Esto exemplar corresponde à redaças final da tese dexondida pela aluna Ana Beatriz Barros de Morais e aprovada pela comesas Julgadora.

Campanas, 24 de jonto de 198%
teit 888 Reverng

$$
\begin{aligned}
& \text { Dissertação apresentada ao Insti } \\
& \text { tuto de Biologia da Universidade } \\
& \text { Estadual de Campinas para a ob- } \\
& \text { tenção do Título de Mestre em } \\
& \text { Biologia (Ecologia). }
\end{aligned}
$$

Ana Beatriz Barros de Morais

INTERAÇÃO ENTRE TROTDINI (LEPIDOPTERA: PAPILIONIDAE) E ARISTOLOCHIA (ARISTOLOCHIACEAE) EM CAMPINAS, $S P$

Orientador:Dr. Keith Spalding Brown Jr.

| C | A | P | I | N | A | S |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | 1 | 9 | 8 | 6 | - | |

UNICAMP

AGRADECIMENTOS

Ao Dr. Keith Spalding Brown Jr., pela orienta ção, apoio, amizade, carinho e paciencia, durante todos estes anos;

Aos Drs. Angelo Pires do Prado, Hermögenes de Freitas Leitão Filho, Mohamed Ezz E1-Din Mostafa Habib e Woodruff Whitman Benson, pelas valiosas sugestões apresentadas durante o exame prévio;

A CAPES e FAPESP, pelo fornecimento de bolsas de estudo durante grande parte da realização deste trabalho;

Ao Instituto Agronômico de Campinas pela auto rização cedida para a realização dos estudos no Centro Experimental Fazenda Santa Eliza;

Ao Dr. Keith Spalding Brown Jr., pelas montagens fotograficas;

Ao Dr. Woodruff Whitman Benson pelo emprestimo de puçā, psicrometro e auxílio nas análises estatísticas e manipulação de computador;

Ao Dr. Aquiles Eugenio Piedrabuena, pelo auxí lio nas analises estatísticas;

Ao Prof. Carlos Fernando Salgueirosa de Andra de pela identificação de parasitos taquinídeos;

Aos funcionários de Monjolinho, pela colabora ção durante a realização dos trabalhos de campo;

A Danuzio Gil Bernardino da Silva, pela datilografia;

A Esmeralda Zanchetta Borghi, pela realização da Figura 10;

A Silvana Aparecida Henriques, pela colaboração no Laboratörio de Ecologia Química;

Aos professores, colegas e funcionārios do De partamento de Zoologia pela colaboração direta ou indireta;

Aos amigos, Daisy, Rosa, Jumaida, Rogërio, Jo ão Andre e outros, pelos laços que ainda nos unem, desde os tempos da UFRGS;

Aos amigos, Silvia Egler, Silvia, Tião, Marina, Eleonore, Zë Roberto, Tânia, Benê, Alpina, Felipe, Luiz Otävio, Leonor, Marcinha, Zē Maria, Clăadia, Maria Alice, por todo amor, "aventuras" e "desventuras" dos $\vec{u} 1 t i m o s$ anos;

Ao Zé Roberto Trigo, pela ajuda no campo, auxilio no Laboratōrio de Ecologia Química e ajuda no com putador;

As minhas "famílias", Tião \& Cia, Artur \& Cia, Roland \& Cia, Benson e Eleonore, pelo carinho e apoio nestes tempos de Campinas;

Aos amigos que não foram citados, não pensem que esqueci de vocês;

Aos meus pais e irmão por todo amor, apoio fi nanceiro, compreensão e fē nesta Tese que demorou para sair;

A todos "malucos" que estão percorrendo oupre tendem percorrer esta mesma jornada.

IND ICE

INTRODUÇÃO 1

1. O sistema Troidini/Aristolochia 2
2. Estudos anteriores 7
3. Nicho e partilha de recursos 9
4. Objetivos 12
MATERTAL E METODOS 14
5. Area de estudo 14
6. Material estudado 18
7. Procedimentos 21
3.1. Acompanhamento de Parides spp. no campo 21
3.2. Battus polydamas 29
3.3. Anälise estatística 29
3.4. Acompanhanento de Aristolochia spp. no campo 31
3.5. Anälise quimica de Aristolochia spp. 32
RESULTADOS 34
8. Ovos e larvas de Troidini 34
9. Deslocamentos de larvas de 5 \% estádio; pupas 41
10. Adultos de Troidini 44
11. Localização dos ovos 47
12. Duração dos estägios de Parides em Aristolochia 51
13. "Permanência" de Parides em Aristolochía 56
14. Distribuição de larvas de Troidini en indivíduos de Aristolochia 61
15. Plantas hospedeiras 65
16. An्̄alise química de Aristolochia spp 67
DISCUSSÃO 75
17. Ovos, larvas e pupas de Troidini 75
1.1. Parides proneus 76
1.2. Parides bunichus 78
1.3. Parides agavus 79
1.4. Parides anchises nephalion e P. neophilus eurybates 79
1.5. Parides spp. indeterminados 80
1.6. Battus polydamas 81
1.7. Pupas 82
1.8. "Desaparecimento" e mortalidade 83
18. Adultos de Troidini 85
2.1. Parides proneus 85
2.2. Parides bunichus 86
2.3. Parides agavus 87
2.4. Parides anchises nephalion 87
2.5. Parides neophilus eurybates 88
2.6. Battus polydamas 89
2.7. Razão sexual e longevidade 89
19. Interações Troidini x Aristolochia 92
3.1. Locais de oviposição 92
3.2. Duração dos estägios de Parides em Aristolochia 96
3.3. "Sobrevivencia" de Parides spp. em Aristolochia 101
3.4. Distribuição de larvas de Troidini em indivíduos de Aristolochia 109
20. Plantas hospedeiras - Aristolochia spp. 112
4.1. Dinamica temporal das plantas marcadas 112
4.2. Quimica de Aristolochia spp. 116
CONCLUSOES 119
RESUMO 123
SUMMARY 125
BIBLIOGRAFIA 127
APENDICE I 142
APENDICE TI 145

INDICE DE FIGURAS

FIGURA 1 - Localização da ärea de estudo 15
FIGURA 2 - Precipitação e temperatura médias mensais na Fazenda Santa Eliza, municipio de Campinas, no periodo de 1981-1983 16
FIGURA 3 - Precipitação e temperatura médias anuais na Fazenda Santa Eliza, municipio de Campinas, no periodo de 1956-1977 17
FIGURA 4 - Aspectos da mata de Monjolinho 19
FIGURA 5 - Adultos de Troidini 20
FIGURA 6 - Espécies de Aristolochia presentes em Monjolí nho 22
FIGURA 7 - Mapa de Monjolinho, com a localização das plan tas hospedeiras marcadas 23
FIGURA 8 - Juvenis de Troidini encontrados em Monjolinho 26FIGURA 9-Ovos e larvas de Parides spp. e Battus polydamasencontrados em Aristolochia spp. em Monjoli-nho36
FIGURA 10 - Ovos e 10 avas de Parides spp. e Battuspolydamas agrupados por espécie deAristolochia40
FIGURA 11 - Total de Troidini adultos registrados pordia de marcação em Monjolinho46
FIGURA 12 - Sítios de oviposição utilizados por Parides spp. em cada espëcie de Aristolochia em Mon jolinho49
FIGURA 13 - Sítios de oviposição utilizados por espécie de Parides em Aristolochia elegans e A. esperanzae.
FIGURA 14 - "Sobrevivencia"de larvas (de 19 a 5% estadios) de Parides spp. em plantas de Aristolochia spp. em Monjolinho57
FIGURA 15 - "Sobrevivencia" de ovos (ate 19 estādio larval) de Parides proneus eP. neophilus ' eurybates em Aristolochia spp. 59
FIGURA 16 - Porcentagens de larvas de cada espëcie de Troidini em Aristolochia spp. 60
figura 17 - Porcentagens de larvas de Troidini em cada espécie de Aristolochia62
FIGURA 18 - Distribuição de larvas, a partir do 29 estādio, em indivíduos de Aristolochia elegans e
\qquad
FIGURA 19 - Alterações ocorridas com as plantas marcadas de Aristolochia elegans e A. esperanzae 66
FIGURA 20 - Cromatografia em camada fina das frações 2 de Aristolochia elegans, A. esperanzae e A. melastoma69
FIGURA 21 - Cromatografia em camada fina das sub-frações iniciais e finais resultantes da cro matografia em coluna das frações 2 de Aristolochia elegans, A. esperanzae e A. melastoma
FIGURA 22 - Pesos das frações finais obtidas por cromatografia em coluna das frações 2 de Aristolochia elegans, A.esperdnzae e A. melastoma 73
FIGURA 23 - Espectros de ressonância magnética nuclear(RMN) de frações de Aristolochia elegans,
A. esperanzae e A. melastoma 74
FIGURA 24 - Luminosidade e umidade em Monjolinho e Amarais 93

TABELA 1 - Caracterização das espēcies de Aristolochía
utilizadas por Parides spp. em Monjolinho... 24

TABELA 2 - Diferenças entre as larvas de Parides de
acordo com a coloração e comprimento dos tu
bérculos dos 80 e 90 segmentos abdominais 27

TABELA 3-Total de ovos e larvas de Troidini em
Aristolochia spp. em Monjolinho 42
TABELA 4 - Total de juvenis de Troidini por estação do ano 43
TABELA 5-Numero mensal de Troidini adultos marcados. 45TABELA 6 - Mëdias de permanência ($=$ no de dias) por es-tägio de juvenis de Parides spp. em Aristolochiaspp. , em Monjolinho52
TABELA 7 - Resultados das anāises de variancia entre durações de estädios de Parides spp. em Aristolochia elegans e A. esperanzae 54
TABELA 8 - Médias de permanência ($=$ no de dias) por estā gio de juvenis de Parides spp., acumulados por estação do ano, em Aristolochia spp., em Mon- jolinho 55
TABELA 9 - Indices de MORISITA para a sobreposição de
larvas de Troidini em indivíduos de
Aristolochia elegans e A. esperanzae 64
TABELA 10 - Modificações em Aristolochia melastoma 67

TABELA 11 - Pesos das frações obtidas por extração quími ca de folhas de Aristolochia elegans, A. esperanzae e A. melastoma
TABELA 12 - Resultados das cromatografias em coluna de Aristolochia spp. 72
TABELA 13 - Biomassa e utilização de Aristolochia por Parides em Monjolinho 77
TABELA 14 - Médias de permanência por estägio de juvenis de Parides e Battus obtidas em outros estu- dos de campo e laboratório 97
TABELA A15 - Medidas de ambiente fisico em Monjolinho 143
TABELA A16 - Medidas de ambiente fisico em Amarais 144
TABELA A17 - Ovos e larvas de Parides proneus encontra-dos em Aristolochia spp. em Monjolinho 146
TABELA A18 - Ovos e larvas de Parides bunichus encontra dos em Aristolochia spp. em Monjolinno 147
TABELA A19 - Ovos e Larvas de Parides agavus encontra- dos em Aristolochia spp. em Monjolinho 148
TABELA A20 - Ovos e larvas de Parides anchises nephalionencontrados em Aristolochia spp., em Monjo1inho149
TABELA A21 - Ovos e 1arvas de Parides neophilus eurybatesencontrados em Aristolochia spp., em Monjolinho150
TABELA A22 - Ovos e larvas de P.a. nephalion e P.n.eurybates encontrados em Aristolochia spp.em Monjolinho151
TABELA A23 - Ovos e larvas de Parides spp. desconhecidosencontrados em Aristolochia spp. em Monjolinho152
TABELA A 24 - Ovos e larvas de Battus polydanas encontrados emAristolochia spp. em Monjolinho153
"A ecologia procura abordar algumas perguntas como: Por que as espécies vivem no local enque estão ? Por ' que elas existem em determinadas densidades ? Por que persistem ou não em um determinado habitat ? por que determinadas combinações de espécies coexistem enquanto outras ' não ? Por que as comunidades são estruturadas como são ?"
(GILBERT \& SINGER,1975:365)

Os estudos com insetos vèm trazendo importantes ' contribuições para o conhecimento da ciencia da Ecologia. Existem algumas facilidades associadas ao trabalho comestes animais: individuos podem ser coletados geralmente sem prejuízo para as populações locais; não e dificil a obtençãode grandes amostras devido à existência de muitas espécies e individuos; são de ciclo de vida curto e tamanho reduzido, facilitando sua criação em laboratörio. Algumas äreas em que os entomólogos podem colaborar com significancia são coevo lução de plantas efitófagos, ecologia química, ecologia da polinizaçäo, ecologia de comunidades e estratēgias reprodutivas.
(PRICE, 1975: 8/9)

INTRODUÇÃO

Os lepidópteros são um grupo de insetos com grande importancia científica e economica (GILBERT \& SINGER, 1975; METCALF, FLINT \& METCALF, 1962). Seus representantes distrí buem-se, geralmente em grandes quantidades, por quase todo o globo terrestre. Depois de Coleoptera, Lepidoptera é ar dem animal mais numerosa, commais de 150.000 espëcies conhecidas (BORROR \& DELONG, 1969; WATSON \& WHALLEY, 1975).

Os membros desta ordem passam por metamorfose com pleta e suas larvas, com poucas exceções, alimentam-se de plantas (BORROR \& DELONG, 1969; BRUES, 1972). Como as larvas são geralmente incapazes de mover-se a grandes distancias ' em busca de uma planta de alimentação adequada, elas devem alimentar-se da planta na qual eclodiram do ovo (RAUSHER, 1979a). Assim, geralmente são as femeas ovipositoras que es colhem a planta apropriada para o crescimento e desenvolvimento larvais. Ovos colocados em plantas com baixa qualidade nutricional provavelmente resultaräo numa prole menor do que aqueles colocados em plantas hospedeiras mais adequadas (RAUSHER, 1979a; KITCHING \& ZALUCKI, 1983).

Fatores quimicos, independentes dos exclusivamente nutricionais, tambem desempenham grande importancia na determinação da planta de alimentação mais apropriada (DETHIER 1970; FEENY, 1976; RHOADES \& CATES, 1976; PRICE et aliii, 1980). Muitas plantas são caracterizadas pela presença de substâncias metabởicas "secundärias" (FRAENKEL, 1959). Por isso, a exploração alimentar de uma determinada planta po-
de determinar adaptações metabölicas dos insetos efazer com que eles se tornem relativamente ineficientes na utilização de outras fontes de alimento e tenham a tendencia de rostrin gir sua escolha por plantas de alimentação (EllRLICil \& RAVEN 1965).

1. O sistema Troidini / Aristolochia

A familia papilionidae (Lep.) $\vec{e} \operatorname{cosmopolita~e~com~}$ preende pelo menos 500 espécies; subdivide-se em 3 subfamí1ias: Baroniinae, Parnassiinae e Papilioninae. A maioria das espēcies é encontrada nos trópicos (EHRLICH \& EHRLICH, 1961). Muitas possuem importancia economica, constituindo-se de pra gas de culturas citricas e de umbeliferas (FEENY, ROSENBERRY\& CARTER, 1983). A subfamilia Papilioninae è a maior, com pelo menos 450 espécies, e subdivide-se, por sua vez, em 3 tribos: Troidini, Graphiini (ou Leptocircini) e Papilionini. Os Papilionidae neotropicais pertencem às subfamilias Baroní inae e Papilioninae, sendo que a primeira ocorre apenas no Mexico. No Brasil, existe um total de 73 espécies de papilioninae distribuidas por 5 gêneros: Battus (5 espècies), Euryades (2 espëcies) e Parides (22 espēcies) (Tribo Troidi ni); Graphium (24 espècies - Tribo Graphiini); Papilio (20 espēcies - Tribo Papilionini) (COLLINS \& MORRIS, 1985; TYLER, BROWN \& WILSON, em preparação).

Todos os generos de Troidini alimentam-se quase' exclusivamente de Aristolochiaceae (SLANSKY, 1972; SCRIBER, 1984) enquanto que os membros das outras tribos alimentam se principalmente de Magnoliaceae, Lauraceae e Annonaceae'
(Graphiini) e Magnoliaceae, Lauraceae, Rutaceae, Piperaceae e Umbelliferae (Papilionini) (Feeny, RoSENBERRY \& CARTER , 1983). A estreita relação existente entre Troidini e Aris tolochiaceae e constatação da primitividade de caracteres desse grupo animal (MUNROE \& EHRLICH, 1960) levou EHRLICH \& RAVEN (1965) a sugerirem que a diversificação dos Papilionidae pelos tröpicos só tenha ocorrido depois da evo lução e irradiação de Aristolochiaceae.

A família Aristolochiaceae compreende sete 民êeros, com cerca de 600 espēcies distribuídas nas regiões tro picais e, em menor escala, temperadas do mundo. Apenas 3 ge neros encontram-se representados na America do Sul inclusive Brasil: Holostylis Duchtr., Euglypha Chodat \& Hassl. e Aristolochia L.. Os dois primeiros são endemicos e monotipí cos enquanto Aristolochia possui representantes em quase todas as regiões tropicais e subtropicais do mundo (HOEHNE, 1942; PFEIFER, 1966; AHUMADA, 1967, 1975; BARROSO, 1978).

No Brasil, as 62 espëcies (aproximadamente) do gê nero Aristolochia surgem em todas as fisionomias de vegetação ocorrendo, em populações contagiosas, em campos cerrados e limpos, cerradoes e cerrados mais bastos, campos, flo restas higrofilas, florestas sombrias e litoral (HOEHNE, 1942; BARROSO, 1978).

Os representantes de Aristolochia são plantas perenes volūveis ou ervas, geralmente rizomatosas ou tuberosas. Possuem folhas alternas, simples, compresença de pseudoestipulas em algumas espécies volūveis. As flores são axilam res, solitárias ou agrupadas em inflorescencias. ofruto é uma capsula septifraga, geralmente hexagonal, e as sementes
são achatadas com formas variadas (AllumADA, 1975). As plantas de Aristolochia são conhecidas como "carnívoras" pois atraem e aprisionam temporariamente pequenas moscas, respon sāveis pela polinização, através de flores com adaptações' especiais (coloração externa geralmente escura; odor de decomposição; formato das peças florais, apresentando um tubo estreito compelos internos dirigidos para dentro da flor; protoginia) (BARROSO, 1978).

As plantas da familia Aristolochiaceae são muito conhecidas pelas suas propriedades farmacológicas e têm sido empregadas na medicina popular, tomando parte de muitos preparados farmacêticos. Dentre os compostos cuja toxicida de $j \vec{a}$ foi reconhecida, destacam-se os acidos aristoloquicos, nitrofenantrenos caracteristicos de quase todas espécies de Aristolochía. Outras substancias jä identificadas são öleos essenciais, mono-, sesqui- e di- terpenos, aristolactamas, alcalöides benzil-isoquinolinicos e outros compostos fenölí cos neutros e bäsicos (HOEHNE, 1942; VON EUW, REICHSTEIN \& ROTHSCHILD, 1968; MUNAVALLI \& VIEL, 1969). A ingestão de ex tratos dessas plantas por vertebrados produz varios efeitos de irritação no trato gastro-intestinal, rins e sistema ner voso central causados principalmente, ao que parece, pela ação dos ácidos aristolöquicos (HOEHNE, 1942; VON EUW, REICHSTEIN \& ROTHSCHILD, 1968). Tambëm foram registrados efei tos anti-tumorais (MUNAVALLI \& VIEL, 1969). Elas tambëm parecem inibir insetos fitofagos e um numero muito pequeno de herbivoros, além das larvas de Troidini, alimenta-se de Aristolochia (BROWN, DAMMAN \& FEENY, 1981).

Foi confirmado o armazenamento de substancias quí micas tōxicas de Aristolochia spp. pelas larvas de Troidini (VON EUW, REICHSTEIN \& ROTHSCHILD, 1968; ROTHSCHILD et abii 1970; DUFFEY, 1980; URZUA et alii, 1983; URZUA \& PRIESTAP, 1985). Os indivíduos adultos destas borboletas são de pala dar desagradavel e poderiam agir como modelos efetivos na formação de anēis de mimetismo, ajudando na defesa contra ${ }^{\prime}$ predação de vertebrados (BROWER \& BROWER, 1964; BROWER

COOK \& CROZE, 1967; ROTHSCIILD, 1972 ; WATSON \& WHALLEY, 1975). A co-ocorrencia de espēcies cromaticamente semelhantes dessas borboletas emflores regularmente visitadas em florestas tropicais constitui uma efetiva associação de mimetismo MU11eriano (YOUNG, 1971a, 1971b, 1972a, 1973; COOK, FRANK \& BROWER, 1971; BROWN, DAMMAN \& FEENY, 1981). A1ēm disso, tambëm são registrados casos de mimetismo Batesiano, especialmente em outros Papilionidae (Papilio, Graphium) , Pieridae (Archonias) e Castniidae (Imara, Prometheus e Tosxampilla) (BROWER, COOK \& CROZE, 1967; YOUNG, 1972a; BROWN, 1986).
o gênero Parides HUbner é composto de 34 espēcies (BROWN - revisão em preparação) distribuidas pelos trópicos americanos (WATSON \& WHALLEY, 1975) enquanto que Battus Sco poli possui 12 espēcies restritas ao hemisfério oeste (EHRLICH \& EHRLICH, 1961).

Os individuos adultos desses generos possuem asas com coloração preta, as posteriores raramente com prolongamento caudal na nervura M3, e nas espécies de Parides geral mente com uma banda vermelha ou uma illeira de pequenas man
chas vermelhas submarginais, e as anteriores, especialmente nas femeas, frequentemente com manchas brancas oubranco-ama reladas centrais, enquanto machos de muitas espécies possu em manchas verdes iridescentes. Em Battus polydamas Linnaeus, existem manchas submarginais apenas na superficie dorsal, com coloração amarela nas asas anteriores e amarelo-esverde ada nas posteriores. Os machos de ambos os generos possuem um tufo de pelos odoriferos com coloração geralmente pälida, localizado ao longo da margem interna das asas posteriores. o corpo \bar{e} preto com marcas vermelhas em ambos os sexos (roTHSCHILD \& JORDAN, 1906; EHPLICH \& EHRLICH, 1961; WATSON \& WHALLEY, 1975).

As larvas são geralmente marrom-escuras oupretas, compontos efaixas claras apenas em Parides. Cada segmen to corporal possui uma faixa de tuberrculos moles que variam de comprimento de acordo com a espécie em Parides. Os tubērculos maiores de Battus polydamas são os dorsolaterais no 10 segmento toräcico e os subespiraculares nos 20 e 7% segmentos abdominais. Alguns tubërculos de Parides têm coloração mais clara (amarela a laranja) do que a do corpo e sua localização tambëm pode variar por espécie (ROTHSCHLLD \& JORDAN, 1906; WATSON \& WHALLEY, 1975 ; BROWN, DAMMAN \& FEENY , 1981). As larvas de todas as espercies da familia Papilionidae (inclusive Parides e Battus) possuem um orgão glandular de defesa, o osmetério, situado dorsalmente atrás da cabe¢̧a. Ele tem forma bifurcada e e protraído apenas quando as larvas são incomodadas emitindo uma secreção contendo, nas espécies estudadas, äcido isobutirico e terpenos que pode
afastar pequenos predadores como formigas (EHRLICH \& EHRLICH, 1961; EISNER, 1970). As pupas têm coloração verde ou amarronzada e são convexas na superficie dorsal possuindo algumas expansões laterais sendo que em Battus polydamas existe ainda uma grande projeção dorsal torāica. Elas fixam-se por meio de fios que envolven as porções caudal e media (EHRLICH \& EHRLICH, 1961; BROWN, DAMMAN \& FEENY, 1981).
2. Estudos anteriores

BROWN, DAMMAN \& FEENY (1981), através de estudos:de campo e laboratörio, descreveram uma guilda de seis espécies de Troidini simpätricas, no interior do estado de São , Paulo, Brasil: Battus polydamas, Parides proneus, P bunichus, P. agavus, P. anchises nephalion e P. neophilus eurybates. Esses autores enfatizaram a interação dessas espécies com suas plantas hospedeiras (Aristolochia spp.) e acrescentaram dados relativos à dinâmica populacional e biologia juve nil destas borboletas.

