UNIVERSIDADE ESTADUAL DE CAMPINAS - UNICAMP FACULDADE DE ODONTOLOGIA DE PIRACICABA

ÂNGELO STEFANO SECCO Cirurgião Dentista

DETERMINAÇÃO DA RUGOSIDADE,
FORÇA DE DESLIZAMENTO, COEFICIENTE E RESISTÊNCIA
DE ATRITO ENTRE BRÁQUETES E FIOS ORTODÔNTICOS

UNIVERSIDADE ESTADUAL DE CAMPINAS - UNICAMP FACULDADE DE ODONTOLOGIA DE PIRACICABA

ÂNGELO STEFANO SECCO Cirurgião Dentista

DETERMINAÇÃO DA RUGOSIDADE, FORÇA DE DESLIZAMENTO, COEFICIENTE E RESISTÊNCIA DE ATRITO ENTRE BRÁQUETES E FIOS ORTODÔNTICOS

Tese apresentada à Faculdade de Odontologia de Piracicaba, da Universidade Estadual de Campinas, para obtenção do Título de Doutor em Materiais Dentários.

Este exemplar foi devidamente corrigido, de acordo com a Resolução CCPG-036/83

CPG, 20 / // 2

Assinatura do Orientador

 \bigcirc

Orientador:

Prof. Dr. Mário Fernando de Góes

PIRACICABA - SP - 1999

WINDADE CHAMADA	18C
· · · · · · · · · · · · · · · · · · ·	Ex
TOMBO BC/ PROC. 2.7	39.872 8/00
PRECO -R	
#. CPD	

CM-00137806-4

Ficha Catalográfica

Se23d

Secco, Angelo Stefano.

Determinação da rugosidade, força de deslizamento, coeficiente e resistência de atrito entre braquetes e fios ortodônticos. / Ângelo Stefano Secco. — Piracicaba, SP: [s.n.], 1999.

193p.: il.

Orientador: Prof. Dr. Mario Fernando de Goes.

Tese (Doutorado) – Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba.

Ortodontia. 2. Aparelhos ortodônticos. 3. Materiais dentários.
 Goes, Mario Fernando. II. Universidade Estadual de Campinas.
 Faculdade de Odontologia de Piracicaba. III. Título.

Ficha catalográfica elaborada pela Bibliotecária Marilene Girello CRB / 8 – 6159, da Biblioteca da Faculdade de Odontologia de Piracicaba / UNICAMP.

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA

A Comissão Julgadora dos trabalhos de Defesa de Tese de DOUTORADO, em sessão pública realizada em 30 de Agosto de 1999, considerou o candidato ANGELO STEFANO SECCO aprovado.

1. Prof. Dr. MARIO FERNANDO DE GOES

JA-SON

2. Prof. Dr. JOSÉ LEONARDO SIMONE

3. Prof. Dr. JOSÉ FERNANDO CASTANHA HENRIQUES

Hemilines.

4. Prof. Dr. MARIO ALEXANDRE COELHO SINHORETI

Jewelley

5. Profa. Dra. VANIA CELIA VIEIRA DE SIQUEIRA 🤇

	DEDICATÓRI
A Davida a	
A Deus, pela vida e	por todas as suas oportunidades

DED	ICA	TÁ	RΙΔ
	ľVA		M

Dedico esta tese à minha esposa Cristiane, por ter lido antes, por cima de meus ombros.

> E pelo seu carinho, paciência e amor que têm me inspirado a procurar ser o melhor que posso ser.

		_ ,	
חבת	\sim A	TORI	А
UEU		I UKII	н

Ao meu pai Miraldo " in memoriam,"
e a minha mãe Matilde, por me alertarem sobre a importância
de estar preparado para as oportunidades.

e aos meus irmãos,

Marcelo, Marcos, Márcio
que sempre me motivaram e incentivaram.

AGRAD	ECIMENTOS	ESPECIAIS

ao meu orientador

Prof. Dr. Mário Fernando de Góes,

o qual mostrou-me que da minha aldeia

vejo o quanto da terra se pode ver do universo.

Por isso a minha aldeia é tão grande como outra terra qualquer.

Fernando Pessoa

À Faculdade de Odontologia de Piracicaba - UNICAMP, pela acolhida seus corpos docente, discente e de funcionários que, interagindo, tornam a Faculdade um campo fértil para o desenvolvimento científico e pessoal, pois a Faculdade "é como a ciência que se constrói com dados experimentais, da mesma forma que uma casa se constrói com tijolos, no entanto, uma coleção de dados experimentais ainda não é ciência, da mesma forma que uma coleção de tijolos não é uma casa". *Poincar*é

Ao Prof. Dr. SIMONIDES CONSANI, titular da Área de Materiais Dentários, do Departamento de Odontologia Restauradora, da Faculdade de Odontologia de Piracicaba, pela objetividade na orientação durante este período no Materiais Dentários, estimulando o senso crítico e a avaliação criteriosa durante as discussões em grupo, que muito contribuíram para minha formação pessoal e científica.

Ao Prof. Dr. DIRCEU SPINELLI, doutor em fadiga dos materiais, do Departamento de Engenharia dos Materiais da Engenharia da USP - São Carlos, por ter cedido a máquina de testes Instron para a realização dos ensaios.

Ao engenheiro MARCELO A. P. DA SILVA - Física - USP - SÃO CARLOS, laboratório de microscopia eletrônica, pela orientação nos cálculos do coeficiente de atrito e na diagramação das forças no experimento.

Ao Prof. Coordenador do Curso de Pós-Graduação em Materiais Dentários da Faculdade de Odontologia da UNICAMP, Dr. LOURENÇO CORRER SOBRINHO, pelo permanente apoio, experiência e amizade transmitida durante o curso.

Ao amigo e colega de Pós-Graduação Prof. Dr. MÁRIO ALEXANDRE COELHO SINHORETI, pela amizade e realização da análise estatística.

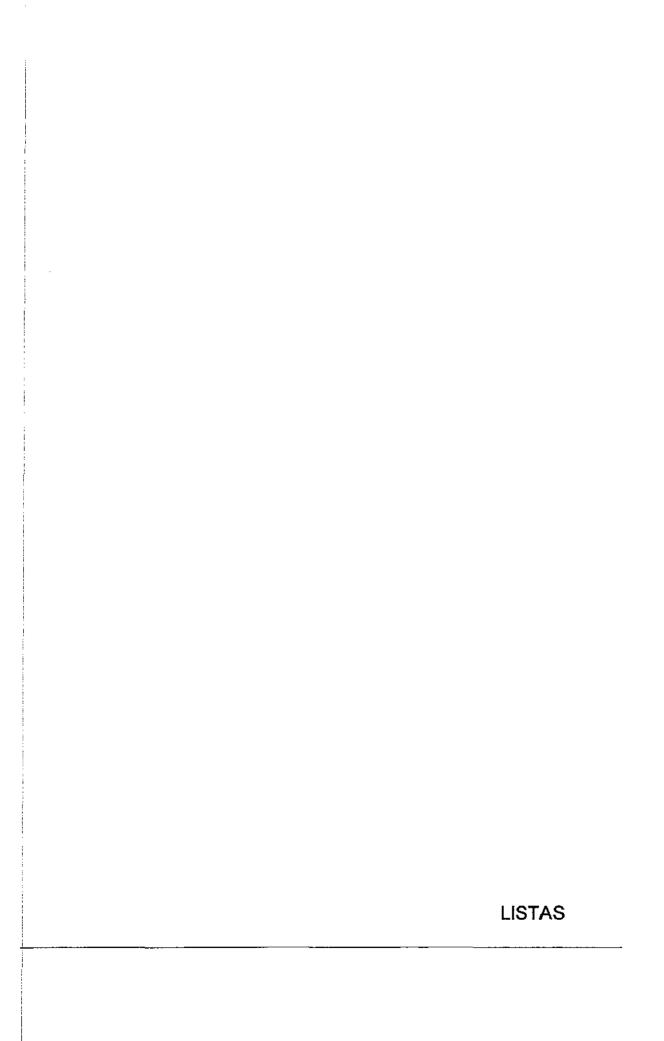
À Prof^a. Dr^a. VÂNIA CÉLIA VIEIRA DE SIQUEIRA, Assistente da Disciplina de Ortodontia da FOP - UNICAMP, pela revisão dos conceitos de ortodontia.

Aos funcionários da Disciplina de Materiais Dentários, Mestre e Engenheiro MARCOS BLANCO CANGIANI, pela amizade e auxílio e à Sra. SELMA A. B. SEGALLA, pela atenção e amizade.

Ao Técnico do laboratório do Departamento de Materiais da Escola de Engenharia de São Carlos - USP, Sr. JOÃO GERÔNIMO BERNARDES pela operação da máquina de ensaios INSTRON.

A Bibliotecária MARILENE GIRELLO, da Biblioteca da Faculdade de Odontologia de Piracicaba / UNICAMP pela revisão das referências bibliográficas.

Aos colegas do Curso de Pós-Graduação pela amizade e experiências trocadas.


Ao CNPq, pela concessão da bolsa de estudos que me permitiu realizar a Pós-Graduação.

E a todos aqueles que pesquisando e estudando o assunto abordado nesta tese, colaboraram na sua realização.

Muito obrigado.

SUMÁRIO	Pág.
LISTAS - Tabelas, Figuras e Abreviaturas	1
RESUMO	13
ABSTRACT	17
1 - INTRODUÇÃO	21
2 - PROPOSIÇÃO	27
3 - REVISÃO BIBLIOGRÁFICA	31
4 - MATERIAIS E MÉTODO	67
4.1 - MATERIAIS	69
4.2 - MÉTODO	70
4.2.1 - Preparo dos corpos de prova	71
4.2.2 - Confecção do bráquete teste	73
4.2.3 - Ensaio para determinação da força de deslizamento	75
e de atrito	
4.2.4 - Cálculo da força de atrito	78
4.2.5 - Cálculo do coeficiente de atrito entre bráquete e fio	80
ortodôntico	
4.2.6 - Análise em Microscopia Eletrônica de Varredura	80
4.2.7 - Determinação da rugosidade dos fios ortodônticos	81
4.2.8 - Análise estatística	82

SUMÁRIO	Pág.
5- RESULTADO	83
5.1 - Força de deslizamento	85
5.2 - Força de atrito	89
5.2.1- Percentual médio da força dissipada com o atrito	92
5.3 - Coeficiente de atrito entre bráquetes e fios ortodônticos	94
5.4 - Rugosidade dos fios ortodônticos	96
5.5 - Microscopia Eletrônica de Varredura dos Fios ortodônticos	99
5.6 - Microscopia Eletrônica de Varredura dos Bráquetes	102
6 - DISCUSSÃO	107
7 - CONCLUSÃO	119
8 - REFERÊNCIAS BIBLIOGRÁFICAS	123
9 - APÊNDICE	131

LISTAS DE TABELAS	Pág.
4.1.1- Materiais utilizados	69
4.2.1- Descrição dos grupos experimentais para cada marca de material estudado descrevendo os bráquetes e as espessuras de fios utilizados.	70
5.1.1- Análise de Variância dos valores da força de deslizamento	85
bráquetes/fios verificando a interação marcas e espessuras de fios.	
5.1.2 - Médias da força de deslizamento, requeridas para movimentar os	86
bráquetes nos fios, para cada marca e espessura de fio, e o desvio	
padrão da média entre parênteses.	
5.2.1 - Análise de Variância dos valores da força de atrito verificando a	89
interação entre marcas e espessuras de fios.	
5.2.2 - Médias da força de atrito, desenvolvida durante o deslizamento dos	90
bráquete nos fios, para cada marca comparando-se a espessura	
dos fios e as marcas. Desvio padrão da média entre parênteses.	
5.2.3 - Percentual médio de força dissipada com o atrito entre o bráquete	93
e o fio ortodôntico durante o deslizamento variando-se a espessura	
dos fios.	

LISTAS DE TABELAS	Pág
E 2.4. Apálica de Mexiônaio dos volesos do escálaismas de atuita cutvo	94
5.3.1 - Análise de Variância dos valores do coeficiente de atrito entre	34
bráquetes e fios comparando as diversas marcas e espessuras de	
fios estudados	
5.4.1 - Análise de Variância dos valores da rugosidade superficial dos	96
fios verificando a interação marcas e espessuras de fios.	
9.1.1 - Valores da força necessária para deslizar o bráquete através dos	137
fios ortodônticos obtidos do gráfico gerado no ensaio para cada	
corpo de prova, da marca TECNIDENT.	
9.1.2 - Valores da força necessária para deslizar o bráquete através dos	138
fios ortodônticos obtidos do gráfico gerado no ensaio para cada	
corpo de prova, da marca MORELLI.	
9.1.3 - Valores da força necessária para deslizar o bráquete através dos	139
fios ortodônticos obtidos do gráfico gerado no ensaio para cada	
corpo de prova, da marca DENTAURUM	
9.1.4 - Médias dos valores da força de deslizamento de cada corpo de	140
prova, variando-se a espessura dos fios. (TECNIDENT)	
9.1.5 - Médias dos valores da força de deslizamento de cada corpo de	140
prova, variando-se a espessura dos fios. (MORELLI)	

LISTAS DE TABELAS	Pág.
9.1.6 - Médias dos valores da força de deslizamento de cada corpo de	140
prova, variando-se a espessura dos fios. (DENTAURUM)	
9.1.7 à 9.1.24 - Analise estatística e estatística descritiva	141-152
9.2.1 - Valores originais de força de atrito variando-se a espessura dos	153
fios para a marca TECNIDENT.	
9.2.2 - Valores originais de força de atrito variando-se a espessura dos	153
fios para a marca MORELLI.	
9.2.3 - Valores originais de força de atrito variando-se a espessura dos	153
fios para a marca DENTAURUM	
9.2.4 à 9.2.21 - Analise estatística e estatística descritiva	154-165
9.3.1- Coeficiente de atrito para cada corpo de prova da marca	166
TECNIDENT	
9.3.2- Coeficiente de atrito para cada corpo de prova da marca	166
MORELLI.	
9.3.3- Coeficiente de atrito para cada corpo de prova da marca	166
DENTAURUM.	
9.3.4 à 9.3.21 - Analise estatística e estatística descritiva	167-178

LISTAS DE TABELAS	Pág.
9.4.1- Leituras originais da rugosidade , em micrômetros e suas médias	179
aritméticas para os fios ortodônticos da marca TECNIDENT.	
9.4.2 - Leituras originais da rugosidade , em micrômetros e suas médias	180
aritméticas para os fios ortodônticos da marca MORELLI.	
9.4.3 - Leituras originais da rugosidade , em micrômetros e suas médias	181
aritméticas para os fios ortodônticos da marca DENTAURUM.	
9.4.4 à 9.4.21 - Analise estatística e estatística descritiva	182-193

LISTA DE FIGURAS	Pág
4.2.1 - Desenho esquemático da seqüência montada do segmento de arco.	72
A - Base de acrílico	
B - Base de acrílico com os bráquetes colados	
C - Base de acrílico com os bráquetes e o fio posicionado	
D - Base de acrílico com o fio e o bráquete teste posicionado	
4.2.2 - Bráquete teste que simulou o canino no movimento de distalização.	73
4.2.3 - Desenho esquemático da placa de acrílico com o segmento de fio e	74
o bráquete teste que simulou o dente canino na mecânica de	
deslize, posicionada verticalmente para ajuste do amarrilho do	
bráquete teste.	
4.2.4 - Desenho esquemático do sistema utilizado para determinar a força	76
de deslizamento, força de atrito, e o coeficiente de atrito entre o	
bráquete/fio. E detalhe mostrando pontos de contato do fio com a	
parte interna da canaleta do bráquete e os vetores da força normal	
(N) e de atrito (f _a).	

LISTA DE FIGURAS	Pág.
4.2.5 - Ilustração do gráfico sendo traçado pela máquina de ensaíos	77
INSTRON registrando a força de deslizamento para o corpo-de-	
prova.	
4.2.6 - Diagrama das forças que atuam no experimento.	79
4.2.7 - Rugosímetro utilizado para determinar a rugosidade dos fios,	81
ortodônticos.	
4.2.8 - Dispositivo de acrílico, que encaixa com precisão na ponta ativa do	82
rugosímetro, e mantém o segmento de fio fixo sobre a agulha de	
leitura.	
5.1.1- Ilustração gráfica dos valores da força média requerida para deslizar	88
os bráquetes, comparando as marcas avaliadas.	
5.2.1- Ilustração gráfica da força de atrito média, encontrada para cada	92
marca de fio e bráquete estudada.	
5.2.2- Ilustração gráfica dos valores médios das forças requeridas para	93
deslizar os bráquetes nos fios com uma resultante de 100g no	
centro de resistência e o percentual de força de atrito em relação à	
força total aplicada para mover o bráquete.	

LISTA DE FIGURAS	Pág.
5.3.1 - Ilustração gráfica da média do coeficiente de atrito entre fios e	95
bráquetes ortodônticos comparando-se as diversas marcas	
estudadas.	
5.4.1 - Ilustração da Rugosidade dos fios para as três marcas avaliadas.	97
5.4.2 - Ilustração gráfica da rugosidade média (Ra) em μm, da superfície	98
dos fios para cada grupo de materiais estudados.	
5.5.1 - Aspecto morfológico da superfície da amostra do fio ortodôntico	99
0,018x0,025" da marca TECNIDENT. (500x)	
5.5.2 - Aspecto morfológico da superfície da amostra do fio ortodôntico	100
0,018x0,025" da marca MORELLI. (500x)	
5.5.3 - Aspecto morfológico da superfície da amostra do fio ortodôntico	101
0,018x0,025" da marca DENTAURUM. (500x)	
5.6.1 - Aspecto morfológico da superfície do bráquete da marca	102
TECNIDENT - B - representa o maior aumento (500x) da	
fotomicrografia A (76x).	
5.6.2 - Aspecto morfológico da superfície do bráquete da marca MORELLI	103
B - representa o maior aumento (500x) da fotomicrografia A (76x).	

LISTA DE FIGURAS	Pág.
5.6.3 - Aspecto morfológico da superfície do bráquete da marca	104
DENTAURUM - B - representa o maior aumento (500x) da	
fotomicrografia A (76x).	
9.1 - Diagrama das forças que atuam clinicamente	135
9.2 - Diagrama das forças que atuam no experimento	136
LISTA DE FÓRMULAS	Pág.
Fórmula clássica para o cálculo matemático da força de atrito.	78
Fórmula do coeficiente de atrito deduzida para o experimento	80
TESTES DE HIPÓTESE	Pág.
9.1 - Testes da hipótese e dedução da fórmula para verificar se a formula	134
clássica do atrito pode ser utilizada para os cálculos do coeficiente	
de atrito no experimento.	

ABREVIATURAS & SIGLAS

% porcentagem

± mais ou menos

μ coeficiente de atrito entre o bráquete e o fio

μm micrômetro

' polegadas

⊦ mais

d₁ distância do centro de giro ao centro de resistência

d₂ largura do bráquete

et al. abreviatura de et alli (e outros)

F força aplicada ao bráquete para a distalização

F_{a1} força de atrito entre a canaleta distal do bráquete e o fio

F_{a2} força de atrito entre a canaleta mesial do bráquete e o fio

g grama

G centro de giro do bráquete

mm milímetro

mm/min milímetro por minuto

N₁ força normal entre fio e canaleta distal do bráquete

N₂ força normal entre fio e canaleta mesial do bráquete

ກ° número

ABREVIATURAS & SIGLAS

P peso aplicado no centro de resistência

Ra rugosidade média

s segundos

°C graus centigrados

x vezes

EQ equação

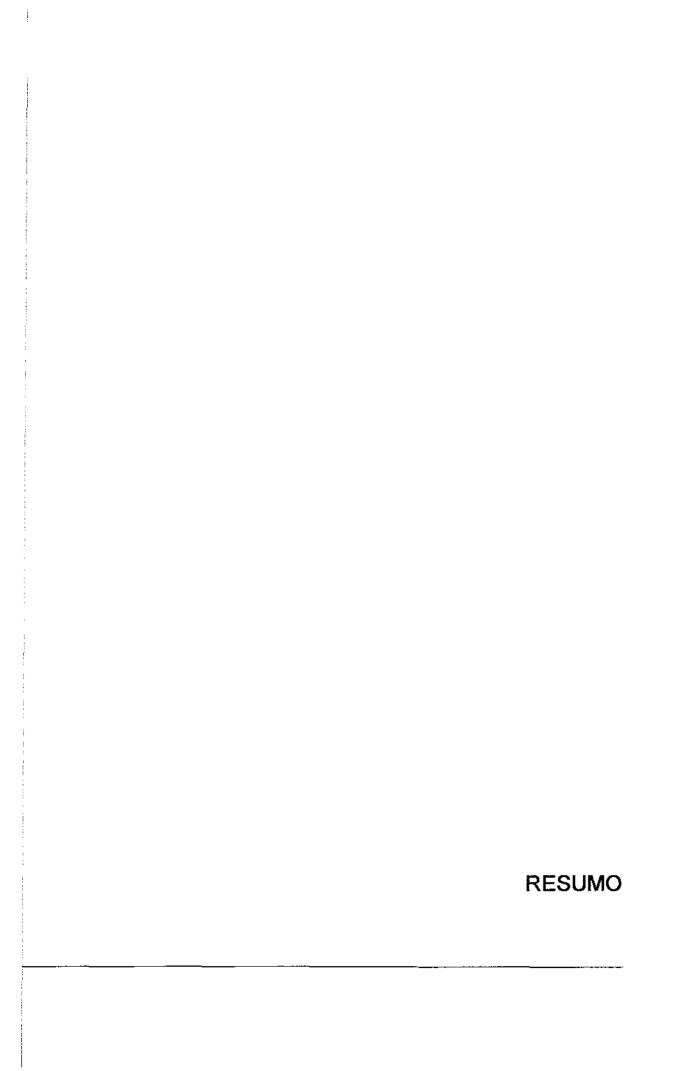
Σ somatória

M_G momento em G

F_V forças Verticais

F_H forças Horizontais

/ dividido

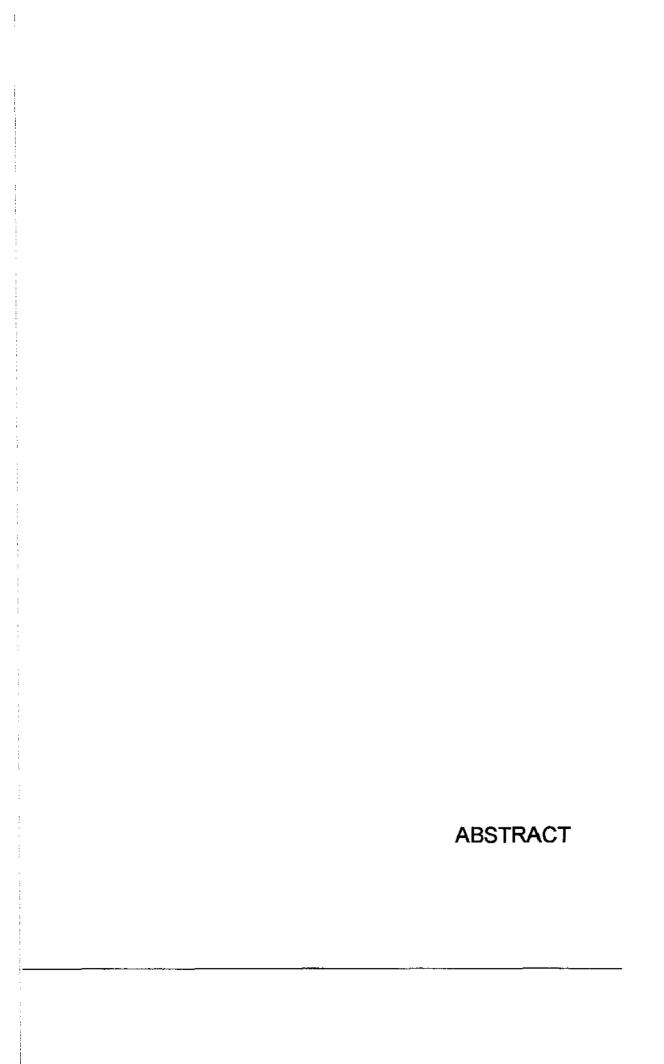

h o mesmo que d₁ (distància do centro de giro ao centro de

resistência)

Lt comprimento medido da amostra

p<0,05 probabilidade menor que 5 por cento

p>0,05 probabilidade maior que 5 por cento



Considerando a falta de informações a respeito da força de deslizamento e de atrito quando utiliza-se a mecânica de deslize com materiais de fabricação nacional, este trabalho foi desenvolvido com o objetivo de determinar a magnitude da força necessária para que ocorra o deslizamento do bráquete no fio, assim como determinar o valor da força de atrito, o percentual da força despendida com o atrito, o efeito da espessura dos fios na forca de atrito, o coeficiente de atrito entre bráquetes e os fios, além de comparar a rugosidade do fio nacional com a do fio importado. Foi utilizado um sistema que simula a situação na qual os dentes inclinam suavemente até criar pontos de contato duplos e opostos entre a canaleta dos bráquetes e o fio. O sistema gerou uma tensão de 100g no centro de resistência a 10 mm da canaleta do bráquete, agindo no sentido oposto ao da força aplicada para mover o dente. Foram avaliadas 3 marcas de fios e bráquetes: duas nacionais - Tecnident e Morelli e uma importada - Dentaurum, Alemanha. Foram utilizados bráquetes metálicos de canaleta 0,022" e três espessuras de fios 0,016x 0,022", 0,018x0,025" e o 0,021x0,025". Os testes foram realizados em uma máquina de ensaios Instron a uma velocidade de 5mm/min. Os resultados apresentaram as seguintes médias de força de deslizamento para os fios Tecnident (198g) e Morelli (199g); estes resultados foram maiores e diferiram ao nível de significância de 5% da força requerida para deslizar o bráquete no fio importado Dentaurum, (178g). A variação da

espessura dos arcos não interferiu significativamente na força de deslizamento assim como na força de atrito. A força

de atrito desenvolvida pelos materiais nacionais Tecnident (98g) e Morelli (99g) foi maior e diferiu ao nível de significância de 5% da desenvolvida para o importado Dentaurum (78g). O percentual médio de força dissipada pelo atrito entre o bráquete e o fio ortodôntico durante o deslizamento foi de aproximadamente 49,8% para o conjunto bráquetes/arcos nacionais e 44,0% para o importado. Essa diferença foi significativa ao nível de 5% de significância. O material da marca Tecnident apresentou o maior coeficiente de atrito (0,164534); no entanto, a Morelli (0,150190) não diferiu estatisticamente da Dentaurum, que apresentou o menor coeficiente de atrito (0,147943). A rugosidade média dos fios da Tecnident foi da ordem de 0,15 μm, aproximadamente 50% mais rugosos que os valores encontrados para os fios da marca Morelli 0,07μm e da Dentaurum 0,07 μm. Os fabricantes nacionais de bráquetes e fios ortodônticos devem rever o processo da fabricação de seus produtos para melhorar suas propriedades e características.

