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RESUMO

O alcoolismo cronico esta associado a distirbios no sistema reprodutor feminino como disfungao
hormonal, alteracdo na expressdo dos receptores esterdides, produgdo de espécies reativas de
oxigénio (ERO), entre outros. A melatonina, hormonio secretado pela glandula pineal, possui
fun¢do moduladora no ciclo reprodutivo e t€ém papel importante no combate as ERO. Os estudos
envolvendo o alcoolismo crénico e sua interagdo com a melatonina, em fémeas, sao ainda
inconclusivos. O presente trabalho tem como objetivo investigar os efeitos da administra¢do
exogena da melatonina sobre os hormonios sexuais, os receptores esterdides sexuais (AR, ER-a,
ER-B, PRA e PRB) no ovério, oviduto e utero, além do perfil nutricional e o estresse oxidativo
nos ovarios de ratas adultas UChB (consumidoras voluntarias de etanol a 10%). Foram utilizadas
60 ratas UChB, distribuidas nos seguintes grupos: UChB Co: sem acesso ao etanol; UChB EtOH:
consumo didrio de 4 - 5 g etanol/100g de peso corporeo (PC), ambos recebendo solugdo veiculo.
Concomitantemente, os grupos UChB Co+M e UChB EtOH+M receberam injegdes didrias de
melatonina (100ug/100g PC) via i.p, a partir dos 90 dias de idade, durante 60 dias consecutivos.
Aos 150 dias de idade, os animais foram eutanasiados em estro (4a.m) e os materiais coletados e
processados. A melatonina aumentou os niveis de progesterona, 6-sulfatoximelatonina e reduziu
17B-estradiol, enquanto a combinacdo entre etanol + melatonina causou uma queda significativa
nesses hormdnios. Apesar do receptor androgénico (AR) ovariano nao ter sido influenciado pela
melatonina, os grupos UChB EtOH e UChB EtOH+M mostraram uma diminui¢do no AR do
oviduto. Ambos os receptores de estrogénio (ER-a e ER-B) no oviduto foram pouco expressos em
animais recebendo etanol ou melatonina enquanto somente o ER-f uterino foi reduzido. Por outro
lado, receptores de progesterona (PRA e PRB) foram positivamente regulados no ovario por
etanol ou etanol + melatonina, enquanto PRA foi negativamente regulado no utero e oviduto,
exceto quando o etanol e melatonina foram combinados. Os niveis do receptor de melatonina
(MTI1R) foram maiores no ovario e Utero de ratas tratadas com melatonina, independentemente
do consumo de etanol. O peso corporeo dos animais foi reduzido apds interacdo do etanol e
melatonina apds 40 dias de tratamento. Em ambos os grupos tratados com melatonina, observou-
se reducdo no consumo energético e liquido. Houve diminuicdo da quantidade de etanol
consumida durante o tratamento e o ciclo estral foi maior em ratas que receberam etanol e
melatonina, evidenciado por diestro prolongado. Os niveis de hidroperéxido de lipidio foram
maiores nos ovarios de ratas UChB EtOH e diminuiu apds o tratamento com melatonina.
Atividades antioxidantes da superoxido dismutase, glutationa peroxidase e glutationa redutase
foram aumentadas nos grupos tratados com melatonina. Conclui-se que a melatonina tem efeito
oposto ao etanol sobre os hormonios sexuais. Melatonina e etanol regulam diferencialmente os
receptores de esterdides sexuais nos tecidos reprodutivos, atuando principalmente através de seu
receptor MT1R. Além disso, a melatonina € capaz de alterar a eficiéncia alimentar, o ciclo estral,
e, contudo, protege os ovarios contra o estresse oxidativo resultante do consumo de etanol.

Palavras-chave: melatonina, etanol, lipoperoxida¢ao, receptores de esteroides, ovario.



ABSTRACT

Chronic ethanol intake is associated with female reproductive disturbances including hormonal
dysfunction, changes in the steroid receptors expression, production of reactive oxygen species
(ROS), among others. Melatonin, an indolamine secreted by pineal gland, plays key roles in the
reproductive cycle, besides having an important function in scavenging ROS. Studies focusing
chronic alcoholism and its interaction with melatonin, in females, are still inconclusive. This
study aims to investigate the effects of exogenous melatonin administration on sex hormones, sex
steroid receptors (AR, ER-a, ER-B, PRA and PRB) in the ovary, oviduct and uterus, as well as
the nutritional profile and oxidative stress in the ovaries of adult UChB rats (10% (v/v) ethanol
voluntary intake). 60 UChB female rats were divided into the following groups: UChB Co:
without access to ethanol (used as control); UChB EtOH: drinking daily ethanol at 4 - 5 g
ethanol/100g body weight (BW), both receiving vehicle solution. Concomitantly, UChB Co + M
and UChB EtOH + M groups received daily injections of melatonin (100pg/100g BW) via i.p,
starting from 90 days old and during the next 60 consecutive days. At 150 days of age, all
animals were euthanized in estrus (4a.m). Melatonin increased progesterone, 6-
sulfatoximelatonin and decreased 17f3-estradiol, while the ethanol+melatonin combination caused
a significant fall in these hormones. Despite androgen receptor (AR) in ovary has not been
influenced by melatonin, ethanol and ethanol+melatonin led to a decrease in oviduct AR. Both
estrogen receptors (ER-a and ER-B) were underexpressed by either ethanol or melatonin in
oviduct and only uterine ER-} was downregulated. Conversely, progesterone receptors (PRA and
PRB) were positively regulated in the ovary by ethanol or ethanol+melatonin, whereas PRA was
downregulated in uterus and oviduct, except when ethanol+melatonin were combined.
Additionally, melatonin receptor (MT1R) was increased in ovary and uterus of melatonin-treated
rats, regardless of ethanol consumption. Body weight gain was reduced with ethanol plus
melatonin after 40 days of treatment. In both melatonin-treated groups, it was observed a
reduction in food-derived calories and liquid intake toward the end of treatment. The amount of
consumed ethanol dropped during the treatment. Estrous cycle was longer in rats that received
both ethanol and melatonin, with prolonged diestrus. Following to oxidative status, lipid
hydroperoxide levels were higher in the ovaries of ethanol-preferring rats and decreased after
melatonin treatment. Additionally, antioxidant activities of superoxide dismutase, glutathione
peroxidase and glutathione reductase were increased in melatonin-treated groups. We conclude
that melatonin has opposite effect on sex hormones to those of ethanol consumption. Together,
melatonin and ethanol differentially regulates the sex steroid receptors in the reproductive tissues,
mostly acting “in situ” through its MTIR receptor. Finally, melatonin is able to affect feed
efficiency and, conversely, it protects the ovaries against the oxidative stress arising from ethanol
consumption.

Key-words: melatonin, ethanol, lipid hydroperoxide, steroid receptors, ovary
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1. INTRODUCAO GERAL

O alcoolismo pode ser conceituado como uma sindrome multifatorial que compromete os
aspectos fisico, mental e social do individuo (Edwards & Gross, 1976; Hingson & Zha, 2009;
Spanagel, 2009). Atualmente ¢ considerado um problema de ordem da saude publica, sendo
pertencente ao grupo das principais doencas oriundas dos transtornos mentais (Wojnar et al.,
1997), ao lado da esquizofrenia e disturbio bipolar (Figueira et al., 1999). Embora a prevaléncia
do consumo de dalcool seja significativamente menor entre as mulheres (Grant, 1997), a
dependéncia precoce do alcool tem-se mostrado semelhante entre homens e mulheres, uma vez
que o impacto do alcool no organismo feminino acarreta rapida progressdo das doencas
decorrentes do seu uso (Frezza et al., 1990; Urbano-Marquez et al., 1995).

Na mulher, o consumo abusivo e cronico de alcool esta associado a diversas alteracoes do
ciclo reprodutivo, desde a ocorréncia de amenorréia, disfuncdes ovarianas com ciclos
anovulatérios, menopausa prematura, metrorragia, além de relatos de maior risco para
infertilidade, abortamento espontaneo, além de trazer prejuizos para o desenvolvimento fetal
(Becker et al., 1989; Mello et al., 1989; Carrara et al., 1993; Henderson et al., 2007).

Em um trabalho de revisdo, Li et al., 1987, menciona a existéncia de trés pares de
linhagens de ratos de consumo baixo e elevado de &lcool. Os UChA e UChB (UCh=
Universidade do Chile), os mais antigos de Helsinki, iniciados por Kalervo Eriksson e os de
Lumeng & Li em Indianapolis. Existem atualmente linhagens mantidas através de outbreeding
(cruzamento ndo consangiiineo) que fazem consumo preferencial de etanol a 10%, o WHP e
WLP - elevado e baixo consumo de etanol (Dyr & Kostowski, 2008). Dos trés pares, os unicos

que se tém mantido permanentemente mediante inbreeding sdo os UChA e B, e por conseguinte,



sdo as unicas linhagens de ratos de que se tém conhecimento, podendo ser consideradas linhagens
puras para estudos relacionando aspectos genéticos, bioquimicos, fisiologicos, nutricionais e
farmacologicos, bem como apetite e tolerancia ao alcool, que sdo importantes fatores do
alcoolismo humano. Portanto, os ratos da linhagem UChA e UChB, embora exibam diferengas na
preferéncia ao alcool, sdo importantes para o estudo de caracteristicas unicas ligadas ao
alcoolismo humano, além da rapida reprodugao e o restrito espago fisico ocupado.

A melatonina, hormonio secretado pela glandula pineal durante a fase de escuro do ciclo
circadiano, estd relacionada com inumeros processos controladores na fisiologia corporea,
incluindo a digestdo e ingestdo de liquidos e alimentos, regimento das etapas do sono (bastante
desregulado nos individuos alcoolicos), o processo inflamatério, mecanismos promotores de
situagoes de estresse, o potencial antioxidante, as atividades do ciclo reprodutivo, entre outros.

Os distarbios do ritmo circadiano (Danel et al., 2001), devem estar associados, de certa
forma, as desordens mentais secundarias que predispdoem ao consumo de etanol. O consumo
alcoodlico, de forma crdnica e aguda, parece inibir a secre¢do de melatonina pela glandula pineal
(Danel & Touitou, 2004, 2006; Peres et al., 2011). O etanol pode suprimir indiretamente a funcao
da glandula pineal reduzindo a liberagdo do neurotransmissor norepinefrina. O bloqueio desse
hormonio, deixa de ativar AMPciclico e N-acetyltransferase, mediadores bésicos da sintese de
melatonina (Gottesfeld et al., 1996; Schmitz et al., 1996). Por outro lado, individuos alcoolicos
em periodo de abstinéncia, tendem a elevar os niveis de norepinefrina, sem resultar, no entanto,
em aumento de secre¢do de melatonina (Moss et al., 1986). Além disso, o etanol, por sua
natureza lipofilica, também interfere diretamente na sintese de melatonina pelos pinealdcitos

(Schmitz et al., 1996).



O padrao reprodutivo nas espécies estd diretamente relacionado ao fotoperiodo, mediante
secrecdo diaria e sazonal de melatonina (Barrell et al., 2000). Em humanos, ha evidéncias de que
a glandula pineal esteja envolvida na maturagao sexual e no ciclo menstrual (Silman, 1991). Em
outros mamiferos, a melatonina atua como um cronohormonio modulador da fungao reprodutiva,
devido a habilidade de promover a ciclicidade estral e estimular a atividade das gonadas (Ocal-
Irez et al., 1989). Atua influenciando a foliculogénese, a ovulacdo, a histologia e fisiologia
uterina (Zhao et al., 2000). Alteragdes no ciclo estral e, consequentemente, no utero de ratas sao
comuns em animais desprovidos de glandula pineal (Teixeira, 1998). Nakamura et al. (2003)
evidenciaram, em humanos, foliculos pre-ovulatérios contendo elevadas quantidades de
melatonina, demonstrando efeito indireto na produgdo de progesterona. Em ratas desprovidas de
pineal houve aumento na duragdo da fase de estro, diminui¢do da produc¢ao de LH/FSH e 6-
sulfatoximelatonina na urina (metabodlito da melatonina) (Dardes et al, 2000). Soares Jr. et al.
(2003) relacionam o efeito de baixos niveis séricos de melatonina favorecendo aumento de atresia
folicular e estradiol, e redug¢do da progesterona e seus receptores. Em contrapartida, a menopausa
pode estar associada com reducdo de melatonina circulante, devido as mudancas nos niveis de
gonadotrofinas (Reiter, 1998).

Embora na literatura cientifica especializada, a melatonina seja relatada como
potencializadora da funcdo antigonadotrofica entre as espécies animais, alguns autores nado
encontraram correlagdo entre a melatonina e o estradiol na fase folicular (Graham et al., 2001;
Luboshitsky et al., 2001). Os receptores de estrogeno (ER) e progesterona (PR) quando ativados,
regulam processos fisiologicos fundamentais no tUtero, tubas uterinas e ovarios. O ERP foi
recentemente isolado em ratos (Kuiper et al., 1996) e humanos (Mosselman et al., 1996), e

apresenta homologia estrutural com o receptor ERa. Os receptores de progesterona (PR) possuem



as isoformas PRA e PRB (Savouret et al., 1990), ambos codificados pelo mesmo gene (Kastner et
al., 1990). Nas células da camada granulosa dos foliculos ovarianos, o PRA e PRB sao essenciais
na foliculogénese e somente PRA atua na ovulagdo (Mulac-Jericevic et al., 2000; 2003). A
melatonina, in vivo, pode estimular secrecdo de progesterona em rata (Fiske et al., 1984), e na
mulher (Brzezinski et al., 1992).

A literatura relata que a melatonina pode atuar como um potente agente antioxidante,
regulando varios eventos fisioldgicos em mamiferos (Okatani et al., 2003; Carrillovico et al.,
2004). De acordo com varios autores, a melatonina pode prevenir danos ao figado provenientes
de agentes oxidantes, além de inibir o crescimento de hepatocarcinomas (Gong et al., 2003; Blask
et al., 2004). Muitas pesquisas enfatizam a propriedade antioxidante da melatonina, de acordo
com o carater atenuador na peroxidacao lipidica, em modelos experimentais alcodlicos (Geng et

al., 1998; El-Sokkary et al., 1999).

1.1. ACHADOS PREVIOS E SIGNIFICANCIA

1.1.1. Sintese e metabolismo da melatonina

O ajuste entre o ambiente, o reldgio bioldgico interno e a producdo de melatonina ¢ feito
através do sistema nervoso central. Nos mamiferos, a principal influéncia externa ¢ a alternancia
do ciclo claro-escuro, sendo a melatonina produzida durante a noite, enquanto na presenga de luz
ocorre inibicdo da sua sintese (Hardeland et al., 2006). O feixe de luz ¢é captado por
fotorreceptores na retina (cones e bastonetes) e sua informacao chega ao NSQ via trato retino-
hipotaldmico. A melanopsina, molécula fotorreceptora encontrada no ganglio neural, tem

auxiliado no entendimento da percepgdo luminosa e geracdo de ritmos bioldgicos (Rollag et al.,



2003). O NSQ durante a fase de escuro transmite informagdes ao nucleo paraventricular, e este
enviam proje¢des ao nucleo intermédio lateral da medula toracica alta (Vessely et al., 2002). As
fibras pré-ganglionares simpaticas fazem sinapse no ganglio cervical superior e através do plexo
cardtico, associado a artéria cardtida interna, chegam até a pineal inervando-a (Ariens-Kappers,
1960). Nos pinealocitos, os neurotransmissores noradrenalina e ATP atuam em receptores
noradrenérgicos o e [, resultando na ativacdo de adenilato ciclase e aumento de AMPc, e
purinérgicos P2Y'1, respectivamente (Mortani Barbosa et al., 2000; Ferreira & Markus, 2001),
ambos controlando a sintese de NAT (N-acetiltransferase) enzima limitante na conversdao de
serotonina. A glandula pineal utiliza o aminoacido triptofano (Sumaya et al., 2004) para
conversao em serotonina (5- hidroxitriptamina), a qual permanece elevada durante o dia. Durante
o escuro, a enzima NAT metaboliza serotonina em N-acetilserotonina, e parte produzida ¢
transformada em melatonina pela ag¢do da HIOMT (hidroxi-indol-O-metil-transferase),
dependente de fotoperiodo (Simonneaux & Ribelayga, 2003). Portanto, a melatonina, molécula
lipossoluvel, ¢ langada na circulacdo a noite.

Atualmente estdo descritos trés sitios para ligacdo da melatonina, os receptores MT1 e
MT?2 ligados a proteina G, e a enzima quinona redutase 2 (QR2/M¢3) envolvida no processo de
detoxificagdo (Witt-Enderly et al., 2003). Ambos receptores MT1 e MT2 estao envolvidos na
modulacdo do sistema nervoso central (Hardeland et al., 2006) e tecidos periféricos, essenciais no
controle do ritmo circadiano. O ritmo da produg¢do de melatonina em animais, incluindo
humanos, diminui com a idade (Touitou & Haus, 2000; Zhao et al., 2002). Em idosos, a
melatonina proporciona reducdo da laténcia para o sono inicial e aumenta eficiéncia total do

sono, sem interferéncia durante o sono REM (Zhdanova et al., 2001). Estudo recente mostrou que



o efeito estimulante de agonistas B-adrenérgicos sobre a pineal de ratos adultos ¢ mais eficiente
na producdo de melatonina em relagdo aos senis (Nairi-Skandrani et al., 2004).

Existem inumeros disturbios do ciclo circadiano em humanos, como os transtornos do
sono (dissonias e parassonias), depressao sazonal, tumores hipotalamicos, e aqueles associados a
cegueira, viagens transmeridional (Jet lag), troca de turno no trabalho, etc. (Jagota, 2005). A
melatonina, devido sua atividade cronobiotica, tem sido utilizada no tratamento destes disturbios.
A melatonina possui uma meia vida de aproximadamente 4-6 horas apds administracao, sendo
convertida em 6- hidroximelatonina pela citocromo P450 1A2 no figado e, posteriormente
conjugada com acido glicurdnico ou sulfato gerando 6-sulfatoximelatonina, sendo este tltimo um

marcador eficaz para atividade da melatonina (Arendt, 2006).

1.1.2. Etanol e melatonina: acdo sobre os hormonios e receptores esterdides sexuais

O alcoolismo ¢ desenfreado na sociedade moderna e seu consumo cronico estd associado
com varias disfungdes no trato reprodutivo feminino (Carrara et al., 1993; Henderson et al.,
2007). Apesar dos efeitos negativos que o etanol exerce no trato reprodutivo feminino, seu
complexo mecanismo de a¢do sobre os hormonios sexuais e receptores esterdides sdo pouco
discutidos e permanece uma questdo insoluvel.

Nosso grupo de pesquisa mostrou previamente que a ingestdao cronica de alcool promove
alteracdes do ciclo estral, desequilibrio hormonal, aumento da formag¢do de ROS e alteracao da
morfologia ovariana em ratos alcoolistas UChB (Chuffa et al., 2009, 2011). Estudos com ratos
(Hiney et al., 2003; Dees et al., 2005) tém fornecido evidéncias na qual o etanol induz supressao

da secrecdo de LH devido sua agdo no hipotdlamo (Figura 1). Além disso, o etanol parece



aumentar 17B-estradiol (E2) quando consumido de forma cronica, mas ndo aguda, enquanto a
progesterona (P4) nao varia (Emanuele et al., 2001). Mais diretamente, o consumo de etanol pode
afetar a liberagdo de gonadotrofinas de forma dose e tempo-dependente (Figura 1), no entanto, o
seu papel deletério envolvendo os tecidos reprodutivos ¢ ainda controverso. Os ratos UChB sao
considerados um modelo especial para a compreensdo das caracteristicas ligadas ao alcoolismo,
como aquelas observadas em doengas humanas.

