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ABSTRACT 

The spatial genetic structure of plant populations may vary across life stages, across 

generations and among different environmental conditions. These changes are driven 

by evolutionary and ecological forces. Pioneer tree species exhibit particular life histories 

and population structures that are mainly affected by environmental changes generated 

by natural or human disturbances. Our aim was to investigate how the life-history traits, 

ecological processes, and the genetic factors associated to natural and human 

disturbances can affect the genetic diversity and structure of populations of a pioneer 

tree species. We studied Croton floribundus Spreng. (Euphorbiaceae), a pioneer tree 

species abundant in gaps and secondary areas of the semi-deciduous tropical forest, in 

two areas with contrasting levels of human disturbance: a primary forest and an early 

successional forest. In order to address the main question of this study, we examined 

the pattern of distribution of the species under the different environmental conditions 

generated by natural and human disturbances (Chapter I); tested and characterized 

universal chloroplast microsatellite (cpSSR) primers for C. floribundus (Chapter II); 

developed and characterized nuclear microsatellite (SSR) markers for C. floribundus as 

well as examined some cytogenetic traits of the species in order to test for polyploidy 

and to evaluate its implications for the appropriate use of the SSR markers (Chapter III); 

and evaluated the genetic diversity and structure of C. floribundus between two size 

classes and among populations in the primary forest and in the early successional forest 

(Chapter IV). C. floribundus was widespread and equally distributed along the gap size 

range in the primary forest, but its population structure varied between areas with 

contrasting levels of human disturbance. Six universal cpSSR loci were optimized and 

characterized for C. floribundus. The cytogenetic study allowed the accurate 

characterization of SSR loci as well as provided new data on the origin and evolution of 

the species. The number of bivalents observed in meiosis n=56 (2n=8x=112) showed 

the occurrence of polyploidy in all populations studied. High genetic diversity levels were 

found for C. floribundus. Seed dispersal and colonizations (and extinctions) were 

determinants of the fine-scale genetic structure of C. floribundus in both forest types. 

Also, their effects associated to the human disturbances seem to strongly increase the 
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genetic differentiation among populations in the early successional forest. Analysis of 

nuclear and chloroplast markers suggested that gene flow by pollen is responsible for 

maintaining the genetic diversity within populations of C. floribundus in both primary and 

early successional forests. In the latter, gene flow by seeds seem to be equally 

important. The results showed that gap dynamics, colonization process, and pollen and 

seed dispersal affect the genetic diversity and structure of the pioneer tree species by 

increasing or decreasing them depending mainly on the number of colonizers, the 

number of source populations, the gene flow rates, and the level of human disturbance 

of the area. 
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RESUMO 

A estrutura genética espacial de populações de plantas pode variar ao longo dos estádios 

ontogenéticos, através das gerações e entre diferentes condições ambientais. Estas 

mudanças são direcionadas por fatores ecológicos e evolutivos. As espécies pioneiras 

apresentam histórias de vida e estruturas populacionais características que são afetadas 

principalmente pelas mudanças ambientais geradas por distúrbios naturais ou antrópicos. 

O objetivo deste trabalho foi investigar como as características do ciclo de vida, os 

processos ecológicos e fatores genéticos associados aos distúrbios afetam a diversidade 

e estrutura genética de populações de uma espécie arbórea pioneira. Nós estudamos 

Croton floribundus Spreng. (Euphorbiaceae), uma espécie arbórea pioneira abundante em 

clareiras e em áreas secundárias da Floresta Estacional Semidecidual, em duas áreas 

com níveis contrastantes de distúrbios antrópicos: uma floresta primária e uma floresta 

secundária em estádio inicial de sucessão. A fim de abordar a principal questão deste 

estudo, nós avaliamos o padrão de distribuição da espécie sob as diferentes condições 

ambientais geradas por distúrbios naturais e antrópicos (Capítulo I); testamos e 

caracterizamos iniciadores universais cloroplastidiais (cpSSR) para C. floribundus 

(Capítulo II); desenvolvemos e caracterizamos marcadores microssatélites nucleares 

(SSR) para C. floribundus bem como examinamos algumas características citogenéticas 

da espécie com o objetivo de testar a ocorrência de poliploidia e avaliar sua implicação 

para o uso dos marcadores SSR (Capítulo III); avaliamos a diversidade e estrutura 

genética de C. floribundus entre duas classes de tamanho e entre populações em uma 

floresta primária e uma floresta secundária em estádio inicial de sucessão (Capítulo IV). C. 

floribundus foi frequente e igualmente distribuído em clareiras de todos os tamanhos na 

floresta primária, mas sua estrutura populacional variou entre áreas com níveis 

contrastantes de distúrbio antrópico. Seis locos cpSSR foram otimizados e caracterizados 

em C. floribundus. O estudo citogenético permitiu a caracterização mais precisa dos locos 

SSR, bem como forneceu novos dados sobre a origem e a evolução da espécie. O 

número de bivalentes observados na meiose, n = 56 (2n = 8x = 112), mostrou a ocorrência 

de poliploidia em todas as populações estudadas. Altos níveis de diversidade genética 

foram encontrados para C. floribundus. A dispersão de sementes e as colonizações (e 

extinções) foram determinantes para a estrutura genética em fina escala encontrada nas 

populações de C. floribundus em ambos os tipos de florestas. Além disso, os efeitos 
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destes processos associados aos distúrbios antrópicos parecem aumentar fortemente a 

diferenciação genética entre as populações na floresta em estádio inicial de sucessão. As 

análises de marcadores moleculares nucleares e cloroplastidias sugeriram que o fluxo 

gênico por pólen é responsável por manter a diversidade genética dentro das populações 

de C. floribundus tanto na floresta primária quanto na floresta secundária em estádio inicial 

de sucessão. Nesta última, o fluxo gênico por sementes parece ser igualmente importante. 

Os resultados obtidos mostraram que a dinâmica de clareiras, o processo de colonização 

e a dispersão de pólen e sementes afetam a diversidade e estrutura genética da espécie 

arbórea pioneira, aumentando-os ou diminuindo-os conforme o número de colonizadores, 

número de populações-fonte, as taxas de fluxo gênico e o nível de perturbação antrópica 

da área. 
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INTRODUCTION 

Genetic structure of populations refers to the distribution of genetic diversity 

within and among populations or the nonrandom distribution of alleles or genotypes 

in space and time (Loveless & Hamrick 1984). Because of the limited mobility of 

plants, genetic structure implies spatial structure. Changes in the spatial genetic 

structure of plant populations may occur across successive life stages, across 

generations and among different environmental conditions (Loveless & Hamrick 

1984; Alvarez-Buylla et al. 1996; Jones & Hubbell 2006). These changes are 

driven by evolutionary and ecological forces. The evolutionary forces include 

genetic factors such as mutation, migration, drift and natural selection. The 

ecological forces include all processes that affect the demography of species, i.e., 

that involve or are associated with the survival and reproduction of species, 

determining their life histories (Loveless & Hamrick 1984; Ellstrand & Elam 1993; 

Alvarez-Buylla et al. 1996; Jones & Hubbell 2006). In tropical forest domains these 

processes are related mainly to patch dynamic regimes, biotic interactions and 

level of human disturbance. Understanding the effects of all these factors on the 

genetic diversity and structure of populations is important when defining strategies 

of forest conservation and restoration whose goal is to guarantee the maintenance 

of evolutionary and ecological dynamics as similar as possible to the natural 

conditions (Loveless & Hamrick 1984; Ellstrand & Elam 1993). 

Pioneer tropical tree species exhibit particular life histories and population 

structures that are mainly affected by the patchy dynamics of the tropical forests 

(Swaine & Whitmore 1988; Alvarez-Buylla 1994; Uriarte et al. 2012). Seeds of 

pioneer species can “germinate only in those canopy gaps open to the sky in which 
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full sunlight impinges at ground level for at least part of the day” (Swaine & 

Whitmore 1988; Whitmore 1989). Pioneer species usually have seed banks and 

show long distance seed dispersal (Whitmore 1983; Swaine & Whitmore 1988, 

Uriarte et al. 2012). In primary or late successional forests, demographic dynamics 

of the species may resemble those defined for a metapopulation, i.e., the 

populations persist at a regional scale as a result of a balance between the 

processes of local population extinction, patch migration, and colonization (Levins 

1969; Hanski & Gilpin 1991; Freckleton & Watkinson 2002). All these 

characteristics have significant consequences for genetic structure and evolution, 

however, this is still poorly understood. 

According to Wright (1940) and Loveless & Hamrick (1984) we might expect 

a clear population structuring in pioneer species because the number of gap 

colonizers is generally small (a founder effect) and due to the fixation of neutral 

alleles by genetic drift. Conversely, seed banks and long distance seed and pollen 

dispersal could homogenize spatial genetic variation (Loveless & Hamrick 1984; 

Alvarez-Buylla & Garay 1994). Besides, under some conditions, the extinction and 

recolonization processes can act as a form of gene flow reducing genetic 

divergence among populations (Slatkin 1977, 1985; Wade & McCauley 1988; 

Whitlock & McCauley 1990). In a metapopulation context, processes associated 

with extinctions and recolonizations as mentioned above and others such as origin 

of gap founders, population size and age may also affect their genetic diversity and 

structure (Whitlock & McCauley 1990; McCauley et al. 1995).  

Studies that have examined the genetic diversity and structure of pioneer 

species have shown two opposite sets of results: nonstructured (Alvarez-Buylla et 
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al. 1996; Ribas & Kageyama 2004a; Davies et al. 2010) and genetically structured 

populations of adults (Kageyama et al. 2003; Ribas & Kageyama 2004b; Jones & 

Hubbell 2006; Born et al. 2008a). However, the same studies agreed with the high 

level of genetic diversity of the populations and the loss of genetic structure across 

successive life stages. It is important to note that only a few species in a range of 

gap-phase regeneration behavior of the pioneer species were evaluated (Brokaw 

1987), mainly those restricted to large gaps and that colonize only when the gap is 

still very open (for example, see Alvarez-Buylla et al. 1996; Ribas & Kageyama 

2004a,b).  

The results of Alvarez-Buylla et al. (1996) supported the hypothesis that 

patchy recruitment in gaps, or among gap heterogeneity, influences the genetic 

structure of the pioneer Cecropia obtusifolia Bertol. (Cecropiaceae) in a pristine 

forest. On the other hand, the strong spatial genetic structure seen in seed rain and 

seedlings decreased in successive life stages and was not found in adults and soil 

seeds. Ribas & Kageyama (2004a) also found loss of genetic structure from the 

seedling stage to adults of the pioneer Trema micrantha (L.) Blume (Ulmaceae) 

and Jones & Hubbell (2006) found the same from seed to sub-adult individuals of 

Jacaranda copaia (Aubl.) D. Don (Bignoniaceae). Alvarez-Buylla et al. (1996) 

suggested that the loss of genetic structure across successive life stages was due 

to the random mortality during gap thinning or to the occurrence of selection 

favoring heterozygote survival in gaps. 

In early successional forests, these species are expected to exhibit a 

different spatial genetic structure since their patterns of distribution, survival and 

reproduction  change  due  to  the  site’s  microclimate  and  biota modifications after the 
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human disturbance (Matthes 1992; Danciguer 1996; Martínez-Garza & Howe 

2003; Swanson et al. 2011; Tabarelli et al. 2012). Depending on the level and type 

of human disturbance in the site, the environmental heterogeneity and differential 

selection pressures created might result in demographical and genetic changes. 

Also, differently from primary or late successional forests, the populations in the 

early successional forests have still not undergone extinctions, but are influenced 

primarily by colonization processes (Swanson et al. 2011). Thus, factors related to 

the establishment of the species in the site, such as origin and number of 

propagules as well as the level of gene flow, either from primary or secondary 

forests, may determine the demography and the genetic diversity and structure of 

the species.  

Availability of local plant propagules to the species reestablishment in 

disturbed sites depends on the severity of the disturbance (Uhl et al. 1982; Uhl & 

Jordan 1984; Uhl et al. 1991). Studies of plant succession in Amazonia (Uhl et al. 

1982, Uhl & Jordan 1984, Uhl et al. 1991) pointed out that in sites with a light land 

use, e.g., following forest cutting and burning and the abandonment after a short 

period of grazing, pioneer species were recruited from sprouts, seed banks or 

dispersed seeds. In more severe disturbances as forest cutting and burning 

followed by several years of farming, sprouts were rare because frequent farm plot 

weeding exhausted sprouting reserves and the tree establishment depended on 

neighboring seed sources. Therefore, in this case, the genetic diversity and 

structure of recent established populations would be more affected by colonization 

and the level of gene flow with other populations since the local populations were 

extinct. 
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Uhl et al. (1991) showed that after intensive land use, the community of 

herbivores and predators of seeds and seedlings is very different from primary 

forests or less intensive land use sites, affecting the establishment of forest 

species. Another important factor that may influence the genetic parameters of 

pioneer trees in these sites is the strong competition with grasses and alien shrubs 

(Uhl et al. 1991; Holl et al. 2000). 

There are few studies that consider the genetic diversity and structure of 

pioneer species in early successional forests. The results have suggested that 

gene flow and origin of populations are the determinant factors of the genetic 

patterns of diversity and structure that were found (Alvarez-Buylla & Garay 1994; 

Franceschinelli & Kesseli 1999; Cavers et al. 2005; Born et al. 2008b; Davies et al., 

2010; 2013). It seems that the founder effects (Cavers et al. 2005; Franceschinelli 

& Kesseli 1999) and the aggregate distribution of individuals due to a limited seed 

dispersal (Born et al. 2008b) could increase endogamy and generate genetically 

structured populations in early successional forests. However, some of these 

studies have examined genetic differentiation among populations of forests with 

different levels of human disturbance and/or succession stages combined as a 

unique pool of populations. For this reason, more specific information about 

genetic diversity and fine-scale structure of populations of pioneer species in early 

successional forests is required. Furthermore, it is important to distinguish the 

effects of colonization and level of human disturbance on the genetic parameters. 

Croton floribundus Spreng. (Euphorbiaceae) is a shade-intolerant, fast-

growing pioneer tree species that occurs abundantly in gaps of primary remnants 

as well as in secondary areas of the semi-deciduous tropical forest (IBGE 1992) of 
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the countryside of São Paulo State, as well as other forests of Brazil and eastern 

Paraguay (Lorenzi 1992; Gandolfi et al. 1995; Rodrigues 1999; Rodrigues 2005; 

Gomes 2006). The high abundance of plants in gaps are an important 

characteristic of the spatial structure of C. floribundus because they help to find the 

minimum sampling number required for appropriate analysis of the genetic 

structure among populations in gaps, a fundamental question in population 

genetics of pioneer species. Moreover, the reproductive system of C. floribundus is 

relatively well known, which facilitates the association of genetic and demographic 

processes. The trees are monoecious self-compatible (Passos 1995). Dichogamy 

is much accentuated and seems to reduce self-fertilization (Passos 1995). The 

species also presents no seed bank (Lorenzi 1992; Grombone-Guaratini 1999; 

Carvalho 2001) and no asexual reproduction (Passos 1995). 

C. floribundus has explosive seed dispersal (autochory) (Lorenzi 1992) and 

is pollinated by flies and wind (Passos 1995). Pioneer insect-pollinated trees have 

shown high gene flow rates; however, most of them also have long-distance seed 

dispersal by wind or birds (Litrico et al. 2005; Born et al. 2008a). Thus, a fine-scale 

study of genetic diversity and structure of this species using nuclear and 

chloroplast markers may help to elucidate how these mechanisms of dispersal with 

opposite effects on gene flow rates affect the distribution of the genetic variation in 

the species. 

We believe that a comparison between populations of C. floribundus located 

in primary and early successional forests where colonization and extinction 

processes, as well as level of human disturbance, differ could shed light on what 

are the determinant factors of the patterns of genetic diversity and structure in this 
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species. Additionally, a detailed analysis of the genetic diversity parameters among 

life stages or size classes can provide key information needed to understand the 

genetic dynamics of the populations. Because of the features presented above and 

the others analyzed in this study, we believe C. floribundus may be an excellent 

model for the pioneer species with similar modes of colonization and life histories. 

The knowledge of such aspects of the pioneer species is very important for 

understanding the human disturbance effects and the successional processes in 

the tropical forests, which in turn is important to the forest conservation, 

management and restoration. 

The main aim of this study was to investigate how the ecological processes 

and the population genetic factors associated with disturbances can affect the 

genetic diversity and structure of populations of the pioneer tropical tree species C. 

floribundus. In order to achieve this aim, other specific objectives were set as 

follows: 

1) to evaluate the distribution of individuals of C. floribundus in the gaps of 

a primary forest and compare the plant density of two size classes in a 

primary and in an early successional forest in order to test for differential 

plant distribution under the variable environmental conditions generated 

by natural or human disturbances (Chapter I); 

2) to test and characterize chloroplast microsatellite primers for C. 

floribundus (Chapter II; Cordasso 2011); 

3) to develop and characterize nuclear SSR markers for C. floribundus and 

to examine the cytogenetic traits of the species in order to test for the 
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occurrence of polyploidy in the species and to evaluate its implications 

for the appropriate use of the SSR markers (Chapter III); 

4) to evaluate the genetic diversity and structure of the pioneer tree C. 

floribundus between two size classes and among populations in a 

primary forest and an early successional forest. Specifically, we 

attempted to answer the following questions: 1) Do the genetic diversity 

and fine-scale genetic structure of C. floribundus differ between primary 

and early successional forests? 2) Are there changes in the genetic 

diversity and structure between size classes in these forests? 3) Is there 

a correspondence between the genetic structure of populations in the 

primary forest and their spatial distribution in the gaps? 4) How do 

ecological processes and genetic factors associated with natural and 

human disturbances affect the genetic diversity within and among 

populations in the species? (Chapte IV). 
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Abstract 

The distribution of tree species in tropical forests is generally related to the occurrence of 

disturbances and local availability of resources, primarily light. Thus, the distribution of 

pioneer tree species is expected to vary according to the gap characteristics and level of 

human disturbance. We asked whether there was variation in the distribution of a pioneer 

species under different environmental conditions generated by natural and human 

disturbances. To answer this question, we studied the distribution patterns and population 

persistence of the pioneer tree species Croton floribundus in the size and age gap range of a 

primary Brazilian forest. Additionally, we compared the plant density of two size classes 

between a primary and an early successional human disturbed forest. Croton floribundus 

was widespread and equally distributed along the gap-size gradient in the primary forest. 

Overall density did not vary with gap size or age (F-ratio=0.062, p=0.941), and while 

juveniles were found to have a higher density in the early successional forest (p=0.021), 

tree density was found to be similar between forests (p=0.058). Our results indicate that the 

population structure of a pioneer tree species with long lifespan and a broad gap-size niche 

preference varies according to the level of human disturbance, but not with the level of 

natural disturbance. We believe this can be explained by the extreme environmental 

changes that occur after human disturbance. The ecological processes that affect the 

distribution of pioneer species in natural and human modified forests may be similar, but 

these results suggest they act differently under the contrasting environmental conditions 

generated by natural and human disturbances. 

Key words: environmental heterogeneity, canopy gaps, population structure, semi-

deciduous tropical forests, succession 
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Introduction 

Pioneer species are thought to present different population structures under different 

stages of forest succession or levels of human disturbances (Matthes 1992; Swanson et al. 

2011; Tabarelli et al. 2012). In primary or late successional forests, population dynamics of 

the species may resemble those defined for a metapopulation, i.e., the populations persist at 

a regional scale as a result of a balance between the processes of local population 

extinction, patch migration, and colonization (Levins 1969; Hanski and Gilpin 1991; 

Freckleton and Watkinson 2002). In early successional forests grown after human 

disturbances, pioneer patterns of distribution, survival and reproduction must change due to 

the shifts in the local environmental conditions such as light, temperature, as well as biotic 

factors (Matthes 1992; Martínez-Garza and Howe 2003; Swanson et al. 2011, Tabarelli et 

al. 2012, Lohbeck et al. 2014). These expectations are based on the exploiter-mediated 

coexistence model in patches, which states that coexistence of tree species in tropical 

forests, and therefore the distribution of their populations, relies on the differential 

availability of resources and space generated by gap disturbance regime (Connell 1978; 

Paine and Levin 1981; Begon et al. 2006; but see Hubbell et al. 1999). Thus, in a primary 

forest, the metapopulation structure of pioneer trees would be the result of the patchy 

recruitment generated by treefall gap disturbances and, in an early successional human 

disturbed forest, tree species would also respond to variation in resources availability by 

changing their demographic characteristics according to the new environmental conditions 

of the area. 

Recent studies have found an incredibly high enhancement in plant density of 

pioneer species under human modified environments such as the edges of tropical 
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fragmented forests when compared to the forest interior (Laurance et al. 2006; Santos et al. 

2008; Santos et al. 2012). The forest edges would work as the early successional forests due 

to the similarity of environmental conditions in the areas, mainly elevated light availability 

(Tabarelli et al. 2008; Santos et al. 2012). Despite the consensus in the response among 

pioneer species regarding the juvenile abundance, long-lived pioneer species exhibited 

populations with negative adult recruitment along the forest edges (Santos et al. 2012). 

According to Santos et al. (2012), the reason was probably the adult sensitivity to edge 

effects such as wind and physiological stress. However, the existence of an underlying 

pattern for the distribution of long-lived and short-lived pioneer species under these 

conditions remains unclear. Furthermore, there are still few empirical data available from 

early successional forests. 

In well-conserved or late successional forests, pioneer density can vary greatly 

among gaps depending on the species (Brokaw 1987). It seems that some pioneer species 

have a narrower niche preference than others, such as Trema micrantha (L.) Blume and 

Trema orientalis (L.) Blume (Ulmaceae). These species occupy preferably, have high plant 

density, and reproduce only in large gaps (above 400m2) or in high light environments 

(Brokaw 1987; Goodale et al. 2012). The higher plant density in large gaps and in edge-

affected habitats and/or early successional forests would be a result of the fine 

specialization to the high availability of resources, mainly light, in these areas by these 

short-lived, rapid-colonizers pioneer species (Brokaw 1987; Goodale et al. 2012). Such 

high level of resources must sustain the higher and faster growth of these species (Bazzaz 

and Pickett 1980; Brokaw 1987). In contrast, some pioneer species seem to be able to 

survive and reproduce across wider ranges of gap size and light conditions (Brokaw 1987; 

Goodale et al. 2012). This is the case of Miconia argentea (Sw.) DC. (Melastomataceae), a 
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relatively  “shade  tolerant”  pioneer  species  that  is  found  in  a broad range of gap sizes (from 

100 m2 to 705 m2), and therefore, has a large gap-size niche preference (Brokaw 1987). 

Croton floribundus Spreng. (Euphorbiaceae) is a shade-intolerant, fast-growing 

pioneer tree species (Lorenzi 1992; Gandolfi et al. 1995; Rodrigues 1995) that presents 

high photosynthetic rates (M. Silvestrini and I.F.M. Válio, unpublished data; Ribeiro et al. 

2005) and germinates only under alternating temperatures (Válio and Scarpa 2001). It is 

abundant in gaps of primary remnants as well as in secondary areas of the semi-deciduous 

tropical forest (Lorenzi 1992; Gandolfi et al. 1995; Rodrigues 2005). These features seem 

to be directly related to a narrow niche preference: large gaps or high light environments. 

Thus, one can expect higher plant densities of both reproductives and juveniles of this 

species in early successional habitats rather than in natural or primary forests. Likewise, 

both size classes must be found mostly in the large gaps of the primary forest, because only 

in these sites there would be the level of resources required by the rapid growth of the 

species. However, the species presents some unusual pioneer tree characteristics such as 

relatively large seeds (Válio and Scarpa 2001), autochorous seed dispersal syndrome 

(Lorenzi 1992), no seed banks (Lorenzi 1992; Carvalho 2001) and no asexual reproduction 

(Passos 1995; Danciguer 1996), which may demonstrate a different ecological behavior 

from the traditionally studied pioneer species restricted to large gaps. In addition, there are 

known to be higher height and larger diameter plants of this species in a primary forest 

(Rodrigues 2005; T.E. Barreto, unpublished data) than in secondary forests (Lorenzi 1992; 

Danciguer 1996), which may suggest that the species is long-lived and not short-lived as it 

has been generally considered (Lorenzi 1992; Danciguer 1996). 

Here, we proposed to evaluate the distribution of individuals of C. floribundus in the 

gaps of a primary forest and compare the plant density of two size classes in a primary and 
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in an early successional forest in order to test for differential plant distribution under the 

variable environmental conditions generated by natural or human disturbances. 

