a message
〈“2b”,a, i ,val〉 to all learners. As we can notice, the fact that an acceptor only accepts
values at round i sent by the coordinator of i in a phase “2a” message (which is the same
sent to all acceptors) ensures that no two acceptors accept different values at the same
round.
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Learning a Value

If a learner l receives 〈“2b”,a, i ,val〉 from each acceptor a in a quorum, then it knows that
val has been chosen and can be safely learnt. That is, val has been accepted by a quorum of
acceptors and any coordinator that starts a round bigger than i will pick val as its proposal.
l learns val by storing it on its learned[l] variable.

Algorithm 4 Classic Paxos (Continued)
22: Phase Two:

23: Phase2a(a, i)
∆

=

24: pre-conditions:

25: a is the coordinator of round i
26: crnd[a]≤ i

27: ∃Q : Q is a quorum and ∀ac ∈ Q , a received 〈“1b”,ac, i , rnd ,val〉
28: actions:
29: crnd[a]← i

30: cval[a]← PickValue(c, Q, i)

31: send 〈“2a”,a,crnd[a],PickValue(c,Q)〉 to acceptors

32: PickValue(c, Q, i)
∆

=

33: LET v
∆

= CHOOSE val : c received 〈“1b”,ac, i ,k ,val〉 from some ac ∈ Q :
∀ac′ ∈ Q ,m ′ =〈“1b”,ac′, i ,k ′, 〉 c received from ac′: k ′ ≤ k

34: IN IF v 6= none THEN val ELSE CHOOSE v : c received 〈“proposal”,v〉 from some proposer

35: Phase2b(a, i)
∆

=

36: pre-conditions:
37: a ∈ acceptors

38: rnd[a]≤ i

39: vnd[a]< i

40: received message 〈“2a”,c, i ,val〉 from coordinator c

41: actions:
42: rnd[a]← i

43: vrnd[a]← i

44: vval[a]← val

45: send 〈“2b”,a, i ,val〉 to learners

46: Learn(a)
∆

=

47: pre-conditions:

48: a ∈ learners

49: ∃Q : Q is a quorum and ∀ac ∈ Q , a received 〈“2b”,ac, i ,val〉
50: actions:
51: learned[a]← val
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Ensuring Liveness

As described in the definition of Phase1b, executing that action for a given round prevents
the same acceptor from executing action Phase2b for any smaller round (See Figure 3.2.). If
different coordinators keep starting new rounds, it may happen that acceptors continuously
execute Phase1b for the new rounds before executing Phase2b for the smaller rounds, and
no value is ever chosen. To ensure liveness, a single coordinator must be entitled to start
new rounds; we call such coordinator the leader. When there is just one agent in the system
that believes itself to be the leader, then it will be able to start a round that is high enough
to overcome all previously started rounds and make it succeed. However, having a single
leader is just a liveness condition; safety is never violated no matter how many coordinators
incorrectly believe themselves to be the leader. (See the complete description of Paxos for
a formal proof of its liveness guarantees [Lamport, 1998].)

Skipping Phase One

Since a coordinator sends the value to be accepted only at the beginning of phase 2, the
first phase of the algorithm can be executed before receiving any proposal. On a real
application, probably many consensus instances will be needed, and the leader can execute
phase 1 a priori for all consensus instances. Thus, the amortized latency for solving each
instance becomes only three messages steps if there are no failures and no other coordinator
interferes by starting a higher-numbered round: one step for the proposal to reach the
leader and two more for the second phase of the leader’s current round.

3.3.2 Fast Paxos

Fast Paxos [Lamport, 2006a] is an extension of the classic algorithm in which acceptors may
accept proposals directly from proposers in some rounds, reducing the latency of reaching
a decision in one communication step in good scenarios. There are two main differences
between Fast and Classic Paxos that allow this optimization. First, in Fast Paxos, each round
has its own set of quorums; we call a quorum for round i an i -quorum. The reason for this
is made clear later in this section (see Assumption 3, on page 38). Second, Fast Paxos has
two sorts of round: classic and fast. Classic rounds have the same structure as rounds in
Classic Paxos. Fast rounds share the first phase with classic rounds, but their second phase
differs slightly as we now explain.

Picking a Value in Fast Rounds

In a fast round i , after receiving the “1b” messages from an i -quorum, if the coordinator
is free to pick any value, it can delegate this task to acceptors; it does so by picking as
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placeholder the special value Any and sending it in a “2a” message to the acceptors.
After receiving the “2a” message with the value Any, acceptor a waits for a message

〈“propose”,v〉, in case it has not received one yet, and behaves as if it had received a mes-
sage 〈“2a”,c, i ,v〉 from the coordinator c of round i . Hence, for Fast Paxos to work properly,
proposers should send their “propose” messages to both coordinators and acceptors.

In Fast Paxos, acceptors are still bound to accept just one value per round but, differently
from Classic Paxos, different acceptors can accept different values in the same fast round.
Hence, to ensure the property that if a value v is chosen at round i , then no acceptor will
ever accept a value different from v at any round j such that j > i , we must revisit the rule
used by the coordinator of round i to find pickable values after receiving the “1b” messages
from an i -quorum. That is, we must redefine the PickValue function.

Ensuring Safety with Fast Rounds

To understand how a coordinator picks a value in a fast round i , consider a run of the
algorithm in which the coordinator of i has just received the “1b” messages for i from an
i -quorum Q . There are three cases to analyze. First, if none of the received messages
has a valid proposal in the val field, then no value has been or might be chosen at lower-
numbered rounds, since there is no quorum that could have chosen such a value that does
not intersect with Q . Therefore, any proposed value is pickable and it is up to c to decide
whether to pick one or to let proposers propose directly.

If the first case does not apply, then let k be the greatest value for rnd received amongst
the phase “1b” messages. If all messages in which rnd= k report the same value v as val,
it might be the case that v was or will be chosen at a round j < k Because the coordinator
of k was also aware of this fact, v is the only value that it could have sent to the acceptors.
Moreover, since any k -quorum must intersect Q and acceptors a in Q are sure to have
executed action Phase1b(a, i) for round i (i > k), no value different from v can be chosen
at k . Therefore, the coordinator can safely pick v in i .

Now consider the third case, in which more than one value has been reported in the
phase “1b” messages with rnd = k (k still being the greatest value for vrnd reported in the
“1b” messages). This implies that the coordinator of k could pick any value and, hence, no
value was chosen or will be chosen at a round lower than k . As a result, the coordinator
must only figure out which of the values has been or might yet be chosen in k . There are
three subcases to consider with respect to the “1b” messages received with rnd= k :

1. There is no value v and k -quorum R such that, for every acceptor a in Q ∩ R, a
message 〈“1b”,a, i ,k ,v〉 was received from a. This implies that no value v has been
or might be chosen at k since no k -quorum has even partially agreed on a value v at
k . In this case, any proposed value is pickable.
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In the general case, this stronger assumption requires bigger quorums. If every set of
n−E acceptors is a quorum for a fast round (fast quorum, for short) and every set of n−F

acceptors is a quorum for a classic round (classic quorum), where n is the total number of
acceptors, then n must be greater than 2E+F as well as greater than 2F . These constraints
are achieved, for example, if every set of

�
2n
3

�
+ 1 acceptors is a fast and classic quorum.

If classic quorums are defined to be any majority of acceptors, fast quorums must be as big

as
j

3n
4

k
+ 1 acceptors. It has been shown that any asynchronous consensus protocol that

allows a decision to be reached in two communication steps must satisfy similar quorum
requirements [Lamport, 2006b] (Fast Learning Theorem).

Collisions and Collision Recovery

If two different values v and w are proposed in the same fast round i , it may be that none
gets chosen, even in the absence of failures or suspicions, due to collisions [Lamport, 2006a].
A collision happens when the acceptors of a fast quorum accept different values. In pes-
simistic scenarios, collisions will prevent any value from being chosen in a fast round. If
part of the acceptors accept v , part accept w , and the remaining never accept anything.
There are three ways to break the tie and recover from a collision, and all reduce to exe-
cuting a higher-numbered round. However, depending on how this new round is chosen,
latency can be reduced considerably.

Let us assume a collision has happened at round i . The simplest approach has i ’s co-
ordinator c to monitor the acceptors’ phase “2b” messages and start a new round from the
beginning after it learns the collision has happened. This approach is expensive as it takes
four communication steps to recover from the comflict.

Assume now that numbers are discrete, that is, for any round i it is possible to deter-
mine the round l such that there is no round j , i < j < l . For simplicity, we refer to the
round subsequent to i simply as i + 1. If, besides being the coordinator of i , c is also the
coordinator of i + 1, then c can exploit the fact that the information in “2b” messages sent
for round i is essentially the same that would be sent in “1b” messages for round i + 1 if
c sends “1a” message for i . Hence, c may skip the first phase and proceed directly to the
second phase of round i+1, incurring only two communication steps for collision recovery.
This second approach is called coordinated recovery.

As an extension of coordinated recovery, if round i ’s “2b” messages are also sent to
the set of acceptors, they can try to guess the coordinator’s “2a” message for round i +

1. They do that by interpreting these “2b” messages for round i as “1b” messages for
round i + 1 and applying the same algorithm that the coordinator uses to pick a value for
a phase “2a” message; as seen before, this algorithm is guaranteed to return a pickable
value. The acceptors then simulate the reception of a “2a” message with such a value.
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The advantage of this method is that it takes only one communication step to recover from
collisions. However, because there is no guarantee that the acceptors will pick the same
value, round i + 1 is required to be fast, allowing acceptors to accept different values but
risking in a new conflict. This third approach is called uncoordinated recovery. As explained
in [Lamport, 2006a], some strategies can be used to try to make them accept the same
value.

Observe that a run of Fast Paxos with only fast rounds that succeed each other by unco-
ordinated recovery is equivalent to running the R*-Consensus algorithm.

3.3.3 Multi-Coordinated Rounds and Coord-Quorums

While the expected latency of Classic Paxos is just three communication steps, in good runs,
this number quickly increases when the coordinator must be replaced. Although at a first
glance, the costs in replacing it consists only in the two communication steps needed to
execute the first phase of another round of the protocol, this is not necessarily true. In
large distributed systems, it is likely that just some of the nodes take part in the failure
detection to minimize its cost. Moreover, efforts have been made to make failure detection
as quiescent as possible [Aguilera et al., 2001]. These and other factors may impact on how
fast a new leader can be elected and new decisions can be reached. Therefore, relying on a
leader can significantly impact on the availability of a system implementing this approach.
In the Chubby lock service, for example, nodes run Classic Paxos to agree on leases to other
services; even though all nodes running the service are inside the same cluster, failures of
the leader account for most of the system downtime [Burrows, 2006].

On the one hand, the fast rounds of Fast Paxos seem to solve the problem: they do
not depend on a leader during normal execution and even reduce the expected latency
to learn a decision in good runs in one communication step. On the other hand, their
stricter requirements on quorum sizes may limit the overall resilience of the system and
hurt performance. Remember that with fast rounds the number of acceptors must be bigger
than 2E +F (c.f. Assumption 3).

We propose a different approach to minimize the dependency on the leader: to extend
classic rounds to have multiple coordinators, making them more reliable while maintaining
their latency and the same acceptor quorum requirements.

This multicoordination approach stems from the realization that the tasks of pre-accepting
and of accepting values in the B*-Consensus protocol, presented in Section 3.2, serve very
different purposes. Pre-acceptances are meant to filter proposals only, but not choosing
them; choosing happens at the acceptance stage. These two tasks are exactly what coordi-
nators and acceptors do in Classic Paxos.

In the next sections we present a multicoordinated consensus protocol that extents the
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Fast Paxos protocol with multi-coordinated rounds. The resulting protocol can switch from
classic, to fast, to multi-coordinated rounds to adapt to changes in the environment. Hence,
our protocol can be seen as a synergy of B*-Consensus and Fast Paxos.

In Chapter 4 we present a similar multi-mode protocol that solves the more complex
Generalized Consensus Problem, in which processes agree not on a single value but on a
continuously growing sequence of them, and give an instantiation of the protocol to solve
the Generic Broadcast problem [Pedone and Schiper, 2002].

Coordinator Quorums

In our protocol, rounds are still classified as in Fast Paxos, according to their minimum la-
tency: classic rounds, if they require three messages steps to finish, or as fast rounds, if they
may finish in two steps. However, in our extended protocol we relax the assumption that
each round has a single coordinator. All coordinators of a round perform the same tasks.
We divide the set of coordinators in coordinator quorums for rounds i , or i -coordquorums
for short. We say that c is a coordinator of round i if it belongs to any i -coordquorum.

We change the behavior of the acceptors to accept a value v in a round i only if such
value has been received from all coordinators in some i -coordquorum. Hence, the original
Classic Paxos rounds, with a single coordinator, are simply multicoordinated rounds with a
single one-element quorum of coordinators. Moreover, as discussed in Sections 3.3.1 and
3.3.2, in Classic and Fast Paxos, coordinators rely only on one value being accepted in any
classic round when they pick values. This invariant must also be kept in our multicoordi-
nated rounds in spite of coordinators being allowed to send different values to be accepted
by acceptors. We do so by requiring all coordinator quorums of a round to intersect, as
stated by the assumption below.

Assumption 4 (Coord-quorum requirement) For any two quorums of coordinators P and

Q for the same classic round, P ∩Q 6= ;.

Fast rounds can have multiple coordinators and Assumption 4 would place no restriction
upon them. However, since fast rounds are meant to avoid coordinators during normal
execution, we see no reason to have something different from a single coordinator for them
except in some very specific scenarios which we discuss in Section 4.4.4.

3.3.4 Algorithm

We now present the complete multicoordinated consensus algorithm. It is defined in terms
of the same variables as Fast Paxos, which we repeat below for completeness.

A coordinator c keeps the following variable:
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crnd[c] The current round of c. Initially 0.

An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-numbered round a has heard of. Initially
0.

vrnd[a] The round at which a has accepted the latest value. Initially 0.

vval[a] The value a has accepted at vrnd[a]. Initially none.

Each learner l keeps only the value it has learned so far.

learned[l] The value learned by l . Initially none.

Proposing a Value

As in Fast Paxos, proposals are sent to both coordinators and acceptors to allow the ex-
ecution of fast rounds. To minimize communication overhead, proposals may be initially
sent only to a quorum of coordinators and a quorum of acceptors. Observe that this is only
possible if multiple rounds share the same coordquorums and acceptor quorums, otherwise
proposers would not know where to send proposals, since they are oblivious to rounds.

Phase One

In the multicoordinated consensus protocol, any coordinator c of a round i may start the
round by sending a 〈“1a”,c, i〉 message to the acceptors, asking them to take part in round
i . This happens in action Phase1a(c, i).

In reply, an acceptor a executes Phase1b(a, i), as in the other Paxos protocols, if it has
not heard of any round bigger than i , as stated in the pre-conditions of the action. In this
case, a joins round i by setting rnd[a] to i , and sends a message 〈“1b”,a, i , vrnd[a], vval[a]〉
to all the coordinators of round i , where vrnd[a] is the highest-numbered round in which
a has accepted a value, and vval[a] is the value it accepted in vrnd[a]. If no value has
been accepted by a yet, then vrnd[a] equals its initial state and vval[a] equals an invalid
proposal, none.

By the pre-condition that rnd[a]< a and because the action sets rnd[a] to i , once exe-
cuted for i , this action can only execute again for a bigger round number. Moreover, it also
forbids the execution of action Phase2b for a round smaller than i .
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Algorithm 5 Multicoordinated Consensus
1: Proposer Actions:

2: Propose(a, v)
∆

=

3: pre-conditions:
4: a ∈ proposers

5: actions:
6: send 〈“propose”,v〉 to coordinators∪ acceptors

7: Phase One:

8: Phase1a(a, i)
∆

=

9: pre-conditions:

10: a ∈
⋃

i -coordquorum

11: crnd[a]< i

12: actions:
13: send 〈“1a”,a, i〉 to acceptors

14: Phase1b(a, i)
∆

=

15: pre-conditions:
16: a ∈ acceptors

17: rnd[a]< i

18: received message 〈“1a”,c, i〉 from coordinator c

19: actions:
20: rnd[a]← i

21: send 〈“1b”,a, i ,vrnd[a],vval[a]〉 to c

Phase Two

To start the second phase of round i , coordinator c executes action Phase2a(c, i) once it has
received 〈“1b”,a, i , vrnd, vval〉 messages from every acceptor a in an i -quorum Q and only
if it has not executed Phase2a(c, i) already. In this action, c sends a 〈“2a”,c, i , val〉 message
to the acceptors, where val is the value picked by c to be accepted by the acceptors. val

is picked according to the “1b” messages c received from acceptors in Q in round i . This
procedure is defined as function PickValue(c, Q, i) in Algorithm 6, and explained below:

• If none of the “1b” messages received from acceptors in Q has a value different from
the invalid proposal none, then they have not and will not accept any value for any
round j < i . Since any j -quorum R must intersect Q , by Assumption 1, no such
a quorum has or will succeed in choosing any value in j . Hence, c can pick any
proposed value.

Otherwise, if some valid value was received by c, let k be the greatest round number vrnd

received amongst the “1b” messages received by c.

• If there exists a value v such that, for some k -quorum R, c received message 〈“1b”,a, i ,k ,v〉
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Algorithm 5 Multicoordinated Consensus (Continued)
22: Phase Two:

23: Phase2a(c, i)
∆

=

24: pre-conditions:

25: c ∈
⋃

i -coordquorum

26: crnd[c]≤ i

27: ∃Q : Q is a quorum and ∀a ∈ Q , c received 〈“1b”,a, i , rnd ,val〉
28: actions:
29: crnd[c]← i

30: cval[c]← PickValue(c, Q, i)

31: send 〈“2a”,c,crnd[c],PickValue(c,Q , i)〉 to acceptors

32: PickValue(c, Q, i) is defined in Algorithm 6.

33: Phase2b(a, i)
∆

=

34: pre-conditions:
35: a ∈ acceptors

36: rnd[a]≤ i

37: vrnd[a]< i

38: ∃C ,val : C is an i -coordquorum and ∀c ∈ C a received 〈“2a”,c, i ,val〉 from c

39: actions:
40: rnd[a]← i

41: vrnd[a]← i

42: IF v 6= Any THEN vval[a]← val

43: ELSE vval[a]← CHOOSE v : a received 〈“propose”,v〉 form some proposer
44: send 〈“2b”,a, i ,val〉 to learners

45: Learn(l)
∆

=

46: pre-conditions:

47: l ∈ learners

48: ∃Q : Q is a quorum and ∀ac ∈ Q , a received 〈“2b”,ac, i ,val〉
49: actions:
50: learned[l]← val

from every acceptor in a ∈ R ∩Q , then c picks v , since it may have been chosen by
the acceptors of R.

• If no such a value exists, then c can pick any proposed value.

In the first and third cases, in which any value may be picked, if i is a fast round then
c can pick the special value Any , which tells acceptors to accept proposals directly from
proposers.

Once a round starts, it is on the interest of all agents to have it succeed. Hence, any
coordinator of round i can start this round’s second phase even if it did not start phase
one and as long as it has received the “1b” messages required to execute action Phase2a.
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Algorithm 6 PickValue(Q) in Multicoordinated Consensus
1: PickValue(c, Q, i)

∆

=

2: LET k
∆

= CHOOSE r : c received 〈“1b”,a, i , r , 〉 from some a ∈ Q and

∀a ′ ∈ Q ,m ′ =〈“1b”,a ′, i , r ′, 〉 c received from a ′: r ′ ≤ r}
3: rAcceptors(S, r)

∆

= {a : a ∈ S and c received 〈“1b”,a, i , r , 〉 from a

4: rVals(S, r)
∆

= {v : c received 〈“1b”,a, i , r ,v〉 from a ∈ S}
5: IN

6: IF ∃R,v 6= none : R is an i -quorum and Q ∩R ∈ rAcceptors(Q ,k) and rVals(Q ∩R,k) = {v}
7: THEN v
8: ELSE IF i is a fast round THEN Any

9: ELSE CHOOSE v : received 〈“proposal”,v〉 from some proposer

This approach allows a round to finish even if the coordinator that just started it becomes
unavailable.

Acceptors accept values by executing action Phase2b(a, i), as in Fast Paxos. The only
difference is that in our multicoordinated consensus this action is enabled if a has not
heard of a round greater than i and has received a message 〈“2a”,c, i , val〉 coming from
all coordinators in some i -coordquorum with the same value val. If i is a fast round and
val = Any, then a can accept any value sent in a “propose” message. If i is classic and,
therefore, val 6= Any, then a accepts val. After accepting value v , a sends the message
〈“2b”, i ,v〉 to all learners.

Learning a Value

Learning a value happens exactly like in Fast and Classic Paxos. That is, a learner l executes
action Learn(l) when it receives a 〈“2b”,a, i ,val〉 message from each acceptor a in an i -
quorum. The messages imply that val has been chosen and l can learn it by attributing it to
variable learned[l].

3.3.5 Correctness and Liveness

From the explanation of our multicoordinated consensus algorithm, it should be clear that
it satisfies the safety properties of consensus mainly because, as Fast and Classic Paxos, it
ensures that rounds are consistent with previous decisions. It may seem that this is harder
to ensure in a multicoordinated round, since any of its coordinators can start the round, but,
in fact, the complexity is exactly the same. In a multicoordinated round, a proposal will be
accepted by an acceptor only if a quorum of coordinators has forwarded such a value. Since
all coordinator quorums intersect, only one value is accepted in such rounds. Coordinators
of rounds executed afterwards only contact the acceptors, as in the other versions of the
protocol, and are not influenced by the multiple coordinators of lower rounds.
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Regarding liveness, since our protocol is an extension of Fast Paxos and, as such, can
switch to single-coordinated rounds at any moment, it can ensure liveness under the same
conditions of Classic Paxos. That is, if a quorum of acceptors, a coordinator, a proposer,
and learner do not crash, then the learner will eventually learn the decision if there is
a single coordinator that believes itself to be the leader and the proposer proposes some
value. Nonetheless, it is interesting to understand what conditions allow a multicoordinated
round to finish.

Roughly speaking, a multicoordinated round i will finish if its coordinator choses co-
ordquorums such that at least one coordquorum is composed of non-crashed coordinators,
no other round is started, and some proposal is made.

Because our consensus protocol is, in fact, a simplified instance of a more complex
protocol which we present in Chapter 4, satisfying the liveness conditions of the latter
will also satisfy the first’s. Hence, we defer a formal discussion about liveness when using
multicoordinated rounds to Section 4.4.7, where we formalize the liveness requirements of
the more complex protocol.

3.4 Final Remarks and Related Work

The literature on consensus algorithms is very extensive and some of which has been dis-
cussed in the first section of this chapter. For these reasons, here we focus on the work that
is closely related to ours, specially with regards to using spontaneous ordering.

Spontaneous ordering (or weak ordering oracles) and consensus algorithms using it
were introduced by Pedone et al. [Pedone et al., 2002b, Pedone et al., 2002a]. Their algo-
rithms, however, assumed crash-stop failures and reliable channels. In this chapter we have
presented improved versions of their algorithms that allow agents to recover after crashes
and messages to be lost, namely B*-Consensus and R*-Consensus. Moreover, we specify
the algorithms based on the specific roles played by the agents. B*-Consensus takes three
communication steps to reach a decision and requires a majority of stable processes to en-
sure progress. R*-Consensus can decide in two communication steps, but requires more
than two thirds of stable processes for progress. Both algorithms are optimal in terms of
communication steps for the resilience they provide.

The problem of consensus in the crash-recovery model was previously studied in various
other works [Lamport, 1998, Aguilera et al., 1998, Dolev et al., 1987, Hurfin et al., 1998,
Oki and Liskov, 1988, Oliveira et al., 1997]. In all of these approaches, the asynchronous
model was extended with unreliable failure detection or leader election oracles.

Fast Paxos [Lamport and Massa, 2004] is a hybrid algorithm with two round modes,
one that uses spontaneous ordering (fast), roughly equivalent to R*-Consensus, and an-
other that uses a leader election oracle (classic). In the last parts of this chapter we have
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introduced an extension to Paxos with another mode that also uses spontaneous ordering,
namely, the multicoordinated mode. In the same way that fast mode is related to R*-
Consensus, the multicoordinated mode is related to B*-Consensus. That is, it is possible to
simulate a run of B*-Consensus with the multicoordinated mode.

Aguilera et al. [Aguilera et al., 1998] have shown that, if the number of agents that
never crash (“always-up processes”) is bigger than the number of processes that eventually
remain crashed or that crash and recover infinitely many times, then consensus is solvable
without stable storage; without this assumption stable storage is required. As we do not
bound the number of processes that are allowed to crash, our algorithms must use stable
storage. Nonetheless, B*-Consensus and R*-Consensus use stable storage sparingly and
minimizing the actions execution time. The algorithms of Dolev et al.[Dolev et al., 1997]
and Oliveira et al.[Oliveira et al., 1997] do exactly the opposite: they keep all their vari-
ables in stable storage. Aguilera et al.’s algorithm that relies on stable storage keeps just part
of the state in memory and also writes on stable storage twice per round [Aguilera et al., 1998]
. Although the fast and multicoordinated modes may be seen as generalizations of R*-
Consensus and B*-Consensus, respectively, the stable storage usage of our multicoordinated
consensus protocol is wiser. First, coordinators never write on disk, since the number of co-
ordinators is not limited in the protocol and, hence, a failed coordinator can completely
forget its state and recover as a new one. Second, acceptors seldom have to write on disk
in the first phase, as we will show in the next chapter, in Section 4.4.5.

Lamport [Lamport, 2006b] has summarized several lower bounds on how fast a fault-
tolerant consensus algorithm for asynchronous systems can be in terms of communication
steps. Roughly, if any value proposed by two or more proposers can be decided within
two communication steps, then less than a third of the acceptors can be unstable. To be
able to decide in three communication steps less than half of the acceptors can be unstable.
B*-Consensus, R*-Consensus, and consequently the fast and multicoordinated modes meet
these bounds. The classic mode of Classic Paxos may decide in two communication steps
and still tolerate permanent failures of any minority. However, only the value proposed by
the round’s coordinator can be decided in two steps; deciding on a value proposed by other
processes requires at least one message step more. This becomes obvious when considering
that the classic mode is, in fact, a particular instance of the multicoordinated mode.

Hurfin et al. [Hurfin et al., 1998] presented an algorithm that has the same message
pattern as Paxos when phase one is skipped. Because it uses round robin to select the
coordinators (the rotating coordinator paradigm) the decision may be delayed when a co-
ordinator crashes and the successive one, according the round robin, is already crashed.
Compared to our multicoordinated consensus, the protocol also lacks the ability to dynam-
ically switch between execution modes. Aguilera et al.’s algorithm [Aguilera et al., 1998]
is also f < n/2 resilient and reaches decision within three communication steps, from the
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point of view of the coordinator.
Finally, Aguilera and Toueg [Aguilera and Toueg, 1998] have proposed a hybrid binary

algorithm (proposals are 0 or 1) that mixes failure detection and randomization to reach
consensus. The algorithm works as a series of classic rounds but in which the coordinator
selects a random bit when it is possible to pick any value. It is not clear how such an
approach would improve over the selection of a proposed value in non-binary consensus.

In summary, in this chapter we presented practical crash recovery WAB-based algo-
rithms and generalized one of them into a multicoordinated mode for a hybrid consensus
protocol. The multicoordinated mode increases the availability of the protocol by repli-
cating round coordinators. Although it replicates coordinators, the multicoordinated mode
does not diminishes the maximum number of permanent failures in the protocol, differently
from the fast mode; replicated coordinators do not need to be recovered, and are discarded
if suspected to have failed.

While improving the availability of a single consensus instance may be a minor im-
provement, it is just a logical step to improving the availability of long living protocols for
atomic and generic broadcast, or generalized consensus. In the next chapter we show how
to apply the technique into protocols for such problems and discuss practical aspects of the
multicoordinated mode.



Chapter 4

Multicoordinated Generalized Consensus

and Generic Broadcast

4.1 One Problem to Rule Them All

Many applications can be implemented on top of total order (or atomic) broad-
cast [Hadzilacos and Toueg, 1993], which enforces agreement on an ever growing se-
quence of values. One approach to solving this problem is to use infinitely many con-
sensus instances, one for each position in the sequence. Using a fast algorithm in each
instance is prohibitive due to collisions, which may happen even during the stable periods
of executions—i.e., without failures or suspicions. In a state machine replication scenario,
for example, a collision may happen if two commands are proposed concurrently to the
same instance of consensus. In many systems, however, commands may commute and
there is no need for totally ordering them since the final state is the same independently
of the order in which they are applied. Consensus, as applied to state machine replication,
is too strong to capture this notion and a collision may happen even if the two concurrent
proposals are commutable.

Generic Broadcast [Pedone and Schiper, 1999, Pedone and Schiper, 2002] is a general-
ization of atomic broadcast in which agents agree not on a sequence, but on a partial order
of commands. The partial order must be such that any pair of conflicting commands are
ordered, where two commands are conflicting according to some meaningful conflict re-
lation (e.g., if they do not commute). A generic broadcast protocol may harness such a
conflict relation to mitigate the effects of collisions and efficiently implement state machine
replication. By defining the conflict relation such that any or no pair of commands conflict,
generic broadcast becomes atomic broadcast or reliable broadcast, respectively.

An even more general problem, Generalized Consensus, is defined in terms of a data
structure called command structure, or simply c-struct. The basic operation performed on a
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c-struct is appending commands to it. Depending on the c-struct instantiated, generalized
consensus solves a different agreement problem. Reliable broadcast, for example, is an in-
stance of Generalized Consensus whose c-structs are simple sets. Limit the set’s cardinality
to one and the problem degenerates to consensus; add ordering to the set and the problem
becomes generic or atomic broadcast.

Multicoordinated Paxos

We are aware of only one generalized consensus protocol, by Lamport [Lamport, 2004].
This protocol, namely Generalized Paxos, is based on Fast Paxos and inherits its two execu-
tion modes. As a result, Generalized Paxos suffers from the same availability limitations of
Fast Paxos when compared to our multicoordinated consensus: it either relies on a leader
or requires bigger acceptor quorums. Again as Fast Paxos, Generalized Paxos is amenable to
multicoordinated execution or, equivalently, our multicoordinated consensus is amenable
to “generalization”. In the next section we present our multicoordinated version of Gener-
alized Paxos, namely Multicoordinated Paxos.

Besides its generality, Multicoordinated Paxos has some interesting features from a prac-
tical point of view:

• it allows an infinite number of coordinators to be used in a run, which completely
eliminates the need to recover these agents;

• it allows very efficient usage of stable storage, as coordinators do not write on disk
(since they are not recovered), and acceptors only write once per round in the absence
of failures, even if wrong failure suspicion happens; and,

• it allows load balancing at the coordinators and acceptors.

We discuss these and other topics in Sections 4.4.3–4.4.6.

Since Multicoordinated Paxos solves Generalized Consensus, with an appropriate c-
struct it also solves Generic Broadcast. In Section 4.5, we introduce one simple but power-
ful appropriate c-struct. To the best of our knowledge, there are three extensions to the
original generic broadcasts algorithm [Pedone and Schiper, 1999], those of Pedone and
Schiper [Pedone and Schiper, 2002], Aguilera et al.[Aguilera et al., 2000], and Zielinski
[Zielinski, 2005]. We compare Multicoordinated Paxos with these works in Section 4.6.
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4.2 Generalized Consensus

4.2.1 C-Structs

Before presenting Multicoordinated Paxos, we formally define c-structs and the Generalized
Consensus problem. The definitions and notation used here are borrowed from Lamport’s
work [Lamport, 2004].

A c-struct set CStruct is defined by a tuple 〈Cmd,⊥,•〉, where Cmd is the set of com-
mands that compose the c-structs of CStruct, ⊥ is a “null” c-struct, and • is an operator that
appends a command from Cmd to a c-struct of CStruct, and by a set of five axioms listed
later. More generally, a c-struct v is in CStruct if v = ⊥ •C and C ∈ Cmd , or if v = w •C ,
w ∈ CStruct and C ∈ Cmd . For example, one could create a c-struct set where c-structs are
subsets of Cmd, ⊥ is the empty set, and v •C simply adds element C to the current value
of v . Another c-struct set could have c-structs as partially ordered sets, ⊥ as the empty set,
and v •C as an operation that extends partially ordered set v with command C by making
C succeed (with respect to the partial order) any conflicting element of v , given an external
conflicting relation over Cmd—a c-struct set that could capture the notion of commutable
commands.

Before we present the five axioms of a c-struct set, some definitions are necessary. A
finite sequence with elements Ci is represented by 〈C1,C2, . . . ,Cm〉. Seq(S) is defined to be
the set of all (finite) sequences whose elements are in the set S (with possible repetitions
of elements in the sequence). Moreover, we use the term c-seq when referring to a finite
sequence of commands—that is, an element of Seq(Cmd). We can now extend the operator
• to a c-struct v and a c-seq 〈C1, . . . ,Cm〉 as follows:

v • 〈C1, . . . ,Cm〉=

¨
v if m = 0,
(v •C1) • 〈C2, . . . ,Cm〉 otherwise

We say that c-struct w extends c-struct v or v is a prefix of w , and note as v ⊑ w , iff
there exists a c-seq σ such that w = v •σ. Given a set T of c-structs, we say that c-struct
v is a lower bound of T iff v ⊑ w for all w in T . A greatest lower bound (glb) of T is a
lower bound v of T such that w ⊑ v for every lower bound w of T , and we represent it
by ⊓T . Similarly, we say that v is an upper bound of T iff w ⊑ v for all w in T . A least

upper bound (lub) of T is an upper bound v of T such that v ⊑ w for every upper bound
w of T , and we represent it by ⊔T . If ⊑ is a reflexive partial order on the set of c-structs
and a glb or lub of T exists, then it is unique. For simplicity of notation, we use v ⊓w and
v ⊔w to represent ⊓{v ,w} and ⊔{v ,w}, respectively. Two c-structs v and w are defined to
be compatible iff they have a common upper bound, and a set S of c-structs is compatible
iff its elements are pairwise compatible.
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We say that c-struct v is constructible from a set P of commands if v = ⊥ •σ, for some
c-seq σ containing all elements of P . Moreover, we say that v contains command C if v is
constructible from some set P of commands such that C ∈ P . We define Str(P) to be the
set of all c-structs constructible from subsets of P for some set P of commands—that is,
Str(P)

∆

= {⊥ •σ : σ ∈ Seq(P)}.
A c-struct set CStruct must satisfy the five axioms below.

CS0. ∀C ∈ Cmd,w ∈ CStruct : w •C ∈ CStruct

CS1. CStruct = Str(Cmd)

CS2. ⊑ is a reflexive partial order on CStruct.

CS3. For any set P ⊆ Cmd and any c-structs u,v , and w in Str(P):

• v ⊓w exists and is in Str(P).

• If v and w are compatible, then v ⊔w exists and is in Str(P).

• If {u,v ,w} is compatible, then u and v ⊔w are compatible.

CS4. For any command C ∈ Cmd and compatible c-structs v and w in CStruct, if v and w

both contain C then v ⊓w contains C .

CS0-CS2 are basic requirements to satisfy the properties just described. CS0 says that by
extending any c-struct in CStruct with any command in the respective Cmd set, the obtained
result is a c-struct in CStruct; CS1 requires c-structs to be well formed; and CS2 forces any
CStruct set to have a glb and a lub. CS3 and CS4 are necessary for Generalized Paxos and
similar algorithms to ensure the safety and liveness properties of Generalized Consensus,
described next. Roughly, CS3 says that the lower bound of any two c-structs only contains
commands contained in the two c-structs; the same is valid for the upper bound, if it exists.
CS4 states that the upper bound of two c-structs contains all their commands in common.

4.2.2 Problem Definition

We can now generalize the original definition of consensus to deal with a c-struct set instead
of single absolute values. The problem is defined in terms of a c-struct set CStruct which,
as shown in the previous section, is based on a null value ⊥, a set Cmd of commands,
and an operator •. Proposers propose commands in Cmd and we let learned[l] be the c-
struct learner l has learned (initially ⊥). Generalized Consensus is defined by the following
properties:

Nontriviality: For any learner l , learned[l] is always a c-struct constructible from some
subset of the proposed commands.
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Stability: For any learner l , if the value of learned[l] at any time is v , then v ⊑ learned[l]

at all later times.

Consistency: The set {learned[l] : l is a learner} is always compatible.

Liveness: For any proposer p and learner l , if p, l , and a quorum Q of acceptors are
nonfaulty and p proposes a command C , then learned[l] eventually contains C .

4.3 Generalized Paxos

Generalized Paxos is an extension of Fast Paxos to solve Generalized Consensus. The algo-
rithm has the advantage that, by the problem definition, a collision is not characterized if
two acceptors accept different but compatible c-structs. In such a case, both acceptors can
later extend their accepted c-structs so that they converge to the same one (since compati-
ble c-structs have a common upper bound). C-struct sets like command histories with com-
mutable commands, explained in Section 4.5, might have very few incompatible c-structs,
which reduces the chances of a collision to happen and favors the use of fast rounds.

Generalized Paxos relies on the Fast Quorum Requirement (Assumption 3, on page 38).
It assumes that acceptors have initially accepted ⊥ at round 0, lower than any other round.
Since Multicoordinated Paxos extends Generalized Paxos, we just overview the protocol’s
actions in here and explain them in detail when discussing Multicoordinated Paxos. Gener-
alized Paxos has the following actions.

Propose(p, C) Executed by proposer p to propose command C ∈ Cmd. In the action, p sends
a 〈“propose”,C 〉 message to all coordinators and acceptors. (The same as in Classic
Paxos.)

Phase1a(c, i) Executed by any coordinator c of round i to start round i . In the action, c

sends a message 〈“1a”,c, i〉 to each acceptor a asking a to take part in round i . (The
same as in Classic Paxos, except that values are now c-structs.)

Phase1b(a, i) Executed by acceptor a to join round i upon reception of message 〈“1a”, i〉,
if i is greater than any other round a has ever heard of. In this case, a sends a mes-
sage 〈“1b”,a, i , vrnd, vval〉 to the coordinator of round i , where vrnd is the highest-
numbered round in which a has accepted a c-struct and vval is the c-struct it accepted
in vrnd. As before, this action also prevents a from executing the same action for a
round smaller than or equal to i , and from accepting a c-struct for a round smaller
than i . (The same as in Classic Paxos.)
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Phase2Start(c, i) In this action, coordinator c of round i , after receiving a “1b” message
for round i coming from each acceptor in an i -quorum Q , picks a c-struct and sends
it to acceptors to be extended during the round. Picking a c-struct in Generalized
Consensus is like picking a value in Fast-Paxos or in our multicoordinated consensus
algorithm: if the c-struct was possibly chosen in some round j < i , the c-struct must
be picked. As before, a c-struct is said to be chosen if it was accepted by all acceptors
of some quorum of any round. The difference is on what accepted means. In the Clas-
sic Paxos, acceptors accept single values, but in Generalized Paxos, when an acceptor
accepts a c-struct, it automatically accepts all of its prefixes. Hence, when picking a
value, the coordinator must consider not only the complete c-structures accepted, but
also their prefixes.

Suppose for example that c has received 〈“1b”,ak , i , j ,vk 〉 messages from a quorum
of three acceptors ak , 1 ≤ k ≤ 3. Also, assume for simplicity that the c-struct used is
a total order of commands, easily represented by a sequence, and that the messages
had the following c-structs: v1 = 〈a,b,c,e, f 〉,v2 = 〈a,b,c,d〉 and v3 = 〈a,b,c,e,d〉.
Observe that, since the three acceptors form a quorum, both the sequences 〈a〉, 〈a,b〉
and 〈a,b,c〉 were chosen and might have been learned. Hence, c is obliged to pick
the three c-structs to use in the second phase of the algorithm. Hence, c picks the
longest c-struct, of which the others are prefixes; in fact, 〈a,b,c〉 is the longest prefix
of all received c-structs.

Suppose now that there is another quorum in the system, formed by acceptors a1,a3,
and a4. The two quorums are represented graphically in Figure 4.1, below. If a4

has accepted any sequence in round k that extends 〈a,b,c,e〉, then such a sequence
was also chosen and should be picked by c. Since c never heard from a4, it has no
option but to behave safely and pick sequence 〈a,b,c,e〉. Since a1 and a3 disagree
about which command should be the fifth in the sequence, 〈a,b,c,e〉 is the shortest
sequence that extends all possibly chosen sequences.

Generalizing from the previous two paragraphs, once the coordinator receives the
“1b” messages from a quorum of acceptors, it picks the c-struct that extends the
largest prefix of the c-structs seen (i.e., its glb), which was already chosen, and their
smallest possibly chosen extensions (lub). This c-struct is then sent to the acceptors
to ensure that if a c-struct v has been chosen at some round j and w is accepted by
some acceptor at a higher-numbered round, then v ⊑ w . As before, for coordinator c

to gather the set of all possibly chosen c-structs in previous rounds, it suffices to look
at the “1b” messages with the highest-numbered vrnd value. More formally, let k be
such a round number. There are only two cases to consider.
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Phase2aClassic(c, i) This action is executed by coordinator c of round i to request accep-
tors to accept an extension of a previously forwarded c-struct. Hence, it is executed
by coordinator c only if it has already sent a phase “2a” message for round i to the
acceptors. This action is performed only for a classic round i ; for fast rounds, accep-
tors can extend their accepted c-structs themselves, as shown in action Phase2bFast,
below.

Let 〈“2a”, i , val〉 be the latest phase “2a” message c has sent for round i and let newval

be val •σ for some c-seq σ of proposed values received in “propose” messages. In
this action, c simply sends a message 〈“2a”, i , newval〉 to all acceptors, requesting
them to extend what they had previously accepted with σ.

Phase2bFast(a, i) By executing this action, acceptor a appends a command to its previously
accepted c-struct. This action is enabled iff i is fast, i is the highest-numbered round a

has heard of, a has already accepted a value in i , and a has received a 〈“propose”,C 〉
message. Let v be the latest value a has accepted in i ; a accepts v • C and sends
message 〈“2b”, i ,v •C 〉 to every learner.

Learn(l) Leaner l executes this action to extend its previously learned c-struct. The action
is executed by l after it receives a phase “2b” message for some round i from each
acceptor in an i -quorum. Let v be the glb of the values received in such messages; l

sets learned[l] to learned[l]⊔ v.

In Generalized Paxos, a round i starts by the round coordinator executing action Phase1a(c, i).
Acceptors then should execute action Phase1b(a, i), followed by the execution of Phase2Start(c, i)

by c and Phase2aClassic(a, i) by the acceptors. After this point, the execution depends on
whether i is fast or classic. If i is classic and proposers keep proposing new commands to
the coordinator, then the coordinator continuously executes Phase2aClassic(c, i) with longer
c-structs, followed by acceptors executing Phase2bClassic(a, i). If i is fast and proposers
keep proposing, then acceptors execute Phase2bFast(a, i) to append the proposals to their
accepted c-structs. In any case, learners continuously execute Learn(l) to learn the c-struct
accepted and its extensions.

4.4 Multicoordinated Paxos

We now explain Multicoordinated Paxos, our multicoordinated generalized consensus al-
gorithm. Round numbers are defined as in the multicoordinated consensus protocol. The
algorithm assumes a c-struct set CStruct, the Fast Quorum Requirement (Assumption 3) for
quorums of acceptors, and the Coord-quorum Requirement (Assumption 4) for quorums of
coordinators.
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As in Generalized Paxos, we ensure that if a c-struct v is chosen at a round i , then any
c-struct w that is accepted by any acceptor at some round j > i extends v (v ⊑ w). This is
guaranteed by the coordinators of a round due to the rule used by the coordinators to pick
a value based on the phase “1b” messages received from a quorum of acceptors (explained
in Section 4.3, action Phase2Start(c, i)). In Multicoordinated Paxos, we embody the rule in
function ProvedSafe(Q, 1bMsg). Before explaining the function in Section 4.4.2, we present
the Multicoordinated Paxos algorithm.

4.4.1 The Algorithm

Algorithm 7 shows the basic atomic actions that compose Multicoordinated Paxos, which
always ensure safety. To ensure liveness as well, some extra pre-conditions must be imposed
on the actions. The required changes in the algorithm are presented in Section 4.4.7.

Variables

The algorithm manipulates a set of six variables associated to the roles that agents play. The
variables are initiated as if the first phase of the smaller round available, which we assume
to be 0, has already been executed. Proposers have no special variable. The variables of a
coordinator c are the following:

crnd[c] The current round of c. Initially, 0.

cval[c] The latest c-struct c has sent in a phase “2a” message for round crnd[c]. Initially ⊥.

An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-numbered round a has heard of. Initially
0.

vrnd[a] The round at which a has accepted the latest value. Initially 0.

vval[a] The c-struct a has accepted at vrnd[a]. Initially ⊥.

Each learner l keeps only the c-struct it has learned so far.

learned[l] The c-struct currently learned by l . Initially ⊥.

As the other Paxos protocols, Multicoordinated Paxos defines actions for agents to pro-
pose, interact to chose c-structs, and learn the chosen c-structs, and the actions are executed
in phases. The proposition of a command, however, is not associated to any round and can
be executed at any time.
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Algorithm 7 Multicoordinated Paxos
1: Proposer Actions:

2: Propose(p, C)
∆

=

3: pre-conditions:
4: a ∈ proposers

5: actions:
6: send 〈“propose”,C 〉 to coordinators∪ acceptors

7: Phase One:

8: Phase1a(c, i)
∆

=

9: pre-conditions:

10: c ∈
⋃

i -coordquorum

11: crnd[c]< i

12: actions:
13: send 〈“1a”,c, i〉 to acceptors

14: Phase1b(a, i)
∆

=

15: pre-conditions:
16: a ∈ acceptors

17: rnd[a]< i

18: received 〈“1a”,c, i〉 from coordinator c

19: actions:
20: rnd[a]← i

21: send 〈“1b”,a, i ,vrnd[a],vval[a]〉 to
⋃

i -coordquorum

22: Phase Two:

23: Phase2Start(c, i)
∆

=

24: pre-conditions:

25: c ∈
⋃

i -coordquorum

26: crnd[c]< i

27: ∃Q : Q is a quorum and ∀a ∈ Q , c received 〈“1b”,a, i , rnd ,val〉
28: actions:
29: crnd[c]← i

30: cval[c]← PickValue(c, Q, i)

31: send 〈“2a”,c,crnd[c],cval[c]〉 to acceptors

32: PickValue(c, Q, i)
∆

=

33: LET 1bMsg
∆

= f (x ) =m : c received m =〈“1b”,a, i , , , 〉, a ∈ Q

34: IN CHOOSE v : v ∈ ProvedSafe(Q, 1bMsg)

Phase One

The first phase of Multicoordinated Paxos is similar to the other protocols: a coordinator
willing to start a round sends a “1a” message to the acceptors and waits for their replies.
The only difference is that in our protocol multiple coordinators may start the same round
simultaneously. Acceptors reply to “1a” messages with “1b” messages, if they have not
joined any bigger round.
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Algorithm 7 Multicoordinated Paxos (Continued)
35: Phase2aClassic(c, i)

∆

=

36: pre-conditions:

37: c ∈
⋃

i -coordquorum

38: crnd[c] = i

39: i is a classic round
40: c received 〈“propose”,C 〉
41: actions:
42: cval[c]← cval[c] • C

43: send 〈“2a”,c,crnd[c],cval[c]〉 to acceptors

44: Phase2bClassic(a, i)
∆

=

45: pre-conditions:
46: a ∈ acceptors

47: rnd[a]≤ i

48: ∃L : L is an i -coordquorum and ∀c ∈ L a received 〈“2a”,c, i , 〉
49: vrnd[a]< i or vval[a] is compatible with ⊓{v : a received 〈“2a”,c, i ,v〉, c ∈ L}
50: actions:
51: LET LVals= {v:a received 〈“2a”,c, i ,v〉, c ∈ L}
52: IN

53: IF vrnd[a] = i

54: THEN vval[a]← vval[a]⊔ (⊓LVals)

55: ELSE vval[a]←⊓L2aVals

56: vrnd[a]← i

57: rnd[a]← i

58: send 〈“2b”,a, i ,val〉 to learners

59: Phase2bFast(a)

60: pre-conditions:
61: a ∈ acceptors

62: rnd[a] is a fast round
63: rnd[a] = vrnd[a], and
64: a has received a 〈“propose”,C 〉 message
65: actions:
66: vval[a]← vval[a] •C
67: send 〈“2b”,vrnd[a],vval[a] •C 〉 to learners

68: Learning:

69: Learn(l)
∆

=

70: pre-conditions:

71: l ∈ learners

72: ∃Q : Q is a quorum and ∀ac ∈ Q , a received 〈“2b”,ac, i ,val〉
73: actions:
74: LET Q2Vals

∆

= {v : l received m =〈“2b”,a, i ,v〉, a ∈ Q}
75: IN learned[p]← learned[p]⊔ (⊓Q2bVals)

The goal of this phase is to notify acceptors about the beginning of a new round, so
that they do not accept values for smaller ones, and to gather information about accepted
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c-structs to execute the second phase.

Phase Two

After receiving replies from a quorum of acceptors, coordinators can start the second phase
of the protocol: irrespectively to whether the round is classic or fast, a coordinator of the
round picks a c-struct in action Phase2Start() and sends it to the acceptors. The c-struct
picked extends all c-structs already chosen and contains as many commands as possible;
the procedure is formalized in the next section.

If the round is classic, then the coordinator will append other commands to the initially
picked c-struct and send it to the acceptors. If the round is fast, the acceptors extend the
c-structs themselves. What differentiates Multicoordinated Paxos from Generalized Paxos
is that, in the first, multiple coordinators may execute this phase in parallel in the same
round.

Learning a Value

Learning is performed in action Learn. It consists simply of extending the already learned
c-struct with suffixes from the accepted c-structs. As the learned c-struct is extended, its
commands can be processed by the application according to its semantics.

Hence, in a general execution scenario, the following sequence of actions is expected to
happen only when a new round starts, due to failures or collisions, which is supposed to be
seldom:

1. One (or more) coordinators will execute action Phase1a(c, i) for some high enough
round i .

2. Acceptors will acknowledge it by executing action Phase1b(a, i).

3. All coordinators in i -coordquorums will then execute Phase2Start(c, i), which will
trigger the execution of Phase2bClassic(a, i) by the acceptors.

During the rest of the round, a simpler execution pattern takes place. If the round is
fast, then

1. proposers execute Propose(p, C), and

2. acceptors execute Phase2bFast(a).

If the round is classic (multicoordinated or not), then

1. proposers execute Propose(p, C),
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2. the round coordinators execute Phase2aClassic(c), and

3. acceptors execute Phase2bClassic(a, i).

In any case, learners repeatedly execute Learn(l).

4.4.2 The ProvedSafe Function

In this section we define the ProvedSafe function through which coordinators pick c-structs
on the Phase2Start of new rounds. The function has two parameters: Q , a set of acceptors,
and 1bMsg, a mapping from every acceptor a in Q to a “1b” message sent by a. If Q is an
i -quorum and every acceptor a in Q has sent “1b” message 1bMsg[a] with field rnd equal
to i , which is mapped from a in 1bMsg, then ProvedSafe(Q, 1bMsg) returns a set of c-structs
that are pickable for round i .

The function is formally defined as follows. For convenience and simplicity of the expla-
nation, we assign aliases to the fields of “1b” messages: given a message m =〈“1b”,a, i ,vval ,vrnd〉,
we refer to the five fields of m as m.type, m.sndr, m.rnd, m.vval, and m.vrnd, respectively.

Definition 1 (Proved Safe) For any set of acceptors Q , and mapping 1bMsg from each ac-

ceptor in Q to a phase “1b” message, let:

• vals(S )
∆

= {1bMsg[a].vval : a ∈ S}
Set of vval values sent by acceptors in S ⊆ Q .

• vrnds
∆

= {1bMsg[a].vrnd : a ∈ Q}
Set of vrnd values sent in all “1b” messages.

• k
∆

= Max (vrnds)

Highest-numbered round in vrnds.

• kacceptors
∆

= {a ∈ Q : 1bMsg[a].vrnd = k}
Set of acceptors that sent “1b” messages with vrnd equal to k .

• QinterR
∆

= {Q ∩R : R is a k -quorum }
Set of intersections between Q and every k -quorum R.

• QinterRAtk
∆

= {S ∈ QinterR : S ⊆ kacceptors}
Intersections of interest: those in which all elements sent “1b” messages with vrnd equal

to k .

