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RESUMO

A estrutura populacional é um dos principais fatores moldando os padrdes de
variabilidade genética no tempo e no espago. Devido as flutuac¢des climdticas que
ocorreram durante o perfodo Quaterndrio, muitas espécies podem ter sofrido
reducio e fragmentacdo populacional, ficando restritas a “refdgios” durante
periodos glaciais e se expandindo novamente durante os interglaciais. Isto tem
sido utilizado para explicar alguns padrdes encontrados nas espécies atualmente.
O presente trabalho consistiu no desenvolvimento e estudo de modelos para
auxiliar na compreensdo das conseqiiéncias genéticas de mudangas ciclicas na
estruturacio e tamanho populacionais, como as que teriam ocorrido ao longo das
flutuagdes climdticas do Quaterndrio. A reducdo populacional é capaz de causar
reduciao do tamanho efetivo populacional, do tempo médio de coalescéncia e da
variabilidade genética, ao passo que um aumento na subdivisdo populacional
pode ter o efeito oposto. Para investigar estes efeitos opostos, foram estudados
dois modelos, ambos com alterndncia de duas fases correspondendo aos
periodos glaciais e interglaciais. Em ambos os modelos permitiram-se mudangas
na estrutura populacional, além de mudangas no tamanho populacional, de uma
maneira ciclica. No primeiro modelo, fases totalmente panmiticas alternaram-se
com fases totalmente estruturadas. A partir deste modelo, obteve-se uma
expressao para a esperan¢a do tempo de coalescéncia de duas seqiiéncias e, a
partir desta, uma expressdo para a esperanga do numero de sitios polimérficos.
Tanto o aumento do niimero de demes quanto da duragéo das fases estruturadas
causaram um aumento do tempo de coalescéncia e dos niveis de variabilidade
genética. Os resultados obtidos foram comparados com 0s que seriam esperados
para uma populacdo panmitica de tamanho constante. Verificou-se que a
estruturagio pode superar o efeito da reducio populacional durante os periodos
glaciais. Especificamente, 0 niimero médio de sitios polimorficos pode ser maior
no modelo proposto, mesmo quando o tamanho populacional é muito reduzido

durante as fases estruturadas. No segundo modelo, permitiu-se subdivisdo
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populacional de acordo com o modelo de finitas ilhas em ambas as fases, com
migracdo. O tamanho populacional, a taxa de migracdo e o nimero de demes
variaram entre as fases. Para este modelo, além de uma expresséo para a o tempo
médio de coalescéncia, obteve-se também uma expressio para a distribuicdo dos
tempos de coalescéncia de duas seqliéneias. As distribuicdes observadas foram
muito diferentes do que seria esperado para uma populacdo panmitica de
tamanho constante. Um tamanho populacional reduzido durante os periodos
glaciais causou descontinuidades e picos multiplos na distribuicdo dos tempos
de coalescéncia, bem como uma reducio dos tempo médios. O aumento da
estrutura populacional, através da reducéo da taxa de migragdo, aumentou os
tempos médios e atenuou os picos da distribuicdo. O tempo médic de

coalescéncia, em geral, também aumentou em decorréncia de um maior nimero
de demes durante os periodos glaciais. Os resultados encontrados ajudam na
compreensao das conseqiiéncias genéticas de ciclos glaciais e, em especial, da
importancia da estrutura populacional na manuten¢éo da variabilidade genética.
Além disso, oferecem uma possivel explicacdo para padrdes genéticos
observados em muitas espécies em que genealogias génicas muito longas sido
econtradas, com o ancestral comum mais recente antecedendo em muito ac

ditimo periedo glacial.
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ABSTRACT

Population structure is one of the major factors shaping the patterns of genetic
variation across time and space. Due to the climatic fluctuations of the
Quaternary, several species may have suffered population reduction and
fragmentation, becoming restricted to refugia during glacial periods and
expanding again during interglacials. This has been used to explain some
patterns currently observed in several species. The present work consisted in the
development and study of models to help understand the genetic consequences
of cyclic changes in population structure and size, such as the ones that may have
occurred throughout the climatic fluctuations of the Quaternary. Population
reduction may cause reduction in population effective size, mean coalescence
time and genetic variation, whereas an increase in population subdivision may
have the opposite effect. In order to investigate these two opposite effects, two
models were studied, both with two alternating phases, corresponding to the
glacial and interglacial periods. Both models included changes in population
structure, besides those in population size, in a cyclic manner. In the first model,
completely panmictic phases were alternated with completely structured ones.
Based on this model, an expression was derived for the expectation of
coalescence times of two sequences and, from this, an expression for the
expectation of the number of segregating sites. Both an increase in the number of
demes and in the duration of the structured phases caused an increase in
coalescence times and levels of genetic variation. The results obtained were
compared to what would be expected for a panmictic population of constant size.
It was verified that population structure may outhweigh the effect of population
reduction during glacial periods. Specifically, the mean number of segregating
sites can be greater in the proposed model, even when population size is quite
reduced during the structured phases. In the second model, population
subdivision was allowed in both phases - according the finite island model -

with migration. Populatidn size, migration rate and number of demes varied
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between phases. For this model, besides an expression for the mean coalescence
time, an expression for the distribution of coalescence times was also obtained.
The distributions observed were quite different from what would be expected for
a panmictic population of constant size. Population reduction during glacial
periods caused discontinuities and multiple peaks in the distribution of
coalescence times, as well as a reduction in the expected times. An increase in
population structure, through reducing migration rates, increased the mean
times and attenuated the peaks of the distribution. Mean coalescence times, in
general, also increased with a greater number of demes during glacial periods.
The results obtained help understand the genetic consequences of glacial cycles,
and, especially, point to the importance of population structure for the
maintenance of genetic variation. Besides, they offer a potential explanation for
the genetic patterns observed in several species, for which long gene genealogies
are observed, with the most recent ancestor predating by far the last glacial

period.
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INTRODUCAO GERAL

O periodo Quaternadrio teve inicio hd aproximadamente 2 mithdes de anos,
e vem sendo marcade por grandes variagDes climaticas, com alterndncia de
periodos glaciais e interglaciais. Varios estudos paleoclimaticos indicam que
essas flutuagbes ocorrem ciclicamente, relacionadas a mudancas periédicas na
Orbita da Terra (Tzedakis et al. 1997, Petit et al. 1999, Jouzel 2003). Cada ciclo
completo dura aproximadamente 100.000 anos, com periodos glaciais longos
interrrompidos por periodos interglaciais mais curtos (de menos de 10.000 anos
geralmente), além de algumas flutuacbes menores aninhadas em cada periodo.
Atualmente vivemos wum periodo interglacial, que teve inicio ha
aproximadamente 11.000 anos (Petit et al. 1999).

Essas flutua¢des climdticas parecem influenciar o padréo de distribuicdo
de diversos organismos (Webb & Bartlein 1992, Burnham & Graham 1999).
Muitas espécies podem sofrer reducdo e fragmentagdo populacional, ficando
restritas a “refiigios” durante os periodos glaciais. Durante os interglaciais
podem, entdo, se expandir novamente. Essas mudangas de tamanho e
distribuicic populacional tém side bem investigadas, especialmenie no
Hemisfério Norte, em regides de alta latitude em que as alteragbes climaticas
foram muito pronunciadas. Mas hd também estudos e discussGes acerca das
conseqiiéncias das flutuages climdticas do Quaterndrio para espécies tropicais
(Hewitt 2000, 2004; Lessa et al. 2003). Nos trdpicos, o clima mais frio e seco
durante os periodos glaciais permitiu a expansao de savanas e campos, com uma
reducio e possivel fragmentacio das florestas.

Mudangas demogréficas podem, a principio, deixar sinais detectiveis a
partir de seqtiéncias de DNA. J4 existe uma grande quantidade de estudos, a
partir de dados genéticos, de espécies que teriam passado por essas mudangas
ciclicas (Hugall et al. 2002, Lessa et al. 2003, Petit et al. 2003, Galbreath & Cook
2004, MicLachlan et al. 2005, entre outros). Na maioria desses trabalhos busca-se

responder questdes acerca do passado populacional das espécies, tentando-se



esclarecer a existéncia de refigios, bem como seu nimero e sua importincia para
a variabilidade genética de populagdes atuais. Em geral, procura-se enfocar as
conseqiiéncias genéticas do ultimo ciclo apenas; entretanto, para muitas dessas
espécies, 0 ancestral comum mais recente dos genes estudados parece ocorrer
anteriormente ao dltimo periodo glacial (Hewitt 2004). Por exemplo, em duas
espécies de besouros do género Moneleima, que ocorrem em regides desérticas da
América do Norte, estimou-se que o tempo até o ancestral comum mais recente
de alguns genes mitocondriais teria ocorrido hd mais do que um ou até dois
milhées de anos atrds (Smith & Farrell 2005). Outro exemplo € o caso do lagarto
Ibérico, Lacerta schreiberi, em que linhagens de DNA mitocondrial parecem
anteceder o periodo Quaternario (Paulo et al. 2001). Além disso, estudos de
filogenia indicam que varios faxa teriam se originado anteriormente ao
Pleistoceno (por ex. Klicka & Zink 1997, para aves norte-amercianas; Moritz et al.
2000, para faunas de florestas tropicais). Esses estudos indicam que grande parte
das espécies existentes hoje podem ter sofrido multiplos ciclos glaciais e,
possivelmente, carregariam algum sinal genético desta histéria.

E interessante, portanto, um modelo tedrico que descreva as
conseqiidncias genéticas de tais mudangas ciclicas. Apesar da ampla quantidade
de estudos empiricos, ainda hd necessidade de estudos tedricos, de modelos que
sejam adequados para descrever as conseqiiéncias genéticas dos ciclos glaciais-
interglaciais. Dois processos muito importantes, que tém que ser levados em
conta, sdo: reducdo de habitat e fragmentagio de habitat. Espera-se que esses
processos afetem o ndmero de individuos que o habitat é capaz de suportar
(tamanho populacional) bem como a distribuigdo dos individuos no ambiente
(estrutura populacional).

Os efeitos genéticos de mudangas de tamanho populacional tém sido o
objeto de numerosos estudos tedricos, a0 passo que mudangas em estrutura

populacional tém sido menos estudadas. A seguir, passamos a uma breve revisio



da literatura pertinente, ao final da qual descreve-se o que foi realizado no

presente trabalho.

