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Resumo

Nesta tese descrevemos um algoritmo genérico (que denominamos MSFit) capaz de es-

timar a pose e as deformações de modelos 3D de estruturas biológicas (bactérias, células

e etc) em imagens obtidas por meio de microscópios óticos ou de varredura eletrônica.

O algoritmo usa comparação multi-escala de imagens utilizando uma métrica sensivel ao

contorno; e um método original de otimização não-linear. Nos nossos testes com modelos

de complexidade moderada (até 12 parâmetros) o algoritmo identifica corretamente os

parâmetros do modelo em 60-70% dos casos com imagens reais e entre 80-90% dos casos

com imagens sintéticas.
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Abstract

In this thesis we describe a generic algorithm (which we call MSFit) able to estimate the

pose and deformations of 3D models of biological structures (bacteria, cells, etc.) with

images obtained by optical and scanning electron microscopes. The algorithm uses a image

comparison metric multi-scale, that is outline-sensitive, and a novel nonlinear optimization

method. In our tests with models of moderate complexity (up to 12 parameters) the

algorithm correctly identifies the model parameters in 60-70 % of the cases with real

images and 80-90 % of the cases with synthetic images.
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em especial ao prof. Dr. Marco Antônio Piteri, que me orientou durante toda graduação

e que deu a oportunidade de conhecer a área acadêmica. Sou muito grato ao Sr.
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Chapter 1

Introduction

1.1 Motivation and statement of the problem

The popularity of digital microscopes created an acute shortage of manpower to analyze

and classify their these images. In clinical microscopy examinations, for example, the

analysis of a single image that is produced in a matter of seconds may demand hours of

visual inspection.

In this work we propose an algorithm to automate this task. We are mainly concerned

with biological structures smaller than ≈ 1 mm, imaged through a microscope of some sort.

To simplify the discussion we will refer to such structures as organisms, even though our

method can be applied also to isolated cells of multicellular organisms, organs, organelles,

etc.

We consider here a common type of analysis which is the matching of a given image of

certain organisms to an abstract model of the same. Each kind of organism, at a specific

stage of life, usually has recognizable morphology. For example figures 1.1 and 1.2 show

the schematic morphology of erythrocytes (red blood cells) and a of Paramecium (an

aquatic unicellular animal).

A major difficulty in this problem is the fact that the same organism can produce very

different images, depending on its orientation in space. Furthermore, many organisms of

interest have gelatinous and/or elastic consistency, and may suffer considerable deforma-

tion, as can be seen in figure 1.3. They may also have visible internal structures which

may be mobile and independently deformed, as well as ingested particles and externally

attached debris. See figure 1.4.

The organism-matching task is made harder by the translucent nature of most micro-

scopic biological structures, and by the complexities of the microscope imaging process

— which may include very short depth-of-focus, interference and diffraction artifacts, and

the common occurrence of dust and other debris over and around the organism. Yet, with
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2 Chapter 1. Introduction

Figure 1.1: Schematic morphology of erythrocytes [1] (left) and a scanning electron mi-
croscope image of the same (right).

Figure 1.2: Schematic morphology of Paramecium sp. [1] (left) and an optical image of
same [2] (right).

Figure 1.3: Optical microscope images of Caenorhabditis elegans (≈ 1mm ) [3, 4] showing
deformation.

some experience, an human observer can identify microscopic images of the organisms of

various kinds, and align them with their three-dimensional schematic diagrams like those

of figure 1.1 and 1.2.

Our goal in this thesis was to replicate this human ability in software, as far as possible.

Specifically, we sought to produce mathematical and innovative computational tools for
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Figure 1.4: Microscopic image of a Daphnia [5] (left, ≈ 1mm) and Paramecium sp (right)
[6] (right, ≈ 0.3mm), showing internal structures, ingested particles and attached debris.

the recognition and alignment of 3D biological models with 2D images obtained by optical

microscopes or scanning electron microscopes.

In principle, this work has immediate applications in biology and medicine, by au-

tomating extremely laborious tasks of identification, classification and counting of organ-

isms in microscopic images. However, the problem of matching deformable 3D models with

2D images has a much wider range of applications, including face recognition, industrial

inspection of non-rigid parts, analysis of medical imaging (radiography and angiography),

augmented reality and many others. Furthermore, we believe that the techniques that we

developed to address specific sub-problems may be useful in other areas.

Our method may also be useful in other domains, such as face recognition, industrial

inspection of non-rigid parts, analysis of radiography and angiography, augmented reality

and many others.

1.2 Characteristics of microscopic images

There are two main microscope types commonly used in biology, optical and electronic.

Each could in principle be used transmission mode or scattering mode, and the image may

be formed by projection onto a 2D sensor or by scanning a beam over the specimens.

Optical microscopes use light (usually visible or ultraviolet), almost always in trans-

mission mode. The light that passes through the material is focused by a set of lenses,

and projected onto a 2D sensor array which generates the digital image. Specimens can

be observed in their natural state, as in figure 1.5 (left); or after a process of preparation

and staining. The latter may involve flattening or cutting the organism into thin layers

so that it becomes two-dimensional. Optical microscopes have a resolution limit of about

200 nm, since optical lenses cannot easily focus light with smaller wavelengths.

Optical images are usually acquired in color, with three or more separate color bands.
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In this thesis, we only use monochromatic (gray scale) images; however the extension to

color images is straightforward.

Electron microscopes use electrons instead of light. These particles have much shorter

quantum wavelength than the photons of visible light, so they can form images with much

greater resolution. In a transmission-mode electron microscope (TEM) the electrons that

pass through the object are focused by magnetic “lenses” and projected onto a 2D sensor

array. The fraction transmitted at each point of the object is represented in the image

by a shade of gray. For this type of microscope, the material must be cut into very thin

layers. See figure 1.5 (center).

Electron microscopes often use the scanning beam approach. In such a scanning

electron microscope (SEM), the image is formed one pixel at time by a moving beam of

electrons that sweeps over the specimen. Typically one measures the electrons scattered

by the specimen instead of transmitted throught it. SEM in the scattering mode can

be used with specimens of arbitrary thickness, but it generally requires the object to

be coated with a thin layer of metal, since uncoated organic substances do not scatter

enough electrons to form a usable image. SEM images typically have a characteristic three-

dimensional shadowed appearance, and show only the outer surface of the organism. See

figure 1.5 (right).

Figure 1.5: Images obtained by different types of microscopes [7]. Left: Optical trans-
mission microscope. Center: Transmission electron microscope. Right: Scanning electron
microscope.

In this project, we consider only instances of the problem where the relationship be-

tween the 3D object and its 2D image can be described by a geometric projection. That

requirement means images of unprepared specimens obtained with optical microscopes,

and images of coated specimens obtained with scanning electron microscopes. We exclude

images of prepared or sectioned specimens (such as most TEM images), since they imply a
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much more complicated correspondence between the 3D schematic model of the organism

and the its 2D image.

1.3 Computational challenges

In order to solve the organism matching problem, one has to overcome several conceptual

and computational challenges. First, one must use modeling techniques that can ade-

quately reproduce the relevant features of the target organism and their deformations.

One also must be able to render the organism model taking into account their trans-

parency and the lighting effects; or alternatively, one has to develop ways to analyze the

given images that are insensitive to these effects.

Most research on the recognition of deformable models considers a relatively small

range of deformations and rotations of the model, characterized by a small number of

parameters. For the organisms considered in this work, the models require a large number

of parameters and the deformations may be quite extreme as seen in figure 1.3 (although

the organism usually remains recognizable even in such cases). Therefore, to overcome

this problem we had to use sophisticated multiscale methods of alignment and recognition.

1.3.1 The exponential cost barrier

In real situations, the size ρ of the possible range of each pose or deformation parameter

is much larger than the required accuracy δ in that parameter. A “brute force” solution

would enumerate a grid of points in the parameter space with step δ. However, the number

of such points would be in the order of (ρ/δ)n, where n is the number of parameters. For

typical values of ρ, δ and n, this number is astronomical.

1.4 Multiscale alignment strategy

The exponential cost barrier can be overcome by multiscale matching techniques [24,

58, 57, 59]. This approach uses two or more versions A(0), A(1), ..., A(m) of the entity A

involved — in our case, the input digital image A — each with a different level of detail.

The problem at hand is solved first for the coarsest scale version A(m) yielding a tentative

set of parameters. This solution is then used as an initial guess to solve the problem

for the next scale A(m−1), where there is a bit more detail yielding an improved set of

parameters. This process is repeated until reaching the original scale A(0). See figure 1.6.

Since only small parameter adjustments need to be considered at each stage, the total

running time is greatly reduced in comparison with the brute-force approach.
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On the other hand, since the best match at some coarse scale may not correspond to

the best match at scale 0, it is necessary to keep several candidates matches at each scale

and reduce this set as the matching progresses to the finer scales.

Model Fitting

Finest scale

Coarsest scale

Image reduction

Most accurate

Least accurate

Figure 1.6: Schematic diagram of the multiscale 3D-2D alignment.

1.5 Organization of the thesis

The body of this thesis is organized as three parts and one appendices. Part I (Chapters

3 and 4) defines the basic notation and the image discrepancy metrics used by MSFit.

Part II (Chapters 5) describes the algorithm MSFit in abstract terms and the details

the specific variant we implemented. Part III (Chapters 6, 7 and 8) describes models and

images used in our tests, the performance scores, and the results of several tests that are

meant to justify some of the choices made in Part II. Appendix A describes the novel

nonlinear optimization algorithm.



Chapter 2

Related work

2.1 Specific methods

Most previous work on this problem (determining pose and deformations of flexible objects

in images) considers objects of very specific classes, such as as human faces [16, 18], human

bodies [21, 12, 35, 61], and teeth [56], and therefore develop fitting methods specialized

for each class. Furthermore, many of these methods are specific to digital photos of

macroscopic objects, and use features such as color and shading characteristics that are

not reliably recognizable in our context.

Some of these methods use markers that are specific to each object or model. For

example, in the case of faces, the markers may be obtained by identifyng the eyes, nose

and mouth [29, 60].

2.1.1 Facial recognition

There is an extensive bibliography on fitting 3D face models to images. Volker and Vetter

et al. [17] describe a method to fit 3D deformable face models to images. It can be seen as

a generalization of the Active Appearance Model for fitting 2D objects images [23]. Their

deformable model is linear combination of a dataset of annotated face models obtained by

PCA, and a linear combination of texture maps applied to them. The fitting procedure

requires an initial guess provide by user. The fitting optimizes a cost function that take

into acocount texture. The optimization uses the multiscale approach, in which the fitting

obtained with a low resolution image is used as the initial guess for a more detailed version

of the same.

Chen and Wang [19] describe a method for fitting 3D model faces to images using 3D

Active Appearance Model, that is quite similar to previous method; execept that it uses

the gradient of the input image to linearize cost function. It also includes an automatic

7
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procedure to obtain the initial guess. Assen et al. [30] too described an application of

3D Active Appearance Model to align and segment the left ventricle of the heart from

computed tomographic images.

Abboud et al. [11] fit a 3D face model to a single images using 3D Active Appearance

Model and use the shape parameters of the fitting as input of machine learning method

to classify facial expression.

Gao et al. [28] present a review of the Active Appearance Models and show some apli-

cations of this method, such as the facial expression recognition, tracking of deformable

objects, fitting facial 3D models to images and medical image segmentation. This work

presents two main dissantagens of this method, that are: 1) the accuracy are very depen-

dent on the texture; 2) some applications still require manual landmarks.

To increase the fitting accuracy, some methods use more than one picture of the same

object taken from different points [21, 31]. The method proposed by Chu and Nevatia

[21], for example, fits a human body model to various independently images taken from

different viewpoints. Hu et al. [31] present a theoretical background that allow to fit a

single 3D Active Appearance Model to multiple images simultaneously, improving the

fitting robustness.

2.1.2 Medical images

A survey of computer vision including a discussion about many methods for image segmen-

tation and matching deformable models was published in 1996 by Terzopoulos et al. [40]

mostly in the context of medical image analysis. It points out many difficulties that exist

in medical image fitting and tracking, for example the lack of reliable landmark points in

the smooth organs like the heart.

An example of this class is the work of Assen et al. [30] that fits a 3D Active Appear-

ance Model of the left ventricle of the heart to computed tomographic images. Iwashita

et al. [32] described an application that align a 3D rigid model of the gallbladder to video

frames.

2.1.3 Hands

Recently much attention has been given to the recognition of hand gestures in images.

However, many of the published methods use 2D hand models while others require a depth

map (obtained by some stereo vision technique) to assist the fitting of the 3D model.

The method of Gorce et al. is an exception. It fits a 3D articulated skeleton model of

the hand to sucessive video frames. The cost function used is the color difference between

the input frame and the synthetic image.
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2.1.4 Multiple image fitting

To increase the fitting accuracy, some methods use more than one picture of the same

object taken from different points [22, 35]. The method proposed by Chu and Nevatia,

for example, fits a human body model to various images taken from different viewpoints.

Hu et al. give the theoretical background that allow to fit a single 3D Active Appearance

Model to multiple images simultaneously, improving the fitting robustness.

