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RESUMO 

 
 

INTRODUÇÃO: mutualismos são interações entre espécies diferentes que beneficiam os 

indivíduos envolvidos. Em uma comunidade ecológica, mutualismos tais como 

interações entre plantas e polinizadores e entre plantas e dispersores de sementes 

podem ser descritas como uma rede. O estudo dessas redes de interações levou à 

descrição de duas propriedades estruturais gerais: (1) a probabilidade de se encontrar 

uma espécie com k interações decai seguindo uma lei de potência com truncamento 

exponencial e (2) aninhamento. Essas duas propriedades estão, aparentemente, 

ausentes em interações entre predadores e presas, as chamadas teias tróficas. 

OBJETIVOS: contribuir para a compreensão dos processos subjacentes aos padrões 

observados em redes mutualísticas e investigar o grau de generalização desses 

padrões. 

PRINCIPAIS RESULTADOS: 

• A lei de potência truncada que caracteriza a distribuição do grau de redes 

mutualísticas pode ser explicada por condições iniciais aleatórias e por 

processos associados à diferença de riqueza entre plantas e animais. 

• A estrutura aninhada de uma rede mutualística é parcialmente explicada  

por diferenças entre as abundâncias das espécies. 

• Problemas de resolução taxonômica característicos de estudos sobre teias 

tróficas, mas pouco comuns no estudo de mutualismos, explicam as 

diferenças nas distribuições do grau desses dois tipos de redes ecológicas. A 

ausência de aninhamento, todavia, não é explicada por este problema de 

resolução. 

• As redes que descrevem outros dois mutualismos, as interações entre 

limpadores e clientes em recifes de corais e entre formigas e plantas 

produtoras de néctar extrafloral, são aninhadas.  

PRINCIPAIS CONCLUSÕES: a forma da distribuição do grau observada em mutualismos 

é esperada por processos simples e gerais. O aninhamento é uma propriedade geral de 

mutualismos em comunidades ricas de espécies. 
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“It is interesting to contemplate an entangled bank, clothed 

with many plants of many kinds, with birds singing on the 

bushes, with various insects flitting about, and with worms 

crawling through the damp earth, and to reflect that these 

elaborately constructed forms, so different from each other, 

and dependent on each other in so complex a manner, have all 

been produced by laws acting around us” 

Charles Darwin 

 

 

“All the effects of Nature are only the mathematical 

consequences of a small number of immutable laws” 

Pierre Simon Laplace 
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Mutualismos são interações entre indivíduos de espécies diferentes que trazem 

benefícios para os envolvidos (Begon et al. 1996). Interações mutualísticas são observadas 

em todos os ecossistemas, das florestas tropicais aos recifes de corais, envolvendo de 

organismos unicelulares a grandes árvores e vertebrados, e estão entre os principais 

processos subjacentes à evolução e organização da biodiversidade (Thompson 1994). De 

fato, a maioria das espécies depende de outras espécies para se alimentar, se reproduzir e 

se defender contra parasitas e outros inimigos naturais (Bronstein et al. 2004; Côte 2000; 

Thompson 2005; Figura 1).    

Um exemplo clássico de mutualismo é a polinização das figueiras do gênero Ficus 

pelas vespas-do-figo (Chalcidoidea, Hymenoptera). Cada espécie de figueira é polinizada 

por apenas uma ou poucas espécies de vespas-do-figo (Bronstein et al. 2004). Nessa 

interação, a figueira é beneficiada pela polinização promovida pelas vespas-do-figo, 

enquanto as vespas obtêm recurso alimentar e proteção para a sua prole (Bronstein et al. 

2004). Todavia, grande parte das interações mutualísticas não é tão específica. Em uma 

localidade, muitas espécies de plantas são polinizadas por dezenas de espécies de 

polinizadores, enquanto uma mesma espécie de polinizador contribui para a reprodução 

de muitas espécies de plantas (Vazquez & Aizen 2003). De forma similar, uma mesma 

espécie de ave pode consumir frutos e dispersar sementes de dezenas de espécies de 

plantas (Herrera 2002). Por conseguinte, mutualismos podem ser vistos como interações 

ecológicas que conectam diferentes espécies em uma localidade, formando uma teia de 

interações (Jordano et al. 2003; Memmott 1999).  

Os padrões de interação observados em teias de interações mutualísticas são um 

aspecto fundamental da biodiversidade, uma vez que descrevem a interdependência entre 

as espécies (Montoya et al. 2006; Thompson 2006). Nesse sentido, os padrões 

macroscópicos de interações entre espécies mutualistas podem conter informação sobre a 

importância de diferentes processos ecológicos e evolutivos para a organização da 

biodiversidade (Bascompte et al. 2003; Lewinsohn et al. 2006; Thompson 2005). 

Conseqüentemente, métodos que descrevam a estrutura interconectada dos mutualismos 

podem contribuir para entender a origem, evolução e manutenção dessas interações. 
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FIGURA 1. Mutualismos investigados neste estudo. Quadro superior esquerdo: polinização 
de Cirsium sp. pela borboleta Pandoriana pandora (Foto: Pedro Jordano). Quadro superior 
direito: dispersão de sementes do jatobá Hymenaea courbaril por uma cutia Dasyprocta 
leporina (Foto: Rafael L. Fonseca). Quadro inferior esquerdo: proteção das vagens de 
Crotalaria pallida pela formiga Ectatomma quadridens (Foto: Rafael L. Fonseca). Quadro 
inferior direito: limpeza de ectoparasitas e tecidos danificados do peixe Cephalopholis fulva 
pelo peixe Elacantinus randalli (Foto: Ivan Sazima).  

 11



INTRODUÇÃO 

 
A estrutura interconectada da teia de interações mutualísticas pode ser descrita 

através de uma rede (ou grafo), isto é, um conjunto de pontos (ou vértices) que podem ou 

não estar conectados através de linhas (ou arestas) (Harary 1969, Figura 2a).  Em uma rede 

mutualística os pontos representam as espécies de uma localidade e as linhas representam 

interações mutualísticas entre as espécies (Jordano et al. 2003).   A estrutura da rede que 

descreve as interações mutualísticas em uma localidade pode então ser descrita através de 

diferentes métricas que capturam alguns aspectos de interesse.  

Atualmente, redes são utilizadas para descrever uma grande variedade de sistemas 

naturais (Strogatz 2001). A maior descoberta relacionada à aplicação de redes em 

diferentes áreas do conhecimento foi a generalidade de certos padrões estruturais, que 

foram encontrados em sistemas aparentemente não relacionados, tais como a Internet, as 

interações sociais entre seres humanos e as vias metabólicas no interior das células (Albert 

& Barabasi 2002).  Essa generalidade indica que parte da estrutura dessas redes é 

determinada não por características particulares do sistema, mas por processos análogos 

atuando em diferentes sistemas (Albert & Barabasi 2002). Dessa forma, a abordagem de 

redes permite estudar problemas aparentemente bem diferrentes e explicar processos 

fundamentais como derivados de princípios comuns (Amaral & Ottino 2004). 

Apesar dos recentes avanços teóricos, o estudo da estrutura das redes mutualísticas 

ainda está em uma fase essencialmente descritiva (Bascompte & Jordano 2006; Bascompte 

et al. 2003; Jordano et al. 2003; Lewinsohn et al. 2006; Memmott 1999; Olesen & Jordano 

2002; Vazquez & Aizen 2004).  Nesse contexto, dois padrões estruturais caracterizam as 

redes que descrevem a polinização por animais e dispersão de sementes por vertebrados: 

(1) A distribuição do grau, isto é, a probabilidade de uma espécie interagir com k 

outras espécies, decai seguindo uma lei de potência com truncamento exponencial 

(Jordano et al. 2003, Figura 2b), como o observado em certas redes sociais (Amaral et al. 

2000). Dessa forma, mutualismos estão em uma posição intermediária entre redes nas 

quais todos os elementos apresentam aproximadamente o mesmo número de interações 

(ex. redes aleatórias) e sistemas nos quais há muitos elementos com poucas interações e 

alguns poucos elementos com um número muito grande de interações (ex. a Internet). 

(2) As redes mutualísticas são aninhadas (Bascompte et al. 2003, Figura 2a), isto é, 

apresentam três propriedades estruturais relacionadas: (i) plantas com muitas interações 
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interagem com animais com muitas interações; (ii) plantas e animais com poucas 

interações raramente interagem entre si; (iii) espécies com poucas interações geralmente 

interagem com as espécies com mais interações.   
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FIGURA 2. Mutualismos como redes e suas propriedades. (a) Interações hipotéticas entre 
limpadores e clientes em recifes de corais (veja capítulo 6). As espécies de limpadores 
estão representadas por pontos pretos e os clientes por pontos brancos. Esta rede é 
perfeitamente aninhada, uma vez que (i) clientes com muitas interações interagem com 
limpadores com muitas interações; (ii) espécies com poucas interações raramente 
interagem entre si; (iii) espécies com poucas interações geralmente interagem com as 
espécies com mais interações.  (b) Freqüência de interações por espécies decaindo como 
uma lei de potência com truncamento exponencial (a curva que decai mais rápido). Note 
que para valores altos de número de interações (k) a freqüência de pontos é muito mais 
baixa que o esperado por uma lei de potência (reta).  
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 Poucos mecanismos foram propostos como possíveis explicações para os padrões 

observados em redes mutualísticas. Além disso, a própria caracterização dos padrões 

observados em redes mutualísticas está limitada a estudos descritivos de redes de 

polinizadores e dispersores de sementes. Dessa forma, este estudo teve como objetivos (i) 

contribuir para a compreensão dos processos subjacentes aos padrões observados em 

redes mutualísticas e (ii) investigar o grau de generalização dos padrões descritos acima.  

Nos Capítulos 1 e 2, hipóteses alternativas para a origem do truncamento 

exponencial são exploradas através da modelagem estatístico-matemática. Demonstra-se 

que o pequeno número de elementos (ex. espécies) pode levar ao truncamento 

exponencial, especialmente se associado (i) a condições iniciais aleatórias (Capítulo 1) e (ii) 

a processos ecológicos responsáveis por diferenças na riqueza de animais e plantas 

(Capítulo 2).  No Capítulo 3 é investigada a hipótese de que diferenças nas abundâncias 

de espécies explicariam, pelo menos em parte, o padrão aninhado observado em redes 

mutualísticas (Lewinsohn et al. 2006).  Os resultados apóiam a hipótese, mas sugerem que 

quase 40% da estrutura aninhada não podem ser explicados por diferenças de 

abundâncias entre as espécies. 

As redes que descrevem as interações entre presas e predadores, as chamadas teias 

tróficas, não são aninhadas e apresentam uma freqüência de interações por espécie que, 

em geral, não segue uma lei de potência truncada.  O Capítulo 4 investiga se essas 

diferenças entre as redes mutualísticas e teias tróficas estão relacionadas à representação 

de diferentes espécies por um único ponto, um problema de resolução taxonômica típico 

de teias tróficas, mas pouco comum em redes mutualísticas. Os resultados mostram que as 

diferenças na forma da freqüência de interações por espécie podem ser explicadas pela 

representação de espécies por um único pronto. Entretanto, essa representação não explica 

a ausência de aninhamento em teias tróficas. 

Os Capítulos 5 e 6 testam a generalidade da estrutura aninhada entre os diferentes 

tipos de mutualismos.  Até o momento, apenas a estrutura de dois mutualismos 

(polinização e dispersão de sementes) foi investigada, sendo caracterizada por um alto 

grau de aninhamento (Bascompte et al. 2003).  Os resultados obtidos aqui apóiam a idéia 
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de generalidade, uma vez que o aninhamento caracteriza as redes que descrevem outras 

interações mutualísticas, como as interações entre formigas e plantas que produzem néctar 

extrafloral (Capítulo 5) e entre peixes e crustáceos limpadores de parasitas e peixes 

clientes em recifes de corais (Capítulo 6).  
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Barabasi-Albert networks are constructed by adding nodes via preferential attachment to an initial core of

nodes. We study the topology of small scale-free networks as a function of the size and average connectivity

of their initial random core. We show that these two parameters may strongly affect the tail of the degree

distribution, by consistently leading to broad-scale or single-scale networks. In particular, we argue that the

size of the initial network core and its density of connections may be the main responsible for the exponential

truncation of the power-law behavior observed in some small scale-free networks.

DOI: 10.1103/PhysRevE.71.037101 PACS numberssd: 89.75.Hc, 87.23.2n, 05.45.2a, 87.10.1e

I. INTRODUCTION

Complex networks describe a large number of social,
physical, and biological systems f1–9g. The very basic orga-
nizing principles of complex networks are encoded, in some
level, in network topology f1,3,9,10g. For example, their de-
gree distribution, which is the cumulative probability distri-
bution of the number of edges per node, captures in quanti-
tative terms some rules that govern the connection of nodes
in growing networks f1,5,11g. The Barabasi-Albert sBAd
model for growing networks proposes that the two main or-
ganizing principles acting during the buildup of complex net-
work are growth and “preferential attachment.” Under this
mechanism there is a nonuniform probability with which a
new node connects to an existing node of the network, which
increases with the number of connections of that node f11g.
The BA model generates a degree distribution that decays as
a power law, implying that the system does not have a par-
ticular scale sscale-free networksd f11g. Although several
physical and biological systems are indeed scale free
f3,11,12g, there are several examples of complex networks,
such as the small mutualistic networks of interactions among
plants and animals f7g, in which an exponential truncation of
the power-law behavior predominates for large degrees f1,5g.
These networks are called broad-scale networks and are
more homogeneous than scale-free networks sFig. 1d. This
observed truncation in power-law behavior can be explained
by the small size of these networks f10,13g or by mecha-
nisms such as the addition of links limited by aging or con-
nection costs f1g, forbidden links f7g, and information filter-
ing f1,5g. These mechanisms suggest that, in broad-scale
networks, preferential attachment is constrained by node
characteristics operating during the network evolution.

However, size effects and growth constraints might not be
the sole responsibility for the exponential tail of the degree
distribution. In this paper we argue that, for relatively small
networks, the initial set of nodes over which the network
evolves has strong effects on the tail of the degree distribu-

tion. To understand why this is so we recall that the BA
network is constructed from a small number of nodes which
we call the “initial core.” Then, at each step a new node is
added and connected to the already existing ones following
the preferential attachment rule f11g. Although the original
model does not say anything about connections between the
initial nodes, later work has assumed that the initial core is
totally connected f5,14g, totally disconnected f15g, or ran-
domly connected f16g. In this paper we demonstrate that, for
small networks, a randomly connected initial core in BA
networks consistently generates a truncation of the degree
distribution and that the truncation depends on the relative
size of this random initial core. Moreover, we show that
highly connected large initial cores generate degree distribu-
tions that markedly deviate from the power-law regime. This
indicates that the tail of the degree distribution might contain
information about the genesis of the network. We note that
the characterization of small networks has been pointed as
one of the leading questions in network research f17g. This
work aims at contributing in this direction.

FIG. 1. Illustration of the exponential truncation of the power-

law behavior of degree distributions. Open circles are recorded val-

ues for Pskd for a hypothetical degree distribution. Solid circles are

values of Pskd predicted by a power-law distribution, computed

using the first kini values of k. kx indicates the lowest value where

the “observed” Pskd departs from the predicted power-law behavior.

kmax is maximum recorded degree.
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II. BA MODEL WITH A RANDOM INITIAL CORE

The network’s random initial core is defined as follows: at
time t=0, one creates m0 nodes and connects each pair of
nodes with constant probability p. Thus, this initial core of
nodes is an Erdos-Renyi sERd random graph f3g. Then, at
each time step, a new node with møm0 edges is added to the
network. To incorporate preferential attachment, we assume
that the probability P that a new node will be connected to
node i depends on the degree k of that node, so that

Pskid =
ki

o j
k j

. s1d

To test numerically the effect of the size of the ER initial
core on the degree distribution, we simulate the evolution of
different networks with fixed final size S=100 nodes and m

=5 links, but with different initial connection probabilities p

sp=0.1 and p=0.8d and different sizes of ER initial cores. To
reduce fluctuations in the degree distribution related to the
small network size f1,2g, we calculated the cumulative de-
gree distribution Pskd.

