
Gerenciamento do Ciclo de Vida de Dados de

Sensores: da Produção ao Consumo

Este exemplar corresponde à redação final da

Tese devidamente corrigida e defendida por

Gilberto Zonta Pastorello Jr e aprovada pela

Banca Examinadora.

Campinas, 19 de dezembro de 2008.

Tese apresentada ao Instituto de Computação,

unicamp, como requisito parcial para a ob-

tenção do t́ıtulo de Doutor em Ciência da Com-

putação.

i

ii

iii

Instituto de Computação

Universidade Estadual de Campinas

Gerenciamento do Ciclo de Vida de Dados de

Sensores: da Produção ao Consumo

Gilberto Zonta Pastorello Jr1

Dezembro de 2008

Banca Examinadora:

• Claudia M. Bauzer Medeiros (Orientadora)

• Altigran Soares da Silva

DCC–UFAM

• Antonio Alfredo Ferreira Loureiro

DCC–UFMG

• Edmundo Roberto Mauro Madeira

IC–UNICAMP

• Sandro Rigo

IC–UNICAMP

• Cristina Dutra de Aguiar Ciferri (suplente)

ICMC–USP

• Islene Calciolari Garcia (suplente)

IC–UNICAMP

1Trabalho desenvolvido com bolsa de doutorado FAPESP (processo número 2004/14052-3) 2005–2008.

v

c© Gilberto Zonta Pastorello Jr, 2008.

Todos os direitos reservados.

vii

À Chucrie Azure (in memoriam), de quem o

exemplo de dedicação, amor e carinho

nunca será esquecido.

ix

Agradecimentos

À Profa. Claudia, minha orientadora de mestrado e doutorado, por orientar, educar,

ensinar, aconselhar, encorajar, e principalmente por confiar em mim e em meu trabalho

durante todo esse tempo. Minha eterna gratidão.

À minha famı́lia, que sempre soube me amar e me aceitar. Em especial: minha avó,

Chucrie (in memoriam), quem sempre me ofereceu apoio incondicional, incentivou em

todos os momentos da minha vida, e cujo exemplo de dedicação nunca será esquecido;

minha tia Nazira, pela ajuda, pragmatismo e conselhos que me empurraram para frente

incontáveis vezes; minha mãe, Taufica, que sempre ficou do meu lado, mesmo que eu

estivesse errado; meu pai, Gilberto, por me incentivar a alcançar mais; minha irmã,

Adriana, quem me ensinou a deixar de lado o que não é essencial; minha irmã caçula,

Claudia, que, sempre teimosa, mostrou que teimosia não é sempre ruim; e, à Kelly, por

toda paciência e compreensão em muitos momentos dif́ıceis.

Aos meus amigos, sem quem nada disso valeria a pena. André, grande amigo e pes-

quisador que influenciou muito este trabalho. Celso, sua perspectiva inspiradora com

relação à ciência e disposição para fazer as coisas acontecerem. Senra, sempre animado,

sempre com um às na manga, e sempre pronto a ajudar as pessoas. Esse trio é dif́ıcil de

bater! Jaudete, por ajudar a manter meu pensamento honesto no final deste trabalho.

A essas pessoas agradeço ainda pela parceria e participação direta no desenvolvimento

deste trabalho. Agradeço ainda aos amigos do LIS de muitas épocas: Alan, Arnaldo,

Carla, Daniel, Evandro, Fábio, Leonardo, Lin, Mauŕıcio, Nielsen, e tantos mais, e prin-

cipalmente ao Prof. Ricardo pelo exemplo e orientação; aos amigos da cc99: Alexandre,

Rossi, Sandra, Sheila, Tomita, e muitos outros; e todos que fizeram desses últimos dez

anos de Unicamp algo incomparável.

À Profa. Ítala, do CLECH–UNICAMP, minha orientadora de iniciação cient́ıfica du-

rante a graduação, que me guiou de maneira exemplar nos primeiros passos da pesquisa

cient́ıfica, influenciando de forma definitiva minha escolha pela carreira em pesquisa.

Ao Prof. Brenelli, da FCM–UNICAMP, por toda ajuda em aspectos intanǵıveis mas

essenciais para o desenvolvimento deste trabalho.

xi

Ao Prof. Altigran, do DCC-UFAM, por ter me recebido em Manaus e ajudado a co-

nhecer vários pesquisadores de diversas áreas na cidade, expandindo a visão sobre tópicos

de pesquisa que foram usados neste trabalho e, mais importante, que servirão como base

para trabalhos futuros.

Aos professores do IC, que sempre instigaram a aprender e fazer funcionar o que

foi aprendido. Aos funcionários do IC, que mesmo tendo que fazer malabarismo com

tantas limitações conseguiram criar um ambiente produtivo e confortável no instituto. E

a todos que de alguma forma fazem parte da Unicamp, um lugar que sempre me inspirou

e estimulou, mesmo em uma simples caminhada pelo campus.

Em especial, agradeço aos membros das bancas examinadoras, tanto de qualificação

quanto de defesa de tese, Professores Altigran, Ariadne, Beatriz, Edmundo, Islene, Lou-

reiro, Mauro, Sandro, Wainer, por todos os questionamentos, sugestões e discussões que

me ajudaram a crescer como pesquisador.

Finalmente, este trabalho de pesquisa seria muito mais dif́ıcil, ou mesmo imposśıvel,

sem o apoio das agências de fomento à ciência e tecnologia. Especificamente, este traba-

lho foi financiado por uma Bolsa de Doutorado da Fundação de Amparo à Pesquisa do

Estado de São Paulo (FAPESP), através do processo de número 2004/14052-3 nos anos

de 2005 a 2008. Outras fontes de suporte incluem os Projetos WebMAPS financiados

pelo Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq) e o Projeto

eFarms financiado pelo Instituto FAPESP–Microsoft Research.

xii

Resumo

Dispositivos sensores estão se tornando bastante disseminados e vêm sendo aplicados

em diversos domı́nios, principalmente em pesquisa cient́ıfica. Entretanto, o aumento no

número e variedade desses sensores introduz problemas de gerenciamento dos dados gera-

dos, tais como a disponibilização de dados de sensores em diferentes taxas ou resoluções

temporais e espaciais. Este trabalho trata de quatro aspectos do gerenciamento de dados

de sensores para aplicações cient́ıficas: (i) prover acesso homogêneo a dispositivos sensores

heterogêneos e aos dados produzidos por eles; (ii) gerenciar a composição de operações

aplicadas a dados de sensores; (iii) oferecer funcionalidades de pré-processamento de dados

que sejam flex́ıveis e possam ser executadas antes da publicação dos dados; e, (iv) propa-

gar e criar anotações válidas (metadados) associadas aos dados durante todo seu ciclo de

vida. A solução proposta para o aspecto (i) envolve o encapsulamento uniforme de dados

e software, através da extensão de uma tecnologia de componentes chamada Componen-

tes de Conteúdo Digital (DCCs), oferecendo também a associação de anotações a esse

conteúdo. Tendo esses componentes como base, a solução proposta para (ii) é baseada no

uso de workflows cient́ıficos para coordenar a combinação de DCCs de dados e software. A

solução proposta para (iii) considera a invocação de workflows armazenados no provedor

de dados e a submissão de novas especificações de workflows para armazenamento e/ou

execução. Além disso, a solução usa as anotações dos DCCs para enriquecer consultas e

suas respostas. Finalmente, um mecanismo de propagação de anotações é proposto como

solução para (iv). As contribuições desta tese são apresentadas em um framework para

gerenciamento de dados de sensores, considerando aspectos de acesso, pré-processamento,

publicação e anotações de dados.

xiii

Abstract

Sensing devices are becoming widely disseminated, being applied in several domains,

noticeably in scientific research. However, the increase in their number and variety intro-

duces problems on managing the produced data, such as how to provide sensor data at

distinct rates or temporal resolutions for different applications, or how to pre-process or

format the data differently for each request. This work is concerned with tackling four

issues that arise in the management of sensor data for scientific applications: (i) providing

homogeneous access to heterogeneous sensing devices and their data; (ii) managing the

composition of operations applied to sensor data; (iii) offering flexible data pre-processing

facilities prior to sensor data publication; and, (iv) propagating and creating valid data

annotations (metadata) throughout the data life cycle. The proposed solution to issue (i)

is to uniformly encapsulate both software and data by extending a component technology

called Digital Content Components (DCCs), also allowing associated annotations. Using

these components as a basis, the proposed solution to (ii) is to apply scientific workflows

to coordinate the combination of data and software DCCs. The solution proposed to (iii)

involves invoking and posting workflow specifications from the data provider as well as

using the annotations on DCCs to enrich the queries and answers. Finally, an annotation

propagation mechanism is proposed as a solution to (iv). Our contributions are presented

within a framework for sensor data management, which unifies aspects of data access,

pre-processing, publication and annotation.

xv

Sumário

Resumo xiii

Abstract xv

1 Introdução 1

2 Problem Overview: The Sensor Data Life Cycle 5

2.1 Motivation . 5

2.2 Research Aspects . 6

2.3 Objectives and Contributions . 11

2.4 Thesis Organization . 14

3 A standards-based framework . . . 17

3.1 Introduction . 17

3.2 A framework for geospatial data management 19

3.3 Putting the framework to use . 24

3.3.1 Project overview . 24

3.3.2 Illustrating the data management framework in WebMAPS 25

3.3.3 Automating Acquisition: Paparazzi 29

3.3.4 Flexible publication . 30

3.4 Interoperability Approaches . 32

3.4.1 Selected Standards . 32

3.4.2 Services Approaches . 35

3.5 Related Work . 35

3.6 Concluding Remarks . 37

4 Accessing and Processing Sensing Data 39

4.1 Introduction . 39

4.2 Solution Basics . 41

4.2.1 Digital Content Components . 41

xvii

4.2.2 Overview of Our Solution . 42

4.3 Encapsulation of Resources . 44

4.3.1 Data Sources . 44

4.3.2 Encapsulation of Data Manipulation Functions 46

4.3.3 Encapsulation of Data . 47

4.4 Implementation Issues . 48

4.4.1 Data Encapsulation . 48

4.4.2 Data Sources Encapsulation . 49

4.4.3 Examples with sensors . 50

4.5 Alternative Solutions . 51

4.6 Concluding Remarks . 52

5 Applying Scientific Workflows to Manage Sensor Data 55

5.1 Introduction . 55

5.2 Revision on DCC and Encapsulation of Resources 57

5.3 Scientific Workflows . 59

5.3.1 Basic Concepts . 59

5.3.2 Management Workflows . 59

5.3.3 Validation Workflows . 61

5.3.4 Publication Workflows . 61

5.4 Implementation Issues . 62

5.5 Related Efforts . 63

5.6 Concluding Remarks . 64

6 Sensor Data Publication on the Web for Scientific Applications 65

6.1 Introduction . 65

6.2 DCCs and Resource Encapsulation . 66

6.2.1 DCC Basics . 66

6.2.2 Encapsulation of Data (Access and Manipulation) 67

6.3 Sensor Data Publication . 68

6.3.1 OGC Standards . 68

6.3.2 Accessing Sensor Data . 70

6.3.3 DCCs and the Standards . 70

6.4 Implementation . 73

6.5 Related Efforts . 74

6.6 Concluding Remarks . 74

xviii

7 Multimedia Semantic Annotation Propagation 75

7.1 Introduction . 75

7.2 Motivating Example . 77

7.3 The Annotation Propagation Problem . 78

7.3.1 Semantic Annotations . 78

7.3.2 Annotation Propagation . 78

7.4 Semantic Annotation Propagation . 80

7.4.1 Propagation Rules . 81

7.4.2 Ontological Relations . 82

7.5 Related Work . 84

7.6 Concluding Remarks . 85

8 Conclusões 87

8.1 Contribuições . 87

8.2 Extensões . 88

Bibliografia 91

xix

Lista de Figuras

2.1 Sensing devices spectrum. 6

2.2 Sensor data usage scenario. 12

3.1 Geospatial data usage scenario. 20

3.2 Computation and publication of NDVI series for a region. 25

3.3 Example of an average NDVI curve for Campinas region. 26

3.4 Google accessing data from WebMAPS in KML format. 30

3.5 WebMAPS embedding map generated by Google Maps. 31

3.6 Example of the Geo microformat in an XHTML page. 33

3.7 Example of a KML document. 34

4.1 Structure of a SingleSensorDCC. 41

4.2 DCC taxonomy for sensor sources. 42

4.3 Management Layers. 43

4.4 Screenshot comparing rainfall data. 50

4.5 Polling a TemperatureDCC. 51

5.1 Management layers. 56

5.2 DCC schematic structure. 58

5.3 An example of a management workflow for crop monitoring. 60

5.4 The main modules of the architecture. 62

6.1 A DCC for sensor access. 67

6.2 Mapping SML to DCC Metadata. 71

6.3 A multi-level integration example scenario combining DCC and SWE. . . . 72

6.4 A screen capture of the application. 73

7.1 Data transformation process. 77

7.2 Data and interface annotations. 80

7.3 Propagation Algorithm. 81

xxi

Caṕıtulo 1

Introdução

Dispositivos sensores vêm sendo utilizados em diversas áreas há décadas. Entretanto, nos

últimos anos três aspectos mudaram radicalmente o cenário do uso de sensores. Primeiro,

o número e a variedade desses sensores cresceu enormemente. Segundo, os tipos e domı́nios

de aplicação que usam dados de sensores também têm crescido bastante. Por último, as

tecnologias atuais para aquisição, armazenamento, manipulação e publicação desses dados

são insuficientes para disponibilizar esses dados adequadamente.

As soluções clássicas para a construção de aplicações que usam dados de sensores

envolvem controle total sobre o ciclo de vida desses dados, desde o sensor (produtor) até

a aplicação (consumidor). Isso apresenta diversos desafios, já que o sensor pode estar

geograficamente muito distante da aplicação. Além disso, aplicações diferentes podem

querer usar dados de um sensor e/ou muitos sensores diferentes podem vir a prover dados

para única uma aplicação. Com isso, há uma necessidade de uma solução mais flex́ıvel

para conectar os dois extremos: produtor e consumidor, ou seja, sensores e aplicações.

Além disso, o uso de sensores na Web abre um novo leque de problemas a serem resolvidos.

Os objetivos desta tese envolvem, portanto, prover soluções para problemas em geren-

ciamento de dados de sensores, considerando os seguintes aspectos:

• interoperabilidade na aquisição e publicação de dados;

• gerenciamento das operações de transformação aplicadas a dados de sensores, in-

cluindo as diversas combinações dessas operações;

• publicação, incluindo acesso a dados e metadados; e,

• atualização de metadados simultaneamente a transformações sofridas pelos conjun-

tos de dados associados.

Para alcançar esses objetivos, nossa solução é baseada nas seguintes soluções. Pri-

meiro, usar e estender um tipo especial de componente, Componente de Conteúdo Digital

1

2 Caṕıtulo 1. Introdução

(DCC), para encapsular conteúdo digital (dados, o acesso aos dados e conteúdo exe-

cutável). Segundo, usando as interfaces uniformes desses DCCs, especificar e executar

workflows cient́ıficos para melhorar o gerenciamento das operações de transformação de

dados. Terceiro, prover acesso aos dados de sensores (quer armazenados, quer em tempo

real), usando dois tipos de mecanismos de acesso: baseado em padrões e baseado em on-

tologias. Por último, a tese propõe um mecanismo para propagar as anotações associadas

a conjuntos de dados ao mesmo tempo em que esses conjuntos passam por transformações.

As contribuições desta tese são as seguintes:

1. A caracterização do cenário atual para gerenciamento de dados de sensores, apre-

sentada sob forma de camadas de processamento e representação de dados. Essa

caracterização auxilia o entendimento do escopo de problemas e soluções na área;

2. Provimento de acesso uniforme a dados, fontes de dados e funções de processa-

mento de dados de sensores através da adaptação de uma tecnologia de componentes

(DCCs). Alem disso, essa tecnologia de componentes provê mecanismos para dados

de sensores auto-descritivos. Este tipo de descrição é relevante para a publicação

desses dados, pois permite à aplicação consumidora determinar se um conjunto de

dados é adequado. Metadados, nesse caso, são tão importantes quanto os próprios

dados.

3. A proposta da utilização de workflows cient́ıficos para o gerenciamento de operações

de transformação de dados de sensores; e a proposta de categorias de workflows

cient́ıficos para o gerenciamento de dados de sensores. Além disso, workflows ci-

ent́ıficos foram explorados também para estender a expressividade de consultas.

4. A análise de padrões Web aplicáveis ao gerenciamento de dados de sensores, tais

como os propostos pelo OGC (Open Geospatial Consortium), e a comparação e

tradução desses padrões em descrições baseadas em ontologias. Isso permite que

aplicações usem descrições baseadas nos padrões ou baseadas em ontologias para

fazer consultas, obtendo resultados com a mesma precisão.

5. A proposta de um mecanismo para a atualização progressiva de metadados ao mesmo

tempo em que os dados que descrevem são modificados. Esse mecanismo gera au-

tomaticamente novos metadados, para serem associados aos dados de sáıda de uma

dada operação de transformação.

3

O texto está dividido nos seguintes caṕıtulos:

• Caṕıtulo 2. Visão geral dos problemas e desafios de pesquisa associados ao traba-

lho;

• Caṕıtulo 3. Descrição em camadas do cenário atual para gerenciamento de dados

de sensores;

• Caṕıtulo 4. Proposta de uma solução usando DCCs para prover acesso a dados

de sensores e para encapsular operações de manipulação desses dados;

• Caṕıtulo 5. Proposta da utilização de workflows cient́ıficos para gerenciar operações

de manipulação de dados de sensores;

• Caṕıtulo 6. Proposta da combinação de abordagens baseadas em padrões Web e

ontologias para prover mecanismos de acesso a dados de sensores na Web e proposta

de utilização de workflows cient́ıficos para pre-processar os dados antes de recebê-los;

• Caṕıtulo 7. Proposta de um mecanismo de propagação de anotações para atualizar

metadados ao mesmo tempo em que os dados sofrem alterações;

• Caṕıtulo 8. Conclusões do trabalho e suas posśıveis extensões.

Chapter 2

Problem Overview: The Sensor Data

Life Cycle

2.1 Motivation

Sensing devices have been used in several areas for decades. However, in the last decade,

three aspects have changed radically the scenario concerning this kind of device: (i)

their number and variety has grown enormously; (ii) application types and domains that

use sensor data are increasing; and, (iii) the possibility of making sensor data available,

overwhelms the current technologies for acquisition, storage, manipulation and publication

of these data.

The first aspect, caused mainly by the evolution of systems hardware, has enabled

acquisition of previously unthinkable amounts of data on physical phenomena. Sensors

are becoming ubiquitous in our daily lives and, what is more important to this work,

in scientific research in general. Sensor systems can range from tiny powerless devices

distributed as tags and used in large quantities to large and sophisticated equipment

embarked on satellites. Figure 2.1, adapted from [45], depicts this spectrum of sensing

devices.

While the devices at the left of the figure are usually sophisticated, large, expensive,

use complex sensing and communication schemes and produce large quantities of data,

at the right we have devices each of which is small, simple, cheap, with very limited

capabilities and produces very little quantities of data. However, the amounts of data

produced by the latter easily surpass the former because of their quantity. In the middle

range lies the complex devices, which are intended to be used in large quantities but also

have somewhat richer processing, storage and communication capabilities than those on

the right.

The second aspect shows the impact of the evolution of these devices on the possible

5

6 Chapter 2. Problem Overview: The Sensor Data Life Cycle

Figure 2.1: Sensing devices spectrum (from [45])

applications, spanning through different domains with very diverse sets of requirements

and complexity. Applications for sensors can range from validation of experiments in

astronomy and evaluation of global environmental conditions, to room confort control

and body monitoring. There are nevertheless clear intersections on the data requirements

of many such applications, with possibility of sharing the same sensor data sources. This

factor is pushed even further by the third aspect, discussed next.

In this work, an application is the main consumer for sensor data. However, its actual

implementation may be distributed, including code running within the sensors themselves.

This aspect is detailed futher in Section 2.2.

The classic solution for building applications that use sensor data involves the total

control of the data path from the sensor to the application. This is not only harder to

achieve currently, because the sensor can be in a location far away from the application,

but also undesirable: many different applications can profit from data of a sensor and also

many different sensors can provide data to an application. Therefore, there is need for a

flexible solution to connect these two extremes. Many problems arise when considering

the Web as a means to bridging this gap, but also, many possibilities are opened. This

thesis is focused on analysing these variables for composing a framework for sensor data

management using the Web as a primary communication mechanism.

The current scenario for sensor data management and the impedance between how

sensor data is acquired/stored and how the applications actually need them is further

detailed in Chapter 3. Chapters 4, 5 and 6 consider, respectively, sensor data acquisition,

manipulation and publication. Finally, Chapter 7 proposes a mechanism to automatically

update metadata associated with sensor data along this management path.

2.2 Research Aspects

This thesis concerns many aspects of computer science research, within the scenario of

sensor data management. Key issues considered were the following: data and process

2.2. Research Aspects 7

interoperability, data acquisition and publication, management of data transformation

operations, component- and service-based technologies, process management and scientific

workflows, web standards, and metadata evolution. These issues are briefly analysed in

the following paragraphs, associating them to the relevant thesis chapter(s).

Sensors – data generation and processing. Sensors and applications have the

two extreme roles in the sensor data lifecycle: producers and consumers, respectively.

Although this distinction is useful for conceptually understanding the sensor data lifecycle,

from the implementation point of view the disctiction between these extremes becomes

blurred. A sensor, or any sensor data source, may offer several processing capabilities that

might be not only useful but also essential to the development of an application. The

processing capabilities of current sensing systems, especially sensor networks, leverage

data collection and allow parts of an application to be implemented within the scope of

the sensor system. In this case, the sensor extreme of the cycle is not only producing the

data, but also helping the consumption; at the same time, the application is not running

independently from the sensor data production, but in resonance with it.

These mixed implementation strategies enable the creation of sensor data based ap-

plications that were unattainable before. As an example, an application for monitoring a

given space based on data collected by a large number of sensors could only be deployed

close to these sensors because of limited communication bandwidth. If the sensors them-

selves can selectively send data, based on the data’s relevance to the application, the user

end of the application can easily be deployed anywhere.

There is a set of processing functions that are more commonly used within sensor

systems such as data fusion or consistency checking. These functions allow better use of

the sensors’ capabilities, such as energy management in sensor networks, and increase the

variety of applications that can use these data.

Another issue concerns the time frames within which the data is need by an application.

We consider two base classes under this perspective: streamed and stored data. Streamed

data are often needed as soon as it is produced and is mainly used in monitoring, event

detection and action triggering applications. Sensor data that is stored and used as a

time-series has modeling and forecasting applications as their main consumers.

Data interoperability and associated issues. We classify data interoperability

regarding sensor data in two separate but related categories: (i) data acquisition interop-

erability, which is related to methods used to access and load data from sensors and also

from other sensor data providers (e.g., databases or data services); (ii) data publication

interoperability, which deals with how to make sensor data from a repository more readily

available and accessible.

The relationship between (i) and (ii) becomes clear considering that a data set acquired

by and stored at one site S1, which is responsible for its publication, may be the same data

8 Chapter 2. Problem Overview: The Sensor Data Life Cycle

set that will be loaded by another site S2, which must consider acquisition methods. If S1

uses access and representation mechanisms that S2 also understands, the communication

between them is straightforward; if not, adaptations must be made in one or both of them

so that data exchange can succeed.

These two categories correspond to two main aspects in data interoperability: data

representation and data access/exchange mechanisms. Data representation goes well be-

yond choosing a common binary or textual format (i.e., syntactic interoperability). It

also involves determining if a given data set is what was actually expected at both ends

(i.e., semantic interoperability). Associating descriptions to a data set helps interpreting

data and, thus, allows the evaluation of the data set appropriateness. These descriptions

are usually known as metadata. Making the interpretation of metadata a computer pro-

cessable task is the aim of standards and ontologies, which will be discussed later on in

this Section. Data access mechanisms specify how to request a given data set from a

data provider. It is usual for data access mechanisms to be the target of some process

interoperability solutions.

There are many challenges concerning data interoperability for sensor data, such as:

(i) finding standard ways for dealing with streamed data; (ii) solving temporal and spatial

resolution incompatibilities; (iii) determining standard representations for large data sets;

(iv) temporally and spatially cropping interest areas from data sets; and many others.

All chapters in this thesis attack interoperability issues. This work directly contributes

towards (i), and offers interfaces to support solutions to (ii)-(iv).

Process interoperability and associated issues. Process interoperability has

to do with how two different and independent systems can communicate to be able to

jointly carry out a task. One example is to use two such systems in conjunction to solve

a simulation problem. Once finished, the first system has to somehow know that it is

supposed to pass its results using some mechanism to the second system. Determining how

they can accomplish that characterizes many research efforts on process interoperability.

Object-oriented, component-based and service-based technologies are commonly known

approaches to tackle process interoperability. The last two were more thoroughly explored

in this work, notably in Chapters 4 and 6.

