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Resumo

O diagnóstico médico por imagem é uma tarefa complexa, que depende da avaliação

subjetiva de um grande volume de dados. Diversas possibilidades de patologia não são

consideradas por limitação de tempo e especialização dos profissionais da área médica,

mesmo quando os exames adequados estão dispońıveis. O desenvolvimento de técnicas

automáticas de aux́ılio ao diagnóstico é um avanço importante para simplificar a tarefa do

médico, descartando um grande número de patologias ou indicando as localizações mais

prováveis de eventuais anormalidades patológicas.

Displasias corticais focais (FCDs) estão associadas à epilepsia, e são uma das causas

mais comuns de casos de epilepsia refratária, em que o tratamento medicamentoso não é

suficiente para controlar as crises. As FCDs são lesões que geram variações locais e sutis

na aparência do tecido em imagens de ressonância magnética (RM). Seu diagnóstico é em

geral uma tarefa dif́ıcil e subjetiva. Detecção e localização de eventuais lesões de FCD

são passos fundamentais para o planejamento do tratamento do paciente.

Neste trabalho propomos um método para segmentação automática de FCDs em ima-

gens de ressonância magnética (RM) tri-dimensional do cérebro humano. Desenvolvemos

novas técnicas de segmentação e análise de imagens, automatizamos uma técnica previ-

amente interativa (reformatação curvilinear) e, através de classificação por aprendizado

supervisionado, obtivemos detecção de 100% das lesões, com cobertura de 76,9% dos vo-

xels lesionais. Este resultado é um pouco melhor que o estado da arte, embora ainda não

seja uma solução ideal, solidamente validada, para o problema.
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Abstract

Medical diagnosis from imaging techniques is a complex task that depends on subjective

evaluation of a large volume of data. Many pathologies are often not considered due

to time and experience restrictions of the medical crew, even when the imaging data

are readily available. The development of computer-aided diagnosis techniques greatly

simplify the physician’s work, by discarding a large number of pathologies and/or pointing

out the most probable locations of pathological abnormalities.

Focal cortical displasia (FCDs) are associated to epilepsy, and are one of the most

common causes of refractory epilepsy, where drug-based treatment does not eliminate

the seizures. FCDs are lesions that lead to subtle, localized appearance variations of

brain tissue in magnetic resonance (MR) imaging. Their diagnosis is difficult, tedious and

subjective. Detection and localiation of FCD lesions are key steps for treatment planning.

In this work we propose a method for automatic segmentation of FCDs in tri-

dimensional magnetic MR images of the human brain. We developed new image seg-

mentation and image analysis techniques, automated a previously interactive technique

(curvilinear reformatting) and, through classification by supervised learning, achieved de-

tection of 100% of the lesions, with 76,9% coverage of the lesional voxels. This result is

slightly better than the state-of-the-art, even though it still is has not been thoroughly

validated on a large data base and can still be improved.
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1.3.1 Caṕıtulo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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1.3.4 Caṕıtulo 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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traçadas (em vermelho) sobre uma fatia 2D da RM. . . . . . . . . . . . . . 6

1.5 Extração de caracteŕısticas de textura: (a) Texturas simétricas T1 e T2. A
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Caṕıtulo 1

Introdução

1.1 Motivação

O diagnóstico médico por imagem evoluiu muito nas últimas décadas. Resolução, precisão

e protocolos se aperfeiçoaram, e a comunidade médica passou a utilizar e confiar cada

vez mais nas técnicas modernas de exame por imagem – ressonância magnética (RM),

tomografia computadorizada de raios X, PET e SPECT.

As técnicas de imageamento, por sua vez, oferecem um volume de dados cada vez maior

(imagens volumétricas com mais de 100 fatias, por exemplo), o que torna o diagnóstico

por inspeção visual um processo lento, tedioso e subjetivo. Com isso surgiu a demanda

por métodos de assistência ao diagnóstico, que apontem para o especialista as regiões

mais prováveis de anormalidades/patologias, ou garantam com segurança a ausência de

tipos espećıficos de patologias.

Displasias corticais focais (FCD) são mal-formações ocorridas no desenvolvimento do

córtex cerebral que resultam em posicionamento anômalo de elementos gliais e falhas na

composição laminar do córtex. FCDs foram descritas por Taylor em 1971 [90], e são as

mal-formações mais comuns em casos de epilepsia refratária – casos em que o paciente não

reage ao tratamento medicamentoso [48]. FCDs são uma causa particularmente comum

de epilepsia em crianças e adolescentes [24, 81]. A detecção e localização das FCDs são

passos cruciais para o planejamento do tratamento dos pacientes, que em geral envolve a

remoção cirúrgica das lesões [75, 84, 64].

FCDs são lesões microscópicas no tecido cortical, mas que geram artefatos ma-

croscópicos sutis em imagens de ressonância magnética: borramento da transição entre

substância branca e substância cinzenta, sinal T1 hiperintenso na substância cinzenta e

espessamentos localizados do córtex [24]. Formas especiais de visualização de imagens de

RM facilitam o diagnóstico [7, 72], mas a tarefa permanece sendo tediosa e subjetiva.

A detecção/segmentação automatizada de FCDs em imagens de RM volumétrica T1

1
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tem sido objeto de diversos trabalhos nos últimos anos [60, 2, 86, 23, 22]. Entretanto,

a maioria dos métodos se baseia em métodos de segmentação do cérebro e de WM/GM

(substância branca/cinzenta) que dependem de modelos (templates), e não são precisos

ou adequados a imagens de crianças ou pacientes operados. A segmentação de WM/GM

em particular é uma tarefa complicada, já que dois dos artefatos causados pelas FCDs

são o borramento da transição WM/GM e intensidades anômalas na substância cinzenta

lesionada.

1.2 Visão Geral das Contribuições

A principal contribuição desta tese é um método de segmentação de displasias corticais

focais, aplicável a imagens de pacientes de qualquer idade, e também a pacientes operados.

Além do método de segmentação em si, este trabalho também contribuiu com uma base

de 20 lesões de displasia delineadas, útil para a avaliação e melhoria de métodos de

segmentação de displasias. Outra contribuição importante é um algoritmo particionado

para a IFT, que permite um melhor aproveitamento de computadores com múltiplos

núcleos de processamento (CPUs) para tarefas de processamento de imagens.

Para desenvolver o método de segmentação de displasias, utilizamos em todos os pas-

sos técnicas que independem de modelos (templates). Evitamos a utilização de técnicas

de segmentação de substância branca/cinzenta, por não termos uma avaliação adequada

da confiabilidade deste tipo de segmentação em pacientes com FCDs. O principal dife-

rencial do método desenvolvido é utilizar medidas de assimetria de textura, imitando o

procedimento de diagnóstico visual: a diferença de borramento e/ou intensidade entre

regiões simétricas é um indicador mais forte de presença de lesão do que medidas absolu-

tas realizadas apenas ao redor do local avaliado. A Figura 1.1 mostra um diagrama dos

5 passos envolvidos no método.

Segmentação Automática do Cérebro. O primeiro passo do método é a seg-

mentação automática do cérebro, ilustrada na Figura 1.2. Para realizar este passo, de-

senvolvemos uma nova técnica de segmentação baseada em grafos, a segmentação por

poda de árvores [37, 69, 12]. Esta técnica, apresentada em detalhes no Caṕıtulo 2, oferece

segmentação robusta e eficiente mesmo em imagens ruidosas como as obtidas nos exames

de ressonância magnética.

Localização do Plano Inter-Hemisférico. O segundo passo é a localização do plano

inter-hemisférico (mid-sagittal plane, nas publicações em inglês), ilustrada na Figura 1.3.

Este plano delimita os hemisférios cerebrais esquerdo e direito, e sua localização é funda-

mental para extrair as medidas de assimetria de textura nas do passo 4. Desenvolvemos
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Figura 1.1: Diagrama do método de segmentação de displasias corticais focais.

um método de localização do plano inter-hemisférico [14] mais robusto que o estado da

arte [98]. Este método é discutido em detalhes no Caṕıtulo 3.

Cálculo da Reformatação Curvilinear. O terceiro passo é o cálculo da reformatação

curvilinear [7], ilustrada na Figura 1.4. A reformatação curvilinear consiste em visualizar

as intensidades do volume de RM como superf́ıcies eqüidistantes da superf́ıcie externa

do córtex cerebral. A implementação original desta técnica, em um software comer-

cial [79], exigia interação considerável do usuário para calcular a reformatação curvilinear.

Desenvolvemos uma técnica para obter a reformatação curvilinear de forma totalmente

automática [10]. Esta técnica foi utilizada com sucesso para auxiliar o diagnóstico vi-

sual [72], e o nosso método automático de segmentação de displasias tenta replicar este

procedimento de diagnóstico, comparando assimetrias de textura sobre a reformatação

curvilinear. Esta contribuição é discutida em detalhes no Caṕıtulo 4.

Extração de Caracteŕısticas de Textura. No quarto passo, extráımos de cada voxel

do cérebro um par de texturas simétricas [13], como ilustrado na Figura 1.5(a). Realizamos
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(a) (b) (c)

Figura 1.2: Segmentação automática do cérebro: (a) Exemplo de imagem de ressonância
magnética. (b) Um volume t́ıpico de RM do cérebro é formado por aproximadamente
120–200 imagens como a mostrada em (a). (c) Renderização 3D do cérebro segmentado
automaticamente por poda de árvores a partir do volume em (a)–(b).

experimentos com diversas dimensões de textura, variando de 8× 8 mm2 a 64× 64 mm2,

e obtivemos melhores resultados com texturas de 16 × 16 mm2 (nas imagens de nossos

experimentos, 1 pixel = 1 mm2). Exemplos de pares de texturas (uma sobre uma lesão de

FCD, a outra sobre tecido normal em posição simétrica) são ilustrados na Figura 1.5(b).

Após a extração das texturas, computamos diversas medidas quantitativas de borramento,

intensidade, contraste e homogeneidade, que formam um vetor de caracteŕısticas associado

a um voxel do volume de RM.

Classificação de Voxels por Aprendizado Supervisionado. O quinto e último

passo é a classificação de voxels por aprendizado supervisionado [36], onde caracteŕısticas

computadas em exemplos de segmentação são usadas para “ensinar” um programa de

computador a diferenciar classes de objetos. No nosso caso, a tarefa é diferenciar voxels

sadios de voxels pertencentes a FCDs, utilizando caracteŕısticas da textura tangente à

reformatação curvilinear [7, 10, 13]. As delineações de lesões para realizar o aprendizado

foram realizadas pela Dr. Clarissa Yasuda (Departamento de Neurologia, FCM, Uni-

camp) e supervisionadas pelo Prof. Dr. Fernando Cendes (Departamento de Neurologia,

FCM, Unicamp). As lesões de 20 pacientes foram delineadas e utilizadas para o deenvol-

vimento do método. Detalhes sobre o software desenvolvido para delineação das lesões

são apresentados no Apêndice A.

O método proposto foi avaliado em 5 lesões de FCD frontal e obteve detecção de 100%

das lesões, com uma taxa de cobertura de 76,9% (voxels lesionais corretamente identifi-

cados), valor superior ao do estado da arte (73% [23]). Considerações mais detalhadas

sobre o método proposto são feitas no Caṕıtulo 7.
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(a) (b)

(c) (d)

Figura 1.3: Hemisférios cerebrais e plano inter-hemisférico: (a) hemisférios esquerdo
(verde) e direito (amarelo) em renderização 3D de um volume de ressonância magnética.
(b) Plano inter-hemisférico (ciano) em renderizações 3D de um volume de RM e (c–d)
Plano inter-hemisférico traçado sobre fatias 2D do volume de RM.

1.3 Organização da Tese

O texto desta tese está organizado agrupando os principais artigos publicados ou aceitos

para publicação como resultado da pesquisa realizada.

1.3.1 Caṕıtulo 2

Este caṕıtulo (Automatic Image Segmentation by Tree Pruning) inclui os resultados pu-

blicados em [12]. A técnica de segmentação por poda de árvores (tree pruning) foi ide-

alizada como uma forma de explorar as propriedades da floresta de caminhos mı́nimos

obtida na implementação da transformada de Watershed [96, 15] através da Transfor-

mada Imagem-Floresta (IFT) [39]. A poda de árvores explora propriedades da dinâmica

de propagação ordenada. As bordas de objetos em imagens não-sintéticas em geral não

são homogêneas, e possuem trechos onde a fronteira entre objeto e fundo é mais sutil.
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(a)

(b)

Figura 1.4: Reformatação curvilinear: (a) Exemplos da reformatação curvilinear de um
volume de RM, exibindo superf́ıcies em 5 profundidades distintas. (b) Exemplos de su-
perf́ıcies eqüidistantes à superf́ıcie externa do córtex, traçadas (em vermelho) sobre uma
fatia 2D da RM.

Algoritmos de crescimento ótimo de regiões [78, 95, 39, 40] tendem a “vazar” do interior

do objeto para o fundo por esses trechos de fronteira mais fraca. Esta propriedade forma

nós de vazamento na floresta de caminhos mı́nimos da IFT que podem ser identificados de

forma automática. A poda das árvores nos nós de vazamento permite a segmentação de

imagens por crescimento de regiões sem a necessidade de sementes no fundo da imagem.

Esta vantagem é particularmente importante em aplicações onde não há controle sobre

as propriedades do fundo, ou este contém um grande número de falsas bordas que tor-

nariam a segmentação amb́ıgua. A primeira formulação e validação da poda de árvores

foi publicada no SIBGRAPI de 2004 [37], com uma implementação semi-interativa. A

ferramenta implementada exibia um grande número de nós candidatos para poda e o

usuário selecionava interativamente um conjunto satisfatório de pontos de poda. O algo-
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(a) (b)

Figura 1.5: Extração de caracteŕısticas de textura: (a) Texturas simétricas T1 e T2. A
simetria é obtida pelo plano inter-hemisférico, e a orientação da textura – ∇(p) – é dada
pela reformatação curvilinear. (b) Exemplos de pares de texturas 16 × 16 mm2.

ritmo de detecção de pontos de poda foi aperfeiçoado e totalmente automatizado. Esse

resultado foi apresentado no SIBGRAPI de 2006 [69]. Os resultados destes dois trabalhos

foram consolidados e apresentados com maiores detalhes em artigo publicado no Journal

of Mathematical Imaging and Vision em 2007 [12], apresentado neste caṕıtulo.

1.3.2 Caṕıtulo 3

Este caṕıtulo (Fast and Robust Mid-sagittal Plane Location in 3D MR Images of the

Brain) inclui os resultados publicados em [14]. A detecção do plano de simetria entre

os hemisférios é um passo crucial para a técnica de segmentação de displasias, já que o

método proposto se baseia na comparação de texturas simetricamente opostas. O estado

da arte [98] apresenta técnicas extremamente rápidas (menos que 10 segundos por ima-

gem volumétrica de RM do cérebro), porém com muitos parâmetros arbitrários e sem

avaliação confiável em cérebros com patologias ou com variações estruturais (tais como

crianças e idosos). Desenvolvemos nosso próprio método, utilizando a segmentação do

cérebro por poda de árvores [12] e operações morfológicas [35] para excluir lesões do

espaço de busca, seguido por uma heuŕıstica de busca com passos de ajuste fino e grosso
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que encontram o plano de simetria com precisão bem próxima ao limite teórico, sem ficar

presa a falsos máximos locais ou artefatos de lesões que poderiam se confundir com a

fenda inter-hemisférica. O artigo [14] avaliou o método em 64 volumes, incluindo contro-

les (20), pacientes com lesões (6), pacientes operados (30) e imagens sintéticas (8). Nosso

método leva em torno de 60 segundos por volume e obteve sucesso em todas os volumes

testados, com variação angular de 1,26 grau, valor bem próximo ao limite teórico de 0,5

grau, e de dif́ıcil percepção visual. Após esta publicação, o método foi aperfeiçoado para

ser mais rápido, realizando a etapa de segmentação em resolução reduzida, sem perda

de precisão na localização do plano de simetria. A avaliação dos efeitos da redução de

resolução na segmentação para a localização do plano de simetria e comparação com o

método de Volkau [98] na mesma base de imagens está em andamento, e será submetida

como artigo de revista em breve.

1.3.3 Caṕıtulo 4

Este caṕıtulo (Fast and Automatic Curvilinear Reformatting of MR Images of the Brain

for Diagnosis of Dysplastic Lesions) inclui os resultados publicados em [10]. Este trabalho

apresenta um método rápido e automático para computar a reformatação curvilinear do

cérebro. A reformatação curvilinear foi apresentada por Bastos et. al [7] e mostrou-se

uma ferramenta muito útil para aumentar a precisão no diagnóstico de FCDs [72]. A

reformatação curvilinear consiste em visualizar as intensidades da ressonância magnética

em superf́ıcies eqüidistantes da superf́ıcie externa do cérebro. Esta forma de visualização

evita que artefatos de curvatura do córtex e volumes parciais sejam confundidos com

lesões displásticas. Como a premissa do trabalho desta tese é analisar automaticamente

a reformatação curvilinear, sua computação é um requisito primordial. As iso-superf́ıcies

do cérebro podem ser codificadas como uma transformada de distância Euclideana (TDE)

a partir da superf́ıcie externa do córtex, e a visualização de uma profundidade espećıfica

pode ser realizada por projeção de voxels em um intervalo limitado de distâncias. A

segmentação do cérebro é realizada com a poda de árvores automática (Caṕıtulo 2 [12])

e a TDE é computada de forma eficiente através de uma IFT [39].