Palavras-chave: Materiais Dentários, Aparelhos Ortodônticos, Fios Ortodônticos, Bráquetes, Força de Atrito, Coeficiente de Atrito, Rugosidade, Força de Deslizamento, Mecânica de Deslize.

An appliance was constructed to simulate tooth movement in a previously aligned arch relative to bracket slot. Nevertheless, when tooth was translated to sliding mechanics, the crown was moved before the root, resulting in bracket tipping and angulation relative to the arch wire, making the arch contact the bracket in two opposite points, creating friction. Regarding the lack of information about this situation using national manufactured materials, we developed the present study in order to determine: the force magnitude to occur bracket sliding, the frictional force values, the percentage of force dispersed by the friction, the effect of archwire width in frictional force, the coefficient of friction between brackets/archwires; and to compare the national and international archwires roughness. The system used simulated the clinical situation which slightly teeth tipping created two opposite points contact between bracket slot and archwire. The system created a tension of 100g in the center of resistance from 10 mm to the bracket slot, acting in opposite side of the applied force to move the tooth. Three different arches and brackets kinds were evaluated, two national (Tecnident and Morelli) and one international (Dentaurum, from Germany). Stainless steel brackets slot of 0.022" and three archwires width were used (0.016 x 0.022", 0.018 x 0.025" and 0.021 x 0.025"). The tests were realized with an Instron testing machine moving at a speed of 5 mm/min. Results showed that mean force required to conduct brackets along national arches - Tecnident (198g) and Morelli (199g) - were higher and had significant difference at 5% level to international one - Dentaurum (178g). The

change in arches width did not interfere significantly both in sliding and frictional force. Frictional force developed by national materials Tecnident (98g) and Morelli (99g), were higher than international Dentaurum (78g), which was different statistically at 5% level. The mean force dispersed by friction between bracket and archwire during sliding was 49,8% to the national bracket/arch combination approximately, and 44% to the international one. This difference was significant at 5% level. National material Tecnident presented the highest frictional coefficient (0.164534). National material Morelli (0.150190) was not significant statistically relative to Dentaurum (0.1479430), which showed the lowest frictional coefficient. The average roughness of Tecnident arch was 0.15 μ m approximately 50% more roughness than values found to Morelli (0.7 μ m) and Dentaurum (0.7 μ m) arches, in which there were not significant differences statistically (p<0.05) between roughness values.

Index words: orthodontic appliances, Archwires, Brackets, force frictional,
Coefficient of friction, force sliding e sliding mechanics.

1 - INTRODUÇÃO

Gennes & Badoz¹⁴, 1997, citaram que os primeiros experimentos, definições e conceitos a respeito da força necessária para deslizar um objeto sobre uma superfície e da força de atrito resultante, foram realizados há pelo menos 500 anos por Leonardo da Vinci (1452-1519), quando questionou-se: "qual seria a força mínima necessária para fazer escorregar um objeto sobre uma superfície?". Verificou ele que o atrito, o coeficiente de atrito (μ) e a força Normal (N) que empurra uma superfície contra a outra eram importantes fatores na força de deslizamento.

A força de deslizamento e a de atrito começaram a receber atenção na literatura Ortodôntica a partir de 1960, quando Stoner³⁵ observou que poucos dados científicos estavam disponíveis em relação aos valores das forças necessárias para realizar os movimentos ortodônticos e alertou que a força aplicada aos dentes, algumas vezes, era dissipada pelo atrito entre o bráquete e o arco, devido ao uso de aparelhos ineficientes.

O movimento controlado dos dentes, obtido pela condução dos bráquetes no decurso de um arco, usualmente em ortodontia é denominado Mecânica de Deslize. Quando um dente é transladado com a mecânica de deslize, a coroa move-se antes do ápice da raiz inclinando o bráquete em relação ao fio, fazendo com que toque-o através de dois pontos de contato, gerando atrito, que retarda ou até mesmo impede o movimento do dente no qual o bráquete está fixado, reduzindo ou consumindo inteiramente a força disponível para movimentá-lo^{6, 26}.

A partir do melhor entendimento do mecanismo de atrito na mecânica de deslize, muitos pesquisadores passaram a dedicar-se a esta área, apesar da pesquisa ter apresentado dificuldades iniciais, pois não havia padronízação para os testes, e muitos métodos foram empregados para obter-se os resultados. Autores como Burstone & Koenig⁶, em 1976, chegaram a citar que a magnitude das forças de deslizamento não podia ser facilmente pré-estabelecida, uma vez que dados importantes, como a quantidade de atrito, eram desconhecidos e de difícil determinação, e as mecânicas de deslize produziam momentos com normais de valores elevados, gerando grande quantidade de força de atrito.

No entanto, a determinação e quantificação da força necessária para gerar o movimento de um dente ao longo de um arco fixo tem sido arduamente pesquisado ^{1, 2, 10, 12, 17, 18, 19, 21, 27, 37}, assim como a força de atrito ^{1, 2, 3, 4, 5, 8, 10, 11, 12, 25, 31, 36, 39}, e todos os fatores capazes de alterar os seu valores, como por exemplo: a rugosidade ^{10, 13, 19, 20, 29}, a dimensão do arco ^{16, 17, 39}, composição das ligas dos fios e bráquetes ^{2, 13, 17, 18, 23, 39}, o valor da força que deve atuar no centro de resistência do dente a ser movimentado, ^{15, 28, 35, 36, 38}, a largura dos bráquetes ^{1, 9, 11, 22, 24, 32, 37, 38}, e o coeficiente de atrito do sistema bráquete/fio ^{21, 23, 34}.

Apesar dos avanços do conhecimento nessa área, a ortodontia ainda tem dispensado muita atenção ao efeito do atrito entre o bráquete e o fio durante a movimentação dos dentes no tratamento ortodôntico³³, porque a maioria das técnicas envolvem, em algum grau, a mecânica de deslize⁸. E as forças recomendadas na literatura, para o movimento ótimo dos dentes, são baseadas

em estudos nos quais os dentes não foram retraídos ao longo dos arcos e, portanto, o atrito não foi considerado. Além disso, nas técnicas em que o movimento não é realizado pelo deslizamento do bráquete através do fio, como na técnica do arco seccionado, existem inconvenientes como as rotações nos planos sagital e transversal⁷, ou na retração dos dentes anteriores utilizando-se o sistema baseado na incorporação de alças; a carga tipicamente utilizada é critica e passível de mudanças com pequenos movimentos dos dentes, além de exigir maior tempo dedicado ao paciente⁶. Além disso, não se conhecendo a força de atrito do sistema, podemos estar utilizando forças abaixo da taxa ótima necessária para o movimento dos dentes, prolongando o tempo de tratamento, ou utilizando-se força acima da taxa ótima, na tentativa de compensar o atrito empiricamente, correndo o risco de tornar o tratamento desconfortável ao paciente, além de forçar a ancoragem desnecessariamente ³⁰.

Com o surgimento de novos materiais e novas marcas, o estudo do atrito e dos fatores que o influenciam, na mecânica de deslize, parece-nos ter muita importância, pois podem implicar diretamente na escolha dos materiais a serem utilizados no tratamento ortodôntico, uma vez que influenciam na força necessária para deslizar o bráquete no arco.

Quinn & Yoshikawa³⁰, em 1985, reforçaram a necessidade de se conhecer melhor esses fatores, citando que, apesar da taxa de movimento do dente ser sensível às mudanças na magnitude da força que atua para movimentá-lo, estratégias de tratamento com mecânicas ortodônticas ainda são traçadas

empiricamente. Fato este que nos parece verdadeiro, pois não encontramos na literatura, ou com os fabricantes, os dados básicos a respeito das propriedades dos fios e bráquetes nacionais, apesar de sua utilização corrente.

Pelo exposto, julgamos necessário estudar e determinar força necessária para deslizar os bráquetes gerando uma resultante de aproximadamente 100g no centro de resistência do dente, assim como, determinar a força de atrito resultante, o coeficiente de atrito, a rugosidade dos fios e o aspécto morfológico da superfície da canaleta dos bráquetes nacionais.

2 - PROPOSIÇÃO

Considerando a falta de informações a respeito da força de deslizamento, do coeficiente e força de atrito desenvolvidos entre os bráquetes e os fios ortodônticos, utilizando-se a mecânica de deslizamento com bráquetes e fios de fabricação nacional, propusemo-nos desenvolver este estudo para determinar:

- 2.1 a magnitude da força necessária para que ocorra o deslizamento do bráquete no fio ortodôntico, gerando uma resultante de 100g no centro de resistência:
- 2.2 a força de atrito desenvolvida entre os bráquetes e fios durante o deslizamento;
 - 2.2.1 o percentual da força despendida com o atrito;
- 2.3 o efeito da espessura dos fios na força de atrito e de deslizamento;
- 2.4 o coeficiente de atrito entre os bráquetes e os fios ortodônticos;
- 2.5 a rugosidade dos fios ortodônticos; e
- 2.6 o aspecto morfológico da superfície dos fios ortodônticos e da canaleta dos bráquetes em microscopia eletrónica de varredura.

2 - REVISÃO BIBLIOGRÁFICA
"Ninguém será capaz de aprender uma só coisa
se estiver convencido que já a conhece'
Sócrates, 400 A.C

STONER³⁵, em 1960, constatou que poucos dados científicos estavam disponíveis em relação à quantidade de forças necessárias para mover os dentes. Considerou, ainda, que muita investigação é necessária para estabelecer uma força padrão que servisse como um guia útil, uma vez que a dor, a falta de forças contínuas e a força de atrito são problemas que o ortodontista encontra na movimentação dentária. Concluiu ainda que, devido a aparelhos ineficientes, algumas vezes, a força aplicada é dissipada pela força de atrito ou aplicada impropriamente, dificultando o controle e a determinação da quantidade de força que é recebida individualmente pelos dentes.

NICOLLS²⁶, em 1968, estudando as forças de atrito com aparelhos ortodônticos fixos, relatou que os movimentos dentários mais complicados podem ser feitos e os resultados são geralmente rápidos e precisos. No entanto, se ocorre atrito entre os tubos, bráquetes ou arcos, o movimento pode ser mais lento ou até mesmo interrompido. Ou, em alguns casos, movimentos indesejados podem ser realizados. Um bom exemplo seria o caso no qual um primeiro prémolar foi extraído e o canino está sendo movimentado distalmente através do arco. O movimento está sendo realizado com tração de elástico intermaxilar. Esta tração o inclinará distalmente. Isto ocorrerá até o arco entrar em contato com a extremidade superior da canaleta do bráquete e do outro lado com a extremidade inferior da canaleta. O atrito, então, se desenvolverá; isto significa que menos força está agora disponível para mover o canino. Se força suficiente ainda estiver

disponível, pode haver uma pequena quantidade de inclinação adicional, que causará a curvatura do arco suavemente. Isto aumentará o atrito e o arco curvo se esforçará para retificar-se e consequentemente exercerá um torque que tenderá a mover o ápice distalmente. Assim, somente movimento de corpo será agora possível; claro que isto requer mais força do que requer a inclinação e, então, exigirá uma maior força na ancoragem.

ANDREASEN & QUEVEDO¹, em 1970, desenvolveram um teste "in vitro" para quantificar a força de atrito gerada pelo movimento de um bráquete ao longo de um arco fixo. Quando compararam a força necessária para superar o atrito, deslizando diferentes larguras de bráquetes ao longo de vários tamanhos de arcos, mostraram que a largura dos bráquetes não afetou a resistência de atrito. Entretanto, aumentando o diâmetro do arco, aumentou-se a força necessária para superar o atrito. Ou seja, foi muito mais difícil deslizar um bráquete ao longo de um arco 0,020 polegadas, do que ao longo de um arco 0,016 polegadas. Verificaram que quanto mais largo o fio e maior a angulação entre o bráquete e o arco, maior a força de atrito. Seus testes mostraram ainda que houve pouca diferença na força de atrito entre amostras secas e aquelas testadas com saliva como lubrificante.

BURSTONE & KOENIG⁶, em 1976, relataram que, dependendo da técnica empregada, vários procedimentos são utilizados para a retração de caninos, incisivos ou movimento em massa do segmento anterior no tratamento de

dasos com extrações. Algumas mecânicas empregam compressão ou tração com molas ou elásticos, e o uso de um arco para controle, permitindo que o canino ou dualquer dente deslize através do arco. Infelizmente, com tais mecanismos. rhomentos de valor elevados são produzidos quando a translação é realizada. Isto produz uma grande quantidade de força de atrito entre o bráquete e o arco, a qual pode inibir o movimento do dente. Esses mecanismos de deslize, em qualquer outra aplicação, além de um simples movimento de inclinação, têm duas desvantagens: a força de atrito pode parar o movimento do dente inteiramente, e a magnitude da força não pode ser facilmente determinada, uma vez que a quantidade de atrito é relativamente desconhecida e de difícil determinação. Uma segunda maneira para a retração dos dentes anteriores é o uso de um sistema sem atrito baseado na incorporação de alças em um arco contínuo, ou com um arco seccionado. Embora possa ser possível desenvolver alças de retração para liberar uma taxa de força adequada para a inclinação controlada ao redor do ápice de um canino ou incisivo, movimentos translatórios não são possíveis, considerando as limitações intra-orais na altura da alca. Isso pode ser superado pela colocação de angulação na alca vertical ou na mola de retração. Infelizmente. com as alças verticais de alta taxa de deflexão, a carga tipicamente usada é crítica; a ativação para alcançar e a taxa de força desejada também são críticas, e passível de mudanças com pequenos deslocamentos do dente.

FRANK & NIKOLAI¹², em 1980, investigaram e compararam a força de atrito gerada na simulação da retração de um canino, produzida em um arco contínuo com as seguintes variáveis: largura do arco, forma, largura do bráquete, angulação de segunda ordem, material do arco, força de ligadura e distância interbráquetes. Levantaram que, em uma dada angulação bráquete/ fio, os bráquetes largos produziram mais atrito que os bráquetes estreitos, e quando as angulações foram aumentadas o contato entre o fio e o bráquete ocorriam. E este mesmo contato tornava-se o parâmetro limitador. Sugeriram que o atrito pode ser minimizado pela diminuição da largura do bráquete. Notaram ainda que, clinicamente, o movimento dentário ocorre com uma série de pequenos passos, ao invés de um movimento suave e contínuo. Inicialmente, a força de atrito estática entre o arco e o bráquete deve ser superada para iniciar o movimento do dente. E quando o dente é movimentado, a força de atrito cinética ocorre, visto que a coroa do dente inclina-se na direção da força aplicada. Gradualmente, por causa desta inclinação, pontos de contato duplos surgem entre o fio e o bráquete: isto eventualmente pára o movimento da coroa e age verticalizando a raiz. Depois da remodelação periodontal ao longo da raiz, o ciclo continua. A largura dos bráquetes e a força de ligadura apresentaram influência dominante nos níveis de atrito. Arcos retangulares geraram mais atrito que os arcos redondos, e os materiais foram classificados de acordo com a sua rugosidade. A variação da distância interbráquetes não influenciou substancialmente a força de atrito. As

angulações de segunda ordem foram as que mais influenciaram na magnitude das forças de atrito.

CHARLES & JONES⁷, em 1982, afirmaram que o sistema de retração do canino ao longo de um arco relativamente rígido parece ter a vantagem de melhor finalização, melhor controle apical e movimento da coroa, mas com o custo óbvio de apresentar o atrito maior que o arco seccionado. É claro que o sistema amarrilho direto, de certa maneira, evita consegüências indesejadas na ancoragem, mas novamente a força para retração do canino é intermitente e consequentemente o movimento é mais lento do que com a aplicação de tração elástica. Se mecanismos de deslizamento são usados com um gancho J para canino ou tração elástica intra-oral nos molares, é aconselhável o uso de um arco redondo pesado com um bráquete pequeno ou médio. Se arcos seccionados são usados, é aconselhável o uso de um arco retangular pesado para manter o controle tanto quanto possível. Para manter o compromisso entre a flexibilidade horizontal e a rigidez vertical, é muito fácil sobreativar um arco seccinado com inevitáveis consegüências de inclinação excessiva do canino e ou perda da ancoragem do molar.

HUFFMAN & WAY¹⁶, em 1983, realizaram um estudo clínico para comparar a taxa média de movimento e a inclinação de caninos retraídos com arcos redondos 0,016 e 0,020 polegadas, com uma força contínua de 200g, em

bráquetes não angulados com canaleta de 0,022x0,028 polegadas. Em um dos lados da arcada, o canino foi retraído com arco 0,016 polegadas, e, do lado oposto, o canino foi retraído com um arco de 0,020 polegadas. Não houve diferenca estatisticamente significante entre a taxa de movimento do dente com a variação da espessura dos arcos. Após 10 semanas, a quantidade média de movimento para os 21 caninos com arco 0,016" foi de 3,37mm, e para os 21 caninos com arco 0,020", foi de 2,99mm. A taxa média de movimento foi de 1,37mm por mês no arco 0,016" e 1,20mm por mês, no arco 0,020". Após um período de 10 semanas a quantidade média de inclinação para 17 caninos com arco 0,016 polegadas foi de 5,3 graus e para os 17 caninos com arco 0,020" foi de 1,7graus. Uma vez que menos inclinação ocorreu com arco 0,020" e as taxas de movimento foram similares, parece haver uma vantagem em retrair dentes caninos através de arco redondo 0,020" ao invés de arco redondo 0,016 polegadas. Parece, também, que uma força major não é necessária para deslizar um dente com bráquete de canaleta 0,018x0,022" através de um arco de 0,020 polegadas, do que através de um arco 0.016", como alguns estudos laboratoriais sugerem, Apesar de o presente estudo in vivo mostrar uma tendência para os caninos se moverem mais vagarosamente em um arco 0,020" do que em um arco 0,016", compatível com os resultados dos estudos laboratoriais, a diferença foi muito pequena, e não teve significância estatística, ou clínica.

QUINN & YOSHIKAWA³⁰, em 1986, relataram que a importante questão de como a magnitude e distribuição da força dos aparelhos ortodônticos influenciam na taxa de deslocamento do dente tem recebido pouco estudo experimental. Verificaram que estratégias de mecânicas, muitas vezes, em ortodontia, são tracadas empiricamente. Muitas estratégias clínicas para mover os dentes são baseadas na hipótese de que a taxa de movimento seria sensível a mudanças na magnitude de força, e, para um dado dente, há uma força que o moverá a uma velocidade máxima. A aceitação desta suposição tem profundas implicações clínicas, na escolha dos materiais e secções dos arcos. Revisando os dados básicos experimentais que criaram a controvérsia sobre a taxa de força e movimento dos dentes, os autores apresentaram um gráfico para cada uma das quatro hipóteses propostas que representam a relação entre magnitude da força e taxa de movimento dentário. A hipótese mais aceita é a de que, aumentando a força aplicada, produz-se uma taxa de movimento mais alta até certo ponto. Foi demonstrado que, aumentando-se a taxa de força dos dentes posteriores, estes tiveram maior deslocamento. Este resultado é consistente, uma vez que o segmento dos molares está sob menos carga por centímetro quadrado, comparado com o canino, portanto, movimentar-se-ia a uma taxa major quando o nível de carga fosse aumentado. O canino, por sua vez, não aumentou a taxa de movimento, pois provavelmente já estava se movendo próximo à taxa máxima. A melhor estimativa para uma força eficiente de retração de canino superior, segundo dados clínicos, está entre 100 e 200g.

GARNER et al. 13, em 1986, relataram que anotações sobre experimentos com a força de atrito foram realizadas há pelo menos 500 anos. Realizaram um estudo no qual compararam as forças de atrito durante a simulação da retração do dente canino em aparelho Edgewise. Cento e oitenta combinações de arco e bráquetes de nitinol, beta titânio e aço foram comparadas quanto à força em gramas necessária para simular uma montagem de retração do canino. Os arcos retangulares foram escolhidos para esse estudo porque oferecem controle do dente em todos os 3 planos, enquanto os arcos redondos dão controle somente em dois planos. Os resultados mostraram que uma força significativamente maior é necessária durante a retração do canino usando-se arcos de beta titânio e nitinol em comparação com arcos de aço. Esta diferença foi creditada tanto à diferença dos materiais dos arcos, como à rugosidade superficial dos arcos de Beta titânio e de nitinol.

STANNARD et al.³⁴, em 1986, mediram o coeficiente de atrito cinético para arcos de aço, beta titânio, níquel titânio e cromo cobalto, sob uma superfície lisa de aço ou teflon. Uma máquina de teste universal foi usada para puxar um arco de 0,017 x 0,025" através de uma superfície de contato controlada pneumaticamente. Relações clássicas de atrito foram avaliadas variando a força normal aplicada similar à força do amarrilho, por meio do controle pneumático. Os coeficientes de atrito foram determinados em condições seca e úmida (saliva artificial). Os valores de força de atrito e o coeficiente de atrito aumentaram com o

aumento da força normal para todos os materiais. Os arcos de beta titânio e de aço deslizando contra aço, e os arcos de aço sobre o teflon exibiram os mais baixos valores de força de atrito seco. A saliva artificial aumentou a força de atrito para arcos de aço, beta titânio, e níquel titânio, deslizando contra o aço.

BAKER et al.³, em 1987, determinaram a magnitude da mudança na força de atrito entre vários tamanhos de arcos de aço 0,018°; 0,020°; 0,018x0,25° e bráquete edgewise com canaleta 0,022x0,028°, quando saliva artificial foi introduzida. Os arcos foram presos nas canaletas dos bráquetes com amarrilhos de poliuretano de 0,010°. Os valores de força na saliva artificial foram comparados com os produzidos em um controle seco e em um com glicerina. A introdução da saliva artificial promoveu uma redução significante nos valores de força comparada com os dois controles seco e em glicerina. A espessura dos arcos interferiu significativamente na força de atrito aumentando o atrito.

KUSY et al.¹⁹, em 1988, avaliaram a rugosidade de seis arcos priodônticos, entre os quatro grupos de ligas mais utilizados em ortodontia. O aço foi o mais liso, seguido pelo cromo cobalto, beta titânio e níquel titânio. Se alguma relação pode ser estabelecida entre o coeficiente de atrito e a rugosidade dos arcos, isto só pode ser respondido definitivamente por um estudo prático com um mecanismo de deslize.

DRESCHER et al. 10, em 1989, desenvolveram um teste de atrito para simular a translação tridimensional de um dente a fim de estudar os fatores que afetam a forca de atrito. Cinco fios (aco inoxidável standard, aco Hi-T, Elgiloy blue, nitinol e o TMA), em cinco espessuras (0,016", 0,016x0,022", 0,017x0,025", 0,018" e 0,018x0,025") foram examinados com relação ao tamanho de bráquetes (2,2mm, 3,3mm e 4,2mm) para 4 níveis de força de retardo (0, 1, 2 e 3 Newtons) onde 1N = 102g. O deslocamento do dente ao longo do arco foi dividido em quatro fases consecutivas que podem interferir. Fase 1 - O arco é colocado na canaleta facilmente. Fase 2 - Concomitante com a força aplicada na direção de distalização o dente inclina e rotaciona, desde que o ponto de aplicação da força fique acima do centro de resistência. Fase 3 - A aplicação contínua da força causa uma deformação elástica no arco. A carga e os pontos de contato entre o arco e o bráquete aumentam, bem como a força de atrito. Portanto, uma porção da força de distalização é perdida. Essa deformação elástica frequentemente produz movimento de anti-inclinação e anti-rotação. Fase 4 - Em uma situação desequilibrada, a deformação permanente do arco pode ocorrer. Verificaram que os seguintes fatores afetam a força de atrito em ordem decrescente: a força de retardo, portanto, a força aplicada para o deslocamento do dente; a rugosidade da superfície do arco; a dimensão do arco no sentido vertical; e a largura do bráquete, pois bráquete mais largo reduz tanto a força gerada pelo momento como o ângulo de contato, sendo mais vantajoso para fechamento de espaço por deslizamento. As propriedades elásticas do arco também influenciam a força de

atrito. Pois quando um bráquete é tracionado ao longo de um arco, ele inclinará até que o canto do bráquete contate o fio, criando um momento que prevenirá mais inclinação, e qualquer fio que seja menor que o encaixe do bráquete deverá cruzar o bráquete a um ângulo. Quanto maior o ângulo maior o momento inicial e maior a força entre o fio e o bráquete. Um fio mais flexível dobrará e reduzirá o ângulo entre o fio e o bráquete. Foi relatado também existir uma relação direta entre a força de retardo e a força de atrito. Clinicamente, a força deve ser aumentada em duas vezes para os arcos de aco e em seis vezes para os arcos de TMA para poder superar a força de atrito. Clinicamente é recomendada a aplicação do arco de aço 0,016 x 0,022" combinado com o bráquete médio (3,3mm) ou o de (4,2mm) canaleta 0,018" para um mecanismo de arco guia. Existe uma relação direta entre a força de retardo (resistência biológica) e a força de atrito e o aumento de força, devido ao contato duplo entre o bráquete e o arco, bem como entre o bráquete e a ligadura do arco. Essa relação direta enfatiza a necessidade de um nivelamento passivo do arco antes da aplicação de forças para movimentos de distalização.

TIDY³⁷, em 1989, estudou a força de atrito desenvolvida em aparelhos fixos para o movimento de corpo do dente ao longo de um arco contínuo, obtendo dados sobre a força de atrito, causada pelos pontos de contato duplos, entre o arco e os bráquetes, assim como, o efeito da carga, largura do bráquete, tamanho da canaleta do bráquete, tamanho do fio do arco, e a constituição dos materiais.

