BRUNA DE ARAUJO LIMA

"ANÁLISE DOS MECANISMOS DA ATIVIDADE ANTIMICROBIANA DA VIOLACEÍNA SOBRE

STAPHYLOCOCCUS AUREUS"

CAMPINAS 2013

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA

BRUNA DE ARAUJO LIMA

"ANÁLISE DOS MECANISMOS DA ATIVIDADE ANTIMICROBIANA DA VIOLACEÍNA SOBRE STAPHYLOCOCCUS AUREUS"

"ANALYSIS OF ANTIMICROBIAL ACTIVITY MECHANISMS OF VIOLACEIN AGAINST STAPHYLOCOCCUS AUREUS"

	Este exemplar corresponde à redação final
	Brura de Aray Xina
	e aprovada pela Comissão Julgadora.
Orie	ntador: Prof. Dr. Marcelo Brocchi

Tese apresentada ao Instituto de Biologia para obtenção do Título de Doutora em Genética e Biologia Molecular, na área de Microbiologia.

Thesis submitted to the Institute of Biology for obtaining the title of PhD in Genetics and Molecular Biology in the Microbiology area.

CAMPINAS, 2013

Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972

Lima, Bruna de Araujo, 1985-Análise dos mecanismos da atividade antimicrobiana da violaceína sobre *Staphylococcus aureus /* Bruna de Araujo Lima. – Campinas, SP : [s.n.], 2013. Orientador: Marcelo Brocchi. Tese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Agentes antiinfecciosos. 2. MRSA. 3. Células – Ultraestrutura. 4. Proteômica. 5. Transcriptoma. I. Brocchi, Marcelo, 1967-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Analysis of antimicrobial activity mechanisms of violacein against Staphylococcus aureus Palavras-chave em inglês: Anti-infective agents MRSA Cells - Ultrastructure Proteome Transcriptome Área de concentração: Microbiologia Titulação: Doutora em Genética e Biologia Molecular Banca examinadora: Marcelo Brocchi [Orientador] Angélica Zaninelli Schreiber Renata de Oliveira Mattos Graner Luiz Alberto Beraldo de Moraes John Anthony McCulloch Data de defesa: 23-08-2013 Programa de Pós-Graduação: Genética e Biologia Molecular

Campinas, 23 de Agosto de 2013.

BANCA EXAMINADORA

Prof. Dr. Marcelo Brocchi (Orientador)

Profa. Dra. Angélica Zaninelli Schreiber

Profa. Dra. Renata de Oliveira Mattos Graner

Prof. Dr. Luiz Alberto Beraldo de Moraes

Prof. Dr. John Anthony McCulloch

Profa. Dra. Maria Luiza Moretti

Prof. Dr. João Ernesto de Carvalho

Prof. Dr. Sérgio de Mendonça

Assinatora

Assinatura

Assinatura

ain atu ra

Assinatura

Assinatura

Assinatura

RESUMO

A violaceína é um pigmento violeta produzido por algumas espécies bacterianas de origem ambiental, tais como Chromobacterium violaceum e Janthinobacterium lividum. Esta molécula apresenta várias propriedades biológicas incluindo antibacteriana, antifúngica, antiviral, antiprotozoária e antitumoral, apesar de sua função exata na fisiologia dos micro-organismos que a produz, ainda é desconhecido. No presente trabalho, a atividade antimicrobiana da violaceína produzida comercialmente, o extrato semi purificado e nanopartículas de vanadato de prata foram avaliados contra espécies de bacterianas gram-positivas e gram-negativas. A violaceína exibiu efeito antimicrobiano contra Staphylococcus aureus resistente à meticilina (MRSA) e Enterococcus resistente à vancomicina (VRE), que são micro-organismos frequentemente relacionados com infecções adquiridas em hospitais. Os valores de MIC (concentração inibitória mínima) e MBC (concentração bactericida mínima) da violaceína produzida comercialmente foram de 0,625 µM e 1,25 µM respectivamente e, análise de curvas de crescimento e tempo-morte revelaram um efeito antibacteriano durante 12 horas contra MRSA. A microscopia eletrônica de transmissão mostrou os efeitos da violaceína com alterações morfológicas e ultra estruturais, incluindo alterações na parede celular e formação de septos de divisão anormais. Nos resultados obtidos das análises de proteômica e transcriptoma a violaceína afetou a expressão de várias classes funcionais de proteínas e genes em MRSA, incluindo processos biológicos em biossíntese da parede celular e divisão celular que corroboram as alterações ultra estruturais visualizadas. Em conclusão, a violaceína produzida comercialmente demonstrou atividade antimicrobiana para S. aureus MRSA e pela primeira vez, os efeitos da violaceína sobre o metabolismo de S. aureus foram descritos, indicando possíveis alvos e vias metabólicas afetadas por esta droga. No seu

conjunto, estes dados indicam a violaceína como uma droga potencial para o tratamento de infecções provocadas por MRSA.

Palavras-chave: Agentes Antiinfecciosos, MRSA, Células - Ultraestrutura, Proteômica, Transcriptoma.

ABSTRACT

Violacein is a violet pigment produced by some bacterial species of environmental source, such as Chromobacterium violaceum and Janthinobacterium lividum. This molecule has numerous biological properties including antibacterial, antifungal, antiviral, antiprotozoal and antitumor activity, although the exact role in the physiology of producing microorganisms is still unknown. In this study, the antimicrobial activity of violacein produced commercially, semi purified extract and silver vanadate nanoparticles were evaluated against several species of gram-positive and gram-negative bacteria. Violacein exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), microorganisms that are often related to hospital-acquired infections. MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) values of violacein produced commercially were 1.25 μ M mM and 0.625 μ M respectively, and analysis of growth and time-kill curves showed an antibacterial effect against MRSA for 12 hours. The transmission electron microscopy showed the effects of violacein with morphological and ultra-structural changes, including changes in cell wall formation and abnormal division septum. The results obtained from the analysis of proteomic and transcriptomic revealed that violacein affects the expression of several functional classes of proteins and genes in MRSA, including biological processes in cell wall biosynthesis and cell division, supporting ultra-structural changes. In conclusion, violacein produced commercially demonstrated antimicrobial activity against S. aureus MRSA and the effects on the metabolism of S. aureus have been described, indicating possible targets and pathways affected by this drug. These data indicate violacein as a potential drug for the treatment of infections caused by MRSA.

Keywords: Anti-infective Agents, MRSA, Cells - Ultrastructure, Proteome, Transcriptome.

SUMÁRIO

RESUMO	vi
ABSTRACT	viii
SUMÁRIO	ix
AGRADECIMENTOS	xiv
LISTA DE FIGURAS	xvii
LISTA DE TABELAS	xix
LISTA DE ABREVIATURAS	xxi
1. INTRODUÇÃO	1
1.1. Resistência Bacteriana às Drogas	1
1.2. Características de <i>Staphylococcus aureus</i>	2
1.3. Resistência de <i>Staphylococcus aureus</i> aos Agentes Antimicrobianos	5
1.4. Desenvolvimento de Novas Drogas Antimicrobianas	11
1.4.1. Nanotecnologia	12
1.4.2. Antibióticos	12
1.5. Violaceína	14
2. OBJETIVOS	19
3. MATERIAIS E MÉTODOS	21
3.1. ANTIMICROBIANOS	21
3.1.1. Violaceína	21
3.1.2. Extrato de <i>Chromobacterium violaceum</i>	21
3.1.2.1. Produção Microbiana de Violaceína	21
3.1.2.2. O Biorreator "BPS" e as Garrafas de Roux	22

3.1.2.3. Extração da Violaceína	22
3.1.2.4. Produto Final	23
3.1.2.5. Análise do Extrato por Espectrometria de Massas (MS)	24
3.1.2.6. Análise do Extrato e Composto Puro por RMN (Ressonância Magnética Nuclear)25
3.1.3. Nanomateriais de Vanadato de Prata	25
3.2. MICRO-ORGANISMOS	25
3.3. DETERMINAÇÃO DO MIC (CONCENTRAÇÃO INIBITÓRIA MÍNIMA)	E MBC
(CONCENTRAÇÃO BACTERICIDA MÍNIMA)	27
3.4. ATIVIDADE COMBINADA DA VIOLACEÍNA, EXTRATO	COM
NANOFORMULAÇÕES DE VANADATO DE PRATA	
3.5. CURVA DE CRESCIMENTO BACTERIANO	29
3.6. CURVAS DE TEMPO-MORTE	
3.7. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO	
3.8. MODELOS ANIMAIS (TESTES IN VIVO)	32
3.9. ANÁLISE PROTEÔMICA	32
3.9.1. Extração de Proteínas de S. aureus	32
3.9.2. SDS-PAGE	34
3.9.3. Eletroforese Bidimensional	34
3.9.4. Análise dos Dados dos Géis	35
3.9.5. Digestão in gel: Identificação dos Spots Protéicos por Espectrometria de Massas	
3. 10. TRANSCRIPTOMA: SEQUENCIAMENTO DE RNA	
3.10.1. Extração de RNA e Sequenciamento	
3.10.2. Análises dos Dados de RNA-Seq	

4. RESULTADOS
4.1. ANTIMICROBIANOS
4.1.1. Extrato de <i>Chromobacterium violaceum</i> 41
4.1.2. Análise do Extrato por Espectrometria de Massas (MS)41
4.1.3. Análise da Violaceína do Extrato e Violaceína Composto Puro por RMN (Ressonância
Magnética Nuclear)
4.1.4. Nanomateriais de Vanadato de Prata47
4.2. DETERMINAÇÃO DO MIC (CONCENTRAÇÃO INIBITÓRIA MÍNIMA) E MBC
(CONCENTRAÇÃO BACTERICIDA MÍNIMA)
4.3. ATIVIDADE COMBINADA DA VIOLACEÍNA, EXTRATO COM
NANOFORMULAÇÕES DE VANADATO DE PRATA51
4.4. CURVA DE CRESCIMENTO MICROBIANO
4.5. CURVAS DE TEMPO-MORTE
4.6. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO
4.7. MODELOS ANIMAIS (TESTES IN VIVO)61
4.8. ANÁLISE PROTEÔMICA62
4.8.1. Extração de Proteínas de S. aureus
4.8.2. SDS-PAGE
4.8.3. Eletroforese Bidimensional
4.8.4. Análise dos Dados dos Géis e Digestão in gel: Identificação dos Spots Protéicos por
Espectrometria de Massas
4.9. TRANSCRIPTOMA: SEQUENCIAMENTO DE RNA69
4.9.1. Extração de RNA e Sequenciamento

4.9.2. Análises dos Dados de RNA-Seq70
4.9.3. Análise da Expressão Diferenciada dos Genes (RPKM) e Identificação de CDSs (Coding
Sequences) Diferencialmente Expressas71
5. DISCUSSÃO
5.1. ANTIMICROBIANOS
5.2. DETERMINAÇÃO DO MIC (CONCENTRAÇÃO INIBITÓRIA MÍNIMA) E MBC
(CONCENTRAÇÃO BACTERICIDA MÍNIMA)90
5.3. CURVAS DE TEMPO-MORTE92
5.4. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO93
5.5. ANÁLISE PROTEÔMICA94
5.6. TRANSCRIPTOMA: SEQUENCIAMENTO DE RNA100
6. CONCLUSÕES109
7. REFERÊNCIAS BIBLIOGRÁFICAS111
8. ANEXOS
Certificado de Análise da Violaceína (Sigma Aldrich)127
Comitê de Ética na Experimentação Animal128

"A ciência humana de maneira nenhuma nega a existência de Deus. Quando considero quantas e quão maravilhosas coisas o homem compreende, pesquisa e consegue realizar, então reconheço claramente que o espírito humano é obra de Deus, e a mais notável." (Galileu Galilei)

AGRADECIMENTOS

Agradeço,

Ao Prof. Dr. Marcelo Brocchi pela orientação, pela amizade e dedicação, confiança, incentivos e pela importante contribuição à minha formação científica.

Ao Pesquisador Piotr Mieczkowski agradeço pela estimável orientação, colaboração e contribuição à minha carreira profissional.

À Universidade Estadual de Campinas na pessoa do Reitor Prof. Dr. José Tadeu Jorge, e a Instituto de Biologia, por meio da Diretora Profa. Dra. Shirlei Maria Recco Pimentel.

À Coordenadoria de Pós Graduação de Genética e Biologia Molecular do Instituto de Biologia, na pessoa do Coordenador Prof. Marcelo Menossi e da secretária Maria de Lourdes Fagundes.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Processos n.º 2009/15956-7, 2012/20116-0 e 2009/02446-0) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) pelos recursos concedidos para realização desse trabalho e concessão de bolsa.

Aos examinadores que compuseram a banca de qualificação e pré-banca Prof. Dr. Wanderley Dias da Silveira, Prof. Dr. Claudio Chrysostomo Werneck, Profa. Dra. Elsa Masae Mamizuka, pela análise, avaliação e colaboração nesse trabalho.

Aos componentes da banca examinadora da defesa da tese Profa. Dra. Angélica Zaninelli Schreiber, Profa. Dra. Renata de Oliveira Mattos Graner, Prof. Dr. Luiz Alberto Beraldo de Moraes, Prof. Dr. John Anthony McCulloch, Profa. Dra. Maria Luiza Moretti, Prof. Dr. João Ernesto de Carvalho e Prof. Dr. Sérgio de Mendonça.

xiv

Aos professores do Instituto de Química da Unicamp Dr. Alvicler Magalhães, Dr. Fabio Gozzo, Dr. Nelson Dúran, Dr. Oswaldo Alves, e do Instituto de Biologia Prof. Dr. Gonçalo Amarante Guimarães Pereira, Prof. Dr. Fabio Trindade Maranhão Costa, Profa. Dra. Denise Vaz de Macedo, Profa. Dra. Fernanda Lorenzi Lazarim, Profa. Dra. Selma Giorgio e Profa. Dra. Adriana Franco Paes Leme do LNBio/LNLS, pela colaboração nos experimentos, discussões e auxílio no desenvolvimento deste projeto.

Aos amigos do laboratório de longa data e mais recentes: Adriane Sprogis, Aline Calarga, Ana Carolina Cauz, Bruna Simioni, Camila do Carmo, Catierine Werle, Diego Nóbrega, Fábio Floresta, Fernanda Franzin, Fernanda Luz, Gérson Nakazato, Guilherme Milanez, Gustavo Gregoracci, Jessica Gosse, Luciana Antoniassi, Marina Gilioli, Meire Ota, Meiriele Neves, Tamires Cordeiro, pelos ensinamentos trocados, pelas risadas e por nossa convivência.

Aos funcionários Evandro Luis, Izildinha Coli e Sandra Martins pela disposição com que me auxiliaram e pela amizade desenvolvida.

Aos pesquisadores, alunos e professores da High-Throughput Sequencing Facility na University of North Carolina, meu sincero agradecimento por terem me recebido muito bem e por todo o conhecimento que compartilharam.

Aos meus eternos amigos Aline Farias, Bruna Muller, Carolina Araujo, Camila Silveira, Juliana Teixeira, Livia Cordi, Leticia Barbieri, Marcela Maldonado, Monica Ganazza, Rafaela Terossi, Renata Ferreira, Taise Souza, Thiago Pedersen pela cumplicidade, amizade sincera, companheirismo e pela alegria e diversão que cada um me proporciona.

Ao Jose Lagos Junior, meu amor e melhor amigo, por me apoiar na concretização dos meus sonhos e por todos os momentos de incentivo, motivação, carinho e cumplicidade.

XV

À minha enorme e alegre família: aos meus pais Neuza Lima e Merchides Lima, meu irmão Renato Lima, minha cunhada Cristina Lima, e especialmente ao nosso anjo Lucca Lima. Também aos meus avós, tios, primos, pelo amor, incentivo, apoio e carisma.

E a todas as pessoas que participaram e contribuíram para realização de nosso trabalho, direta ou indiretamente, meus sinceros agradecimentos.

LISTA DE FIGURAS

Figura 1. Estrutura química da violaceína $(C_{20}H_{13}O_3N_3)$ com três unidades 15 estruturais: (A) 5-hidroxindol, (B) 2-pirrolidona e (C) oxindol (Adaptado de Rettori & Duran, 1998).

Figura 2. Espectros de massas de ESI-QTOF nos modos positivo (ESI+, Figura 42 superior) e negativo (ESI–, Figura inferior), de forma comparativa entre as amostras de extrato contendo violaceína e brancos de solvente (H₂O/MeOH 1:1, 0,1% ácido fórmico). As anotações [M+H]+ ou [M-H]- demonstram respectivamente os íons monoprotonados ou monodesprotonados da violaceína (343 Daltons) e deoxiviolaceína (327 Daltons).

Figura 3. Comparações de padrões isotópicos e massas exatas entre os sinais 44 obtidos para íons da violaceína experimentalmente e predições teóricas para as respectivas composições elementares ($C_{20}H_{14}N_3O_3$ para a violaceína monoprotonada, [M+H]+ em m/z 344; e $C_{20}H_{12}N_3O_3$ para a violaceína monodesprotonada, [M–H]– em m/z 342), com respectivos erros de m/z em ppm.

Figura 4. Espectro de RMN: A. Violaceína sintetizada pela Sigma-Aldrich. B. 45 Extrato de *Chromobacterium violaceum* contendo violaceína. Análises realizadas em colaboração com o Prof. Dr. Alviclér Magalhães (Instituto de Química da UNICAMP).

Figura 5. Espectro de RMN e ampliação entre as faixas de 5 à 10 ppm. A. 46 Violaceína sintetizada pela Sigma-Aldrich. B. Extrato de *Chromobacterium violaceum* contendo violaceína. Análises realizadas em colaboração com o Prof. Dr. Alviclér Magalhães (Instituto de Química da UNICAMP).

Figura 6. Curva de crescimento da linhagem *S. aureus* N315 com adição de 54 violaceína após 03 horas de crescimento. A seta indica a adição da violaceína em diversas concentrações em μ M. Os dados foram plotados por tempo de crescimento (horas) por A. absorbância (D.O. λ 600 nm) e B. Unidades Formadoras de Colônia (UFC)/mL. Cada ponto representa a média de três experimentos independentes.

Figura 7. Curvas de tempo-morte da linhagem *S. aureus* N315 tratada com 56 diferentes concentrações de violaceína (sub-MIC 0,312 μ M; MIC 0,625 μ M e supra-MIC 1,25 μ M) e controle sem tratamento. Os dados foram plotados por tempo de crescimento (horas) por A. absorbância (D.O. λ 600 nm) e B. Unidades Formadoras de Colônia (UFC)/mL. Cada ponto representa a média de três experimentos independentes.

Figura 8. Curva de tempo-morte da linhagem *S. aureus* BEC9393 tratada com 57 diferentes concentrações de violaceína (sub-MIC 0,156 μ M; MIC 0,312 μ M e

supra-MIC 0,625 μ M) e controle sem tratamento. Os dados foram plotados por tempo de crescimento (horas) por A. absorbância (D.O. λ 600 nm) e B. Unidades Formadoras de Colônia (UFC)/mL. Cada ponto representa a média de três experimentos independentes.

Figura 9. Imagens de Microscopia Eletrônica de Transmissão de *S. aureus* N315, 59 grupo controle. 1 hora de crescimento: A. aumento de 60.000 vezes e B. aumento de 77.500 vezes; 2 horas de crescimento: C. aumento de 35.970 vezes e D. aumento de 100.000 vezes.

Figura 10. Imagens de Microscopia Eletrônica de Transmissão de *S. aureus* N315, 60 grupo tratado com violaceína (1,25 μ M). 1 hora de tratamento: A. aumento de 60.000 vezes e B. aumento de 100.000 vezes; 2 horas de tratamento: C. aumento de 27.800 vezes e D. aumento de 60.000 vezes.

Figura 11. Gel de SDS-PAGE das proteínas celulares extraídas de *S. aureus* N315. 63 M.M. Massa Molecular de 200 a 6,5 kDa; 1. Amostra tratamento de 01 hora com violaceína $(1,25 \ \mu M)$; 2. Amostra cultura controle sem tratamento.

Figura 12. Géis de eletroforese bidimensional de referência para as análises de 64 intensidade de *spots* protéicos (Extrato protéico total de *S. aureus* N315). A. Tratamento com violaceína $(1,25 \,\mu\text{M})$ e B. Controle com células não tratadas.

Figura 13. Perfil eletroforético virtual de 31 amostras/bibliotecas de cDNA prontas 70 para sequenciamento (Equipamento LabChip). A qualidade das amostras foi dada pela intensidade das bandas na média de 300-400 pb.

LISTA DE TABELAS

Página

Tabela 1. Linhagens e isolados bacterianos utilizados no presente trabalho.26

Tabela 2. Determinação do MIC e MBC da vancomicina em concentrações μ M 47 para linhagens bacterianas do gênero *Enterococcus*. Os resultados foram baseados em análises de triplicatas.

Tabela 3. Determinação do MIC e MBC do extrato de *C. violaceum* contendo 49 violaceína e da violaceína (composto puro) em concentrações em μ M (até 100 μ M) para diferentes linhagens bacterianas. Os resultados foram baseados em análises de triplicatas.

Tabela 4. Triagem inicial para determinação do MIC e MBC dos nanomateriais de 50 vanadato de prata (AgVO₃) em concentração μ M para diferentes linhagens bacterianas. Os resultados foram baseados em análises de triplicatas.

Tabela 5. Determinação do MIC e MBC do nanomaterial de vanadato de prata 51 (AgVO₃), amostra P1P6, em concentrações em μ M (até 100 μ M) para diferentes linhagens bacterianas. Os resultados foram baseados em análises de triplicatas.

Tabela 6. Determinação do MIC do extrato de *C. violaceum* + nanomateriais de 52 AgVO₃ em concentrações em μ M (até 100 μ M) para diferentes amostras e linhagens de *S. aureus*. Os resultados foram baseados em análises de triplicatas.

Tabela 7. Determinação do MBC do extrato de *C. violaceum* + nanomateriais de 52 AgVO₃ em concentrações em μ M (até 100 μ M) para diferentes linhagens de *S. aureus*. Os resultados foram baseados em análises de triplicatas.

Tabela 8. Contagens em UFC/mL de *S. aureus* N315 após infecção em 61 camundongos Balb/C, N = 3 animais por grupo/dia.

Tabela 9. Identificação de proteínas celulares de *S. aureus* N315 induzidas (*up- 66 regulation*) após tratamento de 01 hora com violaceína.

Tabela 10. Identificação de proteínas celulares de *S. aureus* N315 inibidas (*down-* 67 *regulation*) após tratamento de 01 hora com violaceína.

Tabela 11. Genes positivamente expressos em *S. aureus* N315 tratados por 01 hora 74 com violaceína na concentração de $0,625 \mu M$ (MIC) identificados por sequenciamento de RNA.

Tabela 12. Genes negativamente expressos em *S. aureus* N315 tratados por 01 hora 76 com violaceína na concentração de $0,625 \mu M$ (MIC) identificados por

sequenciamento de RNA.

Tabela 13. Genes positivamente expressos em *S. aureus* N315 tratados por 01 hora 77 com violaceína na concentração de $0,312 \mu M$ (sub-MIC) identificados por sequenciamento de RNA.

Tabela 14. Genes negativamente expressos em *S. aureus* N315 tratados por 01 hora 79 com violaceína na concentração de $0,312 \mu M$ (sub-MIC) identificados por sequenciamento de RNA.

Tabela 15. Genes positivamente expressos em *S. aureus* N315 tratados por 03 81 horas com violaceína na concentração de 0,625 μ M (MIC) identificados por sequenciamento de RNA.

Tabela 16. Genes negativamente expressos em *S. aureus* N315 tratados por 03 84 horas com violaceína na concentração de 0,625 μ M (MIC) identificados por sequenciamento de RNA.

Tabela 17. Genes positivamente expressos em *S. aureus* N315 tratados por 03 87 horas com violaceína na concentração de $0,312 \mu$ M (sub-MIC) identificados por sequenciamento de RNA.

Tabela 18. Genes negativamente expressos em *S. aureus* N315 tratados por 03 87 horas com violaceína na concentração de $0,312 \mu$ M (sub-MIC) identificados por sequenciamento de RNA.

LISTA DE ABREVIATURAS

μg	micrograma
μl	microlitro
μm	micrometro
ATCC	American Type Culture Collection
bp ou pb	base pair ou pares de base
CA-MRSA	Staphylococcus aureus meticilina resistentes adquiridos na comunidade
cDNAs	DNAs obtidos a partir de transcrição reversa
CDSs	Coding Sequences
CEMIB	Centro Multidisciplinar para Investigação Biológica
CHAPS	3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
FLIC	concentração inibitória fracionada letal
CLSI	Clinical and Laboratory Standards Institutes
cm	centímetro
DL50	dose letal mediana
DMSO	dimetilsulfóxido
DNA	ácido desoxirribonucléico gênomico
DNAse	deoxiribonuclease

DTT	dithiotreitol
EDTA	ácido etilenodiaminotetracético
ESI	ionização por electrospray
et al.	e outros (de et alli)
FDR	False Discovery Rate
FLIC	concentração inibitória fracionada letal
H2O	água
H3PO4	ácido fosfórico
HCl	ácido clorídrico
HHL	N-hexanoil homoserina lactona
hr	hora
hVISA	Staphylococcus aureus com heterorresistência à vancomicina
Hz	Hertz
IDSA	The Infectious Disease Society of America
Kg	quilograma
kV	quilovolts
L	litro
М	molar

m/z	m = massa e z = carga de íons
mA	microampere
MBC	concentração bactericida mínima
MeCN	acetonitrila
МеОН	metanol
mg	miligrama
MH	Müeller-Hinton
MIC	concentração inibitória mínima
mL	mililitro
mm	milímetro
MRSA	Staphylococcus aureus resistentes à meticilina
MSCRAMM	Microbial Surface Components Recognizing Adhesive Matrix Molecules
nm	nanômetros
°C	grau Celsius
ORSA	S. aureus resistentes à oxacilina
OsO4	tetróxido de ósmio
PAGE	polyacrylamide gel electrophoresis
PBP	Penicilin Binding Protein

PBS	tampão fosfato-salino
PCR	reação em cadeia de polimerase
рН	potencial hidrogênico
pI	ponto isoelétrico
ppm	partes por milhão
QTOF	analisador do tipo quadrupolo-tempo de vôo
RNA	ácido ribonucléico
RNAm	ácido ribonucléico mensageiro
rpm	rotações por minuto
SCCmec	staphylococcal cassette chromosome mec
SDS	sodium dodecyl sulfate
U	unidades
UFC	unidades formadoras de colônia
V	volts
Vhr	Volts/hora
VISA	Staphylococcus aureus com resistência intermediária à vancomicina
VRE	Enterococcus resistentes à vancomicina
VRSA	Staphylococcus aureus resistentes à vancomicina

1. INTRODUÇÃO

1.1. Resistência Bacteriana às Drogas

O desenvolvimento e utilização de agentes antimicrobianos foi uma das mais importantes medidas que conduziram ao controle e erradicação de doenças bacterianas do século 20 (Cohen, 1992). Todavia, no início dos anos 1970, mesmo dada a variedade de agentes antimicrobianos eficazes, muitas infecções bacterianas ainda não eram tratáveis. O otimismo foi abalado pela descoberta de resistência a vários antibióticos entre patógenos como *Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa* e *Mycobacterium tuberculosis* (Cohen, 1992; Lowy, 2003).

A seleção de espécies bacterianas cada vez mais resistentes aos antimicrobianos resulta de uma multiplicidade de fatores que incluem dentre outros, principalmente o uso não racional e por vezes inadequado de antimicrobianos, a exemplo do uso extensivo como agentes promotores do crescimento na alimentação animal e, com o aumento do acesso ao deslocamento (local, nacional e internacional) resultando na "facilidade" de bactérias resistentes a antimicrobianos atravessarem barreiras geográficas. É possível indicar uma correlação direta entre o uso de antimicrobianos e a extensão da resistência antimicrobiana. (Lowy, 2003).

O constante isolamento de bactérias multirresistentes a antibióticos é um assunto amplamente estudado e apontado como importante problema de saúde pública mundial (Rossi, 2011, Calfee *et al.*, 2012). E apesar dos enormes progressos nos estudos e tratamentos clínicos, seu impacto é particularmente acentuado nos países em desenvolvimento devido à indisponibilidade relativa dos medicamentos e à emergência de resistência às drogas (Okeke *et al.*, 2005). Esses micro-organismos são frequentemente associados a infecções hospitalares, causando quadros de pneumonia, infecções urinárias, feridas cirúrgicas, queimaduras, septicemia e infecções associadas a cateteres (Lipsky *et al.*, 2007)

Ao examinar infecções humanas por organismos resistentes às drogas, considera-se o hospital e a comunidade como ecossistemas distintos. Embora um tanto arbitrária, essa divisão reflete diferentes populações, pressões seletivas, reservatórios e outros fatores que são importantes no aparecimento, persistência, e transmissão de organismos resistentes (Cohen, 1992).

Infecções adquiridas na comunidade, particularmente infecções respiratórias e infecções gastrointestinais, foram uma das principais causas de morte nos EUA antes do advento dos antibióticos e ainda possuem altas taxas em países em desenvolvimento (Okeke *et al.*, 2005). Em muitos casos, os dados disponíveis não são passíveis de avaliação quantitativa precisa, particularmente em países cujos sistemas de vigilância são ausentes ou rudimentares (Okeke *et al.*, 2005).

A incidência de surtos bacterianos associada a taxas crescentes do isolamento de bactérias multirresistentes à antibióticos, têm preocupado as autoridades da saúde, representando gastos econômicos. Este quadro levou a *The Infectious Disease Society of America* (IDSA) a lançar a '10x20' initiative, um programa que visa desenvolver 10 novos antibióticos de uso sistêmico até 2020 (Gould *et al.*, 2012). Nesse contexto, pesquisas sobre novas substâncias antimicrobianas devem ser continuadas, bem como, têm sido pesquisadas novas estratégias de terapias antimicrobianas já existentes associadas a novas drogas.

1.2. Características de *Staphylococcus aureus*

Staphylococcus aureus é uma bactéria associada a humanos e outros animais, é comensal, mas pode ser um patógeno oportunista versátil, capaz de causar diversas doenças (dentre as principais: síndrome do choque tóxico, bacteremia, endocardites, infecções metastáticas e sepses). São cocos da família Staphylococcaceae e são caracterizados principalmente por apresentarem parede de estrutura gram-positiva, fermentação de manitol e produção das enzimas catalase e coagulase, esta última que distingue *S. aureus* entre diferentes espécies do gênero *Staphylococcus* (Lowy, 1998).

Em humanos, seu habitat primário é o trato respiratório superior, particularmente o epitélio que recobre as fossas nasais (Foster, 2004), como também pode ser encontrado em outros locais, a exemplo do trato gastrointestinal. Cerca de 30% da população está continuamente colonizada por esta bactéria (20% colonização nasal) e cerca de 60% são carreadores intermitentes. A taxa de infecção aumenta consideravelmente em pacientes internados e em profissionais de saúde, como médicos, enfermeiros e auxiliares de enfermagem (Foster, 2004; Gould *et al.*, 2012).

A sua colonização não é completamente compreendida e envolve o contato com o hospedeiro. É capaz de produzir variados fatores de patogenicidade (mecanismos que permitem a invasão bacteriana e evasão do sistema imune do hospedeiro), como produtos estruturais e proteínas de superfície que são sintetizadas na fase exponencial de crescimento e proteínas secretadas (a exemplo de toxinas) sintetizadas principalmente na fase estacionária (Lowy, 1998).

Dentre os fatores de virulência, as proteínas de superfície promovem a aderência celular, acoplando a moléculas como colágeno, fibronectina e fibrinogênio, e podem causar danos a tecidos. São estruturalmente semelhantes, e chamadas de *Microbial Surface Components Recognizing Adhesive Matrix Molecules* ou pela sigla de MSCRAMMs, e podem ter funções importantes nas infecções endovasculares, ósseas e articulares (Lowy, 1998; Gordon & Lowy, 2008).