Mudangas em tamanho populacional

Um tipo de mudanga em tamanho populacional que é de grande interesse
em genética.de populagdes é o “gargalo”: uma redugao populacional, geralmente
seguida de uma expansdo. E interessante notar que um dos primeiros estudos
acerca do efeito de gargalos sobre a variabilidade genética foi motivado por
flutuagdes populacionais ciclicas. Um dos resultados amplamente conhecidos, de
Sewall Wright (1938), é que quando os ciclos tém curta dura¢do — em geracdes — a
média harmoénica dos tamanhos da populacao ao longo do tempo é uma boa
aproximacdo para seu tamanho efetivo. Posteriormente, foram descritos os
efeitos de um tinico gargalo sobre a heterozigosidade e o ntimero de alelos (Nei
et al. 1975, Maruyama & Fuerst 1984, 1985a). O efeito de gargalos periddicos
sobre a heterozigosidade foi estudado por Maruyama & Fuerst (1985b), a partir
de um modelo com duracio fixa dos ciclos.

No contexto da teoria de coalescéncia (Kingman 1982a,b, Hudson 1983,
Tajimé 1983), e pressupondo um modelo mutacional de infinitos sitios (Kimura
1969), Tajima (1989b) estudou a esperanca do ntimero de sitios polimérficos e o
ntimero médio de diferencas par-a-par em um modelo em que uma populagio
sofre uma mudanga repentina em seu tamanho populacional, ou sofre um
gargalo. Slatkin & Hudson (1991) estudaram a distribuicio do nimero de
diferencas par-a-par em um modelo de crescimento exponencial e Rogers &
Harpending (1992) investigaram esta distribui¢éo para um modelo de expansio
repentina. Em ambos, verificou-se que a distribui¢dio apds um evento de
expansao é unimodal e bem distinta da que seria esperada para uma populagio
em equilibrio. Além disso, foram desenvolvidos métodos computacionais para a

estimativa de parametros de tamanho e crescimento populacional a partir de



informagdes das genealogias génicas (Griffiths & Tavaré 1994, Kuhner et al.
1998).

Estrutura populacional

Apesar de os efeitos de mudangas em estrutura populacional terem sido
relativamente pouco estudados, as conseqiiéncias genéticas da estrutura
populacional em si tm sido objeto de numerosos estudos. Entre os modelos de
subdivisiio populacional e migrac¢do, o modelo de ilhas (Wright 1931) talvez seja
o mais estudado, devido em grande parte a sua simplicidade matematica. Neste
modelo, a populagdo € subdividida em sub-populacdes, ou “demes”, sendo que
todos os demes podem trocar migrantes entre si. Em geral, wma taxa de migracdo
reduzida entre demes resulta em uma reducéo da diversidade genética dentro de
cada deme e, ao mesmo fempo, em um aumento da diferenciacdo genética entre
os demes. A partitr do modelo de ilhas, Wright (1951) concluiu que uma
populagdo subdividida é capaz de preservar um maior nimero de alelos quando
comparada a uma populagio panmitica de mesmo tamanho total. Ou seja, uma
possivel conseqiiéncia da subdivisdo € a acumulagio de diversidade genética
adicional.

QO modelo de ilhas formulado por Wright, originalmente, tinha como.
pressuposto um nimero infinito de sub-populagtes. Modificacdes posteriores
passaram a considerar um nimero finito (Maruyama 1970, Latter 1973). Slatkin
(1991) obteve expressdes para coeficientes de endogamia a partir de tempos de
coalescéncia par-a-par, para o modelo de finitas ilhas e diversos outros modelos.
Nei & Takahata (1993) obtiveram uma férmula para o tamanho efetivo
populacional no modelo de finitas ilthas, a partir de tempos médios de
coalescéncia, e descobriram que este tamanho efetivo é maior em populagdes
com taxas de migracdo menores.

Wakeley (1998) obteve expressdes para a esperanga e a varidncia do

comprimento total da arvore para a genealogia de uma amostra de seqiiéncias, a



partir do modelo de finitas ilhas, pressupondo um grande niimero de ilhas. Esta
solugdo utiliza uma abordagem de separagao de escalas de tempo, em que a
histéria da amostra é dividida em duas fases. A histéria recente da populagdo é
modelada com consideragao explicita da distribuicdo geografica das amostras.
Para a histéria mais remota da populagdo — que representa a maior parte da
profundidade da genealogia - o processo genealdgico apresenta um
comportamento muito semelhante ao do processo de coalescéneia em uma
populagdo panmifica de tamanho constante (“standard coalescent”, Kingman
1982 a,b), ap6s uma correcdo da escala do tempo, a partir do tamanho efetivo
populacional. Estes resultados foram extendidos para um modelo que inclui uma
mudangca demogréfica no passado (Wakeley 1999) e para um modelo mais geral,
que permite migragdo assimétrica enire demes e tamanhos desiguais para os
demes (Wakeley 2001).

Muitas outras contribuicdes foram feitas para o estudo de populagdes
subdivididas. O trabalho de Wakeley (2004) inclui uma revisdo sobre o modelo
de ilhas, bem como algumas novas perspectivas. Hey e Machado (2003)
apresentam uma revisdo mais geral sobre a relagdo entre estrutura genética e
geogréfica; e Charlesworth et al. (2003) apresentam uma revisdo completa da

literatura sobre genética de popula¢des subdivididas.

Expansiio com estrutura populacional

Alguns estudos recentes consideraram modelos de expansdo ou
colonizagao populécional incluindo também estrutura populacional. Austerlitz et
al. (1997) estudaram colonizagdo a partir de um tunico deme, em um modelo
“stepping-stone” linear. Eles obtiveram a distribuigao e a esperanga dos tempos
de coalescéncia de dois genes, e estudaram também a mudanga dos valores
esperados para o indice de fixagdo Fsr a0 longo do tempo. Eles verificaram que o
efeito fundador (redugao da diversidade genética devido ao pequeno nimero de

individuos colonizadores) tende a aumentar com a distincia do primeiro deme, e



diminuir quando a taxa de migragdo ou a taxa de crescimento populacional sio
aumentadas. Estes autores também estudaram o efeito de um gargalo
populacional em um Unico deme, e observaram um pico na distribuicio dos
tempos de coalescéncia de dois genes, correspondendo ao momento de
ocorréncia do gargalo. Austerlitz et al. (2000) simularam o processo de
colonizacdo em um modelo “stepping-stone” de duas dimensdes. Eles estudaram
também o impacto de gera¢bes sobrepostas e de uma fase juvenil longa sobre a
distribui¢do da variabilidade genética, visando explicar os padrdes genéticos
observados em plantas anuais e arvores.

Ray et al. (2003} fizeram um estudo de simula¢do de expansio no espago —
iniciada a partir de um tnico deme — em um modelo “stepping-stones” bi-
dimensional, registrando varios aspectos da diversidade molecular intra-démica.
Eles observaram que para valores altos de Nm (nimero de migrantes por
geragdo) — acima de 20 ~ as genealogias génicas tém forma de estrela e as
distribuicbes “mismatch” sdo unimodais, como € o padrao esperado em
expansdes sem estrutura populacional (Slatkin & Hudson 1991, Rogers &
Harpending 1992). Mas quando o niimero de migrantes é menor, as distribuicdes
“mismatch” se tornam multimodais, e testes estatisticos comumente utilizados
para detectar desvios de equilfbric demografico, como o teste D de Tajima,
passam a ter pouco poder para detectar as expansdes. Excoffier (2004) deu
continuidade a este estudo, obtendo, analiticamente, expressGes para a
distribui¢do do nimero de diferencas entre pares de seqiiéncias amosiradas apos
uma expansdo com subdivisdo, sendo esta modelada a partir do modelo de
infinitas ilhas. Os resultados encontrados foram concordanties com os que
haviam sido obtidos anteriormente por Ray et al. (2003) a partir de simulagéeé
baseadas no modelo do tipo “stepping-stones”. Muito recentemente, Ewing &
Rodrigo (2006) apresentaram um método para estimativa de pardmetros,
permitindo mudancas de diversos pardmetros populacionais ao longo do tempo,

inclusive do niimero de demes. O método foi desenvolvido para amostras seriais,



ou sgja, amostras obtidas em diferentes momentos no tempo, e pode ser usado
para estudar colonizagdo — e outros processos — quando este tipo de amostra

estiver disponivel.

O presente trabalho

O presente trabalho consistiu no desenvolvimento e estudo de modelos
tedricos com alternéncia de duas fases, correspondendo a perfodos glaciais e
interglaciais. Teve como objetivo auxiliar na compreensido das consequéncias
genéticas de mudancgas populacionais ciclicas, como as causadas pelas flutuag¢des
climaticas do periodo Quaterndrio.

Foram estudados dois modelos, ambos com mudanca na estrutura
populacional, além de mudanca no tamanho populacional, de uma maneira
ciclica. No primeiro modelo, uma fase panmitica foi alternada com urma fase em
que a populacdo é subdividida em demes de igual tamanho, sem migragao entre
eles. A partir deste modelo, obteve-se uma expressio para a esperanga
matematica do tempo de coalescéncia de duas seqiiéncias. Esta expressido
permitiu investigar os efeitos possivelmente opostos da redugio populacional e
do aumento de estrutura durante os periodos glaciais, identificando situacoes em
que 0s tempos médios de coalescéncia — e conseqlientemente o polimorfismo —
seriam aumentados ou diminuidos.