Um aparelho fixo foi construído para simular o movimento do dente em um arco previamente alinhado. Foi simulado à ação de uma força de 50g, 100g, 150g e 200g na superfície da raiz do dente, agindo no centro de resistência a 10mm da canaleta do bráquete. Todos os testes foram realizados a seco, em uma máquina de ensaios Instron, a uma velocidade de 5mm/min. O atrito resultante do ponto de contato duplo entre o arco e o bráquete mostrou-se como segue: Os resultados obtidos confirmaram a dependência da força de atrito da carga aplicada e da largura do bráquete, porém, não mostraram significante dependência das dimensões do arco. A força de atrito aumenta com bráquetes estreitos. Por exemplo, para produzir uma força de 100g em um dente com um arco de aço de 0,016x0,022" em um bráquete com encaixe de 0,018", é necessária uma aplicação de força de 295g para um bráquete de 1,1mm de largura, mas a somente 176g, 168g e 155g são requeridas respectivamente para um bráquete com largura de 2,9mm, 3,3mm e 4,2 mm. A força de atrito é, de fato, inversamente proporcional à largura do bráquete. O arco e as dimensões da canaleta têm relativamente pouca influência na força de atrito. Para produzir uma força de 100g, em um dente com bráquete com 3mm por 0,018" de encaixe, em um arco de aço 0,018x0,025", é necessária uma força de 188g. Reduzindo-se o arco para 0,016x0,022", reduz-se a força para 168g, porém, se aumentarmos o encaixe para 0,022", reduzimos a força somente para 181g. Os arcos de Nitinol e TMA resultam em um aumento significante comparados com o arco de aço. Para conseguir uma força de 100g em um dente com bráquete de 3,3mm e encaixe 0,018" em um arco 0,016x0,022'

são necessários 381g para o TMA e 251g para o Nitinol, mas somente 168 g para o arco de aço. A força de atrito pode ser minimizada pelo uso de bráquetes largos e arcos de aço em preferência ao Nitinol ou o TMA.

ANGOLKAR et al.², em 1989, determinaram a resistência de atrito oferecida pelo bráquete de cerâmica usado em combinação com arcos de diferentes ligas e tamanhos durante o deslocamento translatório dos bráquetes "in vitro". Os resultados dos bráquetes de cerâmica foram também comparados com os de aço. Arcos de aço cromo cobalto, beta titânio e níquel titânio de diferentes tamanhos de secção foram testados em bráquetes de cerâmica duplos médio com tamanho de canaleta 0,022" e 0,018". Os arcos foram ligados aos bráquetes com módulos elastoméricos, e, então, os bráquetes foram movimentados ao longo do arco por uma máquina Instron, e a força de atrito foi medida por uma célula de carga e anotada graficamente. A força de atrito do arco nos bráquetes de cerâmica aumentaram com o aumento da espessura dos arcos. Nos arcos retangulares a força de atrito foi maior que nos arcos redondos. Arcos de beta titânio e níquel titânio foram associados a forças de atrito mais elevadas do que os arcos de aço ou cromo cobalto. Os bráquetes de cerâmica geraram força de atrito significativamente maiores que os bráquetes de aço.

KAPILA et al. 17, em 1990, desenvolveram estudo para determinar os efeitos da espessura e da liga metálica do arco, na força de atrito gerada entre

bráquetes e fio durante o deslocamento translatório in vitro do bráquete em relação ao fio. Relataram que a magnitude da força de atrito é proporcional à quantidade de forca normal que empurra as duas superfícies juntas. Durante o movimento ortodôntico, como na retração de um canino, a relação do bráquete com o fio pode variar consideravelmente nos diferentes estágios do tratamento. Portanto, a magnitude e direção das forças de contato dos componentes de atrito e a normal, associados, poderão variar com o tempo também. Foram listadas diversas variáveis que afetam a força de atrito. Elas podem ser tanto mecânicas como biológicas. Saliva, placa bacteriana, película adquirida e corrosão têm sido incluídos como alguns dos fatores biológicos que afetam a força de atrito entre bráquete e fio. Variáveis mecânicas incluem material do bráquete, tamanho da canaleta, largura e angulação do bráquete, forma do fio, espessura e material do fio, bem como material da ligadura e a força da ligação. Em função disso, foram avaliados os fios de aço, cromo cobalto (Co-Cr), níquel titânio (NiTi) e Beta titânio (B-Ti), testados em bráquetes de aço estreito simples (0,050 pol.), duplo médio (0,130 pol.) e duplo largo (0,180"), com canaletas de 0,012 e 0,022". Os fios foram ligados aos bráquetes com ligaduras elastoméricas. O movimento do bráquete através do fio foi efetuado por meio de um teste com instrumento mecânico, e as forças de atrito foram medidas por uma célula de compressão e registradas em um gráfico X-Y. Os arcos β-Ti e NiTi geraram maior quantidade de força de atrito do que fios aço ou Cr-Co para a maioria das espessuras dos fios. O aumento na espessura do fio resultava em aumento do atrito bráquete/fio. A interação de

espessura/liga do fio na magnitude do atrito bráquete/fio foi estatisticamente significante (p<0,005). Devemos considerar estes fatores na seleção do fio para a fase do tratamento que envolve movimento do bráquete ao longo do fio. Os bráquetes estreitos simples foram associados com menores quantidades de forças de atrito do que os bráquetes mais largos. Os níveis de força de atrito nos bráquetes estreitos, simples, de encaixe 0,018 foram de 49 g com fios 0,016 de aço, e 336 g com fio 0,017 x 0,025 de β-Ti em bráquete duplo. Similarmente, para bráquetes estreitos, simples, de 0,022", as forças de atrito foram de 40g com fio 0,018" de aço, e 222 g com fio 0,019 x 0,025" de NiTi com bráquetes duplos largos.

KUSY & WHITLEY²¹, em 1990, estudaram a rugosidade superficial e os coeficientes de atrito de dezesseis combinações de bráquete/arco. A amostra incluiu arcos retangulares produzidos dos quatro grupos de ligas principais e um bráquete de alumina policristalina e um de aço. Quando testados sob uma série de 8 ângulos de incidência, a rugosidade superficial óptica de bráquetes de aço e alumina foram de 0,148 e 0,193 μm respectivamente. Depois de testado, em 82 graus, as rugosidades superficiais foram de 0,053μm aço, 0,129μm cromo cobalto, 0,137μm beta titânio e 0,247 μm níquel titânio. Os coeficientes de atrito aumentaram do aço, o mais baixo, para o cromo cobalto, níquel titânio e beta titânio o mais alto.

KUSY & WHITLEY²⁰, em 1990, realizaram um estudo para determinar o efeito da rugosidade superficial no coeficiente de atrito em sistemas ortodônticos. Foram puxados fios entre contatos planos, para simular arcos ortodônticos. Foram realizadas também medidas de laser especular de reflectância. A rugosidade média de superfície de cada arco variou de 0,04 mícron para o aço a 0,23 micros para o níquel titânio. Usando a mesma técnica, a rugosidade dos planos de contato variaram de 0,03 micros a 1 mícron tocando levemente o aço, 0,26 micros para os que receberam alumina. Após cada arco contatar as pontas planas, foi realizado um teste de atrito. 50 valores de força normal foram aplicadas sistematicamente. Os testes obtiveram as forcas cinéticas e estáticas de atrito para as forças normais. O coeficiente de atrito seco foi maior do que o reportado na literatura. Todos os contatos com o aco tiveram mais baixo coeficiente de atrito que variou de 0,120 a 0,148 N, os contatos com alumina policristalina o coeficiente foi de 0,187 N. Quando comprimidos contra vários planos, a rugosidade do beta titânio de 0,14 micrômetros teve maior coeficiente de atrito (0,445 - 0,658), apesar de o arco de níquel titânio ter rugosidade de 0,23 micrômetros. Não existe uma relação clara entre a rugosidade de superfície e o coeficiente de atrito. A análise de Microscopia eletrônica e energia dispersa de RX verificou transferência de massa do arco de beta titânio para os planos de aço. Isso pode ter ocorrido por adesão nos planos de aço ou por abrasão dos planos facetados da alumina policristalina.

KUSY, WHITLEY & PREWITT²³, em 1991, avaliaram os coeficientes de atrito nas condições seca e úmida (saliva) para arcos de aço inoxidável, cromo cobalto, níquel titânio e beta titânio em bráquetes de aço e alumina policristalina. No estado seco, independente do tamanho da canaleta, a média do coeficiente de atrito cinético (0,14) foi a menor para todas as combinações de aço e a maior (0,46) para as combinações de arcos de beta titânio. Os coeficientes de alumina policristalina foram geralmente maiores do que as combinações correspondentes que incluíram bráquetes de aço. Nos ensaios realizados com saliva, os coeficientes de atrito cinético, em todas as combinações de aço, aumentaram acima de 0,05 em relação ao estado seco. Em contraste, todas as combinações de beta titânio em estado úmido diminuíram em 50% com relação aos valores no estado seco.

BEDNAR et al.⁴, em 1991, observaram que, depois do nivelamento e alinhamento inicial, o arco está paralelo à canaleta do bráquete, e quando um dente é trasladado com mecânicas de deslize, a coroa move antes do ápice da raiz. Isso resulta em inclinações, que resultam em angulações dos bráquetes em telação ao arco fazendo com que o bráquete toque o fio através de dois pontos de contato. Essa angulação, por sua vez, contribui significativamente para a força de atrito total entre o fio e o bráquete. Eventualmente essa força de atrito torna-se tão grande que o movimento da coroa pára. E o contato duplo, criado pela inclinação da coroa e do fio com o bráquete, trabalha para reverticalizar a raiz e

permitir o movimento novamente. Com base nessas observações, realizaram um estudo in vitro simulando a retração do canino. Esse estudo teve por objetivo avaliar a diferença na resistência de atrito entre arcos de aço, bráquetes de aço e cerâmica, utilizando-se ligadura elastomérica, aco e auto ligadura. Cada canaleta do bráquete tinha 0.018x0.025". Os arcos usados foram 0.014", 0.016", 0.018". 0,016x0,016", 0,016x0,022" de aço. Um aparato para o teste foi desenvolvido para tentar simular a situação clínica na qual os dentes inclinam suavemente enquanto deslizam ao longo do arco. Sob essas condições, os bráquetes autoligados de aço não demonstraram menor força de atrito que os bráquetes de aço ligados com elastômero ou aço. Para a maioria das espessuras dos arcos, os bráquetes de cerâmica ligados com elásticos demonstraram as maiores forças de atrito quando comparados com as outras combinações de técnicas de ligaduras dos bráquetes. Relataram ainda que a significância clínica do estudo torna-se aparente quando os bráquetes de aço são usados nos dentes posteriores e bráquetes de cerâmica nos dentes anteriores. Se mecânicas de deslize são usadas, os dentes anteriores podem ser mais resistentes ao movimento que os dentes posteriores por causa do maior atrito dos bráquetes de cerâmica. Isto pode resultar em maior perda de ancoragem posterior do que deveria ser esperado, se somente um tipo de bráquete fosse usado.

PROSOSKI et al.²⁹, em 1991, mediram a rugosidade superficial e força de atrito estática de arcos ortodônticos. Nove arcos de níquel titânio foram estudados, um arco de liga beta titânio, um de cromo cobalto e um de aço. A

média de rugosidade foi medida com um perfilômetro. A resistência de atrito foi quantificada puxando-se um segmento de arco através de ligação de aço e bráquetes de auto ligação em quatro modelos clínicos. A liga de cromo cobalto e níquel titânio, com exceção do Sentalloy e Orthonol, exibiram baixa resistência de atrito. Os fio das ligas de beta titânio e aço apresentaram alta resistência de atrito. As ligas de aço foram as mais lisas e o Nitinol foi a mais rugosa. Não houve significativa correlação entre as médias aritméticas de rugosidade e os valores de forças de atrito.

KEITH et al. 18, em 1993, investigaram o fenômeno do atrito estático para quatro tipos de bráquetes cerâmicos e um tipo de bráquete de aço, com arcos de aço retangular. Os bráquetes estudados foram Stafire (cristal de óxido de alumínio simples) Allure III (óxido de alumínio policristalino) e Dentaurum (aço). Os parâmetros investigados foram: materiais dos bráquetes, a força de ligação e o uso do bráquete novo ou usado. Sem exceção, ambos os tipos de bráquetes cerâmicos produziram maior resistência de atrito que os bráquetes de aço. A força de ligação de 500g no bráquete Stafire produziu a maior resistência de atrito. Com a força de ligação de 200 e 50g a maior resistência foi do Allure III. Após um período de simulação de uso, a resistência de atrito do Starfire tendeu a aumentar com o aumento força de ligação enquanto os outros bráquetes cerâmicos diminuíram com as outras duas forças de ligação menores. O uso dos bráquetes cerâmicos abrasionaram os arcos e consequentemente os debris

podem contribuir para as mudanças na resistência de atrito vistas com o Starfire e Allure III. Os bráquetes Dentaurum produziram resistência de atrito mínima nos testes e mudanças negligenciáveis com o uso.

DOWNING et al.⁸, em 1994, relataram que a maioria das técnicas de aparelhos fixos envolvem algum grau de deslizamento entre os bráquetes e o arco. Estudaram a força de atrito entre bráquetes de aço inoxidável Edgewise largura 3,5mm com canaleta 0,022 x 0,030" (Dentaurum), bráquetes de cerâmica policristalina (Transced), em combinação com diferentes espessuras de fios (0,018" e 0,019x 0,025") e materiais, aço inoxidável, níquel titânio e beta titânio. A fim de comparar os valores de força de atrito, os sistemas de amarrilho foram padronizados, uma vez que a força de atrito varia com a carga normal aplicada. As forças foram medidas com o auxilio de uma máquina Instron modelo 1195. Os testes foram realizados a uma temperatura de 34 °C a uma velocidade de 5mm/min. Concluíram que o material dos bráquetes tem pouco efeito sobre a força de atrito, embora os bráquetes de aço criassem mais força de atrito contra fio de aço do que bráquetes cerâmicos. Os arcos de Beta titânio produziram mais força de atrito que os outros dois materiais. O aumento no diâmetro do arco aumenta a força de atrito.

EDWARDS et al.¹¹, em 1994, compararam o efeito de várias técnicas de amarrilho ortodôntico na resistência de atrito de bráquetes de aço e arcos sob as condições seca e molhada. As técnicas estudadas foram: módulos elastoméricos

amarrados de maneira convencional, figura de um 8, ligadura de aço e ligaduras revestidas de teflon. A primeira parte da investigação envolveu a construção de uma curva de calibração para cada material, e uma estimativa das forças normais exercidas pela ligadura podê ser apurada. Segunda parte, um par de alicates de ligadura foi modificado para que as ligaduras pudessem serem colocadas com uma força padronizada. Finalmente, um método de ligadura foi diretamente comparado com um aparato de teste especialmente construído. Os resultados revelaram que o módulo elastomérico amarrado com a forma de 8 produz atrito significativamente maior que os outros métodos testados em ambas as condições molhada e seca. Não houve significante diferença na resistência de atrito entre módulo elastomérico amarrado de maneira convencional e ligaduras de aço. A ligadura de teflon foi associada com a menor força de atrito. O resultado dos testes de calibração indicam que a força normal exercida por todos os métodos de ligação pode ser mais alta que previamente estimada.

SIMS et al.³³, em 1994, verificaram que os sistemas fixos têm recebido considerável atenção na literatura recente, embora os dados sobre variações das dobras de segunda ordem (inclinação) e dobras de terceira ordem (torque), dadas na base do bráquete ou no arco não foram totalmente investigados. Estudaram os valores de força de atrito para os bráquetes de canaleta 0,022x 0,028" das marcas Minitwin, Activa, e Straight Wire quando valores de torque e inclinação foram aplicados em fios de aço 0,018x0,025 polegadas. Observou-se que imperfeições

na fundição dos bráquetes e a qualidade da superfície dos fios podem ser fatores importantes na força de atrito. A resistência ao deslizamento do arco através da ligadura dos bráquetes foi medida em uma máquina de teste Instron. Os resultados mostraram que os bráquetes Activa de auto ligação produziram menos atrito que os bráquetes ligados convencionalmente. O bráquete Minitwin foi levemente mais resistente ao movimento que o standard durante o torque, mas o oposto foi encontrado quando a inclinação foi aplicada. O aumento da inclinação de 0 a 6 graus e o torque de 0 a 25 graus provocou um aumento linear na força de atrito com os bráquetes, apesar de o aumento da inclinação ter um efeito mais marcante no bráquete Activa.

TSELEPIS; BROCKHURST; WEST³⁸, em 1994, verificaram que poucas publicações tratam do atrito entre o arco e bráquetes convencionais. Porém, os clínicos podem optar por uma gama de modernos materiais, infinitas combinações arco/bráquetes. Os autores quantificaram as forças de atrito e de deslizamento entre diferentes bráquetes e arcos. Relataram que múltiplos fatores envolvem o processo de atrito, e os seguintes foram selecionados para o estudo: material do arco, material do bráquete, angulações bráquete/arco e lubrificação (saliva artificial). As forças de atrito envolvidas no deslizamento de um arco ligado à canaleta de um bráquete foram medidas em uma máquina de teste universal. Todos os quatro fatores investigados tiveram significante influência nas forças de atrito. O bráquete de policarbonato mostrou alto atrito e o bráquete de aço baixo

atrito. O atrito aumentou com a angulação bráquete arco. A lubrificação reduziu significativamente o atrito. Uma taxa de 0,9 a 6,8 N de força de atrito foi encontrada. As forças observadas sugerem que o atrito pode ser influenciado significativamente pela quantidade de força necessária para mover o dente na boca. Por isso, a seleção do bráquete e arco é importante quando a ancoragem posterior é crítica.

DOWNING et al.⁹, em 1995, verificaram o efeito da saliva artificial nas forças de atrito cinético e estático em bráquetes de aço inoxidável (Dentaurum) e cerâmica policristalina (Transcend) em combinação com arcos 0,018 polegadas redondo, e 0,019 X 0,025 polegadas, sendo os arcos de aço inoxidável, níquel titânio e beta titânio, utilizados sob força constante de ligação com anéis de cadeias elastoméricas. Em todos os casos, a saliva artificial aumentou a força de atrito, quando comparada com o experimento a seco.

PROFFIT²⁸, em 1995, relatou que a lisura da superfície é uma variável importante na determinação da força de atrito e foi enfatizada por experimentos nos últimos anos da década de 80. Porém, fatores como a quantidade de força entre o arco e o bráquete influenciam significativamente a quantidade de força de atrito. Quando um dente é tracionado ao longo de um arco, ele inclinará até que os cantos da canaleta contatem o fio a um ângulo; é criado um momento que prevenirá mais inclinação. Quanto maior o ângulo, maior o momento inicial e maior

a força entre o fio e o bráquete, e maior a força de atrito. No entanto, propriedades elásticas do fio também influenciam a força de atrito. Um fio mais flexível dobrará e reduzirá o ângulo entre o fio e o bráquete, e portanto, o atrito.

VAUGHAN JL; et al.39, em 1995, mediram os níveis de força de atrito cinético gerado durante a translação, in vitro, de bráquetes sobre arcos. Foram analisados dois bráquetes de aco sinterizado, bem como dois tamanhos de canaletas, quatro ligas de arco, e cinco espessuras de arco. Os dois tipos de bráquetes de aço sinterizados foram testados ambos com canaleta de 0,018 e 0,022 polegadas. Os arcos de 4 diferentes tipos de ligas (SS) aço, (Co-Cr) Cobalto Cromo, (Ni-Ti) níquel titânio, e o (beta-Titânio) beta titânio. tamanhos de arcos para a canaleta 0,018" e 8 tamanhos de arcos para a canaleta 0,022". Os arcos foram amarrados com ligaduras elastoméricas. O movimento do bráquete ao longo do arco foi realizado por mejo de instrumentos de teste mecânico. E as forças de atrito dependente do tempo foram medidas com uma célula de carga e registradas em um gráfico X-Y. Para a maioria dos tamanhos de arco, foram geradas forças de atrito mais baixas com os arcos de aço e cromo cobalto, do que com os arcos de beta titânio e nitinol . O aumento das dimensões do arco geralmente resultou em aumento do atrito entre bráquete/arco. Porém, não houve diferença significativa entre os bráquetes sinterizados e os de aço. Os níveis de forças de atrito nos bráquetes 0,018 polegadas apresentaram uma média baixa, ficando em torno de 46g. Quando utilizado o arco de Co-Cr 0,016,

porém, uma média alta de 157g foi vista e com o arco de beta titânio e um arco 0,016 x 0,025". Em comparação com um estudo prévio de Kapila et al., em 1990, feito com o mesmo equipamento, o atrito do bráquete siterizado de aço foi aproximadamente 40 a 45 % menor do que o atrito com o bráquete convencional de aço.

MATASA CG²⁴; em 1996; Citou que a angulação das canaletas dos bráquetes que são atualmente fabricados, são as mesmas que as recomendadas a mais de 20 anos atras. Devido a uma continua tendência para a miniaturização, o comprimento da canaleta tem diminuído consideravelmente, fato que causou um grande impacto nas características da canaleta. Este impacto não foi verificado. Um decréscimo no tamanho total do bráquete e encurtamento do comprimento da canaleta facilita a rotação indesejada, a qual acontece, quando uma tentativa é feita para seguir a angulação tradicional. Se somente uma translação pura do dente é necessária, uma rotação torna-se indesejável. Para reduzir esta ação ganchos são usados. Desafortunadamente, isto não resolve o problema. Na verdade, para superar este efeito uma modificação dos valores da angulação dos padrões são necessárias

HALLIDAY et al.¹⁵, em 1996, descreveram que a força de atrito basicamente é uma força que atua entre os átomos superficiais de dois corpos em contato. Se duas superfícies metálicas, altamente polidas e cuidadosamente

limpas, forem colocadas em contato numa região de alto vácuo, não conseguirão deslizar uma sobre a outra. Ao contrário, as duas pecas se soldarão a frio. Em circunstâncias comuns, todavia, esses contatos interatômicos não são possíveis. Mesmo uma superfície altamente polida está longe de ser plana em escala atômica. Além disso, as superfícies dos obietos comuns sofrem oxidação ficando recoberta por uma camada de óxido e outros contaminantes, reduzindo a possibilidade de fusão. No entanto, guando duas superfícies são colocadas em contato, somente os pontos salientes se tocam. A área microscópica real de contato é muito menor do que a macroscópica aparente, por um fator quase igual a 10⁴. Em muitos pontos ocorre a fusão; quando uma superfície é deslocada sobre a outra, há uma ruptura e uma regeneração contínua das fusões à medida que novos contatos são estabelecidos. A força de atrito varia com a variação da carga normal aplicada, ou seja, com a força que empurra uma superfície contra a outra. É demonstrado experimentalmente que, quando um corpo é pressionado contra uma superfície (não lubrificada) e uma força (F) é aplicada na tentativa de fazer o corpo deslizar sobre a superfície, a força de atrito resultante tem três propriedades: 1 - Se o corpo não se move, a forca de atrito estática (f.) e a componente de F paralela à superfície são iguais em módulo e têm sentidos opostos; 2 - O módulo de f_e tem o valor máximo $f_{e,\ máx}$. dado por $f_{e,\ máx}$.= $\mu_e N$, onde με é o coeficiente de atrito estático e N é o módulo da reação normal. Se o módulo da componente de F paralela à superfície; for maior do que é fe, máx, então o corpo começará a deslizar sobre a superfície. 3 - Se o corpo começar a deslizar

sobre a superfície, o módulo da força de atrito decrescerá rapidamente para o valor de \mathbf{f}_c , dado por \mathbf{f}_c = $\mu_c N$, onde μc é o coeficiente de atrito cinético. Os coeficientes de atrito estático e cinético são adimensionais e devem ser determinados experimentalmente, já que seus valores dependem do corpo e da superfície, e são normalmente referidos usando-se a preposição "entre" como o valor do coeficiente de atrito entre o asfalto e o veículo é de 0,5.

OGATA et al.²⁷, em 1996, avaliaram os efeitos das diferentes combinações de bráquetes/arcos e dobras de segunda ordem na força de atrito cinético. Treze bráquetes diferentes, 6 com canaleta de 0,018 x 0,025" e 7 com canaleta de 0,022 x 0,028" foram avaliados com 6 diferentes tamanhos e formas de arcos de aço, isto é, 0,016"; 0,016 x 0,022"; 0,017 x 0,025"; 0,018"; 0,018 x 0,025" e 0,019 x 0,026" polegadas para quatro dobras de segunda ordem de 0,00; 0,25; 0,50 e 0,75mm. Os bráquetes foram ligados aos arcos utilizando-se módulos elastoméricos. O movimento do bráquete foi realizado com uma máquina Instron e a forças de atrito foram medidas e registradas em gráficos. As dobras de segunda ordem foram criadas por um aparelho especialmente desenhado e fabricado. A força de atrito cinética aumentou para cada combinação de bráquete/ arco testada de acordo com o aumento das dobras de segunda ordem. O atrito também aumentou com o aumento do fio, ao passo que os arcos retangulares produziram maior atrito que os arcos redondos. Os desenhos dos bráquetes que

limitaram a força de ligação sobre o arco geraram menos atrito com as dobras de segunda ordem.

SCHLEGEL³², em 1996, realizou uma análise matemática biomecânica do atrito em uma combinação de bráquete /fio. Demonstrou uma relação ótima, por exemplo, com mínima forças de atrito entre o bráquete largo e a distância entre os bráquetes adjacentes dos dentes vizinhos. Com essa situação ótima, menos força deve ser desenvolvida com uma dada deflexão do arco. Os contatos de superfície podem ser concentrados em um ponto, as leis do atrito podem ser aplicadas de uma forma simples. A redução da força de atrito pode ser quantificada e qualificada através de uma teoria linear para o atrito. A literatura relata que o bráquete estreito apresenta menos atrito, porém isso não foi confirmado pelo estudo de análise matemática.

YAMAGUCHI et al. 40 , em 1996, investigaram a relação da força de retração com a localização da aplicação do ponto de força, força de retardo e largura do bráquete durante a simulação do movimento de deslizamento do dente ao longo do arco. Ponto 1 - a força de retração foi localizada no centro do bráquete. Os pontos 2 e 3 foram a 4,0 mm, e 6,0 mm respectivamente da canaleta do bráquete. Utilizaram pesos de 100, 200 e 400g suspensos a 9,0 mm da canaleta do bráquete, simulando o centro de resistência do dente. Arco padrão de aço edgewise, bráquetes gêmeos médios e estreitos foram engrenados com

duas ligaduras elastoméricas em um arco de aço (0,016 x 0,016"). Esses bráquetes foram puxados a uma velocidade de 0,1 mm por segundo por uma distância de 2,0 mm. As medidas foram repetidas seis vezes. Verificaram que, para todos os bráquetes, o aumento de peso de retardo aumentou a média de forca de retração nos pontos 1 e 2, mas decresceu no ponto 3. A média de força de retardo no ponto 1 para o bráquete gêmeo estreito foi maior significativamente (p<0.05) do que desse bráquete gêmeo largo em todos os níveis de força de retardo. No entanto, as médias de força de retração para os pontos 2 e 3 para o bráquete gêmeo estreito foi menor significativamente (p<0,05) do que para o bráquete gêmeo largo em todos os níveis de força de retardo. Esses resultados indicam que o ponto de aplicação da força, a força de resistência do dente, e a largura do bráquete são importantes considerando-se o momento de inclinação do bráquete. Em conclusão, esse estudo demonstra a importância de se considerar as muitas variáveis conhecidas que afetam a magnitude da força de retração necessária para o movimento de deslize de um dente ou grupo de dentes. Nós não somente deveríamos considerar a largura do bráquete, tamanho do arco, e canaleta do bráquete, o processo de fabricação do material usado na fabricação do bráquete e do arco, a maneira de ligação do arco e o material usado , mas também a magnitude da resistência dos tecidos periodontais de suporte e o ponto de aplicação da força. A necessidade do ortodontista usar forças suaves biologicamente compatíveis para o movimento dentário e a proteção da

ancoragem deve incluir considerações de força de atrito e de resistência na mecânica de deslize.

