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para Identificação e Reconhecimento de Imagens

Javier Alexander Montoya Zegarra1

Dezembro de 2007

Banca Examinadora:

• Neucimar J. Leite (Orientador)

Instituto de Computação

Universidade Estadual de Campinas

• Ricardo da Silva Torres (Co-orientador)

Instituto de Computação

Universidade Estadual de Campinas

• Agma Juci Machado Traina

Instituto de Ciências Matemáticas e de Computação
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Resumo

Uma importante caracteŕıstica de baixo ńıvel, utilizada tanto na percepção humana como

no reconhecimento de padrões, é a textura. De fato, o estudo de textura tem encontrado

diversas aplicações abrangendo desde segmentação de textura até śıntese, classificação e

recuperação de imagens por conteúdo.

Apesar das múltiplas técnicas eficientes e eficazes propostas para classificação e re-

cuperação, ainda há alguns desafios que precisam ser superados como, por exemplo, a

necessidade de descritores de imagens compactos e robustos a serem empregados na con-

sulta e classificação de bases de imagens de textura.

Esta dissertação propõe um descritor de imagens de textura visando à busca e à

recuperação de bases de dados de imagens. Este descritor baseia-se na Decomposição Pi-

ramidal Steerable caracterizada por sua análise de forma invariante à rotação ou à escala.

Resultados preliminares conduzidos em cenários não-controlados demonstraram caráter

promissor da abordagem.

No que diz respeito à classificação de imagens de textura, esta dissertação propõe

ao mesmo tempo um sistema de reconhecimento, o qual possui como principais carac-

teŕısticas representações compactas de imagens e módulos de reconhecimento eficientes.

O descritor proposto é utilizado para codificar a informação relevante de textura em veto-

res de caracteŕısticas pequenos. Para tratar os requisitos de eficiência do reconhecimento,

uma abordagem multi-classe baseada no classificador de Floresta de Caminhos Ótimos

é utilizada. Experimentos foram conduzidos visando avaliar o sistema proposto frente a

outros métodos de classificação. Resultados experimentais demonstram a superioridade

do sistema proposto.
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Abstract

An important low-level image feature used in human perception as well as in recognition is

texture. In fact, the study of texture has found several applications ranging from texture

segmentation to texture synthesis, classification, and image retrieval.

Although many efficient and effective techniques have been proposed for texture classi-

fication and retrieval, there are still some challenges to overcome. More specifically, there

is a need for a compact and robust image descriptor to query and classify texture image

databases.

In order to search and query image databases, this dissertation provides a texture

image descriptor, which is based on a modification of the Steerable Pyramid Decom-

position, and is also characterized by its capabilities for representing texture images in

either rotation-invariant or scale-invariant manners. Preliminary results conducted in

non-controlled scenarios have demonstrated the promising properties of the approach.

In order to classify texture images, this dissertation also provides a new recognition

system, which presents as main features, compact image representations and efficient re-

cognition tasks. The proposed image descriptor is used to encode the relevant texture

information in small size feature vectors. To address the efficiency recognition require-

ments, a novel multi-class object recognition method based on the Optimum Path Forest

classifier is used. To evaluate our proposed system against different methods, several

experiments were conducted. The results demonstrate the superiority of the proposed

system.
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A época de graduação na Universidade Católica San Pablo foi muito grata e especial.
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experiências inesquećıveis.
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Kenneth Nilsson, Marcelo Oliveira, Nilceu Marana, Pascual Figueroa, Serge Belongie e

Sharat Chikkerur.
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dados bem como pelos seus desejos em me ajudar.

Aos “brasileños” com os quais morei e que me permitiram conhecer mais de perto a

cultura brasileira. Gostaria de agradecer em especial aos membros das repúblicas 999 e Ca-

x
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Caṕıtulo 1

Introdução

Uma importante caracteŕıstica de baixo ńıvel, utilizada tanto na percepção humana como

no reconhecimento de padrões, é a textura. Embora a percepção de textura seja intuitiva

(pois é posśıvel reconhecê-la ao enxergá-la), ainda não existe uma definição precisa sobre

a mesma. Neste sentido, a literatura tem apresentado diferentes definições. Dentre as

quais podemos citar:

• “Uma imagem de textura é descrita pelo número e tipos de suas primitivas (tonais),

e a organização espacial ou distribuição de suas primitivas (tonais)...” [47].

• “A textura é considerada como aquilo que constitui uma região macroscópica. Sua

estrutura é simplesmente atribúıda aos padrões repetitivos nos quais elementos ou

primitivas estão organizados de acordo com uma regra de colocação...” [129].

• “A noção de textura parece depender de três ingredientes: (i) alguma ‘ordem’ local

é repetida sobre uma região que é grande em relação ao tamanho da ordem, (ii) a

ordem consiste em um arranjo não aleatório de partes elementares, e (iii) as par-

tes são geralmente entidades uniformes que possuem aproximadamente as mesmas

dimensões em toda parte dentro da região de textura.” [48].

• “A propriedade básica de uma textura é um padrão pequeno elementar que é repe-

tido periodicamente ou quase-periodicamente em um espaço como um padrão em

um papel de fundo. Assim, é suficiente descrever o padrão elementar pequeno e as

regras de repetição...” [54].

Embora exista uma grande diversidade de definições, ainda não há um conceito univer-

salmente aceito sobre o que seja uma textura. Contudo, estas definições apresentam uma

série de pontos em comum [123]: (1) numa mesma textura existe uma grande variação
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nos ńıveis de intensidade entre pixels próximos, isto é, no limite da resolução, há não-

homogeneidade e (2) a textura é uma propriedade homogênea em alguma escala espacial

maior que a resolução da imagem.

A homogeneidade nas texturas, representada pela repetição de padrões gera uma série

de caracteŕısticas visuais, que podem ser identificadas como sendo, por exemplo, direcio-

nais, finas, ásperas e uniformes [71,129,145]. Alguns exemplos deste tipo de caracteŕısticas

visuais podem ser encontrados nas Figuras 1.1(a)- 1.1(d) [146]. Note que cada textura

pode estar associada a uma ou mais destas caracteŕısticas.

(a) Caracteŕısticas visuais direcionais

vs. não-direcionais.
(b) Caracteŕısticas visuais suaves vs.

não-suaves.

(c) Caracteŕısticas visuais finas vs.

ásperas.
(d) Caracteŕısticas visuais uniformes vs.

não-uniformes.

Figura 1.1: Alguns tipos de caracteŕısticas visuais de textura.

Por outro lado, as imagens de textura são tipicamente classificadas como sendo na-

turais ou artificiais. As texturas naturais estão relacionadas a objetos que não são

produzidos pelo homem. Exemplos desta classe de texturas incluem: pedras, água, ma-

deira, areia e grama. Por outro lado, nas texturas artificias existe uma intervenção do

homem. Alguns exemplos incluem padrões têxteis, construção, pintura, metal. Algumas

amostras de texturas naturais e artificiais são apresentadas na Figura 1.2.

Independentemente do seu tipo de classificação, as imagens de textura podem ser

caracterizadas pelas suas variações em escala e direcionalidade. As variações na escala

implicam que texturas do mesmo tipo podem parecer diferentes uma das outras quando

apresentadas em diferentes escalas. Este efeito é análogo ao incrementar ou decrementar

a resolução da imagem.
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(a) pedras (b) agua (c) madeira (d) aréia (e) grama

(f) tecido inca (g) parede de ti-
jolos

(h) pintura (i) metal (j) placas de
carro

Figura 1.2: Exemplos de texturas naturais e artificiais. A primeira linha apresenta 5
diferentes tipos de texturas naturais. A segunda linha apresenta 5 diferentes tipos de
texturas artificiais.

Esta propriedade está relacionada com a granuralidade (coarseness) presente nas ima-

gens de textura pode ser entendida como o peŕıodo de repetição espacial do padrão lo-

cal [116]. As imagens de textura mais finas apresentam peŕıodos de repetição menores,

enquanto que as texturas de maior granuralidade apresentam peŕıodos mais acentuados

de repetição. Além disso, texturas da mesma classe, caracterizadas por orientações de-

finidas, podem apresentar diferentes direções dominantes quando a mesma imagem sofre

rotações. Isto acontece entre outros, devido aos diferentes pontos de vista e de captura

das imagens.

1.1 Análise de textura

A análise de textura é uma área que vem despertando grande interesse há alguns anos

por diversos grupos de pesquisa e de indústria espalhados pelo mundo. Como resultado

destes estudos, diversas aplicações foram propostas, incluindo desde tarefas de recuperação

de imagens por conteúdo [76, 125] até tarefas de classificação [136], segmentação [120],

śıntese [6, 147] e obtenção de forma a partir de textura [78] (veja Figura 1.3). Essas

cinco principais aplicações podem ser catalogadas como as principais áreas de pesquisa

no campo de análise de textura [86]. Cada uma delas será discutida brevemente a seguir.
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Estas aplicações caracterizam-se por um elemento em comum. Todas procuram res-

ponder a pergunta de como caracterizar/representar uma textura de forma que as suas

propriedades mais importantes sejam extráıdas. O foco desta dissertação se encontra na

obtenção de métodos de caracterização de texturas para fins de recuperação de imagens

por conteúdo e classificação. Além disso, uma importante motivação do nosso estudo é a

de utilizar vetores de caracteŕısticas de baixa dimensão, visando facilitar aplicações nas

quais o espaço de armazenamento dos mesmos representa uma limitação.

Figura 1.3: Áreas principais de análise de textura.

1.1.1 Recuperação de imagens por conteúdo

Devido ao grande número de imagens coletadas a cada dia nas áreas civis, comercias e

acadêmicas, bem como aos avanços nas tecnologias de aquisição e digitalização de imagens,

os bancos de dados de imagens caracterizam-se hoje em dia pelo seu grande volume.

Neste sentido, a idéia das técnicas de recuperação de imagens por conteúdo baseadas em

textura consiste em oferecer mecanismos que possibilitem a indexação dessas bases. Para

tanto, utilizam-se caracteŕısticas discriminativas texturais que representam o conteúdo

visual das imagens capturadas por meio de descritores. Tradicionalmente, um descritor

é composto por: (i) um algoritmo de extração de caracteŕısticas que gera um vetor de

caracteŕısticas, e por (ii) uma função de distância utilizada para se calcular a distância

entre duas imagens. Neste sentido, para se obter a similaridade entre um par de imagens,

calcula-se a distância entre os seus vetores de caracteŕısticas. Assim, as imagens podem

ser pesquisadas utilizando-se representações visuais, sendo que as imagens recuperadas

são as visualmente mais similares à imagem de busca. Alguns exemplos deste tipo de

sistemas na literatura incluem: Photobook [110], VisualSEEk [126] e Cortina [39, 119].

No contexto de recuperação de imagens por conteúdo, a textura pode ser utilizada de

duas maneiras. No primeiro caso, as caracteŕısticas texturais representativas das imagens

são extráıdas e depois armazenadas em uma base de dados, de tal forma que possam

ser utilizadas posteriormente na busca de imagens mais semelhantes considerando-se uma
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imagem de consulta [66,80,92]. As imagens utilizadas podem ser: (i) regiões de texturas

obtidas após um processo de segmentação, (ii) imagens de texturas particionadas em

subimagens, ou (iii) imagens de textura sem nenhum pré-processamento.

No segundo caso, a textura é utilizada para anotação de imagens [101,112,140]. A idéia

consiste em fornecer aos usuários anotações automáticas das imagens com base nas suas

propriedades de textura. Essa tarefa é muito importante, sobretudo quando o conjunto de

imagens a ser anotado é muito grande. Dada uma anotação inicial fornecida pelo usuário,

o sistema é capaz de gerar um modelo que pode ser aplicado a outros tipos de imagens

similares. Dessa forma, a subjetividade na anotação das imagens pode ser reduzida.

Uma importante caracteŕıstica dos sistemas de recuperação de imagens por conteúdo

é que ao invés de se obter uma única imagem, um conjunto de N imagens pode ser encon-

trado. Neste caso, cada uma das imagens é ordenada em relação à sua similaridade com

a imagem de consulta. Note que a definição da quantidade de imagens a ser recuperada,

representada pela variável N , é flex́ıvel com relação aos requisitos do sistema.

1.1.2 Classificação de textura

O objetivo da classificação de textura consiste em atribuir uma dada imagem desconhecida

a uma dada categoria de um conjunto de classes de texturas conhecidas. Tradicionalmente,

a tarefa de classificação envolve as fases de aprendizado e reconhecimento [58, 121].

Na fase de aprendizado, procura-se criar um modelo de cada classe de textura pre-

sente nos dados de treinamento. Assim, utilizando-se um método de representação de

textura que busca caracterizar suas propriedades mais relevantes, extrai-se um conjunto

de vetores de caracteŕısticas para cada uma das imagens. Normalmente estes vetores de

caracteŕısticas consistem em números escalares que representam algumas propriedades

das texturas tais como orientação, luminosidade, contraste, etc.

Já na fase de reconhecimento, utiliza-se o mesmo método de representação textural

para se extrair o vetor de caracteŕısticas da imagem a ser classificada. Em seguida,

um algoritmo de classificação é utilizado para se comparar o vetor de caracteŕısticas

extráıdo com aqueles obtidos das imagens de treinamento. Assim, considerando-se o

melhor casamento, a classe da textura pode ser atribúıda. Os posśıveis resultados da

classificação podem ser a correta classificação da imagem ou a rejeição da classe indicada.

Além disso, a pesquisa recente neste tópico direciona-se também para o reconhecimento de

texturas invariantes a deformações geométricas, tais como rotação e escala [74,96,98,118].

Nesta dissertação, apenas a classificação de texturas supervisionada é considerada e a

acurácia da classificação refere-se à porcentagem das amostras corretamente classificadas.
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1.1.3 Segmentação de textura

O objetivo da segmentação de textura é decompor uma dada imagem em um conjunto

disjunto de componentes nos quais a textura é constante [36, 55, 68, 84]. A maioria dos

métodos existentes na literatura limita-se ao problema de segmentação de texturas em

ńıveis de cinza [12, 133, 135]. Avanços nessa última década referem-se à abordagem do

problema de segmentação de texturas de imagens coloridas [91,127,141]. Alguns exemplos

de imagens segmentadas por textura são apresentados na Figura 1.4.

Tradicionalmente, a tarefa de segmentação é composta por duas atividades: (i) repre-

sentação da textura e (ii) determinação das fronteiras de segmentação. A idéia baseia-se

no fato de que para se determinar se duas dadas texturas são iguais, precisa-se de um

método de representação da textura de forma que as fronteiras adjacentes de regiões

texturais diferentes possam ser identificadas.

A existência de uma informação a priori dos tipos de textura presentes numa imagem

implica uma segmentação dita supervisionada. Caso os pixels ou regiões tenham que ser

agrupados com base numa medida de similaridade perceptual, a segmentação será dita

não supervisionada. Além disso, os métodos de segmentação podem ser classificados como

sendo baseados em regiões ou contornos (boundary). A idéia dos métodos de segmentação

com base em regiões é agrupar pixels ou regiões locais menores relativos à similaridade

de alguma propriedade textural. Dado que neste tipo de método pode ser necessário es-

pecificar o número de texturas diferentes na imagem, os mesmos podem ser considerados

como métodos de segmentação supervisionados. Adicionalmente, os métodos baseados na

detecção de contornos subdividem a imagem em fronteiras nas quais existe alguma dife-

rença textural entre regiões adjacentes. Este tipo de segmentação é não supervisionada, já

que não necessita do conhecimento a priori do número de diferentes texturas da imagem.

1.1.4 Śıntese de Textura

O objetivo principal da śıntese de textura é gerar uma imagem de tamanho arbitrário a

partir de uma amostra de textura [73, 143]. Em outras palavras, o problema pode ser

entendido como: dada uma amostra de textura, sintetize-a em uma nova textura de tal

forma que, quando percebida por um observador humano, esta aparente ter sido gerada

pelo mesmo processo estocástico básico [142]. Os dois grandes desafios nesta tarefa con-

sistem, por um lado, em como modelar o processo estocástico de uma dada textura finita

e, por outro, em como desenvolver de maneira eficiente um procedimento de amostra-

gem para gerar a nova imagem. A fidelidade da representação sintética obtida depende

da modelagem utilizada, enquanto que o custo computacional depende da eficiência da

amostragem.

Os métodos de śıntese de textura mais comuns que visam sintetizar as imagens em
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(a) (b) (c)

Figura 1.4: Exemplos de alguns métodos de segmentação de textura: (a) Martin et al.,
2004 [90], (b) Deng e Manjunath, 2001 [29], (c) Allili e Ziou, 2007 [2].

malhas 2D podem ser divididos em dois grandes grupos [81]: os baseados em pontos e

os baseados em blocos (patches). Os métodos baseados em pontos procuram sintetizar

as texturas colorindo um pixel a cada vez. Para se determinar a cor no pixel, procura-

se na amostra de textura por aquele pixel cujos vizinhos mais próximos possuem cores

semelhantes aos que se encontram na vizinhança atual [134, 142]. Os métodos baseados

em blocos procuram sintetizar trechos maiores de textura copiando regiões selecionadas

da amostra e ocultando de alguma maneira as fronteiras. Geralmente o proceso de seleção

de blocos é aleatório de tal modo que uma imagem de alta qualidade pode ser obtida sem

a necessidade de padrões visuais não reais [102, 117].

1.1.5 Forma a partir de textura

Experimentos psisicológicos têm demostrado que a textura é muito importante na per-

cepção humana de formas (shapes) [14, 26, 128]. Neste sentido, o objetivo principal das

técnicas de obtenção de forma a partir de textura (shape from texture) consiste em obter a

orientação da superf́ıcie ou a forma da mesma (forma 3D) a partir de um objeto textural

contido numa imagem [10,23, 36, 132].

Os métodos que recuperam modelos de superf́ıcies a partir da projeção de uma textura

podem ser classificados em dois grandes grupos [35]: globais e locais. Métodos globais

procuram recuperar um modelo da superf́ıcie inteiro utilizando-se para tais fins a distri-

buição dos elementos de textura. Por outro lado, os métodos locais recuperam alguns

parâmetros caracteŕısticos da geometria de um dado ponto na superf́ıcie. Os parâmetros
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caracteŕısticos incluem entre outros as curvaturas e a normal dos pontos.

Independentemente do seu tipo de classificação, uma parte básica dos métodos de

forma a partir de textura são os elementos de textura. Um elemento de textura é aquele

caracterizado pela sua (i) repetição, isto é, um elemento tem que ser repetido o número

suficiente de vezes para prover uma informação útil da geometria da superf́ıcie, e (ii)

localidade, significando que a estrutura do elemento pode ser encontrada na imagem e

utilizada para inferir uma transformação de profundidade [78].

Figura 1.5: Exemplos de recuperação de forma de superf́ıcies em padrões têxteis. Resul-
tados obtidos em Lobay e Forsyth, 2006 [78].

1.2 Objetivos

A forma de como a análise de textura é abordada nesta dissertação consiste no estudo de

métodos que possibilitem representações compactas e eficazes para capturar as proprie-

dades relevantes em imagens de texturas. Além disso, nenhuma restrição é feita quanto

à natureza das imagens. Dessa forma, pode-se garantir que o problema de caracterização

da textura seja mantido o mais genérico posśıvel.

Os ambientes não-controlados considerados nesta dissertação estão geralmente carac-

terizados por imagens de texturas com variações inter-classes e distorções geométricas.

