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ABSTRACT  
Glucocorticoids (GCs) are widely used as anti-inflammatory agent, but they may induce adverse 
metabolic effects such as insulin resistance (IR), glucose intolerance, and occasionally, diabetes 
mellitus type 2. Healthy rats have been used as animal models to elucidate the islet compensatory 
mechanisms involved in these metabolic disturbances, and only a few studies, which have 
focused on the in vivo effects of GCs, have been conducted in mice models. Yet, whether the 
reduced insulin clearance also contributes to the compensatory hyperinsulinemia in GC-treated 
rodents is not fully understood. Here, we aimed to elucidate whether mice and rats share the 
pancreatic compensations that result in response to dexamethasone (DEX) treatment and also to 
identify the possible mechanisms that can explain its effects. Yet, we investigated whether the 
hyperinsulinemia induced by GC treatment in mice and rats is associated with altered hepatic 
insulin degrading enzyme (IDE) expression and insulin clearance. For this, male Swiss mice and 
Wistar rats were treated with the synthetic GC dexamethasone (1 mg/kg b.w.; 5 days). DEX 
treatment induced IR, hyperinsulinemia and dyslipidemia in both species (there was a higher 
magnitude in rats), but treatment had a greater effect in rats that had glucose intolerance and 
increased basal blood glucose compared to the control group. Ex vivo insulin secretion at 
different glucose concentrations was higher in both groups of DEX-treated rodents compared to 
their controls. Mice and rats showed a significant increase in β-cell mass due to increased β-cell 
proliferation, which was associated with upregulation of the Ir-β/AKT/mTOR and 
downregulation of AMPK/ACC/AS160 signaling. Insulin clearance reduced in GC-treated mice 
and rats, which were associated with reduced hepatic IDE expression. Thus, mice are less 
vulnerable than rats to the deleterious effect of GCs on glucose homeostasis. In addition, rats and 
mice share common islet compensations (increased β-cell function and mass) in response to GC 
treatment, which were associated with increased canonical and decreased non-canonical insulin 
signaling. Farther, the reduced insulin clearance in GC-treated rodents was, at least in part, due to 
reduced hepatic IDE expression, which contributed to the compensatory hyperinsulinemia. These 
findings corroborate the idea that pharmacological interventions that inhibit hepatic IDE may be 
an alternative anti-diabetic agent that helps to maintain glucose homeostasis due to 
hyperinsulinemia instead of hypoglycemic agent, which increase the overload in the β-cells and 
may lead to β-cell failure and DM2. 
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RESUMO 
Os glicocorticoides (GC) são amplamente utilizados devido aos seus efeitos anti-inflamatórios. 
Porém, o tratamento com GC pode induzir efeitos deletérios sobre a homeostase glicêmica como 
a resistência à insulina (RI), intolerância à glicose e, dependendo do tempo e dose, pode levar a 
instalação do Diabetes mellitus tipo 2 (DM2). Neste sentido, ratos tem sido vastamente utilizados 
como modelo animal para elucidar as compensações pancreáticas envolvidas na hiperinsulinemia 
induzida por GC e, poucos estudos enfocando os efeitos do tratamento com GC foram realizados 
em camundongos. Além disso, não é completamente elucidado se a hiperinsulinemia 
compensatória induzida pelo tratamento com GC esta associada com alteração do clearance de 
insulina. Assim, nossos objetivos foram avaliar se:  as compensações do pâncreas endócrino em 
resposta ao tratamento com GC são similares entre camundongos e ratos e, identificar possíveis 
mecanismos que as expliquem; e se  a hiperinsulinemia compensatória induzida pelo tratamento 
com GC  em camundongos e ratos esta associada com alterações do clearance de insulina e a 
expressão da proteína insuling degrading enzyme (IDE) no fígado. Para isto, camundongos Swiss 
e ratos Wistar machos foram tratados com o glicocorticoide sintético dexametasona (1 mg/kg 
p.c.; 5 dias consecutivos). O tratamento com GC induziu RI, hiperinsulinemia e dislipidemia em 
ambas as espécies, embora mais pronunciado em ratos, que também apresentaram intolerância à 
glicose e hiperglicemia no jejum. Ambas as espécies tratadas com GC apresentaram incremento 
da secreção de insulina ex vivo estimulada com glicose, massa e proliferação de células β, que 
foram associados com aumento da sinalização da via Ir-β/AKT/mTOR e redução da via 
AMPK/ACC/AS160 em ilhotas isoladas. O clearance de insulina reduziu em camundongos e 
ratos tratados com GC, o que foi associado com redução da expressão de IDE no fígado. Desta 
forma, nossos resultados indicam que camundongos são menos sensíveis aos efeitos deletérios do 
tratamento com GC sobre a homeostase glicêmica, quando comparado com ratos. Ainda, 
camundongos e ratos apresentam compensações pancreáticas semelhantes (incremento da função 
e massa de células β) em resposta ao tratamento com GC, que foi associado com aumento da 
sinalização da via canônica de insulina e redução da via não canônica em ilhotas isoladas. Além 
disso, a redução do clearance de insulina foi, ao menos em parte, devido a redução da expressão 
de IDE no fígado, o que contribuiu para a hiperinsulinemia compensatória em ambas as espécies 
tratadas com GC. Em conclusão, estes resultados corroboram a hipótese de que fármacos que 
inibam a expressão ou atividade da IDE no fígado podem ser uma intervenção anti-diabetogênica 
que auxilie na manutenção da homeostase glicêmica sem sobrecarregar as células β.   
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A confusão é o começo de uma nova realidade. 

(Richard Bandler) 

 

 

Somos o que pensamos. Tudo o que somos surge com nossos pensamentos. Com 

nossos pensamentos, fazemos o nosso mundo. 
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Introdução 

O Diabetes Mellitus tipo 2 (DM2) é uma doença metabólica multifatorial, caracterizada por 

hiperglicemia, usualmente associada com resistência periférica à insulina (RI), disfunção da 

célula β  e alteração no clearance de insulina (11, 15, 18, 23, 37).  

No início do desenvolvimento do DM2, antes da instalação da hiperglicemia crônica, o 

aumento da demanda de insulina devido à redução da sua ação em tecidos insulinodependentes, 

induz o aumento da secreção pelas células β pancreáticas, induzindo hiperinsulinemia 

compensatória, que persiste enquanto as células β forem capazes de manter a demanda requerida 

(15). Os mecanismos pelos quais as células β compensam o aumento da demanda de insulina 

requerida e mantém a homeostase glicêmica são por meio de compensações funcionais (aumento 

da secreção de insulina estimulada com glicose) e estruturais (aumento da massa de células β) 

(28). Entretanto, durante a instalação do DM2, as células β podem se tornar inaptas a lidar com o 

aumento da demanda, devido a glicolipotoxicidade e entram em um processo apoptótico que 

culmina com a falência parcial ou total das células β (28), que é considerado o fator determinante 

para o DM2 (15). 

Embora os glicocorticoides (GCs) sejam amplamente utilizados devido às suas 

propriedades imunossupressoras, o tratamento com GC pode induzir perturbações na homeostase 

glicêmica devido às suas propriedades catabólicas, especialmente sobre o adipócito (5, 25), 

induzindo RI, aumento da gliconeogênese hepática, intolerância à glucose e, dependendo da 

susceptibilidade genética, até ao DM2 (5, 22, 38, 39). É bem conhecido que a RI induzida pelo 

tratamento com GC (2, 3, 24, 32, 41) também induz uma hiperinsulinemia compensatória devido 

a adaptações pancreáticas semelhantes as observadas na RI induzida pela obesidade (32, 33, 35).  
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O estado de compensação pelas células β pancreáticas, observado durante o 

desenvolvimento do DM2 induzido por dieta hiperlipídica (7 semanas) (27), pode ser 

rapidamente mimetizado pelo tratamento com GC (5 dias) (32, 33, 35) devido à indução de RI. 

Neste sentido, ratos e camundongos têm sido utilizados como modelos animais para elucidar os 

mecanismos moleculares, funcionais e estruturais envolvidos na adaptação compensatória das 

ilhotas pancreáticas (7, 8, 13, 14, 16, 17, 21, 25, 26, 30-36). 

Embora seja bem estabelecido que ratos tratados com GC apresentam aumento da função e 

da massa de células β, resultados em camundongos são conflitantes. Camundongos tratados com 

GC apresentaram hiperinsulinemia associada com hiperglicemia (13). Diferentemente, a secreção 

de insulina estimulada por glicose foi reduzida em ilhotas isoladas de camundongos tratados com 

GC (17, 21). Esta aparente inconsistência pode ser devido à diferenças no background genético 

ou à sobreposição dos efeitos direto e indireto do GC sobre a célula β.   

