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Resumo 

A função biológica das proteínas está relacionada à sua estrutura 

tridimensional adquirida pelo processo de enovelamento proteico. Neste contexto, 

proteínas denominadas, genericamente, de chaperonas moleculares exercem 

papel fundamental atuando no auxílio do enovelamento correto, no 

reenovelamento e na dissociação de agregados proteicos. A Hsp90 é uma das 

chaperonas moleculares mais importantes, é essencial para a viabilidade celular 

em eucariotos e está normalmente associada a proteínas atuantes no ciclo e 

sinalização celular, o que torna essa chaperona um alvo bastante interessante 

para abordagens terapêuticas de diversas doenças. A Hsp90 pode ser modulada 

por co-chaperonas diversas. Nesse trabalho foram caracterizadas as proteínas C-

Hsp90 (domínio C-terminal da Hsp90 humana), e as co-chaperonas Hop e Tom70, 

além da interação entre C-Hsp90 e Tom70. Foram aplicadas técnicas de 

dicroísmo circular e emissão de fluorescência do triptofano; seguidas pela 

caracterização por ultracentrifugação analítica, gel filtração analítica, 

espalhamento dinâmico de luz, cromatografia de gel filtração acoplada a 

espalhamento de luz em multi-ângulos (SEC-MALS) e gel nativo. Para os ensaios 

de interação foram aplicadas técnicas de pull-down, SEC-MALS e calorimetria de 

titulação isotérmica. As proteínas foram produzidas puras e enoveladas, com 

estado oligomérico determinado como dímero para C-Hsp90 e monômero para 

Hop e Tom70, sendo que essas também foram encontradas como espécies 

diméricas. A estequiometria de interação entre a C-Hsp90 e Tom70 foi 

determinada em 1 monômero da Tom70 para 1 dímero da C-Hsp90, com KD de 

360 ± 30 nM, Happ = -2,6 ± 0,1 kcal/mol e S = 21 ± 1 cal/mol.K, sugerindo que a 
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interação é dirigida por entalpia e entropia. Os resultados obtidos nesse trabalho 

contribuem para uma melhor compreensão do sistema Hsp90, que está envolvido 

em diversos processos celulares essenciais e patológicos, como doenças 

neurodegenerativas, processos inflamatórios, infecções e câncer. 
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Abstract 

 The biological function of proteins is related to its three dimensional 

structure acquired via protein folding process. In this context, the molecular 

chaperones play a key role acting as auxiliary protein on protein folding, refolding 

and dissociation of protein aggregates. Hsp90 is one of the most important 

molecular chaperones, is essential for cell viability in eukaryotes and is usually 

associated with proteins involved in cell cycling and cell signaling, which makes 

these chaperone a very interesting targeting for therapeutic approaches for several 

diseases. The chaperone activity of Hsp90 can be modulated by other proteins, 

called co-chaperones. In this work, we characterized the protein C-Hsp90 (C-

terminal domain of human Hsp90) and the co-chaperones Hop and Tom70, and 

also the interaction between C-Hsp90 and Tom70. Circular dichroism and 

fluorescence emission of tryptophan was first applied for initial characterization of 

the proteins, followed by analytical ultracentrifugation, analytical gel filtration, 

dynamic light scattering, size exclusion chromatography – multi angle light 

scattering (SEC-MALS) and native gel. The interaction between C-Hsp90 and 

Tom70 were measured by techniques like pull-down, SEC-MALS and isothermal 

titration calorimetry. The proteins were produced pure and soluble and their 

oligomeric state were determined as dimer for C-Hsp90, and monomer for Hop and 

Tom70, these two co-chaperones were also found as dimeric species. The 

stoichiometry of interaction between C-Hsp90 and Tom70 was determined by 

SEC-MALS and ITC as been 1 dimer of C-Hsp90 to 1 monomer of Tom70, with a 

KD of 360 ± 30 nM, Happ = -2.6 ± 0.1 kcal/mol and S = 21 ± 1 cal/mol.K, 
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suggesting that these interaction is driven by both, enthalpy and entropy. The 

results contribute to a better understanding of the important Hsp90 machinery, 

which is involved in many essential cellular and pathological processes, such as 

neurodegenerative diseases, inflammation, infection and cancer. 
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CAPÍTULO 1 

1. Introdução 

1.1 Enovelamento de proteínas 

Proteínas são as macromoléculas biológicas mais complexas e versáteis 

quando analisadas sob um ponto de vista estrutural. São funcionalmente 

sofisticadas e estão envolvidas na grande maioria das funções celulares (Vabulas 

et al., 2010). São biopolímeros lineares que adotam uma estrutura tridimensional 

característica, também denominada de estrutura nativa. A princípio uma proteína 

deve estar enovelada no estado nativo para ser funcional. Embora a classe das 

IUPs (Intrinsically Unfolded Proteins) – proteínas intrinsecamente desenoveladas 

– seja uma classe de proteínas funcionalmente ativas, que atuam em diversos 

processos regulatórios na célula (Tompa, 2002; Tompa, 2005; Dyson & Wright, 

2005). A estrutura tridimensional de uma proteína é mantida, sobretudo, por 

interações não covalentes entre cadeias laterais de aminoácidos, o processo de 

aquisição dessa estrutura é chamado enovelamento proteico (Wegele et al., 2004; 

Ramos & Ferreira, 2005). 

As teorias a respeito do enovelamento de proteínas foram inicialmente 

baseadas nos experimentos realizados na década de 60 por Anfinsen e seus 

colaboradores (Anfinsen et al., 1961; Anfinsen, 1973). Em 1972, Christian 

Anfinsen recebeu o Prêmio Nobel de Química por mostrar que o processo de 

enovelamento de uma proteína é autônomo e espontâneo. Fundamentada em 

experimentos in vitro com a ribonuclease A, a teoria de Anfinsen sugere que a 

estrutura tridimensional correta de uma proteína é atingida espontaneamente in 

vivo assim que a proteína deixa o ribossomo e que a sequência de aminoácidos 
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de uma proteína contém todas as informações necessárias para que o 

enovelamento ocorra (Anfinsen, 1973). 

Ainda sobre o enovelamento proteico, ao questionar como as proteínas 

atingem sua estrutura tridimensional dentre todas as conformações possíveis, 

Cyrus Levinthal, com base em estudos de dinâmica, mostrou que o enovelamento 

proteico não pode ocorrer por uma exploração estocástica de todas as 

conformações nativas possíveis, pois mesmo a busca para uma pequena proteína 

exigiria um tempo infinitamente longo, essa definição ficou conhecida como o 

“paradoxo de Levinthal”, (Levinthal, 1969). 

A investigação sobre enovelamento proteico tem sido intensa nos últimos 

quarenta anos, pois se trata de um alvo de estudo de grande valor médico e 

biotecnológico, visto que o processo de enovelamento, assim como a manutenção 

e perda da estrutura nativa estão relacionados à ocorrência de diversas doenças 

(Tiroli-Cepeda & Ramos, 2011). Estudos subsequentes às teorias de Anfinsen 

mostraram que a definição de enovelamento proteico, tido como um processo 

espontâneo sem a necessidade de fatores adicionais e com toda a informação 

necessária contida na sequência de aminoácidos não pode ser aplicado a 

qualquer proteína. Na verdade, se aplica apenas a uma minoria de proteínas, 

muitas delas pequenas e relativamente estáveis. 

Trabalhos posteriores demonstraram que algumas proteínas necessitam do 

auxílio de outras proteínas para seu enovelamento correto e/ou associação com 

outras macromoléculas biológicas. O termo “chaperona molecular” foi proposto 

para descrever essas proteínas auxiliares (Laskey et al., 1978; Ellis, 1987), um 

termo bastante apropriado considerando que a palavra chaperone (do inglês: 

dama de companhia) sugere que tais proteínas atuem evitando interações 
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indesejáveis. Assim, o conceito original de que as proteínas enovelam e se 

associam via um processo espontâneo foi complementado pelo conceito de 

enovelamento/associação assistido, que envolve as funções de evitar o 

enovelamento incorreto, o desenovelamento e a agregação de proteínas dentro 

da célula (Lund & Ellis, 2008).  

1.2 Chaperonas moleculares 

O termo chaperona molecular apareceu pela primeira vez em 1978 para 

descrever as propriedades da nucleoplasmina, uma proteína acídica nuclear, 

necessária para a formação de nucleossomos. A nucleoplasmina atua na 

associação entre histonas e DNA, interagindo diretamente com histonas, 

neutralizando sua carga positiva e prevenindo interações indesejáveis (Laskey et 

al., 1978). Na década seguinte, alguns trabalhos demonstraram que cadeias 

polipeptídicas recém sintetizadas ligam a outras proteínas pré-existentes – as 

chaperonas moleculares – antes de se associarem a complexos funcionais 

(Barraclough & Ellis, 1980) e que algumas famílias dessas chaperonas requerem 

a hidrólise de ATP para atuarem no enovelamento de outras proteínas 

(Ostermann et al., 1989). 

Ellis, em 1987, designou o termo chaperona, genericamente, para uma 

variedade de proteínas celulares, cujo papel principal é a associação a outras 

proteínas desenoveladas ou parcialmente enoveladas (Ellis, 1987). Chaperonas 

moleculares são atualmente definidas como um grupo amplo e diverso de 

proteínas que compartilham propriedades funcionais de auxiliar o enovelamento 

correto in vivo, prevenindo interações improdutivas que poderiam levar à 

agregação de proteínas ou desagregando-as posteriormente; de auxiliar a 

associação/dissociação de proteínas e outras macromoléculas biológicas; de 
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auxiliar no transporte de proteínas para compartimentos sub-celulares específicos 

e no controle de conformações ativas/inativas (Lund & Ellis, 2008). 

As chaperonas moleculares também foram descritas como proteínas de 

choque-térmico ou heat-shock proteins (Hsp), por apresentarem indução de sua 

síntese em células submetidas a condições de estresse térmico. A importância 

das proteínas de choque térmico foi inicialmente notada devido ao aumento 

drástico na transcrição de genes em Drosophila após a exposição dessas a 

condição de choque térmico. Um aumento acidental na temperatura da 

incubadora permitiu que Ritossa, em 1962, pudesse observar (usando 

microscópio de luz) o aparecimento de padrões de “puffs” (ou anéis de Balbiani) 

distintos nos cromossomos politênicos das glândulas salivares de Drosophila em 

comparação à ausência de choque térmico, indicando que a transcrição de genes 

localizados nessas regiões é diferenciada sob essa condição de estresse térmico 

(Ritossa, 1962; Ritossa, 1996). 

Entretanto, o termo Heat Shock Protein foi cunhado apenas doze anos 

depois, quando as proteínas específicas codificadas por esses genes localizados 

nos “puffs” foram identificadas como as proteínas de choque térmico (Tissiere et 

al., 1974). Assim, chaperonas moleculares e proteínas de choque térmico, são 

classes de proteínas sobrepostas funcionalmente, mas não idênticas (Lund & 

Ellis, 2008). Fenômenos similares também foram observados em procariotos e 

outros eucariotos (Kelley & Schlesinger, 1978; Lemaux et al., 1978; Mcalister & 

Finkelstein, 1980) sugerindo que a resposta ao choque térmico é um mecanismo 

universal e evolutivamente bastante antigo. 

No enovelamento proteico, assim que uma cadeia polipeptídica deixa o 

ribossomo, ela deve se enovelar de maneira eficiente garantindo sua 
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funcionalidade no ambiente celular. No caso de proteínas não-enoveladas ou 

parcialmente enoveladas, os resíduos de aminoácidos hidrofóbicos que deveriam 

ter sido internalizados na matriz proteica, permanecem acessíveis ao solvente, 

tornando a proteína suscetível à agregação (Ramos & Ferreira, 2005). As 

chaperonas são capazes de reconhecer essa superfície hidrofóbica exposta e 

interagirem com essa região, evitando, de modo eficiente, a agregação. As 

chaperonas atuam não somente impedindo a agregação intermolecular, mas 

também são capazes de prevenir ou reverter o enovelamento incorreto, todavia 

sem modificar a estrutura nativa final (Hendrick & Hartl, 1993; Fink, 1999; Ramos 

& Ferreira, 2005; Borges & Ramos, 2005). 

Além da participação no processo de enovelamento, as chaperonas 

moleculares atuam como um sistema de controle de qualidade, reconhecendo, 

mantendo e marcando/enviando proteínas desenoveladas ou incorretamente 

enoveladas para degradação (Welch & Brown, 1996). O funcionamento normal do 

sistema de controle de qualidade proteica é crucial para a viabilidade celular, 

sobretudo quando consideramos a alta concentração de macromoléculas no 

ambiente intracelular (Ellis, 2001; Tiroli-Cepeda & Ramos, 2011). O 

funcionamento adequado mantém o balanço de proteínas não-nativas alvos para 

o reenovelamento ou degradação, uma mudança nesse equilíbrio pode ser 

prejudicial para célula, podendo levar à morte celular (Wolfe & Cyr, 2011). 

As chaperonas moleculares também atuam na transdução de sinal, essas 

proteínas agem como componentes integrais de redes de sinalização celular, nas 

quais podem atuar na maturação, assim como na regulação da transição entre 

estados ativos e inativos de moléculas de sinalização, como receptores, 

reguladores transcricionais e proteínas cinases (Soti et al., 2005; Gaestel, 2006). 
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Várias doenças associadas com o sistema nervoso central e periférico 

resultam do acúmulo de proteínas desenoveladas ou anormais nas células, 

algumas chaperonas moleculares estão envolvidas nos processos dessas 

doenças, chamadas de neurodegenerativas. A regulação da expressão das 

chaperonas não apenas previne a agregação proteica, mas também pode 

reenovelar proteínas desnaturadas e ressolubilizar agregados proteicos (Ansar et 

al., 2007; Lu et al., 2009). Portanto, as chaperonas moleculares são alvos 

promissores para o tratamento de doenças como a da doença de Alzheimer, 

doença de Parkinson, esclerose múltipla, esclerose amiotrófica lateral, desordens 

causadas por expansões de poliglutaminas e doença de Huntington (Peterson & 

Blagg, 2009). 

A ação das chaperonas moleculares inclui também a translocação de 

proteínas para organelas celulares. Após a síntese no citosol, a maioria das 

proteínas mitocondriais, por exemplo, deve atravessar as membranas da 

mitocôndria para atingir sua localização funcional. Durante esse processo, as 

proteínas são desenoveladas e depois reenoveladas até atingirem suas 

conformações nativas. As chaperonas moleculares mitocondriais exercem 

funções importantes em diversos passos desse mecanismo de translocação. 

Atuam no reconhecimento e marcação das proteínas mitocondriais precursoras, 

no desenovelamento dos domínios citosólicos das mesmas, na sua translocação 

pelas membranas e, finalmente, no enovelamento da proteína importada na 

matriz mitocondrial (Stuart et al., 1994; Ryan et al., 1997; Voos & Rottgers, 2002; 

van der Laan et al., 2010). 

No esquema apresentado na figura 1, estão exemplificados alguns dos 

processos celulares nos quais há participação das chaperonas moleculares. 
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Figura 1: Papel das chaperonas moleculares na célula. As ações celulares das 
chaperonas, como por exemplo, a atuação no enovelamento proteico, no controle de 
qualidade de proteínas e na translocação para subcompartimentos celulares são 
destacadas no esquema (Adaptada de Ji-Sook Hahn, 2007, 
http://biomolecule.snu.ac.kr/research.html). 

 

1.3 Hsp90 

A Hsp90 – Heat Shock Protein 90 – é uma chaperona altamente 

conservada (Borkovich et al., 1989; Csermely et al., 1998; Young et al., 2001; 

Taipale et al., 2010), amplamente distribuída, encontrada em bactéria e em todos 

os eucariotos, mas, aparentemente, ausente em archaea (Wegele et al., 2004). A 

Hsp90 é uma chaperona abundante, representa 1 a 2% do total de proteínas 

citosólicas na ausência de estresse (Welch & Feramisco, 1982). Ainda que seja 

essencial para a viabilidade de eucariotos, em quaisquer condições, a proteína 

bacteriana ortóloga HtpG é dispensável quando o organismo não está sob 

condições de estresse (Borkovich et al., 1989; Versteeg et al., 1999). A Hsp90 

participa da estabilização e ativação de mais de duzentas proteínas, denominadas 
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proteínas clientes (ou substrato), que dependem dela para atingir e/ou manter sua 

conformação funcional, muitas dessas clientes são essenciais para sinalização 

celular constitutiva e respostas adaptativas a situações de estresse (Mayer & 

Bukau, 1999; Young et al., 2001; McClellan et al., 2007; Li et al., 2011). 

Sua ampla clientela inclui proteínas estruturalmente e funcionalmente 

distintas como, por exemplo, a telomerase (Holt et al., 1999; Keppler et al., 2006), 

a proteína organizadora de actina: N-WASP (Park et al., 2005), a óxido nítrico 

sintetase – NOS (Garcia-Cardena et al., 1998), assim como uma série de 

receptores de hormônios nucleares (Pratt & Toft, 2003) e uma seleção de 

proteínas cinases (Pearl, 2005). Mesmo entre as proteínas clientes que são 

funcionalmente relacionadas, pode haver um elevado grau de especificidade, com 

homólogos próximos apresentando dependência radicalmente diferente da Hsp90 

para sua ativação (Pearl & Prodromou, 2006). 

Em contraste com outras chaperonas moleculares, a Hsp90 parece ser 

específica em relação à interação com suas clientes, contudo, as bases 

moleculares de tal especificidade ainda não são bem compreendidas. Para 

receptores de hormônios esteróides, que são provavelmente os clientes mais bem 

estudados, em termos de associação com a Hsp90, está claro que para o 

funcionamento do sistema da Hsp90 é necessária uma interação anterior com o 

sistema Hsp70/Hsp40, que por sua vez, é acoplado ao sistema Hsp90 via co-

chaperonas: imunofilinas, Hop e p23 (Kimmins & Macrae, 2000; Pratt & Toft, 

2003; Felts et al., 2007). 

A Hsp90 é alvo de várias modificações pós-traducionais que afetam sua 

atividade chaperona (Scroggins & Neckers, 2007). Estudos recentes indicam que 

tais modificações regulam especificamente a interação entre a Hsp90 e algumas 
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proteínas clientes. Várias modificações covalentes reversíveis têm sido 

identificadas, incluindo S-nitrosilação, fosforilação, ubiquitinação e acetilação 

(Wandinger et al., 2008; Trepel et al., 2010). 

Enfim, a Hsp90 é tida como um mediador chave da homeostase celular, 

função que realiza sendo um facilitador de diversas interações proteína-proteína 

do tipo transiente e de baixa afinidade (Pratt et al., 2008; DeZwaan & Freeman, 

2008). Nos últimos anos a complexa regulação da Hsp90 pela qual participa da 

fisiologia celular tem sido esclarecida. Houve uma evolução considerável no que 

diz respeito ao entendimento da dinâmica conformacional da Hsp90 (Krukenberg 

et al., 2011). Essa dinâmica pode ser observada na figura a seguir (figura 2), onde 

é apresentada de maneira simplificada no ciclo de atividade chaperona da Hsp90. 

Figura 2: Dinâmica conformacional da Hsp90 no ciclo da atividade chaperona. As 
estruturas conhecidas da Hsp90 sugerem que o seu ciclo conformacional seja regulado 
por nucleotídeos. Nesse ciclo, a ligação de ATP leva a proteína de uma estrutura aberta 
(1 – quando recebe a proteína cliente) para uma estrutura fechada, com o N-terminal 
dimerizado (3). A estrutura na conformação (2) representa um possível intermediário 
desse ciclo. A ligação do ADP, após a hidrólise do ATP, causa uma maior compactação 
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da proteína (4) e a liberação do nucleotídeo reinicia o ciclo conformacional, também 
liberando a proteína cliente. (Figura retirada e adaptada de (Krukenberg et al., 2011)). 

A respeito da arquitetura da Hsp90, em humanos há quatro isoformas: 

duas citosólicas (Hsp90  e Hsp90 ); uma mitocondrial (Trap1); e uma específica 

do retículo endoplasmático (Grp94). Todas as isoformas atuam obrigatoriamente 

como dímeros, que consistem em três domínios por monômero (Figura 3). 

 
 
Figura 3: Estrutura terciária da Hsp90. Estrutura terciária da Hsp90 de Saccharomyces 

cerevisae que apresenta 82% de similaridade com a Hsp90α humana. (A) Um monômero 
está representado em azul e o outro em roxo, em vermelho está representada a molécula 
de ATP, ligada em cada N-terminal. (B) Em vermelho (topo) está representado domínio 
N-terminal, dos resíduos 2-216; o domínio central está em roxo, representando os 
resíduos 262-560 e em azul (abaixo) o C-terminal, resíduos 561-677. (Número de acesso 
ao PDB: 2CG9). Figura gerada usando o programa Pymol (DeLano, 2004). 

 

O domínio N-terminal possui um sítio de ligação a nucleotídeo altamente 

conservado, possui aproximadamente 30 kDa e está conectado à um domínio 

central (de aproximadamente 35 kDa) por uma região desestruturada, altamente 

carregada, com a incidência repetitiva de resíduos de aspartato, glutamato e lisina 

(Stebbins et al., 1997; Pearl & Prodromou, 2006). Essa região é variável, em 



11 

tamanho e composição, entre as espécies e isoformas, é ausente na Hsp75/Trap1 

(homóloga mitocondrial) e na HtpG bacteriana e em outros procariotos (Bardwell 

& Craig, 1987; Song et al., 1995; Chen & Smith, 1998). A função dessa região 

ainda não está bem estabelecida, em termos gerais parece contribuir para a 

flexibilidade da proteína e pode estar envolvida na modulação da atividade 

chaperona da Hsp90 (Scheibel et al., 1999; Hainzl et al., 2009). O domínio C-

terminal tem aproximadamente 20 kDa é responsável pela dimerização da Hsp90 

(Minami et al., 1994). 

O domínio N-terminal apresenta um sítio regulatório que liga e hidrolisa 

ATP mediando uma série de ciclos de associação-dissociação entre a Hsp90 e as 

proteínas clientes envolvendo amplas mudanças conformacionais na Hsp90, que 

sofre rearranjo de seus domínios, como visto na figura 2 (Cunningham et al., 

2008). Alguns trabalhos recentes propuseram a existência de um segundo sítio de 

ligação de nucleotídeo no domínio C-terminal da Hsp90 (Marcu et al., 2000; Soti 

et al., 2002; Garnier et al., 2002), sendo que este segundo sítio só deve ser 

ocupado após a ligação de ATP no sítio do N-terminal (Soti et al., 2003). O 

domínio C-terminal também está envolvido na interação com várias co-

chaperonas e proteínas clientes. O pentapeptídeo MEEVD no C-terminal da 

Hsp90 citoplasmática é o sítio de interação característico com os domínios TPR 

(tetraticopeptídeo) de co-chaperonas e algumas clientes (Prodromou et al., 1999; 

Wegele et al., 2004). O sub-item 1.7 desse capítulo apresenta uma revisão 

detalhada da Hsp90 e sua implicação na terapia do câncer. 
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1.4 Co-chaperonas 

As co-chaperonas são proteínas capazes de modular a atividade das 

chaperonas. Algumas co-chaperonas como as Hsp40 são, individualmente, 

chaperonas moleculares, devido à sua habilidade de prevenir a agregação de 

polipeptídeos (Caplan, 2003). Sob uma perspectiva funcional, as co-chaperonas 

são proteínas capazes de mediar a interação das chaperonas com uma 

determinada proteína cliente, apresentado-a para Hsp90 e/ou Hsp70, e então 

coordenando o ciclo de ligação e liberação pelas chaperonas de maneira a 

facilitar o enovelamento/manutenção ou a desagregação proteicas. 

Em eucariotos, a Hsp90 é, frequentemente, encontrada em grandes 

complexos com co-chaperonas, que por sua vez, exercem efeitos diversos nas 

funções da Hsp90. As co-chaperonas atuam recrutando diferentes proteínas 

clientes para a Hsp90, regulando seu ciclo conformacional e de hidrólise de ATP, 

e subsequentemente controlando o enovelamento de proteínas clientes 

(Krukenberg et al., 2011). Fazendo-se uma comparação genômica das co-

chaperonas da Hsp90, é possível detectar que os organismos possuem uma 

compilação singular de co-chaperonas, sugerindo que essas combinações 

específicas de co-chaperonas são capazes de adequar a atividade da Hsp90 para 

melhor se adaptar às condições da cada organismo em particular (Johnson & 

Brown, 2009). 

Algumas co-chaperonas como a Aha1 (activator of Hsp90 ATPase 1), a 

p23 – também conhecida como PTGES3 (prostaglandin E synthase 3), a Hop 

(Hsp70/Hsp90 organizing protein, também chamada Sti1 ou p60) e a p50 ou Cdc 

37 (cell division cycle 37 homologue), modulam o ciclo da Hsp90 afetando a 

dinâmica conformacional da proteína (Panaretou et al., 2002; Ali et al., 2006; 
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Onuoha et al., 2008; Forafonov et al., 2008; Mickler et al., 2009). Esse tipo de 

modulação é bastante importante, pois regula o tempo de permanência das 

proteínas clientes no complexo chaperona. 

