UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE BIOLOGIA

FREY FRANCISCO ROMERO VARGAS

"Modificações químicas de fosfolipases A₂ procedentes do veneno de *Crotalus durissus ruruima* e *Crotalus durissus cumanensis* Estudos dos efeitos catalíticos e farmacológicos."

Este exemplar corresponde à redação final da tese defendida pelo(a) candidato (a) ADMICRO VARGAS FRANCISO FREY Servis Maringen e aprovada pela Comissão Julgadora.

Tese apresentada ao Instituto de Biologia para obtenção do Título de Mestre em Biologia Funcional e Molecular, na área de Bioquímica.

Orientador: Prof. Dr. Sergio Marangoni Co-Orientador: Prof. Dr. Luis Alberto Ponce Soto

Campinas, 2007

i

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE BIOLOGIA – UNICAMP

R664m	Romero Vargas, Frey Francisco Modificações químicas de fosfolipases A ₂ procedentes do veneno de <i>Crotalus durissus ruruima</i> e <i>Crotalus durissus</i> <i>cumanensis</i> : estudos dos efeitos catalíticos e farmacológicos / Frey Francisco Romero Vargas. – Campinas, SP: [s.n.], 2007.
Orientadores: Sérgio Marangoni, Luis Alberto Por Soto. Dissertação (mestrado) – Universidade Estadual Campinas, Instituto de Biologia.	
	 Proteínas - Modificações químicas. Crotalus durissus cumanensis. Crotalus durissus ruruima. Fosfolipase A₂. Crotoxina. Marangoni, Sérgio. Ponce-Soto, Luis Alberto. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título. (rcdt/ib)

Título em inglês: Chemical modifications of phospholipases A_2 coming from the poison of *Crotalus durissus ruruima* and *Crotalus durissus cumanensis*: studies of the catalytic and pharmacological effects.

Palavras-chave em inglês: Proteins - Chemical modification; *Crotalus durissus cumanensis*; *Crotalus durissus ruruima*; Phospholipase A₂; Crotoxin.

Área de concentração: Bioquímica.

Titulação: Mestre em Biologia Funcional e Molecular.

Banca examinadora: Sérgio Marangoni, Cláudio Chrysostomo Werneck, Jose Carlos Cogo. **Data da defesa**: 10/12/2007.

Programa de Pós-Graduação: Biologia Funcional e Molecular.

Campinas, 10 de Dezembro de 2007.

BANCA EXAMINADORA

Prof. Dr. Sergio Marangoni (Orientador)

Prof. Dr. Claudio Chrysostomo Werneck

Prof. Dr. Jose Carlos Cogo

10 ien yeen Assinatura

Assinatura

Assinatura

Profa. Dra. Bayki Hussein Kassab

Profa. Dra. Patricia da Silva Melo

Assinatura

Assinatura

Dedicatória

Dedico este trabalho aos Meus pais Antonio Romero e Martina Vargas,

Minha irmã Elizabeth,

E irmão Marco Antonio,

Pelo amor, compreensão, carinho e apoio constante.

"A DEUS por ter me dado força, saúde e coragem

Para enfrentar mais um desafio da vida"

Agradecímentos

À Universidade Estadual de Campinas (UNICAMP)

Meu mais sincero agradecimento ao Prof. Dr. Sergio Marangoni, Professor Principal do Departamento de Bioquímica e Laboratório de Química de Proteínas do Instituto de Biologia – UNICAMP, quem com seu conselho, ensino e guia fez possível a realização desta tese.

Assim mesmo, ao Prof. Dr. Luis Alberto Ponce Soto, quem guiou, colaborou e corrigiu muitos dos aspectos do presente trabalho, pelo apoio e incentivo dados à minha vida acadêmica e nossa amizade que foi forjada ao longo do tempo;

Aos professores que, dedicadamente, participaram como examinadores em meus exámenes de qualificação, acrescentado muito ao meu aprendizado;

Ao técnico Paulinho Baldasso pela amizade e valiosa colaboração durante a realização desse trabalho;

Aos meus companheiros Vera, Simoni e Douglas por todo o trabalho compartilhado no laboratório por sua ajuda, ensino, correções e amizade;

Aos meus amigos e colegas por suas importantes sugestões na realização desse trabalho.

Aos demais colegas e amigos que contribuíram não só com sua amizade, mas com contribuições que direta ou indiretamente enriqueceram este trabalho.

A todos vocês toda minha estimação.

Índice

			Pág.
	Lista	de Abreviações	xi
	Resumo		
	Abstr	act	XV
I.	Intro	lução	01
	1.1.	Aspectos gerais do envenenamento crotálico	02
	1.2.	Características e distribuição geográfica das serpentes crotálicas	03
		1.2.1. Crotalus durissus cumanensis	04
		1.2.2. Crotalus durissus ruruima	05
	1.3.	Composição do veneno crotálico	05
		1.3.1. Crotamina	06
		1.3.2. Convulsina	07
		1.3.3. Giroxina	07
		1.3.4. Crotoxina	08
	1.4.	Mecanismo de ação dos venenos crotálicos	09
		1.4.1. Acão neurotóxica	09
		1.4.2. Acão miotóxica	10
		1.4.3. Ação coagulante	11
		1.4.4. Ação edematizante	11
	1.5.	Efeitos clínicos do envenenamento crotálico	12
		1.5.1. Manifestações locais do envenenamento	12
		1.5.2. Manifestações sistêmicas do envenenamento	12
	1.6.	PLA ₂ Crotálica	13
		1.6.1. Especificidade farmacológica	15
	1.7.	Estrutura e função das PLA_2s	20
	1.8.	Modificações químicas	23
		I.8.1. Modificação química do resíduo de Histidina	24
		I.8.2. Modificação química do resíduo de Lisina	27
		I.8.3. Modificação química do resíduo de tirosina	28
Π	Objet	ivos	30
III	I Materiais e Métodos		31
	3.1.	Animais	31
	3.2.	Venenos	31
	3.3.	Purificação do veneno total por HPLC de fase reversa	31
	3.4.	Eletroforese em SDS-PAGE	31
	3.5.	Atividade enzimática	32
	3.6.	Modificação química	32
		3.6.1. Alquilação de histina com p-bromofenacil bromide	32
		3.6.2. Acetilação de lisina com anidro acético	32
		3.6.3. Sulfonilação da Tirosina com NBSF	33
	3.7.	Determinação da estrutura primária (Següenciamento)	33
		3.7.1. Redução e Carboximetilação	33
		3.7.2. Digestão enzimática e purificação dos fragmentos peptídicos	33
		3.7.3. Sequenciamento N-terminal das isoformas PLA_2	34

	3.8	Determi	nação dos níveis de CK plasmáticos em camundongos inoculados por via scular (miotoxicidade local) e intravenosa (miotoxicidade sistêmica) com	
		a PLA_2	de <i>Crotalus durissus cumanensis</i> e PLA ₂ de <i>Crotalus durissus ruruima.</i>	24
	39	Determi	nação da atividade inflamatória das frações Cdc-9, Cdc-10, Cdr-12 e Cdr-	54
	5.7.	13 de Ci	rotalus durissus cumanensis e Crotalus durissus ruruima	35
	3.10.	Análise	estatística	35
IV	Resul	tados		36
	4.1.	Purifica	ção e caracterização físico-químico das isoformas de PLA ₂ dos venenos	
		Crotálic	08	36
		4.1.1.	Purificação das isoformas de PLA ₂ Cdc-9 e Cdc-10 isoladas a partir do veneno total de <i>Crotalus durissus cumanensis</i> através de uma coluna C-18 μ-Bondapack (Waters) acoplada a um sistema de HPLC de fase reversa	36
		4.1.2.	Purificação das isoformas de PLA ₂ Cdr-12 e Cdr-13 isoladas a partir do veneno total de <i>Crotalus durissus ruruima</i> através de uma coluna C-18	50
			μ -Bondapack (Waters) acoplada a um sistema de HPLC de fase reversa	37
	4.2.	Determi	nação da estrutura primária das isoformas de PLA ₂ Cdc-9, Cdc-10	20
	4.2	1soladas	a partir do veneno total de <i>Crotalus durissus cumanensis</i> .	38
	4.3.	Determi	nação da estrutura primaria das isolormas de PLA ₂ Cur-12 e Cur-15,	20
	1 1	Dotormi	a partir do veneno total de Crotatus aurissus ruruma pação do atividado DLA, dos isoformas Cdo Q. Cdo 10. Cdr 12 o Cdr 12:	39
	4.4.	nativas e	Ha_{2} and HA_{2} a	
		Crotalu	s durissus cumanansis e Crotalus durissus ruruima	40
	4.5.	Caracterização miotóxica local e sistêmica das isoformas de PLA ₂ nativas e modificados. (His, Lys, e Tyr) isoladas a partir do veneno total de <i>Crotalus</i>		
		durissus	cumanensis e Crotalus durissus ruruima.	41
		4.5.1.	Efeitos das modificações químicas nos resíduos de His. Lys e Tyr da	•••
			PLA ₂ Cdc-9 procedente do veneno de <i>Crotalus durissus cumanensis</i> na	
			miotoxicidade local.	41
		4.5.2.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
			PLA ₂ Cdc-9 procedente do veneno de <i>Crotalus durissus cumanensis</i> na miotoxicidade sistêmica.	42
		4.5.3.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
			PLA ₂ Cdc-10 procedente do veneno de Crotalus durissus cumanensis	
			na miotoxicidade local.	43
		4.5.4.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
			PLA ₂ Cdc-10 procedente do veneno de <i>Crotalus durissus cumanensis</i>	
			na miotoxicidade sistêmica.	44
		4.5.5.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
			PLA ₂ Cdr-12 procedente do veneno de C <i>rotalus durissus ruruima</i> na	15
		156	mioloxicidade local Efeites des modificações químiços pos resíduos de His. Lus e Tur de	43
		4.3.0.	PLA ₂ Cdr-12 procedente do veneno de <i>Crotalus durissus ruruima</i> na	
			miotoxicidade sistêmica.	46
		4.5.7.	Efeitos das modificações químicas nos residuos de His, Lys e Tyr da	
			PLA ₂ Car-13 procedente do veneno de <i>Crotalus durissus ruruima</i> na mietovicidade local	17
		158	nnouxicitate lucal. Efeitos das modificações químiças nos resíduos de His. Lvs o Tur de	4/
		т.Ј.0.	PI A ₂ Cdr-13 procedente do veneno de <i>Crotalus durissus ruruima</i> na	
			miotoxicidade sistêmica	48
	4.6.	Efeitos o	das modificações químicas nas PLA_2 crotálicas na atividade edematizante.	49

	4.6.1.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
		PLA ₂ Cdc-9 procedente do veneno de Crotalus durissus cumanensis na	
		atividade edematizante (pro - inflamatória).	49
	4.6.2.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
		PLA ₂ Cdc-10 procedente do veneno de Crotalus durissus cumanensis	
		na atividade edematizante (pro - inflamatória).	50
	4.6.3.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
		PLA ₂ Cdr-12 procedente do veneno de Crotalus durissus ruruima na	
		atividade edematizante (pro - inflamatória).	51
	4.6.4.	Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da	
		PLA ₂ Cdr-13 procedente do veneno de Crotalus durissus ruruima na	
		atividade edematizante (pro inflamatória).	52
V.	Discussão	` * ´´	53
VI	Conclusões		61
VII	Bibliografia		62

Lista de Abreviações.

Lista de Abreviações – Cromatografias.

Sephadex G-25	Coluna de exclusão molecular com matriz composta de dextrano
PDA 991	Photodiode Array Detector
HPLC	High (Pressure/ Performace) Liquid Chromatography
RP HPLC	Reverse Phase HPLC
C18	18 High Carbon Load, High activity silica
μ-Bondapack C18	Coluna de HPLC com n-octadecyl como base da fase estacionária
YM-3	Membrana Amicom com poros de 3000 Daltons

Lista de Abreviações - Reagentes, Sais, Tampões.

TFA	Ácido trifluoracético	
Tampão A	TFA 0,1% utilizado para cromatografia de HPLC-RP	
Tampão BAcetonitrila 66% utilizado em cromatografia de HPLC-RI		
PAGE	Eletroforese em Gel de poliacrilamida	
SDS	Dodecil Sulfato de Sódio, Lauril Sulfato de Sódio	
Tris	Tris[Hidroximetil]aminometano	
DTT	Ditiotreitol	
EDTA	Ácido etilenodiamino tetracético	
p-BPB	<i>p</i> -bromofenacil bromide	
NBSF	Nitrobencenosulfonil fluoride	
РТН	Phenil Tio Hidantoina	
PBS	Tampão Fosfato Salina	

Lista de Abreviações – frações (isoformas)

PLA ₂	Fosfolipase A ₂
Cdc-9, Cdc-10	Isoformas de PLA2 de Crotalus durissus cumanensis
Cdr-12, Cdr-13	Isoformas de PLA2de Crotalus durissus ruruima
PLC	Fosfolipase C
SNC	Sistema Nervoso Central
SNP	Sistema Nervoso Periférico
СК	Creatina quinase
LDH	Lactato Desidrogenase
AST	Aspartato Aminotransferase
IRA	Insuficiência Respiratória Aguda
OS_2	Receptor de PLA ₂
САРТ	Proteína Torpedo Aceptora de Crotoxina
TCBP-49	Proteína de União a Ca ²⁺ Associado à Taipoxina
PLA ₂ K49	Homóloga de Fosfolipase A2, Lisina 49, cataliticamente inativa.
PLA ₂ D49	Fosfolipase A ₂ , Aspartato 49, cataliticamente ativa.

Lista de Abreviações – aminoácidos.

Ácido Aspártico	Asp	D
Ácido Glutâmico	Glu	Е
Alanina	Ala	A
Arginina	Arg	R
Asparagina	Asn	Ν
Aspartato/Asparagina	Asx	
Cisteína	Cys	С
Fenilalanina	Phe	F
Glicina	Gly	G
Glutamato/Glutamina	Glx	Q
Histidina	His	Н
Isoleucina	Ile	Ι
Leucina	Leu	L
Lisina	Lys	K
Metionina	Met	М
Prolina	Pro	Р
Serina	Ser	S
Tirosina	Tyr	Y
Treonina	Thr	Т
Triptofano	Trp	W
Valina	Val	V

RESUMO

As serpentes do gênero Crotalus incluem várias espécies amplamente distribuídas no continente Americano. Os venenos crotálicos das serpentes encontradas no Brasil apresentam características próprias. Entre os componentes bioativos, as fosfolipases A_2 (E.C. 3.1.1.4.) destacam-se por ser a principal componente, tais enzimas são dependentes de cálcio e hidrolisam a ligação sn-2 éster dos fosfolipídios e alem disso induz uma variedade de efeitos.

Nesta tese, primeiramente nos desenvolvemos um novo protocolo de purificação com uma coluna C18 μ -Bondapack em HPLC de fase reversa destas toxinas, Os perfis obtidos mostraram que o veneno total da espécie *Crotalus durissus cumanensis* foi fracionado em quatorze picos, onde as frações 9 e 10 apresentam atividade PLA₂. Do veneno de *Crotalus durissus ruruima* foram obtidos dezoito picos, sendo que as frações 12 e 13 apresentaram atividade PLA₂ também.

Assim, neste trabalho, nos apresentamos o isolamento, purificação determinação de sua estrutura primaria de duas isoformas fosfolipase A₂ para cada espécie crotálica: *Crotalus durissus cumanensis* e *Crotalus durissus ruruima* denominados como Cdc-9, Cdc-10, Cdr-12 e Cdr-13, respectivamente. Todas elas são formadas por 122 resíduos de aminoácidos.

O alinhamento dos aminoácidos, das isoformas Cdc-9, Cdc-10, Cdr-12 e Cdr-13 mostram um alto nível 93.4 % de homologia seqüencial para as duas primeiras e 92.6% para as outras, observaram-se com respeito a distintas PLA_2 que diminuíram para cerca de 50 % de homologia. Todas elas foram identificadas como miotoxinas e apresentaram atividade fosfolipásica.

Foi possível realizar, a partir das isoformas nativas um processo de modificação química, utilizando-se reagentes seletivos para amino ácidos específicos (His, Tyr e Lys) os quais estão envolvidos na rede catalítica ou na interação com sua interface, logo após, foram analisadas quanto a suas características físico-químicas e biológicas.

Nossos estudos de miotoxicidade local e sistêmica de todas as isoformas nativas e modificadas dos venenos crotálicos *in vivo*, evidenciaram o incremento nos níveis de creatina cinase (CK) séricos e nas isoformas modificadas foram inibidas na sua atividade catalítica ou devido às mudanças estruturais que afetam outras regiões alem do sitio catalítico, revelando a importância de conhecer a relação estrutura-função. Em contraste, o efeito indutor de edema, não pode ser rapidamente correlacionado com suas diferenças estruturais.

Os resultados apresentados neste trabalho proporcionam a obtenção de uma ferramenta bioquímica útil para acrescentar nosso conhecimento da relação dos sítios farmacológicos alem da região catalítica nas fosfolipases A₂.

ABSTRACT

The serpents of the genus Crotalus include several species widely distributed in the American continent. The poisons crotálicos of the serpents found in Brazil, they present own characteristics. Among the components bioativos, the phospholipases A_2 (E.C. 3.1.1.4.) standing out to be the main component, such enzymes are dependents of calcium and hidrolise the bond sn-2 éster of the fosfolipídios and besides that induced a variety of effects.

In this thesis, firstly we develop a new purification protocol with a column C18 μ -Bondapack in HPLC of reverse phase of these toxins, The obtained profiles showed that the total poison of the species Crotalus durissus cumanensis was fractioned in fourteen picks, where the fractions 9 and 10 present activity PLA₂. Of the poison of Crotalus durissus ruruima they were obtained eighteen picks, and the fractions 12 and 13 also presented activity PLA₂.

This way, in this work, we present the isolation, purification, determination of his primary structure of two isoforms fosfolipase A₂ for each species crotálics: *Crotalus durissus cumanensis* and *Crotalus durissus ruruima* denominated like Cdc-9, Cdc-10, Cdr-12 and Cdr-13, respectively. All of them are formed by 122 residues of amino acids.

The alignment of amino acids of the isoforms Cdc-9, Cdc-10, Cdr-12 and Cdr-13 it shows a high level of sequential homology 93.4% for the first two and 92.6% for the other ones, they were observed with regard to different PLA_2 that decreased for about 50% of homology. All of them were identified as miotoxins and they presented phospholipasic activity.

it was possible to carry out starting from the native isoforms a process of chemical modification, being used selective reagents for amino specific acids (His, Tyr and Lys) which are involved in the catalytic net or in the interaction with his interface, soon after, they were analyzed as for their physio-chemical and biological characteristics.

Our studies of local and systemic miotoxicity of all the native and modified isoforms in vivo of the poisons crotálicos, evidenced the increment in the levels of creatine kinase (CK) séricos and in the modified isoformas they were inhibited in his activity catalytic or due the structural changes that they affect other regions besides the catalytic place, revealing the importance of knowing the relationship structure-function. In contrast, the effect producing edema, it cannot be correlated quickly with their structural differences.

The results presented in this work provide the obtaining of an useful biochemical tool to increase our knowledge of the relationship of the pharmacological sites also of the catalytic region in the phopholipases A_2 .

I. INTRODUÇÃO

Os envenenamentos por mordida de serpentes constituem um importante problema de Saúde pública, sendo um evento comum nos países da área tropical e subtropical. Na América latina, especificamente, os casos de acidentes ofídicos ocorridos em todo Brasil são causados na grande maioria por mordida de representantes da família Viperidae, dos gêneros *Bothrops* (jararaca), *Crotalus* (cascavel), *Lachesis* (surucucu) e *Micrurus* (corais verdadeiras), tais envenenamentos por vipéridos se caracterizam por uma fisiopatologia complexa, que incluem efeitos locais e em casos moderados e severos, alterações sistêmicas. Uma exceção para este padrão fisiopatológico encontrase em algumas subespecies da cascavel sul americano, especialmente *Crotalus durissus terrificus*, o qual induz alterações locais irrelevantes, caracterizando-se mais por potentes atividades neurotóxica e miotóxica sistêmicas além de alterações renais e da coagulação (Azevedo-Marques. M.M. *et al.*, 1987; Sakate M. et. al., 2002).

Alguns centros de pesquisa têm se interessado no estudo dos múltiplos aspectos destas serpentes, incluindo sua biologia, características do seu veneno, aspectos epidemiológicos do acidente e a clínica e tratamento. Normalmente a identificação do acidente é baseada na sintomatologia e confirmada pelas análises laboratoriais. Deve se ressaltar que a elucidação da fisiopatologia dos envenenamentos é fundamental para o avanço na terapia dos acidentes ofídicos.

O estudo desses venenos vem contribuindo para o conhecimento de diversos processos fisiológicos e fisiopatológicos, destacando-se a estrutura e a função dos receptores nicotínicos, a cascata de coagulação sanguínea, a fibrinólise e o processo inflamatório. Por conseguinte, muitas pesquisas têm sido dirigidas com o intuito de melhorar nossa compreensão sobre a ação dos venenos das serpentes e das toxinas isoladas, estabelecendo assim um conhecimento das características farmacológicas e moleculares das toxinas das serpentes o que constitui um importante e fértil campo de pesquisa (Cardoso J.L.C. *et al.*, 2003).

O tema da relação estrutura-função destas PLA₂s têm recebido especial atenção por parte de diversos grupos. Tem se demonstrado que a atividade enzimática não é indispensável para uma ação miotóxica, mesmo que a hidrólise de fosfolipídios aumente a capacidade citotóxica nas PLA₂s cataliticamente ativas. Estudos estruturais e imunoquímicos, além de trabalhos com peptídeos sintéticos, são utilizados para se entender a relação estrutura-função e estes têm se enriquecido com estudos de modificações químicas de aminoácidos e mais recentemente pela clonagem e expressão de algumas destas PLA₂s. Isto abre as possibilidades do uso de mutagêneses dirigidas na identificação das regiões responsáveis destes efeitos.

1.1. Aspectos gerais do envenenamento crotálico.

Segundo alguns autores, as serpentes peçonhentas podem ser classificadas em uma única família, *Viperidae* (Cook, 1996; Nishioka, 1994; Nunes, 1994). Outros autores, devido a estudos mais recentes, dividem as famílias das serpentes peçonhentas em duas: família *Viperidae*, que não possui fosseta loreal e família *Crotalidae*, com fosseta loreal, particularidade que aparece em um estágio filogenético mais avançado (Mosmann, 2001). No Brasil, as serpentes da família *Crotalidae* são representadas pelos gêneros *Bothrops, Crotalus* e *Lachesis* (Cook, 1996; Nishioka, 1994; Nunes, 1994; Osweiler, 1998). Dois terços das serpentes da família *Crotalidae* vivem na América e não existem na África, Europa e Austrália (Mosmann, 2001).

As serpentes da família *Crotalidae* apresentam dentição solenóglifa, que significa presença de um par de dentes (presas) anteriores, móveis e caniculadas no maxilar superior (Goyffon e Chippaux, 1990; Nunes, 1994). Este canal central se comunica com o canal excretor da glândula de veneno (Guimarães, 1974; Leitão-de-Araújo e Alves, 1976; Rosenfeld, 1961). Estes dentes são móveis e, em repouso estão voltados para trás dentro de uma larga prega mucosa (Barraviera, 1994; Mora *et al.*, 1996). Quando a serpente abre a boca estes dentes se deslocam para frente, durante o mecanismo do bote (Buononato, 2001). O restante da dentição é maciça. As serpentes com dentição solenóglifa não mordem e sim, batem com a boca e os dentes ("picam"), injetando o veneno pelo canal que possuem (Rosenfeld *et al.*, 1971), como se observa na Figura 1.

Figura 1. Tipo de aparato venenoso das serpentes.

Estas serpentes possuem entre os olhos e o nariz um orifício denominado de fosseta loreal ou lacrimal (Buschle, 1985; Osweiler, 1998; Santos, 1981). É um órgão termoreceptor muito desenvolvido, vital para a sua sobrevivência (Guimarães, 1974; Mora *et al.*, 1996). Estes orifícios possuem uma membrana ricamente inervada, com terminações nervosas capazes de captar as variações de calor de até 0.5 °C em um raio de 5 metros (Buononato, 2001). É através da fosseta loreal, que as serpentes peçonhentas percebem a aproximação dos animais, especialmente dos de sangue quente e orienta suas atitudes ofensivas ou defensivas, quando estão em busca de alimento ou diante de um inimigo (Santos, 1981).

O veneno da subespécie *Crotalus durissus terrificus* encontra-se melhor caracterizado, sendo considerado representativo do envenenamento crotálico de qualquer das subespécies catalogadas no país.

O veneno crotálico quase não produz reação no local, embora possa estar presente um discreto edema na região acometida. A dor é pouco freqüente e quando ocorre não é intensa. Há relatos de adormecimento local que parece estar relacionada a ações antinociceptiva e analgésica do veneno (Picolo e Cury, 2004). O envenenamento crotálico é caracterizado por manifestações sistêmicas decorrentes das atividades neurotóxica, miotóxica e coagulante do veneno (Azevedo-Marques *et al.*, 2003) e delas dependem a fisiopatologia do envenenamento humano.

1. 2. Características e distribuição geográfica das serpentes crotálicos.

As serpentes são encontradas em quase todo globo terrestre sendo mais freqüente nas regiões tropicais e subtropicais por serem pecilotérmicos (Jim e Sakate, 1994). A espécie *Crotalus durissus terrificus* é conhecida popularmente como cascavel, boiçininga, cascavel de quatro ventas, cobra de cascavel, maracabóia e maracá (Brasil, 2001; Barraviera, 1990; Campbell e Lamar, 1989; Tu, 1991).