Preliminary simulations suggest that, even for small val-
ues of m0, the cumulative degree distribution Pskd shows an

exponential truncation for large values of k. To reduce the
effects of this truncation on the estimate of the exponent of
power-law behavior for the degree distribution, we only used
the first five recorded values of k to compute the power law
exponent of Pskd, as illustrated in Fig. 1.

For the less connected ER core sp=0.1d, we used the fol-

lowing measures to characterize the effects of m0 on the Pskd

ssee Fig. 1d: s1d the cutoff degree kx, in which the observed
Pskd departs from the predicted power-law behavior, de-

creasing exponentially; s2d the maximum recorded degree
kmax; s3d the proportion of nodes with ki.kx; and s4d the
strength of truncation t, which describes the rate of decrease
of Pskd with k, following e−tk for k.kx. For the highly con-

nected ER core sp=0.8d we only show how the degree dis-

tribution departs from the predicted power-law behavior.

III. RESULTS

Our results show that the scale-free nature of small BA
networks is strongly affected by the size of ER initial core.
For p=0.1, the strength of the exponential truncation of the
power-law behavior of the degree distribution is enhanced by
ER initial core size, as shown in Fig. 2. Figure 2sad shows
that increasing the ER initial core results in a linear decrease
in kx. Moreover, the exponent t increases linearly with the
size of the ER initial core, for kùkx, as shown in Fig. 2sbd.
The earlier truncation of the power-law behavior and the
increase of t with m0 imply that the homogeneity of the BA
networks si.e., similarity of the degree k between different
nodesd increases with ER core size. In fact, the increase in
ER core size generates a linear reduction in the maximum
recorded degree, Fig. 2scd, and a logarithmic increase in the
proportion of nodes in which ki.kx, Fig. 2sdd.

The degree distribution in BA network with less-
connected ER initial cores, including 15%–30% of all nodes

of the network, behaves as a power law for ki,kx and as an
exponential for ki.kx. Thus, these networks are broad-scale
networks. For larger initial cores sm0=30d, the degree distri-

bution Pskd departs from the expected by the power law even

earlier skx,10d. In fact, these networks cannot be character-

FIG. 2. Effects of the ER initial core size m0 for p=0.1 on sad

the cutoff degree; sbd the strength of exponential truncation, t ssee

text for further detailsd; scd the maximum recorded degree, kmax; and

sdd the proportion of nodes of the network with ki.kx. The network

size has been fixed to 100 nodes.
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ized as scale-free or broad-scale networks, being essentially
exponential or single-scale networks f1g. Therefore, by sim-
ply changing the ER core size we are able to reproduce the
main classes of complex networks f5g, as shown in Fig. 3.

Figure 4 displays the degree distribution for p=0.8, show-
ing that it markedly departs from the expected by power-law
behavior. A gap in the range of k values appears and linearly
increases with ER core size. These networks can therefore be
divided into two subnetworks: s1d before the gap, a group of
nodes that attached preferentially to nodes in the ER core,
generating a power-law degree distribution, and s2d after the
gap, a highly connected group of nodes, the ER core, in
which the degree distribution is exponential.

IV. SUMMARY AND DISCUSSION

Complex networks, both biotic and abiotic, often show
exponential truncation in scale-invariant topology f1,5,7g.

Previous works suggest that this truncation may be a result
of constraints on addition of links. Some different classes of
such constraints have been proposed, such as information
filtering f5g, aging, or connection costs f1g. In ecology, the
truncation of power-law behavior was observed in food webs
f19g and in coevolutionary bipartite networks of plant-animal
interactions f7g. Jordano et al. f7g suggested that these trun-
cations are generated by biological constraints that limit the
possible links formed when species add up to the net, a phe-

FIG. 3. Different classes of complex networks are generated by

varying the size of the ER initial core m0 for p=0.1. The network

size has been fixed to 100 nodes. sad scale-free networks sm0=15d,

sbd broad-scale networks sm0=25d and scd single-scale networks

sm0=50d.

FIG. 4. Effects of the size of the ER initial core m0 on the

degree distribution for highly connected cores sp=0.8d. The net-

work size has been fixed to 100 nodes. sad m0=10, sbd m0=20, and

scd m0=30. Panel sdd shows that the gap indicated in parts sbd and

scd increases linearly with m0 ssee text for further detailsd.
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nomenon called forbidden interactions. Our results enlarge
the catalog of mechanisms that could give rise to broad-scale
networks, by adding the ER initial core as a new candidate. It
is important to realize, however, that this new mechanism
implies in a qualitatively new scenario. Assuming that there
is a randomly connected initial core of nodes before prefer-
ential attachment starts to act in the network, there is no need
to resort to additional constraints operating during network
evolution; the truncation of power-law behavior is solely, or
largely, a consequence of the system’s initial condition. We
expect that ER core hypothesis will be especially useful for
systems in which it is possible to recognize the nodes that
participated at the birth of the network from the nodes that
appeared after a certain time period se.g., species invading a
food web or those occurring along a seasonal sequenced.

The hypothesis of the ER initial core can be used to ex-
plain the buildup of all three main classes of networks f1g.
As the size of the initial core is negatively related with the
value of the cutoff in which the degree distribution departs
from the predicted by the power-law behavior, it is possible
to generate networks that are essentially scale free ssmall ER
coresd, broad-scale sintermediate ER coresd and essentially
single-scale slarge ER coresd. The similarity of the pattern
generated by two distinct, highly different mechanisms—
namely, initial conditions and growth constraints—implies
that alternative measures are necessary before arguing that
constraints are limiting the network evolution in physical or
biological systems best described as small networks. A
simple way to distinguish between the two mechanisms is to
measure the preferential attachment probability during net-
work growth f18g. Mechanisms of constraints predict a re-
duction of preferential attachment during network growth
while the ER core hypothesis predicts that, once preferential
attachment starts, it is no longer affected by network growth.
In several natural systems, however, the addition of new

nodes se.g., species in food websd occurs over long time
periods and it becomes impossible to measure the attachment
probability. As a consequence, the development of new to-
pological measures is central to allow an adequate distinction
between the effects of constraints and those of the ER initial
condition on real networks.

Finally we notice that the effects of the ER core on net-
work topology will vary depending on how densely con-
nected it is. While a less-connected ER core generates a size-
dependent exponential truncation of the degree distribution,
highly connected cores will affect differently the degree dis-
tribution: as the ER core size increases the network will be
more clearly structured in two sets of nodes. In the first set of
nodes, the ER core, the kkl is large and the degree distribu-

tion follows an exponential decay. In the second set, the
nodes in which preferential attachment is operating, the de-
gree distribution follows a power law. The distance in the
degree between the two sets, measured by the gap in k val-
ues, increases linearly with ER core size. Recently, Melián
and Bascompte f20g described food webs in which there is
one or more cohesive, central subnets with the remaining
nodes connected to them. The initial highly dense ER core is
a possible mechanism to explain this pattern, by generating a
central, densely connected core of nodes.
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Summary 

 

The frequency distribution of interactions per species (i.e., degree distribution) within 

plant-animal mutualistic assemblages often decays as power-law with an exponential 

truncation. Such a truncation suggests that there are ecological factors limiting the 

frequency of supergeneralist species. However, it is not clear whether similar patterns can 

emerge from intrinsic features of the interacting assemblages, such as differences between 

plant and animal species richness (richness ratio). Here, we show that high richness ratios 

often characterize plant-animal mutualisms. Then, we demonstrate that exponential 

truncations are expected in small bipartite networks generated by a simple model that 

incorporates build-up mechanisms that lead to a high richness ratio. Our results provide a 

simple interpretation for the truncations commonly observed in degree distributions of 

mutualistic networks. 

 
 
 

Key-words: complex networks, finite-size fluctuations, plant-animal networks, small 

networks, species richness 
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Introduction 

The notion of complex networks has recently emerged as a key concept to 

understand the interactions among elements of a system, whether they are physical, 

chemical, social, or biological (Strogatz 2001). In ecology, the network approach has been 

applied to investigate the structure of food webs (Pascual & Dunne 2006) and of other 

interespecific interactions (Guimarães et al. 2006; Jordano 1987; Memmott 1999; Vazquez et 

al. 2005). In network formalism, species are represented by nodes and interactions 

between species are described by links (Pimm 2002). The network approach is helping to 

describe consistent patterns at the community-level structure of interespecific interactions 

(Bascompte et al. 2003; Bascompte et al. 2006; Guimarães et al. 2006; Jordano et al. 2003; 

Lewinsohn et al. 2006; Montoya et al. 2006; Prado & Lewinsohn 2004). Our major 

challenge, however, is to infer what are the ecological and evolutionary factors that 

generate the observed community-level structure of ecological networks. In this context, 

community-level patterns of specialization are likely to uncover the importance of 

different ecological factors and coevolutionary processes (Lewinsohn et al. 2006; Olesen & 

Jordano 2002; Thompson 2005; Thompson 2006).  

Previous studies demonstrated that the degree distribution, that is, the  frequency 

distribution of the number of interactions per species within a ecological community, 

decays as a power-law with an exponential truncation in the majority of plant-animal 

mutualisms  (Jordano et al. 2003). Power-law distributions are expected by preferential 

attachment (Barabasi & Albert 1999) because recently arrived species are likely to interact 

with most generalist and usually more abundant species (Jordano et al. 2003). In contrast, 

exponential truncations have been associated with constraints limiting the existence of 

species with many interactions (Amaral et al. 2000; Jordano et al. 2003; Mossa et al. 2002)  

or with a random initial condition at the origin of network (Guimarães et al. 2005). 

However, few theoretical studies explore alternative explanations for exponential 

truncations that characterize typical features of plant-animal mutualisms (but see Vazquez 

2005).  

Plant-animal mutualisms are best described as bipartite networks, in which there 

are two disjoint sets of species (animals and plants) and no interactions between species 
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within the same set (Harary 1969; Jordano et al. 2003; Figure 1). The bipartite structure per 

se does not affect the degree distribution (Ergun 2002; Liljeros et al. 2001). However, we 

note that plant-animal mutualisms show marked differences between animal and plant 

richness (high richness ratio, see Table 1). If high richness ratio is not generated by 

sampling bias, it is a result of ecological processes acting during the build-up of the 

network. Thus, the question is whether processes that generate a high richness ratio also 

affect the degree distribution, eventually leading to truncated power-law distributions. 

Here we introduce build-up mechanisms that lead to high richness ratios in a 

simple network model that generates power-law degree distributions through preferential 

attachment (Barabasi & Albert 1999). We use analytical predictions and numerical 

simulations to explore the relationship between exponential truncations and ecological 

processes that lead to a high richness ratio. Our aim is contribute to the study of 

community-level patterns of interactions in plant-animal mutualisms exploring the 

importance of simple build-up mechanisms to the observed network structure. 

 

Figure 1. The network describing community-level patterns of interactions among 
frugivore birds (black nodes) and plants (white nodes) in Correhuelas, Spain (P. Jordano, 
unpublished data). 
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Table 1. Examples of how widespread are differences in set sizes ( ) in ecological 
bipartite networks. Data analyzed of the main types of mutualisms, including the 
interactions between plants and defensive partners (plant-ant interactions), pollinators and 
seed dispersers - data from our dataset (Bascompte et al. 2003) and the Interaction Web 
Database (http://www.nceas.ucsb.edu/interactionweb). We defined  as the larger set 

and  as the smaller set. Numbers in parentheses are the first and third quartiles. For 

each network we test the significance of  against the binomial distribution. 

1/ >BA SS

AS

BS

1/ >BA SS

 
Mutualistic 

interactions 

n Median 

network size 

Median 

ratio  BA SS /

% of networks with 

significant deviation of 1:1 

ratio 

 Plant-ant 3 26 (10 – 41) 1.6 (1.5 – 2.25) 33.3 

 Plant-pollinator 40 65 (39 – 115) 3.0 (2.1 – 4.0) 86.0 

 Plant-frugivore 28 27 (18 – 58) 1.8 (1.3 – 2.9) 46.4 

 
 

The model 

 

In this paper, we incorporate bipartivity and mechanisms that lead to high richness 

ratios into one of simplest models generating power-law degree distributions, the 

Barabási-Albert (BA) model (Barabasi & Albert 1999). The BA model is a minimal model 

that recognizes two aspects of the evolution of complex systems. First, many complex 

systems grow in time by adding new elements. Second, new elements often interact 

preferentially to the highly connected nodes in the network, which constitutes the so-

called preferential attachment or ‘the rich gets richer’ phenomenon (Barabasi & Albert 

1999). The BA model is defined by the following algorithm: (1) at time , one creates 

 disconnected nodes (Albert & Barabasi 2000); (2) at each time step, a new node with 

edges is added to the network and connected to a node with probability ; (3) the 

probability  that a new node will be connected to node i  depends on the degree k  of 

that node, so that  

0=t

0m

0mm ≤ Π

Π
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( ) ∑ ++=Π
j

jii kkk )1(/)1(               (1) 

Here we propose a model that incorporates the intrinsic bipartivity of plant-animal 

mutualisms into the BA model: (1) at time 0=t , one creates  disconnected nodes; (2) a 

proportion of  is assigned to the set A, , and the remaining nodes are assigned to 

the set B, ; (3) at each time step, a new node with m edges is added to the network; (4) 

the new node belongs to the first set, hereafter set A, with probability , or to the 

second set (B) with probability 

0m

0m Am0

Bm0

)1( p−

p ; (5) to incorporate preferential attachment, we assume 

that the probability that a new node in set B will be connected to node i in set A follows 

(1.2) with the sum over j restricted to the set A. 

The above model allows modeling three general mechanisms that may account for 

the high richness ratios in plant-animal mutualisms here reported, and investigating their 

effect on the scale-free behavior of . In the first mechanism, called “differential 

starting size”, both sets grow with the same rate, 

)(kP

5.0=p , but the initial core of 

disconnected nodes, , is not equally divided between both sets, so that . 

Thus, differences of set sizes are generated at the birth of the network. In the second 

mechanism, called “differential growth rate”, the two sets start with the same 

size, , but have different growth rates, that is, 

0m BA mm 00 >

BA mm 00 = 5.0≠p . Consequently, the 

difference of set sizes results from the growing dynamics of each set. In the third 

mechanism, called “differential limiting size”, the two sets of the network have the same 

initial core, , the same growth rate, BA mm 00 = 5.0=p , but one of the sets has a lower size 

limit, so that . In this case, the difference between set sizes results from differential 

constraints of maximum size of each set. We note that this differential constraint can be 

modeled for set A by changing the value of 

BA SS <

p  to 1=p  after AS  has been reached. 

Therefore, for simplifying proposes, we may assume that differential limiting size is an 

especial case of differential growth rate. It is important to notice that these mechanisms 

can be implemented by simply tuning the parameters of the model ( ) 

without directly affecting the preferential attachment (hereafter PA). Thus, the proposed 

mechanisms per se cannot be interpreted as constraints acting on preferential attachment. 

BABA SSpmm ,,,, 00
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This is an important difference in relation to previous mechanisms such as forbidden links 

or filtering information that constraint the PA process (Amaral et al. 2000; Jordano et al. 

2003; Mossa et al. 2002).   

 

Analytic predictions and numerical results 

We explore the differences between analytic predictions considering large and 

small networks. A reasonable analytic prediction for the structure of large networks may 

be derived by generalizing previous studies with unipartite networks. Barabási and Albert 

(1999) applied continuum theory to obtain the analytical predictions for degree 

distribution in unipartite BA networks. The BA model predicts that, for large networks, 

the degree (k) of the node i varies with time following the dynamical equation: 

              
t

k

mt

k
m

k

k
m

t

k ii
N

j

j

ii

221

1

===
∂
∂

∑
−

=

                          (2). 

