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RESUMO 

O objetivo deste estudo foi avaliar a influência dos hormônios sexuais na 

nocicepção da articulação temporomandibular (ATM) de ratos e os possíveis mecanismos 

envolvidos. A injeção de formalina na ATM em uma concentração (0,5%) que não induziu 

nocicepção em machos intactos, induziu em machos gonadectomizados e em fêmeas 

intactas, o que sugere que os níveis fisiológicos de testosterona diminuem o risco de 

machos desenvolverem nocicepção da ATM. A resposta nociceptiva induzida pela injeção 

de uma alta concentração de formalina (1,5%) na ATM de machos é significativamente 

menor que àquela induzida na ATM de fêmeas em diestro, fase do ciclo estral com baixos 

níveis de estrógeno, mas semelhante àquela induzida na ATM de fêmeas em proestro, fase 

do ciclo estral com altos níveis de estrógeno. Esse resultado sugere que a nocicepção da 

ATM, em fêmeas, é exacerbada durante a fase do ciclo estral em que os níveis de estrógeno 

estão baixos. A administração sistêmica de estrógeno ou progesterona em fêmeas 

gonadectomizadas e de testosterona em machos gonadectomizados reduz a resposta 

nociceptiva induzida pela injeção de formalina na ATM. A influência do sexo e dos 

hormônios ovarianos na nocicepção induzida pela injeção de formalina ou de glutamato na 

ATM foi exatamente a mesma, o que demonstra que o efeito antinociceptivo dos hormônios 

ovarianos na ATM não é estritamente relacionado a nocicepção induzida pela formalina. A 

semelhança entre estudos clínicos e os resultados obtidos utilizando estes dois agentes 

nociceptivos sugere que o modelo comportamental de nocicepção da ATM pode ser útil e 

confiável para estudar os mecanismos envolvidos no efeito antinociceptivo dos hormônios 

sexuais na ATM de ratos. A administração de drogas no líquido cefalorraquidiano da região 

de complexo sensorial trigeminal também é útil para o estudo desses mecanismos, mas o 

procedimento cirúrgico realizado para a implantação do cateter usado para a injeção pode 

afetar a expressão dos comportamentos relacionados a nocicepção orofacial. Portanto, a 

técnica que permite a injeção direta de drogas nessa região, sem a necessidade de 

procedimentos cirúrgicos contribui para o estudo dos mecanismos envolvidos no efeito 

antinociceptivo dos hormônios sexuais na ATM de ratos. A administração, por meio dessa 

técnica, do antagonista de receptores opióides naloxona no espaço subaracnóide da região 

do complexo sensorial trigeminal bloqueou o efeito antinociceptivo induzido pelos níveis 
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fisiológicos de estrógeno em fêmeas em proestro e  pela administração sistêmica de 

estrógeno ou progesterona em fêmeas gonadectomizadas e de testosterona em machos o 

gonadectomizados. No entanto, a co-administração de naloxona e formalina na ATM 

bloqueou o efeito antinociceptivo da progesterona e da testosterona, mas não do estrógeno. 

Esses dados sugerem que mecanismos opióides centrais medeiam o efeito antinociceptivo 

do estrógeno, da progesterona e da testosterona, enquanto  mecanismos opióides periféricos 

também medeiam o efeito antinociceptivo da progesterona e da testosterona. A 

administração local de estrógeno, conjugado ou não com a albumina plasmática, na ATM 

de fêmeas reduziu significativamente a nocicepção induzida pela formalina. Como o 

estrógeno conjugado com a albumina tem ação restrita a receptores de membrana, esse 

dado sugere que o estrógeno reduz a nocicepção através de uma ação periférica não 

genômica. O efeito antinociceptivo do estrógeno foi bloqueado pelo antagonista de 

receptores estrogênicos ICI 182 780 e pelos inibidores da óxido nítrico sintase, L-NNA, e 

da guanilato ciclase, ODQ, mas não pelo antagonista de receptores opióides, naloxona. Esse 

dado sugere que o efeito antinociceptivo periférico do estrógeno é mediado pela ativação da 

via do óxido nítrico/GMP cíclico. Juntos, os resultados desse estudo demonstram que os 

níveis fisiológicos de testosterona diminuem o risco de ratos desenvolverem nocicepção da 

ATM e os de estrógeno diminuem a nocicepção da ATM em ratas. Além disso, a 

nocicepção da ATM também é diminuída pela administração sistêmica de estrógeno ou 

progesterona em ratas e de testosterona em ratos. O efeito antinociceptivo dos hormônios 

sexuais é mediado por mecanismos opióides centrais, enquanto mecanismos opióides 

periféricos medeiam o efeito da progesterona e da testosterona, mas não do estrógeno. De 

fato, a administração de estrógeno na ATM reduz a nocicepção através de um mecanismo 

periférico não genômico, mediado pela ativação da via do óxido nítrico-GMPc, mas não 

pela ativação do sistema opióide periférico. 
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ABSTRACT 

The aim of this study was to evaluate the effect of sex hormones on 

temporomandibular joint (TMJ) nociception in rats and the possible mechanisms 

underlying their effect. The TMJ injection of 0.5% formalin induced nociception in intact 

females and gonadectomized males, but not in intact males, suggesting that the 

physiological level of testosterone protect males by decreasing their probability to develop 

TMJ pain. A higher dose of formalin (1.5%) induced a nociceptive behavior response 

significantly higher in female rats during diestrus phase of the estrous cycle than in those 

during proestrus phase and male rats. Since estradiol serum level was higher in proestrus 

than in diestrus females, this finding suggests that during low estradiol level of the estrous 

cycle the TMJ nociception is increased in female rats. Systemic administration of estradiol 

or progesterone in gonadectomized females and of testosterone in gonadectomized males 

significantly decreased 1.5% formalin-induced TMJ nociception. The role of sex and 

ovarian hormones in formalin and glutamate-induced TMJ nociception was virtually the 

same, showing that the antinociceptive effect of ovarian hormones was not exclusively 

related to the nociception induced by formalin. The similarity between clinical studies and 

the present results, obtained by using two different nociceptive agents, suggests that the 

TMJ behavior model may be useful and reliable to study the mechanisms underling the 

antinociceptive effect of sex hormones in the TMJ. Drug delivery to the medullary 

cerebrospinal fluid is also useful to study these mechanisms, however, the surgical 

procedure for implantation of the catheter used for drug delivery may affect the expression 

of the nociceptive behaviors related to orofacial nociception. Therefore, the technique for 

direct drug delivery to the medullary cerebrospinal fluid, without catheter implantation, will 

contribute for the study of the mechanisms underling the antinociceptive effect of sex 

hormones in the TMJ. The administration, though this technique, of the opioid receptor 

antagonist naloxone in the medullary region blocked the antinociceptive effect of estradiol, 

progesterone and testosterone. However, the co-administration of naloxone with formalin 

into the TMJ blocked the antinociceptive effect of progesterone and testosterone, but not of 

estradiol. These findings suggest that central opioid mechanisms mediate the 

antinociceptive effect of estradiol, progesterone and testosterone, while peripheral opioid  
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mechanisms also mediated the antinociceptive effect of progesterone and testosterone. The 

local administration of estradiol, conjugated or not with the bovine serum albumin, 

significantly decreased formalin-induced TMJ nociception in female rats. Given that 

estradiol conjugated with bovine serum albumin is a membrane impermeable compound, 

these findings suggest that estradiol decreases TMJ nociception by a peripheral non-

genomic mechanism. The antinociceptive effect of estradiol was blocked by an estrogen 

receptor antagonist and by a nitric oxide synthase and a guanilato cyclase inhibitors, but not 

by a opioid receptor antagonist. These findings suggest that estradiol decreases TMJ 

nociception in female rats through a peripheral activation of NO-cGMP signaling pathway. 

Taken together, the findings of this study suggest that the high physiological level of 

testosterone decreases the risk of male rats develop TMJ pain and that of estradiol 

decreases TMJ nociception in female rats. Furthermore, TMJ nociception was also 

decreased by systemic administration of estradiol or progesterone in female and of 

testosterone in male rats. The antinociceptive effect of sex hormones is mediated by central 

opioid mechanisms, while peripheral opioid mechanisms mediate the antinociceptive effect 

of progesterone and testosterone, but not of estradiol. In fact, the administration of estradiol 

in the TMJ decreases nociception by a peripheral non-genomic mechanism mediated by 

activation of the nitric oxide-cGMP signaling pathway, but not by opioid receptors. 
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INTRODUÇÃO 

Disfunções Temporomandibulares (DTMs) são condições dolorosas crônicas 

envolvendo os músculos da mastigação e/ou articulação temporomandibular (ATM) 

(Dworkin et al. 1990). Estudos epidemiológicos relatam que aproximadamente 50% da 

população apresenta sinais e/ou sintomas de DTM (Carlsson 1984) e que 8% a 15% desses 

indivíduos necessitam de tratamento (Lipton et al. 1993). A prevalência em mulheres é 

duas vezes maior que em homens e elas correspondem a 80% dos pacientes que procuram 

tratamento (Dworkin et al. 1990), pois a dor relacionada as DTMs é mais severa no sexo 

feminino (Carlsson and LeResche 1995).  

A dor é definida como uma experiência multidimensional (Associação 

internacional para o estudo da dor, IASP) e como tal sofre influência de vários fatores 

biológicos e psicossociais. No entanto, a marcante diferença na resposta dolorosa clínica 

(Riley et al. 1998; Fillingim et al. 1999; Riley and Gilbert 2001; Aloisi 2003; Frot et al. 

2004) e experimental (Cairns et al. 2001a; Vincler et al. 2001; Gaumond et al. 2002; 

Clemente et al. 2004; Smith et al. 2006) entre os sexos sugere que os hormônios sexuais 

estejam entre os principais fatores moduladores da dor. O adequado entendimento do efeito 

e dos mecanismos que medeiam a modulação da dor pelos hormônios sexuais é essencial 

para o desenvolvimento de futuras modalidades terapêuticas que, ao manejar a poderosa 

influência desses hormônios sobre a dor, alcancem um maior índice de sucesso.  