TAYLOR & ISON³⁶, em 1996, verificaram que a mecânica ortodôntica de deslize, usando-se bráquetes pré-ajustados, é uma maneira popular para realizar a retração de incisivos. Uma força direcionada distalmente desliza o arco através dos bráquetes e tubos nos segmentos vestibulares. O atrito nos segmentos vestibulares contribui para aumentar a resistência da força necessária para realizar o movimento do dente. Técnicas para reduzir atrito reduzem o potencial da perda de ancoragem. Foi utilizada uma máquina de teste Instron para verificar as forças de atrito em três tipos de bráquetes pré-ajustados de 0,022x0,028": bráquetes de prémolar de aço (Straight wire), bráquetes Activa e bráquetes Speed, combinados com cinco tamanhos de arco (0,018", 0,020", 0,016x0,022', 0,018x0,025" e 0,019x0,025"). Um modelo com bráquete de molar fixo e um ou dois bráquetes de premolares simularam um segmento vestibular. Os bráquetes Activa produziram o menor atrito para todos os arcos testados. Os bráquetes Speed com fio redondos demonstraram pouca força de atrito, enquanto fios retangulares resultaram nas maiores. O atrito estático para arcos redondos em bráquetes padrões foi 178 a 275 gramas força. Métodos diferentes de ligação foram comparados quanto ao seu efeito na força de atrito estática. A ligação com amarrilho colocado frouxamente ou módulos elastiméricos esticados reduziram as forças de atrito nos bráquetes Straight Wire padrão. A redução foi maior para os

arcos redondos. O amarrilho de aço colocado frouxamente reduziu o atrito em 40% para um arco 0,019x0,025" e uma redução de 80% foi relatada para o arco redondo. A relevância clínica desse achado precisa de mais avaliação, uma vez que o uso de fio retangular oferece vantagem de maior controle do movimento do dente. As força de atrito avaliadas para os arcos presos com módulos elásticos mostraram uma redução estável sobre um período de três semanas, dependendo de quão longo o módulo tenha sido distendido sobre o bráquete.

GENNES & BADOZ¹⁴, em 1997, citou Leonardo da Vinci (1452-1519): "Espírito universal, Leonardo interessa-se um dia pelo atrito: Qual é a mínima força necessária para fazer escorregar um objeto que repousa sobre um suporte?" Ele faz experiências com planos inclinados nos quais a força aplicada sobre o objeto é tão maior quanto a inclinação é maior. A força aplicada dorrespondente é a força limiar. Isso conduz Leonardo a descobrir uma lei surpreendente, e mesmo incrível em um sentido. Ele coloca o mesmo objeto sobre a mesma superfície, mas utilizando lados diferentes do objeto, e portanto superfícies de contato diferentes (pressões e locais). Ele encontra sempre a mesma força limiar! "Coeficiente de atrito" Lei extraordinária do atrito. Este é o estilo experimental que precisamos recolocar em evidência, na linhagem de Benjamin Franklin, economia de meios, inventividade, rigor cientifico.

READ-WARD et al.³¹, em 1997, compararam a força de atrito entre três bráquetes com um sistema de auto ligação e um convencional (bráquete

Ultratrimm). O efeito das espessuras dos arcos (0,021", 0,019x0,025" e 0,021x0,025"), angulação entre bráquete e arco (0, 5 e 10 graus) e a presença de saliva humana foram investigados. O estudo demostrou que tanto o aumento do tamanho do arco como a angulação resultam em aumento da força de atrito estática para todos os tipos de bráquetes estudados. A presença de saliva teve um efeito inconsistente. O bráquete MOBIL-LOCK canaleta variável teve a menor força de atrito para todos os arcos com angulação zero. Porém, com a introdução de angulação, os valores foram comparáveis aos dos outros bráquetes. O bráquete Activa teve a segunda mais baixa força de atrito; no entanto, altos valores foram encontrados com os arcos 0,019x 0,025". O Bráquete SPEED demonstrou baixas forças de atrito com arcos redondos; porém, com arcos retangulares ou na presença de angulação a força de atrito aumentou muito. O bráquete Ultratrimm produziu variações individuais grandes, confirmando as dificuldades em padronizar as forças de ligação sob certas condições e forças de atrito significativamente altas foram encontradas. Concluíram que o bráquete de auto ligação mostrou reduzir a resistência de atrito em comparação com o bráquete de ligação de aço somente sob certas condições.

MELING et al.²⁵ , em 1997, investigaram o efeito da rigidez e curvatura dos fios ortodônticos. Um modelo teórico experimental tem sido estabelecido quando forças de tensão e compressão são aplicadas em um arco para simular o efeito de atrito adicional durante a ativação e desativação respectivamente. Os

resultados mostram que a tensão aumenta a rigidez do fio, e que a força de compressão aumenta a flexibilidade. Assim, mais força será necessária durante a ativação e mais força será perdida durante a desativação. A quantidade de força perdida aumenta quase linearmente com o aumento da força de atrito. Durante a ativação, a porcentagem de aumento na força devido ao atrito para uma dada deflexão é igual à perda da força com o atrito durante a desativação. O atrito afeta fios flexíveis, finos, mais do que os fios pesados. Recomendam a amarração cuidadosa na fase de nivelamento para reduzir os efeitos laterais negativos do atrito.

BRAUN et al.⁵, em 1999, citou que a maioria dos estudos de resistência ao atrito foi conduzido em uma condição que não simula a dinâmica do meio oral. Varias funções orais como mastigação, deglutição, fonação, bem como os tecidos orais contatando com o aparelho ortodôntico resultam em movimentos relativos periódicos e repetitivos, na interface bráquete/fio centenas de vezes a cada dia. Isso afeta a força normal nas interfaces, e portanto o atrito. Fatores tais como o grau de inclinação dentária, espaço relativo livre entre o fio e canaleta do bráquete e método de fixação não tiveram um efeito mensurável na resistência de atrito na simulação do meio oral dinâmico.

KUSY & WHITLEY²², em 1999, verificaram a influência das dimensões dos bráquetes e fios ortodônticos na mecânica de deslize: Há princípios que controlam

o atrito clássico na mecânica de deslize a partir de ângulo critico de um contato theta c. uma vez que o ângulo é excedido, esse fenômeno restringe a mecânica de deslize. Usando parâmetros geométricos para arcos e bráquetes theta c é calculado como o limite entre o comportamento do atrito clássico e o fenômeno de travamento relatado. O que esses equações predizem é independente da técnica ou do praticante. Dessas derivações dois números, sem dimensão, são também identificados como índice do bráquete e do acoplamento. O primeiro mostra que a largura do bráquete assemelha-se ao seu slot, o segundo indica que o arco preenche completamente o slot quando dimensões nominais de bráquete e arco são calculados para ambos slot padronizados o theta c máximo teoricamente iguala a 3,7 graus assim, o conhecimento somente do arco ou bráguete é insuficiente; o conhecimento da combinação arco bráquete é necessário para calcular o theta. Uma vez calculado a mecânica de deslize deveria ser iniciada somente após o ângulo de contato theta, aproximar os valores característicos de theta c da combinação arco bráquete particular de escolha, isto é, quanto o teta é aproximadamente theta c.

4 - MATERIAIS E MÉTODO

4 - MATERIAIS E MÉTODO

4.1 - Materiais

Para a realização deste estudo foram utilizados os bráquetes e fios ortodônticos listados na tabela 4.1.1

Tabela 4.1,1- Materiais utilizados

Fabricante
i aproanto
TECNIDENT - Brasil
MORELLI - Brasil
DENTAURUM - Alemanha
TECNIDENT - Brasil
MORELLI - Brasil
DENTAURUM - Alemanha
MORELLI - Brasil

4.2 - Método

Foi utilizada uma máquina de ensaio Instron para a leitura da força de deslizamento e de atrito entre os bráquetes e os fios quando utilizava-se a mecânica de deslizamento em um aparelho ortodôntico fixo construído para simular o movimento distal de um dente canino em um arco previamente alinhado. Com esses dados foi calculado o coeficiente de atrito entre os bráquetes e os fios.

Os Grupos experimentais foram compostos como listado na tabela 4.2.1

Tabela 4.2.1 — Descrição dos grupos experimentais para cada marca de material estudado descrevendo os bráquetes e as espessuras de fios utilizados.

Bráquetes	Espessura
Para Canino	Dos fios avaliados
Edgewise B – 01	0,016 X 0,022"
0,022 x 0,030"	0,018 X 0,025"
Torque e angulação 0º	0,021 X 0,025"
Edgewise S2C - 03Z	0,016 X 0,022°
0,022 x 0,028"	0,018 X 0,025"
Torque e angulação 0º	0,021 X 0,025"
Edgewise – Ultra-	0,016 X 0,022"
Minitrim 0,022 x 0,030"	0,018 X 0,025"
Torque e angulação 0°	0,021 X 0,025"
	Para Canino Edgewise B – 01 0,022 x 0,030" Torque e angulação 0° Edgewise S2C - 03Z 0,022 x 0,028" Torque e angulação 0° Edgewise – Ultra- Minitrim 0,022 x 0,030"

4.2.1 - Preparo dos corpos de prova

Foram recortadas trinta placas em acrílico (figura 4.2.1a), 10 para cada marca de bráquete avaliada, com dimensões de 4,0 x 14,0 x 0,5 cm. A seguir foi confeccionado um entalhe a 2cm de uma das extremidades com 1,0 x 1,2 cm sobre o qual foi montado um segmento de aparelho fixo composto de quatro bráquetes. Foi demarcada, na placa de acrílico, a posição da colagem de cada um dos quatro bráquetes para cada marca; a seguir foi abrasionado este local com uma lixa de granulação 120 (3M) para assegurar a retenção dos bráquetes, que foram colados a 2 mm do entalhe, a uma distância de 8 mm entre si, e mais dois bráquetes, do lado oposto do entalhe. A distância entre os dois conjuntos de bráquetes foi de 16 mm. (Figura 4.2.1- b). O sistema adesivo Concise ortodôntico (3M) foi utilizado de acordo com as instruções do fabricante para a fixação dos bráquetes, e, antes que ocorresse a polimerização, um fio 0,021 x 0,025° foi encaixado nas canaletas dos bráquetes, garantindo o alinhamento dos mesmos; logo após a polimerização, esse fio foi removido.

Em cada placa dos três grupos confeccionadas, como descrito acima foi posicionado o primeiro fio da mesma marca do bráquete, sendo fixado com amarril 0,010". Esse fio foi sequencialmente substituído pelas demais espessuras de fio, após cada ensaío (Tab. 4.2.1). As extremidades do fio foram dobradas justas aos bráquetes para que não deslizassem através das canaletas (Figura 4.2.1 - c). Essa montagem foi realizada para todos os conjuntos de bráquetes, em todas as marcas.

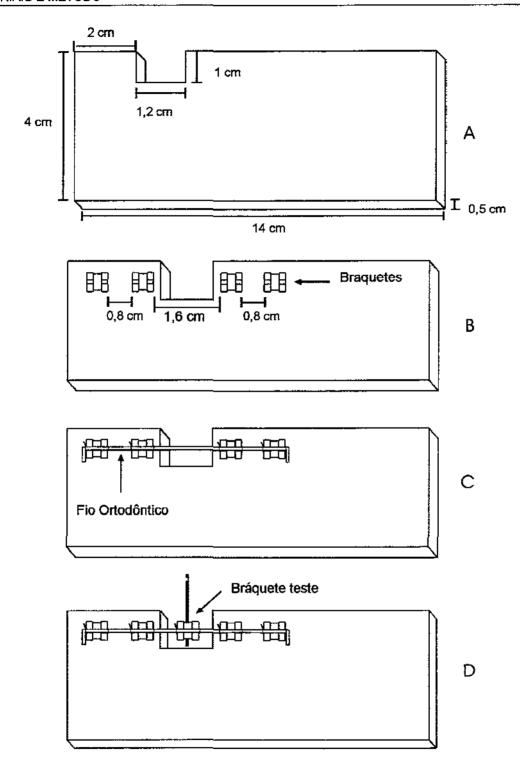


Figura 4.2.1 - Desenho esquemático da seqüência de montagem do segmento de arco

- A Base de acrílico
- B Base de acrílico com os bráquetes colados
- C Base de acrílico com os bráquetes e o fio posicionado
- D Base de acrílico com o fio e o bráquete teste posicionado

4.2.2 - Confecção do bráquete teste

Em trinta bráquetes de cada marca comercial, foi soldado, no centro da base e perpendicular à canaleta do bráquete, um fio com 14 mm de comprimento e 1 mm de espessura, que representava a raiz de um dente canino. Nesse fio, a 10 mm do centro da canaleta do bráquete, foi confeccionado, com um disco diamantado dupla face, uma pequena ranhura (figura 4.2.2), a qual demarcava e representava o centro de resistência da raiz, onde foi aplicada uma carga de 100g para criar a força normal entre a canaleta do bráquete e o fio ortodôntico, gerando atrito durante os ensaios. O bráquete teste foi posicionado no fio, no espaço de 16 mm entre os dois conjuntos de bráquetes (figura 4.2.1-D), e teve o seu fio de amarrilho ajustado firmemente, a seguir afrouxado até que o bráquete deslizasse no fio, sob o seu próprio peso, quando a placa de acrílico era posicionada perpendicularmente ao solo, (figura 4.2.3).

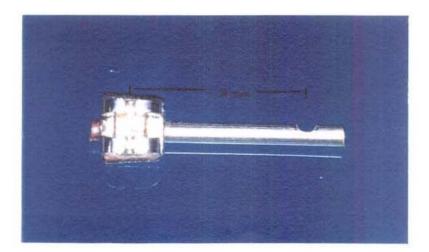


Figura 4.2.2 - Bráquete teste que simulou o canino no movimento de distalização

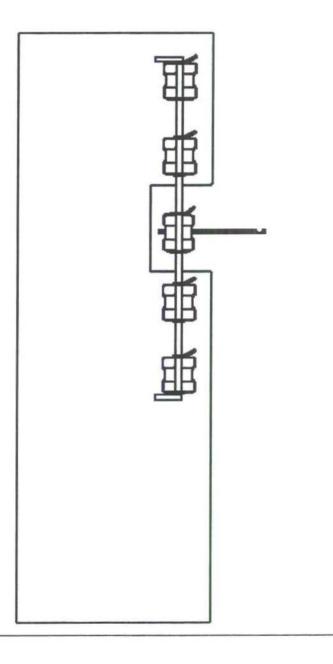


Figura 4.2.3 - Desenho esquemático da placa de acrílico com o segmento de fio e o bráquete teste que simulou o dente canino na mecânica de deslize, posicionada verticalmente para ajuste do amarrilho do bráquete teste.

4.2.3 - Ensaio para determinação da força de deslizamento e de atrito

A placa de acrílico, com o segmento de fio montado, foi fixada verticalmente no mordente da base de uma máquina Instron, de tal maneira que o fio que passava pela canaleta dos bráquetes ficasse alinhado com o centro da célula de carga na parte superior da máquina de ensaios Instron.

Na ranhura, confeccionada no fio soldado na base do bráquete teste, foi colocado um peso de 100g representando uma força simples atuando no centro de resistência da raiz do dente^{28, 38}, vai gerar o momento, que gera forças normais que empurram as superfícies da canaleta do bráquete contra a superfície do arco geram atrito. Um fio 0,016 x 0,022" foi dobrado em forma de "U" com as extremidades medindo 14 cm e a base 0,5 cm foi posicionado com a base apoiada na superfície mesial do bráquete teste, as duas extremidades foram fixadas à célula de carga (figura 4.2.4). A máquina de testes Instron foi acionada e o bráquete foi puxado, deslizando à velocidade de 5 mm/min através do segmento de fio, por uma distância de 8 mm. O registrador gráfico da máquina de ensaios Instron foi programado com um fundo de escala limite de 500g, escolhido depois dos testes piloto terem revelado os limites das forcas encontradas no experimento.

A força necessária para a condução do bráquete através do fio foi registrada sob a forma de gráfico - força x tempo. Um gráfico foi gerado para cada um dos dez corpos-de-prova das três espessuras de fios para cada uma das marcas analisadas.

Todos os ensaios foram realizados à temperatura ambiente de 25 °C (± 2).

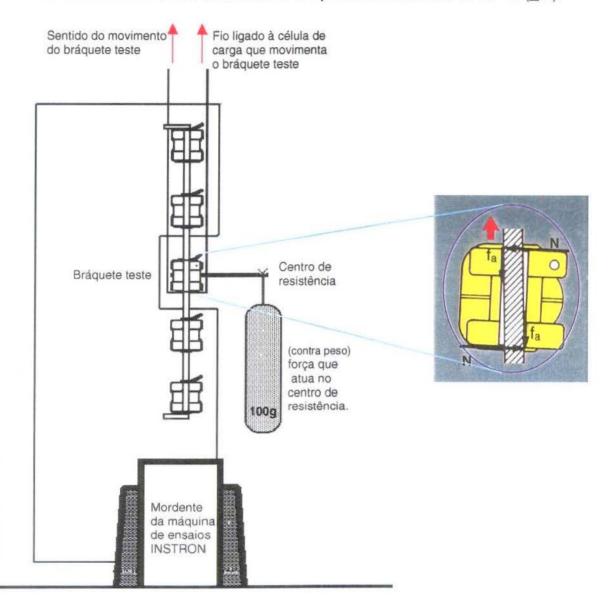


Figura 4.2.4 - Desenho esquemático do sistema utilizado para determinar a força de deslizamento, força de atrito, e o coeficiente de atrito entre o bráquete e o fio. E detalhe mostrando pontos de contato do fio com a parte interna da canaleta do bráquete e os vetores da força normal (N) e de atrito (fa).

O valor médio da força de deslize para cada ensaio foi calculado fazendose seis leituras no gráfico traçado pela máquina Instron para cada corpo-de-prova (figura 4.2.5). Os valores foram colhidos do gráfico após o traçador ter percorrido 10mm iniciais em intervalos de 10mm em 10mm, tendo como régua o fundo de escala onde foi traçado cada gráfico. Os 6 valores foram então somados e divididos por 6.

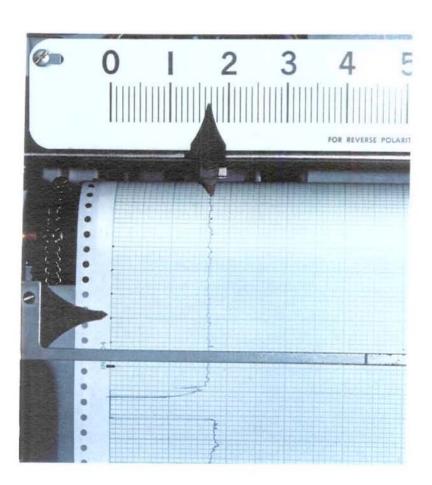


Figura 4.2.5 - Ilustração do gráfico sendo traçado pela máquina de ensaios INSTRON registrando a força de deslizamento para o corpo-de-prova.

4.2.4 - Cálculo da força de atrito

A diferença entre a leitura da carga registrada sob a forma de gráfico pela máquina de teste Instron e o contrapeso de 100g aplicado ao bráquete no centro de resistência hipotético corresponde à força de atrito.

Ex.:

Valor da leitura da força de deslizamento 197 g

Força aplicada no cetro de resistência - 100 g

Força de atrito 97 g

4.2.5 - Cálculo do Coeficiente de atrito entre bráquete e fio ortodôntico

De posse dos dados da força de atrito desenvolvida durante a condução do bráquete através do fio mais o diagrama das forças que atuam na mecânica de deslizamento no experimento (figura 4.2.6), isolou-se o coeficiente de atrito da formula clássica para o cálculo do atrito e deduziu-se a fórmula para o cálculo do coeficiente de atrito desenvolvido no sistema fio/bráquete para o experimento.

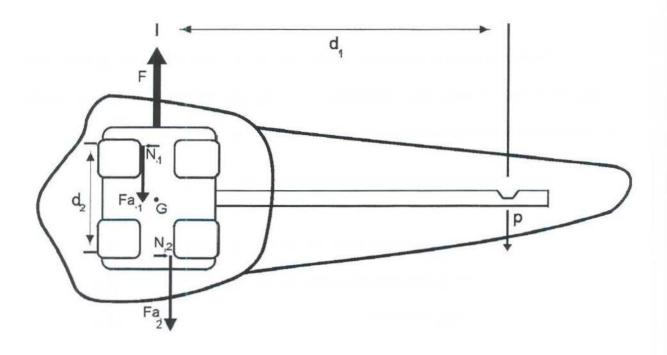


Figura 4.2.6 - Diagrama das forças que atuam no experimento

d₁ = Distância do centro de resistência ao centro de giro do bráquete

d₂ = Largura do bráquete

F = Força aplicada ao bráquete para a distalização

F a1 = Força de atrito entre a canaleta distal do bráquete e o fio

F_{a2} = Força de atrito entre a canaleta mesial do bráquete e o fio

G = Centro de giro do bráquete

N₁ = Força normal entre fio e canaleta distal do bráquete

N₂ = Força normal entre fio e canaleta mesial do bráquete

p = Peso aplicado no centro de resistência

Fórmula clássica para o cálculo matemático da força de atrito

$$F_a = \mu F_n$$

F a = força de atrito

μ = coeficiente de atrito

f_n = força normal

Fórmula do coeficiente de atrito deduzida para o experimento

$$\mu = \frac{d_2(F - p)}{2 p d_1}$$

μ = Coeficiente de atrito

d₁ = Distância do centro de resistência ao centro de giro do bráquete

d₂ = Largura do bráquete

F = Força de deslizamento encontrada no experimento

p = Força que atua no centro de resistência (contra peso)

A partir da fórmula deduzida e dos coeficientes de atrito determinados experimentalmente é possível calcular a força de atrito para qualquer tamanho de bráquete confeccionado com as ligas analisadas no experimento.

4.2.6 - Análise em Microscopia Eletrônica de Varredura

A análise microscópica das superfícies dos fios e bráquetes foi realizada em um microscópio eletrônico de varredura, da marca ZEISS DSM 960 - West Germany, com aumentos de 76 e 500 vezes. A superfície dos corpos de prova foram revestidas com liga de ouro-paládio.

dedução completa no apêndice, p.127

4.2.7 - Determinação da rugosidade dos fios ortodônticos

Após concluídos, os testes de força de deslizamento e atrito, os fios nos quais os bráquetes deslizaram foram removidos das placas de acrílico, e tiveram a rugosidade superficial determinada com um rugosímetro da marca Praxis - RUG 3 (Figura 4.2.7). O trecho de medição estabelecido foi de 4,8mm e a leitura considerada foi a média aritmética entre os picos e vales (Ra).

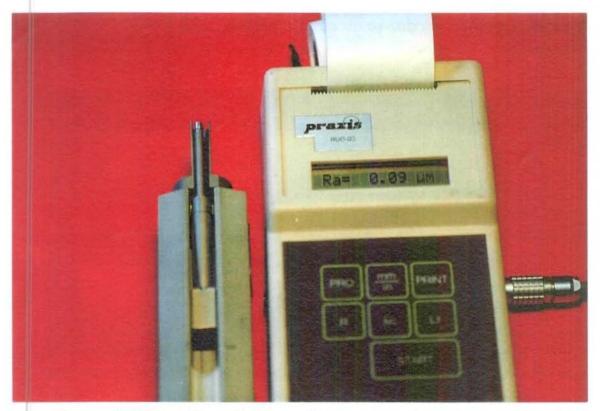


Figura 4.2.7 - Rugosímetro utilizado para determinar a rugosidade superficial dos fios ortodônticos.

Foram realizadas quatro leituras sempre na superfície mais larga dos fios.

Cada segmento de fio teve uma das extremidades removida para eliminar a

dobra anteriormente confeccionada para melhor fixação do fio no teste de deslizamento. Devido às dimensões reduzidas do segmento de fio, pequenos movimentos durante as leituras distorciam os resultados. Foi, então, especialmente confeccionado um dispositivo de acrílico (figura 4.2.8) que encaixa com precisão na ponta ativa do rugosímetro, mantendo o segmento de fio fixo sobre a agulha de leitura, garantindo, dessa maneira, a precisão das leituras da rugosidade. As leituras foram realizadas fora da área em que o bráquete teste deslizou, pois no deslize introduz-se riscos na superfície do fio.

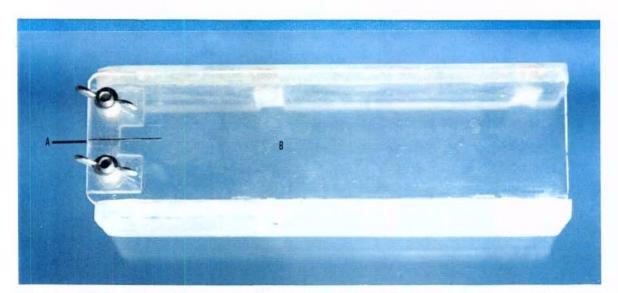


Figura 4.2.8 - Dispositivo de acrílico que encaixa com precisão na ponta ativa do rugosímetro e mantém o segmento de fio fixo sobre a agulha de leitura.

A - Segmento do fio analisado B - Dispositivo em acrílico

4.2.8 - Análise estatística

Os dados obtidos nos ensaios foram submetidos à análise de variância para determinar as interações.

5 - RESULTADO

Section of the sectio

Os valores individuais originais são apresentados no apêndice.

5.1 - Força de deslizamento

A tabela 5.1.1 apresenta a análise de variância dos valores de força necessária para o deslizamento dos bráquetes nos fios quando uma força simples de 100g atua no centro de resistência a 10mm do centro do bráquete.