2.2 Generic methods

2.2.1 Model-free methods

Falcão et al. [49] described methods for the recognition of microscopic parasites of arbi-

trary shape using image segmentation and various shape and texture invariants. Those

methods have good performance but do not deliver the pose and deformation parameters

of the organism.

2.2.2 Rigid methods

Many published methods can cope with generic objects, but only rigid ones such as cars,

airplanes and mechanical parts subjected only to rigid translations and rotations. A

typical example was described by Toshev et al. [55] for tracking solid objects without

occlusion in a video. Their method precomputes a set of 500 projections for each model

from many directions then tries to match their outlines to the outline of the object in

each video frame, exploiting temporal coherence. This approach would be impractical

with deformable models since it would need a prohibitively large number of precomputed

images.

Another example is the method described by Yasuyo and Nobuyuki Kita [50]. Their

method aligns a rigid model to two images. It uses the Canny operator to extract edges

from the images, and then find a set of vertex (edge intersection) points, that are matched

with the corresponding points of the projection of the model. Their algorithm is tolerant

to occluded edges.

Minetto [41] is an example of another approach for locating and tracking rigid object,

that uses a set of known fiducial marks attached to the object. Viola and Wells [51] too

describe a method of alignment of rigid objects that uses the maximization of mutual

information between the 3D model and the image.
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2.3 Deformable models

Various of the methods presented in this chapter can be generalized but we did not find

fully generic methods for deformable models.

Some of the methods listed in this section 2.1 can be generalized to the other de-

formable objects. Gao et al. [28] present a review of the Active Appearance Models and

show some aplications of this method, such as recognition of organs im medical images,

faces and the other deformable objects. It points out some disadvantages of this method,

such as the accuracy being very dependent on the texture and the need for manual iden-

tification of landmarks in some applications.

However, we did not find any fully general methods for fitting arbitrary deformable

models to images. A fundamental limitation of most specific methods is that they assume

a very limited range of deformations, and therefore can assume good initial guesses. Also,

many methods (like AAM) are based on landmark points and lines that do not always

exist on generic deformable models.

2.4 Tools

2.4.1 Metrics

Zampieri et al. [58] introduced the normalized gradient distance as a metric for image

comparison that is largely insensitive to shading, illumination and rendering variations.

They also introduced multiscale search, but limited to searching similar images with no

changes in deformation, position, or pose.

2.4.2 Optimization methods

All these methods use various numerical minimization algorithms to find the optimal

model parameters, including genetic search [39], particle swarm [36], Nelder-Mead simplex

[42, 46], stochastic optimization [51] and others. However, we found that, in the multiscale

approach, iterated quadratic optimization is more efficient and reliable, provided that the

sampling points and the evaluation procedure are chosen so that the function has nearly

quadratic behavior near the minimum. See section 4.4 and Appendix A.

2.4.3 Modeling techniques

The literature on the modeling of deformable biological structures is relatively modest

[20, 40] and that on on modeling of microorganisms is virtually non-existent. Anyway,
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the adequate description of such structures and their deformations often requires ad hoc

geometric modeling methods specific to each kind of organism.

Modeling the shape

Our MSFit algorithm can be used with a wide variety of geometric modeling techniques.

In any case, the models must be able to represent the approximate rest shape of the

organism and allow its normal deformations. For typical applications, the model need not

be highly accurate or detailed, but must allow efficient rendering. Techniques that can

be used for this purpose include as triangular meshes, Bézier patches, constructive solid

geometry (CSG) formulas, blobs, etc. See figure 2.1.

Figure 2.1: Two simple geometrical models of a red cell, one using 8 Bézier patches (left),
and another one using three blob elements whose centers are indicated by the dots (right).
Both models were rendered with POV-Ray [8].

Modeling the deformation

There is an extensive literature on modeling 2D deformations [47, 33, 15, 22], especially

on the problem of aligning two-dimensional images taken with the same pose and view

point — for example, images of consecutive sections of an organism. However these 2D

techniques are of little use in our problem. The literature on modeling 3D deformations

is more limited.

A straightforward solution is to vary the parameters of the geometric model itself,

such as the position of the control points of Bézier patches, centroids and radii of blobs

elements, etc. However this solution is very expensive since typical shape models (such

as triangle or Bézier meshes) may have hundreds of independent parameters.
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Another way to model the deformation is to immerse the geometric model within

a coarse grid of deformable elements [26, 25], such as tricubic Bézier hexahedra. Each

hexahedron can be understood as cube of elastic material, whose position and shape in

space are controlled by a grid of 4×4×4 = 64 control points. Any deformation applied to

this mesh is then interpreted as a deformation of 3D space, and transferred to the model

which is immersed in it. This technique is very general since it does not depend on the

kind or complexity of the geometric model; and can produce fairly smooth deformations.

However, it can be quite expensive to render, since casting a straight ray in deformed

space requires tracing a curved path in the original (undeformed) model.

A better solution is to choose a small set of deformation modes, where each mode

consist of a simultaneous change in all the model’s shape parameters, in various directions

and magnitudes. The overall deformation is then defined by a small number of coefficients

that specify the amount or strength of each deformation mode. This technique is usually

applied to triangular meshes, but is easily adapted for other modeling techniques such as

Bézier meshes and blobs.
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Chapter 3

Fundamental concepts

3.1 The organism model

Our matching algorithm requires a tridimensional deformable geometric model of the

organism to be recognized, i. e, a computer description M of its schematic morphology

and its allowed variations and deformations. We assume that the model has a list of

n parameters p[0], p[1], ..., p[n − 1] that determine the pose (position and orientation in

space) of the model relative the microscope’s camera, and its deformation relative to its

“rest” shape (including changes of length and width, as well the folding, position and

pose of its parts). We denote by M(p) the instance of M whose geometry and pose are

defined by the parameter vector p. Note that the number n of parameters is specific to

each model.

We assume that the parameter vector p of a model M ranges over some parameter

domain D ⊆ R
n that is a box of Rn, that is a Cartesian product D[0], D[1], ..., D[n− 1] of

intervals. An interval is a set of real numbers of form [a b] = {x ∈ R : a ≤ c ≤ b} where

a, b are double-precision floating-point values or ±∞. We use the notation I.lo and I.hi

for the lower and upper endpoints of an interval I. We also use I.md for the interval’s

midpoint (I.lo + I.hi)/2, and I.rd for its half-width or radius (I.hi − I.lo)/2.

3.2 Formal statement of the problem

The inputs of our algorithm are a monochromatic digital image A, a geometric model

M with n parameters, and the parameter domain D. The algorithm must align that

abstract 3D model with the microscope image; that is, it must find a parameter vector

p that provides the best match between the expected projection of the instance M(p) of

the model and the expected projection of the organism on the camera sensor (the given

15



16 Chapter 3. Fundamental concepts

image A). The output of the algorithm is that parameter vector.

3.3 Rendering a model

Our multiscale alignment algorithm requires the ability to render an instance M(p) of

the geometric model M with a given parameter vector p, generating a synthetic image

S(M, p, k) with the same size as the corresponding image A(k) of the pyramid. For this

purpose we implemented an image synthesis module based on the ray-tracing approach of

computer graphics [52, 53].

For matching to optical microscope images, the organism usually must be modeled

with transparent materials (ideally the rendering procedure should account for refraction

and wave-related optical phenomena such as diffraction and interference, but we have not

explored these aspects in our thesis).

For matching to scanning electron microscope images, we can consider the organism

to be opaque. The physics of production scattering and detection of electrons in a scan-

ning microscope are somewhat different from those of visible light; however, since there

is little transmission, interference or diffraction, the simulation of SEM imaging is actu-

ally simpler, and largely compatible with the Newtonian particle model [43] assumed in

conventional ray-tracing.

Our image synthesis module also generates a binary mask W = W(M, p, k) that

defines the object’s outline, which is used when comparing the images. As explained in

Chapter 6, the image S(M, p, k) is anti-aliased by shooting several rays within each pixel

and taking the average of the ray’s colors as the pixel’s color.
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Discrepancy functions

A discrepancy function is a function dist(·, ·) that takes two images and returns a real

number that expresses as how dissimilar they are. The choice of discrepancy function

is closely linked to the image synthesis process, since the less sensitive the discrepancy

metric is to the variations of illumination and diffraction effects, the less effort will be

needed in the synthesis of microscope images to simulate these effects.

In our algorithm, the arguments of a discrepancy function are typically an actual

microscope image A of the organism and synthetic image B = S(M, p, k) of its model.

It is always assumed that A and B have the same domain E ∈ R
2. The discrepancy

functions that we use have a third parameter W a weight mask with the same domain

E . The value of W at each pixel is a non-negative real number that is interpreted as the

relative importance of that pixel in the discrepancy function.

The mask W is used to eliminate the influence of background clutter and to speed

up the computation of the discrepancy. Typically the mask is computed from the model,

and defines the region of E covered by its projection with some extra margin all around.

4.1 Euclidean discrepancy

One of the discrepancy functions that we use is the mean Euclidean distance between two

monochromatic images A, B weighted by the mask image W :

dist2(A,B,W ) =

�

�

�

�

�

z∈E W [z](A[z] − B[z])2

�

z∈E W [z]
(4.1)

It is worth noting that the value of dist2 is always a real number in [0, 1], provided that the

image samples A[z] and B[z] are in [0, 1]. Note also that the sums need to be computed

only over those pixels z where the mask W is nonzero.

17
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In the implementation, it is more efficient to work with the squared discrepancy.

Besides saving some square roots, the squared discrepancy has a quasi-quadratic behavior

near its minimum, when it is considered a function of the parameter that define B. This

feature which is essential for the minimization algorithm (Appendix A).

4.2 Normalized gradient

As noted in Chapter 1, the actual pixel values of a microscope image vary enormously

depending on the preparation and illumination conditions. In order to reduce the effect

of these variations, we preprocess the images so as to highlight the organism’s outline

in white and map any regions with uniform color to black. For this purpose we use the

normalized gradient image operator defined as

� I =
| S I |√
V I + η2

(4.2)

where S is the Sobel gradient image operator with a 3 × 3 weight window, V is the local

image variance operator using a 5 × 5 weighted window, and η is the assumed standard

deviation of the per-pixel imaging noise. The difference between this normalized gradient

and the ordinary gradient image S can be seen in figure 4.1.

Figure 4.1: An image I (left), its Sobel gradient image S I (center) and its normalized
gradient image � I (right).

The normalized gradient discrepancy or outline discrepancy is then defined as the Eu-

clidean discrepancy between the normalized gradients of the images A and B, that is

dist�2(A,B,W ) = dist2(�A,�B,W ) (4.3)
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A B C

�A �B �C

Figure 4.2: Images A, B and C used in the comparison of discrepancy functions, (top)
and their normalized gradient images �A, �B and �C.

4.2.1 Comparison of dist2 and dist�2

To illustrate and compare the discrepancy functions dist2 and dist�2, we use the three

images A, B and C shown in figure 4.2. The table 4.1 shows the discrepancies between

A and the other two images using a uniform mask W (1 over the entire domain E).

Discrepancy function A : B A : C
dist2 0.0943 0.0548
dist�2 0.0012 0.0026

Table 4.1: Matching image A to images B and C using dist2 and dist�2.

Note that image A is more similar to image C when using the discrepancy function dist2,

whereas with dist�2 A is more similar to B.

4.3 Multiscale discrepancy

In the multiscale fitting algorithm, we tipically use the chosen image discrepancy function

dist(·, ·) at a coarse scale k in order to estimate the discrepancy at the finest scale 0

(original). For that purpose, we define the shorthand



20 Chapter 4. Discrepancy functions

dist2
(k)(A,B,W ) = dist2(A

(k), B(k),W (k)) (4.4)

where A(k) is usually the given image A reduced to scale k, B(k) is the synthetic im-

age S(M, p, k) rendered at that scale from some parameter vector p, and W (k) is the

corresponding mask W(M, p, k) produced by the render.

In that context we also use the cumulative multiscale discrepancy that combines the

discrepancies at some scale k and all coarser scales:

dist
(≥k)
2 (A,B,W ) =

�m
i=k αi dist2(A

(i), B(i),W (i))
�m

i=k αi

(4.5)

where m is the coarsest level considered, and each αi is a fixed weight that defines the

importance of scale i in the comparison. Typically, the weights αi are a geometric pro-

gression increasing with i, so that dist
(≥k)
2 does provide a rough estimate of dist

(≥0)
2 .