Additionally, we examined the population persistence of the species and the relation 

between size class and reproductive activity in the primary forest, where larger sized plants 

were observed compared to secondary forests. The following questions were addressed: (i) 

Does C. floribundus have a large, intermediate or narrow gap-size niche preference in the 

primary forest? (ii) Does the pioneer species present the same plant density between the 

natural and human modified environments of a primary and an early successional forest? 

(iii) Is there difference in occupation of the space by juveniles and trees of the pioneer 

species between forest types? (iv) Is C. floribundus a long-lived pioneer species?  

 

Materials and methods 

Study site 

The study was conducted in a 10.24 ha permanent plot in the primary forest at 

Caetetus Ecological Station (CES) (Rodrigues 2005), and in an early successional forest 

adjacent to the state reserve at Torrão de Ouro Farm (Fig. 1). CES is located in Gália and 

Alvinlândia, state of São Paulo, southeast Brazil (22o20’   - 22o30’S;;   49o40’   - 49o45’W).  

Altitude ranges from 520 to 680 m (Tabanez et al. 2005). The climate at CES region 

corresponds to Köppen's "Cwa" mesothermic type, that is, humid subtropical with a dry 

winter (Rodrigues 2005; Tabanez et al. 2005). Annual rainfall averages 1,431 mm yr-1 and 

average annual temperature is 21.5 ºC. 

CES consists of 2,178.84 ha of semi-deciduous tropical forest or the premontane 

moist forest according to Holdridge (1967). This forest originally covered almost all the 

plateau in the state of São Paulo. Nowadays, it is the most threatened forest of São Paulo 
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due to the historic fragmentation and deforestation that occurred since the beginning of 

European colonization in Brazil (16th century). Most of the area of CES is covered by well 

conserved vegetation. The forest at CES is very dynamic, with larger gaps, and gap density 

and total percent of gap area higher than other tropical forests (Lima et al. 2008; Martini et 

al. 2008). According to historical reports dating from the early 20th century, most of the 

area including the center of the reserve, where the 10.24 ha permanent plot was delimited, 

has not experienced anthropogenic disturbances. On the other hand, the edges of the reserve 

are very disturbed (Tabanez et al. 2005). The original forest in the selected site at Torrão de 

Ouro Farm was cleared in 1926 and converted to a pasture. In 1984, the site was abandoned 

and farmers stopped slashing, but cattle grazing was still allowed. In 1986, the vegetation 

was burned, and in 2008, the pasture was completely closed to cattle grazing, allowing 

forest recovery. By the time this study was conducted (2010), the site was covered by an 

early successional forest. Early successional forest is defined here as being a site 

completely deforested in the past followed by human land use along a period of time, 

abandonment after the end of human activities, and thence under natural regeneration 

process with typical dominance by few fast growing pioneer species. This forest differs 

from a primary forest mainly due to: i) lower number of species (dominance of pioneer tree 

species); ii) lower canopy height; and iii) openness and discontinuity of the canopy, which 

contribute to the formation of a brighter understory. 

Soils in the early successional forest at Torrão de Ouro Farm are of the same type as 

at the CES plot, i.e., the red-yellow Acrisols (Ultisols) and Gleysols (Entisols) (Rodrigues 

2005; M. Cooper, personal communication). 

 

Study species 
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Croton floribundus Spreng. (Euphorbiaceae) is recognized as a pioneer species by 

Rodrigues (1995) and Gandolfi et al. (1995). It is a polyploid (Silvestrini et al. 2013), 

shade-intolerant, fast-growing tree species commonly found in gaps of primary remnants as 

well as in secondary areas of the semi-deciduous tropical forest (Lorenzi 1992; Gandolfi et 

al. 1995; Rodrigues 2005). The species range includes other forests in Brazil and in Eastern 

Paraguay (Lorenzi 1992; Gandolfi et al. 1995; Rodrigues 2005; Gomes 2006). According to 

Lorenzi (1992) and Danciguer (1996), tree height ranges from 4 to 13 m, but in the primary 

forest at CES, tree height ranges from 3 to 30 m (Rodrigues 2005; T.E. Barreto, 

unpublished data). 

The seeds (5 x 4.5 mm) are much larger than other pioneer species and require 

alternating temperatures for germination in light as well as in darkness (Gomes 2006; Válio 

and Scarpa 2001). Seed dispersal occurs by autochory or ballochory, i.e., plants present 

explosive seed dispersal (Lorenzi 1992). C. floribundus has been found in seed banks in 

wet (Grombone-Guaratini 1999) and dry seasons (Carvalho 2001). However, the seeds are 

heavily attacked by predators (Carvalho 2001) and present a short period of viability, 3-4 

months at most (Lorenzi 1992; M.T. Grombone-Guaratini, personal communication). 

Therefore, we assume that this species ability to persist long term in the soil seed bank to be 

very limited. 

For  this  study  the  following  size  classes  based  on  Danciguer’s  (1996)  definition  of  

life stages for C. floribundus were used: 1) seedlings (presence of cotiledonary leaves); 2) 

juveniles 1, hereafter referred to as juveniles, which consisted of individuals of 5 to 37 cm 

height and 0.05 to 0.40 cm diameter at soil height (DSH); 3) juveniles 2, which consisted of 

individuals of 27 to 400 cm height and 0.45 to 4.50 cm diameter at soil height (DSH); 4) 

trees, which comprised individuals > 4.78 diameter at breast height (DBH). The definition 
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of the tree size class was based on the criterion of inclusion of individuals in the plant 

inventory in the permanent plot (DBH ≥ 4.78 cm) (Rodrigues, 2005). Plant material of two 

reproductive trees from CES and one from Torrão de Ouro Farm is deposited at UEC 

Herbarium, University of Campinas, Campinas, Brazil (accession numbers 172052, 

172054, and 172055, respectively). 

 

Data analysis 

Distribution of individuals in the gap range 

Analysis of distribution of individuals of C. floribundus in the gaps of the primary 

forest were based on the previous characterization of the gaps in the permanent plot carried 

out by Lima et al. (2008), Martini et al. (2008), and A.M.Z Martini and R.A.F. Lima 

(unpublished data) (Fig. 2). Gap area data were based on the method of Brokaw (1982): 

“the   vertical   projection   of   the   hole   in   the   forest   extending   through   all   levels   down   to   an  

average height of two meters  above  ground”.  Gap  age  classes  were  defined  by  Martini  et  al.  

(2008) as follows: Age 3 (old) = tree disturbance occurred before 2002; Age 2 

(intermediate) = tree disturbance occurred after 2002; Age 1 (fresh) = tree disturbance 

occurred after 2002, but  it   is  more  recent  than  age  2  due  to  the  presence  of  “bark  and  thin  

twigs   on   the   terminal   branches   of   the   tree   or   the   part   of   the   tree   (stem   or   branch)”   (for  

further details, see Martini et al. 2008). We sampled sixteen gaps with different areas, ages 

and modes of disturbance, in which density and frequency of C. floribundus (individuals of 

all size classes) were evaluated. The gradient in gap size was from 23 m2 to 645 m2 and the 

total gap area sampled was 3,578 m2. 

Since the distribution of size class frequencies of canopy gaps followed the same 

pattern found by Lima et al. (2008) (data not shown), we considered our sampling 
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representative of the plot canopy gaps. Seven complex gaps, which mean gaps formed by 

distinct episodes of tree mortality, were evaluated. In these cases, disturbance age was 

based on the most recent episode. 

A multiple regression was applied in order to test if gap area (X1) and gap age class 

(X2) contribute to explain plant density (Y) in gaps (Zar 2010). Firstly, the analysis was 

applied for individuals of all size-classes. Secondly, it was applied for each size-class 

(juveniles and trees) separately. Statistical differences among plant density in the gap age 

classes were checked by comparison of medians through the notched box plots (McGill et 

al. 1978). 

 

Population persistence 

Population persistence of C. floribundus was inferred based on the size distribution 

of trees censused in the plant inventories of the permanent plot in 2005 (Rodrigues 2005) 

and 2010 (T.E. Barreto, unpublished data). Size distribution of individuals was visualized 

through box plots. 

 

Reproductive activity and tree size  

In order to evaluate the relation between size and reproductive activity of the trees 

of C. floribundus in the permanent plot of the primary forest, we observed the presence of 

flowers in 131 trees at the beginning of December 2010, during the blooming period of the 

species (Lorenzi 1992; Passos 1995). 

Simple logistic regression (Zar 2010) was applied to calculate the probability of 

encountering a tree in bloom at a given DBH in the population. 
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Plant density 

Juvenile and tree densities (individuals m-2) of C. floribundus in the early 

successional forest at Torrão de Ouro Farm were assessed in order to compare with the 

primary forest at CES. All juveniles and trees found in eight transects of 2 x 50 m 

systematically distant 40 m each other and distributed all over the forest area were censused 

(a total area of 800 m2). In the CES permanent plot, juvenile density in the gaps was 

calculated based on the evaluation of C. floribundus distribution in the sixteen gaps from 

the gap range analysis (a total Brokaw gap area of 3,578 m2). For trees, density was 

obtained dividing the number of individuals surveyed in each permanent subplot (T.E. 

Barreto, unpublished data) by the subplot area (400 m2) (n=256) (a total plot area of 

102,400 m2). Since the sampled populations were very asymmetrical and sample sizes were 

different, mainly for trees, we did not perform tests for assumptions of the parametric 

statistic tests as recommended by Zar (2010). Yet, the variability for each of the samples 

was reported. Both an appropriate parametrical and a nonparametrical test, a two-sample t-

test with separate variances and the Mann-Whitney test, respectively, were performed. 

The simple logistic regression was performed using software R version 2.15 (R 

Development Core Team, 2010). All other statistical analyses were performed using Systat 

11 software (Systat Software Inc., Richmond, CA). 

 

Results 

Distribution of individuals in the gap range 

A total of 317 individuals (all size classes) of C. floribundus were found in the 

sampled gaps of the primary forest. Frequency of C. floribundus in the gaps was 94%. The 

species was found in gaps of all sizes (Table 1, Fig. 3a). We did not find the species only in 
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the gap H9 (Table 1, Fig. 2). This gap has disturbance modes, gap area, and gap age (Table 

1) similar to the other gaps analyzed but, distinctively, it was not surrounded by any tree of 

C. floribundus in a minimum radius of 34 m (Fig. 2). Density of C. floribundus (all size 

classes) in the gaps was independent of gap size and gap age (F-ratio=0.062, p=0.941) (Fig. 

3).However, the density of trees (DBH ≥ 4.78 cm) was higher in older gaps (age 3) 

(p=0.02, two-tail, gap age coefficient) (Fig. 4b), while juvenile density did not respond to 

neither gap area nor gap age class (F-ratio=0.435, p=0.657). Note that juveniles of C. 

floribundus were recorded even in old gaps, i.e., more than eight-year-old gaps (Table 1). 

On the other hand, there were no seedlings and practically no juveniles (≤ 1 individual) in 

the same old gaps that contained trees, except for gaps where there were recurrent tree 

disturbances (Table 1). Also, the highest DBH of a tree recorded in a gap was of 20.85 cm. 

 

Population persistence 

The size distribution of individuals in the permanent plot of the primary forest at 

Caetetus Ecological Station (CES) showed that most of individuals are between 7.9 and 

20.0 cm DBH (Fig. 5). However, 25% of individuals or more were larger than 20.0 cm 

DBH. Besides the high abundance in the populations, trees larger than 20.0 cm DBH had a 

lower growth rate than average size individuals (data not shown). This indicates that 

populations of C. floribundus persist for relatively long time after gap disturbances in the 

primary forest and the species has a relatively long life span.  

 

Reproductive activity and tree size 

Flowering trees were found in all evaluated sizes (from trees with 4.78 cm to 47.11 

cm DBH) (Fig. 6). The estimated linear logistic model was the following: 
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DBH0.363+2.852=
p1

p
ln 

 












 

where p is the probability of encountering a plant in bloom at a given size. Both logit 

coefficients were significant with p<<0.0001. The chances of reproduction were 90% for 

trees with DBH ≥ 13.9 cm and 99% for trees with DBH ≥ 20.5 cm (Fig. 6). 

 

Plant density 

Density of trees did not differ (p=0.058) between the early successional forest at 

Torrão de Ouro Farm (0.023 ± 0.008 ind m-2, n=8) and the primary forest at CES (0.0050 ± 

0.0005 ind m-2, n=256). The Mann-Whitney test also showed statistical similarity of tree 

density between both forest types (p=0.058). Juveniles presented higher densities (p=0.021) 

in the early successional forest at Torrão de Ouro Farm (0.21 ± 0.06 ind m-2, n=8) than in 

the gaps of the CES primary forest (0.04 ± 0.01 ind m-2, n=16). A similar statistical result 

was found by the Mann-Whitney test (p=0.003). 

 

Discussion 

In contrast to the expectation based on the ecophysiological characteristics of the 

species, we found C. floribundus to be widespread and equally distributed along the gap-

size gradient in the primary forest. Also, population persistence inferred by the size 

distribution of trees showed that the species might be long-lived under natural conditions 

and reach reproductive stage at small size classes (Poorter et al. 2006; Bentos et al. 2008). 

The species showed a regeneration behavior similar to the pioneer species Miconia 

argentea (Sw.) DC. (Melastomataceae) and opposite to T. micrantha and T. orientalis 

(Brokaw   1987;;  Goodale   et   al.   2012),   species   considered   as   the   “endpoints   on   a   scale   of  
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regeneration   behavior”   (Brokaw   1987). Other demographic characteristics of C. 

floribundus that seem to be similar to M. argentea are plant recruitment and survival along 

the time after the gap creation. It was common to find seedlings, juveniles 1 and juveniles 2 

coexisting in gaps but not trees with seedlings and juveniles. It is worth noting that there 

was a large variation in size of trees in old gaps, which is likely a result of this colonization 

in extended time. For instance, we found plants ranging from 4.78 cm to 15.60 cm DBH in 

a gap and 9.07 to 20.85 cm DBH in another. 

During the gap analysis we verified that C. floribundus, mainly seedlings and 

juveniles, was also present under the canopy trees surrounding the openings. This along 

with the results discussed above may demonstrate a relatively higher shade-tolerance C. 

floribundus than other pioneer species as well as confirm its larger regeneration niche. 

Thus, the species seems to occupy a more heterogeneous environment. Such characteristics 

confirm that, as other regeneration classes of trees, pioneer species can also show a 

continuum of responses to irradiance (Brokaw 1987). 

Despite the high forest turnover rate for the semi-deciduous tropical forest at CES 

(Lima et al. 2008) - 98 years considering Brokaw area and 38 years considering Runkle 

(1982) area - and the high frequency of recurrent disturbances (Lima et al. 2008), 

population persistence of C. floribundus in the gaps is high due to the survival of a few old 

remnant individuals in each gap. It seems that some individuals have a long reproductive 

phase, since reproduction may start at early life-stages or small size classes. On the other 

hand, earlier reproduction may be a selective advantage for a light-demanding pioneer 

species that also grows in small or medium gaps where rapid canopy closure can decrease 

chances of plant survival in late life-stages. Furthermore, a longer period of seed production 

can result in a higher number of seeds per individual. This could overcome the short-
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distance seed dispersal by helping the species reach gaps in time instead of space. Such a 

strategy would be consistent with a large gap-size niche preference and a high forest 

turnover rate because any new opening gap would be a favorable regeneration site for the 

pioneer species. 

Density of C. floribundus (all size classes) in the gaps of the permanent plot was 

unpredictable in function of gap size and age, but gap age affected the abundance of trees. 

This means that we cannot expect higher plant densities in the early successional forest as 

in a large gap or a high light environment (Brokaw 1987; Goodale et al. 2012; Santos et al. 

2012). Indeed, even though the early successional forest presents the favorable light and 

temperature microclimate conditions for pioneer recruitment all over the area, especially in 

the beginning of colonization, tree density was similar between forest types. The reason can 

be the low number of colonizers in the area (Martínez-Garza and Howe 2003). The large 

vacant site of the early successional forest seems not to be easily reached by a short-

distance dispersed tree as C. floribundus (Lorenzi 1992; Stamp and Lucas 1983; Passos and 

Ferreira 1996). Also, there might be barriers to plant recruitment and establishment owing 

to the land use and the modified ecological conditions in the area that decreased plant 

density such as cattle grazing (see land use history) and competition with grasses and weeds 

(Uhl et al. 1991; Holl et al. 2000). The long-term persistence of C. floribundus in the 

primary forest and the age of the early successional forest can account for the tree 

abundances in both forests, explaining the result as well. Our results confirmed previous 

studies, which have shown that for some pioneer species, specifically long-lived ones, only 

saplings and juveniles had increment in plant density at early successional or secondary 

environments (Danciguer 1996; Santos et al. 2012). Most importantly, the results showed 

that even for a pioneer species not restricted to large gaps, i.e., whose plant distribution is 
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not affected by the differential environments of the gap gradient, the population structure 

changes after human disturbances. 

Interestingly, one gap showed similar juvenile density to the early successional 

forest (0.206 ind m-2, gap D5, Table 1). This gap had a large reproductive tree of C. 

floribundus near the limits of the Brokaw area providing seeds for colonization of the gap 

(Fig. 2). Also, other gaps that had adjacent old gaps (A.M.Z Martini and R.A.F. Lima, 

unpublished data), with reproductive trees of the species, presented relatively higher 

juvenile density (for instance, gap G11, Table 1 and Fig. 2). The opposite response obtained 

in gap H9, which was not surrounded by any tree of C. floribundus, should be highlighted. 

These results indicate that rather than gap area or the suitable sites available for plant 

establishment, the source of seeds and barriers to seed arrival such as the short-distance 

seed dispersal mechanism seem to be determinant of the first-colonizer abundance in both 

forest types. As already mentioned above, this may also be one of the explanations for the 

absence of relation between gap area and plant density in the primary forest. Other barrier 

to the seed arrival in the open gaps might be the presence of large trees and dense tangle of 

lianas in the primary forest (Rodrigues 2005; Lima et al. 2008). 

Plants of different life stages, namely, juvenile 1, juvenile 2 and reproductives of C. 

floribundus occurred spatially segregated in a 25 year-old secondary forest according to 

Danciguer (1996). In the primary forest analyzed here, trees were apparently segregated 

from juveniles but not from juveniles 2 while juveniles 2 were not spatially segregated from 

juveniles. In the early successional forest, juveniles occurred in the same transects of trees. 

The spatial structure of the species seems to be in accordance with the idea that there is a 

slow growth and an accumulation of juveniles in secondary forests, particularly in the early 

or mid successional stages, due to the unfavorable growth conditions for this size-class such 
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as the shading of tree crowns (Danciguer 1996; Goodale et al. 2012). Despite its relatively 

higher shade-tolerance and therefore the capability of surviving under more shaded 

environments, the species still requires high light conditions for recruitment to higher size-

classes. Conversely, in the primary forest, where gaps containing juveniles usually do not 

present trees of C. floribundus or any other pioneer species, there are light and temperature 

conditions for rapid growth and thus, transition from juvenile to juvenile 2 must be 

facilitated. This accumulation of individuals in time in the early successional forest may 

indicate that juveniles came from several events of seed dispersal like in the secondary 

forest studied by Danciguer (1996). In addition, there might be an increase in number of 

migrants by seeds after colonization due to reduction of competition with grass and weeds 

that would result in higher juvenile density. Thus, the specific biotic and abiotic conditions 

of the early successional forest may favour survival of juveniles but hinder their growth and 

transition to the following size-class. 

Likewise, competition and predation may affect juvenile density in a different way 

in the primary forest. In general, juveniles from the early successional forest showed 

phenotypic characteristics very different from the primary forest, such as less freshness and 

more damaged leaves, presence of re-sprouts, lower height and larger diameter at soil 

height (data not shown), which indicates more injuries and signs of recovery through re-

sprouting. A high ability of re-sprouting in trees of C. floribundus as well as ramification in 

life-stage juvenile 1 (Danciguer 1996; Martini et al. 2008) might be an important factor to 

increase potential competitive and survival of the species. Thus, it is likely that individuals 

in new highly human disturbed environments use this ability to maintain growth even with 

very slow rates and survive in the most critical life stages. In the primary forest, on the 

other hand, the plants seem not to have this opportunity of regrowth and formation of a 
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“seedling   bank”.  Besides   the   already  mentioned   high   light   availability   in   the   gaps,   other  

site-specific factors like seedling predation/herbivory (Uhl et al. 1991) and resource 

competition with lianas in the gaps (Schnitzer et al. 2005; Toledo-Aceves and Swaine 

2008) may affect survival and growth preventing the formation of a seedling bank. This 

statement is based on the high density of lianas found in the gaps of the permanent plot of 

CES (Lima et al. 2008) and our observations of juvenile mortality. 

The results showed that population structure of C. floribundus, a long-lived pioneer 

tree species with rapid growth varied between areas with contrasting levels of human 

disturbance but not with the level of natural disturbance. It seems that the main ecological 

processes that determine the pioneer species distribution in natural and human modified 

forests are the same, that is, responses to light, seed dispersal (limited), and colonization. 

However, different factors or conditions generated by those contrasting levels and types of 

disturbances seem to affect the way that the processes act. Hence, while the relative shade-

tolerance allows C. floribundus to have a broader distribution in the gap-gradient of the 

primary forest, the unavailability of favorable sites for juvenile growth may contribute to 

high juvenile density in the early successional forest. Likewise, the colonization of a large 

open area created by intensive land use and with possible barriers to plant establishment 

associated to a limited seed dispersal decreases the density of trees in the early successional 

forest, whereas the distance from the source of seeds and barriers to seed dispersal 

decreases the density of juveniles in the primary forest. 
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Tables 

Table 1 Plant density of Croton floribundus Spreng. (ind m-2) in sixteen canopy gaps in the 

permanent plot at Caetetus Ecological Station (CES). Age 3 = before 2002, Age 2= after 

2002, Age 1 = after 2002, but more recent than age 2 (see more details in the text) 

Gap 
 

Age 
 Brokaw area 

(m
2
) 

 Plant density (ind m
-2

) 

      Seedlings  Juveniles  Juveniles 2  Trees 
             

D12  3  353  0  0.003  0.034  0.031 
             

D5
a
  2  107  0  0.206  0.009  0 

             

D7
a
  1  396  0.005  0.015  0.045  0 

             

E11  3  81  0  0.062  0.074  0 
             

F11  3  251  0  0.004  0.012  0.024 
             

F7
a
  2  236  0.064  0.042  0.034  0.008 

             

F9
a
  2  306  0  0.033  0.010  0 

             

G10  1  23  0  0.086  0.043  0 
             

G11  3  228  0  0.066  0.018  0 
             

G7
a
  1  437  0  0.007  0.048  0.005 

             

H9  2  80  0  0  0  0 
             

H10  2  26  0  0.038  0.038  0 
             

N8  2  129  0  0.039  0.218  0 
             

P10  3  99  0  0  0  0.030 
             

P11
a
  1  182  0.011  0  0  0 

             

P3/P4
a
  2  645  0.059  0.050  0.022  0.005 

             

a
 Complex gaps (gaps with recurrent tree disturbances) 
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Figure legends 

Fig. 1 Location of the study sites: the permanent plot in the primary forest at Caetetus 

Ecological Station (CES plot) and the early successional forest at Torrão de Ouro Farm. 

Satellite imagery © 2012 MapLink/Tele Atlas, GeoEye Image, via Google Earth 

 

Fig. 2 Map of the permanent subplots (20 x 20 m) at Caetetus Ecological Station (CES) 

showing the subplots (in yellow) where the 100 canopy gaps recorded by Lima et al. (2008) 

and A.M.Z Martini and R.A.F. Lima (unpublished data) were located and the trees (DBH ≥ 

4.78 cm) of Croton floribundus Spreng. (red circles) censused by Rodrigues (2005) 

 

Fig. 3 Scatter diagram of plant density (all size classes) of Croton floribundus Spreng. (ind 

m-2) as a function of Brokaw gap size (m2) (a) and gap age class (b) in sixteen canopy gaps 

in the permanent plot at Caetetus Ecological Station (CES). Age 3 = before 2002, Age 2= 

after 2002, Age 1 = after 2002, but more recent than age 2 (see more details in the text) 

 

Fig. 4 Scatter diagram of tree density (DBH ≥  4.78  cm) of Croton floribundus Spreng. (ind 

m-2) as a function of gap age class in sixteen canopy gaps in the permanent plot at Caetetus 

Ecological Station (CES). Age 3 = before 2002, Age 2= after 2002, Age 1 = after 2002, but 

more recent than age 2 (see more details in the text) 

 
Fig. 5 Box plot of tree DBH of Croton floribundus Spreng. in the permanent plot at 

Caetetus Ecological Station (CES) censused in 2005 (Rodrigues 2005) and 2010 (T.E. 