• Γ
∆

= {⊓(vals(inter)) : inter ∈ QinterRAtk}
glb’s of the values sent in the “1b” messages, for every intersection of interest.
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Then ProvedSafe is defined as follows:

ProvedSafe(Q , 1bMsg)
∆

= IF QinterRAtk = {} THEN vals(kacceptors)

ELSE {⊔Γ}

The function implements the rule explained in Section 4.3, action Phase2Start. That is,
if there is no k -quorum R for which all acceptors in R∩Q have sent “1b” messages for round
i with field vrnd equal to k , then any value that has been reported in “1b” messages with
vrnd = k is pickable. Otherwise, the Fast Quorum Requirement ensures that all elements
of the set Γ are extensions of any chosen c-struct. Even more, due to the properties of
c-structs, Γ is compatible. As a result, its lub exists and is pickable. Hence, the lub, which
contains as many commands as possible, should be picked and sent on “2a” messages to
the acceptors.

In [Lamport, 2004], Lamport discusses how to deal efficiently with large c-structs and
all the ideas presented there can be directly applied to our algorithm. The complexity of cal-
culating lubs, glbs, and verifying the compatibility of c-structs will depend on the c-struct set
being used. Most c-struct sets we are aware of (e.g., those presented in [Lamport, 2004])
admit relatively simple implementations of these operations. The complexity of calculating
function ProvedSafe also depends on how quorums are defined and it can be simplified if
quorums are defined as any set of processes of a certain size (e.g., majority sets).

4.4.3 Availability and Load-Balancing with Multiple Coordinators

The main problem of single-coordinated rounds as compared to multicoordinated ones has
to do with availability. If the coordinator of a single-coordinated round crashes, time must
be spent with the identification of the failure (usually done through timeouts), the election
of a new coordinator, and the execution of the first phase of a higher-numbered round,
before normal execution can be resumed. The optimization of these tasks may also effect
performance or availability. For example, aggressive failure detection may trigger false
suspicions, and simple leader election algorithms can elect a crashed process or more than
a single leader at a time. If a round has multiple quorums of coordinators, a single failure
will not require immediate round change. Hence, we have introduced multicoordinated
rounds as a way to circumvent the aforementioned availability problems.

A simple implementation of Multicoordinated Paxos would have a fixed number of co-
ordinator processes in every round and define coordinator quorums of multicoordinated
rounds as any majority of them so that the Coordquorum Requirement is satisfied. In such
a case, the failure of any minority of the coordinators leaves at least one quorum of coordi-
nators still available and, therefore, able to forward proposals to the acceptors.

One could argue that fast rounds also do not rely on a single coordinator during normal
execution, since acceptors can accept proposals directly from proposers. However, the Fast
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Quorum Requirement imposes stricter restrictions on how fast quorums are defined, which
also affects availability since fewer failures are tolerated.

The existence of multiple quorums of both coordinators and acceptors also enables im-
plementations with better load balance than Classic Paxos. Recall that in Classic Paxos all
commands must go through the current leader (round coordinator) and, depending on the
system load, this might be a performance bottleneck. In Multicoordinated Paxos, for a com-
mand C to be learned in multicoordinated rounds, it must be forwarded by a coordinator
quorum and accepted by an acceptor quorum only. If there are multiple coordinator and
acceptor quorums, no acceptor or coordinator needs to process all commands proposed. A
simple way to distribute the load has the proposer p of a command C choose, randomly or
through some uniformly distributed function, a quorum of coordinators and a quorum of
acceptors for C . p sends the “propose” message only to the chosen coordinator quorum,
with the chosen quorum of acceptors piggybacked in the message since all coordinators
in the quorum must forward C to the right acceptors. The coordinators send their “2a”
message with C only to the indicated quorum of acceptors, which accept C and send phase
“2b” messages to the learners. If not all learners need to learn about C , the same approach
can be used, forwarding with C the set of learners to which the phase “2b” messages should
be sent.

Fast rounds also allow distributing the load over the set of acceptors. As before, how-
ever, the stricter quorum requirement implies a worse distribution. If fast rounds are com-
posed of ⌈(3n + 1)/4⌉ acceptors, where n is the total number of acceptors (a necessary
condition if any majority of the acceptors is a quorum for a classic round), then it is not
hard to verify that every acceptor will have to process more than 3/4 of the proposed
commands. In multicoordinated rounds, if any majority of the coordinators of a round i

is an i -coordquorum and any majority of acceptors is an i -quorum, then the load can be
distributed so that each coordinator processes at most (1/2+ 1/nc) of the proposed com-
mands, where nc is the total number of coordinators for round i , and each acceptor accepts
at most (1/2+ 1/n) of the proposed commands. It is true that in this scenario, each com-
mand must be dealt twice (first by the coordinators and then by the acceptors), but the
coordinators’ action is much cheaper since it does not involve disk writes, as we show later.

Doing this sort of load balancing does not jeopardize availability. The optimistic use
of a single quorum only does not mean that the other quorums cannot be used. A clever
implementation would resort initially to a single quorum of coordinators and acceptors. If
the command is not learned after some time has elapsed (triggered by a timeout or a failure
suspicion), then other quorums might be used. This wait time can be set to a minimum since
they will never trigger a round change as discussed in the beginning of this section.

Finally, it is clear from the algorithm that the sets of coordinators and acceptors need
not have the same number of elements. Actually, in many cases it might be better to have
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more acceptors than coordinators in a round. Note that the set of coordinators for round
i can be completely different from the set of coordinators of round j 6= i , but this is not
the case for acceptors since they must be queried in every new round to check whether a
value has already been chosen at some previous round. Moreover, the acceptors’ task of
accepting a value is more expensive than the coordinators’ task of forwarding it, since the
former requires a disk write but the latter does not. As a result, implementations might
use a high number of acceptors to improve the system’s resilience or performance (due to
load balancing). But an equally high number of coordinators for a round increases only
the availability of that round, and the load balancing will not be as effective since the
coordinators’ task is cheaper. For a small system, a configuration with 5 acceptors in total
and 3 coordinators for multicoordinated rounds (with different sets of coordinators for
different rounds) sounds plausible, since it tolerates the failure of any two processes and
does not introduce temporary unavailability if a single coordinator crashes.

4.4.4 Collisions

Multicoordinated rounds have a drawback that does not exist in single-coordinated ones—
collisions. In multicoordinated rounds, a collision happens when commands proposed con-
currently arrive at the coordinators in different orders and this leads to their forwarding of
incompatible c-structs. If no coordinator quorum forwards c-structs whose glb can extend
the values previously accepted by the acceptors, the round is stuck since no new command
can get accepted.

This is a different type of collision than the one that may occur in fast rounds, explained
in Section 3.3.2. In fast rounds, a collision happens when acceptors accept incompatible
c-structs that cannot further extend the values learned by learners so far. In this case, how-
ever, acceptors pay the price of accepting commands that will never be learned, which does
not happen in collisions of multicoordinated rounds. This is a major difference between the
two kinds of collisions since acceptors must write on stable storage every time they accept
a value but coordinators do not have to, as we explain in Section 4.4.5.

The mechanisms to solve collisions in the original Fast Paxos algorithm presented in Sec-
tion 3.3.2, which guessed the values of “1b” messages for round i +1 out of “2b” messages
for round i , cannot be directly applied to Generalized Paxos. This happens because accep-
tors are allowed to append commands to their c-structs at will in fast rounds and, hence,
unless the coordinator asks the acceptors to move to the next round, it could wrongly guess
the latest acceptances of acceptors and pick a bad c-struct for the next round. If no other
algorithm exists, the techniques we present below for multicoordinated rounds can be used
at the cost of one extra communication step for the acceptors to identify the collision in
the c-structs they have accepted. Another possibility consists of explicitly starting a new
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higher-numbered classic single-coordinated round from the beginning after its coordinator
identifies the collision.

In multicoordinated rounds, collision identification can be done by the acceptors when
they receive the phase “2a” messages from the coordinators of a classic round i . If two
coordinators of the same i -coordquorum send “2a” messages for round i with incompatible
c-structs, acceptors execute action Phase1b(a, i+ 1) as if they had received a phase “1a”
message for round i +1. What comes next will depend on whether round i +1 is classic or
fast.

If round i +1 is classic and enough acceptors identify the collision, which will normally
happen if messages are not lost and processes do not crash, then the coordinators of round
i + 1 will execute action Phase2Start(c, i+ 1) based on the received messages, followed
by one or more executions of action Phase2aClassic(c). Thus, the collision in round i will
be resolved with only two extra communication steps (as compared to the usual three of
a classic round). Clearly, to avoid that another collision happens when the coordinators
start round i + 1, it is advisable to have it as a single-coordinated round. After some
time of normal execution, if conflicting commands stop being proposed, the coordinator of
round i + 1 can start a multicoordinated round again. This approach is a variation of the
coordinated recovery presented in [Lamport, 2006a].

If round i + 1 is fast, performance can be improved by setting i + 1-coordquorums
wisely. Since the Coord-quorum Requirement does not place any restriction on fast rounds,
we can define that any single acceptor by itself constitutes a coordinator quorum for a fast
round (playing both roles—acceptor and coordinator). When a coordinator of round i + 1
(which is also an acceptor) executes actions Phase2Start(c, i+ 1) and Phase2aClassic(c),
it can locally accept the values supposedly sent in the “2a” messages, without actually
sending them. This approach can resolve collisions with only one extra communication
step. However, new collisions might happen when the round i + 1 is started. This is a
variation of the uncoordinated recovery presented in [Lamport, 2006a], which also presents
some interesting ideas to avoid having collisions when round i + 1 is started. We do not
cover them here because the use of a fast round to recover from a collision in a classic one
does not seem to be of practical use. We just present the idea of the uncoordinated recovery
mechanism for completeness.

One might ask herself if there can be some kind of round that does not rely on a single
coordinator but in a coordquorum and still avoid collisions. In the most general case, its
existence would contradict the FLP result since quorums could be defined to tolerate a
single failure and the absence of collisions would mean that liveness can be achieved in
such rounds.



66 Chapter 4. Multicoordinated Generalized Consensus and Generic Broadcast

4.4.5 Reducing disk writes

Assumption 4, on page 41 imposes no restriction on coordinator quorums of different
rounds. If it is always possible to start new rounds with any set of coordinator quorums,
coordinators are not required to write on stable storage. A coordinator that crashes and
later recovers could just be seen as a new coordinator in the system, which is easily imple-
mented by having an “incarnation” counter associated with its identifier. In the following
we explain how new rounds can be created with any set of coordinator quorums.

Consider round numbers as records of the form 〈Count , Id ,RType,S 〉, where Count is a
natural number, Id is a coordinator’s unique identifier, RType is a natural number, and S is
a set of coordinator quorums. Rounds are uniquely identified by the first three fields of the
record and totally ordered by comparing these fields lexicographically. Field S is merely
informative and is not taken into consideration when comparing two rounds. Using this
approach, when the current leader wants to start a new round, it can simply define the four
fields according to its current knowledge. By setting Count properly, it can always create
a round higher-numbered than any other it has seen before. Id identifies the coordinator
that created the round and possibly the one responsible for coordinated recovery. RType

tells the round type, being 0 for fast and bigger integers for classic. Finally, S identifies all
valid coordinator quorums for the new round.

Since Assumption 3 requires that quorums of different rounds intersect, acceptors can-
not lose their state after a crash and assume a different identity upon recovery. This hap-
pens because the values accepted by acceptors cannot be forgotten, or the algorithm’s safety
would be compromised. Therefore, these values must always be stored on stable storage,
incurring a disk write (or equivalent operation) whenever an acceptor executes a Phase2b

action. As a result, acceptors are not as easily replaceable as coordinators and more com-
plex strategies must be used [Lamport and Massa, 2004, Lorch et al., 2006].

Action Phase1b also changes the internal state of an acceptor and, at a first sight, this
seems to imply that Phase1b must also write on disk. However, an acceptor a may store
rnd[a] only in main memory as long as, after recovering from a crash, it manages to initial-
ize rnd[a] with a higher value than the previous one. We propose this to be done as follows:
field Count , previously described in this section, can be composed of a major and a minor
component, MCount and mCount. When an acceptor executes Phase1b for some round, if
MCount equals the previous value in rnd[a], it changes rnd[a] in volatile memory only;
otherwise, it writes it on disk. During recovery, the acceptor simulates the reception of a
“1a” message with an MCount higher than the one it has on disk. To get values accepted
by the recovered acceptor, coordinators will be forced to use higher rounds. In the normal
case, acceptors write on disk only once, when they are started. In the presence of failures,
this strategy results in one extra disk write at each acceptor, per recovery.
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4.4.6 Setting rounds and quorums

The schema used to define round numbers presented in the previous section, that is, as a
vector of the form 〈MCount :mCount , Id ,RType,S 〉, should fit most application scenarios.
However, there are some specific cases in which this schema should be adapted for better
performance. There are two main points on doing these adaptations: the likeliness of
collisions and how they are recovered, and what type of round follows each other.

For example, if collisions are frequent in the system, then fast rounds should not be
used because the recovery cost could outweigh the economy provided by fast rounds. If fast
rounds are used in conjunction with coordinated recovery, then they should be followed by
single-coordinated rounds. In the case of uncoordinated recovery, fast rounds should be
followed by multicoordinated fast rounds. (See Section 4.4.4.)

In the case of the example, where some fast rounds should be followed by other fast
rounds, using the record described above would force the use of rounds with different Id

or Count field. Because recovery relies on a process knowing exactly what is the next round
number, this schema would not work. A possible solution is to change how the field RType

is interpreted. For example, letting all RType in the range 0 to 5 be interpreted as fast,
instead of simply 0, and allowing a round number to be incremented without changing any
but the RType field.

The set of coord-quorums can be defined at run-time, considering the status of the
system when a new round is created. To ensure liveness, multicoordinated rounds should
be followed by single-coordinated rounds (See Section 4.4.7). However, this transition
does not have to be abrupt and could be done through a series of multicoordinated rounds
with smaller quorums, minimizing the risk of collisions while still allowing the benefits of
multicoordination.

Below we present a few general scenarios and discuss how round numbers and quorums
could be defined for them. These scenarios are not necessarily disjoint, and real world
systems would probably share the characteristics of both of them, as well as other relevant
ones. Hence, a per-case analysis is needed to find the best solution. Notice that none of
the Paxos algorithms requires the ordered use of ballot numbers and that coordinators are
allowed to skip rounds—possibly based on the the dynamics of the environment it is in.
However, because collision recovery explores the sequential execution of rounds, skipping
rounds could prevent efficient recovery and therefore the rounds’ configuration should be
defined a priori as precisely as possible.

Highly reliable clustered systems

Clustered systems connected through high-speed networks have a large probability of spon-
taneously ordering the messages sent to the same destinations. In such systems, acceptors
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executing a fast round are likely to accept the values in the same order. Therefore, values
can be learned in two communication steps, even when conflicting proposals are made.

In such a scenario, a large sequence of fast rounds followed by single-coordinated
rounds seem the best configuration: most of the time values are fast learned and, in the
rare case of conflicts, they are solved by the variant of uncoordinated recovery presented
in Section 4.4.4. Coordinators can always resort to the next single-coordinated round to
ensure liveness if uncoordinated recovery does not succeed.

For this scenario, the values of the RType field in the basic approach can be mapped to a
range of many fast rounds followed by classic rounds, as we mentioned before. By dividing
RType in a major and minor component, as we did with Count , the number of successive
fast rounds is bounded only by the memory size.

If conflicts are rare but tend to be persistent and require coordinated recovery, then a
solution is to map RType ’s even values to fast rounds and odd values to single-coordinated
classic rounds.

Crash prone cluster systems

Remember that for a fast round to progress, more than two thirds of all acceptors must be
functional and reachable. Not even resorting to classic rounds would allow the protocol
to progress if this condition is not met. As we explained in Section 3.3.2, to progress
with fewer acceptors in classic rounds, the number of acceptors needed for fast rounds to
terminate may increase to up to three quarters of their total number. In a scenario where
more than one third of acceptors can crash, fast rounds should not be used.

In such a scenario, even though spontaneous ordering cannot be used to achieve fast
termination, it can be used to improve availability; with multicoordinated rounds, progress
can be achieved in the absence of any minority of coordinators for a given round. If accep-
tors and coordinators are collocated, for example, then the round can tolerate any minority
of acceptor-coordinator crashes.

Using the same round number definition as in the previous sections, RType is perma-
nently set to classic round. The leader starts new rounds whenever the number of functional
and reachable coordinators falls below a certain threshold. The extra availability given by
multicoordinated rounds can be used to relax failure detection requirements.

Highly loaded and time constrained systems

If most proposed commands commute, either multicoordinated or fast rounds can be used,
with the second option having the advantage of smaller number of communication steps.
However, even though commands do not semantically conflict, they do contend for stable
storage when accepted at the acceptors. To mitigate the performance loss due to I/O, the
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load of accepting values can be distributed over the acceptors by randomly selecting a
quorum to whom send proposals. Since fast rounds require quorums of more than two
thirds of the acceptors, each acceptor must bare the load of at least two thirds of the
proposals. Using classic rounds, the load over each acceptor may be lowered to roughly
half of the acceptances. Since coordinators do not need to access stable storage, the fewer
stable storage accesses at the acceptors are likely to make up for the extra communication
delay, with state-of-the-art networks.

Under particularly high load or if other tasks must be performed for each proposal, just
forwarding proposals may become a too demanding task for a single coordinator. For ex-
ample, if coordinators deal with proposers in an open network and must authenticate or
decode their proposals before forwarding them to acceptors. In such a scenario, multico-
ordination can be used to alleviate the load on each coordinator to roughly half. Round
numbers can be specified as in the previous scenario.

Conflict prone

In widely distributed systems or under high load, spontaneous ordering cannot be expected
and non-commutable proposals often result in conflicts. In such environments, if non-
commutable commands prevail, then the algorithms will always end up resorting to single-
coordinated classic rounds to finish.

In such an environment, it does not make sense to have fast nor multicoordinated
rounds, and round numbers can be defined as the set of integer and partitioned among
a finite set of coordinators by some module function. For an infinite set of coordinators or
for having each coordinator as the leader of infinitely many consecutive rounds, a simplified
round number of the form 〈MCount:mCount , Id〉 could be used.

4.4.7 Ensuring Liveness

The Multicoordinated Paxos algorithm, as presented in Algorithm 7, always satisfies the
safety properties of Generalized Consensus. Regarding liveness, on the one hand, the pos-
sibility of all coordinators always starting new rounds allows the algorithm to progress if
a round does not succeed due to coordinator crashes or proposal collisions. On the other
hand, starting new rounds carelessly can also prevent liveness, since by starting a new
round a coordinator may prevent smaller rounds from succeeding. In Classic and Fast
Paxos, this problem is avoided by using some unreliable leader election mechanism to elect
a single coordinator as responsible for starting higher-numbered rounds under its coordi-
nation.

In Multicoordinated Paxos, we can use the same strategy to prevent the continuous
initialization of new rounds. If the current leader starts a new classic single-coordinated
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round (of which it is the only coordinator), liveness is ensured as long as the leader does
not crash and other coordinators do not wrongly think they are the current leader and
try to start a higher-numbered round; such a property is ensured by the Ω leader election
oracle [Chandra et al., 1996]. If other coordinators interfere, the leader starts an even
bigger round. Below we change the algorithm to include negative replies to “1a” or “2a”
messages with a round number lower than the acceptors’ current one.

If the leader starts a fast round, its progress is ensured as long as the leader does not
crash during the execution of phase 1 and collisions do not happen during the rest of the
round’s execution. If there are no failures, collisions can be resolved by adapting the colli-
sion recovery mechanisms presented in [Lamport, 2006a] to Generalized Paxos; acceptors
identify collisions and use the approach we explained in Section 4.4.4 to solve them, or
simply the leader identifies the collision and starts a new classic single-coordinated round.

In classic multicoordinated rounds, progress is ensured if the leader does not crash
during the execution of phase 1, collisions do not happen, and at least one coordquorum
remains available during the rest of the round execution. The failure of the leader is not
a problem since another correct leader is eventually selected which will make sure that a
new round gets started. As for collisions, the mechanism presented in Section 4.4.4 can be
used—the only restriction we make is that the leader must be one of the coordinators for the
following round, otherwise the leader might think of the round change as an interference
and try an even higher-numbered round. Last, to cope with the failure of coordinators, the
leader must start a new round if it believes that too many of the other coordinators have
failed. Their possible failure can be assessed by monitoring their “2a” messages or through
some external failure detection mechanism. While there are still enough coordinators to
form coordquorums, the leader can decide on coordinator quorums for the next round.
When the leader notices that there are not enough coordinators in the current round to
ensure progress, it starts the new higher-numbered round.

We now present a list of modifications to Algorithm 7 to incorporate the mechanisms
discussed in the previous paragraphs.

• Add variable amLeader[c] to every coordinator c, with any boolean as initial value.
The variable contains a boolean stating whether coordinator c believes itself to be the
current leader (TRUE) or not (FALSE).

• Add variable activec[c] to every coordinator c, with initial ;.
The variable maintains the set of all coordinators that c believes to be functional.
The contents of activec[c] is used both to monitor if the number of coordinators of
a round has fallen too short and to determine the coordinators that will be in the
coord-quorums for the next rounds.
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• Add a Nack(a, i) action, enabled when an acceptor a receives a “1a” or “2a” message
for a round i < rnd[a] and the coordinators of i and rnd[a] are different. If these
pre-conditions are satisfied, then a sends a 〈“skip”, rnd[a]〉 message to the coordi-
nator of i .
This action serves to inform the coordinator of i that a round rnd[a], bigger than i

was already initiated, and that it should start an even bigger round.

• Add “amLeader[c]” to action Phase1a(c, i) as an extra pre-condition.
This condition prevents coordinators that do not believe themselves to be the leader
from creating new rounds ad infinitum.

• Add “(c received a message 〈“skip”, j 〉 such that crnd[c]< j< i or there is no coord-
quorum for round crnd[c] that is a subset of activec[c]) and there is i -coordquorum
that is a subset of activec[c]” as an extra pre-condition to action Phase1a(c, i).
This change lets c start round i as a reaction to the “skip” message sent by some
acceptor, or if c believes that no coord-quorum in its current round is still alive.
Moreover, it requires that at least one coord-quorum of round i be active.

• Add an action “Resend(a)”, whose only sub-action is to resend the last message sent
by agent a.
This action will ensure that messages required for progress are eventually delivered.

Since these changes only restrict the pre-conditions of the algorithm’s original actions
or add new actions already allowed by the protocols behavior, the resulting algorithm is an
implementation of the original. Therefore, it maintains the safety properties of Multicoor-
dinated Paxos.

Let p be a proposer, c a coordinator, l a learner, Q a quorum of acceptors, and C a non-
empty set of coordinators. The liveness condition of Multicoordinated Paxos, MCLiv(p, l, c, Q, C),
is the conjunction of the following conditions.

• {p, l ,c} ∪Q ∪C are not crashed.

• p has proposed a command v .

• c is the only coordinator that believes itself to be the leader.

• activec[c] is a subset of C .

• For every round i > crnd[c], there exists a round j > i such that some subset of
activec[c] is a j -coordquorum.
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• There is an upper bound on the number of uncoordinated recovery tries that the
algorithm makes or messages are delivered in the same order by all coordinators and
functions are deterministically executed as soon as their pre-conditions are satisfied.

If MCLiv(p, l, c, Q, C) holds eventually forever and there is an upper bound on the number
of uncoordinated recovery tries that the algorithm makes, then l eventually learns a c-struct
that contains the command proposed by p. This implies that, as we mentioned before,
Multicoordinated Paxos can ensure liveness under the same assumptions as Classic Paxos
since it can always resort to a single-coordinated round to ensure progress, which is possible
when using round numbers as specified in the previous section. If no conflicting commands
are proposed, then the algorithm ensures progress if MCLiv(p, l, c, Q, C) holds eventually
forever even if only uncoordinated recovery is used.

4.5 Multicoordinated Paxos as Generic Broadcast

In the Generic Broadcast problem [Pedone and Schiper, 2002], agents must agree on a par-
tially ordered set, or poset, of proposed commands; we refer to these posets in the generic
broadcast problem as c-hists, short for command histories. The partial order in a c-hist must
order non-commutable commands, where commutable is defined in terms of a conflict re-
lation. Read-only operations are common examples of commutable commands. Operations
changing the same piece of data, as a file in a file system or a row in a database, may be
commutable or not, depending on the application.

4.5.1 Command Histories and Formal Definition

Formally, a command history is defined as follows, for some Generic Broadcast instance.

Definition 2 (Command History) Let Cmd be the set of commands that may be broadcast

and ≍ be a reflexive and symmetric conflict relation over the commands of Cmd. Then the

partially ordered set (S ,≺) is a command history iff:

• S ⊆ Cmd

• ∀C ,D ∈ S, C ≍ D ⇒ (C ≺ D or D ≺ C )

A c-struct set whose c-structs are c-hists is defined by the tuple 〈Cmd ,⊥,•〉 where ⊥ =
(;,≺) and • is defined as follows:
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• For all C ∈ Cmd

(S ,≺) •C =





(S ,≺) if C ∈ S ,
(S ∪ {C },≺•) : ∀a,b ∈ S ,a ≺ b⇔ a ≺• b,

∀a ∈ S ,a ≍ C ⇒ a ≺• C otherwise

• For any sequence of commands 〈C1, . . . ,Cm〉, C1, . . . ,Cm ∈ Cmd

(S ,≺) • 〈C1, . . . ,Cm〉=

¨
(S ,≺) if m = 0,
((S ,≺) •C1) • 〈C2, . . . ,Cm〉 otherwise

The properties that define c-structs are useful when defining practical generalized con-
sensus protocols and it is not clear how useful c-hists are without such properties. Hence,
hereafter, c-hists refer to the c-structs defined from c-hists. What is more, definitions on
Section 4.2.1 defined for c-structs are automatically defined for command histories as well.
In special, we say that a command history g extends a command history h (h ⊑ g) if there
exists a sequence σ of commands such that g = h • σ. As an example of the meaning of
such definitions, consider the following set of c-hists, where a b means a ≺ b.

T =





a c b d

a b d

a c b e





The lower bounds of T are {⊥,a,a b}, being ⊓T = a b (the greatest lower bound of
T ) and ⊔T = a c b d e (the least of upper bound of T ).

With command histories formally defined, we can now properly state the Generic Broad-
cast problem. Let learned[l] be the c-hist learner l has learned. Generic Broadcast is defined
by the following properties.

Non-triviality For any learner l , learned[l] only contains proposed commands.

Stability For any learner l , the value of learned[l] at any time is an extension of learned[l]

at any previous time.

Consistency The set {learned[l] : l is a learner} is always compatible.

Liveness For any proposer p and learner l , if p, l , and a quorum Q of acceptors are non-
faulty, and p proposes a command C , then learned[l] eventually contains C .
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4.5.2 A Simple Command History

Using Multicoordinated Paxos to solve Generic Broadcast is straightforward, and is more
related to choosing the right c-struct than changing the protocol. In fact, the only change
is restricting the use of c-structs in the protocol to c-hists. In this section we define a simple
representation of c-hists and the operations performed on it.

Command histories can be represented as sequences of commands. The command
history ⊥, for example, may be represented simply as 〈〉, while the command history
⊥

a
b

c
d , where the arrows point to the previous elements in the partial order, may

be represented as 〈a,b,c,d〉, 〈a,c,b,d〉, 〈a,b,d ,c〉, 〈b,a,d ,c〉, or 〈b,a,c,d〉.
This representation, which is in fact a topological sorting of the c-hist, ensures that,

given a command history (S ,�), integers i and j , i < j < |S |, and the sequence s that
represents the command history, s[i]� s[j ].

New commands can be added to a sequence by simply appending it at the sequence’s
end, if it is not in the sequence yet. Formally, the • operator can be defined as follows:

〈C1, . . . ,Cm〉 •C =

¨
〈C1, . . . ,Cm〉 if ∃i ,C = Ci

〈C1, . . . ,Cm ,C 〉 otherwise.

Because these sequences do not represent all the ordering information, the conflict re-
lation (≍) is still needed to assess the order of commands within sequences when, for
example, calculating the lub or checking the compatibility.

Algorithm 8 below determines the longest common prefix between two command his-
tories H and I , that is H ⊓ I . It does so by checking if the head h of H exists on I before
any conflicting command, in which case it is part of their common prefix. Otherwise, the
algorithm recursively proceeds on the tail of H stripped of the descendants of h, since none
of them can be part of the prefix. Observe that in this definition we use the set minus
operator, \, to remove some element from a sequence.

Algorithm 8 Longest common prefix of two c-hists H and I .
1: H ⊓ I

∆

=

2: IF H = 〈〉 ∨ I = 〈〉
3: THEN 〈〉
4: ELSE IF ∃j : Head(H) = I[j]∧¬∃k< j : Head(H)≍ I[k]

5: THEN 〈Head(H)〉 ◦ (Tail(H)⊓ (I \Head(H)))

6: ELSE (Tail(H) \Descendants(Head(H), Tail(H))⊓ I)

To calculate the glb of a set of command histories, instead of a simple pair, the search
on the sequence I could be performed in parallel for many sequences. Nonetheless, here
we stick to an iterative approach of simpler understanding, presented in Algorithm 9.
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Algorithm 9 Longest common prefix of a set of c-hists S .
1: ⊓S

∆

=

2: IF S= {e}
3: THEN e
4: ELSE LET e, f ∈ S, e 6= f

5: IN ⊓ ((e⊓ f)∪ S \ {e, f})

Determining if two sequences are compatible is more complicated. The procedure pre-
sented below iterates over the first sequence, H , looking for the first element e of H that
does not appear in I . If, during this search, some conflicting ordering is identified among
the sequences, in a procedure similar to the one on the glb operator, then the sequences are
not compatible. If no incompatibility is found, then the procedure searches for descendants
of e in I . If any exists, then it also indicates incompatibility, as e would have to appear
before its descendant also in I . If none is found, the operator recursively proceeds on the
rest of H , but keeping the list of removed elements in a set of ancestors A, so that new
descendants can be identified in the next steps. Because the conflict relation is reflexive,
there is no need to reverse the roles of H and I and repeat the procedure.

Algorithm 10 Determines if two c-hists H and I are compatible.
1: AreCompatible(H, I, A)

∆

=

2: IF H = 〈〉 ∨ I = 〈〉
3: THEN TRUE

4: ELSE IF ∃j : Head(H)≍ I[j]∧¬∃k< j : Head(H) = I[k]
5: THEN FALSE

6: ELSE IF ∃j : Head(H) = I[j]

7: THEN IF ∃f : f ∈ A∧Head(H)≍ I[f]
8: THEN FALSE

9: ELSE AreCompatible(Tail(H), I \Head(H), A)

10: ELSE AreCompatible(Tail(H), I, A∪ {Head(H)})

AreCompatible can be rewritten to generate the lub of two sequences as it goes on ver-
ifying their compatibility. Because such operator would be more complex, we opted for a
simplified version, which assumes that the sequences are compatible.

Algorithm 11 Shortest common extension of two c-hists H and I .
1: H ⊔ I

∆

=

2: IF H = 〈〉
3: THEN I
4: ELSE IF ∃j : Head(H) = I[j]

5: THEN 〈Head(H)〉 ◦ (Tail(H)⊔ (I \Head(H)))

6: ELSE 〈Head(H)〉 ◦ (Tail(H)⊔ I)
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Algorithm 12 Shortest common extension of a set of c-hists S .
1: ⊔S

∆

=

2: IF S= {e}
3: THEN e
4: ELSE LET e, f ∈ S, e 6= f IN ⊔ ((e⊔ f)∪ S \ {e, f})

Finally, the following operator calculates the lub of a set of compatible sequences.

4.5.3 A Run of Generic Broadcast

Figure 4.2 shows a run of our Generic Broadcast algorithm. In order not to clutter the
picture, we have represented messages addressed to multiple agents as a single line point-
ing to the different addressees. Commands broadcast are represented as simple geometric
shapes. The conflict relation is defined such that commands with the same shape or color
commute. Time flows left to right.

In the run, the first three broadcast commands (�,Ï,©) are chosen and learned without
conflicts. The fourth command, È, conflicts with the first and second ones (È ≍© and
È ≍ �). Because both the first and second coordinators had seen �, they append È after
� in their c-hists (�ÏÈ and ©�È, respectively). Hence, because the first coordinator has
not seen ©, its c-hist will not be compatible with the c-hist sent by the second coordinator
to the acceptors, which has © before È. (The Ï command is not important here, since it
commutes with È.) Had both coordinators heard of ©, their c-hists would be compatible
and accepted by the acceptors. Since that is not the case, a new round to solve the conflict
is required. In the example, we have shown a single-coordinated round being started and
solving the conflict.

4.6 Final Remarks and Related Work

Multicoordination is a technique that improves the availability of leader-based agreement
protocols by replacing the leader by multiple coordinators working concurrently. Because
the use of multicoordination introduces the risk of collisions of commands at the coordina-
tors, we believe it is better employed by applications that can use semantics to minimize
the cost of conflicts. For this reason, we have used multicoordination to solve Generalized
Consensus, in which semantics may be captured by defining the problem’s command struc-
tures. We have done so by extending Generalized Paxos, the only Generalized Consensus
algorithm that we are aware of. We have named the resulting protocol Multicoordinated
Paxos.
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Figure 4.2: Multicoordinated round followed by a single-coordinated round: After a series
of successful appends to the accepted c-hist, one conflict happens and one coordinator
changes to the single-coordinated mode to solve the conflict. Observe how learners learn
different but compatible prefixes. The dashed arrows show the leader polling the acceptors
for their accepted c-hists.

Generic Broadcast [Pedone and Schiper, 1999, Pedone and Schiper, 2002] is an instan-
tiation of Generalized Consensus using c-hists, c-structs in the form of partial orders that do
not order commutable commands. In Section 4.5 we have presented one such c-hist which,
in spite of its power, has a very simple implementation.

There are three generic broadcasts algorithms in the literature to which we can compare
Multicoordinated Paxos using our c-hist. GB+ [Pedone and Schiper, 2002] by Pedone and
Schiper, an improved version of their first algorithm, introduced along the definition of
generic broadcast [Pedone and Schiper, 1999]. In GB+, a proposal v is learned in two
steps if no conflict arises or if previously accepted conflicting proposals have already been
chosen. Otherwise the protocol resorts to a fast consensus instance, amounting to a total
of four steps if the consensus works well. The algorithm was developed for crash-stop
environments and requires more than two thirds of the acceptors to be non-faulty. Hence,
if compared to Generalized and Multicoordinated Paxos and ignoring the difference in the
failure model, GB+ is roughly equivalent to the fast mode with uncoordinated conflict
recovery. We say roughly because the fast mode always ignores conflicts between messages
that have been spontaneously ordered, while GB+ only ignores conflicts if the messages
have been delivered distant in time. What is more, Generalized and Multicoordinated
Paxos may resort to coordinated recovery and, in the case of Multicoordinated Paxos, an
uncoordinated classic recovery which may gradually lower the requirement for spontaneous
ordering until the instance is decided.

The thrifty generic broadcast of Aguilera et al.[Aguilera et al., 2000], which we refer to
as AGB, requires three steps to learn a proposal in the absence of collisions and failures.
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As GB+, AGB may be able to ignore some conflicts but, in general it falls back to atomic
broadcast when conflicting proposals happen, and requires three more steps to have pro-
posals learned. While AGB tolerates any minority of crashed acceptors, the authors have
also described a variation of the algorithm that is equivalent to GB+. That is, it tolerates
less than one third of failures but decides in two or four steps.

In the same way that GB+ compares to the fast mode, AGB compares to the multico-
ordinated mode of Multicoordinated Paxos: it may identify a collision even if conflicting
commands are received in the same order, and cannot change the execution mode during
execution.

While GB+ and AGB do not resort to consensus or atomic broadcast before at least two
communication steps have been used, Zielinski’s optimistic generic broadcast [Zielinski, 2005],
OptGB, starts using consensus from the moment a value is proposed. With respect to la-
tency, OptGB is more efficient than the other two protocols: it lets a proposal be learned
after two steps if there are no conflicts or proposals are orderly received by the acceptors,
and in three steps otherwise. Hence, OptGB and fast rounds offer the same latency in the
absence of conflicts, actual or perceived. OptGB solves conflicts in one more step, but only
if the leader election oracle it relies upon works. Fast rounds solve conflicts in one step
if the uncoordinated recovery works; using uncoordinated recovery takes two steps under
the same conditions of OptGB. Compared to the multicoordinated mode, OptGB is always
faster by one step, at the expense of tolerating less failures—OptGB tolerates less than one
third of acceptor crashes. Moreover, it is not clear how it could be used to solve Generalized
Consensus in general.

Another work that is closely related to ours is the decomposition of consensus algo-
rithms by Song et al.[Song et al., 2008]. In this work, the authors break consensus algo-
rithms in two quorums systems, one of selectors (coordinators), that pick proposals from
proposers, and another of archivers (acceptors), that store the selected proposals and for-
ward them to the deciders (learners). According to the way these quorums are configured,
they can instantiate different protocols. The same happens with the multicoordinated con-
sensus protocol from Chapter 3. For example, one can instantiate Rabin [Rabin, 1983]
with fast rounds and uncoordinated recovery, Ben-Or [Ben-Or, 1983] with multicoordi-
nated rounds and uncoordinated recovery, or Paxos [Lamport, 1998] with single coordi-
nated rounds. The main difference between their work and ours is that they have not ap-
plied their deconstruction to the generalized consensus problem, nor to agreement among
groups of processes, which we discuss in the next chapter.



Chapter 5

Fast Agreement for Groups

5.1 Agreement in Networks of Groups

With data centers spread across the globe and distributed systems that span the Internet,
the problem of ensuring consistency in distributed environments has gained new dimen-
sions. Online retailers and communities, e.g., Facebook and Amazon.com, have hundreds
of thousands of clients around the globe accessing different data centers, depending on
their location. In some cases, although clients may access their data on any data cen-
ters, updates are directed to a single location to be applied and later propagated to the
other locations. In such applications, allowing updates be performed in any data center
such that updates are readily seen after they are performed, without having to wait for
a propagation time, would probably improve the user experience. Implementing such an
update-everywhere database replication may be done atop of agreement protocols (e.g.,
Pedone et al.[Pedone et al., 2003]). To be advantageous, such approach must be based on
agreement protocols that are efficient and resilient in this networking scenario, which we
refer to as corporative networks.

Corporative networks may be abstracted as groups of agents and, typically, are char-
acterized by large differences in terms of latency of communication between two agents:
while agents within the same group use low latency communication channels to exchange
messages, those in different groups may experience latencies that are orders of magnitude
higher. More specifically, we consider networks abstracted by Figure 5.1, on page 80, in
which agents are organized in a set of m subsets or groups Γ = {G1, . . . ,Gm}. Although
groups may be seen as data centers, the same abstraction also works for smaller setups as,
for example, the internals of a single data center, where groups are racks of nodes.

Besides the sets G1, . . . ,Gm of agents that effectively propose and learn the agreed val-
ues, Figure 5.1 depicts another set A, which stands for the acceptors in the system. To
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system. The effects of collisions can be minimized by using protocols that are conflict
aware, as Generalized and Multicoordinated Paxos. More than simply avoiding conflicts,
this approach has the extra benefit of letting multiple values be decided in each round.

To minimize the number of messages exchanged, instead of letting every agent propose
in every fast round, one agent may be selected from each group to aggregate the groups’
proposals and forward them to the acceptors. Such a fast round with aggregation is, in fact,
a multicoordinated round in which each agent aggregating proposals is a coordquorum.
Observe that, in this case, the coordquorum requirement (Assumption 4, on page 41) is not
satisfied.

When comparing single-coordinated and fast rounds, we see that the cost for letting
possibly conflicting values be proposed in a round is to require more acceptors be available.
That is, we require Assumption 3 to be true. The same is valid for multicoordinated classic
and multicoordinated fast rounds, as the one described in the previous paragraph. That
is, either the coordquorum or the fast-quorum requirement can be relaxed, but not both at
once, unless the absence of conflicts is guaranteed in some other way.

Collision-Fast Rounds

Guaranteeing that proposals do not conflict is exactly what the Collision-Fast Paxos proto-
col [Schmidt et al., 2007] does to ensure that, in the absence of failures and message loss,
agents reach agreement and learn the decision in two communication steps. In Collision-
Fast Paxos, CFPaxos for short, agents agree not on a single value but on mapping from
each proposer to its proposed value, allowing the protocol to void any conflicts since each
proposal is mapped from a different proposer. If commands are not commutable, then once
the mapping is learned, a deterministic function may be applied to transform it into a se-
quence. Another very interesting aspect of CFPaxos is that, in the absence of failures, the
more parallel proposals there are, the smaller the relative cost for each one to be learned
because all proposals are learned in parallel.

Disjoint Coordquorums

In this chapter we redefine coordquorums to be overlapping inside a group but disjoint
across them, and apply these disjoint coordquorums to obtain an efficient an highly avail-
able agreement protocol for groups of agents. Inside each group, proposers send their
proposals to local coordinators that forward proposals to the acceptors in A. To minimize
the overhead of having multiple coordinators in each group, we improve our protocol to
harness multicast technologies to let agents in one group address other groups as a whole,
with single messages, and become oblivious to their contents. In order to avoid unnec-
essary round changes, we further improve our protocol to exchange coordinators inside a
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group without starting new rounds, as long as a majority of the coordinators inside a group
are alive. Our protocols are based on CFPaxos and their rounds are roughly equivalent to
the multicoordinated fast rounds that we described previously in this section, but in which
conflicts do not happen.

In the next sections we first overview the Collision-Fast Paxos protocol and then present
our extended protocols. In Section 5.4 we show how CFPaxos rounds, and of our extended
protocols, may be added as another mode into Multicoordinated Paxos and present the
respective c-struct set.

5.2 Collision-Fast Paxos

In CFPaxos learners must eventually learn a mapping from all proposers to the values in
that they have proposed or to a special value Nil . Ideally, a proposer would be mapped
to Nil only if it does not have any proposal to make. Nonetheless, due to the asynchrony
of the system and false failure suspicions, proposers can be mapped to Nil also if sus-
pected to have crashed during the execution of the protocol. The mapping is a special
data structure called value mappings [Schmidt et al., 2007], or v-maps. These mappings
are also what names the problem solved by CFPaxos, that is, the Mapping Consensus prob-
lem [Schmidt et al., 2007], or M-Consensus for short. We explain the v-maps and the M-
Consensus problem in the next two sections.

5.2.1 Value Mapping Sets

A Value Mapping Set VMap is defined in terms of sets Domain and Value as the set of
all surjective mappings from subsets of Domain to values on Value or to Nil /∈ Value.
That is, a value mapping (v : D → R) ∈ VMap has as domain D ⊆ Domain and as range
R ⊆ Value ∪ {Nil}, such that all values in the range are mapped from some value in the
domain. Let ⊥ be a mapping with empty domain and range. ⊥ is clearly an element of
every value mapping set.

We represent a v-map v : {a} → {b}, with domain and range of cardinality one, simply
as {a 7→ b}. We refer to such v-maps as s-maps, short for “single maps”, and define the •
operator that extends a v-map with an s-map. Formally, • is defined as follows, where v is
a v-map, s is an s-map, and Dom(v) is the domain of v-map v :

v • s = w , such that

– Dom(w) = Dom(v)∪Dom(s),

– ∀e ∈ Dom(v),w(e) = v(e), and
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– ∀e ∈ Dom(s) \Dom(v),w(e) = s(e).

Although described for a v-map and an s-map, the • operator naturally works for any
two v-maps. One can think of extending a v-map v with another v-map w as the recursive
extension of v with the s-maps that form w . We say that v-map v is a prefix of v-map w

and that w extends v (v ⊑ w) iff there exists a v-map σ such that v •σ = w . Hence, ⊑ is a
partial order relation on v-map sets.

Other than the aforementioned single maps, two other v-maps are of special inter-
est: complete and trivial. Complete v-maps are those whose domain equals the respective
Domain set; complete v-maps cannot be extended, hence the name. Trivial v-maps are
complete v-maps whose ranges equal {Nil}.

A v-map set defined by Domain and Value is, in fact, a c-struct set defined by the
tuple 〈Cmd ,⊥,•〉 where Cmd is the set of all s-maps in Domain × (Value ∪Nil). That is:
Cmd = {{d 7→ v} : d ∈ Domain ∧ v ∈ Value ∪ {Nil}}

Hence, lower and upper bounds as well as least upper bounds and greatest lower bounds
are naturally defined for v-map sets. As for any set of c-structs, the existence of the lub ⊔V
of a set of v-maps V depends on V being compatible. A set V of v-maps is compatible iff
for every pair of v-maps v ,w ∈ V , for all elements e ∈ Dom(v)∩Dom(w),v(e) = w(e).

5.2.2 M-Consensus

The M-Consensus problem is formalized in terms of proposers, acceptors, learners, and a v-
map set whose Domain and Value sets equal the set of proposers and the set of proposable
commands, respectively.

As proposers propose commands, learners learn v-maps from proposers to commands
or to Nil . Learners may learn different v-maps, but they must be always compatible. A
learner can only learn another v-map if it is an extension of the previously learned one.
Eventually, all nonfaulty learners must learn the same complete non-trivial v-map. Formally,
the properties of M-Consensus are the following, where learned[l] is the v-map learned by
learner l , initially ⊥ [Schmidt et al., 2007]:

Nontriviality For any learner l , learned[l] is always a nontrivial v-map and the range of
learned[l] contains only proposed commands.

Stability For any learner l , if learned[l] = v at some time, then v ⊑ learned[l] at all later
times.

Consistency The set of learned v-maps is always compatible and has a nontrivial least
upper bound.
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Liveness For any proposer p and learner l , if p, l and a quorum of acceptors are nonfaulty
and p proposes a value, then eventually learned[l] is complete.

The specification of M-Consensus is similar to the one given for consensus, in Chap-
ter 3. This happens because the two problems are equivalent: one can solve consensus by
deterministically choosing a proposal from the M-Consensus solution, and build a v-map
whose range equals the decision of consensus to solve M-Consensus. As a result, all lower-
bounds of consensus are valid for M-Consensus, as for example, the Quorum Requirement
for asynchronous algorithms (Assumption 1).

5.2.3 Collision-Fast Paxos

CFPaxos [Schmidt et al., 2007] is a Paxos-like M-Consensus protocol. As with other Paxos-
like protocols, CFPaxos runs in rounds totally ordered by a relation ≤ and associated to
a single coordinator agents that may start them. Each round is associated to a subset of
the proposers, which are the only ones allowed to send their proposals to the acceptors
in that round. Hence, they may have their proposals decided in two communication steps
in such a round. We call these proposers the collision-fast proposers of the round. The
other proposers use the collision-fast ones as their proxies. As we explain later, making all
proposers collision-fast for all rounds would restrict the algorithm’s resilience.

To propose a value v in some round, a collision-fast proposer p builds the s-map {p 7→ v}
and sends it to the acceptors and the other collision-fast proposers of the round. This is a
request to the acceptors to accept the s-map and to inform the other collision-fast proposers
that a proposal has been made. When informed of a proposal, a collision-fast proposer q

may decide to send its own s-map to the acceptors and the other collision-fast proposers or
to abstain from proposing in that round. To abstain, q sends the s-map {q 7→ Nil} directly
to the learners.

Acceptors accept s-maps to extend their accepted v-maps. Since they only receive s-
maps with non-Nil values from collision-fast proposers, their accepted v-maps always map
to a range other than {Nil}. Every time acceptors extend their accepted v-maps, they notify
the learners about the newly accepted v-map.

As learners receive notifications from the acceptors and the Nil valued s-maps from
the collision-fast proposers, they can identify which proposers must be mapped to Nil and
which have had their proposals already accepted by a quorum of acceptors satisfying As-
sumption 1. We say that these mappings are chosen and are bound to compose the complete
v-map which learners will eventually learn. Formally, a v-map v has been chosen in a round
r iff, for every collision-fast proposer p ∈ Dom(v), of round r , either

• there is a quorum of acceptors which accepted v-maps mapping p to v(p), or
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• p has proposed {p 7→ Nil} in r and v(p) = Nil .

In a good run of CFPaxos in which a single collision-fast proposer p proposes a value v ,
a round executes as follows:

• p proposes {p 7→ v};

• after one communication step, the acceptors and each other collision-fast proposers
cp learn about {p 7→ v} and, respectively, accept the value and send the s-map {cp 7→
Nil} to learners.

• Learners receive the messages from the acceptors and collision-fast proposers and
learn the v-map decided.

If other collision-fast proposers also have values to propose, then instead of sending
{cp 7→ Nil} to learners, they send their valued s-maps to the acceptors and the other
collision-fast proposers, as p did. Hence, if collision-fast proposers are synchronized, all
values will be learned within two steps. If there are no failures or message losses but they
are nor synchronized, then the protocol takes three steps to terminate.

To cope with failures, an elected leader will start a new round with a different set of
collision-fast proposers when suspecting that one of the current ones has crashed. To ensure
consistency, the leader starts the new round by identifying possibly chosen v-maps and
making sure that they are the only possibly chosen v-map in the new round. The procedure
is similar to the other Paxos algorithms and, in special, to Generalized and Multicoordinated
Paxos: if no v-map may be possibly chosen at a lower-numbered round, the collision-fast
proposers of the new round are notified so that they can fast-propose.

For a full description of the algorithm, the interested reader is referred to the original
work [Schmidt et al., 2007], in which the authors prove the correctness of the algorithm,
show how to implement Atomic Broadcast on top of CFPaxos, and state the assumptions
needed to ensure liveness.

5.3 Multicoordination and Collision-Fast Paxos

Collision-Fast Paxos may be used to reach agreement between processes in various sce-
narios, but it is specially suited for systems that can be organized in groups of processes.
More specifically, consider the scenario depicted by Figure 5.1, on page 80. By assigning
one collision-fast proposer to each group, to whom the other proposers in the group send
their proposals, CFPaxos can deliver messages from each group to each other in two inter-
group communication steps in the absence of failures. In case some collision-fast proposer
crashes, the leader simply starts a new round replacing the crashed collision-fast proposer
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with another proposer in the same group. If a group G is disconnected or its proposers
are too unstable to assume the role of collision-fast proposer, then the leader can start
rounds without a collision-fast proposer local to G , forcing its regular proposers to send
their proposals to coordinators in the other groups or stop proposing.

We extend CFPaxos to tolerate the failure of collision-fast proposers in a group without
changing rounds or leaving the proposers “orphan” in situations in which CFPaxos would do
so. Our extension consists in using multicoordination inside each group. Because collision-
fast proposers execute the tasks that we have associated to coordinators in the previous
chapters, namely, forwarding messages from proposers to acceptors, hereinafter we refer to
them also as coordinators.

There are two main differences between the original CFPaxos and our multicoordinated
version. First, instead of a single coordinator per group each round defines a set of coordi-
nators per group. The set of coordinators of a group implement the collision-fast proposer
in the original protocol. To propose in some round, a proposer sends its proposal to all co-
ordinators in its group. The coordinators of the current round then forward the proposals
to the acceptors. Second, in the extension, agents agree on a map from groups to proposed
values, as opposed to maps from proposers to values as in CFPaxos. That is, coordinators
send s-maps of the form {G 7→ v} to the acceptors, where G is a group and v the proposal
of some proposer in G (or possibly an aggregation of them).

On the acceptors side the only difference is that acceptors do not accept a proposal
unless it has been received from a quorum of coordinators of the respective group for the
respective round. More precisely, let Gi be the set of quorums of coordinators of group G in
round i , or the Gi -coordquorums. An acceptor a accepts proposal {G 7→ v} in round i if it
has received the same proposal from every coordinator in some set Q ∈ Gi -coordquorum.
To ensure that no two acceptors accept different mappings for the same group, we require
that every two quorums intersect. This requirement is formally stated by Assumption 5.

Assumption 5 (Group Quorum Requirement) For any round i , if P and Q are Gi -coordquorums,

then P ∩Q 6= ;.

In Section 5.3.1 we detail a basic algorithm, BasicMCF, which implements our multico-
ordinated extension of CFPaxos. This basic algorithm improves the resilience of CFPaxos
but may be further enhanced to allow reconfiguration internally to a group before resorting
to a round change. We present this algorithm, which we call ExtendedMCF, in Section 5.3.2.

5.3.1 Basic Algorithm

In BasicMCF, we assume that every proposer and coordinator a knows to which group it
belongs. This information is stored in the variable group[a]. Proposers keep no other
information. A coordinator c has two other variables:
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crnd[c] The current round of c, initially 0.

cval[c] The s-map that c is proposing in round crnd[c], if already defined, or the special
value none, otherwise. The value is defined and informed by the coordinator who
started the round or left to be defined once a proposal is received from some proposer.
Initially, it equals none.

An acceptor a keeps three variables:

rnd[a] The current round of a; initially 0.

vrnd[a] The round at which a has accepted its latest value; initially 0.

vval[a] The v-map a has accepted at vrnd[a] if it has accepted something at vrnd[a], or
special value none otherwise; initially none.