Algumas co-chaperonas são adaptadores que entregam clientes 

específicas à Hsp90. Por exemplo, a p50/Cdc37 entrega proteínas cinases; a 

Hop, por sua vez, participa da entrega de receptores de hormônios esteróides à 

Hsp90 (Smith & Workman, 2009; Trepel et al., 2010). Outras co-chaperonas 

afetam a Hsp90 pois catalisam reações como a ligação de ubiquitina (a ubiquitina 

ligase E3 ou CHIP) e desfosforilação (a fosfatase PP5). A ubiquitinação de 

proteínas clientes da Hsp90, dependente da CHIP (C-terminal Hsp70-interacting 

protein), as direciona para o complexo proteassoma, encurtando ciclos adicionais 

de reenovelamento mediado por chaperonas (Trepel et al., 2010). Em células, a 

desfosforilação da Cdc37 mediada pela PP5 regula a habilidade da Hsp90 

interagir com a proteína cinase Raf1, inibe a ativação MAPK dependente da Raf1 

e sensibiliza as células para inibição da Hsp90 (Vaughan et al., 2008). 

A expressão de co-chaperonas também está envolvida com a 

sensibilização de células cancerígenas a inibidores da Hsp90. A deleção da p23 

em levedura, causa hipersensibilidade aos inibidores geldanamicina e radicicol 

(McDowell et al., 2009), e a super-expressão da co-chaperona, como visto no 

câncer, protege a célula da ação desses compostos (Forafonov et al., 2008). De 

modo similar, o silenciamento gênico da Aha1 e Cdc37, que também são super-

expressas em câncer (Smith & Workman, 2009), sensibiliza as células para 

geldanamicina e 17-AAG (derivado da geldanamicina) (Gray et al., 2007; Holmes 

et al., 2008). Assim, co-chaperonas e/ou sua interação com a Hsp90 podem ser 
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eleitas como excelente alvo para terapias anti-câncer, especialmente quando 

combinada com inibidores da Hsp90 (Holmes et al., 2008). 

Quanto à sua classificação, embora haja mais de 100 co-chaperonas 

diferentes em mamíferos, a maioria delas pode ser classificada em duas classes 

principais, baseada na estrutura de seus domínios. São as “Domínio-J” 

encontradas nas Hsp40, co-chaperonas da Hsp70 e as que apresentam unidades 

repetitivas de tetratricopeptídeos (TPR), co-chaperonas que interagem com a 

Hsp70 (no motivo C-terminal IEEVD) e com a Hsp90, no motivo C-terminal: 

MEEVD, como a Hop, Tom70 e CHIP, por exemplo (Caplan, 2003). 

1.5 Hop 

A Hop (Hsp70/Hsp90-organizing protein) a princípio identificada em 

levedura como Sti1 – stress inducible protein 1 (Nicolet & Craig, 1989), é capaz de 

se associar diretamente à ambas chaperonas, Hsp70 e Hsp90 e também medeia 

a associação entre elas, que é dependente da hidrólise de ATP e troca ADP/ATP 

(Chen & Smith, 1998; Hernandez et al., 2002; Carrigan et al., 2006; Gonçalves et 

al., 2010). 

A ligação da Hop às chaperonas moleculares Hsp70 e Hsp90 ocorre por 

meio de múltiplos domínios TPR, cada um é formado por motivos TPR, com 

estrutura hélice-volta-hélice com 34 resíduos aminoácidos (Blatch & Lassle, 1999; 

Smith, 2004). A Hop possui três domínios TPR: TPR1, TPR2A e TPR2B, 

intercalados com repetições de resíduos de ácido aspártico e prolina (DP) no 

seguinte arranjo: TRP1-DP1-TPR2A-TPR2B-DP2. A interação entre o motivo 

MEEVD da Hsp90 ocorre com o TPR2A (Figura 4). 
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Figura 4: TPR2A da Hop em complexo com o MEEVD da Hsp90. Estrutura 
cristalográfica do domínio TPR2A da Hop humana em complexo com o pentapeptídeo 
MEEVD da Hsp90. Número de acesso ao PDB: 1ELR. (Figura retirada de Gava et al., 
2011). 

A Hop otimiza a interação entre Hsp70 e Hsp90 que requer interações 

altamente coordenadas para o enovelamento e regulação conformacional de uma 

variedade de proteínas. O complexo Hop-Hsp70-Hsp90 está envolvido no 

enovelamento e maturação de proteínas regulatórias essenciais para a viabilidade 

celular (Wegele et al., 2004), como hormônios esteróides, fatores de transcrição e 

cinases, algumas dessas estão envolvidas na progressão do câncer (Kubota et 

al., 2010); a Hop também está envolvida na estabilização de proteínas do prion 

(Zanata et al., 2002). 

Os domínios TPR ligam chaperonas e outras proteínas do sistema em 

redes cooperativas e podem participar da ação da Hsp90 como um estabilizador 

do fenótipo cancerígeno, nesse sentido, complexos TPR-Hsp90 são potenciais 

alvos para drogas. Adicionalmente, a presença de múltiplos domínios TPR 

permite que a Hop possa ligar, simultaneamente, os sítios EEVD da Hsp70 e 

Hsp90  
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O papel da Hop em progressão tumoral ainda não está completamente 

esclarecido, mas existem relatos de super-expressão da Hop em alguns tipos de 

carcinoma (Sun et al., 2007; Kubota et al., 2010). Recentemente, Walsh e 

colaboradores, por meio de experimentos de knockdown reportaram a Hop como 

um potencial alvo terapêutico para o tratamento de câncer pancreático (Walsh et 

al., 2011). Nesse sentido, o rompimento ou impedimento do complexo Hop-Hsp90 

pode ser um novo alvo para anular as vias de estabilização de proteínas do 

câncer dependentes da Hsp90. 

1.6 Tom70 

A mitocôndria é crucial para a bioenergética de células eucarióticas, 

também está envolvida em diversos processos celulares importantes, incluindo a 

síntese de metabólitos, o metabolismo de lipídeos, produção de radicais livres e 

homeostase de íons metálicos (Pfanner et al., 2004; Wu & Sha, 2006). Em 

humanos, há cerca de 1500 proteínas diferentes na mitocôndria que embora 

contenha um sistema gênico completo na matriz mitocondrial, tem apenas ~1% de 

suas proteínas codificadas pelo seu genoma e sintetizada em sua matriz. A 

grande maioria das proteínas mitocondriais é codificada por genes nucleares e 

sintetizada como proteínas precursoras nos ribossomos no citosol (Endo et al., 

2003; van der Laan et al., 2010). 

As proteínas precursoras possuem regiões ou sequências sinalizadoras 

que são reconhecidas por receptores ou translocases da membrana mitocondrial 

externa, designados Tom (do inglês, Translocase of the mitochondrial outer 

membrane), que formam o complexo TOM. O complexo TOM tem dois receptores 

integrais de membrana, Tom20 e Tom70. A Tom20 reconhece a sequência 

sinalizadora anfipática do N-terminal de proteínas precursoras via interações 
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hidrofóbicas (Brix et al., 1997; Abe et al., 2000; Chacinska et al., 2009); enquanto 

a Tom70 liga sequências sinalizadoras hidrofóbicas no interior dessas proteínas, 

muitas dessas são carreadores de metabólitos da membrana interna (Brix et al., 

1997; Ryan et al., 1999; Chacinska et al., 2009). Após a interação com esses 

receptores, as proteínas são encaminhadas para o poro de translocação Tom22-

Tom40, também chamado de complexo GIP (do inglês general import pore); e 

então são classificadas e destinadas ao sub-compartimento apropriado; há ainda 

duas translocases na membrana interna, a Tim22 e Tim23 (Chacinska et al., 

2009). 

A via de importação mediada pela Tom70 é dependente de chaperonas 

(Figura 5). Antes da importação, as proteínas precursoras dependentes da Tom70 

interagem com as chaperonas citosólicas Hsp70 e Hsp90, e com as co-

chaperonas DnaJA1 e DnaJA2 (Young et al., 2003; Fan et al., 2006; Bhangoo et 

al., 2007; Fan et al., 2010). Hsp70 e Hsp90 executam um papel importante ao 

endereçar essas precursoras ao complexo TOM (Young et al., 2003), também 

protegem as proteínas precursoras da agregação e/ou desenovelamento, 

enquanto permanecem no citosol (Beddoe & Lithgow, 2002). 
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Figura 5: Papel das chaperonas e co-chaperonas na translocação de proteínas para 
a mitocôndria. No esquema estão mostrados os complexos TOM e TIM. Nesse 
esquema (no citosol) está em foco o reconhecimento de proteínas precursoras pela 
Tom70, essas proteínas são mantidas estáveis no citosol e apresentadas à Tom70 pelas 
chaperonas citosólicas Hsp70 e Hsp90 (Figura retirada e adaptada de Rehling et al., 
2004). 

 

A Tom70 contém um domínio N-terminal transmembrana seguido por um 

domínio TPR citosólico (também chamado de grampo TPR ou TPR clamp), que 

foi caracterizado estruturalmente pela primeira vez para a co-chaperona Hop 

(Scheufler et al., 2000). Esse domínio TPR serve como um sítio de interação para 

a Hsp70 e Hsp90 e, portanto para complexos multi-chaperona contendo a 

proteína precursora. A Tom70 contém onze motivos TPR que estão agrupados 

em dois domínios. A Tom70 humana contém 608 resíduos de aminoácidos, sendo 

que a região citosólica da proteína engloba os resíduos 111 a 608. Na região N-

terminal da porção citosólica estão três motivos TPR que formam um encaixe 

para a interação com o peptídeo EEVD das chaperonas Hsp70/Hsp90 (Figura 6), 
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já o domínio C-terminal da Tom70 contém um bolsão de ligação à proteína 

precursora (Wu & Sha, 2006; Li et al., 2009; Fan & Young, 2011).  

Figura 6: Estrutura do domínio TPR da Tom71 em complexo com o MEEVD. 
Estrutura cristalográfica da Tom71 de levedura. Representação do domínio TPR que 
interagem com o pentapeptídeo MEEVD da Hsp90. Número de acesso ao PDB: 3FP2. 
(Figura retirada de Gava et al., 2011). 

 

Nesse trabalho foi utilizada apenas a porção citosólica da proteína Tom70 

humana recombinante, cuja sequência está apresentada na figura 7 a seguir. 

 

Figura 7: Sequência de aminoácidos da proteína Tom70 humana. A) Sequência de 
aminoácidos da proteína Tom70 humana completa. Em cinza estão representados os 
resíduos de aminoácidos da região transmembrana da proteína; B) Sequência de 
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aminoácidos da proteína Tom70 humana recombinante, porção citosólica. Em vermelho 
estão representados os resíduos de aminoácidos da cauda de poli-histidina presente da 
proteína recombinante utilizada nesse trabalho. 

 

Como discutido anteriormente, a elucidação da estrutura e modo de ação 

dessas co-chaperonas assim como o entendimento da interação dessas com a 

chaperona Hsp90, é um alvo de estudo bastante interessante. E o 

posicionamento desse sistema como um alvo para terapias de doenças, como o 

câncer, torna tal investigação ainda mais relevante para compreender como 

interferir nessas interações TPR-Hsp90, usando tal interferência como uma 

estratégia para impedir a entrega e repasse de proteínas clientes da Hsp90. 

Na seção a seguir está apresentado o artigo de revisão “A Hsp90 como um 

alvo para a terapia do câncer” (Human 90 kDa Heat Shock Protein Hsp90 as a 

Target for Cancer Therapeutics), parte integrante da introdução da tese. Essa 

revisão aborda as chaperonas moleculares sob um ponto de vista geral e seu 

envolvimento em doenças. Nesta revisão existe uma abordagem detalhada sobre 

a Hsp90 no que diz respeito à sua estrutura, função e interação. A implicação da 

Hsp90 no câncer também é discutida, abordando os inibidores conhecidos e 

testados para a Hsp90 no tratamento do câncer. 
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1. CHAPERONES AND PATHOLOGY 

 The necessary information for a protein to fold to its na-
tive conformation lies in the amino-acid sequence (for a spe-
cific review see [1]). However, efficient reversible folding 
and unfolding has been usually observed only for small pro-
teins whereas for many others, refolding experiments result 
in partially unfolded, or even completely misfolded mole-
cules, and in aggregation. Aggregation is unproductive since 
the function of most proteins is ordinarily related to its native 
conformation, although Intrinsically Unfolded Proteins, or 
IUP, seem to have cellular functions [2]. Protein aggregation 
has become a general problem because any protein sequence 
has the potential to form amyloid fibrils given the appropri-
ate conditions [3,4]. In agreement with the aforementioned, 
the deleterious effect of aggregates has been connected to 
major pathological effects and tissue deposition of protein 
aggregates in vivo causes degenerative diseases and organ 
damage [5]. There are two aspects of protein folding in the 
cellular context that further aggravate the pathological ef-
fects of protein misfolding. Protein aggregation is enhanced 
by crowding effects inside the cell [6] and aggregates may 
become infections by promoting aggregation of native con-
formers as is the case with prions [7].  

 Inside the cell the folding of many proteins is assisted by 
molecular chaperones that are also referred to as heat-shock 
proteins (Hsp) for being first described as proteins induced 
during thermal stress [8-10]. In a general way, molecular 
chaperones help other proteins to fold and are considered 
cellular housekeepers due to their capability of activating  
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cellular processes by regulating the folding/function of key 
proteins. For instance, when cells are submitted to an in-
crease in temperature, a heat-shock response (HSR) is acti-
vated and mRNAs related to Hsps are detected subsequently. 
The importance of molecular chaperones for the organism 
can also be evaluated by the high number of genes belonging 
to molecular chaperones present in the genome and the high 
expression of these genes. Take plants for instance, their 
cells trigger the expression of molecular chaperones to in-
crease their chance of survival in the extreme environmental 
stress to which they are usually exposed. The genome of the 
model plant Arabidopsis thaliana has been sequenced and 
the gene expression profile, measured by RNA expression, 
of many plants, among them sugarcane and eucalyptus, have 
been investigated. The data provided by these works can be 
mined specifically for molecular chaperones and used to 
generate new information about them (The TIGR Arabidop-
sis thaliana Database: http://www.tigr.org/tdb/e2k1/ath1/; 
[11, 12, 13]). The general picture from the mined data is that 
about 20% of the expressed molecular chaperones belong to 
the Hsp70 family, about 20% to Hsp70 co-chaperones and 
about 10% to the Hsp90 family. This result emphasizes the 
importance of Hsp70 and Hsp90 as regulators of many cellu-
lar processes. 

 Molecular chaperones also have a prophylactic action 
because they prevent proteins with aggregative potential to 
form amyloid fibrils. In addition to that, some specialized 
molecular chaperones have the ability to dissolubilize aggre-
gates, a powerful characteristic that opens the possibility to 
use them as therapeutics against diseases caused by mis-
folded proteins. It is conceivable that an accumulation of 
misfolded proteins with time would overload the chaperone 
system accounting for the increase in the number of diseases 
verified in the elderly [14]. Consequently, some researchers 
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have pointed out that misfolded proteins would play a role in 
the manifestation of as much as half of the human diseases 
(see Reference [15] and references therein). We may con-
clude that a complex formed by molecular chaperones and 
the proteassome (responsible for protein degradation) consti-
tute the quality control system that deals with proper protein 
folding and degradation. This complex system would then 
modulate the phenotype of disorders caused by protein mis-
folding.  

 Protein misfolding causes both the loss of function, as in 
the case of some cancer diseases, and again of damaging 
function, as in the case of Alzheimer and Parkinson diseases. 
These deleterious actions motivate developing small mole-
cules capable of manipulating chaperones and protein ho-
meostasis. As an example, compounds that could induce a 
high expression of molecular chaperones would be important 
as therapeutic agents to increase the yield of correctly folded 
proteins and to decrease the number of aggregates in patho-
logical conditions.  

 The heat shock response (HSR) is transcriptionally regu-
lated by heat shock factors (HSFs) that triggers the expres-
sion of molecular chaperones. There are three HSFs in hu-
mans: HSF1, HSF2 and HSF4. Several chaperones, most 
importantly Hsp70 and Hsp90, were shown to bind to HSF1 
and keep it in an inactive form. In a situation of stress mis-

folded proteins compete with HSF for the binding site con-
sequently releasing HSF that migrates to the cell nucleus 
[16]. HSF1 is activated by proteasome inhibitors, by mole-
cules that regulate inflammation and by Hsp90 inhibitors 
(see below). Some compounds that increase the action of 
HSF are in clinical trials and had positive impact on oxida-
tive stress and on some cancers [17,18]: terrecyclic acid A 
[19], celastrol [20], and quercetin [21,22] (Fig. 1). The 
aforementioned compounds have also critical importance 
when considering targeting Hsp90 for chemotherapy [18]. 

2. STRUCTURE, INTERACTION AND FUNCTION OF 
HUMAN HSP90 

 Hsp90 is a specialized ATP-dependent protein folding 
tool, which is essential for the growth of eukaryotic cells 
[23]. This chaperone is a homodimer and each monomer 
consists of a highly conserved N-terminal domain (~30 kDa) 
that contains an ATP-binding site followed by a charged 
region of unknown function, a flexible domain located in the 
middle (~35 kDa) and a C-terminal domain (~20 kDa) that is 
responsible for dimerization (Fig. 2). The N-terminal AT-
Pase domain has a regulatory pocket that binds and hydro-
lyzes ATP to mediate a series of association-dissociation 
cycles between Hsp90 and client proteins. This domain con-
tains the Bergerat-fold, in which the nucleotide adopts a bent 
shape, and was previously found in bacterial gyrases and 

 

 

 

 

 

Fig. (1). (A) Terrecyclic acid A, (B) celastrol and (C) quecertin. 

 

 

 

 

 

 

 

 

 
 
Fig. (2). Tertiary structure of Hsp90 from Saccharomyces cerevisiae which is 82% similar to human Hsp90 . A) One monomer is in black 
and the other in white. B) Top white: N-terminal domain residues (2-216), middle gray: central domain residues (262-560) and bottom black: 
C-terminal domain residues (561-677). AMP-PNP is represented by spheres. PDB accession number 2CG9. All molecular graphics were 
produced with PyMOL (http://pymol.sourceforge.net/). 
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topoisomerases [24,25]. A second nucleotide-binding site is 
also present at the C-terminal of Hsp90 [26-28] (see below).  

 Fig. (3) shows the crystal structure of the N-terminal of 
Hsp90 both in the apo form and bound to ADP. The N-
terminal domain of Hsp90 is composed of nine helices and 
eight strands of antiparallel  sheets that together fold into an 

+  sandwich, in which a deep pocket is formed by the resi-
dues involved with ATP/ADP binding (Fig. 3). This pocket 
has diverse hydrophobic and polar character and the residues 
involved in binding either directly or throughout water-
mediated hydrogen bonds are Leu48, Asn51, Asp54, Ala55, 
Lys58, Ile91, Asp93, Ile96, Gly97, Met98, Asn106, Leu107, 
Lys112, Gly135, Phe138, Val150, Thr184 and Val186 
[25,29,30]. 

 Despite being an heat-shock protein, Hsp90 is ubiqui-
tously expressed under normal conditions and corresponds to 
about 1-2% of total cellular protein content making them one 
of the most abundantly expressed cytoplasmic proteins in 
several organisms [31]. As a matter of fact, the Hsp90 family 
is highly expressed in plant cells, 10-20% of all 5’EST anno-
tated to molecular chaperone category in eucalyptus and 
sugarcane belonging to Hsp90 [11]. The Hsp90 homolog in 
bacteria (HtpG) is non-essential whereas eukaryotic cytoso-
lic Hsp90 is essential and accomplishes numerous roles. In 
addition to that, there are different isoforms of Hsp90 in the 
human cell [32]. Most relevant for this review are the cyto-
solic isoforms Hsp90  (gene HSP90AA1), which is heat-
inducible and Hsp90  (gene HSP90AB1), which is constitu-
tive (Fig. 4). They have different roles, e.g. Hsp90  is in-
volved in cancer cell invasiveness [33] but there is still much 
to be known about the biological functions of the different 
isoforms of Hsp90.  

 One basic property of chaperones is their ability to spe-
cifically target and form complexes with other chaperones. 
Hsp90 collaborates with Hsp70 to form a multi-chaperone 
machinery, which is a dynamic, multifunctional and mul-
ticomponent system that plays a pivotal role in protecting 
biological organisms from environmental and genetic 
stresses [34]. Although Hsp70 and Hsp90 are sufficient for 
folding their functions are amplified by the help provided by 

 

 

 

 

 

 

 

 
Fig. (3). Crystal structure of the N-termini of Hsp90 in the apo 
form (PDB accession number 1YES) and bound to ADP (PDB 
accession number 1BYQ). The N-terminal domain of Hsp90 is 
composed of nine helices and eight strands of antiparallel  sheets 
that together fold into an +  sandwich. Residues involved either 
directly or throughout water-mediated hydrogen bonds are Leu48, 
Asn51, Asp54, Ala55, Lys58, Ile91, Asp93, Ile96, Gly97, Met98, 
Asn106, Leu107, Lys112, Gly135, Phe138, Val150, Thr184 and 
Val186 [25]. Not all residues are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Sequence alignment of human cytosolic Hsp90 isoforms,  and , which are 86.8% identical. Multiple sequence alignment was 
performed by Clustal W (http://align.genome.jp/). 
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co-chaperones in modulation, acceleration, potentiation, and 
stabilization of folding (see Table 1 for a list of important 
co-chaperones involved with Hsp90). A list of KD values for 
binding for selected Hsp90 factors can be found in Reference 
[35]. Hsp90 co-chaperones promote the interconversion of 
the ATP- and ADP-bound states and modulate the formation 
of client specific complexes [36].  

 In eukaryotes, the Hsp70-Hsp90 machinery is formed by 
Hsp70, Hsp90, and co-chaperones HOP, Hsp40 and p23. As 
a direct support to this hypothesis functional Hsp90-
heterocomplex can be assembled in vitro by mixing the puri-
fied chaperones and co-chaperones listed above. The func-
tion of Hsp90 is driven by a dynamic association with its 
client proteins and their co-chaperones to form protein com-
plexes. The tetratricopeptide repeat (TPR) is a degenerate 
34-residue motif present in a subset of co-chaperones that 
binds Hsp90. TPR is formed by a compact helical domain of 
six consecutive -helices arranged in a regular right-handed 
superhelix, generating an amphipatic groove that is capable 
of interacting with 7-12 residues of the polypeptide. The 
binding site for TPR is in the C-terminus where a domain 
formed by a MEEVD motif is present [37]. 

 The Hsp90 chaperone is highly regulated. For instance, 
its ATPase activity regulates the substrate binding cycle and 
HOP inhibits this activity by preventing nucleotide binding. 
The high affinity state of Hsp90 for client proteins is 
switched to the lower affinity state by ATP binding, which 
hydrolyze the affinity back to high. The p23 co-chaperone 
recognizes Hsp90 bound to ATP and stimulates dissociation 
of the complex. In addition, Aha1 stimulates the ATPase 
activity of Hsp90 by about tenfold [38] and CHIP (C-
terminus of Hsp70-interacting protein) connects Hsp90 to 
the ubiquitin complex, helping to control the degradation of 
proteins by the proteasome. As a matter of fact, there is evi-
dence that in several tumor cell lines, Hsp90 might be exclu-
sively bound to co-chaperones in a state of high affinity for 
nucleotide [39] (see below). 

3. HSP90 AND CANCER 

 A recent and large-scale study using yeast as model [40] 
showed that at least 200 client proteins make physical inter-
actions with Hsp90. One of the most important conclusions 
of this work is that Hsp90 is connected with a wide range of 
cellular functions. As examples of its diversity Hsp90 is in-
volved in epigenetic gene regulation by interacting with pro-
teins that are chromatin remodeling factors and Hsp90 par-
ticipates in inherent genetic variation [41].  

 New client proteins for Hsp90 seem to be discovered 
continuously and an up to date list of Hsp90 ‘interactors’ can 
be found at http://www.picard.ch/DP/downloads/Hsp90inte-
ractors.pdf. Important to the cancer therapeutics field is that 
signal transduction proteins including many kinases and 
steroid hormones are also clients of Hsp90, which maintains 
their conformation, stability and function [41-43]. These 
structurally labile signal transducers have a crucial role in 
cell cycle, growth control, apoptosis and developmental 
processes. In fact, the largest single group of Hsp90 client 
proteins are protein kinases such as oncogenic kinases c-Src, 
b-Raf, PKB/Akt1, ErbB2 and Cdk4 [44,45]. Many of them, 
like ErbB2, Src, Raf, and cyclin-dependent serine kinases are 
key players in malignant transformation [46,47]. Hsp90 is 
also necessary for the maturation of the nuclear hormone 
receptors and the hypoxia-inducible factor-1, and is associ-
ated with nitric oxide synthases and the antiapoptotic pro-
tein. The chaperone acts in regulating proteins involved in 
both the intrinsic and extrinsic apoptotic pathways [36] and 
the accumulation of mutant forms of the tumor suppressor 
transcription factor p53 [46,47].  