As populações naturais de Troidini, foram observa das emtres ambientes distintos: uma mata antiga defucalgptus com sub-bosque natural, dentro do Horto florestal de Sumare (Municipio de Sumare); outra mata muito semelhante à primeí ra, comáreamenor, denominada Amarais e, por fim, uma pequena área de floresta semi-natural (Monjolinho), com carac teristicas muito distintas dos outros ambientes, jä citados. Amarais e Monjolinho Localizam-se, a $1,5 \mathrm{~km}$ de distancia um
do outro, na Fazenda Santa Eliza (Centro Experimental) do Instituto Agronómico de Campinas, no muncipio de Campinas. Estes estudos mostraram que existem grandes diferenças em abundância, dinâmica e composição nas guildas nos dois tipos distintos de ambiente (Horto Florestal e Amarais versus Monjolinho). De maneira geral, pode-se notar que os Troidini são mais abundantes em Amarais do que em Monjolinho. Isto se modifica um pouco quando se compara o número' de individuos adultos por espécie, no gênero Parides. Em Amarais existe uma grande predominancia de P. proneus e P. bunichus em relação a P. agavus, P. anchises nephalion e P. neophilus eurybates. Em Monjolinho a situação é oposta: P. agavus e P. a. nephalion predominam sobre P. proneus e P. bunichus.

Os trabalhos de laboratório indicaram a existencia de diferentes taxas de desenvolvimento das larvas nas diferentes espécies de Aristolochia presentes nos locais de estudo. Esses padrões tambēm se refletiram na preferência das f êmeas para oviposição. Muitas larvas desenvolveram -se rapidamente em A. arcuata e A. melastoma enquanto que A. elegans pareceu ser de qualidade um pouco inferior.p.proneus parecia ser a espécie mais especializada crescendo rapidamente apenas em A. melastoma; P. agauus parecia ser a espēcie melhor adaptada a A. elegans.

As espéciesde Aristolochia encontradas em Amarais são: A. melastoma e A. arcuata enquanto que em Monjolinho ocorrem principalmente A. elegans e A. esperanzae. Todas as informações obtidas levaramesses autores a proporem
uma possivel influència da qualidade nutricional das plantas hospedeiras presentes em cada local sobre a composição das guildas de Troidini.

Outros fatores tambën foram mencionados como possivelmente importantes na determinação de diferenças entre as comunidades dessas duas äreas: diferentes niveis de para sitismo, predação, competição (não demonstrada) e diferenças no ambiente fisico ou na história evolutiva de cada espëcie de Parides (BROWN, DAMMAN \& FEENY, 1981).

Do mesmo modo RAUSHER (1979a) considerou tipo de habitat, variações temporais e espaciais em adequabilidade do mesmo e eficiencia de procura como fatores importantes na determinação de sitios de oviposição mais adequados por fêmeas de Battus spp. e Parides montezuma.

3. Nicho e partilha de recursos

Para que haja um melhor entendimento sobre os mecanismos que determinam a estrutura de comunidadese necessä rio um conhecimento prévio sobre os processos populacionais adaptativos (como predação e competição) das espécies que as compõem. Os padrões comuntarios refletem as adaptações de cada espécie que, por sua vez, são selecionadas em parte pelas atividades das outras espëcies co-existentes (RICKIRFS, 1980).

Cada espécie requer um conjunto de condições adequadas para que possa viver e se reproduzir. Este "conjunto de condições" compõe o nicho da espēcie, definido por '

RICKLEFS (1980) como "todos os componentes do ambiente com os quais um organismo ou uma população interage ". Quando ' duas ou mais especies utilizam-se dos mesmos componentes am bientais, ocorre uma sobreposição de nichos. Quando estes componentes ou recursos são em nümero limitado, as espécies tendem a desenvolver adaptações que possibilitem uma divisão ou partilha dos mesmos para redução de prejuŕzos que po deriam levar eventualmente a reduções drāsticas ou mesmo extinções populacionais (PRICE, 1975; PIANKA, 1978).

De acordo com GILBERT \& SINGER (1975) e GILBERT ' (1983) são 6 os componentes importantes para segregação de nicho em borboletas: recursos larvais (por taxon de planta hospedeira); recursos larvais (por local na planta hospedei ra); recursos para adultos; micro-habitat; tempo escape à predação e parasitismo .

Diversos autores trabalhando com populações de es pécies de borboletas, taxonomicamente proximas e co-habitan tes da mesma ärea, encontraram evidencias de partilha de re cursos em värios niveis. Em estudos com populações de Pierís foram observadas escolhas de plantas diferentes para oviposição (OHSAKI, 1979, 1980, 1982; CHEW, 1981) assim como para Heliconius (BENSON, 1978) e para Parides(YOUNG, 1977). Mesmo quando utilizando-se das mesmas plantas hospedeiras, as fêmeas de Pieris podem segregar diferentes locais e mi-cro-habitats para colocarem seus ovos e este padrão coutinua a ser mantido pelas larvas (YAMAMOTO, 1983). Foram observadas preferencias distintas entre habitats abertos e ensolarados e habitats fechados e sombreados tanto para
local de oviposição (YOUNG, 1977) como para locais percorri dos pelos adultos (oHSAKI, 1979, 1980, 1982). Diferenças de temporalidade e instabilidade de habitat tambem podem ser discriminados entre as borboletas (OHSAKI, 1979,1980,1982; CHEW, 1981).

Em nenhum dos exemplos mencionados acima e nem em SIAPTRO (1975) foram encontradas evidencias conclusivas sobre a presença de processos competitivos. A teoria de compe tição através da partilha de recursos pressupõe a regulação dos mesmos pelos consumidores em questão (MACARTHUR, 1972). No entanto, existem muito poucos trabalhos a este respeito e consequentemente poucos dados indicando o potencial de fito fagos (Lepidoptera em particular) na regulação e possîvei ' limitação de plantas.

Alguns autores como PRTCE (1983), DEN BOER (1985) e JERMX (1985) acreditam que e muito pequeno o papel da com petição interespecífica na determinação de partilha de recursos em insetos fitofagos. Para eles, as plantas, por serem recursos heterogeneos, fornecem um grande nümero de nichos potenciais que ainda não foram totalmente explorados ' pelos insetos fitófagos, que por sua vez, também constituem um grupo muito heterogeneo, geralmente combaixas densidades populacionais. Portanto, as segregações de nicho estabe lecidas pelos insetos seriam devido principalmente a especí ações ao acaso. Casos de competição seriam comprovados ape nas quando houvesse esgotamento de recursos devido ao estabelecimento excepcional de grandes picos populacionais como o observado por EMMEL \& EMMEL (1969) com 2 espécies de

Papilio de ambiente desértico.

Assim, mesmo depois de trabalhos mais amplos ebem documentados como o de BENSON (1978) sobre partilha de recursos larvais em Heliconiini, o papel da competição como determinante na partilha de recursos entre especies de inse tos fitófagos continuar sendo objeto de discussão. Segundo ' GILBERT \& SINGER (1975) e GILBERT (1983) ē necessäria a rea lização de mais estudos experimentais para um melhor esclarecimento desta questão.
4. Objetivos

O presente trabalho parte dos dados obtidos por BROWN, DAMMAN \& FEENY (1981) e tem os seguintes objetivos:

- fornecer dados adicionais a respeito da biologia das popu lações de Troidini e suas plantas hospedeiras em Monjolinho;
- obter informações sobre predação e parasitismo nas popula ¢̧ões juvenis de Troidini;
- investigar os efeitos da introdução experimental em Monjo linho de um recurso alimentar "superior", anteriormente ' ausente, (A.melastoma) sobre as populações e composição da guilda de Troidini;
- investigar o papel da qualidade nutritiva das espécies de Ahistolochia presentes em Monjolinho na sobrevivencia e desenvolvimento 1 arvais de Troidini - no campo;
- obter informações sobre a natureza de alguns compostos ' químicos de Aristolochia spp!elegans, esperanzae emelastmab
- investigar o papel da possivel competição existente, intra e inter-específica, entre Parides spp, e Battus polydamas, na determinação de partilha dos recursos comuns existentes em Monjolinho;
- obter alguns dados de fatores do micromabientefísico, (1uz, temperatura e umidade) que podem estar influenciando as populações de Troidini em Monjolinho.

Colocando em âmbito mais geral, este trabalho visa investigar experimentalmente os efeitos da qualidade de plantas hospedeiras sobre a dinâmica de populações e composição de uma guilda de insetos fitófagos compartilhando estes recursos. As informações obtidas poderão ser utilizadas na compreensão dos processos de regulação populacional e es truturação de comunidades de insetos especializados que vivem em plantas.

MATEREAL E METODOS

1. $\bar{r} r e a \operatorname{de}$ estudo

0 presente trabalho se desenvolveu numa ärea de 3 ha de arboreto (formado por arvores cultivadas, quer nati vas quer exoticas, alem de plantas arbustivas e herbäceas, em menor nümero - H.F.LETTÃO FTLHO, com.pes.), "Monjolinho", pertencente ao Centro Experimental de Campinas (Fazenda San ta Eliza) do Instituto Agronômico de Campinas, no Município de Campinas, $\operatorname{SP}\left(22^{\circ} 54^{\prime} \mathrm{S}, 47^{\circ} 05^{\prime} \mathrm{W}, 669 \mathrm{~m}\right.$. de altitude) (Figura 1).

Os dados climāticos de precipitação e temperatura médias mensais na Fazenda Santa Eliza, para o período de 1981 a 1983, estão representados na Figura 2. De modogeral, estes dados fogem pouco do padrão médio (1956-1977) representado na Figura 3. De acordo com OLIVEIRA (1980), "obser-va-se dois períodos distintos de precipitação: um chuvoso, prolongando-se de outubro a março, durante o qual caem 74% das chuvas anuais, e outro seco, de abril a setembro, que representa 26% da precipitação anual'. Na Figura 2 , nota-se um aumento excepcional de precipitação nos meses de junho' de 1981 e 1982 e uma restrição do período seco de 1983 aos meses de julho a agosto sendo que estes dados diferem um pouco daqueles apresentados na Figura 3. As temperaturas mé dias e anuais apresentam-se com pequenas variações, oscilando entre $16,4^{\circ} \mathrm{C}$ e $25,1^{\circ} \mathrm{C}(\mathrm{Fig} .2)$ e $17,2^{\circ} \mathrm{C}$ e $23,1^{\circ} \mathrm{C}\left(\mathrm{rig}_{\mathrm{g}} 3\right)$.

trios
γ lagos

- estradas
(áreas urbanas
M Monjolinho
A Amarais

Figura 1 - Localização da ärea de estudo.
(adaptado de BROWN, DAMMAN \& FEENY, 1981)

Figura 2 - Precipitação e temperatura médias mensais na Fa zenda Santa Eliza, municipio de Campinas, no periodo de 1981 - 1983 ("Diagramas de Walter \& Lie th").
(Dados fornecidos pela Seção de Climatologia Agricola do Instituto Agronômico, Campinas, SP)

Figura 3 - Precipitação e temperatura médias anuais na Fa zenda Santa E1iza, municipio de Campinas, no pe ríodo de 1956 - 1977.
(Dados retirados de OLIVEIRA, 1980)

A vegetação de Monjolinho constitui-se principalmente de espécies de ärvores e arbustos ornamentais, nativas e introduzidas. Existe ainda um estrato herbãeo bem de senvolvido incluindo muitas espécies nativas invasoras e propiciando a existencia de ambientes mais fechados em certos locais do interior da mata. Um pequeno córrego percorre a margem de entrada da mata, em toda sua extensão, enquanto que na margem oposta existe uma área aberta de jardim com grande exposição aos raios solares (Figura 4). A mata é cercada por áreas de cultivo agrícola e por uma pequena represa em um dos lados (local de origem do cörrego citado anteriormente).

As Tabelas A15 e AlG, no Apendice I, apresentam ' caracterizações microclimäticas de Monjolinho e Amarais (ma ta antiga de eucaliptos, distante $1,5 \mathrm{~km}$ aproximadamente maiores detalhes em BROWN, DAMMAN \& FEENY, 1981) através de dados de temperatura, umidade e luminosidade.
2. Material estudado

Foram estudadas as populações das cinco espëcies do gênero Parídes (Papilionidae: Troidini): P. proneus, (Hubner, 1825), P. bunichus (HUbner, 1822), P. agavus (Drury 1782), P. anchises nephalion (Godart, 1819) e P.neophilus' eurybates (Gray, 1852), que convivem em Monjolinho (Brown, DAMMAN \& FEENY, 1981) (Figura 5).

As plantas hospedeiras (Aristolochia, Aristolochi aceae) de Parides presentes na area de estudo são:A.elegaus Masters, A. esperanzae o. Kuntze, e A.arcuata Masters (Figu

Figura 4 - Aspectos da mata de Monjolinho. a. córrego da en trada; b., interior, próx. a plantas de A. esperanzae; c. canteiro de A. melastoma; d. jardim.

ra 6). As duas primeiras espécies estão distribuidas "manchas" grandes e distintas entre si enquanto foram encon tradas apenas cinco plantas isoladas de A. arcuata (figura 7). Os indivíduos de Aristolochia elegans são de tamanho va riado - desde ervas pequenas (5 - 10 folhas) ate grandes ' emaranhados de trepadeiras $\left(>10^{3}\right.$ folhas) apoiadas emarvo res altas - enquanto que as plantas de A.esperanzae e A. arcuata possuem tamanho pequeno a médio (3-50 folhas), de modo geral (duas plantas de A. esperanzae tiveramporte mai or, com centenas de folhas).

Uma quarta espécie ausente inicialmente, A.melastoma Manso, foi introduzida através do transplante de rizomas, provenientes de ärea próxima (Amarais), em setembro de 1981 (com reforço adicional em setembro de 1982). As plantas de A. melastoma (e mais alguns individuos de A. arcuatal foram dispostas num canteiro de $1 \times 20 \mathrm{~m}$ localizado pröximo à ärea de distribuição de A. elegans (Figuras 4,6e7).

A Tabela 1 apresenta algumas caracteristicas das quatro espécies de Aristolochia estudadas.
3. Procedimentos
3.1. Acompanhamento de Parides spp. no campo

O acompanhamento das populações de Parides spp. ' realizou-se durante o período de 1981 a 1983 através de avaliações regulares (duas vezes por semana até agosto de 1982 e três vezes por semana de setembro de 1982 a dezembro

Figura 6 - Espécies de Aristolochía presentes em Monjolinho. a. A. elegans; b. A. esperanzae; c. A. melastoma;
d. A. arcuata (foto de planta localizada em área da UNICAMP).

TABELA 1:- Caracterização das espécies de Aristolochia utilizadas por Parides spp. em Monjolinho..

Sp ARISTOLOCHIA	Häbito	Forma de folha	Pseudo-estipula	Perigônio	Obs
elegans	vol ${ }^{\text {úvel }}$	deltöideo-cordada	sim	läbio peltado; colo ração purpüreo-esver deado	cultivada para ornamentação
ESPERANZAE	volüvel	sub-cordiforme a suborbicular cordada	sim	bilabiado, lāb.super. geralm. 1/3 mais lon go que infer.; col. verde-amarelado c/ tra ços averm.	ocorre nativa em cerrado
melastoma	rasteiro ou levem. volūel	elíptico-lanceolada (+ larga no meio)	não	unilabiado, láb.super. c/ăpice revestido de verrugas, col. amarelo acastanhado	olongaco,
arcuata	volüvel (geralm)	oblonga-triangular (+ Jarga na base)	não	unilabiado, lāb.super. oblongado, col. verdeacastanhado c/manchas escuras; barbelas esc. marginais	invasora em alguns cultivos agricolas

[^0]de 1983) na ārea de estudo.
Os estägios juvenis de Parides spp. (Figura 8) eram procurados pelo exame de folhas e ramos das plantas de alimentação e, eventualmente, plantas adjacentes. No momento, em que se encontravam ovos ou larvas em uma planta, pela pri meira vez, procedia-se à marcação da mesma com um tira de pano colorida numerada. Cada planta, depois de marcada, era vistoriada em todas as avaliações subsequentes para acompanhamento do desenvolvimento dos jovens jáancontrados e para procura de novos indivíduos. Este procedimento foi um pouco diferente em A. melastoma onde todas as plantas eram sempre examinadas, marcadas ou não. Devido ao fato das plan tas desta ülima espēie serem rasteiras e estarem concentradas no canteiro de $1 \times 20 \mathrm{~m}$, às vezes tornava-se difícil reconhecer indivíduos isolados e alem disso era importante um controle maior sobre a herbivoria nesta Aristolochia introduzida em Monjolinho.

Existem algumas pequenas diferenças de cor e tama nho entre os ovos das esperies de Parides estudadas mas nor malmente esperava-se até o fim do 10 estádio larval para con firmação da espēcie de cada indivíduo com certeza. Neste ' estägio, as larvas são facilmente identificäveis pela cor dos tubérculos dos $\vec{u} 1$ timos segmentos abdominais (BROWN, DAM MAN \& FEENY, 1981) (ver Tabela 2). Os ovos de P. proneus ' são os ūnicos bem distintos por sua coloração acinzentada ' (BROWN, DAMMAN \& FEENY, 1981).

A medida da largura maior da cápsula cefalica foi o critério estabelecido para separar um estädio larval do

FIGURA 8 - Juvenis de Troidini encontrados em Monjolinho. a. ovo de P. proneus; b. ovos de B. polydamas; c. lar va de P. proneus (49 est.); d. Larva de P.bunichus (5\% est.); e. larva de P. agavus (29 est.); f. lar va de P.a,nephalion (50 est.); g. pupa de p. a. nephalion.

Tabela 2:- Diferenças entre as larvas de Parides de acordo com a colo ração e comprimento dos tubërculos dos 89 e 99 segmentos : abdominais (de acordo com BROWN, DAMMAN \& FEENY, 1981).

outro, de acordo com os valores apresentados abaixo (K. S. BROWN Jr., com.pes.):

Estádio	Largura (mm)
19	1,0
29	$1,1-1,5$
39	$1,5-2,0$
49	$2,2-3,3$
59	$3,5-5,0$

Foi adotado um sistema de marcação com tinta "Liquid Paper" (corretivo liquido utilizado para erros datilográficos), nas larvas de 59 estädio devido aos seus frequen tes des locamentos de uma planta para outra.

Com os adultos foi feito um estudo de captura-mar cação-recaptura, de acordo com o trabalho de BROWN, DAMMAN \& FEENY (1981). As atividades realizavam-se geralmente entre 9 e 14 h e tinham duração de uma hora por semana, emmédia. Para cada indivíduo, depois de capturado com puça, determi-nava-se o sexo e o desgaste alar (dentre seis classes: NN, $N,{ }_{-}^{+} N, I,{ }_{-}^{+} V$ e $\left.V\right)$ e procedia-se à numeração da face ventral de suas asas posteriores (P. proneus, P. bunichus e P. agavus) ou anteriores (P.a.nephalion e P. n. eurybates). Para marca ção utilizou-se uma caneta indelével de ponta porosa marca "Sharpie". O animal era manuseado com cuidado e solto quase que imediatamente de modo que ficasse o menos traumatizado possivel. o horário e local de captura também eram registra dos alem de observações adicionais sempre que possivel (flo res de alimentação, comportamentos de cortejo e acasalamen-
to, marcas de danos e outros).
3.2. Battus polydamas

Battus polydamas e habita a ārea e também coloca ovos em Aristolochia. Os indi viduos jovens e adultos desta espécie foram avaliados em Monjolinho com uso dos mesmos procedimentos adotados para Parides spp.

3.3. Anălise estatistica

Alguns dos dados obtidos sobre desenvolvimento e permanēncia de larvas de Parides spp. nas espécies de Aristolochia foram analisados com auxilio de métodos paramé tricos e não-paramétricos (SOKAL \& ROHLF, 1981).

Com uso de test t-student e anāise de variância (de um fator) foram comparadas médias do nümero (mínimo) de dias que as espēcies de larides permaneceram, por estädio, larval, nas espécies de Aristolochia. Foram comparadas permanências da mesma espercie de Parides em espēcies diferentes de Aristolochia e tambëm espēcies diferentes de parides na mesma espëcie de Aristolochia. Nos casos em que a ANOVA revelou diferenças significativas foi utilizado o método, GT2 para verificação de quais médias foram diferentes que as outras.

Os cálculos de analise de variância foram feitos com uso de programa MTCROSTAT.

O teste de qui-quadrado foi utilizado para avaliar qualidade da planta hospedeira atraves do desaparecimento de larvas de Parides em diferentes especies de Aristolochia, comparando os nümeros de larvas que "desapareciam" até o início do 30 estädio 1 arval com os numeros que "sobrevivian" depois do 20 estädio. Nos casos em que as frequencias esperadas eram iguais ou menores que 5 utilizou-se o teste exato de Fisher para fazer as mesmas comparações. Esses mesmos testes foram tambem utilizados para comparar "sobrevivencia" de ovos até 10 estädio larval de Parides proneuse P. neophilus eurybates em diferentes espēcies de Aristolochia.

O Indice de Morisita (1959, apud WOLDA, 1981) Foi utilizado para medir a similaridade entre diferentes esperi es de Troidini na sua utilização de plantas individuais de Aristolochia elegans e A. esperanzae. As anālises foram fei tas separadamente para cada espëcie de planta. Indices com valor igual ou superior a 100 indicam sobreposição total en quanto que o valor zero indica ausencia total de sobreposi¢̧ão na utilização de plantas individuais dentro da espécie considerada.

$$
\begin{aligned}
& \text { A förmula utilizada para os călculos foi: } \\
& C_{\lambda}=\frac{2 \sum n_{1 i} n_{2 i}}{\left(\lambda_{1}+\lambda_{2}\right) N_{1} N_{2}} \text {, onde } \lambda_{j}=\frac{n_{j i}\left(n_{j i}-1\right)}{N_{j}\left(N_{j}-1\right)}
\end{aligned}
$$

[^1]Como não existem fórmulas para variancia do indice de Morisita (WOLDA, 1981), o método Monte-Carlofoi usa do para simular amostras ao acaso.

Us dados originais reunidos foram usados como base e, atri buindo-se as larvas ao acaso, foram se formando amostras de tamanho N_{1} e N_{2} e calculando o índice de Morisita correspon dente. O procedimento foi realizado vinte vezes para cada combinação de espécies de inseto. Casos em que o valor observado do indice foi menor que todos os 20 valores calcula dos por simulação (sob a hipótese nula de näo existir dife rença entre os insetos) foram considerados significativos ao nivel de 5%. Aqueles casos em que apenas um valor simulado foi menor que o observado foram considerados potencialmente significativos. Os cälulos foram desenvolvidos com auxílio de um micro-computador.