4.3.1 Comparing single and multiscale discrepancies

Tables 4.2 and 4.3 show the multiscale discrepancies between the three images of the

figure 4.2 under the discrepancies dist
(≥k)
2 (·, ·) and dist

(≥k)
�2 (·, ·), respectively. Figures 4.3

and 4.4 show the respective images A(k), B(k), C(k) and �A(k), �B(k), �C(k). In all these

comparisons we used the scale weights αk = 2k−m and αk = 3−k, with the image scale

factor µ = 1/2.
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A(0) B(0) C(0)

A(1) B(1) C(1)

A(2) B(2) C(2)

A(3) B(3) C(3)

A(4) B(4) C(4)

A(5) B(5) C(5)

Figure 4.3: Reduced versions A(k), B(k) and C(k) for the images of the figure 4.2. At scale
0 the images have 128 × 128 pixels.
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Discrepancy function k αk A : B A : C

dist2
(k)

5 0.0602 0.0051
4 0.0760 0.0113
3 0.0845 0.0345
2 0.0892 0.0429
1 0.0927 0.0499
0 0.0943 0.0548

dist
(≥k)
2

5 1.0000 0.0602 0.0051
4 0.5000 0.0655 0.0072
3 0.2500 0.0682 0.0111

αk = 2k−m

2 0.1250 0.0696 0.0132
1 0.0625 0.0703 0.0144
0 0.0312 0.0707 0.0150

dist
(≥k)
2

5 0.0041 0.0602 0.0051
4 0.0123 0.0720 0.0097
3 0.0370 0.0807 0.0269

αk = 3−k

2 0.1111 0.0864 0.0377
1 0.3333 0.0906 0.0458
0 1.0000 0.0931 0.0518

Table 4.2: Matching image A to images B and C using dist2
(k) and dist

(≥k)
2 with increasing

and decreasing weights αk.

As in section 4.2.1, observe that A is more similar to C than B at all scales. Note also

that, with αk = 2k−m the value of dist
(≥3)
2 is closer to dist

(≥0)
2 than dist2

(3) is to dist2
(0).

On the other hand with αk = 3−k the predictor dist
(≥3)
2 is just as bad as dist2

(3).
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�A(0)
�B(0)

�C(0)

�A(1)
�B(1)

�C(1)

�A(2)
�B(2)

�C(2)

�A(3)
�B(3)

�C(3)

�A(4)
�B(4)

�C(4)

�A(5)
�B(5)

�C(5)

Figure 4.4: Normalized gradients �A(k), �B(k) and �C(k) of the images of figure 4.3.
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Discrepancy function k αk A : B A : C

dist�2
(k)

5 0.1079 0.0288
4 0.0091 0.0121
3 0.0067 0.0038
2 0.0045 0.0056
1 0.0024 0.0043
0 0.0012 0.0026

dist
(≥k)
�2

5 1.0000 0.1079 0.0288
4 0.5000 0.0750 0.0232
3 0.2500 0.0653 0.0204

αk = 2k−m

2 0.1250 0.0612 0.0195
1 0.0625 0.0593 0.0190
0 0.0312 0.0584 0.0187

dist
(≥k)
�2

5 0.0041 0.1079 0.0288
4 0.0123 0.0338 0.0163
3 0.0370 0.0151 0.0076

αk = 3−k

2 0.1111 0.0079 0.0063
1 0.3333 0.0043 0.0050
0 1.0000 0.0022 0.0034

Table 4.3: Matching image A to images B and C using dist
(k)
�2 and dist

(≥k)
�2 with increasing

and decreasing weights αk.

Observe that, with dist
(≥k)
�2 , image A is more similar to B or to C depending on the scale k.

This variation reflects the fact that different details of the outline are prominent at each

scale. Note that, with top-heavy weights αk = 2k−m the discrepancies dist
(≥k)
�2 are more

consistent, and that dist
(≥3)
�2 is a fair estimate of dist

(≥0)
�2 . The price for this consistency

is that dist
(≥k)
�2 is dominated by the discrepancies at the roughest scales. On other hand,

with bottom-heavy weights αk = 3−k, we get an outline-sensitive discrepancy but dist
(≥k)
�2

is almost as irregular as dist
(k)
�2 .

4.4 Effectiveness of the discrepancy functions

In this section we investigate the effectiveness of the discrepancy functions for the de-

tection of correct parameter values. For this purpose we compare synthetic images

A = S(M, p̄(t∗), 0) and B = S(M, p̄(t), 0) for some simple models M, where the vector

p̄(t) varies along a straight line segment in R
n depending on some real argument t, and

t∗ is the midpoint of that argument’s range. Ideally, the plot of [dist(A,B,W )]2, as a

function of t, should have a single quadratic-like minimum (zero) at t = t∗.
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In all tests of this section, the images have 128×128 pixels at scale 0 and were produced

by our ray tracer with 10 × 10 rays per pixel. For the multiscale discrepancies, both the

A and B images were rendered at each scale k (instead of being reduced from the scale 0

version), and we use the fixed weight αk = 3−k.

4.4.1 Moving disk

For the simplest test, which we will call DISK, we used a model whose projection is a black

disk on a white background. The model depends on a single parameter X which is the

horizontal position of its center (X,0). The disk has a fixed radius of 16 pixels at scale 0.

See figure 4.5.

X

Figure 4.5: A typical image of the model used in test DISK.

Figure 4.6 shows the discrepancies between the image A obtained with X = 0 and

various images B obtained with X varying from −2 to +2 pixels with increments of 0.2

pixels. Note that this increment is twice the spacing between the traced rays at scale 0

(0.1 pixels in each axis).
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Figure 4.6: Behavior of squarered discrepancy functions for a moving a disk as function
of the horizontal displacement X (in pixels).

4.4.2 Rotating rectangle

For the test RECT, we used a model whose image is a rectangle with fixed size (50 pixels

by 20 pixels at scale 0) with fixed center (0,0) and rotated by an angle θ about its center.

See figure 4.7.

Figure 4.8 shows the discrepancies between the image A obtained with θ = θ0 = 0.1

radians and various images B obtained with θ varying from θ0 − 2/27 to θ0 + 2/27 ra-

dians (corresponding to approximate a displacement of ±2/27
√
252 + 102 ≈ ±2 pixels

at the corners of the rectangle) with increments of 1/135 radians (corresponding to a

displacement of approximately 0.2 pixels of those corners).
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Θ

Figure 4.7: Image of the model used in test RECT, the rotating rectangle.
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Figure 4.8: Behavior of the squared discrepancy functions for rotating rectangle example,
as a function of the rotation angle θ. The horizontal scale is the displacement of the
corners, in pixels.
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4.4.3 Bending rectangle

For test BEND, we used a model whose image is a rectangle with fixed size (98 pixels

by 20 pixels at scale 0) with fixed center (0,0) which is bent by an angle θ about its

center. The rectangle is actually modeled by a Bézier patch primitive (see Chapter 6)

whose control points are displaced so as the approximate the effect of bending (as in

the Eleg model, section 6). Figure 4.9 shows the discrepancies between the image A

obtained with θ = θ0 = 0.1 and various images B obtained with θ varying from θ0 − 2/52

to θ0 + 2/52 radians (corresponding to a displacement of approximately ±2 pixels at the

cornes of the rectangle) with increments of 1/260 radians (corresponding to a displacement

of approximately 0.2 pixels)
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Figure 4.9: Behavior of the squared discrepancy functions for a bending rectangle, as a
function of the rotation angle θ. The horizontal scale is the displacement of the corners,
in pixels.

4.4.4 Conclusion

These tests show that the squares dist2 of all discrepancy functions considered have smooth

quadratic behaviour, near the minimum.
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4.5 Granularity of discrepancy functions

It should be noted that the ray tracing method used to produce the synthetic images

is discontinuous, since the value of each pixel changes suddenly whenever a ray starts

hitting or missing the model. Therefore, the discrepancy function can be considered

smooth only if the shape changes between renderings are greater than spacing between

rays. An example of this effect can be seen in 4.10. Both graphs show the results of RECT

test when the images are rendered with different number of rays per pixel. In these graphs

the angle θ was varied in increment of 1/540 radians (corresponding to a displacement

of ≈ 0.05 pixels). The graph of right shows granularity in the discrepancy function due

to ray hit/miss events. This step-like behaviour is very problematic for the nonlinear

optimization algorithm. Care must be taken so that the spacing between samples of the

goal function is never smaller than the width of those steps.
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Figure 4.10: Plots of the squared discrepancy (dist2)
2 for the RECT example, with different

number of rays per pixel. The black dots represent the sampled values.
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Chapter 5

MSFit algorithm

5.1 Simplified algorithm description

A high-level description of our multiscale model fitting heuristic is the procedure MSFit

below.

Procedure 1 MSFit(A,M, dist, t)

Requires: An input image A of an organism, a deformable model M of the same, an
image discrepancy function dist and the desired number t of solutions.

Returns: A list of t parameter vectors p1, p2, ..., pt presumably corresponding to the t
best fittings of M to A.

1: A(0), A(1), ..., A(m) ← BuildPyramid(A,M);
2: Q ← InitialCandidates(A(m),M,m);
3: while NOT Adequate(Q) do
4: c ← RemoveCandidate(Q);
5: Q ← Q ∪ Children(c,M);
6: Q ← Trim(Q);
7: end while
8: return Solution(Q);

The MSFit procedure begins by creating a pyramid of images A(0), A(1), ..., A(m) (steps

1 and 2). The coarsest viable level m of the image pyramid is such that the model’s

projection, for any parameter vector p ∈ c.R, is expected to cover only one or two pixels.

The main state variable of the MSFit is a queue of candidates Q. Each candidate c

is a record containing a vector c.R of n parameter ranges c.R[0], c.R[1], ..., c.R[n − 1],

each R[i] being an interval of allowed values for parameters p[i]; and an integer scale c.s

that indicates the level of the pyramid of images where candidate c has been tentatively

identified. The vector c.R can be viewed as an n-dimensional box c.R[0] × c.R[1] × ... ×

33
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c.R[n − 1], called the total parameter range of the candidate c.

In step 3, a set of initial candidates is created for scale m. At that level, any salient

spot on the image with one or two pixels must be considered a possible instance of the

target organism.

At each iteration of the main loop (steps 3 to 7), MSFit removes a candidate c from

the queue Q, chosen by some criterion (step 4). The candidate c is split into zero or more

children candidates c′ with smaller and non-overlapping parameter ranges contained in

c.R, that are inserted back into the queue Q (step 6). We say that c is the parent of these

children candidates. Then excess and/or non-viable candidates are removed from Q (step

7). Steps 4 to 7 are repeated until the t desired solutions are found among the candidates

in Q (step 3). The parameter vectors of those t candidates are then returned (step 8).

The various sub-procedures used in MSFit will be detailed in the next chapter. Each

of them can be implemented in various ways. Different choices result in various spe-

cific versions of the algorithm, differing in robustness, performance and other aspects.

The main queue management procedures (Adequate, RemoveCandidate and Trim)

strongly affect the growth of the queue Q, the total execution time, and the expected

quality of the results.

5.1.1 Candidate level

The attribute c.s of a candidate c specifies the level of the image pyramid at which the

candidate is to be evaluated. More precisely, the merit of the candidate for selection (step

4) or trimming (step 6) is evaluated by comparing the image A(c.s) with the synthetic

image S(M, p, c.s) for some parameter vector p in the box c.R.

Each candidate c in the queue satisfies the following range invariant: as the parameter

vector p ranges in the box c.R, the position of any point of the model on the synthetic

image S(M, p, c.s) does not change by more than half pixel from its position on the

“mean” image S(M, c.R.md, c.s).

5.1.2 Active parameters

At each resolution level, there may be some parameters whose effect is not observable and

therefore cannot be estimated in the image at that level. Namely, the range invariant may

be satisfied even if some parameter range c.R[i] is the whole range D[i] of that parameter.

We then say that the parameter p[i] is inactive (irrelevant) at that scale. For instance,

at a scale where the organism’s projection is at most one or two pixels wide, only its

position and approximate size can be meaningfully estimated from the image; all other

parameters will be inactive. The rotation parameters are active only at scales where the

object is large enough for its overall shape to be distinguished from a sphere. Parameters
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that affect only the position of small appendages or organelles are active (meaningful and

relevant) only at levels where these details are visible.

In step 6, the algorithm must choose the parameters ranges of the children of each

candidate, so as to satisfy the range invariant. The children’s range c′.R[i] of a parameter

p[i] typically depends on the scale c.s and on ranges c.R[j] of other parameters in a model-

dependent way. On the other hand the procedure should avoid creating more children

than necessary. These criteria automatically cause each parameter to be introduced in

the search (that is, to become active) at the scale where it begins to be relevant.

Note that a parameter p[i] may be active or not for a candidate c, even at the same

scale, depending on the range c.R[j] of other parameters. For instance, the rotation

parameters may be active if the range of the size parameters includes large enough values;

and will be inactive if the size parameters are limited to sufficiently small values.

5.2 Detailed algorithm

In this section we describe a specific version of the basic MSFit algorithm which is

relatively fast and easy of implement, but is not deterministic and does not always returns

the best result.

In this approach, besides the vector parameters range c.R and level c.s, each candidate

also has a vector of nominal parameters c.p ∈ c.R and a nominal discrepancy value c.d.

Typically, c.p is an estimate for the “best” parameter vector in c.R, and c.d is obtained

from the discrepancy dist(A(c.s),S(M, c.p, c.s),W(M, c.p, c.s)) between the image A and

the model M at scale c.s.