 Increased chaperone expression favors oncogenesis be-
cause they increase the chance that cancer cells survive in 
extreme environmental stress. For instance, free radicals 
generated by hypoxia and acidosis can cause significant 
physical damage to cellular proteins, which will be protected 
by the expression of molecular chaperones. Therefore, the 
fact that Hsp90 maintain its client proteins in an activated 

Table 1. Important Hsp90 Co-Chaperones 
 

Co-Chaperone Class Main Function Ref. 

p23 Other Essential for assembly of stable steroid receptor heterocomplexes; coupling 
factor (ATPase inhibitor)  

[118] 

Cdc37 Other Kinase-specific and co-chaperone  [119] 

Aha1 Other ATPase activator [120] 

HOP TPR  Essential for assembly of stable steroid receptor heterocomplexes; 
Hsp70/Hsp90 adaptor protein 

[121,122] 

Tom70 TPR Mitochondrial protein import [123] 

Sgt1 TPR Binding partner (nucleotide-dependent) [124] 

Unc45 TPR Myosin folding and assembly [125] 

FKBP51 

FKBP52 

PPIases Essential for assembly of stable steroid receptor heterocomplexes [126] 

Cyp40 PPIases Essential for assembly of stable steroid receptor heterocomplexes  [126,127] 

PP5 Hsp90 phosphatase Modulation of Hsp90 substrate maturation [128] 

CHIP Ubiquitin ligase Protein quality control system – protein labeling for degradation  [129,130] 
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state combined with the protective role of molecular chaper-
ones toward damaged proteins help to stabilize tumorogenic 
cells. For that, Hsp90 has to have highly ATPase activity, 
which is usually potentiated by co-chaperones, thus it is 
worth noting that Hsp90 complexes from tumor cells are 
almost entirely bound to HOP and p23 [39]. 

 Hanahan and Weinberg [48] proposed six essential al-
terations in cell physiology that are characteristic of most if 
not all cancers: self-sufficiency in growth signals, insensitiv-
ity to growth-inhibitory (antigrowth) signals, evasion of pro-
grammed cell death (apoptosis), limitless replicative poten-
tial, sustained angiogenesis, and tissue invasion and metasta-
sis. Hsp90 is essential for the stability and function of many 
oncogenic client proteins which are usually deregulated in 
cancers and contribute to the hallmark traits of malignance 
aforementioned [49-51] (a small list of Hsp90 client proteins 
involved with malignance are summarized in Table 2). On-
cogenic mutations increase the instability of the client pro-
teins therefore requiring increased amounts of Hsp90. Thus, 
the Hsp90 action stabilizes mutated oncogenic proteins re-
quired for the transformed phenotype that would otherwise 
be lethal [41]. In conclusion, Hsp90 has the ability to main-
tain the functional conformations of mutant and aberrant 
oncoproteins and grants survival advantage to tumor cells.  

 Another important finding is that survivin, an apoptosis 
inhibitor and essential regulator of mitosis, is maintained by 
Hsp90. Disruption of the survivin-Hsp90 complex results in 
proteasomal degradation of survivin, mitochondrial-
dependent apoptosis, and cell cycle arrest [52]. Therefore, 
the association between survivin and Hsp90 reduces the 
chance of apoptosis and promotes the proliferation of tumor 
cells. Hsp90 is also an important determinant of tumor cell 
invasion and metastasis because it is expressed in the surface 
of melanoma metastases and cell surface Hsp90 seems to be 
crucial for the invasiveness of sarcoma cells in vitro 
[33,53,54]. 

 The information discussed above forms the basis for us-
ing Hsp90 as a target for cancer therapeutics because inhibi-
tion of Hsp90 will significantly weaken a cancer cell and 
will cause regression of tumor growth. Client proteins are 
degraded in the absence of the chaperoning activity of Hsp90 
and consequently inhibition of the chaperone results in deg-
radation of its client proteins via the ubiquitin-proteasome 

pathway. As a consequence, the down-regulation of signal 
being propagated via numerous signaling pathways and 
modulation of all aspects of the malignant phenotype will 
follow [50]. Therefore, Hsp90 provides a broader target for 
anticancer therapies than single, oncogenically activated 
signaling pathways. As a matter of fact, Hsp90 inhibition in 

vitro leads to growth arrest and apoptosis in cancer cells 
[51,55] and causes a defect in a number of proliferative sig-
nals, including the Akt-dependent survival pathway [56-58]. 
Hsp90 inhibition may also sensitize tumor cells against vari-
ous attacks by helping their lysis under hypoxia and com-
plement attack [59,60].  

 Hsp90 inhibitors, by interacting specifically with a single 
molecular target, the Hsp90 chaperone, causes the inactiva-
tion, destabilization, and eventual degradation of Hsp90 cli-
ent proteins. As mentioned below, inhibitors of Hsp90 have 
shown promising antitumor activity in preclinical model 
systems [41,51]. The genetic knockout of Hsp90 in eukaryo-
tes is lethal and therefore it was not obvious that the chaper-
one may be a target in disease. Nonetheless, compounds that 
target Hsp90 have the potential to treat cancers (see below).  

4. THERAPY: INHIBITORS AND CLINICAL TRIALS 

 The Hsp90 inhibitors currently in clinical trial share the 
property of displacing nucleotide from their binding pocket 
located at the N-terminus of Hsp90. Therefore, these inhibi-
tors promote a significant decrease in the activity of onco-
genic kinases and disrupt the activity of numerous receptors 
and transcription factors that are known to be involved in 
oncogenesis. For such reasons, compounds that target Hsp90 
have been identified as potential anticancer agents. In con-
trast to most direct inhibitors, which are often fairly specific 
for a given protein, Hsp90 inhibitors can affect multiple on-
cogenic pathways simultaneously. The ability to diminish the 
level of many protein targets in parallel is therapeutically 
attractive because they behave as typical multi-target drugs, 
a feature potentially more efficient than highly selective sin-
gle-target drugs [61,62].  

 Important classes of compounds found to be inhibitors 
against Hsp90 mediated oncogenic in the last decade are 
summarized in Table 3. They are geldanamycin, its less toxic 
analogs, 17AAG and 17DMAG, radicicol and its more stable 
oxime derivatives, purine-scaffold inhibitors and novobiocin 
[41,49-51]. These compounds target the ATP-binding pocket 
and since ATP binds to the Bergerat fold in Hsp90, its in-
hibitors are likely to adopt a bent conformation as well to 
achieve high affinity binding. Fig. (5) shows the pocket that 
forms the ADP/ATP-binding site located at the N-terminus 
of Hsp90 in the apo form, in complex with ADP, with gel-
danamycin and with its analog 17-DMAG. 

 Now that the proof-of-principle regarding Hsp90 inhibi-
tors has been established by several phase I trials, there are 
several efforts are underway to synthesize drug candidates 
with higher affinity for Hsp90 and in developing clinical 
assays to test these inhibitors. There is also an increase in the 
study of the crystal structure of Hsp90 with inhibitors to un-
derstand their mode of action and to screen potential ligands. 
For all these reasons and others mentioned elsewhere, the 
development of Hsp90 inhibitors is considered to be a good 
example of medicinal chemistry [50,51,63]. For a recent list 

Table 2. Important Hsp90 Client-Proteins Involved with 
Cancer 

 

Client Protein Function 

ErbB2 Proliferation, differentiation, and oncogenesis 

Bcr-Abl Pathogenesis of chronic myelogenous leukemia 

Akt/PKB Anti-apoptosis 

C-RAF Growth factor independence 

CDK4 Resistance to anti-growth signals 

PLK-1 Mitotic regulator kinase 

Mutant p53 Tumor supressor 

HIF-1  Angiogenesis stability 

hTERT Unlimited replicative potential 
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of Hsp90 drugs which are on clinical trials and their present 
status see Reference [64].  

4.1. Geldanamycin 

 Geldanamycin (Fig. 6) is a benzoquinone microbial prod-
uct classified as ansamycin antibiotic that competes with 
ATP for the N-terminal binding site of Hsp90 [65,66]. Al-
though the antitumor property of this molecule has been 
known for a long time [67], its association with Hsp90 was 
discovered several years later [68]. Geldanamycin was 
shown to activate HSF [69] and consequently the expression 
of Hsp40, Hsp70 and Hsp90 [70].  

 Geldanamycin interferes with the Hsp90 function and 
generates proteossomal degradation of several key regulatory 
proteins, including tyrosine kinases and steroid receptors, 
many of which are involved in promoting malignancy 
[45,71]. This natural ligand also causes differentiation and 

apoptosis in a cell-line-dependent manner [56] and its affin-
ity for Hsp90 complexes from tumor cells is 100-fold higher 
than for Hsp90 from non-tumor cells. However, geldanamy-
cin does not have acceptable pharmacological properties for 
clinical application because its solubility is low and it ap-
pears broadly cytotoxic. Geldanamycin causes acute hepatic 
necrosis and nephrotoxicity in dogs [72] and is also toxic for 
rats [73,74]. These results precluded testing in humans.  

4.2. Geldanamycin Analogs 

 Stimulated by the low solubility and high cytotoxicity of 
geldanamycin additional natural products and natural prod-
uct derivatives have been identified and developed to inhibit 
the Hsp90 protein folding machinery. An important review 
published in 2005 [63] informed that more than 500 com-
pounds related to geldanamycin were reported at that time, 
some of them able to inhibit Hsp90 at fentomol levels [75].  

 One of the first Hsp90 inhibitors developed with lower 
toxicity was the geldanamycin analog 17-allylamino, 17-
demethoxygeldanamycin (17-AAG) (Fig. 6). This analog has 
all the Hsp90-related characteristics of geldanamycin but 
shows lower toxicity [76-79]. 17AAG also activates HSF 
[69] and the expression of Hsp40, Hsp70 and Hsp90 [70] 
and downregulates several client proteins including Raf-1, 
cdk4 and Akt [80]. The National Cancer Institute initiated 
Phase I clinical trials with 17-AAG in 1999 that are now  
complete and several Phase II trials are in progress 
[62,71,79]. Also, the latest results with 17-AAG in breast 
cancer and melanoma are especially encouraging [81-83]. 
These trials demonstrate that 17-AAG inhibits the biological 
function of Hsp90 in patients with breast cancer, multiple 
myeloma and other cancers. Several preclinical studies have 
shown that 17-AAG may enhance the efficacy of a variety  
of chemotherapeutic agents. 17-AAG was combined with 
taxol to enhance cytotoxic effects on taxol-resistant ErbB2-

Table 3. Important Hsp90 Inhibitors 
 

Inhibitor Class Binding 

Geldanamycin ansamycin N-terminus 

17-AAG ansamycin N-terminus 

17-DMAG ansamycin N-terminus 

Radicicol Macrocyclic antibiotic N-terminus 

KF58333 Oxime derivatives N-terminus 

PU3 and 
analogs 

Purine scaffold N-terminus 

Novobiocin Coumarins N- and C-termini 

Cisplatin Platinum complex C-terminus 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (5). Figure shows the pocket that forms the ADP/ATP-binding site located at the N-terminus of Hsp90 in the apo form (A), in complex 
with ADP (B), with geldanamycin (C) and with its analog 17-DMAG (D). PDB accession numbers: 1YES, 1BYQ, 1YET and 1OSF, respec-
tively. 
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overexpressing breast cancer cells [56] and with angiogene-
sis inhibitors in breast tumors with encouraging results [84]. 
17-AAG is also capable to potentiate both the in vitro and in 

vivo radiation response of cervical carcinoma cells [85]. 
However, there are several limitations with 17-AAG such as 
restricted solubility, hepatotoxicity, and its formulation, 
which  is difficult to handle [50]. However, the positive 
clinical results with 17-AAG show that the Hsp90 target can 
be inhibited without causing unacceptable toxicity. 

 The development of another geldanamycin analog, 17-
dimethylaminoethylamino-17-demethoxy-geldanamycin (17-
DMAG) (Fig. 6) was made in an effort to improve the solu-
bility and bioavailability of 17-AAG [51,63,82,86]. The de-
pletion of Hsp90 was more pronounced in cells exposed to 
17-DMAG than treated with 17-AAG, 17-DMAG is easier to 
formulate and since it is water soluble it has the potential to 
be orally bioavailable [86,87]. 17-DMAG has entered clini-
cal trials. 

 The binding of 17-DMAG with human Hsp90  has been 
studied in solution by a combination of Hydrogen/Deuterium 
techniques analyzed by mass spectrometry [88]. The results 
showed that peptide comprising residues 123-133, 201-208 
and 620-635 of Hsp90 (Fig. 4) are protected in the presence 
of 17-DMAG. The results point to conformational changes 
in all three domains of Hsp90 caused by binding of 17-
DMAG demonstrating that long-range effects are present. To 
sum up, the binding of the inhibitor induces a change both in 
the interaction between the C-terminal and middle domains 
and in the interface between the N-terminal and middle do-
mains [88]. 

4.3. Radicicol, Purine Scaffold Inhibitors and Novobiocin  

 Radicicol (Fig. 7) is a 14-membered macrocyclic antibi-
otic isolated as an antibiotic of fungal origin [89] that has 
effects on tumor cells similar to those of ansamycins [90]. 
However, radicicol, as geldanamycin, is inactive in vivo due 
to its instability in serum and does not have acceptable 
pharmacological properties for clinical application. On the 
other hand, oxime derivatives of radicicol have potent anti-
tumor activity in vivo via destabilization of the binding of 
Hsp90 with specific client proteins [91,92]. Oxime deriva-
tives are more stable than radicicol, do not cause serious 
liver toxicity and work both in vivo and in vitro [93].  

 The binding of radicicol with human Hsp90  has also 
been studied in solution by a combination of Hydro-
gen/Deuterium techniques analyzed by mass spectrometry 
[88]. The results showed that peptides comprising residues 
123-133, 584-589, and 620-635 of Hsp90 (Fig. 4) are pro-
tected in the presence of radicicol and the Phenyl ring of 
Phe133 makes hydrophobic contact with the coplanar aro-
matic ring of radicicol. Also, the results for radicicol are in 
good agreement with those for 17-DMAG (see above) indi-
cating that the different classes of inhibitors induce equiva-
lent changes in the conformation of Hsp90.  

 The discovery of the antibacteriotic novobiocin (Fig. 7) 
as an Hsp90 inhibitor involved two important findings. One 
was the screening of a structurally distinct small molecule 
with affinity for Hsp90 and the second was the identification 
of an uncharacterized ATP binding site at the C-terminal 
domain of Hsp90. Novobiocin binds both to the N- and to 

 

 

 

 

 

 

 

Fig. (6). (A) Geldanamycin and its analogs (B) 17-AAG and (C) 17-DMAG. 

 

 

 

 

 

 

Fig. (7).  (A) Radicicol, (B) novobiocin and (C) cisplatin. 
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the C-termini of Hsp90 [26,28,94]. These findings were ob-
tained using both competitive assays with geldanamycin and 
radicicol and deletion mutants consisting of either the N-
terminal domain or the C-terminal domain. Novobio-
cin reduces the cellular level of several oncogenic protein 
kinases, including HER-2 and Raf-1, and inhibited the asso-
ciation of Hsp70 and p23 with Hsp90 [26,94]. Although the 
inhibitory action of novobiocin has been identified as very 
low, the development of novobiocin analogs for Hsp90 inhi-
bition allowed the identification of compounds with higher 
potency that caused the degradation of several Hsp90 client 
proteins in both breast and prostate cancer cell lines [95]. 
Another compound, cisplatin (Fig. 7), is a selective C-
terminal nucleotide competitor that strengthens the Hsp90-
Hsp70 complex and has potential to be used as a model tar-
get to the development of new drugs against cancer using 
Hsp90 as target [28]. 

 Chiosis and colleagues have designed small molecules 
that bind to Hsp90 by making use of existent crystallo-
graphic data [36,96,97]. These small-molecules use purine as 
scaffold and are highly potent Hsp90 inhibitors with im-
proved drug-like properties (Fig. 8). 

5. FUTURE DIRECTIONS 

 There are several new strategies and recently discovered 
compounds that have inhibitory action against Hsp90 and 

potential to enter preclinical trials for antitumor characteriza-
tion. A structure-based design approach has been used to 
generate potent resorcinylic pyrazole/isoxazole amide ana-
logs as Hsp90 inhibitors with therapeutic potential that have 
entered Phase I clinical trials. These molecules have antipro-
liferative effects and cause induction of Hsp70 and Hsp27, 
depletion of client proteins, statistically significant growth 
inhibition and regressions in human tumor xenografts 
[98,99]. A new compound, macbecin (Fig. 9), compares fa-
vorably to geldanamycin, being more soluble, stable, and 
more potent. This quinone-containing Hsp90 inhibitor in-
duces both tumor cell growth inhibition and the degradation 
of Hsp90 client proteins [100]. Tanespimycin, a 17-AAG 
derivative, in combination with trastuzumab [101] and IPI-
504 [102] (Fig. 9) are improved formulations which are be-
ing used as Hsp90 inhibitors with relative success in clinical 
trials.  

 Although many new screening have been used to select 
new compounds with inhibitory action against Hsp90, the 
improvement of pharmacological properties and potency of 
the natural pharmacophores remains important. It is worth 
mentioning the use of phenolic derivatives of geldanamycin 
isolated from Streptomyces sp [103], the combination of 
17AAG with carboplatin [104] (Fig. 9), and SNX-2112, 
which was selected by a purine-based affinity resin [105]. 

 

 

 

 

 

Fig. (8). Purine scaffold molecules. (A) PU3 and (B) analogs. 

 

 

 

 

 

 

 

 

 

 

 
Fig. (9). (A) Macbecin, (B) IPI-504, (C) carboplatin and (D) imatinib. 
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 Furthermore, the importance of posttranslational modifi-
cations in regulating Hsp90 function has not been entirely 
elucidated yet. Hsp90 is regulated by co-chaperones and by 
post-translational modification, such as phosphorylation, 
acetylation, and ubiquitinylation. Hyperacetylation of Hsp90 
disrupts assembly with co-chaperones, in particular, the af-
finity of co-chaperone p23 for Hsp90 was dramatically re-
duced. Since the association with p23 requires ATP binding 
activity it is likely that hyperacetylation of Hsp90 lowers this 
activity. In fact, hyperacetylation of Hsp90 seems to inhibit 
its ATP-binding and decreases association of Hsp90 with its 
client proteins [106]. Inhibitors of acetylation have effects 
similar to those caused by compounds targeting the ATP-
pocket at the N-terminus of Hsp90 that decrease the ATPase 
activity. These effects induce growth arrest and apoptosis in 
a variety of human cancer cells, reduced expression of mu-
tant, but not wild-type, p53, depletion of Her1, Her2, and 
Raf-1 proteins, lower ERK1/2 activity, and Hsp70 induction 
in both Her2 overexpressing breast cancer cells and lympho-
cytes. These potential epigenetic regulatory signals have 
consequences for various biological processes and poten-
tially important implications for the development of cancer 
therapeutics [107]. 

 S-nitrosylation is also another important regulator of 
Hsp90 activity. The nitrosylating agent NO modifies and 
inhibits both human Hsp90 ATPase activity and its positive 
effect on the substrate eNOS [108]. Heat shock increases the 
turnover of Hsp90 phosphate groups [109] and apparently 
phosphorylation decreases the ATPase activity of Hsp90. A 
previous work [110] has found that Hsp90 phosphorylation 
leads to the release of the chaperone from the target protein 
and can be inhibited by geldanamycin. Another importance 
of post-translational modifications for the function of Hsp90 
in cancer is that of the action of phosphorylation on the in-
teraction of Hsp90 and apoptosome [111]. Hsp90 inhibits the 
apoptosome [112] and failure of apoptosis contributes to 
oncogenesis [48]. Kurokawa et al. [111] showed that hypo-
phosphorylation of Hsp90  at Ser 226 and Ser 255 promotes 
apoptosome inhibition suggesting that kinases and phospha-
tases regulating Hsp90  phosphorylation are potential thera-
peutic targets and that tyrosine kinase inhibitors such as 
imatinib [113] (Fig. 9) could be used in combination with 
specific inhibitors of Hsp90. 

 Curiously, Hsp90 inhibitors have little effect on normal 
cells but have high affinity for recombinant Hsp90 proteins 
produced by bacteria, likely because they target Hsp90 that 
do not have post-translation modifications [50,51]. These 
observations are likely to be the focus of future studies with 
significant biological and clinical ramifications. 

 Another very promising area of research in this field is 
the association of Hsp90 with peptides which are specific in 
cancers [114]. Ishii et al. [115] showed that a restricted cyto-
toxic T lymphocyte epitope of a mouse leukemia was associ-
ated with Hsp90 in the cytosol. Recently, Callahan and co-
authors [116] have shown that Hsp90 plays a global role in 
direct antigen presentation to MHC I molecules which are 
responsible for presenting antigens of cancers and viruses to 
CD8+ T cells. Therefore, the association of cancer specific 
antigenic peptides to HSP90 may serve as an indication to 
the immune system. To sum up, post-translation modifica-

tions that affect properly Hsp90 function (see above) would 
also affect the presentation of cancer specific antigens.  

 Since general increasing in chaperone expression favors 
oncogenesis, the early promise of Hsp90 inhibitors is stimu-
lating interest in additional chaperone targets. For instance, 
Hsp70 has been considered a promising target because it 
limits response to Hsp90 inhibition [117]. One way or the 
other, it has been exciting to the study cancer therapeutics 
using Hsp90 as a target. Important research has yet to be 
done such as having high resolution structure of the entire 
human Hsp90 in complex with many ligands and co-
chaperones, defining the exactly function of each Hsp90 
isoform and screening compounds with better solubility and 
less toxic effects. However, an important part of the effort 
has already been accomplished and encouraging recent re-
sults with compounds already in clinical trial are raising 
positive hope. 
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ABBREVIATIONS 

17-AAG = 17-(allylamino)-17-demethoxygeldana- 
mycin 

17-DMAG = 17-dimethylaminoethylamino-17-demeth- 
oxygeldanamycin 

CHIP = C-terminus of Hsp70 interacting protein 

EST = Expression sequence tag 

HOP = Hsp70-Hsp90 organizing protein 

HSF = Heat-shock factor 

HSR = Heat-shock response 

Hsp70 = 70 kDa heat-shock protein 

Hsp90 = 90 kDa heat-shock protein 

TPR = Tetratricopeptide repeat 
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1.8. Objetivos 

1.8.1 Objetivo geral 

Estudar o sistema chaperona Hsp90 humano, pela caracterização do 

domínio C-terminal da Hsp90 humana (C-Hsp90), de suas co-chaperonas 

humanas Hop e Tom70, e pela interação do C-Hsp90 com a Tom70. 

 

1.8.2 Objetivos Específicos 

# Produzir as proteínas humanas recombinantes, C-Hsp90, Hop e Tom70 

na forma solúvel e enovelada; 

 

# Avaliar a estrutura secundária e terciária local das proteínas aplicando 

técnicas de dicroísmo circular (CD) e fluorescência intrínseca do triptofano (Trp); 

 

# Caracterizar o estado oligomérico da C-Hsp90, aplicando as técnicas 

ultracentrifugação analítica (UCA) e gel filtração acoplada a espalhamento de luz 

em multi-ângulos (SEC-MALS); 

 

# Caracterizar o estado oligomérico da Hop, aplicando as técnicas de UCA, 

gel filtração analítica e gel nativo azul (BNPAGE); 

 

# Caracterizar o estado oligomérico da Tom70, aplicando as técnicas de 

UCA e SEC-MALS; 
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# Caracterizar a interação da C-Hsp90 e Tom70, determinando 

estequiometria e parâmetros termodinâmicos da interação, por meio das técnicas 

de pull-down, SEC-MALS e calorimetria de titulação isotérmica (ITC). 
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CAPÍTULO 2 

 

ARTIGO CIENTÍFICO: 

Human Hsp70/Hsp90 Organizing Protein (Hop) D456G is a Mixture 

of Monomeric and Dimeric Species 

Publicado na revista Protein & Peptide Letters, 2010, 17 (4), 492-498. 

DANIELI CRISTINA GONÇALVES*, LISANDRA MARQUES GAVA* & CARLOS 

HENRIQUE INÁCIO RAMOS (* Esses autores contribuíram igualmente para o trabalho). 

 

A Hop é uma co-chaperona do sistema Hsp70-Hsp90, está envolvida em 

importantes processos celulares. Nesse artigo, apresentamos a Hop humana 

recombinante D456G, que apresenta uma mutação de um resíduo de aspartato 

para glicina no domínio TPR2B. Estão reportadas nesse artigo a clonagem, 

purificação e caracterização estrutural da proteína. Foram aplicadas técnicas de 

dicroísmo circular e fluorescência intrínseca do triptofano para caracterização 

inicial. Para determinação das propriedades hidrodinâmicas da proteína foram 

utilizadas as técnicas de ultracentrifugação analítica, gel filtração analítica e 

espalhamento dinâmico de luz. A técnica de gel nativo também foi utilizada na 

caracterização do estado oligomérico da proteína. Em suma, a Hop D456G é uma 

mistura de espécies monoméricas e outras de mais alta massa molecular, 

apresenta forma alongada e bastante hidratada. 
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Abstract: Hop is a tetratricopeptide repeat domain (TPR)-containing co-chaperone that is able to directly associate with 
both Hsp70 and Hsp90. Previous data showed that the TPR2A-domain is the primary site for dimerization and that the 
TPR2B-domain may also play a role in dimerization. We present Hop-D456G, a mutant within the TPR2B-domain, that is 
a mixture of monomeric and dimeric species.  
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1. INTRODUCTION 

 Hsp90 is a molecular chaperone that is responsible for 
maintaining the folding, stability and function of many pro-
teins involved with signal-transduction pathways, cell-cycle 
regulation and apoptosis [1,2]. Hsp90 collaborates with 
Hsp70 to form a multifunctional multicomponent chaperone 
machine that plays a pivotal role in protecting the cell from 
environmental and genetic stresses [1]. Hop (Hsp70/Hsp90 
Organizing Protein) was first identified in yeast as STI1 (for 
stress-inducible protein 1 [3]), and it is able to directly asso-
ciate with both Hsp70 and Hsp90 [4,5]. In fact, Hop appears 
to be involved in several important processes, including re-
cruitment of Hsp90 to preexisting steroid receptor-Hsp70 
complexes, thus promoting the assembly and functional 
maturation of the receptor [4-6], and acting as a receptor for 
prion proteins [7]. 