1.3.4 Caṕıtulo 5

Este caṕıtulo (FCD Segmentation using Texture Asymmetry of MR-T1 Images of the

Brain) inclui os resultados aceitos para publicação em [13]. Este trabalho apresenta um

método automático para segmentação de lesões displásticas a partir de aprendizado su-

pervisionado. O método realiza segmentação automática do cérebro através da poda de

árvores [12], computa a reformatação curvilinear através de uma IFT-TDE [10], encontra

o plano inter-hemisférico através de uma busca heuŕıstica [14] e utiliza um classificador Re-
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duced Coulomb Energy (RCE) [36] para segmentar displasias corticais focais. O vetor de

caracteŕısticas utilizado explora assimetrias de textura entre os hemisférios, de forma simi-

lar ao procedimento de diagnóstico por inspeção visual [72]. As lesões foram segmentadas

manualmente em 20 volumes por uma especialista (Dra. Clarissa L. Yasuda), e esta seg-

mentação foi utilizada como treinamento para o processo de aprendizado do classificador.

Neste artigo realizamos experimentos com 5 pacientes (2 deles crianças), por restrição de

tempo e recursos computacionais à época do peŕıodo de submissão. Obtivemos detecção

de 100% das lesões, com taxa de cobertura (voxels lesionais corretamente identificados)

de 76,9%. Este valor é superior ao estado da arte, que obteve 73% [23]. Além de obter um

resultado quantitativamente melhor, nosso método não depende de segmentações basea-

das em templates como os demais trabalhos da literatura, sendo aplicável a pacientes de

qualquer idade e/ou com outras anomalias estruturais (tais como intervenções cirúrgicas).

1.3.5 Caṕıtulo 6

Este caṕıtulo (A Partitioned Algorithm for the Image Foresting Transform) inclui os re-

sultados publicados em [11]. Neste trabalho apresentamos um algoritmo para particionar

a computação de qualquer operador baseado na IFT [39] entre vários nós – multicomputa-

dores e redes de computadores. Este particionamento pode ser utilizado para paralelizar

uma IFT, ou para dividir uma IFT em vários passos menores. Esta última solução per-

mite a computação de IFTs em grandes imagens/volumes em dispositivos com memória

limitada. Ao contrário dos algoritmos espećıficos para paralelização de transformadas de

watershed [70, 71] e transformadas de distância [18], a IFT particionada [11] é uma solução

genérica de paralelização/particionamento, aplicável a qualquer operador baseado na IFT.

Embora a IFT particionada não tenha sido utilizada no método de segmentação de displa-

sias, ela é aplicável aos passos de segmentação do cérebro [12] e cálculo da reformatação

curvilinear [10].
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Automatic Image Segmentation by

Tree Pruning

2.1 Introduction

The problem of defining the precise spatial extent of a desired object in a given image,

namely image segmentation, is addressed. The difficulties stem from the absence of global

object information (location, shape, appearance) and the similarities between object and

background with respect to image features (color and texture). These difficulties usually

call for user assistance [59, 26, 25, 44, 16, 40], making automatic segmentation viable only

in an application-dependent and tailored fashion. Methods for automatic segmentation

should separate the part that is application-dependent from the application-independent

part, such that the former can be easily tailored for different applications. We present a

method, called tree pruning, which is consistent with this strategy.

Tree pruning uses the Image Foresting Transform (IFT)— a tool for the design of

image processing operators based on connectivity [39]. The IFT has been applied to

compute distance transforms, multiscale skeletonizations, morphological reconstructions,

watershed transforms, boundary tracking, fractal dimension, and shape saliences [43,

65, 42, 41, 66, 93, 92]. Tree pruning is the first IFT-based operator that exploits a

combinatorial property of the forest — the number of descendants that each node has in

the image’s border.

In the IFT framework, an image is interpreted as a graph whose nodes are image

pixels and whose arcs are defined by an adjacency relation between pixels. For a given

set of seed pixels and suitable path-cost function, the IFT computes an optimum-path

forest in the graph whose roots are drawn from the seed set. Each tree in the forest

consists of pixels more strongly connected to its root than to any other seed. In tree

pruning, the seeds are chosen inside the object and the choice of the path-cost function

11
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intends to connect object and background by optimum paths (leaking paths), which cross

the object’s boundary through its “most weakly connected” parts (leaking pixels). The

above combinatorial property is exploited to automatically identify the leaking pixels and

eliminate their subtrees, such that the remaining forest defines the object.

Tree pruning runs in time proportional to the number of pixels, is extensible to mul-

tidimensional images, is free of ad hoc parameters, and requires only internal seeds, with

little interference from the heterogeneity of the background. These aspects favor solu-

tions which exploit image features and object information for automatic segmentation.

For example, we can estimate seeds using approaches for object location [97]. Candi-

date seeds can otherwise be used to obtain a set of possible objects, and the desired one

can be chosen based on objective functions [83, 99, 61] or object features and pattern

classifiers [53, 36, 62]. One can also exploit some combination between tree pruning and

deformable models [59, 26, 25, 20] in order to achieve a better agreement between the

geometry of the model and local image features. Even in the context of interactive seg-

mentation, it is highly desirable to make the user’s actions simple and minimal. Tree

pruning reduces user intervention to a few markers in the image.

In comparison with region-growing approaches based on optimum paths from internal

seeds [73, 95], the criterion to disconnect object and background does not use the costs

of the optimum paths but the above combinatorial property. Optimum paths that reach

object pixels are assumed to not pass through the background, instead of having costs

strictly lower than the costs of paths that reach the background. In tree pruning, internal

seeds compete among themselves and only a few seeds become roots of leaking paths.

Other approaches based on optimal seed competition [65, 15, 96, 82, 80] can be roughly

described in three steps: (i) seed pixels are selected inside and outside the objects, (ii) each

seed defines an influence zone that contains pixels which are more strongly connected to

that seed than to any other, and (iii) each object is defined by the union of the influence

zones of its internal seeds. The absence of boundary information and/or heterogeneity

of the background usually cause invasion (leaking) of object seeds in influence zones of

background seeds and vice-versa. In interactive segmentation, the user corrects leaking

by adding and removing seeds. In the context of the IFT, these corrections can be done in

sublinear time [40, 4] (e.g., by differential watershed transforms). Tree pruning exploits the

leaking problem and also favors solutions for automatic segmentation, as discussed above.

On the other hand, tree pruning and the IFT-watershed transform by markers [65] use

the same image graph and path-cost function which makes them competitive approaches

when the external seeds for watershed can be found automatically. This aspect is also

evaluated in Section 2.6.

Approaches for image segmentation usually exploit image features and some object

information to emphasize the discontinuities between object and background. It is desira-
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ble, for example, that the external energy in snakes be lower along the object’s boundary

than inside and outside it [59]; the arc costs in live wire be lower along the object’s

boundary than within a neighborhood around it [44]; the local affinities in relative fuzzy

connectedness [82] be higher inside and outside the object than on its boundary; the gra-

dient values in watershed transform be higher for pixels on the object’s boundary than

inside and outside it [65, 15, 96]; and the arc weights in graph-cut segmentation be lower

across the object’s boundary than inside and outside it [16, 83, 61]. Additionally, the

energy minimization in [16, 61] using min-cut/max-flow algorithms from source to sink

nodes [46] also requires lower arc-weights between source and object pixels, higher arc-

weights between sink and object pixels, lower arc-weights between sink and background

pixels, and higher arc-weights between source and background pixels. Clearly the effec-

tiveness of these approaches is affected when the above desirable conditions are not fully

satisfied, but they can still work under certain hard constraints (usually, involving the

user). For example, Boykov and Jolly [16] allow the user to force the arc weights with

source and sink by selecting seed pixels inside and outside the object.

Tree pruning can take advantage of the same image features and object information to

create a gradient-like image (Figure 2.1a) in which pixel values are higher on the object’s

boundary than inside it and, at least, in a neighborhood outside it. The cost of a path in

tree pruning is given by the maximum gradient value along it. Considering all possible

paths from the internal seed set to a given pixel, the IFT assigns a path of minimum

cost to that pixel. Therefore, the leaking pixels will be those with lower values along the

object’s boundary and the leaking paths will reach all background pixels around the object

with costs equal to their leaking pixel values. By connectivity, the rest of the background

will be also conquered by leaking paths that pass through the same leaking pixels. As

explained above, the automatic identification of these leaking pixels solves the problem

(Figure 2.1b). Under the same conditions, the watershed transform may fail whenever the

heterogeneity of the background results in gradient values similar to those of the desired

boundary, because the costs of optimum paths from external seeds may saturate before

these paths reach the internal ones at the object’s boundary (Figure 2.1c). This will make

the location of the external seeds more important to solve the problem in watershed-based

approaches (see arrow in Figure 2.1d).

Tree pruning was first presented in [37], with two approaches to detect leaking pixels.

One is interactive where the user can visually identify leaking pixels and select them with

the mouse pointer. The other is automatic, but relies on a parameter that is difficult to

be adjusted in real applications. In [69], we revisited the method to propose an automatic

solution for leaking pixel detection, which is free of ad hoc parameters, and to provide a

comparative analysis of tree pruning and watershed transform for automatic segmenta-

tion, including one experiment for license plate segmentation. In this paper, we provide
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(a) (b)

(c) (d)

Figura 2.1: (a) A gradient-like image where the object is an egg. (b) Segmentation result
with tree pruning and the white marker as internal seeds. (c–d) Segmentation results
with watershed under the same conditions and using the image’s border and the black
marker (indicated by the arrow) as external seeds.

more details in the presentation of the method (formal definition of the obtained objects,

different examples, algorithms, sufficient conditions, gradient-like images, and geometrical

issues), improve the license plate segmentation method and presentation, and add another

application (automatic 3D MR-brain segmentation), in which the methods are compared

with a template-based approach widely used for medical research [47].

We give the main definitions and instantiate the IFT for tree pruning and watershed

transform in Section 2.2; describe tree pruning with algorithms in Section 2.3; discuss

sufficient conditions and geometrical issues in Section 2.4 and gradient-like images in

Section 2.5; evaluate the methods in Section 2.6; and state conclusions in Section 2.7.

2.2 Background

Tree pruning (TP) and watershed (WS) algorithms rely on a gradient-like image (gradient

image for short), being both approaches extensible to multidimensional and multipara-

metric images. In several situations, the gradient image can be simply the magnitude of

some gradient operator, such as the Sobel’s gradient (Figure 2.1a). In other situations, it

is better to assign an image feature vector to each pixel and compute the gradient image

as a function of the differences between feature vectors of adjacent pixels (Section 2.5).
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Gradient condition: In WS, it is desirable to have a gradient image with higher pixel

values on the object’s boundary than inside and outside the object. In TP, the lower

pixel values outside the object are desirable only within a small neighborhood around the

object’s boundary. These gradient conditions are important to understand the methods,

but they are not necessary conditions (see Section 2.4).

In the following, we present the image foresting transform and its algorithm for TP

and WS.

2.2.1 Image Foresting Transform

A gradient image Î is a pair (DI , I) where DI ⊂ Z2 is the image domain and I(p) assigns

to each pixel p ∈ DI a scalar value. The gradient image is interpreted as a graph (DI , A)

whose nodes are the pixels in DI and whose arcs are defined by an adjacency relation A

between pixels [39]. We are interested in 4- or 8-connected relations for 2D region-based

image segmentation (Figure 2.2a). A path in the graph is a sequence of adjacent pixels

and a path-cost function c assigns to each path π a path cost c(π).
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(a) (b)

Figura 2.2: (a) An 8-connected image graph, where the numbers indicate the pixel values
and the object is the shaded square. Internal and external seeds for WS are shown
with distinct node patterns (non-black labels). (b) The optimum-path forest, where the
numbers indicate minimum costs and distinct labels separate object and background. The
arrows link each node to its predecessor in the forest.

Definition 1 (Optimum path) A path π is optimum if c(π) ≤ c(τ) for any other path

τ with the same destination of π.

For both WS and TP, the cost c(π) of a path is defined as the maximum gradient value

of its pixels, when π starts in a set S of seed pixels; and as infinity cost otherwise.

c(π) =

{

max∀p∈π{I(p)} if org(π) ∈ S

+∞ otherwise
(2.1)



16 Caṕıtulo 2. Automatic Image Segmentation by Tree Pruning

where org(π) is the origin of path π. Marker imposition [96, 15, 65] is important in most

situations and it is implemented by setting I(p) to 0 for pixels p ∈ S.

The IFT assigns one optimum path (Definition 1) from S to every pixel p ∈ DI . These

paths form an optimum-path forest rooted in S which is stored in a predecessor map P ,

such that WS can separate object and background by propagating distinct root labels to

their respective trees in the forest (Figure 2.2b).

Definition 2 (Optimum-path forest) A predecessor map P is a function that assigns

to each pixel p /∈ S its predecessor P (p) in the optimum path from S or a marker nil when

p ∈ S (in which case p is said to be a root of the forest). An optimum-path forest is a

predecessor map which contains no cycles — in other words, one which takes every pixel

to nil in a finite number of iterations.

The IFT algorithm, as presented next, computes at the same time an optimum-path

forest in P and a label map in L, being the former useful for TP and the latter applicable

for WS.

2.2.2 The IFT algorithm

Let S = So ∪ Sb be the union of two sets of seed pixels, such that So and Sb contain only

object and background seeds, respectively. Then, Sb is empty for TP and WS requires Sb

not empty.

Algorithm 1 – Image Foresting Transform for WS and TP

Input: Gradient image Î = (DI , I), adjacency relation A, seed sets So and Sb.

Output: Optimum-path forest P and label map L.

Auxiliary: Cost map C, priority queue Q, and variable cst.

1. For all p ∈ DI , set P (p) ← nil and C(p) ← +∞.

2. For all p ∈ So, set C(p) ← 0, L(p) ← 1, and insert p in Q.

3. For all p ∈ Sb, set C(p) ← 0, L(p) ← 0, and insert p in Q.

4. While Q is not empty, do

5. Remove from Q a pixel p such that C(p) is minimum.

6. For each q such that (p, q) ∈ A and C(q) > C(p), do

7. Compute cst ← max{C(p), I(q)}.
8. If cst < C(q), then

9. If C(q) 6= +∞, remove q from Q.

10. Set P (q) ← p, C(q) ← cst, L(q) ← L(p).

11. Insert q in Q.
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Algorithm 1 runs in linear time when Q is implemented as described in [43]. Lines 1–3

initialize maps and insert seeds in Q. The main loop computes an optimum path from S

to every pixel p in a non-decreasing order of cost (Lines 4–11). At each iteration, a path

of minimum cost C(p) is obtained in P when we remove its last pixel p from Q (Line 5).

Ties are broken in Q using first-in-first-out (FIFO) policy. That is, when two optimum

paths reach an ambiguous pixel p with the same minimum cost, p is assigned to the first

path that reached it. The rest of the lines evaluate if the path that reaches an adjacent

pixel q through p is cheaper than the current path with terminus q and update Q, C(q),

L(q) and P (q) accordingly.

The label propagation in L assigns 1 to pixels that belong to the trees rooted inside

the object and 0 to pixels of the trees rooted in the background. In WS, it is expected that

the object be defined by image components with label 1, which can be directly obtained

from L (Figures 2.1d and 2.2b).

Clearly, WS solves segmentation by seed competition for object and background pixels.

It also allows simultaneous multiple object segmentation by modifying Algorithm 1 to

propagate a distinct label per object. TP requires the identification of leaking pixels in

an optimum-path forest P with no external seeds. The object is obtained by pruning all

subtrees rooted in the background (Figure 2.1b).

The term “subtree of a node” is used in several parts of the text. A subtree of a node

p is a tree rooted at a child node q (i.e., P (q) = p), which is obtained by removing from

P the arc (p, q).

2.3 Tree-pruning segmentation

Figure 2.3a shows the same image of Figure 2.2a, except that the image’s border is not used

as external marker. Therefore, the optimum-path forest connects object and background

through the leaking pixel (5, 6) 1 in Figure 2.3b. The object can be obtained by removing

the subtrees of this leaking pixel.

Note that the IFT algorithm computes optimum paths in a non-decreasing order of

costs. Therefore, the optimum paths from So will reach object pixels before background

pixels whenever the gradient condition for TP (Section 2.2) is satisfied. Moreover, if a

pixel p is the only one with lowest value I(p) on the object’s boundary, then all pixels

around the object will be reached by leaking paths with minimum cost I(p), which pass

through the leaking pixel p. By connectivity, the rest of the background will be also

conquered by leaking paths that pass through p. When the gradient condition is not

fully satisfied, the method may still work (Figure 2.4). The same property can be verified

1Pixel locations are given as (x, y) pairs and the top left pixel is (1, 1).
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when there are multiple leaking pixels, which can be automatically detected for object

definition as follows.
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(c) (d)

Figura 2.3: (a) The same image graph of Figure 2.2a. Internal seed and pixels in the
image’s border B are shown with distinct node patterns. (b) Optimum-path forest in TP,
where the numbers indicate minimum costs. Object and leaking trees are shown with
distinct node patterns. (c) The numbers indicate the descendant count in B for each
pixel, except for the root node. (d) After pruning, the remaining forest defines the object.