As variações inter-classes estão relacionadas com o fato de que as texturas de diferentes

classes podem ser bem semelhantes. Este aspecto é ilustrado na Figura 1.6.

Por outro lado, as distorções presentes nas imagens de textura referem-se tanto a

orientações bem como escalas, podendo gerar novas caracterizações de texturas diferentes

das imagens originais. A Figura 1.7 apresenta alguns exemplos destes tipos de distorções.



1.3. Contribuições 9

Figura 1.6: Exemplos de inter-classes entre imagens de textura. Apesar da sua similari-
dade visual, cada uma das imagens apresentadas correspondem a classes diferentes.

Figura 1.7: Exemplos de imagens de textura nas quais existem rotações.

1.3 Contribuições

Além do estudo teórico de tópicos sobre análise de textura, bem como o amplo levan-

tamento bibliográfico de métodos, o presente trabalho considerou o estudo preliminar e

implementação de abordagens para identificação e reconhecimento de imagens com base

em sua textura. Neste contexto, ele possui as seguintes contribuições:

• Proposta de um novo descritor de textura invariante à rotação e à escala visando

aplicações de recuperação de imagens por conteúdo. Este descritor é baseado na

Decomposição Piramidal Steerable (Steerable Pyramid Decomposition). Para avaliar

a acurácia do descritor proposto, comparações com um método baseado em Gabor

Wavelets foram realizadas [87]. A partir dos resultados obtidos pôde-se demostrar

a superioridade do método proposto. Maiores detalhes sobre o descritor podem ser

encontrados no Caṕıtulo 2 e no artigo [92].

• Proposta e avaliação de um novo sistema eficaz de reconhecimento de texturas inva-

riante à rotação e à escala. Trata-se de um método que considera ambos os processos

de extração de caracteŕısticas e de classificação. Para tais fins, utiliza-se o descritor

proposto bem como o recente classificador baseado no Caminho Ótimo de Floresta

(OPF - Optimum Path Forest) [107]. Maiores detalhes encontram-se nos Caṕıtulos 3

e 4, bem como nos artigos [96, 97].

• Proposta e avaliação de um novo esquema eficiente para identificação de impressões

digitais. Trata-se de um método que considera ambos extração de caracteŕısticas

e cálculo de similaridade, utilizando-se para tais fins diferentes tipos de Wavelets
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e métricas de similaridade. Maiores detalhes encontram-se no Caṕıtulo 5 e nos

artigos [93–95,148].

1.4 Organização da dissertação

A presente dissertação está estruturada considerando-se os principais artigos publicados

e/ou submetidos para publicação no decorrer dos estudos realizados. A ordem de apre-

sentação dos caṕıtulos foi estruturada de maneira que exista uma conexão lógica entre os

mesmos. Neste sentido, a seqüência não representa necessariamente a ordem de publicação

dos artigos.

O Caṕıtulo 2 apresenta contribuições no domı́nio de recuperação de imagens por

conteúdo, enquanto que os caṕıtulos 3 e 4 tratam de contribuições em visão computacio-

nal, mais especificamente na área de reconhecimento de padrões. Finalmente, o caṕıtulo 5

apresenta resultados em biometria e o caṕıtulo 6 conclui a dissertação.

1.4.1 Rotation-Invariant and Scale-Invariant Steerable Pyra-

mid Decomposition for Texture Image Retrieval

O Caṕıtulo 2 (Rotation-Invariant and Scale-Invariant Steerable Pyramid Decomposition

for Texture Image Retrieval) inclui os resultados apresentados em [92]. Nesse trabalho

apresentam-se os resultados referentes à proposta de um novo descritor de textura utili-

zado no suporte à recuperação de imagens por conteúdo.

O cálculo deste descritor utiliza a Decomposição Piramidal Steerable, a qual con-

siste num método de decomposição multi-resolução em que uma imagem é decomposta

num conjunto de sub-bandas multi-orientação e multi-escala onde as funções de base

são operadores direcionais derivados. A motivação principal na utilização deste tipo de

transformada baseia-se não só no fato de que esta decomposição apresenta propriedades

discriminativas para caracterização de textura [42], mas também, em comparação com

outros métodos de decomposição, os coeficientes de caracteŕısticas são menos senśıveis a

distorções geométricas tais como rotação e escala. Assim, considerando-se que as ima-

gens de textura podem apresentar tais tranformações geométricas, torna-se necessária a

existência de um método de extração de caracteŕısticas invariante a estas transformações.

Neste sentido, o descritor proposto considera a orientação dominante ou a escala domi-

nante nas texturas para dessa forma alinhar os elementos dos vetores de caracteŕısticas

obtidos através da média e do desvio padrão de cada uma das sub-bandas decompostas.

Resultados experimentais conduzidos em bases de imagens geradas a partir do banco de

imagens Brodatz mostram a superioridade deste descritor no que diz respeito à eficácia
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da recuperação com relação a outros descritores de textura, tais como Decomposição

Piramidal Steerable convencional [124] e as Gabor Wavelets [87].

1.4.2 Rotation-invariant Texture Recognition

O Caṕıtulo 3 (Rotation-invariant Texture Recognition) inclui os resultados apresentados

em [96].

Este trabalho apresenta os resultados referentes à proposta de um novo sistema de

reconhecimento de texturas, em que as imagens podem ser caracterizadas pela presença de

rotações. As duas componentes principais do sistema proposto consistem num descritor de

texturas invariante à rotação e um método de reconhecimento multi-classe supervisionado

baseado no Caminho Ótimo de Florestas (Optimum Path Forest [108]).

O descritor utiliza as propriedades discriminativas da Decomposição Piramidal Ste-

erable para caracterização de texturas. Para obter invariância à rotação, a orientação

dominante nas imagens de textura é encontrada de tal forma que os elementos dos veto-

res são alinhados em relação a esta orientação.

Por outro lado, o sistema empregou o classificador de padrões baseado no Caminho

Ótimo de Floresta [108], o qual encontra os protótipos com zero erro de classificação

nos conjuntos de treinamento e, durante a aprendizagem, corrige erros nos conjuntos de

avaliação. Combinando as propriedades discriminativas do descritor e classificador, o

sistema utiliza vetores de caracteŕısticas de baixa dimensão para caracterizar as imagens

de textura sem comprometer as taxas de classificação.

Para avaliar a acurácia do sistema, diversos experimentos foram conduzidos em bases

de imagens geradas a partir do banco de imagens de Brodatz e os resultados obtidos foram

comparados com outras abordagens.

1.4.3 Learning How to Extract Rotation-Invariant and Scale-

Invariant Features from Texture Images

O Caṕıtulo 4 (Learning How to Extract Rotation-Invariant and Scale-Invariant Features

from Texture Images) inclui os resultados apresentados em [97].

O objetivo da pesquisa apresentada neste trabalho consiste em combinar resultados

obtidos nas áreas de análise de imagem e reconhecimento de padrões para prover me-

canismos de aprendizado e reconhecimento automatizado de imagens de textura. Uma

importante motivação neste estudo consiste, por um lado, em facilitar aplicações de re-

conhecimento de textura em que o espaço de armazenamento f́ısico e a eficiência podem

ser fatores cŕıticos e, por outro lado, em caracterizar as imagens de textura considerando

as suas caracteŕısticas naturais, isto é, na presença de distorções geométricas (rotações e
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escalas).

Para tratar estes desafios no contexto de extração de caracteŕısticas utilizamos o des-

critor proposto baseado na Decomposição Piramidal Steerable de modo que a informação

relevante de textura é extráıda em vetores de caracteŕısticas de baixa dimensão, incluindo

propriedades invariantes à rotação e à escala. O classificador de padrões baseado no Ca-

minho Ótimo de Floresta é utilizado na etapa de reconhecimento de caracteŕısticas do

sistema.

Dos resultados obtidos em diversas bases de imagens pode-se demontrar a acurácia do

método de reconhecimento proposto. Além disso, diversas comparações foram realizadas

com outras abordagens.

1.4.4 Wavelet-based Fingerprint Image Retrieval

O Caṕıtulo 5 (Wavelet-based Fingerprint Image Retrieval) inclui os resultados apresenta-

dos em [93–95,148].

Neste trabalho apresenta-se uma proposta para recuperação de impressões digitais

visando à identificação de pessoas. Para tanto, diferentes etapas relacionadas com a

recuperação de imagens por conteúdo, tais como extração de caracteŕısticas e avaliações

de similaridade, são aqui consideradas.

Alguns tipos de Wavelets para representação e descrição da informação textural em

impressões digitais são utilizados. Neste caso, os vetores de caracteŕısticas são obtidos

considerando-se a média e o desvio padrão das imagens decompostas no domı́nio das Wa-

velets. Os tipos diferentes de Wavelets utilizados neste estudo incluem: Gabor Wavelets,

Decomposição Estruturada de Árvores Wavelets (Tree-Structured Wavelet) utilizando-

se Bancos de Filtros Ortogonais e Bi-Ortogonais bem como a Decomposição Piramidal

Steerable.

Para avaliar a acurácia da recuperação do método proposto, um total de oito diferen-

tes bases foram consideradas. Experimentos foram conduzidos visando avaliar diferentes

combinações de Wavelets e medidas de similaridade. Os resultados mostram, entre outros,

que as Wavelets podem ser utilizadas para caracterizar o núcleo das impressões digitais

de modo eficaz.



Caṕıtulo 2

Rotation-Invariant and

Scale-Invariant Steerable Pyramid

Decomposition for Texture Image

Retrieval

2.1 Introduction

Texture-based image retrieval has been an active research topic over the last years.

Although several methods have achieved high retrieval rates [30, 53, 67], some of them

were evaluated under controlled scenarios, where there is a lack of image distortions, such

as rotations and scales. Furthermore, methods that achieved rotation-invariant texture

characterizations, where mostly proposed for classification applications. In general, these

methods take advantage of a priori knowledge about the texture patterns, so that their

classification rates can be improved [70, 88, 121].

In this context, the next challenge in texture image retrieval applications consists the-

refore in achieving rotation-, and scale-invariant feature representations for non-controlled

environments.

This paper addresses these problems by proposing a new texture descriptor based on

Steerable Pyramids. Roughly speaking, a Steerable Pyramid is a method in which images

are decomposed into a set of multi-scale, and multi-orientation image subbands, where the

basis functions are directional derivative operators [37]. Our motivation in using Steerable

Pyramids relies not only on the fact that they have demonstrated discriminability pro-

perties for texture characterization [42], but also that unlike other image decomposition

methods, the feature coefficients are less modified under the presence of image rotations,

or even scales. The proposed descriptor computes the mean and standard deviation of the

13



2.2. Steerable Pyramid Decomposition 14

decomposed image subbands. To obtain rotation or scale invariance, extracted feature

vectors are aligned by considering either the dominant orientation or dominant scale

of the input textures.

The main contributions of this paper are: (1) the proposal of a new texture feature

representation based on Steerable Pyramid Decomposition to facilitate rotation-invariant,

and scale-invariant applications, and (2) a comprehensive evaluation that demonstrates

the discriminating power of our approach in characterizing different classes of textures

under the presence of image distortions (scales and orientations).

The outline of this paper is as follows. In the next section, we briefly review the fun-

damentals of the Steerable Pyramid Decomposition. Section 2.3 describes how texture

images are characterized to obtain rotation-invariant, and scale-invariant representations.

The experimental setup in our study is presented in section 2.4. In section 2.5, experi-

mental results on several datasets are given, and are used to demonstrate the retrieval

effectiveness improvement of our approach. Finally, some conclusions are drawn in section

2.6.

2.2 Steerable Pyramid Decomposition

The Steerable Pyramid Decomposition is a linear multi-resolution image decomposition

method, by which an image is subdivided into a collection of subbands localized at dif-

ferent scales and orientations [37]. Using a high-, and low-pass filter (H0, L0) the input

image is initially decomposed into two subbands: a high-, and a low-pass subband, respec-

tively. Further, the low-pass subband is decomposed into K-oriented band-pass portions

B0, . . . , BK−1, and into a lowpass subband L1. The decomposition is done recursively

by subsampling the lower low-pass subband (LS) by a factor of 2 along the rows and

columns. Each recursive step captures different directional information at a given scale.

Considering the polar-separability of the filters in the Fourier domain, the first low-, and

high-pass filters, are defined as [115]:

L0(r, θ) = L
(

r
2
, θ

)

/2

H0(r, θ) = H
(

r
2
, θ

) (2.1)

where r, θ are the polar frequency coordinates. L,H are raised cosine low-, and high-pass

transfer functions:

L(r, θ) =







2 r ≤ π
4

2cos
(

π
2
log2

(

4r
π

))

π
4
< r < π

2

0 r ≥ π
2

(2.2)

Bk(r, θ) = H(r)Gk(θ), k ∈ [0, K − 1] (2.3)
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Bk(r, θ) represents the K directional bandpass filters used in the iterative stages, with

radial and angular parts, defined as:

H(r, θ) =







1 r ≥ π
4

cos
(

π
2
log2

(

2r
π

))

π
4
< r < π

2

0 r ≤ π
2

(2.4)

Gk(θ) =

{

αK

(

cos
(

θ − πk
K

))K−1 ∣

∣θ − πk
K

∣

∣ < π
2

0 otherwise
(2.5)

where αk = 2(k−1) (K−1)!√
K[2(K−1)]!

.

A first level image decomposition using Steerable Pyramid is shown in Figure 2.1.

Figura 2.1: First level image decomposition based on Steerable Pyramid Decomposition.

2.3 Texture feature representation

This section describes the proposed modification of Steerable Pyramid Decomposition

to obtain the rotation-invariant, and scale-invariant representations, which are used to

characterize the texture images.

2.3.1 Texture representation

Roughly speaking, texture images can be seen as a set of basic repetitive primitives

characterized by their spatial homogeneity [28]. By applying statistical measures, this

information is extracted, and used to capture the relevant image content into feature

vectors. More precisely, we use the mean (µmn) and standard deviation (σmn) of the energy

distribution of the filtered images (Smn), by considering the presence of homogeneous

regions in texture images. Given an image I(x, y), its Steerable Pyramid Decomposition

is defined as:
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Smn(x, y) =
∑

x1

∑

y1

I(x1, y1)Bmn(x− x1, y − y1) (2.6)

where Bmn denotes the directional bandpass filters at stage m = 0, 1, . . . , S − 1, and

orientation n = 0, 1, . . . , K − 1. The energy distribution (E(m,n)) of the filtered images

at scale m, and at orientation n is defined as:

E(m,n) =
∑

x

∑

y

|Smn(x, y)| (2.7)

Additionally, the mean (µmn) and standard deviation (σmn) of the energy distributions

are found as follows:

µmn =
1

MN
Emn(x, y) (2.8)

σmn =

√

1

MN

∑

x

∑

y

(|Smn(x, y)| − µmn)2 (2.9)

The corresponding feature vector (~f) is defined by using the mean and standard deviation

as feature elements. It is denoted as:

~f = [µ00, σ00,µ01, σ01, . . . ,µS−1K−1, σS−1K−1] (2.10)

2.3.2 Rotation-invariant representation

Rotation-invariant representation is achieved by computing the dominant orientation of

the texture images followed by feature alignment. The dominant orientation (DO) is

defined as the orientation with the highest total energy across the different scales consi-

dered during image decomposition [3]. It is computed by finding the highest accumulated

energy for the K different orientations considered during image decomposition:

DOi = max
{

E
(R)
0 , E

(R)
1 , . . . , E

(R)
K−1

}

(2.11)

where i is the index where the dominant orientation appeared, and:

E(R)
n =

S−1
∑

m=0

E(m,n), n = 0, 1, . . . , K − 1. (2.12)

Note that each E
(R)
n covers a set of filtered images at different scales but at same

orientation.

Finally, rotation-invariance is obtained by shifting circularly feature elements within

the same scales, so that first elements at each scale correspond to dominant orientations.
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Let ~f be a feature vector obtained by using a Pyramid Decomposition with S = 2 scales,

and K = 3 orientations:

~f = [µ00, σ00,µ01, σ01,µ02, σ02;

µ10, σ10,µ11, σ11,µ12, σ12]
(2.13)

Now suppose that the dominant orientation appears at index i = 1 (DOi=1), thus the

rotation-invariant feature vector, after feature alignment, is represented as follows:

~fR = [µ01, σ01, µ02, σ02, µ00, σ00;

µ11, σ11, µ12, σ12, µ10, σ10]
(2.14)

2.3.3 Scale-invariant representation

Similarly, scale-invariant representation is achieved by finding the scale with the highest

total energy across the different orientations (dominant scale). For this purpose,the

dominant scale (DS) at index i is computed as follows:

DSi = max
{

E
(S)
0 , E

(S)
1 , . . . , E

(S)
S−1

}

(2.15)

where E
(S)
m denotes the accumulated energies across the S different scales:

E(S)
m =

K−1
∑

n=0

E(m,n), m = 0, 1, . . . , S − 1. (2.16)

Note that each E
(S)
m covers a set of filtered images at different orientations for each

scale. Let ~f be, again, the feature vector obtained by using a Pyramid Decomposition

with S = 2 scales, and K = 3 orientations:

~f = [µ00, σ00,µ01, σ01,µ02, σ02;

µ10, σ10,µ11, σ11,µ12, σ12]
(2.17)

By supposing that the dominant scale was found at index i = 2 (second scale in the image

decomposition), its scale-invariant version, after feature alignment, is defined as:

~fS = [µ10, σ10,µ11, σ11,µ12, σ12;

µ00, σ00,µ01, σ01,µ02, σ02]
(2.18)

For both rotation-invariant, and scale-invariant representations, the feature alignment

is based on the assumption that to compare similarity between texture images, they should

be aligned according their dominant orientations/scales.
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2.3.4 Similarity Measure

Similarity between images is obtained by computing the distance of their corresponding

feature vectors. The smaller the distance, the more similar the images. Given the query

image (i), and the target image (j) in the dataset, the distance between the two patterns

is defined as [87]:

d(i, j) =
∑

m

∑

n

dmn(i, j) (2.19)

where:

dmn(i, j) =

∣

∣

∣

∣

µi
mn − µj

mn

α(µmn)

∣

∣

∣

∣

+

∣

∣

∣

∣

σi
mn − σj

mn

α(σmn)

∣

∣

∣

∣

, (2.20)

α(µmn) and α(σmn) denote the standard deviations of the respective features over the

entire dataset. They are used for feature normalization purposes.

2.4 Experimental setup

2.4.1 Datasets

To evaluate the effectiveness of our approach, we selected thirteen texture images obtained

from the standard Brodatz dataset. Before being digitized, each of the 512× 512 texture

images was rotated at different degrees [103]. Figure 2.2 displays the non-rotated version

of each of the texture images.

To test the rotation-invariance, and scale-invariance of the method, three different

image datasets were generated: non-distorted, rotated, and scaled. The non-distorted

image dataset was constructed just from input textures with no rotation and scale changes.

Each texture image was partitioned into sixteen 128 × 128 non-overlapping subimages.

Thus, this dataset comprises 208 (13× 16) different images. The second image dataset is

referred to as rotated image dataset, and was generated by selecting the four 128 × 128

innermost subimages from texture images at 0, 30, 60, and 120 degrees. A total number of

208 images were generated (13×4×4). Finally, in the scaled image dataset, the 512×512

non-rotated textures were first partitioned into four 256×256 non-overlapping subimages.