 The binding of Hop to Hsps is mediated by multiple 
tetratricopeptide repeat (TPR) domains, each formed by three 
TPR motifs, which are antiparallel -helical hairpins (helix-
turn-helix) that are 34 amino acids in length [6,8,9]. The Hop 

TPR1 and TPR2A domains, which have known crystallo-
graphic structures, consist of an antiparallel -helical stack 
that forms a large groove along one surface of the domain 
[10-14]. The TPR domain has side chains projecting into the 
groove solvent space that can readily specify interactions 
with side chains from a bound polypeptide and thus facilitate 
specific protein-protein interactions. Two other domains 
containing aspartic acid-proline (DP) repeats complete the 
domain structure of Hop, which has the following arrange-
ment: TPR1-DP1-TPR2A-TPR2B-DP2 (Fig. 1). TPR do-
mains link chaperones and other protein systems into coop-
erative networks and participate in the action of Hsp90 as a 
stabilizer of the cancer phenotype thus TPR-Hsp90 com- 
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plexes are potential drug targets. Additionally, the presence 
of multiple domains gives Hop the ability to simultaneously 

bind the EEVD sites of both Hsp70 and Hsp90.  

 Although a structure for full-length Hop does not exist, it 
has been shown that the protein is dimeric in solution and 
binds as a dimer to Hsp90 [10]. Many lines of evidence show 
that the TPR2A-domain, which contains the Hsp90-binding 
site, is the primary site for dimerization [13,15]. Proteins 
deleted for the TPR2A-domain are monomers, but deletion 
of the TPR2B-domain, whose structure is unknown, causes a 
mixture of monomeric and dimeric species, suggesting the 
existence of residues within TPR2B that may also play a role 
in dimerization [15]. Also, there is evidence that the isolated 
TPR2B-domain is a dimer [16]. We report here on human 
Hop-D456G, which has a single mutation within the TPR2B-
domain, that is a mixture of monomeric and dimeric species. 

2. MATERIALS AND METHODS 

2.1. Protein Preparation and Characterization 

 The molecular biology assays of Homo sapiens Hop 
cDNA (NCBI - BC002987), including cloning and site-
directed mutagenesis, and protein production using the pET 
system (pET28a) were performed by standard methods 
[17,18]. A three-step chromatography procedure was used to 
purify Hop-D456G, which had a 6xHis-tag to facilitate puri-
fication, from the soluble fraction of E. coli lysate. The first 
step was affinity chromatography using a HiTrap Chelating 5 
ml column (GE) on an ÄKTA FPLC instrument (GE) equili-
brated in 20 mM sodium phosphate (pH 7.4), 500 mM NaCl 
and 20 mM imidazole, in which the protein was eluted by a 
20-500 mM linear gradient of imidazole. The second step 
was ion exchange chromatography carried out in a DEAE 
26/20 45 mL column (GE) previously equilibrated with 25 
mM Tris-HCl (pH 7.5), 10 mM NaCl and 2 mM EDTA, in 
which the protein was eluted by a 10-1000 mM linear gradi-
ent of NaCl. The third step was a HiLoad Superdex 200 pg 
26/60 size exclusion column (GE) previously equilibrated in 
25 mM Tris-HCl (pH 7.5), 200 mM NaCl and 2 mM EDTA. 
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Protein purification was analyzed by sodium dodecil sulfate-
poliacrylamide gel electrophoresis (SDS-PAGE). 

2.2. Spectroscopic Experiments  

 Protein concentration was 2.5 g/ml for circular dichro-

ism (CD) and 3 g/ml for emission fluorescence experi-

ments, in buffer 25 mM Tris-HCl (pH 7.5), 200 mM NaCl 

and 2 mM EDTA. A JASCO model J-810 CD spectropo-

larimeter (Jasco, Japan) equipped with a thermoelectric sam-

ple temperature controller (Peltier system) was used to re-

cord CD spectra as previously described [19]. Measurements 

were taken from 260 to 200 nm, unfolding was monitored at 

222 nm, and the average of at least three independent ex-

periments is reported. Measurements were performed at a 

temperature rate of 1
o
C/min using a 1 mm pathlength cell. 

The prediction of secondary structure content was performed 

as previously described [19]. Emission fluorescence was 

measured using a Multifrequency Cross-Correlation and 

Modulation Fluorometer K2  - ISS (ISS, Champaign, IL, 

USA) using quartz cuvettes of 1 cm x 1 cm optical path-

length with excitation at 295 nm and emission was from 300 

to 450 nm. Fluorescence data were analyzed by their maxi-

mum wavelength ( max) and center of spectral mass ( ), as 

described by the equation: 

 = iFi Fi                           1 

where i  is each wavelength and iF  is the fluorescence 

intensity at i  [19]. 

2.3. Hydrodynamic Experiments  

 Analytical ultracentrifugation (AUC) sedimentation equi-
librium (SE) experiments were performed using a Beckman 
Optima XL-A analytical ultracentrifuge and analyzed as pre-
viously described [20,21]. Briefly, experiments were con-
ducted from 4,000 to 10,000 rpm at 20ºC with scan data ac-
quisition at 279 nm and protein concentration of 800-1,200 
μg/mL in 25 mM Tris-HCl (pH 7.5), 200 mM NaCl and 2 

mM EDTA. SE analyses involved fitting a model of absor-
bance versus cell radius data using nonlinear regression. The 
Self-Association method was used to analyze the experi-
ments using several models of association for Hop-D456G. 
Distribution of the protein along the cell was fitted with the 
following equation [21]: 

( ) ( )
=

RT

rrVbarM
eCC

2
1 2

0
22

0                  2 

 Dynamic light scattering (DLS) experiments were per-
formed on a DynaPro-MS800 instrument (Protein Solutions 
Inc.) that monitors the scattered light at 90

0
,
 
equipped with a 

temperature controlled microsampler and used to obtain the 
diffusion coefficient parameter, D, at 20

o
C. Hop-D456G 

concentration was 0.5-1.6 g/ml in 25 mM Tris-HCl (pH 
7.5), 200 mM NaCl and 2 mM EDTA.The software Sednterp 
(www.jphilo.mailway.com/download.htm) was used to esti-
mate protein partial specific volume at 20

o
C (Vbar), buffer 

density ( ) and buffer viscosity ( ), and Dsphere for a globular 
protein of 66.4 kDa. 

2.4. Blue-Native Polyacrylamide Gel Electrophoresis 
(BN-PAGE) 

 BN-PAGE is a “charge shift” method for assessing the 
oligomeric form, molecular mass and homogeneity of native 
proteins in which the electrophoretic mobility of the proteins 
is mainly determined by the negative charges of the bound 
Coomassie dye. The molecular sieving effect of the acryla-
mide gradient gel is the separation principle because the mi-
gration ceases when areas of appropriate pore size are 
reached [22]. BN-PAGE was performed as previously de-
scribed [22-24]. Briefly, 5 to 16% linear gradient gels were 
poured into a protean II minigel system (Bio-Rad) and 5 g 
of Hop-D456G (monomer 66.4 kDa; pI 6.9), Bovine Serum 
Albumin (BSA, 66 and 132 kDa, monomer and dimer re-
spectively; pI 4.9), Conalbumin (Co, 78 kDa; pI 5.9), and 
unfolded Hop-D456G (4 M urea, 90 ºC, 15 min) were loaded 
as monomer standards. Runs started with anode buffer (50 
mM Bis-Tris, pH 7.0) and blue cathode buffer (15 mM Bis-
Tris (pH 7.0), 50 mM tricine, 0.02% Coomassie-Blue G250) 
at 4ºC and 80 V until the separating gel was reached, and 

 

 

 

 

 

 

 

 
Figure 1. Hop-D456G structural arrangement. Top: Hop-D456G is composed of three tetratricopeptide

 
repeat (TPR) domains and two 

other domains containing aspartic acid-proline (DP) repeats and has the following arrangement: TPR1-DP1-TPR2A-TPR2B-DP2. Bottom: 

The amino acid sequence is shown and TPR domains are labeled as in the top. Residue G456 is labeled in bold. 
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then conditions were switched to 200 V and colorless cath-
ode buffer (15 mM Bis-Tris, pH 7.0, 50 mM tricine).  

2.5. Gel Filtration Chromatography 

 Gel filtration chromatography was used to estimate the 
hydrodynamic or Stokes radius (RS) at different tempera-
tures. Gel filtration chromatography was performed on a 
Superdex™ 200 10/300 molecular exclusion (GE) pre-
equilibrated with 25 mM Tris-HCl (pH8.0), 2mM EDTA, 
and 150 mM NaCl. Experiments were performed at a flow 
rate of 0.5 ml.min-1, at room temperature. Hop-D456G (30 

M) and a mixture of proteins with known Stokes radii 
(standard: Ribonuclease A (16.4 Å, 3.0 mg/mL), ovalbumin 
(30.5 Å, 3.5 mg/mL), aldolase (48.1 Å, 3.5 mg/mL) and 
apoferritin (61.0 Å, 0.4 mg/mL) (Sigma)) were centrifuged at 
12,000 g for 10 min and then loaded onto the column. Elu-
tion profiles were monitored by measuring absorbance at 280 
nm. Hop-D456G Stokes radius was estimated by a linear fit 
of the Stokes radii of the standard proteins versus the parti-
tion coefficient Kav as described by the following equation: 

Kav =
Ve V0

Vt V0

                                     3 

where Ve is the elution volume of the protein, Vo is the void 
volume and Vt is the total volume of the column. All data 
were analyzed with Origin software (Microcal). 

3. RESULTS AND DISCUSSION 

3.1. Hop-D456G: Purification and Initial Characteriza-
tion 

 Longshaw et al. [16] showed that two regions disrupted 
the alignment of TPR1, TPR2A and TPR2B domains (Fig. 
1A in their paper). These regions correspond to the first 3 
residues of helix 3A and residue 12 of helix 3B. To answer 
whether specific residues where involved in the role of 
TPR2B in dimerization we studied Hop-D456G. Residue 
D456 (residue 12 in helix 3B of TPR2B) mutated to Glycine 
may disrupt any possible interaction in that particular posi-
tion (Fig. 1). Human Hop-D456G was produced pure (Fig. 2) 
and analyzed in solution. Circular dichroism spectroscopy 
showed that Hop-D456G was natively folded and predomi-
nantly -helical (Fig. 3A), with an estimated -helical con-
tent of 64 ± 4% (Table 1). The CD spectrum had minima at 
210 nm, with a signal of about -24,800 deg.cm2.dmol-1, and 
at 221 nm, with a signal of about -28,100 deg.cm2.dmol-1 
(Table 1). These values were within the margin of error of 
those reported for the wild-type (WT) protein [25]. Hop-
D456G has one tryptophan residue located in the TPR1 do-
main, and its emission fluorescence spectrum had a maxi-
mum intensity at 339 ± 1 nm and a spectral center of mass at 
345 ± 1 nm (Fig. 3B). These results suggested that the single 
tryptophan residue was well-buried into the protein structure. 
Thermal-induced unfolding measurements showed that Hop-
D456G unfolded reversibly through a sigmoidal transition 
curve with a Tm of 53 ± 1°C (Table 1). This value was within 
the margin of error reported for the WT protein [25]. Alto-
gether, these results indicated that Hop-D456G had secon-
dary structure and thermal stability similar to that of WT. 

3.2. Hop-D456G is a Mixture of Monomeric and Dimeric 
Species 

 Upon sedimentation equilibrium (SE) analytical ultracen-
trifugation (AUC), Hop-D456G was mainly a single species 
with a molecular mass of 66 ± 2 kDa (Fig. 4 and Table 2), 
similar to that of 66.4 kDa predicted for a monomer from the 
amino acid sequence. The random distribution of the residu-
als (top panel in Fig. 4) indicated that the fit had very good 
quality and was in good agreement with a single species.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Protein purification. SDS-poliacrylamide gel electropho-
resis was used to monitor protein purification. Hop-D456G (main 
band in Li, Af, Ie and Gf) was produced pure. M, molecular stan-
dards (mass in kDa are shown); Li, soluble fraction after bacterial 
lyses; Af, after Affinity chromatography; Ie, after Ion-exchange 
chromatography; Gf, after Gel filtration chromatography. 
 

 Blue-native polyacrylamide gels electrophoresis (BN-
PAGE) is a “charge shift” method for assessing the oli-
gomeric form, molecular mass and homogeneity of native 
proteins [22]. In this experiment, folded Hop-D456G mi-
grated mainly as a monomer as compared to the standards: 
the unfolded Hop-D456G (by high urea concentration and 
heat), a standard for monomer migration, BSA a monomer-
dimer protein with 66 and 132 kDa respectively, and Conal-
bumin with 78 kDa (Fig. 5). The folded Hop-D456G also 
had some oligomeric species, probably dimer and higher 
species. The participation of the TPR2B-domain in dimeriza-
tion has been suggested before. Onuhuoa et al. [15] showed 
that Hop lacking the DP2 domain (1-477) is a dimer, Hop 
lacking the TPR2B domain (1-352) is converted into a 
monomer-dimer and additional deletion of the TPR2A-
domain (1-211) converts the protein into a monomer. In their 
work [15] Hop lacking the TPR2B domain was a monomer 
at 5 μM, a concentration similar to that used in our AUC 
experiments, and a dimer at 50 μM, a concentration similar 
to that used in our BN-PAGE experiments. Therefore, our 
results indicate that Hop-D456G was converted into a 
monomer-dimer, a result also verified with mutants deleted 
for the TPR2B-domain [14]. Previous mutations within the 
TPR2B-domain of full-length Hop (K429E, K429A, R433E, 
R433A [10], K364A-N368A and K429A-R433A [16]) have 
not showed any effect on dimerization.  
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3.3. Hydrodynamic Properties of the Monomer 

 We investigated the hydrodynamic characteristics of 
Hop-D456G to gain insight about its overall shape. Analyti-
cal gel filtration chromatography experiments were used to 
calculate the Stokes radius (RS), also known as the hydrody-
namic radius (Rh). The results showed that Hop-D456G 
eluted as a homogeneous species (Fig. 6, inset) with an RS of 
44 ± 2 Å (Fig. 6 and Table 2). It is important to mention that 
these results are not caused by Hop-D456G being misfolded, 
as this hypothesis is ruled out by CD (Fig. 3A), tryptophan 
emitted fluorescence (Fig. 3B) and thermal-induced unfold-
ing experiments (Table 1). 

 The value of RS was used to calculate the so-called Perrin 
or shape factor F [26], which is informative of the shape of 
the molecule. The Perrin factor is a ratio of the measured 
frictional coefficient ƒ to the frictional coefficient ƒ0 of a 
hypothetical sphere for which a hypothetical radius is calcu-
lated using its molecular mass. For the theoretical calcula-
tions, the subunits were treated as globular proteins (both 
equatorial, a, and polar, b, radii are equal). In this way, the 
Perrin factor (ƒ/ƒ0 ratio) provides information about the 
shape of the particle because the closer it is to 1, the more 
spherical (globular) the shape is. Mutant Hop was an asym-
metric protein with an ƒ/ƒ0 ratio (Perrin factor) of about 1.6. 

In addition, dynamic light scattering experiments were used 
to measure the diffusion coefficient D of Hop-D456G at sev-
eral protein concentrations (Fig. 7). Then, the standard diffu-
sion coefficient (D20,w) at each protein concentration was 
calculated and plotted in order to estimate the D20,w at a 0 
mg/mL protein concentration (D0

20,w) by extrapolation (Fig. 
7). The measurements revealed that D0

20,w = 6.2 x 10-7 ± 0.2 
cm2/s (Fig. 7 and Table 2). Otherwise, the Perrin factor can 
be estimated by Dsphere/ D

0
20,w. A hard sphere with the mass 

of a monomeric Hop-D456G will have a theoretical Rs of 27 
Å, a theoretical D0

20,w of 8.0x10-7cm2/s and thus a Perrin fac-
tor of about 1.3. The disagreement of Perrin factor values 
estimated from the two independent experiments may be 
explained by the effect of hydration, which can increase the 
effective volume of the proteins and thus increase the RS and 
affect the results. In any case, our results indicate that Hop-
D456G is a monomeric protein that appears to be elongated 
and hydrated. An elongated monomer is in good agreement 
with the estimated conformation of Hop from the SAXS ex-
periments [15].  

3.4. Is Hop an Adaptor Capable of Switching from 
Monomer to Dimer? 

 Hop is a versatile protein that is capable of binding to 
Hsp70 and Hsp90 but also to other chaperones. Hop is in-

Table 1. Spectroscopy and Stability Parameters 

 Circular Dichroism at 210 nm 
(deg.cm2.dmol-1) 

Circular Dichroism at 221 nm 
(deg.cm2.dmol-1) 

Estimated -Helical Content  Tm of Unfolding 
(°C) 

Hop -25,000 ± 600a -29,000 ± 600a 65 ± 6% 54 ± 2a 

Hop-D456G -24,800 ± 400 -28,100 ± 300 64 ± 4% 53 ± 1 

a, from reference [27]; 

A) B) 

 

 

 

 

 

 

 

 

Figure 3. Hop-D456G is folded. A) Circular dichroism spectrum. Residual molar elipticity [ ] was measured from 200 to 260 nm with 
protein in a solution of 25 mM Tris-HCl (pH 7.5), 200 mM NaCl and 2 mM EDTA. The spectrum profile is characteristic of -helical pro-
tein. B) Emission fluorescence spectrum. Excitation was at 295 nm and emission was from 300 to 450 nm in 25 mM Tris-HCl (pH 7.5), 200 
mM NaCl and 2 mM EDTA, in the absence or in the presence of 6M urea. Fluorescence spectra revealed that the tryptophan is well-buried in 
the protein structure. max was 339 ± 1 and spectral center of mass was 345 ± 1nm. In the presence of 6 M urea, max was 354 ± 1 and spectral 
center of mass was 361 ± 1.  
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Figure 4. Sedimentation equilibrium experiments. The data analy-

sis involved fitting a model of absorbance versus cell radius data 

using nonlinear regression using the Origin software package (Mi-

crocal). The best fit was determined by the randomness of the dis-

tribution of the residuals and by minimization of variance (5x10
-5

), 

and the random distribution of the residuals (top panel) indicated a 

good quality fit in good agreement with a single species with mo-

lecular mass of 66 ± 2 kDa. Experiments were conducted from 

4,000 to 10,000 rpm at 20ºC with scan data acquisition at 279 nm. 

The best fits of the experimental data for 1200 μg/mL at 9,000 and 

10,000 rpm are shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Blue native electrophoresis. BN-PAGE is a “charge 

shift” method for assessing oligomeric form, molecular mass and 

homogeneity of native proteins, and the electrophoretic mobility of 

the proteins is mainly determined by the negative charge of the 

bound coomassie dye. Hop-D456G (monomer 66.4 kDa; pI 6.9), 

Bovine Serum Albumin (BSA, 66 and 132 kDa, monomer and di-

mer respectively; pI 4.9), Conalbumin (Co, 78 kDa; pI 5.9), and 

unfolded Hop-D456G (as the standard for monomer migration; urea 

4 M, 90 ºC, 15 min).  

 

volved in many cellular processes, acts in many cellular 
compartments and may have other partners. To accomplish 
all these functions, the protein may have to be promiscuous, 

a property facilitated by the large amount of TPR domains. 
However, Hop's promiscuity may also be facilitated by an 
ability to switch from monomer to dimer depending on the 
partner or some other factor. In fact, it has been proposed 
that full-length Hop associates with Hsp70 in a monomer-
monomer interaction [27,28]. Our results indicated that the 
switch from monomer to dimer could be mediated by an in-
tervention in the TPR2B domain. However more experi-
ments will be necessary to show whether this residue is 
really involved in a possible dimer to monomer mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Analytical gel filtration. Analytical gel filtration chroma-

tography experiments were used to calculate the Stokes radius (RS), 

also known as the hydrodynamic radius (Rh). Standard proteins 

with known RS were loaded onto a gel filtration column (Inset; 

dashed line) and their elution volume ( logKav
) was calculated to 

create a plot of elution volume versus Rs. The Hop-D456G elution 

volume (inset; solid line) was inserted into the plot (white square) 

and corresponded to a Stokes radius of 44±2 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Plot of D20,w versus protein concentration. The diffu-

sion coefficient D20,w, calculated by dynamic light scattering versus 

protein concentration, was fit with linear regression to calculate 

D
0

20,w. Hop-D456G had a D
0

20,w= 6.2x10
-7 

cm
2
/s. 
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 In conclusion, we have shown for the first time that Hop-
D456G, a mutation within the TPR2B-domain, is a mixture 
of monomer and higher species. Although no structure for 
full-length Hop exists previous works have characterized the 
wild-type protein using biophysical tools, established the 
role of the TPR2A-domain in dimerization and opened up 
the possibility that the TPR2B-domain might also be in-
volved in dimerization. It may be possible that Hop is regu-
lated between monomeric and dimeric states to facilitate its 
adaptor functions.  

 Additional indication that Hop-D456G is primarily 
monomeric at low concentrations is shown on Fig. S1 (Sup-
plementary data) using SEC-MALS (size exclusion chroma-
tography- multi-angle light scattering). 
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ABBREVIATIONS 

Hsp = Heat shock protein 

Hop = Hsp70-Hsp90 organizing protein 

AUC = Analytical ultracentrifugation 

CD = Circular Dichroism 

DLS = Dynamic Light Scattering 

SDS-PAGE = Sodium dodecyl sulfate polyacrylamide 
gel electrophoresis 

BN-PAGE = Blue native polyacrylamide gel electropho-
resis 

Rs = Stokes radius 

TPR = Tetratricopeptide repeat 

WT = Wild-type 

REFERENCES 

[1]  Wegele, H.; Müller, L.; Buchner, J. Hsp70 and Hsp90 - a relay 
team for protein folding. Rev. Physiol. Biochem. Pharmacol., 2004, 
151, 1-44. 

[2] Gava, L.M.; Ramos, C.H.I. Human 90 kDa Heat Shock Protein 
Hsp90 as a Target for Cancer Therapeutics. Curr. Chem. Biol., 
2009, 3(1), 10-21. 

[3] Nicoleti, C.M.; Craig, E.A. Isolation and characterization of STI1, 
a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. 

Biol., 1989, 9, 3638-3646. 
[4]  Chen, S.; Smith, D.F. Hop as an Adaptor in the Heat Shock Protein 

70 (Hsp70) and Hsp90 Chaperone Machinery. J. Biol. Chem., 
1998, 273, 35194-35200. 

[5]  Johnson, D.B.; Schumaher, R.J.; Ross, E.D.; Toft, D.O. Hop 
Modulates hsp70/hsp90 Interactions in Protein Folding. J. Biol. 

Chem., 1998, 273, 3679-3686. 
[6] Smith, S.F. Tetratricopeptide repeat cochaperones in steroid recep-

tor complexes. Cell Stress Chaperones, 2004, 9(2), 109-121. 
[7] Zanata, S.M.; Lopes, M.H.; Mercadante, A.F.; Hajj, G.N.; Chiarini, 

L.B.; Nomizo, R.; Freitas, A.R.; Cabral, A.L.; Lee, K.S.; Juliano, 
M.A.; de Oliveira, E.; Jachieri, S.G.; Burlingame, A.; Huang, L.; 
Linden, R.; Brentani, R.R.; Martins, V.R. Stress-inducible protein 1 
is a cell surface ligand for cellular prion that triggers neuroprotec-
tion. EMBO J., 2002, 21(13), 3307-3316. 

[8] Das, A.K.; Cohen, P.W.; Barford, D. The structure of the tetratri-
copeptide repeats of protein phosphatase 5: implications for TPR-
mediated protein-protein interactions. EMBO J., 1998, 17(5), 1192-
1199. 

[9] Blatch, G.L.; Lässle, M. The tetratricopeptide repeat: a structural 
motif mediating protein-protein interactions. Bioessays, 1999, 
21(11), 932-939.  

[10] Carrigan, P.E.; Nelson, G.M.; Roberts, P.J.; Stoffer, J.; Riggs, D.L.; 
Smith, D.F. Multiple domains of the co-chaperone Hop are impor-
tant for Hsp70 binding. J. Biol. Chem., 2004, 279, 16185-16193. 

[11] Odunuga, O.O.; Longshaw, V.M.; Blatch, G.L. Hop: more than an 
Hsp70/Hsp90 adaptor protein. Bioessays, 2004, 26(10),1058-1068. 