A insulinemia plasmática é o resultado de um balanço dinâmico entre fornecimento 

(secreção) e remoção da insulina plasmática (clearance) (9). Neste sentido, evidências indicam 

que a redução do clearance de insulina também contribui para a hiperinsulinemia compensatória 

induzida pela obesidade em humanos (4, 19), macacos (11), cachorros (23) e ratos (40), 

indicando que a redução do clearance de insulina é uma compensação que contribui para a 

homeostase glicêmica durante o desenvolvimento do DM2 induzida pela obesidade em 

mamíferos. De fato, a redução do clearance de insulina precede o incremento da secreção de 

insulina pelas células β, em cachorros tratados com dieta hiperlipídica (23). Desta forma, é bem 

estabelecido que a redução do clearance de insulina é um importante fator que contribui para a 

hiperinsulinemia compensatória induzida pela obesidade. Porém, a associação entre redução do 

clearance e hiperinsulinemia não é completamente elucidada em modelo de RI induzida pelo GC.  
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O clearance de insulina, definido como a taxa de remoção da insulina do plasma, ocorre 

predominantemente no fígado (9, 10, 18), e sua degradação em hepatócitos é mediada 

principalmente pela insulin degrading enzyme (IDE) (9), uma proteína de 110 kDa, presente em 

todas as células insulinodependentes e também em células não dependentes de insulina  (9). 

Experimentos in vitro indicam que hepatócitos tratados com GC apresentam menor interação 

entre IDE e insulina (12) e reduzida capacidade de degradar insulina (1). Além disso, o 

tratamento crônico (1 ano) com GC reduz a expressão de IDE no cérebro de macacos (20), o que 

esta associado com o aumento da predisposição para o desenvolvimento da doença de Alzheimer 

no DM2 (29). Ainda, experimentos funcionais indicam que o clearance hepático basal esta 

reduzido em cachorros tratados com GC (6). 

Assim, o objetivo do presente trabalho foi elucidar se o tratamento com GC induz: 1) 

compensações pancreáticas semelhantes em ratos e camundongos e 2) alterações no clearance de 

insulina e na expressão hepática da IDE em ratos e camundongos. 
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Objetivos  

Os objetivos específicos do presente trabalho foram elucidar se:  

1) Compensações do pâncreas endócrino em resposta ao tratamento com GC são similares 

entre camundongos e ratos, e identificar possíveis mecanismos que as expliquem. 

2) Hiperinsulinemia compensatória em modelo de RI induzida pelo tratamento com GC  

em camundongos e ratos esta associada a alterações no clearance de insulina e na 

expressão hepática de IDE. 
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Artigo 1 

Parte dos resultados obtidos durante a realização deste trabalho estão apresentados a seguir sob a 

forma de artigo científico submetido na revista American Journal of Physiology, Regulatory, 

Integrative and Comparative Physiology. 
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Summary  

Glucocorticoids (GCs) are widely used as anti-inflammatory agents, but they may induce 

adverse metabolic effects, such as insulin resistance (IR), glucose intolerance, and occasionally, 

type 2 diabetes. Healthy rats have been used as animal models to elucidate the islet compensatory 

mechanisms involved in these metabolic disturbances, and only a few studies, which have 

focused on the in vivo effects of GCs, have been conducted in mice models. Here, we aimed to 

elucidate whether mice and rats share the pancreatic compensations that result in response to 

dexamethasone (DEX) treatment and also to identify the possible mechanisms that can explain its 

effects. Male Swiss mice and Wistar rats were treated with DEX (1 mg/kg b.w.; 5 days). DEX 

treatment induced IR, hyperinsulinemia and dyslipidemia in both species (there was a higher 

magnitude in rats), but treatment had a greater effect in rats that had glucose intolerance and 

increased basal blood glucose compared to the control group. Ex vivo insulin secretion at 

different glucose concentrations was higher in both groups of DEX-treated rodents compared to 

their controls. Mice and rats showed a significant increase in β-cell mass due to increased β-cell 

proliferation, which was associated with upregulation of the Ir-β/AKT/mTOR and 

downregulation of AMPK/ACC/AS160 signaling. We conclude that mice are less vulnerable than 

rats to the deleterious effect of GCs on glucose homeostasis. In addition, rats and mice share 

common islet compensations (increased β-cell function and mass) in response to GC treatment, 

which were associated with increased canonical and decreased non-canonical insulin signaling.  

 

Keywords: AKT, AMPK, glucocorticoid, insulin secretion, islets. 



 11 

 

 

Introduction 

Glucocorticoids (GCs), such as dexamethasone (DEX), are widely prescribed in clinical 

practice due to their anti-inflammatory, anti-allergic and immunosuppressive properties. GCs are 

the standard treatment for asthma, rheumatoid arthritis, systemic lupus erythematosus, and 

inflammatory bowel diseases (5, 43), as well as to protect against transplanted organ rejection (1). 

However, supraphysiological levels of GCs (either exogenous or endogenous) induce adverse 

effects related to glucose homeostasis, such as decreased peripheral insulin sensitivity, glucose 

intolerance and dyslipidemia (7, 25, 42, 45). Depending on the genetic background, age, and time 

and dose of the exposure, it can also lead to type 2 diabetes mellitus (T2DM) (22, 25, 31, 35, 37, 

45, 51). 

T2DM is a multifactorial metabolic disease that is mainly characterized by hyperglycemia 

(41), but before overt hyperglycemia occurs, peripheral insulin resistance (IR) leads to 

compensatory insulin hypersecretion by pancreatic β-cells (52). This adaptive islet compensation 

leads to a state of hyperinsulinemia together with normoglycemia or a modest increase in 

glycemic values (pre-diabetic) that persist until the β-cells can handle the required demand for 

insulin (16). The major mechanisms by which β-cells generate hyperinsulinemia during adaptive 

compensation consist of functional (e.g., increased insulin biosynthesis and/or secretion) and 

structural adaptations (e.g., increased β-cell hyperplasia and hypertrophy that may result in 

increased β-cell mass) (16, 34, 47). Thus, when β-cells can no longer compensate, a 
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glucolipotoxicity process progressively develops that induces β-cell death accompanied by 

hypoinsulinemia, hyperglycemia and hyperlipidemia.  

The state of β-cell compensation observed in T2DM that can be induced by a long-term 

high-fat diet (7 weeks) (33) can be rapidly mimicked by GC treatment (5 days) (37) due to the 

induction of peripheral IR, which is associated with increased hepatic gluconeogenesis and 

lipolysis in adipocytes (32). 

Healthy rats and genetically obese mice have been used as laboratory models to elucidate 

the mechanisms (at the functional, structural and molecular levels) involved in the adaptive 

compensations of pancreatic islets to GC-induced IR (17, 18, 23, 37). Although it is well 

established that in vivo GC treatment in rats leads to increased β-cell function and mass, data in 

mice remain to be elucidated. DEX-treated mice exhibit hyperinsulinemia and hyperglycemia 

(15). In contrast, glucose-stimulated insulin secretion (GSIS) is decreased in isolated islets from 

DEX-treated mice (18, 23). These apparent inconsistencies may be due to the differences in the 

genetic background and/or the overlapping of direct and indirect effects of GC on β-cells.  

Therefore, we aimed to elucidate whether the endocrine pancreas compensations in 

response to in vivo GC treatment are similar between healthy mice and rats and also to identify 

the possible mechanisms that can explain its effects. 

 

Materials and methods  

Reagents  

Dexamethasone phosphate (Decadron) was purchased from Aché (Campinas, SP, Brazil). 

Human recombinant insulin (Humalin R) was obtained from Lilly (Indianapolis, IN, USA). 
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Trizol was purchased from Gibco-BRL (Gaithersburg, MD, USA), and Triton X-100 was 

purchased from Cromato Products (Diadema, SP, BR). The 125I-labeled insulin used in the 

radioimmunoassay (RIA) was purchased from Perkin Elmer (Boston, MA, USA). SDS-PAGE 

and immunoblotting were performed using Bio-Rad systems (Hercules, CA, USA), and all 

chemicals were from Bio-Rad and Sigma Aldrich (St. Louis, MO, USA). Western blot detection 

of specific proteins used the following primary antibodies from Santa Cruz (Santa Cruz, CA, 

USA): anti-phospho-Ir-βTyr1162/1163, anti-Ir-β, anti-phospho-AKT1/2/3
Thr308, anti-AKT1/2/3, anti-

phospho-ERKTyr204, anti-ERK1, anti-PKC and anti-GAPDH. Anti-phospho-AMPKThr172, anti-

AMPK, anti-phospho-ACCSer79, anti-ACC, anti-phospho-AS160Thr642, anti-phospho-PKC 

substrates and anti-PCNA were from Cell Signaling (Temecula, CA, USA). Anti-phospho-

mTORSer2448 and anti-mTOR were from Abcam (Cambridge, UK), and anti-CX36 was from 

Invitrogen (Camarillo, CA, USA). The secondary antibodies used were anti-rabbit IgG and anti-

mouse IgG from Cell Signaling. Urea anti-protease/anti-phosphatase buffer was composed of 7 

M urea, 2 M thiourea, 5 mM EDTA, 1 mM sodium fluoride, 1 mM sodium orthovanadate, 1 mM 

sodium pyrophosphate, 2 mM PMSF, 1% Triton X-100 and 1 μg/ml aprotinin (Trasylol from 