A melatonina (N-acetil-5-methoxytryptamine) € uma indolamina produzida pela glandula
pineal e secretada de maneira circadiana durante a noite (Masana & Dubocovich, 2001) e tem
sido empregada como um agente terapéutico em vdrias doengas. Contrariamente, o consumo de
alcool modula negativamente a sintese de melatonina diédria (Peres et al., 2011). Nos mamiferos,
a melatonina controla a funcdo reprodutiva através da ativacdo de receptores dentro do eixo
hipotadlamo-hipofise-gonadal (Reiter et al., 1982; Malpaux et al., 2001; Figura 1). A melatonina
também interage com os hormdnios sexuais e parece inibir a esteroidogénese através de
mudangas diretas nos niveis de AMP ciclico em células da teca, mas ndo da granulosa dos
foliculos ovarianos (Tamura et al., 1998). Nakamura et al. (2003) demonstraram que foliculos
pré-ovulatorios contem elevados niveis de melatonina, sugerindo um efeito indireto sobre a
sintese de E2 e P4. Também foi proposto que a melatonina sérica baixa esta ligada ao aumento de
E2, bem como reducdo de P4 e seus receptores (Soares et al., 2003). Recentemente, Adriaens et
al. (2006) demonstraram que a melatonina aumenta a producao de P4 e androgeno nos foliculos
pré-antrais em camundongos. Até o momento, ndo h4 relatos demonstrando os efeitos da ingestao
cronica de alcool associados a melatonina exodgena sobre os hormdnios sexuais durante o

processo ovulatorio.



Kisspeptina

Melatonina

AR, ER-a, ER-B, PRA, PRB

Figura 1. Esquema dos efeitos direto (ovarios) e indireto (hipotalamo e hipofise) do etanol e da
melatonina, alterando a expressdo dos receptores esteroides sexuais. [lustracdo elaborada pelo autor.

O E2 e a P4 quando ligados em receptores especificos sinalizam uma série de respostas
fisiologicas na reproducdo. O receptor de estrégeno (ER) pertence a superfamilia de receptores
nucleares e possui duas isoformas distintas funcionais designadas como ER-a e ER-B (Kuiper et
al., 1996). As células da granulosa dos foliculos ovarianos expressam maior nivel de ER-B que
ER-a, enquanto que ER-B € expresso em niveis menores no utero (Okada et al., 2005). A
melatonina tem sido apontada como indutora de regulacao negativa do ER-a no ovério e ttero
(Chuffa et al., 2011; Romeu et al., 2011). Por outro lado, o consumo de etanol parece aumentar a
expressao tecidual de ER-a, dependendo da quantidade consumida (Wang et al., 2010), que por
sua vez, contribui para os efeitos nocivos.

Os receptores de progesterona (PR), uma proteina bem caracterizada regulada pelos

estrogenos, ¢ expressa como isoformas PRA e PRB (Kraus et al.,, 1994). PRA apresenta um



dominio de transativag¢do essencial para o processo de ovulacao (Mulac-Jericevic et al., 2003), e
funciona como um repressor do PRB e do receptor de androgeno (Horne et al., 2009). Embora
tenha sido sugerido que E2 supra-regula PR, pouco se sabe a respeito da expressao de PRA e
PRB durante o consumo de etanol ou administragao de melatonina. Foi recentemente descrito que
a melatonina aumenta significativamente P4, bem como os niveis de PR ovarianos em proestro
(Romeu et al., 2011), enquanto o consumo de etanol parece alterar os niveis de PR indiretamente
através da ativagdo de E2 ou ER (Ma et al., 2006). Porém, os efeitos da melatonina e ingestao de
etanol ainda ndo foram definidos em relacdo aos receptores esterdides sexuais especificos no
ovario, oviduto e utero.

A melatonina sinaliza através de receptores acoplados a proteina G, o MTR1 e MTR2, ou
via citoplasmatica/nuclear (Benitez-King, 2006). Entre outras agdes, MTR1 quando ligado a
melatonina causa regulacdo de ambos ER-o ¢ ER-o mRNA (Molis et al., 1994) e,
alternativamente, pode inibir a ligacdo do complexo E2-ER aos elementos responsivos de
estrogeno (ERE) no DNA (Molis et al., 1994; Rato et al., 1999). Sabendo que a melatonina é um
potencial agente envolvido no controle da reprodugdo, o seu efeito(s) associado com etanol ainda

ndo foi identificado através de receptores MT1R.

1.1.3. Sono, alcoolismo, abstinéncia e a melatonina

O 4lcool possui propriedade indutora do sono, € quando consumido de forma aguda
apresenta tendéncia de encurtar a laténcia para o sono inicial, a eficiéncia total do sono, o sono de
ondas lentas (ondas delta) e o sono REM (Castaneda et al., 1998). O alcool parece inibir o sono
REM de maneira dose-dependente (Lobo & Tufik, 1997). O élcool desregula o centro neural

circadiano durante o desenvolvimento do sistema nervoso central (SNC) (Earnest et al., 2001).
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Ratos expostos ao alcool durante o desenvolvimento do SNC exibiram padrdes moleculares
alterados do ritmo circadiano no adulto (Allen et al., 2004; Farnell et al., 2004). O alcool estimula
producao de melatonina diurna (Fonzi et al., 1994), entretanto Danel & Touitou (2006) nao
encontraram relagdo entre altas doses de etanol e secre¢ao diaria de melatonina em individuos
saudaveis. Durante a noite, o aumento gradativo da ingestdo de etanol reduz inversamente a
concentragdo de 6-sulfatoximelatonina (Stevens et al., 2000) e a produ¢do de melatonina (Rupp et
al., 2007). Rosenwasser et al. (2005) sugerem que o consumo cronico de etanol promove
dessincronizacao do ritmo circadiano, onde a elevagdao dos niveis de melatonina durante o dia
(Danel et al., 2006) seja conseqiiéncia de outro sistema hormonal. Os disturbios do sono, como
insOnia, em pacientes etilistas cronicos, sao decorrentes do atraso da secrecdo de melatonina
(Kuhlwein et al., 2003). O alcool per se ndo aumenta o sono fisioloégico, porém quando
consumido em doses moderadas tende a modular as fases do sono devido outras influencias
circadianas (Rupp et al., 2007).

Os sintomas da abstinéncia do 4lcool podem ser confundidos com os de ataque do panico.
Estudos com pacientes etilistas evidenciaram perda do ritmo de secrecdo de melatonina durante
abstinéncia aguda (Fonzi et al., 1994), observagdao também confirmada em dois pacientes
apresentando quadro de delirio (Mukai et al., 1998). Em alguns pacientes, a abstinéncia ajustou o
ritmo da produ¢do de melatonina, enquanto em outros nao houve éxito devido a desorganizagdo

temporal circadiana em estruturas relacionadas ao ciclo (Danel et al., 2009).

1.1.4. Fisiologia do apetite: aspectos relacionados ao etanol e melatonina

O etanol ¢ um macro nutriente com densidade energética de aproximadamente 29 kJ (7

Kcal/g), porém nao ¢ considerado fonte energética para os seres humanos (Kokavec & Crowe,
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2002), uma vez que o piruvato nao pode ser formado a partir do etanol. Varios processos
bioquimicos mostram que o etanol pode influenciar o balango energético através de mecanismos
que regulam o apetite (Kokavec & Crowe, 2003, 2006). O Neuropeptideo Y (NPY), sintetizado
pelo nucleo arqueado do hipotalamo, além de induzir comportamento alimentar aumentando
preferéncia por carboidratos, possui a fun¢do de estimular consumo de etanol e, receptores NPY
Y5 quando ativados promovem preferéncia e consumo voluntario de etanol em roedores (Kelley
et al., 2001; Schroeder et al., 2005). O consumo de etanol e sua resisténcia estdo inversamente
relacionados com niveis de NPY no cérebro (Badia-Elder et al., 2003; Thiele & Badia-Elder,
2003). Evidéncias recentes sugerem que exposi¢dao cronica ao etanol pode levar a redugdo nos
niveis protéicos de NPY (Roy & Pandey, 2002) e consecutiva supressdo génica pelo nucleo
arqueado (Kinoshita et al., 2000). A energia ingerida como caloria oriunda do etanol contribui
para aumentar consumo alimentar (Yeomans & Phillips, 2002), modulando os estimulos
hormonais relacionados com apetite (Hetherington et al., 2001; Caton et al., 2004). O etanol
estimula rede neurais relacionadas com sensibilidade do doce (Lemon et al., 2004), mostrando
que essas areas estdo associadas com sistemas de refor¢o e recompensa. Existe evidéncias que
apontam a dopamina (McQuade et al., 2003), secretada pelo nticleo accumbens, exercendo papel
inclusive em roedores consumidores voluntarios de etanol (Doyon et al., 2003) e os opiodides
(Herz, 1997) como sendo mediadores de consumo e recompensa pelo etanol. Em humanos, o
consumo elevado de etanol possui efeito parcial sobre consumo alimentar, estimulando apetite e
atrasando a liberagdo dos mediadores de saciedade (Caton et al., 2004), além de sua energia
resultante ndo ser incorporada a dieta.

Existem algumas abordagens experimentais envolvendo a agdo da melatonina sobre os

parametros nutricionais, tais como: alterando a eficiéncia alimentar, o ganho de massa corpdreo,
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o indice de adiposidade e ambos os gastos € consumo energéticos (Mustonen et al., 2002;
Korkmaz et al., 2009). Esses efeitos sdo controversos e parece estar ligados especificamente a
dieta, idade e género em questdo, entretanto, nenhum estudo avaliou os efeitos associados ao
consumo cronico de etanol. A melatonina utilizada de forma progressiva (3 a 15 pg/mL), durante
a noite, promove aumento do consumo alimentar ¢ ganho de massa corporal em ratos machos e
fémeas (Angers et al., 2003). Scalera et al. (2008) demonstraram redu¢@o no consumo alimentar e
aumento dos niveis de leptina em ratos tratados com melatonina. Em coelhos, a melatonina

reduziu consumo alimentar, ganho de massa e os niveis de glicose ao longo de quatro semanas.

1.1.5. O papel pro-oxidante do etanol vs. efeito antioxidante da melatonina

O etanol ¢ um agente promotor de estresse oxidativo, principalmente no figado, devido
acao da enzima CYP2E1 P450 microssomal. No consumidor cronico, a atividade da NADPH
oxidase aumenta no hepatocito durante o metabolismo do etanol, e consecutivamente os niveis de
ion superoxido (O;) e perdxido de hidrogénio (H,O;) (Albano et al., 1996; Fang et al., 1998).
Similarmente, o ovario ¢ um 6rgao que sofre ataque por radicais livres, principalmente durante o
processo ovulatorio (Agarwal et al., 2005). Esta condi¢do ¢ mantida quando as espécies reativas
de oxigénio (EROs) como OH, O, e H,0O, sdo produzidos em larga escala ou pouco detoxificados
(Zuelke et al., 1997). Pesquisas anteriores utilizando modelos experimentais alcodlicos enfatizam
a propriedade antioxidante da melatonina, de acordo com seu carater atenuador na peroxidagao
lipidica (Geng et al., 1998; El-Sokkary et al., 1999). De outra forma, atividade antioxidante
reduzida no foliculo ovariano da mulher geralmente esta acompanhada de infertilidade

(Paszkowski et al., 1995). As células da granulosa per se € um ambiente favoravel a produgdo de
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EROs, sendo oriundos de processos metabodlicos diversos inclusive durante toxicidade pelo
etanol, os quais podem evoluir para lipoperoxidagdo de membranas (Figura 2). O estresse
oxidativo pode ser a causa da baixa qualidade oocitaria, por acentuar o dano e o envelhecimento
celular, a deterioragdo dos lipidios de membrana, induzir apoptose e até mesmo inibir a
fertilidade (Noda et al., 1991; Agarwal et al., 2005).

Os efeitos da melatonina envolvendo o ovario de ratas durante o periodo ovulatorio ainda
¢ pouco compreendido, e até o presente momento nenhum estudo abordou seus efeitos associado

ao consumo cronico de etanol.
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Figura 2. Metabolismo do etanol e propagagdo da lipoperoxidagdo de membrana na célula da granulosa.
Ilustracdo elaborada pelo autor.
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A melatonina exerce efeito antioxidante direto (Claustrat et al., 2005), neutralizando as
espécies reativas de oxigénio e nitrogénio (ERN), bem como moléculas ou radicais livres
causadores de danos ao DNA, proteinas e lipidios; e também possui efeito indireto promovendo a
sintese de enzimas antioxidantes (glutationa peroxidase (GSH-Px), redutase (GSH-Rd), catalase
(CAT), Cu, Zn, Mg-superoxido dismutase (SOD)) as quais conferem prote¢do ao tecido como
parte das defesas do organismo (Leon et al., 2005). Além disso, a literatura relata que a
melatonina atua como um potente agente antioxidante, regulando varios eventos fisiologicos em
mamiferos (Okatani et al., 2003; Carrillo-Vico et al., 2004). Estudos t€ém demonstrado que a
melatonina detoxifica uma ampla variedade de radicais livres e moléculas oxigénio-reativas,
incluindo radicais hidroxila, peroxinitrito, ion superoxido, oxigénio singlete, entre outros;
atuando como um limpador de produtos oxidativos e evitando a peroxidacao lipidica em tecidos
reprodutivos (Armagan et al., 2006; Peyrot & Ducrocq, 2008). A melatonina ¢ considerada uma
ferramenta util contra o dano oxidativo decorrente do alcoolismo cronico (Hu et al., 2009). No
ovario, elevados niveis de melatonina no fluido folicular e a presenca de seus receptores na célula
da granulosa sugerem um papel importante e benéfico para a fertilidade feminina (Ronnberg et
al., 1990; Woo et al., 2001). Atualmente, a melatonina tem sido bastante utilizada em mulheres

com incapacidade para engravidar, com a finalidade de promover melhor qualidade oocitéria.

2. HIPOTESE E RELEVANCIA DA TEMATICA

E sabido que o consumo abusivo e a dependéncia alcodlica estdo associados a severas

alteragdes estruturais e fisiologicas no ciclo reprodutivo em fémeas, incluindo a producdo de
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EROs. A melatonina, utilizada como estratégia terapéutica no tratamento de muitas doengas,
minimiza possiveis distirbios do sono e combate os agentes oxidantes provenientes do
alcoolismo cronico. Em contrapartida, de maneira isolada, tanto o etanol quanto a melatonina
exercem efeitos diretos ou indiretos sobre a producdo de hormonios sexuais, bem como sobre os
receptores esteroides sexuais. Tendo em vista que os efeitos do alcoolismo cronico e da
melatonina exdgena, frente a reproducdo feminina, sdo ainda pouco descritos na literatura e
inconclusivos, trés questdes sdo levantadas: poderia a combinagdo entre etanol e melatonina
desencadear respostas diferentes e alterar o controle enddcrino da reproducao? A melatonina
seria capaz de atenuar o estresse oxidativo originado no ovario proveniente do alcoolismo
cronico? Em qual (is) circunstancia(s) essa associacao seria benéfica ou prejudicial a reprodugao
feminina? Dessa forma, os objetivos do presente projeto vislumbram sobre essas potenciais
abordagens.

Tendo em vista que os ratos da variedade UChB foram originados do Wistar ha
aproximadamente 60 anos atrds (Mardones & Segovia-Riquelme, 1982), surgiu a oportunidade de
avaliar o efeito independente da melatonina em ratas Wistar saudaveis (ndo alcoolicas) durante a
ovulacdo, sobre os mesmos parametros daqueles das ratas UChB, com a finalidade de comprovar

a eficacia do tratamento (ver Capitulos 3 e 4). No entanto, nao houve a intencao de estabelecer

qualquer comparagao entre 0s grupos.

3. OBJETIVOS

3.1. OBJETIVO GERAL
Avaliar os efeitos da administragdo exdgena da melatonina sobre os hormonios sexuais e

os receptores esteroides sexuais (AR, ER-a, ER-B, PRA e PRB) no ovario, oviduto e utero, além
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do perfil nutricional e o estresse oxidativo nos ovarios de ratas adultas UChB (consumidoras

voluntarias de etanol a 10%).

3.2. OBJETIVOS ESPECIFICOS

Avaliar a dosagem dos hormdnios FSH, LH, 17B-estradiol e progesterona através do
radioimunoensaio;

Avaliar a dosagem de melatonina plasmatica utilizando a técnica de ELISA;

Quantificar o metabolito 6-sulfatoximelatonina (6-STM) na urina dos animais por ELISA;
Quantificar os receptores nucleares (AR, ER-a, ER-B, PRA ¢ PRB) ¢ de membrana
(MTI1R) no ovario, oviduto e ttero por Western Blot;

Mensurar o status nutricional (ingestdo de dgua, etanol e comida), o ganho de massa, a
eficiéncia alimentar total, a glicose, o ciclo estral e a massa dos 6rgaos genitais internos;
Avaliar a lipoperoxida¢do (LHP) ovariana envolvida no estresse oxidativo (ensaio
enzimatico/espectrofotometro);

Avaliar a atividade das enzimas antioxidantes (SOD, GSH-Px, GSH-Rd e Catalase) e os

niveis de SAT no tecido ovariano (ensaio enzimdtico/espectrofotometro).
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4. RESULTADOS

Os resultados foram divididos em quatro capitulos, apresentados na forma de artigos

cientificos:

Capitulo 1: Effects of chronic ethanol intake and exogenous melatonin treatment on sex
hormones and sex steroid receptors in the ovary, oviduct and uterus during rat ovulation,

submetido ao periddico J Pineal Res, 2011.

Capitulo 2: Long-term exogenous melatonin treatment modulates overall feed efficiency and
protects ovarian tissue against injuries caused by ethanol-induced oxidative stress in adult UChB

rats. Alcohol Clin Exp Res, v.35(8), p.1498-508, 2011.

Capitulo 3: Melatonin reduces LH, 17 beta-estradiol and induces differential regulation of sex
steroid receptors in reproductive tissues during rat ovulation. Reprod Biol Endocrinol, v.9, p.108,

2011.