A menor prevalência e severidade das DTMs e outras condições dolorosas no 

sexo masculino tem sido classicamente associada a um papel pró-nociceptivo dos 

hormônios ovarianos (LeResche 1997; Warren and Fried 2001; Craft et al. 2004; Cairns 

2007). No entanto, estudos recentes, que vêm demonstrando um papel antinociceptivo 

desses hormônios, não suportam essa idéia (Ceccarelli et al. 2003; LeResche et al. 2003; 

Clemente et al. 2004; Gaumond et al. 2005; Smith et al. 2006; Fischer et al. in press). 

Provavelmente, o estudo da influência da testosterona, principal hormônio masculino, sobre 

os mecanismos nociceptivos contribuiria não só para solucionar parte das discrepâncias da 

literatura nessa área, mas também para o entendimento dos mecanismos responsáveis pela 
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menor prevalência  e severidade da maioria das condições dolorosas crônicas no sexo 

masculino. De fato, os poucos estudos que investigaram a influência desse hormônio sobre 

a nocicepção apontam para um papel protetor da testosterona. Por exemplo, foi 

demonstrado que baixos níveis de testosterona estão associados ao desenvolvimento e a 

manutenção de algumas condições dolorosas (Morales et al. 1994) e que em ratos 

submetidos a estímulos nociceptivos repetitivos, a testosterona induz adaptação progressiva 

com diminuição das respostas nociceptivas (Aloisi et al. 2003). Embora os efeitos da 

testosterona sobre a dor da ATM não sejam conhecidos, é possível que ela contribua para a 

menor prevalência e/ou para a menor severidade das DTMs no sexo masculino. 

Inúmeros estudos têm sido delineados para avaliar influência dos hormônios 

sexuais sobre os mecanismos nociceptivos. De uma forma geral, eles apontam para uma 

maior resposta dolorosa experimental no sexo feminino, tanto em humanos (Riley et al. 

1998; Fillingim et al. 1999; Riley and Gilbert 2001; Cairns et al. 2002; Zubieta et al. 2002; 

Aloisi 2003) quanto em animais (Gordon and Soliman 1994; Cairns et al. 2001a; Gaumond 

et al. 2002; Okamoto et al. 2003; Clemente et al. 2004; Gaumond et al. 2005; Fischer et al. 

in press) mas a unanimidade de opiniões termina quando começa a discussão a respeito do 

papel dos hormônios ovarianos sobre os mecanismos nociceptivos. A razão para as 

discrepâncias na literatura não é conhecida, mas o grande número de estudos conflitantes 

sugere que a modulação dos mecanismos nociceptivos pelos hormônios ovarianos seja um 

processo complexo e dinâmico. De fato, a característica mais marcante da fisiologia sexual 

feminina é a flutuação hormonal ao longo do ciclo reprodutivo, pois períodos de altos 

níveis hormonais são seguidos por quedas bruscas desses níveis. Nesse contexto, foi 

demonstrado que a dor da ATM em mulheres é maior durante períodos de baixo nível 

hormonal do ciclo menstrual (LeResche et al. 2003). Esse estudo sugere que baixos níveis 

de hormônios ovarianos estão associados ao aumento da dor da ATM e é aparentemente 

contraditório a um estudo anterior, dos mesmos autores, que demonstrou que a reposição 

hormonal em mulheres aumenta o risco de desenvolver DTM (LeResche et al. 1997). Para 

justificar a aparente contradição, os autores sugeriram que o fator responsável por aumentar 

o risco de desenvolver DTM não é o uso de hormônios, mas sim a interrupção de seu uso, 

pois na maioria dos casos de reposição hormonal interrompe-se o uso dos hormônios por 
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sete dias para permitir o sangramento menstrual mensal (LeResche et al. 2003). A maior 

sensibilidade dolorosa da ATM em mulheres durante o período de baixo nível hormonal do 

ciclo menstrual (LeResche et al. 2003) é consistente com dados experimentais obtidos em 

nosso laboratório que demonstraram que a resposta nociceptiva comportamental induzida 

pela injeção de formalina na região da ATM de ratas durante uma fase de baixo nível 

hormonal do ciclo estral é significativamente maior que aquela induzida em ratas durante 

uma fase de alto nível hormonal (Clemente et al. 2004).  Juntos, esse estudo experimental 

(Clemente et al. 2004) e o estudo clínico (LeResche et al. 2003) sugerem que a dor da 

ATM, no sexo feminino, é diminuída durante o período de alto nível hormonal do ciclo 

reprodutivo. No entanto, ainda não se sabe qual é o hormônio ovariano que, em altos níveis, 

diminui a dor da ATM, ou se a presença de ambos, estrógeno e progesterona, é necessária.  

O uso experimental de formalina como agente nociceptivo é considerado um 

modelo altamente representativo da dor observada clinicamente em humanos (Tjolsen et al. 

1992) e a semelhança entre resultados clínicos (LeResche et al. 2003) e experimentais 

(Clemente et al. 2004) sugere que o teste da formalina na ATM de ratos (Roveroni et al. 

2001) é um bom modelo experimental para avaliar a influência e os mecanismos 

envolvidos no efeito dos hormônios sexuais na dor da ATM. A manipulação hormonal, 

através da gonadectomia e da administração de hormônios também é um procedimento 

experimental útil para estudar esses mecanismos porque permite avaliar separadamente o 

efeito de cada hormônio, bem como da depleção hormonal. Além disso, a administração de 

hormônios induz um nível sérico constante que evita as influências relacionadas à liberação 

cíclica em fêmeas e permite induzir um nível sérico mais elevado, facilitando a detecção 

dos possíveis mecanismos envolvidos no efeito hormonal. 

A administração de drogas no líquido cefalorraquidiano na região do subnúcleo 

caudal trigeminal é um procedimento experimental essencial para o estudo dos mecanismos 

nociceptivos da região orofacial e requer a implantação cirúrgica de um cateter posicionado 

na região do subnúcleo caudal trigeminal. A cirurgia pode ser realizada na região dorsal do 

pescoço, e nesse caso o cateter é implantado diretamente sobre a região do subnúcleo 

caudal (Flores et al. 2001; Tambeli et al. 2001; Wang et al. 2002), ou pode ser realizada na 
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região lombar, o que requer que o cateter seja avançado, através da medula espinhal, até a 

região do subnúcleo caudal (Grabow and Dougherty 2001). Ambos procedimentos são 

trabalhosos e causam sofrimento ao animal que necessita de vários dias para se recuperar da 

cirurgia e muitas vezes apresenta seqüelas, como dano motor. O número de animais 

envolvidos no experimento é elevado, pois alguns morrem após a cirurgia e aqueles que 

apresentaram dano motor têm de ser descartados. Além disso, a cirurgia na região do 

pescoço, causa desinserção, fibrose e dor nos músculos do pescoço, essenciais para a 

expressão dos comportamentos nociceptivos relacionados a dor orofacial, como o “flinch” 

de cabeça e o ato de coçar da região orofacial. Dessa forma, o desenvolvimento de técnicas 

para a administração de drogas na região do subnúcleo caudal que otimizem o trabalho 

experimental e não interfiram nos comportamentos nociceptivos orofaciais contribuirá para 

o estudo dos mecanismos envolvidos no efeito dos hormônios sexuais na dor da ATM, uma 

vez que como mencionado, o teste comportamental da formalina na ATM é um bom 

modelo experimental para esse estudo, pois replica dados clínicos. 

Inúmeros mecanismos poderiam mediar o efeito dos hormônios sexuais sobre a 

nocicepção da ATM. Receptores para esses hormônios estão amplamente distribuídos na 

região da ATM (Aufdemorte et al. 1986; Abubaker et al. 1993; Yamada et al. 2003), nas 

fibras nociceptivas periféricas (Keast and Gleeson 1998; Koenig et al. 2000; Puri et al. 

2005) e em regiões do sistema nervoso central que reconhecidamente participam da 

transmissão e modulação da informação nociceptiva (McEwen 2001). O sistema opióide 

está entre os mais poderosos mecanismos endógenos para o controle da dor (Stein et al. 

2003) e diversos estudos têm relacionado alguns efeitos dos hormônios sexuais  à ativação 

do sistema opióide. Por exemplo, esses hormônios são conhecidos por aumentar a 

expressão dos peptídeos (Johansson et al. 1997; Amandusson et al. 1999; Foradori et al. 

2005; Bernardi et al. 2006) e dos receptores opióides (Hammer and Bridges 1987; Petersen 

and LaFlamme 1997; Quinones-Jenab et al. 1997; Harris et al. 2004). Um estudo recente 

demonstrou que altos níveis de estrógeno em mulheres estão associados à diminuição da 

dor experimental induzida no músculo mastigatório masseter e ao aumento da atividade do 

sistema opióide endógeno (Smith et al. 2006). Em ratas, foi demonstrado que os altos 

níveis hormonais durante a gestação diminuem a nocicepção através da ativação do sistema 
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opióide endógeno no sistema nervoso central (Dawson-Basoa and Gintzler 1993) e na 

periferia (Arthuri et al. 2005). No entanto, ainda não se sabe se o efeito antinociceptivo 

induzido pelos hormônios sexuais na ATM é mediado pela ativação do sistema opióide 

endógeno, e caso seja, se essa ativação se dá no sistema nervoso central ou na periferia. 

Independente dos mecanismos envolvidos no efeito antinociceptivo dos 

hormônios sexuais, esses hormônios induzem todos os seus efeitos através de dois modos 

de ação: genômico e não genômico (Simoncini and Genazzani 2003). Os mecanismos 

genômicos envolvem a ativação de receptores nucleares que controlam a expressão gênica, 

e por isso induzem seus efeitos dias a horas após sua ativação (Simoncini and Genazzani 

2003). Os mecanismos não genômicos são mediados pela ativação de receptores 

localizados na membrana plasmática e medeiam efeitos rápidos, como a ativação de vias de 

segundos mensageiros (Moss et al. 1997; Kelly et al. 1999) e modulação de canais iônicos 

(Mermelstein et al. 1996; Chaban et al. 2003). Entre os hormônios sexuais, o mais estudado 

é sem dúvida o estrógeno, estudos eletrofisiológicos demonstraram que a ativação de 

receptores estrogênicos de membrana diminui a atividade da fibra nociceptiva primária pela 

modulação de canais iônicos (Lee et al. 2002; Chaban and Micevych 2005), o que sugere 

um efeito antinociceptivo não genômico periférico do estrógeno. Entre as vias de segundos 

mensageiros ativadas pelos receptores estrogênicos de membrana está a via da L-arginna – 

óxido nítrico – GMPc (Caulin-Glaser et al. 1997; Lantin-Hermoso et al. 1997; Simoncini et 

al. 2004). Essa via envolve a síntese de óxido nítrico a partir do aminoácido L-arginina pela 

enzima óxido nítrico sintase. O óxido nítrico formado ativa a enzima guanilato ciclase que 

converte a guanosina trifosfato (GTP) em guanosina monofosfato cíclico (GMPc). O 

GMPc, um segundo mensageiro com inúmeras funções fisiológicas (Lucas et al. 2000), é o 

produto final dessa via e o aumento de seus níveis periféricos tem sido associado a um 

efeito antinociceptivo (Durate et al. 1990; Qian et al. 1996; Cunha et al. 1999; Sachs et al. 