Uma vez aderida aos tecidos do hospedeiro, diversos sistemas de escape do sistema imune são descritos para essa bactéria. A exemplo, a formação de biofilme no hospedeiro e superfícies protéticas, invasão e sobrevivência em células epiteliais, produção de microcápsula antifagocítica (isolados clínicos são maioria de produtores dos tipos 5 e 8). São capazes de formar pequenas colônias ou *Small-colony variants* (SCVs), que se escondem na célula hospedeira. Produzem a MSCRAMM proteína A, que adere a porção Fc de imunoglobulinas prevenindo a opsonização, também secretam proteínas inibidoras de quimiotaxia interferindo na ação de neutrófilos nos sítios de infecção e produzem leucocidinas que formam poros nas membranas celulares de leucócitos (Lowy, 1998; Foster, 2004; Gordon & Lowy, 2008; van Belkum *et al.*, 2009; Tong *et al.*, 2012).

Durante o processo infeccioso, é capaz de sintetizar uma série de invasinas (proteases, lipases e elastases) que auxiliam na invasão, causam danos e destroem células e tecidos, atuando como enzimas citolíticas. Esse micro-organismo pode produzir superantígenos (ativando vias de coagulação e sistema imune), ou choque séptico (TSST-1), resultando em síndrome do choque tóxico. Também citados na patogênese bacteriana, encontram-se: peptideoglicano, ácido lipoteicóico e α -toxinas. (Lowy, 1998; Foster, 2004; Gordon & Lowy, 2008; van Belkum *et al.*, 2009; Tong *et al.*, 2012).

A expressão dos fatores de virulência pode ser geneticamente coordenada por genes regulatórios globais, com destaque para os genes reguladors acessórios *agr*, em um sistema *quorum-sensing* com importante papel na virulência estafilocócica confirmado por testes com cepas mutantes. *agr* é um *operon* complexo de aproximadamente 3,5 kb em tamanho, e atua ao nível da transcrição. Resumidamente, o pró-péptido PAI, que é processado e secretado por AgrB liga-se a um *loop* extracelular do receptor de AgrC, ativando autofosforilação (ou desfosforilação), seguida por fosforilação ou a desfosforilação do regulador de resposta, AgrA, que em conjunto

com SarA, ativa os dois promotores *agr* (P2 e P3), levando à produção de RNA III, que reprime a expressão de genes envolvidos na formação do biofilme e ativa a expressão de fatores de virulência secretados (incluindo hemolisinas, TSST-1 e as enterotoxinas) (Hao *et al.*, 2012; Arya & Princy, 2013). Ainda, existem outros genes reguladores: *arlR*, *arlS*, *saeRS*, *rot* e *mgr* (Lowy, 1998; Gordon & Lowy, 2008).

Em resumo, *S. aureus* possui diversos mecanismos para evadir a resposta imune e causar diferentes doenças em humanos caracterizadas por infecções localizadas ou disseminadas. Isso faz deste um dos principais agentes causadores de infecções nosocomiais e na comunidade, sendo que alguns fatores do hospedeiro podem afetar a suscetibilidade à doença estafilocócica, mas não existem dados suficientes para comprovar tal sugestão (van Belkum *et al.*, 2009; Gould *et al.*, 2012; Tong *et al.*, 2012).

1.3. Resistência de Staphylococcus aureus aos Agentes Antimicrobianos

Historicamente, *S. aureus* vêm escapando à ação dos antimicrobianos, pela capacidade de sobrevivência e multiplicação em uma diversidade de ambientes. A introdução da (benzil)penicilina em 1944 ofereceu uma oportunidade de tratar infecções estafilocócicas severas. O mecanismo de ação da penicilina se deve à inibição de proteínas de ligação (PBPs- *Penicilin Binding Proteins*) da bactéria, que tem alta afinidade por antibióticos β-lactâmicos, e atua nas etapas finais da formação da parede celular das bactérias (ligações cruzadas do peptideoglicano) (Lowy, 2003).

Peptideoglicano (ou mureína) é um dos principais componentes da parede celular de bactérias. Trata-se de um complexo de heteropolímero composto por cadeias longas de glicano que são reticulados por peptídeos curtos. As cadeias de glicano são compostas por resíduos alternados de N- acetilglicosamina (GlcNAc) e ácido N-acetilmurâmico (MurNAc). O grupo Dlactoyl de cada resíduo de MurNAc é substituído por uma haste de peptídeo com a composição: L-Ala-γ-D-Glu-meso-A2pm (ou L-Lys)-D-Ala-Dala (A2pm, ácido 2,6-diaminopimélico) nas etapas iniciais do peptideoglicano, e o último resíduo de D-Ala será removido na molécula madura. As cadeias cruzadas de glicano geralmente ocorrem entre o grupo carboxil de D-Ala e o grupo amino do ácido diamino, diretamente ou através de uma ponte de peptídeo curto. A biossíntese do peptideoglicano é um processo complexo que envolve 20 reações, ocorre no citoplasma (síntese dos precursores de nucleótideos), na lateral interna (síntese de intermediários de lípidos) e do lado exterior (reações de polimerização) da membrana citoplasmática (Barreteau *et al.*, 2008).

No mesmo ano em que o sucesso clínico no tratamento com penicilina foi relatado, seria descrita também uma enzima produzida por *S. aureus*, a penicilinase, hoje denominada β -lactamase, produto do gene *bla*Z, que apresenta atividade proteolítica, quebrando o anel β -lactâmico de antibióticos deste grupo (Lowy, 2003; Hardy *et al.*, 2004). O gene *bla*Z é localizado em um plasmídeo de alta massa molecular que geralmente contém genes de resistência a outras classes de antibióticos (Lowy, 2003). A partir disto, na década de 1960, penicilinas semi-sintéticas estáveis às betalactamases, como a meticilina e oxacilina começaram a ser utilizadas no tratamento de infecções causadas por essas linhagens. No entanto em 1961, um ano após sua introdução, o primeiro caso de *S. aureus* meticilina resistente (MRSA – sigla mundialmente utilizada) seria detectado e a primeira falha clínica com meticilina para o tratamento de *S. aureus* descrita (Lowy, 2003; Hardy *et al.*, 2004; Grundmann *et al.*, 2006; Gould *et al.*, 2012).

Amostras MRSA são caracterizadas pela aquisição de um elemento genético móvel conhecido como cassete *mec* cromossômico estafilocócico (SCCmec - staphylococcal cassette chromosome mec), composto por três elementos essenciais: (i) o complexo gênico mec; (ii) o

complexo gênico *ccr* (*cassette chromosome recombinase*), que codifica recombinases para mobilidade e, (iii) a região J (*junkyard*) que codifica resistência para antibióticos não β -lactâmicos e metais pesados. Os cassetes *SCCmec* carregam o gene codificador de uma proteína ligadora de penicilina (PBP) conhecida como PBP2a (produto do gene *mecA*), que apresenta afinidade reduzida para antibióticos β -lactâmicos, incluindo penicilinas semissintéticas e cefalosporinas (Lowy, 2003; Hardy *et al.*, 2004; Grundmann *et al.*, 2006; Gould *et al.*, 2012).

O SCC*mec* está inserido em um *locus* específico do cromossomo (*attBc*) localizado próximo a origem de replicação. A mobilidade deste elemento é mediada por recombinases específicas codificadas por genes localizados dentro do elemento e por isso denominadas recombinases do cassete cromossômico (*ccrA/ccrB* ou *ccrC*) (Grundmann *et al.*, 2006). Até o momento, baseado no complexo de genes *mec*, *ccr* e genes adicionais, foram descritos oito tipos de SCC*mec*, designados de I a VIII e alguns variantes (IWG-SCC; 2009; Turlej *et al.*, 2011; Gould *et al.*, 2012). Recentemente, um novo homólogo de *mecA* que também confere resistência a meticilina foi descrito em amostras de *S. aureus* isoladas de humanos e bovinos na Dinamarca. Este gene, denominado *mecA*_{LGA251}, apresenta identidade de 70% com o gene *mecA* (García-Álvarez *et al.*, 2011).

Na prática clínica, principalmente no Brasil, a oxacilina (doxacilina) é utilizada com maior frequência que a meticilina. Assim, alguns autores utilizam a designação ORSA ao invés de MRSA para amostras de *S. aureus* resistentes a estes antibióticos. No presente texto, utilizaremos a designação MRSA. Cepas MRSA geralmente são multirresistentes (múltiplas classes de antibióticos), apresentam resistência a vários antibióticos β -lactâmicos de uso clínico, além de outras marcas de resistência que podem também estar presentes no SCC*mec* (Lowy, 2003; Grundmann et al., 2006; Gould et al., 2012). Além da classificação dos tipos de SCC*mec*, que auxiliam nas análises epidemiológicas, já foram descritas linhagens clonais MRSA altamente epidêmicas, descritas a seguir: (i) Ibérico, ST247-IA; (ii) Brasileiro/Húngaro, ST239-III/IIIA; (iii) Pediátrico, ST5-IV/VI; (iv) Nova Iorque/Japão, ST5-II; (v) EMRSA-15, ST22-IV; (vi) EMRSA-16, ST36-II; e, (vii) Berlim, ST45-IV. (Oliveira *et al.*, 2001; Gordon & Lowy, 2008).

MRSAs antes associadas predominantemente com infecções hospitalares, atualmente são também isoladas de infecções adquiridas na comunidade (Lowy, 2003; Skov *et al.*, 2012) e, por isso, receberam a denominação CA-MRSA para *S. aureus* meticilina resistentes adquiridos na comunidade e geralmente apresentam SCC*mec* tipos IV e V. Observações clínicas e epidemiológicas indicam que cepas MRSA, particularmente as hospitalares, mas também amostras CA-MRSA, geralmente são mais virulentas que amostras sensíveis a meticilina (MSSA) (Lowy, 2003; Grundmann *et al.*, 2006; Skov *et al.*, 2012). Dados recentes indicam que amostras CA-MRSA também tem sido descritas como causas de infecções hospitalares (Skov *et al.*, 2012).

A vancomicina, um antibiótico do grupo dos glicopeptídeos, descoberta em 1958, começou a ser empregada com frequência, e em alguns casos como a última opção no tratamento de infecções causadas por amostras MRSA, caracterizadas por sua multirresistência à drogas. Contudo, alguns estudos a partir do ano de 1997, relataram amostras isoladas com resistência intermediária à vancomicina (VISA), com heterorresistência (hVISA) e com menos frequência, amostras completamente resistentes a esta droga (VRSA) (Lowy, 2003; Hardy *et al.*, 2004; Grundmann *et al.*, 2006; Gould *et al.*, 2012). No Brasil, amostras VISA foram isoladas como demonstrado por Oliveira *et al.* (2001).

O mecanismo de resistência à vancomicina exibido por amostras VISA envolve o espessamento da parede celular (Lowy, 2003). Mwangi *et al.* (2007) utilizaram metodologia de sequenciamento *high-throughput* para estudar a evolução da resistência a antimicrobianos em *S*.

8

aureus. Esses autores isolaram periodicamente linhagens isogênicas de *S. aureus* de um paciente com endocardite crônica em tratamento com vancomicina e outros antibióticos. A comparação do genoma da primeira linhagem isolada (sensível à vancomicina) com a última (sensibilidade diminuída) indicou a ocorrência de 35 mutações de ponto em 31 *loci*. Mutações foram associadas ao *operon vraR*, que regula a síntese da parede celular em *S. aureus*, com diminuição da suscetibilidade à vancomicina e o aparecimento do fenótipo VISA. A exposição de *S. aureus* a inibidores da parede celular induz a superexpressão de genes, desde que o sistema de doiscomponentes VraSR está intacto (Gardete *et al.*, 2006).

A capacidade para responder às alterações ambientais é em parte regulado por sistemas de dois-componentes, que compreendem um sensor de histidina quinase e um regulador de resposta. Após a percepção do estímulo externo, que pode ser íon, molécula e outros, pelo domínio sensor periplasmático da histidina quinase, ocorre a autofosforilação de um resíduo conservado de histidina no domínio quinase citoplasmático. O grupo fosforil é então transmitido para um resíduo aspartato conservado no domínio receptor do regulador de resposta, induzindo sua alteração conformacional. O regulador de resposta ativado liga-se então ao promotor de um gene alvo ou para induzir ou reprimir a expressão de genes (Scott *et al.*, 2013). A inativação de *vraS* do sistema VraSR, bloqueia a resposta transcricional e também provoca uma redução drástica dos níveis de resistência aos antibióticos beta-lactâmicos e vancomicina (Gardete *et al.*, 2006).

Howden *et al.* (2008) utilizando desenho experimental parecido, observaram associação entre mutações de ponto no gene *graS* e diminuição da sensibilidade à vancomicina. Os reguladores GraRS (também conhecidos por ApsRS) codificam um sistema regulatório de dois-componentes, que positivamente regulam *rot* e *mgrA*, proteínas reguladoras globais que por sua vez controlam a expressão de muitos genes que codificam determinantes de virulência e outros

produtos gênicos reguladores. Controlam também, o *operon dltABCD*, conhecido pela alanilação de ácidos teicóicos de parede em resposta ao desafio antimicrobiano (Howden *et al.*, 2010). Diversos estudos recentes indicam que os genes reguladores *walKR* (regulador da síntese do peptidoglicano durante a hidrólise das ligações cruzadas), *vraRS* e *graRS*, bem como o gene que codifica a RNA-polimerase subunidade B (*rpoB*) são frequentemente implicados no fenótipo VISA (Howden *et al.*, 2013).

A resistência exibida por amostras VRSA envolve a presença de elemento transferível contendo o *operon vanA* de *Enterococcus faecalis*. O *operon vanA* está envolvido na alteração de síntese de um precursor da parede, mais precisamente no peptídeo terminal D-Ala-D-Ala que é substituído por D-Ala-D-Lac com afinidade muito menor à vancomicina, quando comparado a D-Ala-D-Ala (Lowy, 2003). A transferência de um plasmídeo conjugativo de 57,9 kb foi associada à resistência à vancomicina em amostras MRSA (Weigel *et al.*, 2003; Périchon & Courvalin, 2009).

O tratamento de infecções causadas por amostras MRSA, VISA e VRSA pode ser alcançado com outras drogas, tais como quinupristin-dalfopristin, daptomicina e linezolide (revisado por Gould *et al.*, 2012). No entanto, a aquisição de resistência a linezolide já foi descrita (Lowy, 2003), assim como resistência intermediária à daptomicina (Gould *et al.*, 2012) colocando em risco a eficiência de tais drogas e impondo a necessidade urgente na busca de novos antimicrobianos e novos alvos terapêuticos.

No Brasil, em estudo multicêntrico recente, *S. aureus* foi responsável por aproximadamente 20% das infecções hospitalares de corrente circulatória, o primeiro em causa de infecções de pele e tecido mole e o segundo mais frequente em casos de infecção do trato respiratório inferior (Gales *et al.*, 2009). Drogas antimicrobianas tais como clindamicina, sulfametoxazol-trimetroprim,

ciprofloxacin e gentamicina são ativos para menos de 10% das amostras MRSA (Oliveira *et al.*, 2001).

1.4. Desenvolvimento de Novas Drogas Antimicrobianas

Diante do quadro de resistência apresentado por *S. aureus*, particularmente considerando o que a história descreve de potencial desta bactéria em desenvolver resistência às drogas utilizadas em terapia, a pesquisa e o desenvolvimento de novas drogas antimicrobianas tornam-se imperativos, visto que se estima que a descoberta de novas moléculas que possam ser disponibilizadas para uso em hospitais e na comunidade tem levado em média vários anos para ocorrer (Lewis, 2013).

Atualmente, a tigeciclina (tetraciclina), foi recentemente lançada no mercado pela indústria Wyeth. Os derivados glicopeptídicos dalbavancina, telavancina e oritavancina ainda estão sendo submetidos a estudos clínicos. A telavancina e oritavancina atuam na terminação D-ala-D-ala, precursores do peptídeoglicano da parede celular bacteriana. O antibiótico β -lactâmico ceftobiprol está em estudos clínicos fase III. Dois novos macrolídeos, telitromicina, lançada no mercado, e cetromicina, em estudos clínicos fase III, são antibióticos que atuam no domínio V da região 23S do rRNA. O iclaprim está em fase III de estudos clínicos e atua na inibição da di-hidrofolato redutase (Guimarães *et al.*, 2010).

Apesar da grande diversidade de estruturas químicas e variados mecanismos de ação dos antimicrobianos que são encontrados disponíveis para o tratamento de infecções causadas por bactérias resistentes, não somente para *S. aureus*, como também *Streptococcus pneumoniae*, *Pseudomonas aeruginosa, Klebsiella pneumoniae* e *Mycobacterium tuberculosis*; não há, atualmente, um único antimicrobiano em uso clínico, contra o qual não exista pelo menos uma cepa a ele resistente. Com isto, novas fontes para a descoberta de protótipos de antimicrobianos, sejam esses de origem vegetal, animal ou sintética, são de grande interesse para a comunidade mundial (WHO, 2010).

1.4.1. Nanotecnologia

A nanotecnologia tem sido uma área de intensa pesquisa nos últimos dez anos, apresentando como um dos seus objetivos a otimização do efeito dos fármacos. Utilização de técnicas de nanotecnologia para gerar novas formulações antimicrobianas no intuito de diminuir sua dosagem e consequentemente, diminuir possíveis efeitos tóxicos, otimizando sua atividade, é uma alternativa que pode e deve ser considerada para melhoria de tratamento das infecções causadas por bactérias multirresistentes. Como também, a pesquisa relacionada com novos materiais à base de prata ressurgiu como um campo ativo devido à sua atividade antimicrobiana contra vários micro-organismos relatada há mais de 3.000 mil anos. Assim, explorar novos mecanismos de atividade antimicrobiana baseados na interação entre a prata (Ag) e nanopartículas (NPs) tornou-se uma alternativa plausível. Alguns estudos já adiantam que a nanobiotecnologia no geral e com prata também podem ser influenciadas pela morfologia, tamanho das NPs, nível de oxidação parcial e superfície disponível para interação, sendo que quanto maior a área de superfície maior atividade antimicrobiana (Holtz *et al.*, 2012; Seil & Webster, 2012).

1.4.2. Antibióticos

Os principais antibióticos utilizados na prática clínica são produzidos por bactérias e fungos. As actinobactérias (ou actinomicetos) são bactérias gram-positivas de solo, e como principal representante tem-se o gênero *Streptomyces* que produzem antibióticos como

12
a estreptomicina, eritromicina, vancomicina, rifamicina, daptomicina e cloranfenicol. Dos fungos produtores de antibióticos os principais representantes são *Penicillium* spp., produtor de penicilina e *Cephalosporium* spp., produtor de cefalosporina.

Todavia, nos últimos 50 anos, o desenvolvimento de novos antibióticos baseou-se essencialmente em mudanças estruturais daquelas moléculas que já haviam sido descobertas principalmente durante os anos de 1940 e 1950, conhecidos como "anos de ouro da descoberta de produtos antimicrobianos naturais" (Lewis, 2013). Porém, esforços também devem ser concentrados no sentido de retomar o isolamento de produtos naturais com atividade antibiótica, principalmente a partir de fontes bacterianas. A principal vantagem destas novas descobertas seria a ampliação da possibilidade destas moléculas apresentarem mecanismos de ação diferentes daqueles atualmente conhecidos, o que contribui para o aumento nas chances de combate às bactérias multirresistentes (Clardy *et al.*, 2006; Stanton, 2013).

Tendências convergentes de genômica microbiana e estudos de proteômica continuam a impulsionar novos *insights* sobre a capacidade biossintética de bactérias e fungos, bem como o reconhecimento de moléculas com alvos macromoleculares específicos. Também, pode-se revelar novos pontos de intervenção em vias metabólicas bacterianas (geralmente pelo auxílio de vias conhecidas em diferentes pontos por antibióticos existentes). Desta maneira, esforços para descobrir (ou redescobrir) famílias de produtos naturais provavelmente complementarão a tendência repetitiva de modificação semissintética de velhos antibióticos, ao mesmo tempo, muitos destes novos antibióticos podem fornecer pistas valiosas sobre alvos ainda inexplorados do metabolismo bacteriano (Clardy *et al.*, 2006; Lewis, 2013).

13

1.5. Violaceína

A violaceína é um pigmento roxo formado a partir da condensação de duas moléculas de triptofano. Este pigmento é produzido por algumas espécies bacterianas ambientais, tais como *Chromobacterium violaceum* (Duran & Menck, 2001), *Janthinobacterium lividum* (Pantenella *et al.*, 2007), *Pseudoalteromonas luteoviolacea* (Yang *et al.*, 2007), *Collimonas* sp (Hakvag *et. al.*, 2009) e *Duganella* spp (Aranda *et. al.*, 2011). Tal composto é insolúvel em água, mas solúvel em dimetilsulfóxido (DMSO), acetona, etanol, n-butanol e tetrahidrofurano, com massa molar de 343, 34 g/mol⁻¹ (Duran & Menck, 2001).

Os principais estudos da violaceína são relacionados principalmente a *C. violaceum*, bactéria Gram-negativa, pertencente à família Neisseriaceae, formato de bastonetes, anaeróbia facultativa, encontrada em abundância no Rio Negro – Amazonas, Brasil. Esta bactéria é considerada saprofítica e apresenta ampla distribuição, sendo encontrada na água e solos de regiões tropicais (Duran & Menck, 2001). Os primeiros relatos da bactéria e o seu pigmento foram descritos em 1881 por Curzio Bergonzini, mas sua fórmula química e estrutura foram descritas por Ballantine e colaboradores em 1960. A violaceína é um derivado indólico caracterizado como 3(1,2-dihidro-5-(5-hidroxi-1H-indol-3-il)-2-oxo-3H-pirrol-3-ilideno)-1,3-dihidro-2H-indol-2-ona e pode ser visualizada na Figura 1.

O papel exato da violaceína na fisiologia de *C. violaceum* e outras bactérias produtoras não é totalmente elucidado. O genoma completo dessa bactéria foi descrito pelo *Brazilian National Genome Project Consortium* em 2003 (Vasconcelos *et al.*, 2003), demonstrando vias de geração de energia alternativas, regiões codificantes de proteínas de transportes, complexos sistemas de adaptação ao estresse e mobilidade e amplo uso de sistema de *quórum-sensing* para adaptabilidade e versatilidade do organismo, sendo a produção da violaceína induzida por moléculas sinalizadoras N-hexanoil homoserina lactona (HHL).

Figura 1. Estrutura química da violaceína (C₂₀H₁₃O₃N₃) com três unidades estruturais: (A) 5hidroxindol, (B) 2-pirrolidona e (C) oxindol (Adaptado de Rettori & Duran, 1998).

Estudos de Shinoda *et al.* (2007) e Balibar & Walsh (2006) elucidaram os genes e proteínas necessários para a síntese de violaceína em *C. violaceum*. Os genes estão organizado em 5 CDSs (*Coding Sequences*) que compõem o *operon vioABCDE*, e estudos com a expressão heteróloga em *E. coli* contribuíram para a caracterização da via biossintética da violaceína. Resumindo, VioA é uma enzima L-triptofano oxidase que sintetiza ácido-3 indol pirúvico através de moléculas de L-triptofano. VioB (policetídeo sintase) gera um intermediário de ácido cromopirrólico, seguido por VioE que sintetiza então a prodeoxiviolaceína. VioD é uma enzima monoxigenase que hidroxila um dos anéis indólicos da prodeoxiviolaceína e finalmente tem-se a atuação de VioC, também monoxigenase, que atua no outro anel indólico, sintetizando violaceína (Balibar & Walsh, 2006).

Mesmo sem funções esclarecidas na fisiologia de *C. violaceum* e outras bactérias produtoras, acredita-se que a violaceína seja um metabólito secundário com possível função de inibição da predação bacteriana por protozoários. De qualquer forma, esse pigmento vem sendo

amplamente estudado por seu amplo espectro de ações biológicas. Dentre as ações biológicas conhecidas da violaceína, destacam-se as ações antiulcerogênica (Duran *et al.*, 2003), antiparasitária (*Tripanosoma, Leishmania* e *Plasmodium*) (Duran & Menck, 2001; Leon *et al.*, 2001; Lopes *et al.*, 2009), antioxidante (Konzen *et al.*, 2006), antiviral (Andrighetti-Fröhner *et al.*, 2003), antitumoral (de Azevedo *et al.*, 2000) e indutora de apoptose em linhagens de células eucarióticas tumorais tais como HL60 (Duran *et al.*, 2005) e HT-29 (de Carvalho *et al.*, 2006).

Não existem muitos trabalhos na literatura envolvendo a atividade antibacteriana da violaceína. Os primeiros dados de potencial antibiótico foram observados ao notar-se que lesões de pele ou sepse (casos raros) causados por *C. violaceum* não continham outros micro-organismos contaminantes. Lichstein & Van de Sand (1945) demonstraram que a violaceína possui efeito inibitório sobre bactérias gram-positivas (*B. anthracis, S. aureus, Streptococcus salivarius* e *S. pyogenes*), e com menor efeito sobre gram-negativas (*E. coli, P. aeruginosa* e *Shigella paradysenteriae*). Também foi demonstrada atividade antibacteriana para *Mycobacterium tuberculosis*, com uma concentração inibitória mínima (MIC) de 64 µg/mL e concentração bactericida mínima (MBC) de 128 µg/mL (de Souza *et al.*, 1999; Duran & de Souza, 2001).

Nakamura *et al.* (2003) produziram uma mistura de violaceína e deoxiviolaceína isolada de *Janthinobacterium lividum* com atividade antimicrobiana contra *Bacillus licheniformis, Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, e Pseudomonas aeruginosa,* com concentrações de aproximadamente 15 μ g/mL. Aranda *et al.* (2011) avaliaram violaceína extraída de *Duganella* spp e demonstraram atividade inibitória sobre bactérias Gram-positivas. Recentemente, Cazoto *et al.* (2011), analisaram a suscetibilidade a violaceína de cepas de *S. aureus* e *E.coli* isoladas de mastite bovina, obtendo valores de MIC entre 6.25 e 25 μ M, dependendo da linhagem testada de *S. aureus*. Nosso grupo de trabalho realizou sondagem para a sensibilidade de diferentes linhagens e isolados bacterianos frente à violaceína. O interesse nesta molécula surgiu após a participação de nosso grupo no sequenciamento do genoma de *Chromobacterium violaceum* (Vasconcelos *et al.*, 2003). Os resultados prévios indicaram que bactérias pertencentes ao gênero *Staphylococcus* são particularmente sensíveis a violaceína, incluindo linhagens algumas tipo ATCC (*American Type Culture Collection*) e cepas isoladas MRSA. Esses dados abrem novas perspectivas no sentido de se explorar o uso da violaceína no tratamento das infecções causadas por *S. aureus*. No entanto, ainda não existem estudos sobre possíveis alvo(s) e mecanismo(s) de ação da violaceína em células procarióticas. A compreensão desta atividade é importante para o uso efetivo desta ou análogos desta molécula na terapia antimicrobiana.

2. OBJETIVOS

Os objetivos desse estudo foram:

2.1. Rastreamento da Atividade Antimicrobiana:

- Avaliação da concentração inibitória mínima (MIC) e concentração bactericida mínima (MBC) do extrato de *C. violaceum* e de nanopartículas de vanadato de prata;
- Avaliação da concentração inibitória mínima (MIC) e concentração bactericida mínima (MBC) da violaceína (composto puro);

2.2. Estudos da Atividade Antimicrobiana da Violaceína:

- 1. Padronização de curvas de crescimento e curvas de tempo-morte;
- Avaliar o efeito da violaceína sobre a morfologia de *S. aureus* através de Microscopia Eletrônica de Transmissão (MET);
- Avaliar a expressão gênica diferencial em *S. aureus* na presença de violaceína através de estudos de proteômica e transcriptoma.

3. MATERIAIS E MÉTODOS

3.1. ANTIMICROBIANOS

3.1.1. Violaceína

Todas as amostras de violaceína (composto puro) utilizadas neste trabalho foram obtidas da empresa Sigma-Aldrich (St. Louis, MO, USA), que a purifica a partir da bactéria *Jantinobacterium lividum*, lote número 118K4041 com pureza \geq 98%. O certificado de análise deste lote pode ser visualizado no Anexo 1.

3.1.2. Extrato de Chromobacterium violaceum

O extrato de *C. violaceum* foi feito com base na metodologia de Rettori & Duran (1998) no laboratório do Prof. Dr. Nelson Duran do Instituto de Química da UNICAMP, este foi diluído em dimetil-sulfóxido (DMSO) absoluto para a concentração de 20 mM (milimolar), mantido sob a proteção da luz e sob congelamento (-20°C).

3.1.2.1. Produção Microbiana de Violaceína

A cepa de *C. violaceum* CCT3468 foi utilizada para este procedimento. Para a produção microbiana de violaceína, o meio de cultura foi composto por 0,5% de D-glicose anidra, 0,5% de peptona bacteriológica, 0,2% de extrato levedura e 0,03% de L-triptofano em água destilada (massa/volume). Desta forma, inoculou-se 1,0 mL do pré-inóculo de cultura de manutenção de *C. violaceum* para cada 100 mL de meio de cultura para produção e incubou-se à 30°C por 18 horas em agitador orbital a 120 rpm. A seguir, em oito garrafas de Roux colocaram-se tapetes de algodão com

aproximadamente 10 x 20 x 0,5 cm (um tapete por garrafa), após isso, inoculou-se 90 mL da cultura de 18 horas de *C. violaceum* em cada tapete de algodão (Rettori, 1996).

As oito garrafas de Roux foram incubadas à 33° C por 72 horas no biorreator de prateleiras ligado com fluxo constante de Oxigênio puro, com intuito de causar estresse oxidativo, levando assim à produção da violaceína. Ao término dessa etapa os algodões apresentavam uma coloração violeta intensa indicando a produção intracelular de violaceína pela bactéria.

3.1.2.2. O Biorreator "BPS" e as Garrafas de Roux

Foi utilizado um biorreator de alumínio do tipo "BPS" (biorreator de prateleiras para superfícies) de quatro prateleiras, com uma janela de vidro, dobradiças de latão e um tubo de açoinox, que permite a aeração do sistema (Rettori, 1996). O biorreator é projetado para comportar duas garrafas de Roux por prateleira, e suas dimensões foram calculadas para poder ser autoclavado e incubado em estufa. Foram utilizadas Garrafas de Roux modificadas para facilitar a manipulação. Na superfície superior de cada uma, foi feito um orifício de 10 cm de diâmetro, a fim de poder introduzir e retirar material com facilidade e auxiliar na oxigenação da cultura.

3.1.2.3. Extração da Violaceína

Os oito tapetes de algodão foram retirados das garrafas de Roux e lavados duas vezes com água destilada (250 mL) para eliminar o excesso de meio de cultura existente. Colocaram-se os algodões em equipamento *Soxhlet* (que utiliza refluxo de solvente em um processo alternado para extração de materiais sólidos) com etanol comercial regulado para funcionar abaixo de 100°C, para que não ocorresse degradação da violaceína, de tal forma a permitir que ocorresse o ciclo várias vezes, até extrair todas as substâncias do algodão. Após isso, foi rotaevaporado todo o etanol comercial presente no balão a pressão reduzida, e o extrato de violaceína foi congelado em nitrogênio líquido à -198°C e liofilizado por 36 horas para retirar todo o excesso de líquido presente. Após, raspou-se o balão para retirar toda a violaceína interligada com compostos presentes que não são de interesse, e colocou-se o raspado em cartucho (filtro de papel) para poder separar a violaceína desses compostos, que passou por três fases de extração de violaceína utilizando-se três solventes diferentes.