In this heuristic, the RemoveCandidate procedure tries to choose the “most promis-

ing” candidate, the one which has the greater chances of leading to a desired optimum

match. Specifically, it chooses a candidate c from the queue Q with maximum scale c.s

and minimum discrepancy c.d among all candidates of that scale. With this policy, at

any iteration all candidates in Q have at most two different levels, k and k − 1. The

algorithm splits all candidates of the higher level k before considering any candidate of

the level k − 1.

The children candidates created by the Children have ranges c′.R whose union may

be smaller than the parent’s range c.R. Specifically, the range c.R is first partitioned

into children ranges R1, R2, ..., Rr, and then a non-linear optimization [44, 27] is used an

each sub-range Rj to determine the nominal parameter vector c′
j.p of each child and a

restricted range c′
j.R ⊆ Rj. In our MSFit implementation we use an original method for

nonlinear optimization that is described in Appendix A.

The Trim procedure keeps, for each level k, only the best Lk candidates with level

c.s = k (in the sense of having the smallest estimates c.d), and discards the rest; where Lk
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depends on the level k and the number of desired results t. In particular, l0 is t. Therefore,

the maximum number of candidates stored in Q will be L0+L1+ ...Lm, and the maximum

number of children candidates generated in step 6 will be Lm + rmax(L1 + ...+Lm), where

rmax is the maximum number of children of any candidate. After extensive testing we

found that setting Lk = ⌈α k⌉ + t for some constant α = 0.5 provides an adequate

balance between speed and accuracy.

In this version of the algorithm, the Adequate procedure returns true if and only if

every candidate c in Q has level c.s = 0. At that moment, the queue Q will have exactly

t candidates, and the Solution procedure simply returns those candidates.

5.2.1 Hereditary discrepancy

Ideally, the nominal discrepancy c.d should be either the discrepancy between the given

image A and the image of the model M rendered with parameters c.p at scale c.s, or the

multiscale version of that discrepancy. That is, we should have c.d = DS(c, A,M), where

DS(c, A,M) = dist(A(c.s), B(c.s)(c.p),W (c.s)(c.p)) (5.1)

in the single scale version, and

DM(c, A,M) =

�m
i=c.s αidist(A

(i), B(i)(c.p),W (i)(c.p))
�m

i=c.s αi

(5.2)

in the multiscale version, where B(k)(p) = S(M, p, 0) and W (k)(p) = W(M, p, 0) both

reduced to level k.

In either case, however, computing S(M, p, 0) and W(M, p, 0) for every candidate

would be too expensive. Therefore in formulas (5.1) and (5.2) we render the model at

level k, that is we use B(k)(p) = S(M, p, k) and W (k)(p) = W(M, p, k). We justify this

optimization by noting that, with a well designed model and a good rendering procedure,

the image rendered at level k should be very close to the image rendered at scale 0 and

reduced to level k.

Even with this optimization, the computation of the discrepancy

dist(A(k),S(M, c.p, k),W(M, c.p, k)) for all levels k ≥ c.s in the formula (5.2) would be

about 1/(1−µ2) times as expensive as the computation of the discrepancy for level k only.

Therefore, in equation (5.2) we instead assume that the discrepancies at higher levels do

not vary much when p varies within its range c.R. Therefore we replace the sum (5.2) by

DH
(k)(c, A,M) = λkdist(A

(k), B(k)(c.p),W (k)(c.p)) + (1 − λk)c.h; (5.3)

Here c.h is an additional field of candidate c that stores the discrepancy c′′.d inherited
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from its parent c′′ (or 0 if c.s = m), and λk = αk/
�m

i=kαi. The field c.h is set when the

candidate c is created from its parent by the Children procedure.





Part III

Models and tests
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Chapter 6

Modeling technique

6.1 Model instantiation

In our implementation, a deformable model M is represented internally as an object with

several internal data fields and methods. The most important method is BuildGeom-

etry(n, p, µ, k), which builds a fixed geometric description of the organism, given its

parameters p[0], p[1], ..., p[n − 1], suitable for rendering at level k of the image pyramid.

The description returned by BuildGeometry is a list G of geometric primitives

whose union defines the organism’s model shape. The geometric primitives currently im-

plemented in our ray-tracer are described below and can be seen in figure 6.1. Additional

primitives and other CSG operations [34, 13] (such as intersection and difference) could

easily be added to the code.

• sphere - a sphere with center (0, 0, 0) and radius 1.

• cube - a cube with center (0, 0, 0) and side 2/
√
3 (i. e. radius 1).

• cylinder - a cylinder parallel to the z-axis with center (0, 0, 0), base radius 1 and

height 1.

• Bezier(b00, b01, b02, b03, b10, b11, ..., b33) is a bi-cubic tensorial surface patch [37] de-

fined by the 16 Bézier control points b00, ..., b33.

Every instance of a primitive shape in the geometric description G also has an associated

3× 3 transformation matrix M and a translation vector t ∈ R
3 that should be applied to

the basic primitive shape. Specifically a point q of the primitive (represented as column 3-

vector) corresponds to the pointMq+t of its instance. Finally each instance of a primitive

shape has a monochromatic optical coefficients (diffusion, ambient and transmission),

similar to POV-Ray.
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Figure 6.1: Geometric primitives: sphere, cube, cylinder and Bezier respectively.
The Bezier illustration shows the 16 control points.

The BuildGeometry procedure converts the parameters p[0], p[1], ..., p[n− 1] to the

primitive parameters (if any) and the modifiers M and t. By convention, all coordinates

in the attributes of these instances of primitives are measured in pixels of the level 0

image.

For some models, the BuildGeometry procedure could generate very different de-

scriptions depending on the parameter vector p and scale k. For example, if the diameter

of the organism as described by p is smaller than µk (that is, one pixel at scale k) the

geometric description could be just a single sphere primitive. More generally, Build-

Geometry may omit details of the geometric description if they are too small to be seen

at the given scale.



6.2. Rendering procedure 43

Some models also have one or more meta parameter, that can chosen by the user and

are fixed during execution of the MSFit. These meta parameter can be used to generate

variants of the organism.

6.2 Rendering procedure

The geometric description G returned by BuildGeometry is converted into an image

by the rendering procedure Render. It has six parameters (G, nx, ny, k, µ, nr) where

nx and ny determine the size (in pixels) of the image to be generated at scale 0, k is the

scale of the desired image, µ is the scale factor and nr specifies number of the rays to cast

per pixel (nr × nr). The output is the rendered image B(k) = S(M, p, k) at scale k and

its corresponding mask W (k) = W(M, p, k).

6.2.1 Scale of image

The renderer assumes that each pixel of the image at scale 0 is a square of unit side on

the xy plane. If image B(0) has nx × ny pixels, at scale k the output of our ray-tracing

is an image B(k) with ⌈nxµ
k⌉ × ⌈nyµ

k⌉ pixels, and each pixel of that image represents a

square with size 1/µk × 1/µk pixels in the original image. See figure 6.2.

k = 0 k = 1 k = 2 k = 3 k = 4

Figure 6.2: Example of a geometric description G rendered at different scales with µ =
1/2.

6.2.2 Anti-aliasing

Tracing a single ray per pixel usually generates abrupt transitions along the edges of

objects (see figure 6.3). This effect is known in computer graphics as aliasing or jaggies.

As we observed in section 4.5, these discontinuities in the object’s outline and pixel values
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cause discontinuities in the discrepancy function, which are problematic for the nonlinear

optimization procedure (Appendix A). Therefore, the Render procedure uses super-

sampling in order to reduce those artifacts. Specifically, Render traces n2
r rays in each

pixel of B(k), through a regular nr × nr array of sample points inside the pixel, and sets

the pixel’s value to the average of the colors obtained with those rays.

Figure 6.3: Image of a Sphere primitive rendered with 1 × 1 rays per pixel (left) and
image rendered with 10 × 10 rays per pixel (right).



Chapter 7

Test models

In this chapter we describe the organism models used in our tests. In all tests we assumed

that models have their centers on the plane Z = 0, since it is impossible to determine the

precise depth coordinate Z of the organism in the optical microscope images.

7.1 The ball model

The simplest model used in our tests is a perfectly spherical “organism” called ball. It

has only three parameters: the position (X, Y ) and the radius R. Its geometric description

is a single instance of the sphere primitive shape, with translation vector t = (X, Y, 0)

and diagonal matrix M = RI, where I is the 3 × 3 identity matrix. See figure 7.1.

Figure 7.1: Three rendered images of the ball model.

7.2 The box model

The box model is an organism with cubical shape in general orientation. . It has six

parameters: the position of the center (X, Y ), the radius (half-diagonal) S of the diagonal,

and the rotation angles θX , θY and θZ that are applied successively about X, Y and Z
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axes. Each angle is allowed vary in the range [0, 90o] (although two or more combinations

of angles may be result in the same apparent pose). The geometric description of the box

model is a single instance of the cube primitive (which is centered at (0, 0, 0) and unit

diagonal), with position vector t = (X, Y, 0) and the following transformation matrix M

M =









cos θZ − sin θZ 0

sin θZ cos θZ 0

0 0 1

















cos θY 0 sin θY

0 1 0

− sin θY 0 cos θY



















1 0 0

0 cos θX − sin θX

0 sin θX cos θX



















S 0 0

0 S 0

0 0 S









Figure 7.2: Three rendered images of the box model.

7.3 The cyl model

The cyl model is a perfectly cylindrical organism in general orientation. It is a reasonably

acceptable model for the Paralia sulcata diatom sp. It has six parameters: the position of

the center (X, Y ), the height H, the radius R and the rotations angles θX (in the range

[−90o, 90o]) and θZ (in the range [0, 180o]) that are applied successively about X and Z

axes. The geometry of the cyl model is a single instance of the cylinder primitive, with

position vector t = (X, Y, 0) and the following transformation matrix M

M =









cos θZ − sin θZ 0

sin θZ cos θZ 0

0 0 1



















1 0 0

0 cos θX − sin θX

0 sin θX cos θX



















R 0 0

0 R 0

0 0 H








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Figure 7.3: Three rendered images of the cyl model.

7.4 The volv model

The volv model is a simple model for the Volvox sp. colonial flagellate [45]. It consists

of a hollow translucent sphere containing a variable number (zero or more) of smaller

spheres. It has one discrete meta-parameter q that is the number of internal spheres.

For a fixed q, the volv model has n = 3 (q + 1) parameters, which are the radius R0

and position (X0, Y0) of the main sphere, and the radii Ri and the positions (Xi, Yi) of

internal spheres, for i = 1, 2, 3, ..., q. The geometric description of a volv model is the

union of q + 1 instances of the sphere primitive with translation vectors ti = (Xi, Yi, 0)

and matrices Mi = Ri I, for i = 0, ..., n. See figure 7.4.

Figure 7.4: Three rendered images of the volv model.

7.5 The prmc model

The prmcmodel is meant to describe the protozoon Paramecium sp. [14]. The prmcmodel

has n = 8 parameters: the center of its body (X, Y ), four width parameters l1, ..., l4, the

total length h, and the rotation angle θZ about the axis Z. The prmc model model is not

bilaterally symmetric.

The geometric description of a prmc model, as returned by the BuildGeometry

method consists of 4 flat bi-cubic Bezier patches b[ij] that compose the body where

i, j ∈ {0, 1}, contained on the plane Z = 0. See figure 7.5.
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Figure 7.5: Bézier patches and control points.

The parameters l1, ..., l4 and the total length h are mapped to a certain subset of the Bézier

control points of those patches, as shown in figure 7.5. The remaining Bézier control points

are computed from these so as to maintain C0 and C1 parametric continuity between the

patches.

Specifically let b[ij]
rs be the Bézier control point r, s ( for 0 ≤ r, s ≤ 3) of patch b[ij] (for

0 ≤ i, j ≤ 1). The method sets certain primary control points (show in white in figure

7.5) as specified in table 7.1.

Theses primary points are shown in white in figure 7.5. The remaining points (black) are

set to the average of neighboring primary points, so that the surface is C1 (parametric)

everywhere. Some images of the prmc model can be seen in figure 7.6.

Figure 7.6: Three rendered images of the prmc model.