A distribuição geográfica das serpentes encontra-se relacionada com seu comportamento bioecológico. Assim, as *Bothrops* e *Lachesis* se encontram em regiões úmidas de áreas tropicais e subtropicais, margens de rios e ravinas; enquanto que as *Crotalus* e *Micrurus* encontram-se preferivelmente nas savanas e regiões xerófilas (Rodriguez-Acosta *et al.*, 1999).

As serpentes do gênero *Crotalus* encontram-se, de modo geral, em campos abertos, áreas secas, arenosas e pedregosas, encostas de morro, cerrados, preferencialmente em rochedos espalhados pelo campo, dentro de buracos, em geral inacessíveis a pessoas, em cupinzeiros e plantações de cereais entre outras e raramente na faixa litorânea ou nas florestas úmidas (Rambo, 1994; Jorge e Ribeiro, 1992; Jim e Sakate, 1994).

Estes animais se alimentam de pequenos roedores como ratos, preás, filhotes de coelhos e pequenas aves (Barraviera, 1990; Leitão-de-Araújo e Alves, 1976). Seu corpo é maciço e musculoso de coloração pardo-escura, às vezes esverdeada ou amarela, com escamas superiores pontiagudas (Leitão-de-Araújo e Alves, 1976; Tu, 1991). Seu tamanho varia entre 1,20-1,80 metros (Mosmann, 2001).

As serpentes crotálicas são pouco agressivas e provocam acidentes graves (Lancini, 1979); elas não têm o costume de atacar e, quando estão excitadas, denunciam sua presença pelo ruído característico, através de um impulso nervoso faz soar o guizo ou chocalho, entrechocando as escamas semi-soltas da ponta da cauda (Brasil, 2001; Barraviera, 1990; Guimarães, 1974; Leitão-de-Araújo e Alves, 1976; Musse e Almeida, 1986; Rosenfeld, 1961). O chocalho é formado de matéria córnea (queratina) e se compõe de anéis paralelos articulados entre si.

As serpentes do gênero *Crotalus* encontradas no Brasil apresentam características consideradas também em outras serpentes peçonhentas da familia *Viperidae*, como cabeça triangular, possuem escamas na cabeça, olhos pequenos com pupilas em fendas e um par de fossetas loreais situado entre as narinas e a boca, dentes inoculadores de veneno do tipo solenóglifos. A referida fosseta funciona como detector térmico muito sensível, captando também as vibrações do ar, por intermédio da membrana que reveste o septo entre suas duas câmaras e na extremidade da cauda, guizo ou chocalho característico com anéis que estão relacionados ao número de mudas de pele (Jorge e Ribeiro, 1990; Barraviera, 1994; Belluomini, 1984).

No Brasil estão representadas apenas por uma espécie, a *Crotalus durissus* ou cascavel e são distribuídas em seis subespécies de serpentes do gênero Crotalus: *Crotalus durissus terrificus*, *Crotalus durissus collilineatus*, *Crotalus durissus cascavella*, *Crotalus durissus ruruima*, *Crotalus durissus marajoensis* e *Crotalus durissus trigonicus* (Sakate, 2002; Santoro *et al.*, 1999; Pinho, 2000).

1.2.1. Crotalus durissus cumanensis.

É uma das espécies mais comun e mais espalhadas da Venezuela e é responsável por um grande número de acidentes (Roze, 1966), sua distribuição comprende grande parte do país desde o nível do mar até uns 2500 metros sobre o mesmo (Kornacker, 1999). Seu veneno é composto principalmente por um complexo protéico de atividade neurotóxica denominado crotoxina, além de possuir atividade hemolítica, proteolítica, esterolítica e miotóxica. Embora seja uma serpente

endêmica da Venezuela existe uma região de contato com uma espécie brasileira chamada *Crotalus durissus ruruima*, encontrada no estado de Roraima.

1.2.2. Crotalus durissis ruruima

A subespécie *Crotalus durissus ruruima*, descrita por Hoge em 1965, é comumente encontrada nos campos cultivados do estado de Roraima do Norte de Brasil e savanas no Sul de Venezuela, situado nos limites entre Brasil, Venezuela e Guiana (Hoge e Romano, 1972; Dos-Santos, 2005; do Nascimento, 2000).

Assim como a *Crotalus durissus terrificus*, o veneno da espécie *Crotalus durissus ruruima* pode pertencer a uma das duas variedades, de acordo com a coloração delas, nomeado branco ou amarelo. Trazendo como conseqüência diferenças bioquímicas e biológicas, onde os venenos brancos de ruruima mostraram atividades letal, coagulante, miotóxica, edematogênica e hemolítica bem parecida aos venenos de *C. d. terrificus*. Para a variedade amarela, além disso, atividade hemorrágica, necrotizante, caseinolítica e de crotamina estavam presentes (Dos-Santos, 1993), sendo estes dois tipos de veneno produzidos por um único animal.

1. 3. Composição do veneno crotálico.

A peçonha crotálica é considerada a mais tóxica entre as peçonhas de serpentes brasileiras. A sua composição química é uma mistura extremamente complexa de proteínas farmacológica e bioquimicamente ativas e as lesões produzidas por estas, além de dependerem da natureza dos elementos desta mistura, dependem também da interação biológica de cada um deles (Dal Pai e Neto, 1994). Sendo soluções de substâncias tóxicas e não tóxicas elaboradas pelas glândulas salivares, algumas das principais frações do veneno crotálico já foram identificadas: crotoxina (crotapotina e fosfolipase A₂), crotamina, convulxina, giroxina, deltatoxina e histamina, (Vancetto *et al.*, 1995; Prado-Franceschi e Vital Brazil, 1981; Roodt, *et al.*, 1996), estas atuam alterando diversos processos fisiológicos (Markland, 1998; Pinho, 2000).

Tal composição e a própria toxicidade das substâncias contidas no veneno sofrem variações de acordo com a espécie de serpente, indivíduo, idade, sazonalidade e distribuição geográfica do réptil (Saravia, 2002; Hudelson, S. e Hudelson, P., 1995).

1. 3. 1. Crotamina

A crotamina é um polipeptídio básico e potencialmente menos tóxico que a crotoxina, mas sua ação é específica sobre a membrana muscular esquelética, provocando estado de fibrilação com contrações curtas e relaxamento demorado (Brasil, 1990), resultando em rabdomiólise, uma síndrome clínica de múltiplas etiologias, conseqüência da lesão muscular esquelética (Gabow *et al.*, 1982). Sua ocorrência faz parte do quadro clínico do envenenamento crotálico (Magalhães *et al.*, 1986; Azevedo-Marques *et al.*, 1990), com mioglobinemia, hiperfosfatemia, hiperkalemia, aumentos de creatinina e da enzima creatinafosfoquinase com intensa mialgia (Salvini *et al.*, 2001). Lago em 1996 estudou o envenenamento crotálico do tipo crotamina positivo em bovinos e observou elevação sérica da uréia e da creatinafosfoquinase, que atingiram altas concentrações no soro em 12 horas após do envenenamento até a morte dos animais. A enzima creatinafosfoquinase é específica do tecido muscular e seus valores séricos elevam-se significativamente quando acontece um esforço físico. Esse aumento é diretamente proporcional ao tamanho do esforço (Lago, 1996; Bernard e Divers, 1989).

A crotamina, neurotoxina de baixo peso molecular de caráter básico, isolada e caracterizada da peçonha de *Crotalus durissus terrificus*, (Gonçalves, J.M. 1956), *Crotalus durissus cascavella* (Toyama, O.D., *et al.*, 2005) e *Crotalus durissus cumanensis* (Ponce-Soto, *et al.*, 2007). Foi à primeira proteína estudada no Brasil sob o aspecto bioquímico e farmacológico. Esta pertence à família de toxinas previamente designadas de Miotoxinas de Polipeptídio Pequeno Básico (SBPM), cujos membros estão amplamente distribuídos através de venenos de serpentes do gênero *Crotalus* (Oguiura *et al*, 2005).

A atividade biológica da crotamina e dos outros membros de sua subfamília dentro das miotoxinas é caracterizada pela sua ação específica sobre a membrana muscular esquelética, causando danos ou a morte destas células. Esta ação se dá pela dilatação do retículo endoplasmático rugoso e sua conseqüente degeneração, conseqüência da alteração provocada pela proteína no transporte de íons de sódio através da membrana da célula muscular. A crotamina ativa canais de sódio quase que exclusivamente na membrana celular e nas fibras do músculo esquelético, induzindo um influxo desse cátion (Slotta e Fraenkel-Conrat, 1938) o que provoca o inchaço do retículo sarcoplasmático pela excessiva retenção de água. A inabilidade da célula em regular seu equilíbrio osmótico leva à sua degradação (Ownby, 1998).

Outro dado importante da crotamina recai sobre a sua potente ação analgésica, muitas vezes comparada à morfina, observada primeiramente em ratos (Hudelson e Hudelson, 1995; Mancin *et al*, 1998)

Primeiramente isolado por Gonçalves e Vieira em 1950, possui uma massa molecular de 4,88 kDa é composta por 42 aminoácidos (Laure, 1975; Oguiura *et al.*, 2005). Possuindo nove lisinas e duas argininas, é extremamente básica, com ponto isoelétrico de 10,3. A presença de seis cisteínas interligadas por pontes de dissulfeto confere à crotamina alta estabilidade conformacional. É uma molécula resistente ao calor, suportando temperaturas de 70 °C por 18 h, sem perder sua propriedade tóxica. Ao longo dos anos, a crotamina e suas similares têm sido estudadas em seus aspectos estruturais, funcionais e biofisicoquímicos com resultados revistos por Ownby (Ownby, 1998).

1. 3. 2. Convulxina

A convulxina é uma neurotoxina não letal, descoberta em 1967, é uma toxina de alto peso molecular, ácida e exerce um efeito convulsivante quando é injetada por via endovenosa em animais de experimentação (Barraviera, 1990; Mello *et al.*, 1989), porém quando se injeta no hipocampo dorsal em ratas, não induz um efeito convulsivante nem produz lesões celulares específicas (Mello *et al.*, 1989). Rapidamente ataca o sistema nervoso central (SNC), especificamente o terceiro par de nervos cranianos situados no mesencéfalo (Rosenfeld, 1971; Prado-Franceschi, 1990).

A convulxina é uma glicoproteína análoga à lectina C, que são proteínas ligantes de glicídios de membrana e causam aglutinação celular. A convulxina se liga ao complexo glicoproteína VI (receptor de colágeno) de plaquetas e ativam a fosfolipase C (PLC) intracelular, que ativa a plaqueta, induzindo a síntese de tromboxano A_2 e consequentemente causa agregação plaquetária ou aglutinação plaquetária *in vitro* (Barraviera, 1994; Francischetti *et al.*, 1997).

1. 3. 3. Giroxina

A giroxina é uma proteína ácida, uma fração farmacologicamente pouco conhecida, produz sintomas labirínticos e não é considerada letal em condições experimentais em camundongos (Barrio A., 1961; Barrabin *et al.*, 1978 e Alexander *et al.*, 1988). É um componente que mimetiza a ação da trombina (trombina-like) que é um dos componentes da cascata de coagulação dos mamíferos. Não é afetada por congelamento ou por tratamento com temperaturas ao redor de 40 °C por 15 minutos. (Prado-Franceschi, 1990).

1.3.4. Crotoxina

A fração maior do veneno é o complexo molar de proporção 1:1 denominado crotoxina. Esta é formada pelo complexo crotapotina fosfolipase, juntamente com a crotamina, convulxina e giroxina são responsáveis pelos principais efeitos neurotóxicos causados pelo envenenamento crotálico. Elas promoven a descoordenação motora, convulsões, salivação e paralisias (Amaral *et al.*, 1991; Hudelson S. e Hudelson P., 1995).

A crotoxina é uma proteína de 23 kDa isolada do veneno de *C. d. terrificus* (Slotta e Fraenkel-Conrat, 1938) que representa cerca do 50 % do peso seco total do veneno e constitui o principal determinante de sua toxicidade (Vital Brazil, 1966; Nascimento *et al.*, 1996;). Apresenta potente atividade neurotóxica, age na sinapse da placa motora provocando bloqueio da transmissão neuromuscular e morte devido à paralisia respiratória em animais experimentais (Vital Brazil, *et al.*, 1966; Breithaupt *et al.*, 1974). Sua ação é predominantemente pré-sináptica, inibindo a liberação de acetilcolina pelas terminações nervosas motoras (Vital Brazil e Excel, 1970; Chang e Lee, 1977; Hawgood e Smith, 1977).

Além da ação neurotóxica, a crotoxina exerce atividade miotóxica (Azevedo-Marques et al., 1982), hemolítica (Rosenfeld, 1971) e agregante plaquetária (Landucci et al., 1994). A crotoxina é um heterodímero, composta por uma subunidade básica chamada de crotoxina B com atividade PLA₂, com uma massa molecular de 14.5 kDa e por uma subunidade ácida, chamada de crotoxina A ou crotapotina, sem atividade enzimática com uma massa molecular de 9 kDa (Hendon e Fraenkel-Conrat, 1971; Breithaupt et al., 1974; Breithaupt, 1976; Puig et al, 1995; Roodt et al., 1996). As duas subunidades atuam em sinergismo, visto que, separado um do outro seu efeito tóxico é praticamente anulado, sendo dez vezes menor que a sua forma associada. A PLA2 é o componente principal e é responsável pelo desencadeamento dos efeitos farmacológicos ocasionados pelo complexo crotoxina. A PLA2 isoladamente é pouco tóxica e a crotapotina é atóxica atuando como uma molécula "chaperone" das fosfolipases A2 de Crotalus durissus terrificus. Sugere-se que a crotapotina atue evitando sua ligação a sítios não-específicos e, portanto, potencializando sua toxicidade (Bon et al., 1979). Após a ligação da crotoxina a sítios específicos da membrana présináptica e, provavelmente, também do músculo esquelético, o complexo se desfaz; sendo a crotapotina liberada e a ativação da PLA2 dependente da sua interação com grandes agregados lipídicos, em interfaces de lipídio/água o que permite a difusão do substrato para o sítio ativo e assim, exerce suas ações neurotóxicas e miotóxicas (Delót e Bon, 1993). Parte destas ações parece ser independente da atividade catalítica, no entanto, outras ações farmacológicas não específicas

dependentes da atividade enzimática podem ser anuladas. (Harris, 1991; Kini, 2003) A inibição da atividade catalítica da subunidade PLA₂ reduz ou anula as atividades tóxicas da crotoxina (Hawgood e Smith, 1977; Jeng e Fraenkel-Conrat, 1978; Marlas e Bon, 1982; Soares *et al.*, 2001).

É conhecido ainda que a crotoxina, uma das principais toxinas no veneno de *Crotalus durissus terrificus*, possui até 16 diferentes isoformas, algumas com maior atividade e outras com menor atividade em sua toxidade, tais isoformas podem ser, na verdade, combinações das subunidades de crotapotina PLA₂ associadas. (Faure e Bon, 1988). A dificuldade para o estudo desta neurotoxina é obter um material com alto grau de homogeneidade molecular, tanto para o estudo da ação isolada do complexo crotapotina fosfolipase bem como para estudar a atividade biológica de suas subunidades. Sabe-se que a crotoxina tem diversos comportamentos, como conseqüência da presença de várias isoformas.

1. 4. Mecanismo de ação dos venenos crotálicos.

Os venenos crotálicos têm três atividades com importância clínica conhecida: neurotóxica (Vital Brazil, 1980), miotóxica (Brasil, 2001; Barraviera, 1994; Cardoso *et al.*, 2003; Nishioka, 1994) e pouco coagulante e proteolítico, por isso apenas provocam pequena lesão local (Pinho e Pereira, 2001; Rosenfeld, 1961). Estes venenos têm também escassa atividade hemolítica (Lima *et al.*, 1989).

1.4.1. Ação neurotóxica

Esta ação é responsável pela contração muscular, paralisias e pela alta taxa de mortalidade. O veneno farmacologicamente ativo está composto de crotoxina (fosfolipase A_2 e uma proteína chamada de crotapotina), crotamina, convulxina, giroxina, deltatoxina e histamina (Vancetto *et al.*, 1995; Vêncio, 1988). A fração crotoxina produz efeitos tanto no sistema nervoso central (SNC) como no sistema nervoso periférico (SNP) (Saliba *et al.*, 1983). Causa lesões na junção neuromuscular e fibras musculares, provocando bloqueio periférico da transmissão neuromuscular, podendo levar o paciente a óbito por paralisia respiratória (Ellenhorn, 1997; Vêncio, 1988), provavelmente, por atuar em canais iônicos desencadeando falhas na liberação de acetilcolina na pré-sinapse (Vital Brazil, 1972; Jorge e Ribeiro, 1992).

As neurotoxinas são classicamente divididas em pré e pós-sinápticas e estudos revelam que algumas neurotoxinas produzem redução do número de vesículas sinápticas do terminal motor das junções neuromusculares. Estes distúrbios podem estar relacionados ao mecanismo de reciclagem da

membrana axolemal, durante os fenômenos de reconstituição das vesículas sinápticas ou à atividade fosfolipásica (Dal Pai e Neto, 1994).

A maior parte dos venenos ofídicos possui atividade fosfolipásica e, sendo a bainha de mielina constituída de lipídios, pode-se admitir que, dependendo da concentração dessa enzima, as lesões de componentes nervosos intramusculares podem ocorrer. Alguns autores, como Dempster *et al.* (1980) e Gopalakrishnakone *et al.* (1984), relatam que após quatro a seis horas da inoculação da crotoxina são observadas lesões subsarcolêmicas com edema intramitocondrial e, após 24 a 48 h, as mitocôndrias apresentam depósitos densos, com elevada concentração de cálcio.

1. 4. 2. Ação miotóxica

O efeito miotóxico do veneno crotálico produz lesões em fibras musculares esqueléticas, predominantemente em fibras do tipo I, se caracteriza pela liberação de mioglobina e elevação de enzimas marcadoras de lesão muscular como creatinaquinase (CK), lactato desidrogenase (LDH) e aspartato aminotransferase (AST) (Azevedo-Marques *et al.*, 1982; Magalhães *et al.*, 1986; Hudelson e Hudelson, 1995; Jorge e Ribeiro, 1992).

Magalhães *et al.* (1986) relatam dois casos de rabdomiólise secundária a envenenamento produzido por *Crotalus durissus terrificus*, com sinais de mialgia intensa e generalizada e constatação de níveis séricos elevados de CK, AST e LDH, com confirmação do diagnóstico pela detecção de mioglobina no soro por meio de imunoeletroforese e de biópsia muscular. Além dos achados laboratoriais, a biopsia muscular também pôde contribuir de forma importante na confirmação de rabdomiólise (Rossi *et al.*, 1989; Barraviera 1991; Jorge e Ribeiro, 1992). A urina apresenta uma coloração enegrecida, de tonalidades variáveis que pode chegar ao marrom escuro, o que é um indicativo claro da intensidade da rabdomiólise.

Há referências sobre estudos experimentais quanto à ação miotóxica local da crotoxina e da crotamina em camundongos com necrose de coagulação, necrose miolítica ou combinação de ambas (Hudelson e Hudelson, 1995).

Salvini *et al.* (2001), em estudo experimental com ratos, sugeriram uma ação sistêmica e seletiva da crotoxina em musculatura ou regiões de músculos compostos por fibras do tipo I ou IIA.

A ação miotóxica provoca mialgias que podem aparecer precocemente. A fibra muscular esquelética lesada libera quantidades variáveis de mioglobina, inicialmente interpretada como sendo hemoglobina, acarretando em mioglobinúria e conferindo-lhe uma cor avermelhada ou de tonalidade mais escura até o marrom (Amorim *et al.*, 1969).

A ação indireta do veneno sobre as células renais seria em decorrência da mioglobinúria secundária a rabdomiólise, que levaria à obstrução tubular por cilindros de mioglobina e lesão tóxica direta nos túbulos (Magalhães *et al.*, 1986; Soerensen, 1990).

1.4.3. Ação coagulante

As alterações de coagulação sanguínea ocorrem devido ao veneno crotálico possuir uma fração que se assemelha à atividade do tipo trombina que converte diretamente o fibrinogênio em fibrina (Nahas *et al.*, 1964; Barraviera 1991), podendo levar ao consumo dos fatores de coagulação induzindo aumentos no tempo de coagulação e finalmente a incoagulabilidade sanguínea, além de aumentos no tempo de protrombina e tromboplastina parcial (Brasil, 2001; Barraviera, 1990), em mais ou menos 30 a 40% dos acidentes (Brasil, 2001; Rosenfeld, 1961), principalmente se a penetração do veneno se realiza ao nível de veias ou arteríola (Nishioka, 1994). Geralmente não induz a alteração nas plaquetas (Bistner e Ford, 1996; Cardoso *et al.*, 2003) e as manifestações hemorrágicas quando presentes são discretas (Brasil, 2001).

1. 4. 4. Ação edematizante

A habilidade de administrar PLA₂ exogenamente para gerar resposta inflamatória local foi primeiro reportado por Brain and Whittle (1987) que mostraram que PLA₂s isoladas a partir de venenos de *Vipera russeli* e *Crotalus durissus terrificus* induzia edema em patas de camundongos e liberaria dos mastócitos histamina in vitro. Alguns estudos sugeriram que além de histamina e serotonina, substâncias vasoativas tais como prostaglandinas poderiam mediar a formação de edema local em resposta a PLA₂ de veneno de serpente (Olivo *et al.*, 2007).

Além disso, a atividade edematogênica e liberação de histamina induzida pelas fosfolipases A_2 de venenos de *Naja naja* e *Crotalus durissus terrificus* foram correlacionados com a atividade enzimática através de mecanismos Ca²⁺ dependentes, suportando então o papel da atividade catalítica e a liberação de mediadores lipídicos no desenvolvimento de reações inflamatórias locais induzidaspor essas proteínas (Zamuner *et. al.*, 2005).

Também tem sido mostrado que a PLA₂s homologa K49 procedente de Bothrops atrox, é capaz de induzir tanto um efeito edematogênico, como é capaz de aumentar os níveis de IL-6 (Nuñez, *et. al.*, 2004).

Em relação atividade edematogênica, a BthTX II, uma PLA₂ D49, isolada a partir de venenos de Bothrops jararacussu tem sido evidenciada por induzir edema de pata e de pele em camundongos

bem como a liberação in vitro de serotonina a partir de mastócitos peritoniais (Landucci *et. al.*, 1998). Esses resultados sugerem que em algunas PLA₂, a atividade catalítica possui um papel imprtante, mais não determinante no efeito edematizante.

Entretanto, a PLA₂ isolada de veneno de bothrops neuwiedi mostrou indução de edema na ausência de atividade catalítica, descartando o papel da atividade enzimática na formação de edema (Daniele *et. al.*, 1997). Essas observações suportam a concepção de que PLA₂ apresenta sítios farmacológicos além da região catalítica, já estabelecida por Kini R.M. (2003).

1. 5. Efeitos clínicos do envenenamento crotálico.

Os sinais das picadas por serpentes são variáveis e se manifestam desde um simples arranhão, ou uma picada puntiforme, única ou dupla. Nem sempre existe uma relação entre a distância dos sinais da picada, com o tamanho da serpente nem com a quantidade de veneno inoculado (Guimarães, 1974; Rosenfeld *et al.*, 1971)

1. 5. 1 Manifestações locais do envenenamento.

Não há dor, ou pode existir de pequena intensidade, havendo parestesia (adormecimento) local e regional que pode persistir por tempo variável. Edema discreto e eritema podem ser vistos no ponto de introdução das presas (Bistner e Ford, 1996). As manifestações locais são geralmente discretas. Entretanto, procedimentos como garroteamento, escarificação ou sucção do local da picada, realizados com a finalidade de extrair veneno, podem provocar lesões importantes.

1. 5. 2. Manifestações sistêmicas do envenenamento.

As manifestações gerais são: mal-estar, prostração, sudorese, náuseas, vômitos, sonolência ou agitação e sensação de boca seca, podem aparecer precocemente, provavelmente como respostas a estímulos em sistemas farmacologicamente ativos, nos quais também devem atuar o medo e a tensão emocional desencadeados pelo acidente.

Decorrentes da atividade neurotóxica, generalmente evidentes nas primeiras horas, manifestam-se por ptose palpebral uni ou bilateral, fácies miastênica (fácies neurotóxica, de Rosenfeld) (Cardoso *et al.*, 2003; Guimarães, 1974), alteração do diâmetro pupilar, incapacidade de movimentação do globo ocular (oftalmoplegia), podendo existir dificuldade de acomodação (visão turva) e/ou visão dupla (diplopia) (Barraviera, 1994; Ribeiro, 1995). Como manifestações menos

freqüentes, podemos encontrar paralisia velopalatina, com dificuldade à deglutição e diminuição do reflexo do vômito, alteração do paladar e olfato, e insuficiência respiratória aguda.

Em decorrência da atividade miotóxica apresentam-se dores musculares generalizadas (mialgias) que podem aparecer precocemente. A urina, de cor avermelhada ou de tonalidade mais escura, até marrom, de aparecimento um pouco mais tardio traduz a eliminação de quantidades variáveis de mioglobina, pigmento liberado do tecido muscular. A mioglobinuria constitui a manifestação clínica mais evidente da necrose da musculatura esquelética (rabdomiólise) (Cardoso *et al.*, 2003).

Em decorrência da atividade coagulante pode haver incoagulabilidade sanguínea, ou aumento do tempo de coagulação, em aproximadamente 40 % dos pacientes, observando-se raramente, pequenos sangramentos geralmente restritos as gengivas (gengivorrea) (Cook, 1996).