O segundo modelo foi mais geral, permitindo subdivisdo populacional -
de acordo com o modelo de finitas ilhas — com migracao, em ambas as fases. Os
pardmetros de tamanho populacional, taxa de migracao e nimero de demes
foram variados entre as fases. A partir deste segundo modelo estudou-se
também, além do tempo médio, a distribuicio dos tempos de coalescéncia de
duas seqiiéncias. Estudou-se como esta distribuicio é alterada pelas mudancas
ciclicas em estrutura e tamanho populacional, quando comparada a distribui¢ao
esperada no modelo de Kingman (1982a), de uma populacdo panmitica de

tamanho constante (“standard coalescent”). Também, a partir de ambos os



modelos estudados, investigou-se a importincia da estrutura populacional na
manutengdo da variabilidade genética durante periodos de redugio

populacional.
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ABSTRACT. The climatic fluctuations of the Quatemary have influ-
enced the distribution of numerous plant and animal species. Several
species suffer population reduction and fragmentation, becoming restricted
to refugia during glacial periods and expanding again during intergla-
cials. The reduction in population size may reduce the effective popula-
tton size, mean coalescence time and genetic variation, whereas an in-
creased subdivision may have the opposite effect. To investigate these
two opposing forces, we proposed a model in which a panmictic and a
structured phase alternate, corresponding to interglacial and glacial peri-
ods. From this model, we derived an expression for the expected coales-
cence time and number of segregating sites for a pair of genes. We
observed that increasing the number of demes or the duration of the
structured phases causes an increase in coalescence time and expected
levels of genetic variation. We compared numerical results with the ones
expected for a panmictic population of constant size, and showed that
the mean number of segregating sites can be greater in our model even
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Coalescence times and glacial cycles 467

when populatton size is much smatler in the structured phases. This points
to the importance of population structure in the history of species subject
to climatic fluctuations, and helps explain the long gene genealogies ob-
served in several organisms.

Key words: Refugia, Coalescent theory, Population structure,
Pairwise differences

INTRODUCTION

The climatic fluctuations of the Quaternary, with cycles of glacial and interglacial peri-
ods, have affected the distribution of several organisms (Webb and Bartlein, 1992; Burnham
and Graham, 1999). Many plant and animal species are subject to population reduction and
fragmentation, becoming restricted to refugia during glacial perieds and expanding again during
the intergiacials. This affects both population size and structure, in a cyclic fashion.

Demeographic changes may be detectable in DNA sequences. In fact, there have been
a great number of studies based on sequence or polymorphism data from species that are
thought to have undergone these cyclic changes (e.g., Hugall et al., 2002; Lessa ef al., 2003;
Petit et al., 2003; for reviews, see Hewitt, 2000, 2004). In several of these, the questions of
interest are the existence and number of refugia, as well as their importance for current genetic
variation. '

From the theoretical side there have been numerous studies on the genetic conse-
quences of population size change (e.g., Wright, 1938; Nei et al., 1975; Slatkin and Hudson,
1991) and on the importance of population structure (for review, see Charlesworth et al., 2003).
Also, some authors have included subdivision in models of population expansion or colenization
(Austerlitz et al., 1997, Ray et al., 2003; Excoffier, 2004). However, none of them have taken
into account cyclic changes in both population size and structure. Such a model is necessary if
we are to investigate the genetic consequences of cyclic climatic fluctuations.

One question of interest is whether the demographic changes caused by these climatic
fluctuations lead to an increase or a decrease in coalescence times and, consequently, in levels
of genetic variation. The reduction in population size is expected to reduce the effective popula-
tion size, mean coalescence time and overall genetic variation. On the other hand, the increase
in population subdivision may cause a stretch of the mean coalescence times and an increase in
genetic variation.

In the present study, we investigated coalescence times and genetic variation in a mode]
of repeated changes in population size and structure. We used a coalescent approach (Kingrnan,
1982a,b; Hudson, 1983; Tajima, 1983), and obtained expressions for the expected coalescence
time and the number of segregating sites of two sequences, sampled in the present interglacial
period. We considered the effects of the opposing forces of population reduction and increased
structure, focusing specifically on what conditions resuit in an overall increase or decrease in
mean coalescence times and genetic variation.

Genetics and Molecalar Research 3 (3): 466-474 (2006) www.funpecrp.com.br
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EFE Jesuset al. 468
MODEL AND THEORY

In this model the population undergoes cycles composed of two phases: a panmictic
phase, corresponding to the interglacial periods, and a structured phase, corresponding to the
glacial periods (Figure 1). We assumed that the species is favored by the interglacials, and
therefore has a larger and more continucus population during those times, while having a smalier
and more fragmented population during the glacial periods.

Past

t ocoooooooo0o0
< R
O000O0O00O0O0
e —
ODO0OO0O0O0O0O0 OO0

Present ~ <_____ -

Figure 1. Schematic representation of the model, with alternating panmictic and structured phases corresponding to
interglacial and glacial periods, respectively. The current phase is an interglacial,

Reproduction 1s according to the Wright-Fisher model (Fisher, 1930; Wright, 1931), both
in the panmictic phase and within each deme during the structured phase. We considered a
haploid organism, but the conclusions can be extended to diploid organisms. We also made the
usual coalescent assumption that the population or deme size is much larger than the number of
sequences sampled (see Hudson, 1990).

The model has five parameters, which are the population size during the panmictic
phases (), the duration in generations of each panmictic phase (z,), the number of demes in
the structured phases (D), the deme size (N S), and the duration in generations of each structured
phase (£,). We assumed that during the structured phases the population is subdivided into D
demes of equal size (N, ), with no migration between them. In the transition from a panmictic to
a structured phase, backwards in time, the lineages are randomly distributed among the D
demes.

We have derived an expression (see Appendix)} for the expected coalescence time
(E[coal. time]) of two genes sampled in the present interglacial:

D

Elcoal. time] =
[ ] D —(D _l)e-rp!Np _e-(r, TNy +15 /N ) (Equation 1)

.{NP.(I-e'fﬂNy ) +e'fp N, [(l—lfD).fx +(11"FD)‘NS.(1-€.‘SINS)]}
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We were also interested in levels of genetic variation, and one measure which is largely
used is the number of segregating - or polymorphic - sites in a sample of genes. The expectation
of this number is a simple function of the mean coalescence time if we assume no intra-genic
recombination and a simple mutation model. Assurning an infinite sites mutation model (Kimura,
1969), the expected number of segregating sites in a sample of two genes is, simply:

E{S]=2u.E[coal. time] (Equation 2)

where 4 is the mutation rate per sequence per generation, and E[coal. time] is obtained from
Equation . The mean number of segregating sites, in this case, is also the mean number of
pairwise differences.

RESULTS AND DISCUSSION

We started by studying the influence of each parameter of the structured phases on
coalescence times and genetic variation. Since we are interested in habitat reduction during
glacial periods, we focused our attention to cases in which both N, < N and DN _< N, ie.,
when both the deme size and the total population size in the structured phases - corresponding to
the glacial periods - are smaller than the population size in the panmictic phases.

In Figure 2, we plotted the mean number of segregating sites as function of the time (z,),
deme size (V) and number of demes (D} of the structured phases. We assumed a mutation rate
of 4 = 107 and fix the parameters of the panmictic phases as N,= 100,000 and z,= 10,000. The
other parameter values for each plot are given in the figure legend.

A B
& -]
@ e 6
iz}
& 4
2 2
a. 1]
2 otd 40000 SO000  B0OOD 100060 1 2 2 4 5 a 7 8 a B o 20000 40000 60000  AOOM 100000
N o . ts

Figure 2. Mean number of segregating sites (E[S]) as a functionr of the following parameters of the structured phase: A.
size of each deme (¥), with 1, = 100,000 and I = 5; B. Number of demes (D}, with 1,= 100,000 and N, = 10,000 {lower line)
or DN = 50,000 (upper line), and C. Number of generations {z;), with N= 10,000 and D = 5 (lower line) or D = 10 (upper
line). In all cases &, = 100,000: r, = 10,000; » = 107,

As expected, a reduction in population size during the glacial phases will tend to reduce
the mean coalescence times and consequently the mean number of segregating sites (Figure
2A). The increase in subdivision, on the other hand, tends to increase the mean coalescence
times and the mean number of segregating sites.

In Figure 2B we observe that the mean number of segregating sites increases with the
number of demes. We plotted the curve for two different cases: keeping the value of N_ con-
stant or keeping the value of D.N constant. In the first case, as the number of demes increases,
the total population size (D.N) also increases. In the second case, the total population size is
kept constant, and increasing > means subdividing the population into smaller demes. It is inter-
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esting to observe that both curves behave almost identically. Especially, that a greater number of
demes, but with smaller size each, will still cause a large increasé in coalescence time and
genetic varation. We have investigated this with other parameter vaiues, and a similar behavior
was observed. This indicates that the number of demes is important in maintaining genetic
diversity during periods of population reduction - when migration between them is negligible -
even when each deme is of small size.

The duration of the structured phases also influences coalescence time and genetic
variation. In-Figure 2C we observe that an increase in 7 generally causes an increase in the
mean number of segregating sites. In the case where D = 5, there is a small range of the plot
where the mean number of segregating sites decreases with increasing . However, it in-
creases in most of the plot when D = 5, and throughout the plot for larger values of D (shown
here for D = 10).

Having studied the influence of each parameter of the glacial phases, we now tum to a
study of the conditions in which the coalescence times and genetic variation are increased or
decreased, in comparison to what is expected for a panmictic population of constant size N o
With the values chosen (V,= 100,000, i = 10%), the expected number of segregating sites would
be E[S] = 2.

In Fagure 3 we plotted E[S] as a function of the number of demes () and the total
population size during the structured phases (D.N ). Figure 3A is a three-dimensional plot, and
Figure 3B is a contour-plot with two levels: above and below E[S] = 2. We observe that when D
22, the mean number of segregating sites is greater than two, that is, greater than what would
be expected in the case where the population is always panmictic with constant size N,. Even
when the total population size and the deme size in the glacial phases are quite small (Figure 3B,
bottom), still the expected genetic variation is increased if the population is subdivided into two
or more demes.

100,000

80,000 ESp2

0,000
D.Ng

49,000
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Figure 3. Mean number of segregating sites (E[S1) as a function of the number of demes (D} and the total population size
(DN} during the structured phases, with &, = 100,000; ¢,= 10,000; ¢ = 100,000, and ¢ = 10%. A, Three-dimensional plot;
B. Contour-plot with the region where E[S1<2 in black and E[S]>2 in white.

We aiso plotted the mean number of segregating sites as a function of the duration (1)
and deme size (N,) during the structured phases, fixing the number of demes at D = 2 (see
Figure 4). We observe that, when 7, is large, the mean number of segregating sites is greater
than two even with very small values of N, (Figure 4B, bottom right comer). Paleoclimatic
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studies support the notion that the glacial periods lasted much longer (~80,000-90,000 years)
than the interglacials (~10,000) (Petit et al., 1999; Jouzel, 2003), Therefore, in species with one
generation/year, for instance, such large values of z_ are highly plausible.
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50,000 Ny

20,000

Ns 10,000

e e T —. |
20,000 40,000 80,000 80,000 100,000

i
Figure 4. Mean number of segregating sites (E[S]) as a function of the time in generations {z;) and the size of each deme
(W) during the structured phases, with &, = 100,000; r,= 10,000; D = 2, and g = 10, A. Three-dimensional plet; B.
Contour-plot with the region where E[5]<2 in black and E[5]>2 in white.

