
~

Tratamento de Exceções no

Desenvolvimento de Sistemas Tolerantes

a Falhas Baseados em Componentes

e ""aprovad

~a pela Bane'.~]E°;" ()
Campinas,de d . 11 c:~

; . (h ~
i COORDENADORDEPOS.GÁADáAÇÃO
~-- C~9:i.~-

Este exemplar corresponde à redação final da

Tese devidamente corrigida e defendida por

Fernando J. Castor de Lima Filho e aprovada

pela Banca Examinadora.

Campinas, 30 de novembro de 2006.

~~ 1f)O-~r~ ~
Cecília Mary Fischet1Rubira (Orientadora)

. Teseapresentadaao Instituto de Computação,
UNICAMP, como requisito parcial para a ob-

tenção do título de Doutor em Ciência da Com-

putação.

1

~

FICHA CATALOGRÁFICA ELABORADA PELA

BffiLIOTECA DO IMECC DA UNICAMP
Bibliotecária:MiriamCristinaAlves- CRB8a/ 5094

Lima Filho, Femando José Castor de.

L628t Tratamento de exceções no desenvolvimento de sistemas

tolerantes a falhas baseados em componenteslFemando José Castor de

Lima Filho -- Campinas, [S.P. :s.n.], 2006.

Orientadora : Cecília Mary Fischer Rubira

Tese (Doutorado) - Universidade Estadual de Campinas, Instituto

de Computação.

1. Tolerância a falhas (Computação). 2. Componentes de software.

3. Software - Arquitetura. I. Rubira, Cecília Mary Fischer. TI.

Universidade Estadual de Campinas. Instituto de Computação. TIL

Título.

Título em inglês: Exception handling in the development of fault-tolerant component-based systems

Palavras-chave em inglês (Keywords): 1. Fault tolerance (Computing). 2. Software
components. 3. Software -- Architecture.

Área de concentração: Engenharia de software

Titulação: Doutor em Ciência da Computação

Banca examinadora: Profa. Dra. Cecília Mary Fischer Rubira (IC-Unicamp)

Prof. Dr. Paulo Henrique Monteiro Borba (CIn-UFPE)

Prof. Dr. Avelino Francisco Zorzo (FACIN-PUCRS)

Profa. Dra. Eliane Martins (IC-Unicamp)

Prof. Dr. Luiz Eduardo Buzato (IC-Unicamp)

Data da defesa: 30/11/2006

Programa de Pós-Graduação: Doutorado em Ciência da Computação

(j

~
~
"f)

r+-

lj

TERMO DE APROVAÇÃO

Tese defendida e aprovada em 30 de novembro de 2006, pela Banca

examinadora composta pelos Professores Doutores:

'~A~~
Prot. Dr. Paulo Henrique Monteiro Borba
Cin - UFPE

Prot. . Avelino Francisco Zorzo
FACIN - PUCRS

,~/lCVWL Q~
Prota. Dra. Eliane Martins

IC - UNICAMP

Prot. Dr. Luiz Eduardo

IC - UNICAMP

~ "
. :\"i~ --. ãJ ~LC-

~~ I ." VJ->d'\-V-v tV...U0~~CU
Prota. Dra. Cecíli ' Mary Fischer Rubira
IC - UNICAMP

Instituto de Computação

Universidade Estadual de Campinas

Tratamento de Exceções no
Desenvolvimento de Sistemas Tolerantes

a Falhas Baseados em Componentes

FernandoJ. Castor de Lima Filho 1

Novembro de 2006

Banca Examinadora:

. Cecília ~lary Fischer Rubira (Orientadora)

. Paulo Borba

Centro de Informática - UFPE

. Avelino Zorzo
Faculdade de Informática - PUC-RS

. Eliane Martins

Instituto de Computação - UNICAMP

. Luiz Eduardo Buzato

Instituto de Computação - UNICAMP

. Ana Cristina MeIo (Suplente)
Instituo de Matemática e EstatístiCa - USP

. Ariadne Rizzoni Carvalho (Suplente)
Instituto de Computação - UNICAMP

lBolsista da FAPESP, processo 02/13996-2.

v

@ Fernando J. Castor de Lima Filho, 2007.
Todos os direitos reservados.

Vll

Resumo

Mecanismos de tratamento de exceções foram concebidos com o intuito de facilitar o ge-

renciamento da complexidade de sistemas de software tolerantes a falhas. Eles promovem

uma separação textual expĺıcita entre o código normal e o código que lida com situações

anormais, a fim de dar suporte à construção de programas que são mais concisos, fáceis

de evoluir e confiáveis. Diversas linguagens de programação modernas e a maioria dos

modelos de componentes implementam mecanismos de tratamento de exceções.

Apesar de seus muitos benef́ıcios, tratamento de exceções pode ser a fonte de diversas

falhas de projeto se usado de maneira indisciplinada. Estudos recentes mostram que

desenvolvedores de sistemas de grande escala baseados em infra-estruturas de componentes

têm hábitos, no tocante ao uso de tratamento de exceções, que tornam suas aplicações

vulneráveis a falhas e dif́ıceis de se manter. Componentes de software criam novos desafios

com os quais mecanismos de tratamento de exceções tradicionais não lidam, o que aumenta

a probabilidade de que problemas ocorram. Alguns exemplos são indisponibilidade de

código fonte e incompatibilidades arquiteturais.

Neste trabalho propomos duas técnicas complementares centradas em tratamento de

exceções para a construção de sistemas tolerantes a falhas baseados em componentes.

Ambas têm ênfase na estrutura do sistema como um meio para se reduzir o impacto de

mecanismos de tolerância a falhas em sua complexidade total e o número de falhas de

projeto decorrentes dessa complexidade. A primeira é uma abordagem para o projeto

arquitetural dos mecanismos de recuperação de erros de um sistema. Ela trata do pro-

blema de verificar se uma arquitetura de software satisfaz certas propriedades relativas

ao fluxo de exceções entre componentes arquiteturais, por exemplo, se todas as exceções

lançadas no ńıvel arquitetural são tratadas. A abordagem proposta lança mão de diversas

ferramentas existentes para automatizar ao máximo esse processo. A segunda consiste em

aplicar programação orientada a aspectos (AOP) a fim de melhorar a modularização de

código de tratamento de exceções. Conduzimos um estudo aprofundado com o objetivo

de melhorar o entendimento geral sobre o efeitos de AOP no código de tratamento de

exceções e identificar as situações onde seu uso é vantajoso e onde não é.

vii

Abstract

Exception handling mechanisms were conceived as a means to help managing the com-

plexity of fault-tolerant software. They promote an explicit textual separation between

normal code and the code that deals with abnormal situations, in order to support the

construction of programs that are more concise, evolvable, and reliable. Several mains-

tream programming languages and most of the existing component models implement

exception handling mechanisms.

In spite of its many benefits, exception handling can be a source of many design faults

if used in an ad hoc fashion. Recent studies show that developers of large-scale software

systems based on component infrastructures have habits concerning the use of exception

handling that make applications vulnerable to faults and hard to maintain. Software

components introduce new challenges which are not addressed by traditional exception

handling mechanisms and increase the chances of problems occurring. Examples include

unavailability of source code and architectural mismatches.

In this work, we propose two complementary techniques centered on exception han-

dling for the construction of fault-tolerant component-based systems. Both of them

emphasize system structure as a means to reduce the impact of fault tolerance mechanisms

on the overall complexity of a software system and the number of design faults that stem

from complexity. The first one is an approach for the architectural design of a system’s

error handling capabilities. It addresses the problem of verifying whether a software ar-

chitecture satisfies certain properties of interest pertaining the flow of exceptions between

architectural components, e.g., if all the exceptions signaled at the architectural level

are eventually handled. The proposed approach is based on a set of existing tools that

automate this process as much as possible. The second one consists in applying aspect-

oriented programming (AOP) to better modularize exception handling code. We have

conducted a through study aimed at improving our understanding of the effects of AOP

on exception handling code and identifying the situations where its use is advantageous

and the ones where it is not.

viii

Agradecimentos

Normalmente, uma tese é o resultado do sangue, do suor, das lágrimas e dos neurônios

de uma quantidade de gente muito maior do que caberia na maior das listas de agra-

decimentos. Esta não é exceção à regra e eu gostaria de expressar meus mui sinceros

agradecimentos a todas as pessoas que contribúıram de alguma forma, mı́nima que seja,

para a sua realização. Em especial, eu gostaria de agradecer...

Em primeiro lugar à minha famı́lia, sem a qual eu não existiria e graças a quem eu

cheguei até aqui: meus pais, Fernando e Maria, minha irmã, Donandréa, minha “mãe

preta”, Tia Zefinha, meu cunhado, Filipe, meu Avô, Nelson, e o dogo Bara. Amo vocês.

À minha orientadora Cećılia, pelos muitos ensinamentos, pelas várias discussões e

idéias interessantes, sempre regadas a muito café, pelas diversas oportunidades que me

proporcionou de evoluir como pesquisador e indiv́ıduo, por estar lá nos momentos parti-

cularmente dif́ıceis e por ser muito legal.

À minha querida esposa, Amália, a quem dedico esta tese e as minhas principais con-

quistas. Muito obrigado por me fazer tão feliz e por ser a companheira mais maravilhosa

com quem alguém poderia sonhar.

Aos meus colegas do Grupo de Engenharia de Software e Confiabilidade do IC-UNICAMP,

com quem aprendi bastante e que foram instrumentais para a conclusão deste trabalho:

Ana Elisa, Hélder, Leonardo, Leonel, Milton, Moacir, Patrick, Paulo Asterio, Peterson,

Raquel, Ricardo, Rodrigo, Tiago, e Vińıcius.

À minha querida famı́lia aqui em Campinas, Tio Chico, Tia Virǵılia, Cacá, Má e Gabi,

por terem tornado tranquila a mudança de cidade e por sempre terem feito eu me sentir

em casa, me acolhendo como um filho/irmão.

Aos inúmeros amigos que fiz ao longo desses anos de UNICAMP: Adilson, Alexandre

(Capitão), Borin, Daniel Manzatto, Dentinho, Diogo, Evandro (O Predador), Fernanda,

Giovani, Greg, Jackson, Juliana Freitag, Juliana Santi, Lásaro, Leo Rangel, Renato, Ro-

drigo Minetto, Rodrigo Oliveira, Tháıs e Tiago. Se eu esqueci o seu nome é porque sou

meio desatento. Por favor, tolere a minha falha.

Aos meus muitos amigos de Recife que, apesar de longe geograficamente, sempre se

fizeram muito presentes. Nesse caso é tanta gente que eu prefiro não sair listando porque

ix

sei que vou terminar esquecendo alguém.

Aos Profs. Alessandro Garcia, Rogério de Lemos e Alexander Romanovsky, pela

oportunidade de imergir um pouco nas culturas de outras universidades, em outro páıs, e

pelas contribuições fundamentais que fizeram para esta tese. Agradeço também a Manuel

Fähndrich, pela chance de fazer um estágio na Microsoft Research e pesquisar sobre

assuntos que não tinham praticamente nada a ver com a minha tese mas eram muito

divertidos. Agradeço também aos alunos de outras universidades com os quais tive o

prazer de trabalhar diretamente: Eduardo Magno Figueiredo e Nélio Cacho.

Aos Profs. Paulo Borba, Ana Cavalcanti e Augusto Sampaio, por me apresentar

ao trabalho que eu decidi fazer pro resto da vida e por me mostrar que engenharia de

software é uma área interessant́ıssima, apesar do que aquelas matérias de graduação em

que a quantidade de documentação é medida em arrobas dizem.

A todos os Profs. do IC-UNICAMP, em especial Resende, Eliane, Buzato, Edmundo

e Cortes, e a todos os funcionários do IC-UNICAMP, em especial, Dna. Neuza, Nelson

(estuda estuda que a vida não tá fácil não!), Ademilson, Vera, Carlos e Camila.

À FAPESP, processo 02/13996-2, pelo apoio financeiro, sem o qual este trabalho não

teria sido posśıvel. Pelo apoio financeiro agradeço também aos projetos CompGov (FINEP

1843/04) e RODIN (IST 511599).

E por último, mas nem um tico menos importante, ao Rock’n’Roll, porque todos os

dias ele está salvando a minha vida.

x

Sumário

Resumo vii

Abstract viii

Agradecimentos ix

1 Introdução 1

1.1 Contexto . 1

1.1.1 Desenvolvimento Baseado em Componentes 3

1.1.2 Tolerância a Falhas e Tratamento de Exceções 4

1.1.3 Arquitetura de Software . 8

1.1.4 Programação Orientada a Aspectos 9

1.2 Problema . 11

1.3 Uma Abordagem Tolerante a Falhas para a Integração de Componentes . . 13

1.3.1 Visão Geral . 13

1.3.2 Um Mecanismo de Tratamento de Exceções no Ńıvel Arquitetural . 14

1.3.3 Especificação do Fluxo de Exceções em Arquiteturas de Software . . 15

1.3.4 Um Modelo de Fluxo de Exceções no Ńıvel Arquitetural 16

1.3.5 Verificação de Tratamento de Exceções em Sistemas Concorrentes

Cooperativos . 16

1.3.6 Validação . 17

1.4 Uma Abordagem Tolerante a Falhas para a Construção de Componentes . 17

1.4.1 Visão Geral . 17

1.4.2 Um Estudo Quantitativo sobre a Aspectização de Tratamento de

Exceções . 18

1.4.3 Um Catálogo de Cenários para Guiar a Modularização de Trata-

mento de Exceções com Aspectos 20

1.5 Contribuições . 20

1.6 Organização da Tese . 21

xi

2 Um Mecanismo de Tratamento de Exceções em Nı́vel Arquitetural para

Aplicações Baseadas em Componentes 23

2.1 Introduction . 24

2.2 Background . 25

2.2.1 Exception Handling . 25

2.2.2 C2 Architectural Style . 26

2.2.3 Idealised C2 Component . 27

2.3 Exception Handling at the Architectural Level 29

2.4 An Exception Handling System for Component-Based Applications 30

2.4.1 Exception Representation . 30

2.4.2 Handler Attachment and Definition 31

2.4.3 Exception Propagation and Handler Search 32

2.4.4 Continuation of the Control Flow 33

2.5 Exception Handling System in the Framework FaTC2 34

2.5.1 IC2C . 35

2.5.2 NormalActivity Component . 35

2.5.3 AbnormalActivity Component . 37

2.5.4 iC2C top, iC2C bottom and iC2C internal Connectors 38

2.6 An Application Example . 38

2.6.1 Description of the Architecture . 38

2.7 Related Work . 40

2.8 Conclusions and Future Work . 41

2.9 Resumo do Caṕıtulo 2 . 44

3 Especificação de Fluxo de Exceções em Arquiteturas de Software 45

3.1 Introduction . 47

3.2 Background . 49

3.2.1 Exception Handling . 49

3.2.2 ACME . 50

3.2.3 Alloy . 52

3.3 Specification of Exceptions at the Architectural Level 53

3.3.1 A Motivating Example . 54

3.3.2 Requirements . 56

3.4 The Aereal Framework . 57

3.4.1 Defining exceptional styles . 59

3.4.2 Specifying the exception flow view 60

3.4.3 Composing architecture description and exception flow views 63

3.4.4 Analyzing exception flow . 65

xii

3.5 Evaluation . 68

3.5.1 Mining Control System Case Study 69

3.5.2 Financial System Case Study . 76

3.6 Related Work . 81

3.6.1 Architectural Analysis and ADLs 81

3.6.2 Exceptions at the Architectural Level 83

3.6.3 Exception Flow Analysis . 83

3.7 Conclusions and Future Work . 84

3.8 Resumo do Caṕıtulo 3 . 86

4 Análise de Fluxo de Exceções no Nı́vel Arquitetural 87

4.1 Introduction . 88

4.2 Background . 90

4.2.1 Exception Handling . 90

4.2.2 Alloy . 91

4.3 Proposed Approach . 91

4.4 Generic Exception Flow Model . 93

4.4.1 Representation of Components, Ducts, and Exceptions 94

4.4.2 System Structure . 95

4.4.3 Exception Interfaces and Exception Handling Contexts 97

4.4.4 Exception Flow . 98

4.4.5 Exception Propagation Cycles . 100

4.5 Materializing the Model . 103

4.6 Related Work . 105

4.7 Concluding Remarks . 107

4.8 Resumo do Caṕıtulo 4 . 108

5 Verificação de Tratamento Coordenado de Exceções 109

5.1 Introduction . 110

5.2 Background . 112

5.2.1 Coordinated Atomic Actions . 112

5.2.2 Alloy Design Language . 113

5.3 Proposed Approach . 114

5.3.1 Overview . 114

5.3.2 Properties of Interest . 116

5.4 Case Study . 117

5.4.1 CA Action-Based Design . 118

5.4.2 Applying the Proposed Approach 118

5.5 Concluding Remarks . 122

xiii

5.6 Resumo do Caṕıtulo 5 . 124

6 Um Estudo Quantitativo sobre a Modularização de Tratamento de Exceções

com Aspectos 125

6.1 Introduction . 127

6.2 Study Setting . 129

6.2.1 Aspectizing Exception Handling . 129

6.2.2 Our Case Studies . 131

6.2.3 Metrics Suite . 132

6.3 Study Results . 133

6.3.1 Separation of Concerns Measures 134

6.3.2 Coupling and Cohesion Measures 136

6.3.3 Size Measures . 136

6.4 Discussion . 138

6.4.1 Coupling, cohesion, and conciseness 138

6.4.2 Is exception handling a reusable aspect? 139

6.4.3 When to aspectize exception handling 141

6.4.4 Exception handling and other aspects 143

6.4.5 Limitations of this Study . 146

6.5 Related Work . 146

6.6 Concluding Remarks . 148

6.7 Resumo do Caṕıtulo 6 . 150

7 Extração de Tratamento de Exceções para Aspectos: Um Catálogo de

Práticas 151

7.1 Introduction . 153

7.2 Background . 154

7.2.1 Exception Handling . 154

7.2.2 AspectJ Basics . 155

7.2.3 AOP and Exceptions . 156

7.3 Classification for Exception Handling Code 157

7.4 A Catalog of Exception Handling Scenarios 160

7.5 Evaluation . 168

7.6 Related Work . 170

7.7 Concluding Remarks . 171

7.8 Resumo do Caṕıtulo 7 . 173

xiv

8 Conclusões 174

8.1 Problema e Solução Proposta . 174

8.2 Resumo das Contribuições . 175

8.3 Outros Resultados . 176

8.3.1 Métodos para o Projeto e Implementação do Comportamento Ex-

cepcional . 176

8.3.2 Um Arcabouço Baseado em Aspectos para Sistemas Concorrentes

Cooperativos . 177

8.3.3 Evolução de Sistemas Baseados em Componentes 178

8.3.4 Um Ambiente para o Desenvolvimento de Sistemas Baseados em

Componentes . 178

8.4 Extensões . 179

A Generic CA Actions Model in Alloy 181

B Fault-Tolerant Insulin Pump Therapy in Alloy 188

C Partial Specifications of Generic CA Actions Model and Fault-Tolerant

Insulin Pump Therapy in B 197

Bibliografia 202

xv

Lista de Tabelas

3.1 Components in the fault-tolerance view of the ATC system. 56

3.2 Properties employed by the exception flow view to associate information

about exceptions to architectural elements. 62

3.3 Exceptions related to the AirExtractorControl component. 71

3.4 Some exceptions signaled by the AccountOps component. 78

4.1 Elements of the proposed exception flow model. 94

4.2 Contraints on the CatchesFrom and SignalsTo relations. 96

4.3 Contraints on the PortMap relation. 97

4.4 Contraints on the Signals, Generates, Catches, Masks, and DoesNotMask

relations. 99

4.5 Properties that define auxiliary relations Unhandled and Propagated. . . . 100

5.1 Basic elements of the proposed model. Each element is a type whose ins-

tances are used to specify CA action-based systems. 116

5.2 Exceptions in the CA action-based design. 119

6.1 Metrics Suite . 133

6.2 Separation of Concerns Metrics. 134

6.3 Coupling and Cohesion Metrics. 135

6.4 Size Metrics. 137

6.5 Some exception handling scenarios according to the proposed classification 143

6.6 Justification for the “no” and “depends” scenarios of Table 6.5. 143

7.1 Exception handling scenarios according to the proposed classification . . . 161

7.2 Scores for the factors that hinder the aspectization of error handling. . . . 162

7.3 Limitations of various approaches to expose local variables to handlers. . . 165

7.4 General strategies for structuring error handling with aspects in each scenario.167

7.5 Metrics Suite . 168

7.6 Results of measuring the three versions of the target systems. 169

xvi

Lista de Figuras

1.1 Componente tolerante a falhas ideal. 8

2.1 An example of software architecture based on the C2 style. 27

2.2 Internal structure of an iC2C. 28

2.3 Definition of handlers in ALEx. 31

2.4 Nesting exception handling contexts. 32

2.5 A C2 architecture composed by a client component and a server iC2C. . . 34

2.6 A scenario illustrating the termination model adopted by ALEx. 35

2.7 A partial class hierarchy for C2.FW and FaTC2. 36

2.8 C2 configuration for the fault-tolerant Mine Pump Control System. 39

3.1 Idealised Fault-Tolerant Component. 50

3.2 ACME definition of the Client/Server style. 52

3.3 A trivial ACME system. 53

3.4 Fault tolerance architectural view of an ATC system. 55

3.5 Overview of the Aereal framework. 58

3.6 Architecture of a simple Internet Banking system. 59

3.7 Partial definition of the Exceptional Client/Server style. 61

3.8 Exception flow view of the IB system. 63

3.9 Algorithm executed by the Composer tool. 65

3.10 Extended architecture description of the Internet Banking system. 66

3.11 Properties BP1 and DP1 specified in Alloy. 68

3.12 A counterexample generated by AA. 69

3.13 Schematic diagram of the mining system. 70

3.14 Architecture design of the mining control system. 70

3.15 Partial ACME specification of the ControlStation component. 73

3.16 An example of software architecture based on the C2 style. 74

3.17 An invariant defined by the ExceptionalC2Fam ACME family. 74

3.18 Extended architecture description of the multi-style mining control system. 75

xvii

3.19 Partial components and connectors view of the architecture of the Financial

System . 78

3.20 Alloy specification of property DP2. 79

3.21 Composition of the Financial System’s exception flow views. 80

4.1 Idealized Fault-Tolerant Component. 91

4.2 Overview of the proposed approach. White rectangles represent activities

and shaded rectangles with dashed borders represent artifacts. 92

4.3 A trivial software architecture. 95

4.4 An algorithm to compute the exception propagations associated to an ele-

ment. 102

4.5 Layered architecture of a mining control system. 103

4.6 Partial Alloy specification of the mining control system. 104

4.7 Alloy specifications of properties BP13, DP1, DP2, and AP1. 106

5.1 A CA action example. 113

5.2 Overview of the proposed approach. White rectangles represent activities

and shaded rectangles with dashed borders represent artifacts. 115

5.3 CA action-based design of the Fault-Tolerant Insulin Pump Therapy. . . . 119

6.1 Three similar advice that cannot be combined. 140

6.2 Aspect interaction categories. 145

7.1 A simple exception handling aspect. 156

7.2 Examples of the categories of the proposed classification for error handling

code. 158

7.3 A Block Handler example . 164

xviii

Caṕıtulo 1

Introdução

Este caṕıtulo contextualiza a tese, introduz o problema que ela visa tratar, descreve

sucintamente as soluções adotadas e apresenta um resumo das contribuições. O caṕıtulo

também explica alguns dos conceitos que serão usados ao longo de toda a tese e descreve

sua organização.

1.1 Contexto

Nos últimos anos, o desenvolvimento baseado em componentes [170] (DBC) vem sendo

usado na construção de grandes sistemas de software. Essa tendência é embasada na

idéia de que componentes reusáveis que provêm funcionalidades prontas para usar po-

dem encurtar tempos de desenvolvimento e tempo para comercializar1 [181]. O prinćıpio

fundamental do DBC é que sistemas de software devem ser desenvolvidos a partir da inte-

gração de componentes pré-existentes, normalmente constrúıdos por várias organizações.

Algumas das principais vantagens do uso componentes de software são (i) facilidade de

substituição e extensão [41, 9], (ii) reuso [170] e (iii) aumento na previsibilidade do sis-

tema [9].

Uma implicação direta do DBC no processo de desenvolvimento de software é a divisão

de responsabilidades entre a construção de componentes e sua integração para formar siste-

mas [170]. Por um lado, construtores de componentes de software reusáveis não têm

conhecimento sobre os diferentes contextos nos quais componentes serão implantados2

(design for reuse [104]). Por outro lado, esses componentes são providos normalmente

como ‘caixas pretas’. Isto é, os projetos internos desses componentes e seus códigos-

fonte muitas vezes não estão dispońıveis para integradores de sistemas (design with

1Do inglês: time-to-market.
2Do inglês: deployed.

1

1.1. Contexto 2

reuse [104]). Estes últimos têm conhecimento apenas sobre o que é especificado nas in-

terfaces dos componentes, normalmente os serviços que o componente oferece (interfaces

providas) e aqueles dos quais depende (interfaces requeridas). Para tornar viável a inte-

gração de componentes desenvolvidos independentemente, o processo de desenvolvimento

empregado deve ter forte ênfase na arquitetura de software do sistema. De acordo com

Clements e Northrop [48], arquitetura de software é a estrutura dos componentes de um

programa/sistema, suas relações e prinćıpios e diretrizes que controlam seu projeto e

evolução ao longo do tempo.

Nos últimos anos, o uso de componentes de software, que até então era restrito à

construção de sistemas de informação, com requisitos moderados de confiabilidade3, vem

se expandindo na direção de áreas de aplicação nas quais o preço de uma falha pode

ser alt́ıssimo, por exemplo, sistemas embarcados executados em aviões [124]. De acordo

com o Departamento de Transportes dos EUA, o reuso de componentes de software em

aplicações com essa caracteŕıstica se deve a questões econômicas e ao avanço que o DBC

vem experimentando nos últimos anos [176]. Na construção de sistemas de software com

um alto grau de confiabilidade, uma consequência da dicotomia construção/integração é

o requisito de que abordagens para o desenvolvimento de tais aplicações garantam essa

confiabilidade em dois ńıveis: (i) para cada componente individual do sistema, de modo

que seja capaz de prover serviços de acordo com sua especificação; e (ii) na integração

de um conjunto de componentes, de modo que as interações entre esses componentes não

produzam resultados inesperados.

Sistemas cujos defeitos podem ameaçar vidas humanas ou resultar em grandes perdas

financeiras normalmente são feitos tolerantes a falhas [5], ou seja, capazes de prover o

seu serviço, ainda que apenas parcialmente, na presença de falhas. Sistemas tolerantes a

falhas são constrúıdos partindo-se do pressuposto de que não é posśıvel desenvolver um

sistema que sempre se comporte de acordo com sua especificação [5, 146]. Portanto, esses

sistemas apresentam mecanismos para detectar erros em seus estados e se recuperar desses

erros. Em um sistema tolerante a falhas, quando um erro é detectado, é preciso levar o

estado do sistema para um estado consistente e bem-definido para que o sistema possa

continuar sua execução normal.

Técnicas de tolerância a falhas surgem como candidatas naturais para auxiliar no

desenvolvimento de sistemas confiáveis baseados em componentes. Primeiro, porque a

visibilidade de caixa preta de alguns componentes de software torna dif́ıcil garantir que

esses componentes apresentam o grau esperado de confiabilidade, apesar de alguns esforços

recentes visando reverter essa situação para certos tipos de componente [105]. Segundo,

porque mesmo quando essas garantias são fornecidas, normalmente não é posśıvel ter

certeza que as interações entre componentes produzidos por diferentes fontes sempre pro-

3Do inglês: dependability.

1.1. Contexto 3

duzirão o resultado esperado. Finalmente, ainda que seja posśıvel verificar de maneira

automática que interações entre componentes de um sistema sempre seguem um proto-

colo bem definido, é necessário garantir que o sistema não falha de maneira catastrófica

quando um problema ocorre devido a um elemento externo, por exemplo, um canal de

comunicação falho ou um dispositivo mecânico defeituoso com o qual o sistema interage.

Tendo esses fatores em vista, pode-se afirmar que técnicas de tolerância a falhas comple-

mentam outras técnicas para tornar confiável um sistema baseado em componentes, por

exemplo, verificação automática [6] e testes [123, 183].

Esta tese foca no desenvolvimento de sistemas tolerantes a falhas baseados em compo-

nentes. Nossa abordagem consiste em combinar avanços recentes nas áreas de arquitetura

de software [159] e desenvolvimento de software orientado a aspectos [106] com técnicas

conhecidas de estruturação de sistemas tolerantes a falhas, mais especificamente, trata-

mento de exceções [52]. As Seções 1.1.1-1.1.4 descrevem alguns dos conceitos necessários

para o entendimento deste trabalho. Nas seções seguintes são apresentados o problema que

a tese se propõe a tratar (Seção 1.2), as soluções propostas para esse problema (Seções 1.3

e 1.4), uma lista de contribuições (Seção 1.5) e a organização da tese (Seção 1.6).

1.1.1 Desenvolvimento Baseado em Componentes

A idéia de construir sistemas a partir de partes pré-fabricadas é antiga na indústria.

Há décadas que carros, computadores e até mesmo casas são constrúıdos dessa maneira.

O conceito de produção de software a partir de componentes pré-fabricados é relativa-

mente recente, porém. Foi mencionado pela primeira vez por Mcllroy[126] em 1969. Em

1996 foi realizado o First International Workshop on Component-Oriented Programming

(WCOP’96), a partir do qual o interesse pelas técnicas baseadas em componentes vem

crescendo e se consolidando, seja sob o t́ıtulo de desenvolvimento baseado em compo-

nentes (DBC), ou de engenharia de software baseada em componentes (ESBC). Alguns

autores afirmam que o reuso de componentes de software tem potencial para reduzir dras-

ticamente os custos e o tempo necessários para construir uma aplicação [127]. Há diversas

definições para ESBC e DBC, como por exemplo:

“In CBD, the developer’s task is to assemble a (large) software system from

(a large number of) reusable components, and perhaps a comparatively small

amount of code written for the particular application”. [149].

“Component-based software engineering is concerned with the rapid assembly

of systems from components where: (i) components and frameworks have certi-

fied properties; and (ii) these certified properties provide the basis for predicting

the properties of systems built from components.”[9].

1.1. Contexto 4

Szyperski afirma que um componente, no contexto do desenvolvimento baseado em

componentes, deve [169]: (i) presumir que faz parte de uma arquitetura; (ii) apresen-

tar funcionalidades através de interfaces providas; (iii) explicitar suas dependências pa-

ramétricas através de interfaces requeridas; (iv) ter dependências estáticas; (v) ser base-

ado em alguma plataforma de componentes espećıfica; (vi) requerer outros componentes;

e (vii) requerer contexto por-instância. O autor afirma ainda que, para tornar posśıvel a

composição de componentes, todas as dependências e suposições importantes da imple-

mentação de um componente precisam ser capturadas. Essa é uma afirmação importante,

já que vai contra a tendência dos modelos de componentes atuais de enfatizar apenas as

funcionalidades que componentes provêm.

Apesar das diferenças entre as definições, há um consenso de que no DBC a ênfase

está na integração entre componentes e não apenas em sua construção. Espera-se que essa

mudança no foco do processo de desenvolvimento torne posśıvel a construção de sistemas

melhores, com maior velocidade, maior grau de reuso e gastando-se menos dinheiro.

Para tornar viável a integração entre componentes desenvolvidos independentemente,

foram criados os modelos de componentes. Um modelo de componentes especifica padrões

que devem ser impostos sobre desenvolvedores de componentes. A conformidade com um

modelo de componentes é uma das caracteŕısticas que diferencia componentes de outras

formas de modularização [9]. Para auxiliar no desenvolvimento baseado em modelos de

componentes, foram desenvolvidos diversos frameworks de componentes, implementações

de serviços que dão suporte a um determinado modelo de componentes e garantem que

suas restrições não são violadas. Atualmente, os modelos de componentes mais popu-

lares são Enterprise Javabeans [168], da Sun, DCOM [131], da Microsoft, e o CORBA

Component Model [139], da OMG.

1.1.2 Tolerância a Falhas e Tratamento de Exceções

Sistemas de hardware normalmente incluem mecanismos para detecção e correção de fa-

lhas. Alguns exemplos desses mecanismos são o uso de códigos de redundância ćıclica

(CRC) e de replicação de dispositivos (como em discos ŕıgidos RAID). Para aplicações

que envolvem risco para vidas humanas (como aplicações médicas) ou risco de grandes

perdas financeiras (como na pesquisa espacial), chamadas cŕıticas, é essencial garantir

que o serviço pelo qual a aplicação é responsável continuará sendo provido, ainda que

apenas parcialmente, em situações nas quais falhas ocorram. Mesmo para sistemas que

não são de missão cŕıtica, diversas razões motivam o uso de mecanismos que os tornem

capazes de prover serviço na presença de falhas[8]. Definimos um sistema como tolerante

a falhas se este é capaz de prover serviço de acordo com sua especificação, mesmo na

presença de falhas[5].

1.1. Contexto 5

Embora os termos “falha”, “erro” e “defeito” sejam usados no dia-a-dia como sinônimos,

na terminologia de tolerância a falhas essas palavras têm significados distintos e bem defi-

nidos. Um defeito ocorre quando um sistema deixa de prover um determinado serviço ou

o faz em desacordo com a sua especificação. Defeitos são sempre observáveis externamente

ao sistema. Um defeito é causado por um erro; uma inconsistência no estado interno do

sistema. A ocorrência de erros pode ter como conseqüência a ocorrência de defeitos. Uma

falha corresponde a um evento ou seqüência de eventos que propicia o surgimento de um

erro num componente ou no sistema como um todo. Um erro é a manifestação de uma

falha no sistema.

De acordo com Anderson e Lee [5], a tolerância a falhas se divide em quatro fases

que devem formar a base do projeto e implementação de qualquer sistema tolerante a

falhas. Essas fases são (i) detecção de erros, (ii) confinamento e avaliação de danos, (iii)

recuperação de erros e (iv) tratamento de falhas e continuação de serviço.

Detecção de erros. Para que um sistema seja capaz de tolerar uma falha, seus efeitos

precisam primeiro ser detectados. Uma falha se manifesta em um sistema através de um

erro, uma inconsistência em seu estado interno. Embora falhas não possam ser detectadas

diretamente [5], erros podem. Consequentemente todo sistema tolerante a falhas deve ser

capaz de detectar erros que possam vir a se manifestar em seu estado. Um exemplo de

técnica bastante popular para detectar erros é o uso de invariantes, predicados que devem

ser verdade durante toda a execução do sistema. Se, em algum momento da execução do

sistema, um desses invariantes não for satisfeito, um erro ocorreu.

Confinamento e avaliação de danos. Depois que um erro é detectado, é posśıvel que

já tenha afetado uma parte bem maior do estado do sistema do que se suspeita, devido ao

intervalo de tempo entre o momento em que o erro ocorre e o momento em que é detectado.

Consequentemente, quando um erro é detectado, é necessário avaliar a extensão dos danos

causados. Sistemas tolerantes a falhas devem ser desenvolvidos de modo que erros possam

ser confinados a regiões bem-definidas, quando ocorrem, facilitando assim a avaliação de

danos.

Recuperação de erros. Quando um erro é detectado, é preciso levar o estado do

sistema para um estado consistente e bem-definido para que o sistema possa continuar

sua execução normal. Técnicas para recuperação de erros se dividem em duas grandes

categorias que diferem na abrangência e na maneira como corrigem o estado do sistema:

recuperação de erros por retrocesso4 e recuperação de erros por avanço 5.

4Do inglês: backward error recovery.
5Do inglês: forward error recovery.

1.1. Contexto 6

Técnicas de recuperação de erros por retrocesso restauram o estado do sistema para

algum estado anterior na esperança de que este seja consistente. Essas técnicas são [5]:

independentes de avaliação de danos; (ii) capazes de prover recuperação de falhas ar-

bitrárias; (iii) um conceito geral, aplicável a todos os sistemas; e (iv) facilmente providas

como um mecanismo. Mecanismos de pontos de recuperação6 são um exemplo t́ıpico de

técnica de recuperação por retrocesso.

Transações atômicas são um exemplo bastante popular de técnica de recuperação de

erros por retrocesso.

Técnicas de recuperação de erros por avanço partem do prinćıpio de que, quando um

erro é detectado, o sistema deve ser levado para um novo estado garantidamente consis-

tente. Recuperação de erros por avanço permite que poĺıticas de recuperação eficientes

e altamente especializadas sejam implementadas. Entretanto, essas técnicas requerem

uma quantidade maior de informação contextual para que possam ser empregadas. A

recuperação de erros por avanço é [5]: (i) dependente da avaliação de danos; (ii) ina-

propriada para recuperar o sistema de falhas não-antecipadas; (iii) projetada especifica-

mente para um sistema particular; e (iv) imposśıvel de implementar como um mecanismo

genérico. Recuperação de erros por avanço normalmente é introduzida em sistemas de

software através de tratamento de exceções. Esta técnica é discutida com mais detalhes

na Seção 1.1.2.

Tratamento de falhas e continuação de serviço. Em algumas situações, levar o

sistema para um estado consistente não é o suficiente para garantir que este funcionará de

forma correta. Por exemplo, se um erro ocorre em decorrência de uma falha de projeto,

corrigir o erro não resolve o problema. Como a falha que o produziu é permanente, esse

erro voltará sistematicamente a acontecer. Neste caso, a única maneira de garantir que o

sistema funcionará corretamente é remover a própria falha. Um problema no tratamento

de falhas é que a detecção de um erro não necessariamente serve para identificar a falha.

Conforme dito anteriormente, um erro pode ter um efeito não-local sobre o estado do

sistema e relacioná-lo com a ocorrência de uma falha pode ser muito dif́ıcil. Partindo

do pressuposto de que a falha foi identificada corretamente, técnicas para tratamento de

falhas normalmente se baseiam na idéia de substituir o componente problemático por uma

variante correta.

Tratamento de Exceções

Quando um programa apresenta desvios com relação à sua especificação devido a uma

falha, é posśıvel que erros sejam introduzidos em seu estado. Quando um erro é detec-

6Do inglês: checkpointing.

1.1. Contexto 7

tado, é necessário sinalizar sua ocorrência para que o sistema, caso inclua mecanismos

de tolerância a falhas, seja capaz de corrigi-lo. Como espera-se que essa situação ocorra

raramente, o sinal que indica a ocorrência de um erro é tradicionalmente chamado de

exceção. Para que o sistema possa continuar a se comportar de acordo com sua es-

pecificação, mediante o lançamento de uma exceção, é necessário tratá-la. A parte de

um sistema que implementa seu comportamento na ausência de falhas, conforme definido

por sua especificação, é chamada de comportamento normal. Similarmente, a parte

do sistema que implementa seus mecanismos de recuperação de erros, responsáveis por

torná-lo tolerante a falhas, é chamada de comportamento excepcional, ou anormal.

Tratamento de exceções [80] é uma técnica para estruturar o comportamento excepcional

de um programa, de modo que erros possam ser detectados, sinalizados e tratados.

Diversas linguagens de programação populares dão suporte a tratamento de exceções,

através da definição e implementação de sistemas de tratamento exceções7. Essas lin-

guagens permitem que desenvolvedores definam exceções e os tratadores correspondentes.

Quando um erro é detectado, uma exceção é sinalizada e o tratador adequado é procu-

rado e acionado de maneira automática. O conjunto de tratadores de exceções de um

programa define a seu comportamento excepcional. Se uma mesma exceção pode ser si-

nalizada em diferentes partes de um programa, é posśıvel que tratadores diferentes sejam

executados. A escolha do tratador que será acionado depende do contexto de tratamento

de exceções em que a exceção é lançada. Um contexto de tratamento é uma região de

um programa dentro da qual as mesmas exceções são tratadas da mesma maneira. Cada

contexto tem um conjunto de tratadores associados que são acionados quando as exceções

correspondentes são sinalizadas. Exemplos t́ıpicos de contextos de tratamento de exceções

em linguagens orientadas a objetos são comandos, blocos de código, métodos, classes e

objetos.

O conceito de componente tolerante a falhas ideal (CTFI) [5] define um fra-

mework conceitual para estruturar tratamento de exceções em sistemas de software. Um

CTFI é um componente8 no qual as partes responsáveis pelo comportamento normal e

pelo comportamento excepcional estão separadas e bem-definidas, dentro da sua estru-

tura interna, permitindo que erros sejam detectados e tratados com maior facilidade. O

objetivo da abordagem de CTFI é proporcionar uma forma de estruturar sistemas que

minimize o impacto dos mecanismos de tolerância a falhas em sua complexidade global.

A Figura 1.1 apresenta a estrutura interna de um componente tolerante a falhas ideal

e os tipos de mensagem que ele troca com outros componentes na arquitetura. Ao rece-

ber uma requisição de serviço, um CTFI fornece uma resposta normal se a requisição é

7Do inglês: exception handling systems.
8No sentido mais amplo; um objeto, um subsistema, um componente de software ou até mesmo um

sistema inteiro.

1.1. Contexto 8

Figura 1.1: Componente tolerante a falhas ideal.

processada com sucesso. Se a requisição de serviço não é válida, é sinalizada uma exceção

de interface. Se o serviço está dispońıvel mas ocorre uma falha durante o processamento

da requisição e o CTFI não é capaz de tratá-la internamente, é levantada uma exceção de

defeito.

1.1.3 Arquitetura de Software

Assim como acontece com o desenvolvimento de software baseado em componentes, não

existe uma definição universalmente aceita para arquitetura de software [11, 143]. Há um

conjunto de caracteŕısticas, porém, que é mencionado na grande maioria das definições

existentes na literatura. Essas caracteŕısticas são sumarizadas pela definição adotada por

Clements e Northrop [48]:

“(Software Architecture is) the structure of the components of a program/sys-

tem, their interrelationships and principles and guidelines governing their de-

sign and evolution over time.”

A arquitetura de um sistema de software reflete o conjunto de decisões que devem

ser tomadas primeiro no projeto desse sistema; aquelas que são mais dif́ıceis de mudar

em etapas posteriores do desenvolvimento. A arquitetura de software envolve a estru-

tura e organização através das quais componentes e subsistemas interagem para formar

sistemas e as propriedades de sistemas que podem ser melhor projetadas e analisadas

sistemicamente [110]. É largamente aceito que a arquitetura de um sistema de software

tem um forte impacto em sua capacidade de satisfazer seus requisitos de qualidade, como

segurança, disponibilidade e desempenho, entre outros [11, 47, 165].

1.1. Contexto 9

Uma arquitetura de software normalmente é representada e documentada através de

várias perspectivas, ou visões [109]. Cada visão descreve um aspecto diferente da ar-

quitetura do sistema, similarmente aos diversos tipos de plantas que são usados para

representar os vários aspectos de uma construção. Alguns exemplos clássicos [109] de

visões arquiteturais são: (i) a visão de processos, que lida com concorrência e distribuição

e representa um conjunto de unidades de computação, potencialmente distribúıdas, que

se comunicam através de um barramento ou uma rede; e (ii) a visão lógica, que decompõe

o sistema em um conjunto de abstrações e indica os serviços que essas abstrações provêm

e requerem e como elas se relacionam. Uma visão arquitetural mostra como a arquitetura

do sistema atinge um determinado atributo de qualidade [11]. Por exemplo, a visão de

camadas indica o quão portável um sistema é, enquanto a visão de implantação pode ser

usada para se analisar a performance e a confiabilidade do sistema [46].

As linguagens para descrição de arquiteturas, ou ADLs9, surgiram devido à necessi-

dade de representar arquiteturas de uma maneira mais formal. ACME[76] e Wright[4]

são exemplos de ADLs. Embora exista uma diversidade considerável no que concerne às

capacidades das diferentes ADLs existentes, todas compartilham de uma mesma base con-

ceitual da qual os principais elementos são componentes, conectores e configurações [128].

Componentes são elementos arquiteturais responsáveis por realizar computações. Como é

esperado que as interações entre componentes sejam complexas, essas interações são mate-

rializadas explicitamente através de conectores. Um conjunto de componentes interligados

através de conectores caracteriza uma configuração.

A arquitetura de sistemas de software não-triviais normalmente envolvem diversos

estilos arquiteturais. Um estilo arquitetural define um vocabulário de tipos de elementos

de projeto que fazem parte de uma famı́lia de arquiteturas e as regras pelas quais esse

elementos são compostos [76]. Alguns exemplos são o baseado em camadas, cliente-

servidor e pipes and filters [158].

1.1.4 Programação Orientada a Aspectos

A programação orientada a aspectos (AOP) [106] foi proposta na segunda metade dos

anos 90 como uma maneira de modularizar interesses transversais10, interesses cuja im-

plementação está espalhada em diversas partes do código do sistema, misturada a código

responsável por outros requisitos. Exemplos de tais interesses são logging e autenticação.

AOP é baseada na idéia de que sistemas computacionais são melhor programados se

especificarmos separadamente os seus vários interesses e alguma descrição de seus relacio-

namentos e usarmos os mecanismos providos por AOP para combiná-los em um programa

9Do inglês: architecture description languages.
10Do inglês: crosscutting concerns.

1.1. Contexto 10

coerente [63].

Um elemento importante da programação orientada a aspectos é a dicotomia entre

linguagem base, ou de componentes, e linguagem de aspectos [40]. Essa dicotomia se

baseia nos seguintes prinćıpios: (i) sistemas são decompostos em aspectos e componentes;

(ii) aspectos modularizam interesses crosscutting; (iii) componentes modularizam interes-

ses não-crosscutting; e (iv) aspectos devem ser explicitamente representados a parte de

componentes e outros aspectos. Alguns exemplos de linguagens orientadas a aspectos

são AspectJ [114] e Eos [144]. A primeira usa Java como linguagem base, enquanto a

segunda usa C#. Programas nas linguagens base e de aspectos são combinados através

de um processo chamado weaving. A ferramenta responsável por essa tarefa é chamada

de weaver.

As duas propriedades fundamentais que tornam AOP tão útil e diferenciam esse pa-

radigma de todos os que vieram antes são quantificação11 e transparência12 [67]. Quanti-

ficação é a capacidade de escrever comandos unitários que são capazes de afetar diversas

partes de um programa. Quantificação torna posśıvel expressar comandos do tipo “nos

programas P, sempre que a condição C for verdadeira, execute a ação A”. Transparência,

no contexto da programação orientada a aspectos, quer dizer que programas escritos na

linguagem base não precisam ser preparados especificamente para serem combinados com

aspectos; podem ser escritos como se aspectos simplesmente não existissem. Alguns au-

tores afirmam que transparência é um termo muito forte e que há benef́ıcios em organizar

programas na linguage base de tal maneira que combiná-los com os aspectos sejam mais

fácil [136]. Por isso, muitos autores preferem usar o termo não-invasão13, ao invés de

transparência. É importante frisar que, independentemente do termo empregado, é fun-

damental a idéia de que programas na linguagem base não devem fazer referência expĺıcita

a aspectos.

Diversos trabalhos existentes na literatura mostram que AOP é útil para modularizar

vários requisitos comuns no desenvolvimento de sistemas de software. Alguns exem-

plos são distribuição [37, 164], persistência [114, 164], autenticação [114], tratamento de

exceções [24, 117] e implementação de padrões de projeto [19, 74, 91]. O impacto da

programação orientada a aspectos tanto na academia quanto na indústria nos últimos

anos é tão grande que a revista Technology Review de janeiro de 2001 incluiu a pro-

gramação orientada a aspectos em uma lista de “dez tecnologias emergentes que mudarão

o mundo” [147].

11Do inglês: quantification.
12Do inglês: obliviousness.
13Do inglês: non-invasiveness.

1.2. Problema 11

1.2 Problema

Desde os primórdios da computação tolerante a falhas, em geral, e da tolerância a falhas

em sistemas de software, em particular, é sabido que a principal causa de falhas de projeto

residuais, erros de programação popularmente conhecidos como bugs, em sistemas de

software é a complexidade desses sistemas [146]. Na área de sistemas de software cŕıticos,

há um consenso de que sistemas mais simples tendem a ser mais seguros14 [116, 94]. O uso

de técnicas adequadas de estruturação é crucial para a construção de sistemas de software

tolerantes a falhas [146]. Caso contrário, a complexidade adicional que mecanismos de

tolerância a falhas introduzem nos sistemas propiciará a aparição de um número ainda

mais acentuado de falhas de projeto.

Mecanismos de tratamento de exceções [52, 80] foram concebidos com o intuito de

se gerenciar a complexidade de software tolerante a falhas. Esses mecanismos visam se-

parar o código “normal”, responsável pelas funcionalidades da aplicação, e o código que

torna o sistema tolerante a falhas, a fim de dar suporte à construção de programas mais

confiáveis, concisos e fáceis de evoluir [142]. Tratamento de exceções é uma técnica para

a implementação de recuperação de erros por avanço (Seção 1.1). Consequentemente,

complementa outras abordagens para tornar sistemas mais confiáveis, como transações

atômicas [83]. O uso de tratamento de exceções na construção de diversos sistemas de

grande escala e o fato de diversas linguagens de programação orientadas a objetos moder-

nas, como Java [82], Ada [171], C# [95] e C++ [108], e modelos de componentes, como

DCOM [131], CCM [139] e EJB [168], implementarem tratamento de exceções atestam

sua importância para a prática atual do desenvolvimento de software.

Frequentemente, uma parte considerável do código de um sistema é dedicada à de-

tecção e ao tratamento de erros. Em 1989, Cristian [52] afirmava que frequentemente essa

parcela do código correspondia a mais de dois terços do código total de uma aplicação.

Um estudo mais recente [182] envolvendo um conjunto de aplicações de código aberto

escritas em Java detectou que entre 1 e 5% dos textos dos programas consistia de tra-

tadores de exceções (blocos catch em Java) e ações de limpeza (blocos finally). Em

outro estudo [148] que levou em consideração 5 aplicações de grande escala baseadas (com

centas de milhares ou mesmo milhões de linhas de código) na plataforma Java Enterprise

Edition [13], a razão entre o número de tratadores de exceções e o número de operações

em cada aplicação variou entre 0,058 e 1,79. Em um estudo realizado [24] por mim e

alguns colegas (apresentado no Caṕıtulo 6) envolvendo quatro aplicações, duas produzi-

das na indústria e duas na academia, foi detectado que entre 9,9% e 20,8% das operações

incluem código de tratamento de exceções.

Esses números mostram que tratamento de exceções é uma técnica amplamente di-

14Do inglês: safe.

1.2. Problema 12

fundida no desenvolvimento de aplicações reais. Apesar disso, desenvolvedores costumam

focar no comportamento normal das aplicações e só lidar com o código responsável por de-

tectar e tratar erros na etapa de implementação [52, 148], de maneira ad hoc. Essa prática

de projeto e implementação cria uma situação proṕıcia para o aparecimento de falhas de

projeto. O código responsável por detectar e tratar erros costuma estar espalhado em

diversos módulos de um sistema, misturado ao código responsável pelo comportamento

normal, o que dificulta sua estruturação, entendimento e manutenção [117]. Adicional-

mente, mecanismos de tratamento de exceções, quando usados de maneira descuidada,

podem ter um efeito no comportamento do programa similar ao do comando goto [161].

Como consequência desses fatores, um número significativo de falhas de projeto em um sis-

tema de software costuma estar localizado no código responsável pelo seu comportamento

excepcional. Exemplos de tais falhas incluem vazamento de recursos [22, 182], exceções

ignoradas [125, 148] e fluxo de controle imprevisto (uma exceção que não é tratada no

local esperado) [150].

Em sistemas baseados em componentes, um fenômeno similar pode ser observado. Há

evidência de que desenvolvedores de sistemas baseados na plataforma J2EE [13], um dos

padrões da indústria para DBC, apresentam hábitos de programação, no tocante ao uso

de tratamento de exceções, que tornam aplicações vulneráveis a falhas de projeto e dif́ıceis

de manter [148]. Alguns desses hábitos são tratadores vazios e não liberação de recursos

alocados. A isso soma-se o fato de que sistemas baseados em componentes introduzem

complicações que não existem na construção de sistemas de software “tradicionais”: (1)

em um sistema baseado em componentes, o código fonte de um ou mais componentes

pode não estar dispońıvel no momento em que o sistema é integrado [181]; (2) mesmo

quando o código de um componente está dispońıvel, pode não ser recomendável modi-

ficá-lo sob pena de introduzir falhas de projeto [181]; (3) componentes desenvolvidos por

organizações distintas e integrados em um mesmo sistema podem fazer suposições con-

flitantes sobre as maneiras como falham, quais defeitos decorrem dessas falhas e como a

falha de um componente servidor é sinalizada para seus componentes clientes [58] e dessas

suposições resultam incompatibilidades arquiteturais15; e (4) suposições imprecisas feitas

pelos integradores do sistema sobre a confiabilidade dos componentes no contexto em que

serão usados podem esconder modos de falhas [102], por exemplo, o foguete Ariane-5 ex-

plodiu porque um componente reusado do foguete Ariane-4 produziu uma exceção devido

a uma conversão numérica e os integradores do sistema supuseram que esse cenário nem

precisaria ser testado já que, no foguete Ariane-4, ele não podia ocorrer [78].

Este trabalho examina o problema da construção de sistemas tolerantes a falhas ba-

seados em componentes. O enfoque do trabalho está em sistemas de software nos quais a

separação entre comportamento normal e comportamento excepcional é feita através de

15Do inglês: architectural mismatches [75].

1.3. Uma Abordagem Tolerante a Falhas para a Integração de Componentes 13

tratamento de exceções. Tendo em vista a ênfase em sistemas baseados em componentes,

a investigação se divide em duas partes, uma relativa à integração de componentes de

software (design with reuse) e outra relativa à sua construção (design for reuse), o que

resulta em duas perguntas de pesquisa:

1. Como reduzir o número de falhas, em sistemas baseados em componentes, decor-

rentes de suposições conflitantes ou incompletas sobre o comportamento excepcional

dos componentes integrados no sistema?

2. Como melhorar a estruturação interna de componentes de software, de modo a mi-

nimizar o impacto do comportamento excepcional desses componentes sobre a sua

complexidade total?

Esta tese propõe soluções para diminuir a quantidade de falhas de projeto introdu-

zidas em sistemas baseados em componentes pelo uso de tratamento de exceções. Para

alcançar esse fim, são apresentadas duas abordagens complementares, cada uma centrada

em um elemento da dicotomia integração/construção. Ambas têm foco na estrutura do

sistema como uma maneira de gerenciar a sua complexidade e reduzir o número de falhas

de projeto. As Seções 1.3 e 1.4 descrevem as abordagens propostas para integração e

construção de componentes de software tolerantes a falhas, respectivamente.