The solution of the above equation is:  

                                         
β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
i

t

t
mk                                           (3), 

in which 2/1=β . The degree distribution could be interpreted as the probability of a 

node show k links and the prediction derived from (3) is  

                                  ( )1112~)( +− ββ
kmkP                                      (4). 

It is important to note that the above analytic predictions assume that the 

network is unipartite and, more importantly, that the number of elements of the 

network is virtually infinite. In contrast, plant-animal mutualisms often form small 

networks (< 103 species) (Bascompte et al. 2003). Therefore, the predictions derived 

from models that assume large network size may not be valid for small networks 

(Amaral et al. 2004; Guimarães et al. 2006). In fact, data from real networks often 

show exponential truncations (Jordano et al. 2003). Additionally, numerical 
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simulations suggest that finite-size fluctuations may lead to truncations in small 

unipartite networks and animal aggregation models (Guimarães et al. 2005; Keitt & 

Stanley 1998). However, no previous study investigates if under finite-size 

fluctuations some build-up mechanisms will be more likely in generate truncated 

power-laws. We introduced an additional analytic approach to explore under what 

conditions finite-size effects lead to exponential truncation. The introduced 

approach demonstrates that truncated power-laws observed in plant-animal 

mutualisms are expected if high richness ratio is present due to some build-up 

mechanisms. 

We recall that the degree of a node i may increase in time events where a 

node enters in the other set (set B). As a consequence, the time events in which a 

node enters in the set B can be described by a random variable, T, the number of 

time steps in which nodes enter in set B. Additionally, we define Ti as the time step 

in which node i appears in set A; Ti and T are random variables sampled from a 

binomial distribution with parameters t and p. Therefore, the degree of node i will 

increase following ( )βii TTmtk =)( , similarly to the analytic prediction for large 

networks (3), and the degree distribution can be described as 

)())(( /1/1 ββ
kTmTPktkP ii >=< . As T is a random variable sampled from a binomial 

distribution, the probability for a node i to have kki < follows: 

  ( )( ) ( ) ( ) ( ) ττ

τ
β

β

ττ
τ −

=

−⎟
⎠
⎞

⎜
⎝
⎛

+
+≥−=< ∑ t

k A

i pp
t

mk

m
kTPkTkP 11

0

1

1

 (5), 

in which τ is an arbitrary T. If t is sufficiently large, the binomial in (5) can be 

approximated by a normal distribution: 
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          (6), 

where Φ is the cumulative normal distribution function. For small values of 

( ) )1( ptptpk −− (6) can be approximated by (4), i.e., the degree distribution 
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will have the same asymptotic behavior predicted for large networks. If, however, 

( ) )1( ptptpk −− is large (large normal deviates), (6) can be approximated by 

         ( )( ) ( )
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Therefore, the degree distribution will have an exponential behavior.  

We used numerical simulations to investigate if the analytic approach qualitatively 

reproduces the behavior of degree distributions. Except when explicitly stated the 

simulations were performed using 1000 == BA mm , 5.0=p , and 3=m . The simulations 

ended when one of the set sizes reached . We plot the  for both sets 

separately,  and , and both distributions are plotted as cumulative 

distributions (Jordano et al. 2003). Cumulative distributions are often used to improve the 

characterization of degree distributions (Strogatz 2001). 

2100.5 ×=iS )(kP

)( AkP )( BkP

In the simulation of “differential starting size”, we varied the initial core of set A, 

, keeping the initial core of set B as Am0 100 =Bm .  In figure 2, we illustrate degree 

distributions of set A for different . All degree distributions follow power laws, 

although the slopes of the degree distribution are affected by the increase of . 

Therefore, we conclude that “differential start size” does not affect qualitatively the 

functional form of  predicted by BA model even in small networks. 

Am0

Am0

)(kP
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Fig. 2. Effects of differential starting size ( )BA mm 00 >  on degree distribution. Log-log plot 

of the cumulative ( )AkP  for distinct differential starting sizes (in all cases, 100 =Bm ): 

(closed circles), 100 =Am 150 =Am (open circles), 300 =Am (grey circles), and 

(crosses). Continuous lines illustrate the power-law behavior in all cases. 600 =Am

 
 

To test the effect of “differential growth rate” on  we varied )(kP p , the 

probability of a new node being assigned to set B, maintaining the initial size of the sets 

equal. We used  nodes in all simulations, because  does 

not allow an accurate determination of 

5000 == BA mm 1000 == BA mm

)( AkP  for 1=p . The results of the simulations 

demonstrate that p affects markedly the functional form of . The power-law 

behavior of  is preserved for

)( AkP

)( AkP 5.0≤p , that is, when the size of set A increases faster 

or at the same rate than set B (Figure 3a). However, if , that is, the set A increases 

slower than set B, exponential deviations appear for larger k, generating a 

5.0>p

)( AkP that 

decays as a power-law with an exponential truncation (Figure 3a). For the limiting case in 

which , there is no evidence of power-law behavior at all, and  follows a slow-1=p )( AkP
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decaying exponential function  (Figure 3a). Therefore, in small bipartite 

networks in which , preferential attachment generates slow-decaying exponential 

curves and not power-law degree distribution, as usually expected (Barabasi & Albert 

1999). Exponential distributions of P(k) are generally associated to networks in which 

nodes are connected with a constant probability, a rule called random attachment (Albert 

& Barabasi 2002). However, it is noteworthy that the exponential distribution generated by 

p =1 decays slower than the distribution predicted by random attachment (Figure 3b). 

γk
ekP
−~)(

1≈p

In the last simulation, aimed to test the effect of “differential limiting size” on 

, we varied the final size of set A, , and kept the final size of set B, , constant 

( ). If we let the simulation stop when one of the sets reached the previously 

established limiting size, we find that the scale-free behavior is preserved for both  

and  (Figure 4). However, if 

)(kP AS BS

3100.1 ×=BS

)( AkP

)( BkP BA SS <<  and the simulation stops solely when both 

sets reach the previously established limiting size we find that  behaves as a slow-

decaying exponential function (Figure 4). 

)( AkP

The results of numerical simulations are in agreement with the analytic prediction 

assuming small network size. The absence of effects of “differential start size” on is 

not surprising, since  is independent of the ratio 

)(kP

)(kP BA mm 00  even in the finite-size 

situation. The exponential tails observed under some conditions of “differential growth 

rate” and “differential limiting size” is also explained by the fact  that values of p close to 1 

– the set did not grow or grew slowly compared to the other set – imply in large values of 

( ) )1( ptptpk −− and, consequently, leading to degree distributions with a markedly 

exponential tail. 
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Figure 3. Effects of the rate of increase of a set size (number of nodes), p , on its . (a) 
Log-log plot of the cumulative  for different values of

)(kP

)(kP p . Dashed lines indicate the fit 
to a power-law distribution whereas continuous lines indicate exponential deviations. 
Note that for ,  is described solely by the exponential function. (b) The slow-
decaying, exponential  for 

1=p )(kP

)(kP 1=p  (black squares) and the Binomial  predicted by 
a random network (empty squares).  

)(kP
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Figure 4. Effects of differences of set size limits,  and  on  and . Each 

figure has four degree distributions:  and  for a simulation in which network 

growth stops when the smaller size limit was reached (empty symbols) and  and 

 for a simulation in which network growth stops when both size limits were reached 
(filled symbols). Triangles represent records for smaller set size limits and squares 
represents records for larger set size limits. In all simulations  and (a) 

; (b) ; (c) .  

AS BS )( AkP )( BkP

)( AkP )( BkP

)( AkP

)( BkP

3100.1 ×=BS
2100.1 ×=AS

2105.2 ×=AS
2100.5 ×=AS

 

Implications for plant-animal networks 

Complex networks in both ecological and non-ecological systems usually show 

deviations from a power law degree distribution such as exponential truncations. This 

exponential truncation is often interpreted as evidence of constraints limiting preferential 

attachment. Constraints such as filtering information acting on Internet evolution (Mossa 

et al. 2002), aging operating on movie-actor networks (Amaral et al. 2000), and costs of 
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)

adding edges influencing the network of world airports have been proposed to explain 

exponential truncation of power-laws in non-biological systems (Amaral et al. 2000). In 

ecology, the truncation of power-laws was observed in the majority of bipartite networks 

of plant-animal interactions. Jordano et al. (2003) proposed that in such systems truncation 

emerges as a consequence of “forbidden links”, which are interactions that a priori cannot 

occur due to biological constraints. Forbidden links do occur and limit the number of 

interactions in biological systems (Bascompte & Jordano 2006) as, for example, when a 

given bird species is unable to interact to a fraction of plant species simply because 

biological constraints prevent the interaction from occurring. However, we clearly 

demonstrate here that exponential truncations can also emerge from processes associated 

to differences in species richness among plants and animals. 

As stated before, it is a general feature of mutualistic networks to have high 

richness ratio (see Table 1) and we show that “differential growth rate” and “differential 

limiting size” do promote deviations of the power-law distribution predicted by a minimal 

model that generate power-laws through preferential attachment. In fact, the association 

between preferential attachment and power-law distributions, widely reported for 

unipartite networks (Albert & Barabasi 2002), is expected for finite bipartite networks only 

when two conditions are satisfied: the set of interest growths at the same rate or faster than 

the other set and has a similar or higher limiting size ( 5.0≤p ( )BA SS ≥ . 

Our results indicate the importance of exploring the finite-size fluctuations to the 

characterization of predictions of network models (Amaral et al. 2004; Guimarães et al. 

2005, 2006). Additionally, our results suggest that processes determining the differences of 

species richness among plants and animals may affect the organization of ecological 

bipartite networks. Examples of differential growth rate and differential limiting sizes are 

widespread in nature. In evolutionary time, for instance, the diversity of insect herbivores 

and host plants seldom increase at similar rates (Thompson 1994). In ecological time, the 

dispersal rates of plants and animals (e.g., pollinators or seed dispersers) to recently 

created habitats, may differ (e.g., Shanahan et al. 2001) – both examples of “differential 

growth rate”. On the contrary, “differential limiting sizes” may occur, for example, when 

the number of species of a given set is limited by metabolic-related processes, or when the 
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species entering the network originate from a depauperate biogeographic pool. As a 

consequence of these processes, we will not expect to find power-law behavior for the 

 of the set that increases at a slower rate in the abovementioned plant-animal 

networks even if preferential attachment is occurring without forbidden links. 

( )kP

In conclusion, together with random initial conditions (Guimarães et al. 2005) and 

constraints to preferential attachment (Jordano et al. 2003), processes affecting species 

richness are an alternative explanation to the existence of broad-scale ecological bipartite 

networks. Future work should investigate how to differentiate between these alternative 

processes. 
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Summary 

 

At the community level, mutualistic interactions form webs of interacting species that can 

be described as networks, in which species are nodes and links are interespecific 

interactions. Mutualistic networks often exhibit a particular type of asymmetrical 

specialization called nestedness and different evolutionary and ecological factors were 

hypothesized to explain this community-level pattern. However, computational 

limitations prevent direct tests of the importance of ecological factors to nestedness. Here, 

we introduce a new approach that allows exploring the relation between ecological factors 

and nestedness. We illustrated the introduced approach testing the hypothesis that 

variation in abundance among species explains the nested structure of one of the best 

studied plant-animal networks. We show that abundance patterns explain about 60% of 

the observed nested structure. Our study shows that abundance is an essential but not 

exclusive ecological factor underlying nestedness. The introduced approach will be useful 

to study the ecological basis of nestedness in plant-animal networks and in other 

ecological systems, such as biogeographic patterns in species distributions. 

 
 
 

Key-words: asymmetrical specialization, bi-clustering algorithms, community structure, 

ecological networks 
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Introduction 

In a given ecological community, each species interacts with a few to dozens of 

mutualistic partners (Jordano 1987). Therefore, at the community level, mutualistic 

interactions often emerge as networks of highly diversified, and low-specificity relations 

among free-living species (Guimarães et al. 2006; Jordano et al. 2003; Memmott 1999). 

Analyses of network structure are helping to detect and explain patterns of specialization 

(i.e. number of interaction per species) across communities  and among different types of 

interactions (Bascompte & Jordano 2006; Memmott 1999; Olesen & Jordano 2002; Ollerton 

& Cranmer 2002; Vazquez & Aizen 2004; Vazquez et al. 2005). In this context, one of the 

central problems to solve is: what is the ecological and evolutionary basis of the observed 

community-level structure (Thompson 2005; 2006)? 

Recent studies suggested that networks describing species-rich, mutualistic 

interactions between animals and plants show a specific type of asymmetrical interaction 

called nestedness (Bascompte et al. 2003). Nested networks are characterized by (1) species 

with many interactions (“generalists”) that interact with each other, forming a core of 

interacting species; (2) species with few interactions (“specialists”) that commonly interact 

only with generalists; (3) and by the near complete absence of specialist-specialist 

interactions (Figure 1a). Several authors have suggested that nestedness is a consequence 

of simple ecological and evolutionary processes that affect the interactions among species, 

including variation in abundance of species (Bascompte et al. 2003; Jordano 1987; 

Lewinsohn et al. 2006) and convergence of traits among interacting species (Guimarães et 

al. 2006; Thompson 2005; 2006). Understanding nestedness therefore entails quantifying 

the contribution of ecological and evolutionary factors to the observed pattern. 

Although different metrics have been proposed to quantify nestedness (Brualdi & 

Sanderson 1999; Cutler 1994; 1998; Wright et al. 1998), the matrix’s temperature, T, which 

allows comparisons of nestedness among different networks (Atmar & Patterson 1993), 

has become established as the standard measurement of the degree of nestedness in 

ecological interaction networks (Bascompte et al. 2003). The matrix’s temperature has 

advantages in relation to alternative nestedness metrics, in that it is less sensitive to effects 
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rows and columns (Nr). Additionally, the ratio 

of species richness, richness ratio among plants and animals, and number of interactions 

(see Wright et al. 1998 in the context of patterns of species distribution). However, 

computational limitations prevent the direct test of the importance of a given ecological 

factor to the observed values of T. Although usual statistical methods such as correlations 

that indirectly relate nestedness to ecological factors might circumvent this problem (e.g., 

McAbendroth et al. 2005),  they do not allow estimates, in terms of T,  of how much of the 

nested pattern is related to a given ecological factor. Moreover, these methods assume that 

the nestedness varies monotonically with the ecological factor. 

 

Figure 1. (a) The network describing community-level patterns of interactions among 
frugivore birds (black nodes) and plants (white nodes) in Correhuelas, Spain. Both birds 
and plants are organized in decreasing number of interactions to evidence nested structure 
(see text for further details). (b) Matrix descrybing Correhuelas network. Again, both birds 
(rows) and plants (columns) are organized in decreasing number of interactions (filled 
elements) to evidence nested structure. The degree of nestedness (N) would be maximum 
(N = 1) if all interactions were located on the left side of the isocline of perfect nestedness 
(in grey). (c) We can compute Ni for any arrange of rows and columns, generating a 
distribution of Ni values (the bell-shaped figure). In this context, the N often reported in 
nested studies is the Ni recorded in the arrangement that maximizes nestedness. The 
hypothesis that abundance (or other ecological factor) at least partially explains nestedness 
is supported if the degree of nestedness for the matrix in which species were arranged 
following their abundances (Nab) is higher than expected by the random arrangement of 

NNab  is a measure of how much 

abundance explains of the total nested pattern. 
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eference system one of best documented 

plant-anima

Methods 

 

(a) Dataset 

 The studied mutualistic community corresponds to the plant–frugivore network of 

de las Correhuelas, Sierra de Cazorla, 

southeaster

network was described by an incidence matrix R, in which rows were 

bird species, columns were plant species and the element was equal to one if the bird 

 j

Here, we explore a possible solution for the study of the relation between 

nestedness and ecological factors, using as a r

l networks, that depicting the interactions between frugivores and plants in a 

SE Spanish locality. We propose an approach that allows a direct test of putative effects of 

ecological factors to nested structure and also provides an estimation of the extent of the 

nested pattern that is explained by the analyzed ecological factor. We illustrated our 

approach by testing the hypothesis that nested structure is at least partly explained by 

differences in abundance among interacting species (Lewinsohn et al. 2006). 