Most molecular studies of species which have undergone the cyclic changes of the
Quaternary have focused on the genetic consequences of the last cycle only. However, in
several species the most recent common ancestor at some loci predates the last glacial period,
sometimes tracing back even to the Pliocene (>2 mya) (e.g., Paulo et al., 2001 Hewitt, 2004;
Smith and Farrell, 2005). The results obtained here suggest that population subdivision, espe-
cially during the long glacial periods, is a possible explanation for these fong gene genealogies.

Population subdivision is known to cause an increase in genetic variation at the species
level. Based on the island model, for instance, Wright (1951) concluded that a subdivided popu-
lation is capable of preserving a greater number of alleles than a well-mixed population of the
same size. Nei and Takahata (1993}, studying mean coalescence times in a finite island-model,
found that the effective size of a species can be larger when migration rates are low. In the
present study, we have shown that, even when the increase in population structure - by means
of subdivision - is accompanied by a simultaneous reduction in population size, it can still cause
an increase in expected coalescence time and levels of genetic variation.

The model presented here has some quite unrealistic assumptions, such as the total
absence of population subdivision during interglacial periods as well as the absence of migration
during the glacial periods. The investigation of a more general model, where these assumptions
are relaxed, 1s the subject of an ongoing study. Nonetheless, the results obtained with the pres-
ent model are useful in pointing to the importance of population subdivision in the history of
species subject to climatic cycles, and offer a potential explanation for some of the observed
patterns in melecular data.
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APPENDIX

In order to obtain an expression for the mean coalescence time, we made use of the
fact that the expectation of a sum of random variables is equal to the sum of the expectations of
each random variable. The expected mean coalescence time is the sum of the contrbutions of
each phase, which we will call here X, X, X, etc. We need to obtain the sum of the E[X]’s.

For the first phase - panmictic - the contribution can be divided into two cases: if coales-
cence happens already during this phase, and if it does not. If it does not occur, the contribution
of this phase for the coalescence time 15 simply ¢,. If it does, the contribution is the sumber of
generations that have passed until the coalescence event. Summing these parts multiplied by
their respective probabilities, and simplifying, we obtain:

E{X 1= Tp,e'r’ + fr.e“dr =]-e" (Equation Al)

t=0

where 7,= 1, /N,. It 1s mportant to note that, in this calculation, we used the continucus-time
approximation (see Hudson, 1990), with time measured in units of N, generations. The contribu-
tion of this phase in units of generations is, therefore;

E[X,]=N,.(1-e"") (Equation A2}

For the second phase (structared), the contribution will be equal to zere if the two
lineages have already coalesced during the previous phase. If they have not coalesced (prob-
ability equal to ), the two lineages will be randomly distributed among the demes. The prob-
ability that they will end up in a single deme is 1/I3, and in separate demes 1-1/D. Since we are
assuming that there is no migration, two lineages In separate demes have zero probability of
coalescing. In this case, the contribution for the mean coalescence time is 7. And in the case
where the lineages end up in the same deme, the contribution is calculated in the same way as
for the panmictic phase, using ¢, and N instead of 7,and N,. Therefore, the contribution of this
phase for the mean coalescence time is:

-1, I

E{X,]=¢"""[(1-1/ D)5 + (1/ D).Ny.(1-&5"%)] (Equation A3)

For the third phase, panmictic, we only need the probability that the lineages have not
coalesced yet, multiplied by the result of the first phase (Equation A2). The probability that the
lineages have not coalesced by the beginning of the third phase is:

P[no coal. in 1st or 2nd phase] = &™*"™ [1-(1/ D) + (1/ D) (=" )] = :
{(Equation A4)

=e-:pINF (D -1 +e—tsts)f1D
The contribution of the third phase is then:
E[X,]=[e""" (D-14€""")/DIN (1-¢""") (Equation A5)
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[ikewise, the contribution of the fourth phase is:

E[X,)=[e"" (D-1+e"™)/ D] [(1-1/ D).t + (1/ D). N (1-¢*'")] (Equation A6)

For each odd phase, then, the contribution for the mean coalescence time is of the form:

R

ﬂ fAaf . .
E{X)=[e"" (D-14e"")/D]> N,.(1-¢"*"");i0dd  (EquationA7)

And in each even phase, the contribution is of the form:

13

E[X]=[e""" (D-1+e5"™)/D 3
=1 ¢ )/ D) (Equation A8)

e [(1-1/D) 4, +(1/ D) Ny (1-¢™'")]; i even

Combining both, and summing for each phase, we obtain the mean coalescence time:

E[coal. time]={i[e"" e (D-t4ets )fD]i}
=0

(Equation A9)
,{NF_(I —e ey £ e N [(1-1/ D)t + (1 DY).N (1 -2 )]}
The sum present in the previous equation is a geometric series of kind:
> (Bquation A10)
i=0 R
with |aj<1, which converges to 1/(1-a}. This allows one more simplification:
) D
Efcoal. time] = DoD- l)e"“’ Wy TN, +15 1 Ng)
(Equation Al1)

(N, (1-¢"") +¢ " [1-1/ D)1, + (/D) Ny (-]}

This is then our Equation 1, presented beforehand in the main text.
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Abstract

The climatic cycles of the Quaternary have influenced the population size and structure of
numerous species. In many cases gene genealogies have been observed for which the
most recent common ancestor predates the last glacial period. This points to the
importance of taking multiple cycles into account in theoretical studies. In the present
study, we investigate a model of repeated glacial cycles. We model demographic history
as two alternating phases corresponding to glacial and interglacial periods. We assume an
island model of subdivision in both phases, with cyclic changes in the number of demes,
deme size and migration rate. We obtain expressions for the distribution and expectation
of coalescence times for a pair of genes, sampled either from the same deme or from
separate demes. The distributions observed are quite different from what is expected
under a panmictic population of constant size. Reduced deme size during glacial periods
produces multiple peaks in the distribution of coalescence times and a reduction in the
mean times. Increased population structure (reduced migration rates) increases the mean
coalescence times and attenuates the peaks of the distribution. Mean coalescence times
also generally increase with the number of demes during glacial periods. Our results help
to clarify the genetic consequences of glacial cycles and the role of population structure
in maintaining genetic variation. The approach developed here can also be used to study

the genetic consequences of cycles with shorter time scales, e.g. seasonal cycles.
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Introduction

The Quatemary period has been characterized by great climatic changes, with an
alternation between glacial and interglacial perilods. Paleoclimatic studies indicate that
these cyclic fluctuations are related to periodic changes in the Earth’s orbit (Jouzel 2003,
Petit et al. 1999, Tzedakis et al. 1997). Each complete cycle lasts approximately 100,000
years, with long glacial periods interrupted by shorter (usually less than 10,000 years)
interglacial periods, and some smaller fluctuations nested within each period. The present
time is an interglacial, and began about 11,000 years ago (Petit et al. 1999). These
climatic fluctuations have influenced the distributions of organisms (Burnham & Graham
1999, Webb & Bartlein 1992). Many species have undergone population reduction and
fragmentation, becoming restricted to refugia during the glacial periods and expanding
again during the interglacial periods. The biotic and abiotic changes associated with these
cycles have been most pronounced in temperate and high latitude regions, but have also
been significant in the tropics, where the cooler and drier times allowed an expansion of
grassland and savannah, with a reduction and possible fragmentation of forest habitats

(Hewitt 2004, 2000; Lessa et al. 2003 and references therein).

Changes in population size and structure may be detectable in DNA sequences. In fact,
there are a number of studies of genetic diversity in species thought to have undergone
these cyclic changes (e.g. McLachlan et al. 2005, Galbreath & Cook 2004, Lessa et al.
2003, Petit et al. 2003, Hugall et al. 2002). These studies have focused particularly on the
existence and number of refugia, as well as their impact on current genetic variation.
While most of the analytic tools available focus only on the genetic consequences of the
last cycle, it is not uncommon for the most recent common ancestor at certain loci to
predate the last glacial period in some species whose distribution and abundance are
known to have been affected by glaciation (Hewitt 2004). For example, the times to
common ancestry for mtDNA in two species of flightless beetles (genus Moneleima)
from desert regions of North America have been estimated at upwards of 1 to 2 Myr
(Smith & Farrell 2005). Another example is the Iberian lizard, Lacerta schreiberi, in
which mtDNA lineages appear to trace back to the Pliocene (> 2 Myr ago) (Paulo et al.

2001). In addition, some phylogenetic studies indicate a pre-Pleistocene origin of several



taxa (e.g. Klicka & Zink 1997, for North American birds; Moritz et al. 2000, for tropical

forest faunas).

These studies suggest that many of the species extant today may have cxperienced
multiple glacial cycles, and might carry some genetic signal of this history. For this
reason, we have investigated the distribution of coalescence times between pairs of
sequences in a model of glacial cycles. The aim is to describe the possible genetic
signatures of cyclical changes in population size and structure. The model is a great
simplification of the complex histories of most species, but it allows us to assess the
effects of glacial cycles quantitatively. The two key features of glacial cycles we wish to
understand are habitat reduction and habitat fragmentation during glacial periods. These
are éxpected to affect both the number of individuals the habitat can carry (i.e. population

size) and the distribution of individuals across the landscape (i.e. population structure).

There have been many theoretical studies of the effects of changes in population size, and
to a lesser extent of changes in population structure. The effects of bottlenecks have long
been of interest in population genetics, and one of the first accounts of the effect of
bottlenecks in genetic variation was motivated by cyclic population fluctuations. One of
Wright’s (1938) well known results is that, when the cycles are of short length — in
generations — the inbreeding effective population size is well approximated by the
harmonic mean of the sizes over time. Later studies described the effects of a single
bottleneck on heterozygosity and number of alleles (Nei et al. 1975, Maruyama & Fuerst
1984, 1985a) under an infinite-alleles model. The effect of periodic bottlenecks was
studied by Maruyama & Fuerst (1985b), using a model of fixed cycle length, for which

they described the fluctuations of heterozygosity through time.