Bayer Health Care Pharmaceuticals, Berkley, CA). Immunohistochemical detection of insulin 

was performed using an anti-insulin  primary antibody (guinea pig polyclonal) (Dako, 

Carpinteria, CA, USA), and detection of KI-67 was performed using an anti-KI-67 antibody 

(Spring Bioscience, Pleasanton, CA, USA). The secondary antibodies used to detect the anti-

insulin and anti-KI-67 antibodies were anti-guinea pig IgG (Invitrogen, Carlsbad, CA, USA) and 

HRP-conjugated anti-rabbit IgG (Nichirei Bioscience, Tokyo, JP), respectively. 
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Animals and experimental design  

Experiments were performed on groups of male Swiss mice and male Wistar rats (80 to 100 

days) obtained from the State University of Campinas Animal Breeding Center. They were 

maintained in appropriate animal cages and kept at 24°C on a 12:12-hours light-dark cycle. Both 

mice and rats had access to food and water ad libitum. The experiments with animals were 

approved by the Institutional State University of Campinas Committee for Ethics in Animal 

Experimentation under protocol number 2285-1. Mice and rats were divided into the following 

two groups: DEX-treated rodents (DEX) that received a daily injection of dexamethasone 

phosphate (i.p., 1.0 mg/kg b.w. in 0.9% NaCl for 5 consecutive days) and control rodents (CTL) 

that received a daily injection of saline (i.p., saline alone for 5 consecutive days) between 08:00 

and 09:00. All experiments were performed 24 h after the last DEX injection (at the sixth day) to 

avoid the overlapping of acute and chronic effects of GCs. 

 

Metabolic, hormonal, and biochemical measurements  

Body weight was measured beginning 2 days before the start of treatment and each day 

thereafter until the day of euthanasia. On the day after the last DEX administration, blood was 

collected from the tails of a group of fasted (10-12 h) animals, and blood glucose levels were 

measured with a glucometer (Accu-Chek Advantage, Roche Diagnostic, Switzerland). 

Immediately after blood glucose determination, the animals were sacrificed (by exposure to CO2 

followed by decapitation), and the trunk blood was collected. The serum was obtained by 

centrifugation and was used to measure the following parameters: insulin by RIA, non-esterified-

free-fatty-acids (NEFA) (Wako Chemicals; Richmont, USA), triacylglycerol (TG) and total 
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cholesterol (CHOL) (Roche/Hitachi; Indianapolis, IN, USA) by spectrophotometer according to 

the manufacturers’ instructions. 

 

Intraperitoneal insulin tolerance test (ipITT)  

A separate group of fed animals received an intraperitoneal injection of insulin (1 U/kg b.w. 

in 0.9% NaCl). Blood glucose was measured at baseline (before insulin administration; 0 min) 

and at 5, 10, 15, 30, 45 and 60 minutes after insulin administration. Blood glucose measurements 

were then converted into the natural logarithm (Ln); the slope was calculated using linear 

regression (time × Ln[glucose]) and multiplied by 100 to obtain the constant rate of glucose 

decay per minute (%/minute) during the ipITT (KITT) (41). 

 

Intraperitoneal pyruvate tolerance test (ipPTT)  

A separate group of fasted (14 h) animals received an i.p. injection of pyruvate (1 g/kg 

b.w.). Blood glucose was measured at baseline (before pyruvate administration; 0 min) and at 5, 

15, 30 and 60 min after pyruvate administration. The area-under-the-glucose-curve (A.U.C.) was 

obtained from the 30 min of the ipPTT after normalization of the data (37). The constant rate of 

glucose appearance per minute (%/minute) during the first 15 minutes of the ipPTT (KPTT) was 

calculated as described above. 

 

Intraperitoneal glucose tolerance test (ipGTT)  

A separate group of fasted (10 h) animals received an i.p. injection of 50% glucose solution 

(1 g/kg b.w.). Blood glucose was measured at baseline (before glucose administration; 0 min) and 
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at 15, 30, 60, 90 and 120 min after glucose administration. The A.U.C. was calculated as 

described above. 

 

Islet isolation and static insulin secretion  

Islets were isolated by collagenase digestion of the pancreas as described previously (40). 

Insulin secretion and quantification by RIA was performed using a similar method as described 

previously (37).  

 

Immunohistochemistry and morphometry in the endocrine pancreas  

 For morphometric analysis, at least 6 pancreases from each group of mice and rats were 

removed, weighed and fixed for 24 hours in 4% paraformaldehyde solution, as previously 

described (36). For morphometry analysis, all islets present in the sections were obtained 

systematically by capturing images with a digital camera (Olympus DP52, Tokyo, JP) coupled to 

a microscope (Olympus BX51TF, Tokyo, JP). The islet, β-cell, and section areas were analyzed 

using the free software ImageJ (http://rsbweb.nih.gov/ij/download.html). The relative β-cell area 

was calculated by dividing the β-cell area per section by the total pancreas area per section, and 

the absolute β-cell mass was calculated by multiplying the pancreas weight by the relative β-cell 

area per pancreas. The relative number of islets was obtained by dividing the number of islets per 

section by the total area of the section (36). 

 

β-cell proliferation  
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Average β-cell proliferation was obtained by counting the total islet cell nuclei stained for insulin 

and KI-67 using the same software cited above. β-cell proliferation was estimated by dividing the 

number of KI-67-positive nuclei by the total number of insulin-positive cells (36). 

 

β-cell death 

DNA was isolated from mouse or rat islets and separated into fragmented and integral subunits 

using the Trizol/Triton method as described previously (44). Both quantities were measured using 

the SYBR green method and expressed as ng/ml of DNA as previously described (44). The data 

are expressed as the ratio of fragmented to total DNA. 

 

Protein extraction and immunoblotting  

Protein extraction and immunoblotting were performed as previously reported (44) with minor 

modifications. Images were captured by the luminescent image analyzer LAS-3000 (Fujifilm, 

Tokyo, JP), and the specific band intensity was quantified by optical densitometry using ImageJ. 

 

RNA isolation and quantitative RT-PCR analysis 

Groups of 600 islets were homogenized in Trizol following phenol chloroform RNA extraction, 

as previously described (44). Relative quantities of target transcripts were calculated from 

duplicate samples after normalization of the data against the endogenous control, GAPDH. The 

primers used were as follows: PDX1 (S: aaccggaggagaataagagg and AS: 

gttgtcccgctactactgtt), insulin (S: ttgcagtagttctccagtt and AS: attgttccaacatggccctgt) and 

GAPDH (S: cctgcaccaccaactgctta and AS: gccccacggccatcacgcca). 
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Statistical Analysis  

The results are expressed as the mean ± s.e.m. of the indicated number (n) of animals. A paired or 

unpaired Student’s t-test was used for intragroup (before and after) or intergroup (CTL vs. DEX 

group) comparisons. All analyses were performed using GraphPad Prism version 5.0 (GraphPad 

Software, San Diego, CA, USA). A p-value less than or equal to 0.05 was considered significant. 

 

Results  

DEX treatment reduced body and adrenal gland weights in mice and rats 

It is known that 5-day DEX treatment in rats produces a dose-dependent reduction in 

adrenal gland mass in a marked reciprocal reduction of endogenous corticosterone concentration 

(37). As expected, DEX treatment induced a significant decrease in the mass of the adrenal 

glands in mice (30%) and rats (35%) compared with their respective controls (Table 1), which 

demonstrates the effectiveness of exogenous GC treatment on adrenal hypotrophy. In addition, 

the mice and rats showed reduced body weight (4% and 11%, respectively) (Table 1), which is a 

feature commonly observed in rats made insulin-resistant by DEX treatment (31, 37). 

 

DEX treatment induced a reduction in insulin sensitivity in mice and in rats, but increased 

hepatic gluconeogenesis and glucose intolerance only in rats 

We first confirmed the reduction in insulin sensitivity in both mice and rats. The ipITT 

revealed a significant reduction in insulin sensitivity in both DEX-treated groups (Figs. 1A, F, 

respectively) as indicated by the reduction in the KITT (Figures 1B, E), although this effect 
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occurred to a lesser extent in mice. We also analyzed whether GC treatment increased hepatic 

gluconeogenesis. DEX treatment did not alter gluconeogenesis in mice; however, DEX-treated 

rats showed increased glucose production in response to pyruvate administration, as indicated by 

the increased A.U.C. and the KPTT (Figs. 1B-D, G-I, respectively), which indicates hepatic 

insulin resistance. Despite a reduction in insulin sensitivity, glucose tolerance in DEX-treated 

mice was similar to that in their controls (see A.U.C. data; Fig. 1E). Compared to their controls, 

DEX-treated rats showed the well-known negative impact of GC excess on glucose tolerance 

(Fig. 1J), which reflects the association of increased hepatic glucose production with a possible 

reduction of peripheral glucose disposal.  