[12]  Song, Y.; Marison, D.C. Independent regularization of Hsp70 and 
Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 
(Hop1). J. Biol. Chem., 2005, 280, 34178-34185. 

[13] Flom. G.; Behal, R.H.; Rosen, L.; Cole, D.G.; Johnson, J.L. Defini-
tion of the minimal fragments of Sti1 required for dimerization, in-
teraction with Hsp70 and Hsp90 and in vivo functions. Biochem. J., 
2007, 404, 159-167. 

[14] Scheufler, C.; Brinker, A.; Bourenkov, S.; Pegoraro, L.; Moroder, 
L.; Bartunik, H.; Hartl, F.; Moarefi, I. Structure of TPR domain-
peptide complexes: critical elements in the assembly of the Hsp70-
Hsp90 multichaperone machine. Cell, 2000, 101(2), 199-210. 

[15] Onuoha, S.C.; Coulstock, E.T.; Grossman, J.G.; Jackson, S.E. 
Structural studies on the co-chaperone Hop and its complexes with 
Hsp90. J. Mol. Biol., 2008, 379(4), 732-744. 

[16] Longshaw, V.M.; Stephens, L.L.; Daniel, S.; Blatch, G.L. The 
TPR2B domain of the Hsp70/Hsp90 organizing protein (Hop) may 
contribute towards its dimerization. Prot. Pep. Lett., 2009, 16, 402-
407. 

[17]  Sambrook, J.; Russel, D. Molecular Cloning: A Laboratory Man-
ual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, 
2001. 

[18]  Borges, J.C.; Fischer, H.; Craievich, A.F.; Hansen, L.D.; Ramos, 
C.H.I. Free human mitochondrial GrpE is a symmetric dimer in so-
lution. J. Biol. Chem., 2003, 278, 35337-35344. 

[19] Corrêa, D.H.A.; Ramos, C.H.I. The use of circular dichroism spec-
troscopy to study protein folding, form and function. Afr. J. Bio-

chem., 2009, 3(5), 164-173. 
[20] Tiroli, A.O.; Ramos, C.H.I. Biochemical and biophysical charac-

terization of small heat shock proteins from sugarcane. Involve-
ment of a specific region located at the N-terminus with substrate 
specificity. Int. J. Biochem. Cell Biol., 2007, 39, 818-831. 

Table 2. Hydrodynamic Parameters of Hop-D456G 

Molecular mass by analytical  
ultracentrifugation 

(kDa) 

Stokes radius by gel filtration  
chromatography 

(Å) 

Diffusion coefficient (D0
20,w)  

by dynamic light scattering 
(cm2/s) 

66±2 44 ± 2 a 6.2x10-7±0.2 b 

a, Perrin factor=1.3; b, Perrin factor=1.6;  

41



498    Protein & Peptide Letters, 2010, Vol. 17, No. 4 Gonçalves et al. 

[21] Borges, J.C.; Ramos, C.H.I. Characterization of nucleotide-induced 
changes on the structure of human 70 kDa heat shock protein 
Hsp70.1 by analytical ultracentrifugation. BMB Reports., 2009, 
42,166-171. 

[22] Schägger, H.; Cramer, W.A.; von Jagow, G. Analysis of molecular 
masses and oligomeric states of protein complexes by blue native 
electrophoresis and isolation of membrane protein complexes by 
two-dimensional native electrophoresis. Anal. Biochem., 1994, 
217(2), 220-230. 

[23] Schägger, H.; von Jagow, G. Tricine-sodium dodecyl sulfate-
polyacrylamide gel electrophoresis for the separation of proteins in 
the range from 1 to 100 kDa. Anal. Biochem., 1987, 166(2), 368-
379. 

[24] Schägger, H.; von Jagow, G. Blue native electrophoresis for isola-
tion of membrane protein complexes in enzymatically active form. 
Anal. Biochem., 1991, 199(2), 223-231. 

[25] Carrigan, P.E.; Sikkink, L.A.; Smith, D.F.; Ramirez-Alvarado, M. 
Domain:domain interactions within Hop, the Hsp70/Hsp90 organ-
izing protein, are required for protein stability and structure. Prot. 

Sc., 2006, 15, 522-532. 
[26] Cantor, C.R.; Schimmel, P.R. Size and shape of macromolecules. 

Biophysical Chemistry; Part II: Techniques for the Study of Bio-
logical Structure and Function, W. H. Freeman and Company: New 
York, 1980. 

[27] Prodromou, C.; Siligardi, G.; O'Brien, R.; Woolfson, D.N.; Regan, 
L.; Panaretou, B.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Regula-
tion of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-
domain co-chaperones. EMBO J., 1999, 18(3), 754-762. 

[28] van der Spuy, J.; Cheetham, M.E.; Dirr, H.W.; Blatch, G.L. The 
cochaperone murine stress-inducible protein 1: overexpression, pu-
rification, and characterization. Protein Expr. Purif., 2001, 21(3), 
462-469. 

 
 

 
Received: October 19, 2009 Revised: November 16, 2009 Accepted: November 07, 2009 

 

 

42



43 

SUPPLEMENTARY DATA 

Figure S1: SEC-MALS experiment. The chromatogram shows the UV absorbance, light 
scattering intensity (90° detector) and Mass distribution of Hop-D456G protein. Protein was 
eluted with 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2mM EDTA, at room temperature and flow 
rate of 0.5 mL/min.  

 

MATERIAL AND METHODS 

SEC-MALS (Size Exclusion Chromatography – Multi-angle Light Scattering) is a robust 
technique, which provides absolute molecular weight without need of size calibration, as 
traditional SEC (Yi et al, 2009). SEC-MALS was performed using a Superdex 200 10/300 
column (GE) connected to an ÄKTA FPLC system, equipped sequentially with a MALS detector 
(miniDAWN- TREOS – Wyatt). An amount of 400 g of purified protein were loaded, filtered on 
a 0.1 m microfilter and centrifuged (10 000 g / 20 minutes) before loading. ASTRA software 
(Wyatt) was used for data acquisition and analysis. 

 

RESULTS 

Sample was isocratically eluted with 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2mM EDTA, at 
room temperature and flow rate of 0.5 mL/min. The UV absorbance and light scattering intensity 
(90° detector) are well aligned indicating the same species were detected by both methods. The 
peak contains a major population at around 65 kDa, wich is in agreement with the monomeric 
molecular mass. 
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A Tom70, um receptor de importação mitocondrial da membrana externa 

de mitocôndria interage com complexos (chaperona/proteína precursora) por meio 

de dois domínios estruturais: o primeiro liga a chaperona molecular 

(Hsp70/Hsp90) e um segundo liga as proteínas precursoras. A definição do 

estado oligomérico da Tom70 tem sido controversa, com evidência para ambas as 

formas: monomérica e homodimérica. Nesse trabalho, a Tom70 é apresentada 

como um monômero funcional, com implicações na sua atividade de importação 

de proteínas para a mitocôndria. Os dados de dicroísmo circular e 

ultracentrifugação analítica (velocidade de sedimentação e sedimentação em 

equilíbrio) são os resultados produzidos nessa tese de doutorado. 

. 
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Human mitochondrial import receptor Tom70 functions as a monomer
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The mitochondrial import receptor Tom70 (translocase of the
mitochondrial outer membrane 70) interacts with chaperone–
preprotein complexes through two domains: one that binds
Hsp70 (heat-shock protein 70)/Hsc70 (heat-shock cognate 70)
and Hsp90, and a second that binds preproteins. The oligomeric
state of Tom70 has been controversial, with evidence for
both monomeric and homodimeric forms. In the present
paper, we report that the functional state of human Tom70
appears to be a monomer with mechanistic implications for its
function in mitochondrial protein import. Based on analytical
ultracentrifugation, cross-linking, size-exclusion chromatography
and multi-angle light scattering, we found that the soluble
cytosolic fragment of human Tom70 exists in equilibrium between
monomer and dimer. A point mutation introduced at the predicted

dimer interface increased the percentage of monomeric Tom70.
Although chaperone docking to the mutant was the same as to the
wild-type, the mutant was significantly more active in preprotein
targeting. Cross-linking also demonstrated that the mutant formed
stronger contacts with preprotein. However, cross-linking of full-
length wild-type Tom70 on the mitochondrial membrane showed
little evidence of homodimers. These results indicate that the
Tom70 monomers are the functional form of the receptor, whereas
the homodimers appear to be a minor population, and may
represent an inactive state.

Key words: chaperone, dimerization, heat-shock protein (Hsp),
mitochondrion, protein structure, translocase of the mitochondrial
outer membrane complex (Tom complex).

INTRODUCTION

Mitochondria are double-membrane-bound organelles that are
crucial to many physiological functions, such as cellular
respiration, metabolism of lipids, amino acids and iron,
and regulation of apoptosis. There are 1000–2000 proteins
in mitochondria but few of them (eight in budding yeast
Saccharomyces cerevisiae, 13 in humans) are encoded by the
mitochondrial genome [1]. The vast majority of mitochondrial
proteins are encoded in the nucleus, translated by cytosolic
ribosomes and subsequently imported into mitochondria. The
Tom (translocase of the mitochondrial outer membrane) complex
includes two integral membrane import receptors, Tom20 and
Tom70, and a GIP (general import pore) complex. Many
proteins destined for the matrix and intermembrane space are
synthesized with N-terminal amphipathic presequences, which
are recognized by Tom20 via hydrophobic interactions [2–4].
In contrast, Tom70 preferentially recognizes preproteins with
internal hydrophobic targeting sequences, many of which are
inner membrane metabolite carriers [2,3,5]. Tom70 has also been
implicated in the import of several large hydrophobic matrix
proteins [6,7] and Tom40 [8], and the insertion of some outer
membrane proteins [9–11]. After binding by the Tom70 or Tom20
receptors, precursor proteins are then transferred to the GIP for
translocation across the outer mitochondrial membrane and sorted
to their appropriate sub-compartments [2].

The Tom70-mediated import pathway is chaperone-dependent.
Prior to import, Tom70-dependent preproteins are bound by Hsp
(heat-shock protein) chaperones, notably Hsp70/Hsc70 (heat-
shock cognate 70) and Hsp90, as well as the human (mammalian)

DNAJA1 and DNAJA2 co-chaperones [12–15]. Tom70 contains
an N-terminal transmembrane domain followed by a cytosolic
TPR (tetratricopeptide repeat) clamp domain similar to those
first structurally characterized in the cytosolic co-chaperone Hop
[16]. This TPR clamp domain serves as a docking site for
Hsc70 and Hsp90 and thus for the multi-chaperone complexes
that contain preprotein. Preproteins are then thought to interact
with Tom70 directly via a C-terminal domain separate from the
TPR clamp [12,17,18]. Cross-linking experiments showed direct
contacts between preproteins and chaperones, as well as contacts
between preproteins and Tom70 itself [12,13]. Progression of
preproteins from the Tom70 complex to the GIP is dependent
on ATP and the Tim9 (translocase of the mitochondrial inner
membrane 9)/Tim10 components in the intermembrane space
[5,19,20]. Geldanamycin, an ATP-mimetic for Hsp90, blocks
progression of preproteins from the receptor-bound state to the
GIP complex, suggesting that ATP-dependent cycling by Hsp90
and, most probably, Hsc70 assists the subsequent translocation
step [13]. However, the mechanism by which Tom70 co-ordinates
interactions with preproteins and chaperones remains unresolved.

The oligomeric state in which Tom70 functions is controversial,
based on experiments with the receptor from S. cerevisiae. Cross-
linking of translocation intermediates of the Tom70-dependent
preprotein AAC (ADP/ATP carrier) produced high-molecular-
mass species consistent with binding to two Tom70 molecules
[20,21]. Tom70 from isolated yeast mitochondria was also shown
to generate a cross-linked dimer [19]. Targeting of AAC to the
outer membrane led to the recruitment of up to three homodimers
of yeast Tom70 in higher-molecular-mass complexes, by analysis
on BN-PAGE (blue native PAGE) [19]. As a result of these original

Abbreviations used: AAC, ADP/ATP carrier; AUC, analytical ultracentrifugation; BMH, bismaleimidohexane; BN-PAGE, blue native PAGE; DTT,

dithiothreitol; GIP, general import pore; Hsc70, heat-shock cognate 70; Hsp, heat-shock protein; MALS, multi-angle light scattering; MBS, m-

maleimidobenzoyl-N-hydroxysulfosuccinimide ester; OGC, oxoglutarate carrier; PiC, phosphate carrier; SAXS, small-angle X-ray scattering; SEC, size-

exclusion chromatography; SMCC, succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate; s-SMCC, sulfo-SMCC; SE, sedimentation equilibrium;

SV, sedimentation velocity; Tim, translocase of the mitochondrial inner membrane; Tom, translocase of the mitochondrial outer membrane; TPR,

tetratricopeptide repeat; WT, wild-type.
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studies, the functional state of yeast Tom70 on the membrane
was believed to be a dimer. The crystal structure of the soluble
cytosolic fragment of yeast Tom70 also suggested a homodimeric
model [22], in which each molecule has a ‘closed’ arrangement
with the TPR clamp and C-terminal domains tightly packed so
that the chaperone binding sites were not readily accessible. On
the contrary, biophysical studies with a similar fragment of yeast
Tom70 suggested a very different conclusion. AUC (analytical
ultracentrifugation) and SEC (size-exclusion chromatography)
indicated that soluble yeast Tom70 was monomeric [23], and
measurements of its unfolding transitions suggested that the
domains within Tom70 were relatively independent of each other
[23,24]. SAXS (small-angle X-ray scattering) data, when fitted to
predicted profiles by various methods, also indicated a monomeric
yeast Tom70 with an ‘open’ end-to-end arrangement of the
domains, and with a small fraction in a more flexible state with
its domains dissociated. Peptide ligands corresponding to Hsc70
in yeast (Ssa1) and preprotein bound to soluble Tom70 readily
without changing its overall shape [18]. Most recently, the crystal
structure of a close Tom70 homologue, S. cerevisiae Tom71, was
solved. Despite more than 50% sequence identity and a similar
domain arrangement with yeast Tom70, the crystal structure of
yeast Tom71 depicted a monomer with an elongated conformation
resembling the open model. Structures of Tom71 in complex with
C-terminal peptides of yeast Hsc70 (Ssa1) and Hsp90 (Hsp82)
further suggested that chaperone docking induced opening of the
preprotein binding site of the monomeric receptor [25]. These
conflicting models of Tom70 imply different mechanisms of
function.

The mammalian homologue of Tom70 was identified by Suzuki
et al. [26], but structural data are not yet available and its
biophysical properties remain uncharacterized up to now. In
humans, there is only one gene encoding Tom70, which is equally
divergent from yeast Tom70 and Tom71. Human Tom70 shares
only 24% sequence identity with yeast Tom70 and, despite
having the same overall domain architecture and chaperone-
dependent mechanism, it cannot substitute functionally for its
yeast homologue [12]. This suggests that there are significant
differences between the fungal and mammalian import systems at
the functional, and perhaps even structural, level.

Here, we demonstrate that the cytosolic fragment of human
Tom70 exists in equilibrium between monomer and dimer.
Mutagenesis of the predicted dimerization interface shifts the
equilibrium to the monomeric form and increases the level of pre-
protein targeting, but not chaperone docking. Cross-linking of
endogenous human Tom70 on mitochondria isolated from HeLa
cells failed to generate homodimeric cross-links, although other
cross-linked forms were observed. Taken together, these results
show that the functional state of human Tom70 is monomeric.

EXPERIMENTAL

Materials

The expression vectors pGEM4 and pGEM4Z were purchased
from Promega, pET11a and pET15b from Novagen and pPro-
ExHTa from Invitrogen. The QuikChange® mutagenesis kit was
from Stratagene, the TNTTM-coupled reticulocyte lysate system
was from Promega and [35S]methionine/cysteine labelling mix
was from GE Healthcare. Cross-linkers SMCC [succinimidyl-
4-(N-maleimidomethyl) cyclohexane-1-carboxylate], BMH (bis-
maleimidohexane) and s-SMCC (sulfo-SMCC) were from Pierce.
Unless stated otherwise, all chemical reagents were from Sigma
or BioShop Canada.

Plasmids

Sequences encoding bovine PiC (phosphate carrier) and bovine
OGC (oxoglutarate carrier) were in pGEM4 [27,28], rat Hsc70
was in pET11a and human Hsp90α was in pET15b [29]. The full-
length human Tom70 was in pGEM4Z and the cytosolic fragment
(residues 111–608) was in pProExHTa [12]. The mutation R192A
in the TPR clamp of human Tom70 was previously introduced
by PCR [12] and the mutation YS585AA in the predicted
dimerization interface was introduced using the QuikChange®

mutagenesis kit.

Proteins and antibodies

The His-tagged cytosolic fragments of human Tom70 [denoted
WT1110 (where WT is wild-type), YS585AA1110 and R192A1110]
were purified as described previously [13]. Briefly, the proteins
were expressed in Escherichia coli BL21(DE3) cells and induced
with 0.2 mM isopropyl β-D-thiogalactoside at 37 ◦C for 2 h. The
cells were lysed by extrusion in a French press and the cell
debris was removed by centrifugation. The His-tagged proteins
were bound to a nickel–Sepharose high-performance column (GE
Healthcare) equilibrated in 20 mM KH2PO4, pH 7.5, 500 mM
NaCl and 20 mM imidazole, and eluted with 20 mM KH2PO4,
pH 7.5, and 300 mM imidazole. The protein purity was assayed
by SDS/PAGE (12% gels), and the yield was determined by
absorbance at 280 nm. Specific rabbit polyclonal antibodies were
raised against Tom70 WT1110.

Biophysical analysis

CD measurements were recorded in a JASCO J-810 spectro-
polarimeter, using a 1 mm pathlength cuvette and protein
concentration from 1.9 to 7.8 µM in 20 mM Tris/HCl, pH 8.5,
and 150 mM NaCl. CDNN deconvolution software [30] was used
to predict the secondary structure content.

SV (sedimentation velocity) and SE (sedimentation equilib-
rium) experiments were carried out using a Beckman Optima
XL-A ultracentrifuge and an AN-60Ti rotor at 20 ◦C [31]. Scan
data acquisition were taken at 280 nm, in buffer containing
20 mM Tris/HCl, pH 8.5, 150 mM NaCl and 5 mM magnesium
acetate at 9000 to 11000 rev./min and protein concentrations from
150 to 1500 µg/ml for SE and at 30000 rev./min and protein
concentrations from 500 to 1500 µg/ml for SV experiments.
SE data were analysed by nonlinear regression using the
Origin software package (MicroCal) and a self-association
method, applying either a monomer model (fixed molecular mass
of 60 kDa) or a monomer–dimer model (fixed molecular mass of
60 kDa and N2 equals 2, which corresponds to a dimer). Protein
distribution was fitted to the following equation [32]:

C = Cmonomer,r0
e

[

M (1 − Vbarρ) ω2
(

r 2 − r 2
0

)

2RT

]

+KB ∗
(

Cmonomer,r0

)n
e

[

M (1 − Vbarρ) ω2
(

r 2 − r 2
0

)

2RT

]

where C is the protein concentration at radial position r, Cmonomer,r0

is the protein concentration at radial position r0 (initial radial
position), ω is the centrifugal angular velocity, KB is the binding
constant and n is the stoichiometry. The software Sednterp
(http://www.jphilo.mailway.com/download.htm) was applied to
estimate the partial specific volume at 20 ◦C (0.7327 ml/g), buffer
density and buffer viscosity. SV data were analysed with SedFit
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software [33] using the continuous sedimentation distribution
model to yield the sedimentation coefficient and frictional ratio.

SEC-MALS (SEC and multi-angle light scattering) experi-
ments were performed using an analytical Superdex 200 10/
300 column (GE Healthcare) or BioSuite 250 4 µm UHR SEC
column (Waters) equilibrated in buffer CG (20 mM Hepes/KOH,
pH 7.5, 100 mM potassium acetate and 5 mM magnesium
acetate), combined with online static light scattering by
absorbance and differential refractive index detectors (miniDawn
TREOS and Optilab rEX, Wyatt Technology). Recombinant
human Tom70 WT1110 and YS585AA1110 were loaded at
2000 µg/ml (unless otherwise indicated) with a sample size of
50 µl, and experiments were performed at room temperature
(22 ◦C). Data were analysed with the ASTRA software package
(Wyatt Technology).

Cross-linking and co-precipitation

Purified proteins were incubated at 10 µM in buffer CG
with 1% DMSO or 100 µM SMCC at 4 ◦C for 15 min. The
reactions were quenched with 100 mM DTT (dithiothreitol) and
10 mM ethanolamine, pH 8, at 4 ◦C for 15 min and analysed by
SDS/PAGE (8 % gels) and immunoblots. For SEC, 200µl of
WT1110 was cross-linked and quenched at the above conditions
and then resolved by a Superdex 200 10/300 column (GE
Healthcare) equilibrated in buffer CG. Eluted protein was
collected in 0.3 ml fractions, precipitated by trichloroacetic acid,
and then analysed by SDS/PAGE (8% gels) and Coomassie Blue
staining.

Co-precipitation with nickel–Sepharose was performed [13]
with radiolabelled OGC, PiC, Hsc70 or Hsp90 at a final con-
centration of 5 µM WT1110, YS585AA1110 or R192A1110 as
indicated, and analysed by autoradiography.

For cross-linking, the co-precipitated OGC or PiC complex
was resuspended in 100 µl of buffer CG, and then incubated with
1% DMSO or 100 µM BMH at 4 ◦C for 15 min. The reaction
was quenched by 200 mM DTT and, where indicated, washed
by denaturing buffer containing 250 mM NaCl, 20 mM Tris/HCl,
pH 8, and 1% SDS.

Mitochondrial targeting

Mitochondria were isolated as described previously [11,13],
except that HeLa cells were used. HeLa cells were maintained
in DMEM (Dulbecco’s modified Eagle’s medium) containing
4.5 g/l glucose, 36 mg/l pyruvate, 2 mM glutamine and 10% fetal
bovine serum (Invitrogen). The cells were washed with PBS,
collected by scraping in PBS and centrifugation, resuspended
in buffer B (10 mM Hepes/KOH, pH 7.5, 220 mM mannitol,
70 mM sucrose and 1 mM EDTA) containing 2 mg/ml BSA and
Complete Mini Protease Inhibitors (Roche), and lysed by seven
passes through a 27-gauge needle. Mitochondria were recovered
from the postnuclear supernatant by centrifugation at 12000 g

for 5 min and resuspended at 2 mg/ml in buffer containing
20 mM Hepes/KOH, pH 7.5, 250 mM sucrose, 80 mM potassium
acetate, 5 mM magnesium acetate, 10 mM succinate, 2 mM ADP
and 2 mM DTT. The isolated mitochondria were competent for
import, dependent on the inner membrane potential, and potential-
independent insertion into the outer membrane. The targeting of
cell-free translated proteins to mitochondria was performed as
described [13]. After targeting, mitochondria were resuspended
in buffer B at 1 mg/ml and incubated with 1% DMSO or 1 mM
s-SMCC at 4 ◦C for 15 min. The reactions were quenched with
100 mM DTT and 10 mM ethanolamine, pH 8, at 4 ◦C for 15 min
and analysed by SDS/PAGE and autoradiography.

BN-PAGE

BN-PAGE analysis was performed as described previously [5,13].
Purified proteins (WT1110 or YS585AA1110) were resolved in
buffer CG containing 1% digitonin (Calbiochem), 10% glycerol
and 0.5% Coomassie Blue G-250 (EMD Chemicals). HeLa
mitochondria were solubilized in buffer containing 20 mM
Hepes/KOH (pH 7.5), 50 mM potassium acetate, 1% digitonin
and 10% glycerol at 4 ◦C. After a clarifying spin, Coomassie
Blue G-250 was added to 0.5% for loading. Samples were
loaded on to 6–16.5% gradient gels. Purified proteins were visua-
lized by Coomassie Blue staining, for endogenous Tom70
by immunoblotting against Tom70, and for radiolabelled full-
length human Tom70 (WT or YS585AA) by autoradiography.
For two-dimensional PAGE, purified recombinant WT1110 and
YS585AA1110 were cross-linked with 100 µM SMCC and
quenched as described, and then resolved by BN-PAGE in the
presence of 1% digitonin, 10% glycerol and 0.5% Coomassie
Blue G-250 as above. After that, gel strips were loaded on to
SDS/PAGE (8% gels) and resolved in the presence of 1% agarose
containing 5% SDS, 50 mM Tris/HCl, pH 6.8, 25 mM DTT and
5% glycerol, followed by immunoblotting against Tom70.

RESULTS

The cytosolic region (residues 111–608) of His-tagged human
Tom70 (Tom70 WT1110) was purified as described previously [13].
CD spectroscopy indicated that it was natively folded and largely
α-helical (66 +− 4%) by deconvolution analysis (Figure 1A),
which is similar to that predicted by homology to yeast Tom70.
To examine its oligomeric state in solution, we performed AUC.
SV analyses (Figure 1B) were performed at concentrations from
500 µg/ml (dashed line) to 1500 µg/ml (solid line.) The c(s)
distribution of the recombinant Tom70 WT1110 yielded two
species, in major and minor fractions, seen most clearly in the plot
for the highest concentration. The majority had a sedimentation
coefficient of 3.8 S, in agreement with the values of 3.9 S and
3.6 S observed for yeast Tom70 by Beddoe et al. [23] and
Mills et al. [18] respectively. In addition, the c(s) distribution
of Tom70 WT1110 showed a minor peak with a sedimentation
coefficient of 6.2 S containing at least 15% of total protein,
indicating that some of the protein is present in a higher oligomeric
state. The 3.8 S and 6.2 S sedimentation coefficients were
consistent with molecular masses of approx. 60 kDa and 120 kDa
respectively.