Each partitioned subimage was further scaled by using four different factors, ranging from

0.6 to 0.9 with 0.1 interval. This led to 208 (13× 4× 4) scaled images.
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Figura 2.2: Texture images from the Brodatz dataset used in our experiments. From left
to right, and from top to bottom, they include: Bark, Brick, Bubbles, Grass, Leather,
Pigskin, Raffia, Sand, Straw, Water, Weave, Wood, and Wool.

2.4.2 Retrieval Effectiveness Evaluation

In our experiments, a simulated query is represented by any of the 208 images in a dataset.

The relevant images for each query are defined as the 15 remaining subimages from the

same input texture. In this context, a total number of 43056 (207 × 208) queries were

performed in each dataset.

The retrieval effectiveness was measured in terms of relevant retrieval average rate,

i.e., the percentage of relevant images among the top N retrieved images.

2.5 Experimental Results

Three series of experiments were conducted to evaluate the retrieval effectiveness our

method. In the first ones (Section 2.5.1), we evaluate the discriminating power of the

conventional Steerable Pyramid Decomposition [124] in characterizing texture images,

and how its retrieval effectiveness is affected by the presence of scaled and rotated versi-

ons of texture patterns. The second and third series of experiments are used to evaluate

the rotation-, and scale-invariant properties of our approach (Sections 2.5.2, 2.5.3, res-
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pectively). Comparisons with the conventional Pyramid Decomposition [124], and with

a recent proposal for rotation, and scale-invariance texture retrieval based on Gabor Wa-

velets [46] are further discussed.

We used a Steerable Pyramid having four orientations (K = 4), and two levels of

decomposition (S = 2), leading thus to a feature vector of 16 elements (4× 2× 2). Our

experiments agree with [30] in that the most relevant textural information is contained in

those two levels, since little retrieval improvement is achieved by varying the number of

scales from two to three levels during image decomposition. Furthermore, our motivations

in using small size feature vectors are: (1) to show that the retrieval effectiveness of our

approach is not compromised, and (2) to facilitate image retrieval applications where data

storage capacity is a limitation.

2.5.1 Effectiveness of conventional Steerable Pyramid Feature

Representation

The retrieval effectiveness of the conventional Steerable Pyramid is shown in Figure 2.3.

It compares, for each class of texture, the average rate of retrieving the relevant images

for the non-distorted image dataset, the rotated image dataset without rotation-invariant

representation, and the scaled image dataset without scale-invariant representation.

In the case of the non-distorted dataset, it can be noticed that the Steerable Pyramid

presents good retrieval accuracy for almost all classes. However, the effectiveness is low

for textures that have, either no strong direction (Bark, Bubbles), or for textures whose

subimages present visual dissimilarities among each other (Brick). Additionally, we can

see that for the rotated image dataset, the retrieval effectiveness decays rapidly for images

with a defined direction (Brick, Leather, Pigskin, Raffia, Straw, Water, Wood, Wool).

This happens because feature coefficients of self-similar subimages are rotated (shifted).

Moreover, note that, in the scaled image dataset, the retrieval effectiveness is less affected

than in the case of the rotated image dataset. However, images whose fine patterns become

more visible, when increasing the scale factor, are most affected (Leather, Raffia, Sand,

and Weave). In this case, the “zoomed” micro-patterns produce enough discriminatory

information, so that images belonging to the same texture class cannot be judged as being

similar.

2.5.2 Effectiveness of Rotation Invariance Representation

To show both the improvement over the conventional Steerable Pyramid, and the capa-

bility of our method for characterizing rotated texture images, we used the rotated image

dataset. From Figure 2.4, we can see that for almost all classes the retrieval accuracy was
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Figura 2.3: Average retrieval rates for non-distorted image dataset, rotated image dataset
without rotation-invariant representation, and the scaled image dataset without scale-
invariant representation using the conventional Steerable Pyramid Decomposition having
S = 2 scales and K = 4 orientations.

dramatically increased. This observation is more notorious in images having strong direc-

tion (Brick, Leather, Pigskin, Raffia, Straw, Water, Wood), since our feature alignment

considers the dominant orientation in the images. Further, Figure 2.5 shows that our

approach outperforms the recent proposal for rotation-invariant characterization using

based on Gabor Wavelets [46]. However, the latter method presents better retrieval accu-

racy for images that have an uniform scattered region, i.e, some unique primitives appear

at any location in the textures, including, for example, image borders (Water, Wood). In

this case, Gabor Wavelets perform better, since at least one filter in the filterbank covers

that subregion.

2.5.3 Effectiveness of Scale Invariance Representation

In this subsection, our approach is compared with the conventional Steerable Pyramid

Decomposition, and Gabor Wavelets for the scaled image dataset (Figures 2.6, 2.7). From

Figure 2.6, we can notice that the highest retrieval accuracy improvement is achieved in

textures characterized by the presence of micro-patterns (Pigskin, Sand, Weave). By using

different levels of scale decompositions, these micro-patterns are highlighted, and therefore

are more distinctive even for textures belonging to the same texture class. Furthermore,

feature vectors are aligned according to the dominant scale in texture images, improving

the effectiveness of the retrieval process.

In Figure 2.7, we compare the retrieval effectiveness of our approach with the one
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Figura 2.4: Average retrieval rates per texture class for rotated image dataset without
and with rotation-invariant representation, respectively.

using the modified Gabor Wavelets. Our method yields better retrieval effectiveness for

all classes except for the Leather texture pattern.

Note that more discriminatory information is obtained by downsampling rows and

columns (Steerable Pyramid approach) than by using filterbanks at few scales (Gabor

Wavelets approach).

2.5.4 Results Summarization

A summary of our experimental results is provided in Table 2.1. It compares the average

rates of retrieving the 15 most similar images for each of the input textures in the rotated,

and scaled image datasets. We can see that our method (M-SPyd) improves retrieval

rates over the conventional Steerable Pyramid (C-SPyd) and Gabor Wavelets (GWs) on

both image datasets. Note that the retrieval effectiveness was improved in almost 20%

for the rotated image dataset, whereas for the scaled image dataset it was improved from

80.5% to 86.51% over the conventional Steerable Pyramid.

2.5.5 Image Retrieval Examples

Figure 2.8 displays four retrieval examples of the three evaluated methods. The two first

queries were selected from the rotated-image datasets. They correspond to the classes for

which our method and the Gabor Wavelets achieved the highest retrieval accuracy (Raffia

and Water, respectively). Similarly, the remaining two image queries were selected to

illustrate the scale-invariance capabilities. They belong to the Sand and Leather classes.
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Figura 2.5: Comparison of rotation-invariant retrieval performances for the rotated image
dataset using the recent Gabor-based approach [46], and our approach.

M-SPyd C-SPyd GWs

Rotated image
dataset

80.02% 59.62% 61.42%

Scaled image
dataset

86.51% 80.5% 60.7%

Feature
dimensionality

16 16 16

Tabela 2.1: Average retrieval rates and feature dimensionalities for the methods used in
our experiments.

The input queries are shown on the first columns, and their relevant retrieved images

are displayed in increasing order on the following columns. Furthermore, for each query

image, the retrieved relevant images shown on the first, second, and third rows, are

obtained by considering respectively the conventional Steerable Pyramid, our approach,

and Gabor Wavelets.

From the retrieved images, we can see that our method outperforms the conventional

Steerable Pyramid for all query images. Additionally, for the cases where Gabor Wavelets

achieved highest retrieval accuracy (second, and fourth queries), our method retrieved

almost all relevant images.



2.6. Conclusions 24

 0

 20

 40

 60

 80

 100

Bark
Brick

Bubbles

Grass
Leather

Pigskin
Raffia

Sand
Straw

Water
Weave

Wood
Wool

Average

Conventional Steerable Pyramid
Our method

Figura 2.6: Average retrieval rates per texture class for scaled image dataset without and
with rotation-invariant representation, respectively.

2.6 Conclusions

In this paper, a new method for facilitating rotation-invariant, and scale-invariant image

retrieval applications was introduced. Our approach exploits the discriminability proper-

ties of the Steerable Pyramid Decomposition for texture characterization, and by taking

into account either the dominant orientation or dominant scale of the input textures,

a new feature descriptor is proposed.

We performed a total number of 43056 different queries in three image datasets. Ex-

perimental results obtained in those datasets are very encouraging, since the new method

demonstrated retrieval rates improvements for both rotated, and scaled image datasets.

More specifically, the rotation-invariant and scale-invariant average retrieval rates of our

method are increased respectively from 59.62% to 80.02% and from 80.5% to 86.51% over

the conventional Steerable Pyramid. It is worth mentioning, that the average retrieval

rates of Gabor Wavelets presented less retrieval accuracy being 61.42% and 60.7% for the

rotated and scaled image datasets, respectively.

Future work on this matter will include extending this method for both rotated and

scaled image characterization. Furthermore, we plan to use this approach for problems

concerning texture segmentation and recognition.
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Figura 2.8: Image retrieval examples for each of the three methods: conventional Steerable
Pyramid, our approach, and Gabor Wavelets (first, second, and third rows, respectively).
Each query image is shown on the first column, and its 15 top matches are displayed in
increasing order.
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Rotation-invariant Texture

Recognition

3.1 Introduction

In the last years, several image recognition systems have been proposed in the literature

as a result of many research efforts [11, 50]. Although those approaches have achieved

high classification rates, most of them have not been widely evaluated in texture image

databases. Traditionally, texture images may be characterized by: (1) small inter-class

variations, i.e, textures belonging to different classes may appear quite similar, especially

in terms of their global patterns (coarseness, smoothness, etc.), and (2) the presence of

image distortions such as rotations. In this sense, texture pattern recognition is a still

open task. The next challenge in texture classification should be, therefore, to achieve

rotation-invariant feature representations for non-controlled environments. To address

some of these limitations, this work proposes a new texture classification method, which

is characterized by: (1) a new texture image descriptor based on Steerable Pyramid De-

composition, which encodes the relevant texture information in small size feature vectors

including rotation-invariant characterization, and (2) a novel multi-class object recogni-

tion method based on the Optimum Path Forest classifier [108].

Roughly speaking, a Steerable Pyramid is a method by which images are decomposed

into a set of multi-scale, and multi-orientation image subbands, where the basis functions

are directional derivative operators [37]. Our motivation in using Steerable Pyramids re-

lies on that, unlike other image decomposition methods, the feature coefficients are less

affected by image distortions. Furthermore, the Optimum Path Forest Classifier is a re-

cent approach that handles non separable classes, without the necessity of using boosting

procedures to increase its performance, resulting thus in a faster and more accurate classi-

fier for object recognition. By combining the discriminating power of our image descriptor

27
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and classifier, our system uses small size feature vectors to characterize texture images

without compromising overall classification rates. In this way, texture classification ap-

plications, where data storage capacity is a limitation, are further facilitated.

The outline of this paper is as follows. In the next section, we briefly review the fun-

damentals of the Steerable Pyramid Decomposition. Section 3.3 describes how texture

images are characterized to obtain rotation-invariant representations. Section 3.4 intro-

duces the Optimum Path Forest classifier method. The experimental setup conducted

in our study is presented in Section 3.5. In section 3.6, experimental results on several

datasets are given and are used to demonstrate the recognition accuracy improvement of

our approach. Comparisons with other texture feature representations and classifiers are

further discussed. Finally, some conclusions are drawn in Section 3.7.

3.2 Steerable Pyramid Decomposition

The Steerable Pyramid Decomposition is a linear multi-resolution image decomposition

method, by which an image is subdivided into a collection of subbands localized at dif-

ferent scales and orientations [37]. Using a high-, and low-pass filter (H0, L0) the input

image is initially decomposed into two subbands: a high-, and a low-pass subband, respec-

tively. Further, the low-pass subband is decomposed into K-oriented band-pass portions

B0, . . . , BK−1, and into a lowpass subband L1. The decomposition is done recursively

by subsampling the lower low-pass subband (LS) by a factor of 2 along the rows and

columns. Each recursive step captures different directional information at a given scale.

Considering the polar-separability of the filters in the Fourier domain, the first low-, and

high-pass filters, are defined as [115]:

L0(r, θ) = L
(r

2
, θ

)

/2 H0(r, θ) = H
(r

2
, θ

)

(3.1)

where r, θ are the polar frequency coordinates. L,H are raised cosine low-, and high-pass

transfer functions:

L(r, θ) =
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(3.2)

Bk(r, θ) = H(r)Gk(θ), k ∈ [0, K − 1] (3.3)

Bk(r, θ) represents the K directional bandpass filters used in the iterative stages, with

radial and angular parts, defined as:
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{
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where αk = 2(k−1) (K−1)!√
K[2(K−1)]!

.

3.3 Texture feature representation

This section describes the proposed modification of Steerable Pyramid Decomposition to

obtain rotation-invariant representations, used to characterize the texture images.

3.3.1 Texture representation

Roughly speaking, texture images can be seen as a set of basic repetitive primitives

characterized by their spatial homogeneity [28]. By applying statistical measures, this

information is extracted, and used to capture the relevant image content into feature

vectors. More precisely, by considering the presence of homogeneous regions in texture

images, we use the mean (µmn) and standard deviation (σmn) of the energy distribution of

the filtered images (Smn). Given an image I(x, y), its Steerable Pyramid Decomposition

is defined as:

Smn(x, y) =
∑

x1

∑

y1

I(x1, y1)Bmn(x− x1, y − y1) (3.6)

where Bmn denotes the directional bandpass filters at stage m = 0, 1, . . . , S − 1, and

orientation n = 0, 1, . . . , K − 1. The energy distribution (E(m,n)) of the filtered images

at scale m, and at orientation n is defined as:

E(m,n) =
∑

x

∑

y

|Smn(x, y)| (3.7)

Additionally, the mean (µmn) and standard deviation (σmn) of the energy distributions

are found as follows:

µmn =
1

MN
Emn(x, y) σmn =

√

1

MN

∑

x

∑

y

(|Smn(x, y)| − µmn)2 (3.8)
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The corresponding feature vector (~f) is defined by using the mean and standard de-

viation as feature elements. It is denoted as:

~f = [µ00, σ00,µ01, σ01, . . . ,µS−1K−1, σS−1K−1] (3.9)

3.3.2 Rotation-invariant representation

Rotation-invariant representation is achieved by computing the dominant orientation of

the texture images followed by feature alignment. The dominant orientation (DO) is

defined as the orientation with the highest total energy across the different scales consi-

dered during image decomposition. It is computed by finding the highest accumulated

energy for the K different orientations considered during image decomposition:

DOi = max
{

E
(R)
0 , E

(R)
1 , . . . , E

(R)
K−1

}

(3.10)

where i is the index where the dominant orientation is found, and:

E(R)
n =

S−1
∑

m=0

E(m,n), n = 0, 1, . . . , K − 1. (3.11)

Note that each E
(R)
n covers a set of filtered images at different scales but at same orienta-

tion. Finally, rotation-invariance is obtained by shifting circularly feature elements within

the same scales, so that first elements at each scale correspond to dominant orientations.

This process is based on the assumption that to classify textures, they should be rotated

so that their dominant directions are the same. Further, it has been proved that image

rotation in spatial domain is equivalent to circular shift of feature vector elements [149].

3.4 Texture feature recognition

This section aims to present the new approach to pattern recognition called OPF (Op-

timum Path Forest), which has been demonstrated to be generally more efficient than

Artificial Neural Networks and Support Vector Machines [108]. The OPF approach works

by modeling the patterns as being nodes of a graph in the feature space, where every

pair of nodes are connected by an arc (complete graph). This classifier creates a discrete

optimal partition of the feature space such that any unknown sample can be classified

according to this partition. This partition is an optimum path forest computed in ℜn by

the image foresting transform (IFT) algorithm [33].

Let Z1, Z2, and Z3 be training, evaluation, and test sets with |Z1|, |Z2|, and |Z3|
samples such as feature vectors. Let λ(s) be the function that assigns the correct label i,
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i = 1, 2, . . . , c, from class i to any sample s ∈ Z1∪Z2∪Z3. Z1 and Z2 are labeled sets used

to the design of the classifier and the unseen set Z3 is used to compute the final accuracy

of the classifier. Let S ⊂ Z1 be a set of prototypes of all classes (i.e., key samples that

best represent the classes). Let v be an algorithm which extracts n attributes (texture

properties) from any sample s ∈ Z1∪Z2∪Z3 and returns a vector ~v(s) ∈ ℜn. The distance

d(s, t) between two samples, s and t, is the one between their feature vectors ~v(s) and

~v(t) (e.g., Euclidean or any valid metric).

Let (Z1, A) be a complete graph whose nodes are the samples in Z1. We define a

path as being a sequence of distinct samples π = 〈s1, s2, . . . , sk〉, where (si, si+1) ∈ A

for 1 ≤ i ≤ k − 1. A path is said trivial if π = 〈s1〉. We assign to each path π a cost

f(π) given by a path-cost function f . A path π is said optimum if f(π) ≤ f(π′) for any

other path π′, where π and π′ end at a same sample sk. We also denote by π · 〈s, t〉 the

concatenation of a path π with terminus at s and an arc (s, t). The OPF algorithm uses

the path-cost function fmax, because of its theoretical properties for estimating optimum

prototypes:

fmax(〈s〉) =

{

0 if s ∈ S,

+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)} (3.12)

We can observe that fmax(π) computes the maximum distance between adjacent sam-

ples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path P ∗(s) from S to every sample s ∈ Z1,

forming an optimum path forest P (a function with no cycles which assigns to each

s ∈ Z1\S its predecessor P (s) in P ∗(s) or a marker nil when s ∈ S. Let R(s) ∈ S be the

root of P ∗(s) which can be reached from P (s). The OPF algorithm computes for each

s ∈ Z1, the cost C(s) of P ∗(s), the label L(s) = λ(R(s)), and the predecessor P (s), as

follows.

Algorithm 1. – OPF algorithm

Input: A λ-labeled training set Z1, prototypes S ⊂ Z1 and the pair (v, d) for feature

vector and distance computations.

Output: Optimum path forest P , cost map C and label map L.

Auxiliary: Priority queue Q and cost variable cst.

1. For each s ∈ Z1\S, set C(s)← +∞.

2. For each s ∈ S, do

3. C(s)← 0, P (s)← nil, L(s)← λ(s), and insert s in Q.

4. While Q is not empty, do
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5. Remove from Q a sample s such that C(s) is minimum.

6. For each t ∈ Z1 such that t 6= s and C(t) > C(s), do

7. Compute cst← max{C(s), d(s, t)}.
8. If cst < C(t), then

9. If t ∈ Q, then remove t from Q.

10. P (t)← s, L(t)← L(s), C(t)← cst, and insert t in Q.

Lines 1 − 3 initialize maps and insert prototypes in Q. The main loop computes an

optimum path from S to every sample s in a non-decreasing order of cost (Lines 4− 10).

At each iteration, a path of minimum cost C(s) is obtained in P when we remove its last

node s from Q (Line 5). Lines 8− 10 evaluate if the path that reaches an adjacent node t

through s is cheaper than the current path with terminus t and update the position of t

in Q, C(t), L(t) and P (t) accordingly. The label L(s) may be different from λ(s), leading

to classification errors in Z1. The training finds prototypes with none classification errors

in Z1. The OPF algorithm works with two phases: training and classification (test), as

follows.

3.4.1 Training phase

We say that S∗ is an optimum set of prototypes when Algorithm 1 propagates the labels

L(s) = λ(s) for every s ∈ Z1. Set S∗ can be found by exploiting the theoretical relation

between Minimum Spanning Tree (MST) [24] and optimum path tree for fmax. The

training essentially consists of finding S∗ and an OPF classifier rooted at S∗.