1.3 Uma Abordagem Tolerante a Falhas para a Inte-

gração de Componentes

1.3.1 Visão Geral

A primeira parte desta tese foca na integração de componentes de software para a cons-

trução de sistemas confiáveis. Mais especificamente, propomos uma abordagem rigorosa

para o projeto arquitetural do comportamento excepcional de sistemas baseados em com-

ponentes. Conforme mencionado na Seção 1.2, o código de tratamento de exceções cos-

tuma ser a fonte de diversas falhas de projeto. Frequentemente, isso se deve ao fato

desse código ser implementado de maneira ad hoc, sem nenhum planejamento a priori.

Nos últimos anos, alguns autores vêm defendendo a idéia de que, para atingir os ńıveis

desejados de confiabilidade, mecanismos para detectar e tratar erros devem ser desen-

volvidos de maneira sistemática, ao longo de todas as fases do desenvolvimento de um

sistema [59, 154, 160]: requisitos, projeto arquitetural, projeto detalhado, implementação

e testes. Idealmente, a construção dos mecanismos de tolerância a falhas de um sistema

devem seguir uma metodologia de desenvolvimento rigorosa (que lança mão de ferramen-

tas e técnicas formais para a construção de partes cŕıticas do sistema) ou inteiramente

1.3. Uma Abordagem Tolerante a Falhas para a Integração de Componentes 14

formal [12], a fim de garantir que os mecanismos que tornam esse sistema confiável são,

eles próprios confiáveis.

Tendo em vista a influência da arquitetura de um sistema de software em sua qualidade

final, se um sistema tem requisitos estritos de confiabilidade e tratamento de exceções

será usado para estruturar seus mecanismos de tolerância a falhas, acreditamos que pode

ser benéfico dar atenção especial ao comportamento excepcional desse sistema durante

a etapa de projeto arquitetural [30, 89, 58]. Partindo dessa premissa, quatro caṕıtulos

(Caṕıtulos 2-5) desta tese refinam, explicam e validam a seguinte hipótese, que responde

à pergunta de pesquisa 1:

Hipótese 1: A descrição rigorosa de como exceções fluem entre componentes

no ńıvel arquitetural e a verificação automática de propriedades relativas ao

comportamento excepcional do sistema nesse ńıvel de abstração aumentam a

chance de que falhas de projeto relacionadas ao comportamento excepcional

sejam detectadas antes que o sistema seja implementado.

1.3.2 Um Mecanismo de Tratamento de Exceções no Nı́vel Ar-

quitetural

A primeira parte desta tese propõe uma abordagem para modelar a arquitetura de um

sistema da perspectiva do seu comportamento excepcional. No ńıvel arquitetural, é ne-

cessário levar em consideração a maneira como estilos arquiteturais [158] influenciam a

propagação de exceções. Um estilo arquitetural define um vocabulário de tipos de ele-

mentos de projeto que fazem parte de uma famı́lia de arquiteturas e as regras pelas quais

esse elementos são compostos [76]. Alguns exemplos são o baseado em camadas, cliente-

servidor e pipes and filters. O artigo “An Architectural-Level Exception Handling System

for Component-Based Applications”, apresentado no Caṕıtulo 2, mostra como um estilo

arquitetural espećıfico, chamado C2 [173], pode influenciar o projeto de um mecanismo de

tratamento de exceções, em especial no que se refere à propagação de exceções. Esse artigo

foca nas exceções que fluem entre os componentes integrados para compor um sistema.

Alguns autores propuseram arcabouços [162, 179] que estendem plataformas de com-

ponentes existentes com suporte à detecção e ao tratamento de exceções. Apesar de

funcionarem no ńıvel arquitetural, esses arcabouços usam os mecanismos de tratamento

de exceções das linguagens de programação empregadas e não levam em consideração as

particularidades de diferentes estilos arquiteturais.

1.3. Uma Abordagem Tolerante a Falhas para a Integração de Componentes 15

1.3.3 Especificação do Fluxo de Exceções em Arquiteturas de

Software

Tendo em vista a influência de estilos arquiteturais na propagação de exceções entre com-

ponentes, abordagens para a descrição e análise de uma arquitetura da perspectiva do

seu comportamento excepcional devem incluir a noção de estilo arquitetural. Essa idéia

é materializada pelo arcabouço Aereal (Architectural Exceptions Reasoning and Analy-

sis) [28], um conjunto de atividades, ferramentas e modelos para a descrição e análise

do comportamento excepcional de um sistema de software a partir de sua arquitetura.

Como estilos arquiteturais diferentes têm poĺıticas distintas para propagação de exceções,

o arcabouço dá suporte à definição de regras sobre como exceções fluem entre elementos

arquiteturais em diferentes estilos. Aereal é baseado em ACME [76], uma linguagem de

intercâmbio para a descrição de arquiteturas, Alloy [98], uma linguagem de especificação

baseada em lógica relacional de primeira ordem, e nos conjuntos de ferramentas associ-

ados [101, 157]. O artigo “Specification of Exception Flow in Software Architectures”

descreve em detalhes a abordagem proposta. Esse artigo compõe o Caṕıtulo 3 desta tese.

Desenvolvimento de software centrado na arquitetura com Aereal exige uma metodo-

logia de desenvolvimento que inclua atividades espećıficas para o levantamento do modelo

de falhas do sistema (as maneiras como o sistema falha e as exceções que são geradas

como consequência) e a especificação do seu comportamento excepcional [54, 154]. O

arcabouço usa como entradas uma descrição da arquitetura do sistema e especificações

informais do seu modelo de falhas e de seu comportamento excepcional. A partir dessas

especificações, o arquiteto de software define uma nova visão arquitetural, chamada Visão

de Fluxo de Exceções, que indica as exceções geradas e tratadas pelos elementos arquite-

turais. Considera-se que um tratador pode propagar uma exceção, ou seja, relançar a

exceção recebida ou uma exceção diferente, ou mascarar a exceção, ou seja, terminar sua

execução sem lançar nenhuma exceção. Em seguida, uma ferramenta provida por Aereal

usa essas informações para identificar todas as exceções que são recebidas e lançadas pelos

elementos arquiteturais do sistema e complementa a descrição da arquitetura com essa

informação. Diversas propriedades relativas ao fluxo de exceções entre os componentes

arquiteturais podem ser analisadas a partir dessa descrição arquitetural estendida. Adi-

cionalmente, o arquiteto pode definir restrições sobre como exceções são propagadas nos

estilos arquiteturais instanciados em uma arquitetura. Usando-se as ferramentas da lin-

guagem ACME, é posśıvel verificar de maneira automática se a arquitetura obedece essas

restrições.

Nos últimos anos, surgiram vários trabalhos cuja idéia central é modelar tratamento de

exceções em ńıvel arquitetural. Alguns desses trabalhos propõem novos mecanismos para

a estruturação do comportamento excepcional no ńıvel arquitetural [89, 57, 58], enquanto

1.3. Uma Abordagem Tolerante a Falhas para a Integração de Componentes 16

outros descrevem extensões relacionadas ao comportamento excepcional para ADLs [97].

Nenhum deles, porém, foca especificamente na descrição do comportamento excepcional

e na verificação de propriedades relacionadas.

1.3.4 Um Modelo de Fluxo de Exceções no Nı́vel Arquitetural

O arcabouço Aereal é baseado em um modelo formal genérico que define quais são res-

ponsabilidades de cada componente arquitetural, no tocante ao lançamento, recebimento

e tratamento de exceções, e como exceções fluem entre esses componentes. O modelo

também inclui um conjunto de regras formalmente especificadas que descrevem o fun-

cionamento do mecanismo de tratamento de exceções. Esse modelo pode ser mapeado

de forma quase direta para linguagens de especificação bem conhecidas, como Alloy [98]

e B [3], e suas instâncias descrevem arquiteturas de sistemas de software. Através das

ferramentas associadas a essas linguagens, é posśıvel verificar de maneira automática se a

arquitetura de um sistema satisfaz diversas propriedades que dizem respeito ao seu com-

portamento excepcional. O artigo “Reasoning about Exception Flow at the Architectural

Level”, que aparece no Caṕıtulo 4, descreve esse modelo formal em detalhes.

Diversos trabalhos [38, 64, 150, 156, 186] propõem análises estáticas de código fonte que

geram informações sobre o fluxo de exceções em programas. Nossa abordagem se baseia

nesses trabalhos mas foca em fases anteriores do desenvolvimento de um sistema, mais

especificamente, no seu projeto arquitetural, e leva em consideração as particularidades

desse ńıvel de abstração. Adicionalmente, a decomposição das regras de um mecanismo de

tratamento de exceções em propriedades que possam ser verificadas isoladamente também

é uma contribuição original.

1.3.5 Verificação de Tratamento de Exceções em Sistemas Con-

correntes Cooperativos

Inicialmente, a abordagem proposta é apresentada no contexto de sistemas nos quais vi-

gora a suposição de que erros são independentes. Consequentemente, é posśıvel tratar

cada exceção como se fosse a única em determinado instante de tempo. A maioria dos sis-

temas de software existentes e a maioria das linguagens de programação que implementam

tratamento de exceções (C++, Java, Ada, Eiffel, etc.) aderem a esse modelo sequencial

de funcionamento. Essa abordagem foi estendida para também contemplar sistemas con-

correntes cooperativos, nos quais não é posśıvel supor que erros sejam independentes. Em

tais sistemas, múltiplas unidades de computação (processos, threads, componentes, etc.)

concorrentes se comunicam assincronamente e cooperam com o fim de atingir um obje-

tivo comum [20]. Esses sistemas diferem de sistemas concorrentes competitivos, nos quais

1.4. Uma Abordagem Tolerante a Falhas para a Construção de Componentes 17

múltiplas unidades de computação competem para ter acesso a recursos compartilhados.

Em sistemas concorrentes cooperativos, se múltiplas exceções são levantadas simultane-

amente, é necessário tratá-las de maneira cooperativa, já que podem ser decorrentes da

mesma falha. Devido às complicações inerentes à programação de sistemas concorrentes,

mecanismos de tratamento de exceções para sistemas cooperativos são sensivelmente di-

ferentes de mecanismos para sistemas sequenciais. O artigo “Verification of Coordinated

Exception Handling”, que constitui o Caṕıtulo 5 desta tese, apresenta uma técnica para

a descrição e verificação do comportamento excepcional de tais sistemas.

Há diversas formalizações de mecanismos de tratamento de exceções para sistemas

concorrentes cooperativos [172, 177, 185]. Entretanto, esses trabalhos focam em aspectos

diferentes de tais mecanismos como: (i) a ordenação temporal de eventos [185]; (ii) o

dinamismo das estruturas desses sistemas; e (iii) uma especificação detalhada de sua

semântica, sem levar em consideração a verificação de sistemas [177]. Até onde pudemos

averiguar, nenhum deles lida especificamente com a verificação de propriedades relativas

à propagação de exceções.

1.3.6 Validação

Esta parte da tese foi validada através de execução de vários estudos de caso. Dois deles

são descritos no Caṕıtulo 3 e um outro é descrito no Caṕıtulo 5. Um dos estudos de

caso do Caṕıtulo 3 é baseado em um exemplo de livro texto [163]. Os outros dois são

baseados nas especificações de sistemas reais [54, 21]. Esses estudos de caso mostraram

que a abordagem proposta valida a hipótese de pesquisa. Falhas de projeto decorrentes

de suposições impĺıcitas e/ou incompletas relativas ao comportamento excepcional dos

componentes dos sistemas foram encontrados nos três estudos de caso. Alguns dos pro-

blemas foram detectados durante a etapa de modelagem dos sistemas, enquanto outros

foram detectados pelas ferramentas de verificação empregadas. Adicionalmente, os ar-

tefatos resultantes do uso da abordagem servem como documentação da arquitetura do

sistema, com a vantagem de poderem ser analisados de forma automática com o aux́ılio

de ferramentas.

1.4 Uma Abordagem Tolerante a Falhas para a Cons-

trução de Componentes

1.4.1 Visão Geral

A segunda parte desta tese trata da construção de componentes de software. Mais especi-

ficamente, investigamos a adequação do paradigma de programação orientada a aspectos

1.4. Uma Abordagem Tolerante a Falhas para a Construção de Componentes 18

(AOP) [106] para melhorar a estruturação interna de componentes, através de uma se-

paração expĺıcita entre comportamentos normal e excepcional. A idéia de empregar AOP

na modularização de tratamento de exceções parte da premissa de que tratamento de

exceções é um interesse inerentemente transversal [106, 117, 114, 180].

O uso de AOP para modularizar tratamento de exceções também é motivado pelo

fato de AOP generalizar propostas de linguagens como Guide [112] e Extended Ada [53]

para flexibilizar a associação de tratadores de exceções a diferentes elementos do pro-

grama. Por exemplo, na linguagem Guide, tratadores podem ser associados a comandos,

métodos e classes. Já na linguagem Extended Ada, além dos tipos de associação já im-

plementados por Ada, comandos, blocos, métodos e classes, também é posśıvel associar

tratadores de exceções a objetos. Em uma linguagem orientada a aspectos, a capacidade

de associar tratadores a elementos de um programa é limitada apenas pelos mecanismos

dispońıveis na linguagem para selecionar pontos espećıficos desse programa16. Por exem-

plo, na linguagem AspectJ [114], uma extensão orientada a aspectos de propósito geral

para Java, é posśıvel associar tratadores a classes, métodos, exceções, comandos e até

fluxos de execução. Já Eos [144], uma extensão orientada a aspectos de C#, além desses

tipos de associação, permite que tratadores sejam associados a objetos de forma simples.

O uso de AOP para modularizar tratamento de exceções também é uma evolução

com relação a trabalhos anteriores [71, 133] baseados em reflexão computacional [121].

Linguagens como as supracitadas AspectJ e Eos permitem que diversos pontos de um

programa que não podem ser selecionados por protocolos de meta-objetos conhecidos [42,

138] sejam usados como contextos de tratamento de exceções. Exemplos incluem fluxos

de execução e comandos arbitrários dentro do corpo de um método. Com base nesses

fatores, dois caṕıtulos desta tese validam e refinam a seguinte hipótese, que responde à

pergunta de pesquisa 2:

Hipótese 2: O uso de programação orientada a aspectos para modularizar o

código de tratamento de exceções de um programa melhora a qualidade desse

programa, tanto do ponto de vista do comportamento normal quanto do excep-

cional.

1.4.2 Um Estudo Quantitativo sobre a Aspectização de Trata-

mento de Exceções

Foi conduzido um estudo para avaliar as vantagens que o uso de AOP traz para a mo-

dularização do tratamento de exceções. Esse estudo é descrito em detalhes no artigo

“Exceptions and Aspects: The Devil is in the Details” [24], que aparece no Caṕıtulo 6.

16Do inglês: join points.

1.4. Uma Abordagem Tolerante a Falhas para a Construção de Componentes 19

O estudo consistiu em refatorar para aspectos o código de tratamento de exceções de

quatro aplicações diferentes, três delas baseadas em componentes. Três dessas aplicações

foram implementadas originalmente em Java, enquanto a quarta foi escrita em AspectJ.

Empregamos a linguagem AspectJ como representante do paradigma orientado a aspectos

para separar tratamento de exceções dos outros interesses de cada sistema. Foi usado um

conjunto de métricas [73] para medir, nas versões originais e refatoradas, quatro atributos

de qualidade: separação de interesses, concisão, coesão e acoplamento. A investigação in-

cluiu também uma análise dos sistemas refatorados levando em conta (i) a reusabilidade

do código de tratamento de exceções e (ii) a escalabilidade de AOP para modularizar

tratamento de exceções na presença de outros interesses transversais.

De acordo com os resultados desse estudo, o uso de AOP para separar os comporta-

mentos normal e excepcional de um sistema é benéfico em várias situações recorrentes

no desenvolvimento de software, mas isso depende de uma combinação de diversos fato-

res. Em diversas situações corriqueiras no desenvolvimento de software, aspectização ad

hoc pode não ser posśıvel ou piorar a qualidade do sistema. Em especial, a coesão dos

sistemas-alvo do estudo, conforme medida pela métrica que empregamos, piorou consis-

tentemente depois do tratamento de exceções ter sido modularizado com aspectos. Isso

se deveu em grande parte à necessidade de, em alguns casos, modificar o código origi-

nal antes de extrair o tratamento de exceções para aspectos. Adicionalmente, o grau de

reuso de código de tratamento de exceções foi baixo. Embora esse resultado tenha sido

esperado, tendo em vista a natureza espećıfica de aplicação do código de tratamento de

exceções [5], ele contradiz os resultados de um estudo anterior bastante conhecido [117].

Nesse estudo anterior, uma das consequências do uso de AOP foi uma grande economia

de linhas de código devido ao reuso de tratadores. Finalmente, é dif́ıcil aspectizar um

trecho de código quando mais de um interesse transversal afeta esse trecho.

Embora textos introdutórios [106, 114, 180] normalmente mencionem tratamento de

exceções como um exemplo da utilidade de AOP, poucos trabalhos avaliam a adequação

de AOP para modularizar o interesse de tratamento de exceções. Neste trabalho foi

elaborado e executado um estudo detalhado, focando em quatro aplicações reais, para

avaliar os benef́ıcios trazidos pelo uso de AOP para se modularizar o comportamento

excepcional desses sistemas. Até onde foi posśıvel averiguar, não há nenhum estudo na

literatura com o mesmo grau de profundidade ou com a mesma abrangência. O único

estudo visando avaliar os benef́ıcios do emprego de AOP para este fim, realizado por

Lippert e Lopes [117], se baseou em uma infra-estrutura reusável, na qual o código de

tratamento de exceções era muito simples e não-dependente de aplicação. Adicionalmente,

a avaliação qualitativa desse estudo foi realizada em termos de atributos não tradicionais

na literatura de Engenharia de Software, como plugability e suporte ao desenvolvimento

incremental, e a avaliação quantitativa usou número de linhas de código como única

1.5. Contribuições 20

métrica.

1.4.3 Um Catálogo de Cenários para Guiar a Modularização de

Tratamento de Exceções com Aspectos

Com base nos resultados obtidos, propomos uma classificação para código de tratamento

de exceções. Essa classificação leva em consideração os fatores que têm maior influência

sobre a extração do comportamento excepcional de um sistema para aspectos, de acordo

com os resultados do estudo. Adicionalmente, propomos um catálogo de cenários que

consiste de combinações desses fatores. O objetivo desse conjunto de cenários é servir

de guia para desenvolvedores incubidos da tarefa de modularizar tratamento de exceções

usando aspectos, tanto para sistemas já existentes quanto para sistemas novos. Para

atingir esse fim, o catálogo indica em quais cenários o uso de AOP melhora a qualidade

do sistema e em quais piora. Um cenário é considerado benéfico quando: (i) a aspectização

de tratamento de exceções tem um efeito positivo nos atributos de qualidade do sistema,

conforme medido pelo conjunto de métricas empregado; e (ii) o código resultante não exibe

“maus cheiros” [68]. Tanto a classificação proposta quanto os cenários são apresentados

em detalhes no artigo “Implementing Modular Error Handling with Aspects: Best and

Worst Practices”, que aparece no Caṕıtulo 7.

Apesar da popularidade crescente de AOP e de sua adoção inclusive na indústria [39],

ainda não existem catálogos reunindo conhecimento relativo ao uso prático de AOP para

estruturar tratamento de exceções. Essa situação difere fortemente do que acontece com

a programação orientada a objetos [22, 60, 125, 141, 148].

1.5 Contribuições

Esta tese apresenta as seguintes contribuições:

1. Um mecanismo de tratamento de exceções que funciona no ńıvel da arquitetura de

software e leva em consideração algumas das particularidades de sistemas baseados

em componentes. Esse mecanismo é centrado em um estilo arquitetural espećıfico,

C2 [173], e evidencia a influência que estilos arquiteturais têm na propagação de

exceções (Seção 1.3.2 e Caṕıtulo 2).

2. Uma abordagem para dar suporte à descrição e à análise de arquiteturas de software,

da perspectiva do seu comportamento excepcional. Essa abordagem leva em con-

sideração a maneira como diferentes estilos arquiteturais influenciam a propagação

de exceções e complementa metodologias de desenvolvimento cujo foco é o compor-

tamento excepcional do sistema (Seção 1.3.3 e Caṕıtulo 3).

1.6. Organização da Tese 21

3. Um modelo formal que indica as responsabilidades de cada elemento arquitetural,

no que se refere ao lançamento, recebimento e tratamento de exceções, e que permite

que certas propriedades úteis relativas ao fluxo de exceções entre esses elementos se-

jam verificadas de maneira automática. Essas propriedades foram organizadas de tal

maneira que cada uma pode ser verificada independentemente e o conjunto de todas

elas descreve um mecanismo arquitetural de tratamento de exceções (Seção 1.3.4 e

Caṕıtulo 4).

4. Uma abordagem para a especificação e verificação de sistemas concorrentes coopera-

tivos da perspectiva do seu comportamento excepcional (Seção 1.3.5 e Caṕıtulo 5).

5. Uma análise dos fatores que tiveram influência na modularização do código de tra-

tamento de exceções usando aspectos, com base na experiência adquirida através da

refatoração de quatro aplicações distintas (Seção 1.4.2 e Caṕıtulo 6).

6. Uma avaliação inicial dos efeitos da estruturação de tratamento de exceções usando

aspectos quando outros interesses transversais também são modularizados através

de aspectos (Seção 1.4.2 e Caṕıtulo 6).

7. Um catálogo de cenários de tratamento de exceções que indica, para cada cenário,

se é vantajoso usar aspectos para separar comportamento normal e comportamento

excepcional (Seção 1.4.3 e Caṕıtulo 7).

1.6 Organização da Tese

A tese foi estruturada como uma coletânea de seis artigos escritos em inglês que foram

publicados ou submetidos para publicação em conferências e periódicos internacionais.

Cada artigo corresponde a um caṕıtulo e, para cada caṕıtulo, há uma introdução e uma

conclusão curtas, escritas em português, responsáveis por ligar os caṕıtulos de forma mais

coerente. Todos os artigos são reproduzidos na ı́ntegra, com pequenas modificações no

texto original para corrigir erros de escrita, diagramação e notação.

Esta tese está organizada da seguinte maneira:

• O Caṕıtulo 2 descreve um mecanismo de tratamento de exceções que funciona no

ńıvel da arquitetura de software e leva em consideração as particularidades de sis-

temas baseados em componentes. Através da descrição dos elementos desse meca-

nismo, o caṕıtulo introduz alguns conceitos úteis para o entendimento do restante

da tese.

• O Caṕıtulo 3 descreve o arcabouço Aereal para a descrição e análise de exceções no

ńıvel arquitetural.

1.6. Organização da Tese 22

• O Caṕıtulo 4 descreve formalmente o modelo de fluxo de exceções usado pelo ar-

cabouço Aereal. Esse modelo foca em sistemas onde vigora a suposição de que

erros são independentes e que cada exceção pode ser tratada como se fosse a única

levantada no sistema, em determinado instante de tempo.

• O Caṕıtulo 5 descreve uma abordagem para a modelagem e verificação do compor-

tamento excepcional de sistemas concorrentes cooperativos, nos quais não é posśıvel

presumir que múltiplos erros manifestados concorrentemente são consequência de

falhas independentes.

• O Caṕıtulo 6 apresenta o estudo que realizamos para avaliar as vantagens e desvan-

tagens do uso de AOP para modularizar código de tratamento de exceções.

• O Caṕıtulo 7 descreve um conjunto de cenários que visa auxiliar desenvolvedores a

decidir em que situações o uso de AOP é vantajoso e quando é prejudicial.

• O último caṕıtulo apresenta considerações finais, resumindo as contribuições deste

trabalho e estabelecendo direções para pesquisas futuras.

Caṕıtulo 2

Um Mecanismo de Tratamento de

Exceções em Nı́vel Arquitetural para

Aplicações Baseadas em

Componentes

Este caṕıtulo se refere à Seção 1.3.2 do Caṕıtulo 1 e descreve um mecanismo de tratamento

de exceções que funciona no ńıvel arquitetural. Esse mecanismo leva em consideração ca-

racteŕısticas espećıficas de sistemas baseados em componentes e foca nas exceções que

fluem entre os componentes de software no ńıvel arquitetural. O mecanismo proposto foi

implementado através de um arcabouço orientado a objetos chamado FaTC2 (Fault Tole-

rant C2), uma extensão do arcabouço C2.FW [127]. Este último provê uma infraestrutura

para a construção de aplicações baseadas no estilo C2.

O principal objetivo desse artigo é investigar como funciona a propagação de exceções

entre os componentes de software integrados em um sistema. Acreditamos que ela tem

diferenças fundamentais com relação à maneira como exceções fluem entre métodos e

procedimentos no ńıvel da linguagem de programação. Para ilustrar esse ponto, o ar-

tigo mostra como o estilo arquitetural empregado, C2 [173], influencia a propagação de

exceções entre os elementos arquiteturais.

O artigo que este caṕıtulo contém foi apresentado no First Latin-American Sympo-

sium on Dependable Computing, em outubro de 2003 [30]. Uma versão preliminar [31]

descrevendo o arcabouço FaTC2 foi apresentada no ICSE’2003 Workshop on Software

Architectures for Dependable Systems, em maio do mesmo ano.

23

2.1. Introduction 24

An Architectural-Level Exception Handling System

for Component-Based Applications

Fernando Castor Filho Paulo Asterio de C. Guerra

Cećılia Mary F. Rubira

Institute of Computing

State University of Campinas

Campinas - SP - Brasil

{fernando,asterio,cmrubira}@ic.unicamp.br

2.1 Introduction

Modern computing systems require evolving software that is built from existing software

components, in general developed by independent sources [15]. Hence, the construction of

component-based systems with high dependability requirements out of existing software

components represents a major challenge, since few assumptions can generally be made

about the level of confidence of off-the-shelf components. In this context, an approach for

the provision of fault tolerance based on the system’s software architecture[48] is necessary

in order to build dependable software systems assembled from untrustworthy components

[89].

Exception handling[80] is a well-known technique for incorporating fault tolerance into

software systems. An exception handling system (EHS) offers control structures which

allow developers to define actions that should be executed when an error is detected. The

user of such a system should be able to signal exceptions when an error is detected. The

EHS should be able to find and activate an exception handler to recover from errors and

put the system back in a coherent state. Even though many well-known programming

languages provide EHSs [82, 108, 171], exception handling for component-based systems

addressed at the architectural level remains an open issue. Component-based systems

introduce new challenges which are not addressed by traditional EHSs. Some of these

challenges include:

• exception handlers should be attached to higher-level abstractions specific to component-

based systems, such as components and connectors, not only to implementation

language constructs, such as methods and classes;

2.2. Background 25

• the source code for the system components may not be available, specially when

off-the-shelf components are employed. Hence, it is not possible to modify these

components in order to introduce exception handling;

In this paper, we present ALEx, an architectural-level EHS which addresses the con-

cerns presented above. ALEx is based on the work of Guerra et al [56], which describes

a structuring concept for building fault-tolerant component-based systems based on the

concept of idealised fault-tolerant component [5]. An idealised fault-tolerant component

promotes separation of concerns between the abnormal activity (fault tolerance measures)

of a system and its normal activity. Upon the receipt of a service request, an idealised

fault-tolerant component produces three types of responses: normal responses in case the

request is successfully processed, interface exceptions in case the request is not valid, and

failure exceptions, which are produced when a valid request is received but cannot be

successfully processed. Idealised fault-tolerant components may be organized into layers,

so that components may handle exceptions raised by components located in other layers.

We also describe an object-oriented framework, called FaTC2, which implements our

proposed EHS. FaTC2 is an extension of C2.FW [127], an OO framework that provides

an infrastructure for building applications using the C2 architectural style [173]. The C2

style is a component-based architectural style [76] that supports large grain reuse and

flexible system composition, emphasizing weak bindings between components. This style

was chosen due to its ability to compose heterogeneous off-the-shelf components [127].

The rest of this paper is organized as follows. Section 2.2 provides some background

information. Section 2.3 gives a motivation for the construction of an EHS for component-

based applications. Section 2.4 presents ALEx, our approach for architectural-level excep-

tion handling. Section 2.5 provides a brief description of FaTC2, a Java implementation

of ALEx based on the C2 architectural style. Section 2.7 gives a brief comparison with

related work. Finally, Section 2.8 summarizes our conclusions and suggests directions for

future work.

2.2 Background

2.2.1 Exception Handling

Following the terminology adopted by Lee and Anderson [5], a system consists of a set

of components that interact under the control of a design. A fault in a component may

cause an error in the internal state of the system which eventually leads to the failure of

the system. Two techniques are available for errors: (i) forward error recovery and (ii)

backward error recovery. The first technique attempts to return the system to an error-

free state by applying corrections to the damaged state. The second technique attempts

2.2. Background 26

to restore a previous state which is presumed to be free from errors. Exceptions and

exception handling constitute a common mechanism applied to the provision of forward

error recovery.

An exception handling system (EHS) allows software developers to define exceptional

conditions and to structure the abnormal activity of software components. When an

exception is raised by a component, the EHS is responsible for changing the normal control

flow of the computation within a component to its exceptional control flow. Therefore,

raising an exception results in the interruption of the normal activity of the component,

followed by the search for an appropriate exception handler (or simply handler) to deal

with the signaled exception. The set of handlers of a component constitutes its abnormal

activity part. For any exception mechanism, handling contexts associate exceptions and

handlers. Handling contexts are defined as regions in which the same exceptions are

treated in the same way. Each context should have a set of associated handlers, which

are executed when the corresponding exception is raised.

2.2.2 C2 Architectural Style

In the C2 architectural style [173], components communicate by exchanging asynchro-

nous messages sent through connectors, which are responsible for the routing, filtering,

and broadcast of messages. Figure 2.1 shows a software architecture using the C2 style

where the elements A, B, and D are components, and C is a connector. The thin vertical

lines correspond to connections, ports for connecting the architectural elements. A con-

figuration is a set of components, connectors, and connections between these elements.

Components and connectors have a top interface and a bottom interface (Figure 2.1).

Systems are composed in a layered style, where the top interface of a component may be

connected to the bottom interface of a connector and its bottom interface may be connec-

ted to the top interface of another connector. Each side of a connector may be connected

to any number of components or connectors. Two types of messages are defined by the

C2 style: requests, which are sent upwards through the architecture, and notifications,

which are sent downwards. Requests ask components in upper layers of the architecture

for some service to be provided, while notifications signal a change in the internal state

of a component.

The C2.FW framework [127, 175] provides an infrastructure for building C2 applica-

tions. The C2.FW Java [82] framework comprises a set of classes and interfaces which

implement the abstractions of the C2 style, such as components, connectors, messages,

and connections. C2.FW has been implemented in C++, Java, Python and Ada.

2.2. Background 27

Figura 2.1: An example of software architecture based on the C2 style.

2.2.3 Idealised C2 Component

The work of Guerra et al.[56] uses the concept of Idealised Fault-Tolerant Component to

structure the architecture of component-based software systems compliant with the C2

architectural style. It introduces the Idealized C2 Component (iC2C), which is equivalent,

in structure and behavior, to the idealised fault-tolerant component. Service requests and

normal responses of an idealised fault-tolerant component are mapped as requests and

notifications in the C2 architectural style. Interface and failure exceptions of an idealised

fault-tolerant component are considered subtypes of notifications.

The iC2C is composed of five elements: NormalActivity and AbnormalActivity compo-

nents, and iC2C top, iC2C internal, and iC2C bottom connectors. Its internal structure

is presented in Figure 2.2. The NormalActivity component processes service requests and

answers them through notifications. It also implements the error detection mechanisms

of the iC2C. Internally, a NormalActivity component may be either a stateless or stateful

component. However, since an iC2C should guarantee that each request received is pro-

cessed in the initial state of the iC2C[89], stateless components are easier to deal with.

In order to employ stateful components, some means for guaranteeing that requests are

processed atomically, such as atomic transactions, should be provided.

The AbnormalActivity component encapsulates the exception handlers (error reco-

very) of the iC2C. While an iC2C is in its normal state, the AbnormalActivity component

remains inactive. When an exceptional condition is detected, it is activated to handle the

exception. In case the exception is successfully handled, the iC2C returns to its nor-

mal state and the NormalActivity component resumes processing. Otherwise, a failure

exception is signalled to components in lower layers of the architecture, which become

responsible for handling it.

The iC2C bottom connector is responsible for filtering and serializing requests recei-

ved by the iC2C. This conservative policy aims at guaranteeing that requests are always

received by the NormalActivity component in its initial state, to avoid possible side-effects

2.2. Background 28

Figura 2.2: Internal structure of an iC2C.

of an exceptional condition caused by a concurrent service request. The iC2C internal

connector is responsible for message routing inside the iC2C. The destination of the mes-

sages sent by the internal elements of the iC2C depends on its type and whether the iC2C

is in a normal or abnormal state.

The iC2C top connector encapsulates the interaction between the iC2C and compo-

nents located in upper levels of the architecture. It is responsible for guaranteeing that

service requests sent by the NormalActivity and AbnormalActivity components to other

components located in upper levels of the architecture are processed synchronously (re-

quest/response). The iC2C top connector also performs domain translation, converting

incoming notifications to a format which the iC2C understands and outgoing requests to

a format which the application understands.

The structure of the iC2C makes it compatible with the constraints imposed by the

C2 architectural style. Hence, an iC2C may be incorporated into an existing C2 configu-

ration. Previous experiments [56, 89] with the iC2C model have shown its adequacy for

the construction of component-based systems, including systems built from off-the-shelf

components [88].

2.3. Exception Handling at the Architectural Level 29

2.3 Exception Handling at the Architectural Level

Exception handling for component-based software systems introduces some difficulties

which are not addressed by traditional EHSs. These particularities are a consequence

of the differences between the abstractions supported by programming languages and

component-based software development. In a traditional EHS defined by a programming

language, exception handlers are attached to the constructs the language supports. For

example, Guide [112] is an object-oriented language which supports the attachment of

handlers to statements, methods and classes. Similarly, an EHS which supports the

construction of component-based systems should allow exception handlers to be attached

to their basic elements, namely, components, connectors, and configurations.

In traditional EHSs, when an exception is raised, a handler is searched locally, depen-

ding on the handling context. If none is found, the exception is signaled to the enclosing

method invocation. However, this scheme for exception propagation may not be adequate

for component-based systems. In software architectures, connectors are represented as

first-class design entities, due to the potential complexity of the interactions among com-

ponents. This feature allows the support of more sophisticated communication elements

than simple method calls, and separates explicitly the execution flow of an application

from its chain of method invocations. An EHS for component-based applications should

consider these requirements during its design and support the propagation of exceptions

according to the flow of information between components. In the C2 style, for example,

components communicate by means of asynchronous message passing. Service requests

are sent from components in lower layers of an architecture to components in upper layers,

and response notifications flow in the opposite direction. Additionally, components may

run in separate threads. Hence, in a C2 architecture, if a component issues a request

which triggers the raising of an exception, the latter should be propagated to the compo-

nent which issued the request. In other words, it should be propagated downwards the

architecture, and not along the method invocation chain.

Finally, an architectural-level exception handling system should support the attach-

ment of handlers to components without requiring modifications on them. This require-

ment is very important because, in component-based software development, the source

code for the system components may not be available, specially if off-the-shelf components

are employed. In order to leverage exception handling for component-based applications,

we have devised an architectural-level EHS, called ALEx, which addresses the concerns

stated above.

2.4. An Exception Handling System for Component-Based Applications 30

2.4 An Exception Handling System for Component-

Based Applications

In this section, we present the main characteristics of our exception handling system and

discuss our design decisions to address the requirements discussed in Section 2.3. We

follow the guidelines established by Garcia et al [71], and describe ALEx in terms of

the following features: exception representation, handler definition, handler attachment,

exception propagation, handler search, and continuation of the control flow.

In our approach, an iC2C (Section 2.2.3) can represent a component, connector or con-

figuration which has an architectural-level exception handler attached. We also employ

the C2 architectural style for describing examples of architecture configurations, since it

is leveraged by the concept of iC2C. Exceptions are wrapped by C2 notifications in order

to be propagated along the layers of the system’s architecture. Notifications representing

exceptions are called exception notifications, and they are distinguished from normal no-

tifications. Furthermore, we define regular C2 components as C2 components that: (i)

do not send exception notifications, and (ii) will not recognize an exception notification

received as being the signalling of an exception. In other words, a regular C2 component

will recognize an exception notification as an ordinary notification sent in response to a

request issued prior to the receipt of the notification. We will not consider special cases,

such as regular C2 components capable of sending exception notifications.

Hereafter, we use the term “exception” to designate both exceptions and exception

notifications, since the latter is simply an implementation concept which is not directly

related to the EHS. For situations where implementation issues are relevant, we highlight

the difference between the two terms.

2.4.1 Exception Representation

According to the taxonomy defined by Garcia et al [72], ALEx represents exceptions

as data objects, that is, objects which are used for holding context information which is

relevant for their handling. More specifically, we define exceptions as messages, which

constitute a suitable abstraction for component-based systems. Exceptions are raised by

calling a specific keyword (in our Java implementation, the throw keyword).

Different types of exceptions are organized hierarchically as classes. The class Ar-

chitecturalException is the root of this hierarchy. ALEx defines two subclasses of Archi-

tecturalException, FailureArchitecturalException and InterfaceArchitecturalException, which

correspond to the failure exceptions and interface exceptions of an idealised fault-tolerant

component, respectively. Any raised exception which is not of type InterfaceArchitectura-

lException is treated as a failure exception, indicating that the architectural element may

2.4. An Exception Handling System for Component-Based Applications 31

public class AbnormalActivity ... {
public Message handleException(IOException e){
// Body of a handler for IOException.

}
...

public Message handleException(ArchitecturalException e){
// Body of the generic handler. Must be implemented!

}

...

}

Figura 2.3: Definition of handlers in ALEx.

be in an inconsistent state. Interface exceptions must be explicitly signaled.

The signatures of the operations in component interfaces should explicitly indicate

the exceptions they raise. According to the work of Garcia et al.[72], this practice leads

to better readability, modularity, maintainability, reusability and testability. Further-

more, explicitly declaring the exceptions raised by a component allows static checks to be

performed by means of analysis tools, increasing dependability.

2.4.2 Handler Attachment and Definition

Our EHS supports multi-level attachment of handlers, that is, handlers may be associated

with: (i) a component, (ii) a connector, (iii) a configuration. Figure 2.2 shows a set

of exception handlers, represented by the AbnormalActivity component, attached to a

component, represented by the NormalActivity component. The abnormal activity of a

component is defined by a class which implements a set of methods, each one representing

an exception handler. Furthermore, each of these classes should define at least a default

handler, capable of handling an exception of the ArchitecturalException type. Figure 2.3

shows a partial definition of an exception handler which handles exceptions of types

IOException and ArchitecturalException.

Exception handlers may also be attached to configurations, as well as to components

and connectors. The possibility of attaching handlers to specific configurations allows

that different exception handling contexts be defined within a single application. This

is achieved by nesting exception handlers, as illustrated by Figure 2.4, where an iC2C is

used as the NormalActivity component of another iC2C. This feature is specially useful

for systems which have critical regions that require a higher level of fault tolerance.

2.4. An Exception Handling System for Component-Based Applications 32

Figura 2.4: Nesting exception handling contexts.

2.4.3 Exception Propagation and Handler Search

Our exception handling model adopts explicit propagation of exceptions. The benefits of

this approach are discussed in the work of Garcia et al.[72]. In ALEx, the handling and

propagation of an exception depends on whether it is a failure exception or an interface

exception. When an iC2C raises a failure exception, its handling is limited to the handlers

within the same iC2C (that is, its AbnormalActivity component). If the exception can

not be handled, then the predefined exception FailureArchitecturalException is further pro-

pagated. A handler may also explicitly resignal the exception to a component in a lower

layer of the architecture. In Figure 2.4, exceptions raised by the NormalActivity compo-

nent of the innermost iC2C are handled by the AbnormalActivity component within it.

If the internal handling fails, the handler may resignal the exception to the AbnormalAc-

tivity component of the outermost iC2C. In case an exception reaches the lowest level of

an architecture, an exception handler for the entire system should be executed.

An interface exception raised upon the receipt of a service request is not handled by

the component, since it does not indicate that the component is faulty. In this case, the

exception is propagated to the client component which issued the request. The client

component handles this exception in the same manner as a failure exception, since it

possibly indicates a fault within the client component.

The search for handlers for a failure exception raised by the NormalActivity component

of an iC2C is defined as follows:

1. The EHS tries to find a specific handler for the exception in the AbnormalActivity

component within the same iC2C. Handlers are searched according to the class

2.4. An Exception Handling System for Component-Based Applications 33

hierarchy defined for exceptions:

if an exception of class C is raised in a given system, a handler for exceptions

of class C will be searched;

if none is found, the EHS proceeds searching for a handler for an immediate

superclass S of C;

if none is found, the EHS searchers for a handler for an immediate superclass of

S, and so on.

2. If no specific handler is found, the default handler is selected. This handler may

actually handle the exception or simply resignal it.

3. In the latter case, if the iC2C which raised the exception is wrapped by another iC2C

(as is the case in Figure 2.4), step 1 is repeated for the outermost AbnormalActivity

component. Otherwise, the exception is propagated downwards the architecture, to

the client component which issued the request that triggered its signaling. Step 1

is then repeated for the AbnormalActivity component of the client component.

The search for handlers for an interface exception raised by the NormalActivity com-

ponent of an iC2C proceeds in a similar manner, except that steps 1 and 2 are not initially

performed.

2.4.4 Continuation of the Control Flow

ALEx adopts the termination model[52], that is, if during the processing of a service

request a component raises an exception and it is successfully handled by another com-

ponent, execution is resumed by the latter.

Figure 2.5 presents an example of an architecture composed by two idealised C2 com-

ponents (ClientComponent and ServerComponent), and a connector linking them. Figure

2.6 shows a UML seq. diagram illustrating a scenario where the control flow continues

after an exception is successfully handled. The following steps describe the diagram:

1. ClientComponent requests a service from ServerComponent;

2. ServerNormalActivity tries to handle the service request;

3. ServerNormalActivity raises an exception which is received by ServerAbnormalActivity;

4. ServerAbnormalActivity tries to handle the exception;

5. ServerAbnormalActivity fails to handle the exception and raises a failure exception;

2.5. Exception Handling System in the Framework FaTC2 34

Figura 2.5: A C2 architecture composed by a client component and a server iC2C.

6. ClientComponent receives the exception and routes it to ClientAbnormalActivity;

7. ClientAbnormalActivity handles the exception and sends a return to normal request to

ClientNormalActivity, indicating that processing should be resumed;

8. ClientNormalActivity resumes processing.

2.5 Exception Handling System in the Framework

FaTC2

In this section, we describe FaTC2, an object-oriented framework which implements our

architectural-level exception handling approach. FaTC2 is an extension of the Java [82]

version of the C2.FW framework. The original C2.FW framework does not provide ade-

quate support for the construction of fault-tolerant systems. FaTC2 extends C2.FW with

the concept of iC2C, in order to provide the support for forward error recovery, by means

of the EHS described in Section 2.4.

Figure 2.7 presents a partial class hierarchy for FaTC2, and its intersection with

C2.FW. In the following sections, we describe the framework FaTC2, based on the notions

described in Figure 2.2.

2.5. Exception Handling System in the Framework FaTC2 35

Figura 2.6: A scenario illustrating the termination model adopted by ALEx.

2.5.1 IC2C

The iC2C is the basic unit provided by FaTC2 for attaching handlers to components or

configurations. The creation of an iC2C is encapsulated by the IC2C class. In order to

create an instance of IC2C, objects representing the NormalActivity and AbnormalActivity

components (Figure 2.2) must be supplied. Optionally, the developer may chose to also

supply objects representing the iC2C top and iC2C bottom connectors, in case filtering

or domain-translation are required. Otherwise, default implementations are employed.

Although the IC2C class may be used directly in an application, it is recommended that

developers create subclasses of it, specifying the NormalActivity and AbnormalActivity

components, and iC2C top and iC2C bottom connectors which are to be used.

An analogous structuring may be used for representing fault-tolerant connectors, as

long as the semantic differences between components and connectors are taken into ac-

count.

2.5.2 NormalActivity Component

The NormalActivity component encapsulates the functionality (normal activity) of an

iC2C. It may represent both a single component and a configuration. In this work, we

will only address the case where an iC2C represents a single component.

In order to define a NormalActivity component, a developer must provide a class

that implements the INormalActivity interface. This interface declares three operations

which define the application-dependent behavior of the component: handleRequest(),

returnToNormal(), and reset().

2.5. Exception Handling System in the Framework FaTC2 36

Figura 2.7: A partial class hierarchy for C2.FW and FaTC2.

The handleRequest() method is responsible for (i) processing service requests and (ii)

detecting errors. It takes as argument the request message to be processed, and returns

a response notification to be delivered to the client component. If an error is detected

during the processing of a service request, this method signals an exception, which may

be a FailureArchitecturalException or an InterfaceArchitecturalException. Exceptions are

caught by the framework and packaged as exception notifications, which are sent to the

AbnormalActivity component.

The returnToNormal() and reset() methods are related to the abnormal activity

of the iC2C. The former is called when the iC2C has successfully handled an exception,

and should resume processing. The latter is called when the iC2C is unable to handle an

exception, and should perform some cleanup actions before handling new requests.

FaTC2 provides developers with an abstract class which implements the application-

independent behavior of the NormalActivity component, as defined by ALEx (Section

2.4). This class is called AbstractNormalActivityComponent, and should be extended by

the class which implements the NormalActivity component for a given iC2C. In the situ-

ations described above, the tasks of delivering requests to the handleRequest() method,

sending response notifications to client components, and packaging and sending exception

notifications to the AbnormalActivity component are performed by AbstractNormalActi-

vityComponent.

2.5. Exception Handling System in the Framework FaTC2 37

In case the handling of a request demands the NormalActivity component to request

services from components located in upper layers of the architecture, the AbstractNor-

malActivityComponent class provides a utility method, requestService(), which may be

used to send synchronous (request/response) requests transparently, upwards the archi-

tecture.

2.5.3 AbnormalActivity Component

The AbnormalActivity component encapsulates the exception handlers of an iC2C. In

order to implement it, a developer must provide a class that implements the IAbnormalAc-

tivityComponent interface. This interface declares a single method, handleException(),

which defines the default exception handler of the component. This scheme enforces the

policy defined by ALEx, that at least the default exception handler must be implemented

by every AbnormalActivity component.

Additional handlers are defined by handler methods that are declared in the same class

which implements the IAbnormalActivityComponent interface. The order in which they are

declared is not important. Handler methods present the following structure:

public Message handleException(<exception> e, Request m) raises Exception {

// Body of a handler for <exception>.

}

In the code snippet above, <exception> stands for the exception type (a Java class)

which the handler is capable of handling. The Request r parameter refers to the request

which was being processed when the exception was signaled. If an exception is success-

fully handled, the handler method returns an object of type Message. This represents a

C2 message which is delivered to the NormalActivity component in order for processing

to be resumed. If an exception can not be handled, the handler method should resignal

it or raise another exception. Either way, the exception is propagated to the enclosing

exception handling context (Section 2.4.3).

FaTC2 provides developers with an abstract class which implements the application-

independent behavior of the AbnormalActivity component, as defined by ALEx (Section

2.4). This class is called AbstractAbnormalActivityComponent, and should be extended by

the class which implements the AbnormalActivity component for a given iC2C.

In case the handling of an exception requires the AbnormalActivityComponent to

request services from other components, or from the NormalActivityComponent in the

same iC2C, class AbstractAbnormalActivityComponent provides methods which allow syn-

chronous requests to be carried transparently, similarly to the AbstractNormalActivityCom-

ponent class.

2.6. An Application Example 38

2.5.4 iC2C top, iC2C bottom and iC2C internal Connectors

The IC2CTopConnector, IC2CBottomConnector, and IC2CInternalConnector classes are de-

fault implementations for the iC2C top, iC2C bottom, and iC2C internal connectors, res-

pectively.

IC2CTopConnector and IC2CBottomConnector may be extended in order to implement

filtering of notifications in the top domain of an iC2C or requests in its bottom domain,

respectively. A filtering scheme is defined by implementing the accept() method in a

subclass of IC2CTopConnector or IC2CBottomConnector. A message m is processed only if

accept(m) == true.

Subclasses of IC2CTopConnector may also implement domain translation in the top do-

main of the iC2C. The methods translateIncomingMessage() and processOutgoingMessage()

are responsible for this task and are called by FaTC2, respectively, immediately after a

message has been accepted by the iC2C top connector, and immediately before a given

message is sent by it. The iC2C bottom connector is not expected to perform domain

translation. In the C2 architectural style, an element placed in an upper layer of an

architecture should make no assumptions about elements in the lower layers [173].

In case no filtering or domain translation is necessary, the default implementations for

the iC2C top and iC2C bottom connectors may be used.

The IC2CInternalConnector class is reused without needing any specialization, since its

only task is to route messages inside an iC2C.

2.6 An Application Example

In order to show the usability of FaTC2, we present a small example extracted from the

Mine Pump Control System[163]. The problem is to control the amount of water that

collects at the mine sump, switching on a pump when the water level rises above a certain

limit and switching it off when the water has been sufficiently reduced. In this section,

we describe an implementation for the example application which uses the infrastructure

provided by FaTC2.

2.6.1 Description of the Architecture

The C2 architecture of our example is shown in Figure 2.8. The Pump component com-

mands the physical pump to be turned on/off. Component LowWaterSensor signals a

notification when the water level is low. WaterFlowSensor checks whether water is flowing

out of the sump. The IdealPumpControlStation component controls the draining of the

sump by turning on/off the pump, according to the level of the water in the sump. It

includes an exception handler which is executed when the pump is turned on but no water

2.6. An Application Example 39

Figura 2.8: C2 configuration for the fault-tolerant Mine Pump Control System.

flow is detected. The error handler is implemented by the AbnormalPumpControlStation

component. The Pump, LowWaterSensor and WaterFlowSensor components have been im-

plemented as simple C2 components, while IdealPumpControlStation is an iC2C. In order

to build the IdealPumpControlStation, five classes are implemented: NormlPumpControlSta-

tion, AbnormalPumpControlStation, PumpControlStationTop, IdealPumpControlStation and

TranslationConnector.

Class NormalPumpControlStation implements the NormalActivity component of Ide-

alPumpControlStation, that is, the methods defined by the INormalActivityComponent in-

terface(Section 2.5.2). Due to the support provided by FaTC2, no messages need to be

explicitly sent by any of the methods in NormalPumpControlStation; that is, the architect

does not need to understand the internal protocol of the iC2C or the way it is implemen-

ted.

The AbnormalPumpControlStation class implements the exception handler of the Ideal-

PumpControlStation. When an exception message is received by the handleException()

method, the latter keeps sending new requests to Pump until either water flow is detected

2.7. Related Work 40

or the maximum number of retries permitted is reached. In the former case, normal acti-

vity is resumed(the method simply returns). In the latter, a FailureArchitecturalException

message is sent downwards the architecture(the method throws an IC2CFailureException).

The following code snippet partially illustrates this situation.

public Message handleException(Exception e, Request m)

throws Exception {

(...)

if(this.retries >= this.MAX RETRIES) {

throw new IC2CFailureException(e);

}

(...)

In order to send an exception message downwards the architecture, the architect should

throw a Java exception. In the example above, an exception of type IC2CFailureException,

a subtype of Exception, is thrown.

The PumpControlStationTop class provides the IdealPumpControlStation component

with an extension of the IC2CTopConnector class which performs filtering. When a request

is issued by the IdealPumpControlStation, PumpControlStationTop records the type of the

request sent, so that only a notification which is a response to that request is allowed to be

processed. To build this filtering scheme, two methods had to be implemented: accept()

and processOutgoingMessage()(Section 2.5.4).

IdealPumpControlStation is a subclass of IC2C. The IdealPumpControlStation class defi-

nes a public constructor which takes as argument the name of the IdealPumpControlStation

instance to be created. TranslationConnector translates requests and notifications at the

bottom interface of the IdealPumpControlStation (Figure 2.8).

The implementation of this architecture using FaTC2 was relatively easy, although a

large amount of glue code had to be implemented in order for the NormalPumpControlSta-

tion component to work with FaTC2. This was due to the fact that the selected example

application worked in an asynchronous manner while FaTC2 implements an iC2C which

was modelled as a synchronous (request/response) entity. This highlighted some of the

limitations of this synchronous approach and pointed out some directions we should follow

in our future research, discussed in Section 2.8.

2.7 Related Work

Software fault-tolerance at the architectural level is a young research area that has recen-

tly gained considerable attention [88]. Most of the existing works in this area emphasize

the creation of fault-tolerance mechanisms [50, 97, 145] and description of software ar-

2.8. Conclusions and Future Work 41

chitectures with respect to their dependability properties [155, 167]. Some approaches

based on the idea of design diversity [5] have been developed in the context of the re-

liable evolution of component-based distributed systems. Both the Hercules framework

[50] and the concept of Multi-Versioning Connectors [145] maintain old and new versions

of components working concurrently, in order to guarantee that the expected service is

provided, even if there are faults in the new versions. Both approaches are orthogonal to

ours and could be used in conjunction.

Stavridou and Riemenscheneider [167], and Saridakis and Issarny [155] emphasize the

formal description of architectures in order to prove they are reliable. By employing these

specifications together with refinement laws which guarantee the preservation of the reli-

ability property, both approaches intend on producing concrete architectural descriptions

which are easily translated to code. None of the two works addresses the problem of

incorporating error recovery into existing components.

The concept of iC2C[56] defines a structure for incorporating fault tolerance into

component-based systems at the architectural level. It defines an internal protocol fol-

lowed by its elements in order to enforce damage confinement [5]. Our work refines the

concept of iC2C by introducing elements which are not addressed by its definition, such

as the the representation of exception handlers and the enforcement of explicit exception

propagation.

The work by Guerra et al.[88] deals with the problem of integrating COTS components

in systems with high reliability requirements. It presents a case study where the concept

of iC2C is used, together with protective wrappers [88]. The goal of this approach is to

make non-reliable COTS components which represent a critical regions of systems reliable.

The work by Issarny and Banâtre [97] describes an extension to existing architecture

description languages for specifying architectural-level exceptions (configuration excep-

tions). This work differs from ours because it emphasizes fault treatment [5] at the

architectural level, by means of architecture reconfiguration. Our work, on the other

hand, emphasizes architectural-level error recovery. Furthermore, it defines exceptions

which should not be handled by any component in the architecture, that is, exception

handlers are defined for the whole architecture and are activated under specific situations.

In our approach, a component raises an architectural-level exception because it is unable

to handle it, and other components in the architecture or exception handlers attached to

enclosing configurations (as shown in Figure 2.4) may try to handle it as well.

2.8 Conclusions and Future Work

According to Sprott [166], there is a general consensus in the industry that software

components will bring profound changes to the way software is built. Even now, software

2.8. Conclusions and Future Work 42

systems built out of reusable software components are used in a wide range of applications.