3.4. Acompanhamento de Aristolochia spp. no campo

Foram marcadas 80 plantas ao todo de A. elegans e 42 de A. esperanzae ($=$ total de indivíduos desta espécie en contrados em Monjolinho). Partiu-se de um numero inicial de 30 plantas por espécie e este foi aumentando medida que plantas novas eram encontradas com juvenis de Troidini. Ao longo do estudo várias plantas desapareceram de tal modo que ao final do trabalho nem todas plantas marcadas no início' eram mais disponiveis.

O acompanhamento fenolögico das plantas
de

Ahistolochia foi realizado concomitantemente com as observa ções das espëcies de Troidini. Ao longo do período de obser vações o aspecto vegetativo das plantas examinadas não se manteve constante. Alguns individuos passaram por um proces so natural de senescencia e posterior emissão de novos brotos. Muitas plantas foram danificadas pelo consumo das larvas que, emalguns casos comiam as plantas ate a raiz. outras plantas tiveram seus galhos cortados ou arrancados fora quando do corte da vegetação invasora ao seuredor, prin cipalmente nas bordas da mata. Registrou-se ainda a ação de " desastres naturais " tais como soterramento por troncos ou galhos de outras plantas e inundações. Finalmente foram tam bëm observados os períodos de floração.
3.5. Anālise quimica de Aristolochia spp.

No decorrer de 1984, foi feita uma anālise química preliminar de amostras de Aristolochia elegans, A. esperanzae e A. melastoma atraves de extração e fracionamento de folhas frescas. Este trabalho foi realizado no Laboratório de Ecologia Química do Departamento de Zoologia', do Instituto de Biologia da UNICAMP.

As plantas foram coletadas em Monjolinho e trazidas em sacos plásticos para o laboratório, onde suas folhas eram retiradas e pesadas ainda frescas.

O mëtodo utilizado (K.S.BROWN Jr, com.pes.) encon tra-se esquematizado a seguir:

Folhas frescas

1. Extração com $2 \times 10 \times$ acetona aquosa 80%, e
depois com $2 \times 10 \times \mathrm{EtOAc}$

2. Evaporação atē restar apenas ägua (400C)

Adicionar MeOH (3 x)
Extração con volume igual de CHCl_{3} : hexano 1 : 4 (3 vezes)

3. Acidificação até pH 2 FRAÇÃO 1

Extração com $\mathrm{CHCl}_{3}-0,75 \times$ volume extr.inferior

$$
\begin{aligned}
& 0,25 \mathrm{x} \text { volume } \\
& 0,08 \mathrm{x} \text { volume }
\end{aligned}
$$

extr. superior evaporar

FRAÇÃO 2
(polar) - äcidos aristolöquicos, aristolactamas
4. Tratamento con excesso de

Reineckato de Amônia
precipitação

FRAÇÃO 3
(alcalöides polares) \rightarrow magnoflorina e outros alcal. quaternä rios.

OBS.: as fraçôes, depois de obtidas, foram evaporadas, pesadas e guardadas na geladeira.

Finalmente, para fins de comparação, foram realizadas cromatografias em camada fina e coluna com sílica gel utilizando-se as frações polares de äcidos aristolóquicos, (FRAÇÕES 2) das três espēcies de Aristolochia mencionadas an teriormente.

```
1. Ovos e larvas de Troidini
```

A Figura 9 apresenta o numero total de ovos e lar vas (do 10 ao 59 estädios) de Parides proneus, P. bunichus, P. agavus, P. anchises nephalion, P. neophilus eurybates e Battus polydamas encontrados em Aristolochia spp.. Muitos dos individuos de Parides encontrados não foram determinäve is por terem desaparecido ainda muito pequenos. As tabelas contendo os dados brutos apresentados na Fig. 9 encontram se no Apêndice II.

O numero de registros de juvenis de Parides proneus tornou-semais comum a partir de agosto de 1982, com maior frequencia em plantas de A. elegans e A. melastoma (Fig. 9A).

A maioria dos registros de Parides bunichus foi em plantas de A. elegans e A. esperanzae e muito pouco em A. melastoma e A. arcuata. Os maiores registros ocorreramem A. elegans nos períodos de dezembro de 1981 a maio de 1982 e agosto a novembro de 1983 (Fig. 9B).

Em A. esperanzae foram encontrados principalmente ovos e larvas de 19 estādio e os maiores registros ocorreram de agosto a setembro de 1982 e de fevereiro a maio de 1983.

No período de dezembro de 1981 a março de 1982 a maior ocorrencia de juvenis de Parides agavus foi em A. esperanzae em relação a A. elegans e a partir daí existe

FIGURA 9 :- Ovos e larvas de Parides spp.e Battus polydanas encontrados em Aristolochia spp. ${ }^{1,2}$ em Monjolinho (dez 1981 a nov 1983).

1 = cada indivíduo estā representado, apenas uma vez, pelo estádio em que foi encontrado.
$2=0=$ ovo e 1 a 5 correspondem aos estádios larvais.

uma inversão (Fig. 9C). Em A. elegans, os maiores registros ocorreram em maio e julho de 1982 e de janeiro a maio de 1983 (principalmente ovos e larvas de 19 estādio). Em novem bro de 1982 houve um grande registro de juvenis em A. esperanzae que superou o numero de individuos encontrados, neste mesmo mês, em A. elegans. Em A. melastoma foram regis trados poucos indivíduos apenas em novembro de 1982 enquanto que em A. ancuata eles ocorreram em março e abril de 1983. A partir de setembro de 1982 houve um grande aumento da presença de adultos de Parides neophilus eurybates em Monjolinho (praticatnente ausentes na ärea até então) e com isso surgiu o problema de separação das larvas desta es pécie das larvas quase identicas de Parides anchises, nephalion (veja MOSS, 1919). A diferença entre os ovos des tas duas espécies era pequena devido a variações de cor e tamanho e apenas em poucos casos, mais para ofim do trabaHo de campo, eles puderam ser distingUidos com certeza. Por estes motivos resolveu-se juntar todos esses juvenis cu ja espëcie não pôde ser determinada e apresentá-los na Figu ra 9 F .

Em relação a Parides anchises nephalion apenas ' (Fig.9D), observa-se um numero maior de registros em A. esperanzae etl relação a A. elegans, no período de dezembro de 1981 a maio de 1982.

Em A. melastoma foram encontrados poucos indivi-.. duos em março de 1982.

O maior nünero de registros de Parides neophilus curybates ocorreu em A. elegans em relação a A.esprranzae no
ano de 1983 (Fig. 9E), mas é preciso considerar tambēm a Fig. 9F onde existem dados desta espécie misturados com P. a. nephalion a partir de setembro de 1982 até novembro de 1983.
os registros acumulados de jovens de P.a.nephalion e P.n.eurybates (Figura 9F) são semelhantes em A. elegans e A. esperanzae até março de 1983 (com predomínio en A. esperanzae de setembro a dezembro de 1982 e o oposto de janeiro a março de 1983). A partir de abril de 1983 ummaior nümero de registros ocorreu em A. elegans.

Em A. melastoma e A. arcuata esses juvenis foram encontrados, em menor numero.

Boa parte dos juvenis de Pahides cuja espécie não pôde ser determinada pertenciam ao estägio ovo e foram encontrados principalmente em plantas de A. elegans e A. esperanzae (Fig.9G).

Os registros de Battus polydamas ocorreram princi palmente em A. elegans e A. esperanzae (Fig.9H). o periodo de maior frequenciafoide dezembro de 1981 a março de 1982.

A Figura 10 apresenta os mesmos dados da Figura an terior reagrupados por espëcie de Aristolochia. A ärea de cada circulo é proporcional ao nümero total de ovos e larvas de Parides spp. e Battus polydamas encontrados em cada espē cie de planta hospedeira. Os juvenis não determinados de Parides ocupam a maior área em A. elegans, A. esperanzae e A. ancuata seguidos pelo conjunto de P.anchises nephalion e P. neophifus eurgbates. Das larvas separāeis, em A.efegans ocorre uma maior proporção de individuos deP.n.eurybates en

FIGURA 10-Ovos e larvas de Parides spp. e Battus polydamas agrupados por espécie de Aristolochia ${ }^{1,2}$.
$1_{\mathrm{PRO}}=P$. proneus; $\mathrm{BUN}=P$. bunichus; $\mathrm{AGA}=P$. agavus; $\mathrm{ANC}=$ P. a. nephalion ; $\mathrm{NEO}=P . n$. eurybates; $\mathrm{DESC}=$ Parides spp . indeterm. e $\mathrm{POL}=$ B.polydanas.
$2_{0}=$ ovo e 19 a 50 corresponden aos estádios larvais; o setor do raio ocupado por cada estádio e sua porcentagem em relação ao total de ju venis daquela espécie.
relação aos de P.a.nephalion enquanto que em A. esperanzae ocorre o inverso. P. agavus vem a seguir desse conjunto de duas espécies, em nümero de juvenis encontrados e depois Battus polydamas (ausente em A.arcuata), P. bunichus e P. proneus (também ausente em A. arcuata).

Eill A. melastoma, a maior $\vec{a} r e a \vec{e}$ ocupada por P. anchises nephalion mais P. neophilus eurybates seguida por P. proneus, Parides spp. indeterminados, Battus polydamas, P. bunichus e P. agavus, respectivamente.

Os nümeros absolutos referentes aos dados da Fig. 10 estão na Tabela 3 .

A Tabela 4 torna apresentar os dados das Figuras anteriores mas agora acumulados por estações do ano. De maneira geral, os menores registros ocorreram no inverno es maiores no outono. No entanto, P. proneus teve o menor nüme ro de indivíduos encontrados no verão e P. bunichus apresen tou um nūmero quase constante ao longo das quatro estaçães. Battus polydamas teve registros baixos também no outono.
2. Deslocamentos de larvas de 5 \% estadio; pupas

Mediu-se os deslocamentos de três larvas marcadas de 59 estáaio, todas de Panchises nephalion, e foram os se guintes: 7 m 20 cm (em $22 / 04 / 82$, depois de 3 dias damarcação, em A. esperanzae); 3 m 70 cm (em 03/05/82, depois de 4 dias, em A. elegans) e 3 m (em $13 / 08 / 82$, depois de 3 dias, em A. e(egans). As outras larvas marcadas desapareceram antes do segundo registro ou, em alguns casos, deslocaram-se

Tabela 4:- Total de juvenis de Troidini por estação ${ }^{1}$ do ano (dez 81 a nov 83).

	VERÃ̃	OU'ONO	INVERNO	PRIMAVERA	TOTAL
PRO	5	30	14	25	74
BUN	21	25	24	24	94
AGA	46	118	29	42	235
ANC	58	47	15	1	121
NEO	-	36	13	74	123
ANC					
+	86	110	59	81	336
NEO					
DES	212	222	65	169	668
BAT	63	13	12	63	151
TOTAL	491	601.	231	479	1802

1 VERÄO $=d e z+j a n+f e v ;$ OUTONO $=$ mar $+a b r+m a i ;$ INVERNO $=j u n+$ jul + ago; PRIMAVERA $=$ set + out + nov.
para plantas vizinhas.
Foram encontradas apenas tres pupas, todas de P.a. hephalion, penduradas em galhos de plantas nas quais se apoiam individuos grandes de Aristolochia elegans, nos meses de abril de 1982 e fevereiro e março de 1983. Todas vinham sendo acompanhadas desde os estädios larvais (nas ' mesmas plantas de A. elegans jámencionadas) mas nenhuma con seguiu completar o desenvolvimento. Elas foram encontradas, algum tempo depois, com pequenos furos e ocas sendo tambem observado ataque de formigas em uma delas.
3. Adultos de Troidini

Os Troidini adultos locomovem-se com muita rapidez em busca de alimento e são capturados, geralmente, quan do estão sugando néctar de flores. A principal fonte de nēc tar em Monjolinho è Impatiens sp. (Balsaminaceae), planta in troduzida, cujas flores são muito abundantes durante o ano to do (BROWN, DAMMAN \& FEENY, 1981). As borboletas ainda podem alimentar-se de flores de Bougainvilleasp. (Nyctaginace ae), diversas Leguminosae, Galipea jasminiflora (Rutaceae), Euphorbia pulcherrima (Euphorbiaceae), Lantana sp. eVerbena sp (Verbenaceae), Ixoraspe Pofchotria sp. (Rubiaceae) e outras flores ornamentais.

A Tabela 5 indica o numero mensal de individuos ' adultos (femeas e machos) marcados de Troidini em Monjolinho. Nos graficos da Figura 11 estão representados os nümeros to tais de borboletas capturadas, recapturadas ou somente vis-

Tabela 5:- Número mensal de Troidini adultos marcados (dez 81 a nov 83).

		R 0 0	13 0	$\begin{gathered} U N \\ 0 \end{gathered}$	A 0	$\begin{gathered} G 1 \\ 0 \end{gathered}$	A -	N	$\begin{aligned} & \mathrm{C} \\ & \mathrm{o} \end{aligned}$		$\begin{array}{rl} \mathrm{E} & 0 \\ 0 \end{array}$	13	$\begin{array}{r} \mathrm{A} \quad \mathrm{~T} \\ \mathrm{o} \end{array}$
$\underset{\sim}{\text {-1 }} \mathrm{dez}$			4	1	21	3	7		4				
jan		1	1	1	14	9	1		3	1		2	
fev			1	2	7	3	3		1			6	2
mar			2		17	10	3		5	1	1	2	
abr					5								1
mai					8	1							
\cdots jun						1							
∞ jul				1							1		
a ago				1	5	5	1.			3	1		
${ }^{-1}$ set					5		1						
out			1		8	1	1			1			
nov	2	1	1	1	10		1		3	1	1		
dez					2								
jan			1		4	1			1		2		
fev		1			9	4	3		3	5	2		
nar				1	20	14	4		0	1	2		
abr					6	1				6	1		
mai.	3	2	4	3	8	5	2	1	1	5	5		
m jun	2		2				1		1	1			
∞ jul	1	2		1	1		2			1	1		
or ago					2		3		2	2	2		
\rightarrow set	1		2		3		1	1	1	3	3		
out					11	5	2			1			
nov	3	2	3	1	9	2	3	2	2	8	4		
TOTAL	12	9	22	13	175	65	39	37	7	40	26	10	3

$I_{\mathrm{PRO}}=P$. proneus; $\mathrm{BUN}=P$. bunichus; $\mathrm{AGA}=P$. $a_{\text {gavus; }} \mathrm{ANC}=P$. anchises nephalion; NEO $=P$. neophilus eurybates e BAT $=$ Battus polydamas.

(PARIDES ANCHISES NEPHALION
PARIDES NEOPHILUS EURYBATES

FIGURA 11 - Total de Troidini adultos registrados por dia de marcação em Monjolinho (dez 1981 a nov 1983).
tas por hora de marcação.
Parides agavus ē a espécie mais comum, seguida' por P.a.nephalion e P.n.eurgbates (principalmente devido a uma grande frequêcia em 1983). Parides proneus ê a mais ra ra (com um aumento de frequencia em 1983) seguida por P. bunichus.

De modo geral registrou-se pouca ou nenhuma presen ça de adultos das três espécies mais frequentes nos meses de junho e julho de 1982 enquanto que isto ocorreu apenas com P. agavus neste mesmo período em 1983.

Existem algumas diferenças entre os estratos da mata mais percorridos pelas espécies de Troidini. Assim, P. neophicus eutybates àcontrado commaior erequencia nos estratos inferiores, mais escuros, da mata e P. agavus um pouco acima, em locais quentes e umidos. P. proneus também pode ser encontrado no interior da mata, onde a luz fica em mosaico, sendo uma espécie de locais mais frios e secos, (BROWN, DAMMAN \& FEENY, 1981). Jä P. anchises nephalion e P. bunichus são encontrados voando mais proximo do dossel superior. P. bunichus ocorre também em locais mais abertos mas \vec{e} Battus polydamas que \bar{e} encontrado tipicamente em äreas ensolaradas, como o Jardim (ver Figs. 4 e 7).
4. Localização dos ovos

As femeas de Parides colocam ovos isolados embaixo das folhas de Aristolochia, de modo geral, mas às vezes outros locais da planta hospedeira são utilizados e até ' substratos fora da mesma (geralmente na planta em que a
trepadeira se apoia ou em outra proximal. Algumas femeas ' ovipositoras (P.a.nephalion e P.n.eurybates) foram observadas colocando seus ovos em plantas vizinhas (Leguminosae, Commelinaceae e outras) depois de terem inspecionado a plan ta hospedeira com seus movimentos tipicos de tamborilamento tarsal.

Na Figura 12 encontram-se os sitios mais frequentemente utilizados para oviposição e os nümeros de ovos (acumulados de Parides) encontrados nos mesmos, para cada espécie de Aristolochia (no período de dezembro de 1981 a no vembro de 1983). A Figura 13 mostra alguns destes dados separados por espēcie de Parides, apenas em A. eleдans e A. esperanzae.

O examedestas duas \vec{u} timas figuras mostra que, apös o lado inferior das folhas, o pecíolo das folhas vem em segundo lugar na utilização. No caso de A. esperanzae, representa a metade do numero de ovos na superficie inferior das folhas, (Fig. 12), apesar da situação por espécie de Parides ser um pouco diferente (Fig.13). Em A. elegans exis te maior uniformidade com exceção de P.n.eurybates cujo nümero de ovos colocado no pecíolo e na haste é bastante gran de. Observe-se ainda que as espécies com maior numero de ovos colocados fora de Aristolochia sãop.a. nephalion (usan do A. esperanzae) e P.n.eurybates (principa1mente usando A. e(egans).

As fêmeas de Battus polydamas colocam ovos agrupa dos (3 a 10 , geralmente nas hastes ou nos pecíolos das plan tas utili\%adas).

Flgura 12 - Sitios de oviposição utilizados por Parides spp. em cada espécie de Aristolochia em Monjolinho.

FlGURA 13 - Sítios de oviponição utilizados por espécie de Parides en Aristolodia elegans e A. esperanzae.
5. Duração dos estägios de Parides em Aristolochia

A Tabela 6 indica as médias do nūneromínimo de dias que os juvenis de Parides permaneceram, em cada estädio, em plantas de Aristolochía. Esta duração significa aquele período em que os individuos estavam em determinado' estadio, com certeza, e pode ser usado como estimativa da duração real total. Adotou-se este critério pelo fato das avaliações não terem sido diärias e ser assim impossível calcular a data exata de uma muda entre dois estádios. Em alguns casos foram encontradas larvas com cäpcula cefalica um pouco mole e com coloração mais clara indicando muda recente (dentro de duas horas - K.S.BROWN, Jr., com.pes.).

Os resultados dos testes t-Student (somente entre amostras com 4 ou mais individuos) e analises de varian cia feitos com a mesma espēcie de Parides em diferentes espëcies de Aristolochia encontram-se na pröpria Tab.6. A Tabela 7 apresenta as comparações feitas entre especies diferentes de Parides na mesma espécie de Aristolochia.

A Tabela 8 apresenta os valores de médias do nume rominimo de dias por estadio que os juvenis de Parides per maneceram em plantas de Aristolochia agrupados por estações do ano (verão, outono, inverno e primavera) que foram compa radas com uso de teste t-Student e analise de variancia. So mente foram considerados os estadios que possuiam medias em pelo menos duas estações.

TABELA 6 :- Médias de permanência ($=$ no de dias) por estägio de juvenis de Parides spp. em Aristolochia spp., em Monjolinho.

[^2]TABELA 6:- Continuação.

$1_{N S}=$ Não Significativo; $*=p<0,05$ e $* *=p<0,01$.
TABELA 7:- Resultados das análises de variância entre durações de estádios de Parides spp. em Aristolochia elegans e A. esperanzae.

TABELA 8:- Médias de permanência ($=$ no de dias) por estägio de juvenis de Parides spp., acumuladas por estação

Sp	Estädio	$\begin{aligned} & V E R \tilde{A} 0 \\ & \times-S \end{aligned}$	$\begin{align*} & O \text { UTONO } \tag{n}\\ & \text { + } \mathrm{X} \end{align*}$	$\begin{align*} & I N V E R N O \tag{n}\\ & X \pm S \end{align*}$	$\begin{gather*} \text { PRIMAVERA } \tag{n}\\ \times-S \end{gather*}$	Resultados $e^{\text {" } t^{1 "}} \text { ANOVA }$
PRO	ovo	- - -	$6,0 \pm 1,73$ (13)	9,60 $\div 3,51$ (5)	- - -	S
BUN	191.	$3,0 \pm 0$ (4)	$7,50 \pm 3,56$ (6)	$11,0 \pm 5,67$ (11)	$6,90 \pm 4,01$ (10)	± 2
AGA	ovo	$4,0 \pm 2,39$ (8)	$7,16 \pm 2,79$ (38)	$9,69 \pm 3,09$ (16)	$5,27 \pm 3,03$ (11)	** ${ }^{3}$
AGA	191.	$6,92 \pm 4,66$ (12)	$8,80 \pm 4,73$ (70)	9,94 $\pm 5,22$ (18)	$6,44 \pm 3,03$ (16)	NS
AGA	201.	$4,5 \pm 3,54$ (2)	$6,09 \pm 2,95$ (23)	$5,19 \pm 2,34$ (16)	- ---	NS
AGA	391.	- -	$5,11 \pm 2,52$ (9)	$5,37 \pm 3,20$ (8)	$2,5 \pm 0,71$ (2)	NS
NEO	ovo	- - -	$5,62 \pm 3,46$ (8)	$9,75 \pm 4,57$ (4)	$5,0 \pm 2,98$ (26)	$*^{4}$
NEO	101.	- - -	$6,05 \pm 4,82$ (21)	$8,25 \pm 1,50$ (4)	$6,20 \pm 4,15$ (30)	NS
NEO	$2 \% 1$.	- - -	$7,75 \pm 4,27$ (4)	$4,33 \pm 1,15$ (3)	$4,71 \pm 3,25$ (7)	NS

A. ESPERANZAE							
Buy	101.	$7,0 \pm 1,41$ (4)	$6,40 \pm 1,95$ (5)	6,0 $\pm 1,92$	(7)	- - -	NS
Buy	291.	$8,0 \pm 1,73$ (3)	3,67 $\pm 0,58$ (3)	5,0 $\pm 1,73$	(3)		$*^{5}$
AG	ovo	---	5,94 $\pm 1,77$ (16)	- - -		5,20 $\pm 2,05$ (5)	NS
AG	101.	$3,67 \pm 2,08$ (3)	$7,0 \pm 3,50$ (17)	- --		4,92 $\pm 2,19$ (12)	NS
$1_{\text {NS }}=$ Não Significativo; $*=p<0,05 ; * *=p<0,01$ 3 teste GT2 revelou diferença significativa entre inverno e todas outras estações; verão diferente significativamente do outono; outras combinações não diferentes.				${ }^{2}$ teste GT2 revelou diferença significativa entre verão e inverno; ausência de diferenças entre as outras combinações. \qquad ${ }^{4}$ teste GT2 revelou diferença significativa entre inverno e primav outras combinações não diferentes. 5 teste GT2 revelou diferença significativa entre verão e outono; outras combinações não diferentes.			