2004; Almeida and Duarte 2007). Um dos mecanismos responsáveis pelo aumento dos 

níveis periféricos de GMPc é a ativação de mecanismos opióides periféricos (Granados-

Soto et al. 1997; Pol 2007), que também parece estar envolvida no efeito antinociceptivo 

induzido, na ATM de ratas, pelos altos níveis hormonais da gestação. Dessa forma, é 

possível que o estrógeno reduza a nocicepção induzida pela injeção de formalina na ATM 



 
 
6

de ratos por meio de um mecanismo não-genômico periférico, e que esse mecanismo seja 

mediado pela ativação da via L-arginna – óxido nítrico – GMPc e do sistema opióide. 

Diante do exposto, o objetivo deste estudo foi avaliar a influência dos 

hormônios sexuais na nocicepção da ATM de ratos e os possíveis mecanismos envolvidos. 

Para tanto nós (1) Avaliamos o efeito da testosterona na nocicepção da ATM, verificando 

se ela reduz o risco de desenvolver nocicepção na ATM e se ela reduz a nocicepção da 

ATM já instalada; (2) Avaliamos o efeito do sexo e dos hormônios ovarianos na nocicepção 

da ATM, comparando a resposta nociceptiva de machos e fêmeas em fases de alto e baixo 

nível hormonal do ciclo estral e verificando o efeito da depleção dos hormônios ovarianos  

pela ovariectomia e de sua administração concomitante ou isolada; (3) Desenvolvemos uma 

técnica de administração de drogas na região de subnúcleo caudal trigeminal que melhora 

as condições experimentais e facilita o estudo comportamental dos mecanismos envolvidos 

no efeito dos hormônios sexuais sobre a nocicepção da ATM; (4) Avaliamos o 

envolvimento do sistema opióide endógeno central e periférico no efeito dos hormônios 

sexuais sobre a nocicepção da ATM; (5) Avaliamos o efeito periférico do estrógeno sobre a 

nocicepção da ATM, verificando se ele afeta a nocicepção por meio de um mecanismo 

periférico não genômico e se esse mecanismo depende  da ativação da via do Óxido nítrico 

– GMPc e de receptores opióides.  

 

 

 

 

 

Conforme deliberação da Comissão Central de Pós-graduação (CCPG) da 

Universidade Estadual de Campinas (UNICAMP) nº 001/98, o presente estudo está 

apresentado em formato alternativo, contendo como capítulos artigos publicados ou 

submetidos a publicação em periódicos internacionais. 
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Abstract 

The lower prevalence of many pain conditions, including temporomandibular 

dysfunctions in men than in women, has not as yet been clarified. The aim of this study was 

to investigate the effect of testosterone on the risk of developing temporomandibular joint 

(TMJ) pain and on acute persistent TMJ pain. The TMJ formalin test was used as 

experimental assay in the rat. Intra-TMJ 0.5% formalin induced a significant nociceptive 

behavior in naïve females and gonadectomized males, but not in naïve males, suggesting 

that naïve males have a lower risk of developing TMJ pain. The finding that the serum level 

of testosterone but not of estrogen and progesterone significantly decreased in 

gonadectomized males, suggests that testosterone is the hormone underlying the decreased 

naïve male’s risk of developing TMJ pain. The magnitude of the nociceptive behaviors 

induced by intra-TMJ 1.5% formalin was similar in gonadectomized and naïve males. 

Therefore, in contrast to the protective role of testosterone in TMJ pain development, 

testosterone, at physiological serum levels, does not appear to modulate acute persistent 

TMJ pain induced by the TMJ injection of 1.5% formalin. At a supraphysiological serum 

level, however, testosterone significantly attenuated 1.5% formalin-induced nociception in 

males, but not in females. This antinociceptive effect was not mediated by estrogen derived 

from testosterone aromatization, because estrogen administration did not affect 1.5% 

formalin-induced TMJ nociception in gonadectomized males.  

Perspective 

The present findings not only help to explain the lower prevalence of TMJ pain 

in males versus females but also show that testosterone reduces TMJ pain at 

supraphysiological serum levels. 
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Introduction 

Temporomandibular dysfunctions are pain conditions of the masticatory 

muscles and temporomandibular joint (TMJ) (Dworkin and LeResche 1992; Denucci et al. 

1996) with greater prevalence, severity and duration in women than in men (LeResche 

1997). We have previously demonstrated that the injection of formalin into the rat’s 

temporomandibular joint induces a behavioral nociceptive response significantly lower in 

male than in female rats (Clemente et al. 2004). Similar results were also obtained by the 

TMJ injection of other algogenic agents (Bereiter 2001; Cairns et al. 2001b; Okamoto et al. 

2003). The cause of this lower sensitivity to experimentally-induced TMJ nociception in 

males than in females as well as the lower prevalence of many pain conditions (Unruh 

1996) including TMJ pain (LeResche 1997) in men than in women, has not as yet been 

clarified. Although it might be attributed to a pronociceptive effect of ovarian hormones, 

(LeResche 1997; Cairns et al. 2001b; Craft et al. 2004) an antinociceptive effect of ovarian 

hormones has also been reported in animal (Clemente et al. 2004) and human (LeResche et 

al. 2003) studies. The aim of this study was to investigate if testosterone protects males by 

decreasing their risk of developing TMJ pain or by decreasing TMJ pain. Given that 

testosterone has been used in a wide range of therapeutic approaches other than hormone 

replacement therapy (Basaria et al. 2001) and also widely used by healthy individuals to 

enhance athletic performance and appearance (Brown 2005). we also investigated the effect 

of a supraphysiological dose of testosterone on TMJ pain. The TMJ formalin test (Roveroni 

et al. 2001)  was used as experimental assay in the rat. 



 
 

12

Material and Methods 

Animals 

 This study was carried out in 200-300g male and female Wistar rats housed 

(five per cage) in a temperature-controlled room (23 + 1°C) on a 12:12 light cycle, with 

food and water available ad libitum. The experiments were approved by the Committee on 

Animal Research of the University of Campinas and are in accordance with IASP 

guidelines for the study of pain in animals (Zimmermann 1983). Naïve, gonadectomized 

(Gx) and gonadectomized with sex hormone administered rats were used in experiments.  

Gonadectomy  

Three-week-old female rats were ovariectomized through bilateral upper flank 

incisions (Waynforth and Flecknell 1992b). The ovarian bundles were tied off with 4-O silk 

sutures and the ovaries removed. The fascia and the skin were closed with 5-O silk sutures. 

Three-week-old male rats were castrated through a single scrotal incision (Waynforth and 

Flecknell 1992b). The testicular bundles were ligated with 4-O silk sutures before removing 

the testes, and the skin closed with 5-O silk sutures. These procedures were carried out 

under anesthesia induced by an intramuscular injection of a mixture of ketamine (55mg/Kg) 

and xylazine (5.5mg/Kg). Gx rats were used in experiments 5–6 weeks after surgery. The 

efficacy of gonadectomy was verified in males by measuring testosterone serum level and 

in females by the observation of vaginal smears during seven days and by post mortem 

examination of uterine atrophy. 

Hormonal manipulation 

 Testosterone propionate (1mg) (Campos et al. 2003) or 17β-estradiol 

(estrogen, 50μg/kg) (Gordon and Soliman 1996) was daily injected for seven days. At the 

seventh day, hormone injection was performed 1 hour prior to the TMJ injection of 

formalin. Hormones were obtained from Sigma Chemicals, St Louis, Missouri, USA and 

dissolved in propyleneglycol.  
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Nociceptive assay 

Behavior test was performed during light phase (between 09:00 AM and 5:00 

PM) in a quiet room maintained at 23ºC (Rosland 1991). Before the experiments, each 

animal was manipulated for 7 days to be habituated to the experimental manipulation. On 

the day of the experiment, each animal was individually placed in a test chamber (30 x 30 x 

30 cm mirrored-wood chamber with a glass at the front side) for a 15 min habituation 

period to minimize stress. Animals were briefly anesthetized by inhalation of halothane to 

allow the TMJ injection of 30µl of formalin or its vehicle (0.9% NaCl). Formalin solutions 

were prepared from commercially (Sigma) available stock formalin (an aqueous solution of 

37% of formaldehyde) further diluted in 0.9% NaCl (saline) to concentrations of 0.5%, 1% 

or 1.5%. Each animal regained consciousness approximately 30 seconds after discontinuing 

the anesthetic and was returned to the test chamber for counting nociceptive responses 

during a 45-min observation period. The nociceptive response score was defined as the 

cumulative total number of seconds that the animal spent rubbing the orofacial region 

asymmetrically with the ipsilateral fore or hind paw plus the number of head flinches 

counted during the observation period as previously described (Roveroni et al. 2001). From 

a theoretical perspective, the occurrence of a given behavior is expressed as the proportion 

of time that the behavior occupies. Since head flinches followed a uniform pattern of 1s of 

duration, each flinch was expressed as 1s (Roveroni et al. 2001). The recording time was 

divided into 9 blocks of 5 minutes. Rats did not have access to food or water during the test 

and each animal was used once. At the conclusion of the experiment (45 minutes after TMJ 

formalin injection) animals were anesthetized by an intraperitoneal injection of a mixture of 

urethane (1g/kg) and α-chloralose (50mg/kg) and a cardiac puncture was performed to 

allow blood collection (to measure hormonal serum level), and the injection of Evans blue 

dye (1%), in order to visualize formalin-induced TMJ plasma extravasation upon post-

mortem examination (Haas et al. 1992). This latter procedure allowed confirmation that the 

TMJ injection was restricted to the immediate TMJ region (Roveroni et al. 2001). 

