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Resumo

O trabalho desenvolvido neste doutorado consistiu em conceber algoritmos para uma

série de problemas NP-dif́ıceis sob a abordagem de aproximabilidade, complementado

com resultados heuŕısticos e também de programação inteira. O estudo foi focado em

problemas de classificação e particionamento em grafos, como classificação métrica, corte

balanceado e clusterização. Houve um equiĺıbrio entre teoria e aplicabilidade, ao obter-

se algoritmos com bons fatores de aproximação e algoritmos que obtiveram soluções de

qualidade em tempo competitivo. O estudo concentrou-se em três problemas: o Problema

da Classificação Métrica Uniforme, o Problema do Corte Balanceado e o Problema da

Localização de Recursos na versão cont́ınua.

Inicialmente trabalhamos no Problema da Classificação Métrica Uniforme, para o qual

propusemos um algoritmo O(log n)-aproximado. Na validação experimental, este algo-

ritmo obteve soluções de boa qualidade em um espaço de tempo menor que os algoritmos

tradicionais.

Para o Problema do Corte Balanceado, propusemos heuŕısticas e um algoritmo exato.

Experimentalmente, utilizamos um resolvedor de programação semidefinida para resol-

ver a relaxação do problema e melhoramos substancialmente o tempo de resolução da

relaxação ao construir um resolvedor próprio utilizando o método de inserção de cortes

sobre um sistema de programação linear.

Finalmente, trabalhamos com o problema de Localização de Recursos na variante

cont́ınua. Para este problema, apresentamos algoritmos de aproximação para as métricas

l2 e l22. Este algoritmo foi aplicado para obter algoritmos de aproximação para o problema

k-Means, que é um problema clássico de clusterização. Na comparação experimental com

uma implementação conhecida da literatura, os algoritmos apresentados mostraram-se

competitivos, obtendo, em vários casos, soluções de melhor qualidade em tempo equi-

parável.

Os estudos relativos a estes problemas resultaram em três artigos, detalhados nos

caṕıtulos que compõem esta tese.
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Abstract

We present algorithms for combinatorial optimization NP-hard problems on classifi-

cation and graph partitioning. The thesis concerns about theory and application and

is guided by an approximation algorithms approach, complemented with heuristics and

integer programming. We proposed good approximation factor algorithms as well as al-

gorithms that find quality solutions in competitive time. We focus on three problems: the

Metric Labeling Problem, the Sparsest Cut Problem and the Continuous Facility Location

Problem.

For the Metric Labeling Problem, we proposed an O(log n)-approximation algorithm.

In the experimental analysis, this algorithm found high quality solutions in less time than

other known algorithms.

For the Sparsest Cut Problem we proposed heuristics and an exact algorithm. We built

an SDP Solver to the relaxed formulation using a semi-infinity cut generation over linear

programming. This approach considerably reduces the time used to solve the semidefinite

relaxation compared to an open source semidefinite programming solver.

Finally, for the Continuous Facility Location Problem we present approximation al-

gorithms to the l2 and l22 distance function. These algorithms are used to obtain approx-

imation algorithms to the k-Means Problem, which is a basic clustering problem. The

presented algorithms are competitive since they obtain in many cases better solutions in

equivalent time, compared to other known algorithms.

The study of these problems results in three papers, which are detailed in chapters

that make this thesis.
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Caṕıtulo 1

Introdução

Nesta tese investigamos alguns problemas de Otimização Combinatória, voltados para

classificação e particionamento de elementos. Para entender melhor a natureza destes

problemas, descreveremos algumas situações onde eles ocorrem.

Suponha que desejamos descobrir regiões cŕıticas na malha viária da grande São Paulo

e tudo que possúımos é um mapa com a descrição das ruas e a densidade populacional.

O problema do corte balanceado estudado nesta tese constitui-se na formulação natural

para encontrar regiões suscet́ıveis a engarrafamentos em uma malha.

Dado um grafo G, com conjunto de vértices V e conjunto de arestas E, a solução para

o problema do corte balanceado é a partição dos vértices em dois grupos. Duas medidas

são feitas sobre esta partição. Uma função mede o peso das arestas entre as partições e

outra função mede o equiĺıbrio entre o tamanho dos dois conjuntos, multiplicando seus

tamanhos. A função objetivo a ser minimizada consiste na divisão do peso das arestas

entre as partes pelo produto do tamanho das partes. Veja Figura 1.1.

δ(S)

S V \ S

min
∅%=S!V

{

δ(S)
|S|·|V \S|

}

Figura 1.1: Problema do Corte Balanceado em um grafo G(V, E).
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Se quebrarmos a malha viária de São Paulo em regiões, conectarmos regiões vizinhas

por arestas contendo a capacidade das ruas entre elas e ponderarmos o peso de acordo com

sua população, algoritmos desenvolvidos para o corte balanceado devolverão uma partição

das regiões em dois grupos que terão a caracteŕıstica de serem grandes em relação ao fluxo

posśıvel entre eles.

Nesta tese também investigamos problemas de clusterização e de localização de re-

cursos, que são básicos dentro da otimização combinatória. Toda vez que a quantidade

de informação é demasiada, um algoritmo de clusterização consegue extrair os represen-

tantes mais significativos. Por exemplo, uma imagem com um milhão de cores pode ser

comprimida em outra com 512 cores. Encontrar as 512 cores que causam menor distorção

na qualidade da imagem é um problema de clusterização. Já um problema de situar for-

necedores como postos de correios, bancos, hospitais, pontos de informação, servidores,

etc, podem ser naturalmente descritos como um problema de localização de recursos.

Na Figura 1.2, mostramos um exemplo de problema de clusterização, o k-Means. Neste

problema temos um conjunto de pontos no plano e procuramos por k centros dentro do

domı́nio de forma que a soma das distâncias entre cada ponto e o centro mais próximo

seja minimizada. A função distância para este problema é tradicionalmente a euclidiana

ao quadrado, também conhecida como l22.

min
c1,c2∈R2

8

<

:

X

j∈C

min
c∈{c1,c2}

{d(j, c)}

9

=

;

min
c1,c2,c3∈R2

8

<

:

X

j∈C

min
c∈{c1,c2,c3}

{d(j, c)}

9

=

;

Exemplo de solução para k = 2 Exemplo de solução para k = 3Conjunto de pontos

Figura 1.2: Problema k-Means.

Nesta tese também investigamos problemas de classificação, como o da Classificação

Métrica Uniforme. Em um problema de classificação tradicional, deseja-se conectar cada

um dos n objetos a uma das m classes. Essa classificação deve ser consistente com alguns

dados observados, os quais incluem a relação entre os pares de objetos a serem classificados

e a relação entre objetos e classes.

Na Figura 1.3 ilustramos o problema. Temos uma série de animais representando os

objetos do problema: gato, morcego, baleia, etc, e quatro classes: mamı́feros, aves, répteis

e peixes, que apesar de serem agora classes bem definidas, poderiam estar em algum

momento indefinidas. Existe um custo de atribuição entre cada objeto e cada classe.
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AvesMamı́feros Répteis Peixes

Figura 1.3: Problema da Classificação Métrica Uniforme.

Uma baleia, por exemplo, tem um custo de atribuição baixo com a classe mamı́feros e

um custo alto com a classe aves. O custo de atribuição é pago toda vez que um objeto é

atribúıdo a uma classe. Existe também o custo de associação entre quaisquer dois objetos.

Ele guarda a informação de similaridade entre os objetos. Toda vez que dois objetos vão

para classes diferentes, o custo de associação entre eles é pago.

O objetivo do problema Classificação Métrica Uniforme (Uniform Metric Labeling

Problem - UMLP) consiste em encontrar uma atribuição dos objetos em classes de forma

a minimizar a soma dos custos de atribuição e de associação.

Os problemas investigados nesta tese estão na classe NP-dif́ıcil. Para tais problemas

não se espera que existam algoritmos eficientes que os resolvam. A existência ou não de

algoritmos exatos e polinomiais é uma das questões que permeia a Ciência da Computação

há mais de 35 anos. Assumindo a conjectura de que tais algoritmos não existem, ou

simplesmente assumindo que P #= NP , algoritmos exatos implicam uma complexidade

de tempo supra-polinomial para qualquer problema NP-dif́ıcil. Sendo assim, a tese foi

principalmente guiada pelo desenvolvimento de Algoritmos Aproximados, uma área que

tem se revelado crescentemente promissora dentro da Ciência da Computação.

1.1 Algoritmos de Aproximação

Nesta seção será dada uma breve introdução a algoritmos de aproximação, mostrando-

se a notação utilizada e também conceitos básicos sobre o tema.

Dado um algoritmo A para um problema de minimização, seja I uma instância para

esse problema e A(I) o valor da solução devolvida pelo algoritmoA aplicado à instância I.
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Seja OPT(I) o valor de uma solução ótima de I. Um algoritmo tem um fator de apro-

ximação α, ou é α-aproximado, se A(I)/OPT(I) ≤ α para toda instância I. No caso

dos algoritmos probabiĺısticos, considera-se a desigualdade E[A(I)]/OPT(I) ≤ α, onde

a esperança E[A(I)] é tomada sobre todas as escolhas aleatórias feitas pelo algoritmo.

É importante ressaltar que algoritmos de aproximação, considerados neste trabalho, têm

complexidade de tempo polinomial, a menos que seja expĺıcito o contrário. Algoritmos

probabiĺısticos podem ser considerados com complexidade de tempo polinomial quando

a esperança do tempo de execução for polinomial. Definições e conceitos para problemas

de maximização podem ser apresentados de maneira análoga, porém tais problemas não

são investigados nesta tese.

Ao se elaborar um algoritmo aproximado, um passo importante é buscar uma prova

de seu fator de aproximação. Outro aspecto que merece ser ressaltado é a necessidade de

verificar se o fator de aproximação α demonstrado é o melhor posśıvel para o algoritmo.

Para tanto, deve-se encontrar uma instância cuja razão entre o valor da solução obtida

pelo algoritmo e valor de uma solução ótima é igual, ou tão próxima quanto se queira,

de α. Nesse caso, dizemos que o fator de aproximação do algoritmo é justo, não podendo

ser melhorado. Outro algoritmo pode ter um fator de aproximação mais próximo de 1,

desde que não entre em contradição com limites de inaproximabilidade.

Quando a existência de um fator de aproximação α implicar a quebra de uma con-

jectura bem estabelecida como, por exemplo, que P #= NP , diz-se que este valor α é um

limite de inaproximabilidade.

Quanto menor o fator de aproximação de um algoritmo para um problema de mi-

nimização, maior a garantia de que o valor da solução obtida seja próximo ao de uma

solução ótima. Logo, fatores menores são mais desejados. Para que um algoritmo possa

ser aplicado a problemas reais, é desejável também que possua complexidade de tempo

descrita por um polinômio de grau baixo.

Em alguns casos é posśıvel obter um algoritmo polinomial (1 + ǫ)-aproximado para

qualquer ǫ > 0 fixo. A esta famı́lia de algoritmos damos o nome de PTAS (Polino-

mial Time Approximation Scheme). Um PTAS com complexidade de tempo polinomial

também em 1/ǫ é chamado de FPTAS (Fully Polinomial Time Approximation Scheme).

1.2 Problemas Investigados e Resultados

Obtivemos resultados para um problema de classificação, conhecido como Classificação

Métrica Uniforme, para o Problema do Corte Balanceado e para o Problema de Loca-

lização de Recursos em sua versão cont́ınua. Os resultados nesse último problema foram

aplicados para obtenção de um algoritmo para o k-Means. As próximas seções detalham

estes problemas e os respectivos resultados.



1.2. Problemas Investigados e Resultados 5

1.2.1 Problema da Classificação Métrica Uniforme

Esta tese investigou um problema de classificação, conhecido como Classificação

Métrica Uniforme. Ele consiste em classificar um conjunto de objetos em classes de forma

a minimizar custos. Sobre uma classificação são calculadas duas funções: a primeira mede

o custo de atribuição entre objetos e classes; a segunda mede o custo para separar objetos

que possuam similaridade. O objetivo do problema é encontrar uma classificação dos

objetos em classes que minimize a soma dos custos de atribuição e de separação. A seguir

descrevemos o problema de maneira formal.

Seja P o conjunto de objetos, L o conjunto de classes, w : P × P → R+ uma função

peso, d : L × L → R+ uma função de distância e c : P × L → R+ uma função de

custo de atribuição. Uma classificação de P em L é uma função φ : P → L. O custo

de atribuição de uma classificação φ é a soma
∑

i∈P c(i, φ(i)) e o custo de separação

de uma classificação φ é a soma
∑

i,j∈P d(φ(i), φ(j))w(i, j). A função w indica a força de

relacionamento entre dois objetos, e a função d indica a similaridade entre duas classes. O

custo de uma classificação φ é a soma dos custos de atribuição com os custos de separação.

Definimos os tamanhos dos conjuntos P e L como n e m, respectivamente.

O Problema da Classificação Métrica (Metric Labeling Problem - MLP) consiste em en-

contrar uma classificação de objetos em classes com custo total mı́nimo. Neste problema,

toda vez que dois objetos vão para classes diferentes, paga-se o custo de separação vezes

a distância entre as classes. O foco de nossa pesquisa foi o problema da Classificação

Métrica Uniforme (Uniform Metric Labeling Problem - UMLP), no qual as distâncias

valem 1 para classes diferentes, e 0 caso contrário.

O problema MLP tem várias aplicações, muitas descritas por Kleinberg e Tardos [33].

Algumas dessas aplicações ocorrem em processamento de imagens [4, 13, 18], biometria [3],

classificação de textos [8], etc. Um exemplo de aplicação é a restauração de imagens

corrompidas por rúıdo. Neste caso, a imagem pode ser vista como uma grade de pixels,

cada pixel é um objeto que deve ser classificado com uma cor. O custo de atribuição é

dado pela similaridade entre a nova cor e a antiga, e o custo de separação é dado pela

diferença entre a cor do pixel e a cor de seus vizinhos.

O Problema da Classificação Métrica, mesmo restrito a distâncias uniformes (ULP),

generaliza o Multiway Cut Problem, um problema conhecido que é NP-dif́ıcil [14].

O MLP foi primeiramente introduzido por Kleinberg e Tardos [33]. Eles apresenta-

ram um algoritmo O(logm log log m)-aproximado. Para o ULP obtiveram um algoritmo

2-aproximado. Para ambos os problemas, a técnica utilizada foi arredondamento proba-

biĺıstico sobre a solução de um programa linear. Esse programa linear tem muitas variáveis

e restrições, Ω(mn2) restrições e Ω(mn2) variáveis, para ser usado em instâncias grandes.

Recentemente, Gupta e Tardos [24] apresentaram uma formulação para o problema

da classificação truncada, um problema de classificação métrica onde as classes são in-
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teiros positivos e a distância métrica entre as classes i e j é dada pela norma linear

truncada, dij = min{M, |i − j|}, onde M é o máximo valor permitido. Eles apresenta-

ram um algoritmo 4-aproximado para a classificação métrica truncada e 2-aproximado

para o ULP. O algoritmo gera uma instância para o problema da rede de fluxo onde

os pesos das arestas vêm do custo de atribuição e separação do problema original.

O grafo resultante tem O(n2m) arestas e um algoritmo para o corte mı́nimo é apli-

cado O((m/M)(log Q0 +log ε−1)) vezes para se obter uma (4+ε)-aproximação, onde Q0 é

o custo da solução inicial. Esse algoritmo também tem alta complexidade para ser usado

em instâncias práticas.

Chekuri, Khanna, Naor e Zosin [11] desenvolveram uma nova formulação em pro-

gramação linear que é melhor para o caso não uniforme. Porém, para o caso uniforme

ela mantém a 2-aproximação e tem uma complexidade de tempo mais alta, que deriva do

fato de resolver um programa linear grande, com Ω(n2m2) restrições e Ω(n2m2) variáveis.

Em nossa pesquisa, foi apresentado um algoritmo aproximado mais rápido para o Pro-

blema da Classificação Métrica Uniforme e foi provado que ele é uma 8 logn-aproximação

com complexidade de tempo estimada em O(mn3,6). Além disso, foi comparado o de-

sempenho prático desse algoritmo com os algoritmos baseados em programação linear de

Chekuri et al. [11] e Kleinberg e Tardos [33]. Apesar do novo algoritmo ter um maior

fator de aproximação, os testes computacionais indicaram que as soluções obtidas tiveram

desvio menor que 60% em relação a um limitante do ótimo em instâncias geradas alea-

toriamente. Ademais, o algoritmo obteve soluções para instâncias grandes numa menor

quantidade de tempo.

Também foi provado que a análise do fator de aproximação do algoritmo proposto é

justa, a menos de um fator constante.

Elaboramos para este problema um artigo em conjunto com Evandro C. Bracht [6],

o qual foi aceito no Workshop on Experimental and Efficient Algorithms (WEA) e cuja

versão estendida foi publicada no ACM Journal of Experimental Algorithmics (JEA) [5].

O Caṕıtulo 2 traz este artigo.

1.2.2 Problema do Corte Balanceado

No ińıcio deste caṕıtulo descrevemos informalmente o Problema do Corte Balanceado.

Este problema consiste em, dado um grafo G(V, E), encontrar um conjunto não vazio S ⊂
V de forma a minimizar a função objetivo. Seja δ(S) o conjunto de arestas com exatamente

uma extremidade em S, seja C(S) =
∑

e∈δ(S) ce onde ce ∈ R+ é um custo para cada

aresta e ∈ E . A medida de distribuição do corte é W(S) = w(S) ·w(V \S) onde w(C) :=
∑

v∈C wv e wv ∈ R+ é um peso para cada vértice v ∈ V . O objetivo deste problema

consiste em encontrar um corte não vazio S ⊂ V tal que C(S)
W(S)

seja mı́nimo. Denotamos
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por n o número de vértices em V .

O primeiro algoritmo aproximado para o problema do Corte Balanceado consiste em

uma O(log n)-aproximação devido ao estudo de Leighton e Rao [36] publicado em 1988.

Recentemente, o interesse no problema tem crescido. Para o caso em que todos os custos

das arestas estão em {0, 1}, Arora, Rao e Vazirani [2] apresentaram uma O(
√

log n)-

aproximação baseada em programação semidefinida. Para o caso geral, Chawla, Gupta

e Räque [10] apresentaram uma O(log3/4 n)-aproximação, enquanto o melhor algoritmo

atualmente é uma O(
√

log n log log n)-aproximação feita por Arora, Lee e Naor [1].

Devanur, Khot, Saket e Vishnoi [15] apresentaram uma instância com gap de integra-

lidade de Θ(log logn) para a relaxação semidefinida considerada nesta tese. Shmoys [43]

apresenta uma coletânea sobre algoritmos de aproximação para problemas de corte e suas

aplicações para divisão e conquista.

Em nosso trabalho sobre este problema, analisamos uma relaxação conhecida descrita

por Arora et al. [2]. Esta relaxação é baseada em programação semidefinida. Apresenta-

mos um algoritmo exato e heuŕısticas baseadas nesta relaxação. A relaxação foi testada

em instâncias de tamanho pequeno a moderado e devolveu valores muito próximos à

solução ótima. O algoritmo exato obteve soluções para instâncias de tamanho pequeno

a moderado e as melhores heuŕısticas obtiveram valores ótimos ou quase ótimos para to-

das as instâncias testadas. A relaxação semidefinida nos forneceu um limitante C
W

e cada

heuŕıstica produziu um corte S com valor C(S)
W(S)

. Provamos, para cada heuŕıstica, que C(S)

é no máximo um fator de C ou W(S) é pelo menos um fator W .

Não encontramos algoritmos aproximados para o problema. Recentemente foi pro-

vado que aproximar o problema do Corte Balanceado dentro de qualquer fator constante,

assumindo a Conjectura Unique Games de Khot [9], implica P = NP .

Na parte experimental, resolvemos a relaxação semidefinida a partir de um resolvedor

próprio para o Problema do Corte Balanceado utilizando a técnica de inserção de cortes

semidefinidos sobre programação linear. Para resolver a programação linear foi usado

o resolvedor profissional XPRESS. Nós mostramos que a estratégia proposta teve um

desempenho melhor que um resolvedor de programação semidefinida conhecido.

Como resultado secundário, provamos a existência de uma solução limitada quando a

esperança de ambas as partes da fração de variáveis aleatórias são limitadas. É posśıvel

aplicar esta estratégia a outros problemas com fração na função objetivo. Lembrando que

não é sempre verdade que E[X/Y ] = E[X]/E[Y ], este resultado tem uma utilidade geral.

Elaboramos um artigo sobre este problema, o qual está submetido para uma revista

da área. O Caṕıtulo 3 traz este artigo.
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1.2.3 Problemas k-Means e Localização de Recursos

Trabalhamos, por fim, em problemas de clusterização. Esta classe de problemas con-

siste em agrupar elementos em conjuntos de forma a minimizar a soma da distorção entre

cada elemento e o centro do respectivo conjunto. Para tanto, consideramos uma versão

cont́ınua do Problema de Localização de Recursos sem Capacidades e sua aplicação para

o Problema k-Means. Nestes dois problemas temos um conjunto de clientes C ⊂ Rq. Pro-

curamos encontrar um conjunto não vazio F ⊂ Rq para conectar cada cliente à facilidade

mais próxima em F . No Problema de Localização de Recursos Cont́ınuo, o valor de uma

solução é o custo total de conexão dos clientes com a respectiva facilidade, mais o custo

de abrir as facilidades, que é f · |F |, onde f é o custo para se abrir uma facilidade. No

Problema k-Means, o conjunto F deve ter exatamente k facilidades e o custo de uma

solução é o custo total de conectar os clientes à respectiva facilidade. Em ambos os casos,

procuramos soluções de custo mı́nimo.

O Problema de Localização de Recursos (Sem Capacidades) e Problemas de Clusteri-

zação têm muitas aplicações práticas [17] e têm sido largamente investigados na literatura.

As aplicações aparecem em muitas áreas como pesquisa operacional, mineração de dados,

recuperação da informação, processamento de imagens, compressão de dados, aplicações

web, etc. Nosso principal interesse no estudo deste problema foi o desenvolvimento de

algoritmos aproximados.

