WALKYRIA BUENO DE CAMARGO MORAES Biologista Bioquímica Fitopatológica Instituto Biológico - São Paulo Bolsista do CNPq

ESTUDOS SOBRE UM INIBIDOR DE VÍRUS FITOPATOGÊNICOS PRESENTE EM EXTRATOS DE ABUTILON STRIATUM DICKS

Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas, para a obtenção do título de Doutor em Ciếncias.

Orientador:

Prof.Dr. AVELINO RODRIGUES DE OLIVEIRA

Campinas - São Paulo 1973

Set al 180A UNICAMP INSTRUCTO DE BIOLOGIA UNICAMP

BIBLIOTECA CENTRAL

"In Memoriam" Dr. MARIO MENEGHINI

×20

AGRADECIMENTOS

Nossos sinceros agradecimentos

Aos Doutores, Professores, Técnicos, Auxiliares e aos amigos, os quais,quer pela orientação, incentivo, fornecimento de material, auxílio, sugestões ou revisão dos originais, concorreram efetivamente para a execução e apresentação desta Tese.

- Prof. Dr. Avelino Rodrigues de Oliveira Universidade Estadual de Campinas
- Prof. Dr. Aldo Focesi Jr. Universidade Estadual de Campinas
- Dr. Alvaro Santos Costa Instituto Agronômico de Campinas
- Prof. Dr. Darcy Martins da Silva Escola Superior de Agricultura "Luiz de Queiroz"
- Prof. Dr. Humberto de Araújo Rangel Universidade Estadual de Campinas
- Dr. José Reis July Instituto Biológico
- Dr. Adolpho Martins Penha Instituto Biológico
- Dr. Takao Namekata Instituto Biológico
- Dr. Irineu J. B. Camargo Universidade Estadual de Campinas
- Dra. Victoria Rossetti Instituto Biológico
- Biologista Maria Raphaela Musumeci Instituto Biológico
- Biologista Elza Maria Frias Martins Instituto Biológico
- Eng^a. Agr^a. Ednei de Conti Macedo Instituto Biológico

Eng⁰. Agr⁰. Aluisio Paiva de Carvalho Alba Instituto Biológico

- Sra. Raquel D'Alessandro Pires Instituto Biológico
- Srta. Erna Elisabeth Bach Instituto Biológico
- Srta. Mariangela de Figueiredo Bolsista da FAPESP no Instituto Biológico
- Sra. Cecilia Abeid Teixeira Instituto Biológico

Sra. Edith Mackrodt -

- Demais funcionários da Secção de Bioquímica Fitopatológica do Instituto Biológico
- Em particular, ao meu marido, Dr. Mario Barreto Figueiredo Instituto Biológico.

ÍNDICE

pag.

I.	Rel	ação das plantas e microrganismos citados	I
II.	Sig	las e abreviações	III
III	. Rel	ação das tabelas	V
IV.			VII
		~	1
1.	INTRO	DUÇÃO,	1
2.	REVIS	ÃO DA LITERATURA	3
		Presença de inibidores de vírus em plan-	_
		tas superiores	3
	2.2.	Presença de inibidores de vírus em micror ganismos	8
		gantamos """"""""""""""""""""""""""""""""""""	-
З,	MATER	RIAL E MÉTODOS	12
	3.1.	Fonte de material	12
	3.2.	Extração e purificação da substância ini-	12
		bidora	13
	3.3.	Tratamentos realizados com o inibidor	14
		3.3.1. Tratamento por carvão ativo	14
		3.3.2. Tratamento por solução amoniacal	14
		3.3.3. Filtração em gel de Sefadex	15
		3.3.4. Tratamentos enzimáticos	1.0
	3.4.	Ensaios para a determinação da substância inibidora	15
	3.5.	Ensaios sobre inibição de vírus	16
		Ensaios biológicos para avaliação da ati-	
		vidade do inibidor sobre a infectividade do TMV em plantas de glutinosa	18
	0 7	Comportamento da místura vírus - inibidor	
	J./.	(VI)	19
	3.8.	Mecanismos de ação do inibidor	20
		Ação do inibidor sobre diferentes vírus,	
		em diferentes hospedeiros	20

4.	RESUL	TADOS	22
	4.1.	Efeito da diálise sobre a ação do inibidor	22
	4.2.	Efeito do tratamento desproteinizador so- bre a ação do inibidor	23
	4.3.	Efeito do tratamento do inibidor por car- vão ativo	23
	4.4.	Efeito do tratamento do inibidor por solu-	
		ção amoniacal	24
	4.5.	Efeito do tratamento do inibidor por fil - tração em gel de Sefadex	25
	4.6.	Efeito do tratamento do inibidor pelas en- zimas diastase e pectinase	30
	4.7.	Espectro de absorção do inibidor ao ultra- violeta	31
	4.8.	Resultado dos ensaios de coloração ou pre- cipitação realizados com o inibidor	32
	4,9.	Comportamento da mistura TMV-inibidor (VI)	32
		4.9.1. Ação da ultracentrifugação sobre a mistura VI	32
		4.9.2. Características da ultra- estrutura da mistura VI	35
		4.9.3. Comportamento serológico do TMV em presença do inibidor	35
		4.9.4. Efeito de diferentes concentrações do inibidor sobre a infectividade do TMV	35
		4.9.5. Efeito do inibidor sobre a infecti- vidade do TMV em diferentes concen- trações	38
1	4.10.	Mecanismo de ação do inibidor	45
		4.10.1. Inoculação do TMV e do inibidor,s <u>e</u> paradamente, com diferentes inter- valos de tempo	45
		4.10.2. Inoculação do TMV e do inibidor,s <u>e</u> paradamente, em faces opostas da	
		mesma folha 4.10.3. Ação do inibidor sobre diversas combinações vírus-hospedeiro	46 47

pag.

pag.

5.	DISCU	SSÃO	50
		Algumas características físico-quí- micas da substância inibidora	50
	5.2.	Algumas características da mistura vírus-inibidor e considerações so- bre o mecanismo de ação do inibidor	55
6.	CONCL	USÕES	69
7.	RESUM	<u>10</u>	71
8,	<u>SUMMA</u>	<u>ARY</u>	73
9.	LITER	RATURA CITADA	75

I. <u>Relação das plantas e microrganismos citados</u>

NOME CIENTÍFICO

N. A.

Abutilon striatum Dicks	abudelom, abútilom
Anthirrinum majus L.	boca-de-leão
<u>Beta vulgaris</u> L	
<u>Capsicum annuum</u> L	
<u>Capsicum frutescens</u> L	pimenteira doce
Chenopodium album L	-
<u>Chenopodium amaranticolor</u> Coste e Reyn	-
<u>Chenopodium hybridum</u> L	
<u>Chenopodium quinoa</u> Willd	-
<u>Citrullus vulgaris</u> Schrad	melancia
<u>Cucumis melo</u> L	melão
<u>Cucumis sativus</u> L	pepino
<u>Cucurbita maxima</u> L	moranga
<u>Cucurbita pepo</u> L	aboboreira
Datura stramonium L	estramonio, figuei
	ra do inferno.
Dianthus barbatus L	ra do interno, -
Dianthus barbatus L	ra do interno. - craveiro
Dianthus barbatus L	_
Dianthus barbatus L Diantus caryophyllus L Fragaria vesca L	- craveiro
Dianthus barbatus L Diantus caryophyllus L	- craveiro morangueiro
Dianthus barbatus L Diantus caryophyllus L Fragaria vesca L Gomphrena globosa L	- craveiro morangueiro gonfrena
Dianthus barbatus L Diantus caryophyllus L Fragaria vesca L Gomphrena globosa L Lycopersicon esculentum Mill	craveiro morangueiro gonfrena tomateiro
Dianthus barbatus L Diantus caryophyllus L Fragaria vesca L Gomphrena globosa L Lycopersicon esculentum Mill Malva parviflora L	craveiro morangueiro gonfrena tomateiro malva
Dianthus barbatus L Diantus caryophyllus L Fragaria vesca L Gomphrena globosa L Lycopersicon esculentum Mill Malva parviflora L Nicotiana glutinosa L	craveiro morangueiro gonfrena tomateiro malva glutinosa fumo
Dianthus barbatus L Diantus caryophyllus L Fragaria vesca L Gomphrena globosa L Lycopersicon esculentum Mill Malva parviflora L Nicotiana glutinosa L Nicotiana tabacum L	craveiro morangueiro gonfrena tomateiro malva glutinosa fumo
Dianthus barbatus L. Diantus caryophyllus L. Fragaria vesca L. Gomphrena globosa L. Lycopersicon esculentum Mill. Malva parviflora L. Nicotiana glutinosa L. Nicotiana tabacum L. Physalis peruviana L.	craveiro morangueiro gonfrena tomateiro malva glutinosa fumo camapú carurú de cacho, guaiaco ou uva ame
Dianthus barbatus L. Diantus caryophyllus L. Fragaria vesca L. Gomphrena globosa L. Lycopersicon esculentum Mill. Malva parviflora L. Nicotiana glutinosa L. Nicotiana tabacum L. Physalis peruviana L. Phytolacca decandra L.	craveiro morangueiro gonfrena tomateiro malva glutinosa fumo camapú carurú de cacho, guaiaco ou uva ame

Prunus avium L	cerejeira
Prunus domestica L	ameixeira
Prunus persicae Batsch.	pessegueiro
<u>Rhus semialata</u> Murr	
Rubus idaeus L	framboesa
Solanum tuberosum L	batatinha, batata inglesa
Spinacia oleracea L	espinafre
Tetragonia expansa Murr	espinafre da Nova Zelandia
Vigna sinensis (L.) Endl	caupí

Aerobacter aerogenes (Kruse)Bergey et al Bacillus radiobacter Beij. & van Deld Bacillus uniflagellatus Mann. Phytomonas tumefaciens (= Agrobacterium tumefaciens) (E.F.Sn Rhacodiella castaneae Peyr. & Town) Conn.

Aspergillus flavus Link. Aspergillus niger van Tiegh Neurospora crassa Shear & Dodge Neurospora sitophila Shear & Dodge Physarum polycephalum Schw. Phytophthora infestans (Mont.) d By Saccharomyces cerevisae Meyen Trichothecium roseum Link. II. <u>SIGLAS E ABREVIAÇÕES</u>

AMV	2) # # G Q	vírus do mosaico do abútilom
BYMV		vírus do mosaico amarelo do feijoeiro
CMV	* # Q & Q	vírus do mosaico do pepino
LMV		vírus do mosaico da alface
LPRSV		vírus da mancha anular latente da batata
NPRSV		vírus da mancha anular necrótica da batata
PVX		vírus X da batata
PRNV		vírus do anel necrótico da batata
SBMV	e # # 2 1	vírus do "southern bean"
STMV		vírus da necrose branca do fumo
ΤMV	# # 3. 5 5	vírus do mosaico do fumo
TNV	5 2 9 4 4	vírus da necrose do fumo
TBSV		vírus do "bushy stunt" do tomateiro
TRSV	a k a a a	vírus da mancha anular do fumo
EB		extrato bruto
FND	* 2 • <i>2 4</i>	fração não dialisável
FD	\$ \$ 5 E 5	fração dialisável
FA	5 1 3 4 0	fase aquosa
FO	5 K B 4 5	fase orgânica
ED	* * * * *	extrato desproteinizado
IN	* * * * *	inibidor
SC		suco clarificado
VI	a b a a a	mistura vírus-inibidor
S	5 6 8 6 8	sintomas sistêmicos
1		sintomas locais
SAB	6 6 8 5 6	soro albumina bovina
Ρ		pectina
BD	5 R 6 2 H	"Blue dextran 2000"
V _o		volume externo da coluna de Sefadex
v	8 6 8 8 5	volume interno da coluna de Sefadex

III

Sd sedimento Sn sobrenadante rpm rotações por minuto v/v volume por volume nm nanômetro

III. <u>Relação das tabelas</u>

Tabelas		pag.
4. m.	Vírus empregados nos ensaios de inibição	16
2	Plantas hospedeiras e tipos de sintomas induzidos pelos diferentes vírus utiliza dos	21
3	Resultados dos ensaios biológicos efetua dos para verificar a ação do EB sobre a infectividade do TMV em folhas de glu- tinosa	22
4	Resultados dos ensaios biológicos efetu <u>a</u> dos para verificar a ação do EB despro - teinizado sobre a infectividade do TMV em folhas de glutinosa	23
5	Resultados dos ensaios biológicos efetua dos para verificar a ação do filtrado do IN, através de carvão ativo, sobre a in- fectividade do TMV em folhas de gluti ~ nosa	24
6	Resultados dos ensaios biológicos efetua dos para verificar a ação do IN submeti- do a um tratamento com solução amoniacal sobre a infectividade do TMV em folhas de glutinosa	25
7	Resultado de um ensaio biológico típico obtido com as frações eluídas, após a filtração do IN em gel de Sefadex 650, sobre a infectividade do TMV em folhas de glutinosa	26
8	Resultado de um ensaio biológico típico obtido com as frações eluídas,após a fil tração do IN em gel de Sefadex G25, so- bre a infectividade do TMV em folhas de glutinosa	28
9	Resultados dos ensaios biológicos efetua dos com o IN, tratado, por 24 ou 48 h , com diastase, sobre a infectividade do TMV em folhas de glutinosa	30

Tabelas

abelas		pag.
10	Resultados dos ensaíos biológicos efetua dos com o IN tratado, por 24 ou 48h ,com pectinase, sobre a infectividade do TMV em folhas de glutinosa	31
11	Resultados dos testes biológicos efetua- dos com as frações Sd e Sn, resultantes da ultracentrifugação da mistura VI, so- bre a infectividade do TMV em folhas de glutinosa	34
12	Resultados dos ensaios biológicos efetu <u>a</u> dos para avaliar a ação de diferentes concentrações do IN sobre a infectivida- de do TMV em folhas de glutinosa	38
13	Resultado do ensaio biológico efetuado para verificar a ação do IN sobre a in- fectividade de diferentes concentrações do TMV em folhas de glutinosa	41
14	Valores de y obtidos para cada dose de X (log 1000X), tanto para o TMV tratado com o IN como para o TMV controle	43
15	Média dos probitos para cada dose de X (log 1000), tanto para o TMV tratado com o IN, como para o TMV controle	43
16	Resultados dos ensaios biológicos efetua dos para verificar a ação do IN quando aplicado antes, simultâneo ou após o TMV em folhas de glutinosa	45
17	Inoculação do TMV e do IN, sepa rada men te, ám faces opostas da mesma fo- lha	46
18	Resultados dos ensaios biológicos efetua dos para verificar a ação do IN sobre a infectividade de diversos vírus inocula- dos em diferentes hospedeiros, nos quais os sintomas induzidos foram locais	48

VI

IV. <u>RELAÇÃO DAS FIGURAS</u>

Figuras

uras		pag.
1	Absorbância das frações eluídas após a fil tração do IN e do "Blue Dextran 2000", em coluna de gel de Sefadex G50. Resultado do ensaio biológico realizado com as fra- ções eluídas e combinadas, sobre a infecti vidade do TMV, em folhas de glutinosa	27
2	Absorbância das frações eluídas após a fil tração do IN e do "Blue Dextran 2000", em coluna de gel de Sefadex G25. Resultado do ensaio biológico realizado com as fra- ções eluídas e combinadas, sobre a infecti vidade do TMV, em folhas de glutinosa	29
3	Espectro de absorção ao ultravioleta de uma solução aquosa do IN comparado aos es- pectros obtidos para as soluções aquosas de SAB, P e BD	33
4	Eletromicrografias de TMV controle, do IN e da mistura TMV-IN, coradas por co ntrast <u>a</u> ção negativa (PTK a 1%, pH 7,0)	36,37
5	Efeito de diferentes concentrações do IN sobre a infectividade do TMV (0,1 mg/ml em tampão de fosfeto 0,02M de pH 7,0) em fo- lhas de glutinosa	39
6	Diagramas do número médio de lesões por meia-folha, correspondente ao TMV (contro- le) e ao TMV-IN, e do efeito do IN (2 mg/ ml) sobre a infectividade do TMV, em dife- rentes concentrações, em folhas de gluti- nosa	42
7	Linhes de regressão calculadas para o TMV controle e para o TMV-IN, a partir dos re- sultados do ensaio biológico sobre o efei- to do IN na infectividade do TMV em dife- rentes concentrações	44
8	Aspectos de folhas de diferentes plantas hospedeiras inoculadas na metade direita com a mistura vírus-inibidor e na metade esquerda apenas com o vírus (controle),mos trando a redução de infectividade do vírus	40
	causada pelo IN	49

1. INTRODUÇÃO

Os estudos sobre os inibidores naturais presentes em extratos de plantas, e que agem sobre os vírus fitopatogênicos, retardando, inibindo ou paralisando a replicação dos mesmos, são importantes sob vários aspectos dentro do campo da Vir<u>o</u> logia Vegetal.

Na maioria das vezes, o insucesso nas transmissões mecânicas de vírus fitopatogênicos está relacionada à presença de inibidores nas plantas hospedeiras ou nas usadas como fonte de inóculo.

Um melhor conhecimento da natureza química e do mecanismo de ação destas substâncias sobre os vírus ou sobre os hosp<u>e</u> deiros facilitaria, sem dúvida, os trabalhos sobre a transmissão mecânica de certos vírus, tidos, até hoje, como não transmissíveis por suco.

Outro aspecto importante é o que trata da purificação de ví rus. Como no caso anterior, a presença de inibidores, nos extratos de plantas, pode interferir nos trabalhos de purificação. O conhecimento das características desses inibido res possibilitaria o emprego de substâncias específicas capazes de bloquear a ação dos inibidores, ou, de métodos fisico-químicos capazes de retirá-los do meio de suspensão do vírus.

Um terceiro aspecto a ser considerado é o que se refere à possibilidade de se descobrir, entre as substâncias presentes em extratos de plantas, uma que seja altamente eficiente no combate aos vírus de vegetais, sem ser fitotóxica, e que pudesse ser empregada, na prática, como um meio de controle às viroses. Um amplo conhecimento das características e da natureza química dos inibidores, traria a possibilidade dos mesmos poderem ser sinteticamente produzidos, em larga escala e por baixo custo, para que tivessem aplicabilidade prática.

Abutilon striatum Dicks, conhecido vulgarmente por Abudelôn ou Abútilom, é uma planta ornamental pertencente à família Malvaceae, exótica ao Brasil, e suscetível à doenças causa~ das por vírus, entre as quais, ao mosaico do abútilom(AMV), cujo sintoma é uma variegação intensa do tipo mosaico (COS-TA, 1955). FLORES et al. (1967), estudando a possibilidade de transmitir mecanicamente o AMV para plantas de A. striatum e malva (Malva parviflora L.), verificaram que o insu cesso de seus experimentos era devido à ação inibidora do extrato de folhas de abútilom. No mesmo trabalho, os autores demonstraram que esse extrato agia também sobre o vírus do mosaico do fumo (TMV), reduzindo consideravelmente a sua infectividade em plantas de glutinosa (Nicotiana glutinosa Tanto o extrato de plantas sadias como o de plantas in L.). fectadas pelo AMV demonstraram possuir essa ação inibidora.