Tabela 5.1.1 - Análise de Variância dos valores da força de deslizamento bráquetes/fios verificando a interação marcas e espessuras de fios

Causas da	G. L.	S.Q.	Q.M.	VALOR	PROB.
variação				F	>F
MARCAS	2	8314,4222222	4157,211111	52,2174	0,00001
DIÂMETRO FIO	2	1470,8222222	735,4111111	9,2373	0,00046
MARCA*FIO	4	1258,1111111	314,5277778	3,9507	0,00585
RESÍDUO	81	6448,7000000	79,6135802		
TOTAL	89	17492,0555556			· • - · • ·

MÉDIA GERAL = 192,722229

COEFICIENTE DE VARIAÇÃO = 4,630 %

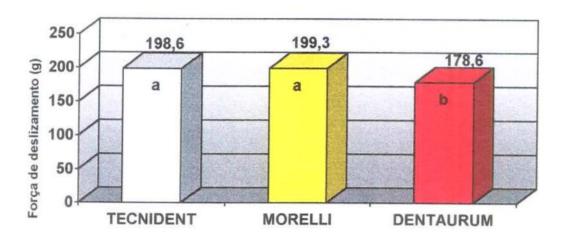
Constatadas diferenças significantes, os valores médios foram submetidos ao teste de Tukey, em nível de 5% de probabilidade.

Os valores médios da força necessária para movimentar os bráquetes e gerar uma resultante de 100g no centro de resistência, são apresentados na tabela 5.1.2, para cada marca variando-se a espessura dos fios ortodônticos.

Tabela 5.1.2 - Médias da força de **deslizamento**, requeridas para movimentar os bráquetes nos fios, para cada marca e espessura de fio, e o desvio padrão da média entre parênteses.

Espessura	FO	RÇA DESLIZAMENTO) (g)
Dos fios	TECNIDENT	DENTAURUM	
0,016x0,022"	202 (3,4) a A	201 (3,7) a A	188 (3,8) b A
0,018x0,025"	197 (2,3) a A	206 (2,4) a A	174 (2,1) bB
0,021x0,025"	197 (2,9) a A	191 (2,1) a B	174 (1,1) bB

Médias seguidas por letras minúsculas iguais na linha e maiúsculas na mesma coluna não diferiram entre si ao nível de 5% de significância de DMS= 9.53415


De forma geral, os resultados apresentados na tabela 5.1.2, considerando os valores na mesma coluna, demonstraram que o aumento na espessura dos fios ortodônticos de 0,016x0,022" para 0,018x0,025" e 0,021x0,025" não produziu efeito na força de deslizamento para o material da marca Tecnident. No entanto, no material da marca Morelli, a diferença na espessura do fio 0,016x0,022" para o 0,018x0,025" não provocou alteração estatisticamente significante no valor da

força de deslizamento. No entanto, o fio 0,021x0,025" provocou uma redução no valor da força de deslizamento estatisticamente significante ao nível de 5%.

Comparando os valores encontrados para o material da marca Dentaurum foi observada uma redução estatisticamente significante ao nível de 5%, no valor da força de deslizamento, quando aumentamos a espessura do fio 0,016x0,022" para o fio 0,018x0,025". Entretanto, a variação da espessura de fio 0,018x0,025" para o fio 0,021x0,025" não provocou alteração estatisticamente significante na força de deslizamento.

Comparados os valores médios apresentados para as três marcas avaliadas na mesma espessura do fio (tabela 5.1.2), os materiais nacionais não apresentaram diferenças estatisticamente significantes nas três espessuras de fio, no entanto, o material da Dentaurum, comparando-se os resultados para a mesma espessura de fio com as marcas nacionais apresentou os menores valores de força de deslizamento em todas as espessuras de fios avaliadas.

No gráfico ilustrado na figura 5.1.1, observou-se que os materiais das marcas Tecnident e Morelli desenvolveram as maiores médias de força durante o deslizamento e não apresentaram diferença estatisticamente entre sí. Porém, os valores encontrados para a marca Dentaurum foram os menores e diferiram estatisticamente dos encontrados para as marcas nacionais Tecnident e Morelli.

Barras seguidas de mesma letra não diferiram estatisticamente ao nível de 5% de significância DMS = 5.50454

Figura 5.1.1 – Ilustração gráfica dos valores da força média requerida para deslizar os bráquetes, comparando as marcas avaliadas.

5.2 - Força de atrito

A tabela 5.2.1 apresenta a análise de variância dos valores de força de atrito verificando a interação entre diâmetro dos fios e marcas.

Tabela 5.2.1 - Análise de Variância dos valores da força de atrito verificando a interação entre marcas e espessuras de fios

Causas da variação	G. L.	S.Q.	Q.M.	VALOR F	PROB.>F
MARCAS	2	8314,4222222	4157,211111	52,2174	0,00001
DIÂMETRO FIO	2	1470,8222222	735,4111111	9,2373	0,00046
MARCA*FIO	4	1258,1111111	314,5277778	3,9507	0,00585
RESÍDUO	81	6448,7000000	79,6135802		
TOTAL	89	17492,0555556			

MÉDIA GERAL = 92,722221

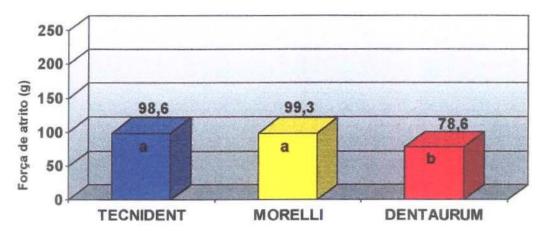
COEFICIENTE DE VARIAÇÃO = 9,630 %

Constatada a existência de diferença estatisticamente significante, os valores foram submetidos ao teste de Tukey ao nível de 5% de probabilidade.

A diferença entre a leitura registrada pela máquina de ensaio da resultante na raiz do dente (contrapeso 100g) corresponde à força de atrito. As médias das forças de atrito para cada espessura de fio de cada marca estão apresentadas na tabela 5.2.2

Tabela 5.2.2 – Médias da força de atrito, desenvolvida durante o deslizamento dos bráquete nos fios, para cada marca, comparando-se a espessura dos fios e as marcas. Desvio padrão da média entre parênteses.

Espessura	1	FORÇA DE ATRITO (g	1)
Dos fios	TECNIDENT	MORELLI	DENTAURUM
0,016x0,022"	102 (3,4) a A	101 (3,7) a A	88 (3,8) b A
0,018x0,025"	97 (2,3) a A	106 (2,4) a A	74 (2,1) bB
0,021x0,025"	97 (2,9) a A	91 (2,1) a B	74 (1,1) bB


Médias seguidas por letras minúsculas iguais na mesma linha e maiúsculas na mesma coluna não diferiram entre si ao nível de 5% de significância de DMS= 9.53415

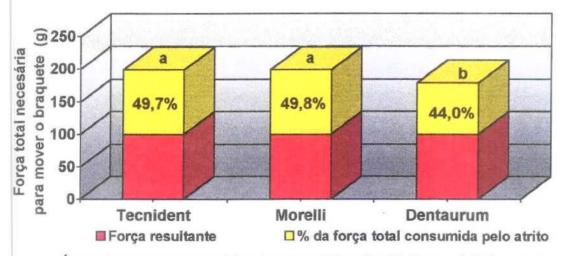
Os resultados apresentados na tabela 5.2.2 mostraram que não houve diferença estatisticamente significante entre os valores da força de atrito encontrados quando aumentou-se a espessura dos fios Ortodônticos para o material da marca Tecnident. Já, o aumento na espessura do fio Morelli 0,018x0,025" para 0,021x0,025" provocou uma redução estatisticamente significante ao nível de 5% no valor da força atrito.

Quando comparamos os valores encontrados para o material da marca Dentaurum observamos que houve uma redução estatisticamente significante ao nível de 5%, no valor da força de atrito, quando aumentamos a espessura do fio 0,016x0,022" para o fio 0,018x0,025". No entanto, isso não se repetiu quando aumentamos a espessura do fio para 0,021x0,025".

Comparados os valores médios apresentados para as três marcas avaliadas na mesma espessura do fio (tabela 5.2.2), os materiais nacionais não apresentaram diferenças estatisticamente significantes nas três espessuras de fio, no entanto, o material da Dentaurum, comparando-se os resultados para a mesma espessura de fio com as marcas nacionais apresentou os menores valores de força de atrito em todas as espessuras de fios avaliadas.

Comparados os dados apresentados no gráfico ilustrado na figura 5.2.1 observou-se que os materiais das marcas Tecnident e Morelli desenvolveram as maiores médias de força de atrito e não apresentaram diferença estatística significante entre sí. Porém, os valores encontrados para a marca Dentaurum, foram os menores e houve diferença estatisticamente significante entre estes e os encontrados para as marcas Tecnident e Morelli.

Barras seguidas de mesma letra não diferiram estatisticamente ao nível de 5% de significância DMS = 5,50454


Figura 5.2.1 - Ilustração gráfica da força de atrito média, encontrada para cada marca de fio e bráquete estudada.

5.2.1 - Percentual médio da força dissipada com o atrito

Percentual médio de força dissipada pelo atrito, variando-se a espessura dos fios, e o valor médio para cada marca avaliada independente da espessura dos fios estão na tabela 5.2.3 e gráfico ilustrado na figura 5.2.2, respectivamente.

Tabela 5.2.3 - Percentual médio da força dissipada com o atrito entre o bráquete e o fio durante o deslizamento, variando-se a espessura dos fios.

Espessura	Percentual de	dissipação de Forç	a com o atrito
Dos fios	TECNIDENT	MORELLI	DENTAURUM
0,016x0,022"	50,7%	50,4%	46,8%
0,018x0,025"	49,2%	51,4%	42,5%
0,021x0,025"	49,4%	47,6%	42,8%

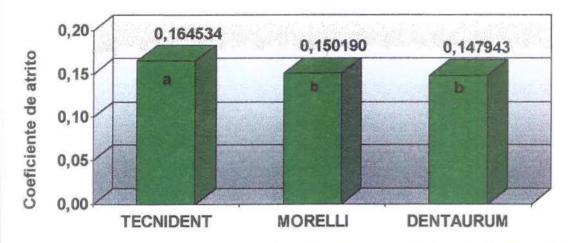
Áreas da mesma cor seguidas de mesma letra não diferiram estatisticamente ao nível de 5% de significância DMS = 5,50454

Figura 5.2.2 - Ilustração gráfica dos valores médios das forças requeridas para deslizar os bráquetes nos fios com uma resultante de 100g no centro de resistência e o percentual de força de atrito em relação à força total aplicada para mover o bráquete.

5.3 - Coeficiente de atrito entre bráquetes e fios

A tabela 5.3.1 apresenta a análise de variância dos valores do coeficiente de atrito entre os bráquetes e fios estudados.

Tabela 5.3.1-- Análise de Variância dos valores do coeficiente de atrito entre bráquetes e fios comparando as diversas marcas e espessuras de fios estudados.


Causas da	G. L.	S.Q.	Q.M.	VALOR	PROB.>F
variação				F	
MARCAS	2	0,0048600	0,0024300	10,9442	0,00018
DIÂMETRO FIO	2	0,0042799	0,0021400	9,6380	0,00037
MARCA*FIO	4	0,0035522	0,0008881	3,9996	0,00547
RESÍDUO	81	0,0179848	0,0002220		
TOTAL	89	0,0306769			

MÉDIA GERAL = 0,154222

COEFICIENTE DE VARIAÇÃO = 9,662 %

Constatada a existência de diferença estatisticamente significante, os valores foram submetidos ao teste de Tukey ao nível de 5% de probabilidade.

A figura 5.3.1 apresenta, sob a forma gráfico de barras, os valores do coeficiente de atrito médio desenvolvido entre bráquetes e fios.

Barras seguidas de mesma letra não diferiram estatisticamente ao nível de 5% de significân DMS = 0.00919

Figura 5.3.1 - Ilustração gráfica da média do coeficiente de atrito entre fios e bráquetes ortodônticos comparando-se as diversas marcas estudadas.

De acordo com o gráfico ilustrado na figura 5.3.1, o material da marca Tecnident apresentou o maior coeficiente de atrito e diferiu estatisticamente ao nível de 5% de probabilidade, quando comparado com os dados obtidos para as marcas Morelli e Dentaurum. No entanto, não foi observada, entre os materiais Morelli e Dentaurum, diferença estatisticamente significante nos valores do coeficiente de atrito.

5.4 - Rugosidade dos fios ortodônticos

A tabela 5.4.1 apresenta a análise de variância dos valores da rugosidade dos fios utilizados .

Tabela 5.4.1 - Análise de Variância dos valores da rugosidade superficial dos fios comparando as diversas marcas e espessuras de fios.

Causas da variação	G. L.	S.Q.	Q.M.	VALOR F	PROB.>F
MARCAS	2	0,0998821	0,0499411	457,5991	0,00001
DIÂMETRO FIO	2	0,0016288	0,0008144	7,4621	0,00141
MARCA*FIO	4	0,0010045	0,0002511	2,3011	0,06479
RESÍDUO	81	0,0088401	0,0001091		
TOTAL	89	0.1113556			

MÉDIA GERAL = 0,102222

COEFICIENTE DE VARIAÇÃO = 10,220 %

Constatada a existência de diferença estatisticamente significante, os valores foram submetidos ao teste de Tukey ao nível de 5% de probabilidade.

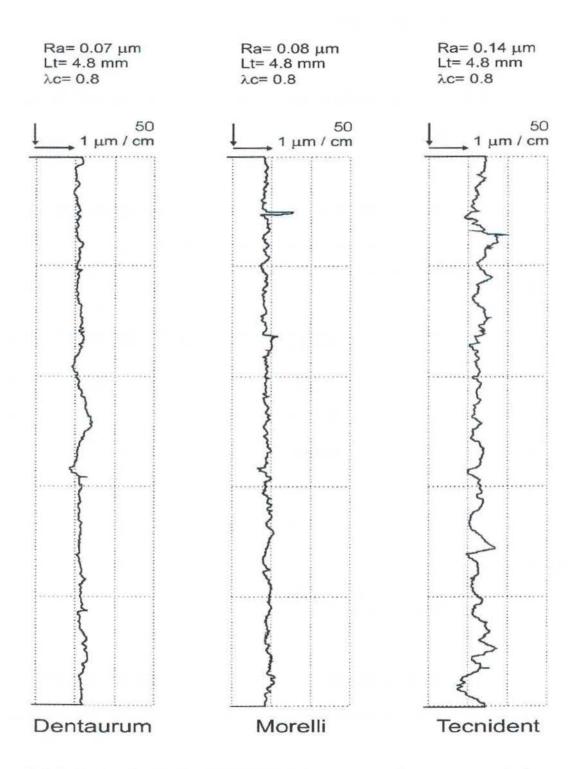
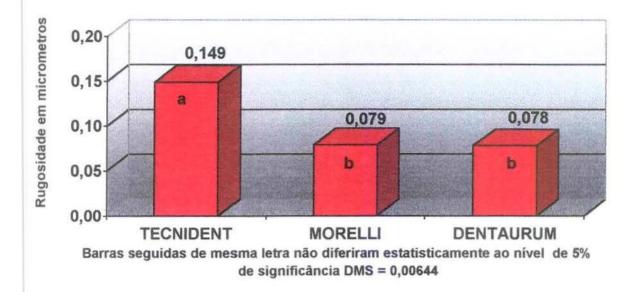
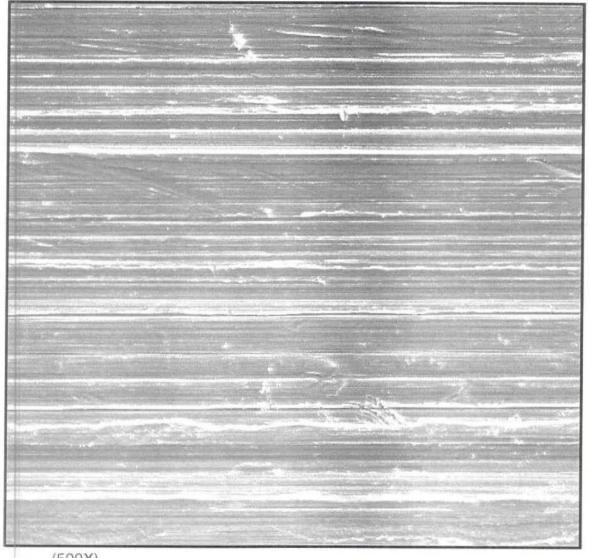


Figura 5.4.1 - Ilustração da Rugosidade dos fios para as três marcas avaliadas.




Figura 5.4.2 - Ilustração gráfica da rugosidade média (Ra) em μm, da superfície dos fios para cada grupo de materiais estudados.

De acordo com o gráfico ilustrado na figura 5.4.2, o material que apresentou a maior rugosidade superficial foi o da marca Tecnident; comparado com as marcas Morelli e Dentaurum apresentou diferença significante ao nível de 5%.

No entanto, o material Morelli e o Dentaurum apresentaram os menores valores de rugosidade superficial e não apresentaram a diferença estatisticamente significante ao nível de 5%.

5.5 - Microscopia Eletrônica de Varredura dos fios Ortodônticos

O aspecto morfológico das superfícies dos fios ortodônticos estão ilustrados nas fotomicrografias ilustradas nas figuras 5.5.1, 5.5.2 e 5.5.3

(500X)

Figura 5.5.1 - Aspecto morfológico da superfície da amostra do fio ortodôntico 0,018x0,025" da marca TECNIDENT.

(500X)

Figura 5.5.2 - Aspecto morfológico da superfície da amostra do fio ortodôntico 0,018x0,025" da marca MORELLI.

(500X)

Figura 5.5.3 - Aspecto morfológico da superfície da amostra do fio ortodôntico 0,018x0,025" da marca DENTAURUM .

5.6 - Microscopia Eletrônica de Varredura dos BRÁQUETES

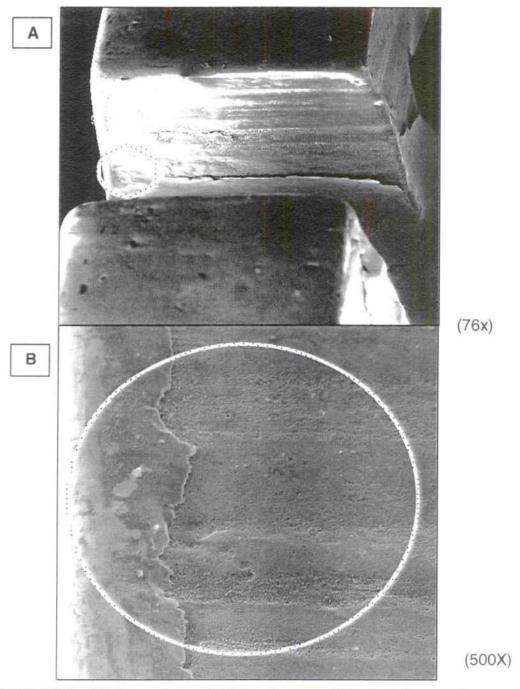


Figura 5.6.1 - (A) Aspecto morfológico da superfície do bráquete da marca TECNIDENT; (B) - representa o maior aumento da fotomicrografía A.

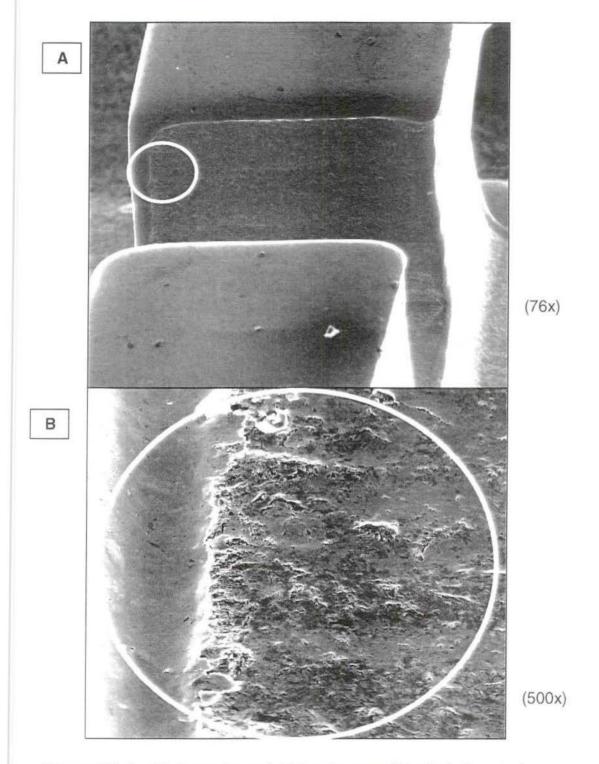


Figura 5.6.2 - (A) Aspecto morfológico da superfície do bráquete da marca MORELLI; (B) - representa o maior aumento da fotomicrografia A.

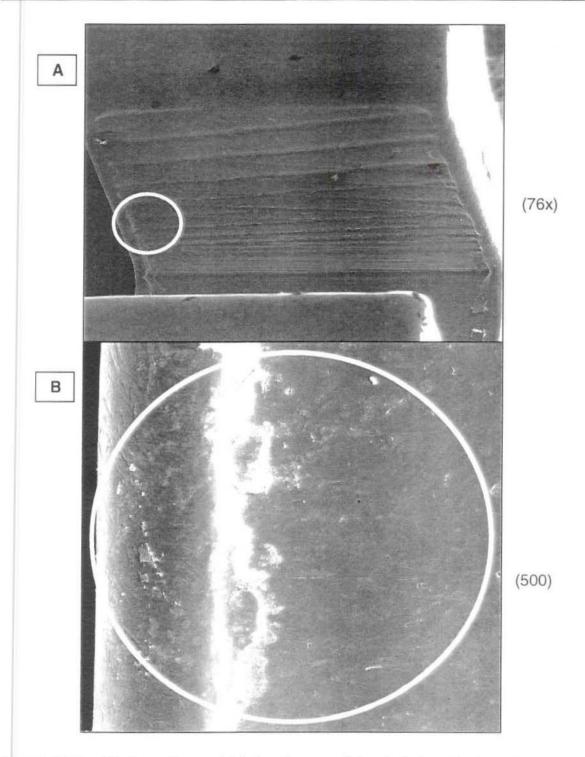


Figura 5.6.3 - (A) Aspecto morfológico da superfície do bráquete da marca Dentaurum; (B) - representa o maior aumento da fotomicrografia A.

A análise de microscopia eletrônica de Varredura confirmou os resultados dos testes de rugosidade, pois, comparando-se qualitativamente as superfície dos fios, ficou clara a diferença entre a rugosidade superficial da marca Tecnident (figura 5.5.1) em relação à observada para os fios da marca Morelli e Dentaurum que apresentaram superfícies muito semelhantes e de maior lisura (figuras 5.5.2 e 5.5.3)

Na avaliação do aspecto morfológico da superfície da canaleta dos bráquetes, onde o fio toca, na mecânica de deslize, verificou-se um bom acabamento para as três marcas avaliadas (figuras 5.6.1, 5.6.2 e 5.6.3).

6 - DISCUSSÃO

bráquete teste desliza ao longo de um arco, simulando a retração de um dente canino^{2, 10, 17, 37}, e o segundo o arco desliza dentro das canaletas dos bráquetes, simulando a retração em massa dos dentes anteriores ^{3, 8, 11, 12, 29, 33}.

A metodologia utilizada neste estudo, para a obtenção do valor da força necessária para o deslizamento do bráquete e gerar uma resultante de 100g no centro de resistência do dente, a 10mm da canaleta do bráquete, e determinar a conseqüente força de atrito entre o bráquete e os fios ortodônticos, foi a que simula o deslizamento do dente canino para a distal, ocupando o espaço da extração de um prémolar. Essa metodologia foi escolhida após avaliação da literatura, e julgado ser a mais apropriada para os objetivos propostos. Ela considera a maioria das variáveis conhecidas que afetam a magnitude da força de retração necessária para o movimento de deslize de um dente ao longo de um arco, como por exemplo: a força utilizada na retração ^{10, 37, 38, 40}, a força normal gerada entre o bráquete e o fio ortodôntico ^{15, 19, 37, 39}, a força de atrito ^{1, 3, 8, 25, 35}, e a resistência biológica ao movimento do dente ^{10, 37, 40}.

Força de deslizamento e de atrito - Neste estudo, foi necessária uma força média de 198g (Figura 5.1.1), para deslizarmos um bráquete ao longo de um arco nacional. Essa força gerou um atrito que consumiu aproximadamente 98 g (Figura 5.2.1) da força total aplicada para movimentá-lo. No entanto, para os fios e bráquetes importados, a força necessária para o deslizamento foi em média 178g e gerou um atrito que consumiu aproximadamente 78g da força total aplicada. Esse menor valor de força de atrito para o material (Dentaurum) pode

estar relacionado ao menor coeficiente de atrito³², assim como à maior largura do bráquete ^{10, 12, 17, 37}.

A diferença entre os valores das forças de deslizamento encontradas para os fios e bráquetes nacionais em relação ao importado foi estatisticamente significante (p< 0,05). No entanto, comparando os valores das forças encontrados para as marcas Tecnident e Morelli não se constatou diferença estatística (p>0,05). O mesmo ocorreu quando os valores das forças de atrito foram comparados (Figura 5.2.1).

Talvez a apreciação da magnitude desses valores seja a informação mais importante obtida dos resultados, considerando a força necessária para conduzir um dente ao longo de um arco, assim como a força de atrito. Pois, imesmo sob as melhores circunstâncias em que um fio de aço 0,018 x 0,025" polegadas foi colocado em um bráquete médio com encaixe de 0,022" e amarrado com uma força mínima por um fio de amarrilho, a resistência de atrito consumiu aproximadamente 50% da força total usada para conduzir os bráquetes através dos fios nacionais e em média 44% para o fio e bráquete importados (Figura 5.2.2). Esses valores estão próximos aos encontrados por Drescher et. al. 10, em 1998 e Tidy 37, em 1989, para esses tamanhos de bráquetes, espessura de fios e força de retardo. Meling 25, em 1997, confirmando esses resultados, relatou que a força consumida pelo atrito aumenta quase linearmente com a força de deslizamento.

Portanto, se um dente canino, para deslizar ao longo de um arco nacional, precisa de uma força de 100g para vencer a força de atrito, como parte da mecânica de fechamento do espaço das extrações, e são necessários outros 100g para romper a resistência biológica, a força total necessária para movimentar o dente com essa mecânica é de aproximadamente 200g. Assim, será necessário aplicar, para os fios e bráquetes nacionais, o dobro da força que é preciso no centro de resistência do dente para induzir as alterações periodontais e ósseas que resultem em movimento ótimo da raiz do dente.

Para o conjunto dos fios e bráquete importado, clinicamente, isso significa que basta a aplicação de uma força de 178g para a obtenção de uma tensão de 100g no centro de resistência do dente.

O inconveniente de precisar mais força para a obtenção da tensão de 100g no centro de resistência do dente quando utilizados os materiais nacionais é a maior solicitação da ancoragem. No entanto, se a perda da ancoragem for benéfica para o tratamento, os fios nacionais estão mais indicados, que os importados.