O primeiro algoritmo de aproximação para o Problema de Localização de Recursos é

um algoritmo guloso com fator de aproximação O(log n), onde n é o número de facilidades

e clientes na instância de entrada, descrito por Hochbaum [26] em 1982. Este resultado

é o melhor posśıvel, assumindo P #= NP . Para o caso métrico, o primeiro fator de

aproximação constante é 3,17, descrito por Shmoys, Tardos e Aardal [44]. Existem

muitas outras técnicas e limitantes na literatura. Uma das técnicas principais consiste

no uso de programação linear e no uso da abordagem primal-dual. Neste sentido, Jain

e Vazirani [30] apresentaram um algoritmo primal-dual 3-aproximado para o Problema

de Localização de Recursos. O melhor fator de aproximação é de 1,52 vindo de um

algoritmo proposto por Mahdian, Ye e Zhang [39] que usa a estratégia primal-dual com

LP revelador de fator e técnica de escala de custo. Considerando resultados negativos,

Guha e Khuller [23] mostraram que qualquer algoritmo de aproximação deve ter um fator

de aproximação de pelo menos 1,463, assumindo NP ! DTIME [nO(log log n)]. O Problema

de Localização de Recursos também é um bom exemplo do impacto prático da busca por

melhores fatores de aproximação. Por exemplo, o algoritmo 1,61-aproximado apresentado

por Jain, Mahdian, Markakis, Saberi e Vazirani [28] obteve soluções quase sem erro na

maioria dos casos, indicando que fatores de aproximação são também uma boa medida

para o comportamento prático dos algoritmos.
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O problema de clusterização mais famoso é o Problema k-Means que é NP-dif́ıcil

mesmo para k = 2 [16]. Um dos algoritmos mais clássicos para o Problema k-Means é o

algoritmo de Lloyd [38], para o qual existem implementações rápidas [31]. Apesar deste

algoritmo possuir um bom comportamento prático, ele não tem fator de aproximação ou

convergência em tempo polinomial. De fato, existem exemplos para os quais o algoritmo

obtém clusteres arbitrariamente ruins. Considerando algoritmos de aproximação, Matou-

sek [40] apresentou um esquema de aproximação polinimial para o k-Means quando q, ǫ

e k são constantes. Existem muitos outros esquemas de aproximação polinomiais sob estas

condições. Mais recentemente, Kumar, Sabharwal e Sen [34] apresentaram um esquema

de aproximação quando k e ǫ são constantes, independentemente de q. Quando ǫ e q são

constantes, Kanungo, Netanyahu, Piatko, Silverman e Wu [32] apresentaram um algo-

ritmo (9 + ǫ)-aproximado. Infelizmente, a maioria dos algoritmos acima mencionados são

muito complicados ou tem alta complexidade para valores pequenos de ǫ. Em [30], Jain

e Vazirani descreveram um algoritmo de aproximação primal-dual com fator 108 para o

Problema k-Means (independente de k e q). Apesar deste algoritmo ter um alto fator, ele

pode ser usado na prática por sua baixa complexidade de tempo.

Apresentamos resultados de aproximação para o caso cont́ınuo do Problema de Lo-

calização de Recursos ao adaptar algoritmos apresentados em [28, 30]. Obtivemos um

algoritmo (1,861+ǫ)-aproximado para a métrica l2 e um algoritmo (9+ǫ)-aproximado com

distâncias l22. Para o problema l2-Clustering obtivemos um algoritmo (6 + ǫ)-aproximado.

Para o Problema k-Means, propusemos um algoritmo similar ao apresentado em [30] com

fator de aproximação 54 + ǫ. Todos estes resultados são para q fixo. Nossa contri-

buição foi um método para extrair de um número exponencial de centróides um subgrupo

polinomial que garantiu praticamente a mesma qualidade da solução. Nós reportamos re-

sultados computacionais para o Problema k-Means, mostrando que para valores pequenos

de q o algoritmo produz soluções próximas ou superiores a algoritmos conhecidos para

o problema. Para as mesmas instâncias, o algoritmo em alguns casos devolveu soluções

melhores que as obtidas pela combinação de Lloyd e outros algoritmos de busca local [31].

Por fim, implementamos algumas variantes dos algoritmos e fizemos uma análise emṕırica.

Elaboramos para este problema um artigo que foi aceito no 23rd Annual ACM Sympo-

sium on Applied Computing (SAC 2008). O Caṕıtulo 4 traz uma versão estendida deste

artigo.



Chapter 2

A Greedy Approximation Algorithm

for the Uniform Metric Labeling

Problem Analyzed By a Primal-Dual

Technique

Abstract

We consider the uniform metric labeling problem. This NP-hard problem

considers how to assign objects to labels respecting assignment and separa-

tion costs. The known approximation algorithms are based on solutions of

large linear programs and are impractical for moderated and large size in-

stances. We present an 8 logn-approximation algorithm that can be applied

to large size instances. The algorithm is greedy and is analyzed by a primal-

dual technique. We implemented the presented algorithm and two known

approximation algorithms and compared them at randomized instances. The

gain of time was considerable with small error ratios. We also show that the

analysis is tight, up to a constant factor.

2.1 Introduction

In a traditional classification problem, we wish to assign each of n objects to one of m

labels (or classes). This assignment must be consistent with some observed data that

includes pairwise relationships among the objects to be classified. More precisely, the

classification problem can be defined as follows. Let P be a set of objects, L a set of

labels, w : P × P → R+ a symmetric weight function, d : L × L → R+ a symmetric

distance function and c : P × L → R+ an assignment cost function. A labeling of P over

10
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L is a function φ : P → L. The assignment cost of a labeling φ is the sum
∑

i∈P c(i, φ(i))

and the separation cost of a labeling φ is the sum
∑

i,j∈P d(φ(i), φ(j))w(i, j). The function

w indicates the strength of the relation between two objects, and the function d indicates

the similarity between two labels. The cost of a labeling φ is the sum of the assignment

cost and the separation cost. The Metric Labeling Problem (MLP) consists on finding a

labeling of the objects into labels with minimum total cost. Throughout this paper, we

denote the size of the sets P and L by n and m, respectively.

We focus our attention on the Uniform Metric Labeling Problem (UMLP) where the

distance d(i, j) is 1 if i #= j, and 0 otherwise, for all i, j ∈ L.

The MLP has several applications, many listed by Kleinberg and Tardos [33]. Some

applications occur in image processing [4, 13, 18], biometrics [3], text categorization [8],

etc. An example of application is the restoration of images degenerated by noise. In

this case, an image can be seen as a grid of pixels, each pixel is an object that must be

classified with a color. The assignment cost is given by the similarity between the new

and old coloring, and the separation cost given by the color of a pixel and the color of its

neighbors.

The Metric Labeling Problem generalizes the Multiway Cut Problem, a known NP-

hard problem [14], and was first introduced by Kleinberg and Tardos [33] that present

an O(logm log log m)-approximation algorithm for the MLP, and a 2-approximation al-

gorithm for the UMLP using the randomized rounding technique over a solution of a

linear program. This linear program is too large to be used in large size instances. It has

Θ(mn2) constraints and Θ(mn2) variables.

Because the UMLP generalizes the Multiway Cut Problem, it is also NP-hard.

More recently, Gupta and Tardos [24] present a formulation for the truncated la-

beling problem, a metric labeling problem where the labels are positive integers and

the metric distance between labels i and j is given by the truncated linear norm,

dij = min{M, |i − j|}, where M is the maximum value allowed. They present an al-

gorithm that is a 4-approximation algorithm for the truncated labeling problem and a

2-approximation for the UMLP. This algorithm generates a network flow problem in-

stance where the weights of edges come from the assignment and separation costs of the

original problem. The resulting graph has O(n2m) edges and the Min Cut algorithm is

applied O((m/M)(log Q0 + log ε−1)) times in order to obtain a (4 + ε)-approximation,

where Q0 is the cost of the initial solution. This is also a high time complexity to be used

in practical instances.

Chekuri, Khanna, Naor and Zosin [11] developed a new linear programming formula-

tion that is better for the non-uniform case. However, for the uniform case it maintains a

2-approximation factor and has a higher time complexity. This is a consequence of solving

a large linear program with Θ(n2m2) constraints and Θ(n2m2) variables.
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In this paper, we present a fast approximation algorithm for the Uniform Metric La-

beling Problem and prove that it is an 8 logn-approximation algorithm. We also compare

the practical performance of this algorithm with the linear programming based algorithms

of Chekuri et al. [11] and Kleinberg and Tardos [33]. Although this algorithm has a higher

approximation factor, the computational tests indicated that the obtained solutions have

values that are within 60% of the optimum. Moreover, the algorithm could obtain solu-

tions for large instances in small amount of time.

In Section 2.2, we present an approximation factor proof for a greedy algorithm for the

Set Cover Problem via a primal-dual analysis. Then we analyze the case when the greedy

choice is relaxed to an approximated one. In Section 2.3, we present a general algorithm for

the Uniform Metric Labeling Problem using an algorithm for the Set Cover Problem. This

algorithm uses as a subroutine an approximation algorithm for the Quotient Cut Problem.

In Subsection 2.3.3 we show that the analysis is tight, up to a constant factor. In Section

2.4, we compare the presented algorithm with linear programming based algorithms. In

Section 2.5, we present the concluding remarks. Finally, in Section 2.6, we describe some

future works, and, in Section 2.7, we present the acknowledgements.

2.2 A Primal-Dual Analysis for a Greedy Algorithm

for the Set Cover Problem

The Set Cover Problem is a well-known optimization problem, that generalizes many

others. An instance of this problem consists of: a set Esc = {e1, e2, . . . , en} of elements,

a family of subsets Usc = {U1, U2, . . . , Um}, where Uj ⊆ Esc, and a cost wj , for each

j ∈ {1, . . . , m}. A set S ⊆ {1, . . . , m} such that ∪j∈SUj = Esc is a set cover of Esc.

The goal of the problem is to find a set cover Sol ⊆ {1, . . . , m} of Esc that minimizes
∑

j∈Sol wj.

In [12], Chvátal presents a greedy Hg-approximation algorithm for the Set Cover Prob-

lem, where g is the number of elements in the largest set in Usc and Hg is the value of

the harmonic function of degree g. We denote this algorithm by Greedy. This algorithm

iteratively chooses the set with minimum amortized cost, that is the cost of the set di-

vided by the number of non-covered elements in the set. Once a set is chosen to be in

the solution, all the elements in this set are considered as covered. For more details on

algorithm Greedy, see Chapter 3 of book [45].

The Greedy algorithm can be rewritten as a primal-dual algorithm, with similar set

of events. To present this algorithm, we first consider a formulation for the Set Cover

Problem using binary variables xj for each set Uj , where xj = 1 if and only if Uj is chosen
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Algorithm PD-SC(Esc,Usc, w)
Input: Set of elements Esc, family of sets Usc, each set Uj ∈ Usc with weight wj.
Output: A set cover Sol ⊆ {1, . . . , m} of Esc.
1. U ← Esc; T ← 0 ; Sol ← ∅.
2. Let αe ← 0, for all e ∈ Esc.
3. While U #= ∅ do
4. increase T and αe for each e ∈ U , uniformly, until we have

∑

e∈Uj∩U

αe = wj, for some j.

5. Sol ← Sol ∪ {j}.
6. U ← U \ Uj .
7. Return Sol.

Figure 2.1: Primal-Dual Algorithm for the Set Cover Problem.

in the solution. The formulation consists on finding x that

minimize
∑

j

wjxj

s.t.
∑

j:e∈Uj

xj ≥ 1 ∀e ∈ Esc,

xj ∈ {0, 1} ∀j ∈ {1, . . . , m},

and the dual of the relaxed version consists on finding α that

maximize
∑

e∈Esc

αe

s.t.
∑

e∈Uj

αe ≤ wj ∀j ∈ {1, . . . , m},

αe ≥ 0 ∀e ∈ Esc.

The primal-dual algorithm, which we denote by PD-SC, uses a set U containing the

elements not covered in each iteration, and a variable T . The algorithm do not need T ,

but it is used in the analysis as a notion of time associated with each event. At each

iteration, the algorithm increases the variable T and the (dual) variables αe uniformly,

for each element in U , until the inequality correspondent to a set Uj becomes tight. At

this point, the algorithm chooses j and declares each element of Uj as covered. Algorithm

PD-SC is presented in Figure 2.1.

We first present a proof of the approximation factor of algorithm PD-SC using a

factor revealing primal-dual analysis. The idea of the proof is proposed in Jain, Mahdian,

Markakis, Saberi and Vazirani [28], Section 9, and described in [45]. For completeness,
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we included the proof here, adapting the presentation in such a way that we can easily

extend Theorem 3 to Theorem 5.

Lemma 1 The sequence of events executed by algorithms Greedy and PD-SC is the same.

Proof. Note that the value of αe when
∑

e∈Uj∩U αe = wj is equal to the amortized cost.

Because αe grows uniformly, it is clear that algorithm PD-SC, at each iteration, chooses

a set with minimum amortized cost.

Lemma 2 Let Uj = {e1, e2, . . . , ek} and αi be the dual variable associated to ei, generated

by algorithm PD-SC. If α1 ≤ α2 ≤ . . . ≤ αk, then
∑k

i=l αl ≤ wj, for any l.

Proof. At the moment just before T = αl, all αi, l ≤ i ≤ k, have the same value, αl,

and el, . . . , ek are all uncovered. Suppose the lemma is false. In this case,
∑k

i=l αl > wj

and, in an instant strictly before αl, the set Uj would enter in the solution and all of its

elements would have α < αl. This is a contradiction, because Uj has at least one element

greater than or equal to αl. Therefore, the lemma is valid.

Algorithm PD-SC returns a primal solution Sol, with value val(Sol) :=
∑

j∈Sol wj ,

such that val(Sol) =
∑

e∈Esc
αe. Note that α may not be dual feasible. If there exists

a value γ such that α/γ is dual feasible, i.e.,
∑

e∈Uj
αe/γ ≤ wj for each j ∈ {1, . . . , m},

then, by the weak duality theorem, val(Sol) ≤ γOPT . The idea of the proof is to find a

value γ for which α/γ is dual feasible.

Theorem 3 The PD-SC Algorithm, for the Set Cover Problem, is an Hg-approximation

algorithm, where g is the size of a largest set in Usc.

Proof. Consider an arbitrary set Uj = {e1, . . . , ek} with k elements and cost w. Let αi be

the dual variable associated with element ei for i = 1, . . . , k. Without loss of generality,

assume that α1 ≤ . . . ≤ αk.

If γ is a value such that α/γ is dual feasible, then

k
∑

i=1

αi/γ ≤ w. (2.1)

Thus, a sufficient condition is

γ ≥
∑k

i=1 αi

w
. (2.2)
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Applying Lemma 2 for each value of l, we have



















l = 1, kα1 ≤ w, ⇒ α1/w ≤ 1/k,

l = 2, (k − 1) α2 ≤ w, ⇒ α2/w ≤ 1/(k − 1),
...

l = k, αk ≤ w, ⇒ αk/w ≤ 1.

Summing up the inequalities above we have

∑k
i=1 αi

w
≤ Hk. (2.3)

Therefore, when γ = Hg, we obtain that α/γ is dual feasible.

Now, let us consider a small modification in the previous algorithm. Instead of choosing

a set with minimum amortized cost, we choose a set Uj′ with amortized cost at most f

times greater than the minimum. That is, if Uj∗ is a set with minimum amortized cost in

a given iteration, then the following inequality is valid

wj′

|Uj′ ∩ U | ≤ f
wj∗

|Uj∗ ∩ U | .

This modification can be understood, in the primal-dual version of the algorithm, as a

permission that
∑

e∈Uj∩U αe becomes greater than wj by a factor of at most f . We denote

the algorithm with this modification by Af .

Lemma 4 Let Uj = {e1, e2, . . . , ek} and αi be the time variable associated to the item ei

generated by algorithm Af . If α1 ≤ α2 ≤ . . . ≤ αk, then
∑k

i=l αl ≤ f wj, for any l.

Proof. Suppose the lemma is false. Then, for some l,
∑k

i=l αl > f wj and, in an instant

T < αl, the set Uj would have entered in the solution, that is a contradiction.

The following theorem can be proved analogously to Theorem 3.

Theorem 5 Algorithm Af is an f Hg-approximation, where g is the size of a largest set

in Usc.

2.3 A New Algorithm for the Uniform Metric Label-

ing Problem

The algorithm for the UMLP uses some ideas presented by Jain et al. [28] for the Facility

Location Problem. To present these ideas, we use the notion of a star. A star is a
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connected graph where only one vertex, denoted as center of the star, can have degree

greater than one. Jain et al. [28] present an algorithm that iteratively selects a star with

minimum amortized cost, where the center of each star is a facility.

In the Uniform Metric Labeling Problem, we can consider a labeling φ : P → L as a

set of stars, each one with a label in the center. Thus a star for UMLP is a pair (l, US),

where l ∈ L and US ⊆ P . The algorithm for the UMLP iteratively selects stars of reduced

amortized cost, until all objects have been covered.

Given a star S = (l, US) for the UMLP, where l ∈ L and US ⊆ P , we denote by C(S)

the cost of the star S, which is defined as

C(S) = c(US) +
1

2
w(US),

where c(US) =
∑

u∈US
cul and w(US) =

∑

u∈US ,v∈(P\US) wuv. That is, C(S) is the cost to

assign each element of US to l plus half the cost to separate each element of US from each

element of P \ US. We pay just half of the separation cost, because the other half will

appear when we analyze the elements in P \ US against the elements in US.

Denote by Sumlp(L, P ) the set of all possible stars of an instance. The algorithm

uses U as the set of unassigned objects, (Esc,Ssc, w′) as an instance for the Set Cover

Problem, U as a collection and φ the labeling being produced. Without loss of generality,

we consider Ssc as a collection and given a set US ∈ Ssc, we can obtain the associated

star S = (l, US), and vice versa. We describe the algorithm more formally in Figure 2.2.

Algorithm Gul(L, P, c, w,Asc)
Input: Set L of labels; set P of objects; assignment costs cui for i ∈ L and u ∈ P ;

separation costs wuv for u, v ∈ P ; and an algorithm Asc for Set Cover.
Output: A labeling φ of P .
1. Esc ← P .
2. Ssc ← {US : S = (l, US) ∈ Sumlp(L, P )}.
3. w′

S ← C(S) + 1
2
w(US), for all S = (l, US) ∈ Sumlp(L, P ).

4. U ← Asc (Esc,Ssc, w′), let U = {US1 , US2 , . . . , USt
}.

5. U ← P .
6. For k ← 1 to t do
7. Let l ∈ L be such that Sk = (l, USk

);
8. φ(i) ← l, for all i ∈ USk

∩ U ;
9. U ← U \ USk

.

10. Return φ.

Figure 2.2: Greedy algorithm for the Uniform Metric Labeling Problem.
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2.3.1 Analysis of the Algorithm

To analyze the algorithm we use the following notation:

• valumlp(φ): the value, in the UMLP, of a labeling φ.

• valsc(U): the value, in the Set Cover Problem, of a collection U .

• φopt: an optimum labeling for UMLP.

• Uopt: an optimum solution for the Set Cover Problem.

• SC(φ): a collection {US1, US2 , . . . , USk
} related to a labeling φ = {S1, S2, . . . , Sk}.

Lemma 6 If φ is the solution returned by algorithm Gul and U the solution returned by

algorithm Asc at Step 4 of algorithm Gul, then

valumlp(φ) ≤ valsc(U).

Proof.

valumlp(φ) =
∑

S∈φ

C(S) =
∑

S∈φ

(

c(US) +
1

2
w(US)

)

(2.4)

≤
∑

US∈U

(c(US) + w(US)) (2.5)

=
∑

US∈U

(

C(S) +
1

2
w(US)

)

=
∑

US∈U

w′
S = valsc(U).

Equality (2.4) is valid because the stars in φ are disjoint and this can be checked by

counting. Inequality (2.5) is valid because an assignment cost in valumlp(φ) also appears

in valsc(U),
∑

S∈φ

c(US) ≤
∑

US∈U

c(US),

and the separation cost wuv for any u and v such that φ(u) #= φ(v), that appears in

valumlp(φ) must appear, once or twice, in valsc(U),

∑

S∈φ

1

2
w(US) =

∑

u<v:φ(u)%=φ(v)

wuv ≤
∑

US∈U

w(US).
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Lemma 7 valsc(Uopt) ≤ 2valumlp(φopt).

Proof.

2valumlp(φopt) = 2
∑

S∈φopt

C(S) ≥
∑

S∈φopt

(

C(S) +
1

2
w(US)

)

(2.6)

=
∑

t∈SC(φopt)

w′
t

≥
∑

t∈Uopt

w′
t (2.7)

= valsc(Uopt),

where inequality (2.6) is valid because C(S) ≥ 1
2
w(US) and inequality (2.7) is valid because

SC(φopt) is a solution for the Set Cover Problem, but not necessarily with optimum

value.

Theorem 8 If I is an instance for the UMLP, φ is the labeling generated by algorithm

Gul when running on I and φopt is an optimum labeling for I then

valumlp(φ) ≤ 2β valumlp(φopt),

where β is the approximation factor of algorithm Asc used at Step 4 of algorithm Gul.

Proof. Let U be the solution returned by algorithm Asc (Step 4 of algorithm Gul) and

Uopt an optimal solution for the corresponding Set Cover instance. In this case, we have

valumlp(φ) ≤ valsc(U) (2.8)

≤ β valsc(Uopt) (2.9)

≤ 2β valumlp(φopt), (2.10)

where inequality (2.8) is valid by Lemma 6, inequality (2.9) is valid because U is found

by a β-approximation algorithm, and inequality (2.10) is valid by Lemma 7.

The algorithm PD-SC cannot be directly applied in Step 4 of algorithm Gul be-

cause it is polynomial in the size Ssc but exponencial in the size of P . To obtain an

8 log n-approximation algorithm for the UMLP we need to present an algorithm Asc that

is a 4 log n-approximation algorithm for Set Cover. The algorithm is based on an ap-

proximation algorithm for the Quotient Cut Problem, which we describe in the following

subsection.
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2.3.2 Algorithm Asc

In this section we show how to obtain a greedy algorithm for Set Cover without the

explicit generation of all possible sets. The algorithm basically generates a graph Gl for

each possible label l ∈ L and obtains a set US with reduced amortized cost. The set

which must enter in the solution is the smallest one considering the sets US from Gl for

each l ∈ L.

Consider a label l ∈ L. We wish to find a set US that minimize wS/|US ∩U |, where U

is the set of unassigned objects in the iteration. Denote by Gl the complete graph with

vertex set V (Gl) = P ∪ {l} and edge costs wGl
defined as follows

wGl
(u, v) := wuv ∀u, v ∈ P, u #= v,

wGl
(l, u) := cul ∀u ∈ P.

In other words, the cost of an edge between the label and an object is the assignment cost

and the cost of an edge between two objects is the separation cost.