Barreto, unpublished data). The length of each box shows the range within which the 

central 50% of the values fall, with the box edges at the first and third quartiles. * = outliers 



 

37 
 

 

 

Fig. 6 Logistic regression of trees in bloom on DBH (cm) for Croton floribundus Spreng. in 

the permanent plot at Caetetus Ecological Station (CES) 
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CHAPTER II 

 

Amplificação e caracterização de marcadores microssatélites cloroplastidiais 

universais em Croton floribundus Spreng. (Euphorbiaceae) em uma floresta 

primária do Estado de São Paulo. 
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RESUMO 

A avaliação da diversidade e estrutura genética de populações de plantas por meio de 

marcadores cloroplastidiais possibilita a realização de inferências a respeito do fluxo 

gênico por sementes bem como facilita a compreensão do processo de colonização e 

extinção. O presente trabalho teve como objetivo testar iniciadores microssatélites 

cloroplastidiais considerados universais na espécie arbórea pioneira Croton floribundus 

Spreng. e caracterizá-los por meio do estudo da diversidade e estrutura genética dentro 

e entre populações da espécie em uma floresta primária. Dez pares de iniciadores 

microssatélites cloroplastidiais (cpSSR) considerados universais foram testados sob 

diferentes condições de adstringência da reação de PCR em C. floribundus. Os pares 

de iniciadores ccmp01, ccmp08 e ccmp09 não amplificaram em C. floribundus. O par de 

iniciadores ccmp06 apresentou amplificações inespecíficas sob todas as condições de 

PCR testadas. Os locos ccmp02, ccmp03, ccmp04, ccmp05, ccmp07 e ccmp10 

amplificaram fragmentos de tamanhos esperados em temperaturas de anelamento que 

variaram de 55oC a 58oC e foram marcados com fluorescência (6-FAM e 6-HEX) para 

genotipagem de 64 indivíduos de C. floribundus distribuídos em quatro clareiras. 

Apenas um haplótipo foi detectado, mostrando a ausência de variabilidade e estrutura 

genética cloroplastidial nas populações avaliadas. O monomorfismo encontrado pode 

indicar uma origem comum destas populações e/ou que seus colonizadores vieram de 

poucas populações próximas e bastante semelhantes geneticamente, já que a 

autocoria associada à presença de grandes árvores e densos emaranhados de lianas 

pode restringir as distâncias de dispersão de sementes da espécie na floresta primária. 

Polimorfismos são esperados em escalas geográficas mais amplas.  

 

Palavras-chave: clareiras, DNA cloroplastidial, florestas tropicais, estrutura genética, 

microssatélites.  
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ABSTRACT 

The study of genetic differentiation among plant populations using chloroplast markers 

allows us to infer the patterns of gene flow by seeds as well as to understand the 

process of colonization and extinction. The aim of this study was to test and characterize 

the amplification of universal chloroplast microsatellite primers in the pioneer tree Croton 

floribundus Spreng by means of the study of the genetic diversity and structure within 

and among populations of the species in a primary forest. Ten universal chloroplast 

microsatellite (cpSSR) primer pairs were tested using different stringencies of PCR 

conditions for C. floribundus. The primer pairs ccmp01, ccmp08, and ccmp09 did not 

amplify in C. floribundus. The primer pair ccmp06 showed unspecified amplification 

products in all PCR conditions tested. The loci ccmp02, ccmp03, ccmp04, ccmp05, 

ccmp07, and ccmp10 amplified the expected PCR products at annealing temperatures 

ranging from 55oC to 58oC. These loci had the 5’  end  forward  primers   fluorescent-dye 

labeled (6-FAM and 6-HEX) in order to genotype the 64 individuals sampled in four 

gaps. Only one haplotype was observed showing an absence of genetic variability within 

and among populations. The monomorphism found may indicate that populations 

present a common origin and/or their colonizers were drawn from a few near and 

genetically similar populations as a result of the limited seed dispersal of the species 

generated by autochory and barriers to seed dispersal in the primary forest. 

Polymorphisms are expected at larger spatial scales.  

 

Key words: chloroplast DNA, gaps, genetic structure, microsatellites, tropical forests.  
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INTRODUÇÃO 

As florestas tropicais brasileiras vêm sofrendo um intenso processo de 

desmatamento e fragmentação antes mesmo do conhecimento desses ecossistemas 

(Leitão-Filho 1987; Dean 1996; Ribeiro et al. 2009). De modo geral, a conservação da 

diversidade biológica presente nesses ecossistemas está diretamente ligada à 

conservação da variabilidade genética. Isto porque é através da variação genética 

disponível que os organismos podem responder às possíveis mudanças ambientais, 

mantendo sua capacidade de adaptação e garantindo sua sobrevivência e reprodução 

ao longo do tempo (Koskela & Amaral 2002; Namkoong et al. 2002, Hedrick 2005). A 

diversidade genética é introduzida continuamente nas populações por mutação e fluxo 

gênico e pode ser perdida por deriva genética, endocruzamentos e pela maior parte dos 

tipos de seleção natural (Nei 1987; Cole 2003).  

O fluxo gênico promove a conectividade genética transferindo a variabilidade 

genética entre as populações (Hamrick & Nason 2000). De acordo com Ennos (1994), o 

fluxo gênico entre populações de plantas pode ocorrer de duas maneiras. A primeira 

envolve a dispersão do pólen de uma população diferente, a fecundação de um óvulo 

por este pólen e, finalmente, o estabelecimento da semente. O fluxo de genes pode 

ocorrer também pela dispersão das sementes, e o sucesso no estabelecimento das 

sementes dispersas dentro de uma nova população.  

Os mecanismos de dispersão que se incluem no fluxo gênico, tanto via pólen 

quanto via sementes, são muito importantes, pois podem modelar a composição e a 

estrutura genética das populações de plantas (Dow & Ashley 1998). Comumente, 

polinizadores e agentes dispersores de sementes que apresentem efetiva dispersão a 

longas distâncias diminuem a probabilidade de ocorrer diferenciação geográfica entre 
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populações, enquanto a dispersão em distâncias restritas tem efeito contrário, 

promovendo a estruturação genética populacional (Loveless & Hamrick 1984). Deste 

modo, espécies arbóreas polinizadas pelo vento, ou seja, cujo pólen é disperso a 

longas distâncias, tendem a ter maiores taxas de fluxo gênico e menor diferenciação 

genética que espécies polinizadas por insetos ou outros animais, por exemplo. Já 

espécies autocóricas tendem a apresentar uma dispersão de sementes limitada 

espacialmente, resultando em uma maior diferenciação genética entre as populações 

(Loveless & Hamrick 1984; Hamrick & Nason 2000). Entretanto, algumas árvores 

tropicais polinizadas por insetos apresentaram distâncias de migração de pólen de 

várias centenas de metros, apresentando também altas taxas de fluxo gênico, como as 

espécies polinizadas pelo vento (Hamrick & Nason 2000; Silva et al. 2008). 

Entre os diversos marcadores moleculares disponíveis atualmente, os 

marcadores microssatélites ou Simple Sequence Repeats (SSR) são os mais viáveis 

para a avaliação da diversidade e estrutura genética, pois são codominantes, 

apresentam alto poliformismo e são abundantes nos genomas das plantas (Ferreira & 

Grattapaglia 1998). De acordo com Lemes et al. (2003), os marcadores SSR têm sido 

cada vez mais utilizados como um instrumento eficaz para a compreensão da estrutura 

genética de populações, fluxo gênico, grau de parentesco, viabilidade de populações, 

além de permitir a quantificação dos efeitos da fragmentação de hábitats e estabelecer 

estratégias para a conservação de espécies. Os níveis de fluxo gênico e a proporção de 

fluxo gênico de pólen e sementes têm sido estimados indiretamente baseados na 

distribuição de diversidade genética entre as populações (FST-Wright 1931, 1951; GST-

Nei 1973) por meio de marcadores microssatélites nucleares e cloroplastidiais em 

espécies arbóreas do Cerrado (Gaiotto et al. 2003; Martins 2005; Moreno et al. 2009), 
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da Floresta Ombrófila (Lira et al. 2003; Azevedo et al. 2008, Born et al. 2008) e da 

Floresta Estacional Semidecidual (Monteiro et al. 2009). Na maioria destes estudos 

foram utilizados os microssatélites cloroplastidiais universais, ou seja, iniciadores 

cpSSR com sequências conservadas que foram desenvolvidos para amplificar em 

diferentes famílias de dicotiledôneas (Weising & Gardner 1999). 

Esse tipo de análise é possível, porque o DNA nuclear é de herança biparental, 

transmitido através de semente e pólen, enquanto o DNA das organelas, mitocondrial 

(mtDNA) ou cloroplastidial (cpDNA) geralmente é de herança uniparental (maternal) em 

angiospermas, sendo transmitido através de sementes (Parker et al. 1998). Portanto, 

comparando-se os diferentes padrões dos marcadores nucleares e cpDNA, há a 

possibilidade de inferir os níveis relativos de fluxo gênico por pólen e sementes (Ennos 

1994; Ouborg et al. 1999). No entanto, a estimativa de fluxo gênico por meio indireto é 

baseada em algumas premissas que nem sempre são encontradas nas populações 

naturais. Entre as principais está o equilíbrio entre deriva genética e fluxo gênico, que 

não se verifica especialmente em populações que sofrem recorrentes extinções e 

colonizações (Whitlock & McCauley 1999, Ouborg et al 1999), como nas espécies 

arbóreas pioneiras. Para estas espécies, a obtenção da diferenciação genética entre 

populações usando marcadores cloroplastidiais e nucleares pode ser suficiente e muito 

informativa para a compreensão de alguns padrões e processos populacionais tais 

como o processo de colonização e extinção e para inferências dos padrões de 

dispersão de pólen e sementes juntamente com análises de autocorrelação espacial 

(McCauley 1995; Whitlock & McCauley 1999; Hamrick & Trapnell 2011).  

A espécie arbórea Croton floribundus Spreng., conhecida como capixingui, é 

considerada uma espécie pioneira, ou seja, sua história de vida e estrutura populacional 
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são afetadas pela dinâmica de clareiras (Lorenzi 1992; Gandolfi et al. 1995; Rodrigues 

1995). Deste modo, é uma árvore de crescimento rápido e intolerante à sombra que 

ocorre abundantemente nas clareiras de remanescentes primários da Floresta 

Estacional Semidecidual (Lorenzi 1992; Gandolfi et al. 1995; Rodrigues 1999; 

Rodrigues 2005), e cuja dinâmica demográfica assemelha-se a de uma metapopulação, 

ou seja, as populações persistem em uma escala regional em consequência do 

processo local de colonização e extinção das clareiras (Freckleton & Watkinson 2002). 

Espécies pioneiras polinizadas por insetos têm mostrado baixos níveis de 

diferenciação genética entre populações e altas taxas de fluxo gênico (Litrico et al. 

2005; Born et al. 2008). Entretanto, estas espécies apresentam também dispersão de 

sementes a longas distâncias por vento ou pássaros, o que pode estar influenciando os 

resultados encontrados. Já a espécie C. floribundus é polinizada por insetos e vento 

(Passos 1995), mas as sementes são dispersas a curtas distâncias pela abertura 

explosiva dos frutos (autocoria) (Lorenzi 1992; Stamp & Lucas 1983, Passos & Ferreira 

1996). Neste caso, o estudo da diversidade e estrutura genética utilizando marcadores 

cloroplastidiais seria útil para elucidar como o mecanismo de dispersão de sementes 

por autocoria pode afetar a distribuição da variação genética de uma espécie pioneira. 

Do mesmo modo, a análise de marcadores cloroplastidiais transmitidos exclusivamente 

via sementes em populações de C. floribundus ocorrendo em uma área de floresta 

conservada (primária) pode contribuir para o entendimento do efeito do processo de 

colonização e extinção gerado pela dinâmica de clareiras sobre suas características 

genéticas.  

Neste contexto, o presente trabalho teve como objetivos: 
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1) Testar iniciadores microssatélites cloroplastidiais considerados universais na 

espécie pioneira arbórea C. floribundus para uso em futuros estudos genéticos da 

espécie. 

2) Caracterizar tais marcadores microssatélites cloroplastidiais em C. floribundus, 

avaliando a diversidade e estrutura genética dentro e entre populações da espécie em 

uma floresta primária. 

 

MATERIAIS E MÉTODOS 

Local de estudo 

O estudo foi realizado dentro de uma parcela permanente de 10,24 ha na 

Estação Ecológica dos Caetetus (EEC) (Rodrigues 2005). A EEC está localizada no 

município de Gália e Alvilândia, Estado de São Paulo, sudeste do Brasil (22o20’   - 

22o30’S;;  49o40’  - 49o45’O).  O  clima  regional  corresponde  ao  tipo  Cwa,  de  acordo  com  a  

classificação de Köppen, ou seja, mesotérmico com um inverno seco (Rodrigues 2005; 

Tabanez et al. 2005). As médias anuais de precipitação e temperatura são de 1.431 

mm.ano-1 e 21,5º C, respectivamente. A altitude varia de 520 a 680 m (Tabanez et al. 

2005). Os solos predominantes na região da EEC são os argissolos e, em áreas com 

declives inferiores a 5%, os latossolos (Tabanez et al. 2005; Rodrigues 2005).  

A EEC é um remanescente da Floresta Estacional Semidecidual (IBGE 1992) 

com 2.178,84 ha, que corresponde à Floresta Subtropical Úmida, de acordo com a 

classificação de Holdridge (Holdridge 1967). A Estação Ecológica dos Caetetus foi 

criada em 1987 e preserva uma das maiores áreas contínuas representativas dessa 

formação florestal, que revestia o planalto ocidental paulista (Tabanez et al. 2005). A 

estação representa uma base para o conhecimento da estrutura e do funcionamento da 
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comunidade florestal original, além de se destacar pelo excelente estado de 

conservação da maior parte de sua área (Tabanez et al. 2005). De acordo com relatos 

históricos da região, que datam do início do século 20, não há registros de perturbações 

antrópicas no núcleo do parque, onde foi estabelecida a parcela permanente de 10,24 

ha. Por outro lado, Lima et al. (2008) e Martini et al. (2008) mostraram que a floresta 

nesta área é muito dinâmica, apresentando clareiras maiores que em outras florestas 

tropicais, além de alta densidade de clareiras e alta percentagem de área total ocupada 

por clareiras. 

 

Espécie estudada 

A espécie arbórea Croton floribundus Spreng. (Euphorbiaceae), conhecida 

popularmente como capixingui, é classificada como uma espécie monóica, com 

dicogamia (Passos 1995), crescimento rápido, intolerância ao sombreamento e é muito 

comum em clareiras das florestas semidecíduas (Rodrigues 1999). É considerada uma 

espécie pioneira (Lorenzi 1992; Gandolfi et al. 1995; Rodrigues 1995), mas apresenta 

algumas características incomuns deste grupo, tais como sementes grandes (Válio & 

Scarpa 2001) e ausência de banco de sementes e de reprodução assexual (Passos 

1995; Danciguer 1996). A dispersão de sementes é realizada por autocoria através da 

deiscência explosiva dos frutos (Lorenzi 1992). Segundo Passos (1995), C. floribundus 

é polinizada principalmente por moscas da família Syrphidae e por anemofilia. 

Plantas de C. floribundus da classe de tamanho jovem (Capítulo I) foram 

selecionadas como objeto deste estudo por serem facilmente encontrados e 

distinguíveis dentro de cada clareira. Indivíduos jovens caracterizam-se por não terem 

cotilédones, embora possam ter alguma estrutura embrionária. Possuem altura 
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variando entre 5 e 37 cm e diâmetro a altura do solo (DAS) entre 0,05 e 0,40 cm 

(Danciguer 1996) (Figura 1).  

 

Delineamento amostral 

As plantas avaliadas foram amostradas em quatro clareiras (populações) 

encontradas na parcela permanente da EEC, conforme Lima et al (2008) e Martini, AMZ 

& Lima, RAF (dados não publicados) (Figura 2). As clareiras foram denominadas de 

acordo com a subparcela onde se encontram. Assim, foram amostrados 16 indivíduos 

na clareira C5; 18 indivíduos na clareira E13; 16 indivíduos na clareira K8; e 14 

indivíduos na clareira M5 (Figura 2). No total, 64 indivíduos foram amostrados.  

 

Material vegetal 

Foram utilizadas folhas jovens de cada planta avaliada, as quais foram 

armazenadas separadamente em freezer a –80ºC e, posteriormente, maceradas com 

nitrogênio líquido em almofariz, para extração de DNA. 

 

Extração e quantificação de DNA  

O DNA total (nuclear e cloroplastidial) foi extraído de folhas jovens de acordo 

com Doyle & Doyle (1990), utilizando CTAB como detergente. A quantificação do DNA 

total das amostras foi estimada pela intensidade de fluorescência emitida pelo corante 

Sybr safe (Invitrogen Corporation) por eletroforese em géis de agarose a 0,8%. Essa 

intensidade foi comparada a de padrões com concentrações específicas e conhecidas 



 

54 
 

 

(DNA do Fago  - lambda). Após a quantificação, as amostras de DNA foram diluídas 

para uma concentração final de 20ng/μL. 

 

Marcadores microssatélites cloroplastidiais (cpSSR) 

Foram utilizados os marcadores cloroplastidias considerados universais 

desenvolvidos para dicotiledôneas por Weising & Gardner (1999) (Tabela 1). Os 

mesmos foram testados e otimizados em C. floribundus. 

 

Amplificação dos locos cpSSR 

Para amplificação dos locos microssatélites cloroplastidiais, foram inicialmente 

testadas as mesmas condições de reação utilizadas para os marcadores nucleares que 

estavam sendo desenvolvidos para a espécie: 40ng de DNA total, 1x tampão, 0,1mM 

dNTP, 2mM MgCl2,   10ρmoles   de   cada   iniciador,   1   unidade   de   Taq   DNA   polimerase  

para um volume final de 25µL (Capítulo III). O programa de amplificação foi constituído 

por um ciclo inicial de 5 minutos de desnaturação (95ºC); seguido por 30 ciclos de 1 

minuto de desnaturação (95ºC), 1 minuto de anelamento (55ºC) e 1 minuto de extensão 

(72ºC); e um ciclo final de 10 minutos de extensão (72ºC). Variações na adstringência 

da reação de PCR foram testadas com o objetivo de otimizar a amplificação dos locos 

(temperatura e MgCl2). Assim, para os iniciadores que apresentaram bandas 

inespecíficas ou má qualidade de amplificação do produto específico foram testados 

gradientes de temperatura entre 60ºC e 50ºC, concentrações de MgCl2 de 1,5mM e 

1,0mM, bem como as condições de reação originais de Weising & Gardner (1999) 
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descritas a seguir: 20ng de DNA total, 1x tampão, 0,2mM dNTP, 2,5mM MgCl2, 5ρmoles 

de cada iniciador, 1 unidade de Taq DNA polimerase para um volume final de 10µL. 

 

Visualização da amplificação 

Todas as reações de PCR foram analisadas em eletroforese de gel de agarose a 

2% e TBE 1x para verificação da presença de produtos de amplificação. Os produtos de 

PCR foram visualizados por meio do corante fluorescente blue green loading dye I 

(LGC Biotecnologia). Após a otimização dos pares de iniciadores, os produtos de 

amplificação dos locos foram visualizados em géis de poliacrilamida 6% não 

desnaturantes corados com nitrato de prata para confirmação dos resultados. 

 

Visualização de polimorfismo 

Os fragmentos de microssatélites cloroplastidiais foram visualizados por meio do 

sistema de eletroforese capilar em um sequenciador automático 3730 DNA Analyzer 

(Applied Biosystems, Inc.), utilizando iniciadores marcados com fluorescência e 

marcadores internos de tamanhos moleculares conhecidos (GENESCAN-500 ROX, 

Applied Biosystems, Inc.). Para isso, os iniciadores otimizados foram marcados com 

fluorocromos específicos (6-FAM e 6-HEX) de acordo com o tamanho esperado de 

cada loco (Tabela 1): 6-FAM para os locos com produto esperado maior ou igual a 126 

pb e 6-HEX para os locos com produto esperado menor que 126pb. Tal procedimento 

permitiu a genotipagem multiplex, ou seja, a diferenciação de dois locos cpSSR em 

uma única corrida. A combinação de locos para aplicação em multiplex foi avaliada 

concomitantemente aos testes com diferentes concentrações de iniciadores (5 e 

10ρmoles) e volume de reação a ser injetado no sistema de eletroforese capilar (1,0 e 



 

56 
 

 

1,5 μL). As seguintes combinações de iniciadores foram testadas: ccmp02 (6-FAM) e 

ccmp3 (6-HEX), ccmp4 (6-FAM) e ccmp10 (6-HEX), ccmp7 (6-FAM) e ccmp5 (6-HEX). 

Alíquotas das reações foram visualizadas em gel de agarose 2% para verificar a 

qualidade de amplificação, antes do envio para a automatização da eletroforese. As 

amostras foram preparadas para genotipagem utilizando-se 9μL de formamida, 0,5μL 

do padrão de peso molecular (GENESCAN-500 ROX) e o volume de produtos de PCR 

mais adequado para genotipagem multiplex. 

 

Análise de Dados 

Amplificação dos microssatélites cloroplastidiais universais 

Os géis de agarose em eletroforese para amplificação dos locos cpSSR em C. 

floribundus foram analisados quanto à qualidade: 1) foi observado se os locos foram 

amplificados; 2) quanto ao tamanho do produto, se o mesmo apresentou variações de 

tamanho dentro do esperado pela literatura (Weising & Gardner 1999); 3) quanto ao 

aparecimento de bandas inespecíficas, sugerindo necessidade de otimização das 

condições de reação. Da mesma forma, foi avaliada a amplificação com os iniciadores 

marcados com fluorescência, ou seja, os resultados da eletroforese no sequenciador 

automático 3730 DNA Analyzer foram analisados principalmente com relação ao 

tamanho e intensidade dos picos SSR. 

 

Visualização de polimorfismo 

Os fragmentos cpSSR (alelos) foram analisados após eletroforese, utilizando o 

programa GeneMapper v. 3.7 (Applied Biosystems, Inc.). 
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Diversidade e estrutura genética 

Cada combinação alélica única entre todos os locos cpSSR analisados foi 

considerada um haplótipo. A partir desta definição avaliou-se o número de haplótipos 

presente nas populações. 

 

RESULTADOS 

Amplificação dos locos microssatélites cloroplastidiais 

Dos dez marcadores cloroplastidiais desenvolvidos por Weising & Gardner 

(1999) (Tabela 1) e testados em C. floribundus, seis apresentaram excelente 

amplificação sob as mesmas condições de reação utilizadas para os marcadores 

nucleares, com variações na temperatura de anelamento (Figura 3). Assim, para os 

pares de iniciadores ccmp2, ccmp3, ccmp5, ccmp7, e ccmp10, que produziram bandas 

intensas, no tamanho esperado e sem amplificações inespecíficas, as condições ótimas 

de reação foram as seguintes: 40ng de DNA total, 1x tampão, 0,1mM dNTP, 2mM 

MgCl2,  10ρmoles de cada iniciador, 1 unidade de Taq DNA polimerase para um volume 

final   de   25μL. O programa de amplificação foi constituído por um ciclo inicial de 5 

minutos de desnaturação (95ºC); seguido por 30 ciclos de 1 minuto de desnaturação 

(95ºC), 1 minuto de anelamento (55ºC) e 1 minuto de extensão (72ºC); e um ciclo final 

de 10 minutos de extensão (72ºC). Para o loco ccmp4, foi necessário aumentar a 

adstringência da reação, sendo utilizada a temperatura de anelamento de 58ºC. 

Os iniciadores ccmp1, ccmp8 e ccmp9 não amplificaram o produto esperado em 

C. floribundus sob nenhuma das condições testadas. O par de iniciadores ccmp6 

produziu bandas inespecíficas e/ou má qualidade do produto esperado, não sendo 

encontrado um balanço adequado das condições de PCR para a amplificação do loco.  

C 
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Portanto, dos dez iniciadores cpSSR avaliados, seis mostraram amplificação 

adequada e foram marcados com fluorescência (6-FAM e 6-HEX) para utilização na 

genotipagem de C. floribundus. Estes resultados foram confirmados pela visualização 

dos produtos amplificados em géis de poliacrilamida não desnaturantes (Figura 4). 

 

Visualização de polimorfismo 

Todas as combinações de locos para genotipagem multiplex testadas 

apresentaram picos com intensidades suficientes para análise e sem interferência entre 

locos, utilizando-se 10 ρmoles de iniciador e 1,0 μL de cada produto de PCR. A 

utilização de 1,0 μL de produto de PCR minimizou a produção de picos com intensidade 

além  da  escala  (“off-scale”) verificados com o volume de 1,5 μL. Para alguns locos, a 

leitura dos picos foi eficiente também utilizando-se 5 ρmoles de iniciadores e 1,0 μL de 

produto de PCR. Porém, optou-se pela utilização de 10 ρmoles em todos os locos para 

padronização do protocolo de amplificação. A genotipagem multiplex mostrou-se uma 

importante ferramenta, pois permitiu a diminuição da quantidade de corridas por meio 

da leitura adequada de dois locos cpSSR no mesmo capilar (Figura 5).  