Many of these systems have high dependability requirements and, in order to achieve the

required levels of dependability, it is necessary to incorporate into them means for coping

with software faults.

In this paper, we have presented ALEx, an architectural-level exception handling sys-

tem which leverages the construction of fault-tolerant component-based applications. The

use of traditional language-based exception handling systems for building fault-tolerant

component-based systems presents some challenges which have been discussed in Section

2.3. ALEx addresses these issues by instituting exception handling at the architectu-

ral level. We have also briefly described FaTC2, an object-oriented framework for the

construction of fault-tolerant component-based systems which implements ALEx.

It is important to note that architectural-level exception handling is not a replacement

for language-level exception handling. In our view, exception handling in the language

level should be the main technique for achieving fault tolerance internally to components

(intra-components). Architectural-level exception handling (inter-components) should be

employed when (i) an exception can not be handled by the component which raised it, and

some other component in the architecture might be able to handle it, and (ii) mechanisms

for error detection and recovery must be introduced in a component in order to make it

trustworthy (or more trustworthy), but the component should not be modified or its

source code is not available.

Until the present moment, the iC2C has been modeled as a synchronous (request/res-

ponse) entity and the implementation of FaTC2 conforms to this model. That means that

an iC2C is unable to handle asynchronous notifications and that requests are issued under

the assumption that a response will be eventually received. This restriction might be too

conservative for some applications, since a large amount of glue code may be necessary

if a synchronous iC2C needs to interact with asynchronous components (Section 2.6).

Hence, a future work for is the definition of an iC2C for which some of these restrictions

are relaxed.

FaTC2 still does not implement all the features defined by ALEx. Some features,

such as support for attaching handlers to arbitrary configurations and hierarchical handler

search upon the receipt of an exception (Section 2.4.3) have not been implemented yet.

Hence, another future work for FaTC2 is the implementation of the remaining features

described by the specification of ALEx.

Finally, we believe that the design and implementation of ALEx are independent

of the C2 architectural style and the iC2C. Hence, we plan to evaluate our approach

on generic layered architectures by means of an implementation which does not rely

on the concept of iC2C. In this case, new means for associating exception handlers to

components would need to be established, in order to maintain the features described in

2.8. Conclusions and Future Work 43

Section 2.4. Computational Reflection [121] and Aspect-Oriented Programming [106] are

good candidates for this task.

2.9. Resumo do Caṕıtulo 2 44

2.9 Resumo do Caṕıtulo 2

Este caṕıtulo apresentou uma proposta de mecanismo de tratamento de exceções para

aplicações baseadas em componentes. Diferentemente de mecanismos tradicionais, que

focam nas construções existentes em linguagens de programação, esse mecanismo de tra-

tamento de exceções funciona em um ńıvel de abstração mais alto e se baseia nos elementos

que compõem a arquitetura de um sistema de software. Foi discutida também a influência

que o estilo arquitetural adotado, C2, tem no funcionamento do mecanismo, em particular

na propagação de exceções e na busca por tratadores. O caṕıtulo também descreveu sucin-

tamente um arcabouço orientado a objetos chamado FaTC2 que implementa o mecanismo

de tratamento de exceções proposto.

O próximo caṕıtulo generaliza algumas das idéias apresentadas neste, no contexto do

estilo C2, e propõe uma abordagem para a descrição da arquitetura de um sistema do

ponto de vista do seu comportamento excepcional. Essa abordagem permite que desen-

volvedores especifiquem a maneira como exceções são propagadas em diferentes estilos

arquiteturais. Além disso, torna posśıvel verificar diversas propriedades de interesse re-

lativas ao fluxo de exceções entre os elementos da arquitetura. O foco do trabalho sai

da implementação de arquiteturas tolerantes a falhas e passa para o projeto arquitetural

do comportamento excepcional. Essa mudança de foco visa criar um ferramental que dê

suporte à integração confiável de componentes de software no ńıvel arquitetural, evitando

incompatibilidades arquiteturais relativas ao comportamento excepcional dos componen-

tes integrados.

Caṕıtulo 3

Especificação de Fluxo de Exceções

em Arquiteturas de Software

Este caṕıtulo se refere à Seção 1.3.3 do Caṕıtulo 1 e descreve o arcabouço Aereal (Archi-

tectural Exceptions Reasoning and Analysis), um conjunto de atividades, ferramentas e

modelos para a descrição e análise do comportamento excepcional de um sistema software

a partir de sua arquitetura. Esse arcabouço é centrado em uma nova visão arquitetural,

chamada Visão de Fluxo de Exceções, que indica as exceções geradas e tratadas (mas-

caramento e propagação) pelos elementos arquiteturais. Como estilos arquiteturais têm

poĺıticas distintas para propagação de exceções, o arcabouço dá suporte à definição de re-

gras sobre como exceções fluem entre elementos arquiteturais em diferentes estilos. Aereal

é baseado em ACME [76], uma linguagem de intercâmbio para a descrição de arquitetu-

ras, e Alloy [98], uma linguagem de especificação baseada em lógica relacional de primeira

ordem. Através dos conjuntos de ferramentas associados a essas linguagens [101, 157] e

das ferramentas providas por Aereal, diversas propriedades interessantes podem ser veri-

ficadas a partir da Visão de Fluxo de Exceções. Algumas dessas propriedades se referem

à aderência da arquitetura às restrições impostas por diferentes estilos arquiteturais, no

tocante à propagação de exceções. Outras dizem respeito às regras do mecanismo de

tratamento de exceções que o arcabouço define e às caracteŕısticas desejáveis do compor-

tamento excepcional de uma aplicação. A abordagem proposta é validada através de dois

estudos de caso.

O arcabouço proposto visa apoiar a integração confiável de componentes, exigindo que

arquitetos sejam expĺıcitos com relação às suposições que fazem no tocante ao compor-

tamento excepcional dos componentes integrados. É fato bem conhecido que suposições

incompletas ou incorretas são a principal causa de falhas introduzidas em um sistema

durante a etapa de integração dos seus componentes [75]

O artigo que este caṕıtulo contém foi publicado no Journal of Systems and Soft-

45

46

ware [28]. Uma versão preliminar [25] foi apresentada no ICSE’2005 Workshop on Archi-

tecting Dependable Systems, em maio de 2005.

3.1. Introduction 47

Specification of Exception Flow in

Software Architectures

Fernando Castor Filho Patrick Henrique da S. Brito

Cećılia Mary F. Rubira

Institute of Computing

State University of Campinas

Campinas - SP - Brasil

{fernando,pbrito,cmrubira}@ic.unicamp.br

3.1 Introduction

The concept of software architecture [159] has been recognized in the last decade as a me-

ans to cope with the growing complexity of software systems. According to Clements and

Northrop [48], software architecture is the structure of the components of a program/sys-

tem, their interrelationships and principles, and guidelines governing their design and

evolution over time. It is widely accepted that the architecture of a software system has a

large impact on its capacity to meet its intended quality requirements, such as reliability,

security, availability, and performance, amongst others [11]. Software architectures are

described formally using architecture description languages, or ADLs [128]. Most ADLs

share the same conceptual basis whose main elements are architectural components (loci of

computation or data stores), architectural connectors (loci of interaction between compo-

nents), and architectural configurations (connected graphs of components and connectors

that describe architectural structure) [128]. Software architectures described in an ADL

can be analyzed by tools, in order to verify whether it satisfies some desired properties. In

particular, automated and semi-automated analysis of software architectures are valuable

tools in the construction of dependable systems.

Applications that can cause risks for human lives or risk of great financial losses are

usually made fault-tolerant [5], so that they are capable of providing their intended service,

even if only partially, when faults occur. Fault-tolerant systems include mechanisms for

detecting errors in their states and recovering from these errors. Exception handling [52]

is a well-known mechanism for structuring error recovery in software systems. Since ex-

ception handling is an application-specific technique, it complements other techniques for

improving system reliability, such as atomic transactions [83], and promotes the imple-

mentation of very specialized and sophisticated error recovery measures. Furthermore, in

3.1. Introduction 48

applications where a rollback is not possible, such as those that interact with mechanical

devices, exception handling may be the only choice available. An exception handling sys-

tem (EHS) helps in the construction of dependable software by imposing constraints on

the way exceptions and exception handlers may be used in a given language and detecting

violations of these constraints. For instance, the EHS of Java detects unhandled excepti-

ons at compile-time, unless the developer states explicitly that this checking should not

be performed (by declaring the exception unchecked).

Usually, a system’s error detection and handling mechanisms are developed in an ad-

hoc manner during system implementation [52, 148, 180]. However, some researchers ar-

gue that, to achieve the desired levels of reliability, mechanisms for detecting and handling

errors should be developed systematically from the early phases of development [154, 59],

that is, from requirements, passing by analysis and design (architectural design and de-

tailed design) phases. One approach that offers potential benefits to the development of

dependable systems at the architectural level is to combine ADLs and exceptions during

the design of the architecture. By extending formal architecture descriptions with infor-

mation about exceptions, developers (i) better document their decisions about the flow

of exceptions at the architectural level, (ii) make their assumptions about the EHS of the

language(s) that will be used during system implementation explicit, and (iii) can check

inconsistencies between the architecture description and the assumed EHS. Hence, in this

paper, we attempt to answer the following research question:

Research question #1: How can software architectures be enriched with

information about exceptions so that it is easy to verify some useful properties

regarding exception flow?

A generic solution to this question should deal with software architectures based on

multiple architectural styles. An architectural style defines a vocabulary of types of design

elements which are part of a family of architectures and the rules by which these elements

are composed [76]. Well-known examples are Client/Server and Publisher/Subscriber [18].

Since architectural styles dictate how components in an architecture interact, they also

impact the way exceptions flow amongst architectural elements [30]. Therefore, we refine

research question #1 to include the notion of architectural style:

Research question #2: How can software architectures be enriched with

information about exceptions so that it is easy to verify some useful properties

regarding exception flow while taking into account the constraints imposed by

different architectural styles?

We present the Aereal (Architectural Exceptions Reasoning and Analysis) framework,

which supports the extension of architectural descriptions with information about excep-

tions. These extended descriptions can be analyzed in order to check if they satisfy the

3.2. Background 49

constraints imposed by different architectural styles on how exceptions flow between ar-

chitectural elements. Moreover, it is possible to specify properties of interest regarding

exception flow and verify automatically if they are satisfied by an architecture. As ena-

bling technologies, Aereal uses Alloy [98], a first-order relational language, ACME [76],

an interchange language for architecture description, and their associated tool sets.

This work is organized as follows. Section 3.2 provides some background information

on exception handling, ACME, and Alloy. Section 3.3 gives a motivation for specifying

exceptions at the architectural level and lists some requirements that a solution to research

questions #1 and #2 should satisfy. Section 3.4 provides an overview of Aereal approach

to architecture-centric software development. Section 3.5 describes two case studies we

have conducted to assess the usefulness of the framework. Section 3.6 reviews some related

works. The last section presents concluding remarks and points out directions for future

works.

3.2 Background

3.2.1 Exception Handling

When a system receives a service request and produces a response according to its speci-

fication, the produced response is said to be normal. Conversely, if the system produces

a response that does not conform with its specification, this response is said to be abnor-

mal, or exceptional. Abnormal responses usually indicate the occurrence of an error and

since these responses are expected to occur only rarely, they are called exceptions. When

exceptions occur, the system should handle them in order to return to a coherent state.

The part of the behavior of a system that is responsible for handling exceptions is called

abnormal, or exceptional, activity. Conversely, the part of the behavior of a system that

is responsible for its functionality, as defined by its specification, is called normal activity.

Exception handling [52] is a mechanism for structuring the exceptional activity of a

system so that errors can be more easily detected, signaled, and handled. It is implemented

by many mainstream programming languages, such as Java, Ada, C++, and C#. These

languages allow the definition of exceptions and the corresponding handlers. The set of

exceptions and exception handlers in a system define its exceptional activity.

The concept of idealized fault-tolerant component (IFTC) [5] defines a conceptual fra-

mework for structuring exception handling in software systems. An IFTC is a component1

in which the parts responsible for the normal and abnormal activities are separated and

well-defined, within its internal structure. The goal of the IFTC approach is to pro-

vide means to structure systems so that the impact of fault tolerance mechanisms in

1In a broader sense; an object, a subsystem, a software component, or a whole systems.

3.2. Background 50

Normal Activity Exceptional Activity

Client Component

Server Component

Internal Exception

Return to the Normal Activity
Failure Exception

Interface ExceptionNormal Request

Normal Response

Normal Response

Normal Request Interface Exception

Failure Exception

Figura 3.1: Idealised Fault-Tolerant Component.

the overall system complexity is minimized. This eases the detection and handling of

errors. Figure 3.1 presents the internal structure of an IFTC and the types of messages

it exchanges with other components in a system.

When an IFTC receives a service request, it produces a normal response if the request

is successfully processed. If an IFTC receives an invalid service request, it signals an

interface exception. If an error is detected during the processing of a valid request, the

normal activity part of the IFTC raises an internal exception, which is received by the

exceptional activity part of the IFTC. If the IFTC is capable of handling an internal

exception properly, normal activity is resumed. If the IFTC has no handlers for an

internal exception or is unable to handle an exception for which it has a handler, it

signals a failure exception. Interface and failure exceptions are collectively called external

exceptions. In this work, it is assumed that architectural elements behave like IFTCs.

Hence, only external exceptions are taken into account, as strictly internal exceptions are

not visible architecturally.

3.2.2 ACME

ACME [76] works as both an interchange language for architecture description and an

ADL. It provides a simple structural framework for representing architectures, together

with a flexible annotation mechanism. The language does not impose any semantic in-

terpretation of an architectural description, but simply provides a syntactic structure to

which semantic descriptions can be associated. This semantic information can then the

interpreted by tools.

ACME supports the definition of four distinct aspects of architecture: (1) structure,

(2) properties of interest, (3) constraints, and (4) types and styles. Structure aspect defi-

3.2. Background 51

nes the organization of a system into its constituent parts, components, connectors, and

attachments between these elements. The properties of interest aspect defines syntactic

structures to which semantic information can be associated and analyzed by tools. Cons-

traints are guidelines for how the architecture can change over time. The types and styles

aspect defines classes and families of similar architectures.

In ACME, architectural styles are called families. An ACME family defines types of

architectural elements that can be used in architectures that adhere to a specific archi-

tectural style and constraints on instances of these types. An ACME family2 can extend

another one by means of subtyping. Extension in ACME works as in object-oriented lan-

guages; all the elements defined by the parent ACME family are visible in and part of the

child family. Architectural element types defined by a child ACME family may extend

element types defined by the parent ACME family. Subtyping relations between element

types work in the same way as subtyping relations between ACME families. Multiple

inheritance is allowed and name conflicts result in invalid ACME families/element types.

Figure 3.2 presents part of the ACME definition of the Client/Server architectural

style. The ClientAndServerFam family in the Figure 3.2 defines two types of components,

ClientT and ServerT (Lines 6 and 9), and one type of connector, CSConnT (Line 13).

Instances of each component type have exactly one access point, or “port” in ACME

terminology (Lines 7 and 10). The ServerT component type has an integer property

indicating the maximum number of concurrent requests an instance is capable of handling.

In ACME, the access points of a connector (to which component ports are attached) are

called “roles”. Instances of CSConnT have two roles, one for the client and one for the

server (Lines 14 and 15). Moreover, connector type CSConnT defines a simple constraint

indicating that connectors of this type have exactly two roles (Line 16).

Figure 3.3 shows a partial definition of a very simple ACME system. An ACME

system is an architecture description adhering to 0 or more architectural styles. Elements

in an ACME system are instances of the element types defined by the styles to which

it adheres. System NetBanking adheres only to the Client/Server style (Lines 2-3). It

defines two components, InternetBankingServer (Lines 6-12) and Client1 WebBrowser (14-

20), of types ServerT and ClientT, respectively, and one connector, conn (Line 13), of type

CSConnT. Architectural structure is specified by defining attachments between component

ports and connector roles. The receivedRequest port of InternetBankingServer is attached

to the serverSide role of conn and the sendRequest port of Client1 WebBrowser is attached

to the clientSide role of conn (Lines 4 and 5). Elements in a system can define instance-

specific properties. In the example, both InternetBankingServer and Client1 WebBrowser

define instance-specific properties regarding their positions in the screen (Lines 8-9, 16-

17).

2In the rest of the paper, we use the terms “ACME family” and “architectural style” interchangeably.

3.2. Background 52

1 Family ClientAndServerFam = {

2 Port Type ClientPortT = { ... }

3 Port Type ServerPortT = { ... }

4 Role Type clientSideRoleT = { ... }

5 Role Type serverSideRoleT = { ... }

6 Component Type ClientT = {

7 Port sendRequest : ClientPortT = new ClientPortT ;

8 }

9 Component Type ServerT = { ... }

10 Port receiveRequest : ServerPortT = new ServerPortT ;

11 Property max-concurrent -requests : int ;

12 }

13 Connector Type CSConnT = {

14 Role clientSide : clientSideRoleT = new clientSideRoleT;

15 Role serverSide : serverSideRoleT = new serverSideRoleT;

16 invariant size(self.roles) == 2;

17 }

18 }

Figura 3.2: ACME definition of the Client/Server style.

Architectural modeling in ACME is supported by AcmeStudio [157]. AcmeStudio is an

architecture development environment that allows the definition of new architectural styles

and the modeling of systems which instantiate these styles using an intuitive graphical

user interface. The environment includes a constraint solver called Armani [134] that

checks whether an architecture satisfies the constraints defined by the styles to which it

adheres.

Aereal assumes that architecture descriptions are written in ACME. Although other

ADLs could be employed, some reasons have made us choose ACME: (i) it focuses on

the structure of the system; (ii) it has powerful constructs for defining new architectural

styles; (iii) it is extensible by the use of properties; and (iv) it has mature tool support.

Since ACME is both an ADL and an interchange language, developers may employ other

ADLs for modeling specific aspects of the system and then translate these specifications

to ACME [77], so that they can be used with Aereal.

3.2.3 Alloy

Alloy [98] is a lightweight modeling language for software design. It is amenable to a fully

automatic analysis, using the Alloy Analyzer (AA) [101], and provides a visualizer for

making sense of solutions and counterexamples it finds. Similarly to other specification

languages, such as Z and B [3], Alloy supports complex data structures and declarative

models.

In Alloy, models are analyzed within a given scope, or size. The analysis performed

by the AA is sound, since it never returns false positives, but incomplete, since the AA

only checks things up to a certain scope. However, it is complete up to scope; the AA

3.3. Specification of Exceptions at the Architectural Level 53

1 import families \ ClientAndServerFam.acme;

2 System Netbanking : ClientAndServerFam =

3 new ClientAndServerFam extended with {

4 Attachment Client1_WebBrowser.sendRequest to conn.clientSide ;

5 Attachment InternetBankingServer .receiveRequest to conn.serverSide ;

6 Component InternetBankingServer : ServerT = new ServerT extended with {

7 Port receiveRequest : ServerPortT = new ServerPortT extended with {

8 Property vis-x : float = 20.0;

9 Property vis-y : float = -25.0;

10 };

11 ...

12 };

13 Connector conn : CSConnT = new CSConnT ;

14 Component Client1_WebBrowser : ClientT = new ClientT extended with {

15 Port sendRequest : ClientPortT = new ClientPortT extended with {

16 Property vis-y : float = 65.0;

17 Property vis-x : float = 176.0;

18 };

19 ...

20 };

21 ...

22 };

Figura 3.3: A trivial ACME system.

never misses a counterexample which is smaller than the specified scope. As pointed out

by the Alloy tutorial [99], small scope checks are still very useful for finding errors.

Alloy is used by Aereal for analyzing exception flow mainly because (i) it focuses on

how data is specified, an important feature for modeling exceptions as data objects [72];

(ii) it supports automated analysis; (iii) it has a mature constraint solver; and (iv) it is

simpler and arguably easier to use than similar languages, such as B.

3.3 Specification of Exceptions at the Architectural

Level

Usually, a large part of a system’s code is devoted to error detection and handling [52, 148,

182]. However, since developers tend to focus on the normal activity of applications and

only deal with the code responsible for error detection and handling at the implementation

phase, this part of the code is usually the least understood, tested, and documented [52,

148]. In order to achieve the desired levels of reliability, mechanisms for detecting and

handling errors should be developed systematically throughout all the phases of software

development [59, 154]. As pointed out by many authors [11, 47, 165], the architecture

of a software system has a strong impact on its ability to meet its intended quality

requirements, for example, security, reliability, availability, and performance. Thus, if

a system should be reliable and exception handling is one of the mechanisms that will

be used to achieve this goal, it may be beneficial to consider exception handling-related

3.3. Specification of Exceptions at the Architectural Level 54

issues during architectural design.

At the architectural level, an exception is a signal (message, event, language-level

exception, etc.) employed by an architectural element to indicate to other elements that

it has failed. An element that potentially receives an exception should be capable of

doing something about it. During architectural design, it may still be too early to know

exactly what. However, the design of an architecture involves assigning responsibility to

architectural elements [48]. Therefore, it should be known at least which elements raise

which exceptions, which elements are responsible for handling a certain exception, and

which elements, upon receipt of an exception, just propagate it. This small amount of

information is enough to reason about relevant properties regarding exception handling,

for example, whether an exception raised by an element is actually handled by some other

element in the architecture.

Architects often need to understand the architecture of a system from various perspec-

tives, according to specific quality attributes. Architectural views [109] represent different

aspects of the same architecture and each view shows how the architecture achieves a

particular quality attribute [11]. These quality attributes are usually characterized in

terms of properties of interest that the architecture should satisfy. A view for analyzing

properties of interest about exception flow should include information such as: (i) the

exceptions that each architectural element raises, handles, and propagates; and (ii) how

exceptions flow between these elements. The following subsection presents an example of

a view that describes the flow of exceptions in the architecture of an air traffic control

(ATC) system. This example was extracted from a popular textbook on software archi-

tectures [11]. We highlight some of the limitations of the informal approach employed to

specify this view. Section 3.3.2 lists some requirements we believe that any approach for

modeling exceptions at the architectural level should satisfy.

3.3.1 A Motivating Example

An Air Traffic Control (ATC) system is a large-scale complex distributed system with

very strict availability and performance requirements, meaning that the system should

function 24/7 and timing deadlines must be met absolutely. The ATC system is an en

route system which controls aircrafts from soon after takeoff until shortly before landing.

Its end users are the air traffic controllers. It has a layered software architecture with one

subsystem cooperating with others for services.

Due to its high availability requirements, the architects of the system designed a fault

tolerance view of the software architecture (Figure 3.4) [10]. This structure describes how

the faults are detected and isolated, and how the system recovers. So, besides presenting

ways of detecting and isolating faults which belongs to specific components, the fault-

3.3. Specification of Exceptions at the Architectural Level 55

Figura 3.4: Fault tolerance architectural view of an ATC system.

tolerant hierarchy is designed do trap and recover from errors which are a consequence of

cross-application interactions.

In Figure 3.4, the names of the components are abbreviated. Arrows indicate flow

of exceptions between components (layers) of the architecture and a layer that receives

exceptions from another layer is responsible for handling those exceptions. The idea of

the authors is to express a hierarchical depiction of the system where layers that are closer

to the top implement more general exception handling strategies. Each one of the eleven

components of the architecture presented in Figure 3.4 has a specific role, as shown in

Table 3.1.

The architecture of Figure 3.4 conveys useful information about exceptions in the

system. For example, it is clear that exceptions flow from the Network component to the

Local/Group A.M. and O/S E.A.S. components. It is also clear, due to the topology of the

system, that the M&C Console and ATC Console layers have the most general exception

handlers. This is expected, since, in an ATC system, users should always be notified of

unhandled exceptions [11]. However, in spite of these useful pieces of information, the

fault tolerance view of Figure 3.4 has some important shortcomings. First, this view does

not specify what are the exceptions that each layer raises and handles. Second, it is not

possible to infer whether there are relevant cause-effect relations between the exceptions

that layers receive and signal. For example, there is no way of knowing whether the

exceptions signaled by Local/Group A.M to G.A.M are a consequence of the exceptions

received by the former from Network. Third, the view expresses a strictly hierarchical

3.3. Specification of Exceptions at the Architectural Level 56

Tabela 3.1: Components in the fault-tolerance view of the ATC system.
Component Description

Monitor & Control Console Gives an overview of the state of the system. It has special software
(M&C Console.) to support monitoring and controlling functions and provides

the top-level availability management functions.
ATC Console A user console. It is also used by the controllers and is the access

point to services which do not require a strict control of availability.
Global Availability Monitor Manages the availability of functions within the suite. It determines
(G.A.M.) which of the multiple redundant copies of an application program

within a sector suite is the primary copy and should thus
receive messages

Local/Group A set of application-level system services. It is responsible for
Availability Manager (A.M.) managing the initiation, termination, and availability of the

application programs.
Application Software Operational Represents the application-level system services
Unit (A.S.O.U.)
Operating System Extensions Provides additional system services that are necessary to support a
Address Space (O/SE.A.S.) fault-tolerant distributed system. UNIX does not provide all these

services.
Network Provides communication to the redundant services in a transparent

way. There are at least two networks: a local communication
network (LCN), and a backup communication network (BCN). The
latter is used in some LCN failure conditions.

Operating System. A UNIX operating system.
Processor The hardware that processes software instructions. Due to a design

choice, redundant processors must exist.
I/O Devices The device tasks are optional and are only present for applications

that directly communicate with a device driver.
Attachments The data, which either is necessary to process the application

functions, or is stored as a result of a service.

structure for exception flow. It might not be appropriate to describe in the same manner

the flow of exceptions in software architectures where components are peers. Fourth, it

is not clear what a double-headed arrow means. These shortcomings could be alleviated

by additional documentation complementing the diagram, but we did not find mention

to such a documentation [10].

3.3.2 Requirements

To avoid the shortcomings highlighted in Section 3.3.1, we believe an effective approach

for modeling exceptions at the architectural level should satisfy the following basic requi-

rements:

Req.1: It should make it possible to unambiguously distinguish the exceptions that ar-

chitectural components and connectors signal and catch, and how these exceptions flow

between different architectural elements. Moreover, it should also be possible to specify

the exceptions that an architectural element handles, the exceptions it raises, and the

ones it propagates.

3.4. The Aereal Framework 57

Req.2: To enhance maintainability, the specification of exceptions at the architectural

level should be orthogonal and traceable to the “normal” architecture description.

Req.3: It should be supported by a pictorial (boxes-and-lines) representation, in order

to be understandable by non-specialists and easier to use.

Req.4: It should take into account the notion of architectural styles. The approach should

support the extension of traditional styles, such as layered (as in Section 3.3.1) and pu-

blisher/subscriber, with information about exceptions, in order to take into account the

particularities of each style.

Req.5: It should support automated analysis. In this manner, it is possible to verify in

a cost-effective way if the architecture presents some desired properties before the system

is actually implemented.

Req.6: It should make it easy to verify if an architecture description adheres to rules

defined by EHS of real-world programming languages, such as Java, Ada, C++, and C#.

3.4 The Aereal Framework

Architecture-based development with Aereal starts with the traditional activities of a

software development process, namely, requirements analysis and architectural design

of the system. It is also necessary to define scenarios in which the system may fail

(fault model), what exceptions correspond to each type of error, and where and how

the exceptions are handled (exceptional activity). The specification of the system’s fault

model and exceptional activity can be conducted as prescribed by some works in the

literature [154, 54]. The most important results of these activities are a description of

the system’s architecture and informal specifications of the system’s fault model and

exceptional activity.

The use of Aereal in architecture-centric development involves the following activities:

1. Defining how exceptions flow between architectural elements for each architectural

style used in the architecture description. This information is specified by defining

new architectural styles, called exceptional styles, that complement the traditional

(i.e. Client/Server, Layered) ones. Hereafter we call the latter normal styles.

2. Specifying the Exception Flow View of the software architecture. This view depicts

the components that catch or signal exceptions (called exceptional components), as

well as special connectors through which exceptions flow between these components

(exception ducts). An exception flow view adheres to one or more exceptional styles.

3. Composing the architecture description with the exception flow view, producing

3.4. The Aereal Framework 58

Figura 3.5: Overview of the Aereal framework.

an architecture description extended with information about exceptions (or simply

extended architecture description).

4. Analyzing structural constraints, that is, checking whether the architecture descrip-

tion violates any of the constraints defined by the exceptional styles to which it

adheres.

5. Generating an Alloy specification from the extended architecture description.

6. Analyzing exception flow based on the generated Alloy specification.

Figure 3.5 illustrates the main components of Aereal. In the figure, ovals represent

artifacts and rectangles with rounded corners represent activities. Some of the ovals are

dashed to indicate that they are either part of the infrastructure of the framework or

generated automatically. An Aereal specification consists of a set of ACME system and

family descriptions. One ACME system specifies the components and connectors view of

the system [11]. The remaining ACME systems specify the exception flow views of the

architecture. The ACME families specify architectural styles, both normal and exceptio-

nal, to which the ACME systems adhere. The definition of the exceptional activity and

3.4. The Aereal Framework 59

Figura 3.6: Architecture of a simple Internet Banking system.

the ACME architectural description in Figure 3.5 are assumed to exist and be produced

as part of the software development process being used.

Figure 3.6 shows a high level components and connectors view of the architecture of an

Internet Banking (IB) system. In the figure, components and connectors are represented

by rectangles and circles, respectively. The architecture of the sytem adheres to the

Client/Server architectural style. In the rest of this section, we use the IB system to

make a more detailed presentation of Aereal.

The following subsections provide a detailed description of the workflow supported by

Aereal.

3.4.1 Defining exceptional styles

Aereal uses special-purpose architectural connectors to model exception flow between

components. These connectors, called exception ducts, are unidirectional point-to-point

links through which only exceptions flow. Exception ducts may be refined when new

exceptional styles are defined. In this manner, the specificity of each architectural style

may be taken into account. The idea that simple point-to-point connections are suitable

general-purpose abstractions for modeling style-independent communication between ar-

chitectural components was proposed by Mehta and Medvidovic [129]. We have tailored

this idea to our specific needs. This structural perspective on exception flow was adopted

because: (i) it is intuitive to architects, who are used to thinking in terms of components

and connectors; (ii) it is compatible with well-established views on what exception flow

is [52]; and (iii) it is easy to integrate with the concept of architectural style. It abstracts

away issues such as flow of control and flow of data.

Aereal includes a basic architectural style (an ACME family) called SingleExcFam on

which all exceptional styles are based. SingleExceptionFam defines types that designate

architectural elements that catch and/or signal exceptions. A new exceptional style must

extend (be subtype of) two styles: SingleExcFam and the normal style to which it corres-

ponds. The latter must be extended in order to make it possible to specify invariants for

3.4. The Aereal Framework 60

the new exceptional style that also involve elements of its corresponding normal style. It

is possible to create many different exceptional styles for a single normal style and use

some or all of them in an architecture description.

Style-specific features are introduced in a new exceptional style by creating subtypes

of the element types that SingleExcFam defines and adding new internal elements (e.g.

new ports in a component type), properties, and invariants. ExceptionalComponent is the

supertype of all architectural components that deal with exceptions. By default, instances

of ExceptionalComponent have no ports. New exceptional styles have to define subtypes of

ExceptionalComponent that have ports, in order to specify whether instances of the type

signal or catch exceptions, or both. SingleExcFam defines two port types, CatcherPortT

and SignalerPortT, indicating that a component catches and signals exceptions, respecti-

vely. The supertype of all exception ducts is (for historical reasons) ExceptionalConnector.

Since exception ducts are point-to-point channels, instances of this type have exactly two

roles, of types CatcherRoleT and SignalerRoleT.

Example

Figure 3.7 presents a partial definition of the Exceptional Client/Server architectural

style (ExceptionalClientAndServerFam ACME family). ExceptionalClientAndServerFam ex-

tends SingleExceptionFam and ClientAndServerFam (Lines 3 and 4). It defines two types

of exceptional components, ExceptionalClientT and ExceptionalServerT (Lines 5 and 9),

corresponding to clients and servers, respectively, and one type of exception duct, Ex-

ceptionalCSConnT (Line 13). Instances of ExceptionalClientT have a single port, of type

CatcherPortT (Line 6). Instances of ExceptionalServerT also have a single port, of type

SignalerPortT (Line 9). The invariants in lines 7 and 11 guarantee that ExceptionalClientT

and ExceptionalServerT have no other ports. The invariant in lines 14-22 describes a ge-

neral pattern of exception flow that can be specialized by each exceptional style. It states

that if there is an exception duct linking two exceptional components in an exception flow

view, then these components must exist as normal components in the normal architectu-

ral description and there must be a normal connector (a connector of type CSConnT, as

shown in Line 20) linking them.

3.4.2 Specifying the exception flow view

An exception flow view comprises the components from the architecture description that

signal or catch exceptions and exception ducts connecting these components. It adhe-

res to one or more exceptional styles, depending on the normal styles the architecture

description uses. Each element in an exception flow view is annotated with information

about exceptions. All the elements in an exception flow view are instances of types that

3.4. The Aereal Framework 61

1 import families \ SingleExceptionFam.acme;

2 import families \ ClientAndServerFam.acme;

3 Family ExceptionalClientAndServerFam extends SingleExcFam,

4 ClientAndServerFam with {

5 ...

6 Component Type ExceptionalClientT extends ExceptionalComponent with {

7 Port catchesPort : CatcherPortT = new CatcherPortT;

8 invariant size(self.ports) == 1;

9 }

10 ...

11 Component Type ExceptionalServerT extends ExceptionalComponent with {

12 Port signalsPort : SignalerPortT = new SignalerPortT;

13 invariant size(self.ports) == 1;

14 }

15 ...

16 Connector Type ExceptionalCSConnT extends ExceptionalConnector with {}

17 invariant Forall c1 : ExceptionalClientT in self. components |

18 Forall c2 : ExceptionalServerT in self.components |

19 Forall conn : ExceptionalCSConnT in self.connectors |

20 ((attached (conn, c1) AND attached (conn, c2) AND

21 connected (c1, c2)) -> (satisfiesType(c1, ClientT) AND

22 satisfiesType(c2, ServerT) AND

23 (Exists normalConn : CSConnT in self. connectors |

24 attached (normalConn , c1) AND attached (normalConn , c2))))

25 << label : string = "OK.";errMsg : string = "Problems .";>>;

26 ...

27 }

Figura 3.7: Partial definition of the Exceptional Client/Server style.

the exceptional styles to which it adheres define. Aereal represents exception flow views

as ACME systems.

The element types that SingleExcFam defines declare properties that are used to asso-

ciate information about exceptions to architectural elements. In the exception flow view,

instances of these types assign values to these properties. This information is taken into

account during exception flow analysis (Section 3.4.4). Table 3.2 lists the properties de-

clared by the element types of SingleExcFam and informally describes their semantics. All

the properties in the table, except for the last one, are declared by ExceptionalComponent

and ExceptionalConnector. Element types CatcherPortT and CatcherRoleT only declare

properties handles, catches, and propagates. Element types SignalerPortT and SignalerRo-

leT only declare properties raises and signals. Only instances of SignalerPortT use property

catcherPorts.

In the exception flow view, values assigned to properties declared by exceptional com-

ponents and exception ducts add up to the values assigned to the homonym properties

declared by associated ports and roles, respectively. For example, if an exceptional com-

ponent C assigns value {RemoteException} to property raises and signaler port P of

C assigns value {IOException} to its homonym property, it is assumed that the value

of property raises for P is {RemoteException, IOException}. This semantics makes it

3.4. The Aereal Framework 62

Tabela 3.2: Properties employed by the exception flow view to associate information
about exceptions to architectural elements.

Property Description

signals The set of exceptions signaled by an architectural element.
Aereal automatically computes signals from the values assigned
to raises, handles, and propagates for all the elements in an
exception flow view. Optionally, it is possible to manually specify
a set of exceptions. In this case, Aereal verifies if the element
actually signals the exceptions during exception flow analysis.

catches The set of exceptions caught by an architectural element.
Similarly to signals, computed automatically by Aereal.

handles The set of exceptions that an architectural element handles.
In this case, “handles” means that the handler for the exception
does not end its execution by raising an exception. After
handling, normal execution is resumed.

propagates This property is a variation of handles where the handler ends
its execution by raising an exception. The propagates property
specifies a cause-consequence relationship between an exception
that an element catches and an exception that it signals.

raises The set of exceptions that an element raises. Since only external
exceptions are taken into account by Aereal, raises is
a subset of signals

catcherPorts The set of ports of type CatcherPortT associated
to a port of type SignalerPortT. Exceptions caught by
these catcher ports and not handled or propagated by the
element are signaled through the associated signaler port.
If catcherPorts is left unspecified for a given
signaler port, Aereal assumes that this port is associated
to all the catcher ports of the element.

possible to specify that different ports of the same component manipulate different sets

of exceptions while retaining the ability to specify a common denominator. A similar

rationale applies to exception ducts and roles.

Usually, unlike exceptional components, exception ducts are connectors that do not

exist in the normal architecture description. They are orthogonal to “regular” connectors,

in the sense that they do not necessarily follow the same rules for message/data passing

and transfer of control. For instance, an exception duct between components that adhere

to the Publisher/Subscriber style may or may not indicate transfer of control, depending

on the semantics of the application. In our approach for exception flow analysis, this

is not of utmost importance because we are not modeling system behavior. Moreover,

even though a set of components in a Publisher/Subscriber architecture may communi-

cate through a single normal connector, there may be several exception ducts between

these components, depending on how the components may fail and which is responsible

for handling which exceptions.

Example

3.4. The Aereal Framework 63

The IB system’s exception flow view only uses the Exceptional Client/Server style, de-

fined by ExceptionalClientAndServerFam, since only the Client/Server style is used in the

architecture description. It is important to notice, however, that various architectural

styles could have been used.

Figure 3.8 shows part of the ACME definition of the IB system’s exception flow view.

This ACME system adheres to the Exceptional Client/Server architectural style (Lines

2-3). Line 9 specifies that the InternetBankingServer component signals an exception cal-

led RequestNotProcessedException. This exception is raised by the component itself (Line

8). Lines 14 and 15 state that exeception duct ExceptionalCSConnT0 catches exceptions

of type RequestNotProcessedException and signals exceptions of type RemoteException,

respectively. Furthermore, Lines 16-17 specify that ExceptionalCSConnT signals Remote-

Exception as a consequence of catching RequestNotProcessedException.

1 import families \ ExceptionalClientAndServerFam .acme;

2 System ExceptionalNetbanking : ExceptionalClientAndServerFam =

3 new ExceptionalClientAndServerFam extended with {

4
5 Component InternetBankingServer : ExceptionalServerT =

6 new ExceptionalServerT extended with {

7 Port signalsPort : SignalerPortT = new SignalerPortT extended with {

8 Property raises : Set {} = { RequestNotProcessedException };

9 Property signals : Set {} = { RequestNotProcessedException };

10 };

11 };

12 Connector ExceptionalCSConnT0 : ExceptionalCSConnT =

13 new ExceptionalCSConnT extended with {

14 Property catches : Set {} = { RequestNotProcessedException };

15 Property signals : Set {} = { RemoteException };

16 Property propagates : Sequence <> =

17 < RequestNotProcessedException , RemoteException >;

18 };

19 ...

20 };

Figura 3.8: Exception flow view of the IB system.

3.4.3 Composing architecture description and exception flow vi-

ews

Structural constraints are evaluated after an extended architecture description is gene-

rated. This description is produced by the Composer tool, which is provided by Aereal.

This tool reads the architecture description and the exception flow view and updates the

former with exception-related information defined by the latter. This organization pro-

motes separation of concerns at the architectural level, since the architecture description

does not refer to the exception flow view, and the two exist as separate design artifacts

and are composed automatically.

3.4. The Aereal Framework 64

Figure 3.9 presents pseudo-code describing part of the functioning of the Composer. In

the pseudo-code, variables representing architectural elements have fields through which it

is possible to access their internal elements. For example, variable excFlowView represents

the whole exception flow view and has the fields families and components, among others.

The first is the set of all exceptional styles to which the exception flow view adheres and

the second is the set of components in it. The Composer works by copying elements

(components, connectors/exception ducts, ports in a component, attachments, etc.) from

the exception flow view to the architecture description. Each element is identified by

its name. The scope of an element is the architectural element of which it is part, for

example, the scope of a component is a whole system, the scope of a port is a component,

etc.

When the Composer attempts to copy an exceptional component for which there is a

homonym component in the architecture description, the tool copies the properties and

ports that store exception-related information (Table 3.2) to the component in the archi-

tecture description. As for exception ducts, to avoid conflicts between homonym ducts

that appear in different exception flow views, the names of these elements are altered

during composition and attachments involving them are updated to reflect these changes.

It is not possible to combine existing exception ducts in the same way as exceptional

components because this could potentially create exception ducts linking more than two

components. Since the composition process has, by default, a “union” semantics, instead

of “overwrite”, many different exception flow views can be composed with the same ar-

chitecture description simultaneously. This supports a step-by-step development process

where various exception flow views are specified for different parts of the architecture

description. In later phases of system development, these views can be combined and

analyzed in conjunction.

Structural constraints analysis employs the Armani constraint solver [134] or AcmeS-

tudio (which includes Armani) to check if the extended architecture description satisfies

the invariants defined by the exceptional styles to which it adheres. Violations of these

invariants result in error messages.

Example

Figure 3.10 presents the components and connectors view of the extended architecture

description of the IB system, as produced by the Composer. Notice that between the

server and each client there are two connectors, a normal Client/Server connector and an

exception duct.

3.4. The Aereal Framework 65

1 Composer (ACMESystem excFlowView , ACMESystem archDescription) {

2 // families stores the set of families to which a system adheres

3 for each F in excFlowView .families

4 if (F not in archDescription.families) add F to archDescription.families

5 for each EC:ExceptionalComponent in excFlowView .components {

6 if (archDescription.components contains an element NC:Component

7 such that NC.name = EC.name) {

8 // types stores the set of types of which an element is an instance

9 for each T in EC.types

10 if (T not in NC.types) add T to NC.types

11 for each P:Set in EC.properties such that SingleExcFam defines P

12 // NC also has P because it is an instance of all the

13 // types of which EC is an instance

14 NC.P = NC.P + EC.P // set union and assignment

15 for each port PSE: SignalerPortT in EC.ports

16 if (there is no PSN in NC.ports such that PSN.name = PSE.name)

17 add PSE to NC.ports

18 else if (SignalerPortT in PSN.types)

19 for each P:Set in PSE.properties such that SingleExcFam defines P

20 PSN.P = PSN.P + PSE.P // set union and assignment

21 else report an error

22 ... // The same for ports of type CatcherPortT

23 }

24 else add EC to archDescription.components

25 }

26 ... // copy exception ducts/roles

27 for each A in excFlowView .attachments

28 if not (A in archDescription. attachments)

29 add A to archDescription.attachments

30 else report an error

31 }

Figura 3.9: Algorithm executed by the Composer tool.

3.4.4 Analyzing exception flow

To analyze how exceptions flow in the architecture, it is necessary to generate an Alloy

specification corresponding to the extended ACME description. Since generating the

Alloy specification manually is a difficult and error-prone activity, Aereal provides a tool,

called Converter, that automatically translates an extended ACME description to Alloy.

The Converter works according to the following steps:

1. Read the ACME descriptions corresponding to the extended architecture description

and the architectural styles (both normal and exceptional).

2. Build a language-independent representation of the architecture. This intermediate

representation is based on a system model described elsewhere [26]. It includes

architectural elements that are instances of types defined by exceptional styles and

exception-related information associated to these elements through relations that

correspond to the properties listed of Table 3.2. During the construction of the

intermediate representation, the Converter discards information about architectural

styles because this information is not used during exception flow analysis.

3.4. The Aereal Framework 66

Figura 3.10: Extended architecture description of the Internet Banking system.

3. Compute signaled and caught exceptions. As pointed out in Section 3.4.2, the sets

of exceptions that each architectural element signals and catches are automatically

computed by Aereal. Manually-specified sets of signaled and/or caught exceptions

are preserved by this process.

4. Write the text file comprising the Alloy specification of the system.

Exception flow analysis consists in verifying if the generated Alloy specification satisfies

Alloy predicates corresponding to properties of interest. The properties of interest that a

system must satisfy are split in three categories: basic, desired, and application-specific.

Basic properties define the well-formedness rules of the model, the characteristics of valid

systems. They specify the exception handling mechanism assumed by Aereal, which

is based on C++’, and how software architectures are structured. Examples of basic

properties are presented below, stated informally.

BP1. Architectural elements signal all the exceptions they raise.

BP2. All exception ducts catch exceptions from and signal exceptions to exactly one

exceptional component.

BP3. The graph formed by using exceptional components as vertexes and exception ducts

as edges is connected.

BP4. Architectural elements signal all the exceptions they catch and do not handle.

Desired properties are general properties that are usually considered beneficial, although

they are not part of the basic exception handling mechanism. In general, they assume

that the basic properties hold. Some examples are the following.

DP1. Architectural elements do not have handlers for exceptions they do not catch.

3.4. The Aereal Framework 67

DP2. All the exceptions caught by an architectural element are handled by it, even if

some of its handlers end their execution by raising exceptions (explicit exception

propagation [72]).

DP3. No unhandled exceptions.

Application-specific properties are rules regarding the flow of exceptions in a specific

application. The Alloy definition of the exception handling mechanism used by Aereal

(Figure 3.5) includes the specifications of several basic and desired properties that can be

used “as-is”. Developers only specify additional desired properties and application-specific

properties, if any. The AA is employed to analyze the exception flow. If a property of

interest is violated, the AA generates a counterexample with a configuration of the system

for which the violated property of interest does not hold. Otherwise it notifies the user

that the system may be valid.

By default, all exceptions are subtypes of RootException. It is possible to specify in

Alloy a type hierarchy for the exceptions. For example, to mimic the EHS of Java, at

least four exception types would be necessary: (i) Throwable, subtype of RootException;

(ii) Exception, subtype of Throwable; (iii) Error, subtype of Throwable; and (iv) Runtime-

Exception, subtype of Exception. Application-specific exceptions would inherit from these

exception types. This type hierarchy is then taken into account when exception flow is

analyzed. If no exception type hierarchy and no checks beyond the default ones are ne-

cessary, no knowledge of Alloy is required to use the framework.

Example

Figure 3.11 defines two Alloy predicates named bp1 and dp1, formally specifying properties

BP1 and DP1, respectively. Alloy predicates are logic sentences that must be checked by

the AA. In the body of the predicates, raises, signals, catches, propagates, handles,

and catchesFrom are names of relations that associate exception information to the ele-

ments of the system. For instance, the signals relation specifies what are the exceptions

that a component signals and the exception ducts that catch them. The “.” operator re-

presents relational join. For example, given raises ∈ Component↔Duct↔RootException

and C ∈ Component, where Component, Duct, and RootException are sets, C.raises =

ES constrains the image of C under relation raises to be ES ∈ Duct↔RootException.

Predicate bp1() states that the set of exceptions that a component raises is a subset

of the exceptions it signals. Predicate dp1() specifies that the set of exceptions that a

component handles is a subset of the exceptions it catches. The operators all, <:, &&,

and in represent, respectively, universal quantification, domain restriction, logical con-

junction, and subset. A more detailed description of the system model defined by Aereal

is available elsewhere [26].

3.5. Evaluation 68

1 /* Basic property BP1 */

2 pred bp1 () {

3 all C : Component | (C.raises in C.signals)

4 }

5 /* Desired property DP1 */

6 pred dp1 () {

7 all C : Component | all D : Duct | D in C.catchesFrom &&

8 D.(C.handles) in D.(C.catches) &&

9 (D.(C.catches))<:(D.(C.propagates))=D.(C. propagates)

10 }

Figura 3.11: Properties BP1 and DP1 specified in Alloy.

Figure 3.12 shows a counterexample generated by the AA when we analyzed exception

flow in the Alloy specification of the IB system. This counterexample indicates that the

generated Alloy specification violates basic property BP1. The error has been detected

because we have modified the exception flow view of the IB system (Figure 3.8) so that

InternetBankingServer signals RequestNotProcessedException but it does not raise it.

3.5 Evaluation

To assess whether Aereal meets the requirements of Section 3.3.2, we undertook two case

studies to answer the following experimental questions:

EQ1. Does the abstraction for exception flow employed by Aereal, exception ducts, sup-

port the specification of exception flow views based on different architectural styles?

EQ2. Can Aereal help developers in gaining a deeper understanding of a system’s excep-

tional activity?

EQ3. How useful is Aereal in the task of finding design errors and inconsistencies in the

exceptional activity of a system?

EQ4. Does the approach employed by Aereal scale up well for systems with a large

number of components, ducts, and/or exceptions?

The targets of the case studies were (i) a textbook example mining control system [163]

(Section 3.5.1) and (ii) a financial system that registers and controls checkbooks, account

contracts, and credit limits (Section 3.5.2). The latter was developed in an industrial

setting and is part of a real application deployed in several companies.

3.5. Evaluation 69

Figura 3.12: A counterexample generated by AA.

3.5.1 Mining Control System Case Study

The case study is based on a simplified version of the control system for the mining

environment [163]. The extraction of minerals from a mine produces water and releases

methane gas to the air. The mining control system is used to drain mine water from a

sump to the surface, and to extract air from the mine when the methane level becomes

high. A schematic representation of the mining system is given in Figure 3.13. The mining

control system consists of three control stations: one that monitors the level of water in

the sump, one that monitors the level of methane in the mine, and another that monitors

the mineral extraction. When the water reaches a high level, the pump is turned on and

the sump is drained until the water reaches a low level. A water flow sensor is able to

detect the flow of water in the pipe. However, the pump is situated underground, and for

safety reasons it must not be started, or continue to run, when the amount of methane in

the atmosphere exceeds a safety limit. For controlling the level of methane, there is an air

extractor control station that monitors the level of methane inside the mine, and when

the level is high an air extractor is switched on to remove air from the mine. The whole

system is also controlled from the surface via an operator console that should handle any

emergencies raised by the automatic system.

Figure 3.14 shows the components and connectors view of the architecture of the mi-

ning system [154]. This representation is related to the logical architecture of the system,

that is, it describes the conceptual organization of the design elements into groups, inde-

pendently of their physical packaging. In this architecture, collaborations between compo-

nents are performed from higher to lower layers. Arrows between the software components

indicate data flow between them. Components from upper layers make service requests

3.5. Evaluation 70

Station

Pump

Level Sensor
High Water

Level Sensor
Low Water

Control
Station

Mineral
Control

Pump

Air Flow Sensor

Methane High Sensor

Sump

Sensor
Water Flow

Extractor
Air

Extractor
Mineral

Station
Control
Extractor

Air

Interface
Operator

Figura 3.13: Schematic diagram of the mining system.

to components from lower layers and the latter produce responses that can be normal or

exceptional. This architecture view uses only the layered architectural style [159].

The system can fail in several ways. All the sensors (MethaneHigh, AirFlow, WaterHigh,

WaterLow, and WaterFlow) and actuators (AirExtractor, Pump, and MineralExtrator) may

fail. Errors in these components are detected by the corresponding control stations.

Sensors can fail by stopping to send information to their corresponding control stations.

However, when they do send information, the latter is assumed to be correct. Actuators

can fail by not working when switched on and not stopping to work when switched off.

ControlStation

MineralExtractorControl

MineralExtractor

OperatorInterface

Pump

WaterFlow

PumpControlAirExtractorControl

AirExtractor

MethaneHigh

AirFlow WaterLow

WaterHigh

Figura 3.14: Architecture design of the mining control system.

3.5. Evaluation 71

Tabela 3.3: Exceptions related to the AirExtractorControl component.
Exception Description

AirExtractorOffException The level of methane is high, the air extractor is on,
but no air flow is detected.

AirExtractorOnException The level of methane is normal, the air extractor is
off, but the sensor detects air flow.

SensorFailureException A timeout occurs while the AirExtractorControl
component is waiting for information from the sensors.

Whenever an error is detected, the detecting control station signals an exception to the

ControlStation component, which attempts to interrupt execution and activate an alarm.

We assume that communication between components is reliable. Table 3.3 shows the

different types of exceptions that can be raised by AirExtractorControl. Exceptions raised

by the other control stations follow the same pattern, except for MineralExtractorControl,

which does not signal sensor-related exceptions. A detailed description of the exceptional

activity of the mining system is available elsewhere [154].

This case study was conducted in two phases. Phase 1 (Section 3.5.1) addresses experi-

mental questions EQ2 and EQ3. Phase 3 (Section 3.5.1) specifically targets experimental

question EQ1. Both phases were conducted by one of the authors.

Applying Aereal - Phase 1

We started by applying the workflow presented in Figure 3.5 to the mining control sys-

tem. The first activity consisted in describing the architecture of Figure 3.14 in ACME,

using the definition provided by AcmeStudio for the layered architectural style. We then

specified an exceptional layered style, represented by the ExceptionalLayeredFam ACME

family. The latter is similar to the ExceptionalClientAndServerFam family (Section 3.4.1),

but simpler. This simplicity is mainly due to two factors. First, exceptional components

in layered architectures do not have ports by default, since any component is capable of

(not)signaling/catching exceptions. This differs from Client/Server architectures, where

responsibility for signaling and catching exceptions is unambiguously assigned to each type

of component. Second, layered architectures have only one type of component, namely,

the layer. A strictly layered style [18], where only adjacent layers communicate, would

impose additional constraints, but we have not taken these constraints into account.

The following activity consisted in specifying the exception flow view of the architec-

ture. Initially, this view comprised only the AirExtractorControl, PumpControl, Minera-

lExtractorControl, and ControlStation components. The former three are responsible for

detecting errors and signaling exceptions to the latter, which handles them. According to

the specification of the system’s exceptional activity [154], the expected behavior of Con-

3.5. Evaluation 72

trolStation when it receives exception AirExtractorOnException is to “activate an external

alarm, in order to notify the system operator about the existence of a safety threat, and

shut down the system”. Since the alarm is external to the system and its activation does

not involve any exceptions being signaled by it or by ControlStation, we have not included

it in the exception flow view. This approach faithfully reflects the specification of the

system’s exceptional activity. The problem with it, though, is that the operator of the

system does not receive any information about the safety threat when the alarm rings.

This seems unrealistic since the reason to ring the alarm is to notify the operator that it

might be necessary to manually intervene, in order to avoid catastrophic damage. If the

operator does not know anything about the safety threat that triggered the alarm, it is

not possible to respond promptly.

In order to avoid the aforementioned problem, the ControlStation component should

inform the operator about the nature of the threat. The natural way to do this is through

the OperatorInterface component. However, the original specification of the mining sys-

tem states that the two components only interact to start/stop mineral extraction. We

interpret this is an incompleteness in the specification. To solve the problem, we modified

the handling strategy of ControlStation. Besides attempting to shut down the system and

activating the alarm, the handler now signals an exception, EmergencyException, to Ope-

ratorInterface. This new exception encapsulates the one that was caught, which includes

information about the safety threat, and is handled by the OperatorInterface component.