 

a high elevation Mediterranean forest (Nava 

n Spain). The Correhuelas network is composed of 33 frugivorous bird species 

and 25 fruiting plant species. This network was specially suitable to illustrate the 

introduced approach for three reasons: (1) the described network resulted from long-term 

fieldwork by one of us (P. Jordano, unpublished data) is one of most nested networks 

described so far (Bascompte et al. 2003) and (2) the annual density data of both 

frugivorous birds (individual birds/area) and fruiting trees (fruits/area) were estimated 

independently of the census of actual plant-frugivore interactions, as reported in previous 

studies (Jordano 1988; 1994; 1995). The dataset contains records from >200 km line transect 

census of frugivore abundance and >4000 feeding records of frugivores visiting fruiting 

plants. A feeding record entails the observation of a frugivore handling and, eventually, 

ingesting a fruit (see Snow & Snow 1988). 

 

(b) Network description and nestedness analyses 

A bipartite 

ij

species i was observed eating the fruits of the plant species  and zero otherwise (Jordano 

r  
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et al. 2003). The matrix R is perfectly nested if it shows a progression of inclusive subsets 

after ordering rows and columns in decreasing totals (Lewinsohn et al. 2006, Figure 1b). 

The degree of nestedness (N) can be quantified as 100/)100( TN −=  (Bascompte et al. 

2003), in which T is a measure of how much the i s described by R 

departs from perfect nestedness, values ranging from zero (perfectly nestedness) to 100 

(perfectly non-nestedness) (Atmar & Patterson 1993). In figure 1, we illustrate nestedness 

using the highly nested Correhuelas network (N = 0.94, Bascompte et al. 2003). Although 

the available computer programs calculate T rather than N (e.g., Atmar & Patterson 1993; 

Guimarães & Guimarães 2006; Rodríguez-Gironés & Santamaría 2006), we will refer to N 

to emphasize our focus on the degree of nestedness. 

The calculation of N involves three steps: (1

nteraction pattern

) an isocline of perfect nestedness is 

calcula

2.2. Relating abundance with nestedness 

d to investigate how ecological variables are related 

ith N

ted based on the number of plant and animal species and the number of 

interactions (Figure 1b); (2) for a particular arrangement of matrices, the deviations from 

this isocline (i.e. unexpected interactions and absences of interactions) are standardized 

and recorded, computing Ni, (3) a bi-clustering algorithm (usually called “packing” in 

nestedness analysis (Atmar & Patterson 1993; Guimarães & Guimarães 2006; Rodríguez-

Gironés & Santamaría 2006) is used to change the indexes of rows and columns, 

maximizing Ni. It is assumed that after the packing process, N value is the highest 

possible. Indeed, the N values often reported in nestedness studies is the Ni recorded in 

the arrangement that maximizes nestedness (Figure 1c). 

 

 Traditionally, the approach use

w  is the use of correlations between a given ecological variable and the index (or 

order) of each species in the packed matrix (e.g., McAbendroth et al. 2005). This approach 

has two drawbacks: (1) it does not provide an estimate of the fraction of total nestedness 

that is explained by the ecological variable, and (2) it assumes that nestedness varies 

monotonically with ecological factor, and will not necessarily detect some possible effects 

of an ecological factor on nestedness. For example, if all generalist species are among the 

most abundant species, but specialist species are not necessarily rare. To circumvent these 
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drawbacks, we propose the following approach (Figure 1c): first, we note that if a given 

ecological factor, such as abundance, totally explains nestedness, we should expect that if 

we organize both animal and plant species from most to least abundant the recorded value 

for Ni (hereafter abN ) would equal the value resulting after the packing procedure (N). 

Therefore, the ratio Nab  would vary from zero (abundance did not explain any aspect 

of the nestedness structure) to one (abundance totally explains nestedness). Thus, 

N

NNab  

can be used as an estimate of the degree to which observed nestedness is explained by the 

analyzed ecological factor.  

If the contribution of abundance to the degree of nestedness is statistically 

signific

‘abundance’ on the nested structure of the 

Correh

 (n

ant, abN  is expected to be higher than a given rN  resulting from random 

organization of the matrix. Therefore, we tested abN  by comparing it with an empirical 

null distribution of Ni obtained from an ensemble of matrices in which the organization of 

rows and columns was randomly determined. 

We investigated the effect of the factor 

uelas network using the introduced approach. Some plant species have equal 

abundance estimates, so we calculated the average abN  for all matrices in which species 

with the same abundance are randomly organized  = 24 matrices). All nestedness 

analyses were performed using ANINHADO (Guimarães & Guimarães 2006), a C- 

language software based on the original code of the widely used Nestedness Temperature 

Calculator (Atmar & Patterson 1993). ANINHADO allows the calculation of the matrices 

without using the packing algorithm, allowing the calculation of Ni for any given 

organization of the matrix. The program is available for download at 

www.guimaraes.bio.br.  

 

Results 

The 24 abundance-arranged matrices showed very similar degrees of nestedness 

=abN

lmost two fo

( 01.056.0 ± , minimum = 0.55 and maximum = 0.57). These values for abN  are 

a ld higher than expected by randomly arranged matrices 
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( 1000 ;003.0 ;13.024.0 ==±= nPN r replicates), suggesting that patterns of variation in 

a n a substantial fraction of the degree of nestedness 

observed in the Correhuelas network. 

The abundance patterns observ

bundance of birds and plants explai

ed in bird and plant species explain more than  half 

of the observed degree of nestedness ( 60.0=NNab ). That is, the core of generalist 

species observed in plant-animal mutu rks is usually formed by both 

abundant frugivorous birds (e.g., Phoenicurus ochruros, Turdus merula, T. viscivorus) and 

plants (e.g., Prunus mahaleb, Crataegus monogyna, Berberis vulgaris), but there are some 

generalists that are not among the most abundant species (e.g., the bird Turdus iliacus and 

the plant Rubus ulmifolius). Accordingly, several birds (e.g., Corvus corax and Pica pica) and 

plants (e.g., Paeonia officinalis and Polygonatum odoratum) with few interactions are among 

the less abundant species in the community, but there are a few ecological specialists that 

are not rare (e.g., the bird Sylvia communis and the plant Rhamnus saxatilis).  

 

alistic netwo

Discussion  

The approach used here allows the estimation of the extent to which the nested 

structure of a given plant-animal mutualistic network is explained by a particular 

ecological or evolutionary factor. Therefore, it can be a useful approach to test hypotheses 

on the relative importance of distinct ecological and evolutionary factors to the 

organization of mutualistic interactions. In the context of the interactions of frugivores and 

fruiting plants studied here, the introduced approach provided support to the notion that 

nestedness is at least partially determined by variations in the abundance of interacting 

species (Bascompte et al. 2003; Jordano 1987; Lewinsohn et al. 2006). In our study we use 

truly independent data for the abundance estimates and the actual records of interactions. 

The abundance estimates from frugivores were derived from line transect counts 

involving monitoring of all the avifauna. The plant abundance data were obtained from 

transect counts of fruit production that actually indicate the availability of fruits of 

different species to the frugivore consumers. The interaction data were obtained along 

independent feeding records by direct watch of the fruiting plants. These types of 

independent estimates of the ecological variable being tested and the interaction matrix 
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e part of the nestedness structure, it is 

impo

matrix.  

aimed to explain are difficult to obtain, but are needed for a robust test that attempts to 

avoid circularity arising from abundance estimates derived directly from interaction 

frequency (Vazquez & Aizen 2004). Such type of information might be more difficult to 

obtain for interaction matrices involving invertebrate consumers (e.g., pollination and 

herbivory networks, or host-parasitoid networks) for which a direct estimation of 

abundance might be difficult. In a more general context, our study corroborates the idea 

that many patterns observed in ecological networks are the result of differences in 

abundance among interacting species (Bascompte et al. 2003; Jordano 1987; Lewinsohn et 

al. 2006; Vazquez & Aizen 2004), but also emphasizes that other ecological factors 

influence the structure of these complex networks. 

Although abundance patterns explains a larg

rtant to emphasize that a not negligible amount of the nested structure (up to 40%) is 

not explained by this ecological factor. Some very abundant species show few interactions 

while some rare species are part of the core of generalist species. Different ecological and 

evolutionary processes may explain the observed pattern. One possible explanation for 

these patterns include variation in the importance of fruits on the diet of a given species, 

i.e., abundant but not highly frugivorous species might establish few interactions while 

rare but highly frugivorous species may consume several plant species. Alternatively, 

morphological and phenological constraints may limit the possible interactions of 

abundant species (“forbidden links” sensu Jordano et al. 2003; also see Stang et al. 2006). 

Examples of constraints include fruit size and short fruiting seasons for plants and gap 

width and migratory behavior for birds. Additionally, coevolutionary processes that led to 

life strategies in which species interact with one or many generalist species may contribute 

to nestedness (Thompson 2005), without be necessarily related with abundance patterns. 

Future studies should focus on testing these and additional ecological and evolutionary 

factors that may explain nestedness. By now, our study demonstrates the importance of 

abundance to nested structure and provides a direct approach to quantify the importance 

of specific factors on nestedness, based on a rigorous computational formalism and the 

requirement of independent data for ecological variables and for the observed interaction 
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rences in abundances among interacting species. Rather, the introduced approach 

can b

nts 

 

This work was funded by F  the Spanish Ministry of 

ducation and Science (Grants REN2003-00273 and CGL2006-00373)  to P.J.). A. Krishna, J. 

Bascom

We emphasize that the usefulness of the approach described here is not restricted to 

test diffe

e applied to investigate any ecological, evolutionary or behavioral factor that may 

explain nestedness in plant-mutualistic networks. Additionally, nestedness is not an 

exclusive property of mutualistic networks, but is also observed in the distribution of 

parasite species among individual hosts (Rohde et al. 1998) and in the biogeographic 

patterns of species distributions (Atmar & Patterson 1993; McAbendroth et al. 2005). 

Therefore, the introduced approach may be useful in the characterization of the biological 

basis of nestedness in different ecological systems.  
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Summary 

 

Recent studies suggest that food webs and plant-animal mutualistic networks differ in at 

least two aspects of their structure. First, the degree distribution (i.e., the probability of 

finding a species with a given number of interactions) decays exponentially for food webs 

and as truncated power-laws for mutualistic networks. Second, mutualistic networks often 

show a specific pattern of asymmetrical specialization called nestedness, whereas food 

webs are often non-nested. Here we investigated if lumping of species, a methodological 

procedure frequently used in food webs studies but rarely employed in mutualistic 

networks, can explain the observed differences in network topology. We simulate lumping 

of species in two well-studied ecological networks (a food web and a plant-animal 

interaction network) and in theoretical networks. Our simulations show that species 

lumping in networks in which the degree distribution decays as truncated power-laws 

often leads to exponential distributions, suggesting that bias introduced by lumping of 

species explain differences in the heterogeneity of interactions between both types of 

ecological networks. In contrast, lumping of species did not reduce nestedness, suggesting 

that structural differences are a result of different ecological and evolutionary processes 

operating in both types of ecological networks. 

 

Key-words: complex networks, degree distribution, food webs, lumping, nestedness, plant-

animal mutualistic networks 
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Introduction 

Complex networks describe a large number of social, physical and biological 

systems (Albert & Barabasi 2002; Amaral & Ottino 2004) and its use to describe ecological 

systems, such as food webs (consumer-resource networks) and plant-animal mutualistic 

networks, has increased markedly in the last years (Pascual & Dunne 2006). These studies 

have revealed two main topological differences between the structure of food webs and 

that of plant-animal mutualistic networks in terms of two metrics: the distribution of the 

number of interactions (k) per species, the so-called degree distribution (Jordano et al. 

2003), and the presence of nestedness, a specific pattern of asymmetrical specialization in 

which the more specialist species interact only with subsets of those species interacting 

with the more generalists and specialist-specialist interactions are almost absent 

(Bascompte et al. 2003; Guimarães et al. 2006; Vazquez & Aizen 2004).  

The degree distribution varies widely among food webs, but in the majority of food 

webs examined so far the degree distributions decay exponentially (Dunne et al. 2002, 

Figure 1), indicating that there is few variation in the level of specialization among the 

interacting species. In contrast, the bulk of mutualistic networks are broad-scale, in which 

the degree distribution mainly follows a truncated power-law (Figure 1), characterized by 

a number of species with few interactions and by a low but significant  probability of 

finding species with many interactions (“supergeneralists”) (Jordano et al. 2003). 

Regarding to nested patterns, food webs are usually not significantly nested, whereas 

plant animal mutualistic networks are in general highly nested (Bascompte et al. 2003; 

Guimarães et al. 2006, Figure 1).  

Structural differences between these two types of networks may be an indicative of 

different ecological and evolutionary processes acting on different types of interespecific 

interactions (Lewinsohn et al. 2006; Proulx et al. 2005; Thompson 2005; 2006). However, 

before assuming that the structural differences in food webs and mutualistic networks are 

the result of different ecological and evolutionary processes, we must rule out the 

possibility that the observed differences are a consequence of the poor taxonomic 

 52



CAPÍTULO 4 

 

 

 

resolution in food webs, a sampling issue that has been addressed by many authors for 

other metrics (e.g., Sugihara et al. 1997). 

 

 

 

Figure 1. Structural patterns in ecological networks: (a) differences in degree distribution 
(see text for further details): scale-free networks, in which degree distribution decays as a 
power-law (solid line), broad-scale networks, in which degree distribution decays as a 
power-law with an exponential truncation for a large value of k (dashed curve), and 
single-scale networks, characterized by a degree distribution that decays exponentially 
(dotted line), (b-c) differences in nestedness (see text for further details): (b) non-nested 
networks and (c) significantly nested networks. Both examples are hypothetical networks 
draw using the software Pajek (Batagelj & Mrvar 1998). Empty nodes represent plants, 
solid nodes represent animals. 
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Food webs analyzed in the literature tend to show a poorer taxonomic resolution 

than 

e even desirable for studies focusing 

comm

 on the 

degre

mutualistic networks (Olesen & Jordano 2002), because species are sometimes 

difficult to segregate taxonomically and are lumped into more inclusive categories (e.g. 

genera, families or even orders). There are also cases in which species are assumed to be 

trophically identical, i.e., they share the same set of predators and prey, and are also 

lumped into what has been termed trophic species (e.g., carnivorous lizards).  In contrast, 

in plant-animal mutualistic networks nodes are often resolved to the species level (see 

dataset of Bascompte et al. 2003; Jordano et al. 2003).  

Species lumping may not be a problem or may b

unity fragility or stability (Fonseca & Ganade 2001). However, if one is  interested in 

patterns of specialization within communities (Olesen & Jordano 2002), species lumping 

may introduce serious bias. For example, if in a given community most of species interacts 

with few species (Thompson 1994; 2005) but there is a few species with many interactions 

(Jordano et al. 2003), we should expect that lumping will usually aggregate species with 

few interactions and increase the number of moderately-connected “species”. Therefore, 

species lumping will lead to fast-decaying degree distributions, which more closely 

resemble exponential functions. In contrast, nestedness is characterized by generalist-

generalist and generalist-specialist interactions and the almost complete absence of 

specialist-specialist interactions (Guimarães et al. 2006) and would only be decreased by 

the addition of specialist-specialist interactions. As species lumping does not create new 

interactions, we should expect that nestedness is not affected by species lumping.  