2.3.1 Object definition

Let R be the set of the roots in the optimum-path forest (Definition 2). By removing the

roots of the forest, we get a forest of subtrees. Each tree of this new forest is classified as

being either an object tree or as a leaking tree.

Definition 3 (Object tree) An object tree is a subtree of the root nodes, which is con-

tained within the object.

Definition 4 (Leaking tree) A leaking tree is a subtree of the root nodes, which also

contains optimum paths that reach the background (leaking paths).
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(a) (b)

(c) (d)

(e) (f)

Figura 2.4: (a) A gradient image where the object is a bone of the wrist. (b-e) The region
growing of the IFT from internal seeds. The leaking occurs before filling the entire object,
but these leaking paths surround the object, avoiding further connections between object
and background. (f) The object is obtained by automatic leaking pixel detection.

Figure 2.3b shows several object trees (e.g., one rooted at pixel (4, 4)) and a single

leaking tree rooted at pixel (5, 5), each one with a distinct node pattern. Let B ⊂ DI be

the image’s border. We compute the number of descendants that every node of the new

forest has in B to obtain a descendant map D (Figure 2.3c). This combinatorial property

of the forest allows the identification of the leaking pixels. The map D is different from

the one presented in [37], which computes all descendants in the forest.

Definition 5 (Descendant map) A descendant map is a function D that assigns to

each pixel p ∈ DI\R the number of descendants of p in B.

Each leaking tree is supposed to cross the object’s boundary through a single pixel,

named leaking pixel, and the paths that reach B must pass through all leaking pixels

(Figure 2.3b).
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Definition 6 (Leaking pixel) A leaking pixel is defined as an object pixel whose suc-

cessors in the leaking paths belong to the background.

The leaking pixels can be usually detected from the predecessor and descendant maps

as the last one with the highest descendant value along an optimum path that reaches B.

That is, by following backwards any optimum path in P , which has terminal node in B,

the leaking pixel is the first one with the highest descendant value in the way back to the

root of its tree (pixel (5, 6) in Figure 2.3c). We can repeat this procedure for all nodes in

B to detect all leaking pixels automatically.

This property usually holds at the object’s boundary thanks to the FIFO tie-breaking

policy of the priority queue Q. After leaking, the gradient condition makes ambiguous

the pixels in the neighborhood outside the object, ramifying the leaking path into several

branches (Figure 2.5). This ramification drastically reduces the descendant count for

pixels of the subtrees rooted at the leaking pixels. The object is finally obtained by

removing the subtrees of the leaking pixels from the original forest (Figures 2.3d, 2.4f and

2.5c).

Definition 7 (Object by tree pruning) Let P be the set of pixels that belong to the

subtrees of leaking pixels, Tl be the set of pixels that belong to the leaking trees, and To be

the set of pixels that belong to the object trees. The object is defined as R∪ To ∪ {Tl\P}.

(a) (b) (c)

Figura 2.5: (a) A gradient image. (b) The original image overlaid by the descendant
map. The leaking path ramifies into several branches on the object’s boundary, provoking
a decreasing in D (the lines become darker) and avoiding further connections between
object and background. (c) The resulting segmentation with TP.

2.3.2 Algorithms

Algorithm 2 computes the descendant map D (Definition 5) in linear time. It visits all

pixels of the forest in reverse breadth-first order, accumulating the number of descendants
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from the leaf pixels to the root pixels. Lines 1–3 insert the forest roots in a FIFO queue Q

and initialize the descendant count map D. Lines 4–8 traverse the optimum-path forest

in breadth-first order, inserting every visited pixel in the stack S. Lines 9–13 use the

stack S to visit the forest in reverse breadth-first order, calculating and propagating the

descendant count up to the roots of the forest. The resulting map D counts, for each

pixel, the number of descendant pixels in the optimum-path forest that belong to B.

Algorithm 2 visits each pixel exactly three times, and its running time is Θ(|DI |).

Algorithm 2 – Descendant Map Computation (Linear Time)

Input: Optimum-path forest P , adjacency relation A, set B.

Output: Descendant map D.

Auxiliary: Queue Q, Stack S.

1. For all p ∈ DI , do

2. Set D(p) ← 0.

3. If P (p) = nil, insert p in Q.

4. While Q is not empty, do

5. Remove a pixel p from Q.

6. Insert p in S.

7. For each pixel q such that (p, q) ∈ A, do

8. If P (q) = p, insert q in Q.

9. While S is not empty, do

10. Remove a pixel p from S.

11. If P (p) 6= nil, then

12. Set D(P (p)) ← D(P (p)) + D(p).

13. If p ∈ B, set D(P (p)) ← D(P (p)) + 1.

Algorithm 3 computes the same descendant map D with a different approach: For each

pixel in B, the algorithm follows backwards its optimum-path up to the root, updating

the descendants-in-the-border count. In the worst case – an unlikely situation in which all

pixels of B belong to a same optimum-path that contains all image pixels – Algorithm 3

will visit each pixel |B| times, leading to O(|DI | |B|) performance. For 2D images, |B| ∝
√

|DI |, and its running time becomes O(|DI |
3

2 ). For 3D images, |B| ∝ 3

√

|DI |
2
, and its

running time becomes O(|DI |
5

3 ).

Algorithm 3 – Descendant Map Computation (Alternative)

Input: Optimum-path forest P and set B.

Output: Descendant map D.
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1. For all p ∈ DI , set D(p) ← 0.

2. For each pixel p ∈ B, do

3. Set q ← p.

4. While P (q) 6= nil, do

5. Set D(P (q)) ← D(P (q)) + 1, and q ← P (q).

In real applications, Algorithm 3 visits much less than |DI | pixels since most pixels

belong to optimum paths that do not reach set B, and thus they are never visited.

While Algorithm 2 guarantees linear performance, Algorithm 3 leads to reduced running

times in practical applications. Experimental comparison of these algorithms in real 3D

segmentation applications showed that Algorithm 3 is 1.8 times faster than Algorithm 2.

The implementation of Algorithm 3 is also shorter and simpler than the implementation

of Algorithm 2.

The descendant map D is used to detect the leaking pixel associated with each node

in B. For every backwards path from B to its root, the first pixel with the highest value

in D along the backwards path is a leaking pixel. The set Lk of leaking pixels is computed

by Algorithm 4.

Algorithm 4 – Leaking Pixel Detection

Input: Optimum-path forest P , descendant map D, and set B.

Output: Set Lk of leaking pixels.

1. For each pixel p ∈ B, do

2. Set q ← p, set dmax ← −∞.

3. While P (q) 6= nil, do

4. If D(q) > dmax Then set dmax ← D(q), r ← q.

5. Set q ← P (q).

6. Set Lk ← Lk ∪ {r}.

2.4 Sufficient conditions and geometrical issues

This section discusses the main aspects to understand the differences between watershed

transform (WS) and tree pruning (TP), their advantages and limitations. In all examples,

we use the same gradient image and internal seeds So for WS and TP. Additionally, WS

uses the image’s border as external seeds Sb and TP uses the image’s border B to extract

the descendant map D. Therefore, the role of the image’s border is very different in these

approaches.
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The gradient conditions are desirable but not necessary conditions (Section 2.2). In

WS, it is not difficult to see that the optimum paths from So and Sb will meet at the

object’s boundary, regardless of seed location, whenever the gradient values are strictly

higher on the object’s boundary than inside and outside the object. Indeed, WS will work

even with one external seed and one internal seed. The gradient condition for TP is more

relaxed, but its sufficient conditions are:

(C1) All subtrees of leaking pixels must belong to the background.

(C2) Each leaking tree may have at most one leaking pixel.

(C3) Each leaking pixel must have at least two children nodes with descendants in B.

The object by Definition 7 is a set of pixels resulting from the union of the roots, object

trees, and leaking trees after removing the subtrees of all leaking pixels (background). By

definition, roots and object trees belong to the object. Therefore, conditions (C1)–(C3)

are sufficient to guarantee that object pixels will not belong to subtrees of leaking pixels

and Algorithm 4 will detect all leaking pixels. If (C1) is violated, then object pixels

may belong to the subtree of some leaking pixel (because some leaking path left and

then returned to the object or a leaking pixel also belongs to some non-leaking path).

Condition (C2) guarantees that Algorithm 4 will not detect the highest descendant count

inside the object (a false leaking pixel). If a leaking tree has two or more leaking pixels,

then the respective leaking paths must have common ancestor nodes inside the object

with descendant count strictly higher than the leaking pixels. However, (C2) does not

prevent Algorithm 4 to detect a false leaking pixel outside the object. Then (C3) together

with (C2) guarantee that all leaking pixels are detected by Algorithm 4. (C3) implies by

induction that all leaking pixels have descendant count strictly higher than any of their

descendant nodes. Given that the only entrance to the object is through a leaking pixel,

the first highest descendant count is detected on the object’s boundary for any backwards

path from B. Therefore, conditions (C1)–(C3) guarantee the correctness of the method.

On the other hand, if the method segments the object then it is not difficult to prove that

conditions (C1)–(C3) hold.

Condition (C1) may hold even when the gradient condition for TP is not satisfied

(Figure 2.4), but the gradient condition implies in (C1). This can be easily verified

because the IFT algorithm computes optimum paths in a non-decreasing order of costs

with FIFO tie-breaking policy (Section 2.2.2). This guarantees that under the gradient

condition all object pixels will be reached by optimum paths before the background pixels

and pixels on the object’s boundary will be reached by optimum paths from interior pixels

before other boundary pixels.
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In interactive segmentation, we may correct the results of TP by adding seeds to So

whenever (C1) and (C2) fail. This forces object pixels to be reached before background

pixels in (C1) and breaks leaking trees with multiple leaking pixels into object trees and/or

trees with a single leaking pixel each. Similarly (C3) can be satisfied when a leaking pixel

has no descendants in B, by adding pixels of its subtrees to set B. In the worst case, the

predecessor of the leaking pixels are added to So and their children nodes are added to B,

forcing the first highest descendant value to be at the leaking pixel. In [37], the descendant

map highlights all leaking paths and not only those that reach B. This is better for 2D

interactive segmentation, because the user can see exactly where the leaking occurs and

cut the leaking paths.

Figures 2.6a–d illustrate the case that requires more internal seeds to satisfy (C1)

and (C2) in TP. The same example does not satisfy the gradient condition for WS.

Figures 2.6e–f show that, besides the image’s border, additional external seeds are needed

in Sb to correct segmentation in WS. Figures 2.7a–b illustrate the case that requires

additional external pixels in B to satisfy (C3). The same example shows in Figures

2.7c–d that WS may require more external seeds in Sb for correction than the pixels in B.

(a) (b) (c)

(d) (e) (f)

Figura 2.6: (a) A gradient image. (b–d) Results of segmentation with TP and incremental
seed sets (white markers). (e–f) WS requires the image’s border and additional external
seeds (black markers) to work.

On the other hand, Figure 2.8 suggests that TP may be more sensitive to the location

of the internal seeds than WS. TP fails in Figure 2.8c due to violation of (C2) (the dot
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in the bigger fragment is a disk with multiple pixels in B). One seed close to the leaking

pixel corrects segmentation.

(a) (b)

(c) (d)

Figura 2.7: (a) A gradient image. (b) Resulting segmentation with TP, internal seeds
(white markers) and additional pixels in B (black markers). (c-d) Resulting segmentation
with WS and additional external seeds, besides the image’s border (black markers).

Note that in the gradient condition for WS, both methods should provide similar

results. We will show this experimentally in Section 2.6.2. Condition (C1) is satisfied

as described above and the lower gradient values outside the object together with the

FIFO tie-breaking policy favor (C3), as explained in Section 2.3.1. In order to favor (C2),

either we select seeds close to the leaking pixels or, in the case of automatic segmentation,

estimate as large as possible the seed set.

2.4.1 Heterogeneity of the background

The examples in Figures 2.1, 2.6, and 2.7 suggest that TP may be more robust than

WS with respect to the heterogeneity of the background. Figure 2.9a shows a gradient

image of a circular object, which satisfies the gradient condition for TP but not for WS.

Ambiguous regions are shown in Figure 2.9b as white pixels. These regions are plateaus

of cost (tie zones in WS) whose pixels are reached by optimum paths with costs greater

than or equal to the leaking pixel values. The watershed lines might be anywhere on

these plateaus (Figure 2.9c). Given that TP does not depend on the costs of the optimum

paths outside the object, it is less susceptible to the heterogeneity of the background

(Figure 2.9d).



26 Caṕıtulo 2. Automatic Image Segmentation by Tree Pruning

(a) (b)

(c) (d)

Figura 2.8: (a) Result of segmentation with TP. WS obtains similar result with the image’s
border as external marker. (b) WS segments the object with one additional external seed
(black dot). (c) TP fails with the same seed selection. (d) TP works when we change the
location of the internal seed (white dot).

The variant of maximum gradient: A problem may occur when multiple objects

with similar gradient values are very close to each other. The absence of space in between

the objects to ramify the path at the leaking pixel may create a false pruning point

outside the object (Figure 2.10a), failing condition (C3). If the gradient condition for TP

is satisfied, we may assume that the correct location of a leaking pixel is always at the

maximum gradient value in the path segment between the detected point and its root.

We call this variant of maximum gradient. Note that it does not affect the location of

the true leaking pixels, but solves the problem as illustrated in Figure 2.10b. This variant

has been used in all examples and experiments of this paper.

2.4.2 Geometrical issues

The failure probability of the TP conditions increases with the number of leaking pixels.

The competition among seeds might prevent some leaking trees to reach set B, failing

(C3), and leaking trees might have multiple leaking pixels, failing (C2). Although the

gradient condition for TP is not necessary, these observations and its implication in (C1)
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(a) (b)

(c) (d)

Figura 2.9: (a) A synthetic gradient image of a circular object, where the heterogeneity
of the background is given by a random external noise. (b) Watershed tie zones in white.
(c-d) Respective segmentation results by WS (c) and TP (d) for a same internal seed
(white dot).

indicate that it is at least desirable.

The number of leaking pixels achieves the worst case for perfect boundaries and perfect

gaps (Figure 2.11), but there are alternative solutions. Figures 2.11a and 2.11b show a

perfect boundary and a wrong segmentation result with TP. A simple solution is to order

the pixels by their gradient values such that pixels with the same intensities are randomly

ordered (Figures 2.11c and 2.11d). In perfect gaps (Figure 2.11e), we can add internal

seeds in So and external pixels in B around the gaps to solve segmentation (Figure 2.11f).

A similar solution is required for WS. However, a more elegant solution is to run an edge

detection method, compute the Euclidean distance transform to the edges, and create

an edge distance map as the complement of the pixel distances to the edges. By adding

the edge distance values to the original gradient value, we obtain a new gradient image

in which the number of leaking pixels is drastically reduced (Figure 2.11g), solving the

problem with perfect gaps (Figure 2.11h).

Fortunately, images usually have noise that considerably reduces the number of leaking

pixels. Therefore, we never needed to use these solutions in practice.

Condition (C3) may also fail in the case of nested boundaries, being them a problem

for WS as well. External (true or false) closed boundaries may prevent leaking paths of

internal boundaries to reach set B. The problem can be solved with an alternative pixel

in B, which should be selected between the boundaries. Similar solution can be obtained
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(a) (b)

Figura 2.10: Image with one object fragment marked for detection. (a) The detected
pixel is outside the fragment due to its proximity to the other fragments. (b) The correct
leaking pixel is automatically detected using the variant of maximum gradient.

with Sb in WS. In [69], we proposed an alternative solution for TP which iteratively

searches the desired boundary (leaking pixel) by matching candidates with a template.

This solution goes backwards along the optimum path from the first detected pixel to its

root, looking for a next pixel whose gradient value is maximum in the remaining segment.

A third and probably best option is to improve gradient computation in order to avoid

such situations (Figure 2.12).

2.5 Gradient images

It should be clear that under the gradient condition for WS, TP and WS provide similar

results, except for some pixels on the object’s boundary because WS divides the boundary

between influence zones of internal and external seeds. In order to create suitable gradient

images for both methods, we should be able to exploit image features which distinguish

object and background.

Let ~f(p) = (f1(p), f2(p), . . . , fn(p)) be a vector at pixel p such that the values fi(p),

i = 1, 2, . . . , n, are the brightness values of p and of its 8-neighbors, for instance. The

differences dj(p, qj), j = 1, 2, . . . , 8, measure the brightness variations around arcs (p, qj)

between p and each of its 8-neighbors.

dj(p, qj) =
1

n

n
∑

i=1

fi(qj) − fi(p). (2.2)

The vector ~dj(p, qj) = dj(p, qj)
qj−p

|qj−p|
represents the brightness variation in the direction of

(p, qj). The gradient vector ~G(p) at p is obtained by the sum of its projections on these
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figura 2.11: (a) Synthetic gradient with perfect boundary. (b) TP fails because it missed
several leaking pixels. (c) A randomly ordered gradient. (d) TP works on (c) with a
single seed. (e) Synthetic gradient with perfect gaps. (f) A hard solution using markers
around the gaps. (g) A gradient image with edge distance map. (h) TP works on (g)
with a single seed.

directions.