As reações de amplificação com os seis iniciadores marcados com fluorocromo 

nos 64 indivíduos em estudo foram visualizadas primeiramente em gel de agarose, 

apresentando bandas de boa qualidade, com tamanho esperado e sem amplificações 

inespecíficas (Figura 6, Figura 7a). Posteriormente foram obtidos os resultados da 

genotipagem por meio do sistema de eletroforese capilar (Figura 7), onde se constatou 

que todos os seis locos analisados foram monomórficos nas populações estudadas 

(Tabela 2). 
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Diversidade e estrutura genética 

Foi observado somente um haplótipo nos 64 indivíduos amostrados, o que 

revelou a ausência de variabilidade e estrutura genética cloroplastidial nas populações 

avaliadas de C. floribundus na floresta primária.  

 

DISCUSSÃO 

De modo geral, os tamanhos dos alelos dos seis locos cloroplastidiais avaliados 

em C. floribundus estão dentro da faixa amplificada em outras espécies arbóreas como 

em Casearia sylvestris Sw. (Salicaceae) na Floresta Estacional Semidecidual (Monteiro 

et al. 2009), em Solanum lycocarpum St. Hil. (Solanaceae) no Cerrado (Martins 2005), e 

em Manilkara huberi (Ducke) A. Chev. (Sapotaceae) na Floresta Amazônica (Azevedo 

2008). Isto indica que as regiões amplificadas sofreram pequenas variações de 

tamanho, ou seja, provavelmente poucas inserções/deleções de sequências curtas (1 a 

10pb) ao logo do processo evolutivo nestas famílias (Palmer 1987), já que neste nível 

hierárquico, outros eventos mutacionais que não a variação no número de repetições 

dos cpSSR parecem ser responsáveis pelas diferenças nos tamanhos destas 

sequências (Weising & Gardner 1999). Além disso, a amplificação e pouca variação no 

tamanho das sequências em diferentes famílias de plantas confirma que esses locos, 

em especial as regiões flanqueadoras dos microssatélites, são bastante conservados 

nas plantas superiores (Weising & Gardner 1999). O loco ccmp2 foi o único que 

apresentou tamanho um pouco acima do esperado de acordo com a lista de espécies 

apresentada por Weising & Gardner (1999) (166 – 234pb). Embora mais rara, esta 

magnitude de variação no tamanho alélico dos cpSSR também pode ocorrer nas 

angiospermas (Weising & Gardner 1999), já tendo sido encontrado tamanho de alelo 
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similar para o loco ccmp2 (280pb) na espécie do Cerrado Hymenaea stigonocarpa Mart. 

ex Hayne (Leguminosae-Caesalpinoideae) (Moreno et al. 2009). Tais variações de 

tamanho entre as espécies podem ser resultado de inserções ou deleções de 

sequências longas de nucleotídeos (50 a 1200pb), um tipo de mutação menos 

frequente que a de sequências curtas, mas ainda comum no DNA cloroplastidial 

(Palmer 1987). 

Já o nível de polimorfismo intraespecífico encontrado nos cpSSR é devido 

principalmente às mutações graduais dos SSR ou à variação do número das 

sequências repetidas, no caso, de mononucleotídeos A e T (Weising & Gardner 1999), 

pois estas são mais frequentes que outros tipos de mutações no DNA cloroplastidial 

(Provan et al. 1999). O acesso a tal variabilidade permite inferências sobre os 

processos populacionais. Assim, os monomorfismos e a baixa variação intraespecífica 

verificados nos microssatélites cloroplastidiais avaliados por Weising & Gardner (1999) 

em Nicotiana tabacum L. e por Moreno et al. (2009) em Hymenaea stigonocarpa 

indicaram efeito de gargalo e baixa taxa de fluxo gênico por sementes, nas respectivas 

espécies estudadas. Já Martins (2005) encontrou um alto número de alelos por loco nas 

populações de Solanum lycocarpum, evidenciando, após análise comparativa com os 

marcadores nucleares, um papel importante da migração de sementes no fluxo gênico 

da espécie.  

No caso de C. floribundus, assumindo-se a herança maternal dos locos 

cloroplastidiais, a ausência de variabilidade entre e dentro populações na floresta 

primária, pode indicar que seus colonizadores tiveram uma origem comum, ou seja, 

vieram de uma única população próxima, e/ou vieram de poucas populações também 

próximas e bastante semelhantes geneticamente. Considerando-se que as populações 
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ou clareiras amostradas estão localizadas a curtas distâncias uma da outra, esta 

similaridade genética ou ausência de variabilidade pode ser o resultado da limitada 

dispersão de sementes da espécie gerada pela autocoria (Loveless & Hamrick 1984; 

Hamrick & Nason 2000). Além disso, a presença de grandes árvores e densos 

emaranhados de lianas (Rodrigues 2005; Lima et al. 2008) pode ser uma barreira para 

a chegada de sementes nas clareiras na floresta primária, reduzindo a diversidade 

haplotípica. Por outro lado, a diversidade cloroplastidial na floresta primária pode estar 

distribuída em uma escala espacial maior do que a avaliada neste estudo. Esta questão 

poderá ser esclarecida através de estudos que avaliem a diversidade genética 

cloroplastidial em um maior número de clareiras ou em populações abrangendo escalas 

geográficas mais amplas. Neste sentido, os marcadores microssatélites cloroplastidiais 

otimizados para C. floribundus devem ser testados em escalas mais amplas e, uma vez 

apresentando polimorfismos, podem ser usados juntamente com análises de 

marcadores nucleares para inferências sobre o processo de colonização e a dispersão 

de sementes na espécie.  
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TABELAS 

Tabela 1: Locos, sequências foward (F) e reverse (R) dos iniciadores, motivo e 
tamanho em pares de bases (pb) dos microssatélites cloroplastidiais universais 
observados em tabaco por Weising & Gardner (1999).  
 

Locos Sequência  dos  iniciadores  (5’  – 3’) Motivo 
Tamanho em 
tabaco (pb) 

ccmp1 F=  5  ’-CAGGTAAACTTCTCAACGGA-3’ 
R=  5’  -CCGAAGTCAAAAGAGCGATT-3’ (T)10 139 

ccmp2 
F=  5’-GATCCCGGACGTAATCCTG-3’ 
R=  5’-ATCGTACCGAGGGTTCGAAT-3’ (A)11 189 

ccmp3 F=  5’-CAGACCAAAAGCTGACATAG-3’ 
R=  5’-GTTTCATTCGGCTCCTTTAT-3’ (T)11 112 

ccmp4 
F=  5’-AATGCTGAATCGAYGACCTA-3’ 
R=  5’-CCAAAATATTBGGAGGACTCT-3’ (T)13 126 

ccmp5 
F=  5’-TGTTCCAATATCTTCTTGTCATTT-3’ 
R=  5’-AGGTTCCATCGGAACAATTAT-3’ 

(C)7(T)10 
(T)5C(A)11 

121 

ccmp6 
F=  5’-CGATGCATATGTAGAAAGCC-3’ 
R=  5’-CATTACGTGCGACTATCTCC-3’ (T)5C(T)17 103 

ccmp7 F=  5’-CAACATATACCACTGTCAAG-3’ 
R=  5’-ACATCATTATTGTATACTCTTTC-3’ (A)13 133 

ccmp8 
F=  5’-TTGGCTACTCTAACCTTCCC-3’ 

R=  5’-TTCTTTCTTATTTCGCAGDGAA-3’ (T)6C(T)14 77 

ccmp9 F=  5’-GGATTTGTACATATAGGACA-3’ 
R=  5’-CTCAACTCTAAGAAATACTTG-3’ (T)11 98 

ccmp10 
F=  5’-TTTTTTTTTAGTGAACGTGTCA-3’ 
R=  5’-TTCGTCGDCGTAGTAAATAG-3’ (T)14 103 

 

 

Tabela 2: Locos, temperatura de anelamento, sequências foward (F) e reverse (R) dos 
iniciadores, motivo, número de alelos e tamanho dos alelos em pares de bases (pb) dos 
microssatélites cloroplastidiais universais caracterizados em Croton floribundus Spreng.  
 

Locos Tº(C) Sequência  dos  iniciadores  (5’  – 3’)* Motivo* Alelos Tamanho dos 
alelos (pb) 

ccmp2 55º F=  5’-GATCCCGGACGTAATCCTG-3’ 
R=  5’-ATCGTACCGAGGGTTCGAAT-3’ (A)11 1 301 

ccmp3 55º 
F= 5’-CAGACCAAAAGCTGACATAG-3’ 
R=  5’-GTTTCATTCGGCTCCTTTAT-3’ (T)11 1 104 

ccmp4 58º F=  5’-AATGCTGAATCGAYGACCTA-3’ 
R=  5’-CCAAAATATTBGGAGGACTCT-3’ (T)13 1 112 

ccmp5 55º 
F=  5’-TGTTCCAATATCTTCTTGTCATTT-3’ 
R=  5’-AGGTTCCATCGGAACAATTAT-3’ 

(C)7(T)10 
(T)5C(A)11 

1 109 

ccmp7 55º F=  5’-CAACATATACCACTGTCAAG-3’ 
R=  5’-ACATCATTATTGTATACTCTTTC-3’ (A)13 1 130 

ccmp10 55º 
F=  5’-TTTTTTTTTAGTGAACGTGTCA-3’ 
R=  5’-TTCGTCGDCGTAGTAAATAG-3’ (T)14 1 134 

* De acordo com o observado em tabaco por Weising & Gardner (1999) 
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FIGURAS 

 

 

 

Figura 1: Indivíduo de Croton floribundus Spreng. da classe de tamanho jovem 
amostrado em uma clareira na Estação Ecológica dos Caetetus. 
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Legenda: 

▲  indivíduos jovens da clareira C5. 
▲  indivíduos jovens da clareira E13. 

▲  indivíduos jovens da clareira K8. 

▲  indivíduos jovens da clareira M5.  

 

Figura 2: Distribuição dos indivíduos jovens amostrados de Croton floribundus Spreng. 
nas subparcelas (20 x 20 m) permanentes da Estação Ecológica dos Caetetus. Escala 
1:2.839. Subparcelas em amarelo indicam as subparcelas onde foram encontradas as 
100 clareiras avaliadas por Lima et al (2008) e Martini, AMZ & Lima, RAF (dados não 
publicados). 
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Figura 3: Produtos de PCR dos locos ccmp2, ccmp3, ccmp5, ccmp7, ccmp10 e ccmp4 
visualizados em gel de agarose 2% amplificados nos indivíduos P3, P16 e P15 de 
Croton floribundus Spreng. P100 corresponde ao padrão de peso molecular de 100pb. 
C indica o controle da reação de PCR amplificada sem DNA. 

 

 
 

Figura 4: Produtos de PCR dos locos ccmp10 e ccmp4 visualizados em gel de 
poliacrilamida 6% não desnaturante amplificados nos indivíduos P3, P16 e P15 de 
Croton floribundus Spreng. P100 corresponde ao padrão de peso molecular de 100pb. 
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Figura 5: Eletroferograma do loco ccmp5 marcado com 6-HEX (verde) e do loco ccmp7 
marcado com 6-FAM (azul) em multiplex amplificados no indivíduo P48 de Croton 
floribundus Spreng. O eixo x representa o tamanho dos fragmentos em pares de bases 
(pb) estimados por comparação ao padrão de peso molecular (vermelho). O eixo y 
representa as unidades relativas de fluorescência. 
 

 

 
 
Figura 6: Produtos de PCR do loco ccmp2 marcado com 6-FAM (azul) visualizados em 
gel de agarose 2%. Da esquerda para direita os indivíduos de Croton floribundus 
Spreng.: P48, P50, P52, P54, P55, P56, P57, P58, P60, P61, P63, P78, P79, P80, P81, 
P82, P83, P84, P30, P31, P32, P33, P34, P36, P37, P38, P39, P40, P41, P42, P43, 
P45, P46, P47, P64 e P65. P100 corresponde ao padrão de peso molecular de 100pb.  
 

P100 
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Figura 7: Produtos de PCR do loco ccmp7 marcado com 6-FAM (azul) visualizados em 
gel de agarose 2%. Da esquerda para direita os indivíduos de Croton floribundus 
Spreng: P9, P11, P12, P14, P15, P16, P17, P18, P19, P24, P25, P26, P28, P29, P27 e 
P8. P100 corresponde ao padrão de peso molecular de 100pb (a). Eletroferograma do 
loco ccmp7 marcado com 6-FAM (azul) mostrando o pico do alelo de 130pb amplificado 
no indivíduo P25 e os picos do padrão de peso molecular GENESCAN-500 ROX 
(Applied Biosystems, Inc.) (em vermelho) (b). Ampliação do eletroferograma do loco 
ccmp7 marcado com 6-FAM (azul) mostrando o pico do alelo de 130pb do indivíduo 
P25 (c). O eixo x representa o tamanho dos fragmentos em pares de bases (pb) 
estimados por comparação ao padrão de peso molecular. O eixo y representa as 
unidades relativas de fluorescência. 
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Cytogenetics and characterization of microsatellite loci for a South American 

pioneer tree species, Croton floribundus Spreng. (Euphorbiaceae). 
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Abstract 

Despite the recent advances in plant population genetic studies, the lack of information regarding 

pedigree, ploidy level or mode of inheritance for many polyploids can compromise the analysis 

of the molecular data produced. The aim of this study was to examine both microsatellite and 

cytogenetic characteristics of the pioneer tree Croton floribundus Spreng. (Euphorbiaceae) in 

order to test for the occurrence of polyploidy in the species and to evaluate its implications for the 

appropriate use of the SSR markers. Seven microsatellite markers were developed and screened 

for 62 individuals from a semi-deciduous tropical forest in Brazil. Chromosome number, meiotic 

behavior, and pollen viability were evaluated from male flower buds. All SSR loci were highly 

polymorphic. The number of bivalents observed in meiosis n=56 (2n=8x=112) and the maximum 

number of alleles per individual (Ni=8) demonstrated the occurrence of polyploidy in C. 

floribundus. The normal meiotic pairing and the high pollen viability suggested that C. 

floribundus is a regular and stable polyploid, most likely an allopolyploid. The combined SSR 

and cytogenetic data provided new evidence on the origin and evolution of the species as well as 

assured the accurate use of SSR loci for population genetic studies of the polyploid pioneer 

species. 

 

Key words: chromosome number; meiosis; polyploidy; primers; semi-deciduous tropical forests; 

simple sequence repeat.
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Introduction 

Pioneer tree species exhibit particular life histories and population structures that are 

mainly affected by the patchy dynamics of the tropical forests (Swaine and Whitmore 1988; 

Alvarez-Buylla 1994; Uriarte et al. 2012). These characteristics and ecological processes have 

significant consequences for genetic structure and evolution (Alvarez-Buylla and Garay 1994; 

Alvarez-Buylla et al. 1996; Jones and Hubbell 2006), however, this is still poorly understood. 

Most genetic information available considers only a few species in a range of gap-phase 

regeneration behavior of the pioneer species (Brokaw 1987), mainly those that occur only in large 

gaps (Alvarez-Buylla et al. 1996; Born et al. 2008). Knowledge of the genetic characteristics of 

the pioneer species may help understand the effects of human disturbances and the succession 

processes in the tropical forests and, therefore, forest maintenance and restoration. 

Croton floribundus Spreng. (Euphorbiaceae) is a shade-intolerant, fast-growing pioneer 

tree species commonly found in gaps and in secondary areas of the semi-deciduous tropical 

forests of the countryside of São Paulo, as well as other forests of Brazil and Eastern Paraguay 

(Gandolfi et al. 1995; Rodrigues 2005; Gomes 2006). According to the pattern of distribution of 

the species in gaps (M. Silvestrini and F.A.M. Santos, unpublished data, 2013), C. floribundus 

may be included into the subgroup of pioneer species that are widespread and common along the 

whole gap-size gradient and colonize over extended time. This gap-phase regeneration behavior 

is important because it allows the study of a more heterogeneous environment and its effects on 

genetic diversity and structure of the pioneer species. In other words, C. floribundus is part of a 

still genetically unknown group of species that has in turn an important role in the ecological and 

evolutionary processes of tropical forests. 
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Microsatellites or simple sequence repeats (SSR) are tandemly repeated sequences of one 

to six base pairs found in the genomes of almost every known organism and organelle (Chambers 

and MacAvoy 2000; Ellegren 2004). The markers exhibit multiallelic nature, neutrality, 

codominant inheritance, relative abundance, extensive genome coverage and simple detection by 

polymerase chain reaction (PCR) using two unique primers that flank the microsatellite and 

hence define the microsatellite locus (Powell et al. 1996; Zane et al. 2002). As a result, 

microsatellites are one of the most powerful and popular markers used to characterize genetic 

variability within and among populations (Guichoux et al. 2011). 

Nonetheless, the accurate and efficient genotype identification of SSR loci can be 

compromised for polyploid organisms because of the difficulty or impossibility of allelic copy 

number determination and genotype assignments (Kosman and Leonard 2005; Obbard et al. 

2006; Clark and Jasieniuk 2011). There are alternative methods such as those that allow allele 

copy number ambiguity assuming polysomic inheritance or code each allele as present or absent 

as multilocus fingerprints with loss of genetic information (see a brief review in Clark and 

Jasieniuk 2011). In any instance, the appropriate SSR scoring and analysis require knowledge of 

the ploidy level and the mode of inheritance of the species. 

Here, we developed and characterized SSR loci for C. floribundus. Our preliminary SSR 

analyses showed more than two SSR alleles per individual, which strongly supported polyploidy 

and lead us to investigate the cytogenetic traits of the species. Polyploidy is very common in the 

family Euphorbiaceae (48% of the known taxa, Hans 1973), however, 74% of cytogenetic 

records of the genus Croton L. showed chromosome number of 2n=20, including species of same 

section of C. floribundus (Lasiogyne or Argyroglossum), such as Croton blanchetianus Baill., as 

well as species of the closely related section Julocroton (Berry 2001; Berry et al. 2005; Pôrto 
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2007; van Ee et al. 2011). Thus, despite the high likelihood of finding ploidy level similar to its 

sister species, we expect to find a higher chromosome number in C. floribundus. 

Hence, in order to properly develop and characterize the SSR markers for C. floribundus, 

we also evaluated chromosome number, meiotic behavior, and pollen viability with the aim of 

investigating the occurrence of polyploidy in the species and evaluating its implications for the 

analysis and use of the SSR markers. 

 

Materials and methods 

Plant material 

Genomic DNA of C. floribundus was used for construction of all genomic libraries. 

Microsatellite loci were characterized for 62 individuals of the life stage juveniles 1 (Danciguer 

1996), hereafter referred to as juveniles. Juveniles are individuals of 5-37 cm height and 0.05-

0.40 cm diameter at soil height. The juveniles were sampled at four gaps found within a 10.24 ha 

permanent plot in the primary forest at Caetetus Ecological Station (22o20’  - 22o30’S;;  49o40’  - 

49o45’W),  Gália/Alvinlândia,  southeast  Brazil. We chose to sample this size class for the 

following two reasons: i) individuals were more easily assigned to a specific gap than a tree and 

this is important for future population studies that consider species distributions in the gaps; ii) 

the genetic diversity levels for other pioneer species have not differed between trees and 

samplings or seedlings (Alvarez-Buylla and Garay 1994; Jones and Hubbell 2006; Born et al. 

2008). Plant material of two reproductive individuals from this population was deposited at UEC 

Herbarium, University of Campinas, Campinas, Brazil (accession numbers 172052 and 172054). 

Total genomic DNA was extracted from young leaves according to Doyle and Doyle (1990), 

using CTAB as detergent. DNA quality and quantity was checked on agarose (0.8% w/v) gels 
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stained with SYBR Safe® (Invitrogen Corporation, Carlsbad, CA, USA). DNA quantity was 

estimated by comparing the intensity of fluorescence emission of each sample with that of the 

lambda () DNA standards (25, 50, 100, 200 and 300 ng). All DNA samples were diluted to a 

final concentration of 20 ng/µL.  

Cytogenetic analyses were carried out on pollen mother cells (PMC) and pollen grains of 

male flower buds. Inflorescences were collected from four individuals of C. floribundus at Santa 

Genebra Reserve, Campinas (22º48’  - 22°50’S,  47º06’  - 47°07’W); two individuals in the forest 

remnant of Ribeirão Cachoeira, Sousas, Campinas (22°50'13''S, 46°55'58''W); and four 

individuals in forests at the region of Caetetus Ecological Station, Gália/Alvinlândia (22o20’  - 

22o30’S;;  49o40’  - 49o45’W),  Brazil.  In  total,  three  individuals  were  completely  analyzed  (one  

individual per area). This is because we did not find suitable buds with PMCs in the development 

stage for chromosome counting in all sampled individuals. Plant material from two individuals 

was deposited at UEC Herbarium (accession numbers 172052 and 172053). Plant material from 

individuals from Santa Genebra Reserve is already well represented at UEC Herbarium (for 

instance, see accession numbers 58744 and 32541). For pollen viability analyses, only three 

individuals were evaluated, all of them sampled at Santa Genebra Reserve. 

 

Construction of SSR-enriched libraries, SSR isolation and sequencing 

Genomic DNA was enriched for repeat motifs following the methods of Billotte et al. 

(1999) with modifications. DNA from a randomly chosen individual of C. floribundus was 

digested by the enzyme RsaI (New England Biolabs, Inc., Ipswich, MA, USA) and the fragments 

were ligated to the adaptors generated by annealing Rsa21 (5´- 

CTCTTGCTTACGCGTGGACTA - 3´) and Rsa25 (5´-
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TAGTCCACGCGTAAGCAAGAGCACA - 3´). The adaptor-ligated genomic fragments were 

PCR-amplified and selected by biotin-labeled streptavidin-associated magnetic beads with the 

probes (TTC)8, (CT)8 and (GT)8. The selected fragments were amplified by PCR using the primer 

Rsa21 (5´- CTCTTGCTTACGCGTGGACTA - 3´) and cloned into pGEM-T vectors (Promega 

Corporation, Fitchburg, WI, USA) that were subsequently transformed into competent XL1-Blue 

cells. Sequencing reactions were carried out using a SP6 primer and Big Dye 3.1 (Applied 

Biosystems, Inc., Foster City, CA, USA) in a MyCycler Thermal Cycler (Bio-Rad Laboratories, 

Inc., Hercules, CA, USA). Sequences were run on an automated sequencer 3730 DNA Analyzer 

(Applied Biosystems). 

We sequenced 96 inserts, of which sequences containing microsatellites were aligned and 

assembled using Clustal X 1.83 (Thompson et al. 1999) and Sequencher 4.9 (Gene Codes 

Corporation, Ann Arbor, MI, USA). 

The identification of SSR in this study was based on the assumption that 10 nucleotides in 

tandem are necessary to initiate the origin of a SSR (Schlötterer 1998). Hence, the following 

parameters were used: for mononucleotides, a minimum number of 10 repeats, for dinucleotides a 

minimum number of 5 repeats, for tri 4 repeats and for tetra, penta, and hexanucleotides, 3 

repeats. Microsatellite sequences were classified into the following four main categories: perfect, 

compound, complex and interrupted repeat sequences (Chambers and MacAvoy 2000). We 

followed the alphabetical rules of Chambers and MacAvoy (2000) for representation and naming 

of microsatellites. Besides the number and quality of SSR sequences, the efficiency of library 

enrichment was evaluated by calculating the level of redundancy, which is the number of clones 

with redundant sequences divided by the total number of sequences that contained SSR. 

 

Primer design 
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Sixteen primer pairs (Table 1) were designed, synthesized, tested, and optimized for SSR 

loci amplification in C. floribundus. For the primer design, the PRIMER3 software (Koressaar 

and Remm 2007; Untergasser et al. 2012) was used with primers 20 nucleotides long, an 

annealing temperature ranging from 57 to 62°C and GC content around 50% as the main 

selection criteria. Primer quality was checked using GeneRunner v. 3.1 software (Hastings 

Software, Inc., Hastings, NY, USA) and sequencing quality in the region of primer was verified 

with Chromas 2 software (Technelysium Pty Ltd., Helensvale, Australia). 

 

PCR amplification and polymorphism visualization 

The optimization process was carried out using increasing PCR stringency conditions, 

which consisted of raising temperature and reducing concentration of Mg++ ions. The primer 

pairs were tested for gradients of temperature between 50°C and 60°C, 55°C and 64°C, and 60°C 

and 70°C; and for MgCl2 concentration of 2.0, 1.5 and 1.0 mmol/L when it was necessary. 