Adicionou-se esse cartucho ao *Soxhlet* utilizando-se o clorofórmio como solvente para extrair a fase orgânica do meio e para romper as células bacterianas, liberando-se assim a violaceína intracelular. Esse processo levou aproximadamente 36 horas, tempo necessário para extrair a fase oleosa do meio. Em seguida foi feito o mesmo processo utilizando-se éter etílico como solvente para extrair as impurezas do meio como oxiviolaceína e dioxiviolaceína. Foram necessárias 24 horas para extrair todos esses compostos. Após, realizou-se o mesmo processo, utilizando-se etanol (95%) como solvente para extrair a violaceína restante do cartucho (filtro), pois o etanol é específico para a violaceína, sendo que os demais solventes utilizados não são específicos para a mesma. Feito isso, a preparação foi rotaevaporada para eliminação do etanol e em seguida liofilizada por 24 horas. Após a liofilização, a preparação contendo violaceína foi recuperada.

3.1.2.4. Produto Final

O produto da extração da violaceína foi liofilizado e colocado em béquer para solubilização em metanol. Após esta etapa adicionou-se lentamente água destilada, até que ocorresse turvação do meio e posterior separação das fases, uma de extrato de violaceína (precipitado) e outra de água e metanol; assim espera-se que impurezas presentes que não haviam sido removidas pelos solventes orgânicos, se liguem à água, já que a violaceína é insolúvel à mesma.

Logo após formar essa dupla camada, o extrato contendo violaceína precipitou e o sobrenadante foi retirado. Para recuperar o precipitado fez-se uma centrifugação a 11.500 x g, 10°C por 20 minutos, o sobrenadante (água e metanol) foi desprezado e o precipitado contendo violaceína liofilizado ou colocado em estufa a 70°C por 24 horas para sua secagem.

3.1.2.5. Análise do Extrato por Espectrometria de Massas (MS)

Para confirmar a presença de violaceína no extrato final, a amostra foi diluída 100x em $H_2O/MeOH$ 1:1 contendo 0,1% de ácido fórmico e injetada por infusão direta em espectrômetro de massas Waters Synapt HDMS (Manchester, UK), equipado com fonte de ionização por electrospray (ESI) e analisador do tipo quadrupolo-tempo de vôo (QTOF). Dentre os principais parâmetros instrumentais estão fluxo do capilar a 10 µL min⁻¹, voltagem (Kilovolts) do capilar de 3,0 kV (ESI+, positivo) ou 2,5 kV (ESI–, negativo), voltagem do cone a 30 V (Volts), voltagem das celas *Trap* e *Transfer* respectivamente em 6 e 4 V, temperatura da fonte de 100°C, temperatura do gás de dessolvatação a 200°C, fluxo do gás do cone a 30 L h⁻¹, fluxo do gás de dessolvatação a 900 L h⁻¹, voltagem do tubo de vôo em 9,1 kV e voltagem do detector (MCP) em 1600 V.

Os espectros no modo QTOF-MS foram adquiridos de m/z (m = massa e z = carga de íons) 100 a 1000, a uma taxa de 1 Hz (Hertz), de forma a se observar a presença de íons referentes à violaceína ou derivados. Uma vez observados tais íons, foram feitos experimentos de MS/MS do tipo espectro de íons fragmentos, de forma a fragmentar os íons precursores de violaceína e derivados e obter informações estruturais a respeito dos mesmos. Para os experimentos de QTOF-MS/MS, o quadrupolo foi configurado para isolar o íon precursor de interesse, e a energia da cela *Trap* foi aumentada até obter-se fragmentação suficiente, empregando-se argônio como gás de colisão. Previamente às análises, o instrumento foi calibrado com solução de H₃PO₄ (0,05%) em H₂O/MeCN 1:1, de m/z 99 a 980.

3.1.2.6. Análise do Extrato e Composto Puro por RMN (Ressonância Magnética Nuclear)

A ressonância magnética nuclear foi realizada em colaboração com o Prof. Dr. Alvicler Magalhães do Instituto de Química da UNICAMP. A técnica é observada quando se incide ondas de radiofrequência em uma amostra que tem *spin* nuclear maior que zero (ex: ¹H e ¹³C) na presença de um campo magnético. Seu sinal reflete o ambiente químico em que o núcleo se encontra, em uma molécula (deslocamento químico). Os experimentos foram realizados em um espectrômetro Varian INOVA (Palo Alto, CA, USA), operando na frequência de 100 MHz (MegaHertz).

3.1.3. Nanomateriais de Vanadato de Prata

A síntese e caracterização dos nanomateriais de vanadato de prata aqui analisados, foram realizadas com base na metodologia de Holtz *et al.*, (2012), e fornecidos em colaboração com o laboratório do Prof. Dr. Oswaldo Luiz Alves do Instituto de Química da UNICAMP.

Para realização dos testes antimicrobianos, as amostras foram diluídas em salina 0,9% e as concentrações foram baseadas em concentrações próximas da qual a violaceína e extrato atuam com atividade bacteriocida/bacteriostática.

3.2. MICRO-ORGANISMOS

Para o rastreamento da atividade antibacteriana da violaceína, foram selecionadas cepas padrões (linhagem tipo ATCC - *American Type Culture Collection*) recomendadas para testes com

antimicrobianos pelo CLSI (*Clinical and Laboratory Standards Institutes*), cepas de interesse médico e/ou acadêmico e linhagens ou isolados clínicos com resistência a antibióticos (Tabela 1).

Linhagem	Procedência
Acinetobacter baumannii ATCC 19606	Fiocruz ¹
Enterococcus faecalis ATCC 21814	Coleção ²
Enterococcus faecalis ATCC 29212	Fiocruz ¹
Enterococcus faecalis ATCC 51299	Fiocruz ¹
Enterococcus faecium ATCC 6569	Fiocruz ¹
Enterococcus Vancomycin Resistent 105	Isolado clínico VRE ³
Enterococcus Vancomycin Resistent 130	Isolado clínico VRE ³
Enterococcus Vancomycin Resistent 73	Isolado clínico VRE ³
Enterococcus Vancomycin Resistent 77	Isolado clínico VRE ³
Enterococcus Vancomycin Resistent 81	Isolado clínico VRE ³
Escherichia coli ATCC 25922	Coleção ²
Escherichia coli ATCC 35218	Fiocruz ¹
Klebsiella pneumoniae ATCC 700603	Fiocruz ¹
Pseudomonas aeruginosa ATCC 27853	Fiocruz ¹
Salmonella LT2	Zinder & Lederberg (1952) ⁴
Staphylococcus aureus ATCC 25923	Coleção ²
Staphylococcus aureus ATCC 29213	Fiocruz ¹
Staphylococcus aureus BEC 9393	Clone Epidêmico Brasileiro MRSA ⁵
Staphylococcus aureus N315	Kuroda et al. (2001) MRSA ⁶
Staphylococcus aureus Rib 1	Isolado clínico MRSA ⁷
Streptococcus pneumoniae ATCC 49619	Fiocruz ¹
Streptococcus pyogenes ATCC 19615	Fiocruz ¹

Tabela 1. Linhagens e isolados bacterianos utilizados no presente trabalho.

1. ATCC - American Type Culture Collection. Todas as amostras foram cedidas pela Fundação Oswaldo Cruz, Rio de Janeiro.

2. Amostras da coleção de culturas do Prof. Marcelo Brocchi (Depto. de Genética, Evolução e Bioagentes, Instituto de Biologia, Unicamp).

- Amostras pertencentes à coleção de culturas da Profa. Dra. Maria Luiza Moretti (Depto. de Clínica Médica, Faculdade de Ciências Médicas, Unicamp).
- 4. Amostra gentilmente cedida pelo Prof. Dr. Roy Curtiss III (Arizona State University, USA).
- 5. Linhagem gentilmente cedida pela Profa. Dra. Agnes Marie Sá Figueiredo (Instituto de Microbiologia "Paulo de Góes", Universidade Federal do Rio de Janeiro).
- 6. Linhagem gentilmente cedida pelo Prof. Dr. Keiichi Hiramatsu (Department of Bacteriology, Faculty of Medicine, Juntendo University, Toquio, Japan).
- 7. Linhagem gentilmente cedida pelo Prof. Dr. Wanderley Dias da Silveira (Depto. de Genética, Evolução e Bioagentes, Instituto de Biologia, Unicamp).

3.3. DETERMINAÇÃO DO MIC (CONCENTRAÇÃO INIBITÓRIA MÍNIMA) E MBC (CONCENTRAÇÃO BACTERICIDA MÍNIMA)

O método de microdiluição foi utilizado para determinar a concentração inibitória mínima (MIC) e concentração bactericida mínima (MBC) conforme padronizado pelo *Clinical Laboratory Standards Institute* (http://www.clsi.org), visando controlar a atividade das preparações de antimicrobianos.

As bactérias foram cultivadas inicialmente em placas de meio Müeller-Hinton (MH) ágar (sólido) a 37°C durante 24 horas, e posteriormente diluídas em MH líquido (caldo) até obter-se a concentração de 10^5 células/mL. Em placas de microdiluição, foram adicionados 50 µL das suspensões bacterianas e os antimicrobianos de escolha em concentrações decrescentes, diluídos em 50 µL de meio MH líquido. A cultura foi então incubada a 37°C por 24 horas e o crescimento bacteriano avaliado em espectrofotômetro, sob o comprimento de onda de 600 nm. Todos estes experimentos foram realizados em triplicata, e como controle positivo, poços somente com a cultura microbiana, poços com a cultura microbiana adicionados de DMSO ou solução salina 0,9% e controle negativo com poços com antibióticos que inibem o crescimento do micro-organismo estudado e poços apenas com meio de cultura (branco da amostra).

Para a determinação da concentração bactericida mínima (MBC), alíquotas dos tratamentos (suspensões bacterianas tratadas com os antimicrobianos) foram plaqueadas (25μ L) em meio MH ágar para posterior determinação de Unidades Formadora de Colônias (UFC). Como controle positivo, plaqueou-se a cultura pura nas mesmas condições e como controle negativo foi utilizado DMSO ou solução salina 0,9% na concentração utilizada para a suspensão do antimicrobiano. A MBC foi definida como a concentração da droga que resultou na morte de > 99,9% da cultura

bacteriana em relação à concentração de bactéria que estava presente nos poços no tempo 0, ou seja, sem crescimento detectado.

3.4. ATIVIDADE COMBINADA DA VIOLACEÍNA E EXTRATO COM NANOFORMULAÇÕES DE VANADATO DE PRATA

Para avaliar possíveis ações combinadas do extrato da violaceína, violaceína (composto puro) com formulações de nanomaterial de vanadato de prata, foi utilizada a metodologia de ensaio de determinação da concentração inibitória fracionada letal ou FLIC, como descrito por Low *et al.*, (2013). Inicialmente, os MIC de todos os antibióticos testados foram determinados separadamente, de acordo com os procedimentos descritos na seção 3.3. Posteriormente, foram realizados os ensaios de interação construindo-se um gradiente de violaceína ou extrato e, em seguida, um segundo gradiente (localizado perpendicularmente ao primeiro) do nanomaterial a ser testado em placas de 96 poços. Os resultados foram interpretados como concentração mínima inibitória da combinação, ou seja, a concentração mínima de violaceína ou extrato que, quando combinada com uma concentração mínima do segundo (nanomaterial), promove inibição do crescimento bacteriano. Por fim, o índice de FLIC foi calculado de acordo com a fórmula:

FLIC = MIC(Vc)/MIC(Vs) + MIC(Nc)/MIC(As);

Onde MIC (Vc) é a concentração mínima inibitória da violaceína usada em combinação com o nanomaterial, MIC (Vs) é a concentração inibitória da violaceína, MIC (Nc) é a concentração mínima inibitória do nanomaterial usado em combinação com violaceína, MIC (Ns) é a

concentração mínima inibitória do segundo antimicrobiano. A mesma equação se aplica em testes com o extrato contendo violaceína.

Os valores de FLIC foram interpretados da seguinte forma: FLIC ≤ 0.5 = interação sinérgica; 0.5 < FLIC ≤ 1.0 = interação aditiva; 1.0 < FLIC ≤ 4.0 = indiferente; FLIC > 4.0 = interação antagônica (Low *et al.*, 2013).

3.5. CURVA DE CRESCIMENTO BACTERIANO

A linhagem *S. aureus* N315 (Kuroda *et al.*, 2001) foi escolhida para análise de proteômica, transcriptoma e microscopia. Para tanto, realizou-se a curva de crescimento desta linhagem para otimização dos experimentos citados, utilizando-se como padrão inicial estoques da cepa mantidos à -80°C em glicerol. Este ensaio foi realizado de acordo com as normas de padronização CLSI (2003). Resumidamente, 1 mL de cultura crescida por 18 horas, 37°C e 150 rpm foi inoculada em 25 mL de meio MH líquido e a absorbância acompanhada por leituras em espectrofotômetro (Eppendorf, Hamburg, Germany) no comprimento de onda 600 nm. De hora em hora, após aferir a densidade óptica, alíquotas da cultura foram diluídas em solução salina esterilizada 0,9% (diluição seriada) e plaqueadas (25 μ L) em MH ágar para contagem de UFC/mL (Westergren & Krasse, 1978). Estes experimentos foram realizados em triplicata e serviram para padronização do inóculo bacteriano inicial ajustado para a quantidade de 10⁷⁻⁸ UFC/mL (após aproximadamente 03 horas de crescimento e fase log de crescimento). A adição de diversas concentrações de violaceína serviu para verificar a obtenção de sedimento celular suficiente para as análises, mesmo após o tratamento com o antimicrobiano.

3.6. CURVAS DE TEMPO-MORTE

A fim de avaliar a atividade antimicrobiana da violaceína obtida da Sigma-Aldrich, foram feitos experimentos de curva de Tempo – Morte (*time-kill*) com as cepas *S. aureus* N315 e *S. aureus* BEC 9393. Inicialmente, as bactérias foram cultivadas a partir de estoque congelado a em MH ágar a 37°C para obter colônias isoladas.

Posteriormente, as colônias foram suspensas em solução salina 0,9% e a concentração bacteriana ajustada ao índice 0,5 da escala Mac Farland (correspondente 1,5 x 10⁸ unidades formadoras de colônia UFC/mL). Esta suspensão foi diluída em caldo MH líquido para uma concentração de 10⁵ UFC/mL. Cada cultura foi tratada com concentrações correspondentes ao MIC (concentração inibitória mínima de crescimento), sub-MIC (concentração 1/2 menor que o MIC), supra-MIC (concentração 2x maior que o MIC) de violaceína, e uma cultura sem o antimicrobiano foi utilizada como controle. As culturas foram cultivadas a 37°C com agitação a 150 rpm.

Alíquotas de 0,7 mL foram retiradas nos tempos 0, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 24 e 48 horas de cada tubo. A densidade óptica a 600 nm foi medida para avaliar a concentração de bactérias nas amostras. Paralelamente, nos tempos 0, 04, 08, 12 e 24, alíquotas da cultura foram diluídas em salina esterilizada 0,9% (diluição seriada) e plaqueadas (25 μ L) em MH ágar para contagem de UFC/mL em triplicata. Todos os experimentos de curva Tempo - Morte foram realizados em duplicata.

3.7. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO

Este ensaio foi realizado para verificar se as células da linhagem de *S. aureus* N315, na presença de violaceína, sofrem alterações ultra-estruturais visíveis.

A cultura de S. aureus foi cultivada como descrito no item 3.5. Após período de incubação de 03 horas, nas culturas foi adicionada a violaceína na concentração de 0,625 µM. Neste caso, considerando que a quantidade de células bacterianas foi maior que a utilizada no experimento em microplacas, a concentração de violaceína nessas condições torna-se sub-inibitória. Para cada experimento, uma das amostras não foi tratada com a violaceína representando assim o controle. Após os períodos de 01 e 02 horas de tratamento, as culturas foram centrifugadas a 11.500 x g por 10 minutos a 25°C. O precipitado celular foi fixado por 02 horas, em gelo, com 1 mL de glutaraldeído a 3% em tampão fosfato 0,1 M (pH 7,4). Após a fixação, as amostras foram centrifugadas novamente (mesmas condições) e o sobrenadante desprezado. O precipitado foi lavado 3 vezes com tampão fosfato 0,1M. Em seguida, o material foi tratado por 1 hora, à temperatura ambiente, com OsO4 (tetróxido de ósmio) a 1% em tampão fosfato 0,1M. Após esse tratamento, o OsO4 foi retirado e o material lavado 2 vezes com tampão fosfato. Após a fixação, o material foi centrifugado e o sedimento misturado em gotas de solução de agarose 1,5% em água destilada em superfície de lâminas. Após solidificação, o material foi desidratado com etanol em concentrações crescentes (50%, 70%, 90% e etanol absoluto por 3 vezes por 15 minutos cada banho). Iniciou-se então um tratamento com óxido propileno. Etapas: a) Etanol/Óxido Propileno (1:1) por 15 minutos; b) Óxido Propileno puro por 15 minutos; c) Óxido Propileno/Resina (1:1) durante 04 horas e d) Resina pura durante a noite (Resina Epon 812, Electron Microscopy Science).

As amostras foram incluídas em resina pura por 72 horas em estufa. Após trimagem do material, os cortes foram feitos em ultramicrótomo com cortes de 0,5 μ m e ultrafino com 600 nm. Os cortes foram contrastados em acetato de uranila (4%) por 30 minutos e em citrato de chumbo (0,3%) por 03 minutos. As imagens foram obtidas em microscópio eletrônico de transmissão

marca LEO modelo 906 no Laboratório de Microscopia Eletrônica do Instituto de Biologia, Unicamp.

3.8. MODELOS ANIMAIS (TESTES IN VIVO)

Anteriormente em nosso laboratório, testamos um modelo de infecção sistêmica por *S. aureus* utilizando camundongos BALB/c, C3H Nude e a linhagem Rib1 de *S. aureus*. Utilizando este modelo, dados preliminares indicaram atividade antimicrobiana da violaceína sobre esta linhagem. Como continuidade neste estudo, propomos avaliar o efeito da violaceína sobre uma linhagem tipo de *S. aureus*, tal como N315.

Para padronização deste experimento, camundongos Balb/C e C3H Nude (CEMIB-UNICAMP) de 5-6 semanas foram infectados por via intraperitoneal com 10^7 à 10^{11} UFC/mL da linhagem N315 para determinação da DL₅₀ (correspondente à dose capaz de matar 50% dos indivíduos de uma população em teste).

Paralelamente, testou-se a citotoxidade da violaceína em camundongos Balb/c (CEMIB-UNICAMP) de 5-6 semanas, com média de peso de 25 gramas. A violaceína nas concentrações de 0,1 mg/Kg; 0,2 mg/Kg e 0,5 mg/Kg foi injetada via intraperitoneal (uma dose). O grupo controle foi tratado com DMSO (v/v 15%) (veículo diluente da violaceína) em PBS.

3.9. ANÁLISE PROTEÔMICA

3.9.1. Extração de Proteínas de S. aureus

A extração de proteínas da linhagem de *S. aureus* N315 foi realizada na ausência e na presença de violaceína com 1 hora de tratamento. O ensaio foi feito baseado na metodologia descrita por Skaar *et al.* (2004), com algumas modificações.

Culturas de S. aureus foram cultivadas como descrito no item 3.5. Após período de incubação de 03 horas, foi adicionada nas culturas a violaceína na concentração de 0,625 µM verificada em microplacas (testes de MIC). Novamente, é importante salientar que neste caso, considerando que a quantidade de células bacterianas foi maior que a utilizada no experimento em microplacas, a concentração de violaceína torna-se sub-inibitória. Após 01 hora de tratamento, as culturas (tratado e controle) foram resfriadas a 4°C e as células sedimentadas por centrifugação (800 x g, 4°C por 05 minutos). As células foram lavadas 3 vezes em tampão Tris-EDTA e no final da terceira lavagem o precipitado celular foi ressuspenso com tampão Tris-HCl (1 M, pH 8,8) contendo 5 U DNAse e 20 µL de coquetel de inibidores de proteases. Estas suspensões foram incubadas a 37°C durante 01 hora na presença de 100 µg de lisostafina para a quebra da parede celular. Terminada a incubação, as preparações foram centrifugadas nas mesmas condições descritas anteriormente e o sedimento ressuspenso em tampão de lise (Tris-HCl 1M, pH 8,8, CHAPS 2%, DTT 1M) contendo 20 µL do coquetel de inibidores de proteases PMSF, DNAse (5 U) e água deionizada adicionada para completar 2 mL. Estas preparações foram incubadas a temperatura ambiente por 01 hora e posteriormente submetidas à centrifugação (800 x g, a 4°C por 05 minutos). O sobrenadante foi então recuperado, transferido para novo tubo e armazenado a -80°C no tampão Destreak (GE Healthcare Life Sciences, Uppsala, Sweden) e posterior limpeza com o uso do Kit 2D Clean-up (GE Healthcare Life Sciences, Uppsala, Sweden) e futuras análises. A concentração de proteínas em cada extrato foi determinada através do método de Bradford (Bradford, 1976) e as proteínas separadas em gel de poliacrilamida (SDS-PAGE e gel bidimensional).

3.9.2. SDS-PAGE

Os extratos protéicos foram submetidos à eletroforese em gel de poliacrilamida (SDS-PAGE), para separar as proteínas de acordo com a massa molecular e observar os padrões obtidos de cada extração. Para tal, foi utilizado um gel de separação a 12% e um gel de empacotamento a 5%. A preparação do gel e do tampão de corrida foram feitas segundo a metodologia descrita por Sambrook & Russel (2001). Proteínas extraídas da linhagem de *S. aureus* N315 tratadas e nãotratadas com violaceína, foram corridas lado a lado no gel para comparação dos perfis de proteínas. A corrida eletroforética prosseguiu até o corante marcador ter alcançado a extremidade inferior do gel. As bandas protéicas foram visualizadas após coloração por Comassie Blue R-250 (Sambrook & Russel, 2001).

3.9.3. Eletroforese Bidimensional

A eletroforese bidimensional foi realizada de acordo com a metodologia descrita por Smolka *et al.* (2003). Anteriormente à corrida, 100 µg de cada extrato protéico foi diluído para um volume final de 250 µL em tampão de diluição (8 mM uréia, 4% CHAPS, 2% anfólitos de tampão IPG, pH 4-7, 70 mM DTT). Após centrifugação (11.500 x g por 02 minutos), o sobrenadante foi usado para a primeira corrida.

Na primeira dimensão as amostras foram aplicadas nas fitas de IPG com a capacidade de separação por ponto isoelétrico (*pI*) em gradiente de pH 4-7, aplicando-se um gradiente de voltagem, utilizando-se o aparato IPGphor (GE Healthcare Life Sciences, Uppsala, Sweden). Após 12 horas de hidratação, a corrida foi conduzida a 20°C, por 200V (Volts) em 200Vhr (Volts/hora), a 500V por mais 500Vhr e gradiente de 1000V por 750Vhr, 8000V por 13.500Vhr e finalmente 8.000V por 20.000Vhr, mantendo uma corrente limite de 50 μ A (microampere) por fita.

Após a corrida em primeira dimensão, as fitas foram submetidas a tratamentos de redução e alquilação antes da corrida eletroforética de segunda dimensão. As fitas foram submersas por 20 minutos em tampão (50 mM Tris pH6,8, 6 M uréia, 30% glicerol, 2% SDS e 2% de DTT) e por 20 minutos adicionais em mesmo tampão contendo 2,5% de iodoacetoamida. Após os passos de equilíbrio, as fitas foram lavadas com água destilada, submersas por alguns minutos em tampão de corrida (Laemmli, 1970) e imediatamente submetidas à eletroforese em gel de poliacrilamida na presença de SDS 7% (SDS-PAGE). A visualização e comparação dos "*spots*" protéicos diferencialmente expressos foram feitas após coloração com com Comassie Blue G. As imagens dos géis foram capturadas e digitalizadas no Image Scanner III com o uso do software Imagemaster™ 2D Platinum v. 6.0 (GE Healthcare Life Sciences, Uppsala, Sweden).

3.9.4. Análise dos Dados dos Géis

No software Imagemaster 2D Platinum v. 6.0 (GE Healthcare Life Sciences, Uppsala, Sweden) separou-se os falsos positivos através das análises dos géis em ferramenta 3D, como também fez-se os *matches* (correlações entre os géis) e análises intra-classes averiguando a intensidade dos *spots* (expressão protéica com auxílio de ferramenta estatística do próprio programa) entre as amostras tratada e controle.

Os valores obtidos das expressões proteícas foram analisados pelo software SAM – Significance Analysis of Microarrays (Stanford University), para definição dos *spots* a serem enviados para espectrometria de massas. O programa calcula a diferença relativa da expressão com base na análise de permutações dos dados de expressão (amostras de duas classes não pareadas, teste-T, 1,5 *fold change* como base de corte e $p \le 0.05$).

3.9.5. Digestão in gel: Identificação dos Spots Protéicos por Espectrometria de Massas

As proteínas totais *(spots)* extraídas do gel foram digeridas com tripsina *(trypsin grade modified –* Promega, Madison, WI, USA), como descrito em Shevchenko *et al.* (1996) (com modificações) e os peptídeos analisados por LC-MS/MS. Esses experimentos foram realizados no LnBio (Laboratório Nacional de Biociências) no LNLS (Laboratório Nacional de Luz Síncrotron) em colaboração com a pesquisadora Dra. Adriana Franco Paes Leme.

Os peptídeos foram separados por gradiente de hidrofobicidade em coluna C18 (100 μ m x 100 mm) (Waters) em nano Acquity Ultra Performance LC (Waters, USA) acoplado a uma interface de ESI *nanospray* em um espectrômetro de massas do tipo Q-TOF Ultima (MicroMass/Waters). O volume de 4,5 μ L dos peptídeos foi injetado automaticamente e eluído da coluna com gradiente de 0-90% de acetonitrila contendo ácido fórmico a 0,1%, durante 20 minutos sob fluxo de 0,6 μ L/minuto. Os arquivos de dados gerados pelo Q-TOF foram processados em programa Mascot Distiller v.2.3.2.0, 2009 (Matrix Science Ldt.). Para a identificação das proteínas foi utilizado o programa Mascot Server v.2.3.01.0 (Matrix Science Ltda.). As buscas foram realizadas utilizando o banco de dados NCBInr_092011 092011 (15270974 sequences; 5234858139 *residues*). Todas as proteínas identificadas e utilizadas nesse trabalho obtiveram cobertura da sequência com porcentagem igual ou maior a 10% e Mascot Score superior a 67 (p <0,05) (pontuação baseada em probabilidade, e valor de corte sugerido pelo próprio programa).

3. 10. TRANSCRIPTOMA: SEQUENCIAMENTO DE RNA

3.10.1. Extração de RNA e Sequenciamento

O transcriptoma de *S. aureus* foi avaliado por RNA-Seq (Westermann *et al.*, 2012). Para isso, a linhagem de *S. aureus* N315 foi cultivada a 37°C (150 rpm) por 18 horas, e posteriormente diluída na proporção 1/50 em 50 mL de meio MH líquido. As novas culturas foram cultivadas até atingir a fase logarítmica de crescimento (item 3.5). Após este período, a violaceína foi adicionada nas concentrações do MIC (0,625 µM) e sub-MIC (0,312 µM). Para cada tratamento, foram feitas culturas controle onde a violaceína não foi adicionada. Após 15 minutos, 01 hora e 3 horas, as culturas foram resfriadas a 4°C e as células sedimentadas por centrifugação (800 x g, a 4°C, por 05 minutos) e os sedimentos celulares foram armazenados a -80°C. O RNA total foi extraído com o kit de extração de RNA (RNeasy kit, Qiagen, Austin, TX, USA), seguindo as instruções do fabricante. O RNA total foi então tratado com DNase I. Após esse tratamento, as preparações foram submetidas a reações de PCR com um dos primers MLST (http://saureus.mlst.net/) para controle da digestão do DNA. As concentrações e pureza do RNA foram determinadas por espectrofotometria a 260 nm e 280 nm e a integridade confirmada por eletroforese em gel de agarose (Sambrook & Russell, 2001).

O RNA total foi enriquecido com o kit MicrobExpressTM Bacterial mRNA Enrichment (Life Technologies, Austin, TX, USA) para isolamento de RNA mensageiro (RNAm). Este, foi utilizado para a síntese de cDNA e posterior síntese de bibliotecas para sequenciamento, utilizando metodologia padronizada no laboratório do Prof. Dr. Piotr Mieczkowski (*The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA*) com o Kit *TruSeq RNA* Sample Prep Kits version 2 (Illumina, San Diego, CA USA), de acordo com normas do fabricante. O sequencimento foi realizado utilizando-se a plataforma HiSeq (Illumina, San Diego, CA, USA) com corridas de 50 bp single-end multiplex e Illumina pipeline (v.1.8.2) para processamento de dados iniciais.

3.10.2. Análises dos Dados de RNA-Seq

a. Filtragem das Leituras (fragmentos)

Utilizando um script em PERL as leituras obtidos foram filtrados por qualidade (foram aceitos somente leituras com qualidade média ≥ 20) e leituras com "N"s foram descartados.

b. Alinhamento das Leituras

As leituras filtradas de cada biblioteca (amostra) foram alinhadas contra o genoma (http://www.ncbi.nlm.nih.gov/genome/154?project_id=57837) e os genes (2.700 genes) de *S. aureus* N315. Para o alinhamento foi utilizado o programa Bowtie (Langmead *et al.*, 2009) permitindo no máximo 2 *mismatches* (desalinhamentos). O uso de *mismatches* garante que leituras com alguma base errada (em Illumina a taxa de erro varia entre 1 e 2,5%) continuem alinhando no genoma de referência.

c. Cálculo de Expressão dos Genes (*RPKM - Reads Per Kilobase per Million Mapped Reads*)

O cálculo de expressão de cada transcrito foi baseado no número de leituras que alinhou em cada um deles de acordo com a fórmula abaixo e foram consideradas somente leituras com alinhamento único contra as CDSs (*Coding Sequences*). O cálculo de expressão e a fórmula estão de acordo com o artigo de Mortazavi, *et al.* (2008) que segue: RPKM = Fragmentos por kilobase por milhão de leituras mapeadas, em que RPKM = (N * 10^9) / S * T. Sendo, N = Número de leituras (fragmentos) mapeados em um transcrito; S = tamanho do transcrito; T = Total de leituras mapeadas da biblioteca (amostra). O resultado desta equação mede a densidade de leituras específicas de uma região gênica de interesse, normalizando a contagem da leitura com o tamanho original do gene. Valores de RPKM zerados foram substituídos por 1.

d. Identificação de CDSs (Coding Sequences) Diferencialmente Expressas

A identificação de CDSs diferencialmente expressas foi baseada no número de leituras que alinhou em cada uma delas. Para isto foram considerados somente as leituras com alinhamento único contra as CDSs. A análise estatística foi feita usando o pacote DESEQ (Anders & Ruber, 2011).

4. RESULTADOS

4.1. ANTIMICROBIANOS

4.1.1. Extrato de Chromobacterium violaceum

O método que foi utilizado de produção e extração consiste na utilização de um biorreator de alumínio do tipo "BPS" e extração pelo método sólido-líquido e aproximadamente 100 mg de extrato foram obtidos nesse processo de um total de aproximadamente 04 litros de cultura de *C. violaceum*.

4.1.2 Análise do Extrato por Espectrometria de Massas (MS)

Atualmente, a espectrometria de massas (MS) é uma técnica micro analítica utilizada para obter informação da massa molecular e de características estruturais da amostra. É uma das mais importantes ferramentas analíticas disponíveis, já que é capaz de fornecer informação sobre: i) a composição elementar de amostras; ii) a estrutura molecular; iii) a composição qualitativa e quantitativa de misturas complexas; iv) a estrutura e a composição de superfícies sólidas e as proporções isotópicas de átomos em amostras.

A análise da amostra do extrato contendo violaceína produzida no IQ/UNICAMP por espectrometria de massas (ESI-QTOF-MS) foi realizada nos modos positivo (ESI+) e negativo (ESI–). Em ambos, foi possível observar íons referentes à violaceína (343 Daltons) e deoxiviolaceína (327 Daltons), nas formas monoprotonada ([M+H]⁺) e monodesprotonada ([M-H]⁻), respectivamente para os modos ESI+ e ESI–. Os espectros obtidos foram dispostos na Figura 2, juntamente com brancos de solvente (H₂O/MeOH 1:1 com 0,1% de ácido fórmico) para comparação.