Two reasons motivated the choice of representing this interaction as an exception, ins-

tead of an additional service request: (i) the ControlStation component is notifying the

OperatorInterface that an error occurred and exceptions are the natural means to do this;

and (ii) ControlStation is located in a lower layer and service requests only flow from up-

per layers to lower layers, not the other way around. Figure 3.15 show part of the final

specification of the ControlStation component.

After finishing the specification of the exception flow view, we used the Composer and

Converter tools to produce the Alloy specification corresponding to the architecture of the

mining system. We then used the AA to analyze exception flow and the latter reported

that the specification satisfied all the basic and desired properties.

Applying Aereal - Phase 2

The second phase of the case study consisted in describing the mining control system

using different modeling approaches. More specifically, our intent was to use different

architectural styles, in order to provide at least an initial answer to experimental question

EQ1. We produced two alternative designs for the mining system. The first one adheres

to the C2 [173] architectural style and is an adaptation of another work [89]. The second

alternative design for the mining system was an exercise aimed at assessing the difficulty

3.5. Evaluation 73

1 Component ControlStation : layerT , ExceptionalLayerT =

2 new layerT , ExceptionalLayerT extended with {

3 ... // other stuff

4 Port CatcherPortT0 : CatcherPortT = new CatcherPortT extended with {

5 Property propagates : Sequence <> =

6 < AirExtractorOnException , EmergencyException , ... >;

7 Property catches : Set {} = { AirExtractorOnException ,

8 AirExtractorOffException , SensorFailureException };

9 };

10 Port CatcherPortT1 : CatcherPortT = new CatcherPortT extended with {

11 Property propagates : Sequence <> =

12 < SwitchPumpOnException , EmergencyException , ... >; ... };

13 Port CatcherPortT2 : CatcherPortT = new CatcherPortT extended with { ... };

14 Port SignalerPortT0 : SignalerPortT = new SignalerPortT extended with {

15 Property catcherPorts : Set {} =

16 {CatcherPortT0, CatcherPortT1, CatcherPortT2};

17 Property signals : Set {} = { EmergencyException };

18 };

19 };

Figura 3.15: Partial ACME specification of the ControlStation component.

of describing an exception flow view for an architecture that adheres to more than one

architectural style.

In the C2 style, components communicate by exchanging asynchronous messages sent

through connectors, which are responsible for the routing, filtering, and broadcasting

of messages. Figure 3.16 shows a software architecture using the C2 style where the

elements A, B, and D are components, and C is a connector. A configuration is a set of

components, connectors, and links between these elements. Components and connectors

have a top interface and a bottom interface (Figure 3.16). Systems are composed in a

layered style, where the top interface of a component may be linked to the bottom interface

of a connector and its bottom interface may be linked to the top interface of another

connector. Each side of a connector may be connected to any number of components or

connectors. Two types of messages are defined by the C2 style: requests, which are sent

upwards through the architecture, and notifications, which are sent downwards.

As in Phase 1, we started by defining exceptional styles corresponding to the normal

styles used in the architecture of each system. In the case of C2, we also had to specify

the ACME family corresponding to the normal style. Specifying the exceptional C2 style

in ACME was more difficult than doing the same for the layered and Client/Server styles.

There were two reasons for this: (i) C2 has more complex topological rules than the styles

we had seen so far and the corresponding exceptional style must respect these rules; and

(ii) since connectors in C2 can be linked directly and ACME does not allow this, we had to

model both C2 components and C2 connectors as ACME components. ACME connectors

were used as links. Figure 3.17 presents an invariant from the ExceptionalC2Fam ACME

family. This complex invariant states that there can only be an exception duct linking

3.5. Evaluation 74

Figura 3.16: An example of software architecture based on the C2 style.

the signaler port of a component Cx and the catcher port of a component Cy if there is

also a normal connector between these components such that: (i) the bottom interface of

component Cx is linked to the top interface of the connector; and (ii) the top interface of

component Cy is linked to the bottom interface of the connector.

1 invariant Forall conn : ExceptionalC2MessageBusT in self. connectors |

2 Exists normalConn : C2MessageBusT in self.components |

3 (Forall Cy : ExceptionalC2ComponentT in self.components |

4 (reachable (normalConn , Cy) AND (Exists cp : CatcherPortT in Cy.ports |

5 Exists cr : CatcherRoleT in conn.roles |

6 (attached (cp, cr)))) -> (Exists link2 : C2LinkT in self.connectors |

7 (Exists tdp : TopPort in Cy.ports |

8 Exists bdp : BottomPort in normalConn .ports |

9 size(intersection(tdp.attachedRoles, link2.roles)) > 0 AND

10 size(intersection(bdp.attachedRoles, link2.roles)) > 0 AND

11 size(intersection(tdp.attachedRoles, bdp. attachedRoles)) == 0))) AND

12 (Forall Cx : ExceptionalC2ComponentT in self.components |

13 reachable (normalConn , Cx) -> (Exists sp : SignalerPortT in Cx.ports |

14 Exists sr : SignalerRoleT in conn.roles |

15 (attached (sp, sr))) -> (Exists link1 : C2LinkT in self.connectors |

16 (Exists bdp : BottomPort in Cx.ports |

17 Exists tdp : TopPort in normalConn .ports |

18 size(intersection(bdp. attachedRoles, link1.roles)) > 0 AND

19 size(intersection(tdp. attachedRoles, link1.roles)) > 0 AND

20 size(intersection(bdp. attachedRoles, tdp.attachedRoles)) == 0)));

Figura 3.17: An invariant defined by the ExceptionalC2Fam ACME family.

After finishing the ACME definition of the exceptional C2 style, we specified the C2-

based exception flow view of the mining system. This task was straightforward because of

the experience acquired in Phase 1. We then proceeded to generate the Alloy specification,

and analyze exception flow. The AA reported that the specification satisfied all the basic

and desired properties.

3.5. Evaluation 75

Figura 3.18: Extended architecture description of the multi-style mining control system.

The second alternative design for the mining control system uses three different archi-

tectural styles: Publisher/Subscriber, layered, and Client/Server. The subconfiguration

that comprises components OperatorInterface and ControlStation adheres to the Client/-

Server style. The subconfiguration comprising ControlStation, MineralExtractorControl,

PumpControl, AirExtractorControl, and the sensor components adheres to the Publisher/-

Subscriber architectural style. Finally, the subconfiguration that comprises the three

actuators and their corresponding control stations adheres to the layered style. Some

of the components play different roles in different subconfigurations. For example, Con-

trolStation is a server in the first subconfiguration, and a publisher and subscriber in the

second.

The exception flow view for the second alternative design only uses two exceptional

styles: exceptional Publisher/Subscriber (ExceptionalPubSubFam ACME family) and ex-

ceptional Client/Server. It does not adhere to the exceptional layered style because no

exceptions flow between the components of the layered subconfiguration. Figure 3.18 pre-

sents a diagram of the system’s extended architecture description. The larger rectangles

represent components, the circles and the vertical bar are normal connectors, and the

small rectangles and the losangle with the Exc label are exception ducts.

3.5. Evaluation 76

Discussion

By modeling the flow of exceptions in the architecture of the mining system, we perceived

that, even though proper handling of errors required manual intervention from the sys-

tem’s operator, the latter did not receive any information about the nature of these errors.

This was stressed by the fact that the component responsible for handling exceptions did

not directly interact with the operator, nor provided any information to components that

did. Arguably, applying the Aereal approach to the mining control system gave us a

deeper understanding of the system and, thus, helped in uncovering a design problem.

The experience of using three different approaches to model the mining system was

positive. The ACME language allows the specification of different exceptional styles and

adoption of more than one style by the same architecture description. Since Aereal is

based on ACME and adopts a structural approach for the specification of exception flow,

it leverages the features supported by the language. As shown in Section 3.5.1, it was

possible to describe even complex exceptional style invariants. Furthermore, the task of

describing a multi-style exception flow view was straightforward because all the exceptio-

nal styles have to extend the same ACME family and adhere to a predefined set of design

rules (Section 3.4.1). This approach makes the specification of exception flow views uni-

form and, to a certain degree, independent of different exceptional styles. Furthermore,

the Alloy specification abstracts away style-related information (Section 3.4.4) and re-

tains only structural and exception-related information from the exception flow views.

Therefore, in spite of the differences between the three designs of the mining system, the

generated Alloy specifications for them are almost identical.

The first phase of the case study required approximately 13 developer hours. The

second phase, including the specification of the C2Fam and ExceptionalC2Fam ACME

families, required 16 developer hours.

3.5.2 Financial System Case Study

This case study consisted on developing part of a financial system with strict dependability

requirements. The system belongs to the domain of banking applications and was being

developed by a medium-sized Brazilian company specialized in banking automation. The

part of the system that we used for the case study supports six basic operations:

1. Solicitation of checkbooks. The customer requests a check-book (in person, by phone,

through the Internet, etc.).

2. Delivery of checkbooks. The system manages the delivery of previously requested

check-books.

3.5. Evaluation 77

3. Cancellation of checks. In cases of loss, theft, or another specific reason, the customer

can cancel checkbooks.

4. Retention of checks. The retention of a check occurs during a deposit in check. These

checks are restrained and processed for future payment.

5. Cancellation of accounting contract. At any time, the customer can lose the credit of

his account. In these cases, the contract of the customer must be canceled.

6. Inclusion of additional limit. Depending on necessity and credit conditions, the cus-

tomer can receive an additional credit limit.

Operations #1-3 can be initiated by an operator or by a customer. Operations #4-6

can only be initiated by an operator of the system. Operations Cancellation of Accounting

Contract and Cancellation of Checks have very strict availability requirements and should

be online 24/7. The operations presented above were described as use cases. In this

paper, for the sake of simplicity, we focus on the Cancellation of Accounting Contract use

case. A very detailed specification of the financial system is available elsewhere [14]. The

specification of each use case includes the input information expected by the system,

normal, alternative, and exceptional scenarios, and assertions (pre and postconditions).

Exceptional scenarios were derived from violations of assertions and alternative scenarios

triggered by errors.

The financial system was developed using the MDCE+ method [54], which is an exten-

sion of the UML Components process [41] that includes activities for specifying a system’s

exceptional activity. The case study was planned by the authors and executed by two

other developers, one of them a specialist in the domain of the application. The validation

of the specified architecture was performed by one of the authors. The goal of this case

study was twofold: (i) to gather experience from the use of Aereal in an industrial setting;

and (ii) to assess the scalability of the Aereal approach.

The architecture of the financial system adheres to the layered architectural style. It

has four layers: user interface, system, business, and database. The system and business

layers implement the application-dependent and application-independent business rules,

respectively. Components in the business layer can be reused across different applicati-

ons from the same domain, since they are application-independent. The user interface

and database layers are self-explanatory. Figure 3.19 presents part of the components

and connectors view of the financial system. Following the previously adopted notation,

components are represented by rectangles and normal connectors by circles. The diagram

depicts the part of the system’s architecture that is relevant to the Cancel Accounting Con-

tract use case. Component AccountOps from the system layer implements the business

logic of the use case. To provide its intended functionality, AccountOps interacts with

3.5. Evaluation 78

Figura 3.19: Partial components and connectors view of the architecture of the Financial
System

three components from the business layer, AccountMgr, AgencyMgr, and ParticipantMgr.

The existence of two AccountMgr components stems from availability requirements of the

system.

The system can fail in several ways and for a number of different reasons. For example,

the AccountOps component alone signals 15 different types of exceptions. In total, there

are more than 50 types of exceptions that flow between architectural components. This

large number of exceptions stems from a development policy adopted by the organization

where the case study was conducted. According to this policy, even very similar errors and

situations that are not normally treated as errors generate new exception types. Table 3.4

shows some of the exceptions that AccountOps may signal.

Tabela 3.4: Some exceptions signaled by the AccountOps component.
Exception Description

InvalidAgencyException The provided agency number does not belong to
any valid agency.

InvalidAccountException The provided account number does not match
any of the accounts of the customer.

AlreadyCanceledException The accounting contract for the provided account
has already been canceled.

3.5. Evaluation 79

1 pred dp2 () {

2 all C: Component | let nonHandled = (C.catches - C.handles)

3 | (all CF : C. catchesFrom | #(CF <: nonHandled) > 0 =>

4 ((# nonHandled > 0 => #(C.propagates) > 0) &&

5 all E: CF. nonHandled | #(E.(CF.(C.propagates))) > 0))

6 }

Figura 3.20: Alloy specification of property DP2.

Applying Aereal

We created four different exception flow views for the architecture of the financial system.

The exception flow views specify the exceptional activity of the system in the execution of

use cases Solicitation of checkbooks, Delivery of checkbooks, Cancellation of checks, Retention

of checks, and Cancellation of accounting contract. It was not necessary to define new

ACME families for this case study because the architecture of the system adheres only

to the layered architectural style. The effort necessary to describe the four exception

flow views based on the development documentation of the system was approximately 8

developer hours.

Exception flow analysis was performed in two phases. In the first phase, we compo-

sed each exception flow view with the architecture description and generated an Alloy

specification for each resulting extended architecture description. During exception flow

analysis, the AA pointed out some misspellings and omissions in the Alloy specificati-

ons. These problems were a consequence of errors in the exception flow views. After

fixing the errors, we attempted to verify the Alloy specifications again, but the AA pro-

duced counterexamples indicating that the specifications did not satisfy desired property

DP2 (Section 3.4.4). Figure 3.20 shows the formal specification of this property in Alloy.

The operators -, =>, and # mean set subtraction, logical implication, and set cardina-

lity, respectively, and the declaration let associates an alias to an expression. For each

component in the Alloy specification, predicate dp2() selects all the exceptions that the

component catches but does not handle and checks if it propagates them. It is important

to stress that the terms “handle” and “propagate” follow the terminology introduced in

Table 3.2.

The fact that the Alloy specification does not satisfy property DP2 can be a problem

or not, depending on (i) the implementation language of the system, and (ii) the design

principles adopted for system implementation. In some languages, such as CLU [118] and

Guide [112], a method must handle all the exceptions it catches, even if handling consists

in simply re-raising the exceptions. Moreover, there are methodologies [54, 154] that

advocate the use of explicit exception propagation even for languages that do not require

it, such as Java and C#. In these two cases, a specification of the flow of exceptions in

3.6. Related Work 81

Discussion

Aereal provided valuable assistance in the task of finding mistakes in the specification of

the Financial System’s exceptional activity. Although most of these problems are simple

to correct, failure to address them can result in problems that are harder to correct

in later phases of development. Moreover, it was possible to automatically validate a

policy adopted by the EHSs of some programming languages without having to actually

implement the system. The results we obtained from this case study and the one described

in Section 3.5.1 do not demonstrate the universal usefulness of Aereal in the construction

of software systems with strict dependability requirements. They do show, however, that

the Aereal approach is useful in some cases, and justify further studies that can provide

more substantial evidence.

This case study has shown that scalability is still a limitation of the Aereal approach.

For an Alloy specification comprising 9 components, 8 ducts, and 40 exceptions, it was not

possible to perform exception flow analysis. This problem does not represent a general

trend, as we have successfully conducted five case studies so far and 40 is an unusually large

number of exceptions visible at the architectural level. It requires immediate attention,

nevertheless, because it was detected during the development of a real application, not a

textbook example. Section 3.7 points directions for future work in this area.

3.6 Related Work

3.6.1 Architectural Analysis and ADLs

Several approaches for specifying software architectures so that they are passive to auto-

mated analysis have been proposed. Most of them define new ADLs that target specific

aspects of a software system. These ADLs are usually based on some underlying forma-

lism that is well-supported by tools. Wright [4] specifications can be translated to CSP

and analyzed for deadlock freedom and interface compatibility. Rapide [120] is based on

partially-ordered event sets. The language supports simulation of architecture descripti-

ons and analysis of the event patterns produced by components. Darwin [122] is based

on π-calculus and can be used to specify dynamic software architectures. Abowd and his

coleagues [2] use Z to formalize and compare architectural styles.

ADLs such Wright and Rapide, which target the specification of system behavior, have

many interesting features and could be used to analyze exception flow in architecture

descriptions. However, these languages fail to address some important requirements. For

instance, it is not possible to define a type hierarchy for events in Wright. Hence, it

3.6. Related Work 82

is not possible to check if a component catches exceptions by subsumption3. Moreover,

Rapide does not support the notion of architectural style. Although the language allows

certain styles to be simulated, this is not possible in many commonplace situations [137].

A more general problem is that these ADLs do not separate the specification of a system’s

normal and exceptional activities. This separation decreases the impact of error recovery

mechanisms on the overall complexity of the system [5, 56, 146]. Finally, using these ADLs

and associated tools to analyze exception flow in software architectures would require

that developers specify the EHS to be supported from the ground up, a cumbersome and

daunting task. In this work, we propose a more specific approach for analyzing exception

flow in architecture descriptions. On the one hand, it does not present the aforementioned

shortcomings. On the other hand, it has a narrower scope and is not intended to be a

general-purpose solution for architecture design.

Some works have focused on formally characterizing architectural styles and using

them as a basis for analysis of software architectures [76, 165]. Aereal builds upon these

works but focuses on the analysis of exception flow at the architectural level. To the best

of our knowledge, this is an aspect of software architecture that has not been addressed

in the literature.

Approaches that take a formal description of a software architecture as starting point

to produce code that preserves reliability-related properties achieved by the architecture

have been proposed with different motivations. SADL [167] is an ADL for building hierar-

chies of architectural descriptions where descriptions located at lower levels of a hierarchy

are refinements of descriptions at upper levels. Theorem proving techniques are used to

show that refinements are valid and preserve safety, security, and fault tolerance pro-

perties. Saridakis and Issarny [155] attempt to characterize the semantics of software

architectures from the standpoint of reliability properties. This characterization makes it

possible to reuse software architectures in different systems while guaranteeing that the

desired reliability properties are maintained in all refinement steps Our work differs from

these works because it focuses on the verification of specific properties related to exception

flow. These properties can be verified in the context of architectural styles, architectu-

ral elements, or whole systems. The aforementioned works emphasize more general fault

tolerance properties related to the behavior of a system as a whole. In this sense, our

work is complementary to previous efforts. Moreover, Aereal separates the definition of

the normal and exception activities of a system, whereas previous works do not make this

distinction. Finally, these works do not attempt to model the EHS of existing program-

ming languages. This restricts their applicability because exception handling is usually

employed in the implementation of fault tolerance mechanisms.

3An exception E is caught by subsumption if it is caught by a catch clause that targets a supertype
E’ of E.

3.6. Related Work 83

3.6.2 Exceptions at the Architectural Level

In recent years, several works proposing the use of exception handling at the architectural

level to build dependable systems have appeared in the literature. Bass et al [10] report

that, during the development of an air-traffic control system, a system with high depen-

dability requirements, it was necessary to devise a new architectural view that explicitly

represented the flow of exceptions between components in the system. This view should

provide enough information to help developers to understand how the system deals with

errors. Section 3.3.1 described this work in detail.

Issarny and Banâtre [97] describe an extension to existing ADLs for specifying global

invariants whose violations are called “configuration exceptions”. This work emphasizes

fault treatment [5] at the architectural level, by means of architecture reconfiguration.

The concept of idealized C2 component [56] defines a structure for associating exception

handlers to architectural components that adhere to the C2 architectural style [173].

Castor et al [30] have refined the notion of idealized C2 component and proposed an

architectural EHS and implementation infrastructure addressing the specific concerns of

component-based systems. Unlike the Aereal approach, these works do not provide means

for defining how exceptions flow in different architectural styles. Moreover, they do not

focus on the description and analysis of exceptions at the architectural level. Although

the work on configuration exceptions presents a proposal for extending existing ADLs

with information about exceptions, it focuses on a very specific type of exception that is

not signaled or handled in the traditional sense (because exceptions do not flow between

architectural elements). Hence, it is not straightforward, based on this proposal, to specify

what exceptions are signaled or caught by a given component.

Some authors have proposed frameworks [162, 179] that support the detection and

handling of exceptions in component-based platforms, such as J2EE. These frameworks

provide means to introduce error detection mechanisms, such as monitors, pre, and post-

conditions, in components in a non-invasive way. Moreover, they define hotspots that

simplify the implementation of handlers and the association of these handlers with com-

ponents. These implementation infrastructures are complementary to Aereal. They pro-

vide a link between architecture description and system implementation when designing

for specific architectural styles and component platforms.

3.6.3 Exception Flow Analysis

Several works [64, 150, 156, 186] propose static analyses of source code that generate

information about exception flow. Usually, this information consists in the exception

propagation paths in a program and is used, for example, to discover uncaught exceptions

in languages with polymorphic types, such as ML. Robillard and Murphy [150] present a

3.7. Conclusions and Future Work 84

brief survey of these techniques and tools.

Our approach leverages previous proposals for exception flow analysis, most notably

Schaefer and Bundy’s [156], but differs in focus. On the one hand, the Aereal approach

targets the early phases of development and is broader in scope. It prescribes a conceptual

framework for documenting and analyzing the flow of exceptions between architectural

elements, and provides mechanisms to integrate this conceptual framework with existing

tools for architecture-centric software development and software verification. Further-

more, since the emphasis of Aereal is on the architectural design phase, it explicitly takes

into account the concept of architectural style. On the other hand, static analysis tools are

employed when an application is already implemented, mainly to find bugs in exception

handling code and to improve program understanding.

3.7 Conclusions and Future Work

In this paper we presented Aereal, a framework for analyzing exception flow in software

architectures. Aereal works as an adaptable architectural-level EHS, that is, developers

can add or remove constraints to the EHS according to their needs. Due to its combination

of ACME and a structural approach for representing exception flow, it is possible to define

how exceptions are propagated in a style-specific manner. This is a powerful feature

since different architectural styles usually impose different constraints on how components

communicate.

Developers of systems with strict dependability requirements benefit from using Aereal

in the following ways: (i) by better documenting their decisions about exceptions that

flow amongst architectural elements; (ii) by making explicit their assumptions about the

EHS of the language(s) that will be used during system implementation; (iii) by checking

structural constraints imposed by exceptional styles; and (iv) by verifying inconsistencies

between the architecture description and the assumed EHS. Moreover, Aereal completely

separates the exception flow view of a software architecture from its normal components

and connectors view, and provides tools to compose these views automatically. This

feature promotes better understandability and maintainability because concerns do not

get cluttered in a single architecture description.

There are currently several limitations to the Aereal approach, besides the ones dis-

cussed in Section 3.5. The notion of architectural style is based on ACME’s and, as such,

focuses only on the structure of a system. However, an architectural style involves several

other issues [129, 137], for example, communication, control flow, and data flow. Hence,

our approach for describing exception flow is effective only as long as it is possible to

describe exception flow abstractly in terms of system structure. Also, there are still no

automated means for extracting an exception flow view from the implementation of a

3.7. Conclusions and Future Work 85

system. Tools such as Jex [150] provide some help in this task, but do not implement a

complete solution and further studies are required to evaluate how productive this appro-

ach would be. Improving traceability between code and architecture is an active area of

research [1, 81].

The evaluation of Aereal conducted so far indicates directions for future work. First,

and most obvious, is improving scalability. We envision two complementary approaches

to alleviate the scalability problems we discovered while conducting the Financial System

case study. The first is to optimize Aereal’s system model by removing redundant infor-

mation, in order to decrease the amount of RAM memory required to analyze exception

flow. For example, ACME properties signals and catches (Section 3.4.2) and their repre-

sentations in Aereal’s system model could be unified into a single abstraction. The two

exist only because of historical reasons. The second is to implement a tool that checks if

an Alloy specification satisfies all the basic properties of the EHS supported by Aereal.

This would drastically reduce the complexity of the checks the AA performs, hence decre-

asing the amount of memory that verification requires. This change will not compromise

the flexibility of the framework, since the basic properties do not change and any valid

system must satisfy them.

An interesting issue that arises with the composition of exception flow views and

architecture description is what exactly does it mean to adhere to an architectural style.

For example, since one of the invariants of the ClientAndServerFam ACME family states

that a client has exactly one port, does adding a catcher port to a client component

in a Client/Server architecture makes that component conceptually invalid? In terms of

ACME invariants, the answer is “yes”. In this situation, it is necessary to modify violated

invariants of the “normal” style in order for the extended architecture description to be

valid. For the invariant above, this would mean stating that a client has exactly one port

of type ClientPortT. This modified invariant expresses the intent of the original invariant

without being overly restrictive. In the studies we conducted so far (five case studies

involving 10 different ACME families, normal and exceptional), this kind of modification

was sufficient to accommodate the introduction of exceptional styles. Further evaluation

is required, though, to understand if it applies in general.

3.8. Resumo do Caṕıtulo 3 86

3.8 Resumo do Caṕıtulo 3

Este caṕıtulo apresentou uma abordagem para tornar mais rigoroso o projeto arquitetural

do comportamento excepcional de sistemas de software. Essa abordagem complementa

metodologias que prescrevem atividades para o projeto do comportamento excepcional

do sistema e é centrada no arcabouço Aereal. Foi ilustrado o uso desse arcabouço para

a descrição do comportamento excepcional de um sistema, através da Visão Arquitetural

de Fluxo de Exceções, e para a verificação de propriedades relativas à maneira como

exceções fluem entre componentes na arquitetura. Os dois estudos de caso realizados com

o fim de avaliar a abordagem proposta mostraram seus benef́ıcios, em especial a maneira

como ajuda a tornar expĺıcitas as suposições que arquitetos fazem sobre os componentes

integrados no sistema, e colocaram em evidência suas limitações. Esse estudo de caso

fornece evidência de que a Hipótese de Pesquisa 1 (Caṕıtulo 1, Seção 1.3.1) pode ser

válida.

Conforme mencionado anteriormente, Aereal funciona como um mecanismo de trata-

mento de exceções arquitetural. O arcabouço especifica regras sobre como exceções fluem

entre elementos arquiteturais e o que esses elementos podem fazer com elas. Essas regras

são descritas de maneira precisa em um modelo, representado na Figura 3.5 pelo oval ro-

tulado Definition of the Exception Handling Mechanism (in Alloy), usado como entrada

para a atividade de análise de fluxo de exceções. O próximo caṕıtulo descreve esse modelo

em detalhes.

Caṕıtulo 4

Análise de Fluxo de Exceções no

Nı́vel Arquitetural

Este caṕıtulo se refere à Seção 1.3.4 do Caṕıtulo 1 e apresenta um modelo genérico

que define quais são responsabilidades de cada componente arquitetural, no tocante ao

lançamento, recebimento e tratamento de exceções, e como exceções fluem entre esses

componentes. O caṕıtulo é uma continuação direta do Caṕıtulo 3 e, consequentemente,

tem seu foco na integração dos componentes de software de um sistema.

O modelo apresentado neste caṕıtulo inclui um conjunto de regras formalmente espe-

cificadas que descrevem o funcionamento do mecanismo de tratamento de exceções. Esse

modelo pode ser mapeado de forma quase direta para linguagens de especificação bem

conhecidas, como Alloy [98] e B [3], e suas instâncias descrevem arquiteturas de sistemas

de software. Através das ferramentas associadas a essas linguagens, é posśıvel verificar de

maneira automática se a arquitetura de um sistema satisfaz diversas propriedades de in-

teresse relativas ao seu comportamento excepcional. Adicionalmente, essas propriedades

tornam expĺıcitas as suposições que arquitetos fazem sobre o comportamento excepcional

dos componentes em um sistema, por exemplo, quais sãoas exceções que se espera que

um determinado componente efetivamente mascare (e não apenas aquelas que ele é capaz

de tratar). Este caṕıtulo, em particular, foca no mapeamento do modelo proposto para a

linguagem Alloy.

O artigo que este caṕıtulo contém será publicado como um caṕıtulo do livro Rigorous

Development of Complex Fault-Tolerant Systems [27] da série Lecture Notes in Computer

Science. Uma versão preliminar [26] foi apresentada no FM’2005 Workshop on Rigorous

Engineering of Fault-Tolerant Systems, em julho de 2005.

87

4.1. Introduction 88

Reasoning About Exception Flow

at the Architectural Level

Fernando Castor Filho Patrick Henrique da S. Brito

Cećılia Mary F. Rubira

Institute of Computing

State University of Campinas

Campinas - SP - Brasil

{fernando,pbrito,cmrubira}@ic.unicamp.br

4.1 Introduction

Exception handling [52] is a well-known mechanism for structuring error recovery in fault-

tolerant software systems. Since exception handling is an application-specific technique,

it complements other techniques for improving system reliability, such as atomic tran-

sactions [83], and promotes the implementation of sophisticated error recovery measures.

Furthermore, in applications where backward error recovery is not possible, such as those

that interact with mechanical devices, exception handling may be the only choice availa-

ble.

Usually, a large part of a system’s code is devoted to error detection and handling [52,

148, 182]. However developers tend to focus on the normal activity of applications and

only deal with code responsible for error detection and handling at the implementation

phase, in an ad hoc manner. Hence, this part of the code is usually the least understood,

tested, and documented [52, 148]. To achieve the desired levels of reliability, mechanisms

for detecting and handling errors should be developed systematically from early pha-

ses of software development [154], starting from requirements, and passing by analysis,

architectural design, detailed design, and, finally, implementation.

The concept of software architecture [159] has been recognized in the last decade

as a means to cope with the growing complexity of software systems. According to

Clements and Northrop [48], software architecture is the structure of the components of

a program/system, their interrelationships and principles, and guidelines governing their

design and evolution over time. It is widely accepted that the architecture of a software

system has a large impact on its capacity to meet its intended quality requirements,

such as reliability, security, availability, and performance, amongst others [11, 47]. There

4.1. Introduction 89

are many proposals in the literature [4][76][120] of notations and techniques to formally

describe software architectures to show how they achieve specific quality attributes, such

as adherence to interaction protocols [4], and architectural styles [76]. These approaches

are usually supported by tools that automatically or semi-automatically verify whether

an architecture satisfies some previously-defined properties of interest.

An important challenge faced by developers of fault-tolerant systems is to build fault

tolerance mechanisms that are reliable. If a system should be reliable and exception

handling is one of the mechanisms that can be employed to achieve this goal, it may be

beneficial to consider exception handling-related issues before the implementation phase;

in particular during architectural design. This idea goes hand-in-hand with the notion

that exception handling should be taken into account from early phases of software de-

velopment, in order to define the exceptional activity of the system. However, to the

best of our knowledge, there are currently no approaches for the specification and analy-

sis of exception-related information at the architectural level. As pointed out by Bass

and his coleagues [10], specifying how exceptions flow between architectural components

is a real problem that appears in the development of systems with strict dependability

requirements, such as air-traffic control and financial.

This paper proposes an approach for describing software architectures extended with

information about exception flow based on a formal model that supports reasoning about

exception flow-related properties of interest. Furthermore, our solution allows one to auto-

matically verify whether an architecture satisfies these properties of interest. The ability

to formally specify and verify the flow of exceptions in a system can help in the detection

of ambiguities, mistakes, and incompletenesses, thus improving the system’s overall reli-

ablity. We present a model for reasoning about exception flow in software architectures.

This model specifies the structuring of an architecture in terms of architectural compo-

nents (loci of computation and data stores) and connectors (loci of interaction), as well

as information relative to exception flow amongst these elements. We show how systems

adhering to this model can be automatically verified using the Alloy [98] specification

language and its associated tool set.

This work is organized as follows. Section 4.2 provides some background on exception

handling and the Alloy design language. Section 4.3 describes the overall approach that we

propose for extending architecture descriptions with exception flow-related information.

Section 4.4 presents the proposed model for reasoning about the flow of exceptions at the

architectural level. A mix of informal explanations and set theory notation is employed.

Section 4.5 describes how the proposed model can be used to verify exception flow in

architecture descriptions. Section 4.6 compares the proposed model with some related

research. The last section rounds the paper and points directions for future works.

4.2. Background 90

4.2 Background

4.2.1 Exception Handling

Exception handling [52] is a mechanism for structuring error recovery in software systems

so that errors can be more easily detected, signaled, and handled. It is implemented by

many mainstream programming languages, such as Java, Ada, C++, and C#. These

languages allow the definition of exceptions and their corresponding handlers. The set of

exceptions and exception handlers in a system define its abnormal or exceptional activity.

When an error is detected, an exception is generated, or raised. If the same excep-

tion may be raised in different parts of a program, different handlers may be executed,

depending on the place where the exception was raised. The choice of the handler that

is executed depends on the exception handling context (EHC) where the exception was

raised. An EHC is a region of a program where the same exceptions are handled in the

same manner. Each context has an associated set of handlers that are executed when

the corresponding exceptions are raised. Typical examples of EHCs in object-oriented

languages are blocks, methods, and classes [72]. At the architectural level, contexts are

usually defined by architectural components and connectors [30].

The concept of idealized fault-tolerant component (IFTC) [5] defines a conceptual fra-

mework for structuring exception handling in software systems. An IFTC is a component

(in a broader sense; an object, a software component, a whole system, etc.) in which the

parts responsible for the normal and abnormal activities are separated and well-defined,

within its internal structure. The goal of the IFTC approach is to provide means to

structure systems so that the impact of fault tolerance mechanisms in the overall system

complexity is minimized. This solution eases the detection and handling of errors. Fi-

gure 4.1 presents the internal structure of an IFTC and the types of messages it exchanges

with other components in a system.

When an IFTC receives a service request, it produces a normal response if the request

is successfully processed. If an IFTC receives an invalid service request, it signals an

interface exception. If an error is detected during the processing of a valid request, the

normal activity part of the IFTC raises an internal exception, which is received by the

exceptional activity part of the IFTC. If the IFTC is capable of handling an internal

exception properly, normal activity is resumed. If the IFTC has no handlers for an internal

exception or is unable to handle an exception, it signals a failure exception. Interface and

failure exceptions are collectively called external exceptions. An IFTC might also catch

external exceptions signaled by other IFTCs and attempt to handle them. In this work, it

is assumed that architectural elements behave like IFTCs. Hence, only external exceptions

are taken into account, since internal exceptions are encapsulated inside components and

connectors.

4.3. Proposed Approach 91

Error Recovery

Normal
Activity

Abnormal
Activity

Local Exceptions

Service
Request

Normal
Response

Interface
Exceptions

Failure
Exceptions

Failure
Exceptions

Service
Request

Normal
Response

Interface
Exceptions

Figura 4.1: Idealized Fault-Tolerant Component.

4.2.2 Alloy

Alloy [98] is a lightweight modeling language for software design. It is amenable to a fully

automatic analysis, using the Alloy Analyzer (AA) [100], and provides a visualizer for

making sense of solutions and counterexamples it finds. Similarly to other specification

languages, such as Z and B [3], Alloy supports complex data structures and declarative

models.

In Alloy, models are analyzed within a given scope, or size. The analysis performed

by the AA is sound, since it never returns false positives, but incomplete, since the AA

only checks things up to a certain scope. However, it is complete up to scope; the AA

never misses a counterexample which is smaller than the specified scope. As pointed out

by the Alloy tutorial [100], small scope checks are still very useful for finding errors.

4.3 Proposed Approach

The construction of robust fault-tolerant systems requires that developers take fault

tolerance-related issues into account since the outset of software development [154]. Our

ultimate goal is to devise a general approach for the rigorous development of dependable

software systems that use exception handling to implement forward error recovery at the

architectural level. This work addresses specifically the issue of verifying properties of

interest related to exception flow in software architectures. Our solution is supported by

the Aereal [28] framework. This framework aims to assist in documenting, analyzing, and

validating exception flow in software architectures.

Figure 4.2 presents a schematic description of our solution. Developers start by per-

forming traditional activities of a software development process, namely, requirements

4.3. Proposed Approach 92

Requirements, Analysis,
and Design

Specify Fault Model
and Exceptional Activity

the system’s architecture

Exception Flow View of

Flow Model

Generic Exception

Specified Properties

Translate Exception Flow View

to verification language

of the System

Formal Specification Specify properties

Verify if the formal

specification of the

system satisfies the

properties of interest

CounterexampleNotification to

the user

of interest

Figura 4.2: Overview of the proposed approach. White rectangles represent activities and
shaded rectangles with dashed borders represent artifacts.

engineering, analysis, and design (both architectural and detailed) of the system. At the

same time, they define the scenarios in which the system may fail (fault model), what

exceptions correspond to each type of error, and where and how the exceptions are han-

dled (exceptional activity). The specification of the system’s fault model and exceptional

activity can be conducted as prescribed by some works in the literature [154]. The result

of these activities is an architecture description of the system that includes information

about the exceptions that can be signaled by each architectural element and what elements

are responsible for handling them. We refer to this specialized architecture description as

the Architectural Exception Flow View [28]. Architectural views represent various aspects

of the same architecture and each view shows how the architecture achieves a particular

quality attribute [11]. In Aereal, exception flow views are specified using the ACME [76]

architecture description language [128] (ADL).

To verify whether the exception flow view exhibits some properties of interest, it is

necessary to translate this view to a formal language with adequate support for automated

verification (verification language). The formal specification produced by this translation

must adhere to a generic meta-model which specifies: (i) the elements that can be part of

an architecture description; (ii) how exceptions flow amongst these elements; and (iii) how

they relate to each other. Hereafter, we call this model Generic Exception Flow Model).

Both the formal specification and the generic exception flow model are described in the

4.4. Generic Exception Flow Model 93

verification language. Currently, we use Alloy to specify the generic exception flow model.

A system is verified by providing its formal specification as input to a constraint solver for

the verification language, together with the properties to be verified, and the definition

of the generic exception flow model. We used the AA tool to verify formal specifications

in Alloy. When a property of interest does not hold, the AA produces a counterexample.

In the rest of this paper, we focus on specifying the generic exception flow model.

A detailed description of the general approach described in this section is available el-

sewhere [28].

4.4 Generic Exception Flow Model

In our model, special-purpose architectural connectors model exception flow between com-

ponents. These connectors, called exception ducts, are unidirectional point-to-point links

through which only exceptions flow. They are orthogonal to “normal” architectural con-

nectors and do not constrain the way in which the architecture is organized [28]. Mehta

and Medvidovic [129] argue that simple point-to-point connections are suitable general-

purpose abstractions for modelling communication between architectural components in-

dependently of the architectural styles [159] to which an architecture adheres. We use this

structural perspective on exception flow because it is intuitive to architects (who are used

to thinking in terms of components and connectors), compatible with well-established

views on what exception flow is [52], and it does not require the modeling of the com-

plete activity of the application. Architectural elements are assumed to handle only one

exception at a time. We address the case where an EHC might catch multiple excep-

tions concurrently elsewhere [35]. Upon receipt of an exception, the receiving element

interrupts its execution and initiates exception handling. This is how exception handling

works in most programming languages. Modeling issues such as data- and control-flow

is beyond the scope of this work. Furthermore, we assume that the infrastructure sup-

porting the exception handling mechanism (middleware, programming language, etc.) is

correct. Therefore, exceptions are always delivered correctly and timely.

It is important to stress that exception ducts are not implementation-level connec-

tors. They are just a high-level abstraction to describe exception flow. Architects often

need to understand the architecture of a system from various perspectives, according to

specific quality attributes. Since different architectural views target different aspects of

an architecture, they usually employ different modeling constructs [109]. Hence, at the

implementation level, exception flow is materialized by means of the constructs provided

by the underlying programming language or infrastructure. For example, in a publisher/-

subscriber architecture, exception flow can be materialized as events flowing through a

message bus.

4.4. Generic Exception Flow Model 94

Tabela 4.1: Elements of the proposed exception flow model.
Set Description

Element The type of all architectural elements. Supertype of Component
and Duct.

Component The subtype of Element of which all components in a system are
instances.

Duct The subtype of Element of which all exception ducts in a system
are instances.

RootException The type of which all exceptions in a system are instances.

4.4.1 Representation of Components, Ducts, and Exceptions

In our model, components, exception ducts, and exceptions are represented by objects

of a certain type. The proposed model employs a notion of type that is adopted by

some modern formal specification languages, such as Alloy [98] and B [3]. Moreover, it

is compatible with the notion of types used in OO languages such as Java and C#. A

type T is a set of instances and its subtypes T1, T2, ..., TN of T are disjunct subsets of T .

Only single inheritance is allowed. An exception is any instance of a type that is subtype

of type RootException. The same applies to components and exception ducts, and the

types Component and Duct, respectively. In our model, types Component and Duct

are subtypes of Element (and collectively called “elements”). Table 4.1 lists the basic

elements of the proposed model. The sets in the table can also be seen as unary relations

and are, therefore, subject to operations that apply to relations, such as composition.

We represent exceptions as objects, instead of using symbols or global variables, mainly

because objects are more flexible and can be used to encode arbitrary information regar-

ding the cause of an exception [72]. Moreover, many large and complex software systems

are developed nowadays using object-oriented languages, such as Java and C++, which

represent exceptions as objects.

The supertype of all exceptions is called RootException, instead of a more usual name,

such as Exception or Error, in order to provide to developers the flexibility to organize

exceptions as required, for instance, based on the adopted programming language. For

example, considering the EHS of Java, a developer can define at least four exception

types: (i) Throwable, subtype of RootException; (ii) Exception, subtype of Throwable;

(iii) Error, subtype of Throwable; and (iv) RuntimeException, subtype of Exception.

Application-specific exception types would then be subtypes of one of these types.

4.4. Generic Exception Flow Model 95

Figura 4.3: A trivial software architecture.

4.4.2 System Structure

We follow the general view of a system configuration as a finite connected graph of com-

ponents and connectors [128]. We specialize this view, however, so that it can be used

to reason about exception flow. In our model, a component is a structural architectu-

ral element that catches and/or signals exceptions and an exception duct is a structural

element that represents flow of exceptions between two components. The structure of a

system is defined in terms of connections between components and exception ducts. The

relations CatchesFrom ∈ Element ↔ Element and SignalsTo ∈ Element ↔ Element

specify these connections.

Given an element B, {B}.CatchesFrom yields the set of elements that signal excep-

tions that B catches. Conversely, {B}.SignalsTo yields the set of elements that catch

exceptions that B signals. The “.” operator represents relational composition (or join).

Given two relations A ⊆ T1×T2×...×Tn and B ⊆ Tn×Tn+1×...×Tn+m, A.B yields a rela-

tion C ⊆ T1×T2×...×Tn−1×Tn+1×...×Tn+m. Relation C comprises all the tuples formed

by combining tuples from A and B whenever the last element of a tuple from A is the same

as the first element of a tuple from B. For example, given A = {(e1, e2), (e2, e3)} and B =

{(e2, e4), (e2, e5), (e3, e6), (e7, e8)}, A.B yields C = {(e1, e4), (e1, e5), (e2, e6)}. Figure 4.3

illustrates relations CatchesFrom and SignalsTo. The figure depicts two components, C1

and C2, connected by an exception duct D. Since exceptions flow from C1 to C2, pas-

sing through D, we can say that C1 ∈ {D}.CatchesFrom and D ∈ {C2}.CatchesFrom.

Conversely, D ∈ {C1}.SignalsTo and C2 ∈ {D}.SignalsTo.

Table 4.2 lists some constraints on relations CatchesFrom and SignalsTo. These

constraints specify properties that a system specification adhering to our model should

exhibit. Each one is identified by a name matching the pattern BPX, where “BP”

stands for basic property and “X” is a positive integer. Properties BP1 and BP2 specify

that the CatchesFrom relation is not reflexive and it never associates elements of the

same type, respectively. Properties BP3 and BP4 do the same for relation SignalsTo.

Property BP5 states that exception ducts signal exceptions to exactly one element and

catch exceptions from exactly one element. If B is a component, {B}.CatchesFrom may

yield an empty set, in which case B does not catch exceptions. If {B}.SignalsTo yields

an empty set, exceptions signaled by B, if any, are caught by an implicit component

4.4. Generic Exception Flow Model 96

Tabela 4.2: Contraints on the CatchesFrom and SignalsTo relations.
Property Constraint

BP1 ∀B ∈ Element • B /∈ {B}.CatchesFrom
BP2 ∀B′ ∈ Element • (B, B′) ∈ CatchesFrom ⇒ ¬(B ∈ Duct ∧ B′ ∈ Duct)∧

¬(B ∈ Component ∧ B′ ∈ Component)
BP3 ∀B ∈ Element • B /∈ {B}.SignalsTo
BP4 ∀B′ ∈ Element • (B, B′) ∈ SignalsTo ⇒ ¬(B ∈ Duct ∧ B′ ∈ Duct)∧

¬(B ∈ Component ∧ B′ ∈ Component)
BP5 ∀D ∈ Duct • |{D}.CatchesFrom| = 1 ∧ |{D}.SignalsTo| = 1
BP6 ∀B1, B2 ∈ Element • B1 ∈ {B2}.CatchesFrom ⇒ B2 ∈ {B1}.SignalsTo
BP7 ∀B1, B2 ∈ Element • B1 ∈ {B2}.SignalsTo ⇒ B2 ∈ {B1}.CatchesFrom
BP8 ∀B ∈ Element • {B}.CathcesFrom ∩ {B}.SignalsTo = {}
BP9 ∀C1, C2 ∈ Component • C1 ∈

{C2}. ∗ ((SignalsTo ∪ CatchesFrom).(SignalsTo ∪ CatchesFrom))

OperatingSystem. This is useful to model situations in which a system is not capable

of handling a certain type of error and fails catastrophically by signaling an exception

to the operating system. Properties BP6 states that the set of elements from which an

element catches exceptions consists of all elements that signal exceptions to it. Property

BP7 states that the set of elements to which an architectural element signals exceptions

consists of all elements that catch exceptions from it, respectively. These two properties

provide a link between CatchesFrom and SignalsTo. Property BP8 specifies that the

elements from which an architectural element catches exceptions are different from the

ones to which it signals exceptions. For example, a configuration with only two elements,

C ∈ Component and D ∈ Duct, where C ∈ {D}.CatchesFrom and C ∈ {D}.SignalsTo

is not valid.

For any valid system in the proposed model, the graph formed by using the components

of the system as vertices and the ducts as edges is connected. More formally, let G =

(Component, Duct) be a graph, where Component is the set of all vertexes and Duct is

the set of all edges. An edge D ∈ Duct connects two vertexes C1 ∈ Component and

C2 ∈ Component if D ∈ {C1}.CatchesFrom and C2 ∈ {D}.CatchesFrom. In order for

a graph to be connected, there must be a path between any two vertexes. Property BP9

specifies this constraint formally. It states that the reflexive transitive closure (∗ operator)

of any component with respect to the relation (SignalsTo∪CatchesFrom).(SignalsTo∪

CatchesFrom) contains all the other components of the system. In property BP9, the

∗ operator yields the set of all components reachable by composing component C2 with

(SignalsTo ∪ CatchesFrom).(SignalsTo ∪ CatchesFrom) zero or more times.

4.4. Generic Exception Flow Model 97

Tabela 4.3: Contraints on the PortMap relation.
Property Constraint

BP10 ∀B ∈ Element • dom({B}.P ortMap) = {B}.CatchesFrom∧
ran({B}.P ortMap) = {B}.SignalsTo

4.4.3 Exception Interfaces and Exception Handling Contexts

As mentioned in previously, we consider a component to be a structural element that

catches and signals exceptions. Exception ducts are similar, but simpler, as they catch

exceptions from exactly one component and signal exceptions to exactly one component.

A component includes (i) a collection of exception interfaces, which specify the exceptions

the component signals; and (ii) a collection of EHCs, which define regions where exceptions

are always handled in the same way. Exception interfaces are associated to components

by the SignalsTo relation and, for each exception duct in the set {C}.SignalsTo, there

is a corresponding exception interface. The same applies for the CatchesFrom relation

and EHCs. This represents the fact that a component may signal different exceptions to

(or catch different exceptions from) the various exception ducts to which it is connected.

As imposed by property BP5 (Table 4.2), each exception duct has exactly one exception

interface and one EHC.

Models for reasoning about exception flow at the programming language level do not

have an explicit separation between exception interfaces and EHCs. This separation is

not necessary because these models focus on fine-grained programming constructs, like

methods and procedures, where multiple contexts are associated to a single exception

interface. At the architectural level, however, this separation is very important, since

a component can have multiple access points (ports) and the latter are explicit in the

system description.

The PortMap ∈ Element ↔ Element ↔ Element relation associates exception

interfaces and EHCs. When an element catches an exception and does not handle it, the

PortMap relation specifies the element to which the exception is signaled, based on the

element that originally signaled it. PortMap associates architectural elements to EHCs

and exception interfaces. Table 4.3 lists the single property associated to the PortMap

relation. Property BP10 specifies that for every element B, PortMap associates all the

elements from which B catches exceptions to some element to which it signals exceptions

and vice-versa.

4.4. Generic Exception Flow Model 98

4.4.4 Exception Flow

Exception flow is specified in terms of five relations: Generates ∈ Element ↔ Element ↔

RootException, Masks ∈ Element ↔ Element ↔ RootException, DoesNotMask ∈

Element ↔ Element ↔ RootException ↔ RootException, Catches ∈ Element ↔

Element ↔ RootException, and Signals ∈ Element ↔ Element ↔ RootException.

The first two concern the exception interfaces of an architectural element, whereas the

last three are related to EHCs. In the rest of this section, we describe these relations in

more detail.

The Signals relation defines the exception interfaces of an architectural element. This

relation specifies which exceptions an architectural element signals and the elements that

catch these exceptions. Let ES be a set of exceptions and B1 and B2 be architectural

elements such that B2 ∈ {B1}.SignalsTo. If {B2}.({B1}.Signals) = ES, we say that

the element B1 signals the exceptions in set ES to element B2. Table 4.4 lists some

properties associated to the Signals relation. Property BP11 specifies that elements only

signal exceptions to elements to which they are connected, as specified by the SignalsTo

relation.

Even though, for the sake of uniformity, we have called the second constraint on

Table 4.4 a “property”, it works more as a definition of the Signals relation. Property

BP12 states that the Signals relation is derived from three other relations. Intuitively,

the set of exceptions that a component signals depends on the exceptions it generates

(raises) and on exceptions it catches that were signaled by other architectural elements.

Propagated and Unhandled are auxiliary relations defined in terms of the relations that

specify a component’s EHCs (described in the following paragraphs). The Generates

relation specifies the exceptions that components generate when erroneous conditions are

detected. These conditions are dependent on the semantics of the application and on

the assumed failure model. For reasoning about exception flow, the fault that caused

an exception to be raised is not important, just the fact that the exception was raised.

Let ES be a set of exceptions and B1 and B2 be architectural elements such that B2 ∈

{B1}.SignalsTo. If {B2}.({B1}.Generates) = ES, we say that the element B1 raises

exceptions ES to B2. Property BP13 specifies that all the exceptions an element generates

to another element are also signaled to the latter. This is coherent with the view that

only external exceptions matter at the architectural level.

Exception handling contexts are defined in terms of three relations: Catches, Masks,

and DoesNotMask. Catches specifies, for an arbitrary element B, the exceptions B

receives from the elements in the set {B}.CatchesFrom. Let ES be a set of excepti-

ons and B1 and B2 be architectural elements such that B2 ∈ {B1}.CatchesFrom. If

{B2}.({B1}.Catches) = ES, we say that the element B1 catches exceptions ES from

element B2. Table 4.4 shows the basic properties associated with Catches, Masks, and

4.4. Generic Exception Flow Model 99

Tabela 4.4: Contraints on the Signals, Generates, Catches, Masks, and DoesNotMask
relations.

Prop. Constraint

BP11 ∀B ∈ Element • dom({B}.Signals) ⊆ {B}.SignalsTo
BP12 Signals = Generates ∪ Propagated ∪ Unhandled
BP13 Generates ⊆ Signals
BP14 ∀B ∈ Element • dom({B}.Catches) ⊆ {B}.CatchesFrom
BP15 ∀B ∈ Element • ∀B′ ∈ {B}.CatchesFrom•

{B}.({B′}.Signals) = {B′}.({B}.Catches)
BP16 ∀B ∈ Element • dom({B}.Masks) ⊆ {B}.CatchesFrom
BP17 ∀B ∈ Element • dom(({B}.DoesNotMask).RootException) ⊆

{B}.CatchesFrom
BP18 ∀B ∈ Element • ∀B′ ∈ {B}.CatchesFrom • |{B′}.({B}.DoesNotMask)| > 0

⇒ (dom({B′}.({B}.DoesNotMask)) ∩ {B′}.({B}.Masks)) = {}

DoesNotMask. Propety BP14 specifies that elements only catch exceptions from ele-

ments to which they are connected, as specified by the CatchesFrom relation. Property

BP15 states that the exceptions that an element catches are the exceptions signaled to

it.

The Masks relation specifies the exceptions that are masked by a component. By

“masked”, we mean that the component is capable of taking some action that stops the

propagation of the exception and makes it possible for the system to resume its normal

activity. Modeling the behavior of the exception handlers is beyond the scope of this

work. We are just interested in the effect the handler has on the flow of exceptions.

Let ES be a set of exceptions and B1 and B2 be architectural elements such that B2 ∈

{B1}.CatchesFrom. If {B2}.({B1}.Masks) = ES, we say that the element B1 handles

exceptions ES from element B2. Only property BP16 in Table 4.4 is directly associated

to the Masks relation. This property states that elements only handle exceptions signaled

by elements to which they are connected. We could also restrict Masks to be a subset

of Catches just like Generates is a subset of Signals. We do not impose this restriction,

however, because sometimes it is useful to specify general handlers, that is, handlers

capable of dealing with any type of exception.

The DoesNotMask relation describes exception handlers that do not stop the propa-

gation of exceptions. These handlers end their execution by signaling the same exception

or a new one. DoesNotMask specifies a cause-consequence relationship between an ex-

ception that an element catches and an exception that it signals. Let E and E ′ be

exceptions and B1 and B2 be architectural elements such that B2 ∈ {B1}.CatchesFrom.

4.4. Generic Exception Flow Model 100

Tabela 4.5: Properties that define auxiliary relations Unhandled and Propagated.
Property Constraint

BP19 Propagated = { T ∈ Element × Element × RootException| s(T) ∈
{f(T)}.SignalsTo ∧ t(T) ∈
((({f(T)}.P ortMap).{s(T)}).({f(T)}.Catches\{f(T)}.Masks)).
((({f(T)}.P ortMap).{s(T)}).({f(T)}.DoesNotMask)) }

BP20 Unhandled = { T ∈ Element × Element × RootException| s(T) ∈
{f(T)}.SignalsTo ∧ t(T) ∈ ((({f(T)}.P ortMap).{s(T)}).
({f(T)}.Catches\{f(T)}.Masks)) \(((({f(T)}.P ortMap).
{s(T)}).({f(T)}.DoesNotMask)).({s(T)}.({f(T)}.P ropagated))) }

If {B2}.({B1}.DoesNotMask) = (E, E ′), we say that the element B1 explicitly pro-

pagates (or simply “propagates”) exception E ′ from E, signaled by B2. The last two

properties in Table 4.4 are directly related to the DoesNotMask relation. Property BP17

states that an element can only propagate exceptions signaled by an element from which

it catches exceptions. Property BP18 specifies that an element can handle or propagate

the exceptions it catches from another element, but not both.