O aprimoramento do método de extração e purificação da sub<u>s</u> tância inibidora presente em extratos de folhas de abútilom; o efeito de diversos tratamentos sobre o inibidor; o estudo das principais características e da natureza química do mesmo; o comportamento da mistura inibidor-TMV sob ação de diferentes tratamentos; o provável mecanismo de ação do inibidor sobre a replicação de diversos vírus ou sobre a e<u>x</u> pressão dos sintomas causados pelos mesmos nas plantas hospedeiras, foram os principais objetivos da presente tese.

2. REVISÃO DA LITERATURA

2.1. Presença de inibidores de vírus em plantas superiores

Segundo BAWDEN (1954), os trabalhos que deram as primeiras indicações de que extratos de certas plantas pudessem conter substâncias inibidoras de vírus, foram realizados nom Phytolacca decandra L., conhecida vulgarmente em nosso meio como carurú de cacho, guaiaco ou uva americana. Assim, ALLARD (1918) não obteve sucesso ao tentar transmitir mecanicamente o vírus causador de sintomas de mosaico еm plan tas de P.decandra para plantas de fumo (Nicotiana tabacum L.) e vice-versa verificando, entretanto, que era possível reproduzir sintomas idênticos de mosaico em plantas de Ρ. decandra, quando estas eram inoculadas com suco de plantas da mesma espécie apresentando sintomas de mosaico.

DOOLITLE & WALKER (1925), não conseguiram transmitir, mecanicamente, o vírus do mosaico do pepino (CMV) de plantas de P.decandra para plantas sadias de pepino (Cucumis sativus L.). Entretanto, guando usaram afídeos, como vetor, a trans missão pôde ser feita com êxito. DUGGAR & ARMSTRONG (1925) demonstraram que a transmissão mecânica não ocorria devido à presença de substâncias inibidoras presentes no suco de plantas de P.decandra. GRANT (1934), trabalhando com suco de diversas plantas, verificou que a infectividade de TMV era imediatamente anulada guando se adicionava ao inóculo suco de plantas de P.rigida Small. JOHNSON (1938, 1941) e FUL-TON (1943) estudaram algumas características dessa substância e, KASSANIS & KLECZKOWSKI (1948) conseguiram isolar e identificar um inibidor extraído de P.esculenta L.. Segundo estes autores o inibidor - uma glicoproteina - mostrou-se a tivo sobre os vírus TMV, CMV, da necrose do fumo (TNV) e O

"bushy stunt" do tomateiro (TBSV).

KUNTZ & WALKER (1947) verificaram que o extrato de folhas de espinafre (Spinacia oleracea L.) inibia a infectividade dos vírus TMV, CMV, A do repolho, da mancha anular do fumo(TRSV), da mancha anular necrótica da batata (NPRSV), e da mancha anular latente da batata (LPRSV). Segundo estes autores o ex trato de espinafre conteria, provavelmente, dois componentes inibidores, um dos quais termolábil, que agiria sobre o TMV e o outro, termoestável, ativo sobre o vírus A do repolho. BLASZCZAK <u>et al</u>. (1959) também demonstraram que o suco de plantas de espinafre da variedade <u>Bloomsdale</u> inibia em cerca de 90% a infectividade do vírus X da batata (PVX), quando inoculado em gonfrena (<u>Gomphrena globosa</u> L.).

Com relação à presença de inibidores em extratos de plantas pertencentes à família Rosaceae, BAWDEN & KLECZKOWSKI (1945) demonstraram a existência de uma ação inibidora sobre o TMV e atribuíram a mesma, à presença de taninos nos extratos de plantas de morango (Fragaria vesca L.) e de framboesa (Rubus idaeus L.). Os autores sugeriram, inclusive, que esses tani nos fossem os responsáveis pelos insucessos na transmissão me cânica dos vírus ocorrentes em certas rosaceas, THRESH(1956) relatou a inibição dos vírus TMV e TNV, quando em presença de extratos de folhas de morangueiro, de framboesa ou de ácido tânico obtido de galhas produzidas por afídeos, em folhas de Rhus semialata Murr. CADMAN (1959) estudou o efeito de extratos de folhas de pessegueiro (Prunus persicae Batsch.) macieira (Pirus malus L.), cerejeira (Prunus avium L.), amei xeira (Prunus domestica L.), morangueiro e de plantas de framboesa sobre a infectividade de diversos vírus, dando especial ênfase à ação sobre o vírus do anel necrótico da bata ta (PRNV), uma vez que este apresentou-se mais intensamentei nibido pelas substâncias tânicas presentes nos extratos ensaiados.

Van der WANT (1951), na Holanda, verificou a existência, em suco de plantas sadias de cravo (Dianthus caryophyllus L.), de um fator capaz de inibir a transmissão do TNV para plantas de cravo ou de D.barbatus L., do TMV para plantas de glutinosa e, de certos vírus do grupo "rattle" para plantas de fumo. Esse inibidor poderia ser a causa das dificulda des encontradas na transmissão mecânica do vírus do mosaico do cravo, de plantas de cravo para plantas da mesma espécie ou para D.barbatus.

1 a 1 a 1

· · · · · ·

WEINTRAUB & GILPATRICK (1952) demonstraram, no Canada, que o extrato de folhas de várias plantas do gênero Dianthus, especialmente de D.barbatus dificultava a transmissão do TRSV de plantas de D.barbatus,para fumo, pepino, estramonio (Datura stramonium L.) e boca-de-leão (Anthirrinum majus L.). Segundo os autores haveria um inibidor no extrato de D.barbatus responsável por tais dificuldades. Verificaram, porém, que o inibidor não tinha efeito sobre a transmissão do TRSV entre plantas de D.barbatus. Além da ação inibidora exercida sobre o TRSV, o inibidor mostrou-se ativo sobre ou tros vírus reduzindo a infectividade do TMV, CMV e do vírus "etch" do fumo (TEV). Os estúdos sobre esse inibidor culmi naram com RAGETLI & WEINTRAUB (1962a, 1962b) que purifica ram o inibidor, caracterizando-o e determinando o modo de ação do mesmo. A substância, de natureza proteica, foi obtida a partir de extratos de plantas de cravo e ensaíada , quanto à ação inibidora, sobre o TMV em plantas de glutinosa.

SILL (1951) estudou a ação inibidora do extrato de plantas de pepino na transmissão do CMV, verificando que o inibidor estava presente tanto nas folhas como nos tecidos do caule,

- 5 -

raiz e sementes. De várias outras Cucurbitaceae ensaiadas, apenas a melancia (Citrullus vulgaris Schrad.) mostrou possuir uma ação comparável à encontrada em pepino. SILL 8 WALKER (1952) demonstraram que em plantas de pepino tanto os extratos de tecidos sadios como de tecidos de plantas in fectadas pelo CMV eram altamente inibidores de vírus. Comparando a ação dos extratos de plantas de pepino com a de outras plantas, como melancia e espinafre, verificaram que estes se mostraram, também, altamente inibidores. Os extra tos de plantas de melão (Cucumis melo L.), moranga (Cucurbi ta maxima L.), abóbora (Cucurbita pepo L.), caupí (Vigna si nensis (L.) Endl.), fumo, tomate (Lycopersicon esculentum Mill.) e glutinosa mostraram uma ação inibidora menos acentuada. WEINTRAUB & WILLISON (1953) confirmaram a existencia de um inibidor presente em extratos de pepino e sugeriram que fosse uma substância instável. BLASZCZAK et al . (1959) comprovaram a ação inibidora do extrato de pepino so bre a infectividade do PVX quando este era inoculado em gon FRANCKI (1964), demonstrou que quando extratos de frena. plantas sadias de pepino ou de glutinosa eram adicionados à preparações parcialmente purificadas de CMV, a infectividade era reduzida até cerca de 100 vezes.

McKEEN (1954, 1956) demonstrou que o suco de pimenteira do ce (<u>Capsicum frutescens</u> L.), contém uma substância capaz de provocar um decréscimo na formação de lesões locais e prim<u>á</u> rias por CMV, TEV e do TRSV, quando estes, eram inoculados em plantas de caupí e de <u>Chenopodium hybridum</u> L. Este efe<u>i</u> to foi menos evidente, para os mesmos vírus, quando inocula dos em fumo, camapú (<u>Physalis peruviana</u> L.). A inibição do número de lesões independeria do vírus inoculado, estando relacionada apenas com as espécies de plantas hospedeinas. Estudando a natureza química dessa substância sugeriu que ela fosse de natureza proteica. A ação inibidora do suco

-6-

de pimenteira doce sobre o PVX foi demonstrado por BLASZCZAK <u>et al</u>. (1959). FELDMAN (1963) estudou o efeito de extratos de sementes de pimentão (<u>Capsicum annuum</u> L) sobre a infectividade do TMV quando este era inoculado em fumo da variedade Xanthi, glutinosa, estramonio, <u>Chenopodium amaranticolor Cos</u> te & Reyn e feijão. O extrato também se mostrou ativo para o vírus "Southern bean" (SBMV) quando este era inoculado sobre plantas de feijão. Em trabalhos realizados com batata (<u>Solanum tuberosum</u> L.), BLASZCZAK <u>et al</u>. (1959), JERMOLJEV & ALBRECHTOVA (1965, 1966) puderam verificar a existência de um inibidor da infectividade do PVX em diferentes hospedei ros. Segundo os testes realizados o inibidor seria de natureza proteica.

KUNTZ & WALKER (1947), GREENLEAF (1953) e BLASZCZAK <u>et al</u>. (1959) relataram o efeito inibidor do suco de folhas de pla<u>n</u> tas pertencentes a família Chenopodiaceae, sobre diversos v<u>í</u> rus. THOMSON & PEDDIE (1965) comprovaram a existência de um inibidor em folhas de <u>C.amaranticolor</u> e de <u>C.album</u> L. capaz de inibir a infecção pelo TMV em glutinosa.

CROWLEY (1955), tentando obter uma explicação para a rara transmissibilidade de doenças de vírus através de sementes, conseguiu extrair substâncias que inibiam o CMV e o TMV de sementes de alguns de seus hospedeiros. Verificou ainda que as mesmas eram de natureza proteica e que, embora inibissem a infecção, agiam sobre os hospedeiros, sendo incapazes de inativar os vírus.

FLORES <u>et al</u>. (1967) verificaram a presença de um inibidor em folhas de abútilom, capaz de reduzir a infectividade do TMV em glutinosa. Extratos de plantas de abútilom, tanto sadias como apresentando sintomas causados pelo AMV, quando adicionados ao suco de folhas de malva infectada com AMV impediam a

-7-

transmissão deste vírus para plantas sadias de malva. Segun do os autores, quando plantas de abútilom estivessem envolvidas no processo de transmissão de vírus, quer como fonte de inóculo, quer como planta hospedeira, a infecção não se processava.

BENDA (1956) demonstrou que o suco de plantas de espinafre da Nova Zelândia (<u>Tetragonia expansa</u> Murr.) causava um retardamento no aparecimento dos sintomas do TRSV em plantas de caupí.

EBRAHIM-NESBAT & NIENHAUS (1972) trabalharam com extratos de 17 plantas diferentes, estudando o efeito inibidor dos mesmos, para o TMV e o CMV e verificaram que para o caso da beterraba (<u>Beta vulgaris</u> L.) o inibidor era de natureza polissacarídica, enquanto que aquele extraído de espinafre era de natureza proteica.

2.2. Presença de inibidores de vírus em microrganismos

MULVANIA (1926), numa tentativa de explicar a aparente perda de infectividade do TMV quando este era incorporado ao solo, estudou o efeito de culturas de bactérias sobre a infectividade do mesmo e, verificou que certas bactérias eram capazes de inibir completamente o vírus.

JOHNSON & HOGGAN (1937) demonstraram que culturas de <u>Aero-bacter aerogenes</u> (Kruse) Bergey <u>et al</u>., inibiam o TMV, enquanto que culturas de <u>Bacillus radiobacter</u> (Beij. & Van Deld) e de <u>Phytomonas tumefaciens</u> (= <u>Agrobacterium tumefa-</u> <u>ciens</u> (E.F. Sm & Town) Conn. possuiam apenas uma discreta ação inibidora.

-8-

GENDRON (1950) referiu-se a uma ação inibidora presente no filtrado de culturas de <u>Rhacodiella castaneae</u> Peyr. capaz de retardar a infecção pelo TMV e PVX em plantas de fumo.

MANN (1969) observou que quando culturas de <u>Bacillus unifla-</u> <u>gellatus</u> Mann. eram adicionadas ao solo onde cresciam plantas de fumo var. Xanthi, antes destas serem inoculadas com TMV, havia uma redução no número de lesões locais causadas pelo vírus. O mesmo efeito foi verificado quando extratos de culturas de bactéria eram adicionados ao solo ou pulver<u>i</u> zados sobre as folhas, antes destas serem inoculadas.

JOHNSON & HOGGAN (1937) cultivaram <u>Saccharomyces</u> sp em meio contendo TMV e não verificaram qualquer alteração na conce<u>n</u> tração do vírus que pudesse ser tomada como uma ação do fu<u>n</u> go ou de seus metabólitos sobre o vírus. JOHNSON (1938) s<u>u</u> geriu que certos metabólitos lançados no meio de cultura por <u>Aspergillus niger</u> van Tiegh seriam os prováveis responsáveis pela inibição do TMV. TAKAHASHI (1942) demonstrou a pr<u>e</u> sença de um inibidor do TMV em extratos de <u>Saccharomyces ce-</u> <u>revisae</u> Meyen, sugerindo que a substância fosse um polissacárido. Em 1946, o mesmo autor voltou a estudar as propri<u>e</u> dades físico-químicas da substância, confirmando a natureza química da mesma.

GUPTA & PRICE (1950) estudaram cerca de 50 espécies de fungo, cultivadas em meios sintéticos, para determinar a capacidade das mesmas em produzir compostos inibidores de vírus Os ensaios foram feitos com os vírus SBMV, TMV e TNV. Os filtrados de <u>Neurospora sitophila</u> Shear & Dodge e de <u>Trichothecium roseum</u> Link. demonstraram possuir o mais alto poder inibidor entre todos os filtrados ensaiados. Estudando, em detalhes, as propriedades do inibidor presente no filtrado de T.roseum, os autores concluiram que não se tratava de

-9-

uma substância de natureza proteica.

SLAGLE <u>et al</u>. (1952), com a finalidade de elucidar o mecani<u>s</u> mo da ação inibidora dos filtrados de <u>N.sitophila</u> e <u>N.crassa</u> Shear & Dodge sobre a infectividade dos vírus TMV, TNV, SBMV e TRSV, observaram que a maior ou menor eficácia dos filtrados, em reduzir o grau de infecção, dependia exclusivamente da planta hospedeira empregada. GUPTA & PRICE (1952), trab<u>a</u> lhando com <u>T.roseum</u> e com os vírus SBMV, TMV e TNV, sugeri ram, com base em muitas evidências, que a atividade inibidora era devida a alterações na suscetibilidade da planta hospedeira e não da ação direta do inibidor sobre as partículas de vírus.

WIGGS (1968) estudou a ação de 25 fungos sobre a infectivid<u>a</u> de do TMV verificando que a maioria das espécies ensaiadas continham substâncias que inibiam o vírus, sendo que as re presentantes dos gêneros <u>Amannita</u> e <u>Lepiota</u> possuiam os inibidores mais eficientes.

HODGSON & MUNRO (1966) verificaram que o extrato preparado do micélio de <u>Phytophthora infestans</u> (Mont.) d By inibia o PVX e, HODGSON <u>et al</u>. (1969) isolaram e estudaram algumas ca racterísticas de um polissacárido extraído do micélio deste fungo.

GROHMANN & MUSUMECI (1970, 1972) estudaram a ação inibidora de metabólitos lançados por certos fungos no meio líquido de cultura. Os metabólitos de todos os fungos ensaiados mostr<u>a</u> ram uma atividade inibidora acima de 60%, sendo que os de <u>T</u>. <u>roseum</u>, <u>Aspergillus flavus</u> Link. e <u>A.niger</u> reduziram a infe<u>c</u> tividade do TMV em mais de 90%.

MAYHEW & FORD (1971) estudaram um inibidor produzido por

Physarum polycephalum Schw. capaz de prevenir a infecção pelo TMV quando inoculado sobre plantas de fumo ou feijão. Se gundo os autores a substância seria um polissacárido de alto peso mol ecular. O inibidor reduziu, também, a infecção pelo TRSV em caupí, mas não teve qualquer efeito sobre a infecção pelo SBMV em feijão. Os autores sugeriram que o inibidor agiria di retamente sobre o vírus e não sobre o hospedeiro.

3. MATERIAL E MÉTODOS

3.1. Fonte de material

Plantas sadias de abútilom (<u>Abutilon striatum</u> Dicks) cuja <u>i</u> dade variava de 3 a 4 anos, cultivadas numa mistura de terra e areia (3:1) em vasos de barro (30cm x 60cm de altura), e mantidas em condições de ripado, serviram de fonte de material para a obtenção da substância inibidora. As folhas foram coletadas entre as plantas disponíveis, evitando-se, apenas, a retirada daquelas amarelecidas e senescentes ou que apresentassem deformações morfológicas.

3.2. Extração e purificação da substância inibidora

A metodologia empregada na extração da substância inibidora presente em folhas de abútilom baseou-se naquela utilizada por FLORES et <u>al</u>. (1967), com modificações.

Folhas de abútilom, recém-coletadas, foram lavadas em água corrente, deixadas secar sobre papel absorvente por 48 h e submetidas à desidratação em estufa (Thelco, Mod.18) a 60°C. Posteriormente, o material desidratado foi triturado em almofariz, à temperatura ambiente. Adicionou-se água destil<u>a</u> da ao pó obtido (10 ml/g de peso seco), resultando numa su<u>s</u> pensão altamente viscosa, que foi deixada em repouso por 48 h e, em seguida, fervida por 10 min, sob agitação constante. A suspensão foi comprimida através de pano de morim e o fi<u>l</u> trado foi tratado com etanol (1:3, v/v) e novamente submet<u>i</u> do à filtração através de papel xarope. O volume do filtr<u>a</u> do foi reduzido, por aquecimento, de 10 vezes o volume original e posteriormente filtrado através de funil de placa sílica de porosidade ultra-fina (Jena G4). Este filtrado constituiu o Extrato Bruto (EB)

O EB foi dialisado, na geladeira, por 168 h, contra água destilada trocada frequentemente. A solução retida no interior da membrana de diálise (diâmetro médio do poro: 48Å)foi novamente filtrada em funil de placa sílica (G4), constitui<u>n</u> do a <u>Fração Não Dialisável</u> (FND). A água da diálise, resultante da combinação de todas as trocas realizadas durante o processo, foi evaporada, por aquecimento, até um volume equ<u>i</u> valente ao da FND e constituiu a <u>Fração Dialisável</u> (FD). De ambas as frações foram retiradas alíquotas para posterior e<u>n</u> saio biológico.