7.6. The cycl model 49

b
[00]
00 =

�

−h/2, 0, 0
�

b
[00]
01 =

�

−h/3, 0, 0
�

b
[00]
02 =

�

−h/6, 0, 0
�

b
[00]
10 =

�

−h/2, l1/3, 0
�

b
[00]
11 =

�

−h/3, l1/3, 0
�

b
[00]
12 =

�

−h/6, l1/3, 0
�

b
[00]
20 =

�

−h, l1/3, 0
�

b
[00]
21 =

�

−h/3, l1/3, 0
�

b
[00]
22 =

�

−h/6, l1/3, 0
�

b
[01]
03 =

�

h/2, 0, 0
�

b
[01]
02 =

�

h/3, 0, 0
�

b
[01]
01 =

�

h/6, 0, 0
�

b
[01]
13 =

�

h/2, l2/3, 0
�

b
[01]
12 =

�

h/3, l2/3, 0
�

b
[01]
11 =

�

h/6, l2/3, 0
�

b
[01]
23 =

�

h, l2/3, 0
�

b
[01]
22 =

�

h/3, l2/3, 0
�

b
[01]
21 =

�

h/6, l2/3, 0
�

b
[10]
00 =

�

−h/2, 0, 0
�

b
[10]
01 =

�

−h/3, 0, 0
�

b
[10]
02 =

�

−h/6, 0, 0
�

b
[10]
10 =

�

−h/2,−l3/3, 0
�

b
[10]
11 =

�

−h/3,−l3/3, 0
�

b
[10]
12 =

�

−h/6,−l3/3, 0
�

b
[10]
20 =

�

−h,−l3/3, 0
�

b
[10]
21 =

�

−h/3,−l3/3, 0
�

b
[10]
22 =

�

−h/6,−l3/3, 0
�

b
[11]
03 =

�

h/2, 0, 0
�

b
[11]
02 =

�

h/3, 0, 0
�

b
[11]
01 =

�

h/6, 0, 0
�

b
[11]
13 =

�

h/2,−l4/3, 0
�

b
[11]
12 =

�

h/3,−l4/3, 0
�

b
[11]
11 =

�

h/6,−l4/3, 0
�

b
[11]
23 =

�

h,−l4/3, 0
�

b
[11]
22 =

�

h/3,−l4/3, 0
�

b
[11]
21 =

�

h/6,−l4/3, 0
�

Table 7.1: Primary control points of the prmc.

7.6 The cycl model

The cycl model is meant to describe a female specimen of the crustacean Cyclops sp.

[38] with egg sacs. See figure 7.7. The cycl model has n = 11 parameters: the center of

its body (X, Y ), two segment width parameters l1 and l2, the total length h, the rotation

angle θZ about the axis Z, the relative longitudinal position t of the eggs sacs, the length

and width ex and ey of the eggs sacs, and their inclination angles a1 and a2 relative to

the body axis.

The geometric description of a cycl model, as returned by the BuildGeometry method

consists of 4 flat bi-cubic Bezier patches that represent the body, contained on the plane

Z = 0; and two ellipsoids that represent the egg sacs. The parameters l1 and l2 and

the total length h are mapped to a certain subset of the Bézier control points of those

patches. Unlike the prmc model, the cycl model has bilateral simmetry about the X-axis.

The remaining Bézier control points are computed from these. Specifically let b[ij]
rs be the

Bézier control point r, s ( for 0 ≤ r, s ≤ 3) of patch b[ij] (for 0 ≤ i, j ≤ 1). The method

sets certain primary control points (show in white in figure 7.7) as specified in table 7.2.

Some images of the cycl can be seen in figure 7.8. In optical microscope the cyclops tend

to lie with the eggs sacs parallel to XY plane, so that we felt unnecessary to allow for

rotation about the X-axis.
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Figure 7.7: Bézier patches and control points.

Figure 7.8: Three rendered images of the cycl model.
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Table 7.2: Primary control points of the cycl.
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7.7 The eleg model

The eleg model is meant to describe the worm Caenorhabditis Elegans sp. [54]. See

figure 7.9. It has a meta-parameter q ≥ 2 that determines the number of segments in the

model which in turn determines the number of ways in which it can bend. For a fixed q,

the eleg model has n = 2q + 5 parameters, which are the center (X, Y ) of the body, its

length l, its diameter d, a rotation angle θZ about the axis Z, and 2q bending parameters

α1, ..., αq and β1, ..., βq.

Figure 7.9: Bézier patches and control points for the eleg model with q = 3 (4 patches).

The BuildGeometry procedure assumes that the worm has cylindrical symmetry and

can bend only parallel to X, Y plane. Therefore the geometric description consists of q+1

flat bi-cubic Bezier patches. See figure 7.9.

Some of the control points are computed from the bending parameters to achieve

the desired shape; these are the primary points shown in white in figure 7.9. First the

procedure defines an axial curve (u,Ω(u)) for u ∈ [−1,+1] where

Ω(u) =
q

�

k=1

[αk cos(u k
π

2
) + βk sin(u k

π

2
)] (7.1)

At each u, the normal vector �n(u) is (Ω′(u),−1) /�1,Ω′(u)� were Ω′(u) is the derivative

of Ω(u), namely

Ω′(u) =
q

�

k=1

[−αk k
π

2
sin(u k

π

2
) + βk k

π

2
cos(u k

π

2
)] (7.2)

Then the procedure maps each primary point (u, v) to point (u′,v′)

(u′, v′) =
l

2
(u,Ω(u)) +

vd

2
�n(u) (7.3)

The remaining Bézier points are computed from those primary points so that the surface

is C1 (parametric) at the joints.
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Figure 7.10: Three rendered images of the eleg model for q = 3 (4 patches).





Chapter 8

Experimental evaluation

In this chapter we describe various experimental tests of the MSFit algorithm.

8.1 Test datasets

In these tests we used two sets of input data, SINT and REAL both with NM = 7 models

(described in Chapter 7) and NG = 10 input images for each model.

The set SINT consists of synthetic input images with white background and size nx ×
ny = 32×32 pixels, generated by our ray tracer, with a randomly chosen parameter vector.

The set REAL consists of actual digital photos or microscope images of size nx×ny = 32×32

obtained from various Internet sites, manually scaled and cropped to uniform size. See

figures 8.1 and 8.2
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Figure 8.1: Images of the SINT dataset generated from models ball, box, cyl, volv,
cycl, prmc and eleg (top to bottom).
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Figure 8.2: Images of REAL dataset with real images of “organisms” fitting the ball, box,
cyl volv, cycl, prmc and eleg models (top to bottom). For each model, the first row
shows the digital photos of the actual “organism”, and the second row shows the synthetic
images generated with the corresponding template parameter vectors p∗.
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8.2 Automatic tests evaluation

In order evaluate the performance of our algorithm on a significant number of test images

we had to develop a method to automatically check whether the result were correct or not.

For this purpose, we defined two metrics davg and dmax to measure the distance between

each vector of parameters p obtained by the algorithm and the template p∗, the correct

set of parameters for each input image. These metrics take into account the magnitude

of the effect of each parameter on the model’s image. Specifically, for each scale k, we

define

d(k)
avg(p, p

∗) =

�

�

�

�

1

n

n
�

i

(p∗[i] − p[i])2

[(δ
(k)
∗ [i])2 + (δ(k)[i])2]/2

(8.1)

d(k)
max(p, p

∗) = max
0≤i≤n−1

|p∗[i] − p[i]|
�

[(δ
(k)
∗ [i])2 + (δ(k)[i])2]/2

(8.2)

In both formulas, δ(k)[i] is a value such that the change of parameter p[i] to p[i] + δ(k)[i]

causes some part of the model’s projection to move by about 1/2 pixel in the scale k.

Therefore, the values of d(k)
avg and d(k)

max can be interpreted as a distance in pixels at the

scale k between the projections of p and p∗. In our tests we asked MSFit to return

a single parameter vector (t = 1) and we considered that a run of the algorithm was

successful (was a hit) if d(0)
avg ≤ 1.25 and d(0)

max ≤ 1.75.

The automatic comparison of the parameters must also take into account that some

models have symmetries, so that there are several vectors p quite distinct from each

other that produce the same image. In these cases, our evaluation procedure generates

the various parameter vectors equivalent to the template p∗ and considers the the run a

success if at least one of those vector p satisfies the above criteria.

For the set SINT, the template p∗ of each test image is the vector of parameters used in

their synthesis. For the set REAL, the vector of parameters (template) of each image was

obtained manually from a vector of initial parameter obtained byMSFit. This vector was

manually adjusted until the corresponding synthetic image visually is as close as possible

to the actual image.

8.3 Average performance

Since the algorithm is not deterministic, we executed the algorithm NE = 10 times with

different seeds for the random number generator, on each of NM 2NG test images. We

the computed the hit rate HA for each specific model and each input image type (REAL or

SINT) as the number of hits divided by the corresponding number of runs, NG × NE.
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For each model and input image type we also computed the standard deviation HD of

the hit rate over the NG images, averaged over the NE runs of that image. As a measure

of the cost of the algorithm, we use the average number of rays cast NR by all calls of the

Render procedure.

8.4 Internal parameters

The MSFit algorithm has several internal parameters that can be tuned to improve its

hit rate and/or running time. The main are:

• Lk, the maximum size of the queue Q at each level k ≥ 1;

• nr, an integer that defines the number of rays (nr × nr) cast per pixel;

• µ, image scaling factor of the pyramid;

• D, the formula used for calculate the discrepancy c.d of each candidate c (either DS

or DH, see section 5.2.1)

• ni, the number of iterations of our nonlinear method.

The values of these parameters were chosen after many experiments on the datasets

described in section 8.2 so as to maximize the hit rate without excessive computational

cost. The chosen values were: Lk = 1.0, µ = 1/
√
2, nr = 4, ni = 4, and the use of DS to

compute the discrepancy of the candidates.

8.5 Results

In this section we present some tests that show the influence of the chosen values of the

internal parameters. Namely we vary the value of each parameter around the chosen

value, while fixing all other internal parameters at their chosen values. Needless to say,

these experiments do not prove that the chosen values are optimal, since the performance

may still be improved by changing two or more them at the same time.

8.5.1 Effect of the distance estimator D

In this subsection we show that DS is slightly better than DH, given the other parameter

values chosen. For that we must find the optimal value of the internal parameter β of

that defines the weight λk = β−k of the DH in the formula (5.3). For this test we vary

β between 0.25 and 2.5 with D = DH. See tables 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8 and

figures 8.3 and 8.4.
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β = 0.25
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 26.35 20% 4% 25.65 36% 6%
box 23.78 86% 6% 22.88 92% 5%
cycl 92.15 44% 11% 89.55 62% 11%
eleg 68.16 26% 7% 69.48 56% 6%
prmc 31.06 62% 9% 29.25 78% 8%
ball 6.66 82% 5% 6.99 96% 3%
volv 22.86 68% 5% 23.99 96% 6%
Total 38.72 55% 7% 38.26 74% 6 %

Table 8.1: Results obtained by MSFit with D = DH and β = 0.25.

β = 0.5
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 26.51 22% 5% 25.57 44% 7%
box 23.64 86% 3% 23.66 84% 7%
cycl 88.27 58% 8% 87.27 62% 8%
eleg 69.58 32% 5% 68.54 44% 7%
prmc 31.07 80% 9% 29.82 74% 11%
ball 6.75 80% 4% 7.11 96% 3%
volv 23.69 68% 9% 23.71 98% 3%
Total 38.50 61% 6% 37.95 72% 7 %

Table 8.2: Results obtained by MSFit with D = DH and β = 0.5.

β = 0.75
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 25.75 20% 6% 24.66 58% 8%
box 22.81 76% 3% 23.08 92% 5%
cycl 83.78 64% 3% 88.51 82% 13%
eleg 69.84 42% 7% 72.51 52% 10%
prmc 30.11 68% 7% 30.50 86% 11%
ball 6.67 86% 8% 6.96 98% 3%
volv 22.24 70% 6% 24.17 98% 3%
Total 37.31 61% 6% 38.63 81% 8 %

Table 8.3: Results obtained by MSFitwith D = DH and β = 0.75.
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β = 1.0
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 24.37 24% 11% 24.13 44% 10%
box 23.61 92% 5% 24.20 90% 6%
cycl 82.84 60% 6% 90.89 72% 3%
eleg 68.74 42% 5% 68.80 46% 8%
prmc 31.55 80% 9% 31.33 86% 7%
ball 6.64 90% 4% 7.15 96% 3%
volv 22.18 64% 3% 24.74 100% 0%
Total 37.13 65% 6% 38.75 76% 5 %

Table 8.4: Results obtained by MSFitwith D = DH and β = 1.0.

β = 1.5
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 24.45 24% 7% 24.69 62% 5%
box 21.68 84% 7% 22.55 88% 7%
cycl 81.96 68% 5% 84.63 82% 9%
eleg 67.42 30% 6% 70.98 62% 8%
prmc 29.94 84% 7% 29.01 84% 6%
ball 6.78 86% 7% 7.26 98% 3%
volv 22.35 70% 4% 23.91 100% 0%
Total 36.37 64% 6% 37.58 82% 5 %

Table 8.5: Results obtained by MSFitwith D = DH and β = 1.5.
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β = 2.0
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 24.74 36% 7% 24.07 58% 12%
box 23.25 86% 7% 23.54 92% 5%
cycl 80.66 66% 7% 79.26 80% 6%
eleg 69.00 38% 12% 70.88 52% 10%
prmc 30.60 84% 7% 30.62 96% 3%
ball 6.73 88% 7% 8.62 96% 3%
volv 22.95 64% 6% 23.67 100% 0%
Total 36.85 66% 8% 37.24 82% 6 %

Table 8.6: Results obtained by MSFitwith D = DH and β = 2.0.

β = 2.5
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 25.08 28% 14% 24.00 68% 12%
box 22.46 86% 3% 23.34 86% 3%
cycl 84.40 70% 4% 85.77 64% 7%
eleg 69.18 48% 7% 71.29 54% 13%
prmc 32.09 82% 7% 30.64 98% 3%
ball 6.59 86% 3% 7.27 98% 3%
volv 22.54 74% 3% 24.41 100% 0%
Total 37.48 68% 6% 38.10 81% 6 %

Table 8.7: Results obtained by MSFit with D = DH and β = 2.5.