6. "Permanência" de Parides em Aristolochia

Na Figura 14 estão apresentadas curvas de"sobrevi vência" mostrando as porcentagens de larvas de Parides que permaneceram em plantas de Aristolochiadurante o seu desenvolvimento (de 19 a 59 estädios larvais). Foram acumulados dados de todo o periodo do trabalho de campo (dez 81 a nov 83) e a partir do numero total de larvas de 19 estáadio. $\left(n_{1}=100 \%\right)$ encontradas foi-se calculando a porcentagem des te total que ainda foi acompanhada nos estadios subsequertes. Isto foi feito para cada espécie de Parides nas espécies de Ahistolochia e apenas estão representados os casos cujo nümero inicial de larvas de 19 estàdio foi maior ou igual a 5. Pode-se apenas fazer conjecturas sobre o que teria acontecido às larvas que não foram mais encontradas que tanto, podem ter morrido por efeito ou não de predação como simplesmente terem se deslocado para outra planta. Do mesmo mo do não é possĩvel afirmar se as larvas acompanhadas atée o 59 estadio atingiram o estagio adulto. o que se obteve portanto com este tipo de tratamento foi uma estimativa do sucesso de desenvolvimento de Parides spp. através da maior, ou menor permanência das larvas de 19 a 50 estädio nas espé cies de Aristolochia.

Os resultados dos testes de qui-quadrado mostraram uma melhor "sobrevivencia" altamente significativa , $(p<0,01)$ de Parides proneus em Aristolochiamelastoma com parada com A. elegans enquanto o valor do qui-quadrado obti do para P. bunichus mostrou uma melhor "sobrevivencia" mar ginalmente significativa $(p \approx 0,06)$ em Aristolochia ,

FLGURA 14 - "Sobrevivencia" de larvas (de 19 a 59 estādios) de Parides spp. em plantas de Aristolochia spp. Qu Moyduha
esperanzae comparada com A. elegans. o teste exato de Fisher revelou uma melhor "sobrevivencia" altamente signifí cativa $(p=0,004)$ de Parides neophilus eurybates en Aristolochia esperanzae comparada com A. elegans. Parides' agavus e P. anchises nephalion não diferem nas suas "sobrevivencias" nestas duas espēcies de planta hospedeira.

Desconsiderou-se o estägio ovo porque, como a maioria deles sö podia ser identificada depois da larva eclodir e chegar ao fim do 19 estádio, não haveria diferença entre o nümero de indivíduos nestes dois primeiros estägios. Para P. proneus e P. n. eurybates cujos ovos eram distintos das outras especies foi possivel avaliar o nümero de perdas entre os estagios de ovo e 19 larval (figura 15). Os testes de qui-quadrado e exato de Fisher não revelaram diferenças intraespecificas na "sobrevivência" destas espécies de Parides entre as espécies de Aristolochia analisadas. Acumulando-se os da dos de "sobrevivencia" para cada espēcie de Parides encon-trou-se uma melhor "sobrevivencia" altamente significativa no teste qui-quadrado $(p<0,01)$ de Parides neophilus ' eurybates comparado com P. proneus.

Para avaliar as relativas diferenças em qualidade de planta hospedeira para cada esperie de Troidini em diferentes espécies de Aristolochia foram calculadas as porcentagens de larvas observadas em cada fase de desenvolvimento para as diferentes esperies de Aristolochía (Figura 16). o desenvolvimento foi considerado a partir do estägio de ovo em Parides proneus, P. neophilus eurgbates e Battus polydamas. Nas outras espëcies (Parídes bunichus, P. agavus e P.

FIGURA 15 - "Sobrevivencia"de ovos (até lo estādio larval) de Parides proneus e P. neoplicus eurybates Aristolochia spp.

anchises nephalion utilizou-se os dados de 29 estadio larval em diante para que não houvessem subestimativas devido aos indivíduos "desaparecidos" em estágio de ovo e 19 larval, não determinados. A Figura 17 apresenta dados anälogos para estimar o desempenho de todas as espécies de Troidini em cada espécie de Aristolochia.

Nas Figuras 16 e 17 notamse um atmento nas porcen tagens de juvenis de Parides proneus e P. bunichus em Aristolochia melastoma, aumento nas porcentagens de juvenis de Parides bunichus e Battus polydamas em Aristolochia, elegans e aumento de Parides agauus em Aristolochia , esperanzae. As maiores porcentagens de larvas de Parides anchises nephalion e P. neophilus eurybates alternam-se entre Aristolochia esperanzae e A. elegans (exceto pela peque na variação de P. neophilus eurybates na Fig.17).
7. Distribuição de larvas de Troidini em individuos de Aristolochia

A Figura 18 mostra as plantas marcadas deAristolochia efegans e A. espenanzae em que foram encontradas larvas de 29 estädio em diante das espēeies de Troidini estudadas.

As plantas individuais utilizadas (incluindo-se as frequencias) foram comparadas entre cada duas espécies de Troidini em Aristolochia elegans e A. esperanzae, separadamente. Foram calculados índices de sobreposição atraves do método de Morisita (Tab.9).

FIGURA 17 - Porcentagens de larvas de Troidini em cada espécie de Aristolochia.

TABELA 9 :- Indices de MORISita ${ }^{1,2}$ para a sobreposição de larvas de Troidini em individuos de Aristolochia elebans (acima da diagonal) e A. esperanzae (abaixo da diagonal).

	ANC	AGA	PRO	NEO	BUN	POL	
ANC	1	69^{*}	50	34^{*}	50 *	$54 *$	
AGA	87	1.	165	57	55^{*}	170	
PRO	-	-	1.	75	25^{*}	-	永
NEO	90	$34^{\%}$	-	1	78	109	0 4 H 4
$B \cup N$	110	163	-	117	1	155	安
POL	11^{*}	37^{*}	-	0 *	45	1	

A. ESPERANZAE
${ }^{1} \mathrm{PRO}=$ Parides proneus, $\mathrm{BUN}=\mathrm{P}$. bunichus, $\mathrm{AGA}=P$. a_{B} avus, $\mathrm{ANC}=P$. anchises nephalion, $N E O=P$. neophilus eurybates
e POL $=$ Battus polydamas.
$2 \%=$ o valor do indice é significativo a nivel de 5% (em 20 simulações Monte-Carlo foram obtidos zero ou no máximo um valor abaixo do valor obtido para o índice).
8. Plantas hospedeiras

Na Figura 19 encontram-se representados os princi pais fatores atuantes nas plantas de Aristolochia elegans e A. esperanzae, em Monjolinho. As plantas assinaladas nos gráa ficos pertencem ao conjunto daquelas marcadas no decorrer do trabalho e que passaram por um destes tipos de modificaçöes: rebrotas, comidas + senescentes + atingidas por "desastres" naturais e cortadas (por ação humana). E possível que o mes mo individuo esteja representado mais de uma vez enquanto ' que outro nenhuma. O grupo "cortadas por ação humana" foi quase que constante para certas plantas de A. esperanzae lo calizadas na entrada da mata (ver Figura 7) que eram regularmente cortadas junto com a vegetação invasora ao redor e depois rebrotavam normalmente.

Os meses de floração tambëm estão indicados nesses gráficos mas apenas algumas piantas de maior porte passaram por este processo (sö uma em A. esperanzae) e aquelas que floresceram no primeiro ano não o repetiram no anoseguin te.

Foi feita uma estimativa do tempo médio (em semanas) necessario para que houvesse re-utilização de plantas comidas e posteriormente rebrotadas de Aristolochia elegans $(=8,7$ semanas; $n=25)$ e A. esperanzae $(=17,3$ semanas; $n=44)$ Foi tambén calculado o tempo médio decorrido para que fossem co midas totalmente, de novo, as plantas de A. elegans $(=22,1$ semanas; $n=8)$ e A. esperanzae ($=27$ semanas; $n=30$).

FIGURA 19 - Alterações ocorridas com as plantas marcadas de Aristolochia elegans e A. esperanzae no periodo de dez 1981 a nov 1983.

TABELA 10:- Modificações eu Aristulochia melastoma.

ANO	Transplante	Rebrote	Soterramento	Floração
1981	setembro			
1982	setembro	maio	fevereiro	
		jutubro		

A Tabela 10 mostra algumas modificações ocorridas nas plantas de A. melastoma desde a época de seu transplante, em setembro de 1981 . Como não houve marcação individual, as plantas foram avaliadas como um todo.
9. Anālise química de Aristolochía spp.

A Tabela 11 apresenta os valores de peso seco das frações obtidas no decorrer da extração de folhas de Aristolochia elegans, A. esperanzae e A. melastoma. os dados indicam uma grande quantidade de alcalöides em A. elegans (Fração 3) e uma grande quantidade de gordura em A. melastoma na Fração 1.

A Figura 20 mostra os resultados das cromatografi as em camada fina (CCF) das frações 2 de A.elegans, A. esperanzae e A. melastoma apös observação sob luz ultra ' Violeta (ondas curtas e longas) e exposição a lodo.

Estas mesmas frações 2 (supostamente contendo áci dos aristolóquicos) foram ainda submetidas a cromatografia em coluna de silica gel. Cada fração foi separada en sub-
Tabela 11 :- Pesos das fraçōes obtidas por extração química de folhas de Aristolochia elegans, A. esperanzae e

SP ARISTOLOCHIA	Peso fresco inicial (g)	Fração de gordura(mg)*	Fração apolar (1) (mg)	Fração äcida (2) (mg)	Fração alcal.quatern. (3) (mg)	resíduos (g)
A. elegans	33,4	36	1445	332	129(+207)	6,3
A. esperanzae	11,4	29	570	105	12	2,3
A. melastoma	8,2	40	140	63	8 (+ ?)	1,7

FIGURA 20 - Cromatografia em camada fina das frações 2 de Aristolochia elegans, A. esperanzae e A. melastoma (em CHCI MeOH 15\%).
frações depois de correr na coluna tendo como solvente cloroformio commetanol a $2,5,10,25$ e 50%. As subfrações for ram evaporadas (ao ar ou com auxílio do secador) e depois a nalisadas atraves de cromatografia em catuada fina (CCF), usando como solvente: cloroformio/metanol 5%. Elas foram então comparadas e reunidas por suas semelhanças em um numero menor de frações apös observação sob luz Ultravioleta (ondas curtas e longas) e exposição a Iodo das placas da CCF (Fig. 21). A Tabela 12 contém alguns dados comparativos das cromatografias em coluna feitas para as três espēies de Aristolochia.

As frações finais resultantes foram evaporadas e pesadas (Figura 22) e comparadas por uma nova CCF (com sol vente CHC13 MeOH 5\%) com observações sob U.V. e Iodo (Figu ra 21). Foram então escolhidas, dentre estas, aquelas frações que se julgava conterem os äcidos aristolóquicos propriamente ditos para serem analisados por espectrometria de ressonancia magnética nuclear (RMN). Para isso foi utilizado um VARIAN - T-60, do Instituto de Química da UNICAMP, e uma solução de CDCl_{3} e os resultados obtidos estão na Figu ra 23.

Esses espectros não indicam presença de prótons a romăticos e seus padrões não sugerem qualquer estrutura, consistente com substancias típicas de Aristolochia. Devido a isso, e tambēm às quantidades muito reduzidas de frações obtidas, não foi prosseguida a analise química das espécies de Aristolochia.

Tabela 12 :- Resultados das cromatografias em coluna de Aristolochia spp.

SP ARISTOLOCHIA	Peso fração utilizada (mg)	Peso silica gel coluna (g)	no total de frações obtidas	no final frações...
A. elegans	165	16	28	11
A. esperanzae	93	7	24	8
A. melastoma	33	6	28	7

Pesos das frações finais obtidas por cromatografia em coluna
metastoma.

FIGURA 23 - Espectros de ressonância magnética nuclear (RMN) de frações de Aristolochia elegans. A. esperanzae e A. melastoma. las fragues tilizodes estur iudicades we F(8.22)

D LSCUSSÃO

1. Ovos, larvas e pupas de Troidini

De acordo com a Figura 9 e Tabela 3, Parides acavus, P. anchises nephalion e P. Neophilus eurybates são as espëcies de Troidini com os maiores registros de juvenis durante o período de estudo. P. phoneus possui os menores registros.Os dados de BROWN, DAMMAN \& FEENY (1981) para a mesma $\vec{a}-$ rea, em época anterior, indicamum predominio de ovos e larvas de Battus polydanas sobre P.a.nephalion e P. agavus, respectivamente, com ausência de P.n.eurybates.

No presente trabalho ainda é preciso considerar o grande nümero de juvenis de Parides não determinados os quais, na maioria, pertenciam a uma das tres espécies mais comuns de Parides lou ainda a P bunichus). Estes mesmos da dos estão evidenciados pelos maiores setores ocupados nos circulos (planta hospedeira) na Figura 10 .

Mesmo as especies mais numerosas, no entanto, näo ocorreram com a mesma intensidade ao longo dos meses de 1981 a 1983 e existem épocas commaiores e menores registros (Fi gura 9, Tabela 4). De modo geral, nos meses de junho, juIho e agosto foram obtidos os menores registros (exceto agos to de 1983).

O grande nümero de ovos e larvas nos 1 os estādios de Troidini encontrados ao longo de todo este trabalho mostra que estas espécies reproduzem-se ao longo de todo o ano

Abstract

resultando em värias gerações, como tambëm foi encontrado' por outros autores que trabalharam com este grupo nos trópi $\cos \left(\mathrm{MOSS}, 1919 ; \mathrm{D}^{\prime}\right.$ ALMEIDA, 1966,; YOUNG, 1971a, 1971b, 1972a, 1972b, 1973, 1977; COOK, FRANK \& BROWER, 1971, BROWN DAMMAN \& FEENY, 1981). Jä as espécies de clima temperado, com longo período de baixas temperaturas, apresentam ape nas uma ou duas gerações (SLANSKY,Jr, 1974; RAUSHER, 1980, 1981a; STMS \& SHAPIRO, 1983).

1.1. Parides proneus

Em laboratório, A. melastoma foi a planta mais utilizada pelos juvenis desta espécie de acordo comos dados de BROWN, DAMMAN \& FEENY (1981). No campo, entretanto, mesmo sendo P.proneus a espēcie predominante em A.melastoma (Fig. 10), o nümero absoluto de juvenis encontrados em A. elegans (Tab.3) foi maior. Isto pode ser explicado pela pro ximidade entre as manchas destas duas espécies de planta de alimentação e talvez principalmente pela maior biomassa de A. elebans em relação a A. melastoma (Tabela 13) cujas plantas poderiam constituir um recurso mais "aparente" (FEE NX, 1976) e estável.

A ausência de juvenis de P.proneus no período de dezembro de 1981 a fevereiro de 1982 pode estar relacionada com o fato dos rizomas de A. melastoma estarem sob os efeitos do primeiro transplante realizado em setembro de 1981. Antes de ser feito o transplante jáaviam sido encontrados adultos (sō quatro) e juvenis (tres) de P. proneus (em A. elegans) em Monjolinho (BROWN, DAMMAN \& FEENY, 1981), sendo
TABELA 13:- Biomassa e utilização de Aristolochia por Parides em Monjolinho, 1981-1983.

	$\begin{gathered} \text { Biomassa }^{1} \\ (\text { relativa }) \end{gathered}$	NO ovos	No larvas	$\begin{aligned} & \text { Utilização relativa } \\ & =\frac{\sum(0+1)}{\text { biomassa }} \end{aligned}$	Ordem de preferência por Parides ${ }^{2}$
A. elegans	200	573	538	6	3
A. esperanzae	20	356	196	28	-
A. melastoma	2	59	32	46	1
A. aicuata	1	30	18	48	2

[^3]esta a espécie de Troidini menos abundante nesse trabolho an terior. A introdução de Aristolochia melastoma constituiu se portanto num recurso novo para as especies de Troidini em Monjolinho e deve ter contribuido fortemente para um amento em abundancia de Parides proneus no presente estudo. P. proneus, no entanto, continuou sendo a menos abundante dentre as especies de Troidini em Monjolinho.

Pode ser que A. melastoma não tenha se desenvolvido tão bem como em seu local de origen pela ausência de um sub-bosque secundário, o que pode ter aumentado sua susceptibilidade a "desastres naturais" (por exemplo o soterramen to ocorrido em fevereiro de 1983 causado por fortes enxurra das - ver Tabela 10). Algumas diferenças de luminosidade e umidade entre as duas matas (ver Tabs. A15 e Al6) também po dem ter influido.

O registro de juvenis de P. proneus en A.esperanzae
foi baixo (figura 10), e nulo em A. arcuata.
1.2. Parides bunichus

Parides bunichus foi a segunda menos abundante das espécies encontradas em Monjolinho (total de 94 juvenis encontrados - Tabela 3). No trabalho de BROWN, DAMMAN \& FEENY (1981) esta também foi a segunda espécie menos abundante. Neste estudo, a maioria de seus ovos e larvas foi achada em A. elegans (Figura 9), não diferindo muito proporcionalmente, do total encontrado em A. esperanzae (Tab. 3, Fig.10) ; em A. melastoma, a proporção è bemmaior. o menor índice de
encontros de juvenis de P.bunichus foi emplantas de A. arcuata.

De acordo com os dados da tabela4, esta foi a \vec{u} nica espécie de Troidini que apresentou ocorencias semelhan tes ao longo de todas as estações do ano.
1.3. Parides agavus
P. agavus foi uma das espécies mais abundantes (to tal de 235 juvenis encontrados - Tabela 3) em nümero efrequência (Fig.9), principalmente em plantas de A. elegans e A. esperanzae (em proporções semelhantes, de acordo com a Figura 10). Houve ainda o registro de individuos desta espé cie em A. arcuata e em A. melastoma (numero bem baixo) (Fig 10). Em BROWN, DAMMAN \& FEENY (1981), P.agavus foi uma das 3 espécies mais abundantes de Troidini.

Segundo a Tabela 4 , o numero de encontros no outo no foi muito superior ao das outras estações.
1.4. Parides anchises nephalion e P. neophilus eurybates

De acordo com os totais de ovos e larvas de P. a. nephalion e P. n. eurybates (total acumulado de 580 - Tabela 3), estas duas especies seriam as predominantes na comunidade de Troidini de Monjolinho. Isto se reflete tambëm nas porcentagens de ocupação das plantas hospedeiras (Fig. 10). No trabalho de BROWN, DAMMAN \& FEENY (1981) entretanto, as espécies mais abundantes foram P.anchises nephalione battus
pofydamas. No presente estudo, como não foram descobertas di ferenças entre as larvas de P.a.nephalion e P.n.eungbates' não \bar{e} possível, pelo nümero de juvenis, perceber diferenças de abundancia entre elas. Pode-se apenas tentar fazer uma estimativa de acordo com o numero de adultos encontrados, (ver seção 2). MOSS (1919) jä havia constatado a grande semelhanca entre as larvas destas duas especies em seutraba1ho com papilionideos do Para.

A maior presença de juvenis de P. a. nephalion em A. esperanzae e de P. n. eurybates emA. elegans (Fig. 10) não serve como indicação de preferencias definitivas pois estes dados referem-se a épocas distintas (ver também Fig. 9). Os registros de P. a. nephalion em A. esperanzae são do período de dezembro de 1981 a agosto de 1982 quando ainda não havia presença significativa de P. n. eurybates em Monjolinho. Os dados de P. n. eurybates referem-se aos meses de abril a novembro de 1983 quando já existia um grande n $\vec{u}-$ mero de juvenis não reconhecidos das duas espercies tanto em A. elegans como em A. esperanzae. Por motivos semelhantes, tambëm não é possível determinar em qual época do ano ocorreu maior presença de uma dessas duas espécies (Tabela 4) e apenas pode-se dizer que o inverno foi a epoca com menores registros.
1.5. Panides spp. indeterminados

As proporções de juvenis indeterminados forammui to semelhantes em plantas de A. eleganse A. esperanzae (Fig.
10) apesar do maior nümero absoluto de registros ter sido em A. elegans (Tabela 3, Figura 9). Em A. melastoma a proporção dininui para a metade em A. arcuata torna-se a mais elevada dentre todas (Fig. 10).

Os maiores registros ocorreram no verão e outono e os menores no inverno (Tabela 4). Estas variações estão diretamente relacionadas com o maior ou menor numero total de encontros de juvenis de Troidini em Monjolinho: quanto mais juvenis encontrados, maior é a quantidade deles que não sobrevive nos 1^{s} estágios.

Nos meses de novembro de 1982, janeiro, fevereiro e março de 1983, registraram-se os maiores nümeros de ju venis näo determinados (principalmente ovos) e todos esses meses registraram grandes volumes de precipitação (ver Figu ra 2).

E necessário mencionar que o grande nümero de registros ocorrido no mes de setembro de 1982 relaciona-se com uma interrupção de 21 dias das avaliações de juvenis juntamen Le com o inicio do período chuvoso.

1.6. Battus polydamas

Fsta foi a terceira menos abundante entre as espé cies (total de 151 juvenis - Tab. 3) e aquela que ocorreu de maneira mais inconstante ao longo do periodo de observações. O fato de colocar ovos agrupados e comportamento gregário das larvas (YOUNG, 1971a, 1972a; BROWN, DAMMAN \& FEENY,1981) contribuiu para o numero razoavelmente grande de juvenis, en
contrados desta espécie. No trabalho de BROWN, DAMMAN \& FEE NY (1981) esta foi a mais abundante dentre as espécies de Troidini.

Ausente em A. arcuata, B. polydamas ocorreu em proporçöes semelhantes nas outras espécies de Aristolochia (Fig.10) e em maior nümero nos meses de verão e primavera (Tabela 4).

As larvas desta espécie, ao alimentarem-se, são capazes de consumir a planta hospedeira até a raiz (MOSS, 1919; BROWN, DAMMAN \& FEENY, 1981) mas não foram avaliados os efeitos deste häbito sobre as populaçōes de plantas de alimentação e/ou sobre as outras populações de Troidini que u-tilizavam-se dos mesmos recursos.

1.7. Pupas

O fato das tres pupas terem sido encontradas, em Monjolinho, bem prōximas ou mesmo na pröpria planta na qual tinham se alimentado concorda com os dados de campo de YoUNG (1971a) e difere dos de BROWN, DAMMAN \& FEENY (1981), em la boratório. No entanto, o pequeno nümero encontrado pode evi denciar o afastamento das plantas hospedeiras na epoca do empupamento (BROWN, DAMMAN \& FEENY, 1981). A coloração críp tica das pupas (YOUNG, 1971a; HAZEL \& WEST, 1979; WEST \& HAZEL, 1979; BROWN, DAMMAN \& FEENY, 1981) e o local escolhi do são utilizados como escape a predação (como foi demons trado em estudos feitos com outras espécies temperadas de Troidini: WESY \& HAZEL, 1982; SIMS \& SHAPIRO, 1983) e podem
tambem tor dificultado seu encontro.
Como as pupas morreram antes de completar seu desenvolvimento não foi possível obter o período medio de duração deste estágio. Dados de laboratório e campo indicam ' que a média e de 14 a 16 dias (YOUNG, 1971a; RAUSHER, 1979a) ou 13 a 17 dias (BROWN, DAMMAN \& FEENY, 1981). Este período pode ser alongado para mais de 100 dias por efeito de diapausa (MUYSHONDT, 1974 ; BROWN, DAMMAN \& FEENY, 1981).
1.8. "Desaparecimento" e mortalidade

De modo geral as larvas de Parides permanecem na planta hospedeira, onde eclodiram, enquanto houver alimento disponivel. Nos 19^{s} estädios larvais, alimentam-se debrobos e folhas jovens e depois passam a consumir folhas mais ve1has (BROWN, DAMMAN \& FEENY, 1981). A partir do 40 estädio elas podem realizar deslocamentos maiores em busca de alimento e no fim do 59 estádio em busca de um local para empu pamento. Isto poderia explicar o "desaparecimento" da maio ria das larvas marcadas neste estädio (ver seção 2 - Resultados).