A FND foi tratada (v/v) com uma mistura de álcool iso-amílico/clorofórmio/fenol (2:48:50). A mistura foi vigorosame<u>n</u> te agitada por 10 min, e em seguida centrifugada a 5000 rpm (Tominaga, Mod.TD-65), à temperatura ambiente. Repetiu-se o tratamento acima com a fase aquosa (FA). A FA final foi tratada 5 vezes com éter etílico (1:2, v/v). Em seguida, es ta foi concentrada, por aquecimento, até a obtenção de uma concentração equivalente a 10 g de peso seco por ml, e novamente dialisada por 48 h na geladeira, contra água destila da. Esta solução, após filtração (Millipore 0,8µ, Millipore Co. USA), constituiu o <u>Extrato Desproteinizado</u> (ED). Este foi liofilizado (Liofilizador Edwards Alto Vuoto, Milano, Mod. L 40) e conservado, sob vácuo, a -15⁰C, constituindo a fração que passaremos a chamar de Inibidor (IN).

-13-

Dissolveu-se o IN em água destilada (2,0 mg/ml), adicionou--se 1,0 g de carvão ativo e o material foi agitado por 10 min, sendo, posteriormente, submetido à filtração em funil de placa de sílica (G4).

3.3.2. Tratamento com solução amoniacal

O IN dissolvido em água destilada (mg/ml) foi tratado com uma solução concentrada de hidróxido de amônio (NH₄OH contendo 25% NH₃) (1:1, v/v). A mistura foi centrifugada a 10000 rpm, por 15 min (Spinco, Mod.L, rotor n° 30). O vol<u>u</u> me sobrenadante (Sn) foi reduzido à metade, por evaporação e em seguida, guardado a 4[°]C. O sedimento (Sd) foi ressuspe<u>n</u> dido em 10 ml de uma mistura de etanol/éter etflico (1:1, v/v) e posteriormente centrifugado a 2000 rpm, por 15 min (Spinco, Mod.L, rotor n° 40). O Sn foi rejeitado e o Sd após se cagem em estufa (60[°]C) foi retomado em água destilada, num volume equivalente ao do Sn obtido da precipitação com o hidróxido de amônio.

3.3.3. Filtração em gel de Sefadex

Uma solução aquosa do IN foi submetida à filtração em gel de Sefadex G50 e G25 (Pharmacia, Uppsala, Sw.). Como colunas foram utilizados dois tubos de vidro (2,3 cm de diâme tro interno) fechados numa das extremidades por uma placa de sílica (Gl) tendo sobre esta um disco de papel de filtro (Whatmann nº 1). Uma solução aquosa de "Blu**e** dextran 2000" (BD) (Pharmacia, Uppsala, Sw.) foi usada como marcadora do volume externo (V₀) eluído. No caso da coluna de Sefadex G50, para a obtenção do leito de filtração foram usados 6 g do gel previamente embebidos em excesso de água destilada. A preparação do gel e o preenchimento da coluna foram feitos segundo as intruções do manual preparativo da PHARMACIA (1966). 1,0 ml de uma solução aquosa do IN (5 mg/ml) foi aplicado sobre o leito da coluna protegido por um disco de papel de filtro (Whatmann nº 1),e como eluente usou-se água destilada. Foram coletadas 30 frações de 3 ml cada, que f<u>o</u> ram submetidas à leitura da absorbância, em 270 nm, num espectrofotômetro (Pye Unicam Mod. SP 1800). No caso de Sef<u>a</u> dex G25 utilizou-se 10 g do gel para o preparo do leito de filtração.

3.3.4. Tratamentos enzimáticos

Uma solução aquosa do IN (4 mg/ml) foi submetida a tratamentos enzimáticos por diastase (NBC, Co., USA) e por pectinase (NBC, Co., USA). As soluções de enzimas foram prepara das em tampão de fosfato 0,02M de pH 7,0, nas concentrações de 0,4 mg/ml e 40 mg/ml, respectivamente.

3.4. Ensaios para a determinação da substância inibidora

Foram preparadas diversas soluções aquosas do IN, as quais foram submetidas a espectrofotometria ao ultravioleta, e aos testes de coloração ou precipitação de Molisch, Bial, Biur<u>e</u> to, Ninhidrina (<u>in</u> TASTALDI, 1955) e de Antrona (<u>in</u> BELL, 1955).

-15-

3.5. Ensaios sobre inibição de vírus

Os vírus utilizados para os ensaios de inibição (Tabela 1) foram submetidos à técnicas de purificação ou clarificação. O TMV foi purificado por meio de ultracentrifugações diferenciais, segundo o método de STEERE (1959) e, posteriormente, a preparação purificada foi tratada por clorofórmio /álcool isoamílico, de acordo com a técnica de SCHNEIDER (1953). A preparação purificada foi mantida em tampão de fosfato 0,02M de pH 7,0, a temperatura de -15⁰C.

Vírus	Plantas utilizadas para a manutenção dos vírus			
Mosaico do fumo (TMV)	<u>Nicotiana tabacum</u> var. "White Burley"			
X da batata (PVX)	<u>N. tabacum</u> var. "White Burley"			
Mosaico do pepino (CMV)	<u>Chenopodium</u> amaranticolor			
Mosaico amarelo do fsijão (BYMV)	<u>Phaseolus vulgaris</u> var. "Scotia"			
Vira-cabeça do tomateiro (TSWV)	<u>Datura stramonium</u>			
Necrose branca do fumo (STMV)	<u>N. tabacum</u> var. "White Burley"			
Mosaico da alface (LMV)	<u>Chenopodium</u> quinoa Willd			

Tabela 1. Vírus empregados nos ensaios de inibição

Os demais vírus, utilizados nos ensaios de inibição, foram

preparados da seguinte forma: folhas recém-coletadas (2 g), de plantas infectadas, foram trituradas num almofariz em pr<u>e</u> sença de 5,0 ml de tampão de fosfato 0,01M de pH 7,0 mais sulfito de sódio (0,4%) COSTA, 1957). O mascerado foi filtrado através de papel de filtro (Whatmann nº 54) e o filtr<u>a</u> do constituiu o <u>Suco Clarificado</u> (SC) utilizado nos ensaios de inibição.

Os métodos de inoculação, para os vírus relacionados na Tab<u>e</u> la 1, variaram de acordo com o tipo de sintomas manifesta dos pelas plantas hospedeiras. Para qualquer tipo de inóculo usado (suspensão de vírus purificado ou suco clarificado) a inoculação foi sempre mecânica e feita com o auxílio de um abrasivo (Carborundum, 200-400 mesh).

Nos casos em que os vírus ensaiados induziam, nas plantas hos pedeiras, o aparecimento de sintomas locais, foram emprega dos os métodos de inoculação em folhas opostas ou em meias--folhas conforme SAMUEL & BALD (1933). No primeiro caso, o vírus tratado pelo inibidor foi inoculado em toda a superfície foliar, sendo a folha oposta, empregada como controle, inoculada apenas com o vírus diluído em água destilada. na mesma concentração que o tratado pelo inibidor. No segundo caso, apenas uma metade de cada folha foi inoculada com 0 vírus tratado pelo inibidor, sendo a outra metade usada como controle.

Para os vírus que induziam o aparecimento de sintomas sistêmicos, a inoculação foi feita em toda a superfície foliar de duas folhas de cada planta, usando-se 2 grupos de 10 plan tas cada, sendo um deles inoculado com o vírus tratado pelo inibidor e o outro, grupo controle, inoculado apenas com o vírus diluído com água destilada.

-17-

Para lesões locais, cloróticas ou necróticas, a avaliação dos sintomas consistiu na contagem do número total de lesões nas folhas ou meias-folhas tratadas e nos respectivos controles. Após a contagem, o número total de lesões, correspondente ao tratamento, foi deduzido do número total de lesões referente ao controle. A diferença, multiplic<u>a</u> da por 100 e dividida pelo número total de lesões correspondente ao controle, forneceu o resultado expresso como porcentagem de inibição (% inibição) (NITZANY & COHEN, 1960).

Nos casos em que os sintomas foram sistêmicos, a avaliação foi feita segundo o aspecto e o grau de severidade dos sintomas observados nas plantas tratadas, quando comparados aos sintomas apresentados pelas plantas do grupo--controle. Nestes casos foi adotado o critério de notas, variando de I (nenhum indício aparente de inibição) até V (inibição completa). O mesmo critério foi adotado no caso de plantas que manifestaram sintomas locais, mas que não foi possível a contagem do número de lesões.

3.6. <u>Ensaio biológico para avaliação da atividade do ini-</u> bidor sobre a infectividade do TMV em plantas de glu tinosa

Plantas de glutinosa foram inoculadas mecanicamente, segundo o processo anteriormente descrito, com uma mistura de iguais volumes de uma suspensão de TMV purificado (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0) e de uma sol<u>u</u> ção aquosa do IN ou da amostra a ser ensaiada. A mistura foi feita "in vitro" e, em seguida, inoculada. Como controle da inoculação usou-se uma mistura de iguais volumes

-18-

de água destilada e da mesma suspensão de TMV. Para cada amostra foram usadas 5 plantas de glutinosa, das quais foram retirados, previamente, o broto apical e as folhas mais velhas, deixando-se, apenas, 4 folhas por planta. A avalia ção dos sintomas foi feita 3 dias após a inoculação, através da contagem do número de lesões. As plantas foram mantidas à temperatura ambiente após a inoculação.

3.7. Comportamento da mistura vírus-inibidor (VI)

A mistura VI foi submetida à ultracentrifugação, à análi ses ao nível da microscopia eletrônica, à testes serológi cos e a bicensaios.

Com referência à ultracentrifugação, preparou-se uma mistura (v/v) de uma solução aquosa do IN (2 mg/ml) e de uma sus pensão de TMV (0,2 mg/ml em tampão de fosfato 0,02M de pН 7,0). Como controle foi utilizada uma suspensão de TMV пa mesma concentração final da mistura VI. As amostras foram submetidas à ultracentrifugação (Spinco Mod.L, rotor nº 40) a 40000 rpm, por 90 min. Após a centrifugação o Sd foi res suspendido em 24 ml de tampão de fosfato 0,01M de pH 7,0 . Ao Sn, juntou-se igual volume de TMV purificado (0,1 mg/ml em tampão de fosfato 0,01M de pH 7,0). As amostras foram conservadas a 4°C, para ensaios biológicos. Uma amostra da mesma preparação VI, não submetida à ultracentrifugação 8 diluída na proporção de 1:2 com tampão de fosfato 0,01M de pH 7,0, foi empregada como controle do ensaio.

Uma solução aquosa do IN (2 mg/ml) e de uma suspensão de TMV purificado (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0) foram juntados (v/v) e a mistura resultante foi exami-

-19-

nada e fotografada ao microscópio eletrônico (Phillips Mod. EM 300), por contrastação negativa HORNE, 1959). Como controles, usaram-se preparações do TMV e do IN nas mesmas co<u>n</u> centrações, diluídas de 1:2 com água destilada.

Com referência aos testes serológicos, empregou-se antissoro específico para TMV e como antígenos foram utilizadas sus pensões de TMV purificado, tratadas ou não pelo IN. O teste desenvolvido foi o de dupla-difusão em agar, idealizado por OUCHTERLONY (1949, 1958, 1962) e BALL (1961) e, poste riormente modificado por OLIVEIRA (1967).

O <u>ponto final da diluição</u> do inibidor foi ensaiado contra uma concentração constante de TMV, e vice-versa.

3.8. Mecanismo de ação do inibidor

A ação do inibidor, sobre a infectividade do TMV, foi ensaia da na mesma face ou em faces opostas de folhas de glutino sa, variando-se o intervalo de tempo entre a aplicação do IN e a inoculação com o TMV. Nos dois ensaios foram usadas uma suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0) e uma solução aquosa do IN (2 mg/ml).

No caso da inoculação em faces opostas, a suspensão de TMV foi inoculada em toda a superfície da face superior (ventral) das folhas, enquanto que o IN foi aplicado apenas numa metade da face inferior (dorsal), sendo a metade correspondente da mesma face tratada com água destilada.

3.9. <u>Ação do inibidor sobre diferentes vírus em diferentes</u> hospedeiros

Todos os vírus utilizados foram ensaiados, pelo menos, em duas plantas hospedeiras diferenciais, uma que apresentasse sintomas locais e outra, sistêmicos. As combinações e<u>m</u> pregadas estão apresentadas na Tabela 2.

Vírus	Hospedeiras	Sintomas
***********	<u>N. tabacum</u> var. "White Burley"	S
	<u>N.glutinosa</u>	
	<u>D.stramonium</u>	L
TMV	<u>G.globosa</u>	L
	<u>P.vulgaris</u> var. "Scotia"	L
an sa an	P.vulgaris var. "manteiga"	
	<u>N.glutinosa</u>	S
PVX	<u>G.globosa</u>	L
	N.glutinosa	S
CMV	<u>C.amaranticolor</u>	L
	<u>N. tabacum</u> var. "White Burley"	L
	G.globosa	L
YBMV	P.vulgaris var. "Scotia"	· S
	<u>P.vulgaris</u> var. "manteiga"	S
	<u>P.vulgaris</u> var. "manteiga"	L
TSWV	<u>P.vulgaris</u> var. "Scotia"	*****
	<u>N. tabacum</u> var. "White Burley"	S
	<u>N. tabacum</u> var. "White Burley"	L e S
	<u>P.vulgaris</u> var. "Scotia"	L
STMV	<u>G.globesa</u>	L
	<u>P.vulgaris</u> var. "manteiga"	L
	<u>C.quinoa</u>	S
LMV	G.globosa	L
i=sintomas	sistêmicos; L=sintomas locais e -=a	usência de

Tabela 2. Plantas hospedeiras e tipos de sintomas induzi dos pelos diferentes vírus utilizados

S=sintomas sistêmicos; L=sintomas locais e -=ausência de sintomas.

4. RESULTA DOS

4.1. Efeito da diálise sobre a ação do inibidor

Os testes biológicos efetuados com as frações provenientes da diálise, permitiram verificar que o inibidor ficou retido no interior da membrana de diálise. As porcentagens de inibição decorrentes da ação inibidora do EB e da FND foram as mesmas, demonstrando, assim, não haver qualquer alteração da atividade da substância extraída de folhas de abútilom, quando subm<u>e</u> tida ao tratamento pela diálise (Tabela 3).

Tabela 3. Resultados dos ensaios biológicos efetuados para ve rificar a ação do EB dialisado sobre a infectividade do TMV em folhas de glutinosa.

		N \$	Total de	Lesõe	8		
Amostras.	T:	Tratamento		Controle [*]		······································	% inibição **
	Exp.l	Exp.2	Exp.3	Exp.1	Exp.2	Exp.3	
1	110	50	70	1480	300	430	89,5
2	520	280	70	660	295	70	15,1
3	45	170	110	1225	1030	635	88,7

- 1 1,0 ml da FND + 1,0 ml da suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0)
- 2 1,0 ml da FD após concentrada + 1,0 ml da mesma suspensão de TMV
- 3 1,0 ml do EB + 1,0 ml da mesma suspensão de TMV

* 1,0 ml de água destilada + 1,0 ml da mesma suspensão de TMV **% de inibição da média de três experimentos,

4.2. <u>Efeito do tratamento desproteinizador sobre a ação do</u> inibidor

O EB, antes ou após ter sido submetido à diálise seguida de desproteinização, foi ensaiado biologicamente em folhas de glutinosa, e os resultados indicaram que o tratamento efetuado para retirar as proteinas, não alterou a ação do inibidor (Tabela 4).

Tabela 4. Resultados dos ensaios biológicos efetuados para ve rificar a ação do EB desproteinizado sobre a infectividade do TMV em folhas de glutinosa.

		₩s.	Total de	e Lesõe:	3		
Amostras Trata		ratame	nto	Controle [*]		% inibição ^{**}	
	Exp.1	Exp.2	Exp.3	Exp.1	Exp.2	Exp.3	
1	620	750	140	2155	3100	490	73,7
2	500	440	225	1980	2190	890	76,9

1 - 1,0 ml do ED + 1,0 ml da suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0)

2 - 1,0 ml do EB + 1,0 ml da mesma suspensão de TMV

* 1,0 ml de água destilada + 1,0 ml da mesma suspensão de TMV **% da inibição da média de três experimentos.

4.3. Efeito do tratamento do inibidor por carvão ativo

Os ensaios biológicos realizados com o IN, submetido ou não ao tratamento pelo carvão ativo, revelaram que este retém co<u>m</u> pletamente o inibidor, sendo que, em consequência disto, o filtrado resultante do tratamento não mostrou qualquer ação inibidora sobre a infectividade do TMV (Tabela 5).

Tabela 5. Resultados dos ensaios biológicos efetuados para ve rificar a ação do filtrado do IN, através de carvão ativo, sobre a infectividade do TMV em folhas de glutinosa.

den meny samanakka sandikakan aksara sasa ing sasa sandikakan sasa sasa ing sasa ing sasa sandika di Pana sandi		N° Total d	ie Lesões	inte angle in the second s	an a
Amostras	Tratamento		Controle*		% inibição ^{*∗}
	Exp.1	Exp.2	Exp.1	Exp.2	
1	85	70	85	7 0	0,0
2	110	35	635	185	82,3

- 1 1,0 ml do filtrado resultante do tratamento do IN pelo car vão ativo + 1,0 ml da suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0)
- 2 1,0 ml do IN + 1,0 ml da mesma suspensão de TMV

* 1,0 ml de água destilada + 1,0 ml da mesma suspensão de TMV
 ** % de inibição da média de dois experimentos,

4.4. Efeito do tratamento do inibidor por solução amoniacal

resultados dos ensaios biológicos efetuados com Os o i nibidor submetido ou não ao tratamento com uma solução concentrada de hidróxido de amônio (NH4OH contendo 25% de NH3), apresentando a mistura um pH em torno de ll,0, revelaram não haver qualquer diferença significati ação do inibidor, após o tratamento, sobre va na а infectividade do TMV (Tabela 6).

Tabela 6. Resultados dos ensaios biológicos efetuados para ve rificar a ação do IN submetido a um tratamento com solução amoniacal sobre a infectividade do TMV em folhas de glutinosa.

Quantitation of the second		N ^º Total	hofadar far far sen an		
Amostras	Tratamento		Contr	ole [*]	% inibição **
	Exp.1	Exp.2	Exp.1	Exp.2	
1	15	120	80	640	81,2
2	55	595	80	805	26,5
3	20	135	90	830	83,1

- 1 1,0 ml do Sn da precipitação do IN com hidróxido de amônio + 1,0 ml da suspensão de TMV (0,1 mg/ml em tam pão de fosfato 0,02M de pH 7,0)
- 2 1,0 ml do Sd, retomado em água, + 1,0 ml da mesma sus pensão de TMV
- 3 1,0 ml do IN + 1,0 ml da mesma suspensão de TMV
- * 1,0 m1 de água destilada + 1,0 ml da mesma suspensão de TMV
- ** % de inibição da média de dois experimentos.