Testosterone, estrogen and progesterone serum levels were determined by 

radioimmunoassay using hormone specific kits from Diagnostics System Laboratories, Inc. 
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Formalin (0.5%, 1% or 1.5%) or its vehicle (0.9% NaCl) was injected into the TMJ of naïve 

male rats.  

Study design 

The effect of the injection of increasing concentrations of formalin 0.0% (n = 

6), 0.5% (n = 11), 1.0% (n = 6) and 1.5% (n = 6) into the TMJ of naïve males was first 

determined. Formalin (0.5% and 1.5%) data from naïve males were used for subsequent 

comparisons.   To evaluate if male sex hormones, at physiological levels, protect males by 

decreasing their risk of developing TMJ pain, formalin at a concentration (0.5%) that did 

not induce nociception in naïve males was injected into the TMJ of Gx males (n = 6). To 

compare the risk of developing TMJ pain between males and females, 0.0% or 0.5% 

formalin was injected into the TMJ of naïve females (n = 6 per group). To evaluate if male 

sex hormones, at physiological serum levels, reduce persistent acute TMJ nociception, 

formalin at a concentration (1.5%) that induced nociception in naïve males was injected 

into the TMJ of Gx males (n = 6). To ensure that the response observed in Gx males is due 

to androgen, rather than to a non-androgen hormone (estrogen and progesterone) deficit, 

testosterone, estrogen and progesterone serum levels were measured in gonadectomized 

and naïve males (n = 6 per group). To evaluate the effect of supraphysiological serum 

levels of testosterone on TMJ nociception, 1.5% formalin was injected into the TMJ of Gx 

males (n = 7) and females (n = 6) pre-treated with testosterone or with its vehicle (n = 6 and 

5, respectively). To evaluate if testosterone’s effect in males could be mediated by an 

indirect action of estrogen derived from testosterone aromatization, 1.5% formalin was 

injected into the TMJ of Gx males pre-treated with estrogen (n = 7). Sham-operated and 

hormone’s vehicle pre-treated Gx rats received 1.5% formalin into the TMJ and were used 

as controls (n=6 per group).  

Statistics 

To determine if there were significant differences (p< 0.05) between treatment 

groups presented in Figs. 1 (0, 0.5, 1.0 or 1.5% TMJ formalin in naïve males), 2A (0 or 

0.5% TMJ formalin in naïve males and 0.5% TMJ formalin in Gx males), 3 (0 or 1.5% 
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TMJ formalin in naïve males and 1.5% TMJ formalin in Gx males) and 4A (1.5% TMJ 

formalin in Gx males plus testosterone, estrogen or its vehicle), one-way ANOVA was 

performed. If there was a significant between-subjects main effect of treatment group 

following one-way ANOVA, post-hoc contrasts, using the Tukey test, were performed to 

determine the basis of the significant difference. Data from Figs. 2B (0 or 0.5 TMJ formalin 

in naïve females) and 4B (1.5% TMJ formalin in Gx females plus testosterone or its 

vehicle), were analyzed by t test.  The t test was also applied to detect significant 

differences in formalin-induced TMJ nociception between sham operated and naïve 

animals, between Gx animals with or without hormone’s vehicle pre-treatment and to 

detect significant differences in testosterone, estrogen or progesterone serum level between 

naïve and Gx animals. Data from sham operated animals were not plotted in figures.   
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Results 

The TMJ injection of formalin induced a significant dose-dependent 

nociceptive response in naïve males (Fig. 1). The dose of 0.5% formalin did not induce 

TMJ nociception in naïve males, but it did in Gx males (Fig. 2A) and naïve females (Fig. 

2B), suggesting that naïve males rats have a lower risk of developing TMJ nociception than 

females and Gx males. Testosterone (2.12 + 0.60 ng/ml), but not estrogen (35.00 + 4.97 

pg/ml) and progesterone (8.00 + 0.97 ng/ml) serum level significantly decreased after 

gonadectomy (0.16 + 0.06 ng/ml, 26.50 + 2.56 pg/ml and 10.00 + 1.63 ng/ml, respectively), 

suggesting that the protective effect observed in naïve males is due to testosterone rather 

than to a non-androgen hormone action.  

The TMJ injection of 1.5% formalin induced similar nociceptive response in 

Gx and naïve males (Fig. 3), suggesting that testosterone, at physiological serum levels, 

does not attenuate TMJ nociception. 

Exogenous testosterone administration significantly decreased TMJ 1.5% 

formalin-induced nociception in Gx males (Fig. 4A), but not in Gx females (Fig. 4B). This 

antinociceptive effect in males was induced by a supraphysiological serum level of 

testosterone (124.93 + 40.58 ng/ml), and not by estrogen derived from testosterone 

aromatization, since exogenously administered estrogen did not affect formalin-induced 

TMJ nociception in Gx male rats. TMJ injection of formalin’s vehicle (0.9% NaCl) induced 

similar nociceptive response in all experimental groups (Tukey’s test, p>0.05, data not 

shown).  

TMJ 1.5% formalin-induced nociception in sham-operated males (252.2 + 23.9) 

and sham-operated females (417.6 + 19.6) was similar to that of naïve males (281.4 + 25.5) 

and naïve females (432.8 + 24.5), respectively. Furthermore, TMJ 1.5% formalin-induced 

nociception in hormone’s vehicle pre-treated Gx males (243.4 + 40.8) and females (387.2 + 

21.9) was similar to that of Gx males (287.1 + 30.7) and females (416.6 + 20.3). Therefore, 

neither gonadectomy nor hormone’s vehicle (propyleneglycol) pre-treatment affected TMJ 

formalin-induced nociception.  
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Discussion  

In this study, we have shown that testosterone protects males by decreasing 

their risk of developing TMJ pain. Specifically, we have found that injection of formalin at 

a concentration (0.5%) that did not induce TMJ nociception in naïve males, induced a 

nociceptive behavior in Gx males and naïve females (Fig. 2A and B). Our findings suggest 

that the protective effect observed in naïve males is due to testosterone, since the serum 

level of testosterone, but not estrogen and progesterone significantly decreased after 

gonadectomy. Although testosterone is present in both sexes, the sex-specificity of its 

protective effect in males is not surprising, since the circulating testosterone levels in 

females are typically about 10% of those observed in males (Evans 2004). The protective 

effect of testosterone in male’s nociceptive system has been supported by some clinical 

studies demonstrating that its deficit can contribute to the development and maintenance of 

some pain conditions (Morales et al. 1994). Although testosterone, at physiological serum 

levels, protects males from developing TMJ pain, it does not attenuate acute persistent TMJ 

pain, as shown by the lack of effect of gonadectomy on 1.5% formalin-induced TMJ 

nociception (Fig. 3). This finding is consistent with those of previous studies evaluating 

nociception in other body regions and reporting that nociception in males is not affected by 

gonadectomy (Ali et al. 1995; Cicero et al. 1996). In contrast to physiological serum levels, 

supraphysiological serum levels of testosterone significantly decreased TMJ nociception in 

Gx males (Fig. 4A), which is consistent with some studies showing that testosterone or 

other androgens, at increased serum levels, decreases pain in men (Isaacs et al. 1972; Wu 

and Weng 1993; Heintjes et al. 2004) and animals (Gaumond et al. 2005). Although most 

of the effects induced by testosterone are mediated by estrogen derived from testosterone 

aromatization, (Lombardi et al. 2001) our finding that estrogen pre-treatment did not affect 

TMJ nociception in males suggests that the antinociceptive effect of testosterone is 

mediated by the activation of androgen receptors rather than estrogen receptors. This 

antinociceptive effect of testosterone in males is sex-specific, as shown by the lack of effect 

of testosterone administration in Gx females. Given that testosterone plays important, but 

distinct roles in development and differentiation of male and female organ systems (Forest 
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1983), the antinociceptive effect of testosterone at increased serum levels probably depends 

on previous action of this hormone during development and maturation of the nervous 

system. In fact, it has been demonstrated that sex-specific responses to sex hormones are 

dependent on their action during critical periods of development (Heil 1999) and can be 

changed by post-natal gonadectomy and hormone manipulation (Heil 1999). Apparent 

discrepancies between our findings that testosterone does not affect TMJ nociception in 

females and the findings that it decreases formalin-induced paw nociception in females 

(Aloisi et al. 2004) may be due to the different body region used for formalin injection. 

According to that, it has been previously demonstrated that the effect of sex hormones on 

formalin-induced nociception in females is not the same in the orofacial region and in the 

paw of the same animal (Pajot et al. 2003). This effect could be explained by differential 

expression of proteins involved in receptor structures and/or in intracellular enzymatic 

activities or in primary afferent neurons (Pajot et al. 2003). 

In summary, we showed that testosterone protects males by decreasing their 

probability of developing TMJ pain. This finding may help explain the lower prevalence 

and severity of many pain conditions (Unruh 1996) including TMDs (LeResche 1997) in 

males than in females. Understanding the mechanisms behind the protective effect of 

testosterone on the development of TMJ nociception will be very useful to establish more 

successful treatments. Further studies are needed to evaluate a potential therapeutic use of 

testosterone in some persistent TMD pain conditions.  
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Legends 

Figure 1- Dose-dependent nociceptive behavior induced by the injection of 

formalin into the TMJ region of male rats.  

Injection of formalin into the TMJ region of male rats induced nociception from 

the concentration of 1%. The symbol “*” indicates a response significantly greater than that 

induced by 0% formalin (0.9% NaCl) and 0.5% formalin (Tukey test, p< 0.05). The symbol 

“+” indicates a response significantly greater than that induced by 1% formalin (Tukey test, 

p< 0.05). In this and subsequent figures, data are plotted as mean ± s.e.m. and group sample 

sizes are shown in parentheses; see Methods for additional details regarding data 

presentation and analysis.  

Figure 2- Effect of testosterone on the development of TMJ nociception in male 

and female rats. 

A- TMJ injection of 0.5% formalin induced nociceptive behavior in Gx, but not 

in naïve male rats. The symbol “*” indicates a response significantly greater than that of 

naïve male rats receiving 0.0% or 0.5% formalin into the TMJ region (Tukey test, p< 0.05). 