 

DEX treatment induced dyslipidemia and hyperinsulinemia in both mice and rats 

DEX treatment increased fasting serum cholesterol (CHOL) and triacylglycerol (TG) 

concentrations in both mice and rats compared to their respective controls, which indicates a 

negative impact of GCs on lipid metabolism in both species. In addition, DEX treatment 

increased the NEFA levels only in rats (Table 2), which may indicate an increased rate of 

lipolysis of adipose tissue. DEX-treated rodents also showed a marked increase in serum insulin 

levels that were 1- and 9-fold higher in mice and rats, respectively. Blood glucose was not altered 

in DEX-treated mice, while it was 60% higher in DEX rats compared to CTL (Table 2). Thus, the 

hyperinsulinemia corroborates the IR state and seems to protect against the disruption of glucose 

homeostasis, though GC-treated rats were glucose intolerant. 

 

Islets from DEX-treated rats are more responsive to glucose than islets from DEX-treated 
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mice 

Due to the increased insulinemia that was observed in both DEX-treated mice and rats, we 

assessed the GSIS. Compared to the control groups, isolated islets from DEX-treated rats were 

more responsive to all glucose concentrations used (2.8 to 22.2 mmol/L), (Figs. 2C, D), whereas 

islets from DEX-treated mice were more responsive to glucose up to a concentration of 11.1 

mmol/L (Figs. 2A, B). These data point to species differences in the increase of β-cell function 

that contributes to the different degrees of hyperinsulinemia found in each species. 

 

DEX treatment leads to increased β-cell mass in the pancreas of mice and rats 

Because an increase in β-cell mass may also favor compensatory hyperinsulinemia, we 

investigated this parameter in DEX-treated mice and rats. Pancreatic sections stained for insulin 

revealed a significant increase in the number of islets per pancreatic area in both DEX-treated rats 

and mice compared to their respective controls (Figs. 3A, C). Additionally, DEX treatment 

significantly increased the absolute β-cell mass in the pancreas from both mice and rats (Fig. 3E). 

These data indicate a compensatory structural islet adaptation in response to DEX-induced IR in 

both species. 

 

DEX treatment increases β-cell proliferation without affecting apoptosis in mouse and in 

rat islet cells 

The β-cell mass is the result of a dynamic balance between cell death and proliferation. We 

found that DEX treatment significantly increased β-cell proliferation in islets from rats (420%) 

and mice (200%) compared with their respective controls, as indicated by the higher number of 
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KI-67-positive β-cell nuclei (Figs. 4A, B). In addition, DEX treatment increased the protein 

content of the proliferating cell nuclear antigen (PCNA) in islets to a greater extent in rats than in 

mice (Fig. 4C). DEX treatment did not affect apoptosis in the islets of rats or mice as judged by 

DNA fragmentation (Fig. 4D) and caspase-3 cleavage data (Fig. 4E). 

 

Increased β-cell function and mass is associated with increased Ir-β/AKT and reduced 

AMPK/ACC pathway activities in pancreatic islets from DEX-treated mice and rats  

Because insulin plays an important role in β-cell proliferation and can act directly upon the 

islet cells, we investigated whether insulin signaling was modulated by DEX treatment. We 

analyzed the canonical insulin pathway through the insulin receptor β-subunit (Ir-β) and its 

downstream protein, protein kinase B (AKT). In islets from DEX-treated mice, we observed an 

increase in p-Ir-β (Fig. 5A) without alterations in the total Ir-β protein content (Fig. 5B). In islets 

from DEX-treated rats, the levels of p-Ir-β and total Ir-β protein increased significantly (Figs. 5A, 

B). DEX-treated mice had increased islet p-AKT (Fig. 5C) without alteration of the total AKT 

content (Fig. 5D). In rat islets, DEX treatment resulted in higher amounts of p-AKT and total 

AKT (Figs. 5C, D). We also assessed whether the extracellular signal-regulated kinase (ERK) 

pathway, which can be activated by insulin and participates in cell proliferation and 

differentiation (Stork and Schmitt, 2002), is modulated by DEX-treatment. In mice islets, only p-

ERK was augmented (Figs. 6E, F), while DEX-treated rat islets showed a significant increase in 

p-ERK and total ERK content (Figs. 6E, F). Insulin secretion can also be modulated by the non-

canonical insulin pathway through the AMP-dependent protein kinase (AMPK). Islets from 

DEX-treated mice and rats had lower p-AMPK without alterations in the total AMPK content 
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(Figs. 5G, H). Acetyl-CoA carboxylase (ACC), a downstream AMPK target protein, has 

diminished activity when phosphorylated. In both species, DEX treatment was associated with 

decreased levels of phosphorylated ACC (Fig. 5I) without altering the total ACC levels in islets 

(Fig. 5J), which indicates increased lipid synthesis in islets. Thus, DEX treatment results in 

increased canonical and decreased non-canonical insulin signaling pathways in islets from mice 

and rats. 

 

DEX treatment modulates proteins related to vesicle trafficking, protein synthesis, cell 

growth, and insulin secretion in pancreatic islets from both mice and rats  

Because the AKT and AMPK pathways were modulated by DEX treatment, we analyzed 

the 160 kDa substrate of the serine-threonine kinase AKT (AS160), which is involved in vesicle 

trafficking and is also a target of AMPK. In mice and rats, DEX treatment resulted in higher p-

AS160 (Fig. 6A) and lower AS160 contents (Fig. 6B) compared to the control groups. We also 

analyzed the mammalian target of rapamycin (mTOR), a protein that induces protein synthesis 

and is modulated by AKT and AMPK. Islets from DEX-treated mice and rats showed increased 

p-mTOR and total mTOR protein (Figs. 6C, D). Due to its importance in the insulin secretion 

process, we also investigated proteins related to calcium (Ca2+) influx, such as protein kinase C 

(PKC) and connexin 36 (CX36). The levels of phosphorylated PKC-target proteins (Fig. 6E), 

total PKC (Fig. 6F), and CX36 were increased in islets from DEX-treated mice and rats 

compared to their control groups. These data indicate increased insulin secretion and β-cell mass 

in treated rodents. 
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DEX treatment is associated with increased mRNA levels of PDX1 in rat islets, but not in 

mice islets  

We also evaluated whether DEX treatment could alter the mRNA levels of the insulin and 

pancreatic duodenal homeobox-1 (PDX1) genes. DEX treatment tended to increase insulin 

mRNA levels in pancreatic islets from both mice and rats (Fig. 6J; p= 0.056 and 0.055, 

respectively). In addition, DEX treatment increased PDX1 mRNA levels in rat islets, but not in 

mouse islets (Figure. 6J).  

 

Discussion 

As has been observed in rats, short-term GC treatment in mice reduced peripheral insulin 

sensitivity with compensatory hyperinsulinemia as a result of enhanced β-cell function (higher 

GSIS) and mass (through β-cell hyperplasia). The molecular mechanisms underlying these 

adaptive endocrine pancreas compensations involved an increase in the Ir/AKT/mTOR and a 

decrease in the AMPK/ACC/AS160 signaling pathway activities in the islets of both species. 

DEX-induced alterations in insulin action as well as plasma insulin concentrations are 

associated with enhanced insulin secretion in response to glucose, which is frequently observed 

in GC-treated subjects (2, 4, 30, 50). Despite the pronounced hyperinsulinemia, which is a result 

of a marked compensatory GSIS and increased β-cell mass, DEX-treated rats were not able to 

properly counteract the peripheral insulin resistance, and both glucose intolerance and 

hyperglycemia developed. The results obtained in the present study with DEX-treated rats 

corroborated those of previous studies (17, 31, 35, 39).  
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For the first time, we show here that although DEX-treated mice presented a decrease in 

peripheral insulin sensitivity, these rodents remained normoglycemic levels and tolerance to 

glucose, indicating that the islet compensations (e.g., increased GSIS and β-cell mass) were 

sufficient to prevent disruption of glucose homeostasis. Thus, at similar conditions of treatment 

(time and doses of DEX), mice seem to be less vulnerable than rats to the deleterious effects of 

GCs upon glucose homeostasis. As judged by the lower magnitude of compensatory responses in 

the islets, it seems that mice were less insulin-resistant than rats in response to DEX treatment. In 

addition, we cannot exclude the possibility that a more prolonged period and/or higher GC 

concentrations may produce disruptions of glucose homeostasis in mice similar to those observed 

in rats. 

Hyperinsulinemia may be explained by several factors, including the reduction of hepatic 

insulin clearance (Mittelman 2000) and/or an increase of basal insulin secretion (37, 38). The 

data obtained regarding insulin secretion demonstrated that both DEX-treated rats and mice had 

higher insulin responses to glucose, including at sub-threshold glucose levels (e.g., 2.8 and 5.6 

mmol/L). It is well known that hydrocortisone administration acutely suppresses insulin release 

in mice by a mechanism that most likely involves the central activation of sympathetic nerves 

(24). This was not the case here, as our experiments were performed 24 h after a 5-day course of 

DEX, thus eliminating the possible overlapping of acute and chronic effects.  