4.5. <u>Efeito do tratamento do inibidor por filtração em gel de</u> Sefadex

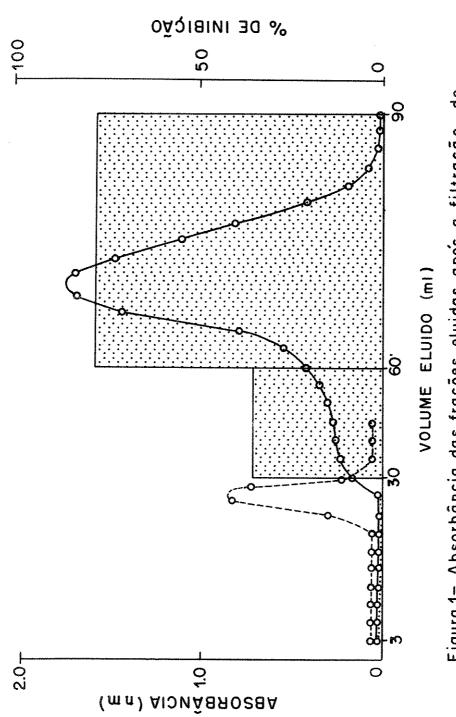
Uma solução aquosa do IN quando submetida à filtração em gel de Sefadex G50, mostrou que o máximo da capacidade inibidora da substância foi eluída após 63 ml, enquanto que o BD, usado como marcador do V_o, teve o seu máximo de eluição em 27 ml.

As frações do inibidor eluídas da coluna, após terem sido com

4 - 1,0 ml da solução aquosa do IN (2 mg/ml) + 1,0 ml da mesma suspensão de TMV

* 1,0 ml de água destilada + 1,0 ml da mesma suspensão de TMV

Velocidade do fluxo da coluna: 180 ml/h Volume de cada fração eluída : 3 ml A combinação das frações foi feita segundo a absorbância em 270 nm.


÷

binadas em três amostras, de acordo com as absorbâncias óticas de cada uma, e, posteriormente, evaporadas e retomadas em 1,0 ml de água destilada, foram submetidas a ensaios biclógicos. Os resultados destes ensaios demonstraram que a fração l, resultante da combinação dos primeiros 30 ml eluídos, e correspondente ao V_ da coluna, não teve qualquer 8feito inibidor sobre a infectividade do TMV; a fração 2, resultante da combinação dos 18 ml seguintes, inibiu 36,2% а infectividade do TMV. O máximo de ação inibidora correspondeu à fração 3, resultante da combinação dos 42 ml subsequen tes. O máximo da absorbância ótica, coincidiu com a fração eluída após 63 ml que apresentou o máximo de inibição sobre a infectividade do TMV (Tabela 7 e Figura 1).

Tabela 7. Resultado de um ensaio biológico típico obtido com as frações eluídas, após a filtração do IN em gel de Sefadex G50, sobre a infectividade do TMV em folhas de glutinosa.

Amostras	N° Total	de Lesões	% inibição	
niiustras	Tratamento	Controle [*]	2 τητοτζαο	
1	710	695	0,0	
2	610	960	36,4	
3	195	975	80,0	
4	680	2090	67,4	

- 1 1,0 ml resultante da combinação e concentra ção das frações de 1 a 9 eluídas da coluna + 1,0 ml da suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02 M de pH 7,0)
- 2 1,0 ml das frações de 10 a 15, combinadas e concentradas + 1,0 ml da mesma suspensão de TMV
- 3 1,0 ml das frações de 16 a 30 combinadas e concentradas + 1,0 ml da mesma suspensão de TMV

eluidas e combinadas, sobre a infectividade do TMV, em folhas de o p Sefadex G50. Resultado do ensaio biológico realizado com as frações Figura 1- Absorbância das frações eluidas apos a filtração glutinosa (E....) N

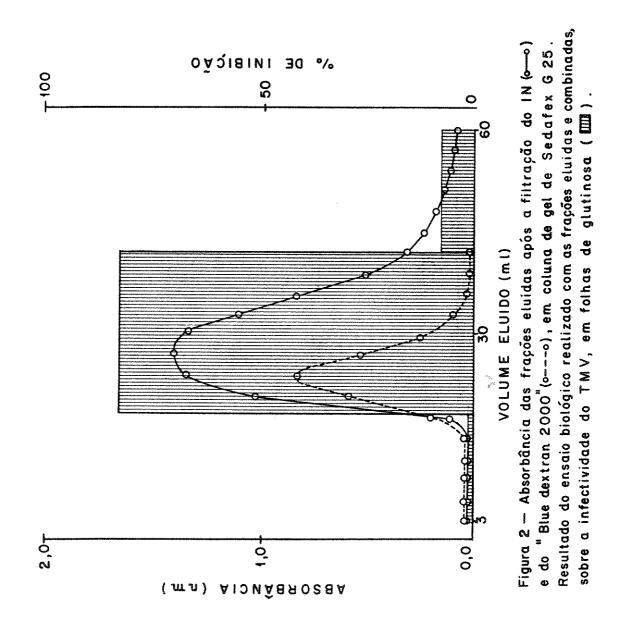

Com relação à filtração do inibidor em gel de Sefadex G25, verificou-se que tanto o inibidor como a solução de BD foram eluídos no V_o da coluna. As frações eluídas foram agrupadas em três amostras, conforme a absorbância ótica de cada uma, e submetidas ao mesmo processo de evaporação,de<u>s</u> crito para as frações eluídas da coluna de Sefadex G50,se<u>n</u> do, posteriormente, ensaiadas biologicamente. Os resultados destes ensaios demonstraram que a atividade inibidora estava restrita à amostra correspondente ao V_o da coluna (Tabela 8 e Figura 2).

Tabela 8. Resultado de um ensaio biológico típico com as frações eluídas após a filtração do IN em gel de Sefadex G25, sobre a infectividade do TMV em folhas de glutinosa.

Amostras	Nº Total o	de Lesões	% inibição		
Amostras	Tratamento	atamento Controle *			
1	2260	2290	1,3		
2	320	2065	84,5		
3	1145	1255	8,7		
4	680	2090	67,4		

- 1 1,0 ml resultante da combinação e concentra ção das frações de l a 5, eluídas da coluna + 1,0 ml da suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0).
- 2 1,0 ml (frações 6 a 14) + 1,0 ml da mesma suspensão de TMV
- 3 1,0 ml (frações 15 a 20) + 1,0 ml da mesma suspensão de TMV
- 4 1,0 ml da solução aquosa do IN (2 mg/ml) + 1,0 ml da mesma suspensão de TMV
- I,O ml de água destilada + l,O ml da mesma suspensão de TMV Velocidade do fluxo da coluna: 180 ml/h Volume de cada fração eluída : 3 ml Leitura da absorbância de cada fração: 270 nm

-28-

- 1 Mistura de 1,0 ml da solução de diastase (0,4 mg/ml) em tampão de fosfato 0,02M de pH 7,0 e de 1,0 ml da solu ção aquosa do IN (4 mg/ml) incubada a 37°C, e posterior menterjuntada a 2,0 ml de uma suspensão de TMV (0,1 mg/ ml em tampão de fosfato 0,02M de pH 7,0)
- 2 Mistura de 1,0 ml de tampão de fosfato 0,02M de pH 7,0 e de 1,0 ml da mesma solução do IN incubado a 37 C, e posteriormente juntado a 2,0 ml da mesma suspensão de TMV
- 3 Mistura de 1,0 ml de água destilada e de 1,0 ml da solu ção de diastase, incubada a 37°C, e posteriormente juntada a 2,0 ml da mesma suspensão de TMV
- 4 Mistura de 1,0 ml de água destilada e de 1,0 ml da solu
 ção do IN, mantida a 4°C, e posteriormente juntada a
 2,0 ml da mesma suspensão de TMV
- * 2,0 ml de água destilada + 2,0 ml da mesma solução de TMV

4.6. <u>Efeito do tratamento do inibidor pelas enzimas diastase e</u> pectinase

Nos experimentos realizados com as enzimas diastase ou pectin<u>a</u> se, foram preparadas 4 amostras que, posteriormente, foram ensaiadas biologicamente em presença do TMV, em folhas de glutinosa. As amostras : l (mistura de inibidor mais enzima), amostra 2 (mistura de inibidor mais o tampão usado na preparação da enzima) e a amostra 3 (enzima mais água destilada) foram i<u>n</u> cubadas por 24 ou 48 h, a 37[°]C, enquanto que a amostra 4 (preparada como a amostra 2) foi mantida a 4[°]C, durante os mesmos intervalos de tempo que as demais, servindo de controle para a amostra 2.

Os resultados dos ensaios biológicos realizados com o IN subm<u>e</u> tido a tratamentos enzimáticos, por 24 ou 48 h, com diastase ou pectinase, revelaram que não houve qualquer alteração na ação inibidora sobre a infectividade do TMV, ensaiado em folhas de glutinosa, quando estes resultados foram comparados àqueles o<u>b</u> tidos para o IN não tratado (Tabelas 9 e 10).

Tabela 9. Resultados dos ensaios biológicos efetuados com o IN tratado, por 24 ou 48 h, com diastase, sobre a infec tividade do TMV em folhas de glutinosa.

RAS	24	HORAS	AL BERTERANDE AND ENDERNE A	48	HORAS	нин ант 2000 станиция на торин
AMOSTRAS	Nº total de lesões		8	N° total de lesões 🦂		ž
АМ	Trat <u>a</u> mento	Controle*	inibição	Trat <u>a</u> mento	Controle *	inibição
1	75	220	65,9	400	1160	65,5
2	145	515	71,8	1000	2630	61,9
3	290	355	18,3	2230	2775	19,6
4	95	380	75,0	640	1700	62,3

Tabela 10. Resultados dos ensaios biológicos efetuados com o IN tratado, por 24 ou 48 h, com pectinase, sobre a infectividade do TMV em folha de glutinosa.

 ഗ		24 HORAS			48 HORAS	
TRA	Nº total	de lesões	ž	N° total	de lesões	~
AMOSTRAS	Trata mento	Controle*	inibição	Trat <u>a</u> mento	Controle*	~
1	150	320	53,1	480	1075	55 ,3
2	140	490	71,4	450	1355	66,7
3	190	265	28,3	660	860	23,2
4	135	325	58,4	175	405	56,7

- 1 Mistura de 1,0 ml de solução de pectinase (40 mg/ml em tampão de fosfato 0,02M de pH 7,0) e de 1,0 ml da solução aquosa do IN (4 mg/ml), incubada a 37°C, e posteriormente juntada a 2,0 ml de uma suspensão de TMV (0,1 mg/ml em tam pão de fosfato 0,02M de pH 7,0)
- 2 Mistura de 1,0 ml de tampão de fosfato 0,02M de pH 7,0 e de 1,0 ml da mesma solução do IN, incubado a 37°C, e posteriormente juntado a 2,0 ml da mesma suspensão de TMV
- 3 Mistura de 1,0 ml de água destilada e de 1,0 ml da solução de pectinase, incubada a 37°C, e posteriormente junta da a 2,0 ml da mesma suspensão de TMV
- 4 Mistura de 1,0 ml de água destilada e de 1,0 ml da solução do IN, mantida a 4ºC, e posteriormente juntada a 2,0 ml da mesma suspensão de TMV
- * 2,0 ml de água destilada + 2,0 ml da mesma suspensão de TMV

4.7. Espectro de absorção do inibidor ao ultravioleta

A análise do espectro de absorção, realizado no intervalo entre 210nm e 450nm, de uma solução aquosa do IN (0,1 mg/ml), re velou um discreto aumento da absorvância ótica nas bandas com preendidas entre os comprimentos de onda de 260nm a 276nm(Ban da I) e de 310nm a 330nm (Banda II). O máximo de absorbância para a Banda I correspondeu a 270nm. A Banda II revelou-se <u>a</u> penas como uma ligeira ondulação ("shoulder").

Os espectros de absorção obtidos para as soluções aquosas de soro albumina bovina (SAB) (0,01%), BD (0,001%), e pectina(P) (0,005%) serviram de comparação ao obtido para o IN (Figura 3).

4.8. <u>Resultado dos ensaios de coloração ou precipitação rea</u>lizados com o inibidor

Nos testes de Molisch, Antrona e Bial, as reações obtidas para a solução aquosa do IN (1,0 mg/ml) foram positivas apenas para os dois primeiros e, equivalentes em intensidade, aproxi madamente, às verificadas para padrões de glucose de 0,5 mg/ ml e 0,4 mg/ml, respectivamente.

Nos testes de Biureto e Ninhidrina, as reações obtidas para a solução aquosa do IN (3,5 mg/ml) foram negativas, embora a sensibilidade dos métodos tenha sido positiva para padrões de caseina de até 0,0035 mg/ml.

4.9. Comportamento da mistura TMV-inibidor (VI)

4.9.1. Ação da ultracentrifugação sobre a mistura VI

A mistura VI, submetida à ultracentrifugação, resultou num Sd

- 32 -

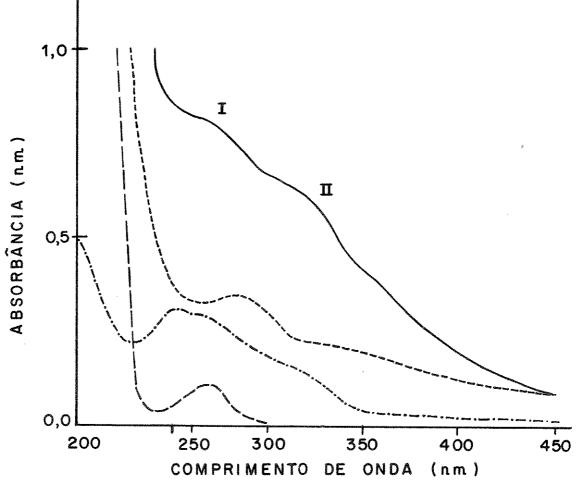


Figura 3 — Espectro de absorção ao ultravioleta de uma solução aquosa do IN (o----o) comparado aos espectros obtidos para as soluções aquosas de SAB (o----o), P (o----o) e BD (o-----o)

*2 Sd da centrifugação de 6,0 ml de água destilada + 6,0 ml da mesma suspensão de TMV, retomado em 24 ml de tampão de fosfato 0,01M de pH 7,0
*3 Mistura de iguais volumes do Sn da centrifugação da amostra controle e da suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,01M de pH 7,0)
**

°% de inibição da média de dois experimentos.

e num Sn (ítem 3.7.) que foram, em separado, ensaiados bio logicamente. Os resultados foram comparados com os obtidos para uma preparação constituída da mesma mistura de VI, porém, não submetida ao tratamento acima. Os resultados dos ensaios biológicos revelaram que tanto o inibidor como o TMV, após separados pela ultracentrifugação da mistura VI, mantiveram suas características inalteradas, isto é; o inibidor contido no Sn, não perdeu a sua capacidade inibidora quando em presença de uma suspensão de TMV não tratado previamente, e o vírus (Sd) manteve-se infectivo (Tabela 11).

Tabela ll. Resultados dos testes biológicos efetuados com as frações Sd e Sn, resultantes da ultracentrifu gação da mistura VI, sobre a infectividade do TMV em folhas de glutinosa.

		N° Tota			
Amostras	Trata	mento	Controle *		% inibição **
	Exp.1	Exp.2	Exp.1	Exp.2	
1	265	195	600	640	62,9
2	350	720	465	990	26,4
З	240	800	705	2115	63,1

- 1 2,0 ml da solução aquosa do IN (2 mg/ml) + 2,0 ml da suspensão de TMV (0,2 mg/ml em tampão de fosfato 0,02M de pH 7,0; a mistura foi diluída (1:2) com tampão de fosfato 0,01M de pH 7,0.
- 2 Sd da centrifugação da mistura de 6,0 ml da mesma solução de IN e 6,0 ml da mesma suspensão de TMV,re tomado em 24 ml de tampão de fosfato 0,01M de pH 7,0
- 3 Sn da centrifugação juntado a igual volume de uma suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,01M de pH 7,0).
- *1 2,0 ml de água destilada + 2,0 ml da mesma suspensão de TMV usado em 1. A mistura foi diluída (1:2) com tampão de fosfato 0,01M de pH 7,0.

4.9.2. Características da ultra-estrutura da mistura VI

A mistura VI, bem como amostras do TMV purificado (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0) e da solução aquosa do IN (2,0 mg/ml) foram examinadas ao microscópio eletrônico por contrastação negativa (PTK a 1%, pH 7,0).

As eletromicrografias das partículas de TMV tratadas pelo IN, quando comparadas às de partículas normais (Figura 4-A) mostraram variações acentuadas do diâmetro, maior frequência de pontos de quebra e maior número de partículas fragmentadas (Figura 4-C a M).

O IN apresentou-se como uma massa granulosa, de diferentes formas e tamanhos e pouco densa eletronicamente (Figura 4-8).

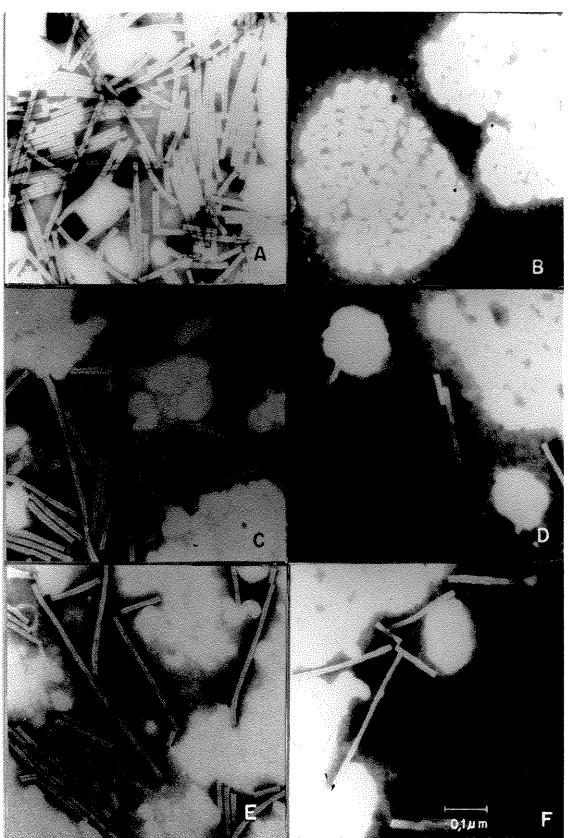
4.9.3. Comportamento serológico do TMV em presença do inibidor

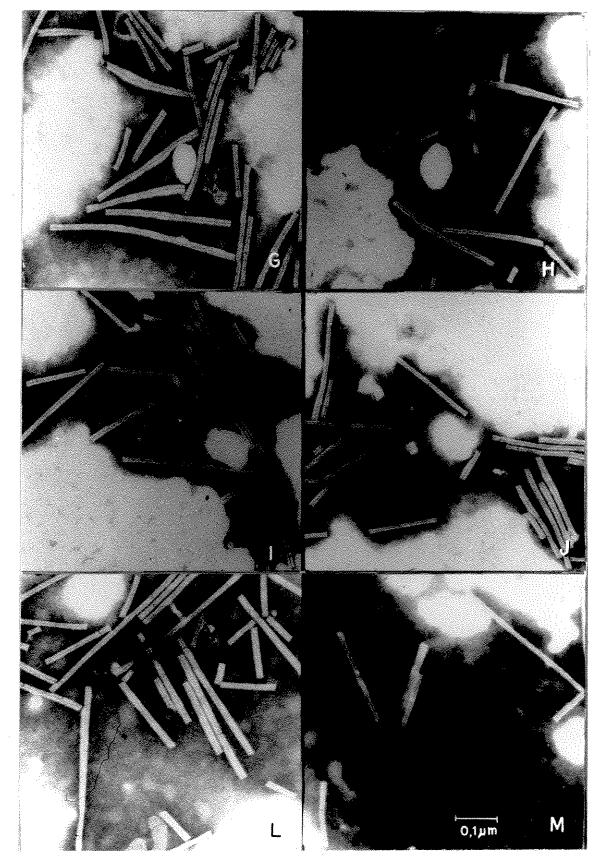
Os resultados do estudo efetuado sobre o comportamento serológico do TMV sob a ação de diferentes concentrações do inibidor (8; 4; 2; 1; 0,5; 0,25 e 0,10 mg/ml) mostraram que não houve diferença visível entre as linhas de precipitação formadas nas reações entre o antissoro para o TMV e os antíge nos, TMV ou VI, no teste de dupla-difusão em agar.