By computing an MST in the complete graph (Z1, A), we obtain a connected acyclic

graph whose nodes are all samples in Z1 and the arcs are undirected and weighted by the

distance d between the adjacent sample feature vectors. This spanning tree is optimum in

the sense that the sum of its arc weights is minimum as compared to any other spanning

tree in the complete graph. In the MST, every pair of samples is connected by a single

path which is optimum according to fmax. That is, for any given sample s ∈ Z1, it is

possible to direct the arcs of the MST such that the result will be an optimum path tree

P for fmax rooted at s. The optimum prototypes are the closest elements in the MST

with different labels in Z1. By removing the arcs between different classes, their adjacent

samples become prototypes in S∗ and Algorithm 1 can compute an optimum path forest

with none classification errors in Z1 without data overfitting [25].

3.4.2 Classification

For any sample t ∈ Z3, the OPF consider all arcs connecting t with samples s ∈ Z1, as

though t were part of the graph. Considering all possible paths from S∗ to t, we wish
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to find the optimum path P ∗(t) from S∗ and label t with the class λ(R(t)) of its most

strongly connected prototype R(t) ∈ S∗. This path can be identified incrementally, by

evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (3.13)

Let the node s∗ ∈ Z1 be the one that satisfies the above equation (i.e., the predecessor

P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)), the classification simply

assigns L(s∗) as the class of t. An error occurs when L(s∗) 6= λ(t).

3.4.3 Learning algorithm

The performance of the OPF classifier improves when the closest samples from different

classes are included in Z1, because the method finds prototypes that will work as sentinels

in the frontier between classes. The learning algorithm replaces irrelevant samples of Z1

by errors in Z2, and secondly other samples of Z2 are replaced by irrelevant samples of Z1.

In both cases, the algorithm never let a sample of Z2 return to Z1. The learning algorithm

essentially tries to identify these prototypes from a few iterations of classification over Z2.

In order to define irrelevant samples, the OPF algorithm can identify all samples in Z1

that participated in the classification task of any node t ∈ Z2. The OPF consider all right

and wrong classifications in Z2. When t ∈ Z2 is correctly/incorrectly classified, we add

one to the number of right/wrong classifications, of every sample r ∈ Z1 in the optimum

path P ∗(t) from R(t) ∈ S∗ to s∗. In that way, the learning algorithm outputs the final

projected classifier, which can be now used to predict the labels of Z3.

3.5 Experimental setup

3.5.1 Datasets

To evaluate the accuracy of our approach, we selected thirteen texture images obtained

from the standard Brodatz database. Before being digitized, each of the 512×512 texture

images was rotated at different degrees [103]. Figure 3.1 displays the non-rotated version

of each of the texture images.

From this database, three different image datasets were generated: non-distorted,

rotated-set A, and rotated-set B. The non-distorted image dataset was constructed just

from the original input textures (i.e. texture patterns at 0 degrees). Each texture image

was partitioned into sixteen 128 × 128 non-overlapping subimages. Thus, this dataset

comprises 208 (13× 16) different images. Furthermore, images belonging to this dataset

will be used in the learning stage of our classifier. The second image dataset is referred to
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Figura 3.1: Texture images from the Brodatz dataset used in our experiments. From left
to right, and from top to bottom, they include: Bark, Brick, Bubbles, Grass, Leather,
Pigskin, Raffia, Sand, Straw, Water, Weave, Wood, and Wool.

as rotated image dataset A, and was generated by selecting the four 128× 128 innermost

subimages from texture images at 0, 30, 60, and 120 degrees. A total number of 208

images were generated (13× 4× 4). Finally, in the rotated image dataset B, we selected

the four 128 × 128 innermost subimages of the rotated image textures (512 × 512 ) at

0, 30, 60, 90, 120, 150 and 200 degrees. This led to 364 (13×4×4) dataset images. Rotated

image dataset A, as well as rotated image dataset B will be used for recognition purposes.

3.5.2 Classification evaluation

In our experiments, the accuracy was measured by taking into account the possibility of

having classes with different cardinalities. Let N(i), i = 1, 2, . . . , c, be the number of

samples in each class i and N = N(1) ∪N(2) . . .∪N(c) be the whole dataset. We define

the partial errors ei,1 and ei,2 as follows:

ei,1 =
FP (i)

|N | − |N(i)| and ei,2 =
FN(i)

|N(i)| , i = 1, . . . , c. (3.14)

where FP (i) and FN(i) denote both false positives and false negatives, respectively. That

is, FP (i) represents the number of samples of other classes that were classified as being

from the class i. In addition, FN(i) represents the number of samples in class i that were
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misclassified. The errors ei,1 and ei,2 are then used to define the accumulated partial error

of class i as:

E(i) = ei,1 + ei,2. (3.15)

Finally, the resulting classification accuracy L is found:

L =
2c−∑c

i=1E(i)

2c
= 1−

∑c

i=1E(i)

2c
. (3.16)

3.6 Experimental results

To demonstrate the discriminating power of our proposed method for recognizing rotated

texture patterns, we conducted two series of experiments. In the first series of experiments

(Subsection 3.6.1), we evaluated the effectiveness of the proposed rotation-invariant repre-

sentation against two other approaches: the conventional Pyramid Decomposition [124]

and with a recent proposal based on Gabor Wavelets [3]. Furthermore, the second series

of experiments (Subsection 3.6.2), were used to evaluate the recognition accuracy of the

novel OPF multi-class classifier. Note that, both series of experiments were conducted

using rotated-sets A and B. The rotated-set A was used to analyze the recognition accu-

racy of our method under the presence of few rotated versions of texture patterns. In

addition, experiments conducted in the rotated-set B consider several rotated versions of

different texture patterns.

In both series of experiments, we used Steerable Pyramids having different decompo-

sition levels (S = 2, 3, 4) at several orientations (K = 4, 5, 6, 7, 8). Our experiments agree

with [30] in that, the most relevant textural information in images is contained in the first

two levels of decomposition, since little recognition improvement is achieved by varying

the number of scales during image decomposition. Therefore, we focus our discussions on

image decompositions having (S = 2, 3) scales. The dimensionality of the feature vectors

depends on the number of scales (S ) and on the number of orientations (O) considered

during image decomposition and it is computed as follows: 2× O × S. Furthermore, an

important motivation in our study was to use small size feature vectors, in order: (1)

to show that the recognition accuracy of our approach is not compromised, and (2) to

facilitate texture recognition applications where data storage capacity is a limitation.

3.6.1 Effectiveness of the rotation invariance representation

To analyze the texture characterization capabilities of our method against the convetio-

nal Pyramid Decomposition [124] and the Gabor Wavelets [3], we used Gaussian-kernel
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Support Vector Machines (SVMs) as texture classification mechanisms. Note that, the

SVM parameters were optimized by using the cross-validation method 1.

Figure 3.2 compares the recognition accuracy obtained by those three methods in the

rotated-set A, whereas Figure 3.3 depicts the recognition accuracy obtained in the rotated-

set B. From both figures, it can be seen that our image descriptor outperforms the other

two approaches, regardless of the number of scales or orientations used for extracting the

feature vectors.

In the case of the rotated-set A, the higher classification accuracies achieved by our

method were obtained by using 7 orientations, which corresponds to image rotations in

steps of 25.71◦. Those accuracies are respectively 100% and 97.31% for two and three

decomposition levels (s = 2, 3). The corresponing classification accuracies obtained by

the Gabor Wavelets are: 90.36% and 93.90% (s = 2, 3;o = 7), whereas for the conventional

Steerable Pyramid those accuracies are: 89.67% and 90.36%. Furthermore, the accuracies

using o = 6, 7, 8 orientations are very close to each other. Therefore, s = 2 and o = 6 are

the most appropiate parameter combinations for our rotation-invariant image descriptor,

and at the same time, low dimensionality feature vectors are obtained.

In the case of the rotated-set B, the higher classification accuracies achieved by our

descriptor, were again obtained by using 7 orientations. Classification rates of 95.86%

and 95.73% correspond respectively to feature vectors with s = 2, 3 scales and o = 7

orientations. Further, it is found that both Gabor Wavelets and Conventional Steerable

Pyramid Decomposition present lower classification rates, being respectively 91.05% and

95.35% for the first method, and 84.22%, 84.23% for the second one. As in the results

obtained in rotated-set A, we can notice that the achieved classification accuracies are

very close to each other, when using o = 6, 7 or o = 8 orientations. From these results, we

can reinforce that the most appropriate parameter settings for our descriptor are s = 2

scales and o = 6 orientations.

Furthermore, from the bar graphs shown in Figures 3.2 and 3.3, the best performance

obtained by the rotation-invariant Gabor method is as good as our descriptor. However,

this rate is obtained at s = 3 scales, whereas the proposed descriptor achieves the same

performance using only s = 2 scales. In this sense, an important advantage of our method

is its high performance rate at low size feature vectors. It is worth to mention that in our

experiments the OPF classifier was at least 10 times faster than the SVM classifier2.

1We used the well known LIBSVM package [19]
2Due to the lack of space, we could not present a detailed study of the execution time
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Figura 3.2: Classification accuracy compa-
rison using the SVM classifier obtained in
rotated-set A using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor Wa-
velets, conventional Steerable Pyramid de-
composition and our method.

Figura 3.3: Classification accuracy compa-
rison using the SVM classifier obtained in
rotated-set B using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor Wa-
velets, conventional Steerable Pyramid de-
composition and our method.

3.6.2 Effectiveness of the multiclass recognition method

In the previous subsection, we showed that our proposed rotation-invariant image des-

criptor outperforms the other two methods. Therefore, our objective now is to show the

recognition improvement of our classifier over the SVM approach. It can be seen from

Figure 3.4, that for almost all feature extraction configurations, the recognition rates of

the OPF classifier are higher than those of the SVM classifier. However, the latter method

presents the same recognition rates as the OPF classifier when using s = 2 scales and

o = 6, 7 orientations. In the case of the image rotated-set B, our classifier yields better

recognition rates for all feature extraction configurations (See Figure 3.5). By considering

that it was found, that the most appropriate parameter settings for our descriptor are

s = 2 scales and o = 6 orientations, it is worth to mention, that by using this configu-

ration, the recognition accuracy obtained by the OPF classifier is 98.49% in comparison

with the corresponding accuracy of 95.48% obtained by the SVM classifier.

3.6.3 Results Summarization

A summary of our experimental results is provided in Tables 3.1, and 3.2. Table 3.1 com-

pares for each dataset, the mean recognition rates obtained by the three texture image

descriptors using different scales (s = 2, 3) and different orientations (o = 4, 5, 6, 7, 8).

In this set of experiments, we used Gaussian-kernel Support Vector Machines (SVMs) as

texture classification mechanisms. From our results, it can be noticed that our texture
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Figura 3.4: Recognition accuracy com-
parison of the OPF and SVM classifiers
in rotated-set A using (S = 2, 3) scales
with (K = 4, 5, 6, 7, 8) orientations for our
rotation-invariant image descriptor.

Figura 3.5: Recognition accuracy com-
parison of the OPF and SVM classifiers
in rotated-set B using (S = 2, 3) scales
with (K = 4, 5, 6, 7, 8) orientations for our
rotation-invariant image descriptor.

image descriptor performs better regardless of the dataset used, or the image decomposi-

tion parameters considered during feature extraction (number of scales and orientations).

Furthermore, the second series of experiments are summarized in Table 3.2. As it can be

seen, the OPF classifier improves the recognition accuracies obtained by the SVM classifier

in all of our experiments. By considering the summarized results, it can be shown that our

proposed recognition system performs better than the previously mentioned approaches,

which represent state-of-the-art methods.

Rotated
Image Dataset

Feature vectors with
different scales (s)

and orientations (o)

Proposed Image
Descriptor

Conv. Steerable
Pyd. Dec.

Gabor
Wavelets

A (s=2;o=4,5,6,7,8) 98.89% 93.19% 93.19%
A (s=3;o=4,5,6,7,8) 98.61% 92.36% 97.92%

B (s=2;o=4,5,6,7,8) 97.35% 85.30% 91.29%
B (s=3;o=4,5,6,7,8) 96.74% 85.76% 96.67%

Tabela 3.1: Mean recognition rates for the three different texture image descriptors using
Gaussian-kernel Support Vector Machines as classifiers.

3.7 Conclusions

In this paper a new novel texture classification system was proposed. Its main features

include: (1) a new rotation-invariant image descriptor, and (2) a novel multi-class recogni-
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Rotated
Image Dataset

Feature vectors with
different scales (s)

and orientations (o)

Proposed Image
Descriptor using OPF

Proposed Image
Descriptor using SVM

A (s=2;o=4,5,6,7,8) 98.89% 95.89%
A (s=3;o=4,5,6,7,8) 98.61% 97.99%

B (s=2;o=4,5,6,7,8) 97.35% 92.30%
B (s=3;o=4,5,6,7,8) 96.74% 96.70%

Tabela 3.2: Mean recognition rates for the proposed rotation-invariant texture image
descriptor using both OPF and SVM classifiers.

tion method based on Optimum Path Forest. The proposed image descriptor exploits the

discriminability properties of the Steerable Pyramid Decomposition for texture characte-

rization. To obtain rotation-invariance, the dominant orientation of the input textures

is found, so that feature elements are aligned according to this value. By doing this, a

more reliable feature extraction process can be performed, since corresponding feature

elements of distinct feature vectors, coincide with images at same orientations. In addi-

tion, our system adopted a novel approach for pattern classification based on Optimum

Path Forest, which finds prototypes with none zero classification errors in the training

sets and learns from errors in evaluation sets. By combining the discriminating power of

our image descriptor and classifier, our system uses small size feature vectors to charac-

terize texture images without compromising overall classification rates, being ideally for

real-time applications.

Furthermore, we have demonstrated state-of-the-art results on two image datasets

derived from the standard Brodatz database. For the first image dataset, our method

obtained a mean classification rate of 98.89% in comparision with a mean accuracy of

93.19% obtained by both conventional Steerable Pyramid decomposition [124] and Gabor

Wavelets [3]. For the second image dataset, our method achieved a mean classification

of 97.35%, whereas the other two methods obtained respectively classification rates of

85.30% and 91.29%.

On the other side, the OPF multi-class classifier outperformed the SVM in the two

datasets. It is a new promising graph tool for pattern recognition, which differs from

traditional approaches, in that, it does not use the idea of feature space space geometry,

therefore, better results in overlapped databases are achieved. Future work will include

extending this method for scale-invariant texture recognition.
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Caṕıtulo 4

Learning How to Extract

Rotation-Invariant and

Scale-Invariant Features from

Texture Images

4.1 Introduction

An important low-level image feature used in human perception as well as in recognition is

texture. In fact, the study of texture has found several applications ranging from texture

segmentation [120] to texture classification[y], synthesis [7, 147], and image retrieval [77,

125].

Although various authors have attempted to define what texture is [49,113], there still

does not exist a commonly accepted definition. However, the basic property presented

in every texture, consists in a small elementary pattern repeated periodically or quasi-

periodically in a given region (pixel neighborhood) [54,58]. The repetition of those image

patterns generate some visual cues, which can be identified, for example, as being direc-

tional or non-directional, smooth or rough, coarse or fine, uniform or non-uniform [145].

Figures 4.1- 4.4 show some examples of these types of visual cues. Note that each texture

can be associated with one or more visual cues

Further, texture images are typically classified as being either natural or artificial.

Natural textures are related to non-man-made objects and among others they include, for

example, brick, grass, sand, and wood patterns. On the other side, artificial textures are

related to man-made objects such as architectural, fabric, and metal patterns.

Regardless of its classification type, texture images may be characterized by their

variations in scale or directionality. Scale variations imply that textures may look quite

41
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Figura 4.1: directional vs.
non-directional visual cues.

Figura 4.2: smooth vs. rough
visual cues.

Figura 4.3: fine vs. coarse
visual cues.

Figura 4.4: uniform vs. non-
uniform visual cues.

different when varying the number of scales. This effect is analogous to increase or decrease

the image resolution. The bigger or the smaller the scales are, the more different the

images are. This characteristic is related to the coarseness presented in texture images

and can be understood as the spatial repetition period of the local pattern [116]. Finer

texture images are characterized by small repetition periods, whereas coarse textures

present larger repetition periods. In addition, oriented textures may present different

principal directions as the images rotate. This happens because textures are not always

captured from the same viewpoint.

On the other hand, work on texture characterization can be divided into four ma-

jor categories [41, 120]: structural, statistical, model-based and spectral. For structural

methods, texture images can be thought as being a set of primitives with geometrical

properties. Their objective is therefore to find the primitive elements as well as the for-

mal rules of their spatial placements. Example of this kind of methods can be found in

Julesz’s [64] and Tüceryan’s work [133]. In addition, statistical methods study the spa-

tial gray level distribution in the textural patterns, so that statistical operations can be

performed in the distributions of the local features computed at each pixel in the image.

Statistical methods include among others the gray level co-occurrence matrix [47], second

order spatial averages, and the auto-correlation function [18]. Further, the objective of

the model-based methods is to capture the process that generated the texture patterns.

Popular approaches in this category include Markov random fields [31, 38], fractal [111],

and auto-regressive models [89]. Finally, spectral methods perform frequency analysis in
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the image signals to reveal specific features. Examples of this may include Law’s [71] and

Gabor filters [13, 55].

Although many of these techniques obtained good results, most of them have not

been widely evaluated in non-controlled environments, which may be characterized by

texture images having: (1) small inter-class variations, i.e, textures belonging to different

classes may appear quite similar, especially in terms of their global patterns (coarseness,

smoothness, etc.), and the patterns may present (2) image distortions such as rotations or

scales. In this sense, texture pattern recognition is a still open task. The next challenge in

texture classification should be, therefore, to achieve rotation-invariant and scale-invariant

feature representations for non-controlled environments.

Some of these challenges are faced in this work. More specifically, we focus in feature

representation and recognition. In feature representation, we wish to emphasize some

open questions, such as: How to model the texture images so that the relevant infor-

mation is captured despite of the image distortions?, and How to keep low dimensional

feature vectors so that texture recognition applications are facilitated, where data sto-

rage capacity is a limitation? In feature recognition, we wish to choose a technique that

handles multiple non-separable classes with minimal computational time and supervision.

To deal with the challenges in feature extraction, we propose a new texture image des-

criptor based on Steerable Pyramid Decomposition, which encodes the relevant texture

information in small-size feature vectors including rotation-invariant and scale-invariant

characterizations. To address the feature recognition requirements, we are using a novel

multi-class object recognition method based on the Optimum-Path Forest [109].

Roughly speaking, a Steerable Pyramid is a method by which images are decomposed

into a set of multi-scale, and multi-orientation image subbands, where the basis functions

are directional derivative operators [37]. Our motivation in using Steerable Pyramids re-

lies on that, unlike other image decomposition methods, the feature coefficients are less

affected by image distortions. Furthermore, the Optimum-Path Forest Classifier is a re-

cent approach that handles non-separable classes, without the necessity of using boosting

procedures to increase its performance, resulting thus in a faster and more accurate classi-

fier for object recognition. By combining the discriminating power of our image descriptor

and classifier, our system uses small-size feature vectors to characterize texture images

without compromising overall classification rates. In this way, texture classification ap-

plications, where data storage capacity is a limitation, are further facilitated.