Apesar de não terem sido quantificados os principais fatores causadores de mortalidade nas populações de jü venis de Troidini em Monjolinho, sabe-se que ação de predação, parasitismo e patögenos alēm da pröpria qualidade nutricional das plantas hospedeiras e de alimentação de adultos são fatores biöticos muito importantes para regulação de populações de borboletas alem da influencia dos fatores clí
mäticos (G1LBER'I \& SINGER, 1975).
Os principais predadores de larvas de Troidini em Monjolinho parecom ser pequenos artropodos como formigas (ob servado também em laboratório por BROWN, DAMMAN \& FEENY, 1981) e pequenas aranhas.

Estudos feitos com outras espécies de Papilionidae, de paises temperados, também apontam mortalidade nos 10 estảdios larvais devido a pequenos artrópodos e, além disso, ataque de vertebrados nos $\bar{u} I t i m o s$ estädios (WATANABE 1976, 1981; HIROSE et alii, 1980; RAUSHER, 1981a). Estes mes mos autores (exceto RAUSHER, 1981a) encontraram ainda morta lidade de ovos e pupas devido a parasitismo (Hymenoptera e Diptera).

Neste trabalho, foi registrada morte de larvas de 59 estádio larval de P.a.nephalion lou P.n.eurybates) que continham em seu interior larvas de dipteros parasitos da familia Tachinidae. YOUNG (1971a) registrou uma mortalidade grande de pupas de B.polydamas devido à ação de um taquinideo (Patettua sp) que emergiam numa base de 3 a 5 por indivíduo parasitado mas jä no estägio de pupa. Este mesmo autor acrescenta que pupas não parasitadas tiveram 100% de so brevivencia no campo e laboratório.

Assim, alem do ataque de formigas detectado no pre sente trabalho (tambem registrado por RAUSHER, $1979 a ; B J A U$, 1980 e H1ROSE et alif 1980), a mortalidade das pupas de P. a. nephalion, em Monjolinho, pode ter sido consequência de parasitismo. RAUSHER (1979a) tambēm encontrou morte de pupas de Battus polydamas, no Mexico, por efeito de micro hí
menöpteros parasitos (familia Chalcididae). SIMS \& SHAPLRO (1983) encontraram mortalidade de pupas de Battus phitenor, na Califórnia, EUA, por ação de um micro himenóptero parasito (familia Chalcididae) e tambëm por provävel ação de patógenos.

BLAU (1980), trabalhando com Papilio polyxenes na Costa Rica, encontrou, ainda, mortalidade de juvenis devido a fatores climaticos (chuva).

No presente trabalho, foram observados casos de canibalismo entre larvas de P.a.nephalion e supostos ovos de P.agauus. No entanto, Young (1972b) acredita que a mortalidade devida a este fator é desprezível pelo menos para cria ções de laboratörio com espēcies de Parides e Battus.

Por fim, também é preciso considerar a possivel' existencia de inviabilidade natural decorrente de fatores genéticos ou fisiologicos embora YOUNG (1972b) tenha encontrado alta viabilidade de ovos em suas criações de laboratō rio.
2. Adultos de Troidini
2.1. Parides proneus
P. proneus foi, dentre as espécies de Parides, a menos frequente em Monjolinho (Fig. 11) e isto também ocorreu com os juvenis encontrados (Fig. 9A) desta espécie. os indivíduos adultos apareceram descontinuamente ao longo dos meses de observação e em nümero pequeno (māximo de 2 indiví
duos avistados por dia de marcação). A partir de maio de 1983 eles passaram a ser encontrados commais frequéncia, (Fig. 11 e Tab. 5) . No entanto a eventual presença de adultos desta espécie de Parides, em Monjolinho, nem sempre foi registrada nos trabalhos de marcação. Isto pode ser evidenciado pela presença de juvenis de P.proneus em Aristolochía spp. em meses onde não houve registro de adultos (março, abril, maio, agosto, setembro e outubro de 1982 e janeiro, março, abril e agosto de 1983-Fig. 9A e Tab. 5). E o conträrio, i.e., presença de adultos sem encontro de juvenis, aconteceu apenas em janeiro de 1982 e fevereiro de 1983, (Fig. 9A, Tab.5). Pode ter havido um "desencontro" de horários de atividades pois, de acordo com BROWN, DAMMAN \& FEE$N Y$ (1981), esta espécie é ativa mais cedo (de 9 h a 10 h) do que as outras especies de Troidini. E como o horario de cap tura/recaptura variou entre 9 h e 14 h , os adultos de P.phoneus podem ter sido subestimados algumas vezes.
o índice de recapturas desta espécie foi muito bai xo e sempre no prazo de uma semana depois da marcação.

2.2. Parides bunichus

P.bunichus ocorreu em numeros um pouco superiores comparado com P. proneus em Monjolinho (Fig.11) e durante . quase todo o período de observações. Mas não chegou a ser uma das tres mais abundantes como em BROWN, DAMMAN \& FEENY (1981). No presente estudo, houve meses com registro de juvenis sem que tenha havido encontro de adultos desta espécie (abrile
maio de 1982 e fevereiro e agosto de 1983, Fig.9B e Tab.5). Segundo OTERO \& BROWN (1986) esta espécie prefere locais abertos e, em Monjolinho, foi observada principalmente no jardim ou no interior da mata, voando alto e rāpido e sendo de dificil captura.

0 indice de recapturas tamberm foi baixo; um indivỉduo foi recapturado 20 dias apös sua marcação.

2.3. Parides agauus

P. agavus foi a espēcie de Troidini dominante em Monjolinho durante todo o período de observações (Fig.11) e isto também ocorreu em BROWN, DAMMAN \& FEENY (1981). Sö não form registrados adultos desta esperie em julho de 1982 , (mas foram encontrado ovos - Fig. 9C) e junho de 1983.

O numero de recapturas foi maior que o das outras espécies. Alguns indivíduos (pelo menos 6) foram recapturados ate um mes depois de sua marcação inicial (um deles foi recapturado 4 vezes depois da marcação). BROWN, DAMMAN \& FEENY (1981) registraram longevidades de pelomenos 49 e 56 dias para 2 machos desta espécie em Monjolinho.

2.4. Parides anchises nephalion

P.a.nephalion foi a 29 espécie mais numerosa em Monjolinho (com nūmero máximo pröximo à metade de p.agavus) o que contrasta com o pequeno numero encontrado em BROWN, DAMAAN \& FRENY (1981). Adultos desta espécie foram encontra
dos ao longo de todos meses exceto junho e julho de 1982, (Fig. 11). As maiores densidades foram registradas de dezem bro de 1981 a março de 1982 (Fig. 11).

O nümero de recapturas foi médio e os individuos foram encontrados no māximo 3 vezes apōs sua marcação (urn foi recapturado um mês depois de marcado).

2. 5 Parides neophilus eurybates

P. n. eurybates vem logo depois de P.a.nephalion, em nümero de adultos encontrados, e teve um grande aumento de abundância desde espécie rara e com nenhuma presença de juvenis (BROWN, DAMMAN \& FEENY, 1981) ate bastante frequente no fim de 1983 (Fig.11). Segundo K.S.BRown, Jr. (com.pes.) esta espécie também estabeleceu populações grandes em Amarais, pela primeira vez, em 1983.

0 indice de recapturas, em Monjolinho, foi grande e houve registro de um indivíduo recapturado 55 dias apös sua marcação (encontrado por 5 vezes depois da captura inicial).

Um motivo provāel para o estabelecimento de $P \cdot n$. eurubates pode ter sido o período chuvoso bem maior a partir de 1982 (comparado com os anos anteriores - Fig.2). P. neophilus ē uma espēcie amazônica até subandina, ocorrendo no $B r a s i l$ central e sudoeste apenas em ambientes muito umidos durante todo o ano (K.S.BROWN, Jr, com.pes.). No entanto, COOK, FRANK \& BROWER (1971) relacionam fortes chuvas, em Trinidad, como responsāveis pela baixa expectativa de
vida de adultos de Parides anchises e P. neophieus.
2.6. Battus polydamas
B. polydamas foi a espëcie de Troidini com nenor nümero de adultos registrados em Monjolinho (Fig.11) apesar de que, em numero de juvenis tenha superado parides proneus e P. bunichus (Fig. $9 \mathrm{~A}, \mathrm{~B}, \mathrm{H}$). Isto certamente est \vec{a} relacio nado com ofato dos ovos serem colocados em grupos e com o comportamento gregärio das 1 arvas (YOUNG, 1971a; BROWN, DAM MAN \& FEENY, 1981). Foram marcados adultos apenas no período de janeiro a abril de 1982 (Tab. 5) mas a presença de juvenis em outros meses (dezembro de 1981 , setembro e novem bro de 1982 e janeiro, agosto, setembro e novembro de 1983Fig. 9 H) indica que houve passagem de adultos em Monjolitho.

A baixa presença de Battus polydanas em Monjolinho poderia estar relacionada com fatores climáticos pois os in divíduos desta espécie preferem climas quentes e secos (YOUNG: 1971a; BROWN, DAMMAN \& FEENY, 1981). Apesar disto, esta foi a segunda espécie mais numerosa (apenas abaixo de P.agaus) no trabal ho de BROWN, DAMMAN \& FEENY (1981).
2.7. Razão sexual e longevidade

De acordo com a Tabela 5, o numero de individuos machos encontrados foi maior que fémeas para todas espécies de Troidini em Monjolinho (exceto P.a.nephation em alguns ' meses). As diferentes atividades exercidas em horärios di-
versos pelos dois sexos geralmente levam a este tipo de des vio, também encontrado por outros autores (YoUNG, 1971b; COOK, FRANK \& BROWER, 1971; BROWN, DAMMAN \& FEENY, 1981 ; LEDERHOUSE, 1983; MATSUMOTO, 1984). Segundo BROWN, DAMMAN \& FEENY (1931) as femeas de todas espëcies de Parides predomi navam em nümero, sobre os machos, nas primeiras e $\bar{u} 1 t i m a s$ horas do dia, enquanto que com Battus ocorria o oposto. MAX SUMOTO (1984) trabalhando com Luehdorfia japonica, no Japão, observou machos voando durante o dia e femeas quase sempre pousadas em arvores dificultando sua captura. LEDERHOUSE ' (1983) trabalhou com Papilio polyxenes, espécie territorial e protândrica (LEDERHOUSE, FINKE \& SCRIBER, 1982) e observou diferenças de escolha de habitat entre machos efemeas. Este mesmo autor ainda acredita que as femeas possamestar sujeitas a mortalidade extra no periodo adicional que perma necem como larvas e pupas (alem dos machos).

Estimativas da duração média de vida dos adultos delroi dini variam muito de acordo com a literatura existente para areas tropicais. YOUNG (1971a, 1971b, 1972a, 1972b) reportou sobrevivências de no mínimo 4 meses e no mäximo 6-7 meses, em populações de Parides e Battus da Costa Rica. COOK, FRANK \& BROWER(1971) encontraram expectativas de vida de apenas 5 a 10 dias, em Trinidad. BROWN, DAMMAN \& FEENY (1981) observaram durações de vida de 1 a 2 semanas tanto no campo como no laboratório. Os dados do presente trabalho aproxi-mam-se das conclusões destes $\bar{u} 1 t i m o s$ autores.

YOUNG (1971a, 1971b, 1972a, 1972b) atribui a longa duração e os baixos niveis populacionais encontrados, em
seus trabalhos, a uma ausencia de predação associada com constancia de fontes de alimento para adultos e larvas.

No presente trabalho foi observado apenas um caso de predação de adultos de Troidini, por um artrópodo (ordem Orthoptera, Fam. Mantidae) mas sabe-se também que aranhas ' Nephila clavipes podem eventualmente predar estas borboletas (VASCONCRLLOS-NETO \& LEWINSOHN, 1984). RAUSHER (1979a) tain bém observou ataque de aranhas a adultos de Battus polidanas, B. phikenor e Parides montezuma, no México.

Existern ainda algumas referencias sobre a influên cia de fatores climāticos em populações de Parides. Young (1971b) encontrou menores índices populacionais na estação seca e COOK, FRANK \& BROWER (1971) observaram maiores índices no período umido (apesar das baixas expectativas de ví da jā mencionadas).

Em Monjolinho, pode-se dizer, de modo geral, que as populações de adultos de Troidini diminuiram um pouco nos meses de inverno (período seco e de baixas temperaturas) prin cipalmente no ano de 1982 (Fig. 11), mas o ano de 1983 foi mais irregular. Os fatores microclimáticos, dentro da mata, parecem ser mais importantes para presença de adultos destas borboletas e isto se reflete na escolha por diferentes estratos de vôo (jā mencionados na seção 3 dos Resultados) que, por sua vez, aproximam-se dos habitats tipicos das mes mas (mencionadas por BROWN, DAMMAN \& FEENY, 1981).

E interessante observar-se ainda que os dados microclimaticos obtidos em Monjolinho comparados com Amarais são semelhantes, ao conträrio do esperado. Apenas algumas di
ferenças em luminosidade foram obtidas (Fig. 24 e Tabs. Als e A16).
3. Interações Troidini x Aristolochia
3.1. Locais de oviposição

A variação do local de oviposição de Parides em Monjolinho, inclusive fora da planta hospedeira (figs. 12 e 13) poderia ser relacionada a diversos fatores.

CRAWLEY (1983) e KITCHING \& ZALUCKI (1983) apresentam alguns casos de "erros de oviposição" em borboletas como originados por semelhança de estimulos oviposicionais entre a planta escolhida - tōxica para as larvas - e a verdadeira planta hospedeira (pertencentes a mesma família) ou então simplesmente por escassez da planta hospedeira. WIKLUND (1981) atribui este tipo de comportamento, em Papifio machaon, a uma estratégia generalista que serviria para aumentar a probabilidade de sobrevivencia das larvas em habitats não-ōtimos. Este mesmo autor (1984), trabalhando com Satyridae, encontrou situações de super abundancia (não importava onde as femeas colocavam os ovos, pois perto sempre haveria uma planta do tipo adequado para a larva recém-eclo dida se alimentar) ou então de diapausa (espécies cujos ovos passavam o inverno em diapausa evitavam colocá-los em suas plantas hospedeiras herbáceas que talvez não resistissem ' aos rigores da estação pois no fim da diapausa, na primavera, haverian muitas outras plantas, recém brotadas). No en-

- mONJOLINHO
… amarals (iechado)
-. amarals (aberto)

 D A I A
FIGURA 24 - Luminosidade e umidade em Monjolinho e Amarais.
(dados retirados das Tabs. A15 e Al6, no Ap. I).

tanto, o comportamento adotado por algunas feneas de parides de colocar ovos fora das plantas hospedeiras náo parece ter sido causado por nenhum dos motivos citados acima.

YOUNG (1979) observou uma fêmea de Battus belus varus ovipondo em folhas de uma trepadeira (Fam. Cucurbitaceae) entremeada com Aristolochia constricta, na Costa Rica. Ele sugere que o engano possa ter sido provocado pela proxi midade e semelhança entre as folhas das duas plantas ou então que esta tentra sido uma "atitude deliberada" para evitar parasitos de ovos e predadores. WIKLUND (1984) tambérı a presentou esta \bar{u} lima hipōtese para uma das duas espécies, que estudou, mas nenhum desses autores obteve evidencias con clusivas. As follas das plantas alternativas utilizadas por Parides em Monjolinho, apesar da proximidade fisica, säo , muito diferentes das de Aristolochía pertencendo ainda a familias distantes. Em um desses casos, foi observada uma femea de P.a.nephalion primeiramente inspecionando folhas de uma planta de Aristolochia elesans e depois colocando os ovos em outra planta que servia de suporte à trepadeira. A ünica hipötese que se pode sustentar é a de "fuga proposital" de parasitos e/ou predadores. K.S.BROWN, Jr. (com.pes.) observou värias vezes este mesmo tipo de atitude em p. n. eurybates em Amarais. O nünero de ovos encontrados nessas condições foi pequeno em Monjolinho e talvez subestimado ' pois era impossivel inspecionar todas as outras plantas pró ximas das hospedeiras marcadas.

Una anāiise da Figura 12 revela que aproximadamen te 50% desses ovos encontrados fora de Aristolochia ficaram
"indetcrminados" mostrando que a maioria provavelmente näo completou seu desenvolvimento. Este comportamento talvez, entäo, não seja ainda muito eficiente. Para P. Heophiौus eurgbates, este tipo de comportamento poderia significar , tambèm um escape à competição direta, por plantas de alimen tação para os jovens, com as outras espēcies de Troidini já residentes na ärea. Observa-se ainda que a outra espécie com maior nümero de ovos fora de Aristolochia e Parides anchises nephalion (cujas larvas são quase identicas às de•p. n. eurybates).
o maior nümero de ovos colocados no pecíolo em plantas de A. esperanzae (equivalente a 50% dos encontrados na superficie inferior das folhas, nesta mesma espécie) com parado com plantas de A. elegans (aproximadamente 25% dos encontrados na superficie inferior das folhas - ver Fig. 12) parece indican diferenças de micro-habitat. Poderia haver di ferentes niveis de parasitismo ou predação entre essas duas partes das folhas em A. esperanzae e isto talvez não fosse tão significativo em A. ele;ans. Sabe-se ainda que a composição química das diferentes partes e entre as diferentes es pécies de Aristolochia pode ser distinta (MUNAVALLI \& VIEL, 1969) e isto poderia influenciar na escolha do local de ovi posição. No entanto, as larvas recém-eclodidas quase sempre deslocam-se para as folhas apicais mais tenras (BROWN, DAMMAN \& FEENY, 1981) em qualquer espēcie de Aristolochia.

A Figura 13 mostra que P.n.eurybates é espécie de Parides com maior numero de ovos no pecíolo e haste em plan tas de A. eteyans. Lsto pode reforçar a hipötese de existên
cia de estratégias alternativas por essa especie na divisão dos recursos com os outros Troidini, em Monjolinho - apesar de em A. esperanzae ela seguir os ladröes das outras ospëci es de Parides.

3.2. Duração dos estãgios de Parides em Aristolochia

As medias obtidas, neste trabalho, para dias mini mos de duração por estādio (Tab.6) são, de modo geral, um pouco maiores que aquelas obtidas por outros autores em 1 aboratörio (Tabela 14), principalmente no 19 estadio larval. Elas aproximam-se mais a partir do 2 estãdio larval e no 4 estãdio alguns valores obtidos em Monjolinho são menores que os dos outros trabalhos (exceto para P.anchisesnephation). As condições variāveis, não controladas, no campo, poderiam explicar estas diferenças assim como as grandes variancias encontradas em alguns casos. o numero variāel de individuos entre as amostras e os valores de variancia são responsáveis pelas poucas diferenças significativas obtidas, nos testes $t-S t u d e n t$ e ANOVAS (Tabs. 6,7 e 8).

Dos resultados significativos obtidos (Tab.6) cabe mencionar a menor duração do estāgio do ovo de parides asauls em Aristolochia esperanzae comparada com A.elegans. Isto poderia indicar a existencia de condições mais propicias (microclima elou fatores bióticos) para uma eclosãoma is räpida em A.esperanzae. Parides proneus apresentou uma menor duração de ovo em A. melastoma e apesar desta diferen ça não ter sido significativa em relação a A. elegans e A.

Tabela 14:- Mëdias de permanência por estägio de juvenis de Parides e Battus obtidas em outros estudos de campo e laboratório.

Sp TROIDINI	Sp ARISTOLOCHIA	ESTĀGIO	mEdia de duração (EM DIAS)	AUTOR
Parides anchises	$?$	OVO	7 a 8	MOSS (1919)
P. arcas mylotes	Aristolochia spp.	ovo	$3,4 \pm 0,3$	YOUNG (1972b)
	A. constricta	OVO	$6,0 \pm 0,1$	YOUNG (1973)
		19.	$5,0 \pm 0,3$	
		2\%f.	5,0 $\pm 0,5$	
		30%.	$6,0 \pm 0,3$	
		406.	$6,0 \pm 0,2$	
		5%.	v1,0 $\pm 0,8$	

P. childrenae				
childrenae	Aristolochia spp.	ovo	$3,1 \pm 0,5$	YOUNG (1972b)
P. iphidanas	A. constricta	ovo	6 a 7	Young (1977)
		196.	5,0	
		20%.	5,0	
		30ℓ.	5,0	
		40ℓ.	5,0	
		50ℓ.	6,0	
P. bunichus	*	ovo	7,0	OTERO \& BROWN (1986)
		19%.	3,8	
		2OC.	3,2	
		39.	3,4	
		40%.	4,5	
		59\%.	5,9	
Battus polydamas	A.veraguensis	OVO	$8,55 \pm 1,82$	YOUNG (1971a)
		10ℓ.	$1,74 \pm 0,6$	
		296.	$4,46 \pm 0,53$	
		30¢.	$3,42 \pm 0,28$	
		496.	$3.55 \pm 0,61$	
		50 C .	$4,37 \pm 0,31$	
	A.veraguens is	OVO	$5,0 \pm 0,5$	Young (1977)
	A. elegans	40% 506.	$\begin{aligned} & 4,95 \pm 0,35 \\ & 6,39 \pm 0,80 \end{aligned}$	SCRIBER \& FEENY (1979)
B.philenor	A. reticulata	49ℓ. 59ℓ.	$\begin{array}{r} 4,06 \pm 0,33 \\ 12,81 \pm 1,91 \end{array}$	

[^4]esperanzae poderia tambëm indicar diferenças microclimaticas (a ärea do transplante de A.melastoma era mais aberta em relação as das outras especies de Aristolochía).

Parides $a_{\text {save }}$ também têve menor duração significativa no 10 estädo larval em Aristolochia esperanzae comparado com A. elesans. Em Parides anchises nephalion, a menor duração significativa foi no 59 estãdo em Aristolochia esperanzae comparado com A.elegans. De modo geral, as durações de juvenis parecem ser menores em A.esperanzae emaiores em A. elejans apesar dos poucos resultados significativos obti dos.

CRAWLEY (1983) aponta alguns exemplos em que a redução em alimento disponivel em insetos leva a aumentona duração de períodos larvais ou até aumento no nümero de estádios. Isto pode ter ocorrido, em Monjolinho, com alguns in dividuos alimentando-se em plantas de pequeno porte.

As diferenças em duração de estádios larvais podem estar relacionadas com caracteristicas das proprias plan tas hospedeiras. Estas caracteristicas podem ser tanto fisi cas (como pilosidade e dureza de tecidos) ou químicas (toxi nas, redutores de digestibilidade e balanço nutricional) e agem direta ou indiretamente sobre os herbivoros (PRICE et alii., 1980).