Figura 2. Espectros de massas de ESI-QTOF nos modos positivo (ESI+, Figura superior) e negativo (ESI–, Figura inferior), de forma comparativa entre as amostras de extrato contendo violaceína e brancos de solvente (H₂O/MeOH 1:1, 0,1% ácido fórmico). As anotações [M+H]⁺ ou [M–H]⁻ demonstram respectivamente os íons monoprotonados ou monodesprotonados da violaceína (343 Daltons) e deoxiviolaceína (327 Daltons).

É possível observar nos espectros das amostras a presença de outros sinais nãoidentificados, que não estão presentes no branco de solvente, como por exemplo, em m/z 215, 279, 437, 454 e 637, no modo ESI+; e m/z 147, 170, 452, 681 e 761, no modo ESI–. A observação destes sinais nos espectros da amostra indica a presença de outros compostos na mesma, além dos já identificados violaceína e deoxiviolaceína.

Para efeito de certificação da presença de violaceína nas amostras, na Figura 3 foram comparados os padrões isotópicos e massas exatas obtidas entre os sinais de violaceína nos espectros experimentais e em predições teóricas para as respectivas composições moleculares dos íons ($C_{20}H_{14}N_3O_3$ para a violaceína monoprotonada, [M+H]⁺ em *m/z* 344; e $C_{20}H_{12}N_3O_3$ para a violaceína monodesprotonada, [M–H]⁻ em *m/z* 342). Pela similaridade entre os padrões isotópicos observados e pelos erros de massa (< 3 ppm), é possível confirmar a presença de violaceína nas amostras, todavia, a presença de diversos outros picos com massas não atribuídas a outros compostos, demonstrou-se necessária a procura por um composto de pureza garantida para elucidarmos os demais objetivos do presente trabalho.

4.1.3. Análise da Violaceína do Extrato e Violaceína Composto Puro por RMN (Ressonância Magnética Nuclear)

Para uma análise mais criteriosa do processo de extração do antimicrobiano em estudo, realizaram-se corridas comparativas por RMN entre o extrato produzido no IQ-UNICAMP e violaceína (composto puro) purificada pela Sigma-Aldrich para confirmação do seu espectro de pureza. Ambos os resultados podem ser visualizados nas Figuras 4 e 5 em ppm (partes por milhão) pelo deslocamento químico.

Figura 3. Comparações de padrões isotópicos e massas exatas entre os sinais obtidos para íons da violaceína experimentalmente e predições teóricas para as respectivas composições elementares (C₂₀H₁₄N₃O₃ para a violaceína monoprotonada, [M+H]⁺ em *m/z* 344; e C₂₀H₁₂N₃O₃ para a violaceína monodesprotonada, [M–H]⁻ em *m/z* 342), com respectivos erros de *m/z* em ppm.

Figura 4. Espectro de RMN: **A.** Violaceína sintetizada pela Sigma-Aldrich. **B.** Extrato de *Chromobacterium violaceum* contendo violaceína. Análises realizadas em colaboração com o Prof. Dr. Alviclér Magalhães (Instituto de Química da UNICAMP).

O extrato demonstra bandas mais largas em todas as regiões, que indicam uma preparação não purificada com relação ao controle (4A), dentre outros picos de contaminantes não identificados. A região entre 5 à 10 ppm foi ampliada e seu espectro pode ser observado na Figura 5.

A violaceína purificada e vendida pela empresa Sigma-Aldrich, não apresenta nenhum interferente na sua composição analisada pela presente técnica, assegurada pelo fabricante como tendo 98% de pureza.

Figura 5. Espectro de RMN e ampliação entre as faixas de 5 à 10 ppm. A. Violaceína sintetizada pela Sigma-Aldrich. B. Extrato de *Chromobacterium violaceum* contendo violaceína. Análises realizadas em colaboração com o Prof. Dr. Alviclér Magalhães (Instituto de Química da UNICAMP).

4.1.4. Nanomateriais de Vanadato de Prata

Em colaboração com o grupo de pesquisa do Prof. Dr. Oswaldo Luiz Alves e o pesquisador Dr. Raphael Dias Holtz, ambos do laboratório de Química do Estado Sólido do IQ-UNICAMP, recebemos 11 amostras de nanomateriais de vanadato de prata (AgVO₃) que se diferenciavam apenas na temperatura de tratamento das amostras e todas com massa molecular de 206,61 g/mol.

4.2. DETERMINAÇÃO DO MIC (CONCENTRAÇÃO INIBITÓRIA MÍNIMA) E MBC (CONCENTRAÇÃO BACTERICIDA MÍNIMA)

Afim de confirmar a resistência à vancomicina, para o início dos testes de MIC e MBC com os antimicrobianos estudados, todas as amostras de *Enterococcus* selecionadas no presente trabalho foram analisadas frente a diversas concentrações de vancomicina. Os resultados podem ser observados na Tabela 2.

Tabela 2. Determinação do MIC e MBC da vancomicina em concentrações µM para linhagens bacterianas do gênero *Enterococcus*. Os resultados foram baseados em análises de triplicatas.

Linhagens Bacterianas	MIC	MBC
Enterococcus faecalis ATCC 21814	5 μΜ	5 μΜ
Enterococcus faecalis ATCC 29212	5 μΜ	5 μΜ
Enterococcus Vancomycin Resistent 73	168 µM	336 µM
Enterococcus Vancomycin Resistent 77	336 µM	336 µM
Enterococcus Vancomycin Resistent 81	168 µM	336 µM
Enterococcus Vancomycin Resistent 105	168 µM	336 µM
Enterococcus Vancomycin Resistent 130	168 µM	336 µM

Os valores de MIC indicados para resistência à vancomicina são $\geq 86 \ \mu M \ ou \geq 128 \ \mu g/mL$ (Lowy, 2003), confirmando que as linhagens selecionadas são resistentes, como também, para controle do teste, utilizou-se linhagens padrões sensíveis ao antibiótico (linhagem ATCC). As preparações do extrato e do composto puro da violaceína foram mantidos em concentração final de 20mM, todavia, devido à dificuldade de purificar o extrato bruto, à necessidade de altos valores da violaceína purificada pela empresa Sigma-Aldrich e à necessidade de replicatas biológicas, todos os testes de MIC foram mantidos até a concentração máxima de 100 µM. Assim, os resultados de MIC e MBC para ambos os antimicrobianos testados podem ser visualizados na Tabela 3.

Todas as bactérias gram-negativas não demonstraram atividade antimicrobiana da violaceína na maior concentração utilizada, com exceção de *Pseudomonas aeruginosa*. Os valores de MIC e MBC para gram-positivas foram variáveis de acordo com a linhagem e espécie avaliadas. Para *E. faecalis* ATCC a atividade antimicrobiana foi de aproximadamente 100 μ M. No entanto, para os isolados clínicos de *Enterococcus* resistentes à vancomicina, os valores de MIC e MBC foram de 25 μ M e \geq 100 μ M, respectivamente, com algumas exceções. Algumas linhagens de *Enterococcus* não foram inibidas com a maior concentração de violaceína utilizada.

Para todas as linhagens de *S. aureus* testadas, observa-se um aumento da atividade antimicrobiana, com reduções consideráveis nos valores de MIC e MBC, que para o extrato foram em média 12,5 μ M e 25 μ M respectivamente, caindo para valores de em média 0,312 μ M de MIC e 0,625 μ M de MBC para o composto puro. Provavelmente, a pureza do antimicrobiano pode ter sido responsável pela diferença entre os testes.

Quanto às análises com o nanomaterial, a triagem inicial foi feita com 11 preparações e 04 linhagens bacterianas tanto gram-positivas (duas linhagens de *S. aureus*) e gram-negativas (*E. coli* e *Samonella*) e podem ser visualizadas na Tabela 4.
Tabela 3. Determinação do MIC e MBC do extrato de *C. violaceum* contendo violaceína e da violaceína (composto puro) em concentrações em μ M (até 100 μ M) para diferentes linhagens

	Ext	trato	Viola	aceína
Linhagem	MIC	MBC	MIC	MBC
Acinetobacter baumannii ATCC 19606	-	-	-	-
Enterococcus faecalis ATCC 21814	-	-	-	-
Enterococcus faecalis ATCC 29212	-	-	100	>100
Enterococcus faecalis ATCC 51299	-	-	100	>100
Enterococcus faecium ATCC 6569	-	-	50	100
Enterococcus Vancomycin Resistent 73	-	-	-	-
Enterococcus Vancomycin Resistent 77	-	-	50	> 100
Enterococcus Vancomycin Resistent 81	-	-	12,5	> 100
Enterococcus Vancomycin Resistent 105	-	-	-	-
Enterococcus Vancomycin Resistent 130	-	-	25	> 100
Escherichia coli ATCC 25922	-	-	-	-
Escherichia coli ATCC 35218	-	-	-	-
Klebsiella pneumoniae ATCC 700603	-	-	-	-
Pseudomonas aeruginosa ATCC 27853	-	-	25	> 100
Salmonella LT2	-	-	-	-
Staphylococcus aureus ATCC 25923	25	25	0,312	0,625
Staphylococcus aureus ATCC 29213	25	50	0,625	1,25
Staphylococcus aureus BEC 9393	25	25	0,312	0,625
Staphylococcus aureus N315	12,5	12,5	0,625	1,25
Staphylococcus aureus Rib 1	12,5	25	0,312	0,625
Streptococcus pneumoniae ATCC 49619	-	-	-	-
Streptococcus pyogenes ATCC 19615	-	-	6,25	100

bacterianas. Os resultados foram baseados em análises de triplicatas.

Índice: - indica ausência de atividade até 100 µM.

Tabela 4. Triagem inicial para determinação do MIC e MBC dos nanomateriais de vanadato de prata (AgVO₃) em concentração µM para diferentes linhagens bacterianas. Os resultados foram

	S. at	ureus	S. <i>a</i>	ureus	Salm	onella	<i>E</i> .	coli
	ATCC 29213		BEC 9393		L	T2	ATCC 25922	
Nanomaterial	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
P1P6	12,5	25	12,5	12,5	12,5	12,5	6,25	6,25
P6R10	12,5	25	12,5	12,5	12,5	12,5	12,5	12,5
P6R10A	12,5	25	12,5	12,5	6,25	12,5	6,25	12,5
P6R12	12,5	25	12,5	25	6,25	12,5	6,25	12,5
P6R12A	12,5	25	12,5	12,5	6,25	12,5	6,25	12,5
P6R14	6,25	12,5	6,25	6,25	6,25	12,5	6,25	12,5
P6R14A	12,5	25	12,5	25	12,5	12,5	12,5	12,5
P6R16	12,5	25	12,5	12,5	12,5	12,5	12,5	12,5
P6R16A	12,5	25	12,5	25	12,5	12,5	12,5	12,5
P6R18	12,5	25	12,5	12,5	6,25	6,25	6,25	6,25
P6R18A	6,25	12,5	6,25	12,5	6,25	12,5	6,25	12,5

baseados em análises de triplicatas.

Os resultados semelhantes para todas as preparações mostraram que essas formulações tem potencial aplicação como antimicrobianos. Prosseguimos com os testes com outras linhagens bacterianas, diversificando as espécies, todavia, analisando apenas a preparação P1P6 que era preparada em curto período de tempo por não passar por tratamento hidrotérmico. Os resultados para essa formulação podem ser visualizados na Tabela 5. Nesta tabela pode-se observar que o nanomaterial agiu em todas as espécies bacterianas analisadas, confirmando sua atividade antimicrobiana, incluindo para todas as amostras de *Enterococcus* resistentes à vancomicina. Nós não observamos correlações entre os valores de MIC e MBC e o tipo de parede celular bacteriana (gram-positiva ou gram-negativa).

Tabela 5. Determinação do MIC e MBC do nanomaterial de vanadato de prata (AgVO₃), amostra

P1P6, em concentrações em µM (até 100 µM) para diferentes linhagens bacterianas. Os

	AgVO ₃ P1P6			
Linhagem	MIC	MBC		
Acinetobacter baumannii ATCC 19606	25	100		
Enterococcus faecalis ATCC 21814	25	> 100		
Enterococcus faecalis ATCC 29212	25	> 100		
Enterococcus faecalis ATCC 51299	25	50		
Enterococcus faecium ATCC 6569	25	> 100		
Enterococcus Vancomycin Resistent 73	25	> 100		
Enterococcus Vancomycin Resistent 77	25	> 100		
Enterococcus Vancomycin Resistent 81	25	> 100		
Enterococcus Vancomycin Resistent 105	25	> 100		
Enterococcus Vancomycin Resistent 130	25	> 100		
Escherichia coli ATCC 35218	50	> 100		
Klebsiella pneumoniae ATCC 700603	50	100		
Pseudomonas aeruginosa ATCC 27853	50	> 100		
Staphylococcus aureus ATCC 25923	50	> 100		
Staphylococcus aureus N315	12,5	12,5		
Staphylococcus aureus Rib 1	12,5	25		
Streptococcus pneumoniae ATCC 49619	25	100		
Streptococcus pyogenes ATCC 19615	50	> 100		

resultados foram baseados em análises de triplicatas.

4.3. ATIVIDADE COMBINADA DA VIOLACEÍNA, EXTRATO COM NANOFORMULAÇÕES DE VANADATO DE PRATA.

Realizamos também alguns testes para avaliar a interação do vanadato de prata com a violaceína com amostras e cepas de *Staphylococcus aureus*. Inicialmente, os testes de atividade para determinação do MIC e MBC foram feitos com o extrato. A técnica utilizada foi a de concentração inibitória mínima em duplo gradiente, descrita por Low *et al.* (2013) e os resultados

podem ser visualizados nas Tabelas 6 e 7. De acordo com os valores observados quando substituímos na equação (item 3.4 – Materiais e Métodos), a FLIC foi de ≤ 0.5 , ou seja, estes valores indicam sinergismo para todas as amostras analisadas.

Tabela 6. Determinação do MIC do extrato de C. violaceum + nanomateriais de AgVO₃ em

concentrações em µM (até 100 µM) para diferentes amostras e linhagens de S.aureus.

	MIC										
		Extrato de <i>C. violaceum</i> + Nanomateriais de AgVO ₃									
S. aureus	P1P6	P6R10	P6R10A	P6R12	P6R12A	P6R14	P6R14A	P6R16	P6R16A	P6R18	P6R18A
ATCC 25923	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12
ATCC 29213	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12
BEC 9393	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12
N315	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12
Rib1	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12

Os resultados foram baseados em análises de triplicatas.

Tabela 7. Determinação do MBC do extrato de C. violaceum + nanomateriais de AgVO3 em

concentrações em µM (até 100 µM) para diferentes linhagens de S.aureus. Os resultados foram

	MBC										
	Extrato de <i>C. violaceum</i> + Nanomateriais de AgVO ₃										
S. aureus	P6P1	P6R10	P6R10A	P6R12	P6R12A	P6R14	P6R14A	P6R16	P6R16A	P6R18	P6R18A
ATCC 25923	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12
ATCC 29213	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25
BEC 9393	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25
N315	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12
Rib1	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12	3,12

baseados em análises de triplicatas.

Com relação à violaceína comercial, ao contrário do observado com o extrato, não foi verificada atividade sinérgica com nenhuma preparação de nanomateriais ou qualquer atividade de interação entre os antimicrobianos testados (dados não mostrados), surgindo a hipótese que a

atividade sinérgica independe da violaceína. Este foi um resultado interessante dado o fato que o extrato de *Chromobacterium violaceum* continha violaceína entre outras moléculas como observado nas Figuras 2 a 5. No entanto, não foi viável analisar nesse estudo, quais eram essas interações que promoviam o efeito sinérgico.

4.4. CURVA DE CRESCIMENTO MICROBIANO

A linhagem *S. aureus* N315 foi escolhida para ser utilizada nos testes de proteômica, transcriptoma e microscopia, uma vez que o genoma desta linhagem foi sequenciado (Kuroda *et al.*, 2001). Para tanto, a curva de crescimento microbiano foi avaliada para otimização e padronização dos experimentos a serem realizados.

Para os testes de MIC, todas as culturas iniciaram com uma densidade celular de aproximadamente 10^5 UFC/mL, todavia, se adicionar a violaceína na concentração do MIC em uma cultura com essa quantidade de células bacterianas, a população diminui, inviabilizando a obtenção de sedimento celular suficiente para as análises subsequentes. Diversas concentrações de violaceína foram testadas, e procurou-se uma concentração que fosse suficiente para intervir no crescimento bacteriano nessas condições, sem no entanto observar um efeito bactericida. Os dados podem ser visualizados na Figura 6A, medida em absorbância (λ 600 nm) e Figura 6B, em Unidades Formadoras de Colônias (UFC/mL). Com base nos resultados obtidos, padronizamos a adição de violaceína aproximadamente após 03 horas de crescimento (indicados pela setas na Figura 6), quando a quantidade de células na cultura é de aproximadamente $10^{7.8}$ UFC/mL. Portanto, de acordo com os dados apresentados, a concentração escolhida de violaceína para os testes subsequentes foi de 2x MIC (1,25 µM) ou supra-MIC.

Figura 6. Curva de crescimento da linhagem *S. aureus* N315 com adição de violaceína após 03 horas de crescimento. A seta indica a adição da violaceína em diversas concentrações em μ M. Os dados foram plotados por tempo de crescimento (horas) por **A.** absorbância (D.O. λ 600 nm) e **B.**

Unidades Formadoras de Colônia (UFC)/mL. Cada ponto representa a média de três

experimentos independentes.

4.5. CURVAS DE TEMPO-MORTE

Após a determinação da MIC e MBC e algumas padronizações, a ação da violaceína foi avaliada por experimentos de tempo-morte frente a 2 linhagens de *S. aureus*: N315 e BEC9393 (duas linhagens descritas como resistentes a meticilina de importância clínica). As culturas foram tratadas com diferentes concentrações: MIC (N315: 0,625 μ M; BEC9393: 0,312 μ M), sub-MIC (N315: 0,312 μ M; BEC9393: 0,156 μ M), supra-MIC (N315: 1,25 μ M; BEC9393: 0,625 μ M) de violaceína, e uma cultura controle sem o antimicrobiano. Os resultados estão demonstrados nas figuras 7 e 8 e foram todos realizados através de triplicatas.

O tratamento com violaceína promoveu uma redução na densidade óptica (absorbância, Figuras 7A e 8A) e celular (UFC/mL, Figuras 7B e 8B), de ambas as cepas de *S. aureus*, em comparação com culturas controle durante 12 horas de crescimento, exceto para a linhagem N315 com violaceína na concentração sub-MIC (0,312 mM), que demonstrou valores de UFC/mL constantes durante todo o experimento (24 horas), com valores médios de 1 x 10⁵ UFC/mL (Figura 7B). Após 12 horas, ambas as linhagens de *S. aureus* recuperaram a capacidade de crescimento que foi observada através do aumento da densidade óptica celular e número de UFC/mL (Figuras 7 e 8).

Para elucidar se o efeito do aumento de UFC/mL após 12 horas de exposição à violaceína foi devido à origem de mutantes de *S. aureus* resistentes a violaceína, as colônias bacterianas isoladas a partir destas culturas foram testadas novamente para os valores de MIC. Oscilações nos valores de MIC não foram observadas (dados não mostrados), sugerindo que este efeito não é devido à origem de mutantes resistentes.

Figura 7. Curvas de tempo-morte da linhagem S. aureus N315 tratada com diferentes concentrações de violaceína (sub-MIC 0,312 μM; MIC 0,625 μM e supra-MIC 1,25 μM) e controle sem tratamento. Os dados foram plotados por tempo de crescimento (horas) por A. absorbância (D.O. λ 600 nm) e B. Unidades Formadoras de Colônia (UFC)/mL. Cada ponto representa a média de três experimentos independentes.

Figura 8. Curva de tempo-morte da linhagem *S. aureus* BEC 9393 tratada com diferentes
concentrações de violaceína (sub-MIC 0,156 μM; MIC 0,312 μM e supra-MIC 0,625 μM) e
controle sem tratamento. Os dados foram plotados por tempo de crescimento (horas) por A.
absorbância (D.O. λ 600 nm) e B. Unidades Formadoras de Colônia (UFC)/mL. Cada ponto
representa a média de três experimentos independentes.

4.6. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO

As análises por microscopia eletrônica de transmissão foram feitas com a linhagem *S. aureus* N315, após 03 horas de crescimento, na fase logarítimica de crescimento (para conseguirmos obter uma quantidade suficiente de células). Os tratamentos com violaceína (1,25 μ M) (valor escolhido após análises de curvas de crescimento, visualizados na Figura 6) foram realizados nos tempos de 01 e 02 horas. As imagens foram obtidas em microscópio eletrônico de transmissão no Laboratório de Microscopia Eletrônica do Instituto de Biologia, UNICAMP e podem ser observadas nas Figuras 9 e 10.

As análises de ultra estrutura celular podem indicar diferentes tipos de modificações morfológicas promovidas na linhagem bacteriana expostas a violaceína quando comparado com o controle. Em ambos os tempos de tratamento, nas células tratadas, o septo de divisão parece de formato irregular (Figura 10). Além disso, a parede apresenta-se desorganizada em algumas células, e com um aspecto fibrilar no tratamento quando comparado com células não tratadas (Figura 9).

Algumas estruturas fibrilares foram frequentemente observadas no citoplasma das células tratadas. Além disso, o efeito da violaceína sobre células de *S. aureus* é semelhante ao observado em bactérias gram-positivas expostas à penicilina e outros antibióticos beta-lactâmicos (Nishino & Nakazawa, 1976; Giesbrecht *et al.*, 1998). Os nossos resultados não evidenciaram diferenças entre tratamentos por 01 ou 02 horas de tratamento com violaceína.

Figura 9. Imagens de Microscopia Eletrônica de Transmissão de *S. aureus* N315, grupo controle.
01 hora de crescimento: A. aumento de 60.000 vezes e B. aumento de 77.500 vezes; 02 horas de crescimento: C. aumento de 35.970 vezes e D. aumento de 100.000 vezes.

Figura 10. Imagens de Microscopia Eletrônica de Transmissão de *S. aureus* N315, grupo tratado com violaceína (1,25 μM). 01 hora de tratamento: A. aumento de 60.000 vezes e B. aumento de 100.000 vezes; 02 horas de tratamento: C. aumento de 27.800 vezes e D. aumento de 60.000

vezes.

4.7. MODELOS ANIMAIS (TESTES IN VIVO)

Os camundongos Balb/c e C3H/Nude de 5-6 semanas foram infectados por via intraperitoneal com 10^7 a 10^{11} UFC/mL da linhagem N315 para determinação do valor de Dose Letal Média (DL₅₀). Os valores obtidos para ambas as linhagens de camundongos foram de uma DL₅₀ de 10^9 células. Também observamos que 10^{10} células bacterianas levavam todos os animais ao óbito (dados não mostrados).

Com base nesses dados, um modelo de infecção de *S. aureus* N315 com camundongos Balb/C foi estabelecido através do inóculo de 10⁸ UFC/mL de bactérias pela via intraperitoneal. A contagem de UFC/mL bacteriana em órgãos (fígado e baço), como também no sangue de camundongos após o inóculo pode ser visualizada na Tabela 8.

Tabela 8. Contagens em UFC/mL de S.aureus N315 após infecção em camundongos Balb/C,

		Órgãos				
Dias	Sangue	Fígado	Baço			
03	$1 \ge 10^3$	1 x 10 ⁵	1 x 10 ⁴			
05	$1 \ge 10^7$	1 x 10 ⁶	1 x 10 ⁷			
08	0	0	0			
11	0	0	0			
15	0	0	0			

N = 3 animais por grupo/dia.

Não foram observados resultados indicativos de infecção/doença nos camundongos após 5 dias de infecção. Na literatura não existe nenhum modelo de inoculação intraperitoneal para essas linhagens de camundongos com a espécie bacteriana citada, o que dificulta o estabelecimento de um modelo para análises *in vivo*.

Paralelamente, testou-se a citotoxidade da violaceína em camundongos Balb/C. A violaceína nas concentrações de 0,1 mg/Kg; 0,2 mg/Kg e 0,5 mg/Kg (dose única) foi injetada via

intraperitoneal, sendo o grupo controle tratado com DMSO (veículo diluente da violaceína) em PBS (15%). Observaram-se os camundongos durante 04 horas após a aplicação de violaceína e ao longo de 07 dias após o tratamento. Os resultados preliminares indicam ausência de toxicidade aparente nas concentrações de violaceína utilizadas. De fato, tais resultados corroboram informações da Sigma-Aldrich que indicam que a dose letal de violaceína para camundongos é de 100 mg/Kg.

4.8. ANÁLISE PROTEÔMICA

4.8.1. Extração de Proteínas de S. aureus

A extração de proteínas totais de *S. aureus* foi feita com a linhagem N315. Para tanto, após 03 horas de crescimento, na fase *log* da cultura (quantidade suficiente de células para realizar a extração protéica), realizou-se o tratamento com violaceína (1,25 μ M) (valor escolhido após análises de curvas de crescimento, visualizados na Figura 6) e 01 hora após, alíquotas da cultura tratada e cultura controle foram retiradas para os ensaios. Foram realizadas 03 extrações diferentes e a quantificação pelo método de Bradford resultou na concentração média de 1.000 μ g/mL de proteína por extração.

4.8.2. SDS-PAGE

Os extratos protéicos foram submetidos à eletroforese em gel de poliacrilamida, utilizandose a técnica de SDS-PAGE, para separar as proteínas de acordo com sua massa molecular e observação do perfil das proteínas extraídas. Para tal, foi utilizado um gel de separação a 12% e um gel de empacotamento a 5%. Proteínas extraídas de linhagem N315 de *S. aureus* tratadas e não-tratadas com violaceína foram corridas lado a lado no gel, para comparação dos perfis, como pode ser visualizado na Figura 11.

Nesta figura, encontra-se uma representação de todos os géis de SDS-PAGE realizados, e notou-se a diferença da intensidade de algumas bandas protéicas com relação a tratamento/controle como visto no exemplo.

Figura 11. Gel de SDS-PAGE das proteínas celulares extraídas de *S.aureus* N315 na concentração de 100μg. M.M. Massa Molecular de 200 a 6,5 kDa; 1. Amostra tratamento de 01 hora com violaceína (1,25 μM); 2. Amostra cultura controle sem tratamento.

4.8.3. Eletroforese Bidimensional

A eletroforese bidimensional foi realizada de acordo com a metodologia descrita por Smolka *et al.* (2003). Foram feitas 03 extrações protéicas, sendo as duas primeiras extrações com géis em triplicatas e a última extração com géis duplicados, resultando em 16 géis: 08 géis com amostras tratadas e 08 géis com amostras controles, número ideal de replicatas encontrado na literatura para essa técnica. Os géis de referência de tratamento/controle podem ser visualizados na Figura 12.

Figura 12. Géis de eletroforese bidimensional de referência para as análises de intensidade de *spots* protéicos (Extrato protéico total de *S. aureus* N315). **A.** Tratamento com violaceína (1,25 μ M) e **B.** Controle com células não tratadas.

4.8.4. Análise dos Dados dos Géis e Digestão *in gel*: Identificação dos *Spots* Protéicos por Espectrometria de Massas

No software ImagemasterTM 2D Platinum v. 6.0 os dados de correlações entre os géis próximos de 60% foram consideradas para a etapa de intra-classes que avalia a intensidade dos *spots* (expressão protéica) entre as amostras tratadas e controles. Quatro géis (02 amostras tratadas

com violaceína e 02 amostras controles) foram excluídos para as análises seguintes, pois apresentaram valores abaixo do recomendado. A dificuldade de reprodutibilidade da técnica é um fator a ser considerado.

Foram listados 98 *spots* com valores de expressão significativos na maioria dos géis, e foram avaliados estatisticamente para a identificação dos *spots* por espectrometria de massas. Os dados foram analisados pelo software SAM – *Significance Analysis of Microarrays* (Stanford University), pelo FDR (*False Discovery Rate*), com ajuste para detecção de diferenças de expressão iguais ou superiores a 1,5 de *fold-change* (amostras de duas classes não pareadas, teste-T, e p-value ≤ 0.05).

Após análise estatística, as proteínas foram classificados em: *spots* positivos (n = 19), que foram diferencialmente expressos no tratamento com violaceína em relação ao controle (Tabela 9) e *spots* negativos (n = 18) os *spots* que foram somente expressos no controle, ou seja, inibidos pelo tratamento (Tabela 10).

As proteínas identificadas foram colocadas nas tabelas por ordem de identificação dos *spots (Spot ID)*, número de acesso (*Acession no.*), correspondente no NCBI (National Center for Biotechnology - http://www.ncbi.nlm.nih.gov/pubmed/), gene, funções (*Putative function*), vias associadas com base nos dados do NCBI (genoma, Kuroda *et al.*, 2001) e Uniprot (Universal Protein Resource – www.uniprot.org) (*Functional category*), preferencialmente com o proteoma de *S. aureus* N315.

Tabela 9. Identificação de proteínas celulares de S. aureus N315 induzidas (up-regulation) após tratamento de 01 hora com violaceína.

Spot ID	Acession no.	Gene	Putative Function	Functional Category	Mw (KDa)	pI	Mascot score	Coverage (%)
294	gi 15925321	hutU	urocanate hydratase	amino acid metabolism	60854	5.23	306	18
345	gi 15925103	glyA	serine hydroxymethyltransferase	amino acid metabolism	45315	5.75	527	30
424	gi 15923689	fruB	fructose 1-phosphate kinase	carbohydrate metabolism	32594	4.66	75	12
333	gi 6015099	eno	Enolase; phosphoglycerate dehydratase	glycolysis	47145	4.52	724	41
383	gi 15923762	gapA1	glyceraldehyde-3-phosphate dehydrogenase	glycolysis	36372	4.89	261	21
408	gi 15923231	ldhA	L-lactate dehydrogenase	glycolysis/stress response	34662	4.94	465	36
381	gi 15927110		Xaa-Pro dipeptidase	hydrolase	39583	5.23	579	31
443	gi 15925559	isaA	probable transglycosylase IsaA	hydrolase	24189	5.90	96	10
453	gi 15924697		putative metal-dependent hydrolase	hydrolase	25349	5.11	162	17
390	gi 15923973	fabH	3-oxoacyl-(acyl carrier protein) synthase III	lipid metabolism	33915	4.86	135	16
349	gi 237823988	pyrC	Dihydroorotase Chain A	nucleotide metabolism	46561	5.01	364	26
371	gi 15925161	gcaD	UDP-N-acetylglucosamine pyrophosphorylase	nucleotide metabolism	44952	4.86	274	23
318	gi 15923157	aldA	aldehyde dehydrogenase-like protein	oxidoreductase	53684	5.07	359	22
324	gi 15925597	mqo2	malate:quinone oxidoreductase	oxidoreductase	56135	6.12	693	37
290	gi 1169381	dnaK	Chaperone protein DnaK	stress response	66364	4.63	160	10
440	gi 15924245	codY	transcriptional repressor CodY	transcription/stress response	28737	5.87	692	45
454	gi 15924249	frr	ribosome recycling factor	translation	20341	5.04	448	46
262	gi 15924129	pheT	phenylalanyl-tRNA synthetase subunit beta	tRNA processing	89113	4.66	209	11
499	gi 15925208		hypothetical protein SAV2687		16323	4.61	99	19

Tabela 10. Identificação de proteínas celulares de S. aureus N315 inibidas (down-regulation) após tratamento de 01 hora com

violaceína.