~G(p) =
8

∑

j=1

~dj(p, qj). (2.3)

The magnitude of ~G is used as gradient image Î. In the case of colored images (the

originals of Figures 2.6, 2.7, 2.8, and 2.10), we obtain one gradient image for each

channel; red Îr, green Îg, and blue Îb; and compute the final gradient value I(p) =

max{Ir(p), Ig(p), Ib(p)} for all pixels p ∈ DI .

2.6 Evaluation

TP and WS require some approach for seed selection (object location) in automatic seg-

mentation. We present two applications in which robust procedures exist for object lo-

cation: (i) license plate segmentation and (ii) 3D MR-image segmentation of the human

brain.

The experiments compare the results with some ground truth, which was obtained by

interactive differential watershed segmentation [40] for both applications. Let O and G be
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(a) (b)

(c) (d)

Figura 2.12: (a-b) Results of TP for a fragment and a bone of the wrist using the mag-
nitude of the Sobel’s gradient and (c-d) the improved gradient presented in Section 2.5.

the pixel sets that represent segmented object and ground truth. We use three normalized

measurements: false negatives (FN), false positives (FP), and error (E).

FN =
|G \ O|
|G| (2.4)

FP =
|O \ G|
|O| (2.5)

E =
|(O \ G) ∪ (G \ O)|

|O ∪ G| (2.6)

where |X| is the cardinality of the set X.

2.6.1 License Plate Segmentation

The experiments used 990 images (352 × 240 pixels) from a database of license plates.

The goal is to find the precise location and spatial extent of the plates (Figure 2.13a).

Seed selection is a difficult task, because any attempt to estimate seeds inside a plate is

likely to find seeds in other parts of the image. Besides, we need to estimate seed pixels

outside the plate numbers to avoid problems with nested boundaries (Figure 2.13b).
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(a) (b)

Figura 2.13: (a) Original image with the result of TP. (b) The magnitude of the Sobel’s
gradient.

Seed selection and gradient image

For automatic seed selection, we chose a method proposed by Zheng et al [101]. This

approach is very effective for plate location, but could not be used as baseline for segmen-

tation. The reason is that they ignore shape deformations which do not occur in their

database, but are very common in ours (Figure 2.14a). The magnitude of the Sobel’s

operator was chosen as gradient image. This choice illustrates our observation that WS

is more dependent of the heterogeneity of the background than TP.

The original image is first enhanced, then vertical edges are extracted using Sobel’s

operator (Figure 2.14b). An edge density map is computed using a rectangular window

(Figure 2.14c). The center of the plate is expected to be at the highest value in this map.

Seed estimation around the point detected by Zheng’s approach is done by “supervised

learning”. The training set consists of 15% of the plates randomly selected from the

database. We compute the average of their binary images (ground truths), with all plates

translated to a same reference point (a common geometric center). The pixels with average

value 1 are interior pixels in these plates, and so they are assumed to be interior pixels

of the remaining plates in the database. To avoid seeds on the border of the plates, their

erosion with a disk of radius 1 is used as internal seed set for TP and WS (Figure 2.14d).

Pixels of the image’s border are used as external seeds Sb for WS and set B for TP.

The seed estimation based on Zheng’s approach found seed sets inside 93.3% of the

plates in our database. We could further improve this result to 96.4% by taking into

account the fact that there is no license plate in the top region of the image (30% of the

height) in our database.

Experiments and results

We compare the segmentation results of TP, WS, and a previous version of TP [37]

(PTP— previous TP), which requires a parameter T for leaking pixel detection. In order
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(a) (b)

(c) (d)

Figura 2.14: (a) Original image with the result of the method proposed by Zheng. (b)
Vertical edges after filtering. (c) The edge density map. (d) Internal seed set.

to show robustness with respect to the seed estimation process, we executed segmentation

10 times for each method, using a distinct training set each time, and computed mean

and standard deviation of the average values of E, FN , and FP (Equations 2.4-2.6).

Table 2.1 summarizes the results of each method using as test set the images where seed

estimation was inside the plates (i.e., 96.4% of the 990 plates).

Tabela 2.1: License plate segmentation: Mean and standard deviation of the average
values of error (E), false negatives (FN) and false positives (FP ) for each method with
respect to the ground truth.

Method Error (E) False Negatives (FN) False Positives (FP )
TP 2.72% ± 0.07% 0.89% ± 0.09% 1.90% ± 0.10%
WS 4.84% ± 0.10% 2.09% ± 0.07% 2.85% ± 0.11%
PTP(T=1%) 5.85% ± 0.74% 3.34% ± 0.76% 2.61% ± 0.03%
PTP(T=3%) 4.15% ± 0.07% 0.56% ± 0.06% 3.66% ± 0.10%
PTP(T=5%) 5.37% ± 0.05% 0.56% ± 0.02% 4.90% ± 0.06%

Note that TP was more accurate than PTP for any fixed value T , because it is dif-

ficult to adjust T in this application. Figures 2.15a-b illustrate cases of errors in seed

estimation. In some cases Zheng’s method detects a point outside the plate and in other

cases the detected point is far from the center of the plate (as consequence, internal se-

eds are wrongly estimated outside the plate). Table 2.1 also shows that WS was more
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sensitive than TP with respect to the heterogeneity of the background (Figures 2.15c-d).

Figures 2.15e-i show correct segmentation results using TP under various conditions.

If we consider the maximum error E = 0.10 (10%) as an acceptable segmentation,

93% of the 990 plates are detected with TP and 91% are detected with WS.

Deformable models [59, 26] could also be used to segment the plates from the detected

location. However, the edges inside and outside the plates might present a local minima

problem (Figure 2.13b) and the model should take into account shape deformations and

imperfect plates (Figures 2.15e-h). In this case, it seems at least simpler to use approaches

like TP and WS.

In comparison with the TP-based plate segmentation method presented in [69], the

current version gives similar results but works faster (55 msec per image on an Athlon

XP 2400+) using a more elegant procedure for seed estimation and a single tree pruning

execution per image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figura 2.15: (a-b) Errors in the seed selection procedure. (c) Watershed fails segmen-
tation. (d) Tree pruning correctly segments the same image in (c). (e-i) License plate
segmentations by TP under shape distortions, scale changes and lighting effects.
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2.6.2 3D MR-image segmentation of the brain

Segmentation of the human brain from Magnetic Resonance (MR) images has been ad-

dressed in several different ways, each one with its pros and cons [50]. Figure 2.16 shows

an MR-T1 slice image of the brain, where some structures and tissues are indicated. The

goal is to separate the gray matter (GM) and white matter (WM), as a single object,

from the rest of the image. We have evaluated tree pruning using phantom MR-T1 ima-

ges (which are available at the BrainWeb site2 [21] together with their ground truth) and

real MR-T1 images from control subjects.

Figura 2.16: Tissues in MR-T1 images of the brain. CSF is the cerebrospinal fluid (liquor).

Seed selection and gradient image

Figure 2.17a shows an MR-T1 slice image of the brain. Note that GM and WM can not be

obtained by automatic thresholding on Figure 2.17a and simple morphological operations

on Figure 2.17b. On the other hand, a morphological erosion on Figure 2.17b with a

sphere of radius 5mm can assuredly separate GM and WM from other structures, and the

largest connected component resulting from erosion can be used as a seed set inside the

brain (Figure 2.17c). The gradient image is computed as described in Section 2.5, but

using a three-dimensional 6-neighborhood instead of the two-dimensional 8-neighborhood

(Figure 2.17d). This choice illustrates our observation that WS and TP produce similar

results when the gradient condition for WS is satisfied.

Experiments with phantoms

On the first set of experiments, we generated 8 MR-T1 phantoms with varying noise and

inhomogeneity (INU) settings (Figure 2.18), and automatically segmented them with tree

2URL: http://www.bic.mni.mcgill.ca/brainweb/
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(a) (b)

(c) (d)

Figura 2.17: (a) Sample slice of MR-T1 image of the brain. (b) Binary slice resulting
from Otsu’s thresholding overlaid on image (a). (c) Binary slice of seed voxels overlaid
on image (a). (d) Slice of the gradient image.

pruning (TP) and watershed (WS), using the same internal seeds, gradient image, and the

image’s border as background seeds for WS and set B for TP. The results were compared

with the available ground truth.

Since TP and WS detect the external boundary of the brain, the resulting objects still

contain small CSF regions (sulci and ventricles). To properly classify them as background,

we take the intersection between the pruned object and the voxels with intensities above

the Otsu’s threshold.

Experiments with real MR-T1 images

On the second set of experiments, we selected 20 MR-T1 images of control subjects with

no known anomalies, acquired with a 2T Elscint scanner and voxel size of 0.98×0.98×1.00

mm3. All volumes were interactively segmented with differential watersheds [40] in order

to provide a basis for comparison (a ground truth). The images were automatically

segmented by 3 methods: TP, WS (with the image’s border as external seeds), and

SPM2 [47]— a widely used template-based approach for medical research.

Results

Table 2.2 shows the segmentation errors of TP and WS for the phantoms with respect to

the available ground truth. Figure 2.19 shows 3D renditions of the obtained segmentati-
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ons.

Tabela 2.2: Brain phantom segmentation errors with tree pruning and watershed.

Tree Pruning Watershed
Noise / INU Error (FN,FP) Error (FN,FP)

3% / 20% 5.16% (3.20%,2.09%) 4.58% (2.53%,2.15%)
5% / 20% 5.03% (3.14%,2.01%) 4.41% (2.55%,1.95%)
7% / 20% 5.26% (3.65%,1.74%) 4.69% (2.96%,1.84%)
9% / 20% 6.00% (4.48%,1.66%) 5.42% (3.85%,1.70%)
3% / 40% 5.26% (3.16%,2.23%) 4.61% (2.45%,2.27%)
5% / 40% 5.18% (3.44%,1.86%) 4.70% (2.73%,2.08%)
7% / 40% 5.67% (4.06%,1.75%) 5.09% (3.38%,1.83%)
9% / 40% 6.68% (5.23%,1.61%) 6.14% (4.66%,1.64%)

Average 5.53% (3.80%,1.87%) 4.96% (3.14%,1.93%)

Table 2.3 shows the segmentation errors for the 3 methods on real images, using the

interactive segmentation as the basis for comparison. Figure 2.20 shows renditions of the

segmented brains.

We can observe the high degree of agreement among TP, WS and the ground truths

in both experiments. Note that SPM2 provided segmentations with noticeable artifacts,

such as disconnected components outside the brain (Figure 2.20). This illustrates how

difficult is to segment our images.

TP and WS not only provided better segmentation results than SPM2 on the real ima-

ges, but also were much faster. The entire segmentation task with TP (marker extraction,

gradient computation, optimum-path forest computation, leaking point detection and tree

pruning), for example, took 25 seconds for a 181×217×181 MR-T1 volume, while SPM2

took 5 minutes, on the same Athlon64 3200+ workstation.

The background is homogeneous in most part of these MR-brain images and there

are no strong barriers between the brain’s border and the image’s border. This favored

gradient images that satisfy the gradient condition for WS. As we expected, such a situ-

ation makes TP and WS to provide similar results. The segmentation differences were

mostly the segmentation of excess tissue (false positives) near the cerebellum (as seen in

Figure 2.20 for subjects 9, 17 and 20) and near the optical nerve (as seen in Figure 2.20

for subjects 6, 8, 9 and 19), as well as a thin layer of misclassified voxels over the brain’s

cortex, indicating off-by-one errors in the location of the object’s boundary. These mis-

takes can be minimized with the design of better application-dependent methods for the

computation of the gradient image, with stronger barriers between object and background

in the problematic regions. In the case of real images, the slight advantages of WS in



Caṕıtulo 2. Automatic Image Segmentation by Tree Pruning 37

Tabela 2.3: Real brain segmentation errors with tree pruning, watershed and SPM2.

Tree Pruning Watershed SPM2
Subject Error (FN,FP) Error (FN,FP) Error (FN,FP)

01 6.63% (2.88%, 2.69%) 5.62% (2.51%, 2.16%) 10.49% (4.87%, 3.92%)
02 8.79% (1.62%, 6.94%) 8.28% (1.42%, 6.75%) 14.56% (5.85%, 6.77%)
03 7.83% (2.33%, 4.82%) 7.30% (1.80%, 5.08%) 13.00% (4.31%, 7.62%)
04 11.60% (3.46%, 6.07%) 7.62% (3.04%, 2.32%) 15.10% (6.39%, 4.46%)
05 9.85% (2.34%, 6.71%) 10.24% (2.06%, 7.74%) 19.51% (10.21%, 4.04%)
06 9.59% (2.39%, 6.02%) 8.32% (2.05%, 5.27%) 16.47% (4.05%, 10.71%)
07 7.98% (1.55%, 6.17%) 8.24% (1.27%, 6.88%) 11.70% (3.89%, 6.71%)
08 8.37% (3.36%, 3.75%) 7.05% (2.87%, 3.12%) 13.20% (5.37%, 6.15%)
09 9.32% (2.70%, 5.74%) 9.35% (2.33%, 6.45%) 12.36% (5.21%, 5.20%)
10 13.96% (1.80%,12.21%) 13.46% (1.56%,12.05%) 15.50% (5.70%, 7.92%)
11 6.82% (1.82%, 4.67%) 6.77% (1.56%, 4.98%) 12.68% (5.09%, 6.40%)
12 12.88% (2.22%,10.51%) 12.93% (1.82%,11.14%) 15.78% (5.20%, 9.01%)
13 8.51% (1.98%, 6.22%) 8.12% (1.56%, 6.47%) 12.41% (4.62%, 6.56%)
14 8.96% (3.89%, 4.15%) 8.49% (3.43%, 4.27%) 12.36% (6.00%, 5.09%)
15 7.00% (2.07%, 3.96%) 6.02% (1.78%, 3.42%) 11.82% (4.99%, 4.22%)
16 9.71% (2.45%, 6.44%) 12.61% (2.20%,10.25%) 14.70% (5.20%, 7.14%)
17 7.66% (2.94%, 3.51%) 7.30% (2.61%, 3.65%) 12.57% (5.01%, 5.81%)
18 7.15% (2.81%, 2.62%) 6.41% (2.61%, 2.08%) 16.43% (7.92%, 3.93%)
19 9.14% (1.41%, 7.87%) 8.26% (1.29%, 7.00%) 13.01% (4.17%, 8.38%)
20 16.03% (1.85%,14.71%) 14.31% (1.70%,12.97%) 18.34% (3.31%, 14.87%)

Average 9.39% (2.39%, 6.29%) 8.83% (2.07%, 6.20%) 14.10% (5.37%, 6.74%)

performance are also related to the fact that the ground truth was created using the

interactive watershed on the same 3D gradient image [40].

2.7 Conclusion

We have presented a considerably extended version of our previous work on tree-pruning

segmentation [37, 69], which adds a formal definition of the obtained objects, several

new examples, algorithms, sufficient conditions, geometrical issues, an improved gradient

computation with respect to the Sobel’s operator, and experiments for automatic license

plate image segmentation and 3D MR-image segmentation of the human brain. The

experiments show that TP can provide good results in both applications, is less sensitive

than WS with respect to the heterogeneity of the background, and that both approaches

provide similar results when the gradient condition for WS is satisfied.
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We may see image segmentation as consisting of two tightly coupled tasks: recognition

and delineation. Delineation aims to define the precise spatial extent of an object in the

image while its approximate location (e.g., seed estimation) is a recognition task. Recog-

nition also involves other cognitive tasks, such as to verify the segmentation correctness or

to identify a desired object among candidate ones. While computers usually outperform

human beings in delineation, the other way around has been verified for recognition [44].

TP and WS are essentially delineation methods. At same time, model-based approa-

ches [26, 25] have been proposed for recognition and delineation. While they are effective

recognition methods, it is usually very difficult to model all possible variations of a given

object. In this sense, we believe that methods such as WS and TP, which provide delinea-

tion based on optimum criteria, should be combined with object location by model-based

approaches for automatic segmentation. Our future work follows in this direction.
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Figura 2.18: Sample slices of the phantoms with different degrees of noise (N) and inho-
mogeneity (INU): (a) N = 3% and INU = 20%, (b) N = 5% and INU = 20%, (c)
N = 7% and INU = 20%, (d) N = 9% and INU = 20%, (e) N = 3% and INU = 40%,
(f) N = 5% and INU = 40%, (g) N = 7% and INU = 40%, and (h) N = 9% and
INU = 40%.
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Figura 2.19: Renditions of the 8 brain phantom segmentations by tree pruning (first and
second columns), watershed (third and fourth columns) and of the provided ground truth
(fifth column).
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Figura 2.20: Brain segmentation results with tree pruning, watershed and SPM2 for 20
control subjects, shown as 3D renditions.



Caṕıtulo 3

Fast and Robust Mid-sagittal Plane

Location in 3D MR Images of the

Brain

3.1 Introduction

The human brain is not perfectly symmetric [32, 27, 49]. However, for the purpose of

analysis, it is paramount to define and distinguish a standard of asymmetry, considered

as normal for any given measurement, from abnormal asymmetry, which may be related

to neurological diseases, cerebral malformations, surgical procedures or trauma. Several

works sustain this claim. For example, accentuated asymmetries between left and right

hippocampi have been found in patients with Schizophrenia [99, 28, 87, 67, 54, 6], Epilepsy

[55, 100] and Alzheimer Disease [29, 64].

The brain can be divided in two hemispheres, and the structures of one side should have

their counterpart in the other side with similar shapes and approximate locations [32].