Variação da espessura dos arcos - O aumento da espessura do fio de 0,016x0,022" polegadas para 0,018x0,025" e 0,021x0,025", no conjunto dos fios e bráquetes nacionais da marca Tecnident, não provocou variação estatisticamente significante (p>0,05) (tabela 5.1.2) nos valores da força de deslizamento, bem como nos valores da força de atrito (tabela 5.2.2) . O aumento da espessura dos fios também não foi significante nos estudos apresentados por TIDY³⁷, em 1989.

Porém, na marca Morelli, o fio 0,021x0,025" apresentou o menor valor na iforça de deslizamento, assim como na força de atrito em relação aos fios mais finos estudados. Já no material Dentaurum, o fio 0,016x0,022" apresentou o maior valor de força de deslizamento e de atrito, quando comparado com as demais respessuras de fios. Essa diferença foi estatisticamente significante (p<0,05).

A variação na espessura dos fios ortodônticos parece não interferir positiva ou negativamente na força de destizamento e de atrito, pois as diferenças apresentadas não foram consistentes, como fica claro comparando-se jos resultados nas colunas das tabelas 5.1.2 e 5.2.2.

Coeficiente de atrito - A determinação do coeficiente de atrito entre os bráquetes e arcos (Figura 5.3.1) indicou que a marca Tecnident apresentou o maior coeficiente de atrito (p<0,05), quando comparada com as marcas Morelli e Dentaurum. No entanto, os valores encontrados para a Morelli e Dentaurum, quando comparados, não diferiram estatisticamente entre si (p>0,05).

Esse fato nos surpreendeu, pois a força de atrito e a força de deslizamento tem uma relação direta com o coeficiente de atrito, e no gráfico ilustrado na Figura 5.1.1, comparando-se as forças de deslizamento da Morelli e da Dentaurum, elas apresentaram diferenças estatisticamente significantes e o mesmo ocorreu com a força de atrito (gráfico ilustrado na Figura 5.2.1). Então, eram esperados coeficientes de atrito também diferentes para as duas marcas de materiais.

Porém, reavaliando os fatores que podiam interferir nesses dados, verificamos que existia uma diferença entre os bráquetes de cada marca que poderia justificar esse resultado, a largura dos bráquetes era diferente.

Essa hipótese foi demonstrada correta utilizando-se a fórmula deduzida para o cálculo do coeficiente de atrito (p.78). Na fórmula, a largura do bráquete entra como um dos fatores para os cálculos; isolou-se a força de atrito como o dado desconhecido, e foi realizado o cálculo da força de atrito para a Morelli com o coeficiente de atrito previamente determinado (Figura 5.3.1) e alterou-se valor da largura do bráquete de 3,01 mm para a largura do bráquete da Dentaurum 3,74 mm. O resultado obtido (80g) confirmou a hipótese, pois a força de atrito média para a Dentaurum é de 78,6g, ou seja, uma diferença de 1,4g entre os resultados, se os dois bráquetes fossem da mesma largura. Portanto, a largura do bráquete é um fator importante na força de deslizamento e de atrito; quanto mais largo o bráquete, menor o atrito.

O conhecimento do valor específico do coeficiente de atrito para um determinado conjunto de bráquete/fio tem utilidade na prática clínica pois permite calcular, através da fórmula clássica para o cálculo do atrito, a força que deve ser aplicada ao dente para se ter uma resultante específica no centro de resistência. Também permite calcular quanto da força aplicada ao dente será consumida pelo atrito que será gerado naquele conjunto de bráquete/fio.

Para a realização desse cálculo basta medir a largura do bráquete, verificar quanta força deve agir no centro de resistência e verificar a distância

média do centro de resistência do dente à canaleta do bráquete. O coeficiente de atrito a ser utilizado deve ser o específico para cada conjunto bráquete/arco e está apresentado na figura 5.3.1.

Com esses dados, basta aplicar a fórmula para o cálculo do atrito onde:

F_a = força de atrito, μ = coeficiente de atrito, d = Largura do bráquete, e
 f= força no centro de resistência que atua a uma distância h do arco.

Calculada a força de atrito, basta somar, a este valor, a força necessária ique deve atuar no centro de resistência e obter a força total que deve ser aplicada ao dente para que se movimente. Para que o ortodontista pudesse realizar esses cálculos, os fabricantes deveriam fornecer esses dados básicos a respeito de seus produtos nas embalagens.

Rugosidade - Os valores médios da rugosidade para os fios das três marcas estudadas são apresentados no gráfico 5.4.2 e mostram que o material da marca Tecnident apresentou a superfície com a maior rugosidade média (R_a) 0,149 μm. Esses dados submetidos à análise estatística apresentaram diferença estatística significante ao nível de 5% em relação às marcas Morelli e Dentaurum.

No entanto, o material Morelli e o Dentaurum apresentaram os menores valores de rugosidade superficial, (R_a) 0,079μm e 0,078μm respectivamente. Quando comparados estatisticamente ao nível de 5% de significância não

apresentaram diferença estatística. Esses valores foram 50% menores do que o encontrado para a marca Tecnident.

Com base nesses resultados, comparados com os resultados obtidos para força de deslizamento (Figura 5.1.1) e força de atrito (Figura 5.2.1) parece não haver correlação entre as médias aritméticas de rugosidade e os valores de força de atrito e deslizamento. O mesmo foi relatado por Drescher¹⁰ 1989, Tidy³⁷ 1989, PrososKi, Bagby e Erickson²⁹, 1991; no entanto, a rugosidade dos fios pode ser considerada como um fator na avaliação do acabamento dos materiais; ou seja, se o material é mais rugoso pode estar indicando nesse caso uma certa falta de atenção do fabricante com o acabamento do seu produto.

Microscopia eletrônica - A análise de microscopia eletrônica de Varredura confirmou os resultados dos testes de rugosidade, pois, comparando-se qualitativamente as superfície dos fios, ficou clara a diferença entre a rugosidade superficial da marca Tecnident (Figura 5.5.1) em relação à observada para os fios da marca Morelli e Dentaurum que apresentaram superfícies muito semelhantes e de maior lisura (Figuras 5.5.2 e 5.5.3)

Mesmo considerando que a rugosidade seja uma propriedade importante para os fenômenos de superfície^{19,20,} parece que, neste estudo, isso não foi determinante, estando de acordo também com estudos de Prososki, Bagby e Ericson²⁹, pois o material da marca Morelli, apesar de ter apresentado um dos mais baixos valores de rugosidade, aproximadamente a metade do mais rugoso (Tecnident) e boa qualidade na avaliação por microscopia eletrônica de

varredura, desenvolveu os maiores valores para força de deslizamento e de atrito (Figuras 5.1.2 e 5.2.2). Isso está relacionado à menor largura dos bráquetes da Morelli, uma vez que o Dentaurum apresentou a mesma rugosidade, no entanto, obteve valores de força de atrito e de deslizamento menores.

A avaliação do aspecto morfológico da superfície da canaleta dos bráquetes, onde o fio toca, na mecânica de deslize, de mostrou um bom acabamento para as três marcas avaliadas (Figuras 5.6.1, 5.6.2 e 5.6.3).

Devido à necessidade do uso de forças suaves, compatíveis biologicamente com o movimento dentário, e de considerar a proteção da ancoragem, salientamos a necessidade do ortodontista incluir considerações sobre a força de atrito, quando utiliza a mecânica de deslize, uma vez que o atrito consumiu aproximadamente 50% da força total aplicada para realizar o movimento com esta mecânica.

Além disso, sugerimos aos fabricantes dos bráquetes e fios ortodônticos nacionais avaliados, que revejam os processos de fabricação, bem como as características físicas de seus produtos, com o intuito de melhorar a qualidade dos mesmos.

De acordo com a metodología e os resultados obtidos, concluiu-se que:

- 7.1 As forças de deslizamento para os materiais da Tecnident (198,6g) e da Morelli (199,3g) não diferiram entre si e foram mais elevadas que as do Dentaurum (178g). A diferença entre os valores dos materiais nacionais e o importado corresponde a 10% da força total aplicada para realizar o movimento e foi estatisticamente significante (p<0,05).
- 7.2 A força de atrito consumiu 49,7% da força total aplicada para movimentar o braquete de fabricação nacional, aproximadamente 99g. No conjunto fio/braquete importado, a força de atrito consumiu 44% da força total aplicada, em torno de 80g. Comparando-se os valores, o material Dentaurum gerou menos força de atrito e a diferença foi estatisticamente significante (p<0,05).
- 7.3 O aumento da espessura dos fios utilizados n\u00e3o apresentou efeito consistente na for\u00e7a de atrito e de deslizamento.
- 7.4 A marca Tecnident apresentou o maior coeficiente de atrito (0,164534), diferindo estatisticamente das demais. As marcas Morelli (0,150190) e Dentaurum (0,147943), apresentaram os menores valores de coeficiente de atrito e não diferiram estatisticamente entre si (p> 0,05).

- 7.5 A marca Tecnident apresentou rugosidade média de 0,149 μm, 50% mais rugosa e estatisticamente diferente (p<0,05), quando comparada com a Morelli 0,079μm e Dentaurum 0,078μm que não apresentaram diferença significante. A microscopia eletrônica confirmou esse resultado pelo aspecto morfológico da superfície dos fios ortodônticos analizados.</p>
- 7.6 A comparação do aspecto morfológido da canaleta dos bráquetes em microscopia eletrónica de varredura não apresentou diferenças visualmente significativas.

9 - REFERÊNCIAS BIBLIOGRÁFICAS

REFERENCIAS BIBLIOGRÁFICAS

- ANDREASEN, G.F., QUEVEDO, F.R. Evaluation of friction forces in the 0.022"x 0.028" Edgewise bracket in vitro. J. Biomech., Elmsford, v. 3, n. 2, p. 151-160, Mar. 1970.
- ANGOLKAR P, V. et al. Evaluation of friction between ceramic brackets and orthodontic wire of four alloys. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 98, n. 6, p. 499-506, Dec. 1989.
- BAKER, K.L. et al. Frictional changes in force values caused by saliva substitution. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 91, n. 4, p. 316-320, Apr. 1987.
- BEDNAR, J.R., GRUENDEMAN, G.W., SANDRIK, J.L. A comparative study of frictional forces between orthodontic brackets and arch wires. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 100, n. 6, p. 513-522, Dec. 1991.
- 5. BRAUN, S., et al. Friction in perspective. Am. J. Orthod. Dentofac. Orthop.,

 Saint Louis, v. 115, n.6, p. 619 -27, Jun.1999.
- BURSTONE, C.J., KOENIG, H.A. Optimizing angerior and canine retraction.
 Am. J. Orthod., Saint Louis, v.70, n. 1, p. 1-19, July 1976.

De acordo com a NBR-6023 de 1989, da Associação Brasileira de Normas Técnicas. Abreviaturas de periódicos de conformidade com a "World List of Scientific Periodicals".

- 7. CHARLES, C.R., JONES, M.L. Canine retraction with the edgewise appliance-some problems and solutions. **Br. J. Orthod.,** Oxford, v. 9, n. 4, p. 194-202. Oct. 1982.
- 8. DOWNING, A., MCCABE, J., GORDON, P. A study of frictional forces between orthodontic brackets and archwires. **Br. J. Orthod.,** Oxford, v. 21, n. 4, p. 349-357, Nov. 1994.
- 9. ______, _____. The effect of artificial saliva on the frictional forces between orthodontic brackets and archwires. **Br. J. Orthod.,**Oxford, v. 22, n. 1, p. 41-46, Feb. 1995.
- DRESCHER, D., BOURAUEL, C., SCHUMACHER, H.A. Frictional forces between bracket and arch wire. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 96, n. 5, p. 397-404, Nov. 1989.
- EDWARDS, G.D., DAVIES, E.H., JONES, S.P. The ex vivo effect of ligation technique on the static frictional resistance of staninless steel Brackets and archwires. Br. J. Orthod., Oxford, v. 22, n. 2, p. 145-153, May 1994.
- 12. FRANK, C.A., NIKOLAI, F.J. A comparative study of frictional resistances between orthodontic bracket and arch wire. **Am. J. Orthod.,** Saint Louis, v. 78, n. 6, p. 593-609, Dec. 1980.

- GARNER, L.D., ALLAI, W.W., MOORE, B.K. A comparison of frictional forces during simulated canine retraction of a continuous edgewise arch wire. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 90, n. 3, p. 199-203, Sept. 1986.
- 14. GENNES, P.G., BADOZ, J. Os objetos frágeis. Campinas : Ed. UNICAMP,1997. p. 183.
- HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos de física. 4.ed.
 Rio de Janeiro: LTC, 1996. V. 1, p. 81-130.
- 16. HUFFMAN, D.J., WAY, D.C. A clinical evaluation of tooth movement along arch wires of two different sizes. **Am. J. Orthod.,** Saint Louis, v. 83, n. 6, p. 453-459, June 1983.
- KAPILA, S. et al. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. Am. J. Orthod. dentofac.
 Orthop., Saint Louis, v. 98, n. 2, p. 117-126, Aug. 1990.
- KEITH, O., JONES, S.P., DAVIES, E.H. The influence of bracket material, ligation force and wear on frictional resistance of orthodontic brackets. Br. J. Orthod., Oxford, v. 20, n. 2, p. 109-115, May 1993.
- KUSY, R.P. et al. Surface roughness of orthodontic archwires: via laser spectroscopy. Angle Orthod., Appleton, v. 58, n. 1, p. 33-45, Jan. 1988.

20. KUSY, R.P., WHITLEY, J.Q. Effects of surface roughness on the coefficients of friction in model orthodontic systems. J. Biomech., Elmsford, v. 23, n. 9, p. 913-925, 1990. 21. steel and polycrystalline alumina bragket slots. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 98, n. 4, p. 300-312, Oct. 1990. 22. sliding mechanics: derivations and determinations of the critical contact angles for binding. Eur. J. Orthod., v21, n.2, p199-208, apr. 1999. 23. ______, PREWITT, M.J. Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states. Angle Orthod., Appleton, v. 61, n. 4, p. 293-302, Winter 1991. 24. MATASA, C.G. Bracket angulation as a function of its length in the canine distal movement. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 110, n. 2, p. 178-184, Aug. 1996. 25. MELING, T.T. et al. The effect of friction on the bending stiffness of orthodontic beams: a theoretical and in vitro study. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 112, n. 1, p. 41-49, July 1997. 26. NICOLLS, J. Frictional forces in fixed orthodontic appliances. Dent. Practnr

dent. Rec., Bristol, v. 18, n. 10, p. 362-366, June 1968.

- 27. OGATA, R.H. et al. Frictional resistances in stainless steel bracket-wire combinations with effects of vertical deflections. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 109, n. 5, p. 535-542, May 1996.
- 28. PROFFIT, W.R. **Ortodontia contemporânea.** 2.ed. Rio de Janeiro : Guanabara Koogan, 1995. p. 275-288.
- 29. PROSOSKI, R.R., BAGBY, M.D., ERICKSON, L.C. Static frictional force and surface roughness of nickel-titanium arch wires. **Am. J. Orthod. dentofac.**Orthop., Saint Louis, v. 100, n. 4., p. 341-348, Oct. 1991.
- 30. QUINN, R.S., YOSHIKAWA, D.K. A reassessment of force magnitude in orthodontics. **Am. J. Orthod.,** Saint Louis, v. 88, n. 3, p. 252-260, Sept. 1986.
- 31. READ-WARD, G.E., JONES, S.P., DAVIES, E.H. A comparison of self-ligating and conventional orthodontic bracket systems. **Br. J. Orthod.,** Oxford, v. 24, n. 4 p. 309-317, Nov. 1997.
- 32. SCHLEGEL, V. Relative friction minimization in fixed orthodontic bracket appliances. J. Biomech., Elmsford, v. 29, n. 4, p. 483-491, Apr. 1996.
- 33. SIMS, A.P., WATERS, N.E., BIRNIE, D.J. A comparison of the forces required to produce tooth movement ex vivo through three types of pre-adjusted brackets when subjected to determined tip or torque values. **Br. J. Orthod.,** Oxford, v. 21, n. 4, p. 367-373, Nov. 1994.

- STANNARD, J.G., GAU, J.M., HANNA, M.A. Comparative friction of orthodontic wires under dry and wet conditions. Am. J. Orthod., Saint Louis, v. 89, n. 6, p. 485-491, June 1986.
- STONER, M.M. Force control in practice. Am. J. Orthod., Saint Louis, v. 46,
 p. 163-168, 1960.
- 36. TAYLOR, N.G., ISON, K. Frictional resistance between orthodontic brackets and archwires in the buccal segments. **Angle Orthod.,** Appleton, v. 66, n. 3, p. 215-222, 1996.
- TIDY, D.C. Frictional forces in fixed appliances. Am. J. Orthod. dentofac.
 Orthop., Saint Louis, v. 96, n. 3, p. 249-254, Sept. 1989.
- 38. TSELEPIS, M., BROCKHURST, P., WEST, V.C. The dynamic frictional resistance between orthodontic brackets and arch wires. **Am. J. Orthod. dentofac. Orthop.,** Saint Louis, v. 106, n. 2, p.131-138, Aug. 1994.
- 39. VAUGHAN, J.L. et al. Relative kinetic frictional forces between sintered stainless steel brackets and orthodontic wires. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 107, n. 1 p. 20-27, Jan. 1995
- 40. YAMAGUCHI, K. et al. A study of force application, amount of retarding force, and bracket width in sliding mechanics. Am. J. Orthod. dentofac. Orthop., Saint Louis, v. 109, n. 1, p. 50-56, Jan. 1996.

SUMÁRIO - APÊNDICE	PÁG.
- Teste da Hipótese e dedução da formula do Coeficiente de atrito	127
- Diagrama das forças que atuam clinicamente no deslize	128
- Diagrama das forças que atuam no experimento	129
- Valores originais das forças de deslizamento	130
Análise Estatística - Força de deslizamento	134
Análise Estatística Descritiva - Força de deslizamento	137
- Valores originais das forças de atrito	146
Análise Estatística - Força de atrito	147
Análise Estatística descritiva - Força de atrito	150
- Valores individuais do coeficiente de atrito	159
Análise Estatística - coeficiente de atrito	160
Análise Estatística descritiva - coeficiente de atrito	163
- Valores da rugosidade dos fios	172
Análise Estatística - rugosidade	175
Análise Estatística descritiva - rugosidade	178

9.1 - Teste da Hipótese e dedução da fórmula para verificar se a fórmula clássica do atrito pode ser utilizada para os cálculos do coeficiente de atrito no experimento.

F a1 e F a2 seguem na mesma linha de F

Forças Verticais

$$(EQ_1): \sum Fv = 0 \Rightarrow P + F_{a1} + F_{a2} - F = 0$$

forças Horizontais

$$(EQ_2)$$
: $\sum Fh = 0 \Rightarrow N_1 - N_2 = 0$

Momento em G

(EQ₃):
$$\sum M_G = 0 \Rightarrow (P \times d1) - (N_1 \times d_2/2) - (N_2 \times d_2/2) = 0$$

Cálculo da Força de Atrito:

(EQ₄):
$$F_{a1} = \mu N_1$$
 (EQ₅): $F_{a2} = \mu N_2$

De (EQ₂) temos que $N_1 = N_2$

assim

(EQ₆):
$$F_{a1} = \mu N_1 = \mu N_2 = F_{a2}$$

De (EQ₁) e (EQ₆) vem que

(EQ7):
$$P + F_{a1} + F_{a2} - F = P + 2 F_{a1} - F = 0 \Rightarrow F_{a1} = (F - P)/2$$

Cálculo da Força normal:

De (EQ₃) e (EQ₂) vem que

$$P \times d_1 - N_1 \times d_2 / 2 - N_2 d_2 / 2 = P \times d_1 - 2 (N_1 d_2 / 2) = Pd_1 - N_1 d_2 = 0$$

(EQ₃): \Rightarrow $N_1 = P d_1/d_2$

Cálculo do coeficiente de atrito:

de (EQ₆), (EQ₇) e (EQ₈) temos que
$$F_{a1} = \mu N_1 \Rightarrow (F - P)/2 = \mu (P \times d_1/d_2)$$

Diagrama das forças que atuam na mecânica de deslizamento clinicamente e o diagrama das forças que atuam no experimento utilizados para verificar se todas as resultantes importantes estavam simuladas laboratorialmente.

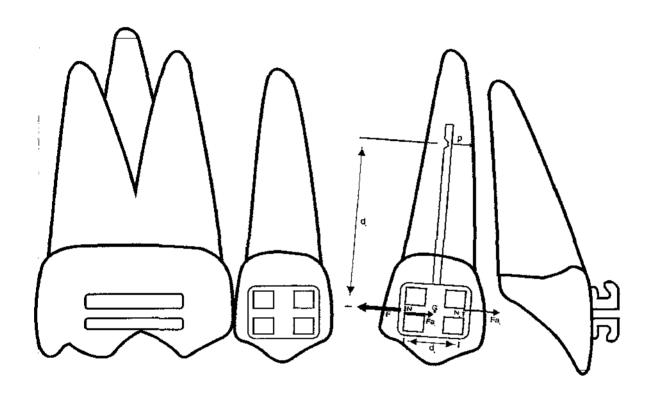


Figura 9.1 - Diagrama das forças que atuam clinicamente no deslize

d₁ = Distância do centro de resistência ao centro de giro do bráquete

d₂ = Largura do bráquete

F = Força aplicada ao bráquete para a distalização

f_{a1} = Força de atrito entre o canaleta distal do bráquete e o arco

f_{a2} = Força de atrito entre o canaleta mesial do bráquete e o arco

G = Centro de Giro do bráquete

N₁ = Força normal entre arco e canaleta distal do bráquete

N₂ = Força normal entre arco e canaleta mesial do bráquete

p = Peso aplicado no centro de resistência

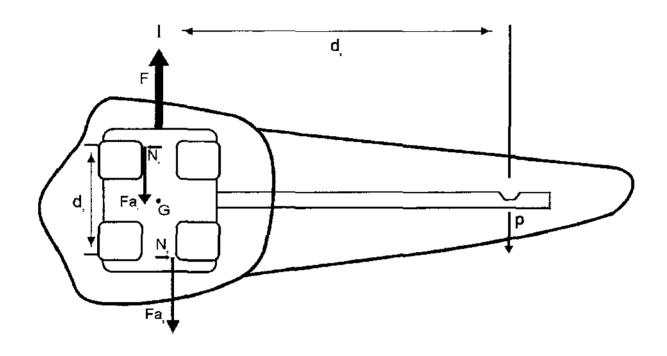


Figura - 9.2 - Diagrama das forças que atuam no experimento

P = Peso aplicado no centro de resistência

F = Força aplicada ao bráquete para a distalização

N₁ = Força normal entre arco e canaleta distal do bráquete

N₂ = Força normal entre arco e canaleta mesial do bráquete

F_{a1} = Força de atrito entre o canaleta distal do bráquete e o arco

F_{a2} = Força de atrito entre o canaleta mesial do bráquete e o arco

D₁ = Distância do centro de resistência ao centro de giro do bráquete

D₂ = Largura do bráquete

G = Centro de Giro

Tabela 9.1.1 – Valores da força necessária para **deslizar** o bráquete através dos fios ortodônticos obtidos do gráfico gerado no ensaio para cada corpo de prova, da marca TECNIDENT.

Leituras - Valores da força em gramas								
Corpos	·			16X 0.022				
De prova	1	2	3	4	5	6		
1	200	198	187	198	193	190		
2	187	190	190	184	190	189		
3	189	189	185	192	195	192		
4	197	208	218	220	220	215		
5	211	215	218	209	211	214		
6	216	211	211	215	208	215		
7	200	200	205	220	217	215		
8	217	217	212	211	218	217		
9	189	201	200	198	198	200		
10	192	196	198	<u>1</u> 95	196	190		
Corpos			FIO 0.01	8X 0.025				
De prova	1_	2	3	4	5	6		
1	208	195	199	190	190	205		
2	198	196	202	197	206	202		
3	205	201	200	195	201	209		
4	198	194	185	190	186	190		
5	195	200	210	214	208	212		
6	19 5	187	195	198	195	198		
7	208	202	201	205	210	211		
8	183	185	186	187	191	193		
9	185	186	183	189	185	181		
10	194	200	198	<u> 198</u>	205	202		
Corpos		**********		1X 0.025				
De prova	1	2	3	4	5	6		
1	186	190	194	193	187	197		
2 3	183	195	181	186	192	187		
	198	192	198	202	201	210		
4	215	215	213	212	215	218		
5	186	185	190	195	186	198		
6	211	213	200	208	200	209		
7	195	195	200	200	198	192		
: 8	186	205	195	188	187	194		
9	203	202	220	205	210	201		
10	189	189	192	187	190	188		

Tabela 9.1.2 - Valores da força necessária para deslizar o bráquete através dos fios ortodônticos obtidos do gráfico gerado no ensaio para cada corpo de prova, da marca MORELLI.

	Le	ituras - Valo	ores da força	em gramas	·					
Corpos	FIO 0.016X 0.022									
De prova	1	2	3	4	5	6				
1	210	211	209	212	210	200				
2	212	215	212	215	217	220				
3	214	211	210	218	220	213				
4	210	209	212	208	218	221				
5	200	192	192	198	195	195				
6	194	189	191	195	194	195				
7	206	218	212	203	205	211				
8	181	182	181	179	173	179				
9	195	200	198	199	193	198				
10	198	200	190	190	192	192				

Corpos	os FIO 0.018X 0.025							
De prova	1	2	3	4	5	6		
1	191	192	193	198	201	198		
2	192	194	201	206	212	211		
3	210	213	210	209	210	220		
4	201	209	205	212	213	220		
5	218	219	220	220	218	218		
6	220	218	213	212	212	213		
7	190	193	200	198	205	203		
8	205	205	212	215	212	210		
9	200	200	201	202	209	208		
10	193	198	195	201	201	202		

Corpos	FIO 0.021X 0.025							
De prova	1	2	3	4	5	6		
1	182	183	185	183	185	186		
2	189	188	182	183	185	185		
3	198	201	202	206	205	204		
4	184	185	188	185	185	190		
5	189	187	200	190	192	195		
6	183	184	185	188	185	190		
7	190	191	195	196	194	198		
8	185	185	185	186	190	185		
9	195	200	200	195	201	190		
10	190	198	200	200	198	200		

Tabela 9.1.3 - Valores da força necessária para **deslizar** o bráquete através dos fios ortodônticos, obtidos do gráfico gerado no ensaio para cada corpo de prova, da marca DENTAURUM.