GSIS in isolated islets from ob/ob mice that were treated with DEX for 1 or 2 days (at a 

dose equivalent to ours) was lower compared to saline-treated ob/ob mice (18). Similarly, it was 

shown that 2½ days of DEX treatment (at a dose equivalent to ours) reduced insulin secretion in 

isolated islets from healthy as well as transgenic mice that overexpressed GC receptors 
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specifically in β-cells (TG-mice). In both studies, it was shown that glucose-6-phosphatase 

(G6Pase) activity is increased in islets from DEX-treated rats (normal and TG-mice) (18, 23) and 

that such alteration, by generating a futile cycle, could explain the reduced GSIS in these mice. In 

addition, these mice received DEX two hours prior to sacrifice (18, 23) and, as mentioned above, 

GCs exert an acute inhibitory effect upon in vivo insulin secretion (24). These two 

aforementioned studies have limitations that make comparison with our data difficult. First, the 

ob/ob mice are obese, which implies an imbalance of glucose homeostasis that may make these 

animals more vulnerable to DEX (18). Second, the transgenic mice model showed an exacerbated 

direct effect of GC treatment in β-cells because they overexpress glucocorticoid receptor (23), 

and it is largely known that this direct effect inhibits GSIS (13, 21, 29). Although we cannot rule 

out the negative impact of DEX on β-cells in DEX-treated mice, we believe that the chronic 

indirect effects of DEX treatment on metabolism (e.g., insulin resistance) surpass the acute and/or 

direct effects with compensatory insulin hypersecretion. 

The hyperinsulinemia in DEX-treated rodents can also be partially explained by the 

increased β-cell mass, which is usually observed in insulin-resistant rodents fed a high-fat (33) or 

high sucrose diet (11). Herein, we shown that increased β-cell mass resulted from, at least in part, 

increased β-cell proliferation as judged by the increased PCNA and KI-67 expression. Although 

increased β-cell mass and proliferation in rat pancreas has been described previously (35, 36), we 

are the first to demonstrate such compensatory mechanisms in mice undergoing GC treatment.  

β-cell mass, proliferation and function are modulated by several stimuli through various 

intracellular pathways, and one of these major stimuli is insulin itself. β-cell-specific Ir-β 

knockout mice (βIrKO) display reduced GSIS and lower islet insulin content, and they are also 
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glucose intolerant, supporting the hypothesis that the loss of insulin action on β-cells leads to 

diabetes (20). In our study, hyperinsulinemia in both DEX-treated rodents were associated with 

increased p-Ir-β and p-AKT in the islets, corroborating the hypothesis that increased canonical 

insulin pathway (Ir-β/AKT) signaling is a common mechanisms involved in the endocrine 

pancreas compensation in both groups of GC-treated rodents. In addition, our results corroborate 

the increased islet mass and GSIS in mice overexpressing AKT1 in β-cells (49), as well as 

previous studies in which p-AKT was increased in DEX-treated rats (10, 39). Increased p-ERK 

also reinforces the hypothesis that insulin may be among the major signals to induce pancreatic 

islet compensations in DEX-treated rodents. In DEX-treated rats, the increased Ir-β, AKT and 

ERK total expression indicates an additive pancreatic compensatory mechanism compared to 

mice, in which the mechanism is limited to increased phosphorylation of the aforementioned 

proteins.  

We also investigated the potential of AMPK signaling for mediation of islet adaptation in 

our DEX-treated mice and rats. In muscle, AMPK is an energy-sensitizing enzyme that is active 

at low cellular energy (increased AMP/ATP ratio) (14). In the β-cell lineage (MIN6), its 

inhibition by glucose is essential for the activation of the insulin secretion process (8). The 

decreased AMPK phosphorylation in islets from both groups of DEX-treated rodents supports the 

increased GSIS and may reflect the abundance of energy substrates available in the plasma. 

AMPK downregulation also underlies the increase in ACC activity and also suggests higher 

energy availability. Thus, we hypothesized that reduction in the non-canonical insulin pathway 

(AMPK/ACC) is a common mechanisms involved in the endocrine pancreas compensation in 

both groups of GC-treated rodents. 
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In muscle, both canonical and non-canonical insulin pathways inhibit AS160 through 

increased phosphorylation (19) that induces vesicle trafficking; however, the modulation of 

AS160 by AMPK in islets is unknown. The knockdown of AS160 in the β-cell lines increased 

insulin secretion at the basal glucose concentration (6). Thus, increased AS160 phosphorylation 

in islets from GC-treated rodents indicates that AKT, rather than the AMPK pathway, mediates 

AS160 inhibition, thus favoring insulin vesicle exocytosis. In addition, the reduction in the 

AS160 expression is another mechanism that may contribute to increased insulin secretion. 

The AKT and AMPK pathways also modulate mTOR function, a kinase that integrates 

multiple cell signals (28, 52) and regulates β-cell function and growth (28). Our results agree 

with those from previous studies (27, 46) and indicate that the inhibition of AMPK and the 

activation of AKT synergistically activates mTOR in islets from GC-treated mice and rats, which 

may corroborate the increased β-cell mass and function. Another mechanism that may favor islet 

function is the amelioration of Ca2+ handling in β-cells. A Ca2+ influx contributes to the first 

(triggering) and second phase (amplifying) of insulin secretion (3). An additional increase in 

intracellular Ca2+, under stimulatory glucose concentrations, is associated with a higher GSIS in 

islets from GC-treated rats (38). The higher GSIS is also associated with increased CX36 

expression in islets (40), which synchronizes Ca2+ transit between β-cells across the islets (26). 

Activation of PKC, which is stimulated by Ca2+ and participates in the amplification of insulin 

secretion, is another mechanism associated with increased GSIS in rats treated with GCs (38). 

Here, we also observed an increase in CX36 expression and an indirect increase in PKC activity 

in islets from both rats and mice treated with GCs, indicating the participation of Ca2+ in 

increased β-cell function. Finally, increased expression of β-cell markers (PDX1 mRNA) only in 
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DEX-treated rats islets indicates that pancreatic compensations in this species also involve 

modifications at transcriptional levels.  

In conclusion, DEX-treated rats exhibited pancreatic compensations of higher magnitude 

than DEX-treated mice; however, they remain glucose intolerant, indicating that rats are more 

vulnerable than mice to the deleterious effect of GCs on glucose homeostasis. In addition, our 

data demonstrate that rats and mice share common endocrine pancreas compensations (increased 

β-cell function and mass) in response to GC treatment, which were associated with increased Ir-

β/AKT/mTOR and decreased AMPK/ACC/AS160 signaling pathways.  
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Figure 1. DEX treatment induces a reduction in insulin sensitivity in mice and in rats, but 

increases hepatic gluconeogenesis and glucose intolerance only in rats. (A, F) Blood glucose 

during intraperitoneal insulin tolerance test (ipITT; 1 U/Kg b.w.) in DEX-treated mice and rats, 

respectively; the inset in A and F depicts the constant rate of glucose disappearance (KITT). (B, 

G) Intraperitoneal pyruvate tolerance test (ipPTT; 1 g/Kg b.w.) in DEX-treated mice and rats, 

respectively; the inset in B and G depicts the ipPTT data normalized by minute 0(C, H) A.U.C 

and (D, I) the constant rate of glucose appearance (KPTT) during ipPTT in DEX-treated mice 

and rats, respectively. (E, J) intraperitoneal glucose tolerance test (ipGTT; 1 g/Kg b.w.) in DEX-

treated mice and rats, respectively; the inset in E and J depicts the A.U.C. from ipGTT; values are 

mean ± S.E.M.; n=8-10 animals per group. *Significantly different compared to CTL. Unpaired 

Student’s t-test, p≤0.05. 

 

Figure 2. Islets from DEX-treated rats are more responsive to glucose than islets from DEX-

treated mice. (A, C) Static cumulative insulin secretion in isolated islets from DEX-treated mice 

and rats in response to different glucose concentrations, respectively. (B, D) Normalized glucose-

stimulated insulin secretion (GSIS) (fold increase in relation to 2.8 mmol/L glucose) in mice and 

in rats, respectively. Values are mean ± S.E.M.; n= 4-6 wells from 5 different animals; 

*Significantly different compared to CTL. Unpaired Student’s t-test, p≤0.05. 

 

Figure 3. DEX treatment increases β-cell mass in the pancreas of mice and rats. (A) 

Representative pancreas sections stained for insulin with Hematoxylin counterstaining. (B) 

Pancreas weight, (C) relative islet number per pancreas area, (D) relative β-cell area per pancreas 
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area and (E) absolute β-cell mass in DEX-treated mice and rats. Values are mean ± S.E.M.; n=5-

6 animals per group (≈150 islets from mice and ≈300 islets from rats). *Significantly different 

compared to CTL. Unpaired Student’s t-test, p≤0.05. 