A previous version of our texture descriptor has been proposed for Content-Based

Image Retrieval [92] and Texture Recognition [96], but using only rotation-invariant pro-

perties. In the present work, the proposed descriptor has not only rotation-invariant

properties, but also scale-invariant properties. The Optimum-Path Forest classifier was

first presented in [107] and first evaluated for texture recognition in [96]. Improvements
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in its learning algorithm and evaluation with several datasets have been made in [109], for

other properties rather than texture. The present work is using this most recent version of

the Optimum-Path Forest classifier for texture recognition. We are providing more details

about the methods, experiments with more datasets, and a more in deep analysis of the

results: rotation- and scale-invariance analysis, accuracy of classification with different

descriptors and classifiers, and the mean computational time of the proposed system.

The outline of this work is as follows. In the next section, we briefly review the

fundamentals of the Steerable Pyramid Decomposition. Section 2.3 describes how texture

images are characterized to obtain rotation-invariant, and scale-invariant representations.

Section 3.4 introduces the Optimum Path Forest classifier method. The experimental

setup conducted in our study is presented in Section 4.5. In section 4.6, experimental

results on several datasets are given and are used to demonstrate the recognition accuracy

of our system. Comparisons with state-of-the-art texture feature representations and

classifiers are further discussed. Finally, some conclusions are drawn in Section 4.7.

4.2 Steerable Pyramid Decomposition

The Steerable Pyramid Decomposition is a linear multi-resolution image decomposition

method by which an image is subdivided into a collection of subbands localized at dif-

ferent scales and orientations [37]. Using a high- and low-pass filter (H0, L0) the input

image is initially decomposed into two subbands: a high- and a low-pass subband, respec-

tively. Further, the low-pass subband is decomposed into K-oriented band-pass portions

B0, . . . , BK−1, and into a lowpass subband L1. The decomposition is done recursively

by subsampling the lower low-pass subband (LS) by a factor of 2 along the rows and

columns. Each recursive step captures different directional information at a given scale.

Considering the polar-separability of the filters in the Fourier domain, the first low- and

high-pass filters, are defined as [115]:

L0(r, θ) = L
(

r
2
, θ

)

/2

H0(r, θ) = H
(

r
2
, θ

) (4.1)

where r, θ are the polar frequency coordinates. The raised cosine low-, and high-pass

transfer functions denoted as L,H , respectively, are computed as follows:

L(r, θ) =
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(4.2)

Bk(r, θ) = H(r)Gk(θ), k ∈ [0, K − 1] (4.3)
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Bk(r, θ) represents the k-th directional bandpass filter used in the iterative stages, with

radial and angular parameters, defined as:

H(r, θ) =
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Gk(θ) =

{

αK

(

cos
(
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K

))K−1 ∣

∣θ − πk
K

∣

∣ < π
2

0 otherwise
(4.5)

where αk = 2(k−1) (K−1)!√
K[2(K−1)]!

.

Figure 4.5 depicts a Steerable Pyramid Decomposition using only one scale and n orien-

tations.

Figura 4.5: First level Steerable Pyramid Decomposition using n oriented band-pass fil-
ters.

4.3 Texture feature representation

This section describes the proposed modification of Steerable Pyramid Decomposition to

obtain rotation-invariant, and scale-invariant representations, used further to characterize

the texture images.

4.3.1 Texture representation

Roughly speaking, texture images can be seen as a set of basic repetitive primitives

characterized by their spatial homogeneity [28]. By applying statistical measures, this

information is extracted, and used to capture the relevant image content into feature

vectors. More precisely, by considering the presence of homogeneous regions in texture

images, we use the mean (µmn) and standard deviation (σmn) of the energy distribution of

the filtered images (Smn). Given an image I(x, y), its Steerable Pyramid Decomposition

is defined as:
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Smn(x, y) =
∑

x1

∑

y1

I(x1, y1)Bmn(x− x1, y − y1) (4.6)

where Bmn denotes the directional bandpass filters at stage m = 0, 1, . . . , S − 1, and

orientation n = 0, 1, . . . , K − 1. The energy distribution (E(m,n)) of the filtered images

at scale m, and at orientation n is defined as:

E(m,n) =
∑

x

∑

y

|Smn(x, y)| (4.7)

Additionally, the mean (µmn) and standard deviation (σmn) of the energy distributions

are found as follows:

µmn =
1

MN
Emn(x, y) (4.8)

σmn =

√

1

MN

∑

x

∑

y

(|Smn(x, y)| − µmn)2 (4.9)

where M and N denote the height and width of the input image, respectively. The

corresponding feature vector (~f) is defined by using the mean and standard deviation as

feature elements. It is denoted as:

~f = [µ00, σ00,µ01, σ01, . . . ,µS−1K−1, σS−1K−1] (4.10)

The dimensionality of the feature vectors depends on the number of scales (S ) and

on the number of orientations (O) considered during image decomposition. The feature

vector dimensionality is computed by multiplying the number of scales and orientations

by factor of 2 (2× O × S). This factor corresponds to the mean and standard deviation

computed in each filtered image.

4.3.2 Rotation-invariant representation

Rotation-invariant representation is achieved by computing the dominant orientation of

the texture images followed by feature alignment. The dominant orientation (DO) is

defined as the orientation with the highest total energy across the different scales consi-

dered during image decomposition [3]. It is computed by finding the highest accumulated

energy for the K different orientations considered during image decomposition:

DOi = max
{

E
(R)
0 , E

(R)
1 , . . . , E

(R)
K−1

}

(4.11)

where i is the index where the dominant orientation appeared, and:

E(R)
n =

S−1
∑

m=0

E(m,n), n = 0, 1, . . . , K − 1. (4.12)
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Note that each E
(R)
n covers a set of filtered images at different scales but at same

orientation.

Finally, rotation-invariance is obtained by shifting circularly feature elements within

the same scales, so that first elements at each scale correspond to dominant orientations.

As an example, let ~f be a feature vector obtained by using a Pyramid Decomposition

with S = 2 scales, and K = 3 orientations:

~f = [µ00, σ00,µ01, σ01,µ02, σ02;

µ10, σ10,µ11, σ11,µ12, σ12]
(4.13)

Now suppose that the dominant orientation appears at index i = 1 (DOi=1), thus the

rotation-invariant feature vector, after feature aligment, is represented as follows:

~fR = [µ01, σ01, µ02, σ02, µ00, σ00;

µ11, σ11, µ12, σ12, µ10, σ10]
(4.14)

4.3.3 Scale-invariant representation

Similarly, scale-invariant representation is achieved by finding the scale with the highest

total energy across the different orientations (dominant scale). For this purpose,the

dominant scale (DS) at index i is computed as follows:

DSi = max
{

E
(S)
0 , E

(S)
1 , . . . , E

(S)
S−1

}

(4.15)

where E
(S)
m denotes the accumulated energies across the S different scales:

E(S)
m =

K−1
∑

n=0

E(m,n), m = 0, 1, . . . , S − 1. (4.16)

Note that each E
(S)
m covers a set of filtered images at different orientations for each

scale. As an example, let ~f be, again, the feature vector obtained by using a Pyramid

Decomposition with S = 2 scales, and K = 3 orientations:

~f = [µ00, σ00,µ01, σ01,µ02, σ02;

µ10, σ10,µ11, σ11,µ12, σ12]
(4.17)

By supposing that the dominant scale was found at index i = 1 (second scale in the image

decomposition), its scale-invariant version, after feature alignment, is defined as:

~fS = [µ10, σ10,µ11, σ11,µ12, σ12;

µ00, σ00,µ01, σ01,µ02, σ02]
(4.18)
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For both rotation-invariant, and scale-invariant representations, the feature alignment

process is based on the assumption that to classify textures, images should be rotated

so that their dominant orientations/scales are the same. Further, it has been proved

that image rotation in spatial domain is equivalent to circular shift of feature vector

elements [149].

4.4 Texture feature recognition

This section aims to describe the most recent version of the Optimum-Path Forest (OPF)

classifier [109], which is an important part of the texture recognition system proposed in

this work. Previous works have demonstrated that OPF can be more effective and much

faster than Artificial Neural Networks [108] and Support Vector Machines [107–109]. The

OPF approach works by modeling the patterns as being nodes of a graph in the feature

space, where every pair of nodes is connected by an arc (complete graph). This classifier

creates a discrete optimal partition of the feature space such that any unknown sample

can be classified according to this partition. This partition is an optimum-path forest

computed in ℜn by the image foresting transform (IFT) algorithm [33]. The OPF classifier

extends the IFT from the image domain to the feature space, where the samples may be

images, contours, or any other abstract entities.

Let Z1, Z2, and Z3 be respectively the training, evaluation, and test sets with |Z1|,
|Z2|, and |Z3| samples, respectively. Let λ(s) be the function that assigns the correct

label i, i = 1, 2, . . . , c, from class i to any sample s ∈ Z1 ∪ Z2 ∪ Z3. Z1 and Z2 are

labeled sets used to the design of the classifier and the unseen set Z3 is used to compute

the final accuracy of the classifier. Let S ⊂ Z1 be a set of prototypes of all classes (i.e.,

key samples that best represent the classes). Let v be an algorithm which extracts n

attributes (texture properties) from any sample s ∈ Z1 ∪ Z2 ∪ Z3 and returns a vector

~v(s) ∈ ℜn. The distance d(s, t) between two samples, s and t, is the one between their

feature vectors ~v(s) and ~v(t) (e.g., Euclidean or any other valid metric).

Let (Z1, A) be a complete graph whose the nodes are the samples in Z1. We define

a path as being a sequence of distinct samples π = 〈s1, s2, . . . , sk〉, where (si, si+1) ∈ A
for 1 ≤ i ≤ k − 1. A path is said trivial if π = 〈s1〉. We assign to each path π a cost

f(π) given by a path-cost function f . A path π is said optimum if f(π) ≤ f(π′) for any

other path π′, where π and π′ end at a same sample sk. We also denote by π · 〈s, t〉 the

concatenation of a path π with terminus at s and an arc (s, t). The OPF algorithm uses

the path-cost function fmax, for the reason explained in Section 3.4.1.
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fmax(〈s〉) =

{

0 if s ∈ S,

+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)} (4.19)

We can observe that fmax(π) computes the maximum distance between adjacent sam-

ples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path P ∗(s) from S to every sample s ∈ Z1,

forming an optimum-path forest P (a function with no cycles which assigns to each s ∈
Z1\S, its predecessor P (s) in P ∗(s), or a marker nil when s ∈ S). Let R(s) ∈ S be the

root of P ∗(s) which can be reached from P (s). The OPF algorithm computes for each

s ∈ Z1, the cost C(s) of P ∗(s), the label L(s) = λ(R(s)), and the predecessor P (s), as

follows.

Algorithm 2. – OPF algorithm

Input: A λ-labeled training set Z1, prototypes S ⊂ Z1 and the pair (v, d) for feature

vector and distance computations.

Output: Optimum-path forest P , cost map C and label map L.

Auxiliary: Priority queue Q and cost variable cst.

1. For each s ∈ Z1\S, set C(s)← +∞.

2. For each s ∈ S, do

3. C(s)← 0, P (s)← nil, L(s)← λ(s), and insert s in Q.

4. While Q is not empty, do

5. Remove from Q a sample s such that C(s) is minimum.

6. For each t ∈ Z1 such that t 6= s and C(t) > C(s), do

7. Compute cst← max{C(s), d(s, t)}.
8. If cst < C(t), then

9. If C(t) 6= +∞, then remove t from Q.

10. P (t)← s, L(t)← L(s), C(t)← cst,

11. and insert t in Q.

Lines 1 − 3 initialize maps and insert prototypes in Q. The main loop computes an

optimum path from S to every sample s in a non-decreasing order of cost (Lines 4− 11).

At each iteration, a path of minimum cost C(s) is obtained in P when we remove its last

node s from Q (Line 5). Lines 8− 11 evaluate if the path that reaches an adjacent node t

through s is cheaper than the current path with terminus t and update the position of t

in Q, C(t), L(t) and P (t) accordingly. The label L(s) may be different from λ(s), leading

to classification errors in Z1. The training finds prototypes with zero classification errors

in Z1, as follows.
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4.4.1 Training phase

We say that S∗ is an optimum set of prototypes when Algorithm 1 propagates the labels

L(s) = λ(s) for every s ∈ Z1. S∗ can be found by exploiting the theoretical relation

between minimum-spanning tree (MST) and optimum-path tree for fmax [1]. The training

essentially consists of finding S∗ and an OPF classifier rooted at S∗.

By computing an MST in the complete graph (Z1, A), we obtain a connected acyclic

graph whose nodes are all samples in Z1 and the arcs are undirected and weighted by the

distance d between the adjacent sample feature vectors. This spanning tree is optimum in

the sense that the sum of its arc weights is minimum as compared to any other spanning

tree in the complete graph. In the MST, every pair of samples is connected by a single path

which is optimum according to fmax. The optimum prototypes are the closest elements in

the MST with different labels in Z1. By removing the arcs between different classes, their

adjacent samples become prototypes in S∗ and Algorithm 1 can compute an optimum-

path forest with zero classification errors in Z1.

It is not difficult to see that the optimum paths between classes should pass through the

same removed arcs of the minimum-spanning tree. The choice of prototypes as described

above blocks these passages, avoiding samples of any given class be reached by optimum

paths from prototypes of other classes. Given that several methods for graph-based

clustering are based on MST, the relation between MST and minimum-cost path tree

for fmax [1] makes interesting connections among the supervised OPF classifier, these

unsupervised approaches and the previous works on watershed-based/fuzzy-connected

segmentations [4, 5, 9, 33, 79, 122, 138].

4.4.2 Classification

For any sample t ∈ Z3, the OPF consider all arcs connecting t with samples s ∈ Z1, as

though t were part of the graph. Considering all possible paths from S∗ to t, we wish

to find the optimum path P ∗(t) from S∗ and label t with the class λ(R(t)) of its most

strongly connected prototype R(t) ∈ S∗. This path can be identified incrementally, by

evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (4.20)

Let the node s∗ ∈ Z1 be the one that satisfies the above equation (i.e., the predecessor

P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)), the classification simply

assigns L(s∗) to t. An error occurs when L(s∗) 6= λ(t).
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4.4.3 Learning algorithm

The performance of the OPF classifier improves when the closest samples from different

classes are included in Z1, because the method finds prototypes that will work as sentinels

in the frontier between classes.

We propose a simple but efficient algorithm that identifies the best prototypes in a

few number of iterations. We suppose that these prototypes are the misclassified elements

in Z2. So, we randomly replace them by not prototypes samples from Z1. The algorithm

outputs a learning curve over T iterations, which reports the accuracy values of each

instance of classifier during learning, and the final OPF classifier. Algorithm 3 describes

this procedure.

Algorithm 3. – Learning Algorithm

Input: Training and evaluation sets labeled by λ, Z1 and Z2, number T of iterations,

and the pair (v, d) for feature vector and distance computations.

Output: Learning curve L and the last OPF classifier, represented by the predecessor

map P , cost map C, and label map L.

Auxiliary: False positive and false negative arrays, FP and FN , of sizes c, and list LM of

misclassified samples.

1. For each iteration I = 1, 2, . . . , T , do

2. LM ← ∅
3. Compute S∗ ⊂ Z1 as in Section 4.4.1 and P , L, C

4. by Algorithm 2.

5. For each class i = 1, 2, . . . , c, do

6. FP (i)← 0 and FN(i)← 0.

7. For each sample t ∈ Z2, do

8. Find s∗ ∈ Z1 that satisfies Equation 4.20.

9. If L(s∗) 6= λ(t), then

10. FP (L(s∗))← FP (L(s∗)) + 1.

11. FN(λ(t))← FN(λ(t)) + 1.

12. LM ← LM ∪ t.

13. Compute L(I) by Equation 4.23.

14. While LM 6= ∅
15. LM ← LM\t
16. Replace t by randomly objects of the same class

17. in Z1, except the prototypes.

Lines 3−4 initializes the false positive and false negative vectors. The classification of

each sample is performed by Lines 6 − 11, updating the false positive and false negative
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vectors. Misclassified samples are stored in vector LM in Line 11, and the inner loop in

Lines 13− 16 changes the misclassified samples in Z2 by non prototypes samples in Z1.

Line 11 computes the accuracy at iteration I and stores it in the learning curve L. The

accuracy L(I) of a given iteration I, I = 1, 2, . . . , T , is measured by taking into account

that the classes may have different sizes in Z2 (similar definition is applied for Z3). Let

NZ2(i), i = 1, 2, . . . , c, be the number of samples in Z2 from each class i. We define

ei,1 =
FP (i)

|Z2| − |NZ2(i)|
and ei,2 =

FN(i)

|NZ2(i)|
, i = 1, . . . , c (4.21)

where FP (i) and FN(i) are the false positives and false negatives, respectively. That is,

FP (i) is the number of samples from other classes that were classified as being from the

class i in Z2, and FN(i) is the number of samples from the class i that were incorrectly

classified as being from other classes in Z2. The errors ei,1 and ei,2 are used to define

E(i) = ei,1 + ei,2, (4.22)

where E(i) is the partial sum error of class i. Finally, the accuracy L(I) of the classification

is written as

L(I) =
2c−∑c

i=1E(i)

2c
= 1−

∑c

i=1E(i)

2c
. (4.23)

4.5 Experimental setup

4.5.1 Datasets

To evaluate the accuracy of our system, thirteen texture images obtained from the stan-

dard Brodatz database were selected. Before being digitized, each of the 512×512 texture

images was rotated at different degrees [103]. Figure 4.6 displays the non-rotated version

of each of the texture images.

From this database, three different image datasets were generated: non-distorted,

rotated-set, and scaled-set. The non-distorted image dataset was constructed from texture

patterns at 0 degrees. Each texture image was partitioned into sixteen 128 × 128 non-

overlapping subimages. Thus, this dataset comprises 208 (13 × 16) different images.

Images belonging to this dataset will be used in the learning stage of our classifier. Note

that in previous works related to texture recognition [44, 130], rotated or scaled-versions

of the patterns were included in both the training and classification phases [69]. However,

more recently works suggest that the recognition algorithms should perform well, even

by having during the training phase non-distorted training samples, this means, patterns

without rotations or scales [104, 114].
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Figura 4.6: Texture images from the Brodatz dataset used in our experiments. From left
to right, and from top to bottom, they include: Bark, Brick, Bubbles, Grass, Leather,
Pigskin, Raffia, Sand, Straw, Water, Weave, Wood, and Wool.

The second image dataset referred to as rotated-set was generated to evaluate the

rotation-invariance capabilities of our approach. It is further subdivided into two datasets:

rotated-set A and rotated-set B. The rotated image dataset A was generated by selecting

the four 128×128 innermost subimages from texture images at 0, 30, 60, and 120 degrees.

A total number of 208 images was generated (13 × 4 × 4). In addition, in the case of

the rotated image dataset B, we selected the four 128× 128 innermost subimages of the

rotated image textures (512× 512) at 0, 30, 60, 90, 120, 150 and 200 degrees. This led to

364 (13 × 4 × 4) dataset images. The first dataset was initially used to test our system

under the presence of few texture oriented images, whereas the second one was used to

show how our systems performs by increasing the number of texture oriented images.

On the other side, the scaled image dataset was partitioned into two datasets: scaled-

set A and scaled-set B. In the scaled-set A, the 512× 512 non-rotated textures were first

partitioned into four 256 × 256 non-overlapping subimages. Each partitioned subimage

was further scaled by using four different factors, ranging from 0.6 to 0.9 with 0.1 interval.