These hemispheres have their boundaries limited by the longitudinal (median) fissure,

being the corpus callosum their only interconnection.

The ideal separation surface between the hemisferes is not perfectly planar, but the

mid-sagittal plane (MSP) can be used as a reference for asymmetry analysis, without

significant loss in the relative comparison between normal and abnormal subjects. The

MSP location is also important for image registration. Some works have used this ope-

ration as a first step for intra-subject registration, as it reduces the number of degrees of

freedom [3, 58], and to bring different images into a same coordinate system [63], such as

in the Talairach [89] model.

However, there is no exact definition of the MSP and its determination by manual de-

lineation is sensitive to different experts. Given that, a reasonable approach for evaluation

43
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seems to be visual inspection with error quantification, when we increase the asymmetry

artificially and/or linearly transform the image.

The longitudinal fissure forms a gap between the hemispheres filled with cerebro-spinal

fluid (CSF). We define the MSP as a large intersection between a plane and an envelope

of the brain (a binary volume whose surface approximates the convex hull of the brain)

that maximizes the amount of CSF. This definition leads to an automatic, robust and

fast algorithm for MSP extraction.

The paper is organized as follows. In Section 3.2, we review existing works on automa-

tic location of the mid-sagittal plane. In section 3.3, we present the proposed method. In

section 3.4, we show experimental results and validation with simulated and real MR-T1

images. Section 3.5 states our conclusions.

3.2 Related works

MSP extraction methods can be divided in two groups: (i) methods that define the

MSP as a plane that maximizes a symmetry measure, extracted from both sides of the

image [57, 68, 88, 3, 85, 63, 77, 94, 91], and (ii) methods that detect the longitudinal

fissure to estimate the location of the MSP [17, 51, 56, 98]. Table 3.1 summarizes these

works, and extensive reviews can be found in [56], [98], [77] and [63].

Methods in the first group address the problem by exploiting the hough symmetry

of the brain. Basically, they consist in defining a symmetry measure and searching for

the plane that maximizes this score. Methods in the second group find the MSP by

detecting the longitudinal fissure. Even though the longitudinal fissure is not visible in

some modalities, such as PET and SPECT, it clearly appears in MR images. Particularly,

we prefer these methods because patients may have very asymmetric brains and we believe

this would affect the symmetry measure and, consequently, the MSP detection.

The aforementioned approaches based on longitudinal fissure detection present some

limitations that we are circumventing in the proposed method. In [51], the MSP is

found by using snakes and orthogonal regression for a set of points manually placed

on each slice along the longitudinal fissure, thus requiring human intervention. Other

method [17] uses the Hough Transform to automatically detect straight lines on each

slice [17], but it does not perform well on pathological images. The method in [56] assumes

local symmetry near the plane, which is not verified in many cases (see Figures 3.2, 3.5 and

3.8). Volkau et al. [98] propose a method based on the Kullback and Leibler’s measure for

intensity histograms in consecutive candidate planes (image slices). The method presents

excellent results under a few limitations related to rotation, search region of the plane,

and pathological images.
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Tabela 3.1: Summary of existing MSP methods
Method Based on 2D/3D Application Measure
[17] fissure 2D MR Edge Hough Transform
[51] fissure 2D MR Active contours
[56] fissure 2D MR, CT Local symmetry of fis-

sure
[98] fissure 3D MR, CT Kullback-Leibler’s mea-

sure
[57] symmetry 2D PET, SPECT Intensity cross correla-

tion
[68] symmetry 3D PET Stochastic sign change
[3] symmetry 3D MR, PET Intensity cross correla-

tion
[88] symmetry 3D MR, CT Extended Gaussian

image
[85] symmetry 3D MR, CT, PET, SPECT Ratio of intensity profiles
[63] symmetry 2D MR, CT Edge cross correlation
[77] symmetry 3D MR, CT, PET, SPECT Intensity cross correla-

tion
[94] symmetry 3D MR, CT, SPECT Intensity cross correla-

tion
[91] symmetry 3D MR Edge cross correlation

3.3 Methods

Our method is based on detection of the longitudinal fissure, which is clearly visible in MR

images. Unlike some previous works, our approach is fully 3D, automatic, and applicable

to images of patients with severe asymmetries.

We assume that the mid-sagittal plane is a plane that contains a maximal area of

cerebro-spinal fluid (CSF), excluding ventricles and lesions. In MR T1 images, CSF

appears as low intensity pixels, so the task is reduced to the search of a sagittal plane

that minimizes the mean voxel intensity within a mask that disregards voxels from large

CSF structures and voxels outside the brain.

The method is divided in two stages. First, we automatically segment the brain and

morphologically remove thick CSF structures from it, obtaining a brain mask. The second

stage is the location of the plane itself, searching for a plane that minimizes the mean voxel

intensity within its intersection with the brain mask. Our method uses some morphological

operations whose structuring elements are defined based on the image resolution. To keep

the method description independent of image resolution, we use the notation Sr to denote

a spherical structuring element of radius r mm.
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3.3.1 Segmentation Stage

We use the tree pruning approach to segment the brain. Tree pruning [37, 69] is a

segmentation method based on the Image Foresting Transform [39], which is a general

tool for the design of fast image processing operators based on connectivity. In tree

pruning, we interpret the image as a graph, and compute an optimum path forest from

a set of seed voxels inside the object. A gradient-like image with high pixel intensities

along object borders must be computed to provide the edge weights of the implicit graph.

A combinatorial property of the forest is exploited to prune tree paths at the object’s

border, limiting the forest to the object being segmented.

To segment the brain (white matter (WM), gray matter (GM) and ventricles), we

compute a suitable gradient image, a set of seed voxels inside the brain and apply the tree

pruning algorithm. A more detailed description of this procedure is given in [12]. Note

that any other brain segmentation method could be used for this purpose.

Gradient computation. MR-T1 images of the brain contain two large clusters: the

first with air, bone and CSF (lower intensities), and the second, with higher intensities,

consists of GM, WM, skin, fat and muscles. Otsu’s optimal threshold [74] can separate

these clusters (Figs. 3.1a and 3.1b), such that the GM/CSF border becomes part of the

border between them. To enhance the GM/CSF border, we multiply each voxel intensity

I(p) by a weight w(p) as follows:

w(p) =
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(3.1)

where τ is the Otsu’s threshold, and m1 and m2 are the mean intensities of each cluster.

We compute a 3D gradient at each voxel as the sum of its projections along 26 directions

around the voxel, and then use its magnitude for tree pruning (Figure 3.1c).

Seed Selection. The brighter cluster contains many voxels outside the brain (Fi-

gure 3.1b). To obtain a set of seeds inside the brain, we apply a morphological erosion

by S5 on the binary image of the brighter cluster. This operation disconnects the brain

from adjacent structures. We then select the largest connected component as the seed set

(Figure 3.1d).
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Morphological Closing. The brain object obtained by tree pruning (Figure 3.1e)

might not include the entire longitudinal fissure, especially when the fissure is too thick.

To ensure its inclusion, we apply a morphological closing by S20 to the binary brain image

(Figure 3.1f).

Thick CSF Structure Removal. The last step of this phase is the removal of thick

CSF structures (such as the ventricles, lesions and post-surgery cavities) from the brain

object, to avoid the MSP from snapping to a dark structure other than the longitudinal

fissure. We achieve this with a sequence of morphological operations: we start from a

binary image obtained by thresholding at Otsu’s optimal threshold (Figure 3.1b). We

apply a morphological opening by S5 to connect the thick (> 5 mm) CSF structures

(Figure 3.1g), and then dilate the result by S2 to include a thin (2 mm) wall of the CSF

structures (Figure 3.1h). This dilation ensures the reinclusion of the longitudinal fissure,

in case it is removed by the opening. The binary intersection of this image with the

brain object is then used as brain mask (Figure 3.1i) by the next stage of our method.

Only voxels within this mask are considered by stage 2. Figures 3.2a and 3.2b show

how the computed brain mask excludes the large cavity in a post-surgery image, and

figures 3.2c and 3.2d show how the mask excludes most of the ventricles in patients with

large ventricles.

3.3.2 Plane Location Stage

To obtain the CSF score of a plane, we compute the mean voxel intensity in the intersection

between the plane and the brain mask (Figures 3.3a and 3.3b). The lower the score, the

more likely the plane is to contain more CSF than white matter and gray matter. The

plane with a sufficiently large brain mask intersection and minimal score is the most likely

to be the mid-sagittal plane.

To find a starting candidate plane, we compute the score of all sagittal planes in 1 mm

intervals (which leads to 140–180 planes in usual MR datasets), and select the plane with

minimum score. Planes with intersection area lower than 10 000 mm2 are not considered

to avoid selecting planes tangent to the surface of the brain. Planes with small intersection

areas may lead to low scores due to alignment with sulci and also due to partial volume

effect between gray matter and CSF (Figures 3.3c and 3.3d).

Once the best candidate plane is found, we compute the CSF score for small transfor-

mations of the plane by a set of rotations and translations. If none of the transformations

lead to a plane with lower CSF score, the current plane is the mid-sagittal plane and

the algorithm stops. Otherwise, the transformed plane with lower CSF score is conside-

red the current candidate, and the algorithm is repeated. The algorithm is finite, since
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each iteration reduces the CSF score, and the CSF score is limited by the voxel intensity

domain.

We use a set of 42 candidate transforms at each iteration: translations on both direc-

tions of the X, Y and Z axes by 10 mm, 5 mm and 1 mm (18 translations) and rotations

on both directions around the X, Y and Z axes by 10o, 5o, 1o and 0.5o (24 rotations). All

rotations are about the central point of the initial candidate plane. There is no point in

attempting rotations by less than 0.5o, as this is close to the limit where planes fall over

the same voxels for typical MR datasets, as discussed in Section 3.4.1.

3.4 Evaluation and Discussion

3.4.1 Error Measurement

The discretization of R
3 makes planes that differ by small angles to fall over the same

voxels. Consider two planes A and B that differ by an angle Θ (Figure 3.4). The minimum

angle that makes A and B differ by at least 1 voxel at a distance r from the rotation center

is given by Equation 3.2.

Θ = arctan

(

1

r

)

(3.2)

An MR dataset with 1 mm3 voxels has a typical maximum dimension of 256 mm. For

rotations about the center of the volume, the minimum angle that makes planes A and

B differ by at least one voxel within the volume (point pi in Figure 3.4) is approximately

arctan
(

1
128

)

= 0.45o. For most MSP applications, we are only concerned about plane

differences within the brain. The largest length within the brain is usually longitudinal,

reaching up to 200 mm in adult brains. The minimum angle that makes planes A and

B differ by at least one voxel within the brain (point pb in Figure 3.4) is approximately

arctan
(

1
100

)

= 0.57o.

Therefore, we can consider errors around 1o excellent and equivalent results.

3.4.2 Experiments

We evaluated the method on 64 MR datasets divided in 3 groups: A control group with 20

datasets from subjects with no anomalies, a surgery group with 36 datasets from patients

with significant structural variations due to brain surgery, and a phantom group with 8

synthetic datasets with varying levels of noise and inomogeneity, taken from the BrainWeb

project [21].

All datasets in the control group and most datasets in the surgery group were acquired

with a voxel size of 0.98 × 0.98 × 1.00 mm3. Some images in the surgery group were
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acquired with a voxel size of 0.98 × 0.98 × 1.50 mm3. The images in the phantom group

were generated with an isotropic voxel size of 1.00 mm3. All volumes in the control and

surgery groups were interpolated to an isotropic voxel size of 0.98 mm3 before applying

the method.

For each of the 64 datasets, we generated 10 variations (tilted datasets) by applying

10 random transforms composed of translations and rotations of up to 12 mm and 12o

in all axes. The method was applied to the 704 datasets (64 untilted, 640 tilted), and

visual inspection showed that the method correctly found acceptable approximations of

the MSP in all of them. Figure 3.5 shows sample slices of some datasets and the computed

MSPs.

For each tilted dataset, we applied the inverse transform to the computed mid-sagittal

plane to project it on its respective untilted dataset space. Thus, for each untilted dataset

we obtained 11 planes which should be similar. We measured the angle between all
(

11
2

)

=

55 distinct plane pairs. Table 3.2 shows the mean and standard deviation (σ) of these

angles within each group. The low mean angles (column 3) and low standard deviations

(column 4) show that the method is robust with regard to linear transformations of the

input. The similar values obtained for the 3 groups indicate that the method performs

equally well on healthy, pathological and synthetic data. The majority (94.9%) of the

angles were less than 3o, as shown in the histogram of Figure 3.6. Of 64 × 55 = 3520

computed angles, only 5 (0.1%) were above 6o. The maximum measured angle was 6.9o.

Even in this case (Figure 3.7), both planes are acceptable in visual inspection, and the

large angle between different two computations of the MSP can be related to the non-

planarity of the fissure, which allows different planes to match with similar optimal scores.

The lower mean angle in the phantom group (column 3, line 3 of Table 3.2) can be related

to the absence of curved fissures in the synthetic datasets. Figure 3.8 shows some examples

of non-planar fissures.

Tabela 3.2: Angles between computed MSPs

Group Datasets
Angles

Mean σ
Control 20 1.33o 0.85o

Surgery 36 1.32o 1.03o

Phantom 8 0.85o 0.69o

Overall 64 1.26o 0.95o

All experiments were performed on a 2.0 GHz Athlon64 PC running Linux. The

method took from 41 to 78 seconds to compute the MSP on each MR dataset (mean:

60.0 seconds). Most of the time was consumed computing the brain mask (stage 1).
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Stage 1 required from 39 to 69 seconds per dataset (mean: 54.8 seconds), while stage 2

required from 1.4 to 20 seconds (mean: 5.3 seconds). The number of iterations in stage 2

ranged from 0 to 30 (mean: 7.16 iterations).

3.5 Conclusions and Future Work

We presented a fast and robust method for extraction of the mid-sagittal plane from MR

images of the brain. It is based on automatic segmentation of the brain and on a heuristic

search based on maximization of CSF within the MSP. We evaluated the method on 64

MR datasets, including images from patients with large surgical cavities (Figure 3.2a and

Figures 3.5e–h). The method succeeded on all datasets and performed equally well on

healthy and pathological cases. Rotations and translations of the datasets led to mean

MSP variations around 1o, which is not a significant error considering the discrete space

of MR datasets. MSP variations over 3o occurred only in cases where the longitudinal

fissure was not planar, and multiple planes fitted different segments of the fissure with

similar scores. The method required a mean time of 60 seconds to extract the MSP from

each MR dataset on a common PC.

Previous fissure-based works were either evaluated on images of healthy patients, on

images with small lesions [98], or relied on local symmetry measurements [56]. As future

work, we intend to implement some of the previous works and compare their accuracy

and performance with our method on the same datasets. Brain mask computation is

responsible for most of the computing time. We also plan to evaluate how the computation

of the brain mask on lower resolutions affect the accuracy and efficiency of the method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figura 3.1: Sample slice of the intermediary steps in stage 1: (a) original coronal MR slice;
(b) binary cluster mask obtained by thresholding; (c) gradient-like image used for tree
pruning; (d) seed set used for tree pruning (white); (e) border of the brain object obtained
by tree pruning (white); (f) border of the brain object after morphological closing; (g)
CSF mask after opening; (h) CSF mask after dilation; (h) brain mask (intersection of (f)
and (h)).
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(a) (b)

(c) (d)

Figura 3.2: Examples of thick CSF structure removal: (a) coronal MR slice of a patient
with post-surgical cavity; (b) brain mask of (a); (c) axial MR slice of a patient with large
ventricles; (d) brain mask of (c).
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(a) (b)

(c) (d)

Figura 3.3: Plane intersection: (a–b) sample plane, brain mask and their intersection
(white outline). (c–d) example of a plane tangent to the brain’s surface and its small
intersection area with the brain mask (delineated in white), overlaid on the original MR
image.
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Figura 3.4: Error measurement in discrete space: points and angles.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figura 3.5: Examples of planes computed by the method: (a–d): sample slices from
a control dataset; (e–f) sample slices from a surgery dataset; (g–h) sample slices from
another surgery dataset; (i–j): sample slices from a phantom dataset; (k–l): sample slices
from a tilted dataset obtained from the one in (i–j).
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Figura 3.6: Distribution of the angles between computed mid-sagittal planes.
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(a) (b)

Figura 3.7: A coronal slice (a) and an axial slice (b) from the case with maximum angular
error (6.9o), with planes in white: The fissure was thick at the top of the head, and curved
in the longitudinal direction, allowing the MSP to snap either to the frontal or posterior
segments of the fissure, with some degree of freedom.
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(a) (b) (c)

(d) (e) (f)

Figura 3.8: Non-planar fissures: (a) irregular fissure, (b) expert fissure delineation of (a)
and (c) MSP computed by our method. (d) Curved fissure, (e) expert fissure delineation
of (d) and (f) MSP computed by our method.



Caṕıtulo 4

Fast and Automatic Curvilinear

Reformatting of MR Images of the

Brain for Diagnosis of Dysplastic

Lesions

4.1 Introduction

The diagnosis of dysplastic lesions in the human brain is an important task to guide the

treatment of refractory epilepsy patients, which often requires surgical removal of the

lesion’s tissue. While a dysplastic lesion can only be confirmed by histological analysis

(which requires invasive procedures), its location and extent appear in MR images of the

brain as blurrings of voxel intensity with gray-matter texture. It is known that curvilinear

reformatting is the best non-invasive technique for diagnosis of dysplastic lesions [5, 7, 24].