4.9.4. Efeito de diferentes concentrações do inibidor sobre a infectividade do TMV

O efeito de diferentes concentrações do inibidor sobre a in-

- Figura 4. Eletromicrografias de TMV controle, do IN e da mis tura TMV-IN, coradas por contrastação negativa (PTK a 1%, pH 7,0).
 - A TMV normal.
 - B Aspecto do IN mostrando as circunvoluções características.
 - C TMV-IN: partículas com acentuadas alterações do diâmetro.
 - D TMV-IN: partículas fragmentadas na região próxima de contato com o IN.
 - E TMV-IN: partículas com alterações do diâmetro (espessamento ou adelgaçamento).
 - F TMV-IN: partículas mostrando, além de alterações do diâmetro, deposição de grânulos do IN sobre as mesmas, com evidentes quebras e modificações da estrutura nas extremidades das par tículas.




Figura 4. Eletromicrografias de TMV controle, do IN e da mis tura TMV-IN, coradas por contrastação negativa(PTK a 1%, pH 7,0).

G - TMV-IN: partículas com alterações do diâmetro.

H, I e M - TMV-IN: além de alterações do diâmetro das partículas, deposição de grânulos sobre as mesmas, com evidentes quebras e modificações de estrutura nas extremi dades das partículas.

J - TMV-IN: partículas com alterações do diâmetro.

L - TMV-IN: além das alterações citadas anterior mente, presença de numerosas partícu las fragmentadas.

.**

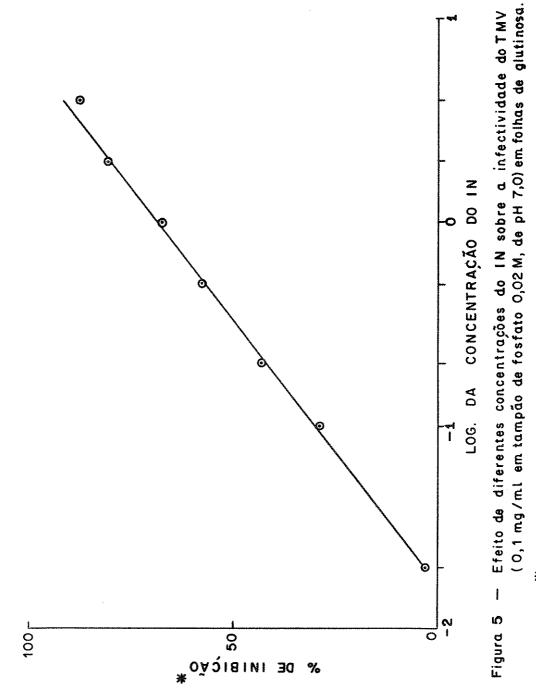
-37-

fectividade do TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0) foi verificado, através de ensaios biológicos, em fo lhas de glutinosa. A concentração inicial do inibidor foi de 4,0 mg/ml e a partir desta, foram preparadas as diluições com água destilada, até 1:200. Os resultados demonstraram que há proporcionalidade entre o logarítmo das concentrações do inibidor (log X) e a porcentagem de inibição obtida (Tab<u>e</u> la 12 e Figura 5).

Tabela 12. Resultados dos ensaios biológicos efetuados para avaliar a ação de diferentes concentrações do IN sobre a infectividade do TMV em folhas de glutin<u>o</u> sa.

Concentração do IN		%	inibi	ção			Média*
(mg/ml)	1	2	3	4	5	6	redia
4,0	90,1	88,0	86,0	88,2	81,6	92,2	87,6
2,0	81,5	80,0	73,5	79,3	80,6	84,0	79,8
1,0	68,3	76,4	62,8	60,7	62,7	68,0	66,4
0,5	65,7	64,2	56,4	55,3	50,2	50,6	57,0
0,2	43,1	41,0	43,9	41,7	42,5	42,0	42,3
0,1	28,2	27,8	26,4	28,6	29,2	34,8	29,1
0,02	3,6	2,0	2,5	3,0	2,8	З,О	2,8

Para cada repetição foi usado:


1,0 ml do IN, em cada concentração, + 1,0 ml da suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0).

Controle: 1,0 ml de água destilada + 1,0 ml da mesma suspensão de TMV.

^{*}Na Figura 5 foram empregadas as médias aproximadas.

4.9.5. Efeito do inibidor sobre a infectividade do TMV em di ferentes concentrações

-38-

* Média de 6 repetições.

Foi verificado, através de ensaios biológicos, o efeito de uma concentração constante do IN (2 mg/ml) sobre a infecti vidade de diferentes concentrações de TMV em folhas de glu tinosa. A concentração inicial do TMV foi de 1,0 mg/ml,em tampão de fosfato 0,02M de pH 7,0. A partir desta, foram feitas diluições, usando-se o mesmo tampão como diluente, até 1:1000.

Os resultados dos ensaios biológicos (Tabela 13 e Figura 6), revelaram que a porcentagem de inibição aumentou proporcionalmente ao decréscimo da concentração do TMV, repr<u>e</u> sentada no gráfico como logarítmo da concentração de TMV (log X). Na mesma figura, pode-se observar que as curvas obtidas a partir do número médio de lesões por meia-folha em função do log X, para o TMV tratado e para o TMV contr<u>o</u> le, não são proporcionais.

Considerando-se cada concentração de TMV como uma dose de X e transformando-se as mesmas em log 1000X, tomou-se Ω maior número de lesões por meia-folha encontrado, para Ο TMV tratado e para o TMV controle, como 100% e, calculou --se as porcentagens correspondentes ao número de lesões em cada meia-folha, para cada dose de X, no tratamento е no controle. A partir destas porcentagens foram calculados os probitos (Y) correspondentes. Através do conhecimento dos valores de Y, foram calculados os valores para o coefi ciente angular de regressão (b para o TMV controle e b' pa ra o TMV tratado), e a partir destes, calcularam-se as res pectivas linhas de regressão, segundo a frrmula: y - \overline{Y} = b $(X - \overline{X})$. Os valores resultantes do cálculo de y foram colocados, no gráfico, no eixo das ordenadas contra o log 1000X no eixo das abcissas . (Tabela 14 e Figura 7). A análise da variância da regressão, tanto para os valores de y obti dos para o TMV tratado como para o TMV controle, mostrou

> ETCLOTECA INSTITUTO DE BIOLOGIA UNICAMP

	tampão de fosfato	
	TMV em	de vírus
1 7	são de	oensão
f	uad <mark>s</mark> ns	mesma susp
+	+ 1,0 ml da	+ 1,0 ml da
1	o IN (2,0 mg/ml) pH 7,0	igua destilada
ŧ))	a - 1,0 ml do 1 0,02M de pH	b - 1,0 ml de á

Concentração do TMV (X)	N° total d	de lesões) (((((((((((((((((((N° médio de por meia	e lesões folha	Í
(mg/ml)	Tratamentoa	Controle ^b		Trat.	Contr.	SPUTOL AD .N
1,0	525	2353	77,6	37,5	168,0	14
0,5	436	2168	79,8	27,2	135,5	16
ľ°0	149	1094	86,2	ຣ໌ຣ	72,9	15
0,05	94	841	88,9	4 24	40,0	21
0,01	28	314	91,0	1,6	18,4	17
0,005	۵	192	96,8	0,4	12,8	15
0,001	2	71	97,1	0,1	4 , 4	16

do IN sobre de glutinosa do IN Resultado do ensaio biológico efetuado para verificar a ação a infectividade de diferentes concentrações do TMV em folhas Tabela 13.

-41-

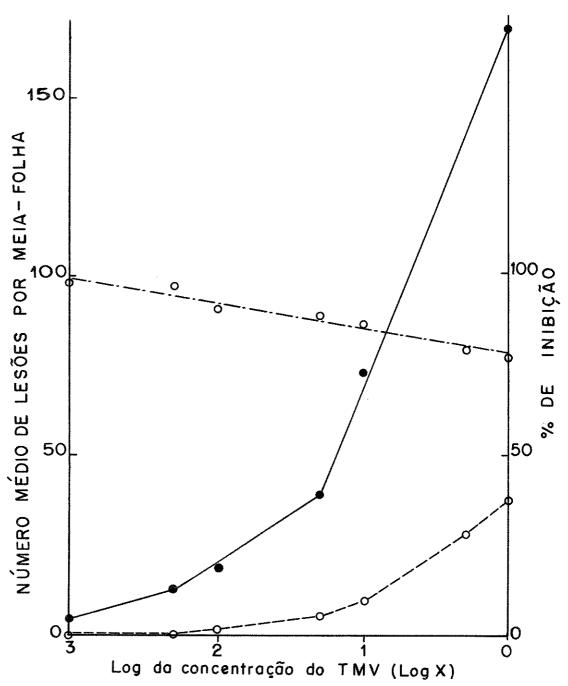


Figura 6-Diagramas do número médio de lesões por meia-folha correspondente ao TMV (------)e ao TMV + IN (o-----o) e do efeito do IN (2mg/ml) sobre a infectividade do TMV, em diferentes concentrações, em folhas de glutinosa (o-----o)

que a inclinação das linhas difere significativamente de zero, ao nível de 0,1%.

Foi calculado para cada dose de X a média dos probitos (Y) s os resultados estão apresentados na Tabela 15 e Figura 7.

> Valores de y Х log 1000X Tratamento Controle 1,0 3,00 4,84 5,00 0,5 2,69 4,37 4,88 0,1 2,00 3,34 4,13 0,05 1,69 2,87 3,88 0,01 1,00 1,84 3,27 0,005 0,69 1,38 3,00

> > 0,34

Tabela 14. Valores de y obtidos para cada dose de X (log 1000X), tanto para o TMV tratado com o IN como para o TMV controle.

* $y - \overline{Y} = b$ (log 1000X - log 1000 \overline{X})

0,00

0,001

×

Tabela 15. Média dos probitos para cada dose de X,(log 1000), tanto para o TMV tratado com o IN, como para o TMV controle

х	log 1000X	Média dos probitos(Y)				
	TOR TODOX	Tratamento	Controle			
1,0	3,00	4,66	4,89			
0,5	2,69	4,17	4,70			
0,1	2,00	3,56	4,18			
0,05	1,69	3,08	3,58			
0,01	1,00	2,22	3,39			
0,005	0,69	0,73	3,12			
0,001	0,00	0,32	2,58			

2,40

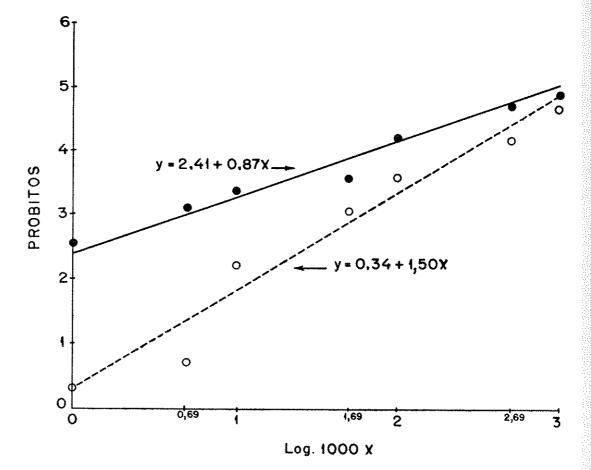


Figura 7-Linhas de regressão calculadas para o TMV controle (-----)e para o TMV + IN (-----), a partir dos resultados do ensaio biológico sobre o efeito do IN na infectividade do TMV em diferentes concentrações.

- Média dos probitos obtidos para o TMV controle em cada dose de X (log 1000x)
- O Me'dia dos probitos obtidos para o TMV + IN em cada dose de X(log 1000x)

4.10. Mecanismo de ação do inibidor

液

4.10.1. Inoculação do TMV e do inibidor, separadamente, com diferentes intervalos de tempo

A aplicação prévia do inibidor (72; 48; 24; 6; 2h ou 30 min) simultânea ou posteriormente (30 min; 2; 6 ou 24h) à inocula ção com o TMV, revelou que, apenas no caso da aplicação simultânea dos dois componentes (TMV e IN) houve redução da i<u>n</u> fectividade do vírus (Tabela 16).

Tabela 16. Resultados dos ensaios biológicos efetuados para verificar a ação do IN quando aplicado antes, simultâneo ou após o TMV em folhas de glutinosa.

Intervalo entre as aplicações do IN e do TMV		Nº total de lesões				
		Tratamento		Controle		% inibição [*]
		Exp.1	Exp.2	Exp.1	Exp.2	
INa	72 h antes	750	520	855	515	7,2
	48 h antes	485	615	485	630	1,3
	24 h antes	590	570	590	585	1,2
	6 h antes	620	540	640	530	0,8
	2 h antes	550	615	560	610	0,4
	30 min antes	520	610	695	800	32,3
IN e	TMV simultâneos	320	210	815	760	66,3
τmvþ	30 min antes	320	260	515	380	36,3
	2 h antes	385	415	380	420	0,0
	6 h antes	430	580	450	560	0,0
	24 h antes	625	525	630	525	0,4

 a - Solução aquosa do IN (2 mg/ml) inoculada numa metade da folha de glutinosa. A outra metade recebeu apenas água.

b - Suspensão de TMV (0,1 mg/m1 em tampão de fosfato 0,02M de pH 7,0), inoculada sobre toda a superfície foliar.

* % de inibição da média de dois experimentos.

-45-

4.10.2. Inoculação do TMV e do inibidor, separadamente, em fa ces opostas da mesma folha

A aplicação do inibidor na face inferior da folha e do TMV na face superior, com diferentes intervalos de tempo entre as aplicações, não revelou qualquer efeito inibidor sobre a infe<u>c</u> tividade do TMV, para todos os intervalos de tempo ensaiados (Tabela 17).

Tabela 17. Resultados dos ensaios biológicos efetuados para verificar a ação do IN quando aplicado antes ou si multaneamente à inoculação com o TMV, em faces opostas de folhas de glutinosa.

Intervalo entre as aplicações, em fa- ces opostas,do IN ^a		Nº total de lesões				
		Tratamento		Controle		% inibição [*]
e do TMV ^b		Exp.1	Exp,2	Exp.1	Exp.2	
	24 h antes	210	405	205	460	7,5
IN	2 h antes	315	465	300	490	11,4
	30 min antes	290	410	280	430	1,4
IN e	TMV simultâneos	680	750	695	830	6,2

- a Solução aquosa do IN (2 mg/ml) aplicado à metade da folha,
 na face inferior. A outra metade da folha de glutinosa,
 foi inoculada com água destilada.
- b Suspensão de TMV (0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0) inoculada sobre toda a superficie foliar, na face superior.

% da média de inibição de dois enseios.

-46-

4.10.3. Ação do inibidor sobre diversas combinações vírushospedeiros

Os resultados dos ensaios biológicos efetuados quanto ao comportamento do inibidor sobre os vírus TMV, PVX, CMV,BYMV, TSWV, STMV e LMV, quando estes foram inoculados em diferentes hospedeiros, demonstraram que só houve redução da por centagem de infectividade no caso das combinações: TMV-glutinosa, TMV-datura, TMV-gonfrena, TMV-feijão " manteiga ", PVX-gonfrena, BYMV-gonfrena e LMV-gonfrena.

Nestes hospedeiros, os sintomas induzidos foram do tipo local (Tabela 18 e Figura 8).

Na combinação BYMV-fumo, apesar dos sintomas serem locais a avaliação da inibição foi feita segundo uma estimativa, uma vez que as manchas cloróticas não puderam ser contadas ind<u>i</u> vidualmente. Conferiu-se à inibição uma nota, equivalente, aproximadamente, a 60% de inibição da infectividade do vírus.

Nas combinações TMV-fumo, PVX-glutinosa, BYMV-feijão "man teiga" ou "Scotia" e LMV-<u>C.quinoa</u>, para as quais os sinto mas induzidos foram do tipo sistêmico, não se verificaram quaisquer diferenças no grau de infectividade resultante da inoculação (em grupos de 10 plantas, cada) da mistura VI ou dos vírus não tratados pelo IN.

Os demais vírus, TSWV, STMV e CMV, tanto quando inoculados em plantas que mostraram sintomas locais (TSWV-feijão "manteiga" ou "Scotia", STMV-gonfrena, STMV-fumo, STMV- feijão "manteiga" ou "Scotia" e CMV-<u>C.amaranticolor</u>), como quando inoculados em hospedeiros que desenvolveram sintomas sistêmicos (CMV-glutinosa, TSWV-fumo e STMV-fumo) não demonstraram ter sofrido qualquer efeito do IN sobre sua infectivid<u>a</u> de.

Tabela 18. Resultados dos ensaios biológicos efetuados para verificar a ação do IN sobre a infectividade de diversos vírus inoculados em diferentes hospedei ros, nos quais os sintomas induzidos foram locais.

Vírus	Hospedeiros	N° total Tratamento ^a	de lesões Controle ^b	% inibição
	Glutinosa	395	2470	84,0
	Datura	270	720	62,5
ΤMV	Gonfrena	485	1825	73,5
	Feijão "Scotia"	125	580	78,4
PVX	Gonfrena	40	195	79,4
CMV	<u>C.amaranticolor</u>	1360	1330	0,0
BYMV	Gonfrena	5 30	1920	72,3
	Feijão"manteiga"	745	790	5,6
TSMV	Feijão"Scotia"	30	35	14,2
	Glutinosa	95	110	1,3
	Feijão"manteiga"	210	175	0,0
STMV	Feijão"Scotia"	10	10	0,0
	Gonfrena	420	410	0,0
LMV	Gonfrena	280	1800	84,4

a - 1,0 ml da suspensão de vírus purificado (TMV: 0,1 mg/ml em tampão de fosfato 0,02M de pH 7,0) ou do suco clarificado (demais vírus: 2 g de folhas + 5,0 ml do mesmo tampão, acrescido de sulfito de sódio 0,4%)+ 1,0 ml do IN (2,0 mg/m1).

b - 1,0 ml das mesmas preparações de vírus +1,0 ml de água destilada.

^{*} Os dados apresentados representam uma única experiência , tomada como modelo, já que as repetições foram bastante consistentes nos resultados obtidos. Figura 8. Aspectos de folhas de diferentes plantas hospedei ras inoculadas na metade direita com a mistura ví rus-inibidor e na metade esquerda apenas com o ví rus (controle), mostrando a redução de infectividade do vírus causada pelo IN.