Lemma 9 For each set C ⊆ P , the cost c(C) =
∑

u∈C,v %∈C

wGl
(u, v) has value w′

S, where w′
S

is the cost attributed in Step 3 of algorithm Gul to the set indexed by star S = (l, C).

Proof. The lemma can be proved by counting. In the Set Cover Problem, w′
S is equal to

C(S) +
1

2
w(US),

that is equal to the cost of the cut C. See Figure 2.3.

l

C

X

u∈C,v∈(P\C)

wuv

X

u∈C

cul

P \ C

Figure 2.3: Example of a cut C that has the same cost w′
S that the star S = (l, C).

The problem of finding a set with smallest amortized cost c(C)/|C| in Gl is the Mini-

mum Quotient Cut Problem, which can be defined as follows.
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Quotient Cut Problem (QC): Given a graph G, weights we ∈ R+ for

each edge e ∈ E(G), and costs cv ∈ Z+ for each vertex v ∈ V (G), find a cut

C that minimizes w(C)/ min{π(C), π(C̄)}, where w(C) :=
∑

u∈C,v %∈C wuv and

π(C) :=
∑

v∈C cv.

If we define a cost function cl in each vertex of Gl as

cl(v) =







1 if v ∈ P ∩ U,

0 if v ∈ P \ U,

n if v = l,

where U contains the elements not covered in a given iteration, then a cut

C := minl∈L{QC(Gl, wl, cl)}, returned by some f -approximation algorithm for the QC

Problem, corresponds to a set US, S = (l, C), that is at most f times greater than a

set with minimum amortized cost. Algorithm Af , as stated in Theorem 5, can be imple-

mented choosing this set instead of a set with minimum amortized cost. The following

result follows from Theorem 5 and Theorem 8.

Theorem 10 If there exists an f -approximation algorithm for the Quotient Cut Problem

with time complexity T (n), then there exists a 2f Hn-approximation algorithm for the

UMLP, with time complexity O(n mT (n)).

The Quotient Cut Problem is NP-hard and the best approximation algorithm has

an approximation factor of 4 due to Freivalds [20]. This algorithm has experimental

time complexity O(n1.6) when the degree of each vertex is a small constant and O(n2.6)

for dense graphs. Although this algorithm has polynomial time complexity estimated

experimentally, it is not proved to run in polynomial time in the worst case.

Theorem 11 There is an 8 log n-approximation Fm for UMLP, with time complexity

estimated in O(mn3.6).

It is important to observe that the size of an input I for UMLP, size(I), is O(n(n+m)),

thus, the estimated complexity of our algorithm is O(size(I)2.3).

2.3.3 The Approximation Factor is Θ(log n)

In this subsection we will show that the approximation factor is tight, up to a constant

factor. We present a family of instances where the factor given by the algorithm is Hn.

We suppose that Asc is an algorithm which selects a set with minimum amortized cost

at each iteration.

Given a positive integer n and positive values ǫ1 and ǫ2, where 0 < ǫ1 ≪ ǫ2 ≪ 1/n2,

define an instance In = (L, P, c, w) for UMLP as follows
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• L = {1, . . . , n},

• P = {1, . . . , n},

• for each i ∈ P and l ∈ L, define cil as follows

cil =























ǫ1 if i ∈ {1, . . . , n − 1} and l = i,

ǫ2 if i ∈ {1, . . . , n − 1} and l = n,

1 if i = n and l = n,

∞ otherwise,

• for each i, j ∈ P , define wij as follows

wij =







1

n − i + 1
if i ∈ {1, . . . , n − 1} and j = n,

0 otherwise.

Instance In is presented in Figure 2.4. In the next theorem we show that algorithm Gul

can obtain a solution of In with a factor of Θ(log n) of the optimum.

1 4 n − 1

ǫ1 ǫ1

1

ǫ2 ǫ2

2 3

ǫ1 ǫ1

ǫ2

n

ǫ2 ǫ2

1
n−2

1
n−1

1
n

1
2

1
n−3

Figure 2.4: Instance In.

Theorem 12 If algorithm Gul uses a greedy algorithm as subroutine for the Set Cover

Problem, then Gul(In)
opt(In)

→ Hn as ǫ1, ǫ2 → 0, where opt(In) is the value of an optimum

solution of In for UMLP.

Proof. The optimal solution for instance In is the star (n, P ) with cost 1 + ǫ2(n − 1).

Now, we will prove that the solution obtained by algorithm Gul can be formed by the

stars (1, {1}), (2, {2}), . . . , (n, {n}) whose cost is Hn + ǫ1(n − 1).
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The theorem can be proved by induction on the number of iterations.

Given a star S = (l, US), for l ∈ L and US ⊆ P , let Wi(l, US) denote the amortized

cost of S at iteration i. That is, Wi(l, US) =
w′

S

|US∩U |
, where U is the set of unassigned

objects at iteration i.

Although the number of stars may be large, we can consider few stars, as shown by

the next fact.

Fact 13 All stars with bounded cost are of the form

• (i, {i}) for i = 1, . . . , n;

• (n, US) for any set US ⊆ P, US #= ∅.

Consider the first iteration. In this case we will prove that star (1, {1}) has the smallest

amortized cost. The following inequalities are immediate:

W1(1, {1}) < W1(2, {2}) < . . . < W1(n, {n}). (2.11)

W1(i, {i}) < W1(n, {i}) for all i ∈ {1, . . . , n − 1}. (2.12)

From inequalities (2.11) and (2.12) we can conclude that W1(1, {1}) is smaller than

or equal to the amortized cost of all stars containing one object.

Because W1(1, {1}) = 1/n + ǫ1 and W1(n, P ) = 1/n + n−1
n

ǫ2, we have

W1(1, {1}) < W1(n, P ). (2.13)

Consider stars with objects Q such that n ∈ Q ⊆ P . Because adding an object

i ∈ P \ Q to Q decreases the separation cost and it does not incur a significant increase

in the assignment cost (just ǫ2 is added), we have

W1(n, P ) ≤ W1(n, Q). (2.14)

From inequalities (2.13) and (2.14) we can conclude that any star that contains the

object n has cost greater than W1(1, {1}).
Now, consider stars with object set Q ⊆ P \ {n}, Q #= ∅. A minimality argument says

that

W1(n, {i}) ≤ W1(n, Q), for i = min{Q ∩ U}. (2.15)

Inequality (2.15) is valid, because

W1(n, {i}) = min
i′∈Q∩U

{ 1

n − i′ + 1
} + ǫ2
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and

W1(n, Q) ≥ averagei′∈Q∩U{
1

n − i′ + 1
} + ǫ2.

From the previous inequalities we can conclude that all stars have an amortized cost

greater than W1(1, {1}). Thus star (1, {1}) enters in the solution obtained by algorithm

Gul in the first iteration.

Updating U , the set of unassigned objects, we note an invariant property. In the

second iteration it is clear that

W2(2, {2}) < W2(3, {3}) < . . . < W2(n, {n}) (2.16)

and because W2(2, {2}) = 1/(n − 1) + ǫ1 and W2(n, P ) = 1/(n − 1) + n−1
n−1

ǫ2 we have

W2(2, {2}) < W2(n, P ). (2.17)

In a similar way, we can conclude that all stars have an amortized cost greater than

W2(2, {2}) in the second iteration. Thus the greedy algorithm will select the star (2, {2})
to enter in the solution.

The induction step is straightforward. Therefore, the solution produced by algorithm

Gul consists of {φ(1) = 1, φ(2) = 2, . . . , φ(n) = n}.

2.4 Computational Experience

We performed several tests with the presented algorithm, denoted by Gul, the algorithm

presented by Kleinberg and Tardos [33], denoted by KT , and the algorithm presented

by Chekuri et al. [11], denoted by CKNZ. In the implementation of algorithm Gul,

we do not consider intersections among sets in the solution of the subroutine Asc in

the Step 4 of the algorithm. The factor 2 that appears in Lemma 7 was diminished in

the experiments when the assigned objects are removed from the current graph in the

Quotient Cut subroutine of Gul.

We observe that the computational resources needed to solve an instance with the

presented algorithm are very small compared with the other two algorithms cited above.

All the implemented algorithms and the instances are available in the web [7]. The tests

were performed in an Athlon XP with 1.2 Ghz and 700 MB of RAM and the linear

programs were solved by the Xpress-MP solver [42].

We considered five different sets of instances. We denote these sets by A, B, C, D

and E.

The instances of set A have the following characteristics: The number of objects is

given by n = ⌈2k
3
⌉ and the number of labels by m = ⌊k

3
⌋ for different values of k = n+m.

The assignment costs are given by cui = random(1000) for all u ∈ P and i ∈ L, and
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separation costs by wuv = random(10) for all u, v ∈ P , where random(i) returns a random

value between 0 and i.

The largest instance we could solve with algorithm CKNZ has 46 objects and 24

labels in 16722 seconds. The time is basically that of solving the linear program. When

the primal-dual algorithm is tested with this instance, we obtained a solution that is

0.25% worse in 7 seconds. Concerning algorithm KT , the largest instance that we could

test has 80 objects and 40 labels and it took 15560 seconds. This is basically the time

to solve the associated linear program. For this instance, algorithm Gul obtained a

solution that is 1.01% worse in 73 seconds. The major limitation to use KT was the

time complexity, while the major limitation to use algorithm CKNZ was the time and

memory complexities. It is important to note that algorithm Gul does not use a linear

programming solver.

Figure 2.5: Running times for instances of set A.

In Figure 2.5 we can observe a strong reduction in the function time associated with

the Gul algorithm when n + m achieves 290. In this case, we observed that when the

separation costs are big, there is a high probability that the size of the star becomes big.

To larger instances of type A, the number of objects assigned to a label in each iteration

is also big and the running time is reduced. The average number of objects assigned per

iteration just before the time reduction was 1.2, that is near to the worst case, while for

the instance just after the decrease, the average number of objects assigned per iteration

was 32.3.

For all comparable instances of set A, algorithm Gul produced solutions that are at

most 1.27% worse than the value of the linear programming relaxation.

The instances of set B were generated as follows. We maintain the same ratio between

the number of classes and objects. The assignment costs are given by cui = random(5n)
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and the separation costs by wuv = random(5) for all u, v ∈ P and i ∈ L, where n = |P |.
In these instances, the expected ratio between assignment costs and separation costs

keeps constant while varying n+m. Thus the size of the star that enters in the solution is

almost the same and the time complexity changes smoothly with the size of the instances.

The largest instance that we could solve with algorithm CKNZ has 46 objects and 24

labels, and spent 18720 seconds. Memory was the main restriction to solve large instances

with this algorithm. When we tested algorithm Gul with this instance, we obtained a

solution that is 1.25% worse in 7 seconds. The largest instance solved by KT had 120

objects and 65 labels in 44400 seconds. For this instance, algorithm Gul produced a

solution that is 0.48% worse in 68 seconds. The worst ratio of a solution produced by

Gul, when compared with the KT relaxation, was 11.53%. Considering all instances of

this set, the number of objects per star was 1.03 on the average. The running times for

this set of instances can be compared in Figure 2.6.

Figure 2.6: Running times for instances of set B.

To generate the instances of set C, we fix the number of labels (objects) to 40 and

vary the number of objects (labels) from 5 to 65. The assignment and separation costs

were generated in the same way as done for the instances of set B. Because algorithm

CKNZ spent more time, we did not use this algorithm for the remaining tests.

In Table 2.1 we show the results for the instances of set C. The column Ratio(%)

corresponds to the value (Gul(I)/KT (I)−1) ·100, for each instance I. The largest error

ratio was 1.25%. When the number of labels is fixed and the number of objects increases,

the gain in time of algorithm Gul, compared to algorithm KT , was considerable.

On the average, algorithm Gul associated 1.05 objects in each iteration. When the

number of objects, n, increases, algorithm KT takes substantially more time, compared
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Instance Time (s)
Objects (n) Labels (m) Gul KT Ratio (%)
40 5 0 1 0.18
40 10 2 3 0.23
40 15 3 6 0.67
40 20 4 9 0.29
40 25 5 12 0.47
40 30 5 23 0.19
40 35 6 30 0.66
40 40 7 36 0.27
40 45 8 49 1.25
40 50 9 56 0.78
40 55 10 75 0.77
40 60 11 94 0.44
40 65 11 68 0.37

5 40 0 1 0
10 40 1 0 0
15 40 0 1 0
20 40 1 2 0.87
25 40 2 3 0.83
30 40 3 7 0.46
35 40 4 17 0.70
45 40 11 77 0.62
50 40 16 131 0.56
55 40 22 400 0.38
60 40 26 912 0.47
65 40 33 2198 0.60

Table 2.1: Results of KT and Gul over the instances of set C

to Gul. This confirms the time complexity of algorithm KT (for solving a linear pro-

gram with O(n2m) constraints by O(n2m) variables) and algorithm Gul, experimentally

estimated in O(mn3.6).

For all instances in set D, the number of objects is n = 40 and the number of labels

m = 20. The assignment costs are given by cui = random(1000), and the separation

costs are given by wuv = random(10ρ), where ρ is an integer varying from 1 to 100. The

comparison of algorithms Gul and KT is presented in Table 2.2.

Because the separation costs increase as ρ increases, larger stars become promising.

When big stars enter in the solution, the number of iterations decreases. Notice that the

hardest instance occurs in the transition between big stars and small stars. When the

separation costs are big (ρ > 80), the problem becomes easy, because it consists in con-
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Time (s) Number of
Gul KT Ratio (%) ρ iterations

3 5 0.34 1 36
4 7 0.39 5 37
4 7 0.57 10 38
4 11 0.75 15 39
4 11 0.43 20 38
3 25 0.66 25 36
3 21 0.47 30 37
4 23 0.51 35 38
3 35 0.51 40 37
4 41 0.88 45 36
4 67 0.68 50 36
4 114 1.06 55 36
4 168 1.75 60 36
4 203 1.26 65 32
4 439 2.26 70 32
4 831 4.32 75 29
4 1182 13.33 80 23
2 790 0 85 1
0 549 0 90 1
0 262 0 55 1
0 114 0 100 1

Table 2.2: Result of KT and Gul over the instances of set D.

necting all objects to one label. When ρ = 80, the corresponding instance was “difficult”

for algorithm Gul, because the approximation factor increased, and was also “difficult”

for algorithm KT , because its running time also increased. We can conclude, from this

experiment, that the ratio between assignment and separation costs is an important char-

acteristic in hard instances.

We observe that less than 1% of the instances of this set led to linear programs with

fractional solutions, both for algorithm KT and CKNZ. The larger ratio between the

value of the solution produced by algorithm KT and its associated linear program was

24.17% using 1020 seconds. In this case, algorithm Gul produced a solution within a ratio

of 7.15% in 4 seconds. The average error for the instances where the linear programming

solution was not integral was 7.02% and the average running time was 836 seconds to

KT . The average error ratio of algorithm Gul when applied to the same instances was

5.8% in 3.02 seconds, on the average.

For all instances in the sets A, . . . , D, the associated graph is complete. That is, each

object has a separation cost with all other objects and each label has an assignment cost
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with each object.

Based on the instances of set D, we generate a set E of instances associated with sparse

graphs, where the degree of each vertex, in P , is 2, on the average. More precisely, these

instances have 20 objects and 10 labels, and 40 edges on the average. The assignment

costs are given by cui = random(20) and the separation cost by wuv = random(8). On

the average, 8% of these instances produced linear programs which lead to fractional

solutions. The average (largest) error ratio of a solution produced by algorithm KT , from

the fractional solution, was 6.47% (21.34%). The largest error ratio of a solution produced

by algorithm Gul was 50.89% and the average error ratio was 13.46%.

The computational results we have obtained with these instances gave us more knowl-

edge to generate hard instances. This led us to the instance In which proves that Gul

analysis is tight up to a constant factor (see Section 2.3.3).

To illustrate the applicability of the primal-dual algorithm in practical instances, we

have applied the algorithm for the image restoration problem with an image degenerated

by noise. The image has pixels in gray scale and dimension 60x60 with 3600 objects to be

classified in two colors, black and white. To define the assignment and separation costs,

we consider that each color is an integer between 0 and 255. Each pixel corresponds to an

object. The assignment cost of an object u to a label i is given by cui = |clr(u) − clr(i)|,
where clr(u) is the actual color of u and clr(i) is the color associated to label i. The

separation cost of an object u and an object v is given by wuv = 255 − |clr(u) − clr(v)|.
The following images, Figures 2.7–2.10, present the results obtained applying the

primal-dual algorithm. In each figure, the image on the left is obtained inserting some

noise and the image on the right is the image obtained after the classification of the

objects.

Figure 2.7: Image with 25% of noise.
Time needed is 288s.

Figure 2.8: Image with 50% of noise.
Time needed is 319s.

Figure 2.9: Image with 75% of noise.
Time needed is 511s.

Figure 2.10: Image with 100% of noise.
Time need is 973s.



2.5. Concluding Remarks 29

We note that images with more noise have more pixels with different colors (labels).

This explains the higher running time for these instances.

Although these times are large for image processing applications, it illustrates the

performance of algorithm Gul and solution quality. In real instances, it is possible to

define a small window over larger images, and the processing time may decrease. As

one can see, the classification problem is more general and the primal-dual algorithm is

appropriate for moderate and large size instances.

2.5 Concluding Remarks

We presented a primal-dual approximation algorithm with approximation factor 8 logn

for the Uniform Metric Labeling Problem. We compared the primal-dual algorithm with

linear programming based approximation algorithms. We proved that our analysis is

tight, up to a constant factor. The previous approximation algorithms for this problem

have high time complexity and are adequate only for small and moderate size instances.

In all experimental tests, the presented algorithm obtained solutions within 60% of the

optimum and could obtain solutions for moderate and large size instances.

2.6 Future Works

A natural continuity to this work would be the use of Gul algorithm in real instances, as

well the use of machinery learning and others tools to create good costs to this instances.

As theoretical future work, the method used in this chapter could be applied to others

problems.
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Chapter 3

Semidefinite Programming Based

Algorithms for the Sparsest Cut

Problem

Abstract

In this paper we analyze a known relaxation for the Sparsest Cut Problem

based on positive semidefinite constraints, and present a branch and bound

algorithm and heuristics based on this relaxation. The relaxation and the al-

gorithms were tested on small and moderate sized instances. The relaxation

leads to values very close to the optimum solution values. The exact algo-

rithm could obtain solutions for small and moderate sized instances, and the

best heuristics obtained optimum or almost optimum solutions for all tested

instances. The semidefinite relaxation gives a lower bound C
W

and each heuris-

tic produces a cut S with a ratio cS

wS
, where either cS is at most a factor of

C or wS is at least a factor of W . We solve the semidefinite relaxation using

a semi-infinite cut generation with a commercial linear programming package

adapted to the sparsest cut problem. We show that the proposed strategy

leads to a better performance compared to the use of a known semidefinite

programming solver.

3.1 Introduction

Since the work of Goemans and Williamson [22], which presents an approximation algo-

rithm for the Max-Cut Problem, the use of semidefinite programming has increased and

it turns out to be an important technique to obtain good relaxations and algorithms for

combinatorial optimization problems [22, 25, 50].

30
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The Sparsest Cut Problem is NP-hard and has applications in image segmentation [46],

the metric labeling problem [5], and a natural application in graph conductance.

In this paper we analyze the relaxation of the Sparsest Cut Problem formulation

presented by Arora, Rao and Vazirani [2]. We propose four heuristics and an exact branch

and bound algorithm for the Sparsest Cut Problem, based on semidefinite programming

relaxation.

These algorithms were tested on a set of random instances and, in all tests, they

produced optimal or almost optimal solutions.

Although we could not present approximation factors to the heuristics, we proved good

characteristics for each one. We note that it is NP-hard to approximate the Sparsest Cut

problem within any constant factor, assuming the Unique Games Conjecture of Khot [9].

We proved the existence of a bounded solution for the Sparsest Cut Problem when the

expectation of both parts of the ratio are bounded. It is possible to apply this strategy to

other problems with a ratio in the objective function. Considering that it is not always

true that E[X/Y ] = E[X]/E[Y ], this result has a general utility. See more details in

Section 3.4.1.

The first approximation algorithm for the Sparsest Cut Problem has an O(logn) factor

due to Leighton and Rao [36] in 1988. Recently, the interest in the Sparsest Cut Problem

has increased. When all edge costs are in {0, 1} and vertex weights are 1, Arora et al. [2]

present an O(
√

log n)-approximation algorithm based on a semidefinite program. For the

general case, Chawla, Gupta and Räque [10] present an O(log3/4 n)-approximation algo-

rithm, while the current best known algorithm is an O(
√

log n log log n)-approximation

algorithm due to Arora, Lee and Naor [1].

Devanur, Khot, Saket and Vishnoi [15] present a Θ(log logn) integrality gap instance

for the considered semidefinite programming relaxation. Shmoys [43] presents a survey on

approximation algorithms for cut problems and their application to divide-and-conquer.

3.2 Problem Definition

Given a graph G = (V, E), a cost function c : E → R+, a weight function w : V → R+,

and a set S ⊂ V , S #= ∅, we denote by δ(S) the set of edges with exactly one extremity

in S, C(S) the sum
∑

e∈δ(S) ce, W(S) the product w(S)w(V \S), where w(C) :=
∑

v∈C wv,

and ρ(S) the value C(S)/W(S). The Sparsest Cut Problem can be defined as follows:

Sparsest Cut Problem (SC): Given a graph G = (V, E), costs ce ∈ R+

for each edge e ∈ E, and weights wv ∈ R+ for each vertex v ∈ V , find a

cut S ⊂ V, S #= ∅, that minimizes ρ(S). See Figure 3.1.
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Minimize

Balance

Figure 3.1: The objective of the Sparsest Cut Problem is to find a small balanced cut.

In the unweighted version, which we denote by USC Problem, we have ce = 1 for each

e ∈ E, and wv = 1 for each v in V .

Another problem that is strongly related to the Sparsest Cut Problem is the Quotient

Cut Problem, which can be defined as follows:

Min Quotient Cut Problem: Given a graph G = (V, E), costs ce ∈ R+

for each edge e ∈ E, and weights wv ∈ R+ for each vertex v ∈ V , find a cut

S ⊂ V, S #= ∅, that minimizes C(S)/min{w(S), w(V \ S)}.

In [2], the Min Quotient Cut is also referred to as Sparsest Cut. In terms of approx-

imability, an α-approximation algorithm for the Sparsest Cut (Quotient Cut) Problem is

a 2α-approximation algorithm for the Quotient Cut (Sparsest Cut) Problem.