Component-based development advocates the construction of software as independent

modules (components) with well defined interfaces and a common communication mech-

anism. Each component is the result of the functional decomposition of a system. Two

components should not share state and should only communicate using messages. Service-

based development, on the other hand, is more focused on platform and service location

independence. The main differences from component-based to service-based development

is that the latter has a clear distributed nature and centers around a given process of

services. Components could also provide these features, but are not required to. The

2.2. Research Aspects 9

most common form of a service-based implementation involves Web services, which are

basically services that adhere to Web standards for their description, communication and

discovery.

Challenges in the area of component-based development include how to achieve effec-

tive separation of concerns, how to specify interfaces that are general enough for creating

product lines, performing large-scale testing on sets of interdependent components, and

creating processor parallelism-aware components. In service-based development, the so-

lutions and research are mainly being developed within the context of the Web. The

main challenges are related to the creation of standards for solving specific problems with

services such as transactions, security, composition, authentication, etc.

Standards, ontologies and metadata. Besides standards for Web services, there

are other standardization efforts aiming at improving interoperability of both data and

processes. Among these, we highlight: (i) XML and XMLSchema, which form the basis for

data representation formats with shared schemas specified for selected domains and/or

applications; (ii) extensions to Web service descriptions, also with specific schemas for

selected domains/applications. We point out two scientific domains that have widely

known initiatives: the geospatial domain, mainly within the Open Geospatial Consortium

(OGC) [75], and biodiversity, mainly within the DarwinCore initiative [33]. Both specify

XML-based data formatting and metadata structures and fields; OGC also specified Web

service extensions to deal with geospatial operations. This improves the semantic inter-

operability for both data and processes. Another initiative concerns health systems, and

standards such as [100] proposed by the World Health Organization.

Another step towards leveraging semantic interoperability is given by semantic ori-

ented technologies such as ontologies and standards from the Semantic Web initiative.

Ontologies are basically models of vocabularies shared by a given community in a specific

domain. The Semantic Web initiative has proposed standards for representing ontologies

such as RDF and OWL. RDF is a framework with a model that uses triples of the form

<subject, predicate, object> to describe relationships (predicate) among terms (subject

and object). It allows virtually any model to be represented in it and also has an XML

representation. OWL is a set of vocabularies of basic or general terms for RDF. It has

three representation levels, each allowing more flexible and more complex inferences to

be made.

The potential for automation in processing metadata can be improved by using ref-

erences to ontologies to compose metadata fields, structure and even some values. Every

computer that manipulates data described via references to ontology terms can have ac-

cess, through the Web, to the original ontologies, therefore being able to determine the

adequacy of the data set at hand.

Concerning standards, the main challenge is how to create and disseminate their use

10 Chapter 2. Problem Overview: The Sensor Data Life Cycle

in many domains with underdeveloped interoperability. Ontologies in Computer Science

have led to many research efforts, mainly involving knowledge representation techniques,

their application in data and systems modeling, the management of multiple ontologies

(including how to integrate them), and inference development based on models represented

in ontologies.

The thesis uses standards and ontologies as a means to support interoperability and

enhance queries on sensor data. For instance, when using a Web service for accessing data

sets, the semantics (or intended interpretation) of an output parameter of that service

may be unclear for an application using that service for the first time. Using standards

(such the ones from OGC [75]) or references to ontologies (such as NASA’s SWEET [93])

to describe the service and its interfaces makes the semantics of these interfaces clearer.

Digital Content Components. In this work, we adopted and extended a component-

based solution as the first step towards solving data and process interoperability issues.

The technology, called Digital Content Components (DCCs) [98, 99], uses metadata with

references to ontologies. Its main characteristics are: (i) being able to uniformly encapsu-

late both executable (programs, processes, etc.) and non-executable (data sets) content;

(ii) having a context description for its content, using references to ontologies; (iii) having

descriptions of interfaces to operations, also with references to ontologies; (iv) being in-

dependent of platform or programming environments. Semantic Web services, i.e., Web

services described with references to terms of ontologies, could also be used instead of

DCCs to attack data and process interoperability. Services have, however, two disadvan-

tages: they require a Web environment to be executed while DCCs do not, and they do

not allow direct encapsulation and packaging of data sets.

The other approach that could be used to achieve interoperability among data sources

and improved handling of data heterogeneity is the use of Semantic Web services. How-

ever, two factors weight in favor of adopting DCCs: (i) the underlying communication

mechanism for DCCs does not require a Web environment as is the case for Semantic

Web services, lessening the impact on communication preformance; and, (ii) DCCs na-

tively allow encapsulation of passive content, i.e., data, while this is not a feature for

which Semantic Web services were conceived for. Furthermore, DCCs are constructed to

be compatible with Semantic Web services, making these two approaches largely compat-

ible. Indeed, the interface description for the DCCs is based on WSDL and OWL-S. The

former is a widely used standard for describing Web services interfaces and latter is the

most developed proposal for Semantic Web services.

Regarding sensor data representation, we used DCCs to encapsulate and describe data

sets. Other components allowed access database management systems and data providing

services. This also included the development of components to access and load data from

sensor devices directly. With a common interface, these components allowed very diverse

2.3. Objectives and Contributions 11

data sources to be accessed uniformly. These aspects are detailed in Chapter 4.

We used the same principle regarding data publication. A specialized DCC hierarchy

was described to take care of data publication. These components were adapted to provide

access to the data following Web standards, such as the Web Feature Service (WFS) and

Web Map Service (WMS) from OGC. Actually, we specified mappings from Web standards

to ontologies to guarantee that one such DCC could answer queries with the same results

either way (i.e., using standards or ontologies). These results are covered by Chapter 6.

Scientific Workflows. The need for process composition leveraged the use of sci-

entific workflows for dealing with the issue of process management. Sensor data usually

must go through a lot of transformations before being finally consumed by an application.

The number of operations and all their possible combinations makes it hard to manage

the transformations. By using scientific workflows we not only allow a user to clearly

visualize and modify the process as a whole, but also have control over documentation of

the execution. Given the dynamic nature of sensors and observed phenomena, workflows

themselves can change dynamically. Transformation operations and their coordination

using scientific workflows is discussed in more detail in Chapter 5. In Chapter 6 there is

also a discussion on how workflows can be applied to allow flexible combination of general

transformation operations within a query.

Metadata evolution. The last research aspect has to do with metadata evolution.

As the sensor data goes through a series of transformations, their associated metadata

becomes less accurate or even totally wrong. At each step, new metadata should be asso-

ciated to a transformed data set in order to maintain a correct description. This problem

is known as metadata evolution or annotation propagation, considering metadata items to

be annotations. This problem is usually dealt with manually and only at significant mile-

stones in the data transformation processes. This is an error prone and tedious process,

besides the potential loss of descriptions along the transformation process. In Chapter 7

we propose a mechanism for automating the propagation of annotations to data sets by

means of what we call semantic annotations, in which annotations have references to

ontologies.

2.3 Objectives and Contributions

The main goal of this thesis is to provide solutions to problems in sensor data management.

To achieve that, we focused on advancing the following aspects:

• interoperability issues on data acquisition and publication;

• management of many possible transformation operations on sensor data, including

different combinations of such operations;

12 Chapter 2. Problem Overview: The Sensor Data Life Cycle

• publication issues, including data and metadata accessibility; and,

• updating metadata along with data transformations.

Figure 2.2: Sensor data usage scenario.

These aspects are better understood when considering all the phases of sensor data

management. Such phases are depicted in Figure 2.2 (from Chapter 3). They provide the

basic organization through which process interoperability problems at several levels can

be treated. At the bottom and topmost levels lie the data providers and the applications,

respectively, the producers and the consumers of this data management life cycle. Layer

1 (acquisition) has the acquisition software, which tries to interface with the several sen-

sor data providers. Layer 2 (unprocessed data) has the data as they were acquired from

the data sources. Layer 3 (pre-storage processing) transforms the data into a common

format, possibly with some checking on the quality and suitability of the data sets. Layer

4 (data repositories) holds the storage and forwarding mechanisms for accessing the ac-

quired data. Layer 5 (publication pre-processing) tailors the data to comply with the

applications’ requirements. Layer 6 (pre-processed data) has the data with format and

content appropriate to the applications. Layer 7 (publication software) interfaces with

the applications, providing the access mechanisms. The data descriptions, i.e., metadata

or annotations, are present in all the data layers (2, 4, and 6), being used to interpret,

index and search the data sets. Processing in layers 3 and 5 can be executed using work-

flows for specific purposes. Models running at consumer level also often rely on workflow

execution. Not all data go through the entire cycle – e.g., repositories may be bypassed

in stream sensor data processing.

2.3. Objectives and Contributions 13

Towards achieving our goals, our solution relates to the research aspects previously

presented in the following way. DCCs are used to encapsulate data, access to data sources

and executable content. Using the DCCs’ uniform interfaces, we can specify and execute

scientific workflows. At the top, publication software provide two kinds of access mech-

anism: standards-based and ontologies-based. After each transformation operation is

applied to a data set, our annotation propagation mechanism generates new annotations

that are associated with the output data set.

The contributions of this work are the following:

1. The characterization of the current sensor data management scenario, divided into

data processing and data representation stages. This helps understanding the scope

of both problems and solutions in this area. Previous viewpoints placed software for

sensor data management as an end-to-end process, with the need for interfaces only

for acquisition and publication [2, 105, 109]. Our scenario highlights the advantages

of keeping intermediate processing steps apart, with clear interfaces between these

steps, identifying points of interoperability at each stage. Moreover, it emphasizes

the importance of metadata throughout the whole process. This contribution is

described mainly in Chapter 3;

2. The uniform encapsulation of data, data sources and transformation operations,

obtained through adaptation of a component technology (DCCs) to work as a mid-

dleware for sensor data management. The need for such extension, which focuses on

self-describing data, was identified after an analysis of storage approaches for sensor

data. The focus on the data description is relevant for publication of these data: if

consumer applications cannot determine if a data set is adequate, it cannot be used.

Thus, metadata are as important as the described data set itself. Current solutions

for these issues are focused on specific platforms and/or protocols [1, 9, 67, 101, 115],

not fully considering data heterogeneity and process interoperability [43]. Our solu-

tion deals with these two problems using an extension of DCCs. Chapter 4 presents

the details on this part;

3. The proposal of scientific workflows for managing the application of transforma-

tion operations to the sensor data, and proposal of specific categories of scientific

workflows for sensor data management. Each of these categories takes care of a

particular aspect of sensor data management. Current approaches in this field in-

volve specialized middleware and the development of custom software [9, 43]. Our

solution aims at a more general middleware, allowing customization through new

scientific workflows. This contribution is discussed in Chapter 5. We also considered

scientific workflows for expanding query expressiveness, allowing an application to

14 Chapter 2. Problem Overview: The Sensor Data Life Cycle

tailor the data to its needs before transmission – these issues are presented in Chap-

ter 6. This second aspect extends current solutions by offering flexible customization

on the pre-processing of data with the use of general processing functions within

workflows [66, 70] instead of pre-determined operations of specific languages or pro-

tocols. With this, our solution provides uniform methods for accessing both data

and processes.

4. The analysis of Web standards applicable to sensor data management and their

comparison and translation to ontology-based description. This allows applications

to use either standards or ontology-based descriptions to select and acquire sensor

data. Current solutions only allowed the use on one of these approaches at a time

[79, 93], while ours allows using either in a consistent fashion. Chapter 6 shows these

results;

5. The proposal of a mechanism for updating metadata throughout the data transfor-

mation processes. This mechanism, presented in Chapter 7, automatically generates

new metadata to be associated to the output of a transformation operation. This

problem was only partially identified in current literature [12, 13]. Our work presents

a general definition for the problem, characterizing a few associated challenges. Our

solution is also general, in the sense that any operation can be considered as sus-

ceptible to generate new metadata, not only pre-defined operations from a query

language as previously done by others [12, 13].

2.4 Thesis Organization

Each chapter of this thesis corresponds to a paper that has been published or submitted

to publication. All the papers were written in collaboration with colleagues and the

supervisor of this work, Claudia Bauzer Medeiros.

Chapter 3, “A standards-based framework to foster geospatial data and process inter-

operability,” corresponds to [89], submitted to the Journal of the Brazilian Computer

Society (JBCS), and was developed in collaboration with Rodrigo Dias Arruda Senra.

It extends a poster paper presented in ACM-GIS2008 [90], and discusses the scenario for

geospatial data management with a specific focus upon sensor data. Such scenario is di-

vided into seven management layers (see Figure 2.2) with clearcut interfaces between them

and modularization of responsibilities, considering the full data path from data providers

to computational models (or applications) that consume the data. This organization by

processing stages allow more thorough analyses of particular issues of data management,

by providing a clear separation between data representation and processing steps, of-

ten mingled in related work. The chapter also discusses how Web standards are useful

2.4. Thesis Organization 15

in solving interoperability problems in all the layers, particularly at the outside layers.

The framework depicted is demonstrated in a case study for the WebMAPS agriculture

project [50], which used the proposals presented.

Chapter 4, “Accessing and Processing Sensing Data,” corresponds to [88], published

on the Proceedings of the 11th IEEE International Conference on Computational Science

and Engineering (CSE2008), pp 353–360, and was written in collaboration with André

Santanchè. It presents the basics on extending and applying DCCs for sensor data ac-

quisition and processing. The extension shows a new hierarchy of DCCs for dealing with

individual sensor devices, sensor networks, middleware for sensor devices, sensor data,

and several data transformation operations. Each of these resources is classified and has

its solution described in terms of the used DCCs. The chapter also discusses an imple-

mentation experiment using two different sensor platforms as a basis.

Chapter 5, “Applying Scientific Workflows to Manage Sensor Data,” corresponds

to [86], published on the Proceedings of the 1st e-Science Workshop (e-Science2007), pp.

09–18, which took place in conjunction with the 22nd Brazilian Symposium on Databases

(SBBD2007), and was written in collaboration with André Santanchè. It briefly describes

the layers for sensor data management, with a focus on implementation aspects, contrast-

ing with the layers in Chapter 3, which are functional in nature. The paper also analyses

the use of DCCs to access sensors, operations and sensor data, focusing on how DCC

uniform interfaces can be used to describe and execute scientific workflows. These kind of

workflows are more suited for sensor data management since they have characteristics such

as adaptability and focus on data flows, thus offering a flexible and extensible solution for

sensor data acquisition and pre-processing. The chapter also presents a classification of

scientific workflows in categories that have clear roles in different aspects of sensor data

management, such as validation and publication of sensor data.

Chapter 6, “Sensor Data Publication on the Web for Scientific Applications,” corre-

sponds to [84], published on the Proceedings of the 4th International Conference on Web

Information Systems and Technologies (WEBIST2008), pp. 137–142, and was developed

in collaboration with Luiz Celso Gomes Jr and André Santanchè. It discusses in more

detail sensor data publication issues, mainly considering the differences in representation

and access of sensor data between approaches using Web standards and semantic descrip-

tions. Both solutions have their strong and weak aspects, so that the better approach

would be to use both in a consistent fashion. This is done in our solution by mapping

ontology terms into parts of the Web standards, using mapping rules stored within the

DCCs. This enables a DCC to answer queries using either approach with the same re-

sults using different formats and access methods. The chaper also discusses how to use

scientific workflows to enrich the queries, resulting in the tailored pre-processing of sensor

data before actually answering the query.

16 Chapter 2. Problem Overview: The Sensor Data Life Cycle

Chapter 7, “Multimedia Semantic Annotation Propagation,” corresponds to [83], pub-

lished on the 1st IEEE International Workshop on Data Semantics for Multimedia Sys-

tems and Applications (DSMSA2008), which took place in conjunction with the 10th

IEEE International Symposium on Multimedia (ISM2008), and was written in collabora-

tion with Jaudete Daltio. It describes the problem of metadata evolution, also known as

annotation propagation, and presents a mechanism that is our solution to it. The chap-

ter applies the solution to multimedia metadata, such as satellite images. It can also be

applied to any kind of sensor data, or any data set for that matter, given that the meta-

data are defined and filled through references to ontologies. The mechanism combines the

descriptions (metadata) from the input data set and the operation interface generating

the descriptions to be associated to the output data set. The solution is fully extensible,

allowing any kind of relationship among data sets to be considered for propagation.

Additional publications associated with work conducted within this research are:

• “Bridging the gap between geospatial resource providers and model developers” [90],

published as a poster paper at the 16th ACM International Conference on Advances

in Geographic Information Systems (ACM-GIS2008), with an overview of the work

on [89] (Chapter3), written in collaboration with Rodrigo Dias Arruda Senra;

• “User-centered Multimedia Building Blocks” [99], published on the Multimedia

Systems Journal, 12(4):403-421, in 2007, and whose main author is André San-

tanchè, who proposed the DCCs in his doctoral thesis. The paper presents digital

content authoring aspects and how DCCs were applied to bring author and user of

the content together. It also discusses architectural aspects required for a functional

DCC infrastructure;

• “Providing Homogeneous Access for Sensor Data Management” [87], a technical

report at the Institute of Computing-UNICAMP, showing a preliminary overall

view of our solution, written in collaboration with André Santanchè; and,

• “An Annotation Propagation Mechanism for Multimedia Content” [82], another

technical report at the Institute of Computing-UNICAMP, showing details of our so-

lution to the annotation propagation problem, written in collaboration with Jaudete

Daltio.

Chapter 3

A standards-based framework to

foster geospatial data and process

interoperability

The quest for interoperability is one of the main driving forces behind international orga-

nizations such as OGC and W3C. In parallel, a trend in systems design and development

is to break down GIS functionalities into modules that can be composed in an ad hoc

manner. This component-driven approach increases flexibility and extensibility. For sci-

entists whose research involves geospatial analysis, however, such initiatives mean more

than interoperability and flexibility. These efforts are progressively shielding these users

from having to deal with problems such as data representation formats, communication

protocols or pre-processing algorithms. Once these scientists are allowed to abstract from

lower level concerns, they can shift their focus to the design and implementation of the

computational models they are interested in. This paper analyzes how interoperability

and componentization efforts have this underestimated impact on the design and devel-

opment perspective. This discussion is illustrated by the description of the design and

implementation of WebMAPS, a geospatial information system to support agricultural

planning and monitoring. By taking advantage of new results in the above areas, the ex-

perience with WebMAPS presents a road map to leverage system design and development

by the seamless composition of distributed data sources and processing solutions.

3.1 Introduction

In geographic information science, interoperability is a key issue, given the wide diversity

of available geospatial data and scientific data processing tools. There are many research

initiatives to meet this challenge, from data interchange standards and service-oriented

17

18 Chapter 3. A standards-based framework . . .

architectures (SOA) to user interface design. This paper concentrates on two kinds of

interoperability aspects: processes and data [40, 69, 74].

We show that efforts towards these directions have a desirable side effect: they are pro-

gressively shielding end users from having to deal with low level data management issues.

This helps bridging the semantic and operational gap between data providers and scien-

tists whose main interest is to design and test computational models that use geospatioal

data and processes, without having to concern themselves with low level implementa-

tion details. In this sense, process and data interoperability efforts are contributing to

user interface interoperability. In this text, the term model refers to a computational

model representing relevant aspects from natural or artificial phenomena/processes that

are somehow spatially referenced – e.g. a hurricane (natural), or urban traffic (artificial).

Processes interoperability is related to how two (or more) heterogeneous systems can

interact. To that end, the systems must have means of determining which operations can/

should be invoked from each other’s interface to execute a task. Data interoperability

concerns data representation formats and manipulation. To achieve data interoperability,

data consumers must be able to interpret one data set according to the same set of

concepts. Both points of view are intimately related, since processes consume and produce

data.

We categorize approaches to deal with interoperability issues as: standards based,

ontologies based and services based. Standards concern reaching an agreement on a do-

main and specifying interfaces, protocols and data representation formats. Ontologies

are also related with a domain, but an a priori agreement is not always a requirement.

Services present a generic way of encapsulating operations from a system, making them

available in a uniform way. Ontologies are out of this paper’s scope, being tackled else-

where [31, 32, 82].

This paper discusses recent efforts in interoperability for geospatial processes and data

that are based on standards and services. Our discussion is intertwined with the impacts

of such interoperability solutions on the design and development of geospatial applications.

Monolithic systems are giving place to component-based distributed architectures [107,

109]. While the former forced scientists to adapt a problem (and their solution to it)

to be compatible with a system and its data formats, the latter fosters the adoption

of systems and data [55] that will fit the requirements of a new problem. Sensor data

applications such as environmental and urban planning [29] are pushing the need for

these kinds of solution even harder. They have to rely not only on local, well known,

data providers but often on distributed, discovered on-the-fly, heterogeneous systems.

In order to leverage design and construction of geospatial applications, however, data

must undergo complex sequence of transformations, from providers to consumers. To

support the required transformations, the designers of geospatial systems are faced with a

3.2. A framework for geospatial data management 19

multitude of process and data interoperability solutions, which they must somehow choose

and compose.

The paper presents two main contributions towards helping solve this problem, namely:

• a conceptual framework that structures those transformation steps into several lay-

ers, with clear cut interfaces and responsibilities. Each of these layers addresses one

kind of interoperability problem (for instance, access mechanisms, data cleaning,

data formatting). This separation helps systems designers to focus on one issue at

a time, leading to modular and composable systems; and,

• a real case study of this framework showing its advantages on data and process inter-

operability. The framework is being adopted within WebMAPS, a multidisciplinary

project involving research in computer science and agricultural and environmental

sciences.

The rest of the paper is organized as follows. Section 3.2 proposes a framework for

publication of geospatial data and processes, to support application development. Sec-

tion 3.3 describes the WebMAPS project and how it is being built under the framework.

Section 3.4 discusses approaches for interoperability, how they fit in the framework and

in WebMAPS development. Section 3.5 presents related work. Section 3.6 concludes the

paper and discusses ongoing work.

3.2 A framework for geospatial data management

The architecture of interoperable data management systems is often specified following a

basic three-layer cycle: providers (data layer), transformers (service layer) and consumers

(client layer). An example is the infrastructure provided by INSPIRE [49], an initiative for

the creation of a spatial infrastructure for Europe, with a distributed network of databases,

linked by common standards and protocols to ensure compatibility and interoperability

of data and services. INSPIRE’s architecture (client, services and data layers) includes

four main groups of components: user applications, geo-processing and catalog services,

catalogs and data repositories. The organization in these three layers is not unique to

GIS – e.g., see [53] for data warehouse management. Though useful to understand the

functionalities provided, this kind of organization is insufficient for designers of geospatial

computer models to choose and compose process and data interoperability solutions.

In order to meet this challenge, we propose an extended framework which induces

a methodology for geospatial data management. This framework, shown in Figure 3.1,

describes a data management cycle for GIS applications – from data acquisition (at the

bottom) to data publication (at the top), to be consumed by applications that embed

models. This cycle can be repeatedly pipelined: the data publishers of one cycle can

20 Chapter 3. A standards-based framework . . .

become the data providers of the next cycle. As will be seen, the first four layers can be

compared to a Extract-Transform-Load (ETL) process [4, 41, 44, 103] in data warehouse

environments. This organizational cycle provides the basic structure through which pro-

cess interoperability problems at several levels can be dealt with.

Our full data management cycle has seven layers, which alternate between representing

either data or processes. Layers 2, 4, and 6 represent data and boxes with gears (Layers

1, 3, 5, and 7) represent data manipulation operations. The flow is from bottom to top,

with the operations being applied to the data on their way up. We point out that not all

stages of the cycle are mandatory – e.g., a given intermediate stage may not be needed, or

applications may retrieve raw data directly from providers. Furthermore, an entire cycle

may be under the control of a single organization (e.g., our case study of Section 3.3), or

distributed on the Web.

Figure 3.1: Geospatial data usage scenario.

The bottom layer houses Data Providers of many kinds, including sets of files, databases,

sensors and data services. Sensors can range from ground-based networks to large satellite

embarked multi-spectral electromagnetic sensors.

Sensor-produced data pose several new challenges to geographic applications. These

data have a variety of characteristics that impact how they are stored, processed, published

and accessed [45, 114]. Besides the spatio-temporal variability inherent to geospatial data,

we single out the following issues particular to sensor data: (i) regularity: production of

data in independent blocks or as continuous streams; (ii) transmission: manual readings,

wired/wireless transmissions, error introduction, and others; (iii) position: impacts of the

sensor relative position on the readings with respect to the observed phenomena; (iv)

3.2. A framework for geospatial data management 21

mobility: relation between sensor movement and its readings. Many other characteristics

can be considered, according to the sensor capabilities and the application requirements.

The broader the coverage of these aspects, the larger the number of consumers to which

the data may be adequate.

Sensor data must be combined with data coming from data services. The latter de-

liver products provided by organizations that create or enrich a given data set and make

it available. These data also have inherent characteristics that influence subsequent ma-

nipulation. Examples include issues such as which models were used to produce the data,

which parameters were applied to calibrate the model, or how reliable were the data.

Next, we detail what each of the layers encompasses. Layers 1, 2 and 4 can be

respectively compared to extract, transform and load phases of an ETL process.