A - TMV inoculado em glutinosa

B - TMV inoculado em datura

C - TMV inoculado em gonfrena

D - BYMV inoculado em fumo var. "White Burley".

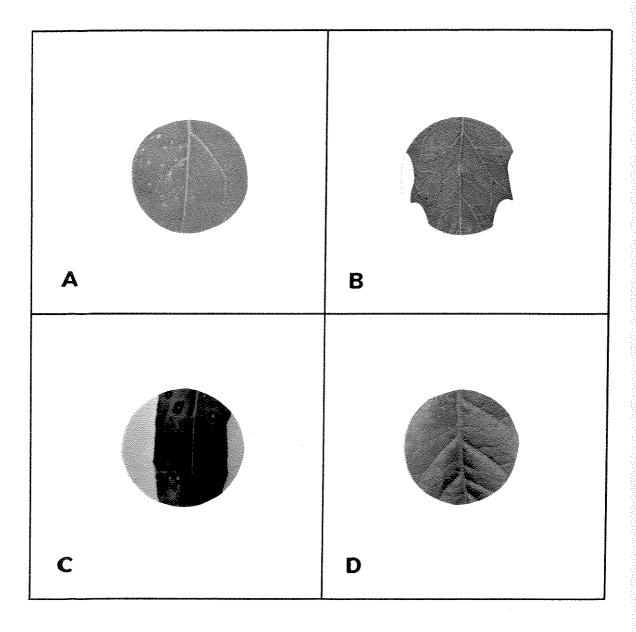


Figura 8

5. DISCUSSÃO

5.1. <u>Algumas características físico-químicas da substância</u> inibidora

O estudo das características físico-químicas da substância inibidora, presente no extrato aquoso de folhas de abūtilom, sugere ser esta uma substância de alto peso molecu lar. Uma evidência deste fato se prende aos resultados apresentados na Tabela 3. A substância inibidora não é dia lisável, ficando retida no interior da membrana de diálise. Estes resultados concordam com aqueles obtidos por diversos autores, como por exemplo, KUNTZ & WALKER (1947), GUP TA & PRICE (1950, 1952), SLAGLE et al. (1952), CROWLEY (1955), BENDA (1956), McKEEN (1956), FELDMAN (1963), FRAN-CKI (1964), THOMSON & PEDDIE (1965), HODGSON et al. (1969) e GROHMANN & MUSUMECI (1970), os quais trabalhando com extratos de diferentes procedências, quer de plantas quer de microrganismos, puderam verificar também a presença de inibidores não dialisáveis.

Com base nos trabalhos de JERMOLJEV & ALBRECHTOVÁ (1966). GROHMANN & MUSUMECI (1970, 1972), MAYHEW & FORD (1971) е EBRAHIM-NESBAT & NIENHAUS (1972), o método de filtração em gel de Sefadex foi aplicado com o propósito de avaliar Ö peso molecular aproximado da substância inibidora. O fato do inibidor, quando submetido à filtração em gel de Sefadex, ter sido eluído no volume externo (V $_{o}$) da coluna de Sefadex G25 e no volume interno (V,) da coluna de Sefadex G50 (Tabelas 7,8 e Figuras 1,2) está de acordo com os dados obtidos anteriormente pela diálise, confirmando tra tar-se de uma substância de alto peso molecular. Sugere, ainda, de acordo com a tabela de limites de exclusão para proteinas e polissacáridos, contida no manual da PHARMACIA

(1966), que a substância tenha um peso molecular entre 5000 e 30000, se partirmos da hipótese que ela seja de natureza proteica, ou, entre 5000 e 10000 se for de natureza poliss<u>a</u> carídica.

Os resultados obtidos pelo tratamento desproteinizador (Tabela 4), onde se verificou que o mesmo não teve qualquer efeito sobre a capacidade inibidora do suco de folhas de abú tilom, sugerem que a natureza química do inibidor não seja proteica. Esta idéia é também enfatizada pela ausência de reações quando se aplicou ao inibidor os testes de Biureto e Ninhidrina, cujas reações positivas sugeririam o caráter proteico da substância. Mais uma evidência de que não se trata de uma substância proteica se baseia na grande estabi lidade da substância ao calor. Durante os processos de extração e purificação, a solução contendo o inibidor foi submetida à fervura, por longos períodos de tempo, sem que per desse a sua capacidade inibidora. Este caráter termoestá vel da substância também foi usado por TAKAHASHI (1942 , 1946), HODGSON et al. (1969) e MAYEHW & FORD (1971) como uma indicação de que as substâncias, por eles estudadas, não eram de natureza proteica. Por outro lado, os resultados positivos obtidos com os testes de Molisch e Antrona demons traram a presença de açúcares na molécula do inibidor, suge rindo que a substância estudada seja de natureza polissacarídica, possivelmente formada de resíduos de hexose ou hexu lose. Os dados apresentados por TAKAHASHI (1942,1946),HODG SON et al. (1969) e MAYEHW & FORD (1971) referem-se a polis sacáridos, extraídos de microrganismos, com propriedades an tivirais. SLAGLE et al. (1952) e GUPTA & PRICE (1950,1952) descreveram inibidores, extraídos de fungos, de natureza não-proteica, sem chegarem, entretanto, a definir a estruru ra das substâncias estudadas. KASSANIS & KLECZKOWSKI(1948) isolaram uma glicoproteina de folhas de Phytolacca esculen-

÷,

ta responsável pela inibição de vírus.

Por outro lado, a presença de inibidores de natureza proteica foi verificada por muitos autores, como KUNTZ & WAL-KER (1947), CROWLEY (1955), BENDA (1956), McKEEN (1956), RAGETLI & WEINTRAUB (1962a, 1962b), JERMOLJEV & ALBRECHTO-VÁ (1966), que trabalharam com extratos de diferentes pla<u>n</u> tas, enquanto que LOEBENSTEIN & ROSS (1963) demonstraram que a própria proteina do TMV era dotada de propriedade inibidora.

Segundo os dados da literatura aqui referidos parece que a natureza proteica dos inibidores está, na maioria das vezes, associada àquelas substâncias extraídas de plantas su periores, enquanto que aos microrganismos estariam associa dos os inibidores de natureza polissacarídica. No caso do abútilom, em se tratando de planta superior, seria esperado que a natureza do inibidor fosse proteica. Porém, os resultados obtidos indicam que a substância estudada é um polissacárido. Entretanto, convém salientar que EBRAHIM-NESBAT & NIENHAUS (1972) conseguiram extrair, de beterra ba, um inibidor de natureza polissacarídica.

Durante o trabalho experimental com o inibidor extraído de abútilom foi verificado que a substância era estável ao en velhecimento "in vitro", quer em solução aquosa, quer após ter sido liofilizada. Esta estabilidade se mantinha por mais de uma semana, se a solução ficasse à temperatura ambiente e por meses, se fosse guardada a 4⁰C. No caso da substância ter sido liofilizada e mantida, sob vácuo, a 4⁰C a estabilidade dela se prolongou por mais de um ano. Também estas características foram observadas pelos auto res que trabalharam com inibidores de caráter polissacarídico.

-52-

A substância inibidora quando tratada pelo carvão ativo ficou retida, conforme os dados da Tabela 5, da mesma maneira que outros inibidores presentes em extratos de outras plantas. KUNTZ & WALKER (1947) isolaram de folhas de espina fre um inibidor que era retido pelo carvão ativo não sendo removível deste, quer por soluções ácidas, quer por alcalinas. O mesmo fenômeno de adsorção foi observado por KASSA-NIS & KLECZKOWSKI (1948) estudando as propriedades da glico proteina extraída de <u>Phytolacca esculenta</u>. FELDMAN (1963), também verificou o mesmo efeito de adsorção, por carvão ativo, dos inibidores por ele estudados.

Uma outra característica apresentada pela substância inibidora extraída de abútilom e comprovada através de testes biológicos (Tabela 6), foi a estabilidade em meio alcalino (pH 11). Segundo os dados obtidos,o inibidor não é precipi tado pelo tratamento com hidróxido de amonio, permanecendo no sobrenadante e mantendo intacta a sua propriedade inibidora. Estes dados estão de acordo com aqueles verificados por MAYHEW & FORD (1971) em relação ao polissacárido extraí do de Physarum polycephalum, com o qual trabalharam. Porem, KUNTZ & WALKER (1947), trabalhando com um inibidor de natureza proteica verificaram a instabilidade do mesmo em pH alcalino, acima de 8,0.

Dadas as características do inibidor estudado e considerando-se a possibilidade de ser ele um polissacárido, foi feito um tratamento com diastase (α - β amilase). De acordo com os resultados obtidos (Tabela 9) não houve qualquer alteração do poder inibidor da substância após o tratamento enzimático, nas condições em que foi realizado. Este fato, entretanto, não significa que não tenha havido hidrólise da molécula do inibidor pela enzima. Apenas indica que a ação inibidora da substância estudada não foi alterada pelo tra-

tamento segundo os resultados obtidos dos ensaios biológicos. Não se deve eliminar a hipótese de que as moléculas do inibidor, após o tratamento, tenham se hidrolisado, dan do origem a resíduos de menor peso molecular, porém ainda ativos quanto à ação inibidora sobre o TMV. Como no caso do tratamento por diastase, verificou-se que o tratamen to do inibidor pela pectinase não alterou a ação inibidora do mesmo, sobre a infectividade do TMV, Também aqui, não se pode falar que não tenha havido ação hidrolítica da enzima sobre o inibidor, mas que, caso esta tenha ocorrido , o produto resultante da hidrólise conserva, ainda, as mesmas características inibidoras. Isto poderia indicar que o IN, em si, não é uma molécula de alto peso molecular,mas sim um radical menor ligado a um suporte de alto peso mole cular, possivelmente um polissacárido. Isto no caso de que a diastase ou a pectinase tenham agido hidroliticamente sobre a substância inibidora. Mas deve-se considerar também, a hipótese de que o IN, apesar de ser de natureza polissacarídica não seja afetado pelas enzimas empregadas. Uma maneira de se tentar esclarecer este ponto seria a associação dos tratamentos enzimáticos à cromatografia, à filtração em coluna de gel de Sefadex e à espectrofotometria.

SELA <u>et al</u>. (1964) e GROHMANN & MUSUMECI (1970, 1972) utilizaram-se da análise espectrofotométrica ao ultravioleta como um dos métodos que lhes permitiu a caracterização das substâncias com as quais trabalharam. O inibidor extraído de folhas de abútilom quando, submetido à espectrofotome tria ao ultravioleta (Figura 3), apresentou duas bandas de absorção características: I(260-276 nm) e II(310-320 nm). Estes dados corroboram com a idéia de que a substância não é uma proteina, uma vez que estas apresentam um máximo de absorbância em 280 nm, com o aparecimento de um pico bem

-54-

definido. A comparação entre o espectro obtido para o inibidor e×traído de abútilom e aqueles correspondentes a outros polissacáridos, como o "Blue dextran 2000" e a pecti na, ambos de alto peso molecular, mostrou algumas caracte rísticas semelhantes, Apesar das características consisten temente observadas para o espectro obtido, dele não se pode tirar conclusões sobre a estrutura química do inibidor. Po rém, ele serviu para a avaliação do grau de pureza do inibi dor e, a exemplo de outros pesquisadores como JERMOLJEV 8 ALBRECHTOVÁ (1966), GROHMANN & MUSUMECI (1970, 1972) e EBRA HIM-NESBAT & NIENHAUS (1972), para acompanhar a eluição do inibidor nos ensaios de filtração em gel de Sefadex (Figuras 1,2). Neste caso, as frações eluídas que mostraram mai or absorbância corresponderam, exatamente, àquelas para as quais c ensaio biológico revelou a maior porcentagem de ini bição da infectividade do TMV.

5.2. <u>Algumas características da mistura vírus-inibidor</u> e considerações sobre o mecanismo de ação do inibidor

A maioria dos autores que trabalharam com inibidores de vírus estudaram o comportamento da mistura vírus-inibidor,quan do esta foi submetida à ultracentrifugação. Em todos os ca sos observaram que o inibidor permanecia no sobrenadante,en quanto que o vírus era separado do IN por sedimentação, sem mostrar qualquer alteração na sua infectividade quando,ressuspendido no tampão adequado e novamente submetido a ensai os biológicos. De acordo com os dados apresentados na Tabe la 11, a mistura TMV-inibidor comportou-se como nos casos re latados, ou seja, o inibidor permaneceu no sobrenadante, en quanto que o TMV foi sedimentado, após o tratamento por ultracentrifugação da mistura VI. Os ensaios biológicos rea-

lizados com ambas as frações vieram comprovar que o TMV não perdeu sua infectividade e que o inibidor continuou ativo. Estes dados concordam com os da literatura, como se pode o<u>b</u> servar, entre outros, nos trabalhos de SILL (1951), GUPTA & PRICE (1952), SLAGLE et al. (1952), BENDA (1956), LOEBENS -TEIN & ROSS (1963) e FELDMAN (1963). Estes resultados vem demonstrar que a ligação entre as partículas de vírus 9 а molécula do inibidor é fraca, podendo ser facilmente rompida pelo processo físico da ultracentrifugação. O fato de tanto o vírus, como o inibidor, conservarem suas caracterís ticas, após a ultracentrifugação, sugere que o inibidor não desnatura a partícula de vírus.

Segundo MAYHEW & FORD (1971), parece que a ação do inibidor se dá sobre as partículas de vírus em si, por um processo de recobrimento e agregação das mesmas. As partículas, assim recobertas ou ficariam impedidas de penetrar nas célu las do hospedeiro ou não se desencapariam evitando a consequente liberação do ácido nuclêico, para que se efetuasse o processo de replicação no interior da célula vegetal.

A partícula de vírus em presença do inibidor, quando analisada ao microscópio eletrônico, mostrou-se alterada quanto ao seu contorno, perdendo o caráter retilíneo e tornando-se irregular, com aumento de diâmetro. As partículas se aglome ram irregularmente, e percebe-se nitidamente o depósito de grânulos na superfície das mesmas. O canal central conti nua visível, apenas desaparecendo nos trechos recobertos pe lo inibidor, que tem aspecto grumoso, formando massas disformes e de volumes variáveis. Notam-se vários pontos d₽ quebra nas partículas, especialmente próximo aos pontos em que ela se aproxima ou entra em contato com o inibidor. Em geral, as extremidades das partículas, sob ação do inibidor, deixam de exibir ângulos, tornando-se arredondadas e entume

-56-

cidas. TAKAHASHI (1946) e MAYHEW & FORD (1971) observaram os mesmos detalhes e sugeriram que os inibidores, por eles estudados, agiam diretamente sobre o vírus.

A partí cula de vírus, sob a ação do inibidor, não perde a sua cap acidade de reagir com o antissoro específico para TMV, conforme os dados obtidos nos testes de dupla-difusão em agar. Considerando-se a idéia de que a ação do inibi agregação dor seja puramente mecânica, de recobrimento e das partículas de vírus, seria possível que a substância inibido ra, ao invés de recobrir completamente a superfície da partícula de vírus, pudesse formar, em torno delas, uma re de de malhas largas permitindo o desenvolvimento normal das reações serológicas entre as partículas de vírus e seu antisso ro. Isto viria explicar os resultados do teste serológico, mesmo quando se usou como antígeno misturas de TMV e i nibidor, este último em concentrações suficientemen te altas para que, nos ensaios biológicos, a porcentagem de inibição da infectividade do TMV fosse de até 95%. 0 próprio agar utilizado como meio de difusão para o antígeno e antissoro, nos testes serológicos, poderia reter, por adsorção, o inibidor, liberando as partículas de vírus, 0 que poderia explicar os resultados iguais, obtidos quando se usou como antígenos misturas de vírus-inibidor ou suspensão de vírus purificado. FELDMAN (1963), também consta tou que o TMV, em presença de extratos de pimentão, não perdia seu poder antigênico de reação quando ensaiado contra o antissoro específico para o TMV. Os resultados pode riam ainda ser explicados baseando-nos nas observações fei tas ao microscópio eletrônico que evidenciou o fato das partículas de vírus, sob ação do IN, se fragmentarem, espe cialmente próximo às extremidades. Os fragmentos maiores poderiam reagir com o antissoro específico sem qualquer al teração sensível do título do mesmo quando comparado àquele verificado para o TMV purificado.

KASSANIS & KLECZKOWSKI (1948) estudaram o efeito da diluição do suco clarificado de Phytolacca esculenta sobre a redução da infectívidade do TMV e demonstraram que o ponto final da diluição do inibidor, no suco clarificado, correspondia а 1:10.000, e que na diluição de 1:100 a redução da infectividade do TMV era de aproximadamente 95%. Os mesmos autores trabalhando com o inibidor purificado - uma glicoproteina verificaram que na concentração de 0,0002% (2µg/ml) o efeito era praticamente o mesmo que o observado para o suco clarificado na diluição de 1:100. No caso do inibidor extraído e purificado a partir de folhas de abútilom, o ponto final de diluição do mesmo, em relação à inibição causada para o TMV (0,1 mg/ml), foi da ordem de 0,02 mg/ml (Tabela 12 e Figura 5). Isto significa que o ponto final de diluição do inibidor extraído de P.esculenta, sendo da ordem de 1:10.000, corresponde a uma concentração da glicoproteina equivalente a 0,02 µg/ml e, portanto, cerca de 1000 vezes mais ativo que o inibidor extraído do abútilom. Para se obter a mesma ação inibidora, de cerca de 83%, correspondente ao emprego de de 2 µg/ml da glicoproteina, foi necessário o emprego de uma so lução do IN de 2 mg/ml. Estes dados confirmam a eficácia 1000 vezes maior da glicoproteina, quanto à ação inibidora sobre o TMV, em relação ao inibidor aqui estudado.

Nos experimentos onde foi mantida constante a concentração do IN (2 mg/ml) e empregadas diferentes concentrações do TMV, verificou-se que,os dados obtidos para o TMV + IN e TMV controle (Tabelas 13, 14 e 15 e Figuras 6 e 7) estão de acordo com a equação da reta Y = a+bx, onde Y representa o probito e X o log da concentração do vírus (expresso em log 1000 X). Uma vez que os dados obtidos se distribuem segundo uma linha reta (Figura 7), isto demonstra que eles seguem uma distri - buição normal. O fato das linhas de regressão para o TMV controle e TMV + IN, convergirem à medida que a concentração do vírus aumenta, sugere que uma concentração constante do inibidor afeta diferentemente concentrações decres centes do vírus, donde se pode concluir que a ação do inibidor se faz sobre a partícula de vírus e não sobre a suscetibilidade da planta hospedeira. Se o efeito do IN se manifes tasse sobre o hospedeiro, então uma concentração constante do IN inativaria o vírus, independente da concentração deste, o que não ocorre, segundo os resultados obtidos.

Ensaios preliminares já haviam demonstrado que a ação " in vitro" do inibidor sobre o TMV era instantânea, sendo de<u>s</u> prezível o tempo de contato entre os componentes da mistura. Similarmente, KUNTZ & WALKER (1947), GUPTA & PRICE (1950), SLAGLE <u>et al</u>. (1952) e MAYHEW & FORD (1971) também demonstraram que o tempo de contato entre as substâncias <u>i</u> nibidoras, por eles estudadas, e os vírus ensaiados não t<u>i</u> nha qualquer efeito sobre a inibição da infectividade obt<u>i</u> da.