Spot ID	Acession no.	Gene	Putative Function	Functional Category	Mw (KDa)	pI	Mascot score	Coverage (%)
279	gi 15925144	glmS	glucosaminefructose-6-phosphate aminotransferase	amino acid metabolism	65909	4.90	545	26
310	gi 221141034	cysS	cysteinyl-tRNA ligase	amino acid metabolism	53814	5.25	349	22
376	gi 15923947	rocD2	ornithineoxo-acid transaminase	amino acid metabolism	43675	5.21	508	25
306	gi 15925151	glmM	phosphoglucosamine-mutase	carbohydrate metabolism	49377	4.65	362	22
357	gi 15924684	icd	isocitrate dehydrogenase	carbohydrate metabolism	46451	4.84	461	29
319	gi 15924176	ftsZ	cell division protein FtsZ	cell wall biogenesis/degradation	41012	4.87	257	15
353	gi 15927674	murA1	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	cell wall biogenesis/degradation	45025	5.62	355	22
276	gi 258454958	pdhC	branched-chain alpha-keto acid dehydrogenase sub E2	glycolysis	46398	4.87	212	19
335	gi 222447083	pgi	Chain A, Structure Of Glucose 6-Phosphate Isomerase	glycolysis	49926	4.83	678	35
398	gi 15924084	pdhB	pyruvate dehydrogenase E1 component beta subunit	glycolysis	35224	4.65	235	23
375	gi 9937361	mvaS	HMG-CoA synthase	isoprenoid biosynthetic process	43362	4.97	578	41
362	gi 49484360	pdp	pyrimidine-nucleoside phosphorylase	nucleotide metabolism	46363	4.91	360	22
450	gi 15924468	cmk	cytidylate kinase	nucleotide metabolism	24637	5.07	443	38
292	gi 15924138	sdhA	succinate dehydrogenase flavoprotein subunit	oxidoreductase	65633	5.40	464	21
372	gi 15923931		putative NADH dehydrogenase	oxidoreductase	44362	5.35	411	29
282	gi 15924620	aspS	aspartyl-tRNA synthetase	translation	66728	4.96	546	25
322	gi 15924555	glyQS	glycyl-tRNA ligase	translation	53871	4.99	587	33
363	gi 15924926		hypothetical protein SAV1936		48146	5.07	464	26

A Massa Molecular (*Mw*) estimado em kDa, Ponto Isoelétrico (*pI*), *Mascot Score* (pontuação do programa), a Porcentagem de Cobertura (*Coverage*) das Sequencias foram descritos também. A predominância foi de proteínas com valores de pH próximos de acidez.

Os 19 *spots* positivos, demonstrados no tratamento com violaceína são considerados como *"up-regulation"* ou regulação positiva, com expressão diferenciada de algumas proteínas relacionadas principalmente ao metabolismo normal celular. Somente a proteína hipotética denominada SAV2687 não foi atribuída identificação específica ou função celular, embora apresente similaridade à proteína ribbossômica L13.

O padrão observado de expressão de proteínas de *S. aureus* tratadas com violaceína, sugere a indução de enzimas com funções em vias metabólicas diferentes. Esta é provavelmente uma tentativa desta bactéria de contornar o efeito inibitório do fármaco. Proteínas ou peptídeos com funções na glicólise, metabolismo de carboidratos, nucleotídeos, e síntese protéica foram positivamente expressos. Além disso, uma chaperona e outras proteínas de estresse celular foram também induzidas indicando uma resposta geral a uma condição de estresse.

Os 18 *spots* negativos, demonstrados no grupo controle são considerados como "*down-regulation*" ou regulação negativa (Tabela 10). Os mesmos parâmetros de corte foram aplicados para esse grupo e somente uma proteína hipotética (SAV1936) não foi atribuída identificação específica ou função celular, embora apresente similaridade com aspartato transaminase.

A comparação com o controle indicaram que algumas proteínas com função no metabolismo geral (glicólise, metabolismo de açúcares, aminoácidos e nucleotídeos) foram inibidas em células tratadas com violaceína. Estes resultados estão relacionados a uma resposta geral de *S. aureus* à condição de estresse imposta pela violaceína. Todavia, 05 proteínas foram

68

relacionadas ao processo de síntese de parede bacteriana e de divisão celular, alvo de ação de diversos grupos de antibióticos e antimicrobianos e foram reprimidos por violaceína.

Estes resultados indicam que esses processos são afetados, que corroboram a modificação da ultra estrutura celular também observada neste estudo. Os septos anormais observados nas células tratadas apontam para o fenótipo de regulação negativa, por exemplo, de FtsZ observada pelos resultados de proteômica.

4.9. TRANSCRIPTOMA: SEQUENCIAMENTO DE RNA

4.9.1. Extração de RNA e Sequenciamento

O método de extração através do Kit Qiagen padronizado neste estudo demonstrou resultados satisfatórios quanto à qualidade e integridade das amostras. Todas as amostras de RNA obtiveram uma média de rendimento na concentração de 160 ng/µL após tratamento com a enzima DNase I. A quantidade de 1 µg do RNA total foi enriquecido com o kit MicrobExpressTM Bacterial mRNA Enrichment para isolamento de RNA mensageiro (RNAm), síntese de cDNA e posterior construção de bibliotecas para sequenciamento, com a média de rendimento na concentração de 12 ng/µL.

A verificação de qualidade das bibliotecas para sequenciamento foram realizadas em equipamento com sistema de eletroforese virtual de alta resolução LabChip GX (PerkinElmer, Waltham, MA, USA) e Experion (BioRad, Hercules, CA, USA), e alguns exemplos dos resultados estão demonstrados na Figura 13.

Figura 13. Perfil eletroforético virtual de 31 amostras/bibliotecas de cDNA prontas para sequenciamento (Equipamento LabChip). A qualidade das amostras foi dada pela intensidade das bandas na média de 300-400 pb.

4.9.2. Análises dos Dados de RNA-Seq

Os dados foram filtrados, normalizados e alinhados com o genoma de referência, e a porcentagem (%) dos alinhamentos com as CDSs (*Coding Sequences*) (para *S. aureus* ± 2.700 genes) foi o valor mais significativo, indicativo de qualidade das corridas para início das análises. As porcentagens abaixo de 50% foram re-sequenciadas e re-analisadas.

4.9.3. Análise da Expressão Diferenciada dos Genes (RPKM) e Identificação de CDSs (*Coding Sequences*) Diferencialmente Expressas

A medida de RPKM (Leituras por Kilobase de regiões expressas a cada de milhão de leituras mapeadas) é utilizada para normalizar as leituras de cada amostra, considerando o tamanho do gene, o tamanho da amostra (biblioteca) e a quantidade de leituras expressas no gene em questão (Mortavazi *et al.*, 2008).

Os dados de RPKM entre amostras do grupo tratamento e grupo controle de *S. aureus* N315 obtidos no presente trabalho foram estatisticamente analisados utilizando como critério FDR (*False Discovery Rate*) ou p-value ajustado com valor de corte para 0,15 e p-value \leq 0.01. No tempo de 15 minutos para ambos tratamentos de MIC e sub-MIC as amostras analisadas não demonstraram diferença significante entre culturas celulares tratadas com violaceína e não tratadas (controle).

Nos tempos de 01 e 03 horas de tratamento, ambas amostras tratadas com MIC e sub-MIC, os valores de expressão gênica diferencial positiva ou negativa foram classificados de acordo com o *fold-change* com valores de corte de 1,5*-fold* em valores de log₂. Assim sendo, foram considerados genes diferencialmente expressos positivamente com valores maiores ou iguais que 1,5*-fold ratio* (proporção) ou 0,6 log₂ e expressos negativamente com valores menores ou iguais que -0,6 log₂. Para que não ocorressem erros nos cálculos de *fold-change*, os valores de RPKM de amostras que resultaram no valor 0 em apenas um dos grupos de análise (tratamento ou controle), foram substituídos por 01 em todas as tabelas de cálculos (dados não mostrados) e valores próximos de 40 resultaram dessas leituras zeradas.

Os dados resultantes das análises de transcriptoma foram plotados nas tabelas a seguir, identificados por número de CD (*Coding sequence*) ou sequência codificante, número de acesso (*Acession no.*) correspondente no NCBI (National Center for Biotechnology -

http://www.ncbi.nlm.nih.gov/pubmed/), gene, funções putativas (*Putative function*), vias associadas com base nos dados do NCBI (genoma, Kuroda *et al.*, 2001) e Uniprot (Universal Protein Resource – www.uniprot.org) (*Functional category*), preferencialmente com o proteoma de *S. aureus* N315 e valores de *fold-change* em log₂.

No tempo de 01 hora e tratamento de MIC, foram observados 62 genes com expressão induzida (Tabela 11), sendo 17 genes com funções desconhecidas ou sem categorias e vias funcionais associadas. Vias e funções destacadas de fatores de virulência, resposta ao estresse, sistema de dois-componentes e processos enzimáticos gerais. Com expressão inibida, foram observados 32 genes diferencialmente expressos, sendo 10 genes caracterizados como proteínas hipotéticas ou desconhecidas, que podem ser visualizados na Tabela 12. Com destaque para os genes de biogênese e degradação de parede celular e processos enzimáticos gerais. Especialmente para o gene *murA1*, também visualizado com expressão negativa nos dados de proteômica.

Ainda no tempo de 01 hora, porém, com tratamento sub-MIC, observou-se 82 genes com expressão positiva, visualizados na Tabela 13, sendo 35 genes com funções desconhecidas ou sem categorias e vias funcionais associadas, destacando-se os altos valores de *fold-change* para as mesmas. E expressão negativa com 64 genes diferencialmente expressos, maioria com vias enzimáticas gerais e, 26 genes com funções ou vias desconhecidas (Tabela 14).

No tempo de 03 horas, com tratamento de MIC, obtivemos o maior número de genes diferencialmente expressos. Expressão positiva com total de 108 genes, e 43 genes identificados como proteínas hipotéticas, demonstrados na Tabela 15. Destaque para genes associados ao sistema de dois-componentes, transportadores ABC, resposta ao estresse e manutenção homeostática. E na Tabela 16, foram listados os 120 genes diferencialmente expressos negativamente, sendo 41 genes com vias ou funções desconhecidas. E as principais funções e vias

72

associadas foram: parede celular, reparo de DNA, fatores de virulência e sistema de doiscomponentes.

Para o tratamento de sub-MIC, ainda no tempo de 03 horas, a diferença estatística para os genes expressos resultou em: positivamente expressos (Tabela 17) num total de apenas 08 genes, envolvidos em processos de estresse e transportadores ABC e 2 genes caracterizados como proteínas hipotéticas. E negativamente expressos, apenas 12 genes, alguns relacionados com respiração celular e 6 genes com funções desconhecidas ou sem categorias e vias funcionais associadas.

Em resumo, os dados de transcriptoma apresentados fazem parte de uma análise inicial de padrões de expressão gênica global de *S. aureus* em resposta ao tratamento com a violaceína para a possível identificação de genes alvos do mecanismo de ação do antimicrobiano, com destaque para as vias de divisão celular, síntese de peptideoglicano, sistema de dois-componentes e transportadores ABC.

Tabela 11. Genes positivamente expressos em S. aureus N315 tratados por 01 hora com

violaceína na concentração de 0,625 μ M (MIC) identificados por sequenciamento de RNA.

CD	Acession no.	Gene	Putative Function	Functional Category	Fold Change
756	NP_372290.1		proline dehydrogenase-like protein	amino acid metabolism	0,6
2698	ZP_06343237.1		ACT domain-containing protein	amino acid metabolism	2,8
659	EHT49507.1	pbpB	penicillin binding transpeptidase domain protein	antibiotic response	2,0
740	EIK07039.1	mprF	phosphatidylglycerol lysyltransferase	antibiotic response	1,0
1748	YP_005296895.1	sle1	autolysin	cell wall biogenesis/degradation	2,2
361	NP_372694.1	yplQ	hemolysin III	cytolysis	2,6
802	NP_374526.1	odhA	2-oxoglutarate dehydrogenase E1 component	glycolysis	47,2
814	NP_372940.1	gpmA	phosphoglyceromutase	glycolysis	1,3
1103	NP_371127.1	ywfO	dGTP triphosphohydrolase	hydrolase	1,2
1880	NP_371964.1	ypcP	5'-3' exonuclease	hydrolase	0,9
1895	EIK03954.1	cobB	NAD-dependent deacetylase	hydrolase	1,1
2320	NP_371676.1		nucleoside-triphosphatase	hydrolase	1,1
1935	NP_371082.1		cytosine deaminase	ion binding	0,6
267	NP_372869.1	gltS	sodium/glutamate symporter	ion transport	2,2
1592	NP_372900.1	corA	cationic transporter	ion transport	3,1
1740	NP_372651.1	pyrG	CTP synthetase	nucleotide metabolism	0,6
1978	NP_372796.1	mobB	molybdopterin-guanine dinucleotide biosynthesis	nucleotide metabolism	1,1
2248	NP_371289.1		hypothetical protein SAV0765	nucleotide metabolism	2,0
539	NP_372024.1	<i>yqkF</i>	oxidoreductase	oxidoreductase	0,7
1503	NP_372226.1		malate dehydrogenase-like protein	oxidoreductase	1,2
2081	ZP_06929052.1	nrdE	ribonucleoside-diphosphate reductase	oxidoreductase	1,6
2395	NP_371672.1	sdhA	succinate dehydrogenase flavoprotein subunit	oxidoreductase	1,1
2427	NP_370612.1	SQRDL	sulfide-quinone reductase	oxidoreductase	0,9
1970	EHT76902.1	~	cytochrome C assembly family protein	protein complex	1,1
331	NP_373071.1	ogt	methylated-DNAprotein-cysteine methyltransferase	stress response	1,1
642	NP_372288.1	rot	repressor of toxins Rot	transcription	3,1
1848	NP_372086.1	dnaG	DNA primase	transcription	1,9
1253	E01482.1	vibM	GTP pyrophosphokinase	transferase	0,6
1302	NP 371703.1	mraW	S-adenosyl-methyltransferase MraW	transferase	2,8
1358	NP 371605.1	vwbD	hypothetical protein SAV1081	transferase	0,8
1403	NP 372948.1	bioF	8-amino-7-oxononanoate synthase	transferase	0,6
1633	NP 370883.1	metI	cystathionine gamma-synthase	transferase	2,7
2084	ZP_04840087.1	csd	selenocysteine lyase	transferase	0,8
2416	EHS32032.1	cls	phospholipase D domain protein	transferase	1,3
1255	ZP_04867733.1	ileS	isoleucyl-tRNA synthetase	translation	0,7
771	NP_370908.1	tnp	IS1181 transposase	transposition	1,5
14	NP_372352.1	entA	extracellular enterotoxin type I	virulence factor	2,3
107	EHT95565.1	isdA	iron-regulated surface determinant protein A	virulence factor	1,0
157	EHT89372.1	rny	ribonuclease Y	virulence factor	0,6
332	NP_371367.1	2	ABC transporter	virulence factor	2,6
1439	NP_372944.1	hlgC	gamma-hemolysin component C	virulence factor	0,8
1581	NP_371540.1	ltaA	hypothetical protein SAV1016	virulence factor	3,1
2267	NP_371938.1	arlS	protein histidine kinase	virulence factor	0,6
2301	NP_373052.1	srtA	sortase	virulence factor	2,2
2551	NP_375050.1	chp	chemotaxis-inhibiting protein CHIPS	virulence factor	1,7
22	NP_372888.1	<u>^</u>	hypothetical protein SAV2364		0,6

Continuação Tabela 11.

CD	Acession no.	Gene	Putative Function	Functional Category	Fold Change
53	NP_371637.1	ftsW	hypothetical protein SAV1113		0,7
122	NP_373033.1	ywaC	hypothetical protein SAV2509		1,1
174	NP_370601.1		hypothetical protein SAV0077		1,7
210	ABO37813.1		unknown		0,9
335	ZP_06948791.1		hypothetical protein		2,9
391	NP_371855.1		hypothetical protein SAV1331		1,4
540	NP_373028.1		hypothetical protein SAV2504		0,9
559	NP_374866.1		hypothetical protein SA1577		1,1
810	YP_001245977.1		hypothetical protein SaurJH9_0597		0,6
1365	NP_371983.1		hypothetical protein SAV1459		0,7
1647	NP_373651.1		hypothetical protein SA0400		1,5
1847	NP_370954.1		hypothetical protein SAV0430		0,7
1908	NP_370629.1		hypothetical protein SAV0105		0,9
1958	NP_372393.1		hypothetical protein SAV1869		0,7
2145	NP_372656.1		hypothetical protein SAV2132		1,0
2188	NP_372788.1		hypothetical protein SAV2264		1,6

Tabela 12. Genes negativamente expressos em S. aureus N315 tratados por 01 hora com

violaceína na concentração de 0,625 μ M (MIC) identificados por sequenciamento de RNA.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
2351	NP_371204.1		lysine decarboxylase family protein	amino acid metabolism	-1,8
245	YP_001575408.1	argR	arginine repressor	amino acid metabolism	-0,6
108	NP_372719.1	lacA	galactose-6-phosphate isomerase subunit LacA	carbohydrate metabolism	-3,3
1609	NP_371028.1	yabM	low temperature requirement B protein	carbohydrate metabolism	-0,7
1924	NP_372831.1	atl	autolysin E	cell wall biogenesis/degradation	-1,6
359	NP_371542.1	murE	UDP-N-acetylmuramoylalanyl-D-glutamateL-lysine ligase	cell wall biogenesis/degradation	-1,0
605	NP_375207.1	murA1	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	cell wall biogenesis/degradation	-1,0
270	NP_371922.1		hippurate hydrolase	hydrolase	-0,6
1906	NP_372874.1	est	esterase	hydrolase	-0,6
620	NP_372567.1	nrgA	ammonium transporter	ion transport	-0,9
128	NP_372632.1	atpE	F0F1 ATP synthase subunit C	ion transport	-0,9
1430	NP_371667.1		hypothetical protein SAV1143	nucleotide metabolism	-0,7
49	NP_370578.1	tnpC1	transposase C	transposition	-2,4
835	NP_371522.1	mecA	adapter protein mecA	protein binding	-0,7
1706	NP_370733.1	ggt	gamma-glutamyltranspeptidase	transferase	-2,1
607	NP_372615.1	thiE	thiamine-phosphate pyrophosphorylase	transferase	-0,9
2091	NP_372258.1	acuA	acetoin dehydrogenase-like protein	transferase	-0,8
990	NP_373185.1		acetyltransferase	transferase	-0,7
860	NP_371284.1	hprK	HPr kinase/phosphorylase	transferase	-0,7
460	NP_370771.1	gatC	PTS galactitol-specific enzyme IIC component	transferase	-0,6
1777	NP_373226.1	vraE	vraE protein	virulence factor	-2,5
2213	NP_371732.1		fibrinogen binding protein	virulence factor	-2,1
2205	NP_371789.1		hypothetical protein SAV1265		-1,6
1676	NP_370816.1		hypothetical protein SAV0292		-1,3
1641	ZP_04839738.1		hypothetical protein SauraC_10350		-1,1
1929	NP_372820.1		hypothetical protein SAV2296		-1,1
2033	NP_372450.1		hypothetical protein SAV1926		-1,0
2516	NP_370699.1		hypothetical protein SAV0175		-1,0
1968	NP_372665.1		hypothetical protein SAV2141		-0,9
1819	NP_373101.1		hypothetical protein SAV2577		-0,9
1469	YP_499508.1		hypothetical protein SAOUHSC_00955		-0,7
1820	NP_373099.1		hypothetical protein SAV2575		-0,6

Tabela 13. Genes positivamente expressos em S. aureus N315 tratados por 01 hora com

violaceína na concentração de 0,312 μ M (sub-MIC) identificados por sequenciamento de RNA.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
960	NP_373280.1	mecI	methicillin resistance regulatory protein	antibiotic response	2,5
871	ZP_04867063.1	vraF	ABC superfamily ATP binding cassette transporter	ATP-binding	1,1
1570	NP_371157.1		ABC transporter ATP-binding protein	ATP-binding	0,8
475	NP_373387.1	capB	capsular polysaccharide synthesis enzyme Cap5B	capsule biogenesis/degradation	0,8
1853	YP_003283394.1	pgcA	phosphoglucomutase family protein	carbohydrate metabolism	0,7
654	NP_374914.1		specificity determinant HsdS	DNA binding	2,5
2307	NP_371355.1	ydbP	thioredoxin	electron transport	0,7
818	NP_371620.1	pdhD	dihydrolipoamide dehydrogenase	glycolisys	1,3
529	NP_373040.1	fbp	fructose-bisphosphatase	glycolisys	1,1
830	NP_371570.1	sspC	cysteine protease	hydrolase	1,0
75	NP_372858.1	hutG	formimidoylglutamase	hydrolase	0,6
2602	EHT72707.1		DHH family protein	hydrolase	0,6
2115	ZP_04866429.1		allophanate hydrolase subunit 1	hydrolase	1,7
2234	NP_371645.1	glpQ	glycerophosphoryl diester phosphodiesterase	hydrolase	0,8
501	NP_373214.1	pcp	pyrrolidone-carboxylate peptidase	hydrolase	3,8
799	NP_371725.1	pyrC	dihydroorotase	hydrolase	0,8
1795	ZP_05681503.1		N-acetylMuramoyl-L-alanine amidase	hydrolase	0,7
2400	YP_005738647.1	mrnC	ribonuclease III	hydrolase	2,6
1120	NP_372844.1		phosphoglycolate phosphatase	hydrolase	1,3
156	NP_375054.1		lytic enzyme	hydrolase	1,5
602	NP_372631.1	atpF	F0F1 ATP synthase subunit B	ion transport	1,3
205	NP_372208.1	dnaI	primosomal protein DnaI	nucleotide metabolism	2,0
587	NP_372683.1	mtlD	mannitol-1-phosphate 5-dehydrogenase	oxidoreductase	1,0
282	NP_371885.1	msrA	methionine sulfoxide reductase A	oxidoreductase	1,9
516	NP_373141.1	nrdD	anaerobic ribonucleoside triphosphate reductase	oxidoreductase	0,9
2383	NP_371118.1		mercuric reductase-like protein	oxidoreductase	1,1
2277	NP_371512.1	oppD	ATP-binding protein OppD-like protein	protein transport	0,9
150	NP_372554.1	groS	co-chaperonin GroES	stress response	1,1
308	NP_371778.1	hslU	ATP-dependent protease ATP-binding subunit HslU	stress response	0,8
2308	EHM58847.1		peroxiredoxin, Ohr family	stress response	1,6
2053	NP_372387.1		bacterioferritin comigratory protein	stress response	0,6
1608	NP_371030.1		ribosome-associated heat shock protein	stress response	3,9
2131	NP_372078.1	fur	ferric uptake regulator-like protein	transcription	0,7
999	NP_373164.1		BglG family transcription antiterminator	transcription	0,8
327	ZP_06324209.1	pyrR	bifunctional protein pyrR	transcription	0,7
1824	NP_373091.1	oatA	acetyltransferase	transferase	0,8
462	YP_001574143.1	pflB	formate acetyltransferase	transferase	0,7
1179	EHQ69327.1	sceD	putative transglycosylase SceD	transferase	2,5
2446	NP_370878.1		acetyl-CoA acetyltransferase	transferase	0,9
1801	NP_373148.1		two-component sensor histidine kinase	transferase	1,6
634	NP_375013.1	pcrB	heptaprenylglyceryl phohate synthase	transferase	1,0
105	NP_372742.1	rplM	50S ribosomal protein	translation	0,7
1076	NP_372965.1	flp	fmtA-like protein	transmembrane protein	0,9
2467	ZP_06320334.1		formate/nitrite transporter	transmembrane transport	1,0

Continuação Tabela 13.

CD	Acession no.	Gene	Putative Function	Functional Category	Fold Change
2376	NP_371134.1	yvrB	iron(III) ABC transporter permease	transmembrane transport	0,6
400	NP_371167.1		ATP-binding cassette transporter A	transmembrane transport	0,8
488	NP_370551.1	tnp	transposase for IS-like element	transposition	2,5
484	1202257C	tnpA1	gene tnpA	transposition	0,7
1104	ZP_06927996.1	hssS	heme sensor protein hssS	virulence factor	1,4
1040	ZP_06928172.1		L-serine dehydratase		0,7
1070	NP_372981.1		hypothetical protein SAV2457		0,8
1126	NP_372832.1		hypothetical protein SAV2308		2,8
1164	NP_372681.1		hypothetical protein SAV2157		1,2
1236	NP_372449.1		hypothetical protein SAV1925		0,9
1269	NP_372341.1		hypothetical protein SAV1817		6,0
1314	NP_372144.1		hypothetical protein SAV1620		0,9
1391	YP_006195401.1		hypothetical protein ST398NM01_1328		1,0
1429	YP_003282035.1		hypothetical protein SAAV_1121		48,5
1456	EHM82432.1		hypothetical protein SA21340_2385		0,6
1487	NP_371493.1		hypothetical protein SAV0969		3,9
1518	ZP_04865580.1		conserved hypothetical protein		0,7
1563	NP_373869.1		hypothetical protein SA0614		0,9
1592	YP_001245977.1		hypothetical protein SaurJH9_0597		49,0
1632	NP_373646.1		hypothetical protein SA0395		1,6
1648	NP_370879.1		hypothetical protein SAV0355		0,8
1665	NP_370841.1		hypothetical protein SAV0317		1,6
1682	YP_005756735.1		ABC-2 transporter family protein		0,6
1846	YP_003283412.1		hypothetical protein SAAV_2576		1,6
1848	NP_373028.1		hypothetical protein SAV2504		48,1
1912	NP_372861.1		hypothetical protein SAV2337		0,6
1939	NP_372779.1		hypothetical protein SAV2255		0,8
1954	NP_372702.1		hypothetical protein SAV2178		1,2
1962	YP_417493.1		hypothetical protein SAB2035		47,4
2102	NP_372189.1		hypothetical protein SAV1665		0,8
2122	NP_372115.1		hypothetical protein SAV1591		1,2
2124	NP_372100.1		hypothetical protein SAV1576		0,9
2135	ZP_04838124.1		hypothetical protein SauraC_01800		2,6
2191	NP_371844.1		hypothetical protein SAV1320		1,0
2225	NP_371685.1		hypothetical protein SAV1161		0,9
2291	NP_371464.1		hypothetical protein SAV0940		1,0
2392	YP_001245971.1		hypothetical protein SaurJH9_0591		1,0
2409	NP_371013.1		hypothetical protein SAV0489		1,3
2424	ZP_06815505.1		hypothetical protein SMAG_00851		1,0
2514	NP_370704.1		hypothetical protein SAV0180		0,8
2666	ZP_00234340.1		conserved hypothetical protein		0,6
2699	NP_372001.1		hypothetical protein SAV1477		48,6

Tabela 14. Genes negativamente expressos em S. aureus N315 tratados por 01 hora com

violaceína na concentração de 0,312 μ M (sub-MIC) identificados por sequenciamento de RNA.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
1010	NP_373127.1		amino acid transporter	amino acid metabolism	-2,2
2560	T44111		conserved hypothetical protein [imported]	beta-lactamse like	-1,5
628	NP_375102.1		anti repressor	DNA binding	-3,1
345	EHT49195.1	pdhC	dihydrolipoyllysine-residue acetyltransferase	glycolysis	-1,3
2220	YP_186051.1	YfnB	HAD superfamily hydrolase	hydrolase	-2,2
81	YP_005326610.1	ureA	urease subunit gamma	hydrolase	-0,7
353	NP_371584.1	qoxB	quinol oxidase polypeptide I	ion transport	-1,7
2532	NP_370644.1		hypothetical protein SAV0120	ion transport	-1,2
2045	EGS92900.1		YihY family protein	membrane component	-0,9
87	NP_372793.1	mobA	molybdopterin-guanine dinucleotide biosynthesis	nucleotide metabolism	-0,7
323	NP_371733.1	gmk	guanylate kinase	nucleotide metabolism	-0,8
230	EHT47759.1	lepA	GTP-binding protein LepA	nucleotide metabolism	-2,3
49	NP_370578.1	tnpC1	transposase C	transposition	-1,4
729	NP_371998.1	gpsA	glycerol-3-phosphate dehydrogenase	oxidoreductase	-0,8
294	NP_371826.1	glpD	aerobic glycerol-3-phosphate dehydrogenase	oxidoreductase	-2,1
704	NP_372107.1	hemN	coproporphyrinogen III oxidase	oxidoreductase	-0,6
1656	NP_370863.1		luciferase family protein	oxidoreductase	-0,9
511	ZP_05697292.1	secA2	translocase subunit secA 2	protein transport	-2,1
1976	NP_372620.1	ssb	ssDNA-binding protein	stress response	-1,4
283	NP_371881.1	glcT	transcription antiterminator	transcription	-0,6
420	NP_371059.1	nusG	transcription antitermination protein	transcription	-1,6
1916	NP_372848.1	glvR	transcriptional regulator	transcription	-2,1
1150	NP_372725.1	MerR	MerR family transcription regulator-like protein	transcription	-0,8
610	EGS92620.1		ATPase/histidine kinase/DNA gyrase	transferase	-1,0
692	ZP_05642692.1	queA	S-adenosylmethionine:tRNA ribosyltransferase-isomerase	transferase	-1,3
787	NP_371764.1	trmD	tRNA (guanine-N(1)-)-methyltransferase	transferase	-2,4
1603	YP_039982.1	cysE	serine acetyltransferase	transferase	-0,6
989	NP_373201.1		hypothetical protein SAV2677	transferase	-1,3
888	EHQ68653.1		putative 8-amino-7-oxononanoate synthase	transferase	-2,2
1435	NP_371648.1		methyltransferase	transferase	-0,8
893	ZP_05601078.1	rplK	LSU ribosomal protein L11	translation	-2,6
415	NP_371072.1	tuf	elongation factor Tu	translation	-2,2
429	EFU24258.1	rplY	50S ribosomal protein L25/general stress protein Ctc	translation	-1,5
936	ZP_05642945.1		sugar phosphate transporter	transmembrane transport	-1,1
843	NP_371476.1	mnhA1	monovalent cation/H+ antiporter subunit A	transmembrane transport	-0,9
2682	ZP_05683637.1		transposase	transposition	-2,1
997	NP_373169.1		hypothetical protein SAV2645		-3,4
1587	NP_371110.1		hypothetical protein SAV0586		-3,3
1886	NP_372929.1		hypothetical protein SAV2405		-3,2
1982	YP_494675.1		hypothetical protein SAUSA300_2029		-3,1
2385	NP_371109.1		hypothetical protein SAV0585		-2,9
1617	NP_370992.1		hypothetical protein SAV0468		-2,9
2014	NP_372493.1		hypothetical protein SAV1969		-2,8
1237	NP_372446.1		hypothetical protein SAV1922		-2,6
1586	YP_493278.1		hypothetical protein SAUSA300_0575		-2,5
2004	NP_058475.1		hypothetical protein PVL_36		-2,3

Continuação Tabela 14.