Each learner l keeps only the v-map it has learned so far.

learned[l] The v-map currently learned by l ; initially ⊥.

We assume that round numbers are partitioned among the possible coordinators in
the protocol, for example, by including the coordinator’s unique identifier as part of the
round number. Moreover, every round is associated to a set of coordinator quorums. This
scheme may be defined as in Section 4.4.5 by having each round number as the sequence
〈Count , Id ,S 〉, where Count is an integer, Id is the coordinator of the round, and S is the
set of coordinator quorums. Round numbers are compared lexicographically taking only
the two first fields into account to define the required total order among them.

Algorithm 13, on the next page, presents the actions of BasicMCF.

Proposing a Command

To propose a value v , proposer p executes action Propose(p, v). In the action, p simply
sends its proposal to all coordinators that belong to its own group for them to forward the
proposal to the acceptors. The proposal is executed out of the context of the phases one
and two of the algorithm, which effectively choose a v-map.

Phase One

To start the phase one of round i , the coordinator c of i executes action Phase1a(c, i). In
the action, c queries the acceptors about previously accepted v-maps by sending them a
〈“1a”,c, i〉 message.
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Algorithm 13 Basic Implementation Multicoordinated Collision-Fast Paxos
1: Proposer Actions:

2: Propose(p, v)
∆

=

3: pre-conditions:
4: p ∈ proposers

5: actions:
6: send 〈“propose”,v〉 to all coordinators of group group[p]

7: Phase One:

8: Phase1a(c, i)
∆

=

9: pre-conditions:

10: c is the coordinator of i
11: crnd[c]< i

12: actions:
13: send 〈“1a”,c, i〉 to acceptors

14: Phase1b(a, i)
∆

=

15: pre-conditions:
16: a ∈ acceptors

17: rnd[a]< i

18: received 〈“1a”,c, i〉 from coordinator c

19: actions:
20: rnd[a]← i

21: send 〈“1b”,a, i ,vrnd[a],vval[a]〉 to c

22: Phase Two:

23: Phase2Start(c, i)
∆

=

24: pre-conditions:

25: c is the coordinator of i
26: crnd[c]< i

27: ∃Q : Q is a quorum and ∀a ∈ Q , c received 〈“1b”,a, i , rnd ,val〉
28: actions:
29: LET v

∆

= PickValue(c, Q, i)
30: IN

31: crnd[c]← i

32: IF v= ⊥ THEN send 〈“2S”,c, i ,v〉 to
⋃

G ∈ ΓGi -coordquorum

33: IF c ∈
⋃

G ∈ ΓGi -coordquorum THEN cval[c]← none

34: ELSE send 〈“2S”,c, i ,v〉 to
⋃

G ∈ ΓGi -coordquorum ∪acceptors

35: IF c ∈
⋃

G ∈ ΓGi -coordquorum THEN cval[c]← v(group[c])

36: PickValue(c, Q, i)
∆

=

37: LET k
∆

= CHOOSE r : c received 〈“1b”,a, i , r , 〉 from some a ∈ Q and

∀a ′ ∈ Q ,m ′ =〈“1b”,a ′, i , r ′, 〉 c received from a ′: r ′ ≤ r}
38: S

∆

= {v : c received 〈“1b”,a, i ,k ,v〉 from a ∈ Q} \ {none}
39: IN IF S = {} THEN ⊥ ELSE ⊔S • {G ∈ Γ 7→ Nil}

An acceptor a reacts to a 〈“1a”,c, i〉 message as follows: if its current round
rnd[a] is smaller than i , then a sets rnd[a] to i and replies to c with message
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〈“1b”,a, i ,vrnd[a],vval[a]〉. Through this “1b” message, a promises to c that it will not
accept any v-map in any round smaller than i .

Phase Two

The second phase of round i starts when its coordinator c receives “1b” messages from a
quorum Q of acceptors for round i . It then executes action Phase2Start(c, i) as follows.
Initially, c picks a v-map v that must extend any v-map possibly chosen in a round smaller
than i ; the v-map is picked based on the “1b” messages received from the acceptors in Q

through function PickValue(c, Q, i), which we explain later. Next, c sends a 〈“2S”,c, i ,v〉
message to all the coordinators in the round i . The purpose of this message is twofold:
first, it lets the coordinators that form the coordquorums of round i know whether they are
allowed to propose something (if v = ⊥) or not; second, it lets acceptors know whether the
coordinator who started i has defined a single mapping that they can accept in the round
(v 6= ⊥) or not. If v 6= ⊥, the message is also sent to the acceptors. If c is also one of the
coordinators of i , it sets its cval[c] variable as the other coordinators will do after receiving
the “2S” message: to none if v = ⊥ or to v(group[c]) otherwise.

When a coordinator c receives message 〈“2S”,d , i ,v〉 for the first time it executes action
Phase2Prepare. In the action, c first sets crnd[c] to i and then checks whether v equals ⊥
or not. If v 6= ⊥, then it sets cval[c] to v(group[c]), which has been determined by the
coordinator who started the round. Otherwise, it sets cval[c] to none, to indicate that it can
still send some s-map to the acceptors by executing action Phase2a(c, i).

After having executed action Phase2Prepare(c, i), if it is in some coordinator quorum of
round i for group group[c], coordinator c may execute action Phase2a(c, i) in two situations.
The first situation is after receipt of a 〈“propose”,w〉 message, in which case c sets cval[c]

to w and then sends a 〈“2a”,c, i , {group[c] 7→ cval[c]}〉 message to the acceptors and all
the other coordinators of round i . The second is after receipt of a 〈“2a”, , i , , {G 7→ w}〉
message where {G 7→W } is an s-map from group G 6= group[p] to a non-Nil value w . In
this case, c sets cval[c] to Nil and sends message 〈“2a”,c, i , {group[c] 7→ cval[c]}〉 directly
to the learners.

An acceptor a executes action Phase2b(a, i) upon receipt of a 〈“2S”,c, i ,v〉 message for
round i from coordinator c, if i is bigger than its current round, rnd[a] or if it equals its
current round but a has never accepted any v-map, i.e., vval[a] = none. If this is the case,
then a accepts the v-map v picked by c. It does so by setting rnd[a] and vrnd[a] to i and
vval[a] to v .

Acceptors may also execute action Phase2b(a, i) after receiving a 〈“2a”,c, i , {G 7→ v}〉
message from every coordinator c in some Gi -coordquorum L, where v 6= Nil . Observe that
such a condition implies that the coordinator who started round i has picked an empty v-
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Algorithm 13 BasicMCF (Continued)
40: Phase2Prepare(c, i)

∆

=

41: pre-conditions:

42: c ∈
⋃

G ∈ ΓGi -coordquorum

43: crnd[c]< i

44: c received 〈“2S”,c, i ,v〉
45: actions:
46: crnd[c]← i

47: IF v = ⊥ THEN cval[c]← none ELSE cval[c]← v(group[c])

48: Phase2a(c, i)
∆

=

49: pre-conditions:

50: c ∈
⋃

G ∈ ΓGi -coordquorum

51: crnd[c] = i ∧ cval[c] = none

52: ∃v : (c received 〈“propose”,v〉) ∨
(received 〈“2a”,d , i , {G 7→ w}〉: G 6= group[c]∧w 6= Nil = v)

53: actions:
54: cval[c]← {G 7→ v}
55: IF v = Nil THEN send 〈“2a”,c,crnd[c],cval[c]〉 to learners

56: ELSE send 〈“2a”,c,crnd[c],cval[c]〉 to
⋃

G ∈ ΓGi -coordinators ∪acceptors

57: Phase2b(a, i)
∆

=

58: pre-conditions:
59: a ∈ acceptors

60: rnd[a]≤ i

61: (a received 〈“2S”,c, i ,v〉: v 6= ⊥∧ (vnrd[a]< i ∨ vval[a] = none))∨
(∃L,v 6= Nil : L is an Gi -coordquorum ∧∀c ∈ L: a received 〈“2a”,c, i , {G 7→ v}〉)

62: actions:
63: IF a received 〈“2S”,c, i ,v〉: v 6= ⊥∧ (vnrd[a]< i ∨ vval[a] = none)

64: THEN vval[a]← v

65: ELSE IF ∃L,v 6= Nil : (L is an Gi -coordquorum) ∧ (∀c ∈ L: a received 〈“2a”,c, i , {G 7→ v}〉)
∧ (vnrd[a]< i ∨ vval[a] = none)

66: THEN vval[a]← {G 7→ v} • {G ∈ Γ 7→ Nil}
67: ELSE vval[a]← vval[a] • {G 7→ v}
68: rnd[a]← vrnd[a]← i

69: send 〈“2b”,a, i ,vval[a]〉 to learners

70: Learn(l)
∆

=

71: pre-conditions:

72: l ∈ learners

73: ∃Q : Q is a quorum and ∀a ∈ Q , l received 〈“2b”,a, i ,val〉
74: ∃γ ∈ Γ : ∀G ∈ γ : ∃P : P is a Gi -coordquorum and ∀c ∈ P , l received 〈“2b”,c, i , {G 7→ Nil}〉
75: actions:
76: LET Q2Vals

∆

= {v : l received m =〈“2b”,a, i ,v〉, a ∈ Q}
77: IN learned[l]← learned[l]⊔ (⊓Q2bVals • {G ∈ γ 7→ Nil})

map in action Phase2Prepare and informed the coordinators of i with “2S” messages. Hence,
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the “2a” messages received from the coordinators in L actually convey the information in
the “2S” not received. When first executing action Phase2b in this case, a has not accepted
any v-map yet. Hence, besides setting rnd[a] and vrnd[a] to i , a it sets vval[a] to {G 7→ v}
extended with {H 7→ Nil} for every group H with no Hi -coordquorum. That is, it records
the fact that it will not receive any “2a” messages from coordinators in H during round
i . On the following times that a executes Phase2b(a, i), it simply extends vval[a] with
{G 7→ v}, that is, it sets vval[a] to vval[a] • {G 7→ v}. The action finishes when a sends
message 〈“2b”,a, i ,vval[a]〉 to all learners, with the updated value of vval[a].

Because a coordinator can only pick a single v-map when starting the phase two in ac-
tion Phase2Start(c, i), the two conditions to execute action Phase2b are mutually exclusive.
That is, there are no two acceptors such that one executes action Phase2b due to receipt of
“2S” messages and another that executes it due to receipt of “2a” messages for the same
round i . Either both accept the same complete v-map v sent by the coordinator, or they
accept s-maps received from quorums of coordinators. Since no coordinator can send dif-
ferent “2a” messages for the same round and all quorums of the same group for round i

intersect, by Assumption 5, there is only one s-map per group that may be accepted. Since
no accepted s-map conflicts, all v-maps accepted by must be compatible. This property is
explored in picking a v-map in function PickValue(c,Q , i), explained next.

Picking a v-map

Let k be the highest vrnd in the “1b” messages that c received from acceptors in Q in round
i , and let S be the set of all v-maps received in the “1b” messages with field vrnd equal
to k , not including none. If S is empty, then no v-map has been or might be chosen at a
lower-numbered round and the function returns ⊥.

If S is not empty, then some v-map has been or might still be chosen at a round lower
than or equal to k . In this case, the function evaluates to ⊔S extended with {d 7→ Nil}
for every coordinator d . Because the coordinator of round k must have picked a v-map
that extended v-maps possibly chosen on rounds smaller than k and because any v-map
chosen in k must be in S due to Assumption 1, the v-maps in S are extensions of any v-
map possibly chosen in a round smaller then k . Moreover, as we explained in the previous
paragraphs, acceptors do not accept conflicting s-maps in the same round and, therefore,
S is compatible and ⊔S extends any v-map possibly chosen at k . In addition, because
acceptors only accept non-Nil v-maps, ⊔S is also non-Nil .

Learning a Value

Learning a v-map happens in action Learn. The action is enabled for a learner l once it
has received “2b” messages for some round i from a quorum Q of acceptors and message
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〈“2a”,c, r , {G 7→ Nil}〉 from every coordinator c in some Gi -coordquorum P for every
group G in a (possibly empty) subset γ ∈ Γ of the groups that have coordinators in round
i . In this case, l calculates the lub of the chosen v-maps based on the received information
in order to update its currently learned v-map. Let Q2bVals be the set of all v-maps received
in the “2b” messages for round i from acceptors in Q . The glb of Q2bVals is the chosen
v-map identifiable from the messages in Q2bVals. Hence, the action sets learned[l] to
learned[l]⊔ (⊓(Q2bVals • {G ∈ γ 7→ Nil})).

5.3.2 Adding Intra-group Reconfiguration

Although reconfiguration happens less often in BasicMCF than in the original CFPaxos, it
may still happen if coordinators inside groups are unreliable. In the following we discuss
how to extend BasicMCF in such a way that, in certain situations, failures are handled inside
groups without changing rounds. This extended algorithm, that we call ExtendedMCF,
makes two extra assumptions.

The first assumption is that messages may be addressed to the coordinators inside a
group obliviously to the group’s actual membership. In practice, this feature is available
through multicast protocols such as IP multicast. In IP multicast, processes subscribe to a
group by registering at the closest multicast router. The router then informs other routers
that it has subscribers for the group, but does not have to inform which or how many. The
second assumption is that the coordinators of a group have access to a consensus oracle
running inside that group.

In general lines, the idea in ExtendedMCF is that inter-group message exchange ad-
dresses all coordinators of a group instead of specific ones. Inside each group, agents agree
on exactly which coordinators should actually form coord-quorums for the group. As the
protocol proceeds, the selected coordinators may be replaced to cope with alleged failures,
as long as care is taken to avoid inconsistent decisions. That is, if a mapping from the
group to some value has been possibly learned, the group can only confirm the value; they
cannot propose another. Acceptors and learners, which receive messages from the coor-
dinators, can be informed on-the-fly about the composition of coord-quorums. To allow
them to distinct different coord-quorum versions for the same round, coordinators add a
version number to their messages; acceptors and learners only consider the messages with
the highest version numbers. The following paragraphs details these procedures.

When the leader starts the second phase of a round i , it multicasts the “2S” message
to the coordinators of each group containing coordquorums. When the coordinators of
some group G hear about round i , by receiving the respective “2S” message, they run
consensus to decide on the Gi -coordquorums. A deterministic function over the decision
assigns unique identifiers to each coordinator in a quorum, which are used in the “2a”
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messages sent outside the group.
Once coordinators agree on the Gi -coordquorums, they start monitoring the selected

coordinators for failures. If they suspect that more failures than some configurable thresh-
old have happened, then they try an internal reconfiguration. That is, the coordinators
execute the following steps:

• The suspicious coordinators broadcast a request to all coordinators in Gi -
coordquorum not to send any other “2a” message outside the group while a new
set of coordquorums is agreed upon.

• Coordinators reply to this request positively if they have not sent any “2a” message
yet. If they have already sent such a message, then they reply negatively. Both replies
are sent to all coordinators in the group.

• All coordinators gather the replies for some time and then propose them in a consen-
sus instance.

The outcome of the consensus instance is then used to identify one of the following
situations and define the appropriate line of action.

• For every current coordquorum, there is at least one coordinator that has not sent any
“2a” messages in the current round and that abides by the request for not doing so.
In this case, no mapping from the group to a value was possibly chosen in the round.
Coordinators then deterministically choose a new set of coordquorums and continue
with the round.

• There is at least one Gi -coordquorum P for which every coordinator in P has already
sent a “2a” message in round i with the same s-map. Therefore, the s-map may
have been already chosen by the acceptors. Moreover, due to Assumption 5, this is
the only s-map possibly chosen. In this case, the coordinators deterministically choose
replacements for the suspected ones, but with the condition that the already proposed
s-map will be their proposal.

• Coordinators cannot determine whether any of the previous situations hold. In this
case they cannot do anything but wait for an external reconfiguration (round change).

In the first alternative, in which the set of coordquorums of the group is changed and
could propose different s-maps, it might happen that “2S” messages from before and after
the change combine to have different s-maps accepted, for the same group. To avoid such
a case, “2S” messages are extended with a coordquorum version number. Acceptors and
learners are then modified to consider messages only from coordquorums with the same
version number.
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In the third case, if no coordquorum is functional to ensure liveness, the coordinator of
the round will eventually give up on waiting for a decision and start a higher-numbered
round, in which the problematic group will be initially mapped to Nil . This is equivalent to
suspecting a coordinator in the original CFPaxos protocol.

5.3.3 Correctness and Liveness

The correctness and liveness properties of CFPaxos were formally proven when the proto-
col was introduced [Schmidt et al., 2007]. Proving the same properties for BasicMCF and
ExtendedMCF is a matter of reducing these protocols to CFPaxos. The reduction is rather
simple, as we now show.

To understand the reduction, observe that the idea behind BasicMCF and ExtendedMCF
is to use a set of coordinators forming overlapping quorums to implement each collision-
fast proposer. Hence, an action of a collision-fast proposer in the original protocol is imple-
mented by executing the same action in at least a quorum of the correspondent coordinators
in our protocols. In the following discussion, we refer to each action A of BasicMCF as A,
to differentiate it from its homonym in CFPaxos. ExtendecMCF is discussed afterwards.

The original Propose action and our extended version Propose differ only in the number
of messages sent by the proposer. Instead of sending a single message to a collision-fast
proposer, the proposer sends the message to all coordinators in its group. In fact, even
in the original protocol, it is up to the proposer to choose to which coordinators to send
its proposals and this choice does not affect the correctness of the protocol, although it
could affect liveness. Hence, Propose implements Propose. The other actions of phase one,
Phase1a and Phase1b, are exactly the same in both protocols and, hence, implementations
of each other.

Action Phase2Start(c, i) implements action Phase2Start(c, i) by performing the same sub-
actions under the same pre-conditions. More than that, Phase2Start(c, i) also implements a
special case of action Phase2Prepare(c, i) if c is in some coordquorum for round i . To avoid
having a flag variable to indicate this special condition in Phase2Prepare(c, i) as in CFPaxos,
we added the sub-actions to Phase2Start(c, i).

Phase2Prepare(c, i), where c is not the creator of i , differs from Phase2Prepare(c, i) only
in that in the first c must be in some Gi -coordquorum for some group G , while in the
last c must be in the list of collision-fast proposers of round i . As we mentioned above,
for each collision-fast proposer g in CFPaxos, there is a corresponding set of coordinators
in G forming coordquorums to implement g . Hence, action Phase2Prepare(g, i) is imple-
mented by the compositions of actions Phase2Prepare(c, i) for every coordinator c in some
Gi -coordquorum and due to the reception of the same “2S” message (and Phase2Start(c, i),
if c is the creator of round i). On the one hand, since all Gi -coordquorums overlap (As-
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sumption 5), no two coordquorums will succeed in executing the action with different “2S”
messages and, therefore, action Phase2Prepare(c, i) will be simulated only once. On the
other hand, if no Gi -coordquorum execute the action, then no Phase2Prepare(c, i) will be
simulated, which does not violate the safety of the protocol. Exactly the same analysis is
valid for actions Phase2a(c, i) and Phase2a(c, i).

Action Phase2b(a, i) differs from Phase2b(a, i) in the sense that the latter requires a
single message 〈“2a”,c, i , {c 7→ v}〉 from a collision-fast proposers c to accept an s-map
{c 7→ v}, while the first requires similar messages from a quorum of the coordinators im-
plementing c. Because coordquorums overlap, the concatenation of the actions of receiving
a similar message from each coordinator in a coordquorum implements the reception of a
single message with the same contents from a collision-fast proposer in the original proto-
col. Hence, Phase2b(a, i) in fact implements action Phase2a(a, i). With a similar argument
we conclude that action Learn(l) implements Learn(l).

It is straightforward to see that ExtendedMCF implements BasicMCF since each action
in BasicMCF is executed in the same way in ExtendendMCF or under more pre-conditions.
In particular, the actions that use “2a” messages, Phase2b(a, i) and Learn(l) require all such
messages to have the same version number in order do be executed. Since version numbers
are only incremented if there is no possibility that Phase2b and Learn had been executed,
it does not happen that the actions execute twice for the same round, due to the messages
sent by the same coordquorum.

To ensure liveness, CFPaxos must be modified in the same way that we did for Multi-
coordinated Consensus in Section 4.4.7. That is, the algorithm must have round creation
limited to a leader coordinator, elected through some leader election oracle. Moreover, to
ensure that a learner l eventually learns a complete v-map, CFPaxos requires that (i)l , a
proposer p, a coordinator c, a quorum of acceptors Q , and a set S of collision-fast pro-
posers remain alive from some point on, (ii) a subset of S is trusted by c from some point
on, and (iii) p issues a proposal. These conditions are easily adapted to BasicMCF by re-
placing the set S by a set of coordquorums. ExtendedMCF requires the extra condition that
coordinators in the groups with coordquorums in S stop suspecting these coordquorums
and, therefore, do not change their versions from some point in time on.

5.4 Generalizing Collision-Fast Rounds

As we have previously noted in this chapter, v-maps are a special kind of c-struct and, there-
fore, could be used in any Generalized Consensus Protocol. What makes v-maps special is
the way they are used in CFPaxos and its extensions. That is, by guaranteeing that no
conflicting s-maps are proposed in the same round, it is possible to agree on a v-map in
a fast round without Assumption 3. The same property may be explored in a Generalized
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Consensus protocol. In fact, collision-fast rounds could be integrated into Multicoordinated
Paxos as an adaptation of multicoordinated rounds. To fit in Multicoordinated Paxos, which
may be used to agree on an ever growing c-struct while trying to avoid round changes, the
collision-fast round would have to allow agreeing not simply on a mapping from coordina-
tor/group to a command, but to a growing sequence of commands and/or Nil .

To incorporate collision-fast rounds into Multicoordinated Paxos, the following behavior
is required from the agents.

• When starting a collision-fast round, the coordinator of the round picks a c-struct
and appends a special command chkpt to its end. The command must conflict with
all the other commands. The extended c-struct is then sent to the acceptors and the
coordinators of the round. (If the • operator does not accept appending the chkpt

command, then collision-fast rounds cannot be used.)

• After receiving a c-struct v terminated with chkpt , a coordinator c can propose ex-
tensions to v of the form v • {G 7→ σ}, where G is the group that c belongs to, σ
has the form 〈〈1,Cx 〉, . . . , 〈n,Cx 〉〉, and Cx are commands received from proposers or
Nil . The extensions are forwarded to acceptors, learners, and other coordinators in
the round. Whenever c receives a c-struct w • chkpt • {H 7→ π}, from coordinator
in group H 6= G during a collision-fast round, it extends its own proposal to have at
least as many commands as π and proposes it again.

• When accepting a c-struct, acceptors follow the rules presented next. Two mappings
{G 7→ σ} and {H 7→ π} do not commute iff G = H . Hence, given two c-structs
w • chkpt • {G 7→ σ} and w • chkpt • {H 7→ π}:

– If G 6= H , then their lub equals w • chkpt • {G 7→ σ} • {H 7→ π};

– If G = H , then if σ is a prefix of π or vice versa, then the lub equals w • chkpt •
{H 7→ δ} where δ is the longest of the sequences. If they are not prefixes of
each other, then the two c-structs are not compatible;

– If G 6= H , then their glb equals w • chkpt .

– If G = H , then the glb equals w • chkpt • {H 7→ δ}, where δ is the longest
common prefix of σ and π.

• Learners learn both from the c-structs received from acceptors and directly from co-
ordinators. C-structs received from coordinators are used only do identify Nil com-
mands in the mapped sequence without having to wait for it to be accepted by an
acceptor.
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5.5 Final Remarks and Related Work

In this chapter we have discussed the issue of efficiently reaching agreement in a network
organized as groups of agents. This organization reflects, for example, spread apart data
centers connected through dedicated links or the internet, or grid networks formed by
several clusters at different locations. In this scenario, one would like to minimize the
need for a node in one group (cluster, or data center) to communicate with nodes in other
groups.

We have presented an improved version of the Collision-Fast Paxos protocol of Schmidt
et al.[Schmidt et al., 2007], which lets agents in all groups learn the agreed proposals from
all the other groups in two communication steps. Our improvements to the protocol consist
of replacing the collision-fast proposer inside each group by a set of coordinators. This way,
the protocol becomes resilient to the failures of coordinators inside each group, tolerating
several failures before any reconfiguration must be done. We also let reconfiguration hap-
pen inside groups only, whenever the external agents have not seen enough information
to decide any value yet. This improvemnt minimizes the amount of inter-group message
exchange due to failures.

Structuring agents in groups has also been considered in the work of Kooh and Had-
dad [Kooh and Haddad, 1999]. Their hierarchical consensus algorithm recursively agrees
on proposals over a multilevel tree of agents. More specifically, in their protocol each set of
agents in a given level of the same branch of the tree constitute a group. From the leaves to
the root, agents in the same group agree on a value to be their proposal on the upper level,
until they have agreed on a single value at the root of the tree.

There are two main differences between Kooh and Haddad’s work and ours. First, our
protocol is better suited for applications that need to agree on all proposals, not just a
single one, as it inherited from CFPaxos the hability to decide as many values in a single
round as were proposed. Second, in Kooh and Haddad’s protocol, agents are replicated
using consensus: an instance is used to agree on each state change. In our approach, we let
the coordinators in each quorum diverge and only use consensus to recover from failures.
The price we pay is in terms of messages sent from the group—since each coordinator may
be in a different state, we must have all of them communicating with the acceptors. The
advantage we have is the lesser number of consensus instances executed inside groups.

Other works [Sousa et al., 2002, Vicente and Rodrigues, 2002] have considered reach-
ing agreement over wide area networks but focusing on the delay aspect, not on the topol-
ogy of the network. That is, they considered a flat group of agents connected by heteroge-
neous links, some to nearby and some to far nodes. These protocols may reach agreement in
two long link message steps, but because they rely on spontaneous ordering on these links,
they will be inefficient when this assumption does not hold. CFPaxos ensures agreement in
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two steps in the absence of failures, irrespective to the ordering of messages. Although our
extension to CFPaxos relies on spontaneous ordering, it does so only inside groups, where
this property often holds [Pedone and Schiper, 1999].



Chapter 6

Log Service for Transaction Termination

6.1 Log Service

The need to atomically commit transactions in distributed management systems is recur-
rent. Briefly, to terminate a distributed transaction, each participating resource manager
votes to either commit or abort it. The transaction outcome is then determined based on
these votes: commit, if all resource managers vote to commit the transaction, or abort, oth-
erwise. If the vote from each participant is always necessary, however, the procedure may
block in the absence of some resource manager. To avoid this scenario, a weaker version of
atomic commitment allows the outcome to be abort if some participant is suspected to have
failed. Commit will be guaranteed only if all participants vote to commit the transaction
and none is suspected. This weaker problem is known as non-blocking atomic commitment.

Besides ensuring atomicity, a transaction termination protocol should also guarantee the
durability of committed transactions. Once committed, the changes done by a transaction
should not be forgotten despite failures. In conventional protocols this is achieved by having
each resource manager store its updates in a local stable media before voting. Should a
resource manager fail, it can, at recovery time, read the updates from the local storage and
replay them to recover its previous state. A drawback of this approach is that it couples
the availability of the resource manager with the availability of the server hosting it. In a
clustered environment, for example, one could recover a resource manager on a different
node, should its current host fail. But obviously, this can only be done if the state of the
resource manager is not stored on the crashed node.

In this chapter, we propose abstracting transaction termination in terms of a simple but
powerful log service. Once the termination is triggered, the transaction participants submit
their votes to the log service using a simple interface. Then they simply wait until they
learn a decision or until they suspect that some other resource manager will not vote. In
this case, they simply vote to abort the transaction on the behalf of the suspected resource
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manager; the service will ignore all but the first vote received for each resource manager to
determine the transaction’s outcome, properly ensuring consistency. In addition to storing
votes, the service may also durably store transaction updates, allowing resource managers
to be restored after a crash without relying on their local storage. Besides specifying the
service, we present two implementations of the log service, namely coordinated and un-

coordinated, both relying on consensus to provide high availability, although in different
ways. The two approaches abstract the tradeoff “message complexity versus number of
communication steps” in atomic commit protocols, as we discuss in the next section.

Transaction Termination

Gray and Lamport proposed in a recent work an interesting non-blocking atomic commit-
ment protocol called Paxos Commit [Gray and Lamport, 2006]. In Paxos Commit, each re-
source manager uses an instance of Classic Paxos [Lamport, 1998] to cast its vote, hence its
name. By using consensus to vote, Paxos Commit detaches the termination protocol from
the availability of resource managers and transaction manager (the process that triggers
and coordinates the protocol). Hence, failures are handled by conservatively voting abort
on behalf of (supposedly) crashed resource managers. Any suspicious resource manager
can do so by proposing “abort” in the consensus in which the suspected resource manager
was supposed to cast its vote, since consensus ensures that all involved parts agree on a
single vote per resource manager in spite of possibly different proposals. Paxos Commit has
the same expected latency as the well-known Two-Phase Commit (2PC) protocol. In fact, it
is a generalization of 2PC that tolerates failures not only of resource managers, but also of
the transaction manager. Compared to Three-Phase Commit (3PC) [Bernstein et al., 1987],
Paxos Commit has fewer communication steps and is simpler in case of a coordinator fail-
ure.

Besides atomicity, transactions must also be durable if they are used to enforce strong
consistency of applications. That is, once a transaction is committed, its updates must
always be reflected subsequent states of the system, irrespectively to failures. In the same
way that Paxos Commit detached the termination procedure from the resource managers,
we propose to detach the durability. That is, by moving the information needed for recovery
out of resource managers and into the log service, whose availability can be tuned according
to the application needs.

Defining transaction termination in terms of our log service has two strong advantages.
First, transaction termination becomes oblivious to particularities of the system, taken care
of or explored by the log service implementation in a transparent way. For example, the ser-
vice could be implemented using message passing, as we illustrate in this thesis, or shared
memory, possibly better suited for a multiprocessor environment. Moreover, if enough
nodes can be relied upon not to crash simultaneously, then the service could be imple-
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mented in main memory only, removing disk access times from the termination of transac-
tions. Second, the overall availability of resource managers is improved by using a highly
available implementation of the log service. As mentioned earlier, the service can be used
to migrate crashed or slow resource managers to functional and more dependable hosts. As
a consequence, resource managers may choose to asynchronously store their state locally
for later recovery or rely solely on the state kept at the log service.

Service Implementations

The two implementations of the log service that we present here rely on consensus to
terminate transactions atomically and to durably store the updates of committed trans-
actions. In the first, uncoordinated, voting is completely distributed (this approach ab-
stracts Paxos Commit). In the second, coordinated, voting is centralized, managed by a
coordinating process. This difference has performance implications on both the termi-
nation of transactions and on the recovery of resource managers. In the following sec-
tions we provide and in-depth presentation of both approaches. As we mentioned before,
the two approaches abstract the tradeoff “message complexity versus number of commu-
nication steps” in atomic commit protocols. Our coordinated implementation has linear
message complexity, similarly to 3PC, but needs 5 steps to terminate a transaction; the
uncoordinated approach, similarly to Paxos Commit and other proposals (for example,
[Guerraoui et al., 1996, Jiménez-Peris et al., 2001]), reduces the number of steps to 3, at
the expense of a quadratic message complexity.

We have experimentally evaluated the two implementations and verified, in the tested
scenarios, that the coordinated solution outperforms the uncoordinated one by 8x when
transactions are short, which typically happens in performance-critical systems. The per-
formance gain is mainly due to batching of concurrently issued votes by the coordinator,
saving on network and disk utilization.

In the following sections we formally define non-blocking atomic commitment and the
durability property. In Section 6.3 we present the log service and show how it is used
to terminate transactions. In Section 6.4 we discuss the building blocks used in the im-
plementations, presented in Sections 6.5 and 6.6. We compare the two implementations
among them and to other solutions in Section 6.7, and conclude the chapter with some
final remarks in Section 6.8. Complete specs and correctness proofs can be found in the
Appendix B.
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6.2 Problem statement

A resource manager (RM) is the owner of some resource that can be read or written, such as
a file, a region of memory, or a table in a relational database. We define RMs not as agents,
but as roles that can be “incarnated” by different processes at different points in time. We
assume the availability of infinitely many agents and, therefore, there is always an agent to
incarnate an RM. This model allows an RM to be incarnated at an operational host, should
its previous host crash, without waiting for the crashed node to recover. Hence, RMs have
crash-recovery failure pattern.

A distributed transaction is a partially ordered set of read and write operations executed
by RMs on their resources. An RM is a participant of transactions for which it has been re-
quested to execute operations. Each transaction is managed by a transaction manager (TM),
another role in our model. To terminate a transaction, the TM asks its participants to agree
on committing or aborting the transaction through a non-blocking atomic commit (NBAC)
protocol. An RM can only vote to commit a transaction after receiving a request from the
TM along with the complete list of participants of the transaction. Abort votes, however,
may be sent by RMs at any time, even before receiving the request and the participant’s list.

Formally, NBAC is defined by the following properties.

Validity If a participant decides to commit a transaction, then all participants voted to
commit the transaction.

Agreement No two participants decide differently.

Nontriviality If all participants vote to commit the transaction and none is suspected of
failing throughout the execution of the protocol, then the decision is commit.

Termination All non-faulty participants eventually decide.

Nontriviality implies that RMs can be “suspected” of failing. The only assumption
we make about failure detection is that if an RM fails (actually, the agent incarnat-
ing it), then it will eventually be suspected by the other agents. This property is sim-
ilar to the eventual weak completeness property of Chandra and Toueg’s failure detec-
tors [Chandra and Toueg, 1996], discussed in Section 3.1. Therefore, RMs may be incor-
rectly suspected to have failed and transactions unnecessarily aborted. TM failures are
handled with RM unilateral aborts.

NBAC defines proper transaction termination, but says nothing about durability, i.e.,
on making the effects of committed transaction last in spite of crashes of RMs. We define
durability as follows [Silberschatz et al., 2001]:

Durability After a transaction commits, the changes it has made to the database persist,
even in the presence of agent failures.
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Durability can be ensured, for example, by reinitializing the database and replaying the
updates of committed transaction in the commit order. RMs can store updates on a local
stable storage, as traditionally done in database systems, or on an external and possibly
replicated media to improve availability.

6.3 The Log Service

In this section we specify the log service and show how resource managers interact with
it to atomically terminate transactions and recover crashed resource managers. We show
how these behaviors can be implemented in a shared-nothing asynchronous distributed
system in Sections 6.4–6.6. For simplicity we assume that, except for action Terminate of
Algorithm 14, all actions presented in the chapter are performed atomically. The extended
specification that we give in Appendix B is defined with atomic actions only.

6.3.1 The Log Service Specification

It is easier to understand the log service specification by seeing it as an always available
service, accessed by the RMs through remote calls. The service manipulates the following
five data structures:

V The set of all votes received by the service. Votes are sequences of the form
〈rm, t , tset ,vote,update〉, read as “rm voted vote on transaction t , with updates update,
if any (i.e., the empty set, if vote = ABORT)”. tset is the possibly incomplete list of
RMs involved in t . Initially, V = {}.

T The partially ordered set (S ,�), where S is the set of committed transactions and �
is a partial order on S . For any two transactions t1, t2 ∈ S whose commits are not
seen as overlapping by the log service, either t1 ≺ t2 or t2 ≺ t1; we say that such
transactions are “non-concurrent”. For simplicity we represent T as a sequence of
sets of committed transactions such that, given two sets T [i] and T [j ] in T , i < j

implies that for all transactions t ∈ T [i] and u ∈ T [j ], t � u. Initially, T = 〈〉.

C The set of committing transactions, that is, the set of non-terminated transactions for
which votes have been issued. Initially, C = {}.

LastC Given the last transaction to have been committed, t , LastC contains the subset
of C with all transactions whose votes were received while t was being terminated
(their terminations were concurrent to t). Initially, LastC = {}.
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R A map from RMs to the agents currently “incarnating" them. An RM is mapped to ⊥ (not
a valid agent) if it has never been incarnated. Initially, all RMs are mapped to ⊥.

The first part of Algorithm 14 initializes the data structures and defines the operators
Outcome, IsInvolved, and Updates, and the action Vote.

Algorithm 14 Log service specification
1: Initially:

2: V ← ; ⊳ The history of votes.

3: T ← 〈〉 ⊳ Sequence of sets of committed trans.

4: C ← ; ⊳ Set of concurrent trans.

5: LastC ← ; ⊳ Set of trans. concurrent to the last committed.

6: ∀r ∈ RM ,R[r]←⊥ ⊳ Processes incarnating RMs.

7: Outcome(t)
∆

=

8: IF ∃〈 , t , , ABORT, 〉 ∈ V ⊳ Any ABORTs?

9: THEN ABORT

10: ELSE IF ∃〈 , t , tset , COMMIT, 〉 ∈ V : ∀p ∈ tset :〈p, t , , COMMIT, 〉 ∈ V ⊳ All COMMITs?

11: THEN COMMIT

12: ELSE UNDEFINED ⊳ Not enough commits?

13: IsInvolved(t, rm)
∆

=

14: IF ∃〈 , t , tset , , 〉 ∈ V : rm ∈ tset ⊳ Is rm in any list?
15: THEN TRUE

16: ELSE IF ∃〈 , t , ,v , 〉 ∈ V : v = COMMIT ⊳ Is tset a complete list?
17: THEN FALSE

18: ELSE UNKNOWN ⊳ Not enough information.

19: Vote(〈rm, t , tset ,vote,update〉)
∆

=

20: IF Outcome(t) = UNDEFINED ⊳ If t has not terminated yet

21: THEN C ← C ∪ {t} ⊳ add it to C .

22: IF ¬∃〈rm, t , , , 〉 ∈ V THEN ⊳ If rm has not voted for t yet

23: currState ←Outcome(t) ⊳ The current state (ABORT or UNDEFINED).

24: V ← V ∪ {〈rm, t , tset ,vote,update〉} ⊳ Store this vote and check. . .

25: IF (currState = UNDEFINED)∧ (Outcome(t) = COMMIT) THEN ⊳ . . . if the state changed.

26: IF t ∈ LastC ⊳ If t can be added to the last set...

27: THEN T ← T ⊕ t ⊳ ...do it;
28: ELSE

29: T ← T • {t} ⊳ otherwise, add it to a new set

30: LastC ← C ⊳ with a new LastC .
31: C ← C \{t}

32: Updates(rm)
∆

=

33: LET Upd(i)
∆

=

34: IF i = 0 THEN 〈〉 ⊳ Recursion end.

35: ELSE ⊳ Get updates and recurse.

36: Upd(i− 1) •{upd : 〈rm, t , , COMMIT,upd〉 ∈ V : ∧ t ∈ T [i] ⊳ t committed and

∧IsInvolved(rm, t)} ⊳ involves rm.

37: in Upd(Len(T )) ⊳ Return updates for rm
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Outcome(t) evaluates to the outcome of transaction t : ABORT, if at least one vote for t

is ABORT; COMMIT, if all votes are present and equal COMMIT; and UNDEFINED, if all known
votes for t are COMMIT but there are missing votes, which could turn out to be of either
kind.

IsInvolved(t, rm) evaluates to TRUE if rm is a participant of t , i.e., if rm is in the list
of participants (tset) of any vote for t already received by the service. Because ABORT

votes may not carry the complete participants’ list, they are not enough to give negative
answers. That is, if only ABORT votes are known and none has rm in the tset field, then
IsInvolved(t, rm) evaluates to UNKNOWN. On the contrary, if a COMMIT vote is known and rm

is not in the tset field, then the function evaluates to FALSE.
Vote(v) adds vote v to V . A vote is added only if no other vote for the same resource

manager and transaction is already in V . This ensures that, if conflicting votes are issued
by mistake for the same participant, then only one vote per participant is considered.

Updates(rm) evaluates to the sequence of sets of updates performed by resource man-
ager rm, partially ordered accordingly to T . The evaluation is done by recursively iterating
over the sets of committed transactions to find the ones in which rm took part and with
which updates.

6.3.2 Termination and Recovery

The second part of Algorithm 14 defines the actions Incarnate and Terminate.

Algorithm 14 Log service specification (continued)
38: Incarnate(rm,pid)

∆

=

39: R[rm]← pid

40: updates ← Updates(rm) ⊳ Get committed state.

41: FOR i = 1 to Len(updates) ⊳ For each set of committed transactions...

42: apply updates in updates[i] ⊳ ...apply it to the database.

43: Terminate(rm, t, tset, vote, upd)
∆

=

44: Vote(〈rm, t , tset ,vote,upd〉) ⊳ Vote for t and wait. . .

45: WHILE Outcome(t , rm) = UNDEFINED

46: WAIT (Outcome(t , rm) 6= UNDEFINED)∨ (suspect r ∈ tset)
47: IF suspected r ∈ tset ⊳ If suspects that r has crashed. . .

48: THEN Vote(〈r , t , tset ,Abort ,;〉) ⊳ . . . vote on its behalf.

49: IF Outcome(t, rm) = ABORT THEN abort t in the database
50: ELSE apply upd to database

Incarnate(rm, pid) is used by agent pid to incarnate resource manager rm. First, the
agent sets R[rm] to its own identifier, pid . Second, it evaluates Updates, described above,
to get the updates executed by the previous incarnations of rm. Third, pid scans the updates
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from the first to the last set, applying all updates in one set before those in the next set
to its state; updates in the same set do not have to be ordered. The action ends with
pid incarnating rm, with a state equal to the previous incarnation. pid will accept and
process new transactions as rm until it crashes or another agent incarnates rm (i.e., pid no
longer equals R[rm]). If more than one agent try to incarnate rm, a quick succession of
incarnations will happen, but only one will remain incarnated.

Terminate is used by resource managers (the process incarnating them) to trigger or
join the termination of transactions in which they participate. To terminate t , a resource
manager rm executes Terminate (〈rm, t , tset ,vote,upd〉), where tset is the set of resource
managers known by rm to be participants of t , and vote is either ABORT or COMMIT, de-
pending on whether rm is willing to commit the transaction or not. If vote equals COMMIT,
then upd contains the updates performed by rm in t . If vote equals ABORT, upd is the empty
set.

After casting its vote, rm waits until it learns t ’s outcome. While waiting, rm monitors
the other resource managers in tset , also involved in t . If rm suspects that some participant
crashed, it votes ABORT on its behalf. After learning that t committed, rm will apply its
updates and release the related locks, if locking is used. If rm learns that t aborted, it
locally aborts the transaction. Updates are made durable by the log service. We assume
that the execution of Terminate is not necessarily an atomic operation, allowing multiple
resource managers to vote in parallel and the same resource manager to terminate distinct
transactions in parallel, if its scheduling model allows it.

6.3.3 Correctness

Termination using our log service provably solves NBAC and recovery through the Incarnate

action provably ensures the durability property. Below we present a sketch of these proofs.
In Appendix B we present detailed proofs of these properties.

Fact 1 For any resource manager rm and transaction t , there is at most one element
〈rm, t , tset ,v ,u〉 in V , and only if rm is a participant of transaction t .

The first part of Fact 1 is implied by lines 22 and 24 of the algorithm, which forbid
the inclusion of votes in V for the same pair (transaction,RM). The second part is implied
by (i)the definition of Terminate, (ii)the assumption that RMs get accurate information,
although possibly incomplete, of which RMs participate in a given transaction, and (iii) the
fact that RMs only vote in transactions they participate.

Fact 2 If Outcome(t) evaluates to COMMIT (respectively, ABORT) at any given time, then
it will evaluate to COMMIT (respectively, ABORT) at any later time.

Because votes are not removed from V , once the condition of line 8 is true, it remains
true no matter what other votes are added to V . For the same reason, once votes from
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all participants are received and are all for committing the transaction, the condition of
line 10 becomes true and remains like that. Recall that the tset of any commit vote has the
complete set of participants of the respective transaction.

Fact 2 implies AC-Validity and Facts 1 and 2 imply AC-Agreement.
If no participant of a transaction is suspected and all vote COMMIT, then only COMMIT

votes can be added to V . In this case, the condition to abort the transaction, on line 8, will
never be true and COMMIT is the only possible outcome for such a transaction, satisfying the
AC-Non-Triviality property.

Finally, once asked to vote, each participant either votes or is suspected and has a vote
issued on its behalf by a non-faulty participant. Hence, one vote for each participant is
eventually cast in the log service, and eventually either the abort or the commit condition
becomes true. The protocol therefore satisfies the AC-Termination property.

The state of resource managers is changed by applying deterministic updates from write
transactions. Hence, given two copies of a resource manager in the same initial state, ap-
plying the same sequence of updates leads them to the same final state. If two transactions
committed concurrently, then they do not interfere with each other and, even if commuting
the order in which they are applied to the database, the final state will be still the same.
The recovery procedure builds a sequence with all updates performed by the recovering
resource manager in its previous incarnations. Updates are then replayed in an order com-
patible with the commit order of transactions. That is, for any two transactions t1 and t2, if
t2 had its termination requested after t1 had terminated, then the updates of t1 are applied
before those of t2. If the termination of t2 started before t1 had terminated, then their up-
dates might be applied in any order; in any case, the transactions are commutable and the
same final state will be reached, hence, ensuring the durability property.

6.4 From the specification to implementations

We have defined our log service abstractly as a state machine in terms of some variables
and atomic actions. To implement this abstraction in a distributed way, we assume that
agents communicate via message passing over unreliable but fair communication channels.
We also assume that agents have access to a consensus oracle. Consensus instances are
uniquely identified by a natural number. We use propose(i ,v) to denote the proposition of
value v in the consensus instance i , and decide(i ,v) to denote the learning of decision v of
instance i .

In special, the coordinated implementation of the log service assumes a leader-election
oracle like Ω [Chandra et al., 1996]. Participants use this oracle to determine the current
coordinator. The leader-election oracle guarantees that eventually all participants will elect
the same non-faulty agent as the leader. Obviously, this can only be ensured if there is at
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least one agent that eventually remains operational “forever”. In practical terms, “forever”
is reduced to “long enough to accomplish some useful computation”, e.g., deciding on a
transaction’s outcome.

6.5 Coordinated Implementation

6.5.1 Overview

The coordinated implementation is named after a coordinator agent that serves as the in-
terface for the log service to RMs. Instead of simply accessing the service, RMs exchange
messages with the coordinator to implement each action in the service’s specification. To
vote in a transactions, RMs send a vote message to the coordinator, which ensures that votes
become durable by proposing them in a sequence of consensus instances until they are de-
cided in some instance, at which point they are durable. The coordinator analyzes durable
votes to determine transactions’ outcomes and inform the RMs, which then complete the
implementation of action VOTE. To amortize the cost of termination of each transaction, the
coordinator batches as many votes as possible in the proposal of each consensus instance.
If an RM has enough local information to implement some action without waiting for the
coordinator’s reply, then it does so to improve performance. One such example is the ability
to abort a transaction locally when the RMs’ vote itself is ABORT.

Multiple processes capable of coordinating the implementation run in parallel and,
along with the RMs, they use the leader-election oracle to elect the effective coordinator.
The elected coordinator is the one to which RMs send their votes and to which non-elected
coordinators forward all votes that they may receive from mistaken RMs. Because all co-
ordinators decide on the transactions’ outcome based on the same sequence of consensus
instances, they all take the same decisions. Hence, safety is not violated even if several pro-
cesses become coordinator simultaneously. Liveness, on the other hand, may be violated in
this case, because coordinators could jeopardize each other’s attempts to reach agreement.
Eventually the leader-election oracle ensures that a single coordinator exists, and liveness
is ensured.

Incarnating a given resource manager happens in a similar way: the process trying to
incarnate the RM sends a special message to the coordinator, which proposes the change
in a consensus instance. Once an instance decides on an incarnation change, all next in-
stances consider the newly incarnated resource manager. The decision is also informed to
all processes incarnating some RM so that they can identify if they have been replaced.
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6.5.2 The Algorithm

The coordinated implementation is decomposed in two parts. The first part is a set of
“stubs” for the actions and operators used by RMs as defined in Algorithm 14. From the
RMs point of view, these replacement stubs implement the original service definitions, but
using local data structures and exchanging messages with the coordinator to simulate their
specified behavior. The second part is coordinator’s protocol, which the stubs in the first
part interact to implement the log service specification.

RM Stubs

Algorithm 15 defines the stubs. The first part of the algorithm initializes the three data
structures kept by an agent pid incarnating rm.

outcome the local view of function Outcome;

myInc the number of rm ’s incarnation.

rm2pid a flag indicating if pid is currently incarnating rm. Along with the previous vari-
able, this is used to implement implement R[rm] locally.

Observe that Terminate does not have a stub, and executes as in the service specification.
The Incarnate stub sends a “Recover” message to the coordinator requesting it to

change the agent incarnating RM rm for agent pid , and waits for a confirmation that the
change was performed. The confirmation carries the updates executed by previous incar-
nations and the incarnation number of rm. R[rm] = pid evaluates to TRUE until the stub
learns a bigger incarnation number, indicating that another agent took over the the role of
rm. As we show below, the incarnation number is also sent to the coordinator along with
the votes, allowing the coordinator to cope with multiple agents believing to be incarnating
the same RM. To account for coordinator crashes, every time a process executes Incarnate,
it does so with a different pid .

Vote forwards the vote to the coordinator. As an optimization, if the vote is for ABORT

then the stub updates the transaction outcome before sending the vote to the coordinator.
This is possible because either the vote will be seen by the coordinator or another resource
manager votes ABORT on its behalf and, in either case, the transaction is indeed aborted,
or the resource manager has been reincarnated and this local abortion has no influence on
future transactions.

The when clauses at the end of the algorithm update the local data structures when the
outcome of a transaction becomes known and when another agent has taken over the RM
being incarnated. These actions execute fairly and atomically once their conditions become
TRUE.
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Algorithm 15 Stubs to implement Algorithm 14
1:Initially:
2: ∀t ,outcome[t]← UNDEFINED ⊳ All transactions are undecided.

3: myInc←⊥ ⊳ Have not incarnated yet.

4: rm2pid ←⊥ ⊳ Ditto.

5:Incarnate(rm, pid)
∆

=
6: send 〈“Recover”,pid , rm〉 to coordinator
7: WAIT received 〈“Recovered”, rm,upd , inc〉
8: myInc← inc

9: rm2pid ← pid ⊳ pid has incarnated rm.

10: FORi = 1 to Len(upd) ⊳ For each set of committed transactions...

11: apply updates in upd[i] ⊳ ...apply it to the database.

12:R[rm]
13: return rm2pid ⊳ Either my own pid or ⊥.

14:Vote(〈rm, t , tset ,vote,upd〉)
∆

=
15: IF vote = ABORT THEN outcome[t]← ABORT ⊳ Quickly abort.

16: send 〈“Vote”, rm,myInc, t , tset ,vote,upd〉 to coordinator
17:Outcome(t)

∆

=
18: return outcome[t]

19:when received 〈“Terminated”, t ,out〉 ⊳ Learn decision.
20: outcome[t]← out ⊳ Learn t ’s outcome.

21:when receive 〈“Incarnate”, rm,newInc〉 ⊳ Was replaced.
22: IF newInc >myInc THEN rm2pid ←⊥ ⊳ No longer incarnates rm.

Coordinator

Algorithm 16 is a set of handlers for message delivery and consensus decision events. All
agents that could become the elected coordinator run the algorithm and update their data
structures accordingly. However, to minimize network usage, only agents that believe them-
selves to be the elected coordinator actually send messages. The data structures for a coor-
dinator c are the following:

T [c] Implements T in c. Besides the votes of committed transactions, it also keeps incar-
nation requests sent by resource managers. Initially 〈〉.

V [c] Implements V in c, as in the specification.

B The set of votes received but not yet treated by the coordinator. Initially empty.

i The coordinator executes a series of consensus instances, and i is the identifier of the
instance the coordinator is waiting to terminate.

recSet The set of reincarnation requests awaiting to be decided.

R[rm] is not explicitly kept in any data structure, but lies implicit in the sub-sequence of
“Incarnate” votes in T [c]: R[rm] equals the agent in the last vote of type “Incarnate”
in T [c] (lines 7-9).
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When “Vote” messages are received by the coordinator, they are added to B to be
proposed in the next consensus instance (lines 10-12). Once B is no longer empty, the
coordinator proposes it on instance i (lines 13-14). For simplicity, we assume that B al-
ways fits in a consensus proposal. In a consensus implementation in which proposals have
bounded sizes, B would have to be split and proposed in several instances.

The coordinator waits for the decision of instance i and postpones the learning of de-
cisions of later instances. Once the coordinator learns the decision D (line 15), it first
removes it from B (line 16) and then processes each of its elements (lines 17-32). If the
element is a vote then the coordinator determines its final meaning before adding it to
V [c]. The final meaning of a vote is ABORT if its issuer no longer equals R[rm]; otherwise,
it is the issuer’s proposed vote. If the vote caused the transaction to be terminated, that
is, it turned an Undefined outcome into either COMMIT or ABORT, then the coordinator adds
the transaction to T [c] (lines 25-27), which ensures that upon recovery the new rm will
learn all committed transactions. Next, the coordinator warns all known participants with
a “Terminated” message (lines 28 and 30). The “Incarnate” special votes, explained in
the next paragraph, are handled after all the other votes (lines 31-32). The last step in the
action moves the coordinator to the next consensus instance (line 33).