In the context of coalescent theory (Kingman 1982a,b, Hudson 1983, Tajima 1983) and
assuming the infinite sites model of mutation (Kimura 1969), Tajima (1989b) studied the
expected number of segregating sites and the mean number of pairwise differences in a
population subjected to a sudden change in size or a single bottleneck. Slatkin & Hudson
(1991) studied the distribution of pairwise sequence differences in a model of exponential
growth, and Rogers and Harpending (1992} considered this distribution in a model of

sudden expansion. In addition, computational methods have been developed for the



estimation of population size and growth parameters, using information from the gene
genealogies (Griffiths & Tavaré 1994, Kuhner et al. 1998).

The impact of population structure - in the form of subdivision and migration - on genetic
diversity has been the focus of numerous studies. Among the models of population
subdivision and migration, the island model (Wright 1931) is the best studied one, due in
large part to its mathematical simplicity. In this model, the population is subdivided into a
number of sub-populations, or demes, all of which exchange migrants with one another.
In general, a lower rate of migration between demes results in a reduction of genetjc
diversity within each deme and an increase in genetic differentiation between demes.
Based on the island model, Wright (1931) concluded that a subdivided population is
capable of preserving a greater number of alleles than a well-mixed population of the
same size. That is, one possible cousequence of subdivision is the accumulation of

additional genetic diversity.

Wright's formulation of the island model assumed an infinite number of sub-populations,
or demes, but it was later modified to include a finite number (Maruyama 1970, Latter
1973). Slatkin (1991) obtained expressions for inbreeding coefficients in terms of
pairwise coalescence times for this and other models. Nei & Takahata (1993) derived a
formula for an effective population size in the finite island model, using mean
coalescence times, and found this effective size to be larger in populations with small
migration rates. A thorough review of the literature on the genetics of subdivided

populations was recently published by Charlesworth et al. (2003).

A few recent studies have been concerned with models of population expansion or
colonization that include population structure. Austerlitz et al. (1997) studied
colonization in a linear stepping-stone model, starting from a single deme. They obtain
the distribution and expectation of coalescence times for two genes, and also study the
evolution of Fgt through time. They observe a founder effect that increases with distance
from the starting deme, and generally decreases with a higher migration or growth rate.
They also study the effect of a bottleneck within a single deme. Of relevance to the work
we present here, they observed a multi-modal distribution of coalescence times for a pair

of genes, with a peak corresponding to the time of the bottleneck. Austerlitz et al. (2000)
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simulated the colonization process in a two-dimensional stepping-stone model. They also
studied the impact of overlapping generations and a long juvenile phase in the
distribution of genetic variation, in order to explain the observed patterns in genetic data
from trees and annual plants. Ray et al. (2003) published a simulation study of a spatial
expansion from a single deme in a two-dimensional stepping-stone model, recording
several aspects of intra-deme molecular diversity. Excoffier (2004) studied a sudden
‘expansion with subdivision, in an infinite-island model, and obtained analytical
expressions for the distribution of the number of differences between a pair of sequences,
sampled after the expansion. A very recent study by Ewing and Rodrigo (2006) presents a
method for parameter estimation that aliows changes in several population parameters
through time, including the number of demes. The method is developed for serial
samples, that is, samples from different points in time, and it can be used to study

colonization — and other processes — when stich samples are available.

Motivated by these empirical and theoretical results, we study coalescence times in a
model of cyclical changes in population size and structure. In a previous study (Jesus et
al. 2006, in press) we investigated a simple model, where a panmictic and a structured
phase — with no migration — alternate, and obtained an expression for the expected
coalescence time of two genes sampled in the present interglacial. In that model, the
increase in mean coalescence time due to population subdivision was capable of
outweighing the effect of population reduction during glacial periods. In the present
study, we investigate a more general model, allowing for population subdivision and
migration in both phases. We are particularly concerned with two questions. First, how
does the distribution of the time to coalescence under cyclical changes in population size
and structure differ from that under the standard Kingman (1982a) coalescent? Second,
what is the role of population structure in maintaining genetic diversity through periods
of glaciation? We investigate these questions quantitatively under the assumption that the
population is structured according to the finite island model, with cyclical changes.
Specifically, we obtain expressions for the distribution of the time to coalescence for two
genes sampled from the same deme and from different demes. The expressions are
functions of the matrices that describe coalescence during each phase, and are easy to

evaluate numerically. We plot these functions over different sets of parameters, reflecting
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different biological scenarios. Expressions for the expected coalescence times are also
obtained, and we use these to investigate the opposing effects of population reduction and

increased structure during glacial periods.

Model and Theory
The model forward in time

We model demographic history as an alternation of two distinct phases which we will call
phase 7 and phase G, for interglacial and glacial periods, respectively (see Fig. 1 for a
representation of the model backwards in time). We are currently experiencing an
interglacial period, so the most recent phase is of type I. The population may be
subdivided during both phases, and we assume that population structure follows a
symmetric island model (Wright 1931) with a finite number of demes (e.g., Latter 1973).
The number of demes, deme size and migration rate can differ between the two phases,
permitting examination of the joint effects of cyclic change in both population size and

structure.

Each phase lasts several generations, and transitions between phases occur in a single
generation. One complete cycle is made up of #;+ fc generations: # - 1 for phase I, t5- 1
for phase G, and one generation for each one of the transitions. Each generation includes
a reproduction step followed by a migration step. Generations are non-overlapping with
reproduction occurring within demes according to the Wright-Fisher model (Fisher 1930,
Wight 1931), with offspring sampled from an infinite “gamete” pool. We consider here a
haploid organism, but the conclusions can be extended to diploid organisms in the usual
way. In addition to the times, # and 7g, the model has six parameters, which are the
number of demes (D), the deme size (N), and the migration fraction (), with subscripts J
and G to denote the phase. Migration is modeled as follows: a fraction m of the
individuals in a deme are drawn from a migrant pool, to which all demes contribute
equally. Looking backwards in time, each ancestral lineage “migrates” with probability m
to a randomly chosen deme, which could be the deme from which it was derived

(probability 1/D). This kind of migration produces the same results as the case when
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Figure 1. Schematic representation of the model, with two altemating‘ phases: [
(interglacial) and G (glacial). The parameters #; and fg represent the duration of each

phase, in generations. Although the demes are aligned in this figure, an island model of
population subdivision is assumed (see text).
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lineages must migrate to a different deme if our m is replaced by m(D-1)/D (Takahata &
Nei 1984).

Since we are interested in habitat reduction during glacial periods, we restrict our
attention to cases in which N¢ < N; and NgDg < NiDy, i.e. when the deme size and the
total population size are smaller during glacial periods. With regard to fragmentation, we
are interested in two cases: (1) D¢ > Dy, so that fragmentation occurs during the glacial
periods resulting in an increased number of demes; and (2) D; > Dg, so that the glacial
periods cause a reduction in the number of demes by extinction. The details of how the
transitions between phases occur will depend on whether we are in case (1) or in case (2).
These details, presented below, were chosen for simplicity and also to take into account
the increased chance of coalescence that occurs when there is a transition to a smaller
number of demes. However, the overall results do not éeem to be very sensitive to these
details: we investigated a number of other ways these transitions might happen and the

results were similar (not shown).

In case (1), where the number of demes is greater during the glacial periods, the transition
from interglacial to glacial involves subdivision of each deme mto d new demes. Thus,
we have D¢ = dD;. For simplicity, we assume that this subdivision occurs via the infinite
gamete pool during the reproduction step. Specifically, each deme in phase 7 forms an
infinite gamete pool, and from this pool d demes are formed, each one by a random
sample of Ng individuals/gametes. In the transition from glacial to interglacial (G to ),
each set of d demes that originated from a single deme in the previous phase is fused into
a single deme again, also via the gamete pool. The goal here is to model the effect of the
demes expanding after the glacial period and thus becoming fused. Specifically, each
deme forms an infinite gamete pool, and from each set of d pools one of the D; demes is

formed.

In case (2), where the number of demes is smaller during glacial periods, we allow a
fraction of interglacial demes to go extinct in the transition to the glacial phase. In the
transition from I to G, D¢ of the D; demes are selected at random to persist. These demes
reproduce normally. The remaining Dr-D¢ demes go extinct. In the transition from G to 1,

each of the Dg demes reproduces to become one of the D; demes in the next phase. For
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each of the remaining DD demes, one of the Dy demes is chosen at random as a
parent, and the new deme is formed by sampling with replacement from that parent.
Therefore, some of the Dg demes will give rise to only one deme, and some to more than
one. It is important to note that, in the special case when each parameter value is equal for
both phases (D; = Dg, Ny = Ng, m; = mg), our model reduces to a standard finite island

model.

Coalescence probabilities

We have studied the distribution of coalescence times for a pair genes sampled either
from a single deme or from two different demes. During each phase, the ancestry of the
sample can be followed back in time using a discrete-time Markov chain. The three
possible states for the sampled lineages are: (1) being in the same deme, (2) being in
separate demes or (3) having coalesced. The one-generation transition matrix for an

interglacial phase is

[a‘,+1_a’){l—ij (1—0:,{1——1-—] [a‘,+1_a"IL}
Df N.’ 'D.Jr D.’ Nf
P, - [l—a’;][i_LJ l_l—af, 1-«, , W
D, N, D, DN,
0 0 1
/

where oj=(1-m;)* is the probability that neither of the lineages is a migrant. Each of the
entries (Ps); of the matrix is the probability that two lineages, now in state {, were in state
j in the previous generation. For instance, the probability that two lineages sampled from
the same deme coalesce in one generation is (P7);3. This mairix is equivalent to Equation

(2) in Wakeley (2004), where it is also explained.