It consists of computing surfaces that follow the brain’s curvature at various depths, such

that the diagnosis is possible by visual inspection of the voxel intensities on these surfa-

ces. This technique stems from the fact that the lesions are enhanced on surfaces which

are orthogonal to most of the sulci. However, the unique implementation of curvilinear

reformatting requires user intervention [79]. The computation of the surfaces relies on

manual delineation of lines on a few 2D slices followed by surface interpolation— a task

that is prone to user mistakes and leads to curvature artifacts.

We present a fast method for curvilinear reformatting that solves both problems. Our

method uses a general graph-based approach to segment the brain, extract its envelope

(a smooth surface that follows its curvature), and compute the isosurfaces at all possible

depths by euclidean distance transform. It requires no user input, no ad-hoc parameters,

and takes less than 1 minute to run on a common PC.

59
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We could have used any other method for automatic brain segmentation, but the

method proposed here is a recent and promising contribution under evaluation. It does

not require ad-hoc parameters or templates, unlike most known approaches [47, 19].

4.2 Brain Segmentation

A possible envelope for curvilinear reformatting is the surface of the dura-matter. The

dura-mater is a thin membrane and its automatic segmentation is a complicated issue.

We take an easier approach which is to segment the brain— gray matter (GM) and white

matter (WM)— and then use the surface of its morphological closing [35] as envelope. Our

method is entirely based on the Image Foresting Transform (IFT) for fast brain segmen-

tation, morphological operations, and euclidean distance transform of the envelope [39].

The IFT interprets an MR image as a graph whose nodes are the voxels and whose

arcs are defined by an adjacency relation between voxels. For a given set of seed voxels

and a suitable path-cost function, the IFT reduces many image processing problems to

the computation of an optimum-path forest in this graph, such that each tree consists of

voxels more strongly connected to its root than to any other seed in some appropriate

sense. This approach has also the advantage of being computable in time proportional to

the number of voxels in most applications.

We use an IFT-based operator, called tree pruning [37, 12], which takes as input a

gradient-like image, seed voxels inside the brain and 6-neighborhood adjacency relation.

The path-cost function in tree pruning is a mapping that assigns to every path in the graph

the maximum gradient intensity along that path. In these conditions, the IFT leads to a

forest where brain and background are connected by a few optimum paths. These paths

cross the brain’s boundary through its “most weakly connected” parts (bottleneck voxels).

The topology of the forest is exploited to identify the bottleneck voxels and prune their

subtrees, such that the remaining forest defines the brain.

The gradient-like image must be brighter on the brain’s boundary than inside it and

in the nearby background. This gradient condition is paramount for the success of the

method. For further details about tree pruning, see [37, 12].

In the next sections we show how to obtain a suitable gradient-like image and the

seeds inside the brain.

4.2.1 Gradient Estimation

MR-T1 images of the brain contain two large clusters: the first with air, bone and ce-

rebrospinal fluid (CSF), represented by darker voxels, and the second, represented by

brighter voxels, consists of GM, WM, skin, fat and muscles. Otsu’s optimal threshold [74]
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(a) (b)

(c) (d)

Figura 4.1: (a) Sample slice of MR-T1 image of the brain. (b) Binary image resulting
from Otsu’s thresholding overlaid on image (a). (c) Gradient-like image. (d) Binary image
of seed voxels overlaid on image (a).

can separate these clusters (Figs. 4.1a and 4.1b), such that the GM/CSF border becomes

part of the border between them. To enhance the GM/CSF border in the original image,

we multiply each voxel intensity I(p) by a weight w(p) as follows:

w(p) =
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(4.1)

where τ is the Otsu’s threshold, and m1 and m2 are the mean intensities computed on

each cluster. We then compute the 3D morphological gradient [35] with a 6-neighborhood

structuring element (Fig. 4.1c).
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4.2.2 Seed selection

The brighter cluster contains many voxels outside the brain (Fig. 4.1b). To obtain a set of

seeds inside the brain, we apply a morphological erosion by a spherical structuring element

of radius 5 on the binary image of the brighter cluster. This operation disconnects the

brain from neighboring structures. We then select the largest connected component as

the seed set (Fig. 4.1d).

The choice of the structuring element’s radius for erosion depends on the voxel size.

The value presented here was adjusted for images with an isotropic voxel size of 1 mm.

This value guarantees the disconnection of the brain from the background and a reaso-

nable number of seeds inside the brain. It is important to note that automatic brain

segmentation cannot be achieved with only morphological operations.

4.3 3D visualization of isosurfaces

We compute the morphological closing of the brain by a spherical structuring element of

radius 20. The resulting surface is used as envelope. This radius also depends on the

voxel size, as discussed above.

4.3.1 Distance map computation

The euclidean distance map of the envelope is computed by an IFT, where the seeds are

its voxels, the adjacency relation is the 26-neighborhood (a spherical relation of radius√
3), and the path-cost function is a mapping that assigns to each path in the graph the

euclidean distance between its endpoints. Up to this point, the process is fully automatic.

The distance map of the envelope effectively encodes all isosurfaces.

4.3.2 Isosurface visualization

Once the user selects a viewing direction and surface depth d (distance from the envelope)

for inspection, the isosurface can be rendered by voxel splatting, projecting only voxels

within a distance d + ε, for a small ε, from the envelope. Projection is sped up by sorting

the voxels by distance. The small delay for sorting the voxels after the distance transform

allows faster renderizations, since the first voxel to be projected can be efficiently located

by binary search in the sorted array of voxels, avoiding a raster scan of the entire image.



Caṕıtulo 4. Automatic Curvilinear Reformatting 63

4.4 Evaluation

To evaluate our method, we selected 5 MR images from refractory epilepsy patients (all

of them had dysplastic lesions confirmed by histological analysis performed after image

acquisition) and 10 MR images from control subjects with no known anomalies. All images

were acquired in an Elscint 2T MR scanner with a voxel size of 0.98 × 0.98 × 1.00 mm,

and were interpolated to an isotropic voxel size of 1.00 mm before all further processing.

4.4.1 Segmentation

The segmentation method succeeded on all 15 subjects. Fig. 4.2 shows 3D renderizati-

ons of the segmented brains obtained with automatic tree pruning (top row) and their

respective envelopes (bottom row) for 2 control subjects and 2 patients.

Figura 4.2: 3D renderizations of the brain segmentations obtained with the automatic tree
pruning approach (top row) and of the resulting envelopes (bottom row). The leftmost two
columns are from control subjects and the other two columns are from epilepsy patients.

An Athlon64 3200+ PC took an average time of 38 seconds to perform the brain

segmentation and envelope computation (8.5 seconds for Otsu threshold computation,

gradient estimation and seed set computation, 17.1 seconds for automatic tree pruning

and 12.4 seconds for the envelope computation, on average). Image sizes varied from

9.3 × 106 to 11.7 × 106 voxels.

4.4.2 Isosurface Visualization

Fig. 4.3 shows sample isosurface renderizations obtained with our method, and Fig. 4.4

shows dysplastic lesions on 4 patients. Lesions are usually detected by locating texture

assymetries between the brain hemispheres.
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Figura 4.3: Isosurface renderizations of the brain of an epilepsy patient, at various depths
and viewing directions.

On the same Athlon64 3200+ PC, the euclidean distance transform took 5 seconds to

be computed for each image, on average. The distance map sorting took an average time

of 2 seconds. Our evaluation implementation uses software-based voxel splatting, which

achieves rates between 5 and 15 frames per second, depending on surface depth and zoom

level. This rate is enough to provide interactivity and a responsive diagnostic tool. It

could be further improved by exploiting the hardware acceleration of modern GPUs.

4.4.3 Comparison to Other Methods

For the segmentation task, we attempted to use the widely available and well-known

SPM2 [47], but it made so many segmentation mistakes outside the brain that the results

were unusable to obtain an envelope without considerable additional effort (Fig. 4.5). The

SPM2 segmentation can be improved with a better template and some image preproces-

sing, but it is still much slower than our method. SPM2 took from 5 to 7 minutes to

segment each image, while automatic tree pruning took 38 seconds.

For isosurface visualization, the existing approach is the BrainSight software tool [79],

which requires manual delineation of lines following the brain’s curvature on a few 2D

slices (Figs. 4.6a and 4.6b). The surface used as reference for curvilinear reformatting is

obtained by interpolation (Fig. 4.6c). Note that the frontal and occipital lobes suffer from

curvature artifacts and the resulting visualization is deformed on the “end caps”.
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Figura 4.4: Dysplastic lesions on four patients. The top box with three views is the lesion
on the patient from Fig. 4.3 viewed at different depths. On the other 3 patients, the
opposing side is shown for texture assymetry comparison. All lesions are indicated by a
black ring.

4.5 Conclusions and Future Work

We presented a fast and fully automatic approach for curvilinear reformatting of MR

images of the brain based on the image foresting transform [39, 37]. The technique is

useful for the non-invasive diagnosis of dysplastic lesions in the human brain. These

lesions are a major cause of refractory epilepsy and their diagnosis is crucial for treatment

planning [5, 7, 24].

The proposed solution consists of an automatic image processing pipeline that takes

raw MR images and outputs 3D visualization of isosurfaces of the brain’s envelope in less

than 1 minute on a common PC. Our method does not present curvature artifacts such as

the curvilinear reformatting approach currently available [7, 79]. Our segmentation step

is also much faster than widely used approaches, such as SPM2 [47].

We are currently evaluating our automatic brain segmentation method using a lar-

ger number of data sets, and future work includes the implementation of a hardware-
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Figura 4.5: 3D renderizations of incorrect brain segmentations obtained with SPM2.

Figura 4.6: Curvilinear reformatting in BrainSight. (a) Manual delineation in a coronal
slice. (b) A few other coronal slices where manual delineation is performed. (c) The
interpolated surface used as reference for curvilinear reformatting.

accelerated isosurface visualization software tool.
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FCD Segmentation using Texture

Asymmetry of MR-T1 Images of the

Brain

5.1 Introduction

Focal Cortical Dysplasia (FCD) is a malformation of cortical development that results

in abnormal glial elements and disruption of the normal cortical lamination. It was

first described by Taylor [90], and it is the most common malformation in patients with

intractable epilepsy [48]. FCD is also a common cause of epilepsy in children and young

adults [24, 81].

The problem of FCD detection in MRI consists in identifying the approximate locations

of the FCD lesions (usually one voxel inside each lesion, or an approximation of the lesion

by some kind of marker). The problem of FCD segmentation consists in identifying

the precise spatial extent of FCD lesions, by classifying MRI voxels as either healthy or

pathological. Solving FCD segmentation implicitly solves FCD detection. Detection and

segmentation of FCD lesions are crucial steps in treatment planning [75, 84, 64].

FCD lesions appear as subtle macroscopic features in brain MR images: blurring of the

gray-matter/white-matter (GM/WM) transition, localized GM thickening and hyperin-

tense GM signal [24]. In this work we exploit the asymmetry between texture features of

lesional voxels and their healthy counterparts in the opposing brain hemisphere to detect

and segment FCD lesions.

67
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5.2 Related Works

The most common FCD diagnosis method in clinical practice is the straightforward visual

inspection of MR images by specialists. The reported detection rate for this technique

is 50% [72]. Techniques such as multiplanar reconstruction (MPR) and curvilinear re-

formatting (CR) increase the detection rate to 100% [72]. Curvilinear reformatting [7]

consists of visualizing 3D MR images as curved surfaces that follow the shape of the brain.

This technique improves the visibility of FCD lesions over MPR [72] and can be computed

automatically without human interaction [10].

Several recent works presented automatic FCD detection methods, with detection

rates varying from 53% to 85% [60, 2, 86, 23]. Most of these works focus on detection

rather than segmentation. To our knowledge, Colliot et al. [23] is the only work that

report segmentation accuracy rate, with a coverage of 73% of the lesional voxels. Some of

these works [60, 2, 23] rely on template-based segmentation techniques of the GM, which

are often unreliable for children and patients who underwent brain surgery [21, 30].

5.3 Method

Our method works on volumetric MR-T1 images interpolated to an isotropic voxel size

of 1.0 mm3, and comprises 6 steps: (i) mid-sagittal plane (MSP) location, (ii) brain

segmentation, (iii) CR computation, (iv) feature extraction, (v) voxel classification and

(vi) outlier removal.

5.3.1 MSP Location

We locate the mid-sagittal plane that divides the brain hemispheres using the heuristic

minimization search of Bergo et al. [14]. After the plane is found, the volume is rotated

such that the MSP becomes orthogonal to the z axis.

5.3.2 Brain Segmentation

We apply the automatic tree pruning technique [12] to segment the brain. Tree pruning

does not rely on templates and performs well regardless of age or anatomic variations [14].

5.3.3 CR computation

The curvilinear reformatting can be encoded as an Euclidian distance transform computed

from the brain’s border. This distance transform can be efficiently computed by the IFT-

EDT [10].
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5.3.4 Feature Extraction

For each voxel p within the brain, we extract a 16×16 planar texture patch T1(p) tangent

to the brain’s curvature (as computed by the CR) and centered at p. The gradient vector

of the CR distance transform at the voxel’s location provides the surface normal. We also

extract a symmetric patch T2(p), located at the reflection of T1(p) by the MSP. These

patches are illustrated by Fig. 5.1.

(a) (b)

Figura 5.1: Texture patches used for feature extraction: (a) patch location. (b) example
of a pair of symmetric patches T1 and T2.

The patch size was chosen experimentally. Smaller patch sizes did not provide good

classification results, while larger patch sizes led to similar results with higher computa-

tional cost.

For each patch we compute 6 features: sharpness (h), entropy, homogeneity, contrast,

intensity mean (µ) and intensity standard deviation (σ). Sharpness is computed as the

sum of pixelwise absolute intensity differences between the patch and a blurred copy

of itself obtained by convolution with a 5 × 5 Gaussian kernel with σ = 7. Entropy,

homogeneity and contrast are computed as presented by Haralick et al. [52], using a

12 × 12 gray-level cooccurrence matrix. Using these computed values we build a 16-

element feature vector associated to voxel p as indicated by Eq. 5.1. All features are

scaled to fit within the [0, 1] interval.
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(5.1)

5.3.5 Voxel Classification

We use a Reduced Coulomb Energy classifier (RCE) [36] to perform the classification

of the voxels, based on supervised learning. In the RCE classifier, each training sample

becomes a hypersphere in the feature space (in our case, R
16). The radius is chosen

to be the maximum such that no training sample from a different class is contained in

the hypersphere. Classification is performed by testing the test sample for containment

within the training samples’s hyperspheres. If a test sample falls within an ambiguous

space (being contained by hyperspheres of different classes), we classify it as lesional. This

is a design decision to prevent false negatives.

5.3.6 Outlier Removal

The classification result leads to outliers both in lesional and healthy regions. However,

the density of voxels classified as lesional is visibly higher within the actual lesions. In

this step we threshold the density of voxels classified as lesional within a fixed adjacency

radius, and consider lesional only those voxels with a density above a certain threshold,

determined experimentally.



Caṕıtulo 5. FCD Segmentation using Texture Asymmetry 71

5.4 Results

We used images from 5 epilepsy patients (age/gender: 11/M, 24/F, 12/M, 51/M, 30/F)

with confirmed FCDs to evaluate the method. The lesions were manually segmented by

an specialist with knowledge about the lesion locations, and this ground truth was used

to extract a small training set of feature vectors from each patient. We used 1% of the

voxels from each patient to build the training set, preserving a ratio of 1 : 9 between

lesional and healthy voxels. This ratio affects the radii of the RCE hyperspheres and can

be used to control the ratio of false positives/false negatives in any direction.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Figura 5.2: Ground truth and segmentation results for the 5 patients. The first row
shows the ground truth provided by an specialist. The second row shows the intermediary
classification result. The third row shows the final classification result after the outlier
removal step. Patients 1 and 3 are children, and patient 1 has a visible anatomical
deformity (top left).

We used the leave-one-out scheme [36] to classify the voxels of each patient (each

patient’s voxels were classified using the training sets from the other four patients). We

used a radius of 5 voxels and a density threshold of 35% for the outlier removal step. With
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these parameters, we detected all 5 lesions, with no false positives. The voxel coverage

of the lesions ranged from 62.5% to 90.3% (average: 76.9%). Fig. 5.2 shows some sample

slices of ground truth, intermediary classification (after step (v)) and final classification.

Even though the intermediary classification appears clean on 2D slices such as those shown

in Fig. 5.2, a 3D renderization shows that it contains too much noise. Fig. 5.3 shows 3D

renderizations of the intermediary (a) and final (b) lesion segmentations for patient 2.

(a) (b)

Figura 5.3: 3D renderizations of the lesion segmentation for patient 2: (a) intermediary
classification and (b) segmentation after outlier removal.

The lesion segmentation method took about 30 minutes per patient on an Athlon64

3200+ PC: 1 minute for MSP location (which includes the brain segmentation), 20 seconds

for CR computation, 28 minutes for feature extraction and RCE classification, and 40

seconds for the outlier removal step.