Paralisia da musculatura dos membros ou respiratória, com possibilidade de insuficiência respiratória aguda (IRA), assim como fasciculações musculares ocorrem de maneira pouco freqüente em manisfestações clínicas. Tais fenômenos são interpretados como decorrentes da atividade neurotóxica e/ou da ação miotóxica do veneno.

A existência de oligúria ou anúria e a elevação dos nitrogenados sanguíneos representam à expressão clínica e laboratorial da IRA, cuja fisiopatogenia ainda não é totalmente esclarecida nos acidentes crotálicos, porém é indicativa de sua gravidade, bem como principal causa de mortalidade dos pacientes.

1. 6. PLA₂ Crotálica

As enzimas fosfolipases A₂ (PLA₂, EC 3.1.1.4) catalisam a hidrólise de ligações ácidas éster na posição sn-2 dos fosfolipídios liberando ácidos graxos livres e lisofosfolipídios (Figura 2). Encontram-se amplamente distribuídas na natureza, sendo os venenos de serpentes fontes ricas de PLA₂s que, em adição da sua função catalítica primária, apresentam uma variedade de propriedades farmacológicas, além de apresentarem um padrão de regulação da resposta inflamatória e agregação de plaquetas. A superfamília PLA₂ inclui enzimas de diversas origens que cumprem funções fundamentais no méio biológico. (Six e Dennis, 2000). As PLA₂s mais estudadas têm sido as secretoras de origem animal ou de insetos e nos últimos anos tem se aprofundado o estudo desta enzima em vegetais (Wang, 2001).

Figura 2: Estrutura de uma molecula de fosfolipideo e sitio de ação da PLA₂ (Kuiper et. al. 1989)

As PLA₂s inicialmente foram definidas como enzimas Ca²⁺ dependentes, contendo pontes de dissulfeto que possuem histidina e aspartato no centro catalítico (Balsinde J. 1999), posteriormente dividiram-se em dois grupos com base nas posições do enlace dissulfeto e dependendo da sua origem, em enzimas intracelulares e extracelulares (Tabela 1). As PLA₂ intracelulares associadas a membranas e sua atividade, resultam na liberação de ácido araquidónico, um precursor de eicosanoide que está envolvido no desencadeamento de reações de inflamação (Waite, 1988).

As PLA₂s extracelulares estão divididas nas classes I, II e III definidas com base no peso molecular, seqüência primária e na localização das pontes dissulfeto, no entanto, com a descoberta de novas PLA₂s formaram-se outros grupos ou subgrupos, mais especificamente numerosas isoenzimas de PLA₂ relacionadas com os grupos I, II e III. Além, reportaram-se outras que não se ajustaram aos grupos iniciais, o que levou à formação dos grupos V, IX, X, XI e XII.

A característica geral das PLA₂s das classes I, II e III são enzimas pequenas, secretadas que tem entre 119 e 143 resíduos de aminoácidos e massa molecular entre 12 e 15 kDa. As enzimas classe I foram isoladas de veneno das serpentes Elapidae e Hidrophidae e do pâncreas de mamíferos; as PLA₂ da classe II foram isoladas do veneno das serpentes Crotalidae e Viperidae e posteriormente, descobriu-se sua existência em tecido não pancreático de mamíferos (Aarsman *et al.*, 1989; Johansen *et al.*, 1992; Kudo *et al.*, 1993). A PLA₂ da classe III é isolada do veneno de lagarto e abelha.

TABELA 1: Classificação das PLA₂s (Kini R.M., 1997)

As PLA₂s isoladas do veneno da serpente apresentam atividades farmacológicas, ja mencionadas tais como: hemorrágica (Gutiérrez et al., 1980), miotóxica (Mebs., 1986), hemolítica (Condrea *et al.*, 1981) hipotensiva (Huang, 1984) presináptica (Chang *et al.*, 1977b) e pós sináptica (Bon *et al.*, 1979), cardiotóxica (Fletcher *et al.*, 1981) além da formação de edemas (Lloret e Moreno, 1993), agregação plaquetária (Yuan *et al.*, 1993; Guerrard *et al.*, 1993) e convulsiva (Fletcher *et al.*, 1980).

Além das atividades anteriores, as PLA_2 também intervêm na peroxidação de lipídios. Durante o metabolismo oxidativo da célula, os fosfolipídios das membranas estão expostos para modificações por radicais livres que produzem lipoperoxidação. Os lipídios peroxidados têm propriedades distintas e isto altera as propriedades das membranas biológicas. Por isso existem mecanismos de reparo que consistem na remoção dos ácidos graxos peroxidados e sua substituição com novos ácidos graxos. Devido a presença de um ácido graxo insaturado na posição 2 dos fosfolipídios, este passa a ser uma alvo especial para a lipoperoxidação e as enzimas ideais para participarem nesta reação são as PLA_2 s, removendo ao ácido graxo peroxidado e uma aciltransferase, para repor um ácido graxo nesta posição (C_2) (Nigam S, 2000).

1.6.1. Especificidade farmacológica

Como já é conhecida, uma variedade de efeitos farmacológicos são induzidos pelas enzimas PLA₂, mas nem todos os efeitos são exibidos por todas as PLA₂. Cada enzima exibe um efeito específico. Para explicar esta suscetibilidade tecidual para uma enzima PLA₂ particular, é proposta a presença de "sítios alvo" específicos sobre as superfícies de células ou tecidos alvos (Esquema 1)

(Kini, 2003). Tais sítios alvos são reconhecidos por sítios farmacológicos na molécula de PLA₂, estes sítios farmacológicos são independentes, mas algumas vezes sobrepondo-se com o sitio ativo da enzima. Ambos os sítios são complementários em termos de carga, hidrofobicidade e superfícies de contato de Van der Waal. Essa alta afinidade determina os efeitos farmacológicos específicos das enzimas PLA₂. Os sítios alvos propostos poderiam ser lipídios ou proteínas de membrana (glicoproteínas). Devido à presença dos fosfolipídios e a especificidade de espécies observadas de enzimas PLA₂s em exibir os efeitos farmacológicos. Portanto, segundo este modelo, a interação proteína-proteína de alta afinidade entre PLA₂ e proteína alvo determina o efeito farmacológico específico.

Várias proteínas alvo específicas para toxinas pré-sinápticas tem sido identificadas: a) o canal de K⁺ sensível à voltagem para β -bungarotoxina (Scott, 1990); b) proteínas de 85-88 e 36-51 kDa das membranas sinápticas do cérebro de ratas para OS₂ (Lambeau, 1989); c) pentraxinas neuronal e a proteína de união a Ca²⁺ associado a taipoxina (TCBP-49) para taipoxina (Kirkpatrick, 2000); d) crocalbina (Hseu, 1999) e a proteína 'torpedo' aceptora de crotoxina (CAPT) (Faure, 2003) para crotoxina; e) uma proteína de 53-56 kDa de membranas sinápticas de cérebros bovinos para ammoditoxina A (Krizaj, 1995); e f) uma protease 'torpedo' de 70 e 20 kDa de membranas présinápticas para ammoditoxina C (Krizaj, 1997); e g) calmodulina (Sribar, 2001), receptor tipo M (Vardjan, 2001), e proteína 4-3-3 γ e 14-3-3 ϵ (Sribar, 2003) do córtex cerebral de porcinos para ammidotoxina C. Um número destas proteínas são intracelulares, no entanto, a internalização de enzimas PLA₂ e a interferência na sinalização intracelular poderia ocorrer, tais aceptores no seriam importantes em ser alvos iniciais das enzimas PLA₂ para a célula alvo especifica, devido ao fato destas proteínas não serem acessíveis na superfície celular.

É importante notar que varias PLA₂s podem exibir o mesmo efeito farmacológico através de mecanismos diferentes, algumas destas proteínas alvo contribuem em compreender o mecanismo da toxicidade das enzimas PLA₂, além de ajudar a esclarecer a função fisiológica da proteína alvo e descrever a susceptibilidade de um sistema fisiológico específico.

As isoformas geralmente mostram diferentes graus de atividade catalítica e atividade tóxica, sendo que estas podem estar relacionadas ou não, como evidenciadas para as miotoxinas K49 que exibem diversas atividades farmacológicas, tais como neurotóxica, cardiotóxica, mionecrotica, anticoagulante, nefrotóxica, convulsionante, hipertensiva e edematogenica. Assim, as PLA₂ K49 diferentes das PLA₂ D49 (cataliticamente ativas) podem desencadear suas atividades biológicas independentes da liberação do ácido araquidônico. Conforme o sugerido por Kini as PLA₂s

procedentes de veneno das serpentes compartilham uma similaridade em estrutura e função com as enzimas de mamíferos.

De acordo com este modelo as PLA₂s podem exercer sua atividade biológica pelos seguintes mecanismos:

1- A célula alvo difere de uma célula não alvo (extremo direito), pela presença deste sítio (A). Estes sítios alvos podem ser uma proteína ou glicoproteína transmembrana que se encontra na superfície da célula.

2- Temos o sitio complementar ao sitio alvo, o sitio farmacológico (F) está presente na PLA₂ especifica, além do sitio catalítico (C). Uma PLA₂ não específica (extremo direito) não possui o sitio farmacológico (F). A natureza e a localização dos sítios farmacológicos na superfície molecular das PLA₂ variam com a enzima.

3- Quando se administra a PLA₂ através das vias intraperitoneal ou intravenosa, as PLA₂ específicas 'procuram' e se ligam às células alvos, devido a sua alta afinidade pelo sitio alvo. Esta ligação específica, assim como a acessibilidade do sitio alvo, dependeria da acessibilidade da célula. De outro lado, uma PLA₂ não especifica vai se ligar a muitos tipos diferentes de células. As PLA₂ não específicas, assim não vão lesar a célula alvo eficazmente como a PLA₂ especifica.

4- Num sistema *in vitro* ou *in vivo*, uma célula, tecido ou órgão incuba-se com a PLA_2 . As PLA_2 específicas e não especificas podem lesar a célula alvo e poderiam exibir "efeitos farmacológicos". Isto é particularmente verdade quando a atividade enzimática desempenha um papel maior, induzindo o efeito farmacológico, embora sejam necessárias quantidades mais altas (ou cataliticamente quantidades muito eficazes) de enzimas não específicas para induzirem os efeitos similares das PLA_2 específica.

5. As PLA_2 específicas se ligam ao alvo (ou receptor), a proteína na membrana plasmática (MP) com uma alta afinidade (10^{-9} M). No entanto, também ocorre uma afinidade baixa (10^{-4} a 10^{-6} M) quando se liga a fosfolipídios. Os estudos de ligação específica sempre indicam a afinidade alta e baixa aos sítios alvos. A afinidade é alta ao sítio alvo e é baixa quando comparada a sítios de ligação de baixa afinidade. Os tratamentos para destruir as proteínas alvo produzem a perda da afinidade de se ligar, mas não baixa a afinidade dos sítios alvos. Assim, as PLA_2 não específicas ligam-se aos fosfolipidios com a afinidade baixa e não se liga ao sítio alvo.

6. Vemos que o sítio alvo é um "bom encaixe" para o sítio farmacológico em espécies de células ou tecidos susceptíveis. Nas espécies não susceptíveis, aquelas que têm sofrido processos de mutações (M) ou modificações pós traducionais (MPT) como glicosilações, células ou tecidos susceptíveis são

suficientes para alterar a afinidade específica da PLA_2 com a célula alvo. Isso explica a especificidade das espécies observadas, na habilidade das PLA_2 de exibir seus efeitos farmacológicos (Kini, 2003).

As fosfolipases A₂ provenientes de veneno podem induzir efeitos farmacológicos, os quais podem ser dependentes ou independentes da atividade hidrolítica de fosfolipídios. No caso das atividades farmacológicas dependentes da atividade catalítica, muito dos sintomas podem ser causados pela hidrólise total de fosfolipídios ou pela liberação de lisofosfolipídios e ácidos graxos.

A hidrólise total de fosfolipídios de membrana tem registrado alguns efeitos, tais como: i) Mudanças na conformação biológica das membranas; ii) Alterações no comportamento da molécula alvo, devido a mudanças em seu micro ambiente; iii) Mudanças na permeabilidade seletiva a íons, drogas, e iv) Alterações na função do sistema receptor-ligante, o qual depende de fosfolipídios acoplados ao sistema (Rosenberg, 1986). 1. Sítios alvo na superficie celular

Esquema 1: Modelo para explicar os efeitos farmacológicos das PLA₂ (Kini, M.R. 2003).

1. 7. Estrutura e função das PLA₂s

Sendo isoladas e seqüenciadas mais de 100 PLA₂s secretoras, com umas poucas exeções, estas proteínas são muito homólogas e contém desde 119 ate 143 aminoácidos. A maioria dos resíduos conservados participa diretamente na catálise ou ocupam posições sensíveis estruturalmente. Os resíduos de cisteina conservados são particularmente abundantes (10-14 cisteinas/seqüência) formando-se uma rede rígida de pontes dissulfeto que estabilizam a estrutura terciária.

Baseado no critério de seqüência, as enzimas de classes I e II possuem uma estrutura terciária altamente homologas com os mesmos motivos estruturais que incluem a presença de três segmentos em alfa hélice, a presença de alças e folhas beta. Elas contem um íon de cálcio coordenado dentro desta estrutura e são distinguidas pela localização de suas sete pontes de dissulfeto. De fato desde o ponto de vista cinético elas são idênticas (Heinrikson, 1991).

Três regiões nas PLA₂s das classes I e II demonstram particularmente um alto grau de homologia na seqüência de aminoácidos apesar da diversidade de sua origem, estas regiões contribuem para a formação dos elementos estruturais secundários e terciários, que são compostos de uma hélice N-terminal, regiões de ligação de cálcio, centro ativo e aminoácidos que formam o canal hidrofóbico, ou seja, os que ligam as caudas dos ácidos graxos dos fosfolipídios.

As regiões que mostram um menor grau de homologia correspondem aos elementos estruturais menos restritos e provavelmente são as regiões responsáveis pelos diversos efeitos farmacológicos das PLA₂ e venenos.

O maior aspecto estrutural das enzimas (Classe I e II) é uma plataforma definida por duas α hélices longas e anti-paralelas ligadas por duas pontes de dissulfeto (hélice 2 e 3, resíduos de aminoácidos de 37 a 54 e de 90 a 109). Estas duas hélices não mostram um caráter anfipático claro, tendo as cadeias laterais dos aminoácidos hidrofílicos geralmente expostos ao solvente e os aminoácidos hidrofóbicos apontando para o núcleo da proteína. Exceções importantes incluem os aminoácidos que formam a rede catalítica (His-48, Asp-99 e Tyr-52) que estão situados nestas duas hélices juntos à Asp-99 e Tyr-52.

O cálcio é um cofator essencial na catálise e sua substituição por outros íons bivalentes, resulta na perda desta atividade (Yu *et al.*, 1993; Bonfim *et al.*, 2006).

A figura 3 ilustra o sítio de união a cálcio, no qual o catión é coordenado pelos átomos de oxigênio do carboxilato de Asp-99 e três atomos de oxigenio da cadeia principal, denomina-se "alça
de união a cálcio" (região 25-33). Duas moléculas de água completam a esfera de coordenação do íon cálcio formando uma bipiramide pentagonal. Uma ponte dissulfeto (Cys27-Cys-44) segura à correta orientação relativa da alça de união a cálcio em relação aos aminoácidos que formam a rede catalítica.

Figura 3: representação esquemática da alça de ligação do íon cálcio. (a) PLA_2 cataliticamente ativa; o íon cálcio é mostrado com suas sete coordenações. (b) Região análoga na PLA_2 Lys49, cataliticamente inativa, o átomo N ξ da Lys49 ocupa a posição do íon cálcio formando duas pontes com os átomos de oxigênio da cadeia principal e uma ponte com uma única molécula de água (Ward *et.al.*, 1998).

Homólogos da PLA₂ que ocorrem na natureza onde o resíduo Asp49 é trocado por Lys (Maraganore *et al.*, 1984; Francis *et al.*, 1991; Homsi-Brandenburgo *et al.*, 1988; Ward *et al.*, 1995), Ser (Krizaj *et al.*, 1991) ou Ala (Liu *et al.*, 1991) não são cataliticamente ativos. Na figura 3 a estrutura cristalográfica do homólogo de PLA₂ com Lys49 revelam que o seu átomo N ξ ocupa a posição do íon cálcio na PLA₂ com Asp49 (Holland *et al.*, 1990; Scott *et al.*, 1992; Arni *et al.*, 1995).

Na estrutura do complexo da enzima com o análogo do estado de transição, ligações entre as duas moléculas do solvente, que estão estruturalmente conservadas e completam a coordenação do íon cálcio são substituídas por ligações com oxigênio do grupo fosfato e o oxigênio sn2 do substrato. Este átomo de oxigênio sn2 é adicionalmente ligado ao átomo de nitrogênio da cadeia principal da Gly30, garantindo assim a orientação certa do substrato. As caudas de hidrocarbonetos serão posicionadas aproximadamente paralelas no canal hidrofóbico, que se estende desde a superfície da molécula ate o centro ativo (Scott *et al.*, 1990b*).

O átomo N ξ 1 do resíduo His48 está estabilizado por uma ligação com o oxigênio do resíduo Asp99, que por sua vez está ligada ao oxigênio do resíduo Tyr52; esta ligação esta totalmente conservada. O átomo N ξ 1 do resíduo His48 se comporta como uma base polarizando e retirando um próton da molécula de água, estruturalmente conservada, que participa da formação do intermediário tetraédrico, assim mostrado na figura 4. Após o colapso e a liberação dos produtos de hidrólise, três moléculas de água se deslocam para dentro do sitio ativo.

Figura 4. Representação esquemática do mecanismo catalitico da PLA₂s (Janssen M.J.W. et. al. 1999).

Os resíduos da curta hélice N-terminal anfifílica fazem parte do núcleo altamente conservado e estão estabilizados por pontes de hidrogênio (Classe II). Além disso, a hélice forma contatos extensivos com a asa β (curta β -folha antiparalela). Os aminoácidos hidrofóbicos da superfície interior da hélice formam e permitem o acesso ao centro ativo. Outros resíduos de aminoácidos que contribuem para este núcleo altamente conservado incluem o trio Fen-5, Ala-104 e Fen-106. A mutação do resíduo Fen-106 resulta numa redução da atividade catalítica enfatizando a importância do canal hidrofóbico intacto para a ligação do lipídio e para restrição ao acesso livre do solvente no centro ativo durante a catálise (Dupureur *et al.*, 1992). No homólogo da PLA₂ com Lys-49 este trio muda para Leu-5, Val-104 e Leu-106 e o caráter do canal hidrofóbico permanece conservado (Holland *et al.*, 1990; Scott *et al.*, 1992; Arni *et al.*, 1995).

O resíduo Tyr-73 e um resíduo aromático na posição 75 estão totalmente conservados. Estes dois resíduos de aminoácidos estão localizados na interface entre o alça e o corpo da proteína e,

estudos mutagênicos indicam que o resíduo Tyr-73 é importante para a estabilização desta região (Kuiper *et al.*, 1990). Estudos estruturais da PLA₂ Lys-49 indicam que esta região forma a interface do homodímero (Arni *et al.*, 1995).

Nas enzimas classe II, a alça C-terminal está estendido por 5 ou 7 resíduos de aminoácidos, sendo abundantes os resíduos carregados.

1.8. Modificações químicas

As relações estrutura-função de várias PLA₂ provenientes de venenos de serpente têm sido pesquisadas extensamente. Com objetivo de elucidar estruturalmente os sítios responsáveis da toxicidade tem-se utilizado várias metodologias, tais como modificações químicas, mutações sitiodirigidas, técnicas cristalográficas, espectrofotométricas e fluorométricas, assim como ressonância magnética nuclear e estudos da ação de inibidores e substratos naturais ou artificiais.

As modificações químicas tradicionais têm sido uma das principais estratégias usadas para estudar suas relações estrutura-função (Tabela 2).

Resíduo de	Reagente/reação
aminoácido	
His	<i>p</i> -bromofenacil bromide/alquilação
	Metil-p-nitrobenzenosulfonato/metilação
Lys	Cianeto de potássio /carbamilação
	o-metilisourea/guanidinação
	Anidro acético/acetilação
	Trinitrobenzenosulfonato (TNBS)/trinitrofenilação
Tyr	Nitrobenzenosulfonil fluoride (NBSF)/sulfunação
Trp	Cloreto de nitrofenilsulfonil (NPSC)/sulfonação
	2-Hidroxi-5-nitrobenzil bromide/alquilação
Met	Cloramine T/oxidação
	Ácido iodoacético/carboximetilação.

TABELA 2: Estratégias para modificações químicas de resíduos de aminoácidos específicos em PLA₂s de venenos de serpentes

A contribuição de uma variedade de reagentes muito específicos tem sido usados para modificar quase todos os grupos funcionais presentes nas PLAs, obviamente o fim principal destes estudos é apontar com precisão aos resíduos do sitio ativo para obter uma visão do mecanismo de ação da PLA₂.

É um fato comum que as PLA₂s de veneno de serpente mostraram uma ampla variedade de atividades farmacológicas, tal diversidade funcional dentro desse grupo de proteínas estruturalmente similares cria interrogações concernentes à relação entre sua estrutura e seu efeito. Uma aproximação para esclarecer a relação entre a atividade enzimática e toxicidade é através dos estudos de modificação seletiva ou preferencial dos grupos de cadeia lateral de aminoácidos na molécula de enzima PLA₂ e também comparar os efeitos de modificações destes dois parâmetros (Yang, 1997; Verheij, 1981).

Estudando a relação entre as propriedades enzimáticas e farmacológicas, as que foram observadas pelas modificações químicas de certos resíduos de aminoácidos na PLA₂ poderiam diminuir seletivamente a atividade enzimática ou propriedades farmacológicas e letais.

Em algumas destas modificações se tem concluído a perda quase total de atividade enzimática para o substrato presente, onde o resíduo modificado é um resíduo que participa do sitio ativo e também na potência letal intraventricular em ratas (Rosenberg 1986).

A perda da atividade enzimática para os substratos agregados pode-se atribuir à incapacidade da PLA modificada para unir-se a interface lipídio-água ou alternativamente não unir-se especificamente e assim evitando as formações de produtos, nestes casos os resíduos modificados são denominados de "resíduos do sitio ativo", tais resíduos diretamente envolvidos na ligação de substrato monomérico, envolvidos com o íon Ca^{2+} que é essencial e também aos resíduos que realizam o fracionamento real do enlace éster (Verheij, 1981)

1. 8. 1. Modificações químicas do resíduo de histidina.

O procedimento amplamente usado para avaliar a função da atividade enzimática na toxicidade foi demonstrado por Karlsson, onde a fosfolipase pancreática de porco pode ser completamente inativada por alquilação de um resíduo de histidina no sitio ativo com p-bromofenacil bromide (p-BPB).(Karlsson, 1980) Análises de aminoácidos mostraram que somente um resíduo de histidina foi modificado e o resíduo modificado era identificado como His-48 na seqüência (Yang C. C., 1980a,b; Yang C. C., 1981). Estudos de modificações químicas de enzimas PLA₂ de diversas fontes revelaram que o resíduo de histidina é crucial e foi potencialmente reagente para *p*-BPB, esta histidina foi localizada na mesma posição homologa a outras fosfolipases. (Yang C. C., 1980; Volwerk J. J. *et al.*, 1974; Halpert J *et al.*, 1976; Viljoen C. C. *et al.*, 1977).

Assim, o resíduo His é conservado, pois participa na catálise (Verheij *et al.*, 1980, Verheij *et al.*, 1981 e Scott *et al.*, 1992). A alquilação do resíduo induz a perda da atividade hidrolítica e a

diminuição de alguns efeitos farmacológicos (Yang e King, 1980a, Yang e King, 1980b, Díaz-Oreiro e Gutiérrez, 1997, Melo e Ownby, 1999 e Andrião-Escarso *et al.*, 2000). A primeira PLA₂ alquilada foi de pâncreas de mamífero com ρ -bromophenacyl bromide, perdendo a sua atividade enzimática (Volwerk *et al.*, 1974), desde então a alquilação do resíduo His48 de PLA₂ procedentes de veneno de serpentes tem sido usado a fim de estudar a relação da atividade enzimática-tóxica (Halpert *et al.*, 1976, Roberts *et al.*, 1977, Yang e King, 1980a, Rosenberg, 1986 e Yang, 1994).

O reagente ρ -bromophenacyl bromide (p-BPB) tem sido utilizado durante os últimos 30 anos para os estudos de modificações químicas de PLA₂ procedentes de veneno de serpentes tais como: *Naja* sp. (Roberts *et al.*, 1977, Yang and King, 1980a, Condrea *et al.*, 1981a, Condrea *et al.*, 1983a, e Babu and Gowda, 1991), *Vipera* sp. (Babu e Gowda, 1991), *Bitis* sp. (Viljoen *et al.*, 1977), *Hemachatus* sp. (Yang e King, 1980b e Condrea *et al.*, 1981a), *Bungarus* sp. (Abe *et al.*, 1977 e Kondo *et al.*, 1978), *Calloselasma* sp. (Tsai *et al.*, 2000), *Trimeresurus* sp. (Wang e Teng, 1990), *Agkistrodon* sp. (Zhao *et al.*, 1998 e Melo e Ownby, 1999), *Crotalus* sp. (Ownby *et al.*, 1997, Melo e Ownby, 1999), *Bothrops* sp. (Nisenbon *et al.*, 1988, Díaz *et al.*, 1993, Bultrón *et al.*, 1993, Díaz-Oreiro e Gutiérrez, 1997 e Andrião-Escarso *et al.*, 2000) and *Lachesis* sp. (Fuly *et al.*, 1997, Fuly *et al.*, 2003.