To further investigate this, SE experiments, shown in
Figure 1(C), were performed at concentrations of 150 µg/ml
(left panels) and 1500 µg/ml (right panels). Notably, concen-
tration distributions shown by absorbance scans (Figure 1C, lower
panels) could not be fitted to a single species model, as seen by
the biased distribution of residuals (Figure 1C, upper panels).
Instead, the concentration distributions fit best to a self-association
model as shown by residuals that were evenly distributed over
the regression line (Figure 1C, middle panels) with an estimated
equilibrium dissociation constant of approx. 10−5 M. So, the
SE velocity results were in agreement, suggesting that a single
species model could not account for the full behaviour of the
human Tom70 soluble fragment. A higher-order oligomer with a
sedimentation coefficient consistent with a homodimer appeared
to make up a minor, but appreciable, fraction of the population.

To address this further and study potential functional conse-
quences, we performed site-directed mutagenesis to disrupt
the putative homodimerization of Tom70. Although an earlier
crystal structure by Wu and Sha [22] depicted yeast Tom70
as a compact homodimer with a dimerization interface that is
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Figure 1 Biophysical analysis of Tom701110

(A) To obtain the CD spectrum of Tom701110, the residual molar ellipticity (2) was measured from 260 to 200 nm at 20◦C. Deconvolution indicated a percentage of 66 +
− 4 % of α-helix. (B) c(s)

distribution from SV analyses performed with Tom701110 at 500 µg/ml (broken line) and 1500 µg/ml (continuous line). Peaks had sedimentation coefficients of 3.8 S and 6.2 S, consistent with
molecular masses of approx. 60 kDa and 120 kDa with f/f0 = 1.4. (C) SE analyses were carried out at 150 µg/ml (left panels) and 1500 µg/ml (right panels) at 10 000 rev./min at 20◦C.

almost flat, Mills et al. [18] characterized Tom70 as an elongated
open monomer in solution by SAXS and proposed an alternate
interpretation of the crystal structure with two intertwining
molecules of the open Tom70. Therefore, we performed homology
modelling of human Tom70 using Swiss-Model [34] with the
homodimeric structures as templates, and the model was depicted
in an open monomeric conformation by alternate pairing of
N- and C-terminal domains, as proposed by Mills et al. [18]
(Figure 2A). Although the SAXS-refined monomer model in
the study by Mills et al. [18] was not available as a template,
a homology model of open monomeric human Tom70 was
also generated using the unliganded monomeric structure of

yeast Tom71 [25] as a template (Supplementary Figure S1A
at http://www.BiochemJ.org/bj/429/bj4290553add.htm). In all
models, hydrophobic contacts were predicted between helices
of the TPR clamp and C-terminal domains: between domains
from different subunits in the dimeric model, and from the same
polypeptide in the monomeric models. In particular, Tyr585 and
neighbouring Ser586 interacted closely with residues Gly236, Ala240

and Lys243. We therefore created a double mutation, YS585AA
(Figure 2A, black spheres) at the predicted domain interface
and purified the mutant protein, YS585AA1110, as a recombinant
fusion protein. The mutation was expected to disturb intersubunit
contacts in a dimeric form of Tom70, as well as promoting
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Figure 2 The mutation YS585AA disrupts homodimerization of Tom701110

(A) An intertwined dimeric model of Tom70 was generated with the human homology model (ribbon structure) superimposed on to the yeast Tom70 crystal structure (PDB: 2GW1) used as template
(stick structure). A double mutation at the dimerization interface, YS585AA (black spheres), was generated in human Tom70. Mutation R192A (dark grey spheres) in the TPR clamp is also indicated
in the structure. (B) Recombinant Tom70 WT1110 (upper panel) and YS585AA1110 (lower panel) were analysed by SEC-MALS. The elution profile from a Superdex 200 10/300 column (straight line)
is plotted with the corresponding molecular masses (squares). Elution volumes of the peaks are indicated. Double arrows denote areas under the peaks selected for molecular mass estimations.
(C) Cross-linking of recombinant WT1110 and YS585AA1110 performed with 1 % DMSO control (lanes 1 and 2) or 100 µM SMCC (lanes 3 and 4). The higher molecular mass cross-link was
observed at approx. 150 kDa (arrow XL2) for WT1110 (lane 3) but not for YS585AA1110 (lane 4). (D) WT1110 was cross-linked with 100 µM SMCC and then resolved on a Superdex 200 10/300
column. Fractions between 11.7 and 15.3 ml were pooled, trichloroacetic acid precipitated and analysed by SDS/PAGE and Coomassie Blue staining. The homodimeric cross-link (arrow XL2) eluted
in earlier fractions, whereas in later fractions only un-cross-linked Tom70 was present.

a domain-dissociated and more flexible state of monomeric
protein.

To confirm the effect of the mutation, the purified proteins
WT1110 and YS585AA1110 were subjected to SEC followed by
in-line MALS with concentration determination by refractive
index (Figure 2B). Tom70 WT1110 eluted in two peaks at 12.5 ml
and 14.3 ml, and the proportion of early peak to late peak was
estimated to be 50:50. Although the mutant YS585AA1110 also
eluted in two peaks at 12.6 ml and 14.3 ml, the proportion of
early peak to late peak was significantly reduced to 30:70. The
molecular masses of protein in the early peaks were unambigu-
ously determined by MALS to be 120 kDa for both WT1110 and
YS585AA1110 (119.5 kDa and 119.9 kDa respectively, rounded

up), indicating that the peaks were dimeric human Tom70 species.
The molecular masses of the protein in the late peaks were calcu-
lated to be 71.8 kDa for WT1110 and 66.2 kDa for YS585AA1110,
which should correspond to the monomeric forms with predicted
molecular masses of 59.6 kDa and 59.5 kDa respectively. The
molecular mass estimations for the late peaks were probably
skewed upwards because of co-eluting dimeric species trailing
from the early peaks, a common chromatographic occurrence that
did not affect analysis of the early peaks. In addition, SEC analysis
of WT1110 at progressively lower concentrations produced increas-
ingly higher late peaks, in agreement with a monomer–dimer equi-
librium in solution (see Supplementary Figure S1B). Although
there was no evidence of different monomeric conformations
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between the open elongated and the domain-dissociated flexible
states, the difference in physical and structural characteristics may
be too small to be resolved by the SEC separation. Overall, SEC-
MALS provided firm evidence that human recombinant Tom70
can exist as monomer and dimer, consistent with our AUC experi-
ments (Figures 1B and 1C), and that the YS585AA mutation shifts
the monomer–dimer equilibrium towards the monomeric form.

In addition to the biophysical methods, we also characterized
the effect of the YS585AA mutation by chemical cross-linking
for comparison with the earlier yeast Tom70 studies. We treated
the purified proteins with the heterobifunctional cross-linking
reagent SMCC, followed by immunoblotting against Tom70
(Figure 2C). SMCC is amine- and sulfhydryl-reactive and similar
to the cross-linking reagent MBS (m-maleimidobenzoyl-N-
hydroxysulfosuccinimide ester) used in previous studies [19,21].
Immunoblotting following SDS/PAGE showed that both WT1110

and YS585AA1110 migrated at 60 kDa in the absence of cross-
linker. In the presence of SMCC, WT1110 formed a strong
homodimeric cross-link band at approx. 150 kDa (Figure 2C,
XL2), which was not observed with YS585AA1110. Instead,
YS585AA1110 formed a cross-link band slightly above 60 kDa
(Figure 2C, XL). We interpret this cross-link as an internal
cross-link of the monomeric protein as it clearly migrates too
rapidly to be any type of cross-linked dimer. It is possible that
a more flexible monomeric conformation of the mutant could
favour an internal cross-link, but it is highly unlikely that a more
rigid WT monomer could produce the 150 kDa cross-link. We
tested our result further by analysing cross-linked WT1110 by
SEC (Figure 2D). The 150 kDa cross-link band eluted in a single
peak between 12.3 and 13.5 ml (Figure 2D, XL2), identical to
the early peak in the SEC-MALS experiments. In contrast, the
60 kDa band spanned a wider range between 12.6 and 14.7 ml, in
which both un-cross-linked dimeric Tom70 as well as monomeric
Tom70 may be present. Taken together, we have clear evidence,
from AUC, SEC-MALS and cross-linking, of dimeric as well
as monomeric soluble human Tom70, and furthermore that our
YS585AA mutant disrupts the homodimerization and shifts the
equilibrium towards the monomer.

We thus proceeded to test the effect of the oligomeric state of
human Tom70 on preprotein targeting and chaperone docking.
Previously established co-precipitation assays were used [13],
including the R192A mutation in the TPR clamp domain
(Figure 2A, grey spheres) as a negative control. This mutation
was shown to abolish chaperone-docking and preprotein targeting
to human Tom70 [12]. The Tom70-dependent preproteins, OGC
and PiC, were radiolabelled by cell-free translation and incubated
with His-tagged Tom70 WT1110, YS585AA1110 or R192A1110 as
indicated. Stable complexes were isolated on nickel–Sepharose
beads and analysed by SDS/PAGE and autoradiography. OGC
was clearly pulled down by Tom70 WT1110 (Figure 3A, lane 3).
Remarkably, YS585AA1110 increased the level of OGC recovered
to approx. 140% of WT1110 (*P = 0.039, Figure 3A, lane
4). In contrast, the level of OGC recovered by R192A1110

was reduced practically to the negative control without Tom70
(Figure 3A, lanes 2 and 5). Pull-down of the preprotein PiC
showed a similar pattern (Figure 3B), with the amount of PiC
recovered by YS585AA1110 increased to approx. 120 % of WT1110

(**P = 0.0013). The mutant was therefore more efficient at
preprotein targeting than WT Tom70.

Tom70 is thought to directly contact preproteins after the
chaperone-docking step. We asked whether this increase in
preprotein targeting was a direct result of increased preprotein
interaction with the import receptor, or an indirect effect from
increased chaperone docking. We used the same co-precipitation
assay except with radiolabelled Hsc70 (Figure 3C) and Hsp90

(Figure 3D) to monitor the level of chaperone docking on to
Tom70 [13]. Radiolabelled chaperones Hsc70 (Figure 3C) and
Hsp90 (Figure 3D) were recovered by WT1110 and YS585AA1110

to the same extent, whereas the mutant R192A1110 abolished
chaperone docking to the level of the empty beads control.
This indicates that our dimerization mutant, YS585AA1110, binds
chaperones as efficiently as WT1110. We thus provide clear
evidence that monomeric human Tom70 has higher levels of
preprotein targeting via a mechanism that is separate from
chaperone docking.

The oligomeric status may also affect the affinity of Tom70–
preprotein interaction. Previous work using co-precipitation,
cross-linking and resistance to denaturants revealed direct
interactions between PiC and purified Tom70 [12]. We studied the
preprotein–Tom70 contacts by co-precipitating the radiolabelled
preproteins PiC and OGC with WT1110 or YS585AA1110 as
above. The stably recovered complexes were then treated
with a homobifunctional sulfhydryl-reactive cross-linker BMH,
washed with buffer containing SDS and analysed by SDS/PAGE
and autoradiography. Upon cross-linking of the isolated PiC
complexes with WT1110 or YS585AA1110, three SDS-resistant
bands appeared at the higher-molecular-mass range 100–200 kDa
(Figure 4A). In particular, cross-linked band ‘a’ was significantly
stronger in PiC–YS585AA1110 than in PiC–WT1110 complexes
(Figure 4A, compare arrow XLa, lanes 3 to 4 and 6 to 7).
The resistance of the enhanced band ‘a’ to SDS confirmed that
it represented a direct contact between preprotein and Tom70.
Furthermore, a stronger cross-link band was also observed in
OGC–YS585AA1110 complexes (Figure 4B, compare arrow XLa,
lanes 3 and 6) The appearance of the stronger cross-links
suggested that the YS585AA mutation enhanced direct contacts
between the preprotein and Tom70, and that preprotein–Tom70
interactions are stabilized in the monomeric form of the receptor.
Taken together, the monomeric Tom70 binds preproteins, but not
chaperones, more efficiently, thus increasing preprotein targeting.

We concluded from our co-precipitation and cross-linking of
stable preprotein–Tom70 complexes that the functional form
of human Tom70 is monomeric, which led us to investigate human
Tom70 in its endogenous membrane context. In experiments
with isolated yeast mitochondria, cross-linking with 1 mM
MBS led to a dimeric Tom70 species [19,21]. The same
result is observed with the recombinant human Tom70 using
a related cross-linker SMCC (Figure 2C). Therefore, we
isolated mitochondria from HeLa cells and performed cross-
linking with the membrane-impermeable cross-linker, s-SMCC.
Mitochondria were incubated with 1% DMSO or s-SMCC in
concentrations of 1–1000 µM and then analysed by SDS/PAGE
and immunoblotting for Tom70 (Figure 5A). Surprisingly, human
Tom70 did not form a homodimeric cross-link species at any of the
cross-linker concentrations tested. Instead, a Tom70-adduct was
observed at approx. 85 kDa in the presence of 500 µM and 1 mM
s-SMCC (Figure 5A, lanes 2 and 3). The cross-link could represent
an internal contact as observed with purified YS585AA1110, or
some other interaction on the membrane, but in any case it is
too small to be homodimeric Tom70. This first report of cross-
linking endogenous human Tom70 shows that human Tom70
exists predominantly as a monomer on the outer mitochondrial
membrane. Human Tom70 is therefore distinct from its yeast
homologue, which cross-links as dimers on the membrane [19,21].

We also compared endogenous human Tom70 on BN-
PAGE, which had been applied to its yeast counterpart [19].
We solubilized the HeLa cell mitochondria in 1% digitonin,
separated the lysate on BN-PAGE and then detected Tom70 by
immunoblotting. Human Tom70 migrated in a wide band slightly
above 140 kDa on BN-PAGE, larger than expected for monomers
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Figure 3 Co-precipitation of Tom701110 with preproteins and chaperones

(A) OGC was radiolabelled by cell-free translation (lane 1) and then co-precipitated with nickel–Sepharose in the absence (lane 2) or presence of the His-tagged cytosolic domain of human Tom70
WT1110 , YS585AA1110 or R192A1110 (lanes 3–5). The final concentration of the His-tagged proteins was 5 µM, which was within the biological concentration range of Hsp90 and its co-chaperones.
Quantification of the OGC band showed OGC bound by YS585AA1110 was increased to 140 % of WT1110 at 5 % level of significance. (B) Similarly, radiolabelled PiC was recovered by YS585AA1110

and the amount bound was increased to 120 % of WT1110 at 1 % level of significance. Co-precipitation of radiolabelled Hsc70 (C) and Hsp90 (D) showed no significant difference in chaperone
docking between WT1110 and YS585AA1110. Significance level (P ) was calculated based on the Student’s t test with a minimum of three independent experiments (n>3).

(Figure 5B), but similar to the migration of the yeast homologue.
However, addition of the cross-linker s-SMCC had no effect on
the migration of human Tom70 on BN-PAGE (results not shown),
and such treatment had been shown not to produce a homodimeric
cross-link (Figure 5A). This led us to believe that monomeric full-
length Tom70 may migrate abnormally slowly on BN-PAGE.

To address this using a different approach, we compared the
WT Tom70 in its native environment with the YS585AA mutant
form that favoured the monomeric state. Full-length WT and
YS585AA Tom70 were radiolabelled by cell-free translations
(Figure 5C, lanes 1 and 4). After integration into isolated HeLa
cell mitochondria, the mitochondria containing Tom70 WT or
YS585AA were treated with 1% DMSO or 1 mM s-SMCC and
analysed by electrophoresis and autoradiography (Figure 5C,
lanes 2, 3, 5 and 6). Again, a lower-molecular-mass adduct
was present at 85 kDa on SDS/PAGE, but no homodimeric
cross-link was observed for radiolabelled human Tom70 WT
and YS585AA. In parallel experiments, radiolabelled WT and
YS585AA Tom70 integrated into HeLa cell mitochondria were
analysed by BN-PAGE (Figure 5D), and both migrated identically

with endogenous Tom70 (Figure 5B). These results also suggested
a slow abnormal migration of monomeric Tom70.

Furthermore, we investigated the behaviour of our purified
recombinant Tom70 WT1110 and YS585AA1110 on BN-PAGE.
We had already shown that WT1110 exists in equilibrium
between monomer and dimer, whereas YS585AA1110 is mostly
monomeric. Nonetheless, when subjected to BN-PAGE under the
same conditions used for endogenous HeLa cell Tom70, both
of them migrated slightly below 140 kDa (Figure 5E), and the
addition of the cross-linker SMCC had no apparent effect on
such migration (results not shown). This result was in reasonable
agreement with the full-length forms (Figures 5B and 5D), given
that the recombinant proteins have smaller molecular masses.
This was also intriguing because a difference in migrations on
BN-PAGE between monomeric and dimeric Tom70 populations
was not detected. To investigate this more closely, we treated
WT1110 and YS585AA1110 with SMCC (Figure 2C, lanes 3 and
4,) and resolved them on BN-PAGE in the first dimension followed
by SDS/PAGE in the second dimension (Figure 5F). In addition
to the main band in the centre, WT1110 formed a homodimeric
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Figure 4 Cross-linking of preprotein-Tom701110 complexes

(A) Upper panel: radiolabelled PiC (lane 1) was co-precipitated with His-tagged WT1110 (lane
2) or YS585AA1110 (lane 5) and recovered by nickel–Sepharose as described in Figure 3. After
incubation with BMH, stable complexes were washed in the absence (lanes 3 and 6) or presence
of SDS (lanes 4 and 7). Bands that are SDS-resistant represent direct interactions (XL arrows).
A cross-link of particular interest in YS585AA1110 is marked (XLa). Lower panel: a magnified
view of the cross-linked bands at the higher molecular masses. (B) Radiolabelled OGC was
co-precipitated and cross-linked with BMH (XL arrows). A magnified view of the cross-linked
bands is shown. Lanes are numbered as in (A).

cross-link at approx. 150 kDa on SDS/PAGE (Figure 5F, XL2, left
panel). Although this homodimeric cross-link was well separated
in the second dimension, it migrated only slightly slower than
the non-cross-linked Tom70 on the BN-PAGE first dimension. In
agreement with this, YS585AA1110 mainly resolved as a spot in
the centre similar to that of WT (Figure 5F, right panel), with only
a trace amount of homodimeric cross-link visible on overexposure
of the immunoblot. We conclude that the monomeric and dimeric
forms of Tom70 had similar and overlapping migrations in BN-
PAGE. This may be due to the asymmetric shape of the monomer,
or the flexibility of different monomer conformations [18,25].

Taken together, our results suggest that cross-linking rather than
BN-PAGE migration is the more reliable test of Tom70 homo-

dimerization. By this measure, we showed that the conditions on
the outer mitochondrial membrane are normally unfavourable for
dimer formation, perhaps because the concentration of human
Tom70 on the membrane is too low. Our co-precipitation and
cross-linking experiments of stable preprotein–Tom70 complexes
also suggest that the monomer is the functional state capable
of binding both chaperones and preproteins. However, Tom70
oligomerization under transiently high local concentrations at
subsequent import steps is still possible.

DISCUSSION

The present study provides the first experimental demonstration
that the biological function of Tom70 is affected by its oligomeric
state. Previous biophysical studies of recombinant yeast Tom70
provided convincing evidence that it was solely monomeric, and
functional for binding peptides from chaperone and preprotein.
Yet, because dimers of yeast Tom70 could only be observed
by cross-linking of endogenous protein on membranes, the
relative activity of the putative dimers could not be directly
tested [18,19,23]. In the present study, we find that dimers of
recombinant human Tom70 can in fact be detected, but that human
Tom70 monomers are more active than dimers in interacting with
preproteins. This is consistent with the predominantly monomeric
form of Tom70 observed on human mitochondria. Overall, our
results support the idea that Tom70 is functionally monomeric
[18], with higher-order oligomers formed only transiently or under
particular conditions.

Human Tom70 diverges from its yeast homologue in many
regions of primary sequence, and it is not surprising that aspects
of its biochemical mechanism also differ. Functional surfaces
including the TPR clamp domain are moderately, not absolutely,
conserved between the proteins, and it has been shown that
specificity of chaperone binding is different between human and
yeast Tom70 [12]. The surface of human Tom70 that is predicted to
form the interdomain and/or intersubunit contact is also divergent
from the yeast protein, with the critical Tyr585–Ser586 residues
being identical only in metazoan Tom70s (the equivalent residues
are isoleucine and threonine in S. cerevisiae Tom70 and threonine
and threonine in Tom71). Differences in oligomer formation
between human and yeast Tom70 may also be expected. Indeed,
AUC SV and SE experiments (Figures 1B and 1C) and SEC-
MALS data (Figure 2B) established that, although soluble human
Tom70 monomers were the majority of the population, dimers
were unambiguously evident. The double YS585AA mutation in
the predicted interdomain interface disrupted homodimerization
of recombinant human Tom70, as shown by SEC-MALS and
cross-linking (Figures 2B and 2C). This provided us with a
means of testing the effect of dimerization on Tom70 function.
Preprotein targeting to Tom70 was more efficient with the
monomeric form of the receptor, but not by changing Tom70 inter-
action with chaperones. Instead, stronger preprotein–Tom70
cross-links were observed, indicating greater contact between the
molecules. These results suggest that human Tom70 receives and
interacts with preproteins in a monomeric state. Therefore, the
monomeric mechanism of Tom70 characterized by Mills et al.
[18] is fundamentally conserved from yeast to humans.

In monomeric Tom70, the YS585AA mutation could also
promote dissociation of the TPR clamp and C-terminal domains
and increase the overall flexibility of the protein. We were
unable to directly observe conformational differences within
the monomer populations, as the bulk biophysical properties
of the conformers were apparently too similar. It can still be
speculated that the domain-dissociated monomer is more efficient
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Figure 5 The native state of human Tom70

(A) Mitochondria from HeLa cells were incubated with 1 % DMSO (lane 1) or cross-linked with 1000, 500, 100, 50, 10, 5 or 1 µM s-SMCC (lanes 2–8) and then analysed by SDS/PAGE and
immunoblotting against Tom70. (B) HeLa cell mitochondria were solubilized in 1 % digitonin and resolved on 6–16.5 % BN-PAGE gels. Endogenous Tom70 was visualized by immunoblotting.
(C) Full-length human Tom70 WT or YS585AA were radiolabelled by cell-free translation (lanes 1 and 4). After insertion into HeLa cell mitochondria, reactions were incubated with 1 % DMSO (lanes
2 and 5) or 1 mM s-SMCC (lanes 3 and 6) and analysed by SDS/PAGE and autoradiography. (D) Radiolabelled human Tom70 WT or YS585AA was inserted into HeLa cell mitochondria, solubilized
in 1 % digitonin and analysed on BN-PAGE and autoradiography as described. (E) WT1110 and YS585AA1110 were resolved on BN-PAGE in the presence of 1 % digitonin and then visualized by
Coomassie Blue staining. Native molecular mass markers are indicated. (F) WT1110 (left panel) and YS585AA1110 (right panel) were cross-linked with 100 µM SMCC, resolved on BN-PAGE in the
first dimension and SDS/PAGE (8 % gels) in the second dimension, followed by immunoblotting against Tom70. The homodimeric cross-link (XL2) was well separated on SDS-PAGE but not on
BN-PAGE.

at contacting preprotein than the domain-docked form, because
the increased flexibility may allow the C-terminal domain to
adapt its structure to that of the preprotein ligand. Also, we

cannot distinguish the domain arrangement within our observed
dimers. Although it is possible that the subunits are in the closed
conformation first proposed by Wu and Sha [22], it seems more
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likely that the dimers are made up of subunits in the elongated
open form, in the interpretation of Mills et al. [18]. The dimer
would then resemble that depicted in Figure 2(A). The latter
arrangement would allow dimer formation without major internal
re-orientations of the domains for both human and yeast Tom70.