The following lemma can be deduced from the work of Leighton and Rao [36]. Because

the proof is not straightforward, we present it here.

Lemma 3.2.1 An α-approximation algorithm for the Sparsest Cut (Quotient Cut) Prob-

lem is a 2α-approximation algorithm for the Quotient Cut (Sparsest Cut) Problem.

Proof. Let A1 be an α-approximation algorithm and I an instance for the Sparsest Cut

Problem. Let S be the cut produced by the algorithm A1(I). Without loss of generality,

assume that w(S) ≤ w(V )/2 and w(V \S) ≥ w(V )/2. Because A1 is an α-approximation

algorithm, we have

C(S)

w(S)w(V \ S)
≤ α

C(S ′)

w(S ′)w(V \ S ′)
, ∀S ′ ⊂ V, S ′ #= ∅.

That is,

C(S)

w(S)
≤ α

C(S ′)w(V \ S)

w(S ′)w(V \ S ′)
, ∀S ′ ⊂ V, S ′ #= ∅
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≤ α
C(S ′)

min{w(S ′), w(V \ S ′)}
w(V )

max{w(S ′), w(V \ S ′)} , ∀S ′ ⊂ V, S ′ #= ∅

≤ 2α
C(S ′)

min{w(S ′), w(V \ S ′)} , ∀S ′ ⊂ V, S ′ #= ∅, (3.1)

where inequality (3.1) is valid because w(V ) ≤ 2 max{w(S ′), w(V \ S ′)}.
Now, suppose that A2 is an α-approximation algorithm and I an instance for the

Quotient Cut Problem. Let S be the cut produced by A2(I). Without loss of generality,

we suppose that w(S) ≤ w(V )/2 and w(V \ S) ≥ w(V )/2. Thus

C(S)

w(S)
=

C(S)

min{w(S), w(V \ S)} (3.2)

≤ α
C(S ′)

min{w(S ′), w(V \ S ′)} , ∀S ′ ⊂ V, S ′ #= ∅.

That is,

C(S)

w(S)w(V \ S)
≤ α

C(S ′)

min{w(S ′), w(V \ S ′)} w(V \ S)
, ∀S ′ ⊂ V, S ′ #= ∅

= α
C(S ′)

w(S ′)w(V \ S ′)

max{w(S ′), w(V \ S ′)}
w(V \ S)

, ∀S ′ ⊂ V, S ′ #= ∅ (3.3)

≤ 2α
C(S ′)

w(S ′)w(V \ S ′)
, ∀S ′ ⊂ V, S ′ #= ∅. (3.4)

Equality (3.3) is obtained multiplying the previous fraction by max{w(S′),w(V \S′)}
max{w(S′),w(V \S′)}

. In-

equality (3.4) is valid because max{w(S ′), w(V \ S ′)} ≤ w(V ) ≤ 2w(V \ S).

3.3 Semidefinite Programming Formulation and Re-

laxation

Given an instance (G, c, w) for the Sparsest Cut Problem, there is a variable vi for each

i ∈ VG. This variables will value either r or −r, indicating if the vertex is in one side or

the other of the cut.

For each vertex i ∈ VG, the fact that vi has a value r or −r allows us to scale vi in a

way that the denominator of the objective function ratio becomes 1 without changing the

objective function. Note that |vi − vj |2 is non zero if and only if edge (i, j) is considered

in the ratio.
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ρF = min
∑

i<j,(i,j)∈E

cij|vi − vj |2

s.t.
|vi − vj |2 ≤ |vi − vk|2 + |vk − vj|2, ∀i, j, k ∈ V,

∑

i<j

wiwj|vi − vj |2 = 1, (F )

v2
i = r2, ∀i ∈ V,
r ≥ 0,

vi, r ∈ R, ∀i ∈ V.

Lemma 3.3.1 F is a formulation for the Sparsest Cut Problem.

Proof. Let I be an instance for the Sparsest Cut Problem, O∗ ⊂ V be an optimum

solution to I and ρF be the value of the objective function of F solved with instance I.

Now, we prove that a solution for one problem leads to a solution for the other, with the

same value.

Given a cut S, let r = 1√
4|S||V \S|

, vi = r for each i ∈ S and vi = −r for each i ∈ V \S.

The obtained attribution is feasible to F and has cost ρ(S) for unweighted graphs. This

is valid for any set S, including O∗. In the weighted version, the same conclusion is valid

for r = 1√
4W(S)W(V \S)

.

To conclude that F is a formulation it is sufficient to show that any solution has an

associated cut with the same cost. If V = (v, r) is a solution to F , we may obtain an

associated cut SV = {i : vi = −r}. As V is feasible, r = 1√
4|SV ||V \SV |

(in the weighted

version r = 1√
4W(SV )W(V \SV )

) and ρF (V) values ρ(SV).

For the rest of this chapter, we consider n = |V |. If we relax vi to an n-dimensional

vector in Rn, we have a relaxation, which we denote by !R. To write the relaxation !R as a

semidefinite program, we observe that |vi−vj |2 = (vi−vj)
2 = v2

i −2vivj+v2
j and xij = vivj .

For further information about semidefinite programming see [25, 27, 35]. In the following

we present the (weighted) relaxation !R and its corresponding semidefinite program R,

where v0 is the n-dimensional vector associated with an arbitrary vertex v0 ∈ VG and

X 9 0 means that X is positive semidefinite.
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!R R

minimize
∑

i<j

cij|vi − vj |2 minimize
∑

i<j

cij(xii + xjj − 2xij)

such that such that
|vi − vj |2 ≤ |vi − vk|2 + |vk − vj |2 ∀i, j, k ∈ V, xik + xkj − xij ≤ xkk ∀i, j, k ∈ V,
∑

i<j

wiwj|vi − vj |2 = 1,
∑

i<j

wiwj(xii + xjj − 2xij) = 1,

|vi| = |v0| ∀i ∈ V, xii = x00 ∀i ∈ V,
vi ∈ Rn. X 9 0.

We denote by !R− and R− the corresponding relaxations !R and R without constraints

|vi| = |v0| and xii = x00. For unweighted graphs, Arora et al. [2] prove an integrality gap

of O(
√

log n) for the relaxation !R−.

Remark: Note that !R− has only relative distances between vectors in the objective

function and in all constraints. This implies that the objective function value does not

change when the vectors vj , for j ∈ V , get the same translation. On the other hand, in

the relaxation R, there may exist translations that do not change the objective function.

See Figure 3.2.

Translations in R

|vj − vi|2

|vj − vi|2

|vk − vi|2

|vk − vi|2

|vj − vi|2

|vj − vi|2 |vk − vi|2

|vk − vi|2

Translations in R−

Figure 3.2: Translations in relaxations !R− and !R.

Definition 1 An optimal solution X∗ of R− or R is said to be small if it is optimal and

minimizes
∑

i∈V |vi|.
To convert a non-small solution of R− to a small one with the same objective value,

it is sufficient to translate its barycenter to the origin. In the relaxation R it is sufficient

to translate the hyperplane of small dimension that contains all vectors of the solution to

the origin.

Given an instance I for the Sparsest Cut Problem, we denote by R−(I) and R(I) the

relaxations R− and R defined with the corresponding values of I.
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3.4 Heuristics for the Sparsest Cut Problem

In this section we propose some heuristics for the Sparsest Cut Problem. These heuristics

receive as an input parameter a feasible small solution X∗ = (x∗
ij) to relaxation R−(G, c, w)

or R(G, c, w) and then apply some rounding strategy to obtain a feasible solution.

In the following we present the heuristics H1 , H2 , H3 and H4 . The heuristics H1 and

H2 use a value ξ(X∗, i, j) defined as ξ(X∗, i, j) =
x∗

ij√
x∗

iix
∗
jj

= cos(vi, vj). All the heuristics

may generate an empty cut. Note that a smaller value for ξ(X∗, i, j) means that vectors

vi and vj are more separated and choosing a pair of vertices (s, t) such that ξ(X∗, s, t) is

minimum minimize the probability of empty cuts.

Heuristic H1 (G = (V, E), c, w, X∗)

1. Let s, t ∈ V where ξ(X∗, s, t) is minimum.

2. S ← ∅
3. For each u ∈ V do

4. select a random number α uniformly distributed in [−1, 1]

5. if ξ(X∗, s, u) ≥ α then

6. S ← S ∪ {u}.
7. Return(S).

Heuristic H2 (G = (V, E), c, w, X∗)

1. Let s, t ∈ V where ξ(X∗, s, t) is minimum.

2. S ← ∅
3. Select a random number α uniformly distributed in [−1, 1].

4. For each u ∈ V do

5. if ξ(X∗, s, u) ≥ α

6. S ← S ∪ {u}.
7. Return(S).

Heuristic H3 (G = (V, E), c, w, X∗)

1. Let V = (vi) be the Cholesky decomposition of X∗ (X∗ = VTV).

2. Let S ← ∅
3. Select a random vector r ∈ Rn uniformly distributed in the unit sphere.

4. For each u ∈ V do

5. if vu · r ≥ 0

6. S ← S ∪ {u}.
7. Return(S).
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Heuristic H4 (G = (V, E), c, w, X∗)

1. Let V = (vi) be the Cholesky decomposition of X∗ (X∗ = VTV).

2. Let A ← ∅ and B ← ∅.
3. Select two vectors r1, r2 ∈ Rn uniformly distributed in the unit sphere.

4. For each u ∈ V do

5. if vu · r1 >= 0 and vu · r2 >= 0 then A ← A ∪ {u}
6. if vu · r1 < 0 and vu · r2 < 0 then B ← B ∪ {u}.
7. Let G′ be a graph obtained from G contracting A and B to vertices a and b, resp.

8. Let S ′ be a cut with minimum cost separating a and b in G′.

9. Let S be the set of vertices in G corresponding to S ′.

10. Return(S).

3.4.1 Some Properties of the Heuristics

Let P be a minimization problem with domain D and objective function f(S) = g(S)
h(S)

,

where g(S) > 0 and h(S) > 0 for each S ∈ D.

Lemma 3.4.1 Let A be a randomized algorithm for P. Given an instance I of P and a

solution S produced by A(I), denote by GS the random variable g(S) and HS the random

variable h(S) and let E = E[GS ]
E[HS]

. Then, there exists a solution S ′ with f(S ′) ≤ E .

Proof. We have

E[GS]

E[HS]
= E ⇒ E[GS] − EE[HS] = 0. (3.5)

By the linearity of the expectation, we have

E[GS − EHS] = 0.

This proves the existence of at least one solution Sgap such that

g(Sgap) − Eh(Sgap) ≤ 0.

That is, f(Sgap) ≤ E .

Fact 3.4.2 Given a randomized algorithm A to problem USC, let CS and WS be the

random variables C(S) and W(S), where S is the cut produced by A over instance I. Let

S∗ be an optimal cut of I, f ∗ = ρ(S∗) and β ≥ 1 be such that E[CS ]
E[WS]

= βf ∗. If Z is the

random variable CS − βf ∗WS then Pr[Z ≥ f ∗n

b
] ≤ p for any p ∈ (0, 1) where n = |V |

and b = p
(β−1)(1−p)n

.



3.4. Heuristics for the Sparsest Cut Problem 38

Proof. The expectation E[Z] is equal to E[CS] − f ∗βE[WS]. Substituting β we obtain

that E[Z] = 0. We also have that 1 · (n − 1) ≤ WS ≤ n2.

Since f ∗ is a lower bound for the value of any solution, we have CS

WS
≥ f ∗ and therefore,

Z = CS − βf ∗WS

≥ − (β − 1) f ∗WS

≥ − (β − 1) f ∗n2.

For the sake of contradiction, suppose that Pr[Z ≥ f ∗ n
b
] > p. In this case, we obtain

that
E[Z] ≥ − (β − 1) f ∗n2Pr[Z < f ∗ n

b
] + f ∗ n

b
Pr[Z ≥ f ∗ n

b
]

> − (β − 1) f ∗n2(1 − p) + f ∗ n
b
p

= 0.

This contradiction finishes the proof.

Lemma 3.4.3 Given a polynomial time randomized algorithm A to problem USC, let CS

and WS be the random variables C(S) and W(S), where S is the cut produced by A over

instance I. Let S∗ be an optimal cut of I and β be such that E[CS]
E[WS ]

= βρ(S∗). Then it is

also possible to obtain a cut S ′ with ρ(S ′) ≤ (1 + ǫ)βρ(S∗) in polynomial time with high

probability, for any ǫ > 0.

Proof. Let f ∗ = ρ(S∗). Consider a pair (p, b) that respects Fact 3.4.2 in such a way that

b = 2/ǫ for any ǫ > 0. With probability greater than 1− p, we have that

Z = CS − βf ∗WS ≤ f ∗n

b
.

Because 1 · (n − 1) ≤ WS and n ≥ 2 we have n
b
≤ 2WS

b
. That is, with probability

greater than 1 − p, we have

C(S) − βf ∗W(S) ≤ f ∗n

b
≤ 2

f ∗W(S)

b
.

Thus, with probability greater than 1− p,

CS

WS
≤

(

β +
2

b

)

f ∗ = (β + ǫ) f ∗

≤ (1 + ǫ) βρ(S∗), (3.6)

where inequality (3.6) is valid because β ≥ 1.

As b = 2/ǫ, we have p =
1

1 +
ǫ

2(β−1)

n

. If we get the solution S ′ with minimum value

from n executions, the probability that inequality (3.6) is not satisfied for S ′ is less than
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or equal to pn ≤ e− ǫ
2(β−1) , where e is the base of the natural logarithm. Therefore, if β

and ǫ are constant, the probability to obtain the desired cut is greater than a positive

constant. We let to the interested reader to produce an algorithm that finds such a cut

with high probability.

Although we do not have the equality E[A/B] = E[A]/E[B] in general, lemmas 3.4.1

and 3.4.3 describe a way to contour this difficulty for the Unweighted Sparsest Cut.

For the remaining of this section, we denote by X∗ = (x∗
ij) a small optimum solution

for R(G, c, w) and by s and t two vertices where ξ(X∗, s, t) is minimum. Given a solu-

tion X∗ for relaxation R, we denote by Y ∗ the solution X∗ scaled by a constant factor k

such that Y ∗ = kX∗ and Y ∗
ii = 1 for each vertex i.

Given a feasible solution X for R and V = (v) its corresponding solution for !R, denote

by

C(X) =
1

4

∑

i<j

cij(xii + xjj − 2xij) =
1

4

∑

i<j

cij |vi − vj|2,

W(X) =
1

4

∑

i<j

wiwj(xii + xjj − 2xij) =
1

4

∑

i<j

wiwj |vi − vj|2,

and ρ(X) = C(X)/W(X).

Observe that C(Y ∗) =
∑

i<j cij
1−y∗

ij

2
, W(Y ∗) =

∑

i<j wiwj
1−y∗

ij

2
and y∗

ij = cos(vi, vj) =

y∗
ji.

Lemma 3.4.4 The value ρ(Y ∗) is a lower bound for ρ(S), for any set S ⊂ V, S #= ∅.
Proof. Let X∗ be an optimum solution to R. As R is a relaxation of formula-

tion F , ρ(X∗) is a lower bound to the value of any optimum solution for the Sparsest Cut

Problem. We have C(Y ∗) = kC(X∗), and W(Y ∗) = kW(X∗). Therefore, ρ(Y ∗) = ρ(X∗).

We first consider that ξ(X∗, s, t) = −1. In this case, all heuristics generate non-empty

cuts. We further present some ways to keep the same results when this condition is not

true.

If each one of the four heuristics receives X∗ as an input parameter, then they partially

respect Lemma 3.4.1, but we could not obtain an approximation algorithm. In what

follows, we show the strength and the weakness of each heuristic.

First consider heuristics H1 and H2 . These heuristics are, in some way, symmetric.

While the heuristic H1 guarantees that the expectation of W(S) is lower bounded by

a constant factor of W(Y ∗) (see Lemma 3.4.6), the heuristic H2 guarantees that the

expectation of C(S) is upper bounded by a constant factor of C(Y ∗) ( see Lemma 3.4.7).

It is also possible to obtain X∗ for which Lemma 3.4.1 does not hold for heuristics H1

and H2 .
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Fact 3.4.5 If a and b are real numbers such that |a| ≤ 1 and |b| ≤ 1, then 1−ab
2

≥
1
2
min{1−a

2
+ 1−b

2
, 1+a

2
+ 1+b

2
}.

Proof. The proof is divided in two cases, depending on the sign of a and b.

Case 1: a and b have the same sign. Using the fact that (a − b)2 ≥ 0, we have

−ab ≥ −1

2
(a2 + b2),

≥ −(|a| + |b|)
2

,

= min{a + b

2
,
−(a + b)

2
}.

Case 2: a and b have different signs: The proof of this case follows from the fact that

−ab ≥ 0 ≥ min{a+b
2

, −(a+b)
2

}, which gives us that

1 − ab

2
≥ 1

2
min{1 − a

2
+

1 − b

2
,
1 + a

2
+

1 + b

2
}.

The following lemma shows that heuristic H1 produces a cut where E[W(S)] is at

least a factor of W(Y ∗).

Lemma 3.4.6 If S is the solution produced by heuristic H1 and ξ(X∗, s, t) = −1, then

E[W(S)] ≥ W(Y ∗)
2

.

Proof. For a vertex u #= s, the probability that edge us is in δ(S) is
1 − ξ(X∗, u, s)

2
=

1 − cos(vu, vs)

2
=

1 − y∗
us

2
.

If u and v are vertices not equal to s then the probability that edge uv is in δ(S) is

the probability that (s, u) ∈ δ(S) and (s, v) #∈ δ(S) plus the probability that (s, u) #∈ δ(S)

and (s, v) ∈ δ(S). That is,

Pr[(u, v) ∈ δ(S)] =
1 − y∗

us

2

(

1 − 1 − y∗
vs

2

)

+

(

1 − 1 − y∗
us

2

)

1 − y∗
vs

2
=

1 − y∗
usy

∗
vs

2

≥ 1

2
min{1 − y∗

us

2
+

1 − y∗
vs

2
,
1 + y∗

us

2
+

1 + y∗
vs

2
} (3.7)

≥ 1

2

(

1 − y∗
uv

2

)

. (3.8)

The inequality (3.7) is valid from Fact 3.4.5 and inequality (3.8) is valid from the triangle

inequality constraints of R. More precisely,

1 − y∗
uv

2
≤ 1 − y∗

us

2
+

1 − y∗
vs

2
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and

1 − y∗
uv

2
≤ 1 − y∗

ut

2
+

1 − y∗
vt

2

=
1 + y∗

us

2
+

1 + y∗
vs

2
. (3.9)

In inequality (3.9) we use the fact that ξ(X∗, s, t) = −1. In this case, the angle between

s and t is π, and we have cos(vu, vs) = − cos(vu, vt).

The expectation of W(S) is

E[W(S)] =
∑

u<v

wuwvPr[uv ∈ δ(S)]

=
∑

u∈V \{s}

wuwsPr[us ∈ δ(S)] +
∑

u∈V \{s}

∑

v∈V \{s} | v<u

wuwvPr[uv ∈ δ(S)]

≥
∑

u∈V \{s}

wuws
1 − y∗

us

2
+

1

2

∑

u∈V \{s}

∑

v∈V \{s} | v<u

wuwv
1 − y∗

uv

2

≥ 1

2

∑

u<v

wuwv
1 − y∗

uv

2

=
W(Y ∗)

2
.

Now, we present a solution X∗ where the expectation of C(S) for the cut produced

by heuristic H1 is unbounded. Consider the case where (1− y∗
uv)/2 = 0, which means no

contribution to C(Y ∗) and (1 − y∗
us)/2 = 1/2. In this case the probability that (u, v) is

in δ(S) is 1/2, that implies a half contribution to the expectation of C(S). Adding edge

by edge, each edge could have a similar behavior, and the expectation of C(S) will grow

unbounded in relation to the value of C(Y ∗). See Figure 3.3.

s

A large set

Figure 3.3: H1 may produce a cut S with unbounded value of C(S).

Something symmetric happens for heuristic H2 . In this case, we prove that E[C(S)]

is at most C(Y ∗), but we could not obtain a lower bound to E[W(S)].
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Lemma 3.4.7 If S is the solution produced by heuristic H2 , then E[C(S)] ≤ C(Y ∗).

Proof. The probability that (u, s) ∈ δ(S) for u ∈ V \ {s} is given by

Pr[(u, s) ∈ δ(S)] =
1 − ξ(X∗, u, s)

2
=

1 − cos(vu, vs)

2
=

1 − y∗
us

2
.

If u and v are vertices not equal to s then

Pr[(u, v) ∈ δ(S)] =

∣

∣

∣

∣

y∗
su − y∗

sv

2

∣

∣

∣

∣

=

∣

∣

∣

∣

1 − y∗
sv

2
− 1 − y∗

su

2

∣

∣

∣

∣

,

that is exactly the probability to choose α between values ξ(X∗, s, v) and ξ(X∗, s, u). The

triangle inequality constraint implies that

1 − y∗
sv

2
− 1 − y∗

su

2
≤ 1 − y∗

uv

2
and

1 − y∗
su

2
− 1 − y∗

sv

2
≤ 1 − y∗

uv

2
.

Therefore, we have

Pr[(u, v) ∈ δ(S)] =

∣

∣

∣

∣

1 − y∗
su

2
− 1 − y∗

sv

2

∣

∣

∣

∣

≤ 1 − y∗
uv

2
, for all (u, v) ∈ V × V,

and

E[C(S)] =
∑

u<v

cuvPr[(u, v) ∈ δ(S)] ≤
∑

u<v

cuv
1 − y∗

uv

2
= C(Y ∗).

To obtain a solution X∗ where the expectation of W(S) is not lower bounded, consider

an edge (u, v), where y∗
uv = −1 (full contribution to W(Y ∗)), and y∗

us = y∗
vs. In this case,

we have Pr[(u, v) ∈ δ(S)] = 0. Symmetrically to H1 , adding edge by edge, each edge

may have a similar behavior, and the expectation of W(S) does not increase, becoming

unbounded in relation to the value of W(Y ∗). See Figure 3.4.

s

A large set

Figure 3.4: H2 may produce a cut S with unbounded value of W(S).

The heuristic H3 uses the hyperplane rounding strategy presented by Goemans and

Williamson [22] for the Max-Cut problem. They proved that the probability that an

edge (u, v) is cut by a random hyperplane is arccos(y∗
uv)/π. As can be seen in Figure 3.5,

this value is always greater than 0.878(1 − y∗
uv)/2. Therefore, the following lemma is

straightforward.
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Lemma 3.4.8 If S is the solution produced by heuristic H3 , then E[W(S)] ≥
0.878W(Y ∗).