Layer 1 (Acquisition) hosts data acquisition software, which works as a wrapper to

data providers. Machine processable knowledge representation is an important issue in

enabling software in this layer to access data with complex characterization from multiple

data sources. Standards play an important role to deal with knowledge representation,

and are further explored in Section 3.4, where we discuss how they “wrap” the data

management cycles. This layer expresses the extract phase of an ETL process.

Layer 2 consists in Unprocessed data, obtained directly from data providers in a variety

of formats. To be useful within a data management cycle, the data must be adapted to

some representation using the characteristics and formats chosen for the cycle. This task

is performed in Layer 3. Usually, unprocessed data is stored when there is a need for

comparing pre-storage processing solutions, for maintaining historical raw data, or for

auditing purposes.

Layer 3 (Pre-Storage Processing) represents the processing phase where data is trans-

formed before its storage. Examples include signal processing functions for improving

precision, data cleaning for detecting variations or errors, computing statistical parame-

ters to detect acquisition problems, converting temporal and/or spatial resolutions, and

testing data format conversions to determine accuracy. This layer corresponds to the

transform phase of an ETL process.

Layer 4 (Data Repositories) corresponds to the storage facility, often a data repository

of some kind, such as a database system. Two of the major issues to be dealt with in

this layer are problems on what to store and how to fill in the gaps left by several types

of acquisition errors. Selecting what is going to be stored is important since the amount

of data acquired may be far too large to be stored in full [28, 37]. Given that geospatial

systems must also cope with streamed data, this raises the additional issue of providing

query mechanisms that can cope with both stored and streamed data [8]. For streamed

data, the storage layer may have its role filled by a proxy service with some kind of

caching mechanism. This is more natural for many kinds of applications (e.g., real time

22 Chapter 3. A standards-based framework . . .

traffic monitoring). Queries may need to combine data from several data sources, even

both streamed and stored data, possibly using different pre-storage processing operations.

This can only be treated adequately in layers that have access to these resources, which

is the case for Layer 4. The storage part of this layer is directly related to the load phase

of an ETL process.

Layer 5 (Publication Pre-Processing) is responsible for transforming the data, filter-

ing or augmenting it, in order to meet application requirements. Examples of such re-

quirements include adjusting spatio-temporal resolution, access periodicity and specific

presentation formats. Instances of operations to fulfill these requirements include com-

position operations (e.g., fusion of data from different data sources), scaling operations

(e.g., changing temporal or spatial resolution), customization operations or more complex

operation compositions. However, as most of these data are georeferenced, the more tra-

ditional GIS operations, e.g., see [94], are the most common in this phase. The execution

of operations in Layer 5 are guided by application needs while operations executed in

Layer 3 are oriented towards storage requirements. Thus, unless the operation was exe-

cuted in Layer 3 and the result is already available in the repositories, a request from an

application is executed in Layer 5.

Layer 6 (Pre-Processed Data) contains the pre-processed data sets, ready to be pub-

lished and consumed by models. The main concern in this layer is data representation,

e.g., data format, spatio-temporal resolution, and associated descriptions. An application

request specifies the format, with translations applied as needed. Resolution adaptation

may require interpolation algorithms for larger resolutions and summarization algorithms

for smaller resolutions.

Layers 5 and 6 are not needed in non-shared data scenarios. Their appearance reveals

an interesting issue: as models and algorithms become more stable and accepted within a

community, they become basic and are taken for granted. This pushes the results of such

models and algorithms down from the model layer to layer 5, with impact on interoper-

ability and cooperative scientific work. An example of such migration is the georeferencing

of satellite images: in the past, it was a necessary step to perform within geospatial data

applications; presently it is available as a default attribute of most published images.

Layer 7 (Publication Software) represents the software that will make interfaces to

operations and data access mechanisms available to applications. This is achieved by

agreement between software providers and application developers. The need for such

agreements restricts interoperability among new resources and systems. As an alternative

to consensual specification, the software in this layer should provide descriptions that are

sufficiently rich to allow applications to determine the suitability of software and data.

Different approaches are used by the publication software depending on the requirements

of the client applications, e.g., protocols with less overhead for large data sets, or richer

3.2. A framework for geospatial data management 23

protocols for initial stages of communication.

The publication software must also allow applications to select pre-processing opera-

tions, among the ones available, to be applied on the data before transmission. The opera-

tions are actually provided by lower layers, mainly by layer 5 (publication pre-processing)

but a list of them and a selection mechanism must be present on the publication layer.

Since the requirements from the applications vary, many different transformation opera-

tions may be required before the data can be used. Actually, applications can use either

already pre-processed data sets (e.g. from Layer 6) or invoke operations to generate new

data sets (e.g., from Layer 5). It is often undesirable or unfeasible to perform these

operations within the application [114].

The upper layer (Models) is where the applications lie and where end users are able

to interact with all the infrastructure on the layers below. Applications embed model

execution, hence allowing scientists to visualize results, and to tune and interact with

these models.

Annotation mechanisms are orthogonal to all layers, using metadata standards or free

annotations. In other words, each data layer may be associated with annotation mech-

anisms that provide semantics to raw, stored or pre-processed data. Metadata have a

predefined structure and expected ranges. This allows, for instance, indexing and re-

trieval based on the metadata, imposing, however, rigid limits. Annotations, on the other

hand, have no structure and do not allow indexing, presenting a challenge for retrieval,

often requiring content-based techniques [62]. Nevertheless, they allow very flexible de-

scriptions. The proposal in [82] shows how to provide some structure to annotations

without hampering flexibility by using references to ontologies. The Section 3.4 discusses

how to improve metadata semantics with standards.

We point out that making these seven layers explicit is one of the keys to understand

and solve the gap between resource providers and systems designers. Our decomposition

of geospatial data flow and processing into identifiable layers with clear interfaces and

responsibilities leverages application development. Combining solutions from previous

layers enables a module on a higher layer (or even an application outside the scope of

the layers) to deal with less interoperability issues. The most important aspect, however,

is that our organization helps maintainability, reuse and extensibility, allowing develop-

ers to include new features at appropriate levels. This is achieved by solving one kind

of interoperability issue in each layer and combining the solutions across the layers. To

illustrate this, consider the problem of gathering data from two data sources, each using

a different combination of access mechanism (e.g., an FTP server and a Web service)

and data format (e.g., XML, CSV and binary). Once a module for each of the access

mechanisms is available at the bottom layer, all modules for handling different data for-

mats will be able to use one uniform interface to access the data from both providers.

24 Chapter 3. A standards-based framework . . .

This scheme is the same throughout the layers, with one layer adding a solution to one

interoperability issue on top of the previously solved issues (by modules on the previous

layers), and thus offering a uniform interface (or data format) to the next layer. Taking

these stages into account helps solving several of the interoperability problems raised by

the use of distributed geospatial data sources or by the invocation of external services.

This will be illustrated next.

3.3 Putting the framework to use

This section discusses how the proposed framework reflects in the implementation ef-

forts within the WebMAPS project. The project is is a multidisciplinary effort involving

computer scientists and experts on agricultural and environmental sciences to develop a

web-based platform for agro-environmental planning and modeling. One product from

WebMAPS, vegetation index graphs, is described in Section 3.3.2 according to the layers

presented in Section 3.2. Two other products are also detailed: one for automation of

data acquisition (Paparazzi, see Section 3.3.3) and another for flexible data publication

(see Section 3.3.4).

3.3.1 Project overview

WebMAPS is a project whose goal is to provide a platform based on Web Services to

formulate, perform and evaluate policies and activities in agro-environmental planning.

The project caters to two kinds of users – farmers, and domain experts, such as

agronomers or earth scientists. Farmers can enter data on their properties (e.g., pro-

duction, parcels, crops). They are able to correlate data on their farms to geospa-

tial content available on WebMAPS repositories – e.g., satellite image series or regional

boundaries. Experts may want to investigate distinct kinds of data correlation and pro-

pose models to explain, monitor, or forecast crop behavior. See some of the tools at

http://www.lis.ic.unicamp.br/projects/webmaps.

Similar to INSPIRE [49], WebMAPS can also be described using a 3-layer architecture,

part of which already implemented. The Client Layer is responsible for user requests, for-

warding them to be processed by the middle (Service) layer. The latter contains distinct

kinds of modules, such as query processing, workflow specification, and ontology manage-

ment. The Data Layer contains WebMAPS data repositories, including primary raw data

(e.g., product classification from Brazilian official sources) and derived data (e.g., com-

posite images). Geospatial data sets include satellite images, and coordinates of county

boundaries. Additional data sources include information on properties, agricultural prod-

ucts and so on. Data are stored in the PostGreSQL database management system, with

3.3. Putting the framework to use 25

PostGIS extension. At present, most of the services in WebMAPS are being implemented

as software modules, for rapid prototyping and testing by end-users.

This kind of 3-tier architecture is useful for a high level description of the system’s

functionalities. However, as stressed in Section 3.2, it is not adequate from an interoper-

ability perspective. The sections that follow discuss how we use our 7-layer framework of

Section 3.2 to specify and develop some of the products offered by WebMAPS. In partic-

ular, we discuss three kinds of products: (i) the dynamic computation of NDVI graphs,

starting from the acquisition of satellite images; (ii) a tool for automated image acquisi-

tion; and (iii) the interoperation with Google Maps. The first item is an example that

spreads throughout most of the layers, while the last two focus on the bottom and top of

the framework, respectively.

3.3.2 Illustrating the data management framework in WebMAPS

In this section, we describe one of the devised WebMAPS’ products that is partially

implemented and adheres to the layering described in section 3.2: computing historical

NDVI profiles for a given region and period.

NDVI (Normalized Difference Vegetation Index) is a vegetation index. It is correlated

to biomass conditions of vegetation and is widely used in distinct kinds of contexts – e.g.

agriculture, biodiversity. An NDVI graph plots the average NDVI pixel value in a region

through time from a temporal series of images. This can be used for crop monitoring and

prediction [16, 92]. For example, in the sugar cane culture, a curve with higher values

may indicate a product with better quality.

Figure 3.2: Computation and publication of NDVI series for a region.

One of the functionalities available from WebMAPS is the construction of such graphs.

The user selects a region of interest R and a period T and the system computes the graph

from a temporal series of satellite images, plotting the NDVI evolution for that region

and period, as depicted in Figure 3.3.

NDVI graphs require two kinds of data – those acquired periodically (satellite images)

and those that, once acquired, are only sporadically updated (e.g., county boundaries).

This section describes the management cycle for these data within WebMAPS. We will

not enter into details of acquisition periodicity nor procedures to refresh data, but such

26 Chapter 3. A standards-based framework . . .

issues are embedded into constraints treated by our 7-layer framework. Figure 3.2 shows

the main phases of the workflow that specifies the computation of the graph, following

the layers of Figure 3.1. This workflow is shown at its more abstract level, but each step

can encapsulate several processes. Moreover, though not shown in the Figure, it contains

loops and cycles, which are not relevant for understanding our case study. Although

this example does not have issues to be dealt with in layers 2 and 6, applications that,

for instance, are heavily dependent on data representation formats, data codification or

associated descriptions (metadata) would need specific solutions in these layers.

Figure 3.3: Example of an average NDVI curve for Campinas region (from WebMAPS).

Data Acquisition

There are many satellite imagery providers. For NDVI analysis, WebMAPS’ agro-scientists

have chosen to use pre- computed NDVI images provided by NASA from MODIS sen-

sors [73, 108]. Here we faced typical problems of geospatial data acquisition. Each im-

age depicts a geographical region much larger than the ones for which this first version

of WebMAPS is being conceived (Brazil’s southeast). Moreover, retrieving each image

meant browsing the NASA web site to find the download link. Thus, assembling our

image database became a laborious, tedious and time-consuming task. To improve on

3.3. Putting the framework to use 27

that, we have developed Paparazzi, a tool to automate the retrieval of remote data sets –

see Section 3.3.3.

The second data type needed are vector-based coordinates, corresponding to the geo-

graphical regions of interest. WebMAPS offers two options: (i) ad-hoc manual definition

of the region, described in Well-Known Text Format (a.k.a WKT) [25], a standard from

the Open Geospatial Consortium (OGC); or, (ii) importing geospatial vector shapefiles.

Brazilian county geometry shapefiles were imported from IBGE (Brazilian National Ge-

ographic Institute).

The last data type we need are textual descriptions of crops and their attributes.

Here we applied screen scraping [27, 42] techniques to fetch produce code, popular name,

scientific name and description from the Brazilian Ministry of Agriculture Web Portal.

See Section 3.4 for details on these techniques.

Unprocessed Data

Satellite images retrieved from NASA using Paparazzi and shapefiles retrieved from the

IBGE are encapsulated in temporary files, for subsequent quality checking. The rest of

the data used goes directly to Layer 3 (Pre-Storage Processing). Here, we can already

see the advantages of our multi-layer framework, which allows determining which stages

should be followed for each kind of data.

Pre-Storage Processing

In possession of unprocessed data, we proceed to the pre-storage processing phase. There

are three main concerns here: corruption detection, data normalization and assembly of

the data sets. These concerns are not always present (e.g., if the data provided already

have such issues solved). In particular, our NDVI graph construction example does not

need to deal with the last issue, i.e., assembly of data sets.

Corruption detection is mandatory and is made explicit in our framework. First, data

providers are never 100% reliable, and the acquired data may be already corrupted in its

provider’s domain. Second, data corruption can occur during the acquisition phase. Here,

the encapsulated unprocessed files containing satellite data and geometries have their

integrity automatically checked (e.g., by checksum algorithms). Corrupted or partially

retrieved files are removed.

The third (textual) record type is more challenging, because information is less struc-

tured, the domain of values is open and not fully-known and we lack fail-proof tools

to verify corruption. For our textual data resources (based on official government crop

classification) we performed a manual check. Additional procedures are left to future

work.

28 Chapter 3. A standards-based framework . . .

Data normalization is a recommended step to make data processing easier and more

efficient. We automatically convert all files to a single and uniform representation format,

and all measurement units to the same system. Thus, we have chosen to (a) store satellite

imagery into GeoTIFF [95] files, converting into this format whenever needed, (b) convert

shapefiles and textual geometries (WKT) into Well-known Binary representations (WKB)

stored into PostGIS, and (c) represent all geographical coordinates to latitude/ longitude

according to WGS84 reference ellipsoid. WKB [25] is also a standard from OGC.

Data set assembly is the last pre-storage processing step we need, and consists in

putting together coherent spatio-temporal units – e.g., in our example, creating a com-

posite NDVI image from a mosaic of acquired NDVI images. This includes issues which

are sometimes called detecting the FoU (fitness of use) of a data set – see [58]. Here, the

first (temporal) problem occurs when there are gaps in a time series – e.g., due to com-

munication or device failure. The second (spatial) problem occurs when missing spatial

data create “holes” in a data set (e.g., when an image mosaic has missing parts). Both

problems can occur at the same time. Spatio-temporal gap problems are very common

when using data from sensor networks – e.g., sensors may stop providing data for a period

of time, causing problems in analyses.

There are three basic approaches to assembly problems: (i) acquire new data to fill

the spatial and/or temporal gaps; (ii) apply interpolation, probabilistic or inference pro-

cedures to fill the gaps; and, (iii) mark the gaps, and forward the solution to some other

layer (e.g., query processing will have to take the gaps into consideration). For satellite

imagery, we have implemented the first approach, using data fetching retries and fallback

data providers. For rainfall time series, we use the second approach. We have developed

algorithms in which missing values are filled by combining spatial interpolation with his-

torical data [63]. These algorithms are used by the Brazilian Ministry of Agriculture to

maintain its rainfall series database for the whole country.

Data Repositories

Once the data are pre-processed, they are ready for storage. We use two types of storage: a

relational database and the filesystem. Crop descriptions, geometries, textual properties,

and data set descriptions are stored in PostgreSQL/PostGIS. Raster images in GeoTIFF

format are stored in JFS (or XFS) filesystem partitions. We have chosen these partition

types because they present good performance for large files [17]. So far, we have not

used streamed sensor data. Our preliminary experiments with these data appear in [88].

Streamed sensor data for agricultural purposes are being handled within our eFarms

project (http://www.lis.ic.unicamp.br/projects/efarms), which will act as a sensor

data provider to WebMAPS.

3.3. Putting the framework to use 29

Publication Pre-processing

This phase concerns transforming information, and ultimately preparing it for user con-

sumption. In our example, this means (i) computing the average NDVI pixel value for

the region R defined by the user; and, (ii) iterating (i) for the input time span T. These

steps are performed automatically without user intervention.

The images of interest are already stored in the repositories. Steps (i) and (ii) consist

in building a bitmap mask for R and applying this (cached) mask to all NDVI images

within the desired time frame T, extracting the region (pixels) of interest and computing

their average. The graph is constructed for these average values.

Data Publication

Data publication is the last phase in the processing workflow. In our case study, the

NDVI graphs constructed in the previous phase are published as images, embedded or

not in HTML pages. Other formats could also be adopted here: text files with pairs

<georeferenced point, value>, tables with the values for regions, etc.

3.3.3 Automating Acquisition: Paparazzi

Paparazzi is a command-line tool we developed to automate the acquisition of satellite

imagery by means of screen scraping techniques [47, 56, 59]. Paparazzi is a specialized

web crawler, hand-crafted to fetch data from specific target web sites. Paparazzi is an

example of a tool that was implemented within the scope of Layer 1. Paparazzi is worth

using whenever the number of files to be retrieved is large, and hyperlinks to target files

are not concentrated in a single page, but scattered across several pages, as is the case

with NASA MODIS images. Consider the following Paparazzi command line:

paparazzi.py -b 2008-01-01 -e 2008-05-31 -s Brazil4 -p 250m -m 2 -r

It is a request for all images (r) from January 1, 2008 (-b) to May 31, 2008 (-e), for

the geographical region named Brazil4 (-s). Each image retrieved should have spatial

resolution (-p) of 250 meters per pixel and represent NDVI measures (-m). Brazil4 is a

specific name used by NASA [73] to designate a given area in South America that covers

SE Brasil.

This same task required downloading 152 images corresponding roughly to 7 Gb in size.

If done manually, for each image, the user needs to visit three different web pages prior to

starting a 50 Mb file download. In the first page the user selects the subset (Brazil4). In

the next page the user selects data product (NDVI) and image resolution (250m). Finally,

in the last page, the user selects the file format and starts the image download. Therefore,

precious user time can be saved, if the researcher relinquishes control and responsibility

30 Chapter 3. A standards-based framework . . .

of the iterative acquisition process to Paparazzi. Moreover, when adopted as a software

library, Paparazzi acts in reaction to user queries over incomplete data sets, trying to

fill-in gaps on demand.

3.3.4 Flexible publication

WebMAPS innovates allowing data produced in any of the framework phases to be di-

rectly accessible in many representations. Therefore, WebMAPS is not just a black-box

automating GIS procedures. It is also a data gateway fostering scientific information shar-

ing and allowing experimental results to be reproduced and validated. This is facilitated

by isolating the responsibilities of each framework layer.

In particular, the three data types handled (images, geometries and text) are published

by means of standard protocols and representations, explained in Section 3.4. Satellite

imagery data is accessible through an OpenDAP interface; textual data and metadata are

available as HTML pages annotated with microformats; and geometries are available as

KML views.

Figure 3.4: Google accessing data from WebMAPS in KML format.

Thanks to this, WebMAPS can act as a data provider and a data client. We exemplify

this by showing its interaction with Google Maps. Figure 3.4 depicts Google Maps obtain-

ing a geometry resource served in KML format from WebMAPS. Here, WebMAPS acts as

3.3. Putting the framework to use 31

a data provider and mediator, re-distributing geometries acquired from an authoritative

source (Brazilian Geographic Institute), and transformed into a suitable format to feed

Google Maps. In Figure 3.5, we depict WebMAPS acting as a client of Google’s map

rendering service. The map rendered by Google Maps (Figure 3.4) is mashed-up with

results from a user query, composing the web page shown in Figure 3.5. The query results

comprehend textual metadata and a NDVI graph for the given region and time frame.

For visualization sake, the chart is an overlay, not representing the original page layout.

Figure 3.5: WebMAPS embedding map generated by Google Maps.

This interaction pattern between WebMAPS and Google Maps is a combination of

resource-oriented (from WebMAPS) and service-oriented (from Google Maps) paradigms.

We further discuss these approaches in Section 3.4. In this particular example, the use of

KML and WKT enabled us to rapidly build a prototype for cartographic visualization,

including satellite image overlays provided by Google Maps. End users are rapidly able to

visually assess the quality of the data, and test the outcomes of different analyses. Hence,

standards offer much more than interoperability. Their use has sped up the validation

of user requirements in terms of interaction needs. More importantly, it has leveraged

application development, so that users can start testing their ideas much sooner, while

32 Chapter 3. A standards-based framework . . .

we work on other system issues. This does not mean that WebMAPS will necessarily

always rely on Google Maps for cartographic rendering and interaction - we are also

experimenting with other kinds of Web service-based solutions (see [32] for our use of

GeoServer to publish GML data for biodiversity systems).

3.4 Interoperability Approaches

This section characterizes the standards and services approaches to interoperability and

show how they are contemplated within our framework and in WebMAPS. We point out

that ontologies are another very important approach to interoperability. Though they are

part of WebMAPS future annotation facilities, they are outside the scope of this paper.

In our framework, they intervene at all transversal annotation stages of Figure 3.2.

3.4.1 Selected Standards

Standards represent an agreement among research groups and are the main focus of

many institutions such as OGC or W3C. From the data interoperability perspective,

standards deal with representation and formatting issues. OGC’s Geographic Markup

Language GML [76] is an example of such a standard. It is an XML-based specification

for geospatial data interchange. Process interoperability specifications can base their

input/output formats in GML.

From the process interoperability perspective, standards are used in the specification of

protocols, interfaces and descriptions of processes. Examples include OpenDap and OGC

standards. OGC’s main general-use standards for geospatial process interoperability are

the Web Feature Service (WFS), the Web Coverage Service (WCS) and the Web Map

Service (WMS) [76]. These standards specify the access mechanisms to, respectively,

vector data, raster data and renderized maps. Vector data describes geographic features

using their geometry (points, lines, polygons). Raster data represents geographic areas

as arrays of cells (e.g., images). The access mechanisms are to be implemented as Web

services.

The recent Web Processing Service (WPS) [78] specification concerns the publication

of geospatial processes, a main concern in this paper. A process may be an algorithm, a

calculation or a model that manipulates geospatial data. Although WPS does not describe

the specific behavior of an operation, it provides general description mechanisms, such

as Profiles and ProcessDescriptions [78] and support for data encoded in GML. This,

however, still leaves room for semantic mismatches.

Standards must be present at least in the frontiers of our data manipulation cycle,

“wrapping” it (see Section 3.2). The communication interfaces for data acquisition and

3.4. Interoperability Approaches 33

publication are the two points where these solutions are most useful: as seen in Sec-

tion 3.3.4, WebMAPS can be seen as a client application and a data provider to client

applications. As a server, WebMAPS strives to adhere to standards, to enable interopera-

tion with other systems. As a client, taking advantage of standard interfaces is important,

but, as will be seen, being able to handle involuntary, non-standardized, access mecha-

nisms might be equally important. As part of those efforts, its development is adopting

Web services and SOAP protocols, OpenDAP, Microformats and KML, discussed next.

OpenDAP is an acronym for Open-source Project for a Network Data Access Protocol.

It consists of a data transport architecture and HTTP-based protocol capable of encap-

sulating structured data, annotating the data with attributes and adding semantics that

describe the data. One of its features is the ability to retrieve file subsets, and aggregate

data from several files in one transfer operation. It is being increasingly adopted by earth

scientists to publish their data – e.g., in oceanography [23, 26, 109]. In our framework,

OpenDAP is used as a means to publish and receive data, in layers 1 and 7. For instance,

images are acquired and served by WebMAPS using OpenDAP. In the first case, it is at

the receiving end (Layers 1 and 2), while in the second case it is at the top of the cycle.

As exemplified by [109], this allows scientists to exchange and visualize results of complex

models.

Microformat is a web-based data formatting approach to re-use existing content as

metadata, through standard annotations conveyed by XHTML (or HTML) classes and

attributes. The intention is to allow information targeted to end-users to be also software

processable. In other words, the layout and formatting markup are also used to do

semantic annotations. Microformats replace more complicated methods of automated

processing, such as natural language processing or screen scraping. Their use has direct

impact in the representation of data in Layer 6, after being generated in Layer 5 along

with other transformation processes.

In particular, Geo is a microformat used for marking up WGS84 geographical coordi-

nates (lati,long) in XHTML. Figure 3.6 presents an example of the use of this microformat

in an XHTML page. This allows parsing tools to mine for pages that contain coordinates

in this format. This allows these pages to be redered using this geospatial information,

e.g., in a mapping tool or loading the coordinates into a GPS device.

<div class="geo"> Campinas:

 -22.906 ;

 -47.061

</div>

Figure 3.6: Example of the Geo microformat in an XHTML page.