Concentrations of DNA of 20, 40, and 80 ng and dNTP of 0.1 and 0.2 mmol/L were tested for 

primers SSR-2, SSR-9, and SSR-10.  

After primer optimization, primer pairs were selected for fluorescent labeling. The 

forward primers were labeled with two different fluorophores according to the expected product 

size of each locus, 6-FAM for the longest and 6-HEX for the shortest product size. This 

procedure was carried out in order to perform multiplex genotyping, i.e., the differentiation of 

two SSRs in a single run. Yet we opted for not using multiplex genotyping in the locus 

characterization in order to facilitate clear scoring because of the high number of alleles 

amplified per individual. In order to improve the peak detection on the automated sequencer 

analyses, we tested the combination of the primer quantity in the reaction (10, 5, and 2.5 mol) 
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with the volume of reaction to be injected into the genetic analyzer capillary (0.5, 1.0, and 1.5 

uL).  

Final PCR conditions were set as follows in a volume of 25 μl: 40 ng of genomic DNA, 

1x reaction buffer, 0.1 mmol/L of dNTP, 2 mmol/L of MgCl2, 10 mol of each primer, and 1.0 U 

of Taq DNA polymerase. For primer SSR-6, we used 5 mol of each primer in an effort to 

minimize offscale peaks, and the optimal concentration of MgCl2 was 1.0 mmol/L. The complete 

thermal cycle program was 5 min at 95C; followed by 30 cycles of 1 min at 95C, 1 min at 

55C, 1 min at 72C; and a final 5 min of elongation time at 72C.  

Amplification  products,  obtained  using  5’  end  fluorescent dye labeled forward primers (6-

FAM and 6-HEX), were analyzed on an automated sequencer 3730 DNA Analyzer (Applied 

Biosystems). All PCR reactions were previously analyzed by agarose gel electrophoresis to 

confirm SSR amplification. Genotypes were scored using Peak Scanner software v. 1.0 (Applied 

Biosystems). The size standard GENESCAN-500 ROX (Applied Biosystems) was co-injected 

into the genetic analyzer capillary with the sample to allow for the accurate determination of 

fragment sizes. The samples were prepared for sequencing using 1.5 μL PCR products, 9 μL 

formamide, and 0.5 μL size standard. 

 

Characterization of SSR loci 

SSR loci were scored by presence or absence of bands or alleles. As we assumed 

polyploidy in C. floribundus, we did not distinguish genotypes and estimate allelic frequencies as 

for co-dominant markers in diploids. Allelic frequencies (pi) were estimated as the relative 

frequency of the jth allele or band for each SSR marker in the population. For estimating gene 
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diversity (H’)  and  Shannon’s  genetic  diversity  index  (H’Shannon), however, the SSR markers were 

treated as multilocus fingerprints, in which each allele was either scored present or absent (pi’). 

Patterns of allelic diversity at each locus were examined by estimating the following 

genetic parameters in the population (62 individuals distributed in four gaps): number of alleles 

per locus (Na), number of alleles per individuals in each locus (Ni), effective number of alleles per 

locus (Ae), gene diversity (H and H’),  and  Shannon’s  genetic  index  (H’Shannon).  

Na and Ni were determined by summing all observed alleles at each locus and each 

individual, respectively. Ae was calculated for each locus as Ae =  1/∑(pi)
2, where pi is the 

frequency of the ith allele or band. Gene diversity was estimated as the probability that two 

randomly chosen alleles or bands are different in the sample (H) and the probability that a 

specific allele or band is present and absent when two gene copies are sampled at random in the 

population (H’) (Nei 1987). For both approaches, we used the unbiased estimate of Nei (1987): 
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where n is the number of individuals in the sample, k is the number of alleles or bands, and pi is 

the sample frequency of the ith allele. For H’, we substituted pi by pi’, which is the frequency of 

the presence or absence of the allele or band in the population.  

H’Shannon for each allele or band was calculated according to Bussell (1999) as: 

'p'pH' iiShannon
2

log  

As suggested by Bussell (1999), monomorphic bands or alleles were included in all 

analyses in order to allow invariant loci to influence diversity values.  

 

Cytogenetic analyses 
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Chromosome number was counted from pollen mother cells (PMC) of male flower buds. 

Flower buds were fixed in Carnoy solution (3 parts alcohol: 1 part glacial acetic acid), and stored 

in the freezer. The cytological preparations were obtained by squashing anthers in 1.2% aceto-

carmine (anthers of one flower bud per slide). Seven, eight, and 10 slides per plant were observed 

in individuals sampled at Ribeirão Cachoeira, at the region of Caetetus Ecological Station, and at 

Santa Genebra Reserve, respectively. In an attempt to quantify anomalous meiotic behavior, the 

number of cells that showed at least one irregularity was computed as an abnormal cell. In the 

same way, tetrads with normal or abnormal number of microspores were recorded. Chromosome 

number determination was based on the observation of two and five PMCs per individual (two 

individuals). For pollen viability analyses, fresh anthers of one floral bud per plant (three 

individuals) were crushed between the slide and the coverslip in a drop of Alexander stain - basic 

stain with 4ml of lactic acid (Alexander 1980) and observed under light microscopy directly. 

Alexander stain with six different concentrations of lactic acid was previously tested in order to 

obtain the appropriate coloration according to the thickness of the pollen grain wall. In the fertile 

or viable pollen grains, the Alexander test revealed the cytoplasm and nuclei were stained, while 

in sterile or inviable pollen the grains were empty. The number of viable and sterile pollen grains 

was counted in one slide per individual on a coverslip area of 24 mm x 24 mm. The percentage of 

viable pollen was calculated by dividing the number of viable pollen per total number of pollen 

grains analyzed. Since data on proportions and percentages follow a binomial distribution (Zar 

2010), arcsine transformation of data (square root of p) was used in order to make the distribution 

normal and thus appropriately obtain mean and standard error estimates. Complementary pollen 

analyses were carried out on fixed pollen grains that were stained with 1.2% aceto-carmine for 

individuals sampled at Ribeirão Cachoeira and the region of Caetetus Ecological Station. 
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Results 

Microsatellite-enriched libraries 

Seventy-one of the 96 inserts (73.96%) sequenced contained at least a single 

microsatellite region. The level of redundancy was 19.7%, which means that 14 clones harbored 

redundant repeats. From the 57 clones with unique SSRs, a total of 87 SSR regions were found, 

of which 35.6% were dinucleotides, 29.9% tri, 20.7% mono, 6.9% tetra and 1.1% 

pentanucleotides. Also, 5.8% were a compound of two different repeats. Excluding the 

mononucleotides, we obtained the following distribution of repeats: 44.9% di, 37.7% tri, 8.7% 

tetra, 1.5% pentanucleotides and 7.2% were a compound of two different repeats. Given the 

quality of sequences and position of SSR repeats at the sequences at least 32 SSR primer pairs 

could be designed to amplify microsatellite loci.  

In total, 78 unique SSR loci (89.7%) had perfect structure, three (3.4%) had compound 

structure, four (4.6%) had interrupted compound structure, and two (2.3%) were interrupted 

complex. All 18 mononucleotide motifs had perfect structure. Apart from them, the majority of 

perfect SSRs were dinucleotide and trinucleotide in the proportion 45% and 43.3%, respectively. 

The most frequent perfect motifs were the repeated units used in enrichment (GT)n (30.0%), 

(CT)n (15.0%), (TTC)n (38.3%), followed by (AGG)n (3.3%), (ATA)n (1.7%), (CCTCT)n (1.7%), 

and the remaining (10.0%) were of five distinct types of tetranucleotides (mononucleotides 

excluded).  

 

Primer screening 

Of the total of 16 primer pairs designed and tested, five were unable to amplify products 

under all PCR conditions tested. The remaining primers that produced the expected size product 
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without nonspecific amplifications after optimization were fluorescent labeled (6-FAM and 6-

HEX) in order to be genetically characterized. However, loci SSR-1, SSR-2, SSR-9, and SSR-11 

did not produce unambiguously scorable markers as expected after preliminary analyses. They 

presented PCR artefacts such as stutter bands and triallelic patterns and were discarded.  

 

SSR characterization 

Seven SSR loci were fully characterized in order to be used in population genetic studies 

(Table 2). All analyzed loci were polymorphic. A total of 69 alleles were obtained from the seven 

loci. The average number of alleles per locus was 9.9. All loci, except for SSR-8, presented rare 

alleles, i.e., alleles that occur in only one or two individuals. SSR loci amplified more than two 

alleles per individual in C. floribundus, with the exception of loci SSR-8 and SSR-14 (Table 2). 

The maximum number of amplified alleles (Ni) per individual was eight observed in loci SSR-10 

and SSR-16 (Table 2).  

Locus SSR-12 presented the greatest number of alleles (Na) followed by SSR-10 and 

SSR-16 (Table 2). Loci SSR-5, SSR-10, SSR-12, SSR-14, and SSR-16 presented variation in size 

different than that expected by the repeat unit length. Loci SSR-5 and SSR-12 presented 

periodicity of one, two, and three base pairs instead of only three as would be expected from their 

(AAG)8 and (GAA)8 repeat motifs. Based on this result, we went back to the original sequence 

where the primers were designed and found a dinucleotide motif located in the region of 

amplified sequence that has not been considered as a microsatellite earlier (<10 nucleotides in 

tandem). Note that this was the reason for adding the additional dinucleotide motifs in each locus 

on Tables 1 and 2.  

For the other loci, however, we did not identify a different SSR region on the sequence of 

amplified locus. In this case, we just found what we call sets of alleles, i.e., groups of alleles that 
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differed in the size periodicity between each other. For instance, SSR-14 showed the sets 192-198 

bp and 193-195 bp. Both sets showed a variation of two base pairs from one allele to other but if 

we consider all alleles, we had differences in one and three base pairs. SSR-10 showed the 

following sets of alleles: 141-147 bp, 151-178 bp, and apart from them the allele 187 bp. The two 

first sets presented a variation between alleles of three base pairs. SSR-16 showed the sets 200 to 

203 bp, 208 to 226 bp, and 243 to 255 bp. The alleles of different sets were amplified 

concomitantly in the same individual, except for SSR-14. 

Besides the higher variation from locus to locus, gene diversity estimated using pi (H) 

showed much higher values than when it was calculated based on pi’ (H’ and H’Shannon) (Table 2). 

The differences among coefficients were more prominent for those loci which had a higher 

number of alleles per locus (Na) and amplified a higher number of alleles per individual (Ni) 

(Table 2). The main reason is that H considers both inter- and intra-individual variation, the latter 

being higher for individuals with higher Ni, while H’ and H’Shannon evaluate only inter-individual 

genetic diversity. 

 

Cytogenetic analyses 

Chromosome number counted from pollen mother cells of the individuals sampled at 

Caetetus Ecological Station (five cells) and Santa Genebra Reserve (two cells) varied from n=53 

to n=58, but in the best chromosome spreads and quality of images (one cell from each 

population), we found 56 bivalents (n = 56) (Fig. 1).  

In the individual sampled at Ribeirão Cachoeira, Sousas, Campinas, a total of 33 cells 

were analyzed but we could not accurately estimate the chromosome number. Cytoplasm of cells 

presented too much viscosity and we did not find enough spread of chromosomes for counting. 
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By the volume of bivalents aligned at the metaphase plate, however, we could infer a similar 

chromosome number to the previously analyzed populations (Figs. 2a, 2c). 

In the majority of cells analyzed from individuals sampled at Caetetus Ecological Station 

and Santa Genebra Reserve, bivalents showed normal pairing at metaphase I, anaphase I, and 

telophase I and II (Figs. 1, 2a, 2b), but 34.8% had some irregularity. Homogeneous tetrads were 

observed as well (Figs. 3a, 3e), but 4% were irregular. In the individual sampled at Ribeirão 

Cachoeira, 84.8% of cells presented abnormal diakinesis, metaphase I and II, anaphase I and 

telophase I (Figs. 2c, 2d). Also, instead of only normal tetrads of microspores, 75.9% of polyads 

were formed (Fig. 3c). Note that a cell was computed as having abnormal pairing when at least 

one irregularity was detected, for example occurrence of one multivalent, early segregation or 

one chromosome lagging (Figs. 2c, 2d). 

The mean pollen viability evaluated in C. floribundus anthers was 87.12 ± 0.03% (Santa 

Genebra Reserve) (Fig. 3f). The normal tetrads of microspores (Fig. 3e) and the pollen grains 

with homogeneous size (Fig. 3f) confirmed regularity in the meiotic behavior (Fig. 1b). By 

contrast, for individuals sampled at Caetetus Ecological Station (Figs. 3a, 3b) and Ribeirão 

Cachoeira (Figs. 3c, 3d), pollen grains varied in size and did not follow the predominant pattern 

of microspore formation. In the first individual that had 96% of regular tetrads (Fig. 3a), we 

recorded 50% of slides with balanced size of pollen grains (Fig. 3b); while in the second, that 

presented 75.9% of abnormal tetrads (Fig. 3c), the size of pollen grains was homogeneous in 80% 

of slides (Fig. 3d). The great discrepancy between abnormality of meiosis and size regularity of 

the pollen grains for the individual sampled at Ribeirão Cachoeira is likely a result of a skewed 

sampling of damaged anthers during meiosis analyses since we observed differences in size, 

rugosity, and color in most of the analyzed anthers in this individual. 
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Discussion 

Of the 16 tested primers, seven were useful for population genetic studies. Five loci did 

not amplify and another four loci presented excessive stutter bands and triallelic patterns under 

all PCR conditions tested. According to Guichoux et al. (2011), triallelic patterns are caused by 

the mispriming of primers and when the artefacts interfere with allele calling the primers should 

be excluded. For these loci, we could not distinguish real alleles from artefacts mainly because of 

production of several alleles per individual in the polyploid and similar variation in size (usually 

two base pairs) for both real alleles and stutter or triallelic pattern peaks. 

The four excluded loci, SSR-1, SSR-2, SSR-9, and SSR-11, presented more than 17 

repeated units and, apart from SSR-1, had dinucleotide repeats. In contrast, of the seven 

characterized loci, only SSR-10 and SSR-16 showed slight stutter bands that did not affect SSR 

scoring, and all of them presented a low number of repeat units (5 to 11 repeat units). Our results 

confirmed that dinucleotide and longer repeat arrays are more prone to stutter bands (Chambers 

and MacAvoy 2000; Ellegren 2004). Primers designed from SSRs with short repeat unit length 

and high number of repeat units were less successfully amplified compared with other SSR types 

in the North American tree Cornus florida L. (Wang et al. 2008). Although those SSR 

characteristics may assure the highest level of polymorphism for some species (Schlötterer 1998), 

they were a problem for scoring C. floribundus, perhaps owing to the high ploidy level and 

genetic diversity of the species. This finding may be helpful for future development of SSR loci 

for tropical trees since polyploidy and high genetic diversity levels have been commonly found in 

these species (Hamrick et al. 1992; Caddah et al. 2009; Brito et al. 2010; Cavallari et al. 2010).  

We used 10 nucleotides in tandem, criterion used by most investigators, to find SSR 

regions and design primers (Schlötterer 1998; Chambers and MacAvoy 2000). Nevertheless, we 
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had evidence that SSR regions of eight and six nucleotides (four and three dinucleotide repeats) 

changed in length by the observed variation in allelic size of loci SSR-5 and SSR-12. On the 

other hand, we have found other loci that also presented unexpected allelic periodicity without 

any sign of additional SSR motifs in the sequence. Besides the variable periodicity, the sets of 

alleles showed specific size range with considerable differences in length between each other. 

This type of variation may be a consequence of allelic amplification on divergent genomes of the 

polyploid. In this case, each set of alleles would be the result of point mutations and (or) 

insertions-deletions occurred in specific genomes before or more likely after formation of the 

polyploid. Indeed, according to Parisod et al. (2010), large structural genomic changes including 

insertion, deletion, and homogenization of repetitive sequences are frequent during process of 

polyploidization, especially in allopolyploids. Whatever the exact explanation is for the results of 

SSR-5 and SSR-12, we recommend the use of a more conservative approach for definition of 

SSR regions when developing microsatellites, particularly for species thought or expected to 

have high genetic diversity levels. 

The seven developed SSR loci showed to be efficient for detecting polymorphisms in C. 

floribundus. The number of alleles per locus (Na) was in the same range of other tropical trees 

(Ciampi et al. 2008; Guidugli et al. 2009), including polyploids (Brito et al. 2010; Cavallari et al. 

2010) and even higher if we consider the sample sizes (Collevatti et al. 1999; Lowe et al. 2002). 

H values were in the same range of the expected heterozygosity found for Caryocar brasiliense 

Cambess. and Cariniana estrellensis (Raddi) Kuntze (Collevatti et al. 1999; Guidugli et al. 

2009). The values were also compared to PIC values found for the polyploid tree Tibouchina 

pulchra (Cham.) Cogn., although the equations used for estimating both gene diversity indices 

were slightly different (Brito et al. 2010). 
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Metaphase I spreads of pollen mother cells showed 56 bivalents (n = 56). Despite the low 

number of individuals per population analyzed and the rough estimate for the individual sampled 

at Ribeirão Cachoeira, polyploidy was found in all populations. The n=56 was the second highest 

chromosome number recorded for the genus Croton (Berry 2001; Pôrto 2007). The first was 

n=60 for Croton xalapensis Kunth (section Cyclostigma). Another high chromosome number of 

n=32 was registered for species of the sections Cyclostigma and Lamprocroton (Berry 2001; 

Pôrto 2007) and n=24, 20 for species of section Velamea. All these species are considered 

polyploids based on a basic number of x=8 and x=10 (Pôrto 2007). 

Authors have not agreed regarding the basic number of genus Croton. Urbatsch et al. 

(1975) suggested the number x=10 as the basic number of genus, while x=7, 8, and 9 would be 

secondarily derived by aneuploid loss. Pôrto (2007) in turn pointed out that genus Croton may be 

polybasic as suggested earlier by Bernardello et al. (1990) or might have evolved by disploidy 

and polyploidy from the primary basic number x=8, with x=11, 10, 9, and 7 being secondarily 

derived basic numbers.  

In C. floribundus, the number n=56 may have been derived by polyploidy from x=14 or 

x=7. If the basic number is x=14, the species is an octoploid, which agrees with the SSR results. 

Conversely, many studies have indicated x=7 as one of the basic numbers in the genus Croton 

(Bernardello et al. 1990; Pôrto 2007), although there is no record of this chromosome number in 

any of the species studied (Urbatsch et al. 1975; Berry 2001; Pôrto 2007). In this case, x=14 

would be an old tetraploid number derived from auto or allopolyploidization of x=7 ancestors 

(Urbatsch et al. 1975; Pôrto 2007) and the ploidy of C. floribundus would be 2n=16x=112. 

In general, analysis of PMCs in metaphase, anaphase and telophase showed a low 

frequency of abnormal pairing, which indicated a regular meiosis in C. floribundus. The low 

frequency of multivalents suggested the predominance of a disomic mode of inheritance, i.e., 
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when pairing occurs essentially between homologous chromosomes (Ramsey and Schemske 

2002). This result has important implications for population genetic and evolutionary studies 

because the mode of inheritance affects the segregation of genetic variation in the offsprings 

(Stift et al. 2008) and consequently the choice of suitable genetic analysis methods. For example, 

the disomic inheritance in tetraploids implies that standard population genetic tools developed for 

diploid organisms cannot be applied in the species even if we know the dosage of alleles (Obbard 

et al. 2006). The reason is that we cannot distinguish which alleles are associated with which of 

the duplicate loci and then accurately determine the genotypes. Although the recent increase in 

computational statistics methods that allow to analyze polyploids assuming polysomic 

inheritance, e.g. in Structure (Falush et al. 2007) and Spagedi softwares (Hardy and Vekemans 

2002), and even allotetraploids with nonrandom segregation (see Clark and Jasieniuk 2011), there 

is still no software available for allelic discrimination of polyploid SSR data with ploidy higher 

than 4x and disomic or intermediate inheritance (Clark and Jasieniuk 2011). Thus, for C. 

floribundus, even with the possible loss of genetic information, it seems that the multilocus DNA 

fingerprint approach is currently the more appropriate method to assess population genetic 

statistics.  

The balanced segregation of chromosomes in meiosis probably has as consequence a high 

level of fertility (Madlung et al. 2005; Soltis and Soltis 2009), as the presence of multivalents or 

chromosome lagging would result in abnormal and sterile pollen grains. This was confirmed by 

the often homogeneous size of pollen grains and the high pollen viability found in the C. 

floribundus anthers (87%), which were similar to previous values recorded by Passos (1995) 

(90%). The viable pollen rates are not as high as Croton suberosus Kunth (means of 98 ± 2 %; 

Narbona and Dirzo 2010) and Croton priscus Croizat (96%, Passos 1995), but may be very high 

when compared to allopolyploids with abnormal meiosis (Madlung et al. 2005).  
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The high chromosome number, relatively regular meiosis and high percentage of viable 

pollen grains suggested that C. floribundus arose after duplications of chromosomes in a hybrid 

species, i.e., it was originated by allopolyploidy (Soltis and Soltis 2009). On the other hand, 

structural genomic changes and diploidization of autopolyploid genomes is also possible in 

polyploids (Ramsey and Schemske 2002; Parisod et al. 2010). In addition, the less frequent but 

observed presence of multivalents, irregular tetrads, and unbalanced size of pollen grains 

indicated a minor degree of similarity between genomes. Given the high ploidy level, it seems 

more likely, however, that the species have been originated primarily by hybridization of closely 

related species followed by some genomic autoduplications rather than exclusively by 

autopolyploidy. 

SSR analyses corroborated the octoploidy in C. floribundus. The maximum number of 

alleles per individual (Ni) was eight, the maximum number of alleles in a completely 

heterozygous octoploid. This result supported x=14 as the basic chromosome number in C. 

floribundus. Additionally, the different sets of alleles found for some loci (different size 

periodicity of SSR alleles in the same locus), as well as the high intra-individual genetic diversity 

seem to be a product of the high genomic divergence pointed out by cytogenetic analyses. 

The results revealed that C. floribundus is a regular and stable polyploid, most likely an 

allopolyploid with 2n=8x=112 chromosomes. This is the first record of polyploidy in the section 

Argyloglossum, which may be very important for understanding the evolution of the genus 

Croton. Furthermore, the high genetic diversity values found using the multilocus DNA 

fingerprint approach showed that the SSR loci have high discriminant power to evaluate patterns 

of genetic diversity and structure in the polyploid pioneer species. Our findings may be very 

helpful for future studies of macro- and microevolutionary questions associated to C. floribundus. 
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Tables 

Table 1. Locus code, respective forward (F) and reverse (R) primer sequences, expected product 

size, and repeat motifs of microsatellite loci designed for Croton floribundus Spreng.  

 
 

Locus code Sequence of primers (5'- 3') Product size Repeat motif 
    

SSR-1 
F= CAGCATCAGAATCAATGTTGTC 

R= CCATCTCTGCATTTCACTCC 248 (GAA)24(GA)3GTG(GAA)2 
    

SSR-2 
F= GCTTCTGCTGCTTCTGGTTTAT 
R= TAGCTCCCTGCAAAATCCAC 

178 (AG)17 
    

SSR-3 
F= GATGATGAGGAGGAGGAGGA 
R= GACATGGCTGCAAAGACAGA 172 (AAG)19 

    

SSR-4 
F= GGAGGCTCTGCATTACAAGG 
R= GACAAAGGAGGAGGGTTGC 224 (AGA)8 

    

SSR-5 
F= CGTGTGCTTCCTCTTCACC 
R= GCCAAATGGGTTTCTCGTTA 

174 (AAG)8N18(CT)4 
    

SSR-6 
F= CCACATTCCACATCACTTCC 
R= ACGTGGCAAAATGGGTAGTC 

209 (GA)5 
    

SSR-7 
F= TGGACTCAAGTTACAAGCCAAT 
R= AGGCTTTCTGGAATCCAACG 

183 (AGA)7 
    

SSR-8 
F= CTCCTGAACCCACGCTAGAT 
R= AGAGGCTTCGTGTTGTTCGT 216 (AG)8 

    

SSR-9 
F= CGTTAGGGAATTGTGTCGATT 
R= ATCCTGTGGTCGCAAGAGAA 

231 (TC)21TGATT(TC)3 
    

SSR-10 
F= AGACGGAAGGGAAGTGGAGT 
R= CGCAGCATCATATCACCAGA 160 (AAG)8 

    

SSR-11 
F= CTAGCCAAAACCAAGCCAAA 
R= TGACTCCGTTGGAGAATCAGT 

244 (AC)15(TC)10 
    

SSR-12 
F= TTGGGCAGATTCATGTAACG 
R= TTGGTTGAGGGAACAGATGA 

172 (GAA)8N37(AG)3 
    

SSR-13 
F= GATGGCATTCACAACAGCTT 
R= TTCGGGCTTACCTTAGTGGT 177 (GAA)9 

    

SSR-14 
F= AGCACTCCTTCCACGACATT 
R= TGGTGAGACGCTTCATGTTG 212 (CA)11 

    

SSR-15 
F= CTGTGCTTCGATGGGAGAG  
R= CGGGATTCTCTTGCTTACG 

255 (CT)12(GT)9 
    

SSR-16 
F= GGCAGGCATAAATCAGCAAT 
R= TATCGAATCGTCGGATTTGG 

223 (GAA)6 
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Table 2. Characteristics of seven microsatellite loci amplified in 62 individuals of Croton floribundus Spreng. sampled at four 

gaps in the primary forest at Caetetus Ecological Station, Gália/Alvinlândia, Brazil. 