CD	Acession no.	Gene	Putative Function	Functional Category	Fold Change
1462	YP_003281916.1		hypothetical protein SAAV_0998		-2,2
2082	NP_372287.1		hypothetical protein SAV1763		-2,1
1190	NP_372568.1		hypothetical protein SAV2044		-1,9
2018	NP_372485.1		hypothetical protein SAV1961		-1,8
1919	YP_006238542.1		unnamed protein product		-1,8
1098	NP_372899.1		hypothetical protein SAV2375		-1,5
2549	EIK34733.1		hypothetical protein MQS_02254		-1,5
1607	NP_371032.1		hypothetical protein SAV0508		-1,5
2278	NP_371509.1		hypothetical protein SAV0985		-1,4
1275	NP_372318.1		hypothetical protein SAV1794		-1,3
1106	ZP_04868390.1		membrane protein		-1,2
1589	NP_371106.1		hypothetical protein SAV0582		-1,2
2022	NP_375062.1		hypothetical protein SA1764		-1,2
2451	NP_370868.1		hypothetical protein SAV0344		-1,2
998	EHO99060.1		YhgE/Pip C-terminal domain protein		-1,0
1997	NP_371322.1		hypothetical protein SAV0798		-0,8
2065	ZP_05689682.1		conserved hypothetical protein		-0,7
1618	NP_370990.1		hypothetical protein SAV0466		-0,7

Tabela 15. Genes positivamente expressos em S. aureus N315 tratados por 03 horas com

violaceína na concentração de 0,625 μ M (MIC) identificados por sequenciamento de RNA.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
272	NP_371918.1	asd	aspartate semialdehyde dehydrogenase	amino acid metabolism	1,6
504	NP_373199.1	hisH	imidazole glycerol phosphate synthase subunit HisH	amino acid metabolism	1,1
2037	NP_372439.1		chorismate mutase	amino acid metabolism	1,1
2460	NP_370848.1		glycine cleavage system H protein	amino acid metabolism	0,9
396	ZP_05697755.1	norA	quinolone resistance protein norA	antibiotic response	0,8
127	NP_372635.1	mnaA	UDP-GlcNAc 2-epimerase	cell wall biogenesis	2,8
948	NP_370675.1	capC	capsular polysaccharide synthesis enzyme Cap8C	cell envelope biogenesis	0,8
2247	NP_371609.1	nrdH	NrdH-redoxin	electron transport	1,8
1834	NP_373063.1		pyruvate oxidase	glycolisys	1,0
857	NP_371298.1	tpiA	triosephosphate isomerase	glycolysis	0,6
187	pdb3KHXA	1	Chain A, Crystal Structure Metallopeptidase	hydrolase	0,7
335	NP_371676.1		nucleoside-triphosphatase	hydrolase	0,9
644	NP_372366.1	vhaM	3'-5' exoribonuclease YhaM	hydrolase	0,9
739	NP_371944.1	ctpA	carboxy-terminal processing proteinase	hydrolase	0,9
884	NP_371093.1	nagB	glucosamine-6-phosphate isomerase	hydrolase	0,7
1380	ZP_04867533.1	vibG	M3 family oligoendopeptidase F	hydrolase	0,7
2234	NP_371645.1	glpO	glycerophosphoryl diester phosphodiesterase	hydrolase	1,2
83	NP_372801.1	modC	molybdenum transport ATP-binding protein	ion transport	0,8
844	YP_001331854.1	mnhC1	putative monovalent cation/H+ antiporter subunit C	ion transport	0,6
987	YP_001248060.1		ABC transporter	ion transport	1,0
961	ZP_06317865.1		HMG-CoA synthase	isoprenoid biosynthetic process	1,7
1808	NP_373125.1	aldB	alpha-acetolactate decarboxylase	lyase	1,3
434	NP_371006.1	tmk	thymidylate kinase	nucleotide metabolism	2,0
493	NP_370533.1	serS	seryl-tRNA synthetase	nucleotide metabolism	0,7
671	NP_372227.1	dnaE	DNA polymerase III subunit alpha	nucleotide metabolism	0,9
2196	NP_371831.1	hflX	GTPase HflX	nucleotide metabolism	1,0
723	NP_372029.1		glucose-6-phosphate 1-dehydrogenase	oxidoreductase	1,7
924	NP_370881.1	vitJ	bifunctional homocysteine S-methyltransferase	oxidoreductase	1,0
1550	NP_371212.1	vcsN	oxidoreductase	oxidoreductase	0,6
2256	NP_371568.1	<i>J</i> = ~ : ·	prolyl aminopeptidase	peptidase	0,7
495	NP_370528.1	recF	recombination protein F	stress response	0,8
923	NP_370890.1	ssb	ssDNA-binding protein	stress response	1,5
2053	NP_372387.1		bacterioferritin comigratory protein	stress response	2,6
2094	YP_005298159.1		Organic hydroperoxide resistance protein	stress response	1,1
2126	NP_372095.1	phoH	PhoH protein	stress response	0,8
1689	NP_370778.1	tagF	trancated TagF	teichoic-acid synthase activity	1,7
2613	3TTZA	gvrB	Chain A, Crystal Structure Of A Topoisomerase	topoisomerase	0,7
166	YP_186767.1	vraR	DNA-binding response regulator VraR	transcription	0,9
2080	NP_372297.1		arsenical resistance operon repressor-like protein	transcription	3,0
185	NP_374875.1	ribH	6,7-dimethyl-8-ribityllumazine synthase	transferase	1,7
259	NP_371988.1	aroA	3-phosphoshikimate 1-carboxyvinyltransferase	transferase	2,1
350	NP_371594.1	purF	amidophosphoribosyltransferase	transferase	1,2
438	NP_373671.1	metB	cystathionine gamma-synthase	transferase	1,5
451	NP_370880.1	metE	homocysteine S-methyltransferase	transferase	1,4
530	NP_373030.1	gntK	gluconokinase	transferase	2,5
778	NP_371785.1	cdsA	phosphatidate cytidylyltransferase	transferase	1,0

Continuação Tabela 15.

CD	Acession no.	Gene	Putative Function	Functional Category	Fold Change
833	NP_371541.1	ugtP	diacylglycerol glucosyltransferase	transferase	1,0
849	NP_371448.1	lipA	lipoyl synthase	transferase	0,6
1031	NP_373079.1		acetyltransferase	transferase	1,2
1454	YP_006195126.1		N5-carboxyaminoimidazole ribonucleotide mutase	transferase	1,3
1796	EHT83141.1	manP	PTS system mannose-specific EIIBCA component	transferase	1,6
2393	NP_371089.1	tagE	poly (glycerol-phosphate) alpha-glucosyltransferase	transferase	0,9
579	NP_646953.1	rpsL	30S ribosomal protein S9	translation	1,2
728	NP_372000.1	rpsA	30S ribosomal protein S1	translation	0,8
1324	NP_372116.1	rsfS	iojap family protein	translation repressor	1,1
82	EIK04516.1	modA	molybdate ABC transporter	transmembrane transport	2,6
1506	NP_371362.1		ABC transporter permease	transmembrane transport	1,0
1536	YP_005738835.1		ABC-type proline/glycine betaine transport systems	transmembrane transport	0,8
1879	ZP_05680592.1		ABC transporter ATP-binding protein	transmembrane transport	0,9
2465	NP_370833.1		ABC transporter ATP-binding protein	transmembrane transport	1,7
48	1202257C	tnpA1	gene tnpA	transposition	1,1
176	NP_372348.1	seg	extracellular enterotoxin type G	virulence factor	1,9
1104	ZP_06927996.1	hssS	heme sensor protein hssS	virulence factor	0,7
2314	NP_371336.1	vWbp	secreted von Willebrand factor-binding protein	virulence factor	1,3
697	NP_372149.1	csbD	sigmaB-controlled gene product		1,2
1026	NP_373092.1		hypothetical protein SAV2568		1,2
1099	NP_372897.1		hypothetical protein SAV2373		0,8
1198	NP_371319.1		hypothetical protein SAV0795		1,0
1199	NP_371321.1		hypothetical protein SAV0797		0,9
1248	YP_005326235.1		hypothetical protein SAMSHR1132_17270		1,2
1276	NP_372316.1		hypothetical protein SAV1792		0,9
1309	NP_374759.1		hypothetical protein SA1472		1,6
1361	NP_371972.1		hypothetical protein SAV1448		2,1
1414	NP_371738.1		hypothetical protein SAV1214		1,5
1431	NP_371665.1		hypothetical protein SAV1141		1,8
1446	NP_371621.1		hypothetical protein SAV1097		0,6
1515	NP_371342.1		hypothetical protein SAV0818		1,2
1524	NP_371281.1		hypothetical protein SAV0757		1,1
1539	YP_005297149.1		hypothetical protein M013TW_0702		0,8
1592	YP_001245977.1		hypothetical protein SaurJH9_0597		47,7
1612	NP_371012.1		hypothetical protein SAV0488		1,2
1624	NP_370975.1		hypothetical protein SAV0451		48,9
1643	NP_370894.1		hypothetical protein SAV0370		0,9
1648	NP_370879.1		hypothetical protein SAV0355		0,8
1738	NP_644897.1		hypothetical protein MW0082		1,1
1848	NP_373028.1		hypothetical protein SAV2504		48,8
1855	NP_373011.1		hypothetical protein SAV2487		1,0
1878	NP_372955.1		hypothetical protein SAV2431		2,8
1896	EHO96137.1		hypothetical protein SA2164		1,4
2010	NP_375087.1		hypothetical protein SA1788		1,3
2135	ZP_04838124.1		hypothetical protein SauraC_01800		2,3
2136	NP_372063.1		hypothetical protein SAV1539		2,7
2140	NP_372038.1		hypothetical protein SAV1514		1,8
2172	NP_371932.1		hypothetical protein SAV1408		1,5
2205	NP_371789.1		hypothetical protein SAV1265		0,8
2218	NP_371711.1		hypothetical protein SAV1187		0,6

Continuação Tabela 15.

CD	Acession no.	Gene	Putative Function	Functional Category	Fold Change
2222	NP_371695.1		hypothetical protein SAV1171		1,1
2232	NP_371650.1		hypothetical protein SAV1126		0,7
2305	NP_371359.1		hypothetical protein SAV0835		1,9
2310	NP_371347.1		hypothetical protein SAV0823		1,2
2345	NP_371217.1		hypothetical protein SAV0693		2,2
2392	YP_001245971.1		hypothetical protein SaurJH9_0591		0,9
2423	NP_370972.1		hypothetical protein SAV0448		1,2
2509	EGG68919.1		hypothetical protein SA21193_2041		1,8
2549	EIK34733.1		hypothetical protein MQS_02254		0,9
2551	NP_370601.1		hypothetical protein SAV0077		1,3
2559	NP_370572.1		hypothetical protein SAV0048		1,2
2698	ABO37813.1		unknown		47,5

Tabela 16. Genes negativamente expressos em *S. aureus* N315 tratados por 03 horas com violaceína na concentração de 0,625 μ M (MIC) identificados por sequenciamento de RNA.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
40	NP_373157.1	arcD	arginine/oirnithine antiporter	amino acid metabolism	-1,6
594	NP_372658.1	luxS	S-ribosylhomocysteinase	amino acid metabolism	-1,6
764	NP_371852.1	hom	homoserine dehydrogenase	amino acid metabolism	-1,8
1588	EGG66078.1	yhdG	amino acid permease	amino acid metabolism	-0,7
2180	NP_371891.1	trpE	anthranilate synthase component I	amino acid metabolism	-1,2
2351	NP_371204.1		lysine decarboxylase family protein	amino acid metabolism	-2,4
1557	NP_371197.1	setA	sugar efflux transporter	carbohydrate metabolism	-1,9
1609	NP_371028.1	yabM	low temperature requirement B protein	carbohydrate metabolism	-2,3
1924	NP_372831.1	atl	autolysin E	cell division	-2,0
1731	ZP_05643456.1		UDP-glucose 4-epimerase	cell envelope biogenesis	-0,7
454	NP_370800.1	lytM	peptidoglycan hydrolase	cell wall biogenesys/degratation	-1,2
784	NP_371771.1	lytN	LytN protein	cell wall biogenesys/degratation	-1,2
1998	NP_372536.1		terminase small subunit	DNA packaging	-1,5
2157	NP_371977.1	dnaD	primosomal protein DnaD	DNA replication	-2,4
929	NP_370790.1	bglA	6-phospho-beta-glucosidase	glycolisys	-1,5
366	NP_371488.1	spsA	type-I signal peptidase	hydrolase	-0,7
1073	NP_372975.1	pnbA	para-nitrobenzyl esterase chain A	hydrolase	-2,1
1116	NP_372853.1	ytnL	amino acid amidohydrolase	hydrolase	-2,2
1183	ZP_06948495.1		DEAD/DEAH box family ATP-dependent RNA helicase	hydrolase	-0,8
1593	ZP_06816752.1		haloacid dehalogenase-like hydrolase	hydrolase	-2,2
1693	NP_370767.1		inosine-uridine perring nucleoside hydrolase	hydrolase	-1,5
1840	NP_373049.1		hypothetical protein SAV2313	hydrolase	-2,1
2407	NP_371021.1		translation initiation inhibitor-like protein	hydrolase	-0,7
79	NP_372816.1	ureF	urease accessory protein F	ion binding	-1,5
371	EHT43731.1	mnhD1	na(+)/H(+) antiporter subunit D	ion transport	-0,9
603	NP_372629.1	atpA	F0F1 ATP synthase subunit alphab	ion transport	-2,1
1088	YP_003283307.1		ABC transporter, substrate-binding protein	ion transport	-1,5
74	NP_372870.1	fni	isopentenyl pyrophosphate isomerase	isomerase	-2,4
1873	NP_372966.1		dTDP-glucose 4,6-dehydratase	nucleotide metabolism	-2,0
336	NP_374266.1	sdhB	succinate dehydrogenase iron-sulfur subunit	oxidoreductase	-1,8
517	NP_373137.1	gbsA	glycine betaine aldehyde dehydrogenase	oxidoreductase	-1,6
617	NP_372580.1	ilvC	ketol-acid reductoisomerasee	oxidoreductase	-2,0
864	NP_371256.1	nrdF	ribonucleotide-diphosphate reductase subunit beta	oxidoreductase	-0,8
1510	NP_371354.1	yfhC	hypothetical protein SAV0757	oxidoreductase	-3,4
1841	EIK29073.1		glyoxalase	oxidoreductase	-1,5
2451	NP_370868.1		hypothetical protein SAV0344	oxidoreductase	-1,0
172	NP_372357.1	hemH	ferrochelatase	porphyrin biosynthesis	-1,8
319	EHT55850.1	recG	ATP-dependent DNA helicase RecG	stress response	-0,8
638	NP_372419.1	dinB	DNA polymerase IV	stress response	-1,8
7	NP_371140.1	sarA	accessory regulator A	transcription	-2,2
140	NP_372590.1	rsbV	anti-sigmaB factor antagonist	transcription	-1,1
146	NP_372570.1	rex	redox-sensing transcriptional repressor Rex	transcription	-1,5
204	NP_372210.1	nrdR	transcriptional regulator NrdR	transcription	-0,8
595	NP_372652.1	rpoE	DNA-directed RNA polymerase subunit delta	transcription	-1,6
1093	NP_372914.1	mta	transcriptional regulator	transcription	-2,3
1136	NP_372791.1		hypothetical protein SAV2267	transcription	-1,0
Continuação Tabela 16.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
1585	NP_371119.1		hypothetical protein SAV0595	transcription	-1,6
240	NP_372061.1	gcvT	glycine cleavage system aminomethyltransferase T	transferase	-0,7
432	NP_373703.1	rsmA	dimethyladenosine transferase	transferase	-2,1
502	YP_001248056.1	hisZ	ATP phosphoribosyltransferase regulatory subunit	transferase	-2,2
520	NP_375718.1	panB	3-methyl-2-oxobutanoate hydroxymethyltransferase	transferase	-0,9
634	NP_375013.1	pcrB	heptaprenylglyceryl phosphate synthase	transferase	-2,2
694	YP_043688.1		GTP pyrophosphokinase	transferase	-1,3
794	NP_371742.1	rlmN	ribosomal RNA large subunit methyltransferase N	transferase	-0,6
869	NP_371223.1	fruK	fructose 1-phosphate kinase	transferase	-0,7
1603	YP_039982.1	cysE	cysE gene product	transferase	-1,6
1801	NP_373148.1	yxdK	two-component sensor histidine kinase	transferase	-0,7
2076	NP_372305.1	tal	translaldolase	transferase	-1,2
2257	EHM60080.1	menA	1,4-dihydroxy-2-naphthoate octaprenyltransferase	transferase	-1,8
381	NP_371306.1	smpB	SsrA-binding protein	translation	-2,7
2576	EHT80458.1	rplI	ribosomal protein L9	translation	-2,6
800	NP_371723.1	pyrP	uracil permease	transmembrane transport	-0,7
1930	ZP_05643609.1		urea transporter	transmembrane transport	-1,3
2083	NP_372285.1		multidrug resistance protein	transmembrane transport	-2,9
488	NP_370551.1	tnp	transposase for IS-like element	transposition	-0,6
41	EIK29680.1	clfB	Clumping factor B	virulence factor	-2,0
152	NP_372532.1	entA	extracellular enterotoxin L	virulence factor	-0,6
177	EHT87553.1	lukDv	lukF-PV	virulence factor	-1,3
441	NP_370952.1		superantigen-like protein	virulence factor	-0,7
625	NP_372533.1	sec3	enterotoxin typeC3	virulence factor	-2,4
917	NP_370948.1	speC	superantigen-like protein	virulence factor	-1,1
918	NP_370946.1	set6	superantigen-like protein	virulence factor	-1,2
973	EGS86906.1		fibrinogen binding protein	virulence factor	-0,8
1233	NP_372455.1		ABC transporter ATP-binding protein	virulence factor	-2,2
2228	EHS70353.1		colicin V production protein	virulence factor	-1,7
535	EIK03841.1		hypothetical protein MQC_00775		-2,1
1013	NP_373118.1		hypothetical protein SAV2594		-0,8
1020	NP_373104.1		hypothetical protein SAV2580		-2,3
1106	ZP_04868390.1		membrane protein		-1,6
1107	NP_372877.1		hypothetical protein SAV2353		-1,1
1127	NP_372830.1		hypothetical protein SAV2306		-2,0
1191	NP_372558.1		hypothetical protein SAV2034		-0,6
1202	NP_375114.1		hypothetical protein SA1813s		-0,6
1243	YP_006238139.1		hypothetical protein SAEMRSA15_18030		-0,8
1254	NP_372391.1		hypothetical protein SAV1867		-1,8
1382	NP_371900.1		hypothetical protein SAV1376		-0,6
1398	NP_371832.1		hypothetical protein SAV1308r		-0,6
1439	NP_371637.1		hypothetical protein SAV1113		-1,8
1518	ZP_04865580.1		conserved hypothetical protein		-1,6
1535	NP_371250.1		multidrug resistance protein		-2,7
1538	NP_371242.1		hypothetical protein SAV0718		-2,1
1556	NP_371199.1		hypothetical protein SAV0675		-1,1
1564	NP_371181.1		hypothetical protein SAV0657		-1,0
1617	NP_370992.1		hypothetical protein SAV0468		-1,5
1674	NP_370820.1		hypothetical protein SAV0296		-2,1
1686	NP_370791.1		hypothetical protein SAV0267		-2,2
1745	NP_370618.1		hypothetical protein SAV0094		-0,6

Continuação Tabela 16.

CD	GenBank	Gene Pu	utative Function	Functional Category	Fold Change
1751	YP_184964.1	hypotheti	ical protein SACOL0058		-2,0
1752	NP_370604.1	hypothe	etical protein SAV0080		-2,0
1769	NP_370544.1	hypothe	etical protein SAV0020		-1,8
1851	EHT92622.1	major Facil	litator Superfamily protein		-1,7
1984	NP_372586.1	hypothe	etical protein SAV2062		-1,4
1993	NP_372547.1	hypothe	etical protein SAV2023		-1,8
1997	NP_371322.1	hypothe	etical protein SAV0798		-1,7
2002	NP_375106.1	hypoth	netical protein SA1805		-1,9
2022	NP_375062.1	hypoth	netical protein SA1764		-1,5
2159	NP_371971.1	hypothe	etical protein SAV1447		-3,3
2171	NP_371934.1	hypothe	etical protein SAV1410		-1,1
2216	NP_371715.1	hypothe	etical protein SAV1191		-1,6
2244	NP_371616.1	hypothe	etical protein SAV1092		-1,1
2289	NP_371469.1	hypothe	etical protein SAV0945		-1,3
2328	EHM65120.1	pu	atative lipoprotein		-2,7
2329	NP_371261.1	hypothe	etical protein SAV0737		-0,8
2419	NP_370981.1	hypothe	etical protein SAV0457		-2,7
2430	EHS32376.1	hypothet	tical protein IS122_1367		-1,8
2482	NP_370797.1	hypothe	etical protein SAV0273		-0,7
2533	NP_370642.1	hypothe	etical protein SAV0118		-2,1
2594	NP_375086.1	hypoth	netical protein SA1787		-0,9
2636	EFW30786.1	hypothetica	l protein HMP9528_02800		-0,8
2639	YP_003453953.1	hypothet	tical protein LLO_0471		-2,8

Tabela 17. Genes positivamente expressos em S. aureus N315 tratados por 03 horas com

violaceína na concentração de 0,312 µM (sub-MIC) identificados por sequenciamento de RNA.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
1004	NP_373147.1		ABC transporter ATP-binding protein	ATP-binding	0,7
1346	NP_372027.1	proC	pyrroline-5-carboxylate reductase	oxidoreductase	3,0
1507	NP_371360.1		Similar to thioredoxin	stress response	2,8
1080	EHM68538.1		glycerate kinase	transferase	2,2
746	NP_371917.1	lysC	aspartate kinase	transferase	3,0
273	NP_371914.1		transposase	transposition	2,0
1760	NP_370581.1		hypothetical protein SAV0057		47,0
2698	ABO37813.1		unknown		48,0

Tabela 18. Genes negativamente expressos em S. aureus N315 tratados por 03 horas com

violaceína na concentração de 0,312 µM (sub-MIC) identificados por sequenciamento de RNA.

CD	GenBank	Gene	Putative Function	Functional Category	Fold Change
1412	NP_371746.1	cfxE	ribulose-5-phosphate 3-epimerase-like protein	carbohydrate metabolism	-1,3
1902	NP_372885.1	hssR	two component response regulator	DNA-binding	-0,9
345	EHT49195.1	pdhC	dihydrolipoyllysine-residue acetyltransferase component	glycolisys	-1,6
1071	NP_372979.1		endo-1,4-beta-glucanase	hydrolase	-1,0
1734	ZP_05680705.1	sbnF	siderophore biosynthesis protein SbnF	siderophore biosynthetic process	-0,9
349	NP_371596.1	purN	phosphoribosylglycinamide formyltransferase	transferase	-1,0
2594	NP_375086.1		hypothetical protein SA1787		-1,2
1118	NP_647063.1		hypothetical protein MW2246		-1,1
979	YP_005299055.1		hypothetical protein M013TW_2690		-1,0
1089	NP_372928.1		hypothetical protein SAV2404		-43,9
2135	ZP_04838124.1		hypothetical protein SauraC_01800		-43,9
2642	ZP_06021656.1		hypothetical protein SAD30_1604		-46,9

5. DISCUSSÃO

RASTREAMENTO DA ATIVIDADE ANTIMICROBIANA

5.1. ANTIMICROBIANOS

A Espectrometria de Massas atualmente é uma das técnicas instrumentais da ciência com grande abrangência e aplicações para diversas áreas, a exemplo da química e biologia principalmente, devido aos recentes avanços e investimentos em novas técnicas de ionização. Essa técnica, pode ser entendida como analítica pois permite a identificação da composição química de um determinado composto isolado, ou de compostos diferentes encontrados em misturas complexas, através da determinação de suas massas moleculares na forma iônica (com carga elétrica líquida) positiva ou negativa, baseada na sua movimentação através de um campo elétrico ou magnético. Esta movimentação é determinada pela razão entre a massa de um determinado composto e a sua carga líquida, apresentada por m/z (mass to charge ratio). Dessa forma, com valor obtido de uma molécula, é possível inferir sua composição química elementar e com isso determinar sua estrutura (Van Bramer, 1998), ou ainda, a busca por elementos já conhecidos em determinadas faixas de m/z.

Espectrometria de massas tem demonstrado ser uma técnica importante de identificação e caracterização de antibióticos (Ji *et al.*, 2008), lantibióticos e bacteriocinas (Stein, 2008). Como também, tem sido aplicada com sucesso em processo de identificação em microbiologia clínica e tem sido amplamente utilizada na prática laboratorial de rotina por causa de seus benefícios econômicos e de diagnóstico (Hrabák *et al.*, 2013).

Ainda, a espectroscopia de Ressonância Magnética Nuclear (RMN), tornou-se uma ferramenta de escolha para a determinação das estruturas de antimicrobianos, e possivelmente caracterizar as suas interações com o seu alvo, já com diversos trabalhos bem caracterizados na literatura. No presente trabalho, nosso objetivo não era o estudo químico da molécula, então demonstramos uma breve caracterização do extrato de *C. violaceum* para a verificação da presença do pigmento antimicrobiano violaceína, em comparativo com os dados encontrados em Retorri & Duran, (1998) que utilizamos também como referência para a síntese do extrato.

Mesmo após confirmados os espectros de massa contendo violaceína (Figuras 2 e 3), quando se comparam os espectros de RMN com o composto comercialmente sintetizado, para os estudos de atividade antimicrobiana e ainda os possíveis alvos de mecanismos de ação, o estudo de novos métodos de obtenção da violaceína em laboratórios de pesquisa acadêmica tornou-se necessário. Devido a presença de diversos outros picos com massas não atribuídas a violaceína, demonstrou-se primordial a procura por um composto de pureza garantida, visto que o método de extração descrito por Rettori & Duran, (1998) ainda consta sem atualizações, e ocorre a necessidade de padronização de HPLC (cromatografia líquida de alta eficiência) para a técnica.

Os principais estudos para o entendimento da produção da violaceína via *operon* (Balibar & Walsh, 2006) é um dos primeiros passos para o aprimoramento de técnicas de purificação como também, a clonagem deste *operon* para produção do pigmento por outros micro-organismos de fácil manipulação poderão baixar os custos da produção desse antimicrobiano.

5.2. DETERMINAÇÃO DO MIC (CONCENTRAÇÃO INIBITÓRIA MÍNIMA) E MBC (CONCENTRAÇÃO BACTERICIDA MÍNIMA)

Por este ensaio, demonstra-se que tanto o extrato quanto a violaceína comercial apresentam atividade antimicrobiana contra *S. aureus*, independentemente da cepa ou amostra analisada. Com relação às cepas e amostras bacterianas gram-negativas, estas não apresentam sensibilidade à violaceína, com exceção de *P. aeruginosa*.

O potencial farmacêutico da violaceína tem sido relatado em diferentes sistemas biológicos, e a sua atividade antimicrobiana foi previamente descrita em alguns trabalhos (Lichstein & Van de Sand, 1945; de Souza *et al.*, 1999; Duran & de Souza, 2001; Nakamura *et al.*, 2003; Aranda *et al.*, 2011; Cazoto *et al.*, 2011).

Os nossos dados confirmam que a violaceína possui efeito sobre a inibição de uma população variada de *Staphylococcus* sp. e *Enterococcus* sp., mesmo contra cepas e amostras MRSA e VRE. Além disso, a violaceína usada neste trabalho, comercialmente produzida a partir de *Jantinobacterium lividum* com grau de pureza elevada, não possui relatos de atividade antibiótica na literatura e os valores de MIC e MBC, e para *S. aureus* foi 10 vezes menor do que os observados com a preparação de extrato de *C. violaceum*, confirmando que apesar do extrato ser efetivo em baixas concentrações, é de importância o estudo da molécula purificada.

Com relação aos dados de MIC e MBC dos nanomateriais de vanadato de prata, em todas as amostras de nanomaterial com todos os micro-organismos testados, a atividade antimicrobiana foi excelente, incluindo amostras de *Enterococcus* resistentes à Vancomicina.

Parte destes dados foram apresentados e discutidos em um trabalho de nosso grupo em que Holtz e colaboradores (2012) descrevem e caracterizam a amostra P1P6, no trabalho apenas denominada P1. O material avaliado exibiu atividade antibacteriana 30 vezes maior do que a oxacilina, e além disso, o nanomaterial foi testado como um aditivo antibacteriano para tintas à base de água, e as formulações com 1% de vanadato de prata demonstraram uma zona de inibição de 4 mm contra linhagem MRSA.

Um dos mecanismos propostos é que a absorção da prata ocorre através de uma dissociação direta entre as nanopartículas de prata e a parede celular bacteriana, como uma possibilidade de formação de complexos quelatos abrindo poros, levando à morte celular bacteriana (Lok *et al.*, 2007). Todavia, devido ao amplo espectro de ação visto e o histórico milenar de atividade antimicrobiana da prata, ocorre a necessidade de estudos de toxicidade.

O efeito sinérgico observado entre extrato de *C. violaceum* com os nanomateriais de vanadato de prata confirma o potencial do material estudado, a continuidade dos estudos e a necessidade de avanços nas técnicas de purificação e caracterização de novos antimicrobianos. A diferença observada na comparação com a violaceína comercial indica que um ou mais compostos co-purificados com o extrato de violaceína favorecem a formação de complexos entre as nanopartículas de vanadato de prata e a violaceína e/ou favoreceram a entrada destes agentes antimicrobianos na célula.

ESTUDOS DA ATIVIDADE ANTIMICROBIANA DA VIOLACEÍNA

5.3. CURVAS DE TEMPO-MORTE

Após 12 horas de cultura, a violaceína falhou em inibir o crescimento de ambas as linhagens de *S. aureus* analisadas (N315 e BEC9393). Este resultado não é devido à seleção de mutantes

resistentes a violaceína, uma vez que as células bacterianas isoladas a partir destas culturas permanecem violaceína-sensível (dados não mostrados).

Especula-se que as moléculas de violaceína fiquem acumuladas nas células que "absorvem" o antimicrobiano durante as horas iniciais da cultura bacteriana, pois o sedimento celular desde os primeiros tempos apresenta coloração violeta e, consequentemente as moléculas não estão livres para interagir com células viáveis intactas. Além disso, as modificações comuns para culturas bacterianas *in vitro* (por exemplo, oscilações de pH), como consequência do metabolismo bacteriano e metabólitos excretados podem influenciar a disponibilidade e/ou a interação das células com violaceína. Portanto, acredita-se que a concentração de violaceína "livre" disponível para interagir com as células diminuiu em tempos tardios da cultura bacteriana. Estudos adicionais são necessários a fim de caracterizar a disponibilidade da violaceína durante o crescimento bacteriano e em diferentes fases de crescimento.

Em ambas as linhagens bacterianas, se compararmos com as culturas controles, sem a adição do antimicrobiano, a diferença nos logs de UFC/mL após plaqueamento são de em média 6 logs₁₀ a mais de células sem tratamento.

5.4. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO

De fato a microscopia eletrônica é uma ferramenta de visualização superficial do que ocorre com as células após o tratamento com o antimicrobiano. Porém, ocorrem diferenças entre tratamento e controle, na ultra estrutura e morfologia celular, especialmente em locais situados entre as células em divisão. Foram principalmente afetados: envelope celular, componentes citoplasmáticos com aspecto granular, ultra estrutura celular e processos de separação celular, especialmente no septo de divisão celular, visualizado nos maiores aumentos. Em ambas as Figuras 9 e 10 pode-se observar que os tempos de 01 e 02 horas de tratamento foram semelhantes com relação aos danos celulares observados, quando comparados ao controle sem tratamento.

Estas alterações morfológicas são em alguns aspectos semelhantes, mas não idênticas às alterações exibidas pelas células de *S. aureus* tratadas com antibióticos β -lactâmicos (revisado por Giesbrecht *et al.*, 1998). A divisão celular não aparenta inibição, uma vez que o volume celular não parece estar aumentado. Diferente do que se observa em células tratadas com penicilina, não foram observadas lesões que indiquem a perfuração do murossoma (parede extraplasmática) como a causa da lise celular, mas uma aparência fibrilar da parede celular como observado para as células tratadas com penicilina foram observadas em células tratadas com violaceína (Giesbrecht *et al.*, 1998). O septo de divisão celular foi formado irregularmente em células tratadas com violaceína e estes dados estão de acordo com a observação de que a violaceína está relacionada com uma diminuição do nível de proteína FtsZ, discutidos no próximo tópico.