〈“Recover”,pid , rm〉 messages asking the coordinator to change the agent incarnating
rm to pid have a simple handling (lines 34-36): upon the arrival of such a message, the
coordinator creates a special vote 〈“Incarnate”,pid , rm〉 and adds it to B (line 36). As
mentioned in the previous paragraph, 〈“Incarnate”,pid , rm〉 is appended to T [c] after
all the normal votes decided have been processed, meaning that R[rm] has been set to
pid until another “Incarnate” vote overwrites it. The coordinator monitors T [c] to learn
when R[rm] changes to pid (lines 35, 37-38). When it happens, the coordinator gathers all
the updates performed by rm (lines 39-40) and the number of its new incarnation (line 41),
and sends this information to pid , so it can start playing rm (line 42); the other resource
managers are warned about the change in the last step of the algorithm (line 43).

Traditionally, RMs write their logs on disk before voting. Even when using the log
service, RMs may still write locally for a number of reasons, such as (i)recovery speedup,
because reading locally is faster than reading remotely, and (ii)minimizing network usage,
by sending just empty updates to the service. If the RM does not write its updates locally,
then it can resort to the coordinator to obtain them. In this case, the coordinator scans the
decisions of all consensus instances to determine the updates of committed transactions
concerning the RM when recovering. Since all coordinators maintain the same state, any
can be safely contacted.



112 Chapter 6. Log Service for Transaction Termination

Algorithm 16 Coordinator’s protocol
1: Initialization:

2: T [c]← ; ⊳ The sequence of terminated transactions.

3: V [c]← ; ⊳ The set of durable votes.

4: B ← ; ⊳ Votes to be broadcast.
5: i ← 0 ⊳ Current consensus instance.
6: recSet ← 0 ⊳ Reincarnation transactions.

7: R[rm]

8: rrm ← r =〈“Incarnate”,pid , rm〉 ∈ T [c] : ⊳ Pick the reincarnation request for rm

∀r ′ =〈“Incarnate”,pid ′, rm〉 ∈ T [c], r >T[c] r
′ ⊳ that was last received.

9: return rrm[2]

10: when receive 〈“Vote”, rm,pid , t , tset ,vote,upd〉
11: if¬∃〈rm, , t , , , 〉 ∈ B

12: B ← B ∪ {〈rm,pid , t , tset ,vote,upd〉} ⊳ Only the first vote is considered.

13: when B 6= ;
14: propose(i ,B) ⊳ Propose B on instance i .

15: when decide(i ,D) ⊳ Decided D on instance i .

16: B ← B \D ⊳ Remove from next proposals.

17: T [c]← T [c] • ; ⊳ New set of transactions.

18: for all〈rm,pid , t , tset ,vote,upd〉 ∈ D

19: IF ¬∃〈rm, , t , , , 〉 ∈ V [c]
20: THEN

21: prevState ←Outcome(t)

22: IF R[rm] 6= pid ⊳ If rm has been reincarnated

23: THEN V [c]← V [c]∪ 〈rm, t , tset , ABORT,;〉 ⊳ turn the vote into ABORT

24: ELSE V [c]← V [c]∪ {〈rm, t , tset ,vote,upd〉} ⊳ else, add it to the set of votes.

25: IF (prevState = UNDEFINED)∧ (Outcome(t) = COMMIT) ⊳ If vote lead to commit of t
26: THEN

27: T [c]← T [c]⊕ t ⊳ add it to T [c]

28: ∀p ∈ tset , send message 〈“Terminated”, t ,Outcome(t)〉 to p ⊳ and warn participants.

29: ELSE IF vote = ABORT ⊳ If lead to abortion of t

30: THEN ∀p ∈ tset , send message 〈“Terminated”, t , ABORT〉 to p ⊳ warn known participants.

31: FOR ALL d =〈“Incarnate”, , 〉 ∈ D ⊳ Process “Incarnate” votes.

32: T [c]← T [c] • d
33: i ← i + 1 ⊳ Process the next batch.

6.6 Uncoordinated Implementation

6.6.1 Overview

The uncoordinated implementation is based on the Paxos Commit protocol. The main
purpose of this implementation is to save time by not having the votes sent to the service
through a coordinator. Instead, each vote is cast in a distinct consensus instance.

When an RM is first contacted by a TM in the context of a transaction, besides executing
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Algorithm 16 Coordinator’s protocol (Continued)
34: when receive 〈“Recover”,pid , rm〉 ⊳ Upon request to recover

35: recSet ← recSet
⋃
〈“Incarnate”,pid , rm〉 ⊳ remember the request

36: B ← B
⋃
〈“Incarnate”,pid , rm〉 ⊳ and add it to B .

37: when ∃ tinc =〈“Incarnate”,pid , rm〉 ∈ recSet : tinc ∈ T [c] ⊳ Once a reincarnation terminates

38: recSet ← recSet \ {tinc}
39: V rm ← {e = 〈rm, t , , , 〉 ∈ V [c] : ⊳ determine rm ’s previous updates

(Outcome(t) = COMMIT)∧ (t <T[c] tinc)}

40: U rm ← 〈u : 〈rm, , ,u〉 ∈ V rm〉, ⊳ and order them as in T .

∀〈rm, t1, ,u1〉, 〈rm, t2, ,u2〉 ∈ V rm ,
t1 <T[c] t2⇒ u1 <U rm u2}

41: inc←|Old |: ⊳ Determine the incarnation number,

Old = {r =〈“Incarnate”, , rm〉 ∈ T : r <T 〈“Incarnate”,pid , rm〉}
42: send 〈“Recovered”, rm,U rm , inc〉 to pid ⊳ tell process pid

43: send 〈“Incarnate”, rm, inc〉 to all resource managers ⊳ and the other RMs.

the requested operation the RM also names the consensus instance in which it will vote to
terminate the transaction. The instances are sequentially taken from a per-RM pool and
informed to the TM along with the reply to the first operation. The TM informs the named
instances to all participants along with its commit request so that they know which instance
to use to learn votes and to vote on behalf of each other, should they need.

Besides voting, RMs also use consensus instances to propose changes of incarnations.
Because RMs cannot rely on a total order of INCARNATE requests, as in the coordinated
implementation, the protocol must rely on some other assumption to limit the scope of
each incarnation. The assumption we make is that at most k transactions are executed in
parallel by each RM (multiprogramming level).

Let p be a process incarnating RM rm and q a process not incarnating any RM. If q

suspects p to have crashed and wants to takeover the role of rm, it proposes the change in
the smallest consensus instance in rm ’s pool that q believes not to be decided yet. q repeats
this step with subsequent instances until one of them decides on the INCARNATE request.

When q ’s proposal to incarnate rm is decided, q still needs to ensure that all consensus
instances in which p had possibly voted have been decided. Otherwise, q might attribute
one of such instances to a transaction different from the one p had originally done. There
are at most k − 1 such transactions. That is, if the incarnation change was decided in
instance i , then q knows that p can only have voted on instances up to i + k − 1, and q ’s
incarnation effectively starts at instance i + k . To avoid blocking, q conservatively votes
ABORT on all instances in the range [i + 1, i + k].

To recover the state of p, q must recover the updates sent along with votes for all in-
stances smaller than i . These updates are learned along the the decisions of such instances



114 Chapter 6. Log Service for Transaction Termination

and applied to the database.

6.6.2 Algorithm

Algorithm 17 defines the stubs implementing Algorithm 14 for an agent pid incarnating an
RM rm. The agent keeps three variables:

V[rm] The set of votes that rm has received.

commitCounter[rm] A counter of committed transactions involving rm.

rm2pid A flag indicating if the agent is incarnating rm and used to locally evaluate R[rm].
It is either pid , if pid is incarnating rm, or ⊥, otherwise.

Algorithm 17 Uncoordinated implementation with stubs for Algorithm 14 (MPL k)
1: Initialization

2: V [rm]← ; ⊳ Votes I have seen.

3: commitCounter ← 0 ⊳ How many transactions I committed.

4: rm2pid ←⊥ ⊳ Have not incarnated yet.

5: R[rm]

6: return rm2pid ⊳ Either my own pid or ⊥.

7: OUTCOME(t)

8: IF ∃〈 , t , , ABORT, 〉 ∈ V [rm] ⊳ Any ABORTs?

9: THEN ABORT

10: ELSE IF ∃〈 , t , tset , , 〉 ∈ V [rm] : ∀s ∈ tset : ⊳ All COMMITs?

〈s , t , tset , COMMIT, 〉 ∈ V [rm]

11: THEN COMMIT

12: ELSE UNDEFINED ⊳ Neither one nor the other

13: VOTE(〈rm, t , tset ,vote,update[rm]〉)
14: propose(inst(rm, t), 〈rm, t , tset ,vote,upd ,Len(T [rm])〉) ⊳ Vote + number of committed.

15: when decide(j ,d) ⊳ [Decided on instance j .]

16: IF d = 〈r , t , tset ,vote,upd ,cn〉), rm ∈ tset

17: THEN V [rm]← V [rm]∪ {〈r , t , tset ,vote,upd〉}
18: ELSE IF d = 〈INCARNATE, , r〉, r 6= rm ⊳ Someone else was substituted.

19: THEN V [rm]← V [rm]∪ {〈r , t , {r , rm}, ABORT,;〉}, inst(rm, t) = j ⊳ Make d an ABORT vote.

20: ELSE IF d = 〈INCARNATE,pid ′, rm〉,pid 6= pid ′ ⊳ rm has been reincarnated,

21: THEN rm2pid ←⊥ ⊳ so give it up.

Transaction Termination

The Vote stub proposes rm ’s vote for transaction t on consensus instance inst(rm, t). If
the rm is voting on its own behalf, the current consensus instance is determined locally.
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With the vote, the resource manager proposes also the number of transactions already
committed, commitCounter . This information is used later during recovery, as we explain
below.

To vote for another resource manager rm ′, rm must know the instance that rm ′ would
use to vote in t . This information may be transmitted by the transaction manager along
with its commit request, since rm will only vote for rm ′ if it has voted COMMIT for itself
and, hence, received the commit request from the transaction manager. The transaction
manager, in turn, collects this information from the resource managers during the execution
of the transactions.

The decision of a consensus instance j is learned by rm if it is one of its instances or
one associated to a transaction in which rm is participant. This decision can be of three
types: (i) a vote, in which case it is added to V [rm]; (ii) a change of incarnation of
another resource manager, in which case it is added to V [rm] as an ABORT vote; and (iii) a
change of rm ’s incarnation to process pid ′, in which case the process pid 6= pid ′ currently
incarnating learns that its incarnation lasts only until instance j + k . The when clause that
processes the decisions is only activated once the resource manager has completed recovery.

Recovering from Failures

The Incarnate stub determines the updates performed by previous incarnations and in which
instance the new incarnation starts. The procedure consists of three steps: in the first step,
pid (i.e., the process incarnating rm) proposes 〈“Incarnate”,pid , rm〉 in its first consensus
instance and until such a value is decided in an instance i , at which point pid becomes the
incarnation of rm for transactions associated with consensus instances i+k , until displaced
by another process. The second step terminates the transactions associated with instances
i + 1 to i + k − 1, belonging to the incarnations being replaced. The third step determines
the outcome of all transactions associated with instances smaller than i + k .

The protocol terminates by gathering the updates of committed transactions in the se-
quence U [rm]. Elements in U [rm] are ordered according to the commit counter in each
vote, making it consistent with the commit order of non-concurrent transactions. Algo-
rithm 17 does not keep the T data structure nor any abridged version of it; the order
of committed transactions is forgotten by the resource managers once their updates are
applied. Upon recovery, U [rm] is created and kept just until the recovery is terminated.

To improve performance, implementations should use checkpoints and reduce the num-
ber of consensus instances in which resource managers must propose. Most of the remain-
ing instances can run in parallel to reduce the recovery latency.
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Algorithm 17 Uncoordinated implementation with stubs for Algorithm 14 (MPL k) (Con-
tinued)
22: Incarnate(rm)

23: tranSet ← ;
24: i ← 0 ⊳ Assume that 0 is the first instance identifier.

25: while TRUE

26: propose(i , 〈“Incarnate′′,pid , rm〉) ⊳ Vote until incarnation changes,

27: WAIT decide(i ,d)
28: IF d = 〈“Incarnate′′,pid , rm〉
29: THEN

30: pidRM ← pid ⊳ Reincarnated

31: break ⊳ Stop the first iteration.
32: ELSE

33: tranSet ← tranSet
⋃
{d}

34: i ← i + 1
35: FOR j ← 1..k − 1 ⊳ and then, for k − 1 possibly open instances,

36: propose(i + j , 〈rm, t , {rm}, ABORT,;, 0〉) ⊳ vote to close them.

37: WAIT decide(i + j ,d)
38: IF d = 〈“Incarnate′′, , rm〉 ⊳ Someone else is recovering.
39: THEN

40: rm2pid ←⊥ ⊳ Give up the resource manager

41: return 〈〉 ⊳ and stop looking for updates.

42: tranSet ← tranSet
⋃
{d}

43: FOR ALL 〈rm, t , l ,v ,u,cn〉 ∈ tranSet ⊳ Close all of those transactions:

44: IF ¬∃〈p′, t , l ′, ABORT,;,cn ′〉 ∈ V [rm] ⊳ If t was not aborted,
45: THEN

46: FOR ALL p′ ∈ l ,¬∃〈p′, t , l ,v ′,u ′,cn ′〉 ∈ V [rm] ⊳ make sure to terminate it

47: propose(inst(p′, t), 〈p′, t , l , ABORT,;, 0〉) ⊳ voting for others if needed.

48: WAIT until decide(inst(p′, t),d)

49: V [rm]← V [rm]
⋃
{d}

50: IF d = 〈p′, t , , ABORT, , 〉 THEN break ⊳ Stop on ABORT.

51: U [rm]← 〈u1, ...,um〉 : ⊳ Now order updates of known transactions

ek = 〈rm, tk , lk ,vk ,uk ,cnk 〉 ∈ V [rm],
∀p ∈ lk ,∃〈p, tk , lk , COMMIT,up〉 ∈ V [rm], ⊳ that committed

∀i < j ,cni < cnj ⊳ in commit order.

52: return U [rm]

6.7 Evaluation

In this section we compare the coordinated implementation of the log service with other
relevant commit protocols in the literature. In Section 6.7.1 we give a brief overview of
such approaches, compare them in terms of communication steps, number of messages,
and resilience. In Section 6.7.2, we experimentally compare the coordinated implemen-
tation with an uncoordinated one. The uncoordinated implementation is based on Paxos
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Commit [Gray and Lamport, 2006].

6.7.1 Analytical Evaluation

In the 2-Phase Commit protocol (2PC) [Gray, 1978], the TM asks RMs to vote, collects their
votes, decides on the transaction’s outcome, and informs the RMs. The protocol therefore
requires three communication steps and sends up to 3 R messages, where R is the number
of RMs. If the TM crashes during the second step, the protocol blocks until the process is
recovered.

In the commit protocol of Guerraoui et al. [Guerraoui et al., 1996] (GLS), the RMs do
not centralize the decision on the TM: on the second step, they exchange their votes and,
on the third step, they communicate their decisions to each other, using a total of N + 2N 2

messages—to simplify the analysis, we count messages sent by processes to themselves.
Hence, in good runs, all RMs see the decision after three communication steps but, in
case of suspicions of failures, they must resort to a consensus instance to ensure correct
termination, which adds at least one step to the execution. Assuming an unreliable failure
detector to solve consensus, the protocol tolerates any minority of RM crashes.

Paxos Commit (PC) [Gray and Lamport, 2006] has the same communication complexity
and, in some cases, the same communication pattern as GLS in good runs. In PC, however,
the second and third steps are used to run the Paxos consensus protocol [Lamport, 1998] to
agree on the vote of each RM. In the case of suspicions, an RM proposes ABORT on behalf of
the suspected RM using its Paxos instance. In PC, the role of deciding on the transaction’s
outcome is logically dissociated from the RMs; they are played by the acceptors. PC is non-
blocking in the presence of crashes of any minority of acceptors. When there is a single
acceptor, PC can be configured to have the same communication pattern and resilience as
2PC. If every RM acts also as an acceptor, then it equals GLS. We report this latter case in
Table 6.1, which summarizes aspects of each approach.

The Uncoordinated Log Service (Uncoord) is an extension of PC to cope with the or-
dering of transactions, durability of updates, and replacement of failed resource managers.
These aspects, however, to not enter in our analytical evaluation, where PC and Uncoord
are regarded as the same.

While the previous approaches try improve the resilience of 2PC by reducing and dis-
tributing the role of the TM, other protocols tried to handle its failure by other means. In
the 3-Phase Commit (3PC) protocols, formally specified by Gray and Lamport, the TM is
replaced once it has crashed [Gray and Lamport, 2006]. Problems may arise, though, if the
TM has not in fact crashed, possibly leading to inconsistent termination [Bernstein et al., 1987].
Besides, to be replaceable, the TM cannot be the only one to keep data essential for the
termination, and disseminating this data introduces more communication steps to the ter-
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mination (See Table 6.1).
In the Coordinated Log Service, the replacement of a non-crashed TM may lead to

unnecessary aborts, but it does not break the consistency of the protocol. By using Paxos in
the coordinated log service, the protocol takes the same number of communications steps
to terminate as 3PC, in the absence of failures: five. Because the same coordinator is used
on many transactions, the cost of terminating them is amortized by aggregating votes to
be proposed, reducing the number of instances executed in parallel. Parallel instances, in
practice, impact negatively on each other due to resource contention.

Jiménez-Peres et al. [Jiménez-Peris et al., 2001] proposed a commit service abstraction
and a set of implementations. Different from our abstraction, their commit service is de-
fined for single commit instances. Their implementations provide an optimistic outcome
after three steps, and a confirmation after the fourth step, when the transaction can be
committed. As we have done with RMs and acceptors in PC, we analyse their protocol
co-locating the commit servers and the RMs.

Table 6.1, below, compares the discussed approaches in terms of number of commu-
nication steps required by each protocol, the number of messages sent on each one, and
their resilience, that is, the number of resouce manager failures that does not prevent the
protocols from terminating.

Comm.
Messages ResilienceSteps

2-PC 3 3R 0

GLS [Guerraoui et al., 1996] 3 2R2+R < R/2

Paxos Commit [Gray and Lamport, 2006] 3 2R2+R < R/2

Commit Service [Jiménez-Peris et al., 2001] (3)4 3R2+ 2R < R/2

3-PC [Bernstein et al., 1987] 5 5R —

Coord. Log Service 5 5R < R/2

Table 6.1: The cost of some commit protocols

6.7.2 Experimental Evaluation

By sending updates along with their votes, RMs can be recovered using only the state of
acceptors; sending them before could be a waste of resources, and sending them after
could cause the protocol to block during recovery. We have implemented a variant of
Paxos Commit in which votes carry RMs’ updates. Moreover, we also augmented it with a
procedure to recover RMs based on the acceptors state. We used this Uncoordinated Log
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Service implementation in our experimental evaluation to show the cost of storing updates
on the acceptors instead of locally at the RMs. Analytically, this approach has the same
costs and resilience of Paxos Commit.

We have prototyped the Uncoordinated and the Coordinated log service in Java, as well
as the Paxos consensus protocol that underlies both of them, and compared them using the
Sprint infrastructure. Aggregation in the Coordinated version is implemented by placing
as many of the votes already received by the coordinator in an aggregated proposal. If
the maximum proposal size is reached or no more votes are known to the coordinator,
then the proposal is sent to the acceptors. More details on the prototype can be found in
[Camargos et al., 2007a].

The evaluation consisted of two benchmarks explained below. In both benchamarks,
there were three acceptors executing and no failure happened or was ever suspected. All the
tests were executed on an homogeneous subset of the Emulab testbed [White et al., 2002];
all nodes used were equipped with 64-bit Xeon 3GHz processors and interconnected
through a Gigabit Ethernet switch.

Micro-benchmark

In the first experiment we used a micro-benchmark of non-conflicting transactions, each
comprising one write operation executed by one RM. Each operation writes 0, 1000, or
7000 bytes of data, the ammount of data written by most transactions in the second bench-
mark, allowing us to evaluate the impact of the size of updates carried by votes. To assess
the impact of disk writes on the log service, we have run experiments in which consen-
sus acceptors have disk writes enabled and disabled (i.e., consistency relies on at most a
minority of acceptors crashing simultaneously).

To compare the different configurations, we first determined the workload needed on
each of them to reach a 10ms latency per transaction execution. Each entry in Table 6.2
presents the average throughput, in transactions per second, of the coordinated and the
uncoordinated techniques, and their ratio (number between parenthesis). Going from the
first to the second line evidences the cost of writing on stable storage: both approaches
benefit from disabling the disk, although the uncoordinated approach benefits more. The
reason is that the coordinated approach already optimizes disk access by using the same
consensus instance and a single disk write for multiple transactions.

Going from the left to the right columns in Table 6.2 we see the effects of update sizes
in the log service. As the size grows, fewer votes can fit in the same proposal, increasing
the number of Paxos instances needed until each vote requires one full instance, as in the
uncoordinated version. At this point, the benefits of the coordinator are minimal. Likewise,
the gains of not writing on disk are smaller for bigger updates, because more time is spent



120 Chapter 6. Log Service for Transaction Termination

Disk 0 bytes 1000 bytes 7000 bytes

On 1539/184 (8.36) 771/189 (4.08) 96/97 (0.99)

Off 2936/1249 (2.35) 1559/1181 (1.32) 370/357 (1.04)

Table 6.2: Coord/Uncoord throughput ratio for 10ms latency

transferring the data.

TPC-C based benchmark

We also evaluated our implementations with a variant of the TPC-C [Council, 2005] bench-
mark. The only difference between our variant and the TPC-C specification is that, in ours,
clients submit requests at the highest rate they can, without any think time. The transac-
tions and their frequencies, however, are those specified by TPC-C. All tables but one (the
read only Items table) were range partitioned among RMs according to their primary keys;
the read-only table was replicated on all RMs. As a result, at most 15% transactions in-
volved more than one RM (up to all RMs). Update transactions were 92% of the workload
and produced data to be logged not exceeding 1500 bytes. In the experiments, we var-
ied the load by increasing the number of clients, and measured the resulting throughput in
transactions per second and their respective response times. Each dotted curve in Figure 6.1
gives the theoretical relation between throughput and response time for different numbers
of clients, as defined by the Little’s Law: number of clients = throughput × response time.

As Figure 6.1 shows, very small loads (dotted curve with 2 clients) do not differ signifi-
cantly in performance between configurations. With higher loads, the coordinated version
outperforms the uncoordinated one and scales better. Although in 85% of the cases a single
transaction requires one consensus instance regardless of the termination protocol, the co-
ordinated version can group at least five simultaneous requests, and even when a single RM
could perform the batching on its own, the coordinator is still better off as it can combine
data from different RMs.

6.8 Final Remarks and Related Work

In this chapter we have introduced the specification of a log service for transaction process-
ing systems, which provides atomicity and durability to transactions through a non-blocking
termination protocol. The service totally orders non-concurrent transactions. Should a re-
source manager fail, the service can be used to recover the resource manager’s state prior
to the crash and start a copy of it on a different and functional node. Moreover, it safely
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Figure 6.1: Maximum throughput versus response time of TPC-C transactions. The number
of clients is shown next to the curves. Disk writes at acceptors were enabled.

copes with multiple copies of a resource manager. Due to its general design and simple
specification, we believe it can serve as basis for further work.

Some works in the literature have similarities with our service. In Stamus and Cristian’s
approach [Stamos and Cristian, 1993], for example, the log records of resource managers
are aggregated and stored at the transaction manager, which is relied upon to implement
the service. Their protocol, however, uses a byzantine agreement abstraction and makes
stronger synchrony assumptions. Besides, it does not consider the recovery of resource and
transaction managers on different nodes in case of malfunctioning. Conversely, the log ser-
vice of Daniels et al. [Daniels et al., 1987] does allow recovery on different machines but,
instead, lacks the transaction termination feature. Also Mohan et al. [Mohan et al., 1985]
used byzantine tolerant agreement abstractions. Their extended 2PC protocol can be seen
as a byzantine uncoordinated log service implementation.

We also presented two highly available implementations of the log service, coordinated
and uncoordinated, and provided a comparative experimental performance evaluation. As
we have shown in the previous section, these implementations are representative of several
well-known protocols in the literature. Although in theory the uncoordinated approach out-
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performs the coordinated one by two communication steps, in our experimental evaluation
the coordinated approach has led to a much higher transaction throughput and smaller
response times for small transactions. This result is explained by the higher number of
messages sent in parallel in the uncoordinated version, negatively effecting on each other,
and by the coordinator being able to terminate possibly many transactions using a single
instance of consensus.

Resource managers and acceptors can be collocated to minimize the number of nodes in
the system, as done in other consensus-based commit protocols [Gray and Lamport, 2006,
Guerraoui et al., 1996]. However, we see a strong reason to decouple these two roles in
practical scenarios: resource managers are generally more complex software artifacts and,
therefore, more error prone than acceptors; the latter must be available for the sake of
all transactions in the system and should not risk crashing because of a resource manager
error. Besides, by decoupling these roles, the availability of the system becomes determined
by the availability of quorum of acceptors, and more easily assessed.
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Conclusion

The difference between theory and practice is

bigger in practice than in theory.

Unknown author

7.1 Contributions

Agreement problems are recurrent in the development of fault-tolerant distributed systems
and have been the subject of a large amount of research in the last decades. In spite
of the large number of protocols proposed, we believe that most are not practical, what
limits their application in real scenarios. In this thesis, we focus on the specification of
practical protocols for agreement problems in distributed systems. By practical we mean
adaptable crash-recovery protocols for asynchronous systems, which explore optimistic—
yet realistic—assumptions to progress but do not require them to ensure correctness. More-
over, these protocols should harness building blocks readily available in today’s infrastruc-
tures and semantic information to improve performance. In these areas, this thesis makes
the following contributions.

Multicoordinated Consensus We have presented protocols that explore spontaneous or-
dering to solve consensus in the crash-recovery model. We generalized one of them, namely,
B*-Consensus, as a multicoordinated mode of execution for agreement protocols. Agree-
ment protocols traditionally run in rounds whose responsibility of progress is entrusted to
a coordinator agent. In the multicoordinated mode, the coordinator of each round is re-
placed by a set of overlapping quorums of coordinators and, as long as at least one quorum
of coordinators is alive, the round may still succeed in reaching agreement. Therefore,
the multicoordinated mode provides better resilience than the single-coordinated rounds.
Compared to the fast mode [Lamport, 2006a], which completely avoids the coordinator,

123



124 Chapter 7. Conclusion

the multicoordinated mode provides better resilience by tolerating more acceptor failures
at the expense of one communication step. We present a multicoordinated consensus proto-
col that extends Fast Paxos [Lamport, 2006a], with its fast and classic modes. The protocol
can switch between classic, fast, and multicoordinated modes in runtime. This feature al-
lows the protocol to be deployed in many different environments and to adapt to changes
therein during the execution. For example, the protocol may adapt to changes in the net-
work bandwidth, network latency, message loss rate, workload, and spontaneous message
ordering. By using the right combination of round types and recovery technique, our pro-
tocol emulates most consensus protocols that we are aware of.

Multicoordinated Generalized Consensus While multicoordination reduces changes of
rounds due to the failures of their coordinators, the use of semantic information about the
values being agreed upon prevents round changes due to conflicting concurrent proposals.
We have presented a protocol that combines both approaches in a synergism to improve the
availability of agreement protocols. Our protocol, Multicoordinated Paxos, is an extension
of Generalized Paxos [Lamport, 2004] to solve Generalized Consensus, and may be instan-
tiated to solve several agreement protocols. We have presented one such instantiation that
solves the Generic Broadcast problem [Pedone and Schiper, 2002].

Multicoordinated Agreement for Groups Corporative networks are generally organized
hierarchically in groups of agents; agents inside a group communicate through fast links,
but agents in different groups experience much larger delays. Hence, agreement protocols
for these scenarios should avoid slow inter-group messages. On the one hand, fast pro-
tocols are too susceptible to collisions since the slow links could jeopardize spontaneous
ordering in any minimally loaded system. On the other hand, using single-coordinated pro-
tocols would require messages to be sent from one group to another simply to reach the
coordinator. Although using coordinator quorums instead of a single coordinator increases
availability in this scenario, it does not avoid the extra communication. The solution we
presented here is to split coordinator quorums in partially independent systems and ensure
that no conflicting proposals are issued in the same quorum system. We also showed how
this protocol can be improved by a recursive use of consensus and use of multicast technol-
ogy. This way, in good periods of execution, all proposed values are learned by all agents
in all groups in two inter-group message delays.

Log Service We presented a log service that abstracts the atomicity and durability prop-
erties in transaction termination. The main advantages of using this service to implement
distributed transactions are two. First, it encapsulates the underlaying system inside the
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service, simplifying application implementation since it may be oblivious to details. Sec-
ond, it pushes atomicity and durability out of resource managers and, because the service
may be implemented to be more or less available and fault tolerant, this improves the
overall availability of the whole system.

7.2 Future Work

In extension to the work presented in this thesis, we believe that several points are worth
further investigation.

Reconfiguration Policies The ability to change a protocol’s execution mode is a very
powerful tool in that it allows the protocol to adapt to heterogeneity and changes in the en-
vironment. To the best of our knowledge, little research has been devoted to self-adapting
agreement protocols and and the policies that should drive these adaptations. Sampaio and
Brasileiro [Sampaio and Brasileiro, 2005], for example, formalize the common sense order-
ing of processes done by efficient failure detector and leader oracles to chose the best co-
ordinator for the following rounds. In another work, Hurfin et al. [Hurfin et al., 1999] pro-
pose a protocol in which different communication patterns are allowed in different rounds
of the same run. However, they do not specify how the different patterns should succeed
each other. We would like to develop and experiment such round type adaptation policies
and understand which ones are better suited for different distributed systems like clusters,
computational grids, and corporative and overlay networks.

Byzantine Generalized Agreement Tolerating byzantine agents in consensus algorithms
can be achieved by simply adjusting quorum intersection sizes to mask these agents’ in-
fluence [Alvisi et al., 2000]. Consider for example a round with single coordinator in
which the only coordinator is byzantine and submits multiple proposals. This byzan-
tine behavior is, in fact, equivalent to multiple proposals being issued in a fast round.
Since the fast-quorum requirement (Assumption 3) is enough to mask multiple proposals
in fast-rounds, it is also enough to mask the coordinator’s byzantine behavior. Similarly,
the coordinator quorum requirement (Assumption 4) may be strengthened to require the
coord-quorums to share at least two coordinators and allow one coordinator to misbehave.
Moreover, by employing a coord-quorum approach to start rounds, byzantine coordina-
tors cannot force a denial-of-service by constantly creating new rounds. More important,
while there has been no attempt to solve Generalized Consensus in byzantine settings,
our approach would allow us to do so “out-of-the-box”. This would allows us to general-
ize, for example, HQ [Cowling et al., 2006], Zyzzyva [Kotla et al., 2007], and the classic
PBFT [Castro and Liskov, 1999].
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Hierarchical Agreement In the same way that coordinator quorums were used to reach
agreement among groups, in Chapter 5, another layer of quorums that filters proposals
before sending them to the coordinators could be added. In doing, we can extend the mul-
ticoordinated collision fast protocols to several layers of a hierarchically organized network.
The result would be an aggregation protocol in the lines of Astrolabe [Van Renesse et al., 2003],
but with a final level of aggregation that provides agreement. Whether this protocol would
be practical is an interesting question.

Partial Agreement In some cases, ensuring that a subset of learners eventually learn
some decided value is enough to satisfy the application needs. While it is easy for acceptors
to inform just some subset of the learners depending on the value accepted, it would be
interesting to also limit the work done by the acceptors themselves. For example, consider
the environment discussed in Chapter 5, where agents are divided in groups. If only the
learners of some group G are interested in some value, then only the acceptors in G should
get involved in choosing it. This partial agreement property seems a perfect fit for General-
ized Consensus since, in this problem, acceptors are allowed to accept diverging c-structs,
as long as they are compatible. If a single instance of Generalized Consensus among groups
can be used to reach partial agreement at all levels, i.e., inside groups, across a subset of
them, or all together, is an interesting question that we would like to explore.

Multicoordinated Log Service In Chapter 6 we presented the log service abstraction for
transaction termination. We also presented two implementations, one single-coordinated
and another completely distributed. These are both extremes in a spectrum of which multi-
coordination is in the middle. We have not studied any multicoordinated implementation of
the log service, but would like to do so. What is more, we would like to compare that with
Collision-Fast Paxos and identify under which conditions each of these protocols would be
the better option.

AMQP/Fix over the Log Service The Advanced Messaging Queue Protocol, AMQP, is a
specification for transactional store and forward message queuing systems [Vinoski, 2006,
A. M. Q. P. Working Group, 2006]. FIX, the shortened name of the Financial Exchange pro-
tocol [The FIX Protocol Organization, 2008], is a specification for message exchange for
financial applications. Both, AMQP and FIX, are widely used in trading applications and
both resort to a transactional storage engine to provide the atomicity and durability that
these applications require. Examples of storage engines used are MySQL and the Mnesia
databases. We believe that the strong semantics and the simple interface of our log service
are a perfect fit for these applications and plan on replacing the storage engine of one of
the many open-source implementations of AMQP (Fix is proprietary). This would allows us
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to test the log service in different applications, identify its drawbacks, and compare it with
other implementations.



Chapter 8

Conclusão

8.1 Contribuições

Problemas de acordo são recorrentes no desenvolvimento de sistemas distribuídos toleran-
tes a falhas e têm sido amplamente estudados nas últimas décadas. Mesmo assim, acredi-
tamos que aspectos práticos da implementação e implantação de tais protocolos têm sido
menosprezados, minimizando a aplicação destes algoritmos em cenários reais. Nesta tese,
focamos na especificação de protocolos práticos para problemas de acordo em sistemas dis-
tribuídos. Por práticos entendemos protocolos adaptáveis, que suportam a recuperação de
agentes falhos, não dependem de sincronismo para garantir corretude, e exploram períodos
“bem comportados” do sistema para progredir. Mais ainda, protocolos que exploram tecno-
logias já disponíveis nas infra-estruturas computacionais e conhecimento da semântica da
aplicação para melhorar seu desempenho. Em específico, as contribuições desta tese são
enumeradas a seguir.

Consenso Multicoordenado Apresentamos protocolos que exploram a propriedade de
ordenação espontânea para resolver o problema de Consenso no modelo quebra-e-recupera.
Generalizamos um destes protocolos, B*-Consensus, como um modo multicoordenado de
execução para protocolos de acordo. Normalmente, tais protocolos executam em rounds

gerenciados por um agente coordenador. No modo multicoordenado, o coordenador de
cada round é substituído por um conjunto de quoruns não disjuntos de coordenadores.
Desta forma, o round pode continuar a executar mesmo no caso de falha de alguns de
seus coordenadores, contanto que ao menos um quorum permaneça funcional. Logo, o
modo multicoordenado provê melhor resiliência com respeito a falhas do que o modo com
coordenador único. Comparado ao modo rápido [Lamport, 2006a], que não depende de
coordenadores, o modo multicoordenado provê melhor resiliência por tolerar mais falhas
de acceptors, ao custo de um passo de comunicação. Apresentamos também um protocolo

129



130 Chapter 8. Conclusão

multicoordenado para o problema de consenso que estende o Fast Paxos [Lamport, 2006a],
o qual executa nos modos rápido e com coordenador único. Nosso protocolo pode alternar
de modo em tempo de execução, o que lhe permite adaptar-se a mudanças no ambiente
como variação da largura de banda da rede, latência de comunicação, taxa de perda de
mensagens, carga, e ordenação espontânea. Pelo uso da combinação correta de tipos de
round e a técnica correta de recuperação pós-falha, nosso protocolo simula a maioria dos
protocolos de consenso dos quais estamos cientes.

Consenso Generalizado Multicoordenado Por um lado o uso de multicoordenação re-
duz o número de trocas de rounds devidas às falhas de coordenadores. Por outro lado, o uso
da semântica dos valores sendo acordados minimiza as trocas devidas às proposições confli-
tantes concorrentes. O protocolo Multicoordinated Paxos, apresentado nesta tese, combina
estas duas técnicas para redução de troca de rounds para garantir alta disponibilidade. Mul-
ticoordinated Paxos é uma extensão do algoritmo Generalized Paxos [Lamport, 2004]de
Consenso Generalizado que, como tal, pode ser instanciado para resolver diversos proble-
mas de acordo. Nós também apresentamos uma destas instâncias, a qual resolve o problema
de Difusão Genérica [Pedone and Schiper, 2002].

Acordo Multicoordenado em Grupos Redes corporativas são, geralmente, organizadas
em grupos de agentes. Enquanto a latência de comunicação é baixa em um mesmo grupo,
entre grupos ela pode ser ordens de magnitude maior. Logo, protocolos de acordo exe-
cutando em tais configurações devem evitar mensagens intergrupos. Protocolos rápidos
são extremamente susceptíveis a colisões, já que a alta latência em tais canais pode facil-
mente evitar a ordenação espontânea de mensagens. Por sua vez, protocolos com um único
coordenador também são problemáticos, pois forçam a comunicação intergrupos entre pro-
positores e coordenador. O simples uso de múltiplos coordenadores não alivia o problema
tendo em vista que, apesar de aumentar a disponibilidade, ainda força a comunicação in-
tergrupos entre propositores e coordenadores. A solução que apresentamos consiste em
dividir os quoruns de coordenadores em sistemas parcialmente independentes e garantir
que nenhuma proposta conflitante seja enviada para o mesmo subsistema. Além de uma
versão inicial, propomos também uma otimização do nosso protocolo que explora o uso re-
cursivo de consenso e de tecnologias de multicast. Como resultado, em períodos favoráveis
de execução, todos os valores propostos são aprendidos por todos os agentes de todos os
grupos em dois passos de comunicação intergrupos.

Serviço de Log Introduzimos um serviço de log que abstrai as propriedades de atomici-
dade e durabilidade no processamento de transações. O uso deste serviço na implemen-
tação de transações permite encapsular o ambiente no qual estas são executadas, simpli-
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ficando a implementação do sistema de transações distribuídas. Além disso, o serviço de
log também dissocia a atomicidade e durabilidade dos participantes da transação. Uma
vez que o serviço pode ser implementado para garantir a disponibilidade que se deseja e
transações não são bloqueadas por falhas dos participantes, todo o sistema goza de uma
maior disponibilidade.

8.2 Trabalhos Futuros

Como possíveis extensões a este trabalho, vislumbramos os seguintes tópicos de pesquisa.

Políticas de Reconfiguração A habilidade de mudar o modo de execução de um proto-
colo dinamicamente permite que este se adapte a mudanças no ambiente, em tempo de
execução. Pouca pesquisa foi dedicada ‡ protocolos de acordo adaptativos e as políticas
que deveriam reger tais adaptações. Sampaio e Brasileiro [Sampaio and Brasileiro, 2005],
por exemplo, formalizam a ordenaÁ„o de processos feita por detectores de falhas eficien-
tes para escolher o melhor coordenador para os prÛximos rounds. Outro trabalho, por
Hurfin et al. [Hurfin et al., 1999], permite que differentes padrıes de communicaÁ„o sejam
usados em diferentes rodadas de um mesmo protocolo. Contuto, nenhum destes trabalhos
trata de polÌticas para escolha da melhor sequÍncia de tipos de rodadas a serem executa-
das. Desenvolver e avaliar políticas adequadas e entender quais são melhores sob quais
condições e ambientes é certamente um tópico a ser explorado.

Protocolos Bizantinos de Acordo Com o simples ajuste do tamanho das interseções
dos quoruns, é possível mascarar a influência de agentes bizantinos em protocolos de
acordo [Alvisi et al., 2000]. Considere por exemplo um round com um único coordena-
dor que, agindo de má fé, submete valores diversos para serem aceitos. Este comporta-
mento bizantino é equivalente ao envio de múltiplas propostas em um round rápido. As
premissas necessárias à execução de rounds rápidos (Assumption 3) mascaram os efeitos
de múltiplas propostas nestes rounds. Logo, também mascaram os efeitos de um coordena-
dor bizantino em um round com único coordenador. De forma similar, as premissas para
quoruns de coordenadores (Assumption 4) podem ser reforçadas para exigir dois coorde-
nadores em cada interseção, dos quais apenas um pode ser bizantino. Além disso, ao se
exigir múltiplos coordenadores para iniciar um round, pode-se evitar ataques de negação
de serviço por parte de coordenadores bizantinos. Mais importante, além de não estar-
mos cientes de nenhum trabalho sobre Consenso Generalizado em ambientes bizantinos,
nossa abordagem nos permite tratar tal problema inerentemente. Desta forma, podemos
generalizar protocolos como PBFT [Castro and Liskov, 1999], HQ [Cowling et al., 2006] e
Zyzzyva [Kotla et al., 2007].
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Acordo Hierárquico Da mesma forma que usamos quoruns de coordenadores no acordo
em grupos no Capítulo 5, um outro nível de quoruns que filtrem propostas antes de repassá-
las aos coordenadores pode ser adicionado. Desta forma, podemos estender protocolos
collision-fast multicoordenados para redes organizadas hierarquicamente com vários níveis.
O resultado seria um protocolo de agregação similar a Astrolabe [Van Renesse et al., 2003],
com a diferença de prover acordo no último nível de agregação. Validar a praticidade de
tal protocolo constitui um tópico interessante para trabalhos futuros.

Acordo Parcial Para algumas aplicações, garantir que apenas um subconjunto dos lear-

ners aprenda algum valor decidido é suficiente, limitando o trabalho que estes agentes
precisam desempenhar. Se por um lado isso pode ser obtido ao simplesmente limitar o
número de learners contatados pelos acceptors após aceitarem um valor, por outro, seria
interessante minimizar também o trabalho executado pelos acceptors. Por exemplo, consi-
dere o cenário discutido no Capítulo 5, em que os agentes estão divididos em grupos. Se
somente os agentes do grupo G estão interessados em algum valor, então somente os ac-

ceptors em G deveriam estar envolvidos em decidi-lo. Esta propriedade de “acordo parcial”
está relacionada ao problema de Consenso Generalizado já que, em tal problema, acceptors

podem aceitar c-structs divergentes, contanto que compatíveis. Uma pergunta interessante
e que certamente demanda mais investigação é a seguinte: é possível usar uma simples ins-
tância de Consenso Generalizado para alcançar acordo parcial em vários níveis de interação
entre grupos? Isto é, dentro de grupos, na união de subgrupos, ou considerando todos os
agentes juntos.

Log Service Multicoordenado No Capítulo 6 nós apresentamos um serviço de log que
abstrai a terminação de transações distribuídas. Também apresentamos duas implemen-
tações deste serviço, uma coordenada por um agente e outra completamente distribuída.
Estas implementações estão nos extremos de um espectro no qual multicoordenação se
encontra no meio. Como trabalhos futuros, consideramos importante estudar implemen-
tações multicoordenadas do log service, compará-las com o protocolo Collision-Fast Pa-
xos [Schmidt et al., 2007] e identificar as condições em que cada um seria a melhor opção.

AMQP/Fix over the Log Service As especificações Advanced Messaging Queue Protocol
(AMQP) [Vinoski, 2006, A. M. Q. P. Working Group, 2006] e Financial Exchange protocol
(FIX) [The FIX Protocol Organization, 2008] definem serviços de mensagens transacionais.
Implementações de ambas são amplamente utilizadas em aplicações no mercado financeiro,
embora somente FIX tenha sido definida com este escopo em específico. Outra caracterís-
tica comum a ambas é a dependência em um serviço de armazenamento com garantias
transacionais para prover atomicidade e durabilidade. Alguns exemplos de serviços de
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armazenamento utilizados são os bancos de dados MySQL e Mnesia. Acreditamos que a
interface simples e propriedades do log service satisfazem perfeitamente os requerimentos
destas especificações. Assim sendo, planejamos substituir o serviço de armazenamento de
uma dentre as diversas implementações livres da AMQP e, desta forma, testar e avaliar o log

service em diferentes aplicações. Tal estratégia também validaria seu uso na implementação
de FIX, que é proprietária.



Appendix A

Multicoordinated Paxos

A.1 Proof of Correctness

A.1.1 Preliminaries

Our proofs depend on a number of basic definitions and propositions, presented in this
section. Apart from an extra proposition, everything in this section is borrowed from
[Lamport, 2004], since we want to follow the same notation and proof structure as pre-
sented in that paper.

Concerning round numbers (hereinafter called ballot numbers), we only assume that
they are totally ordered by a relation < and there is a smallest ballot number 0. We use
balnum as an abbreviation for ballot number, and let BalNum be the set of all balnums.
Balnums can be either fast or classic, but not both. Quorums of acceptors and coordinators
depend upon the ballot number. We assume both the Fast Quorum Requirement (Assump-
tion 3) and the Coord-quorum Requirement (Assumption 4). Lastly, we assume a c-struct
set CStruct upon which Generalized Consensus is defined.

We start by defining a data structure called ballot array, used by our abstract algorithms.
Ballot arrays keep the votes of each acceptor at each balnum and the ballot number at which
each acceptor currently is (the highest-numbered balnum it has heard of). Vote entries are
initialized with a value none that is not in CStruct. Due to that, we extend ⊑ to cope with
none such that none⊑ none but ¬(v ⊑ w) if either v or w (but not both) equals none.

Definition 3 (Ballot Array—Definition 1 of [Lamport, 2004]) A ballot array bA is a map-

ping that assigns to each acceptor a a balnum cbAa and to each acceptor a and balnum m a

value bAa[m] that is a c-struct or equals none, such that for every acceptor a:

• bAa[0] 6= none,

• The set of balnums m with bAa[m] 6= none is finite, and
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• bAa[m] = none for all balnums m >cbAa.

We say that a value v is chosen at balnum m if an m-quorum accepts v at m. We can
also define chosen at with respect to a ballot array as follows.

Definition 4 (Chosen at—Definition 2 of [Lamport, 2004]) A c-struct v is chosen at bal-

num m in ballot array bA iff there exists an m-quorum Q such that v ⊑ bAa[m] for all

acceptors a in Q . A c-struct v is chosen in ballot array bA iff it is chosen at m in bA for some

balnum m.

Considering that an acceptor a can only accept c-structs at balnums equal to or greater
than its current one (cbAa in ballot array bA), we define a c-struct to be choosable at balnum
m iff it is or can still be chosen at m.

Definition 5 (Choosable at—Definition 3 of [Lamport, 2004]) A c-struct v is

choosable at balnum m in ballot array bA iff there exists an m-quorum Q such that v ⊑
bAa[m] for every acceptor a in Q with cbAa >m.

A c-struct is safe at balnum m iff it extends any c-struct choosable at a balnum j such
that j <m, and we define a ballot array bA to be safe iff every entry bAa[m] different from
none is safe at m, for every acceptor a. If acceptors accept only safe c-structs at balnums
greater than or equal to their current ones, the algorithm guarantees that if v is ever chosen
at a balnum i , then no acceptor will have accepted a c-struct w that does not extend v at a
balnum j greater than i .

Definition 6 (Safe at—Definition 4 of [Lamport, 2004]) A c-struct v is safe at m in bA

iff w ⊑ v for every balnum k < m and every c-struct w that is choosable at k . A ballot array

bA is safe iff for every acceptor a and balnum k , if bAa[k] is a c-struct then it is safe at k in

bA.

The following proposition states that the chosen values of a safe ballot array are com-
patible. It implies that an algorithm can satisfy the consistency property of Generalized
Consensus by having acceptors accept only safe values at balnums that are no lower than
their current ones. Its detailed proof appears in [Lamport, 2004].

Proposition 1 (Proposition 1 of [Lamport, 2004]) If a ballot array bA is safe, then the set

of values that are chosen in bA is compatible.

A.1.2 Abstract Multicoordinated Paxos

As in [Lamport, 2004], our proof of correctness starts with an abstract algorithm that can
be more easily proved correct. The reason why we cannot use the same abstract algorithm
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as in [Lamport, 2004] is the difficulty of multicoordinated rounds to implement the variable
minTried used there. As a result, we came up with an even more abstract algorithm, which
can be implemented not only by Multicoordinated Paxos, but also by the abstract algorithm
in [Lamport, 2004].

Our abstract algorithm is based upon a subset of the variables used by the abstract
algorithm of [Lamport, 2004]:

learned An array of c-structs, where learned[l] is the c-struct currently learned by learner
l . Initially, learned[l] = ⊥ for all learners l .

propCmd The set of proposed commands. It initially equals the empty set.

bA A ballot array. It represents the current state of the voting. Initially,cbAa = 0, bAa[0] = ⊥
and bAa[m] = none for all m > 0. (Every acceptor casts a default vote for ⊥ in ballot
0, so the algorithm begins with ⊥ chosen.)

maxTried An array of c-structs, where maxTried[m] is either a c-struct or equal to none, for
every balnum m. Initially, maxTried[0] = ⊥ and maxTried[m] = none for all m > 0.

The Abstract Multicoordinated Paxos algorithm satisfies the following invariants, which,
as we prove next, imply the properties Nontriviality and Consistency of Generalized Con-
sensus.

maxTried Invariant For every balnum m, if maxTried[m] 6= none, then

1. maxTried[m] is proposed.

2. maxTried[m] is safe at m in bA.

bA Invariant For all acceptors a and balnums m, if bAa[m] 6= none, then

1. bAa[m] is safe at m in bA.

2. If m is a classic balnum, then bAa[m]⊑maxTried[m].

3. If m is a fast balnum, then bAa[m] is proposed.

learned Invariant For every learner l :

1. learned[l] is proposed.

2. learned[l] is the lub of a finite set of c-structs chosen in bA.

Proposition 2 The learned invariant implies the Nontriviality property of Generalized Con-

sensus.
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PROOF: By part 1 of the learned invariant. ✷

Proposition 3 Invariants bA and learned imply the Consistency property of Generalized Con-

sensus.

PROOF: By the definition of Consistency, it suffices to assume that invariants bA and learned

are true, and prove that, for every pair of learners l1 and l2, learned[l1] and learned[l2] are
compatible. The proof is divided into four steps, presented below:
1. bA is safe.

PROOF: This follows from part 1 of the bA invariant and the definition of a safe ballot
array (Definition 6).

LET: S = {v : v is chosen in bA}
2. S is compatible.

PROOF: By step 1 and Proposition 1.
3. For every learner l , learned[l]⊑ ⊔S .

PROOF: This is true by part 2 of the learned invariant and axiom CS3, which implies that
if set S is compatible, then the lub of S is equal to or extends the lub of any subset of S .

4. Q.E.D.
PROOF: By step 3 and the definition of compatible c-structs. ✷

Abstract Multicoordinated Paxos has seven atomic actions, described below. A complete
specification of the algorithm in TLA+ is given in Section A.2.2.

Propose(C) for any command C . It is enabled iff C /∈ propCmd. It sets propCmd to propCmd∪
{C }.

JoinBallot(a, m) for acceptor a and balnum m. It is enabled iff cbAa <m. It sets cbAa to m.

StartBallot(m, w) for balnum m and c-struct w . It is enabled iff

• maxTried[m] = none,

• w is safe at m in bA, and

• w ∈ Str(propCmd).

It sets maxTried[m] to w .

Suggest(m,σ) for balnum m and c-seq σ. It is enabled iff

• maxTried[m] 6= none and

• σ ∈ Seq(propCmd).
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It sets maxTried[m] to maxTried[m] •σ

ClassicVote(a, m, v) for acceptor a, balnum m, and c-struct v . It is enabled iff

• m ≥cbAa,

• v is safe at m in bA,

• v ⊑maxTried[m], and

• bAa[m] = none or bAa[m]⊑ v .

It sets bAa[m] to v and cbAa to m.

FastVote(a, C) for acceptor a and command C . It is enabled iff

• C ∈ propCmd,

• cbAa is a fast balnum, and

• bAa[
cbAa] 6= none.

It sets bAa[
cbAa] to bAa[
cbAa] •C .

AbstractLearn(l, v) for learner l and c-struct v . It is enabled iff v is chosen in bA. It sets
learned[l] to learned[l]⊔ v .

The following proposition proves that the algorithm also satisfies the Stability property
of Generalized Consensus.

Proposition 4 Abstract Multicoordinated Paxos satisfies the Stability property of Generalized

Consensus.