Data from naïve male rats are re-plotted from figure 1 

B- TMJ injection of 0.5% formalin induced nociceptive behavior in naïve 

female rats. The symbol “*” indicates a response significantly greater than that of naïve 

female rats receiving 0.0% formalin into the TMJ region (t test, p< 0.05). 

Abbreviation: Gx = gonadectomized.  

Figure 3- Effect of gonadectomy on formalin-induced TMJ nociception in male 

rats.  

TMJ injection of 1.5% formalin induced similar nociceptive behavior in Gx and 

naïve male rats. The symbol “*” indicates a response significantly greater than that of naïve 

male rats receiving 0% formalin (0.9% NaCl) into the TMJ region (Tukey test, p< 0.05). 
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Figure 4- Effect of pre-treatment with testosterone on formalin-induced TMJ 

nociception in male and female rats. 

A- Testosterone but not estrogen significantly reduced 1.5% formalin-induced 

TMJ nociception in male rats.  The symbol “*” indicates a nociceptive behavior 

significantly lower than that of Gx + V and Gx + E (Tukey test, p< 0.05). 

B- Testosterone did not affect formalin-induced TMJ nociception in female rats. 

There was no significant difference between the response of Gx + V and Gx + T (t test, p> 

0.05). Abbreviations: Gx = gonadectomized; Gx+V= gonadectomized plus vehicle 

(propyleneglycol) Gx + T = gonadectomized plus testosterone). 
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Abstract 

The aim of this study was to investigate the influence of sex and ovarian 

hormones on formalin or glutamate-induced temporomandibular joint nociception in rats. 

The influence of sex and ovarian hormones on nociceptive behavior response induced by 

formalin or glutamate was virtually the same. The nociceptive behavior response of male 

rats was similar to that of female rats in the proestrus phase of the estrous cycle, but 

significantly lower than that of in the diestrus phase. Since estradiol but not progesterone 

serum level was significantly higher during proestrus than during diestrus, these data 

suggest that females with lower endogenous estradiol level have an exacerbation of 

temporomandibular joint nociception. The nociceptive behavior response of 

ovariectomized rats was similar to that of diestrus females and significantly greater than 

that of proestrus females. While the administration of estradiol or progesterone in 

ovariectomized females significantly reduced temporomandibular joint nociception to the 

level observed in proestrus females, the combination of both hormones did not increase the 

antinociceptive effect induced by each of them, suggesting that they decrease 

temporomandibular joint nociception in an independent way. 

Perspective:  

We reported that ovarian hormones have an antinociceptive effect on the 

temporomandibular joint formalin and glutamate nociceptive behavior models. Therefore, 

the greater prevalence and severity of temporomandibular joint pain in women of 

reproductive age may be a consequence of hormonal fluctuation during reproductive cycle, 

in that during low endogenous estradiol serum level temporomandibular joint pain 

sensitivity is increased enhancing the risk of females experiencing temporomandibular 

joint pain.  
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Introduction 

Temporomandibular disorders (TMDs) are musculoskeletal pain conditions 

characterized by pain in the temporomandibular joint (TMJ) and/or the muscles of 

mastication. The higher prevalence and severity of TMD in women than in men (Carlsson 

and LeResche 1995) suggests that gonadal hormones may play a role in these pain 

conditions. We have recently proposed that this prevalence pattern may be a consequence 

of a protective effect of testosterone. Specifically, TMJ injection of 0.5% formalin induced 

a significant nociceptive behavior in naive female and gonadectomized male rats, but not 

in naive male rats, suggesting that testosterone decreases the risk of males developing TMJ 

pain (Fischer et al. 2007). Although evidences accumulated from experimental studies in 

humans (Cairns et al. 2001a), (Carlsson and LeResche 1995; Riley et al. 1998; Zubieta et 

al. 2002; Frot et al. 2004) and animals (Bereiter 2001; Cairns et al. 2002; Okamoto et al. 

2003; Clemente et al. 2004)  uniformly point that females are more sensitive to 

experimental pain than males, the role of ovarian hormones in TMJ nociception is still 

controversial. It has been demonstrated that TMJ pain is highest during lowest estradiol 

times of the menstrual cycle in women (LeResche et al. 2003), a finding that parallels our 

previous data obtained with the TMJ formalin behavior model in female rats (Clemente et 

al. 2004). The lower TMJ pain during pregnancy in women (LeResche et al. 2005) also 

parallels the lower formalin–induced TMJ nociception in pregnant rats (Arthuri et al. 

2005). However, it has been reported in electrophysiological studies using nociceptive 

agents other than formalin that estradiol appears to increase TMJ nociception (Cairns et al. 

2002; Okamoto et al. 2003; Flake et al. 2005). For example, reflex jaw muscle activity 

evoked by injection of glutamate into the TMJ is higher in ovariectomized female rats 

(OVX) receiving estradiol administration than in those receiving vehicle (Cairns et al. 

2002). The discrepancy between these studies is unknown, but the use of different 

nociceptive agents and models could contribute to that. 

The influence of sex and ovarian hormones on TMJ nociception has not yet 

been investigated in a behavior model of TMJ nociception other than the TMJ formalin 

behavior model. Therefore we standardized the TMJ glutamate behavior model and used 

this model to compare the influence of sex and ovarian hormones on the nociceptive 
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behavior response induced by formalin and glutamate. Although our previous findings 

suggest that ovarian hormones attenuate TMJ nociception in the TMJ formalin behavior 

model it is not known if estrogen, progesterone or the combination of both hormones is 

necessary to mediate this effect. To answer this question we also investigated the influence 

of ovariectomy and exogenous administration of estrogen, progesterone or the combination 

of both hormones on both the TMJ formalin and TMJ glutamate behavior model. 
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Material and methods  

Animals 

 This study was carried out in 200 - 300g male (n= 71) and female (n= 140) 

Wistar rats and in female Sprague-Dawley (n= 21) rats. All animal experimental 

procedures and protocols were approved by the Committee on Animal Research of the 

University of Campinas and are in accordance with IASP guidelines for the study of pain 

in animals (Zimmermann 1983). The animals were maintained on a temperature-controlled 

room (± 23ºC) and were housed in plastic cages with soft bedding (five/cage) on a 12:12 

light cycle (lights on at 06:00 A.M.) with food and water available ad libitum.  

Estrous phase determination 

Estrous phase was determined by daily microscope examination of vaginal 

smears taken by gentle lavage, between 7 and 8 a.m. Estrous phase was confirmed before 

and immediately after each experiment to ensure that the rats remained in the same phase 

during the experiment. Proestrus phase and the initial phase of diestrus (first 4 h) were 

identified by the predominance (>70%) of nucleated epithelial cells and leukocytes, 

respectively (Marcondes et al. 2002) in rats with at least two consecutive regular 4-5 day 

cycles. These phases were chosen because they represent phases of high and low ovarian 

hormonal level, respectively (Butcher et al. 1974). 

Gonadectomy 

Ovariectomy (45 days old females, (Gordon and Soliman 1994)) was 

performed through bilateral upper flank incisions. The ovarian bundles were tied off with 

4-O silk sutures and the ovaries removed. The fascia and the skin were closed with 4-O 

silk sutures (Waynforth and Flecknell 1992a). Sham operated animals underwent a surgical 

procedure similar to that of OVX animals, except that the ovaries were not removed. The 

procedures were carried out under anesthesia induced by an intramuscular injection of a 

mixture of ketamine (55mg/Kg) and xylazine (5.5 mg/Kg). A subcutaneous injection of 
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ketoprofen (5 mg/kg) was used for post-operative analgesia (Roughan and Flecknell 2000). 

OVX and sham-operated rats were used in experiments when they were three months of 

age. The efficacy of ovariectomy was confirmed by the absence of estrous cycle 

determined via vaginal smear during ten days and by post mortem examination of uterine 

atrophy in animals that did not receive hormones. 

Hormonal Manipulation 

Hormonal manipulation was performed by daily injection of 17β-estradiol 

(50μg/kg, (Gordon and Soliman 1994)) and/or progesterone (8mg/Kg) (He et al. 2004) 

during seven days. At the seventh day, hormone injection was performed 1 hour prior to 

the experiment. Hormones were obtained from Sigma Chemicals, St Louis, Missouri, USA 

and dissolved in propyleneglycol.  

Hormonal Determination 

Estradiol and progesterone serum levels were determined by 

radioimmunoassay using hormone specific kits (DSL – 4400 and DSL – 3400, 

respectively) from Diagnostics System Laboratories, Inc., Texas USA.  

Drugs 

Formalin solution was prepared from commercially (Sigma) available stock 

formalin (an aqueous solution of 37% of formaldehyde) further diluted in 0.9% NaCl to a 

concentration of 1.5%. Glutamate 1M (Cairns et al. 2002); NBQX (1,2,3,4-Tetrahydro-6-

nitro-2,3-dioxo-benzo f quinoxaline-7-sulfonamide disodium salt), AMPA/ Kainate 

receptor antagonist 100 and 500µg (Beirith et al. 2002); AP-5 (D-2-Amino-5-

phosphonovaleric acid), NMDA receptor antagonist, 20 and 100 µg (Cairns et al. 1998) 

and QX-314 (Lidocaine N-ethyl bromide), quaternary hydrophilic lidocaine derived, 2%, 

were obtained from Sigma and dissolved in 0.9% NaCl. 

TMJ Injections 
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The animals were briefly anesthetized by inhalation of halothane to allow the 

TMJ injection, each animal regained consciousness approximately 30 s after discontinuing 

the anesthetic. The TMJ injection was performed with a 30-gauge needle introduced into 

the TMJ at the moment of injection. A cannula consisting of a polyethylene tube was 

connected to the needle and also to a Hamilton syringe (50μl) (Roveroni et al. 2001). At 

the conclusion of the behavior test, each animal was anesthetized by an intraperitoneal 

injection of a mixture of urethane (1g/kg) and α-chloralose (50mg/kg). The Evans blue dye 

(5 mg/kg) was injected systemically, 15 minutes later the animals were submitted to 

cardiac perfusion with normal saline. Since this dye binds to plasma protein, the correct 

site of injection was indicated by the observation that the plasma extravasation induced by 

the TMJ injection of formalin or glutamate was restricted to the TMJ region (Haas et al. 

1992). In females submitted to the formalin test blood was collected from the heart, before 

injection of the dye, to allow estradiol and progesterone serum level determination. 