Capitulo 4: Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant

defenses during ovulation in the rat. Braz J Med Biol Res, v.44, p.217-223, 2011.
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Abstract

Chronic ethanol intake is associated with female hormonal disturbances and it is well known that
melatonin plays key roles in regulating reproductive function. However, the effects of ethanol
and melatonin upon sex hormones and steroid receptors remain inconclusive. We evaluated the
effects of ethanol consumption and melatonin treatment on sex hormones and sex steroid
receptors subunits in ovary, oviduct and uterus of UChB ethanol-preferring rats. Forty adult rats
were divided into four groups. UChB Co: drinking water; UChB EtOH: drinking ethanol at 2-5
g/kg/day; both receiving vehicle solution. Concomitantly, melatonin was administered
(100png/100g BW) intraperitoneally to UChB Co+M and UChB EtOH+M rats during 60 days.
Melatonin increased progesterone, 6-sulfatoximelatonin and decreased 17-estradiol, while the
ethanol+melatonin combination caused a significant fall in these hormones. Despite androgen
receptor (AR) in ovary has not been influenced by melatonin, ethanol and ethanol+melatonin led
to a decrease in oviduct AR. Both estrogen receptors (ER-a and ER-f) were underexpressed by
either ethanol or melatonin in oviduct and only uterine ER- was downregulated. Conversely,
progesterone receptors (PRA and PRB) were positively regulated in the ovary by ethanol or
ethanol+melatonin, whereas PRA was downregulated in uterus and oviduct, except when
ethanol+melatonin were combined. Additionally, melatonin receptor (MT1R) was increased in
ovary and uterus of melatonin-treated rats, regardless of ethanol consumption. We conclude that
melatonin has opposite effect on sex hormones to those of ethanol consumption. Together,
melatonin and ethanol differentially regulates the sex steroid receptors in the reproductive tissues,

mostly acting “in situ” through its MT1R receptor.
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Introduction

Alcoholism is rampant in modern society and its chronic consumption is associated with
several dysfunctions of female reproduction, including amenorrhea, blockade of ovulation, early
menopause, spontaneous miscarriage and infertility [1,2]. Despite the well-known negative
effects of ethanol on female reproductive tract, their complex action mechanism(s) upon sex
hormones and steroid receptors are poorly discussed and remain a matter of debate. We have
previously reported that chronic ethanol intake promotes estrous cycle disruption, hormonal
imbalance, increased ROS formation and altered ovarian morphology in UChB rats [3,4]. Studies
using rats [5,6] have provided evidence showing that ethanol-induced suppression in LH
secretion is due to its action within hypothalamus. In addition, ethanol seems to increase serum
17 B-estradiol (E2) in the short chronic but not long chronic experiment, whereas progesterone
(P4) does not change [7]. More directly, ethanol consumption may affect gonadotropins release in
a dose- and time-dependent way, however, its defective role involving the reproductive tissues is
controversial. Our ethanol-preferring rats (UChB) are derived from original Wistar rats and have
been selectively bred at the University of Chile in the past decades [8]. These animals are
considered a special model for the understanding of the alcoholism-linked characteristics such as
those observed in human diseases.

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine produced by pineal gland
and secreted in a circadian manner at night [9]. It is indisputable that melatonin has been
implicated as a therapeutic agent in several cases. Notably, alcohol consumption negatively
modulates the daily melatonin synthesis [10]. In mammals, melatonin affects reproductive
function through activation of receptor sites within the hypothalamic-pituitary-gonadal axis

[11,12]. Melatonin also interacts with sex hormones and is seen to inhibit steroidogenesis via
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direct changes in cAMP levels on theca, but not granulosa cells [13]. Nakamura and Kato [14]
have previously demonstrated that preovulatory follicles contain high melatonin levels,
suggesting an indirect effect on E2 and P4 synthesis. It has also been proposed that low serum
melatonin is linked to increased E2 as well as reduced P4 and its receptors [15]. Recently,
Adriaens et al. [16] demonstrated that melatonin increased P4 and androgen production in mouse
preantral follicles. To date, no reports have been demonstrated the effects of chronic ethanol
intake in association with exogenous melatonin on sex hormones during ovulation process.

It is currently assumed that putative estrogen and progesterone-binding specific receptor
orchestrates a variety of reproductive physiological responses under a fine tuning of regulation.
Estrogen receptor (ER) belongs to the nuclear receptor superfamily and has two distinct
functional isoforms designated as ER-a and ER-B [17]. In ovaries, granulosa cells express higher
levels of ER-B than ER-a, while ER-f is reportedly expressed at lower levels in uterus [18].
Melatonin has been shown to induce down-regulation of ER-a in ovary and uterus [19,20].
Conversely, ethanol consumption seems to increase ER-a expression depending on the amount
consumed [21], which in turn, contributes to the harmful effects.

Progesterone receptors (PRs), one of the well-characterized proteins regulated by
estrogens, are expressed as PRA and PRB isoforms [22]. PRA has a transactivation domain
essential for ovulation process [23] whereas it functions as a repressor of PRB and androgen
receptor [24]. Although it has long been suggested that E2 up-regulates PR, little is known as to
whether PRA and B expression can be modulated during either ethanol or melatonin
administration. It has been recently described that melatonin significantly increases P4 as well as
the number of total PR in ovaries at proestrus [19] while ethanol intake seems to alter PR levels

indirectly through the activation of E2 or ER [25]. The effects of long-term melatonin and
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ethanol intake are not defined as regarding to specific sex steroid receptors signaling along the
ovaries, oviducts and uterus.

Melatonin signals through at least two G protein-coupled receptors, the MTR1 and MTR2
membrane receptors, or via cytoplasmatic/nuclear sites [26]. Among other actions, MTR1-
binding melatonin is thought to cause down-regulation of both ER-a protein and ER-o mRNA
[27] and, alternatively, it may inhibit the ligation of E2-ER complex to the estrogen response
elements (ERE) on DNA [27,28]. Since melatonin is a potential agent targeting the control of
reproduction, its long-term effects associated with ethanol have never been identified through
MTIR receptors.

To help shed light on the issue, the present study was to investigate the effects of ethanol
consumption and melatonin treatment on sex hormones and sex steroid receptors subunits in the

ovary, oviduct and uterus of UChB ethanol-preferring rats during ovulation.

Material and Methods
Animals and experimental design

Forty adult female rats (Rattus norvegicus albinus), 60 days old (= 250-260 g) were
obtained from the Department of Anatomy, Bioscience Institute/Campus of Botucatu, UNESP —
Univ Estadual Paulista. They were individually housed in polypropylene cages with laboratory-
grade pine shavings as bedding and maintained under controlled room temperature (23+1°C) and
lighting conditions (12L, 12D photoperiod, lights switched on at 6 a.m). Food and filtered water
were provided ad libitum. All animals were divided into four groups (n=10/group). UChB EtOH
group: rats fed 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking from 2.0

to 6.0 g/kg/day and receiving vehicle solution; UChB Co group: Ethanol-naive rats without
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access to ethanol (used as control) receiving only vehicle; UChB EtOH+M group: rats fed 10%
(v/v) ethanol (free choice for water or ethanol) drinking from 2.0 to 6.0 g/kg/day and receiving
vehicletmelatonin, UChB Co+M group: without access to ethanol and receiving
vehicletmelatonin. When UChB EtOH rats reached 60 days of age, they were given during 20
days, a choice between two bottles containing either water ad libitum (1) or 10% (v/v) ethanol
(2). After this period, 10 animals per group displaying ethanol consumption higher than 2.0 g
EtOH/kg/day (ranging from 4 to 5 g EtOH/kg/day) were finally selected according to Mardones
and Segovia-Riquelme [8]. In this study, the preference ratio associated to ethanol-seeking
behavior was about 65%. Besides that, to ensure more efficiency and maintenance of constant
consumption throughout the experiment, the animals were kept under observation for 10 days
when they started with melatonin treatment. Thus, after 90 days old, females received ethanol
and/or melatonin during 60 consecutive days (Fig. 1A). After melatonin treatment period, all rats
were monitored by vaginal swabs in a dark room using a red dim illumination, and during the
early morning of estrus (timing of ovulation) at 4 a.m (or Zeitgeber Time (ZT) 22, corresponding
to the environmental circadian time) they were anesthetized and euthanized by decapitation for
further analysis. Experimental protocols were accepted by Ethical Committee of the Institute of

Bioscience/UNESP, Campus of Botucatu, SP, Brazil (Protocol n° 85/07).

Procedures of melatonin administration
Melatonin (M-5250, Sigma-Aldrich Chemicals, St. Louis, MO, USA) were dissolved in
few drops of 95% ethanol 0.04mL and diluted in 0.9% NaCl 0.3mL (vehicle) up to desired

concentration and then intraperitoneally (i.p) injected [3]. The i.p injections at doses of 100
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ug/100 g BW were daily administered during 60 days at evening hours (between 18:30 - 19:00 h

after sunset, ZT 13; Fig. 1B).

Urine and reproductive organs collection

In the evening before they were killed, all animals received the last injection of melatonin
and they were kept inside metabolic cages (Techniplast, Exton, PA, USA) by 10 h in order to
collect individual urine samples. Thereafter, all samples were centrifuged at 10,000 x g for 20
min at 4 °C and stored at - 20 °C. On the next day after sacrifice, all reproductive organs (ovaries,

oviducts and uterine horns) were entirely dissected and weighed for further assays.

Sex hormones assay

Blood samples were collected from the trunk of decapitated rats into heparinized tubes.
Afterwards, plasma was obtained by centrifugation at 1,200 x g for 15 min at 4 °C and stored at -
20 °C until assayed by radioimmunoassay (RIA). Plasma FSH and LH were determined by
double-antibody RIA with specific kits provided by the “National Institute of Arthritis, Diabetes,
Digestive and Kidney Diseases” (NIADDK, Baltimore, MD, USA). The FSH primary antibody
was anti-rat FSH-S11, and the standard FSH-RP2. The antiserum for LH was LH-S10 using RP3
as reference. The lower limit of detection for FSH and LH was 0.2 ng/mL and the intra-assay
coefficient of variation was 3% and 4%, respectively. Plasma concentrations of E2 and P4 were
determined using Estradiol and Progesterone Maia kits (Biochem Immunosystems, Serotec,
Italy). The lower detection limit and the intra-assay coefficient of variation were respectively 7.5

pg/ml and 2.5% for E2 and 4.1 ng/ml and 3.7% for P4. All samples were measured in duplicate
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and at different dilutions, if necessary. In order to prevent interassay variation, all samples were

assayed in the same RIA.

Determination of plasma melatonin and urinary 6-SMT

Melatonin was initially extracted from plasma (n=10 samples/group) using methanol
HPLC grade followed by separation into columns Sep-Pak Vac C-18, reverse phase, 12.5 nm
(Water Corporation, Milford, Massachusetts, USA). Thereafter, 50 puL of reconstituted samples
were assayed with coat-a-count melatonin ELISA kits and measured photometrically at a
wavelength of 405 nm. The intra-assay coefficient of variation was 3%. Urinary 6-STM was
assayed with solid-phase melatonin sulfate ELISA kits and, finally, read at 450 nm. The intra-
assay coefficient of variation was 5.2%. Samples were double assayed at the time to avoid
interassay variations. All reagents and microtiter plate were provided by IBL (IBL International,

Hamburg, Germany).

Western blotting analysis and protein quantification

After 60 days of melatonin treatment (100png/100g BW/day), the ovaries, oviducts and
uterine horns were rapidly removed and tissue samples of 50 mg were immediately frozen in
liquid nitrogen and stored at - 80° C. All tissues were homogenized with RIPA lysis buffer
(Pierce Biotechnology, Rockford, IL, USA), 10X (0.5 M Tris-HCIL, 1.5 M NaCl, 2.5 %
deoxycholic acid, 10 % NP-40, 10 mM EDTA, pH 7.4) and protease inhibitor cocktail (Sigma
Chemical Co.) using a homogenizer (IKA® T10 basic Ultra, Staufen, Germany). Aliquots

containing 1:10 (v/v) of Triton X-100 were added to homogenates and samples were placed on
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dry ice under agitation by 2 h in order to improving extraction. These suspensions were
centrifuged at 21,912 x g for 20 min at 4° C and the pellet discarded. Total proteins were
measured by the Bradford through colorimetric determination. All proteins were dissolved in 1.5
X sample buffer previously described by Laemmli and used for SDS-PAGE (Bio-Rad
Laboratories, Hercules, CA, USA). Equal amounts of protein (70 pg) were loaded per well onto
preformed gradient gels, 4-12% acrylamide (Amersham Biosciences, Uppsala, Sweden) with a
Tris-glycine running buffer system for electrophoresis (60 mA fixed during 2 h). After
electrophoresis, total proteins were electro-transferred (200 mA fixed by 1 h 30 min) onto 0.2 pm
nitrocellulose membranes in a Tris-glycine-methanol buffer. Kaleidoscope Prestained Standards
(Bio-Rad) were used as molecular weight markers. Thereafter, the membranes were blocked with
TBS-T solution containing 3% BSA at room temperature (RT) for 60 min and then incubated at
4° C overnight with rabbit primary antibody AR-N20 anti-AR; rabbit clone E115 anti-ERa
receptor; rabbit clone 68-4 anti-ERP; mouse monoclonal [C262] anti-PRA and PRB and rabbit
polyclonal anti-MTI1R (dilutions of 1:1000; 1:250; 1:500; 1:350; 1:500; 1:500 were carried out at
1% BSA, respectively). This was followed by 3 x 5 min washing in TBS-T solution and then
incubated for 2 h at RT with rabbit or mouse HRP-conjugated secondary antibodies (diluted
1:1000 in 1% BSA; Sigma, St. Louis, MO, USA). After sequential washing with TBS-T, signals
were enhanced and peroxidase activity was finally detected by mixing 10mL PBS, 8ul H,O, and
0.02g DAB (Sigma Chemicals Co.). Immunoreactive bands were obtained from separate blots of
six rats/group using image analysis software (NIS-Elements, Advanced Research, Nikon). B-actin
was used as an endogenous control and all results were expressed as mean + SEM.
Immunoblotting concentrations (%) were represented as optical densitometry values (band

intensity / B-actin ratio).
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Statistical analysis

Values are presented as mean £ SEM. Data of plasma FSH, LH, E2, P4, melatonin,
urinary 6-SMT and western blotting analysis were performed by Two-way ANOVA analysis of
variance (based on two independent factors - ethanol consumption and melatonin treatment).
Significant results were subjected to post hoc Tukey’s test and statistical significance was set at p
< 0.05. The statistical software was GraphPad Instat version 4 and Sigma Plot version 11.0 for

graphic design.

Results
Plasma sex hormones, melatonin and urinary 6-STM levels

After 60-day treatment, total FSH levels were reduced (p < 0.05) in ethanol-preferring rats
compared to those receiving ethanol and melatonin, while plasma LH and melatonin were not
influenced by the treatment (p > 0.05). Melatonin significantly (p < 0.05) increased P4 and
decreased E2 levels compared to controls, and conversely when ethanol and melatonin are
combined, a significant fall in both P4 and E2 levels was notable in relation to UChB EtOH rats.
Additionally, only UChB Co+M animals presented higher 6-STM concentrations than UChB Co

at morning of estrus (p < 0.01; Fig. 2 A-F).

Analysis of ovarian AR, ER-o, ER-§, PRA, PRB and MTIR levels

Despite total AR levels were unchanged throughout the treatments, melatonin reduced
ER-a while ethanol had an opposite effect on this receptor. The interaction between melatonin
and ethanol resulted in downregulation of ER-a. In addition, either melatonin or ethanol alone led

to a decrease (p < 0.05) in ER-f levels compared to controls UChB Co rats (Fig. 3 A-D). Also, it
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was observed that ethanol alone and even the interaction between ethanol and melatonin caused
significant overexpression of PRA and PRB in relation to UChB Co and UChB Co+M groups,
respectively (Fig. 3 A, E, F). Interestingly, as shown in Fig. 3 G, the MTIR levels were
significantly higher (p < 0.05) in the ovaries of both melatonin-treated groups, regardless of
ethanol consumption, which implies that melatonin administration promoted an up-regulation of

its own receptors.

Analysis of oviductal AR, ER-a, ER-f, PRA, PRB and MTIR levels

The AR levels in oviduct were decreased (p < 0.05) after 60-day exposure to ethanol
while interaction between ethanol and melatonin revealed the lowest AR levels compared to
UChB Co+M and UChB EtOH groups (Fig. 4 A,B). Total ER-0, ER-f and PRA levels were
downregulated by ethanol or melatonin treatment, and otherwise, the interaction between ethanol
and melatonin induced a remarkable overexpression of these receptors (Fig. 4 A,C-E). In
addition, there was no significant effect of treatment on oviduct PRB levels among the groups,
where the expression was maintained relatively constant. Differently from ovaries, MT1R levels
were lower (p < 0.01) in UChB EtOH than UChB Co rats and become even more reduced after

the interaction of ethanol and melatonin (Fig. 4 A,G).

Analysis of uterine AR, ER-0, ER-f, PRA, PRB and MTIR levels

The uterine AR expression showed a significant (p < 0.01) increase after melatonin and
ethanol-melatonin interactions compared to UChB Co and UChB EtOH groups. Also, AR levels
were found to be more positively regulated by melatonin alone compared to ethanol+melatonin-

treated group (p <0.01; Fig. 5 A,B). Ethanol alone or in combination with melatonin induced low
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ER-a expression, while uterine ER-B was decreased (p < 0.05) after treatment with either
melatonin or ethanol in comparison to UChB Co and UChB EtOH+M groups (Fig. 5 A,C,D).
UChB Co+M and UChB EtOH rats had lower PRA levels than controls (p < 0.05), in contrast to
PRB levels, which were significantly increased by melatonin and simultaneously decreased by
ethanol and ethanol+melatonin treatments. Similarly to those MT1R found in the ovaries, all
animals that received melatonin and ethanol+melatonin revealed overexpression of uterine

MTIR, regardless of ethanol consumption (Fig. 5 A,E-G).

Discussion

Although melatonin may act as a synchronizer of the reproductive function, the specific
cellular and molecular characteristics of melatonin binding sites are so far unknown. It seems
obvious that both melatonin and ethanol do not act directly on GnRH neurons [29-31] but,
instead, exert indirect actions through Kiss //GPR54 neural system by inducing low circulating
gonadotropins [30]. This disarrangement could lead to the onset of hypogonadotropic
hypogonadism as we had previously reported that interaction between melatonin and ethanol
caused a loss of ovarian weight [3]. The present study found that melatonin and ethanol are able
to reduce P4 and E2 while increasing FSH levels at estrous. Moreover, melatonin alone had
induced P4 synthesis in contrast to reduced E2. Chronic ethanol intake has been linked to
increased E2 levels by the following: possible dysfunction of hepatocyte metabolism leading to a
shift in NAD/NADH ratio, thus disturbing the process of E2-estrone conversion [32]. Otherwise,
melatonin was seen to inhibit E2 steroidogenesis by changing cAMP levels through a direct
action on the follicles [13] also confirmed by our group [20]. Furthermore, melatonin regulates

the expression and activity of aromatase [33], acting as a selective estrogen modulator, and
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further contributing to a decrease in E2 levels. The interaction between melatonin and ethanol
resulted in reduction of E2, and when E2 levels are low, a negative feedback for FSH secretion
does not occur. Taken together, it is believed that the high FSH levels are indirectly related to the
melatonin effects rather than ethanol, since ethanol alone promoted an increase of E2 and
consequently a fall in FSH levels. These observations suggest the possibility that there may be
some interactions among melatonin, ethanol intake and E2 metabolism that should be further
deeply explored.