PROOF: For any learner l , the only action that changes the value of learned[l] is AbstractLearn(l, v).
Since, by the definition of lub, this action can only extend the value of learned[l], Stability
is ensured. ✷

It remains to prove that the abstract algorithm satisfies the invariants maxTried, bA,
and learned. For the sake of simplicity, however, we use some extra notation in the proof.
First, when analyzing the execution of an action, we use ordinary expressions such as exp

to represent the value of that expression before the action is executed, and we let exp′ be
the value of that expression after the action execution. Second, to avoid ambiguity, we let
maxTriedInv, bAInv, and learnedInv be expressions representing the statements of the three
invariant properties.

Proposition 5 Abstract Multicoordinated Paxos satisfies the invariants maxTried, bA, and

learned.
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PROOF: The invariants are trivially satisfied in the initial state. Therefore, it suffices to
assume that the invariants are true and prove that, for every action α, they remain true if
α is executed. We do that in the following, analyzing case by case.

1. CASE: Action Propose(C) is executed, where C ∈ Cmd.
PROOF SKETCH: Action Propose(C) only changes variable propCmd, which is the set of proposed values, and
does that by adding a new element to it. Invariant conditions that do not refer to this set are obviously pre-
served. The others are kept true since the set propCmd only increases and c-structs composed of proposed
commands remain composed of proposed values.

1.1. 1. maxTried′ =maxTried

2. bA′ = bA

3. learned′ = learned

4. propCmd′ = propCmd∪ {C } ∧C /∈ propCmd

PROOF: By the definition of action Propose(C).
1.2. maxTriedInv′ is true.

From its definition, it suffices to:
ASSUME: maxTried[r]′ 6= none, for any balnum r

PROVE: 1. maxTried[r]′ ∈ Str(propCmd′) and
2. maxTried[r]′ is safe at r in bA′.

1.2.1. maxTried[r]′ ∈ Str(propCmd′)

PROOF: By applying the assumption of step 1.2 and step 1.1.1 to the invariant maxTriedInv

we verify that maxTried[r]′ ∈ Str(propCmd), and step 1.1.4 tells us that propCmd ⊂
propCmd′.

1.2.2. maxTried[r]′ is safe at r in bA′.
PROOF: By maxTriedInv and steps 1.1.1 and 1.1.2.

1.2.3. Q.E.D.
1.3. bAInv′ is true.

From its definition, it suffices to:
ASSUME: bAe[r]

′ 6= none, for any acceptor e and balnum r

PROVE: 1. bAe[r]
′ is safe at r in bA′,

2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′, and

3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′).

1.3.1. bAe[r]
′ is safe at r in bA′.

PROOF: By bAInv and step 1.1.2.
1.3.2. r is classic⇒ bAe[r]

′ ⊑maxTried[r]′

PROOF: By bAInv and steps 1.1.1 and 1.1.2.
1.3.3. r is fast⇒ bAe[r]

′ ∈ Str(propCmd′)

PROOF: Step 1.1.2 and bAInv imply that, if r is a fast balnum, bAe[r]
′ ∈ propCmd.

Step 1.1.4 shows that propCmd⊂ propCmd′.
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1.3.4. Q.E.D.
1.4. learnedInv′ is true.

LET: h be any learner, without loss of generality.
1.4.1. learned[h]′ ∈ Str(propCmd′)

PROOF: Step 1.1.3 and learnedInv imply that learned[h]′ ∈ Str(propCmd), and step
1.1.4 implies that propCmd⊂ propCmd′.

1.4.2. learned[h]′ is the lub of a finite set of c-structs chosen in bA′.
PROOF: By learnedInv and steps 1.1.2 and 1.1.3.

1.4.3. Q.E.D.
1.5. Q.E.D.

2. CASE: Action JoinBallot(a, m) is executed, where a is an acceptor and m is a ballot
number.

PROOF SKETCH: Action JoinBallot(a, m) only changescbAa, setting it to m, which is bigger thancbAa. Invariant
conditions that do not refer to cbAa are obviously preserved. It remains to check the conditions stating that
certain values are safe or chosen in bA′. The definition of chosen does not involve cbAe for any acceptor e.
The definition of safe is based upon the definition of choosable at, which does refer to cbAe, but implies that
a value w that is choosable at round k in bA′ is also choosable at k in bA. By the definition of safe, this
implies that a value x that is safe at a balnum s in bA is also safe at s in bA′.

2.1. 1. cbAa <m

2. cbA
′

a
=m

3. ∀i ∈ Acceptor \ {a} :cbA
′

i
=cbAi

4. ∀i ∈ Acceptor, j ∈ BalNum : bAi[j ]
′ = bAi[j ]

5. propCmd′ = propCmd

6. maxTried′ =maxTried

7. learned′ = learned

PROOF: By the definition of action JoinBallot(a, m).
2.2. If x is safe at s in bA, for any c-struct x and balnum s , then x is safe at s in bA′.

The proof is by contradiction, as follows.
ASSUME: There exist c-struct x and balnum s , such that

1. x is safe at s in bA

2. x is not safe at s in bA′

PROVE: FALSE
2.2.1. Choose c-struct w and balnum k such that k < s , w is choosable at k in bA′, and

w 6⊑ x .
PROOF: w and k exist by assumption 2 of step 2.2 and the definition of safe at.

2.2.2. w is choosable at k in bA.
2.2.2.1. Choose k -quorum Q such that

∀e ∈ Q :cbA
′

e
> k ⇒ w ⊑ bAe[k]

′
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PROOF: Q exists by the definition of choosable at.
2.2.2.2. ∀e ∈ Q :cbAe > k ⇒ w ⊑ bAe[k]

PROOF: Steps 2.1.(1-3) imply that ∀i ∈ Acceptor : cbAi > k ⇒ cbA
′

i
> k . Moreover,

step 2.1.4 implies ∀i ∈ Acceptor : bAe[k] = bAe[k]
′. If we combine this two

formulas with the one of step 2.2.2.1, we can derive the expression of the current
step.

2.2.2.3. Q.E.D.
PROOF: By step 2.2.2.2 and the definition of choosable at.

2.2.3. Q.E.D.
PROOF: If w is choosable at k < s in bA (step 2.2.2), and w 6⊑ x (step 2.2.1), then x

is not safe at s in bA, contradicting assumption 1 of step 2.2.
2.3. maxTriedInv′ is true.

From its definition, it suffices to:
ASSUME: maxTried[r]′ 6= none, for any balnum r

PROVE: 1. maxTried[r]′ ∈ Str(propCmd′) and
2. maxTried[r]′ is safe at r in bA′.

2.3.1. maxTried[r]′ ∈ Str(propCmd′)

PROOF: By maxTriedInv and steps 2.1.5 and 2.1.6.
2.3.2. maxTried[r]′ is safe at r in bA′.

PROOF: By maxTriedInv, step 2.1.6, and step 2.2.
2.3.3. Q.E.D.

2.4. bAInv′ is true.
From its definition, it suffices to:
ASSUME: bAe[r]

′ 6= none, for any agent e and balnum r

PROVE: 1. bAe[r]
′ is safe at r in bA′,

2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′, and

3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′).

2.4.1. bAe[r]
′ is safe at r in bA′.

PROOF: By bAInv, step 2.1.4, and step 2.2.
2.4.2. r is classic⇒ bAe[r]

′ ⊑maxTried[r]′

PROOF: By bAInv and steps 2.1.4 and 2.1.6.
2.4.3. r is fast⇒ bAe[r]

′ ∈ Str(propCmd′)

PROOF: By bAInv and steps 2.1.4 and 2.1.5.
2.4.4. Q.E.D.

2.5. learnedInv′ is true.
LET: h be any learner, without loss of generality.
2.5.1. learned[h]′ ∈ Str(propCmd′)

PROOF: By learnedInv and steps 2.1.5 and 2.1.7.
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2.5.2. learned[h]′ is the lub of a finite set of c-structs chosen in bA′.
PROOF: learnedInv and step 2.1.7 imply that learned[h]′ is the lub of a finite set of
c-structs chosen in bA. Step 2.1.4 and the definition of a chosen value imply that a
value that is chosen in bA is also chosen in bA′.

2.5.3. Q.E.D.
2.6. Q.E.D.

3. CASE: Action StartBallot(m, w) is executed, where m is a balnum and w ∈ CStruct.
PROOF SKETCH: Action StartBallot(m, w) changes maxTried[m] from none to w , which is ensured to be both
proposed and safe at m in bA. The action does not change the other variables. It preserves the maxTried

invariant because w is proposed and safe at m in bA. It preserves the bA invariant because it does not
change bA and bAe[m] is ensured to equal none, for any acceptor e, by the bA invariant itself. It preserves
the learned invariant because it does not change learned or bA.

3.1. 1. maxTried[m] = none

2. w is safe at m in bA

3. w ∈ Str(propCmd)

4. propCmd′ = propCmd

5. maxTried[m]′ = w

6. ∀i ∈ BalNum \ {m} : maxTried[i]′ =maxTried[i]

7. bA′ = bA

8. learned′ = learned

PROOF: By the definition of action StartBallot(m, w).
3.2. maxTriedInv′ is true.

From its definition, it suffices to:
ASSUME: maxTried[r]′ 6= none, for any balnum r

PROVE: 1. maxTried[r]′ ∈ Str(propCmd′) and
2. maxTried[r]′ is safe at r in bA′.

3.2.1. maxTried[r]′ ∈ Str(propCmd′)

PROOF: If r =m, by steps 3.1.(3-5). If r 6=m, it is implied by maxTriedInv and steps
3.1.4 and 3.1.6.

3.2.2. maxTried[r]′ is safe at r in bA′.
PROOF: If r = m, by steps 3.1.2, 3.1.5, and 3.1.7. If r 6= m, it is implied by
maxTriedInv and steps 3.1.(6-7).

3.2.3. Q.E.D.
3.3. bAInv′ is true.

From its definition, it suffices to:
ASSUME: bAe[r]

′ 6= none, for any agent e and balnum r

PROVE: 1. bAe[r]
′ is safe at r in bA′,

2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′, and
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3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′).

3.3.1. bAe[r]
′ is safe at r in bA′.

PROOF: By bAInv and step 3.1.7.
3.3.2. r is classic⇒ bAe[r]

′ ⊑maxTried[r]′

PROOF: Step 3.1.1 and bAInv imply that bAe[m] = none. Now, if we apply step 3.1.7,
we get that bAe[m]

′ = none. This implies, by the assumption of step 3.3, that r 6=m.
Thus, the proof follows from bAInv and steps 3.1.(6-7).

3.3.3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′)

PROOF: By bAInv and steps 3.1.4 and 3.1.7.
3.3.4. Q.E.D.

3.4. learnedInv′ is true.
LET: h be any learner, without loss of generality.
3.4.1. learned[h]′ ∈ Str(propCmd′)

PROOF: By learnedInv and steps 3.1.4 and 3.1.8.
3.4.2. learned[h]′ is the lub of a finite set of c-structs chosen in bA′.

PROOF: By learnedInv and steps 3.1.(7-8).
3.4.3. Q.E.D.

3.5. Q.E.D.

4. CASE: Action Suggest(m,σ) is executed, where m is a ballot number and σ is a c-seq.
PROOF SKETCH: Action Suggest(m,σ) changes maxTried[m] to maxTried[m] •σ, where σ is a sequence of
proposed commands. The action does not change the other variables. It preserves the maxTried invariant
because σ is proposed and, by the definition of safe at, any extension of a value that is safe at m in bA

is also safe at m in bA. It preserves the bA invariant because it does not change bA and the bA invariant
ensures that bAe[m] is either none or a value v such that v ⊑maxTried[m], for any acceptor e. It preserves
the learned invariant because it does not change learned or bA.

4.1. 1. maxTried[m] 6= none

2. σ ∈ Seq(propCmd)

3. propCmd′ = propCmd

4. maxTried[m]′ =maxTried[m] •σ
5. ∀i ∈ BalNum \ {m} : maxTried[i]′ =maxTried[i]

6. bA′ = bA

7. learned′ = learned

PROOF: By the definition of action Suggest(m,σ).
4.2. maxTriedInv′ is true.

From its definition, it suffices to:
ASSUME: maxTried[r]′ 6= none, for any balnum r

PROVE: 1. maxTried[r]′ ∈ Str(propCmd′) and
2. maxTried[r]′ is safe at r in bA′.
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4.2.1. maxTried[r]′ ∈ Str(propCmd′)

PROOF: If r = m, by maxTriedInv and steps 4.1.(2-4). If r 6= m, it is implied by
maxTriedInv and steps 4.1.3 and 4.1.5.

4.2.2. maxTried[r]′ is safe at r in bA′.
PROOF: maxTriedInv implies that maxTried[r] is safe at r in bA, and step 4.1.6 states
that bA = bA′. Steps 4.1.(4-5) complete the proof by implying that maxTried[r] ⊑
maxTried[r]′. This is enough because the definition of safe at implies that if w is safe
at k in β , then v is safe at k in β , for any v such that w ⊑ v .

4.2.3. Q.E.D.
4.3. bAInv′ is true.

From its definition, it suffices to:
ASSUME: bAe[r]

′ 6= none, for any agent e and balnum r

PROVE: 1. bAe[r]
′ is safe at r in bA′,

2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′, and

3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′).

4.3.1. bAe[r]
′ is safe at r in bA′.

PROOF: By bAInv and step 4.1.6.
4.3.2. r is classic⇒ bAe[r]

′ ⊑maxTried[r]′

PROOF: Step 4.1.6 implies that bAe[r]
′ = bAe[r], bAInv implies that bAe[r]⊑maxTried[r],

and steps 4.1.(4-5) imply that maxTried[r]⊑maxTried[r]
′, completing the proof.

4.3.3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′)

PROOF: By bAInv and steps 4.1.3 and 4.1.6.
4.3.4. Q.E.D.

4.4. learnedInv′ is true.
LET: h be any learner, without loss of generality.
4.4.1. learned[h]′ ∈ Str(propCmd′)

PROOF: By learnedInv and steps 4.1.3 and 4.1.7.
4.4.2. learned[h]′ is the lub of a finite set of c-structs chosen in bA′.

PROOF: By learnedInv and steps 4.1.(6-7).
4.4.3. Q.E.D.

4.5. Q.E.D.

5. CASE: Action ClassicVote(a, m, v) is executed, where a is an acceptor, m is a ballot num-
ber, and v ∈ CStruct .
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PROOF SKETCH: Action ClassicVote(a, m, v) sets bAa[m] to c-struct v only if m ≥ cbAa, v is ensured to be
safe at m in bA, and bAa[m] equals none or bAa[m] ⊑ v . It is also a pre-condition to this action that
v ⊑ maxTried[m], which implies that v is proposed, by the maxTried invariant. Since only entry bAa[m]

(m ≥ cbAa) is changed together with cbAa, which is set to m, and the definition of choosable at considers
only entries bAe[j ] where j < cbAe, no value can be made unsafe at any balnum after the execution of this
action. It preserves the maxTried invariant because it does not change maxTried or propCmd and it does
not make any entry unsafe. It preserves the bA invariant because no entry is made unsafe and the only
entry it changes in bA is set to a safe and proposed value. It preserves the learned invariant because it does
not change learned and any value that is chosen in bA remains chosen after the action is executed, by the
definition of chosen.

5.1. 1. m ≥cbAa

2. v is safe at m in bA

3. v ⊑maxTried[m]

4. bAa[m] = none∨ bAa[m]⊑ v

5. propCmd′ = propCmd

6. maxTried′ =maxTried

7. ∀i ∈ Acceptor \ {a} :cbA
′

i
=cbAi

8. cbA
′

a
=m

9. ∀i ∈ Acceptor, j ∈ BalNum : (i 6= a ∨ j 6=m)⇒ bAi[j ]
′ = bAi[j ]

10. bAa[m]
′ = v

11. learned′ = learned

PROOF: By the definition of action ClassicVote(a, v).
5.2. If x is safe at s in bA, for any c-struct x and balnum s , then x is safe at s in bA′.

The proof is by contradiction, as follows.
ASSUME: There exist c-struct x and balnum s , such that

1. x is safe at s in bA

2. x is not safe at s in bA′

PROVE: FALSE
5.2.1. Choose c-struct w and balnum k such that k < s , w is choosable at k in bA′, and

w 6⊑ x .
PROOF: w and k exist by assumption 5.2.2 and the definition of safe at.

5.2.2. w is choosable at k in bA.
5.2.2.1. Choose k -quorum Q such that

∀e ∈ Q :cbA
′

e
> k ⇒ w ⊑ bAe[k]

′

PROOF: Q exists by the definition of choosable at.
5.2.2.2. ∀e ∈ Q :cbAe > k ⇒ w ⊑ bAe[k]

PROOF: Steps 5.1.(8-9) imply that ∀i ∈ Acceptor : cbA
′

i
> k ⇒ bAi[k]

′ = bAi[k].
This equation applied to the one of step 5.2.2.1 leads to

∀e ∈ Q :cbA
′

e
> k ⇒ w ⊑ bAe[k].
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Steps 5.1.(1,7-8) imply that ∀i ∈ Acceptor : cbA
′

i
≥ cbAi. Thus, ∀e ∈ Q : cbAe > k ⇒

cbA
′

e
> k , which together with the previous equation leads us to

∀e ∈ Q :cbAe > k ⇒ w ⊑ bAe[k].

5.2.2.3. Q.E.D.
PROOF: By step 5.2.2.2 and the definition of choosable at.

5.2.3. Q.E.D.
PROOF: If w is choosable at k < s in bA (step 5.2.2), and w 6⊑ x (step 5.2.1), then x

is not safe at s in bA, contradicting assumption 1 of step 5.2.
5.3. maxTriedInv′ is true.

From its definition, it suffices to:
ASSUME: maxTried[r]′ 6= none, for any balnum r

PROVE: 1. maxTried[r]′ ∈ Str(propCmd′) and
2. maxTried[r]′ is safe at r in bA′.

5.3.1. maxTried[r]′ ∈ Str(propCmd′)

PROOF: By steps 5.1.(5-6).
5.3.2. maxTried[r]′ is safe at r in bA′.

PROOF: By maxTriedInv, step 5.1.6 and step 5.2.
5.3.3. Q.E.D.

5.4. bAInv′ is true.
From its definition, it suffices to:
ASSUME: bAe[r]

′ 6= none, for any agent e and balnum r

PROVE: 1. bAe[r]
′ is safe at r in bA′,

2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′, and

3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′).

5.4.1. bAe[r]
′ is safe at r in bA′.

PROOF: If e = a and r = m, it follows from steps 5.1.2 and 5.1.10. Otherwise, it
follows from bAInv, step 5.1.9, and step 5.2.

5.4.2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′

PROOF: If e = a and r = m, it follows from steps 5.1.3 and 5.1.10. Otherwise, it
follows from bAInv and step 5.1.9.

5.4.3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′)

PROOF: If e = a and r =m, it follows from steps 5.1.3 and 5.1.10, and maxTriedInv.
Otherwise, it follows from bAInv and step 5.1.9.

5.4.4. Q.E.D.
5.5. learnedInv′ is true.

LET: h be any learner, without loss of generality.
5.5.1. learned[h]′ ∈ Str(propCmd′)

PROOF: By learnedInv and steps 5.1.5 and 5.1.11.
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5.5.2. learned[h]′ is the lub of a finite set of c-structs chosen in bA′.
PROOF: learnedInv and step 5.1.11 imply that learned[h]′ is the lub of a finite set
of c-structs chosen in bA. Steps 5.1.(4,9-10) state that the only entry of bA that is
modified, is extended. The definition of a chosen value, therefore, implies that a
value that is chosen in bA is also chosen in bA′, completing the proof.

5.5.3. Q.E.D.
5.6. Q.E.D.

6. CASE: Action FastVote(a, C) is executed, where a is an acceptor and C ∈ Cmd.
PROOF SKETCH: Action FastVote(a, C) sets bAa[

cbAa] to c-struct bAa[
cbAa] •C only if bAa[

cbAa] does not equal
none and C is proposed. Since only bAa[

cbAa] is changed and the definition of choosable at considers only
entries bAe[m] where m < cbAe, no value can be made unsafe at any balnum after the execution of this
action. It preserves the maxTried invariant because it does not change maxTried or propCmd and it does
not make any entry unsafe. It preserves the bA invariant because no entry is made unsafe and the only
entry it changes in bA is extended with a proposed value, and the extension of a safe c-struct is also safe.
It preserves the learned invariant because it does not change learned and any value that is chosen in bA

remains chosen after the action is executed, by the definition of chosen.

6.1. 1. C ∈ propCmd

2. cbAa is a fast balnum
3. bAa[
cbAa] 6= none

4. propCmd′ = propCmd

5. maxTried′ =maxTried

6. bAa[
cbAa]

′ = bAa[
cbAa] •C

7. ∀i ∈ Acceptor :cbA
′

i
=cbAi

8. ∀i ∈ Acceptor, j ∈ BalNum : (i 6= a ∨ j 6=cbAa)⇒ bAi[j ]
′ = bAi[j ]

9. learned′ = learned

PROOF: By the definition of action FastVote(a, v).
6.2. If x is safe at s in bA, for any c-struct x and balnum s , then x is safe at s in bA′.

The proof is by contradiction, as follows.
ASSUME: There exist c-struct x and balnum s , such that

1. x is safe at s in bA

2. x is not safe at s in bA′

PROVE: FALSE
6.2.1. Choose c-struct w and balnum k such that k < s , w is choosable at k in bA′, and

w 6⊑ x .
PROOF: w and k exist by assumption 6.2.2 and the definition of safe at.

6.2.2. w is choosable at k in bA.
6.2.2.1. Choose k -quorum Q such that

∀e ∈ Q :cbA
′

e
> k ⇒ w ⊑ bAe[k]

′

PROOF: Q exists by the definition of choosable at.
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6.2.2.2. ∀e ∈ Q :cbAe > k ⇒ w ⊑ bAe[k]

PROOF: Step 6.1.7 states that cbA
′

e
= cbAe, and step 6.1.8 implies that bAe[k]

′ =

bAe[k] if cbA
′

e
> k .

6.2.2.3. Q.E.D.
PROOF: By step 6.2.2.2 and the definition of choosable at.

6.2.3. Q.E.D.
PROOF: If w is choosable at k < s in bA (step 6.2.2), and w 6⊑ x (step 6.2.1), then x

is not safe at s in bA, contradicting assumption 1 of step 6.2.
6.3. maxTriedInv′ is true.

From its definition, it suffices to:
ASSUME: maxTried[r]′ 6= none, for any balnum r

PROVE: 1. maxTried[r]′ ∈ Str(propCmd′) and
2. maxTried[r]′ is safe at r in bA′.

6.3.1. maxTried[r]′ ∈ Str(propCmd′)

PROOF: By steps 6.1.(4-5).
6.3.2. maxTried[r]′ is safe at r in bA′.

PROOF: By maxTriedInv, step 6.1.5 and step 6.2.
6.3.3. Q.E.D.

6.4. bAInv′ is true.
From its definition, it suffices to:
ASSUME: bAe[r]

′ 6= none, for any agent e and balnum r

PROVE: 1. bAe[r]
′ is safe at r in bA′,

2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′, and

3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′).

6.4.1. bAe[r]
′ is safe at r in bA′.

PROOF: If e = a and r = cbAa, it follows from steps 6.1.3 and 6.1.6, bAInv, and the
definition of safe at, which implies that the extension of a safe value is also safe.
Otherwise, it follows from bAInv, step 6.1.8, and step 6.2.

6.4.2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′

PROOF: It follows from bAInv and step 6.1.8, since r =cbAe and e = a imply that r is
not classic, by step 6.1.2.

6.4.3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′)

PROOF: If e = a and r = cbAa, it follows from bAInv and steps 6.1.1 and 6.1.6.
Otherwise, it follows from bAInv and step 6.1.8.

6.4.4. Q.E.D.
6.5. learnedInv′ is true.

LET: h be any learner, without loss of generality.
6.5.1. learned[h]′ ∈ Str(propCmd′)
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PROOF: By learnedInv and steps 6.1.4 and 6.1.9.
6.5.2. learned[h]′ is the lub of a finite set of c-structs chosen in bA′.

PROOF: learnedInv and step 6.1.9 imply that learned[h]′ is the lub of a finite set
of c-structs chosen in bA. Steps 6.1.(3,6-8) state that the only entry of bA that is
modified, is extended. The definition of a chosen value, therefore, implies that a
value that is chosen in bA is also chosen in bA′, completing the proof.

6.5.3. Q.E.D.
6.6. Q.E.D.

7. CASE: Action AbstractLearn(l, v) is executed, where l is a learner and v ∈ CStruct.
PROOF SKETCH: Action AbstractLearn(l, v) only changes variable learned, which is the array of learned c-
structs, and does that by extending one entry to the lub of it with a chosen c-struct. Invariants maxTried

and bA are obviously preserved. The first part of the learned invariant is preserved because this extension
is proposed, by the definition of chosen at, the bA invariant and axiom CS3. The second part is obviously
preserved by its definition and the one of the action.

7.1. 1. v is chosen in bA

2. propCmd′ = propCmd

3. maxTried′ =maxTried

4. bA′ = bA

5. learned[l]′ = learned[l]⊔ v

6. ∀i ∈ Learner \ {l} : learned[i]′ = learned[i]

PROOF: By the definition of action AbstractLearn(l, v).
7.2. maxTriedInv′ is true.

From its definition, it suffices to:
ASSUME: maxTried[r]′ 6= none, for any balnum r

PROVE: 1. maxTried[r]′ ∈ Str(propCmd′) and
2. maxTried[r]′ is safe at r in bA′.

7.2.1. maxTried[r]′ ∈ Str(propCmd′)

PROOF: By maxTriedInv and steps 7.1.(2-3).
7.2.2. maxTried[r]′ is safe at r in bA′.

PROOF: By maxTriedInv and steps 7.1.(3-4).
7.2.3. Q.E.D.

7.3. bAInv′ is true.
From its definition, it suffices to:
ASSUME: bAe[r]

′ 6= none, for any acceptor e and balnum r

PROVE: 1. bAe[r]
′ is safe at r in bA′,

2. r is classic⇒ bAe[r]
′ ⊑maxTried[r]′, and

3. r is fast⇒ bAe[r]
′ ∈ Str(propCmd′).

7.3.1. bAe[r]
′ is safe at r in bA′.
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PROOF: By bAInv and step 7.1.4.
7.3.2. r is classic⇒ bAe[r]

′ ⊑maxTried[r]′

PROOF: By bAInv and steps 7.1.(3-4).
7.3.3. r is fast⇒ bAe[r]

′ ∈ Str(propCmd′)

PROOF: By bAInv and steps 7.1.2 and 7.1.4.
7.3.4. Q.E.D.

7.4. learnedInv′ is true.
LET: h be any learner, without loss of generality.
7.4.1. learned[h]′ ∈ Str(propCmd′)

PROOF: If h 6= l , it follows from learnedInv and steps 7.1.6 and 7.1.2. Otherwise,
the definition of a chosen value, bAInv, and step 7.1.1 imply that v ∈ Str(propCmd).
learnedInv implies that learned[l] ∈ Str(propCmd). Proposition 1 and learnedInv im-
ply that v and learned[l] are compatible, and axiom CS3 states that its lub exists and
must be in Str(propCmd). The proof is completed by steps 7.1.2 and 7.1.5.

7.4.2. learned[h]′ is the lub of a finite set of c-structs chosen in bA′.
PROOF: If h 6= l , it follows from learnedInv and step 7.1.6. Otherwise, it follows from
learnedInv and steps 7.1.1 and 7.1.5.

7.4.3. Q.E.D.
7.5. Q.E.D.

✷

A.1.3 Distributed Abstract Multicoordinated Paxos

As an intermediate step in our proof, we introduce a distributed version of the abstract al-
gorithm in the previous section. This algorithm has the variables propCmd, learned, and bA

with the same role as in the non-distributed abstract algorithm. It introduces the variables
dMaxTried, a distributed version of maxTried, and msgs, used to simulate a message passing
system by holding the messages sent between coordinators, acceptors, and learners.

propCmd The set of proposed commands. It initially equals the empty set.

learned An array of c-structs, where learned[l] is the c-struct currently learned by learner
l . Initially, learned[l] = ⊥ for all learners l .

bA A ballot array. It represents the current state of the voting. Initially,cbAa = 0, bAa[0] = ⊥
and bAa[m] = none for all acceptor a and ballot number m > 0. (Every acceptor casts
a default vote for ⊥ in ballot 0, so the algorithm begins with ⊥ chosen.)

dMaxTried An array of arrays of c-structs, where dMaxTried[c][m] is either a c-struct or
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equal to none, for every coordinator c and balnum m. Initially, dMaxTried[c][0] = ⊥
and dMaxTried[c][m] = none for every coordinator c and all balnum m > 0.

msgs The set of messages sent by coordinators and acceptors. (This set is used to simulate
the message passing among processes.)

The distributed abstract algorithm is described in terms of the following actions. Its
formal specification in TLA+ is given in the appendix section A.2.3.

Propose(C) executed by the proposer of command C . The action is always enabled. It sets
propCmd to propCmd∪ {C }, from where coordinators and acceptors can read C .

Phase1a(c, m) executed by coordinator c, for balnum m. The action is enabled iff dMaxTried[c][m] =

none. It sends the message 〈“1a”,m〉 to acceptors (adds it to msgs).

Phase1b(a, m) executed by acceptor a, for balnum m. The action is enabled iff

• cbAa <m and

• 〈“1a”,m〉 ∈ msgs

It sets cbAa to m and sends the message 〈“1b”,m, bAa〉 to the coordinators.

Phase2Start(c, m, v) executed by coordinator c, for balnum m, and c-struct v . The action is
enabled iff:

• dMaxTried[c][m] = none,

• There exists an m-quorum Q such that for all a ∈ Q , there is a message 〈“1b”,m, bAa〉 ∈ msgs

coming from a, and

• v = w • σ, where σ ∈ Seq(propCmd), w ∈ ProvedSafe(Q ,m,β), and β is any
ballot array such that, for every acceptor a in Q , bβa = m and c has received a
message 〈“1b”,m,ρ〉 from a with ρ = βa .

This action sets dMaxTried[c][m] to v and sends the message 〈“2a”,m,v〉 to accep-
tors.

Phase2aClassic(c, m, C) executed by coordinator c, for balnum m and command C . The
action is enabled iff

• C ∈ propCmd and

• dMaxTried[c][m] 6= none

This action sends the message 〈“2a”,m,c,dMaxTried[c][m] • C 〉 to the acceptors
and sets dMaxTried[c][m] to dMaxTried[c][m] •C .
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Phase2bClassic(a,m,v) executed by acceptor a, for balnum m and c-struct v . The action
is enabled iff

• m ≥cbAa,

• there is an m-coordquorum L and a c-struct u such that, for every c ∈ L, accep-
tor a has received a phase “2a” message for balnum m with value w satisfying
u ⊑ w , i.e., u is a lower bound for the w values, and

• Either bAa[m] equals none and v equals u, or bAa[m] and u are compatible and
v equals bAa[m]⊔ u.

It sets bAa[m] to v , cbAa to m, and sends the message 〈“2b”,m,v〉 to the learners.

Phase2bFast(a,C ) executed by acceptor a, for balnum m and command C . The action is
enabled iff

• cbAa is a fast balnum,

• bAa[
cbAa] 6= none, and

• C ∈ propCmd .

It sets bAa[
cbAa] to bAa[
cbAa] •C and sends a message 〈“2b”,cbAa, bAa[

cbAa] •C 〉 to the
learners.

Learn(l ,v) executed by learner l , for c-struct v . It is enabled iff a has received phase “2b”
messages for some round i from an i -quorum Q and v is a prefix of the values on
those messages. It sets learned[l] to learned[l]⊔ v .

The distributed abstract algorithm implements the the non-distributed version in the
sense that all behaviors of the former are also behaviors of the latter. This implementation
is stated by the following proposition.

Proposition 6 Distributed Abstract Multicoordinated Paxos implements the Abstract Multico-

ordinated Paxos specification.

To prove this proposition we provide a refinement mapping from the distributed ver-
sion’s states to the non-distributed version’s [Abadi and Lamport, 1991].

In the following we replace the variables in the non-distributed algorithms by overlined
versions. That is, we let expression A refer to expression E, in the non-distributed algorithm
specification, where all occurrences of variables propCmd, maxTried, bA, and learned are
replaced by propCmd, maxTried, bA, and learned, respectively. Non-overlined expressions
refer to those in the distributed algorithm. We give the refinement mapping by defining
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overlined variables based on the distributed algorithm’s variables in a way that satisfies the
non-distributed specification.

Let the overlined variables be defined as follows.

propCmd
∆

= propCmd

learned
∆

= learned

maxTried
∆

=

LET Tried(Q ,m)
∆

= IF ∃c ∈ Q : dMaxTried[c][m] = none

THEN none

ELSE ⊓ {dMaxTried[c][m] : c ∈ Q}
AllTried(m)

∆

= {v ∈ {Tried(Q ,m) : Q is an m-coordquorum} :
v 6= none}

IN [m ∈ BalNum 7→ IF AllTried(m) = {} THEN none

ELSE ⊔AllTried(m)]

To prove that this is a valid refinement mapping and witnesses the implementation of the
Abstract Multicoordinated Paxos by Distributed Abstract Multicoordinated Paxos we must
show that the distributed version’s intial states imply the non-distributed version’s initial
states, and that each step of the distributed version implies a step in the non-distributed
version, be it one that changes the overlined variables or does not change anything (a
stuttering step). To simplify these proofs we first prove some properties of c-structs and of
our refinement mapping. (The first proposition actually regards c-structs in general)

Proposition 7 If, for some ballot number m and ballot array bA, all elements of S are safe at

m in bA, then ⊔S is also safe at m in bA.

By the definition of “safe at”, for all c-structs v choseable at round m in bA and for all
w ∈ S , v ⊑ w . Moreover, by the definition of “lower bound”, v is a lower bound of S and,
by the definition of ⊔, v ⊑ ⊔S . Therefore, all elements of S extend v and all c-structs
choosable at m in bA, being safe at m in bA.

Proposition 8 AllTried(m) is compatible for m ≥ 0.

PROOF: By the definition of glb, the empty set is compatible and ⊔{}= ⊥. If AllTried(m) is
not empty, then it contains the Tried(Q ,m) for all Q such that Tried(Q ,m) 6= none. By the
definition of Tried and ⊓, if Tried(Q ,m) 6= none, then it is a prefix of dMaxTried[c][m]

for all c ∈ Q .
Let Tried(Q ,m),Tried(R,m) ∈ AllTried(m). By the coord-quorum-assumption,
there exists a coordinator c ∈ Q∩R, and AllTried(Q ,m)⊑ dMaxTried[c][m] and AllTried(R,m)⊑
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dMaxTried[c][m]. Therefore, dMaxTried[c][m] is an upper bound to {Tried(Q ,m),Tried(R,m)},
and they are compatible. Because its elements are pairwise compatible and due to CS3,
AllTried(m) is compatible.

Proposition 9 dMaxTried= dmaxTried′⇒maxTried=maxTried
′
.

PROOF: maxTried is defined only over dMaxTried values. If dMaxTried does not change, then
maxTried cannot change.

Hereinafter we refer to to Distributed Abstract Multicoordinated Paxos as DAP and Ab-
stract Multicoordinated Paxos as AP. As we mentioned before, the proof of Proposition 6,
i.e., that DAP implements the AP, is divided in two steps: proving the implication among
the initial states and among the steps. The first step is captured by Proposition 10 and the
second step by Proposition 11, below.

Proposition 10 DAP’s initial state implies AP’s initial state.

PROOF SKETCH: First we prove that DAP’s initial state implies that maxTried is initialized as specified in AP’s.
Because the correct initialization of the other variables are trivially implied (they have the same initialization),
we conclude the proof.

1. maxTried[0] = ⊥
PROOF: By the specification of DAP, dMaxTried[c][0] = ⊥ for each coordinator c. By the
definition of maxTried, Tried, and glb, Tried(Q, 0) = ⊥ for any Q . Therefore, by definition
of AllTried, AllTried(0) = ⊥, and by the definition of lub, maxTried[0] = ⊥.

2. ∀m > 0, maxTried[m] = none

PROOF: By the specification of DAP, dMaxTried[c][m] = none for each coordinator c and
round m > 0. By the definition of maxTried and Tried, Tried(Q, m) = none for any Q .
Hence, by the definition of AllTried, AllTried(m) = {}. By the definition of maxTried,
maxTried[m] = none for any m > 0.

3. Q.E.D.

Proposition 11 A DAP step implements an AP step (a possibly stuttering one).

PROOF SKETCH: We consider each action of DAP and show that each step either implies a step of AP or that AP’s
variables—propCmd, learned, bA, and maxTried—are left unchanged. We use TLA+ UNCHANGED v notation to
indicate that variable (or sequence of variables) v did not change in some step.

1. ASSUME: ∧ C ∈ Cmd

∧ Propose(C )

PROVE: Propose(C)

1.1. C /∈ propCmd
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PROOF: By the definition of Propose.
1.2. propCmd′ = propCmd∪ {C }

PROOF: By the definition of Propose.
1.3. UNCHANGED 〈learned, bA, maxTried〉

PROOF: By the definition of Propose and Proposition 9.
1.4. Q.E.D.

2. ASSUME: ∧ c ∈ Coord

∧m ∈ BalNum

∧Phase1a(c,m)
PROVE: UNCHANGED 〈propCmd , learned , bA, maxTried〉

PROOF: By the definition of Phase1a and Proposition 9.

3. ASSUME: ∧ c ∈ Coord

∧m ∈ BalNum

∧ v ∈ CStruct

∧Phase2Start(c,m,v)
PROVE: ∧∨∧ maxTried= none

∧∨ maxTried
′
= none

∨ StartBallot(m, maxTried
′
[m])

∨∧ maxTried 6= none

∧∨∃σ ∈ Seq(propCmd) :
∧ maxTried

′
[m] =maxTried[m] •σ

∧ Suggest(m,σ)
∨ UNCHANGED maxTried

∧ UNCHANGED 〈propCmd , bA, learned〉
3.1. ASSUME: maxTried[m] = none

PROVE: ∨ StartBallot(m, maxTried
′
[m])

∨ UNCHANGED maxTried

3.1.1. ASSUME: maxTried′[m] 6= none

PROVE: StartBallot(m, maxTried
′
[m])

3.1.1.1. maxTried
′
[m]⊑ v

PROOF: By the assumption, for all m-coordquorums Q such that
Tried(Q ,m)′ ∈ AllTried(m)′, c ∈ Q , or Tried(Q ,m)′ would equal none and it
would not belong to AllTried(m)′. By the definition of glb,
Tried(Q ,m)′ ⊑ dMaxTried[c][m] = v . Therefore, all elements of
AllTried(m)′ are compatible prefixes of v , and v is an upper bound of AllTried(m)′.
But, by the definition of maxTried, maxTried

′
[m] =
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⊔AllTried(m)′ and by the definition of ⊔ and Assumption 3, maxTried
′
[m] must

be a prefix of v .
3.1.1.2. maxTried[m] = none

PROOF: By assumption.
3.1.1.3. maxTried

′
[m] is safe at m in bA

PROOF: By the definitions of actions ProvedSafe,
Phase2Start , and Phase2aClassic, for all d ∈ Coord , dMaxTried[d][m] is first
set to a safe value and then simply extended, therefore remaining safe. By the
definition of AllTried and Proposition 7, all elements of AllTried(m)′ are safe.
Because maxTried[m] is an extension of such safe c-structs, it is also safe.

3.1.1.4. maxTried
′
[m] ∈ Str(propCmd)

PROOF: By the definition of action Phase2Start , v ∈ Str(propCmd). But, by step 3.1.1.1,
maxTried

′
[m] ⊑ v and maxTried

′
[m] is constructible from a subset of the com-

mands in v . Therefore, by the definition of
Str , maxTried

′
[m] ∈ Str(propCmd).

3.1.1.5. Q.E.D.
3.1.2. ASSUME: maxTried

′
[m] = none

PROVE: UNCHANGED maxTried

PROOF: By assumption.
3.1.3. Q.E.D.

3.2. ASSUME: maxTried[m] 6= none

PROVE: ∨ ∃σ ∈ Seq(propCmd) :
∧ maxTried

′
[m] =maxTried[m] •σ

∧ Suggest(m,σ)
∨ UNCHANGED maxTried

3.2.1. ASSUME: maxTried
′
[m] 6=maxTried[m]

PROVE: ∃σ ∈ Seq(propCmd) :
∧maxTried

′
[m] =maxTried[m] •σ

∧ Suggest(m,σ)
3.2.1.1. ∃σ ∈ Seq(propCmd) : maxTried

′
[m] =maxTried[m] •σ

PROOF: Let QD be the set of m-coordquorums Q such that Tried(Q ,m) 6=
Tried(Q ,m)′; clearly by the assumption, QD is not empty and for all Q ∈ QD ,
c ∈ Q . Moreover, by the definition of Tried , Tried(Q ,m)′ ⊑ v .
Let SomeTried(SD ,m) = ⊔{AllTried(S ,m) : S ∈ SD}. Because for all Q ∈ QD ,
Tried(Q ,m) = none, SomeTried({S : S is an m-coordquorum and S /∈ QD},m) =
AllTried(m).
Let Q and R be two m-coordquorums such that Q ∈ QD , R /∈ QD , and Q∩R 6= ;.
Moreover, let d ∈ Q ∩R. Therefore, Tried(R,m) = Tried(R,m)′, Tried(R,m)′ ⊑
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dMaxTried[d][m] and Tried(Q ,m)′ ⊑ dMaxTried[d][m], and either Tried(Q ,m)′ ⊑
Tried(R,m) or Tried(R,m)⊑ Tried(Q ,m)′. In the first case, SomeTried({S : S is
an m-coordquorum and S /∈ QD},m) = SomeTried({S : S is an m-coordquorum
and S /∈ QD} ∪ {Q},m), and is of no interest. In the second case, the equal-
ity may not hold, what would imply that Tried(Q ,m)′ has some command that
not in AllTried(m). This second case must hold for some pair Q ,R, since by as-
sumption and the definition of maxTried AllTried(m) 6= AllTried(m)′. Without
loss of generality, let R be such that Tried(R,m) is maximal; by the definition
of ⊑, Tried(Q ,m)′ = Tried(R,m) •σ, for some sequence σ. As Tried(Q ,m)′ ⊑
v ∈ Seq(propCmd), σ ∈ Seq(propCmd). Finally, by the definition of ⊔, AllTried(m)′ =

AllTried(m).
3.2.1.2. ASSUME: ∃σ ∈ Seq(propCmd) :

maxTried
′
[m] =maxTried[m] •σ

PROVE: Suggest(m,σ)
PROOF: All pre and post-conditions of Suggest are assumed:
• maxTried[m] 6= none,
• σ ∈ Seq(propCmd), and
• maxTried

′
[m] =maxTried[m] •σ.

3.2.1.3. Q.E.D.
3.2.2. ASSUME: maxTried

′
[m] =maxTried[m]

PROVE: UNCHANGED maxTried

PROOF: By the assumption.
3.2.3. Q.E.D.

3.3. UNCHANGED 〈propCmd , bA, learned〉
PROOF: This is trivially true, because variables propCmd, bA, and learned are kept un-
changed in Phase2Start.

3.4. Q.E.D.

4. ASSUME: ∧ c ∈ Coord

∧m ∈ BalNum

∧C ∈ propCmd

∧Phase2aClassic(c,m,C )
PROVE: ∧∨ Suggest(m, 〈C 〉)

∨ UNCHANGED maxTried

∧ UNCHANGED 〈propCmd , learned , bA〉
4.1. ∨ Suggest(m, 〈C 〉)

∨ UNCHANGED maxTried
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PROOF SKETCH: A Phase2aClassic step either increases maxTried[m] by C or leaves it as it is. In the first
case, it implements a Suggest step; in the second it implements a stutering step. We first show conditions
that are necessary and sufficient for maxTried to stay unchanged on a Phase2aClassic step. We then show
that if it changes, then a Suggest step follows.

4.1.1. ASSUME: maxTried
′
[m] 6= none

PROVE: maxTried[m] 6= none

PROOF: The proof is by contradiction. Suppose that maxTried[m] = none. Then, by
the definitions of AllTried and Tried, for all coordinator quorum m-coordquorum Q

there is a coordinator d ∈ Q such that dMaxTried[d][m] = none, and Tried(Q ,m) =
none. By the assumption, for some m-coordquorum Q , Tried(Q ,m)′ 6= none. Be-
cause Tried(Q ,m) = none and Tried(Q ,m)′ 6= none and only dMaxTried[c][m]

was changed, c must be in in Q and
dMaxTried[c][m] = none, but this contradicts a pre-condition of steps of type
Phase2aClassic.

4.1.2. ASSUME: maxTried
′
[m] 6=maxTried[m]

PROVE: maxTried
′
[m] =maxTried[m] •C

PROOF: By the assumption, maxTried
′
[m] 6= none, and by the step 4.1.1, maxTried[m] 6=

none.
Let QD be the set of m-coordquorums Q such that Tried(Q ,m) 6= Tried(Q ,m)′;
clearly, ∀Q ∈ QD ,c ∈ Q .
By the assumption, QD is not empty and for all Q ∈ QD , Tried(Q ,m)⊑ dMaxTried[c][m]

and Tried(Q ,m)′ ⊑ dMaxTried[c][m] • C . Because only dMaxTried[c][m] was
changed and Tried(Q ,m)′ 6= Tried(Q ,m), and by the definition of ⊓, Tried(Q ,m)′ =
Tried(Q ,m) •C .
Therefore, maxTried

′
= ⊔(AllTried(m) ∪ {Tried(Q ,m) • C : Q ∈ QD}), and the

set AllTried(m) ∪ {Tried(Q ,m) • C : Q ∈ QD} is compatible. Because the first
set contains all commands of the second but C , the least upper bound of the first,
maxTried differs from the least upper bound of the union, maxTried

′
only by the

adition of C to the first, and, because they are compatible, maxTried
′
=maxTried•C

4.1.3. ASSUME: maxTried
′
=maxTried •C

PROVE: Suggest(m, 〈C 〉)
4.1.3.1. 〈C 〉 ∈ Seq(propCmd)

PROOF: Because C ∈ propCmd and by the definition of Seq .
4.1.3.2. maxTried[m] 6= none

PROOF: By step 4.1.1.
4.1.3.3. maxTried

′
[m] =maxTried[m] • 〈C 〉]

PROOF: By step 4.1.2.
4.1.3.4. Q.E.D.
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4.1.4. Q.E.D.
4.2. UNCHANGED 〈propCmd , bA, learned〉

PROOF: By the definition of Phase2aClassic, variables propCmd, bA, and learned are kept
unchanged.

4.3. Q.E.D.

5. ASSUME: ∧ a ∈ Acceptor

∧m ∈ BalNum

∧Phase1b(a,m)
PROVE: JoinBallot(a, m)

PROOF: Any Phase1b step clearly implements a JoinBallot step, as all the latter’s pre and
post conditions are also required by the first.

6. ASSUME: ∧ a ∈ Acceptor

∧m ∈ BalNum

∧ v ∈ CStruct

∧Phase2bClassic(a,m,v)
PROVE: ClassicVote(a, m, v)

6.1. m ≥cbAa

PROOF: By the definition of Phase2bClassic.
6.2. v is safe at round m in bA

PROOF: Phase2bClassic has as pre-condition that a has received a “2a” message from all
coordinators in some coord-quorum L for roundcbAa, and that there is a c-struct u such
that for all such messages, u is a prefix of the value w in each one. Messages “2a” are
sent in actions Phase2Start and Phase2aClassic, and in both cases the value sent is set
to dMaxTried[c][m], where c is the sender coordinator and m is the round in which
the message was sent. Because dMaxTried[c][m] = none is a pre-condition to action
Phase2Start and it changes dMaxTried[c][m] to something different from none and no
other step changes it back to none, a Phase2Start step happens only once for a given c

and m. A Phase2aClassic action is only enabled after this Phase2Start step, and it just
appends some c-seq to the previous value of dMaxTried[c][m]. Therefore, the value set
to dMaxTried[c][m] by the Phase2Start step is always a prefix of dMaxTried[c][m] in
future states. Let firstTried[c][m] be such initial value. By the definition of Phase2Start

and Proposition 7, firstTried[c][m] is safe at m in bA. Because firstTried[c][m] is a
prefix of any value sent by c on “2a” messages in round m, it is also a prefix of u, and
u must be safe. Since v is equal to or an extension of u, it is also safe.

6.3. v ⊑maxTried[m]
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PROOF: Let L be the m-coordquorum from which a has received the “2a” messages
in the Phase2BClassic step and u be the common lower bound to all values received
in such messages according to the action pre-condition. By the definition of Tried in
maxTried, by the definition of glb, and because dMaxTried[c][m] is only extended for
any coordinator c and balnum m, u ⊑ Tried(L,m). By the definition of AllTried in
maxTried and lub, Tried(l ,m) ⊑ maxTried[m], and therefore u ⊑ maxTried[m]. Since
v ⊑ u, it follows that v ⊑maxTried[m]

6.4. ∨ bAa[m] = none

∨ bAa[m]⊑ v .
PROOF: By the definition of Phase2bClassic.

6.5. bAa[m]
′ = v

PROOF: By the definition of Phase2bClassic.
6.6. UNCHANGED 〈propCmd , maxTried, learned〉

PROOF: By Proposition 9 and the definition of Phase2bClassic.
6.7. Q.E.D.

7. ASSUME: ∧ a ∈ Acceptor

∧C ∈ Cmd

∧Phase2bFast(a,C )
PROVE: FastVote(a,C )

PROOF: Due to Proposition 9, and the definition of Phase2bFast, any Phase2bFast step is
also a FastVote step, as all the latter’s pre and post conditions are also satisfied by the
first.

8. ASSUME: ∧ l ∈ Learner

∧ v ∈ CStruct

∧ Learn(l ,v)
PROVE: Learn(l ,v)

8.1. v is chosen in bA

PROOF: The first pre-condition of Learn implies that all acceptors in some m-quorum
Q executed action Phase2bFast or Phase2bClassic. Because commands and c-seqs can
only be appended to bAa[m] in these actions, for all acceptors a ∈ Q , v ⊑ bAa[m].
Therefore, by the definition of chosen at, v is chosen at m in bA, and so is v is chosen
at bA.

8.2. ∧ learned ′[l] = learned[l]⊔ v]

∧ UNCHANGED 〈propCmd , maxTried, bA〉
PROOF: By the definition of Learn.

8.3. Q.E.D.
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PROOF: By the definition of AbstractLearn and steps 8.1 and 8.2.
9. Q.E.D.

A.1.4 Multicoordinated Paxos

To prove correctness of the algorithm presented in Section 4.3, we first add the following
history variables to the algorithm presented in the previous section.

crnd An array of balnums, where crnd[c] represents the current round of coordinator c.
Initially 0.

cval An array of c-structs, where cval[c] represents the latest c-struct coordinator c has sent
in a phase “2a” message for round crnd[c]. Initially ⊥.

rnd An array of balnums, where rnd[a] is the current round of acceptor a, that is, the
highest-numbered round a has heard of. Initially 0.

vrnd An array of balnums, where vrnd[a] is the round at which acceptor a has accepted
the latest value. Initially 0.

vval An array of c-structs, where vval[a] is the c-struct acceptor a has accepted at vrnd[a].
Initially ⊥.

msgs2 A set of messages sent by coordinators and acceptors. This variable is different from
the original msgs variable.

We now make some simple changes to the algorithm’s actions in order to update these
history variables accordingly. Notice that the following algorithm is not exactly the same as
in the previous section. The pre-conditions of actions Phase1a, Phase2Start, and Phase2aClassic

are slightly more restrictive. However, it is an obvious implementation of the previous ver-
sion.

Propose(C) executed by the proposer of command C . The action is always enabled. It sets
propCmd to propCmd∪ {C }, from where coordinators and acceptors can read C .

Phase1a(c, m) executed by coordinator c, for balnum m. The action is enabled iff ∀j ≥m :
dMaxTried[c][j ] = none. It adds message 〈“1a”,m〉 to msgs and msgs2.

Phase1b(a, m) executed by acceptor a, for balnum m. The action is enabled iff

• cbAa <m
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• 〈“1a”,m〉 ∈ msgs

It setscbAa and rnd[a] to m, adds message 〈“1b”,m, bAa〉 to msgs and message 〈“1b”,m, vval[a], vrnd

to msgs2.

Phase2Start(c, m, v) executed by coordinator c, for balnum m, and c-struct v . The action is
enabled iff

• ∀j ≥m : dMaxTried[c][j] = none

• There exists an m-quorum Q such that for all a ∈ Q , there is a message 〈“1b”,m, bAa〉 ∈ msgs

coming from a.