Now we can go back to the definition of Signals and define Propagated and Unhandled.

The Propagated ∈ Element ↔ Element ↔ RootException relation specifies the subset

of Signals comprising exceptions that are explicitly propagated by an element. It asso-

ciates an element to the exceptions it propagates explicitly and the elements that catch

these propagated exceptions. The Unhandled ∈ Element ↔ Element ↔ RootException

relation associates the set of exceptions that an architectural element implicitly propa-

gates and the elements to which these exceptions are signaled. An exception is said to

be implicitly propagated when an architectural element catches it but the element does

handle it or explicitly propagate an exception from it. Such an exception ends up being

signaled to some other architectural element. Table 4.5 presents formal definitions for

relations Propagated and Unhandled. The constraints in Table 4.5 use three auxiliary

functions, f(), s(), and t(), that take a triple as argument and return the first, second,

and third elements of the triple, respectively.

4.4.5 Exception Propagation Cycles

An exception propagation cycle is a situation where an exception is propagated (im-

plicitly or explicitly) indefinitely, without ever being handled, not even by the special

OperatingSystem component, in an architecture that adheres to the basic properties

BP1−BP20. Furthermore, exceptions in an exception propagation cycle might potenti-

ally have never been raised. For these reasons, valid exception flow views should not have

4.4. Generic Exception Flow Model 101

exception propagation cycles.

A conservative way of preventing the occurrence of exception propagation cycles is

to completely disallow structural cycles in the graph formed by the components and ex-

ception ducts in a system. For most systems, this solution is sufficient without being

overly restrictive. However, for software architectures where components are peers, like

multi-agent and publisher-subscriber, this approach is not acceptable. At the implemen-

tation level, exception propagation cycles are not a problem, since in exception handling

mechanisms such as Java’s and Ada’s, each EHC is kept in the stack, which is finite, and

removed from it when controls returns from the EHC (possibly due to exception propaga-

tion). Therefore, in a language-level exception propagation cycle, eventually all the EHCs

will be removed from the stack and exception propagation will stop. At the architectural

level, however, this is not always the case, as an exception is not necessarily implemented

as a language-level exception [30, 28].

A simple way to avoid propagation cycles without removing structural cycles is to

introduce a partial ordering on exceptions. This ordering could be introduced through

additional information associated to each exception type. Then each element would be

required to signal exceptions which are greater than the ones it catches. This solution

has two shortcomings. The first is that it requires developers to be aware of this ordering,

which is not required in any existing programming languages. The second problem is

that it complicates the model and could have a negative effect on the performance of

verification. Using the type hierarchy to represent the ordering of exceptions is also not

adequate, since it also requires developers to be aware of the ordering and thus imposes

constraints on the exception type hierarchy. Moreover, from a practical standpoint, this

solution partially defeats the purpose of using different types of exceptions, as the topmost

layers of a system would always receive general exceptions that do not provide accurate

information about the specific error they represent. In the rest of this section, we propose

an alternative solution that is a bit more complex, but avoids these shortcomings. We

formalize the concept of exception propagation cycle and show how such cycles can be

easily detected.
An exception propagation is a tuple φ = (B, E, E ′, B′), with B, B′ ∈ Element

and E, E ′ ∈ RootException. We use the functions f(), s(), t(), and g() to obtain the
first, second, third, and fourth elements of a propagation, respectively. Any propagation

φ must satisfy the following well-formedness predicate:

(g(φ) 6= f(φ)) ∧ (g(φ) ∈ {f(φ)}.SignalsTo) ∧ (f(φ) ∈ {g(φ)}.CatchesFrom) ∧

(t(φ) ∈ {f(φ)}.({g(φ)}.Catches)) ∧ (t(φ) ∈ {g(φ)}.({f(φ)}.Signals)) ∧

∃CF ∈ {f(φ)}.CatchesFrom • ((CF, g(φ)) ∈ {f(φ)}.PortMap) ∧

(s(φ) ∈ {CF}.({f(φ)}.Catches)) ∧ (s(φ) /∈ {CF}.({f(φ)}.Masks)) ∧

(s(φ) ∈ dom({CF}.({f(φ)}.DoesNotMask)) ⇒

4.4. Generic Exception Flow Model 102

1 void computePropagations (Element B) {

2 foreach catchesP in B.Catches and not in B.Masks {

3 // catchesP is an (Element, RootException) pair

4 Propagation prop = new Propagation ();

5 foreach portMapP in B.PortMap such that portMapP .f() == catchesP .f() {

6 // portMapP is an (Element, Element) pair

7 if(there is a Triple propagatesT in B.DoesNotMask such that

8 propagatesT .f() == catchesP .f() && propagatesT .s() == catchesP .s()) {

9 // propagatesT is an (Element, RootException, RootException) triple

10 prop.t = propagatesT .t();

11 } else { prop.t = catchesP .s(); }

12 prop.s = catchesP .s();

13 prop.f = B;

14 prop.g = portMapP .s();

15 }

16 B.propagations.add(prop);

17 }

18 }

Figura 4.4: An algorithm to compute the exception propagations associated to an element.

t(φ) ∈ {s(φ)}.({CF}.({f(φ)}.DoesNotMask)))

It is easy to compute the set of all exception propagations in a software architecture

adhering to our model. Figure 4.4 presents an algorithm for computing all the exception

propagations associated to an architectural element.

In order to impose a partial order between two exceptions propagations, we introduce
the notion of consecutiveness. Two propagations φ1 and φ2 are said to be consecutive

if they satisfy the following predicate:

(g(φ1) = f(φ2)) ∧ (f(φ1) ∈ {f(φ2)}.CatchesFrom) ∧

(f(φ2) ∈ f(φ1).SignalsTo) ∧ (f(φ1) 6= f(φ2)) ∧ (t(φ1) = s(φ2)) ∧

(t(φ1) ∈ {f(φ1)}.({f(φ2)}.Catches)) ∧ (s(φ2) ∈ {f(φ2)}.({f(φ1)}.Signals))

In this case, φ1 is said to be the predecessor of φ2 and φ2 is the successor of φ1. We

indicate that propagations φ1 and φ2 are consecutive with the notation φ1 ⇀ φ2. A

sequence of propagations ϕ of length n is a set of propagations φ1, φ2, φ3..., φn−1, φn

such that φ1 ⇀ φ2, φ2 ⇀ φ3, ..., φn−1 ⇀ φn. For simplicity, we assume that all sequences of

propagations are finite. A sequence of propagations ϕ = φ1, φ2, ..., φn forms an exception

propagation cycle iff φn ⇀ φ1.

To verify if a software architecture has exception propagation cycles, it is necessary

to build the directed graph formed by all the exception propagations of the architecture.

This graph is constructed in two steps: (1) compute the exception propagations for all

the elements in the architecture and use them as vertexes; and (2) create a directed edge

between two propagations whenever they are consecutive, from the predecessor to the

sucessor. Detecting exception propagation cycles in the resulting graph is only a matter

of using a regular algorithm for finding cycles in directed graphs.

4.5. Materializing the Model 103

AirExtractorControl

ControlStation

AirFlow WaterLow

OperatorInterface

MineralExtractorControl PumpControl

WaterFlowMineralExtractor

Pump

MethaneHigh

AirExtractor

WaterHigh

Figura 4.5: Layered architecture of a mining control system.

4.5 Materializing the Model

We have translated the generic exception flow model described in Section 4.4 to Alloy. In

this section, we show how to specify systems based on this model and how to verify them.

We use a well-known textbook example [163] to make the explanation more concrete.

Addressing both the earlier (requirements definition and analysis) and later (detailed

design, implementation, etc.) phases of software development is outside the scope of this

paper.

Figure 4.5 shows the components and connectors view of a control system for the

mining environment [154]. Rectangles represent architectural components and arrows

represent exception flow. The extraction of minerals from a mine produces water and

releases methane gas to the air. The mining control system is used to drain mine water

from a sump to the surface, and to extract air from the mine when the methane level

becomes high. The system consists of three control stations: one that monitors the level of

water in the sump, one that monitors the level of methane in the mine, and another that

monitors the mineral extraction. For safety reasons, the extraction of minerals should be

interrupted when the amount of methane in the atmosphere exceeds a safety limit. The

air extractor control station monitors the level of methane inside the mine, and when

the level is high an air extractor is switched on to remove air from the mine. The whole

system is controlled from the surface via an operator console.

The system can fail in several ways. For simplicity, we only consider the case where the

AirExtractorControl component fails by signaling the exception AirExtractorOffException.

This exception is caught and handled by the ControlStation component. The handler

ends its execution by signaling the exception EmergencyException. A detailed descrip-

tion of the exceptional activity of the mining system is available elsewhere [154].

Figure 4.6 shows the Alloy specification of the mining system. In Alloy, a signature

(sig keyword) specifies a type. The one keyword indicates that a signature has exactly

4.5. Materializing the Model 104

1 open ExceptionHandlingSystem

2 one sig AirExtractorOffException , EmergencyException extends RootException{}

3 one sig ControlStation, OperatorInterface , AirExtractorControl

4 extends Component {}

5 one sig CS_OI , AEC_CS extends Duct{}

6 ...

7 fact SystemStructure { ...

8 ControlStation.CatchesFrom = AEC_CS

9 ControlStation.SignalsTo = CS_OI

10 AEC_CS .CatchesFrom = AirExtractorControl

11 AEC_CS .SignalsTo = ControlStation

12 } fact ExceptionFlow { ...

13 AirExtractorControl.Signals = AEC_CS -> AirExtractorOffException

14 AirExtractorControl. Generates = AEC_CS -> AirExtractorOffException

15 AEC_CS .Catches = AirExtractorControl -> AirExtractorOffException

16 AEC_CS .Signals = ControlStation-> AirExtractorOffException

17 ControlStation.Catches = AEC_CS -> AirExtractorOffException

18 ControlStation.Signals = CS_OI -> EmergencyException

19 no ControlStation.Masks

20 ControlStation.DoesNotMask =

21 AEC_CS -> AirExtractorControlOffException -> EmergencyException

22 } fact PortMap { ...

23 ControlStation.PortMap = AEC_CS -> CS_OI

24 }

Figura 4.6: Partial Alloy specification of the mining control system.

one instance. We use signatures for modeling structural elements and exceptions. The

open clause (Line 1) imports the definitions of the basic types of the generic exception

flow model, Element, Component, Duct, and RootException. It also imports the pre-

dicates that specify the basic properties defined in Section 4.4. The relations defined

in Section 4.4, such as CatchesFrom, Masks, etc., are explicitly instantiated by means

of facts, predicates that the AA must assume to be true when evaluating constraints.

For instance, the fact SystemStructure (Line 7) states, among other things, that com-

ponent ControlStation catches exceptions from the exception duct AEC CS. The latter

connects ControlStation to the AirExtractorControl component. Moreover, the fact

ExceptionFlow (Line 12) states that component ControlStation catches the excep-

tion AirExtractorControl (Line 17), signaled by the AEC CS duct, and signals exception

EmergencyException to the CS OI duct (Line 18). ControlStation translates the former

exception to the latter (Lines 20 and 21).

Verification consists in checking whether the Alloy specification of a system satisfies

Alloy predicates corresponding to properties of interest. The properties of interest that a

system must satisfy are split in three categories: basic, desired, and application-specific.

Basic properties define the well-formedness rules of the model, that is, the characteris-

tics of valid systems. These properties specify the functioning of the exception handling

mechanism and how software architectures are structured. We have formally specified all

the basic properties of the generic exception flow model in Section 4.4. Desired properties

are general properties that are usually considered beneficial, although they are not part

4.6. Related Work 105

of the basic exception handling mechanism. They assume that the basic properties hold.

Some examples are the following.

DP1. Architectural elements do not handle exceptions they do not catch.

DP2. All the exceptions caught by an architectural element are handled by it, even if

some of its handlers end their execution by raising exceptions.

DP3. No unhandled exceptions.

Application-specific properties are rules regarding the flow of exceptions in a specific ap-

plication. For the mining system, a possible application-specific property is one which

guarantees that the OperatorInterface component does not receive domain-specific excep-

tions.

AP1. No architectural element signals to the OperatorInterface component an exception

different from EmergencyException.

The Alloy definition of the generic exception flow model includes the specifications of

several basic and desired properties that can be used “as-is”. Developers only specify

additional desired properties and application-specific properties, if any. The AA is em-

ployed to analyze exception flow. If a property of interest is violated, the AA generates a

counterexample with a configuration of the system where the violated property does not

hold. Otherwise it notifies the user that the system is valid.

Figure 4.7 defines four Alloy predicates named bp13, dp2, and ap1, formally specifying

properties BP13, DP2, and AP1, respectively. Alloy predicates are logic sentences that

must be checked by the AA. In the body of the predicates, Generates, Signals, Catches,

DoesNotMask, Masks, and CatchesFrom are names of relations corresponding to the ho-

monymous relations described in Section 4.4. Predicate bp13() states that the set of

exceptions that a component raises is a subset of the exceptions it signals. Predicate

dp2() selects, for each component in the Alloy specification, all the exceptions that the

component catches but does not handle, and checks whether exceptions are propagated

from them. The operators all, <:, &&, and in represent, respectively, universal quanti-

fication, domain restriction, logical conjunction, and subset. The operators -, =>, and #

mean set subtraction, logical implication, and set cardinality, respectively, and the decla-

ration let associates an alias to an expression. Predicate ap1() is a direct translation

from the informal description of property AP1.

4.6 Related Work

Several works propose static analyses of source code that generate information about

exception flow. Usually, this information consists in the exception propagation paths in

4.6. Related Work 106

1 /* Basic property BP13 */

2 pred bp13 () { all C : Component | (C.Generates in C.Signals) }

3 /* Desired property DP2 */

4 pred dp2 () {

5 all C: Component | let nonHandled = (C.Catches - C.Masks)

6 | (all CF : C. CatchesFrom | #(CF <: nonHandled) > 0 =>

7 ((# nonHandled > 0 => #(C. DoesNotMask) > 0) &&

8 all E: CF. nonHandled | #(E.(CF.(C.DoesNotMask))) > 0))

9 }

10 /* Application- specific property AP1 */

11 pred ap1 () {

12 all D: OperatorInterface.CatchesFrom |

13 OperatorInterface .(D.Signals) = EmergencyException

14 }

Figura 4.7: Alloy specifications of properties BP13, DP1, DP2, and AP1.

a program and is used, for example, to identify uncaught exceptions in languages with

polymorphic types, such as ML. Chang et al [38] present a set-based static analysis of

Java programs that estimates their exception flows. This analysis is used to detect too

general or unecessary exception specifications and handlers. Yi [186] proposes an abstract

interpretation that estimates uncaught exceptions in ML programs. Fähndrich [64] and

coleagues have employed their BANE toolkit to discover uncaught exceptions in ML.

Schaefer and Bundy’s [156] work describes a model for reasoning about exception flow

in Ada programs. This model is used by a tool that tracks down uncaught exceptions

and provides exception flow information to programmers. The JEX tool, proposed by

Robillard and Murphy [150], analyzes exception flow in Java programs. The tool includes

a GUI to display a program’s exception propagation paths and detects handlers that are

too general.

Our approach leverages previous proposals for exception flow analysis, most notably

Schaefer and Bundy’s [156], but it differs in focus. Out approach targets the early phases

of development and is broader in scope. It describes how an architectural-level exception

handling mechanism works and leverages existing verification tools to check for adherence

to the rules prescribed by this mechanism. Furthermore, it supports the definition of

new properties of interest and their automated verification. Moreover, as mentioned in

Section 4.4.5, existing exception flow models do not take exception propagation cycles

into consideration, as they are not a problem that occurs at the implementation level.

Jiang and coleagues [103] describe an approach for the analysis of exception propa-

gation based on a data structure called exception propagation graph. The goal of the

authors is to use exception propagation graphs as a basis for automatically generating

structural tests. They do not address exception propagation cycles, as their work focuses

on implementation-level exception flow analysis. Moreover, they do not show how the

proposed approach can be employed to check whether a system exhibits some properties

of interest, such as absence of useless handlers.

4.7. Concluding Remarks 107

Several approaches for specifying software architectures so that they are passive to

automated analysis have been proposed. Most of them define new ADLs that target spe-

cific aspects of a software system. These ADLs are usually based on some underlying

formalisms that are well-supported by tools. Wright [4] specifications can be translated

to CSP and analyzed for deadlock freedom and interface compatibility. Rapide [120] is

based on partially-ordered event sets. The language supports simulation of architecture

descriptions and analysis of the event patterns produced by components. We do not pro-

pose a new ADL. Instead, we use an existing ADL which supports extension, ACME, and

a formal design language, Alloy, to specify and analyze exception flow at the architectural

level. To the best of our knowledge, no ADLs currently available focus on the verification

of properties related to exception flow.

In a previous work, Castor and coleagues [26] described an initial version of the model

presented in this paper. This early work does not unify the definitions of components

and ducts and is harder to use and less scalable. Furthermore, it does not take exception

propagation cycles into account.

4.7 Concluding Remarks

This paper presented a model for reasoning about the flow of exceptions at the architec-

tural level. This model is part of the Aereal framework and supports the specification of

several properties of interest related to exception flow. We have described how systems

adhering to it can be automatically analyzed using the AA, in order to verify whether they

exhibit these properties. The main contributions of this paper are: (i) a formalization of

exception flow in terms of elements that make sense at the architectural level; and (ii)

a decomposition of this formalization in terms of a set of properties that can be easily

verified through existing tools.

In another study [28], we assessed the scalability of the proposed model. We discovered

that, for software architectures with a large number of exceptions (30+), it does not

scale up well. Hence, our most immediate future work is to improve scalability. We

envision two complementary approaches. The first is to optimize the system model by

removing redundant information. The second is to implement a tool that checks if an

Alloy specification satisfies all the basic properties of the EHS supported by Aereal. This

would drastically reduce the complexity of the checks the AA performs, hence decreasing

the amount of memory that verification requires. This change will not compromise the

flexibility of the framework, since the basic properties do not change and any valid system

must satisfy them.

4.8. Resumo do Caṕıtulo 4 108

4.8 Resumo do Caṕıtulo 4

Este caṕıtulo propôs um modelo que fornece um embasamento teórico para a abordagem

proposta no Caṕıtulo 3. Esse modelo especifica as responsabilidades dos elementos arqui-

teturais, no tocante ao tratamento e lançamento de exceções, e regras que estabelecem

como exceções podem ser propagadas entre esses elementos. Através da materialização do

modelo proposto na linguagem Alloy, torna-se posśıvel verificar se arquiteturas aderem às

regras que ele estabelece. Adicionalmente, desenvolvedores podem especificar proprieda-

des adicionais, tanto gerais quanto espećıficas de aplicação, e verificá-las automaticamente

usando o Alloy Analyzer.

O modelo apresentado neste caṕıtulo se aplica a sistemas nos quais vigora a suposição

de que erros são independentes. Consequentemente, é posśıvel tratar cada exceção como

se fosse a única em determinado instante de tempo. O próximo caṕıtulo lida com siste-

mas que são concorrentes e cooperativos, o que quer dizer que os diversos componentes

integrados no sistema interagem a fim de alcançar um objetivo comum e funcionam de ma-

neira asśıncrona, em threads separadas. Para tais sistemas, a suposição de independência

de erros não é válida. Consequentemente, o tratamento de erros deve ser cooperativo e

envolver todas as unidades de computação participantes, assim como o comportamento

normal do sistema.

Caṕıtulo 5

Verificação de Tratamento

Coordenado de Exceções

A popularização de infra-estruturas para comunicação por eventos em sistemas baseados

em componentes, como o IBM Websphere MQ [96] e a plataforma Java Entreprise Edition

com seus Message-Driven Beans [92], exige que abordagens para a integração confiável de

componentes de software contemplem os casos em que componentes se comunicam assin-

cronamente e cooperam com o fim de atingir um objetivo comum. Conforme mencionado

anteriormente, em sistemas com essa caracteŕıstica, chamados de concorrentes cooperati-

vos, não é posśıvel presumir que a manifestação simultânea de múltiplos erros decorre de

falhas distintas.

Este caṕıtulo se refere à Seção 1.3.5 do Caṕıtulo 1 e estende algumas das idéias des-

critas nos Caṕıtulos 3 e 4 e apresenta uma abordagem para a especificação e verificação

de arquiteturas concorrentes e cooperativas que usam tratamento coordenado de exceções

para estruturar mecanismos de tolerância a falhas. A abordagem é baseada em um mo-

delo genérico que descreve como contextos de tratamento de exceções são organizados e

como funcionam o tratamento, resolução e propagação de exceções nesse modelo de sis-

tema. O modelo pode ser traduzido para linguagens de especificação bem amparadas por

ferramentas de verificação, como Alloy e B, e é posśıvel verificar diversas propriedades

interessantes a partir de aplicações baseadas nele. A utilidade da abordagem proposta

para encontrar falhas de projeto é demonstrada através de um estudo de caso.

O artigo que este caṕıtulo contém foi apresentado no 21st ACM Symposium on Applied

Computing [35].

109

5.1. Introduction 110

Verification of Coordinated Exception Handling

Fernando Castor Filho1 Alexander Romanovsky2

Cećılia Mary F. Rubira1

1Institute of Computing

State University of Campinas

Campinas - SP - Brasil

{fernando,cmrubira}@ic.unicamp.br

2School of Computing Science

University of Newcastle upon Tyne

Newcastle upon Tyne - UK

{alexander.romanovsky}@newcastle.ac.uk

5.1 Introduction

Applications that can cause risks for human lives or risk of great financial losses are usually

made fault-tolerant [5], so that they are capable of providing their intended service, even if

only partially, when faults occur. Fault-tolerant systems include mechanisms for detecting

errors in their states and recovering from these errors. There are two main types of error

recovery [5]: backward error recovery (based on rolling the system back to the previous

correct state) and forward error recovery (which involves transforming the system into

any correct state). The former usually uses either diversely implemented software or

simple retry; the latter is typically application-specific and relies on an exception handling

mechanism [52].

Usually, a large part of the system code is devoted to error detection and handling [52,

182]. However, since developers tend to focus on the normal activity of applications and

only deal with the code responsible for error detection and handling at the implementation

phase, this part of the code is usually the least understood, tested, and documented [52].

In order to achieve the desired levels of reliability, mechanisms for detecting and handling

errors should be developed systematically from the early phases of development [154].

Ideally, the construction of system fault tolerance mechanisms should follow a rigorous or

formal development methodology [12].

Error recovery in concurrent and distributed systems is known to be complicated by

various factors, such as high cost of reaching an agreement, absence of a global view on the

5.1. Introduction 111

system state, multiple concurrent errors, difficulties in ensuring error isolation, etc. These

systems require special error recovery mechanisms that suit their main characteristics. As

it is not possible to develop general error recovery mechanisms applicable for all types of

concurrent and distributed systems, two classes of techniques were developed to support

recovery in competing and cooperating concurrent and distributed systems [184]. Distri-

buted transactions [83] and atomic actions [20] are well-known examples of techniques for

structuring competing and cooperative fault-tolerant distributed systems, respectively. In

the rest paper, we concentrate mainly on cooperative distributed systems.

The Coordinated Atomic (CA) Actions concept [184] results from combining distri-

buted transactions and atomic actions. Atomic actions are used to control cooperative

concurrency and to implement coordinated exception handling [20] whilst distributed

transactions are used to maintain the consistency of the resources shared by competing

actions. CA actions function as exception handling contexts for cooperative systems and

exceptions raised in an action are handled cooperatively by all the action’s participants.

If two or more exceptions are concurrently raised, an exception resolution mechanism [20]

is employed to find an exception to be handled that represents all the exceptions rai-

sed concurrently (a resolved exception). Many case studies [152, 185] have shown that

CA actions are a powerful and useful tool for structuring large, distributed fault-tolerant

systems.

In order for CA actions to be applicable for the construction of complex, real-world

systems with strict dependability requirements, software development based on CA acti-

ons has to be supported by rigorous models, techniques, and tools. Several approaches

have been proposed for formalizing the CA action concept with the intention either to

give a more complete and rigorous description of the concept [177] or to verify systems

designed using CA actions [185]. However, an important aspect of CA actions that has

not been addressed by existing work is coordinated exception handling. This is surprising,

since exception handling complements other techniques for improving reliability, such as

atomic transactions, and promotes the implementation of specialized and sophisticated

error recovery measures. Moreover, in distributed applications where a rollback is not

possible, such as those that interact with the environment, exception handling may be

the only choice available.

Some authors [17] claim that mechanisms for involving multiple participants in coor-

dinated exception handling are difficult to both implement and use. However, we believe

that programmers will make more mistakes in an ad hoc implementation of coordinated

exception handling than in applying the well-defined mechanisms that general frameworks

such as CA actions provide. Therefore, techniques and tools that mitigate the inherent

complexity of coordinated exception handling and help developers in the specification and

design of systems that make use of this feature are required.

5.2. Background 112

In this paper, we examine the problem of specifying CA action-based designs in a

way that allows us to verify automatically if these designs exhibit certain properties of

interest regarding coordinated exception handling. Moreover, since coordinated exception

handling is strongly related with action structuring, it is also necessary to model how CA

actions are nested and composed [152] to define multiple exception handling contexts.

We present an approach to modeling CA action-based designs that makes it possible to

verify these designs automatically using a constraint solver. The main component of

the proposed approach is a formal model of CA actions that specifies the structuring of a

system in terms of actions, as well as information relative to exception flow amongst these

actions. This model can be directly specified using well-known specification languages,

like Alloy [98] and B [3], and verified automatically using the tool sets associated with

these languages. With the proposed approach, it is possible to check whether a CA-action

based design satisfies several properties of interest.

This paper is organized as follows. Section 5.2 provides some background on CA

actions and the Alloy design language. Section 5.3 presents an overview of the proposed

approach, including some of the properties that it helps verifying. Section 5.4 presents a

case study to illustrate the feasability and usefulness of the proposed approach. The last

section rounds the paper.

5.2 Background

5.2.1 Coordinated Atomic Actions

A CA action is designed as a set of roles cooperating inside it and a set of resources accessed

by them. An action starts when its roles are taken by participants (e.g. processes, threads,

active objects, etc.). In the course of the action, participants can access resources that

have ACID (atomicity, consistency, isolation, durability) properties. Action participants

either reach the end of the action and produce a normal outcome or, if one or more

exceptions are raised within the action, they all are involved in coordinated handling.

If handling is successful the action completes by producing a normal outcome, but if

handling is not possible then all responsibility for recovery is passed to the containing

action where an external action exception is signaled.

The CA action scheme enforces a clear difference between internal exceptions, which

are raised in the action and have handlers inside the action, and external exceptions, which

are signaled outside the action when the action cannot deliver the results. The latter is

used to report partial action outcomes, abort effect, failure to achieve a consistent result

by action participants, etc. Internal exceptions are encapsulated in the action, whereas

external ones are visible in the action interface as they have to be dealt with by the

5.2. Background 113

Figura 5.1: A CA action example.

containing action. When several exceptions are concurrently raised in a CA action, an

exception resolution mechanism is used.

Figure 5.1 shows a graphical representation of a trivial system structured using CA

actions. Top-level CA action A1 has three roles performed by participants P1, P2, and

P3. Participants P2 and P3 also perform roles R4 and R5, respectively, in the nested CA

action A2. Role R5 of A2 spawns composed CA action A3 at some point in time after the

completion of A2. R5 is interrupted from the moment A3 starts until it completes. The

internal exceptions of an action are represented by small squares (labeled E1, E2, E3, and

E4 in the figure). Each exception is placed near the role that raises it.

5.2.2 Alloy Design Language

Alloy [98] is a lightweight modeling language for software design. It is amenable to a fully

automatic analysis, using the Alloy Analyzer (AA), and provides a visualizer for making

sense of solutions and counterexamples it finds. Alloy is based on first-order relational

logic and, similarly to other specification languages, such as Z, Alloy supports complex

data structures and declarative models. In this work, we use Alloy to formally specify

CA action-based designs.

In Alloy, models are analyzed within a given scope, or size (the maximum number of

instances of a type). The analysis performed by the AA is sound, since it never returns

false positives, but incomplete, since the AA only checks things up to a certain scope.

However, it is complete up to scope; the AA never misses a counterexample which is

smaller than the specified scope.

5.3. Proposed Approach 114

5.3 Proposed Approach

The construction of robust fault-tolerant systems requires that developers take fault

tolerance-related issues into account since the early phases of development. Our ulti-

mate goal is to devise a general approach for the rigorous development of dependable

distributed systems that use both cooperative and competitive concurrency.

This work addresses specifically the issue of verifying properties of interest related to

system structuring and coordinated exception handling in CA action-based designs. The

following sections present an overview of the proposed approach (Section 5.3.1) and briefly

describe some of the properties that can be verified using this approach (Section 5.3.2).

5.3.1 Overview

Figure 5.2 presents a schematic description of the proposed approach for verifying CA

action-based designs. Developers start by performing traditional activities of a software

development process, namely, analysis and architectural design of the system, assuming

that the system is concurrent and cooperative. At the same time, they define the scenarios

in which the system may fail (fault model), what exceptions correspond to each type

of error, and where and how the exceptions are handled (exceptional activity). The

specification of the system’s fault model and exceptional activity can be conducted as

prescribed by some works in the literature [154]. The result of these activities is a CA

action-based design of the system that includes a description of the exceptions that can

be raised in each CA action and how they are handled. This design is usually described in

a modeling language for CA actions (or simply modeling language), for example, informal

diagrams (as presented in Section 5.2.1), the Coala [177] formal language, or the FTT-

UML [86] profile for the UML.

To verify the CA action-based design, it is necessary to translate it to a formal language

with adequate support for automated verification (verification language). If the modeling

language has a well-defined semantics, like Coala, this translation can be completely

automated by a tool. The translation can also be automated for informal notations,

like UML profiles, but only partially. Usually, some manual intervention is required to

resolve ambiguities. Developers used to formal methods can write the system descriptions

directly in the verification language. The choice of using one or two specification languages

is based solely on usability issues.

The formal specification produced by translating the CA action-based design to the

verification language must adhere to a generic CA actions meta-model specifying the

elements of CA actions and how they relate (hereafter called generic CA actions model).

Table 5.1 lists the elements of the generic CA actions model. The elements of the generic

CA actions model are Action, Role, Participant, and RootException. They are the main

5.3. Proposed Approach 115

Figura 5.2: Overview of the proposed approach. White rectangles represent activities and
shaded rectangles with dashed borders represent artifacts.

concepts used in the definition of CA actions. Some of them, like Action and Role, include

additional information represented through relations. For example, the set of roles of

an action is defined by the Roles relation, which associates actions to their respective

roles. Both the formal specification and the generic CA actions model are described in

the verification language. Up to now, we specified generic CA actions models using B and

Alloy as verification languages [34]. Developers can use either of them to formalize CA

action-based designs.

A system is verified by providing its formal specification as input to a constraint solver

for the verification language, together with the properties to be verified. We used the AA

and ProB [115] constraint solvers to verify formal specifications in Alloy and B, respecti-

vely. If any of the properties of interest does not hold, the constraint solver produces a

counterexample. Both constraint solvers, besides generating a counterexample, include a

graphic visualizer that provides additional help in the identification of the problem. We

used the two languages just to show that the proposed approach is not specific to a single

specifrication language. In the rest of the paper, we focus on the last two activities of

Figure 5.2, the ones directly related to system verification.

5.3. Proposed Approach 116

Element Description

Action Type that defines actions.

Role Type that defines roles of actions.

Participant Type that defines participants, units of
computation that perform roles.

RootException Type that defines exceptions.

Tabela 5.1: Basic elements of the proposed model. Each element is a type whose instances
are used to specify CA action-based systems.

5.3.2 Properties of Interest

The properties of interest that a system must satisfy are split in three categories: basic,

desired, and application-specific. Basic properties define the well-formedness rules of the

model, the characteristics of valid CA actions. They specify the coordinated exception

handling mechanism and how actions are organized. Examples of basic properties are

presented below, stated informally.

BP1. If a participant performs a role in a nested action, it must also perform some role

in the containing action.

BP2. No cycles in action nesting.

BP3. The exception resolution mechanism of an action resolves all possible combinations

of concurrent internal exceptions, unless explicitly stated otherwise.

Desired properties are general properties that are usually considered beneficial, although

they are not part of the basic mechanism of CA actions. In general, they assume that the

basic properties hold. Some examples are the following:

DP1. Top-level CA actions have no external exceptions.

DP2. All internal exceptions of an action are handled in it (i.e. they are either masked

or propagated).

DP3. Any role of an action has masking handlers for all of the action’s internal excepti-

ons, including all resolved ones.

Application-specific properties are rules regarding the flow of exceptions in a specific

CA action-based application. Section 5.4.2 presents an example of application-specific

property. The generic CA actions models we have specified so far include the specifications

of several basic and desired properties that can be used “as-is”. Developers only specify

additional desired properties and application-specific properties, if any.

As mentioned in Section 5.3.1, properties of interest are specified in the verification

5.4. Case Study 117

language. The following snippet presents a formal specification for property BP1 in Alloy.

predicate parts_ok() { (all A:Action|

(all NA:A.NestedActions| all NAR:NA.Roles|

!(all P:Participant|!(NAR in P.RolesPlayed

&& some (P.RolesPlayed & A.Roles)))))

}

This snippet defines an Alloy predicate named parts ok. Alloy predicates are lo-

gic sentences that must be checked by the AA. In the body of the predicate, Roles,

NestedActions, and RolesPlayed are names of some relations that associate informa-

tion to the elements of the system (actions, participants, etc.) and the “.” operator is

a generalized form of relational composition. For example, A.NestedActions yields the

set of actions nested within action A, assuming that A ∈ Action, where Action is a type

(a set or, more generally, unary relation), and NestedActions is a relation associating

actions to their nested actions. Predicate parts ok states that every role of every nested

action is performed by some participant that also performs some role in the enclosing

action. The operators all, some, !, &&, and & represent, respectively, universal quantifier,

existential quantifier, logical negation, logical conjunction, and set intersection.

The following snippet shows a formal specification in Alloy for property DP1. It states

that all actions that are not nested within some other action and not composed by some

role have no external exceptions. Operator => represents logical implication.

all A1:Action | ((all A2:Action |

!(A1 in A2.NestedActions)) && (all R:Role |

!(A1 in R.ComposedActions))) => (no A1.External)

5.4 Case Study

The Fault-Tolerant Insulin Pump Therapy [21] (FTIPT) is a control system with strict

reliability requirements for treating patients with diabetes. This system is based on the

Continuous Subcutaneous Insulin Injection technique [21] and involves several sensors and

actuators that must function concurrently and continuously. These sensors and actuators

are wearable devices put on by patients under treatment. The dose of insulin administered

by the system includes two types of insulin: rapid action insulin (RAI) and long action

insulin (LAI).

Sensors and actuators exchange information by means of wireless communication chan-

nels. Sensors send information about the vital signs of a patient to a server located in

a hospital. The latter forwards this information to a doctor who defines the amount of

5.4. Case Study 118

insulin to inject. The server then communicates with the actuators which use pumps to

administer the established dose of insulin.

Both sensors and actuators may fail. Sensors can fail by stopping to send information

about a patient’s vital signs. However, when they do send information, the latter is

assumed to be correct. Actuators can also fail in the same manner. Moreover, they may

fail because there is not enough insulin to apply the required dose. Whenever an error is

detected, treatment is interrupted and an alarm located in a remote emergency room is

activated. We assume that the wireless channels do not fail.

5.4.1 CA Action-Based Design

Capozucca et al [21] use CA actions to design and implement the FTIPT. The system

is organized as a set of actions that structure the execution of sensors and actuators.

Coordinated exception handling is used as the main fault tolerance mechanism, since it

is not possible to roll back when insulin is administered to a patient. The CA action-

design devised by the authors is informal and described by means of diagrams and textual

descriptions.

Figure 5.3 shows the informal design of the system. For simplicity, it does not depict

accesses to shared resources or interactions between participants. CA action CAA Cycle

controls the overall execution of the system and determines the amount of insulin that

must be injected for each pump based on the patient’s vital signs. Actions CAA Sensors

and CAA Actuators are spawned by roles ControllerChecking and ControllerExecuting of

actions CAA Checking and CAA Executing, respectively. They are responsible, respectively,

for collecting the vital signs of the patient and administering the insulin. Each of these

composed CA actions has three roles. The roles A RAIP and A LAIP of CAA Actuators

spawn the composed CA actions CAA RAIP and CAA LAIP, respectively. The latter two

control the two pumps that will administer the two types of insulin.

Seven different types of exceptions can be raised in the system (Table 5.2). For most

of these errors, exception handling consists in stopping the treatment and activating the

alarm in the emergency room. In some cases, such as when the value of a sensor cannot

be obtained, the handler will try again once before giving up.

5.4.2 Applying the Proposed Approach

We modeled the CA action-based design described in the previous section in Alloy. The

following snippet shows part of the Alloy specification of the system. The complete

specification of the system is available elsewhere [34].

// Imports generic CA actions model

5.4. Case Study 119

Figura 5.3: CA action-based design of the Fault-Tolerant Insulin Pump Therapy.

Exc. Description

E1 Heart Rate (HR) sensor does not respond.

E2 Blood Glucose (BGC) sensor does not respond.

E3 Delivery limit reached.

E4 Rapid action insulin pump (RAIP) does not respond.

E5 Rapid action insulin pump (RAIP) stops during delivery.

E6 Long action insulin pump (LAIP) does not respond.

E7 Long action insulin pump (LAIP) stops during delivery.

Tabela 5.2: Exceptions in the CA action-based design.

open CoordinatedExceptionHandling

// CA actions extend ‘‘Action’’.

one sig CAACycle, CAAChecking, CAASensors,

CAAExecuting extends Action{}

// Roles extend ‘‘Role’’.

one sig ControllerChecking, ParamsChecking,

S_CT, BGC, HR extends Role {}

// Exceptions extend ‘‘RootException’’.

one sig E1, E2, E3 extends RootException {}

// Participants extend ‘‘Participant’’.

one sig P1, P2, P3, P4, P5 extends Participant {}

// Used for exception resolution.

one sig K1, K2, K3 extends Key {}

5.4. Case Study 120

... // Other declarations.

fact SystemStructure {

CAACycle.NestedActions = CAAChecking

+ CAAExecuting

CAACycle.Roles = ControllerCycle + ParamsCycle

+ Calculus

CAAChecking.Roles = ControllerChecking

+ ParamsChecking

no CAAChecking.NestedActions

ControllerChecking.ComposedActions = CAASensors

CAASensors.Roles = S_CT + BGC + HR

P1.RolesPlayed = ControllerCycle + ControllerChecking

...// Other definitions. }

fact ExceptionFlow {

CAASensors.Internal = E1 + E2

&& CAASensors.External = AlarmEXC

&& BGC.Generates = E1 && BGC.Raises = E1

&& HR.Raises = E2 && HR.Generates = E2

...// Other definitions. }

fact ExceptionResolution {

CAASensors.ToResolve = E1->K1 + E2->K2

CAASensors.ResolvedTo = K1->AlarmEXC + K2->AlarmEXC

...// Other definitions.}

In Alloy, a signature (sig keyword) specifies a type. The one keyword indicates

that a signature has exactly one instance. We use signatures for modeling actions, ro-

les, participants, and exceptions (signature Key is explained later on). Additional in-

formation is associated to these elements by means of relations. These relations are

explicitly instantiated by facts, predicates that the AA must assume to be true when eva-

luating constraints. For instance, the fact SystemStructure in the snippet above states,

among other things, that CA action CAAChecking has two roles, ControllerChecking and

ParamsChecking, and no nested actions. It also states that participant P1 performs the

roles ControllerChecking and ControllerCycle of actions CAAChecking and CAACycle,

respectively. Moreover, the fact ExceptionFlow states, among other things, that roles

BGC and HR raise exceptions E1 and E2, and that the latter are internal exceptions of CA

action CAASensors. The open clause in the beginning of the specification imports the

definitions of the basic types of the proposed model, Action, Role, Participant, and

RootException. Moreover, it imports the predicates that specify the basic properties of

CA actions and some predefined desired properties.

Fact ExceptionResolution in the specification above describes the exception resolu-

5.4. Case Study 121

tion tree of the FTIPT. It uses instances K1 and K2 of signature Key to associate internal

and external exceptions of action CAASensors. Key is an auxiliary signature defined in

the Alloy version of the generic CA actions model. It is necessary because the exception

resolution tree of an action is a function from sets of exceptions to exceptions. Since it is

not possible to define high order relations (or functions) in Alloy, we used a pair of relati-

ons, one associating internal exceptions to keys (ToResolve), one key for each mapping,

and the other associating each key to an external exception (ResolvedTo). In the snippet

above, fact ExceptionResolution states that exceptions E1 and E2 are both resolved

to exception AlarmEXC. It is important to stress that this workaround for specifying the

exception resolution tree of an action is not necessary in the B version of the generic CA

actions model.

Let us now discuss some positive experience we had while developing the formal spe-

cification of the FTIPT case study. This work helped us in identifying a number of

shortcomings in the original informal description of the system. These shortcomings were

discovered when we were formalizing the system and during verification.

According to the original system description, the handlers for exceptions E4 and E6

“must stop the delivery of insulin and ring the danger alarm”. Just by reading this

statement, though, it is not possible to know the CA action that will be responsible for

ringing the alarm when one of these exceptions is raised. Even though we are not explicitly

modeling the actual alarm, this information is still relevant. If the alarm is to be activated

by a CA action other than the one where the exception was raised, an exception should

be propagated from the CA action where the error was detected to the one that will ring

the alarm. However, no such exception exists in the original design of the system.

For simplicity, we could assume that some role in the CA action where an exception

is raised is responsible for ringing the alarm. However, this is not the best option since

it scatters the responsibility of activating the alarm throughout the whole application,

partially defeating the purpose of decomposing the system into actions. In the end,

we decided to add a new exception named AlarmEXC to the system specification. This

exception is signaled by actions CAASensors, CAARAIP, and CAALAIP and propagated all

the way up to CAACycle, where it is handled. Later, discussing the matter with the

authors of the original case study, we discovered that, to our surprise, that was actually

what they meant but forgot to state explicitly in the specification. To explicitly capture

the idea that AlarmEXC can only be handled by CAACycle, we specified this constraint as

the following application-specific property. Assuming the basic properties hold, it states

that, for any action other than CAACycle, if AlarmEXC is an internal exception, it is also

external. Moreover, it states that CAACycle handles AlarmEXC.

(AlarmEXC in CAACycle.Handles)

&& (all A:(Action - CAACycle)

5.5. Concluding Remarks 122

| AlarmEXC in A.Internal => AlarmEXC in A.External)

After finishing the specification of the system in Alloy, we tried to verify the basic

CA action properties using the AA. In a couple of minutes, the latter presented a coun-

terexample indicating that the specification failed to satisfy some property of interest.

Careful study of the counterexample revealed that property BP3 of Section 5.3.2 was

being violated. This problem happened because the case where exceptions E1 and E2 are

raised concurrently in action CAASensors was not covered by the exception resolution

mechanism of the action. To fix the specification, we extended the action’s resolution me-

chanism so that, when these two exceptions are raised concurrently, they are resolved to

AlarmEXC. However, discussing this problem with the authors of the original case study we

found out that these two exceptions are actually never raised concurrently. The authors

unknowingly ommitted this information from the system specification. Hence, we modi-

fied the Alloy specification to say explicitly that E1 and E2 are never raised concurrently

in CA action CAASensors. The generic CA actions model defines a relation, Excluding,

whose goal is to exclude from the exception resolution tree of an action combinations of

internal exceptions that are never raised concurrently. This relation is already taken into

account by the basic CA properties defined by the generic CA actions model. By default,

no combinations are excluded. The following line was introduced in the specification of

the system:

CAASensors.Excluding = (E1 + E2) -> K3

5.5 Concluding Remarks

In this paper we presented an approach for specifying and verifying cooperative concurrent

systems that use coordinated exception handling to achieve fault tolerance. This approach

aims at guaranteeing that the fault tolerance mechanisms used to build a reliable system

are also reliable. The main contribution of this paper is to provide a formalization of

CA actions that makes it possible to check automatically whether a CA action-based

design satisfies several properties of interest regarding coordinated exception handling.

The usefulness of the proposed approach was demonstrated by a case study. Even for

a very simple application, the proposed approach helped us to uncover some implicit

assumptions in the original, informal design of the system. The problems we found were

directly related to the use of coordinated exception handling. In other formal models for

specifying CA actions, it would be harder to spot problems like the ones we found because

they focus on different aspects of CA action-based systems, such as temporal ordering of

events [185] and dynamic CA action structuring [172].

5.5. Concluding Remarks 123

This work does not address some important aspects of systems structured as CA acti-

ons. For example, it is not possible to model consistent access to external resources or the

dynamic structure of nested actions. In the near future, we intend to expand the system

model used in our approach to address these issues and provide a more comprehensive

framework for verifying CA action-based systems.

Another future work consists in extending the fault model of the FTIPT with the

assumption that wireless communication channels can fail. In the least, this modification

requires new types of errors and their corresponding exceptions to be defined. Further-

more, some peculiarities of wireless channels need to be taken into account. For example,

sometimes wireless channels stop working for short periods of time because the signal is

weak. This situation cannot immediately be treated as an error, though, since it is usually

temporary.

5.6. Resumo do Caṕıtulo 5 124

5.6 Resumo do Caṕıtulo 5

Este caṕıtulo apresentou uma abordagem para a modelagem e verificação de sistemas

concorrentes cooperativos que usam tratamento de exceções coordenado para estruturar

seu comportamento excepcional. Usamos aplicações baseadas em CA actions como re-

presentantes dessa classe de sistema. O principal componente da abordagem proposta é

um modelo formal de CA actions que especifica a estruturação de um sistema em termos

de ações, assim como informações relativas ao fluxo de exceções entre essas ações. Esse

modelo pode ser especificado de maneira direta usando linguagens bem conhecidas, como

Alloy e B. Neste caṕıtulo foi apresentada uma visão geral da abordagem proposta, sem

descrever em detalhes o modelo de sistema no qual ela é baseada. Os Apêndices A, B e

C complementam este caṕıtulo e apresentam, respectivamente: (A) um modelo genérico

de CA actions escrito em Alloy; (B) a especificação completa em Alloy do estudo de caso

da Seção 5.4; e (C) especificações parciais do modelo genérico de CA actions e do estudo

de caso na linguagem B.

Este caṕıtulo encerra a primeira parte desta dissertação. Até agora este trabalho fo-

cou na integração dos componentes de um sistema de software. Foram propostas técnicas

para a descrição e análise das arquiteturas desses sistemas, da perspectiva do seu com-

portamento excepcional. Essas técnicas visam reduzir o número de erros decorrentes de

suposições conflitantes ou incompletas feitas por componentes sobre o comportamento

excepcional dos outros componentes integrados no sistema. Os próximos dois caṕıtulos

da dissertação lidam com a construção dos componentes, mais especificamente, com a

estruturação do comportamento excepcional desses componentes através do emprego de

programação orientada a aspectos.

Caṕıtulo 6

Um Estudo Quantitativo sobre a

Modularização de Tratamento de

Exceções com Aspectos

Este caṕıtulo e o próximo focam na estruturação do comportamento excepcional de com-

ponentes de software usando programação orientada a aspectos (AOP). Em outras pa-

lavras, ele trata da construção de componentes de software nos quais o código de recu-

peração de erros é explicitamente separado do código responsável pelo comportamento

normal. Este caṕıtulo se refere à Seção 1.4.2 do Caṕıtulo 1 e apresenta um estudo que

avalia as vantagens de se usar AOP para modularizar tratamento de exceções. O es-

tudo consistiu em refatorar para aspectos o código de tratamento de exceções de quatro

aplicações diferentes, três delas baseadas em componentes. Três dessas aplicações foram

implementadas originalmente em Java, enquanto a quarta foi escrita em AspectJ.

A linguagem AspectJ foi empregada como representante do paradigma orientado a

aspectos para separar tratamento de exceções dos outros interesses de cada sistema. Para

medir os atributos de qualidade das versões originais e refatoradas dos sistemas-alvo do

estudo, foi usado um conjunto de métricas [73]. Este inclui métricas relativas a quatro

atributos de qualidade: separação de interesses, concisão, coesão e acoplamento. A in-

vestigação incluiu também uma análise dos sistemas refatorados levando em conta (i) a

reusabilidade do código de tratamento de exceções e (ii) a escalabilidade de AOP para

modularizar tratamento de exceções na presença de outros interesses transversais.

O artigo que este caṕıtulo contém foi publicado nos anais do 14th ACM SIGSOFT

Symposium on Foundations of Software Engineering, que foi realizado em novembro de

2006. Uma versão preliminar foi apresentada no ECOOP’2005 Workshop on Exception

Handling in Object-Oriented Systems [32], em julho de 2005. Adicionalmente, uma versão

estendida deste último apareceu no livro Advanced Topics in Exception Handling Techni-

125

126

ques [23], publicado este ano pela série Lecture Notes in Computer Science.

6.1. Introduction 127

Exceptions and Aspects: The Devil is in the Details

Fernando Castor Filho1 Nelio Cacho2 Eduardo Figueiredo2

Raquel Ferreira1 Alessandro Garcia2 Cećılia Mary F. Rubira1

1Institute of Computing

State University of Campinas

Campinas - SP - Brasil

fernando@ic.unicamp.br, raquelmaranhao@gmail.com, cmrubira@ic.unicamp.br

2Computing Department

Lancaster University

Lancaster - UK

{ncacho,emagno,garciaa}@comp.lancs.ac.uk

6.1 Introduction

Exception handling [80] mechanisms were conceived as a means to improve modularity

of programs that have to deal with exceptional situations [51]. Their designs are aimed

at promoting an explicit textual separation between normal and abnormal code, in order

to support the construction of programs that are more concise, reusable, evolvable, and

reliable [51, 80]. Several researchers [66, 117, 178] have explored new programming tech-

niques in order to reap the promised benefits of existing exception handling mechanisms.

In spite of this, achieving modular implementations of error handling code is still difficult

for software engineers. The main problem is that realistic software systems exhibit very

intricate relationships involving the normal-processing code and error recovery concerns.

Moreover, exception handling is known to be a global design issue [72] that affects almost

all the system modules [117], mostly in an application-specific fashion [5]. Also, a large

part of the system code is usually devoted to error detection and handling [52, 182], but

this part of the code is often the least understood, tested, and documented [52].

Given the broadly-scoped character of exception handling, aspect-oriented program-

ming (AOP) techniques [106] emerge as a natural candidate to promote enhanced modu-

larity, reusability, and conciseness of programs in the presence of exceptions. In fact, it

is usually assumed that the exceptional behaviour of a system is a crosscutting concern

that can be better modularized by the use of AOP [106, 114, 117]. Some recent rese-

arch works [107, 117, 164] have investigated the degree to which AOP can improve the

separation of concerns relative to some forms of fault tolerance mechanisms.

6.1. Introduction 128

The most well-known study focusing specifically on exception handling was performed

by Lippert and Lopes [117]. The authors had the goal of evaluating if AOP could be used

to separate the code responsible for detecting and handling exceptions from the normal

application code in a large object-oriented (OO) framework. According to this study, the

use of AOP brought several benefits, such as less interference in the program texts and a

drastic reduction in the number of lines of code (LOC). However, this first study has not

investigated the “aspectization” of application-specific error handling, which is often the

case in large-scale software systems. In addition, in spite of the assumption made by many

authors that using AOP for separating exceptional code from the normal application code

is beneficial, the involved trade-offs are not yet well-understood. For instance, previous

investigations have not analyzed whether aspect-oriented (AO) solutions scale well in

the presence of complex relationships involving the normal application code and error

recovery code. Also, the interaction between exception handling aspects and aspects that

implement other concerns still has not been explicitly studied. Hence, some important

research questions remain unaddressed:

• Does AOP promote an improvement in well-accepted quality attributes other than

separation of concerns, such as coupling cohesion, and size?

• Is exception handling a reusable aspect in real, deployable, software systems?

• When is it beneficial to aspectize exception handling? When is it not?

• How do exception handling aspects affect aspects implementing other concerns?

This paper presents an in-depth study that assesses the adequacy of AspectJ [114], a

general-purpose aspect-oriented extension to Java, for modularizing exception handling

code. The study consisted of refactoring four different applications so that the code

responsible for handling exceptions was moved to aspects. Three of these applications

were originally written in Java and one was implemented in AspectJ. This study differs

from the Lippert and Lopes study for a number of reasons. First, the targets of the

study are complete, deployable systems, not reusable infrastructures, such as a framework.

Hence, the exception handling code also implements non-uniform, complex strategies,

making it harder to move handlers to aspects. Second, we employ a metrics suite [73]

to quantitatively assess attributes such as coupling, conciseness, cohesion, and separation

of concerns in both the original and the refactored system. Third, we evaluate how

exception handling aspects interact with aspects implementing other concerns. Fourth,

we do not attempt to move error detection code to aspects. Error detection involves

checking the state of a program against a certain predicate when its control flow graph

reaches a certain node, at runtime [52]. Thus, in many cases, error detection code is very

strongly coupled with the code that implements a system’s normal behavior. We believe

this subject deserves a separate in-depth study.

6.2. Study Setting 129

This paper is organized as follows. The next section describes the setting of our study.

The results of the study are presented in Section 6.3. Section 6.4 analyzes the obtained

results and points some constraints on the validity of our study. Section 6.5 discusses

related work. The last section points directions for future work.

6.2 Study Setting

This section describes the configuration of our study. Section 6.2.1 briefly explains how

we moved exception handling code to aspects. Section 6.2.2 describes the targets of our

study. Section 6.2.3 presents the metrics suite we have used to quantitatively evaluate

the original and refactored versions of each system.

6.2.1 Aspectizing Exception Handling

AspectJ [114] extends Java with constructs for picking specific points in the program

flow, called join points, and executing pieces of code, called advice, when these points are

reached. Join points are points of interest in the program execution through which cross-

cutting concerns are composed with other application concerns. AspectJ adds a few new

constructs to Java. A pointcut picks out certain join points and contextual information

at those join points. Join points selectable by pointcuts vary in nature and granularity.

Examples include method call and class instantiation. Advice may be executed before,

after, or around the selected join points. In the latter case, execution of the advice may

potentially alter the flow of control of the application, and replace the code that would be

otherwise executed in the selected join point. AspectJ also lets programmers suppress the

static checks that the Java compiler makes regarding checked exceptions. This feature is

called exception softening and is useful when it is necessary to move exception handlers

to aspects. Exceptions are softened within a set of join points. When exceptions are

thrown in these join points, they are automatically wrapped by a pre-defined unchecked

exception called SoftException.