This led to 208 (13× 4× 4) scaled images. To generate the scaled-set B, each of the four

partitioned subimages was scaled by using seven different factors, ranging from 0.6 to 1.2

with 0.1 interval. In this way, 364 (13× 4× 7) scaled images were generated.
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4.5.2 Similarity Measure for Classification

Similarity between images is obtained by computing the distance of their corresponding

feature vectors (Recall Section 2.3). The smaller the distance, the more similar the images.

Given the query image (i), and the target image (j) in the dataset, the distance between

the two patterns is defined as [87]:

d(i, j) =
∑

m

∑

n

dmn(i, j) (4.24)

where:

dmn(i, j) =

∣

∣

∣

∣

µi
mn − µj

mn

α(µmn)

∣

∣

∣

∣

+

∣

∣

∣

∣

σi
mn − σj

mn

α(σmn)

∣

∣

∣

∣

, (4.25)

α(µmn) and α(σmn) denote the standard deviations of the respective features over the

entire dataset. They are used for feature normalization purposes.

4.6 Experimental Results

Three series of experiments were conducted to demonstrate the discriminating power of

our system for recognizing texture patterns. By considering that a recognition system is

comprised of two mainly parts (feature extraction module as well as feature recognizer

module), each of those parts were evaluated.

In the first series of experiments (Subsection 3.6.1), we first evaluated the effectiveness

of the proposed rotation-invariant feature representation against two other approaches:

the conventional Pyramid Decomposition [124] and with a recent proposal based on Gabor

Wavelets [3]. To evaluate the effectiveness of the feature recognizer module, we compared

the recognition accuracy of the novel OPF multi-class classifier against the well known

Support Vector Machines technique. For those purposes, we used the rotated image da-

tasets A and B.

The second series of experiments (Subsection 4.6.2) are used to evaluate the scale-

invariant properties in our feature extraction module. Effectiveness of the multiclass

recognition method under the presence of scale-invariant features are further discussed.

Again, we used the conventional Steerable Pyramid Decomposition [124] and the Gabor

Wavelets [87] as references for comparing the scale-invariant properties of our method.

SVMs are used for evaluating the classification accuracy of our feature recognizer module.

Further, scaled image datasets A and B were used in this set of experiments.

In both series of experiments, we used Steerable Pyramids having different decompo-

sition levels (S = 2, 3, 4) at several orientations (K = 4, 5, 6, 7, 8). Our experiments agree

with [30] in that the most relevant textural information in images is contained in the first
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two levels of decomposition, since little recognition improvement is achieved by varying

the number of scales during image decomposition. Therefore, we focus our discussions on

image decompositions having (S = 2, 3) scales.

Given that the performance of the OPF classifier can increase using a third set in a

learning algorithm (Subsection 3.4.3), we also employed this same procedure to the SVM

approach. The constraints in Lines 16−17 of the Algorithm 3 refer to keep the prototypes

out of the sample interchanging process between Z1 and Z2 for the OPF. We do the same

with the support vectors in SVM. However, they may be selected for interchanging in

future iterations if they are no longer prototypes or support vectors. For SVM, we use the

LibSVM package [19] with Radial Basis Function (RBF) kernel, parameter optimization

and the one-versus-one strategy for the multi-class problem to implement Line 3.

The experiments evaluate the accuracy on Z3 and the computational time of each

classifier, OPF and SVM. In all experiments, the datasets were divided into three parts:

a training set Z1 with 20% of the samples, an evaluation set Z2 with 30% of the samples,

and a test set Z3 with 50% of the samples. These samples were ramdomly selected and

each experiment was repeated 10 times with different sets Z1, Z2 and Z3 to compute the

mean accuracy.

Recall that an important motivation in our study is to use small size feature vectors,

in order: (1) to show that the recognition accuracy of our approach is not compromised,

and (2) to facilitate texture recognition applications where data storage capacity is a

limitation.

4.6.1 Effectiveness of the rotation invariance representation

To analyze the texture characterization capabilities of our feature extraction method

against the conventional Pyramid Decomposition and the Gabor Wavelets, we used Gaus-

sian kernel Support Vector Machines (SVMs) as texture classification mechanisms.1.

Figure 4.7 compares the recognition accuracy obtained by those three methods in the

rotated dataset A, whereas Figure 4.8 depicts the recognition accuracy obtained in the

rotated dataset B. From both Figures, it can be seen that our image descriptor outper-

forms mostly the other two approaches, regardless of the number of scales or orientations

considered during feature vector extraction.

In the case of the rotated dataset A, the higher classification accuracies achieved by

our method were obtained by using 7 orientations, which corresponds to image rotations

in steps of 25.71◦. By considering two and three decomposition levels (s = 2, 3), those

accuracies are respectively 100% and 97.31%. The equivalent classification accuracies

obtained by the Gabor Wavelets are: 90.36% and 93.90% (s = 2, 3;o = 7), whereas for

1Note that the SVM parameters were optimized by using the cross-validation method.
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the conventional Steerable Pyramid those accuracies are: 89.67% and 90.36%. Note that,

the classification accuracies obtained by using o = 6, 7, 8 orientations are very close to

each other. Therefore, to guarantee low dimensionality feature vectors, we set s = 2 and

o = 6 as the most appropriate parameter combinations for our rotation-invariant image

descriptor.

In the case of the rotated-set B, the higher classification accuracies achieved by our

descriptor were again obtained by using 7 orientations. Classification rates of 95.86%

and 95.73% correspond respectively to feature vectors with s = 2, 3 scales and o = 7

orientations. Further, it is found that both Gabor Wavelets and Conventional Steerable

Pyramid Decomposition present lower classification rates, being respectively 91.05% and

95.35% for the first method, and 84.22%, 84.23% for the second one. As stated in the

results obtained in rotated dataset A, the classification accuracies are very close to each

other, when using o = 6, 7 or o = 8 orientations. From those results, we can reinforce that

the most appropriate parameter settings for our descriptor are s = 2 scales and o = 6

orientations.

Furthermore, from the bar graphs shown in Figures 4.7 and 4.8, the highest classifica-

tion rate obtained by the Gabor method is as good as the one obtained by our descriptor.

However, this rate is obtained at s = 3 scales, whereas our proposed descriptor achieves

the same performance using only s = 2 scales. In this sense, an important advantage of

our method is its high performance rate at low size feature vectors.
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Figura 4.7: Classification accuracy comparison using the SVM classifier obtained in ro-

tated dataset A using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.

Our objective now is to demonstrate the recognition improvement of our novel classifier

over the SVM approach. From Figure 4.9 it can be seen, that for almost all feature

extraction configurations, the recognition rates of the OPF classifier are higher than those
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Figura 4.8: Classification accuracy comparison using the SVM classifier obtained in ro-

tated dataset B using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.

of the SVM classifier. The latter method presents the same recognition rates as the ones

of the OPF classifier when using s = 2 scales and o = 6, 7 orientations. In the case of

the image rotated dataset B, our classifier yields better recognition rates for all feature

extraction configurations (See Figure 4.10). By considering that it was found that the most

appropriate parameter settings for our descriptor are s = 2 scales and o = 6 orientations,

it is worth to mention that, by using this configuration, the recognition accuracy obtained

by the OPF classifier is 98.49% in comparison with the corresponding accuracy of 95.48%

obtained by the SVM classifier.
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Figura 4.9: Classification accuracy comparison using the SVM classifier obtained in ro-

tated dataset A using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.
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Figura 4.10: Classification accuracy comparison using the SVM classifier obtained in
rotated dataset B using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.

4.6.2 Effectiveness of the scale invariance representation

Figures 4.11 and 4.12 display the classification accuracy of our scale-invariant image des-

criptor against the conventional Pyramid Decomposition and the Gabor Wavelets in the

scaled image datasets A and B, respectively. Those Figures demonstrate the classification

accuracy improvement of our image descriptor over both methods.

From Figure 4.11 it can be noticed that by using just s = 2 scales and o = 7 orienta-

tions, our feature extraction algorithm achieves a classification rate of 100%. This same

rate is achieved by the other two methods, but at the cost of having larger image feature

vectors. To obtain a classification rate of 100% both Pyramid Decomposition and Gabor

Wavelets need at least s = 3 scales. Recalling Subsection 4.3.1, the feature vector dimen-

sionality is obtained by multiplying the number of scales and orientations by a factor of 2,

since we considered the mean and standard deviation as feature components. In this way,

the dimensionality of our feature vectors is of size of 28(2×2×7) elements, in comparison

with a size of 42(2 × 3 × 7) elements of their analogous feature vectors. By considering

that the typical storage space of a float number is equal to 8 bytes, each of our feature

vectors requires only 224 bytes to be stored, in comparison with the 336 bytes required

for their analougus feature vectors. In this way, our image descriptor requires 66.7% less

storage space than the one belonging to the compared descriptors.

By analyzing the classification accuracies depicted in Figure 4.12, we can notice again

that our image features perform better than the other two methods. However, the main

differences between the results presented in Figures 4.11 and 4.12 is that in the case of the
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scale dataset B all methods achieved higher classification rates. The reason for this lies in

the tested texture dataset, which has more discriminative samples to be used during the

training phase of the classifier. This can be thought as having sufficient discriminatory

training data regardless of the testing data size.
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Figura 4.11: Classification accuracy comparison using the SVM classifier obtained in
scaled dataset A using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.

Another important question that arises now, is to know how our feature classifier

performs in both scaled datasets. To answer this question, we compared in Figures 4.13

and 4.14 the classification accuracies of the OPF against those obtained with SVMs. From

Figure 4.13 we can see that by using a 16 dimension feature vector (s = 2 scales and o = 4

orientations) the OPF achieves a classification accuracy of 100%, which increases in turn

the corresponding accuracy of the SVM up into two percent. Although this difference

may appear despicable, note that the SVMs achieved the same accuracy when using a

28 dimension feature vector (s = 2 scales and o = 7 orientations). Thus, our recognition

system requires almost only the half feature vector dimensionality to obtain a complete

recognition. In the case of the scaled dataset B, the OPF achieved a 100% classification

rate by using 24 (s = 2 scales and o = 6 orientations) dimension feature vectors. The

SVMs achieved, in turn, this accuracy by using 30 (s = 3 scales and o = 5 orientations)

dimension feature vectors. By considering again an 8 byte storage space for a float number,

our recognizer uses 192(8 × 24) bytes to classify texture images in an efficient manner,

whereas by using SVMs 240(8× 30) bytes are needed.
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Figura 4.12: Classification accuracy comparison using the SVM classifier obtained in
scaled dataset B using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.

4.6.3 Results Summarization

In this subsection, we provide a summary of our experimental results. For notation pur-

poses, we will denote our image descriptor, the Gabor Wavelets, and the conventional

Pyramid Decomposition descriptors as ID1, ID2, and ID3, respectively. The summariza-

tion of our results for the rotated datasets A and B is provided in Tables 4.1, and 4.2.

Table 4.1, compares for each rotated dataset, the mean recognition rates obtained by the

three texture image descriptors using different scales (s = 2, 3) and different orientations

(o = 4, 5, 6, 7, 8). In this set of experiments, we used Gaussian-kernel Support Vector Ma-

chines (SVMs) as texture classification mechanisms. From our results, it can be noticed

that our texture image descriptor performs better regardless of the dataset used, or the

image decomposition parameters considered during feature extraction (number of scales

and orientations). Furthermore, as it can be seen in Table 4.2, the OPF classifier improves

the recognition accuracies obtained by the SVM classifier in all of our experiments. The

summarized results for the scale datasets A and B are presented in Tables 4.3, and 4.4.

As we can see, our proposed recognition system performs again better than the previously

mentioned approaches in both feature extraction and classification tasks.

4.6.4 Training Sample Classification Rates

The achieved performances of our feature classifier using different number of training

samples are shown graphically in Figures 4.15– 4.18. The y-axis denote the achieved

average classification rate, whereas the x-axis represents the number of training samples
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Figura 4.13: Classification accuracy comparison using the SVM classifier obtained in
scaled dataset A using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.

Rotated
Dataset

scales (s) /
orientations (o)

ID1 ID2 ID3

A (s=2;o=4,5,6,7,8) 95.89% 93.19% 93.19%
A (s=3;o=4,5,6,7,8) 97.99% 92.36% 97.92%

B (s=2;o=4,5,6,7,8) 92.30% 85.30% 91.29%
B (s=3;o=4,5,6,7,8) 96.70% 85.76% 96.67%

Tabela 4.1: Mean recognition rates for the three different texture image descriptors using
Gaussian-kernel Support Vector Machines as classifiers in the rotated datasets A and B.

considered. Each unique line belongs to each of the evaluated image descriptors (Gabor

Wavelets, conventional Steerable Pyramid Decomposition, and our method). From those

Figures we can see that almost all image descriptors attain reasonably good results even

by using small dimentional feature vectors (85%+). However the superiority of our system

can be clearly seen. Note that in the case of the rotated datasets A and B (Figures 4.15

and 4.16, respectively) our system remained with high accuracies above 97% and 95%,

respectively. The analogous accuracies of Gabor Wavelets in both datasets have not

reached the rates of our descriptor in any number of training samples used (en ninguna

de las cantidades de muestras utilizadas). At the same time, our improvements over the

conventional Steerable Pyramid Decomposition are notorious. In contrast, in the case of

the scale dataset A, we can see that the accuracies of the image descriptors are very close

to each other. However, our system achieved a 100% classification accuracy by using less

training samples as the other two methods (Figure 4.17). Moreover, it can be seen from

Figure 4.18 that by increasing the number of training samples, the conventional Steerable



4.6. Experimental Results 62

 70

 80

 90

 100

2s-4o

2s-5o

2s-6o

2s-7o

2s-8o

3s-4o

3s-5o

3s-6o

3s-7o

3s-8o
A

v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

(%
)

s - scale   o - orientation

Scale-invariance Classification Analysis Using SVM and OPF

Proposed Image Descriptor with SVM
Proposed Image Descriptor with OPF

Figura 4.14: Classification accuracy comparison using the SVM classifier obtained in
scaled dataset B using (S = 2, 3) scales with (K = 4, 5, 6, 7, 8) orientations for Gabor
Wavelets, conventional Steerable Pyramid decomposition and our method.

Rotated
Dataset

scales (s) /
orientations (o)

OPF SVM

A (s=2;o=4,5,6,7,8) 98.89% 95.89%
A (s=3;o=4,5,6,7,8) 98.61% 97.99%

B (s=2;o=4,5,6,7,8) 97.35% 92.30%
B (s=3;o=4,5,6,7,8) 96.74% 96.70%

Tabela 4.2: Mean recognition rates for the proposed rotation-invariant texture image
descriptor using both OPF and SVM classifiers in the rotated datasets A and B.

Pyramid Decomposition does not improve much and in some cases it even deteriorates

its classification accuracies. The curves in this Figure show that the average classification

accuracies between our proposed image descriptor and the Gabor Wavelets are almost the

same. However, the accuracies of our method are still higher. Finally, by analyzing all

those results, we can see clearly that our method provides a significant improvement over

the other approaches.

4.6.5 Recognition Processing Time

We also computed the recognition processing time for the classifiers in the evaluated

datasets. Note that for computing the processing time, we considered both training and

classification times together. Table 4.5 displays those values in seconds.

As we can see, the OPF algorithm is extremely faster than the SVM classifier. For the

rotated datasets A and B as well as for the scaled datasets A and B, the OPF classifier
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Scaled
Dataset

scales (s) /
orientations (o)

ID1 ID2 ID3

A (s=2;o=4,5,6,7,8) 98.78% 93.19% 97.04%
A (s=3;o=4,5,6,7,8) 99.67% 99.66% 96.05%

B (s=2;o=4,5,6,7,8) 99.35% 97.12% 99.90%
B (s=3;o=4,5,6,7,8) 99.95% 99.83% 99.44%

Tabela 4.3: Mean recognition rates for the three different texture image descriptors using
Gaussian-kernel Support Vector Machines as classifiers in the scaled datasets A and B.

Scaled
Dataset

scales (s) /
orientations (o)

OPF SVM

A (s=2;o=4,5,6,7,8) 99.03% 98.78%
A (s=3;o=4,5,6,7,8) 99.89% 99.67%

B (s=2;o=4,5,6,7,8) 99.58% 99.35%
B (s=3;o=4,5,6,7,8) 100% 99.95%

Tabela 4.4: Mean recognition rates for the proposed scale-invariant texture image des-
criptor using both OPF and SVM classifiers in the scaled datasets A and B.

was 112.15, 130.33, 125.69 and 126.30 times faster, respectively. The SVM algorithm had

a slow performance due to the fact of the optimization procedure implemented in the

libSVM [19]. However, by removing the optimization procedures, this processing time

could be decreased. In turn, this could produce lower classification rates.

4.7 Conclusions

In this paper a novel texture classification system was proposed. Its main features in-

clude: (1) a new rotation-invariant and scale-invariant image descriptor, as well as (2)

a novel multi-class recognition method based on Optimum Path Forest. The proposed

image descriptor exploits the discriminatory properties of the Steerable Pyramid Decom-

position for texture characterization. By finding either the dominant orientation or

dominant scale value presented in the texture images, the feature elements are aligned

according to this value. By doing this, a more reliable feature extraction process can be

performed, since corresponding feature elements of distinct feature vectors, coincide with

images either at same orientations or at same scales. In addition, our system adopted

a novel approach for pattern classification based on Optimum Path Forest, which finds

prototypes with none zero classification errors in the training sets and learns from er-

rors in evaluation sets. By combining the discriminating power of our image descriptor
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Figura 4.15: Average classification accuracy vs. number of training samples in rotated

dataset A.

Dataset OPF SVM

Rotated Dataset A 0.0260 2.916
Rotated Dataset B 0.0480 6.256

Scaled Dataset A 0.0388 4.877
Scaled Dataset B 0.0487 6.151

Tabela 4.5: Execution times of the OPF and SVM approaches in seconds.

and classifier, our system uses small size feature vectors to characterize texture images

without compromising overall classification rates, being ideally for real-time applications

or for applications where data storage capacity is a limitation.

State-of-the-art results on four image datasets derived from the standard Brodatz

database were further discussed. For the rotation-invariance evaluation, our method ob-

tained a mean classification rate of 98.89% in comparision with a mean accuracy of 95.89%

obtained by using SVMs in the rotated dataset A. In the case of the rotated dataset B

those rates are 97.35% and 92.30%, respectively. Concerning the scale-invariance evalu-

ation, our system improves classification rates from 98.78% to 99.03% in the case of the

scaled dataset A, whereas in the scaled dataset B those rates are improved from 99.35%

to 99.58%.

Further, the OPF multi-class classifier outperformed the SVM in the four datasets.

It is a new promising graph tool for pattern recognition, which differs from traditional

approaches, in that, it does not use the idea of feature space geometry, therefore, better



4.8. Acknowledgements 65

 80

 85

 90

 95

 100

 105

 10  20  30  40  50  60  70  80  90

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 r

a
te

(%
)

Training set percentage(%)

OPF Rotate-invariance Analysis Curve for Rotated Dataset B

Gabor Wavelets
Conventional Steerable Pyramid

Proposed Image Descriptor

Figura 4.16: Average classification accuracy vs. number of training samples in rotated

dataset B.

results in overlapped databases are achieved.
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Caṕıtulo 5

Wavelet-based fingerprint image

retrieval

5.1 Introduction

Biometrics, which refers to the automatic recognition of individuals by their physical

and/or behavioral characteristics, has emerged as a motivating and instigating research

field [62]. In fact, several biometric applications have been adopted in civilian, commercial,

and forensic areas. Traditionally, the physical characteristics used for human recognition

include fingerprints [57], iris [144], retina [51], and face [150], while the behavioral ones

include signature [99], voice [32], and gait [8]. Among all these biometric characteristics,

fingerprints are considered one of the most reliable characteristic for human recognition

due to their individuality and persistence [105]. The fingerprint’s individuality means

that it is unique across individuals and across fingers of the same individual, even in

identical twins [61]. On the other hand, the fingerprint’s persistence means that the basic

fingerprint characteristics do not change with time.