• v = w • σ, where σ ∈ Seq(propCmd), w ∈ ProvedSafe(Q ,m,β), and β is any
ballot array such that, for every acceptor a in Q , bβa = m and c has received a
message 〈“1b”,m,ρ〉 from a with ρ = βa .

This action sets dMaxTried[c][m] and cval[c] to v , crnd[c] to m, and adds message
〈“2a”,m,v〉 to msgs and msgs2.

Phase2aClassic(c, m, C) executed by coordinator c, for command C . The action is enabled
iff

• C ∈ propCmd .

• dMaxTried[c][m] 6= none

• ∀j >m : maxTried[c][j ] = none

This action adds message 〈“2a”,m,c,dMaxTried[c][m] •C 〉 to msgs and msgs2, and
sets dMaxTried[c][m] and cval[c] to dMaxTried[c][m] •C .

Phase2bClassic(a,m,v) executed by acceptor a, for balnum m and c-struct v . The action
is enabled iff

• m ≥cbAa,

• there is an m-coordquorum L and a c-struct u such that, for every c ∈ L, accep-
tor a has received a phase “2a” message for balnum m with value w satisfying
u ⊑ w , i.e., u is a lower bound for the w values, and

• Either bAa[m] equals none and v equals u, or bAa[m] and u are compatible and
v equals bAa[m]⊔ u.

It sets bAa[m] and vval[a] to v , cbAa, rnd[a], and vrnd[a] to m, and adds message
〈“2b”,m,v〉 to msgs and msgs2.
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Phase2bFast(a,C ) executed by acceptor a, for balnum m and command C . The action is
enabled iff

• cbAa is a fast balnum,

• bAa[
cbAa] 6= none, and

• C ∈ propCmd .

It sets bAa[
cbAa] and vval[a] to bAa[

cbAa]•C and adds message 〈“2b”,cbAa, bAa[
cbAa]•C 〉

to msgs and msgs2.

Learn(l ,v) executed by learner l , for c-struct v . Executed by learner l . It is enabled iff a

has received phase “2b” messages for some round i from an i -quorum Q and v is a
prefix of the values on those messages. It sets learned[l] to learned[l]⊔ v .

Variables crnd, cval, rnd, vrnd, vval, and msgs2 appear in no pre-condition and are clearly
history variables (they satisfy Abadi and Lamport’s conditions H1-5 of [Abadi and Lamport, 1991]).
This implies that the resulting algorithm is equivalent to (i.e., accepts the same behaviors
as) the previous one without such variables. The following invariants can be easily proved
for this new algorithm:

InvDA1: crnd[c] = k ⇐⇒
∧ dMaxTried[c][k] 6= none

∧ ∀j > k : dMaxTried[c][j ] = none

InvDA2: cval[c] = dMaxTried[c][crnd[c]]

InvDA3: rnd[a] =cbAa

InvDA4: vrnd[a] = k ⇐⇒
∧ bAa[k] 6= none

∧ ∀j > k : bAa[j ] = none

InvDA5: vval[a] = bAa[vrnd[a]]

InvDA6: 〈“1a”,m〉 ∈ msgs ⇐⇒ 〈“1a”,m〉 ∈ msgs2

InvDA7: 〈“1b”,m,ρ〉 ∈ msgs ⇐⇒ 〈“1b”,m,vval ,vrnd〉 ∈ msgs2, where vrnd is the high-
est balnum k such that ρ[k] 6= none and vval equals ρ[vrnd].

InvDA8: 〈“2a”,m,v〉 ∈ msgs ⇐⇒ 〈“2a”,m,v〉 ∈ msgs2

InvDA9: 〈“2b”,m,v〉 ∈ msgs ⇐⇒ 〈“2b”,m,v〉 ∈ msgs2

We can use these invariants to rewrite the pre-conditions of the previous algorithm’s
actions in the following way:
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Propose(C) executed by the proposer of command C . The action is always enabled. It sets
propCmd to propCmd∪ {C }, from where coordinators and acceptors can read C .
This action remains the same.

Phase1a(c, m) executed by coordinator c, for balnum m. The action is enabled iff crnd[c]<m.
It adds message 〈“1a”,m〉 to msgs and msgs2.
By invariant InvDA1.

Phase1b(a, m) executed by acceptor a, for balnum m. The action is enabled iff

• rnd[a]<m

• 〈“1a”,m〉 ∈ msgs2

It setscbAa and rnd[a] to m, adds message 〈“1b”,m, bAa〉 to msgs and message 〈“1b”,m, vval[a], vrnd

to msgs2.
By invariants InvDA3 and InvDA6.

Phase2Start(c, m, v) executed by coordinator c, for balnum m, and c-struct v . The action is
enabled iff

• crnd[c]<m

• There exists an m-quorum Q such that for all a ∈ Q , there is a message 〈“1b”,m,vval ,vrnd〉
coming from a.

• v = w•σ, whereσ ∈ Seq(propCmd), w ∈ ProvedSafe(Q , 1bMsg) (see ProvedSafe

as defined in Section 4.3) , and 1Msg is a mapping from every acceptor a in Q

to the phase “1b” message of the previous condition coming from a.

This action sets dMaxTried[c][m] and cval[c] to v , crnd[c] to m, and adds message
〈“2a”,m,v〉 to msgs and msgs2.
By invariants InvDA1 and InvDA6. The equivalence between ProvedSafe(Q, m,β) (of Section A.1.3)
and ProvedSafe(Q, 1bMsg) (of Section 4.3) is given by InvDA6.

Phase2aClassic(c, m, C) executed by coordinator c, for command C . The action is enabled
iff

• C ∈ propCmd .

• crnd[c] =m

This action adds message 〈“2a”,m,c,cval[c]•C 〉 to msgs and msgs2, and sets dMaxTried[c][m]

and cval[c] to cval[c] •C .
By invariants InvDA1 and InvDA2.



166 Appendix A. Multicoordinated Paxos

Phase2bClassic(a,m,v) executed by acceptor a, for balnum m and c-struct v . The action
is enabled iff

• m ≥ rnd[a],

• there is an m-coordquorum L and a c-struct u such that, for every c ∈ L, accep-
tor a has received a phase “2a” message (through msgs2) for balnum m with
value w satisfying u ⊑ w , i.e., u is a lower bound for the w values, and

• Either vrnd[a] < m and v equals u, or vrnd[a] = m, vval[a] and u are com-
patible, and v equals vval[a]⊔ u.

It sets bAa[m] and vval[a] to v , cbAa, rnd[a], and vrnd[a] to m, and adds message
〈“2b”,m,v〉 to msgs and msgs2.
By invariants InvDA3, InvDA4, InvDA8.

Phase2bFast(a,C ) executed by acceptor a, for balnum m and command C . The action is
enabled iff

• rnd[a] is a fast balnum,

• rnd[a] = vrnd[a], and

• C ∈ propCmd .

It sets bAa[
cbAa] and vval[a] to vval[a] •C and adds message 〈“2b”,m,vval[a] •C 〉

to msgs and msgs2.
By invariants InvDA3, InvDA4, InvDA5, and the fact that rnd[a] ≥ vrnd[a], which can be inferred by
the definition of a ballot array and invariants InvDA3 and InvDA4.

Learn(l ,v) executed by learner l , for c-struct v . Executed by learner l . It is enabled iff
a has received (through msgs2) phase “2b” messages for some round i from an i -
quorum Q and v is a prefix of the values on those messages. It sets learned[l] to
learned[l]⊔ v .
By invariant InvDA9.

The resulting algorithm now has variables bA, dMaxTried and msgs as history variables,
since they do not appear on any action’s pre-condition and are only updated. This algorithm
is, therefore, equivalent to one that does not contain such variables, which we present
below.

Propose(C) executed by the proposer of command C . The action is always enabled. It sets
propCmd to propCmd∪ {C }, from where coordinators and acceptors can read C .
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Phase1a(c, m) executed by coordinator c, for balnum m. The action is enabled iff crnd[c]<m.
It adds message 〈“1a”,m〉 to msgs2.

Phase1b(a, m) executed by acceptor a, for balnum m. The action is enabled iff

• rnd[a]<m

• 〈“1a”,m〉 ∈ msgs2

It sets rnd[a] to m, and adds message 〈“1b”,m, vval[a], vrnd[a]〉 to msgs2.

Phase2Start(c, m, v) executed by coordinator c, for balnum m, and c-struct v . The action is
enabled iff

• crnd[c]<m

• There exists an m-quorum Q such that for all a ∈ Q , there is a message 〈“1b”,m,vval ,vrnd〉
coming from a.

• v = w •σ, where σ ∈ Seq(propCmd), w ∈ ProvedSafe(Q , 1bMsg), and 1Msg is a
mapping from every acceptor a in Q to the phase “1b” message of the previous
condition coming from a.

This action sets cval[c] to v , crnd[c] to m, and adds message 〈“2a”,m,v〉 to msgs2.

Phase2aClassic(c, m, C) executed by coordinator c, for command C . The action is enabled
iff

• C ∈ propCmd .

• crnd[c] =m

This action adds message 〈“2a”,m,c,cval[c]•C 〉 to msgs2, and sets cval[c] to cval[c]•
C .

Phase2bClassic(a,m,v) executed by acceptor a, for balnum m and c-struct v . The action
is enabled iff

• m ≥ rnd[a],

• there is an m-coordquorum L and a c-struct u such that, for every c ∈ L, accep-
tor a has received a phase “2a” message (through msgs2) for balnum m with
value w satisfying u ⊑ w , i.e., u is a lower bound for the w values, and

• Either vrnd[a] < m and v equals u, or vrnd[a] = m, vval[a] and u are com-
patible, and v equals vval[a]⊔ u.
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It sets vval[a] to v , rnd[a] and vrnd[a] to m, and adds message 〈“2b”,m,v〉 to msgs2.

Phase2bFast(a,C ) executed by acceptor a, for balnum m and command C . The action is
enabled iff

• rnd[a] is a fast balnum,

• rnd[a] = vrnd[a], and

• C ∈ propCmd .

It sets vval[a] to vval[a] •C and adds message 〈“2b”,m,vval[a] •C 〉 to msgs2.

Learn(l ,v) executed by learner l , for c-struct v . Executed by learner l . It is enabled iff
a has received (through msgs2) phase “2b” messages for some round i from an i -
quorum Q and v is a prefix of the values on those messages. It sets learned[l] to
learned[l]⊔ v .

The algorithm presented in Section 4.3 is a stricter implementation of the algorithm
above, which can be easily verified by simply comparing their actions. This concludes the
proof that Multicoordinated Paxos satisfies the safety requirements of Generalized Con-
sensus. Section A.2.4 presents the unambiguous TLA+ specification of the basic algorithm
presented in Section 4.3 and Section A.2.5 presents its complete TLA+ specification includ-
ing actions for collision recovery and a simplified version of the mechanism for reducing
the number of disk writes presented in Section 4.4.5.

A.1.5 Collision Recovery

The mechanisms for collision recovery described in Section 4.4.4 simply simulate the exe-
cution of basic actions of the algorithm in a way compatible with the actual behavior. The
interpretation of a collision as a phase “1a” message for the following balnum, for exam-
ple, simulates a Phase1a action for that balnum. Since action Phase1a simply sends a “1a”
message with no guarantee of delivery, the process detecting the collision could be the only
one receiving such a message. Given that these basic actions are already proved correct,
such mechanisms cannot violate the safety properties of our specification.

A.1.6 Liveness

That the basic algorithm provides means for ensuring liveness is easy to see, since new
rounds of any type can always be started and a classic round has the same liveness require-
ments as Classic Paxos. The discussion in Section 4.4.7 extends Multicoordinated Paxos
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in this sense and sketches its liveness conditions. We now prove that the extended Multi-
coordinated Paxos algorithm presented in Section 4.4.7 satisfies the Liveness property of
Generalized Consensus, given that its liveness condition is eventually satisfied. We refer to
the algorithm as EMCP.

Proposition 12 If there is a proposer p, a coordinator c, a learner l , a quorum of acceptors Q ,

and a non-empty set of coordinators C such that the liveness condition MCLiv(p, l, c, Q, C) holds

at some time t0 and then forever, then l eventually learns a c-struct containing the command v

proposed by p.

PROOF: The proof is divided into the following steps:
1. No coordinator other than c executes action Phase1a after t0

By the definition of MCLiv(p, l, c, Q, C), only c believes to be leader after instant t0. Since
this is a pre-condition for executing action Phase1a in the extended algorithm, only c

does so.
2. There is a time t1 ≥ t0 after which crnd[c] does not change

PROOF SKETCH: The proof is divided in two steps. First we prove that only a finite number
rounds may be started by coordinated recovery and then that the same holds true for
rounds started in action Phase1a.
2.1. There is a time t ′1 ≥ t0 after which no coordinated recovery is performed

PROOF: Let i − 1 be the highest-numbered round in which some message was sent
before t0. If the coordinators of i−1 perceive a conflict in i−1 then they may perform
coordinated recovery to start round i by sending “2a” messages with different c-structs
and, hence, another conflict might happen in round i . Due to MCLiv(p, l, c, Q, C), after
t0 all functional coordinators receive all messages in the same order in i and, by the
determinism of the protocol, they perceive the same conflicts in i and choose the same
c-struct to send in the “2a” message of round i + 1, if performing another coordinated
recovery. Therefore, no conflict happens in round i + 1 or in any bigger round and no
more coordinated recoveries are executed. Hence, there is a time t ′1 ≥ t0 after round
round i + 1 started after which no coordinated recoveries are performed.

2.2. There is a time t ′′1 ≥ t ′1 after which action Phase1a is not executed anymore
PROOF: By step 2.1, coordinated recovery will not be executed after time t ′1 and by
MCLiv(p, l, c, Q, C), uncoordinated recovery can only be executed a limited amount of
times. Hence, there is a time t ′′′1 ≥ t ′1 after which no recovery is performed.
Due to step 1 there is a finite number of rounds that have been started before t0 by
coordinators different from c and by the previous paragraph there is a time after which
no coordinated or uncoordinated recovery is performed and, therefore, there is a time
t ′′′′1 ≥ t ′′′1 after which c has will receive no more “skip” messages informing about
rounds bigger than its current one. Hence, c will not start any bigger round unless
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it suspects that there are no coord-quorums for round crnd[c] whose all coordinators
are alive. By MCLiv(p, l, c, Q, C), after t0, c will only start rounds whose coordinators do
not fail. Hence, there is a time t ′′′′′1 ≥ t ′′′′1 after which c does not start any round due
to suspecting that coord-quorums are not available for its current round.
If t ′′1 is bigger than or equal to t ′′′′′1 , then Phase1a is not executed after t ′′1 .

2.3. ASSUME: 1. There is a time t ′1 ≥ t0 after which no coordinated recovery is performed.
2. There is a time t ′′1 ≥ t ′1 after which action Phase1a is not executed any-

more
PROVE: There is a time t1 ≥ t ′′1 after which action Phase2Start(c, i) is executed,

where i the highest-numbered round for which c executed action Phase1a

PROOF: By the definition of the extended algorithm, c keeps retransmitting the “1a”
message for round i to all acceptors. By assumption, acceptors in Q do not crash
after t0 and, therefore, receive such “1a” messages. After they execute action Phase1b

for round i , they keep re-sending their 1b messages and c will eventually execute
Phase2Start .

2.4. Q.E.D.
PROOF: crnd[c] can only be changed by executing action Phase2Start or by performing
coordinated or uncoordinated recovery, and Phase2Start can only be executed for a
round after Phase1a has been executed for the same round. By steps 2.1 and 2.2 there
is a time t ′′0 after which no recovery or Phase1a actions is executed. By step 2.3, c

eventually executes action Phase2Start for the highest-numbered round for which it
has executed action Phase1a at some instant t1 ≥ t ′′1 .

3. There is a time t2 ≥ t1 after which action Phase2Start(d, crnd[c]) will have been executed
by every coordinator d of round crnd[c].

PROOF: By the same reasoning of step 2.
4. There is a time t3 ≥ t2 after which the command v ∈ ⊓ {cval[d] : d is a coordinator of

round crnd[c]}.
PROOF: By steps 2 and 3, there is a time t ′3 after which all coordinators of round crnd[c]

can execute action Phase2aClassic. By assumption, all conflicting proposals received in
crnd[c] are received in the same order and, therefore, added to cval[d] in the same
order by every acceptor d . Hence, these c-structs are compatible.
By the protocol specification, proposer p retransmits v and all coordinators of round
crnd[c] eventually receive it. Therefore, there is a time t3 ≥ t ′3 after which v is part of
cval[d] of any coordinator d of round crnd[c]. Since they are all compatible, by CS4, v

is contained in their greatest lower bound.
5. There is a time t4 ≥ t3 after which v ∈ ⊓{vval[a] : a ∈ Q} and vrnd[a] = crnd[c],a ∈ Q .

PROOF: By step 2, no new rounds are created after some time t1 ≥ t0. Hence, no acceptor
can accept any value in a round bigger than crnd[c] after t1. By step 4, all c-structs sent
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to acceptors in “2a” messages are compatible and because coordinators keep retransmit-
ting their “2a” messages, all acceptors in Q eventually receive one containing v from
every acceptor in some coord-quorum for round crnd[c]. Hence, by the definition of the
algorithm, every acceptor a eventually accepts some c-struct containing v that is com-
patible with the c-structs accepted by the other acceptors. Hence, there is a time t4 ≥ t3

after which v ∈ ⊓ {vval[a] : a ∈ Q} and vrnd[a] = crnd[c],a ∈ Q .
6. Eventually l learns a c-struct containing v

PROOF: By steps 5 and 2 and the specification of EMCF, learners eventually received
compatible c-structs from all acceptors in Q in round crnd[c] containing v . Hence, l

eventually learns a c-struct containing v .
7. Q.E.D.
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A.2 TLA+ Specifications

A.2.1 Helper Specifications

Order Relations

This module was defined in [Lamport, 2004].
MODULE OrderRelations

We make some definitions for an arbitrary ordering relation ⊑ on a set S . The module will be used by
instantiang ⊑ and S with a particular operator and Set.
CONSTANTS S , ⊑

We define IsPartialOrder to be the assertion that ⊑ is an (irreflexive) partial order on a set S , and
IsTotalOrder to be the assertion that it is a total ordering of S .
IsPartialOrder

∆

=

∧∀u, v , w ∈ S : (u ⊑ v)∧ (v ⊑ w)⇒ (u ⊑ w)

∧∀u, v ∈ S : (u ⊑ v)∧ (v ⊑ u) ⇒ (u = v)

IsTotalOrder
∆

=

∧ IsPartialOrder

∧∀u, v ∈ S : (u ⊑ v)∨ (v ⊑ u)

We now define the glb (greatest lower bound) and lub (least upper bound) operators. To define GLB , we
first define IsLB(lb, T ) to be true iff lb is a lower bound of T , and IsGLB(lb, T ) to be true iff lb is a glb of
T . the value of GLB(T ) is unspecified if T has no glb. The definition for upper bounds are analogous.
IsLB(lb, T )

∆

= ∧ lb ∈ S

∧∀v ∈ T : lb ⊑ v

IsGLB(lb, T )
∆

= ∧ IsLB(lb, T )

∧∀v ∈ S : IsLB(v , T )⇒ (v ⊑ lb)

GLB(T )
∆

= CHOOSE lb ∈ S : IsGLB(lb, T )

v ⊓w
∆

= GLB({v , w})

IsUB(ub, T )
∆

= ∧ ub ∈ S

∧∀v ∈ T : v ⊑ ub

IsLUB(ub, T )
∆

= ∧ IsUB(ub, T )

∧∀v ∈ S : IsUB(v , T )⇒ (ub ⊑ v)

LUB(T )
∆

= CHOOSE ub ∈ S : IsLUB(ub, T )

v ⊔w
∆

= LUB({v , w})

Command Structs

This module was defined in [Lamport, 2004].
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MODULE CStructs

EXTENDS Sequences The Sequences module defines the operation Seq

We declare the assumed objects as parameters. We use Bottom instead of ⊥ .

CONSTANTS Cmd , CStruct , • , Bottom

We write v ∗∗ σ as the overloaded version of v •σ for a command sequence σ. The recursive definition below
defines the function conc[w , t] = w ∗∗t .
v ∗∗s

∆

=

LET conc[w ∈ CStruct , t ∈ Seq(Cmd)]
∆

=

IF t = 〈〉 THEN w

ELSE conc[w •Head(t), Tail(t)]

IN conc[v , s]

Str(P)
∆

= {Bottom ∗∗s : s ∈ Seq(P)}

Our algorithms use a value none that is not a c-struct and extend the relation ⊑ to the element none so that
none ⊑ none, none 6⊑ v , and v 6⊑ none for any c-struct v .

none
∆

= CHOOSE n : n /∈ CStruct

v ⊑ w
∆

= ∨ ∧ v ∈ CStruct

∧w ∈ CStruct

∧ ∃ s ∈ Seq(Cmd) : w = v ∗∗s
∨ ∧ v = none

∧w = none

v ❁ w
∆

= (v ⊑ w)∧ (v 6= w)

We now import the definitions of the OrderRelations module with CStruct substituted for S and ⊑ substi-
tuted for �
INSTANCE OrderRelations WITH S ← CStruct

We now define compatibility of c-structs and of sets of c-structs, and of contains, giving them obvious operator
nomes.

AreCompatible(v , w)
∆

= ∃ub ∈ CStruct : IsUB(ub, {v , w})
IsCompatible(S )

∆

= ∀v , w ∈ S : AreCompatible(v , w)

Contains(v , C )
∆

= ∃ s , t ∈ Seq(Cmd) :
v = ((Bottom ∗∗s) •C ) ∗∗t

Here are the formal statements of assumptions CS0-CS4.

CS0
∆

= ∀v ∈ CStruct , C ∈ Cmd : v •C ∈ CStruct

CS1
∆

= CStruct = Str(Cmd)

CS2
∆

= IsPartialOrder

CS3
∆

= ∀P ∈ SUBSET Cmd \{{}} :
∧∀v , w ∈ Str(P) :
∧ v ⊓w ∈ Str(P)
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∧ IsGLB(v ⊓w , {v , w})
∧AreCompatible(v , w)⇒ ∧ v ⊔w ∈ Str(P)

∧ IsLUB(v ⊔w , {v , w})

CS4
∆

= ∀v , w ∈ CStruct , C ∈ Cmd :
AreCompatible(v , w)∧Contains(v , C )∧Contains(w , C )⇒

Contains(v ⊓w , C )

ASSUME CS0∧CS1∧CS2∧CS3∧CS4

Paxos Constants

This module was defined in [Lamport, 2004], but was extended as needed to define multi-
coordinated algorithms. For example, it was extended with the definition of CoordQuorum(m).

MODULE PaxosConstants

This module defines the data structures for the abstract algorithm. It is basically the same module
PaxosConstants found in the Generalized Paxos paper, except for the introduction of constants Coord and
CoordQuorum( ), and assumption CoordQuorumAssumption.
EXTENDS CStructs , FiniteSets

Module FiniteSets defines IsFiniteSet(S ) to be true iff S is a finite set

We introduce the parameter IsFast , where IsFast(m) is true iff m is a fast ballot number. The ordering
relation � on ballot numbers is also a parameter.

CONSTANTS BalNum, Zero, � , IsFast( )

We assume that Zero is the first balnum, and that � is a total ordering of the set BalNum of balnums.

ASSUME ∧Zero ∈ BalNum

∧ LET PO
∆

= INSTANCE OrderRelations

WITH S ← BalNum, ⊑ ← �
IN PO !IsTotalOrder

We define i ≺ j to be true iff i � j for two different balnums i and j

i ≺ j
∆

= (i � j )∧ (i 6= j )

If B is a set of ballot numbers that contains a maximum element, then Max (B) is defined to equal that
maximum. Otherwise, its value is unspecified.

Max (B)
∆

= CHOOSE i ∈ B : ∀ j ∈ B : j � i

This section of the module is the only part that differs the original PaxosConstants module presented in the
Generalized Paxos paper. We have added the constants Coord and CoordQuorum, and the assumptions that
coordinator quorums are sets of coordinators which intersect if they refer to the same ballot number.

CONSTANTS Learner , Acceptor , Quorum( ), Coord , CoordQuorum( )

QuorumAssumption
∆

=

∀ i ∈ BalNum :
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∧Quorum(i)⊆ SUBSET Acceptor

∧∀ j ∈ BalNum :
∧∀Q ∈ Quorum(i), R ∈ Quorum(j ) : Q ∩R 6= {}
∧ IsFast(j )⇒
∀Q ∈ Quorum(i), R1, R2 ∈ Quorum(j ) :

Q ∩R1∩R2 6= {}

ASSUME QuorumAssumption

CoordQuorumAssumption
∆

=

∀ i ∈ BalNum :
∧CoordQuorum(i)⊆ SUBSET Coord

∧∀Q , R ∈ CoordQuorum(i) : Q ∩R 6= {}

ASSUME CoordQuorumAssumption

We define BallotArray to be the set of all ballot arrays. We represent a ballot array as a record, where we
write βa[m] as β .vote[m] and β̂a as β .mbal[a].
BallotArray

∆

=

{beta ∈ [vote : [Acceptor → [BalNum → CStruct ∪ {none}]],
mbal : [Acceptor → BalNum]] :

∀a ∈ Acceptor :
∧ beta.vote[a][Zero] 6= none

∧ IsFiniteSet({m ∈ BalNum : beta.vote[a][m] 6= none})
∧∀m ∈ BalNum :
(beta.mbal[a]≺m)⇒ (beta.vote[a][m] = none)}

We now formalize the definitions of chosen at, safe at, etc. We translate the English terms into obvious
operator names. For example, IsChosenAt(v , m, β ) is defined to be true iff v is chosen at m in β , assuming
that v is a c-struct, m is a balnum, and β a ballot array. (We don’t care what IsChosenAt(v , m, β ) means
for other values of v , m, and β .) We also assert the three propositions as theorems.

IsChosenAt(v , m, beta)
∆

=

∃Q ∈ Quorum(m) : ∀a ∈ Q : (v ⊑ beta.vote[a][m])

IsChosenIn(v , beta)
∆

=

∃m ∈ BalNum : IsChosenAt(v , m, beta)

IsChoosableAt(v , m, beta)
∆

=

∃Q ∈ Quorum(m) :
∀a ∈ Q : (m ≺ beta.mbal[a])⇒ (v ⊑ beta.vote[a][m])

IsSafeAt(v , m, beta)
∆

=

∀k ∈ BalNum :
(k ≺m)⇒∀w ∈ CStruct :

IsChoosableAt(w , k , beta)⇒ (w ⊑ v)

IsSafe(beta)
∆

=

∀a ∈ Acceptor , k ∈ BalNum :
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(beta.vote[a][k] 6= none)⇒ IsSafeAt(beta.vote[a][k], k , beta)

THEOREM Proposition 1
∀beta ∈ BallotArray :

IsSafe(beta)⇒ IsCompatible({v ∈ CStruct : IsChosenIn(v , beta)})

ProvedSafe(Q , m, beta)
∆

=

LET k
∆

= Max ({i ∈ BalNum :
(i ≺m)∧ (∃a ∈ Q : beta.vote[a][i] 6= none)})

RS
∆

= {R ∈ Quorum(k) : ∀a ∈ Q ∩R : beta.vote[a][k] 6= none}
g(R)

∆

= GLB({beta.vote[a][k] : a ∈ Q ∩R})
G

∆

= {g(R) : R ∈ RS}
IN IF RS = {} THEN {beta.vote[a][k] :

a ∈ {b ∈ Q : beta.vote[b][k] 6= none}}
ELSE IF IsCompatible(G) THEN {LUB(G)}

ELSE {}

THEOREM Proposition 2
∀m ∈ BalNum \{Zero}, beta ∈ BallotArray :
∀Q ∈ Quorum(m) :
∧ IsSafe(beta)

∧∀a ∈ Q : m � beta.mbal[a]

⇒∀v ∈ ProvedSafe(Q , m, beta) : IsSafeAt(v , m, beta)

IsConservative(beta)
∆

=

∀m ∈ BalNum, a, b ∈ Acceptor :
∧¬IsFast(m)

∧ beta.vote[a][m] 6= none

∧ beta.vote[b][m] 6= none

⇒ AreCompatible(beta.vote[a][m], beta.vote[b][m])

THEOREM Proposition 3
∀beta ∈ BallotArray :

IsConservative(beta)⇒
∀m ∈ BalNum \{Zero} :
∀Q ∈ Quorum(m) : ProvedSafe(Q , m, beta) 6= {}

A.2.2 Abstract Multicoordinated Paxos

This module specifies an abstract version of the Multicoordinated Paxos algorithm. It is
used as the first step in the proof of correctness of Multicoordinated Paxos.

MODULE AbstractMCPaxos

This module specifies the Abstract MultiCoordinated Paxos algorithm. It resembles the specification of the Ab-
stract Generalized Paxos algorithm presented in the Generalized Paxos paper, but some changes are required
since we do not have a minTried variable.
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EXTENDS PaxosConstants

VARIABLES propCmd , maxTried , bA, learned

Invariants

Type invariant.

TypeInv
∆

= ∧ propCmd ⊆ Cmd

∧ learned ∈ [Learner → CStruct]

∧ bA ∈ BallotArray

∧maxTried ∈ [BalNum → CStruct ∪ {none}]

Other invariants satisfied by the algorithm.

maxTriedInvariant
∆

=

∀m ∈ BalNum :
(maxTried[m] 6= none)⇒
∧maxTried[m] ∈ Str(propCmd)

∧ IsSafeAt(maxTried[m], m, bA)

bAInvariant
∆

=

∀a ∈ Acceptor , m ∈ BalNum :
(bA.vote[a][m] 6= none)⇒
∧ IsSafeAt(bA.vote[a][m], m, bA)

∧¬IsFast(m)⇒ (bA.vote[a][m]⊑maxTried[m])

∧ IsFast(m)⇒ (bA.vote[a][m] ∈ Str(propCmd))

learnedInvariant
∆

=

∀ l ∈ Learner : ∧ learned[l] ∈ Str(propCmd)

∧ ∃S ∈ SUBSET CStruct :
∧ IsFiniteSet(S )

∧∀v ∈ S : IsChosenIn(v , bA)

∧ learned[l] = LUB(S )

Actions

Propose(C ) specifies the action of proposing command C

Propose(C )
∆

=

∧ C /∈ propCmd

∧ propCmd ′ = propCmd ∪ {C }
∧ UNCHANGED 〈maxTried , bA, learned〉

Action JoinBallot(a, m) increases the current ballot number of agent a, setting it to m.

JoinBallot(a, m)
∆

=

∧ bA.mbal[a]≺m

∧ bA′ = [bA EXCEPT ! .mbal[a] =m]

∧ UNCHANGED 〈propCmd , maxTried , learned〉
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Action StartBallot(m,w) changes maxTried[m] from none to w , where w is proposed and safe at m in bA.

StartBallot(m, w)
∆

=

∧maxTried[m] = none

∧ IsSafeAt(w , m, bA)

∧w ∈ Str(propCmd)

∧maxTried ′ = [maxTried EXCEPT ![m] = w]

∧ UNCHANGED 〈propCmd , bA, learned〉

Action Suggest(m,σ) extends maxTried[m] with σ if maxTried[m] 6= none.
The expression [maxTried EXCEPT ![m] = @ ∗∗s] represents a vector (in fact, it is a function) which is
almost the same as maxTried except for entry m (![m] in the expression), which is set to the previous value
of that entry (@ in the expression) extended with command sequence s .

Suggest(m, s)
∆

=

∧ s ∈ Seq(propCmd)

∧ maxTried[m] 6= none

∧ maxTried ′ = [maxTried EXCEPT ![m] =@ ∗∗s]
∧ UNCHANGED 〈propCmd , bA, learned〉

Action ClassicVote(a, v) sets cbAa to m and bAa[m] to v if
(i) cbAa �m

(ii) v is safe at m in bA,
(iii) v ⊑ maxTried[m], and
(iv) either bAa[m] equals none or v is an extension of it.

ClassicVote(a, m, v)
∆

=

∧ bA.mbal[a]�m

∧ IsSafeAt(v , m, bA)

∧ v ⊑maxTried[m]

∧ ∨ bA.vote[a][m] = none

∨ bA.vote[a][m]⊑ v

∧ bA′ = [bA EXCEPT ! .mbal[a] =m, ! .vote[a][m] = v]

∧ UNCHANGED 〈propCmd , maxTried , learned〉

Action FastVote(a, C ) extends bAa[
cbAa] with proposed command C ifcbAa is a fast balnum and bAa[

cbAa] 6=
none . Expression [bA EXCEPT ! .vote[a][bA.mbal[a]] = @ • C ] follows the same principle explained in
action Suggest(m, C ).

FastVote(a, C )
∆

=

∧C ∈ propCmd

∧ IsFast(bA.mbal[a])

∧ bA.vote[a][bA.mbal[a]] 6= none

∧ bA′ = [bA EXCEPT ! .vote[a][bA.mbal[a]] =@ •C ]
∧ UNCHANGED 〈propCmd , maxTried , learned〉

Action AbstractLearn(l , v) extends learned[l] to the least upper bound of learned[l] and v , if v is chosen.

AbstractLearn(l , v)
∆

=

∧ IsChosenIn(v , bA)

∧ learned ′ = [learned EXCEPT ![l] =@⊔ v]
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∧ UNCHANGED 〈propCmd , maxTried , bA〉

Complete Specification

Initial predicate

Init
∆

= ∧ propCmd = {}

∧ learned = [l ∈ Learner 7→ Bottom]

∧ bA= [vote 7→

[a ∈ Acceptor 7→

[m ∈ BalNum 7→ IF m = Zero THEN Bottom

ELSE none]],

mbal 7→ [a ∈ Acceptor 7→ Zero]]

∧maxTried = [m ∈ BalNum 7→

IF m = Zero THEN Bottom ELSE none]

Actions combined into the next-state relation.

Next
∆

= ∨ ∃C ∈ Cmd : Propose(C )

∨ ∃a ∈ Acceptor , m ∈ BalNum : JoinBallot(a, m)

∨ ∃m ∈ BalNum, w ∈ CStruct : StartBallot(m, w)

∨ ∃m ∈ BalNum, s ∈ Seq(Cmd) : Suggest(m, s)

∨ ∃a ∈ Acceptor , C ∈ Cmd : FastVote(a, C )

∨ ∃a ∈ Acceptor , m ∈ BalNum, v ∈ CStruct :

ClassicVote(a, m, v)

∨ ∃ l ∈ Learner , v ∈ CStruct : AbstractLearn(l , v)

We define Spec to be the complete specification.

Spec
∆

= Init ∧✷[Next]〈propCmd , learned ,bA,maxTried〉

The following theorem asserts the invariance of our invariants

THEOREM

Spec⇒ ✷(TypeInv ∧maxTriedInvariant ∧ bAInvariant ∧ learnedInvariant)

The following asserts that our specification Spec implies/implements the specification Spec from module
GeneralConsensus .

GC
∆

= INSTANCE GeneralConsensus

THEOREM Spec⇒GC !Spec

A.2.3 Distributed Abstract Multicoordinated Paxos

This module specifies a distributed version of the abstract algorithm in the previous section.
It adds the exchange of messages and shows how the distributed data structures can be



180 Appendix A. Multicoordinated Paxos

mapped back to the non-distributed algorithm. It is used as the second step in the proof of
correctness of Multicoordinated Paxos.

MODULE DistAbsMCPaxos

EXTENDS PaxosConstants

The following variables are similar to those in AbstractMCPaxos module. They are changed in this module
as they are in AbstractMCPaxos .

VARIABLES propCmd , bA, learned

We describe the state of the message-passing system by the value of the variable msgs . I .e., processes send
messages to each othe by simply putting them in the msgs variable.

As we do not specify liveness for this protocol, we do not explicitly model message loss. Because no action is
required to happen, messages can simply be ignored, modeling the loss of a message by never executing the

action that would read the message.

Message duplication is modeled by not removing the message from msgs once it is read.

VARIABLE msgs

We define Msg to be the set of all possible messages. For the sake of clarity and avoiding errors, we let
messages be records instead of tuples. For example, the message 〈“2a” , m, v〉 in the text becomes a record
with type field “2a” , bal field m, and val field v .

Msg
∆

= [type : {“1a”}, bal : BalNum]

∪ [type : {“1b”}, bal : BalNum, acc : Acceptor ,

vote : [BalNum → CStruct ∪ {none}]]

∪ [type : {“2a”}, bal : BalNum, val : CStruct ,

coord : Coord]

∪ [type : {“2b”}, bal : BalNum, acc : Acceptor ,

val : CStruct]

dMaxTried is a distributed version of maxTried . Each coordinator stores in dMaxTried the longest c-struct
it has send in a round, and MaxTried , below, will map it to maxTried .

VARIABLE dMaxTried

Refinement Mapping

dMaxTried is mapped to maxTried by the MaxTried operator. It maps the c-structs tried by all coordinators
in some coord -quorum $Q$ in some round $m$ to a single c-struct Tried(Q , m). The set of all Tried(Q , m),
AllTried(m), is then mapped to maxTried .

MaxTried
∆

=

LET Tried(Q , m)
∆

= IF ∃c ∈ Q : dMaxTried[c][m] = none

THEN none

ELSE GLB({dMaxTried[c][m] : c ∈ Q})

AllTried(m)
∆

= {v ∈ {Tried(Q , m) : Q ∈ CoordQuorum(m)}

: v 6= none}
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IN [m ∈ BalNum 7→ IF AllTried(m) = {}
THEN none

ELSE LUB(AllTried(m))]

Invariants

Type invariant. implies Abstract!TypeInv .

TypeInv
∆

= ∧ propCmd ⊆ Cmd

∧ learned ∈ [Learner → CStruct]

∧ bA ∈ BallotArray

∧ dMaxTried ∈ [Coord → [BalNum → CStruct ∪ {none}]]
∧msgs ⊆Msg

Actions

Action Propose(C ) adds command C to propCmd .

It implements AbstractMCPaxos !Propose(C ) directly.

Propose(C )
∆

=

∧ C /∈ propCmd

∧ propCmd ′ = propCmd ∪ {C }
∧ UNCHANGED 〈bA, learned , msgs , dMaxTried〉

Action Phase1a(c, m) executes phase 1a for round m at coordinator c, sending a “1a” message to all accep-
tors.

It has no counterpart on AbstractMCPaxos .

Phase1a(c, m)
∆

=

∧ dMaxTried[c][m] = none

∧msgs ′ =msgs ∪ {[type 7→ “1a” , bal 7→m]}
∧ UNCHANGED 〈propCmd , bA, learned , dMaxTried〉

Action Phase1b(a, m) executes phase 1b for round m at acceptor a.

It implements JoinBallot(a, m), and sends a “1b” message to coordinators.

Phase1b(a, m)
∆

=

∧ bA.mbal[a]≺m

∧ [type 7→ “1a” , bal 7→m] ∈ msgs

∧ bA′ = [bA EXCEPT ! .mbal[a] =m]

∧msgs ′ =msgs ∪
{[type 7→ “1b” , bal 7→m, acc 7→ a, vote 7→ bA.vote[a]]}

∧ UNCHANGED 〈propCmd , learned , dMaxTried〉

Action Phase2Start(c, m, v) starts phase 2a for round m at coordinator c, proposing the c-struct v .

It implements AbstractMCPaxos !StartBallot(m, MaxTried ′[m]). Because not all Phase2Start change

MaxTried[m], some steps are stuttering regarding AbstractMCPaxos .
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Phase2Start(c, m, v)
∆

=

∧ dMaxTried[c][m] = none

∧ ∃Q ∈ Quorum(m) :
∧∀a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .bal =m

∧msg .acc = a

∧ LET 1bMsg
∆

= [a ∈ Q 7→ CHOOSE msg ∈ msgs :
∧msg .type = “1b”

∧msg .bal =m

∧msg .acc = a]

beta
∆

= [vote 7→ [a ∈ Q 7→ 1bMsg[a].vote],
mbal 7→ [a ∈ Q 7→m]]

IN ∃w ∈ ProvedSafe(Q , m, beta), s ∈ Seq(propCmd) :
∧ v = w ∗∗s
∧ dMaxTried ′ = [dMaxTried EXCEPT ![c][m] = v]

∧msgs ′ =msgs ∪
{[type 7→ “2a” , bal 7→m, val 7→ v , coord 7→ c]}

∧ UNCHANGED 〈propCmd , bA, learned〉

Action Phase2aClassic(c, m, C ) is executed by coordinator c of ballot m, for command C . It adds the
command C to c’s previously tried value and forward the new value to the acceptors.

It implements the AbstractMCPaxos !Suggest(m, 〈C 〉) action.

Phase2aClassic(c, m, C )
∆

=

∧C ∈ propCmd

∧ dMaxTried[c][m] 6= none

∧ dMaxTried ′ =

[dMaxTried EXCEPT ![c][m] = dMaxTried[c][m] ∗∗C ]
∧msgs ′ =msgs ∪
{[type 7→ “2a” , bal 7→m, val 7→ dMaxTried ′[c][m], coord 7→ c]}
∧ UNCHANGED 〈propCmd , bA, learned〉

Action Phase2bClassic(a, m, v) is executed by acceptor a in round m to accept v .

It implements action AbstractMCPaxos !ClassicVote(a, m, v).

Phase2bClassic(a, m, v)
∆

=

∧ bA.mbal[a]�m

∧ ∃L ∈ CoordQuorum(m), u ∈ CStruct :
∧∀c ∈ L : ∃msg ∈ msgs : ∧msg .type = “2a”

∧msg .bal =m

∧msg .coord = c

∧ u ⊑msg .val
∧ ∨ ∧ bA.vote[a][m] = none

∧ v = u

∨ ∧AreCompatible(bA.vote[a][m], u)

∧ v = bA.vote[a][m]⊔ u
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∧ bA′ = [bA EXCEPT ! .vote[a][m] = v , ! .mbal[a] =m]

∧msgs ′ =msgs ∪ {[type 7→ “2b” , bal 7→m, acc 7→ a, val 7→ v]}
∧ UNCHANGED 〈propCmd , learned , dMaxTried〉

Action Phase2bFast(a, C ) is executed by acceptor a to accept command C , comming directly from the
proposers (fast accept).

It implements the AbstractMCPaxos !FastVote(a, C ) action.

Phase2bFast(a, C )
∆

=

∧C ∈ propCmd

∧ IsFast(bA.mbal[a])

∧ bA.vote[a][bA.mbal[a]] 6= none

∧ bA′ = [bA EXCEPT ! .vote[a][bA.mbal[a]] =@ •C ]
∧msgs ′ =msgs ∪ {[type 7→ “2b” , bal 7→ bA.mbal[a], acc 7→ a,

val 7→ bA′.vote[a][bA.mbal[a]]]}
∧ UNCHANGED 〈propCmd , learned , dMaxTried〉

Action Learn(l , v) executed by learner l to learn c-struct v .

It implements the AbstractMCPaxos !AbstractLearn(a, v) action.

Learn(l , v)
∆

=

∧ ∃m ∈ BalNum :
∃Q ∈ Quorum(m) :
∀a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .bal =m

∧msg .acc = a

∧ v ⊑msg .val
∧ learned ′ = [learned EXCEPT ![l] =@⊔ v]

∧ UNCHANGED 〈propCmd , bA, dMaxTried , msgs〉

Full Specification

Init defines the initial state.

Init
∆

= ∧ propCmd = {}
∧ learned = [l ∈ Learner 7→ Bottom]

∧ bA= [vote 7→
[a ∈ Acceptor 7→
[m ∈ BalNum 7→ IF m = Zero THEN Bottom

ELSE none]],
mbal 7→ [a ∈ Acceptor 7→ Zero]]

∧ dMaxTried = [c ∈ Coord 7→ [m ∈ BalNum 7→
IF m = Zero THEN Bottom

ELSE none]]

∧msgs = {}

Next defines how action are combined to generate the next states.
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Next
∆

= ∨ ∃C ∈ Cmd : Propose(C )

∨ ∃m ∈ BalNum, c ∈ Coord : Phase1a(c, m)

∨ ∃m ∈ BalNum, v ∈ CStruct , c ∈ Coord :
Phase2Start(c, m, v)

∨ ∃m ∈ BalNum, s ∈ Seq(Cmd), c ∈ Coord :
Phase2aClassic(c, m, s)

∨ ∃a ∈ Acceptor , m ∈ BalNum : Phase1b(a, m)

∨ ∃m ∈ BalNum, a ∈ Acceptor , v ∈ CStruct :
Phase2bClassic(a, m, v)

∨ ∃a ∈ Acceptor , C ∈ Cmd : Phase2bFast(a, C )

∨ ∃ l ∈ Learner , v ∈ CStruct : Learn(l , v)

Spec is defined as the complete specification.

Spec
∆

= Init ∧✷[Next]〈propCmd ,bA, learned ,dMaxTried ,msgs〉

The following theorem asserts the invariance of TypeInv

THEOREM Spec⇒ ✷TypeInv

The following theorem implies that there is a refinement mapping from DistAbsMCPaxos

to AbstractMCPaxos . Therefore, DistAbsMCPaxos implements AbstractMCPaxos . Because
GeneralConsensus is implemented by AbstractMCPaxos , DistAbsMCPaxos also implements
GeneralConsensus

AB
∆

= INSTANCE AbstractMCPaxos WITH maxTried ←MaxTried

GC
∆

= INSTANCE GeneralConsensus

THEOREM Spec⇒ AB !Spec

THEOREM Spec⇒GC !Spec

A.2.4 Basic Multicoordinated Paxos

This module specifies the Multicoordinated Paxos algorithm as presented in Section 4.3.
MODULE DistMCPaxos

EXTENDS PaxosConstants

VARIABLES crnd , cval , rnd , vrnd , vval , learned , msgs

CONSTANT Proposer

cVars
∆

= 〈crnd , cval〉
aVars

∆

= 〈rnd , vrnd , vval〉

Msg
∆

= [type : {“propose”}, cmd : Cmd]∪
[type : {“1a”}, bal : BalNum]∪
[type : {“1b”}, bal : BalNum, vval : CStruct ,

vrnd : BalNum, acc : Acceptor]∪
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[type : {“2a”}, bal : BalNum, val : CStruct , coord : Coord]∪
[type : {“2b”}, bal : BalNum, val : CStruct , acc : Acceptor]

TypeInv
∆

= ∧ crnd ∈ [Coord → BalNum]

∧ cval ∈ [Coord → CStruct]

∧ rnd ∈ [Acceptor → BalNum]

∧ vrnd ∈ [Acceptor → BalNum]

∧ vval ∈ [Acceptor → CStruct]

∧ learned ∈ [Learner → CStruct]

∧msgs ⊆Msg

Actions

Action Send(msg) implements the sending of message msg .

Send(msg)
∆

= msgs ′ =msgs ∪ {msg}

DistProvedSafe(Q , 1bMsg) below is the TLA+ version of the ProvedSafe(Q , 1bMsg) function presented in
Section 3.3.

DistProvedSafe(Q , 1bMsg)
∆

=

LET

vals(S )
∆

= {1bMsg[a].vval : a ∈ S}
vrnds

∆

= {1bMsg[a].vrnd : a ∈ Q}
k

∆

= Max (vrnds)

kacceptors
∆

= {a ∈ Q : 1bMsg[a].vrnd = k}
QinterR

∆

= {Q ∩R : R ∈ Quorum(k)}
QinterRAtk

∆

= {S ∈ QinterR : S ⊆ kacceptors}
Gamma

∆

= {GLB(vals(inter)) : inter ∈ QinterRAtk}
IN

IF QinterRAtk = {} THEN vals(kacceptors)

ELSE {LUB(Gamma)}

The following actions are the same as those presented in Section 3.3, just translated into TLA+.

Propose(p, C )

Propose(p, C )
∆

=

∧ Send([type 7→ “propose” , cmd 7→ C ])

∧ UNCHANGED 〈cVars , aVars , learned〉

Phase1a(c, m)

Phase1a(c, m)
∆

=

∧ c ∈ UNION CoordQuorum(m)

∧ crnd[c]≺m

∧ Send([type 7→ “1a” , bal 7→m])

∧ UNCHANGED 〈cVars , aVars , learned〉
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Phase1b(a, m)

Phase1b(a, m)
∆

=

∧ rnd[a]≺m

∧ [type 7→ “1a” , bal 7→m] ∈ msgs

∧ rnd ′ = [rnd EXCEPT ![a] =m]

∧ Send([type 7→ “1b” , bal 7→m, vval 7→ vval[a],
vrnd 7→ vrnd[a], acc 7→ a])

∧ UNCHANGED 〈cVars , vrnd , vval , learned〉

Phase2Start(c, m)

Phase2Start(c, m)
∆

=

∧ crnd[c]≺m

∧ ∃Q ∈ Quorum(m) :
∧∀a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .bal =m

∧msg .acc = a

∧ LET 1bMsg
∆

= [a ∈ Q 7→ CHOOSE msg ∈ msgs :
∧ msg .type = “1b”

∧ msg .bal =m

∧ msg .acc = a]

IN ∃w ∈ DistProvedSafe(Q , 1bMsg) :
∧ crnd ′ = [crnd EXCEPT ![c] =m]

∧ cval ′ = [cval EXCEPT ![c] = w]

∧ Send([type 7→ “2a” , bal 7→m, val 7→ w , coord 7→ c])

∧ UNCHANGED 〈aVars , learned〉

Phase2aClassic(c)

Phase2aClassic(c)
∆

=

∃msg ∈ msgs :
∧ msg .type = “propose”

∧ cval ′ = [cval EXCEPT ![c] =@ •msg .cmd]

∧ Send([type 7→ “2a” , bal 7→ crnd[c], val 7→ cval ′[c], coord 7→ c])

∧ UNCHANGED 〈crnd , aVars , learned〉

Phase2bClassic(a, m)

Phase2bClassic(a, m)
∆

=

∧ rnd[a]�m

∧ ∃L ∈ CoordQuorum(m) :
∧∀c ∈ L : ∃msg ∈ msgs : ∧msg .type = “2a”

∧msg .bal =m

∧msg .coord = c

∧ LET

A2aMsg(c)
∆

= CHOOSE msg ∈ msgs : ∧msg .type = “2a”

∧msg .bal =m

∧msg .coord = c

L2aMsgs
∆

= {A2aMsg(c) : c ∈ L}
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L2aVals
∆

= {msg .val : msg ∈ L2aMsgs}
IN

∧ ∨ ∧ vrnd[a]≺m

∧ vval ′ = [vval EXCEPT ![a] =GLB(L2aVals)]

∨ ∧ vrnd[a] =m

∧AreCompatible(vval[a], GLB(L2aVals))

∧ vval ′ = [vval EXCEPT ![a] =@⊔GLB(L2aVals)]

∧ rnd ′ = [rnd EXCEPT ![a] =m]

∧ vrnd ′ = [vrnd EXCEPT ![a] =m]

∧ Send([type 7→ “2b” , bal 7→m, val 7→ vval ′[a], acc 7→ a])

∧ UNCHANGED 〈cVars , learned〉

Phase2bFast(a)

Phase2bFast(a)
∆

=

∧ IsFast(rnd[a])

∧ rnd[a] = vrnd[a]

∧ ∃msg ∈ msgs :
∧msg .type = “propose”

∧ vval ′ = [vval EXCEPT ![a] =@ •msg .cmd]

∧ Send([type 7→ “2b” , bal 7→ rnd[a], val 7→ vval ′[a], acc 7→ a])

∧ UNCHANGED 〈cVars , rnd , vrnd , learned〉

Learn(l)

Learn(l)
∆

=

∃m ∈ BalNum :
∃Q ∈ Quorum(m) :
∧∀a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .bal =m

∧msg .acc = a

∧ LET

A2bMsg(a)
∆

= CHOOSE msg ∈ msgs : ∧msg .type = “2b”

∧msg .bal =m

∧msg .acc ∈ Q

Q2bMsgs
∆

= {A2bMsg(a) : a ∈ Q}
Q2bVals

∆

= {msg .val : msg ∈ Q2bMsgs}
IN

∧ learned ′ = [learned EXCEPT ![l] =@⊔GLB(Q2bVals)]

∧ UNCHANGED 〈cVars , aVars , msgs〉

Full Specification

Init defines the initial state.

Init
∆

= ∧ learned = [l ∈ Learner 7→ Bottom]

∧ crnd = [c ∈ Coord 7→ Zero]

∧ cval = [c ∈ Coord 7→ Bottom]

∧ rnd = [a ∈ Acceptor 7→ Zero]
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∧ vrnd = [a ∈ Acceptor 7→ Zero]

∧ vval = [a ∈ Acceptor 7→ Bottom]

∧ learned = [l ∈ Learner 7→ Bottom]

∧msgs = {}

Next defines how action are combined to generate the next states.