As PLA₂ ácidas e básicas isoladas de *Naja nigricollis*, perderam suas atividades enzimáticas e tóxicas depois da modificação com BPB. As análises de aminoácidos mostram que um só resíduo, His48, foi modificado (Yang e King, 1980a e Yang *et al.*, 1981). A diminuição da atividade enzimática levou a uma diminuição da hemólise direta para a PLA₂ básica de *Naja nigricollis*, a hidrolise de fosfolipídios e o bloqueio dos potenciais de ação em enguia (Condrea *et al.*, 1981a), A fosfolipase A₂ histidina modificada perdeu atividade enzimática. A K_d para Ca²⁺ das enzimas PLA₂ histidina modificadas foi similar a aquela da PLA₂ nativa, sugerindo que a modificação do His-48 não altera a interação íon-proteína. É interessante notar que o Ca²⁺ tem um pronunciado efeito protetor no processo de inativação por *p*-BPB. Verheij *et al.*, observaram que a His-48 metilada em PLA₂ pancreática mostrou uma perda total da atividade enzimática, entretanto a união do Ca²⁺ permanece intacta. Assim His-48 não esta diretamente envolvida na união para o Ca²⁺. A união a Ca²⁺ pode induzir uma mudança conformacional que capacita à enzima para estar mais accessível ao substrato. (Verheij *et al.*, 1980 eYang C. C. 1997)

As PLA₂s dos venenos de viperidios compreendem dois grandes grupos de proteínas, basicamente as Asp49 com uma alta atividade catalítica em substratos artificiais e as PLA₂ Lys49 com um baixo ou nenhuma atividade enzimática (Gutiérrez e Lomonte, 1995 e Ownby *et al.*, 1999).

A primeira PLA₂ de *Bothrops* modificada quimicamente com *p*-BPB foi uma PLA₂ ácida de *Bothrops alternatus* (Nisenbon, *et al.*, 1988). Estes autores observaram uma dissociação entre suas atividades enzimáticas e tóxicas desde que a PLA₂ foi alquilada, no entanto conservaram a sua atividade letal considerável. De outro lado a PLA₂ Asp49 ácida de *Bothrops jararaca*, *Bothrops jararacussu*, e *Lachesis muta*, foram capazes de perder suas atividades enzimáticas e farmacológicas depois de serem alquiladas com *p*-BPB, mostrando que os efeitos biológicos são dependentes da integridade catalítica (Serrano *et al.*, 1999, Fuly *et al.*, 2000 e Fuly *et al.*, 2003).

A alquilação de His48 da PLA₂ básica de *Bothrops asper* Basp-III, BthTX-II de *Bothrops jararacussu* e a PrTX-III de *Bothrops pirajai*, inibiram quase completamente a atividade catalítica, anticoagulante, miotóxica e citotóxica (Díaz-Oreiro e Gutiérrez, 1997, Andrião-Escarso *et al.*, 2000 e Soares *et al.*, 2001b), mostrando que a hidrólise de fosfolipídios nos efeitos farmacológicos são dependentes da atividade catalítica. No entanto, a indução de edema só estava reduzida em 50% e a ruptura de liposomas em 20%, levando a considerar a dissociação parcial de sítios catalíticos e farmacológicos. BPB inibe a indução de edema e a degranulação de mastócitos *in vitro* da BthTX-I e II (Landucci *et al.*, 1998). Foi observado que o edema induzido pela BthTX-II foi abolido em 50% depois de ser alquilada , no entanto a PLA₂ Lys49 BthTX-I foi em menor grau. Foram informados também resultados para PrTX-I e PrTX-III de *Bothrops pirajai*, e crotoxina B Asp49 e *Crotalus durissus terrificus* (Soares *et al.*, 2001a e Soares *et al.*, 2001b).

Alquilação de PLA₂ miotoxicas Lys49 de *Botrhosp asper*, *Bothrops moojeni*, *Bothrops pirajai* e *Bothrops neuwiedi*, reduziram a miotoxicidade em 40 a 50% e a citotoxicidade em 80 a 85% sendo o edema induzido em 15 a 20%, sem anular a capacidade de destruir liposomas carregados negativamente (Díaz *et al.*, 1993, Rodrigues *et al.*, 1998, Toyama *et al.*, 1998). Estes resultados sugerem a presença de regiões moleculares distintas do sitio ativo, responsável pelo menos parcialmente, pelas atividades farmacológicas destas toxinas.

Tem sido proposta algumas hipóteses para explicar as mudanças das atividades farmacológicas das PLA₂ pela alquilação de His48 com *p*-BPB:

- a) A alquilação específica do resíduo no sítio ativo diminui a atividade farmacológica induzindo mudanças conformacionais nas regiões moleculares distinta do sítio ativo.
- b) O efeito tóxico das PLA₂ Asp49, pode se associar com a atividade catalítica.

Nenhuma mudança conformacional significativa tem sido encontrada na PLA₂ ácida de *Agkristodon halys* depois de ser alquilada com *p*-BPB, a exceção de modificações no sitio catalítico onde a His-48 liga-se com o *p*-BPB covalentemente (Zhao, *et al.*, 1998). No entanto as miotoxinas

 PLA_2 básicas classificadas no grupo II têm uma região C terminal estendida. Não se conhece se o BPB induz uma mudança conformacional destas proteínas que poderia afetar seu perfil farmacológico. O mecanismo exato pelo qual o *p*-BPB altera as propriedades tóxicas e farmacológicas das miotoxinas PLA_2 Lys49 permanece ainda indeterminado.

Além disso, o p-BPB não pode ser considerado um inibidor de PLA₂ específicas devido ao fato de agir reciprocamente de forma irreversível com outras enzimas, como também pode se ligar a grupos tioles livres (Blackwell e Flower, 1983).

Recentemente Zieler, *et al.*, (2001) demonstraram que PLA₂ de venenos crotálicos da *Crotalus adamanteus* e de outras *Crotalus* e de abelha, bloqueiam o desenvolvimento do intestino médio do mosquito parasita da malária, inibindo a associação do oocinete com a superfície do intestino medio. A inibição ainda ocorre na presença de *p*-BPB, indicando que a atividade hidrolítica da enzima não é necessária para o efeito antiparasitário, este é um grande exemplo da utilidade da alquilação de PLA₂ no estudo entre as atividades enzimáticas e farmacológicas no veneno crotálico. Fenard. *et al.*, 1999 mostraram que as PLA₂ da classe II inibida catalíticamente, atuam como um potente inibidor gerando um processo de citotoxicidade na propagação do vírus de HIV através de um mecanismo totalmente independente da atividade catalítica.

1. 8. 2. Modificações químicas do resíduo de lisina.

A maioria do PLA₂s tóxicas são proteínas básicas que levam conteúdos altos de aminoácidos hidrofóbicos e catiônicos. Foram reportados vários estudos em modificações químicas de resíduos Lys e foram deduzidas as relações de suas atividades enzimáticas e farmacológicas (Yang and Chang, 1989; Takasaki *et al.*, 1990; Babu and Gowda, 1994; Yang, 1997). A carbamilação de 9 dos 10 resíduos Lys da PLA₂ de *Naja nigricollis* e 3 dos 5 em *Naja naja atra*, drasticamente foi reduzida ou completamente anulada sua letalidade, assim como os efeitos anticoagulante, hemolítico e neurotóxico, sem ter um efeito pronunciado em sua atividade enzimática; sugerindo que a toxicidade destas PLA₂ é devido principalmente a um efeito específico não mediado pela hidrólise de fosfolipídios.

Díaz-Oreiro e Gutierrez (1997) mostraram acetilação de resíduos de Lys das PLA₂s Asp49 miotoxina I e III de *B. godmani* e *B. asper*, respectivamente, causando uma redução ao redor de 75% na atividade enzimática e uma perda total das atividades anti-coagulante e miotóxica. As miotoxinas acetiladas retiveram uma significativa atividade de quebra de liposomas, mostrando que esta PLA₂s podem ainda romper as bicamadas mesmo depois da modificação extensa das lisinas. Além disso,

estes resultados com miotoxinas acetiladas demonstraram uma dissociação parcial entre atividades enzimáticas e farmacológicas (miotóxicas e anti-coagulantes), de acordo com estudos prévios com outras PLA₂s. (Condrea *et al.*, 1981a–c, 1983a,b; Babu e Gowda, 1994) Eles também sugerem que resíduos de Lys façam um papel nas atividades miotóxica e anti-coagulante destas PLA₂s. Estes estudos podem ser interpretados como evidências da existência de regiões moleculares, distintas do local catalítico que podem ser responsáveis por pelo menos algumas das propriedades farmacológicas delas (Rosenberg, 1986; Kini e Evans, 1989; Díaz-Oreiro e Gutiérrez, 1997; Soares *et al.*, 2000a, 2001a,b).

Tem sido proposto que as regiões básicas de PLA₂ neurotóxicas e miotóxicas poderiam fornecer a interação destas enzimas com as membranas musculares e neuronais carregados negativamente (Karlsson e Pongsawasdi, 1980 e Gutiérrez e Lomonte, 1995). A guanidinação de PLA₂ básicas de *Vipera russelli* (VRV-PL-VIIIa) não reduz a sua atividade enzimática, mas diminui significativamente a letalidade, indução de edema e atividade anticoagulante, sugerindo uma dissociação entre sítios enzimáticos e farmacológicos (Babu e Godwa, 1994).

1. 8. 3. Modificações químicas do resíduo de tirosina.

A seqüência completa de aminoácidos de PLA_2 de veneno de serpente evidencia que todos os venenos de serpente apresentam nove resíduos de Tyr conservados na mesma posição ou posições homologas, o que sugere a importância deles dentro deste grupo de proteínas (Verjeij *et al.*, 1981; Soons *et al.*, 1986 e Andrião-Escarso *et al.*, 2000). Este caráter altamente invariável sugere que eles cumpram alguma função crucial para atividade enzimática, por conseguinte a função da tirosina foi comprometida na esperança de abrigar alguma luz no mecanismo catalítico de PLA_2 e a relação entre toxicidade e atividade enzimática.

O *p*-nitrobenzenosulfonil fluoride (NBSF) é um reagente específico para a modificação química de resíduos Tyr nas proteínas. A Tyr69 em PLA₂ pancreática (homóloga a Tyr62 ou 63 de veneno de serpentes) é considerada parte do sítio de reconhecimento interfacial e se encontra envolvida na ligação micelar. A presença de dois resíduos Tyr de uma PLA₂ de *Naja nigricollis* e *Naja naja atra*, dos nove; são p-nitrobencenosulfonados por NBSF e os outros sete se encontram dentro da estrutura conformacional da molécula. Tyr 3 e Tyr62 (63) de ambas enzimas, poderiam estar envolvidas na ligação ao substrato no canal hidrofóbico da PLA₂. O Tyr3 e Tyr62(63) não são essenciais para o desenvolvimento das propriedades farmacológicas, assim sendo modificadas, as atividades farmacológicas permanecem, no entanto na maioria de casos diminui (Soons *et al.*, 1986).

A modificação química da Notexina de *Notechis scutatus scutatus*, com NBSF, permitiu isolar e identificar três derivados por HPLC (Yang e Chang, 1991). A seqüência de aminoácidos revelou que só Tyr7, Tyr70 e Tyr77 foram modificados. Quando a Tyr7 foi modificada perdeu de 30 a 80% de sua atividade enzimática e tóxica. Embora a modificação de Tyr77 induz um aumento de 80% na atividade enzimática, a letalidade diminui até 50%. Quando ambos resíduos foram modificados simultaneamente perdeu 56 e 98% das atividades enzimáticas e tóxicas respectivamente. Estes dados mostram que as modificações dos resíduos Tyr de Notexina, poderiam causar efeitos diferentes em suas atividades enzimáticas e biológicas (Yang e Chang 1991). A modificação de Tyr de miotoxinas bothrópicas, afeta a letalidade, miotoxicidade, citotoxicidade e o efeito de bloqueio neuromuscular induzido por estas toxinas (Soares *et al.*, 2000 e Andrião-Escarso *et al.*, 2000). Além da função da Tyr na catálise, também se encontram 3-4 residuos Tyr entre os resíduos 112 e 121, sendo característico das PLA₂ miotóxicas. Assim desde que as miotoxinas PLA₂ Lys49 MjTX-I e II, BthTX-I, PrTX-I e II e BnSP-7, exibem estes resíduos Tyr, pode se inferir que as modificações químicas nestas regiões, podem afetar suas propriedades farmacológicas.

Os resíduos de Tyr52 e Tyr73 participam indiretamente na estabilização do sítio catalítico das PLA₂ Asp49 e estes resíduos poderiam ser afetados pelo tratamento com NBSF, onde uma diminuição da atividade catalítica foi observada, sem a redução da atividade anticoagulante (Andrião-Escarso *et al.*, 2000).

II. OBJETIVOS

- ✓ Purificar PLA₂s de Crotalus durissus cumanensis e Crotalus durissus ruruima utilizando metodologias como sistemas de HPLC.
- ✓ Caracterizar físico-químicamente as isoformas PLA₂, através de eletroforese SDS-PAGE, atividade fosfolipásica A₂, estrutura primaria das PLA₂s de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima*.
- Modificar quimicamente os resíduos His, Lys e Tyr das PLA₂ purificadas do veneno total de Crotalus durissus cumanensis e Crotalus durissus ruruima
- ✓ Caracterizar farmacológicamente as atividades edematogênica e miotoxicidade local e sistêmica *in vivo* das PLA₂ nativas e modificadas quimicamente de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima*.

III. MATERIAIS E MÉTODO

3.1. Animais

Foram utilizados para os ensaios biológicos e farmacológicos camundongos Swiss (18-20g), obtidos no biotério central da UNICAMP e o uso na Experimentação destes animais foi aprovado pela Comissão de Ética na Experimentação Animal (CEEA)-IB-UNICAMP certificado com o protocolo nº 1113-1.

3.2. Veneno

Os venenos totais das serpentes *Crotalus durissus cumanensis* junto com a *Crotalus durissus ruruima* foram adquiridos do Serpentário Proteínas Bioativas Ltda (Fazenda Boa Esperança, Batatais, São Paulo).

Todos os solventes, produtos químicos e reagentes utilizados foram de grau HPLC, grau seqüência ou de alto grau de pureza, obtidos da Sigma, Aldrich Chemicals, Merk e Bio Rad.

3. 3. Purificação do veneno por HPLC de fase reversa

As toxinas crotálicas foram re-purificadas em uma coluna HPLC de Fase Reversa preparativa. O sistema cromatográfico a ser usado foi o HPLC - PDA 991 (Waters), equipado com duas bombas Waters modelo 510/B, um injetor automático de amostras U6K com um "loop" de 200 μ l e uma coluna microbondapak C-18 0,78 X 30 cm (preparativa), previamente equilibrada com ácido trifluoroacético 0,1%, pH 3,5 (Tampão A). Inicialmente, a eluição das amostras foi através de um gradiente linear com acetonitrila 66% (Tampão B).

Posteriormente este gradiente foi modificado para a otimização da purificação das frações, bem como do veneno total. As frações foram monitoradas a 280 nm.

3. 4. Eletroforese em SDS-PAGE

A eletroforese em gel de poliacrilamida foi realizada de acordo com a metodologia descrita por Laemmli (1970), em que as placas de poliacrilamida (PAGE) são feitas de modo descontínuo. O gel de concentração de 5% e o gel de corrida de 12,5% de acrilamida estoque (30%T, 0,8%C). Para o gel de concentração, foi usado o tampão Tris-HCl 0,5M, pH 6,8, enquanto que para o gel de corrida foi usado o tampão Tris-HCl 1,0M, pH 8,8. Em ambos os géis foram acrescentados 0,1% (v/v) de SDS 20%.

A corrida eletroforética foi realizada em um Sistema High Small II SE 250 (Hoefer Scientific). Tanto as amostras quanto os marcadores foram dissolvidos no tampão de amostra (Tris-HCl, 0,075M, pH 6,8; 10% de Glicerol; 4% de SDS; 0,001% de Bromofenol). A corrida eletroforética foi realizada usando-se uma amperagem constante de 40 mA, durante 60 minutos.

Ao final da eletroforese, os géis foram corados com solução de Coomassie Blue 0,05% a 37°C e o excesso de corante removido em ácido acético 7%. Também foram utilizadas, para análises do grau de homogeneidade molecular das amostras, as eletroforeses em gel de PAGE-SDS-Tricina, de acordo com o método descrito por Schägger e Von Jagow (1987).

3. 5. Atividade enzimática

A determinação da atividade fosfolipásica foi realizada segundo o método descrito por Cho e Kézdy (1991) e Holzer e Mackessy (1996).

O substrato usado foi ácido 4-nitro-3-(octanoiloxi) benzóico. Foram utilizadas amostras com uma concentração de 0,1 mg/ml de amostra, no caso do veneno total, e fosfolipase A₂ isoladas. As amostras foram incubadas junto com o substrato e tampão de reação (Tris-HCl 0,1M Ca²⁺ 0,01M pH=8) por 20 minutos. Após o tempo de incubação, a reação enzimática foi lida em um espectro a 425 nm de absorbância.

3. 6. Modificações químicas

3. 6. 1. Alquilação de histina com p-bromofenacil bromide

A modificação química das isoformas PLA_2 no residuo Histidina com *p*-BPB foi executada como descrito anteriormente por Diaz-Oreiro em 1997, usando Tris-HCl. Brevemente, 3mg das toxinas foram dissolvidas em 1 ml de 0.1 M de Tris-HCl contendo 0.7 mM de EDTA (pH 8.0) e 150 µl de p-BPB (0.8 mg/ml). A mistura foi incubada por 24 hr a 25 °C. A proteina foi separada do reagente por ultrafiltração através de uma membrana Amicom YM-3 e lavada com água ou 0.05 M de bicarbonato de amonio (pH 8.0), seguido por liofilização.

3. 6. 2. Acetilação de lisina com anidro acético

A modificação química das isoformas PLA₂ de residuos de lisina foi executado a uma relação molar de proteína:reagente de 1:50. A proteína (3 mg) foi disolvida em 1.5 ml de Tris-HCl 0.2 M, pH 8.0, e 10 µl de anidro acético (Merck, U.S.A.) foi adicionado. O pH foi ajustado

novamente para pH 8.0 com NaOH após a adição do anídro acético. Depois de 1 hr de incubação a 25 °C, a proteina foi separada do reagente por ultrafiltração através de uma membrana Amicom YM-3 e lavada com água ou 0.05 M de bicarbonato de amonio (pH 8.0), seguido por liofilização. (Diaz-Oreiro, 1997)

3. 6. 3. Sulfonilação de Tirosina com NBSF

As isoformas de PLA₂ em seus residuos de tirosina foram modificados com NBSF essencialmente de acordo com o procedimento descrito por Liao *et al.* 1982 Um micromol de enzima PLA₂ em 14 ml de tampao Tris-HCL 0.1 M (pH 8.0) foi incubado com 9 µmol de NBSF (ambas enzima PLA₂ contem nove residuos de Tyr). A reação foi realizada a 25 °C por 80 min e a mistura foi rapidamente separada, tirando o excesso de reagente por ultrafiltração através de uma membrana Amicom YM-3 e lavada com água ou 0.05 M de bicarbonato de amonio (pH 8.0), seguido por liofilização.

3. 7. Determinação da estrutura primária (Sequenciamento)

3. 7. 1. Redução e Carboximetilação

As toxinas purificadas nativas, conforme descrição na parte de purificação, foram repurificadas em HPLC de fase reversa, usando-se uma coluna analítica. A toxina pura foi dissolvida em 6M guanidina/HCl, 0,4M Tris pH 8.15, 2mM EDTA, reduzida com dithiothreitol (DTT) e carboximetilada com ¹⁴C-ácido iodo acético (Marangoni, *et al.*, 1995). A dessalificação da amostra foi realizada em coluna G-25, previamente equilibrada com ácido acético glacial 1M.

3.7.2. Digestão enzimática e purificação dos fragmentos peptídicos

As toxinas liofilizadas, reduzidas e carboximetiladas, foram inicialmente digeridas com duas enzimas: a protease V8 de *Staphilococcus aureus*, por 16hr a 37°C com uma razão enzima substrato de 1:30. A reação foi interrompida e a amostra foi liofilizada logo em seguida de acordo com o método descrito por Houmard e Drapeau (1972).

As toxinas também foram digeridas com Clostripaina por 8h, a 37°C, segundo processo descrito por Cintra *et al.* (1993). Após interrupção da reação a amostra foi liofilizada.

As toxinas digeridas com Clostripaina e com protease V8 foram repurificadas em HPLC de fase reversa (Water PDA 991 System), usando-se uma coluna μ -Bondapack C-18. A separação dos peptídeos foi feita com um gradiente de Acetonitrila em 0.1% de ácido Trifluoracético.

3. 7. 3. Sequenciamento N-terminal das isoformas PLA₂

A sequência de aminoácidos foi obtida pelo sequenciamento da região N-terminal da proteína reduzida e carboximetilada e o sequenciamento completo através dos peptídeos obtidos por hidrólise enzimática.

Tanto o sequenciamento automático da região N-terminal, como dos peptídeos, foram feitos em um seqüenciador automático modelo Procise 491 da Applied Biosystem. Os PTH aminoácidos são identificados em um analisador automático de PTH aminoácidos modelo 120 A (Applied Biosystem) de acordo com o tempo de retenção dos 20 PTH aminoácidos padrões.

A Cys foi identificada como PTH carboximetil cisteína marcada e confirmada por contagem radioativa.

3. 8. Determinação dos níveis de CK plasmáticos em camundongos inoculados por via intramuscular (miotoxicidade local) e intravenosa (miotoxicidade sistêmica) com a PLA₂ de *Crotalus durissus cumanensis* **e PLA₂ de** *Crotalus durissus ruruima*.

Pretendeu-se encontrar as diferenças nos níveis de CK plasmáticos em camundongos de 18 a 20g de peso, inoculados com as frações nativas e modificadas Cdc-9, Cdc-10 e Cdr-12, Cdr-13. (PLA₂s) de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima*. Foi utilizado um n de 5 para cada experimento.

A dose inoculada foi de 2.5 μ g tanto a nível intramuscular, no músculo gastronemius direito quanto intravenoso, na veia caudal, das frações Cdc-9, Cdc-10 e Cdr-12, Cdr-13 de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima* respectivamente. Foram dosados os níveis de CK plasmáticos depois de 2, 4, 6, 9 e 24 horas respectivamente. O kit utilizado é CK – Nac (Creatine Kinase Bicon Diagnostick Germany). A 1ml do substrato preparado foi acrescentado 10 μ L do plasma obtido por centrifugação do sangrado da região caudal do camundongo. O material foi incubado por 2 minutos e lido a 430 nm o incremento da absorbância, posteriormente multiplica-se pelo fator 4130 (Creatine Kinase Bicon Diagnostick Germany.

3. 9. Determinação da atividade inflamatória das frações Cdc-9, Cdc-10, Cdr-12 e Cdr-13 de *Crotalus durissus cumanensis* **e** *Crotalus durissus ruruima*.

Para o presente experimento, foi utilizada uma solução estoque inicial de 400 μ g da fração/ml de PBS (20 μ g/50 μ l). Depois foram feitas diluições seriadas tomando-se 500 μ l da primeira e mesclando-se com 500 μ l de PBS (10 μ g/50 μ l). Logo se tomou 500 μ l dessa e mesclou-se com outros 500 μ l de PBS (5 μ g/50 μ l). E finalmente é feita a última diluição sob o mesmo procedimento para alcançar uma concentração de 2,5 μ g/50 μ l.

Inoculou-se, via intraplantar 50 μ g da fracão/50 μ l, grupos de cinco camundongos de 18 a 20 g de peso, determinando-se, 30 minutos, 1 hora, 3 horas, 6 horas e 24 horas após da injeção, a porcentagem de edema produzido, mediante comparação entre o aumento em milimetros da pata inoculada com PLA₂ de *Crotalus durissus cumanensis* **e** *Crotalus durissus ruruima* e o aumento da pata inoculada com solução de PBS.

3. 10. Análise estatística

Os resultados foram representados pela média de experimentos \pm erro padrão. A significância foi obtida através do teste não-pareado *t*-Student e considerado como p<0,05.

IV. RESULTADOS

4.1. Purificação e caracterização fisicoquímica das isoformas PLA₂s dos venenos crotálicos.

4.1.1. Purificação das isoformas de PLA₂ Cdc-9 e Cdc-10 isoladas a partir do veneno total de Crotalus durissus cumanensis através de uma coluna C-18 μ-Bondapack (Waters) acoplada a um sistema de HPLC de fase reversa.

A figura 1 mostra o perfil cromatográfico do veneno total em uma coluna μ -Bondapack C-18 (0.78 X 30 cm) preparativa (Waters) acoplada a um sistema de HPLC de fase reversa, sendo as frações Cdc-9 e Cdc-10 as que apresentaram atividade catalítica segundo as determinações da atividade PLA₂.

Estas frações mostraram um alto grau de pureza e homogeneidade molecular, tanto em condições reduzidas, através de eletroforese em SDS-PAGE (figura inserida no perfil cromatográfico) com uma massa relativa de 14 kDa aproximadamente.

O tempo de retenção foi de $35,60 \pm 0.63$ min e $35,83 \pm 0.61$, sendo eluida aos 55 % do tampão B. O perfil mostra a presença de dois picos.

Figura 1. Perfil cromatográfico de purificação das frações Cdc-9 e Cdc-10 em HPLC de fase reversa, usando-se uma coluna μ -Bondapck C-18 (Waters). A eluição da amostra foi realizada usando-se um gradiente linear contínuo de concentração do tampão B (Acetonitrila 60%, TFA 0.025%). O fluxo foi mantido constante a 2ml/min. O monitoramento da corrida cromatográfica foi realizado a 280 nm de absorbância.