Accession 

number
a
 

Locus 

code 
Sequence of primers (5'- 3')

b
 Repeat motif 

Size 

range
c
 

Na
d
 Ni

e
 Ae

f
 H

g
 H’h H’Shannon

i
 

           

JX236034 SSR-5 
F= CGTGTGCTTCCTCTTCACC 
R= GCCAAATGGGTTTCTCGTTA (AAG)8N18(CT)4 142-183 13 3-7 6.5 0.860 0.210 0.478 

           

JX236034 SSR-6 
F= CCACATTCCACATCACTTCC 
R= ACGTGGCAAAATGGGTAGTC (GA)5 203-213 6 1-3 2.8 0.647 0.208 0.462 

           

JX236035 SSR-8 
F= CTCCTGAACCCACGCTAGAT 
R= AGAGGCTTCGTGTTGTTCGT (AG)8 214-216 2 1-2 2.0 0.497 0.195 0.412 

           

JX236036 SSR-10 
F= AGACGGAAGGGAAGTGGAGT 
R= CGCAGCATCATATCACCAGA (AAG)8 141-187 14 4-8 8.1 0.891 0.244 0.553 

           

JX236037 SSR-12 
F= TTGGGCAGATTCATGTAACG 
R= TTGGTTGAGGGAACAGATGA (GAA)8N37(AG)3 157-198 15 2-6 7.7 0.885 0.262 0.574 

           

JX236038 SSR-14 
F= AGCACTCCTTCCACGACATT 
R= TGGTGAGACGCTTCATGTTG (CA)11 192-198 5 1-2 2.6 0.624 0.251 0.555 

           

JX236039 SSR-16 
F= GGCAGGCATAAATCAGCAAT 
R= TATCGAATCGTCGGATTTGG (GAA)6 200-255 14 3-8 7.5 0.881 0.237 0.540 

           

a Accession number of nuclear microsatellite loci in the "Genebank" 
b Forward (F) and reverse (R) primer sequence 
c Product size range in base pairs 
d Number of alleles per locus 
e Number of alleles per individuals in each locus 
f Effective number of alleles per locus 
g Gene diversity based on pi 
h Gene diversity based on pi’ 
i Shannon’s  genetic  index 
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Figure captions 

Fig. 1. Bivalents in meiotic metaphase I cells of Croton floribundus Spreng. in individuals 

sampled at the region of Caetetus Ecological Station, Gália/Alvinlândia (a) and at Santa 

Genebra Reserve, Campinas (b). Pollen mother cells stained with 1.2% aceto-carmine stain. 

 

Fig. 2. Meiosis in Croton floribundus Spreng. Pollen mother cells (PMC) at metaphase I 

and telophase I and II in the individual sampled at the region of Caetetus Ecological 

Station, Gália/Alvinlândia (a, b). Metaphase I with early segregation (arrows) and telophase 

I with laggards (arrowheads) in the individual sampled at Ribeirão Cachoeira, Sousas, 

Campinas (c, d). PMCs stained with 1.2% aceto-carmine stain. 

 

Fig. 3. Meiotic products of Croton floribundus Spreng. in individuals sampled at the region 

of Caetetus Ecological Station, Gália/Alvinlândia (a, b); at Ribeirão Cachoeira, Sousas, 

Campinas (c, d); and at Santa Genebra Reserve, Campinas (e, f). Note the regular (a, e) and 

irregular tetrads (c), and the pollen grains with homogeneous (d, f) and heterogeneous size 

(b). Meiotic products stained with 1.2% aceto-carmine (a-e) and Alexander stain (f). 
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CHAPTER IV 

 

How do gap dynamics and colonization of a human disturbed area affect genetic 

diversity and structure of a pioneer tropical tree species? 
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ABSTRACT 

Pioneer tree species exhibit life-cycle characteristics and population structures that are mainly 

affected by natural or human disturbances. In primary forests, demographic dynamics of pioneer 

species may resemble those defined for a metapopulation. In early successional forests, the 

patterns of establishment, survival and reproduction are mainly determined by microclimate and 

biota modifications of the site after the human disturbance. The aim of this study was to 

investigate how the ecological processes and the population genetic factors associated with 

disturbances can affect the genetic diversity and structure of populations of a pioneer tree species: 

Croton floribundus Spreng. (Euphorbiaceae). Nuclear and chloroplast microsatellite markers 

were examined in plants of two size classes sampled in four gaps of primary forest and four sub-

areas of early successional forest. Despite presenting similar genetic diversity levels, the genetic 

diversity was distributed differently between forests. The combined effects of seed dispersal and 

colonizations (and extinctions) were determinants of the fine-scale genetic structure of C. 

floribundus. The main finding was that human disturbances seem to boost the influence of 

founder effects in populations of a species with limited seed dispersal. Results suggested that 

gene flow by pollen was responsible for maintaining the genetic diversity within populations of 

C. floribundus in both forests, but in the early successional forest, gene flow by seeds was 

equally important. We conclude that gap dynamics, colonization, and pollen and seed dispersal 

affect the genetic diversity and structure of the pioneer species depending mainly on the number 

of colonizers, the number of source populations, the gene flow rates, and the level of human 

disturbance. 

 

Keywords: colonization, Croton floribundus, disturbances, forest succession, gap dynamics, 

genetic diversity, microevolution, pioneer tree species, semi-deciduous tropical forests. 
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1. Introduction 

The spatial genetic structure of plant populations may vary across life stages, across 

generations and among different environmental conditions (Loveless and Hamrick, 1984). These 

changes are guided by ecological and evolutionary factors. Understanding the effects of these 

factors on the genetic diversity and structure of populations is important when defining strategies 

of forest conservation and restoration, in order to guarantee the maintenance of their evolutionary 

and ecological dynamics as similar as possible to the natural conditions (Loveless and Hamrick, 

1984; Ellstrand and Elam, 1993). 

Pioneer tropical tree species exhibit particular life histories and population structures that 

are mainly affected by the patchy dynamics of the tropical forests (Swaine and Whitmore, 1988; 

Alvarez-Buylla, 1994; Uriarte et al., 2012). The life-cycle characteristics of the pioneer species 

may have significant consequences for genetic structure and evolution, mainly through frequent 

local extinctions and colonizations (Wade and McCauley, 1988). We might expect clear 

population structuring in pioneer species because the number of gap colonizers is generally small 

(a founder effect), and due to genetic drift that leads to the fixation of neutral genetic alleles 

(Wright, 1940; Loveless and Hamrick, 1984; Whitlock and McCauley, 1990). Conversely, seed 

banks and long distance seed and pollen dispersal could homogenize spatial genetic variation 

(Loveless and Hamrick, 1984; Alvarez-Buylla and Garay, 1994). In addition to these factors, 

genetic divergence may also be reduced by extinction and recolonization processes which can act 

as a form of gene flow under some conditions of metapopulation dynamics. (Slatkin, 1977, 1985; 

Wade and McCauley, 1988; Whitlock and McCauley, 1990). Two opposite types of distribution 

of genetic diversity have been found in well conserved forests: nonstructured (Alvarez-Buylla et 

al., 1996; Davies et al., 2010) and genetically structured populations of adults (Jones and 

Hubbell, 2006; Born et al., 2008a). Nevertheless, most studies agreed with a finding of a high 
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level of genetic diversity of the populations and a loss of genetic structure across successive life 

stages. 

In the early successional forests where environmental conditions differ from the primary 

forests (Swanson et al., 2011), the pioneer trees exhibit changes in their patterns of establishment, 

survival, and reproduction affecting plant density and spatial distribution (Silvestrini and Santos, 

2014; Danciguer, 1996; Swanson et al., 2011; Tabarelli et al., 2012). Consequently, ecological 

processes and evolutionary factors, such as origin and number of colonizers, competition and 

predation, as well as natural selection and level of gene flow, either from primary or secondary 

forests, could be determinant of the genetic diversity and structure of the species. 

There are few studies of genetic diversity and structure of pioneer species in early 

successional forests (Alvarez-Buylla and Garay, 1994; Franceschinelli and Kesseli, 1999; Cavers 

et al., 2005; Born et al., 2008b; Davies et al., 2010, 2013). The results have suggested that gene 

flow and the origin of populations are the determinants of the genetic patterns of diversity and 

structure that were found (Alvarez-Buylla and Garay, 1994; Franceschinelli and Kesseli, 1999; 

Cavers et al., 2005; Born et al., 2008b; Davies et al., 2010, 2013). However, in some of these 

studies, genetic differentiation has been evaluated simultaneously among old, intermediate, and 

recently established populations and/or sites with different land use histories, which according to 

genetic theoretical models is an uninformative way to estimate genetic structure in 

metapopulations (Wade and McCauley, 1988; Whitlock and McCauley, 1990; McCauley et al., 

1995). As a result, the effects of ecological and genetic processes such as colonization, gene flow 

and level of disturbance might have been underestimated or blurred. Furthermore, only a few 

species have been evaluated and, most of these were restricted to colonizers of large gaps while 

the gaps are very open, i.e., a limited range of gap-phase regeneration behaviors (Brokaw, 1987) 

(for example, see Alvarez-Buylla et al. 1996 and Born et al. 2008b).  
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Croton floribundus Spreng. (Euphorbiaceae) is a shade intolerant, fast-growing pioneer 

tropical tree species (Lorenzi, 1992; Gandolfi et al., 1995) that is widespread and equally 

distributed along the whole gap-size gradient in primary forests, colonizes over extended time 

and is abundant in early successional forests (Silvestrini and Santos, 2014). This broad gap-phase 

regeneration behavior is particularly important for genetic studies because it allows us to analyze 

a species that occupies more heterogeneous environments, and thus, it is exposed to more diverse 

selection pressures. Besides this, C. floribundus does not seem to follow the same long-distance 

seed dispersal patterns of other genetically well-studied pioneer species that have shown high 

gene flow rates (Alvarez-Buylla and Garay, 1994; Litrico et al., 2005; Born et al., 2008a). C. 

floribundus is pollinated by flies and wind (Passos, 1995), which implies a long distance pollen 

dispersal and high rates of gene flow (Hamrick and Nason, 2000), but has seeds dispersed short 

distances by autochory (explosive seed dispersal) (Lorenzi, 1992). Thus, a fine-scale study of 

genetic diversity and structure of this species using both nuclear and chloroplast markers may 

help to elucidate how these mechanisms of dispersal, with opposite effects on gene flow rates, 

affect the distribution of the genetic variation in its populations. Analysis of both nuclear and 

chloroplast markers can also be helpful for investigating effects of the colonization process on the 

genetic structure among populations by means of cyto-nuclear linkage disequilibrium estimates 

(Fields et al., 2014). 

In addition, a comparison between populations located in primary and early successional 

forests and a detailed analysis of the fine-scale genetic structure among life stages or size classes 

could shed light on what factors determine the patterns of genetic diversity and structure in this 

species. The knowledge of such aspects of pioneer species is essential for understanding the 

effects of human disturbance and of successional processes in tropical forests, which in turn is 

important for forest conservation, management and restoration.  
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In this study, we evaluated the genetic diversity and structure of the pioneer tree C. 

floribundus between two size classes and among populations located in a primary forest and in an 

early successional Brazilian forest. Specifically, we attempted to answer the following questions: 

1) Do the genetic diversity and fine-scale genetic structure of C. floribundus differ between 

primary and early successional forests? 2) Are there changes in the genetic diversity and structure 

between size classes in these forests? 3) Is there a correspondence between the genetic structure 

of populations in the primary forest and their spatial distribution in the gaps? 4) How do 

ecological processes and genetic factors associated with natural and human disturbances affect 

the genetic diversity within and among populations in the species? 

 

2. Materials and methods 

2.1. Study site 

The study was conducted within a 10.24 ha permanent plot (Rodrigues, 2005) in the 

primary forest at Caetetus Ecological Station (CES) and in an early successional forest adjacent 

to the state reserve at Torrão de Ouro Farm, Gália/Alvinlândia, Brazil (Fig. 1) (22o20’  - 22o30’S;;  

49o40’  - 49o45’W). The regional climate corresponds to Köppen's "Cwa" mesothermic type, that 

is, humid subtropical with a dry winter (Tabanez et al., 2005; Rodrigues, 2005). Mean rainfall 

and temperature are 1 431 mm.yr-1 and 21.5 ºC, respectively. Altitude ranges from 520 to 680 m 

(Tabanez et al., 2005). CES is a large remnant of the semi-deciduous tropical forest of 2 178.84 

ha, which corresponds to the premontane moist forest (Holdridge, 1967). According to historical 

reports dating from the early 20th century, most of the area including the center of the reserve, 

where the 10.24 ha permanent plot was delimited, has not experienced anthropogenic disturbance 

(Tabanez et al., 2005). The land-use history of the selected site at Torrão de Ouro Farm revealed 

that the pristine forest was cleared in 1926 and converted to a pasture. In 1984, the site was 
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abandoned and farmers stopped slashing, but cattle grazing was still allowed. In 1986, the 

vegetation was burned, and in 2008, the pasture was completely closed to cattle grazing, allowing 

the forest to recover. Sampling for this study was carried out in 2010.  

Soils in the early successional forest at Torrão de Ouro Farm are of the same type as at the 

CES plot, i.e., the red-yellow Acrisols (Ultisols), but  at  the  E’  sub-area (see Sampling for details), 

soils are Gleysols (Entisols) with two different physical textures (M Cooper, Personal 

communication; Electronic Supplementary Material, Tables A1 and A2). Soil fertility is high and 

nearly similar between forests (Rodrigues, 2005; M Cooper, Personal communication; Electronic 

Supplementary Material, Tables A1 and A2).  

 

2.2. Study species 

Croton floribundus Spreng. (Euphorbiaceae) is a shade-intolerant, fast-growing pioneer 

tree species commonly found in gaps of primary remnants and in secondary areas of the semi-

deciduous tropical forest (Lorenzi, 1992; Gandolfi et al., 1995; Rodrigues, 2005). Tree height 

ranges from 4 to 13 m in open habitats (Lorenzi, 1992; Danciguer, 1996), but in the primary 

forest at CES, tree height ranges from 3 to 30 m (Rodrigues, 2005; TE Barreto, Unpublished 

results). 

The seeds require alternating temperatures for germination in light as well as in darkness 

(Válio and Scarpa, 2001). Seed dispersal occurs by autochory or ballochory, i.e., plants disperse 

their offspring ballistically, by the explosive opening of the fruits (explosive seed dispersal) 

(Lorenzi, 1992). We assumed that C. floribundus does not persist in the soil seed bank because 

the seeds are heavily attacked by predators (Carvalho 2001) and present a short period of viability 

(Lorenzi, 1992). 
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C. floribundus is a polyploid (2n=8x=112), self-compatible, and monoecious species 

(Silvestrini et al., 2013; Passos, 1995). The flowers can be pollinated by flies and wind, Sirphid 

flies being the most important pollen vectors in C. floribundus (Passos, 1995). Dichogamy is 

much accentuated and seems to reduce self-fertilization in C. floribundus. The species also 

presents agamospermy, although this produces fruits with inviable seeds (Passos, 1995). 

 

2.3. Sampling 

Individuals of two size-classes were sampled. The selection of the two size classes was 

based on Danciguer’s (1996) definition of life stages for C. floribundus and a previous evaluation 

of C. floribundus’  distribution in the gaps of the permanent plot (Silvestrini and Santos, 2014). 

Juveniles consisted of individuals of 5 to 37 cm height and 0.05 to 0.40 cm diameter at soil height 

(DSH) (Danciguer, 1996). Adults comprised individuals of 4.78 to 20.00 cm diameter at breast 

height (DBH) , although they are not necessarily reproductives (Silvestrini and Santos, 2014). 

The definition of the adult size class was also based on the criterion of inclusion of trees in the 

plant inventory in the permanent plot (DBH ≥ 4.78 cm) (Rodrigues, 2005).  

Since C. floribundus is widespread and equally distributed along the gap-size gradient, as 

well as the range of gap ages in the primary forest (Silvestrini and Santos, 2014), we sampled 

juveniles in four gaps with different characteristics (size, age, modes of disturbance) in order to 

evaluate the genetic structure across the gap heterogeneity. The canopy gaps were named 

according to the subplot where they were located (Fig. 2, Table 1). Also, a pairwise sampling 

between juveniles and adults, i.e., adult gaps adjacent to juvenile gaps, was used (Fig. 2, Table 1). 

This sampling design enabled us to examine the possible parentage relationships between adults 

and juveniles by increasing the probability of sampling mother trees and their offspring over 

short distances. In total, sixty-four (64) juveniles and forty-nine (49) adults were tagged, 
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sampled, measured for DBH (adults), height and DSH (juveniles) (Table 1). In order to facilitate 

nomenclature and comparisons with the early successional forest, the same letter hereafter is used 

to identify juveniles and adults of adjacent gaps. 

The sampling design in the early successional forest at Torrão de Ouro Farm was as 

similar as possible to CES. The forest fragment was subdivided into four sub-areas. The distances 

between each pair of sub-areas corresponded to the counterpart pair of gaps at CES (Fig. 2). 

Populations of juveniles were delimited in the sub-areas based on the gap area of juveniles in 

CES. Hence, an area about 243 m2 for C’,  950  m2 for  E’,  292  m2 for  K’,  and  514  m2 for  M’  was  

censused in order to find and select the study individuals. For adults, we selected individuals with 

a similar spatial distribution to the counterpart population of adults in the gaps of CES 

(equivalent perimeter and area covered by sampled trees and similar distances between trees). 

Sixty-four (64) juveniles and forty-eight (48) C. floribundus adults distributed in the four sub-

areas (Fig. 2) were tagged, sampled, measured for DBH (adults), height and DSH (juveniles). The 

number of individuals sampled per sub-area (N) was 16, 18, 14, 16 for juveniles and 11, 11, 13, 

13  for  adults  in  the  C’,  E’,  K’  and  M’  sub-areas, respectively. 

All sampled individuals had their geographic coordinates recorded and were mapped 

using GIS software ArcView® (version 9.2, ESRI, Redlands, California, USA).  

Two to three young leaves per juvenile plant were collected, frozen in liquid nitrogen and 

stored at -80oC for DNA extraction. For adults, leaves were frozen at -20oC and stored in sealed 

paper bags for as much as three weeks until maceration. 

 

2.4. Microsatellite markers 

Seven nuclear microsatellite loci (SSR) developed for C. floribundus (Silvestrini et al., 

2013) and six universal chloroplast microsatellite (cpSSR) loci obtained from Weising and 
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Gardner (1999) and optimized for C. floribundus (Silvestrini, 2014) were used to study the 

genetic diversity and structure of the species. Total (genomic and chloroplast) DNA was 

extracted from young leaves according to Doyle and Doyle (1990), using CTAB as a detergent. 

DNA quality and quantity was checked on agarose (0.8% w/v) gels stained with SYBR Safe® 

(Invitrogen Corporation, Carlsbad, California, USA) by comparison to lambda () DNA 

standards. All DNA samples were diluted to a final concentration of 20 ng.µL-1.  

PCR amplifications of both nuclear and chloroplast microsatellites were performed 

according to Silvestrini et al. (2013).  Amplification  products  obtained  using  5’  end  fluorescent-

dye-labeled forward primers (6-FAM and 6-HEX), were analyzed for size on the automated 

sequencer 3730 DNA Analyzer (Applied Biosystems, Inc., Foster City, California, USA). SSR 

and cpSSR loci were scored using Peak Scanner software v1.0 (Applied Biosystems, Inc.). 

Multiplex genotyping was performed for chloroplast markers (two cpSSR loci per line). 

 

2.5. Data Analysis 

2.5.1. Genetic diversity 

SSR loci were scored by presence or absence of bands or alleles. As C. floribundus is 

polyploid with unknown pedigree and likely disomic inheritance (Silvestrini et al., 2013), we 

cannot distinguish nuclear genotypes and estimate allelic frequencies by standard methods or use 

computer programs that allow allele copy ambiguity under the assumption of autosomic 

inheritance. Thus, allelic frequencies (pi) were estimated as the relative frequency of the jth allele 

or band for each SSR marker in the population. For genetic structure analyses and some genetic 

diversity estimates such as proportion of polymorphic loci (P’), gene diversity (H’), and 

Shannon’s  genetic diversity index (H’Shannon), however, the SSR markers were treated as 
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multilocus fingerprints, in which each allele was either scored present or absent (pi’). 

Monomorphic bands or alleles were included in all analyses in order to allow invariant loci to 

influence diversity values. 

Patterns of genetic diversity were examined for each group of individuals of the same size 

class in the same gap or sub-area for the primary forest and for the early successional forest, 

respectively. This individual grouping is hereafter  referred  to  as  a  “population”.  The following 

genetic parameters: effective number of alleles per locus (Ae), gene diversity (H and H’), and 

Shannon’s  genetic  index  (H’Shannon) were estimated for the nuclear markers according to 

Silvestrini et al. (2013). Average number of alleles per locus (A) was determined by summing all 

the alleles observed and dividing by the total number of loci. Proportion of polymorphic loci was 

calculated by dividing the number of polymorphic loci by the total number of loci analyzed and 

was calculated considering the seven SSR loci (P) and each allele/band as a locus (P’). Allelic 

richness (R) was estimated as the number of different alleles per population standardized for the 

smallest sample size (considering the missing data) (N=9) using the rarefaction method of Petit et 

al. (1998) implemented in the software CONTRIB. The number of private alleles (Ap), i.e., alleles 

that occur in only one population, was counted for all populations. Ap was also counted for both 

forests as the number of alleles that occur in only one forest type. The rarefaction procedure was 

not applied to the number of private alleles (Ap) as the methodology has not been developed for 

polyploids. As the number of private alleles is positively dependent to the number of alleles per 

locus (Kalinowski, 2004), we also calculated the ratio of private alleles over the average number 

of alleles per locus (Ap/A). For estimating Ap/A ratio in each forest, we used the mean of A values 

calculated over eight populations as the denominator.  

Each unique combination of alleles of all cpSSR loci was defined as a haplotype. The 

cpSSR haplotype frequencies were calculated for all populations (pi) and used to calculate 
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number of haplotypes (n), haplotype richness (r), number of private haplotypes per population 

(np), and haplotype diversity (h). r was estimated as the number of different haplotypes per 

population standardized for the smallest sample size (considering the missing data) (N=8) using 

the software CONTRIB (Petit et al., 1998). h was calculated as the probability that two randomly 

chosen haplotypes are different in the sample according to Nei (1987): 
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where n is the number of individuals in the sample, k is the number of haplotypes, and pi is the 

sample frequency of the i-th haplotype.  

Genetic diversity estimates for both nuclear (A, Ae, P’, R, Ap, Ap/A, H, H’, H’Shannon) and 

chloproplast (n, r, np, h) markers were analyzed using a two-factor ANOVA. The factors were 

forest type and size-class. Analyses were performed using Systat 11 software (Systat Software 

Inc., Richmond, California, USA).  

 

2.5.2. Genetic structure 

Population genetic structure for both classes of DNA marker was inferred by analysis of 

molecular variance (AMOVA - Excoffier et al., 1992) using Arlequin V. 3.5 software (Excoffier 

and Lischer, 2010). A hierarchical sampling design was employed using different groups of 

populations. First, fixation indices were estimated for each forest type independently by grouping 

1) populations by size class, 2) populations from each size class separately, and 3) all populations 

without hierarchy. Second, populations from both forest types were analyzed together (all 

populations). Partitioning of the genetic diversity was evaluated 1) between size classes, 2) 

between forests for each size class separately, and 3) between forests. The significance of the 
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fixation indices obtained (i.e., whether values are different from 0) was tested by using a non-

parametric permutation approach (Excoffier et al., 1992) for 1 000 permutations. A locus by 

locus AMOVA, i.e., the AMOVA for each locus separately, was performed for nuclear markers. 