The one-generation transition matrix for each glacial phase has the same form as the one

for interglacial, with the appropriate substitutions of parameters from type I to type G
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(N, aG=(1-mg)2, Dg). It is important to note that we are not assuming any particular
values for the parameters, which can take on arbitrary values, from small to large. In

particular, the migration rate can take any value in the range from zero to one

If our model consisted of only one phase — type / for instance — we would already have
all the elements in order to obtain the coalescence time probabilities. For a sample taken
from one deme (‘within’), the probability of coalescence at exactly generation ¢ in the

past would be simply

=@ ) — @) )

The term (P,),, is the probability that the system is in state (3), that is, the lineages are
already coalesced, in generation f in the past, given that they are sampled from the same
deme (state (1)). For a sample obtained from two separate demes (‘between’), the

probability of coalescence at generation £ would be

fb(f):(P;I)za'(P;I_l)za‘ | 3)

These functions are valid in the present model, but only for the first type I phase, that is,
only for ¢ < ;. For earlier times (¢ > 1), other expressions are necessary. Our model
assumes two alternating phases, and the solution requires explicit consideration of the

transitions between them,

In order to do this, we define two other matrices: one for a complete type [ phase and one
for a complete type G phase, including their transition generations. These are,

respectively,

I, =P," "I, (4)
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and
HG = PGEG_ITG! : (3)

where Tjc and Tg; are the matrices for transitions between phases, described in the

Appendix (A1-A6).

The matrix II, accounts for a total of #; generations, and the matrix IT, for a total of

generations. We also define the matrix for one complete cycle,
=TI 11, (6)

which accounts for a total of #;+ ¢ generations.

The coalescence probability mn a given generation ¢ depends on the type of generation.
There are four possible types: (1) within a type I phase; (2) during a transition generation
from 7 to G; (3) within a type & phase or (4) during a transition generation from G 1o 1.

The part of ¢ that can be accounted for by whole cycles is

t
ga(t) ‘_\‘r! + ch’ (7)

in which the notation ij means the integer part of x. Thus, @(¢) is the number of

completed cycles from the current generation back to generation ¢ in the past. By

definition, 72 (z; + 15 )@(#). In order to know which case above a given ¢ represents, we

need to know the remainder

(1) =1t—(t; +15)(1), (8)
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which is the part of ¢ that cannot be accounted for in whole cycles.

The distribution of coalescence times can be expressed in terms of these quantities and
the matrices defined above. These are separated in cases, according to the type of
generation. For a pair of genes sampled from a single deme (‘within’), the probability of

coalescence at exactly ¢ generations in the past is given by

(I-IW)PI f(f)lz _ (H@’(’)]:l‘r ’(’}‘1)3 ifl1< 7o)<y,
(1—[91(:)11!)3 _ (II‘”“"P!“'I)B if qt)=1,
W) =1
f (H;vuhl—[ P r(:)—r,) _ (qu(r)n P ﬂ:)—r,—ll i m) . {9)
IeX e 3 Hak ¢ 3 !
\(1'["*’“’)3 _ @&(r)nfp(}frl)a if 72)=0.

For a pair of genes sampled from two different demes (‘between’), the probability of

coalescence at exactly 7 generations in the past is given by

([p, r“’)23 — ([P, )2 if 1< 71) <,

3

(HM”H‘, )23 _ (HQJ(r)PIr:—I )23 if qt)=1,

f (=1 (10)
(H”“}H,PG’“*” )23 - (11?’“’11,}1,;"“‘1 )23 if 71)> 1,
(), - () if 7t)=0.

These expressions depend on the population parameters (N, my, D; Ng, mg and Dg) and
the time of each complete phase (frand fg). It is often desirable to write expressions such

as these as explicit functions of the demographic parameters, in order to gain some
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intuition about the influence of each one. However, this is not practical for this model,
due to the complexity and length of the resulting equations. Instead, we have written a
computer routine to obtain values for the above functions and plot graphs from them, by
substituting the parameter values in the matrices and using the above equations to obtain
the distribution numerically. The routine to perform this calculation was written in

Mathematica (Wolfram Research 2001) and is available from the authors upon request.

The functions above are the probability mass functions of coalescence time. The
cumulative distributions are given by the first term on the right hand side of the equation
for each case. Expressions for the mean coalescence time and expected value of Fsy are

given in the Appendix.

Results
The effect of population reduction

To isolate the effect of population reduction during glacial periods, we fixed all the other
parameters as being equal in the two phase types, allowing a difference only in the
population sizes such that Ng< N;. We assumed a panmuctic population in both phases, so
that this version of the model is equivalent to other models of repeated bottlenecks. The
size reduction in the glactal phases causes an increase in the coalescence probabilities
during those phases, relative to the ones during the interglacial phases. This increase
causes peaks and sharp discontinuities in the plots, in contrast with the strictly decreasing
geometric or exponential curve expected for a panmictic population of constant size. This
effect is more pronounced for greater reductions (when Ng << Ny). Figure 2A shows the
coalescence probability distribution for the case Ny = 10 Ng. Only one plot is shown
since, in a panmictic population, sampling within or between ‘demes’ yields the same
results. Note that we have used D¢ = D= 10, but with both migration rates equal to one,
so that the populations behave as panmictic ones of sizes ND; = 10,000 and NgD¢ =
1,000. The mean coalescence time for this case — assuming #; = 1g = 100 — is 1,859

generations, which is quite close to the harmonic mean approximation of 1,318.

We also studied the effect of the same population reduction when both phase types are

structured. In these calculations we chose values for the parameters such that an
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Figure 2. Probabilities of coalescence, with parameters Ng=1000; Ng=100; D=D=10
and 1=tc=100; ‘sw’ and ‘sb’ stand for sampling within and sampling between demes,
respectively. Migration rates are given above. (A} Both phases panmictic; (B} & (C) both
phases structured (Nym=Ngms=0.1): (B) sampling within one deme; (C) between demes;
(D) phases I panmictic and G structured (Ngms=0.1); (E) & (F) both phases structured,
with G much more structured (Npn=0.1; NGmG=10'5): (E) sampling within one deme; (F)
between demes.
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equivalent level of structure was maintained in both phaseé (as would be characterized by
measures such as Fgr). Both the number of demes and the number of migrants per deme
per generation were kept constant (Dg = D;= 10; Ny my = Ng mg =0.1). The effect of
population reduction is also seen here (Figs. 2B & 2C), with discontinuities and peaks in
the distribution of coalescence times. The shapes of the curves are different due to
structure and to the sampling scheme (also note the difference in scale between the plots).
For instance, in Fig. 2B, the peak of the most recent glacial phase is much higher than in
the panmictic case (Fig. 2A). This occurs because, with the low migration rate, the
lineages are mostly restricted to one deme of size Ng =100 in the glacial phases, whereas
in Fig. 2A, because of the very high migration, they are part of one larger population of
size Ng Dg = 1000. The curves in Fig. 2B descend much more quickly than in Fig. 2A
also because of the low migration rate, which restricts the lineages in the demes. In Fig.
2C, the probabilities of coalescence in any generation are very low, due to the sampling
between demes associated with the low migration. Also, the curves ascend in the
beginning, which is typical of plots for sampling between demes. The mean coalescence
time is 1,851 generations for Fig. 2B and 10,938 generations for Fig. 2C. Slatkin (1991)
derived an expression for Fsr in terms of mean coalescence times for pairs of samples
from the same deme and pairs drawn at random from the entire population. According to
this equation (see Appendix), these mean coalescence times correspond to an Fsr value of

0.81.

The effect of increased structure

In the previous section, we considered two cases where the difference between the phases
is restricted to the population size: one panmictic (Fig. 2A) and one with similar
population structure in both phases (Figs. 2B & 2C). In both cases we observed that the
reduction in population size assumed for the glacial phases causes discontinuities andl
peaks in the distribution of coalescence times. Here, we consider the effects of an
increased population structure during the glacial phases (Figs. 2D — 2F). We use the same
parameters of the cases described above (with Ny = 10 Ng; D;= Dg = 10; and my=1 or 10

4)‘c:hanging only the migration rate of the glacial phases (mg). We are still assuming a
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population reduction during the glacial periods, as this appears to be a pattern common to

many species.

We considered two scenarios. In both cases the level of migration was reduced in the
glacial periods (Ng mg < N; my). The first case (Fig. 2D) is a modification of the
panmictic one presented in Fig. 2A. The migration rate in the interglacial phases was kept
very high, so that the population is still effectively panmictic in these phases; and a low
migration rate was introduced in the glacial phases (Ng mg = 0.1) (Fig. 2D). The other
case (Figs. 2E & 2F) is a modification of the structured case presented in Figs. 2B & 2C.
Migration is limited in both phases, but now it is more severely limited during the glacial
periods (N; my = 0.1; Ng mg= 10; see Figs. 2E & 2F).

Comparing Fig. 2D with Fig. 2A we note that the structure introduced during the glacial
phases causes a faster decrease in the coalescence probabilities during these periods. This

increases the mean coalescence time from 1,859 (Fig. 2A) to 2,617 generations (Fig. 2D).

The decrease in coalescence probabilities is also evident when we compare Fig. 2F with
Fig. 2C. In these figures, both phases are structured, and the samples are drawn from
separate demnes. The reduction in migration increases the mean coalescence time by
almost a factor of ten (101,798 generations in Fig. 2F versus 10,938 in Fig. 2C). It also
changes the shape of the curves during the glacial phases: they turn into decreasing
functions, because the coalescence probabilities are dominated by the proportion of
lineages that are in a single deme by the end of the first interglacial (backwards in time),

since the migration rate 1s very restricted.

For a pair of samples taken from the same deme, we also see an increase in the mean
coalescence time (2,788 generations in Fig. 2E versus 1,851 in Fig. 2B), although it is
much less pronounced than in the between-demes case. These mean coalescence times
comrespond to an Fst value of 0.97 (Figs. 2E & 2F), increased from 0.81 in Figs. 2B &
2C.
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Number of demes

In order to investigate the effect of changes in number of demes, we studied two
scenarios. In both cases we have assumed population structure in both phases, with Ny #;
= 0.1 and two possible values for Ng me: 0.1 or 10°. First, we consider a case where the
number of demes is reduced during the glacial periods (Dg = 5, D, = 10; see Fig. 3). Then
we consider the opposite case, where the number of demes is increased in the glacial

periods (D¢ =20, Dy = 10; see Fig. 4).

We observe no dramatic qualitative effect on the distribution of coalescence probabilities.
However, the mean coalescence times are strongly affected. As would be expected, they
are smaller in Fig. 3 than in Fig. 2 (where Ds = D;= 10)}. For the case where Ng mg = 0.1,
the mean times are 382 generations when sampling is done within a deme (Fig. 3A) and
1,266 generations for sampling between demes (Fig. 3B). These compare with 1,851 and
10,938 in the case presented in Fig. 2B and Fig. 2C, resﬁectively. For the case where Ng
mg = 107, the mean times are 255 (Fig. 3C) and 1,328 generations (Fig. 3D), for
sampling within and between demes, respectively, which compare with 2,788 and
101,798 generations in Fig. 2E and Fig. 2F. The corresponding Fsr values are 0.68 (Ng
me =0.1; Figs. 3A & 3B) and 0.79 (Ng mg = 107; Figs. 3C & 3D).