Leituras – Valores da força em gramas									
Corpos	<u> </u>		FIQ 0.010	6X 0.022					
De prova	1	2	3	4	5	6			
1	172	170	171	172	175	175			
2	201	202	199	211	202	205			
3	180	180	181	180	181	181			
4	180	178	181	181	181	185			
. 5	205	201	200	206	210	203			
6	201	201	198	198	199	200			
7	171	170	170	175	178	180			
8	199	194	199	201	195	200			
9	181	178	180	180	181	182			
10	183	184	182	198	195	196			
Corpos			FIO 0.018	3X 0.025					
De prova	1	2	3	4	5	6			
1	179	181	181	181	181	186			
2	170	170	170	170	171	170			
3	170	170	171	171	180	171			
4	162	167	170	168	168	170			
. 5	171	175	176	175	176	175			
6	175	176	180	176	178	179			
7	180	178	178	178	177	175			
8	160	164	161	160	161	161			
9	180	181	186	185	185	189			
10	170	175	170	175	180	180			
Corpos _			FIO 0.021	X 0.025					
De prova	1	2	3	4	5	6			
1	172	170	171	175	170	175			
2 3	180	181	180	181	180	185			
3	178	179	180	185	180	180			
. 4	171	170	170	170	171	175			
5 6	169	168	168	169	170	175			
6	175	173	178	171	172	180			
7	179	176	175	174	178	174			
8	170	174	173	175	170	171			
9	178	179	180	175	176	175			
10	175	171	175	172	175	176			

Médias dos valores da força de deslizamento de cada corpo de prova, variando-se a espessura dos fios para as marcas estudadas. Tabela 9.1.4 - TECNIDENT

Corpos de Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	194	198	191
2	188	200	187
3	190	202	200
4	213	191	215
5	213	207	190
6	213	195	207
7	210	206	197
8	215	188	193
9	198	185	207
10	195	200	189
MÉDIA GERAL	203	197	198

Tabela 9.1.5 - MORELLI

Corpos de Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	209	196	184
2	215	203	185
3	214	212	203
4	213	210	186
5	195	219	192
6	193	215	186
7	210	198	194
8	179	210	186
9	197	203	197
10	194	198	198
MÉDIA GERAL	202	206	191

Tabela 9. 1.6 - DENTAURUM

Corpos de Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	173	182	172
2	203	170	181
3	181	172	180
4	181	168	171
5	204	175	170
6	200	177	175
7	174	178	176
8	198	161	172
9	180	184	177
10	190	175	174
MÉDIA GERAL	188	174	175

ANÁLISE ESTATÍSTICA

VALORES DA **FORÇA** NECESSÁRIA PARA **DESLIZAR** O BRÁQUETE, ATRAVÉS DE UM FIO, APLICANDO SE UMA FORÇA DE 100g NO CENTRO DE RESISTÊNCIA NA RAIZ DO DENTE, COMPARANDO AS DIVERSAS MARCAS E ESPESSURAS DE FIOS ESTUDADOS

ANÁLISE DE VARIÂNCIA

Tabela - 9.1.7

Causas da variação	G. L.	S.Q.	Q.M.	VALOR F	PROB.>F
MARCAS	2	8314.4222222	4157.2111111	52.2174	0.00001
DIAMETRO FIO	2	1470.8222222	735.4111111	9.2373	0.00046
MAR*FIO	4	1258.1111111	314.5277778	3.9507	0.00585
RESIDUO	81	6448.7000000	79.6135802		
TOTAL	89	17492.0555556			

MÉDIA GERAL= 192.722229

COEFICIENTE DE VARIAÇÃO= 4.630 %

TESTE DE TUKEY PARA MÉDIAS DE MARCAS

Tabela - 9.1.8

1	úm. dem	Núm. Trat.	Nome	Núm. Repet	Médias	Médias Originais	5%	1%
į	1	2	MORELLI	30	199.800000	199.800000	a	
:	2	1	TECNIDENT	30	199,233333	199.233333	а	Α
:	3	3	DENTAURUM	30	179.133333	179.133333	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 5.50454 D.M.S. 1% = 6.90389

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE FIO 0,016x0,022 DO FATOR DIÂMETRO DO FIO

Tahela - 9.1.9

I W D VILL	0.1.0						
Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	202.900000	202.900000	а	A
2	2	MORELLI	10	201.900000	201.900000	а	Α
3	3	DENTAURUM	10	188,400000	188.400000	b	В

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE FIO 0,018x0,025 DO FATOR DIÂMETRO DO FIO

Tabela - 9.1.10

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	2	MORELLI	10	206.400000	206.400000	а	A
2	1	TECNIDENT	10	197.200000	197.200000	а	Α
3	3	DENTAURUM	10	174.200000	174.200000	b	В

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE FIO 0,021x0,025 DO FATOR DIÂMETRO DO FIO

Tabela - 9.1.11

Núm. Ordem	Núm. Trat,	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	197.600000	197.600000	а	Α
2	2	MORELLI	10	191.100000	191.100000	а	Α
3	3	DENTAURUM	10	174.800000	174.800000	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL

DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 9.53415 D.M.S. 1% = 11.95789

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DOS FIO

Tabela - 9.1.12

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	30	197.733333	197.733333	a	Α
2	2	Fio 18x25	30	192.600000	192.600000	аb	ΑB
3	3	Fio 21x25	30	187.333333	187.333333	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D. M. S. 5% = 5.50454 D. M. S. 1% = 6.90389

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA **TECNIDENT** DO FATOR MARCA

Tabela - 9.1.13

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	202.900000	202.900000	a	A
2	3	Fio 21x25	10	197.600000	197.600000	а	Α
3	2	Fio 18x25	10	197.200000	197.200000	а	Α

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA MORELLI DO FATOR MARCA

Tabela - 9.1.14

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
: 1	2	Fio 18x25	10	206.400000	206.400000	a	Α
2	1	Fio 16x22	10	201.900000	201.900000	а	ΑВ
3	3 _	Fio 21x25	10	191.100000	191.100000	<u>b</u>	В

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA **DENTAURUM** DO FATOR MARCA

Tabela - 9.1.15

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	188.400000	188.400000	а	Α
2	3	Fio 21x25	10	174.800000	174.800000	b	В
: 3	2	Fio 18x25	10	174.200000	174.200000	b	B

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 9.53415 D.M.S. 1% = 11.95789

Tabela 9.1.16 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,016x0,022**" do fator diâmetro.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN	188.000000
VALOR MAX	215.000000
AMPLITUDE	27.000000
TOTAL	2029.000000
MÉDIA	202.899994
VARIÂNCIA	117.433334
D. PADRÃO	10.836666
D. P. MÉDIA	3.426855
COEF. VAR. %	5.340890
COEF. ASSIM.	-0.142644
COEF. CURT.	1.279470
MEDIANA	204.000000
QUARTIL INF.	194.000000
QUARTIL SUP.	213.000000
IC 5% L. S.	210.644684
IC 5% L. I.	195.155304
IC 1% L. S.	214.037277
IC 1% L. I.	191.762711

Tabela 9.1.17 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,018x0,025**" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	185.000000
VALOR MAX	207.000000
AMPLITUDE	22.000000
TOTAL	1972.000000
MÉDIA	197.199997
VARIÂNCIA	54.400002
D. PADRÃO	7.375636
D. P. MÉDIA	2.332381
COEF. VAR. %	3.740181
COEF. ASSIM.	-0.311120
COEF. CURT.	1.947916
MEDIANA	199.000000
QUARTIL INF.	191.000000
QUARTIL SUP.	202.000000
IC 5% L. S.	202.471176
IC 5% L. I.	191.928818
IC 1% L. S.	204.780228
IC 1% L. I.	189.619766

Tabela 9.1.18 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	187.000000
VALOR MAX	215.000000
AMPLITUDE	28.000000
TOTAL	1976.000000
MÉDIA	197.600006
VARIÂNCIA	88.266670
D. PADRÃO	9.395034
D. P. MÉDIA	2.970971
COEF. VAR. %	4.754571
COEF. ASSIM.	0.606166
COEF. CURT.	2.077231
MEDIANA	195,000000
QUARTIL INF.	190.000000
QUARTIL SUP.	207.000000
IC 5% L. S.	204.314392
IC 5% L. I.	190.885620
IC 1% L. S.	207.255661
IC 1% L. I.	187.944351

Tabela 9.1.19 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,016x0,022" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	179.000000
VALOR MAX	215.000000
AMPLITUDE	36.000000
TOTAL	2019.000000
MÉDIA	201.899994
VARIÂNCIA	143.877777
D. PADRÃO	11.994906
D. P. MÉDIA	3.793122
COEF. VAR. %	5.941013
COEF. ASSIM.	-0.500606
COEF. CURT.	2.152540
MEDIANA	203.000000
QUARTIL INF.	194.000000
QUARTIL SUP.	213.000000
IC 5% L. S.	210.472443
IC 5% L. I.	193.327545
IC 1% L. S.	214.227646
IC 1% L. I.	189.572342

Tabela 9.1.20 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,018x0,025" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	196.000000
VALOR MAX	219.000000
AMPLITUDE	23.000000
TOTAL	2064.000000
MÉDIA	206.399994
VARIÂNCIA	62.48888
D. PADRÃO	7.904990
D. P. MÉDIA	2.499778
COEF. VAR. %	3.829937
COEF. ASSIM.	0.122460
COEF. CURT.	1.704665
MEDIANA	206.500000
QUARTIL INF.	198.000000
QUARTIL SUP.	212.000000
IC 5% L. S.	212.049500
IC 5% L. I.	200.750488
IC 1% L. S.	214.524277
IC 1% L. I.	198.275711

Tabela 9.1.21 - Análise fixando o nível **Morelli** do fator Marcas e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	184.000000
VALOR MAX	203.000000
AMPLITUDE	19.000000
TOTAL	1911.000000
MÉDIA	191.100006
VARIÂNCIA	44.322224
D. PADRÃO	6.657494
D. P. MÉDIA	2.105284
COEF. VAR. %	3.483774
COEF. ASSIM.	0.500641
COEF. CURT.	1.857609
MEDIANA	189.000000
QUARTIL INF.	186.000000
QUARTIL SUP.	197.000000
IC 5% L. S.	195.857941
IC 5% L. I.	186.342072
IC 1% L. S.	197.942184
IC 1% L. I.	184.257828

Tabela 9.1.22 - Análise fixando o nível **Dentaurum** do fator **Marcas** e nível fio **0,016x0,022**" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	173,000000
VALOR MAX	204.000000
AMPLITUDE	31.000000
TOTAL	1884.000000
MÉDIA	188.399994
VARIÂNCIA	145,600006
D. PADRÃO	12.066482
D. P. MÉDIA	3.815757
COEF. VAR. %	6.404714
COEF. ASSIM.	0.087791
COEF. CURT.	1.406325
MEDIANA	185.500000
QUARTIL INF.	180.000000
QUARTIL SUP.	200.000000
IC 5% L. S.	197.023605
IC 5% L. I.	179.776382
IC 1% L. S.	200.801208
IC 1% L. I.	175.998779

Tabela 9.1.23 - Análise fixando o nível **Dentaurum** do fator **Marcas** e nível fio **0,018x0,025**" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	161.000000
VALOR MAX	184.000000
AMPLITUDE	23.000000
TOTAL	1742.000000
MÉDIA	174.199997
VARIÂNCIA	46.177776
D. PADRÃO	6.765423
D. P. MÉDIA	2.148902
COEF. VAR. %	3.900931
COEF. ASSIM.	-0.421549
COEF. CURT.	2.626615
MEDIANA	175.000000
QUARTIL INF.	170.000000
QUARTIL SUP.	178.000000
IC 5% L. S.	179.056519
IC 5% L. l.	169.343475
IC 1% L. S.	181.183929
IC 1% L. I.	167.216064

Tabela 9.1.24 - Análise fixando o nível **Dentaurum** do fator Marcas e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	FORÇA DESLIZAMENTO
NUM. OBS.	10
VALOR MIN.	170.000000
VALOR MAX	181.000000
AMPLITUDE	11.000000
TOTAL	1748.000000
MÉDIA	174.800003
VARIÂNCIA	13.95556
D. PADRÃO	3.735714
D. P. MÉDIA	1.181336
COEF. VAR. %	2.137136
COEF. ASSIM.	0.407611
COEF. CURT.	1.963182
MEDIANA	174.500000
QUARTIL INF.	172.000000
QUARTIL SUP.	177.000000
IC 5% L. S.	177.469818
IC 5% L. I.	172.130188
IC 1% L. S.	178.639343
IC 1% L. 1.	170.960663

9. APÊNDICE

Valores originais de força de **atrito** para as marcas variando-se a espessura dos fios. **Tabela 9.2.1** – TECNIDENT

Corpos de Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	94	98	91
2	88	100	87
3	90	102	100
4	113	91	115
5	113	107	90
6	113	95	107
7	110	106	97
8	115	88	93
9	98	85	107
10	95	100	89
MÉDIA	102.9	97.2	97.6

Tabela 9.2.2 - MORELLI

Corpos de Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	109	96	84
2	115	103	85
3	114	112	103
4	113	110	86
5	95	119	92
6	93	115	86
7	110	98	94
8	79	110	86
9	97	103	97
10	94	98	98
MÉDIA	101,9	106,4	91,1

Tabela 9.2.3 - DENTAURUM

Corpos de Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	73	82	72
2	103	70	81
3	81	72	80
4	81	68	71
5	104	75	70
6	100	77	75
7	74	78	76
8	98	61	72
9	80	84	77
10	90	75	74
MÉDIA	88,4	74,2	74,8

ANÁLISE ESTATÍSTICA

VALORES DA **FORÇA DE ATRITO** QUANDO, UMA FORÇA DE 100g ATUA NO CENTRO DE RESISTÊNCIA NA RAIZ DO DENTE, COMPARANDO AS DIVERSAS MARCAS E ESPESSURAS DE FIOS ESTUDADOS

ANÁLISE DE VARIÂNCIA

Tabela - 9.2.4

I MAAIM AL					
Causas da variação	G. L.	S.Q.	Q.M.	VALOR F	PROB.>F
MARCAS	2	8314.4222222	4157.211111 1	52.2174	0.00001
DIAMETRO FIO	2	1470.8222222	735.4111111	9.2373	0.00046
MAR*FIO	4	1258.1111111	314.5277778	3.9507	0.00585
RESIDUO	81	6448.7000000	79.6135802		
TOTAL	89	17492.0555556			

MÉDIA GERAL= 92.722221

COEFICIENTE DE VARIAÇÃO= 9.630 %

TESTE DE TUKEY PARA MÉDIAS DE MARCAS

Tabela - 9.2.5

		1217					
Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	2	MORELLI	30	99.800000	99.800000	а	
2	1	TECNIDENT	30	99.233333	99.233333	а	Α
3_	3	DENTAURUM	30	79.133333	79.133333	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL

DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 5.50454

D.M.S. 1% = 6.90389

TESTE DE TUKEY PARA MÉDIAS DE MARCAS - força de atrito DENTRO DE **FIO 0,016x0,022** DO FATOR **DIAMETRO DO FIO**

Tabela - 9.2.6

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	102.900000	102.900000	Α	Α
2	2	MORELLI	10	101.900000	101.900000	Α	Α
3	3	DENTAURUM	10	88.400000	88.400000	В	В

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE **FIO 0,018x0,025** DO FATOR **DIAMETRO DO FIO**

Tabela - 9.2.7

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
<u> </u>	2	MORELLI	10	106.400000	106.400000	Α	Α
2	1	TECNIDENT	10	97.200000	97.200000	Α	Α
3	3	DENTAURUM	10	74.200000	74.200000	В	В

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE **FIO 0,021x0,025** DO FATOR **DIÂMETRO DO FIO**

Tabela - 9.2.8

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	97.600000	97.600000	A	Α
2	2	MORELLI	10	91.100000	91.100000	Α	Α
3	3	DENTAURUM	10	74.800000	74.800000	B	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL

DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 9.53415

D.M.S. 1% = 11.95789

TESTE DE TUKEY PARA MÉDIAS DE DIÂMETRO DOS FIO força de atrito

Tabela - 9.2.9

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	30	97.733333	97.733333	Α	A
2	2	Fio 18x25	30	92.600000	92.600000	аb	ΑB
3	3	Fio 21x25	30	87.333333	87.333333	В	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL

DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 5.50454

D.M.S. 1% = 6.90389

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA TECNIDENT DO FATOR MARCA

Tabela - 9.2.10

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	102.900000	102.900000	а	A
2	3	Fio 21x25	10	97.600000	97.600000	а	Α
3	2	Fio 18x25	10	97.200000	97.200000	а	Α

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA MORELLI DO FATOR MARCA

Tabela - 9.2.11

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	2	Fio 18x25	10	106.400000	106.400000	а	Α
2	1	Fio 16x22	10	101.900000	101.900000	а	ΑВ
3_	3	Fio 21x25	10	91.100000	91.100000	b	В

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA **DENTAURUM** DO FATOR MARCA

Tabela - 9.2.12

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	88.400000	88.400000	а	A
2	3	Fio 21x25	10	74.800000	74.800000	b	В
3	2	Fio 18x25	10	74.200000	74.200000	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 9.53415 D.M.S. 1% = 11.95789

Tabela - 9.2.13 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,016x0,022"** do fator diâmetro do fio.

Estatísticas	ATRITO	
NUM. OBS.	10	
VALOR MIN.	88.000000	
VALOR MAX	115.000000	
AMPLITUDE	27.000000	
TOTAL	1029.000000	
MÉDIA	102.900002	
VARIÂNCIA	117.433334	
D. PADRÃO	10.836666	
D. P. MÉDIA	3.426855	
COEF. VAR. %	10.531260	
COEF. ASSIM.	-0.142644	
COEF. CURT.	1.279470	
MEDIANA	104.000000	
QUARTIL INF.	94.000000	
QUARTIL SUP.	113.000000	
IC 5% L. S.	110.644691	
IC 5% L. I.	95.155312	
IC 1% L. S.	114.037277	
IC 1% L. I.	91.762726	

Tabela - 9.2.14 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,018x0,025**" do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	85.000000
VALOR MAX	107.000000
AMPLITUDE	22.000000
TOTAL	972.000000
MÉDIA	97.199997
VARIÂNCIA	54.400002
D. PADRÃO	7.375636
D. P. MÉDIA	2.332381
COEF. VAR. %	7.588103
COEF. ASSIM.	-0.311120
COEF, CURT.	1.947916
MEDIANA	99.000000
QUARTIL INF.	91.000000
QUARTIL SUP.	102.000000
IC 5% L. S.	102.471176
IC 5% L. I.	91.928818
IC 1% L. S.	104.780235
IC 1% L. I.	89.619759

Tabela - 9.2.15 - Análise fixando o nível **Tecnident** do fator **Marcas** e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	87.000000
VALOR MAX	115.000000
AMPLITUDE	28.000000
TOTAL	976.000000
MÉDIA	97.599998
VARIÂNCIA	88.266670
D. PADRÃO	9.395034
D. P. MÉDIA	2.970971
COEF. VAR. %	9.626060
COEF. ASSIM.	0.606168
COEF. CURT.	2.077233
MEDIANA	95.000000
QUARTIL INF.	90.00000
QUARTIL SUP.	107.000000
IC 5% L. S.	104.314392
IC 5% L. I.	90.885605
IC 1% L. S.	107.255653
IC 1% L. i.	87.944344

Tabela - 9.2.16 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,016x0,022" do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	79.000000
VALOR MAX	115.000000
AMPLITUDE	36.000000
TOTAL	1019.000000
MÉDIA	101.900002
VARIÂNCIA	143.877777
D. PADRÃO	11.994906
D. P. MÉDIA	3.793122
COEF. VAR. %	11.771252
COEF. ASSIM.	-0.500608
COEF. CURT.	2.152540
MEDIANA	103.000000
QUARTIL INF.	94.000000
QUARTIL SUP.	113.000000
IC 5% L. S.	110.472458
IC 5% L. I.	93.327545
IC 1% L. S.	114.227646
IC 1% L. I.	89.572357

Tabela - 9.2.17 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,018x0,025" do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	96.000000
VALOR MAX	119.000000
AMPLITUDE	23.000000
TOTAL	1064.000000
MÉDIA	106.400002
VARIÂNCIA	62.488888
D. PADRÃO	7.904990
D. P. MÉDIA	2.499778
COEF. VAR. %	7.429502
COEF. ASSIM.	0.122457
COEF. CURT.	1.704664
MEDIANA	106.500000
QUARTIL INF.	98.000000
QUARTIL SUP.	112.000000
IC 5% L. S.	112.049500
IC 5% L. I.	100.750504
IC 1% L. S.	114.524277
IC 1% L. I.	98.275726

Tabela - 9.2.18 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,021x0,025" do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	84.000000
VALOR MAX	103.000000
AMPLITUDE	19.000000
TOTAL	911.000000
MÉDIA	91.099998
VARIÂNCIA	44.322224
D. PADRÃO	6.657494
D. P. MÉDIA	2.105284
COEF. VAR. %	7.307897
COEF. ASSIM.	0.500645
COEF. CURT.	1.857612
MEDIANA	89.000000
QUARTIL INF.	86.000000
QUARTIL SUP.	97.000000
IC 5% L. S.	95.857941
IC 5% L. I.	86.342056
IC 1% L. S.	97.942169
IC 1% L. I.	84.257828

Tabela - 9.2.19 - Análise fixando o nível **Dentaurum** do fator **Marcas** e nível fio **0,016x0,022"** do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	73.000000
VALOR MAX	104.000000
AMPLITUDE	31.000000
TOTAL	884.000000
MÉDIA	88.400002
VARIÂNCIA	145.600006
D. PADRÃO	12.066482
D. P. MÉDIA	3.815757
COEF. VAR. %	13.649866
COEF. ASSIM.	0.087789
COEF, CURT.	1.406325
MEDIANA	85.500000
QUARTIL INF.	80.00000
QUARTIL SUP.	100.00000
IC 5% L. S.	97.023613
IC 5% L. I.	79.776390
IC 1% L. S.	100.801208
IC 1% L. I.	75.998795

Tabela - 9.2.20 - Análise fixando o nível **Dentaurum** do fator Marcas e nível fio **0,018x0,025**" do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	61.000000
VALOR MAX	84.000000
AMPLITUDE	23,000000
TOTAL	742.000000
MÉDIA	74.199997
VARIÂNCIA	46.177776
D. PADRÃO	6.795423
D. P. MÉDIA	2.148902
COEF. VAR. %	9.158252
COEF. ASSIM.	-0.421549
COEF. CURT.	2.626615
MEDIANA	75.000000
QUARTIL INF.	70.00000
QUARTIL SUP.	78.00000
IC 5% L. S.	79.056511
IC 5% L. I.	69.343483
IC 1% L. S.	81.183929
IC 1% L. I.	67.216064

Tabela - 9.2.21 - Análise fixando o nível **Dentaurum** do fator Marcas e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	ATRITO
NUM. OBS.	10
VALOR MIN.	70.000000
VALOR MAX	81.000000
AMPLITUDE	11.000000
TOTAL	748.000000
MÉDIA	74.800003
VARIÂNCIA	13.955556
D. PADRÃO	3.735714
D. P. MÉDIA	1.181336
COEF, VAR. %	4.994269
COEF. ASSIM.	0.407611
COEF. CURT.	1.963182
MEDIANA	74.500000
QUARTIL INF.	72.000000
QUARTIL SUP.	77.000000
IC 5% L. S.	77.469826
IC 5% L. I.	72.130180
IC 1% L. S.	78.639343
IC 1% L. I.	70.960663

9. APÊNDICE

Coeficiente de atrito para cada corpo de prova de cada marca

Tabela 9.3.1 - TECNIDENT

Corpos	<u> </u>	FIOS	
de Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	0,1566	0,1624	0,1513
2	0,1466	0,1663	0,1450
3	0,1500	0,1690	0,1663
4	0,1876	0,1502	0,1903
5	0,1876	0,1768	0,1494
6	0,1870	0,1571	0,1773
7	0,1818	0,1762	0,1605
8	0,1915	0,1453	0,1536
9	0,1621	0,1408	0,1773
10	0,1569	0,1652	0,1480

Tabela 9.3.2 - MORELLI

Corpos		FIOS	
De Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	0,1635	0,1437	0,1264
2	0,1733	0,1545	0,1284
3	0,1721	0,1686	0,1545
4	0,1701	0,1656	0,1297
5	0,1435	0,1788	0,1387
6	0,1400	0,1726	0,1292
7	0,1661	0,1477	0,1415
8	0,1191	0,1653	0,1294
9	0,1462	0,1555	0,1457
10	0,1410	0,1480	0,1470

Tabela 9.3.3 - DENTAURUM

Corpos		FIOS	
De Prova	0,016x0,022	0,018x0,025	0,021x0,025
1	0,1356	0,1524	0,1350
2	0,1932	0,1312	0,1518
3	0,1505	0,1350	0,1502
4	0,1515	0,1262	0,1331
5	0,1948	0,1396	0,1306
6	0,1861	0,1446	0,1399
7	0,1384	0,1452	0,1421
8	0,1833	0,1144	0,1350
9	0,1502	0,1577	0,1443
10	0,1677	0,1403	0,1384

ANÁLISE ESTATÍSTICA

VALORES DO **COEFICIENTE DE ATRITO** QUANDO, UMA FORÇA DE 100g ATUA NO CENTRO DE RESISTÊNCIA NA RAIZ DO DENTE, COMPARANDO AS DIVERSAS MARCAS E ESPESSURAS DE FIOS ESTUDADOS

ANÁLISE DE VARIÂNCIA

Tabela 9.3.4

Causas da variação	G. L.	S.Q.	Q.M.	VALOR F	PROB.>F
MARCAS	2	0.0048600	0.0024300	10.9442	0.00018
DIAMETRO FIO	2	0.0042799	0.0021400	9.6380	0.00037
MAR*FIO	4	0.0035522	0.0008881	3.9996	0.00547
RESIDUO	81	0.0179848	0.0002220		
TOTAL	89	0.0306769			

MÉDIA GERAL= 0.154222

COEFICIENTE DE VARIAÇÃO= 9.662 %

TESTE DE TUKEY PARA MÉDIAS DE MARCAS

Tabela 9.3.5

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
. 1	1	TECNIDENT	30	0.164533	0.164533	а	Α
2	2	MORELLI	30	0.150190	0.150190	b	В
3	3	DENTAURUM	30	0.147943	0.147943	_ b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 0.00919 D.M.S. 1% = 0.01153

TESTE DE TUKEY PARA MÉDIAS DE MARCAS - coeficiente de atrito DENTRO DE **FIO 0,016x0,022** DO FATOR **DIÂMETRO DO FIO**

Tabela 9.3.6

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	0.170770	0.170770	а	A
2	3	DENTAURUM	10	0.165130	0.165130	аb	Α
3	2	MORELLI	10	0.153490	0.153490	b	Α