Here, we test the above predictions about the effects of species lumping

e distribution and nestedness of ecological networks. We believe that our results may 

shed light on the important question of whether the reported structural differences 

between food webs and mutualistic networks are really a reflection of different ecological 

and evolutionary factors or are indeed the result of methodological issues. We report 

quantitative analysis of the effects of different procedures of species lumping on two well-

solved ecological networks (a food web and a plant-frugivore network) and as well as on 

theoretical networks. 
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Methods 

 

(a) Studied networks 

Two types of networks are used to describe ecological systems. Food webs are 

usually represented as unipartite networks, in which the network size, S , is not divided 

into subsets. In contrast, plant-animal mutualistic interactions are usually represented as 

bipartite networks, in which the original set S can be divided into two subsets, and , 

and there are no edges connecting nodes in the same set (Harary 1969). It is important to 

notice that, while the degree distribution can be used to characterize both unipartite and 

bipartite networks (Jordano et al. 2003), nestedness analysis is restricted to bipartite 

networks. Thus, for nestedness analysis of food webs, bipartite networks must be 

extracted from the original unipartite network, such as interactions between producers 

and herbivores (see Bascompte et al. 2003). To test whether species lumping is the sole 

responsible to the observed differences between food webs and mutualistic networks, we 

used two different approaches. 

AS BS

First, we analyzed two real ecological networks: the predator-prey interactions 

among fish species in the Caribbean Food Web (S = 209 species, Bascompte et al. 2005), 

and the Correhuelas Plant-Frugivore Network (S = 58 species, P. Jordano, unpublished 

data). These are among the largest and best resolved ecological networks compiled so far. 

To perform nestedness analysis in the Caribbean food web, we extracted a bipartite 

network (including 98.5% species of the fishes in the original network) in which one set 

was composed of fish species that are prey but did not prey upon any fish species and the 

other was composed by fish predators of the first set. Second, we investigated the effects of 

lumping of nodes in theoretical networks to assess if the conclusions obtained with real 

networks can be generalized for a broad class of networks.  

 

(b) Lumping of species 

We simulated two different processes of lumping of species: taxonomic and trophic 

lumping. In the taxonomic lumping, all species with the same genera or family were 

lumped together and represented as a single node with all edges of the lumped species. In 
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the trophic lumping, two species were selected based on their topological similarity and 

interchanged by a new “species”. The algorithm for trophic lumping was:  

1. The first species was randomly selected. 

2. We calculated the similarities between the first, randomly-selected species 

selected and all the remaining species using Jaccard’s index (J) 

         
akk

a
J

ji −+
=                                    (1), 

in which a is the number of partners that both species interact with, is the  degree of the 

first species, and is the degree of the second species. 

ik

jk

3. A second species was selected with probability proportional to his J.  

4. The two selected species were lumped and represented as single node with the 

same edges of both selected species.  

5. This steps (1-4) was repeated until achieving the desired number of nodes, .  'S

Both processes of lumping were performed in the two real networks. Trophic 

lumping, with arbitrary final sizes for lumped networks, was also performed in theoretical 

networks. 

 

(c) Degree distribution 

The degree distribution, ( )kP , is often used to classify a network as one of the 

following three different classes: (1) scale-free network, in which the probability of finding 

a node with kk > , k  being the average degree, decays as a power-law, ; (2) 

broad-scale network, in which the probability of finding a node with 

( ) γ−
kkP ~

kk >  decays as a 

truncated power-law, ( ) xkk
ekkP
−−γ

~ ; is a cut-off value and the degree distribution 

decays as an exponential for 

xk

kk > ; (3) single-scale network, in which the probability of 

finding a node with kk >  decays as an exponential, ( ) γk
ekP
−

~ .We used the cut-off 

value, , to track changes in the degree distribution due to the species lumping (Figure 

2a). Preliminary simulations demonstrated that the average degree, 

xk

k , increased with 

lumping of species (results not shown). As is a function of xk k , we used a standardized 
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xk , kk x  to investigate if there is an increase in exponentially with lumping of species. 

The cut-off value, , was estimated using an adapted version of a recently  described 

approach to characterize the  of small networks (Guimarães et al. 2005).  

xk

( )kP

We calculated the cumulative ( )kP  (i.e, the probability of interacting with k or 

more species) to reduce fluctuations in the ( )kP  related to small network size (Strogatz 

2001). The five lower recorded values of k for which kk >  were used to compute the 

predicted distribution of , ( )kP ( )
PREDkP , assuming that ( )kP  decays as a power-law. The 

use of the five lower values prevents the effects of eventual exponential decays on power-

law fit. We defined  as the largest value of k for which xk ( ) ( )
PREDOBS kPkP ≥ , in which 

 is the observed . If ( )
OBSkP ( )kP kk x is small, ( )kP  is essentially exponential and if 

kk x  is large,  is essentially a power-law, creating a gradient from single-scale to 

broad-scale and to scale-free networks. In the theoretical simulations, we used a very 

popular and minimal theoretical model, the BA model proposed by Barabási and Albert 

(1999), to create theoretical networks. The BA model simulates two general processes that 

act in real networks: (i) network grows in time by adding new elements, and (ii) new 

nodes tend to interact preferentially with the highly connected elements in the systems, 

which constitutes the so-called preferential attachment (Barabasi & Albert 1999). The BA 

model was defined by the following network growth rules:  

( )kP

1. at time 0=t , one creates   connected nodes (e.g., Melian & Bascompte 2002), 0m

2. at each time step, a new node with 0mm ≤ links is added to the network and 

connected to a node with probability Π ;  

3. the probability Π  that a new node will be connected to node i depends on the 

degree k of that node, so that ( ) ∑=Π jjii kkk , 

For a sufficiently large network ( )∞→S  generated by a BA model (hereafter BA 

network),  follows the power-law ( )kP ( ) γ−
kkP ~ . Truncated power-laws emerge in BA 

model networks under certain specific circumstances (Amaral et al. 2000; Guimarães et al. 

2005; Jordano et al. 2003; Mossa et al. 2002) and are expected due to small network size. 
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Exponential distributions are associated to random networks in which preferential 

attachment is severely limited (Amaral et al. 2000) or do not even occur (Albert & Barabasi 

2002). We simulated BA networks using the above steps and then we start trophically 

lumping species exactly as done with the real networks. We repeated this procedure 1000 

times and obtained the average value for kk x  and its 95% confidence interval. 

In principle, lumping of species may cause two different effects on networks. First, 

there can be a size-based effect, in which changes on kk x would be a byproduct of the 

reduction in network size. Second, there can be a lumping-based effect, in which changes 

in kk x cannot be explained by the simple reduction in network size. Each ensemble of 

lumped BA networks was compared with an ensemble of one thousand BA networks 

generated with similar k and equal . The 'S k is not identical to those of the lumped 

networks because in BA networks mk 2~ , and m is an integer. If the effect of lumping of 

species on the degree distribution is solely size-based, we would expect that both lumped 

BA networks and BA networks have similar values for kk x . However, if the effects of 

lumping on the degree distribution were not restricted to size-effects, we would expect 

kk x  will be lower for lumped networks than for non-lumped networks. 

 

(d) Nestedness 

As previously stated, nestedness is a measure of asymmetry in a bipartite network. 

The ANINHADO (Guimarães & Guimarães 2006) was used to calculate an index of 

nestedness for the original real networks. The program is available for download at 

www.guimaraes.bio.br. First, nodes were represented by columns (nodes of set 1) and 

rows (nodes of set 2) in an adjacent matrix in which edges between nodes were 

represented as “1s” and absence of edges as zeros. Each adjacency matrix was maximally 

packed, that is, the matrix was reorganized in a way that maximizes nestedness (Atmar & 

Patterson 1993). Given the structure of the adjacency matrix (the number of species in each 

set and the number of edges), an isocline of perfect nestedness was calculated for the 

adjacency matrix (Atmar & Patterson 1993; Bascompte et al. 2003). Then, it was possible to 
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calculate an average measure of the unexpectedness in the presence and absence of edges, 

the so-called temperature, T , with values ranging from 0º (perfectly nested) to 100º 

(perfectly non-nested). As we are interested in the degree of nestedness and not on the 

degree of disorder, we calculate nestedness, N , in which 100)100( TN −=  (following 

Bascompte et al. 2003).   

Monte-Carlo simulations were used to assess nestedness significance. The 

simulations generated random adjacency matrices assuming that an edge between any 

randomly selected pair of nodes of different sets had an equal probability of occurrence. 

An empirical distribution of N-values was generated using the Monte-Carlo simulations (n 

= 1000 simulations). The average nestedness for the random population, , was used to 

calculate the value of relative nestedness, that is  

RN

( ) RRO NNNN −=* , in which  is the 

observed nestedness.  is a measure of how nested is a network with respect to the 

degree of nestedness expected for a random network with the same number of species in 

both sets and the same number of interactions (Bascompte et al. 2003). If  is not 

statistically different from zero, the degree of observed nestedness is expected by a 

random network and the network is called non-nested. We computed  for original and 

lumped networks. 

ON

*N

*N

*N

In the theoretical simulations, we used a very simple model: a highly nested 

network  in which set sizes were defined as ( 1=N ) 10021 == SS  and the proportion of 

edges actually established is 5%. We used the following algorithm to explore the effects of 

species lumping on nestedness: 

1. Two species of set 1 were selected and deleted in the same way as in the  

simulations with real networks.  A new species with the same links of both the 

original species was introduced in set 1.  

2. Step (1) was repeated until  was equal to a previous determined final value  . 

The final values of used in these analyses were  

1S 'S

}30,40,50,60,70,80,90{1 =S .  

3. Two species of set 2 were selected and deleted in the same way as in the  

simulations with real networks.  A new species with the same links of both the 

original species was introduced in set 2.  
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4. Step (3) was repeated until was equal to a previous determined final value, 

. 

2S

'' 12 SS =

For each lumped network, we recorded the average value of and its 95% 

confidence interval. If lumping of species leads to non-nested networks, we would expect 

the relative nestedness to decrease towards zero (non-significant nestedness) by lumping. 

*N

 

Results 

Lumping species to genus level reduced the number of species by 41.8% in the 

Caribbean Food Web and by 39.7% in the Correhuelas Plant-Frugivore Network. At family 

level, network size decreased by 71.1% in the Caribbean Food Web and by 62.1% in the 

Correhuelas Plant-Frugivore Network.  This taxonomic lumping reduced kk x  in 

relation to the original networks at both genus and family level (Figure 2b-d). The trophic 

lumping of species, however, did only reduce kk x  at the level of lumping equivalent to 

the family level (Figure 2b-d). At genus-level, no effect of trophic lumping of species on 

kk x was recorded.  

In the simulations using theoretical networks, although the BA model predicts a 

huge variation in kk x , trophic lumping markedly reduced the average ratio kk x  for 

the ensemble of BA networks (Figure 2e). The reduction of kk x is partly a result of the 

simple reduction of network size (Figure 2e). However, lumped networks showed lower 

values of kk x  than similar-sized BA networks though, especially for the initial levels of 

lumping (Figure 2f). Thus, our results show that lumping of species can actually transform 

scale-free or broad-scale networks in single-scale networks by both size- and lumped-

based effects. 

Both ecological real networks were extremely nested: N = 0.93 for the Caribbean 

Food Web and N = 0.94 for the Correhuelas Plant-Frugivore Network. Species lumping 

did not reduce nestedness in neither of the two ecological networks. Indeed, it actually 

increased relative nestedness in some cases (Figure 3a-b). Accordingly, increase of relative 

nestedness was also recorded for the theoretical network (Figure 3c).  
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Figure 2. Species lumping and degree distribution. (a) The decrease in kk x  (grey 

arrows) represents changes from power-law distributions to exponential distributions. (b-

d) kk x  for original networks (black columns), taxonomic-lumped networks (grey), and 

trophic-lumped networks (white): (b) Caribbean Food Web, (c) animal species in 
Correhuelas Network, and (d) plant species in Correhuelas Network. (e) trophic lumping 

and  kk x  for BA networks (grey columns) and lumped BA networks (white). (f) The 

relationship between the kk x of non-lumped and lumped BA networks and network 

size. In all graphs, bars indicate 95% confidence interval. 
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The analyses of nestedness values (N) for lumped versions of theoretical networks 

and their Monte Carlo counterparts showed that the increase in the relative nestedness 

was not a result of the reduction of N with lumping. Rather, lumping of species in a given 

matrix led to no clear changes in N (Figure 3d). However, there was a strong decrease in N 

for the Monte Carlo matrices. Therefore, the relative nestedness, that is, the difference in 

nestedness between real matrix and their Monte Carlo counterparts, increased (Figure 3d).  

In conclusion, our results indicate that the lumping of species cannot transform nested 

networks in non-nested networks. Rather, lumped networks may actually show higher 

relative nestedness than non-lumped networks, leading to false conclusions that a given 

lumped network is significantly nested. 

 

Figure 3. Effects of the lumping of species on nestedness: (a-b) The relative nestedness for 
real networks (dark grey columns), taxonomic-lumped networks (grey), and trophic-
lumped networks (white). (a) The original Caribbean Food Web. (b)  the Correhuelas 
Network. (c) Relationship between relative nestedness of theoretical networks and 
intensity of lumping (see text for further details). Note that the relative nestedness 
increases with lumping. (d) Relationship between nestedness and intensity of lumping for 
theoretical networks (black circles) and their random counterparts (open squares). In all 
graphs, bars indicate 95% confidence interval. 
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Discussion  

Ideally, complex networks should be applied to the analysis of the 

interactions between well-defined elements in a given natural system (Proulx et al. 

2005). However, this is not always possible, because it might be difficult to (i) 

record and identify all elements involved or (ii) record all the interactions between 

elements. This problem is especially serious in food web analyses, in which 

taxonomic and trophic lumping of species is commonplace (Pimm 2002; Sugihara 

et al. 1997). In this context, the aim of our study was to contribute to a better 

understanding of the effects of the aggregation of species on two important 

properties of networks, namely, the degree distribution and nestedness. 

We demonstrated that the observed differences in the functional form of the 

degree distribution between food webs and plant-animal networks can emerge 

simply as a result of lumping procedures. Sampling biases are already known to 

affect the shape of the degree distributions of scale-free networks (Stumpf et al. 

2005), but not to generate exponential truncations for large degrees. Our results 

show that the lumping of nodes can strongly alter scale-free networks and broad-

scale networks by turning them into single-scale  networks. Moreover, the effects 

of lumping cannot be interpreted as simple small-size effects, at least for small 

levels of lumping. At higher levels of lumping, the network size is probably so 

small that we cannot distinguish the effects of lumping from effects of network 

size. 

These findings may have important implications to both the understanding of 

the principles of organization of food webs and their vulnerability to the loss of 

species. For instance, exponential distributions are often interpreted as the absence 

or severe limitation of preferential attachment (Amaral et al. 2000). This in turn has 

been interpreted as evidence of different processes shaping food webs and 
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mutualistic networks (Dunne et al. 2002; Jordano et al. 2003). Here, we suggest an 

alternative and more parsimonious view, in which both types of networks may be 

indeed generated by preferential attachment, but the usual poor resolution of food 

webs falsely creates the exponential distributions observed in the literature. It is 

important to notice that even best resolved food webs actually show lumping of 

species (e.g., nodes representing ‘plankton’, ‘carrion’ or ‘seeds’ – see Table 1 from 

Dunne et al. 2002). The degree distributions of networks have also been commonly 

interpreted in terms of their fragility to random or directed removal of species. 

Single-scale networks are more vulnerable to random removal of nodes. In 

contrast, broad-scale and scale-free networks are far more resistant to the random 

removal of nodes, yet much more sensitive to the directed removal of high-

connected nodes (Albert et al. 2000). Thus, if nodes are to be interpreted as the 

species of food webs, by erroneously describing food webs as single-scale 

networks, we may be overlooking the importance of highly connected species for 

their stability. 

With respect to nestedness, Bascompte et al. (2003) demonstrated that plant-

animal pollination and seed dispersal networks were usually more nested than 

food webs. The proportions of significantly nested networks found by these 

authors were 0.70 (19 in 27 networks) for seed dispersal networks, 0.80 (20 in 25) 

for pollination networks, but only 0.29 (4 in 14) for food webs. Other studies 

demonstrated that ant-plant mutualistic networks are also nested (Guimarães et al. 