KML [80] is an XML-based language schema for expressing geographic annotation and

34 Chapter 3. A standards-based framework . . .

visualization for 2D and 3D Earth browsers. It was initially developed for use with Google

Earth. The KML 2.2 specification was accepted as a OGC standard, ensuring its status

as an open standard for all geobrowsers. Our geometry files are represented in KML and

accessed by Google, in which case we are acting as data providers (Layer 0 for another

data management cycle). Figure 3.7 shows an example KML document where the city of

Campinas is represented as a point (its centroid).

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://earth.google.com/kml/2.0">

<Placemark>

<description>City of Campinas</description>

<name>Campinas</name>

<Point>

<coordinates>-22.906,-47.061</coordinates>

</Point>

</Placemark>

</kml>

Figure 3.7: Example of a KML document.

The perspective of the data providers on how much effort they put in providing inter-

operable access mechanism can be seen as voluntary and/or involuntary. The voluntary

point of view is the one we have been discussing so far in this section. It is when the data

provider willingly serves its data by means of well-known standardized interfaces and pro-

tocols, fostering data interchange between systems. Voluntary access mechanism usually

comply to some extent to a standard, in an effort to make the data more easily accessible.

The involuntary viewpoint encompasses data providers that are only concerned with data

consumption from human users, providing no facilities for external systems interested in

obtaining the same information. The reasons vary from lack of resources to the deliberate

wish to prevent inter-systems data sharing. Therefore, involuntary access mechanisms

usually do not have standardization as a main concern, even though they may comply to

standards on occasion.

In order to include involuntary data providers in our solution, we have adopted tech-

niques from the information extraction research field. One of these techniques is called

screen scraping, in which a computer program extracts data from the displayed output of

another program. Search engines and web crawlers use web scraping techniques. Indeed,

Web pages are built using text-based mark-up languages, and frequently mix content with

presentation. Therefore, web screen scrapers extract machine-friendly data from XHTML

and other markup formats.

We believe that automated acquisition is important to bridge the testing computa-

tional models against data from several geospatial resource providers. The Paparazzi

toolset is a step towards that goal, discussed in Section 3.3.3.

3.5. Related Work 35

3.4.2 Services Approaches

In the services category of interoperability, there are two paradigms competing in the

Web: Service-oriented architectures (SOA) and Resource-oriented architectures (ROA).

SOA is a direct evolution of concepts born from distributed computing theory and mod-

ular programming practices. It is an architecture where functionality is grouped around

processes and packaged as interoperable RPC-style services, loosely coupled with oper-

ating systems or programming languages. SOA’s goal is to facilitate the composition of

distributed web services, through the standardization of interfacing, reliable messaging,

transactions and security. SOA’s philosophy transcends the Web medium and could be

successfully applied to other contexts.

On the other hand, ROA is intimately related to the Web. It rescues the principle of

Representational State Transfer (REST), defined in [35]. REST outlines how resources

are defined, addressed and accessed through simple interfaces, where domain-specific data

is transmitted over HTTP without any additional messaging layer or session tracking

mechanisms. ROA design aims for the Web’s scalability, and it is defined by five main

principles: First, application state and functionality are divided into resources. Second, a

resource is uniquely addressable by means of hypermedia links. Third, all resources share

the same constrained, uniform and well-defined interface. Fourth, resources support the

HTTP protocol operations: GET, PUT, POST, DELETE, HEAD, OPTIONS. Finally,

protocols should ideally be stateless, cacheable, layered and client-server oriented. ROA

is more scalable than SOA, and easier to implement due to its uniform interface and

adherence to Web model and standards.

SOA and ROA are complementary paradigms, together they maximize interoper-

ability. For this reason, we advocate the adoption of hybrid architectures, such as in

WebMAPS. As mentioned in Section 3.3.4 we use SOA when we act as a client to Google,

and ROA when Google plays the role of WebMAPS client.

3.5 Related Work

To the best of our knowledge, no previous work considers all the phases covered in our

framework. However, there are proposals that are related with a few of the layers, some

of which are presented here. They cover the entire spectrum of solutions discussed in

the paper, from data and process interoperability using standards and services, to user

interface aspects.

There are many studies concerning use of standards, usually restricted to just one

of our layers. For instance, Aim4GDI [2] uses OGC standards for accessing distributed

data sources and creating composite results. They also extract metadata from these

36 Chapter 3. A standards-based framework . . .

sources, composing them in RDF for later querying (using SPARQL) and publication (in

an ontology description language). However, they only consider issues at the data access

and interchange level, not covering processing resources and their interoperability.

The work presented in [52] considers the use of standards for both data and process

interoperability, for distributed sources. Their solution consists on a framework based on

the ISO19100 series of standards. The paper materializes the framework in a travel guide

system called MTGS. However, limiting the standards considered for interoperability

into a single standards source hampers the construction of multi-disciplinary models and

applications, preventing their evolution. This is remarked by [65], which discusses the

evolution of the GML standard and the importance of integrating it with standards from

other application areas.

Interoperability through services is also common, in particular taking advantage of

WFS, WCS and WMS. The work of [26], for instance, describes initiatives towards com-

bining communication and access standards, e.g., providing common grounds for OGC’s

WFS and WCS to work side by side with OpenDAP to access oceanographic data. Their

effort concurs with ours in the sense that combining different standards into systems de-

sign is a way of leveraging interoperability. Sensor networks can also be encapsulated

according to the class of service provided [20]. In such a case, services are even more

appropriate.

Our main concern, however, is to provide adequate support to flexible system develop-

ment. From this point of view, the motivation of GeoModeler [109] is the closest to ours,

making geospatial resources more accessible to applications running models. GeoModeler

is a software framework that combines software components from a GIS with modeling

and simulation software, ultimately allowing various forms of analysis and visualization

of oceanographic data. Their approach, however, deals with construction of centralized

systems and software components interoperability in such systems. It does not consider,

for instance, data acquisition and publication issues.

Our layers stimulate data and process interoperability. One concern (e.g., Layers 3

and 5) is to ensure data quality. This kind of emphasis is undertaken, for instance,

by [105]. The paper presents a mediator that considers data quality as the driving force

of the integration process. Their integration approach involves comparing and evaluating

different data providers and keeping information on this evaluation available alongside

with the data. However, they do not address process interoperability issues nor take full

advantage of metadata and representation standards.

Finally, there are a variety of proposals that consider user aspects: the use of contextual

information [19], or interactions in which the user is a computational system [58], or

humans [14].

The influence of contextual information on the semantic descriptions of geospatial

3.6. Concluding Remarks 37

data and processes is discussed in [19]. They also evaluate how context impacts on the

user interaction mechanisms in geospatial system user interfaces. The paper proposes a

framework that takes advantage of contextual information and description representations

in ontologies to help guide the user through the composition of distributed data and

processes. Although we do not explicitly use contextual information, our goal is similar.

Our solution favors the adoption of standards and services to provide this effect, with

advantages on precision of terms and disadvantages in flexibility.

The focus of the framework proposed in [58] is to evaluate the suitability of geospatial

time series to the requirements of a given application. Once the suitability is calculated

it can be applied to assess the results produced by the application, helping determine

the suitability of such results to be used as input by other applications. In our solu-

tion, application requirements are also a major concern, but we consider the impacts of

interoperability solutions in meeting such requirements instead of trying to tackle them

directly.

Finally, visualization of spatial and non-spatial data on the Web is the main concern

of [14]. They argue that access to geospatial data aimed at visualization should be easier

and more efficient than transferring whole data sets to be processed locally. They propose

a browser that supports queries to geospatial services, invoking remote processes and

getting the results incrementally. Their solution goes notably in the direction of leveraging

the transition proposed by us (from focus on resources to focus on models), with the

limitation of not considering distributed data and processing sources.

3.6 Concluding Remarks

This paper presented a framework that analyzes the management of geospatial data from

a life cycle perspective. This framework is being validated in the design and development

of the WebMAPS project.

By isolating each layer in the cycle, with clear interfaces and tasks, the framework in-

duces a methodology to design and develop interoperable geographic applications. Whereas

related research concentrates on providing standards or services for one given data trans-

formation stage, we show how these efforts can be seamlessly interconnected. This allows

users to shift their focus from the technology being used to the models being constructed.

Besides within implementation efforts for the WebMAPS project, we also applied the

framework to the development of the eFarms project, which is centered on managing data

from ground-based sensing devices. The framework not only helped on understanding

and implementing solutions to the problems in sensor data management, but also it made

clearer the possible interactions with other solutions (such as the ones from WebMAPS)

and which modules from these solutions could be reused.

38 Chapter 3. A standards-based framework . . .

Future work involves extending the WebMAPS project to comply to more access stan-

dards, both from the communication and data representation points of view. Another

research issue involves the use of ontology-based techniques to speed up query processing

and annotate data and processes. Again, we point out that we have not considered on-

tologies in this work, even though they are another important means of improving data

and process interoperability. For detail on on our work in this direction, the reader is

referred to [32]. Still yet another ongoing effort is to incorporate our work about diag-

nosing similarity of oscillation trends in time series [68]. Finally, we are investigating

the possibility of storing satellite image files in PostGIS and let them be handled by the

Rasdaman system (http://www.rasdaman.com/).

Chapter 4

Accessing and Processing Sensing

Data

Scientific models are increasingly dependent on processing large volumes of streamed sens-

ing data from a wide range of sensors, from ground based to satellite embarked infrareds.

The proliferation, variety and ubiquity of those devices have added new dimensions to

the problem of data handling in computational models. This raises several issues, one of

which – providing means to access and process these data – is tackled by this chapter.

Our solution involves the design and implementation of a framework for sensor data man-

agement, which relies on a specific component technology – Digital Content Component

(DCC). DCCs homogeneously encapsulate individual sensors, sensor networks and sensor

data archival files. They also implement facilities for controlling data production, inte-

gration and publication. As a result, developers need not concern themselves with sensor

particularities, dealing instead with uniform interfaces to access data, regardless of the

nature of the data providers.

4.1 Introduction

Advances in sensor networks have leveraged research in computational models, which can

now rely on more kinds of data on real world phenomena. This, however, brings new

challenges to computational science. From the data perspective, challenges include deal-

ing with integration of heterogeneous sources, sampling rates, data redundancy, sensor

data querying, fusion and summarization, processing of stream real-time data, all subject

to node, sensor and communication failures. From the network point-of-view, challenges

include power management, communication protocols, physical device management, or

dynamic reconfiguration of nodes. This chapter is concerned with the data perspective

- i.e., how to offer applications that implement the models transparently access sensor

39

40 Chapter 4. Accessing and Processing Sensing Data

data, regardless of sensor physical characteristics, specific middleware programming envi-

ronments, and data publication formats.

Middleware-like solutions, e.g. [60, 67, 115], are frequently proposed to enable appli-

cations to access the sensing data sources – usually through the offer of APIs. If, however,

the models require new data processing functions, it is necessary to adapt or extend the

middleware. Moreover, if extra data sources are required by the models, the applications

must cope with the problem of complying with additional middleware or data formats.

To solve these problems, our approach supports uniform encapsulation of sensors and

sensing data. It is based on a special kind of component paradigm – Digital Content

Components (DCC) [99] – which provides mechanisms for uniformly encapsulating both

data and/or data processing units, and for composing them into more complex elements,

thereby helping solve interoperability issues. Applications that encode the models thus

have homogeneous access to heterogeneous sensing devices, eliminating the need for ap-

plication developers to concern themselves with whether data comes from static files or

dynamic sources, as well as device-level implementation issues.

To achieve these goals, we had to create a new family of DCCs, geared towards stream

and sensing data sources. As will be seen, this involved dealing with several challenges,

such as how to encapsulate data sources with dynamic and/or context-sensitive behavior.

Yet another obstacle concerned the need for implementing device-dependent drivers, to

offer application developers uniform access to sensor generated data.

We illustrate our solution with a real case study of modeling environmental conditions

for agricultural (i) planning and (ii) monitoring [36]. Planning (i) involves developing

sophisticated models which run on heterogeneous files containing sensor-produced data

to simulate crop growth in a given region. The main data sources are satellite-based

sensors and spatially distributed networks of ground-based sensors. Once the crop is

planted, monitoring (ii) concerns re-running and calibrating the models, for continuous

use of the same kinds of sensing data sources, now at real time, at different sampling

time frames, to capture and control crop response to changes. While data sets in phase

(i) are static, phase (ii) adds the issues of real-time data capture and management. Our

framework, as will be seen, provides a uniform solution to both phases.

The chapter is organized as follows. Section 4.2 presents basic concepts and an

overview of our proposal. Section 4.3 shows our solution to encapsulate data sources,

software and sensor data within DCCs. Section 4.4 concerns preliminary implementation

results. Section 4.5 discusses related work. Section 4.6 presents conclusions and ongoing

work.

4.2. Solution Basics 41

4.2 Solution Basics

4.2.1 Digital Content Components

A Digital Content Component (DCC) is a unit of content and/or process reuse, which

can be employed to design complex digital artifacts [99]. From a high level point of view,

a DCC can be seen as digital content (data or software) encapsulated into a semantic

description structure.

Figure 4.1: Structure of a SingleSensorDCC.

As shown in the example in Figure 4.1, it is comprised of four sections:

(i) the content itself (data or code, or another DCC), in its original format. In the

example, a communication driver for a MICAz1 sensor;

(ii) the declaration, in XML, of an organization structure that defines how DCC internal

elements relate to each other (here, delimitating driver software);

(iii) specification of an interface, using adapted versions of WSDL and OWL-S – in the

example, the getTemp and subscribeGetTemp operations;

(iv) metadata to describe functionality, applicability, etc., using OWL (in the example,

the DCC is declared as belonging to the temperatureSensorDCC class).

Interface and metadata are linked to ontology terms – e.g., the getTemp operation has

1www.xbow.com/Products/productsdetails.aspx?sid=101

42 Chapter 4. Accessing and Processing Sensing Data

an input parameter that is a timestamp, as defined by the “Time” concept of NASA’s

SWEET [93] ontology.

There are two kinds of DCC – process and passive. A ProcessDCC encapsulates any

kind of process description that can be executed by a computer (e.g., software, sequences

of instructions or plans). Their interfaces declare operations they can execute. Non-

process DCCs, named PassiveDCCs, consist of any other kind of content (e.g., a text or

video file). We refer the reader to [98, 99] for details on DCCs.

4.2.2 Overview of Our Solution

The usual approach to access sensor generated data is either to communicate with the

sensor directly in its specific protocols or to use a wrapper implemented for each type of

sensor. We propose instead to encapsulate all the data production particularities behind

new kinds of DCCs. Besides providing data access, such DCCs can aggregate several

functionalities – e.g., data delivery rate, stream data control, data annotation.

Figure 4.2: DCC taxonomy for sensor sources.

Figure 4.2, gives a functional overview, summarizing our new DCC types. On the

left, there are ProcessDCCs proposed to encapsulate data sources and data manipulation

software; at the right side are the PassiveDCCs proposed to encapsulate data itself.

The diamond ended lines represent the subclass relationship, i.e., a SensorDataDCC

is a PassiveDCC. From the process point of view, there are two main branches: Data-

4.2. Solution Basics 43

SourceDCC and ManagementDCC. The former is used for data source encapsulation – see

Section 4.3.1; and the latter is the basis for encapsulating data manipulation functions,

discussed in Section 4.3.2. As will be seen, data sources can be dynamic or stable. A

SensorDataDCC (Section 4.3.3) encapsulates sensor generated data. Data encapsulation

consists of wrapping data with accessibility rules, descriptive metadata and structure.

Data, devices and software are accessed through the same interface scheme, the major

advantage of adopting a DCC framework.

Figure 4.3: Management Layers.

Figure 4.3 gives an architectural overview of our solution, using the DCC types from

Figure 4.2. It shows the encapsulation of data in PassiveDCCs and of data sources and

data management functions in ProcessDCCs. Continuous lines indicate data flow be-

tween the elements (e.g., from B to Y), whereas dotted lines indicate reference to data

sources (e.g., from A to D to Y). The bottom Layer contains the data sources: sen-

sors (and their auxiliary devices and communication features), DBMS and other kinds

of data sources (e.g., repositories of text, satellite images, historical time series). The

second Layer contains the DCCs that provide access to data (e.g., SensorDCCs A and

B, DynamicDataSourceDCC C, and SensorDataDCCs D and E), which play a role com-

parable to that of a mediator to access the data. The third Layer has data organization

and centralization features (pre-processing, summarization, fusion). Applications, which

implement the computational models, are in Layer four and access raw data from Layer

two or pre-processed data from Layer three.

44 Chapter 4. Accessing and Processing Sensing Data

4.3 Encapsulation of Resources

This section explains how we met the challenges involved in the encapsulation of three

kinds of resources: data sources (Section 4.3.1), manipulation software (Section 4.3.2),

and sensor data (Section 4.3.3).

4.3.1 Data Sources

We consider two kinds of data sources: stable and dynamic. Stable data sources are

characterized by eventual updates, being used here to supply computational models with

context data, e.g., the spatial location of sensors’ readings (including geographic coordi-

nates or region names), data quality parameters, etc. These sources can also supply meta-

data, depending on the application. There are many implementations of these sources,

including DBMS, XML files, or even web services.

Encapsulation of stable sensor-related data sources into ProcessDCCs is a straightfor-

ward application of DCC techniques – see [98, 99]. Sensor-related challenges appear when

dynamic access is considered.

Dynamic data sources go through systematic updates. Two kinds of dynamic data

sources are considered here: (i) sensing devices and (ii) subscribable services. Sensing

devices are encapsulated within a SensorDCC, a specialization of a ProcessDCC. Sensor

encapsulation is further explored in below.

Subscribable services provide data under some sort of agreement (e.g., upon request).

An example is a weather forecasting service which produces updates on the rainfall fore-

cast every hour, or when some threshold is crossed. These services are encapsulated

into DynamicDataSourceDCCs, which offer access to the same functions of the service

plus simulation of stable data source functions. Following the previous example, a Dy-

namicDataSourceDCC encapsulating a rainfall forecast service can generate a notification

adapted to each forecast event received. It can also offer, for instance, a summary of the

forecasts for a period.

When a sensor is encapsulated within a DCC, its features are exposed through the

uniform interface provided by the DCC. The major advantage of this approach is the sepa-

ration of concerns it provides. On the one hand, there is the problem of developing sensor

device drivers, including here other sources of sensing data, such as other middlewares

(see Section 4.3.2). On the other hand, using DCCs, application changes do not require

driver modification, and sensor (or middleware) changes do not affect applications.

Since each kind of sensing device has a specialized format for outputting data, different

drivers must be implemented for distinct platforms, resulting in different SensorDCCs.

4.3. Encapsulation of Resources 45

As an example, a specific SensorDCC implementation had to be built to access TelosB2

devices (sensor network enabled device). SensorDCCs are similar to proxies to access the

data. They allow creating a network of heterogeneous sensors as if they were homogeneous

– e.g., in a crop monitoring model, a network with both rainfall and temperature sensors.

If one single sensor is encapsulated, we call it a SingleSensorDCC; if a sensor network

is encapsulated, we have a SensorNetworkDCC. Both are SensorDCCs. A SensorNet-

workDCC is responsible for all the sensors it encapsulates. Any message sent to this DCC

is relayed to the encapsulated sensors, and it controls the forwarding of the data generated

by its sensors. The sensors are not aware of the existence of the DCCs, thus suffering no

interference in their functioning.

Figure 4.1 shows an example of a SingleSensorDCC we implemented, with details

omitted. The structure section describes the organization of a software module that

communicates with the sensor to access its data, i.e., it is the driver that establishes the

communication between the SensorDCC and the sensor. Here, the driver implements a

Java communication interface with a MICAz mote coupled with a temperature sensor.

The getTemp operation receives a time interval in which the readings (floating-point

numbers representing Celsius temperatures) will be returned to the caller. The second

operation (subscribeGetTemp) receives the frequency in which it should pack and send the

polled sensor data, until the (unsubscribeGetTemp) operation is invoked. The metadata

section describes the SensorDCC: sensorType indicates the type of sensing device that is

encapsulated within the DCC, in this case a TemperatureSensorDCC; phenomena indicates

which kind of measure the produced data represents; coverage shows in which region the

sensor is acting; finally, location specifies where the sensor is located.

SensorNetworkDCC allow representing an entire network within one DCC. The schemat-

ics are similar to the SingleSensorDCC, adapting the structure part to take care of multiple

sensors. An external request sent to the DCC (e.g., getTemp) is translated into a request

that is retransmitted to the sensors (through the wireless network) by the drivers. The

query can be answered by every sensor individually or with data condensed within the

network. The results make the inverse flow path. A SensorNetworkDCC is particularly

valuable in networks that do not univocally identify each sensor, or in situations where it

is not interesting or feasible to control each sensor node individually.

A sensor network can actually be encapsulated through its access point or base station.

A DCC that encapsulates an access point (AccessPointDCC) creates an interface to the

entire network. Through these interfaces, the applications can query the sensor network.

2www.xbow.com/Products/productdetails.aspx?sid=252

46 Chapter 4. Accessing and Processing Sensing Data

4.3.2 Encapsulation of Data Manipulation Functions

Each SensorDCC can offer individual management methods in its interface – e.g., setting

and reconfiguring data generation parameters. However, controlling each SensorDCC on

an individual basis may not be feasible. Higher level management layers can be created in

order to further facilitate the management of data production and annotation. We thus

introduce a specialized DCC, called ManagementDCC, which aggregates operations whose

implementation is based on the individual management operations of each SensorDCC.

Processing Data

The processing of sensor data requires several specialized functions – e.g., summarization.

We encapsulate such functionalities within ProcessingDCCs, a specialization of Manage-

mentDCC – located in Layer 3 (centralization) of Figure 4.3. There are two kinds of

ProcessingDCCs: BasicProcessingDCCs, which are implemented to directly compute

functions on sensor-produced data, and BridgeDCCs, which serve as a connection point

to sensor middlewares.

The former include functionalities such as data filtering, clustering and classification,

application of association rules, multi-source data fusion, data summarization, among

others. They, can be combined to obtain more complex processes.

BridgeDCC exist in order to take advantage of the many solutions already imple-

mented in other frameworks. Consider, for instance, TinyDB [67], a popular middleware

solution for accessing sensor data. Its SQL-like queries can be offered by operations

on a BridgeDCC interface. Instead of having to become familiar with TinyDB, the ap-

plication sends a request to the corresponding BridgeDCC, which translates it into the

appropriate syntax, forwards the request and returns the result. The query proxy system

from Cougar [115], or application adaptation update mechanisms from Impala [64], can

also be made available through a BridgeDCC’s high level interface. The same interface

specification can thus serve to access these distinct systems.

Accessing Data

The AccessDCC is a ManagementDCC that offers operations for higher level data access.

These operations reflect all the features offered by DCCs in lower layers. Consider, the fol-

lowing three examples. A BridgeDCC that implements access to the TinyDB middleware

will transform requests from an AccessDCC into TinyDB’s SQL-like queries. A Sensor-

DCC that offers access to reprogramming sensor nodes may receive a parameter that

contains the compiled software to reprogram the node. A ProcessingDCC that classifies

data may receive as a parameter the maximum number of categories desired.

4.3. Encapsulation of Resources 47

4.3.3 Encapsulation of Data

This section discusses the SensorDataDCC, a specialization of a PassiveDCC that en-

capsulates sensor generated data (Section 4.3.3), and its specialization, StreamDataDCC

(Section 4.3.3), which encapsulates streamed data from sensor data sources.

Sensor Data

An infrared satellite image, or a file containing a temporal series of rain data, are typi-

cal examples of environmental data to be encapsulated into a SensorDataDCC. Like any

DCC, a SensorDataDCC is annotated using ontology terms, e.g., data type, the physi-

cal phenomenon being measured (temperature, level of moisture, etc), the geographical

location of the reading.

Any sensor generated data can be encapsulated in a SensorDataDCC. One option is

to simply encapsulate existing files. Another is to apply filters to these files. Here we

consider three factors that limits sensor data encapsulation: size, granularity and time.

From the granularity (number of readings) viewpoint, the options considered by us

for creating a SensorDataDCC are: ignore readings (store only metadata from the sensor,

for verification of the sensor’s capabilities); one reading (a single reading is stored, for

instance, the temperature at a given timestamp); a pre-defined number of readings (e.g.,

the last five readings of the sensor); and an unbounded number of readings, which requires

a signal to stop transmission. From the size viewpoint (storage occupied), the options

are: a pre-defined limit on the size of the DCC (e.g., using a memory window); and an

unbounded size, also requiring a stop signal. From the time viewpoint, the options are:

a pre-defined start/stop time limit, time interval or no time limit (any reading can be

considered);

We can also combine the dependency among pairs of factors, such as (i) size depen-

dent granularity (e.g., a pre-defined number of messages limited by their total size); (ii)

size dependent timing (e.g., a start time for a pre-defined size); or (iii) time dependent

granularity (e.g., all the messages within a time frame). Combinations of the three factors

are also possible (e.g., all the messages within a pre-defined time and memory windows).

Dealing with a stream source includes a fourth dimension to the problem, discussed next.