Despite our recent study had proposed that melatonin inhibits LH secretion at estrus, its
combination with ethanol, in an UChB rat model, did not caused any disturbance on LH levels.
This could be attributed to the responsiveness of each treatment, time of exposure and specific rat
line used. Corroborating partially the study, Verkasalo et al. [34] stated that both LH and FSH
levels decreased after daily exposure to ethanol. It has long been emphasized that melatonin
increases P4 levels [35,19] while ethanol metabolism indirectly reduces P4 after sharing the same
cofactor NAD that catalyse the oxidation of 20a-dihydroprogesterone to P4 [36]. Interestingly,
when ethanol and melatonin were given, a significant reduction of P4 levels was noted.
Presumably, this can be explained by ethanol-induced changes in the redox state leading to either
high or low redox potential of the steroids in the liver. Urinary 6-STM levels were raised only in
UChB Co+M rats at morning estrus. Since alcohol consumption affects the endogenous
melatonin synthesis [10] and it also appears to be inversely associated with the presence of 6-
STM [37], we found no significant differences for such levels in animals that received both
ethanol and melatonin as treatment. Furthermore, plasma melatonin remained relatively constant
in the animals. This is due to the short half-life of melatonin (assessed 7 h after administration),

where it is rapidly converted into 6-STM prior to elimination [20].
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In ovarian tissue, neither ethanol nor melatonin treatment had effectively influenced AR
levels. The present study showed that long-term melatonin is able to reduce ER-a, in contrast to
high expression of ER-a after ethanol consumption. Indeed, ER seems to be activated when
cAMP is elevated through E2-dependent mechanisms [38]. Notably, melatonin acting via
membrane-bound G protein-coupled MT1 receptor may inhibits adenylate cyclase activity, thus
decreasing cAMP levels [39], and directly affecting E2-induced ER-a transactivation.
Alternatively, ethanol dose-dependently increases ER-a level [40] and potentiates the ERE-
binding responsive activities in the presence of E2 [41]. These ethanol-related actions during
ovulation can occur directly by altering E2 levels itself or even indirectly through derivatives
from ethanol metabolism. Interestingly, the interaction between melatonin and ethanol promoted
a down-regulation in ER-a transcription. Since the elevation in ER-a expression is linked to E2-
induced carcinogenesis [40], melatonin treatment would reduce ovarian adverse effects arising
from chronic ethanol intake. Otherwise, melatonin and ethanol alone caused downregulation of
ovarian ER-fB. This may be due to different tissue and concentrations of melatonin and ethanol
employed in the study. Additionally, PRA and PRB which function as ligand-dependent
repressors of ER-mediated transcription [42] were significantly higher at the end of treatments. In
this context, we conclude that P4-PR signaling were responsible for attenuating more specifically
the ER-PB expression. Ethanol alone and the interaction between ethanol and melatonin induced
similar overexpression of ovarian PRA and PRB subunits. Because melatonin alone had no effect
on PR expression, the main factor activating both PRA and PRB is presumably the ethanol
consumption. Ethanol has been pointed to be a toxicant affecting the hormonal balance
predominantly through E2 and P4 mediated by their respective receptors [25]. This is partially

consistent with our findings, except for P4 levels. Curiously, the MTIR levels were
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overexpressed in the ovaries of both melatonin-treated groups. Thus, we have launched first
evidence that MTIR remains potentially activated during ovulation process even after chronic
ethanol consumption. Also, previous study has indicated that melatonin binding receptor is high
during estrus, proestrus and diestrus, in contrast to low levels in metaestrus when E2 and P4 are
reduced [43]. Finally, it allows us to conclude that both E2 and P4 might regulate MT1 receptor
activity besides the melatonin treatment itself.

We demonstrated for the first time the role of ethanol and melatonin on the expression of
oviduct ER and PR subunits. In rat oviduct, the expression of AR was reduced in ethanol-
consuming animals and became even more prominent after the combination of ethanol and
melatonin. It seems plausible to consider that ethanol increases estrogen levels by promoting the
induction of aromatase [44], thus lowering the circulating androgens and latter the AR levels.
Furthermore, a direct inhibitory effect of the ER-o0/AR heterodimer on both AR and ER-a may
adversely affect the transactivation properties [45]. These events could somehow be related to a
reduction of AR in the presence of ethanol, besides mentioning our recent report in which
melatonin negatively regulated oviductal AR [20]. Ethanol and melatonin alone similarly caused
downregulation of oviduct ER-a, ER-f and PRA. Otherwise, the combination between ethanol
and melatonin significantly raised these receptors to normal levels. We had previously proved
that melatonin reduces ER-a expression in rat oviduct [20], however, the presence of ethanol
combined with melatonin was effective in restoring the ER-o and ER-f levels through unknown
mechanism(s). Notably, it was reported that ethanol up-regulates ER-a while down-regulates
ERE activity depending on the specific cell type and amount of ethanol ingested [46]. Although it
has been pointed that the expression of oviduct PRA and PRB is enhanced after melatonin

treatment [20], in the present study, ethanol-preferring rats showed increased PRA only after
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combination with melatonin. It is likely that the fall in P4 levels might be accentuating PRA
expression. Conversely, neither ethanol nor melatonin caused alterations in PRB levels. It seems
that oviduct PRB is not quite sensitive to changes after treatments. Nevertheless, the regulation of
sex steroid receptors in oviduct is not yet fully clarified. MTIR was downregulated in oviduct
after ethanol consumption or in combination with melatonin. Ultimately, oviduct MTIR has a
differential responsiveness to ethanol compared with ovary and uterus.

In uterus tissue, melatonin alone upregulated AR expression while ethanol caused its
downregulation. Ethanol seems to have a pivotal role in reducing uterine AR even after ethanol-
melatonin combinations. The presence of AR in uterine epithelial, stromal and myometrial cells
suggests that androgens may exerts direct influence on the development and function of uterus.
Although we did not found differences in uterus AR after melatonin administration [20], these
ethanol-preferring rats exhibited differential AR expression. In females, ethanol intake was seen
to rapidly increase the androgen level even with low ethanol doses during the whole cycle
[47,48]. This elevation in circulating androgens may be the main cause of reduced AR
expression. Ethanol alone and ethanol-melatonin combination reduced uterine ER-o, whereas
only ethanol or melatonin alone induced downregulation of ER-f. Conversely, ethanol-melatonin
combination led to an overexpression of ER-B. Since ER-a is abundantly expressed in rat uterus
than ER-B [18], ethanol consumption negatively regulated ER-a expression, thus adversely
affecting the ER-o-mediated functions during ovulation. It is established that E2 and P4 acts upon
the uterus by an interdependent regulation of ER and PR [49,50]. Noticeably, it has been shown
that E2 decreases the expression of uterine ER but not PR, while P4 reduces the levels of both
receptors [51]. Taking into account that E2 and P4 levels were raised after ethanol intake and

melatonin treatment, respectively, it suggests that ethanol has severely influenced both uterine
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ER-a and ER-f, in contrast to melatonin which only reduced ER-f levels. Indeed, melatonin has
been pointed to reduce the expression of ER while increasing PR [52]. This may partially explain
our findings where melatonin administration caused simultaneous downregulation of ER-f3 and
PRA. Moreover, ethanol alone and ethanol-melatonin combination were responsible for
decreasing both PRA and PRB levels. PRA plays a role in decidualization process [53] and it is
sufficient to mediate the antiproliferative responses to P4 [23]. Importantly, functional
polymorphism in PR promoter that results in increased expression of the PRB isoforms is
associated with risk of endometrial cancer [54,55]. In this regard, melatonin but not ethanol has a
defective effect in uterine tissue. Similarly to the ovaries, the levels of uterine MTI1R were
increased in melatonin-treated rats, regardless of ethanol intake. As we have proved earlier [20]
melatonin after binding to MTIR is able to mediate responses through direct actions in these
organs, besides having indirect effects on sex hormones.

In summary, we reported that melatonin has an opposite effect to those observed after
ethanol consumption on the E2 and P4 levels, indirectly causing disturbances to ovary, oviduct
and uterus. Moreover, melatonin and ethanol alone promoted differential regulation of the sex
steroid receptors upon the reproductive tissues, mostly acting “in situ” through its MTIR
receptor, especially in ovarian and uterine tissue. Finally, the melatonin-ethanol combination on
these receptors is quite variable, enhancing or attenuating their expression depending on the
specific tissue. These data represent an important benchmark for furthering the understanding of

melatonin-ethanol interface during ovulation process.
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Figure Legends

Figure 1. Detailed schedule for the experimental design. (A) Chronological scheme for overall
treatment period. (B) Schematic protocol used daily for melatonin administration based on

Zeitgeber Time (ZT) corresponding to environmental circadian time.

Figure 2. Hormonal profile after 60-day treatment at morning estrus. (A) Plasma FSH levels
(ng/mL), (B) Plasma LH levels (ng/mL), (C) Plasma P4 levels (ng/mL), (D) Plasma E2 levels
(pg/mL), (E) Plasma melatonin levels (pg/mL), (F) urinary 6-STM levels (ng/mL). ad p <0.05
vs. UChB Co and UChB EtOH+M groups, respectively.

Values are expressed as mean = SEM (N= 10 animals/group). Two-way ANOVA complemented

by Tukey’s test.

Figure 3. (A) Representative western blotting analysis of androgen receptor (AR), estrogen
receptor (ER-a and ER-B), progesterone receptor (PRA and PRB) and melatonin receptor
(MTI1R) in ovarian tissue of rats receiving 10% (v/v) ethanol and melatonin (100 pug/100 g B.W).
Indicated concentrations of each total protein (70 pg extracted from a pool of 6 organs/group)
were used to detect specific proteins in the blots (upper panel). (B — G) Densitometry values for

AR, ER-a, ER-B, PRA, PRB and MTIR levels were studied following normalization to the

house-keeping gene (B-actin). All results are expressed as mean = SEM (N= 6 animals/group). * p

<0.05 vs. UChB Co; ° p < 0.05 vs. UChB Co+M; © p < 0.05 vs. UChB EtOH and * p < 0.05 vs.

UChB EtOH+M.
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Figure 4. (A) Representative western blotting analysis of androgen receptor (AR), estrogen
receptor (ER-a and ER-fB), progesterone receptor (PRA and PRB) and melatonin receptor
(MT1R) in oviduct tissue of rats receiving 10% (v/v) ethanol and melatonin (100 pug/100 g B.W).
Indicated concentrations of each total protein (70 pg extracted from a pool of 6 organs/ group)
were used to detect specific proteins in the blots (upper panel). (B — G) Densitometry values for

AR, ER-a, ER-B, PRA, PRB and MTIR levels were studied following normalization to the

house-keeping gene (B-actin). All results are expressed as mean = SEM (N= 6 animals/group). * p
<0.05 vs. UChB Co; ° p < 0.05 vs. UChB Co+M; © p < 0.05 vs. UChB EtOH and * p < 0.05 vs.

UChB EtOH+M.

Figure 5. (A) Representative western blotting analysis of androgen receptor (AR), estrogen
receptor (ER-a and ER-B), progesterone receptor (PRA and PRB) and melatonin receptor
(MTI1R) in uterine tissue of rats receiving 10% (v/v) ethanol and melatonin (100 pg/100 g B.W).
Indicated concentrations of each total protein (70 pg extracted from a pool of 6 organs/ group)
were used to detect specific proteins in the blots (upper panel). (B — G) Densitometry values for

AR, ER-a, ER-B, PRA, PRB and MTIR levels were studied following normalization to the

house-keeping gene (B-actin). All results are expressed as mean = SEM (N= 6 animals/group). * p
<0.05 vs. UChB Co; ° p < 0.05 vs. UChB Co+M; © p < 0.05 vs. UChB EtOH and * p < 0.05 vs.

UChB EtOH+M.
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Long-Term Exogenous Melatonin Treatment Modulates
Overall Feed Efficiency and Protects Ovarian Tissue
Against Injuries Caused by Ethanol-Induced Oxidative

Stress in Adult UChB Rats

Luiz Gustavo A. Chuffa, Joao P. A. Amorim, Giovana R. Teixeira, Leonardo O. Mendes,
Beatriz A. Fioruci, Patricia F. F. Pinheiro, Fabio R. F. Seiva, Ethel L. B. Novelli, Wilson de
Mello Junior, Marcelo Martinez, Gamila C. D. Almeida-Francia, and Francisco E. Martinez

Background: Chronic ethanol intake leads 1o reproductive damage including reactive oxygen
species formation, which accelerates the oxidative process. Melatonin is known to regulate the
reproductive cycle, food/liquid intake, and it may also act as a potent antioxidant indoleamine.
The aim of this study was to verify the effects of alcoholism and melatonin treatment on overall
feed efficiency and to analyze its protective role against the oxidative stress in the ovarian tissue
of UChB rats (submitted to 10% [v/v] voluntary ethanol consumption).

Metheds: Forty adult female rats (n = 10/group) were finally selected for this study: UChB
Co: drinking water only: and UChB EtOH: drinking ethanol at 2 to 6 ml/100 g/d = water. both
receiving 0.9% NaCl + 95% ecthanol 0.04 ml as vehicle. Concomitantly, UChB Co + M and
UChB EtOH + M groups were infused with vehicle + melatonin (100 xg/100 g body weight/
d) intraperitoneally over 60 days. All animals were euthanized by decapitation during the morning
estrus (4 am).

Results: Body weight gain was reduced with ethanol plus melatonin after 40 days of treatment.
In both melatonin-treated groups. it was observed a reduction in food-derived calories and liquid
intake toward the end of treatment. The amount of consumed ethanol dropped during the treat-
ment. Estrous cycle was longer in rats that received both ethanol and melatonin, with prolonged
diestrus. Following to oxidative status, lipid hydroperoxide levels were higher in the ovaries
of ethanol-preferring rats and decreased after melatonin treatment. Additionally, antioxidant
activities of superoxide dismutase, glutathione peroxidase activity, and glutathione reductase
activity were increased in melatonin-treated groups.

Conclusions: We supgest that melatonin is able 1o affect feed efficiency and, conversely, it pro-
tects the ovaries against the oxidative stress arising from ethanol consumption.

Key Words: Melatonin, Feed Efficiency. Ovary, Ethanol, Lipid Peroxidation.

CUTE AND CHRONIC ethanol intake is associated
with several dysfunctions of female reproduction,
including amenorrhea, blockade of ovulation, early meno-
pause, spontaneous miscarriage, and infertility (Carrara et al.,
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1993; Henderson et al., 2007). Ethanol drinker strains
(UChB) are derived from original Wistar rats and have been
selectively bred at the University of Chile for almost 60 years
{Mardones and Segovia-Riquelme, 1983). These ethanol-pre-
ferring rats are considered a special model for the understand-
ing of the basis of alcoholism-linked characteristics such as
those found in alcohol-related human diseases.

In mammals, the photoperiodic hormone melatonin (V-
acetyl-5-methoxytryptamine) is secreted by the pineal gland
and it has been documented as an important modulator of
reproductive function because of its stimulation of ovarian
activity, promotion of estrous cycles, gonadal atrophy (Hor-
ton and Yellon, 2001; Ocal-Irez, 1989), and regulation of folli-
culogenesis and ovulation (Zhao et al., 2000). More directly,
ethanol intake has been proposed to induce diurnal melatonin
production (Fonzi et al., 1994), and as recently described,
chronic ethanol consumption plays a defective role in the
synchronization of circadian rhythms (Rosenwasser et al.,
2005). resulting in sleep disorders and alcohol-induced mental

Aleahol Clin Exp Res, Vol 35, No 8, 2011: pp 14981508
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dysfunctions (Clark et al., 2007). Melatonin may be useful as
a hormonal therapeutic replacement as it minimizes sleep dis-
orders and stress agents arising from chronic alcoholism.

There are some experimental support involving actions of
melatonin on nutritional parameters. such as feed efficiency,
body mass gain, adiposity index, and both energy intake and
expenditure (Korkmaz et al., 2009; Mustonen et al., 2002).
These controversial effects are over-linked to specific diet regi-
men, age, and gender, but none has evaluated the effects asso-
ciated with chronic ethanol consumption.

[tis noteworthy that melatonin presents antioxidant proper-
ties both in vivo and in vitro. Melatonin can stimulate the
activities and expressions of antioxidant enzymes that contrib-
ute to the protection against the damages caused by oxidative
stress (Rodriguez et al., 2004). Several studies have demon-
strated that melatonin detoxifies a variety of free radicals and
reactive oxygen molecules, including hydroxyl radical (OH),
superoxide. peroxynitrite, singlet oxygen, and others. Melato-
nin acting as a free radical scavenger of oxidative products pre-
vents lipid peroxidation in reproductive tissues (Armagan
et al., 2006: El-Sokkary et al., 1999; Peyrot and Ducrocq,
2008) and can be an useful tool against the oxidative damage
arising (rom chronic alcoholism (Hu et al., 2009). It is known
that the metabolism of ethanol induces reactive oxygen species
(ROS) formation. mainly through the P450 CYP2E!1 micro-
somal system evidenced by high rate of oxidized NADPH.
where is produced large quantities of superoxide anion radical
(O, )and hydrogen peroxide (H,05) both in humans and eth-
anol-fed rodents (Gouillon et al., 2000; Ronis et al., 2004).
Oxidative stress may be a cause of poor oocyte quality, because
it produces severe cell damage, including deterioration of
membrane lipids, apoptosis, and inhibition of fertilization
(Agarwal et al.. 2005; Noda et al., 1991). Melatonin also
increases the synthesis of enzymes such as superoxide dismu-
tase (SOD), glutathione (GSH), peroxidase (GSH-Px. GSH),
reductase (GSH-Rd), and catalase (Armagan et al., 2006;
Subramanian et al., 2007; Tan et al., 2007). Furthermore,
recent approaches involving chronic ethanol consumption
revealed a depletion of mtGSH content (Fernandez-Checa and
Kaplowitz, 2005) and a decline in the enzymatic activity of liver
Cu Zn SOD, catalase, and GSH-Px (Polavarapu et al., 1998).
The role of melatonin on the female reproductive tract in etha-
nol-fed rats is still poorly understood.

In view of the above-mentioned findings, this study was
designed to investigate the effects of ethanol, associated or

A
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not with melatonin treatment. on overall feed efficiency and
oxidative stress in the ovaries of UChB ethanol-preferring rats
(10% [v/Vv] ethanol voluntary drinkers).