Recent structural studies of yeast Tom70 [18] and Tom71 [25]
support our monomeric model of Tom70 function and outline a
generally conserved mechanism. Nonetheless, given that human
recombinant Tom70 can form homodimers, we cannot rule out the
possibility that homodimeric Tom70 may be present on the outer
mitochondrial membrane as a minor species. It was suggested
that in a resting state, yeast Tom70 could exist in a homodimeric
form to prevent non-specific interactions, and that chaperone
docking may be involved in opening Tom70 into the monomeric
state before preprotein binding [25]. We suggest an updated
model in which human Tom70 interacts with chaperones and
preproteins in the monomeric active form, and the homodimeric
form may be involved in another mechanistic function perhaps
unique to metazoan Tom70s. After preprotein binding, up to six
active monomeric receptors may be recruited by one molecule of
preprotein in order to proceed to the general import pore [19].
This creates a local environment where high concentrations of
the receptor may drive transient homodimerization. The closed
conformation of the homodimer could then provide a mechanism
for the import receptor to release the preprotein for translocation
across the outer mitochondrial membrane. It is also possible
that dimerization of Tom70 is induced under certain cellular
conditions, perhaps by post-translational modifications, as a
means of down-regulating mitochondrial import. New approaches
to study Tom70 in the process of preprotein translocation will be
needed to establish or refute these ideas.
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Human mitochondrial import receptor Tom70 functions as a monomer

Anna C. Y. FAN*, Lisandra M. GAVA†‡, Carlos H. I. RAMOS† and Jason C. YOUNG*1

*Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1, †Institute of Chemistry, University of Campinas (UNICAMP),
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Figure S1 Concentration-dependent behaviour of Tom701110 on SEC provides evidence for monomer–dimer equilibrium

(A) An alternative monomeric homology model of human Tom70 was generated with the unliganded yeast Tom71 crystal structure (PDB: 3FP3) as template. The dimerization mutant, YS585AA (black
spheres), and the TPR clamp mutant, R192A (grey spheres), are also indicated. (B) The dimer populations of Tom70 WT1110 are concentration-dependent. Samples were loaded on to a Biosuite
250 4 µm UHR SEC column at 2 mg/ml (upper panel), 0.5 mg/ml (middle panel) and 0.2 mg/ml (lower panel), with corresponding proportions of the early peak (2.5–3.0 ml) against the late peak
(3.0–3.5 ml) being 90:10, 60:40 and 40:60 respectively. Elution volumes of the peaks and the molecular mass markers, including thyroglubin (670 kDa), γ -globulin (155 kDa), ovalbumin (43 kDa)
and ribonuclease A (14 kDa), are indicated.
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A grande maioria das proteínas mitocondriais é codificada por genes 

nucleares e sintetizada como proteínas precursoras nos ribossomos no citosol. 

Essas proteínas precursoras contêm regiões sinalizadoras para sua translocação 

pela membrana mitocondrial. A translocases da membrana mitocondrial são 

capazes de reconhecer essas regiões, como a Tom70, por exemplo. A Tom 70 

interage com complexos proteína precursora-chaperona molecular, a chaperona é 

responsável por manter a proteína precursora enovelada e estável até a sua 

translocação. Nesse sentido, estudamos a interação entre a Tom70 e a Hsp90 

humanas, especificamente o domínio C-terminal da Hsp90 (C-Hsp90). Nesse 

artigo está reportada a interação entre Tom70 e C-Hsp90, com dados 

termodinâmicos e estequiometria de interação, determinadas por técnicas de pull-

down, SEC-MALS e calorimetria de titulação isotérmica. Além disso, também está 

apresentada a caracterização da C-Hsp90 por dicroísmo circular, fluorescência 

intrínseca do triptofano, ultracentrifugação analítica e SEC-MALS. 
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a b s t r a c t

A large majority of the 1000–1500 proteins in the mitochondria are encoded by the nuclear genome, and
therefore, they are translated in the cytosol in the form and contain signals to enable the import of pro-
teins into the organelle. The TOM complex is the major translocase of the outer membrane responsible for
preprotein translocation. It consists of a general import pore complex and two membrane import recep-
tors, Tom20 and Tom70. Tom70 contains a characteristic TPR domain, which is a docking site for the
Hsp70 and Hsp90 chaperones. These chaperones are involved in protecting cytosolic preproteins from
aggregation and then in delivering them to the TOM complex. Although highly significant, many aspects
of the interaction between Tom70 and Hsp90 are still uncertain. Thus, we used biophysical tools to study
the interaction between the C-terminal domain of Hsp90 (C-Hsp90), which contains the EEVD motif that
binds to TPR domains, and the cytosolic fragment of Tom70. The results indicate a stoichiometry of bind-
ing of one monomer of Tom70 per dimer of C-Hsp90 with a KD of 360 ± 30 nM, and the stoichiometry and
thermodynamic parameters obtained suggested that Tom70 presents a different mechanism of interac-
tion with Hsp90 when compared with other TPR proteins investigated.

Ó 2011 Elsevier Inc. All rights reserved.

Introduction

Mitochondria, which are ubiquitous in eukaryotic cells types,
are crucial to many physiological functions [1,2], and they have
critical roles in physiological and pathological processes and act
as cellular ‘‘powerhouses’’. In addition to being vital for energy pro-
duction and therefore for the survival of eukaryotic cells, mito-
chondria are implicated in a number of other essential functions,
such as cellular respiration, metabolism of lipids, amino acids, iron
homeostasis, and the regulation of intrinsic pathway of apoptosis
[3–5].

Mitochondria are double-membrane bound organelles that
include four compartments: the outer membrane, the inner mem-
brane, the intermembrane space and the mitochondrial matrix. In
the interior of the mitochondria, about 1000–1500 different pro-
teins are present, of which only a small fraction are encoded by
the mitochondrial genomic DNA [4,6]. The vast majority of mito-
chondrial proteins are encoded by the nuclear genome, translated
by cytosolic ribosomes in the form of preproteins and thereafter

translocated into the mitochondria [6–8]. Preproteins targeted spe-
cifically to the mitochondria contain signals to localize to the cor-
rect compartments within the organelle. The signals are recognized
by cytosol-exposed receptors located in the mitochondrial outer
membrane [4]. Following recognition, these signals are decoded
by mitochondrial translocases, which contain multifunctional
components that coordinate the preprotein transfer to the translo-
cation pore and that control the sorting and communication with
subsequent translocases [1,6,8]. Thus, the machineries of import-
ing and sorting proteins into the mitochondria are greatly impor-
tant in maintaining proper mitochondrial function.

A major translocase of the outer membrane is the TOM com-
plex. It consists of the general import pore (GIP) complex and
two membrane import receptors, Tom20 and Tom70, with a single
N-terminal transmembrane domain and a receptor domain
exposed into the cytosol [5,8]. Tom20 recognizes the N-terminal
mitochondrial targeting signals from the preproteins, via hydro-
phobic interactions, while Tom70 preferentially recognizes prepro-
teins with internal hydrophobic targeting sequences, such as the
inner membrane metabolite carriers [4,5,9–12]. The Tom70-medi-
ated import pathway is chaperone dependent. Molecular chaper-
ones Hsp70 and Hsp90 have important roles in targeting the
preproteins to the TOM complex and in the protection of these
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preproteins from aggregation in the cytosol [13]. Tom70 contains a
cytosolic TPR (tetratricopeptide repeat) clamp domain that serves
as a docking site for the Hsp70 and Hsp90 C-terminal EEVD motifs
and consequently for the multi-chaperone complexes that hold the
preprotein. The C-terminal EEVD motif of the chaperones has been
implicated in the binding of other proteins containing TPR regions,
including Hop and CHIP co-chaperones [14–18]. The ATPase cycles
of Hsp70/Hsp90 control interactions with substrates and client
proteins and are also needed for the chaperones to assist in protein
folding; in addition, preproteins are transferred in an ATP-
dependent way to the TOM complex for translocation [19]. Specific
Hsp90 inhibitors reduce the Tom-dependent import to a basal
level, indicating that the chaperone has a significant role in protein
import into the mitochondria via the TOM complex [19]; however,
many aspects of the Tom70–Hsp90 interaction are still not clear.
For instance, the details of the mechanism of interaction and the
structure of the complex remain unclear. In a previous work, we
showed that the functional state of human Tom70 is monomeric
[5], and here, we present the stoichiometry and thermodynamic
parameters of its interaction with the C-terminal domain of
Hsp90, which is a dimer in solution.

Materials and methods

Plasmids, recombinant protein expression and purification

The coding sequences for the C-terminus fragment of human
Hsp90a, C-Hsp90, (NCBI Accession No.: AAI21063, residues
566–732) and the cytosolic fragment of human Tom70 (NCBI
Accession No.: O94826.1, residues 111–608) cloned into a
pProExHta (Invitrogen), which inserts a His-tag followed by a
cleavage site for the TEV-protease, were a generous gift from Dr.
Jason C. Young [14]. Both recombinant proteins were expressed
in BL21(DE3) Escherichia coli cells and were induced with 0.8 mM
isopropyl b-D-thiogalactoside at 37 °C for 4 h. His-tagged proteins
were purified using a nickel–Sepharose 5 mL column (GE Health-
care) equilibrated in 20 mM sodium phosphate, pH 7.4, 500 mM
NaCl and 20 mM imidazole, and they were eluted with 20 mM so-
dium phosphate, pH 7.4, 500 mM NaCl and 150 mM imidazole.
Proteins were further purified over a Superdex 200 26/60 gel filtra-
tion column (GE Healthcare) in 20 mM Tris–HCl, pH 8.0, 150 mM
NaCl using an ÄKTA FPLC instrument (GE). Protein purification
was assessed by SDS–PAGE, and concentrations were determined
using the absorbance at 280 nm.

Spectroscopic and hydrodynamic experiments of C-Hsp90

Circular dichroism (CD)1 measurements were recorded on a
Jasco J-810 spectropolarimeter (JASCO, Inc.) with temperature con-
trolled by a Peltier-type system (PFD 425S). Data were collected at
20 °C using a 1 mm pathlength cuvette, in 20 mM Tris–HCl, pH 8.0,
and 150 mM NaCl with a protein concentration of 10 lM. Fluores-
cence measurements were done in a SLM AMINCO-Bowman Series
2 (AB2) spectrofluorimeter (Thermo Fisher Scientific, Inc.) using a
1 � 1 cm pathlength cuvette with 10 lM of C-Hsp90, in the same
buffer as for the CD experiments. Excitation was at 295 nm and
emission was measured from 300 to 420 nm (emission and excita-
tion bandpass of 4 nm). Fluorescence data were evaluated by their
emission maxima wavelength (kmax) and by their spectral center of
mass ðhkiÞ, as described by the equation:

hki ¼

P
kiF iP
F i

ð1Þ

where ki is each wavelength and Fi is the fluorescence intensity at
k1.

Analytical ultracentrifugation experiments were conducted
with a Beckman Optima XL-A analytical ultracentrifuge and an
AN-60Ti rotor (for review, see [20]). Sedimentation equilibrium
(SE) experiments were performed at protein concentrations from
200 to 600 lg/mL (approximately 5–15 lM of dimeric C-Hsp90),
in a buffer containing 20 mM Tris–HCl, pH 8.0, and 150 mM NaCl
at 20 °C, from 9000 to 13,000 rpm, and data acquisition was at
276 nm. The software SEDPHAT version 8.2 was applied to evalu-
ate the SE data [21]. The partial specific volume of the protein, buf-
fer density and viscosity were calculated with the program
SEDNTERP [22]. The global fitting was accomplished with the ‘‘Spe-
cies Analysis’’ model of the SEDPHAT program. All parameters were
allowed to float freely, and then, the statistical analyses were per-
formed. The statistical method used was the ‘‘Monte-Carlo non-lin-
ear regression’’ with at least 100 iterations and a confidence level
of 0.68. Tom70 was similarly analyzed by CD, and fluorescence
spectroscopy and analytical ultracentrifugation were performed
as described in a previous work by some of the authors [5].

Pull-down experiments

The experiments were conducted at room temperature. The
His-tag of C-Hsp90 was removed by the TEV-protease so that C-
Hsp90 could be used as the prey in the pull-down assays, while
the His-tag of Tom70 was maintained to be used as the bait.
Pull-down experiments were performed in equilibrium buffer
(50 mM sodium phosphate, 300 mM NaCl, pH 8.0), with 50 lM of
His6–Tom70 and 25 lM (dimer concentration) of cleaved C-
Hsp90. Proteins were mixed and incubated for 2 h, and then,
100 lL of nickel–agarose resin Ni–NTA (Qiagen) was added, and
the mixture was further incubated for 2 h. The resin was washed
four times with 200 lL aliquots of equilibrium buffer added to
20 mM imidazole to release proteins bound nonspecifically to the
resin. Proteins bound specifically to the resin and any proteins
interacting with them were eluted with the equilibrium buffer
added to 200 mM imidazole, precipitated with acetone, solubilized
in sample buffer and analyzed by Coomassie-stained SDS–PAGE.

Size-exclusion chromatography–multiple angle light scattering (SEC–

MALS)

The oligomeric states of Tom70, C-Hsp90 and their complex
were estimated via SEC–MALS measurements on an ÄKTA FPLC
system (GE Healthcare) connected to a triple-angle static light-
scattering detector miniDAWN™ TREOS (Wyatt Technology, Santa
Barbara, CA, USA). A Superdex 200 HR 10/300 GL column (GE
Healthcare) was used in 20 mM Tris–HCl, pH 8.0, and 150 mMNaCl
at a flow rate of 0.5 mL/min. Sample volumes of 250 lL were
injected at a concentration of approximately 100 lM of Tom70
and 50 lM of C-Hsp90 (dimer concentration). The data were re-
corded and processed using ASTRA V software (Wyatt Technology,
Santa Barbara, CA, USA). To determine the detector delay volumes
and normalization coefficients for the light scattering detector, a
BSA sample (Sigma–AldrichÒ) was used as a reference. SEC–MALS
is an absolute method for molecular mass determination; it pro-
vides a direct measure of molecular mass without being limited
by the molecular shape or hydrodynamic parameters. The signal
from the light-scattering detector is directly proportional to the
molecular mass of the protein multiplied by their concentrations
(mg/mL). This signal and the concentration (determined by absor-
bance, for example) make it possible to measure the molecular

1 Abbreviations used: C-Hsp90, Hsp90 C-terminal domain; CD, circular dichroism;
ITC, isothermal titration calorimetry; KD, dissociation constant; SEC-MALS, size-
exclusion chromatography coupled to multi-angle light scattering; SE, sedimentation
equilibrium; MM, molecular mass; Tom70, translocase of the outer membrane.
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mass of each peak eluting from the column [23], so it is a reliable
technique to determine the molecular mass and stoichiometry of
protein–protein complexes. All elution peaks were collected in
0.5 mL aliquots and were assessed by Coomassie-stained SDS–
PAGE.

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) experiments were per-
formed at 20 °C using a VP-ITC calorimeter (Microcal, LLC, North-
ampton, MA, USA) running Origin version 5.0 software. All
solutions were thoroughly degassed before use by stirring under
vacuum, and protein samples were dialyzed against 20 mM Tris–
HCl, pH 8.0, and 150 mM NaCl. Tris buffer was used to facilitate
the comparison with previous works ([25] and references therein)
and to eliminate possible artifactual results caused by the interac-
tion of phosphate with a putative additional nucleotide binding
site in the C-terminus of Hsp90 [25] (see also Results and discus-
sion). Titrations consisted of 5 lL injections of 109 lM Tom70
every 300 s into 5 lM C-Hsp90 solutions (dimer concentration).
The enthalpy change for each injection was calculated by integrat-
ing the area under the peaks of the recorded time course of the
change of power and then by subtracting that of the control titra-
tion. The control experiments were used to correct for heat effects
of dilution and mixing, and they consisted of injections of buffer
without protein into buffer. The heat of dilution was determined
from the baseline at the end of titration and was negligible. The
apparent enthalpy change of binding (DHapp, i.e. the sum of all
events involved in the interaction), binding stoichiometry (n),
and dissociation constant (KD) were estimated from the best fit
of the theoretical titration curve using a least squares fitting anal-
ysis (Origin 5.0).

Results and discussion

The C-terminus of Hsp90 was produced folded as a dimer in solution

The 90 kDa heat shock protein Hsp90 is one of the most impor-
tant molecular chaperones, and it has only one homolog in pro-
karyotes, whereas in humans there are at least four homologs,
two cytosolic, one in the mitochondria and one in the endoplasmic
reticulum. Hsp90 is essential for survival in eukaryotes, and its cli-
ent proteins are normally associated with cell cycling and signal-
ing, and this association makes this chaperone a potential drug
target [26–28]. Hsp90 is an elongated dimer in solution with the
dimerization site located in the C-terminal domain [29–31], and
it can be divided into specific domains, the N-terminal domain fol-
lowed by a linker, the M or middle domain, and the C-terminal do-
main, which has the EEVD motif that is involved in the binding to
proteins presenting the TPR domain. In the case of the inducible
cytosolic Hsp90a, the N-terminal domain comprises residues 1–
210, the linker comprises residues 211–272, the M or middle do-
main comprises residues 273–629, and the C-terminal domain
comprises residues 630–732 [26]. The EEVD motif is located at res-
idues 729–732 and is essential for Hsp90 binding to its co-chaper-
one by the TPR domain present in these proteins. To gain insight
into the mechanism by which Hsp90 interacts with Tom70, we
purified a recombinant C-terminus fragment of human Hsp90a
(C-Hsp90) using a modified approach and characterized its folded
state.

C-Hsp90 was pure and soluble (data not shown). Its CD spec-
trum is characteristic of a folded protein [32] with minima at
209 nm (ÿ10,840 deg cm2 dmolÿ1) and 222 nm (ÿ10,670
deg cm2 dmolÿ1) as shown in Fig. 1A. By applying the simple pre-
diction methods proposed by Morriset et al. [33] and Greenfield

and Fasman [34], the percentage of a-helix and b-sheet were esti-
mated to be of approximately 26% and 37%, respectively. These
percentages are in good agreement with the crystal structure of
the C-terminus of the Hsp90 homolog from Saccharomyces cerevisi-

ae (PDB ID: 2CG9), in which the C-terminus comprises a three-
stranded b-sheet positioned under a curved helix that faces a
three-helix coil [35]. Emission fluorescence spectroscopy of trypto-
phan (Trp) is a reasonable method to access information regarding
the environment where this residue is situated in a protein,
because of its sensitivity to the polarity of this environment; thus,
Trp is a local probe of the folded state of a protein [36]. C-Hsp90
has one Trp residue. The emission fluorescence spectrum had its
maximum intensity at 343 ± 1 nm with a spectral center of mass
at 341 ± 1 nm (Fig. 1B), suggesting that the residue was well-bur-
ied in the protein structure. This result is another indication that
the protein was pure.

Sedimentation equilibrium analytical ultracentrifugation was
used to determine the molecular mass (MM) and thus the oligo-

Fig. 1. (A) Circular dichroism spectrum of recombinant human C-Hsp90. Mean
residue ellipticity ([h]) was measured from 198 to 260 nm at a protein concentra-
tion of 10 lM, in 20 mM Tris–HCl, pH 8.0, with 150 mM NaCl at 20 °C, using a Jasco
J-810 spectropolarimeter. The spectrum indicates that C-Hsp90 is folded and, by
applying simple methods proposed by Morriset et al. [33] and Greenfield and
Fasman [34], has about 26% and 37% a-helix and b-sheet content, respectively. (B)
Emitted fluorescence spectrum of recombinant human C-Hsp90. Emission trypto-
phan fluorescence was measured from 300 to 420 nm; the excitation was at 295 nm
at a protein concentration of 10 lM, using a SLM AMINCO-Bowman Series 2 (AB2)
spectrofluorimeter. C-Hsp90 has one Trp residue, and the emission fluorescence
spectrum had a maximum intensity at 343 ± 1 nm with a spectral center of mass at
341 ± 1 nm suggesting that the residue was well-buried in the protein structure.
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meric state of C-Hsp90. The results of three different protein con-
centrations at five different speeds were analyzed globally with
SEDPHAT (see Materials and methods). Fig. 2 shows the results
using 600 lg/mL protein with the residuals from fitting shown in
the upper panel. As determined by the fitting and the Monte-Carlo
statistics analysis, C-Hsp90 has a molecular mass of 43 ± 1 kDa,
which is consistent with a dimer in solution, since the MM pre-
dicted from the primary structure for the recombinant monomer
is 21850.75 Da. Taken together, our results indicate that C-Hsp90
is properly folded and is a dimer.

Stoichiometry and thermodynamics of the interaction between C-

Hsp90 and Tom70

The characterization of the folded conformation and oligomeric
state of the recombinant cytosolic fragment of human Tom70 has
been described previously [5], where we and our collaborators
showed that the protein is purified in its natively folded state,
has high a-helix content and is a functional monomer. Since both
C-Hsp90 and Tom70 are well-behaved single species in solution,
we undertook the measurement of their interaction. The interac-
tion was initially studied by pull-down assays. For that examina-
tion, the Tom70 His-tagged construct was maintained intact to
be used as bait in pull-down assays, since it was capable of binding
to a nickel resin, whereas C-Hsp90 had it His-tag cleaved by TEV-
protease. The results were assessed by PAGE in denaturing condi-
tions by SDS (Fig. 3). The experiment showed that His-tagged
Tom70 bound the resin as expected and free C-Hsp90, which has
the His-tag removed did not (Fig. 3). However, when mixed with
Tom70, C-Hsp90 remained bound to the resin even after two

washes and was released only when imidazole was used to
decrease the affinity of His-tagged Tom70 for the resin (Fig. 3).
Therefore, these results demonstrate that C-Hsp90 in fact inter-
acted with Tom70. We then set out to determine the oligomeric
state of the proteins in the complex by measuring the MM of the
complex. We used size-exclusion chromatography combined with
multi-angle static light scattering (SEC–MALS), a technique that
provides a precise determination of MM independent of molecular
shape or hydrodynamic parameters, to determine the MM of the
complex (Fig. 4). Fig. 4A shows the SEC–MALS measurements of
isolated proteins as normalized light scattering profiles and respec-
tive molecular mass distributions. Fig. 4B and C show the SDS–
PAGE profiles of free Tom70 and free C-Hsp90 (B) and their
mixture (C) from SEC–MALS, to confirm the presence of the pro-
teins. As expected, free C-Hsp90 had a MM of �43 kDa (Fig. 4A
and B), which is in excellent agreement with the theoretically cal-
culated MM of 43.7 kDa for a dimer, corroborating SE results (see
above), and free Tom70 had a MM of �62 kDa (Fig. 4A and B), con-
sistent with the theoretical calculated MM of 59.7 kDa for a mono-
mer, which is supported by previously analysis of its oligomeric
state in solution [5]. Mixed Tom70 and C-Hsp90 eluted as a single
peak with a MM of �110 kDa (Fig. 4A and C), indicating a stoichi-
ometry of one monomer of Tom70 to a dimer of C-Hsp90 in the
complex.

The stoichiometry determined above by SEC–MALS was con-
firmed by isothermal titration calorimetry (ITC). In this experi-
ment, the DHapp for the binding interaction is measured at a
constant temperature, allowing for the determination of the bind-
ing stoichiometry (n) and the dissociation constant (KD) by fitting
of the titration curve. Both the sequence of injections and the dif-
ferential heat plot are shown in Fig. 5. In accordance with the con-
clusion from the SEC–MALS results, the binding stoichiometry (n)
was equal to 1.2 ± 0.1, indicating that one monomer of Tom70
binds to a dimer of C-Hsp90. The KD was determined to be
360 ± 30 nM, suggesting that the complex has high affinity. The
DHapp of interaction was ÿ2.6 ± 0.1 kcal/mol, and the apparent
entropy of interaction was 21 ± 1 cal/mol K, indicating that the
interaction is driven by both enthalpy and entropy. Interestingly,
Hop and Cyp40, other TPR co-chaperones from human, bind the

Fig. 2. Analytical ultracentrifugation sedimentation equilibrium of C-Hsp90. SE
experiments were made at protein concentrations from 200 to 600 lg/mL
(approximately 5–15 lM of dimeric C-Hsp90), in 20 mM Tris–HCl, pH 8.0, and
150 mM NaCl at 20 °C, from 9000 to 13,000 rpm, and data were acquired at 276 nm.
The data analysis was performed with the software SEDPHAT version 8.2, and
hydrodynamic parameters were calculated with SEDNTERP. Global reduced v2 was
approximately 1.07, and the local rmsd was approximately 0.0052. The fitting and
Monte-Carlo statistics indicated that C-Hsp90 is a dimer in solution, with a
molecular mass of 43 ± 1 kDa, consistent with the known data for full-length Hsp90.