Confidence limits of the FST indices were obtained by bootstrapping over loci (20 000 

bootstraps). 

A Bayesian cluster analysis implemented in the software Structure version 2.3.3 

(Pritchard et al., 2000; Falush et al., 2007) based on haploid data (presence or absence of bands or 

alleles), was employed to evaluate genetic structure of individuals on different scales of 

distribution of populations. Assuming the admixture model and correlated allele frequencies, 20 

independent runs were performed for each K (a priori number of clusters) (K=1 to K=16) at 500 

000 MCMC repetitions and a burn-in period of 200 000. Using the program Structure Harvester 

(Earl and vonHoldt, 2012), the approach described by Evanno et al. (2005) was adopted to define 

the most reasonable K by using DeltaK as the criterion. A mean of the permuted matrices across 

the 20 replicates was obtained for the two most likely numbers of clusters (K) employing the 

program CLUMPP (Jakobsson and Rosenberg, 2007) and visualized through the program 

DISTRUCT (Rosenberg, 2004). 

To assess spatial autocorrelation and fine-scale spatial genetic structure, genetic 

distograms and correlograms were constructed for SSR and cpSSR data sets, respectively, using 

the program SGS (Degen et al., 2001). The genetic dissimilarity was computed using Tanimoto's 

distance as described by Degen (2000). For cpSSR haplotypes, correlograms were computed 

using Moran's index (Degen, 2000). Minimum haplotype frequency of 0.05 was used as an 

inclusion criterion in the calculations. 

Spatial autocorrelation was examined among all sampled individuals of each forest type in 

order to evaluate fine-scale genetic structure and the genetic relationships between adults and 
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juveniles, and among individuals of each size class separately. The mean genetic dissimilarities 

and  Moran’s  index  were  calculated  for  eight different spatial distance classes of 30 m each from 

0 to 240 m when analyzing all individuals and seven different spatial distance classes of 40 m 

each from 0 to 280 m when analyzing each size class independently. The sizes of 30 and 40 m for 

each spatial distance class were chosen so that in all cases at least 30 pairs of plants belonged to 

each class. Different distance classes (17 classes of 15 m, ten classes of 25 m, nine classes of 28 

m, and six classes of 45 m each) were employed whenever possible in order to check the 

influence of distance class definition on the results, as suggested by Degen et al. (2001). 

The effect of the extinctions and colonizations on genetic structure was evaluated by 

estimating the number of colonists (k-values) of the recently founded populations and applying 

the estimates to the general model of founding group formation of Whitlock and McCauley 

(1990) with slight modifications in order to accommodate the polyploid nature of the data and 

obtain the probability of common origin of gametes (ϕ):  

  STcST0 F1/k11/kF 
 

where k is the number of individuals that comprise a colonizing group, FST0 is the FST among 

only the new populations and FSTc is the FST defined among established populations. The symbol 

ϕ is defined as a probability that two alleles in newly formed population were drawn from the 

same source, which varies from 0 to 1 (Slatkin, 1977; Wade and McCauley, 1988; Whitlock and 

McCauley, 1990). For the purpose of this study two time and spatial scales of colonization were 

investigated: 1) colonization of the recent founded populations of gaps in the primary forest 

(juveniles) by colonists from the older established gaps (adults); and 2) colonization of the early 

successional forest (adults) by colonists from the established populations of the primary forest 

and surrounding secondary forests. As we do not have any genetic structure estimate from the 
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adjacent secondary forests in different stages of succession (early, intermediate, late successional 

stages) or the ones at the boundaries of CES, we used the FST estimated from all adult populations 

of both forest types as the approximate FSTc values of old established populations. 

For the first approach, k-values were estimated based on the number of juveniles of C. 

floribundus recorded in the four gaps (Table 1A). For colonization of the early successional 

forest, colonists were estimated as the number of the individuals first established in the area, i.e., 

the number of adults in the sub-areas. As the sampling of populations in the early successional 

forest was based on an approximation of the gap areas in the primary, the number of colonists 

was obtained multiplying the density of adults estimated for the early successional forest 

(Silvestrini and Santos, 2014) by the total area of gaps (Table 1B). 

 

2.5.3. Linkage disequilibrium between nuclear and chloroplast alleles 

Cyto-nuclear linkage disequilibrium between SSR alleles and cpSSR haplotypes (D) was 

calculated for all possible pairs of the most frequent alleles of each SSR locus (pi’) and the three 

commonest cpSSR haplotypes after pooling all individuals sampled from the early successional 

forest using the equation described by Hedrick (2011). Afterwards, the linkage disequilibrium 

(D)  value  was  standardized  to  the  maximum  value  possible  (D’)  (Hedrick, 2011) and the 

statistical association for each pair of allele/haplotype was tested using G-tests of independence 

(α  =0.05) (Sokal and Rohlf, 2012), the same method used by McCauley and Ellis (2008) and 

Fields et al. (2014). The overall family-wide error rate was corrected using a Bonferroni method 

(Sokal and Rohlf, 2012) by employing a critical value of α’’=  0.0015. 

 

3. Results 

3.1. Genetic diversity 
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We found 77 alleles or bands through amplification of seven SSR loci in 225 individuals 

of C. floribundus, considering both forest types (Electronic Supplementary Material, Table A3). 

Only two bands were monomorphic for all populations, one from locus SSR-8 and the other from 

SSR-6. All SSR loci were polymorphic for all populations studied (P). Genetic diversity 

estimates did not differ statistically between forest types and size classes, except for P’ (p=0.011) 

and A (p=0.011), which have higher values for juveniles than adults in both forests (Table 2, 

Electronic Supplementary Material, Fig. A1). However, after rarefaction that standardizes the 

number of alleles across unequal-sized populations, R values did not significantly differ between 

size-class (p=0.096) (Table 2).  

Despite similar values of Ap and Ap/A between forests (p=0.230 and p=0.304, respectively) 

(Table 2), when the number of private alleles (Ap) was counted as alleles that occur in only one 

forest type, Ap and Ap/A values were 13 and 1.86, respectively in the primary forest, and 6 and 

0.92, respectively, in the early successional forest.  

Of six cpSSR loci studied, only three showed polymorphisms in C. floribundus and only 

in the populations of the early successional forest (Table 3 and Electronic Supplementary 

Material, Table A4). In total, seven haplotypes were detected: one in the CES and seven in the 

early successional forest (Fig. 3 and Electronic Supplementary Material, Fig. A2). The number of 

haplotypes (n), haplotype richness (r), and haplotype diversity (h) were statistically higher in 

juveniles than adults (p<0.01) and in early successional forest than primary forest (p<0.001) 

(Table 3). The relative frequency of haplotypes varied among populations (Table 3, Fig. 3). 

 

3.2. Genetic structure 

Despite presenting similar genetic diversity levels, the genetic diversity was distributed 

differently between primary and early successional forests (Table 4). Differentiation between size 
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classes within gaps (FSC=0.083, p<0.0001) showed that allelic frequencies are differently 

distributed between juveniles and adults from the “same gap”. Likewise, FSC between juveniles 

and adults within sub-areas in the early successional forest was different from zero (FSC=0.060, 

p<0.0001) (Table 4). Adults presented a stronger differentiation among populations than 

juveniles. There was overlap of the confidence intervals between FST values of juveniles and 

adults in the primary forest, but with a tendency of greater divergence among populations of 

adults (Fig. 4). This tendency was confirmed by results of Bayesian structure, and spatial 

autocorrelation analyses (see below). 

When considering the cpSSR markers, the differentiation between juveniles and adults 

within sub-areas in the early successional forest was high and different from zero (FSC=0.363, 

p<0.0001), corroborating the dissimilar distribution of haplotype frequencies between size classes 

of the same sub-area (Table 4, Fig. 3B). Higher genetic subdivision among populations of adults 

(FST=0.653, p<0.0001) than juveniles (FST=0.328, p<0.0001) was found. 

The Bayesian structure analysis of C. floribundus in both forest types discriminated the 

individuals into three and eight clusters. After 20 repeated runs for K numbered from 1 to 16, 

DeltaK reached the highest peak at K=3. The first cluster was comprised basically of individuals 

from primary forest, the second individuals from the early successional forest and the third 

individuals from sub-area  K’  (Fig. 5A). An additional but a smaller peak was observed at K=8. 

This clustering was complementary to the K=3 allowing one to distinguish individuals of gap M 

from other gaps in the primary forest as well as individuals of each sub-area in the early 

successional forest (Fig. 5B). 

A positive autocorrelation was detected in the first class of 15 m for individuals of the 

primary forest (Fig. 6A) and in the distance class of 30 m for the early successional forest (Fig. 

6B), for it was not possible to use shorter distance classes in the latter analysis. Despite this, 
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results of Structure analysis and cpSSR-haplotype frequencies indicate that, similar to the 

primary forest, positive spatial autocorrelation can also occur in shorter distances in the early 

successional forest. In both forest types, there was a negative spatial autocorrelation from 30 to 

60 m (Fig. 6A,B). In the primary forest, these distance classes corresponded to pairwise distances 

between juveniles  and  adults  of  the  “same  gap”  and  some pairs of individuals within size classes 

at K and M gaps (mainly adults, see Fig. 2). In the early successional forest, these distances 

comprised individuals at sub-areas  K’  and  M’  and  some  individuals  at  sub-area  E’.  Note  that  

juveniles and adults in the primary forest occupy different gaps (Silvestrini and Santos, 2014), 

although  we  have  considered  them  as  belonging  to  the  “same  gap”, while juveniles and adults in 

the early successional forest in fact occupy the same sub-area. For cpSSR markers, the 

correlogram presented a similar autocorrelation pattern to the distogram until 90 m (Fig. 6C). 

The distogram plotting genetic distance against spatial distance class for each size class 

separately showed individuals closely related within a 40 m distance in both forest types (Fig. 

7A-D). In contrast to juveniles, adults presented a significant negative spatial autocorrelation in 

the second distance class (40 to 80 m) and in the sixth distance class (200 to 240 m) in the 

primary forest, demonstrating a higher divergence among populations in this size class (Fig. 2 

and Fig. 7A,B). In the early successional forest, random or negative spatial genetic structures 

were found in distances >40 m for both size classes (Fig. 7C,D). 

Higher  values  of  the  Moran’s  coefficients  than  expected  indicated  a  positive  spatial  

autocorrelation for cpSSR markers for juveniles and adults in the early successional forest within 

the distance class of 40 m (Fig. 7E,F). A significant negative spatial autocorrelation was observed 

at other distance classes (Fig. 7E,F), which corroborated the divergent distribution of haplotype 

frequencies among populations in the early successional forest (Fig. 2 and Fig. 3, Table 4).  
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The number of colonists (k) estimated for colonization of the recently founded 

populations of gaps in the primary forest (juveniles) was k=69. For colonization of the early 

successional forest (adults), k=9. The ϕ estimates for these new populations were 0.49 and ≃ 1.0 

for primary and early successional forest, respectively.  

 

3.3. Linkage disequilibrium between nuclear and chloroplast alleles 

Considering the small sample size (N=112) in cyto-nuclear linkage disequilibrium 

analysis and the magnitude  of  the  D’  values  found  (Electronic  Supplementary Material, Table 

A5), cyto-nuclear linkage disequilibrium was an important phenomenon in populations of C. 

floribundus. The strong negative association between allele SSR-6_205  and  haplotypes  1  (D’=-1, 

p=0.0163)  and  2  (D’=-1, p=0.0004) as well as the positive association with haplotype 5 

(D’=0.292,  p=0.0073)  showed  that  there  are  higher  frequencies  of  allele  SSR-6_205 in early 

successional forest populations in which haplotype 5 is the most frequent, i.e., in the sub-areas  C’  

and  M’  (see  Fig. 3B). Also, the allele SSR-16_211 was positively associated with haplotype 5 

(D’=0.746,  p<0.0001),  showing  a  higher  frequency  in  the  same  sub-areas.  

 

4. Discussion 

A moderate number of alleles per locus and effective number of alleles per locus, as well 

as high genetic diversity indices, were found when compared to other tropical tree species 

(Lemes et al., 2003; Degen et al., 2004; Ndiade-Bourobou et al., 2010; Cavallari et al., 2010), 

indicating a high genetic diversity within populations of C. floribundus in both forest types. 

Indeed, high genetic diversity levels have been commonly found for pioneer tree species 

(Alvarez-Buylla et al., 1996; Alvarez-Buylla and Garay, 1994; Litrico et al., 2005; Jones and 



 

128 
 

Hubbell, 2006; Born et al., 2008a, b; Davies et al., 2010) but the great majority of prior research 

has evaluated pioneer species that regenerate only in large gaps. Also, only a few studies have 

evaluated genetic diversity between early- and late-successional populations and they either 

considered primary succession (Litrico et al., 2005) or areas with different or unspecified land 

use histories (Alvarez-Buylla and Garay, 1994; Cavers et al., 2005; Born et al., 2008a). Only 

Davies et al. (2010) have found a significant reduction in genetic diversity between populations 

in an old growth forest (no history of human land use) and a secondary forest stand about 30 

years in age. The reason for the genetic bottleneck found was that there were limited sources for 

seed dispersal and colonization (Davies et al., 2010, 2013). To our knowledge, this is one of few 

studies that compares genetic diversity and structure of a pioneer species among populations in a 

primary forest and in an early successional forest where populations experienced similar and 

well-known human disturbances. 

The close relationships among individuals within populations and among juveniles and 

adults of the “same gap” or sub-area over short distances (up to 30 m) indicated a high level of 

relatedness, perhaps of siblings, half-siblings and/or parents and offspring. This genetic similarity 

is likely a result of the explosive or ballistic seed dispersal mechanism of the species that results 

in average dispersal distances of 1.5 to 3 m (Stamp and Lucas, 1983; Narbona et al., 2005) or 

approximately 3.2 and 3.4 m (mean ballistic dispersal distance) plus 1.0 to 2.5 m (distance of 

seed removal by ants) for the autochorous tree species with secondary dispersal via 

myrmecochory, Croton priscus Croizat (Passos and Ferreira, 1996). On the other hand, the 

negative spatial autocorrelation in the distance class of 45 m in the primary forest, which 

corresponds  mainly  to  the  distances  between  juveniles  and  adults  of  the  “same  gap”, confirmed 

the genetic dissimilarity between juveniles and adults within gaps. Also, the genetic 

differentiation between adults and juveniles of the same sub-area was high. These contrasting 
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results revealed that seed dispersal has an effect on the genetic similarity of juveniles and adults 

due to likely parent-offspring proximity, though at the same time different colonization events 

have an opposite effect producing marked genetic differences between adjacent pairs of juveniles 

and adults. Also, the effects of aggregated seed dispersal, i.e., the genetic structure given by 

offspring-offspring proximity, seem to be essential for the formation of the kin-structure 

observed within populations. 

According to Wade and McCauley (1988), Whitlock and McCauley (1990) and McCauley 

et al. (1995), the genetic structure of recently colonized populations depends mostly on the 

number of individuals involved in the founding event (k), the relationship between number of 

colonists and migrants, and the number of source populations from which the colonists were 

drawn. The model of Wade and McCauley (1988) predicts that  “whenever  the  number  of  new  

colonists is less than twice the number of migrants, extinctions and recolonizations always 

diminish  effective  gene  flow  and  enhance  genetic  differentiation  of  subdivided  populations”.  In  

our sampled gaps in the primary forest, the number of colonists seems to be much greater than 

number of migrants since adjacent adult populations increase the input of seeds. The average 

gene flow in the whole gap area distribution, however, may not reach such high levels because 

only some of the recently colonized gaps are adjacent to the old ones occupied by adults of C. 

floribundus (Silvestrini and Santos, 2014). In addition, the presence of large trees and dense 

tangle of lianas in the primary forest (Rodrigues, 2005; Lima et al., 2008) must be an effective 

barrier to seed arrival in the open gaps, given the absence of cpDNA haplotype diversity for both 

size classes. Thus, it seems that the high input of seeds into the study gaps contributed to the high 

number of colonists and the consequent low genetic structure in juveniles. Open areas near adult 

populations may also facilitate wind pollination and as a consequence promote an increase in the 

number of colonists in juvenile populations by increasing the diversity of pollen gametes in the 
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fertilized seeds. Additionally, since pollen dispersal by wind and insects/flies can reach long-

distances, over several hundred metres (Hamrick and Nason, 2000), it seems that pollen came 

from more diverse sources than the female genetic material of the founder seeds.  

In effect, our ϕ estimates in the primary forest indicated an intermediate form of 

colonization between the propagule and migrant pool (ϕ = 0.49) (Slatkin, 1977; Wade and 

McCauley, 1988; Whitlock and McCauley, 1990) suggesting that colonists, mostly by pollen in 

fertilized seeds, originated in more than one population. In the complete propagule model, 

extinctions and colonizations are always expected to increase genetic structure of new 

populations, particularly when the number of colonists is low (Wade and McCauley, 1988). 

However, in migrant pool models, when the number of colonists exceeds twice the number of 

migrants, mainly under low extinction rates, extinctions and colonizations can act as form of gene 

flow as predicted by Slatkin (1977; 1985; 1987) and reduce genetic structure (Wade and 

McCauley, 1988). As we mentioned above, the number of colonists in the juvenile gaps must be 

higher than the number of migrants. In addition, C. floribundus has long-term population 

persistence in the primary forest (Silvestrini and Santos, 2014), which may indicate a low 

extinction rate for C. floribundus populations. Therefore, under an intermediate mode of 

colonization, at least a certain amount of gene flow might be generated as a result of extinctions 

and recolonizations. 

Conversely, the extended life-time of populations may allow other processes such as 

selection, drift and inbreeding to act. These factors are not included in the theoretical models 

(Wade and McCauley, 1988; Whitlock and McCauley, 1990) and may help to explain the genetic 

differentiation among populations in the primary forest, especially for adults. Although juveniles 

of C. floribundus usually do not occupy the same gap as adults, juveniles were found in adult 

gaps that suffered recent recurrent disturbances (Silvestrini and Santos, 2014). Thus, there might 
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to be an effect of the random sampling of gametes in the gaps (genetic drift) and mating between 

relatives, particularly if the recurrent episodes are frequent, which seems to happen in the CES 

permanent plot (Lima et al., 2008), and if the generations immediately succeeding the recurrent 

disturbance rapidly reach the reproductive life stages (Silvestrini and Santos, 2014). 

In contrast to other pioneer species (Alvarez-Buylla et al., 1996; Jones and Hubbell, 2006; 

Born et al., 2008a, b), C. floribundus exhibited an increase in genetic structure across successive 

life stages in both forest types. We believe that our study design, which distinguished human 

disturbed populations from undisturbed ones and analyzed adults distributed in gaps, allowed us 

to distinguish the effects of human disturbances and gap dynamics on genetic diversity and 

structure and revealed how these factors really affect the genetic structure in different size 

classes. In addition, this seems to be the first genetic study of a pioneer species that has a larger 

gap-phase regeneration behavior (Brokaw, 1987; Silvestrini and Santos, 2014). The occupation of 

a more heterogeneous gap environment may also contribute to the divergence among populations 

found in the primary forest, mainly in adults. 

In the early successional forest, our results suggest that the greater distances separating 

the vacant sites from the boundaries of the old populations and the inbreeding generated by the 

movement of individuals or genes in groups, as with full-or half-sib seeds, were likely causes of 

our observed reduced effective number and a stronger kin-structure of populations of colonists 

(Wade and McCauley, 1988; Whitlock and McCauley, 1990) (see also results of Alvarez-Buylla 

and Garay (1994) and Born et al. (2008b) for long-distance seed dispersal species whose pristine 

and disturbed populations were paired next to each other). The reduction in the number of 

colonists relative to gene flow might also be a consequence of some barriers to seedling 

establishment in the human disturbed area, such as cattle grazing and competition with grasses 

and weeds (Uhl et al., 1991; Holl et al., 2000). Note that the land use history of the early 
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successional study forest shows that propagules for colonization must come from external 

sources since the area was intensively used as pasture for many years followed by burning. 

Moreover, the history of land use and general environmental conditions were similar for all sub-

areas, thus genetic differentiation is more likely the result of colonization process rather than 

specific characteristics of the sub-areas affecting plant survival and growth. Even with the low 

number of colonists, the higher number of cpSSR haplotypes for adults in the early successional 

forest showed that the arrival of seeds in this open habitat is higher than in the gaps of the 

primary forest, confirming that trees and lianas must be an effective barrier to seed dispersal in 

the primary forest. Also, it seems that there is a higher cpDNA diversity in the source populations 

that colonized this forest since it is surrounded by a mosaic of secondary forests with different 

land use histories.   

In the next generations, however, the factors that reduced number of colonists seem to 

change as suggested by the reduction of both FST for nuclear and cpSSR markers and the increase 

of haplotype richness and diversity in juveniles. Besides the reasons mentioned above for adults, 

the high number and diversity of haplotypes in juvenile populations could be the effect of the 

high density of juveniles in the early successional forest (Silvestrini and Santos, 2014). This, in 

turn, is a result of the increase in gene flow by seeds, slow growth, and accumulation of plants 

from multiple events of seed dispersal due to the unfavorable growth conditions in this life stage 

(Danciguer, 1996; Silvestrini and Santos, 2014). Thus, across generations, the founding effects 

and barriers to plant establishment tend to be reduced and gene flow by seeds and pollen may 

become the main determinants of the genetic structure. 

Apparently, the number of pollinators of C. floribundus is not a limiting factor for 

colonization or gene flow by pollen in the early successional forest. Beside the fact that the open 

area facilitates wind-pollination, richness and abundance of flies of Sirphidae family were greater 
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at the edge than inside the forests (Marinoni et al., 2004). This indicates that both of the most 

important pollen vectors of C. floribundus are abundant at that location. Indeed, high pollen flow 

rates have been typically found for tropical trees in fragmented or disturbed landscapes (Hamrick, 

2004; Wang et al., 2011), including pioneer tree species (Born et al., 2008a; Davies et al., 2013). 

Thus, effective pollen movement might maintain the level of genetic diversity within populations 

during colonization (high variability of the pollen that fertilized founder seeds) as well as 

increase gene flow and its genetic homogenizing effects in the following generations. 

Cyto-nuclear linkage disequilibrium is only expected in recently established populations if 

there is a genetic structure in both markers in the old established or original source populations 

(Fields et al., 2014). The reason is that the LD in the new populations reflects the earlier structure 

in the older because there has not been enough time for evolutionary forces to act on the allele 

and haplotype frequencies in the recently founded populations. Thus, as we found a genetic 

structure for nuclear markers but did not detect any variation in cpSSR markers in the sampled 

populations of the primary forest, our results indicated that there is a genetic structure at a greater 

spatial scale for the cpSSR loci in the primary forest or in the surrounding secondary forests and 

that colonists of the early successional forest may have come from these divergent populations.  

Results based on private SSR alleles in both forest types, cpSSR haplotypes, assignment 

tests, and the genetic relationship among individuals confirmed that the origin of the early 

successional forest is not mainly from the primary forest, or at least not from our sampled 

populations from the primary forest. The limited seed dispersal of the species and the genetically 

structured populations in the gaps of the primary forest must keep different alleles widespread 

over the primary forest that we could not capture by our sampling. Thus, it is much likely that 

founders have come from primary populations spatially closer to the early successional forest 
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area and/or from the neighboring secondary forests at the edges of the reserve and at the Torrão 

de Ouro Farm.  

In spite of the uncertain ancestry of the early successional forest alleles, it is a reality that 

for conservation purposes, genetic diversity of both forest types should be maintained as long as 

they harbor singular allelic richness. In a scenario of an almost complete devastation of the 

primary Brazilian Atlantic forests (Ribeiro et al., 2009) and the consequent absence of such 

genetic pools, secondary forests are the foremost remnants of genetic diversity of the species and 

therefore should be conserved whatever the successional stage.  

So far there has been little concern for conservation of genetic resources of pioneer 

species due to the high genetic diversity levels that have been found (Alvarez-Buylla et al., 1996; 

Litrico et al., 2005; Jones and Hubbell, 2006; Born et al., 2008a, b, but see Davies et al., 2010). 

Although C. floribundus has a wide distribution all over disturbed areas, the effects of 

deforestation and habitat fragmentation may reduce genetic diversity of the populations, mainly 

due to the limited seed dispersal and the consequent reduction of the number of colonists and 

gene flow by seeds across long distances. This finding allows us to infer that other pioneer 

species, also with a wide distribution but dispersed over short distances or even dispersed over 

long distances like Vochysia ferruginea Mart. but with limited seed sources (Davies et al., 2010, 

2013), may present similar genetic responses to forest fragmentation and fragment isolation. 