SCRTBER \& FEENY (1979) encontraram uma forte rela ção entre rapidez de crescimento larval e forma de crescimen to da planta hospedeira caracterizada por quantidade de ăgua nas folhas, conteüdo de Nitrogenio, dureza e presença de fí bras. De modo geral, a quantidade de água e Nitrogenio dimi-
nuem com a idade das plantas (MATHSON, Jr., 1980; SCRIBER \& SLANSKY, 1981) e isso foi constatado por outros autores. RAUSUER (1981a) associou o crescimento mais lento de larvas de battus phikenor em folhas maduras de Aristolochia heticulata com baixo teor de Nitrogenio e aumento de dureza das mesmas (comparadas com folhas jovens). JONES \& TVES (1979) observa ram que o crescimento de larvas em los estädios de pienis rapae era mais rapido em plantas jovens enquanto quepara os Ultimos estädios não houve diferenças em rapidez de crescimento em plantas jovens versus maduras. Em alguns casos, a densidade larval associada com a qualidade nutricional da planta hospedeira tambëm pode ocasionar rapidez ou lentidäo de crescimento (JONES \& TVES, 1979; HAUKTOJA, 1980).

A presença de compostos quimicos secundärios tambem pode estar relacionada diretamente com maior duração dos estadios Iarvais (ERICKSON \& FEENY, 1974; SCRTBER \& FEENY, 1979; WILLIAMS, LINCOLN \& EHRLICH, 1983; entre outros). No entanto, RAUSHER (1981a) não encontrou evidencias de efeitos destes compostos sobre o crescimento larval de Eattus pheifenon em plantas de Aristolochia reticulata.

A redução do tempo de permanencia nos estädios larvais pode ter como objetivo evitar a ação de alguns efei tos indiretos das plantas hospedeiras. COURTNEX (1981) encontrou maior mortalidade de pupas de Anthocharis cardamines por bacterioses em plantas pobres nutricionalmente que proporcionavam um desenvolvimento larval mais lento. CRAWLEY (1983) comenta que un aumento do tempo de desenvolvimento , pode aumentar o risco de predação pois os animais ficariam
expostos por mais tempo a seus inimigos. O mesmo pode ser dito a respeito de parasitismo.

Por outro lado, uma maior rapidez de crescimento pode levar a formação de adultos menores, compeso reduzido e menor fecundidade (CHEW, 1975; CRAWLEX, 1983).

A Tabela 7, onde estão comparadas entre si as es pécies de Parides na mesma espécie de Aristolochía, indica que quase não existem diferenças significativas nas durações de estägios de diferentes espécies de Parides em Aristolochia elegans e A. esperanzae. A ünica diferença ob tida foi para o 39 estàio larval de P. n.eurybates que teve duração maior do que P. bunichus, P, ajavus e P. anchises nephalion em A. elebans. Isto poderia ser um indicio de me nores colerâncias fisiológicas dos juvenis desta espécie aos compostos químicos secundarios dessa espécie de planta hospedeira. O fato desta maior duração significativa ter sido encontrada em apenas um estádio larval e o numero reduzido de individuos amostrados não permitem, no entanto, conclusões mais seguras.

De acordo com a Tabela 8, as estações do ano tambén podem estar influindo na duração dos estãios juvenis de Parides spp. em Monjolinho. E bem conhecida a influência de fatores climáticos sobre a biologia de populações de borboletas e os efeitos podem ser diretos ou indiretos (na pröpria qualidade das plantas hospedeiras, por exemplo) (GILBERT\& SINGER, 1975; SCRIBER \& SLANSKY, 1981). Luz e temperatura são os fatores mais importantes para os estagios juvenis de acordo com SCRIBER \& SLANSKY (1981).
o inverno \bar{e} a estação onde hā maiores durações de ovo de P. proneus, P. agavus e P. neophilus eunybates em A. efegans (Tab.8). Ainda no inverno, ocorre a maior duração de 1 ọ estádio larval de P. bunichus também em A.elejans. Este retardamento deve ser devido as baixas temperaturas , (Figs. 2 e 3). Existe uma série de trabalhos relacionando di Ferenças de temperatura com crescimento larval mais rapido ou mais lento inclusive o de otero \& BROWN (1986) comparides ascanius e P. bunichus. Estes autores encontraram uma redu Ção de 20% na duração dos estädios, presumivelmente devido a temperaturas mais altas do Rio de Janeiro com relação a Campinas, BR.

Em Aristolochia esperanzae foi encontrada maior du ração do 29 estádio larval de Parides bunichus no verão com parado com o outono (Tab.8) ; mas como as amostras forammui to pequenas ($n=3$) este resultado precisa ser interpretado com cuidado.

Os outros valores obtidos näo foram significativa mente diferentes, indicando uma provável ausencia de diferenças em duração de estädios em relação a diferentes estações do ano em A. esperanzae que no entanto poderia apenas ser um artefato devido ao pequeno tamanho amostral.
3.3. "Sobrevivência" de Parides spp.em Aristolochia

As diferenças significativas encontradas entre as curvas de "sobrevivência" de Parides em Aristolochia (Fig. 14) mostram que A. melastoma (para P. proneus) e A.
esperanzae (para P. bunichus e P. neophicus eurgbates) parecem proporcionar maiores permanencias (e maior sucesso de desenvolvimento) para as larvas, comparido com A. e ℓ egans. No entanto, o numero amostrado de individuos de P. neophéus eurybates foi pequeno.

A diferença marcante encontrada foi a melhor "sobrevivência" altamente significativa de larvas de Parides proneus em Aristolochia melastoma comparada com A. elegans, apesar de nenhuma larva ter sido encontrada até 5 o estádio larval naquela espécie de planta hospedeira (Fig.14). De acordo com BROWN, DAMMAN \& FEENY (1981), F.proneus ovipositava e desenvolvia-se bem quase que exclusivamente em plantas de A. melastoma tanto no campo como no laboratório. os dados do presente trabalho tornam a comprovar este melhor de senvolvimento de P. proneus em A. melastoma (em A. elegans não foram encontradas larvas alem do 30 estädio) (ver tambēm a Fig. 10).

En A. esperanzae todas as espécies de Parides ' (menos proneus) conseguiram completar ate o 50 estádio lar val (P. anchises nephalion com o maior nümero absoluto e P. n. eurybates com o maior relativo - Fig. 14).

Em A. eledans apenas P. agavus, P.a. nephalion e P. n. eurybates alcançaram o 59 estädio (Fig. 14), em proporções semelhantes.

E preciso relembrar mais uma vez que os "desapare cimentos" não necessariamente indicam mortalidade, embora es ta seja a hipótese mais plausivel para os estädios mais jovens. E ainda cabe mencionar que as "sobrevivencias" só se
referem ao estagio larval, năo havendo quaisquer referencias para os períodos seguintes de pupa e adulto. Isto significa que não háa medidas quantitativas das larvas de 59 estādio, larval que tenhan alcançado o estägio adulto e reprodutivo em Monjolinho.

Existe uma série de trabalhos apresentando diferenças em taxas de sobrevivencia e desenvolvimento de larvas de Lepidoptera em relação a diferentes espécies de plan tas hospedeiras. Muitas vezes as defesas químicas ou mecâní cas das plantas hospedeiras agem como determinantes da mortalidade larval (CHEW, 1975; WIKLUND, 1975; WIKLUND \& AHRBERG, 1978; SCRIBER \& FEENY, 1979; MOONEY et aléi., 1980 ; RAUSHER, 1980, 1981a; COURTNEY, 1981; COURTHEY \& DUGGAN, 1983; WILLIAMS, LINCOLN \& EHRLICH, 1983; WINT, 1983). A1gumas vezes são fatores associados às plantas hospedeiras que interagem tais como predação e parasitismo (SMILEY, 1978 ; WIKLUND, 1978; JONES \& IVES, 1979; MYERS, 1981; COURTNEY \& DUGGAN, 1983), tipo de habitat (WIKLUND, 1978; RAUSHER, 1979; WILLIAMS, 1983) e ate mesmo clima (SINGER, 1972 ; WIKLUND, 1982; COURTNEY \& DUGGAN, 1983; CRAWLEY, 1983). Esses fatores podem agir isoladamente ou em associação e de maneira geral os 19^{s} estädios são os mais afetados. Alधumas vezes, algumas plantas imprōprias para o desenvolvimento dos 10s estáaios podem ser utilizadas pelos estádios mais desen volvidos (CHEW, 1975). Pode ocorrer ainda um outro efeitoin direto causado por inanição e mortalidade durante o desloca mento em busca de plantas mais favoraveis (WIKLUND \& AltRBERG, 1978; RAUSHER, 1980; WINT, 1983).

Existem casos em que as femeas ovipositoras conti nuam a colocar ovos em plantas menos adequadas para o desen volvimento larval devido a sua maior densidade e persistencia no tempo em relação às plantas nutritivamente superiores (HOLDREN \& EHRLICH, 1982; SINGER, 1983; WILLIAMS, 1983). AS sim, essas caracteristicas ecologicas das plantas hospedeiras predominarian sobre os aspectos químicos na escolha das femeas ovipositoras pelas plantas mais adequadas.

As "sobrevivências" de ovo a 19 estādio larval , (Fig.15) de Parides proneus foram baixas e bem semelhantes em plantas de Aristolochia elejans comparadas com A.melastoma Jä em P. n. curybates elas foram significativamente mais altas, e semelhantes em A. esperanzae comparada com A.olegans. Nesta fase do desenvolvimento, podem ser varias as causas de "nāo-sobrevivência", como jă foi mencionado na seção 1 . 8.. Além daqueles motivos, podem também ocorrer quedas acidentais de ovos do local onde foram colocados pelas femeas. Alterações climăticas podem ser responsäveis (HAYES, 1981 ; COURTNEY \& DUGGAN, 1983) por estes deslocamentos; e algumas poucas vezes, neste trabalho, elas foram causadas por manipulação acidental durante as avaliações de campo. Além disso, algumas espécies de Aristolochía (A.elesans e A.arcuata, dentre outras) podem formar zonas de necrose onde ovo encosta na folha, que eventualmente caem levando-o consigo, (BROWN, DAMMAN \& FEENY, 1981).

A baixa "sobrevivencia" dos ovos de Parides proneus parece sef independente da especie de planta hospedeira em que foram colocados (A. elegans ou A. mefastoma) mas a par-
tir da eclosão dos mesmos começa a haver um methor desempe nho em plantas de A. melastoma (ver Fig.14). Esta diferença pode indicar que distintos fatores agem sobre a "sobreviven cia' nos diferentes estägios, embora o nümero de dados seja pequeno para conclusões definitivas.

Parides neophilus eurybates parece ser mais " resistente" aos efeitos de mortalidade no estägio de ovo (com parado com P. proneus) em A. elegans (Fig. 15). No entanto, esta espécie possui a mais baixa "sobrevivência" entre os 19 e 29 estádios larvais dentre todas espécies de Parides (inclusive P. phoneus) nesta planta hospedeira (Fig.14).

Paraas outras espëcies de Parides não foi possỉvel obter dados de "sobrevivência" de ovos pelos motivos jáa expostos nos Resultados (s.6.).

As anälises sobre qualidade das espécies de plen ta hospedeira para as larvas de Troidini parecem seguir o mesmo padrão jä discutido para as curvas de "sobrevivencia'.

> Aristolochia melastoma apresenta-se mais uma vez, como a espécie de planta hospedeira de melhor qualidade para Parides proneus (Fig.16). Apesar da maior porcentagem de ovos colocados em A.elegans comparado com A. melastoma isto vai progressivamente se invertendo a medida que as larvas ' completam seu desenvolvimento. Larvas de 4 estãdio de P. proneus foram encontradas somente em plantas de A. melastoma (um individuo de 40 estädio, alimentado com plan tas desta espēcie de Aristolochia, atingiu o estägio adulto em laboratório). Existe ainda uma pequena porcentagem de ovos e larvas de P. proneus em plantas de A. esperanzae que
permanoce mais ou monos constate ate o 39 estãdio larval. Aristolochia ele:ans apresenta melhor qualidade pa ra Parides bunichus (Fig.16) seguida por A. melastoma. A pequena porcentagem de larvas de 29 estādio de P. bunichus em A. melastoma vai aumentando ate chegar aos 49 e 50 estảdios larvais como um terço da porcentagem em A. elébans e ma ior do que a porcentagem em A. esperanzae.

Para Parides a_{G} avus ocorre maior porcentagem de larvas de 29 estãdio em Aristolochia eleğ ms mas esta diminui um pouco atē o 59 estádio (Fig.16). Por sua vez, a menor porcentagem inicial em A. esperanzae vai aumentando ate equiparar-se com a porcentagem de A. elesans. As porcentagens relativas em A. melastoma e A. arcuata são bem pequenas. Assim, Aristolochia elegans e A. esperanzae parecem igualmente ser de boa qualidade para as larvas de Parides agavus (A. esperanzae talvez um pouco superior).
A.esperanzae parece ser a especie coll melhor qualidade para Parides anchises nephalion (Fig. 16). No entanto, a menor porcentagem existente em A. elegans cresce um pouco no 59 estādio larval. Existe ainda uma pequena porcentagem constante em A. melastoma nos 2%, 39 e 4% estádios larvais. Parides neaphilus eurybates tem a maior parte de seus ovos colocados em Aristolochia elegans (Fig.16), mas atē o 3 estádio A. arcuata e A. esperanzae possuem melhor qualidade para as larvas. No 4 o estádio, entretanto, A. arcuata desaparece dai ate $\begin{gathered}\text { fim do desenvolvimento } A .\end{gathered}$ ęegans apresenta melhor qualidade comparado com A.esperanzae. Battus polydamas possui maiores porcentagens em Aristolochia elesans comparado com A. esperanzae de ovo a

49 estádio larval. No 59 estádio no entanto, sö existom lar vas desta espécie em A.elegans que parece então possuir a melhor qualidade. Existe ainda uma pequena porcentagen inicial em A. melastoma que vai diminuindo até desaparecer depois do 3 estädio larval.

Examinando-se a Figura 17 observa-se que as plantas de Aristolochia elegans parecen apresentar boa qualidade nutricional para larvas de Battus polydamas, Parides anchises nephalion e P. bunichus. P. neophilus eurybates ocupa uma pequena porcentagem mais ou menos constante (2 a 50 estádios larvais). Para larvas de P. agavus no entanto ocorre um decréscimo de qualidade. E finalmente para P. proneus, esta espécie de Ahistolochia apresenta uma qualidade muito baixa.

Aristolochia esperanzae (Fig.17) parece apresentar qualidade excelente para o desenvolvimento de larvas de Parides anchises nephalion. Para P. Gavus e P.n.eurybates, a qualidade também parece razoāvel apesar das menores porcentagens. Entretanto, para P. bunichus e Battus polydanas, ocorre um decréscimo ao longo dos desenvolvimentos larvais. Em relação a b. polydamas pelo menos não é possível dizer que as plantas de A.esperanzae tenham baixa qualidade nutri cional e sim que talvez não consigam fornecer alimento suficiente para o desenvolvimento total das larvas gregárias desta espécie de Troidini.

Aristolochia melastoma (Fig.17) apresenta boa qua lidade nutricional para Parides bunichus e P. proneus (como já foi discutido anteriormente).

O baixo descmpenho de larvas de Battus polydomas, Parides anchises nephalion e P. a_{b} avus em plantas de Aristolochiamelastoma (Fig.17) talvez possa ser atribuido ao pequeno porte das mesmas (em relação às plantas vizinhas de A. elegans) e a diferenças de micro-clima. o trabalho ex perimental de BROWN, DAMMAN \& FEENY. (1981) mostrou que esta dentre as espēcies de Aristolochia utilizadas, foi a mais preferida pelas espécies de Troidini (ver Tab.13) e tambëm aquela que proporcionou os melhores desenvolvimentos larvais. Em Aristolochia arcuata (Fig.17) só foram encontradas poucas larvas de Parides agavus e P. neophieus eurybates que não chegaram a ser acompanhadas até o fim do seu desenvolvimento. Uma explicação para o baixo desempenho das espécies de Troidini em plantas de A.arcuata talvez seja o tamanho pequeno (em mëdia) das plantas desta espécie que eram rapidamente consumidas pelas larvas, provavelmente antes de completarem seu desenvolvimento. De acordo com BROWN, DAMMAN \& FEENY (1981) esta foi a segunda espëcie de Aristolochia em termos de preferencia e desenvolvimento lar vais para todas as espécies de Troidini (ver Tab.13).

De modo geral, talvez todas as quedas em qualidade das espécies de planta observadas por desaparecimentos de larvas de 40 e 59 estädios, nas Figs. 16 e 17 , tenham sido causadas pela destruição total de pequenas plantas principalmente en Aristolochia arcuata, A. melastoma, A.esperanzae ate A. elegans. Un maior afastamento das plantas individuais entre si (em A. arcuata e algumas de A. esperanzae)po deria também prejudicar as larvas que, depois de terem comí
do sua planta hospedeira, ficariam som outras fontes de ali mento disponiveis nas proximidades.

3.4. Distribuição de larvas de Troidini em individuos de Aristolochia

Os indices de Morisita calculados indicaran a existência de algumas sobreposições significativas entre as espécies de Troidini em relação a plantas individuais de Aristolochia elegans e A. esperanzae em que foram encontradas larvas de 29 estädio em diante (Tab.9).

Parides proneus e P : bunichus escolheram plantas diferentes significativamente em Aristolochia elegans (Tab.9). P. proncus têve menor nümero de larvas encontradas e menor nūmero de plantas utilizadas enquanto P. bunichus, apesar do maior nümero de larvas, utilizou-se de apenas uma plantaem comum com P.proneus (Fig.18).

Parides bunichus teve metade de sobreposição(sig nificativa) em relação a P.áavus e P. anchises nephalion em plantas de Aristolochia elegans (Tab.9). Mesmo commuitas plantas em comum (dentre elas, as de maior porte) existem certos grupos de plantas que só foram utilizadas por uma ou outra espécie (Fig. 18). P. bunichus parece estar distrí buido de modo mais espaçado em relação a P.a̧̧avus. E em relação a P.a.nephalion, a diferença encontrada deve estar re lacionada com um grupo isolado de plantas so utilizado por P. bunichus. Estas preferencias por determinadas manchas de planta não parecem corresponder a diferentes condições microclimáticas (1uminosidade, principalmente).

Parides ancheses nephalion apresenta um indice bai xo, significativo, de sobreposição com P. neophi凤us eurubates (Tab.9) mas não ē possivel afirmar que estas duas espécies escolhem:plantas diferentes de Aristolochia elegans. o nüme ro pequeno encontrado de larvas de P. n. eurybates e fato de ter sido em ēpoca bem posterior a do encontro das larvas de P.a.nephalion (devido aos problemas de semelhanças) não per mite maiores conclusões.

Parides anchises nephalion também teve metade de sobreposição (significativa) com Battus polydamas (cujos ' dados foran considerados por nümero de oviposições e não nüu mero de individuos encontrados como em Parides spp.) (Tab. 9 e Fig.18).

O valor de sobreposição significativo encontrado entre Parides agavus e P. a. Nephalion é relativanente alto (Tab.9) e estáandicando que estas duas espécies utilizam se de quase todas as mesmas plantas apesar do menor numero de larvas de P.a.nephalion e sua ocorrencia em plantas mais espaçadas em relação a P. agavus (Fig.18).

Sobreposição total (a maior parte acima do valor maximo) foi encontrada entre Parides proneuse P. abavus e Battus polydamas com P. bunichus, P. a_{b} avus e P.neophilus ' eurybates em plantas de Aristolochia elegans (Tab.9). Isto significa que estas especies estão utilizando-se, entre si, das mesmas plantas individuais.

A ünica larva encontrada de Parides proneus em Aristolochia esperanzae (Fig.18) não foi considerada e as comparações foram feitas entre as outras espēcies de Troidi ni.

Parides abauus apresentou baixos indices significativos de sobreposição com P. neophilus eurybates e battus polydanas em plantas de A. esperanzae (Tab.9) o que pode ter sido devido ao numero muito maior de plantas ocupadas ' por P. ağavus em relação as outras duas espécies de Troidini (Fig.18).

Battus polydamas têve a maior parte de suas larvas encontrada em uma ünica planta de A. esperanzae, de por te médio, (Fig.18), e isto certamente contribuiu para os baixos indices significativos de sobreposição desta espécie comparada com Parides áauus, P. anchises nephalion e P. neophilus eunybates (indice $=$ zero) (Tab.9).

Parides bunichus apresentou indices de sobreposição acima de 100 com todas as outras espécies de Parides (Tab.9) indicando as mesmas preferencias por plantas de A. esperanzae.

O fato do nümero de plantas de A. esperanzae ser menor e mais concentrado do que as plantas de A. ele;ans' pode ter influido no menor nümero de indices baixos de sobreposição encontrado. Os locais onde estas plantas se encontravam tambëm eram mais semelhantes microclimaticamente comparado com A. elegans.

E preciso ainda esclarecer que os resultados obti dos indicam apenas tendencias pois o nūmero de simulações ' Monte-Carlo feitas $(=20)$ foi pequeno (devido ao curto espaço de tempo disponível) comparado com aquele feito normalmente por pesquisadores $(=500)$.
4. Plantas hospedeiras - Aristolochia spp.
4.1. Dinâmica temporal das plantas marcadas

Não existem muitas diferenças entre os padrões de alteração em Aristolochia eleğans versus A. esperanzae ' (Fig.19). Os maiores nümeros absolutos registrados em A. ele:ans refletem a mador biomassa(ver Tab. 13) e maior numero de plantas marcadas. Apenas nos $\bar{u} 1$ timos meses de 1983 pareceu haver uma alteração devido a "consumo" marcadamente maior em plantas de A. elegans.

Apesar do consumo pelas larvas de Parides e enveHecimento natural das plantas de Aristolochia sempre houve uma taxa de rebrote subsequente proporcionando, teoricamente, alimento disponivel durante todo o periodo de observações. No entanto, sempre havia um certo periodo em que aque las plantas totalmente comidas, não estavam disponiveis e este periodo compreende o tempo necessärio para o rebrote e posterior re-utilização das plantas para oviposição. Este' ' valor pode ser obtido atraves da diferença entre os valores de "tempo médio decorrido para que plantas fossem comidas, totalmente, de novo", e "tempo médio necessārio para que hou vesse re-utilização de plantas rebrotadas (depois de consumidas): Para Aristolochia elegans o período médio de não disponibilidade de suas plantas \bar{e} de aproximadamente 13 semanas e para A. esperanzae \vec{e} de 11 semanas, aproximadamente.

E possivel ainda estimar-se a forcentagem médiade plantas não disponiveis (considerando-se que as larvas de Troidini alimentavam-se regularmente nas plantas de Aristolochial
atraves da razäo entre os valores de tempo mëdio para as plantas serem reutilizadas pelo tempo médio para as mesmas serem totalmente consumidas novamente. Com isto, obteve-se que $39,4 \%$ da população de Aristolochia elegans não estava disponivel, em média, para oviposição, devido ao consumo an terior por larvas de Troidini e $64,1 \%$ da população de A. esperanzae não estava dispoñ̈vel pelos mesmos motivos. No entanto, esses valores são superestimados devido a amostragem preferencial das plantas mais preferidas (ou seja, sö Foram consideradas as plantas que haviam sido utilizadas " mais de uma vez). Mesmo assim \vec{e} possível considerar que, mes mo sofrendo o maior impacto, as plantas de A. espenanzae eram capazes de regenerarem-se 2 semanas mais depressa do que as plantas de A. elegans. De acordo com a espécie de Troidini causadora domaior impacto e das outras que eventualmente \quad, seriam prejudicadas pela menor disponibilidade de recursos, poder-se-ia estabelecer evidencias de competição por recursos entre as espécies de Troidini em Monjolinho. Entretanto, säo necessarias novas abordagens experimentais para a comprovação dessas evidencias.