4.1.2 Purificação das isoformas de PLA₂ Cdr-12 e Cdr-13 isoladas a partir do veneno total de Crotalus durissus ruruima através de uma coluna C-18 μ-Bondapack (Waters) acoplada a um sistema de HPLC de fase reversa.

A figura 2 mostra o perfil cromatografico do veneno total em uma coluna μ -Bondapack C-18 (0.78 X 30 cm) preparativa (Waters), acoplada a um sistema de HPLC de fase reversa, sendo as frações Cdr-12 e Cdr-13 as que apresentaram atividade catalítica segundo as determinações da atividade PLA₂.

Estas frações mostraram um alto grau de pureza e homogeneidade molecular, tanto em condições reduzidas, através de eletroforese em SDS-PAGE (figura inserida no perfil cromatográfico) com uma massa relativa de 14 kDa aproximadamente.

O tempo de retenção foi de $35,07 \pm 0.63$ min, e de 35.62 ± 0.54 sendo eluida aos 57 % do tampão B. O perfil mostra a presença de dois picos.

Figura 2. Perfil cromatográfico de purificação das frações Cdr-12 e Cdr-13 em HPLC de fase reversa, usando-se uma coluna μ -Bondapck C-18 (Waters). A eluição da amostra foi realizada usando-se um gradiente linear contínuo de concentração do tampão B (Acetonitrila 60%, TFA 0.025%). O fluxo foi mantido constante a 2ml/min. O monitoramento da corrida cromatográfica é realizado a 280 nm de absorbância.

4.2. Determinação da estrutura primaria das isoformas de PLA₂ Cdc-9, Cdc-10 isoladas a partir do veneno total de *Crotalus durissus cumanensis*.

As duas isoformas nativas de PLA₂ Cdc-9 e Cdc-10 de *Crotalus durissus cumanensis* são neurotoxinas básicas com massas moleculares de 14.17531 kDa e 14.22842 kDa, com atividade PLA₂ que possui além destas atividades biológicas, uma atividade citotóxica e edematizante (dados não mostrados). Estas isoformas PLA₂ possuem uma homologia seqüencial de aproximadamente 93.4 % (Figura 3).

Figura 3. Alinhamento da sequencia de aminoacidos das isoformas PLA₂ Cdc-9 e Cdc-10 de *Crotalus durissus cumanensis* com outras sequencias PLA₂ selecionadas obtidas do banco de dados protein BLAST: PA2C_CRODU de *Crotalus durissus terrificus* (Faure et al., 1994) 90.2 %; PA2B_CROSS de *Crotalus scutulatus scutulatus* (Aird et al.,1990) 86.1 %; PA2B_CRODU de *Crotalus durissus terrificus* (Aird et al.,1986) 86.1 %; Cdr-12 de *Crotalus durissus ruruima* (Ponce-Soto et al., 2007) 81.1 %; Cdr-13 de *Crotalus durissus ruruima* (Ponce-Soto et al., 2007) 81.1 %; Cdr-13 de *Crotalus durissus ruruima* (Ponce-Soto et al., 2007) 81.1 %; Cdr-13 de *Crotalus durissus ruruima* (Ponce-Soto et al., 2007) 81.1 %; Cdr-13 de *Crotalus durissus ruruima* (Ponce-Soto et al., 2007) 77.0 %; PA23_AGKHP de *Agkistrodon halys Pallas* (Kondo et al., 1989) 73.0 %; PA2N_TRIFL de *Trimeresurus flavoviridis* (Chijiwa et al.,2003) 64.8 %; PA21_BOTAS de *Bothrops asper* (Kaiser et al., 1990) 61.5 % e PA21_BOTJR de *Bothrops jararacussu* (Moura-da-Silva et al., 1995) 59.8 %.

4.3. Determinação da estrutura primária das isoformas de PLA₂ Cdr-12 e Cdr-13, isoladas a partir do veneno total de *Crotalus durissus ruruima*

Assim como, as duas isoformas nativas de PLA_2 Cdr-12 e Cdr-13 de *Crotalus durissus ruruima* são neurotoxinas básicas com uma massas molecular de 14.333 kDa e 14.296 kDa, respectivamente, com atividade PLA_2 que possui, também uma atividade citotóxica e edematizante (dados não mostrados). Estas isoformas de PLA_2 possuem uma homologia seqüencial de aproximadamente 92.6 % (Figura 4).

Figura 4. Alinhamento da sequencia de aminoacidos das isoformas PLA₂ Cdr-12 e Cdr-13 de *Crotalus durissus ruruima* com outras sequencias PLA₂ selecionadas obtidas do banco de dados protein BLAST com outras sequencias PLA₂ selecionadas obtidas do banco de dados protein BLAST: PA2B_CRODU de *Crotalus durissus terrificus* (Aird et al.,1986) 90.2 %; PA2B_CROSS de *Crotalus scutulatus scutulatus* (Aird et al.,1990) 90.2 %; PA2C_CRODU de *Crotalus durissus terrificus* (Faure et al., 1994) 90.2 %; PA23_AGKHP de *Agkistrodon halys Pallas* (Kondo et al., 1989) 75.4 %; PA2A_TRIMU de *Trimeresurus mucrosquamatus* (Tsai et al., 1995) 67.2 %; PA2N_TRIFL de *Trimeresurus flavoviridis* (Chijiwa et al.,2003) 63.1 %; PA21_BOTAS de *Bothrops asper* (Kaiser et al., 1990) 61.5 %; PA21_BOTJR de *Bothrops jararacussu* (Moura-da-Silva et al., 1995) 60.7 % e PLA2Bj_6-1 e PLA2Bj_6-2 de *Bothrops jararacussu* (Ponce-Soto et al., 2006) com 47.9 e 46.3 % respectivamente.

4.4.Determinação da atividade PLA₂ das isoformas Cdc-9, Cdc-10, Cdr-12 e Cdr-13; nativas e modificadas (His, Lys e Tyr), isoladas a partir do veneno total de *Crotalus durissus* cumanensis e Crotalus durissus ruruima

As frações PLA₂s de ambos venenos crotálicos apresentaram diferente atividade enzimática e os resíduos de aminoácidos selecionados para modificação química estão envolvidos na rede catalítica ou na interação da enzima com sua interface. Nossos resultados mostraram uma diminuição na sua atividade segundo o gráfico da figura 5:

Frações Nativas e Modificadas	Atividade (Vo) nmoles/min/mg	SD ±	Frações Nativas e Modificadas	Atividade (Vo) nmoles/min/mg	SD ±
Cdc-9	6,06	0,34	Cdr-12	5,59	0,53
Cdc-10	7,85	0,72	Cdr-13	7,54	0,03
Cdc-9M-His	1,33	0,32	Cdr-12M-His	2,78	0,58
Cdc-9M-Tyr	0,60	0,02	Cdr-12M-Tyr	0,67	0,03
Cdc-9M-Lys	0,47	0,03	Cdr-12M-Lys	4,40	0,43
Cdc-10M-His	1,05	0,05	Cdr-13M-His	3,95	0,03
Cdc-10M-Tyr	0,51	0,02	Cdr-13M-Tyr	0,61	0,03
Cdc-10M-Lys	0,38	0,03	Cdr-13M-Lys	4,79	0,03

Figura 5. Atividade fosfolipásica foi realizada segundo o método descrito por Cho e Kézdy (1991) e Holzer e Mackessy (1996) das isoformas Cdc-9, Cdc-10, Cdr-12 e Cdr-13 nativas e modificadas (His, Lys e Tyr).

4.5. Caracterização miotóxica local e sistêmica das isoformas de PLA₂; nativas e modificadas, (His, Lys e Tyr), isoladas a partir dos venenos totais de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima*.

Os estudos realizados para determinar o efeito miotóxico das frações Cdc-9, Cdc-10, Cdr-12 e Cdr-13 *"in vivo"* foram feitos em camundongos inoculados com a fração em uma concentração de 2.5 µg. Os resultados mostram que os níveis de CK plasmáticos aumentam drasticamente nas primeiras 6 horas do tratamento por via intravenosa, atingindo valores maximos de CK nas primeiras 3 horas até atingir os níveis normais, após 9 e 24 horas. Mas quando a fração e administrada por via intramuscular mostrou um comportamento parecido.

Em todas as frações modificadas acontece uma diminuição dos níveis CK, tanto via intramuscular com via intravenosa (Figuras 6, 7, 8 e 9).

4.5.1. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdc-9 procedente do veneno de *Crotalus durissus cumanensis* na miotoxicidade local.

Figura 6. Representação gráfica da atividade miotóxica da PLA₂ Cdc-9 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus cumanensis*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentados ao longo do tempo depois de administrada a fração (2.5 μ g). Intramuscular () (n=6).

4.5.2. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdc-9 procedente do veneno de Crotalus durissus cumanensis na miotoxicidade sistêmica.

Figura 7. Representação gráfica da atividade miotóxica da PLA₂ Cdc-9 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus cumanensis*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentados ao longo do tempo depois de administrada a fração (2.5 μ g). Intravenoso () (n=6).

4.5.3. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdc-10 procedente do veneno de Crotalus durissus cumanensis na miotoxicidade local.

Figura 8. Representação gráfica da atividade miotóxica da PLA₂ Cdc-10 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus cumanensis*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentado ao longo do tempo depois de administrada a fração (2.5 μ g). Intramuscular () (n=6).

4.5.4. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA2 Cdc-10 procedente do veneno de *Crotalus durissus cumanensis* na miotoxicidade sistêmica.

Figura 9. Representação gráfica da atividade miotóxica da PLA_2 Cdc-10 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus cumanensis*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentados ao longo do tempo depois de administrada a fração (2.5 µg). Intravenoso () (n=6).

4.5.5. Efeitos das modificações químicas nos residuos de His, Lys e Tyr da PLA₂ Cdr-12 procedente do veneno de *Crotalus durissus ruruima* na miotoxicidade local.

O efeito miotóxico das frações nativas e modificadas Cdr-12 e Cdr-13 "*in vivo*" feito em camundongos inoculados a uma concentração de 2.5 μ g. mostraram também que os níveis de CK plasmáticos aumentaram drasticamente tanto com o tratamento por via intravenosa e intramuscular, atingindo valores maximos de CK nas primeiras 3 horas até atingir os níveis normais, após 12 e 24 horas.

Igualmente em todas as frações modificadas acontece uma diminuição dos níveis CK (Figuras 10, 11, 12 e 13).

Figura 10. Representação gráfica da atividade miotóxica da PLA₂ Cdr-12 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus ruruima*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentados ao longo do tempo depois de administrada a fração (2.5 μ g). Intramuscular () (n=6).

4.5.6. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdr-12 procedente do veneno de *Crotalus durissus ruruima* na miotoxicidade sistêmica.

Figura 11. Representação gráfica da atividade miotóxica da PLA_2 Cdr-12 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus cumanensis*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentos ao longo do tempo depois de administrada a fração (2.5 µg). Intravenoso () (n=6).

4.5.7. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdr-13 procedente do veneno de *Crotalus durissus ruruima* na miotoxicidade local.

Figura 12. Representação gráfica da atividade miotóxica da PLA₂ Cdr-13 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus ruruima*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentados ao longo do tempo depois de administrada a fração (2.5 μ g). Intramuscular () (n=6).

4.5.8. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdr-13 procedente do veneno de Crotalus durissus ruruima na miotoxicidade sistêmica.

Figura 13. Representação gráfica da atividade miotóxica da PLA_2 Cdr-13 com suas respectivas modificações (His, Lys e Tyr) de *Crotalus durissus cumanensis*, inoculado em camundongo de 20 g de peso aproximado. Mostra-se o curso-tempo dos níveis de creatina kinase (CK) aumentados ao longo do tempo depois de administrada a fração (2.5 µg). Intravenoso () (n=6).

4.6. Efeitos das modificações químicas nas PLA₂ crotálicas na atividade edematizante.

4.6.1. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdc-9 procedente do veneno de *Crotalus durissus cumanensis* na atividade edematizante (pro-inflamatoria).

Os estudos realizados para determinar o efeito edematizante das frações Cdc-9, Cdc-10, Cdr-12 e Cdr-13 *"in vivo"* foram feitos em camundongos inoculados com a fração respectiva em uma concentração de 2.5 µg, aplicados via epidermicar no coxim plantar de camondongo.

Foi estimada a ação inflamatória da fração Cdc-9 e suas modificações especificas "*in vivo*" sobre a região intraplantar de camundongo. A figura 14 mostra a ação edematizante da fração, observando-se um comportamento próprio deste tipo de toxina. Após 24 horas, o efeito inflamatório diminui drasticamente até alcançar os níveis normais. Nas frações modificadas o efeito indutor do edema não pode ser correlacionado com suas diferenças estruturais.

Figura 14. Representação gráfica da atividade inflamatória da fração Cdc-9 de *Crotalus durissus cumanensis* inoculado na região intraplantar de camundongo de 20 g de peso aproximado. O aumento do volume de inflamação atingida pela pata do animal ao longo do tempo, até 24 horas, sendo comparado com o controle e expressado em porcentagem de edema induzido. A dose aplicada foi de 2.5 μ g respectivamente (n=5). Nível de significância das concentrações em relação ao controle (P<0,05).

4.6.2. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdc-10 procedente do veneno de *Crotalus durissus cumanensis* na atividade edematizante (pro-inflamatoria).

Figura 15. Representação gráfica da atividade inflamatória da fração Cdc-10 de *Crotalus durissus cumanensis* inoculado na região intraplantar de camundongo de 20 g de peso aproximado. O aumento do volume de inflamação atingida pela pata do animal ao longo do tempo, até 24 horas, sendo comparado com o controle e expressado em porcentagem de edema induzido. A dose aplicada foi de 2.5 μ g respectivamente (n=5). Nível de significância das concentrações em relação ao controle (P<0,05).

4.6.3. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdr-12 procedente do veneno de *Crotalus durissus ruruima* na atividade edematizante (pro-inflamatoria).

Figura 16. Representação gráfica da atividade inflamatória da fração Cdr-12 de *Crotalus durissus ruruima* inoculado na região intraplantar de camundongo de 20 g de peso aproximado. O aumento do volume de inflamação atingida pela pata do animal ao longo do tempo, até 24 horas, sendo comparado com o controle e expressado em porcentagem de edema induzido. A dose aplicada foi de 2.5 μ g respectivamente (n=5). Nível de significância das concentrações em relação ao controle (P<0,05).

4.6.4. Efeitos das modificações químicas nos resíduos de His, Lys e Tyr da PLA₂ Cdr-13 procedente do veneno de *Crotalus durissus ruruima* na atividade edematizante (pro-inflamatoria).

Figura 17. Representação gráfica da atividade inflamatória da fração Cdr-13 de *Crotalus durissus ruruima* inoculado na região intraplantar de camundongo de 20 g de peso aproximado. O aumento do volume de inflamação atingida pela pata do animal ao longo do tempo, até 24 horas, sendo comparado com o controle e expressado em porcentagem de edema induzido. A dose aplicada foi de 2.5 μ g respectivamente (n=5). Nível de significância das concentrações em relação ao controle (P<0,05).

V. DISCUSSÃO

Os efeitos tóxicos de mordidas das serpentes cascavéis principalmente são devido às proteinases presentes no veneno. Estes não são os venenos mais complexos, comparado com outros venenos de outras famílias de serpentes. Como os venenos das serpentes possuem uma composição variável, diferenças importantes também existem nas atividades enzimáticas e nos efeitos locais e sistêmicos não só entre as espécies diferentes da mesma família, mas também diferenças intraespecíficas entre populações de diversas áreas geográficas (Francischetti *et al.*, 2000). Como conseqüência, os venenos das diferentes espécies e entre indivíduos da mesma espécie, mas de populações diferentes, produzem diferentes efeitos locais e sistêmicos sendo necessario um tratamento clínico diferente para cada caso (Ferreira *et al.*, 1992).

A crotoxina é o componente mais abundante nos venenos das serpentes crotálicas da América do Sul, sendo responsáveis pela maioria dos efeitos neurotóxicos e miotóxicos característicos do envenenamento por estas espécies (Azevedo-Marques, 2003). Além disso, a crotoxina constitui um caso interessante de sinergismo molecular no qual a subunidade A ácida não tóxica potencializa a toxicidade da subunidade B básica enzimaticamente ativa. A PLA₂ mostra atividade de bloqueio neuromuscular e induz miotoxicidade, embora à toxicidade global desta subunidade seja mais baixa que aquela do complexo da crotoxina inteira (Bon, 1997; Soares *et al.*, 2001).

Algumas fosfolipases A₂ miotóxicas têm atividade enzimática alta, considerando que outras ou perdem ou tem atividade fosfolipase A₂ extremamente baixa (Gutiérrez e Lomonte, 1995; Ponce-Soto, *et al.*, 2007). Além disso, são conhecidas várias variantes cataliticamente inativas as quais têm lisina em vez de aspartato na posição 49, uma mudança que prejudica a habilidade da enzima para unir o cálcio, assim dessa maneira afetando o mecanismo catalítico (Francis *et al.*, 1991; Cintra *et al.*, 1993). Tem sido proposto que homólogos de fosfolipase A₂ Lys-49 miotóxica induza miotoxicidade *in vivo* e afete células em cultura por um mecanismo independente da degradação enzimática de fosfolipídios (Gutiérrez *et al.*, 1989; Diaz *et al.*, 1991; Gutierrez e Lomonte, 1995; Bonfim, 2006b). Sendo então inferido que variantes semelhantes à fosfolipases miotóxicas enzimaticamente inativas têm uma região molecular que rompe bicamadas.

Já é bem reconhecido que o Ca^{2+} é de importância fundamental para a hidrólise de fosfolipídios e induza mudanças conformacionais apropriadas nas enzimas PLA₂ secretoras para o cumprimento da ação catalítica (Verheij *et al*, 1981), através da união do Ca²⁺ e substrato com a enzima, formação de intermediário tetraédrico e liberação de produto, assim, o cálcio serve como

um eletrófilo durante a catálise, polariza o enlace fraco e estabiliza o estado de transição (Janssen M.J.W. *et. al.* 1999).

Dessa maneira, as estruturas tridimensionais de enzimas PLA_2 tanto de pâncreas de mamífero e venenos de cobra (Dijkstra *et al*, 1983; Renetseder *et al*, 1985; Thunnissen *et al.*, 1990; Scott *et al.*, 1990; White *et al.*, 1990; Tomoo *et al.*, 1992) mostram que estas enzimas PLA_2 possuem uma estrutura global semelhante, mas difere em detalhe tal como o grau de estrutura secundária e posicionamento das cadeias laterais invariáveis.

Neste trabalho, nós estudamos os venenos de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima*, porém nós utilizamos um novo protocolo de purificação, usando uma coluna C18 µ-Bondapack em Cromatografia de alta eficiência de fase reversa (HPLC-RP). Nossos resultados mostraram que o veneno total de *Crotalus durissus cumanensis* pode ser fracionado em quatorze picos, onde as frações Cdc-9 e Cdc-10 mostraram atividade PLA₂. Com o veneno de *Crotalus durissus ruruima* foram obtidas dezoito frações, e as frações Cdr-12 e Cdr-13 apresentaram atividade PLA₂.

Desta forma conseguimos isolar, através da padronização da metodologia de purificação, uma larga escala de toxinas, neurotoxinas e/ou miotoxinas de venenos crotálicos. Para confirmar a homogeneidade e a massa molecular de ambas fosfolipases, baseado em diferentes características físico-químicas como o tempo de retenção na coluna C18 µ-Bondapack em cromatografia de fase reversa (sistema de HPLC), eletroforese em PAGE-SDS e espectrometria de massa (dados não mostrados) o que pode sugerir que as frações de interesse Cdc-9 e Cdc-10, assim como, Cdr-12 e Cdr-13 são isoformas de PLA₂s básicas.

Nossos resultados evidenciam que as isoformas Cdc-9 e Cdc-10, assim como as Cdr-12 e Cdr-13 têm uma massa molecular relativa de ~14 kDa e a análise comparativa da atividade enzimática mostra que existem diferenças entre a atividade fosfolipasicas das isoformas isoladas do veneno total de *C. d. cumanensis* e *C. d. ruruima*, também mostradas e mencionadas por Francischetti, *et al.*, 2000 e Ferreira, *et al.*, 1992 anteriormente. Observamos que a isoforma Cdc-10 é mais ativa que a Cdr-13, Cdc-9 e Cdr-12, respectivamente (ver figura 5).

A possibilidade que variações estruturais com enzimas PLA₂ diferentes poderiam ser identificadas separadamente através de diversos estudos, como anticorpos policionais e monocionais, interações com inibidores, assim como também a modificação química, o que daria uma aproximação para esclerecer a relação entre atividade e efeito farmacológico. Segundo Brunie *et al.* 1985 e White *et al.*, 1990 a seqüência de aminoácidos das enzimas PLA₂ conservou sua rede

catalítica formada pelas cadeias laterais de His48, Tyr52 e Asp49 ligadas à região N-terminal, eles sugiram que a rede de ligações de hidrogênio também conectadas com a rede catalítica, estabiliza a comformação produtiva da enzima PLA₂ para substratos agregados.

Esta inferência é consistente com nossos resultados, onde as seqüências completas dos aminoácidos das isoformas Cdc-9, Cdc-10 e Cdr-12, Cdr-13, tem sido determinadas e isoladas destas duas espécies crotálicas, todas elas compostas por 122 residuos de aminoacidos, alta homologia e exibição da manutenção dos resíduos de união para cálcio como também do sitio catalitico altamente conservados que são de extrema importância, apesar das diferenças para induzir efeitos farmacológicos.

Esta pouca diferença de aminoácidos na estrutura primaria das isoformas, são mostradas nas figuras 3 e 4; sendo que esta poderia resultar em um efeito diferencial na atividade catalítica, assim como também o entendimento destas bases estruturais para suas diversas atividades tóxicas incluindo miotoxicidade e indução de edema que é ainda uma tarefa desafiadora.

Além da contribuição para o núcleo hidrofóbico, aminoácidos na hélice N-terminal fazem um papel adicional na catálise, como a modificação de resíduos na região NH terminal o qual reduz a atividade enzimática (Slotboom e de Haas, 1975).

Aqui se mostra que tal perda da atividade nas PLA₂s modificadas não foi causada por desnaturação, a literatura diz que a posição 8 em PLA₂ pancreática de mamífero ou venenos de serpentes é ocupada por resíduos de aminoácidos hidrofóbicos (Met, Leu ou Val) e estão envolvidos no sitio de reconhecimento da interface. Assim, van Wezel *et al*, 1976, informou que a PLA₂ pancreatica de porco, perdeu completamente sua atividade atraves de carboximetilação de Met-8 e eles especularam que a introdução do grupo carboximetil, carregado negativamente impediu a formação do sítio de reconhecimento da interfase (Takasaki *et al.*, 1990). Outro trabalho com análise de dicroismo circular de PrTX-I, uma miotoxina PLA₂ Lys49, de *Bothrops pirajai* nativo e modificado, mostrou que somente a toxina tratada com CNBr revelou mudanças detectáveis de sua estrutura secundária. Assim, foi sugerido que as modificações químicas executadas nesse estudo principalmente afetaram os resíduos específicos envolvidos em tais modificações e não resultaram em mudanças conformationais drásticas na molécula (Soares *et al*. 2001).

A estrutura primária das isoformas Cdc-9 e Cdc-10 de *Crotalus durissus cumanensis* mostrou a presença de algumas mutações importantes V3 \rightarrow L3, L18 \rightarrow V18, Q33 \rightarrow R33, A38 \rightarrow P38, V53 \rightarrow L53, A54 \rightarrow T54, S100 \rightarrow N100, e E116 \rightarrow G116, assim como também a estrutura primária das isoformas Cdr-12 e Cdr-13 de *Crotalus durissus ruruima* mostrou as seguintes

mutações importantes L3 \rightarrow V3, N6 \rightarrow E6, F11 \rightarrow E11, I18 \rightarrow V18, Q33 \rightarrow R33, G54 \rightarrow E54, A57 \rightarrow V57, e Y109 \rightarrow K109.

As substituições de V3 por L3 no caso de Cdc-9 para Cdc-10 e L3 por V3 e N6 por E6 no caso de Cdr-12 para Cdr-13 sugerem que este resíduo pode contribuir à manutenção conformational da cavidade hidrofóbica na região N-terminal que é altamente conservada na PLA₂ cataliticamente ativa assim, as mutações apresentadas nestas isoformas não obstruíram a função catalítica, permitindo que o substrato lipidico continue adquirindo acesso ao sítio catalítico da PLA₂ (Arni e Ward, 1996).

Na PLA₂ ativa cataliticamente, apresenta um trio conservado que contribui para formar a parede hidrofóbica: F5, A93 e F96 (Emmanuel e Gérard, 2000) que também esta conservada nas isoformas Cdc-9 e Cdc-10 de *Crotalus durissus cumanensis* e nas isoformas Cdr-12 e Cdr-13 de *Crotalus durissus ruruima* mostrado nas estruturas primarias respectivamente (Fig. 3 e 4).

As incorporações destes reagentes *p*-BPB, NBSF e anidrido acético específicos para os aminoácidos His, Tyr e Lys, mostraram estar envolvidas tanto na rede catalítica como na interação de enzima com sua interfase. As atividades farmacológicas das frações nativas e modificadas foram avaliadas neste estudo através da comparação de seus efeitos na miotoxicidade e formação de edema.

Obviamente a modificação seletiva ou preferencial dos grupos da cadeia lateral de aminoácidos foi usada para entender a função biológica, assim os resíduos de His, Tyr e Lys têm sido escolhidos pela sua importância na atividade catalítica e união ao substrato também informado por Verheij 1980.