The popularity of fingerprint-based recognition have led to the creation of large-scale

databases. While the large size of these collections compromises the retrieval speed, the

noise and the distortion that can be found in fingerprint images may reduce the overall

retrieval accuracy. Therefore, both retrieval accuracy and speed play an important role

in the fingerprint recognition process.

Automatic fingerprint recognition often involves four steps [56, 57]: (1) acquisition,

(2) classification, (3) identification, and (4) verification. Fingerprint acquisition refers

to the capture and representation of fingerprints. Fingerprint classification consists in

assigning a fingerprint to a pre-defined class, whereas fingerprint identification is referred

to the retrieval of fingerprint that corresponds to a given fingerprint query image (one-

to-many comparisons). Finally, fingerprint verification is used to determine whether two

67
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fingerprint images are the same or not (one-to-one comparisons). However, considering

the large size of fingerprint image databases and the computational cost of fingerprint

verification algorithms, it is necessary to reduce the number of one-to-one comparisons

during fingerprint verification, seeking both accuracy and retrieval speed.

In this sense, we propose an original approach to guide the search and the retrieval

in fingerprint image databases. We study particularly the textural patterns that can be

found in the central region of fingerprints in order to generate textural feature vectors

used for fingerprint indexing and retrieval. For that purpose, we exploit the capability

of different types of Wavelets transform to integrate both multiresolution and space-

frequency properties in a natural manner. The fingerprint images are then decomposed

into different spatial/frequency subimages and some statistical analysis is performed to

generate feature vectors. These feature vectors are then used to compare the similarity

among a given fingerprint query image and the database images.

In our approach, the texture features are extracted by different types of the Wavelet

transform, which include: Steerable Wavelet (more known as Steerable Pyramid [37]),

Gabor Wavelet transform (GWT [72,87]), Tree-Structured Wavelet Decomposition using

orthogonal filterbank (TSWD Haar, Daubechies 4-, 8-, and 16-Tap [27, 85]), and Tree-

Structured Wavelets Decomposition using bi-orthogonal filterbank (Spline Wa-velets [137]).

In the case of the Steerable Pyramid, different orientations filters and decomposition

levels are used to generate a translation- and rotation-invariant fingerprint representation.

In the GWT, different scales and orientations are used to capture the relevant texture

information, whereas in the TSWD, the image texture content is captured on the low fre-

quency subband, while the high frequency subband is used to capture the image variations

in different directions.

The focus of our work is to show the utility and suitability of applying different types

of Wavelets transform for fingerprint indexing and retrieval. To the best of our knowledge,

this work represents the first attempt to characterize the textural content of fingerprint

images by using Wavelet transforms. In this context, the main contributions of this paper

are:

1. A description of a texture-based retrieval system for fingerprint identification con-

sidering both feature extraction methods and similarity measures.

2. The treatment of the fingerprint identification problem as a wavelet-based image

retrieval challenge.

3. A detailed comparison of the retrieval accuracy achieved by different combinations

of types of Wavelet transforms and similarity measures in terms of precision and

recall curves.
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4. The validation of the suitability of the Wavelet transforms to represent and describe

the fingerprint characteristics.

The remainder of this paper is organized as follows. The next section summarizes some

related concepts, whereas section 5.3 presents an overview of related works and outlines

the context of our study. Section 5.4 describes the architecture of the proposed system.

The module used for detecting the center point region of the fingerprints is presented

in section 5.5. Various wavelet-based feature extraction algorithms are described in sec-

tion 5.6. The feature representation for each type of Wavelets is presented in Section 5.7.

Different similarity metrics and the feature indexing method are described in section 5.8.

The results of our experiments are discussed in section 5.9. Finally, our conclusions are

drawn in section 5.10.

5.2 Background

In this section, we formalize the main terms used along this paper.

5.2.1 Image Descriptors

Definition 1. An image descriptor D is defined as a pair (ǫD, δD), where ǫD : I → R
n

is a function that extracts a feature vector ~vI from a given image I, and δD : R
n×R

n → R
n

denotes the distance function used to compute similarity between two images considering

their feature vectors. The smaller the distance, the more similar the images.

Definition 2. A feature vector ~vI of an image I is a point in R
n space, such that:

~vI = (v1, v2, . . . , vn), where n denotes the dimension of the vector.

5.2.2 Metric Spaces

Definition 3. A metric distance function d() is a function that has the following

properties:

(i) Symmetry: d(O1, O2) = d(O2, O1)

(ii) Positiveness: 0 < d(O1, O2) <∞, O1 6= O2 and d(O1, O2) = 0

(iii) Triangle inequality: d(O1, O3) ≤ d(O1, O2) + d(O2, O3)

where O denotes the domain of a set of objects O = (O1, O2, . . . , On). The pair (O, d)

is known as metric space. The similarity functions of the image descriptors are special

cases of metric spaces.
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Definition 4. A Metric Access Method (MAM) is a class of Access Method (AM)

that is used to manage large volumes of metric data allowing insertions, deletions and

searches [63].

5.2.3 Similarity Queries

In metric spaces two well-known similarity queries that can be performed are:

Definition 5. Given the query object Oq and the maximum search distance rq, the range

query Rq(Oq, rq) is used to retrieve all the objects Or ∈ O that satisfy the following

condition: d(Oq, Or) < rq.

Definition 6. Given the query object Oq and the value k ∈ Z+, the k-Nearest Neigh-

bor Query (kNN(Oq, k)) retrieve the k-closest objects in Or ∈ O that satisfy the fol-

lowing properties: |Or| = k and d(Oq, Or) ≤ d(Oq, Os)∀Os ∈ O.

5.3 Related Work

The most common way to reduce the number of one-to-many comparisons during finger-

print retrieval is to partitionate the database using fingerprint classification techniques,

which can be divided into two main categories: exclusive and continuous classification.

The former uses information related to the pattern of ridges and valleys found in

fingerprints to partitionate the fingerprint database into mutual exclusive bins. In this

sense, once the fingerprint query image is classified, the image candidates are searched in

the corresponding bin. Further, this kind of approach can be subdivided into four sub-

categories depending on the type of information used for exclusive classification, namely,

ridge-, orientation field-, singularity-, and structural-based information. In continuous

classification approaches, fingerprint images are represented by feature vectors. Similari-

ties among fingerprint images are established by the distance in the feature space of their

corresponding feature vectors. This approach is closely related to a fingerprint database

indexing problem.

Ridge-based approaches use traditionally the information of the structure frequency

of the fingerprint ridges for classification purposes. The work proposed by Fitz et al. [34]

takes into account the frequency spectrum of fingerprints, obtained by applying a he-

xagonal Fourier Transform, to classify fingerprints into three classes: whorl, loops, and

arches. A wedge-ring detector is used to partitioned the frequency domain images into

non-overlapping areas where the pixel values are summed up to form a feature vector.

Once the feature vector is found, it is compared to the reference feature vectors of each of

the classes and further classification is performed by using a nearest neighbor classification
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method. To capture the structure of fingerprint ridges, some works develop mathematical

models to characterize the fingerprint images [21, 59]. Chong et al. [21] use, for example,

B-splines curves to approximate the shape of each of the fingerprint ridges. Then, similar

orientation ridges are grouped together to obtain a global shape representation of the

fingerprints, which is used for classification.

Approaches based on orientation field use the local average orientations of fingerprint

ridges to classify fingerprints. Halici et al. [45] use the block orientation fields of finger-

prints and certainty measures to generate the fingerprint feature vectors. For the sake of

feature dimensionality reduction, they used a SOM neuronal network. Moreover, a second

layer was added to the neuronal network architecture to improve the overall classification

accuracy.

Fingerprint singularities have been widely used for classification [52,65]. They can be

defined as the local regions where the fingerprint ridges present some physical properties.

Karu et al. [65] extract the singularities that can be found in the fingerprints to classify

them by considering the location and the number of the detected singularities.

Structural approaches use the topology information of fingerprints for classification

purposes. Maio et al. [82] segment the orientational field of fingerprint images to represent

the fingerprints as relational graphs. For each class of fingerprints, a model relational

graph is created. An inexact graph matching algorithm is used to classify fingerprint

images.

Although the search spaces can be reduced in exclusive classification approaches, there

are some shortcomings that should be considered: (1) some fingerprints present properties

of more than one class and therefore they cannot be assigned into just one bin, (2) natural

distribution of fingerprints is not uniform and therefore, even performing binning in the

original database, the number of one-to-many comparisons can still be high – Cappelli

et al. [17] proved that the distribution of fingerprint classes is not uniform (93.4% of

fingerprints are among a set of three classes) –, and (3) some of the characteristics used

for binning are not easy to detect due to the presence of noise, ambient conditions, etc.

On the other hand, Germain et al. [40] proposed a continuous system to index finger-

print databases using flash hashing. For that purposes, the location and orientation of

the minutiaes, as well as the number of ridges among them are used to generate feature

vectors. Some information related to the feature vectors are obtained and used to create

the image indices that are added to a multi map memory structure and considered latter

during fingerprint retrieval.

More recently, Tan et al. [131] compared two fingerprint identification approaches ba-

sed on: (a) classification followed by verification, and (b) indexing followed by verification.

Their classification approach uses Genetic Programming to generate compositor operators

applied to some features extracted of the fingerprint orientation fields. A Bayesian classi-
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fier is them used to classify fingerprints. Their indexing approach is based on the work of

Germain [40]. However, as a result of the retrieval process, a list of N fingerprint candi-

dates is retrieved for the verification to determine the correspondence degree between the

query image and the database images. They concluded that the indexing-based approach

outperforms the classification considering the size of the search spaces.

Both approaches reduce the search spaces by considering some fingerprint singulari-

ties [40, 131]. Furthermore, the accurate detection of these singularities depend highly

on the quality of the fingerprint images. Moreover, their definition often involves high

computational costs, that will affect directly the fingerprint recognition time. On the

other hand, they both use flash hashing for indexing purposes and we believe that by

using metric access methods the query processing time will be improved. Thus, we will

consider more specifically the textural information presented in fingerprints for feature

extraction purposes, since they retain the discriminating power of fingerprints and Metric

Access Methods (MAM) for their indexing. The description of the MAM used in our

approach is beyond the scope of this paper, however a brief description is presented in

section 5.8.

5.4 System Overview

The architecture of our proposed framework, presented in Figure 5.1, can be divided into

two main subsystems, namely, the enrollment and the query subsystems. The enroll-

ment subsystem acquires the information stored in the database for later use. The query

subsystem is responsible for retrieving similar fingerprints from the database according

to the user’s fingerprint query image. Our system operates as follows:

1. Enrollment-subsystem: several fingerprint images are first captured (arrow labeled

1 in Figure 5.1) and a Region of Interest (ROI) within the fingerprint is marked

(module 1, arrow 2) by a center point area detection module. A region of 64× 64

pixels is used for marking the ROI. Feature extraction algorithms contained in the

descriptor library (module B, arrow 3) are used by the feature extraction module

to generate the features (arrow 4) that are indexed by a metric access method for

further use.

2. Query-subsystem: a fingerprint query image is received as input from the user (arrow

1). Once the fingerprint ROI is detected (module A, arrow 2), the feature extraction

algorithms contained in the descriptor library are used to extract the feature vectors

from the query image (module B with arrows 3 and 4, respectively). The query image

feature vector is used to rank the database images according to their similarity to

the query image (module C). For that purpose, a distance computation algorithm



5.5. Center Point Area Detection 73

is selected from the descriptor library (arrow 5) and the metric access method is

used to speed up the retrieval process (arrow 6). Finally, the most similar database

images are ranked (arrow 7) and returned to the user (arrow 8).

Figura 5.1: Architecture of the proposed system.

5.5 Center Point Area Detection

In order to detect the fingerprint center point area, we first locate the core point corres-

ponding to the uppermost point contained in the inner-most ridge line. We have chosen

the core point as the basis of the center area detection because: (1) it can be found in the

central part of the fingerprint and, (2) appears more frequently than deltas [139]. The

steps used for core detection are [60]:

1. Estimation and smoothing of the directional fields of the fingerprint input image.

2. Computation of the Poincaré index, in each (8× 8) block. This index is defined as

follows:

Poincare(i,j) =
1

2π

N−1
∑

k=0

∆(k) (5.1)

∆(k) =







δ(k) if |δ(k)| < π
2

π + δ(k) ifδ(k) ≤ −π
2

π − δ(k) otherwise

(5.2)
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δ(k) = θ(X(k
′

), Y (k
′

))− θ(X(k), Y (k)) (5.3)

where k
′

= (k + 1) mod (N) and θ(i, j) is the directional field of the fingerprint

image. X(k) and Y (k) are the coordinates of the blocks in the closed curve with N

blocks. If the Poincaré index has a value of 1/2, then the current block is the core

block. The center of this block is then the core point. If more than two cores are

detected, go back to step 1 using a larger smoothing parameter for the directional

fields.

Once the center point is obtained, a center point area can be easily defined. An image of

size 64× 64 pixels around the core point is then cropped, as shown in Figure 5.2.

Figura 5.2: Some image samples of the center point area detected of 8 different fingerprints
from FVC-2002 Database.

5.6 Feature Extraction

In this section, we provide a more detailed explanation of the various Wavelet-based

feature functions used in the feature extraction module of the proposed architecture (See

Module B in Figure 5.1). Wavelets have proved their efficiency in image retrieval problems

due to their capability in capturing both texture and shape information [75, 100]. The

Wavelet subband and multi-resolution decomposition are extremely adapted to compute

relevant information of the data while preserving their basic content [22]. In this section,

we present the wavelet-based feature extraction approaches considered in our system.

5.6.1 Texture Feature Extraction

The texture found in images represents a powerful discriminating feature for both image

classification and retrieval. Although there does not exist a formal definition of texture,

it can be understood as the basic primitives in images whose spatial distribution creates

some visual patterns. Thus, the goal of a texture feature extraction method is to create

a feature vector that captures the image texture information and preserves, at the same

time, its content.

Considering that the ridges and valleys of fingerprints form a textural pattern, it is then

possible to capture discriminatory information through their textural representations.



5.6. Feature Extraction 75

Further, the captured representations in the feature vectors are indexed and stored for

image retrieval purposes.

5.6.2 Wavelet-based Feature Extraction

Here, the use of the Wavelet transform for texture description is motivated by two rea-

sons [75]: (1) it integrates both multiresolution and space-frequency properties naturally,

and (2) has demonstrated good accuracy for texture analysis and classification .

Wavelet Transform Review

The Wavelet Transform decomposes a signal f(x) with a family of functions obtained

through dilations and translations of a kernel function ψ(x), called the mother wavelet.

It is localized in both spatial and frequency domains. This family of functions is denoted

by:

ψm,n(x) = 2
−m
2 ψ(2mx− n) (5.4)

wherem,n ∈ Z
+ indicate dilations and translations, respectively. To construct the mother

wavelet ψ(x) a scaling function φ(x) is needed:

φ(x) =
√

2
∑

k

h(k) φ(2x− k) (5.5)

Then, the wavelet kernel ψ(x) is determined as follows:

ψ(x) =
√

2
∑

k

g(k) φ(2x− k) (5.6)

where:

g(k) = (−1)k h(1− k) (5.7)

The explicit forms of φ(x) and ψ(x) are not required to perform the wavelet trans-

form, because it depends only on the coefficients h(k) and g(k) with low- and high-pass

characteristics, respectively. The L-level decomposition of the signal f(x) can be written

as:
f(x) =

∑

n

c
0,n
φ

0,n
(x)

f(x) =
∑

n

c
L,n

φ
L,n

(x) +
L+1
∑

l=1

∑

n

d
l,n
φ

l,n
(k)

(5.8)
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the coefficients c
0,n

are given and the coefficients c
L,n

and d
l,n

, both at scale l, are

obtained by the coefficients c
l−1,n

at scale l − 1 trough:

c
l,n

=
∑

k

c
l−1,n

h(k − 2n)

d
l,n

=
∑

k

c
l−1,n

g(k − 2n)
(5.9)

where 1 ≤ l ≤ L + 1. A recursive wavelet decomposition can be obtained through

h(k) and g(k) in Equation 5.9. The same process can be viewed as the convolution of

signal c
l−1,n

with the impulse responses h(n) = h(−n) and g(n) = g(−n) of the low- and

high-pass filters H and G, respectively (also known as quadrature filters), and then by

downsampling the filtered signals by a factor of 2. The 2-D wavelet and scaling functions

can be expressed as the tensor products of their 1-D complements:

φLL(x, y) = φ(x)φ(y) ψLH(x, y) = φ(x)ψ(y)

ψHL(x, y) = ψ(x)φ(y) ψHH(x, y) = ψ(x)ψ(y) (5.10)

where φLL, ψLH , ψHL, and ψHH represent the Low-Low, Low-High, High-Low, and High-

High subbands, respectively.

Tree-Structured Wavelet Transform

In the Tree-Structured Wavelet Transform, the output of each of the subbands (φLL,

ψLH , ψHL, ψHH) can be decomposed recursively. This decomposition is based on the

fact that, for some kinds of textures, the most relevant information can be found in the

middle subbands. To avoid a full decomposition, Chang et al. [20] proposed an energy-

based criterion to decide which subband should be further decomposed. If the energy in

a subband is very similar to the maximum energy of a subband at the same level, then

further decomposition is not performed. However, for the sake of pattern retrieval, a fixed

decomposition structure is convenient, since if facilitates distance computations and hence

database browsing. On the other side, considering that the subband ψHH often leads to

unstable features, recursively decomposition is done in the φLL, ψLH , and ψHL subbands.

For the Tree-Structured Wavelet Decomposition, we have considered two kinds of

filterbanks, which include orthogonal and bi-orthogonal filterbanks. For the orthogonal

filterbank we used the Haar Wavelets, and Daubechies 4-, 8-, and 16-tap [27,85]. For the

bi-orthogonal filterbank the Spline wavelets is used [137]. Figure 5.3 presents an example

of a two level Tree-Structured Wavelet Transform decomposition for image retrieval. Note

that the ψHH subband is not further decomposed for the reasons explained above.
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Figura 5.3: Two level Tree-Structured Wavelet Transform.

Gabor Wavelet Transform

A general 2-D Gabor function ψ(x, y) is defined as:

ψ(x, y) =

(

1

2πσxσy

)

exp

[

−1

2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πjWx

]

(5.11)

where the spatial coordinates (x, y) denote the centroid localization of the elliptical Gaus-

sian window. The parameters σx and σy are the space constants of the Gaussian envelop

along the x- and y-axes, respectively. The Fourier transform G(u, v) of the Gabor function

ψ(x, y) can be written as:

G(u, v) = exp

[−1

2

(

(u−W )2

σ2
u

+
v2

σ2
v

)]

(5.12)

where W represents the frequency of the sinusoidal plane along the horizontal axis and

the frequency components in x- and y-direction are denoted by the pair (u, v), while

σu = 1/2πσx and σv = 1/2πσy. Considering the non-orthogonal basis set formed by the

Gabor functions, a localized frequency description can be obtained by expanding a signal

with this basis.