Aparentemente não houve redução na qualidade nutricional das folhas rebrotadas em plantas que haviam perdi. do quase todas as folhas por alimentação larval como foi en contrado por HAUKTOJA (1980). MYERS (1981) tambëm não encon trou este tipo de modificação na qualidade das plantas hospedeiras (Rosäceas) de Malacosoma californicum pluviale , apōs prévia desfoliação das mesmas. Tambën não foram encontrados sinais de variações sazonais na qualidade das folhas
das plantas hospedeiras e consequente mudança de preferencia pelos herbivoros como foi observado por RAUSHER (1980, 1981a) e MOONEY et alic., (1981).

RAUSHER (1980, 1981a) observou uma mudança de pre ferencia de larvas de Battus philenor de plantas de A.reticulata para plantas de A. serpentaria a medida que caia o valor nutricional das folhas maduras da primeira especie de planta hospedeira e não se modificava o da segunda espécie. Em Diplacus aurantiacus, planta hospedeira de Euphydryas ' chalcedona, ocorre o inverso: as larvas passavam a alimen-tar-se das folhas maduras, menos nutritivas, devido ao aumento gradativo de resina nas folhas mais jovens durante o crescimento das plantas (MOONEY et alii., 1981).

O envelhecimento das folhas de plantas frequentemente leva a uma queda de seus conteüdos de āgua e Nitroge nio, dois dos nutrientes mais importantes para o desenvolvi mento larval (MATTSON, Jr., 1980; SCRIBER\& SLANSKY, 1981). Estes efeitos normais de envelhecimento devem ter ocorrido nas folhas de todas as espécies de Aristolochia em Monjolinho e deve justificar a preferencia das larvas mais jovens por folhas mais novas (BROWN, DAMMAN \& FEENY, 1981) alem das menores defesas mecânicas presentes.

Algumas plantas marcadas morreram devido ao consu mo das larvas (principalmente as de menor porte), perturba ção humana ou por "desastre naturais". Outros autores também encontraram os mesmos efeitos de morte das plantas hospedeiras de menor porte por consumo larval (JONES \& IVES, , 1979; RAUSHER \& FEENY, 1980).

O numero de plantas cortadas foi maior em
esperanzae (Fig.19) e constituia-se quase sempre dos mesmos individuos (ver seção 7-Resultados). lsto fazia com que houvesse um rebrote mais frequente nestas plantas do que em outras e talvez exercesse um efeito de maior"aparencia" para os herbivoros. RAUSHER (1981b) observou um efeito inibidor de descoberta de plantas de Aristolochia reticulata, por adultos e larvas de Battus philenor, quando cercadas pela vegetação nativa.

Muitos juvenis em acompanhamento foramperdidos ' nas épocas de corte das plantas em Monjolinho. Estes fatos tambem foram observados por COURTNEY \& DUGGAN (1983) trabaHando com Anthocharis cardamines e suas piantas hospedeiras cruciferas, na Inglaterra. Estes autores ainda comentam os possiveis efeitos negativos na distribuição das populações dessas borboletas devido a destruição de seus habitats pela perturbação humana e redução do nümero de plantas hospe deiras adequadas. DEMPSTER, KING \& LAKHANI (1976) e OTERO \& BROWN (1986) tamberm discutiram os efeitos negativos de gradativas modificações de habitats sobre populações de Papilio machaon britannicus e Parides ascanius, respectivamente.

A Tabela 10 mostra as alterações nas plantas de A. melastoma que, por estarem todas concentradas no canteiro de transplante e terem a mesma idade, passavam pelos mesmos processos em conjunto (ao conträrio das outras espécies de planta hospedeira). Isto as tornava um recurso bem mais uniforme, tanto em ēpocas favoräveis (rebrote) como , desfavoraveis ("soterramento", por exemplo).

Não foram acompanhadas as alterações ocorridas nas plantas de A. arcuata devido ao seu nümero limitado. Geralmente os ovos e larvas que conseguiam "sobreviver" nessas ' plantas acabavam por consumi-las quase que totalmente, pois estavam isoladas dentre si e das outras especies de Aristolochia (ver Fig.7).
4.2. Quỉmica de Aristolochiaspp.

Não foram encontrados muitos dados bibliogräficos a respeito da composição quimica de folhas de Aristolochia spp.. Grande parte das referencias encontradas tratam do conteúdo de rizomas e sementes, através do isolamonto de seus componentes principais (MUNAVALLI \& VIEL, 1969 ; PRIESTAP et alii., 1972; CROHARE et alii., 1974 ; PRIESTAP, BONAFEDE \& RUVEDA, 1977; RUCKER, LANGMANN \& STQUETRA, 1980).

IIUSSEIN \& EL-SEBAKHY (1974) registraram presença de esteróides, 5 alcalōides e 1 composto fenólico emfolhas de Aristolochia ele:ans, mas nada falam a respeito de ácidos aristolóquicos, dos quais foram encontrados apenas traços (ācido aristolóquico I) por URZUA \& PRIESTAP (1985) . PRIESTAP et alei (1971) encontraram 6 tipos de äcidos aristolöquicos em raizes de Aristolochia esperanzae. E importan te não esquecer a variação química que pode haver entre as diferentes partes das plantas (MUNAVALLI \& VIEL, 1969).

Os compostos químicos das plantas funcionam como sinais de reconhecimento para os herbivoros especializados nas mesmas (FRAENKEL, 1959; WHITTAKER \& FEENY, 1971). Algu-
mas borboletas utilizam-se inicialmente de sinais visuais e, dentre estas, Battus phíenor já foi estudada em seu compor tamento (RAUSHER, 1978, 1979b, 1983a, 1983b). o proximo pas so ē o reconhecimento quỉmico (MITCHELL, 1981; FEENY, ROSEN BERY \& CARTER, 1983). Os öleos essenciais podem funcionar ' como atrativos larvais para borboletas da fam. Papilionidae (FEENY, ROSENBERRY \& CARTER, 1983) e estes são presentes nas plantas de Aristolochia spp...VON EUW, RETCHSTETN \& ROTHSCHILD (1968) comentam que o gosto amargo de Aristolochia ' que repeliria grandes herbivoros pode ser devido a äcidos aristolóquicos e alcalóides presentes. No caso dos Troidini, estas mesmas substâncias talvez sirvam como sinalizadores, até atrativos.

Os compostos químicos de Aristolochia spp. são ab sorvidos e reutilizados pelos Troidini que delas se alimentam (VON EUW, REICHSTEIN \& ROTHSCHILD, 1968; ROTHSCHILD et alíi., 1970; DUFFEY, 1980 ; URZUA et alii., 1983; URZUA \& PRIESTAP, 1985), geralmente para defesa contra predação nos estágios de pupa ou adulto (BROWER \& BROWER, 1964 ; BROWER, COOK \& CROZE, 1967; ROTHSCHILD, 1972).
o não isolamento dos ācidos aristolöquicos das fo Ihas de Aristolochía elegans, A. esperanzae e A. melastoma, neste trabalho, faz com que continuem ignoradas as diferenças quimicas entre essas espēcies. Não é provavel que eles simplesmente não existam nessas plantas. As análises feitas devem ser re-examinadas e refeitas em busca de substâncias individuais.

Algumas diferenças quantitativas puderam ser obti daseamais importante parece ser a maior quantidade de alca
löides em Aristolochia elegans (Tab. 11), com composição ig norada.

CONCLUSOTES

Parecem ser vārios os fatores atuantes na determinação da composição da comunidade de Troidini em Monjolinho. Não foi apoiada a hipōtese inicial de que a diferente qualididade nutricional das plantas hospedeiras presentes fosse o fator preponderante. As populações de Troidini parecem estar afetadas por värios fatores biōticos e abióticos presentes ' no ambiente de Monjolinho, onde são capazes de coexistirem. Para manutenção desta coexistêcia devem existir varias dife renças em maneiras de utilização dos recursos em comum, bem como resistências a outros fatores. Sete destes parametros.' (competição, microclima, dinâmica das plantas hospedeiras, biologia juvenil, qualidade das plantas, sazonalidade e ambiente biótico) foram investigados neste trabalho.

Existe uma separação espacial vertical entre os adultos. Os diferentes estratos de vôo podem originar-se por diferentes tolerancias a fatores microclimäticos ou por inte rações agonísticas entre individuos que entretanto partilham dos mesmos recursos alimentares (flores e plantas de alimen tação dos juvenis).

As duas espécies mais abundantes de Aristolochía' (A. elegans e A. esperanzae) distribuem-se em "manchas", separadas entre si, na maior parte em locais relativamente' sombreados, embora algumas plantas fiquem expostas à luz direta do sol. Não parece haver preferencia de fêmeas ovipositoras de qualquer espécie de Parides por locais mais ou me-
nos ensolarados. Apesar da superficie inferior das folhas , ter sido o sítio de oviposição mais utilizado, duas espécies de Parides (P.a.nephalion e P.n.eurybates) colocaram alguns ovos em plantas vizinhas, incapazes de servir como alimento para as larvas, talvez como estratégia de fuga a fato res bióticos (parasitismo, predação, competição).

A distribuição de ovos e larvas de Troidini não pa rece seguir diferentes padrões especificos de estratificação nas plantas hospedeiras. A tendência geral foi uma preferencia por folhas mais jovens, próximas ao ápice. Foram indicadas algumas tendências de sobreposições em plantas individuais escolhidas para oviposição por algumas espécies de Troidini, enquanto que para outras bouve ausencia total de sobre posição.

A aparente preferencia de Troidini (= maior no de juvenis encontrados) por plantas de A. elegans reflete a sua maior biomassa e permanêcia ao longo do tempo. Os dados de utilização relativa (Tab. 13-Discussão) indicam que A. melastoma e A. arcuata são as espécies de planta hospedeira relativamente mais utilizadas em Monjolinho, seguidas de A. esperanzae e A. elegans.

Parece haver uma tendêcia a uma menor duração em dias por estágio juvenil de Parides spp. em plantas de A. esperanzae comparado com A. elegans. o número desigual de amostras e os altos valores de variância parecem ter sido, responsāveis pelo pequeno nūmero de casos significativos encontrados. O numero insuficiente de dados para A. melastoma e A. arcuata não permitiu que fossem feitas comparações ,
com as outras duas espécies, exceto para Parides proneus. Também não foram encontradas grandes diferenças entre as estações do ano (com uma tendência a maiores durações no inverno para quase todas espécies de Parides).

A "sobrevivencia" de larvas de Parides spp. não foi muitodiferente entre A. elegans e A. esperanzae. A aparen te tendencia de um melhor desempenho em A. esperanzae pôde ser comprovada estatisticamente para Parides bunichus e P. neophilus eurybates.

A falta de evidências químicas exatas impossibilitou uma avaliação mais precisa de possíveis diferenças em qualidade nutritiva de Aristolochia elegans, A. esperanzae e A. melastoma. A tendencia observada foi de uma melhor qualidade nutricional de A. melastoma seguida por A. esperanzae e A. elegans.

Não foram observados sinais conclusivos da existên cia, nem da ausência de competição por recursos entre as espécies de Troidini coexistentes em Monjolinho.

Casos de predação e parasitismo foram muito pouco observados durante a realização deste estudo.

Podem ser feitos ainda os seguintes comentários a respeito de cada espécie de Troidini estudada:
a) Parides proneus têve um aumento no nümero de adul tos encontrados ao longo do período de estudo provavelmente relacionado com a introdução em Monjolinho de Aristolochía melastoma, espécie de planta hospedeira na qual suas larvas sobrevivem e desenvolvem-se significativamente melhor; os adultos representam só 5% da comunidade amostrada, mas os
juvenis constituem $26,5 \%$ dos encontrados en A. melastoma;
b) Parides bunichus têve capacidade de desenvolvi mento larval razoävel nas esperies de Aristolochia presentes em Monjolinho; o pequeno no de adultos encontrados pode ser reflexo de suas preferencias por habitats mais abertos, dando a impressão de serem habitantes temporärios em Monjolinho;
c) Parides agavus è uma espēcie bem adaptada às condições de Monjolinho como demonstraram os maiores indices encontrados de ovos, larvas e adultos desta esperie; os juve nis desta espëcie ocorreram principalmente em plantas de A. elegans e A. esperanzae;
d) Parides anchises nephation e tambèm relativamente bell adaptada e frequente em Monjolinho; a semelhança ' de suas larvas com as de P. neophilus eurybates impediu um melhor estabelecimento das diferenças de preferencia e desen volvimento larvais entre as esperies de Aristolochia estudadas;
e) Parides neophilus eurybates conseguiu estabele-cer-se em Monjolinbo em 1982 e têve grande sucesso; provavel mente foi inicialmente favorecido por fatores macroclimaticos e depois pela possível utilização de estratégias especiais para reduzir a competição com as outras espécies jà resi dentes; segundo K.S.BROWN, Jr. (com. pes.) esta espēcie man-tém-se como uma das espécies de Troidini mais comuns em Monjolinho até o presente momento (inicío de 1986);
f) Battus polydamas parece compartilhar bem os recursos larvais em comum com as esperies de Parides; o pequeno no de adultos encontrados provavelmente relaciona-se com sua preferencia por habitats bem abertos e ensolarados.

RESUMO

Partindo de estudos anteriores que apontam diferen ças no crescimento e sobrevivencia larvais de Troidini de acordo com espēcie de planta de alimentação utilizada \quad, (Aristolochia spp.) este trabalho procurou verificar a influ Encia da planta hospedeira e de outros componentes ambientais (biótioos e abiōticos) na composição de uma comunidade de seis espécies dessas borboletas.

As espécies estudadas foram as seguintes: Parides proneus, P bunichus, P. agavus, P.anchises nephalion, P. neophilus curybates e Battus polydamas, juntamente com suas plantas de alimentação de juvenis: Aristolochia elegans, A. esperanzae, A. melastoma e A. arcuata.

As observações de campo foram realizadas numa ärea de 3ha de arboreto, "Monjolinho", pertencente ao Centro Experimental de Campinas (Fazenda Santa Eliza) do Instituto Agronômico de Campinas, no município de Campinas, SP, no periodo de 1981 a 1983.

Os juvenis de Troidini eram procurados 2 a 3 vezes por semana por exame de plantas hospedeiras. Concomitantemen te realizava-se o acompanhamento fenologico dessas plantas. Com os adultos de Troidini foi feito um estudo de captura marcação - recaptura de uma hora, em média, por semana.

Aristolochia elegans e A. esperanzae são as espëcies mais abundantes de planta hospedeira distribuindo-se em manchas distintas entre si. A. melastoma, ausente inicialmen
te, foi introduzida pelo transplante de rizomas provenientes de mata próxima, num canteiro de $1 \times 20 \mathrm{~m}$. . Foram encontrados apenas 5 individuos de A. arcuata.

Foi feita uma analise química preliminar de folhas de A. elegans, A. esperanzae e A. melastoma coletadas em Mon jolinho, mas não foi possível determinar pormenores da compo sição química dessas espécies.

Parides agavus, P. anchises nephalion e P. neophilus eurybates são as espécies de Troidini mais comuns em Monjo1inho enquanto que P. bunichus, P. proneus e Battus polydamas são mais ocasionais. As larvas dessas diferentes espécies apresentaram uma tendencia a possuir diferentes taxas de cres cimento (no de dias por estágio) e desenvolvimento (no de larvas "sobrevivendo" até 50 estädio) nas espécies de Aristolochia e isto refletiu-se na maior ou menor presença' ' de juvenis nas plantas. A. melastoma e A. arcuata foram aque las relativamente mais utilizadas seguidas de A.esperanzae e A. elegans (esta \bar{u} itima, no entanto, recebeu maior nümero' absoluto de ovos e larvas devido a sua grande biomassa).
P. proneus parece ter sido limitada por sua aparen te especialização por A. melastoma enquanto que P. bunichus e B. polydamas podem ter sido influenciadas pela ausência, de fatores microclimáticos mais favoräveis.
P. n. eurybates ē uma espēcie"invasora" que parece ter assegurado sua permanencia na comunidade de Troidini em Monjolinho. Depois de um provāel favorecimento climatico ' inicial, essa espécie conseguiu manter-se possivelmente pelo uso de estratégias para reduzir a competição com os outros,' Troidini da ärea.

Based on anterior studies that showed the existence of differences in Troidini larval growth and survival on different species of hostplant (Aristolochia spp.), the ' present work intends to examine the influence of hostplant and other biotic and abiotic environmental components on the composition of a communty of six species of troidini.

The species studied were: Parides proneus, p. bunichus, P. agavus, P. anchises nephalion, P. neophilus, eurybates and Battus polydamas and their hostplants , Aristolochia elegans, A. esperanzae, A. melastoma and A. arcuata.

The field observations were made in a 3-ha area of forest garden, "Monjolinho", located in the Experimental Cen ter of Campinas (Fazenda Santa Eiiza) of the Agronomical Ins titute of Campinas, Campinas, $S P$, during the period 1981-83.

The juvenile Troidini were located 2 or 3 days weekly by inspection of hostplants. The phenology of these plants was followed at the same time. A capture-recapture , study was also carried on with adult individuals (approximately one hour per week).

Aristolochia elegans and A. esperanzae, the more abundant species of hostplants, have "patchy" distributions, isolated from each other. A. melastoma plants, not present at the beginning of the study, were introduced by transplanting rhizomes, brought from a nearby area, in a plot of 1 x

20 m . Only 5 individuals of A. arcuata were found growing naturally in Monjolinho.

A preliminary chemical analysis of leaves of A. elegans, A. esperanzae and A. melastoma collected in Monjolinho did not permit the isolation of individual chemical components of these hostplant species.

Parides agavus, P. a. nephalion and P.n.eurybates are the most common of the Troidini species in Monjolinho while P. bunichus, P. proneus and B. polydamas are more occasional. The larvae of these different species had a tendency to show different growth rates (number of days per instar) and "survival" (number of larvae still present in later instars) on the Aristolochia spp.; this was reflected by the presence of more or fewer juveniles on the plants. A. melastoma and A. arcuata were relatively more utilized as hostplants, followed by A. esperanzae and A. elegans (the latter showed the greatest absolute number of eggs and larvae because of its large biomass).
P. proneus seemed to be limited by its apparent specialization on A. melastoma plants while P. bunichus and B. polydamas might have been influenced by the absence of favorable microclimate.
P. n. eurybates is a recent invader that seems to have become a permanent member of the Troidini community in Monjolinho. After the initial climatically favorable year, this species has possibly been maintained by strategies to reduce competition with the other resident Troidini of the area.