A introdução do inhibidor de *p*-BPB que alquila especificamente um resíduo de His no sítio ativo de moléculas fosfolipase A_2 de fontes extensamente diferentes anula a atividade enzimática completamente e a união de análogos monoméricos. Além disso, a união do cofator essencial Ca^{2+} é severamente distorcida (Verheij *et al.*, 1980). Isto é apoiado pelos estudos de varios investigadores que também modificaram His-48 de venenos de serpentes, acompanhado por perda de atividade primária de todas as fosfolipases de vertebrados, neles não especificam seu papel catalítico.

Usamos esta alquilação com o reagente p-BPB tentando avaliar se a atividade enzimática é essencial para a ação letal de PLA₂ crotálicas (Nisembon *et al.*, 1988). Nossos resultados sugerem que a atividade fosfolipase A₂ das isoformas Cdc-9 e Cdc-10 de *Crotalus durissus cumanensis*, como também Cdr-12 e Cdr-13 de *Crotalus durissus ruruima* são maiores comparadas com as mesmas isoformas já modificados quimicamente nos mesmos aminoácidos respectivos (His, Tyr e
Lys), sendo que as isoformas tratadas mostraram-se notavelmente diminuidas, como foi mencionado anteriormente.

O nível de identidade entre PLA_2 é muito alto na sequencia da alça de Ca^{2+} (resíduos 24-34 YGCXCGXGGRG) e no sítio ativo (resíduos 42-54 DRCCFVHDCCYXK) (Emmanuel e Gérard, 2000). As sequencias de aminoácido das isoformas Cdc-9 e cdc-10 da primeira espécie estudada e da outra espécie, Cdr-12 e Cdr-13, mostrou uma mutação importante tal como Q33 por R33, porém a atividade catalítica não é diminuída nas isoforma Cdc-10 e Cdr-13.

A característica estrutural principal das enzimas classe I/II é uma plataforma definida por duas longas α -hélice antiparalelas unidos por uma ponte dissulfeto (helices 2 e 3, resíduos 37-54 e 90-109). Embora estas duas α -helices não exibam um caráter amfipatico claro, as cadeias laterais de aminoácido hidrófilicos geralmente são expostas ao solvente e os resíduos hidrofóbicos apontam para o núcleo da proteína. Exceções cruciais incluem os aminoácidos que formam a rede catalítica que é conservada respectivamente em todas as isoformas Cdc-9, Cdc-10, Cdr-12 e Cdr-13 e está situada nestas duas helices (Fig. 3 e 4). (Diaz Oreiro *et al.* 1997)

As diferenças entre isoenzimas no mesmo veneno não são devido à extensão de glicosilação ou qualquer modificação pós-translacional. Estudos feitos com veneno total de *Crotalus durissus terrificus* evidenciam alterações locais irrelevantes, sendo o veneno caracterizado mais por seus potentes efeitos neurotóxicos e atividades de mioxicidade sistêmica do que por alterações renais e transtornos da coagulação sangüínea (Gutierrez e Lomonte 2003, Fan, *et al.*, 1995).

Segundo o proposto por Gutierrez e Ownby (2003), as PLA₂ são os componentes miotóxicos mais importantes nos venenos de serpentes, induzindo eventos de degeneração muscular. Sugerindose que as PLA₂s miotóxicas ligam-se aos aceptores da membrana plasmática, o qual poderia se tratar de lipídios ou proteínas, podendo diferir de sua afinidade pelas PLA₂.

Ao ligar-se às PLA_2s miotóxicas, estas produzem uma destruição da membrana através de mecanismos catalíticos ou mecanismos independentes de atividade PLA_2 , no entanto, provocam uma entrada de Ca^{2+} bastante pronunciada e que, por sua vez, produzem uma série de eventos degenerativos associados com uma hipercontração, ativação de calpinas e PLA_2 citosólicas e mitocôndrias Ca^{2+} -dependentes (Esquema 2).

Em nossos estudos de miotoxicidade local e sistêmica, das PLA₂s Cdc-9, Cdc-10, Cdr-12 e Cdr-13 tanto *Crotalus durissus cumanensis* e *Crotalus durissus ruruima*, evidenciamos um efeito miotóxico sistêmico *in vivo*, ao aumentar os níveis de creatino kinase (CK) séricos, quando administrados em níveis intramuscular e intravenoso em camundongo (Figuras 6 a 13), revelando

deste modo um dano muscular à distância. Estes resultados corroboram plenamente com a hipótese estabelecida por Gutierrez e Ownby (2003), revelando que as PLA₂s de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima* são as responsáveis pelas miotoxicidades sistêmicas nos venenos e elas são altamente específicas, não sendo seqüestradas por nenhum tipo de aceptores na corrente sangüínea ao unir-se com uma alta afinidade a receptores presentes no músculo esquelético de camundongo.

Esquema 2. Modelo hipotético que explica a diferença entre PLA₂s miotóxicas predominantemente locais (\bigcirc), e PLA₂s que induzem uma miotoxicidade sistêmica (\bigcirc). No compartimento de tecido do músculo, as PLA₂s miotóxicas agem localmente e ligam-se a sítios de baixa-afinidade e alta afinidade aos aceptores presentes no músculo da membrana celular; com relação aos aceptores, estes se encontram presentes nas células não musculares (c.n.m.) ou ligando-se a células não musculares e sendo seqüestrada uma quantidade significante de PLA₂s. Uma proporção reduzida destas PLA₂s chega ao compartimento central vascular, onde elas ligam-se a células não musculares de sangue. Poucas moléculas de PLA₂ livres chegam a outros compartimentos do músculo em sítios distantes, onde elas também se ligam a células não musculares. Como conseqüência deste modelo toxicocinetico, o dano do músculo por estas PLA₂s limita-se principalmente ao sítio de injeção, com uma miotoxicidade sistêmica muito pequena. Em contraste, as PLA₂s miotóxicas locais e sistêmicas são caracterizadas devido ao fato de apresentarem uma ligação muito seletiva aos aceptores no músculo da membrana plasmática celular, induzindo primeiro uma miotoxicidade local. Assim uma proporção pequena destas PLA₂s ligam-se às membranas de células não musculares, onde entral vasculares no músculo da membrana plasmática celular, induzindo primeiro uma miotoxicidade local. Assim uma proporção pequena destas PLA₂s ligam-se às membranas de células não musculares, onde uma quantidade significativa destas PLA₂s alcançam a corrente sangüínea e se distribuem aos músculos de outras regiões do corpo, ligando-se preferencialmente ao músculo das membranas celulares, produzindo um dano musculare de forma extensa (Gutiérrez e Ownby 2003).

Segundo Kini 1997, um sítio catiônico característico localizado ao lado da região N-terminal da hélice E hidrofóbico forma a região miotóxica completa. Nós também temos observado e mostrado a importância deste sitio catiônico por modificação química de resíduos de lisina, mas nas PLA₂s classe II o sítio catiônico parece estar localizado no lado C-terminal da hélice E, segundo Gutiérrez este segmento do sitio miotóxico seria o responsável por causar a citólise das células musculares, mas a afinidade especifica da enzima PLA₂ miotoxica para as células musculares é provavelmente determinada por um sitio adicional.

Nossos resultados tambem concordam com estudos prévios no qual as lisinas de várias fosfolipases A_2 dos venenos de *Naja naja atra* e *Naja nigricollis* foram modificadas através de carbamilação (Condrea *et al.*, 1981), metilação (Ho *et al.* 1986), etoxiformilação e guanidinação (Condrea *et al.*, 1983). Estes estudos mostraram que tais modificações tiveram um maior efeito em algumas propriedades farmacológicas do que na atividade enzimática das toxinas, uma conclusão também alcançada por Babu e Gowda (1994) depois da guanidinação de resíduos de lisina de uma fosfolipase A_2 básica de *Vipera russelli*. Assim, as lisinas parecem desempenhar um papel crítico na toxicidade de fosfolipases A_2 de veneno de cobra (Diaz-Oreiro *et al.*1997).

Como esperado, a acetilação de lisina resultou em mudanças drásticas na carga das isoformas de PLA₂ miotoxinas enzimaticamente ativas (Soares *et al.*, 2001), sugerindo que estes resíduos ficam situados na superfície da molécula de proteína. Karlsson e Pongsawasdi (1980) propuseram que as regiões básicas da molécula neurotóxica fosfolipase A_2 facilite a ligação delas ao músculo e membranas de nervo carregado negativamente.

Referente à modificação de tirosina, este método usado é mais vantajoso que os metodos previamente publicados que envolvem iodinação (Roholt e Pressman, 1972) e nitração (Riordan e Vallee, 1972). Para a modificação da tirosina a sulfonilação com NBS é específica para a tirosina e não mostra nenhuma reação lateral como oxidação de triptofano e outros aminoácidos ou reações secundárias, tais como a quebra da ligação peptidica e reação cruzada de resíduos de tirosine (Liao, T-H. *et. al.*, 1982). Como a atividade PLA₂ esta associada a presença de Ca²⁺ e como houve perda desta, acreditamos que a modificação pode ter ocorrido na posição Tyr-52 sendo que esta pode ter perdido sua habilidade para ligar ao Ca²⁺ e, então não pode assumir a conformação ativa.

Das nove tirosinas presentes em PLA₂ de *Naja nigricollis* e *N. naja atra*, só duas são pnitrobenzenesulfonilado através de p-NBSF (Yang *et al.*, 1985), sugerindo que permaneceram sete resíduos 'ocupados' dentro da molecule de enzima. A tirosina 3 e 62 (63) de ambas enzimas poderia estar no substrato que liga o bolso hidrofóbico das fosfolipases (Yang *et al.*, 1985), e a tirosina 3 faz parte do sítio de reconhecimento interfacial. Mais especificamente, foi concluído que a tirosina 62 de PLA₂ de *N. nigricollis* e tirosina 3 de fosfolipases A₂ de *N. nigricollis* e *N. naja atra* estão envolvidos na união de Ca²⁺ (Yang *et al.*, 1985 e Soons K. R 1986).

No efeito indutor de edema, as enzimas PLA₂ não podem ser facilmente correlacionadas com suas diferenças estruturais. Como se sabe as PLA₂ citosolicas têm papel fundamental no metabolismo de lipídios e estão intimamente relacionadas com a liberação de ácido araquidônico, que é um precursor de lipídeos bioativos tais como prostaglandinas, leucotrienos e tromboxanos, sendo que há evidências de que estas enzimas poderiam também atuar em respostas imunológicas, inflamação, proliferação celular e vasoconstrição (Mukherjee *et al.*, 1994; Hanada *et al.*, 1995). Tres formas de PLA2 estão envolvidas na liberação deste araquidonato das membranas celulares: o tipo IV, citoplasmática e do tipo II e V as quais hidrolisam a ligação éster sn-2 de fosfolipídio (Smith *et.al.*, 2000)

Sendo o edema um efeito multifatorial, que é desenvolvido como parte de uma resposta inflamatória aguda causada pelos envenenamentos de serpentes da família Viperidae, ele pode ser causado como conseqüência dos venenos, afetando o endotélio diretamente, originando a exudação do plasma ou pela liberação de mediadores como histamina, kininas, prostaglandinas e anafilatoxinas por parte do veneno. Também, o aumento no volume de líquido intersticial pode levar a uma síndrome compartimental.

Além disso, a mionecrose induzida pelas PLA_2 é desenvolvida pela invasão de um abundante infiltrado inflamatório ao músculo afetado, os leucócitos polimorfonucleares, principalmente neutrófilos, chegam primeiro dentro de 3 até 6 horas e os macrófagos predominan em intervalos de tempo mais tarde (Gutierrez, 1991 e Gopalakrishnakone, 1984)

CONCLUSÕES:

A purificação realizada com metodologia não convencional mostrou-se adequada, pois foram obtidas novas isoformas de PLA2 provenientes de *Crotalus durissus cumanensis* e *Crotalus durissus ruruima*.

As seqüências primárias das isoformas em estudo apresentaram grande homologia seqüencial entre si mostrando a manutenção dos resíduos de união para cálcio assim como também a manutenção do sitio catalítico altamente conservado, sendo estes de extrema importância, apesar de haver diferenças relacionadas à indução dos efeitos farmacológicos.

As isoformas Cdc-9, Cdc-10 modificadas quimicamente de *Crotalus durissus cumanensis* e Cdr-12, Cdr-13 de *Crotalus durissus ruruima*, as quais são quase cataliticamente inativas mostraram que os resíduos His, Tyr e Lys desempenham um papel importante na atividade miotóxica, mas interferem pouco na atividade indutora de edema.

A atividade fosfolipase A_2 das isoformas Cdc-9, Cdc-10 de *Crotalus durissus cumanensis* e Cdr-12, Cdr-13 de *Crotalus durissus ruruima* são pertinentes aos seus efeitos miotóxicos. Além disso, o resíduo de lisina é crítico para a indução desta atividade farmacológica, evidenciando o rol do resíduo catiônico na toxicidade.

A modificação química induzida nas PLA₂s nativas confirmaram que as regiões tanto Nterminal como C-terminal destas isoformas crotálicas em estudo é crucial para sua toxicidade letal, o que está indicando que estas isoformas de PLA₂ podem exercer sua atividade tóxica não somente através da sua atividade catalítica.

A formação de edema inducido pelas isoformas PLA_2 nativas foram de aparição rápida, em lapsos breves de tempo com sua subseguinte normalização tal reação inflamatória reforça o concepto que o edema é um efeito complexo, de origem multifactorial, sendo generado também de modo indireto e seu papel na indução do edema não tem sido esclarecido.

BIBLIOGRAFIA

- Aarsman A. J.; De Jong J. G. N.; Arnoldussen E.; Neys F. W.; Van Wassenaar P. D. e Van den Bosch H. (1989). Immunoaffinity purification, partial sequence, and subcellular localization of rat liver phospholipase A₂. J. Biol. Chem., 264, 10008-10014.
- Abe, T., Alema, S., Miledi, R., (1977). Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. *Eur. J. Biochem.* 80, 1–12.
- Alexander A.; Grothusen J.; Zepeda H. and Schawartzman R. J. (1988) Gyroxin, *Toxicon* 26(6); 953-960.
- Amaral, C.F.S.; Magalhães, R.A.; Resende, N.A. (1991). Comprometimento respiratório secundário a acidente ofídico crotálico (Crotalus durissus). Ver. Inst. Med. Trop. São Paulo, v.33, p.251-255.
- Amorim, M. F.; Mello, R. F.; Saliba, F. (1969). Lesões renais induzidas experimentalmente no cão pelo veneno crotálico. *Mem. Inst. Butantan*, São Paulo, v.34, p.137-157.
- Andrião-Escarso, S.H., Soares, A.M., Rodrigues, V.M., Angulo, Y., Díaz-Oreiro, C., Lomonte, B., Gutiérrez, J.M., Giglio, J.R., (2000). Myotoxic phospholipases A₂ in Bothrops snake venoms: effects of chemical modifications on the enzymatic and pharmacological properties of Bothropstoxins from *Bothrops jararacussu*. *Biochimie* 82, 755–763.
- Arni, R. K., and Ward R. J. (1996). Phospholipase A₂-A structural review. *Toxicon* 34, 827–841, Review.
- Arni, R. K.; Ward, R. J.; gutiérrez, J. M. e Tulinsky, A. (1995). Structure of a calcium-independent Phsopholipase-like Myotoxic Protein from *Bothrops asper* venom. Acta Cryst, D51, 311-317.
- Azevedo–Marques, M.M.; Cupo, P.; Amaral, C.F.S. (1990). Rattlesnake bites. Clinical features and complementary tests. *Mem. Inst. Butantan*, v. 52, supl, p. 27-30.
- Azevedo–Marques, M.M.; Cupo, P.; Coimbra, T.M.; Hering, S.E.; Rossi, M.A.; Laure, C.J. (1982). Myonenecrosis, myoglobinuria and acute renal failure induced by South American rattlesnake (*Crotalus durissus terrificus*) envenomation in Brazil. *Toxicon*, v. 23, p. 631-36.
- Azevedo-Marques M.M., Hering S.E., Cupo P., (1987). Evidence that *Crotalus durissus terificus* (South American rattlesnake) envenomation in humans causes myolysis rather than hemolysis. *Toxicon*: 25(11): 1163-8.
- Azevedo–Marques, M.M.; Hering, S.E.; Cupo, P. (2003). Acidente crotálico. In: Cardoso, J.C.L.; França, S.F.O.; Wen, F.H.; Malaque, C.M.S.; Haddad, JR. Vidal. (Eds) Animais peçonhentos no Brasil: Biologia, clínica e terapêutica dos envenenamentos. SP: Sarvier, p. 91-98.
- Babu, A. S. and Gowda, T. V. (1994) Dissociation of enzymatic activity from toxic properties of the most basic phospholipase A₂ from *Vipera russelli* snake venom by guanidination of lysine residues. *Toxicon* 32, 749-752.
- Balsinde J., Balboa M. A., Insel P. A., Dennis E. A. (1999). Regulation and inhibition of phospholipase A₂. Annu. Rev Pharmacol Toxicol. 39: 175-189.
- Barrabin H.; Martiarema J. L.; Vidal J. C.; Barrio. A. (1978). Isolation and Characterization of giroxin from the venom. Toxins: Animal, Plant And Microbial Proceedings Of The 5th Int Symp. p. 113-133.
- Barraviera, B. (1990). Acidentes por serpentes do gênero Crotalus. Arquivos Brasileiros de Medicina 64, 14-20.
- Barraviera, B. (1991). Alterações hepáticas no acidente crotálico. *Rev. Soc. Trop.* São Paulo, v.24, supl. 2.

- Barraviera, B. (1994). Acidentes por serpentes dos gêneros "Crotalus" e "Micrurus" In: Barraviera, B. (Coord.). Venenos Animais: uma visão integrada. Rio de Janeiro: Publicações Científicas. p.281-295.
- Barrio A. (1961). Gyroxin, A New Neurotoxin of Crotalus durissus terrificus Venom. *Acta Physiol*. Latino Americana 11, 224.
- Belluomini, H. E. (1984). Conhecimentos sobre as serpentes brasileiras e medidas de prevenção de acidentes. *Ver. Bras. Saúde Ocup.*, v.12,p.82-96.
- Bernard W.V.; Divers T.J. (1989). Variation in sera sorbitol dehydrogenase, aspartate transaminase and isoenzime 5 of lactate dehydrogenase activities in horses given carbon tetrachloride. *Am. J. Vet. Res.*, v.50, p. 622-623.
- Bistner, S. I. e Ford, R. B. (1996). Manual de Procedimentos Veterinários e Tratamento de Emergências. 6. ed. São Paulo: Roca.
- Blackwell, G.J., Flower, R.J., (1983). Inhibition of phospholipase. Br. Med. Bull. 39, 260-264.
- Bon, C. 1997. Multicomponent neurotoxic phospholipases A₂ in: R. M. Kini (Ed), Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism, Wiley, Chinester, 1997, pp. 269-285.
- Bon, C.; Changeaux, J.P.; Jeng, T.W.; Fraenkel-Conrat, H. (1979). Postsynapitic effect of crotoxin and its isolated subunits. *Eur. J. Biochem.* V. 99, p. 471-81.
- Bonfim, V.L, Ponce-Soto LA, Novello JC, Marangoni S. (2006). Cytotoxic action in myoblasts and myotubes (C2C12) and enzymatic characterization of a new phospholipase A₂ isoform (Bj-V) from Bothrops jararacussu venom. *Protein Pept Lett.* 13(7):707-13.
- Bonfim, V.L, Ponce-Soto LA, Novello JC, Marangoni S. (2006b). Structural and Functional Properties of Cr5, a New Lys49 Phospholipase A₂ homologue Isolated from the Venom of the Snake Calloselasma rhodostoma. *The Protein Journal*. Vol. 25(7-8): 492-502.
- Brain S.D. and Whittle B.J.E., (1977). Action of phospholipase A₂ on mast cell histamine release and paw oedema in rat. *Br. J. Pharmacol.* Vol. 59 pp. 440.
- Brasil, (2001). Ministério da Saúde do. Manual de diagnostico e tratamento de acidentes por animais peçonhentos. Brasília. DF, 131 p.
- Breithaupt, H. (1976). Enzymatic characteristics of *Crotalus* phospholipase A₂ and the crotoxin complex. *Toxicon*, v 14, p. 221-33.
- Breithaupt, H.; Rubsamen, H.; Habermann, E. (1974). Biochemistry and pharmacology of the crotoxin complex. *Eur. J. Biochem.*, v. 49, p. 333-45.
- Brunie, S.; Brolin, J.; Gewirth, D.; Sigler, P.B. (1985). The refined crystal structure of dimeric phospholipase A₂ at 2.5 Å. Access to ashielded catalytic site. *J. Biol. Chem.* 260, 9742-9749.
- Bultrón, E., Gutiérrez, J.M., Thelestam, M., (1993). Effects of *Bothrops asper* (Terciopelo) myotoxin III, a basic phospholipase A₂, on liposomes and mouse gastrocnemius muscle. *Toxicon* 31, 217–222.
- Buononato M. (2001). Serpentes. www.bioterium.com.Br/bioterium/animais/serpentes/00serpentes.htm.
- Buschle M. (1985). Acidentes por animais peçonhentos em nosso meio. Parte II Ofidismo. Boletim Informativo da Biblioteca do Setor de Ciências da Saúde da Universidade Federal do Paraná, Curitiba, 15.
- Campbell J. A. and Lamar W. W. (1989). *The venomous, reptiles of Latin America*. Comstock Publishing Associates, Ithaca, NY, 425 p.
- Cardoso J.L.C.; França F.O. de S.; Wen F.H.; Málaque C.S.M.; Haddad J.R.V., (2003). Animais peçonhentos no Brasil: biologia, clínica e terapêutica dos acidentes. São Paulo: Sarvier, 468p.

- Chang C. C.; Lee C. Y.; Eaker D. e Fohlman J. (1977b). The presynaptic neuromuscular blocking action of taipoxin. A comparison with β-bungarotoxin and crotoxin. *Toxicon*, 15, 571-576.
- Chang, C.C.; Lee, D. (1977a). Crotoxin the neurotoxin of South American rattlesnake venom, is a presynaptic toxin acting like β-bungarotoxin. *Nauny-Schmiedebers Arch-Pharmacol*. V. 296, p.159-68.
- Cho W. e Kézdy F. J. (1991). Chromogenic substrates and assay of phospholipases A₂. *Methods Enzymol.* 197:75-79.
- Cintra A. C. O.; Marangoni S.; Oliveira B.; Giglio J. R. (1993). Bothropstoxin-I: amino acid sequence and function. *Journal of Protein Chemistry* 12: 57-64.
- Condrea E.; Yang C. C. e Rosenberg P. (1981). Lack of correlation between the anticoagulant activity and phospholipase hydrolysis by snake venom phospholipases A₂. *Thromb. Hemostasis*, 45,82-89.
- Condrea E., Fletcher J.E., Rapuano B.E., Yang C.C., Rosenberg P., (1981a). Effect of modification of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A₂ from *Naja nigricollis* snake venom and less toxic phospholipases A₂ from *Hemachatus haemachatus* and *Naja naja atra* venoms. *Toxicon* 19, 61–71.
- Condrea E., Fletcher J.E., Rapuano B.E., Yang C.C., Rosenberg P., (1981b). Dissociation of enzymatic activity from lethality and pharmacological properties by carbamylation of lysines in *Naja nigricollis* and *Naja naja atra* snake venom phospholipases A₂. *Toxicon* 19, 705–720.
- Condrea E., Rapuano B.E., Fletcher J.E., Yang C.C., Rosenberg P., (1983b). Ethoxyformylation and guanidination of snake venom phospholipases A₂: effects on enzymatic activity, lethality and some pharmacological properties. *Toxicon* 21, 209–218.
- Condrea E., Rapuano B.E., Fletcher J.E., Yang C.C., Rosenberg P., (1981c). Effects of arginine modification of *Naja nigricollis* and *Naja naja atra* snake venom phospholipases A₂ on enzymatic activity, lethality and anticoagulant action. *Toxicon* 19, 721–725.
- Condrea E., Rapuano B.E., Soons K.R., Yang C.C., Rosenberg P., (1983a). Effect of methylation of histidine-48 on some enzymatic and pharmacological activities of snake venom phospholipases A₂. *Life Sci.* 32, 1455–1461.
- Condrea E., Soons K.R., Barrington P.L., Yang, C.C., Rosenberg P., (1985). Effect of alkylation of tryptophan residues on the enzymatic and pharmacological properties of snake venom phospholipase A₂. *Can. J. Physiol. Pharmacol.* 63, 331–339.
- Cook G. C. (1996). Manson's tropical diseases. WB Saunders Company, London. 20. ed.
- Dal Pai, V.; Neto, H. S. (1994). Ação dos venenos sobre os tecidos animais. In: Barraviera, B. Venenos Animais. Uma visão integrada. São Paulo: Publicações Científicas. p.97-105.
- Daniele J.J., Bianco I.D., Delgado C., Carrillo D.B. and Fidelio G.D., (1997). A new phospholipase A₂ isoform isolated from *Bothrops neuwiedii* (Yarara chica) venom with novel kinetic and chromatographic properties. *Toxicon* 35 Vol. 8, pp. 1205–1215.
- Delót E. and Bon C. (1993). Model of interaction of crotoxin, a phospholipase A₂ neurotoxin, with pre-synaptic membranes. *Biochemistry*, v. 32, p. 10708-713.
- Dempster D. W.; Gopalakrishnakone P.; Hawgood B. J. (1980). Intramitochondrial calcium deposits associated with muscle necrosis induced by crotoxin. J. Physiol., London. v.300, p.21.
- Díaz C., Gutiérrez J.M., Lomonte B. and Gené J.A., (1991). The effect of myotoxins isolated from Bothrops snake venoms on multilamellar liposomes: relationship to phospholipase A₂, anticoagulant and myotoxic activities. *Biochim. Biophys. Acta* 1070, 455–460.
- Díaz C., Gutiérrez J.M., Lomonte B., Núñez J., (1993). p-Bromophenacyl bromide modification of *Bothrops asper* myotoxin II, a lysine-49 phospholipase A₂, affects its pharmacological activities. *Toxicon* 31, 1202–1206.