2006). Our results demonstrate that the low frequency of significantly nested food 

webs is not a result of lumping of species, which further supports previously 

described patterns in ecological networks (Bascompte et al. 2003). A relevant point 

is that lumping actually increases relative nestedness in the simulated and real, 

nested networks. It seems that not only are food webs not usually nested, by they 

are structured in a way that somehow prevents nesting by lumping of species. 
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What topological features of food webs are responsible for this anti-

nestedness is an open question that should be pursued in future studies. One 

possible explanation may rely on the fact that food webs and mutualistic networks 

may really be a result of different ecological and evolutionary  processes 

(Thompson 2005). For example, a few bipartite host-parasitoid and parasitoid-

hyperparasitoid food webs were significantly less nested than expected by chance, 

which may describe its organization in compartments (Bascompte & Jordano 2006). 

Nestedness may emerge in mutualistic networks because natural selection on 

mutualisms often specifically favors the development of non-specific and 

asymmetrical interactions through the convergence of traits in interacting species 

(Thompson 2005). In contrast, in food webs, coevolution of defenses and 

counterdefenses may have led to the emergence of non-nested macroscopic 

structures, such as compartments (Prado & Lewinsohn 2004). In conclusion, 

although differences in degree distribution can be explained by differences in 

sampling detail, the results for nestedness suggest that deeper, biological 

explanations should not be ruled out. 
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Mutualistic networks involving plants and their pollinators or frugivores have been shown recently to

exhibit a particular asymmetrical organization of interactions among species called nestedness: a core of

reciprocal generalists accompanied by specialist species that interact almost exclusively with generalists.

This structure contrasts with compartmentalized assemblage structures that have been verified in

antagonistic food webs. Here we evaluated whether nestedness is a property of another type of

mutualism—the interactions between ants and extrafloral nectary-bearing plants—and whether species

richness may lead to differences in degree of nestedness among biological communities. We investigated

network structure in four communities in Mexico. Nested patterns in ant–plant networks were very similar

to those previously reported for pollination and frugivore systems, indicating that this form of asymmetry

in specialization is a common feature of mutualisms between free-living species, but not always present in

species-poor systems. Other ecological factors also appeared to contribute to the nested asymmetry in

specialization, because some assemblages showed more extreme asymmetry than others even when species

richness was held constant. Our results support a promising approach for the development of multispecies

coevolutionary theory, leading to the idea that specialization may coevolve in different but simple ways in

antagonistic and mutualistic assemblages.

Keywords: asymmetric specialization; complex networks; extrafloral nectaries;

geographic mosaic; nestedness

1. INTRODUCTION

Species interact within communities as networks, with

each species connected to one or more other species

(Pascual & Dunne 2006; Waser & Ollerton 2006).

Analyses of network structure are allowing prediction of

the consequences of species extinction and environmental

perturbation to the whole community (Pascual & Dunne

2006). Additionally, comparative studies of network

structure are helping to explain variation in patterns of

specialization across communities (Olesen & Jordano

2002; Waser & Ollerton 2006). In this context, one of

the central problems to solve in community ecology is

whether different forms of interaction favour alternative

structures in these networks of interacting species

(Bascompte et al. 2003; Jordano et al. 2003).

A network of interacting species may have a small

number of links among species, indicating an assemblage

of ecological specialists, or many links, indicating

ecological generalists. Mutualisms between free-living

species often form multispecies networks apparently

similar to the food webs commonly described for

antagonistic interactions ( Jordano 1987). Recent studies

of pollinator–plant and seed disperser–plant interactions,

however, have suggested that mutualistic and antagonistic

webs of free-living species may differ fundamentally in the

structure of how specialization is distributed among

interacting species (Bascompte et al. 2003; Jordano et al.

2003; Vazquez & Aizen 2004). Bascompte et al. (2003)

found that pollination and seed dispersal networks often

show a specific type of asymmetrical specialization called

nested. Nested networks are characterized by (i) general-

ists that all interact with each other, forming a core of

interacting species; (ii) specialist species that commonly

interact only with generalists and (iii) the absence of

specialists that interact only with other specialists

(figure 1a). In contrast, antagonistic networks

(e.g. predator–prey, herbivore–plant), tend to be more

compartmentalized, i.e. characterized by cohesive groups

of interacting species (compartments) with relatively few

interactions among groups (Prado & Lewinsohn 2004;

Bascompte & Jordano 2006; figure 1b).

Nested patterns of asymmetrical specialization may be

more likely to develop in mutualistic interactions among

free-living species than in antagonistic interactions,
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because natural selection on mutualisms often specifically

favours the development of multispecies networks through

convergence and complementarity of traits in interacting

species (see Thompson 1994, 2005). In contrast,

antagonistic interactions may favour greater compartmen-

talization through the continual coevolution of defences

and counter defences that generates greater specificity (see

Thompson 2005). If nested asymmetries in specialization

are indeed generated by simple coevolutionary processes

such as convergence and complementarity of traits, it

should be a common feature of mutualisms, spanning

multiple forms of interaction beyond those investigated so

far for plants and their pollinators and frugivores.

Nevertheless, we currently do not know whether the

nested pattern of asymmetries in specialization is common

in other forms of mutualism or how different ecological

conditions may shape the extent of asymmetry (i.e. the

degree of nestedness). We already know from past studies

of mutualism that species commonly differ geographically

in the species with which they interact (Anderson et al.

2004; Rudgers & Strauss 2004) and that some interactions

coevolve as a geographic mosaic in which populations

differ across landscapes in their adaptation and specializ-

ation to other species (Thompson 1994, 2005). Hence,

the problem to solve is whether interaction networks show

similar patterns of specialization in different communities

regardless of the particular species involved. By exploring

variation in community-level patterns of mutualistic

networks, we will be able to bridge the two main

approaches to explore the organization of multispecies

mutualisms: geographic mosaic theory and complex

network theory (Bascompte & Jordano 2006).

Here, we take a first step towards filling these gaps, by

exploring whether interactions between plants with

extrafloral nectaries (EFN) and ants (hereafter EFN

networks), which are among the most commonly studied

types of plant–animal mutualisms (Bronstein 1998), show

predictable patterns of asymmetry in specialization and

whether those patterns vary with ecological conditions. In

a given tropical community, dozens of nectar-producing

plant species may interact with ants (Dı́az-Castelazo et al.

2004). These interactions are often defensive mutualisms,

in which the ants protect plants against their natural

enemies and plants reward ants with nectar (Rico-Gray

et al. 1998b). We studied nested patterns and their

variation in four EFN networks, each from a different

site in Mexico, to address the following questions: do

ant–plant networks show a predictable pattern of special-

ization within and among communities? To what extent is

the pattern of specialization similar to that found in studies

of other forms of interaction?

2. MATERIAL AND METHODS

(a) Study areas

We constructed networks using previously published data

from interactions between ants and EFN-bearing plants in

four different communities (Rico-Gray 1993;Dı́az-Castelazo&

Rico-Gray 1998; Rico-Gray et al. 1998a,b) and compared those

with patterns found in previous studies of nestedness

in pollinator–plant and seed disperser–plant networks

(Bascompte et al. 2003). For the ant–plant networks, we

evaluated four habitats with a similar number of flowering

plant species (about 250–300) but with contrasting environ-

mental characteristics: lowland tropical dry forest (LaMancha,

Veracruz), coastal tropical sand dune matorral (San Benito,

Yucatán), highland semiarid vegetation (Zapotitlán, Puebla),

and lower montane humid forest (Xalapa, Veracruz). The

vegetation in Xalapa, a mixture of tropical and temperate

floristic elements (Williams-Linera&Tolome1996), constrains

the development of species-rich EFN networks because

relatively few plants have EFN (Dı́az-Castelazo & Rico-Gray

1998). In contrast, the other three habitats have tropical floristic

elements (e.g. Leguminosae, Bignoniaceae,Cactaceae) that are

abundant and frequently have nectar-producing structures

(Elias 1983; Schupp & Feener 1991). See electronic

supplementary material for detailed description of study sites.

(b) Nestedness in EFN networks

Typically, plant–animal interactions can be depicted as

networks consisting of two sets of nodes (plants and animals;

random compartimentalized nested

(a)

(b)

LM SB ZA XL

Figure 1. (a) Different types of hypothetical plant–animal

networks: random networks, in which there is no community-

level patterns of specialization; compartmentalized networks,

in which there is symmetrical specialization; and nested

networks in which there is asymmetrical specialization, i.e.

specialists interact with the core of generalist species. (b) EFN

networks: LM, La Mancha; SB, San Benito; ZA, Zapotitlán;

XL, Xalapa. Open nodes are ant species and closed nodes are

extrafloral nectary-bearing plant species. Only the first three

networks (LM, SB and ZA) show high degree of nestedness.

Networks were drawn in PAJEK (http://vlado.fmf.uni-lj.si/pub/

networks/pajek/).
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Jordano et al. 2003; figure 1) and links among them that

depict the interactions between any species pair. An EFN

network is defined by an adjacency matrix R describing

trophic interactions between E extrafloral nectary-bearing

plant species and A visiting ants within a well-defined

ecological community, where rijZ1 if the plant i is visited

and its extrafloral nectar harvested by the ant j and zero

otherwise. Thus, this matrix has non-zero r elements

wherever ants visit the EFN of a plant. It is important to

emphasize that visitation by ants does not necessarily imply

that ants are protecting the plant. Rather, certain ant species

may only explore the resource without protecting the plants

or only protecting under certain ecological conditions.

Therefore, only a subset of recorded interactions in these

networks is unambiguously mutualistic. Future studies

should focus on the importance of exploiters of mutualistic

interactions to network structure. In this study, we follow the

approach already used in other interactions and considering

that all interacting species are part of the mutualistic network

(see Jordano et al. 2003).

Our discussion about nested asymmetrical specialization is

based on the ecological concepts of specialist and generalist

(see Olesen & Jordano 2002), in which the level of

generalization of a given species is equal to the number of

recorded interactions. In this context, specialists and general-

ists are terms used to describe the endpoints of a continuum

varying from species that interact with only one partner

(extreme specialists) to species that interact with near all

possible partners (extreme generalists). Ecological specializ-

ation may emerge as a consequence of coevolutionary

processes between the plants and ants, differences in species

abundance and competitive interactions among the plants or

the ants.

We follow Bascompte et al. (2003) and define nestedness,

N, as NZ(100KT/100), in which T is the matrix tempera-

ture, a measure of matrix disorder with values ranging from 08

(perfectly nested) to 1008 (perfectly non-nested). Values of N

close to one therefore indicate strong asymmetrical patterns

in specialization (same as high degree of nestedness),

intermediate values are usually produced assuming random

interactions among species, and low values of N may indicate

compartmentalization (Bascompte & Jordano 2006). Thus,

by calculating nestedness we are able to investigate if a given

ecological interaction can be described as one of the three

main classes of networks (figure 1a). In effect, we are testing

three alternative hypotheses on the structure of specialization

in these assemblages.

To calculate T, the adjacency matrix R is maximally

packed (see Atmar & Patterson 1993 for further details).

Then, an isocline of perfect nestedness is calculated and

deviations from this isocline (i.e. unexpected recorded

presences and absences of interactions that deviate from a

perfectly nested pattern) are standardized and recorded. The

average degree of deviation from this isocline is T. All

nestedness analyses were performed using ANINHADO v. 1.0,

C-language software based on the original code of the widely

used nestedness temperature software (hereafter NTC) that

allows rapid analyses of thousands of replicates (Guimarães &

Guimarães 2005).

We assessed the significance of nestedness, using two null

models. The first null model was based on NTC’s null model

and tested if the observed nested pattern is expected by the

average level of generalization. Null model I assumes that

each randomly assigned pair of ants and plants interacts with

constant probability, p. This probability is related to the

average level of generalization observed in the network and

was estimated as p̂ZE=AP, in which E is the number of

observed interactions and AP is the maximum possible

number of interactions in a network with A ant and P plant

species. This model generates networks in which differences

in the number of interactions among species of the same

assemblage is small. Different nested patterns, in turn, may

result from differences in the number of interactions among

species. In pollination and seed dispersal networks, however,

the degree of nestedness is often higher than expected by the

heterogeneity of number of interactions (Bascompte et al.

2003). As we are interested in whether EFN networks show

patterns of nestedness similar to those recorded in other

mutualistic networks, we also used null model II from

Bascompte et al. (2003), which assumes that the probability

that a plant i interacts with an ant j depends on the observed

number of interactions of both species, such that

pðrij Z 1ÞZ
ki

A
C

kj

E

� �

1

2
; ð2:1Þ

in which k is the observed number of interactions for the

species. As k is correlated with species abundance in

plant–animal interactions ( Jordano 1987; Jordano et al.

2003), this model also controls for potential sampling bias,

in which asymmetrical patterns of interactions are generated

only by differences in species abundance.

We compared the proportion of networks that show

significant values of N with those recorded for pollination

(nZ25), seed dispersal networks (nZ27) and with a set of

antagonistic networks that include predator–prey, consumer–

producer and herbivore–plant interactions (nZ14, all values

recorded from Bascompte et al. 2003).

(c) Comparisons among communities

We also investigated how ecological variables affect nested-

ness patterns. The degree of nestedness is thought to be a

measure independent of matrix properties (Atmar &

Patterson 1993). For pollination and seed dispersal networks,

however, the degree of nestedness increases with species

richness (Bascompte et al. 2003), indicating a biological

pattern. Thus, we investigated whether the degree of

nestedness is related to species richness in EFN networks.

Then, we contrasted our four EFN networks to investigate

how ecological variables affect nestedness. We assessed

whether the four EFN networks showed differences in nested

pattern after controlling for total number of species (network

size) and the ratio between the number of ant and plant

species (network form). We predicted that, if network size and

form were solely responsible for the nested pattern, then the

observed nestedness of a small EFN network would be equal

to the nested pattern of a sub-network with equal size and

form randomly sampled from a larger network. We tested this

hypothesis using the following algorithm to compare pairs of

networks in which L is the larger network and l is the smaller

network: (i) assuming that the probability of a plant species

being removed is equal in all plant species, randomly remove

plant species of L until ELZEl; (ii) assuming that the

probability of an ant species being removed is equal in all

ant species, randomly remove ant species of L until ALZAl;

(iii) record nestedness of the rarefied L network; (iv) repeat

(i–iii) for 999 times; (v) calculate the probability p that a

rarefied L shows a degree of nestedness equal to or more

extreme than l. We only consider rarefied networks in which
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all species at the end have at least one interaction, because

species without any interaction lack biological meaning. If

other factors besides network size and form affect the

nestedness pattern of the smaller network, we expect that

p!0.05. It is important to note that differences in nestedness

may be a result of sampling (Fischer & Lindenmayer 2002).

Small networks may indeed be small datasets in which

more generalists are recorded, since generalists are usually the

most abundant species ( Jordano 1987). To investigate if

differences in nestedness among communities are a result of

simple sampling bias, we used a rarefaction procedure

identical to the above one, except for the fact that the

probability of a plant or ant species being removed is

proportional to 1/k in which k is the number of interactions

of the species.

3. RESULTS

Extrafloral nectary network showed on average strongly

nested patterns of asymmetric specialization among the

interacting species (figure 1b, NZ0.71G0.10, meanG

s.e.). As a consequence of these community-level patterns,

nestedness was very high on average. The three tropical

networks showed nestedness values similar to those

observed in pollination and seed dispersal networks

(figure 2a). Indeed, the probability of a given tropical

EFN network showing a nested pattern equal to or more

extreme than that observed for seed dispersal or

pollination network was always non-significant

(La Mancha, NZ0.949, pZ0.17; San Benito, NZ0.748,

pZ0.19; Zapotitlán,NZ0.706, pZ0.13). These networks

were significantly nested whether tested against null

model I or II (figure 2b). Therefore, the degree of

nestedness observed in these ant–plant interactions was

higher than expected by random interactions or by

differences in the number of interactions among species.

In contrast, Xalapa showed the lowest nestedness ever

recorded in the literature for a mutualistic plant–animal

network (NZ0.453; figure 2a). Both null models

reproduced the nested pattern for Xalapa (figure 2b),

indicating that the patterns of asymmetrical specialization

in this community are expected by random interactions.