The transitions contribute significantly to the reduction in the mean times. When the
transition — backwards in time — occurs between a phase with more demes to one with
fewer demes, there is an increased probability that separate lineages are joined in the
same deme, increasing their probability of coalescence (see Appendix). In the case of Fig.
3, this happens at each transition from an interglacial to a glacial phase. We verified that,
when the sample is taken from one deme, this mostly affects the tail of the distribution
(not shown). When the sample is taken from separate demes, however, the first transition
is already quite impbrtant, increasing the probability that the lineages meet. In the cases
shown in Fig. 2, the rate at which lineages moved into the same deme depended only on

the migraiion rate.

It is interesting to note that the mean time is smaller (255 generations) in Fig. 3C than in
Fig. 3A (382 generations), where migration is higher. That 1s, increasing the structure

during the glacial phases caused a decrease in the mean coalescence time in this case, in
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contrast with what was seen in Fig. 2. This occurs here because the lineages are mostly
trapped in one deme, and when they migrate during a glacial phase they still have a high

probabiiity of meeting, due to the low number of demes.

We now turn to the case where the number of demes increases during the glacial periods
(Dg =20, D =10; see Fig. 4). When the samples are taken from one deme (Fig. 4A &
4C), the shape of the distribution is very similar to what was observed in previous cases
{e.g. Fig. 2B & 2E, Fig. 3A & 3() The scale is different, however, with the coalescence
probabilities during the glacial phases smaller than in those cases. This is because the
transition from interglacial to glacial phase — backwards in time — involves deme fission
(D¢ > Dy). Therefore, two lineages in the same deme during an interglacial may be split
into separate demes during the transition to a glacial phase (see Appendix). This is also
reflected on the mean times, which are very high: 4,397 generations in Fig. 4A and 4,717

generations in Fig. 4C

The transition from glacial to interglacial, however, entails a chance of joining separate
lineages into one deme. This plays an important role in the distributions of coalescence
times for samples from separate demes. We observe in Fig. 4B and Fig. 4D that it takes a
few phases for the highest peaks to occur. Specifically, they occur during the glacial
phases, when the demes are small, but only after the first glacial-interglacial transition
has passed. The mean times are 7,310 generations (Fig. 4B) and 8,381 (Fig. 4D). These
are smaller than what was seen in Fig. 2C and Fig. 2F, precisely because of this increased
probability that lineages will be brought together into a single deme during the glacial-

interglacial transitions (backwards in time).

In Figs. 4A — 4B, the number of migrants per deme per generation is Ng mg = 0.1, and
the Fst value based on mean coalescence times is 0.37. In Figs. 4C — 4D, the number of

migrants is Ng mg = 107 and the corresponding Fer value is slightly increased to 0.41.

In general, studying the cases where the number of demes differs between the phases, we
note that the increase of structure — through reduced migration — tends to cause an
increase of the mean coalescence times, as in the previous cases, where the number of

demes is constant. An exception, however, is shown in Fig. 3C, for samples taken from a
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single deme, and a reduced number of demes during the glacial phase. This will be

further discussed in the section about the mean times.

Number of generations

So far we have looked into cases where the duration of both phases is the same in number
of generations (z=16=100). However, paleoclimatic studies support a much longer
duration of the glacial periods (~80,000 — 90,000 years) in comparison to the interglacials
(~ 10,000) (Petit et al. 1999). Therefore, we now present cases where the duration of the
glacial phases is nine times that of the interglacial phases (5=900; #=100; see Figure 5).
For comparison, we have kept the other parameter values equal to those used for the

calculations presented in Figure 2.

We wish to highlight two aspects of these results. The first is that the discontinuity of the
graphs is still observed in most cases, although it is quite reduced in Fig. 5B and Fig. 5E
- where both phases are structured and sampling is within demes. This pattern also

appears when Dg # D, {not shown).

The second aspect is regarding the mean times. In the cases where migration is equivalent
in both phases (Figs. 5A — 5C), the mean times are 1,149, 1,162 and 6,630 generations,
respectively. These are all smaller than their corresponding values in Fig. 2 (1,859; 1,851
and 10,938 generations). However, in the cases where migration is more restricted during
the glacial phases, the mean times are much higher than their corresponding values in
Figure 2: 4,148, §,684 and 499,521 generations in Figs. 4D — 4F against 2,616, 2,788 and
101,798 generations in Figs. 2D — 2F. This will be further discussed in the next section.
The values of Fgr are 0.81 when Ng mg = 0.1 (Figs. 5B & 5C) and 0.98 when Ngmg=
107 (Figs. SE & 5F), which are very similar to the comresponding values in Figure 2 (0.81
and (.97, respectively).
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Figure 5. Probabilities of coalescence, with t5=97#. Parameters: N=1000; Ng=100;
DEDg=10; 1=100 and 7G=900; ‘sw’ and °sb’ stand for sampling within and sampling
between demes, respectively. Migration rates are given above. (A) Both phases
panmictic; (B) & (C) both phases structured (Npn= Ngms=0.1): (B) sampling within one
deme; (C) between demes; (D) phases I panmictic and G structured (Ngmg=0.1); (E} &
(F) both phases structured, with G much more structured (Npn=0.1; NGmG=10'5): (E)
sampling within one deme; (F) between demes.
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Mean coalescence times

Species levels of genetic variation are directly correlated with coalescence times, since
longer times entail more opportunities for mutations to occur. In order to understand how
the different parameters of our model affect the mean coalescence times — and
consequently levels of genetic variation — we plotted the mean times as functions of the
glacial phase parameters (Fig. 6). We fixed the parameters of the interglacial phases for
all cases at Ny = 1,000: D; = 10; m; = 10™ and ty = 100. First we examine the effect of
changing deme size (Fig. 6A). The behavior of the curve is straightforward: a smaller
deme size in the glacial phases leads to a smaller mean coalescence time. This reduction
occurs regardless of the sampling scheme, and it is robust to changes in the other
parameters (not shown). The curves are not linear though, and the mean coalescence time
is limited by the duration of the glacial phase. That is, as Ng tends to infinity, the
contribution of each glacial phase tends to fs, being limited by it. Unfortunately the actual
function that generates the curve is too complex to allow further discussion of its

behavior.

The second parameter studied was the migration rate. In both cases shown, the behavior
of the curve for sampling between demes is the same: a more restricted migration leads to
an mcrease in the mean coalescence times, until the curves reach a plateau (Fig. 6B —
6C). This is also true for cases with other parameter values (not shown). However, the
behavior of the curve for sampling within demes depends on the mumber of demes: when
D¢ < Dy, restricting migration leads to a decrease of the mean coalescence times (Fig.
6B). On the other hand, when Dg= Dy (not shown) or Dg > D; (Fig. 6C), the restriction
in migration leads to an increase in the mean times. It is interesting to note that, in any
case, the mean coalescence time for a pair of genes sampled within demes is not
independent of migration rate, as it is in the standard island model (Strobeck 1987, Hey
1991).

The behavior of the mean times as function of the number of demes is somewhat more
complex. First, when sampling is done ‘within demes’, an increase in the number of
demes during the glacial phases leads to an increase of the mean coalescence times (Fig.

6D). This is also true for sampling ‘between demes’, when Dg < D;. However, when Dg >
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Figure 6. Mean coalescence times as functions of different parameters. In all cases
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sampling between demes, respectively. (A) Mean time as function of Ng, with Dg=10,
mg=10", 15=100; (B) Mean time as function of mg, with Ng=100, Dg=5, t5=100; (C)
Mean time as function of mg, with Ng=100, Ds=20, 1;=100; (D)} Mean time as function
of Dg, with Ng=100, m(;=10'3, 1;=100; (E) Mean time as function of tg, with Ng=100,
Dgs=10, mG=10'3; (F) Mean time as function of zg, with Ng=100, Ds=10, mg:lO'T.
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Dy there 18 a decrease in the mean coalescence times for a certain range of the plot (10 <
Dg < 16 with these parameter values), with an increase after that (see Figure 6D). We
observe that, with these parameters, the highest value for the mean coalescence time of
two genes sampled ‘between demes’ occurs when D¢ = D). Transition generations
increase the probability that lineages will be brought into the same deme only when D¢ #
Dy (see Appendix). Nevertheless, with some other combinations of parameters this effect
disappears, and the mean coalescence times become strictly increasing as functions of

D¢, independent of the range (not shown).

When the mean coalescence times are plotted as functions of the duration of the glacial
phases, g, we observe two possible behaviors. The first one is a decrease of the mean
times with an increasing ¢.. This behavior can be seen in Fig. 6E (D¢ = D; and Ng mg =
Ny my=0.1). In this case, the level of population structure is equivalent for both glacial
and interglacial phases, but the deme size is smaller in the glacial phases. Therefore, it is
expected that increasing the time spent in each glacial phase will reduce the mean
coalescence times. The second behavior is an increase of the mean times with an
increasing z¢, as in Fig. 6F (D¢ = D; and Ngmg = 10'5, with Nym;= 0.1). In this case, the
greater level of population structure in the glacial phases outweighs the reduction in

population size, thus leading to an increase in the mean times with an increasing 7.

Discussion

We have studied a model of alternation between glacial and interglacial cycles, with
changes in both population size and structure. One version of the model consisted of
variation in population size only, being a model of repeated bottlenecks. We observed
that this repeated reduction in size causes multiple peaks and discontinuities in the
distribution of coalescence times. To the best of our knowledge, this is a new result
However, it is a logical extension of the results of Austerlitz et al. (1997), who studied a
mode] of a panmictic population suffering a single bottleneck and a model of two demes,
where one deme grows and colonizes the second one. In both cases, they observed that
even if the sample is taken hundreds of generations after the bottleneck or colonization

event, the distribution of coalescence times can be multi-modal, with one peak
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corresponding to the time of the event. In our model we show that multiple events, in this
case bottlenecks, can produce multiple peaks in the distribution — corresponding to each
of the bottlenecks. This suggests that a signal of multiple bott]ene-cks might be preserved
in genetic data, as opposed to only one signai corresponding to the most recent event. In
principle, it could be observed as multiple peaks in the distribution of the number of

pairwise differences at a large number of independent loci.