- Díaz-Oreiro C. and Gutiérrez J.M., (1997). Chemical modification of histidine and lysine residues of myotoxic phospholipases A₂ isolated from *Bothrops asper* and *Bothrops godmani* snake venoms: effects on enzymatic and pharmacological properties. *Toxicon* 35, 241–252.
- Dijkstra B.W., Renetseder R., Kalk K.H., Hol W.G. and Drenth J. (1983). Structure of porcine pancreatic phospholipase A₂ at 2.6 Å resolution and comparison with bovine phospholipase A₂. *J. Mol. Biol.* 168 (1): 163-179.
- Do Nascimento S. P. (2000). Aspectos epidemiológicos dos acidentes ofídicos ocorridos no Estado de Roraima, Brasil, entre 1992 e 1998. Cad. Saúde Publica, Rio de Janeiro, jan-mar. 16(1):271-176.
- Dos-Santos M.C., Assis E.B., Moreira T.D., Pinheiro J., Fortes-Dias C.L. (2005). Individual venom variability in *Crotalus durissus ruruima* snakes, a subspecies of *Crotalus durissus* from the Amazonian region. *Toxicon* 46:958-961.
- Dos-Santos M.C.; Ferreira L.C. L.; Dias da Silva W.; Furtado M.F.D., (1993). Caracterizacion de las actividades biológicas de los venenos amarillo y blanco de *Crotalus durissus ruruima* comparados con el veneno de *Crotalus durissus terrificus*, *Toxicon* 31, 1459-1469.
- Dupureur C. M.; Yu B-Z.; Ramone A.; Jain M. K. e Tsai M-D. (1992). Phospholipase A₂ engineering. The structural and functional roles of aromaticity and hydrophobicity in the conserved phenylalanine-22 and phenylalanine-106 aromatic sandwich. *Biochemistry*, 31, 10576-10583.
- Ellenhorn M. J. (1997). Ellenhorn's medical toxicology: diagnosis and treatment of human poisoning. 2.ed. Williams & Wilkins, Baltimore, 2047 p.
- Emmanuel V., and Gérard L (2000). What can venom phospholipases A₂ tell us about the functional diversity of mammalian secreted phospholipases A₂?. *Biochimie* 82: 815–831.
- Fan, H. W.; Cardoso, (1995). Clinical toxicology of snake bites in South America, in: C. Bon (Ed.), Handbook of Clinical Toxicology of Animal Venoms and Poisons. CRC Press, Boca Raton, pp. 667-668.
- Faure G., e Bon C. (1988). Crotoxin, A Phospholipase A₂ neurotoxin from the south america rattlesnake *Crotalus durissus terrificus*. Purification of several isoforms and a Comparation of their molecular structure and of their biological activities. *Biochemistry*, 27 (2):730-738.
- Faure, G.; Côpic, A.; Porrier, S. L.; Gubensêk, F.; Bom, C. Krizaj, L. (2003). Crotoxin acceptor protein isolated from Torpedo electric organ: binding properties to crotoxin by surface plasmon resonance. *Toxicon* 41, 509-517.
- Fenard D., Lambeau G., Valentine E., Lefebvre J-C., Lazdunski M., Doglio A. (1999). Secreted phospholipases A₂, a new class of HIV inhibitors that block virus entry into host cells. *J. Clin. Invest.* 104: 611–618.
- Ferreira M.L.; Moura da Silava A.M.; Mota I. (1992). Neutralization of different activities of venoms from nine species of Bothrops snakes by *Bothrops jararaca* antivenom. *Toxicon* 30, 1591-1602.
- Fletcher J. E.; Rapuano B. E.; Condrea E.; Yang C. C.; Ryan M. and Rosenberg P. (1980). Comparison of a relatively toxic phospholipase A₂ from *Naja nigricollis* snake venom with that of a relatively non-toxic phospholipase A₂ from *Hemachatus hemachatus* snake venom II. Pharmacological properties in relationship to enzymatic activity. *Biochem. Pharmacol.*, 29,1565-1575.
- Fletcher J. E; Rapuano B. E.; Condrea E.; Yang C. C.; Ryan M. and Rosenberg P. (1981) relationship between catalysis and toxicological properties of three phospholipases A₂ from elapid snake venom. *Toxic. Appl. Pharmac.*, 59,375-382.
- Francis B.; Gutierrez J. M.; Lomonte B. e Kaiser I. I. (1991). Myotoxin II from *Bothrops asper* (terciopelo) venom is a lysine 49 phospholipase A₂. *Arch. Biochem. Biophys.* 284, 352-359.

- Francischetti I. M. B.; Saliou B.; Leduc M.; Carlini C. R. ; Hatmi M. ; Randon J. ; Faili A. ; Bon C. (1997). Convulxin, a potent platelet-aggregating protein from Crotalus durissus terrificus venom, specifically binds to platelets. *Toxicon*, v.35, n.8, p.1217-1228.
- Francischetti I.M.; Gombarobits M.E. Valenzuela J.G. Carlinis C.R.; Guimaraes J.A. (2000). Intraspecific variation in the venom of the south american rattlesnake (Crotalus durissus terrificus). Comp. Biochem. Physiol. (C) Toxicol Pharmacol. 127(1):23-36.
- Fuly A.L., Calil-Elias S., Martinez A.M., Melo P.A., Guimarães J.A., (2003). Myotoxicity induced by an acidic Asp-49 phospholipase A₂ isolated from *Lachesis muta* snake venom. Comparison with lysophosphatidylcholine. *Int. J. Biochem. Cell Biol.* 35, 1470–1481.
- Fuly A.L., Calil-Elias S., Zingali R.B., Guimarães J.A., Melo P.A., (2000). Myotoxic activity of an acidic phospholipase A₂ isolated from *Lachesis muta* (Bushmaster) snake venom. *Toxicon* 38, 961–972.
- Fuly A.L., Machado O.L., Alves E.W., Carlini C.R., (1997). Mechanism of inhibitory action on platelet activation of a phospholipase A₂ isolated from *Lachesis muta* (Bushmaster) snake venom. *Thromb. Haemost.* 78, 1372–1380.
- Gabow P.A.; Kaehny W.D.; Kelleger S.P. (1982). The spectrum of rhabdomyolysis. Medicine n. 61, p. 141-145.
- Gerrard J. M.; Robinson P.; Narvey M. and McNicol A. (1993). Increased phosphatidic acid and decreased lysophosphatidic acid in response to thrombin is associated with inhibition of platelet aggregation. *Biochemistry and Cell biology*, 71 (9-10) 432-439.
- Gonçalves, J. M. (Eds) (1956) Venoms, American Association for the Advancement of Science, Washington, DC, pp 261–274.
- Gopalakrishnakone P.; Dempster H. W.; Hawgood B. J. *et al.* (1984). Cellular and Mitochondrial changes induced in the structure of murine skeletal muscle by crotoxin, a neurotoxic phospholipase A₂ complex. *Toxicon*, Oxford, v.22, p.85-98.
- Goyffon M. and Chippaux J. P. (1990). *Encyclopédie Médico-Chirurgicale*. Editions Techniques, Paris, France.
- Guimarães B. (1974). Serpentes escorpiões e aranhas: identificação, prevenção e tratamento. *Estudo e Pesquisa*, São Paulo, SP, 64 p.
- Gutierrez JM, Ownby CL (2003). Skeletal muscle degeneration induced by venom phospholipases A₂: insights into the mechanisms of local and systemic myotoxicity. *Toxicon*. Dec 15;42(8):915-31.
- Gutierrez J. M. e Lomonte B. (1995) Phospholipase A₂ myotoxins from Bothrops snake venoms. *Toxicon* 33, 1405-1424.
- Gutierrez J. M. Chaves F., Gene J. A., Lomonte B., Camacho Z. and Schosinsky K. (1989) Myonecrosis induced in mice by a basic myotoxin isolated from the venom of the snake *Bothrops nummifer* (jumping viper) from Costa Rica. *Toxicon* 27, 735-745.
- Gutiérrez J. M.; Arroyo O. e Bolanos R. (1980). Mionecrosis, hemorragia y edema inducidos por el veneno de *Bothrops asper* em raton branco. *Toxicon*, 18, 603-610.
- Gutiérrez J.M., Núñez J., Díaz C., Cintra A.C.O., Homsi-Brandeburgo M.I., Giglio J.R., (1991). Skeletal muscle degeneration and regeneration after injection of bothropstoxin-II, a phospholipase A₂ isolated rom the venom of the snake *Bothrops jararacussu. Exp. Mol. Pathol.* 55, 217–229.
- Halpert J., Eaker D., Karlsson E., (1976). The role of phospholipase activity in the action of a presynaptic neurotoxin from the venom of *Notechis scutatus scutatus* (Australian tiger snake). *FEBS Lett.* 61, 72–76.

- Hanada K., Kinoshita E., Itoh M., Hirata M., Kajiyama G. and Sugiyama M. (1995). Human pancreatic phospholipase A₂ stimulates the growth of human pancreatic cancer cell line. *FEBS Letters* Volume 373, Issue 1, 2 October 1995, Pages 85-87.
- Harris J. B. (1991). Phospholipases in Snake venoms and their effects on Nerve and Muscle. In "Snake Toxins" Ed. Harvey, A. L. Pergamon Press., New York, pp 91-129.
- Hawgood B.J.; Smith J.W. (1977). The mode of action at the mouse neuromuscular junction of the phospholipases A-crotapotin complex isolated from venom of the South Amercican rattlesnake. *Br. J. Pharmacol.*, v. 61, p. 597-506.
- Heinrickson R. L. (1991). Dissection and sequence analysis of phospholipase A₂. *Methods in enzymol.*, 197, 201-215.
- Hendon R. A.; Fraenkel-Conrat H. (1971). Biological roles of the two components of crotoxin. *Proc. Natl. Acad. Sci.* U S A ., v. 68, p. 1560-63.
- Ho C. L., Tsai I. H. and Lee C. Y. (1986) The role of enzyme activity and charge properties on the presynaptic neurotoxicity and the contracture-inducing activity of snake venom phospholipases A. *Toxicon 24, 337 345*.
- Hoge A.R. and Romano H.S. (1972). Sinópse das serpentes peçonhentas. *Mem. Inst. Butantan.* São Paulo. 36, 109-208.
- Holland D. R.; Clancy L. L.; Muchmore S. W.; Rydel T. J.; Einspahr H. M.; Finzel B. C.; Heinrickson R. L. e Watenpaugh K. D. (1990). The crystal structure of a Lysine 49 phospholipase A₂ from the venom of the Cottonmouth snake to 2.0 Å resolution. J. Biol. Chem. 266, 17649-17656.
- Holzer M. and Mackessy S. P. (1996). An aqueous endpoint assay of snake venom phospholipase A₂. *Toxicon* 34 (10) 1149-1155.
- Homsi-Brandenburgo M. I.; Queiroz L. S.; Santo-Neto H.; Rodrigues-Simoni L. e Giglio J. R. (1988). Fractionation of *Bothrops jararacussu* snake venom: Partial chemical characterization and biological activity of Bothropstoxin. *Toxicon*, 26, 7, 615-627.
- Houmard J. and Drapeau, G. R. (1972). Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. *Proc. Natl. Acad. Sci.* USA. 69 (12):3506-9.
- Hseu M. J.; Yen C-H.; Tzeng M-C. (1999). Crocalbin: a new calcium-binding protein that is also a binding protein for crotoxin, a neurotoxic phospholipase A₂. *FEBS Lett.* 445, 440-444.
- Huang H. C. (1984). Release of slow reacting susbstance from the guinea pig lung by phospholipases A₂ of *Vipera russelli* snake venom. *Toxicon*, 22, 359-365.
- Hudelson, S. and Hudelson, P. (1995). Pathophysiology of snake envenomization and evaluation of treatments-part II. *Comp. Contin. Educ. Pract. Vet.*; v. 17, n. 8, p. 1035-1040.
- Hudelson S. and Hudelson P. (1995a). Pathophysiology of snake envenomization and evaluation of treatments-part I. Comp. Contin. Educ. Pract. Vet.; v. 17, n. 7, p. 889-896.
- Janssen M.J.W., van de Wiel W.A.E.C., Beiboer S.H.W., van Kampen M.D., Verheij H.M. slotboom A.J. and Egmond M.R. (1999). Catalytic role of the active site histidine of porcine pancreatic phospholipase A₂ probed by the variants H48Q, H48N and H48K. *Protein Engineering* vol. 12 no. 6 pp. 497-503.
- Jeng, T.W.; Fraenkel-Conrat, H. (1978). Chemical modification of hismanine and lysine residues of crotoxin. *FEBS lett.*, v. 87, p. 291-96.
- Jim J.; Sakate M. (1994). Biologia das serpentes. In: Barraviera, B. (Coord.). Venenos Animais: uma visão integrada. Rio de Janeiro: Publicações Científicas. pp. 109-134.
- Johansen B.; Kramer R. M.; Heission C.; McGray P. and Pepinsky R. B. (1992). Expression, purification and biochemical comparison of natural and recombinant human non-pancreatic phospholipase A₂. *Biochem, biophys. Res. Comm.*, 187(1) 544-551.

- Jorge M. T. e Ribeiro L. A. (1990). Acidentes por serpentes peçonhentas do Brasil. Ver. Ass. Méd., Brasil, v.36,p.66-77.
- Jorge M. T. e Ribeiro L. A. (1992). Epidemiologia e quadro clinico do acidente por cascavel sulamericana (*Crotalus durissus*). Ver. Inst. Med. Trop. São Paulo, v.34,n.4,p.347-354.
- Karlsson E., Pongsawasdi P., (1980). Purification of two phospholipase A₂ isoenzymes with anticoagulant activity from the venom of the cobra *Naja naja siamensis*. *Toxicon* 18, 409–419.
- Kini R. M. (1997). Venom Phopholipase A₂ Enzymes: Structure, Function and Mechanism. P. 269-282.
- Kini, R. M.; (2003). Excitement ahead: structure, function and mechanism of snake venom phospholipases A₂ enzymes. *Toxicon* 42, 827-840.
- Kini R.M., Evans, H.J., (1989). A model to explain the pharmacological effects of snake venom phospholipases A₂. *Toxicon* 27, 613–635.
- Kirkpatrick L. L.; Matzuk M. M.; Dodds D. C.; Perin M. S. (2000). Comparison of Biochemical interactions of the neuronal pentraxins. Neuronal pentraxin (NP) receptor binds to taipoxin and taipoxin-associated calcium-binding protein 49 via NP1 and NP2. J. Biol. Chem. 275, 17786-17792.
- Kondo K., Toda H., Narita K., (1978). Characterization of phospholipase A₂ activity of beta1bungarotoxin from *Bungarus multicinctus* venom. II. Identification of the histidine residue of beta1-bungarotoxin modified by p-bromophenacyl bromide. J. Biochem. (Tokyo) 84, 1301– 1308.
- Kornacker P. M. (1999). Lista sistemática y clave para las serpientes de Venezuela. 1ra Ed. Rheinbach, Germany: Pako-Verlag. 270 pp.
- Krizaj I.; Bieber A. L.; Ritonja A. e Gubensek F. (1991). The primary structure of ammodytin L, a myotoxic phospholipase A₂ homologue from Vipera ammodytes venom. *Eur. J. Biochem.*, 202, 1165-1168.
- Krizaj I.; Rowen E. G.; Gubensek F. (1995). Ammodytoxin A acceptor in bovine brain synaptic membranes. *Toxicon* 33, 437-449.
- Krizaj L.; Faure G.; Gubensek F.; Bon C. (1997). neurotoxic phospholipases A₂ ammodytoxin and crotoxin bind to distinct high-affinity protein acceptors in Torpedo marmorata electric organ. *Biochemistry* 36, 2779-2787.
- Kudo I.; Mukarami M.; Hara S. and Inoue K. (1993). Mammalian non-pancreatic phospholipases A₂, *Biochem Biophys Acta.*, 117, 217-231.
- Kuipers O. P., Dijkman R., Pals C.E.G.M., Verheij H.M. and de Haas G.H. (1989) Evidence for the involvement of tyrosine-69 in the control of stereospecificity of porcine pancreatic phospholipase A₂. *Protein Engineering* Vo. 2 no 6 pp. 467-471.
- Kuipers O. P.; Franken P. A.; Hendricks R.; Verheij H. M. e De Haas G. (1990). Function of the fully conserved residues Asp99, Tyr52 and Tyr73 in phospholipase A₂. Prot. Eng., 4, 199-204.
- Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227, 680-685.
- Lago L.A. (1996). Avaliação clínica e laboratorial de bovinos submetidos ao envenenamento crotálico experimental *Crotalus durissus terificus* Laurenti, 1768 crotamina positivo. Belo Horizonte- MG., 1996. 85p. Tese (Mestrado em Medicina veterinaria)- Curso d Pós-Graduaç~ao em Medicina Veterinária, Universidades Federal de minas Gerais.
- Lambeau G.; Barhainin H.; Schweitz H.; Qar J.; Lazdunski M. (1989). Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. *J. Biol. Chem.* 264, 11503-11510.

Lancini A. R. (1979). Serpientes de Venezuela. Ediciones Altamirano, Caracas, Venezuela.

- Landucci E.C., Castro R.C., Pereira M.F., Cintra A.C., Giglio J.R., Marangoni S., Oliveira B., Cirino G., Antunes E.and De Nucci G., (1998) Mast cell degranulation induced by two phospholipase A2 homologues: dissociation between enzymatic and biological activities. *Eur. J. Pharmacol.* 343 2/3, pp. 257–263.
- Landucci E.C.T., Castro R.C., Pereira M.F., Cintra A.C.O., Giglio J.R., Marangoni S., Oliveira B., Cirino G., Antunes E., de Nucci G., (1998). Mast cell degranulation induced by two phospholipase A₂ homologues: dissociation between enzymatic and biological activities. *Eur. J. Pharmacol.* 343, 257–263.
- Landucci E.C.T.; Condino-Neto A.; Perez A.C.; Hyslop S.; Corrado A.P.; Novello J.C.; Marangoni S.; Oliveira, B.; Antunes, E.; Nucci, G. (1994). Crotoxin induces aggregation of human washed platelets. *Toxicon*, v. 32, p. 217-26.
- Laure C.J. (1975). Die primarstruktur dês crotaminins. Hoppe-Seyler's Z. *Physiol. Chem.* 356. 213-215.
- Leitão-de-Araujo M. and Alves M. L. M. (1976). As serpentes peçonhentas do Rio Grande do Sul. *Natureza em Revista* 1, 20-26.
- Liao T-H.; Ting R. S.; Yeung J. E. (1982) Reactivity of Tyrosine in Bovine Pancreatic deoxyribonuclease with p-Nitrobenzenesulfonyl Fluoride. *The Journal of biological Chemistry*. Vol. 257, No. 10, pp. 5637-5644.
- Lima, E. G.; Costa, P. I.; Laure, C. J. (1989). South American rattlesnake venom: its hemolytic power. Revista da Sociedade Brasileira de Medicina Tropical. 22. 171-175.
- Liu C. S.; Chen J. M.; Chang C. H.; Chen S. W.; Teng C. M. e Tsai I. H. (1991). The amino acid sequence and properties of na edema-inducing Lys-49 phospholipase A₂ homolog from the venom of Trimeresus mucrosquamatus. *Biochem. Biophys. Acta.*, 1077, 362-370.
- Lloret S. and Moreno J. J. (1993). Odema formation and degranulation of mast cells by phospholipase A₂ purified from porcine pancreas and snake venoms, *Toxicon*, 31(8): 949-956.
- Magalhães R.A. et al. (1986). Rabdomiólise secundária a acidente ofídico crotálico (*Crotalus durissus terrificus*). *Rev. Med. Trop.* São Paulo, v. 28, n. 4, p. 228-233.
- Mancin A. C.; Soares A. M.; Andrião-escarso S. H.; Faça V. M.; Greene L. J.; Zuccolotto S.; Pelá I. R. e Giglio J. R. (1998). The analgesic activity of crotamine a neurotoxin from Crotalus durissus terrificus (South American rettlesnake) venom: a biochemical and pharmacological study. *Toxicon*, v.36, n.12, p. 1927-1937.
- Maraganore J. M.; Merutka G.; Cho W.; Welches W.; Kezdy F. J. e Heinrickson R. L. (1984). A new class of phospholipase A₂ with lysine in place of aspartate 49. *J. Biol. Chem.* 259, 13839-13843.
- Marangoni S.; Toyama M. H.; Arantes E. C.; Giglio J. R.; da Silva C. A.; Carneiro E. M.; Gonçalves A. A.; Oliveira B. (1995). Amino acid sequence of TsTX-V, an alpha-toxin from Tytus serrulatus scorpion venom, and its effect on K⁺ pemeability of beta-cells from isolated rat islets of Langerhans. *Biochim. Biophys. Acta.* 1243 (3):309-14.
- Markland F. S., (1998). Snake Venoms and the Hemostatic System. *Toxicon* Vol. 36, No. 12, pp. 1749-1800.
- Marlas G. and Bon C. (1982). Relationship between the pharmacological action of crotoxin and its phospholipase activity. *Eur. J. Biochem.*, v. 125, p. 157-65.
- Mebs D. (1986). Myotoxic activity of phospholipase A₂ isolated from cobra venoms: neutralization by polyvalent antivenoms. *Toxicon*,24,161-168.

- Mello E. A. M.; Ceschi J.P.; Giglio J. R.; Cavalheiro E. A. (1989). Convulxin does not induce convulsions when injected into the rat dorsal hippocampus. *Acta Physiologica et Pharmacological Latinoamericana* 39, 353-358.
- Melo P. and Ownby C.L., (1999). Ability of wedelolactone, heparin and p-bromophenacyl bromide to antagonize the myotoxic effects of two crotaline venoms and their PLA₂ myotoxins. *Toxicon* 37, 199–215.
- Mollier P., Chwetzoff S., Bouet F., Harvey A.L., Ménez A., (1989). Tryptophan 110, a residue involved in the toxic activity but not in the enzymatic activity of notexin. *Eur. J. Biochem.* 185, 263–270.
- Mora F. C.; Alvarado, J. A.; Blen, R. A.; López, A. S. (1996). Aspectos básicos sobre las serpientes de Costa Rica. *Oficina de publicaciones de la Universidad de Costa Rica*. Instituto Clodomiro Picado, 3. ed. 62p.
- Mosmann M. N. (2001). *Guia das principais serpentes do mundo*. Ed. ULBRA, Canoas/RS. 2v. 367 p.
- Mukherjee AB, Miele L, Pattabiraman N. (1994) Phospholipase A₂ enzymes: regulation and physiological role. *Biochem Pharmacol*. 48(1):1-10.
- Musse N. S.; Almeida E. P. (1986). *Ofidismo:* um problema no Brasil. Medicina Hospital Universitário Pedro Ernesto Universidade do Estado do Rio de Janeiro 5, 243-254.
- Nahas L.; Denson K. W. E.; MacFacrlane R. G. (1964). A study of the coagulant action of eight snake venoms. *Thromb. Diathe. Haemorrh.*, v.12, p.355.
- Nascimento N.; Seebart C.S.; Francis B.; Rogero J.R.; Kaiser I.I. (1996a). Influence of ionizing radiation on crotoxin: biochemical and immunological aspects. *Toxicon*, v. 34, p. 123-31.
- Nigam S. e Schewe T. (2000). Phospholipase A₂s and lipid peroxidation. *Biochem. Biophys. Acta* 1488: 167-181.
- Nisenbon, H.E., Perazzo, J.C., Monserrat, A.J., Vidal, J.C., (1988). Effect of chemical modification with p-bromophenacyl bromide on the enzymatic and lethal properties of phospholipase A₂ from *Bothrops alternatus* (vibora de la cruz) venom. *Toxicon* 26, 1137–1144.
- Nishioka S. A. (1994). Diagnóstico e conduta nos acidentes ofídicos. *Revista da Sociedade Brasileira de Medicina Tropical* 27, 674-678.
- Nunes T. B. (1994). Distribuição das serpentes peçonhentas. *Revista da Sociedade Brasileira de Medicina Tropical* 27, 662-667.
- Núñez V., Arce V., Gutiérrez J.M. and Lomonte B. (2004). Structural and functional characterization of myotoxin I, a Lys49 phospholipase A₂ homologue from the venom of the snake *Bothrops atrox. Toxicon* Volume 44, Issue 1, pp. 91-101.
- Oguiura N.; Boni-Mitake M. Rádis-Baptista G. (2005) New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. *Toxicon* 46. 363-370.
- Olivo R. do A., Teixeira C. de F.P., Wallace J.L., Gutiérrez J.M. and Zamuner S.R. (2007). Role of cyclooxygenases in oedema-forming activity of bothropic venoms. *Toxicon* 49 pp. 670–677.
- Osweiler G. D. (1998). Toxicologia Veterinária. Porto Alegre. Artes Médicas, 526p.
- Ownby, C. L. (1998) Structure, functions and biophysical aspects of the myotoxins from snake venoms. J. Toxicol. Toxin. Rev. 17, 2: p. 213-238.
- Ownby, C.L., Colberg, T.R., White, S.P., (1997). Isolation, characterization and crystallization of a phospholipase A₂ myotoxin from the venom of the prairie rattlesnake (*Crotalus viridis viridis*). *Toxicon* 35, 111–124.
- Ownby, C.L., Selistre-de-Araújo, H.S., White, S.P., Fletcher, J.E., (1999). Lysine 49 phospholipase A₂ proteins. *Toxicon* 37, 411–445.