MATERIALS AND METHODS
Animals and Experimental Design

Forty adult female rats (Rattus norvegicus athinus). 60 days old
(225 to 240 grams at bascline), were obtained from the Department
of Amnatomy, Bioscience Institute/Campus of Botucatu (IBR),
UNESP—Univ Estadual Paulista. The animals were randomly
divided into 4 groups (# = 10/group). UChB EtOH group: rats fed
10% (v/v) ethanol ad libitum (free choice for water or ethanol)
drinking from 2.0 to 6.0 mi/100 g body weight (BW)/d and receiving
vehicle solution; UChB Co group: Ethanol-naive rats without access
to ethanol, used as a control group, receiving vehicle solution; UChB
EtOH + M group: rats fed 10% (v/v) ethanol (free choice for water
or ethanol) drinking from 2.0 to 6.0 ml/100 ¢ BW/d and receiving
vehicle + melatonin; and UChB Co + M group: without access to
ethanol and receiving vehicle + melatonin. When the UChB EtOH
rats reached 60 days of age, they were given during 20 days, a choice
between 2 bottles containing either water ad libitum (1) or 10% (v/v)
cthanol (2). After this period, 10 animals per group displaying etha-
nol consumption higher than 2.0 ml of ethanol/100 ¢ BW/d were
finally selected according to Mardones and Segovia-Riquelme (1983).
To predict ethanol intake, blood acetaldehyde levels serve as good
marker and they are remarkably high in UChB rats (Tampier et al.,
2008). For this study, the preference ratio associated with ethanol-
seeking behavior was about 65%. Besides that. to ensure more effi-
ciency and maintenance of constant consumption throughout the
experiment, the animals were kept under observation for 10 days
when they started with melatonin treatment. Thus, after 90 days old.
females received ethanol and melatonin during 60 consecutive days
(Fig. 14). After the melatonin treatment. rats in the morning estrus
at 4 am (or Zeitgeber Time 22:00 ZT 22) monitored by vaginal swabs
in a dark room using red light were anesthetized and euthanized by
decapitation for further analysis. All animals were individually
housed in polypropylene cages (43 cm x 30 cm x 15 em) with labo-
tatory-grade pine shavings as bedding and also maintained under
controlled room temperature (23 + 1°C) and lighting conditions
(12L, 12D photoperiod. lights switched on at 6 am). The rats received
a standard rodent chow (3074 SIF; Purina Ltd. Campinas, Brazil)
and filtered tap water ad libitum. Experimental protocols followed
the Ethical Principles in Animal Research adopted by the Brazilian
College of Animal Experimentation and were approved by Ethics
Committee on Animal Experimentation (Protocol no. 85/07).

Procedures of Melatonin Administration

For the animals designated to receive exogenous melatonin treat-
ment, successive doses of melatonin (100 pg/100 ¢ BW) (M-5250:
Sigma Chemical, St. Louis, MO) were dissolved in 95% ethanol
0.04 ml, using 0.9% saline solution as a vehicle (ChufTa et al., 2011;

0 21 50 60 80 90 150 B
ZT o Zr12
E1OH { MEL light on light off
EtOH + MEL
T 1 T 1T 11 1 ih
birth ‘weaning sqsanr:m heg::eing min! N:Ee:;m euthangsia 2T 13 2T 22

pups  selectionfor lineage melatonin
ethanol  selection Ireatment
consumption  period

Melatonin Euthanasia

Fig. 1. (A) Chronological scheme for overall chronic treatment. (B) Schematic protocol used for melatonin (MEL) treatment based on Zeitgeber Time

(ZT) corresponding to environmental circadian time. EtOH, ethanol.
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Kim and Lee. 2000: Vazquez et al., 2007). The intraperitoneal infu-
stons (only vehicle or vehicle + melatonin) were daily administered

between 18:30 and 19:00 M (ZT 13) (Fig. 1B).

Food and Liquid Intake

Feeding content was prepared in lots of 5 days. always at the same
time of day (15:00 hours) using a marked test tube and analytical
balance {(Ohaus Traveler ; Ohaus Corporation, México, D.F,
MEXICO. MX). The profile of liquid ingestion (caloric value of
water — ethanol = 7.1 kcal/g ethanol) and food (caloric value of
standard chow = 2,930 kcal/kg) were assigned according to the
standards of necessary care. Total energy intake (kcal/d) and feed
efficiency (weight gain/consumed calories x 100) were evaluated as
metabolic parameters. BW was also measured, and melatonin dos-
ages were individually adjusted for each weight. At the end of treat-
ment, the reproductive organs (uterine horn, ovaries. and oviducts)
were dissected and weighed. The determination of BW and organ
weight was carried out using an analytical balance (Owalabor,
Oschatz, Germany).

Glycemia Measurements

The glycemic index was measured with a blood glucose sensor
(One Touch Ultra System kit; Lifescan, Milano, Italy), using blood
samples from the caudal vein of animals. To avoid variation, all sam-
ples were assessed with an equal volume collected from each animal
after 12 hours of fasting.

Assessment of Estrous Cyclicity

During the second half of the experiment. animals exhibiting
estrous cycles were accompanied by colpocytological examination
(vaginal swabs). Cells detaching from the vaginal epithelium were
removed with a pipette (Lab Mate 0.5 to 10 pl; International
Labmate Lid, St. Albans, UK). The filter tips containing 10 pl of
0.9% saline solution (Marcondes et al., 2002) were discarded after
the vaginal secretion had been transferred to clean shides. Colpocyto-
logical examination time was fixed at 9 am. Each slide was analyzed
under a Zeiss Axiophot II microscope (Carl Zeiss, Oberkochen.
Germany) at 10x and 25x magnification and digitally photographed.

Determination of Lipid Hydroperoxide and Antioxidant Systems

After 60 days of melatonin treatment (100 pg/100 g BW/d), the
ovaries were rapidly removed. Each right ovary was weighed, and tis-
sue samples of 40 mg were immediately frozen in liquid nitrogen and
stored at —80°C. The ovary samples were homogenized using a
motor-driven Teflon Potter Elvehjem tissue grinder (Omni Interna-
tional, Kennesaw, GA) in 1.25 ml of cold 0.1 M phosphate buffer
(pH 7.4) with the addition of | mM ethylenediaminetetraacetic acid
(EDTA). The homogenate was centrifuged at 10,000xg for 15 min-
utes. The supernatant fraction was removed for the determination of
total proteins (Seiva et al.. 2010), lipid hydroperoxide LHP (Jiang
et al,, 1991), and antioxidant substances (Seiva et al., 2008). LHP
was measured by Fe’ ™ to Fe' " oxidation in the presence of xylenol
orange at 560 nm. Total antioxidant substances (TAS) were assessed
by the inhibition of LHP formation. Spectrophotometric assays were
carried out using a spectrophotometer with a temperature-controlled
cuvette chamber (UV/visible Ultraspec with Swift I software;
Pharmacia Biotech, Cambnidge, UK).

The enzymatic antioxidant system was investigated using the
extracted supernatant. Afterward, GSH-Px activity (E.C. 1.11.1.9.)
was analyzed using GSH oxidation reacted with H>0 and cumene
hydroperoxide (Nakamura et al.. 1974). GSH-Rd activity was evalu-
ated by monitoring NADPH oxidation (reduced nicotinamide
adenine dinucleotide phosphate) at 340 nm (Miller and Blakely,

CHUFFA ET AL

1992). The reactive mixture included | mM Tns buffer, pH 8.0.
S mM EDTA, 33 mM GSSG, and 2 mM NADPH. The activity of
SOD (E.C. 1.15.1.1), observable in a reduction of nitroblue tetrazo-
lium by superoxide radicals, was verified by mixing NADH and
phenazine methosnlfate at a physiological pH (Ewing and Janero,
1995). Catalase (E.C. 1.11.1.6.) activity was assayed during the
decomposition of H;O; to H;O — O, (Acbi, 1974). The assays of
antioxidant activities were performed at 25°C using a pQuant micro-
plate spectrophotometer (MQX 200 with KCjumor software; Bio-
Tek Instruments. Winooski, VT).

Statistical Analysis

Statistical comparisons were performed by 2-way analysis of
variance (ANOVA) with post hoc Tukey's test. Nonparametric
Kruskal-Wallis test complemented by Dunn were applied according
to the chosen parameter. All results are given as means (SEM) or
median (min; max) values. Significance was set at p < 0.01 and
p < 0.05. The statistical software used was Sigma Plot version 11.0
(Systat Software. Inc.. Chicago, 1L) and GraphPad Instat version 4
for graphic design (GraphPad Software, Inc., San Diego, CA).

RESULTS

After 60 days of treatment, there were significant differ-
ences on BW among the groups. The interaction between eth-
anol and melatonin promoted a constant decline in BW gain
after the second half of treatment. when compared with ani-
mals receiving only ethanol (Fig. 24). In the final days of
treatment, the UChB Co + M group had higher BW gain
compared with animals that were given both melatonin and
ethanol (Fig. 24). Initially, based on the time points exam-
imed, UChB EtOH and UChB EtOH — M rats exhibited an
identical drop in food consumption, differently from the con-
trols (Fig. 28). Only the UChB Co — M rats had increased
food intake at several time points, indicating the effects of
melatonin, especially during the second half of treatment.
After 40 days of treatment, the interaction between melatonin
and ethanol caused a reduction in food consumption average
than those receiving only ethanol (Fig. 2B). Furthermore,
alter 50 days of treatment, animals receiving ethanol in com-
bination with melatonin showed a marked loss of appetite
with a fall in food intake. Feed efficiency was reduced in
UChB EtOH rats and became even more pronounced when
melatonin was given. The group that received ethanol and
melatonin had the lowest amount of stored calories. half of
that found in UChB Co — M rats (Fig. 34). Glucose levels
were reduced after melatonin treatment. except in the animals
receiving ethanol, despite these animals already demonstrated
a considerable reduction in glucose levels (Fig. 38). There
was a negative correlation between ethanol intake and exoge-
nous melatonin administration throughout the 60 days of
treatment {+ = —0.7% p < 0.001), evidenced by a mild reduc-
tion in total ethanol consumption observed prior to starting
and during the experiment (Fig. 3C).

In melatonin-treated rats, energy and food intake declined
toward the end of treatment. As shown in Table 1, during
overall 60-day treatment, calories derived from ethanol and
food. in the presence of melatonin, were poorly taken by the
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Fig. 2. (A) Ethanol (EtOH) and melatonin (M) effects (100 1:g/100 g/d} on body weight gain in all experimental groups during 60 days of treatment.
**p < 0.01 versus UChB EtOH + M group at 5, 20, 45 to 60 days. At the end of treatment, UChB EtOH + M showed significant difference from UChB
Co + M group. (B) Influence of melatonin and ethanol administration on relative food intake over 80 days in rats receiving standard chow. **p < 0.01 versus
UChB EtOH + M group on cays 40 to 80. “p < 0.01 versus UChB Co + M group on days 35 to 55, *“Significant difference from UChB EtOH, UChB
Co + M and UChB EtOH + M groups, respectively. Values are expressed as mean + SEM (n = 10/group). Two-way ANOVA with Tukey's post hoc test.

Day 0: food consumption before beginning of the treatment.

UChB EtOH rats. Following the experiment, the interaction
between ethanol and melatonin contributed to the decrease in
food and total energy intake, but not the energy provided by
ethanol itself. In ethanol-preferring rats, the relative daily
waler intake was significantly decreased over the experiment,
regardless of melatonin. It was also proved that after melato-
nin administration, total ethanol intake was reduced by
14.4% whereas untreated animals increased their consump-
tion by about 11.3% (Table 1).

During second half of daily melatonin treatment, from the
4th until the 8th week of intervention, the vaginal smears
revealed estrous cycle irregularities, namely, more extensive
cycles in UChB EtOH + M rats than in other groups, with
an elevated frequency of prolonged diestrous phase when

compared with those receiving only ethanol. After 4 weeks of

cytological examination, the increase in metaestrous stage
was even more evident in UChB Co — M group (Table 2).
Despite these irregularities, there were no anovulatory cycles.

The relative and total ovarian weights were significantly
reduced in animals receiving the ethanol plus melatonin in rela-
tion to those receiving either ethanol or melatonin (Table 3).
Also, the combination of ethanol and melatonin negatively
affected the uterine horns weights. On the other hand, melato-
nin had no significant effect on oviduct weight (Table 3).

With respect to ovarian tissues, total protein concentration
was high in the UChB EtOH and UChB Co — M groups.
The interaction between ethanol and melatonin showed a sig-
nificant decrease in TAS concentrations when compared with
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*p < 0.01. Values are expressed as mean + SEM (1 = 10/group). Two-way ANOVA complemented by Tukey's test. (C) Scattergram showing the
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Table 1. Status of Food Consumption (g/d), Total Energy Intake (kcal/d), Relative Water/Ethanol Intakes (ml/100 g/d), and Ethanol-Derived Calories
(kcal/d) in Rats Receiving Only Vehicle and/or Melatonin.

Vehicle Melatonin

Parameters UChB Co UChB EtOH UchB Co UChB EtOH
Food consumption 16.32 £ 0.40 15.80 + 0.38 17.03 = 0.51 14.49 + 0.57°
Energy intake (food + ethanol) 47.83 =+ 1.17 4959 +1.26 49.80 = 1.50 46.36 + 1.90°°
Relative water intake 13.47 +0.15 9.89 + 0.30° 12.58 + 0.44 7.48 + 0.587
Ethanol intake (PT) 0.00 4.86 + 0.67 0.00 6.58 + 0.62
Ethanol intake (AT) 0.00 548 + 0.57 0.00 563 + 0.57¢
Ethanol calories 0.00 299 +0.14 0.00 3.41 + 021

Values are expressed as mean + SEM. N = 10/group.

Means followed by lowercase letters indicate statistical differences among the groups (p < 0.05). Two-way ANOVA with post hoc Tukey's test.

PT prior treatment; AT, after treatment; EtOH, ethanol.

2Pp < 0.05 versus UChB EtOH and UGhB Co + M groups, respectively.

°p < 0.01 versus UChB Co group.
“p < 0.05 versus UChB EtOH + M (PT).

animals receiving only melatonin (Table 4). The LHP/TAS
ratio was enhanced after ethanol intake, because LHP levels
increase with chronic alcoholism; however, no changes were
found after melatonin treatment (Table 4 and Fig. 4).

LHP levels were significantly reduced after melatonin
treatment. In UChB EtOH group, the levels of LHP were

higher than those found in control group in which the
ethanol-treated rats evidenced the highest levels of LHP
formation (note that melatonin improved LHP levels at
18.5% in UChB EtOH group) (Fig. 4). SOD and GSH-Px
activities were increased with the interaction of ethanol on
melatonin, compared with both groups receiving either
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Table 2. Effects of Ethanol and Melatonin on Estrous Cydlicity (Days) and Frequency (%) of Lengthiness in Each Phase Among the Experimental Groups
(N = 10/Group).

Groups Cycle duration (days) Estrus persistent/cycle (%) Metaestrus persistent/cycle (%) Diestrus persistent/cycle (%)
UChB Co 7.45 + 0.50 6.67 (0; 26.67) 13.33 (0; 40.00)* 6.66 (0; 10.00)

UChB Co + M 6.55 + 0.34 13.33 (0; 30.00) 18.33 {6.67; 40.00) 15.00 (6.67; 26.67)
UChB EtOH 6.45 + 0.44 16.67 (0; 26.67) 16.67 (0; 43.33) 10.00 (3.33; 23.33)
UChB EIOH + M 10.35 + 1.10* 6.87 (0; 30.00) 16.66 (0; 36.67) 21.66 (3.33; 46.67)°

Values are expressed as mean + SEM and median (minimum-—maximum).

EtOH, ethanol.
Zp < 0.05 versus UChB Co + M group.

P < 0.05 versus UChB EtOH group. Kruskal-Wallis test complemented by Dunn.
**p < 0.01 versus UChB Co + M and UChB EtOH groups, respectively. Two-way ANOVA with post hoc Tukey's test.

Table 3. Data of Total {(grams) and Relative {g/100 g Body Weight) Reproductive Organs Weights in Female Rats Receiving Vehicle or Melatonin at the

End of the Treatment.
Vehicle Melatonin

Parameters UChB Co UChB EtOH UChB Co UChB EtOH
Ovary weight 0.098 + 0.01 0.098 + 0.01 0.098 + 0.02 0.069 + 0.027°
Qvary relative weight 0.037 + 0.00 0.037 + 0.00 0.038 + 0.01 0.028 + 0.013°
Oviduct weight 0.034 + 0.01 0.034 + 0.00 0.033 + 0.01 0.030 + 0.01
Oviduct relative weight 0013+ 0.01 0.013 £ 0.00 0.013 + 0.00 0.013 = 0.01
Uterine horn weight 0.52+0.13 0.51 + 0.13 0.50 + 0.06 0.40 +0.11°
Uterine horn relative weight 019 £ 0.04 0.19 + 0.06 0.20 = 0.02 017 £ 0.04

Values are expressed as mean + SEM. N = 10/group.
Two-way ANOVA complemented by the Tukey’s test.
EtOH, ethanol.

*p < 0.01 versus UChB EtOH group.

®p < 0.001 versus UChB Co + M group.

Table 4. Determinations of Total Protein (%) mg Protein/mg Tissue, Total Antioxidant Substances (% TAS) and Lipid Hydroperoxide (LHP)/TAS Ratio
{g/Tissue) in Ovarian Tissue of 10% (v/v) Ethanol {EtOH}-Preferring Rats Receiving Melatonin at Doses of 100 ug/100 g BW/d for 60 Days.

Vehicle Melatonin
Parameters UChB Co UGChB EtOH UChB Co UChB EtOH
Protein 38.80 & 3.33%P 50.10 + 6.26 48.60 + 4.66 42.89 + 5.53
TAS 64.84 £ 167 83.22+ 225 87.02 + 1.49 61.70 = 1.08°
LHP/TAS 9.54 + 0.277 1322+ 023 9.84 + 0.15 11.69 + 0.32

Values are expressed as mean + SEM. N = 7 animals/group.

Letters indicate statistical differences among the groups {p < 0.05). Two-way ANOVA complemented by Tukey's test.

°p < 0.001 versus UChB EtOH.
p < 0.05 versus UChB Co + M.

ethanol or melatonin (Fig. 54 and 5B). Catalase activity did
not differ between ethanol-treated rats, and conversely, when
melatonin alone was given. the catalase activity was com-
pletely restored (Fig. 5C). All melatonin-treated animals
showed an increase in GSH-Rd activity compared with rats
that received or not ethanol (Fig. 5D).

DISCUSSION

Appetite regulation and energy intake are fundamental for
the maintenance of caloric balance and BW. Ethanol and
melatonin are thought to interact directly on the maintenance
of BW, mainly during the second half of treatment. Previous
studies involving several doses and routes of melatonin

administration in rats found an associated BW reduction in
those that had been castrated (Puchalski et al., 2003), in adult
rats (Bojkova et al., 2008; Rasmussen et al., 2001) and in
those consuming a high fat diet (Prunet-Marcassus et al..
2003). On the other hand. when melatonin is used in noctur-
nal progressive doses ranging from 3,000 to 15,000 pg/ml, it
promotes food intake and BW gain in both male and female
rats (Angers et al., 2003). Ethanol per se produces weak
satiating signals and in humans, depending on metabolism
and nutritional status, appears to increase food consumption
and appetite (Yeomans, 2004; Yeomans et al., 1999). These
differences may rely on factors such as age, gender. or body
composition of the experimental animals. Taken together,
melatonin seems to be related with the periodicity of food
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Fig. 4. Lipid hydroperoxide concentration (nmol/g tissue) in ovarian tis-
sue of control and ethanol {EtOH}-treated rats, receiving or not melatonin
(M) (100 ug-100 g/d) after 60 days of treatment. ®p < 0.05 versus UGhB
Co group; °p < 0.001 versus UChB EtOH group. Values are means + SEM
(= 10/group). Two-way ANOVA complemented by Tukey's test.

intake by influencing the gastrointestinal tract (Bubenik,
2002). Taking into account that NADH, produced by
ethanol-acetaldehyde conversion, plays key roles in cellular
bioenergetics and can modulate fatty acid synthesis as well as
suppress fi-oxidation (Lieber. 2004), these mechanisms could
explain, in part, the differences in BW associated with food
consumption by the animals receiving either ethanol or mela-
tonin and both ethanol and melatonin. In addition, the calo-
ric value of ethanol (empty calories) did not contribute to BW
gain, and furthermore. lipid synthesis is blocked by the inhibi-
tion of glucose-6-phosphate dehydrogenase (Ayene et al.,
2002), which is a key enzyme in the pentose shunt for generat-
ing NADPH and essential for lipogenesis. Similar approaches
have been obtained with rats submitted to various diet regi-
mens and exposed to chronic ethanol intake for 20 wecks
(Smith et al., 2008) and 8 consecutive weeks (Monteiro et al.,
2009).