Next
∆

= ∨ ∃p ∈ Proposer , C ∈ Cmd : Propose(p, C )

∨ ∃c ∈ Coord , m ∈ BalNum : Phase1a(c, m)

∨ ∃c ∈ Coord , m ∈ BalNum : Phase2Start(c, m)

∨ ∃c ∈ Coord : Phase2aClassic(c)

∨ ∃a ∈ Acceptor , m ∈ BalNum : Phase1b(a, m)

∨ ∃a ∈ Acceptor , m ∈ BalNum : Phase2bClassic(a, m)

∨ ∃a ∈ Acceptor : Phase2bFast(a)

∨ ∃ l ∈ Learner : Learn(l)

Spec is defined as the complete specification.

Spec
∆

= Init ∧✷[Next]〈cVars,aVars, learned ,msgs〉

The following theorem asserts the invariance of TypeInv .

THEOREM Spec⇒ ✷TypeInv

The following theorem asserts the DistMCPaxos implements GeneralConsensus

PropCmd
∆

= {m.cmd : m ∈ {mm ∈ msgs : mm.type = “propose”}}

GC
∆

= INSTANCE GeneralConsensus WITH propCmd ← PropCmd

THEOREM Spec⇒GC !Spec

A.2.5 Complete Multicoordinated Paxos

This module specifies the Multicoordinated Paxos algorithm without dependencies, also
specifying the collision detection mechanisms and a simplified version of the mechanism
presented in Section 4.4.5 to reduce the number of disk writes.

MODULE MultiCoordPaxos

The module imports two standard modules. Module Naturals defines the set Nat of naturals and the ordinary
arithmetic operators; module FiniteSets defines IsFiniteSet(s) to be true iff S is a finite set and defines
Cardinality(S ) to be the number of elements in S , if s is finite.
EXTENDS Naturals , FiniteSets , CStructs

Constants
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The next statement declares the specification’s constant parameters, which have the following meanings:
Acceptor the set of acceptors.
Learner the set of learners.
FastNum the set of fast round numbers.
Quorum(i) the set of i-quorums.
Coord the set of coordinators.
CoordQuorum(i) the set of coordinator quorums of round i.

CONSTANTS Acceptor , Learner , FastNum, Quorum( ), Coord ,

CoordQuorum( )

PosNat is defined to be the set of positive integers.

PosNat
∆

= Nat \{0}

RNum is the set of round numbers. A round number is composed of two parts: the incarnation number and
the sequence number.

RNum
∆

= Nat ×PosNat

A round number with sequence number 0 is not a valid round number, but it is used to represent some agents’
states. RType is defined to represent such a set.

RType
∆

= Nat ×Nat

We must define a precedence relation between round numbers. We define ≺ to represent the relation that
round i precedes round j iff i has a lower incarnation number than j or they have the same incarnation
number but i has a lower sequence number than j . We also define � , ≻ , and � accordingly.

i ≺ j
∆

= IF i[1]< j [1] THEN TRUE ELSE i[2]< j [2]

i � j
∆

= i ≺ j ∨ i = j

i ≻ j
∆

= j ≺ i

i � j
∆

= j � i

Max (S ) is defined to be the maximum of a finite set S of Round Numbers.

Max (S )
∆

= CHOOSE i ∈ S : ∀ j ∈ S : i � j

the following statement asserts the assumption that FastNum is a set of round numbers.

ASSUME FastNum ⊆ RNum

ClassicNum is defined to be the set of classic round numbers.

ClassicNum
∆

= RNum \FastNum

FairNum(c) is defined to be the set of classic round numbers for which coordinator c is, itself, a coordinator
quorum.

FairNum(c)
∆

= {i ∈ ClassicNum : {c} ∈ CoordQuorum(i)}

The following assumption asserts that the set of acceptors is finite. It is needed to ensure progress.

ASSUME IsFiniteSet(Acceptor)

The following asserts the assumptions that Quorum(i) is a set of sets of acceptors, for every round number i ,
and that the Quorum Requirement holds.



190 Appendix A. Multicoordinated Paxos

ASSUME ∀ i ∈ RNum :
∧Quorum(i)⊆ SUBSET Acceptor

∧∀ j ∈ RNum :
∧∀Q ∈ Quorum(i), R ∈ Quorum(j ) : Q ∩R 6= {}
∧ (j ∈ FastNum)⇒
∀Q ∈ Quorum(i) : ∀R1, R2 ∈ Quorum(j ) :

Q ∩R1∩R2 6= {}

The following asserts the assumptions that CoordQuorum(i) is a set of sets of coordinators, for every round
number i , and that every coordinator is, itself, a coordinator quorum of infinitely many classic rounds for
every possible incarnation.

ASSUME ∧∀ i ∈ RNum : CoordQuorum(i)⊆ SUBSET Coord

∧∀c ∈ Coord , i ∈ RType :
∃ j ∈ PosNat : ∧ j > i[2]

∧ 〈i[1], j 〉 ∈ FairNum(c)

The following asserts the assumption that coordinator quorums of the same round should always intersect.

ASSUME ∀ i ∈ RNum : ∀Q , R ∈ CoordQuorum(i) : Q ∩R 6= {}

Message is defined to be the set of all possible messages. A message is a record having a type field indicating
what message it is, and a rnd field indicating the round number. What other fields, if any, a message has
depends on its type.

Message
∆

= [type : {“phase1a”}, rnd : RNum]

∪ [type : {“phase1b”}, rnd : RNum, vval : CStruct ,
vrnd : RType, acc : Acceptor]

∪ [type : {“phase2a”}, rnd : RNum, val : CStruct ,
coord : Coord]

∪ [type : {“phase2b”}, rnd : RNum, val : CStruct ,
acc : Acceptor]

Variables and State Predicates

The following statement declares the specification’s variables.

VARIABLES rnd , vrnd , vval , crnd , cval , amLeader , sentMsg , proposed ,
learned , goodSet

Defining the following tuples of variables makes it more convenient to state which variables are left unchanged
by the actions.

aVars
∆

= 〈rnd , vrnd , vval〉 Acceptor variables
cVars

∆

= 〈crnd , cval〉 Coordinator variables
oVars

∆

= 〈amLeader , proposed , learned , goodSet〉 Most other variables
vars

∆

= 〈aVars , cVars , oVars , sentMsg〉 All variables

TypeOK is the type-correctness invariant, asserting that the value of each variable is an element of the proper
set (its “type”). Type correctness of the specification means that TypeOK is an invariant that is, it is true
in every state of every behavior allowed by the specification.
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TypeOK
∆

=

∧ rnd ∈ [Acceptor → RType]

∧ vrnd ∈ [Acceptor → RType]

∧ vval ∈ [Acceptor → CStruct]

∧ crnd ∈ [Coord → RType]

∧ cval ∈ [Coord → CStruct ∪ {none}]
∧ amLeader ∈ [Coord → BOOLEAN ]

∧ sentMsg ∈ SUBSET Message

∧ proposed ∈ SUBSET Cmd

∧ learned ∈ [Learner → CStruct]

∧ goodSet ⊆ Acceptor ∪Coord

Init is the initial predicate that describes the initial values of all variables.

Init
∆

=

∧ rnd = [a ∈ Acceptor 7→ 〈0, 0〉]
∧ vrnd = [a ∈ Acceptor 7→ 〈0, 0〉]
∧ vval = [a ∈ Acceptor 7→ Bottom]

∧ crnd = [c ∈ Coord 7→ 〈0, 0〉]
∧ cval = [c ∈ Coord 7→ none]

∧ amLeader ∈ [Coord → BOOLEAN ]

∧ sentMsg = {}
∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]

∧ goodSet ∈ SUBSET (Acceptor ∪Coord)

Action Definitions

Send(m) describes the state change that represents the sending of a message m. It is used as a conjunt in
defining the algorithm actions.

Send(msg)
∆

= sentMsg ′ = sentMsg ∪ {msg}

Coordinator Actions

Action Phase1a(c, i) specifies the execution of phase 1a of round i by coordinator c. Different from the
previous specifications, this action changes crnd and cval . This is done for liveness, to prevent a coordinator
from continuously starting new rounds. It could be done by adding a new variable but we just thought that
this way was easier and compliant with other Paxos specifications.

Phase1a(i , c)
∆

=

∧ amLeader[c]

∧ c ∈ UNION CoordQuorum(i)

∧ crnd[c]≺ i Reasons for executing Phase1a:
∧ ∨ crnd[c] = 〈i[1], 0〉 1 - Did not do anything in this incarna-

tion∨ ∃m ∈ sentMsg : ∧ crnd[c]≺m.rnd 2 - Some round interfered with round
crnd[c]∧m.rnd[1] = i[1]

∧m.rnd ≺ i
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∨ ∧ crnd[c] /∈ FairNum(c) 3 - Round crnd[c] might have colli-
sions and cannot ensure liveness in
the presence of failures

∧ i[1] = crnd[c][1]
∧ crnd ′ = [crnd EXCEPT ![c] = i]

∧ cval ′ = [cval EXCEPT ![c] = none]

∧ Send([type 7→ “phase1a” , rnd 7→ i])

∧ UNCHANGED 〈aVars , oVars〉

MsgsFrom(Q , i , phase) is defined to be the set of messages in sentMsg of type phase (which may equal
“phase1b” or “phase2b”) sent in round i by the acceptors in the set Q .
MsgsFrom(Q , i , phase)

∆

=

{m ∈ sentMsg : (m.type = phase)∧ (m.acc ∈ Q)∧ (m.rnd = i)}

If M is the set of round i phase 1b messages sent by the acceptors in a quorum Q , then
IsPickableVal(Q , i , M , v) is true according to the following rule, easily derived from the definition of
ProvedSafe in the paper. It allows the coordinator to send the value v in a phase 2a message for round
i .
IsPickableVal(Q , i , M , v)

∆

=

LET vr(a)
∆

= (CHOOSE m ∈ M : m.acc = a).vrnd

vv(a)
∆

= (CHOOSE m ∈ M : m.acc = a).vval
k

∆

= Max ({vr(a) : a ∈ Q})
RS

∆

= {R ∈ Quorum(k) : ∀a ∈ Q ∩R : vr(a) = k}
g(R)

∆

= GLB({vv(a) : a ∈ R ∩Q})
G

∆

= {g(R) : R ∈ RS}
PrSafe

∆

=

IF RS = {} THEN {vv(a) : a ∈ {b ∈ Q : vr(b) = k}}
ELSE {LUB(G)}

IN ∃w ∈ PrSafe, s ∈ Seq(proposed) : v = w ∗∗s

Phase2Start(i , c, v) specifies the first execution of phase2a in round i by coordinator c.

Phase2Start(i , c, v)
∆

= has executed phase1a, but not
phase2a, or another coordinator has
executed phase1a.

∧ ∨ ∧ crnd[c] = i

∧ cval[c] = none

∨ crnd[c]≺ i

∧ ∃Q ∈ Quorum(i) :
∧∀a ∈ Q : ∃m ∈ MsgsFrom(Q , i , “phase1b”) : m.acc = a

∧ IsPickableVal(Q , i , MsgsFrom(Q , i , “phase1b”), v)

∧ cval ′ = [cval EXCEPT ![c] = v]

∧ crnd ′ = [crnd EXCEPT ![c] = i]

∧ Send([type 7→ “phase2a” , rnd 7→ i , val 7→ v , coord 7→ c])

∧ UNCHANGED 〈aVars , oVars〉

Phase2a(i , c, v) specifies other executions of phase2a in round i by coordinator c.

Phase2a(i , c, v)
∆

= has executed Phase2Start .
∧ crnd[c] = i

∧ cval[c] 6= none
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∧ ∃C ∈ proposed : v = cval[c] ∗∗C
∧ cval ′ = [cval EXCEPT ![c] = v]

∧ Send([type 7→ “phase2a” , rnd 7→ i , val 7→ v , coord 7→ c])

∧ UNCHANGED 〈crnd , aVars , oVars〉

NextRound(i) is the round number following i in the same incarnation.

NextRound(i)
∆

= [i EXCEPT ![2] =@+ 1]

NextRoundP1b(Q , i) is the set of phase 1b messages for round NextRound(i) sent by acceptors in Q .

NextRoundP1b(Q , i)
∆

= MsgsFrom(Q , NextRound(i), “phase1b”)

Action CoordinatedRecovery(i , c, v) specifies our variation of coordinated recovery. With this action, coordi-
nator c attempts to recover from a collision in round i by sending round NextRound(i) phase 2a messages
for the value v . To ensure liveness, NextRound(i) should be a fair round, but this is not a requirement for
correctness.
CoordinatedRecovery(i , c, v)

∆

=

LET j
∆

= NextRound(i)

IN ∧ crnd[c]≺ j

∧ ∃Q ∈ Quorum(j ) :
∧∀a ∈ Q : ∃m ∈ NextRoundP1b(Q , i) : m.acc = a

∧ IsPickableVal(Q , j , NextRoundP1b(Q , i), v)

∧ cval ′ = [cval EXCEPT ![c] = v]

∧ crnd ′ = [crnd EXCEPT ![c] = j ]

∧ Send([type 7→ “phase2a” , rnd 7→ j , val 7→ v , coord 7→ c])

∧ UNCHANGED 〈aVars , oVars〉

coordLastMsg(c) is defined to be the last message that coordinator c sent, if crnd[c]≻ 〈0, 0〉.

coordLastMsg(c)
∆

=

IF cval[c] = none

THEN [type 7→ “phase1a” , rnd 7→ crnd[c]]

ELSE [type 7→ “phase2a” , rnd 7→ crnd[c],
val 7→ cval[c], coord 7→ c]

In action CoordRetransmit(c), coordinator c retransmits the last message it sent. This action is a stuttering
action (meaning it does not change the value of any variable, so it is a no-op) if that message is still in
sentMsg . However, this action is needed because c might have failed after first sending the message and
subsequently have been repaired after the message was removed from sentMsg .
CoordRetransmit(c)

∆

=

∧ crnd[c] ∈ RNum

∧ Send(coordLastMsg(c))

∧ UNCHANGED 〈aVars , cVars , amLeader , proposed ,
learned , goodSet〉

CoordNext(c) is the next-state action of coordinator c that is, the disjunct of the algorithm’s complete
next-state action that represents actions of that coordinator.
CoordNext(c)

∆

=

∨ ∃ i ∈ RNum : ∨Phase1a(i , c)
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∨ ∃v ∈ CStruct : ∨Phase2Start(i , c, v)

∨Phase2a(i , c, v)

∨CoordinatedRecovery(i , c, v)

∨CoordRetransmit(c)

Acceptor Actions

Action Phase1b(i , a) specifies the execution of phase 1b for round i by acceptor a.

Phase1b(i , a)
∆

=

∧ rnd[a]≺ i

∧ [type 7→ “phase1a” , rnd 7→ i] ∈ sentMsg

∧ rnd ′ = [rnd EXCEPT ![a] = i]

∧ Send([type 7→ “phase1b” , rnd 7→ i , vrnd 7→ vrnd[a],
vval 7→ vval[a], acc 7→ a])

∧ UNCHANGED 〈cVars , oVars , vrnd , vval〉

MsgsFromCoordQuorum(Q , i , phase) is defined to be the set of messages in sentMsg of type phase (which
may equal “phase1a” or “phase2a”) sent in round i by the coordinators in the set Q .
MsgsFromCoordQuorum(Q , r , phase)

∆

=

{m ∈ sentMsg : ∧ (m.type = phase)

∧ (m.coord ∈ Q)

∧ (m.rnd = r)}

Action Phase2b(i , a, v) specifies the execution of phase 2b for round i by acceptor a, upon receipt of either
a phase 2a message or a proposal (for a fast round) with value v . This action actually implements actions
Phase2bClassic and Phase2bFast of the previous specifications
Phase2b(i , a, v)

∆

=

∧ rnd[a] � i

∧ ∨ vrnd[a]≺ i

∨ vval[a]❁ v

∧ ∨ ∃Q ∈ CoordQuorum(i), u ∈ CStruct :
∧∀c ∈ Q : ∃m ∈ MsgsFromCoordQuorum(Q , i , “phase2a”) :

∧ c =m.coord
∧ u ⊑m.val

∧ ∨ ∧ vrnd[a]≺ i

∧ v = u

∨ ∧ vrnd[a] = i

∧AreCompatible(vval[a], u)

∧ v = vval[a]⊔ u

∨ ∧ i ∈ FastNum

∧ vrnd[a] = i

∧ ∃C ∈ proposed : v = vval[a] ∗∗C Sent in classic 2a.
∧ rnd ′ = [rnd EXCEPT ![a] = i]

∧ vrnd ′ = [vrnd EXCEPT ![a] = i]

∧ vval ′ = [vval EXCEPT ![a] = v]

∧ Send([type 7→ “phase2b” , rnd 7→ i , val 7→ v , acc 7→ a])

∧ UNCHANGED 〈cVars , oVars〉
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Action CollisionDetection(i , a) specifies the action acceptor a must take when it detects a collision on the
values proposed by a coordinator quorum or on the values accepted by an acceptor quorum for round i . In
such a case, acceptor a sends a phase1b message for round i + 1.
CollisionDetection(i , a)

∆

=

∧ rnd[a]� i

∧ ∨ ∃Q ∈ CoordQuorum(i) : collision in a multicoordinated round
∃m1, m2 ∈ MsgsFromCoordQuorum(Q , i , “phase2a”) :

∧m1.coord 6=m2.coord
∧¬AreCompatible(m1.val , m2.val)

∨ ∃Q ∈ Quorum(i) : collision in a fast round
∃m1, m2 ∈ MsgsFrom(Q , i , “phase2b”) :

∧m1.acc 6=m2.acc
∧¬AreCompatible(m1.val , m2.val)

∧ rnd ′ = [rnd EXCEPT ![a] = i]

∧ Send([type 7→ “phase1b” , rnd 7→ NextRound(i), vrnd 7→ vrnd[a],
vval 7→ vval[a], acc 7→ a])

∧ UNCHANGED 〈cVars , oVars , vrnd , vval〉

Action UncoordinatedRecovery(i , a, v) specifies our variation of uncoordinated recovery. With this ac-
tion, acceptor a attempts to recover from a collision in round i by sending a phase 2b message for round
NextRound(i) with value v .
UncoordinatedRecovery(i , a, v)

∆

=

LET j
∆

= NextRound(i)

IN ∧ j ∈ FastNum

∧ rnd[a]� i

∧ ∃Q ∈ Quorum(j ) :
∧∀b ∈ Q : ∃m ∈ NextRoundP1b(Q , i) : m.acc = b

∧ IsPickableVal(Q , j , NextRoundP1b(Q , i), v)

∧ rnd ′ = [rnd EXCEPT ![a] = j ]

∧ vrnd ′ = [vrnd EXCEPT ![a] = j ]

∧ vval ′ = [vval EXCEPT ![a] = v]

∧ Send([type 7→ “phase2b” , rnd 7→ j , val 7→ v , acc 7→ a])

∧ UNCHANGED 〈cVars , oVars〉

accLastMsg(a) is defined to be the last message sent by acceptor a, if rnd[a]≻ 〈0, 0〉

accLastMsg(a)
∆

=

IF vrnd[a]≺ rnd[a]

THEN [type 7→ “phase1b” , rnd 7→ rnd[a], vrnd 7→ vrnd[a],
vval 7→ vval[a], acc 7→ a]

ELSE [type 7→ “phase2b” , rnd 7→ rnd[a], val 7→ vval[a],
acc 7→ a]

In action AcceptorRetransmit(a) acceptor a retransmits the last message it sent.

AcceptorRetransmit(a)
∆

=

∧ rnd[a] ∈ RNum

∧ Send(accLastMsg(a))
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∧ UNCHANGED 〈aVars , cVars , amLeader , proposed ,
learned , goodSet〉

AcceptorNext(a) is the next-state action of acceptor a that is, the disjunct of the next-state action that
represents actions of that acceptor.
AcceptorNext(a)

∆

=

∨ ∃ i ∈ RNum : ∨Phase1b(i , a)

∨ ∃v ∈ CStruct : ∨Phase2b(i , a, v)

∨UncoordinatedRecovery(i , a, v)

∨CollisionDetection(i , a)

∨AcceptorRetransmit(a)

Other Actions

Action Propose(v) represents the proposal of a value v by some proposer.

Propose(v)
∆

=

∧ proposed ′ = proposed ∪ {v}
∧ UNCHANGED 〈aVars , cVars , amLeader , sentMsg ,

learned , goodSet〉

Action Learn(l , v) represents the learning of a value v by learner l .

Learn(l , v)
∆

=

∧ ∃ i ∈ RNum :
∃Q ∈ Quorum(i) :
∀a ∈ Q :
∃m ∈ sentMsg : ∧m.type = “phase2b”

∧m.rnd = i

∧m.acc = a

∧ v ⊑m.val
∧ learned ′ = [learned EXCEPT ![l] =@⊔ {v}]
∧ UNCHANGED 〈aVars , cVars , amLeader , sentMsg , proposed , goodSet〉

Action LeaderSelection allows an arbitrary change to the values of amLeader[c], for all coordinators c. Since
this action may be performed at any time, the specifiction makes no assumption about the outcome of leader
selection. (However, progress is guaranteed only under an assumption about the values of amLeader[c].)
LeaderSelection

∆

=

∧ amLeader ′ ∈ [Coord → BOOLEAN ]

∧ UNCHANGED 〈aVars , cVars , sentMsg , proposed ,
learned , goodSet〉

Action Fail(a) specifies the failure of agent a.

Fail(a)
∆

=

∧ a ∈ goodSet

∧ goodSet ′ = goodSet \{a}
∧ UNCHANGED 〈aVars , cVars , amLeader , sentMsg ,
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proposed , learned〉

Repair(a) specifies the recovery of agent a. For simplicity, we model the loss of state in crnd[a], cval[a], or
rnd[a] during recovery.
Repair(a)

∆

=

∧ a /∈ goodSet

∧ goodSet ′ = goodSet ∪ {a}
∧ IF a ∈ Coord

THEN ∧ crnd ′ = [crnd EXCEPT ![a][1] =@+ 1, ![a][2] = 0]
∧ cval ′ = [cval EXCEPT ![a] = none]

ELSE UNCHANGED cVars

∧ IF a ∈ Acceptor

THEN ∧ rnd ′ = [rnd EXCEPT ![a][1] =@+ 1, ![a][2] = 1]
ELSE UNCHANGED rnd

∧ UNCHANGED 〈vrnd , vval , amLeader , sentMsg , proposed , learned〉

Action FailOrRepair allows the failure or recovery of an agent a. Since this action may be performed at any
time, the specification makes no assumption about which agents are good. (However, progress is guaranteed
only under an assumption about the value of goodSet .)
FailOrRepair

∆

= ∃a ∈ (Coord ∪Acceptor) :
∨Fail(a)

∨Repair(a)

Action LoseMsg(m) removes message m from sentMsg . It is always enabled unless m is the last message sent
by an acceptor or coordinator in goodSet . Hence, the only assumption the specification makes about message
loss is that the last message sent by an agent in goodSet is not lost. Because sentMsg includes messages in an
agent’s output buffer, this effectively means that a non-failed process always has the last message it sent in its
output buffer, ready to be retransmitted.
LoseMsg(m)

∆

=

∧¬∨ ∧m.type = “phase1a”

∧ ∃c ∈ UNION CoordQuorum(m.rnd) :
∧m = coordLastMsg(c)

∧ c ∈ goodSet

∨ ∧m.type = “phase2a”

∧m = coordLastMsg(m.coord)
∧m.coord ∈ goodSet

∨ ∧m.type ∈ {“phase1b” , “phase2b”}
∧m = accLastMsg(m.acc)
∧m.acc ∈ goodSet

∧ sentMsg ′ = sentMsg \{m}
∧ UNCHANGED 〈aVars , cVars , amLeader , proposed ,

learned , goodSet〉

Action OtherAction is the disjunction of all actions other than ones peformed by acceptors or coordinators,
plus the LeaderSelection action (which represents leader-selection actions performed by the coordinators).
OtherAction

∆

=

∨ ∃v ∈ Cmd : Propose(v)
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∨ ∃v ∈ CStruct , l ∈ Learner : Learn(l , v)

∨LeaderSelection

∨FailOrRepair

∨ ∃m ∈ sentMsg : LoseMsg(m)

Next is the algorithm’s complete next-state action.

Next
∆

=

∨ ∃c ∈ Coord : CoordNext(c)

∨ ∃a ∈ Acceptor : AcceptorNext(a)

∨ OtherAction

Formula Spec is the complete specification of the Multi-coordinated Paxos algorithm without fairness.

Spec
∆

= Init ∧✷[Next]vars

The following are the safety properties of Generalized Consensus.

Nontriviality
∆

= ∀ l ∈ Learner :
✷(learned[l] ∈ Str(proposed))

Stability
∆

= ∀ l ∈ Learner , v ∈ CStruct :
✷((learned[l] = v)⇒ ✷(v ⊑ learned[l]))

Consistency
∆

= ∀ l1, l2 ∈ Learner :
✷AreCompatible(learned[l1], learned[l2])

The following theorem asserts the correctness of the algorithm.

THEOREM Spec⇒ ✷(TypeOK )∧Nontriviality

∧ Stability

∧Consistency



Appendix B

Log Service

The specifications presented in Sections 6.3 and 6.5, are simplified versions of our com-
plete specifications. For the unabridged versions, we used Lamport’s Temporal Logic of
Actions (TLA+) specification language [Lamport, 2002a]. The language borrows most of
its formalism from basic mathematics, and reading it should be straightforward except
maybe for a few constructs. The TLA+cheat-sheet should be enough to clarify any other
doubts[Lamport, 2002b].

B.1 Abstract Specification

B.1.1 Constants

This module specifies constants used by all the other specifications.
MODULE LogServiceConstants

This module specifies the LogService ’s constants.

The service’s constant parameters:
RM the set of resource managers.
TID the set of transaction ids.
Update the type update.
ApplyUpdate interface to database.
GetUpdate update at r, by t.

CONSTANTS RM , TID , Update,
ApplyUpdate( ),
GetUpdate( , )

NoRM
∆

= CHOOSE r : r /∈ RM

NoTID
∆

= CHOOSE t : t /∈ TID

199
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The environments’s constant parameters:
PID the set of all processes.

CONSTANTS PID

NoPID
∆

= CHOOSE p : p /∈ PID

B.1.2 Specification

MODULE LogService

This module specifies the LogService. That is, it specifies a centralized log service would look like, and how
resource managers should use it.

EXTENDS Naturals , FiniteSets , Sequences ,
LogServiceConstants

The environment’s variables:
badProc crashed processes
suspect suspicions.

VARIABLES badProc, Environments’s
suspect Who suspects whom?

The Service’s variables:
vHist the history of votes.
tHist the history of committed transactions
LastConcSet LastConcSet concurrent to the last committed.
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

VARIABLES vHist , tHist , rm2pid , Log service’s
LastConcSet

The Resource Managers’ variables:
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.

VARIABLES terminatingAt , Resource Manager’s
terminatedAt ,
pid2rm

The Transaction Managers’s variables:
termReq transactions requested to terminate.
part participants on each transaction.

VARIABLES termReq , Transaction Managers’
part

Defining some aliases.
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svars
∆

= 〈vHist , tHist , LastConcSet , rm2pid〉
rvars

∆

= 〈terminatingAt , terminatedAt , pid2rm〉
tvars

∆

= 〈part , termReq〉
evars

∆

= 〈badProc, suspect〉
avars

∆

= 〈svars , rvars , tvars , evars〉

Types
UNKNOWN

∆

= CHOOSE v : v /∈ {TRUE, FALSE}

Votes
∆

= [rm : RM , tr : TID , tset : SUBSET RM ,
vt : {“Commit” , “Abort”}, upd : Update]

Invariants

Type invariant.

TypeInvariant
∆

=

∧ vHist ∈ SUBSET Votes

∧ tHist ∈ Seq(SUBSET TID)

∧LastConcSet ∈ SUBSET TID

∧ rm2pid ∈ [RM → PID ∪ {NoPID}]
∧ terminatingAt ∈ [PID → SUBSET TID]

∧ terminatedAt ∈ [PID → SUBSET TID]

∧ pid2rm ∈ [PID → RM ∪ {NoRM }]
∧ part ∈ [TID → UNION {[S → PID] : S ∈ SUBSET RM }]
∧ termReq ∈ SUBSET TID

∧ badProc ∈ SUBSET PID

∧ suspect ∈ [PID → [PID → BOOLEAN ]]

Initial State
Init

∆

= No vote received. No transaction
committed,

No RM is incarnated. No trans-
actions terminating at any RM .
No transactions terminating at
any RM . No RM is incarnated.

∧ vHist = {}
∧ tHist = 〈〉
∧LastConcSet = {}
∧ rm2pid = [r ∈ RM 7→ NoPID ]

∧ terminatingAt = [p ∈ PID 7→ {}]
∧ terminatedAt = [p ∈ PID 7→ {}]
∧ pid2rm = [r ∈ PID 7→ NoRM ]

∧ part = [t ∈ TID 7→ [e ∈ {} 7→ {}]] No participant in any transaction.
No termination request issued. No
bad process.∧ termReq = {}

∧ badProc = {}
∧ suspect = [p ∈ PID 7→ [q ∈ PID 7→ FALSE]]
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Operators

Operator IsInvolved(t , rm) checks whether rm is involved in transaction t .

IsInvolved(t , rm)
∆

= IF ∃v ∈ vHist : v .tr = t ∧ rm ∈ v .rm

THEN TRUE

ELSE IF ∃v ∈ vHist : v .tr = t ∧ v .vt = “Commit”

THEN FALSE

ELSE UNKNOWN

Operator Updates(rm) gets the updates performed by rm in committed transactions.

Updates(rm)
∆

=

LET UpdateOn(t)
∆

= (CHOOSE v ∈ vHist : v .tr = t ∧ v .rm = rm).upd

upd[i ∈ 0 . . Len(tHist)]
∆

=

IF i = 0

THEN 〈〉
ELSE Append(upd[i − 1], {UpdateOn(t) :

t ∈ {e ∈ tHist[i] :

IsInvolved(rm, e) = TRUE}})

IN upd[Len(tHist)]

Operator Outcome(h, t) gives the termination status of transaction t , considering the history of votes h.

Outcome(h, t)
∆

= IF ∃v ∈ h : v .tr = t ∧ v .vt = “Abort”

THEN “Abort”

ELSE IF ∃v ∈ h :

∧ v .tr = t

∧∀p ∈ v .tset :

∃vv ∈ h : ∧ vv .rm = p

∧ vv .tr = t

∧ vv .vt = “Commit”

THEN “Commit”

ELSE “Undefined”

Actions

Environment

This action crashes a good process.

Crash
∆

= ∧ ∃p ∈ (PID \badProc) : badProc′ = badProc ∪ {p}
∧ UNCHANGED 〈suspect〉

This action changes the suspicion status.
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ChangeSuspicion
∆

= ∧ ∃p ∈ (PID \badProc), q ∈ PID :
∧ p 6= q

∧ suspect ′ = [suspect EXCEPT ![p][q] = ¬@]
∧ UNCHANGED 〈badProc〉

EnvActions:
• process crash.
• change suspicions.

EnvActions
∆

= ∧ ∨Crash

∨ChangeSuspicion

∧ UNCHANGED 〈svars , rvars , tvars〉

Transaction Manager

Adds a resource manager to a non-terminated transaction.

The transaction manager will only succeed in the adding a resource manager r to a transaction t if r was not

crashed by the time it was contacted, and replied to operation request.
t has not tried to
terminate yet. r

has been incarnated,
replied to an opera-
tion, and was not a
participant yet

AddRM
∆

= ∧ ∃ t ∈ (TID \ termReq),
r ∈ {r ∈ RM : ∧ rm2pid[r] 6= NoPID

∧ rm2pid[r] /∈ badProc} :
∧ r /∈ DOMAIN part[t]

∧ part ′ = [part EXCEPT ![t] =
[e ∈ DOMAIN @∪ {r} 7→ IF e ∈ DOMAIN @

THEN @[e]
ELSE rm2pid[r]]]

∧ UNCHANGED 〈termReq , rm2pid〉

Request the termination of a transaction.

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate before,

and that executed some operation.

RequestTerm
∆

= ∧ ∃ t ∈ (TID \ termReq) : t has not tried to terminate yet.
∧ part[t] 6= 〈〉
∧ termReq ′ = termReq ∪ {t}

∧ UNCHANGED 〈part , rm2pid〉

The disjunction of Transaction Manager’s actions.
• Add a resource manager as a participant.
• Try to terminate a transaction.

TMActions
∆

= ∧ ∨AddRM

∨RequestTerm

∧ UNCHANGED 〈svars , rvars , evars〉

Log Service
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Action Incarnate(pid , rm) is executed by process pid to incarnate resource manager rm.

Incarnate
∆

=

LET ApplyUpdates(u)
∆

=

LET apply[i ∈ 1 . . Len(u)]
∆

=

IF i = Len(u) THEN ApplyUpdate(u[i])

ELSE ApplyUpdate(u[i])∧ apply[i + 1]

IN IF u = 〈〉 THEN TRUE

ELSE apply[1]

IN ∃p ∈ PID \badProc, r ∈ RM :
∧ pid2rm[p] = NoRM

∧ ∨ rm2pid[r] = NoPID

∨ rm2pid[r] 6= NoPID ∧ suspect[p][rm2pid[r]]

∧ rm2pid ′ = [rm2pid EXCEPT ![r] = p]

∧ pid2rm ′ = [pid2rm EXCEPT ![p] = r]

∧ApplyUpdates(Updates(r))

∧ UNCHANGED 〈terminatingAt , terminatedAt , vHist , tHist , LastConcSet〉

Action Vote(v) adds v to vHist , if not there yet.

Vote(v)
∆

= Voted transactions not
terminated yet.LET ConcSet(vh)

∆

= {t ∈ {v .tr : ∧ v ∈ vh} :
Outcome(vh, t) = “Undefined”}

Commits
∆

= ∧Outcome(vHist ′, v .tr) = “Commit”

∧ ∨ ∧ v .tr ∈ LastConcSet

∧ tHist ′ = [tHist EXCEPT ![Len(tHist)] =@∪ {v .tr}]
∧LastConcSet ′ = LastConcSet \{v .tr}

∨ ∧ v .tr /∈ LastConcSet

∧ tHist ′ = Append(tHist , {v .tr})
∧LastConcSet ′ = ConcSet(vHist ′)\{v .tr}

∧ UNCHANGED rm2pid

Aborts
∆

= ∧Outcome(vHist ′, v .tr) = “Abort”

∧ UNCHANGED 〈tHist , LastConcSet , rm2pid〉

IN ∧¬∃ov ∈ vHist : ∧ ov .rm = v .rm
∧ ov .tr = v .tr Add v to vHist

∧ vHist ′ = vHist ∪ {v}
∧ StayUndef ∨Commits ∨Aborts

Action Terminate(rm, t) is executed by rm to step towards transaction t ’s termination.

VoteForMyself (r , t)
∆

=

∧ t ∈ (termReq

\ (terminatingAt[rm2pid[r]]∪ terminatedAt[rm2pid[r]]))
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∧ terminatingAt ′ = [terminatingAt EXCEPT ![rm2pid[r]] =@∪ {t}]
∧ ∨Vote([rm 7→ r , tr 7→ t , tset 7→ DOMAIN part[t], Vote

commit.
Vote
abort.

vt 7→ “Commit” , upd 7→GetUpdate(r , t)])

∨Vote([rm 7→ r , tr 7→ t , tset 7→ {r}, vt 7→ “Abort” , upd 7→ {}])
∧ UNCHANGED 〈terminatedAt〉

VoteForOthers(r , t)
∆

= rm tried to termi-
nate t t is stuck.∧ t ∈ terminatingAt[rm2pid[r]]

∧Outcome(vHist , t) = “Undefined”

∧ ∃ s ∈ DOMAIN part[t] :
∧ suspect[rm2pid[r]][rm2pid[s]]

∧Vote([rm 7→ s , tr 7→ t , tset 7→ DOMAIN part[t],
vt 7→ “Abort” , upd 7→ {}])

∧ UNCHANGED 〈terminatingAt , terminatedAt〉

Learn(r , t)
∆

=

∧Outcome(vHist , t) 6= “Undefined” Since t has terminated, rm learns it.
∧ terminatingAt ′ = [terminatingAt EXCEPT ![rm2pid[r]] =@\{t}]
∧ terminatedAt ′ = [terminatedAt EXCEPT ![rm2pid[r]] =@∪ {t}]
∧ UNCHANGED 〈svars〉

Terminate
∆

=

∃ r ∈ RM , t ∈ TID : r is a participant of t . the process is
alive, and is still the same∧ r ∈ DOMAIN part[t]

∧ part[t][r] /∈ badProc

∧ part[t][r] = rm2pid[r]

∧ ∨VoteForMyself (r , t)

∨VoteForOthers(r , t)

∨Learn(r , t)

∧ UNCHANGED 〈pid2rm〉

RMActions
∆

=

∧ ∨ Incarnate

∨Terminate

∧ UNCHANGED 〈tvars , evars〉

Specification
Next

∆

= ∨RMActions

∨TMActions

∨EnvActions

Spec
∆

= Init ∧✷[Next]〈svars, tvars,rvars,evars〉

Theorems

The specification is type safe.
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THEOREM Spec⇒ ✷TypeInvariant

AC-Validity If an RM decides to commit a transaction, then all RMs voted to commit the transaction.

AC Validity
∆

= ∀ t ∈ TID : Outcome(vHist , t) = “Commit”

⇒∀ r ∈ DOMAIN part[t] :
∃v ∈ vHist : ∧ v .rm = r

∧ v .tr = t

∧ v .vote = “Commit”

AC-Agreement It is impossible for one RM to commit a transaction and another one to abort the transaction.

AC Agreement
∆

= TRUE From the definition of Outcome.

AC-Non-Triviality If all RMs vote to commit the transaction and no RM is suspected throughout the execution
of the protocol, then the decision is commit.
AC Non Triviality

∆

= ∀ t ∈ TID :
∧∀ r , s ∈ part[t] : ✷(¬suspect[rm2pid[r]][rm2pid2[s]])
∧∀ r ∈ part[t] : ∃v ∈ vHist : ∧ v .rm = r

∧ v .t = t

∧ v .vt = “Commit”

⇒
✸Outcome(vHist) = “Commit”

AC-Termination Non-faulty RMs eventually decide.

AC Termination
∆

=

∧∀ t ∈ TID : ✸✷(Outcome(vHist , t) ∈ {“Commit” , “Abort”})
∧∀ t ∈ TID : ∀ r ∈ part[t] : ✸✷(t ∈ terminatedAt[r])

THEOREM Spec⇒ ∧AC Validity ∧AC Non Triviality ∧AC Termination

B.1.3 Correctness

We want to prove that the log service’s specification (LSS) we gave at Section 6.3 satisfies
the atomic commitment and the R-Consistency properties, recalled below. We first prove
an invariant of the algorithm and then proceed to prove each property individually.

• AC-Validity If an RM decides to commit a transaction, then all RMs voted to commit
the transaction.

• AC-Agreement It is impossible for one RM to commit a transaction and another one
to abort the transaction.

• AC-Non-Triviality If all RMs vote to commit the transaction and no RM is suspected
throughout the execution of the protocol, then the decision is commit.
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• AC-Termination Non-faulty RMs eventually decide.

• Durability Committed data is saved by the system such that, even in the event of a
failure and system restart, the data is available in its correct state.

Invariant 1 At any point in time there is at most one process incarnating any given resource

manager.

PROOF: At the initial state, defined by Init , no resource manager is incarnated by any pro-
cess. Resource managers are incarnated only by executing action Incarnate, that replaces
the previous resource manager by the new one. Therefore, at most one process can be
incarnating a resource manager at any point in time, and this relation is kept in rm2pid .

Invariant 2 Given a transaction t , if Outcome(vHist , t) 6=“Undefined” at some point in time,

then it will equal Outcome(vHist , t) at any later time.

PROOF: The variable vHist is only changed in action Vote, where a vote v is added to vHist

only if there was no other vote for the same transaction v .tr and resource manager v .rm
invHist . Therefore, the only change allowed to vHist is the addition of new votes.
At the initial state vHist = {} and, by the definition of action Outcome, Outcome({}, t)
equals “Undefined”. From this state, “Abort” and “Commit” votes for t can be added to
vHist .
By the definition of Outcome, if an “Abort” is ever added, then Outcome(vHist , t) will equal
“Abort” at any future evaluation. If a “Commit” vote is added for each resource manager
involved in t , then Outcome(vHist , t) will equal “Commit” and, because no “Abort” vote for
t could be added later, it will equal “Commit” at any future evaluation.

Proposition 13 (AC-Valitidy) LSS satisfies the AC-Validity property.

PROOF: By the specification, the only action that issues “Commit” votes is action VoteForMyself .
As its name suggests, the action is executed for a resource manager r only to cast its own
vote and, therefore, a vote v such that v .vt =“Commit” and v .rm = r can only be casted by
r itself.
By specification, Outcome(vHist , t) will equal “Commit” only if a “Commit” vote has been
issued for t from all resource managers involved. By the previous paragraph, we know that
each resource manager involved in t must have issued its own “Commit” vote for t , and the
AC-Validity property is true.

Proposition 14 (AC-Agreement) LSS satisfies the AC-Validity property.



208 Appendix B. Log Service

PROOF: Suppose that Outcome(vHist , t) evaluated to “Commit” at some point in time for
some transaction t . By the initial state it was initially evaluated to “Undefined” and turned
to “Commit” at some later state. By the Invariant A.2, it must have turned directly from
“Undefined” to “Commit”, and will be “Commit” on any future evalution. Therefore, any
resource manager either sees “Commit” or “Undefined”; because a resource manager will
give t for terminated only if Outcome(vHist , t) 6=“Undefined”, all resource managers will
see the same termination outcome. Changing “Commit” for “Abort” renders the equivalent
result, and therefore the AC-Agreement property is true.

Proposition 15 (AC-Non-Triviality) LSS satisfies the AC-Non-Triviality property.

PROOF: By the specification, for any transaction t , a resource manager will only vote “Abort”
abort on behalf of another resource manager if it suspects that it is crashed. If there are no
suspicions, then all resource manager will vote for themselves. If no resource manager votes
“Abort” for itself, then only “Commit” votes will be issued and added to vHist . Because, by
assumption, all crashes are eventually suspected, the lack of suspicions implies that no
resource manager crashed. Therefore, eventually all resource managers involved in t will
have their votes added to vHist and, at this point in time, Outcome(vHist , t) will turn from
“Undefined” to “Commit”, satisfying the AC-Non-Triviality property.

To prove the next property we must assume some kind of fairness on the system; we
assume the following: actions that become enabled and remain in such state until executed,
are eventually executed. This property is equivalent to the Weak Fairness described in
[Lamport, 2002a].

Proposition 16 (AC-Termination) LSS satisfies the AC-Termination property.

Assuming that any transaction t that is started will eventually be requested to terminate,
resource managers will eventually crash or vote for themselves. As, by assumption, non-
faulty resource managers eventually suspect any crashed ones and vote on their behalf if
they have issued their own votes, eventually some “Abort” vote or all “Commit” votes for
t will be gathered by the log service, t will be terminated, and resource managers that
did not crash will learn the transaction’s outcome, hence, satisfying the AC-Termination

property.

Proposition 17 (Durability) LSS satisfies the Durability property.

Let s be the state of some given database. We denote by s .u the state obtained by
applying an update u to the database at state s . To prove the the Durability property we use
the following assumptions regarding this change of states. We call two transactions “non-
concurrent” if their termination procedure was executed within non-overlapping periods of
time.
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Assumption 6 Applying an update is a deterministic operation. That is, given two databases

at states s1 and s2 and and update u, (s1 = s2)⇒ (s1.u = s2.u).

Assumption 7 Updates to different data items are commutable. That is, given two updates u1

and u2 and a database in some state s , if u1 and u2 do not write to the same data item, then

s .u1.u2 = s .u2.u1.

Assumption 8 Concurrent transactions do not access the same data items. I.e., if two trans-

actions execute their commit procedure in parallel, then they do not read items written by each

other.

PROOF SKETCH: We divide the proof in several steps. First we show that any non-concurrent transactions that
committed, who possibly accessed the same data items, are totally ordered in tHist , according to their termi-
nation order. Then we show that the reincarnation procedure apply the updates of committed transactions in
the same order they were committed (the order in tHist) and, finally, show that this ensures that a recovered
resource manager has the same committed stated as before crashing or being replaced.

1. ASSUME: (C ,≤C ) is the poset where C is the set of committed transactions of some run
of the system, ≤C their commit order, and
vHist = (H ,≤H ), in that run.

PROVE: ∀t1, t2 ∈ C : t1 ≤C t2⇒ t1 ≤H t2

PROOF: Let t1 and t2 be two non-concurrent transactions that committed and, without
loss of generality, let t1 be the one that committed first. By the specification, all resource
managers involved in t1 executed the action Vote with “Commit” vote for t1 before any
has voted for t2.
By the definition of Vote, when the first vote for t1 was issued, t1 was added to ConcSet .
After the last vote, t1 was removed from ConcSet and added to vHist , and LastConcSet

was changed to a set not containing t2. When t2 receives its first vote to commit, it is
added to ConcSet , and upon the last vote, it is removed from ConcSet and added to
vHist . Because t2 cannot belong to the LastConcSet defined when t1 was committed, t2

will belong to a set in tHist different from the one t1 belongs, by the specification.
Recalling the meaning of the data-structure tHist , if a transaction t1 belongs to the set
tHist[i] for some natural number i , then t1 ≤H t2, for any transaction t2 that belongs to
tHist[j ] for any j > i .

2. ASSUME: r is a resource manager,
t is a transaction that committed, and
r was involved in t .

PROVE: If Updates(r) is evaluated after t committed, then
∃i ∈ 1..Len(Updates(r)) : Updates(r)[i] = u,
where u are the updates executed by r on transaction t .
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PROOF: Because t committed, by the definition of Vote, there must be a set in tHist to
whom t belongs. By de definition of Updates and IsInvolved , r will be identified as
participant of t and, by the definition of UpdateOn, inside the definition of Updates , r ’s
updates on t are in Updates(r).

3. ASSUME: r is a resource manager,
t1 and t2 are non-concurrent transactions,
t1 and t2 committed,
t1 committed before t2,
r was involved in t1 and t2,
r ’s updates on t1 and t2 are u1 and u2, respectively.

PROVE: (Updates(r)[i] = u1)∧ (Updates(r)[j ] = u2)⇒ i < j

PROOF: The definition of Updates constructs Updates(r) accessing tHist backwards, but
orderly. Because each update is added to tHist before the previous one in the sequence,
the final result is that updates are in the same order as their respective transaction. By
the step 2, both u1 and u2 are in Updates(r) and, by step 1, t1 is ordered before t2 in
tHist , and u1 appear before u2 in Updates(r).

4. Q.E.D.
PROOF: By the definition of ApplyUpdates , updates are applied sequentially. Conse-
quently, by steps 1,2, and 3, all updates of non-concurrent transactions are applied in
the recovering resource manager in the same order they were originally executed. By
Assumption 8, concurrent transactions access only different items and are, by Assump-
tion 7, commutable. Finally, by Assumption 8, the recovering resource manager must
have the same committed state as in the previous incarnation.
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B.2 Coordinated Implementation

B.2.1 Specification

MODULE CoordLogService

This module is specifies the log service’s Coordinated Implementation.

EXTENDS Naturals , FiniteSets , Sequences ,

LogServiceConstants ,

Consensus

CONSTANTS Coord

The environment’s variables:
badProc processes that crashed
suspect process X process suspicions.
msgs messages sent.

VARIABLES badProc,

suspect ,

msgs

The Coordinators’s variables:
vHistAt votes received per coordinator.
tHistAt transactions that committed.
recSet set of awaiting recovery transactions.
bSet sets of votes to be proposed.
instances instance to be used by the coordinator(s).

VARIABLES vHist ,

tHist ,

recSet ,

bSet ,

instances

The Resource Managers’ variables:
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.
pid2rm PID 7→ RM.
incarns the incarnation of each rm.
outcome local view of Outcome.

VARIABLES terminatingAt ,

terminatedAt ,

pid2rm,

incarns ,

outcome
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The Transaction Managers’s variables:
termReq transactions requested to terminate.
part participants on each transaction, and incarnating process.

VARIABLES termReq ,
part

Defining some aliases.

svars
∆

= 〈vHist , tHist , recSet , bSet , instances〉
rvars

∆

= 〈terminatingAt , terminatedAt , pid2rm, incarns , outcome〉
tvars

∆

= 〈part , termReq〉
evars

∆

= 〈badProc, suspect〉
ovars

∆

= 〈decision〉
avars

∆

= 〈svars , rvars , tvars , evars , ovars , msgs〉

Types
Incarnating

∆

= CHOOSE p : p /∈ (PID ∪ {NoRM })

Vote extended with PID

EVotes
∆

= [rm : RM , tr : TID , tset : SUBSET RM ,
vt : {“Commit” , “Abort”}, upd : Update, pid : PID]

Votes to incarnate a resource manager.
IncarnT

∆

= [vt : {“Incarnate”}, pid : PID , rm : RM ]

Types of messages exchanged.
Msgs

∆

= [type : {“Recover”}, rm : RM , pid : PID]∪
[type : {“Recovered”}, rm : RM , pid : PID ,
upd : Seq(Update), inc : Nat]∪
[type : {“Incarnated”}, rm : RM , inc : Nat]∪
[type : {“Vote”}, rm : RM , pid : PID , tr : TID ,
tset : SUBSET RM , vt : {“Commit” , “Abort”}, upd : Update]∪
[type : {“Terminated”}, tr : TID , out : {“Commit” , “Abort”}]

Invariants

Type invariant.

TypeInvariant
∆

=

∧ vHist ∈ SUBSET EVotes

∧ tHist ∈ Seq(TID ∪ IncarnT )

∧ bSet ∈ [Coord → SUBSET (EVotes ∪ IncarnT )]

∧ recSet ∈ SUBSET IncarnT

∧ instances ∈ Nat

∧ terminatingAt ∈ [PID → SUBSET TID]

∧ terminatedAt ∈ [PID → SUBSET TID]
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∧ pid2rm ∈ [PID → RM ∪ {Incarnating , NoRM }]
∧ outcome ∈ [PID → [TID → {“Undefined” , “Abort” , “Commit”}]]
∧ part ∈ [TID → UNION {[S → PID] : S ∈ SUBSET RM }]
∧ termReq ∈ SUBSET TID

∧ badProc ∈ SUBSET PID

∧ suspect ∈ [PID → [PID → BOOLEAN ]]

∧msgs ∈ SUBSET Msgs

∧ConsensusTypeInv

Initial State
Init

∆

= No vote received,
no transaction com-
mitted, nor being
committed.

∧ vHist = {}
∧ tHist = 〈〉
∧ bSet = [c ∈ Coord 7→ {}]
∧ recSet = [c ∈ Coord 7→ {}]
∧ instances = 0 No transactions termi-

nating. No transac-
tions terminating. No
RM is incarnated.

∧ terminatingAt = [p ∈ PID 7→ {}]
∧ terminatedAt = [p ∈ PID 7→ {}]
∧ pid2rm = [r ∈ PID 7→ NoRM ]

∧ outcome = [p ∈ PID 7→ [t ∈ TID 7→ “Undefined”]]

∧ incarns = [p ∈ PID 7→ 0] No transaction started.
No termination request
issued. No bad process.

No message sent

∧ part = [t ∈ TID 7→ [e ∈ {} 7→ {}]]
∧ termReq = {}
∧ badProc = {}
∧ suspect = [p ∈ PID 7→ [q ∈ PID 7→ FALSE]]

∧msgs = {}
∧ConsensusInit

Operators

The pid of the process currently incarnating r .
rm2pid(r)

∆

=

IF ∃p ∈ PID , i ∈ 1 . . Len(tHist) :
∧ tHist[i] = [vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]

∧¬∃ j ∈ i + 1 . . Len(tHist), op ∈ PID :
tHist[j ] = [vt 7→ “Incarnate” , pid 7→ op, rm 7→ r]

THEN CHOOSE p ∈ PID :
∃ i ∈ 1 . . Len(tHist) :
∧ tHist[i] = [vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]

∧¬∃ j ∈ i + 1 . . Len(tHist), op ∈ PID :
tHist[j ] = [vt 7→ “Incarnate” , pid 7→ op, rm 7→ r]

ELSE NoPID

Operator Outcome(h, t) gives the termination status of transaction t , considering the history of votes h.
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Outcome(h, t)
∆

=

IF ∃v ∈ h : v .tr = t ∧ v .vt = “Abort”

THEN “Abort”

ELSE IF ∃v ∈ h :
∧ v .tr = t

∧∀p ∈ v .tset :
∃vv ∈ h : ∧ vv .rm = p

∧ vv .tr = t

∧ vv .vt = “Commit”

THEN “Commit”

ELSE “Undefined”

Actions

Environment

This action crashes a good process.