The proportion of EFN networks that showed significant

nestedness was very similar to the other two types of

mutualistic networks analysed and very different to the

pattern observed for antagonistic networks (figure 3),

although our small sample of communities leads to

caution when interpreting the results.

Asymmetries in specialization increased with species

richness (figure 2b). We re-analysed data from Bascompte

et al. (2003) for plants and their pollinators and

seed dispersers and found that for large networks (SO40,

nZ28), nestedness increased with the logarithm of network

size (NZ0.36C0.1 log(S), FZ12.98, d.f.Z27, R2
Z0.33,

pZ0.01), indicating that only species-rich systems will

show high patterns of nestedness. We used this function to

control network size, computing the differences between

the nestedness predicted by network size and the observed

nestedness for pollination, seed dispersal, and the three

significant nested EFN networks. After controlling for

network size, all tropical EFN networks showed patterns

of nestedness similar to those observed for pollination and

seed dispersal networks (La Mancha, pZ0.29; San

Benito, pZ0.32; Zapotitlán, pZ0.14).

Species richness, however, was not the only factor

affecting the degree of asymmetry in specialization.

Tropical EFN networks showed larger values of nested-

ness than Xalapa even after controlling for network size

and form (figure 4a–c), Among the tropical networks,

Zapotitlán and San Benito showed a similar degree of
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Figure 2. (a) Frequency of different degrees of nestedness

observed in published studies on pollination, seed dispersal,

and analysed EFN networks. Black columns indicate

pollination networks, white columns indicate seed dispersal

networks, and grey arrows indicate the values for analysed

EFN networks (networks labelled as in figure 1). (b) The

relationship between degree of nestedness and network size

(i.e. number of interacting species). Closed circles indicate

observed values of nestedness for each EFN network. Open

squares indicate the average nested value predicted by null

model I and open circles indicate the average value predicted

by null model II (see text for further details). Error bars

indicate 95% confidence interval (10 000 replicates for each

null model).
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nestedness (figure 4d ), but La Mancha showed stronger

asymmetries than these other sites, even after controlling

for network size and form (figure 4e, f ). Hence, ecological

factors other than species richness must contribute to

geographic variation in the degree of asymmetry in

specialization in these mutualisms, but they do not

completely override the tendency of large mutualistic

networks to be significantly nested.

4. DISCUSSION

The interactions between ants and plants differ in

many ways from those involving pollinators and

seed dispersers. In ant–EFN plant interactions, the

benefit for plants is protection against herbivores.

Protection, in turn, is an indirect benefit, because it

depends on ants being efficient in deterring a third

assemblage of species: the herbivores. In contrast, in

pollination and seed dispersal interactions the benefit

for plants is reproduction, and the interaction does not

involve manipulating the effects of a third group of

species. Yet, all these interactions show similar

patterns of nestedness, in which specialist–specialist

interactions are rare and specialists interact with a core

of generalist species.

Our results corroborate and extend the conclusions

of recent studies suggesting that interactions among

free-living species in species-rich communities show

a nested pattern of asymmetrical specialization, when at

least some of the interactions have potentially strong

mutualistic components (Bascompte et al. 2003).

Although, it is well known that different processes may

lead to similar patterns in ecology (Levin 1992), a

parsimonious possibility is that all three types of mutual-

ismmay be affected by similar evolutionary processes, such

as convergence and complementarity of traits among

interacting species (Thompson 2005), that differ from

the processes acting on antagonistic networks. Indeed,

network theory predicts that these similarities and

differences are a result of simple processes (Albert &

Barabási 2002). These results therefore provide support

for the development ofmultispecies coevolutionary theory,

leading to the notion that specialization may evolve and

coevolve in different but simple ways in mutualistic and

antagonistic interaction networks. Caution is needed since
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Figure 4. Nestedness for real EFN and rarefied networks. Ensembles of rarefied networks were generated by randomly removing

ant and plant species using two different procedures: assuming that each plant or ant species has the same probability of removal

(white columns) and assuming that the probability of a species being removed is negatively correlated with the degree of

generalism (grey columns). Arrows indicate the actual degree of nestedness of the smaller network. The p indicates the

probability of a rarefied network showing nestedness equal to or more extreme than the real, smaller network: Xalapa and

(a) rarefied La Mancha networks, (b) rarefied Zapotitlán and (c) rarefied San Benito; San Benito and (d ) rarefied Zapotitlán,

(e) rarefied La Mancha and ( f ) Zapotitlán and rarefied La Mancha.
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nested patterns have been explored in only a few types of

interaction. Based upon current results, however, we

predict that nestedness will be observed in other inter-

actions between free-livingmutualists, such as associations

between host fish and their cleaners on coral reefs

(e.g. Cote 2000).

Additionally, our study highlights the potential import-

ance of species richness and its influence on geographic

variation in nested asymmetrical specialization within

mutualistic networks. The logarithmic relationship

between network size and nestedness suggests that only

species-rich systems will be highly nested.Moreover, small

networks generally do not show significant nestedness

(Bascompte et al. 2003; this study). This feature may be a

consequence of nestedness being inherently undetectable

below a certain threshold of species richness, a typical

problem of characterization of small networks (Guimarães

et al. 2005). Alternatively, it may be that species-poor

communities do not have sufficient number of species for

the evolution of species specialized in interacting with

generalist species. In fact, many mutualistic lifestyles (e.g.

nectar and pollen gathering in social bees and near-

obligate frugivory in some vertebrates) became possible

only after local multispecies mutualistic networks came

into existence (Thompson 1982).

The variation in nested asymmetrical specialization

among EFN networks, however, is not totally explained by

differences in species richness or by differences in the ratio

between ants and plants. These differences may be a result

of sampling bias, but after we controlled for preferential

sampling of generalists, some communities still differed in

the level of specialization (figure 4). Thus, other ecological

variables may contribute to the particular degree of

nestedness in any particular assemblage. Olesen &

Jordano (2002) have shown that, beyond species richness,

altitude and the biogeographic region affect the average

level of specialization within pollination networks. We

suggest that future work with mutualistic networks

should focus on the role of these factors in driving

regional differences in patterns of nested asymmetrical

specialization.
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SUPPLEMENTARY MATERIAL 

 

Detailed description of study sites 

LOWLAND TROPICAL DRY FOREST (LA MANCHA).--Centro de Investigaciones Costeras La 

Mancha is located on the coast of the state of Veracruz, México (19o36'N, 96o22'W; elev. < 

100 m).  The climate is warm and subhumid; a rainy season occurs between June and 

September, total annual precipitation is ca 1500 mm (1800 mm in study year), mean annual 

temperature is 24o-26oC, and minimum temperature is 15oC.  The major vegetation 

associations in the area are: tropical deciduous forest [with Brosimum alicastrum Swartz, 

Bursera simaruba (L.) Sarg., Cedrela odorata L., Enterolobium cyclocarpum (Jacq.) 

Griseb., Ficus cotinifolia H. B. & K.], tropical dry forest [with Acacia spp., Bursera 

fagaroides (H. B. & K.) Engl., B. simaruba, Plumeria rubra L.], sand dune matorral [with 

Acacia macracanta Humb. & Bonpl., Diphysa robinoides Benth., Randia laetevirens 

Standl., Tecoma stans (L.) Juss. ex H. B. & K.], mangrove forest, freshwater marsh, 

freshwater lagoon and surrounding forest, and riparian vegetation (Moreno-Casasola et al. 

1982, Novelo 1978; Rico-Gray 1993). 

 

COASTAL SAND DUNE MATORRAL (SAN BENITO).--San Benito is located on the central coast 

of the state of Yucatán, México (21o20’N, 89o10’W; elev. < 3 m). The area is characterized 

as a narrow well developed calcareous sandy beach. The climate is dry, a rainy season 

occurs between June and September, total annual precipitation is ca 300 mm (320 mm in 

study year), mean annual temperature is 24o-26oC, and minimum temperature is 15oC.  The 

dominant species are Agave angustifolia Haw., Bravaisia tubiflora Hemsl., Bumelia retusa 

Swartz, Coccoloba uvifera L., Coccothrinax readii Quero, Gossypium hirsutum L., 



Mammillaria gaumeri Orcutt, Pithecellobium keyense Britton ex Coker, Scaevola plumierii 

(L.) Vahl, Schomburgkia tibicinis Batem., Suriana maritima L., and Tournefortia 

gnaphalodes (L.) R.Br. ex Roem. & Schult. (Rico-Gray et al. 1987; Rico-Gray 1989). 

 

SEMIARID HIGHLAND ENVIRONMENT (ZAPOTITLÁN).--The Valle de Zapotitlán is located in 

the Tehuacán-Cuicatlán valley system, located in the mountainous area in the southeast 

portion of the state of Puebla, close to the northeastern limits of the state of Oaxaca, 

México (18o20’N, 97o20’W; elev. 1450-1600 m). The climate is dry, a rainy season occurs 

between May and August (sometimes September), total annual precipitation is ca 300 mm 

(296 mm in study year), mean annual temperature is ca 20oC, and minimum temperature is 

8oC (Valiente-Banuet 1991, Zavala 1982).  The major vegetation associations, with no clear 

boundaries in many areas, are: thorny scrub or matorral [with Acacia cochliacantha Humb. 

& Bonpl. ex Willd., Cercidium praecox (Ruiz & Pavón) Harms, Ipomoea pauciflora Mart. 

& Gal., Mimosa luisiana Brandegee, Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. 

Johnston], ‘tetechera’ [dominated by columnar cacti, like Neobuxbaumia tetetzo (F. A. C. 

Weber) Backeb.], ‘cardonal’ [dominated by cacti, like Cephalocereus hoppenstedtii (F. A. 

C. Weber) Schumann], ‘izotal’ (dominated by the Agavaceae Yucca periculosa F. Baker 

and the Nolinaceae Beaucarnea gracilis Lem.), and tropical dry forest (with Bursera spp., 

Ceiba parviflora Rose, Lysiloma spp., Plumeria rubra) (Dávila et al. 1993; Jaramillo & 

González-Medrano 1983; Villaseñor et al. 1990; Zavala 1982). 

 

LOWER MONTANE HUMID FOREST (XALAPA).--Parque Ecológico Clavijero is located 2.5 km 

south of Xalapa, Veracruz (19o30’N, 96o57’W; elev. 1250 m).  The climate is temperate 

humid with rain throughout the year, total annual precipitation is ca 1800 mm (2100 mm in 



study year), mean annual temperature is ca 19oC, and minimum temperature is 6oC.  The 

vegetation in the park is a fragment of lower montane forest, some dominant tree species 

are Liquidambar macrophylla Oersted, Carpinus caroliniana Walter, Quercus germana 

Schlecht. & Cham., Q. xalapensis Humb. & Bonpl., Clethra mexicana DC., Ocotea 

psychotrioides Kunth, Turpinia insignis (H. B. & K.) Tul., and Eugenia xalapensis DC. 

(Williams-Linera & Tolome 1996).  Other species present are Trema micrantha (L.) 

Blume, Meliosma alba (Schlecht.) Walp., Persea americana L., Oreopanax spp., 

Cnidoscolus aconitifolius (Mill.) I. M. Johnst., Piper auritum H. B. & K., Solanum sp., 

Cestrum nocturnum L., and Baccharis multiflora H. B. & K.  There are also many 

epiphytes and ferns. 

 

Data collection - Modified from Rico-Gray (1993). 

Biweekly field observations (three days per visit) were made for La Mancha, Zapotitlan and 

Xalapa, and monthly for San Benito along arbitrarily selected but representative 1 km trails 

that sampled different vegetation associations.  We recorded all occurrences of ants 

collecting liquids from plants.  On each visit we noted ant species, plant species, and food 

source or structure mediating the ant-plant interaction.  Once an individual plant was 

marked as being visited by ants, it was subsequently re-checked throughout the study.  Ants 

were considered to be feeding on nectar when they were immobile, with mouth parts in 

contact with nectar-secreting tissues, for periods of up to several minutes.  Nectar-feeding 

ants often showed obviously distended gasters.   
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In a given area, plant–animal mutualistic
interactions form complex networks that often
display nestedness, a particular type of asymme-
try in interactions. Simple ecological and
evolutionary factors have been hypothesized to
lead to nested networks. Therefore, nestedness is
expected to occur in other types of mutualisms as
well. We tested the above prediction with the
network structure of interactions in cleaning sym-
biosis at three reef assemblages. In this type of
interaction, shrimps and fishes forage on ectopar-
asites and injured tissues from the body surface of
fish species. Cleaning networks show strong pat-
terns of nestedness. In fact, after controlling for
species richness, cleaning networks are even more
nested than plant–animal mutualisms. Our results
support the notion that mutualisms evolve to a
predictable community-level structure, be it in
terrestrial or marine communities.

Keywords: asymmetrical interactions;
coevolutionary networks; coral reefs; null models

1. INTRODUCTION
In ecological communities, each species interacts in

different ways with one to several species forming

networks of interacting species (Pascual & Dunne

2006). The network approach has been useful for

investigating the structure and fragility of ecological

interactions, and comparative studies of network

structure help to uncover community-level patterns of

ecological specialization in different types of inter-

specific interactions ( Jordano et al. 2003; Vázquez &

Aizen 2004; Vázquez et al. 2005; Pascual & Dunne

2006). In this context, recent studies demonstrate

that the network structure of species-rich, plant–

animal mutualisms is often nested, whereas antagon-

istic interactions are usually non-nested (Bascompte

et al. 2003; Guimarães et al. 2006). Nestedness is a

specific type of asymmetric interactions characterized

by (i) species with many interactions form a core of

interacting species, (ii) species with few interactions

commonly interact only with species with many

interactions and (iii) the absence of interactions

between species with few interactions (figure 1).

Nestedness is expected to appear in ecological

interactions such as mutualisms between free-living

species, in which the core of generalist species forms a

stable set of resources, allowing the evolution of special-

ized lifestyles (Thompson 2005). Additionally, it was

recently suggested that ecological factors such as diffe-

rences in abundance among species may explain

asymmetric interactions (Vázquez & Aizen 2004;

Vázquez et al. 2005) and, more specifically, nestedness

(Lewinsohn et al. 2006). If nestedness is indeed gener-

ated by simple coevolutionary and ecological processes

such as those mentioned previously, it is expected to

characterize mutualistic networks irrespective of the

identity of interacting species. In fact, nestedness should

be a common feature of other types of mutualisms

beyond those investigated so far for plants and animals

(Bascompte et al. 2003; Guimarães et al. 2006).

Here, we investigate for the first time the commu-

nity-level patterns of interactions observed in cleaning

symbiosis in the reef environment. In this type of

mutualism, the so-called cleaners (shrimps or fishes)

forage on ectoparasites, diseased or injured tissues

and mucus from the body surface of fish species

called clients, which in their turn get rid of unwanted

material (Floeter et al. in press). Cleaning is a

common and widespread type of foraging association

between reef species, recorded for several animal taxa

and geographical sites (Floeter et al. in press). We

studied nested patterns in three cleaning networks.

We specifically addressed the following questions:

does nestedness characterize cleaning networks; and

are the patterns of interactions observed for cleaners

and clients similar to those previously observed in

plant–animal mutualistic networks?