We considered the effect of population structure on this pattern. We expected that higher
levels of structure during glacial phases could oppose the effect of the reduction in
population size, and cause lineages to persist through several cycles. This was generally
the case. Increasing the level of population structure by restricting migration in the glacial
phases affected the distribution of coalescence times, usually reducing the signal of
repeated bottlenecks (e.g. Fig. 2F). Also, this increase in population structure caused an
increase in the mean coalescence times in almost all cases studied, including several
cases where the samples are taken within demes (e.g. Figs. 2E, 5E, 6C). We have also
investigated the effect of changing the number of demes in the glacial phases. In general,
we have observed that a greater number of demes leads to larger expected coalescence
times (Fig. 6D), and would consequently lead to greater levels of genetic variation. These
results extend the ones observed previously (Jesus et al. 2006, in press), in a simpler
model, and help explain the long gene genealogies found in several species (e.g. Smith &
Farrell 2005, Hewitt 2004, Paulo et al. 2001), where the most recent common ancestor

predates the last glacial period.

The effect of the longer times during the glacial phases was also studied. We observed
that the repeated peaks were still present in most cases, corresponding to the repeated
demographic changes. However, there were two cases in which only the first peak
persisted, corresponding to the most recent demographic change (Figs. 5E, 5F). The
signal corresponding to earlier transitions was dramatically reduced. Generation time
should also play an important part here. If there are too many generations, relative to
population size, in one given phase, there will be a smaller probability that sampled genes
persist through several phases without coalescing. One could ask when we should expect
a signal of more than one event to be present in the distribution of coalescence times, as

opposed to only one signal corresponding to the most recent event.
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In a simple case, of one panmictic population suffering repeated bottlenecks, we can look
at this explicitly. The probability that two genes sampled in the present have not

coalesced by the end of the most recent glacial phase is given by

P(no coal.) = [1 - NLT (l - LJ% = e_[i:_ﬁ;_j.

i

For this probability to be greater than, say, five percent, we would need that

Bt o 1n0.05).
N

I G

This could be calculated that simply for other values, in this panmictic version of our
model. But for cases where population structure is important, it is necessary to take into
account the number of demes and the migration rate, using the cumulative distribution
functions (first terms in Eq. 9 and Eq. 10). The same numerical approach used earlier
could be applied for this calculation, and a routine can be obtained from the authors upon

request.

Another important topic of interest is how the patterns observed here should be reflected
in actual genetic data. The mean coalescence times obtained can be directly converted
into expectations of levels of genetic variation if an infinite sites model (Kimura 1969),
for instance, is assumed. The expected number of segregating sites is a simnple function of

the expected coalescence time and the mutation rate per sequence per generation

E[S1=24 EIT__ 1.
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Obtaining the distribution of the number of segregating sites is more complex, and will be
the subject of a future study. However, we expect that if mutation rates are high, the
signals observed in the distribution of coalescence times should be preserved in the
distribution of segregating sites for a sample of size two (n=2). This was observed by
Austerlitz et al. (1997), in their two-deme colonization model. It is important to point out
that the distribution of segregating sites for n=2 is not the usual “distribution of pairwise
differences” or “mismatch distribution”. Both in Aulsterlitz et al. (1997) and in the
present case, the kind of data that would be necessary to search for possible signals would
be ‘multi-locus data, with a sample of size two. Further studies, possibly by simulation,
might be able to make use of larger sample sizes, but certainly multi-locus data will be

essential in any demographic inference of this sort.

Our model was designed to help clarify the genetic consequences of glacial cycles, but it
may also be useful in other cases where there are cyclic demographic changes taking
place. Many species suffer such changes in shorter time scales, for example, the seasonal
bottlenecks suffered by insects in high latitude and temperate regions. The framework
used here could be applied to help understand the genetic consequences of these seasonal

changes as well.
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Appendix
Transition generations

Going backwards in time, a transition generation is composed first by a migration step,
then a step that takes into account a possible change in number of demes, and then a

reproduction step. Each step can be represented by a matrix, such that

T.=M,C.R, (A1)
and
T, =MC;R,. (A2)

Each migration matrix M; or M¢ has the general form

l-& 1 )

ox+—— (- ——] 0
D D

1- 1-

M=| =2 1-—2 0. (A3)

D D
0 0

\ J

with the appropriate subscripts (7 or G) for the parameters D and o =(1-m)".

The reproduction matrices R; and R¢ have the general form
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(Ad)

with the appropriate subscript (7 or G) for the parameter N.

The matrix for the change in number of demes for a transition from I to G — backwards in
time — is

1 0 0
1 1 .
(1-5 {D—G] B +(1 _ﬁIG{l - 36”} 0 ifD, > D,
0 0 1
Co=y(D. | D0 (AS)

Dy Dy _
0o 1 0 if D, <Dy,
0 0 1

where

The matrix for the change in number of demes for a transition from G to I — backwards in
time — is
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1 00
010 if D, > D,
0 0 1
Cor =1 1 0 0 (A6)
{L_D__J 1{,2&} . —
D, (DG - 1) D; (DG - 1)
0 0 1

Mean coalescence times and Fer

The mean time to coalescence can be obtained by summing the contributions of each
phase. Let X; be the contribution of each type 7 phase, and X the contribution of each
type G phase. Those depend on the state of the system at the immediately ‘preceding’
generation — backwards in time. If the two lineages have already coalesced, then the
contribution 1o coalescence time is zero. If the system is on state (1), that is, both lineages
in one deme but not coalesced (*within’ demes), then the contribution to the expected

coalescence time is

£-1

&, = ELX, 1w)= 2 h- @) ] (A7)
k=0

for a type I phase, and
ig-1

£ou = ELXs 1wl= 21— @) ] (A8)
k=0

for a type G phase.
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And if the system is on state (2), that is, with the lineages in two separate demes

(‘between’ demes), the contributions of type I and type G phases, are, respectively,

£

& = E1X, 1b]= 3 [i-()'x ] (A9)
k=0

& = ELX G 16]= 2 [1- (B )’z | (A10)
k=0

In order to get to the equations above we use the fact that, if the two lineages have not
coalesced by a certain generation, the contribution of the ‘following’ generation -
backwards in time — to the mean coalescence time is equal to one. Therefore we only
need to calculate the probability that the lineages have not coalesced by a given
generation, conditioned on the initial state of the phase. The sum of these probabilities is

the contribution of the whole phase to the mean coalescence time.

If the sample is originally taken from one deme on a type I phase, then its expected

coalescence time is

E[T,1=¢, + ({1, )} &+ [0;),,60 +
+(), &, + (@), @1,), &, + (1), () 5%, +
+ ('), & + (1), (1), 80, + (1), (0,80 +
+ () 8+ (1), (W) o+ @), ML)y
+(1), 85 + (), A1), &0 + (), (0, 5 (AlD)

Simplifying, we obtain
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E[T,]= (H")J[em + (1), o + (T, )86 |+

L k=

oa

(HK}J[SH, + (T, )y 860 + (1) 80 | (A12)
4]

k=

Similarly, if the sample is obtained from two separate demes, the mean coalescence time

1s

E[T,] =[§(H")2,][e,w + (1), & + (I, )80 1+

S0, e @, ) Ary

={

The infinite sums present above in Al2 and Al3 can be expressed in terms of the

eigenvalues and eigenvectors of II. They then become reduced to geometric series of

form Za", which converge to 1/(1-a) when la|<1. We first use the fact that IT* can be
=0

written in spectral form as
I* = A, + A 1, + AL,

where the A’s, ¥i's e I’s are the eigenvalues and right and left eigenvectiors of II,

respectively, normalized so that 1;'r;=1. For the first sum in Al12, for instance, we have
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=0 =1

since both A4 and A have absolute values smaller than one. The first eigenvalue, A, has

value 1, but the associated matrix r,l, is

rl,=0 0 1
0 01

(A13)

and so all the entries that we are interested in (see Al2 & A13) have value zero, and do

not contribute to any of the sums.

A routine to calculate the mean coalescence times was written using Mathematica

(Wolfram Research 2001) and is available from the authors upon request.

We calculate Fsr as a function of the mean coalescence times, as given by Slatkin (1991,

Eq. 8) assuming small mutation rates. In our notation,

. E[Tm]' E[Tw]

ST Ry (A16)

where E{T,] is equal to the mean coalescence time for two lineages sampled from the
same deme and E[T,] is the mean coalescence time for two lineages sampled from the

set of all demes, given by

EIT,)=— E[T, 1+ “-— EIT,]. (A17)

i fi
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CONCLUSOES GERAIS

A partir do estudo dos dois modelos tedricos desenvolvidos neste trabalho,

algumas inferéncias podem ser feitas:

* A redugdo de tamanho populacional durante os periodos glaciais leva a
uma reducdo dos tempos médios de coalescéncia. J4& o aumento de

subdivisdo, em geral, tem efeito contrério.

¢ H3i indicios de que o numero de sub-populagbes € importante na
manutengdo da variabilidade genética durante os perfodos de redugio

populacional, mesmo quando cada sub-populacio é muito pequena.

* A estruturagio é capaz de superar o efeito da reducgio populacional

durante os periodos glaciais.

® As distribuigbes de tempos de coalescéncia com alternancia de parametros
populacionais sdo muito diferentes da distribuicdo esperada para uma

populacio panmitica de tamanho constante (“standard coalescent”).

¢ A alternincia de tamanhos populacionais produz descontinuidades e

picos miltiplos na distribui¢do dos tempos de coalescéncia.

¢ O aumento da estrutura populacional concomitante & reducgédo
populacional, em geral, atenua os picos da distribuicdo dos tempos de

coalescéncia.
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Ha indicios de que miltiplos gargalos podem deixar sinais em dados
genéticos. Este sinal seria observado como miiltiplos picos na distribuicio
de diferengas par-a-par, obtida a partir de um grande nuamero de loci

independentes.

Ha indicios de que a estrutura populacional gerada por subdivisio e
migra¢do tem um papel importante na manutencio da variabilidade

genética.

As longas genealogias génicas observadas em muitas espécies animais e
vegetais poderiam ser explicadas por uma grande subdivisio

populacional durante os periodos glaciais.
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