bibliografia

- AHUMADA, L.Z., 1967. Revisiön de las Aristolochiaceae argen tinas. Op. lilloana, 16: 1-145.
- AHUMADA, L.Z., 1975. Aristoloquiäceas (ARIS). Trad. Roberto M. Klein. In : REITZ, P.R., ed., Flora Ilustrada Catarinense, Itajaí, Herbärio Barbosa Rodrigues, pt. 1,55 p.
- BARROSO, G.M., 1978. Sistemätica de angiospermas do Brasil. Rio de Janeiro, Livros Têcnicos e Científicos, São Paulo EDUSP, v.1., 255 p .
- BENSON, W.W., 1978. Resource partitioning in passion vine butterflies. Evolution, 32 (3): 493-518.
- BLAU, W.S., 1980. The effect of environmental disturbance on a tropical butterfly population. Ecology, 61(5): 100512.
- BORROR, D.J. \& DELONG, D.M., 1969. Introdução ao estudo dos insetos. São Paulo, Edgard Blucher, 653 p .
- BROWER, L.P. \& BROWER, J.V.Z., 1964. Birds, butterfiies, and plant poisons: a study in ecological chemistry. Zoologica, N.Y., 49(3): 137-59.
- BROWER, L.P., COOK, L.M. \& CROZE, H.J., 1967. Predator res ponses to artificial batesian mimics released in a neotropical enviromment. Evolution, 21(1): 11-23.
- BROWN, K.S., Jr., 1986. Mimicry, aposematism, and crypsis in neotropical Lepidoptera: the importance of dual signals. In: Bernardi, G. ed., Aspects actuels de le Mimetisme, Paris, CNRS, Coloq. RCP 317, no prelo.
- BROWN, K.S.,Jr., DAMMAN, A.J. \& FEENY, P., 1981. Troidini swallowtails (Lepidoptera: Papilionidae) in southeastern Brazil: natural history and foodplant relationships.J. Res. Lepid., 19 (4): 199-226.
- BRUES, C.T., 1972. Insects, food, and ecology. New York, Dover, 466 p .
- CHEW, F.S., 1975. Coevolution of pierid butterflies and their cruciferous foodplants. I. The relative quality of availa b1e resources. Oecologia, 20(2): 117-27.
- CHEW, F.S., 1981. Coexistence and local extinction in two pierid butterflies. Am.Nat., 118(5): 655-72.
- COLLINS, N.M. \& MORRIS, M.G., 1985. Threatened swaleowtail butterflies of the world: the IUCN red data book. G1and, IUCN, 401 p.
- COOK, L.M.; FRANK, K. \& BROWER, L.P., 1971. Experiments on the demography of tropical butterflies. I. Survival rate and density in two species of Parides. Biotropica, 3(1): 17-20.
- COURTNEX, S.P., 1981. Coevolution of pierid butterflies and their cruciferous foodplants. III. Anthocharis cardamines (L.) survival, development and oviposition on different hostplants. Oecologia, 51(1): 91-6.
- COURTNEY, S.P. \& DUGGAN, A.E., 1983. The population biology of the orange tip butterfly Anthocharis cardaminesin Bri tain. Ecol. Entom., 8(3): 271-81.
- CRAWLEY, M.J., 1983. Herbivory; the dinamics of animal-plant interactions. Oxford, Blackwell Scientific Publications, 437 p.
- CROHARE, R.; PRIESTAP, H.A.; FARIÑA, M.; CEDOLA, M. \& RUVE DA, E.A., 1974. Aristololactams of Aristolochia argentina. Phytochemistry, 13(): 1957-62.
- D'ALMEIDA, R.F., 1966. Catalogo dos Papilionidae americanos. São Paulo, Soc. Bras. de Entomologia, 366 p.
- DEMPSTER, J.P., KING, M.L. \& LAKHANI, K.H., 1976. The status of the swallowtail butterfly in Britain. Ecol. Entom., 1(2): 71-84.
- DEN BOER, P.J., 1985. Exclusion, competition or coexisten ce ? a question of testing the right hypotheses. Z. zool. Syst. Evolut.-Gorsch., 23(4): 259-74.
- DETHIER, V.G., 1970. Chemical interactions between plants and insects. In : SONDHEIMER, E \& STMEONE, J.B., eds., Chemical ecology, New York, Academic Press, p.83-102.
- DUFFEY, S.S., 1980. Sequestration of plant natural products by insects. Ann. Rev. Entomol., 25:447-77.
- EHRLICH, P.R. \& EHRLICH, A.H., 1961. How to know the butter flies. Dubuque, Iowa, WM. C. Brown, 262 p.
- EHRLICH, P.R. \& RAVEN, P.H., 1965. Butterflies and plants: a study in coevolution. Evolution, 18(4):586-608.
- EISNER, T., 1970. Chemical defence against predation in arthropods. In: SONDHEIMER, E \& SIMEONE, J.B., eds., Chemical ecology, New York, Academic Press, p. 157-217.
- EMMEL, T.C. \& EMMEL, J.F., 1969. Selection and hostplant overlap in two desert Papilio butterfiies. Ecology, 50(1): 158-9.
- ERICKSON, J.M. \& FEENY, P., 1974. Sinigrin: a chemical barrier to the black swallowtail butterfly, Papilio polyxenes. Ecology, 55(1): 103-11.
- FEENY, P., 1976. P1ant apparency and chemical defense. Rec. Adv. Phytochem., 10: 1-40.
- FEENY, P., ROSENBERRY, L. \& CARTER, M., 1983. Chemical aspects of oviposition behavior in butterflies. In: AHMAD, $S .$, ed., Herbivorous insects: host seeking behavior and mechanisms, New York, Academic Press, p. 27-76.
- Ferri, M.G., 1969. Plantas do Brasil; espécies do cerrado. São Paulo, Edgard B1Ucher, EdUSP, 239 p.
- FRAENKEL, G.S., 1959. The raison d'être of secondary plant substances. Science, 129(3361): 1466-70.
- GILBERT, L.E., 1983. The biology of butterfly communities. In: VANE - WRIGHT, R.I. \& ACKERY, P.R., eds., The biology of butterflies, London, Academic Press, Royal Entomolo gical Society of London Symposium n. 11, p.41-54.
- GILBERT, L.E. \& SINGER, M.C., 1975. Butterf1y ecology. Ann. Rev. Ecol. Syst., 6: 365-97.
- HAUKIOJA, E., 1980. On the role of plant defences in the fluctuation of herbivore populations. Oikos, 35(2): 202-13.
- HAYES, J.L., 1981. The population ecology of a natural po pulation of the pierid butterfly Colias alexandra. Oecologia, 49(2): 188-200.
- HAZEL, W.N. \& WEST, D.A., 1979. Environmental control of pupal colour in swallowtail butterflies (Lepidoptera: Papilionidae): Battus philenor (L.) and Papilio polyxenes Fabr. Ecol. Entom., 4(4): 393-400.
- HIROSE, Y.; SUZUKY, Y.; TAKAGI, M.; HIEHATA, K.; YAMASAKI, M.; KIMOTO, H.; YAMANAKA, M.; IGA,M. \& YAMAGUCHI, K., 1980. Population dynamics of the citrus swallowtail, Papilio xuthus Linnē (Lepidoptera: Papilionidae): mechanisms stabilizing its numbers. Res. Popul. Ecol., 21 (2): 260-85.
- HOEHNE, F.C., 1942. Aristoloquiäceas. Fl. Bras $\vec{\imath} \ell i c a, 15(2):$ 3-141.
- HOLDREN, C.E. \& EHRLICH, P.R., 1982. Ecological determinants of food plant choice in the checkerspot butterfly Euphydryas editha in Colorado. Oecologia, 52(3): 417-23.
- HUSSEIN, F.T. \& EL-SEBAKHY, N.A., 1974. A phytochemical investigation of the leaves of Aristolochia elegans. Planta med., 25 (): 310-4.
- JERMY, T., 1985. Is there competition between phytophagous insects ? 2. zool. Syst. Evolut. -forsch., 23(4):275-85.
- JONES, R.E. \& IVES, P.M., 1979. The adaptiveness of searching and host selection behaviour in Pieris rapae (L.). Aust. J. Ecol., 4(1): 75-86.
- KITCHING, R.L. \& ZALUCKI, M.P., 1983. A cautionary note on the use of oviposition records as larval foodplant records. Aust. ent. Mag., 10(5): 64-6.
- LEDERHOUSE, R.C., 1983. Population structure, residency and weather related mortality in the black swallowtail butter fly, Papilio polyxenes. Oecologia, 59(2/3): 307-11.
- LEDERHOUSE, R.C., FINKE, M.D. \& SCRIBER, J.M., 1982. The contributions of larval growth and pupal duration to protandry in the black swallowtail butterfly, Papilio polyxenes. Oecologia, 53(3): 296-300.
- Lorenzi, H., 1982. Plantas daninhas do Brasil; terrestres, aquäticas, parasitas, tōxicas e medicinais. Nova odessa, SP, Lorenzi, H., ed., 425 p.
- MACARTHUR, R.H., 1972. Geographical ecology: patterns in the distribution of species. New York, Harper \& Row, 269 p.
- MATSUMOTO, K., 1984. Population dynamics of Luehdorfia japonica Leech (Lepidoptera: Papilionidae). I. A preliminary study on the adult population. Res. Popul. Ecol., 26(1):1-12.
- MATTSON, W.J., Jr., 1980. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst., 11:119-61.
- METCALF, C.L., FLINT, W.P. \& METCALF, R.L., 1962. Destructive and useful insects: their habits and control. 4.ed., New York, McGraw-Hi11, 1087 p.
- MITCHELL, R., 1981. Insect behavior, resource exploitation, and fitness. Ann. Rev. Entomol., 26: 373-96.
- MOONEY, H.A.; EHRLICH, P.R.; LINCOLN, D.E. \& WILLIAMS, K. S., 1980. Environmental controls on the seasonality of a drought deciduous shrub, Diplacus aurantíacus and its predator, the checkerspot butterfly, Euphydryas chalcedona. Oecologia, 45(2): 143-6.
- MOONEY, H.A.; WILLIAMS, K.S.; LINCOLN, D.E. \& EHRLICH, P.R., 1981. Temporal and spatial variability in the interaction between the checkerspot butterfly, Euphydryas chalcedona and its principal food source, the californian shrub, Diplacus aurantiacus. Decologia, 50(2): 195-8.
- MoSS, A.M., 1919. The papilios of Para. Novit. Zool., 26(): 295-319.
- MUNAVALLI, S. \& VIEL, C., 1969. Etude chimique, taxinomi que et pharmacologique des Aristolochiacées. Annls. pharm. fr., 27(6): 449-64; (7/8): 519-33; (9/10): 601-4.
- MUNROE, E. \& EHRLICH, P.R., 1960. Harmonization of concepts of higher classification of the Papilionidae. J. Lepid. Soc., 14 (3): 169-75.
- MUYSHONDT, A., 1974. An unusually long pupal stage of Battus polydamas polydamas L. (Papi1ionidae). J. Lepid. Soc., 28(2): 174-5.
- MYERS, J.H., 1981. Interactions between western tent cater pillars and wild rose: a test of some general plant her bivore hypotheses. J. Anim. Ecol., 50(1): 11-25.
- OHSAKI, N., 1979. Comparative population studies of three Pieris butterflies, P. rapae, P.melete and P. napi, living in the same area. I. Ecological requirements for habitat resources in the adults. Res. Popul. Ecol., 20 (2): 278-96.
- OHSAKI, N., 1980. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and nonmigratory mo vements. Res. Popul. Ecol., 22(1): 163-83.
- OHSAKI, N., 1982. Comparative population studies of three Pieris butterfiies, P. rapae, P. melete and P. napi, living in the same area. III. Difference in the annual generation numbers in relation to habitat selection by adults. Res. Popul. Ecol., 24(1): 193-210.
~ OLIVEIRA, J.B., 1980. Caracteristicas morfolōgicas, analíticas, limitações e aptidão agrícola dos solos da quadrïcula de Campinas. Campinas, Instituto Agronôico, 79 p., (Circular, no 109).
- OTERO, L.S. \& BROWN, K.S., Jr., 1986. Biology and ecology of Parides ascanius (Cramer, 1775) (Lep., Papilionidae) a primitive butterfly threatened with extinction. Atala, 10/12: 2-16.
- PFETfER, H.W., 1966. Revision of the north and central ame rican hexandrous species of Aristolochia (Aristolochiaceae). Ann. Mo. bot. Gdn., 53(2): 115-96.
- PIANKA, E.R., 1978. Evolutionary ecology. 2 ed., New York, Harper \& Row, 397 p .
- PRICE, P.W., 1975. Insect ecology. New York, John Wiley \& Sons, 514 p .
- PRICE, P.W.; BOUTON, C.E.; GROSS, P.; McPHERON, B.A.; THOMP SON, J.N. \& WEIS, A.E., 1980. Interactions among three trophic levels: influence of plants on interactions bet ween insect herbivores and natural enemies. Ann. Rev. Ecal. Syst., 11: 41-65.
- PRICE, P.W., 1983. Hypotheses on organization and evolution in herbivorous insect communities. In : DENNO, R.F. \& MC CLURE, M.S., eds., Variable plants and herbivores in natural and managed systems, New York, Academic Press, 559-96.
- PRIESTAP, H.A.; RUVEDA, E.A.; MASCARETTI, O.A. \& DEULOFEU, V., 1971. The aristolochic acids from Aristolochia argentina Gris. and Aristolochia esperanzae o. Kuntze. An. Asoc. quim. argent., 59(): 245-50.
- Priestap, H.A.; RGVEDA, E.A.; ALBONICO, S.M. \& DEULOfEU, V., 1972. The alkaloids from the roots of Aristolochia argentina Gris. An. Asoc. quim. argent., 60(): 309-16.
- PRIESTAP, H.A., BONAFEDE, J.D. \& RUUVEDA, E.A., 1977. Argentilactone, a novel 5-hydroxyacid lactone from Aristolochia argentina. Phytochemistry, 16(): 1579-82.
- RAUSHER, M.D., 1978. Search image for leaf shape in a butterfly. Science, 200(4345): 1071-3.
- RAUSHER, M.D., 1979a. Larval habitat suitability and ovi position preference in three related butterflies. Eco $\log y, 60(3): 503-11$.
- RAUSHER, M.D., 1979b. Egg recognition: its advantage to a butterf1y. Anim. Behav., 27(4): 1034-40.
- RAUSHER, M.D., 1980. Host abundance, juvenile survival, and oviposition preference in Battus philenor. Evolution, 34(2): 342-55.
- RAUSHER, M.D., 1981a. Hostplant selection by Battus philenor butterflies: the roles of predation, nutrition and plant chemistry. Ecol. Monogr., 51(1): 1-20.
- RAUSHER, M.D., 1981b. The effect of native vegetation on the susceptibility of Aristolochia reticulata (Aristo1ochiaceae) to herbivore attack. Ecology, 62(5):1187-95.
- RAUSHER, M.D. \& FEENY, P., 1980. Herbivory, plant density, and plant reproductive success: the effect of Battus philenor on Aristolochia reticulata. Ecology, 61(4): 905-17.
- RAUSHER, M.D. \& PAPAJ, D.R., 1983a. Demographic consequences of discrimination among conspecific hostplants by Battus philenor butterfiies. Ecology, 64(6): 1402-10.
- RAUSHER, M.D. \& PAPAJ, D.R., 1983b. Hostplant selection by Battus philenor butterfiies: evidence for individual differences in foraging behaviour. Anim. Behav., 31(2): 341-7.
- RHOADES, D.F. \& CATES, R.G., 1976. Toward a general theo ry of plant antiherbivore chemistry. Rec. Adv. Phytochem., 10: 168-213.
- RICKLEFS, R.E., 1980. Ecology. 2. ed., Ontario, Thomas Ne1son and Sons, 966 p.
- ROTHSCHILD, M., 1972. Secondary plant substances and war ning colouration in insects. In : VAN EMDEN, H.F., ed., Insect/plant relationships, oxford, Blackwell scientific Publications, Symposia of the Royal Entomological Society of London n. 6, p. 59-83.
- ROTHSCHILD, M.; RETCHSTEIN, T.; VON EUW, J.; APLIN, R. \& HARMAN, R. R. M., 1970. Toxic Lepidoptera. Toxicon, 8(): 293-9.
- ROTHSCHILD, W. \& JORDAN, K., 1906. A revision of the American papilios. Novit. Zool., 13(3): 411-752.
- RÜCKER, G., LANGMANN, B. \& SIQUEIRA, N.S., 1980. Inhaltsstoffe von Aristolochia triangularis. Planta med., 41(2):143-9.
- SCRIBER, J.M., 1984. Larval foodplant utilization by the world Papilionidae (Lep.): latitudinal gradients reappraised. Tokurana, 6/7(): 1-50.
- SCRTBER, J.M. \& FEENY, P., 1979. Growth of herbivorous caterpillars in relation to feeding specialization and to the growth form of their food plants. Ecology, 60(4): 829-50.
- SCRTBER, J.M. \& SLANSKY, F., Jr., 1981. The nutritional ecology of immature insects. Ann. Rev. Entomol., 26: 183-211.
- SHAPIRO, A.M., 1975. Ecological and behavioral aspects of coexistence in six crucifer-feeding pierid butterflies in the Central Sierra Nevada. Am. Midl. Nat., 93(2): 424-33.
- SIMS, S.R. \& SHAPIRO, A.M., 1983. Pupal color dimorphism in California Battus philenor (L.) (Papilionidae): mortality factors and seletive advantage. J. Lepid. Soc., 37(3): 236-43.
- SINGER, M.C., 1972. Complex components of habitat suitability within a butterfly colony. Science, 176(4030): 75-7.
- SINGER, M.C., 1983. Determinants of multiple host use by a phytophagous insect population. Evolution, 37(2): 389-403.
- SLANSKY, F., Jr., 1972. Latitudinal gradients in species diversity of the new world swallowtail butterfiies. J. Res. Lepid., 11 (4): 201-17.
- SLANSKY, F., Jr., 1974. Relationship of larval food plants and voltinism patterns in temperate butterfiies. Psyche, 81(2): 243-53.
- SMILEY, J., 1978. P1ant chemistry and the evolution of host specificity: new evidence from Heliconius and Passiflora. Science, 201(4357): 745-7.

```
- SOKAL, R.R. & ROHLF, F.J., 1981. Biometry. 2. ed., San Fran
    cisco, Freeman, 859 p.
```

- URZUA, A. \& PRIESTAP, H., 1985. Aristolochic acids from Battus polydamas. Biochem. Syst. Ecol., 13(2): 169-70.
- URZUA, A.; SALGADO, G.; CASSELS, B.K. \& ECKHARDT, G., 1983. Aristolochic acids in Aristolochia chilensis and the Aristolochia - feeder Battus archidamas (Lepidoptera). Collect. Czech. Chem. Commun., 48(5): 1513-9.
- VASCONCELLOS-NETO, J. \& LEWINSOHN, T.M., 1984. Discrimina tion and release of unpalatable butterfiies by Nephila clavipes, a neotropical orb-weaving spider. Ecol. Entom., 2(3): 337-44.
- VON EUW, J., RELCHSTEIN, T. \& ROTHSCHILD, M., 1968. Aris tolochic acid-I in the swallowtail butterfly Pachlioptera aristolochiae (Fabr.) (Papilionidae). Israel J. Chem., G(): 659-70.
- WATANABE, M., 1976. A preliminary study on population dynamics of the swallowtail butterfly, Papilio xuthus L. in a deforested area. Res. Popul. Ecol., 17(2): 200-10.
- WATANABE, M., 1981. Population dynamics of the swallowtail butterfiy Papilio xuthus L., in a deforested area. Res. Popul. Ecol., 23(1): 74-93.
- WATSON, A. \& WHALLEY, P.E.S., 1975. The dictionary ob butter Glies \& moths in color. New York, Mc Graw-Hil1, 296 p.
- WEST, D.A. \& HAZEL, W.N., 1979. Natural pupation sites of swallowtail butterfiies (Lepidoptera: Papilioninae) : Papilio polyxenes Fabr., P. glaucus L.and Battus philenor (L.). Ecol. Entom., 4(4): 387-92.
- WEST, D.A. \& HAZEL, W.N., 1982. An experimental test of natural selection for pupation site in swallowtail butterflies. Evolution, 36(1): 152-9.
- WHITTAKER, R.H. \& FEENY, P.P., 1971. A11elochemics: chemical interactions between species. Science, 171(3973): 757-70.
- WIKLUND, C., 1975. The evolutionary relationship between adult oviposition preferences and larval hostplant range in Papilio machaon L. . Oecologia, 18(3): 185-97.
- WIKLUND, C., 1981. Generalist vs. specialist oviposition behaviour in Papilio machaon (Lepidoptera) and functio nal aspects on the hierarchy of oviposition preferences. Oikos, 36(2): 163-70.
- WIKLUND, C., 1982. Generalist versus specialist utilization of hostplants among butterfiies. Proc. 5th int symp. Insect-plant Relationships, wageningen, Pudoc, Wageningen, p. 181-91.
- WTKLUND, C., 1984. Egg-1aying patterns in butterfiies in relation to their phenology and the visual apparency and abundance of their hostplants. Oecologia, 63(1): 23-9.
~WIKLUND, C. \& AHRBERG, C., 1978. Hostplants, nectar source plants, and habitat selection of males and females of Anthodaris cardamines (Lepidoptera). Oikos, 31 (2): 169-83.
- WILLIAMS, K.S., 1983. The coevolution of Euphydryas chalcedona butterfiies and their larval hostplants. III. oviposition behavior and hostplant quality. Oecologia, 56(2/3): 336-40.
- WILLIAMS, K.S., LINCOLN, D.E. \& EHRLICH, P.R., 1983. The coevolution of Euphydryas chalcedona butterfiies and their larval hostplants. II. Maternal and hostplant effects on larval growth, development, and food-use efficiency. Oecologia, 56(2/3): 330-5.
- WINT, W., 1983. The role of alternative hostplant species in the life of a polyphagous moth, Operophtera brumata (Lepidoptera: Geometridae). J. Anim. Ecol., 52(2): 439-50.
- WOLDA, H., 1981. Similarity indices, sample size and diversity. Oecologia, 50(3): 296-302.
- YAMAMOTO, M., 1983. Microhabitat segregation in two close 1y related pierid butterfiies. Jap. J. Ecol., 33(3): 263-70.
- YOUNG, A.M., 1971a. Mimetic associations in natural populations of tropical papilionid butterfiles. I. Life history and structure of a tropical dry forest breeding population of Battus polydamas polydamas. Revista de Biologia Tropical, 19(): 211-40.
- YOUNG, A.M., 1971b. Mimetic associations in natural populations of tropical papilionid butterflies (Lepidop tera: Papilionidae). J. N. Y.ent. Soc., 79 (4): 210-24.
- YOUNG, A.M., 1972a. Mimetic associations in populations of tropical butterflies. II. Mimetic interactions of Battus polydamas and Battus bellus. Biotropica, 4(1): 17-27.
- YOUNG, A.M., 1972 b . Breeding success and survivorship in some tropical butterflies. Oikos, $23(3): 318-26$.
- YOUNG, A.M., 1973. Notes on the life cycle and natural history of Parides arcas mylotes (Papilionidae) in cos ta Rican premontane wet forest. Psyche, $80(1 / 2): 1-21$.
- Young, A.M., 1977. Studies on the biology of Parides iphidamas (Papilioninae: Troidini) in Costa Rica. J. Lepid. Soc., 31(2): 100-8.
- YOUNG, A.M., 1979, Oviposition of the butterfly Battus belus varus (Papilionidae). J. Lepid. Soc., 33(1): 56-7.

A PEND I CE

1 =emperatura ($O C$) e umidade obtidas atravēs do uso de psicrometro marca BACHARACH
2. uminosidade (lux) obtida atravès do uso de fotômetro marca SEKONIC STUDIO DELUXE modelo L-28C2
3^{3} zus=ausente; frc = Eraco; frq =fraquinho; med $=$ médio.
Tabela Al6 :- Medidas de ambiente fisico em Amarais ${ }^{1,2,3}$.

[^5]2 temperatura (OC) e umidade obtidas atraves do uso de psicrometro marca BACHARACH ${ }^{3}$ Iuminosidade (lux) obtida atravës do uso de fotometro marca SEKONIC STUDIO DELUXE
aus $=$ ausente; frc $=$ fraco; frq $=$ fraquinho; med $=$ medio e for a forte.

A P $\widehat{\mathrm{E}} \mathrm{N} D \mathrm{D}$ I C E II

Tabela A17:- Ovos e larvas de Parides proneus encontrados em Aristolochia spp. em Monjolinho (dez 1981 - nov 1983) ${ }^{1,2}$.

Tabela A18:- Ovos e larvas de Parides bunichus encontrados em Aristolochia spp. em Monjolinho (dez 1981 - nov 1983) ${ }^{1,2}$.

Tabela A19:- Ovos e larvas de Parides agavus encontrados em Aristolochia spp. em Monjolinho (dez 1981 - nov 1983) ${ }^{1,2}$.

Tabela A20:- Ovos e larvas de Parides anchises nephalion encontrados em Aristolochia spp em Monjolinho (dez 1981 - nov 1983) ${ }^{1,2}$.

		elegans						esperanzae							melastoma				
		0	19	29	39	49	59	0	19	29	39	49	59	0	19	2%	39	49	50
-	dez				1			18	9	10	2	2							
	jan		2	1				2	1	3	1	2							
	fev			1		1		1				1							
	mar		11	3		1		7	7		1	1			2		1		
	abr			1	2	1		4			1								
	mai						1		2			1							
	jun		1	1							1								
	jul.		2	3															
	ago		1						1										
m	ago	3						1						1					
	set							1											

1
Cada indivỉduo estä representado, apenas uma vez, pelo estägio em que foi encontrado.

2
$0=0$ ovo e 19 a 50 correspondem aos estádios larvais.

Tabela A21:- Ovos e larvas de Parides neophilus eurybates encontrados em Aristolochia spp. em Monjolinho (1983) 1,2 .

1
Cada indivīduo está representado, apenas uma vez, pelo estägio en que foi encontrado.

2
$0=$ ovo e 19 a 5% correspondem aos estädios larvais.

Tabela A22:- Ovos e larvas de P. anchises nephalion e P. neophilus eurybates encontrados em Aristolochia spp. em Monjolinho (set 1982 - nov 1983) ${ }^{1,2}$.

${ }^{1}$ Cada indivíduo estä representado, apenas uma vez, pelo estägio em que foi encontrado.

2
$0=0$ ovo 19 e 59 correspondem aos estädios larvais.

Tabela A23:- Ovos e larvas de Parides spp. desconhecidos encontrados em Aristolochia spp. em Monjolinho (dez 1981 - nov 1983) 1,2.

[^6]Tabela A24 - Ovos e larvas de Battus polydamas encontrados em Aristolochia spp. em Monjolinho (dez 1981 - nov 1983) ${ }^{1,2}$.

1
Cada indivíduo estā representado, apenas uma vez, pelo estägio em que foi encontrado.

2
$0=$ ovo e 19 a 59 correspondem aos estädios larvais.

[^0]: informações retiradas de HOEHNE (1942), FERRI (1969), AHUMADA (1975) e LORENZI (1982).

[^1]: $n_{j i}=n \%$ de larvas de Troidini ${ }_{j}$ em planta ${ }_{i}$ de Aristolochia sp. $N_{i}=n$ total de larvas de Troidini ${ }_{j}$ em Aristolochia sp.

[^2]: 1 NS = Näo Significativo; $*=p<0,05$ e $* *=p<0,01$.

[^3]: estimativa por numero de plantas, tamanho de plantas e densidade de folhagem (medida a olho), para Monjolinho;
 ${ }^{2}$ de acordo com BROWN, DAMMAN \& FEENY (1981).

[^4]: * A. melastoma, A. arcuata e A. macroura

[^5]: $I_{A}=$ local aberto e $F=$ Local fechado

[^6]: ${ }^{1}$ Cada individuo está representado, apenas uma vez, pelo estägio en que foi encontrado.
 $20=0$ evo 19 a 59 correspondem aos estädios larvais.