2. MATERIAL AND METHODS
(a) Studied communities

Most studies on cleaning symbiosis between reef animals focus on
one or a few species (e.g. Sazima et al. 1999) and community-level
patterns of these interactions have been largely ignored (but see
Floeter et al. in press). Here, we use data on cleaners and clients in
three different assemblages of reef animals in the Western Atlantic
( Johnson & Ruben 1988; Wicksten 1998; Sazima 2002) and
compare them with patterns found in studies of nestedness in
plant–animal mutualistic networks (Bascompte et al. 2003; Guimarães
et al. 2006). The three above-mentioned studies on cleaning
symbiosis deal with the majority of cleaner and client species within
the studied assemblages and thus are appropriate for assessing
community-level patterns. Moreover, these assemblages have more
than three species of cleaners each, allowing the emergence of
nestedness. The studied cleaners may be grouped into four broad
categories: (i) fishes cleaning through whole life cycle (ElacatinusZ
Gobiosoma), (ii) fishes cleaning only or mostly while juveniles (e.g.
Bodianus, Pomacanthus, Thalassoma), (iii) fishes cleaning sporadi-
cally either as adults or juveniles (e.g. Chaetodon), and (iv) shrimps
(e.g. Periclimenes). The studied assemblages were at (i) Abrolhos
Archipelago, Western South Atlantic (hereafter Abrolhos), where
five cleaners and 35 client species were examined in a total of 70 h
(Sazima 2002), (ii) Bonaire, Netherlands Antilles, Caribbean
(Bonaire), where six cleaners and 50 client species were examined
in a total of 700 h (Wicksten 1998) and (iii) Saint Croix, US Virgin
Islands, Caribbean (St Croix), where four cleaners and 32 client
species were examined in a total of 110 h ( Johnson & Ruben
1988). The studied areas were composed of coral reefs, and depths of
studied cleaning stations varied among the three areas from 3 to 30 m.

(b) Cleaning networks

Interspecific interactions can be described as networks in which
species are nodes and interactions between any species pair are
depicted as links ( Jordano et al. 2003). A cleaning network is
defined by an adjacency matrix R describing interactions between L
cleaner species and F client species in a well-defined ecological
assemblage, where rijZ1 if the client j is cleaned by the species i
and zero otherwise. It is important to emphasize that client–cleaner
interactions do not necessarily imply mutual benefits for both
species. In fact, cleaner species may act as parasites in some
ecological communities. Therefore, only a subset of recorded
interactions in these networks is unambiguously mutualistic. Future
studies should focus on the importance of exploiters of mutualisms
to network structure. Here, we follow the approach already used in
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other interactions and consider that all interacting species are part
of the mutualistic network ( Jordano et al. 2003), since there is a
wide gradient of mutually beneficial effects from pure mutualism to
pure antagonism or amensalism, and all them potentially influence
network build-up and evolution.

(c) Nestedness

The matrix R is perfectly nested if showing a progression of inclusive
subsets after ordering rows and columns in decreasing totals
(Lewinsohn et al. 2006, figure 1a). We follow Bascompte et al. (2003)
and define the degree of nestedness, N, as NZ(100KT )/100, in
which T is the matrix temperature, with values ranging from 08

(perfectly nested) to 1008 (perfectly non-nested). Additional details
about T are provided elsewhere (Guimarães & Guimarães 2006). We
used two null models to test if the degree of nestedness is expected
from basic network features (Bascompte et al. 2003). The null model
1 assumes that each randomly assigned pair of cleaner and client
interacts with constant probability, C, in which C is the connectance,
i.e. the proportion of interactions actually observed in the network.
Therefore, it tests if the observed N is higher than expected for
random networks with similar number of interactions. The null model
2 assumes that the probability that a cleaner i interacts with a client j
depends on the observed number of interactions of both species,
such that

Cðrij Z 1ÞZ
ki

F
C

kj

L

� �

1

2
; ð2:1Þ

in which k is the observed number of interactions for the species.
Therefore, the null model 2 tests if observed N is higher than
expected for random networks with similar heterogeneity of
interactions among species (Bascompte et al. 2003). Each commu-
nity was compared with 1000 replicates generated by each null
model. We only considered replicates in which all species have at
least one interaction, because species without interaction lack
biological meaning. All nestedness analyses were performed using
ANINHADO (Guimarães & Guimarães 2006).

To assess if the observed patterns of nestedness for cleaning
networks are similar to other mutualisms, we compared the values of
N recorded for the three cleaning networks with those recorded for
pollination (nZ25), seed dispersal (nZ27), ant–plant mutualisms
(nZ4; dataset from Bascompte et al. 2003; Guimarães et al. 2006). To
study the basic aspects of network structure, we investigate how the
degree of nestedness (N ) is related to species richness and the ratio
between the richness of two sets (animal, plant, client or cleaner) of
interacting species (richness ratio). These two aspects of network

structure may affect nestedness (Guimarães et al. 2006). We investi-

gate the relationship between nestedness and these variables using

multiple regression. The degree of nestedness was angular trans-

formed and species richness and richness ratio (set with higher

number of species/set with lower number of species) were log

transformed to improve normality and homoscedasticity.

3. RESULTS
The three analysed cleaning networks show strong

nested patterns, in which species with few interactions

often interact with the core of species with many

interactions (Abrolhos, NZ0.92; Bonaire, NZ0.92;

St Croix, NZ0.84; figure 1). These networks were

significantly more nested than expected from random

interactions (null model 1, p!0.001 for all networks)

or from differences in the number of interactions

among species (null model 2, Abrolhos and Bonaire:

p!0.001 for all networks; St Croix: pZ0.007).

The ratio between species richness of cleaners and

clients was higher than that between animals and

plants in terrestrial mutualistic networks (figure 2a).

In all cases, client richness was sevenfold higher than

cleaner richness. However, this aspect of network

structure did not affect the degree of nestedness in

species-rich (more than 25 species) mutualistic net-

works (FZ2.18, pZ0.15, nZ45 networks). In con-

trast, species richness markedly affected the degree of

nestedness (FZ24.12, p!0.0001). After controlling

for the effects of species richness, cleaning networks

show higher residual nestedness when compared with

plant–animal mutualisms (figure 2b; pZ0.002,

randomization test, 10 000 randomizations). Thus,

compared with plant–animal mutualistic networks of

similar species richness, cleaning networks show more

marked patterns of nested interactions.

(a)

(c)

(b)

(d )

Figure 1. Network and matrix representations of community-level patterns of interactions between cleaners and clients.

Lines and black squares represent interactions between cleaners (closed symbols and columns) and clients (open circles and

rows). Cleaner fishes are represented by circles (Elacatinus) and squares (other genera), and cleaner shrimps are represented

by diamonds. (a) Hypothetical, perfectly nested network, (b) Bonaire, (c) Abrolhos and (d ) St Croix. Networks were drawn

in Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/ ).

2 P. R. Guimarães and others Nestedness in cleaning symbiosis

Biol. Lett.



4. DISCUSSION
Cleaning interactions differ in several ways from

terrestrial mutualistic networks analysed so far. For

example, previously studied terrestrial mutualisms

involve interactions between plants and animals, often

birds and insects ( Jordano et al. 2003). In contrast,

the cleaning interactions in the reef environment

involve a completely different set of species (fishes

and shrimps) in a completely different ecosystem.

Additionally, our study demonstrates that the clean-

ing assemblages are characterized by a few (i.e. four

to six) cleaner species that maintain a highly diverse

coterie of clients (typically more than 20 species).

This difference in richness of cleaner and client

assemblages is much higher than those observed for

plants and animals in terrestrial mutualisms ( Jordano

et al. 2003; Vázquez & Aizen 2004). Thus, it is

expected that the dynamics of cleaning symbiosis is

more affected by evolutionary and ecological changes

in one assemblage of species (cleaners) than plant–

animal mutualisms.

In spite of differences in the component species or in

basic properties of interacting assemblages, all these

mutualistic interactions show strong patterns of nested-

ness, in which species with few interactions are linked

to a core of species with many interactions. Therefore,

our study broadens previous findings for interactions

between terrestrial plants and animals (Bascompte et al.

2003; Guimarães et al. 2006) and indicates that

mutualisms evolve to a predictable community-level

structure (Thompson 2005; Lewinsohn et al. 2006), be

it in terrestrial or marine assemblages.

Although caution is needed due to our small

sample, our results suggest that cleaning networks

may be more nested than terrestrial mutualisms with

similar species richness. Thus, cleaning networks are

even more asymmetric than plant–animal mutualisms

in terms of the specificity of their interactions. Future

studies should investigate the relative importance of

ecological and evolutionary processes that might lead

to the nested pattern. Symmetric interactions (i.e.

reciprocal levels of specificity among interacting

partner species) in plant–animal networks may be a

result of the evolutionary history constraining

interactions (Lewinsohn et al. 2006). Thus, we

hypothesize that cleaning mutualisms may be less

affected by phylogenetic constraints than other mutu-

alisms. Consequently, convergence (Thompson 2005)

and the variation in local assemblage composition to

differences in abundances (Lewinsohn et al. 2006)

would act more freely to generate a highly nested

structure such as that in the present study. Clients

and cleaners may select their partners preferring some

species or individuals over others (e.g. Sazima et al.

1999). In fact, recent macroecological analyses sup-

port this idea and indicate that abundance, together

with client’s diet, size and behaviour, may play a key

role on the patterns of interactions among cleaners

and clients (Floeter et al. in press).
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CONCLUSÕES 

 
Este estudo contribui de três formas diferentes para o desenvolvimento de uma 

teoria de redes ecológicas e, mais especificamente, para a compreensão da origem e da 

generalidade dos padrões observados em redes de interações mutualísticas: 

 

1. Quais são os fatores subjacentes à forma da distribuição do grau observada em 

redes mutualísticas? 

 

Através de uma abordagem estatístico-matemática demonstrou-se que a 

distribuição do grau observada em redes mutualísticas poderia ser explicada pelo 

tamanho pequeno dessas redes, associado a dois processos previamente desconsiderados: 

a condição inicial da rede e a diferença de riqueza entre plantas e animais. Após este 

estudo, está disponível na literatura um conjunto de modelos candidatos a explicar a 

distribuição do grau observada em redes mutualísticas (Guimarães et al. 2005; Jordano et 

al. 2003) e estudos futuros terão que desenvolver novas métricas capazes de selecionar 

entre os modelos candidatos (Levin 1992).  

 

2. Qual a importância da variação de abundância entre espécies para a estrutura de 

redes mutualísticas? 

 

Através da introdução de uma nova abordagem computacional e de um estudo de 

caso, corroborou-se a idéia de que abundância é um fator fundamental subjacente à 

estrutura de redes mutualísticas (Jordano 1987; Vazquez & Aizen 2003; Vazquez & Aizen 

2004) e, especificamente, à estrutura aninhada (Lewinsohn et al. 2006). No entanto, 40% da 

estrutura aninhada não foram explicados por variações de abundância entre as espécies. 

Essa porcentagem da estrutura aninhada pode estar associada a outros fatores ecológicos 

como aspectos da biologia das plantas e animais que impossibilitam as interações entre as 

espécies (Jordano et al. 2003) ou a processos coevolutivos que restringem o número de 

interações de espécies (Thompson 2005). Estudos futuros deverão investigar a importância 

de processos coevolutivos e ecológicos para o aninhamento.  

A relação positiva entre número de interações e abundância sugere que a estrutura 

de redes mutualísticas deve ser bem robusta a perturbações como a extinção de espécies.  

 87



CONCLUSÕES 

 
Posteriormente, deve-se investigar através de simulações numéricas qual o grau de 

robustez da estrutura dessas redes a processos de perda de espécies raras.   

 

3. Qual a generalidade do padrão aninhado em redes ecológicas? 

 

Ao se demonstrar que a ausência de aninhamento observado em interações 

predador-presa (teias tróficas) (Bascompte et al. 2003) não é explicada por problemas de 

resolução taxonômica, este estudo corrobora a idéia de que mutualismos e antagonismos 

diferem fundamentalmente em sua organização (Guimarães et al. 2006; Thompson 2005). 

O estudo das interações entre formigas e plantas produtoras de néctar extrafloral e 

das interações entre limpadores e clientes em recifes de corais corroborou a idéia de que 

mutualismos se organizam como redes aninhadas, independentemente da localidade e da 

natureza do mutualismo (Bascompte et al. 2003). De fato, este estudo generaliza o padrão 

de aninhamento anteriormente descrito apenas para mutualismos reprodutivos entre 

plantas e animais (polinização e dispersão de sementes) e sugere que esta estrutura é 

comum a todos os tipos de mutualismo.   
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Abstract

Nestedness is a property of binary matrices of ecological data and quantified by the matrix’s temperature, T. The program widely used to

calculate T is Nestedness Temperature Calculator (NTC). NTC analyses matrices individually, turning the analysis of large sets time-consuming.

We introduce ANINHADO, a program developed to perform rapid and automatic calculation of T over 10,000 matrices. ANINHADO can be

useful to minimize the time spent in analysis and to compare real data against a variety of null models that typically generate a large number of

replicates.

� 2006 Elsevier Ltd. All rights reserved.

Keywords: Biogeography; Community assembly; Ecological networks

Software availability

Name of software: ANINHADO

Developers: Paulo Guimar~aes and Paulo R. Guimar~aes Jr.

Platform: MS-DOS under Windows.

Contact address: Instituto de Biologia, UNICAMP, CP 6109,

Campinas, SP, Brazil

Telephone: þ55 19 97861978

E-mail address: prguima@gmail.com

Availability: http://www.guimaraes.bio.br

Environmental scientists have been studying systems to dis-

cover for the patterns of the underlying processes. Many of

these patterns are described in binary or presence/absence ma-

trices (Bascompte et al., 2003). Nestedness is a pattern

(Fig. 1), which characterizes distributions of species within

a habitat (Atmar and Patterson, 1993), parasites among hosts

(Worthen and Rohde, 1996), and interactions in ecological net-

works (Bascompte et al., 2003).

The degree of nestedness of a matrix can be quantified by

the matrix’s temperature (T), a measure of how the presence/

absence pattern departs from perfect nestedness (calculated

by NESTEDNESS TEMPERATURE CALCULATOR

(NTC), see Atmar and Patterson, 1993). Nevertheless, as the

studies about nestedness have increased, some analyses cannot

be optimally performed using NTC, leading to the necessity of

new tools. Here we introduce ANINHADO, a program devel-

oped to attend to one of these needs: the rapid, automatic

calculation of T for many matrices.

NTC is a Visual Basic package downloadable at http://aics-

research.com/nestedness/tempcalc.html. It implements a good

graphical user interface, intuitive menus, it includes back-

ground information about the nestedness theory and it also al-

lows hypothesis testing: the observed value of T can be

compared with the expected one under the assumption that

presences were randomly assigned to any cell within the ma-

trix. The graphical user interface and the supporting documen-

tation about nestedness theory make NTC a convenient tool

for users willing to analyze a limited number of matrices.

However, the user needs to load and calculate T from each ma-

trix individually, making the calculation of T time-consuming

when there are many matrices to examine.
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The Cþþ software ANINHADO was developed to perform

rapid, automatic calculation of T of many matrices (Table 1).

ANINHADO analyzes a set of user-specified matrices and

generates a file containing their names and respective T values.

Moreover ANINHADO does not require the user‘s interaction

during its execution, and it is therefore possible to perform

other tasks in the computer during the analysis.

The automatic processing capabilities and speed of ANIN-

HADO are also an asset when the user is interested in analyz-

ing sets of real matrices or when testing null models other than

the one implemented in NTC (Bascompte et al., 2003). The

null model approach is based on the comparison of real data

with an empirical distribution obtained from the analysis of

thousands of algorithm-generated matrices that deliberately

exclude an influence (Gotelli and Graves, 1996). As a conse-

quence, the rigorous characterization of the expected T for

an alternative null model will consume hours of continuous

work in NTC, but only few minutes in ANINHADO. Addi-

tionally, ANINHADO generates empirical distributions for

four pre-determined null models, allowing users not familiar-

ized with programming to compare their data against alterna-

tive hypotheses.
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Table 1

Performance of NTC and ANINHADO using a Mobile Intel Pentium 4,

2.8 GHz CPU processor

NTC ANINHADO

Matrices/run One 10,000

Matrices/min w8 >80

Automatic processing No Full

A

B

C

Fig. 1. Hypothetical matrices describing presences (black squares) of species

(rows) in locations (columns). Nestedness occurs when presences in a row/col-

umn is often a subset of presences recorded in rows/columns with more pres-

ences. The matrices vary in their degree of nestedness: low (A), high (B), and

perfect (C).
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