Crash
∆

=

∧ ∃p ∈ (PID \badProc) : badProc′ = badProc ∪ {p}
∧ UNCHANGED 〈suspect〉

This action changes the suspicion status.

ChangeSuspicion
∆

=

∧ ∃p ∈ (PID \badProc), q ∈ PID :
∧ p 6= q

∧ suspect ′ = [suspect EXCEPT ![p][q] = ¬@]
∧ UNCHANGED 〈badProc〉

EnvActions:
• process crash.
• change suspicions.

EnvActions
∆

= ∧Crash ∨ChangeSuspicion

∧ UNCHANGED 〈msgs , svars , tvars , rvars , ovars〉

Transaction Manager

Adds a resource manager to a non-terminated transaction.

The transaction manager will only succeed in the adding a resource manager r to a transaction t if r was not

crashed by the time it was contacted, and replied to operation request.
AddRM

∆

= t has not tried to terminate yet.
r has been incarnated, replied
to an operation, and was not a
participant yet.

∧ ∃ t ∈ (TID \ termReq),
r ∈ {r ∈ RM : ∧ rm2pid(r) 6= NoPID

∧ rm2pid(r) /∈ badProc} :
∧ r /∈ DOMAIN part[t]
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∧ part ′ = [part EXCEPT ![t] =
[e ∈ DOMAIN @∪ {r} 7→ IF e ∈ DOMAIN @

THEN @[e]
ELSE rm2pid(r)]]

∧ UNCHANGED 〈termReq〉

Request the termination of a transaction.

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate before,

and that executed some operation.

RequestTerm
∆

= ∧ ∃ t ∈ (TID \ termReq) : t has not tried to terminate yet.
∧ part[t] 6= 〈〉
∧ termReq ′ = termReq ∪ {t}

∧ UNCHANGED 〈part〉

The disjunction of Transaction Manager’s actions.
• Add a resource manager as a participant.
• Try to terminate a transaction.

TMActions
∆

= ∧ ∨AddRM

∨RequestTerm

∧ UNCHANGED 〈rvars , evars , svars , msgs , ovars〉

Log Service

Starts the incarnate procedure.

IncarnateStart(p, r)
∆

= p is neither incarnating
nor trying and r is not in-
carnated or its process is
supected.

∧ pid2rm[p] = NoRM

∧ ∨ rm2pid(r) = NoPID

∨ rm2pid(r) 6= NoPID ∧ suspect[p][rm2pid(r)]

∧ pid2rm ′ = [pid2rm EXCEPT ![p] = Incarnating]

∧msgs ′ =msgs ∪ {[type 7→ “Recover” , pid 7→ p, rm 7→ r]}
∧ UNCHANGED 〈incarns〉

Ends the incarnate procedure.

IncarnateEnd(p, r)
∆

=

LET ApplyUpdates(u)
∆

=

LET apply[i ∈ 1 . . Len(u)]
∆

=

IF i = Len(u) THEN ApplyUpdate(u[i])

ELSE ApplyUpdate(u[i])∧ apply[i + 1]

IN IF u = 〈〉 THEN TRUE

ELSE apply[1]

IN ∧ pid2rm[p] = Incarnating

∧ ∃m ∈ msgs :
∧m.type = “Recovered”
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∧m.pid = p

∧m.rm = r

∧ pid2rm ′ = [pid2rm EXCEPT ![p] = r]

∧ incarns ′ = [incarns EXCEPT ![p] =m.inc]

∧ApplyUpdates(m.upd)

∧ UNCHANGED 〈msgs〉

Executed by process p to give up incarnating r , when another process incarnates it.

Desincarnate(p, r)
∆

=

∧ incarns[p]> 0
∧ ∃m ∈ msgs :
∧m.type = “Incarnated”

∧m.rm = r

∧m.inc > incarns[p]

∧ incarns ′ = [incarns EXCEPT ![p] = 0]
∧ UNCHANGED 〈msgs , pid2rm〉

IncarnateStub is a “stub” to the abstract log service Incarnate action.

IncarnateStub
∆

=

∧ ∃p ∈ PID \badProc, r ∈ RM : p is good
∨ IncarnateStart(p, r)

∨ IncarnateEnd(p, r)

∨Desincarnate(p, r)

∧ UNCHANGED 〈terminatingAt , terminatedAt , outcome〉

VoteForMyself is executed to vote on some transaction.

VoteForMyself (r , t)
∆

=

rm has not tried to terminate t .
∧ t ∈ (termReq \ (terminatingAt[part[t][r]]∪ terminatedAt[part[t][r]]))

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part[t][r]] =@∪ {t}]
∧ ∨msgs ′ =msgs ∪ {[type 7→ “Vote” , pid 7→ part[t][r], rm 7→ r ,

tr 7→ t , tset 7→ DOMAIN part[t], Vote
com-
mit.

Vote
Abort .

vt 7→ “Commit” , upd 7→GetUpdate(r , t)]}
∨msgs ′ =msgs ∪ {[type 7→ “Vote” , pid 7→ part[t][r], rm 7→ r ,

tr 7→ t , tset 7→ {r}, vt 7→ “Abort” , upd 7→ {}]}
∧ UNCHANGED 〈terminatedAt , outcome〉

VoteForOthers is executed to vote for some slow participant.

VoteForOthers(r , t)
∆

= rm tried to terminate t but did
not succeed yet.∧ t ∈ terminatingAt[part[t][r]]

∧ outcome[part[t][r]][t] = “Undefined”

∧¬∃m ∈ msgs :
∧m.type = “Terminated”

∧m.tr = t

∧ ∃ s ∈ DOMAIN part[t] :



B.2. Coordinated Implementation 217

∧ suspect[part[t][r]][part[t][s]]

∧msgs ′ =msgs ∪
{[type 7→ “Vote” , pid 7→ part[t][s], rm 7→ s , tr 7→ t , Send an

tset 7→ DOMAIN part[t], vt 7→ “Abort” , upd 7→ {}]} abort vote.
∧ UNCHANGED 〈terminatingAt , terminatedAt , outcome〉

Learn action is performed when a new transaction has terminated.

Learn(r , t)
∆

= outcome[t] is undefined but t

terminated.∧ outcome[part[t][r]][t] = “Undefined”

∧ ∃m ∈ msgs :
∧m.type = “Terminated”

∧m.tr = t

∧ outcome ′ = [outcome EXCEPT ![part[t][r]][t] =m.out]

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part[t][r]] =@\{t}]
∧ terminatedAt ′ = [terminatedAt EXCEPT ![part[t][r]] =@∪ {t}]
∧ UNCHANGED 〈msgs〉

Action TerminateStub is executed by rm to step towards transaction t ’s termination.

It is a “stub” to the abstract log service’s Terminate action.

TerminateStub
∆

=

∧ ∃ r ∈ RM , t ∈ TID : r is a participant of t . the process is
still alive, and sees itself as the rm.
first attempt to terminate t . other at-
tempts Learn that it was decided.

∧ r ∈ DOMAIN part[t]

∧ part[t][r] /∈ badProc

∧ pid2rm[part[t][r]] = r

∧ ∨VoteForMyself (r , t)

∨VoteForOthers(r , t)

∨Learn(r , t)

∧ UNCHANGED 〈incarns , pid2rm〉

The disjunction of Resource Manager’s actions.
• Execute the incarnation procedure.
• Try to terminate a transaction.

RMActions
∆

=

∧ ∨ IncarnateStub

∨TerminateStub

∧ UNCHANGED 〈tvars , evars , ovars , svars〉

These two actions implement the handling of incarnation requests.

IncarnateRequest
∆

=

∧ ∃p ∈ PID , r ∈ RM , c ∈ Coord , m ∈ msgs :
∧m.type = “Recover” ∧m.pid = p ∧m.rm = r

∧¬∃ i ∈ 1 . . Len(tHist) :
tHist[i] = [vt 7→ “Incarnate” , pid 7→ p, rm 7→ r] p is not incarnating.

∧ recSet ′ = [recSet EXCEPT ![c] =@∪
{[vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]}]
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∧ bSet ′ = [bSet EXCEPT ![c] =@∪
{[vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]}]

∧ UNCHANGED 〈vHist , tHist , instances , ovars , msgs〉

IncarnateReply
∆

=

LET Urm(tinc)
∆

=

LET try[i ∈ 0 . . tinc]
∆

=

IF i = 0
THEN 〈〉 Not reincarn

transaction,

is committed be-
fore tinc, r took
part in it.

ELSE try[i − 1] ◦ IF ∧ tHist[i] ∈ TID

∧ ∃v ∈ vHist :
∧ v .tr = tHist[i]

∧ v .rm = tHist[tinc].rm
THEN 〈(CHOOSE v ∈ vHist :

∧ v .tr = tHist[i]

∧ v .rm = tHist[tinc].rm).upd〉
ELSE 〈〉

IN try[tinc]

Inc(tinc)
∆

= Cardinality({i ∈ 1 . . tinc :
∧ tHist[i] /∈ TID

∧ tHist[i].rm = tHist[tinc].rm})

IN ∃ tinc ∈ 1 . . Len(tHist), c ∈ Coord :
∧ tHist[tinc] ∈ recSet[c]

∧ recSet ′ = [recSet EXCEPT ![c] =@\{tHist[tinc]}]
∧msgs ′ =msgs ∪

{[type 7→ “Recovered” , rm 7→ tHist[tinc].rm, upd 7→ Urm(tinc),
inc 7→ Inc(tinc), pid 7→ tHist[tinc].pid],
[type 7→ “Incarnated” , rm 7→ tHist[tinc].rm, inc 7→ Inc(tinc)]}

∧ UNCHANGED 〈vHist , tHist , bSet , instances , ovars〉

This action handles votes issued by participants.

VoteRequest
∆

=

∃c ∈ Coord , m ∈ msgs :
∧m.type = “Vote”

∧¬∃ev ∈ (bSet[c]∩EVotes)∪ vHist :
∧ ev .rm =m.rm
∧ ev .tr =m.tr
∧ bSet ′ = [bSet EXCEPT ![c] =@∪

{[pid 7→m.pid , rm 7→m.rm, tr 7→m.tr ,
tset 7→m.tset , vt 7→m.vt , upd 7→m.upd]}]

∧ UNCHANGED 〈vHist , tHist , recSet , instances , msgs , ovars〉
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The next two actions are used in proposing and deciding consensus instances. It is used for handlling votes
as well as incarnation changes.
CoordPropose

∆

=

∧ ∃c ∈ Coord :
∧ bSet[c] 6= {}
∧Propose(instances , bSet[c])

∧ UNCHANGED 〈svars , msgs〉

CoordDecide
∆

=

LET D
∆

= Decide(instances)

EVotesInD
∆

= {v ∈ D : ∧ v .vt ∈ {“Commit” , “Abort”}
∧ ¬∃ov ∈ vHist : ∧ ov .rm = v .rm

∧ ov .tr = v .tr}

V 2V (v)
∆

= [rm 7→ v .rm, tr 7→ v .tr , tset 7→ v .tset , pid 7→ v .pid ,
vt 7→ IF rm2pid(v .rm) = v .pid THEN v .vt ELSE “Abort” ,
upd 7→ IF rm2pid(v .rm) = v .pid THEN v .upd ELSE {}]

VotesInD
∆

= {V 2V (v) : v ∈ EVotesInD}

Set2Seq(S )
∆

=

LET set2seq[SS ∈ SUBSET S]
∆

=

IF SS = {} THEN 〈〉
ELSE LET ss

∆

= CHOOSE ss ∈ SS : TRUE

IN Append(set2seq[SS \{ss}], ss)

IN set2seq[S]

newCommitted
∆

= {t ∈ TID : ∧Outcome(vHist , t) = “Undefined”

∧Outcome(vHist ′, t) = “Commit”}

newTermMsgs
∆

= {[type 7→ “Terminated” , tr 7→ t , out 7→ “Commit”] :
t ∈ newCommitted}

∪
{[type 7→ “Terminated” , tr 7→ v .tr , out 7→ “Abort”] :

v ∈ {vv ∈ VotesInD : vv .vt = “Abort”}}

IncarnationReqInD
∆

= {i ∈ D : i .vt = “Incarnate”}

IN ∧D 6= NoProposal

∧ vHist ′ = vHist ∪VotesInD

∧msgs ′ =msgs ∪ newTermMsgs

∧ tHist ′ = tHist ◦ (IF newCommitted 6= {}
THEN Set2Seq(newCommitted)

ELSE 〈〉)
◦ Set2Seq(IncarnationReqInD)

∧ instances ′ = instances + 1
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∧ bSet ′ = [c ∈ Coord 7→ bSet[c]\D]
∧ UNCHANGED 〈recSet , ovars〉

The disjunction of Coordinator’s actions.
• Process requests to incarnate a resource manager.
• Process votes from resource managers.
• Handle consensus instances.

CoordActions
∆

=

∧ ∨ IncarnateRequest ∨ IncarnateReply

∨VoteRequest

∨CoordPropose ∨CoordDecide

∧ UNCHANGED 〈tvars , evars , rvars〉

Specification

The next-state action, as a disjunction of all possible action.

Next
∆

=

∨RMActions ∨CoordActions Implement RMActions

∨TMActions Implement TMActions

∨EnvActions Implement EnvActions

The specification.

Spec
∆

= Init ∧✷[Next]〈avars〉

Refinement Mapping
rm pid2rm

∆

= [r ∈ RM 7→ IF pid2rm[p] = “Incarnating” THEN NoRM

ELSE pid2rm[p]]

rm rm2pid
∆

= [r ∈ RM 7→ rm2pid(r)]

rm LastConcSet
∆

= {}

rm vHist
∆

= {[f ∈ DOMAIN v \{“pid”} 7→ v .f ] : v ∈ vHist}

rm tHist
∆

= LET Test(e)
∆

= e /∈ IncarnT

IN SelectSeq(vHist , Test)

B.2.2 Implementation Proof

To prove that the Coordinated Log Service (CLS) is, indeed, an implementation of the Log
Service’s specification (LS) we give a refinement mapping of the CLS’s variables to the LS’s,
and show that the execution of CLS’s actions implies the execution of one of LS’s actions,
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or in a stuttering step. For a thorough explanation of refinement mappings the reader is
referred to the following works: [Lamport, 1996] and [Abadi and Lamport, 1991].

We substitute every expression of the specification for an overlined expression with the
same name, meaning that any variable defined in its scope is replaced by an overlined
one, with the same name; these overlined variables witness the implementation of the
specification. We prove that these witnesses exist by defining them from the variables in
the implementation, i.e., by giving a refinement mapping.

The actual refinement is defined at the end of the specification. Below we simply rename
each definition to conform the overlined notation. Variables that are not redefined are the
same as in the implementation.

pid2rm
∆

= rm pid2rm

rm2pid
∆

= rm rm2pid

LastConcSet
∆

= rm LastConcSet

vHist
∆

= rm vHist

tHist
∆

= rm tHist

Proposition 18 Spec⇒ Spec

1. ASSUME: Init

PROVE: Init

PROOF: Except for LastConcSet and rm2pid , all the variables are initialized in Init ex-
actly as their overlined counterparts in Init. By the refinement mapping, LastConcSet

is always the empty set, therefore conforming the initialization in Init. Finally, by the
definition of operator rm2pid , tHist = 〈〉 implies that rm2pid maps from all resource
managers to NoPid .

2. ASSUME: Next

PROVE: Next∨ UNCHANGED 〈svars, tvars, rvars, evars〉
2.1. ASSUME: RMActions

PROVE: RMActions

2.1.1. ASSUME: IncarnateStub ∧ UNCHANGED 〈tvars ,evars〉
PROVE: ✸∧ Incarnate∨ UNCHANGED 〈svars , rvars〉

∧ UNCHANGED 〈tvars, evars〉



222 Appendix B. Log Service

PROOF SKETCH: We want to show that the execution of IncarnateStart(p, r) for some process p and
resource manager r leads to the execution IncarnateEnd(p, r), if p does not crash and its messages
are lost. Because IncarnateEnd(p, r) can only be executed if IncarnateStart(p, r) was previously ex-
ecuted and because the pre-conditions of Incarnate shared with IncarnateStart do not change until
IncarnateEnd is executed, and the conditions of Incarnate shared with IncarnateEnd complement
the set of Incarnate pre and post-conditions already true, the execution of IncarnateEnd implies an
Incarnate step. If just the start action is performed, then it implies a stuttering step of Spec.

PROOF: The IncarnateStub action is a disjunction of actions
• IncarnateStart ,
• IncarnateEnd , and
• Desincarnate

It is clear by the specification that action IncarnateEnd(p, r) cannot execute for
a resource manager r and process p before an IncarnateStart(p, r) is executed:
IncarnateEnd(p, r) only executes after receiving a message m = [type 7→ 〈Recovered〉, rm 7→
r ,pid 7→ p], and such message will not be sent by action IncarnateReply before a
vote v = [vt 7→ “Incarnate′′,pid 7→ p, rm 7→ r] is added to tHist . Hence, v

will only be added to tHist in action CoordDecide, after being proposed in action
CoordPropose. CoordPropose can only propose such value if it belongs to bSet[c],
for some coordinator c, what can only happen if a request message for p to incar-
nate r is received in action IncarnateRequest , and such message is only sent by the
execution of action IncarnateStart(p, r).
When IncarnateStart(p, r) is executed, it adds a “Recover” message with fields
pid = p and rm = r to msgs; this is the first pre-condition for action IncarnateRequest(p, r)
to execute. The second pre-condition is satisfied until action CoordDecide adds the
“Incarnate” vote for p and r to tHist , what can only happen if IncarnateRequest

has been executed first, since IncarnateRequest is the only action that creates “Incarnate”
votes.
When the action IncarnateRequest is executed, it adds an “Incarnate” vote for p

and r to bSet[c], for some coordinator c, making it not empty. This is the only
pre-condition for the CoordPropose action execute for coordinator c, and the action
is eventually executed. Since coordinators insist on proposing its bSet[c] until it is
empty, and only removes votes from it if they are decided in some instance, c will
keep proposing the “Incarnate” vote until it is decided or c crashes. Coordinators
are deterministic state machines, and can be replicated at will (their state is only
based on the outcomes of consensus instances) and, therefore, as long as coordina-
tors can recover after crashes or infinitely many of them are available, some coordi-
nator eventually completes the execution of IncarnateRequest and IncarnateReply .
By the consensus problem definition, C-Progress ensures that a decision will even-
tually be reached on each instance (given that the minimum number of acceptors
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eventually stay up long enough for the instances to finish). If p crashes, then the
request for incarnation is simply discarded or is decided but will be followed by
another request for the same r .
When an instance containing the vote for p to incarnate r is decided, the vote is
added to tHist , and action IncarnateReply will be enabled for all coordinators that
proposed it. If c crashes before this action is performed, p will be blocked and
never execute another action, as if it had crashed. Because the change made by
IncarnateStart(r ,p) to variable pid2rm[p] does not affect pid2rm, this would imply
that 〈svars, rvars〉 did not change.
Once IncarnateReply is performed, p will eventually receive the “Recovered” mes-
sage, unless c crashes, enabling action IncarnateEnd . By the definition of Urm, p

will receive all the updates performed by previous incarnations of r . By the defi-
nition of ApplyUpdates , the p will apply all the updates and recover the commit-
ted state r had on its previous incarnation. The pre condition of IncarnateStub,
IncarnatedStart , and IncarnatedEnd , and the post-conditions of IncarnateEnd im-
ply the pre and post-conditions of Incarnate.
By the assumption, variables in 〈tvars, evars〉 do not change.

2.1.2. ASSUME: TerminateStub ∧ UNCHANGED 〈tvars ,evars ,ovars , svars〉
PROVE: ✸∧ Terminate∨ UNCHANGED 〈svars, rvars〉

∧ UNCHANGED 〈tvars, evars〉
PROOF SKETCH: The pre-conditions of action TerminateStub are the same as those of Terminate. There-
fore, it is enough to show that each of TerminateStub ’s sub-actions, VoteForMyself , VoteForOthers ,
Learn, and the actions they lead to, imply a step of their equivalent overlined actions.

2.1.2.1. ASSUME: VoteForMyself (r , t)
PROVE: ✸∧ VoteForMyself(r, t)

∨ UNCHANGED 〈terminatingAt, vHist, tHist〉
∧ UNCHANGED 〈terminatedAt〉

Because the pre-condition and the first post-condition of both actions are the same,
it is enough to prove that the second post-condition of action VoteForMyself (r , t),
the addition of a message m to msgs , may the execution of Vote(v), where m is
“Vote” message and v is a vote, and the fields vt ,upd , tr , tset , and rm of m and v

are equal, or has no effect on variables 〈terminatingAt, vHist, tHist〉.
If message m is received by some coordinator c, a vote with its contents, there-
fore equal to v , is added to bSet[c], enabling the action CoordPropose. Action
CoordPropose will be executed with a proposal containing this vote until it is de-
cided and added to vHist by action CoordDecide, where all coordinators can see it
(vHist is changed deterministically based on the consensus outcomes, and would
be the same for all coordinators if represented independently at each one.), or
until c crashes. If no coordinator succeeds in getting the vote decided, then either
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another vote, resulting from the execution of VoteForOthers(r , t) will be decided,
or all resource managers involved in transaction t will have crashed before their
“Vote” messages are seen by non-faulty coordinators. It is up to the transaction
manager, to then vote to abort the transaction; in the case the transaction man-
ager also crashes and no vote for t is ever decided, t is simply forgotten, implying
that 〈svars, rvars〉 is kept unchanged.
CoordDecide also appends newly committed transactions to tHist : each transac-
tion is added in a different set, as if they were not concurrent, and LastConcSet is
always empty, ensuring its type invariance and constructing tHist in a way com-
patible with the specification of tHist. Because this is the only action to change
vHist and tHist , the mapping to vHist and tHist is correct.
〈tvars, evars〉 are kept since none of actions changes them.

2.1.2.2. ASSUME: VoteForOthers(r , t)
PROVE: ✸∧ VoteForOthers(r, t)∨ UNCHANGED 〈vHist, tHist〉

∧ UNCHANGED 〈terminatedAt, terminatingAt〉
PROOF: It is true by the same arguments of step 2.1.2.1.

2.1.2.3. ASSUME: Learn(r , t)
PROVE: ∧Learn(r, t)∨ UNCHANGED 〈terminatedAt, terminatingAt〉

∧ UNCHANGED 〈svars〉
PROOF: As action Learn(r , t) has the same post-conditions of Learn(r, t), it is
enough to show that the pre-conditions of the first imply the pre-conditions of
the latter. Since the reception of “Terminated” message for transaction t implies
that it was sent and since it is only sent by action CoordDecide if the transaction
has terminated, the reception of such message implies that the Outcome(vHist, t) 6=
“Undefined′′.

2.1.2.4. Q.E.D.
2.1.3. Q.E.D.

2.2. TMActions ⇒ TMActions

2.2.1. AddRM ⇒ AddRM

PROOF: Trivially true, since the their definitions are equal.
2.2.2. RequestTerm ⇒ RequestTerm

PROOF: Trivially true, since the their definitions are equal.
2.2.3. UNCHANGED 〈rvars ,evars , svars ,msgs ,ovars〉

⇒ UNCHANGED 〈svars, rvars, evars〉
PROOF:Clearly true since either the left-hand side of the expression contains all vari-
ables in the spec.

2.2.4. Q.E.D.
2.3. EnvActions ⇒ EnvActions
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PROOF: Trivially true, since their definitions are equal.
2.4. Q.E.D.

3. Q.E.D.

B.3 Uncoordinated Implementation

B.3.1 Specification

MODULE CoordLogService

This module is specifies the log service’s Coordinated Implementation.

EXTENDS Naturals , FiniteSets , Sequences ,
LogServiceConstants ,
Consensus

CONSTANTS Coord

The environment’s variables:
badProc processes that crashed
suspect process X process suspicions.
msgs messages sent.

VARIABLES badProc,
suspect ,
msgs

The Coordinators’s variables:
vHistAt votes received per coordinator.
tHistAt transactions that committed.
recSet set of awaiting recovery transactions.
bSet sets of votes to be proposed.
instances instance to be used by the coordinator(s).

VARIABLES vHist ,
tHist ,
recSet ,
bSet ,
instances

The Resource Managers’ variables:
terminatingAt transactions terminating at rm.
terminatedAt transactions terminated at rm.
pid2rm PID 7→ RM.
incarns the incarnation of each rm.
outcome local view of Outcome.
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VARIABLES terminatingAt ,
terminatedAt ,
pid2rm,
incarns ,
outcome

The Transaction Managers’s variables:
termReq transactions requested to terminate.
part participants on each transaction, and incarnating process.

VARIABLES termReq ,
part

Defining some aliases.

svars
∆

= 〈vHist , tHist , recSet , bSet , instances〉
rvars

∆

= 〈terminatingAt , terminatedAt , pid2rm, incarns , outcome〉
tvars

∆

= 〈part , termReq〉
evars

∆

= 〈badProc, suspect〉
ovars

∆

= 〈decision〉
avars

∆

= 〈svars , rvars , tvars , evars , ovars , msgs〉

Types
Incarnating

∆

= CHOOSE p : p /∈ (PID ∪ {NoRM })

Vote extended with PID

EVotes
∆

= [rm : RM , tr : TID , tset : SUBSET RM ,
vt : {“Commit” , “Abort”}, upd : Update, pid : PID]

Votes to incarnate a resource manager.
IncarnT

∆

= [vt : {“Incarnate”}, pid : PID , rm : RM ]

Types of messages exchanged.
Msgs

∆

= [type : {“Recover”}, rm : RM , pid : PID]∪
[type : {“Recovered”}, rm : RM , pid : PID ,
upd : Seq(Update), inc : Nat]∪
[type : {“Incarnated”}, rm : RM , inc : Nat]∪
[type : {“Vote”}, rm : RM , pid : PID , tr : TID ,
tset : SUBSET RM , vt : {“Commit” , “Abort”}, upd : Update]∪
[type : {“Terminated”}, tr : TID , out : {“Commit” , “Abort”}]

Invariants

Type invariant.

TypeInvariant
∆

=

∧ vHist ∈ SUBSET EVotes
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∧ tHist ∈ Seq(TID ∪ IncarnT )

∧ bSet ∈ [Coord → SUBSET (EVotes ∪ IncarnT )]

∧ recSet ∈ SUBSET IncarnT

∧ instances ∈ Nat

∧ terminatingAt ∈ [PID → SUBSET TID]

∧ terminatedAt ∈ [PID → SUBSET TID]

∧ pid2rm ∈ [PID → RM ∪ {Incarnating , NoRM }]
∧ outcome ∈ [PID → [TID → {“Undefined” , “Abort” , “Commit”}]]
∧ part ∈ [TID → UNION {[S → PID] : S ∈ SUBSET RM }]
∧ termReq ∈ SUBSET TID

∧ badProc ∈ SUBSET PID

∧ suspect ∈ [PID → [PID → BOOLEAN ]]

∧msgs ∈ SUBSET Msgs

∧ConsensusTypeInv

Initial State
Init

∆

= No vote received,
no transaction com-
mitted, nor being
committed.

∧ vHist = {}
∧ tHist = 〈〉
∧ bSet = [c ∈ Coord 7→ {}]
∧ recSet = [c ∈ Coord 7→ {}]
∧ instances = 0 No transactions termi-

nating. No transac-
tions terminating. No
RM is incarnated.

∧ terminatingAt = [p ∈ PID 7→ {}]
∧ terminatedAt = [p ∈ PID 7→ {}]
∧ pid2rm = [r ∈ PID 7→ NoRM ]

∧ outcome = [p ∈ PID 7→ [t ∈ TID 7→ “Undefined”]]

∧ incarns = [p ∈ PID 7→ 0] No transaction started.
No termination request
issued. No bad process.

No message sent

∧ part = [t ∈ TID 7→ [e ∈ {} 7→ {}]]
∧ termReq = {}
∧ badProc = {}
∧ suspect = [p ∈ PID 7→ [q ∈ PID 7→ FALSE]]

∧msgs = {}
∧ConsensusInit

Operators

The pid of the process currently incarnating r .
rm2pid(r)

∆

=

IF ∃p ∈ PID , i ∈ 1 . . Len(tHist) :
∧ tHist[i] = [vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]

∧¬∃ j ∈ i + 1 . . Len(tHist), op ∈ PID :
tHist[j ] = [vt 7→ “Incarnate” , pid 7→ op, rm 7→ r]

THEN CHOOSE p ∈ PID :
∃ i ∈ 1 . . Len(tHist) :
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∧ tHist[i] = [vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]

∧¬∃ j ∈ i + 1 . . Len(tHist), op ∈ PID :

tHist[j ] = [vt 7→ “Incarnate” , pid 7→ op, rm 7→ r]

ELSE NoPID

Operator Outcome(h, t) gives the termination status of transaction t , considering the history of votes h.

Outcome(h, t)
∆

=

IF ∃v ∈ h : v .tr = t ∧ v .vt = “Abort”

THEN “Abort”

ELSE IF ∃v ∈ h :

∧ v .tr = t

∧∀p ∈ v .tset :

∃vv ∈ h : ∧ vv .rm = p

∧ vv .tr = t

∧ vv .vt = “Commit”

THEN “Commit”

ELSE “Undefined”

Actions

Environment

This action crashes a good process.

Crash
∆

=

∧ ∃p ∈ (PID \badProc) : badProc′ = badProc ∪ {p}
∧ UNCHANGED 〈suspect〉

This action changes the suspicion status.

ChangeSuspicion
∆

=

∧ ∃p ∈ (PID \badProc), q ∈ PID :

∧ p 6= q

∧ suspect ′ = [suspect EXCEPT ![p][q] = ¬@]

∧ UNCHANGED 〈badProc〉

EnvActions:
• process crash.
• change suspicions.

EnvActions
∆

= ∧Crash ∨ChangeSuspicion

∧ UNCHANGED 〈msgs , svars , tvars , rvars , ovars〉

Transaction Manager

Adds a resource manager to a non-terminated transaction.
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The transaction manager will only succeed in the adding a resource manager r to a transaction t if r was not

crashed by the time it was contacted, and replied to operation request.
AddRM

∆

= t has not tried to terminate yet.
r has been incarnated, replied
to an operation, and was not a
participant yet.

∧ ∃ t ∈ (TID \ termReq),
r ∈ {r ∈ RM : ∧ rm2pid(r) 6= NoPID

∧ rm2pid(r) /∈ badProc} :
∧ r /∈ DOMAIN part[t]

∧ part ′ = [part EXCEPT ![t] =
[e ∈ DOMAIN @∪ {r} 7→ IF e ∈ DOMAIN @

THEN @[e]
ELSE rm2pid(r)]]

∧ UNCHANGED 〈termReq〉

Request the termination of a transaction.

The transaction manager can, at any time, try to terminate a transaction it has not tried to terminate before,

and that executed some operation.

RequestTerm
∆

= ∧ ∃ t ∈ (TID \ termReq) : t has not tried to terminate yet.
∧ part[t] 6= 〈〉
∧ termReq ′ = termReq ∪ {t}

∧ UNCHANGED 〈part〉

The disjunction of Transaction Manager’s actions.
• Add a resource manager as a participant.
• Try to terminate a transaction.

TMActions
∆

= ∧ ∨AddRM

∨RequestTerm

∧ UNCHANGED 〈rvars , evars , svars , msgs , ovars〉

Log Service

Starts the incarnate procedure.

IncarnateStart(p, r)
∆

= p is neither incarnating
nor trying and r is not in-
carnated or its process is
supected.

∧ pid2rm[p] = NoRM

∧ ∨ rm2pid(r) = NoPID

∨ rm2pid(r) 6= NoPID ∧ suspect[p][rm2pid(r)]

∧ pid2rm ′ = [pid2rm EXCEPT ![p] = Incarnating]

∧msgs ′ =msgs ∪ {[type 7→ “Recover” , pid 7→ p, rm 7→ r]}
∧ UNCHANGED 〈incarns〉

Ends the incarnate procedure.

IncarnateEnd(p, r)
∆

=

LET ApplyUpdates(u)
∆

=

LET apply[i ∈ 1 . . Len(u)]
∆

=

IF i = Len(u) THEN ApplyUpdate(u[i])
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ELSE ApplyUpdate(u[i])∧ apply[i + 1]

IN IF u = 〈〉 THEN TRUE

ELSE apply[1]

IN ∧ pid2rm[p] = Incarnating

∧ ∃m ∈ msgs :
∧m.type = “Recovered”

∧m.pid = p

∧m.rm = r

∧ pid2rm ′ = [pid2rm EXCEPT ![p] = r]

∧ incarns ′ = [incarns EXCEPT ![p] =m.inc]

∧ApplyUpdates(m.upd)

∧ UNCHANGED 〈msgs〉

Executed by process p to give up incarnating r , when another process incarnates it.

Desincarnate(p, r)
∆

=

∧ incarns[p]> 0
∧ ∃m ∈ msgs :
∧m.type = “Incarnated”

∧m.rm = r

∧m.inc > incarns[p]

∧ incarns ′ = [incarns EXCEPT ![p] = 0]
∧ UNCHANGED 〈msgs , pid2rm〉

IncarnateStub is a “stub” to the abstract log service Incarnate action.

IncarnateStub
∆

=

∧ ∃p ∈ PID \badProc, r ∈ RM : p is good
∨ IncarnateStart(p, r)

∨ IncarnateEnd(p, r)

∨Desincarnate(p, r)

∧ UNCHANGED 〈terminatingAt , terminatedAt , outcome〉

VoteForMyself is executed to vote on some transaction.

VoteForMyself (r , t)
∆

=

rm has not tried to terminate t .
∧ t ∈ (termReq \ (terminatingAt[part[t][r]]∪ terminatedAt[part[t][r]]))

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part[t][r]] =@∪ {t}]
∧ ∨msgs ′ =msgs ∪ {[type 7→ “Vote” , pid 7→ part[t][r], rm 7→ r ,

tr 7→ t , tset 7→ DOMAIN part[t], Vote
com-
mit.

Vote
Abort .

vt 7→ “Commit” , upd 7→GetUpdate(r , t)]}
∨msgs ′ =msgs ∪ {[type 7→ “Vote” , pid 7→ part[t][r], rm 7→ r ,

tr 7→ t , tset 7→ {r}, vt 7→ “Abort” , upd 7→ {}]}
∧ UNCHANGED 〈terminatedAt , outcome〉

VoteForOthers is executed to vote for some slow participant.
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VoteForOthers(r , t)
∆

= rm tried to terminate t but did
not succeed yet.∧ t ∈ terminatingAt[part[t][r]]

∧ outcome[part[t][r]][t] = “Undefined”

∧¬∃m ∈ msgs :
∧m.type = “Terminated”

∧m.tr = t

∧ ∃ s ∈ DOMAIN part[t] :
∧ suspect[part[t][r]][part[t][s]]

∧msgs ′ =msgs ∪
{[type 7→ “Vote” , pid 7→ part[t][s], rm 7→ s , tr 7→ t , Send an

tset 7→ DOMAIN part[t], vt 7→ “Abort” , upd 7→ {}]} abort vote.
∧ UNCHANGED 〈terminatingAt , terminatedAt , outcome〉

Learn action is performed when a new transaction has terminated.

Learn(r , t)
∆

= outcome[t] is undefined but t

terminated.∧ outcome[part[t][r]][t] = “Undefined”

∧ ∃m ∈ msgs :
∧m.type = “Terminated”

∧m.tr = t

∧ outcome ′ = [outcome EXCEPT ![part[t][r]][t] =m.out]

∧ terminatingAt ′ = [terminatingAt EXCEPT ![part[t][r]] =@\{t}]
∧ terminatedAt ′ = [terminatedAt EXCEPT ![part[t][r]] =@∪ {t}]
∧ UNCHANGED 〈msgs〉

Action TerminateStub is executed by rm to step towards transaction t ’s termination.

It is a “stub” to the abstract log service’s Terminate action.

TerminateStub
∆

=

∧ ∃ r ∈ RM , t ∈ TID : r is a participant of t . the process is
still alive, and sees itself as the rm.
first attempt to terminate t . other at-
tempts Learn that it was decided.

∧ r ∈ DOMAIN part[t]

∧ part[t][r] /∈ badProc

∧ pid2rm[part[t][r]] = r

∧ ∨VoteForMyself (r , t)

∨VoteForOthers(r , t)

∨Learn(r , t)

∧ UNCHANGED 〈incarns , pid2rm〉

The disjunction of Resource Manager’s actions.
• Execute the incarnation procedure.
• Try to terminate a transaction.

RMActions
∆

=

∧ ∨ IncarnateStub

∨TerminateStub

∧ UNCHANGED 〈tvars , evars , ovars , svars〉

These two actions implement the handling of incarnation requests.
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IncarnateRequest
∆

=

∧ ∃p ∈ PID , r ∈ RM , c ∈ Coord , m ∈ msgs :
∧m.type = “Recover” ∧m.pid = p ∧m.rm = r

∧¬∃ i ∈ 1 . . Len(tHist) :
tHist[i] = [vt 7→ “Incarnate” , pid 7→ p, rm 7→ r] p is not incarnating.

∧ recSet ′ = [recSet EXCEPT ![c] =@∪
{[vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]}]

∧ bSet ′ = [bSet EXCEPT ![c] =@∪
{[vt 7→ “Incarnate” , pid 7→ p, rm 7→ r]}]

∧ UNCHANGED 〈vHist , tHist , instances , ovars , msgs〉

IncarnateReply
∆

=

LET Urm(tinc)
∆

=

LET try[i ∈ 0 . . tinc]
∆

=

IF i = 0
THEN 〈〉 Not reincarn

transaction,

is committed be-
fore tinc, r took
part in it.

ELSE try[i − 1] ◦ IF ∧ tHist[i] ∈ TID

∧ ∃v ∈ vHist :
∧ v .tr = tHist[i]

∧ v .rm = tHist[tinc].rm
THEN 〈(CHOOSE v ∈ vHist :

∧ v .tr = tHist[i]

∧ v .rm = tHist[tinc].rm).upd〉
ELSE 〈〉

IN try[tinc]

Inc(tinc)
∆

= Cardinality({i ∈ 1 . . tinc :
∧ tHist[i] /∈ TID

∧ tHist[i].rm = tHist[tinc].rm})

IN ∃ tinc ∈ 1 . . Len(tHist), c ∈ Coord :
∧ tHist[tinc] ∈ recSet[c]

∧ recSet ′ = [recSet EXCEPT ![c] =@\{tHist[tinc]}]
∧msgs ′ =msgs ∪

{[type 7→ “Recovered” , rm 7→ tHist[tinc].rm, upd 7→ Urm(tinc),
inc 7→ Inc(tinc), pid 7→ tHist[tinc].pid],
[type 7→ “Incarnated” , rm 7→ tHist[tinc].rm, inc 7→ Inc(tinc)]}

∧ UNCHANGED 〈vHist , tHist , bSet , instances , ovars〉

This action handles votes issued by participants.

VoteRequest
∆

=

∃c ∈ Coord , m ∈ msgs :
∧m.type = “Vote”

∧¬∃ev ∈ (bSet[c]∩EVotes)∪ vHist :
∧ ev .rm =m.rm
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∧ ev .tr =m.tr
∧ bSet ′ = [bSet EXCEPT ![c] =@∪

{[pid 7→m.pid , rm 7→m.rm, tr 7→m.tr ,
tset 7→m.tset , vt 7→m.vt , upd 7→m.upd]}]

∧ UNCHANGED 〈vHist , tHist , recSet , instances , msgs , ovars〉

The next two actions are used in proposing and deciding consensus instances. It is used for handlling votes
as well as incarnation changes.
CoordPropose

∆

=

∧ ∃c ∈ Coord :
∧ bSet[c] 6= {}
∧Propose(instances , bSet[c])

∧ UNCHANGED 〈svars , msgs〉

CoordDecide
∆

=

LET D
∆

= Decide(instances)

EVotesInD
∆

= {v ∈ D : ∧ v .vt ∈ {“Commit” , “Abort”}
∧ ¬∃ov ∈ vHist : ∧ ov .rm = v .rm

∧ ov .tr = v .tr}

V 2V (v)
∆

= [rm 7→ v .rm, tr 7→ v .tr , tset 7→ v .tset , pid 7→ v .pid ,
vt 7→ IF rm2pid(v .rm) = v .pid THEN v .vt ELSE “Abort” ,
upd 7→ IF rm2pid(v .rm) = v .pid THEN v .upd ELSE {}]

VotesInD
∆

= {V 2V (v) : v ∈ EVotesInD}

Set2Seq(S )
∆

=

LET set2seq[SS ∈ SUBSET S]
∆

=

IF SS = {} THEN 〈〉
ELSE LET ss

∆

= CHOOSE ss ∈ SS : TRUE

IN Append(set2seq[SS \{ss}], ss)

IN set2seq[S]

newCommitted
∆

= {t ∈ TID : ∧Outcome(vHist , t) = “Undefined”

∧Outcome(vHist ′, t) = “Commit”}

newTermMsgs
∆

= {[type 7→ “Terminated” , tr 7→ t , out 7→ “Commit”] :
t ∈ newCommitted}

∪
{[type 7→ “Terminated” , tr 7→ v .tr , out 7→ “Abort”] :

v ∈ {vv ∈ VotesInD : vv .vt = “Abort”}}

IncarnationReqInD
∆

= {i ∈ D : i .vt = “Incarnate”}

IN ∧D 6= NoProposal

∧ vHist ′ = vHist ∪VotesInD
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∧msgs ′ =msgs ∪ newTermMsgs

∧ tHist ′ = tHist ◦ (IF newCommitted 6= {}
THEN Set2Seq(newCommitted)

ELSE 〈〉)
◦ Set2Seq(IncarnationReqInD)

∧ instances ′ = instances + 1

∧ bSet ′ = [c ∈ Coord 7→ bSet[c]\D]
∧ UNCHANGED 〈recSet , ovars〉

The disjunction of Coordinator’s actions.
• Process requests to incarnate a resource manager.
• Process votes from resource managers.
• Handle consensus instances.

CoordActions
∆

=

∧ ∨ IncarnateRequest ∨ IncarnateReply

∨VoteRequest

∨CoordPropose ∨CoordDecide

∧ UNCHANGED 〈tvars , evars , rvars〉

Specification

The next-state action, as a disjunction of all possible action.

Next
∆

=

∨RMActions ∨CoordActions Implement RMActions

∨TMActions Implement TMActions

∨EnvActions Implement EnvActions

The specification.

Spec
∆

= Init ∧✷[Next]〈avars〉

Refinement Mapping

rm pid2rm
∆

= [r ∈ RM 7→ IF pid2rm[p] = “Incarnating” THEN NoRM

ELSE pid2rm[p]]

rm rm2pid
∆

= [r ∈ RM 7→ rm2pid(r)]

rm LastConcSet
∆

= {}

rm vHist
∆

= {[f ∈ DOMAIN v \{“pid”} 7→ v .f ] : v ∈ vHist}

rm tHist
∆

= LET Test(e)
∆

= e /∈ IncarnT

IN SelectSeq(vHist , Test)
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B.3.2 Implementation Proof

To prove that the Coordinated Log Service (CLS) is, indeed, an implementation of the Log
Service’s specification (LS) we give a refinement mapping of the CLS’s variables to the LS’s,
and show that the execution of CLS’s actions implies the execution of one of LS’s actions,
or in a stuttering step. For a thorough explanation of refinement mappings the reader is
referred to the following works: [Lamport, 1996] and [Abadi and Lamport, 1991].

We substitute every expression of the specification for an overlined expression with the
same name, meaning that any variable defined in its scope is replaced by an overlined
one, with the same name; these overlined variables witness the implementation of the
specification. We prove that these witnesses exist by defining them from the variables in
the implementation, i.e., by giving a refinement mapping.

The actual refinement is defined at the end of the specification. Below we simply rename
each definition to conform the overlined notation. Variables that are not redefined are the
same as in the implementation.

pid2rm
∆

= rm pid2rm

rm2pid
∆

= rm rm2pid

LastConcSet
∆

= rm LastConcSet

vHist
∆

= rm vHist

tHist
∆

= rm tHist

Proposition 19 Spec⇒ Spec

1. ASSUME: Init

PROVE: Init

PROOF: Except for LastConcSet and rm2pid , all the variables are initialized in Init ex-
actly as their overlined counterparts in Init. By the refinement mapping, LastConcSet

is always the empty set, therefore conforming the initialization in Init. Finally, by the
definition of operator rm2pid , tHist = 〈〉 implies that rm2pid maps from all resource
managers to NoPid .

2. ASSUME: Next

PROVE: Next∨ UNCHANGED 〈svars, tvars, rvars, evars〉
2.1. ASSUME: RMActions

PROVE: RMActions

2.1.1. ASSUME: IncarnateStub ∧ UNCHANGED 〈tvars ,evars〉
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PROVE: ✸∧ Incarnate∨ UNCHANGED 〈svars , rvars〉
∧ UNCHANGED 〈tvars, evars〉

PROOF SKETCH: We want to show that the execution of IncarnateStart(p, r) for some process p and
resource manager r leads to the execution IncarnateEnd(p, r), if p does not crash and its messages
are lost. Because IncarnateEnd(p, r) can only be executed if IncarnateStart(p, r) was previously ex-
ecuted and because the pre-conditions of Incarnate shared with IncarnateStart do not change until
IncarnateEnd is executed, and the conditions of Incarnate shared with IncarnateEnd complement
the set of Incarnate pre and post-conditions already true, the execution of IncarnateEnd implies an
Incarnate step. If just the start action is performed, then it implies a stuttering step of Spec.

PROOF: The IncarnateStub action is a disjunction of actions
• IncarnateStart ,
• IncarnateEnd , and
• Desincarnate

It is clear by the specification that action IncarnateEnd(p, r) cannot execute for
a resource manager r and process p before an IncarnateStart(p, r) is executed:
IncarnateEnd(p, r) only executes after receiving a message m = [type 7→ 〈Recovered〉, rm 7→
r ,pid 7→ p], and such message will not be sent by action IncarnateReply before a
vote v = [vt 7→ “Incarnate′′,pid 7→ p, rm 7→ r] is added to tHist . Hence, v

will only be added to tHist in action CoordDecide, after being proposed in action
CoordPropose. CoordPropose can only propose such value if it belongs to bSet[c],
for some coordinator c, what can only happen if a request message for p to incar-
nate r is received in action IncarnateRequest , and such message is only sent by the
execution of action IncarnateStart(p, r).
When IncarnateStart(p, r) is executed, it adds a “Recover” message with fields
pid = p and rm = r to msgs; this is the first pre-condition for action IncarnateRequest(p, r)
to execute. The second pre-condition is satisfied until action CoordDecide adds the
“Incarnate” vote for p and r to tHist , what can only happen if IncarnateRequest

has been executed first, since IncarnateRequest is the only action that creates “Incarnate”
votes.
When the action IncarnateRequest is executed, it adds an “Incarnate” vote for p

and r to bSet[c], for some coordinator c, making it not empty. This is the only
pre-condition for the CoordPropose action execute for coordinator c, and the action
is eventually executed. Since coordinators insist on proposing its bSet[c] until it is
empty, and only removes votes from it if they are decided in some instance, c will
keep proposing the “Incarnate” vote until it is decided or c crashes. Coordinators
are deterministic state machines, and can be replicated at will (their state is only
based on the outcomes of consensus instances) and, therefore, as long as coordina-
tors can recover after crashes or infinitely many of them are available, some coordi-
nator eventually completes the execution of IncarnateRequest and IncarnateReply .
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By the consensus problem definition, C-Progress ensures that a decision will even-
tually be reached on each instance (given that the minimum number of acceptors
eventually stay up long enough for the instances to finish). If p crashes, then the
request for incarnation is simply discarded or is decided but will be followed by
another request for the same r .
When an instance containing the vote for p to incarnate r is decided, the vote is
added to tHist , and action IncarnateReply will be enabled for all coordinators that
proposed it. If c crashes before this action is performed, p will be blocked and
never execute another action, as if it had crashed. Because the change made by
IncarnateStart(r ,p) to variable pid2rm[p] does not affect pid2rm, this would imply
that 〈svars, rvars〉 did not change.
Once IncarnateReply is performed, p will eventually receive the “Recovered” mes-
sage, unless c crashes, enabling action IncarnateEnd . By the definition of Urm, p

will receive all the updates performed by previous incarnations of r . By the defi-
nition of ApplyUpdates , the p will apply all the updates and recover the commit-
ted state r had on its previous incarnation. The pre condition of IncarnateStub,
IncarnatedStart , and IncarnatedEnd , and the post-conditions of IncarnateEnd im-
ply the pre and post-conditions of Incarnate.
By the assumption, variables in 〈tvars, evars〉 do not change.

2.1.2. ASSUME: TerminateStub ∧ UNCHANGED 〈tvars ,evars ,ovars , svars〉
PROVE: ✸∧ Terminate∨ UNCHANGED 〈svars, rvars〉

∧ UNCHANGED 〈tvars, evars〉
PROOF SKETCH: The pre-conditions of action TerminateStub are the same as those of Terminate. There-
fore, it is enough to show that each of TerminateStub ’s sub-actions, VoteForMyself , VoteForOthers ,
Learn, and the actions they lead to, imply a step of their equivalent overlined actions.

2.1.2.1. ASSUME: VoteForMyself (r , t)
PROVE: ✸∧ VoteForMyself(r, t)

∨ UNCHANGED 〈terminatingAt, vHist, tHist〉
∧ UNCHANGED 〈terminatedAt〉

Because the pre-condition and the first post-condition of both actions are the same,
it is enough to prove that the second post-condition of action VoteForMyself (r , t),
the addition of a message m to msgs , may the execution of Vote(v), where m is
“Vote” message and v is a vote, and the fields vt ,upd , tr , tset , and rm of m and v

are equal, or has no effect on variables 〈terminatingAt, vHist, tHist〉.
If message m is received by some coordinator c, a vote with its contents, there-
fore equal to v , is added to bSet[c], enabling the action CoordPropose. Action
CoordPropose will be executed with a proposal containing this vote until it is de-
cided and added to vHist by action CoordDecide, where all coordinators can see it
(vHist is changed deterministically based on the consensus outcomes, and would
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be the same for all coordinators if represented independently at each one.), or
until c crashes. If no coordinator succeeds in getting the vote decided, then either
another vote, resulting from the execution of VoteForOthers(r , t) will be decided,
or all resource managers involved in transaction t will have crashed before their
“Vote” messages are seen by non-faulty coordinators. It is up to the transaction
manager, to then vote to abort the transaction; in the case the transaction man-
ager also crashes and no vote for t is ever decided, t is simply forgotten, implying
that 〈svars, rvars〉 is kept unchanged.
CoordDecide also appends newly committed transactions to tHist : each transac-
tion is added in a different set, as if they were not concurrent, and LastConcSet is
always empty, ensuring its type invariance and constructing tHist in a way com-
patible with the specification of tHist. Because this is the only action to change
vHist and tHist , the mapping to vHist and tHist is correct.
〈tvars, evars〉 are kept since none of actions changes them.

2.1.2.2. ASSUME: VoteForOthers(r , t)
PROVE: ✸∧ VoteForOthers(r, t)∨ UNCHANGED 〈vHist, tHist〉

∧ UNCHANGED 〈terminatedAt, terminatingAt〉
PROOF: It is true by the same arguments of step 2.1.2.1.

2.1.2.3. ASSUME: Learn(r , t)
PROVE: ∧Learn(r, t)∨ UNCHANGED 〈terminatedAt, terminatingAt〉

∧ UNCHANGED 〈svars〉
PROOF: As action Learn(r , t) has the same post-conditions of Learn(r, t), it is
enough to show that the pre-conditions of the first imply the pre-conditions of
the latter. Since the reception of “Terminated” message for transaction t implies
that it was sent and since it is only sent by action CoordDecide if the transaction
has terminated, the reception of such message implies that the Outcome(vHist, t) 6=
“Undefined′′.

2.1.2.4. Q.E.D.
2.1.3. Q.E.D.

2.2. TMActions ⇒ TMActions

2.2.1. AddRM ⇒ AddRM

PROOF: Trivially true, since the their definitions are equal.
2.2.2. RequestTerm ⇒ RequestTerm

PROOF: Trivially true, since the their definitions are equal.
2.2.3. UNCHANGED 〈rvars ,evars , svars ,msgs ,ovars〉

⇒ UNCHANGED 〈svars, rvars, evars〉
PROOF:Clearly true since either the left-hand side of the expression contains all vari-
ables in the spec.
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2.2.4. Q.E.D.
2.3. EnvActions ⇒ EnvActions

PROOF: Trivially true, since their definitions are equal.
2.4. Q.E.D.

3. Q.E.D.
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