Testing procedure for TMJ pain 

Behavior test was performed during light phase (between 09:00 AM and 5:00 

PM) in a quiet room maintained at ± 23ºC (Rosland 1991). The nociceptive response was 

assessed by an observer blinded to the experimental manipulation. Before the experiments, 

each animal was manipulated for 7 days in the test room (handled for approximately one 

minute) to be habituated to the experimental manipulation. On the day of the experiment, 

each animal was individually placed in a test chamber (30 x 30 x 30 cm mirrored-wood 

chamber with a glass at the front side) for a 15 min habituation period to minimize stress. 

After TMJ injection the animal was returned to the test chamber for counting nociceptive 

responses. The nociceptive behavior characterized by rubbing the orofacial region and 

flinching the head was counted in blocks of 5 minutes for 45 (formalin) or 30 (glutamate) 

minutes. For each block of 5 min, the behavior characterized by rubbing the orofacial 

region was quantified by the amount of time that the animal exhibited it and the behavior 

characterized by flinching the head was quantified by its occurrence. Considering that the 

head flinching behavior follows an uniform pattern of 1 s in duration, each flinching was 
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counted as 1 s as previously described (Roveroni et. al., 2001). Rats did not have access to 

food or water during the test and each animal was used once. 

Experimental Design 

To standardize a behavior model to study glutamate-induced TMJ nociception, 

0.9% NaCl (glutamate vehicle, 10µl, n = 4) or Glutamate (1M, 10µl (Cairns et al. 2002), n 

= 11) was firstly injected into the TMJ of male rats. We chose to use glutamate 1M 

because it is the dose necessary to observe sex differences in jaw muscle activity induced 

by injection of glutamate into the TMJ (Cairns et al. 2002). The nociceptive behavior 

responses characterized by flinching the head and rubbing the orofacial region were 

quantified for 30 minutes. To demonstrate the nociceptive character of the behavior 

response, the quaternary hydrophilic lidocaine derived QX-314 (2%, 10µl, n = 6) was co-

administered with glutamate into the TMJ. To demonstrate that glutamate-induced TMJ 

nociception is mediated by activation of glutamate receptors, the AMPA/kainate and the 

NMDA receptor antagonists NBQX (100 and 500µg, 10µl, n = 6) and AP-5 (20 and 

100µg, 10µl, n = 4 and 7, respectively), was co-administered with glutamate into the TMJ 

or administered into the contralateral TMJ (n = 4 and 6, respectively). In subsequent 

experiments, Formalin (1.5%, 30µl), Glutamate (1M, 10µl) or their vehicle (0.9%NaCl, 

30µl and 10µl, respectively), was unilaterally injected into the TMJ of male and female 

rats. To evaluate the effect of sexual dimorphism on formalin or glutamate-induced TMJ 

nociception we compared the nociceptive behavior responses between males (n = 6 and 11, 

respectively) and females during diestrus (low hormonal level (Butcher et al. 1974), n = 6 

and 9, respectively) and proestrus (high hormonal level (Butcher et al. 1974), n = 6 and 13, 

respectively) phases of the estrous cycle. To evaluate the effect of ovarian hormones 

depletion by ovariectomy on formalin or glutamate-induced TMJ nociception we compared 

the behavioral nociceptive response between OVX (n = 6 and 12, respectively), sham-

operated diestrus (n = 6 and 6, respectively) and sham-operated proestrus (n = 6 and 12, 

respectively) females. To evaluate the differences in hormonal serum level between 

females, we measured the serum level of estradiol and progesterone in proestrus (n = 6), 

diestrus (n = 6), and OVX (n = 6) female rats with or without hormone administration. To 
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evaluate the effect of each ovarian hormone and the combination of both estradiol and 

progesterone on formalin-induced TMJ nociception, we compared the behavioral 

nociceptive response between OVX females receiving vehicle (n = 7), estradiol (n = 7), 

progesterone (n = 8) or the combination of both hormones (n = 5). Glutamate-induced TMJ 

nociception was also evaluated in OVX females receiving vehicle (n = 11), estradiol (n = 

11) or progesterone (n = 9). Because many studies evaluating the role of estradiol in TMJ 

nociception have used Sprague–Dawley rather than Wistar rats, in this study we used 

Sprague–Dawley in addition to Wistar rats to evaluate glutamate-induced TMJ nociception 

in OVX rats receiving vehicle (n = 11) or estradiol (n = 10). This allowed us to evaluate if 

different strains of animals contributes to the discrepancies between studies evaluating the 

role of estradiol in TMJ nociception. 

Statistical analysis 

A two-way repeated-measures ANOVA with one between-subjects factor (i.e. 

treatment for groups showed in Figure 1A and gender or hormone for other groups 

compared) and one within-subjects factor (i.e. time) was used to determine if there were 

significant (p ≤ 0.05) differences in nociceptive responses among the groups. For Figs. 1B-

6, the area under the curve (AUC) was calculated for each treatment group by summing the 

behaviors recorded in each block of 5 min during the entire duration of the experiment. To 

determine if there were significant differences (p� 0.05) between the treatment groups, 

one-way ANOVA using AUC as the dependent variable was performed. If there was a 

significant between-subjects main effect of treatment group, post-hoc contrasts, using the 

Student-Newman-Keuls method test, were performed to determine the basis of the 

significant difference. A t test was used to determine if there was a significant difference 

(p< 0.05) between groups showed in Fig. 6, between the administration of formalin and its 

vehicle, and between the administration of glutamate and its vehicle. Data are expressed in 

figures as means ± S.E.M. 
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Results  

The TMJ injection of glutamate induced a behavior response significantly 

higher (p<0.05) than that induced by its vehicle and by the quaternary hydrophilic 

lidocaine derived QX-314, that lasted for 30 minutes. There is not a significant interaction 

(p>0.05) between treatment (i.e. TMJ injection of glutamate, vehicle (0.9% NaCl) or 

glutamate plus QX-314) and time (Fig. 1 A). Therefore, the effect of TMJ treatment does 

not depend on what level of time is present. The behavior response induced by TMJ 

glutamate was reversed by the co-administration of the quaternary hydrophilic lidocaine 

derived QX-314, confirming its nociceptive character. Glutamate-induced TMJ 

nociception was significantly reduced (p<0.05) by the co-administration of AMPA/Kainate 

or NMDA receptor antagonists, indicating that glutamate-induced TMJ nociception is 

mediated by activation of glutamate receptors (Fig. 1 B).  

Injection of formalin or glutamate into the rat’s TMJ induced a significant 

(p<0.05) group-dependent nociceptive behavior, which was not observed when vehicle 

(0.9% NaCl) was injected into the TMJ. 

The influence of sex and ovarian hormones on the nociceptive behavior 

induced by formalin and glutamate was virtually the same. The nociceptive behavior 

induced by the TMJ injection of formalin (Fig. 2 A) or glutamate (Fig. 2 B) in male rats 

was similar to that of female rats in the proestrus phase of the estrous cycle and 

significantly lower (p<0.05) than that of diestrus females. There is not a significant 

interaction (p>0.05) between sex or estrous cycle phase and time in either the formalin or 

glutamate behavior model. Therefore, the effect of sex and estrous cycle phase does not 

depend on what level of time is present. 

Formalin (Fig. 3 A) and glutamate (Fig. 3 B) induced TMJ nociception in OVX 

females was similar to that of sham-operated diestrus females and significantly greater 

(p<0.05) than that of sham-operated proestrus females.  

Estradiol serum level was significantly higher (p<0.05) during proestrus than 

during diestrus (Fig. 4 A), while progesterone serum level was similar in these phases (Fig. 
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4 B). As expected, estradiol (Fig. 4 A) and progesterone (Fig. 4 B) serum level was 

significantly lower (p<0.05) in OVX than in proestrus and in diestrus females. 

Estradiol or progesterone administration in OVX females significantly reduced 

(p<0.05) formalin (Fig. 5 A) and glutamate (Fig. 5 B) induced TMJ nociception. The 

combination of estradiol and progesterone did not increase the antinociceptive effect 

induced by each hormone by itself (Fig. 5 A) in the formalin test. Estradiol serum level in 

OVX females that received estradiol (mean ± S.E.M. 998.12 ± 96.69 pg/ml) and 

progesterone serum level in OVX females that received progesterone (81.10 ± 9.56 ng/ml) 

was significantly higher (p<0.05) than the estradiol and progesterone serum level of 

proestrus (68.28 ± 9,20 pg/ml and 33.0 ± 3.04 ng/ml, respectively) and diestrus (33,62 ± 

2,63 pg/ml and 36,21 ± 2,56 ng/ml, respectively) females.   

Estradiol administration in OVX Sprague-Dawley female rats also significantly 

decreased (p<0.05) glutamate-induced TMJ nociception (Fig. 6).  
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Discussion 

In order to compare the influence of sex and ovarian hormones on TMJ 

nociception induced by glutamate or formalin we first standardized the TMJ glutamate 

behavior model. Like formalin (Roveroni et al. 2001), glutamate also induced nociceptive 

behaviors characterized by flinching the head and rubbing the orofacial region when 

injected into the TMJ. 

The influence of sex and ovarian hormones on TMJ glutamate and TMJ 

formalin behavior models was virtually the same and it is supported by two important 

clinical findings about sex hormones modulation of TMJ pain: the higher severity of TMD 

pain in women than in men (Carlsson and LeResche 1995) and the lower TMJ pain in 

women during high estradiol times of the menstrual cycle (LeResche et al. 2003). The 

evidence is that TMJ formalin and TMJ glutamate-induced nociceptive behavior was 

significantly greater in diestrus female than in male and proestrus female rats. Since 

diestrus females showed similar progesterone but lower estradiol serum level than 

proestrus females, this finding suggests that females have an exacerbation of the TMJ 

nociception during low endogenous estradiol serum level. Additional support to the 

antinociceptive effect of estradiol on the TMJ of females was given by data from 

ovariectomized rats with or without estradiol administration. The nociceptive behavior 

induced by the TMJ injection of formalin or glutamate in OVX females was similar to that 

of diestrus females and significantly higher than that of proestrus females, while estradiol 

administration in OVX females significantly reduced TMJ nociception to the levels 

observed in proestrus females. Although progesterone administration in OVX females also 

decreased formalin and glutamate–induced TMJ nociception, the combination of both 

hormones did not enhance their antinociceptive effect in the formalin test, suggesting that 

the exogenous administration of each of these hormones decreases TMJ nociception in an 

independent way. 