5.5. ANÁLISE PROTEÔMICA

Os dados obtidos do estudo por eletroforese bidimensional, observadas as dificuldades da técnica (principalmente com relação a reprodutibilidade), temos que nossos resultados são considerados promissores e o início da possível descoberta de mecanismos de ação da violaceína em *S. aureus*. É importante enfatizar que o tempo de crescimento/tratamento avaliado foi de 01 hora, em fase exponencial bacteriana, pois maiores tempos poderiam gerar estresse relacionado à

supressão de nutrientes na cultura dentre outros fatores. Alguns grupos protéicos podem não terem sido abordados pela técnica, dada a preparação da amostra com diversos detergentes, inibindo a captura de proteínas de membrana, como também, proteínas ribossomais que possuem pI (ponto isoelétrico de 8 a 11) alcalino, e não foram reproduzidas pela técnica de proteômica bidimensional nesse estudo que utilizou a faixa de pI de 4 a 7.

Como visto na Tabela 9 de regulação positiva (*up-regulation*), no metabolismo de amoninoácidos, HutU (*urocanate hydratase*) é uma enzima envolvida na via de degradação da histidina e GlyA (*serine hydroxymethyltransferase*) e responsável pela conversão de serina em glicina, sendo também chave na síntese de precursores de ácidos nucléicos e lipídios, por participar da síntese de 5,10-metileno-tetrahidrofolato. A enzima PheT (*phenylalanyl-tRNA synthetase subunit beta*) é responsável pela ligação do aminonácido correspondente ao RNA transportador durante a síntese protéica, e a proteína identificada como Frr (*ribosome recycling factor*) é responsável pela liberação do ribossomo do mRNA após o fim da síntese protéica (Yokoyama *et al.,* 2012).

No metabolismo de nucleotídeos, além de GlyA discutido anteriormente, a proteína homóloga a GcaD (*UDP-N-acetylglucosamine pyrophosphorylase*) está envolvida na biossíntese de nucleotídeos, e também na biossíntese de precursores de parede celular, e PyrC (*Dihydroorotase Chain A*) é a terceira enzima da via biossintética de pirimidinas. No metabolismo de lipídeos, FabH (*3-oxoacyl-acyl carrier protein-synthase III*) é uma enzima bacteriana essencial que catalisa o início da síntese de ácidos graxos.

Três hidrolases foram identificadas: SA1360 (*Xaa-Pro dipeptidase*), uma enzima putativa (*putative metal-dependent hydrolase*) e IsaA (*probable transglycosylase IsaA*) todavia, esta última

com cobertura baixa da sequência (10%). Não foi possível associar as duas primeiras enzimas a processos específicos do metabolismo, uma vez que a atividade de hidrolase é comum a diferentes tipos enzimáticos.

A proteína IsaA está envolvida na biogênese da parede celular agindo como uma transglicosilase na síntese do peptideoglicano e de ligações cruzadas da parede celular (Sakata *et al.*, 2005; Stapleton *et al.*, 2007). Recentemente, Chen e colaboradores (2013), associaram a uma regulação positiva de IsaA com resistência à vancomicina de linhagens de *S. aureus* heteroVISA (hVISA). De fato, Jang *et al.*, (2008) descreveram que a transcrição do gene *isaA* é induzido na presença de desinfetantes orto-fenilfenol. No entanto, Cuaron e colaboradores (2013), verificaram que a expressão deste gene é regulada negativamente em *S. aureus* tratado com *tea tree oil* (TTO), um composto antimicrobiano preparado a partir de *Melaleuca alternifolia* (conhecida como Árvore-do-chá).

Estas observações indicaram que a IsaA poderia ser induzida ou reprimida em resposta a diferentes compostos antimicrobianos. É possível especular que a regulação de *isaA* é uma tentativa da célula para manter a biogênese da parede celular na presença de violaceína. No entanto, é preciso cautela na interpretação dos resultados, com base no fato de que este polipeptídio foi identificado com baixa cobertura. Assim, mais estudos são necessários para esclarecer o papel da proteína IsaA na resposta a violaceína.

Respondendo ao estresse, diversas proteínas identificadas podem ser associadas a este processo, mesmo associadas a diferentes funções celulares. Por exemplo: AldA (*aldehyde dehydrogenase-like protein*) tem atividade de oxiredutase, porém, é descrita como enzima de desintoxicação envolvida em diversos processos metabólicos celulares como produção de

NAD(P)H, e pode principalmente estar relacionada a tolerância ao estresse respiratório (Limon, *et al.*, 1997). A enzima LdhA (*L-lactate dehydrogenase*) pode ser o principal fator que permite o crescimento de *S. aureus* durante o estresse nitrosativo tanto em condições aeróbicas como em anaerobiose (Lindqvist *et al.*, 2012). DnaK é uma conhecida chaperona que auxilia na montagem de polipeptídeos, podendo ser diferencialmente expressa em qualquer processo que resulta em uma mudança de estado ou atividade do micro-organismo como resultado de um distúrbio na homeostase celular. De fato, esta proteína desempenha um papel fundamental na resposta ao estresse em *S. aureus* (Singh *et al.*, 2012).

Ainda, CodY que também foi positivamente expressa, é um repressor transcricional global em várias bactérias gram-positivas que durante o crescimento exponencial pode inibir a transcrição de um grande número de genes requeridos para a adaptação à fase-estacionária cuja expressão também foi ativada na presença de mupirocina (Reiss, *et al.*, 2012). Estudos de Majerczyk *et al.*, (2010) revelaram que CodY é um regulador direto da transcrição de inúmeros genes associados à biossíntese de aminoácidos, transporte de macromoléculas, e virulência. Os genes de virulência regulados por CodY incluem os genes de síntese da cápsula, outra possibilidade de resposta a presença de violaceína.

Algumas proteínas ativadas na presença de violaceína estão associadas ao metabolismo de carboidratos: Eno (*Enolase; phosphoglycerate dehydratase*) é essencial para a degradação de carboidratos via glicólise e pode ser relacionada a fatores de virulência como destruição de matriz celular, invasão e disseminação (Furuya & Ikeda, 2011). A oxidoredutase Mqo2 (*malate quinone oxidoreductase*) foi recentemente estudada sendo associada à utilização de L-lactato e como tendo importante papel na patogenicidade por mediar a resistência ao óxido nítrico em *S. aureus* (Fuller

et al., 2011). GapA1 (*glyceraldehyde-3-phosphate dehydrogenase*) é uma enzima central da via glicolítica (Mukherjee *et al.*, 2010). Por fim, FruB (*fructose 1-phosphate kinase*) é parte do sistema PTS (*Phosphotransferase system*), juntamente com FruA, transportando e fosforilando a frutose que é principalmente direcionada para a via glicolítica (Postma *et al.*, 1993).

Além do metabolismo normal alterado, observa-se um aumento na expressão de enzimas que participam de diferentes processos celulares essenciais (respiratórios e replicativos), como resposta provavelmente ao estresse imposto pela violaceína. É provável que esta expressão aumentada seja uma tentativa de *S. aureus* em manter as funções celulares num processo adaptativo para sobrevivência.

Quanto às proteínas reguladas negativamente observadas na Tabela 10 (*down-regulation*), novamente observa-se que funções metabólicas essenciais foram afetadas. GlmS (*Glucosamine-fructose-6-phosphate aminotransferase*) embora participe do metabolismo de glutamina, apresenta uma função importante na síntese de peptideoglicano que será mencionada posteriormente. GlyQS (*glycyl-tRNAligase*), CysS (*cysteinyl-tRNA ligase*) e AspS (*aspartyl-tRNA synthetase*) apresentam função de aminoacil-tRNA sintetase e ligase que participam na ativação de aminoácidos para tradução. RocD2 (*Ornithine--oxo-acid transaminase*) também está relacionada ao metabolismo de proteínas.

Quanto ao metabolismo de nucleotídeos, Pdp (*pyrimidine-nucleoside phosphorylase*) participa da síntese de pirimidina e Cmk (*cytidylate kinase*) de ribonucleosídeos. SdhA (*succinate dehydrogenase flavoprotein subunit*) é uma das quatro subunidades da *succinate dehydrogenase* que cataboliza a oxidação de succinato a fumarato, ocorrendo a redução de ubiquinona a ubiquinol. Esta reação conecta o ciclo de Krebs com a cadeia respiratória (Yankovskaya *et al.*, 2003). Também foi observada a regulação negativa de algumas proteínas participantes da via glicolítica ou gliconeogênese: PdhB (*pyruvate dehydrogenase E1 component beta subunit*) e PdhC (*branched-chain alpha-keto acid dehydrogenase sub E2*) fazem parte do complexo piruvato desidrogenase envolvido na síntese de *acetyl-CoA*. Pgi (*Glucose 6-Phosphate Isomerase, Chain A*) é uma isomerase que cataliza a conversão reversível de *glucose-6-phosphate em fructose-6-phosphate*, sendo essencial na glicólise e na gliconeogênese e Icd (*isocitrate dehydrogenase*) uma enzima chave do ciclo de Krebs que regula a transição para a gliconeogênese.

Diferente do observado em expressão positiva, observa-se 5 importantes proteínas envolvidas no processo de síntese de parede bacteriana e de divisão celular que foram inibidas: MurA1 (*UDP-N-acetylglucosamine 1-carboxyvinyltransferase*) participa no processo de biossíntese de peptideoglicano e consequentemente na formação de parede celular. A proteína MurA1, está envolvida nos passos iniciais da produção de peptideoglicano, com a sua inibição, sendo o peptideoglicano determinante da forma celular, sítio de ligação de fatores de virulência e adesão, as bactérias passam por transformações morfológicas em resposta a diferentes fatores relacionados ao estresse, a sua eventual fragilidade ou instabilidade, gerando lise celular e morte (Macheboeuf *et al.*, 2006; Chung *et al.*, 2013a). Recentemente, Miller *et al.*, (2010) descreveram que derivados de benzotioxalona inibem o crescimento de *S. aureus* via inibição de MurA e MurZ.

Ainda em regulação negativa, MvaS (*HMG-CoA synthase*) foi identificada, e é participante de vias que resultam na formação de isoprenóides que em bactéria são associados à manutenção de rigidez, estrutura celular e crescimento, por participarem do transporte de unidades dissacarídeas a serem incorporadas na parede celular (Steussy *et al.*, 2005). A estrutura desta proteína de *S. aureus* já foi elucidada (Campobasso *et al.*, 2004) e recentemente, esta via foi explorada na varredura de inibidores de síntese de mevalonato (Ferrand *et al.*, 2011).

GlmS (glucosamine--fructose-6-phosphate aminotransferase) e GlmM (phosphoglucosamine-mutase) participam da via biossintética de UDP-N-acetyl-D-glucosamine (UDP-GlcNac), um precursor essencial na síntese de parede (Komatsuzawa et al., 2004). Essas enzimas atuam sequencialmente na conversão de D-frutose-6-fosfato a D-glucosamina-1-fosfato, tendo D-glucosamina-6-fosfato como composto intermediário desta reação.

A proteína FtsZ também foi inibida pela violaceína. FtsZ apresenta similaridade a tubulina de eucariotos, tendo como principal função a formação de uma estrutura em anel, chamado anel Z, responsável por recrutar outras proteínas na formação do divisoma, ou complexo de proteínas que iniciam a divisão celular (Vaughan *et al.*, 2004). Assim, uma das principais funções do anel FtsZ é recrutar outras proteínas de divisão celular para o septo em formação (Sianglum *et al.*, 2011).

FtsZ é um alvo recente de uma série de compostos antimicrobianos que inibem a sua função (Kaul *et al.*, 2012; Ma *et al.*, 2013; Stokes *et al.*, 2013; entre outros). Curiosamente, antibióticos acil depsipeptídeos (ADEPs) foram descritos para ativar peptidase ClpP para degradar FtsZ. Especulamos se violaceína pode ter uma ação similar à descrita para ADEPS.

Apesar dos resultados promissores, a necessidade de estudos com novas tecnologias (*high-throughput*) de proteômica, genômica e metabolômica são necessárias para o melhor entendimento dos mecanismos reguladores pós-traducionais, que podem demonstrar um panorama dos processos regulatórios afetados pelo tratamento com a violaceína.

5.6. TRANSCRIPTOMA: SEQUENCIAMENTO DE RNA

Nos últimos anos têm crescido o número de estudos que utilizam análises de expressão global para o entendimento de alvos específicos e mecanismos de ação de drogas antimicrobianas.

Através da comparação de mRNAs específicos presentes em amostras diferentes, como por exemplo, mutantes resistentes ou não e diferentes linhagens suscetíveis, genes diferencialmente expressos podem ser identificados e, consequentemente, terem suas funções metabólicas inferidas.

Por anos, o uso da técnica de *microarrays* (microarranjos) que utiliza hibridização com cDNAs marcados com fluorescência como sondas, vem sendo utilizada para o estudo de transcriptoma. Todavia, o método apresenta limitações por sinais não específicos, altas taxas de falso-positivos, quantidade e qualidade do RNA como fatores limitantes e variabilidade na incorporação de sondas (Wang *et al.*, 2009).

RNA-Seq (sequenciamento de RNA) é uma abordagem recentemente desenvolvida para análise de perfil de transcriptoma que utiliza tecnologias de sequenciamento de alto desempenho. Estudos utilizando este método já alteraram a nossa visão da extensão e da complexidade de transcriptomas eucarióticos e procarióticos. O RNA-Seq também fornece uma medida mais exata dos níveis de transcritos e suas isoformas que outros métodos, principalmente quando existe um genoma de referência para proceder às comparações (Wang *et al.*, 2009).

Esse trabalho analisou a expressão diferencial de *S. aureus* N315, linhagem resistente a meticilina, com o genoma descrito por Kuroda e colaboradores em 2001, frente ao tratamento com diferentes concentrações de violaceína em diferentes tempos de análise, para possível comparação com os resultados obtidos nas análises proteômicas.

Os dados de expressão global analisados demonstraram que a violaceína afeta múltiplos alvos na biossíntese de peptideoglicano, no sistemas de dois-componentes, transportadores ABC, resposta ao estresse e mecanismos de virulência. Na divisão celular, apenas uma proteína hipotética (*hypothetical protein SAV1113*) foi associada ao gene *ftsW*, e regulada positivamente com 01 hora de tratamento com MIC, sugere-se que FtsW é um proteína acessória a FtsZ e transloca o substrato precursor do peptideoglicano do citoplasma para a parede celular extracelular (Tan *et al.*, 2012). Todavia, não conseguimos relacionar os dados encontrados referentes a FtsZ no presente trabalho, já que aqui analisamos os transcritos.

Na biossíntese de peptideoglicano, os genes regulados positivamente foram: tratamento de 01 hora com MIC *pbpB* e *cobB*; sub-MIC *oatA* e *flp*; e 03 horas com MIC *mnaA*. O gene *pbpB* codifica a proteína ligante à penicilina (PBP)2, e já foi proposto que a célula responde à inibição da síntese do peptideoglicano, aumentando a transcrição do gene *pbpB*, a fim de aumentar a produção de PBP2 e, presumivelmente, em seguida, a taxa de síntese do peptideoglicano, para restaurar a parede danificada ou ausente (Utaida *et al.*, 2003). *cobB* pode estar envolvido em processos secundários de amidação do peptideoglicano, porém ainda não inteiramente esclarecidos (Figueiredo *et al.*, 2012). *oatA* está envolvido na acetilação do peptideoglicano e a fonte do grupo acetil utilizado por OatA na fase da síntese e adição do grupo acetil ainda não são conhecidas (Bera *et al.*, 2005). Proteína FLP, codificada por *flp*, tem três domínios, que são conservados em PBP e beta-lactamases, o que sugere que poderia estar associada com a síntese da parede celular (Komatsuzawa *et al.*, 2000). Ainda, por analogia, Kiser *et al.*, (1999), citaram que o produto do gene *mnaA* está envolvido na biossíntese do ácido teicóico, desde que a unidade de ligação do peptideoglicano na parede celular de *S. aureus* também contenha UDP-N-acetil- D-manosamina.

Os genes que obtiveram sua regulação inibida pela violaceína, relacionados a biossíntese de parede celular com tratamento de 01 hora com MIC foram *murA1* e *murE. murA1* inicia a via

de síntese de peptideoglicano no metabolismo de amino açúcares e já teve suas funções discutidas nos dados de proteômica, e a sua inibição na transcrição gênica pela violaceína, reforça um possível mecanismo e alvo de ação do antimicrobiano. O gene *murE* é essencial a *S. aureus*, e codifica UDP-N-acetilmuramil tripeptídeo sintetase que catalisa a adição do resíduo de L-lisina ao precursor da parede celular UDP-muramil dipeptídeo. Gardete *et al.*, (2004), demonstraram que a taxa de transcrição controlada de *murE* também acarreta alterações paralelas nos níveis de transcrição do gene *mecA*, que no presente estudo foi inibido no tratamento de 01 hora com MIC, e induzido com sub-MIC, e do gene *pbpB*, dois genes que desempenham um papel central na resistência à meticilina.

Apesar da evolução de resistência antimicrobiana, a via de biossíntese do peptideoglicano continua a ser o alvo de importância econômica para a intervenção terapêutica (Schneider & Sahl, 2010; Chung *et al.*, 2013a). A maioria dos medicamentos aprovados que visam ação direta na biossíntese do peptideoglicano em etapas extracelulares, possuem algum mecanismo de resistência já relacionado. Portanto, uma alternativa atraente é explorar os passos intracelulares, envolvendo os genes *murA* e *murE*, por exemplo. Além disso, nenhuma das enzimas envolvidas nos passos iniciais intracelulares são inibidas por antibióticos conhecidos ou produtos químicos sintéticos de utilidade terapêutica, com a exceção de fosfomicina que inibe a proteína MurA (Chung *et al.*, 2013a).

Outros genes correlacionados a parede celular com expressão diferencial foram as autolisinas, com funções hidrólise do peptideoglicano e formação de septos, com regulação positiva de *sle1, sspC* e *sceD* e regulação negativa no tratamento de 03 horas com MIC de *atl, lytM* e *lytN*. Ao estudar *atl* (principal gene de autolisina) em *S. aureus* resistentes e sensíveis a glicopeptídeos,

Wootton e colaboradores (2005), demonstraram que a regulação da atividade autolítica é geralmente complexa e pode ocorrer em diferentes níveis, incluindo a atividade enzimática autolítica, transcrição de genes e processamento pós-tradução de autolisinas. Ainda, estudos com telavancina (Song *et al.*, 2013) e amicoumacina A (Lama *et al.*, 2012), observaram uma diminuição na atividade autolítica complementando análises transcricionais com dados fenotípicos, que poderemos utilizar de modelos futuros para entendimento processamento proteolítico do peptideoglicano frente a violaceína.

O gene *yabM* inibido em ambos os tratamentos de MIC de 01 e 03 horas, aqui descrito com similaridade a *low temperature requirement B protein* para a linhagem *S.aureus* N315, tem sua função associada a outras linhagens de S. *aureus* e *B. subtilis* de biossíntese de polissacarídeos e peptideoglicano. Estudos com mutante de *B. subtilis* nulos para *yabM*, demonstraram suscetibilidade em exposição a moenomicina, um antibiótico que bloqueia polimerização do peptideoglicano por *pbpA*, sugerindo que YabM pode funcionar em uma via alternativa para a síntese de parede com atividade de glicosil transferase (Vasudevan *et al.*, 2009).

No genoma de *S. aureus* encontra-se 16 sistemas de dois-componentes (Kuroda *et al.*, 2001) com importantes funções na expressão gênica global, virulência (promovendo adesão, colonização e disseminação), componentes responsáveis por comunicação celular e funções regulatórias, fatores que facilitam a evasão do sistema imune e produção de toxinas e excreção (Chung *et al.*, 2013a; Chung *et al.*, 2013b). A regulação de fatores de virulência é modulada por pelo menos sete sistemas de dois-componentes (ArIRS, SaeRS, AgrAC, SrrAB, LytRS, YycFG e VraRS) e por reguladores de transcrição: a proteína ligante de DNA SarA, o fator sigma alternativo SigB, e a proteína Rot (Liu *et al.*, 2011).

Com o tratamento de violaceína, obtivemos a indução do gene *arlS*, parte do sistema de regulação negativa de autólise ArlRS, que controla a homeostase da parede celular (Memmi *et al.*, 2012) e *vraR* do sistema regulador de dois-componentes induzível por antimicrobianos que atuam na inibição da síntese de parede celular (β-lactâmicos e glicopeptídeos) e controla a indução da transcrição de muitos genes que codificam fatores com função na síntese da parede celular, incluindo PBP2 (Boyle-Vavra *et al.*, 2006), reforçando a atenção no possível mecanismo e alvo de ação da violaceína.

O gene *Rot*, positivamente expresso com tratamento de 01 hora com MIC de violaceína, e de acordo com Chu *et al.* (2013), foi confirmado ser um regulador global que regula negativamente a transcrição de vários genes de virulência conhecidos. Alguns destes genes codificam para proteínas como lipases e proteases, hemolisinas, que desempenham um papel importante na invasão de tecidos e também regula positivamente a expressão de genes de adesão da superfície celular. Ao estudar o papel de *rot* da regulação da autólise bacteriana, verificou-se que *rot* não regula a expressão da autolisina *atl*. No entanto, verificou-se que a alteração na expressão de *lytM* e *lytN* sugere-se que possa afetar a autólise, não só através da regulação da expressão desses genes, mas também através de outra vias potenciais (Chu *et al.*, 2013).

SarA (staphylococcal accessory regulator) foi inibido após 03 horas de tratamento com violaceína e é considerado um regulador clássico de virulência, todavia, semelhante ao encontrado por Reiss *et al.*, (2012), em resposta a mupirocina, SarA é envolvido com genes frequentemente co-regulados pelo sistema de dois-componentes *agr (accessory gene regulator)* dependente de densidade celular e, não obtendo resposta a *agr*, o efeito da violaceína para ambos não pode ser esclarecido.

Além do grande número de genes envolvidos com parede celular e divisão, outras vias metabólicas foram afetadas. A expressão positiva após tratamento de 01 hora do gene *ileS (isoleucyl-tRNA synthetase)* é interessante, visto que é o alvo do mecanismo de ação da mupirocina. A mupirocina inibe seletivamente a isoleucil-tRNA sintetase (IleRS) e, eventualmente, inibe a síntese de (p)ppGpp (guanosina tetrafosfatos). A "alarmona" (p)ppGpp induz um importante mecanismo de controle de tradução e transcricional global que permite que as bactérias se adaptem à privação nutricional, a chamada *stringent response* (Reiss *et al.*, 2012).

Em bactérias, transportadores ABC são predominantemente envolvidos no transporte de nutrientes. Estes transportadores agem em conjunto com as proteínas periplasmáticas de adesão que proporcionam transporte de cargas na superfície externa da membrana, e são responsáveis pelo fluxo ativo de uma vasta gama de diferentes moléculas, tais como fármacos hidrofóbicos, lipídeos, peptídeos e proteínas, incluindo toxinas (Seeger & van Veen, 2009). No presente estudo, diversos genes ou sequências com funções putativas foram relacionadas a transportadores ABC, respondendo com expressão diferencial positiva ou negativa nos diferentes tempos e tratamentos realizados, como encontrado também em análises de transcriptoma em resposta ao tratamento com betulinaldeído (Chung *et al.*, 2013a); triterpenóides pentacíclicos (Chung *et al.*, 2013b) e amicoumacina A (Lama *et al.*, 2012).

Diversos genes relacionados a fatores de virulência como superantígenos e enterotoxinas foram diferencialmente expressos positiva ou negativamente. Estudos recentes estabeleceram uma ligação entre a resposta ao antibiótico desfavorável para a célula bacteriana, e a capacidade de causar doença nessas condições, e muitas vezes pode não ser um benefício atenuar a virulência frente a condições restritas (Reiss *et al.*, 2012).

106

Adicionalmente, genes com diferentes funções na adaptação ao estresse, reparo de DNA, homeostase celular e condições nutricionais limitantes foram encontrados como sendo regulados pela presença da violaceína. Podemos especular que provavelmente os recursos liberados para o consumo de energia dos processos necessários durante o crescimento, são um pré-requisito para o início de estratégias de adaptação, a fim de restaurar condições que permitem a sobrevivência sob o rigoroso controle da violaceína.

A identificação de genes ou proteínas específicas para as classes de antibióticos com mecanismos de ação esclarecidos, vem ganhando importância na elucidação de alvos moleculares de compostos antimicrobianos não caracterizados. Ao comparar diversos estudos semelhantes, Reiss *et al.*, (2012) identificaram que a expressão ou repressão global de mecanismos com alto consumo de energia necessários para a proliferação bacteriana, são características conservadas de resposta frente à antimicrobianos, com grande variação para a expressão de genes com funções de metabolismo energético. Isto pode refletir diferenças entre o estímulo induzido a respostas rigorosas e os meios de crescimento utilizados nestes estudos. Curiosamente, a maior variação foi encontrada para regulação de genes que codificam proteínas hipotéticas, o que sugere que muitos deles podem ter um papel no ajuste da fisiologia celular em resposta a condições limitantes de crescimento, semelhante aos dados encontrados em nosso estudo.

De maneira geral, as tecnologias como a genômica microbiana atualmente, permitem a identificação de um grande número de desejáveis e essenciais alvos antimicrobianos para futuras análises (Chung *et al.*, 2013b). Ambas as metodologia de proteômica e transcriptoma mostraram que a violaceína atuou em múltiplos alvos e vias de ação nas condições analisadas para a linhagem MRSA N315, incluindo vias não completamente exploradas na divisão celular, sistemas de dois-

componentes e vias metabólicas essenciais. Esse é um estudo pioneiro do antimicrobiano produzido comercialmente, e abriu novos caminhos para explorar detalhadamente a resposta fenotípica, como também a de genes e proteínas com tecnologias mais avançadas, aumentando a importância da descoberta de novas drogas no tratamento de infecções por *S. aureus*, particularmente linhagens MRSA.

6. CONCLUSÕES

- O Extrato de *Chromobacterium violaceum* possui atividade antimicrobiana contra *S. aureus*, todavia, são necessários estudos aprofundados de técnicas de purificação para aumento de produção e redução de custos da violaceína;
- Nanomateriais de vanadato de prata possuem potencial atividade antimicrobiana e nossos dados sugerem sinergismo com o extrato de *C. violaceum*.
- A violaceína purificada comercialmente é caracterizada pela atividade antimicrobiana para patógenos gram-positivos, especialmente VRE e MRSA, com valores de MIC e MBC menores que o extrato de *C. violaceum*;
- Diferentes vias metabólicas de *S. aureus* são afetadas na presença da violaceína e os dados apresentados suportam o efeito antimicrobiano relacionado à biossíntese de parede celular.

7. REFERÊNCIAS BIBLIOGRÁFICAS

Aranda S, Montes-Borrego M, Landa BB. 2011. Purple-pigmented Violacein-Producing *Duganella spp*. Inhabit the Rhizosphere of Wild and Cultivated Olives in Southern Spain. Microb. Ecol. 62, 446-459.

Arya R & Princy SA. 2013. An Insight Into Pleiotropic Regulators Agr and Sar: Molecular Probes Paving the New Way for Antivirulent Therapy. Future Microbiol. 8, 1339-1353.

Anders S & Huber W. 2010. Differential Expression Analysis for Sequence Count Data. Genome Biol. 11, R106.

Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa, TB, Barardi, CRM, Simões CMO. 2003. Cytotoxicity and Potential Antiviral Evaluation of Violacein Produced by *Chromobacterium violaceum*. Mem. Inst. Oswaldo Cruz. 98, 843-848.

Balibar CJ & Walsh CT. 2006. In Vitro Biosynthesis of Violacein from L-Tryptophan by the Enzymes VioA-E from *Chromobacterium violaceum*. Biochemistry. 45, 15444-15457.

Ballantine JA, Beer RJS, Crutchley DJ, Dodd GM, Palmer DR. 1960. The Chemistry of Bacteria. Part VIII. The Synthesis of Violacein and Related Compounds. J. Chem. Soc. 2292-2299.

Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic Steps of Peptidoglycan Biosynthesis. 2008. FEMS Microbiol Rev. 32, 168-207.

Bera A, Herbert S, Jakob A, Vollmer W, Götz F. 2005. Why Are Pathogenic Staphylococci so Lysozyme Resistant? The Peptidoglycan O-Acetyltransferase OatA is the Major Determinant for Lysozyme Resistance of Staphylococcus aureus. Mol. Microbiol. 55, 778-787.

Boyle-Vavra S, Yin S, Daum RS. 2006. The VraS/VraR Two-Component Regulatory System Required for Oxacilin Resistance in Community-Aquired Methicillin-Resistant Staphylococcus aureus. FEMS Microbiol. Lett. 262, 163-171.

Bradford MM. 1976. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principles of Protein-dye Binding. Anal. Biochem. 72, 248-254.

Brazilian National Genome Project Consortium. 2003. Vasconcelos *et al.*, 2003. The Complete Genome Sequence of *Chromobacterium violaceum* Reveals Remarkable and Exploitable Bacterial Adaptability. Proc. Natl. Acad. Sci. USA. 30, 11660-11665.

Calfee DP. 2012. Methicillin-Resistant *Staphylococcus aureus* and Vancomycin-resistant Enterococci, and other Gram-positives in Healthcare. Curr. Opin. Infect. Dis. 25, 385-394.

Campobasso N, Patel M, Wilding IE, Kallender H, Rosenberg M, Gwynn MN. 2004. *Staphylococcus aureus* 3-Hydroxy-3-Methylglutaryl-CoA Synthase: Crystal Structure and Mechanism. J. Biol. Chem. 279, 44883-44888.

Cazoto LL, Martins D, Ribeiro MG, Duran N, Nakazato G. 2011. Antibacterial Activity of Violacein Against *Staphylococcus aureus* Isolated From Bovine Mastitis. J. Antibiot. (Tokyo). 64, 395-397.

Chen H, Liu Y, Zhao C, Xiao D, Zhang J, Zhang F, Chen M, Wang H. 2013. Comparative Proteomics-Based Identification of Genes Associated with Glycopeptide Resistance in Clinically Derived Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Strains. PLoS One. *In press*. Chu X, Xia R, He N, Fang Y. 2013. Role of Rot in Bacterial Autolysis Regulation of *Stahylococcus aureus* NCTC8325. Res. Microbiol. *In press*.

Chung PY, Chung LY, Navaratnam P. 2013a. Identification, by Gene Expression Profiling Analysis, of Novel Gene Targets in *Staphylococcus aureus* Treated with Betulinaldehyde. Res. Microbiol. 164, 319-326.

Chung PY, Chung LY, Navaratnam P. 2013b. Transcriptional Profiles of the Response of Methicillinresistant *Staphylococcus aureus* to Pentacyclic Triterpenoids. PLoS One. 8, e56687.

Clardy J, Fischbach MA, Walsh CT. 2006. New Antibiotics From Bacterial Natural Products. Nat. Biotechnol. 24, 1541-1550.

Clinical Laboratory Standards Institute. 2003. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; 6a Edição. CLSI, EUA.

Cohen ML. 1992. Epidemiology of Drug Resistance Implications for a Post Antimicrobial Era. Science. 257, 1050-1055.

Cuaron JA, Dulal S, Song Y, Singh AK, Montelongo CE, Yu W, Nagarajan V, Jayaswal RK, Wilkinson BJ, Gustafson JE. 2013. Tea Tree Oil-induced Transcriptional Alterations in *Staphylococcus aureus*. Phytother. Res. *In press*.

de Azevedo MBM, Alderete J, Rodriguez JA, Souza AO, Rettori D, Torsoni MA, Faljoni-Alario A, Haun M, Duran N. 2000. Biological Activities of Violacein, a New Antitumoral Indole Derivative, in an Inclusion Complex with β-Cyclodextrin. J. Inclusion Phenomena Macrocyclic Chem. 37, 93-101.

de Carvalho DD, Costa FT, Duran N, Haun M. 2006. Cytotoxic Activity of Violacein in Human Colon Cancer Cells. Toxicol. In Vitro. 20, 1514-1521.

de Souza AO, Aily DCG, Sato DN, Duran N. 1999. Atividade da Violaceína in vitro Sobre o *Mycobacterium tuberculosis* H37RA. Rev. Inst. Adolfo Lutz 58, 59-62.