Scalera and colleagues (2008) also reported reduction in
food consumption and increased leptin levels in melatonin-
treated rats. In rabbits, treatment with melatonin was fol-
lowed by 4 weeks of reduced food consumption, BW, and
glucose levels (Hussein et al., 2007). Also supporting our find-
ings. Strbak and colleagues (1998) demonstrated that when
ethanol consumption rises. food consumption is often
reduced, depending on age and particular lineage. In female
rats, ethanol preference has also been linked to a reduction in
water consumption (Bell et al., 2004). Considering our rat
model (UChB), the low water intake occurred because of
increased ethanol/ethanol + water ratio. As observed in
the UChB Co — M group. ethanol deprivation may lead to
withdrawal-induced food intake increases (Kampov-Polevoy
et al.,, 2004; Krahn et al.. 2006). In this condition, the
melatonin would interact synergistically.

CHUFFA ET AL.

Feed efficiency was reduced concurrently with ethanol
consumption and became more pronounced when combined
with melatonin, resulting in a low calorie-derived BW gain.
This association suggests changes in energetic metabolism
and 1n the ability to store energy as fat mass. Additionally,
glucose blood levels were lower in the presence of ethanol
or melatonin. In fact, it is well documented that ethanol
inhibits gluconeogenesis and melatonin plays a role in car-
bohydrate metabolism related to insulin sensitivity (Muh-
Ibauer et al.. 2009:; She et al.. 2009). As expected, the effects
of ethanol in combination with melatonin promoted a
greater reduction in glucose levels. Similar studies have
demonstrated that both melatonin (Prunet-Marcassus et al..
2003) and chronic ethanol consumption (Choi et al., 2006)
induced low feed efficiency in rats beyond the effects that
ethanol alone has on malnutrition (DiCecco and Francisco-
Ziller, 2006).

Ethanol consumption decreased after the beginning of mel-
atonin treatment. Accordingly, the ethanol intake dropped
when melatonin (25 pg/animal/d) was administered over
11 weeks (Rudden and Symmes. 1981). Noticeably, it has
been reported the prominent actions of melatonin on the
opioidergic system, producing the analgesic effect in a dose-
dependent manner that is similar to naloxone (opioid receptor
antagonist) (Yu et al., 2000). Furthermore, whether melato-
nin is able to stabilize the reward system (Tahsili-Fahadan
et al., 2005), it could be avoiding the ethanol reinforcement.
Nevertheless, the effects of melatonin on ethanol dependence
syndrome remain to be investigated (Arnedt et al., 2007;
Fonzi et al.. 1994).

Following chronic ethanol consumption, the main time-
dependent effects over 60-day treatment have already been
confirmed by our previous study in which ovarian tissue was
structurally compromised (Chuffa et al., 2009). The ethanol-
induced alterations include higher incidence of degenerating
granulosa cells and follicular atresia, fluctuations in follicular
fluid composition, ultrastructural changes such as autophagy.
excessive lipid droplets formation. as well as disruption of
follicular basement membrane. In this context. melatonin
administration may act as a protective factor by preventing
ethanol-induced ovarian failures.

In this study, rats receiving only ethanol or melatonin pre-
sented persistent estrus, while the positive interaction between
ethanol and melatonin promoted the longest estrous cycles,
which featured an extended diestrous phase. It is known that
melatonin dissolved in drinking water can increase the frequen-
cies of diestrous or estrous phases in rodents (Kachi et al..
2006) by modulation of GnRH hormones. Furthermore, rats
receiving melatonin (200 pg/100 ¢ BW/d) showed longer
estrous periods. reduction in polyeystic ovary syndrome, and
ovary weight (Prata Lima et al., 2004). As seen before, there
may also be a positive interaction between ethanol and melato-
nin for decreasing ovarian weights. because they act on repro-
duction-linked hormones. It was clearly demonstrated that
high melatonin levels is directly related to functional hypogo-
nadotropic hypogonadism (Bergiannaki et al.. 1995; de Roux
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Fig. 5. Antioxidant activity (nmal/mg protein) in ovarian tissue of UChB rats receiving or not melatonin (M) (100 xg/100 g/d) after 60 days of treatment.
(A) Activity of superoxide dismutase. (B) Activity of glutathione peroxidase (GSH-Px). (C) Activity of catalase. (D) Activity of glutathione reductase (GSH-
Rd). *“Significant differences from UChB Co, UChB EtOH, UChB Co + M groups, respectively; *p < 0.05. Values are expressed as means + SEM
(n = 10/group). Two-way ANOVA complemented by Tukey's test. EtOH, ethanol.

et al., 2003). Moreover, administration of exogenous melato-
nin induces a decrease in luteinizing hormone (LH) secretion,
which in turn blocks the ovulation, leading to an extensive
luteal phase (Voordouw et al., 1992), thus providing endocrine
disruption and gonadal atrophy as it was also noted. Consis-
tently. our previous study has found a reduction in relative
ovary weight and an extensive estrous phase in UChB strain
and it was associated with fall in LH levels (Chuffa et al.,
2009). In this context. the addition of melatonin may suppress
further release of GnRH, resulting in prolonged diestrous. On
the other hand, Dardes and colleagues (2000) pointed out that
low serum levels of melatonin tend to increase the duration of
estrus, while treatment with melatonin was effective in regulat-
ing the estrous cycle.

The total protein concentration in ovaries of UChB EtOH
and UChB Co + M rats was enhanced, suggesting increased
enzymatic activity because of cellular metabolism. Particu-
larly, in UChB EtOH rats, melatonin did not influence TAS
concentration. However, the LHP/TAS ratio was increased
when only ethanol was given. Indeed, to validate these find-

ings. it is necessary to analyze the individual enzymatic and
nonenzymatic antoxidant status.

There seems to be a little doubt that ethanol-induced oxida-
tive stress is linked to the metabolism of ethanol. As a result
of ethanol and subsequent acetaldehyde oxidation, there is a
significant increase in the hepatic NADH/NAD ™ redox ratio
(Das et al., 2005). Under a variety of pathophysiological con-
ditions, including acute and chronic ethanol consumption, the
increased levels of NADPH-oxidase generates O, and H,0..
which in the presence of Fe' . produces powerful oxidants
such as the OH (Kessova and Cederbaum, 2003), enhancing
the lipid peroxidation (Le Lan et al., 2004). Ethanol is well
reported to deplete GSH levels via its own pro-oxidative char-
acter or by inhibiting the mitochondrial GSH transporter
(Kannan et al., 2004; Wheeler et al., 2003). Interestingly, the
LHP levels were higher in animals consuming ethanol, similar
to those described by other authors (Ashakumary and
Vijayammal., 1996), and underwent a remarkable reduction
after the administration of melatonin, confirming a positive
interaction.
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Undoubtedly, melatonin has an important role in attenuat-
ing ROS deleterious effects by promoting mRNA synthesis
for antioxidant enzymes (Rodriguez et al., 2004). Considering
these functions, the protective effect observed in the ovaries is
believed to be attributed to both properties of melatonin as
ROS scavenger and increasing the antioxidant status (Chuffa
et al., 2011). Similar results elucidating the protective effect of
melatonin and other antioxidants have been found in the tes-
ts of ethanol-treated rats (Oner-lyidogan et al.. 2001).
According to Amanvermez and colleagues (2005), the chronic
ethanol consumption leads to lipid and protein oxidation in
rat ovaries and also reduces the GSH content in testes.
Replacement therapy using melatonin and 17f-oestradiol in
ovariectomized rats caused reduction in lipid peroxidation
and increased GSH content and SOD activity (Feng and
Zhang, 2005).

As previously described, ROS such as OH, peroxyl radicals
(ROO"), and H,0; are known to be detrimental to the oocyte
(Tamura et al., 2008), and in this study, doses of melatonin
increased SOD and GSH-Px activities in ethanol-preferring
rats. Similar evidence has been documented after treatment
with vitamin E in adult rat ovaries (Rao et al.. 2009). More-
over, supporting these findings, daily injection of melatonin
(10 mg/kg) in rat tissues increased SOD activity after 7 days
(Ozturk-Urek et al., 2001), while Liu and Ng (2000) found
higher SOD activity after a single injection of melatonin
(5 mg/kg). In accordance with our results, Tomas-Zapico
and Coto-Montes (2005) and Rodriguez and colleagues
(2004) emphasized that administration of melatonin promotes
increased activity of SOD, GSH-Px, and GSH-Rd. Melatonin
did not affect catalase activity in the ovaries. It is likely that
this enzyme is being used for peroxisome metabolism during
chronic ethanol consumption.

In conclusion, we demonstrated that there are interactions
between melatonin and ethanol on feed efficiency. with mela-
tonin acting as a hormone regulating weight gain, stored
calories, and ethanol intake. Moreover, the administration of
melatonin, although has caused estrous cycle disruption, was
able to protect the ovaries of UChB rats against oxidative
stress, preventing attack by free radicals, and promoting anti-
oxidant defenses.
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Abstract

decapitation during the morning estrus at 4 am.

Background: Melatorin is associated with direct or indirect actions upen female reproductive furction. However,
its effects on sex hormones and steroid receptors during ovulatior are rot clearly defined. This study aimed to
verify whether exposure to long-term melatonin is able 1o cause reproductive hormonal disturbances as well as
their role or sex stercid receptors in the rat ovary, oviduct ard uterus during ovulation.

Methods: Twenty-four adult Wistar rats, 60 days old (+/- 250 g) were randomly divided irto two groups. Control
group (Co): received 0.9% NaCl 0.3 mL + 95% ethancl 004 mL as vehicle; Melatorir-treated group (MEL): received
vehicie + melatonin [100 ug/100 g BW/day] both intraperitoneally during 60 days. All animals were eutharized by

Results: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urirary 6-
sulfatoximelatonin (STM) was increased at the morring estrus. In addition, melatonin promoted differential
regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin
receptor (MTR) along the reproductive tissues. I ovary, melatonin induced a dowr-regulation of ER-alpha ard PRB
levels. Conversely, it was observed that PRA and MTIR were up-regulated. In oviduct, AR and ER-alpha levels were
down-regulated, in contrast to high expressior of both PRA and PRB. Finally, the ER-beta and PRB levels were
down-regulated ir uterus tissue and only MT1R was up-regulated.

Conclusions: We suggest that melatorir partially suppress the hypothalamus-pituitary-ovarian axis, ir addition, it
L induces differential regulation of sex steroid receptors ir the ovary, oviduct and uterus during ovulation.

Background

Melatonin (N-acetyl-5-methoxytryptamine) also known
as “chemical expression of darkness” is an indolamine
produced by pineal gland and secreted in a circadian
manner during the night [1]. It is indisputable that mel-
atonin has been potentially implicated as a therapeutic
agent in several conditions. In mammals, melatonin can
affect the reproductive function through activation of
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Full list of author information is available at the end of the articls

B 2011 AL

( BioMed Central

receptor sites within the hypothalamic-pituitary-gonadal
axis [2]. Previous evidence has suggested that changes
consistent with inhibition of GnRH release occur after
melatonin implants [3]. Melatonin is found inside ovar-
ian follicles [4], thus proving its direct action in ovarian
function. It has also been proposed that pre-ovulatory
follicles contain high amount of melatonin which were
indirectly linked to the 17 f-estradiol (E2) and proges-
terone (P4) synthesis [5]. In melatonin-deprived rats, an
increased estrous frequency was inversely related to the
luteinizing hormone (LH) and follicle-stimulating hor-
mone (ESH) levels [6]. According to Soares et al. [7],
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the low melatonin levels lead to a reduction of P4 and
its receptors while increasing E2 levels. Moreover, it was
reported that melatonin might decrease E2 levels during
the premenopausal period [8]. Most studies investigating
the mechanism(s) by which melatonin modulates the
reproduction have focused mainly in the pituitary and
hypothalamus or in evaluating the effects of pinealect-
omy, with little attention devoted to the relationship
between exogenous melatonin treatment and female
reproductive tissues during ovulation. Furthermore,
these reproductive actions promoted by long-term mela-
tonin administration in a non-seasonal breeder (e.g. rat)
are yet poorly understood.

More recently, it was noted that administration of
melatonin at night induces prolonged diestrous phase in
normal rats [9,10]. There seem to be little doubt that
exogenous melatonin restores the basal gonadotropin
concentrations (FSH and LH) in aged rats as similar to
young rats [11], also having a stimulatory effect on E2
levels and pituitary responsiveness to LHRH [12].
Nevertheless, the effects of melatonin on reproductively
active rats, at the timing of ovulation, remain a matter
of debate.

In reproductive system, melatonin may interact with
sex steroids [13-15]. It is well-known that sex steroid
receptors might regulate a variety of physiological
responses in the ovary, oviduct and uterus tissue when
they are activated [13,16,17]. Estrogen receptor (ER), a
member of the nuclear receptor superfamily, has two
functional isoforms designated as ER-« and ER-P [18].
In ovaries, the granulosa cells express higher levels of
ER-B than ER-a, while ER-B is reportedly expressed at
lower levels in uterus [19]. Importantly, a repetitive loss
of ER-B expression or a decrease in ER-B/ER-a ratio is
linked to ovarian epithelial tumorigenesis [20]. Other
study showed a decreased number of uterine estrogen
receptor with concomitant increase of PR after 15-day
melatonin treatment [13]. However, none have evaluated
the role of melatonin considering different steroid
receptors isoforms. Despite of considerable effort, the
effects of long-term melatonin focused on reproductive
hormones and its specific receptors involving the ovar-
ies, oviducts and uterus are not well discussed.

Progesterone receptors {(PRs), one of the well-charac-
terized estrogen-regulated genes, are expressed as PR-A
and PR-B isoforms [21]. PRA has a transactivation role
in some cells whereas it functions as a repressor of PRB
(heterodimer form) and androgen receptor [16].
Although it has long been emphasized that E2 up-regu-
lates PR, little is known as to whether PRA and B
expression is modulated by either E2 or melatonin.
Furthermore, E2 seems to alter expression from PRB to
PRA dominancy in oviduct and uterus [22,23]. Not sur-
prisingly, PRA, but not PRB expression, is necessary and
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sufficient for ovulation process [17]. More recently, mel-
atonin significantly increased P4 as well as the number
of total PR in ovarian tissue at proestrus [15]. Other-
wise, Soares Jr. et al. [7] found a diminution of 6-sulfa-
toximelatonin (STM) metabolite and PR levels after
pinealectomy surgery. To date, the melatonin effects on
selective PRA and PRB have not been demonstrated.

Melatonin signals through at least two G protein-
coupled receptors, the MTRI1 and MTR2 membrane
receptors, or via putative cytoplasmatic/nuclear sites
mediating the physiclogical responses [24,25]. Among
other actions, MTR1-binding melatonin is thought to
cause down-regulation of both ER-a protein and ER-a
mRNA [26] and, alternatively, it may inhibit the ligation
of E2-ER complex to the estrogen response elements
(ERE) on DNA [14,26], thus dampening the E2-
mediated effects. Since melatonin is a potential agent
controlling the reproduction, its long-term effects
related to reproductive tissues, at estrous phase, have
never been identified through MTIR receptors,

Therefore, the present study was undertaken to verify
whether exposure to long-term melatonin is able to
cause reproductive hormonal disturbances as well as
their role upon sex steroid receptors in the rat ovary,
oviduct and uterus during ovulation process.

Methods

Animals and experimental design

Twenty-four adult female rats (Rattus norvegicus albi-
nus), 60 days old (+ 250 g) were obtained from the
Department of Anatomy, Bioscience Institute, UNESP -
Univ Estadual Paulista, Campus of Botucatu. All animals
were housed in polypropylene cages (43 em x 30 cm x
15 cm) with laboratory-grade pine shavings as bedding
and also maintained under controlled room temperature
(23 £ 1°C) and lighting conditions (12 L, 12 D photoper-
iod, lights switched on at 6 a.m). Initially, the animals
were randomly divided into two experimental groups (n
= 12/group). Control group: rats fed standard chow and
tap water ad [ibitum and receiving 95% ethanol 0.04 mL
+ 0.9% NaCl 0.3 mL (1:7 v/v) as vehicle; Melatonin-trea-
ted group: rats fed standard chow and tap water ad libi-
tum receiving vehicle + melatonin. At 90 days old,
females started to receive successive doses of melatonin
over 60 consecutive days. After melatonin treatment
period, all rats were monitored by vaginal swabs in a
dark room using a red dim illumination, and during the
early morning of estrus (timing of ovulation) at 4 a.m
(or Zeitgeber Time, (ZT) 22, corresponding to the envir-
onmental circadian time) they were anesthetized and
euthanized by decapitation for further analysis. Experi-
mental protocols were previously accepted by Ethical
Committee of the Institute of Bioscience/UNESP, Cam-
pus of Botucatu, SP, Brazil (Protocol n° 85/07).
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Procedures of melatonin administration

Successive doses of melatonin [100 pg/100 g BW] (M-
5250, purchased from Sigma Chemical, St Louis, MQ)
were dissolved in 95% ethanol 0.04 mL, using 0.9%
NaCl solution as a vehicle [9]. The intraperitoneal infu-
sions (only vehicle or vehicle + melatonin) were daily
administered between 18:30 - 19:00 p.m (ZT 13).

Urine and reproductive organs collection

In the evening before they were killed, all animals
received the last injection of melatonin and they were
kept inside metabolic cages (Techniplast, Exton, PA,
USA) by 10 h in order to collect individual urine sam-
ples. Thereafter, all samples were centrifuged at 10,000
x g for 20 min at 4°C and stored at - 20°C. On the next
day and after sacrifice, all reproductive organs (ovaries,
oviducts and uterine horns) were entirely dissected and
weighed for further assays.

Sex hormones assay

Blood samples were collected from the trunk of decapi-
tated rats into heparinized tubes. Afterwards, plasma
was obtained by centrifugation at 1,200 x g for 15 min
at 4°C and stored at - 20°C until assayed by radioimmu-
noassay (RIA). Plasma samples were assayed for FSH
and LH by double-antibody RIA with specific kits pro-
vided by the “National Institute of Arthritis, Diabetes,
Digestive and Kidney Diseases” (NIADDK, Baltimore,
MD, USA). The FSH primary antibody was anti-rat
ESH-S11, and the standard FSH-RP2. The antiserum for
LH was LH-S10 using RP3 as reference. The lower limit
of detection for FSH and LH was 0.2 ng/mL and the
intra-assay coefficient of variation was 3% and 4%,
respectively. Plasma concentrations of E2 and P4 were
determined using Estradiol and Progesterone Maia kits
(Biochem Immunosystems, Serotec, Italy). The lower
detection limit and the intra-assay coefficient of varia-
tion were respectively 7.5 pg/ml and 2.5% for E2 and 4.1
ng/ml and 3.7% for P4. All samples were measured in
duplicate and at different dilutions, if necessary. In
order to prevent interassay variation, all samples were
assayed in the same RIA.