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE FIO 0,018x0,025 DO FATOR DIÂMETRO DO FIO

Tabela 9.3.7

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	0.160930	0.160930	a	Α
2	2	MORELLI	10	0.160030	0.160030	а	Α
3	3	DENTAURUM	10	0.138660	0.138660	b	В

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE **FIO 0,021x0,025** DO FATOR **DIÂMETRO DO FIO**

Tabela 9.3.8

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	0.161900	0.161900	a	Α
2	3	DENTAURUM	10	0.140040	0.140040	b	В
3	2	MORELLI	10	0.137050	0.137050	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 0.1592 D.M.S. 1% = 0.01997 TESTE DE TUKEY PARA MÉDIAS DE DIÂMETRO DOS FIO coeficiente de atrito

Tabela 9.3.9

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	30	0.163130	0.163130	а	Α
2	2	Fio 18x25	30	0.153207	0.153207	b	ΑВ
, 3	3	Fio 21x25	30	0.146330	0.146330	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 5.50454 D.M.S. 1% = 6.90389

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA TECNIDENT DO FATOR MARCA

Tabela 9.3.10

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	0.170770	0.170770	а	Α
2	3	Fio 21x25	10	0.161900	0.161900	а	Α
3	2	Fio 18x25	10	0.160930	0.160930	а	Α

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA MORELLI DO FATOR MARCA

Tabela 9.3.11

I abola o							
Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	2	Fio 18x25	10	0.160030	0.160030	а	A
2	1	Fio 16x22	10	0.153492	0.153492	а	ΑB
3	3	Fio 21x25	10	0.137050	0.137050	þ	В

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA **DENTAURUM** DO FATOR MARCA

Tabela 9.3.12

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	0.165130	0.165130	а	Α
2	3	Fio 21x25	10	0.140040	0.140040	b	В
3	2	Fio 18x25	10	0.138660	0.138660	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 0.1592 D.M.S. 1% = 0.01997

Tabela - 9.3.13 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,016x0,022"** do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO		
NUM. OBS.	10		
VALOR MIN.	0.146600		
VALOR MAX	0.191500		
AMPLITUDE	0.044900		
TOTAL	1.707700		
MÉDIA	0.170770		
VARIÂNCIA	0.000318		
D. PADRÃO	0.017843		
D. P. MÉDIA	0.005642		
COEF. VAR. %	10.448304		
COEF. ASSIM.	-0.106918		
COEF. CURT.	1.266428		
MEDIANA	0.171950		
QUARTIL INF.	0.156600		
QUARTIL SUP.	0.187600		
IC 5% L. S.	0.183522		
IC 5% L. I.	0.158018		
IC 1% L. S.	0.189108		
IC 1% L. I.	0.152432		

Tabela - 9.3.14 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,018x0,025**" do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO		
NUM. OBS.	10		
VALOR MIN.	0.140800		
VALOR MAX	0.176800		
AMPLITUDE	0.030600		
TOTAL	1.609300		
MÉDIA	0.160930		
VARIÂNCIA	0.000153		
D. PADRÃO	0.012377		
D. P. MÉDIA	0.003914		
COEF. VAR. %	7.690891		
COEF. ASSIM.	-0.305651		
COEF. CURT.	1.896894		
MEDIANA	0.163800		
QUARTIL INF.	0.150200		
QUARTIL SUP.	0.169000		
IC 5% L. S.	0.169776		
IC 5% L. I.	0.152085		
IC 1% L. S.	0.173650		
IC 1% L. I.	0.148210		

Tabela - 9.3.15 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO		
NUM. OBS.	10		
VALOR MIN.	0.145000		
VALOR MAX	0.190300		
AMPLITUDE	0.045300		
TOTAL	1.619000		
MÉDIA	0.161900		
VARIÂNCIA	0.000235		
D. PADRÃO	0.015342		
D. P. MÉDIA	0.004852		
COEF. VAR. %	9.476502		
COEF. ASSIM.	0.618282		
COEF. CURT.	2.058981		
MEDIANA	0.157050		
QUARTIL INF.	0.149400		
QUARTIL SUP.	0.177300		
IC 5% L. S.	0.172865		
IC 5% L. I.	0.150935		
IC 1% L. S.	0.177668		
IC 1% L. I.	0.146132		

Tabela - 9.3.16 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,016x0,022" do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO		
NUM. OBS.	10		
VALOR MIN.	0.119100		
VALOR MAX	0.173300		
AMPLITUDE	0.054200		
TOTAL	1.534900		
MÉDIA	0.153490		
VARIÂNCIA	0.000327		
D. PADRÃO	0.018097		
D. P. MÉDIA	0.005723		
COEF. VAR. %	11.790257		
COEF. ASSIM.	-0.487122		
COEF. CURT.	2.134477		
MEDIANA	0.154850		
QUARTIL INF.	0.141000		
QUARTIL SUP.	0.170100		
IC 5% L. S.	0.166423		
IC 5% L. I.	0.140557		
IC 1% L. S.	0.172089		
IC 1% L. I.	0.134891		

Tabela - 9.3.17 - Análise fixando o nível **Morelli** do fator **M**arcas e nível fio **0,018x0,025**" do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO		
NUM. OBS.	10		
VALOR MIN.	0.143700		
VALOR MAX	0.178800		
AMPLITUDE	0.035100		
TOTAL	1.600300		
MÉDIA	0.160030		
VARIÂNCIA	0.000140		
D. PADRÃO	0.011818		
D. P. MÉDIA	0.003737		
COEF. VAR. %	7.385147		
COEF. ASSIM.	0.093326		
COEF. CURT.	1.725946		
MEDIANA	0.160400		
QUARTIL INF.	0.148000		
QUARTIL SUP.	0.168600		
IC 5% L. S.	0.168476		
IC 5% L. I.	0.151584		
1C 1% L. S.	0.172176		
IC 1% L. I.	0.147884		

Tabela - 9.3.18 - Análise fixando o nível **Morelli** do fator Marcas e nível fio **0,021x0,025"** do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO		
NUM. OBS.			
VALOR MIN.	0.126400		
VALOR MAX	0.154500		
AMPLITUDE	0.028100		
TOTAL	1.370500		
MÉDIA	0.137050		
VARIÂNCIA	0.000096		
D. PADRÃO	0.009794		
D. P. MÉDIA	0.003097		
COEF. VAR. %	7.146149		
COEF. ASSIM.	0.480600		
COEF. CURT.	1.840037		
MEDIANA	0.134200		
QUARTIL INF.	0.129200		
QUARTIL SUP.	0.145700		
IC 5% L. S.	0.144049		
IC 5% L. 1.	0.130051		
IC 1% L. S.	0.147115		
IC 1% L. I.	0.126985		

Tabela - 9.3.19 - Análise fixando o nível **Dentaurum** do fator Marcas e nível fio **0,016x0,022**" do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO 10		
NUM. OBS.			
VALOR MIN.	0.135600		
VALOR MAX	0.194800		
AMPLITUDE	0.059200		
TOTAL	1.651300		
MÉDIA	0.165130		
VARIÂNCIA	0.000517		
D. PADRÃO	0.022740		
D. P. MÉDIA	0.007191		
COEF. VAR. %	13.770959		
COEF. ASSIM.	0.095939		
COEF. CURT.	1.430844		
MEDIANA	0.159600		
QUARTIL INF.	0.150200		
QUARTIL SUP.	0.186100		
IC 5% L. S.	0.181382		
IC 5% L. I.	0.148878		
IC 1% L. S.	0.188501		
IC 1% L. I.	0.141759		

Tabela - 9.3.20 - Análise fixando o nível **Dentaurum** do fator Marcas e nível fio **0,018x0,025**" do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO
NUM. OBS.	10
VALOR MIN.	0.114400
VALOR MAX	0.157700
AMPLITUDE	0.043300
TOTAL	1.386600
MÉDIA	0.138660
VARIÂNCIA	0.000161
D. PADRÃO	0.012674
D. P. MÉDIA	0.004008
COEF. VAR. %	9.140691
COEF. ASSIM.	-0.384595
COEF. CURT.	2.602099
MEDIANA	0.139950
QUARTIL INF.	0.131200
QUARTIL SUP.	0.145200
IC 5% L. S.	0.147718
IC 5% L. I.	0.129602
IC 1% L. S.	0.151686
IC 1% L. I.	0.125634

Tabela - 9.3.21 - Análise fixando o nível **Dentaurum** do fator Marcas e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	COEFICIENTE DE ATRITO	
NUM. OBS.	10	
VALOR MIN.	0.130600	
VALOR MAX	0.151800	
AMPLITUDE	0.021200	
TOTAL	1.400400	
MÉDIA	0.140040	
VARIÂNCIA	0.000051	
D. PADRÃO	0.007108	
D. P. MÉDIA	0.002248	
COEF. VAR. %	5.075638	
COEF. ASSIM.	0.432218	
COEF. CURT.	2.016285	
MEDIANA	0.139150	
QUARTIL INF.	0.135000	
QUARTIL SUP.	0.144300	
IC 5% L. S.	0.145120	
IC 5% L. I.	0.134960	
IC 1% L. S.	0.147345	
IC 1% L. I.	0.132735	

Tabela 9.4.1 - Leituras originais da rugosidade dos fios da marca TECNIDENT.

Corpo de prova	Rugosidade 1ª leitura	em micrômeti 2ª leitura	ros (µm) FIO 3ª leitura	0.016 X 0.022 4 ^ª leitura	média
1	0,14	0,11	0,15	0,16	0,14
2	0,17	0,15	0,17	0,19	0,17
3	0,14	0,12	0,13	0,15	0,14
4	0,15	0,13	0,16	0,16	0,15
5	0,16	0,13	0,16	0,17	0,16
6	0,15	0,17	0,13	0,14	0,15
7	0,14	0,13	0,14	0,15	0,14
8	0,17	0,17	0,17	0,18	0,17
9	0,13	0,17	0,13	0,15	0,15
10	0,14	0,15	0,16	0,17	0,16
				Média geral	0,15

Corpo	Rugosidade em micrômetros (μm) FIO 0.018X 0.025					
de prova	1ª leitura	2ª leitura	3ª leitura	4ª leitura	média	
1	0,18	0,19	0,19	0,13	0,17	
2	0,14	0,14	0,14	0,17	0,15	
3	0,14	0,09	0,16	0,18	0,14	
4	0,15	0,12	0,12	0,16	0,14	
5	0,16	0,15	0,17	0,16	0,16	
6	0,15	0,14	0,17	0,14	0,15	
7	0,17	0,18	0,19	0,17	0,18	
8	0,13	0,15	0,13	0,12	0,13	
9	0,15	0,17	0,13	0,16	0,15	
10	0,16	0,12	0,13	0,13	0,14	
				Média geral	0.15	

Corpo	Rugosidade	e em micrômet	ros (μm) FIO	0.021 x 0.025	
de prova	1ª leitura	2ª leitura	3ª leitura	4ª leitura	média
1	0,15	0,17	0,16	0,17	0,16
2	0,17	0,17	0,16	0,13	0,16
3	0,13	0,13	0,11	0,19	0,14
4	0,14	0,09	0,14	0,10	0,12
5	0,15	0,13	0,13	0,12	0,13
6	0,13	0,13	0,13	0,13	0,13
. 7	0,16	0,17	0,13	0,15	0,15
8	0,16	0,14	0,11	0,16	0,14
9	0,16	0,15	0,11	0,09	0,13
10	0,12	0,13	0,13	0,17	0,14
				Média geral	0,14

Tabela 9.4.2 Leituras originais da rugosidade dos fios da marca MORELLI.

Corpo	Rugosi	dade em (μm) FIO 0.016	X 0.022	
de prova	1ª leitura	2ª leitura	3ª leitura	4ª leitura	média
1	0,08	0,08	80,0	0,11	0,09
2	0,08	0,10	0,09	0,11	0,10
3	0,07	0,07	0,08	0,10	0,08
4	0,11	0,12	0,07	0,08	0,10
5	0,10	0,12	0,09	0,10	0,10
6	0,08	0,08	0,09	0,10	0,09
7	0,08	0,11	0,11	0,11	0,10
8	0,06	0,06	0,09	0,07	0,07
9	0,07	0,08	0,08	0,08	0,08
10	0,07	0,07	0,07	0,07	0,07
				Média geral	80,0

Corpo		sidade em (μr			
de prova	1ª leitura	2ª leitura	3ª leitura	4º leitura	Média
1	0,08	0,08	0,07	0,08	0,08
2	0,07	0,08	0,07	0,09	0,08
3	0,07	0,07	0,07	0,07	0,07
4	0,07	0,08	0,07	0,09	0,08
5	0,08	0,08	0,07	0,08	0,08
6	0,07	0,07	0,07	0,07	0,07
7	0,09	0,07	0,07	0,07	0,08
8	0,07	0,07	0,08	0,07	0,07
9	0,09	0,08	0,08	0,07	0,08
10	0,07	0,07	0,07	0,07	0,07
				Média geral	0.07

Corpo	Rugosidade em (µm) FIO 0.021 x 0.025]						
de prova	1ª leitura	2ª leitura	[°] 3 ^ª leitura	4ª leitura	média		
1	0,08	0,07	0,07	0,07	0,07		
2	0,07	0,06	0,06	0,06	0,06		
3	0,06	0,07	0,06	0,07	0,07		
4	0,07	0,07	0,06	0,06	0,07		
5	0,06	0,06	0,07	0,08	0,07		
6	0,07	0,07	0,07	0,08	0,07		
7	0,08	0,07	0,06	0,06	0,07		
8	0,07	0,07	0,10	0,08	0,08		
9	0,11	80,0	0,10	0,07	0,09		
10	0,08	0,07	0,07	0,08	0,08		
		<u> </u>	<u> </u>	Média geral	0.07		

Tabela 9.4.3 - Leituras originais da rugosidade dos fios da marca DENTAURUM.

		FIO 0.	016 X 0.022		
Corpo	Rug	josidade em i	micrômetros	s (μ m)	
De prova	1ª leitura	4 ^a leitura	Média		
1	0,08	0,09	0,08	0,08	0,08
2	0,06	0,07	0,08	0,06	0,07
3	0,07	0,06	0,07	0,08	0,07
4	0,07	0,08	0,09	0,08	0,08
5	0,09	0,08	0,08	0,08	0,08
6	0,08	0,08	0,08	0,08	0,08
7	0,09	0,09	0,09	0,10	0,09
8	0,09	0,10	0,11	0,10	0,10
9	0,07	0,08	0,08	0,07	0,08
10	0,07	0,07	0,07	0,06	0,07
	-			Média geral	0,08

	\mathbf{a}	\sim	OV	\sim	$\Delta \Delta E$
riv.	U.	.UI	AO1	U.	.025

Corpo	Rug	josidade em i	micrômetros	(µm)	
de prova	1ª leitura	2ª leitura	3ª leitura	4ª leitura	Média
1	0,07	0,07	0,07	0,08	0,07
2	0,07	0,06	0,06	0,06	0,06
3	0,08	0,09	0,07	0,08	0,08
4	0,07	0,07	0,07	80,0	0,07
5	0,09	0,08	0,07	80,0	0,08
6	0,07	0,07	0,08	0,09	0,08
7	0,08	0,08	0,07	0,07	0,08
8	0,08	0,08	0,08	0,06	0,08
9	0,1	0,08	0,08	0,09	0,09
10	0,09	0,08	0,09	0,09	0,09
		 .		Média geral	0.07

FIO 0.021 x 0.025

Corpo	Rug	gosidade em i	micrômetros	(μ m)	
de prova	1ª leitura	2ª leitura	3ª leitura	" 4 ^á leitura	média
1	0,06	0,06	0,08	0,07	0,07
2	0,08	0,07	0,07	0,07	0,07
3	0,07	0,08	0,07	0,09	0,08
4	0,07	0,07	0,08	0,07	0,07
5	0,08	0,08	0,08	0,08	0,08
6	0,09	0,09	0,08	0,10	0,09
7	0,08	0,07	0,09	0,08	0,08
8	0,08	0,08	0,07	0,07	0,08
9	0,07	0,07	0,08	0,09	0,08
10	0,07	0,07	0,06	0,06	0,07
				Média geral	0.07

ANÁLISE ESTATÍSTICA

DADOS DE **RUGOSIDADE SUP.ERFICIAL DOS FIOS** COMPARANDO AS DIVERSAS MARCAS E ESPESSURAS

ANÁLISE DE VARIÂNCIA

Tabela - 9.4.4

Causas da variação	G. L.	S.Q.	Q.M.	VALOR F	PROB.> F
MARCAS	2	0.0998821	0.0499411	457.5991	0.00001
DIAMETRO FIO	2	0.0016288	0.0008144	7.4621	0.00141
MAR*FIO	4	0.0010045	0.0002511	2.3011	0.06479
RESIDUO	81	0.0088401	0.0001091		
TOTAL	89	0.1113556			<u> </u>

MÉDIA GERAL= 0.102222 COEFICIENTE DE VARIAÇÃO= 10.220 %

(RUGOSIDADE)

TESTE DE TUKEY PARA MÉDIAS DE MARCAS

Tabela - 9.4.5

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	30	0.149333	0.149333	а	A
2	2	MORELLI	30	0.079000	0.079000	b	В
3	3	DENTAURUM	30	0.078333	0.078333	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 0.00644 D.M.S. 1% = 0.00808

9. APÊNDICE

TESTE DE TUKEY PARA MÉDIAS DE MARCAS - rugosidade DENTRO DE FIO 0,016x0,022 DO FATOR DIÂMETRO DO FIO

Tabela - 9.4.6

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet,	Médias	Médias Originais	5%	1%
1	1	TECNIDENT	10	0.153000	0.153000	а	Α
2	2	MORELLI	10	0.088000	0.088000	b	В
3	3	DENTAURUM	10	0.080000	0.080000	b	В

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE **FIO 0,018x0,025** DO FATOR **DIÂMETRO DO FIO**

Tabela - 9.4.7

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5'	%	1%
1	1	TECNIDENT	10	0.155000	0.155000	а		A
2	3	DENTAURUM	10	0.078000	0.078000		b	В
3	2	MORELLI	10	0.076000	0.076000		b	В

TESTE DE TUKEY PARA MÉDIAS DE MARCAS DENTRO DE FIO 0,021x0,025 DO FATOR DIÂMETRO DO FIO

Tabela - 9.4.8

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	59	%	1%
1	1	TECNIDENT	10	0.140000	0.140000	а		Α
2	3	DENTAURUM	10	0.077000	0.077000		b	В
. 3	2	MORELLI	10	0.073000	0.073000		b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 0.1116 D.M.S. 1% = 0.01400

TESTE DE TUKEY PARA MÉDIAS DE DIÂMETRO DOS FIO - rugosidade

Tabela - 9.4.9

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	30	0.107000	0.107000		Α
2	2	Fio 18x25	30	0.103000	0.103000	a b	А В
3	3	Fio 21x25	30	0.096667	0.096667	b	В

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL

DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 0.00644

D.M.S. 1% = 0.00808

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA **TECNIDENT** DO FATOR MARCA

Tabela - 9.4.10

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	2	Fio 18x25	10	0.155000	0.155000	<u>—</u> —	
2	1	Fio 16x22	10	0.153000	0.153000	а	ΑВ
_3	3	Fio 21x25	10	0.140000	0.140000	b	B

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA MORELLI DO FATOR MARCA

Tabela - 9.4.11

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	0.088000	0.088000	a	
2	2	Fio 18x25	10	0.078000	0.078000	b	А В
3	_ 3	Fio 21x25	10	0.073000	0.073000	b	В

TESTE DE TUKEY PARA MÉDIAS DO DIÂMETRO DO FIO DENTRO DA MARCA DENTAURUM DO FATOR MARCA

Tabela - 9.4.12

Núm. Ordem	Núm. Trat.	Nome	Núm. Repet.	Médias	Médias Originais	5%	1%
1	1	Fio 16x22	10	0.080000	0.080000	а	A
2	3	Fio 18x25	10	0.078000	0.078000	а	Α
3	2	Fio 21x25	10	0.073000	0.073000	а	Α

MÉDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NÍVEL DE SIGNIFICÂNCIA INDICADO D.M.S. 5% = 0.1116 D.M.S. 1% = 0.01400

Tabela 9.4.13 - Análise fixando o nível **Tecnident** do fator **M**arcas e nível fio **0,016x0,022**° do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.140000
VALOR MAX	0.170000
AMPLITUDE	0.030000
TOTAL	1.530000
MÉDIA	0.153000
VARIÂNCIA	0.000134
D. PADRÃO	0.011595
D. P. MÉDIA	0.003667
COEF. VAR. %	7.578443
COEF. ASSIM.	0.288506
COEF, CURT.	1.760606
MEDIANA	0.150000
QUARTIL INF.	0.140000
QUARTIL SUP.	0.160000
IC 5% L. S.	0.161287
IC 5% L. I.	0.144713
IC 1% L. S.	0.164917
IC 1% L. f.	0.141083

Tabela 9.4.14 - Análise fixando o nível Tecnident do fator Marcas e nível fio 0,018x0,025" do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.130000
VALOR MAX	0.170000
AMPLITUDE	0.040000
TOTAL	1.550000
MÉDIA	0.155000
VARIÂNCIA	0.000206
D. PADRÃO	0.014337
D. P. MÉDIA	0.004534
COEF. VAR. %	9.249821
COEF. ASSIM.	-0.476895
COEF. CURT.	1.888234
MEDIANA	0.160000
QUARTIL INF.	0.140000
QUARTIL SUP.	0.170000
IC 5% L. S.	0.165246
IC 5% L. I.	0.144754
IC 1% L. S.	0.169735
IC 1% L. I.	0.140265

Tabela 9.4.15 - Análise fixando o nível **Tecnident** do fator Marcas e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.120000
VALOR MAX	0.160000
AMPLITUDE	0.040000
TOTAL	1.400000
MÉDIA	0.140000
VARIÂNCIA	0.000178
D. PADRÃO	0.013333
D. P. MÉDIA	0.004216
COEF. VAR. %	9.523818
COEF. ASSIM.	0.296462
COEF, CURT.	2.031244
MEDIANA	0.140000
QUARTIL INF.	0.130000
QUARTIL SUP.	0.150000
IC 5% L. S.	0.149529
IC 5% L. I.	0.130471
IC 1% L. S.	0.153703
IC 1% L. I.	0.126297

Tabela 9.4.16 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,016x0,022" do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.070000
VALOR MAX	0.100000
AMPLITUDE	0.030000
TOTAL	0.880000
MÉDIA	0.088000
VARIÂNCIA	0.000151
D. PADRÃO	0.012293
D. P. MÉDIA	0.003887
COEF. VAR. %	13.969013
COEF. ASSIM.	-0.363173
COEF. CURT.	1.628025
MEDIANA	0.090000
QUARTIL INF.	0.080000
QUARTIL SUP.	0.100000
IC 5% L. S.	0.096785
IC 5% L. I.	0.079215
IC 1% L. S.	0.100634
IC 1% L. I.	0.075366

Tabela 9.4.17 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,018x0,025" do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.070000
VALOR MAX	0.080000
AMPLITUDE	0.010000
TOTAL	0.760000
MÉDIA	0.076000
VARIÂNCIA	0.000027
D. PADRÃO	0.005164
D. P. MÉDIA	0.001633
COEF. VAR. %	6.794717
COEF. ASSIM.	-0.408245
COEF. CURT.	1.166658
MEDIANA	0.080000
QUARTIL INF.	0.070000
QUARTIL SUP.	0.080000
IC 5% L. S.	0.079691
IC 5% L. I.	0.072309
IC 1% L. S.	0.081307
IC 1% L. I.	0.070693

Tabela 9.4.18 - Análise fixando o nível Morelli do fator Marcas e nível fio 0,021x0,025" do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.060000
VALOR MAX	0.0900000
AMPLITUDE	0.030000
TOTAL	0.730000
MÉDIA	0.073000
VARIÂNCIA	0.000068
D. PADRÃO	0.008233
D. P. MÉDIA	0.002603
COEF. VAR. %	11.277711
COEF. ASSIM.	0.680065
COEF. CURT.	3.154261
MEDIANA	0.070000
QUARTIL INF.	0.070000
QUARTIL SUP.	0.080000
IC 5% L. S.	0.078884
IC 5% L. I.	0.067116
IC 1% L. S.	0.081461
IC 1% L. I.	0.064539

Tabela 9.4.19 - Análise fixando o nível **Dentaurum** do fator **Marcas** e nível fio **0,016x0,022**" do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.070000
VALOR MAX	0.100000
AMPLITUDE	0.030000
TOTAL	0.800000
MÉDIA	0.080000
VARIÂNCIA	0.000089
D. PADRÃO	0.009428
D. P. MÉDIA	0.002981
COEF. VAR. %	11.785119
COEF. ASSIM.	0.838525
COEF. CURT.	3.124996
MEDIANA	0.080000
QUARTIL INF.	0.070000
QUARTIL SUP.	0.080000
IC 5% L. S.	0.086738
IC 5% L. I.	0.073262
IC 1% L. S.	0.089690
IC 1% L. I.	0.070310

Tabela 9.4.20 - Análise fixando o nível **Dentaurum** do fator Marcas e nível fio **0,018x0,025"** do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.060000
VALOR MAX	0.090000
AMPLITUDE	0.030000
TOTAL	0.780000
MÉDIA	0.078000
VARIÂNCIA	0.000084
D. PADRÃO	0.009189
D. P. MÉDIA	0.002906
COEF. VAR. %	11.781238
COEF. ASSIM.	-0.507130
COEF, CURT.	2.678672
MEDIANA	0.080000
QUARTIL INF.	0.070000
QUARTIL SUP.	0.080000
IC 5% L. S.	0.084567
IC 5% L. I.	0.071433
IC 1% L. S.	0.087444
IC 1% L. I.	0.068556

Tabela 9.4.21 - Análise fixando o nível **Dentaurum** do fator **Marcas** e nível fio **0,021x0,025**" do fator diâmetro do fio.

Estatísticas	RUGOSIDADE
NUM. OBS.	10
VALOR MIN.	0.070000
VALOR MAX	0.900000
AMPLITUDE	0.020000
TOTAL	0.770000
MÉDIA	0.077000
VARIÂNCIA	0.000046
D. PADRÃO	0.006749
D. P. MÉDIA	0.002134
COEF. VAR. %	8.765570
COEF. ASSIM.	0.365676
COEF. CURT.	2.294466
MEDIANA	0.080000
QUARTIL INF.	0.070000
QUARTIL SUP.	0.080000
IC 5% L. S.	0.081824
IC 5% L. I.	0.072176
IC 1% L. S.	0.083937
IC 1% L. I.	0.070063