The difficulty to obtain an upper bound to Pr[(u, v) ∈ δ(S)] = arccos(y∗
uv)

π
comes from

the fact that arccos(y∗
uv)

π
cannot be bounded by k 1−y∗

uv

2
for any constant k (see Figure 3.5).

Figure 3.5: arccos(x)
π

versus 0.878
(

1−x
2

)

.

Analyzing heuristic H4 , we found out some interesting properties. The probability

that (u, v) belongs to (A, B) is the probability that r1 and r2 cut (u, v), which values

(arccos(xuv)/π)2, times the probability that u ∈ A ∪ B, which is 1/2.

Pr[(u, v) ∈ (A, B)] =

(

arccos(xuv)

π

)2
1

2
.

We can observe that this probability is upper and lower bounded by constant factors

of the contribution in C(Y ∗) and W(Y ∗) (see Figure 3.6). More precisely, we have that

E[C(A, B)] ≤ 1
2
C(Y ∗) and E[W(A, B)] ≥ 0.2023W(Y ∗). Therefore, the following lemma

is valid.

Lemma 3.4.9 If S is the solution produced by heuristic H4 then E[W(S)] ≥
0.2023W(Y ∗).

Figure 3.6: 0.20231−x
2

versus 1
2

1−x
2

versus (arccos(x)/π)2 1
2
.

Provided that the final cut S may have more edges than (A, B), we could not prove

an upper bound for E[C(S)] by a factor of C(Y ∗).
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Consider now the case when ξ(X∗, s, t) > −1. One way to deal with this situation is

to assure that one edge ij is separated. In Section 3.5 we show in details how to do this

separation. By solving the relaxation with this separation for an arbitrary vertex i and

all j ∈ V \ {i} and choosing the minimum, we can obtain a lower bound that contains

a pair of vertices with ξ(X∗, s, t) = −1. Another way to deal with this situation is to

discard empty cuts in the heuristics. In this case, C(S) and W(S) will be multiplied by

the same factor and therefore we can maintain the same analysis, except for heuristic H1

that uses the fact ξ(X∗, s, t) = −1.

3.5 A Branch and Bound Algorithm for the Sparsest

Cut Problem

The idea used in the branch and bound algorithm, named B&B , for the Sparsest Cut

Problem is simple. It consists of using the relaxation R as a dual bound and the heuristics

as primal bounds. Although the relaxation has high time complexity, it leads to excellent

lower bounds.

The first step consists of solving relaxation R, which leads to the first lower bound.

The second step consists of applying the four heuristics based in this relaxation. Due to

the fact the heuristics are much faster than solving the relaxation, each heuristic can be

repeated several times without increasing substantially the overall time.

Initially, an arbitrary vertex is chosen, say vertex 0. While a gap exists between the

lower bound and the upper bound, we branch the execution. At each iteration, we choose

a node from the B&B tree and branch if there exists a gap between the lower and upper

bounds. The branching consists of setting the angle between a vertex vi and v0 to be 0

or π. That is, we set ξ(X∗, i, 0) = 1 for vi = v0 and ξ(X∗, i, 0) = −1 for vi = −v0.

When ξ(X∗, i, 0) is in {−1, +1} for all i ∈ V , each vector vi is in {−v0, v0} and

we obtain an integer solution. The constraints |vi| = |vj | for i, j ∈ V are necessary to

conclude that the solution is integer. Since relaxation R− does not contain the constraints

|vi| = |vj|, the B&B algorithm using this relaxation may not work correctly. Even if each

ξ(X∗, i, 0) is in {−1, +1}, the vector solution may be spread over a straight line an will

not represent a cut.

A node of the branch and bound tree is a semidefinite program Q composed of the

program R and some integrality constraints. Let XQ be a solution of the program Q. The

“most” fractional variable for a given solution XQ, say ifrac(XQ), is a vertex f such that

ξ(X∗, f, 0) is closed to zero. The B&B algorithm maintains a heap sorted by ifrac(XQ)

for each node Q. In each step, the algorithm selects a vertex f from the heap, and, if

the value of a solution of Q is smaller than the current upper bound, it produces a new
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branch using the restrictions ξ(X∗, f, 0) = 1 and ξ(X∗, f, 0) = −1

If we add the constraint xf0 = −xff = −x00 to R, any further solution will satisfy

ξ(X∗, 0, f) = −1. On the other hand, if we add the constraint xf0 = xff = x00, any

further solution will satisfy ξ(X∗, 0, f) = 1. Observe that the constraint xff = x00

already belongs to R.

The branch and bound algorithm beats the brute force algorithm (generate all possible

cuts) to find an optimal solution and allows us to discover the integrality gap of R in

graphs of the benchmark we have used. The branch and bound algorithm is presented in

Figure 3.7.

Algorithm B&B(P ), where P = R(G, c, w)
Let H be a heap of semidefinite programs Q, indexed by the most
fractional variable (incident to vertex 0) in XQ, say ifrac(XQ),
where XQ is a solution of Q.

1. XUB ← Heuristics(P )
2. H ← {P}.
3. While H #= ∅ do
4. Q ← RemoveMax(H) and f ← ifrac(XQ).
5. if R(Q) < ρ(XUB) then
6. Q′ ← Q ∪ {xf0 = −xff = −x00}
7. Q′′ ← Q ∪ {xf0 = xff = x00}
8. if R(Q′) < ρ(XUB) then
9. if XQ′ is a feasible cut then XUB ← XQ′

10. else
11. X ′ ← Heuristics(Q′)

12. if ρ(X ′) < ρ(XUB) then XUB ← X ′

13. H ← H∪ {Q′}.
14. if R(Q′′) < ρ(XUB) then

15. perform the corresponding steps executed in lines 10–14 for Q′′.

16. Return XUB .

Figure 3.7: Semidefinite based branch and bound algorithm.

3.5.1 Considerations involving LP and SDP problems

A common strategy used in many Branch & Bound algorithms to solve NP-hard problems

is to consider an ILP formulation and to use additional constraints to its relaxations.

Because SDP is a generalization of LP, every formulation and relaxation valid in LP is

also valid to SDP. The difference is due to the fact that LP can be solved exactly and
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SDP can be solved within a small error ǫ, in polynomial time complexity in the input size

and in log(1/ǫ).

To decide between an implementation using SDP or LP, it is necessary to consider

some aspects. The state of the art in LP solvers reached a point so that there are many

robust, fast and stable implementations, such as Cplex and Xpress-MP. These solvers

also allow integer programming formulations and features as pre-processing and branch-

and-cut algorithms. The use of SDP solvers in combinatorial optimization problems is

relatively new, compared to LP.

To compare the time to solve SDP and LP relaxations in instances of equivalent size

see Table 3.1 (column Av. CPU time) and Table 3.2 in Section 3.6. In these experiments,

for instances with n = 40 vertices, the time to solve the associated LP was approximately

400 times faster than SDP.

Another advantage of LP is the use of a warm start to solve the relaxations associated

to each node. Although there are theoretical works that describe the possibility of a good

initial point for a family of problems with SDP programs [41], some solvers, such as Sdpa

package, used in the experiments presented in this paper, have restrictions that do not

allow this optimization. See additional information in Section 3.6. It is well known that

ILP Solvers may use a previous basis to obtain a new solution of a branching step.

On the other hand, SDP has some advantages. The use of SDP constraints may

generate better lower bounds that may reduce the number of visited nodes. Moreover,

given an SDP solution X∗, we can take advantage of its geometric interpretation obtaining

a set V of vectors. This set of vectors were used in the rounding strategies of heuristics

H3 and H4 . Given an SDP solution X∗, we can obtain a matrix V such that X∗ = VVT

using the Cholesky Decomposition of X∗.

In many LP formulations that use modulus, the relaxation usually does not give useful

information and the use of a branch and bound over SDP may be competitive.

3.6 Computational Results

In a first attempt, we used the Sdpa package [49] as SDP solver. It is an implementa-

tion of a primal-dual interior-point method for semidefinite programming. Unfortunately,

the warm start was not implemented in the Sdpa package, and we have to recompute

the semidefinite program in each node of the branch and bound tree. If (X0, Y 0) is a

pair of initial primal and dual points, the Sdpa solver looks for a solution (X, Y ) such

that 0 : X : omegaStar × X0 and 0 : Y : omegaStar × Y 0, where omegaStar is

a parameter [21]. Our effort to compute a good initial point in the branch and bound

procedure using the Sdpa solver did not work because both the mentioned constraints

limit the domain and non-optimal solutions were generated by the solver.
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The experiments were performed following the same approach used by Goemans and

Williamson [22] for the Max-Cut Problem. We generated four types of instances: types

A, B, C and D. In type A instances, each vertex has weight 1, and each edge is selected

with probability 0.5 to receive cost 1. If the edge is not selected, its cost is zero. In

instances of type B, the vertex weight is a random rational number uniformly distributed

in [0, 50], and the edge cost is also a rational number uniformly distributed in [0, 50]. In

instances of type C, each vertex has weight 1, and each edge is selected with probability

9/|V | to receive cost 1. The edge cost is zero if the edge is not selected. While type A

instances correspond to dense graphs, type C instances correspond to sparse ones because

the expected vertex degree is 9. In the instances of type D, we arbitrarily divided the set

V in two disjoint sets, V1 and V2, where |V1| = |V2|. Each vertex has weight 1. The edges

inside V1 or V2 are selected with probability 0.5 to receive cost 1. Edges linking vertices

in V1 with vertices in V2 are selected with probability 0.25 to receive cost 1. All edges not

selected have cost zero.

We produced a set of instances containing 20, 30 and 40 vertices. For each instance, we

obtained an optimum relaxed solution using Sdpa. The CPU times are given in seconds

on a Xeon 2.4 GHz with 1024MB of RAM and Linux operational system. In Table 3.1

we have the time for each group of instances.

T S Number of Av. CPU
y i Instances time
p z (s)

20 400 155
A 30 95 6668

40 5 30564

20 400 108
B 30 146 4305

40 26 18718

20 400 137
C 30 95 6568

40 2 26660

20 400 166
D 30 93 6695

40 3 28980

Table 3.1: Time to solve R with the Sdpa solver.

In order to make further investigation in formulation R, we removed the semidefinite

constraint, obtaining a new relaxation, named RX := R \ {X 9 0}, which was solved

with the Xpress-MP LP solver. Note that program RX is a relaxation to Sparsest Cut,

but not a formulation. Thus an optimum integer solution of RX has no upper bound

meaning. See Table 3.2. The SDP gap for an instance I is R(I)
RX(I)

. Because of the time
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constraint, the experiment with Sdpa did not find a solution to all instances in Table 3.2.

To compute the SDP gap we used the solver described in the next subsection.

Type Size Number of Average Max. Av. CPU
Instances SDP Gap SDP Gap Time (s)

20 400 1.003 1.06 0.55
A 30 300 1.010 1.10 7.05

40 20 1.030 1.13 71.6

20 400 1.000 1.00 0.41
B 30 300 1.000 1.00 4.33

40 20 1.000 1.00 28.62

20 400 1.001 1.05 0.50
C 30 300 1.002 1.09 5.6

40 20 1.000 1.01 39.35

20 400 1.003 1.06 0.52
D 30 300 1.010 1.08 7.00

40 20 1.030 1.10 63.42

Table 3.2: Results of relaxation RX : with no semidefinite constraint.

The Xpress-MP solver found solutions to relaxation RX more than 200 times faster

than Sdpa found solutions to relaxation R. The quality of the solution obtained by

Xpress-MP was at most 13% and less than 3% worst, on average.

Thus we proposed a new and faster way to solve the SDP programming to Sparsest

Cut in next subsection.

3.6.1 An SDP solver to Sparsest Cut Based in Cut Generation

Approach

The poor time performance of Sdpa over Sparsest Cut Formulation led us to try another

way to solve an SDP formulation. We present an algorithm that solves the relaxation RX

using Xpress-MP, adds violated SDP constraints and iterates until the problem becomes

positive semidefinite, within a small error.

We implemented the algorithm proposed by Fraticelli in subsection 3.3. of [19]. This

algorithm consists in: giving a matrix X, return true if X 9 0. Otherwise, obtain a vector

α such that αXαT < 0. That is, we solve the relaxation, execute Fraticelli algorithm and

if it is the case, add the violated constraint αXαT ≥ 0 to the formulation and iterate.

This strategy has a considerable slow convergence, because the cut generated by Frati-

celli Algorithm in general is superficial. To improve this approach, we take the result of the

LP solver, say X, and add a constant factor in the diagonal. Consider an arbitrary λ ∈ R+

and the matrix X ′, where x′
ij = xij if i #= j, and x′

ij = (1 + λ)xij otherwise. If X ′ is not

positive semidefinite then αX ′αT < 0 is a deeper cut to X, where αXαT < 0−∑

∀i λxiiα
2
i .
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We start with λ = 1. If X ′ #9 0 we add the deeper constraint αXαT < 0 and double λ

until X ′ 9 0, at which point we iterate calling LP solver. If X ′ 9 0, we divide λ by 2

while X ′ 9 0. If λ is close to zero, we conclude that X is positive semidefinite within

a small error. Otherwise, the small value of λ made X ′ #9 0. In this case we add the

SDP cut and iterate with the LP solver. In practical experiments, we consider X positive

semidefinite when X ′ is positive semidefinite with λ < 10−8.

The constraint −x00 ≤ xij ≤ x00 is an SDP valid inequality to Sparsest Cut and we

decided to add it for each pair {i, j} in the beginning of the algorithm.

We considered two experiments: in one, the algorithm inserts all triangle inequalities

in the beginning and in the other the violated triangle inequalities are iteratively added

in each node of the branch and bound tree. In this case, the algorithm search for violated

triangle constraints always in different directions. This approach improve the time and

the use of memory, what allowed us to solve larger Sparsest Cut Instances.

Each heuristic was executed 50 times on the same instance, returning the best obtained

solution. Empty cuts were discarded.

For each instance and heuristic, we also saved a number k that is the iteration in

which the respective heuristic found its best solution. The heuristic H2 does not have a

k associated because there are at most |V | − 1 possible solutions, and we have obtained

all of them. For the heuristics H1 and H3 we also counted the empty cuts to compute

the corresponding value of k, but for heuristic H4 , we did not. The time to solve the

heuristics without the time to solve the relaxation R is negligible (less than 0.3% of the

time to solve R).

In the Visited Nodes column in tables 3.4 and 3.6, we only considered non-leaf nodes

in the branch tree. The integrality gap for an instance I is B&B(I )
R(I)

. The deviation factor

of a heuristic Hi is Hi(I)
B&B(I )

.

The results obtained with all triangle inequalities inserted in the beginning are de-

scribed in tables 3.3 and 3.4 and the results obtained with triangle inequalities inserted

only when necessary are described in tables 3.6 and 3.5.

Adding triangle inequalities on demand gave us a possibility to solve larger instances,

of size 50 and 60, because this approach is faster and has a better use of memory. The

program solved the instances in half of the time, compared with adding all triangle con-

straints in the beginning.

The new implementation using semi-infinite cuts and linear programming is at least

80 times faster and at most 1500 times faster than using Sdpa solver. Another important

advantage of the linear programming approach is the reuse of the base in each node of

branch and bound tree.

The relaxation R has surprisingly good integrality gap. For almost all tests the ob-

tained relaxation value was equal to an optimum cut value. The quality of the relaxation
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T S Number Integrality Average Maximum
y i of Gap Deviation Factor Deviation Factor
p z Instances Av. Max H1 H2 H3 H4 H1 H2 H3 H4

20 400 1.0000 1.0082 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0119
A 30 300 1.0000 1.0026 1.0015 1.0000 1.0000 1.0000 1.2455 1.0115 1.0000 1.0000

40 20 1.0002 1.0030 1.0081 1.0001 1.0001 1.0001 1.1625 1.0015 1.0015 1.0015

20 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
B 30 300 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000 1.0000 1.0000 1.0218 1.0000

40 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 400 1.0000 1.0002 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
C 30 300 1.0001 1.0058 1.0018 1.0002 1.0003 1.0003 1.3344 1.0533 1.0685 1.0533

40 20 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 400 1.0000 1.0020 1.0004 1.0000 1.0000 1.0000 1.0769 1.0035 1.0000 1.0000
D 30 300 1.0000 1.0070 1.0000 1.0000 1.0000 1.0000 1.0031 1.0031 1.0031 1.0031

40 20 1.0001 1.0003 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000 1.0000 1.0000

Table 3.3: Result using Xpress-MP and all triangle inequalities from the beginning.

leads to good heuristics and the branch and bound algorithm visited a small number of

nodes in the branch and bound tree.

The performance of the branch and bound algorithm depends basically on the semidef-

inite programming solver, which is still a very active area. Naturally, the B&B algorithm

with formulation R may also become faster using better solvers.

3.7 Conclusion

We analyzed a known relaxation for the Sparsest Cut Problem using semidefinite program-

ming. We also presented an exact algorithm and heuristics based on this formulation. The

presented heuristics obtained solutions with value very close to the optimum, and the ex-

act algorithm could be executed on small and medium sized instances. We implemented

a new solver to semidefinite programming using LP programming. This solver has a

good performance and it is very promising in SDP problems that are dominated by linear

programming constraints and also to general SDP problems.

The performed tests showed that the use of semidefinite programming for this problem

is a very promising strategy. With the continuous advances on the theory of semidefinite

programming (as occurred with the theory of linear programming), we hope the presented

algorithms will obtain solutions for larger graphs in less time.
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T S Number Average Av. CPU Visited SDP Trig
y i of k time Nodes Cuts Cuts.
p z Instances H1 H3 H4 Heu B&B Av. Max Av. Max Av. Max

20 400 1.1 1.1 2.2 1.2 1.4 1.0 1.0 6.5 215.0 0.0 0.0
A 30 300 1.5 1.2 2.3 27.2 36.8 1.0 2.0 17.5 665.0 0.0 0.0

40 20 2.8 1.4 2.0 654.8 1070.5 1.0 1.0 85.9 976.0 0.0 0.0

20 400 1.0 1.1 2.2 0.4 1.1 1.0 1.0 2.7 90.0 0.0 0.0
B 30 300 1.0 1.1 2.5 3.7 6.1 1.0 1.0 0.7 65.0 0.0 0.0

40 20 1.0 1.0 2.5 19.9 22.2 1.0 1.0 0.2 4.0 0.0 0.0

20 400 1.0 1.1 2.0 1.0 1.2 1.0 1.0 4.0 105.0 0.0 0.0
C 30 300 1.3 1.3 2.2 17.8 22.5 1.1 26.0 12.6 818.0 0.0 0.0

40 20 1.0 1.1 2.2 113.9 120.9 1.0 1.0 5.0 84.0 0.0 0.0

20 400 1.3 1.2 2.3 1.3 1.5 1.0 1.0 7.4 119.0 0.0 0.0
D 30 300 1.1 1.2 2.7 30.3 39.0 1.0 4.0 17.6 194.0 0.0 0.0

40 20 3.4 2.0 6.2 576.5 826.8 1.0 1.0 75.2 514.0 0.0 0.0

Table 3.4: Result using Xpress-MP and all triangle inequalities from the beginning.

3.8 Future Works

One part of this work describe a way to solve SDP with even more than a hundred

thousand constraints in less CPU time compared with a well known SDP solver to a

specific problem. As the method described is general, it is promising the implementation

of a interface that extends the proposed solver to be a general SDP solver and compare

it to others solvers in a public benchmark.
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T S Number Integrality Average Maximum
y i of Gap Deviation Factor Deviation Factor
p z Instances Av. Max H1 H2 H3 H4 H1 H2 H3 H4

20 400 1.0000 1.0082 1.0014 1.0000 1.0000 1.0000 1.5612 1.0119 1.0000 1.0000
30 300 1.0000 1.0029 1.0009 1.0000 1.0000 1.0000 1.2222 1.0115 1.0000 1.0000

A 40 20 1.0002 1.0032 1.0113 1.0001 1.0001 1.0001 1.2259 1.0015 1.0015 1.0015
50 20 1.0002 1.0025 1.0000 1.0000 1.0000 1.0000 1.0005 1.0005 1.0005 1.0000
60 20 1.0004 1.0044 1.0057 1.0005 1.0005 1.0003 1.0660 1.0095 1.0095 1.0063

20 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
30 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

B 40 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
50 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
60 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 400 1.0000 1.0004 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
30 300 1.0001 1.0058 1.0016 1.0000 1.0001 1.0001 1.3072 1.0142 1.0142 1.0142

C 40 20 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
50 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
60 20 1.0032 1.0518 1.0393 1.0000 1.0000 1.0108 1.6285 1.0000 1.0000 1.1731

20 400 1.0000 1.0020 1.0002 1.0000 1.0000 1.0000 1.0343 1.0081 1.0000 1.0000
30 300 1.0000 1.0070 1.0000 1.0000 1.0000 1.0000 1.0031 1.0031 1.0031 1.0102

D 40 20 1.0001 1.0007 1.0018 1.0000 1.0000 1.0000 1.0365 1.0000 1.0001 1.0001
50 20 1.0001 1.0003 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
60 20 1.0001 1.0003 1.0000 1.0000 1.0000 1.0005 1.0000 1.0000 1.0000 1.0105

Table 3.5: Result using Xpress-MP and triangle inequalities on demand.
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T S Number Average Av. CPU Visited SDP Trig
y i of k time Nodes Cuts Cuts.
p z Instances H1 H3 H4 Heu B&B Av. Max Av. Max Av. Max

20 400 1.2 1.1 2.1 0.6 0.7 1.0 1.0 5.6 240.0 2206.8 5995.0
30 300 1.4 1.3 2.2 11.9 16.9 1.0 3.0 17.3 970.0 9412.2 19600.0

A 40 20 2.5 1.4 2.4 351.6 515.7 1.0 1.0 85.2 927.0 27587.3 48560.0
50 20 1.9 1.5 2.2 2560.4 6637.1 1.1 2.0 133.5 1076.0 61945.8 103034.0
60 20 2.6 2.8 4.5 15812.5 29055.5 1.1 2.0 285.9 2162.0 112609.4 189998.0

20 400 1.0 1.0 1.9 0.3 0.9 1.0 1.0 0.0 0.0 1672.9 2448.0
30 300 1.0 1.0 1.9 2.4 3.5 1.0 1.0 0.0 0.0 5903.4 8740.0

B 40 20 1.0 1.0 1.9 11.8 14.2 1.0 1.0 0.0 0.0 14455.6 16720.0
50 20 1.0 1.0 2.2 43.9 45.7 1.0 1.0 0.0 0.0 27988.8 34560.0
60 20 1.0 1.0 1.9 129.2 132.2 1.0 1.0 0.0 0.0 50170.2 56728.0

20 400 1.1 1.1 1.9 0.5 0.7 1.0 1.0 3.6 124.0 2348.7 6018.0
30 300 1.3 1.2 2.5 11.3 14.1 1.1 21.0 7.9 449.0 12425.9 23549.0

C 40 20 1.0 1.1 1.9 75.7 79.2 1.0 1.0 2.9 57.0 34168.3 48797.0
50 20 1.0 1.0 1.6 315.2 334.5 1.0 1.0 0.0 0.0 74637.8 92456.0
60 20 3.7 2.4 4.1 3893.5 5913.7 1.1 3.0 26.1 417.0 122591.5 172376.0

20 400 1.3 1.1 2.2 0.5 0.7 1.0 17.0 8.2 777.0 1802.3 6840.0
30 300 1.2 1.2 2.4 8.3 17.7 1.0 8.0 16.2 305.0 7278.5 22027.0

D 40 20 2.3 3.0 2.9 244.1 393.1 1.1 2.0 78.5 657.0 23447.0 54382.0
50 20 1.0 1.4 3.0 744.8 1038.7 1.0 1.0 43.7 247.0 50959.7 108692.0
60 20 1.3 1.8 4.5 2548.1 3687.8 1.0 1.0 66.4 291.0 95160.4 195552.0

Table 3.6: Result using Xpress-MP and triangle inequalities on demand.