Our study focused on the handling of exceptions. We moved try-catch, try-finally,

and try-catch-finally blocks in the four applications to aspects. Hereafter, we refer

to these types of blocks collectively as try-catch, or handler, blocks, unless otherwise

noted. We use the terms try block, catch block (or handler), and finally block (or

clean-up action) to explicitly refer to the parts of a try-catch block. Method signatures

(throws clauses) and the raising of exceptions (throw statements) were not taken into

account in this study because these elements are related to exception detection.

We used the Extract Fragment to Advice [135] refactoring to move handlers to as-

pects. After extracting all the handlers to advice, we looked for reuse opportunities and

6.2. Study Setting 130

eliminated identical handlers. The following code snippet shows a trivial example of as-

pectization of handlers using an around advice. Due to space constraints, we do not show

how we extracted handlers to after advice.

// original code // refactored code

class C { class C {

void m() { ==> void m() {

try {...} ... //former body of

catch(E e) {...} } // the try block

} }

} aspect A {

pointcut pcd :

execution(void C.m());

void around() : pcd() {

try { proceed(); }

catch(E e) {...}

} declare soft : E : pcd();

}

We implemented handlers in the aspects using after and around advice. Whenever

possible, we used after advice, since they are simpler. After advice are not appropriate,

though, for implementing handlers that do not raise an exception (handlers that mask

the exception). AspectJ requires that an after advice end its execution in the same way

as the join point to which it is associated. Therefore, if the code of an after advice is

executed following the raising of an exception, the runtime system of AspectJ assumes

that the advice ends its execution by raising an exception (either the original or a new

one), even if that does not happen explicitly. Thus, it is not possible to implement as

an after advice a handler that logs the caught exception and ignores it (the advice would

have to raise some exception). In these cases, around advice were employed, since they

do not have this restriction. Clean-up actions were implemented as after advice. New

advice were created on a per-try-block basis, excluding cases where handlers could be

reused. In situations where multiple catch blocks are associated to a single try block,

we created a single advice that implements all the catch blocks. This helps decreasing

the number of advice and, at the same time, avoids problems related to ordering multiple

advice associated to the same join point.

For each target system, we employed a different strategy for organizing exception

handling aspects. This approach helped us in understanding how different organizations

influence handler reuse. Various approaches are possible. Extreme alternatives include

putting all the exception handling code in a single aspect, creating several simple aspects

that encapsulate the possible handling strategies for each type of exception, or creating

6.2. Study Setting 131

a separate aspect for each handling strategy. More moderate approaches include creating

a handler aspect per class that includes exception handling code or one aspect for each

package. For a system where other concerns have been aspectized a priori, a feasible

strategy would be to create one exception handling aspect per aspectized concern. Each

organization has pros and cons that revolve around the code size vs. modularity trade-off.

This is further discussed in Section 6.3.1.

Whenever possible, we associated exception handling advice to methods through

execution pointcut designators. These pointcut designators have a simple semantics

and, unlike the call pointcut designator, do not require that the exception handling

advice deal directly with SoftException when it is necessary to soften exceptions. For

cases where it was not possible to use the execution pointcut designator, we looked for

alternate solutions, depending on the circumstances, usually employing the call, new,

withincode, and cflow pointcut designators.

In several occasions, we modified the implementation of a method in order to expose

join points that AspectJ could select more directly or contextual information required by

exception handlers, for example, the values of local variables. Usually, this amounted to

extracting new methods whose body is entirely contained within a try block, and whose

parameters were the contextual information required by the handler. This was often

necessary when try-catch blocks were tangled with the normal code, for example, nested

within a loop. In these situations, using a pointcut to select the execution of the whole

method might not be appropriate. After exception handling, when a tangled try-catch

block does not end its execution by raising an exception, it is necessary to resume the

execution of the normal code from the statement that textually follows the handler block.

However, if no refactoring is performed, this behavior cannot be achieved for cases where

it is imposible to specify a pointcut that captures exclusively the statements within the

try part of the try-catch block.

6.2.2 Our Case Studies

We manually refactored four different applications in our study, three of them OO and

one of them AO. Hereafter we call them “target systems”. We believe that these appli-

cations are representative of how exception handling is typically used to deal with errors

in real software development efforts for several reasons. First, these systems were selec-

ted mainly because they include a large number of exception handlers that implement

diverse exception handling strategies that range from trivial to sophisticated. Second,

they encompass different characteristics, diverse domains, and involve the use of distinct

real-world software technologies. Finally, they present heterogeneous crosscutting rela-

tionships involving the normal code, the handler code, the clean-up actions, and other

6.2. Study Setting 132

crosscutting concerns. The rest of this subsection describes the four targets systems of

the study.

The original implementation of the first three systems was written in Java and, af-

terwards, all the exception handling code was refactored to aspects. Telestrada is a

traveler information system being developed for a Brazilian national highway administra-

tor. For our study, we have selected some self-contained packages of one of its subsystems

comprising approximately 3350 LOC (excluding comments and blank lines) and more

than 200 classes and interfaces. Java Pet Store1 is a demo for the Java Platform, En-

terprise Edition2 (Java EE). The system uses various technologies based on the Java EE

platform and is representative of existing e-commerce applications. Its implementation

comprises approximately 17500 LOC and 330 classes and interfaces. The third target

system is the CVS Core Plugin, part of the basic distribution of the Eclipse3 platform.

The implementation of the plugin comprises approximately 170 classes and interfaces and

approximately 19000 LOC. It is the target system with the most complicated exception

handling scenarios.

Health Watcher was the only system originally implemented in AspectJ. It is a web-

based information system that was developed for the healthcare bureau of the city of

Recife, Brazil. The original system version involved the aspectization of distribution,

persistence, and concurrency control concerns. Furthermore, the system includes some

very simple exception handling aspects whose handling strategy consists in printing error

messages in the user’s web browser. The implementation of Health Watcher comprises

6630 LOC and 134 components (36 aspects and 98 classes and interfaces). The refactoring

of Health Watcher consisted in moving exception handling code from classes to aspects.

Moreover, we also moved exception handling code from aspects related to other concerns

to aspects dedicated exclusively to exception handling.

6.2.3 Metrics Suite

The quantitative assessment was based on the application of a metrics suite to both

the original and refactored versions of the target systems. This suite includes metrics

for separation of concerns, coupling, cohesion, and size [73] to evaluate both original

and refactored implementations and have already been used in several experimental stu-

dies [19, 32, 79, 84]. The coupling, cohesion, and size metrics were defined based on

some classic OO metrics [43]. The original OO metrics were extended to be applied in

a paradigm-independent way, supporting the generation of comparable results. Also, the

metrics suite introduces three new metrics for quantifying separation of concerns. They

1http://java.sun.com/developer/releases/petstore/
2http://java.sun.com/j2ee
3http://www.eclipse.org

6.3. Study Results 133

Attributes Metrics Definitions

Concern Diffusion Counts the number of components that contribute to the
over Components implementation of a concern and other components which

access them.
Separation Concern Diffusion Counts the number of methods and advice which
of Concerns over Operations contribute to a concern’s implementation plus the

number of other methods and advice accessing them.
Concern Diffusion Counts the number of transition points for each concern
over LOC through the LOC. Transition points are points in the code

where there is a “concern switch”.
Coupling Between Counts the number of components declaring methods or

Coupling Components fields that may be called or accessed by other components.
Depth of Inheritance Counts how far down in the inheritance hierarchy a class
Tree or aspect is declared.
Lack of Cohesion Measures the lack of cohesion of a class or an aspect in

Cohesion in Operations terms of the amount of method and advice pairs that do
not access the same field.

Lines of Code (LOC) Counts the lines of code.
Size Number of Attributes Counts the number of fields of each class or aspect.

Number of Operations Counts the number of methods and advice of each class
or aspect.

Vocabulary Size Counts the number of components (classes, interfaces, and
aspects) of the system.

Tabela 6.1: Metrics Suite

measure the degree to which a single concern (exception handling, in our study) in the

system maps to the design components (classes and aspects), operations (methods and ad-

vice), and lines of code. For all the employed metrics, a lower value implies a better result.

Table 6.1 presents a brief definition of each metric, and associates them with the attributes

measured by each one. Detailed descriptions of the metrics appear elsewhere [73].

6.3 Study Results

This section presents the results of the measurement process. The data have been col-

lected based on the set of defined metrics (Section 6.2.3). The presentation is broken

in three parts. Section 6.3.1 presents the results for the separation of concerns metrics.

Section 6.3.2 presents the results for the coupling and cohesion metrics. Section 6.3.3

presents the results for the size metrics.

We present the results by means of tables that put side-by-side the values of the me-

trics for the original and refactored versions of each target system. We break the results

for the three OO target systems in two parts, in order to make it clear the contribution of

6.3. Study Results 134

classes and aspects to the value of each metric. For the AO application (Health Watcher),

we break the results in three parts, in order to make it clear the contribution of classes,

exception handling aspects, and aspects related to other concerns to the value of each

metric. Hereafter, we use the term “class” to refer to both classes and interfaces. Rows

labelled “Diff.” indicate the percentual difference between the original and refactored

verions of each system, relative to each metric. A positive value means that the origi-

nal version fared better, whereas a negative value indicates that the refactored version

exhibited better results.

6.3.1 Separation of Concerns Measures

Table 6.2 shows the obtained results for the separation of concerns metrics. In general,

the refactored versions of the target systems performed better than the original ones. In

the refactored versions, all the code related to exception handling that was not machine-

generated was moved to aspects. We did not consider machine-generated code because it

typically does not need to be maintained by developers. Among the target systems, only

the Java PetStore includes machine-generated code, produced by the Java EE compiler.

Application Concern Diffusion Concern Diffusion Concern Diffusion

over Components over Operations over LOC

Original Refactored Original Refactored Original Refactored

Telestrada Classes 22 0 42 0 208 0
Aspects - 18 - 44 - 0
Total 22 18 42 44 208 0
Diff. -18.18% +4.76% -100%

Java Pet Classes 110 20 256 21 1168 84
Store Aspects - 37 - 179 - 0

Total 110 57 256 200 1168 84
Diff. -48.18% -21.88% -92.81%

Eclipse CVS Classes 59 0 236 0 1118 0
Core Plugin Aspects - 4 - 180 - 0

Total 59 4 236 180 1118 0
Diff. -93.22% -23.73% -100%

Health Classes 35 0 115 0 488 0
Watcher EH Aspects 5 10 9 70 0 0

Other Aspects 7 0 12 0 48 0
Total 47 10 136 70 536 0
Diff. -78.72% -48.53% -100%

Tabela 6.2: Separation of Concerns Metrics.

Even though the measures of Concern Diffusion over Components diverged strongly

amongst the four target systems, it is clear that the refactored solutions fared better. This

divergence is a direct consequence of the adopted strategy for creating new handler aspects

in each target system. In Telestrada, for complex classes with 7 or more catch blocks, we

created a new aspect whose sole responsibility is to implement the handlers for that class.

Furthermore, each package includes an aspect that modularizes exception handling code

6.3. Study Results 135

Application Coupling between Depth of Lack of Cohesion

Components Inheritance Tree in Operations

Original Refactored Original Refactored Original Refactored

Telestrada Classes 179 142 186 186 408 524
Aspects - 39 - 2 - 0
Total 179 181 186 188 408 524
Diff. +1.12% +1.08% +28.43%

Java Pet Classes 783 729 245 245 7095 7595
Store Aspects - 65 - 13 - 71

Total 783 794 245 258 7095 7666
Diff. +1.4% +5.31% +8.05%

Eclipse CVS Classes 1481 1412 181 181 18326 19287
Core Plugin Aspects - 77 - 4 - 0

Total 1481 1489 181 185 18236 19287
Diff. +0.54% +2.21% +5.24%

Health Classes 217 197 69 69 766 867
Watcher EH Aspects 5 27 3 3 4 130

Other Aspects 66 61 17 17 210 210
Total 288 285 89 89 980 1207
Diff. -1.04% 0% +23.16%

Tabela 6.3: Coupling and Cohesion Metrics.

for simpler classes. In the Java Pet Store a single exception handling aspect was created

per package. In Health Watcher, an exception handling aspect was created for each other

crosscutting concern. For the CVS Plugin, the programmer was left free to create aspects

as he deemed necessary. The results for Concern Diffusion over Components in Table 6.2

reflect these design choices. Telestrada is the system whose refactored version achieved the

worst results (a reduction of 18.2%), since a great number of exception handling aspects

were created. The refactored Java Pet Store achieved a middle ground between Telestrada

and Health Watcher, with a reduction of 48.18%. In the refactored Health Watcher, the

small number of exception handling aspects (10) represented a reduction of 78.7% in the

value of the metric. For the CVS Plugin, only 4 exception handling aspects were created,

resulting in a reduction of 93.22%.

Concern Diffusion over LOC was the metric where the refactored systems performed

best, when compared to the original ones. The refactored versions of three out of four

target systems did not have any concern switches and thus had value 0 for this metric.

The only exception was Java Pet Store, because the machine-generated code was not

moved to aspects. In spite of this, the measure for the refactored version was still more

than 90% lower. Also, the measures of Concern Diffusion over LOC do not seem to be

influenced by the size or characteristics of each target system. This can be seen as an

indication that AOP scales up well when it comes to promoting separation of exception

handlers in the program texts.

6.3. Study Results 136

6.3.2 Coupling and Cohesion Measures

Table 6.3 shows the obtained results for the two coupling metrics, Coupling between

Components and Depth of Inheritance Tree, and the cohesion metric, Lack of Cohesion

in Operations. On the one hand, aspectizing exception handling did not have a strong

effect on the coupling metrics. On the other hand, the measure of Lack of Cohesion in

Operations for the refactored target systems was much worse than for the original ones.

The increase in the value of Depth of Inheritance Tree for some of the target systems

was due to the creation of abstract aspects from which other handler aspects inherit.

The greater the number of concrete aspects in a system that inherit from a newly created

abstract aspect, the greater the value of the metric. Amongst all the metrics we employed,

Coupling between Components was the least affected by the aspectization of exception

handling. None of the target systems had a difference greater than 1.5% between the

original and refactored versions. New couplings were introduced only when exception

handling aspects had to capture contextual information from classes.

Lack of Cohesion in Operations was the metric for which the refactored target systems

presented the worst results. The refactored versions of all target systems performed

worse in this metric. For the refactored versions of Health Watcher and Telestrada,

the measure of Lack of Cohesion in Operations was more than 20% higher than the

corresponding original systems. In the Java Pet Store and the CVS Plugin, the increase

was of approximately 8% and 5%, respectively. The main reason for the poor results

is the large number of operations that were created to expose join points that AspectJ

can capture. These new operations are not part of the implementation of the exception

handling concern (and therefore do not affect Concern Diffusion over Operations), but are

a direct consequence of using aspects to modularize this concern. Refactoring to expose

join points is a common activity in AOP, since current aspect languages do not provide

means to precisely capture every join point of interest.

Even though cohesion was worse in the refactored target systems, this was caused

mostly by the classes. As shown in Table 6.3, the value of the cohesion metric for the

aspects in the refactored version of Telestrada and the CVS Plugin was 0. In the Java

Pet Store, the aspects accounted for less than 1% of the total value of the metric. Only

Health Watcher was different. In this system exception handling aspects accounted for

10.8% of the total value.

6.3.3 Size Measures

Contradicting the general intuition that aspects make programs smaller [114, 117] due

to reuse, the original and refactored versions of the four target systems had very similar

results in two of the four size metrics: LOC and Number of Attributes. The measure of

6.3. Study Results 137

Application Lines of Number of Number of Vocabulary

Code Attributes Operations Size

Original Refac. Original Refac. Original Refac. Original Refac.

Telestrada Classes 3352 2885 127 127 423 437 224 224
Aspects - 459 - 0 - 44 - 18
Total 3352 3334 127 127 423 481 224 242
Diff. -0.54% 0% +13.71% +8.04%

Java Pet Classes 17482 15593 542 542 2075 2135 339 339
Store Aspects - 2045 - 6 - 180 - 37

Total 17482 17638 542 548 2075 2315 339 376
Diff. +0.89% +1.11% +11.57% +10.91%

Eclipse CVS Classes 18876 17803 852 854 1832 1848 257 257
Core Plugin Aspects - 1620 - 0 - 180 - 4

Total 18876 19423 852 854 1832 2028 257 261
Diff. +2.82%% +0.23%% +9.66% +1.43%

Health Classes 5732 4641 152 152 542 553 98 98
Watcher EH Aspects 86 853 3 7 9 73 5 10

Other Aspects 812 701 12 12 104 104 31 31
Total 6630 6195 167 171 655 730 134 139
Diff. -6.56% +2.4% +11.45% +3.73%

Tabela 6.4: Size Metrics.

Vocabulary Size grew as expected, due to the introduction of exception handling aspects.

Moreover, the Number of Operations of the refactored versions of all the target systems

grew significantly. Table 6.4 summarizes the results for the size metrics.

In Telestrada and Java Pet Store, the number of LOC of the original and refactored

versions is similar (less than 1%). In Health Watcher there was a sensible decrease in

the amount of exception handling code, even though the influence of this change on the

overall number of LOC of the system was only modest (approximately -6.6%). In the

CVS Plugin, there was an increase of 2.9% in the number of LOC of the refactored

version. Although this is a small percentage of the overall number of LOC of the system,

it accounts for almost 550 LOC introduced due to aspectization. The obtained values for

LOC were expected. Although some reuse of handler code could be achieved, this was

not anywhere near the results obtained by Lippert and Lopes in their study. Moreover,

most handlers comprise a few (between 1 and 10) LOC and the use of AspectJ incurs in

a slight implementation overhead because it is necessary to specify join points of interest

and soften exceptions in order to associate handlers to pieces of code. In the end, the

economy in LOC achieved due to handler reuse was more or less compensated by the

overhead of using AspectJ.

The Number of Operations was sensibly higher in the refactored target systems. It

grew 13.7% in the refactored version of Telestrada, 11.6% in the Java Pet Store, 10.7%

in the CVS Plugin, and approximately %11.5 in Health Watcher. The main reason for

this result was the creation of advice implementing handlers. Since there is a one-to-

one correspondence between try blocks and advice (except for cases where handlers are

reused) and handlers do not count as methods in the original systems, this increase was

6.4. Discussion 138

expected. Another reason for the increase in the Number of Operations was the refactoring

of methods to expose join points that AspectJ can capture.

6.4 Discussion

This section makes a qualitative analysis of the obtained results (Section 6.3) focusing on

the research questions posed in Section 6.1. We also base the analysis on our experience

in modularizing exception handling in the four target systems. Furthermore, we discuss

the constraints on the validity of our empirical evaluation.

6.4.1 Coupling, cohesion, and conciseness

Our empirical study confirms some of the findings of the study conducted by Lippert and

Lopes [117], who claim that the use of aspects decreases interference between concerns in

the program texts. The results achieved by the refactored versions of the target systems

in the separation of concerns metrics (Section 6.3.1) provide convincing evidence for this.

When exception handling is aspectized using AspectJ, it is sometimes necessary to

soften exceptions to suppress the static checks performed by the Java compiler. The issue

with exception softening is that it creates an implicit, compile-time dependency of the

base code on the exception handling aspect. The dependency is implicit because it cannot

be inferred just by looking at the base code. Moreover, if the exception handling aspects

are not present, the base code will not compile. An important benefit of aspectizing design

patterns is the fact that dependencies are inverted and code implementing design patterns

will depend on the participants of the pattern, but not the other way around [91]. This

principle does not apply to the aspectization of exception handling with AspectJ because,

in many situations, it is not possible to eliminate the dependency of the base code on

the aspects. A direct consequence of this is that, in AspectJ, exception handling is not

a pluggable aspect, differently from other concerns, such as distribution [164], assertion

checking [117], and some design patterns [91].

As seen in Section 6.3.3, handler advice accounted for a significant increase in the

Number of Operations of all the target systems (+10.4% in Telestrada +8.7% in the Java

Pet Store, and +9.8 in the CVS Plugin and Health Watcher). As with all size metrics,

this value cannot be evaluated in isolation. Although a developer getting acquainted

to the refactored version will have to understand more operations, these operations are

smaller and do not mix a system’s normal activity with the code that handles exceptions.

Therefore, the increase in the Number of Operations caused by the handler advice should

not be seen as a negative factor.

6.4. Discussion 139

Operations extracted in order to expose join points that AspectJ could capture cor-

responded to 3.3% of the total Number of Operations in Telestrada, 2.9% in the Java Pet

Store, 0.79% in the CVS Plugin, and 1.7% in Health Watcher. Unlike the increase caused

by handler advice, the increase caused by refactored operations, albeit small, is negative

in most situations. These new operations are not part of the original design of the system

and possibly do not clearly state the intent of the developer. In some cases, a refactored

operation comprises just a few lines that do not make sense when separated from their

original contexts.

The increase in Lack of Cohesion in Operations in the refactored versions of Java Pet

Store and the CVS Plugin is much lower than the increase in the same metric in Te-

lestrada and Health Watcher. In Telestrada, almost 90% of the increase in the cohesion

metric is due to only three classes. These classes have a large number of complex methods,

constrasting with the other classes of the system. Since the classes on the system are, in

general, very simple (the Number of Operations/Vocabulary Size ratio of the original Te-

lestrada is less than 2), we believe that the large increase in the cohesion metric exhibited

by the refactored system was mainly due to the its small size. In Health Watcher, unlike

the other target systems, the large increase in the cohesion metric was caused mainly by

the exception handling aspects. Three such aspects can be accounted for almost 50% of

the increase in the cohesion metric. It is important to stress that this result does not seem

to be related to the existence of aspects in the system that implement other concerns.

6.4.2 Is exception handling a reusable aspect?

Reuse of handler code is not the main expected benefit of using aspects for modularizing

crosscutting concerns in software systems. Rather, an implementation of concern code

which is localized and consistent is a stronger reason for using aspects. However, some

researchers [91, 114, 117, 164] claim that reuse is often a natural consequence of aspecti-

zation, specially when it comes to exception handling code [114, 117]. In our study, we

found that reusing handlers is much more difficult than is usually advertised [114, 117].

This can be noticed by observing the measures for Concern Diffusion over Operations

in Section 6.3.1. In the target system where the highest amount of reuse of exception

handling code was achieved, a reduction of 48.5% was observed for this metric. Albeit

very positive, this result still contrasts strongly with the findings of Lippert and Lopes,

who claim to have achieved a reduction of more than 85% in the number of exception

handlers in the target of their study.

Handler reuse directly depends on several factors. In our study, the factors that had

the strongest influence on reuse were: (i) the type of exception being handled; (ii) what

the handler does and whether it ends its execution by returning, raising an exception, etc.;

6.4. Discussion 140

1 // ADVICE #1

2 boolean around () : ... {

3 try { return proceed (); }

4 catch (CVSException e) { CVSProviderPlugin.log(e); }

5 return false ;

6 }

7 // ADVICE #2

8 boolean around () : ... {

9 try { return proceed (); }

10 catch (IOException e) { CVSProviderPlugin.log(

11 IStatus .ERROR ,e.getMessage (),e); }

12 return false ;

13 }

14 // ADVICE #3

15 boolean around () : ... {

16 try { proceed () ; }

17 catch (CVSException e){ CVSProviderPlugin.log(e); }

18 return false ;

19 }

Figura 6.1: Three similar advice that cannot be combined.

(iii) the kind of contextual information required, if any; and (iv) what the method that

handles the exception returns and what exceptions appear in its throws clause. Some of

these factors can assist in determining if aspectizing exception handling in a given context

is beneficial or harmful (Section 6.4.3), independently of reuse.

The difficulty of reusing handler code is illustrated by Figure 6.1. The figure shows

three advice that look similar, but cannot be merged into a single one because of small

differences. Advice #1 and #2 cannot be combined because they log different error

messages and handle different exceptions. A possible solution to the second problem

is to implement a single advice that catches a supertype of both CVSException and

IOException. Since the nearest common supertype is Exception, the advice should

re-throw unchecked exceptions to avoid changing the system’s behavior. It is also not

possible to combine advice #1 and #3. The former returns a value that depends on the

call to proceed() (Line 3) while the latter always returns false (Lines 17 and 19). For

the same reasons, advice #2 and #3 cannot be combined.

The value of Concern Diffusion over Operations in the refactored version of Telestrada

was almost 5% higher than in the original one (Section 6.3.1). This happened because,

in some packages, reuse of handler code was virtually inexistent and some classes had

operations with more than one try-catch block. Hence, when exception handling code

in these classes was moved to aspects, each handler had to be put in a separate advice,

contributing to the increase.

6.4. Discussion 141

6.4.3 When to aspectize exception handling

From our experience in refactoring the four target systems, we derived a simple classifi-

cation for exception handling code. This classification aims to help developers to identify

the situations where moving exception handlers to aspects is beneficial and when it is

not worth the effort. We use three categories to classify exceptional code in Java-like

languages: (i) placement of try-catch blocks; (ii) dependency on local variables; and

(iii) flow of control after handler execution. In the rest of this section, we describe these

categories and show how they capture many of the situations that developers are likely

to find when attempting to aspectize exception handling.

Placement of try-catch Blocks. The first category is related to where in the text

of a method a handler block appears. This impacts the pointcut designators employed

to capture the body of the try block and whether refactoring is required in order to

expose join points of interest. If all the statements implementing the normal behavior

of a method, including variable declarations, appear within a try block, we say that the

placement of the containing try-catch block is basic. Aspectizing exception handling for

a basic try-catch block is a simple matter of refactoring handlers and clean-up actions

to advice, softening exceptions as necessary, and defining a pointcut to capture the whole

method execution. No additional refactoring is required and the pointcut definition is

usually quite simple.

If a try-catch block is not basic, it is tangled. It is usually much harder to modularize

exception handling with aspects for tangled try-catch blocks. It is often necessary to

perform some a priori refactoring that makes the try-catch block basic. Furthermore,

depending on the context of the tangling, it may be necessary to define complex pointcuts

to correctly capture the implementation of the try block. If all the statements that

appear outside of a top-level (non-nested) tangled try-catch block can be moved to

its corresponding try block without altering the behavior of the parent method, this

try-catch block is considered basic.

A try-catch block can be further classified as nested or top-level. A nested try-catch

block is contained within a try block, whereas a top-level try-catch block is not. A

nested try-catch block is considered basic if it is the only statement in the try block of

a basic try-catch block.

Dependency on Local Variables. The second category is used to separate exception

handlers in two groups: those that do and those that do not depend on local variables. By

“local variables” we mean variables defined within the containing context. Dependency

on local variables hinders aspectization, as the joint point models of most AO languages

(AspectJ included) cannot capture information stored by these variables. If a handler

reads the value of one or more local variables, moving it to an aspect usually requires the

6.4. Discussion 142

use of the Extract Method refactoring, in order to expose the variables as parameters of a

method. If the handler performs assignments to local variables, other refactorings might

be necessary, depending on whether the variables are primitive or object types. Although

ths discussion focuses on exception handlers, it also applies to clean-up actions.

Flow of Control after Handler Execution. The third category, flow of control after

handler execution, is related to how an exception handler ends its execution. After a

termination exception handler executes its last statement, the statement that textually

follows the corresponding try-catch block is executed. A propagation exception handler

finishes its execution by signaling an exception. In this case, system execution resumes

when some other handler catches the signaled exception. A return exception handler

is, in some ways, similar to a propagation handler. The difference is that, in the former,

system execution resumes from site where the handler’s method was called. Finally, a loop

iteration exception handler occurs when a try-catch block is nested within a loop and

at least one of its catch blocks executes a statement such as break or continue. Flow of

control after handler execution affects several design choices related to the aspectization of

exception handling. For example, propagation handlers can be easily implemented using

after advice, whereas termination and return handlers cannot. Moreover, it is generally

straightforward to define a pointcut that selects a tangled, top-level try-catch block if its

handlers are all propagation or return. However, the same does not apply to termination

handlers.

Using the proposed classification, it is possible to describe several interesting scena-

rios. These scenarios represent recurring situations with which a developer would have

to deal if faced with the task of modularizing exception handling code using aspects. Ta-

ble 6.5 enumerates the ones that we encountered the most frequently while conducting

our study. Each row represents one or more scenarios. To avoid repetition, if a category

is marked more than once in the same row (e.g. “basic” and “tangled” marked), the

row represents more than one scenario and an OR semantics is adopted. For category

Placement of try-catch Block, we assume that the two subcategories (basic/tangled and

nested/top-level) count as different categories. For example, row 1 refers to scenarios

where the placement of try-catch blocks is basic and either nested or top-level. Also,

the catch block does not depend on local variables and can end its execution by termina-

ting, propagating an exception, or returning. It is important to stress that the resulsts in

Table 6.5 are directly dependent on the aspect-oriented language we employed, AspectJ.

The rightmost column of Table 6.5 indicates whether it is beneficial (“yes”) or harmful

(“no”) to modularize exception handling with aspects in the presented scenarios. In

general, we considered aspectization to be beneficial in a given scenario if it has a positive

effect on the values of the metrics of Section 6.2.3, when comparing the original and

aspectized code for instances of the scenario. Moreover, in some rows, the rightmost

6.4. Discussion 143

Placement of Dependency Flow of control after Should be
try-catch blocks on local vars. handler execution aspectized?

basic tangled nested top-level yes no term. prop. ret. loop

1 ✷ ✷ ✷ ✷ ✷ ✷ ✷ Yes.
2 ✷ ✷ ✷ ✷ ✷ Yes.
3 ✷ ✷ ✷ ✷ Depends.
4 ✷ ✷ ✷ ✷ ✷ No.
5 ✷ ✷ ✷ ✷ Depends.
6 ✷ ✷ ✷ ✷ ✷ ✷ Depends.
7 ✷ ✷ ✷ ✷ ✷ ✷ No.
8 ✷ ✷ ✷ ✷ ✷ ✷ No.

Tabela 6.5: Some exception handling scenarios according to the proposed classification

Reason

3 Aspectization is beneficial in this scenario if: (i) the code within the try block can be selected by a pointcut
without the need for additional refactoring; or (ii) it is necessary to use Extract Method to expose a joint
point that AspectJ can capture but the new method makes sense by itself, i.e., it could have been created by
the developers of the system.

4 & 7 In our experience, combinations of tangling and nesting, and nesting and access to local variables usually
result in complex code that needs to be refactored before it can be aspectized. In many cases more than one
new operation needs to be created, negatively affecting the cohesion and conciseness of the code.

5 If the outer try-catch blocks do not have handlers for the exception caught by the innermost handler
nor to the exceptions signaled by it, aspectization is beneficial because the advice implementing the
handler can be associated to the execution of the whole method.

6 Aspectization is only beneficial if: (i) the handler accesses just a few variables (< 4) and only for reading;
and (ii) the refactoring employed to expose these variables creates a method that makes sense by itself.

8 Loop iteration handlers are usually too strongly coupled with the context where they appear.

Tabela 6.6: Justification for the “no” and “depends” scenarios of Table 6.5.

column column indicates that the choice of aspectizing exception handling in a given

scenario depends on factors that are not taken into account by the proposed classification.

These cases are marked as “depends”. We have chosen not to include these factors in

the classification because they are very specific and subjective, and to keep it simple.

Table 6.6 justifies the “no” and “depends” scenarios.

6.4.4 Exception handling and other aspects

This section analyzes the scalability of AOP when there are interactions between the

implementation of exception handling and other crosscutting behaviors. The idea is to

examine how easy it is to aspectize such crosscutting concerns in the presence of excep-

tion handling aspects. Our investigation was carried out mainly in the context of the

Health Watcher system. However, as discussed in the previous sections and evidenced

by the measurements (Section 6.3), this system has a simple exceptional behavior, when

compared to the other three target systems. To obtain a more comprehensive perspective

of the possible difficulties caused by interactions between exception handling and other

6.4. Discussion 144

aspects, we have also refactored part of the AspectJ version of the CVS Plugin, where

the exception handling concern was already modularized with aspects. We have chosen

this system, instead of the other two, because it was the case study that exhibited the

most complex exception handling strategies. In the CVS Plugin, we have opted for as-

pectizing security (access control) and distribution (remote access through HTTP and

SOCKS5 proxies) concerns, which would otherwise be naturally tangled and scattered

through several classes. We selected these concerns because they are well-known as tradi-

tional crosscutting concerns in the literature, and tend to have a broadly-scoped influence

in the system. More importantly, we have detected a number of different relationships

between exception handling and these crosscutting concerns. These relationships were

not captured in the Health Watcher system, which generally exhibited a loose coupling

between the exception handling aspects and aspects implementing other concerns.

We have observed different categories of interactions involving the exception handling

code and other crosscutting behaviors. They range from (i) simple invocations linking ex-

ceptional behaviors and methods relative to the other concern to (ii) the sharing of one or

more module members by two different concerns. The set of interactions analyzed in this

study was classified into 5 categories, which are described in the following. These catego-

ries involve either class-level interlacing or method-level interlacing. Our categorization

is a specialization of interaction categories defined in a previous study where we have

analyzed design pattern compositions [19]. Here we refine the previous categorization by

also taking exception handling structures into account, namely protected regions (try {

}), handlers (catch (E) { }), and clean-up actions (finally { }). To illustrate these

categories, we use Figure 6.2. In the figure, Concern 1 (C1) corresponds to exception

handling and Concern 2 (C2) is a second concern. In Health Watcher, C2 can be part

of the concurrency control, distribution, or persistence concerns, whereas in the Eclipse

CVS plugin it is part of the security or distribution concerns.

Class-level Interlacing. The first category is concerned with class-level interlacing of

exceptional behavior and other crosscutting behaviors. In this case, the implementati-

ons concerns C1 and C2 have one class in common. However, each concern encompasses

disjoint sets of methods and attributes in the same class. As illustrated in the left-hand

side of Figure 6.2, C1 and C2 have a coinciding participant class, but there is no method

or attribute pertaining to the two concerns. This interaction category did not bring any

kind of problem while aspectizing elements of C2. Hence we can say that AspectJ has

scaled up well in scenarios involving class-level interlacing.

Method-level Interlacing. Four categories involve some form of method-level inter-

lacing: unprotected-region level, protected-region level, handler level, and cleanup-action

level. Differently from class-level interlacing, all these categories have a similar characte-

ristic: the implementations of concerns C1 and C2 have one or more methods in common.

6.4. Discussion 145

Figura 6.2: Aspect interaction categories.

Hence exception handling code is interlaced at the method level with elements of C2.

In the right-hand side of Figure 6.2, method x() has code pertaining both C1 and C2.

In most of the situations in Health Watcher and the CVS plugin involved, interaction

between concerns C1 and C2 consisted of calls to methods from C2 by code pertaining C1.

The distinguishing feature of the four categories of method-level interlacing is where such

a call is placed in terms of the exception handling elements.

The right-hand side of Figure 6.2 depicts all the 4 types of interactions encountered in

the two systems. The interaction types influenced the way in which the AspectJ code of

the two systems was refactored to expose the appropriate join points to the aspects of C2.

The aspectization of crosscutting behaviors relative to C2 was straightforward when the

situation exhibited interlacing at the unprotected- or protected-region level. The reason

was that there was no explicit link between the exception handling aspects and the C2

code being aspectized. In Health Watcher, all the instances of method-level interlacing

fit into one of these two categories. More explicit aspect interactions appear in methods

with catch- and finally-level interlacings. These cases complicated the aspectization of

distribution and security in the CVS Plugin: the advice in the exception handling aspects,

which implemented handlers and clean-up actions, also contained calls to C2 methods that

were being moved to aspects. In this case, we needed to change the implementation of

the handler advice in order to (i) use reflective features of AspectJ to access the elements

of C2, or (ii) use the execution of handler advice as join points of interest in poincuts of

the C2-specific aspects.

The situation becomes more complicated when a handler advice depends on local

variables (Section 6.4.3) that are initialized through calls to C2-specific methods, such

as the z variable in Figure 6.2. After refactoring, exception handling aspects would be

6.5. Related Work 146

advising such a method call (C2.a()) in order to save the value being assigned to z in

an aspect variable. However, with the aspectization of C2, the call C2.a() would either

be moved to an aspect related to C2 or be advised by such aspect. This would require

the exception handling aspect to take this C2-specific aspect into account, creating a

dependency between the two aspects.

6.4.5 Limitations of this Study

This study does not attempt to assess how different refactoring strategies for moving

exception handlers to aspects affect the results. Furthermore, only one team of developers

was responsible for conducting the study. More general results could be obtained by

employing different teams of developers and performing measurements on the refactored

systems produced by each team. Another limitation is that we have not evaluated how

aspects affect execution time in the target systems.

Our study focuses on a single AO language, namely, AspectJ. Although many ideas

presented here also apply to other AO languages, some surely do not. More powerful join

point models would make it possible to deal more appropriately with some complicated

cases, such as those where handler blocks are tangled or nested, thus affecting the study

results. For example, using the loop pointcut designator of the LoopsAJ language [93]

it is possible to associate handlers to exceptions raised and not handled within loops.

Moreover, one of the extensions to AspectJ proposed by the developers of the abc AspectJ

compiler [7] allows the selection of throw statements as join points. In some situations,

this feature makes it possible to easily aspectize termination handlers (Section 6.4.3) that

are nested or tangled in the original code (scenarions 3, 6, and 7 of Table 6.5).

Arguably, the employed metrics suite is a limitation of this work. There are a number

of other existing metrics and other modularity dimensions that could be exploited in our

study. We have to decided to focus on the metrics described in Section 6.2.3 because they

have already been proved to be effective quality indicators in several case studies [19, 32,

79, 84]. In fact, despite the well-known limitations of these metrics, they complement

each other and are very useful when analyzed together. In addition, there is no way to

explore all the possible measures in a single study.

6.5 Related Work

Even though introductory texts [106, 114] often cite exception handling as an example of

the (potential) usefulness of AOP, only a few works attempt to evaluate the suitability

of this new paradigm to modularize exception handling code. The study of Lipert and

Lopes [117] employed an old version of AspectJ to refactor exception handling code in a

6.5. Related Work 147

large OO framework, called JWAM, to aspects. The goal of this study was to assess the

usefulness of aspects for separating exception handling code from the normal application

code. The authors presented their findings in terms of a qualitative evaluation. Quantita-

tive evaluation consisted solely of counting LOC. They found that the use of aspects for

modularizing exception detection and handling in the aforementioned framework brought

several benefits, for example, better reuse, less interference in the program texts, and a

decrease in the number of LOC.

The Lippert and Lopes study was a important initial evaluation of the applicability

of AspectJ in particular and aspects in general for solving a real software development

problem. However, it has some shortcomings that hinder its results to be extrapolated

to the development of real-life software systems. First, the target of the study was a

system where exception handling is generic (not application-specific). However, exception

handling is an application-specific error recovery technique [5]. In other words, the “real”

exception handling would be implemented by systems using JWAM as an infrastructure

and not by the framework itself. Most of the handlers in JWAM implemented policies

such as “log and ignore the exception”. This helps explaining the vast economy in LOC

that was achieved by using AOP. Second, the qualitative assessment was performed in

terms of quality attributes that are not well-understood, such as (un)pluggability and

support for incremental development. The authors did not evaluate some attributes that

are more fundamental and well-understood in the Software Engineering literature, such

as coupling and cohesion. Third, quantitative evaluation was performed only in terms of

number of LOC. Although the number of LOC may be relevant if analyzed together with

other metrics, its use in isolation is usually the target of severe criticisms.

An initial assessment of the use of AspectJ for modularizing exception handling in

software systems with non-trivial exception handling code has appeared elsewhere [32].

This previous assessment was based solely on a small part of Telestrada (+- 2000 LOC).

Furthermore, it did not attempt identify the situations where modularizing exception

handling with aspects is beneficial or harmful. Also, it did not investigate how exception

handling aspects interact with aspects implementing other concerns.

One of the first studies of the applicability of AOP for developing dependable systems

has been conducted by Kienzle and Guerraoui [107]. The study consisted of using AOP

to separate concurrency control and failure management concerns from other parts of dis-

tributed applications. It employed AspectJ and transactions as a representative of AOP

languages and a fundamental paradigm to handle concurrency and failures, respectively.

This work is similar to ours in its overall goal, namely, to assess the benefits of using

aspects to modularize error recovery code. However, there are some fundamental diffe-

rences: (i) we use exception handling to deal with errors, instead of transactions; (ii) we

substantiate our conclusions with measurements based on a metrics suite for AO software,

6.6. Concluding Remarks 148

instead of examples; (iii) we do not address concurrency; (iv) our study is more general

and based on a varied set of applications with diverse error handling strategies.

Soares and his colleagues [164] employed AspectJ to separate persistence and distribu-

tion concerns from the functional code of a health care application written in Java. The

authors found that, although AspectJ presents some limitations, it helps in modularizing

the transactional execution of methods in many situations that occur in real systems.

Furthermore, they employed aspects to modularize part of the exception handling code

of an application, but did not attempt to assess the suitability of AspectJ for this task.

An early position paper by Fradet and Südolt [69] discusses the features that an

AO language for detecting errors in numeric computations should provide. It proposes

pointcut designators that work as global invariants whose violations trigger the execution

of recovery code (advice). This work is complementary to ours because it focuses on error

detection while ours emphasizes error recovery.

6.6 Concluding Remarks

In this paper, we presented an in-depth study to assess if AOP improves the quality of

the application code when employed to modularize non-trivial exception handling. We

found that, although the use of AOP to separate exception handling code and normal

application code can be beneficial, that depends on a combination of several factors. As

discussed in the previous sections, if exception handling code in an application is non-

uniform, strongly context-dependent, or too complex, aspectization can bring more harm

than good. We believe that effective use of AOP requires a priori planning and must

be incorporated in the software development process. For exception handling, ad-hoc

aspectization is beneficial only in simple scenarios. The main contributions of this work

are: (i) a substantial improvement, based on experience acquired from refactoring four

different applications, to the existing body of knowledge about the effects of AOP on

exception handling code; (ii) a set of scenarios that can be used by developers to better

understand when it is beneficial to aspectize exception handling and when it is not; and

(iii) an initial assessment of the effects of aspect interaction when exception handling gets

in the mix.

As mentioned in Section 6.1, this work does not attempt to measure the effects of

aspectizing exception detection code. We believe that investigating if AOP can be em-

ployed to modularize error detection is an exciting direction for future work. We also

intend to study the feasibility of devising a tool that (semi-)automatically detects and

refactors exception handling code that is beneficial to aspectize.

Empirical studies about interactions between aspects have only now started to sur-

face [19]. In the specific case of interactions between exception handling and other aspects,

6.6. Concluding Remarks 149

the presented empirical study provides an important starting point, but much remains

to be done. For example, our study does not assess how handler and clean-up method-

level interlacing (Section 6.4.4) affect the employed metrics. Also, the classification of

Section 6.4.3 does not apply to systems where other concerns are modularized as aspects

a priori.

6.7. Resumo do Caṕıtulo 6 150

6.7 Resumo do Caṕıtulo 6

Este caṕıtulo apresentou um estudo em profundidade com o objetivo de avaliar os be-

nef́ıcios trazidos pelo uso de AOP para modularizar o comportamento excepcional de

sistemas de software, com uma ênfase especial em sistemas baseados em componentes.

De acordo com os resultados desse estudo, o uso de AOP para separar os comporta-

mentos normal e excepcional de um sistema é benéfico em diversas situações comuns no

desenvolvimento de software, mas isso depende de uma combinação de diversos fatores.

Quando o código de tratamento de exceções não é uniforme, tem um acoplamento forte

com o contexto onde aparece ou envolve pontos de junção que a linguagem orientada a

aspectos empregada não consegue capturar diretamente, aspectização ad hoc pode não

ser posśıvel ou piorar a qualidade do sistema.

Em especial, a coesão de todos os sistemas-alvo do estudo, conforme medida pela

métrica que empregamos, piorou depois que tratamento de exceções foi modularizado

com aspectos. Isso se deveu em grande parte à necessidade de, em alguns casos, modificar

o código original antes de extrair o tratamento de exceções para aspectos, principalmente

nos casos listados acima. Além disso, o grau de reuso de código de tratamento de exceções

foi baixo. Embora esse resultado tenha sido esperado, tendo em vista a natureza espećıfica

de aplicação do código de tratamento de exceções [5], ele contradiz os resultados de um

estudo anterior bastante conhecido [117]. Neste último, uma das consequências do uso

de AOP foi uma grande economia de linhas de código devido ao reuso de tratadores.

Finalmente, o estudo mostrou que interesses transversais que afetam uma mesma parte

do código podem dificultar a aspectização. Isso é evidenciado nos casos de entrelaçamento

no ńıvel do método envolvendo blocos tratadores e ações de limpeza.

O estudo também propôs uma classificação para código de tratamento de exceções

com base em alguns dos fatores que tiveram maior influência sobre a modularização com

aspectos. Essa classificação e o conjunto de cenários derivados dela são um importante

primeiro passo na direção de um catálogo para auxiliar desenvolvedores a decidir quando

aspectizar o comportamento excepcional de um sistema. O próximo caṕıtulo expande a

classificação proposta e descreve em detalhes um catálogo de cenários que inclui diversas

situações que não são contemplados por este caṕıtulo. Esse catálogo visa fornecer o ferra-

mental necessário para a construção de componentes de software onde os comportamentos

normal e excepcional são devidamente separados.

Caṕıtulo 7

Extração de Tratamento de Exceções

para Aspectos: Um Catálogo de

Práticas

A partir dos resultados do estudo apresentado no Caṕıtulo 6, este caṕıtulo propõe uma

classificação para código de tratamento de exceções. Essa classificação leva em consi-

deração os fatores que, no estudo que realizamos, tiveram maior influência sobre a ex-

tração do comportamento excepcional de um sistema para aspectos. Adicionalmente,

propomos um catálogo de cenários que consiste de combinações desses fatores. O objetivo

desse conjunto de cenários é guiar a tarefa de modularizar tratamento de exceções usando

aspectos, tanto para sistemas já existentes quanto para sistemas novos, de modo a auxiliar

na construção de componentes de software que são mais fáceis de manter, entend́ıveis e

simples. Para atingir esse fim, o catálogo indica em quais cenários o uso de AOP melhora

a qualidade do sistema e em quais piora.

Consideramos o uso de aspectos benéfico em determinado cenário quando: (i) o código

normal, depois de ter os tratadores de exceções extráıdos para aspectos, não exibe “maus

cheiros” [68]; (ii) pouco ou nenhum redesenho do sistema a priori é necessário; (iii) a

solução empregada para extrair os tratadores para aspectos é genérica, no sentido de que

pode ser usada em todas os quase todas as instâncias do cenário; e (iv) o código extra

introduzido devido ao uso de aspectos não é muito grande, ou seja, idealmente, para cada

bloco try-catch extráıdo para um aspecto, no máximo um novo advice deve ser criado.

Adicionalmente, considerando os fatores que influenciam a “aspectização”, elaboramos

um sistema de pontuação simples para decidir mais objetivamente se um dado cenário é

benéfico ou prjudicial.

Este caṕıtulo se refere à Seção 1.4.3 do Caṕıtulo 1. O artigo que este caṕıtulo contém

foi submetido para a IEEE International Conference on Software Maintenance 2007. Além

151

152

disso, uma versão preliminar aparece na série de relatórios técnicos do IC-UNICAMP [33].

7.1. Introduction 153

Extracting Error Handling to Aspects: A Cookbook

Fernando Castor Filho1 Alessandro Garcia2

Cećılia Mary F. Rubira1

1Institute of Computing

State University of Campinas

Campinas - SP - Brasil

{fernando,cmrubira}@ic.unicamp.br

2Computing Department

Lancaster University

Lancaster - UK

garciaa@comp.lancs.ac.uk

7.1 Introduction

Exception handling [80] mechanisms were conceived as a means to improve modularity

and maintainability of programs that have to deal with exceptional situations [51]. Ide-

ally, an exception handling mechanism should make it possible to write programs where:

(i) the code for error detection, error handling, and the normal behavior are lexically

separate so that they can be modified independently [142]; (ii) the impact of the code

responsible for error handling in the overall system complexity is minimized [146]; and

(iii) an initial version that does little recovery can be evolved to one which uses sophisti-

cated recovery techniques without a change in the structure of the system [142]. The use

of exception handling in the construction of several real-world systems and its inclusion

in many mainstream programming languages, such as Java, Ada, and C++, attest its

importance to the current practice of large-scale software development.

In spite of the pivotal role of modular error handling in the overall system quality,

there is not much implementation/design guidance in the literature on how to use excep-

tion handling mechanisms to develop error handling code that is modular. Most of the

software development methodologies used in practice pay little attention to the design of

a system’s exceptional behavior. Furthermore, most of the good programming and design

cookbooks and catalogues, like the refactoring [68] and design pattern [70] catalogues,

either concentrate on the system’s normal behavior or are too generic to be successfully

applied to modular exception handling.

7.2. Background 154

The popularization of new techniques for separation of concerns, such as aspect-

oriented programming (AOP) [106], further aggravates this problem as new decompositi-

ons of the system’s exceptional behavior become possible. Although it is usually assumed

that the exceptional behavior of a system is a crosscutting concern that can be better

modularized by the use of AOP [114, 117], the ad hoc use of this new paradigm is so-

metimes detrimental to the quality of a system [24, 85]. If developers do not receive the

proper guidance, software systems whose exceptional behavior is refactored to aspects

can manifest a number of problems that stem from poorly designed or implemented er-

ror handling code. Examples include limited reusability [24], swallowed exceptions [125],

incorrect handler binding [24], and unforeseen control flow [150].

In this paper, we address this problem by providing design guidance regarding the use

of AOP to modularize exception handling. We propose a classification for error handling

code based on the factors that we found out have more influence on the task of refactoring

exception handling to aspects. We use the proposed classification to devise a set of

scenarios that comprise combinations of these factors and indicate whether aspectization

is beneficial or harmful in each of these scenarios. Our goal is twofold: (i) to assist

developers of new systems to modularize the exceptional behavior with aspects, so that

they can focus on the beneficial scenarios and avoid the harmful ones; and (ii) to assist

maintainers of existing systems in the task of refactoring error handling code to aspects

by showing when aspectization is worth the effort and when it is not.

This paper is organized as follows. Section 7.2 provides background on exception

handling, introduces the AOP language we have used, AspectJ [114], and discusses the

interplay between aspects and exceptions. Section 7.3 presents the proposed classification

for error handling code, whereas Section 7.4 introduces a catalog of scenarios that can

be derived from the interactions among the elements of the classification. Section 7.5

presents an evaluation of our approach. Section 7.6 reviews some related work. The last

section rounds the paper and points directions for future work.

7.2 Background

7.2.1 Exception Handling

Exception handling [52] is a technique for structuring the error recovery code of a system

so that errors can be more easily detected, signaled, and handled. Many mainstream

programming languages, such as Java, Ada, C++, and C#, implement exception handling

mechanisms. These languages provide constructs to signal the occurrence of an error (raise

or throw an exception) and to associate a set of recovery measures with the error, in order

to remedy the problem (handle the exception).

7.2. Background 155

When a part of a program raises an exception, the underlying exception handling

mechanism is responsible for changing the normal control flow of the computation within

the program to its exceptional control flow. Therefore, raising an exception results in

the interruption of the normal activity of the component, followed by the search for an

appropriate exception handler (or simply handler) to deal with the signaled exception.

After the execution of an exception handler, control returns to the code that immediately

follows the handler.

Exception handling contexts (EHCs) are regions in a program where the same excep-

tions are always treated in the same way. An EHC can have a set of associated handlers,

among which a handler is chosen when exceptions are raised within the context. Additio-

nally, a context may have an associated clean-up action, which is executed independently

of exceptions being raised. In Java, try blocks define exception handling contexts, catch

blocks define handlers, and finally blocks define clean-up actions.

7.2.2 AspectJ Basics

AspectJ [114] is a general purpose aspect-oriented extension to Java. It extends Java

with constructs for picking specific points in the object call graph, called join points,

and executing pieces of code, called advice, when these points are reached. A pointcut

picks out certain join points and contextual information at those join points. AspectJ

includes operators for the definition of pointcuts formed by the combination of various

join points. Examples of join points include method call (the caller’s context), method

execution (callee ’s context), and field access. Line 2 of Figure 7.1 declares a pointcut,

named pch, that selects calls to the constructor of class C.

Advice are pieces of code executed before, after, or around a selected a join point. In

the latter case, the advice may alter the flow of control of the application and replace the

code that would be otherwise executed in the selected join point. Lines 3-6 declare an

advice that is executed after the join points selected by pch when their execution ends by

throwing E1 (Line 3). The advice handlers the thrown exception (accessible in the advice

through variable e1) by throwing a new exception, an instance of E2.

Aspects are units of modularity for crosscutting concerns. They are similar to classes,

but may also include the AspectJ-specific elements. Figure 7.1 defines an aspect named

ConnectionPoolHandler.

7.2. Background 156

1 public aspect A {

2 pointcut pch () : execution (* C.new (..));

3 after () throwing (E1 e1) throws E2 : pch () {

4 throw new E2(e1.getMessage ());

5 }

6 ...

7 }

Figura 7.1: A simple exception handling aspect.

7.2.3 AOP and Exceptions

The ideas we present in this paper are derived from lessons learned from several systena-

tuc studies we have conducted to assess the benefits of modularizing various crosscutting

concerns with aspects [24, 73, 85, 111]. In one of them, we have specifically targeted the

aspectization of exception handling code [24]. This study consisted of refactoring some

existing applications to move the code implementing heterogeneous error handling stra-

tegies to separate aspects. We have performed quantitative and qualitative assessments

of four systems, three written in Java and one in AspectJ. These systems were developed

by third parties from industry and academia.

Our study has focused on the handling of exceptions. We have moved try-catch-finally

blocks in the four applications to aspects. Handlers in the aspects were implemented using

after and around advice. Whenever possible, we have used after advice, since they are

simpler. Clean-up actions were implemented exclusively as after advice. New advice were

created on a per-try-block basis. We employed pointcuts to select the code that th-

rows exception. Method signatures (throws clauses) and the raising of exceptions (throw

statements) were not modified because they are part of the error detection concern. In

several occasions, we have modified the implementation of a method in order to expose

join points that AspectJ can select more directly or contextual information required by

exception handlers, for example, the values of local variables. We restricted the “allowed”

modifications to well-known refactorings [68] and their aspect-oriented counterparts [135]

and did not use refactorings that modified more than one class.

One of the most important lessons we learned from the aforementioned study was that,

although the use of AOP to separate exception handling from base code can be beneficial,

that depends on a combination of several factors. In many common situations, in order

to evolve a system to use aspects to implement error handling, some a priori redesign

is necessary. If the exception handling code in an application is non-uniform, strongly

context-dependent, or too complex, ad hoc aspectization might not be possible or lead

to code which: (i) worsens the overall quality of the system; (ii) does not represent the

original design of the system; and/or (iii) exhibits “bad smells” [68], such as temporary

field and middle man.