Segundo BAWDEN os inibidores de vírus podem ser classific<u>a</u> dos em dois grupos: os que agem sobre a infecção e os que atuam na replicação dos vírus. Os que agem sobre a infecção também podem ser divididos em dois grupos: os que agem diretamente sobre as partículas de vírus e os que afetam a suscetibilidade do hospedeiro (BAWDEN, 1954).

A distinção entre os dois tipos de mecanismo de ação de um determinado inibidor é bastante difícil e os autores, nas suas sugestões, se baseiam na soma das evidências obtidas a partir dos experimentos por eles realizados. De um modo geral, os inibidores que afetam a suscetibilidade do hospe

-59-

deiro podem ser distinguidos daqueles que agem sobre o vírus por certas características, como as sugeridas por CROWLEY (1955): a ação do inibidor depende do hospedeiro empregado; eles são mais eficazes quando a concentração do inóculo é al ta; agem quando aplicados antes ou após a inoculação com Ο vírus ou quando aplicados na face oposta àquela onde o vírus é inoculado. Outro fato tomado por KASSANIS & KLECZKOWSKI (1948) como indício da ação do inibidor sobre o hospedeiro é que concentrações constantes do inibidor causam a mesma redu ção da infectividade do vírus, independente da concentração deste. Fazendo-se uma comparação entre os conceitos formula dos por CROWLEY (1955) e por KASSANIS & KLECZKOWSKI (1948) , para explicarem a ação do inibidor sobre o hospedeiro, verifica-se que eles são contraditórios, pois enquanto o primeiro autor salienta que a ação do inibidor sobre o hospedeiro é tanto mais eficaz quanto maior for a concentração do vírus usado, os autores seguintes sugerem que a concentração do ví rus não altera a redução da infectividade causada pelo trata mento, do mesmo, com uma concentração constante de inibidor. Se compararmos, sob este aspecto, os resultados aqui obtidos com os conceitos estabelecidos nos dois trabalhos menciona dos, podemos concluir que os dados apresentados (Tabelas 13, 14 e 15 e Figuras 6 e 7) estão em total desacordo com ambos os conceitos estabelecidos. No nosso caso, guanto mais alta é a concentração do vírus, menos eficaz é a ação do inibidor (contraria o conceito estabelecido por CROWLEY, 1955), sendo que a diluição do vírus resulta numa maior redução da infectividade do mesmo em presença de uma quantidade constante de inibidor (contraria KASSANIS & KLECZKOWSKI, 1948). Pelo dados apresentados na Tabela 13, pode-se verificar que a dilui ção de 1:1.000, do vírus, causa um aumento da redução de infectividade da ordem de 20%, para uma dada concentração do i nibidor. Segundo GENDRON & KASSANIS (1954) a falta de especificidade do inibidor sobre os vírus empregados e a depen -

RIRITECA CENTRAL

dência do hospedeiro utilizado, também, são tomadas como evi dências que apoiam a idéia da ação do inibidor sobre o hospe deiro. Segundo nossas observações, os dados aqui obtidos não se enquadram nos demais conceitos estabelecidos por CROW LEY (1955) e por GENDRON & KASSANIS (1954). Por outro lado, TAKAHASHI (1956), LOEBENSTEIN (1962), MAYHEW & FORD (1971) e GUPTA & RAYCHAUDHURI (1972) defenderam a idéia de que a ação inibidora se faz sobre o vírus diretamente, podendo ou não ser reversível. Para isto, se baseiam, de um modo geral, na especificidade da ação do inibidor sobre certos vírus apenas; alterações na ultraestrutura da partícula infectante, quando observada ao microscópio eletrônico; ausência de ação pro tetora quando o inibidor é inoculado antes que o vírus; οu quando aplicado na face oposta à inoculada com o vírus. Fato é que muitas destas características quando tomadas isoladas podem confundir a interpretação do tipo de mecanismo segundo o qual se dá a ação do inibidor. A maioria dos autores como SLAGLE et al. (1952), McKEEN (1956), THOMSON & PEDDIE(1965), GROHMANN & MUSUMECI (1972) tendem a apoiar a idéia que a ação do inibidor é sobre o hospedeiro,alterando a suscetibili dade do mesmo. Entretanto, o fato da ação inibidora se fazer sobre o hospedeiro, não necessariamente significa que houve alteração da suscetibilidade da planta, pois, para que isto realmente ocorresse, seriam necessárias alterações no metabolismo da mesma, o que levaria algum tempo e não poderia ser explicado pela ação protetora, na planta, induzida pela aplicação prévia do inibidor à inoculação com o vírus, quando o intervalo entre estas aplicações fosse menor que 1 hora. Os trabalhos de LOEBENSTEIN (1962) e SELA (1962,1964, 1966) demonstram que para que haja uma reação da planta, levando à modificação de sua suscetibilidade ou formação de um fator anti-viral, como consequência da infecção prévia da planta por um vírus, é necessário um intervalo de tempo entre os tratamentos de pelo menos 4 dias. Estas substâncias

-61-

foram inicialmente consideradas como sendo um tipo de "inter feron" - em analogia ao que acontece nos organismos dos animais - porém, difere deste, especialmente pela falta de esp<u>e</u> cificidade em relação ao hospedeiro, além do que a natureza química do fator anti-viral, descrito por SELA (1962, 1964, 1966), sendo um ácido nucleico discorda daquela verificada para o "interferon" animal, que é sempre uma proteina.

Similarmente,a aplicação do inibidor na face oposta à da ino culação com o vírus não poderia modificar a suscetibilidade do hospedeiro,se o intervalo entre as aplicações não fosse suficientemente longo para que as mudanças metabólicas pudes sem ocorrer na planta. A ação sobre o hospedeiro pode ser, simplesmente de caráter local e físico, como por exemplo: ۵ bloqueio dos pontos de entrada do vírus na célula; a combina ção do inibidor com constituintes especiais da célula; o blo queio competitivo dos "sites" no hospedeiro essenciais ao es tabelecimento do vírus nas primeiras fases da infecção; combinação com sistemas enzimáticos específicos ou metabólitos necessários à replicação do vírus; falta de habilidade do hospedeiro para dissociar o complexo vírus-inibidor quando a mistura de ambos se dá "in vitro"; quebra das partículas de vírus, sob a ação do IN, impedindo a sua replicação. Uma vez que a maioria dos inibidores ensaiados, até o presente momen to, são substâncias macromoleculares (proteinas simples οu conjugadas, polissacáridos ou ácidos nuclêicos), como discutido por McKEEN (1956) eles não são dialisáveis e conseguentemente moléculas muito grandes para transpor a membrana pro toplasmática da célula vegetal, penetrando e migrando através do tecido, afim de poder agir no seu interior. O autor sugere, então, que outras substâncias conjugadas, de menor peso molecular e maior mobilidade possam ser seletivamente a bsorvidas pelas células e,translocadas para agir nos "sites" específicos, bloqueando o estabelecimento do vírus nas pri-

-62-

meiras fases da infecção ou, se considerarmos a hipótese da ação direta do inibidor sobre a partícula de vírus, impedin do a sua replicação por agregação das mesmas no interior da célula, evitando o descapamento das partículas e a consequente liberação do ácido nuclêico, ou bloqueando o sistema enzimático necessário à replicação das partículas.

Levando em consideração todas estas observações e baseando--nos nas evidências já relatadas, que sugerem uma ação dire ta do inibidor, extraído de abútilom, sobre o vírus, procuramos analisar os resultados obtidos para os ensaios sobre a aplicação separada do inibidor e do vírus, na mesma face ou em faces opostas da mesma folha de glutinosa.

Os resultados da aplicação do inibidor e do vírus, separada mente (Tabela 16) demonstram que quando o intervalo de tempo entre as aplicações é de 30 min., tanto para o inibidor aplicado antes como após o vírus, houve uma redução da in fectividade do TMV de 32,3% e 36,3%, respectivamente, em contraposição à porcentagem de inibição (66,3%) verificada quando a inoculação do TMV se deu simultaneamente à aplicação do inibidor. Para os demais tratamentos (inibidor apli cado 72, 48, 24, 6 ou 2 h antes que o TMV ou 2, 6 ou 24 h depois) não houve qualquer alteração da infectividade do ví rus,quando comparada aos controles não tratados. As baixas porcentagens de inibição encontradas para alguns intervalos de tempo não tem significado estatístico, uma vez que qual quer inibição da ordem de 20% + 2 não é considerada signifi cativa (GUPTA & PRICE, 1950). É necessário, entretanto, en fatizar que nos tratamentos em que houve redução da infecti vidade do vírus, as folhas ainda apresentavam um filme de solução na superfície, como consequência da aplicação pré via da solução do inibidor ou da suspensão do TMV. Havia, portanto, a presença de um meio líquido, entre as partícu

-63-

las de vírus e as moléculas do inibidor, semelhante ao que ocorre durante a reação "in vitro". Talvez seja esta a explicação para a ação inibidora da substância quando aplicada 30 min antes ou após o TMV.

GUPTA & PRICE (1950), verificaram que a aplicação do inibi dor 30 min antes que o vírus reduziu a infecção em 57%, е que esta porcentagem aumentou em função de intervalos menores entre as aplicações do inibidor e do vírus. 0s mesmos autores verificaram que,quando o inibidor foi aplicado atē 30 min após o vírus, a redução da infectividade foi de 80% e que,neste caso, intervalos menores que 30 min não alteraram o resultado. Baseando-se nestes resultados os autores suge riram. embora não conclusivamente, que o inibidor deveria agir sobre a planta, alterando a suscetibilidade da mesma. São da mesma opinião os autores SLAGLE et al. (1952), que obtiveram inibição satisfatória quando aplicaram o inibidor 4 h antes ou 15 min após o vírus. McKEEN (1956), verificou que a aplicação do inibidor até 24 h antes que o vírus previniu completamente a infecção, não tendo, entretanto, qual quer efeito sobre o vírus se aplicado 1 h após. FELDMAN (1963), obteve redução da infectividade do TMV quando aplicou o inibidor até 2 h antes. Com intervalos maiores ou aplicando o inibidor depois que o vírus não obteve resulta -GROHMANN & MUSUMECI (1970, 1972), obtiveram inibição dos. do TMV mesmo quando o inibidor foi aplicado l h antes ou 6 h depois da inoculação com o vírus. MAYHEW & FORD (1971) , por sua vez, verificaram que o inibidor aplicado após a ino culação com o vírus, com intervalos de tempo de no máximo l h, inibiu completamente a infectividade do mesmo. Muitos destes resultados poderiam ser interpretados como uma ação direta sobre o vírus, fora ou no interior do hospedeiro, mas dificilmente, como sugerem alguns autores, resultantes de modificação de suscetibilidade do hospedeiro.

-64-

Quanto à aplicação do inibidor na face oposta àquela que recebeu o TMV, os resultados da Tabela 17, demonstram que não houve qualquer efeito do tratamento sobre a infectividade do virus. Contrariamente, GUPTA & PRICE (1952) usando o mesmo processo de inoculação não encontraram diferenças significativas quando compararam os dados obtidos desta experiência com aqueles resultantes do ensaio em que o vírus e o inibi dor foram aplicados na mesma face da folha. Segundo estes autores não haveria necessidade que o inibidor entrasse em contato direto com as partículas de vírus para que houvesse inibição da infectividade das mesmas, sugerindo uma ação sobre a planta hospedeira. Resultados e conclusões semelhan tes foram obtidos por outros autores como CROWLEY (1955), Mc KEEN (1956), FELDMAN (1963) e GROHMANN & MUSUMECI (1972), Os dados apresentados nas duas tabelas (16 e 17) vem reforçar a hipótese aquí sugerida de que o inibidor extraído de folhas de abútilom age diretamente sobre as partículas de vírus, não alterando a suscetibilidade do hospedeiro, uma vez que, se não houver um contato direto entre o inibidor e o vírus, não há qualquer alteração da infectividade do vírus.

A discussão estabelecida, anteriormente, nas considerações gerais, sobre o mecanismo de ação dos inibidores ressaltou a importância da especificidade do inibidor, do tipo e da sensibilidade dos hospedeiros empregados. Por esse motivo a substância extraída de abútilom foi ensaiada, quanto a sua ação inibidora, sobre diversos vírus inoculados em hospedeiros diferenciais. O tamanho das partículas de vírus foi tomada como o principal fator para a seleção dos mesmos, a se rem usados nos experimentos. Entre os vírus alongados selecionou-se o PVX (13 x 515 nm), o BYMV e o LMV (ambos com 15 x 750 nm); o TMV (18 x 300 nm) foi tomado como exemplo de ví rus do tipo bastonete; entre os vírus isodiamétricos foram escolhidos o CMV (28 nm) e o STMV (25-30 nm); o TSWV (90 -

-65-

- 120 nm) foi selecionado como exemplo de vírus esferoidal provido de membrana.

Para cada vírus empregou-se, pelo menos, duas plantas hospedeiras diferenciais, quanto ao tipo de sintomas nelas in duzidos, ou seja, sintomas sistêmicos ou locais. 0s resultados (Tabela 18) demonstraram que, em função dos hospe deiros e dos vírus usados, o inibidor mostrou-se altamente específico, agindo somente sobre os vírus do tipo alongado ou bastonete, quando inoculados em plantas que desenvolveram sintomas locais. Nas plantas em que os sintomas foram sistêmicos não se notou qualquer diferença na severida de dos sintomas,ou no tempo necessário para que estes SB manifestassem, quando se compararam os resultados a partir das inoculações realizadas com os vírus tratados pelo inibidor com aqueles obtidos para os respectivos controles.

No caso dos vírus isodiamétricos, recobertos ou não por membrana, o inibidor não alterou a infectividade dos mesmos, tanto quando eles foram inoculados em hospedeiros que mostraram desenvolveram sintomas sistêmicos,como nos que Estes resultados vem corroborar com а sintomas locais. idéia de que o inibidor extraído de folhas de abútilom, age sobre o vírus em si, e sugere que o tamanho da partícula é importante para que esta ação inibidora se manifeste. Este fato, talvez, pudesse ser explicado considerando - se os tipos de ligações que estariam envolvidas no processo de complexação entre as moléculas do inibidor e as partícu las de vírus, através do tipo e da distribuição de cargas elétricas no inibidor e ao longo das partículas de vírus. o que asseguraria, além da formação do complexo, a agregação das próprias partículas recobertas pelo inibidor, como se observa ao microscópio eletrônico. Parece, pois, haver especificidade da ação do inibidor e que esta estaria rel<u>a</u>

-66-

cionada ao tipo e à forma do vírus empregado e não ao hospedeiro, uma vez que uma mesma planta reage diferentemente segundo o vírus empregado. O exemplo mais típico que se pode tomar para demonstrar que o hospedeiro não tem qualquer influência sobre a redução da infectividade dos vírus empregados, em presença do IN, é o caso de plantas de glutinosa. Pa ra o TMV (sintomas locais) foi verificada inibição, enquanto que para o PVX (sintomas sistêmicos) não se observou aualquer indício de inibição. Também não foi verificado indícios de inibição quando os vírus empregados foram o TSWV (sin tomas locais passando a sistêmicos) e o CMV (sistêmico). 0 feijão "Scotia" também se prestou muito bem ao tipo de experimento, em questão, mostrando que o IN somente agia quando se inoculava, nesta variedade, um vírus do tipo bastonete,co mo o TMV, que manifestasse sintomas locais. Os vírus isodia métricos STMV e TSWV, ambos indutores de sintomas locais nes ta variedade de feijão, não sofreram qualquer redução da infectividade quando sob a ação do inibidor. Por outro lado, o BYMV, embora sendo um vírus alongado, que quando inoculado em gonfrena (sintomas locais) se mostrou inibido, quando ino culado em feijão "Scotia" (sintomas sistêmicos) não teve sua infectividade alterada pelo tratamento com o inibidor guando comparada ao controle.

Empregando-se feijão "manteiga" como hospedeiro, o TMV não mostrou sintomas, quer locais, quer sistêmicos; o BYMV (sintomas sistêmicos) não sofreu a ação do IN, o mesmo ocorrendo com os vírus STMV e TSWV, ambos indutores de sintomas locais nessa variedade de feijão. Tanto o TMV, como o PVX e o BYMV, inoculados em gonfrena (ambos indutores de sintomas locais) quando tratados pelo IN mostraram redução da infectividade , ao passo que o STMV (sintomas locais) não demonstrou sofrer ação do IN. Estes resultados vem demonstrar que a espécie de planta empregada como hospedeira não tem qualquer influên cia sobre a redução da infectividade dos vírus ensaiados , quando sob ação do IN. Este tipo de especificidade, em re lação à forma e ao tamanho das partículas de vírus emprega dos, foi observada e sugerida por LOEBENSTEIN (1962), ao demonstrar que a proteina extraída de TMV inibia, além do próprio TMV, o PVX, quando inoculado quer em glutinosa quer gonfrena, mas, que não tinha qualquer efeito sobre 0 em MAYHEW & FORD CMV inoculado em Chenopodium amaranticolor. (1971), ao contrário, conseguiram inibição, além do TMV , de um vírus isodiamétrico (TRSV) mas não do SBMV, também isodiamétrico, quando estudaram o efeito do polissacárido obtido a partir de Physarum polycephalum. O mesmo ocorreu com a glicoproteina extraída de Phytolacca esculenta, por KASSANIS & KLECZKOWSKI (1948), que se mostrou ativa tanto sobre o TMV e o PVX, como sobre o CMV, TBSV e TNN, todos os três isodiamétricos.

Uma vez mais fica demonstrado que somente a análise conjun ta de uma série de dados pode sugerir o tipo de mecanismo de ação exercido por um inibidor sobre os vírus, e que no caso do IN extraído de abútilom, a soma das evidências sugerem que a sua ação se faça diretamente sobre o vírus, ou agindo nas primeiras fases da infecção e impedindo sua replicação. Não há evidências que demonstrem uma ação direta sobre o hospedeiro levando à alterações metabólicas ou mudança de suscetibilidade do mesmo em relação ao vírus.

-68-

6. CONCLUSÕES

Os estudos realizados no presente trabalho permitiram chegar às seguintes conclusões:

- O extrato aquoso obtido a partir de folhas de plantas de <u>Abútilom striatum</u> possui uma substância inibidora de vírus fitopatogênicos.
- 2. O inibidor não é dialisável, resiste ao tratamento desproteinizador, fica retido pelo carvão ativo, não se altera em pH alcalino, é termoestável, resiste ao envelhecimento "in vitro" e a dessecação.
- Não perde a atividade inibidora quando submetida a trata mentos enzimáticos por diastase ou pectinase.
- Apresenta espectro de absorção ao ultravioleta com duas bandas características, embora discretas, em 260-276nm e 310-320nm.
- Dá resultados positivos quando submetido aos testes de Antrona e Molisch, e resultados negativos para os testes de Bial, Biureto e Ninhidrina.
- 6. Forma um complexo instável com as partículas de TMV, que pode ser rompido pela ultracentrifugação,sem que haja a<u>l</u> teração da integridade e das características dos compo nentes da mistura.
- Parece recobrir as partículas de TMV, promover o agregamento, fragmentação e alterações morfológicas das mesmas.