Streamed Sensor Data

DCCs have, by nature, a closed scope specification, i.e., they are clearly defined and

can only be changed by an authorized user. Thus, a StreamSensorDataDCC does not

directly support data stream encapsulation, rather it uses different strategies to mimic

the behavior of stream data. This is a problem for a computational model that needs to

handle stream data – e.g., for crop monitoring. Frequently, not all data can be stored,

48 Chapter 4. Accessing and Processing Sensing Data

which either requires immediate consumption by applications, or some form of caching,

or selective storage. Each of these approaches are implemented with DCCs for dealing

with this incompatibility.

Since StreamSensorDataDCCs are passive, streams require a ProcessDCC – say, P –

to pre-process the data to be encapsulated. In the first approach (forwarding the data for

immediate consumption), P accesses the stream source only when needed, i.e., when an

operation is posted to P. In this case, P ignores the data stream production until data is

requested.

In the caching approach, P keeps the data available (e.g., in main memory) using a

window of limited size combined with a discarding policy, e.g., first-in-first-out, least-used,

or least-recently-used.

In selective storage, P polls the stream source in order to acquire the data at some

constant rate, and stores it according to one (or more) of these three strategies: (i) directly

into a database management system; (ii) in files, using some kind of structure for the data;

(iii) P sends on the data to one or more additional ProcessDCCs that will take care of the

data from that point on. In strategies (i) and (ii) the implementation of the storage must

use a selection policy on the datasets to be stored. Examples of such policies include those

for caching plus summarization (e.g., only means are stored), sampling methods (only a

few values are stored), outlier detection methods (only out-of-range values are stored),

and so on. In strategies (ii) and (iii), files can be encapsulated by SensorDataDCCs.

4.4 Implementation Issues

This section gives an overview of DCC implementation aspects. The presentation concen-

trates on specific components, thereby exemplifying some of the problems encountered.

Code was implemented in Java. Annotations follow the OWL vocabulary and refer mainly

to three ontologies: NASA’s SWEET [93], POESIA [36] and the DCC ontology [98]. Per-

formance issues are yet to be evaluated with a larger number of sensing devices, data

sources and applications.

4.4.1 Data Encapsulation

This section describes three of the implemented SensorDataDCCs (Section 4.3.3), namely,

TemperatureSensorDataDCC, RainfallMapSensorDataDCC and RainfallMapSetSensor-

DataDCC.

The TemperatureSensorDataDCC encapsulates a temperature time series stored in a

plain text file, whose records are pairs <temperature, timestamp> – both measures as

defined by SWEET – captured by a sensor in a given geographic location. There is one

4.4. Implementation Issues 49

TemperatureSensorDataDCC per sensor/location. Operations available include retrieval

of one pair, or a sequence thereof, and some summarization computations (e.g., average).

For instance, getTemp(Date begin, Date end) returns the set of all temperature read-

ings within the time frame from begin to end. DCC metadata contain location coordinates,

the measurement unit (e.g., Celsius degrees), and information on originating sensor.

The RainfallMapSensorDataDCC encapsulates one GeoTIFF file (standard where each

pixel corresponds to a given geographical coordinate and contains one rainfall measure

for a particular month of a particular year). Its operations concern: getting the entire

GeoTIFF file, getting values from individual pixels (given either geographical coordinates

or pixel relative position in the image). Metadata are of a similar nature to those provided

for the temperature sensor.

We recall that SensorDataDCCs are passive components; thus, the implementation of

these DCCs had to be followed by the implementation of ProcessDCCs, which contains

the code of all interface operations. The main challenges faced here were determining

the appropriate operations and their parameters, and the actual implementation of the

operations.

4.4.2 Data Sources Encapsulation

Here we discuss issues of implementing DCCs described in Section 4.3.1. Implementation

was divided in two parts – creating communication drivers to access data through sensor-

specific protocols, and creating the DCCs themselves. The first part required familiarity

with the characteristics of each sensor, e.g., to interpret the data packets emitted. This

kind of effort is needed for every new kind of sensor device encountered – not only in our

approach, but for any environment that wishes to support access to sensor data. The

difference to other solutions appears in the second part. Whereas they require extensive

communication-oriented coding to forward data delivered by the drivers, DCCs directly

map driver operations to interface operations. Thus, coding effort is much smaller – the

DCC approach not only supports homogeneous access from external applications, but

also simplifies a programmer’s work. Challenges in developing these DCCs were mostly

associated with semantic annotations (e.g., finding appropriate ontology terms).

We implemented the communication driver using TinyOS [61] interfaces. Sensors were

programmed with TinyOS and software developed in the NesC language, a C-derived

component programming language.

We implemented SensorDCCs for the MICAz mote (MicazSensorDCC) and for the

TelosB mote (TelosbSensorDCC). These SensorDCCs have similar interfaces and were

tested with temperature and light readings. The MICAz mote requires an auxiliary

MTS300 sensorboard, whereas TelosB came with integrated sensors. The MicazSensorDCC

50 Chapter 4. Accessing and Processing Sensing Data

and the TelosbSensorDCC are generating real-time data and making them available in four

ways (operations implemented): (i) on-demand access (application receives the data as

needed in real time); (ii) generating text file data outputs; (iii) generating new SensorDa-

taDCCs (TemperatureSensorDataDCCs); and (iv) updating existing SensorDataDCCs.

4.4.3 Examples with sensors

Models in agricultural planning require analysis of several kinds of sensing data, and their

comparison along time, to detect trends in climatological values and their relationship

with productivity of a given crop (e.g., [81]).

Figure 4.4: Screenshot comparing rainfall data.

Consider a model that needs to compare rainfall data from two different periods,

for São Paulo State, producing a map that shows the result of this comparison. Fig-

ure 4.4 shows a screen capture of this application. It invokes getMap operations on two

RainFallMapSetSensorDataDCC containing data on São Paulo State. One of these DCC

encapsulates one GeoTIFF file, created from historical rainfall data, whereas the other en-

capsulates a service that provides rainfall data expressed in the GeoTIFF standard. Once

these two datasets are obtained, the model calculates their “difference”; this is obtained

by comparing the values of pixels that correspond to the same geographical positions.

This may also requires pre-processing the data, to ensure that both datasets are scale and

coordinate compatible (information provided by associated DCC metadata).

4.5. Alternative Solutions 51

Figure 4.5: Polling a TemperatureDCC.

Monitoring models, on the other hand, process sensing data at real time. Figure 4.5

shows the result of a loop that polls a MicazSensorDCC, and plots a real time temperature

curve, to be interpreted by experts. Polled data is also fed to another set of modules. In

agriculture, experts typically compute aggregate values (e.g., average or maximum for a

given time window) that are then used in a broader context – e.g., to create a dynamic

average temperature map of an area, or to detect deviations from the norm. Such real

time data is also stored in temporary files, to re-run the original planning models (e.g.,

as in the previous example).

We point out that, from an application point of view, all was achieved by invoking

DCC operations, regardless of the characteristics of the underlying sensing sources. A

planning model will process a sequence of invocations, whereas monitoring will perform

a loop that will invoke a given sequence over and over, at specific time intervals.

4.5 Alternative Solutions

We have commented on related work throughout the chapter. There remains to compare

our proposal with alternative approaches to data management solutions, in particular to

homogeneous access to resources, which we achieve by encapsulating them within DCCs.

The solutions considered are: (i) Specialized (and language specific) implementations;

(ii) Standards for data access such as Service Data Objects (SDO)3 (iii) Software com-

ponents and communication middlewares, such as CORBA, COM (DCOM and COM+)

and .NET , EJB, and others; and, (iv) WSN middleware as defined by [43]. The first ap-

proach has the classic overhead of unnecessary repetition of work, hard maintenance, lack

3www.jcp.org/en/jsr/detail?id=235

52 Chapter 4. Accessing and Processing Sensing Data

of standardization and interoperability. SDO or similar initiatives only take into account

data representation; furthermore a DCC can offer access to data using SDO. Components

and general middleware lack stream manipulation flexibility, semantic descriptions, and,

more importantly, homogeneous treatment of data, devices and software.

Exploring further the WSN middlewares, four approaches are close to ours. Global

Sensor Network (GSN) [1, 54], has similar goals. However, data management is restricted

to homogeneously accessing the network using a declarative language, while our pro-

posal considers including pieces of software in new DCCs. The Sensor Network Services

Platform (SNSP) [101] proposal considers the possibility of including processing software

through the concept of “auxiliary service”. However, it is centered around a formal specifi-

cation of levels and services, leaving aside implementation issues, both for data publishers

and data consumers. Hourglass [51] concisely considers processing solutions, but requires

the use of a specific definition language and uses low-level TCP socket communication

schemes, while DCCs use Semantic Web standards for both specification and communi-

cation. IrisNet [39] limits the use of sensor data to a hierarchical XML database, using

XPath queries. DCC interfaces, on the other hand, can support a wide range of access

mechanisms.

Other proposals act in more specialized branches. TinyDB [67] provides access to

an entire network in a single entry point, which uses an SQL-like query system. It also

aggregates data readings, decreasing the transmission costs, but at the cost of maintaining

information on the network structure, compromising scalability. Cougar [115] works well

on large sensor sets and makes data access easy with its query system; however, its focus

is centered in efficient sensor programming, while our proposal is concerned with the

management of data from the sensor outwards. Impala [64] is limited to a specific handheld

hardware, but supports protocol and operation mode updates. Maté [60] addresses issues

such as protocol updates and node heterogeneity (using a virtual machine approach), but

lacks effective and easy communication with applications. Magnet [10] delivers a Java

virtual machine on top of the network, facilitating the development of Java applications,

but is unfit for nodes with limited capacity. These solutions can be encapsulated in our

BridgeDCC.

4.6 Concluding Remarks

This chapter presented a framework to support flexible management and publication

of sensor-produced data, an ever-growing need of computational models. Part of this

framework has been implemented and validated. It is based on two main aspects: the

use of DCCs to provide uniform access to sensor data, sensing devices and software to

process the data; and the construction of ManagementDCCs to coordinate sensor data

4.6. Concluding Remarks 53

integration and publication.

Through this solution, applications that implement scientific computational models

do not need to concern themselves with device dependent issues or with whether they

are handling historical data files, or real time data streams. They just need to invoke

the appropriate sensor and management DCCs to access the desired data, simplifying the

problem of model construction and tuning.

Ongoing work involves several issues. As mentioned in Section 4.4, we are constructing

more SensorDCCs, and extending our implementation to process data from large sensor

networks. We are also working on the actual construction of BridgeDCCs to expand the

compatibility base for experiments.

Chapter 5

Applying Scientific Workflows to

Manage Sensor Data

There is a world wide effort to create infrastructures that support multidisciplinary, collab-

orative and distributed work in scientific research, giving birth to the so-called e-Science

environments. At the same time, the proliferation, variety and ubiquity of sensing devices,

from satellites to tiny sensors are making huge amounts of data available to scientists.

This chapter presents a framework with a twofold solution: (i) using a specific kind of

component – DCC – for homogeneous sensor data acquisition; and (ii) using scientific

workflows for flexible composition of sensor data and manipulation software. We present

a solution for publishing sensor data tailored to distributed scientific applications.

5.1 Introduction

In the recent past, e-science initiatives focused in research areas that had need for high

performance computing, e.g., meteorology, genomics, particle physics. This has fostered

research in Computer Science mainly in computer clusters and grids, and in data-intensive

support systems. Currently we see a movement to offer computational support to a num-

ber of other research areas, including environmental planning and monitoring, agricul-

ture, biodiversity, social sciences, and arts [5, 46, 96]. Supporting these new areas involves

research in other Computer Science fields, such as databases (storage, retrieval and inte-

gration of multimodal and heterogeneous sources), compilers, human-computer interfaces.

In particular, data generated by sensing devices are increasingly important to scientific

research and applications. This chapter concerns supporting sensor data acquisition, ma-

nipulation and publication.

We are facing the proliferation of several kinds of sensing devices, from satellites to

tiny sensors. This has opened up new possibilities for us to understand, manage and

55

56 Chapter 5. Applying Scientific Workflows to Manage Sensor Data

monitor a given environment, from the small – e.g., a room – to the large – e.g., the

planet. In particular, wireless sensor networks (WSN), i.e., networks of communicating

small sensing devices, powered by batteries and with limited storage and processing fa-

cilities, are subject to intensive research. Network nodes are frequently heterogeneous,

generating distinct kinds of data at different time intervals. From the data perspective,

challenges include dealing with integration of heterogeneous sources, data redundancy,

data streams and real-time data, data fusion and summarization, all subject to node,

sensor and communication failures. From the network point-of-view, challenges com-

prise physical device management, event detection and notification, power management,

dynamic reconfiguration of nodes and network, and support to different simultaneous ap-

plications, among others. However, the proliferation, variety and ubiquity of these devices

add new dimensions to the problem of heterogeneous data management.

Figure 5.1 outlines our proposal to deal with these issues, where layers denote different

data access and manipulation levels, from data sources to applications. The continuous

lines denote a data flow path and the dotted lines denote a reference to data sources. The

first layer contains the data sources such as services, DBMS, files (e.g., text, imagery),

and, in particular, sensor and their auxiliary devices. The second layer, detailed in section

5.2, contains a specific kind of component: Digital Content Components (DCC) [99],

which have Semantic Web conformant annotations. Both data and data sources1 are

encapsulated within DCCs, so uniform interfaces are available to the applications, for

dynamic (e.g., sensors) and stable (e.g., time series files) sensor data sources; and for

dynamic (e.g., stream) and stable (e.g., on image) sensor generated data.

Figure 5.1: Management layers.

The third layer contains elements that centralize and manipulate the encapsulated

1We distinguish between data – the bits and bytes – and data sources – device or resources that
provide data. This distinction can become blurred at times – e.g., a file can be treated either as data or
as a data source.

5.2. Revision on DCC and Encapsulation of Resources 57

sensor data from layer 2, offering functions such as data fusion, summarization, classifi-

cation and sampling. In this layer, the processing elements can be single DCCs and/or

scientific workflows. Workflows are applied to control and compose the basic functions so

that the data are tailored to fit applications’ needs. The fourth layer has the publication

and data access mechanisms, offering high abstraction level interfaces. Applications in

Layer 5 are regarded as clients of Layers 3 and 4.

Sensor data have particular requirements to be dealt with, specially concerning data

streams manipulation and data fusion schemes. Sensor networks present an even bigger

challenge as some of these solutions can be implemented within the network. Our DCC

implementations provide solutions to these aspects, including the possibility of using

intra and/or extra-network algorithm implementations. In this chapter we explore the

composition of these solutions using workflow activities, which are transparently executed

by invoking DCC operations.

This proposal has the following advantages:

(1) it provides homogeneous access to heterogeneous sensing devices;

(2) it enables applications to have multiple views of sensing data, by taking advantage

of scientific workflows to mediate sensor data access. This fosters reuse of solutions for

managing these data;

(3) it eliminates the need for an application to concern itself with whether a data source

is static or dynamic. Items (1) and (3) are presented in detail in [87]. This chapter’s main

contribution lies on issue (2), presenting workflow specifications and categories for sensor

data manipulation.

5.2 Revision on DCC and Encapsulation of Resources

A Digital Content Component (DCC) is a unit of content and/or process reuse, which can

be employed to design complex digital artifacts [97, 99]. From a high level point of view,

a DCC can be seen as digital content (data or software) encapsulated into a semantic

description structure. As shown in Figure 5.2, it is comprised of 4 sections:

(i) the content itself (data or code, or another DCC), in its original format. In the

example, the content is a driver for communicating and gathering data from a MICAz

sensor (www.xbow.com/Products/productsdetails.aspx?sid=101);

(ii) the declaration, in XML, of a structure that defines how DCC internal elements relate

to each other (here, delimitating the object code of the driver);

(iii) specification of an interface, using adapted versions of WSDL and OWL-S – e.g., the

getTemp and subscribeGetTemp operations, in the example;

(iv) metadata to describe functionality, applicability, etc., using OWL (in the example,

the DCC is declared as belonging to the TemperatureSensorDCC class and being located

58 Chapter 5. Applying Scientific Workflows to Manage Sensor Data

at the longitude and latitude specified.

Interface and metadata are linked to ontology terms – e.g., the getTemp operation has as

input parameter a timestamp as defined by the “Time” concept of NASA’s SWEET [93]

ontology.

Figure 5.2: DCC schematic structure (from [87]).

There are two main kinds of DCC – process and passive. A ProcessDCC encapsulates

any kind of process description that can be executed by a computer (e.g., software, se-

quences of instructions or plans). Their interfaces declare operations they can execute.

Non-process DCCs, named PassiveDCCs, consist of any other kind of content (e.g., a

text or video file); their interfaces declare their potential functionality, in the sense that

the operations can be requested from them, but their execution code is not part of the

content (e.g., a video player software is not part of a video). Since passive components

by definition cannot embed executable code, operation implementations are encapsulated

into special ProcessDCCs called CompanionDCC (e.g., a piece of music M stored in a Pas-

siveDCC can be played by attaching M to a suitable music player in a CompanionDCC).

We refer the reader to [99] for details the DCC infrastructure.

Recalling Figure 5.1, the second layer contains Passive and ProcessDCCs respectively

encapsulating data and data sources. DCCs that provide access to sensor data, called

DataSourceDCCs, play a role comparable to that of a mediator to access the data produced

by a sensor. A specialization of a DataSourceDCC is the SensorDCC, which takes care of

accessing sensors and collecting their data. One SensorDCC can encapsulate one (DCC

B) or more sensors (A) by, for instance, encapsulating an access point of a wireless

sensor network. Data can be delivered to the next layer in its original format (C) or

encapsulated in another DCC, as done by A, delivering D. D, E, F and G are examples

of SensorDataDCC, a PassiveDCC used for sensor data encapsulation and annotation.

For more details on encapsulation of resources the reader is referred to [87]. Layer 3 (Y

and Z) has data organization and centralization features (pre-processing, summarization

and fusion). Finally, the fourth layer has the publication and access control features,

5.3. Scientific Workflows 59

and offers raw and processed data to applications in Layer 5. Features of layers 3 and 4

can be implemented either as software, event-based composition (using publish/subscribe

techniques), or flow-oriented compositions (using workflows). The third kind is our focus

in this chapter and is explored next.

5.3 Scientific Workflows

5.3.1 Basic Concepts

A workflow is a specification (or model) of a process, which is a set of inter-dependent

steps needed to complete a certain task. A Workflow Management System (WFMS) is

a computer system for specification, execution and management of workflows [113]. A

scientific workflow is a specification of a process that describes a scientific experiment

[111]. While most business workflows are first specified and then executed several times,

a scientific workflow is often specified while an experiment is conducted, focusing on

process documentation. Other singular characteristics include: (i) emphasis on data

centric processes; (ii) a high degree of flexibility on specification and adaptation; (iii)

support to uncertainty at specification and execution time, as well as a great number of

exceptions during execution; (iv) possibility of modifying a workflow during its execution.

These characteristics pose problems to workflow specification, for which there are

several proposals (e.g., WS-BPEL). Our workflow data model [70, 85] is compliant with

international standards and induces a methodology for scientific workflow specification.

Our model has been implemented in the WOODSS [70] framework for scientific workflow

management. The several abstraction levels of a workflow are stored in a relational

database and can be reused as workflow building blocks. Moreover, the specification

of types and of abstract workflows capture the notion of workflow design independent of

execution aspects, allowing design reuse. This supports the need scientists have for sharing

and reusing not only executable procedures, but also their specification. The model

requires that the users first specify types of workflow building blocks, next combine them

into abstract specifications (abstract workflows), and finally refine these specifications into

executable workflows (concrete workflows).

5.3.2 Management Workflows

Our solution adopts scientific workflows as a flexible way to coordinate the management

of sensing data. Here, rather than directly accessing sensor data files, or interacting

with sensor middleware, the idea is to take advantage of DCC interfaces and composition

mechanisms. Thus, a solution constructed for one scenario or one set of sensors can

60 Chapter 5. Applying Scientific Workflows to Manage Sensor Data

be easily reused in different environments, adapting the DCCs that are available in the

repository. Applications can select or post adequate workflow specifications in order to

obtain the desired data. This solution adds reusability and flexibility for sensor data

management.

The goal of a management workflow is to manage the sensor data in order to support

complex application requests. More specifically, it controls SensorDCCs and Process-

DCCs (embedding data manipulation software), coordinating the tasks of data extrac-

tion, processing and interpretation. Furthermore, a management workflow can access

SensorDataDCCs as additional data sources.

Figure 5.3: An example of a management workflow for crop monitoring.

Figure 5.3 shows an example of a management workflow for agricultural monitoring –

i.e., it controls conditions in a given region to help crop management. It is used to acquire

data from distinct kinds of sensors and sensor-derived data files. It periodically produces

derived data, here a file of a map in GeoTIFF (a bitmap format that associates geographic

coordinates to pixels). For instance, activity getRainData accesses a SensorDCC for real

time rainfall readings, while getRainTimeSeries accesses a SensorDataDCC for historic

rainfall data. Both generate maps that are combined to detect rainfall evolution patterns,

taking into account a region’s topography (map generated from topographic data).

Workflow activities access DCCs for data input, and can generate other DCCs, e.g.,

GeoTIFFDCC. The main mechanism to determine which DCCs can be used for a given

activity is based on a combination of ontology annotations and type matching (of DCC

operation interfaces and metadata, and activity specification). This is supported by the

DCC management infrastructure – see section 5.4. We point out a few aspects that charac-

terize our solution. The monitoring workflow is only concerned with sending data requests

to DCCs, regardless of the nature of the data sources. Moreover, the workflow manages

and publishes sensor data, and publication results can themselves be encapsulated in a

DCC.

5.3. Scientific Workflows 61

Our workflows are specified favoring our reuse methodology [70]. The first step consists

in the definition of the data and activity types. Next, activities are created from types:

after choosing an activity type, one can choose the data that is going to be used by that

activity, based on the data types of the activity’s parameters. Activities may be created

only at an abstract specification level – thus defining an abstract workflow. This workflow

can be then customized to specific situations, and subsequently instantiated for execution.

Management workflows can be reused and adapted to solve new data needs. To make a

workflow executable, pieces of software must be associated to each of its activities. This

is where the DCCs come into action. Workflow execution is carried out transparently by

a WFMS, which uses DCC operations, coordinating the data flow.

5.3.3 Validation Workflows

We can use several validation techniques to make sure that data follow given quality or

validity parameters. This evaluation can be specified using the workflow and DCC based

infrastructure. An interesting aspect of these mechanisms is the possibility of offering

data quality assurance to the applications.

We propose five methods for data validation, which can be used individually or in

a sequential combination inside a workflow. The methods are: sampling, summariza-

tion, pre-processing, and pre- and post-condition verification. Sampling, summarization

and pre-processing are basic features frequently used to extract information from data

sets. In the validation context, the idea is to extract representative sets of values from

sensor-produced data, perform additional processing and evaluate the results against some

benchmark. Pre- and post-conditions consist in evaluating logical expressions using the

sensing data as variables.

All the validation schemes can be stored and published along with the data. Thus,

data production can be traced back to its source, so that all the manipulations are avail-

able to be analyzed. Pre- and post-conditions can be stored as text. Pre-processing,

summarization and sampling can be stored by references to the respective DCCs used

(including DCCs that encapsulate workflows).

5.3.4 Publication Workflows

Publication is the final aspect of data management in our work. Management workflows

are geared towards supplying data for specific application needs (e.g., generating erosion

maps or controlling the temperature in a factory environment). Publication workflows,

on the other hand, are general purpose data providers.

Functionalities to publish sensor data include: (i) data fusion schemes, even exerting

device reconfiguration control; (ii) data summarization and sampling, with configuration

62 Chapter 5. Applying Scientific Workflows to Manage Sensor Data

parameters; (iii) application of statistical analysis over the readings; (iv) data classifica-

tion, filtering, clustering and many other mining related techniques. These functionalities

are accessed and composed into a publication workflow via management operations offered

by individual and aggregated operations on SensorDCCs.

5.4 Implementation Issues

Figure 5.4 illustrates the main modules of the architecture. Scientists (the main users)

interact with it via the GUI (Graphical User Interface) to design workflows and DCCs,

and monitor workflow and/or DCC execution. The architecture relies on the following

subsystems: (i) WOODSS [70] – a scientific workflow specification and documentation

environment developed at UNICAMP; (ii) ANIMA [99], an infrastructure developed to

support DCC execution and management; (iii) a set of modules to design DCCs, eventu-

ally reusing and modifying DCCs from a repository [97]; and (iv) a basic infrastructure

needed to monitor and execute workflows, including the WFMS.

Figure 5.4: The main modules of the architecture.

In more detail, WOODSS allows users to specify scientific workflows, using our method-

ology, and to annotate both workflows and data manipulated by them. Workflow speci-

fications (at all abstraction levels), their components, and annotations are stored in the

Workflow Repository. Scientists can construct a workflow from scratch, or reuse and

adapt stored workflows, retrieved with help from the Workflow Search Engine, based on

workflow metadata – e.g., are there any workflows that create erosion maps? Repository

records point to external elements they invoke (e.g., a Web Service) or manipulate (e.g.,

data sets) – [70].