D = DS

dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 25.05 52% 5% 25.85 72% 7%
box 22.86 84% 10% 22.05 94% 3%
cycl 77.58 72% 5% 80.47 84% 10%
eleg 68.57 38% 5% 70.36 62% 8%
prmc 31.77 76% 10% 31.27 92% 8%
ball 6.36 80% 6% 7.01 96% 3%
volv 23.16 62% 5% 25.76 100% 0%
Total 36.48 66% 7% 37.54 86% 6 %

Table 8.8: Results obtained by MSFit with D = DS.
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Figure 8.3: The effect of the β weight on the hit rate with D = DH.
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Figure 8.4: The effect of the β weight on the average number NR of rays cast.

From these tables we conclude that β = 0.75 provides the best performance whenD = DH.

However a table 8.8 shows the performance with D = DS is better.
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8.5.2 Effect of image scale factor reduction

In this subsection we test the effect of the image scale factor reduction µ. The usual

choice µ = 50% is so far from the optimal, therefore we vary µ between 60% and 80%.

See tables 8.9, 8.10, 8.11, 8.12, 8.13, and figures 8.5 and 8.6. For the chosen settings of

the others parameters, the best hit rate HA is when µ ≈ 0.75, while the total cost NR is

surprisingly independent it of µ. We chose µ =
�

1/2 = 0.7071 so that even levels are

scaled by exact powers of 1/2.

µ = 60%
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 24.08 18% 7% 23.82 44% 7%
box 22.26 58% 8% 20.62 84% 3%
cycl 96.82 46% 3% 96.93 52% 14%
eleg 70.01 26% 7% 68.89 54% 14%
prmc 30.73 70% 9% 31.17 94% 6%
ball 5.20 68% 5% 6.38 94% 3%
volv 19.54 60% 10% 19.53 94% 3%
Total 38.38 49% 7% 38.19 74% 7 %

Table 8.9: Results obtained by MSFit with µ = 60%.

µ = 65%
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 22.89 22% 14% 22.90 52% 11%
box 21.35 70% 10% 21.22 92% 3%
cycl 78.60 56% 6% 82.93 80% 6%
eleg 65.99 40% 9% 68.33 52% 5%
prmc 29.33 80% 9% 30.39 94% 6%
ball 5.86 80% 4% 6.44 92% 3%
volv 21.07 64% 3% 23.32 100% 0%
Total 35.01 59% 8% 36.50 80% 5 %

Table 8.10: Results obtained by MSFit with µ = 65%.
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µ = 70%
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 24.63 26% 3% 25.22 62% 13%
box 22.36 78% 3% 21.69 96% 3%
cycl 81.59 72% 7% 83.96 80% 8%
eleg 69.50 40% 9% 69.88 46% 10%
prmc 31.58 90% 4% 29.76 90% 4%
ball 6.63 82% 5% 7.42 96% 3%
volv 23.01 60% 4% 24.91 100% 0%
Total 37.04 64% 5% 37.55 81% 6 %

Table 8.11: Results obtained by MSFit with µ = 70%.

µ = 75%
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 28.38 60% 4% 27.53 84% 3%
box 25.68 66% 3% 24.64 92% 5%
cycl 83.81 74% 6% 85.90 92% 5%
eleg 75.27 62% 10% 77.67 72% 8%
prmc 35.33 84% 6% 33.08 80% 4%
ball 7.95 80% 6% 7.91 92% 5%
volv 26.12 72% 5% 27.02 100% 0%
Total 40.36 71% 6% 40.53 87% 5 %

Table 8.12: Results obtained by MSFit with µ = 75%.

µ = 80%
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 32.50 66% 6% 33.69 88% 5%
box 28.12 80% 10% 27.25 86% 7%
cycl 90.45 74% 6% 95.23 90% 4%
eleg 86.24 56% 7% 88.24 46% 3%
prmc 41.04 84% 10% 39.97 80% 0%
ball 10.21 74% 7% 10.10 94% 3%
volv 31.00 82% 5% 31.34 100% 0%
Total 45.65 74% 7% 46.54 83% 3 %

Table 8.13: Results obtained by MSFit with µ = 80%.



66 Chapter 8. Experimental evaluation

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60  65  70  75  80

REAL

SINT

TOTAL

Figure 8.5: The effect of the scale factor µ on the hit rate.
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Figure 8.6: The effect of the scale factor µ on the number of rays.



8.5. Results 67

8.5.3 Effect of the number of rays cast per pixel

In this subsection we test the effect of the internal parameter nr that defines the number

of rays (nr × nr) cast per pixel. For this test we vary nr between 2 and 6. See tables

8.14, 8.15, 8.16, 8.17, 8.18, and figures 8.7 and 8.8. As can be seen from these figures,

the hit rate HA appears increase slightly with the nr (but less than its standard deviation

HD) while the cost NR appears to grow quadratically with nr, as expected. Therefore we

chose nr = 4. However note that nr = 3 would provide nearly the same hit rate at half

the cost.

nr = 2
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 6.36 46% 10% 6.31 66% 3%
box 5.57 70% 8% 5.31 90% 4%
cycl 19.54 66% 3% 19.52 72% 11%
eleg 17.87 38% 15% 17.42 68% 10%
prmc 7.34 76% 7% 7.47 72% 5%
ball 1.56 68% 5% 1.65 94% 3%
volv 5.65 66% 3% 6.06 100% 0%
Total 9.13 61% 7% 9.10 80% 5 %

Table 8.14: Results obtained by MSFit with nr = 2.

nr = 3
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 14.07 54% 10% 13.94 58% 5%
box 13.12 84% 6% 12.25 94% 6%
cycl 43.74 64% 11% 45.46 76% 7%
eleg 40.34 44% 6% 40.44 62% 7%
prmc 17.71 82% 8% 17.16 92% 3%
ball 3.60 74% 3% 3.81 98% 3%
volv 12.92 76% 3% 14.39 100% 0%
Total 20.78 68% 7% 21.06 83% 4 %

Table 8.15: Results obtained by MSFit with nr = 3.
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nr = 4
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 25.05 52% 5% 25.85 72% 7%
box 22.86 84% 10% 22.05 94% 3%
cycl 77.58 72% 5% 80.47 84% 10%
eleg 68.57 38% 5% 70.36 62% 8%
prmc 31.77 76% 10% 31.27 92% 8%
ball 6.36 80% 6% 7.01 96% 3%
volv 23.16 62% 5% 25.76 100% 0%
Total 36.48 66% 7% 37.54 86% 6 %

Table 8.16: Results obtained by MSFit with nr = 4.

nr = 5
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 38.74 68% 7% 39.41 68% 8%
box 36.41 80% 9% 33.81 94% 3%
cycl 119.69 76% 3% 127.33 92% 5%
eleg 107.56 54% 7% 111.16 62% 7%
prmc 47.76 88% 5% 48.41 88% 5%
ball 10.03 80% 8% 10.48 98% 3%
volv 35.32 62% 10% 39.10 100% 0%
Total 56.50 73% 7% 58.53 86% 5 %

Table 8.17: Results obtained by MSFit with nr = 5.

nr = 6
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 53.97 62% 9% 56.54 68% 3%
box 51.33 76% 7% 49.52 96% 3%
cycl 175.54 78% 8% 182.93 88% 5%
eleg 154.32 50% 4% 156.55 64% 11%
prmc 70.03 86% 7% 69.10 94% 6%
ball 14.30 86% 6% 15.42 96% 3%
volv 52.20 72% 11% 54.17 98% 3%
Total 81.67 73% 8% 83.46 86% 5 %

Table 8.18: Results obtained by MSFit with nr = 6.
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Figure 8.7: The effect of the parameter nr on the hit rate.
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Figure 8.8: The effect of the parameter nr on the computational cost.
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8.5.4 Effect of the number of iterations

In this subsection we test the effect of the internal parameter ni that defines the number

of iterations executed by our nonlinear optimization method. For this test we vary ni

between 2 and 8. See tables 8.19, 8.20, 8.21, 8.22,8.23, 8.24, 8.25 and figures 8.9 and 8.10.

As the plots show, the hit rate appears to be maximum for ni around 6. However the

cost grows linearly with ni. Therefore we chose ni = 5 as a good compromise between

accuracy and efficiency.

ni = 2
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 11.00 36% 7% 11.46 58% 3%
box 10.30 72% 8% 8.93 78% 7%
cycl 34.20 52% 12% 34.02 72% 3%
eleg 28.88 38% 3% 29.57 54% 10%
prmc 12.91 70% 12% 13.15 86% 8%
ball 2.75 76% 3% 2.85 92% 3%
volv 9.57 56% 3% 9.53 98% 3%
Total 15.66 57% 7% 15.64 77% 5 %

Table 8.19: Results obtained by MSFit with ni = 2.

ni = 3
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 16.20 48% 8% 15.89 70% 8%
box 13.99 80% 8% 13.12 88% 8%
cycl 47.84 70% 6% 51.26 72% 8%
eleg 42.32 48% 5% 43.93 68% 8%
prmc 19.61 84% 7% 20.15 72% 5%
ball 3.85 76% 3% 4.26 94% 3%
volv 14.21 56% 6% 14.81 100% 0%
Total 22.58 66% 6% 23.34 81% 6 %

Table 8.20: Results obtained by MSFit with ni = 3.
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ni = 4
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 20.31 46% 7% 20.97 54% 17%
box 18.87 84% 7% 18.06 88% 5%
cycl 61.75 76% 7% 64.01 86% 3%
eleg 57.26 48% 5% 57.11 62% 8%
prmc 25.45 74% 6% 24.92 88% 7%
ball 5.15 76% 8% 5.61 92% 3%
volv 18.71 62% 3% 20.14 100% 0%
Total 29.64 67% 6% 30.12 81% 6 %

Table 8.21: Results obtained by MSFit with ni = 4.

ni = 5
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 24.60 42% 3% 25.76 62% 13%
box 22.81 82% 12% 21.76 90% 4%
cycl 76.76 62% 10% 79.68 86% 8%
eleg 68.67 50% 9% 71.21 60% 8%
prmc 30.76 90% 9% 31.46 98% 3%
ball 6.48 82% 10% 7.03 96% 3%
volv 22.39 70% 6% 25.62 98% 3%
Total 36.07 68% 9% 37.50 84% 6 %

Table 8.22: Results obtained by MSFit with ni = 5.

ni = 6
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 28.75 58% 12% 29.67 70% 12%
box 27.03 92% 5% 25.00 94% 3%
cycl 92.80 74% 3% 93.81 92% 5%
eleg 82.20 48% 10% 85.25 68% 9%
prmc 36.97 80% 6% 35.31 92% 5%
ball 7.47 86% 6% 8.21 98% 3%
volv 28.09 66% 8% 30.75 100% 0%
Total 43.33 72% 7% 44.00 88% 5 %

Table 8.23: Results obtained by MSFit with ni = 6.
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ni = 7
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 32.37 58% 10% 33.77 78% 9%
box 30.84 92% 5% 27.93 94% 6%
cycl 104.20 72% 5% 109.73 96% 3%
eleg 92.60 52% 7% 94.47 62% 9%
prmc 42.39 80% 10% 43.56 92% 5%
ball 8.73 84% 6% 9.45 98% 3%
volv 32.05 64% 10% 35.49 100% 0%
Total 49.02 72% 8% 50.63 89% 5 %

Table 8.24: Results obtained by MSFit with ni = 7.

ni = 8
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 35.52 68% 3% 38.02 76% 6%
box 32.90 84% 6% 30.63 92% 3%
cycl 117.64 82% 8% 121.63 80% 6%
eleg 107.28 40% 8% 108.08 58% 7%
prmc 46.98 78% 3% 46.62 90% 4%
ball 9.39 82% 5% 9.97 98% 3%
volv 35.85 58% 8% 39.49 100% 0%
Total 55.08 70% 6% 56.35 85% 4 %

Table 8.25: Results obtained by MSFit with ni = 8.
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Figure 8.9: The effect of the parameter that determine the number of iterations ni on the
hit rate.
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Figure 8.10: The effect of the parameter that determine the number of iterations ni on
the computational cost.
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8.5.5 Effect of the queue size

In this subsection we test the effect of the internal parameter α that defines the queue

size at each scale (by the formula Lk = t+ ⌈αk⌉). This function is illustrated in the table

below 8.26. For this test we vary α between 0.0 and 2.0, for a fixed input parameter t = 1.

See tables 8.27, 8.28, 8.29, 8.30, 8.31 8.32, 8.33 and figures 8.11 and 8.12. As the figures

show, the hit rate initially grows with α but then becomes almost independent of α once

α ≥ 0.5 while the cost appears to grow linearly with α. Therefore we chose α = 0.5.

scale

0 1 2 3 4 5 6 7 8
α = 0.0

Lk

1 1 1 1 1 1 1 1 1
α = 0.3 1 2 2 2 3 3 3 4 4
α = 0.5 1 2 2 3 3 4 4 5 5
α = 1.0 1 2 3 4 5 6 7 8 9
α = 1.5 1 3 4 6 7 9 10 12 13
α = 2.0 1 3 5 7 9 11 13 15 17
α = 2.5 1 4 6 9 11 14 16 19 21

Table 8.26: The influence of α on the size of Lk.