Our findings showing a greater formalin and glutamate-induced TMJ 

nociception in female than in male rats generally corroborate human studies showing that 

women experience more pain than men (Carlsson and LeResche 1995; Riley et al. 1998; 

Zubieta et al. 2002; Frot et al. 2004). For example, the injection of glutamate in the 
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masticatory muscle masseter induces significantly higher pain in women than in men 

(Cairns et al. 2001a). In another study that also evaluated experimental pain in the masseter 

muscle, but analyzed women during a high and a low estradiol state, the pain rates were 

significantly lower during the high estradiol state (Smith et al. 2006). This finding 

perfectly agrees not only with our present findings that diestrus females have higher TMJ 

nociception than proestrus females, but also with clinical studies showing greater TMJ pain 

during low-estradiol times in women (LeResche et al. 2003; LeResche et al. 2005). 

Although our findings together with clinical findings (LeResche et al. 2003; LeResche et 

al. 2005; Smith et al. 2006) suggest that ovarian hormones attenuate craniofacial pain, this 

suggestion, does not explain clinical observations that TMD is more prevalent and severe 

in women than in men (Carlsson and LeResche 1995) and also more prevalent in women 

during reproductive age than in women outside this period (before menarche and after 

menopause) (Carlsson and LeResche 1995). The higher prevalence of TMJ pain in women 

than in men may be due to a protective effect of testosterone, as we have previously 

demonstrated (Fischer et al. 2007). Importantly, the mechanisms underlying the prevalence 

may not be the same to those underlying the severity of TMJ pain and in this study we 

have investigated the influence of sex and ovarian hormones in the severity and not in the 

prevalence of TMJ pain. Despite of that, women of reproductive age have physiological 

fluctuation in ovarian hormones serum levels, and we believe that this fluctuation might 

affect TMJ pain. According to that, it has been previously demonstrated that TMJ pain 

(LeResche et al. 2003) and migraine (Ashkenazi and Silberstein 2006) are exacerbated 

during rapid changes in hormonal serum level. Thus, we believe that during the 

reproductive cycle, the fluctuations of ovarian hormones increases pain sensitivity 

enhancing the risk of female experiencing TMJ pain 

However, the literature regarding the role of ovarian hormones in TMJ pain is 

controversial. For example, data obtained by Fos-positive neurons (Bereiter 2001), single 

units recording of primary afferents (Flake et al. 2005) and neurons of the trigeminal 

subnucleus caudalis (Okamoto et al. 2003) in rats suggest that ovarian hormones increase 

TMJ nociception. Similarly, estradiol administration in OVX rats significantly increases 

jaw muscle activity evoked by injection of Glutamate into the TMJ (Cairns et al. 2002). 
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Although the discrepancy between the current study and these previous animal studies is 

unknown many factors could contribute to that. One possible factor is the use of different 

nociceptive agents. However, the similarity between the effect of sex and ovarian 

hormones on formalin and glutamate-induced TMJ nociception does not support this 

possibility, whereas it does not completely exclude it. Therefore, we are further 

investigating this possibility through the use of other nociceptive agents. Another possible 

factor is the use of different strain of rats since comparative studies among different strains 

of rats have demonstrated that genetic factors affect nociception in different nociceptive 

models (Benoliel et al. 2002a; Vendruscolo et al. 2004; Herradon et al. 2007). More 

importantly, the influence of sex and sex hormones in nociception may differ in different 

strains of rats (DeLeo and Rutkowski 2000; Vendruscolo et al. 2004). Thus, because the 

studies suggesting a pronociceptive effect of ovarian hormones in the TMJ (Bereiter 2001; 

Cairns et al. 2002; Okamoto et al. 2003; Flake et al. 2005) have used Sprague-Dawley rats 

while we have used Wistar rats, we have investigated if the discrepant results could be due 

to the use of different strains of rats. However, our finding that estradiol administration 

also decreased glutamate-induced TMJ nociception in Sprague-Dawley female rats does 

not support this possibility. Finally, another possible factor that could also contribute to the 

discrepancy between the current study and these previous animal studies is the state of 

consciousness of the animal. While these previous studies have used anesthetized rats to 

evaluate the role of ovarian hormones in TMJ nociception (Bereiter 2001; Cairns et al. 

2002; Okamoto et al. 2003; Flake et al. 2005), we have used awaked rats. The evidence 

that support this latter possibility is that the use of different general anesthetics modifies 

the electrophysiological properties of neurons from areas of the central nervous system 

involved in pain transmission and modulation (Heym et al. 1984; Collins and Ren 1987; 

Kuroiwa et al. 1991; Oliveras et al. 1991; McGaraughty et al. 1995; Montagne-Clavel et 

al. 1995; Shaw et al. 2001). For example, animals tested first awaked and then anesthetized 

exhibit drastic changes in peripheral stimulus-evoked activity in dorsal raphe nucleus 

(Heym et al. 1984; Montagne-Clavel et al. 1995), ventromedial medulla (Oliveras et al. 

1991; McGaraughty et al. 1995) and in somatosensory cortex (Shaw et al. 2001). Since 

ovarian hormones receptors are expressed in most of these regions (Simerly et al. 1990; 
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Voisin et al. 1997; Alves et al. 1998), the changes induced by general anesthetic in the 

physiological properties of these neurons might affect ovarian hormones modulation of 

nociception. 

The protective effect of ovarian hormones on nociception is not limited to the 

TMJ. Many other studies evaluating formalin-induced nociception in the lip (Pajot et al. 

2003) and in the paw (Ceccarelli et al. 2003; Gaumond et al. 2005; Kuba et al. 2006; 

Mannino et al. 2007) have demonstrated an antinociceptive effect of ovarian hormones. 

However, given that the effect of ovarian hormones on nociception may vary accordingly 

to the nociceptive model employed (Vincler et al. 2001) the results from animal studies 

evaluating nociception using different nociceptive models were not compared with the 

current results. 

In summary, this study demonstrates that high physiological level of estradiol 

during the estrous cycle and exogenous administration of estradiol and progesterone in 

OVX female rats attenuate TMJ nociception. Based on that, we believe that the greater 

prevalence and severity of TMJ pain in women of reproductive age may be a consequence 

of estrogen fluctuation during reproductive cycle in that during low endogenous estrogen 

serum level TMJ pain sensitivity is increased enhancing the risk of females experiencing 

TMJ pain. The similarity between the current findings and previous clinical findings 

(LeResche et al. 2003), suggests that the TMJ nociceptive behavior model is a good model 

to study the mechanisms underlying hormonal modulation of clinical TMJ pain. 
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Figure Legends 

Figure 1- Effect of the TMJ injection of Glutamate.  

A- Time course of the nociceptive behavior induced by the TMJ injection of 

Glutamate. A repeated measures two way ANOVA showed a significant main effect of 

treatment group (F= 24,149, p�0.05), main effect of time (F=1,865, p<0.05), but not a 

significant group × time interaction (F= 0,942, p>0.05). SNK post hocs showed that the 

effect of glutamate  was significantly different from that of vehicle and the glutamate plus 

the local anesthetic QX-314 (p < 0.05), which were not significantly different from each 

other (p>0.05). 

B- Effect of glutamate receptor antagonists. The TMJ injection of glutamate 

induced a nociceptive behavior that was significantly reduced by the co-administration of 

the AMPA/Kainate (NBQX) and NMDA (AP-5) receptor antagonists. The symbol “+” 

indicates a response significantly higher than that induced by vehicle. The symbol “*” 

indicates that the co-administration of the glutamate receptor antagonists significantly 

reduced glutamate-induced TMJ nociception. In this and subsequent figures, data are 

plotted as mean ± s.e.m. and group sample sizes are shown in parentheses; see Methods for 

additional details regarding data presentation and analysis. 

 

Figure 2- Effect of sex and estrous cycle on formalin and glutamate-induced 

TMJ nociception.  

A- Formalin-induced TMJ nociception in males and proestrus and diestrus 

females. Formalin-induced TMJ nociception in males and proestrus females was similar to 

each other and significantly lower than that of diestrus females. The symbol “*” indicates a 

nociceptive behavior significantly greater than that induced by vehicle (0.9% NaCl) (p< 

0.05, t test). The symbol “+” indicates a nociceptive behavior significantly greater than that 

of males and proestrus females. 
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B- Glutamate-induced TMJ nociception in males and proestrus and diestrus 

females. Glutamate-induced TMJ nociception in males and proestrus females was similar 

to each other and significantly lower than that of diestrus females. The symbol “*” 

indicates a nociceptive behavior significantly greater than that induced by vehicle (0.9% 

NaCl) (p< 0.05, t test). The symbol “+” indicates a nociceptive behavior significantly 

greater than that of males and proestrus females. 

 

Figure 3- Effect of ovarian hormones depletion on formalin and glutamate-

induced TMJ nociception. 

A- Formalin-induced TMJ nociception in sham-operated proestrus, sham-

operated diestrus and OVX females. Formalin-induced TMJ nociception in sham-operated 

diestrus and OVX females was similar to each other and significantly greater than that of 

sham-operated proestrus females. The symbol “*” indicates a nociceptive behavior 

significantly greater than that of sham-operated proestrus females. 

B- Glutamate-induced TMJ nociception in sham-operated proestrus, sham-

operated diestrus and OVX females. Glutamate-induced TMJ nociception in sham-

operated diestrus and OVX females was similar to each other and significantly greater than 

that of sham-operated proestrus females. The symbol “*” indicates a nociceptive behavior 

significantly greater than that of sham-operated proestrus females. 

Abbreviation: OVX = ovariectomized. 

 

Figure 4- Estradiol and progesterone serum level in proestrus, diestrus and 

OVX females. 

A- Estradiol serum level was significantly lower in diestrus and OVX females 

than in proestrus females. The symbol “*” indicates an estradiol serum level significantly 

lower than that of proestrus females. The symbol “+” indicates an estradiol serum level 

significantly lower than that of other groups. 
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B- Progesterone serum level was significantly lower in OVX females than in 

proestrus and diestrus females. The symbol “*” indicates a progesterone serum level 

significantly lower than that of other groups. 