Fig. 3. Pull-down assays of Tom70 and C-Hsp90. The Tom70 His-tagged construct
was maintained intact whereas C-Hps90 had its His-tag cleaved by TEV-protease to
be used as bait in pull-down assays. SDS–PAGE analysis of samples bound to the Ni–
NTA resin that eluted in the presence of 200 mM imidazole (see Materials and
methods). Lane 1, molecular mass marker (BenchMark™ Protein Ladder from
Invitrogen); lane 2, Tom70 used as control; lane 3, Tom70 C-Hsp90 mixture; and
lane 4, C-Hsp90 used as control. His-tagged Tom70 was capable of binding to C-
Hsp90 and pulled it out of solution, confirming their interaction (lane 3).
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C-terminus of human Hsp90-b with a KD of about 10 times greater
than that of Tom70, in an interaction that is also enthalpy driven,
although the interaction with Cyp40 is driven by entropy [17,24].
It may be possible that there are slightly differences in the binding
of different TPR co-chaperones with Hsp90. There are crystal struc-
tures of the Hsp90 MEEVD motif in complex with the TPR domains
of human Hop [17] and yeast Tom 71 [4] (Fig. 6). Since the residues
of Tom71 that interact with the MEEVD motif are conserved in
human Tom70, the structure of the yeast ortholog can be used as
a model for the interaction of Tom70 with Hsp90 [4]. First, one
can observe general similarities. The interaction of the MEEVD
with the TPR domains of both Hop and Tom71 involves mainly
the dicarboxylate from the carboxy-terminal Asp residue from
MEEVD and two basic lysines from the TPR domain (Fig. 6). At
pH 8, the two lysines are positively charged while the MEEVD mo-
tif is negatively charged showing that the interaction between TPR
co-chaperones and Hsp90 is electrostatic in nature. Second, slightly
differences in binding can be observed when comparing Fig. 6A
with B and C with D. The MEEVD motif appears to be more
involved by the TPR domain when bound to Hop than when bound
to Tom71, suggesting that the interaction between the MEEVD and
Hop is more organized and thus has a higher entropic cost. In addi-
tion to that, the conformation of the MEEVD pentapeptide changes
depending on the TPR co-chaperone to which it is bound (Fig. 6).
Six residues from the Tom71 TPR domain are involved in seven
electrostatic interactions with the MEEVD motif while seven resi-
dues from the Hop TPR domain are involved in ten electrostatic
interactions with the MEEVD motif (Fig. 6A and B). The seventh
residue is an Asn in position 308 of the TPR2a from Hop that has
no equivalent in Tom71 and is hydrogen bonded to the first Glu
residue of the MEEVD motif. A Tyr at position 236 of the TPR2a
from Hop is hydrogen bonded to the carbonyl group of the peptide
bond between the two Glu residues of the MEEVD motif (Fig. 6B),
while the correspondent residue in Tom71, Phe138, does not make
this kind of interaction (Fig. 6A). In contrast with the tight interac-
tions when bound to Hop, the N-terminus of the MEEVD motif ap-
pears to be less restrained when bound to Tom71 (Fig. 6),
indicating that although the interactions of this portion of the
motif with Hop increase enthalpy they also have an entropic cost
due to the organization of the complex. This observation is

Fig. 4. SEC–MALS combined with SDS–PAGE for the determination of the molecular mass of the Tom70 C-Hsp90 complex. (A) SEC–MALS measurements of the isolated
proteins and the complex are labeled. The graphic shows the representative normalized light scattering profiles recorded by detectors (continuous lines) and the molecular
mass distributions (open squares) per elution volume unit (mL). Free C-Hps90 had a MM of �43 kDa (consistent with a dimer), free Tom70 had a MM of �62 kDa (consistent
with a monomer) and mixed Tom70 C-Hsp90 had a MM of �110 kDa, indicating a stoichiometry of one monomer of Tom70 to a dimer of C-Hsp90 in the complex. (B and C)
Fractions of 0.5 mL from free Tom70 and free C-Hsp90 (B) and complex (C) were collected and assessed by SDS–PAGE to confirm the presence of the proteins in the SEC–MALS
measurements.

Fig. 5. Binding of Tom70 to C-Hsp90 monitored by ITC. Top, the experimental
outline of the injections of Tom70 into the C-Hsp90 dimer showing thermal power,
which is proportional to the heat of each injection, as a function of time. Bottom, the
integrated heat plot. Heats of binding are represented by open squares, and the line
represents the best fit of the data using the Origin 5.0 (Microcal). The binding
stoichiometry (n) was equal to 1.2 ± 0.1, indicating that one monomer of Tom70
binds to a dimer of C-Hsp90. Data analysis provided a KD value of 360 ± 30 nM,
suggesting that the complex has a high affinity. The binding DH measured from a
single ITC experiment might include heat that is due to buffer ionization; therefore,
the DH measured here is referred to as DHapp and was ÿ2.6 ± 0.1 kcal/mol. The
apparent entropy of interaction was 21 ± 1 cal/mol K indicating that the interaction
is driven by both enthalpy and entropy.
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supported by ITC experiments that measured the interaction of C-
Hsp90 with Hop [24] and were performed in similar conditions to
those reported in this work. Onuoha et al. [24] showed that the
interaction between C-Hsp90 and Hop has a higher enthalpic con-
tribution than that measured for Tom70 (this work) and a negative
entropy value which is different from the interaction of C-Hsp90
with Tom70 that was entropy driven (this work). Additionally,
when bound to the TPR domain of Tom71, the Met residue of the
MEEVD motif makes hydrophobic interactions with a cleft formed
by the protein residues Leu199 and Lys196 (Fig. 6A), indicating
that the binding may have a lower apparent enthalpy of binding
but also a positive entropic contribution. This observation is also
in good agreement with our measurements on human Tom70
and is expected since hydrophobic interactions provide a higher
degree of freedom.

Finally, the stoichiometry of binding for either Hop or Cyp40 is
of one monomer per monomer of C-Hsp90-b [17,24], although
some controversy exists regarding the oligomeric state of native
Hop [37,38]. Therefore, the mode of interaction between Tom70
and C-Hsp90 appears to have specific characteristics that differ
from those of other proteins containing TPR domains. Combined,
these results suggest that the interaction of TPR proteins with Hsps
may be more complex and diverse than previously expected. More-
over, it may be possible that the interaction with only one mono-
mer of the C-Hsp90 motif allows the other to be available for
additional interactions with other TPR co-chaperones, opening up
the possibility for further functional modulation. However, more
experimental evidence is necessary to support these hypotheses.
Nevertheless, it is noteworthy that Tom70 also binds Hsp70, which
is a monomer in solution [39,40].

These findings are potentially relevant because TPR–Hsp com-
plexes have been a target of several investigations because of their
potential as drug targets. Since Hsp90 is involved with the stabil-
ization of the tumor phenotype, the interference with the interac-
tion between the EEVD motif and TPR may inhibit the delivery of
client proteins to Hsp90 [27]. Many hybrid peptides that mimic
TPR domains are under investigation to substitute the general
broad effect of small molecule inhibitors by a more specific inhibi-
tion strategy that will interfere with the interaction of Hsp90 with
regulatory co-chaperones. We believe that the results presented
here are an important step toward the design of such therapeutic
strategies, and thus, they are of potential interest not only for those
studying domain–domain interactions but also for those in the
field of translational medicine.

Conclusion

Experiments using circular dichroism and intrinsic fluorescence
spectroscopy were consistent with the purification of folded re-
combinant human proteins. Analytical sedimentation equilibrium
showed that C-Hsp90 is a dimer in solution, a result corroborated
by SEC–MALS experiments. As previously reported [5], Tom70 is a
monomer in solution and interacts with C-Hsp90 forming a com-
plex in which one monomer of Tom70 binds a dimer of C-Hsp90.
The stoichiometry was confirmed by isothermal titration calorim-
etry, which also yielded the thermodynamic parameters of the
interaction showing that human Tom70 has a high affinity for C-
Hsp90 in comparison to other TPR proteins. The mode of binding
between Tom70 and C-Hsp90 provides new information when

Fig. 6. The MEEVDmotif from Hsp90 complexed with TPR domains. The structures of the MEEVD in complex with the TPR domains of yeast Tom71 (A and C) – PDB 3FP2; and
human Hop (B and D) – PDB 1ELR) are shown. Electrostatic interactions and hydrogen bounds are highlighted in panels (A) and (B) while panels (C) and (D) present the front
view of the complexes, highlighting the relative position of the dicarboxylate clamp (see text). Generated using Pymol (www.pymol.org).
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compared with what is currently known for the binding of other
proteins that contain TPR domains. This information is potentially
relevant for studies aiming to interfere with the interaction be-
tween the EEVD motif and TPR as this strategy may inhibit the
delivery of client proteins to Hsp90.
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CAPÍTULO 5 

5. Discussão geral 

5.1 Hop 

A Hop é uma co-chaperona que está envolvida em importantes processos 

celulares, como por exemplo, o recrutamento da chaperona Hsp90 para atuação 

no complexo Hsp70/receptor esteróide pré-existente, promovendo assim a 

associação e maturação funcional do receptor (Chen & Smith, 1998; Smith, 2004). 

A Hop recombinante humana – D456G (nomeada apenas Hop nessa seção), 

produto de uma mutação pontual de um resíduo de aspartato para um resíduo de 

glicina, foi produzida pura (figura 2 - capítulo II) e enovelada, constituída, 

predominantemente, por hélices-  (~64% tabela 1 – capítulo II e figura 3A – 

capítulo II). A análise do espectro de emissão de fluorescência do único resíduo 

de Trp da Hop apresentou um máximo de intensidade em 339 ± 1 nm e um centro 

de massa espectral de 345 ± 1 nm (figura 3B – capítulo II), sugerindo que o 

resíduo de Trp está protegido no interior da estrutura da proteína. Os ensaios de 

desenovelamento térmico monitorados por CD indicaram uma Tm de 53 ± 1 ºC 

(tabela 1 – capítulo II), valor que está dentro da margem de erro reportada para a 

proteína selvagem (Carrigan et al., 2006). De modo geral, esses resultados 

indicam que a Hop estudada apresenta estrutura secundária e estabilidade 

térmica similar à proteína selvagem. 

A análise conjunta dos experimentos de SE (sedimentação em equilíbrio) e 

BNPAGE indica que a Hop pode ser encontrada como uma mistura de espécies 

monoméricas e diméricas. Nos experimentos de SE a proteína foi encontrada 

como uma única espécie de massa molecular (MM) estimada em 66 ± 2 kDa 

(figura 4A e tabela 2 – capítulo II), que está de acordo como a MM teórica predita 
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de 66,4 kDa para o monômero da proteína. No experimento de BNPAGE (figura 5 

– capítulo II) a Hop migrou majoritariamente como monômero, mas a amostra de 

proteína também apresentou outras espécies oligoméricas, provavelmente 

diméricas e espécies maiores. 

As análises hidrodinâmicas da Hop foram feitas no intuito de se obter uma 

visão geral sobre sua forma global. Os experimentos de gel filtração analítica, 

usados para estimar o raio de Stokes (Rs) da proteína, mostraram que a Hop foi 

eluída como uma espécie homogênea (figura 6 inset – capítulo II) com um Rs de 

44 ± 2 Å. O valor de Rs foi utilizado para calcular o fator de Perrin, que é 

informativo sobre a forma das moléculas. O fator de Perrin é a razão do 

coeficiente friccional medido (ƒ) pelo coeficiente friccional para uma esfera 

hipotética (ƒ0), cujo raio hipotético é calculado a partir da MM. Nesse sentido, o 

fator de Perrin (ƒ/ƒ0) fornece informação sobre a forma da molécula, quanto mais 

próximo de 1, mais esférica ou globular é a molécula. O ƒ/ƒ0 calculado para a Hop 

foi de 1,6, sugerindo que se trata de uma proteína assimétrica. 

Adicionalmente, os experimentos de espalhamento dinâmico de luz (DLS) 

foram utilizados para estimar o coeficiente de difusão (D) da Hop em várias 

concentrações de proteínas. Em seguida, o coeficiente de difusão padrão (D20,w) 

para cada concentração de proteína foi calculada e adicionada no gráfico da 

figura 7 (capítulo II). No intuito de estimar, por extrapolação, o D20,w na 

concentração de 0 mg/mL  foi estimado o valor de D0
20,w para a Hop de 6,2 x 10-7 

cm2/s (figura 7 e tabela 2 – capítulo II). Por fim, uma esfera rígida com a MM 

idêntica ao monômero da Hop, teoricamente, teria um Rs de 27 Å, um D0
20,w de 

8,0 x 10-7 cm2/s e portanto um fator de Perrin de 1,3. Essa divergência entre os 

valores do fator de Perrin pode ser explicada pelo efeito de hidratação, que pode 
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aumentar o volume efetivo de proteínas e, portanto aumentar o Rs afetando os 

resultados. De qualquer forma, os resultados demonstram que a Hop é 

monomérica que parece ser alongada e bastante hidratada. 

Enfim, a presença de ambas as espécies (monômero e dímero) da Hop 

pode estar associada à especificidade a uma proteína cliente ou outro fator 

relacionado, variando de acordo com a estequiometria da interação ou regulação 

do ciclo de interação. Recentemente, Southworth & Agard, publicaram resultados 

que corroboram a existência da Hop como uma espécie monomérica e que pode 

oligomerizar em altas concentrações (Southworth & Agard, 2011). 

A caracterização estrutural dessa proteína torna possível delinear novos 

alvos de investigação dentro da maquinaria Hsp90-Hsp70, essencialmente do 

complexo Hop-Hsp90, relacionado à manutenção de várias associações com 

proteínas clientes. 

5.2 Tom70 

O receptor de importação mitocondrial Tom70 (translocase da membrana 

mitocondrial externa) interage com complexos (chaperona/proteína precursora) 

por meio de dois domínios estruturais: um domínio liga a chaperona molecular 

Hsp70/Hsp90 e um segundo liga as proteínas precursoras. A definição do estado 

oligomérico da Tom70 tem sido controversa, com evidência para ambas as 

formas: monomérica (Mills et al., 2009; Li et al., 2009) e homodimérica (Wu & 

Sha, 2006). Nesse trabalho, a Tom70 é apresentada como um monômero 

funcional, com implicações na sua atividade de importação de proteínas para a 

mitocôndria. 

Baseado nos experimentos de UCA em conjunto com os experimentos de 

cross-linking e SEC-MALS (esses últimos realizados por colaboradores) foi 
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possível aferir que o fragmento citosólico da Tom70 existe em equilíbrio entre 

monômero e dímero, sendo funcionalmente monomérica com oligômeros 

formados de maneira transiente ou em condições particulares, como alta 

concentração de proteína. Na verdade, os dados de VS (velocidade de 

sedimentação) e SE (figuras 1B e 1C – capítulo III) e SEC-MALS (figura 2B – 

capítulo III), mostram que embora a espécie monomérica da Tom70 seja a 

maioria da população, os dímeros são claramente evidentes. 

O encaminhamento e interação de proteínas precursoras com a Tom70 

foram mais eficientes com a forma monomérica da proteína, sem interferir na 

interação com as chaperonas, assim os dados obtidos sugerem que a Tom70 

recebe e interage com as proteínas precursoras no estado monomérico.  

Estudos estruturais recentes da Tom70 (Mills et al., 2009) e da Tom71 (Li 

et al., 2009) de levedura apóiam nosso modelo monomérico da Tom70 e ilustram 

um mecanismo que pode ser conservado. Todavia, dado que a Tom70 humana 

recombinante pode formar homodímeros, não podemos descartar a possibilidade 

da Tom70 estar presente na membrana mitocondrial externa como um 

homodímero. 

5.3 C-Hsp90 

A Hsp90 é uma das chaperonas moleculares mais importantes, é essencial 

para a vida em eucariotos, suas proteínas clientes são normalmente associadas 

com ciclo e sinalização celular e sua associação faz dessa chaperona molecular 

um alvo potencial para drogas (Whitesell & Lindquist, 2005; Gava & Ramos, 

2009). A Hsp90 é um dímero alongado, com o sítio de dimerização localizado no 

domínio C-terminal (Minami et al., 1994; Nemoto et al., 1995). O C-terminal 
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apresenta o motivo MEEVD que está envolvido na ligação de proteínas que 

apresentam domínios TPR. No caso da Hsp90  humana esse motivo está 

localizado nos resíduos 729-732 e é essencial para a ligação da Hsp90 com co-

chaperonas da classe TPR. 

No intuito de obter mais informações sobre o mecanismo de interação da 

Hsp90 com a Tom70, o fragmento C-terminal da Hsp90 humana (C-Hsp90) foi 

caracterizado e disponibilizado, posteriormente, para ensaios de interação com a 

co-chaperona. C-Hsp90 foi produzida pura e solúvel, os espectros de CD 

mostraram uma proteína enovelada com mínimo de sinal em 209 nm (-10.840 

deg.cm2.dmol-1) e 222 nm (-10.670 deg.cm2.dmol-1) como apresentado na figura 

1A (capítulo IV). Aplicando métodos simples de predição de estrutura secundária, 

como os propostos por Morriset e colaboradores (Morriset et al., 1973) e 

Greenfield e Fasman (Greenfield & Fasman, 1969), a porcentagem de hélices-  e 

folhas-  foi estimada em aproximadamente 26% e 37%, respectivamente. Essas 

porcentagens estão em concordância com a estrutura cristalográfica do C-

terminal da Hsp90 ortóloga de Saccharomyces cerevisae (nº de acesso ao PDB: 

2CG9), na qual o C-terminal compreende três folhas-  posicionadas abaixo de 

uma hélice-  curvada que está de frente para um feixe de três hélices (Ali et al., 

2006). 

O método de espectroscopia de emissão de fluorescência do Trp é 

plausível para acessar informação acerca do ambiente onde esse resíduo está 

situado em uma proteína, assim o Trp é uma sonda local do estado enovelado de 

uma proteína (Eftink, 1994). C-Hsp90 tem apenas um resíduo de Trp, a análise do 

espectro de emissão de fluorescência desse resíduo apresentou um máximo de 

intensidade em 343 ± 1 nm e um centro de massa espectral de 341 ± 1 nm (figura 
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1B – capítulo IV), indicando que o resíduo de Trp está protegido no interior da 

estrutura da proteína. 

Os experimentos de SE foram usados para determinar a MM e, portanto o 

estado oligomérico da C-Hsp90. Os resultados obtidos a partir de três 

concentrações de proteína em cinco velocidades distintas foram analisados 

globalmente com o uso do programa SEDPHAT (ver seção de material e métodos 

do capítulo IV). Foi determinada para a C-Hsp90 a MM de 43 ± 1 kDa, valor 

consistente com um dímero em solução, dado que a MM predita a partir da 

estrutura primária do monômero é de 21.850,75 Da. Tomando os dados em 

conjunto, os resultados obtidos indicam que a C-Hsp90 foi produzida enovelada e 

é um dímero em solução. 

5.4 Interação entre C-Hsp90 e Tom70 

Após a obtenção de ambas as proteínas C-Hsp90 e Tom70 solúveis, 

enoveladas e como uma espécie única em solução, foram realizados 

experimentos de interação entre elas. A interação foi inicialmente estudada 

utilizando ensaios de pull-down. Para tal, a Tom70 teve a cauda de poli-histidina 

mantida e foi utilizada como isca, enquanto a proteína C-Hsp90 (teve sua cauda 

de poli-histidina clivada pela protease TEV) foi utilizada como presa. O 

experimento mostrou (figura 3 – capítulo IV) que a Tom70 usada como controle 

permaneceu ligada à resina, enquanto a C-Hsp90 não se ligou. Mas, quando a 

mistura da Tom70 com a C-Hsp90 foi incubada na resina, a mistura ou complexo 

permaneceu ligada, sendo liberado apenas após a eluição com imidazol. 

Portanto,o ensaio de pull-down demonstrou que a C-Hsp90 de fato, interage com 
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a Tom70. O próximo passo foi determinar o estado oligomérico das proteínas no 

complexo medindo sua MM por SEC-MALS. 

A técnica de SEC-MALS fornece uma determinação precisa de MM 

independente da forma da molécula ou de parâmetros hidrodinâmicos. Na figura 

4A (capítulo IV) estão apresentadas as medidas de SEC-MALS para as proteínas 

isoladas e para o complexo, as figuras 4B e 4C (capítulo IV) confirmam a 

presença das proteínas nas amostras analisadas. Como esperado, a C-Hsp90 

livre teve sua MM determinada no valor de ~43 kDa (figuras 4A e B – capítulo IV), 

que está de acordo com a MM teórica de 43,7 kDa calculada para o dímero, e 

corrobora os resultados de SE. Para a Tom70 livre a MM determinada foi de ~62 

kDa (figuras 4A e B – capítulo IV), consistente com a MM teórica de 59,7 kDa 

calculada para um monômero da Tom70, que é apoiada por dados prévios de 

análises do estado oligomérico da Tom70 em solução (Fan et al., 2010). A mistura 

de Tom70 com C-Hsp90 foi eluída em um único pico e teve sua MM determinada 

no valor de ~110 kDa (figuras 4A e C – capítulo IV), sugerindo que a 

estequiometria do complexo é de um monômero da Tom70 para um dímero da C-

Hsp90. 

A estequiometria encontrada nos experimentos de SEC-MALS foi 

confirmada pelos experimentos de ITC (figura 5 – capítulo IV). A estequiometria 

de ligação (n) determinada pelo ITC foi de 1,2 ± 0,1 indicando que um monômero 

da Tom70 liga um dímero da C-Hsp90. A constante de dissociação KD encontrada 

foi de 360 ± 30 nM, sugerindo que o complexo tem alta afinidade. A Happ da 

interação foi de -2,6 ± 0,1 kcal/mol, e a entropia da interação foi de 21 ± 1 

cal/mol.K, indicando que a interação é guiada por ambas, entalpia e entropia. 

Interessantemente, a Hop e Cyp40, outras co-chaperonas TPR de humanos ligam 
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o C-terminal da Hsp90 humana com um KD aproximadamente dez vezes maior 

que aquele para a Tom70, numa interação que é dirigida pela entalpia, embora a 

interação com a Cyp40 seja dirigida pela entropia (Scheufler et al., 2000; Onuoha 

et al., 2008). 

As estruturas cristalográficas do MEEVD da Hsp90 em complexo com o 

domínio TPR da Hop humana (Scheufler et al., 2000) e da Tom71 de levedura (Li 

et al., 2009) estão disponíveis. Visto que os resíduos da Tom71 que interagem 

com o MEEVD são conservados na Tom70 humana, a estrutura da ortóloga de 

levedura pode ser utilizada como um modelo de interação da Tom70 com a 

Hsp90. A interação do MEEVD com os domínios TPR da Hop e Tom71 envolve 

principalmente o dicarboxilato do resíduo de aspartato do C-terminal do MEEVD e 

duas lisinas dos domínios TPR (figura 6 – capítulo IV), numa interação de 

natureza eletrostática. O motivo MEEVD parece estar mais internamente 

envolvido pelo domínio TPR da Hop do que da Tom71, sugerindo que a interação 

entre o MEEVD e Hop é mais organizada e, portanto tem um maior custo 

entrópico. 

Esses resultados sugerem que a interação de proteína TPR com 

chaperonas moleculares é mais complexa e diversa do que esperado. Além disso, 

é possível nesse caso, que a interação com apenas um monômero da C-Hsp90 

permita outras interações adicionais com outras co-chaperonas TPR ou proteínas 

clientes, abrindo a possibilidade de uma modulação funcional por meio dessas 

interações. Contudo, mais evidências experimentais são necessárias para 

amparar essa hipótese. 
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As informações produzidas são bastante relevantes, pois complexos TPR-

chaperonas têm sido alvos para várias investigações acerca de seu potencial 

como alvo para drogas. Dado que a Hsp90 está envolvida na estabilização do 

fenótipo tumoral, a interferência na interação do EEVD com motivos TPR pode 

inibir a entrega de proteínas clientes para a Hsp90. 
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CAPÍTULO 6 

6. Conclusões 

# As proteínas C-Hsp90, Hop e Tom70 humanas recombinantes foram 

produzidas por expressão heteróloga em E. coli com bom rendimento; foram 

purificadas solúveis e enoveladas como mostrado pelos experimentos de 

dicroísmo circular e espectroscopia de emissão de fluorescência do triptofano. 

 

# A proteína C-Hsp90 teve seu estado oligomérico determinado como um 

dímero em solução, com massa molecular estimada em 43 ± 1 kDa por 

ultracentrifugação analítica, pelo método de sedimentação em equilíbrio; e com 

massa molecular de 43 kDa por gel filtração analítica acoplada a espalhamento 

de luz em multi-ângulos. 

 

# A proteína Hop teve seu estado oligomérico determinado por várias 

técnicas analisadas em conjunto. Foi determinado como, majoritariamente, 

monômero com a presença de oligômeros em situações particulares. Por 

ultracentrifugação analítica, aplicando o método de sedimentação em equilíbrio a 

massa molecular foi determinada em 66 ± 2 kDa. A análise dos dados 

hidrodinâmicos experimentais e teóricos indicaram que a Hop é monomérica que 

parece ser alongada e bastante hidratada, com um fator de Perrin de 1,6. Os 

ensaios de BNPAGE indicaram a presença de oligômeros, possivelmente dímeros 

e oligômeros maiores, numa condição de alta concentração proteica. 

 

# A proteína Tom70 foi caracterizada como monômero funcional em 

solução, podendo ser encontradas espécies diméricas. Por ultracentrifugação 
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analítica, o método de velocidade de sedimentação apresentou coeficientes de 

sedimentação de 3,8 S e 6,2 S consistentes com massas moleculares 

aproximadas de 60 e 120 kDa, respectivamente. O método de sedimentação em 

equilíbrio indicou que a proteína é encontrada num equilíbrio monômero-dímero 

com uma constante de dissociação da ordem de 10-5 M. Por SEC-MALS foi 

possível obter uma massa molecular de aproximadamente 62 kDa para a Tom70. 

 

# A interação da C-Hsp90 e Tom70, foi detectada com sucesso por 

experimentos de pull-down. A massa molecular do complexo foi determinada em 

aproximadamente 110 kDa por SEC-MALS, indicando uma estequiometria de 1 

monômero da Tom70 para 1 dímero da C-Hsp90. Essa estequiometria foi 

confirmada pelo dado de n = 1,2 ± 0,1 obtido por calorimetria de titulação 

isotérmica. A técnica de ITC também produziu a constante de dissociação (KD) no 

valor de 360 ± 30 nM, sugerindo que o complexo tem alta afinidade. A Happ da 

interação foi de -2,6 ± 0,1 kcal/mol, e a entropia da interação foi de 21 ± 1 

cal/mol.K, sugerindo que a interação é guiada por ambas, entalpia e entropia. 
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