α = 0.0
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 8.38 22% 5% 8.95 32% 5%
box 9.14 92% 3% 8.48 84% 10%
cycl 9.98 40% 8% 8.62 36% 11%
prmc 10.13 42% 7% 10.03 54% 13%
ball 2.31 66% 3% 2.79 98% 3%
volv 7.69 60% 8% 8.92 86% 6%
Total 7.94 54% 6% 7.97 65% 8 %

Table 8.27: Results obtained by MSFit with α = 0.0.
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α = 0.5
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 19.60 48% 10% 20.92 64% 13%
box 18.72 90% 9% 17.47 98% 3%
cycl 21.08 70% 8% 21.89 76% 10%
prmc 24.68 78% 5% 24.25 92% 5%
ball 5.20 74% 6% 5.93 98% 3%
volv 18.20 64% 7% 20.09 100% 0%
Total 17.91 71% 8% 18.42 88% 6 %

Table 8.28: Results obtained by MSFit with α = 0.5.

α = 0.75
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 24.86 58% 11% 25.21 72% 8%
box 22.55 88% 7% 20.84 96% 3%
cycl 27.07 70% 4% 27.04 82% 3%
prmc 29.01 82% 8% 29.38 92% 8%
ball 6.37 84% 3% 6.74 94% 3%
volv 21.83 64% 6% 24.37 98% 3%
Total 21.95 74% 7% 22.26 89% 5 %

Table 8.29: Results obtained by MSFit with α = 0.75.

α = 1.0
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 25.23 60% 9% 25.88 68% 5%
box 22.25 90% 6% 21.45 88% 5%
cycl 27.00 70% 15% 27.59 80% 10%
prmc 29.99 82% 7% 30.71 90% 6%
ball 6.39 86% 3% 6.67 100% 0%
volv 23.41 62% 5% 25.21 98% 3%
Total 22.38 75% 8% 22.92 87% 5 %

Table 8.30: Results obtained by MSFit with α = 1.0.
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α = 1.25
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 32.29 64% 11% 33.00 70% 8%
box 29.55 76% 7% 28.29 92% 3%
cycl 38.22 66% 7% 38.03 86% 3%
prmc 41.94 82% 7% 40.71 94% 3%
ball 8.35 78% 9% 8.92 100% 0%
volv 30.35 68% 5% 32.92 100% 0%
Total 30.12 72% 8% 30.31 90% 3 %

Table 8.31: Results obtained by MSFit with α = 1.25.

α = 1.5
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 34.92 60% 9% 36.53 78% 5%
box 32.88 78% 8% 29.94 96% 3%
cycl 41.05 74% 3% 40.29 92% 7%
prmc 44.46 92% 3% 43.19 92% 3%
ball 8.30 82% 3% 9.14 98% 3%
volv 33.84 64% 7% 36.13 100% 0%
Total 32.57 75% 6% 32.54 93% 4 %

Table 8.32: Results obtained by MSFit with α = 1.5.

α = 2.0
dataset REAL SINT

model NR/106 HA HD NR/106 HA HD

cyl 39.02 58% 8% 40.61 82% 3%
box 34.62 76% 3% 33.14 100% 0%
cycl 47.45 66% 10% 46.27 96% 3%
prmc 51.46 86% 3% 50.58 92% 3%
ball 9.26 82% 12% 9.77 90% 4%
volv 38.68 66% 7% 41.09 98% 3%
Total 36.75 72% 7% 36.91 93% 3 %

Table 8.33: Results obtained by MSFit with α = 2.0.
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Figure 8.11: The effect of the parameter that determine the queue size α on the hit rate.
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Figure 8.12: The effect of the parameter that determine the queue size α on the compu-
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Chapter 9

Conclusion

As the tests in Chapter 8 showed, our MSFit algorithm can determine successfully the

pose and deformations of complex tridimensional models (with a dozen free parameters

and under significant deformation) on 70−75% of cases from a given 2D image. The tests

shows its suitability to the intended applications, namely deformable biological models

and optical microscope images.

9.1 Contribuitions of this thesis

The main contribution of this thesis is a multiscale 3D-2D fitting algorithm (MSFit) to

perform this task. The algorithm can be adapted for other tasks that require matching

a 3D model of deformable organism to a 2D image, such as finding all instances of a

specified organism in a given image; identifying an imaged organism among a collection

of known organisms; and locating all images from a given collection where a specified

organism appears.

TheMSFit algorithm also differs from most published 3D-2D model fitting algorithms

in that it allows extreme deformations (limited only by the model itself). While several of

those solutions use multiscale technique for efficiency [17, 19], MSFit also uses it to cope

with ambiguities (such as bilateral symmetry), occlusion and others complicating factors.

To that end, MSFit processes not one but several candidate fittings, in parallel through

all scales, in a way similar to Zampieri’s multiscale image retrieval method [58, 57].

Another feature of our method is that it does not require the identification of salient

points or lines in the image, and is insensitive to lighting and color variations. This is a

significant difference over most other published methods [48, 19, 17]. Instead, MSFit uses

the outline and other silhouette edges of the projected object, with a special normalized

gradient metric.

Our implementation of the MSFit algorithm also uses a new nonlinear optimiza-
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tion method, whose core is a quadratic minimizer using a divided-edge simplex sampling

schema. Key features of this method are the automatic detection of irrelevant parameters

and the automatic choice of sampling step for each relevant parameter.

9.2 Future work

The running time of the algorithm is still fairly high (2 minutes per image with the most

complex models). We believe this can be speeded up considerably by further tuning of

the internal parameters and of the details of the optimization step. Other future work

consists in apply multi-objective optimization to obtain the best internal parameters.



Appendix A

Nonlinear optimization method

In this chater we present a method for nonlinear optimization that was created by us that

is based on quadratic interpolation, on the search for stationary point and edge-divided

simplex.

A.1 Function optimization by the edge-divided sim-

plex method

A.1.1 Quadratic interpolation

We consider first the problem of determining a quadratic function Q : Rn → R from given

values at certain sample points. The function can be written in matrix form as

Q(x) = x⊤Ax+ x⊤B + C (A.1)

where A is a symmetric n × n matrix, B is a column n-vector and C is a constant. The

coefficients A, B and C have m = (n + 1)(n + 2)/2 unknown elements, and therefore

they could be obtained in principle from the values of Q(qi) of Q at m sampling points

qi, i ∈ {0..m − 1} by solving a system with m linear equations. However, depending on

the placement of the sampling points qi, the system may be indeterminate or numerically

unstable. We show that by proper selection of the sample points, the function can be

determined directly by a simple stable formula.

Our method samples Q at the corners and edge midpoints of an arbitrary simplex in

R
n. We start with a simplex S = (p0, p1, ..., pn) with n + 1 points not all in the same

hyper-plane. Then we compute the midpoints pij = (pi+pj)/2 between the vertices pi and

pj, for 0 ≤ i, j ≤ n. Note that pii = pi and pij = pji, so there are only n(n−1)/2 midpoints

to be computed. In total we have the minimum required number m = (n+ 2)(n+ 1)/2
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of sample points. See figure A.1.
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Figure A.1: A simplex of R2 and the derived sampling points pij.

Next we express the function Q in terms of barycentric coordinates relative to the simplex

S. Namely, we write

Q(x) = Q̃(z) = z⊤ T z (A.2)

where z is the column vector of n + 1 barycentric coordinates of the point x relative to

the simplex vertices p0, p1, ..., pn. That is, z = (z0, z1, ..., zn) such that

n
�

i=0

zi = 1 and
n

�

i=0

zipi = x (A.3)

The vector z is an element of the canonical affine n-space A
n, the set of all vectors of

R
n+1 that have unit sum.

Let yij be the given function value at point pij. Then the interpolating homogeneous

quadratic function Q̃ can be obtained by the formula

Q̃(z) =
n

�

i=0

yii φi(z) +
n

�

i,j=0

i�=j

yijψij(z) (A.4)

where φi and ψij are the elements of the quadratic interpolating basis for the sampling

points pii and pij in barycentric coordinates. Namely,

φi(z) = 2 zi(zi − 1/2) (A.5)

ψij(z) = 2 zi zj (A.6)

Observe that

φi(prs) = (i = r)(i = s) (A.7)
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for all i, r, s ∈ {0...m}, and

ψij(prs) = ((i = r)(j = s) + (i = s)(j = r))/2 (A.8)

for all i, j, r, s ∈ {0...m} with i �= j. Therefore the matrix T in formula (A.2) is given by

Tij =

�

yi if i = j

2yij − (yi + yj)/2 if i �= j
(A.9)

A.1.2 Quadratic optimization

Now consider the problem of finding the stationary point (minimum, maximum, or saddle

point) of a quadratic function Q : Rn → R. If Q is given by formula (A.1), the solution

is the point x∗ ∈ R
n such that ▽Q(x∗) = 0 where

▽Q(x∗) = 2Ax∗ + B (A.10)

If Q is expressed in barycentric coordinates by formula (A.2), the minimum, maximum

or saddle point of the corresponding function Q̃ is the point z∗ ∈ A
n such that ▽Q̃(z∗) =

(λ, λ, ..., λ) for some λ ∈ R, where ▽Q̃ is the gradient of Q̃ in R
n+1; that is

▽Q̃(z∗) = 2T z∗ (A.11)

Therefore the point z∗ can be found by solving the linear system Mz∗ = D where M is

the matrix with n+ 2 lines and n+ 2 columns

M =

























1

1

2T 1

1

1

1 1 1 1 1 1 0

























D is the column (n+ 2)-vector (0, 0, .., 0, 1)⊤, and z∗ is the column vector of the (n+ 2)

unknowns (z∗
0 , z

∗
1 , ..., z

∗
n, λ)

⊤. Then the point x∗ can be computed from z∗ by the formula

(A.3).

This method will probably fail if the matrix A of formula (A.1) has a null or a very

small eigenvalue; that is, if there is a principal direction along which the original function

Q is approximately affine (first degree polynomial). In those cases the matrix M will be

singular or near-singular.
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A.1.3 Iterative quadratic optimization

Suppose now that we want to find a local stationary point (minimum, maximum, or

saddle point) x∗ of a nonlinear function f : Rn → R (the goal function) that is twice

differentiable. Suppose also we have an initial guess x(0) for the solution and an upper

bound δ(0) for the distance from x(0) to the true solution x∗. We can do so by an iterating

the quadratic optimization algorithm of section A.1.2. See algorithm 2. The source code

available at [9].

Procedure 2 DivSmpMin(f, x, δ, ǫ, t, θ, α, β, σ)

Requires: A function f ; the number n of variables, an initial guess x ∈ R
n; the initial er-

ror estimate δ; the error tolerance ǫ; the maximum number of iterations t; the relative
simplex radius θ; the uncertainty adjustment factors α and β; and the optimization
direction σ ∈ {−1, 0 + 1}.

Returns: The local optimum point x∗ of f and the new uncertainty estimate δ
1: while t ≥ 0 do
2: r ← θ δ;
3: (p, y) ← SimplexSample(f, n, x, r);
4: z∗ ← OptQuad(f, n, y);
5: x∗ ← �n+1

i=0 z
∗
i pii;

6: d ← �x − x∗�;
7: if (d > δ) then x∗ ← x+ δ (x − x∗)/d;
8: if (σ = +1) then
9: Let yij the maximum sample function value;

10: if (f(x∗) < yij) then x∗ ← pij; d ← �x − x∗�;
11: if (σ = −1) then
12: Let yij the minimum sample function value;
13: if (f(x∗) > yij) then x∗ ← pij; d ← �x − x∗�;
14: δ∗ = min{αδ, β

√
d2 + n}

15: x ← x∗; δ ← δ∗; t ← t − 1;
16: if (δ∗ < ǫ) then return (x, δ);
17: end while
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At each step, our algorithm first generates a simplex S with circumradius θδ surrounding

the current guess x, where θ is some fixed parameter usually smaller than 1. Then we

interpolate the goal function f by a quadratic function Q at the vertices and midpoints

of S, as described in section A.1.1. Next we compute the stationary point x∗ of Q as

described in section A.1.2. If the new guess is adequate, we compute a new uncertainty δ

based on the current δ and the distance �x∗ −x�, and we set the next guess x to x∗. This

process is repeated until the estimated uncertainty δ is less than a prescribed tolerance ǫ,

or a fixed computation budget is exhausted.

The input parameter σ indicates whether the algorithm should search for a maximum

(σ = +1), a minimum (σ = −1) or any stationary point (σ = 0). The new guess x∗ is

considered to be inadequate if the length �x∗ − x� of the displacement is greater than

δ. In that case we truncate to displacement to length δ preserving its direction (step 7).

When looking for a minimum (σ = −1) or a maximum (σ = +1), the new guess x∗ is

inadequate also if its function value is not better than the sample values. If so, we set x∗

to the point pij that has the best value of f(pij)and adjust x according (steps 8 to 13).