7.3. Classification for Exception Handling Code 157

7.3 Classification for Exception Handling Code

The existence of many situations where aspectization is not a good idea motivated us

to try to understand precisely what factors make it easier or harder to modularize error

handling with aspects. In this paper we propose a simple classification for exception

handling code. This classification emphasizes factors that have the strongest impact on

the aspectization of exception handling.

We classify exception handling code in Java-like languages according to the following

categories: (i) tangling of try-catch blocks; (ii) nesting of try-catch blocks; (iii) depen-

dency of exception handlers on local variables; (iv) placement of exception-throwing code;

and (v) flow of control after handler execution. In the rest of this section we describe

each of these categories.

Tangling of try-catch Blocks. The first category describes where in the body of

a method a try-catch block appears. We consider a try-catch block tangled if it is

textually preceded or followed by a statement in the body of the method where it appears.

Declarations and statements that appear textually before a try-catch block make it

tangled by prefix. Accordingly, statements that appear after a try-catch block make it

tangled by suffix. A try-catch block appearing within a loop is considered tangled by

prefix and suffix, independently of the placement of other statements. A try-catch block

whose try block surrounds the whole method body is considered untangled. Figure 7.2(a)

presents an untangled try-catch block. The shaded try-catch block in Figure 7.2(b)

is tangled by suffix because it is followed by a call to n(). The try-catch block in

Figure 7.2(c) is tangled by prefix, because the declaration of variable i precedes it.

Tangling of try-catch blocks impacts the selection of an exception handling context

as a join point of interest. It also might make it difficult for an aspect to simulate the flow

of control after handler execution of the original implementation. It is important to stress

that, in our experience, tangling by prefix try-catch has no impact on aspectization.

Hence, hereafter, whenever we say that a try-catch block is tangled, we mean that it is

tangled by suffix.

Nesting of try-catch Blocks. A try-catch block can be also classified as nested or

non-nested. A nested try-catch block is one that is contained within a try block. The

shaded code snippet of Figure 7.2(d) is an example of nested try-catch block. Nesting

of try-catch blocks can make it difficult to understand the flow of exceptions in a given

context. Moreover, implementing nested try-catch blocks as advice may require these

advice to be ordered, so that they mimic the behavior of the original code. This is

necessary if some of these advice are associated with the same join points. We do not

consider nested a try-catch block that appears within a catch or finally block, as such

a try-catch block is naturally part of the system’s exceptional behavior. The shaded

7.3. Classification for Exception Handling Code 158

class C0 {
void m(){

try{...}

catch(E e){...}

} //m()

} //C0

class C1 {
void m(){

try{...}

catch(E e){...}

n();

} //m()

} //C1

class C2 {
void m(){
int i = 0;

try{...}

catch(E e){...}

} //m()

} //C2

class C3 {
void m(){
try{

try{...}

catch(E1){...}

}catch(E2 e){...}
} //m()

} //C3

(a) (b) (c) (d)

class C4 {
void m(){
try{...}
catch(E1 e){

try{...}

catch(E2){...}

} //catch

} //m()

} //C4

class C5 {
void m(){
try{

n(); //throws E

p(); // throws E

}catch(E e){...}
q();

} //m()

} //C5()

class C6 {
void m(){
int x = 0;

try{ x = n();//throws E

}catch(E e){ p(x); }

} // m()

} //C6

class C7 {
void m(){
int x = 0;

try{ x = n(); //throws E

}catch(E e){ x = p(); }

q(x);

} // m()

} //C7

(e) (f) (g) (h)

class C8 {
void m(){
try{ n();//throws E

}catch(E e){

System.out.println(e);

}

p();

} //m()

} //C8

class C9 {
void m() throws E2{
try{ n();//throws E1

}catch(E1 e){

throw new E2(e);

}

} // m()

} //C9

class C10 {
void m(){
try{ n();//throws E

}catch(E e){

return;

}

} // m()

} //C10

class C11 {
void m(){
for(int i=0;i++;i<10){
try{ n();//throws E

}catch(E e){break;}

} //for

} //m()

} //C11

(i) (j) (k) (l)

Figura 7.2: Examples of the categories of the proposed classification for error handling
code.

try-catch block in Figure 7.2(e) is not nested for the purposes of aspectizing error

handling. Instead, it is considered part of the outer catch block.

Placement of Exception-Throwing Code. An exception-throwing statement is a

statement within a try block that can throw exceptions that some handler wihin the

same method catches. Exception-throwing code (ETC) is the set of exception throwing-

statements within the same try block. An exception-throwing statement is terminal if it

is not followed by any statements in the try block. When referring to a try-catch block,

we consider its ETC terminal if all of its exception-throwing statements are terminal. In

the general case, terminal ETC includes a single terminal exception-throwing statement.

However, there are special cases such as when a try-catch has multiple if statements. In

Figure 7.2(f), the call to method n(), which throws exception E, is non-terminal because

it is followed by a call to p(). On the other hand, the call to p() is terminal because it

is the last statement of the try block. This factor influences aspectization because it can

make it difficult for aspects to simulate the control flow of the original program.

7.3. Classification for Exception Handling Code 159

Dependency of Exception Handlers on Local Variables. This category classifies

exception handlers in two groups: those that do and those that do not depend on local

variables. By “local variables” we mean variables defined within the containing block of

a given try-catch block. Dependency on local variables hinders aspectization, as the

joint point models of the most popular AO languages (AspectJ included) cannot capture

information stored by these variables. If a handler reads the value of one or more local

variables, we say that it is context-dependent. Moving such a handler to an aspect

often requires the use of the Extract Method refactoring [68] to expose the variables as

parameters of a method. Often, it is possible to avoid such refactoring by selecting the

join point where the value is generated (e.g. the return value of a method) and saving it

for later retrieval during errror handling (e.g. in a table in the error handling aspect). In

Figure 7.2(g), the catch block reads the value of local variable x. If a handler performs

assignments to local variables, we call it a context-affecting handler. In this case, more

radical refactoring may be necessary. The resulting code almost always exhibits bad smells

such as “Temporary Field” [68]. The handler in Figure 7.2(h) performs an assignment to

local variable x.

Flow of Control After Handler Execution. The fifth category describes how a

catch block ends its execution. After the execution of a masking handler, control passes

to the statement that textually follows the corresponding try-catch block. Figure 7.2(i)

presents a masking handler. After its execution, method p() is invoked. A propagation

handler finishes its execution by throwing an exception, as shown in Figure 7.2(j). In this

case, control is transferred to the nearest handler that catches the exception. A return

exception handler ends its execution with a return statement, as shown in Figure 7.2(k).

After the handler returns, system execution resumes from the site where the handler’s

method was called. Finally, a loop iteration handler is declared inside a loop and executes

a statement such as break or continue. Figure 7.2(l) presents an example that ends with

a break statement.

Flow of control after handler execution affects several design choices related to the

aspectization of exception handling. For example, propagation handlers can be easily

implemented using after advice, whereas masking and return handlers have to be imple-

mented using around advice, as they stop the propagation of the exceptions they catch.

Moreover, it is generally straightforward to simulate the flow of control of the original

program (i.e. the program before error handling is aspectized) for a tangled try-catch

block if its handlers are all propagation or return. These types of handlers ignore the

code that follows the try-catch block, and thus the fact that it is tangled. However, the

same does not apply to masking handlers.

7.4. A Catalog of Exception Handling Scenarios 160

7.4 A Catalog of Exception Handling Scenarios

Using the classification we presented in the previous section, it is possible to describe

several exception handling scenarios representing recurring situations in software deve-

lopment, in the specific context of Java-like languages. We derive these scenarios by

analyzing combinations of the factors of the proposed classification. Table 7.1 consoli-

dates the most frequent ones we have identified. Each scenario is named after its most

distinctive features. For example, the first scenario of Table 7.1 is simply named “Un-

tangled handlers”, because it deals with untangled try-catch blocks. The second one

is named “Tangled, Non-masking handlers”, because it refers specifically to try-catch

blocks that include propagation or return handlers. To avoid repetition, if a category

is marked more than once in the same row (e.g. tangled and untangled marked), the

row represents more than one scenario and an OR semantics is adopted. For simplicity,

hereafter we use the term “scenario” to refer to all the scenarios that each row represents.

For example, scenario Untangled Handler describes situations where a try-catch block

is untangled, independently of nesting and placement of ETC. Also, the corresponding

catch block does not depend on local variables and can end its execution by masking,

propagating an exception, or returning.

7
.4

.
A

C
a
ta

lo
g

o
f
E

x
cep

tio
n

H
a
n
d
lin

g
S
cen

a
rio

s
161

Scenario Tangled Nested Placement of Handler depends Flow of control Score Should

try-catch try-catch exception- on local variables after handler extract?

blocks blocks throwing code execution

yes no yes no non-t. term. read write no mask. prop. ret. loop

Untangled X X X X X X X X X 0-1 Yes.
Handler
Tangled, X X X X X X X 0 Yes.
Non-Mask.
Handler
Nested, X X X X X X X 1 Yes.
Non-Mask.
Handler
Tangled X X X X X 0 Yes.
Handler,
Term. ETC
Nested X X X X X 1 Yes.
Handler,
Term. ETC
Block X X X X X 2 Depends.
Handler,
Nested X X X X X 3 Depends.
Block
Handler
Context- X X X X X X X X X 2-4 Depends.
Dependent
Handler
Nested, X X X X X X X X X 3-5 No.
Context-
Dependent
Handler
Context- X X X X X X X X X X 3-6 No.
Affecting
Handler
Loop Iter. X X X X X X X X X 5-9 No.
Handler

Tabela 7.1: Exception handling scenarios according to the proposed classification

7.4. A Catalog of Exception Handling Scenarios 162

Score Description Factors

1 Hinders aspectization in a general and non-limiting way. - Nesting of try blocks
2 Some priori refactoring or a considerable implementation - Combinations of non-term. ETC, masking handler,

overhead are usually necessary. However, the process and tangled try-catch block
involves well-known refactorings and results in a generic
solution that may or may not exhibit bad smells. - Handler that reads from local variables

3 Refactoring is almost always necessary and the solutions - Handlers that write to local variables
that apply to each instance of the scenario are usually - Loop iteration handlers
context-dependent.

Tabela 7.2: Scores for the factors that hinder the aspectization of error handling.

The rightmost column of Table 7.1 indicates whether it is beneficial (“Yes”) or harmful

(“No”) to modularize exception handling with aspects in a given scenario. In some rows,

it indicates that the choice of aspectizing exception handling in a given scenario depends

on factors that are not taken into account by the proposed classification. These cases

are marked as “Depends”. We considered aspectization to be beneficial in a scenario

if: (i) the code, after aspectization, does not generally exhibit bad smells; (ii) little or

no a priori redesign is necessary; (iii) the solution we used to extract the handlers to

aspects applies to most or all of the instances of the scenario; and (iv) the implementation

overhead introduced by aspectization is not very large, i.e., ideally, for each try-catch

block extracted to an aspect, at most one new advice should be created.

Additionally, considering the various factors that influence aspectization, we devised

a simple scoring system to more objectively judge whether a given scenario is beneficial

or harmful. The scores for each scenario appear in the column labeled “Score”. They can

be obtained by summing the score associated to each factor that is (potentially) present

in each scenario. Table 7.2 provides a key for calculating the scores. Basically, a score

between 0 and 1 indicates a “Yes” scenario, a score between 2 and 3 is a “Depends”

scenario, and a score of 4+ is a “No” scenario. For example, scenario Untangled Handler

has a score that ranges between 0 and 1. Its only complicating factor is nesting, whose

score is 1, and even then it does not appear in all the instances of the scenario (hence

the range, instead of a fixed value). In the rest of this section we explain each scenario of

Table 7.1.

Untangled Handler. Since the try-catch block is not tangled, it is possible to select the

entire execution of the method as the join point of interest. Moreover, it is straightforward

to extract the handlers to an aspect. It does not matter whether the exception-throwing

code is terminal or not. Flow of control after handler execution is not a problem, as long

as it is not loop iteration. If there are nested try-catch blocks, it may be necessary to

rank the handler advice (i.e. advice implementing exception handlers after aspectization

has taken place) if some of them are associated with the same join points.

Tangled, Non-Masking Handler. In this scenario, the try-catch block is tangled but

7.4. A Catalog of Exception Handling Scenarios 163

it is possible to specify a pointcut that captures the execution of the whole method and

associate the handler advice with it. In the original code, the handler ends its execution

by either returning or throwing an exception, thus ignoring whatever comes after the

try-catch block. Hence, the tangling does not matter because the code that textually

follows the try-catch block is never executed when an exception is thrown from the try

block. The exception-throwing code does not matter in this case because the execution

of the whole method is the join point of interest.

Nested, Non-Masking Handler. This scenario bears strong resemblance to the pre-

vious scenario, but the nesting of try-catch blocks introduces some complications that

hinder aspectization. Since the try-catch block is nested, it may be necessary to order

handler advice associated with the same join points. Moreover, many (3+) levels of nes-

ting combined with tangled try-catch blocks often result in complex code and special

care should be taken in order to avoid the introduction of subtle bugs and changing the

system behavior. In spite of these complications, aspectization is still beneficial in this

scenario. In the general case, no a priori refactoring has to be applied to the original code

and the aspectized code often exhibits good structuring that reflects the original design

of the exceptional behavior.

Tangled Handler, Terminal ETC. It is easy to aspectize exception handling in this case

because it is possible to directly associate a handler advice with the exception-throwing

statement. Since the latter is terminal and the handler has a termination behavior,

after execution of the aspectized handler, control passes to the statement that follows

the try-catch block in the original implementation. The code snippet below presents a

simple instance of this scenario and a possible implementation of the handler as part of

an aspect.

// within class C

void m(){
try{
n();

p(); // throws E

}catch(E e){log(e);}
q();

} //m()

// within aspect A

pointcut callP():

call(* C.p()) &&

withincode(* C.m());

around() : callP() {
try { proceed();}
catch(E e) {log(e);}

} //advice

On the left-hand side, the call to p() is a terminal exception-throwing statement and

the handler has a termination behavior. The right-hand side defines a pointcut that

selects calls to method p() made within the code of method m(). An around advice

implements the handler. The proceed() statement is defined by AspectJ and executes

7.4. A Catalog of Exception Handling Scenarios 164

the selected join point from an around advice, in this example, the call to p(). After

exception handling, control will return to the following statement, the call to q(). This

mimics exactly the behavior of the original program.

Nested Handler, Terminal ETC. Nesting makes it slightly harder to modularize error

handling with aspects in this scenario, when compared to the previous one. In general,

though, it does not negatively affect the quality of the final code. Therefore, we believe

aspectization is beneficial in this scenario.

Block Handler. Moving the error handling code to an aspect in this scenario is hard

because of the combination of non-terminal ETC, tangled try-catch block, and a handler

that has a masking behavior. These factors make it difficult to mimic the behavior of the

original code using an aspectized handler. Figure 7.3 presents an example of this scenario.

void m(){

try{ n(); // throws E

p();

}catch(E e){ log(e); }
q();

} //m()

Figura 7.3: A Block Handler example

Based on Figure 7.3, we assume a situation where an n() raises an exception and

control is transfered to the handler. If we refactor the handler to an advice and associate

the latter with the call to method n(), after exception handling the call to method p()

will be executed. However, in the original implementation, control should be passed to

the statement following the try-catch block, in the example, the call to q(). On the

other hand, if we associate the handler advice with the execution of method m(), control

will return to m()’s caller after exception handling. This implies that the call to q()

will not be executed. The bottom line is: we would like to associate a handler advice

to a block containing more than one statement, just like a try block, instead of a single

statement or a whole method. For this reason, we say that the combination of factors of

this scenario results in a block exception handler, or simply block handler.

To the best of our knowledge, no current aspect-oriented languages provide constructs

for implementing block handlers. A possible workaround to this limitation is to extract

the code within the try block to a new method and associate a handler advice to the

execution of the extracted method. This solution has drawbacks, however: (i) it modifies

the original design of the system’s normal behavior; (ii) it might result in methods that

do not make sense by themselves; and (iii) it is not effective in all cases because it is

not always possible to extract a piece of code to a new method [68]. In general, in this

7.4. A Catalog of Exception Handling Scenarios 165

Approach Problems

Transform - Conceptually bad because local variables only make
variable sense in the method where they appear;
into field - Must deal explicitly with multi-threaded programs;

- Suffers from the “Temporary Field” bad smell;
Capture - Not always possible to capture the join point of interest;
assignment - Imposes an additional implementation overhead;
to variable - Must also deal explicitly with multi-threaded programs.
Extract - Modifies the design of the system’s normal behavior;
a new - Might result in methods that do not make sense;
method - Not effective in all cases.
Extend - The resulting exception classes might include
exception information specific to certain handling strategies;
class - Requires non-local changes to the program.

Tabela 7.3: Limitations of various approaches to expose local variables to handlers.

scenario, aspectization is only beneficial if it is possible to extract the code within the

try block to a new method that could as well have been created by the developers of the

system.

Nested Block Handler. This scenario presents the same complications as the scenario

we just described, but includes nested try-catch blocks. Although nesting generally

complicates aspectization, nested block handlers do not follow this trend. If one uses

the aforementioned solution for aspectizing block handlers, the nesting hierarchy of try

blocks can be decomposed according to the extracted methods. This strategy neutralizes

the effects of nesting.

Context-Dependent Handler. Aspectizing handlers that use local variables of the

enclosing method in AspectJ is difficult because the language does not make it possible

for advice to access the local variables visible at a join point of interest. To try to address

this problem, we analyzed four general ways of exposing a local variable to an advice:

(#1) to transform the variable into a field of the enclosing class; (#2) to capture some

use of the variable and store this information for later retrieval; (#3) to extract the piece

of code where the variable is used to a new method and expose this variable as a parameter

of the extracted method; and (#4) to extend the class that defines the thrown exception

so that its instances can store the values of the variables. We concluded that none of

them is ideal. Table 7.3 lists the drawbacks of each of these solutions.

The decision of refactoring the handler to an advice in this scenario depends on: (i)

whether it is possible to expose the values of the local variables of interest in a way that

is conceptually reasonable and does not impose a large implementation overhead; and (ii)

whether it would be beneficial to aspectize the handler if we ignored the dependency of

the handler on the method’s local variables and classified the code scenarios previously

described.

Nested Context-Dependent Handler. Combinations of nested try-catch blocks

7.4. A Catalog of Exception Handling Scenarios 166

and handlers that read values of local variables are, in general, difficult to aspectize

and not worth the effort. Code adhering to this scenario is often very complex and

includes handlers accessing local variables defined various nesting levels above. In order

to modularize exception handling, it is almost always necessary to intensively refactor

the OO implementation. The resulting aspect-oriented code often includes a sensible

implementation overhead. Moreover, the design of the normal code is often altered beyond

recognition.

Context-Affecting Handler. In this scenario the catch block performs assignments

to local variables of the containing method. Amongst the four solutions we presented for

exposing local variables to advice, only the first one makes it possible for the aspect to

change the value of the variable without duplicating code. As pointed out previously, this

solution has some severe problems. The task of moving a catch block to an advice is des-

cribed by the Extract Fragment to Advice [135] refactoring, an aspect-oriented adaptation

of the Extract Method refactoring. Hence, similar constraints apply. In general, it is not

possible to extract a code snippet to a new method if this snippet performs assignments

to local variables of the containing method [68]. The same holds when one tries to extract

a code snippet to an advice. Thus, as a rule, it is harmful to aspectize exception handling

in this scenario.

Loop Iteration Handlers. In this scenario, the problem is that commands break

and continue appear inside a catch block and are part of the error handling concern.

However, the loop where the corresponding try-catch block appears is part of the normal

behavior of the system. Since these commands have to be associated with a loop, otherwise

a compile-time error occurs, it is not possible to extract the catch block to an advice “as-

is”. As a consequence, loop iteration handlers inevitably require some redesign of the

original code before they can be aspectized.

Table 7.4 summarizes the general strategies that should be applied to extract error

handling to aspects in each scenario. The second and third columns of the table specify the

type of advice and the type of pointcut to use, respectively. The fourth column indicates

whether it is necessary to order handler advice associated to the same join points in each

scenario. In some rows, this column is marked “maybe”, meaning that each instance of

the scenario must be independently analyzed. The fifth column indicates the scenarios

that exhibit block handlers. The sixth points out the scenarios where it is necessary to

expose local variables read or written by the exception handlers. The rightmost column

indicates the worst-case scenarios, those where some redesign of the system’s normal

behavior might be necessary.

7
.4

.
A

C
a
ta

lo
g

o
f
E

x
cep

tio
n

H
a
n
d
lin

g
S
cen

a
rio

s
167

Scenario Advice Type of Order Block Expose Redesign

Pointcut Advice Handler Variables

Untangled Handlers after or around execution no no no no

Tangled, Non-Masking Handlers after execution no no no no

Nested, Non-Masking Handlers after execution yes no no no

Tangled Handlers, Terminal ETC around call and withincode no no no no

Nested Handlers, Terminal ETC around call and withincode yes no no no

Block Handler around execution no yes no no

Nested Block Handler around call or execution yes yes no no

Context-Dependent Handler after or around call or execution no maybe yes no

Nested, Context-Dependent Handler after or around call or execution yes maybe yes no

Context-Affecting Handler around call or execution maybe yes yes yes

Loop Iteration Handler around call or execution maybe yes yes yes

Tabela 7.4: General strategies for structuring error handling with aspects in each scenario.

7.5. Evaluation 168

Attributes Metrics Definitions

Concern Number of components that
Separation Diffusion over contribute to the implementation
of Components of a concern.
Concerns Concern Number of methods and advice

Diffusion over that contribute to a concern’s
Operations implementation.

Coupling Coupling Number of components declaring
Between methods or fields that may be called
Components or accessed by other components.
Lack of Measures the lack of cohesion of a

Cohesion Cohesion in class or an aspect in terms of the
Operations number of method and advice pairs

that do not access the same field.
Size Lines of Code Number of lines of code.

Number of Number of methods and advice
Operations of each class or aspect.

Tabela 7.5: Metrics Suite

7.5 Evaluation

To evaluate the efficacy of the proposed catalog, we conducted a case study targeting two

different systems. The main goal of the case study was to assess whether a developer

following the recommendations of the catalog to aspectize error handling code produces

code of higher quality than a developer not using it. We measured the quality of the target

systems using the metrics described in Table 7.5. This metrics suite includes metrics that

serve as indicators of measure attributes that are directly and indirectly related to reuse

and maintainance [73, 111]. A detailed description is available elsewhere [73]. Based

on these quality attributes, we compared three versions of the systems: (i) an object-

oriented (OO) version, implemented in Java; (ii) an aspect-oriented version where all the

try-catch blocks were refactored to aspects ; and (iii) an aspect-oriented version where

all the instances of “Yes” scenarios (Section 7.4) were refactored to aspects.

The case study targeted two of the systems, Telestrada and the Java Pet Store. Teles-

trada is a traveler information system being developed for a Brazilian national highway

administrator. For our study, we have selected some self-contained packages of one of its

subsystems comprising approximately 3350 LOC (excluding comments and blank lines)

and more than 200 classes and interfaces. The Java Pet Store1 is a demo for the Java

Platform, Enterprise Edition2 (Java EE). The system uses various technologies based on

the Java EE platform and is representative of existing e-commerce applications. Its imple-

mentation comprises more than 18000 LOC and approximately 300 classes and interfaces.

In this case study, we considered each try-catch block a scenario instance.

The results of the evaluation for the three versions of the two systems are depicted

1http://java.sun.com/developer/releases/petstore/
2http://java.sun.com/j2ee

7.5. Evaluation 169

System Metric Concern Concern Coupling Lack of Lines Number of

Diffusion over Diffusion over between Cohesion of Code Operations

Version Components Operations Components in Operations

Original 22 42 188 434 3424 432

Telestrada Entirely 18 42 182 469 3368 471
Aspectized
Partially 18 42 185 409 3431 465
Aspectized
Original 110 256 812 7258 18442 2174

Java Pet Store Entirely 57 200 820 7808 18544 2408
Aspectized
Partially 54 197 818 7328 18247 2316
Aspectized

Tabela 7.6: Results of measuring the three versions of the target systems.

in Table 7.6. For all the metrics, lower values imply in better results. The “Partially

Aspectized” (PA) version of each system is the one where we used the catalog to guide

aspectization. The “Entirely Aspectized” (EA) version is the one where aspectization

was ad hoc. The measures for the two separation of concerns metrics (Concern Diffusion

over Components and Concern Diffusion over Operations) highlight the main advantage

of using aspects: to improve the textual separation between the base code and error

handling. The aspect-oriented verions of the target systems performed substantially (up

to 50%) better than the OO versions. For Coupling between Components and Lines of

Code, the three versions exhibited similar results. The two metrics where the aspect-

oriented versions performed worse were Number of Operations and Lack of Cohesion in

operations. In the former, the two aspect-oriented versions performed worse because each

handler advice counts as a new operation, unlike try-catch blocks in the OO version.

This is a natural consequence of using aspects to modularize error handling.

The most interesting result that Table 7.6 presents pertains the cohesion metric. In

our previous studies, systems where exception handling was modularized through aspects

consistently exhibited worse results for this metric [24]. In some cases, the measure for

the aspect-oriented version of a system was more than 25% higher than the corresponding

OO implementation. This trend persists when we compare the OO and EA versions of

the two target systems. The measures for Lack of Cohesion in Operations are 8.06 and

7.58% higher for the EA versions of Telestrada and the Java Pet Store, respectively.

The proposed scenario catalog had a significant positive impact on the cohesion of

the PA versions of the systems. In general, the catalog marks as harmful the scenarios

where a priori refactoring is necessary. In our experience, these are exactly the scenarios

that increase Lack of Cohesion in Operations [24]. As a consequence, the measure of the

cohesion metric for the PA version of the Java Pet Store is only 0.96% higher than the

measure for the OO version. Comparing the two aspectized versions, the measure for the

7.6. Related Work 170

EA version is 6.55% higher. For Telestrada, the results were even better. The measure

for the EA version was almost 15% higher than the results for the EA version. Also,

the value of the cohesion metric for the OO version of Telestrada was 6.11% higher that

the value fot eh PA version. These results indicate that the proposed catalog may be

advantageous. For this case study, the PA versions of the two systems exhibited the same

benefits as the EA version while avoiding its drawbacks.

7.6 Related Work

Since the publication of the first design pattern catalog [70], several catalogs that try to

amass design/implementation time-tested knowledge regarding OO software development

activities have appeared. Most of them focus on general purpose refactorings [68] and

design patterns [70]. A few describe specific solutions and guidelines, based on practical

experience, concerning error handling [60, 125].

In recent years, some works have surfaced which try to gather together similar kno-

wledge regarding aspect-oriented software development activities [49, 90, 114, 135]. Many

authors have devoted attention to developing refactoring catalogs [49, 90, 113, 135] for

aspect-oriented software. A few of them [113, 49] include specific procedures for moving

exception handling code to aspects. Laddad presents the “Extract Exception Handling”

refactoring. The refactoring centers around the effects of using it to extract trivial error

handling code, but does not explain when it is useful (or possible) to apply it in prac-

tice. Cole and Borba describe a set of behavior-preserving programming laws that can

be combined in order to specify a refactoring that works along the same lines as “Ex-

tract Exception Handling”. These laws include preconditions that indicate when it is

possible to apply them. While refactorings targeting error handling code concentrate on

the mechanics of moving a try-catch block to an aspect, the work we present identifies

situations where this is beneficial and where it is not.

Some authors describe their experience in the application of exception handling to

real OO software systems in the form of best practices [60] and anti-pattern [22, 125]

catalogs. An early paper by Cargill [22] describes some of the problems that often hap-

pen in C++ programs due to the complex control flow that exception handling creates.

Doshi [60] presents two small catalogs of best practices: one for specifying APIs whose

services can throw exceptions and another one for developing the client code of these

APIs (the actual exception handlers). A recent article by McCune [125] presents a list

of error handling anti-patterns, some of them well-accepted (e.g. “catch and ignore” and

“throwing Exception”). Bruntink and colleagues [16] have analyzed how error handling

is implemented in a large embedded software system that uses the return-code idiom for

signaling exceptions. They have assessed the fault-proneness of this idiom and proposed:

7.7. Concluding Remarks 171

(i) a characterization for it; (ii) a fault model; and (iii) a set of macros that summarize

best practices for dealing with its most error-prone instances. Best practices and anti-

pattern catalogs provide guidelines on what exception handlers should and should not

do. Our work complements these approaches by providing design guidance to developers

using AOP techniques to enhance the modularity of error handling code.

The most well-known study focusing on the interplay between exception handling and

AOP was performed by Lippert and Lopes [117]. The authors used AOP to modularize

exception handling in a large OO framework and also attempted to identify situations

where it was easy to aspectize error handling code and highlighted a few where it was

not. However, since the study targeted a reusable infrastructure, instead of a full-fledged

application, it is difficult to extrapolate their findings to the development of real-world

systems where error handling is application-specific.

7.7 Concluding Remarks

This paper makes two contributions to the current body of knowledge about the interplay

between AOP and error handling. First, a classification of exception handling code in

terms of factors that we found out have more influence on aspectization. Second, an

analysis of the interactions amongst these factors, grouped as sets of scenarios. An initial

evaluation has shown that the proposed approach may help to improve the quality of a

system, when used to guide the refactoring of exception handling to aspects. The general

conclusion that can be drawn from this work is that AOP does not fix poor designs. In

other words, in OO systems where exception handling code is already well-structured,

AOP further improves the structure by completely separating the system’s normal and

exceptional activities. However, for systems with very complex and/or poorly structured

exception handling code, AOP merely adds insult to injury and worsens the overall quality

of the system. A very preliminary version of the work we presented in this paper first

appeared elsewhere [24].

This work focused on a single aspect-oriented language, namely, AspectJ. We have not

attempted to assess whether the proposed classification and scenarios catalog apply to

other aspect-oriented languages. More powerful join point models would make it possible

to deal more appropriately with more complicated cases, such as those where handler

blocks are tangled or nested, thus affecting the study results. In the future, we intend

to experiment with other languages in order to understand: (i) to what extent the ideas

we present here are generally applicable; and (ii) how other language features impact the

aspectization of exception handling. A priori, we intend to evaluate the pros and cons of

7.7. Concluding Remarks 172

using CaesarJ [130] and the JBoss AOP framework3 to modularize error handling code.

3http://labs.jboss.com/portal/jbossaop

7.8. Resumo do Caṕıtulo 7 173

7.8 Resumo do Caṕıtulo 7

Este caṕıtulo apresentou um catálogo de cenários referente a código de tratamento de

exceções. O uso de AOP para modularizar o tratamento de exceções é benéfico em diversas

situações, mas em outras resulta em código que: (i) não representa o projeto original

do sistema; (ii) exibe maus-cheiros; e (iii) tem uma influência negativa na qualidade

do programa, conforme medido pelo conjunto de métricas que empregamos. O catálogo

proposto organiza essas situações de modo que desenvolvedores podem tomar a decisão de

estruturar o comportamento excepcional de um programa usando AOP de maneira mais

rápida e com um conhecimento objetivo sobre as consequências dessa decisão. O catálogo

é baseado em uma classificação que indica os fatores que têm maior influência na tarefa

de aspectizar tratamento de exceções. Essa classificação expande a que foi apresentada

no Caṕıtulo 6 com uma categoria adicional e refina duas das categorias já existentes, de

modo a tornar mais precisas as diretrizes providas pelo catálogo. O catálogo foi avaliado

através de um estudo de caso envolvendo dois sistemas. Os resultados do estudo de caso

indicam que, através do uso do catálogo, desenvolvedores de componentes podem ganhar

as principais vantagens de se usar AOP (melhor separação de interesses) evitando alguns

de seus problemas (coesão piorada, aspectizações “artificiais”).

Os resultados deste caṕıtulo e do Caṕıtulo 6 mostram que a Hipótese de Pesquisa 2

(Caṕıtulo 1, Seção 1.4.1) é válida, embora isso não se aplique a todos as circunstâncias

e não seja o caso para um uso ad-hoc de programação orientada a aspectos. Esses dois

caṕıtulos mostraram as situações em que o uso de AOP é prejudicial e apresentaram

soluções para que AOP contribua de maneira positiva para a qualidade do código de

tratamento de exceções.

Caṕıtulo 8

Conclusões

Este caṕıtulo revisita o problema que esta tese visa resolver, as soluções propostas e lista

as contribuições deste trabalho para o estado da arte. O caṕıtulo também propõe algumas

extensões e descreve resumidamente os resultados obtidos ao longo do meu doutorado que

não foram inclúıdos nesta tese.

8.1 Problema e Solução Proposta

Este trabalho se situa na interseção das áreas Engenharia de Software e Tolerância a Fa-

lhas. Da primeira lançamos mão de avanços recentes nas áreas de Arquitetura de Software,

Verificação de Sistemas de Software e Programação Orientada a Aspectos. Da segunda

usamos a idéia de Tratamento de Exceções como um meio de estruturar mecanismos de to-

lerância a falhas. Além disso, o trabalho é fortemente calçado num dos prinćıpios básicos

da ciência da computação: Dividir para Conquistar. Nesta pesquisa, esse prinćıpio se

manifestou através da idéia de que a separação entre os comportamentos normal e excep-

cional de um sistema resulta em sistemas que são mais fáceis de se construir, manter e

compreender.

A tese abordou o problema de se construir sistemas tolerantes a falhas baseados em

componentes. O enfoque do trabalho foi restrito a sistemas de software nos quais a se-

paração entre comportamento normal e comportamento excepcional é feita através de

tratamento de exceções. A investigação consistiu de duas partes, uma relativa à inte-

gração de componentes de software e outra relativa à sua construção, já que essa divisão

de responsabilidades é inerente ao desenvolvimento baseado em componentes. Como con-

sequência da dicotomia construção/integração, a tese propôs soluções para responder duas

perguntas de pesquisa:

1. Como reduzir o número de erros, em sistemas baseados em componentes, decorrentes

174

8.2. Resumo das Contribuições 175

de suposições conflitantes ou incompletas sobre o comportamento excepcional dos

componentes integrados no sistema?

2. Como melhorar a estruturação interna de componentes de software, de modo a mi-

nimizar o impacto do comportamento excepcional desses componentes sobre a sua

complexidade total?

As soluções propostas são resumidas pelas seguintes teses, detalhadas e justificadas ao

longo dos seis caṕıtulos anteriores:

Tese 1: A descrição rigorosa de como exceções fluem entre componentes

no ńıvel arquitetural e a verificação automática de propriedades relativas ao

comportamento excepcional do sistema nesse ńıvel de abstração aumentam a

chance de que falhas de projeto relacionadas ao comportamento excepcional

sejam detectadas antes que o sistema seja implementado.

Tese 2: O uso de programação orientada a aspectos para modularizar o código

de tratamento de exceções de um programa melhora a qualidade desse pro-

grama, tanto do ponto de vista do comportamento normal quanto do excepci-

onal.

8.2 Resumo das Contribuições

As principais contribuições desta tese são as seguintes:

1. Um mecanismo de tratamento de exceções que funciona no ńıvel da arquitetura de

software e leva em consideração algumas das particularidades de sistemas baseados

em componentes. Esse mecanismo é centrado em um estilo arquitetural espećıfico,

C2 [173], e evidencia a influência que estilos arquiteturais têm na propagação de

exceções (Seção 1.3.2 e Caṕıtulo 2).

2. Uma abordagem para dar suporte à descrição e à análise de arquiteturas de software,

da perspectiva do seu comportamento excepcional. Essa abordagem leva em con-

sideração a maneira como diferentes estilos arquiteturais influenciam a propagação

de exceções e complementa metodologias de desenvolvimento cujo foco é o compor-

tamento excepcional do sistema (Seção 1.3.3 e Caṕıtulo 3).

3. Um modelo formal que indica as responsabilidades de cada elemento arquitetural,

no que se refere ao lançamento, recebimento e tratamento de exceções, e que permite

8.3. Outros Resultados 176

que certas propriedades úteis relativas ao fluxo de exceções entre esses elementos se-

jam verificadas de maneira automática. Essas propriedades foram organizadas de tal

maneira que cada uma pode ser verificada independentemente e o conjunto de todas

elas descreve um mecanismo arquitetural de tratamento de exceções (Seção 1.3.4 e

Caṕıtulo 4).

4. Uma abordagem para a especificação e verificação de sistemas concorrentes coopera-

tivos da perspectiva do seu comportamento excepcional (Seção 1.3.5 e Caṕıtulo 5).

5. Uma análise dos fatores que tiveram influência na modularização do código de tra-

tamento de exceções usando aspectos, com base na experiência adquirida através da

refatoração de quatro aplicações distintas (Seção 1.4.2 e Caṕıtulo 6).

6. Uma avaliação inicial dos efeitos da estruturação de tratamento de exceções usando

aspectos quando outros interesses transversais também são modularizados através

de aspectos (Seção 1.4.2 e Caṕıtulo 6).

7. Um catálogo de cenários de tratamento de exceções que indica, para cada cenário,

se é vantajoso usar aspectos para separar comportamento normal e comportamento

excepcional (Seção 1.4.3 e Caṕıtulo 7).

8.3 Outros Resultados

Além dos resultados descritos em detalhes nos caṕıtulos desta tese, diversos outros foram

obtidos ao longo do meu doutorado. Quase todos resultaram de colaborações com colegas

do IC-UNICAMP e de outras instituições. Esses trabalhos são sucintamente descritos a

seguir.

8.3.1 Métodos para o Projeto e Implementação do Comporta-

mento Excepcional

Conforme mencionado na Seção 1.3, a abordagem proposta para a descrição e análise

do comportamento excepcional dos componentes integrados em um sistema exige uma

metodologia de desenvolvimento que inclua atividades espećıficas para o levantamento

do modelo de falhas do sistema e a especificação do seu comportamento excepcional.

Tendo isso em vista, trabalhei junto com outros colegas do IC-UNICAMP e com o Prof.

Rogério de Lemos, da Universidade de Kent at Canterbury, no refinamento e extensão da

metodologia MDCE [65]. A MDCE complementa metodologias de desenvolvimento “tra-

dicionais” com uma abordagem sistemática para o projeto dos mecanismos de detecção e

8.3. Outros Resultados 177

o tratamento de erros. A MDCE é baseada no processo Catalysis [61] e o seu foco está

nas atividades de especificação de requisitos e projeto detalhado. Um artigo [154] des-

crevendo a MDCE e apresentando algumas melhorarias com relação à sua versão original

foi publicado no periódico Software – Practice and Experience. O t́ıtulo desse artigo é

“Exception handling in the development of dependable component-based systems” e eu

participei como co-autor.

Em um outro trabalho, a metodologia MDCE [154] foi estendida e adaptada ao pro-

cesso UML Components [41] para desenvolvimento baseado em componentes. A metodo-

logia resultante, batizada de MDCE+, apresenta algumas melhorias com relação à MDCE.

Primeiro, ela inclui algumas atividades para o projeto da arquitetura do sistema [28]. Se-

gundo, ela inclui diretrizes para a implementação desses sistemas. Essas diretrizes são o

resultado de um outro trabalho, descrito no próximo parágrafo. Terceiro, a MDCE+ in-

clui atividades para testar o comportamento excepcional dos componentes de um sistema,

baseadas no trabalho de outros pesquisadores do IC-UNICAMP [151]. Um artigo [54] des-

crevendo a MDCE+ foi apresentado no 2nd Latin-American Symposium on Dependable

Computing. O t́ıtulo do artigo é “A Method for Modeling and Testing Exceptions in

Component-Based Software Development”. Uma versão preliminar desse artigo foi apre-

sentada no IV Workshop Brasileiro de Desenvolvimento Baseado em Componentes. Nos

dois artigos eu participei como co-autor.

Foi elaborado também um conjunto de diretrizes e padrões para a implementação de

componentes de software compat́ıveis com diferentes estratégias de tolerância a falhas.

Esse trabalho argumenta que sistemas baseados em componentes exigem: (i) estratégias

para tratamento de exceções decorrentes da composição de componentes; e (ii) estratégias

locais a cada componente para lidar com erros internos ao componente. Dois artigos fo-

ram publicados como resultado dessa pesquisa. O primeiro [87] foi uma versão resumida

apresentada na 30th Euromicro Conference. O t́ıtulo desse artigo é “Structuring Excep-

tion Handling for Dependable Component-Based Software Systems”. Neste trabalho eu

participei como co-autor. O segundo artigo [29] foi publicado no periódico Journal of the

Brazilian Computer Society, em uma edição especial sobre sistemas confiáveis, e seu t́ıtulo

é “A Systematic Approach for Structuring Robust Component-Based Software”. Eu fui

o primeiro autor desse artigo.

8.3.2 Um Arcabouço Baseado em Aspectos para Sistemas Con-

correntes Cooperativos

Implementamos um arcabouço baseado em aspectos para a construção de sistemas to-

lerantes a falhas orientados a objetos que apresentam concorrência e distribuição como

requisitos não-funcionais. A principal caracteŕıstica desse arcabouço é a modularização

8.3. Outros Resultados 178

de cada um desses requisitos como um conjunto de aspectos, classes e interfaces. Desse

modo, é posśıvel adicionar e remover realizações desses requisitos a uma aplicação baseada

no arcabouço de maneira quase completamente transparente. Um artigo [37] descrevendo

sua implementação foi apresentado no VIII Simpósio Brasileiro de Linguagens de Pro-

gramação. O t́ıtulo desse artigo é “Implementing Coordinated Exception Handling for

Distributed Object-Oriented Systems with AspectJ” e eu sou seu primeiro autor. Esse

artigo também apareceu em uma edição especial do periódico Journal of Universal Com-

puter Science [36].

8.3.3 Evolução de Sistemas Baseados em Componentes

Participei da elaboração de uma abordagem sistemática para a evolução de componentes

de software. Essa abordagem visa melhorar a substitutabilidade de novas versões de com-

ponentes e facilitar a evolução dos sistemas nos quais esses componentes estão inseridos.

A solução proposta consiste de três partes: (i) um modelo de versionamento para compo-

nentes de software; (ii) um conjunto de regras de evolução que limitam as formas como

componentes podem evoluir; e (iii) um esquema de numeração para versões que leva em

consideração o impacto das mudanças feitas ao longo da evolução do componente. Um

artigo [119] descrevendo a este trabalho foi apresentado no ECOOP’2005 Workshop on

Architecture-Centric Evolution. O t́ıtulo desse artigo é “A Systematic Approach for the

Evolution of Reusable Software Components”. Eu particiei como co-autor desse trabalho.

8.3.4 Um Ambiente para o Desenvolvimento de Sistemas Base-

ados em Componentes

Atualmente, o grupo de pesquisa de Engenharia de Software e Confiabilidade do IC-

UNICAMP, do qual faço parte, está desenvolvendo, como parte de um grande projeto

envolvendo outras instituições, como a UFPB, a empresa CiT e o Centro de Estudos e

Sistemas Avançados do Recife (CESAR), um ambiente centrado na arquitetura para o de-

senvolvimento de sistemas baseados em componentes. Esse ambiente, batizado Bellatrix,

está sendo implementado como um conjunto de plugins para a plataforma Eclipse [62].

O ambiente visa dar suporte às atividades definidas pelo processo UML Components e

consiste de um conjunto de ferramentas, entre as quais: (i) editor de interfaces; (ii) edi-

tor de configurações arquiteturais; (iii) repositório de componentes; (iv) framework para

testes unitários de componentes; e (v) gerador de esqueletos de código em conformidade

com a arquitetura. Um trabalho [174] descrevendo o Bellatrix foi apresentado no IV

Workshop Brasileiro em Desenvolvimento Baseado em Componentes. O t́ıtulo desse ar-

tigo é “Bellatrix: um Ambiente com suporte Arquitetural ao Desenvolvimento Baseado

8.4. Extensões 179

em Componentes” e eu sou co-autor.

8.4 Extensões

Há várias direções posśıveis para trabalhos futuros no que concerne às duas partes desta

tese. Algumas dessas propostas são listadas a seguir:

Formalização da execução de sistemas concorrentes cooperativos. A principal li-

mitação da abordagem proposta nos Caṕıtulos 3, 4 e 5 é que essa abordagem se

baseia em uma visão estática da arquitetura do sistema. Embora os estudos de

caso descritos nos Caṕıtulos 3 e 5 tenham mostrado que essa visão estática permite

que algumas propriedades úteis sejam verificadas e que algumas falhas de projeto

sejam identificadas, as propriedades mais interessantes e dif́ıceis de verificar estão

relacionadas à execução do sistema. Isso é especialmente verdade para sistemas con-

correntes, nos quais o não-determinismo torna uma verificação “manual” inviável.

Para que tais propriedades possam ser verificadas, é necessário estender a forma-

lização proposta anteriormente para que inclua uma noção de tempo relativo, de

modo que seja posśıvel modelar a ordem de eventos como trocas de mensagens,

o lançamento de uma exceção e a execução de um tratador. Já há alguns traba-

lhos nessa linha na literatura [172, 185], mas eles não têm um foco tão forte em

tratamento de exceções.

Prova de teoremas na verificação do comportamento excepcional. Conforme foi

visto no Caṕıtulo 3, uma limitação da abordagem proposta é escalabilidade. Este

é um problema geral de técnicas automáticas de verificação [44], apesar dos mui-

tos avanços da área nos últimos 20 anos. Consequentemente, uma outra direção

posśıvel para pesquisas futuras é empregar a técnica de prova de teoremas para

verificar se a especificação do comportamento excepcional de um sistema satisfaz

certas propriedades de interesse. Embora essa técnica exija intervenção manual,

ferramentas modernas [45, 140] conseguem realizar uma grande parte dessas provas

de forma automática. Essa linha de pesquisa poderia, inclusive, ser combinada com

a anterior.

Refatoração automática de tratamento de exceções para aspectos. No tocante à

estruturação de tratamento de exceções usando aspectos, um trabalho futuro con-

siste em automatizar duas tarefas: (i) detecção de situações nas quais a modula-

rização do comportamento excepcional com AOP é benéfica; e (ii) refatoração do

código de tratamento de exceções para aspectos nesses casos. Neste trabalho seria

8.4. Extensões 180

especialmente interessante elaborar estratégias para realizar a extração de tratado-

res de exceções em trechos de código envolvendo uma mistura de diversos cenários

e separá-los de maneira coerente nos aspectos.

Novas construções para linguagens orientadas a aspectos. O estudo descrito no

Caṕıtulo 6 mostrou que é dif́ıcil modularizar com aspectos o código de tratamento

de exceções em algumas situações comuns no desenvolvimento de software. Na

maior parte dos casos, isso se deve a duas limitações da linguagem AspectJ: (i) a

linguagem não permite a seleção de blocos arbitrários como pontos de junção; e (ii)

a linguagem não permite que tratadores ou ações de limpeza refatorados para aspec-

tos façam referência a variáveis locais dos métodos onde originalmente apareciam.

Essas limitações na expressividade de AspectJ apontam na direção de duas linhas

para pesquisas futuras: (1) propostas de novas construções para a linguagem As-

pectJ visando contornar essas limitações; e (2) a avaliação da adequação de outras

linguagens orientadas a aspectos para modularizar tratamento de exceções.

Estruturação de detecção de erros usando aspectos. Finalmente, uma linha futura

de pesquisa bastante interessante consiste em avaliar a adequação de AOP para mo-

dularizar o código responsável por detectar erros. Na literatura de Tolerância a

Falhas [5], há um consenso de que o código de detecção de erros é dependente de-

mais do código que implementa o comportamento normal. Logo, não vale a pena

tentar separar essas duas partes pois a chance de se introduzir falhas de projeto no

processo é grande demais. Embora AOP já tenha sido usada para modularizar a

implementação de contratos [117] (pré- e pós-condições), não está claro se esse pa-

radigma é apropriado para separar código de detecção de erro em outras situações

comuns, quando esse código está misturado ao código responsável por outros inte-

resses.

Apêndice A

Generic CA Actions Model in Alloy

module CoordinatedExceptionHandling

abstract sig RootException {}

abstract sig Keys {}

abstract sig Role {

Signals : set RootException,

Raises : set RootException,

GeneratesSignaling : set RootException,

GeneratesRaising : set RootException,

Resolved : set RootException,

// Encountered exceptions are assumed to be raised and never

// signaled. On the one hand, this simplifies the semantics

// of the model for cases where one wants to specify that an

// encountered exception is directly signaled (without being

// raised or resolved or propagated or anything). Moreover,

// allowing encountered exceptions to be signaled requires

// recursive definitions for Raises and Signals in order to

// avoid ambiguity. On the other hand, designers have to be

// slightly more explicit when specifying CA actions and roles

// (because the encountered exception has to be raised, resolved

// and, only then, signaled).

Encounters : set RootException,

// Two views on action-oriented exception handling: (i) only

// actions are contexts; and (ii) both actions and roles may be

// contexts. We support the second, but its easy to support the

181

182

// first as well. No modifications to the model are required.

Handles : set RootException,

ComponentActions : set Action,

Propagates : RootException->RootException,

Aborts : set RootException

}

abstract sig Action {

Internal : set RootException,

// Alloy can not express a relation of the type

// (set RootException)->RootException. The problem with this is

// that we have to use RootException->RootException relations,

// which are not adequate. For example, let E1, E2, and E3 be

// exceptions. If E1 is raised in isolation and resolved to E1

// and (E1 + E2) raised concurrently are resolved to E3, this

// can not be expressed.

ToResolve : RootException->Keys,

ResolvedTo : Keys->RootException,

// Sets of exceptions that do not need to be resolved because

// the developer knows that the exceptions in each set will never

// be raised concurrently.

Excluding : RootException->Keys,

External : set RootException,

Roles : set Role,

NestedActions : set Action,

// The exceptions to be signaled when the action aborts or fails,

// respectively.

AbortException : lone RootException,

FailException : lone RootException

}

abstract sig Participant {

// The roles the participant plays.

RolesPlayed : set Role

}

pred action_consistent(A : Action) {

A.Internal = A.Roles.Raises + A.NestedActions.External

A.External = A.Roles.Signals + A.AbortException + A.FailException

(A.ResolvedTo) :> (A.Roles.Resolved) = A.ResolvedTo

183

(let RES = (A.Internal).((A.ToResolve).(A.ResolvedTo)) |

(let Aborted = {E:RES | all R:A.Roles | E in R.Aborts } |

(#Aborted > 0 => (some A.AbortException))

&& (#Aborted = 0 => no A.AbortException)

)

&&

// If the action signals at least two different exceptions and

// the action does not abort nor handle all of its resolved

// exceptions, then it may fail. A.Roles.Signal is used,

// instead of A.External, in order to cover the case where

// A.FailException is in A.External, because we do not want to

// take into account A.FailException, unless it is one of the

// exceptions signaled by the roles (independently of being

// A.FailException).

(#(RES - { E: RES | all R:A.Roles |

E in R.Handles || E in R.Aborts}) > 0 =>

((#(A.Roles.Signals + A.FailException) > 1 =>

some A.FailException)

&&

(#A.Roles.Signals =< 1 => no A.FailException)

)

)

)

(all K_E:Keys | #(A.Excluding).K_E > 0 => (no K_TR:Keys |

(A.ToResolve).K_TR = (A.Excluding).K_E))

// Exception raising is consistent.

all_keys_conc_raising_consistent(A, A.ToResolve)

// Groups of exceptions that can be raised concurrently but

// should not be taken into account by resolution are also

// consistent.

all_keys_conc_raising_consistent(A, A.Excluding)

participants_consistent(A)

// Requires high-order quantification.

/* (all ES : some (A.Internal) |

concurrent_raising_consistent(A, ES) => !(all K : Keys |

(A.ToResolve).K != ES && (A.Excluding).K != ES)

184

)

*/

}

pred participants_consistent(A:Action) {

// Consistency of nested actions. All the roles in a nested

// action are played by participants who also play some role

// in the enclosing action.

(all NA : A.NestedActions | all NAR : NA.Roles |

!(all P : Participant |

!(NAR in P.RolesPlayed && some (P.RolesPlayed & A.Roles))))

// All roles of action A are associated to some participant

(Participant.RolesPlayed & A.Roles) = A.Roles

// No Participant can play two roles in the same action.

(no P : Participant | #(P.RolesPlayed & A.Roles) > 1)

}

pred all_keys_conc_raising_consistent(A:Action,

ExcMap:RootException->Keys){

(all K:Keys | let ES = ExcMap.K |

concurrent_raising_consistent(A, ES))

}

// Auxiliary predicate. Checks whether, for a set of exceptions

// ES in the domain of A.ToResolve, each exception E in ES was

// (could have been) raised by a different participant.

pred concurrent_raising_consistent(A:Action, ES:set RootException) {

#ES =< #{R:A.Roles | #(R.Raises & ES) > 0}

+ #{NAA:A.NestedActions | #(NAA.External & ES) > 0} }

pred actions_consistent() {

all A:Action | action_consistent(A)

}

assert ActionsConsistent {

actions_consistent()

}

pred role_consistent(R:Role, A:Action) {

R.Encounters = R.ComponentActions.External

R.Resolved = Keys.(A.ResolvedTo)

185

no (R.Handles & R.Aborts)

R.Aborts in R.Resolved

thrown_exceptions_set_consistent(R, R.Signals,

R.GeneratesSignaling, R.Resolved)

// role_is_context(R)

role_is_not_context(R)

}

// Consistency checks for EHS where roles ARE exception

// handling contexts.

pred role_is_context(R:Role) {

// Computes the Raises set of a role for EHS where both roles

// and actions are EH contexts.

thrown_exceptions_set_consistent(R, R.Raises, R.GeneratesRaising,

R.Encounters)

(R.Encounters + R.Resolved - R.Handles) <:

(R.Propagates) = R.Propagates

(R.Propagates) :> (R.Signals + R.Raises) = R.Propagates

R.Handles in (R.Resolved + R.Encounters)

}

// Consistency checks for EHS where roles ARE NOT exception

// handling contexts.

pred role_is_not_context(R:Role) {

// Computes the Raises set of a role for EHS where only actions

// are EH contexts (therefore, encountered exceptions can not be

// handled or explicitly propagated).

R.Raises = R.Encounters + R.GeneratesRaising

(R.Resolved - R.Handles) <: (R.Propagates) = R.Propagates

(R.Propagates) :> (R.Signals) = R.Propagates

R.Handles in R.Resolved

}

// This predicate checks whether a set of thrown exceptions is

// consistent. "Thrown" means either signaled or raised.