Chapter 4

A Continuous Facility Location

Problem and its Application to a

Clustering Problem

Abstract

We introduce a new problem, which we denote by Continuous Facility Location

Problem (ConFL), and its application to the k-Means Problem. Problem

ConFL is a natural extension of the Uncapacitated Facility Location Problem

where a facility can be any point in Rq and distance functions are not restricted

to euclidean or squared euclidean distances. The proposed algorithms are

based on a primal-dual technique for spaces with constant dimension. For the

ConFL Problem, we present algorithms with approximation factors 1.861 + ǫ

for euclidean distances and 9 + ǫ for squared euclidean distance. For the

k-Means Problem (that is restricted to squared euclidean distance), we present

an algorithm with approximation factor 54 + ǫ. All algorithms have good

practical behaviour in small dimension. Comparisons with known algorithms

show that the proposed algorithms also have good practical behaviour.

4.1 Introduction

We consider a continuous version of the Uncapacitated Facility Location Problem and its

application to the k-Means Problem. In both problems we have a set of clients C ⊂ Rq

and we have to find a non-empty set F ⊂ Rq and connect each client to the cheapest

facility connection in F . In the Continuous Facility Location problem, the value of a

solution is the total cost to connect the clients to the respective facility plus the cost to

open facilities, which is f · |F |, where f is the cost to open one facility. We used the term

54
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continuous because the facility can be any point in the continuous space, in opposition

with traditional facility locations where the set of possible facilities if pre-defined. In

the k-Means Problem the set F must have exactly k facilities and the cost of a solution

is the total cost to connect the clients to the respective facility. In both cases, we are

looking for solutions with minimum cost.

The (Uncapacitated) Facility Location and Clustering Problems have many practical

applications [17] and have been widely investigated in the literature. Applications appear

in many areas of operations research, data mining, information retrieval, image processing,

data compression, web applications, etc.

Our main interest is in the development of approximation algorithms. An α-

approximation algorithm for a minimization problem is an efficient (polynomial-time)

algorithm that produces, for any instance, a solution with value that is at most a factor

of α larger than the value of an optimum solution.

The first approximation algorithm for the Facility Location Problem is a greedy algo-

rithm with approximation factor O(log n), where n is the number of facilities and clients

in the input instance, due to Hochbaum [26] in 1982. This result is the best possible,

assuming P #= NP . For the metric case, the first constant approximation factor is 3.17,

due to Shmoys, Tardos, and Aardal [44]. There are many other techniques and bounds

in the literature. One of the main techniques is the use of linear programming and the

primal-dual approach. Jain and Vazirani [30] presented a primal-dual 3-approximation

algorithm for the Facility Location Problem. The best approximation factor is 1.52, by

an algorithm due to Mahdian, Ye, and Zhang [39], and uses the primal-dual strategy

with factor revealing and cost scaling techniques. Regarding hardness results, Guha and

Khuller [23] showed that any approximation algorithm must have an approximation fac-

tor of at least 1.463, assuming NP ! DTIME [nO(log log n)]. The Uncapacitated Facility

Location Problem is also a good example of the practical impact of better approxima-

tion factors. For example, the 1.61-approximation algorithm presented by Jain, Mahdian,

Markakis, Saberi and Vazirani [28] obtained solutions with almost no error in most of

the cases, indicating that approximation factors are also a good measure for the practical

behavior of algorithms.

The most famous clustering problem is the l22-Clustering, also known as the k-Means

problem. This problem is NP-hard even for k = 2 [16]. One of the most popular al-

gorithms for the k-Means problem is Lloyd’s Algorithm [38], for which there exists fast

implementations [31]. Although this algorithm has a good practical behavior, it has no

approximation factor or a proved polynomial-time complexity. In fact, there are examples

for which the algorithm obtain arbitrarily bad clusterings. Considering approximation al-

gorithms, Matousek [40] presented an approximation scheme to k-Means when q, ǫ and k

are constants, where the approximation factor is ǫ dependent. There are many other
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approximation schemes under these conditions. More recently, Kumar, Sabharwal, and

Sen [34] presented a linear time approximation scheme, for k and ǫ constant, independent

of q. When ǫ and q are constants, Kanungo, Mount, Netanyahu, Piatko, Silverman, and

Wu [32] present a (9 + ǫ)-approximation algorithm. Unfortunately, most of the above

mentioned algorithms are very complicated or have high time complexity for small values

of ǫ. In [30], Jain and Vazirani described a primal-dual approximation algorithm with

factor 108 to k-Means problem (independent of k and q). Although this algorithm has a

large factor, it leads to a practical algorithm (it is fast and does not require to solve any

linear program).

The (9 + ǫ)- and the 108-approximation algorithms for the k-Means can be easily

adapted to ConFL with the same approximation factors, since k is not restricted to a

constant. To implement this adaptation, it is sufficient to execute k-Means for all values

of k in {1, . . . , |C|} and return the solution with minimum cost with respect to ConFL

cost function. We note that all mentioned approximation schemes for k-Means have

exponential time in k.

Our results: We present approximation results for the Continuous Facility Location

Problem. Adapting approximation algorithms presented in [30, 28], we obtain a (1.861+ǫ)-

approximation algorithm in metric l2 and a (9 + ǫ)-approximation algorithm with l22 dis-

tance. For the l2-Clustering we obtain a (6+ǫ)-approximation algorithm. For the k-Means

Problem (l22-Clustering problem), we propose an algorithm similar to the one presented

in [30] with approximation factor 54 + ǫ. All results are valid for constant q. Our main

contribution is a way to deal with an exponential number of centers in polynomial-time.

We report computational results for the k-Means Problem, showing that for small values

of q the algorithm produces solutions close or better than known algorithms. For some

instances, it gives better solutions than the ones obtained by a combination of Lloyd’s

and local search algorithms [31].

We implement some variants of the algorithms and make an empirical analysis of them.

4.1.1 Definitions and Notation

We denote by I the set of tuples (instances) (C, q, d), where C ⊂ Rq is a set of q-

dimensional points and d is a reflexive distance function over Rq. We denote by If , for

a real value f > 0, the set of tuples (C, q, d, f), where (C, q, d) ∈ I, and by Ik for a

positive integer k, the set (C, q, d, k) where (C, q, d) ∈ I. Given a set P ⊂ Rq and a

point p ∈ Rq, we denote the distance from p to P as d(p, P ) = min{d(p, px) : px ∈ P}.
The set of solutions of an instance I ∈ If (resp. I ∈ Ik), in a q-dimensional space, is a set

SI = {P ⊂ Rq : P #= ∅} (resp. Sk
I = {P ⊂ Rq : |P | = k}). We use two functions to define

the value of a solution, according to the problem: Given a set P ∈ SI and a real value f ,
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we define vI(P ) =
∑

j∈C d(j, P ) and vf
I (P ) = vI(P ) + f |P |. When the instance I is clear

from the context, we use S, v(P ) and vf(P ) to denote SI , vI(P ) and vf
I (P ), respectively.

Now, we define the d-Clustering and the Continuous Facility Location (ConFL) Prob-

lems. In the first we look for exactly k points (facilities) where a set of clients must

connect. The cost of a solution is the total cost to connect all clients.

Problem 1 (d-Clustering) Given I ∈ Ik, find a solution P ∈ Sk
I such that vI(P ) is

minimum.

In the Continuous Facility Location Problem (ConFL) we can open any number of

facilities, but we pay a fixed value in the objective function for each facility that appears

in the solution. This problem can be formally defined as:

Problem 2 (ConFL) Given an instance I ∈ If , find a solution P ∈ SI such that vf
I (P )

is minimum.

Note that, although we can open any facility i ∈ Rq, the cost to open i is equal to the

cost to open any other facility.

4.2 From the Discrete to the Continuous Version

The algorithms we present are based in algorithms for two related problems, defined as

follows. Denote by I ′ the set of tuples (F, Ct, c), where F is a finite set of facilities, Ct is

a finite set of cities and c : F ×Ct → R+ is such that cij is the cost to connect city j ∈ Ct

to facility i ∈ F . We denote by IKM, for a positive integer k, the set of tuples (F, Ct, c, k),

where (F, Ct, c) ∈ I ′ and by IFL the set of tuples (F, Ct, c, f), where (F, Ct, c) ∈ I ′, and f

is a function f : F → R+ associating a positive real cost f(i) for each facility i ∈ F .

The set of solutions for an instance I ∈ IFL (resp. I ∈ IKM) is the set GI (resp. Gk
I ),

where GI = {S ⊆ F |S #= ∅} and Gk
I = {S ⊆ F : |S| = k}. We also remove the index I

from the notation whenever the instance is clear from the context. We define a cost

function between a city j and a set of facilities F ′ as c(j, F ′) = min{cij : i ∈ F ′}. Given a

solution S ∈ G for an instance I, we define wFL(S) =
∑

i∈S f(i)+
∑

j∈Ct
c(j, S) and given

a solution S ∈ Gk we define wKM(S) =
∑

j∈Ct
c(j, S).

The k-Median problem (KM) consists of opening exactly k facilities in a way to min-

imize the total cost to connect each city to its closest facility.

Problem 3 (KM) Given an instance I ∈ IKM, find a solution S ∈ Gk
I such that wKM(S)

is minimum.
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The Facility Location problem (FL) consists of opening a set of facilities and connect-

ing each city to a closest open facility in a way to minimize the total cost to open facilities

and to connect all cities to the open facilities. It can be formally defined as:

Problem 4 (FL) Given an instance I ∈ IFL, find a solution S ∈ GI such that wFL(S) is

minimum.

We also need the definition of center, as follows:

Definition 2 (Center) Given an instance (C, q, d) ∈ I, a point x ∈ Rq is a center of

S, denoted by center(C), if
∑

y∈C d(x, y) is minimum.

Lemma 4.2.1 Given an instance (C, q, d) ∈ I, if d is the squared Euclidean distance,

then the center of S is unique. Moreover, we have center(C) =
{P

y∈C y

|C|

}

.

Proof. When d is a the squared Euclidean distance function,

d(x, C) =
∑

y∈C

d(x, y) =
∑

y∈C

q
∑

i=1

(xi − yi)
2.

As
∑

y∈C d(x, y) is a paraboloid, the point of minimum have the property that the deriva-

tive ∂(d(x,C))
∂(xi)

= 0, for all i ∈ {1, . . . , q}. So, for any i ∈ {1, . . . , q} we have:

∂(d(x, C))

∂(xi)
=

∂(
∑

y∈C d(x, y))

∂xi

=
∂(

∑

y∈C(xi − yi)
2)

∂xi

=
∑

y∈C

(2xi − 2yi).

Therefore, the minimum is attained when

xi =

∑

y∈C yi

|C| .

For some distance functions, the center may not be unique. For example, in the

Euclidean space it may occur when the points are collinear.

We first describe algorithms using the squared Euclidean distance function, where the

center is unique and easily computable. In Section 4.4.1 we pointed how the algorithms

and approximations factors can be extended to the Euclidean metric.
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Denote by l22-ConFL the problem ConFL with distance function l22. Let S∗ ∈ S be an

optimal solution to an instance I ∈ If for l22-ConFL, where I = (C, q, d, f). Consider a

set of centers of all nonempty subsets of C, Φ(C) = {center(C ′) : ∅ #= C ′ ⊆ C}. The

solution S∗ is made just by centers. If not, we can find a better solution than S∗. As one

can see, S∗ ⊆ Φ(C).

A simple way to adapt an algorithm from FL to the l22-ConFL problem is to define F

as the set Φ(C). Let If = (C, q, l22, f) ∈ If be an instance to l22-ConFL problem. Define

IR
f = (F ′, Ct, c, f

′) ∈ IFL as an instance to FL where Ct = C, F ′ = Φ(C), f ′(i) = f, ∀i ∈
F ′ and cij = l22(i, j), ∀i ∈ F ′, j ∈ Ct, where l22(i, j) is the distance between point i ∈ Rq

and j ∈ Rq in l22 distance function.

Proposition 4.2.2 If S∗
1 and S∗

2 are optimum solutions for instances If and IR
f , respec-

tively for l22-ConFL and FL, then vf(S∗
1) = wFL(S∗

2). Furthermore, any solution S2 for

instance IR
f is directly converted to a solution S1 for If , with vf(S1) = wFL(S2).

Proof. The proof is straightforward from the fact that in any optimum solution S∗
1 of If an

open facility i must be a center of the points connected to it in S∗
1 . Otherwise a solution

of smaller cost can be obtained.

A way to adapt an algorithm for the KM problem to the l22-Clustering problem is

similar. Let I = (C, q, l22, k) ∈ Ik be an instance of the l22-Clustering problem. Define IR
k =

(F ′, Ct, c, k) as an instance to KM where Ct = C, F ′ = Φ(C) and cij = l22(i, j), ∀i ∈ F ′, j ∈
C.

Proposition 4.2.3 If S∗
1 and S∗

2 are optimum solutions for instances Ik and IR
k , re-

spectively, for l22-Clustering and k-Median, then v(S∗
1) = wKM(S∗

2). Furthermore, any

solution S2 for instance IR
k is directly converted to a solution S1 for Ik keeping v(S1) =

wKM(S2).

The proof of Proposition 4.2.3 is similar to the proof of Proposition 4.2.2.

Corollary 4.2.4 Given a ρ-approximation algorithm A for the FL or KM problems, de-

note by Â the corresponding algorithm to l22-ConFL or to l22-Clustering problem, applying

algorithm A with set of facilities F = Φ(C). We have that Â is a ρ-approximation algo-

rithm to the respective problem.

Although very simple, the straightforward implementation may lead to very large in-

stances, as Φ(C) is exponential in the size of If and Ik. In the next section, we show how to

adapt one algorithm to FL and one algorithm for k-Median to l22-ConFL and l22-Clustering

in polynomial-time, when the dimension q if fixed.

The following fact is straightforward:
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Fact 4.2.5 Any polynomial time algorithm for the k-Means Problem, when k does not

have any restriction (e.g. being constant, or having a time complexity O(nk)), leads to a

polynomial time algorithm for the l22-ConFL Problem with the same factor.

This algorithm can be achieved executing the k-Median algorithm for all values of k

between 1 and |C| and selecting the minimum with respect to the l22-ConFL cost function.

The mentioned results of Kanungo, Netanyahu, Piatko, Silverman and Wu [32] and

Jain and Vazirani [30] lead to the following theorems:

Theorem 4.2.6 [32] There exists a (9 + ǫ)-approximation algorithm for l22-ConFL with

l22 distance when ǫ and the space dimension q are constants.

Theorem 4.2.7 [30] There exists a (108)-approximation algorithm for l22-ConFL with l22
distance.

4.3 Adapting an AJV to ConFL

In [30], Jain and Vazirani presented a 3-approximation algorithm, which we denote by AJV,

to the FL problem with time complexity O(m logm) and a 6-approximation algorithm to

the KM problem with time complexity O(m log m(L + log n)), where n = |C|+ |F |, m =

|C| · |F | and L = log cmax

cmin
, where cmax is the maximum cost and cmin is the minimum cost

in the instance. Both approximation factors are proved for the metric case.

The AJV algorithm consists of two phases: In Phase 1, it obtains a dual feasible

solution and determines a set of temporarily open facilities. In Phase 2, the algorithm

selects the facilities to open, from the temporarily open facilities.

Phase 1: Algorithm AJV starts with all cities disconnected and all facilities closed. It uses

the notion of time and each event occurs at some time. For each j ∈ Ct, the algorithm

maintains a variable αj that represents the contribution offered by city j at that time.

Variable αj can be seen as the radius of a ball centered at city j. Initially, the time and the

values of αj start with 0. At each iteration, the algorithm grows uniformly the radius αj ,

for each unconnected city j ∈ C together with the time variable. When αj = cij for

some edge (i, j), the algorithm assign edge (i, j) as tight and start to offer a contribution

βij = αj − cij to open facility i. When the total contribution offered to a facility i is equal

to fi, the algorithm temporarily open facility i and temporarily connects all cities j with

a positive contribution βij to i. Furthermore, if j is unconnected and has a tight edge

with i, it is temporarily connected to i. The values of αj , for all unconnected cities j,

are increased during Phase 1 until there are no more unconnected cities. When a city j

becomes temporarily connected, its contribution radius is fixed.
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Phase 2: Let Ft be the set of temporarily open facilities obtained in Phase 1. The final

set of open facilities is a maximal set Fo ⊆ Ft such that, two facilities i′, i′′ ∈ Fo do not

have a city j with positive contribution to i′ and i′′, that is, with βij > 0 and βi′j > 0.

For more details about algorithm AJV and the proof of its approximation factor,

see [30]. Our interest in this section is to describe how to implement ÂJV in polyno-

mial time in the size of the original instance. The approximation factor will simply be

inherited from AJV as stated in Corollary 4.2.4.

The straightforward implementation of algorithm ÂJV is a non-polynomial-time algo-

rithm to l22-ConFL as the set Φ(C) may have exponential size and it produces solutions

with the same factor that AJV to the corresponding instance of FL. Jain and Vazirani

have shown that AJV is a 3-approximation to FL if the distance function is metric and

a 9-approximation in the l22 space. In Figure 4.1 we provide an example where l22 does not

respect triangle inequality property. This example shows that l22 is not a metric space.

d(a, c) > d(a, b) + d(b, c)

R1

a = {0} b = {1} c = {2}

d(a, b) = (0 − 1)2 = 1

d(b, c) = (1 − 2)2 = 1

d(a, c) = (0 − 2)2 = 4

Figure 4.1: Example showing that l22 is not metric.

Now, we describe how to implement ÂJV in polynomial-time with a small error ratio ǫ

when the dimension q is bounded by a constant. The main idea is the fact that under

certain conditions, we have to consider only a polynomial number of facilities.

Since the algorithm works in Rq, the contribution of each city j defines a q-dimensional

sphere of radius αj . When these spheres increase, as αj increase, they start to intersect

each other partitioning the space in regions. See Figure 4.2.

R8

R1R2

R3

R4

R7

R9

R6

R5

R0

Figure 4.2: Examples of a space partitioned in intersection regions.

In some distance functions, a sphere defines a set of points with distance r to the

center and may have different shapes, as a square or a rhombus. In Euclidean and
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Squared Euclidean, the shape is the same and it is easily handled, for example, to calculate

intersections among spheres or among a sphere and planes or lines. Taking a sphere as

an example, if we are handling spheres in the space with Squared Euclidean distance

function, a sphere of radius 4 and center at the origin pass through (2, 0). This means

that an implementation must care and also work with the square root of the radius in

order to discover the limits of the sphere.

During the execution of algorithm, an unconnected city j increase its radius αj and

any point p receives a contribution max{αj − d(j, p), 0} from j. An intersection region R,

generated by a set of cities S at a given time, is the set of points in Rq that receives

positive contributions from the cities in S and no contribution of cities in C \ S. We

denote the set of cities contributing to R by cit(R). As cities contribution boundaries

change during the execution of the algorithm, the intersection regions are not static. The

region can appears, it changes as the boundaries increases and it can even disappear,

when it is completely covered by other boundaries. The following facts are valid.

Fact 4.3.1 If R is an intersection region then the point center(cit(R)) receives the max-

imum contribution from cit(R) compared to other points in R.

Proof. The total contribution received by a point x ∈ R from the points of cit(R) is given

by
∑

j∈cit(R)(αj −d(j, x)). Therefore, the contribution is maximized when
∑

j∈cit(R) d(j, x)

is minimum.

Assuming different values for radius, and a given intersection region R, it is possible

that center(cit(R)) #∈ R. An example is showed in Figure 4.3. Note that the center of

two points in l22-distance function is the mid point in the line connecting them.

R

center(cit(R))

Figure 4.3: Examples of center(cit(R)) #∈ R.

At each moment, we denote by contrib(p), the total contribution received by p from all

cities in C, for any point p ∈ Rq. Note that AJV guarantees that contrib(p) ≤ f , and when

contrib(p) reaches f it is (temporarily) opened and the radius of all cities contributing

to p stop increasing. If the contribution radius of an unconnected city j touches a point p

having contrib(p) = f , then j is connected to p and its radius stop increasing.

The next lemma shows that Algorithm ÂJV must only consider centers of regions.
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Lemma 4.3.2 If a facility is (temporarily) opened by algorithm ÂJV then it is a center

of an intersection region at some time.

Proof. Clearly, any temporarily opened facility i must have non-null contribution and must

belong to some intersection region R. The total contribution received by i is exactly f .

This is also the maximum contribution obtained by a point in R. From Fact 4.3.1 i must

be a center of R.

In the algorithm AJV, the contribution of each facility starts with zero and cities are

connected to facilities during the execution of the algorithm. We propose an implemen-

tation of ÂJV that considers one facility per intersection region. This facility starts to be

considered when the intersection region is created by a set of cities.

The following lemma says that the search for a candidate facility in a region can be

restricted to the maximal set of cities that contribute to that region.