Thus, we suggest the creation of forest corridors and the maintenance of larger areas of forest as 

efficient methods for conservation of genetic resources and dynamics of pioneer trees 

populations. For restoration goals, we recommend collecting as many seeds as possible from 

many plants located at a large number of gaps (several source populations) in order to increase k 

and phi-values of the new established population and thus keep the genetic diversity and structure 

as similar as possible to a primary forest. 
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5. Conclusions 

The genetic structure of C. floribundus in the primary forest was determined basically by 

extinctions and colonizations generated by gap dynamics and processes related to gap dynamics 

such as selection, inbreeding and drift. In the early successional forest, colonization seems to 

have stronger effects on the genetic structure of the new established populations due to the 

limited seed dispersal associated with the occupation of a large vacant and human-modified site. 

Furthermore, the effects of pollen and seed dispersal and their role on determining the number 

and source of colonists as well as the gene flow rates were critical to genetic diversity and 

structure in both forest types.  
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Figure captions 

Fig. 1. Map of the region of Caetetus Ecological Station, São Paulo, Brazil showing the location 

of the permanent plot in the primary forest and the adjacent early successional forest at Torrão de 

Ouro Farm. 

 

Fig. 2. Distribution of the sampled juveniles (▲) and adults (●) of Croton floribundus Spreng. in 

the gaps of the primary forest (permanent subplots 20 x 20 m)(A) and in the sub-areas of the 

early successional forest (B). 

 

Fig. 3. The relative frequency of seven cpDNA haplotypes in populations of Croton floribundus 

Spreng. in the primary forest at Caetetus Ecological Station (CES) (A) and in the early 

successional forest at Torrão de Ouro Farm (B). Populations of same size-class in the primary 

forest are represented in a unique figure. 

 

Fig. 4. Multilocus (n=75 loci) FST estimates and 95% confidence limits for juvenile (J) and adult 

(A) populations of Croton floribundus Spreng. in the primary forest (P) at CES and in the early 

successional forest (E) at Torrão de Ouro Farm. Different letters indicate nonoverlapping 95% 

confidence intervals between groups (20 000 bootstraps). 

 

Fig. 5. Genetic structure of Croton floribundus Spreng. derived from Structure analysis. Each 

thin vertical line represents a particular individual with their assignment proportions (y axis) to 

the K=3 (A) (in three different gray shades) and K=8 (B) (in eight different colours) inferred 

clusters. Juvenile individuals followed by adult individuals were grouped by their original gaps 
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and sub-areas. Labels  above  the  figure  indicate  whether  the  populations  are  from  the  primary  

forest or the early successional forest. The letter codes corresponding to gaps and sub-areas (C, E, 

K, M) from the primary forest (P) and the early successional forest (E) are found below. 

 

Fig. 6. SSR distogram of Croton floribundus Spreng. in the primary forest at CES (A). SSR 

distogram (B) and cpSSR correlogram (C) of Croton floribundus Spreng. in the early 

successional forest at Torrão de Ouro Farm. Spatial distance (m). 

 

Fig. 7. SSR distograms (A-D) and cpSSR correlograms (E-F) of Croton floribundus Spreng. 

Juveniles (A) and adults (B) of Croton floribundus Spreng. in the primary forest at CES. 

Juveniles (C,E) and adults (D,F) in the early successional forest at Torrão de Ouro Farm. Spatial 

distance (m). 
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Tables 

Table 1 
Characteristics of the eight sampled gaps in the permanent plot at Caetetus Ecological Station 
(CES), four gaps for juveniles (A) and four gaps for adults (B) based on Martini et al. (2008) and 
AMZ Martini and RAF Lima (Unpublished results). Number of individuals sampled (N). 
Juvenile density of Croton floribundus Spreng. in each gap. Modes of tree disturbance were: 
UPRT - Uprooted trees; SNPT - Snapped trees; STDT - Standing trees; BRN - Branches. Gap 
age classes were: Age 3 (old) = tree disturbance occurred before 2002, Age 2 = tree disturbance 
occurred after 2002, Age 1 = tree disturbance occurred after 2002, but more recent than age 2 (for 
more details, see Martini et al. 2008). 
 

(A) Juveniles 

Gap Age Runkle area (m
2
) Mode of disturbance Juvenile density (ind.m

-2
) N 

C5 2 234 STDT, SNPT 0.15 16 

E13 1 948 
STDT, SNPT , BRN, 

UPRT 
0.12 

18 

K8 3 291 STDT 0.85 16 

M5 3 485 
STDT, SNPT , BRN, 

UPRT 
0.13 

14 

      

 

(B) Adults 

Gap Age Runkle area (m
2
) Mode of disturbance Adult density (ind.m

-2
) N 

B6a >3 270 UPRT, STDT - 11 

D12 3 657 STDT, SNPT - 11 

L7 3 488 SNPT - 13 

M6a >3 393 STDT, SNPT, - 14 
      

a Gaps characterized by the authors following the method of Lima et al. (2008). 
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Table 2 Genetic diversity within populations of N individuals of Croton floribundus Spreng. in the primary forest at Caetetus Ecological 
Station (CES) and in the early successional forest at Torrão de Ouro Farm assessed by average number of alleles per locus (A), effective 
number of alleles per locus (Ae), allelic richness (R), number of private alleles (Ap), ratio of private alleles over average number of alleles 
per locus (Ap/A), proportion of polymorphic loci (P’), gene diversity averaged over all loci (H and H’),   and  Shannon’s   genetic   index  
averaged over all loci (H’Shannon). 

   N A Ae R Ap Ap/A H P’ (%) H’ H’Shannon 

Primary Forest 

Juveniles 

C 16 7.6 5.0 7.11 1 0.13 0.745 61 0.195 0.408 

E 18 7.7 5.1 7.11 2 0.26 0.770 65 0.210 0.436 

K 16 7.7 4.8 7.07 3 0.34 0.760 62 0.191 0.403 

M 14 6.4 5.0 7.11 0 0 0.797 52 0.198 0.398 
           

Mean  7.4 5.0 7.10 1.5 0.20 0.768 60 0.198 0.411 
           

Adults 

           

C 11 5.7 4.4 7.00 0 0 0.769 44 0.160 0.318 

E 11 6.9 5.3 7.14 0 0 0.814 53 0.209 0.407 

K 13 6.9 4.8 7.08 1 0.15 0.787 53 0.186 0.376 

M 14 7.0 5.2 7.13 0 0 0.793 57 0.207 0.417 
           

Mean  6.6 4.9 7.09 0.3 0.04 0.791 52 0.190 0.380 
           

Early Successional 

Forest 

Juveniles 

           

C’ 16 7.1 5.0 7.09 1 0.14 0.784 56 0.187 0.386 

E’ 18 7.3 4.9 7.06 0 0 0.720 60 0.192 0.403 

K’ 14 6.4 4.7 7.05 0 0 0.696 48 0.168 0.344 

M’ 16 7.0 4.9 7.05 1 0.14 0.749 57 0.184 0.384 
           

Mean  7.0 4.8 7.06 0.5 0.07 0.737 55 0.183 0.379 
           

Adults 

           

C’ 11 5.9 4.6 7.02 0 0 0.785 38 0.115 0.240 

E’ 11 6.9 4.9 7.11 0 0 0.798 56 0.196 0.394 

K’ 13 5.7 4.0 6.90 1 0.18 0.674 38 0.089 0.200 

M’ 13 6.0 4.9 7.06 0 0 0.791 45 0.181 0.357 
           

Mean  6.1 4.6 7.02 0.3 0.04 0.762 44 0.145 0.298 
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Table 3 
Number of haplotypes (n), haplotype richness (r) number of private haplotypes (np), and 
haplotype diversity (h) in 16 populations of Croton floribundus Spreng. in the primary 
forest at Caetetus Ecological Station (CES) and in the early successional forest at Torrão de 
Ouro Farm.  

 

   n r np h 

Primary Forest 

Juveniles 

C 1 0 0 0 

E 1 0 0 0 

K 1 0 0 0 

M 1 0 0 0 

Adults 

C 1 0 0 0 

E 1 0 0 0 

K 1 0 0 0 

M 1 0 0 0 

Early Successional 

Forest 

Juveniles 

C’ 3 1.3 1 0.342 

E’ 5 3.0 0 0.787 

K’ 4 2.6 0 0.712 

M’ 3 2.0 0 0.718 

Adults 

C’ 1 0 0 0 

E’ 2 0.7 0 0.182 

K’ 2 1.0 0 0.250 

M’ 2 1.0 0 0.509 
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Table 4 
Results of Hierarchical Analysis of Molecular Variance (AMOVA) for different groups of populations of Croton floribundus 
Spreng. using nuclear and chloroplast SSR markers in the primary forest at Caetetus Ecological Station (CES) and in the early 
successional forest at Torrão de Ouro Farm. Fixation indices could not be calculated for populations of the primary forest using 
cpSSR markers. Estimates statistically different from zero (p < 0.05) are in bold. FSC indicates the differentiation among 
populations within groups. FCT indicates the differentiation among groups. FST indicates the differentiation among populations 
among groups or only the differentiation among populations. 
 

    Nuclear SSR  cpSSR 

  Groups  FSC FST FCT  FSC FST FCT 

Primary Forest 

 Size classes  0.105*** 0.108*** 0.003  - - - 
 Juveniles  - 0.081*** -  - - - 
 Adults  - 0.139*** -  - - - 
 Gaps  0.083*** 0.110*** 0.029*     
 All populations  - 0.107*** -  - - - 

Early Successional 

Forest 

 Size classes  0.254*** 0.212*** -0.057  0.439*** 0.538*** 0.177 
 Juveniles  - 0.165*** -  - 0.328*** - 
 Adults  - 0.370*** -  - 0.653*** - 
 Sub-areas  0.060*** 0.253*** 0.206***  0.363*** 0.516*** 0.240 
 All populations  - 0.231*** -  - 0.499*** - 

All populations 

 Size classes  0.196*** 0.183*** -0.016  0.683*** 0.683*** 0.000 
 Forest types 

(juveniles) 
 

0.123*** 0.157*** 0.038*** 
 

0.330*** 0.623*** 0.437* 

 Forest types (adults)  0.258*** 0.274*** 0.022  0.655*** 0.898*** 0.704* 

 Gaps and sub-areas  0.072*** 0.196*** 0.133***  0.367*** 0.694*** 0.517*** 

 Forest types  0.169*** 0.206*** 0.045***  0.501*** 0.760*** 0.519** 

* p < 0.05; ** p < 0.001; *** p < 0.0001. 
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Supplementary material 

Table A1 

Particle-size distribution (g.Kg-1) of the different soil horizon layers sampled at sub-areas 
C’,  E’,  K’  and  M’  in  the  early  successional  forest  at  Torrão  de  Ouro  Farm.  Two  sites  were  
sampled  at  the  E’  sub-area:  E’_W  and  E’_E. 
 

 
 Soil horizons/depths 

Sand  

(50-2000µm) 

Silt 

(2-50µm) 

Clay 

(<2µm) 

C’  

0-0.05m AE 869 30 101 

0.05-0.40m AE 906 19 75 

0.40-0.60m E 889 111 75 

0.60-1.20m +Bt 635 32 332 

E’ 

W 

0-0.45m A 781 41 178 

0.60-0.80m E 894 31 75 
0.80-1.10m C 867 33 100 

E 

0-0.35m A 827 45 129 
0.35-0.70m E 815 12 174 

0.70-1.20m Btg 701 23 276 

K’  

0-0.10m A 891 33 76 

0.10-0.30m AE 902 22 75 

0.30-0.70m E 917 33 50 

0.70-1.20m +Bt 694 50 256 

M’  

0-0.10m AE 849 24 126 

0.10-0.30m AE 834 17 148 

0.30-0.75m E 881 20 99 

0.75-1.20m +Bt 698 46 256 
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Table A2 Chemical properties of the different soil horizon layers sampled at sub-areas  C’,  E’,  K’  and  M’  in  the  early  successional  forest  at  
Torrão  de  Ouro  Farm.  Two  sites  were  sampled  at  the  E’  sub-area:  E’_W  and  E’_E. 
 

  

Soil 

horizons/depths 

      Exchangeable bases      

 
 pHH2O pHKCl 

Organic 

Materials 

 

P  Na K Ca Mg Al H+Al 

Cation 

Exchange 

Capacity 

 
Base 

Saturation 

Aluminum  

saturation 

 
   g.Kg-1 

 mg.K
g-1 

 mmolc. Kg-1
 

 
% 

C’  

0-0.05m AE 6.0 4.7 11  1  0.0 2.7 17 6 1 9 34.4  75 4 

0.05-0.40m AE 5.9 4.6 10  1  0.0 1.1 10 2 2 4 16.6  76 11 

0.40-0.60m E 5.8 4.3 8  1  0.0 0.4 9 2 1 4 14.7  72 12 

0.60-1.20m +Bt 5.6 3.9 26  1  0.1 1.4 42 20 14 15 79.2  81 18 

E’ 

W 

0-0.45m A 5.1 3.8 6  2  0.1 2.4 35 4 10 26 67.9  61 20 

0.60-0.80m E 5.6 4.4 11  1  0.1 0.4 16 1 1 4 21.0  79 7 
0.80-1.10m C 5.9 4.5 21  1  0.1 0.5 28 1 1 3 33.2  90 2 

E 

0-0.35m A 5.2 3.9 9  3  0.1 1.4 28 4 5 17 50.7  66 14 
0.35-0.70m E 5.7 4.1 5  1  0.1 0.8 41 7 2 6 54.6  89 5 

0.70-1.20m Btg 6.3 4.7 12  1  0.2 2.0 83 22 1 4 111.3  96 1 

K’  

0-0.10m A 6.9 6.3 23  2  0.1 3.8 54 19 0 1 78.4  99 0 

0.10-0.30m AE 6.9 5.6 8  1  0.1 2.9 14 11 0 3 31.5  92 0 

0.30-0.70m E 6.7 5.4 4  1  0.1 2.5 10 2 0 2 16.6  89 0 

0.70-1.20m +Bt 5.9 4.2 8  1  0.2 2.3 64 19 4 10 94.6  90 4 

M’  

0-0.10m AE 4.5 5.6 17  1  0.1 3.0 53 16 0 5 77.0  93 0 

0.10-0.30m AE 5.9 4.8 18  1  0.0 2.2 30 11 1 12 55.1  78 1 

0.30-0.75m E 5.9 4.6 9  1  0.0 1.0 17 2 1 5 24.6  81 5 

0.75-1.20m +Bt 5.7 4.0 8  1  0.2 2.7 72 20 4 11 104.9  90 4 
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Table A3 

Characteristics of seven microsatellite loci amplified in Croton floribundus Spreng. in the 
primary forest at Caetetus Ecological Station (CES) and in the early successional forest at 
Torrão de Ouro Farm. Forward (F) and reverse (R) primer sequences, repeat motif, product 
size range in base pairs, number of alleles per locus (Na), and number of alleles per 
individuals in each locus (Ni).  
 

Locus 

code 
Sequence of primers (5 '- 3') Repeat motif Size range Na Ni 

      

SSR-5 
F= CGTGTGCTTCCTCTTCACC 
R= GCCAAATGGGTTTCTCGTTA (AAG)8N18(CT)4 142-183 13 3-7 

      

SSR-6 F= CCACATTCCACATCACTTCC 
R= ACGTGGCAAAATGGGTAGTC (GA)5 203-213 6 1-3 

      

SSR-8 F= CTCCTGAACCCACGCTAGAT 
R= AGAGGCTTCGTGTTGTTCGT (AG)8 214-216 2 1-2 

      

SSR-10 F= AGACGGAAGGGAAGTGGAGT 
R= CGCAGCATCATATCACCAGA (AAG)8 141-187 14 3-8 

      

SSR-12 
F= TTGGGCAGATTCATGTAACG 
R=TTGGTTGAGGGAACAGATGA (GAA)8N37(AG)3 157-202 19 1-7 

      

SSR-14 
F= AGCACTCCTTCCACGACATT 
R=TGGTGAGACGCTTCATGTTG (CA)11 192-211 8 1-2 

      

SSR-16 F= GGCAGGCATAAATCAGCAAT 
R=TATCGAATCGTCGGATTTGG (GAA)6 200-255 15 2-8 

      

 
Table A4 

Locus code, foward (F) and reverse (R) primer sequences, repeat motif, number of alleles 
per locus (Na), and product size range in base pairs (bp) of the six universal choroplast 
microsatellite loci amplified in Croton floribundus Spreng. in the primary forest at Caetetus 
Ecological Station (CES) and in the early successional forest at Torrão de Ouro Farm.  
 

Locus code Sequence of primers (5 '- 3')
a
  Repeat Motif

a
 Na Size range  

     

ccmp 2 
F= ATCCCGGACGTAATCCTG 
R= ATCGTACCGAGGGTTCGAAT 

(A)11 2 301-311 
     

ccmp 3 
F= CAGACCAAAAGCTGACATAG 
R= GTTTCATTCGGCTCCTTTAT 

(T)11 2 104-110 
     

ccmp 4 
F= AATGCTGAATCGAYGACCTA 
R= CCAAAATATTBGGAGGACTCT 

(T)13 2 112-113 
     

ccmp 5 
F= TGTTCCAATATCTTCTTGTCATTT 
R= AGGTTCCATCGGAACAATTAT 

(C)7(T)10 
(T)5C(A)11 

1 109 
     

ccmp 7 
F= CAACATATACCACTGTCAAG 
R= ACATCATTATTGTATACTCTTTC 

(A)13 1 130 
     

ccmp 10 
F= TTTTTTTTTAGTGAACGTGTCA 
R= TTCGTCGDCGTAGTAAATAG 

(T)14 1 134 
     

a According to Weising and Gardner (1999). 
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Table A5 
Linkage disequilibrium   values   (D),   standardized   linkage   disequilibrium   values   (D’),   and  
associated probabilities estimated for pairs of the commonest nuclear alleles and chloroplast 
haplotypes of Croton floribundus Spreng. in the early successional forest at Torrão de Ouro 
Farm.   D’   values   statistically   different   from   zero   according   to G-tests of independence (α  
=0.05) are followed by *. D’  values  statistically  different   from  zero according to Bonferroni 
method (α  =0.0015) are in bold. 

Nuclear allele/cpSSR haplotype pair D D’ p-value 

SSR-5_151/1 0.002 1 0.6590 
SSR-5_167/1 -0.004 -0.048 0.8252 
SSR-5_173/1 -0.011 -0.134 0.5550 
SSR-6_205/1* -0.038 -1* 0.0163 
SSR-8_216/1 0.022 0.524 0.1719 
SSR-10_157/1 -0.009 0.083 0.4674 
SSR-12_174/1 0.017 0.462 0.2669 

SSR-14_192/1 -0.007 -0.147 0.6803 
SSR-16_211/1 -0.028 -0.314 0.1318 
SSR-16_214/1 0.028 0.578 0.1015 
SSR-16_223/1 -0.011 0.079 0.4681 

    
    

SSR-5_151/2 -0.007 -0.999 0.5177 
SSR-5_167/2 -0.033 0.212 0.1529 
SSR-5_173/2* 0.064 0.443* 0.005 
SSR-6_205/2 -0.068 -1 0.0004 

SSR-8_216/2 0.037 0.475 0.0696 
SSR-10_157/2* -0.042 -0.456* 0.0061 

SSR-12_174/2 0.028 0.406 0.1523 
SSR-14_192/2 0.025 0.120 0.2242 
SSR-16_211/2 -0.040 -0.243 0.0867 
SSR-16_214/2 0.016 0.184 0.4432 
SSR-16_223/2 0.025 0.443 0.1793 

    
    

SSR-5_151/5 -0.007 -1 0.0922 
SSR-5_167/5 -0.007 -0.048 0.7640 
SSR-5_173/5 -0.032 -0.238 0.1526 
SSR-6_205/5* 0.050 0.292* 0.0073 
SSR-8_216/5 -0.032 -0.165 0.0997 
SSR-10_157/5 0.024 0.707 0.1026 

SSR-12_174/5 -0.030 -0.175 0.1095 

SSR-14_192/5 -0.006 -0.081 0.7572 
SSR-16_211/5 0.091 0.746 <0.0001 

SSR-16_214/5* -0.044 -0.235* 0.0309 
SSR-16_223/5 0.009 0.171 0.6267 
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Fig. A1. Notched  box  plots  of  genetic  diversity  indices:  H  (a),  H’  (b),  and  H’Shannon (c) in 
populations of adults (A) and juveniles (J) of Croton floribundus Spreng. in the primary 
forest (P) at Caetetus Ecological Station and in the early successional forest (E) at Torrão 
de Ouro Farm. Overlapping of median confidence intervals indicates similarity of groups 
with 95% confidence level. 
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Fig. A2. The relative frequency of seven cpSSR haplotypes after pooling all individuals of 
Croton floribundus Spreng. sampled from both study sites (a) and after pooling all 
individuals sampled from early successional forest (ESF)(b). 
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CONCLUSIONS 

This study showed that the population genetics of the pioneer species C. 

floribundus is closely related to its ecology and reproductive biology. Not only did 

the population structure of the species vary according to the forest type, but also 

the distribution of genetic diversity among populations. The following ecological, 

genetic and cytogenetic characteristics of the species were found: 

 C. floribundus, a long lived pioneer tree species with rapid growth, was 

widespread and equally distributed along the gap range, but its population 

structure varied between areas with contrasting levels of human disturbance. 

The results indicate that the high intensity and different types of disturbance 

produced by human land use can alter the underlying conditions under which 

the main ecological processes responsible for plant distribution in tropical 

forests act.  

 The six universal chloroplast microsatellite loci optimized for C. floribundus 

were useful for comparisons with nuclear markers and the subsequent 

inferences about colonization process and seed and pollen dispersal in the 

species. 

 The seven nuclear microsatellite developed and optimized for C. floribundus 

showed to be efficient tools to evaluate the patterns of genetic diversity and 

structure in the species. 

 Chromosome number counted from pollen mother cells showed a number of 

bivalents n=56 (2n=8x=112) in all populations studied of C. floribundus, i.e., 
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regions of Caetetus Ecological Station, Gália/Alvinlândia, SP; Santa Genebra 

Reserve, Campinas, SP; and Ribeirão Cachoeira, Sousas, Campinas, SP. 

 The normal meiotic pairing and the high pollen viability suggested that C. 

floribundus is a regular and stable polyploid, much likely an allopolyploid.  

Based on these features and the SSR and cpSSR markers optimized for the 

species, we were able to answer the major question of the study:  

Are the genetic diversity and fine-scale structure of the pioneer tree Croton 

floribundus Spreng. (Euphorbiaceae) affected by the specific ecological and 

genetic factors of the primary and early successional forests generated by 

disturbances?  

The main findings were: 

 High genetic diversity levels for C. floribundus in the primary and the early 

successional forests studied; 

 Origin of populations, allelic richness, and genetic structure of C. floribundus 

differed between the primary and the early successional forests studied; 

 Combined effects of seed dispersal and colonization (and extinctions) were 

determinants of the fine-scale genetic structure of C. floribundus in both forest 

types: 

a) In the primary forest, processes related to gap dynamics such as 

differential survival of genotypes, inbreeding and genetic drift also 

affected genetic structure by increasing FST, especially for adults; 



 

165 
 

b) In the early successional forest, human disturbances boosted the 

founder effects in C. floribundus by increasing genetic differentiation 

among the new established populations much likely due to its limited 

seed dispersal associated with the occupation of a large vacant and 

ecologically modified site.  

 Gene flow by pollen was important for maintaining the genetic diversity 

within populations of C. floribundus in both primary and early successional 

forests. In the early successional forests, gene flow by seeds seemed to be 

also determinant. 

The results contributed to understanding the changes in genetic diversity 

and structure of C. floribundus across successive size classes in sites with 

contrasting levels of human disturbance and the determinant factors of these 

changes.  

We observed that although C. floribundus has a wide distribution all over disturbed 

areas, the effects of deforestation and habitat fragmentation may reduce genetic 

diversity of the populations, mainly due to the limited seed dispersal and the 

consequent reduction of colonists and gene flow by seeds across long distances. 

This finding allows us to infer that other pioneer species, also with a wide 

distribution but dispersed over short distances or with limited seed sources, may 

present similar genetic responses to forest fragmentation and fragment isolation. 

To our knowledge, this is the first attempt to isolate the ecological factor level of 

human disturbance in a study of population genetics of a pioneer tropical tree 

species. Because this thesis showed that the gap dynamics and colonization of 
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human disturbed areas affect the genetic diversity and structure of pioneer 

species, we believe that future genetic studies of these species must take in 

account their distribution in gaps as well as in secondary forests with different 

levels and types of human disturbances for the establishment of appropriate study 

designs. Also, the increase in knowledge of such aspects of the pioneer species is 

essential for understanding the effects of human disturbance and of successional 

processes in the tropical forests, which in turn is important for forest conservation, 

management and restoration.  
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