DCC specification and management are handled by the modules on the right of the

figure. Users interact with the GUI either to specify a new DCC from scratch, or to

construct a DCC reusing and adapting existing stored components. The goal of the

DCC Search Engine is to help DCC design and composition, supporting the user in

5.5. Related Efforts 63

finding the most appropriate DCC to reuse for a given application purpose – e.g., is

there any SensorDataDCC that encapsulates rainfall time series for São Paulo State?

This engine’s search mechanisms are based on a set of algorithms that combine type

annotations, metadata and interface matching [97].

We implemented SensorDCCs for the MICAz mote and for the TelosB mote (www.

xbow.com/Products/productsdetails.aspx?sid=126). These SensorDCCs have the same

interfaces and were tested with temperature and light readings. SensorDataDCCs imple-

mented include temperature, light, rainfall map and rainfall map set.

To select a workflow for execution, a user (or an application) sends a request to the

WFMS, which invokes the Workflow Search Engine to retrieve the desired workflow from

the Workflow Repository. All data and DCCs needed to execute the workflow are all

retrieved in this search step (e.g., our SensorDCCs).

Subsystems (i) through (iii) are already implemented, and we do not intend to im-

plement a workflow engine. Rather, we will use some available system. Meanwhile,

subsystem (iv) has been replaced by a simple coordination mechanism, extracted from

Anima’s synchronization modules. This allows simulating reasonably complex workflows,

including those with parallel branches, synchronization and loops. The GUI has distinct

modules that support graphical workflow design, DCC specification and construction of

composite DCCs [99]. Present implementation efforts are concerned with two issues: first,

we are concentrating on the development of more DCCs for sensors. Next, we will support

internal interactions among WOODSS, WFMS and DCC modules for their integrated ex-

ecution. Present integration occurs only at the repository level (the Workflow Repository

points at DCCs stored in the DCC Repository). Moreover, the DCC Search Engine is not

yet integrated into the system. We also intend working on this.

5.5 Related Efforts

We have commented on related work throughout the chapter. There remains to compare

our proposal with alternative approaches, in particular regarding two aspects. One aspect

concerns the (general-purpose) data management solutions, which we propose solving

through scientific workflows. Another issue is homogeneous access to resources, achieved

by encapsulating the sensors within DCCs.

Scientific workflows are extensively used in e-Science, e.g., orchestrating Web services,

or specifying execution of experiments in a grid environment [71, 116]. Other efforts in-

clude applying workflow technologies [15, 22, 66, 117], distributed scientific data [21] and

multi-modal scientific data management [106]. The major difference of these approaches

to ours is the homogeneous treatment of data, data sources, and software. To the best

of our knowledge, no proposals exist to use such workflows to manage access to het-

64 Chapter 5. Applying Scientific Workflows to Manage Sensor Data

erogeneous sensing devices. Other alternatives for data management solutions include:

(i) Specialized implementation, e.g., an entire software system for one specific applica-

tion, which has the classic overhead of unnecessary repetition of work, hard maintenance,

lack of standardization and interoperability. (ii) Other composition techniques, such as a

publish-subscribe scheme [34], which are also promising, but are not suited for flow (or

process) oriented executions.

From the point-of-view of homogeneously accessing the data, one approach alterna-

tive to ours is to directly use Web services to publish data, and to have access to sensors.

However, this has two drawbacks: (1) unlike PassiveDCCs, Web services do not actually

encapsulate data, and thus are always associated with some specific implementation; (2)

a Web environment is mandatory for Web services, while DCCs can also be used in a

standard programming environment, regardless of the Web (and its overhead). Other ac-

cessing solutions considered are: (i) Specialized (and language specific) implementations;

(ii) Software components and communication middlewares, such as CORBA, DCOM and

.NET, EJB, and others; (iii) WSN middleware as defined by [43]. The first approach has

the same drawbacks of the specialized implementation for data management. Components

and general middleware lack flexibility, semantic descriptions, and, more importantly, ho-

mogeneous treatment of data, devices and software. WSN middleware [39, 67, 115] are

centered either on specific platforms or specific applications, none consider accessing data

and software through homogeneous interfaces.

5.6 Concluding Remarks

With the possibility huge amounts of sensor data production, efficient management of

these data is mandatory. In scientific research this is an even more sensible problem,

since both the data sources and the applications accessing the data are typically hetero-

geneous and distributed. We described a solution to provide means to access and process

sensor data in this scenario, aiming at flexibility and reusability of solutions. The main

contribution of this work is the specification and implementation of a framework that:

(i) provides distributed access and processing features to sensor data using DCCs, and

(ii) flexible composition mechanisms using workflows for managing these DCCs. Ongoing

work involves inclusion and evaluation of more sensor data sources and improving the

execution mechanisms.

Chapter 6

Sensor Data Publication on the Web

for Scientific Applications

This chapter considers the problems of sensor data publication, taking advantage of re-

search on components and Web service standards. Sensor data is widely used in scientific

experiments – e.g., for model validation, environment monitoring, and calibrating running

applications. Heterogeneity in sensing devices hamper effective use of their data, requiring

new solutions for publication mechanisms. Our solution is based on applying a specific

component technology, Digital Content Component (DCC), which is capable of uniformly

encapsulating data and software. Sensor data publication is tackled by extending DCCs to

comply with geospatial standards for Web services from OGC (Open Geospatial Consor-

tium). Using this approach, Web services can be implemented by DCCs, with publication

of sensor data following standards. Furthermore, this solution allows client applications to

request the execution of pre-processing functions before data is published. The approach

enables scientists to share, find, process and access geospatial sensor data in a flexible

and homogeneous manner.

6.1 Introduction

Sensors are fast becoming one of the main data providers for scientific applications. A

given set of sensors may provide data to meet the needs of distinct applications – e.g.,

rainfall and temperature sensors may be used by researchers in environmental planning,

habitat monitoring or epidemiology. However, each application domain – and each ap-

plication within a domain – will require distinct kinds of data granularity and sampling.

So, the question we answer is the following: how to devise a solution to the problem of

sensor data publication, to support homogeneous access mechanisms to geospatial sensor

based data from heterogeneous sources.

65

66 Chapter 6. Sensor Data Publication on the Web for Scientific Applications

Our solution is based on a specific component technology, Digital Content Components

(DCCs), which we extended to comply with geospatial Web service standards from OGC

(Open Geospatial Consortium). DCCs are capable of uniformly encapsulating data and

software, and are annotated with metadata and references to ontologies, following Seman-

tic Web standards. We use them to encapsulate access to sensing data, homogeneously

integrating them into a single framework. DCCs provide basic data manipulation func-

tions, and can be composed into arbitrarily complex procedures. We use these functions

to propose an extension to the OGC standards and proceed to show how to use DCCs to

implement these extended standards.

We use a running example based on epidemics monitoring of dengue fever. It is

caused by a virus and is transmitted to humans by the Aedes aegypti mosquito. Efforts

to monitor dengue epidemics require combining geospatial data such as registered disease

cases, geographical and demographic characteristics of the population, environmental data

that is known to affect disease spread (e.g., rainfall or temperature), and locations where

the mosquito is found.

The acquisition and access to such environmental readings for experimental research

is an open issue. Our work contributes towards solving these problems.

The rest of the chapter is organized as follows. Section 6.2 presents the basics of

the DCC technology and explains the encapsulation of resources into DCCs. Section 6.3

describes our proposal for multi-level integration of sensor data Web publication. Section

6.4 discusses implementation issues. Section 6.5 considers related efforts. Section 6.6

presents concluding remarks and ongoing work.

6.2 DCCs and Resource Encapsulation

This section briefly presents DCCs (section 6.2.1) and explains how we apply them to

homogeneously encapsulate three kinds of resources: data, data sources (e.g., databases

and sensors), and software.

6.2.1 DCC Basics

A Digital Content Component (DCC) is a unit of content and/or process reuse, which can

be employed to design complex digital artifacts. It can be seen as digital content (data

or software) encapsulated into a semantic description structure. It is comprised of four

sections (Figure 6.1):

(1) the content itself (data or code, or another DCC), in its original format. In the exam-

ple, the content is a driver for communicating and gathering data from a MICAz1 sensor;

1www.xbow.com/Products/productdetails.aspx?sid=101

6.2. DCCs and Resource Encapsulation 67

Figure 6.1: A DCC for sensor access.

(2) the declaration, in XML, of a structure that defines how DCC internal elements relate

to each other (here, delimitating the object code of the sensor’s driver);

(3) specification of an interface, using adapted versions of WSDL and OWL-S – e.g.,

getTemp and subscribeGetTemp operations;

(4) metadata to describe functionality, applicability, etc., using OWL (the DCC is de-

clared as belonging to class TemperatureSensorDCC and located at longitude and latitude

specified).

Interface and metadata are linked to ontology terms – e.g., input parameters of the

getTemp operation are timestamps defined by the “Time” concept of NASA’s SWEET [93]

ontology.

There are two main kinds of DCC – process and passive. The first encapsulates any

kind of process description, and Passive DCCs consist of any other kind of content (e.g.,

a text or video file). See [99] for details.

6.2.2 Encapsulation of Data (Access and Manipulation)

We encapsulate data withing PassiveDCCs and sensing sources in ProcessDCCs. DCCs

can be used to homogeneously publish any kind of sensor generated data, be it static

and/or streamed data [86] . A satellite image, or a file containing a temporal series

of temperature data, are typical examples of static data, while continuous temperature

reading transmissions are an example of streamed data. These DCCs are annotated using

ontology terms such as data type, the physical phenomenon being measured (temperature,

68 Chapter 6. Sensor Data Publication on the Web for Scientific Applications

solar radiation, etc), the geographical location of the reading (e.g., GPS-provided). See

[86] for more details on data encapsulation.

The number of sensors encapsulated within a ProcessDCC depends only upon the

implementation of the sensor driver (as the MICAz driver in Figure 6.1). A sensor network,

for instance, can be encapsulated by a DCC with a driver that communicates with the

network’s access point.

Manipulation of sensor data can occur in two levels: within a sensor or a network

(signal processing, in-network fusion, etc) or externally (filtering data by region, fusion

of heterogeneous water temperature sensors, etc). External processing, sometimes called

post-processing, is usually application oriented – e.g., summarization of temperature read-

ings per region and time period for a dengue spread simulation.

6.3 Sensor Data Publication

In most cases, sensor data is georeferenced. This makes it possible to employ general-use

geospatial standards and services for sensor data publication (section 6.3.1). Section 6.3.2

shows how to use DCCs to publish sensor data in different scenarios. DCC annotations

are translated into Web standards-compliant metadata, and DCCs are used to implement

Web services (section 6.3.3).

6.3.1 OGC Standards

Geospatial Data Publication

The Open Geospatial Consortium (OGC) is an international organization that leads the

development of standards for interoperability among geospatial applications. OGC’s main

general-use standards for geospatial data interoperability are the Web Feature Service

(WFS), the Web Coverage Service (WCS) and the Web Map Service (WMS) [76]. A

central notion is that of feature, i.e., a geospatial object. These standards specify the

access mechanisms to, respectively, vector data (point-line-polygon), raster data (image-

based) and rendered maps. These standards are specified to be implemented as Web

services.

The WFS specification provides a standardized means to access geospatial data en-

coded in GML (Geographic Markup Language) [76] for the transport and storage of geo-

referenced data. A WFS-compliant service implements operations that allow retrieval of

data and metadata, using several kinds of filters. The WCS specification allows interac-

tions similar to these of WFS, but for raster data. Finally, the WMS specification allows

clients to pose queries to retrieve rendered maps. Queries can specify a map’s geographic

6.3. Sensor Data Publication 69

extent, output format and the style – which is defined as Style Layer Descriptor (SLD) [76]

files.

Roughly speaking, a query to retrieve Features (WFS), Coverages (WCS) or Maps

(WMS) can be expressed by a tuple <query,filter,style>. The query is subject

to filters, and style is the SLD specification for maps. Section 6.3.2 describes our

extension to this approach.

Sensor Data Publication

OGC is now working on standards for sensor interoperability and sensor data access

and publication. Its Sensor Web Enablement Working Group (SWE – http://www.

opengeospatial.org/projects/groups/sensorweb) is proposing standards for data en-

coding and common Web service interfaces for data access. The encoding proposals are

Observation & Measurements Schema (O&M), Sensor Model Language (SensorML or

SML), and Transducer Markup Language (TransducerML or TML) [77]. As most of

OGC’s standards, the languages are defined by means of XML Schemas. The service in-

terface proposals are Sensor Observation Services (SOS), Sensor Planning Service (SPS),

Sensor Alert Service (SAS), and, Web Notification Services (WNS) [77]. The SWE Com-

mon [77] initiative aims at a common vocabulary to be used within the SWE framework.

The most basic encoding is TML, which deals directly with transducer (sensor or

actuator) data. Higher level encoding is covered by SML, which can represent the pro-

cesses sensor data went through. The last encoding level is O&M, which represents sensor

originated data independently from the level of data processing.

SML is used for modeling and representing processes that generate sensor data. SML

data sources are not restricted to sensors alone, and can also be a sensor network, a

sensor wrapper or database with sensor data, etc. In SML a ProcessModel is an atomic

processing block that defines its own inputs, outputs and parameters. It is also related

to a ProcessMethod, which defines the interface and behavior for a process as well as

metadata about the data it can provide. A ProcessChain is a composite processing block,

built upon ProcessModels or other ProcessChains.

From the service interfaces point of view, SOS is intended to provide access to sensor

data represented in any of the three encoding proposals (O&M, SML and TML). SPS focus

on providing access to data acquisition and manipulation capabilities from resources (e.g.,

processing systems, archiving systems, sensors and/or auxiliary systems). SAS and WNS

are intended to provide means of subscribing to a service (SAS) for update notifications

(WNS).

70 Chapter 6. Sensor Data Publication on the Web for Scientific Applications

6.3.2 Accessing Sensor Data

Many interoperability issues can be solved by publication of sensor data using the analyzed

OGC standards. Sensor data can be accessed by using WFS (data as a feature) or SOS

(with specific mechanisms for sensor data access). In either case, access is carried out by

posting a query to a standard-compliant Web service. The query and the result format

standards provide means to uniformly describe, publish and access data produced by

sensor devices. If WFS is used, an application domain schema must be previously agreed

upon by the participants.

However, in a research scenario using sensor data, access via query posting does not

always suffice. Two unresolved issues are the following:

• Scientists need to be able to request data pre-processing before executing a query;

• Good pre-processing functions used in models need to be made available to other

scientists, for reuse and validation of each other’s work;

OGC is trying to solve these issues by enhancing query filter mechanisms. Nonetheless,

more flexible support is also desirable. Besides the filtering option offered by OGC, we

propose two novel solutions: (a) the producer should publish a list of pre-processing

functions to be chosen by the consumer, or (b) the producer should allow the consumer

to post the entire processing operation within a request. The latter can be achieved by

posting a procedure schematics (such as a workflow).

Option (a) is easy to implement. The publication interface can provide these func-

tions as different service operations. Nevertheless, this requires modifying the service

every time a new function is to be made available. Option (b) is particularly interest-

ing, given available standard ways to represent Web service compositions (viz., BPEL –

www.oasis-open.org/committees/wsbpel/) – e.g., specifying a given sequence of oper-

ations on temperature readings before publishing the data.

Therefore, we propose to extend OGC’s combination <query,filter,style> to

<query,schematics,style> for data access. Section 6.3.3 details this solution.

6.3.3 DCCs and the Standards

Our publication proposal adopts DCCs and OGC standards in complementary roles. On

the one hand, OGC has a well established XML-based standard to represent geospatial

metadata. On the other hand, DCCs adopt OWL, which opens plenty of integration

possibilities.

We start by uniformly encapsulating sensor data within DCCs, which have associated

annotations. These annotations can be used translating data within the DCC to any of

the OGC sensor data encoding standards (detailed below).

6.3. Sensor Data Publication 71

Figure 6.2: Mapping SML to DCC Metadata.

Consider, in our dengue example, a temperature sensor annotated with SML meta-

data, handled by the DCC presented in Figure 6.1. SML metadata can be mapped to

DCC metadata by establishing a correspondence between key SML elements and ontol-

ogy concepts in OWL. An example is illustrated in Figure 6.2, which maps a SML sensor

output to a DCC output. On the upper left of the figure, the SML XML annotation

defines that the sensor outputs temperature readings (urn:ogc:def:phenomenon:ogc:

1.0.3:temperature). On the lower left of the figure, this output is mapped to a DCC

operation output: OGC XML temperature is mapped to the “temperature” concept, part

of SWEET ontology (right of the figure).

Published sensor data can be combined with other kinds of data. Consider, now,

combining sensor data on rainfall and temperature with data on mosquitoes and diseases.

Through DCCs we create bridges between OGC temperature concepts and other ontolo-

gies for mosquitoes and diseases. Our TemperatureDCC (Figure 6.2) can be composed

with other DCCs – e.g., its OWL metadata can be further connected with OWL ontologies

for insects (mosquito) and diseases (Dengue).

Sensor data may need to be published at distinct granularities. A user may need

a high level summary of mosquito locations, and also a detailed view on the rainfall

data. This issue is considered by efforts in SWE. Using SWE alone, however, is not

enough. SWE considers only process representation and not access to process execution

and customization. With our extension, these processes become available for invocation

through DCC interfaces.

DCC interfaces are described in WSDL and OWL-S and thus are compatible with

Web service interfaces. This way, we achieve adherence to OGC’s standards for data

representation and data access. Moreover, since DCCs were originally conceived as reuse

units, they support flexibility in adding new pre-processing functions. Finally, DCCs can

offer access not only via SOAP messages (in a Web environment), but also be used in a

72 Chapter 6. Sensor Data Publication on the Web for Scientific Applications

standard programming environment.

Figure 6.3: A multi-level integration example scenario combining DCC and SWE.

Figure 6.3 shows an example scenario combining data access using (i) specific imple-

mentations of OGC’s publication standards (octahedrons) – e.g., SOS/SML, SPS/O&M;

and (ii) DCCs (squares), using DCC communication mechanisms – e.g., RPC/PassiveDCC

– and OGC publication standards – e.g., SOS/O&M, for Web service implementations.

The labels in the lines show which communication mechanism and which sensor data en-

capsulation strategy are employed. Each level passes data through a processing function

– from raw production to complex manipulations. For instance, specific pre-processing

can be invoked to filter out outliers, summarize data or merge data from several sources.

Basically, one can design distinct DCCs dedicated to each such pre-processing step, and

application designers can dynamically choose which implementation to adopt.

Applications and other processing services may access data available in any level.

Consider Application 3, for instance. Let S1 through S4 be data sources, where S1 are

satellite images from which vegetation can be derived, S2 is a network of temperature

sensors, S3 is a database of current infection case data, and S4 is historical infection data.

The application corresponds to a scenario of map generation using: sensor location details

(from B and E), sensor fused temperature data (from C and E), infection case data (from

D), and time-series data on monthly distribution of past cases (from M and F). Maps

generated by Application 3 can be a final result – the spatial distribution simulating new

case occurrences for the next month. They also can be used to feed another application.

6.4. Implementation 73

6.4 Implementation

A few components were implemented to illustrate the main ideas. Two sensor platforms,

TelosB2 and MICAz, and a database system, PostgreSQL, were used as data sources.

One sensor data processing unit was implemented, using a simple summarization algo-

rithm. The GeoServer (http://www.geoserver.org/) implementation of the Feature-

Map-Coverage (FMC) services, i.e., a WFS/WMS/WCS server, was used to publish data

as a service. The MapBuilder (http://communitymapbuilder.osgeo.org/) tool was

combined with the DOJO Javascript toolkit (http://dojotoolkit.org/) to enable Web

browser visualization.

Figure 6.4: A screen capture of the application.

The code running on the sensors was implemented in NesC [38], a C-derived component

oriented programming language, using the TinyOS [61] interfaces. Data access on the

sensors was carried out by ProcessDCCs with encapsulated drivers, implemented in Java.

A simple application was developed using these components. Temperature data is

collected by the sensors and acquired by the respective ProcessDCCs. Operations of

these DCCs allow access to the data in real-time. Other ProcessDCCs access these data

for making them available as raw real-time data, summarized data, and time-series (stored

2www.xbow.com/Products/productdetails.aspx?sid=252

74 Chapter 6. Sensor Data Publication on the Web for Scientific Applications

on the database system). The stored time-series are available to the FMC server through

the database and real-time data are available directly.

Figure 6.4 shows a screen capture of the client application. Air temperature data is

available in real-time and as time-series, both with the option of using the summarization

feature.

6.5 Related Efforts

Efforts related to our work include scientific and sensor data manipulation and publication.

General approaches are also possible. The ones considered are: (i) Specialized imple-

mentations; (ii) Software components and communication middlewares, such as CORBA,

COM+ and .NET, EJB, and others. The first approach has the classic overhead of

unnecessary repetition of work, hard maintenance, poor standardization and interoper-

ability. Components and middleware lack flexibility, semantic descriptions, and, more

importantly, homogeneous treatment of data, sources and software.

[48] address collaboration in a peer-to-peer scientific data sharing scenario. They claim

that emerging patterns typical of scientific collaboration can be exploited to improve data

sharing and search mechanisms. Although we are not concerned with network organization

issues, DCC’s caching mechanisms [99] have a similar effect, reducing latency time for

frequently accessed resources.

[6] propose a grid architecture to integrate sensor networks. The architecture regards

sensors as grid resources and employs SML to describe them. The proposal does not

consider publication of sensor data outside their grid infrastructure, hampering data reuse.

[24] follow a similar approach, employing grid technology. Their architecture is strongly

based on OGC standards for sensor data, which is in line with our approach.

6.6 Concluding Remarks

This chapter presented a solution for homogeneous access on the Web to sensor generated

data, for scientific research. By extending OGC service standards and implementing them

as DCCs, our solution fosters interoperability in situations where geospatial sensor data

need to be combined with other kinds of data sources, a common scenario in scientific

research. Moreover, thanks to DCC construction principles, the solution supports posting

of schematics (e.g., a workflow) to pre-process data before publication.

Ongoing work includes developing new kinds of DCC for implementing new mappings.

We are also extending the DCC design and combination framework of [99] to support

automated publication of DCCs as Web services.

Chapter 7

Multimedia Semantic Annotation

Propagation

Scientific research is producing and consuming large volumes of multimedia data at an

ever growing rate. Annotations to the data helps associating context and enhances con-

tent management, making it easier to interpret and share data. However, raw data often

needs to go through complex processing steps before it can be consumed. During these

transformation processes, original annotations from the production phase are often dis-

carded or ignored, since their usefulness is usually limited to the first transformation step.

New annotations must be associated with the final product, a time consuming task often

carried out manually. Systematically associating new annotations to the result of each

data transformation step is known as annotation propagation. This chapter introduces

techniques for structuring annotations by applying references to ontologies and automati-

cally transforming these annotations along with data transformation processes. This helps

the construction of new annotated multimedia data sets, preserving contextual informa-

tion. The solution is based on: (i) the notion of semantic annotations; and (ii) a set of

transformations rules, based on ontological relations.

7.1 Introduction

Scientific applications are producing and consuming ever growing volumes of multimedia

data, which may vary from sensor based data (e.g., aboard satellites or ground-based) to

video and sound recordings. In this scenario, scientists constantly need to share and reuse

their data sets, being hampered by the wide spectrum of data production devices, actors

and contexts that are involved in a lifecycle that produces, transforms and consumes data.

Metadata and annotations have been used as the primary means of describing data

sets. Metadata are, often, text fields associated to data (e.g., in a file header) to be

75

76 Chapter 7. Multimedia Semantic Annotation Propagation

directly applied in automated data management tasks, such as indexing, searching, or

context integration. Annotations, on the other hand, are more flexible, often representing

personal remarks created by data producers or consumers, but are also more limited when

considering management tasks.

Albeit helpful in improving data interpretation, metadata/annotations become less

useful, or even useless, as soon as the data set goes through some sort of processing

function. The resulting data set requires new metadata/annotations. Roughly speaking,

this characterizes the scenario for metadata evolution or annotation propagation [12, 13].

This poses the following problems: (1) how to propagate relevant metadata/annotations

that would otherwise be discarded during a transformation? and, (2) how to support

automatic creation of metadata/annotations for the transformed data, taking context

into account? Our work contributes towards solving these two questions.

In more detail, the traditional life-cycle for data sets is (a) production – (b) transformation

– (c) consumption, where stage (b) may involve several steps. Most data interpretation

tasks occur in the last stage. Adding metadata/annotations to the process improves the in-

terpretation, and the cycle becomes (a) production – (a’) annotation – (b) transformation

– (b’) (re-)annotation – (c) consumption. The main interest in this chapter is on how to

(partially or totally) automate stage (b’). In particular, we are concerned with combining

the notions of metadata, annotations and ontologies producing what we call semantic

annotations, in which annotations are structured and are defined in terms of references

to ontology concepts and/or relationships. Terms from ontologies help provide contextual

information.

Our approach uses semantic annotations both from data and from operations that

transform the data, i.e., we assume these annotations are available. We then propose a

mechanism through which annotations are generated and attached to data sets produced

by a data transformation operation. These new annotations are derived from the anno-

tations made on the input data and the operation’s interface, using a set of propagation

rules that are based on ontology terms and relationships.