// "Generated" is the set of exceptions that are generated by

// role "R". "Received" means either "Encountered" or "Resolved",

// depending on the meaning of "Thrown".

pred thrown_exceptions_set_consistent(R:Role,

186

Thrown:set RootException, Generated:set RootException,

Received:set RootException) {

(let RealRes = (Received - R.Handles) | Thrown = Generated

+((RealRes - {E:RealRes|some E.(R.Propagates)})

+ RealRes.(R.Propagates)))

}

pred roles_consistent() {

all A:Action | all R:A.Roles | role_consistent(R, A)

}

assert RolesConsistent {

roles_consistent()

}

// Desired property -> No top-level (non-nested, non-component)

// CA action has external exceptions. This is not a fundamental

// property of CA actions, but a desirable property that indicates

// a safe use of CA actions.

pred top_level_actions_safe() {

all A1:Action | ((no A2:Action | A1 in A2.NestedActions)

&& (no R:Role | A1 in R.ComponentActions)) => (no A1.External)

}

assert TopLevelActionsSafe {

top_level_actions_safe()

}

// Desired property -> No internal exception of a CA action is

// visible to the outside world. "Internal", in this case,

// includes the action’s Internal set and the Resolved sets of

// its roles. All internal exceptions are either handled (and

// normal activity is resumed) or propagated to something else.

// It must be stressed that this predicate does not impose any

// restrictions on an the external exceptions of an action.

pred internal_exceptions_not_visible_outside() {

all A:Action | no (A.External & A.Internal) &&

no (A.External & A.Roles.Resolved)

}

assert InternalExceptionsNotVisibleOutside {

187

internal_exceptions_not_visible_outside()

}

// Basic-property -> No action nesting/composition cycles. This

// property must take into account situations where action and

// composition are combined. It is not enough to just verify if the

// action A is in the (non-reflexive) transitive closure of

// A.NestedActions and A.Roles.ComponentActions (a top-down

// approach). The check must be performed bottom-up.

pred no_action_nesting_cycles() {

no A:Action| A in A.^(~(Roles.ComponentActions + NestedActions))

}

assert NoActionNestingCycles {

no_action_nesting_cycles()

}

pred basic_properties() {

all A:Action | action_consistent(A) && all R:A.Roles |

role_consistent(R, A)

}

assert BasicProperties {

basic_properties()

}

Apêndice B

Fault-Tolerant Insulin Pump

Therapy in Alloy

module FTIPT

open CoordinatedExceptionHandling

// ACTIONS

one sig CAACycle, CAAChecking, CAAExecuting extends Action {}

one sig CAASensors extends Action {}

one sig CAAActuators extends Action {}

one sig CAARAIP, CAALAIP extends Action {}

// ROLES

one sig ParamsCAACycle, ParamsCAAChecking, ParamsCAAExecuting

extends Role {}

one sig ControllerCAACycle, ControllerCAAChecking,

ControllerCAAExecuting extends Role {}

one sig Calculus extends Role {}

one sig S_CT, BGC, HR extends Role {}

one sig A_CT, A_RAIP, A_LAIP extends Role {}

one sig RAIP, SensorRAIP extends Role {}

one sig LAIP, SensorLAIP extends Role {}

one sig K1, K2, K3 extends Keys {}

one sig Params_Part, Controller_Part, Calculus_Part

188

189

extends Participant {}

one sig S_CT_Part, BGC_Part, HR_Part extends Participant {}

one sig A_CT_Part, A_RAIP_Part, A_LAIP_PArt extends Participant {}

one sig RAIP_Part, SensorRAIP_Part extends Participant {}

one sig LAIP_Part, SensorLAIP_Part extends Participant {}

// EXCEPTIONS

one sig E1, E2, E3, AlarmEXC extends RootException {}

one sig E4, E5, E6, E7 extends RootException {}

fact SystemStructure {

CAACycle.Roles = ParamsCAACycle + ControllerCAACycle + Calculus

CAAChecking.Roles = ParamsCAAChecking + ControllerCAAChecking

CAAExecuting.Roles = ParamsCAAExecuting + ControllerCAAExecuting

CAASensors.Roles = S_CT + BGC + HR

CAACycle.NestedActions = CAAChecking + CAAExecuting

no CAAChecking.NestedActions

no CAAExecuting.NestedActions

no CAASensors.NestedActions

Params_Part.RolesPlayed = ParamsCAAExecuting + ParamsCAAChecking

+ ParamsCAACycle

Controller_Part.RolesPlayed = ControllerCAACycle

+ ControllerCAAChecking + ControllerCAAExecuting

Calculus_Part.RolesPlayed = Calculus

S_CT_Part.RolesPlayed = S_CT

BGC_Part.RolesPlayed = BGC

HR_Part.RolesPlayed = HR

A_CT_Part.RolesPlayed = A_CT

A_RAIP_Part.RolesPlayed = A_RAIP

A_LAIP_PArt.RolesPlayed = A_LAIP

RAIP_Part.RolesPlayed = RAIP

SensorRAIP_Part.RolesPlayed = SensorRAIP

LAIP_Part.RolesPlayed = LAIP

SensorLAIP_Part.RolesPlayed = SensorLAIP

CAAActuators.Roles = A_CT + A_RAIP + A_LAIP

CAARAIP.Roles = RAIP + SensorRAIP

CAALAIP.Roles = LAIP + SensorLAIP

no CAAActuators.NestedActions

no CAARAIP.NestedActions

190

no CAALAIP.NestedActions

ControllerCAAChecking.ComponentActions = CAASensors

ControllerCAAExecuting.ComponentActions = CAAActuators

no ControllerCAACycle.ComponentActions

no ParamsCAACycle.ComponentActions

no ParamsCAAExecuting.ComponentActions

no ParamsCAAChecking.ComponentActions

no Calculus.ComponentActions

no S_CT.ComponentActions

no BGC.ComponentActions

no HR.ComponentActions

no A_CT.ComponentActions

A_RAIP.ComponentActions = CAARAIP

A_LAIP.ComponentActions = CAALAIP

no RAIP.ComponentActions

no LAIP.ComponentActions

no SensorLAIP.ComponentActions

no SensorRAIP.ComponentActions

}

fact ExceptionFlow {

no CAACycle.External

CAACycle.Internal = E3 + AlarmEXC

CAACycle.ToResolve = E3->K1 + AlarmEXC->K2 + (AlarmEXC + E3)->K3

CAACycle.ResolvedTo = K1->AlarmEXC + K2->AlarmEXC + K3->AlarmEXC

no CAACycle.AbortException

no CAACycle.FailException

no CAACycle.Excluding

CAAChecking.External = AlarmEXC

CAAChecking.Internal = AlarmEXC

CAAChecking.ToResolve = AlarmEXC->K1

CAAChecking.ResolvedTo = K1->AlarmEXC

no CAAChecking.AbortException

no CAAChecking.FailException

no CAAChecking.Excluding

CAAExecuting.External = AlarmEXC

CAAExecuting.Internal = AlarmEXC

191

CAAExecuting.ToResolve = AlarmEXC->K1

CAAExecuting.ResolvedTo = K1->AlarmEXC

no CAAExecuting.AbortException

no CAAExecuting.FailException

no CAAExecuting.Excluding

CAASensors.External = AlarmEXC

CAASensors.Internal = E1 + E2

CAASensors.ToResolve = E1->K1 + E2->K2 + (E1 + E2)->K3

CAASensors.ResolvedTo = K1->AlarmEXC + K2->AlarmEXC + K3->AlarmEXC

no CAASensors.AbortException

no CAASensors.FailException

no CAASensors.Excluding

CAAActuators.External = AlarmEXC

CAAActuators.Internal = AlarmEXC

CAAActuators.ToResolve = AlarmEXC->K1

CAAActuators.ResolvedTo = K1->AlarmEXC

no CAAActuators.AbortException

no CAAActuators.FailException

no CAAActuators.Excluding

CAARAIP.External = AlarmEXC

CAARAIP.Internal = E4 + E5

CAARAIP.ToResolve = E4->K1 + E5->K2

CAARAIP.ResolvedTo = K1->AlarmEXC + K2->AlarmEXC

no CAARAIP.AbortException

no CAARAIP.FailException

no CAARAIP.Excluding

CAALAIP.External = AlarmEXC

CAALAIP.Internal = E6 + E7

CAALAIP.ToResolve = E6->K1 + E7->K2

CAALAIP.ResolvedTo = K1->AlarmEXC + K2->AlarmEXC

no CAALAIP.AbortException

no CAALAIP.FailException

no CAALAIP.Excluding

no Calculus.Signals

Calculus.Raises = E3

Calculus.GeneratesRaising = E3

192

no Calculus.GeneratesSignaling

Calculus.Resolved = AlarmEXC

no Calculus.Encounters

Calculus.Handles = AlarmEXC

no Calculus.Propagates

no Calculus.Aborts

no ControllerCAACycle.Signals

no ControllerCAACycle.Raises

no ControllerCAACycle.GeneratesRaising

no ControllerCAACycle.GeneratesSignaling

ControllerCAACycle.Resolved = AlarmEXC

no ControllerCAACycle.Encounters

ControllerCAACycle.Handles = AlarmEXC

no ControllerCAACycle.Propagates

no ControllerCAACycle.Aborts

no ParamsCAACycle.Signals

no ParamsCAACycle.Raises

no ParamsCAACycle.GeneratesRaising

no ParamsCAACycle.GeneratesSignaling

ParamsCAACycle.Resolved = AlarmEXC

no ParamsCAACycle.Encounters

ParamsCAACycle.Handles = AlarmEXC

no ParamsCAACycle.Propagates

no ParamsCAACycle.Aborts

ControllerCAAChecking.Signals = AlarmEXC

ControllerCAAChecking.Raises = AlarmEXC

no ControllerCAAChecking.GeneratesRaising

no ControllerCAAChecking.GeneratesSignaling

ControllerCAAChecking.Resolved = AlarmEXC

ControllerCAAChecking.Encounters = AlarmEXC

no ControllerCAAChecking.Handles

no ControllerCAAChecking.Propagates

no ControllerCAAChecking.Aborts

ParamsCAAChecking.Signals = AlarmEXC

no ParamsCAAChecking.Raises

no ParamsCAAChecking.GeneratesRaising

no ParamsCAAChecking.GeneratesSignaling

193

ParamsCAAChecking.Resolved = AlarmEXC

no ParamsCAAChecking.Encounters

no ParamsCAAChecking.Handles

no ParamsCAAChecking.Propagates

no ParamsCAAChecking.Aborts

ControllerCAAExecuting.Signals = AlarmEXC

ControllerCAAExecuting.Raises = AlarmEXC

no ControllerCAAExecuting.GeneratesRaising

no ControllerCAAExecuting.GeneratesSignaling

ControllerCAAExecuting.Resolved = AlarmEXC

ControllerCAAExecuting.Encounters = AlarmEXC

no ControllerCAAExecuting.Handles

no ControllerCAAExecuting.Propagates

no ControllerCAAExecuting.Aborts

ParamsCAAExecuting.Signals = AlarmEXC

no ParamsCAAExecuting.Raises

no ParamsCAAExecuting.GeneratesRaising

no ParamsCAAExecuting.GeneratesSignaling

ParamsCAAExecuting.Resolved = AlarmEXC

no ParamsCAAExecuting.Encounters

no ParamsCAAExecuting.Handles

no ParamsCAAExecuting.Propagates

no ParamsCAAExecuting.Aborts

S_CT.Signals = AlarmEXC

no S_CT.Raises

no S_CT.GeneratesRaising

no S_CT.GeneratesSignaling

S_CT.Resolved = AlarmEXC

no S_CT.Encounters

no S_CT.Handles

no S_CT.Propagates

no S_CT.Aborts

BGC.Signals = AlarmEXC

BGC.Raises = E1

BGC.GeneratesRaising = E1

no BGC.GeneratesSignaling

BGC.Resolved = AlarmEXC

194

no BGC.Encounters

no BGC.Handles

no BGC.Propagates

no BGC.Aborts

HR.Signals = AlarmEXC

HR.Raises = E2

HR.GeneratesRaising = E2

no HR.GeneratesSignaling

HR.Resolved = AlarmEXC

no HR.Encounters

no HR.Handles

no HR.Propagates

no HR.Aborts

A_CT.Signals = AlarmEXC

no A_CT.Raises

no A_CT.GeneratesRaising

no A_CT.GeneratesSignaling

A_CT.Resolved = AlarmEXC

no A_CT.Encounters

no A_CT.Handles

no A_CT.Propagates

no A_CT.Aborts

A_RAIP.Signals = AlarmEXC

A_RAIP.Raises = AlarmEXC

no A_RAIP.GeneratesRaising

no A_RAIP.GeneratesSignaling

A_RAIP.Resolved = AlarmEXC

A_RAIP.Encounters = AlarmEXC

no A_RAIP.Handles

no A_RAIP.Propagates

no A_RAIP.Aborts

A_LAIP.Signals = AlarmEXC

A_LAIP.Raises = AlarmEXC

no A_LAIP.GeneratesRaising

no A_LAIP.GeneratesSignaling

A_LAIP.Resolved = AlarmEXC

A_LAIP.Encounters = AlarmEXC

195

no A_LAIP.Handles

no A_LAIP.Propagates

no A_LAIP.Aborts

RAIP.Signals = AlarmEXC

no RAIP.Raises

no RAIP.GeneratesRaising

no RAIP.GeneratesSignaling

RAIP.Resolved = AlarmEXC

no RAIP.Encounters

no RAIP.Handles

no RAIP.Propagates

no RAIP.Aborts

SensorRAIP.Signals = AlarmEXC

SensorRAIP.Raises = E4 + E5

SensorRAIP.GeneratesRaising = E4 + E5

no SensorRAIP.GeneratesSignaling

SensorRAIP.Resolved = AlarmEXC

no SensorRAIP.Encounters

no SensorRAIP.Handles

no SensorRAIP.Propagates

no SensorRAIP.Aborts

LAIP.Signals = AlarmEXC

no LAIP.Raises

no LAIP.GeneratesRaising

no LAIP.GeneratesSignaling

LAIP.Resolved = AlarmEXC

no LAIP.Encounters

no LAIP.Handles

no LAIP.Propagates

no LAIP.Aborts

SensorLAIP.Signals = AlarmEXC

SensorLAIP.Raises = E6 + E7

SensorLAIP.GeneratesRaising = E6 + E7

no SensorLAIP.GeneratesSignaling

SensorLAIP.Resolved = AlarmEXC

no SensorLAIP.Encounters

no SensorLAIP.Handles

196

no SensorLAIP.Propagates

no SensorLAIP.Aborts

}

// Application-specific property. For all the actions except for

// the top-level CA action CAACycle, if AlarmEXC is an internall

// exception, it is also one external exception.

pred app_specific_properties() {

all A: (Action - CAACycle) |

AlarmEXC in A.Internal => AlarmEXC in A.External

}

assert AppSpecificProperties {

app_specific_properties()

}

Apêndice C

Partial Specifications of Generic CA

Actions Model and Fault-Tolerant

Insulin Pump Therapy in B

MACHINE CoordinatedExceptionHandling

/*

Static B machine for Coordinated Exception Handling.

*/

SETS ACTION = {CAACycle, CAAChecking};

PARTICIPANT = {P1, P2, P3};

ROLE = {Calculus, Controller, Params,

ControllerChecking, ParamsChecking};

ROOT_EXCEPTION = {E3, E4}; OK = {yes, no}

/* Variables of Action */

VARIABLES Internal, External, Roles, NestedActions,

AbortException, FailException, Resolution,

Excluding,

/* Variables of Role */

Signals, Raises, Generates, Resolved, Encounters,

Handles, ComponentActions, Propagates, Aborts,

/* Variables of Participant */

RolesPlayed,

197

198

/* Results of operations */

ActionsConsistent, ParticipantsConsistent,

RolesConsistent

INVARIANT Roles : ACTION <-> ROLE

& Internal : ACTION <-> ROOT_EXCEPTION

& External : ACTION <-> ROOT_EXCEPTION

& NestedActions : ACTION <-> ACTION

& AbortException : ACTION +-> ROOT_EXCEPTION

& FailException : ACTION +-> ROOT_EXCEPTION

& Resolution : ACTION <-> (POW(ROOT_EXCEPTION)

+-> ROOT_EXCEPTION)

& Excluding : ACTION <-> POW(ROOT_EXCEPTION)

& card(AbortException) <= 1 & card(FailException) <= 1

& Signals : ROLE <-> ROOT_EXCEPTION

& Raises : ROLE <-> ROOT_EXCEPTION

& Generates : ROLE <-> ROOT_EXCEPTION

& Resolved : ROLE <-> ROOT_EXCEPTION

& Encounters : ROLE <-> ROOT_EXCEPTION

& Handles : ROLE <-> ROOT_EXCEPTION

& Aborts : ROLE <-> ROOT_EXCEPTION

& ComponentActions : ROLE <-> ACTION

& Propagates : ROLE <->

(ROOT_EXCEPTION +-> ROOT_EXCEPTION)

& RolesPlayed : PARTICIPANT <-> ROLE

& ActionsConsistent : OK

& ActionsConsistent = yes

& ParticipantsConsistent : OK

& ParticipantsConsistent = yes

& RolesConsistent : OK

& RolesConsistent = yes

INITIALISATION Roles := { CAACycle |-> Calculus,

CAACycle |-> Controller, CAACycle |-> Params,

CAAChecking |-> ControllerChecking,

CAAChecking |-> ParamsChecking}

|| External := {} || Internal := { CAACycle |-> E3}

|| NestedActions := { CAACycle |-> CAAChecking}

|| AbortException := {}

|| FailException := {}

|| Resolution := {CAACycle |-> {{E3} |-> E3}}

199

|| Signals := {} || Excluding := {}

|| Raises := {Calculus |-> E3}

|| Generates := {Calculus |-> E3}

|| Resolved := {Calculus |-> E3, Controller |-> E3,

Params |-> E3}

|| Encounters := {} || Handles := {Calculus |-> E3,

Controller |-> E3, Params |-> E3}

|| Aborts := {} || ComponentActions := {}

|| Propagates := {}

|| RolesPlayed := {P1 |-> Controller, P2 |-> Calculus,

P3 |-> Params, P1 |-> ControllerChecking,

P2 |-> ParamsChecking}

|| ActionsConsistent := yes

|| ParticipantsConsistent := yes

|| RolesConsistent := yes

OPERATIONS

actionConsistent =

IF !Act.((Act : ACTION) =>

(ran({Act} <| Internal) = ran(ran({Act} <| Roles) <| Raises)

\/ ran(ran({Act} <| NestedActions) <| External))

& (ran({Act} <| External) = ran(ran({Act} <| Roles)

<| Signals))

& (ran(union(Resolution[{Act}])) <: Resolved[Roles[{Act}]])

& (card({E | E:ROOT_EXCEPTION & E:ran(union(Resolution[{Act}]))

& (!R.((R:ROLE & R:Roles[{Act}])=> E:Aborts[{R}]))}) > 0 =>

(#AE.(AE:ROOT_EXCEPTION & AE = AbortException(Act)))

)

& (card({E | E:ROOT_EXCEPTION & E:ran(union(Resolution[{Act}]))

& (!R.((R:ROLE & R:Roles[{Act}])=> E:Aborts[{R}]))}) = 0 =>

not(#AE.(AE:ROOT_EXCEPTION & AE = AbortException(Act)))

)

& (#E.(E:ROOT_EXCEPTION & E:ran(union(Resolution[{Act}]))

& !R.((R:ROLE & R:Roles[{Act}]) => not(E:Handles[{R}]

or E:Aborts[{R}]))

) =>

((card(Signals[Roles[{Act}]] \/

ran({Act} <| FailException)) > 1 =>

(#FE.(FE:ROOT_EXCEPTION & FE = FailException(Act))))

&

200

(card(Signals[Roles[{Act}]]

\/ ran({Act} <| FailException)) <= 1 =>

not(#FE.(FE:ROOT_EXCEPTION & FE = FailException(Act))))

)

)

& ((dom(union(Resolution[{Act}])) /\ Excluding[{Act}]) = {})

& (!ES.((ES:POW(ROOT_EXCEPTION) &

(ES:(dom(union(Resolution[{Act}])) \/ Excluding[{Act}]))) =>

card(ES) <=

(card({R|R:ROLE & R:Roles[{Act}]

& card(Raises[{R}] /\ ES) > 0})

+ card({NA|NA:ACTION & NA:NestedActions[{Act}]

& card(External[{NA}] /\ ES) > 0})

)

)

)

)

THEN ActionsConsistent := yes

ELSE ActionsConsistent := no

END;

roleConsistent =

IF !Act.((Act:ACTION) =>

!R.((R:ROLE & R:Roles[{Act}]) =>

(Encounters[{R}] = External[ComponentActions[{R}]])

& (Resolved[{R}] = ran(union(Resolution[{Act}])))

& ((Handles[{R}] /\ Aborts[{R}]) = {})

& (Aborts[{R}] <: Resolved[{R}])

& (Signals[{R}] = Resolved[{R}] - Handles[{R}]

- ((Resolved[{R}] - Handles[{R}])

/\ dom(union(Propagates[{R}])))

\/ (union(Propagates[{R}]))[(Resolved[{R}]

- Handles[{R}])]

)

& (Raises[{R}] = Encounters[{R}] \/ Generates[{R}])

& (dom(union(Propagates[{R}])) <: Resolved[{R}]

- Handles[{R}])

& (ran(union(Propagates[{R}])) <: Signals[{R}])

& (Handles[{R}] <: Resolved[{R}])

)

201

)

THEN RolesConsistent := yes

ELSE RolesConsistent := no

END;

participantsConsistent =

IF !Act.((Act:ACTION) =>

(!NA.((NA:ACTION & NA:NestedActions[{Act}]) =>

(!P.((P:PARTICIPANT) => card(RolesPlayed[{P}]

/\ Roles[{Act}]) <= 1))

& (Roles[{Act}] <: RolesPlayed[PARTICIPANT])

& (!NAR.((NAR:ROLE & NAR:Roles[{NA}]) =>

#P.(P:PARTICIPANT & NAR:RolesPlayed[{P}]

& card(RolesPlayed[{P}] /\ Roles[{Act}]) > 0)

)

)

))

)

THEN ParticipantsConsistent := yes

ELSE ParticipantsConsistent := no

END

END;

END

Referências Bibliográficas

[1] M. Abi-Antoun, J. Aldrich, D. Garlan, B. R. Schmerl, N. H. Nahas, and T. Tseng.

Modeling and implementing software architecture with acme and archjava. In Pro-

ceedings of the 27th International Conference in Software Engineering (ICSE’2005),

pages 676–677, St. Louis, USA, May 2005.

[2] G. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descriptions of

software architecture. ACM Transactions on Software Engineering and Methodology,

4(4):319–364, October 1995.

[3] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University

Press, 1996.

[4] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Tran-

sactions on Software Engineering and Methodology, 6(3):213–249, July 1997.

[5] T. Anderson and P. A. Lee. Fault Tolerance: Principles and Practice. Springer-

Verlag, 2nd edition, 1990.

[6] P. C. Attie, D. H. Lorenz, A. Portnova, and H. Chockler. Behavioral compatibility

without state explosion: Design and verification of a component-based elevator

control system. In Proceedings of the 9th International Symposium on Component-

Based Software Engineering, volume 4063 of LNCS, pages 33–49, 2006.

[7] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: an extensible as-

pectj compiler. In Proceedings of 4th ACM Conference on Aspect-Oriented Software

Development, pages 87–98, March 2005.

[8] A. Avizienis. Towards systematic design of fault-tolerant systems. IEEE Computer,

30(4):51–58, April 1997.

[9] F. Bachman, L. Bass, C. Buhman, F. Long, J. Robert, R. Seacord, and K. Wallnau.

Volume ii: Technical concepts of component-based software engineering. Technical

202

REFERÊNCIAS BIBLIOGRÁFICAS 203

Report CMU/SEI-2000-TR-008, Software Engineering Institute, Carnegie-Mellon

University, April 2000.

[10] L. Bass, P. C. Clements, and R. Kazman. Air traffic control: A case study in

designing for high availability. In Software Architecture in Practice, chapter 6.

Addison-Wesley, 2nd edition, 2003.

[11] L. Bass, P. C. Clements, and R. Kazman. Software Architecture in Practice.

Addison-Wesley, 2nd edition, 2003.

[12] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model checking fault tolerant systems.

Software Testing, Verification, and Reliability, 12:251–275, December 2002.

[13] S. Bodoff. The J2EE Tutorial. Addison-Wesley, 2004.

[14] P. H. S. Brito. A method for modeling exceptions in component-based development

(in portuguese). Master’s thesis, State University of Campinas, Brazil, 2005.

[15] A. Brown and K. Wallnau. The current state of CBSE. IEEE Software, 15(5):37–46,

September/October 1998.

[16] M. Bruntink, A. van Deursen, and T. Tourwé. Discovering faults in idiom-based

exception handling. In Proc. of the 28th ICSE, pages 242–251, Shangai, China,

2006.

[17] P. A. Buhr and R. Mok. Advanced exception handling mechanisms. IEEE Tran-

sactions on Software Engineering, 26(9):1–16, September 2000.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

Oriented Software Architecture: A System of Patterns. John Wiley and Sons, West

Sussex, England, 1996.

[19] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, and T. B. C. Lucena. Composing

design patterns: A scalability study of aspect-oriented programming. In Proceedings

of 5th ACM Conference on Aspect-Oriented Software Development, pages 109–121,

March 2006.

[20] R. H. Campbell and B. Randell. Error recovery in asynchronous systems. IEEE

Transactions on Software Engineering, SE-12(8):811–826, 1986.

[21] A. Capozucca, N. Guelfi, and P. Pelliccione. The fault-tolerant insulin pump the-

rapy. In Proceedings of FM’2005 Workshop on Rigorous Engineering of Fault-

Tolerant Systems, pages 33–42, Newcastle upon Tyne, UK, July 2005.

REFERÊNCIAS BIBLIOGRÁFICAS 204

[22] T. Cargill. Exception handling: A false sense of security. C++ Report, 6(9),

November-December 1994.

[23] F. Castor Filho, R. M. ao Ferreira, C. M. F. Rubira, and A. Garcia. Aspectizing

exception handling: A quantitative study. In C. Dony et al., editors, Advanced

Topics in Exception Handling Techniques, volume 4119 of LNCS, pages 255–274.

Springer-Verlag, 2006.

[24] F. Castor Filho, N. Cacho, E. Figueiredo, R. Ferreira, A. Garcia, and C. M. F. Ru-

bira. Exceptions and aspects: The devil is in the details. In Proceedings of the 14th

ACM SIGSOFT Symposium on Foundations of Software Engineering, November

2006. To appear.

[25] F. Castor Filho, P. H. da S. Brito, and C. M. F. Rubira. A framework for analyzing

exception flow in software architectures. In Proceedings of the ICSE’2005 Workshop

on Architecting Dependable Systems, May 2005.

[26] F. Castor Filho, P. H. da S. Brito, and C. M. F. Rubira. Modeling and analysis

of architectural exceptions. In Proceedings of the FM’2005 Workshop on Rigorous

Engineering of Fault-Tolerant Systems, pages 112–121, July 2005.

[27] F. Castor Filho, P. H. da S. Brito, and C. M. F. Rubira. Reasoning about exception

flow at the architectural level. In M. Butler et al., editors, Rigorous Development

of Complex Fault-Tolerant Systems, volume 4157 of LNCS, pages 80–99. Springer-

Verlag, 2006.

[28] F. Castor Filho, P. H. da S. Brito, and C. M. F. Rubira. Specification of exception

flow in software architectures. Journal of Systems and Software, 79(10):1397–1418,

2006.

[29] F. Castor Filho, P. A. de C. Guerra, V. A. Pagano, and C. M. F. Rubira. A

systematic approach for structuring exception handling in robust component-based

software. Journal of the Brazilian Computer Society, 10(3):5–19, April 2005.

[30] F. Castor Filho, P. A. de C. Guerra, and C. M. F. Rubira. An architectural-level

exception-handling system for component-based applications. In Proceedings of the

1st Latin American Symposium on Dependable Computing, LNCS 2847, pages 321–

340. Springer-Verlag, October 2003.

[31] F. Castor Filho, P. A. de C. Guerra, and C. M. F. Rubira. FaTC2: An object-

oriented framework for developing fault-tolerant component-based systems. In Pro-

ceedings of the ICSE’2003 Workshop on Software Architectures for Dependable Sys-

tems, pages 13–18, May 2003.

REFERÊNCIAS BIBLIOGRÁFICAS 205

[32] F. Castor Filho, A. Garcia, and C. M. F. Rubira. A quantitative study on the

aspectization of exception handling. In Proceedings of ECOOP’2005 Workshop on

Exception Handling in Object-Oriented Systems, 2005.

[33] F. Castor Filho, A. Garcia, and C. M. F. Rubira. Implementing modular error han-

dling with aspects: Best and worst practices. Technical Report IC-06-22, Institute

of Computing, State University of Campinas, 2006.

[34] F. Castor Filho, A. Romanovsky, and C. M. F. Rubira. Verification of coordinated

exception handling. Technical Report CS-TR-927, School of Computing Science,

University of Newcastle upon Tyne, 2005.

[35] F. Castor Filho, A. Romanovsky, and C. M. F. Rubira. Verification of coordina-

ted exception handling. In Proceedings of the 21st ACM Symposium on Applied

Computing, pages 680–685, Dijon, France, April 2006.

[36] F. Castor Filho and C. M. F. Rubira. Implementing coordinated error recovery for

distributed object-oriented systems with AspectJ. Journal of Universal Computer

Science, 10(7):843–858, July 2004.

[37] F. Castor Filho and C. M. F. Rubira. Implementing coordinated exception handling

for distributed object-oriented systems with AspectJ. In Proceedings of the VIII

Brazilian Symposium on Programming Languages, pages 128–142, May 2004.

[38] B.-M. Chang et al. Interprocedural exception analysis for java. In Proceedings of

the 16th ACM Symposium on Applied Computing, pages 620–625, March 2001.

[39] M. Chapman, A. Vasseur, and G. Kniesel (eds.). Aosd 2006 - industry track proce-

edings. Technical Report IAI-TR-2006-3, Computer Science Department III, Uni-

versity of Bonn, March 2006. ISSN 0944-8535.

[40] C. Chavez. A Model-Driven Approach for Aspect-Oriented Design. PhD thesis,

Pontif́ıficia Universidade Católica do Rio de Janeiro, April 2004.

[41] J. Cheesman and J. Daniels. UML Components. Addison-Wesley, 2000.

[42] S. Chiba. Load-time structural reflection in java. In Proceedings of the 14th European

Conference on Object-Oriented Programming, volume 1850 of LNCS, pages 313–336,

2000.

[43] S. Chidamber and C. Kemerer. A metrics suite for oo design. IEEE Transactions

on Software Engineering, 20(6):476–493, 1994.

REFERÊNCIAS BIBLIOGRÁFICAS 206

[44] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, January

2000.

[45] ClearSy. ClearSy AtelierB v3.6, October 26th 2006. Address:

http://www.atelierb.societe.com/index uk.htm.

[46] P. C. Clements et al. Documenting Software Architectures: Views and Beyond.

Addison-Wesley, 2003.

[47] P. C. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures.

Addison-Wesley, 2003.

[48] P. C. Clements and L. Northrop. Software architecture: An executive overview.

Technical Report CMU/SEI-96-TR-003, SEI/CMU, February 1996.

[49] L. Cole and P. Borba. Deriving refactorings for aspectj. In Proceedings of the 4th

ACM Conference on Aspect-Oriented Software Development, pages 123–134, March

2005.

[50] J. E. Cook and J. A. Dage. Highly reliable upgrading of components. In Proceedings

of the 21st International Conference on Software Engineering, pages 203–212, May

1999.

[51] F. Cristian. A recovery mechanism for modular software. In Proceedings of the 4th

International Conference on Software Engineering, pages 42–51, 1979.

[52] F. Cristian. Exception handling. In T. Anderson, editor, Dependability of Resilient

Computers, pages 68–97. Blackwell Scientific Publications, 1989.

[53] Q. Cui and J. Gannon. Data-oriented exception handling. IEEE Transactions on

Software Engineering, 18(5):393–401, May 1992.

[54] P. H. da S. Brito, C. R. Rocha, F. Castor Filho, E. Martins, and C. M. F. Ru-

bira. A method for modeling and testing exceptions in component-based software

development. In Proceedings of the 2nd Latin American Symposium on Dependable

Computing, volume 3747 of LNCS, pages 61–79, 2005.

[55] E. M. Dashofy, N. Medvidovic, and R. N. Taylor. Using off-the-shelf middleware to

implement connectors in distributed software architectures. In Proceedings of the

21st International Conference on Software Engineering, pages 3–12, May 1999.

[56] P. A. de C. Guerra, C. M. F. Rubira, and R. de Lemos. An idealized fault-tolerant

architectural component. In Proceedings of ICSE Workshop on Architecting Depen-

dable Systems, May 2002.

REFERÊNCIAS BIBLIOGRÁFICAS 207

[57] R. de Lemos. Describing evolving dependable systems using co-operative software

architectures. In Proceedings of the 2001 IEEE International Conference on Software

Maintenance, pages 320–331, Florence, Italy, November 2001.

[58] R. de Lemos, P. A. de Castro Guerra, and C. M. F. Rubira. A fault-tolerant

architectural approach for dependable systems. IEEE Software, 23(2):80–87, 2006.

[59] R. de Lemos and A. Romanovsky. Exception handling in the software lifecycle.

International Journal of Computer Science and Engineering, 16(2):167–181, 2001.

[60] G. Doshi. Best practices for exception handling, 2003. Address:

http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html.

[61] D. D’Souza and A. C. Wills. Objects, Components and Frameworks with UML: The

Catalysis Approach. Addison-Wesley, 1998.

[62] Eclipse. The eclipse project. http://www.eclipse.org, 2003.

[63] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Introduction.

Communications of the ACM, 44(10):28–32, 2001.

[64] M. Fahndrich et al. Tracking down exceptions in standard ml. Technical Report

CSD-98-996, University of California, Berkeley, 1998.

[65] G. R. M. Ferreira, C. M. F. Rubira, and R. de Lemos. Explicit representation of

exception handling in the development of dependable component-based systems. In

Proceedings of International Symposium on High Assurance Software Engineering,

Boca Raton, FL, USA., October 2001.

[66] C. Fetzer, K. Högstedt, and P. Felber. Automatic detection and masking of nona-

tomic exception handling. IEEE Transactions on Software Engineering, 30(8):547–

560, 2004.

[67] R. Filman and D. Friedman. Aspect-oriented programming is quantification and

obliviousness. In Proceedings of the OOPSLA’2000 Workshop on Advanced Separa-

tion of Concerns, October 2000.

[68] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.

[69] P. Fradet and M. Südolt. An aspect language for robust programming. In Procee-

dings of the ECOOP’99 Workshop on Aspect-Oriented Programming, June 1999.

REFERÊNCIAS BIBLIOGRÁFICAS 208

[70] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Software Systems. Addison-Wesley, 1995.

[71] A. Garcia, D. Beder, and C. Rubira. An exception handling mechanism for de-

veloping dependable object-oriented software based on a meta-level approach. In

Proceedings of the 10th IEEE International Symposium on Software Reliability En-

gineering, pages 52–61, November 1999.

[72] A. Garcia, C. Rubira, A. Romanovsky, and J. Xu. A comparative study of exception

handling mechanisms for building dependable object-oriented software. Journal of

Systems and Software, 59(2):197–222, November 2001.

[73] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. J. P. de Lucena, and A. von

Staa. Modularizing design patterns with aspects: A quantitative study. Transactions

on Aspect-Oriented Programming, 1:36–74, 2006.

[74] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa.

Modularizing design patterns with aspects: A quantitative study. In Proceedings

of the 4th ACM Conference on Aspect-Oriented Software Development, pages 3–14,

March 2005.

[75] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so

hard. IEEE Software, 12(6):17–26, 1995.

[76] D. Garlan et al. Acme: Architectural description of component-based systems. In

Foundations of Component-Based Systems, chapter 3. Cambridge University Press,

2000.

[77] D. Garlan and Z. Wang. A case study in software architecture interchange. In

Proceedings of COORDINATION’99, 1999.

[78] J. Gleick. A Bug and a Crash, December 1st 1996. Dispońıvel em

http://www.around.com/ariane.html.

[79] I. Godil and H. Jacobsen. Horizontal decomposition of prevlayer. In Proceedings of

CASCON 2005, 2005.

[80] J. B. Goodenough. Exception handling: Issues and a proposed notation. Commu-

nications of the ACM, 18(12):683–696, December 1975.

[81] I. Gorton and L. Zhu. Tool support for just-in-time architecture reconstruction

and evaluation: an experience report. In Proceedings of the 27th International

REFERÊNCIAS BIBLIOGRÁFICAS 209

Conference in Software Engineering (ICSE’2005), pages 514–523, St. Louis, USA,

May 2005.

[82] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,

1996.

[83] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.

[84] P. Greenwood and L. Blair. A framework for policy-driven auto-adaptive systems

using dynamic framed aspects. Trans. AOSD, 2006. To appear.

[85] P. Greenwood and et al. On the impact of aspectual decompositions on design

stability: An empirical study. In Proc. of the 21st ECOOP, July 2007. To appear.

[86] N. Guelfi, G. L. Cousin, and B. Ries. Engineering of dependable complex business

processes using uml and coordinated atomic actions. In Proceedings of International

Workshop on Modeling Inter-Organizational Systems, pages 468–482, 2004.

[87] P. Guerra, F. Castor Filho, V. A. Pagano, and C. Rubira. Structuring exception

handling for dependable component-based software systems. In Proceedings of 30th

Euromicro Conference, pages 575–582, Rennes, France, September 2004.

[88] P. Guerra, C. Rubira, A. Romanovsky, and R. de Lemos. Integrating COTS soft-

ware componentes into dependable software architectures. In Proceedings of the 6th

IEEE International Symposium on Object-Oriented Real-Time Distributed Compu-

ting, pages 139–142, May 2003.

[89] P. A. C. Guerra, C. M. F. Rubira, and R. de Lemos. A fault-tolerant architecture

for component-based software systems. In R. de Lemos, C. Gracek, and A. Ro-

manosvsky, editors, Architecting Dependable Systems, LNCS 2677. Springer-Verlag,

2003.

[90] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-oriented soft-

ware. In Proceedings of 4th Net.ObjectDays Conference, pages 19–35, September

2003.

[91] J. Hannemann and G. Kiczales. Design pattern implementation in java and AspectJ.

In Proceedings of 17th ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 161–173, November 2002.

[92] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message Service

specification, April 2002. Version 1.1.

REFERÊNCIAS BIBLIOGRÁFICAS 210

[93] B. Harbulot and J. R. Gurd. A join point for loops in aspectj. In Proceedings of

the 5th ACM Conference on Aspect-Oriented Software Development, pages 63–74,

Bonn, Germany, March 2006.

[94] Headquarters US Air Force Inspection and Safety Center. Software system safety,

September 1985. AFISC SSH 1-1.

[95] A. Hejlsberg, S. Wiltamuth, and P. Golde. The C# Programming Language.

Addison-Wesley, Reading, USA, 2003.

[96] IBM. IBM Software: Websphere MQ v6.0, October 26th 2006. Address:

http://www-306.ibm.com/software/integration/wmq/v60/.

[97] V. Issarny and J. P. Banatre. Architecture-based exception handling. In Proceedings

of the 34th Annual Hawaii International Conference on System Sciences, 2001.

[98] D. Jackson. Alloy: A lightweight object modeling notation. ACM Transactions on

Software Engineering and Methodology, 11(2):256–290, April 2002.

[99] D. Jackson. Alloy home page, 2004. Available at

http://sdg.lcs.mit.edu/alloy/default.htm.

[100] D. Jackson. Alloy home page, March 2006. Available at

http://sdg.lcs.mit.edu/alloy/default.htm.

[101] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: The alloy constraint analyzer.

In Proceedings of the 22nd International Conference on Software Engineering, pages

730–733, Limerick, Ireland, June 2000.

[102] J.-M. Jézéquel and B. Meyer. Design by contract: The lessons of ariane. IEEE

Computer, 30(2):129–130, January 1997.

[103] S. Jiang et al. An approach to analyzing exception propagation. In Proceedings of the

8th IASTED International Conference on Software Engineering and Applications,

November 2004.

[104] S. Johannes. Software Engineering with Reusable Components. Springer-Verlag,

1997.

[105] K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and P. Rumeau. Benchmarking

the dependability of windows and linux using postmark workloads. In Proceedings of

the 16th IEEE International Symposium on Software Reliability Engineering, pages

11–20, November 2005.

REFERÊNCIAS BIBLIOGRÁFICAS 211

[106] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In Proceedings of the 11th European

Conference on Object-Oriented Programming, LNCS 1271, pages 220–242, 1997.

[107] J. Kienzle and R. Guerraoui. AOP: Does it make sense? the case of concurrency

and failures. In Proceedings of 16th European Conference on Object-Oriented Pro-

gramming, pages 37–61, June 2002.

[108] A. Koening and B. Stroustrup. Exception handling for c++. Jornal of Object-

Oriented Programmings, 3(2):16–33, July/August 1990.

[109] P. Krüchten. The 4+1 view model of software architecture. IEEE Software, pages

42–50, November 1995.

[110] P. Kruchten, J. H. Obbink, and J. A. Stafford. The past, present, and future for

software architecture. IEEE Software, 23(2):22–30, 2006.

[111] U. Kulesza et al. Quantifying the effects of aspect-oriented programming: A main-

tenance study. In Proc. of the 22nd ICSM, pages 223–233, 2006.

[112] S. Lacourte. Exceptions in guide, an object-oriented language for distributed ap-

plications. In Proceedings of the 5th European Conference on Object-Oriented Pro-

gramming, LNCS 512, pages 268–287, July 1991.

[113] R. Laddad. Aspect-oriented refactoring, parts 1 and 2, 2003. The Server Side,

www.theserverside.com.

[114] R. Laddad. AspectJ in Action. Manning, 2003.

[115] M. Leuschel and M. J. Butler. Prob: A model checker for b. In Proceedings of

the International Symposium of Formal Methods Europe (FME’2003), LNCS 2805,

pages 855–874, Pisa, Italy, 2003.

[116] N. G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, 1995.

[117] M. Lippert and C. V. Lopes. A study on exception detection and handling using

aspect-oriented programming. In Proceedings of the 22nd International Conference

on Software Engineering, pages 418–427, June 2000.

[118] B. Liskov and A. Snyder. Exception handling in clu. IEEE Transactions on Software

Engineering, 6(5):546–558, 1979.

REFERÊNCIAS BIBLIOGRÁFICAS 212

[119] A. E. C. Lobo, P. A. de C. Guerra, F. Castor Filho, and C. M. F. Rubira. A syste-

matic approach for the evolution of reusable software components. In Proceedings

of ECOOP’2005 Workshop on Architecture-Centric Evolution, Glasgow, UK, July

2005.

[120] D. Luckham and J. Vera. An event-based architecture definition language. IEEE

Transactions on Software Engineering, 21(9):717–734, April 1995.

[121] P. Maes. Concepts and experiments in computational reflection. ACM SIGPLAN

Notices, 22(12):147–155, March 1987.

[122] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software

architectures. In Proceedings of the 5th European Software Engineering Conference,

pages 137–153, September 1995.

[123] E. Martins, C. M. Toyota, and R. L. Yanagawa. Constructing self-testable software

components. In Proceedings of the International Conference on Dependable Systems

and Networks, pages 151–160, Göteborg, Sweden, July 2001.

[124] J. Matharu. Reusing safety-critical software components. COTS Journal, 7(8),

July/August 2005.

[125] T. McCune. Exception-handling antipatterns, 2006. Address:

http://today.java.net/pub/a/today/2006/04/06/exception-handling-

antipatterns.html.

[126] M. D. McIlroy. Mass-produced software componentes. In P. Naur and B. Ran-

dell, editors, Software Engineering, Report on a conference sponsored by the NATO

Science Committee, pages 138–155, Garmisch, Germany, October 1969.

[127] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-the-shelf components in

c2-style architectures. In Proceedings of the 1997 ACM SIGSOFT Symposium on

Software Reusability, May 1997.

[128] N. Medvidovic and R. N. Taylor. A framework for classifying and comparing archi-

tecture description languages. In Proceedings of Joint 5th ACM SIGSOFT Sympo-

sium on Foundations of Software Engineering/6th European Software Engineering

Conference, pages 60–76, September 1997.

[129] N. R. Mehta and N. Medvidovic. Composing architectural styles from architectural

primitives. In Proceedings of Joint 9th European Software Engineering Conferen-

ce/11th ACM SIGSOFT Symposium on Foundations of Software Engineering, pages

347–350, September 2003.

REFERÊNCIAS BIBLIOGRÁFICAS 213

[130] M. Mezini and K. Ostermann. Conquering aspects with caesar. In Proceedings of

the 2nd ACM Conference on Aspect-Oriented Software Development, pages 90–99,

March 2003.

[131] Microsoft Corporation. Distributed component object model, 2002.

http://www.microsoft.com/com/tech/DCOM.asp.

[132] M. Mikic-Rakic and N. Medvidovic. Adaptable architectural middleware for

programming-in-the-small-and-many. In ACM/IFIP/USENIX International Mid-

dleware Conference, pages 162–181, Rio de Janeiro, Brazil, June 2003.

[133] S. E. Mitchell, A. Burns, and A. J. Wellings. Mopping up exceptions. ACM SIGAda

Ada Letters, 21(3):80–92, September 2001.

[134] R. Monroe. Capturing architecture design expertise with armani. Technical Report

CMU-CS-96-163, Carnegie Mellon University, School of Computer Science, 1998.

[135] M. P. Monteiro and J. M. Fernandes. Towards a catalog of aspect-oriented refac-

torings. In Proceedings of the 4th ACM Conference on Aspect-Oriented Software

Development, pages 111–122, March 2005.

[136] G. Murphy, R. Walker, E. Baniassad, M. Robillard, and M. Kersten. Does aspect-

oriented programming work? Communications of the ACM, 44(10):75–77, October

2001.

[137] E. D. Nitto and D. Rosenblum. Exploiting adls to specify architectural styles indu-

ced by middleware infrastructures. In Proceedings of the 21st International Confe-

rence on Software Engineering, pages 13–22, May 1999.

[138] A. Oliva and L. E. Buzato. The design and implementation of guaraná. In Proce-

edings of the 5th USENIX Conference on Object-Oriented Technologies & Systems,

pages 203–216, San Diego, USA, May 1999.

[139] OMG. The corba component model. http://www.omg.org/, 2003.

[140] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system. In

D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),

volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY,

June 1992. Springer-Verlag.

[141] D. M. Papurt. The use of exceptions. Journal of Object-Oriented Programming,

11(2):13–17, 32, May 1998.

REFERÊNCIAS BIBLIOGRÁFICAS 214

[142] D. L. Parnas and H. Würges. Response to undesired events in software systems.

In Proceedings of the 2nd International Conference on Software Engineering, pages

437–446, San Francisco, USA, October 1976.

[143] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.

SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992.

[144] H. Rajan and K. Sullivan. Eos: Instance-level aspects for integrated system design.

In Proceedings of Joint 9th European Conference on Software Engineering/11th SIG-

SOFT Symposium on Foundations of Software Engineering, pages 291–306, Helsinki,

Finland, September 2003.

[145] M. Rakic and N. Medvidovic. Increasing the confidence in off-the-shelf components:

A software connector-based approach. In Proceedings of the 2001 ACM SIGSOFT

Symposium on Software Reusability, pages 11–18, May 2001.

[146] B. Randell and J. Xu. The evolution of the recovery block concept. In Software

Fault Tolerance, chapter 1, pages 1–21. John Wiley Sons Ltd., 1995.

[147] A. Regalado et al. 10 emerging technologies that will change the world. Technology

Review, pages 97–113, January/February 2001.

[148] D. Reimer and H. Srinivasan. Analyzing exception usage in large java applicati-

ons. In Proceedings of ECOOP’2003 Workshop on Exception Handling in Object-

Oriented Systems, July 2003.

[149] R. A. Riemenschneider and V. Stavridou. The role of architecture description lan-

guages in component-based development: The sri perspective. In Proceedings of the

21st International Conference on Software Engineering, 1999.

[150] M. P. Robillard and G. C. Murphy. Static analysis to support the evolution of

exception structure in object-oriented systems. ACM Transactions on Software

Engineering and Methodology, 12(2):191–221, April 2003.

[151] C. R. Rocha and E. Martins. A strategy to improve component testability without

source code. In S. Beydeda et al., editors, SOQUA/TECOS, LNI 58. GI, 2004.

[152] A. Romanovsky, P. Periorellis, and A. F. Zorzo. Structuring integrated web appli-

cations for fault tolerance. In Proceedings of the 6th IEEE ISADS, pages 99–106,

2003.

REFERÊNCIAS BIBLIOGRÁFICAS 215

[153] R. Roshandel, B. R. Schmerl, N. Medvidovic, D. Garlan, and D. Zhang. Understan-

ding tradeoffs among different architectural modeling approaches. In Proceedings of

the 4th Working IEEE / IFIP Conference on Software Architecture, pages 47–56,

Oslo, Norway, June 2004.

[154] C. M. F. Rubira, R. de Lemos, G. Ferreira, and F. Castor Filho. Exception handling

in the development of dependable component-based systems. Software – Practice

and Experience, 35(5):195–236, March 2005.

[155] T. Saridakis and V. Issarny. Developing dependable systems using software architec-

ture. In Proceedings of the 1st Working IFIP Conference on Software Architecture,

pages 83–104, February 1999.

[156] C. F. Schaefer and G. N. Bundy. Static analysis of exception handling in ada.

Software: Practice and Experience, 23(10):1157–1174, October 1993.

[157] B. Schmerl and D. Garlan. Acmestudio: Supporting style-centered architecture

development. In Proceedings of the 26th International Conference on Software En-

gineering, pages 704–705, May 2004.

[158] M. Shaw and P. Clements. A field guide to boxology: Preliminary classification of

architectural styles for software systems. In Proceedings of COMPSAC’96, Washing-

ton, DC, USA, August 1996.

[159] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Dis-

cipline. Addison-Wesley, 1996.

[160] A. Shui, S. Mustafiz, and J. Kienzle. Exception-aware requirements elicitation with

use cases. In Recent Advances in Exception Handling Techniques, LNCS 4119, pages

221–242. Springer-Verlag, 2006.

[161] J. Siedersleben. Errors and exceptions - rights and obligations. In A. Romanovsky

et al., editors, Recent Advances in Exception Handling Techniques, LNCS 4119.

Springer-Verlag, 2006.

[162] K. Simons and J. Stafford. Cmeh: Container-managed exception handling for in-

creased assembly robustness. In Proceedings of the 7th International Symposium

on Component-Based Software Engineering, LNCS 3054, pages 122–129. Springer-

Verlag, May 2004.

[163] M. Sloman and J. Kramer. Distributed Systems and Computer Networks. Prentice-

Hall, 1987.

REFERÊNCIAS BIBLIOGRÁFICAS 216

[164] S. Soares, E. Laureano, and P. Borba. Implementing distribution and persistence as-

pects with AspectJ. In Proceedings of the 17th ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 174–190, 2002.

[165] B. Spitznagel and D. Garlan. Architecture-based performance analysis. In Procee-

dings of the 10th International Conference on Software Engineering and Knowledge

Engineering, June 1998.

[166] D. Sprott. Componentizing the enterprise application packages. Communications

of the ACM, 43(4):63–69, April 2000.

[167] V. Stavridou and A. Riemenschneider. Provably dependable software architectures.

In Proceedings of the Third ACM SIGPLAN International Software Architecture

Workshop, pages 133–136. ACM, 1998.

[168] Sun Microsystems. Enterprise javabeans specification v2.1 - proposed final draft,

2002. http://java.sun.com/products/ejb/.

[169] C. Szyperki. Component technology - what, where, and how? In Proceedings of

the 25th International Conference on Software Engineering, pages 684–693. IEEE

Computer Society Press, May 2003.

[170] C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM

Press and Addison-Wesley, New York, USA, second edition edition, November 2002.

[171] S. Taft and R. Duff. Ada 95 Reference Manual: Language and Standard Libra-

ries, International Standard Iso/Iec 8652:1995(e), volume 1246 of Lecture Notes in

Computer Science. Springer-Verlag, 1997.

[172] F. Tartanoglu, N. Levy, V. Issarny, and A. Romanovsky. Using the b method for the

formalization of coordinated atomic actions. Technical Report CS-TR: 865, School

of Computing Science, University of Newcastle, October 2004.

[173] R. N. Taylor et al. A component- and message- based architectural style for GUI

software. In Proceedings of the 17th International Conference on Software Engine-

ering, pages 295–304, April 1995.

[174] R. T. Tomita, F. Castor Filho, P. A. de C. Guerra, and C. M. F. Rubira. Bellatrix:

An environment with arquitectural support for component-based development (in

portuguese). In Proceedings of the IV Brazilian Workshop on Component-Based

Development (WDBC’2004), pages 43–48, September 2004.

[175] UCI. ArchStudio 3.0 homepage. http://www.isr.uci.edu/projects/archstudio.

REFERÊNCIAS BIBLIOGRÁFICAS 217

[176] US Department of Transportation. Reusable software components, December 2004.

Advisory Circular # AC 20-148.

[177] J. Vachon and N. Guelfi. Coala: a design language for reliable distributed system

engineering. In Proceedings of the Workshop on Software Engineering and Petri

Nets, pages 135–154, Aarhus, Denmark, June 2000.

[178] M. van Dooren and E. Steegmans. Combining the robustness of checked exceptions

with the flexibility of unchecked exceptions using anchored exception declarations.

In Proceedings of 20th ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 455–471, October 2005.

[179] G. Vecellio, M. Thomas, and R. Sanders. Container services for high confidence

software. In Proceedings of the 7th ECOOP Workshop on Component-Oriented

Programming, June 2002.

[180] J. Viega and J. M. Voas. Can aspect-oriented programming lead to more reliable

software. IEEE Software, 17(6):19–21, 2000.

[181] K. Wallnau, S. Hissam, and R. Seacord. Building Systems from Commercial Com-

ponents. SEI Series in Software Engineering. Addison-Wesley, 2002.

[182] W. Weimer and G. Necula. Finding and preventing run-time error handling mista-

kes. In Proceedings of the 19th ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 419–433, October 2004.

[183] Y. Wu, D. Pan, and M.-H. Chen. Techniques for testing component-based software.

In Proceedings of the 7th International Conference on Engineering of Complex Com-

puter Systems, pages 222–232, Skövde, Sweden, June 2001.

[184] J. Xu, B. Randell, A. B. Romanovsky, C. M. F. Rubira, R. J. Stroud, and Z. Wu.

Fault tolerance in concurrent object-oriented software through coordinated error re-

covery. In Proceedings of the 25th Symposium on Fault-Tolerant Computing Systems,

pages 499–508, Pasadena, USA, June 1995.

[185] J. Xu, B. Randell, A. B. Romanovsky, R. J. Stroud, A. F. Zorzo, E. Canver, and

F. W. von Henke. Rigorous development of an embedded fault-tolerant system based

on coordinated atomic actions. IEEE Transactions on Computers, 51(2):164–179,

February 2002.

[186] K. Yi. An abstract interpretation for estimating uncaught exceptions in standard

ml programs. Science of Computer Programming, 31(1):147–173, 1998.