Duran N & de Souza AO. 2001. Process for the Violacein Application as Antimycobacterial Agent. Brazilian Patent PIBr, 2001.

Duran N, Gimenez IF, Anazetti MC, Melo PS, Haun M, De Azevedo MMM, Alves OL. 2005. Cytotoxicity on V79 and HL60 Cell Lines by Thiolated-beta-cyclodextrin-Au/violacein Nanoparticles. J. Biom. Nanotechnol. 1, 352-358.

Duran N, Justo GZ, Melo PS, De Azevedo MB, Brito AR, Almeida AB, Haun M. 2003. Evaluation of the Antiulcerogenic Activity of Violacein and its Modulation by the Inclusion Complexation with Beta-Cyclodextrin. Can. J. Physiol. Pharmacol. 81, 387-396.

Duran N, Menck CFM. 2001. *Chromobacterium violaceum*: A Review of Pharmacological and Industrial Perspectives. Critical Rev. Microbiol. 27, 201-222.

Ferrand S, Tao J, Shen X, McGuire D, Schmid A, Glickman JF, Schopfer U. 2011. Screening for Mevalonate Biosynthetic Pathway Inhibitors Using Sensitized Bacterial Strains. J. Biomol. Screen. 16, 637-646.

Figueiredo TA, Sobral RG, Ludovice AM, Almeida JM, Bui NK, Vollmer W, de Lencastre H, Tomasz A. 2012. Identification of Genetic Determinants and Enzymes Involved with the Amidation of Glutamic Acid Residues in the Peptidoglycan of *Staphylococcus aureus*. PLoS Pathog. 8, e1002508.

Foster TJ. 2004. The Staphylococcus aureus « Superbug ». J. Clin. Invest. 114, 1693-1696.

Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR (2011).Identification of a Lactate-Quinoneoxidoreductase in *Staphylococcus aureus* that is Essential for Virulence.Front. Cell. Infect. Microbiol. 19, 1-15.

Furuya H, Ikeda R. 2011. Interaction of Triosephosphate Isomerase from *Staphylococcus aureus* with Plasminogen. Microbiol. Immunol. 55, 855-862.

Gales AC, Sader HS, Ribeiro J, Zoccoli C, Barth A, Pignatari AC. 2009. Antimicrobial Susceptibility of Gram-positive Bacteria Isolated in Brazilian Hospitals Participating in the SENTRY Program (2005-2008). Braz. J. Infect. Dis. 13, 90-98.

García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. 2011. Meticillin-resistant *Staphylococcus aureus* with a Novel mecA Homologue in Human and Bovine Populations in the UK and Denmark: a Descriptive Study. Lancet Infect Dis. 11, 595-603.

Gardete S, Ludovice AM, Sobral RG, Filipe SR, de Lencastre H, Tomasz A. 2004. Role of murE in the Expression of Beta-Lactam Antibiotic Resistance in *Staphylococcus aureus*. J. Bacteriol. 186, 1705-1713.

Gardete S, Wu SW, Gill S, Tomasz A. Role of VraSR in Antibiotic Resistance and Antibiotic-Induced Stress Response in *Staphylococcus aureus*. 2006. Antimicrob Agents Chemother. 50, 3424-3434.

Giesbrecht P, Kersten T, Maidhof H, Wecke J. 1998. Staphylococcal Cell Wall: Morphogenesis and Fatal Variations in the Presence of Penicillin. Microbiol. Mol. Biol. Rev. 62, 1371-1414.

Glanzmann P, Gustafson J, Komatsuzawa H, Ohta K, Berger-Bächi B. 1999. glmM Operon and Methicillin-Resistant glmM Supressor Mutants in *Staphylococcus aureus*. Antimicrob. Agents Chemother. 43, 240-245.

Gordon RJ, Lowy FD. 2008. Pathogenesis of Methicillin-resistant *Staphylococcus aureus* Infection. Clin Infect Dis. 1,46.

Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzei T, Peters G. 2012. New Insights Into Methicillin-Resistant *Staphylococcus aureus* (MRSA) Pathogenesis, Treatment and Resistance. Int. J. Antimicrob. Agents. 39, 96-104. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. 2006. Emergence and Resurgence of Methicillinresistant *Staphylococcus aureus* as a Public-health Threat. Lancet. 368, 874-888.

Guimarães DO, Momesso LS, Pupo MT. 2010. Antibióticos: Importância Terapêutica e Perspectivas para a Descoberta e Desenvolvimento de Novos Agentes. Quím. Nova. 33, 667,679.

Hakvag S, Fjaervik E, Klinkenberg G, Borgos SE, Josefsen KD, Ellingsen TE, Zotchev SB. 2009. Violacein-Producing *Collimonas sp.* from the Sea Surface Microlayer of Costal Waters in Trøndelag, Norway. Mar. Drugs. 7, 576-588.

Hao H, Dai M, Wang Y, Huang L, Yuan Z. Key Genetic Elements and Regulation Systems in Methicillin-Resistant *Staphylococcus aureus*. 2012. Future Microbiol. 7, 1315-1329.

Hardy KJ, Hawkey PM, Gao F, Oppenheim BA. 2004. Methicillin-resistant *Staphylococcus aureus* in the Critically Ill. Br. J. Anaesth. 92, 121-130.

Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL. 2012. Nanostructured Silver Vanadate as a Promising Antibacterial Additive to Water-Based Pants. Nanomedicine. 8, 935-940.

Howden BP, Stinear TP, Allen DL, Johnson PD, Ward PB, Davies JK. 2008. Genomic Analysis Reveals a Point Mutation in the Two-component Sensor Gene graS that Leads to Intermediate Vancomycin-resistance in Clinical *Staphylococcus aureus*. Antimicrob. Agents. Chemother. 52, 3755-3762.

Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. 2010. Reduced Vancomycin Suceptibility in *Staphylococcus aureus*, Including Vancomycin-Intermediate Strains: Resistance Mechanisms, Laboratory Dectection, and Clinical Implications. Clin Microbiol. Rev. 23, 99-139.

Howden BP, Peleg AY, Stinear TP. 2013. The Evolution of Vancomycin Intermediate *Staphylococcus aureus* (VISA) and Heterologus-VISA. Infect. Genet. Evol. *In press*.

Hrabák J, Chudácková E, Walková R (2013). Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometry for Detection of Antibiotic Resistance Mechanisms: From Research to Routine Diagnosis. Clin. Microbiol. Rev. 26, 103-114.

International Working Group on the classification of staphylococcal cassette chromosome elements (IWG-SCC). 2009. Classification of Staphylococcal Cassette Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements. Antimicrob. Agents Chemother. 53, 4961-4967.

Jang HJ, Nde C, Toghrol F, Bentley WE. 2008. Microarray Analysis of Toxicogenomic Effects of Ortho-Phenylphenol in *Staphylococcus aureus*. BMC Genomics. 9,411.

Ji Z, Wei S, Zhang J, Wu W, Wang M. 2008. Identification of Streptothricin Class Antibiotics in the Earlystage of Antibiotics Screening by Electrospray Ionization Mass Spectrometry. J Antibiot. (Tokyo). 61, 660-667.

Kaul M, Parhi AK, Zhang Y, LaVoie EJ, Tuske S, Arnold E, Kerrigan JE, Pilch DS. 2012. A Bactericidal Guanidinomethyl Biaryl that Alters the Dynamics of Bacterial FtsZ Polymerization. J Med. Chem. 26, 10160-10176.

Kiser KB, Bhasin N, Deng L, Lee JC. 1999. *Staphylococcus aureus* cap5P encodes a UDP-N-acetylglucosamine 2-epimerase with Functional Redundancy. J Bacteriol. 181, 4818-4824.

Komatsuzawa H, Choi GH, Fujiwara T, Huang Y, Ohta K, Sugai M, Suginaka H. 2000. Identification of a fmtA-like Gene that has Similarity to Other PBPs and Beta-lactamases in *Staphylococcus aureus*. FEMS Microbiol Lett. 188, 35-39.

Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M, McCallum N, Berger-Bächi B, Sugai M. 2004. The Gate Controlling Cell Wall Synthesis in *Staphylococcus aureus*. Mol. Microbiol. 53, 1221-1231. Konzen M, De Marco D, Cordova CA, Vieira TO, Antônio RV, Creczynski-Pasa TB. 2006. Antioxidant Properties of Violacein: Possible Relation on its Biological Function. Bioorg. Med. Chem. 14, 8307-8313.

Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M,Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K. 2001. Whole Genome Sequencing of Meticillin- resistant *Staphylococcus aureus*. Lancet. 357,1225-1240.

Laemmli UK. 1970. SDS-PAGE. Nature. 227, 680-687.

Lama A, Pané-Farré J, Chon T, Wiersma AM, Sit CS, Vederas JC, Hecker M, Nakano MM . 2012. Response of Methicillin-resistant *Staphylococcus aureus* to Amicoumacin A. PLoS One. 7, e34037.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and Memoryefficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol.10, R25.

Leon LL, Miranda CC, de Souza AO, Duran N. 2001. Antileishmanial Activity of the Violacein Extracted from *Chromobacterium violaceum*. J. Antimicrob. Chemother. 48, 449-450.

Lewis K. 2013. Platforms for Antibiotic Discovery. Nat. Rev. Drug. Discov. 12, 371-387.

Lichstein HC, Van de Sand VF. 1945. Violacein, an Antibiotic Pigment Produced by *Chromobacterium violaceum*. J Infect. Dis. 76, 47-51.

Limón A, Hidalgo E, Aguilar J. 1997. The aldA gene of *Escherichia coli* is Under the Control of at Least Three Transcriptional Regulators. Microbiology. 143, 2085-2095.

Lindqvist M, Isaksson B, Grub C, Jonassen TO, Hällgren A. 2012. Detection and Characterisation of SCCmec Remnants in Multiresistant Methicillin-susceptible *Staphylococcus aureus* Causing a Clonal Outbreak in a Swedish County. Eur. J Clin. Microbiol. Infect Dis. 31, 141-147.

Lipsky BA, Weigelt JA, Gupta V, Killian A, Peng MM. 2007. Skin, Soft tissue, Bone, and Joint Infections in Hospitalized Patients: Epidemiology and Microbiological, Clinical, and Economic Outcomes. Infect. Control. Hosp. Epidemiol. 28, 1290-1298.

Liu G, Xiang H, Tang X, Zhang K, Wu X, Wang X, Guo N, Feng H, Wang G, Liu L, Shi Q, Shen F, Xing M, Yuan P, Liu M, Yu L. 2011. Transcriptional and Functional Analysis Shows Sodium Houttuyfonate-Mediated Inhibition of Autolysis in *Staphylococcus aureus*. Molecules. 16, 8848-8865.

Lok CN, Chiu JF, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. 2007. Silver Nanoparticles: Partial Oxidation and Antibacterial Activities. J Biol. Inorg. Chem. 12, 527-534.

Lopes SC, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FL, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FT. 2009. Violacein Extracted from *Chromobacterium violaceum* inhibits Plasmodium Growth In Vitro and In Vivo. Antimicrob. Agents Chemother. 53, 2149-2152.

Low WL, Martin C, Hill DJ, Kenward MA. Antimicrobial Efficacy of Liposome-encapsulated Silver Ions and Tea Tree Oil Against *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Candida albicans*. 2013. Lett Appl Microbiol. 57, 33-39.

Lowy FD. 1998. Staphylococcus aureus Infections. N. Engl. J Med. 339, 520-532.

Lowy FD. 2003. Antimicrobial Resistance: the Example of *Staphylococcus aureus*. J Clin. Invest. 111, 1265-1273.

Ma S, Cong C, Meng X, Cao S, Yang H, Guo Y, Lu X, Ma S. 2013. Synthesis and On-target Antibacterial Activity of Novel 3-elongated Arylalkoxybenzamide Derivatives as Inhibitors of the Bacterial Cell Division Protein FtsZ. Bioorg. Med. Chem .Lett. 23, 4076-4079.

Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. 2006. Penicillin Binding Proteins: Key Players in Bacterial Cell Cycle and Drug Resistance Processes. FEMS Microbiol. Rev. 30, 673-691.

Majerczyk CD, Dunman PM, Luong TT, Lee CY, Sadykov MR, Somerville GA, Bodi K, Sonenshein AL 2010. Direct Targets of CodY in *Staphylococcus aureus*. J Bacteriol. 192, 2861-2877.

Memmi G, Nair DR, Cheung A. 2012. Role of ArlRS in Autolysis in Methicillin-sensitive and Methicillinresistant *Staphylococcus aureus* Strains. J Bacteriol. 194, 759-767.

Miller K, Dunsmore CJ, Leeds JA, Patching SG, Sachdeva M, Blake KL, Stubbings WJ, Simmons KJ, Henderson PJ, De Los Angeles J, Fishwick CW, Chopra I. 2010. Benzothioxalone Derivatives as Novel Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferases (MurA and MurZ). J. Antimicrob. Chemother. 65, 2566-2573.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq. Nat Methods. 5, 621-628.

Mukherjee S, Dutta D, Saha B, Das AK. 2010. Crystal Structure of Glyceraldehyde-3-Phosphate Dehydrogenase 1 from Methicillin-Resistant *Staphylococcus aureus* MRSA252 Provides Novel Insights into Substrate Binding and Catalytic Mechanism. J Mol. Biol. 401, 949-968.

Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A. 2007. Tracking the In Vivo Evolution of Multidrug Resistance in *Staphylococcus aureus* by Whole-genome Sequencing. Proc. Natl. Acad. Sci. USA. 104, 9451-9456.
Nakamura Y, Asada C, Sawada T. 2003. Production of Antibacterial Violet Pigment by Psychrotropic Bacterium RT102 Strain. Biotechnol. Bioproc. Eng. 8, 37-40.

Nishino T, Nakazawa S. 1976. Bacteriological Study on Effects of Beta-lactam Group Antibiotics in High Concentrations. Antimicrob. Agents Chemother. 9, 1033-1042.

Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O'Brien TF, Pablos-Mendez A, Klugman KP 2005. Antimicrobial Resistance in Developing Countries. Part I: Recent Trends and Current Status. Lancet. Infect. Dis. 5, 481-493.

Oliveira DC, Tomasz A, de Lencastre H. 2001. The Evolution of Pandemic Clones of Methicillin-resistant *Staphylococcus aureus*: Identification of Two Ancestral Genetic Backgrounds and the Associated mec Elements. Microb. Drug Resist. 7, 349-361.

Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S. 2007. Violacein and Biofilm Production in *Janthinobacterium lividum*. J Appl. Microbiol., 102, 992-999.

Périchon B, Courvalin P. 2009. VanA-type Vancomycin-resistant *Staphylococcus aureus*. Antimicrob. Agents Chemother. 53, 4580-4587.

Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate: Carbohydrate Phosphotransferase Systems of Bacteria. Microbiol. Rev. 57, 543-594.

Reiss S, Pané-Farré J, Fuchs S, François P, Liebeke M, Schrenzel J, Lindequist U, Lalk M, Wolz C, Hecker M, Engelmann S. 2012. Global analysis of the *Staphylococcus aureus* response to Mupirocin. Antimicrob. Agents Chemother. 56, 787-804.

Rettori D & Duran N. 1998. Production, Extraction and Purification of Violacein: an Antibiotic Pigment Produced by *Chromobacterium violaceum*. World J. Microb. Biot., 14, 685-688. Rettori, D. 1996. Produção, Extração e Purificação da Violaceína: um Antibiótico Produzido Pela *Chromobacterium violaceum*. Dissertação de Mestrado. Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brasil.

Rossi F. 2011. The Challenges of Antimicrobial Resistance in Brazil. Clin Infect Dis. 52, 1138-1143.

Sakata N, Terakubo S, Mukai T. 2005. Subcellular Location of the Soluble Lytic Transglycosylase Homologue in *Staphylococcus aureus*. Curr. Microbiol. 50, 47-51.

Sambrook J and Russel DW. 2001. Molecular Cloning: A Laboratory Manual. 3td Edition. Cold Spring harbor Laboratory Press, N.Y., pp. A8.40-A8.51.

Schneider T & Sahl HG. 2010. An Oldie But a Goodie - Cell Wall Biosynthesis as Antibiotic Target Pathway. Int. J Med. Microbiol. 300, 161-169.

Scott JC, Klein BA, Duran-Pinedo A, Hu L, Duncan MJ. A Two-Component System Regulates Hemin Acquisition in *Porphyromonas gingivalis*. 2013. PLoS One. 8, e73351.

Seeger MA & van Veen HW. 2009. Molecular Basis of Multidrug Transport by ABC Transporters. Biochim. et Biophys. Acta. 1794, 725–737.

Seil JT & Webster TJ. 2012. Antimicrobial Applications of Nanotechnology: Methods and Literature. Int. J Nanomedicine. 7, 2767-2781.

Shevchenko A, Wilm M, Vorm O, Mann M. 1996. Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Anal. Chem. 68, 850-858.

Shinoda K, Hasegawa T, Sato H, Shinozaki M, Kuramoto H, Takamiya Y, Sato T, Nikaidou N, Watanabe T, Hoshino T. 2007. Biosynthesis of Violacein: a Genuine Intermediate, Protoviolaceinic Acid, Produced by VioABDE, and Insight into VioC function. Chem. Commun. (Camb). 40, 140-4142.

Sianglum W, Srimanote P, Wonglumsom W, Kittiniyom K, Voravuthikunchai SP. 2011. Proteome Analyses of Cellular Proteins in Methicillin-resistant *Staphylococcus aureus* treated with Rhodomyrtone, a Novel Antibiotic Candidate. PLoS One. 6, e16628.

Singh VK, Syring M, Singh A, Singhal K, Dalecki A, Johansson T. 2012. An Insight into the Significance of the DnaK Heat Shock System in *Staphylococcus aureus*. Int. J. Med. Microbiol. 302, 242-252.

Skaar EP, Gaspar AH, Schneewind O. 2004. IsdG and IsdI, Heme-degrading Enzymes in the Cytoplasm of *Staphylococcus aureus*. J. Biol. Chem. 279, 436-443.

Skov R, Christiansen K, Dancer SJ, Daum RS, Dryden M, Huang YC, Lowy FD. 2012. Update on the Prevention and Control of Community-acquired Meticillin-resistant *Staphylococcus aureus* (CA-MRSA). Int. J Antimicrob. Agents. 39, 193-200.

Smolka MB, Martins D, Winck FV, Santoro CE, Casteralli RR, Ferrari F, Brum IJ, Galembeck E, Della Coletta Filho H, Machado MA, Marangoni S, Novello JC. 2003. Proteome Analysis of the Plant Pathogen *Xylella fastidiosa* Reveals Major Cellular and Extracellular Proteins and a Peculiar Codon Bias Distribution. Proteomics. 3, 224-237.

Song Y, Lunde CS, Benton BM, Wilkinson BJ. 2013. Studies on the Mechanism of Telavancin Decreased Susceptibility in a Laboratory-derived Mutant. Microb. Drug Resist. 19, 247-255.

Stanton TB. 2013. A Call for Antibiotic Alternatives Research. Trends Microbiol. 21, 111-113.

Stapleton MR, Horsburgh MJ, Hayhurst EJ, Wright L, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. 2007. Characterization of IsaA and SceD, Two Putative Lytic Transglycosylases of *Staphylococcus aureus*. J. Bacteriol. 189, 7316-7325. Stein T. 2008. Whole-cell Matrix-assisted Laser Desorption/ionization Mass Spectrometry For Rapid Identification of Bacteriocin/lantibiotic-Producing Bacteria. Rapid Commun. Mass Spectrom. 22, 1146-1152.

Steussy CN, Vartia AA, Burgner JW 2nd, Sutherlin A, Rodwell VW, Stauffacher CV (2005). X-ray crystal structures of HMG-CoA synthase from *Enterococcus faecalis* and a complex with its second substrate/inhibitor acetoacetyl-CoA. Biochemistry. 44, 14256-14267.

Stokes NR, Baker N, Bennett JM, Berry J, Collins I, Czaplewski LG, Logan A, Macdonald R, Macleod L, Peasley H, Mitchell JP, Nayal N, Yadav A, Srivastava A, Haydon DJ. 2013. An Improved Small-molecule Inhibitor of FtsZ with Superior In Vitro Potency, Drug-like Properties, and In Vivo Efficacy. Antimicrob. Agents Chemother. 57, 317-325.

Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillancourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Ramtohul Y, Langlois E, Landry F, Reid JC, Parthasarathy G, Sharma S, Baryshnikova KJ, Pinho MG. SM, Roemer T. 2012. A, Lumb Soisson Restoring Methicillinresistant *Staphylococcus aureus* Susceptibility to β -lactam Antibiotics. Sci. Transl. Med 4, 126ra35.

Tong SY, Chen LF, Fowler VG Jr. 2012. Colonization, Pathogenicity, Host Susceptibility, and Therapeutics for *Staphylococcus aureus*: What is the Clinical Relevance? Semin. Immunopathol. 34, 185-200.

Turlej A, Hryniewicz W, Empel J. 2011. Staphylococcal Cassette Chromosome mec (Scemec) Classification and Typing Methods: an Overview. Pol. J Microbiol. 60, 95-103.

Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ, Singh VK, Jayaswal RK, Wilkinson BJ (2003). Genome-wide Transcriptional Profiling of the Response of *Staphylococcus aureus* to Cell-wall-Active Antibiotics Reveals a Cell-wall-Stress Stimulon. Microbiology. 149, 2719-2732.

124

van Belkum A, Melles DC, Nouwen J, van Leeuwen WB, van Wamel W, Vos MC, Wertheim HF, Verbrugh HA. 2009. Co-evolutionary Aspects of Human Colonization and Infection by *Staphylococcus aureus*. Infect. Genet. Evol. 9, 32-47.

Van Bramer, S. 1998. gNMR. Concepts in Magnetic Resonance. 10, 195–196.

Vasudevan P, McElligott J, Attkisson C, Betteken M, Popham DL. 2009. Homologues of the *Bacillus subtilis* SpoVB Protein are Involved in Cell Wall Metabolism. J Bacteriol. 191, 6012-6019.

Vaughan S, Wickstead B, Gull K, Addinall SG. 2004. Molecular Evolution of FtsZ Protein Sequences Encoded within the Genomes of Archaea, Bacteria, and Eukaryota. J Mol. Evol. 58, 19-29.

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a Revolutionary Tool for Transcriptomics. Nat. Ver. Genet. 10, 57-63.

Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. 2003. Genetic Analysis of a High-level Vancomycin-resistant Isolate of *Staphylococcus aureus*. Science. 302, 1569-1571.

Westergren G & Krasse B. 1978. Evaluation of a Micromethod for Determination of *Streptococcus mutans* and *Lactobacillus* Infection. J. Clin. Microb. 82-83.

Westermann AJ, Gorski SA, Vogel J. 2012. Dual RNA-seq of Pathogen and Host. Nat. Rev. Microbiol. 10, 618-630.

Wootton M, Bennett PM, MacGowan AP, Walsh TR. 2005. Reduced Expression of the *atl* Autolysin Gene and Susceptibility to Autolysis in Clinical Heterogeneousglycopeptide-Intermediate *Staphylococcus aureus* (hGISA) and GISA Strains. J Antimicrob. Chemother. 56, 944-947.

World Health Organization (WHO). Disponível em www.who.int. Acesso em 20/11/2010.

Yang LH, Xiong H, Lee OO, Qi SH, Qian PY. 2007. Effect of Agitation on Violacein Production in *Pseudoalteromonas luteoviolacea* isolated from a Marine Sponge. Lett. Appl. Microbiol. 44, 625-630.

Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, Byrne B, Cecchini G, Iwata S. 2003. Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation. Science. 299, 700-704.

Yokoyama T, Shaikh TR, Iwakura N, Kaji H, Kaji A, Agrawal RK. 2012. Structural Insights Into Initial and Intermediate Steps of the Ribosome-Recycling Process. Embo. J. 31, 1836-1846.

8. ANEXOS

Certificado de análise da Violaceína (Sigma-Aldrich)

Certificate of Analysis

Product Name	Violacein from Janthinobacterium lividum,	
Froduct Name	${>}98\%$ (violacein (minimum 85% violacein) and deoxyviolacein, HPLC)	
Product Number	V9389	
Product Brand	SIGMA	
CAS Number	548-54-9	
Molecular Formula	$C_{20}H_{13}N_3O_3$	
Molecular Weight	343.34	
Storage Temp	2-8°C	
TEST	SPECIFICATION	LOT 118K4041 RESULTS
TEST	SPECIFICATION DARK BLUE TO VIOLET POWDER	LOT 118K4041 RESULTS
TEST APPEARANCE	SPECIFICATION DARK BLUE TO VIOLET POWDER CLEAR DARK BLUE SOLUTION AT	LOT 118K4041 RESULTS DARK BLUE POWDER
TEST APPEARANCE SOLUBILITY	SPECIFICATION DARK BLUE TO VIOLET POWDER CLEAR DARK BLUE SOLUTION AT 10 MG/ML OF	LOT 118K4041 RESULTS DARK BLUE POWDER CONFORMS
TEST APPEARANCE SOLUBILITY	SPECIFICATION DARK BLUE TO VIOLET POWDER CLEAR DARK BLUE SOLUTION AT 10 MG/ML OF DIMETHYLSULFOXIDE	LOT 118K4041 RESULTS DARK BLUE POWDER CONFORMS
TEST APPEARANCE SOLUBILITY PROTON NMR SPECTRUM	SPECIFICATION DARK BLUE TO VIOLET POWDER CLEAR DARK BLUE SOLUTION AT 10 MG/ML OF DIMETHYLSULFOXIDE CONSISTENT WITH STRUCTURE	LOT 118K4041 RESULTS DARK BLUE POWDER CONFORMS
TEST APPEARANCE SOLUBILITY PROTON NMR SPECTRUM CARBON	SPECIFICATION DARK BLUE TO VIOLET POWDER CLEAR DARK BLUE SOLUTION AT 10 MG/ML OF DIMETHYLSULFOXIDE CONSISTENT WITH STRUCTURE 69.32 - 70.32% (AS IS)	LOT 118K4041 RESULTS DARK BLUE POWDER CONFORMS 69.50% (AS IS)
TEST APPEARANCE SOLUBILITY PROTON NMR SPECTRUM CARBON NITROGEN	SPECIFICATION DARK BLUE TO VIOLET POWDER CLEAR DARK BLUE SOLUTION AT 10 MG/ML OF DIMETHYLSULFOXIDE CONSISTENT WITH STRUCTURE 69.32 - 70.32% (AS IS) 11.73 - 12.73% (AS IS)	LOT 118K4041 RESULTS DARK BLUE POWDER CONFORMS 69.50% (AS IS) 12.20% (AS IS)
TEST APPEARANCE SOLUBILITY PROTON NMR SPECTRUM CARBON NITROGEN PURITY BY HPLC	SPECIFICATION DARK BLUE TO VIOLET POWDER CLEAR DARK BLUE SOLUTION AT 10 MG/ML OF DIMETHYLSULFOXIDE CONSISTENT WITH STRUCTURE 69.32 - 70.32% (AS IS) 11.73 - 12.73% (AS IS) > OR = 98%	LOT 118K4041 RESULTS DARK BLUE POWDER CONFORMS 69.50% (AS IS) 12.20% (AS IS) 100%

RECOMMENDED RETEST

3 YEARS

QC RELEASE DATE

Colney Buel

Rodney Burbach, Manager Quality Control St. Louis, Missouri USA SEPTEMBER 2011 DECEMBER 2008

Comissão de Ética na Experimentação Animal CEEA/Unicamp

CERTIFICADO

Certificamos que o Protocolo nº <u>1779-1</u>, sobre "<u>Violaceína livre e</u> <u>nanoencapsuladas: análise dos mecanismos da atividade antimicrobiana</u> <u>sobre Staphylococcus aureus e parâmetros farmacocinéticos</u>", sob a responsabilidade de <u>Prof. Dr. Marcelo Brocchi / Bruna de Araujo Lima</u>, está de acordo com os Princípios Éticos na Experimentação Animal adotados pelo Colégio Brasileiro de Experimentação Animal (COBEA), tendo sido aprovado pela Comissão de Ética na Experimentação Animal – CEEA/Unicamp em <u>16 de março</u> <u>de 2009</u>.

CERTIFICATE

We certify that the protocol nº <u>1779-1</u>, entitled "<u>Free and nanoparticles-loaded</u> <u>violacein: analyses of antimicrobial activity mechanisms against</u> <u>Staphylococcus aureus and pharmacokinetics parameters</u>", is in agreement with the Ethical Principles for Animal Research established by the Brazilian College for Animal Experimentation (COBEA). This project was approved by the institutional Committee for Ethics in Animal Research (State University of Campinas - Unicamp) on <u>March 16, 2009</u>.

Campinas, 16 de março de 2009.

Profa. Dra. Ana Maria A. Guaraldo Presidente

CEEA – Unicamp Caixa Postal 6109 13083-970 Campinas, SP – Brasil

Fátima Alonso Secretária Executiva

Telefone: (19) 3521-6359 E-mail: comisib@unicamp.br http://www.ib.unicamp.br/ceea/

CEUA/Unicamp

Comissão de Ética no Uso de Animais CEUA/Unicamp

CERTIFICADO,

Certificamos que o projeto "<u>Análise dos Mecanismos da Atividade</u> <u>Antimicrobiana da Violaceína sobre Staphylococcus aureus e Parâmetros</u> <u>Farmacocinéticos</u>" (protocolo nº <u>2494-1</u>), sob a responsabilidade de <u>Prof. Dr.</u> <u>Marcelo Brocchi / Bruna de Araújo Lima</u>, está de acordo com os Princípios Éticos na Experimentação Animal adotados pela Sociedade Brasileira de Ciência em Animais de Laboratório (SBCAL) e com a legislação vigente, LEI Nº 11.794, DE 8 DE OUTUBRO DE 2008, que estabelece procedimentos para o uso científico de animais, e o DECRETO Nº 6.899, DE 15 DE JULHO DE 2009.

O projeto foi aprovado pela Comissão de Ética no Uso de Animais da Universidade Estadual de Campinas - CEUA/UNICAMP - em <u>15 de agosto de</u> <u>2011</u>.

Campinas, 15 de agosto de 2011.

Profa. Dra. Ana Maria A. Guaraldo Presidente

Fátima Alonso Secretária Executiva

CEUA/UNICAMP Caixa Postal 6109 13083-970 Campinas, SP – Brasil Telefone: (19) 3521-6359 E-mail: comisib@unicamp.br http://www.ib.unicamp.br/ceea/

DECLARAÇÃO

Declaro para os devidos fins que o conteúdo de minha dissertação de Mestrado/tese de Doutorado intitulada "Análise dos Mecanismos da Atividade Antimicrobiana da Violaceína sobre *Staphylococcus aureus*".

() não se enquadra no § 3º do Artigo 1º da Informação CCPG 01/08, referente a bioética e biossegurança.

Tem autorização da(s) seguinte(s) Comissão(ões):

() CIBio – Comissão Interna de Biossegurança, projeto No. _____, Instituição:

(XX) CEUA – Comissão de Ética no Uso de Animais, projetos No.: **1779-1** e **2494-1**, Insitutição: Universidade Estadual de Campinas - UNICAMP.

() CEP - Comissão de Ética em Pesquisa, protocolo No. ______, Instituição:

* Caso a Comissão seja externa ao IB/UNICAMP, anexar o comprovante de autorização dada ao trabalho. Se a autorização não tiver sido dada diretamente ao trabalho de tese ou dissertação, deverá ser anexado também um comprovante do vínculo do trabalho do aluno com o que constar no documento de autorização apresentado.

Atuno: (Bruna de Araujo Lima) Orientador: (Prof., Dr. Marcelo Brocchi)

Para uso da Comissão ou Comitê pertinente: (X) Deferido () Indeferido

paruido Juanaldo

Profa. Dra. ANA MARIA APARÉCIDA GUARALDA Presidente da CEUA/UNICAMP

Carimbo e assinatura

Para uso da Comissão ou Comitê pertinente: () Deferido () Indeferido

Carimbo e assinatura