Determination of plasma melatonin and urinary 6-
sulfatoximelatonin {STM)

Melatonin was initially extracted from plasma (n = 12
samples/group) using methanol HPLC grade followed by
separation into columns Sep-Pak Vac C-18, reverse
phase, 12.5 nm (Water Corporation, Milford, Massachu-
setts, USA). Thereafter, 50 yL of reconstituted samples
were assayed with coat-a-count melatonin ELISA kits
and measured photometrically at a wavelength of 405
nm. The intra-assay coefficient of variation was 3%.
Urinary 6-STM (a metabolite of melatonin} was assayed
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with solid-phase melatonin sulfate ELISA kits and,
finally, read at 450 nm. The intra-assay coefficient of
variation was 5.2%. Samples were double assayed at the
time to avoid interassay variations. All reagents and
microtiter plate were provided by IBL (IBL International,
Hamburg, Germany).

Western blotting analysis and protein quantification

After 60 days of melatonin treatment (100 pg/100 g
BW/day), the ovaries, oviducts and uterine horns were
rapidly removed and tissue samples of 50 mg were
immediately frozen in liquid nitrogen and stored at -80°
C. All tissues were homogenized with RIPA lysis buffer
(Pierce Biotechnology, Rockford, IL, USA), 10X (0.5 M
Tris-HCI, 1.5 M NaCl, 2.5% deoxycholic acid, 10% NP-
40, 10 mM EDTA, pH 7.4) and protease inhibitor cock-
tail (Sigma Chemical Co.) using a homogenizer (IKA®
T10 basic Ultra, Staufen, Germany). Aliquots containing
1:10 (v/v) of Triton X-100 were added to homogenates
and samples were placed on dry ice under agitation by 2
h in order to improving extraction. These suspensions
were centrifuged at 21,912 x g for 20 min at 4°C and
the pellet discarded. The protein concentrations were
measured by the Bradford micro-method for colori-
metric determination. Total proteins were dissolved in
1.5 x sample buffer previously described by Laemmli
and used for SDS-PAGE (Bio-Rad Laboratories, Her-
cules, CA, USA). Equal amounts of protein (70 pg) of
each sample were loaded per well onto preformed gradi-
ent gels, 4-12% acrylamide (Amersham Biosciences,
Uppsala, Sweden) with a Tris-glycine running buffer sys-
tem for electrophoresis (60 mA fixed during 2 h). After
electrophoresis, total proteins were electro-transferred
(200 mA fixed by 1 h 30 min) onto 0.2 um nitrocellu-
lose membranes in a Tris-glycine-methanol buffer.
Kaleidoscope Prestained Standards (Bio-Rad) were used
as molecular weight markers. Thereafter, the mem-
branes were blocked with TBS-T solution containing 3%
BSA at room temperature (RT) for 60 min and then
incubated at 4°C overnight with rabbit primary antibody
AR-N20 anti-androgen receptor (AR); rabbit clone E115
anti-ER; rabbit clone 68-4 anti-ERf; mouse monoclo-
nal [C262] anti-PRA and PRB and rabbit polyclonal
anti-MTI1R (dilutions of 1:1000; 1:250; 1:500:; 1:350;
1:500; 1:500 were carried out at 1% BSA, respectively).
This was followed by washing 3 x 5 min in TBS-T solu-
tion and then incubated for 2 h at RT with rabbit or
mouse HRP-conjugated secondary antibodies (diluted
1:1000 in 1% BSA; Sigma, St. Louis, MO, USA). After
sequential washing with TBS-T, signals were enhanced
and peroxidase activity was finally detected by mixing
10 mL PBS, 8 ul H,0, and 0.02 g diaminobenzidine
(DAB) chromogen (Sigma Chemical Co.). Immunoreac-
tive bands of each protein (arbitrary units) were
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obtained from separate blots of six rats/group using
image analysis software (NIS-Elements, Advanced
Research, Nikon). B-actin was used as an endogenous
control and all results were expressed as mean + SEM.
Immunoblotting concentrations (%) were represented as
optical densitometry values (band intensity/B-actin
ratio).

Statistical analysis

Data of plasma FSH, LH, E2, P4, melatonin, urinary 6-
SMT and western blotting analysis were performed by
Student’s t test with independent samples. Statistical sig-
nificance was set at P < 0.05 and significant results are
expressed as mean + SEM. The statistical software used
was GraphPad Instat version 4 and Sigma Plot version
11.0 for graphic design.

Results

Plasma sex hormones, melatonin and urinary 6-STM
levels

After eight weeks of treatment, total LH and E2 levels
were reduced in melatonin-treated rats (p < 0.05). Con-
versely, FSH and P4 levels had not been influenced by
melatonin at the estrus phase (p > 0.05). These data
confirmed our previous reports in which long-term mel-
atonin administration leads to a reduced ovarian mass
and prolonged metaestrus and diestrus duration, with-
out blocking ovulation (recently published data). Addi-
tionally, there was no evidence for increased plasma
melatonin levels in animals receiving the treatment, but
the urinary 6-STM levels were significantly higher at the
morning of estrus (p < 0.01; Figure 1A-F).

Analysis of ovarian AR, ER-o, ER-B, PRA, PRB and MT1R
levels after treatment

Sex steroid receptors in reproductive female tract were
differentially expressed at the end of melatonin treat-
ment. In the ovarian tissue, despite of AR and ER-§
levels were not affected along the treatment, melatonin
significantly reduced ER-a and PRB levels (p < 0.05;
Figure 2A, B), beyond the ER-a/ER-B ratio (melatonin
1.17 £ 0.2 vs control 1.27 = 0.3). Moreover, it was
observed that melatonin induced significant overexpres-
sion of PRA subunit and of its own receptor MT1R (p <
0.01; Figure 2A, B). There was also an increase of the
PRA/PRB ratio after melatonin treatment (melatonin
1.34 + 0.6 vs control 0.73 + 0.5).

Analysis of oviduct AR, ER-o, ER-B, PRA, PRB and MT1R
levels after treatment

Regarding to the oviduct tissue, expressions of AR and
ER-a, in addition to ER-o/ER-B ratio (melatonin 1.45 +
0.8 vs control 1.73 % 0.6) were significantly lower in
melatonin-treated group (p < 0.05), while both PRA and
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PRB subunits had a remarkable increase after melatonin
treatment (p < 0.01; Figure 3A, B). No significant PRA/
PRB ratio was seen between the groups (melatonin 0.87
+ 0.2 vs control 0.85 + 0.4). Furthermore, the oviduct
ER-B and MTIR levels kept unchanged in the presence
of melatonin (Figure 3A, B).

Analysis of uterine AR, ER-o, ER-f}, PRA, PRB and MT1R
levels after treatment

Following to uterus tissue, there were no differences for
AR, ER-a and PRA levels (p > 0.05; Figure 4A, B).
Although melatonin had significantly reduced the ER-§
and PRB subunits in the uterine tissues, its selective
receptor MTIR was clearly overexpressed (p < 0.05; Fig-
ure 4A, B). Moreover, in contrast to ovary and oviduct
tissue, melatonin significantly increased the uterine ER-
a/ER-B ratio (melatonin 0.90 + 0.2 vs control 0.34 +
0.4) but not the PRA/PRB ratio (melatonin 0.63 + 0.6 vs
control 0.59 + 0.5).

Discussion

The present study found that melatonin is able to reduce
LH and E2, but not FSH and P4 levels at estrous.
Although melatonin may act as a synchronizer of the
reproductive function, the cellular and molecular charac-
teristics of melatonin binding sites are so far unknown. It
seems obvious that melatonin does not act directly on
GnRH neurons [27,28] but, instead, exert indirect actions
on Kiss 1/GPR54 system responsible for controlling
reproduction via neural-axis by inducing low circulating
gonadotropins and sex steroids levels [27,29]. In this con-
text, the long-term melatonin treatment may be linked to
the phenotype of hypogonadotropic hypogonadism, evi-
denced by loss of ovarian mass, as previously demon-
strated by our group [9]. It has been propased that
preovulatory LH surge, until the onset of estrus, depends
on the lowest melatonin levels [30,31] where increased
E2 could suppress its production. It is also known that
human preovulatory follicles contain amounts of melato-
nin in a concentration higher than those in the circulat-
ing serum, where it strongly regulates the steroid
synthesis by the gonads [32]. Ultimately, melatonin may
drastically influence the success of ovulation.

Indeed, exogenous melatonin induces a decrease in
LH surge, blocking ovulation and luteal phase with
increase in P4 levels, without affecting FSH or E2 levels
[33]. Melatonin was also seen to inhibit steroidogenesis
by altering cAMP levels through a direct action on
theca or granulosa cells of the follicles [32,34]. This dual
effect of melatonin allowed us to believe that low E2
levels can be associated with direct inhibition of path-
way for E2 biosynthesis since FSH levels was unchanged.
Furthermore, a positive feedback on LH secretion does
not occur when E2 levels-are low, thus explaining, in
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part, the hormonal disturbances in female reproduction
caused by melatonin. Melatonin also regulates the
expression and activity of aromatase [35], acting as a
selective estrogen enzyme modulator, and further con-
tributing to a decrease in E2 levels. Following the treat-
ment, although the urinary 6-STM levels were raised at
morning estrus, plasma melatonin levels were
unchanged. This is due to the short hali-life of melato-
nin, where it is rapidly converted into 6-STM prior to
elimination. In accordance to Graham et al. [36], the
increased 6-STM level is a good biomarker to predict
the effectiveness of treatment.

The activity of melatonin directly influencing the
ovary function and estrous cycle was first described by
Wurtman et al. [37] and as expected, similar findings
were previously confirmed by our group [9,38]. Recently,
Adriaens et al. [39] demonstrated that melatonin
increased P4 and androgen production in mouse prean-
tral follicles. These contradictory results are partially
due to different melatonin concentration, time and
route of administration and period of estrus stage eva-
luation. Brzezinski et al. [40] reported that melatonin
itself has no effect on basal P4 productions, but when
combined with LH analogues, melatonin potentiated the
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Figure 2 Analysis of ovarian receptors. (A) Recresentative
Western blotting anaiys's of androgen receptor (AR), estrogen
receptor (ER-a and ERf), progesterone receptor {PRA end PRB) and
melatonin receptor (MTTR] in ovarian tissue of rats receiving
melatonin 100 ug/100 g BW]. Indicated concentrations of each
tota! protein {70 g extracted from a pool of & organs/groun) were
used to detect specific protein expression leve's in the bots (upper
panel). (B) Densitometry values for AR, ER-a, ERB, PRA, PRB and
MTIR levels were studied following normalization to the nouse
keeping gene B-acting. All results are expressed as mean = SEM {(N=
6 animals/group). * £ < C05 vs control groug

stimulatory effect on intraovarian P4 production. Our
data corroborate those findings, in which P4 was unal-
tered by melatonin treatment and even LH levels were
insufficient to produce activity on P4 secretion. The pre-
sent study showed that long-term melatonin is able to
reduce the ER-a and PRB ovarian levels while increasing
PRA and its receptor MT1R at morning estrus. Indeed,
ER-o seems to be activated when intracellular cAMP is
elevated after non-transcriptional mechanisms mediated
by estrogens [41]. Alternatively, melatonin acting
through membrane-bound G protein-coupled MT1
receptor can inhibits adenylate cyclase activity, thus
decreasing cAMP levels [42]. This reduction may be a
direct effect by which melatonin decreases E2-induced
ER-uo transcriptional activity. As a favorable condition,
the reduction in ER-a/ER-B ratio represents a protective
action of melatonin against estrogen-dependent tumor.
Both PRA and PRB have been shown to function as
ligand-dependent repressors of ER-mediated transcrip-
tional activity [43]. Furthermore, PRA may act as a

Figure 3 Analysis of oviduct receptors. (A) Representative
Western blotting analys's of androgen receptor (AR), estrogen
receptor {ER- and ERP), progesterone receptor (PRA and PRB) and
melatonin recegtor (MTIR) In oviduct tissue of rats receiving
maiatonin [100 ug/10C g BW]. Indiceted concentrations of eacn
total protein (70 ug extracted from 2 pool of & argans/grous)
used to detect specific protein expression levels in the blots (L
panel). (B) Censitometry values for AR, ER-a, ER, PRA, PRB and
MT1R leveis were studied following normalization to the house-

keeping gene P-acting, All results are expressed as mean = SEM (N-

6 animas/group). ® p < C.05 vs control group.

transdominant inhibitor of PRB and AR gene expression
[44]. In this context, melatonin treatment might be
accentuating PRA activity, thereby providing a negative
regulation of ER-a and PRB expression. Since PRA iso-
form is essential for ovulation to occur [17], the long-
term melatonin treatment could delay but not abolish
the ovulation, as we had already been noted. Curiously,
melatonin-deprived rats had lower expression of P4 and
PR than controls [7,15], thus proving that melatonin is a
key factor in PR regulation. Previous study has indicated
that melatonin binding receptor is high during estrus,
proestrus and diestrus, in contrast to low levels in
metaestrus when E2 and P4 are reduced [45,46]. Thus,
it allows us to conclude that both E2 and P4 regulate
MTT1 receptor binding activity.

We demonstrated for the first time that total expres-
sion of oviduct PRA and PRB was enhanced while AR
and ER-o decreased after melatonin treatment. Gener-
ally, PRB is transcriptionally more active than PRA
[47], and it is well documented that PRA acts as a
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Western biotting analys's of androgen receptor (AR), estrogen
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melatonin receptor (MTIR) n uterus tissue of rats receiving
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repressor of PRB-dependent activation genes and, like-
wise, it inhibits the transactivation of AR [16]. Surpris-
ingly, oviduct PRB has been up-regulated after
melatonin exposure. It is likely that melatonin pro-
moted a differential effect upon its regnlatory mechan-
ism(s) independently of either P4 or PRA functions.
Moreover, the distinct transactivation properties,
including presence or absence of the PRB-specific AF-
3 domain, are probably due to the broad repertoire of
physiological responses to P4 [48]. Nevertheless, the
regulation of sex steroid receptors in oviduct is not yet
fully clarified. Similarly to the ovary, melatonin led to
a downregulation of oviduct ER-a through its direct
effect or indirectly by the fall in E2 levels. Hence, an
inverse ER-a/ER-B ratio also brings up a positive
action of melatonin to the oviduct. The oviduct MT1R
was not affected over the treatment, showing that, in
fact, the ovary and uterus are more responsive to the
effects of melatonin mediated by MT1R. Besides that,
it seems plausible that melatonin-induced changes
occur through different signaling pathway. It is well

Page 7 of 9

emphasized that melatonin may exert its physiological
function by binding to melatonin receptors or even
through nuclear signaling involving RZR/ROR recep-
tors [49]. However, additional studies are needed for a
better understanding of melatonin binding sites.

In this study, the uterine ER-B and PRB was down-
regulated whereas MT1R was up-regulated. It is estab-
lished that E2 and P4 acts on the uterus by an interde-
pendent regulation of ER and PR [50,51]. Noticeably, it
has been suggested that E2 decreases the expression of
uterine ER but not PR, while P4 reduces the levels of
both receptors [52]. Taking into account that E2 levels,
which are responsible for increasing PR levels, were sup-
pressed by the treatment, our results could be explained,
in part, by the down-regulation of uterine PRB expres-
sion. In this context, the regulation of PRB appears to
be more sensitive than PRA, considering the fall in E2.
It has already been proposed that uterine ER-f3, but not
ER-a, is detected under low amounts at the cellular
level [53]. On the other hand, our data pointed to an
increase in ER-a/ER-B ratio. These effects may be due
to differential ER expression associated with variations
into estrus period. Uterine MTIR was up-regulated after
melatonin treatment during ovulation, thereby support-
ing a direct regulation by melatonin itself. However, it
cannot be assumed that melatonin-bound uterine MT1R
is involved in down-regulation of ER-B. In contrast,
MTI1R was found to be depleted after E2 has raised
[54], thus demonstrating a negative correlation. Finally,
the uterine AR levels seem to be not affected by melato-
nin during ovulation.

Conclusions

In summary, we reported that long-term melatonin is
able to partially suppress the neuroendocrine reproduc-
tive axis during ovulation, indirectly causing distur-
bances to ovary, oviduct and uterus.

Moreaver, melatonin promoted differential regulation
of the sex steroid receptors on the reproductive tissues,
mostly acting “in situ” through its MTIR receptor (espe-
cially in ovarian and uterine tissue) or by altering the
dynamics and responsiveness of sex steroid receptor iso-
forms after binding to E2 or P4. These data represent
therefore an important benchmark for furthering the
understanding of melatonin-reproduction interface dur-
ing ovulation process.
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Abstract

Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The
present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and
if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old
(+ 250-260 g), were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95%
ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 pg-100 g body weight"-day-") both in-
traperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain
and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05). Also, a marked loss of appetite was
observed with a fall in food intake, energy intake (melatonin 51.41 + 1.28 vs control 57.35 + 1.34 kcal/day) and glucose levels
(melatonin 80.3 + 4.49 vs control 103.5 + 5.47 mg/dL) towards the end of treatment. Melatonin itself and changes in energy
balance promoted reductions in ovarian mass (20.2%) and estrous cycle remained extensive (26.7%), arresting at diestrus.
Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9%) and total antioxidant
substances were enhanced within the ovaries (23.9%). Additionally, melatonin increased superoxide dismutase (21.3%), cata-
lase (23.6%) and glutathione-reductase (14.8%) activities and the reducing power (10.2% GSH/GSSG ratio). We suggest that
melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and
glutathione-reductase activities.

Key words: Melatonin; Ovary mass; Lipid peroxidation; Antioxidant defenses; Superoxide dismutase

Introduction

The rhythm of melatonin (N-acetyl-5-methoxytryptam-
ine) secretion is important for the synchronization of the
reproductive response with appropriate environmental
conditions in photoperiodic animals (1). Melatoninis known
to modulate some physiological functions such as seasonal
reproduction, energy metabolism and thermoregulation
In mammals (2). Experimental studies have indicated the
action of melatonin in nutrition and feed efficiency affecting
body mass and adiposity index and both energy intake and
expenditure, with melatonin preferentially acting by reducing
fat deposits, thus preventing obesity (3,4). However, these
controversial effects are not yet fully understood.

It has been shown that melatonin plays key roles in re-
preductive function due 1o its stimulation of ovarian activity
and the promotion of estrous cyclicity and gonadal atrophy
depending on photoperiod length (5). Moreover, melatonin
also regulates folliculogenesis and ovulation (6) since acute
suppression of luteinizing hormone levels is notable after
melatonin treatment (7). Also, ithas been emphasized that
melatonin affects the axis by directly binding to granulosa
cells in the ovary (8).

During ovulation, the mechanisms causing follicular
rupture result in exposure of the ovarian surface to delete-
rious agents such as free radicals (9,10). Thus, repeated
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ovulation and its complex activities are linked to inflammation,
reactive oxygen species (ROS) formation, and special cytokine
expression, and may also be involved in the etiopathogenesis
of ovarian cancer (10,11). Some reports have described the
presence of ROS in the female reproductive tract, including
the ovaries (12). Under normal conditions, ROS appear to be
directly involved inthe reproductive physiological functions such
as steroidogenesis, oocyte development and fertility (12,13).
Interestingly, the major sources of ROS, including -OH, O2
and H>0,, are derived from macrophages and neutrophils,
as they are present in the ovaries during ovulation (14). The
precvulatory follicle hasa powerful antioxidant defense, which
is depleted by the intense peroxidation. As an example, the
activity of glutathione peroxidase (GSH-Px) may also maintain
low levels of hydroperoxides inside the ovarian follicles.