- Picolo G.; Cury Y. (2004). Peripheral neuronal nitric oxide synthase activity mediates the antinoceptive effects of *Crotalus durissus terrificus* snake venom, a delta-and-kappopioid receptor agonist. *Life Sci.*, v.18, p. 559-73.
- Pinho F. O.; Vidal E. C.; Burdmann E. A. (2000). Atualização em Insuficiência Renal Aguda: Insuficiência renal aguda após acidente crotálico, *J. Bras Nefrol*; 22(3): 162-8.
- Pinho F.M.; Pereira I.D. (2001). Ofidismo. Rev. Assoc. Méd. Brás., v. 47, p 24-9.
- Ponce-Soto L. A.; Bonfim V. L.; Rodrigues-Simioni L.; Novello J. C. and Marangoni S. (2006). Determination of Primary Structure of Two Isoforms 6-1 and 6-2 PLA₂ D49 from *Bothrops jararacussu* Snake Venom and Neurotoxic Characterization Using in vitro Neuromuscular Preparation. *The Protein Journal*, Vol. 25, No. 2: 147-155.
- Ponce-Soto L.A.; Baldasso P.A.; Romero-Vargas F.F.; Winck F.V.; Novello J.C. and Marangoni S. (2007). Biochemical, Pharmacological and Structural Characterization of Two PLA₂ Isoforms Cdr-12 and Cdr-13 from *Crotalus durissus ruruima* Snake Venom. *The Protein Journal*, Vol. 26, No. 1: 39-49.
- Ponce-Soto L.A.; Lomonte B.; Gutiérrez J.M.; Rodrigues-Simioni L.; Novello J.C. and Marangoni S. (2007). Structural and functional properties of BaTX, a new Lys49 phospholipase A₂ homologue isolated from the venom of the snake *Bothrops alternatus*. *Biochimica et Biophysica Acta (BBA) General Subjects* Vol. 1770, Pages 585-593.
- Ponce-Soto L.A.; Martins D.; Novello J.C.; Marangoni S. (2007). Structural and Biological Characterization of Two Crotamine Isoforms IV-2 and IV-3 Isolated from the *Crotalus durissus cumanensis* Venom. *Protein J.* Dec;26(8):533-40.
- Prado-Franceschi J. (1990). Pharmacology of convulxina e giroxina. *Mem. Inst. Butantan*, 52 (supl) p.25-26.
- Prado-Franceschi J.; Vital Brazil O. (1981). Convulxin, a new toxin from the venom of the South American rattlesnake *Crotalus durissus terrificus*. Toxicon, v.19, p.875.
- Rambo B. *A fisionomia do Rio Grande do Sul:* ensaio de uma monografia natural. 3.ed. Editora UNISINOS, São Leopoldo, RS, 473 p. 1994.
- Renetseder R.; Brunie S.; Dijkstra B.W.; Drenth J.; Sigler P.B. (1985). A comparison of the crystal structures of phospholipase A₂ from bovine pancreas and *Crotalus atrox* venom. *J. Biol. Chem.* 260, 11627-11634.
- Ribeiro L.A.; Jorge M.T.; Iversson L.B. (1995). Epidemiologia do acidente por serpentes peçonhentas: estudo de casos atendidos em 1998. Revista de Saúde Pública 29, 380-388.
- Riordan J. F. e Vallee B. L. (1972). Nitration with tetranitromethane. *Methods Enzymol.* 25, 515-421.
- Roberts M.F., Deems R.A., Mincey T.C., Dennis E.A., (1977). Chemical modification of the histidine residue in phospholipase A₂ (*Naja naja naja*). A case of half-site reactivity. *J. Biol. Chem.* 252, 2405–2411.
- Rodrigues V.M., Soares A.M., Mancin A.C., Fontes M.R.M., Homsi-Brandeburgo M.I., Giglio J.R., (1998). Geographic variations in the composition of myotoxins from Bothrops neuwiedi snake venoms: biochemical characterization and biological activity. *Comp. Biochem. Physiol.* 121A, 215–222.
- Rodriguez-Acosta A.; Pulido-Mendez M., Finol H., Giron M.E e Aguilar I. (1999). Liver ultrastructural pathology in mice envenomed with Uracoan (*Crotalus vegrandis*) venom. J. submicrosc. Cytol. Path., 31: 433-439.
- Roholt O. A. e Pressman D. (1972). Isolation of peptides from the active site. *Methods Enzymol.* 25B, 438-448.
- Roodt A. R.; Dolab J. A.; Segre L. (1996). Fisiopatologia y diagnóstico del ataque por serpientes venenosas. Una breve actualización. *Rev. Med. Vet.*, v.77, p.64-71.

- Rosenberg P., (1986). The relationship between enzymatic activity and pharmacological properties of phospholipases in natural poisons. In: Harris, J.B., (Ed.), Animal, Plant and Microbial Toxins, Oxford University Press, Oxford, pp. 129–140.
- Rosenfeld G. (1961). Acidentes por animais peçonhentos: serpentes, aranhas e escorpiões. In: VERONESI, R. *Doenças Infecciosas e parasitárias*. Livraria Luso-Espanhola e Brasileira, São Paulo, SP, pp. 1269-1289. In: Coletânea de Trabalhos do Instituto Butantã, Volume VIII.
- Rosenfeld G.; Nahas L.; Cillo D. M.; Fleury C. T. (1971). Envenenamento por serpentes, aranhas e escorpiões. Ciência e cultura 15, 294-195. In: Coletânea de Trabalhos do Instituto Butantã, Volume IX.
- Rossi M. A.; Peres L. C.; De Paula F.; Cupo P.; Hering S. E. (1989). Electron-microscopic study of systemic myonecrosis due to poisoning by tropical rettlesnake (*Crotalus durissus terrificus*) in humans. Archives of Pathology & Laboratory Medicine, Estados Unidos, v. 113, p. 169-173.
- Roze J. A. (1966). La Taxonomia y Zoogeografia de los ofidios en Venezuela, pp 293 y 294. Caracas: Universidad Central de Venezuela.
- Sakate M. (2002). Terapêutica das intoxicações. In: Andrade, S. F. Manual de Terapêutica Veterinária. São Paulo: Roca. p.523-555.
- Saliba A. M.; Belluimini H. E.; Leinz F. F. (1983). Pathology of experimental poisoning of cattle with Crotalus snake venom. Fac. Med. Vet. Univ. São Paulo, v.3, p. 513-517.
- Salvini T.F.; Amaral A.C.; Miyabara E.H.; Turri, J. A. O.; Danella P. M. e Selistre de Araújo H. S. (2001). Systemic skeletal muscle necrosis induced by crotoxin. *Toxicon*, v.39, p. 1141-1149.
- Santoro, M.L., Souza e Silva, M.C., Gonçalves, L.R., Almeidasantos, S.M., Cardoso, D. Laporta-Ferreira, I.L., Saiki, M., Peres, C.A., Sono-Martins, I.S., (1999). Comparison of the biological activies in venoms from three subspecies of the South American rattlesnake (*Crotalus durissus terrificus*, *Crotalus durissus cascavella* and *Crotalus durissus collilineatus*). Comp. Biochem Physiol. C. Pharmacol. Toxicol. Endocrinol. 122, 61-73.
- Santos E. (1981). Anfíbios e répteis do Brasil: vida e costumes. Ed. Belo Horizonte, Itatiaia, 263 p. (Coleção Zoologia Brasílica, 3).
- Saravia P.; Rojas E.; Arce V; Guevara C.; López J.C.; Chaves E.; Velásquez R.; Rojas G. and Gutiérrez J. M. (2002). Geographic and ontogenic variability in the venom of the neotropical rattlesnake *Crotalus durissus*: Pathophysiological and therapeutic implications. *Rev. Biol. Trop.* 50(1): 337-346.
- Schagger H. A. and Von Jagow G. (1987). Comassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. *Anal Biochem.* 166, 368-379.
- Scott D. L.; Otwinowski Z.; Gelb M.H.; Sigler P.B. (1990). Crystal structure of bee-venom phospholipase A₂ in a complex with a transition state analogue. *Science* 250,1563-1566.
- Scott D.L., Achari A., Vidal J.C., Sigler P.B., (1992). Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A₂ from the venom of Agkistrodon piscivorus piscivorus. J. Biol. Chem. 267, 22645–22657.
- Scott D.L.; White S. P.; Otwinowski Z.; Yuan W.; Gelb M. H. and Sigler P. B. (1990b*). Interfacial catalysis: the mechanism of phospholipase A₂. *Science*, 250, 1541-1546.
- Scott V. E. S.; Parcej D. N.; Keen J. N.; Findlay J. B.; Dolly J. O. (1990). α Dendrotoxin acceptor from bovine brain is a K⁺ channel protein. Evidence from the N-terminal sequence of its larger subunit. *J. Biol. Chem.* 265, 20094-20097.
- Serrano S.M., Reichl A.P., Mentele R., Auerswald E.A., Santoro M.L., Sampaio C.A., Camargo A.C., Assakura M.T., (1999). A novel phospholipase A₂, BJ-PLA₂, from the venom of the

snake *Bothrops jararaca*: purification, primary structure analysis, and its characterization as a platelet-aggregation inhibiting factor. *Arch. Biochem. Biophys.* 367, 26–32.

- Six D. A. and Dennis E. A. (2000). The expanding superfamily of phospholipase A₂ enzymes: classification and characterization. *Biochim. Biophys. Acta* 1488, 1-19.
- Slotboom A. J. and de Haas G. H. (1975). Specific transformations at the N-terminal region of phospholipase A₂. *Biochemistry* 16: 5394–5399.
- Slotta C.H.; Fraenkel-Conrat M. (1938). Purificação e cristalização do veneno da cobra cascavel. *Mem. Inst. Butantan*, v. 12, p. 505-13.
- Smith W.L., Deitt D.L., Garavito R.M., (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182.
- Soares A.M., Andrião-Escarso S.H., Angulo Y., Lomonte B., Gutiérrez J.M., Marangoni S., Toyama M.H., Arni R.K., Giglio J.R., (2000). Structural and functional characterization of a myotoxin I from *Bothrops moojeni* (caissaca) snake venom. *Arch. Biochem. Biophys.* 373, 7–15.
- Soares A.M., Andrião-Escarso S.H., Bortoleto R.K., Rodrigues-Simioni L., Arni R.K., Ward R.J., Gutiérrez J.M., Giglio J.R., (2001b). Dissociation of enzymatic and pharmacological properties of piratoxins-I and -III, two myotoxic phospholipases A₂ from *Bothrops pirajai* snake venom. *Arch. Biochem. Biophys.* 387, 188–196.
- Soares A.M., Mancin A.C., Cecchini A.L., Arantes E.C., Franca S.C., Gutiérrez J.M., Giglio J.R., (2001a). Effects of chemical modifications of crotoxin B, the phospholipase A₂ subunit of crotoxin from *Crotalus durissus terrificus* snake venom, on its enzymatic and pharmacological activities. *Int. J. Biochem. Cell Biol.* 33, 877–888.
- Soerensen B. (1990). Animais peçonhentos. São Paulo: Atheneu, 138p.
- Soons K. R.; Condrea E.; Yang C-C.; and Rosenberg P. (1986). Effects of modification of tyrosines 3 and 62 (63) on enzymatic and toxicological properties of phospholipases A₂ from *Naja nigricollis* and *Naja naja atra* snake venoms. *Toxicon*, vol. 25, pp. 679-693.
- Sribar J.; Sherman N. E.; Prijatelj P.; Faure G.; Gubensek F.; Fox J. W.; Aitken A.; Pungercar J.; Krizaj I. (2003). The neurotoxic phospholipase A_2 associates, though a non-phosphorylated binding motif, with 14-3-3 protein γ and ε isoforms. *Biochem. Biophys. Res. Commun.* 302, 691-696.
- Takasaki C.; Sugama A.; Yanagita A.; Tamiya N.; Rowan E. G. and Harvey A. L. (1990). Effects of chemical modifications of Pa-11, a phospholipase A₂ from the venom of australian king brown snake (*Pseudechis australis*), on its biological actiities. *Toxicon* Vol. 28. No. 1. pp. 107-117.
- Thunnissen M.M.G.M.; AB E.; Kalk K.H.; Drenth J.; Dijkstra B.W.; Kuipers O.P.; Dijkman R.; de Haas G.H.; Verheij H.M. (1990) X-ray structure of phospholipase A₂ complexed with a substrate-derived inhibitor. *Nature* 347, 689-691.
- Tomoo K., Hirofumi O., Doi M., Toshimasa I., Inoue M., Ikeda K.and Mizuno H. (1992). Interaction mode of n-dodecylphosphorylcholine, a substrate analogue, with bovine pancreas phospholipase A₂ as determined by X-ray crystal analysis, *Biochem. Biophys. Res. Commun.* 187, 821–827.
- Toyama M.H., Soares A.M., Vieira C.A., Novello J.C., Oliveira B., Giglio J.R., Marangoni S., (1998). Amino acid sequence of piratoxin-I, a myotoxin from Bothrops pirajai snake venom and its biological activity after alkylation with p-bromophenacyl bromide. *J. Protein Chem.* 17, 713–718.
- Toyama O. D.; Boschero C. A.; Martins A. M.; Fonteles C. M.; Monteiro S.H.; Toyama H.M. (2005). Structure-function relationship of new crotamine isoform from the *Crotalus durissus cascavella*. *Protein J.* Jan;24(1):9-19.

- Tsai I.H., Wang Y.M., Au L.C., Ko T.P., Chen Y.H., Chu Y.F., (2000). Phospholipases A₂ from *Callosellasma rhodostoma* venom gland: cloning and sequencing of 10 of the cDNAs, threedimensional modelling and chemical modification of the major isozyme. *Eur. J. Biochem.* 267, 6684–6691.
- Tu A. T. (1991). *Handbook of natural toxins*, vol. 5. Reptile venoms and toxins. Marcel Dekker, New York, NY, 827 p.
- Van Dam-Mieras M.C.E.; Slotboom A.J.; Pieterson W.A.; De Haas G.H. (1975). The interaction of phospholipase A₂ with micellar interfaces, the role of the N-terminal region. *Biochemistry* 14, 5387-5394.
- Van Wezel F.M.; Slotboom A.J.; De Haas G.H. (1976). Studies on the role of methionine in porcine pancreatic phospholipase A₂. *Biochim. Biophys. Acta* 452, 101-111.
- Vancetto M. D. C.; Curi L. C.; Pereira C. A. (1995). Neutralization of the effect of Crotalus durissus terrificus venom by gangliosydes. Brazilian Journal of Medical and Biological research 28, 553-556.
- Vardjan N.; Sherman N. E.; Pungercar J.; Fox J. W.; Gubensek F.; Krizaj I. (2001). High-molecularmass receptors for ammodytoxin in pig are tissue-specific isoforms of M-type phospholipase A₂ receptor. *Biochem. Biophys. Res. Commun.* 289, 143-149.
- Vêncio D. (1988). Estudo do ofidismo em Goiás: comprometimento da função renal. *Revista Goiana de Medicina* 34, 95-111.
- Verheij H. M.; Volwerk J. J.; Jansen E. H. J. M.; Puyk W. C.; Dijkstra B. W.; Drenth J. e de Haas G. H. (1980) Methylation of Histidine-48 in pancreatic Phospholipase A₂. Role of Histidine and calcium Ion in the Catalytic Mechanism. *Biochemistry*, 19, 743-750.
- Verhei H.M., Slotboom A.J., de Haas G.H., (1981). Structure and function of phospholipase A₂. *Rev. Physiol. Biochem. Pharmacol.* 91, 91–203.
- Viljoen C.C., Visser L., Botes D.P., (1977). Histidine and lysine residues and the activity of phospholipase A₂ from the venom of *Bitis gabonica*. *Biochim. Biophys. Acta* 483, 107–120.
- Vital Brazil, O. (1966). Pharmacology of crystalline crotoxin II. Neuromuscular blocking action. *Mem. Inst. Butantan*, v. 33, p. 981-92.
- Vital Brazil, O. (1972). Neurotoxins from the South American Rattlesnake Venom. J. Formos. Med. Assoc., v.71, p. 394-400.
- Vital Brazil O. (1980). Venenos ofidicos neurotóxicos. Rev. Assoc. Méd. Brás. v. 26, p. 212-18.
- Vital Brazil O. (1990). Pharmacology of crotamine. Mem. Inst Butantan, v. 52, supl., p. 23-24.
- Vital Brazil O. and Excel B.J. (1970). Action of crotoxin and contractin from the venom of *Crotalus durissus terrificus* (South American rattlesnake) on the frog neuromuscular junction. J. *Physiol.*, 212, 34-35.
- Volwerk J.J., Pieterson W.A., de Haas G.H., (1974). Histidine at the active site of phospholipase A₂. *Biochemistry* 13, 1446–1454.
- Waite M. (1988). The phospholipases: Handbook of lipid research. Plenum. Press. New York.
- Wang J.P. and Teng C.M., (1990). Comparison of the enzymatic and edema-producing activities of two venom phospholipase A₂ enzymes. *Eur. J. Pharmacol.* 190, 347–354.
- Wang X. (2001). Plant Phospholipases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 211-231.
- Ward R.J., de Azevedo W.F., and Arni R.K. (1998). At the interface: crystal structures of phospholipases A₂. *Toxicon* Vol. 36 No. 11, pp. 1623-1633.
- Ward R. J.; Monesi, N.; Arni, R. K.; Larson, R. E. e Paço-Larson M. L. (1995). Sequence of a cDNA encoding bothopstoxin I, a myotoxin from the venom of *Bothrops jararacussu*. *Gene*, 156, 305-306.

- White S.P.; Scott D.L.; Otwinowski Z.; Gelb M.H.; Sigler P. (1990). Crystal structure of cobravenom phospholipase A₂ in a complex with a transition-state analogue *Science* 250, 1560-1563.
- Yang C.C., (1994). Structure-function relationship of phospholipase A₂ from snake venoms. J. *Toxicol.* 13, 125–177.
- Yang C.C., (1997). Chemical modification and functional sites of phospholipases A₂. In: Kini, R.M., (Ed.), Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism, Wiley, Chichester, pp. 185–204.
- Yang C.C., Chang L.S., (1989). Studies on the status of lysine residues in phospholipase A₂ from *Naja naja atra* (Taiwan cobra) snake venom. *Biochem. J.* 262, 855–860.
- Yang C.C., Chang L.S., (1991). Dissociation of lethal toxicity and enzymic activity of notexin from *Notechis scutatus scutatus* (Australian-tiger-snake) venom by modification of tyrosine residues. *Biochem. J.* 280, 739–744.
- Yang C.C., King K., (1980a). Chemical modification of histidine residue in basic phospholipase A₂ from the venom of *Naja nigricollis*. *Biochim. Biophys. Acta* 614, 373–380.
- Yang C.C., King K., (1980b). Chemical modification of the histidine residue in phospholipase A₂ from the *Hemachatus haemachatus* snake venom. *Toxicon* 18, 529–547.
- Yang C.C., King K., Sun, T.P., (1981). Chemical modification of lysine and histidine residues in phospholipase A₂ from the venom of *Naja naja atra* (Taiwan cobra). *Toxicon* 19, 645–659.
- Yang C-C.; Huang C.S.; Lee H.J. (1985). Studies on the status of tyrosyl residues in phospholipases A₂ from *Naja naja atra* and *Naja nigricollis* snake venom. *J. protein Chem.* 4, 87.
- Yu B-Z.; Berg O. G. e Jain M. K. (1993). The divalent cation is obligatory for the binding of ligands to the catalytic site of secreted PLA₂. *Biochemistry*. 32, 6485-6492.
- Yuan Y.; Jackson S. P.; Mitchell C. A. and Salem H. H. (1993). Purification and Characterization of a snake venom phospholipase A₂: a potent inhibitor of platelet aggregation. *Thrombosis Research*, 70(6):471-481.
- Zamuner S.R., Zuliania J. F., Fernandesa C.M., Gutiérrez J.M., C. de F.P. Teixeira, (2005) Inflammation induced by Bothrops asper venom: release of proinflammatory cytokines and eicosanoids, and role of adhesion molecules in leukocyte infiltration. *Toxicon* 46 pp. 806– 813.
- Zhao H., Tang L., Wang X., Zhou Y., Lin Z., (1998). Structure of a snake venom phospholipase A₂ modified by p-bromo-phenacylbromide. *Toxicon* 36, 875–886.
- Zieler H., Keister D.B., Dvorak J.A., Ribeiro J.M.C., (2001). A snake venom phospholipase A₂ blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. *J. Exp. Biol.* 204, 4157–4161.

CONGRESSOS E PUBLICAÇÕES

Congressos

- ROMERO-VARGAS, Frey Francisco; PONCE-SOTO, Luis Alberto; NOVELLO, Jose Camillo ; MARANGONI, Sergio . "PURIFICATION AND CHARACTERIZATION LOCAL AND SYSTEMIC MIOTOXICITY AND EDEMATOGENIC ACTIVITY OF THE NEW PLA₂ D49 CDr-12 OF THE SNAKE VENOM Crotalus durissus ruruima". In: XVI Congresso Nacional de Biologia e X Simposium Nacional de Educação em Ciências Biológicas, Piura-Perú, no período de 25 a 30 de junho de 2006.
- ROMERO-VARGAS, Frey Francisco; PONCE-SOTO, Luis Alberto; BALDASSO, Paulo Aparecido; NOVELLO, Jose Camillo; MARANGONI, Sergio. BIOCHEMICAL, PHARMACOLOGICAL AND STRUCTURAL CHARACTERIZATION OF A NEW PLA₂ FROM Crotalus durissus ruruima SNAKE VENOM. In: IX Congresso Brasileiro de Toxinología, 2006, Fortaleza-CE. Livro de Resumos, 2006.
- CAVALCANTE, W.L.G.; SANTOS-DIZ-FILHO E. B.; CAMPOS T. O.; ROMERO-VARGAS, Frey Francisco; PONCE-SOTO, Luis Alberto; MARANGONI, Sergio; RODRIGUES-SIMIONI,L; DAL PAI-SILVA M. ; GALLACCI M.. COMPARISON OF THE NEUROTOXIC EFFECTS OF VENOMS AND CROTOXINS FROM TWO SUBSPECIES OF Crotalus durissus SNAKES ON MOUSE NEUROMUSCULAR JUNCTION. In: IX Congresso Brasileiro de Toxinología, 2006, Fortaleza-CE. Livro de Resumos, 2006.
- ROMERO-VARGAS, Frey Francisco; PONCE-SOTO, Luis Alberto; NOVELLO, Jose Camillo; MARANGONI, Sergio. COMPARATIVE STUDY OF CYTOTOXICITY BETWEEN PLA₂ D49 FROM THE Crotalus durissus ruruima AND Crotalus durissus cumanensis SNAKE VENOMS, IN CELLULAR CULTURE OF MYOBLASTS AND MYOTUBES (C2C12). In: IX Congresso Brasileiro de Toxinología, 2006, Fortaleza-CE. Livro de Resumos, 2006.
- ROMERO-VARGAS, Frey Francisco; PONCE-SOTO, Luis Alberto; BALDASSO, Paulo Aparecido; WINCK, Flavia Vischi; NOVELLO, Jose Camillo; MARANGONI, Sergio. BIOCHEMICAL, PHARMACOLOGICAL AND STRUCTURAL CHARACTERIZATION OF TWO PLA₂ ISOFORMS Cdr-12 AND Cdr-13 FROM Crotalus durissus ruruima SNAKE VENOM. In: XXXVI Annual Meeting of Brazilian Society for Biochemistry and Molecular Biology – SBBq, em Salvador, BA, no período de 21 a 25 de maio de 2007.

- ROMERO-VARGAS, Frey Francisco; PONCE-SOTO, Luis Alberto; NOVELLO, Jose Camillo ; MARANGONI, Sergio.
 CHEMICAL MODIFICATIONS OF PHOSPHOLIPASES A₂ FROM SNAKE VENOMS: EFFECTS ON CATALYTIC AND PHARMACOLOGICAL PROPERTIES. In: IV Congreso Internacional de Biotecnología. II Congreso Internacional de Farmacia y Bioquímica. 2007 Junio 04-08, Arequipa-Perú.
- ROMERO-VARGAS, Frey Francisco; PONCE-SOTO, Luis Alberto; MARTINS, Daniel; NOVELLO, Jose Camillo; MARANGONI, Sergio.
 BIOLOGICAL AND STRUCTURAL CHARACTERIZATION OF TWO PLA₂ ISOFORMS Cdc-9 AND Cdc-10 FROM *Crotalus durissus cumanensis* SNAKE VENOM. In: 9th Pan-American Congress of the International Society on Toxinology, juriquilla, Querétaro, Mexico. No período de October 21-25, 2007.

Trabalhos aceito/submetido relacionado com a tese

- Biochemical, pharmacological and structural characterization of two PLA₂ isoforms Cdr-12 and Cdr-13 from *Crotalus durissus ruruima* snake venom. Ponce-Soto L.A., Baldasso P.A., Romero-Vargas F.F., Winck F.V., Novello J.C., Marangoni S. *The Protein Journal* 2007; 26(1):39-49.
- Biochemical, pharmacological and structural characterization of two isoforms Cdc-9 and Cdc-10 PLA₂ from *Crotalus durissus cumanensis* snake venom. Romero-Vargas, F.F., Ponce-Soto, L.A., Baldasso, P.A. and Marangoni, S.
 Submetido a The Open Biochemistry Journal