 

Figure 4. DEX treatment increases β-cell proliferation without affecting apoptosis in the islets of 

mice and rats. (A) Representative pancreas sections stained for insulin (on the top) and KI-67 (at 

bottom), (B) percentage of KI-67-positive nuclei (+) β-cell, (C) PCNA content, (D) DNA 

fragmentation/total DNA (ratio), and (E) caspase-3 cleavage/total caspase-3 ratio in islets from 

DEX-treated mice and rats. Values are mean ± S.E.M.; n=5-6 rodents per group; ≈100 islets per 

species (≈8500 nuclei per group). *Significantly different compared to CTL. Unpaired Student’s 

t-test, p≤0.05. 

 

Figure 5. DEX treatment stimulates the canonical insulin pathway and inhibits the non-canonical 

insulin pathway in pancreatic islets from mice and rats. (A) Representative immunoblotting of 

phosphorylated and (B) total Ir-β content. (C) Phosphorylated and (D) total AKT content. (E) 

Phosphorylated and (F) total ERK content. (G) Phosphorylated and (H) total AMPK content. (I) 

Phosphorylated and (J) total ACC content in islets from DEX-treated mice and rats. Values are 

mean ± S.E.M.; n=4 rodents per group.; *Significantly different compared to CTL. Unpaired 

Student’s t-test, p≤0.05. 

 

Figure 6. DEX treatment modulates proteins related to vesicle trafficking, protein synthesis, cell 

growth, and insulin secretion in pancreatic islets from both mice and rats. (A) Representative 
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immunoblotting of phosphorylated and (B) total AS160 content. (C) Phosphorylated and (D) total 

mTOR content. (E) Phosphorylated substrates of PKC (range from 70 to 110 kDa) and (F) total 

PKC content. (G) CX36 expression and (H) mRNA expression of INS gene and PDX1 in islets 

from DEX-mice and rats. Values are mean ± S.E.M.; n=4 rodents per group. *Significantly 

different compared to CTL. Unpaired Student’s t-test, p≤0.05. 
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Artigo 2 

Parte dos resultados obtidos durante a realização deste trabalho estão apresentados a seguir sob a 

forma de artigo científico, em submissão na  revista Journal of Endocrinology. 
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Abstract  

Compensatory hyperinsulinemia during the development of insulin resistance (IR), induced by 

treatment with glucocorticoids (GC), is due to increased insulin secretion by β-cells. However, 

whether reduced insulin clearance also contributes to the compensatory hyperinsulinemia is not 

fully understood. Thus, we aimed to investigate whether the hyperinsulinemia in insulin resistant 

rodents, induced by GC treatment, is associated with altered expression of insulin degrading 

enzyme (IDE) and insulin clearance in the liver. Accordingly, adult male Swiss mice and Wistar 

rats were treated with the synthetic GC dexamethasone (1 mg/kg b.w.; 5 days). GC treatment 

induced IR and hyperinsulinemia in both species, but was more impactful in rats that also 

displayed glucose intolerance and hyperglycemia. Insulin clearance was reduced in GC-treated 

mice and rats, as observed by the reduction of insulin decay rate (72% and 33%, respectively) 

and increased insulin area under the curve (AUC) (87% and 47%, respectively), which were 

associated with reduced IDE expression in the liver (62% and 37%, respectively). In conclusion, 

our results in insulin resistant rodents, provoked by GC treatment, support the idea that reduced 

insulin clearance was, at least partly, due to the reduction of the expression of hepatic IDE, which 

contributed to the compensatory hyperinsulinemia. These findings corroborate the idea that 

pharmacological interventions that inhibit IDE in the liver may be an advantageous alternative 

tool for maintaining glucose homeostasis, thus avoiding the use of a hypoglycemic agent that 

increases insulin secretion, but may cause β-cell failure and Type 2 Diabetes mellitus (T2DM). 
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Introduction 

Type 2 Diabetes mellitus (T2DM) is characterized by hyperglycemia and is associated 

with obesity, peripheral insulin resistance (IR), β-cell dysfunction and altered insulin clearance 

(Hansen, et al. 1993; Kahn 2003; Kotronen, et al. 2008; Mittelman, et al. 2000; Rezende, et al. 

2012). At the onset of T2DM, before the development of overt hyperglycemia, the IR induces an 

adaptive response of pancreatic β-cells that results in increased insulin secretion, leading to 

hyperinsulinemia. Whether this compensatory hyperinsulinemia will persist depends on the 

ability of β-cells to maintain this continuous requirement of insulin hypersecretion (Kahn 2003). 

The mechanisms by which β-cells compensate for the increased insulin demand include 

functional (e.g., increasing insulin response to glucose) and structural adaptations (e.g., 

expanding β-cell mass) (Poitout, et al. 2010). However, during the development of T2DM, a 

reduction of both β-cell function and mass may occur (Poitout et al. 2010), both of which are 

contributing factors for overt T2DM (Kahn 2003). 

Glucocorticoids (GCs) are among several hormones with diabetogenic properties. GC-

based therapies are prescribed due to their anti-inflammatory, antialergic and immunosuppressive 

properties. In excess, GCs promote a negative impact on glucose homeostasis due to their 

catabolic properties that include augmented fat lipolysis (Buren, et al. 2002; Novelli, et al. 2008), 

increased hepatic gluconeogenesis, IR, glucose intolerance and, depending on the individual 

susceptibility, T2DM (Buren et al. 2002; Longano and Fletcher 1983; Ruzzin, et al. 2005; 

Schacke, et al. 2002). IR induced by GC treatment is known to be initially counteracted by 

compensatory hyperinsulinemia (Beard, et al. 1984; Binnert, et al. 2004; Nicod, et al. 2003; 

Rafacho, et al. 2008a; van Raalte, et al. 2010). 
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A significant body of evidence indicates that hyperinsulinemia, induced during obesity, 

can also be generated by reduced hepatic insulin clearance in humans (Bonora, et al. 1983; 

Krotkiewski, et al. 1985), monkeys (Hansen et al. 1993), dogs (Mittelman et al. 2000) and rats 

(Stromblad and Bjorntorp 1986). A reduction in hepatic insulin clearance is a common 

compensatory mechanism that contributes to glucose homeostasis during the development of 

T2DM and is associated with obesity in mammals. In fact, decreased hepatic insulin clearance 

precedes the β-cell compensation in obese dogs (Mittelman et al. 2000), and this hepatic adaptive 

mechanism contributes to increased circulating insulin levels during obesity. However, the 

association between hepatic insulin clearance and hyperinsulinemia remains to be elucidated in 

IR induced by GC treatment. 

Insulin clearance, defined as the rate of insulin removal from plasma, occurs 

predominantly in the liver (Duckworth, et al. 1998; Kotronen et al. 2008). Insulin degradation in 

hepatocytes occurs mainly by the insulin degrading enzyme (IDE), a 110 kDa zinc-

metalloproteinase that is present in all insulin-sensitive and also non-sensitive cells (Duckworth 

et al. 1998). In vitro experiments indicate that hepatocytes, cultured in a medium containing GC, 

show a reduced interaction of insulin and IDE (Harada, et al. 1996) and a reduced insulin 

degrading capacity (Ali and Plas 1989). Chronic GC treatment is associated with diminished IDE 

expression in the brains of macaques (Kulstad, et al. 2005), which correlates with a predisposition 

to Alzheimer’s disease in T2DM (Qiu, et al. 1998). In addition, functional experiments reveal 

that basal hepatic insulin clearance is reduced in GC-treated dogs (Chap, et al. 1986).  

Thus, we aimed to investigate whether the hyperinsulinemia in insulin resistant rodents, 

induced by GC treatment, is associated with reduced hepatic insulin clearance and IDE 

expression in the liver. 
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Material and Methods 

Reagents and solutions  

Dexamethasone phosphate (Decadron) (Aché, Campinas, SP, Brazil), human recombinant insulin 

(Humalin R) (Lilly, Indianapolis, IN, USA), D-glucose (Synth, Labsynth, Diadema, SP, Brazil), 

Triton X-100 (Cromato Products, Diadema, SP, Brazil) and 125I-labeled insulin, used in the 

radioimmunoassay (RIA) (Perkin Elmer, Boston, MA, USA), were used in our experiments. 

SDS-PAGE and immunoblotting were performed using Bio-Rad systems (Hercules, CA, USA), 

and all chemicals were from Bio-Rad and Sigma Aldrich (St. Louis, MO, USA). Western blot 

detection of IDE and GAPDH were performed with anti-IDE and anti-GAPDH (Santa Cruz 

Biotechnology, CA, USA) as primary antibodies, and anti-goat IgG and anti-rabbit IgG as 

secondary antibodies (Cell Signaling, Temecula, CA, USA). Urea anti-protease/anti-phosphatase 

buffer was composed of 7 mol/L urea, 2 mol/L thiourea, 5 mmol/L EDTA, 1 mmol/L sodium 

fluoride, 1 mmol/L sodium orthovanadate, 1 mmol/L sodium pyrophosphate, 2 mmol/L PMSF, 

1% Triton X-100 and 1 µg/ml aprotinin (Trasylol) (Bayer Health Care Pharmaceuticals, 

Berkeley, CA, USA). 