- 8. Nas reações de dupla-difusão em agar não houve diferença em relação ao título do antissoro para o TMV tratado com o IN e o vírus purificado (Controle).
- 9. Age sobre o vírus, "in vitro", instantaneamente, não importando o tempo de contato entre ambos.
- 10. Não age sobre o TMV quando aplicado antes ou depois deste, na mesma face ou em faces opostas da mesma folha de glutinosa.
- 11. A ação inibidora (% de inibição) é diretamente proporcional ao logarítmo da concentração do inibidor em relação a uma dada concentração de TMV, e inversamente proporcional quando se mantém constante a concentração do inibidor e se faz variar a do vírus
- 12. A ação do inibidor se dá sobre a partícula de vírus em si, e não sobre o hospedeiro, parecendo ser específica p<u>a</u> ra os vírus bastonetes e alongados, não tendo qualquer efeito sobre a infecção sistêmica, mesmo quando causada por vírus do tipo alongado ou bastonete.

-70-

7. RESUMO

Uma substância extraída de folhas de <u>Abutilon striatum</u> Dicks. inibe a infecção causada pelo vírus do mosaico do fumo (TMV), quando inoculado em folhas de glutinosa (<u>Nicotiana glutinosa</u> L.). A substância termoestável, não dialisável e de alto peso molecular (5000-10000) é de natureza polissacarídica, podendo ser retida pelo carvão ativo, não se alterando em pH a<u>l</u> calino ou quando submetida a tratamento para desproteinização. Não é degradada pelos tratamentos com diastase ou pectinase . Possue duas bandas características de absorção ao ultravioleta, nas regiões compreendidas entre 260-276nm e 310-320nm.

A presença do inibidor não altera a capacidade de reação do TMV com seu antissoro específico, em testes de dupla- difusão em agar. O inibidor forma complexo instável com o TMV, pode<u>n</u> do ser separado deste por ultracentrifugação. As eletromicr<u>o</u> grafias sugerem que o inibidor recubra as partículas de vírus, além de promover o agregamento, fragmentação e deformações das mesmas. Mantendo-se constante a concentração do TMV a porcentagem de inibição da infectividade deste é função logarítmica da concentração do inibidor. A redução da infectividade do vírus, quando empregado em diferentes concentrações, é inversamente proporcional ãs concentrações do mesmo, sob ação de uma determinada concentração do inibidor.

O inibidor reduz a infectividade do TMV inoculado em <u>N.gluti-</u> nosa, <u>Datura stramonium</u>, <u>Gomphrena globosa e Phaseolus vulga-</u> <u>ris</u> var. "manteiga", mas não afeta a infectividade deste quan</u> do inoculado em <u>Nicotiana tabacum</u> var. "White Burley".Reduz, também, a infectividade do vírus X da batata (PVX) em <u>G.glo</u> -<u>bosa</u>, do vírus do mosaico amarelo do feijoeiro (BYMV) inocula do em <u>G.globosa</u> e em <u>N. tabacum</u> var."White Burley", e do vírus do mosaico da alface (LMV) inoculado em <u>G.globosa</u>. Não mostrou qualquer efeito inibidor sobre o PVX, BYMV e o LMV quando inoculados, respectivamente, em <u>N.glutinosa</u>, <u>P. vulgaris</u> var. "Scotia" ou "manteiga" e <u>Chenopodium quinoa</u>. O inibidor mostrou-se inativo sobre a infectividade dos vírus: mosaico do pepino (CMV), necrose branca do fumo (STMV), e do vira-cabeça do tomateiro (TSWV), quando inoculados quer em hospedeiros que desenvolveram sintomas locais quer nos que mostraram sintomas sistêmicos.

O inibidor não age sobre o TMV, quando aplicado antes ou após à inoculação com o vírus, em intervalos maiores que 30 min . Não se mostrou ativo, tampouco, quando aplicado na face oposta à qual o TMV foi inoculado. Sua ação se faz diretamente sobre as partículas de vírus, e "in vitro" a reação é instantanea, não importando o tempo de contato entre ambos. 8. SUMMARY

An inhibitory substance present in leaves of <u>Abutilon stria-</u> tum reduced the infectivity of tobacco mosaic virus(TMV) when assayed on leaves of Nicotiana glutinosa.

The inhibitory substance presented the following characteristics: it was not dialyzable, it was stable in high temperature and high pH (11). It was retained by active charcoal. The substance was unaffected by treatments to inactivate proteins, and seemed to be a polysaccharide of high molecular weight (5000-10000).

It was unaffected by enzymatic preparations of diastase and pectinase. The ultraviolet spectra showed two characteristic bands: I (260-276nm) and II (310-320nm).

In serological agar double-diffusion tests, the presence of the inhibitor did not interfere with the capacity of reaction between the TMV and its specific antisserum.

The TMV-inhibitor bounds could be disrupted by ultracentrifuging the mixture without loss of activity of any of the components.

Studies on the fine-structure of the complex virus-inhibitor suggested that the virus particles were recovered by the inhibitor which promoted their aggregation, fragmentation and distortion.

At constant TMV-concentration, the percentage of reduction of infectivity was a logarithmic function of inhibitor

concentration. Under the action of a constant inhibitor concentration the reduction of TMV infectivity was inversely proportional to the virus concentration.

The infectivity of TMV was inhibited when inoculated on <u>N</u>. <u>glutinosa</u>, <u>Datura stramonium</u>, <u>Gonphrena globosa</u>, and <u>Pha-</u> <u>seolus vulgaris</u> var."manteiga", but infectivity was not affected when the virus was inoculated on <u>N. tabacum</u> var. "White Burley". The inhibitor also reduced the infectivity of potato X (PVX) on <u>G.globosa</u>, bean yellow mosaic virus (BYMV) on <u>G.globosa</u> and <u>N. tabacum</u> var."White Burley" and of lettuce mosaic virus (LMV) on <u>G.globosa</u>. The inhibitor did not affect the infectivity of PVX, BYMV, and LMV on <u>N.glutinosa</u>, <u>P.vulgaris</u> var."Scotia" or "manteiga", and Chenopodium guinoa, respectively.

The inhibitor was uneffective on the infectivity of cucumber mosaic virus (CMV), a Brazilian strain of streak mosaic virus (STMV) and the tomato spotted wilt virus (TSWV) when inoculated on hosts in which local symptoms were developed as well as on hosts in which the symptoms were systemic.

Foliar application of the inhibitor before or after the virus inoculation or application on the opposite side of leaves inoculated with TMV did not react on the TMV.

It acted directly on the virus particles, and "in vitro" reaction was instataneous, no matter how long the contact between the two.

-74-

- ALLARD, H.A. 1918 The mosaic disease of <u>Phytolacca</u> de-<u>candra</u>. Phytopathology, 8: 51-54.
- BALL, ELLEN M. 1961 Serological tests for the identification of plant viruses. Committes on Plant Virology. Am. Phytopath. Soc., pp. 16.
- BAWDEN, F.C. 1954 Inhibitors and plant viruses. <u>In</u>: Advances in Virus Research, <u>2</u>: 31-57, Ed. K.M. Smith and M.A. Laufer. Academic Press Inc., New York.
- BAWDEN, F.C. and A. KLECZKOWSKI 1945 Protein precipitation and virus inactivation by extracts of strawberry plants. J. Pomol. Hort. Sci., 21: 2-7.
- BELL, D.J. 1955 Mono-and oligossaccharides and monosaccharide derivatives. <u>In</u>: Moderne Methoden der Pflanzenanolyse, Vol. II: 1-54, Ed. K. Paech & M. V. Tracey, Springer-Verlag, Berlim.
- BENDA, G.T.A. 1956 The effect of New Zealand spinach juice on the infection of cowpeas by tobacco ringspot virus. Virology, 2: 438-454.
- BLASZCZAK, W., A.F. ROSS and R.H. LARSON 1959 The inhibitory activity of plant juices on the infectivity of potato virus X. Phytopathology, 49: 784-791.
- CADMAN, C.H. 1959 Some properties of an inhibitor of virus infection from leaves of raspberry. J. Gen. Microbiol., 20: 113-128.

- COSTA, A.S. 1955 Studies on abutilon mosaic in Brazil. Phytopath. Z., <u>24</u>: 97-112.
- COSTA, A.S. 1957 Feijoeiro manteiga, planta-teste para os virus de vira-cabeça e da necrose branca do fumo. Bragantia, <u>16</u>: 45-66.
- CROWLEY, N.C. 1955 The effect of seed extracts on the infectivity of plant viruses and its bearing on seed transmission. Australian J. Biol. Sci., 8: 56-67.
- DOOLITLE, S.P. and M.N. WALKER 1925 Further studies on the overwintering and dissemination of cucurbit mosaic. J. agr. Res., <u>31</u>: 1-58.
- DUGGAR, B.M. and JOANNE K. ARMSTRONG 1925 The effect of treating the virus of tobacco mosaic with the juices of various plants. Ann. Mo. Bot. Gard., 12: 359-366.
- EBRAHIM-NESBAT, F. und F. NIENHAUS 1972 Beeinflussung von Tabakmosaikvirus- und Gurgenmosaikvirusinfektion durch hemmende Prinzipien in Pflanzenextrakten. Phytopath. Z., 73: 235-250.
- FELDMAN, J. 1963 Effet inhibiteur des extraits de semence de piment (<u>Capsicum annuum</u> L.) sur le pouvoir infectieux de quelques virus des plantes. Ann. Epiphyties, <u>14</u>: 377-385.
- FLORES, ELZA; WALKYRIA B.C. MORAES and M. MENEGHINI 1967 -An inhibitory activity of leaf extracts of <u>Abutilon stria</u>-<u>tum</u> Dicks on the infectivity of abutilon mosaic virus and tobacco mosaic virus. Arg. Inst. Biol., 34: 83-89.

-76-

- FRANCKI, R.I.B. 1964 Inhibition of cucumber mosaic virus infectivity by leaf extracts. Virology, 24: 193-199
- FULTON, R.W. 1943 The sensitivity of plant viruses to certain inactivators. Phytopathology, <u>33</u>: 674-682.
- GENDRON, Y. 1950 Action des produits du métabolisme d'un champignon sur la multiplication du virus de la mosaïque du tabac et du virus X de la pomme de terre chez le tabac. Acad. Sciences, 230: 1890-1891.
- GENDRON, Y. and B. KASSANIS 1954 The importance of the host species in determining the action of virus inhibitors. Ann. Appl. Biol., 41: 183-188.
- GRANT, T.J. 1934 The host range and behavior of the ordinary tobacco-mosaic virus. Phytopathology, <u>24</u>: 311-335.
- GREENLEAF, W.H. 1953 Effects of tobacco-etch virus on peppers (<u>Capsicum</u> sp). Phytopathology, <u>43</u>: 564-570.
- GROHMANN, ADELAIDE A. e MARIA RAPHAELA MUSUMECI 1970 -Ação inibidora da replicação do TMV (virus do mosaico do fumo) em <u>N.glutinosa</u> por substâncias lançadas por fungos em meio líquido de cultura. O Biológico, 35: 164-165.
- GROHMANN, ADELAIDE A. and MARIA RAPHAELA MUSUMECI 1972 -An inhibitor of tobacco mosaic virus produced by <u>Aspergil</u><u>lus flavus</u>. Arq. Inst. Biol., <u>39</u>; 69-73.
- GUPTA, B.M. and W.C. PRICE 1950 Production of plant virus inhibitors by fungi. Phytopathology, 40: 642-652.

-77-

- GUPTA, B.M. and W.C. PRICE 1952 Mechanism of inhibition of plant virus infection by fungal growth products. Phytopathology, 42: 45-51.
- GUPTA, V.K. and S.P. RAYCHAUDHURI 1972 Mechanism of inhibition of potato virus Y by extracts from leaves of some woody plants. Phytopath. Z., 73: 256-262.
- HODGSON, W.A. and J. MUNRO 1966 An inhibitor of potato virus X in potato plants infected with <u>Phytophthora in-</u> festans. Phytopathology, 56: 560-561.
- HODGSON, W.A.; J. MUNRO; R.P. SINGH and F.A. WOOD 1969 -Isolation from <u>Phytophthora infestans</u> of a polysaccharide that inhibits potato virus X. Phytopathology, <u>59</u>: 1334-1335.
- HORNE, R.W.; G.E. RUSSELL and A.R. TRIM 1959 High resolution electron microscopy of beet yellows virus filamen ts. J. Mol. Biol., 1: 234-236.
- JERMOLJEV, EVŽEN and LIANA ALBRECHTOVÁ 1965 Research of substances inactivating the virus X in sap from potato leaves. Biol. Plant., 7: 65-73.
- JERMOLJEV, EVŽEN and LIANA ALBRECHTOVÁ 1966 Investigation of the virus X inhibitor from potato leaf sap. Biol. Plant., 8: 434-443.
- JOHNSON, J. and ISMÉ A. HOGGAN 1937 The inactivation of the ordinary tobacco-mosaic virus by microorganisms. Phytopathology, 27: 1014-1027.
- JOHNSON, J. 1938 Plant virus inhibitors produced by microorganisms. Science, 88: 552-553.

-78-

- JOHNSON, J. 1941 Chemical inactivation and the reactivation of a plant virus. Phytopathology, <u>31</u>: 679-701.
- KASSANIS, B. and A. KLECZKOWSKI 1948 The isolation and some properties of a virus-inhibiting protein from Phytolacca esculenta. J. Gen. Microbiol., <u>2</u>: 143-153.
- KUNTZ, J.E. and J.C. WALKER 1947 Virus inhibition by extracts of spinach. Phytopathology, <u>37</u>: 561-579.
- LOEBENSTEIN, G. 1962 Inducing partial protection in the host plant with native virus protein. Virology, <u>17</u>: 574-581.
- LOEBENSTEIN, G.A.D. and A.F. ROSS 1963 An extractable agent, induced in uninfected tissues by localized virus infections, that interferes with infection by tobacco virus. Virology, 20: 507-517.
- MANN, E.W. 1969 Inhibition of tobacco mosaic virus by a bacterial extract. Phytopathology, 59: 658-662.
- MAYHEW, D.E. and R.E. FORD 1971 An inhibitor of tobacco mosaic virus produced by <u>Physarum polycephalum</u>. Phytopathology, 61: 636-640.
- McKEEN, C.D. 1954 Inhibition of virus infections of certain plants by extracts from <u>Capsicum frutescens</u> L. Science, <u>120</u>: 229.
- McKEEN, C.D. 1956 The inhibitory activity of extract of <u>Capsicum frutescens</u> on plant virus infections. Can. J. Botany, 34: 891-903.

-79-

- MULVANIA, M. 1926 Studies on the nature of the virus of tobacco mosaic. Phytopathology, 16: 853-871.
- NITZANY, F.E. and S. COHEN 1960 A case of interference between alfafa mosaic virus and cucumber mosaic virus. Virology, 11: 771-773.
- OLIVEIRA, A.R. de 1967 Serologia aplicada ao estudo do vírus do anel do pimentão. Piracicaba, SP. Escola S<u>u</u> perior de Agricultura "Luiz de Queiroz", 40 p. - tese de doutoramento.
- OUCHTERLONY, D. 1949 Antigen-antibody reaction in gels. Akad. Miner. Geol., 26-b, 14.
- OUCHTERLONY, D. 1958 Diffusion-in-gel methods for immuno logical analysis. <u>In</u>: S. Karger, Progress in allergy, New York, 5: 1-78.
- PHARMACIA FINECHEMICALS, INC. 1966 Sephadex-gel filtration in theory and practice. Uppsala, Sw.
- RAGETLI, H.W.J. and M. WEINTRAUB 1962a Purification and characteristics of a virus inhibitor from <u>Dianthus caryo-</u> <u>phyllus</u> L.I. Purification and activity. Virology, <u>18</u>: 232-240.
- RAGETLI, H.W.J. and M. WEINTRAUB 1962b Purification and characteristics of a virus inhibitor from <u>Diantus caryo-</u> <u>phyllus</u> L.II. Characterization and mode of action. Virology, 18: 241-248.
- SAMUEL, G. and J.G. BALD 1933 On the use of the primary lesions in quantitative work with two plant viruses. Ann. appl. Biol., 20: 70-99.

- SCHNEIDER, I.R. 1953 Solution of tobacco mosaic virus in the aqueous phase of a chloroform-water emulsion and application of the phenomenon in virus assay. Science, 117: 30-31.
- SELA, ILAN and SHALOM W. APPLEBAUM 1962 Occurrence of antiviral factor in virus-infected plants. Virology, 17: 543-548.
- SELA, ILAN; I. HARPAZ and Y. BIRK 1964 Separation of a highly active antiviral factor from virus-infected plan ts. Virology, 22: 446-451.
- SELA, ILAN; I. HARPAZ and Y. BIRK 1966 Identification of the active component of an antiviral factor isolated from virus-infected plants. Virology, 28: 71-78.
- SILL, W.H.Jr. 1951 Some characteristics of a virus inhibitor in cucumber. Phytopathology, 41: 32.
- SILL, W.H.Jr. and J.C. WALKER 1952 A virus inhibitor in cucumber in relation to mosaic resistance. Phytopathology, 42: 349-352.
- SLAGLE, C.W.; SYLVIA WOLCYRZ and W.C. PRICE 1952 Inhibition of plant virus infection by growth products of Neurospora. Phytopathology, 42: 240-244.
- STEERE, R.L. 1959 The purification of plant viruses. In: Advances in virus research, 6: 1-73.
- TAKAHASHI, W.N. 1942 A virus inactivator from yeast. Science, 95: 586–587.

- 81-

- TAKAHASHI, W.N. 1946 Properties of a virus inactivator from yeast. Science, <u>95</u>: 377.
- TASTALDI, H. 1955 Prática de química biológica. la. par te. Bioquímica analítica qualitativa, 5a. ed. Universida de de São Paulo, 117p.
- THOMSON, A.D. and BARBARA A. PEDDIE 1965 Studies on a virus inhibitor from <u>Chenopodium</u> leaves. N. Zealand J. agric. Res., 8: 825-831.
- THRESH, J.M. 1956 Some effects of tannic acid and of leaf extracts which contain tannins on the infectivity of tobacco mosaic and tobacco necrosis viruses. Ann. appl. Biol., 44: 608-618.
- van der WANT, J.P.H. 1951 Onderzoekingen over anjermozaick. II. With a summary: Investigations on carnation mosaic. II. Tijdschr. Planteziekten, <u>57</u>: 72-74.
- WEINTRAUB, M. and J.D. GILPATRICK 1952 An inhibitor in a new host of tobacco ring spot virus. Can. J. Botany, 30: 549-557.
- WEINTRAUB, M. and R.S. WILLISON 1953 Studies on stone--fruit viruses in cucurbit hosts. III. The effect of cucurbital extracts on infectivity. Phytopathology, 43: 328-332.
- WIGGS, D.N. 1968 Inhibitory effects of juices of various fungi on tobacco mosaic virus. Plant Dis. Reptr , <u>52</u>: 528-529.

-82-