The use of melatonin has been investigated as a therapeu-
tic strategy to improve ococyte quality in patients failing to get
pregnantin earlierin vitro fertilization (15). In addition, melatonin
has animportantrole as a ROS scavenger, acting directly and/
or indirectly as a hormone preventing attack by free radicals
(16). A previous study showed that elevated melatonin levels
in preovulatory follicles are able to protect granulosa cells and
the cocyte from the free radicals induced by owulation (17).
Melatonin also positively increases both antioxidant enzyme
activity and gene expression of superoxide dismutase (SOD),
catalase and GSH-Px, which are fundamental to detoxify most
of the ROS produced (18).

Although melatonin treatment has been widely used asan
effective and useful adjuvant for several therapies, including to
maintain oocyte quality (15), itsadverse ime-dependenteffects
are still obscure and require further study. The study of long-
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Figure 1. A, Protocol for melatonin treatment based on Zeitgeber
time (ZT) corresponding to the environmental circadian time. B,
Rats received 100 pg melatonin-100 g body weight?-day-, ip,
for 60 days.
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term exposure to melatonin may provide new insights into the
understanding of the physiological and cellular mechanisms
underlying metabolic changes, appetite signaling and protec-
tive factors in female reproduction. Additionally, it should be
remembered that pessible changes in nutritional status ceuld
improve or compromise the reproductive viability. Melatonin
can contribute fo decreasing fat pad storages (4), providing a
better lifespan, and may reduce lipid oxidation, which would
be of benefit for reproduction, in addition to having a known
detoxifying role. However, the role of melatoninin such events
remains unclear and conflicting resutts have been observed.

The present study was undertaken to determine if long-
term melatonin administration is able to induce reproductive
changes and how melatonin exertsits protective action related
to lipid oxidation and antioxidant activities in the rat ovary dur-
ing ovulation.

Material and Methods

Animals and experimental design

Twenty-four adult female rats (Raffus norvegicus albinus),
60daysold (+ 250-260 g), were obtained from the Department
of Anatomy, Bioscience Institute, Botucatu Campus (IBB,
UNESP). The rats were divided into two groups of 12 animals
each: control, rats receiving standard chow and tap water ad
fibitum and 0.04 mL 95% ethanol + 0.3 mL 0.9% NaCl (1:7,
viv} as vehicle; melatonin-treated group, rats receiving stan-
dard chow and tap water ad /ibifum and vehicle + melatonin.
All animals were housed in polypropylene cages (43 cm x 30
cm x 15 cm) with laboratory-grade pine shavings as bedding
under conditions of controlled room temperature (23 £ 1°C)
and lighting (12-h light’12-h dark photoperiod, lights switched
onatB8:00 am). At 90 days of age, females received melatonin
daily for 60 consecutive days (Figure 1Aand B). After the period
of melatonin treatment, rats cycling in the moming of estrus
{period of ovulation) at 4:.00 am (or Zeitgeber time 22:00, ZT
22, corresponding to the environmental circadian time set) and
monitored by vaginal swabs in a dark room using a red light,
were anesthetized and killed by decapitation for further analy-
sis. The expenmental protocaols were approved by the Ethics
Committee of the Institute of Bioscience, UNESP, Botucatu,
SP, Brazil {protocol #85/07).

Melatonin administration

Forthe animals designatedto receive exogenousmela-
tonin treatment, successive doses of melatonin (100 pg/100
g body weight; M-5250, purchased from Sigma Chemical,
USA)were dissalved in 0.04 mL 95% ethanol, using 0.3 mL
0.9% NacCl (1:7, viv) as vehicle (19). The injections (only
vehicle or vehicle + melatonin) were administered daily ip
between 6:30 and 7:00 pm (ZT 13; Figure 1A).

Food and liquid intake

The diet of the animals was prepared in lots of 5 days,
always at the same time of day (3:00 pm) using a marked
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test tube and an analytical scale (Ohaus Traveler™, Ana-
lytica S.A, Colombia). Liquid and food consumption (caleric
value of standard chow = 2930 kcal/kg) was determined.
Total energy intake (kcal/day) and feed efficiency (weight
gainfconsumed calories x 100) were evaluated asmetabolic
parameters. Body weight was also measured. Atthe end of
treatment, the reproductive organs {uterine hom, ovaries
and oviducts) were dissected and weighed. Body weight
and organ weight were measured using an analytical bal-
ance (Owalabor, Germany).

Glycemia measurements

The glycemic index was measured with a blood glucose
sensor (One Touch Ultra System Kit, Lifescan, Italy) using
blood samples from the caudal vein of the animals. To avoid
variation, all samples were assessed in an equal volume
collected from each animal after 12 h of fasting.

Assessment of estrous cyclicity

During the second part of the experiment, animals ex-
hibiting estrous cycles were monitored by colpocytological
examination (vaginal smears) (20). Cells detaching from
the vaginal epithelium were removed with a pipette (Lab
Mate 0.5-10 pL, UK). The filter tips containing 10 pL 0.9%
saline were discarded after the vaginal secretion had been
transferred o clean slides. Colpocytological examination
time wasat 9:00 am. Each slide was analyzed undera Zeiss
Axiophot Il microscope (Carl Zeiss, Germany) at 10X and
25X magnification and digitally photographed.

Determination of lipid hydroperoxide and antioxidant
systems

After 60 days of melatonin treatment (100 pg-100 g
body weight!-day™"), the ovaries were removed rapidly.
Each ovary was weighed and tissue samples of 40 mg
were frozen immediately in liquid nitrogen and stored at
-80°C. The ovary fragments were homogenized using a
motor-driven Teflon Potter Elvehjem (Scientific Lid,, Eng-
land) tissue homogenizerin 1.25 mL cold 0.1 M phosphate
buffer, pH 7.4, containing 1 mM ethylenediaminetetraacetic
acid (EDTA). The homogenate was centrifuged at 10,000 g
for 15 min. The supernatant fraction was removed for the
determination of total proteins, lipids, hydroperoxide, serum
antioxidant capacity, and total antioxidant substances (test
Kit Randox Laboratories Ltd., Crumlin, Co., UK).

Lipid hydroperoxide (LHP)was measured by Fe?* to Fe¥*
oxidation, using a 100-mL sample and a 900-mL reaction
mixture containing 250 mM Fe S04, 25 mM HzS04, 100 mM
xylenol orange, and 4 mM butyl hydroxytoluene in 90% (v/v)
methanol. Absorbance was measured at 560 hm (21). Total
antioxidant substances (TAS) were measured by the inhibition
of LHP formation and measured at 500 nm (22). Spectropho-
tometric assays were carried out using a spectrophotometer
with a temperature-conirolled cuvette chamber (Ultraspec
with Swift Il software, Pharmacia Biotech, UK).
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The enzymatic antioxidant system, reduced glutathione
{GSH) and oxidized glutathione (GSSG), was investigated
using the extracted supernatant(22). GSH-Px activity (E.C.
1.11.1.9) was then analyzed using glutathione oxidation
reacted with hydrogen peroxide and cumene hydroper-
oxide. GSH reductase (GSH-Rd) activity was determined
by monitoring NADPH oxidation at 340 nm. The mixhire
contained 1 mM Tris buffer, pH 8.0, 5 mM EDTA, 33 mM
GSSGand 2 mM NADPH. SOD activity (E.C. 1.15.1.1)was
determined with NADH and phenazine methosulfate (PMS)
and reduction of nitroblue tetrazolium (NBT) by superoxides
atphysiological pH. The complete reaction system consisted
of 50mM phosphate buffer, pH7.4,0.1 MM EDTA, 50mM NBT,
78 mM NADH, and 3.3 mM PMS. Catalase (E.C. 1.11.1.8)
activity wasassayed during the decomposition of Hy O to Hz O
+05. The assaysof antioxidantactivities were performed at
25°C using a pQuant microplate spectrophotometer (MQX
200 with KCjunior software, Bio-Tek Instruments, USA). All
chemicals were purchased from Sigma.

Statistical analysis

The Student t-test for independent samples was used.
Data are reported as means + SEM and statistical signifi-
cance was set at P < 0.05. The statistical software used
was Sigma Plot version 11.0 and GraphPad Instat version
4 for graphic design.

Results

After 60 days of melatonin treatment, there were sig-
nificant differences in body weight. Melatonin-treated rats
exhibited a body weight reduction after 10 days of treat-
ment, with a remarkable maintenance of body weight gain
between days 35-60 (Figure 2). As expected, melatonin

® Control

o Melatonin

454—r—7—T——T——T T T T T T T

0 5 10 15 20 25 30 35 40 45 50 55 &0
Days

Figure 2. Effects of melatonin (100 pug-100 g body weight '-day ')
on body weight gain during 60 days of treatment. Data are re-
ported as means + SEM for 10 animals per group. *P < 0.01 vs
caontrol group on days 10 to 60 of treatment (Student #test).
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treatment also reduced total weight gain and body mass
index by decreasing fat mass (Table 1). Although overall
food efficiency and liquid consumption were not affected
by melatonin, there was a reduction in total and relative
food consumption, as well as a reduced energy intake and
glucose levels throughout 80 days of melatonin administra-
fion {Table 1, Figure 3).

During the second half of the daily melatonin treatment,
when changes in total energy balance were detected, al-
terations in the reproductive cycles were observed, such
as estrous irregularities, namely, more extensive cycles in
melatonin-treated rats than controls, with a high frequency
of continuous metaestrus and diestrus (Table 2). During
this period, melatonin had no influence on estrous stage.
Total ovarian mass was significantly reduced in melatonin-

Table 1. Nutritional parameters of female rats after 60 days of
melatonin treatment.

Parameters Control Melatonin
(N=12) (N=12)

Body weight gain (g) 365+106 22511.6*

Body mass index {(g/cm?) 078x005 066x0.08"

Total food consumption (g/day) 1957 +046 17.55+043*
Liquid consumption (mL/day) 12.42+023 11.06+0.23
Energy intake (kcal/day) 57.35+134 51.41+1.28"
Feed efficiency (g/kcal) 630+456 6151478
Blood glucose (mg/dL) 1035+547 8031449

Data are reported as means + SEM. *P < 0.05 vs control group
(Student t-test).
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Figure 3. Influence of melatonin administration (100 pg-100 g
body weight!-day-1) on relative food intake for 60 days of rats
receiving standard chow. Data are reported as means + SEM for
10 animals per group. *P < 0.01 vs control group on days 10 to
60 of treatment (Student #test). Day 0: Food consumption before
the beginning of melatonin administration.
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treated rats; however, the relative ovarian mass remained
unchanged because of the reduced final body weight of
the animals (Table 2).

Table 3 shows that total protein concentration remained
unchanged in ovarian tissues after melatonin treatment.
LHP levels increased during spontaneous ovulation and
decreased when melatonin was given. Moreover, TAS were
higher in melatonin-treated rats than controls, although
the LHP/TAS ratioc was unchanged because of the high
LHP formation in control animals (Table 3). With respectto
antioxidant activiies, melatonin increased SOD, GSH-Rd
and catalase activities in ovarian tissues during ovulation.
Only GSH-Px activity was unchanged after melatonintreat-
ment. Additionally, the reducing power (GSH/GSSG ratio)
was higher in melatonin-treated rats than in confrols, thus

Table 2. Total and relative ovarian mass and duration of estrous
cycles in female rats throughout 60 days of melatonin treat-
ment.

Melatonin
(N=12)

Parameters Control
(N=12)

0094001 0.075+002"
0.035+0.01 0.031+0.01

Ovarian mass (g)

Ovarian relative mass
(g/100 g body weight)

Estrous cycle duration (days)

Estrus (hicycle)

Metaestrus (h/cycle)

Diestrus (h/cycle)

506+020 6.90+071*
23.92+061 21601092

672+ 039 2592 +0.39"
3456+155 91.14+1.48*

Data are reported as means + SEM. *P < 0.05 vs control group
(Student t-test).

Table 3. Oxidative and anticxidant status of rat ovaries after 60
days of melatonin administration.

Melatonin
(N=12)

Parameters Control
(N=12)

Ovary protein (mg/100 mg tissue) 2625+ 252 3574+595
LHP {nmol/g tissue) 4507 £15.3 4195+ 142"
TAS (%) 5250+147 65.06+403"
LHP/TAS (gitissue) 8271059 747x041
S0OD (nmol/mg protein) 1.48+0.12 1.88+0.05"
GSH-Px (nmol/mg protein) 323+1.22 3061172

GSH-Rd (nmol/mg protein) 132+£001 155+£001*
CAT {nmol/mg protein) 285+025 373+0.16"
GSH/GSSG 105+07 17106

Data are reported as means + SEM. LHP = lipid hydroperox-
ide; TAS = total antioxidant substances; SOD = superoxide
dismutase; GSH-Px = glutathione peroxidase; GSH-Rd = gluta-
thicne reductase; CAT = catalase; GSH = reduced glutathione;
GS8SG = oxidized glutathione. *P < 0.05 vs control group (Stu-
dent #test).
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emphasizing the reduced glutathione formation associ-
ated with increasing GSH-Rd activities during exhaustive
antioxidant renovation.

Discussion

Appetite regulation and energy sources are fundamental
for the maintenance of caloric balance and body weight gain.
Melatonin reduced body weight gain, body mass index, total
and relative food consumption as well as energy intake and
glucose levelsinthe present study. There are several possible
explanations regarding the action of melatonin as a metabolic
hormone disruptor. Melatonin seems to be directly related to
the periodicity of food intake (23). Molecular evidence sug-
gestsa stronger interaction between melatonin-induced clock
genes and cell metabolism, including the control of glucose
homeostasis and adipogenesis (24-26), thereby reducing
the lipid content. Moreover, melatonin influences the satiety
process and reduces blood glucose levels (27,28). Taken
together, our findings concerning the nutritional balance
could be attributed to one or more of these factors. Similarly,
a previous study on the effects of melatonin detected body
weight reduction in animals {29). It has also been demon-
strated that pinealectomized rats do not show a2 greater
body weight and, conversely, when they are expesed to a
short-day photoperiod, a marked reduction of body weight
is seen (30). Furthermore, these differences may depend
on factors such as gender, age, or body composition of the
animals receiving appropriate treatment.

In the present study, rats receiving melatonin showed
a reduction in ovarian weight and, additionally, longer es-
trous cycles, which featured an extended metaestrous and
diestrous phases. It is known that melatonin can increase
the diestrous frequencies or estrous phases in rodents (31)
by modulating GnRH hormones, but the exact mechanisms
involved are poorly understood. Thus, it seems true that
nutritional improvements were not effectively responsible
for maintaining regular cycles. Moreover, rats receiving me-
latonin (200 pg-100 g body weight !-day ') and exposed to
continuous lightshowed longer estrous pericds and reduction
of ovarian weight (32). Itis clear that melatonin does not act
directly on hypothalamic GnRH neurons and its responsive-
ness does notchange with the photoperiod (33). Disturbances
involving neuroendocrine regulation of repreduction appear
to be associated with hypogonadotropic hypogonadism (34)
where expression of Kiss 1 is down-regulated by melatonin
(35). Thus, our findings could be partially explained if mela-
tonin suppressed GnRH hormones.

Itis noteworthy that spontaneous ovulation is a source
of ROS generation due to the intensive ovarian activity (36).
Conversely, there is a body of evidence suggesting thatme-
latonin plays key roles asa ROS scavenger (15,37). Under
a variety of physioclogical conditions, including ovulation
or follicular rupture, the proteolytic cascade and vascular
changes lead to ROS production (38). 1t seems clear that
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increased levels of NADPH-oxidase generate superoxide
anion radicals (O27) and hydrogen peroxide (H203z), which
in the presence of Fe3* produces powerful oxidants such
as hydroxyl radicals, enhancing lipid peroxidation (39).
In melatonin-treated rats, LHP levels were reduced and
TAS concentration was increased, although the LHP/TAS
ratio was not modified by melatonin. Interestingly, lipid
hydropercxide levels were higher during spontaneous
ovulation and underwent a remarkable reduction after
the administration of melatonin, which quenched hydroxyl
radicals within ovarian cells, confirming the protective effect
of the hormone as a ROS scavenger preserving fatty acid
integrity against aldehyde formation and finally improving
the lipid profile (40). Also, another sub-product formed as
a result of melatonin scavenging hydrogen peroxide, i.e.,
N(1)-acetyl-N{2)-formyl-5-methoxykynuramine, is also a
potent scavenger.

Melatonin had an important effecton the ovaries, induc-
ing higher SOD, catalase and GSH-Rd activity compared
to control. 1t is well known that melatonin has an important
role in transcriptional mRNA synthesis (i.e.,, gamma-
glutamyl cysteine synthetase and others) for antioxidant
enzymes (18), suggesting that melatonin regulation is
receptor-mediated, thereby most likely implicating the MT1/
MT2 receptors via second messengers such as cAMP,
phospholipase C or intracellular calcium concentration,
and thus, it might have improved the antioxidant profile if
they are activated. The antioxidant defense system is an
integrated array of enzyme and non-enzyme antioxidants.
In control rats, higher ovarian LHP levels indicated that
the oxidation of GSH to GSSG, reducing the GSH/GSSG
ratio, led to lipoperoxidation and oxidative stress. During
the reduction of hydrogen peroxide, GSH is oxidized to
GSSGand GSH-Rd is activated to convert oxidized GSSG
to reduced GSH. Curiously, besides increasing the GSH/
GSSGratio, melatonin also enhanced GSH-Rd activity. Our
findings seem to agree with these mechanisms.

This study demonstrated that long-term melatonin
treatment modulates body weight gain, calorie storage and
food intake. Although melatonin reduced ovarian mass and
caused estrous cycle disturbances, itwas able to protectthe
ovaries against lipid peroxidation by reducing LHP levels
during ovulation. These protective effects could be due to
the properties of melatonin both as a ROS scavenger and
as an agent increasing antioxidant activities.
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5. CONCLUSOES

1. A melatonina apresenta efeito oposto ao observado apds o consumo de etanol sobre o E2 e
a P4 durante o periodo ovulatério, onde ambos atuam como desreguladores endocrinos

podendo alterar o funcionamento dos ovarios, ovidutos e uteros.

2. Independentemente, a melatonina e o etanol promovem regulagdo diferencial dos
receptores esterdides sexuais AR, ER-a, ER-B, PRA e PRB nos tecidos reprodutivos, atuando
principalmente através de seu receptor MTIR (especialmente no ovario e tutero). A
combinacdo da melatonina e etanol ¢ varidvel sobre esses receptores, acentuando ou

atenuando sua expressao, dependendo do tecido analisado;

3. Existe interacao entre melatonina e etanol sobre a eficiéncia alimentar, onde a melatonina
atua como hormonio regulador do ganho de peso, das calorias armazenadas e do consumo de

etanol;

4. Embora a melatonina altere o ciclo estral, ela ¢ capaz de proteger os ovarios de ratas
UChB contra o estresse oxidativo, prevenindo o ataque de radicais livres e estimulando as

defesas antioxidantes.
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