 

Animals and experimental design  

Animal experiments were approved by the Institutional State University of Campinas Committee 

for Ethics in Animal Experimentation under protocol 2285-1. All of the experiments were 

performed in male Swiss mice and Wistar rats (80 to 100 days old) purchased from the State 

University of Campinas Animal Breeding Center.  All of the rodents were maintained in 

appropriate animal cages and kept at 24°C on a 12:12 light dark cycle. Rodents had access to 

food and water ad libitum. Mice and rats were divided into a GC-treated group (GC) that received 
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5 consecutive daily intraperitoneal injections of dexamethasone phosphate (i.p., 1.0 mg/kg b.w. in 

saline) and a control group (CTL) that received 5 consecutive daily injections of saline (1.0 ml/kg 

b.w.) between 08:00 to 09:00 h. To avoid overlapping of the acute and chronic GC effects, all 

experiments were initiated 24 hours after the last GC injection (on the sixth day). 

 

Intraperitoneal insulin tolerance test (ipITT)  

A group of conscious rodents were fasted for two hours and then injected with insulin (i.p. 1 U/kg 

b.w. in saline). Blood glucose was determined from the tail tip immediately before insulin 

administration (0 min) and 5, 10, 15, and 30 minutes after insulin administration. Glycemia was 

evaluated by a glucometer (Accu-Chek Advantage, Roche Diagnostic, Switzerland) and then 

converted into a natural logarithm (Ln); the slope was calculated using linear regression (time × 

Ln[glucose]) and multiplied by 100 to obtain the constant rate of glucose decay per minute 

(%/minute) during the ipITT (KITT) (Rezende et al. 2012). Insulinemia was measured by RIA, as 

previously described (Rezende et al. 2012).  

 

In vivo insulin clearance  

Insulin clearance was evaluated as previously described (Ahrén, et al. 2005). The constant rate 

for insulin disappearance (insulin decay) was calculated by converting insulin measurements into 

a natural logarithm (Ln); the slope was calculated using linear regression (time × Ln[insulin]) and 

multiplied by 100 to obtain the insulin decay constant rate per minute (%/min). The AUC of 

insulin during the ipITT was calculated as previously described (Rezende et al. 2012). 
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Intraperitoneal glucose tolerance test (ipGTT) and insulin dynamics  

A separate group of rodents received an i.p. injection of 50% glucose solution after 10 hours of 

fasting (1 g/kg b.w.). Blood samples (75-100 µl) were collected from the tail tip immediately 

before glucose administration (0 min) and after 15 and 60 min to determine glycemia and 

insulinemia as described before. The AUC of glucose and insulin during the ipGTT were 

calculated as previously described. 

 

Tissue samples and Western Blot  

One hour after the ipITT, rodents were killed (by exposure to CO2 followed by decapitation), and 

liver samples were extracted, snap-frozen in liquid nitrogen, and stored at -80ºC for subsequent 

protein extraction and immunoblotting, as previously described (Santos, et al. 2011) with brief 

modifications. Images were taken by the luminescent image analyzer LAS-3000 (Fujifilm, 

Tokyo, JP), and quantified by optical densitometry using the free software, ImageJ 

(http://rsbweb.nih.gov/ij/download.html). 

 

Statistical Analysis  

The results were expressed as the mean ± standard-error-of-the-mean (S.E.M.). An unpaired 

Student t-test was used for intergroup (CTL vs. GC group) comparisons. All analyses were 

performed using GraphPad Prism version 5.0 (San Diego, CA, USA). A p-value ≤ 0.05 was 

considered to be significant. 

 

Results 
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GC treatment reduced insulin sensitivity in mice and rats  

In vivo GC administration is known to induce a decrease in insulin sensitivity both in rats 

(Rafacho et al. 2009; Rafacho et al. 2008) and humans (Beard et al., 1984; van Raalte et al., 

2010). As expected, GC-treated rats showed a 56% reduction in insulin sensitivity compared to 

CTL groups, as indicated by the ipITT (Fig. 1D,E) and the reduction in the KITT (Fig. 1F). Mice 

subjected to the same dexamethasone regimen also demonstrated a 36% reduction in insulin 

sensitivity (Fig. 1A,B), as can be observed by the KITT values (Fig. 1E).  

 

Compensatory hyperinsulinemia to the GC-induced insulin resistance  

Due to the reciprocal relationship between peripheral insulin sensitivity and pancreatic islet 

function (Kahn et al., 1993), insulin-resistant mice and rats demonstrated a compensatory 

increase in circulating insulin levels after 2 hours (137% and 150%, respectively) and 12 hours of 

fasting (243% and 297%, respectively) following GC administration, compared to their 

respective CTL groups (Table 1), which corroborates previous data (Jatwa and Kar 2009; 

Rafacho et al. 2008a; Rafacho, et al. 2008b). Glycemia was not altered in GC-treated mice; 

however, GC-treated rats exhibited hyperglycemia after both 2 hours (54%) and 12 hours of 

fasting (33%) compared to CTL rats, indicating a disruption of glucose homeostasis in GC-

treated rats (Table 1). 

 

Compensatory hyperinsulinemia did not prevent the development of glucose intolerance in rats  

Next, we submitted the rodents to a glucose challenge (ipGTT).   Similarly to previous 

observations (Rafacho et al., 2009; Rafacho et al., 2008a), GC-treated rats remained glucose 
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intolerant, as indicated by higher blood glucose levels and the increased glucose AUC during the 

ipGTT (Fig. 2C and inset). This altered glucose tolerance in GC-treated rats occurred even in the 

presence of higher insulin response to glucose, as judged by the higher insulin AUC during the 

ipGTT, compared to CTL rats (Fig. 2D and inset). GC-treated mice also had a higher insulin 

response to glucose when compared to their CTL group (Fig. 2B and inset), but remained glucose 

tolerant (Fig. 2A), indicating an adequate equilibrium between insulin sensitivity and islet 

function. 

  

GC treatment reduced in vivo insulin clearance  

By evaluating the systemic (venous) insulin levels, we indirectly determined the in vivo insulin 

clearance (decreased removal of insulin from plasma) and observed whether this parameter could 

be attenuated during the hyperinsulinemic state caused by GC treatment. Both mice and rats 

treated with GC were hyperinsulinemic before insulin injection (min 0). Five minutes post insulin 

administration, CTL mice and rats reached the same peak levels of insulin compared to their 

respective GC-treated groups. Figure 3 shows that plasma insulin clearance was significantly 

lower in GC-treated mice and rats 60 min after insulin injection, as judged by the increased AUC 

(87% and 47%, respectively) and by the reduced insulin decay rate (72% and 47%, respectively), 

compared to CTL groups. Thus, hyperinsulinemia in GC-treated rodents is associated with 

reduced insulin removal from plasma. 

 

GC treatment reduced IDE expression in liver  

GC-treated mice and rats showed a reduced IDE expression in liver (62% and 37%, respectively) 
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compared to their CTL groups (Fig. 4). Thus, reduced insulin clearance is associated with 

reduced IDE expression in the liver of GC-treated rodents. 

 

Discussion 

The present study provides evidence that the compensatory hyperinsulinemia in insulin-

resistant mice and rats, induced by GC treatment, is associated with reduced hepatic insulin 

clearance due, at least in part, to a lower expression of IDE in the liver. These findings 

corroborate the idea that pharmacological interventions that reduce hepatic IDE expression or 

activity may be an alternative ant-diabetic tool (Leissring et al. 2010). Thus, instead of 

hypoglycemic agents (e.g. sulfonylureas), which increase the overload on β-cells and usually, 

after long-term therapy, lead to β-cell failure and T2DM (Takahashi, et al. 2007), an alternative 

approach such as inducing persistent hyperinsulimemia, by reducing IDE expression in the liver, 

will spare the β-cell. Although reduced hepatic insulin clearance was previously reported in GC-

treated dogs (Chap et al. 1986), we are the first group to show that hyperinsulinemia, provoked 

by GC treatment, is associated with alterations in insulin clearance and expression of IDE in 

liver. 

These data indicate decreased insulin sensitivity and compensatory hyperinsulinemia in 

GC-treated mice and rats (Fig. 1 and Table 1) and confirm previous observations in humans 

(Binnert et al. 20004; Beard et al. 1984; Van Raatle et al. 2010) and rats (Novelli et al. 2008; 

Rafacho et al. 2009; Rafacho et al. 2008; Rafacho et al. 2007). However, the effects of GC on 

peripheral insulin sensitivity in mice have still not been fully investigated. Here, we show that 

mice receiving a similar GC treatment, to that used to produce insulin-resistance in rats, also 
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showed a significant reduction in insulin sensitivity. However, the IR observed in mice was 

accompanied by a compensatory hyperinsulinemia sufficient to prevent the disruption of glucose 

homeostasis, including the hyperglycemia and glucose intolerance that is usually observed in GC-

treated rats (Fig. 2). These data suggest that mice are less vulnerable to the deleterious effect of 

GC treatment on glucose homeostasis than rats.  