To justify this method we observe that if the vertices of S are sufficiently close to the

optimum x∗, then Q is to close to f ; and if f is positive definite at x∗, then the stationary

point x∗ of Q will be close to true optimum x∗ of f . In fact, convergence is expected to

be quadratic as in Newton’s root-finding method, for the same reasons.

This method generally fails if the quadratic interpolant Q is not a good match to the

goal function; either because function is “noisy” or because the initial guess is not close

enough to the minimum, or because the initial simplex radius θδ is too large.

A.1.4 Examples

To ilustrate the method we test it with various functions and various starting guesses.

For each test we ran the algorithm for several starting guesses located on a regular array

around the true minimum. We show the results as an “arrow plot” (such as figure A.3)

where each arrow, representing one run of algorithm, connects the starting guess to the

final result of that run. We also show a trace of a single run of the algorithm (such as

figure A.4) where each arrow connects one intermediate guess x to the next guess x∗, and

each circle has center at the current guess x and radius equal to the uncertainty δ. In all

tests, we set α = 0.9, β = 0.9, θ = 0.5, ǫ = 0.001 and t = 10.

Quadratic function

For this test, the goal function is a quadratic polynomial in two variables [27].

f1(x0, x1) = (x0 + 2x1 − 7)2 + (2x0 + x1 − 5)2 (A.12)
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The minimum x∗ of f1 is the point (1, 3) where f1 has the value 0. As expected for a

quadratic function the algorithm finds the minimum in a single iteration.
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Figure A.2: Graph of the function f1. The plotted region is [−11, 11] × [−11, 11].
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Figure A.3: The initial guesses and final results of our algorithm applied to f1 at several
points in the square [−10, 10]× [−10, 10]. The plotted region is [−11, 11]× [−11, 11]. The
uncertainty initial δ was set to 15.
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Figure A.4: Behavior of our algorithm applied to f1 with initial guess x = (−10, 10) and
uncertainty δ = 15. The plotted region is [−11, 11] × [−11, 11].

Trigonometric polynomial

For this test, the goal function f2 [27] is a sum of sinusoidal waves along x0 and x1, with

various frequencies and phases

f2(x0, x1) =

[cos(2x1 + 1) + 2 cos(3x1 + 2)+

3 cos(4x1 + 3) + 4 cos(5x1 + 4) + 5 cos(6x1 + 5)]

[cos(1) + 2 cos(x0 + 2)+

3 cos(2x0 + 3) + 4 cos(3x0 + 4) + 5 cos(4x0 + 5)]

(A.13)

The minimum point x∗ of f2 is approximately (4.97648, 4.85806), where has value ≈
−176.542.



90 Appendix A. Nonlinear optimization method

Figure A.5: Graph of the function f2. The plotted regions is [3.95, 5.95] × [3.85, 5.85].
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Figure A.6: The initial guesses and final results of our algorithm applied to f2 at several
points in the square [4.2, 5.7] × [4.1, 5.6]. The initial uncertainty δ was set to 0.85. The
plotted region is [3.95, 5.95] × [3.85, 5.85].
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Figure A.7: Behavior of our algorithm applied f2 at initial guess x = (4.25, 4.25) and
uncertainty δ = 1.25. The plotted region is [3.95, 5.95] × [3.85, 5.85].

Sextic polynomial

For this test, the goal function f3 is the “six-hump camel back function,” [10] a polynomial

of the sixth degree

f3(x0, x1) = (4 − 21

10
x2

0 +
x4

0

3
) x2

0 + x0 x1 + (−4 + 4x2
1)x

2
1 (A.14)

This function has two local minima, approximately at (−0.0898, 0.7126) and (0.0898,−0.7126),

both with value ≈ −1.0316.
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Figure A.8: Graph of the function f3. The plotted region is [−1.25, 1.25] × [−1.25, 1.25].
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Figure A.9: The initial guesses and final results of our algorithm applied to f3 at several
points in the square [−1, 1] × [−1, 1], with initial uncertainty δ was set to 0.85. The
plotted region is [−1.25, 1.25] × [−1.25, 1.25].
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Figure A.10: Behavior of our algorithm applied to f3 with initial guess x = (0.75, 0),
uncertainty δ = 1.1. The plotted region is [−1.25, 1.25] × [−1.25, 1.25].

Trigonometric noise function

For this test, the goal function f4 is a sum of four sinusoidal waves of various directions

and phases, and widely different frequencies

f4(x0, x1) = 2 cos(3x0 + 4x1) + cos(5x0 − 2x1)

+ 1
12
cos(30x0 + 12x1) + 1

15
cos(13x0 − 27x1)

(A.15)

This function has several local minima; some of them are approximately located at

(0.6829, 0.22), (−0.6829,−0.22), (1.218, 1.418) and (−1.218,−1.418), with slightly dif-

ferent function values close to −3.041.



96 Appendix A. Nonlinear optimization method

Figure A.11: Graph of the function f4. The plotted region is [−2, 2] × [−2, 2].
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Figure A.12: The initial guesses and final results of our algorithm applied to f4 at several
points in the square [−1, 1]×[−1, 1]. The initial uncertainty δ was set to 0.95. The plotted
region is [−2, 2] × [−2, 2].
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Figure A.13: Behavior of our algorithm applied to f4 with initial guess x = (0, 0), uncer-
tainty δ = 0.85. The plotted region is [−2, 2] × [−2, 2].



Bibliography

[1] Image copied from website http://www.wikipedia.org.

[2] Image copied from website http://www.marksimmons.org/microscope/

microimages/pages/paramecium2.htm.

[3] Image copied from website http://www.ncbi.nlm.nih.gov/projects/genome/

guide/nematode/index.html.

[4] Image copied from website http://www.kiwicrossing.com/drrussell/projects.

html.

[5] Image copied from website http://www.appslabs.com.au/daphnia.htm.

[6] Image copied from website http://botit.botany.wisc.edu/images/130/

symbiosis_images/Paramecium_w_Chlorella_MC.html.

[7] Image copied from website http://www.ufmt.br/bionet/conteudos/01.09.04/

tip_mic.htm.

[8] Image rendered by the software POV-Ray. Available at http://www.povray.org/.

[9] The source code available at http://www.liv.ic.unicamp.br/˜danillorp/Onl/.

[10] Molga, Marcin and Smutnicki, Czesaw. Test functions for optimization needs

(2005). http://www.bioinformaticslaboratory.nl/twikidata/pub/Education/

NBICResearchSchool/Optimization/VanKampen/BackgroundInformation/

TestFunctions-Optimization.pdf.

[11] Bouchra Abboud, Franck Davoine, and Mo Dang. Facial expression recognition and

synthesis based on an appearance model, 2004.

[12] Ankur Agarwal and Bill Triggs. Recovering 3d human pose from monocular images.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):44–58, 2006.

99



100 BIBLIOGRAPHY

[13] Bruno Arnaldi, Thierry Priol, and Kadi Bouatouch. A new space subdivision method

for ray tracing csg modelled scenes. The Visual Computer, 3(2):98–108, 1987.

[14] Duret L et al. Aury JM, Jaillon O. Global trends of whole-genome duplications re-

vealed by the ciliate paramecium tetraurelia. In Nature 444, pages 171–178, Novem-

ber 2006.

[15] Serge Belongie, Jitendra Malik, and Jan Puzicha. Matching shapes, 2001.

[16] Stefano Berretti, Alberto Del Bimbo, Pietro Pala, and Francisco Silva-Mata.

Geodesic distances for 3d-3d and 2d-3d face recognition. In ICME’07, pages 1515–

1518, 2007.

[17] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces.

In Proceedings of the 26th annual conference on Computer graphics and interac-

tive techniques, SIGGRAPH ’99, pages 187–194, New York, NY, USA, 1999. ACM

Press/Addison-Wesley Publishing Co.

[18] Peter Blicher and Sebastien Roy. Fast lighting/rendering solution for matching a 2d

image to a database of 3d models: ”lightsphere”, 2001.

[19] Chun-Wei Chen and Chieh-Chih Wang. 3d active appearance model for aligning

faces in 2d images. In IEEE/RSJ International Conference on Robots and Systems

(IROS), Nice, France, September 2008.

[20] Ting Chen, Xiaoxu Wang, Dimitris N. Metaxas, and Leon Axel. 3d cardiac motion

tracking using robust point matching and meshless deformable models. In ISBI,

pages 280–283, 2008.

[21] Chi-Wei Chu and Ramakant Nevatia. Real-time 3d body pose tracking from multiple

2d images. In Proceedings of the 5th international conference on Articulated Motion

and Deformable Objects, AMDO ’08, pages 42–52, Berlin, Heidelberg, 2008. Springer-

Verlag.

[22] Haili Chui and Anand Rangarajan. A new algorithm for non-rigid point matching.

Computer Vision and Pattern Recognition, IEEE Computer Society Conference on,

2:2044, 2000.

[23] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active appear-

ance models. In IEEE Transactions on Pattern Analysis and Machine Intelligence,

pages 484–498. Springer, 1998.



BIBLIOGRAPHY 101

[24] Helena Cristina da Gama Leitão and Jorge Stolfi. A multiscale method for the

reassembly of two-dimensional fragmented objects. IEEE Trans. Pattern Anal. Mach.

Intell., 24(9):1239–1251, 2002.

[25] Elisa de Cassia Silva. Modelagem de deformacao do espaco 2.5D para estruturas

biologicas. Master thesis, UNICAMP, BRAZIL., 2011.

[26] Elisa de Cassia Silva Rodrigues, Anamaria Gomide, and Jorge Stolfi. A User-editable

C1-Continuous 2.5D Space Deformation Method For 3D Models. Technical Report

IC-11-14, Institute of Computing, University of Campinas, June 2011.

[27] Luiz H. de Figueiredo, Ronald Van Iwaarden, and Jorge Stolfi. Fast interval branch-

and-bound methods for unconstrained global optimization with affine arithmetic.

Technical Report IC-97-08, Institute of Computing, Univ. of Campinas, June 1997.

[28] Xinbo Gao, Ya Su, Xuelong Li, and Dacheng Tao. A review of active appearance

models. Trans. Sys. Man Cyber Part C, 40(2):145–158, March 2010.

[29] Lie Gu and Takeo Kanade. 3d alignment of face in a single image. In Proceedings

of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition - Volume 1, CVPR ’06, pages 1305–1312, Washington, DC, USA, 2006.

IEEE Computer Society.

[30] M.G. Danilouchkine H.J. Lamb J.H.C. Reiber B.P.F. Lelieveldt H.C. van Assen,

R.J. van der Geest. Three-dimensional active shape model matching for left ventricle

segmentation in cardiac ct. In Proceedings of the SPIE 2003. Medical Imaging: Image

Processing., United States, San Diego, 2003.

[31] Changbo Hu, Jing Xiao, Iain Matthews, Simon Baker, Jeffrey Cohn, and Takeo

Kanade. Fitting a single active appearance model simultaneously to multiple images.

In Proceedings of the British Machine Vision Conference, September 2004.

[32] Yumi Iwashita, Kurazu Ryo, Kozo Konishi, Masahiko Nakamoto, Hashizu Makoto,

and Tsutomu Hasegawa. Fast alignment of 3d geometrical models and 2d grayscale

images using 2d distance maps. Syst. Comput. Japan, 38:52–62, December 2007.

[33] Mike Fornefett Karl, Karl Rohr, and H. Siegfried Stiehl. Elastic registration of

medical images using radial basis functions with compact support. In In Proc. of

CVPR’99, pages 402–407, 1999.

[34] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In SIGGRAPH,

pages 269–278, 1986.



102 BIBLIOGRAPHY

[35] Shian-Ru Ke, LiangJia Zhu, Jenq-Neng Hwang, Hung-I Pai, Kung-Ming Lan, and

Chih-Pin Liao. Real-time 3d human pose estimation from monocular view with

applications to event detection and video gaming. In Proceedings of the 2010 7th

IEEE International Conference on Advanced Video and Signal Based Surveillance,

AVSS ’10, pages 489–496, Washington, DC, USA, 2010. IEEE Computer Society.

[36] James Kennedy and Russell Eberhart. Particle swarm optimization, 1995.

[37] Jeffrey M. Lane and Richard F. Riesenfeld. A theoretical development for the com-

puter generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern

Anal. Mach. Intell., 2(1):35–46, January 1980.

[38] J. K. Lowry. . crustacea, the higher taxa: Description, identification, and information

retrieval. In Cyclopoida (Copepoda, Maxillipoda), October 1999.

[39] Sean Luke. Essentials of Metaheuristics. Lulu, 2009. Available for free at

http://cs.gmu.edu/∼sean/book/metaheuristics/.

[40] Tim Mcinerney, Tim Mcinerney, and Demetri Terzopoulos. Deformable models in

medical image analysis: A survey, 1996.

[41] Rodrigo Minetto. Reconhecimento de texto e rastreamento de objetos 2d/3d. PhD

Thesis., 2012.

[42] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer

Journal, 7:308–313, 1965.

[43] Danillo Roberto Pereira. Representacão e cálculo eficiente da iluminação global na
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