Lemma 4.3.3 Consider the execution of the algorithm ÂJV at time T , where there exists

an intersection region R. If, in this moment, a city j ∈ C\cit(R) contributes to center(R),

then center(R) will not be eligible to be a facility, unless it becomes a center of a different

region S with center(S) = center(R).

Proof. Given a moment T , if pR = center(R) receives a non-null contribution of a city j ∈
C\cit(R) then pR must also belong to a region R′ defined by the contribution radius of the

cities in cit(R) ∪ j. If we denote by p′R = center(R′) we have that contrib(center(pR)) <

contrib(center(pR)) and therefore, center(pR) cannot be an open facility.

The following lemma give us an intuition for the number of regions. Although this

result is already known, we present a proof here for completeness.

Lemma 4.3.4 The number of regions generated by the intersection among n circles in R2

is bounded by n(n − 1) + 2.

Proof. The proof is by induction. The case n = 1 is straightforward. Suppose that the

number of regions for n− 1 circles, is at most (n− 1)(n− 2)+ 2. If we add the last circle,

it touches each other in, at most two points. The maximum number of intersections

is 2(n − 1). If we consider an arc between each two intersections in the last circle, it is

divided in at most 2(n − 1) arcs. Each arc generates exactly one new region, so the final

number of regions is at most (n − 1)(n − 2) + 2 + 2(n − 1) = n(n − 1) + 2.

Consider algorithm ÂJV applied in R2 and the regions defined by the |C| circles with

radius αj, for each j ∈ C. The number of regions at each moment is O(|C|2) and we will

show, in Corollary 4.3.11 for q = 2, that the total number of regions for all values of α

during the execution of the algorithm is O(|C|3).
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4.3.1 Implementation for l22

We denote by n-sphere, a hypersphere of dimension n. Consider the following lemma:

Lemma 4.3.5 The intersection between an n-sphere with a non-tangent hyperplane of

dimension n − 1 result in a (n − 1)-sphere or a empty set.

Proof. Consider an n-sphere of radius A2 ∈ R+. Without loss of generality, the n-sphere

can be centered at the origin and it can be represented by the following equation:

x2
1 +

n
∑

i=2

x2
i = A2.

The hyperplane can be represented, without loss of generality, by

x1 = K, for some K ∈ R+, K #= A.

The intersection between the n-sphere and the hyperplane is given by the following:

{x | x1 = K,

n
∑

i=2

x2
i = A2 − K2},

that is a (n − 1)-sphere or a empty set.

We also need the following lemma:

Lemma 4.3.6 The intersection between two non-concentric and non-tangent n-spheres

can be represented as the intersection of an n-sphere with a non-tangent hyperplane of

dimension n − 1.

Proof. Consider, without loss of generality, an n-sphere φ(a) of radius A2 ∈ R+ centered

at the origin and an n-sphere φ(b) of radius B2 ∈ R+ centered at (C, 0, . . . , 0), such

as C #= A + B and C #= A − B.

The sphere φ(a) can be represented as

x2
1 +

n
∑

i=2

x2
i = A2.

and the sphere φ(b) can be represented as

(x1 − C)2 +
n

∑

i=2

x2
i = B2.

The set of points in the intersection will be

{x | x ∈ φ(a), and x1 = (A2 − B2 + C2)/(2C).}

where the hyperplane cannot be tangent to φ(a) because C #= A + B and C #= A − B

The following fact is known:
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st(R)

cit(R)

E(R)

Figure 4.4: Example of E(R) and cit(R).

Fact 4.3.7 In a Rq space, the intersection among m linear independent half-space hyper-

planes has dimension q − m.

Consider the space Rq and an intersection region R ⊂ Rq. We denote by st(R) the first

point of R that is covered by all spheres of cit(R) and denote by active sphere associated

to an unconnected city. An active sphere at moment T has radius αj = T , while a

non-active sphere has radius αj < T . We consider that the points in C suffered a very

small perturbation so that no point p ∈ Rq belongs to more than q + 1 spheres in a given

moment unless all spheres that contains p are not actives.

Given an intersection region R at a certain time T , let st(R) and t(R) be the initial time

of the intersection region. Some cities j ∈ C may have contribution radius greater than

the distance d(j, st(R)) at time t(R). So, let E(R) be the set of cities such that E(R) =

{j ∈ C | d(j, st(R)) = αj at time t(R)}.
We denote by tight cities the set of cities in E(R). This set is divided in two groups:

the unconnected cities at time t(R), denoted by S(R), and the temporarily connected

cities at time t(R), denoted by G(R). The starting point st(R) belongs to the contri-

bution boundary of cities in E(R). It is the intersection of the spheres defined by cities

in G(R), which have fixed contribution, and the intersection of spheres in S(R), which

have radius t(R). See Figure 4.4.

Denote by init(R) the tuple (st(R), t(R), S(R), G(R)). For a given E(R) = G(R) ∪
S(R), it is possible to discover both t(R) and st(R) using elementary geometrical opera-

tions.

The point st(R) belongs to the intersection of the spheres in G(R) and is equidistant

from all points of S(R). For any two points s1, s2 ∈ S(R), the set of points equidis-

tant from s1 and s2 is the half-space hyperplane orthogonal to s1s2-line that contains

the point (s1 + s2)/2. Thus, the point st(R) belongs to the intersection of half-spaces
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hyperplanes defined for all pair of distinct s1, s2 ∈ S.

Denote by h(r, s) the hyperplane {x : d(x, r) = d(x, s)} for r, s ∈ Rq. Let h(S(R)) =
⋂

∀r,s∈S(R) h(r, s). That is, if x ∈ h(S(R)) then d(x, j) = d(x, S(R)) for any j ∈ S(R).

Note that h({s}) = Rq. Let φ(j) = {x | d(x, j) = αj} and φ(G(R)) =
⋂

j∈G(R) φ(j).

Observe that φ(∅) = Rq.

The following lemma shows that all regions can be associated with a set of at most q+1

cities.

Lemma 4.3.8 With a small perturbation in the points of C, the starting point st(R) of

any region R is defined by at most q + 1 cities, or simply |E(R)| ≤ q + 1.

Proof.

Consider the case when G(R) = ∅. The point st(R) is equidistant to each city in S(R).

Thus, for an arbitrary city s1 ∈ S(R) and all cities s′ ∈ S(R)\{s1}, the starting point be-

longs to each linearly independent half-space hyperplane h(s1, s
′). As stated in Fact 4.3.7,

the dimension of the intersection of m linearly independent half-space hyperplanes in a Rq

space is q − m. If |S(R)| is q + 1, the h(S(R)) has dimension zero and it is single point.

If S(R) has more than q + 1 elements in a Rq domain, no point in Rq can be equidistant

for all elements in S(R).

Now, consider the case when G(R) #= ∅. We assume S(R) ≥ 1 because if all cities

in E(R) are fixed, the starting point does not exist.

Consider an arbitrary sphere φ(s1) ∈ G(R). The starting point belongs to the in-

tersection of φ(s1) and φ(s′) for all φ(s′) in G(R) \ {s1}. Using Lemma 4.3.6, φ(G) can

be calculated as the intersection of φ(s1) with |G(R)| − 1 half-space linearly independent

hyperplanes. The starting point need also to be equidistant to all points in S(R), that is

the domain Rq restricted the intersection of |S(R)| − 1 linearly independent hyperplanes.

Thus, the starting point belongs to the intersection of an n-sphere with |E(R)|−2 linearly

independent half-space hyperplanes. In this case it is possible to recursively apply Lemma

4.3.5. If |E(R)| = q + 1, the starting of a given intersection region belongs to a 1-sphere

or is an empty set. A 1-sphere consists of two points. If E(R) > q + 1 there is no point

in Rq that satisfies both the φ(G(R)) and h(S(R)) constraints.

Given a region R, if E(R) has q + 1 points and G(R) = ∅, the starting point is well

defined. If G(R) #= ∅, there are at most two candidates for the starting point st(R)

and both will be considered by the algorithm. Remember that our issue is to reduce

the exponential size set of candidates Φ(C) removing ineligible facilities. The presence

or absence of any point in Rq is irrelevant unless for the eligible subset, that must be

considered.
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If E(R) has less than q + 1 elements, the intersection h(S(R)) ∩ φ(G(R)) does not

define zero, one or two single points because there is a degree of freedom. In this case we

consider an additional constraint.

Given a set P ⊂ Rq, g(P ) is defined as the affine combination of points in P . That

is, g({p}) is the single point p, g({p1, p2}) is the infinite line that contains points p1

and p2, g({p1, p2, p3}) is the infinite plane that contains points p1, p2 and p3, and so on.

Lemma 4.3.9 The starting point st(R) belongs to the affine combination of the cities

in E(R), denoted by g(E(R)).

Proof. Consider, for the sake of contradiction, that st(R) #∈ g(E(R)). For the orthogonal

projection of st(R) in g(E(R)), the distance of each city to the orthogonal projection will

be smaller than the distance from st(R), so the orthogonal projection of st(R) will belong

to R before st(R), which is a contradiction.

Consider a region R such that |E(R)| = q′ and q′ < q+1. The domain can be restricted

from the q-dimensional space to g(E(R)) that has dimension q′ − 1. In this domain, the

intersection h(S(R))∩φ(G(R)) has zero degree of freedom, and the starting point will be

restricted to zero, one or two possible points.

When the algorithm starts, all cities are unconnected. This means that G(R) is empty

for all regions. It is possible to define all init’s as a set of tuples {(st(R), t(R), S(R), G(R))

for each region R}. Note that cit(R) is unknown in this moment. It will be known on the

fly, or during the execution of the algorithm. So we prefer to name as E, S and G the

sets E(R), S(R) and G(R), respectively, when the region is not yet defined.

We start the algorithm with a set of tuples for all possible starting points at mo-

ment T = 0, which is

T (C) ← {(p, t, S, G) | G = ∅, ∀S ⊆ C and |S| ≤ q + 1,

p = h(S) ∩ g(S), t = d(p, S)}. (4.1)

The construction of T (C) consists to define a new starting point candidate for each subset

with q +1 or less cities. The size of T (C) is exponential in the dimension, but, for a fixed

dimension q, it has size |C|q+1, which is the value to combine |C| cities in sets of size 1,

2, up to q + 1.

In this moment, the algorithm starts to increase the radius around each city in C.

The implementation consists in an event based algorithm. For each tuple in T (C), there

is an associated event at time t, that is the time a new region is created.

When the algorithm starts at time T = 0, a set of events in T (C) are ready to be

processed. The events consist in a new region R for each S with just one city, which

happens at time t = 0. In order to process such event, the algorithm discovers which
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cities belong to cit(R), and then create a new event, which is a new facility positioned

in center(cit(R)). Lemma 4.2.1 shows how to calculate the center of a set of points. In the

general case, the cities in cit(R) are able to contain other cities than E(R) and may not

contain some cities in E(R). Remember that E(R) are tight cities, with zero contribution

to st(R) at the moment t. The set cit(R) contains also all cities with a strict positive

contribution to st(R) in moment t. Figure 4.4 shows an example of E(R) ! cit(R). It is

possible to have cities in E(R) that do not belong to cit(R). See Figure 4.6 for examples.

In the end of this section we will show an algorithm to find which cities of E(R) belong

to cit(R).

The event of a new facility being considered is associated with the time when this

facility is totally paid. There is a third set of events that consists in an unconnected city

that reaches a temporarily open facility. The time associated with this event, for a city j

and a temporarily open facility i is T = d(i, j).

The algorithm contains three types of events, represented by the sets CtF, OpenF

and NewF. The set CtF has the events of connecting a city to a temporarily open

facility. The set OpenF has the events of temporarily opening a facility and connecting

its contributor cities to it; and the set NewF has the events of creating a new region and

adding a new facility to be considered. The algorithm is described in Figure 4.5. The

event NewF is designed to keep the init tuples (p, t, S, G).

When G is an empty set, there is just one candidate to be the initial points, that is p,

calculated as g(S) ∩ h(S). When G is not empty, there are zero or two candidates to be

the initial point, because g(E) ∩ h(S) ∩ φ(G) is a 1-sphere or a empty set.

When a city j is connected, the tuple (p, t, S, G) where j ∈ S is changed. The new S

does not contains j, which now belongs to G. The initial point must be recalculated, using

elementary geometric operation of intersection of hyperplanes and intersection of spheres

in order to result in a new empty or two starting point candidates. For example, if G

contains two fixed q-spheres φ(a) and φ(b), which have distance of their centers greater

than αa + αb, they have no intersection. A region associated with this tuple will never

happen. There is no candidates to be starting points and the time associated with this

event algorithm is assigned as infinity. The other case, in which the intersection will result

in two points, we will update the tuple (p, t, S, G) where j ∈ S to a new tuple, where j

is moved from S to G. The initial point will be changed to a set of size 2, {p1, p2},
and the time associated with the event will be changed to a set of size 2, {t1, t2}. The

implementation maintains this single tuple working as two possible events, one at time t1
and other at time t2. We define an operation on set NewF that is min{NewF, T}, which

returns a not used event with minimum time greater than or equal to T . The set U is the

set of unconnected cities and T is a notion of time associated with the algorithm.
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Phase 1 of ÂJV

Input: An instance (C, q, l22, f) to l22-ConFL

Output: A set of temporarily open facilities.

1) U ← C, CtF ← ∅, OpenF ← ∅, (i) NewF ← T (C), T ← 0.

2) Set all events in NewF as not used.

3) While U #= ∅:

3.1) (ii) evt ← min {min{CtF}, min{OpenF}, min{NewF, T}}.
3.2) T ← t, for t ∈ evt.

3.3) If evt = (t, i, j) ∈ CtF

(iii) delete evt from CtF,

if j is unconnected,

temporarily connect j to i, U ← U \ {j},
fix the contribution radius of j as t.

(iv) Update OpenF and (v) NewF.

3.4) If evt = (t, i) ∈ OpenF,

(iii) delete evt from OpenF,

temporarily open facility i,

for each unconnected city j with a positive contribution to i

temporarily connect j to i, U ← U \ {j} and

fix the contribution radius of j as t.

(iv) update OpenF and (v) update NewF.

Add (d(i, j), i, j) to CtF for each j ∈ U .

3.5) If evt = (p, t, S, G) ∈ NewF,

(iii) set evt as used,

(vi) a new facility i is created and added to OpenF.

4) Return the set of temporarily open facilities.

Figure 4.5: Implementation details of Phase 1 of ÂJV.
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We have some details about the algorithm described in Figure 4.5. When an event

is marked as used, the algorithm assign it as used and does not delete from NewF. If

necessary, when one or more cities in S became connected, the time associated with the

event changes. This time can increase or decrease with respect to the time of the original

event. If the time increases and the final time is greater than or equal to T , this new

event will be able to generate a new region. So, the tuple is updated and marked as not

used in NewF. An initial tuple with S and G can be updated just a few times, because S

starts with at most q + 1 cities, and, at each update, the size of S decreases by 1. The

algorithm does not start with all starting points, because it is not known the sequence

the cities are connected to a temporarily open facility. So, the algorithm starts with a set

of possible events, and, every time one or more cities are connected, the algorithm moves

the connected cities from S to G. The starting point needs to be recalculated, using

elementary operations of intersection of hyperplanes and intersection of q-spheres with

hyperplanes. One can consider it as a hard operation to recalculate NewF every time

a city is connected, but this operation will be used at most once by city in C. When a

city j is connected, the algorithm must update all tuples in NewF where j ∈ S, moving j

from S to G, recalculate the starting point and the event time, and assign these events

as not used.

When a city is connected, the algorithm updates the event set OpenF, which is the

event associated with facilities. Each facility has its position and the time it will be totally

paid. If the algorithm reaches the time when the facility is totally paid, the algorithm

temporarily open this facility an connects the facility contributors to it. The cost to open

a facility i is a constant value f . The time this facility will be opened can be calculated

as
∑

j∈C max{αj −d(i, j), 0} = f . If the facility i is associated with a region R, this value

is
∑

j∈cit(R) αj − d(i, j). If a new city j′ #∈ cit(R) starts to contribute to center(cit(R))

this facility is ineligible, as stated in Lemma 4.3.3.

Suppose an event in OpenF of opening a facility i where some cities contribute to

it. The cities are cit(R) where i is created as a center region R. We have a set S ′ of

unconnected contributors to i and a set G′ of connected contributors to i. The time in

which this facility is totally paid is the value T such that
∑

j∈S′(T −d(i, j))+
∑

j∈G′(αj −
d(i, j)) = f . When a city j is connected to some facility, all other facilities in OpenF

where j ∈ S ′ must be updated. This consists to move j from S ′ to G′ and recalculate

its event time. In the events associated with temporarily open a facility, the event time

never decrease when updated, because the city, when it is connected, stops increasing its

contribution boundary.

One important assumption of the algorithm described in Figure 4.5 is that one event

in NewF is associated with at most one region. This is proved in Lemma 4.3.10.
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Lemma 4.3.10 One event (p, t, S, G) is associated with at most one region, under the

small perturbation assumption.

Proof.

Consider an event defined by a time t and with starting point p. The problem happens

if two regions, named as R1 and R2, or more than two, start at a same time t and at a

same place p. This situation does not occur under the small perturbation assumption.

Consider, for the sake of contradiction, two distinct regions R1 and R2 starting at a same

point p. The point p is h(S)∩φ(G). There are one contribution boundary associated with

one specific city, say j′ ∈ C, that divides R1 and R2. If we remove j′, the region defined

by cit(R1) ∪ cit(R2) will start in point p in time t and is calculated without j′ influence.

Thus, as j′ has a perturbation, its contribution boundary in moment t does not contain p,

that is a contradiction.

A similar argument can be applied to three or more regions, showing that any region

has a different starting point. One event cannot be associated with two regions because

it has only one starting point p.

Considering that any region can be associated to its initial point, we have:

Corollary 4.3.11 Under the small perturbation assumption, the number of regions con-

sidered by algorithm ÂJV is bounded by O(q|C|q+1).

Finally, we have to show how the algorithm discovers the set cit(R) in a considered

event (p, t, S, G). The cities j ∈ C such that αj > d(p, j) belong to cit(R). The problem

happens with cities in S(R) and G(R) for which αj = d(p, j). They may or may not

belong to cit(R). In Figure 4.6 there is a series of events where this issue appears.

Giving an event (p, t, S, G), the algorithm has to discover cit(R). Let Q be the set of

cities with strictly positive contribution to p and E = S∪G. As our concern is to limit the

number of facilities to be considered as a polynomial number in the size of the instance,

the algorithm avoids a large number of facilities that are ineligible. On the other hand,

if we add some ineligible facilities, the algorithm will work correctly, but in some sense

slower. One possible approach is to consider a new facility in position p = center(Q∪A)

for all A ⊆ E. Certainly, one of these sets of cities will be the set which corresponds to the

created region. The others sets will generate facilities that do not interfere in the result.

The number of facilities considered in this approach is exponential in the size of E. As

size of E is limited in q + 1, the number of facilities considered will increase by a factor

2q+1. The algorithm, as stated before, has a polynomial time complexity for a constant

value of q, so these extra facilities do not make the algorithm an exponential one.
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Figure 4.6: How to discover which cities belong to cit(R).

We believe that some techniques of continuous calculus can be used to discover the

correct subset of E that belong to cit(R). In the experiments of Section 4.5, we use the

following approach. The experiments works in space Rq for q = 2. So, the set of tight

cities E can have size one, two or three. If the set has size one or two, all cities of E

belong to cit(R). If the size of E is three, we use a numerical approach that consists to

increase the time variable T with a relative very small value and check which contribution

boundaries involves the region.

The Phase 2 of algorithm AJV consists to find a maximal independent set of temporar-

ily open facilities and return it as the final result. In the considered graph, the vertex set

is the set of temporarily open facilities and there is an edge between two facilities, say i

and i′, if and only if there is at least one city with strictly positive contribution to i and i′

for any pair of (i, i′) of temporarily open facilities.

Given S(R) and G(R), let βq be the complexity time to discover st(R), that is

the complexity time to calculate intersection h(S(R)) with φ(G(R)) and g(E(R)), and

let θC,q = q|C|q+1. The final time complexity of the implementation of ÂJV proposed in

Figure 4.5 is O(q2|C|q+2βq), assuming the numerical approach to discover cities in cit(R).

In order to achieve this time complexity, it is necessary to summing up various branches

of the algorithm. The time to create the initial set of events T (C) is the time to create

all possible combinations of S ⊆ C with size less than or equal to q + 1. For each of

these O(|C|q+1) subsets, it is necessary to calculate the starting point p, which takes O(βq)
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and then calculate the distance d(p, sx) for some sx ∈ S that can be done in O(q). The

final complexity O(|C|q+1(βq + q)) that is the same that (i) O(|C|q+1βq).

The maximum number of temporarily open facilities in the algorithm is |C|, because

each temporarily open facility is responsible for removing at least one city from U . Thus,

the maximum size of set CtF is |C|2, which is an edge between each unconnected city

with a temporarily open facility.

The maximum size of OpenF corresponds to the maximum number of regions consid-

ered. As each region can be associated with a distinct initial point, and each initial point

is one of the |C|q+1 tuples of T (C) in its original state, of after 1 to q updates, the size

of OpenF has order O(θC,q).

Let CtF, OpenF be minimum heaps and NewF a special structure that save not

used events with time greater than the current T in a minimum heap. In this way, it is

possible to discover the minimum of these three sets in constant time. After discovering

the minimum, the algorithm delete one element of CtF∪OpenF or set a non-used event

as a used event in NewF (iii). The maximum number of times that the algorithm executes

evt ← min {min{CtF}, min{OpenF}min{NewF, T}} is O(θC,q + |C|2 + θC,q) , which is

(ii) O(θC,q).

Deleting an element of a heap with size n can be performed in time O(log(n)), so the

execution of (iii) is bounded by O(θC,q log θC,q).

Every time one or more cities become connected, it is necessary to update OpenF

and to update NewF.

The algorithm visits all facilities in OpenF and recalculate its event time. Suppose

we can calculate the new event time in O(q). The branch that update a set OpenF

takes O(θC,qq) to update and O(θC,q) to reconstruct the heap property.

Now it will be showed how to update the event time in O(q) when a city become

connected. Consider a facility that has many cities contributing to it, divided in un-

connected, named as S ′, and temporarily connected, named as G′. A naive algorithm

to update the time in which this facility is totally paid consists in isolating T in equa-

tion
∑

j∈S′(T − d(i, j)) +
∑

j∈G′(αj − d(i, j)) = f , which has complexity O(|S ′ ∪ G′|q).
However, there is a more efficient approach. Suppose we have already calculated the

p = center(cit(R)). The point p does not change during the execution of the algorithm,

because Lemma 4.2.1 do not care if cities are fixed or not fixed. Also, suppose that we

have a previous time t when the facility is totally paid just before a city j is connected. All

contributions will be the same, except j contribution, which changes from t to αj at the

event moment. So, the difference t−αj must be supplied by all other unconnected cities.