As previously reported (Beard et al. 1984; Binnert et al. 2004; Karlsson, et al. 2001; Nicod 

et al. 2003; van Raalte et al. 2010), the hyperinsulinemia in GC-treated subjects is associated with 

increased insulin secretion, due to increased β-cell mass and function. Our ipGTT results confirm 

an enhancement of insulin secretion in vivo in response to glucose in GC-treated mice and rats, as 

judged by an increased acute insulin response to glucose and an overall increase in insulin AUC 

following GC administration (Fig. 2). 

Hyperinsulinemia may also be generated by decreased insulin clearance, as observed in 

IR obese subjects (Hansen et al. 1993; Kotronen et al. 2008; Mittelman et al. 2000). After its 

secretion by pancreatic islets, insulin is collected in the portal vein, and approximately 50% is 

removed from plasma during this first passage through the liver (Duckworth et al. 1998). 

Approximately 80% of the total plasma insulin content is bound in hepatic insulin receptors 

(Hovorka, et al. 1993). Also, the liver is the primary site of insulin clearance (Duckworth, et al. 

1988; Sato, et al. 1991), which indicates a role for the liver in hyperinsulinemia. As judged by the 

reduced insulin decay and increased insulin AUC (Fig. 3), after administration of a bolus of 

insulin, it became clear that the removal of insulin from plasma is reduced in GC-treated mice 

and rats, compared to their CTL groups. These results corroborate a previous report in which 
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fractional insulin clearance was reduced in short-term GC-treated dogs (Chap et al. 1986). This 

effect may reduce insulin secretion during the IR induced by GC and spare the pancreatic β-cells. 

Different factors may alter insulin clearance (Duckworth et al. 1998). Glucose, lactate or 

hyperinsulinemia increase hepatic insulin clearance (Jaspan and Polonsky 1982; Kaden, et al. 

1973; Pagano, et al. 1996; Shapiro, et al. 1987), whereas non-esterified free fatty acids (NEFA) 

decrease it (Hennes, et al. 1997; Svedberg, et al. 1991; Novelli et al. 2008). Perfused rat livers 

displayed reduced hepatic insulin clearance (40%) in situ when NEFA was added (Svedberg et al. 

1991). In addition, obese rats also showed reduced hepatic insulin clearance, which was inversely 

correlated with the triglyceride (TG) content of the liver (Stromblad and Bjorntorp 1986). We 

found increased plasma cholesterol and TG levels in both GC-treated rodents and increased 

hepatic TG content only in GC-treated rats (data not shown), which may suggest that decreased 

insulin clearance in GC-treated rodents may be due, in part, to exposure of the liver to elevated 

plasma lipids and/or insulin levels. 

However, indirect measurements of hepatic insulin clearance, using a mathematical 

model, indicated increased insulin clearance during an oral GTT in GC-treated humans (Kautzky-

Willer, et al. 1996). This observation is in contrast with the data presented here. Furthermore, we 

do not know whether this increased hepatic insulin clearance, during oral GTT, may be altered by 

gut signals due to the glucose intake or modifications in the blood flow in the portal vein. In fact, 

the data presented by other authors were obtained after the administration of GC, which differs 

from our samples, which were assessed 24 hours after the last administration of GC. We believe 

that this approach avoids the overlapping of acute and chronic effects of GC administration. 
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Considering that the degradation of insulin in hepatocytes primarily occurs by IDE, we 

evaluated whether the decreased insulin clearance in GC-treated rodents could be associated with 

reduced expression of IDE in the liver. Herein, we show, for the first time, that in vivo GC 

treatment resulted in reduced IDE expression in liver, both in mice and in rats (Fig. 4), which is 

in accordance with the diminished insulin clearance and fasting hyperinsulinemia. Our results 

agree with a study in which the pharmacological inhibition of IDE led to increased insulin 

receptor autophosphorylation in cells (Leissring, et al. 2010), indicating that IDE regulates insulin 

signaling by a rapid degradation of internalized pools of insulin. Similarly, the reduction of IDE 

expression in the liver, induced by treatment with ciliary neurotrophic factor (CNTF) in alloxan-

treated mice, resulted in lower insulin clearance, which in turn protected against their 

diabetogenic effects (Rezende et al. 2012). In this sense, hepatic cells (HEPG2), treated with 

CNTF, displayed reduced IDE expression and reduced insulin degradation (Rezende et al. 2012), 

supporting our findings in GC-treated rodents. In addition, reduced IDE mRNA and protein 

expression in the brain of GC-treated macaque (Kulstad et al. 2005) reinforces the hypothesis that 

GC-treatment diminishes insulin clearance. 

In vitro experiments with hepatic cells (H35) indicate that GC treatment (24 hours) 

reduces insulin binding to IDE, without alterations in IDE expression (Harada et al. 1996), 

suggesting that GC-treatment may act on the removal of insulin by the liver by modulating IDE 

activity. Although alterations in IDE expression seem to be the primary mechanism for changes 

in hepatic insulin extraction, other factors such as altered IDE-insulin binding (Harada et al. 

1996) or alternative IDE mRNA splicing (Farris, et al. 2005) may also be present. Currently, it is 

unknown whether the reduced expression of IDE in the liver was due to a direct action of GC 
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upon IDE or whether other factors such as increased plasma lipids and/or hyperinsulinemia were 

responsible. 

In conclusion, our results suggest that compensatory hyperinsulinemia, in GC-treated 

rodents, may be explained, at least partially, by a reduced insulin clearance due to a lower 

expression of IDE in the liver. Thus, pharmacological interventions that reduce IDE expression or 

activity in that organ may be an alternative anti-diabetic approach.  
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Figure legends 

Figure 1. GC treatment reduced insulin sensitivity in mice and rats. A,D) Blood glucose (mg/dL) 

during intraperitoneal insulin tolerance test (ipITT; 1 U/Kg b.w.) in GC-treated mice and rats, 

respectively; (B,E) Blood glucose normalized as % of the initial moment (0 minutes) during the 

ipITT in GC-treated mice and rats, respectively; (C,F) the constant rate for glucose disappearance 

(KPTT) during ipITT in GC-treated mice and rats, respectively. Values are mean ± S.E.M.; n=6-9 
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rodents per group. *significantly different from CTL. Unpaired Student’s t-test, p≤0.05. 

 

Figure 2. GC treatment induces hyperinsulinemia in mice and rats, but glucose intolerance only 

in rats. (A,C) Blood glucose (B,D) and plasma insulin during intraperitoneal glucose tolerance 

test (ipGTT; 1 g/Kg b.w.) in DEX-treated mice and rats, respectively; the inset in A and C depicts 

the glucose AUC; in B, the inset depicts the insulinemia in another scale and the insulin AUC; in 

D, the inset depicts the insulin AUC; Values are mean ± S.E.M.; n=6-9 rodents per group. 

*significantly different from  CTL. Unpaired Student’s t-test, p≤0.05. 

 

Figure 3. GC treatment reduced in vivo insulin clearance in mice and rats. (A,D) Plasma insulin 

before (0 min), and 5, 30 and 60 min after insulin injection in DEX-treated mice and rats, 

respectively; (B,E) insulin AUC during the ipITT and (C,F) insulin decay over 60 min; Values 

are mean ± S.E.M.; n=6-9 rodents per group. *significantly different from CTL. Unpaired 

Student’s t-test, p≤0.05.  

 

Figure 4. GC treatment reduces hepatic IDE expression in mice and rats liver. Representative 

immunoblotting of IDE expression in liver samples from mice and rats. Values are mean ± 

S.E.M.; n=4 rodents per group. *significantly different from CTL. Unpaired Student’s t-test, 

p≤0.05. 
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Conclusões 

Com base nos resultados obtidos no presente estudo, podemos concluir que: 

1) Compensações pancreáticas em ratos tratados com GC foram de maior magnitude 

quando comparado com camundongos tratados com GC. Entretanto, aqueles 

permaneceram intolerantes à glicose, indicando que ratos são mais sensíveis aos efeitos 

deletérios do GC sobre a homeostase glicêmica. Além disso, nossos resultados 

demonstram que camundongos e ratos compartilham compensações pancreáticas 

semelhantes (incremento da função e da massa de células β) em resposta ao tratamento 

com GC, que foram associadas com incremento da sinalização da via Ir-β/AKT/mTOR 

e redução da sinalização da via AMPK/ACC/AS160 em ilhotas isoladas. 

 

2) A hiperinsulinemia compensatória observada em ratos e camundongos tratados com 

GC pode ser explicada, pelo menos em parte, pela redução do clearance de insulina, 

devido à redução da expressão de IDE no fígado. Estes achados corroboram a hipótese 

de que intervenções farmacológias que induzem hiperinsulinemia compensatória por 

meio da redução da expressão ou a atividade da IDE no fígado, podem ser um agente 

anti-diabetogênico que auxilia na manutenção da homeostase glicêmica, ao invés de 

agentes hipoglicemiantes (sulfuniluréias), os quais aumentam a sobrecarga da célula β 

e que, após longo tempo de tratamento, geralmente induzem a falência da célula β e a 

instalação do DM2. 
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