The main contributions of this chapter are therefore: (i) a general definition for the an-

notation propagation problem, applicable to several different environments of data trans-

formation; and (ii) an extensible ontology-guided technique for solving the annotation

propagation problem using semantic annotations. Though placed in the multimedia data

management context, our solution can be extended to any environment where digital

content is acquired, transformed and shared.

The remainder of the chapter is organized as follows. Section 7.2 shows an example

that we use to illustrate our proposal. Section 7.3 defines the annotation propagation

problem. Section 7.4 presents our solution to the problem using semantic annotations.

Section 7.5 discusses related work. Section 7.6 presents conclusions and future work.

7.2. Motivating Example 77

7.2 Motivating Example

Figure 7.1 illustrates a multimedia data transformation process in environmental modeling

that combines satellite images with temperatures readings (from ground sensors) for a

given region and period and generates JPEG images showing how temperature influences

vegetation growth in the region. In a high level, the steps are the following:

(1a) acquire temperature data (data streams) and (1b) satellite images for a given region

(in a format called GeoTIFF1);

(2a) convert the temperature readings and (2b) compute the greenness of vegetation (using

the so-called NDVI method2) on the satellite image generating a NDVI image;

(3a) generate a temperature map interpolating readings (e.g., using Thiessen polygons)

and (3b) classify the regions in the NDVI image according to the greenness range – both

maps generated at step 3 are GeoTIFF images;

(4) combine the two images into one; and,

(5) convert the resulting map into a JPEG image.

Figure 7.1: Data transformation process.

The resulting images illustrate the correlation between temperature and vegetation

conditions in the area and is sufficient for a high level view of this problem. However,

it is unsuitable for any kind of scientific study on environmental conditions. First, each

JPEG image should be annotated indicating that it is the result of combining satellite and

sensor data. This may still not be enough – sensor type and calibration, satellite type

and spectral band used must be informed. This contextual information is lost during

the transformation process, unless all multimedia data are manually annotated. This is

difficult for large processes and impossible if parts of the process are done by different

people or organizations.

The more complex the data and the transformations performed, the greater the need

for contextual information. The annotations for the input data sets (satellite image and

1An image format where each pixel corresponds to a given geographical coordinate.
2Normalized Difference Vegetation Index (NDVI) indicates the levels of live green vegetation, usually

over satellite images.

78 Chapter 7. Multimedia Semantic Annotation Propagation

temperature readings) are provided by their source. However, at the end of the process,

the output images have no associated annotations.

7.3 The Annotation Propagation Problem

7.3.1 Semantic Annotations

We combine characteristics of metadata and annotations into semantic annotations: using

the structure from the first, filling its contents with references to ontologies, which provide

the flexibility of the latter. Based on RDF structuring, we define semantic annotations

as follows.

Annotation Units. An annotation unit a is a triple <s,p,o>, where s represents the

subject being described, p represents a property that describes it, and, o represents

a describing object or value.

Semantic Annotation. A semantic annotation M is a set of one or more annotation

units, with at least one unit having as its subject the entity being described.

A semantic annotation is materialized as an RDF graph, which is represented as a set

of RDF triples (subject – predicate – object); subject and predicate are identified by an

URI3 while the object may be an URI or a literal. Note that an object on one annotation

unit may be itself a subject on another unit. This is the basic structuring element for

semantic annotations. For space saving we omit the namespaces for terms in the text and

figures.

We assume that a data transformation operation is a black-box that can be invoked

providing data as input and producing output data. Semantic annotations are basically

used to describe two entities in our solution: the data sets used and the interfaces of

transformation operations. Figure 7.2 shows a transformation operation. The input data

set D is annotated with M and the output data set D’ is annotated with M’. The operation

has its input interface I described by semantic annotation Mi and its output interface O

described by Mo.

7.3.2 Annotation Propagation

Let (T, I, O, D, D’) denote an application of a data transformation operation T which has

an input interface I and an output interface O, and is applied on a data set D, resulting in

derived data D’. The definition for T was adapted from [30]. Also, let (τ, Mi, Mo, M, M′)

3Or, to be more precise, a URIref, which is a URI that may have a fragment identifier (the symbol
“#”) at the end, for referencing parts of the URI.

7.3. The Annotation Propagation Problem 79

denote an application of an annotation transformation τ that manipulates Mi (the anno-

tation of I), Mo (the annotation of O) and M (the annotation of D) to achieve M’ (the

derived annotation of D’). The annotation propagation problem is defined as follows.

The Annotation Propagation Problem. Consider a transformation T, with an

input interface I and an output interface O, applied to a data set D, transforming it

into another data set D’. Which transformation τ can generate the new annotations

M’, given the previous annotation M on the data, the annotation of the input interface

Mi and the annotation of the output interface Mo?

If we now extend this definition to consider semantic annotations, the problem be-

comes: how to combine the sets of annotation units from the semantic annotation of the

data set, the input interface and the output interface, to generate a new set of annotation

units that will constitute the new semantic annotation. The mechanism to do that should

ensure the consistency of the new set as well as its completeness regarding the available

annotations.

For the remainder of the text the term annotation refers to semantic annotation.

As the operations considered are black-box operations, the annotation propagation

in each step must be carried out outside the scope of the operation, i.e., by an external

application. Thus, data transformation and annotation propagation do not interfere with

each other.

Let us go back to our running example, and single out the classifyMapImage transfor-

mation operation that classifies an NDVI image generating a classified image. Figure 7.2

shows the association of annotations: M to the input data set (D), M’ to the output data

set (D’), Mi to the input interface of the operation (I) and Mo to the output interface of the

operation (O). The bottom of Figure 7.2 portrays the transformation. The input data set

(D) is an NDVI GeoTIFF image. The operation has one input interface (I), which takes

one parameter (p1), and one output interface (O), which produces one parameter (p2).

The output data set (D’) is the classified GeoTIFF image. These entities (data sets and

interfaces) are described with semantic annotations, e.g., the pair (O, Mo) denotes that

the semantic annotation Mo is associated with output interface O, similarly to (D, M),

(I, Mi) and (D′, M′).

The top of the figure illustrates an ontology repository [31], a data space contain-

ing domain ontologies with the contextual and semantic information. The graphs in

the boxes in the middle of the figure show how annotations are structured. M (at the

left) is the annotation for the data set D: it is a graph rooted at idD (the ID of the

entity being described) and each edge defines the scope of one annotation unit. Units

are stored as RDF triples. Thus, the annotation for D is {(idD, RDFType, NDVI), (idD,

hasEncoding, GeoTIFF-bitmap), (idD, capturedBy, Terra-MODIS) (idD, usedBand, band4),

80 Chapter 7. Multimedia Semantic Annotation Propagation

Figure 7.2: Data and interface annotations.

(idD, usedBand, band5), (idD, hasOrbit/Point, 220/075F), (idD, hasDatum, WGS84), (idD,

hasProjection, UTM ELLIPSOID), (idD, capturedOn, 20010323), ...}, indicating that it is

an NDVI image, encoded in a bitmap GeoTIFF, captured by the Terra-MODIS satellite

sensor, used spectral bands 4 and 5, and so on. By the same token, Mi says that I takes a

parameter that should be a Vegetation Index (VI) image, encoded in a bitmap GeoTIFF,

and so on; Mo indicates that O has as its output a VI image, encoded in a bitmap GeoTiff,

and so on. A consistent combination of these annotations (M, Mi and Mo) should be used

to generate the resuting propagated annotation (M’).

7.4 Semantic Annotation Propagation

This section presents our solution for the annotation propagation problem. In this solu-

tion, any data transformation operation performed on a data set must be accompanied

by transformations on the associated annotations. No assumptions are made about the

format or granularity of the data. The annotation propagation mechanism should work

7.4. Semantic Annotation Propagation 81

equally for any kind of multimedia data. The presented mechanism for annotation prop-

agation considers a basic data transformation process: a single operation with one data

input and one data output.

7.4.1 Propagation Rules

Consider a transformation (T, I, O, D, D’) with interface annotations Mi and Mo and

let (D,M) and (D’,M’) be, respectively, its input and output data and annotations. The

propagation problem can be simplified into the following issue: which mappings can be

done between M and Mo, meaning what were the effects of applying T to D with respect

to its annotations?

We divided our solution this problem in two parts: (i) a set of abstract propagation

rules to select pairs of annotations units for comparison; and, (ii) a set of ontological

relations, each specifying how to compare a pair of annotation units and which annota-

tion should be derived from the comparison. Our solution to the first part is a set of

annotation propagation rules, presented next. Our solution to the second part is devised

in Section 7.4.2. In this work, the annotation units are defined as RDF triples; however,

other annotation units could also be used for the comparison, such as sub-paths, sub-trees

or sub-graphs of the RDF graphs.

Figure 7.3 shows a high level view of our annotation propagation algorithm. Its input

includes the semantic annotations M and Mo, a set (ℜ) of ontological relations (Rk), such

as the ones presented in Section 7.4.2. Its output is the resulting propagated semantic

annotation (∆).

1. ∆← ∅

2. foreach Rk in ℜ do

3. Pk ← ∅

4. Ω← Fk(M)

5. Θ← Fk(Mo)

6. foreach a in Ω do

7. foreach b in Θ do

8. Pk ← Pk ∪Rk(a, b)

9. ∆← ∆ ∪ F−1

k
(Pk)

10. return ∆

Figure 7.3: Propagation Algorithm.

Before the propagation rules can be applied, it is necessary to retrieve the annotation

units from the RDF graph. To be general, lets define a deconstruction function F to

82 Chapter 7. Multimedia Semantic Annotation Propagation

accomplish this. The result is a set of comparable units, which is represented by Ω (for

M) and Θ (for Mo), in lines 4 and 5, respectively. In this work this function simply

singles out the RDF triples from the RDF graph, which are our basic comparison unit.

Conversely, we also define a reconstruction function F−1 to recreate the RDF graph from

the resulting unit(s) of the comparison of a pair of annotation units. In the algorithm, this

is done in line 9, adding to the resulting semantic annotation ∆. The deconstruction and

reconstruction steps are carried out for each relation, since each relation may be based on

different comparison units. In this chapter, all relations are based on annotation units as

defined in Section 7.3.1.

The propagation rules simply enforce a systematic selection of a pair of annotation

units and the application of a comparison under a given ontological relation. This is done

in lines 6-8 of the algorithm. These steps are repeated for all the selected ontological

relations (i.e., all Rk in ℜ). The results for all possible pairs is then returned as the result

for that relation (the variable Pk on the algorithm). If the annotation units do not match

under the ontological relation (line 8), the result of Rk(a, b) is empty. Intuitively, the

rules recursively consider single comparable annotations units, checking the compatibility

between all pairs of units and generating new units for the resulting set.

Therefore, to use the our propagation mechanism one must specify: (i) a set (ℜ) of

ontological relations (Rk), each with a template result (Pk) specifying the outcome of

the comparison of two annotation units under this relation; (ii) a set of functions Fk to

translate M into Ω and Mo into Θ; (iii) a respective inverse F−1

k
to translate Pk into ∆.

7.4.2 Ontological Relations

The ontological relations used in this chapter manipulate the basic elements from an OWL

ontology, i.e., the classes, instances and properties. These elements are to be compared

to determine which among them will be used as the derived annotation.

The choice of which ontological relations to use in a propagation should be guided by

which aspects are useful in a given transformation process. For instance, if class hierarchy

relationships are useful, generalization and specialization ontological relations should be

used – e.g., considering descendant full compatibility or restricting to only direct subclass

compatibility.

We categorize the ontological relations according to which element from the annota-

tion units are the focus of the comparison. Three categories are defined: classes, instances

and properties. Because of space limitation, only four ontological relations are listed here

– see [82] for specifications of more ontological relations. The first three are on the classes

category and the last one are on the instances category. It is possible to specify many

other ontological relations to be used with our mechanism, specially when considering

7.4. Semantic Annotation Propagation 83

properties. For all ontological relations presented, the annotations units being compared

(a and b) are RDF triples <Subject,Predicate,Object> and have the form a = <sa,pa,oa>

and b = <sb,pb,ob>.

Class generalization. Relation based on the rdfs:subClassOf construct (defined as

part of RDF Schema), which allows replacing general annotation units with more specific

ones.

R(a, b) =























<sa,pb,ob>

if sa subClassOf sb

<sb,pb,sa>

if sa subClassOf ob

This relation should be read as: given two annotation units a = <sa,pa,oa> and b =

<sb,pb,ob>, generated by a deconstruction function for comparison under subClassOf,

then the propagated annotation unit is the set composed by <sa,pb,ob>, if sa is a sub-

ClassOf sb. All other relations are to be read the same way.

Class specialization. This relation is also based on the rdfs:subClassOf construct,
since generalization and specialization are both described by this ontological relation.

R(a, b) =























<sb,pa,oa>

if sb subClassOf sa

<ob,pa,oa>

if ob subClassOf sa

Class complement. Relation based on the owl:complementOf construct, which repre-

sents a class with all properties that are not part of the original class. When two or more
units are returned, the result is the conjunction of them.

R(a, b) =































































<sa,pa,oa>,<sb,pb,ob>

if sa complementOf sb

<s,pa,oa>,<sb,pb,s>

if sa complementOf ob, where s = sa ∪ ob.

<sa,pa,s>,<s,pb,ob>

if oa complementOf sb, where s = sb ∪ oa.

<sa,pa,oa>,<sb,pb,ob>

if oa complementOf ob

Instance equivalence. Relation based on the owl:sameAs, which states that two

84 Chapter 7. Multimedia Semantic Annotation Propagation

instances (represented by different URIs) are, in fact, the same.

R(a, b) =























<sa,pa,oa> if sa sameAs sb

<sa,pa,oa>,<sb,pb,ob> if sa sameAs ob

<sa,pa,oa>,<sb,pb,ob> if oa sameAs sb

<sa,pa,oa> if oa sameAs ob

7.5 Related Work

This chapter is motivated by the increasing need in scientific applications to effectively

manage multimedia data, which led to the proposal of a mechanism for annotation prop-

agation. Related work involves therefore examples of multimedia data annotation and

propagation proposals.

Metadata have been used in several contexts [3] including multimedia [57, 72]. Particu-

larly, they have proven useful in establishing means of assigning descriptions to multimedia

content, its execution and user interaction environments. The works of [11, 91] argue that

descriptions of (i) multimedia content and (ii) users’ preferences related to multimedia

content are essential to achieve what they call universal multimedia access (UMA). In

UMA, the multimedia content should be available anywhere and anytime, possibly using

content adaptation to achieve this. This view can be generalised to context description,

using metadata to describe the whole environment along with the content manipulated.

However, there have been some difficulties in using metadata. The work of [102] analyses

the trade-offs of using metadata in several scenarios, including appropriate uses where the

environment is data-driven and/or requires analytical decision making; and less appro-

priate uses when considering more intuitive or politically charged environments. It also

points out the importance of metadata quality and completeness in the successful use of

metadata. The work of [18] discusses lack of motivation to go through the tedious process

of creating metadata, discussing the case for MPEG-7 and its commercial motivation as

a reason for its relative success. These works evidence the need for more automation on

the generation of metadata, which is the main concern of our solution.

Other papers concern the adaptation of metadata to be used on the Web, often fol-

lowing standards of the Semantic Web [7, 104, 112]. The application of Semantic Web

standards to describe multimedia content involves the production of semantic annota-

tions and thus could profit from our annotation propagation solution. On another front,

work with Semantic Web Services4 provide the possibility of semantic annotations on in-

terfaces of operations, thereby meeting a requirement of our solution (i.e., describing the

4e.g., SA-WSDL (http://www.w3.org/2002/ws/sawsdl).

7.6. Concluding Remarks 85

interfaces of operations). The Multimedia Annotation Interoperability Framework [110]

also considers the problem of describing transformation operations focusing on multimedia

content.

One use of the term “annotation propagation” regard the automated update of anno-

tations in a hierarchy (e.g., if a group receives an annotation, all entities from that group

receive it as well; or if an annotation is corrected, all related annotations gets corrected as

well). Our use of the term, however, regard data transformations and their impact on the

annotations. To the best of our knowledge, there are two approaches in which the notion

of “annotation propagation” is the same as ours. The first solution is presented in [12].

Their solution is placed in a data warehouse environment, with the annotations stored in

extra (data) columns. The paper presents rules for propagating these annotations fields

to answer queries. Rule implementation is based on pSQL, an extension of the SQL

query language that supports a propagate clause to enable the application of propagation

schemes. The solution of [12] is restricted to be used within databases and data ware-

housing environments, being limited by the query language. It only considers fine-grained

annotations, in an item by item basis. Our solution, on the other hand can be applied to

any kind of transformation and allows any granularity on the annotations, provided that

both the transformations and the data are described with semantic annotations.

The second proposal [13] solves the annotation propagation problem taking advantage

of schema mapping compositions. Their solution is restricted to relational algebra oper-

ations and is applicable to sequences of transformations modelled as workflows. Similar

to [13], we also annotate content using ontologies, without restriction to database systems

environments.

As far as we know, ours is the only solution that considers general data transformation

operations. It is also the only one to take into account both previous data descriptions

and operation interface description.

7.6 Concluding Remarks

This chapter presented a new approach to annotation propagation on multimedia data

sets. A solution to the annotation propagation problem offers several advantages, such

as: (i) lessening annotation efforts, (ii) decreasing the loss of information along the trans-

formation process, (iii) documenting data origins (for traceability), and (iv) providing

quality information. This work focused on the first two issues.

Our approach allows combining content-based metadata with contextual information

provided by ontologies. Solutions to the annotation propagation problem have so far been

restricted to database operations. Our definition showed how to extrapolate a solution

to the problem that encompasses general transformation operations. Rather than having

86 Chapter 7. Multimedia Semantic Annotation Propagation

to consider the operations themselves, our propagation mechanism just needs to know

the input/output interfaces of the operation. Our mechanism can also be extended by in-

creasing the number of ontological relations. This allows tailoring annotation propagation

behaviours, permitting new specific relationships to be considered.

As future work we intend to investigate less restrictive extensions to our propagation

mechanism, also allowing, for instance, annotations that are not matched to be propa-

gated. This can lead to richer annotations at the end of the propagation process. Dealing

with multiple inputs/outputs, considering the annotation to an interface input and compo-

sition of operations are also aspects that we intend to explore further. Another possibility

would be using RDF(S)/OWL inference rules or a reasoner instead of the propagation

rules.

Caṕıtulo 8

Conclusões

Esta tese combina diversos aspectos de pesquisa, incluindo interoperabilidade de dados e

processos, descrição de dados, Componentes de Conteúdo Digital, workflows cient́ıficos,

padrões Web, ontologias, e evolução de metadados, todos com foco em gerenciamento de

dados de sensores. O resultado é um framework que permite a aquisição de dados a partir

de fontes heterogêneas de dados de sensores, pré-processamento desses dados de uma

forma flex́ıvel e orientada a aplicações, e mecanismos espećıficos de publicação, sempre

mantendo a validade e corretude dos metadados associados.

8.1 Contribuições

Esta tese tem cinco contribuições principais:

1. A caracterização do cenário atual do gerenciamento de dados de sensores em, cama-

das de processamento e representação de dados, explicitando claramente as frontei-

ras para problemas e soluções nessa área (Caṕıtulo 3);

2. O provimento de interfaces uniformes para acesso a dados de sensores, fontes de

dados de sensores e funções de processamento aplicadas a sensores, através da ex-

tensão de uma tecnologia de componentes (DCCs). Essa tecnologia é usada como

um middleware para gerenciamento de dados de sensores, e teve seus campos de

contexto adaptados para descrever os conjuntos de dados de sensores encapsulados,

permitindo maior precisão na seleção e transformação desses conjuntos de dados

(Caṕıtulo 4);

3. O uso e extensão de workflows cient́ıficos no gerenciamento de operações de trans-

formação aplicadas a dados de sensores, considerando diferentes requisitos e classes

desses workflows para tarefas espećıficas (Caṕıtulo 5); e o uso desses workflows para

87

88 Caṕıtulo 8. Conclusões

permitir às aplicações transformações mais precisas dos conjuntos de dados em uma

consulta (Caṕıtulo 6);

4. A combinação de padrões Web e metadados baseados em ontologias em um mesmo

serviço de consulta, permitindo que aplicações que usem qualquer um dos dois meca-

nismos possam consultar conjuntos de dados de sensores com os mesmos resultados

usando diferentes representações (Caṕıtulo 6);

5. A proposta de um mecanismo para a atualização sistemática de metadados jun-

tamente com as transformações nos dados, durante todo o seu ciclo de vida, do

produtor (aquisição) até o consumidor (publicação) – Caṕıtulo 7.

Estas contribuições abordam os seguintes aspectos: Cenário geral (Caṕıtulo 3); Acesso

(Caṕıtulo 4); Gerenciamento (Caṕıtulo 5); Publicação (Caṕıtulo 6); e, Anotações (Caṕıtluo 7).

8.2 Extensões

Há muitas extensões posśıveis para essa tese, tanto ao framework quanto de imple-

mentação. Dentre elas, destacamos:

• Programação/Calibração de Sensores. O framework usando DCCs e seus meta-

dados pode ser estendido para lidar não apenas com dados de sensores, mas também

com o processo de programação e/ou calibração desses sensores, i.e., código e con-

figuração, respectivamente. Para alcançar isso, duas abordagens podem ser ado-

tadas: (a) uma representação comum para o código/configuração e componentes

espećıficos transferência desse código/configuração para cada tipo de sensor; ou, (b)

representações espećıficas e componentes comuns. Duas funcionalidades podem ser

diretamente derivadas dessa extensão: (i) interfaces de alto ńıvel para reprogra-

mar/recalibrar sensores (ou redes de sensores); e, (ii) reprogramação/recalibração

automatizada de sensores baseadas nos resultados de processos de monitoramento –

e.g., um evento espećıfico aciona um processo que substitui a programação ou confi-

gurações de um conjunto de sensores para adaptá-los novas condições do ambiente.

• Combinação de Dados de Sensores e Dados Cient́ıficos. Dados de sensores

são frequentemente usados em pesquisa cient́ıfica. Como mencionado brevemente

no Caṕıtulo 4, um passo lógico de extensão desta tese envolveria incluir suporte

no framework para considerar fontes de dados cient́ıficos em domı́nios diferentes,

combinando-os com os dados de sensores. Isso envolveria a identificação de carac-

teŕısticas dessas fontes de dados e a construção de novas hierarquias de componentes

especificamente para essas fontes.

8.2. Extensões 89

• Workflows e Linguagens de Consulta. O Caṕıtulo 6 apresentou a idéia de

se incluir workflows cient́ıficos em serviços de consulta propostos pela OGC. Uma

extensão poderia tratar de integrar especificações de workflows em uma linguagem

de consulta (e.g., SQL ou SPARQL). Por exemplo, considere consultas SQL com

a especificação de um workflow embutida, a serem executadas em um Sistema Ge-

renciador de Bancos de Dados (SGBD). Essas especificações poderiam ser tratadas

por bibliotecas espećıficas que as processariam fora do SGBD (antes e/ou depois da

execução da consulta). Alternativamente o SGBD poderia processar as consultas

usando stored procedures com procedimentos para tratar a especificação de workflow

e outros para tratar cada atividade individualmente.

• Workflows dinâmicos. Dada a natureza dinâmica de sensores e dados de senso-

res sobre fenômenos medidos, os próprios workflows gerenciando o processamento

desses dados deveriam ser dinâmicos. Assim, uma direção interessante seria estudar

mudanças dinâmicas de workflows que sejam senśıveis a mudanças de contexto, quer

por novas necessidades de aplicações, quer por mudanças nas redes de sensores.

• Mapeamentos entre Padrões e Ontologias. A criação de mais mapeamentos

entre padrões e ontologias (a exemplo do que foi proposto no Caṕıtulo 6) possibilita

a criação de componentes capazes de responder consultas que usem padrões ou

ontologias para acesso a dados em vários outros domı́nios de aplicação. Isso pode

levar à especificação de uma metodologia para a criação de tais mapeamentos, por

exemplo, através da aplicação de técnicas de matching de esquemas e ontologias,

favorecendo esforços de integração de dados cient́ıficos e de sensores.

• Workflows e Propagação de Anotações. O mecanismo de propagação de

anotações proposto no Caṕıtulo 7 está limitado a apenas uma operação de trans-

formação por vez. Sequências de operações podem ter um impacto diferente nas

anotações geradas no final do processo, i.e., a estrutura do processo pode influenciar

as anotações a serem geradas. Situações nas quais isso pode ocorrer incluem re-

petição de um conjunto de operações sobre um conjunto de dados, e a utilização de

um mesmo conjunto de dados em duas sequências diferentes e paralelas que se jun-

tam em um passo posterior no final do processo. Como o mecanismo de propagação

deveria se comportar nessas situações não está completamente claro. Algum avanço

foi conseguido em [82], mas ainda existem problemas em aberto a serem considera-

dos. Acreditamos que modelos de workflows podem ajudar no entendimento desses

tipos de impacto.