The new event time can be calculated in O(q), as the previous event time, plus (t − αj)

divided by the number of remaining unconnected cities |S ′ \ {j}|.
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With an O(q) algorithm to update the event time in OpenF, each update of all events

takes the mentioned O(θC,qq). The update is executed every time a city becomes tem-

porarily connected, so it can be called at most |C| times. Thus, the final update OpenF

complexity during the algorithm is (iv) O(|C|θC,qq).

The update of the NewF set is similar. Every time a city j becomes connected, the

update procedure iterate by all O(|C|q+1) elements of NewF and recalculate its initial

point, which takes O(βq|C|q+1). If some event had changed it S or R sets, it is assigned as

not used. Then the algorithm recreate the internal heap property to the not used elements

with time t greater than or equal the current algorithm time T . The complexity of create

a heap property will be O(|C|q+1). Remembering that the update is done at most once

by new temporarily connected city, the overall time complexity of update NewF during

the algorithm is (v) O(|C||C|q+1βq).

The final branch of the algorithm is Line (v). In this line the algorithm create O(θC,q)

new facilities. To create one facility event, the algorithm discovers which cities belong

to cit(R), in O(γC) time complexity , then it calculates the center(R), in O(q|C|), and it

adds the event to OpenF in O(log θC,q). This branch takes (vi) O(θC,q(γC+q|C|+log θC,q))

The final algorithm complexity time for the presented implementation is the sum of

(i), (ii), (iii), (iv), (v), (vi) complexities, which is

O(|C|q+1(|C|βq + |C|q2 + qγC + q2 log q|C|)).
Where βq is the time to calculate a starting point of a region and γC is the time to discover

which cities belong to a region R.

4.3.2 Approximation Factors

We can adapt algorithm ÂJV to the KM Problem. If we set the cost of opening a facility

to a small value, the number of facilities in the solution will be large. Otherwise, a large

value of f will force ÂJV to open only one facility. With this idea, it is possible to use

(in practice) a binary search over ÂJV to open k facilities, although it may not converge

to k. Denote this algorithm by A∗
JV. So, Jain and Vazirani [30] described a randomized

rounding between the solution with k1 > k and the solution with k2 < k to obtain a

solution that opens exactly k facilities.

Considering l22 distance function, AJV is a 9-approximation to FL Problem [30]. Thus,

by Proposition 4.2.2, ÂJV is a (9 + ǫ)-approximation algorithm to ConFL.

When the binary search performed in algorithm A∗
JV converges to k centers, the ob-

tained solution has a deviation factor of at most (9+ǫ). When the number of centers does

not converge to k, the randomized rounding step increases the approximation bound by a

factor of 6, as shown in Section 6 of [30]. Thus ÂJV is a (54 + ǫ)-approximation algorithm

when the the dimension is constant.
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4.4 Adapting AJMMSV to ConFL

Jain, Mahdian and Saberi [29] and Jain, Mahdian, Markakis, Saberi and Vazirani [28]

presented a 1.861-approximation algorithm for the FL problem with time complex-

ity O(m log m), where m = |C| · |F |. This algorithm, named here AJMMSV is similar

to AJV and the intersection regions technique described in Section 4.3 can also be applied

to describe a polynomial-time algorithm ÂJMMSV to l22-ConFL.

Algorithm AJMMSV has only one phase, similar to Phase 1 of AJV, and once a facility

is open, it remains open until the end of the execution. This algorithm considers only

two events: (a) if some unconnected city j has αj = cij for an open facility i, then city j

is connected to i; (b) if the contributions of unconnected cities U to a closed facility i

reaches f (i.e.,
∑

j∈U max(0, αj − cij) = f) then facility i is opened and every city j ∈ U

with αj ≥ cij is connected to i and city j is removed from U .

When a city j is connected to an open facility, its contribution to other points be-

comes 0 and the set of events NewF is fixed in the beginning of the algorithm. Whenever

an event (p, t, S, G) ∈ NewF has a city already connected, it must be discarded and

ÂJMMSV does not need to maintain used events in NewF in opposition to the algorithm

in Figure 4.5. When a city j becomes connected to a facility i, its contribution radius to

other facilities is updated to zero. The set of facilities in OpenF need to be recalculated,

removing the j-contribution.

For the distance function l22 and q constant, this operation can be performed efficiently

with time complexity O(q). One event in OpenF is a tuple (t, i, J) where i ∈ Rq is the

facility, t is the time when i is totally paid and J is the contributors to i. When a city j

becames connected, the new updated event will have J ′ = J−{j} contributors cities. The

new facility position is given by i′ = (center(J)|J | − j)/(|J | − 1). The naive algorithm to

calculate the time when i′ is totally paid consists in iterate all cities j′ ∈ J ′ and update

the time the event time with time t′ such as
∑

j′∈J ′(t′−d(j′, i′)) = f . If city j contributes

for a facility x in time T , its contribution is given by a paraboloid Pj(x, T ) = T − d(j, x).

The contribution of the cities in a set J is the sum of paraboloids, and can be represented

by the polynomial

PJ(x, T ) = T |J | −
q

∑

i=1

(aix
2
i + bix) + c

for a some constants a, b and c. The polynomial PJ ′(x, T ) can be computed from PJ(x, T )

in O(q) removing the contribution of the connected city. The new opening time t′ is such

that P (i′, t′) = f where t′ can be efficiently calculated in O(q).



4.4. Adapting AJMMSV to ConFL 76

4.4.1 Extension of AJMMSV to Euclidean Metric

For the l2 metric, most of the analysis is still valid. We have the same description for a

region, a starting point, etc. The starting points still have a set E(R) = S(R) ∪ G(G)

of tight cities, where E(R) have size less than or equal to q + 1. It will also leads to

a polynomial number of regions, and each point in center(cit(R)) is a candidate to be

a facility. The first difference to deal is that center(cit(R)) is not necessarily only one

point. For example, in a region with cit(R) = {a, b}, any point in the straight segment

between a an b will receive the maximum contribution of a and b.

The Fact 4.3.1 says the point center(cit(R)) receives the maximum contribution of

the cit(R). It needs to be restated to any point in center(cit(R)) receives the maximum

contribution of cities in cit(R).

The Lemma 4.3.2 shows that the only points eligible to be an open facilitiy by the

algorithm is the center of a set of cities that define a region at some time. In Euclidean

case, only points that belong to a center of a set of cities that define a region at some

time is eligible to be an open facility.

Lemma 4.3.3 shows that a center becomes ineligible when a new contribution

boundary start to contribute to it. This lemma needs to be generalized. When a

point in center(cit(R)) receives a contribution of a new city j #∈ cit(R), all points

in center(cit(R)) become ineligible. The proof is analogous to the one presented in Lemma

4.3.3, and therefore it is omitted.

The set center(cit(R)) may have more than one element. Each of them receives the

maximum contribution from the cities, with respect to R. All points in center(cit(R)) will

became totally paid and will be able to be an open facility at a same time. The algorithm

AJMMSV, choose one of them arbitrarily. Thus, it is sufficient to select any arbitrary point

in center(cit(R)), so that the algorithm works in Euclidean Metric.

However, there are an additional difficult in calculate a center in Euclidean Space.

In the Euclidean plane, the computation of a center of a set of points S is an expen-

sive operation. This problem is known as Fermat-Weber Problem or Geometric Median

Problem.

Consider the case when S has exactly 3 points. If one of the interior angles of the

triangle defined by S has more than 120◦ the center is the point of S with that angle.

If all angles are smaller than 120◦, the geometric median is the point inside the triangle

which leads to an angle of 120◦ to any pair of points in S. This is also known as the

Fermat point of S.

If S has more than 3 points, the local search algorithm given by Weiszfeld [47] can be

used to compute a center. This algorithm has efficient implementations [37] and has been

largely investigated in the literature. There is also a (1+ǫ)-approximation algorithm due to

Xue and Ye [48] to compute the center of a set, with time complexity O(
√

nq log(cmax/ǫ)+
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log(nq)) where n is the number of points, cmax the maximum cost and q is the space

dimension.

Using Proposition 4.2.2, the proposed implementation of algorithm ÂJMMSV is

a (1.861 + ǫ)-approximation algorithm to ConFL.

4.5 Computational Results

We implemented ÂJMMSV and ÂJV in the Java programming language. We compared

the presented algorithms with an efficient program to the k-Means problem, developed

by Kanungo, Netanyahu, Piatko, Silverman and Wu [31] and available in the Internet.

This program, which we denote by AKMNPSW, is also used to derive an algorithm to

the l22-ConFL problem. Program AKMNPSW is implemented in C++ and uses four algo-

rithms to find a good clustering: The algorithm of Lloyd, a local search algorithm (based

on swapping centers), a hybrid heuristic that iterates between Lloyd and local search and

a more complex hybrid heuristic.

The adaptation of AKMNPSW to the l22-ConFL problem, which we denote by A+
KMNPSW,

consists of executing the algorithm AKMNPSW for each possible number of centers and

returning a solution with the minimum value. Which means, if Sk is the solution returned

by AKMNPSW using k centers, A+
KMNPSW returns a solution with value min1≤k≤|C|{v(Sk) +

k · f}.
The algorithms were compared with two randomly generated sets of points, one with

50 and the other with 100 points, where each point is uniformly distributed in the

square [0, 1] × [0, 1]. For each set, we made a set of instances If for various values of f .

Although all tests were performed on the same computer, comparisons of the algo-

rithms using execution time are not conclusive, because they differ in the programming

language (ÂJMMSV and ÂJV are implemented in Java and A+
KMNPSW is implemented in

C++) and AKMNPSW is used as a black box (it reads the instance each time it is exe-

cuted). Alternatively, small execution times indicate the applicability of the presented

algorithms.

The results are presented in tables 4.1 and 4.2. For each algorithm Ax in the set A =

{ÂJMMSV, ÂJV, A+
KMNPSW}, we present its execution time in milliseconds, t(ms), the ratio

with the best obtained solution, dev (given by Ax(I)/ miny∈A Ay(I)), and the number of

open facilities #fac. We report the time taken by algorithm A+
KMNPSW separatedly, since

it spends basically the same time for each instance of the same set.

The time to solve instances of size 50 with A+
KMNPSW was 2.4 seconds, and it is in-

dependent of f . Algorithm A+
KMNPSW was executed with the standard number of stages:

100. If we increase the number of stages, it produces better solutions, but its running

time increases basically by the same factor. If we set the number of stages to 1,000, the
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ÂJMMSV ÂJV A+

KMNPSW

f t(ms) dev #fac t(ms) dev #fac dev #fac

23 2,654 1.00 1 2,076 1.02 1 1.00 1
22 1,259 1.12 1 1,784 1.08 1 1.00 2
21 641 1.04 2 974 1.31 1 1.00 2
20 392 1.08 3 661 1.32 2 1.00 3
2−1 263 1.19 3 610 1.18 3 1.00 4
2−2 201 1.19 6 502 1.46 3 1.00 6
2−4 85 1.05 11 458 1.12 9 1.00 11
2−6 68 1.00 22 414 1.10 15 1.03 21
2−8 58 1.00 32 458 1.01 29 1.07 39
2−10 79 1.00 41 595 1.00 41 1.06 47
2−11 75 1.00 46 642 1.00 45 1.02 48
2−12 77 1.00 48 741 1.00 48 1.00 48
2−13 75 1.00 50 746 1.00 50 1.00 50

Table 4.1: Performance of ÂJMMSV, ÂJV and A+
KMNPSW for instances with 50 random

points for l22-ConFL.

worst result of A+
KMNPSW has dev equals to 1.007 in 13.9 seconds. If we set the number of

stages to 10,000, AKMNPSW finds always the smallest, but in 126 seconds of execution.

ÂJMMSV ÂJV A+

KMNPSW

f t(ms) dev #fac t(ms) dev #fac dev #fac

23 22,887 1.02 1 34,230 1.04 1 1.00 1
20 3,425 1.16 3 12,848 1.81 2 1.00 4
2−3 1,036 1.05 12 6,774 1.71 6 1.00 13
2−6 527 1.00 34 6,786 1.32 20 1.04 26
2−9 478 1.00 66 8,359 1.02 64 1.11 68
2−12 489 1.00 92 10,559 1.00 92 1.02 96
2−15 482 1.00 98 12,440 1.00 98 1.00 99
2−18 467 1.00 100 13,080 1.00 100 1.00 100

Table 4.2: Performance of ÂJMMSV, ÂJV and for instances with 100 random points
for l22-ConFL.

For the set with 100 points, algorithm A+
KMNPSW was also executed with 100 stages

(default), presenting a maximum dev of 1.11. If we set the number of stages to 1,000,

the worst result have dev 1.02 in 73 seconds. If we set the number of stages to 10,000,

AKMNPSW always return the minimum solution, but in 727 seconds of execution.

We also present computational experiments for the k-Means problem. We consider

the same two randomly generated set of points (with 50 and 100 points) with different
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values of k (number of centers). The algorithms ÂJMMSV and ÂJV were adapted to the

k-Means problem applying a binary search in the value of f to obtain the correct number

of centers. We denote the adapted algorithms as A∗
JMMSV and A∗

JV. The obtained results

are presented in Table 4.3. For the algorithm AKMNPSW, we also present the dev column

for different number of stages: 102, 103 and 104.

The CPU time to solve AKMNPSW with 100 stages was 40 milliseconds on average with

a maximum of 66 milliseconds. With 1,000 stages, the average time was 266 milliseconds

with a maximum of 469 milliseconds. With 10,000 stages, the average CPU time was 2.5

seconds with a maximum CPU time of 4.6 seconds.

We can also observe that A∗
JMMSV and A∗

JV found better solutions for large values of k.

For instance of size 44, we can observe that AKMNPSW is 2.9 times worse than A∗
JMMSV

with 100 stages. For instance of size 47, AKMNPSW is 1.53 times worse than A∗
JMMSV with

1,000 stages. With 10,000 stages, AKMNPSW always return the smallest solution.

A∗

JMMSV A∗

JV AKMNPSW

k t(ms) dev t(ms) dev dev 102 dev 103 dev 104

1 5,152 1.15 3,879 1.57 1.00 1.00 1.00
10 409 1.14 4,319 1.29 1.00 1.00 1.00
20 438 1.11 3,136 1.61 1.24 1.01 1.00
30 473 1.06 6,762 1.31 1.66 1.07 1.00
40 463 1.00 3,141 1.00 2.78 1.12 1.00
44 541 1.11 2,131 1.00 3.27 1.48 1.00
47 306 1.00 6,711 1.00 1.80 1.53 1.00
50 59 1.00 695 1.00 1.00 1.00 1.00

Table 4.3: Performance of A∗
JMMSV, A∗

JV and AKMNPSW for instances with 50 random
points for k-Means.

We made the same experiments with instances of size 100. Table 4.4 shows that the

quality of AKMNPSW can be far from the optimum using 100 stages. We have that A∗
JMMSV

and A∗
JV are stable in solution quality, with maximum dev equals to 1.29 and 1.48.

A∗

JMMSV A∗

JV AKMNPSW

# stages 102 103 104

max(dev) 1.30 1.48 10.24 4.01 1.02
avg(time) s 5.7 56 0.11 0.7 7

Table 4.4: Performance of A∗
JMMSV, A∗

JV and AKMNPSW for instances with 100 random
points for k-Means.
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4.6 Future Works

As future works we pointed that the proposed technique could be proved to be more

general. If yes, it would become a theoretical tool to convert graph to space problems

keeping polynomiality.

4.7 Conclusion

In this paper, we consider a new problem, denoted by ConFL, and we propose good

approximation algorithms for Euclidean and squared Euclidean distance functions. We

also propose to solve the d-Clustering problem via the ConFL problem. Implementa-

tions of the proposed algorithms for l22-ConFL and d-Clustering with distance function l22
shows that they have good practical performance. We also compared these algorithms for

the l22-Clustering problem with a hybrid algorithm (that takes the best solution among

4 algorithms) and two presented algorithms. In many cases, the presented algorithms

obtained better solutions than the hybrid algorithm, suggesting that they are good can-

didates to be incorporated in the hybrid strategy.



Caṕıtulo 5

Conclusões

No estudo desenvolvido neste doutorado houve um equiĺıbrio entre teoria e aplicabi-

lidade. Em todos os trabalhos houve uma seção de resultados experimentais, onde os

algoritmos foram analisados empiricamente. Baseados nos estudos realizados, podemos

abordar uma questão relevante, a métrica de qualidade para algoritmos.

Um fator de aproximação próximo de 1 é comumente visto como o mais desejável.

Cŕıticos costumam questionar se um algoritmo 10-aproximado teria alguma utilidade.

Quem se interessaria por uma solução dez vezes pior que a ótima? Qual a relação entre

fator de aproximação e desempenho prático? Fatores referentes a complexidade de tempo

podem pesar mais na hora se optar por um algoritmo?

Um fator de aproximação próximo a 1 garante a qualidade da solução, porém um

fator de aproximação mais alto não implica diretamente em soluções de baixa qualidade.

Ao se restringir o domı́nio a uma classe de instâncias de interesse prático, um algoritmo

(log n)-aproximado pode ser mais rápido, mais simples de ser implementado e devolver

soluções de melhor qualidade que um algoritmo 4-aproximado. O estudo desenvolvido

no Caṕıtulo 2 aproximou-se disso, ao conseguir soluções com desvio máximo de 1,27%

em uma quantidade de tempo 3 ordens de grandeza menor que os desenvolvidos sobre

um resolvedor profissional de programação linear para o primeiro grupo de instâncias

estudadas.

Outro fator de qualidade de um algoritmo que busca um espaço em aplicações é sua

desvinculação da programação linear. Um programa combinatório é muito mais facilmente

utilizável do que outro que necessita de um pacote de programação linear para funcionar.

Algoritmos baseados no método primal dual, como os concebidos neste trabalho para o

problema da Classificação Métrica Uniforme e para o de clusterização, podem ser facil-

mente distribúıdos e rodar em clientes que possuam um sistema computacional mesmo

que de baixo poder de processamento, como celulares ou outros aparelhos eletrônicos.

Algoritmos que necessitam de um resolvedor de programação linear ou linear inteira tem

81



82

requisitos de hardware que inviabilizam seu uso em sistemas menores.

Confrontando algoritmos aproximados com algoritmos de programação inteira, vemos

que cada abordagem tem um nicho de aplicabilidade diferente. Quão confortável ficamos

ao responder a um cliente que o caminho hamiltoniano oferecido para a viatura da poĺıcia

é o menor posśıvel dentro de uma precisão de 10−4. Porém, um cálculo que demore uma

hora para ser realizado pode inviabilizar uma aplicação. Um algoritmo aproximado pode

servir como um bom limitante inicial, diminuindo o processamento do algoritmo inteiro,

ou mesmo fornecendo uma solução que satisfaça as necessidades do cliente.

Uma métrica que pode ser levada em conta é a relação custo-benef́ıcio entre a qua-

lidade da solução e seu tempo computacional. Heuŕısticas, algoritmos aproximados e

programação inteira ocupam espaços distintos em relação a esta métrica. Espera-se que

uma heuŕıstica seja rápida e possua uma qualidade média aceitável. Para um algoritmo

aproximado, exige-se um comportamento de pior caso dentro de certos limites. A pro-

gramação inteira está interessada em soluções ótimas, mesmo que estas sejam custosas.

Os resultados obtidos no Caṕıtulo 4 mostram que um algoritmo (54 + ǫ)-aproximado

pode encontrar soluções melhores que as melhores heuŕısticas conhecidas para um pro-

blema clássico em tempo competitivo. Isto nos diz que um fator de aproximação mais

elevado não representa diretamente o desvio prático do algoritmo. Quanto às heuŕısticas,

mesmo as melhores conhecidas, podem desviar-se mais que algoritmos aproximados. Isto

vem a fortalecer o fato de que algoritmos aproximados são uma engenhosa maneira de cons-

truir a solução a partir de técnicas eficientes com respaldo teórico, enquanto heuŕısticas

são intuitivamente interessantes e recebem validação experimental. Uma análise formal

da qualidade das soluções produzidas, como feito para algoritmos aproximados, enriquece

algoritmos e heuŕısticas.

Ao tratarmos complexidade de tempo, a inclusão de uma restrição de caráter cúbico

como a restrição de desigualdade triangular, ou mesmo restrições mais densas, traz ganhos

para a análise teórica, gerando relaxações mais justas e novas restrições que podem ser

utilizadas na análise do algoritmo. Entretanto, tais restrições podem ser inviáveis para

a maioria das aplicações. Sistemas lineares ou semidefinidos com este tipo de restrição

estão fadados a instâncias pequenas e moderadas.

Quanto à experiência com programação semidefinida, ela é uma poderosa ferramenta

para construção de boas relaxações, dado que é mais forte que relaxações lineares. Os

aspectos práticos envolvidos mostram que é uma área carente. Os experimentos mostra-

ram que os resolvedores podem ser ainda muito melhorados a fim de se tornarem mais

competitivos.

Outro aspecto relevante dos algoritmos aproximados é que eles estão inseridos dentro

da teoria da computação e seus aspectos teóricos são suficientes para justificá-los na

maioria dos casos. A busca por melhores fatores de aproximação em problemas clássicos
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levam a comunidade a buscar novas técnicas de algoritmos e de provas. Dois exemplos de

destaque são o problema de Localização de Facilidades, onde Jain et al. propuseram um

método de LP revelador de fator [28] e o problema do corte Máximo, onde foi introduzido

o uso da programação semidefinida em algoritmos de aproximação por Goemans e Wil-

liamson [22], dentre outros trabalhos inovadores e premiados internacionalmente.

Quebras de fatores de aproximação, demonstração da existência de esquemas de apro-

ximação, demonstração de resultados de inaproximabilidade são exemplos da busca por

novos paradigmas, mesmo que tais resultados estejam desvinculados de uma aplicação

direta.

Com esta tese fizemos uma sistemática análise de problemas interessantes para a

Ciência da Computação. Propusemos novos algoritmos, obtivemos resultados experi-

mentais e propusemos técnicas, como a técnica das esferas no Caṕıtulo 4. Com isso,

oferecemos uma tese que cumpre o seu papel de dar um pequeno passo na longa cami-

nhada da Ciência.
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