5.5 Conclusions

We presented a new method for segmentation of dysplastic lesions in MR-T1 images of

the brain. Our method does not rely on template-based method and is applicable to any

patient regardless of age or anatomical variations. We evaluated the method on 5 patients

of ages 11y–51y, with good results on all of them. The average lesion coverage was 76.9%,

providing a result slightly better than the state of the art [23].
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Our method requires some adhoc parameters which were chosen experimentally, such

as the radius and percentage values for outlier removal, and the parameters for texture

features and RCE classifier training. We are currently working on automatic methods for

choosing those parameters, as well as measuring their effect on the segmentation results.

We are also working on obtaining more datasets in order to validate the method in a

larger set of patients.
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A Partitioned Algorithm for the

Image Foresting Transform

6.1 Introduction

The Image Foresting Transform (IFT) [39] is a graph-based framework for the design and

implementation of image processing operators. It reduces image processing operations,

such as watersheds [96, 15], morphological reconstructions [42], skeletonization [41] and

distance transforms [31], to the computation of a minimum-cost path forest over an im-

plicit graph representation of the image. The IFT runs in linear time, but it does not take

advantage of parallel and distributed computer systems. Its data structures also require

considerable memory space [45], and this can be a limitation to the processing of large

3D images.

In this work we present the Partitioned IFT, an algorithm that computes any IFT

as a set of independent IFTs over partitions of the input image. Both time and memory

required to compute the IFT of each partition are proportional to the size of that partition.

The minimum-cost path forests of the partitions are merged by fast differential IFTs [40].

This scheme provides the means to take advantage of parallel and distributed computer

systems (by assigning each partition’s IFT to a different central processing unit (CPU))

and to allow the computation of IFTs with a reduced memory footprint (by computing

partition forests sequentially).
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6.2 Related works

6.2.1 Related algorithms

Moga et al. [70] presented two parallel watershed algorithms that treat the image as a

graph and perform independent flooding simulations in image partitions. Parallel floo-

ding simulations are repeated while plateaus overflow to adjacent partitions. The same

group [71] presented a similar parallel algorithm for the computation of the watershed-

from-markers transform. Both works achieve scalable speedups in parallel architectures,

but the speedup factor does not scale linearly with the number of processors. Moga et

al. [70] achieve speedup factors1 around 2 for 4-CPU systems, and 3.5 for 8-CPU systems.

Bruno and Costa [18] present a distributed algorithm for the computation of Euclidean

distance transforms (EDT) based on morphological dilations. Their algorithm achieves a

speedup factor of 3.5 on a 4-CPU system.

6.2.2 The image foresting transform

The IFT algorithm is essentially Dijkstra’s algorithm [1], modified for multiple sources

and general path cost functions [39]. The image is interpreted as a directed graph whose

nodes are the pixels. The edges are defined implicitly by an adjacency relation A. Tree

roots are drawn from a set S of seed nodes and path costs are given by a path cost function

f . We use P ∗(s) to denote the current path reaching pixel s, 〈s〉 to denote a trivial path

containing a single node, and 〈s, t〉 to denote the edge from pixel s to pixel t. P ∗(s) · 〈s, t〉
is the path that results from the concatenation of P ∗(s) and an edge 〈s, t〉.

The choice of A, S and f define an IFT operator. The IFT algorithm can compute by

ordered propagation any forest property that uses the seed set as reference. Usually, the

IFT computes 4 maps: the cost map C stores the cost of the optimal path that reaches

each pixel, the predecessor map P stores the predecessor of each pixel in the forest, the

root map R stores the root of each pixel’s optimal path, and the label map L stores object

labels for each pixel. Algorithm 5 below computes the IFT.

Algorithm 5 – IFT

Input: Image I, Path-cost function f , Adjacency relation A, Seed set S and Seed label

map L0.

Output: Cost map C, Predecessor map P , Root map R and Label map L.

Auxiliary: Priority queue Q.

1The speedup factor of a parallel algorithm on an n-CPU parallel system is calculated as t1

tN

, where
t1 is the time required to perform the computation on a single-CPU system, and tN is the time required
to perform the computation on an n-way system.
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1. Set Q ← ∅.
2. For each pixel s ∈ I \ S, do

3. Set C(s) ← ∞, P (s) ← nil , R(s) ← s and L(s) ← nil .

4. For each pixel s ∈ S, do

5. Set C(s) ← f(〈s〉) and L(s) ← L0(s).

6. Insert s in Q.

7. While Q 6= ∅, do

8. Remove a pixel s from Q such that C(s) is minimum.

9. For each t such that (s, t) ∈ A, do

10. Compute cost ← f(P ∗(s) · 〈s, t〉).
11. If cost < C(t) then

12. If t ∈ Q then remove t from Q.

13. Set P (t) ← s, C(t) ← cost, L(t) ← L(s), R(t) ← R(s).

14. Insert t in Q.

Lines 1–3 set the forest to an initial state where every node’s optimum path is a trivial

path with infinite cost. Lines 4–6 insert the seed pixels in the priority queue with a trivial

path cost computed by f , and initialize seed labels for ordered propagation. The loop of

lines 7–14 uses the priority queue to propagate the optimum paths and conquer the entire

image. As long as f is finite and smooth [39], an optimum path with finite cost will be

assigned to all pixels connected to S. Once a pixel is removed from the queue (line 8), it

is never inserted again. Therefore, the main loop is repeated |I| times. For integer path

costs with limited increments, Q can be efficiently implemented such that insertions and

removals take O(1) time [1]. With small adjacency relations (|A| ¿ |I|) and O(1) queue

operations, the IFT algorithm runs in O(|I|) time [39].

Two common path cost functions for IFT operators are fmax and feuc, shown in

Eqs. 6.1–6.2 below. Both fmax and feuc are smooth, as required to ensure the correct-

ness of the IFT [39].

fmax(〈s1, . . . , sn〉) =

{

maxn
i=1 (I (si)) if n > 1,

h(s1) otherwise.
(6.1)

feuc(〈s1, . . . , sn〉) = Euclidean distance between s1 and sn (6.2)

where I(s) is some value associated to pixel s (such as intensity or gradient intensity)

and h is a handicap function for trivial paths. A watershed-from-markers transform can be

implemented as an IFT where f is fmax (Eq. 6.1), h = 0 (for marker imposition), A is an

adjacency with radius between 1 and
√

2 and S contains the watershed markers [39, 40].

A classical watershed can be implemented using f = fmax, h(s) = I(s) + 1 and S =
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I [65]. Function feuc (Eq. 6.2) allows the computation of distance transforms [31], discrete

Voronoi diagrams, skeletonizations and shape saliences [41, 93, 39, 10].

6.2.3 The differential image foresting transform

The differential IFT [40] (DIFT) was motivated by interactive 3D image segmentation

applications where the user interactively selects the seed pixels. It is quite common for

the user to add new seeds and remove previous ones based on the visualization of the

segmentation result. The first IFT is computed by Algorithm 5 as usual, from a seed

set S0. The maps C, P , R and L must be initialized to a forest of trivial paths with

infinite costs before the first DIFT is computed. Given a set S ′ of seeds to be added and

a set S ′′ of tree roots to be removed, the DIFT computes the optimum path forest for the

effective seed seet S1 = (S0 \ S ′′) ∪ S ′. The DIFT processes only pixels affected by the

seed set editing, and runs in sublinear time. Instead of providing S ′′ directly, the DIFT

takes a set M of removal markers, and S ′′ is computed as the set of roots of the pixels in

M. Algorithm 6 below is the main DIFT algorithm. The DIFT-TreeRemoval subroutine

referenced in line 2 visits all pixels that belong to removed trees, sets their optimum paths

to trivial paths with infinite costs (forcing their recalculation by Algorithm 6), and builds

the set F of frontier pixels.

Algorithm 6 – DIFT

Input: Image I, Cost map C, Predecessor map P , Root map R, Label map L, Path-

cost function f , Adjacency relation A, Set S ′ of new seed pixels, Set M of

marking pixels, Seed label map L0.

Output: C, P , R and L.

Auxiliary: Priority queue Q, Frontier set F .

1. Set Q ← ∅.
2. (C, P,F) ←DIFT-TreeRemoval(C, P,R, L,A,M).

3. F ← F \ S ′.

4. While S ′ 6= ∅, do

5. Remove any t from S ′.

6. If f(〈t〉) < C(t) then

7. Set C(t) ← f(〈t〉), R(t) ← t, L(t) ← L0(t), P (t) ← nil .

8. Set F ← F ∪ {t}.
9. While F 6= ∅, do

10. Remove any t from F and insert t in Q.

11. While Q 6= ∅, do

12. Remove a pixel s from Q, such that C(s) is minimum.

13. For each t such that (s, t) ∈ A, do
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14. Compute cost ← f(P ∗(s) · 〈s, t〉).
15. If cost < C(t) or P (t) = s then

16. If t ∈ Q then remove t from Q.

17. Set P (t) ← s, C(t) ← cost, R(t) ← R(s), L(t) ← L(s).

18. Insert t in Q.

Lines 2–3 compute a set F of frontier pixels that belong to non-removed trees but

share edges with pixels in removed trees. Lines 4–10 insert the new seeds and the frontier

pixels in the queue. Lines 11–18 are very much like the main loop of the IFT Algorithm

(Algorithm 5), except for the condition P (t) = s in line 14, which forces the update of

all pixels that had their optimum paths modified. The result of the DIFT is an optimum

path forest for the “effective seed set” S1 = (S0 \ S ′′) ∪ S ′.

6.3 The partitioned image foresting transform

In the Partitioned IFT (PIFT), we split the input image and seed set in NP partitions. The

number of partitions can be chosen to match the number of available processing nodes, or

so that the computer system has enough memory to run the IFT algorithm on each image

partition. Partitions do not need to be equally sized. We compute independent IFTs on

each partition. At this point, we have an optimum forest that ignores the inter-partition

edges of the graph. Figure 6.1a shows an example of this partial result for the EDT

using a set of random pixels as seeds and 3 partitions. To allow propagation through the

inter-partition graph edges, we consider the paths obtained by the concatenation of each

edge 〈s, t〉 to P ∗(s) (Figure 6.1c). When f(P ∗(s) · 〈s, t〉) is less than the current cost of

t, or the edge was part of the destination pixel’s previous optimal path, the endpoint is

added as seed in a differential IFT so that it can be propagated. If more than one inter-

partition edge share a same endpoint t, the one that provides the lower path cost P ∗(t)

is propagated. A new iteration of differential IFTs is computed for each partition. The

PIFT halts when no inter-partition edge satisfies the criteria for addition. Figure 6.1b

shows the complete EDT, obtained after 2 iterations over the 3 partitions.

The differential IFTs used in the Partitioned IFT always have an empty set of removal

markers. The Partition-IFT algorithm below (Algorithm 7) computes the IFT within a

partition. It is essentially the differential IFT algorithm without tree removal, and with

special treatment of inter-partition edges.

Algorithm 7 – Partition-IFT
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(a) (b) (c)

Figura 6.1: Labels of an EDT with the Partitioned IFT: (a) Partial result after the first
iteration and (b) final result after the second iteration. (c) PIFT notation: 〈s, t〉 is an
inter-partition edge, P ∗(s) is the optimum path assigned to s, and R(s) the root of P ∗(s).

Input: Image partition I′, Cost map C, Predecessor map P , Root map R, Label map

L, Path-cost function f , Adjacency relation A, Set S of seed pixels, Seed label

map L0, Set EI of incoming inter-partition edges.

Output: Maps C, P , R, L and Set EO of outgoing inter-partition edges.

Auxiliary: Priority queue Q.

1. Set Q ← ∅, EO ← ∅.
2. If S 6= ∅ then

3. For each pixel s ∈ I′, do

4. Set C(s) ← ∞, P (s) ← nil , R(s) ← s and L(s) ← nil .

5. For each pixel s ∈ S, do

6. Set C(s) ← f(〈s〉) and L(s) ← L0(s).

7. Insert s in Q.

8. For each edge 〈s, t〉 ∈ EI , do

9. Compute cost ← f(P ∗(s) · 〈s, t〉).
10. If cost < C(t) or P (t) = s then

11. Set C(t) ← cost, P (t) ← s, R(t) ← R(s) and L(t) ← L(s).

12. Insert t in Q.

13. While Q 6= ∅, do

14. Remove a pixel s from Q, such that C(s) is minimum.

15. For each t such that (s, t) ∈ A, do

16. If t ∈ I′ then

17. Compute cost ← f(P ∗(s) · 〈s, t〉).
18. If cost < C(t) or P (t) = s then

19. If t ∈ Q then remove t from Q.

20. Set P (t) ← s, C(t) ← cost, R(t) ← R(s), L(t) ← L(s).

21. Insert t in Q.

22. Else Insert 〈s, t〉 in EO.
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The DIFT is unable to tell whether the algorithm is on the first iteration, therefore

the initial state of the forest must be set before the first iteration. In the PIFT, the seed

set S will only be non-empty in the first iteration. We use this property to initialize the

partition’s forest to trivial paths with infinite costs in lines 2–4. Lines 5–7 queue and

initialize the seed pixels in the same way the IFT does. Lines 8–12 process the incoming

inter-partition edges EI . Edges that offer lower costs to their endpoints or belonged to

the previous forest are queued for propagation. If multiple edges in EI reach the same

endpoint, the edge that provides the lower cost for the endpoint takes precedence. The

main loop in lines 13–22 is very similar to the main loop of the DIFT, with the addition

of the partition test t ∈ I′ in line 16. Edges within the current partition are processed

normally. Inter-partition edges are added to the outgoing edge set EO (line 22). Note

that the cost computation in line 9 may require additional information about P ∗(s),

which can contain pixels of several partitions. All path information required to compute

f(P ∗(s) · 〈s, t〉) must be passed along with the set EI . For fmax, only C(s) is required. For

feuc, only R(s) is required. Since L(s) may be propagated in line 11, it must also be part

of the input. Passing each element of EI as {s, t, C(s), R(s), L(s)} is enough to compute

the PIFT with either fmax or feuc. The PIFT algorithm (Algorithm 8) that computes the

IFT of an image I from its partitions is shown below.

Algorithm 8 – Partitioned IFT

Input: Image I, Path-cost function f , Adjacency relation A, Set S of seed pixels, Seed

label map L0, Number of partitions NP .

Output: Cost map C, Predecessor map P , Root map R, Label map L.

Auxiliary: Edge sets E , E ′, E ′′ and E ′′′, Seed set S ′.

1. Set E ← ∅.
2. Split I in NP partitions I[1] . . . I[NP ].

3. For i = 1 to NP , do

4. Set S ′ = {s | s ∈ S ∧ s ∈ I[i]}.
5. Set (C[i], P [i], R[i], L[i], E ′) ←

Partition-IFT(I[i], C[i], P [i], R[i], L[i], f,A,S ′, L0, ∅).
6. Set E ← E ∪ E ′.

7. Repeat

8. Set E ′′′ ← ∅.
9. For i = 1 to NP , do

10. Set E ′′ = {〈s, t〉 | 〈s, t〉 ∈ E ∧ t ∈ I[i]}.
11. Set (C[i], P [i], R[i], L[i], E ′) ←

Partition-IFT(I[i], C[i], P [i], R[i], L[i], f,A, ∅,nil , E ′′).
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12. Set E ′′′ ← E ′′′ ∪ E ′.

13. Set E ← E ′′′.

14. Until E = ∅.
15. Set C ← ∪NP

i=1C[i], P ← ∪NP

i=1P [i], R ← ∪NP

i=1R[i] and L ← ∪NP

i=1L[i].

Lines 1–2 initialize the inter-partition edge set E and split the input image in NP

partitions. The loop in lines 3–6 run the first IFT iteration on each partition. All inter-

partition edges are accumulated in the set E . The loop in lines 7–14 run the remaining IFT

iterations on the partitions, until no propagation occurs and the set E of inter-partition

edges is empty (line 14).

For parallel architectures, both loops (lines 3–6 and 7–14) can be done in parallel.

For distributed systems, the executions of Partition-IFT (Algorithm 7) can be performed

as remote procedure calls. Note that the partitioned maps (C[i], P [i], R[i] and L[i]) are

only needed at the end of the algorithm, to compose the final IFT maps. In a distributed

implementation, these maps can be kept on the remote processing nodes and do not need

to be transferred at each call to Partition-IFT, as they are not modified by the caller.

Performance Considerations. The overall number of pixels processed by the PIFT

is larger than |I|. After the loop of lines 3–6 of Algorithm 8, the PIFT has already

processed |I| nodes. However, the number of pixels processed by the loop of lines 7–

14 decreases at each iteration, and the algorithm converges rapidly to the optimum path

forest. The number of PIFT iterations — i.e., one iteration of the loop of lines 3–6 plus the

number of iterations of the loop of lines 7–14 — is bounded by the maximum number of

inter-partition edges contained by an optimum path, plus one. Each inter-partition edge

postpones the resolution of the optimum path to the next PIFT iteration. Figure 6.2

illustrates some examples. In an Euclidean distance transform (Figure 6.2a), all paths

flow away from the roots, and a path may cross at most NP − 1 partition boundaries,

requiring at most NP PIFT iterations. For path cost functions like fmax, there is no

restriction to the shape of optimum paths, and cases like the one in Figure 6.2b can

occur. However, as the number of iterations increases, the number of pixels processed by

each iteration tends to decrease, and the PIFT converges more rapidly to the optimum

forest.