• Propagação de Anotações Senśıvel ao Conteúdo O mecanismo de propagação

de anotações proposto no Caṕıtulo 7, considera apenas as anotações dos dados de

90 Caṕıtulo 8. Conclusões

entrada e das interfaces das operações para gerar novas anotações para os dados de

sáıda. Entretanto, levar em consideração o conteúdo dos dados de sáıda poderia

levar à geração de anotações diferentes, provavelmente mais detalhadas. Como

exemplo, tamanhos ou esparsidades diferentes nos dados de sáıda poderia implicar

em anotações diferentes. Mais que isso, funções espećıficas para avaliar cada tipo

de dado de sáıda deve originar anotações bastante mais detalhadas.

• Implementação e Integração. A maioria dos trabalhos realizados necessita de

um maior esforço de implementação. Em particular é preciso: (i) estudar formas

mais eficientes de criar DCCs, já que seu extenso conjunto de metadados ainda deve

ser criado manualmente; (ii) integrar um motor de execução de workflows completo

para suportar especificações mais complexas de workflows cient́ıficos; (iii) integrar os

módulos implementados para validar cada parte da proposta, pois apenas protótipos

limitados foram implementados para testes. Além disso, o mecanismo de propagação

de anotações precisa ser implementado e testado.

Referências Bibliográficas

[1] K. Aberer, M. Hauswirth, and A. Salehi. A Middleware for Fast and Flexible

Sensor Network Deployment. In Proceedings of the 32nd VLDB Conference (Demo

Session), 2006.

[2] T. Aditya and M.-J. Kraak. Aim4GDI: Facilitating the Synthesis of GDI Resources

through Mapping and Superimpositions of Metadata Summaries. Geoinformatica,

11(4):459–478, 2007.

[3] M. Agosti and N. Ferro. A Formal Model of Annotations of Digital Content. ACM

Transactions on Information Systems, 26(1):3, 2007.

[4] H. Agrawal, G. Chafle, S. Goyal, S. Mittal, and S. Mukherjea. An Enhanced

Extract-Transform-Load System for Migrating Data in Telecom Billing. In IEEE

24th Int. Conf. on Data Engineering, pages 1277–1286, 2008.

[5] G. Almes, J. Cummings, J. P. Birnholtz, I. Foster, T. Hey, and B. Spencer. CSCW

and cyberinfrastructure: opportunities and challenges. In Proc. of the 2004 ACM

Conf. on Computer Supported Cooperative Work, pages 270–273, 2004.

[6] G. Aloisio, D. Conte, C. Elefante, G. P. Marra, G. Mastrantonio, and G. Quarta.

Globus Monitoring and Discovery Service and SensorML for Grid Sensor Networks.

In Proc. 15th IEEE WETICE’06, 2006.

[7] R. Arndt, R. Troncy, S. Staab, L. Hardman, and M. Vacura. COMM: Designing a

Well-Founded Multimedia Ontology for the Web. In Proc. 6th Int. Semantic Web

Conf. and 2nd Asian Semantic Web Conf., pages 30–43, 2007.

[8] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cherniack, C. Con-

vey, E. F. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and S. B. Zdonik.

Retrospective on Aurora. The VLDB Journal, 13(4):370–383, 2004.

91

92 REFERÊNCIAS BIBLIOGRÁFICAS

[9] M. Balazinska, A. Deshpande, M. J. Franklin, P. B. Gibbons, J. Gray, M. Hansen,

M. Liebhold, S. Nath, A. Szalay, and V. Tao. Data Management in the Worldwide

Sensor Web. IEEE Pervasive Computing, 6(2):30–40, 2007.

[10] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. G.

Sirer. On the need for system-level support for ad hoc and sensor networks. ACM

SIGOPS Operating Systems Review, 36(2):1–5, 2002.

[11] P. Beek, J. R. Smith, T. Ebrahimi, T. Suzuki, and J. Askelof. Metadata-driven

Multimedia Access. IEEE Signal Processing Magazine, 20(2):40–52, 2003.

[12] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya. An annotation manage-

ment system for relational databases. The VLDB Journal, 14(4):373–396, 2005.

[13] S. Bowers and B. Ludäscher. A Calculus for Propagating Semantic Annotations

Through Scientific Workflow Queries. In EDBT Workshops, pages 712–723, 2006.

[14] F. Brabec and H. Samet. Client-Based Spatial Browsing on the World Wide Web.

IEEE Internet Computing, 11(1):52–59, 2007.

[15] K. R. Braghetto, J. E. Ferreira, and C. Pu. Using control-flow patterns for specifying

business processes in cooperative environments. In SAC ’07: Proceedings of the 2007

ACM symposium on Applied computing, pages 1234–1241, 2007.

[16] M. E. Brown, J. E. Pinzon, K. Didan, J. T. Morisette, and C. J. Tucker. Evaluation

of the consistency of long-term NDVI time series derived from AVHRR, SPOT-

vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Transactions on

Geoscience and Remote Sensing, 44(7):1787–1793, 2006.

[17] R. Bryant, R. Forester, and J. Hawkes. Filesystem Performance and Scalability in

Linux 2.4.17. In Proc. of the USENIX Annual Technical Conference (FREENIX

Track), pages 259–274, 2002.

[18] D. C. A. Bulterman. Is It Time for a Moratorium on Metadata? IEEE Multimedia,

11(4):10–17, 2004.

[19] G. Cai. Contextualization of Geospatial Database Semantics for Human—GIS In-

teraction. Geoinformatica, 11(2):217–237, 2007.

[20] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, H. Lu,

X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn. The Rise of People-Centric

Sensing. Internet Computing, IEEE, 12(4):12–21, 2008.

REFERÊNCIAS BIBLIOGRÁFICAS 93

[21] M. C. Cavalcanti, M. Mattoso, M. L. Campos, E. Simon, and F. Llirbat. An

Architecture for Managing Distributed Scientific Resources. In Proc. of the 14th

Int. Conf. on Scientific and Statistical Database Management, 2002.

[22] M. C. Cavalcanti, R. Targino, F. Baião, S. C. Rössle, P. M. Bisch, P. F. Pires,

M. L. M. Campos, and M. Mattoso. Managing structural genomic workflows using

Web services. Data & Knowledge Engineering, 53(1):45–74, 2005.

[23] L. H. Chambers, E. J. Alston, D. D. Diones, S. W. Moore, P. C. Oots, and C. S.

Phelps. The MY NASA DATA Project: Tools for Knowledge Sharing and Discovery.

In Proc. of the 6th Annual NASA Earth Science Technology Conference, 2006.

[24] X. Chu, T. Kobialka, B. Durnota, and R. Buyya. Open Sensor Web Architecture:

Core Services. In 4th Int. Conf. on Intelligent Sensing and Information Processing,

pages 98–103, 2006.

[25] Open Geospatial Consortium. OpenGIS Implementation Specification for Geo-

graphic Information – Simple Feature Access. http://www.opengeospatial.org/

standards/sfa (as of September 2008).

[26] P. Cornillon, J. Caron, T. Burk, and D. Holloway. Data access interoperability

within IOOS. In Proc. of MTS/IEEE OCEANS, pages 1790–1792 Vol. 2, 2005.

[27] V. Crescenzi and G. Mecca. Automatic Information Extraction from Large Websites.

Journal of the ACM, 51(5):731–779, 2004.

[28] T. Critchlow, K. Fidelis, M. Ganesh, R. Musick, and T. Slezak. DataFoundry:

information management for scientific data. IEEE Transactions on Information

Technology in Biomedicine, 4(1):52–57, 2000.

[29] D. Cuff, M. Hansen, and J. Kang. Urban sensing: out of the woods. Communications

of the ACM, 51(3):24–33, 2008.

[30] Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.

The VLDB Journal, 12(1):41–58, 2003.

[31] J. Daltio and C. B. Medeiros. Aondê: An Ontology Web Service for Interoperability

across Biodiversity Applications. Information Systems, 33(7-8):724–753, 2008.

[32] J. Daltio, C. B. Medeiros, L. Gomes Jr, and T. M. Lewinsohn. A framework to

process complex biodiversity queries. In Proc. of the ACM Symposium on Applied

Computing, pages 2293–2297, 2008.

94 REFERÊNCIAS BIBLIOGRÁFICAS

[33] DarwinCore (DwC) Biodiversity Information Standards (TDWG) working group.

The Darwin Core Standard. http://www.tdwg.org/activities/darwincore/ (as

of Apr 2008).

[34] P. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of

publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[35] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-

chitectures. PhD thesis, University of California, Irvine, 2000.

[36] R. Fileto, L. Liu, C. Pu, E. D. Assad, and C. B. Medeiros. POESIA: An Ontolo-

gical Workflow Approach for Composing Web Services in Agriculture. The VLDB

Journal, 12(4):352–367, 2003.

[37] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: why do we need a new data

handling architecture for sensor networks? ACM SIGCOMM Computer Communi-

cation Review, 33(1):143–148, 2003.

[38] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler. The nesC

language: A holistic approach to networked embedded systems. In PLDI ’03: Pro-

ceedings of the ACM SIGPLAN 2003 conference on Programming language design

and implementation, 2003.

[39] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An Architecture

for a World-Wide Sensor Web. IEEE Pervasive Computing, 2(4), 2003.

[40] M. F. Goodchild, M. J. Egenhofer, R. Fegeas, and C. A. Kottman (editors). Inte-

roperating Geographic Information Systems. Kluwer, 1999.

[41] L. Haas. Beauty and the beast: The theory and practice of information integration.

In Proc. of the 11th Int. Conf. on Database Theory, pages 28–43, 2007.

[42] B. Habegger and M. Quafafou. Building Web Information Extraction Tasks. In

Proc. of the IEEE/WIC/ACM Int. Conf. on Web Intelligence, pages 349–355, 2004.

[43] S. Hadim and N. Mohamed. Middleware Challenges and Approaches for Wireless

Sensor Networks. IEEE Distributed Systems Online, 7(3), 2006.

[44] A. Y. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper, J. Pollock, A. Rosenthal,

and V. Sikka. Enterprise information integration: successes, challenges and contro-

versies. In Proc. of the 24th ACM SIGMOD Int. Conf. on Management of Data,

pages 778–787, 2005.

REFERÊNCIAS BIBLIOGRÁFICAS 95

[45] J. M. Hellerstein, W. Hong, and S. Madden. The Sensor Spectrum: Technology,

Trends and Requirements. SIGMOD Record, 32(4):22–27, 2003.

[46] T. Hey and A. E. Trefethen. Cyberinfrastructure for e-Science. Science, 308:817–

821, May 2005.

[47] D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank: Experience the Semantic

Web inside your web browser. Web Semantics: Science, Services and Agents on the

World Wide Web, 5(1):16–27, 2007.

[48] Iamnitchi, Ripeanu, and Foster. Locating Data in (Small-World?) Peer-to-Peer

Scientific Collaborations. In Proc. International Workshop on Peer-to-Peer Systems

(IPTPS), LNCS, 2002.

[49] INSPIRE. Infrastructure for spatial information in the europe. http://www.

ec-gis.org/inspire/ (as of September 2008).

[50] Institute of Computing, Agriculture Engineering Faculty, and Center for Research

and Education in Agriculture – UNICAMP. The WebMAPS Project. http://www.

lis.ic.unicamp.br/projects/webmaps/ (as of Oct 2008).

[51] J. Shneidman and P. Pietzuch and J. Ledlie and M. Roussopoulos and M. Seltzer

and M. Welsh. Hourglass: An Infrastructure for Connecting Sensor Networks and

Applications. Technical report, Harvard University, 2004. TR-21-04.

[52] S.-G. Jang and T. J. Kim. Modeling an Interoperable Multimodal Travel Guide

System using the ISO 19100 Series of International Standards. In Proc. of the 14th

Annual ACM Int. Symposium on Advances in Geographic Information Systems,

pages 115–122, 2006.

[53] M. Jarke, M. A. Jeusfeld, C. Quix, and P. Vassiliadis. Architecture and quality in

data warehouses: An extended repository approach. Information Sytems, 24(3):229–

253, 1999.

[54] K. Aberer and M. Hauswirth and A. Salehi. The Global Sensor Networks mid-

dleware for efficient and flexible deployment and interconnection of sensor networks.

Technical report, Ecole Polytechnique Fédérale de Lausanne, 2006. LSIR-REPORT-

2006-006.

[55] V. Kantere and T. Sellis. Handling spatial data in distributed environments. In

Proc. 15th Annual ACM Int. Symp. on Advances in Geographic Information Sys-

tems, 2007.

96 REFERÊNCIAS BIBLIOGRÁFICAS

[56] R. Kosala and H. Blockeel. Web mining research: a survey. ACM SIGKDD Explo-

rations Newsletter, 2(1):1–15, 2000.

[57] H. Kosch, L. Boszormenyi, M. Doller, M. Libsie, P. Schojer, and A. Kofler. The

Life Cycle of Multimedia Metadata. IEEE Multimedia, 12(1):80–86, 2005.

[58] L. Fu and L.-K. Soh and A. Samal. Techniques for Computing Fitness of Use (FoU)

for Time Series Datasets with Applications in the Geospatial Domain. Geoinforma-

tica, 12(1):91–115, 2008.

[59] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief

survey of web data extraction tools. SIGMOD Record, 31(2):84–93, 2002.

[60] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for Sensor Networks. In Proc.

10th Int. Conf. Architectural Support for Programming Languages and Operating

Systems (ASPLOS-X), pages 85–95, 2002.

[61] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,

J. Hill, M. Welsh, E. Brewer, and D. Culler. Ambient Intelligence, chapter TinyOS:

An Operating System for Wireless Sensor Networks. Springer Verlag, 2004.

[62] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia informa-

tion retrieval: State of the art and challenges. ACM Transactions on Multimedia

Computing, Communications, and Applications, 2(1):1–19, 2006.

[63] J. G. S. Lima, C. B. Medeiros, and E. D. Assad. Integration of heterogeneous

pluviometric data for crop forecasts. In Proc. of the 5th Brazilian Symposium on

GeoInformatics, 2003.

[64] T. Liu and M. Martonosi. Impala: A Middleware System for Managing Autonomic,

Parallel Sensor Systems. In Proc. ACM SIGPLAN Symp. Principles and Practice

of Parallel Programming (PPoPP 03), 2003.

[65] C.-T. Lu, R. F. Santos Jr, L. N. Sripada, and Y. Kou. Advances in GML for

Geospatial Applications. Geoinformatica, 11(1):131–157, 2007.

[66] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,

J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system.

Concurrency and Computation: Practice & Experience, 18(10):1039–1065, 2006.

[67] S. R. Madden, M. J. Franklin, and J. M. Hellerstein. TinyDB: An Acquisitional

Query Processing System for Sensor Networks. ACM Transactions on Database

Systems, 30(1):122–173, 2005.

REFERÊNCIAS BIBLIOGRÁFICAS 97

[68] L. E. Mariote, C. B. Medeiros, and I. Lee. Diagnosing Similarity of Oscillation

Trends in Time Series. In Proc. of the 7th IEEE Int. Conf. on Data Mining

Workshops, pages 643–648, 2007.

[69] C. B. Medeiros and A. C. Alencar. Data quality and interoperability in GIS (In

Potuguese). In Proc. of the 1st Brazilian Symposium on GeoInformatics, 1999.

[70] C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Z. Pastorello Jr, A. Santanchè,

R. S. Torres, E. Madeira, and E. Bacarin. WOODSS and the Web: Annotating and

Reusing Scientific Workflows. SIGMOD Record, 34(3):18–23, 2005.

[71] L. Meyer, J. Annis, M. Wilde, M. Mattoso, and I. Foster. Planning spatial workflows

to optimize grid performance. In SAC ’06: Proceedings of the 2006 ACM symposium

on Applied computing, pages 786–790, 2006.

[72] Moving Picture Experts Group (MPEG) – ISO/IEC-JTC1. ISO/IEC15938 (parts 1–

10) Multimedia content description interface. http://www.iso.org/iso/search.

htm?qt=15938&sort=rel&type=simple&published=true (as of Sep 2008).

[73] NASA. MODIS Rapid Response System. http://rapidfire.sci.gsfc.nasa.gov/

(as of September 2008).

[74] NSF/NCGIA/OpenGIS, editor. Int. Conf. and Workshop on Interoperating

Geographic Information Systems, 1997. http://www.ncgia.ucsb.edu/conf/

interop97 (as of June 2008).

[75] OGC. Open Geospatial Consortium, Inc. http://www.opengeospatial.org (as of

June 2008).

[76] OGC. OpenGIS Reference Model (ORM). http://portal.opengeospatial.org/

files/?artifact_id=3836 (as of September 2008).

[77] OGC. OpenGIS Sensor Web Enablement Architecture Document. http://www.

opengeospatial.org/pt/14140 (as of June 2008).

[78] OGC. OpenGIS Web Processing Service. http://www.opengeospatial.org/

standards/wps (as of September 2008).

[79] OGC. Sensor Web Enablement Working Group. http://www.opengeospatial.

org/projects/groups/sensorweb (as of Oct 2007), 2007.

[80] Open Geospatial Consortium, Inc. KML Implementation Standard. http://www.

opengeospatial.org/standards/kml/ (as of September 2008).

98 REFERÊNCIAS BIBLIOGRÁFICAS

[81] S. Park, J.J. Feddema, and S.L. Egbert. Hydroclimatological parameters and their

relationship with land surface temperatures (LST) and NDVI anomalies. In Proc.

2002 ASPRS-ACSM Annual Conference, 2002.

[82] G. Z. Pastorello Jr, J. Daltio, and C. B. Medeiros. An Annotation Propagation

Mechanism for Multimedia Content. Technical Report IC-08-017, Institute of Com-

puting, University of Campinas, August 2008.

[83] G. Z. Pastorello Jr, J. Daltio, and C. B. Medeiros. Multimedia Semantic Annotation

Propagation. In Proc. 1st IEEE Int. Workshop on Data Semantics for Multimedia

Systems and Applications (DSMSA) – 10th IEEE Int. Symposium on Multimedia

(ISM), pages 509–514, 2008.

[84] G. Z. Pastorello Jr, L. C. Gomes Jr, C. B. Medeiros, and A. Santanchè. Sensor

Data Publication on the Web for Scientific Applications. In Proc. 4th Int. Conf. on

Web Information Systems and Technologies, pages 137–142, 2008.

[85] G. Z. Pastorello Jr, C. B. Medeiros, S. M. Resende, and H. A. Rocha. Interoperabi-

lity for GIS Document Management in Environmental Planning. Journal on Data

Semantics, 3(LNCS 3534):100–124, 2005.

[86] G. Z. Pastorello Jr, C. B. Medeiros, and A. Santanchè. Applying Scientific Work-

flows to Manage Sensor Data. In Proc. 1st e-Science Workshop – 22nd Brazilian

Symposium on Databases, pages 09–18, 2007.

[87] G. Z. Pastorello Jr, C. B. Medeiros, and A. Santanchè. Providing Homogeneous

Access for Sensor Data Management. Technical Report IC-07-012, Institute of Com-

puting, State University of Campinas, May 2007.

[88] G. Z. Pastorello Jr, C. B. Medeiros, and A. Santanchè. Accessing and Proces-

sing Sensing Data. In Proc. 11th IEEE Int. Conf. on Computational Science and

Engineering, pages 353–360, 2008.

[89] G. Z. Pastorello Jr, R. D. A. Senra, and C. B. Medeiros. A standards-based fra-

mework to foster geospatial data and process interoperability. Journal of the Bra-

zilian Computer Society, 2008. Submitted for review.

[90] G. Z. Pastorello Jr, R. D. A. Senra, and C. B. Medeiros. Bridging the gap

between geospatial resource providers and model developers. In Proc. 16th ACM

Int. Conf. on Advances in Geographic Information Systems, pages 379–382, 2008.

[91] F. Pereira and I. Burnett. Universal Multimedia Experiences for Tomorrow. IEEE

Signal Processing Magazine, 20(2):63–73, 2003.

REFERÊNCIAS BIBLIOGRÁFICAS 99

[92] P.J. Pinter Jr, J.L. Hatfield, J.S. Schepers, E.M. Barnes, M.S. Moran, C.S.T. Daugh-

try, and D.R. Upchurch. Remote sensing for crop management. Photogrammetric

Engineering and Remote Sensing, 69(6):647–664, 2003.

[93] R. Raskin and M. Pan. Semantic Web for Earth and Environmental Terminology

(SWEET). In Proc. of the Workshop on Semantic Web Technologies for Searching

and Retrieving Scientific Data, 2003.

[94] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases – With Application to GIS.

Morgan Kaufmann/Elsevier, 2001.

[95] N. Ritter and M. Ruth. The GeoTiff data interchange standard for raster geographic

images. International Journal of Remote Sensing, 18(7):1637–1647, 1997.

[96] P. A. Roberto, R. L. T. Santos, M. A. Gonçalves, and A. H. F. Laender. On RDBMS

and Workflow Support for Componentized Digital Libraries. In Proc. of the XXI

SBBD, pages 87–101, 2006.

[97] A. Santanchè and C. B. Medeiros. Self Describing Components: Searching for

Digital Artifacts on the Web. In Proc. of XX Brazilian Symposium on Databases,

pages 10–24, 2005.

[98] A. Santanchè and C. B. Medeiros. A Component Model and an Infrastructure for

the Fluid Web. IEEE Transactions on Knowledge and Data Engineering, 19(2):324–

341, 2007.

[99] A. Santanchè, C. B. Medeiros, and G. Z. Pastorello Jr. User-centered Multimedia

Building Blocks. Multimedia Systems Journal, 12(4):403–421, 2007.

[100] ANSI Health Level Seven. Hl7 standards. http://www.hl7.org/Library/

standards.cfm (as of Oct 2008).

[101] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and J. M. Rabaey. Ambient Intel-

ligence, chapter A service-based universal application interface for ad hoc wireless

sensor and actuator networks. Springer, 2005.

[102] G. Shankaranarayanan and A. Even. The Metadata Enigma. Communications of

the ACM, 49(2):88–94, 2006.

[103] A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing ETL Processes in Data Wa-

rehouses. In Proc. of the 21st Int. Conf. on Data Engineering, pages 564–575, 2005.

100 REFERÊNCIAS BIBLIOGRÁFICAS

[104] G. Stamou, J. Ossenbruggen, J. Z. Pan, G. Schreiber, and J. R. Smith. Multimedia

Annotations on the Semantic Web. IEEE Multimedia, 13(1):86–90, 2006.

[105] S. Thakkar, C. A. Knoblock, and J. L. Ambite. Quality-Driven Geospatial Data

Integration. In Proc. of the 15th Annual ACM Int. Symposium on Advances in

Geographic Information Systems, 2007.

[106] R. S. Torres, C. B. Medeiros, M. A. Gonçalves, and E. A. Fox. A digital library

framework for biodiversity information systems. International Journal on Digital

Libraries, 6(1):3–17, 2006.

[107] M. J. Ungerer and M. F. Goodchild. Integrating spatial data analysis and GIS:

a new implementation using the Component Object Model (COM). International

Journal of Geographical Information Science, 16(1):41–53, 2002.

[108] W. J. D. van Leeuwen, A. R. Huete, and T. W. Laing. MODIS Vegetation In-

dex Compositing Approach: A Prototype with AVHRR Data. Remote Sensing of

Environment, 69(3):264–280, 1999.

[109] T. C. Vance, N. Merati, S. M. Mesick, C. W. Moore, and D. J. Wright. GeoMode-

ler: tightly linking spatially-explicit models and data with a GIS for analysis and

geovisualization. In Proc. of the 15th Annual ACM Int. Symposium on Advances in

Geographic Information Systems, 2007.

[110] W3C Multimedia Semantics Incubator Group. Multimedia Annotation In-

teroperability Framework. http://www.w3.org/2005/Incubator/mmsem/

XGR-interoperability/ (as of September 2008).

[111] J. Wainer, M. Weske, G. Vossen, and C. B. Medeiros. Scientific Workflow Systems.

In Proc. of the NSF Workshop on Workflow and Process Automation Information

Systems, 1996.

[112] H. Wang, S. Liu, and L.-T. Chia. Image retrieval with a multi-modality ontology.

Multimedia Systems, 13(5-6):379–390, 2008.

[113] WfMC – Workflow Management Coalition. The Workflow Reference Model. Tech-

nical report, Workflow Management Coalition, 1995. TC-1003.

[114] Y. Xue, W. Wan, Y. Li, J. Guang, L. Bai, Y. Wang, and J. Ai. Quantitative

Retrieval of Geophysical Parameters Using Satellite Data. Computer, 41(4):33–40,

2008.

REFERÊNCIAS BIBLIOGRÁFICAS 101

[115] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing in

Sensor Networks. SIGMOD Record, 31(3):9–18, 2002.

[116] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.

SIGMOD Record, 34(3):44–49, 2005.

[117] Y. Zhao, M. Wilde, I. Foster, J. Vöeckler, J. Dobson, E. Gilbert, T. Jordan, and

E. Quigg. Virtual data grid middleware services for data-intensive science. Concur-

rency and Computation: Practice & Experience, 18(6):595–608, 2006.