Self-similar class functions, known as Gabor Wavelets, can be generated by dilations

and rotations of the mother wavelet ψ(x, y), i.e.:

ψm,n(x, y) = amψx
′
,y

′ , a > 1 (5.13)

considering m = 1, . . . S and n = 1, . . .K. S and K denote the total number of dilations

and orientations, respectively, and:
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[

x
′

y
′

]

= a−m

[

cosθn sinθn

−sinθn cosθn

] [

x

y

]

(5.14)

where θ = nπ/K and θ is the rotation angle. To ensure that the energy is independent

of m, a scale factor a−m is introduced. Considering the redundant information presented

in the filtered images due to the non-orthogonality of the Gabor Wavelets, Manjunath et

al. [87] designed a strategy to reduce the redundancy of the Gabor Wavelets Filterbank,

where the half-peak magnitude of the filter responses touch each other in the frequency

spectrum:

a =

(

Uh

Ul

)
1

S−1

σu =
(a− 1)Uh

(a+ 1)
√

2ln2
(5.15)

σv = tan
( π

2K

)

[

Uh − 2ln2

(

σ2
u

Uh

)][

2ln2− (2ln2)2σ2
u

U2
h

]

−
1

2

(5.16)

where W = Uh. The parameters Uh and Ul are used, respectively, to denote the upper

and lower center frequencies of interest.

Steerable Pyramid

The Steerable pyramid is a linear multi-orientation and multi-scale image decomposition

method, from which an image is subdivided into a collection of subbands localized at dif-

ferent scales and orientations [37]. This decomposition transform is based on convolution

and decimating operations and has the advantage that the subbands are translation- and

rotation-invariant. Using a high- and low-pass filter (H0, L0) the input image is initially

decomposed into high- and low-pass subbands. The low-pass subband is further decom-

posed into a total of k-oriented band-pass portions B0, . . . , Bk and into a lowpass subband

L1. The recursive decomposition is done by subsampling by a factor of 2 along the rows

and columns the lower low-pass subband. The decomposition process of the first level of

the Steerable Pyramid is shown in Figure 5.4. The white points in Figure 5.4 represent

the resulting images after applying the directional filters on the input images, whereas

the black point denotes the recursive pyramidal decomposition.

5.7 Feature Representation

The way the feature vectors are computed based on the different types of Wavelets pre-

sented in Section 5.6 is described in this section (See Arrow 4 in Figure 5.1). To generate

the feature vectors, some statistical measures are used. More precisely, the mean µmn and

the standard deviation σmn of the energy distribution of the multiresolution transform
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Figura 5.4: First Level of Steerable Pyramid Decomposition.

coefficients are used to capture the fingerprint textural information and thus to form the

feature vector ~f :

µmn =
1

MN

∫∫

|Wmn(x, y)| dxdy (5.17)

σmn =

√

∫∫

(Wmn(x, y)− µmn)2 dxdy (5.18)

For the Tree-Structured Wavelet Transform the values of |Wmn(x, y)| correspond to the

energy distribution in one of the three subbands: LL, LH, and HL. Thus, the subindices

m and n are integers that stand for the decomposition level and the current subband

(m = 1, 2, . . . , L and n = 1, 2, 3), respectively. Furthermore, the 64× 64 cropped image is

decomposed into 6 levels, thus a total number of 18 subbands are considered. The feature

vector ~f is formed as follows:

~f
TSWT

= [µ11, σ11, µ12, σ12, µ13, σ13; . . . ;µL1, σL1, µL2, σL2, µL3, σL3] (5.19)

For the Gabor Wavelet Transform, the values of |Wmn(x, y)| denote the energy distri-

bution of the transform coefficients after convolving an image I with the Gabor Wavelet

ψm,n. Considering a total number of S = 6 scales and K = 16 orientations, the resulting

feature vector is computed as follows:

~f
GW

= [µ11, σ11;µ12, σ12; . . . µS K , σS K ] (5.20)

Considering k = 16 orientation subbands and l = 6 decomposition levels, the feature

vector for the case of the Steerable Pyramid is generated as follows:

~f
SP

= [µ11, σ11, µ21, σ21, . . . , µk1, σk1, µ1l, σ1l, µ2l, σ2l, . . . , µkl, σkl] (5.21)
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5.8 Feature Indexing

In this section, we present the different similarity measures studied in our work and the

Metric Access Method used for feature indexing.

5.8.1 Similarity Measures

A key component of a CBIR (Content-based image retrieval) system are the similarity

measure functions used for computing the similarity among images. This affirmation is

valid if we consider that the retrieval performance depends not only on the effectiveness of

the image features, but also on the similarity measures efficience. Thus, different similarity

measures should be analyzed in a CBIR system to improve the retrieval performance. Let

~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn) be two feature vectors of dimension n, Table

5.1 presents the similarity measures studied in our work.

Evaluated Similarity Measures

Measure Formula

Bray Curtis dBC =
n

∑

i=1

|xi − yi|
xi + yi

Canberra dC =

n
∑

i=1

|xi − yi|
|xi|+ |yi|

Euclidean dE =

√

√

√

√

n
∑

i=1

(xi − yi)2

Manhattan dM =

√

√

√

√

n
∑

i=1

|xi − yi|

Squared Chord dSC =
n

∑

i=1

(
√
xi −

√
yi)

2

Square Chi-Squared dSChi =
n

∑

i=1

(xi − yi)
2

xi + yi

Tabela 5.1: Evaluated Similarity Measures.

5.8.2 Metric Access Method

To speed-up the retrieval, we have used a dynamic MAM known as Slim-tree [63]. The

use of the Slim-tree in the fingerprint domain is attractive, since: (1) fingerprints can be
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inserted and deleted even after the creation of the tree, due to its dynamicity, (2) similarity

queries such as kNN and range queries are supported and therefore CBIR applications

are possible, (3) overlapping between nodes is minimized and thus the retrieval speed

is increased and (4) due to its scalability, large amount of data can be handled in an

efficient manner, even after having a grow the database. Furthermore, the Slim-tree has

outperformed the well known M-tree indexing structure [106].

5.9 Experimental Results

In this section we present the experimental setup conducted in our study, as well as the

effectiveness of the discussed feature extraction methods by means of some precision vs.

recall curves.

5.9.1 Databases

Our experiments were conducted independently on two databases, the Bologna FVC-2002,

and FVC-2004 databases, which consist of four different data sets, referred to as DB1,

DB2, DB3, and DB4. Further, each of these data sets contains 8 fingerprint samples of

100 different fingers. Thus, each data set contains 880 fingerprints. Considering that

each data set was collected by using different fingerprint technologies to cover better the

advances in fingerprint sensing techniques, the size of each of the fingerprint images, as

well as the resolution, vary among them. Data sets DB1, DB2, and DB3 were collected

by different scanners technologies, whereas the data sets DB4 were collected by using a

software for generating synthetic fingerprints [15,16]. Table 5.2 summarizes the different

fingerprint technologies used to generate the databases.

These databases were not acquired in real environments and according to a formal

protocol, therefore, the data is characterized by the presence of distortions (rotations,

translations, low quality images) within fingerprints of the same individual’s finger, being,

therefore, useful for testing our system in extreme conditions.

5.9.2 Effectiveness Evaluation

In order to compare the retrieval effectiveness of different types of Wavelets, the proposed

approach was measured in terms of Precision and Recall curves [43], since they have been

widely used to evaluate retrieval effectiveness.
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FVC-2002
Technology Scanner Image Size Resolution

DB1 Optical Sensor
Indentix

TouchView II
388× 374 500 dpi

DB2 Optical Sensor
Biometrika
FX 2000

296× 560 569 dpi

DB3 Capacitive Sensor
Precise

Biometrics 100SC
300× 300 500 dpi

DB4 Synthetic Software
SFingGE

v2.51
288× 384

About
500 dpi

FVC-2004
Technology Scanner Image Size Resolution

DB1 Optical Sensor
CrossMatch

v300
640× 480 500 dpi

DB2 Optical Sensor
Digital Persona

U.are U.400
328× 364 500 dpi

DB3
Thermal

Sweeping Sensor
Atmel

FingerChip
300× 480 512 dpi

DB4 Synthetic Software
SFingGE

v3.0
288× 384

About
500 dpi

Tabela 5.2: Summarization of the FVC-2002, and FVC-2004 databases.
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The precision is defined as the fraction of the retrieved images that are relevant to

the given query, while the recall represents the proportion of relevant images among the

retrieved ones. Thus, each of the retrieved images is considered as a match if it belongs

to the same class as the query image. Considering the query image q and the number of

correct, missed and false candidates (nc, nm, and nf , respectively), the precision pq in the

first R retrieved images is defined as follows:

pq =
nc

nc + nf

=
nc

R
(5.22)

while the recall rq of the such similar candidates S of the query image q is defined as:

rq =
nc

nc + nm

=
nc

S
(5.23)

5.9.3 Experiments

A series of experiments have been conducted to test the retrieval accuracy of our finger-

print image retrieval system using different wavelet-based feature extraction algorithms,

and different similarity measures. The retrieval experiments were conducted independen-

tly in each of the four data sets of the two databases.

A simulated query is one of the 880 images in the data sets. Thus, a total number

of 880 different fingerprint queries were performed per data set. The relevant retrieved

images for each query are defined as the remaining fingerprints from the same individual,

and the distances between the images are stored in increasing order.

A total number of 42 image descriptors were tested in each data set to determine the

best pair of feature extraction algorithm with similarity measure. To generate them we

have considered seven different wavelet-based feature extraction functions with the six

similarity measures presented in Table 5.1. Seven different types of Wavelets including

Gabor Wavelets, Steerable Pyramids, TSWD using Haar, Daub 4-tap, Daub 8-Tap, Daub

16-Tap, and Spline Wavelets have been evaluated.

Further, for each dataset we have considered the average retrieval effectiveness of all

42 image descriptors. Thus, a total number of 42 × 2 × 4 experiments were conducted.

The best combinations are then found, and the precision vs. recall curves showing the

accuracy of the image descriptors are presented in figures 5.5, 5.6. Note that, for reasons

of space, we report only the best results achieved by the image descriptors in each of the

data sets.

Considering both figures, it is clear that the Gabor Wavelets outperform the other

approaches in terms of retrieval accuracy. This is due to the fact that the Gabor Wave-

lets capture much useful information at different orientations when compared with the
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Figura 5.5: Average Precision vs. Recall curves for the FVC-2002 Database.

traditional Tree-Structured Wavelet Decompositions, which do not consider this speci-

fic information. In this sense, a more precise retrieval was performed due to the Gabor

Wavelet’s flexibility in controlling the orientation information.

In all eight data sets the best accuracy of Steerable Pyramids was achieved by using the

same similarity measure, which is the Bray Curtis distance. This is because the difference

on the numerator and the sume in the denominator normalizes the results, being the

distance close to zero for very similar values, and close to one for very different values.

On the other side, we can observe that for each of the eight data sets, except for DB2 of

the FVC-2004, the highest retrieval effectiveness was obtained by using the Square Chord

similarity measure. The fact that the distance in each dimension is first obtained by

performing the square root and then by applying the power of two, reduces the emphasis

on those features with large dissimilarity.

The retrieval accuracy obtained by the different types of TSWD is almost the same.
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Figura 5.6: Average Precision vs. Recall curves for the FVC-2004 Database.

The fact that this kind of Wavelet does not capture much information at different orienta-

tions has decreased their effectiveness in comparison with the Gabor Wavelets. The best

similarity measure for the TSWD using Spline Wavelets are the Manhatan and Euclidian

distances for both databases. That is because both of them, measure the absolute diffe-

rences in each feature dimension in order to increase the retrieval effectiveness. However,

one benefit of the Manhatan distance is that it requires less computational operations

than the Euclidean distance.

In the case of the TSWD using Haar Wavelets, the best retrieval indices were obtai-

ned by using the Manhatan and Square Chord measures, whereas for the TSWD using

Daubechies Wavelets, the best retrieval effectiveness was achieved by using the Square-

Chi-Squared similarity measures. Note that, the best retrieval effectiveness of the different

types of the TSWD was obtained by using the same similarity measures in both databa-

ses. This observation is important as the similarity measure used, should have the same
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effectiveness for self class images. In other words, these similarity measures have a better

result for the domain of fingerprint images.

5.9.4 Image Retrieval Examples

Some retrieval examples are shown in Figure 5.7. The query image is on the top left cor-

ner, whereas the remaining ones are the retrieved images in increasing order of distance

from the query image. Each fingerprint is labeled by the individual’s ID and the number

of the fingerprint sample, for example, image 22 3 will denote the individual number 22

and the third sample of his/her fingerprint. From Figure 5.7, it is possible to notice that

most of the retrieved fingerprints are visually similar to the query image. This observa-

tion is important, because many of the errors on the retrieved data involve fingerprints

that have the same texture and orientation as the query image, although they belong to

other individuals, in other words, the presence of rotated or translated versions of similar

fingerprints reduces the accuracy of the retrieval.

5.10 Conclusions

This paper has investigated the possibility of applying texture-based image retrieval tech-

niques to reduce the search space for fingerprint identification. More specifically, we have

proposed a novel approach to characterize fingerprint images by using different types of

Wavelet transforms and similarity measures.

The retrieval effectiveness of the different image descriptors was compared by analyzing

the results in terms of precision and recall. For all experiments, the best result was

achieved by the Gabor Wavelet Transform combined with the Square Chord similarity

measure. This fact relies basically on its flexibility to model the orientation and the

scale information in images. Moreover, depending on the desired accuracy the descriptor

parameter values can be adapted. The lack of this flexibility has influenced the retrieval

performance of the Tree-Structured Wavelet Transform (TSWT), since it is not able to

capture relevant information in different orientations.

It is important to notice that the databases used in our experiments do not reflect

real acquisition conditions in the sense that image present abnormal distortions, including

noise, significant rotations, and translations [83]. In this context, future work includes

the use of databases containing more realistic fingerprint images. In this case, we expect

that the retrieval effectiveness of our image descriptors will be considerably improved. In

addition, we also plan to study the impact of using different metric access methods for

fingerprint identification.
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Figura 5.7: Some retrieval examples of the data set DB1 of the FVC-2002 database.
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Caṕıtulo 6

Conclusões

Neste trabalho apresentou-se um estudo de técnicas de análise de textura para identi-

ficação e reconhecimento de imagens. Mais especificamente, foi proposto um novo descri-

tor para caracterização de texturas que foi aplicado em tarefas de recuperação de imagens

por conteúdo, bem como para reconhecimento de texturas.

A principal caracteŕıstica deste descritor consiste nas suas propriedades de repre-

sentações texturais invariantes à rotação e escala. A nossa abordagem explora as pro-

priedades discriminativas da Decomposição Piramidal Steerable.

O novo descritor leva em consideração a orientação ou a escala dominante presente

nas imagens de textura. Devido às propriedades discriminativas da Decomposição Pi-

ramidal Steerable, os vetores de caracteŕısticas possuem uma baixa dimensionalidade,

possibilitando-se dessa maneira aplicações em que o espaço de armazenamento pode ser

um fator importante.

Por outro lado, para analisar a acurácia do nosso descritor, no contexto de recuperação

de imagens por conteúdo, um número total de 43056 consultas diferentes foram realizadas

em três bases de imagens geradas a partir do padrão Brodatz. O descritor proposto

apresentou boa eficácia nos experimentos realizados envolvendo bases de imagens que

consideravam transformações de rotação e escala. Mais especificamente, as acurácias

médias para as representações invariantes à rotação e escala foram incrementadas de

59.62% a 80.02% e de 80.5% a 86.51% em relação à Decomposição Piramidal Convencional,

respectivamente. É importante mencionar que as taxas médias de recuperação em relação

às Wavelets de Gabor foram menores sendo, respectivamente, de 61.42% e 60.7% para as

bases de imagens.

Por outro lado, no contexto de reconhecimento de texturas, um novo sistema de classi-

ficação foi apresentado. Para tanto, utilizou-se o descritor proposto no presente trabalho,

bem como o método de reconhecimento multiclasse baseado na abordagem Optimum

Path Forest [108]. Combinando as propriedades do descritor e do classificador, o sistema

89
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proposto utiliza vetores de caracteŕısticas de baixa dimensionalidade. Além disso, na

avaliação das taxas de reconhecimento para invâriancia à rotação, o método obteve uma

classificação média de 98.89% em comparação com a taxa média de 95.89% obtida pe-

las máquinas de vetores de suporte (SVMs) em uma das bases de imagens consideradas.

Para uma outra base, as taxas foram respectivamente de 97.35% e 92.30% para ambos os

métodos. Em relação à avaliação quanto à invariância à escala, o nosso sistema melhorou

as taxas de classificação de 98.78% a 99.03% no caso de uma das bases de imagens com

mudanças de escala, enquanto que para outra base estas taxas sofreram alterações de

99.35% para 99.58%.

Algumas posśıveis extensões desse trabalho incluem:

1. Aplicação e análise do descritor para o problema espećıfico de segmentação de tex-

turas.

2. Validação do método para identificação e reconhecimento de imagens empregando

outros tipos de Wavelets e classes de imagens.

3. Abordagem do uso dos descritores em problemas de indexação em bancos de ima-

gens.

4. Validação do descritor considerando outras medidas de similaridade.
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[8] Chiraz Benabdelkader, Ross G. Cutler, and Larry S. Davis. Gait recognition using

image self-similarity. EURASIP Journal on Applied Signal Processing, 2004:572–

585, 2004.

[9] S. Beucher and F. Meyer. The morphological approach to segmentation: The wa-

tershed. Mathematical Morphology in Image Processing, pages 433–481, 1993.

[10] A. Blake and C. Marinos. Shape from texture: Estimation, isotropy and moments.

Artifical Intelligence, 45(3):323–380, 1990.

[11] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the 5th Workshop on Computational Learning Theory,

pages 144–152, 1992.

[12] Charles Bouman and Bede Liu. Multiple resolution segmentation of textured images.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2):99–113,

1991.

[13] A. C. Bovik, M. Clark, and W. S. Geisler. Multichannel texture analysis using

localized spatial filters. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 12(1):55–73, 1990.

[14] D. Buckley, J.P. Frisby, and E. Spivey. Stereo and texture cue combination in ground

planes: an investigation using the table stereometer. Perception, 20(91), 1991.

[15] R. Cappelli, D. Maio, and D. Maltoni. Synthetic fingerprint-database generation.

In Proceedings of the International Conference on Pattern Recognition (ICPR’02)

Volume 3, page 30744, Washington, DC, USA, 2002. IEEE Computer Society.

[16] R. Cappelli, D. Maio, D. Maltoni, and A. Erol. Synthetic fingerprint-image ge-

neration. Proceedings of the International Conference on Pattern Recognition

(ICPR’00), 03:3475, 2000.

[17] R. Cappelli, D. Maio, D. Maltoni, and L. Nanni. A two-stage fingerprint classifi-

cation system. In Proceedings of the 2003 ACM SIGMM workshop on Biometrics

methods and applications (WBMA’03), pages 95–99, New York, NY, USA, 2003.

ACM Press.

[18] Kenneth R. Castleman. Digital Image Processing. Prentice Hall, 1996.

[19] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-

chines, 2001. Software available at urlhttp://www.csie.ntu.edu.tw/ cjlin/libsvm.
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REFERÊNCIAS BIBLIOGRÁFICAS 98
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