6.4 Experimental results

We implemented the PIFT as a client-server system, with a simple TCP stream-based

protocol for communication between the master client that executes Algorithm 8 and the
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(a) (b)

Figura 6.2: Partition crossings and PIFT iterations: In the PIFT-EDT, paths cross at
most NP − 1 partition boundaries. In (a), P ∗(p) crosses 2 boundaries to reach p from a.
The numbers are the iteration in which the path segment is propagated. (b) For general
path-cost functions, a path may cross partition boundaries several times.

distributed servers that execute Algorithm 7. In our implementation, the image is always

split in equal-sized partitions, using the x coordinate to separate partitions (such as in

Figure 6.1a). We chose 3 applications to evaluate the PIFT:

1. WS-BRAIN: Watershed-based segmentation of a 3D MR image of the brain, using

f = fmax and A =6-neighborhood adjacency. Seeds were selected interactively in the

background and in the brain. The gradient intensity was computed by a Gaussian

enhacement filter followed by morphological gradient computation [40]. The size of

the image is 356 × 356 × 241, with a voxel size of 0.70mm3 (Figure 6.3a–c).

2. EDT-RND: Euclidean distance transform of 1000 random points within a 2563 vo-

lume, using f = feuc and A =26-neighborhood (Figure 6.3d).

3. EDT-BRAIN: Euclidean distance transform using the border of the brain object

(segmented in the first application) as seed set (|S| = 355, 556). f = feuc, A =26-

neighborhood and volume size is 356 × 356 × 241 (Figure 6.3e).

First, we measured the processing overhead of the PIFT as the number of partitions

(NP ) increases. We computed the 3 applications with the PIFT, using from 1 to 10

partitions. Table 6.1 and Figure 6.4 present the number of nodes processed in each case

and the upper bound for the speedup factor. These results indicate that a 10-way parallel

system may be able to offer a speedup factor of 6.60 to the EDT computation, and a

factor of 2.34 to the Watershed transform on these instances of problems.

The EDT computations required at most 4 iterations before halting. PIFTs based on

fmax are less efficient, since they allow free-form paths that can traverse several partitions.

This can be noticed by the irregularity and increased slope of the plot in Figure 6.4b,

as compared to Figure 6.4a. The WS-BRAIN PIFTs required at most 23 iterations to
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(a) (b) (c) (d) (e)

Figura 6.3: Images from the evaluation applications: (a) Slice from the WS-BRAIN input
image. (b) gradient intensity of (a). (c) 3D renderization of the WS-BRAIN result. (d)
Visualization of the discrete Voronoi diagram, result of the EDT-RND. (e) Slice from the
distance map computed in EDT-BRAIN.

converge. The number of processed nodes grows linearly with the number of partitions. In

real data with non-uniform distributions (WS-BRAIN and EDT-BRAIN), bad choices of

partition boundaries may increase the number of processed nodes, such as in the NP = 4

and NP = 8 cases of EDT-BRAIN and NP = 5 of WS-BRAIN.

Tabela 6.1: Number of processed nodes and upper bound for the speedup factor in each
application, using up to 10 partitions.

NP

WS-BRAIN EDT-RND EDT-BRAIN

Nodes Speedup Nodes Speedup Nodes Speedup

1 30.5×106 1.00 16.8×106 1.00 30.5×106 1.00

2 48.6×106 1.25 17.3×106 1.94 31.5×106 1.93

3 59.0×106 1.55 17.7×106 2.84 34.2×106 2.67

4 62.7×106 1.94 18.2×106 3.69 39.6×106 3.08

5 76.7×106 1.98 18.6×106 4.51 37.8×106 4.03

6 75.1×106 2.43 19.2×106 5.25 38.7×106 4.72

7 92.2×106 2.31 19.7×106 5.96 42.8×106 4.98

8 98.1×106 2.48 20.1×106 6.68 46.8×106 5.21

9 106.5×106 2.57 20.5×106 7.37 42.2×106 6.50

10 130.2×106 2.34 21.0×106 8.00 46.2×106 6.60

In a second set of experiments we used the PIFT to compute EDT-RND, EDT-

BRAIN and WS-BRAIN in two parallel systems: a PC with 2 CPUs (Athlon MP

1800+@1150 MHz) and 2 GB of RAM, and a Compaq AlphaServer GS140 6/525 with 10

CPUs (Alpha EV6@525 MHz) and 8 GB of RAM. Table 6.2 presents the results. On the

EDT applications, we achieved speedup factors very close to the measured upper bounds

(Table 6.1) for NP = 2 and NP = 4. On other hand, there was little or no speedup for
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(a) (b)

Figura 6.4: Number of processed nodes vs. number of partitions for (a) EDT-RND,
EDT-BRAIN and (b) WS-BRAIN.

Tabela 6.2: PIFT performance on two parallel computer systems. Times are given in
seconds.

System NP

WS-BRAIN EDT-RND EDT-BRAIN

Time Speedup Time Speedup Time Speedup

Dual Athlon
1 258.1 1.00 195.9 1.00 459.5 1.00

2 242.9 1.06 106.2 1.84 246.3 1.87

10-CPU GS140

1 280.6 1.00 228.8 1.00 611.4 1.00

2 284.3 0.99 126.6 1.81 324.2 1.89

4 226.2 1.24 73.0 3.13 274.3 2.23

8 249.3 1.13 49.3 4.64 214.1 2.86

10 336.4 0.83 47.9 4.78 197.7 3.09

the watershed application. Our prototype implementation uses a naive communication

protocol with no data compression. Besides that, the edge set transfers of lines 5 and 11 of

Algorithm 8 were implemented in a sequential way, and instances with a large number of

partitions and/or a large number of PIFT iterations (such as WS-BRAIN with NP = 10)

performed poorly because the CPUs remained idle while waiting for the client to complete

the sequential edge set transfers.

6.5 Conclusion and future works

We introduced the Partitioned Image Foresting Transform, an algorithm that computes

minimum-cost path forests as a set of independent DIFTs [39, 40] in partitions of the
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input image. The PIFT is useful for taking advantage of parallel computer systems and

for computing IFTs in computer systems with limited memory, such as handhelds and

embedded systems. The PIFT is applicable to any IFT-based operator, and therefore can

be readily employed to parallelize morphological reconstructions [42], watershed trans-

forms [96, 15, 40, 10], distance transforms [31, 39] and skeletonizations [41, 93], among

other operators. It is a trend in microprocessor technology to compensate CPU speed

limitations by producing multi-core CPUs. The PIFT is an important contribution that

allows existing image processing applications to use modern hardware efficiently with

minimum effort.

We implemented a prototype PIFT system with a simple client-server architecture

built on top of TCP streams. Even with no data compression and with some inneficient

network operations, we achieved speedup factors very close to the expected upper bounds

for EDT operations. PIFT-based watershed segmentation performed poorly due to the

inneficiency of edge set transfers in our prototype. With a better protocol, the PIFT

should be able to reach speedup factors closer to the upper bounds in Table 6.1.

Future works include: development of better protocols for implementation of the PIFT

in parallel systems, evaluation of the speedup bounds for specific operators – such as the

watershed transform – and investigation of enhancements to the PIFT such as partitioning

schemes and iteration scheduling among nodes.



Caṕıtulo 7

Conclusões e Trabalhos Futuros

7.1 Contribuições

Esta tese desenvolveu um método para segmentação de displasias corticais focais em

imagens volumétricas de ressonância magnética T1. Displasias corticais focais são as mal-

formações mais comuns em casos de epilepsia refratária, e seu diagnóstico e localização

são passos cruciais para o planejamento do tratamento. Este método torna automático

um procedimento que era tedioso e subjetivo [72], realizando uma análise totalmente

automatizada das imagens de RM e apontando para o especialista as regiões onde há

ind́ıcios de lesões de FCD.

O método proposto obteve detecção de 100% das lesões, com cobertura de 76,9% dos

voxels lesionais. O método foi avaliado em um grupo de 5 pacientes (todos com FCDs no

lobo frontal), por restrição de tempo e recursos computacionais. Em condições normais

de uso, com um grupo fechado de treinamento, o método requer 30 minutos em um PC de

3.2 GHz. Nas condições de avaliação leave-one-out [36], em que um treinamento diferente

precisa ser montado para cada paciente (de forma a excluir treinamentos realizados no

próprio paciente testado), o método exigiu em torno de 4 horas de processamento por

paciente. A avaliação leave-one-out foi escolhida por ter sido usada também na avaliação

do principal trabalho nesta área [23].

O treinamento do classificador RCE leva tempo proporcional ao quadrado do número

de amostras de textura. Embora tivéssemos 14 delineações de FCDs frontais, o tempo

de processamento para realizar leave-one-out em todas as 14 com RCE seria proibitivo

com os recursos computacionais dispońıveis no peŕıodo da pesquisa. Durante a pesquisa

realizamos tentativas de classificação com classificadores k-NN e com redes neurais artifi-

ciais [36], com pouco sucesso. A disparidade numérica entre amostras lesionais e saudáveis

levou a resultados ruins com k-NN, e redes neurais artificiais mostraram-se muito instáveis

em relação aos outliers comuns nesta aplicação.
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Experimentos com lesões não frontais mostraram que suas caracteŕısticas de textura

diferem das lesões de FCD frontais. Como não obtivemos uma quantidade significativa

de pacientes com displasias ocipitais, temporais e parietais, não foi posśıvel avaliar ade-

quadamente o método em displasias não frontais.

Avaliações ainda não publicadas do nosso método indicam que o aumento do conjunto

de treinamento não afeta negativamente a taxa de cobertura. Uma avaliação do método

em cérebros saudáveis (controles) indica que ele não detecta componentes conexos de

falsos positivos com volumes significativos.

Para chegar ao método apresentado, esta tese apresentou novas soluções para seg-

mentação automatizada de imagens [12], localização do plano de simetria do cérebro [14],

cálculo automático da reformatação curvilinear [10] e apresentou uma solução de apren-

dizado supervisionado baseada em análise de assimetria de textura [13].

Esta tese também apresentou uma proposta de paralelização/particionamento da

IFT [39, 11]. Embora ainda haja muitas possibilidades de aperfeiçoamento nesta técnica,

este trabalho demonstra que o projeto de operadores baseados na IFT oferece flexibili-

dade para contornar limitações de hardware (capacidade de processamento e capacidade

de memória).

Como resultado desta pesquisa, realizamos a demarcação de FCDs em cérebros de 20

pacientes, cada um deles com uma única lesão. Destas 20 lesões, 14 estão localizadas no

lobo frontal, 2 no lobo ocipital, 3 no lobo parietal e 1 no lobo temporal. Os pacientes

delineados estão detalhados no Apêndice B. A aparência das lesões varia de acordo com

a localização, e não houve um número adequado de pacientes para compor grupos de

treinamento para os lobos ocipital, parietal e temporal (onde FCDs são naturalmente

mais raras).

7.2 Outras Contribuições

Enquanto pesquisávamos métodos de segmentação, desenvolvemos e publicamos o con-

ceito de competição de sementes κ-conexas [38]. Este trabalho, entretanto, mostrou-se

menos robusto para a segmentação de imagens médicas tri-dimensionais do que a poda

de árvores [12], levando-nos a optar pela poda de árvores para o método de segmentação

de displasias. A técnica de competição κ-conexa continua sendo ativamente aperfeiçoada

pelos demais contribuidores deste trabalho, para outras aplicações de segmentação de

imagens.

Durante toda a nossa pesquisa com aplicações interativas de análise de imagens

médicas, utilizamos técnicas de projeção de voxels para realizar as tarefas de visua-

lização [8]. Sempre tivemos a preocupação de poder aproveitar a capacidade dos novas

soluções de aceleração gráfica, que utilizam representações poligonais. Realizamos duas



Caṕıtulo 7. Conclusões 89

publicações [34, 33] onde avaliamos a eficiência de usar malhas poligonais deformáveis

para visualizar os objetos (cérebro, envelope do cérebro lesões segmentadas). A manu-

tenção de malhas poligonais requer uma representação dual que consome mais memória

e torna a programação das aplicações um pouco mais complexa, além de exigir drivers

proprietários nem sempre prontamente dispońıveis ou legalmente desejáveis em sistemas

operacionais de código livre. Até o momento da conclusão desta tese, consideramos que a

representação por malhas deformáveis não supera a simplicidade e praticidade da projeção

por voxels, e continuamos utilizando o método de projeção de voxels descrito no Caṕıtulo

6 de [8].

7.3 Extensões Futuras

Há diversas oportunidades para aperfeiçoar a pesquisa na área desegmentação de FCDs,

dentre as quais:

• Avaliar outras técnicas de aprendizado supervisionado, tais como o Optimum Path

Forest [76] desenvolvido recentemente.

• Realizar segmentação de substância branca e cinzenta (WM/GM), avaliar como

as displasias afetam a qualidade desta segmentação, e utilizá-la para tomar outras

medidas ignoradas pelo método atual, tal como a espessura do córtex.

• Avaliar o método em um número maior de pacientes e controles.

• Delinear lesões temporais, ocipitais e parietais, para formar uma base de dados mais

abrangente.

• Implementar ferramentas com interface amigável para treino, classificação e visua-

lização dos resultados.

Em relação à IFT particionada [11], também há oportunidades claras para desenvol-

vimento de trabalhos de pesquisa:

• Avaliar outros operadores além de Watershed e transformada de distância Euclide-

ana.

• Propor novas estratégias de particionamento, de acordo com a distribuição das se-

mentes e/ou propriedades da imagem.

• Realizar implementações mais eficientes, com melhor utilização dos canais de comu-

nicação entre processadores – redes locais, memória compartilhada, etc.



Apêndice A

Ferramenta de Software: BrainTag

Neste apêndice apresentamos o principal software implementado para realizar o pré-

processamento e delineamento das lesões.

A conversão entre formatos DICOM (formato de sáıda da RM) e SCN (formato usado

para processamento) é realizada pelo software IVS [9], desenvolvido no meu trabalho de

mestrado [40, 8]. Após a segmentação das displasias, também utilizamos o IVS para

visualizar os resultados da segmentação superpostos à imagem original de RM.

A.1 Braintag

O software Braintag incorpora os algoritmos de segmentação automática do cérebro por

poda de árvores [12], localização do plano inter-hemisférico [14], cálculo automático da

reformatação curvilinear [10] e permite que o especialista delineie interativamente as lesões

sobre a visualização da reformatação curvilinear.

A Figura A.1(a) mostra a tela do software após carregar um volume de ressonância

magnética. Um clique em uma opção de menu (Processing, Prepare Volume for Tagging)

dispara todo o processamento necessário – segmentação do cérebro, localização do plano

inter-hemisférico e reformatação curvilinear, sem a necessidade de qualquer parâmetro. As

Figuras A.1(b–c) mostram telas do software ao terminar o processamento, permitindo que

o operador navegue pelas reformatações curvilineares e delineie as lesões interativamente

(Figura A.1(d)).

O BrainTag foi implementado em linguagem C++ em ambiente Linux, utilizando

o toolkit gráfico GTK+ (versão 2 da API). Seu código, incluindo todos os algoritmos

implementados, tem em torno de 10000 linhas de código. BrainTag lê e salva os dados

volumétricos no formato SCN, utilizado por todas as ferramentas de análise de imagens

desenvolvidas pelo grupo de pesquisa do Prof. Alexandre Falcão. A renderização 3D usa

o método de projeção de voxels descrito no caṕıtulo 6 de [8]. A preparação do volume
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para marcação requer de 1 a 2 minutos de processamento para um volume de RM t́ıpico,

em um PC de 3 GHz.

(a) (b)

(c) (d)

Figura A.1: (a) BrainTag após carregar um volume de RM. (b–c) BrainTag após computar
a reformatação curvilinear. (d) BrainTag mostrando o delineamento de uma lesão e sua
renderização tri-dimensional.



Apêndice B

Pacientes Delineados

Neste apêndice apresentamos as informações de sexo, idade e localização das lesões de

FCD na base de 20 pacientes com lesões delineadas neste trabalho. As lesões foram

delineadas pela Dra. Clarissa Yasuda, sob supervisão do Prof. Dr. Fernando Cendes.

Paciente Idade/Sexo Localização Data do Exame
#1 11/M Frontal Esquerdo 2002.04.22
#2 34/M Ocipital Direito 1999.03.24
#3 16/M Parietal Esquerdo 2002.08.21
#4 29/M Parietal Direito 1998.07.29
#5 29/F Ocipital Direito 1999.11.23
#6 24/F Frontal Direito 2000.11.28
#7 12/M Frontal Esquerdo 2000.06.28
#8 51/M Frontal Esquerdo 2004.01.26
#9 30/F Frontal Direito 2003.10.22
#10 34/M Frontal Esquerdo 1998.08.04
#11 8/M Frontal Direito 2002.07.23
#12 18/F Frontal Direito 1999.09.21
#13 7/M Parietal Esquerdo 2000.05.03
#14 17/M Frontal Esquedo 1999.04.07
#15 9/F Frontal Direito 2000.06.06
#16 25/M Frontal Direito 1998.06.23
#17 24/M Temporal Esquerdo 2006.03.29
#18 32/F Frontal Direito 1999.10.06
#19 42/F Frontal Direito 1998.07.15
#20 24/F Frontal Direito 2006.01.08

Tabela B.1: Pacientes com FCDs delineadas.
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