Abbreviation: OVX = ovariectomized 

 

Figure 5- Effect of estradiol and progesterone administration on formalin and 

glutamate-induced TMJ nociception. 

A- Administration of estradiol or progesterone or estradiol plus progesterone in 

OVX females significantly reduced formalin-induced TMJ nociception. The symbol “*” 

indicates a nociceptive behavior significantly lower than that of OVX females receiving 

vehicle administration. 

B- Administration of estradiol or progesterone in OVX females significantly 

reduced glutamate-induced TMJ nociception. The symbol “*” indicates a nociceptive 

behavior significantly lower than that of OVX females receiving vehicle. 

Abbreviations: OVX = ovariectomized; V = vehicle; E = estradiol; P = 

progesterone, E/P = estradiol plus progesterone. 

 

Figure 6- Effect of estradiol administration in OVX Sprague-Dawley rats. 

Estradiol administration significantly reduced glutamate-induced TMJ nociception in OVX 

Sprague-dawley rats as indicated by the symbol “*”. 

Abbreviations: OVX = ovariectomized; E = estradiol. 

 



 
 

53

Figures 

 

 



 
 

54

 



 
 

55

 

 



 
 

56

 



 
 

57

 



 
 

58

 

 

 

 

 



 
 

59

Capítulo 3 

 

A novel method for subarachnoid drug delivery in the medullary region of 

rats 

 

 

Luana Fischera, Carlos Amílcar Paradab, Cláudia Herrera Tambelia* 

 

aLaboratory of Orofacial Pain, Department of Physiology, Faculty of Dentistry 

of Piracicaba, University of Campinas-Unicamp  

Av. Limeira 901, CEP 13414-900, Piracicaba, São Paulo, Brazil 

b Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, 

University of São Paulo-USP  

 

Corresponding author:  

Claudia Herrera Tambeli, Tel.: +55 19 2106 5305; fax: +55 19 2106 5212.  

E-mail address: tambeli@fop.unicamp.br (C.H. Tambeli). 

 

 

Original Article 

Keywords: Formalin test; Testosterone; Estrogen; Temporomandibular 

joint pain; Sex differences 



 
 

60

Abstract 

This study describes a novel method for direct subarachnoid drug delivery to 

the medullary dorsal horn region of rats, without introducing a catheter. The reliability of 

the method was demonstrated by a pharmacological validation; that is, morphine 

administration to the medullary region blocked the nociceptive response to formalin 

injected in the temporomandibular joint (TMJ) region, an effect that was prevented by co-

administration of naloxone.  

The method proposed offers many advantages over the existing methods for 

medullary drug delivery with catheter implantation. It is easy to be employed, it does not 

induce any sign of motor impairment, and it does not require the neck surgery performed to 

implant a catheter in the medullary dorsal horn region. Therefore, it is an useful method for 

subarachnoid drug delivery in behavioral trigeminal pain studies, particularly when 

nociceptive behavioral measures that require normal neck muscle activity to occur, such as 

head withdraw or head flinch, are evaluated. 
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Introduction  

The orofacial region is one of the most densely innervated areas of the body, 

which focuses common acute, chronic and referred pain (Sessle 2000). Drug administration 

to the medullary cerebrospinal fluid is an useful tool in the orofacial pain research, and is 

currently accomplished by a catheter implantation in the surroundings of trigeminal 

subnucleus caudalis, also known as medullary dorsal horn. This procedure is commonly 

performed through a surgical exposition of the dorsal surface of the neck and insertion of a 

catheter in the subarachnoid space through a slit in the atlanto-occipital membrane (Aigouy 

et al. 1992; Flores et al. 2001; Tambeli et al. 2001; Wang et al. 2002). 

It is well known that the ability to correlate a behavioral measure with pain 

arising from an orofacial region in animal studies is essential in elucidating the underlying 

mechanisms of pathophysiology of orofacial pain syndromes and temporomandibular 

disorders. However, the surgical catheter implantation performed to study the effect of 

drugs delivered in the medullary dorsal horn region may affect some of the frequently used 

nociceptive behavioral measures that require normal neck muscle activity to occur, such as 

head withdraw in response to a local mechanical stimulus (Vos et al. 1994; Anderson and 

Rao 2001; Christensen et al. 2001; Imbe et al. 2001; Benoliel et al. 2002b; Ogawa et al. 

2003), or head flinch induced by local chemical stimulation (Anderson and Rao 2001; 

Roveroni et al. 2001; Chidiac et al. 2002; Gameiro et al. 2003; Hartwig et al. 2003; 

Clemente et al. 2004). Therefore, the aim of this study was to develop a method for direct 

subarachnoid drug delivery to the medullary region that facilitates animal investigation of 

orofacial pain, and that can be combined with many orofacial pain models, particularly with 

those that use nociceptive behavior measures such as head flinch or head withdraw. 
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Methods 

Animals 

Experiments were performed on 250 – 320 g male Wistar rats housed (five per 

cage) in a temperature-controlled room (23 ± 1°C) on a 12:12 light cycle (lights on at 6 

AM), with food and water available ad libitum. Animals were handled for at least one week 

prior to the experiments. Experimental protocols were approved by the Committee on 

Animal Research of the University of Campinas and conformed to IASP guidelines for the 

study of pain in animals (Zimmermann 1983). 

General Procedures 

Testing sessions took place during the light phase in a quiet room maintained at 

23°C. Prior to the experiments, each animal was placed in the test chamber (30 x 30 x 30cm 

mirrored-wood chamber with a glass at the front side) for a 15-minutes habituation period. 

Drugs 

Formalin solutions were prepared from commercially (Sigma) available stock 

formalin (an aqueous solution of 37% of formaldehyde) further diluted in 0.9% NaCl 

(saline) to concentration of 1.5% (Roveroni et al. 2001). Morphine sulfate (Sigma) 3, 6 and 

9 μg (Grabow and Dougherty 2001) and Naloxone hydrocloride (Sigma) 15μg (Danzebrink 

et al. 1995) were dissolved in saline.  

Subarachnoid medullary injection  

Rats were briefly anesthetized with halothane, and a small area of skin 

overlying the high cervical region was shaved with an electric razor. Animals were dorsally 

positioned, so that the sub occipital space could be easily found.  

A 30-gauge needle connected to a 50µl Hamilton syringe by a polyethylene 

cannula was first inserted bellow the occipital bone up to 4mm, and slightly inclined in a 

cranial direction. The needle was advanced more 2mm to perforate the atlanto-occipital 

membrane and reach the medullary subaracnoid space (Figure 1). This technique allowed 
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direct drug delivery in the cerebrospinal fluid in the surroundings of trigeminal subnucleus 

caudalis. Total injection volume in all experiments was 10 µl. All injections were 

performed at rate of 1 µl/sec. Each animal regained consciousness approximately 30 

seconds after discontinuing the anesthesia  

Testing for correct site of subarachnoid injection 

In preliminary experiments the injection procedure was tested by the 

administration of Evans blue dye (0.1%, 10μl) in 10 rats. Following the injection, the rats 

were euthanized by a lethal dose of halothane. Cervical laminectomy and occipital 

craniotomy were performed using blunt dissection techniques and the site of injection as 

well as dye spread was examined. 

Testing procedure for temporomandibular joint pain 

Animals were briefly anesthetized by inhalation of 4% halothane to allow the 

temporomandibular joint (TMJ) injection, which was performed with a 30-gauge needle 

connected to a 50µl Hamilton syringe. Injection volumes were 50µl in all cases. Each 

animal regained consciousness approximately 30 seconds after discontinuing the anesthesia 

and was returned to the test chamber for counting nociceptive responses during a 45-

minutes observation period. The nociceptive response score was defined as the cumulative 

total number of seconds that the animal spent rubbing the orofacial region asymmetrically, 

with the ipsilateral fore or hind paw, plus the number of head flinches counted during the 

observation period, as previously described (Roveroni et al. 2001). From a theoretical 

perspective, the occurrence of a given behavior is expressed as the proportion of time that 

the behavior occupies. Since head flinches followed an uniform pattern of 1s of duration, 

each flinch was expressed as 1s (Roveroni et al. 2001). At the conclusion of the 

experiments, rats were anesthetized by inhalation of 4% halothane and maintained at 

halothane level of 1.5-2%. Evans blue dye (0.1%, 5mg/Kg) was then intravenously 

administered in order to visualize formalin-induced plasma extravasation. Ten minutes 

later, the animals were euthanized by halothane inhalation and a post-mortem examination 

of the injected TMJs was performed (Haas et al. 1992). This procedure also allowed 
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confirmation that the plasma extravasation induced by the TMJ injection at the correct site 

was restricted to the immediate TMJ region.  

Motor Assessment  

To verify whether the subarachnoid injection in the medullary region induces 

motor impairment, an extra set of experiments was performed using the rota-rod test. Rats 

were initially trained at a low velocity and the cut-off time was 120 seconds. After a 

subarachnoid injection of either saline of morphine (9μg) each animal was placed in the 

rota-rod for three measurements. Rats that received 9 �g of morphine were also tested for 

signs of catalepsy (loss of spontaneous mobility) by placing the forepaws of the rat on a 

horizontal bar 8 cm above the table surface ((Simon et al. 1970). Animals were considered 

cataleptic if they remained in position for longer than 10 s.  

Pharmacological experiments 

The reliability of the method for direct subarachnoid drug delivery in the 

medullary dorsal horn region was demonstrated by a pharmacological validation. Morphine 

(3, 6 or 9 μg) or saline was administered in the subarachnoid space of the medullary dorsal 

horn region, prior to the TMJ injection of formalin. To test for the reversal of the effect of 

morphine, naloxone (15μg) or saline was co-administered with morphine. The following 

subarachnoid treatments were applied in animals injected with formalin into the TMJ 

region: saline, morphine (3, 6 or 9 µg), morphine (9 µg) + naloxone (15 µg), and naloxone 

(15 µg). The injections were performed 10 min prior to the formalin TMJ injection. 

Statistical analysis 

The sum of the behavioral responses measured for 45 min was used for 

statistical analysis. Data with homogeneity of variance were analyzed by One-Way 

Analysis of Variance (ANOVA) and multiple post-hoc comparisons were performed using 

Tukey test. A probability level of p < 0.05 was considered statistically significant. Data are 

plotted in figures as mean ± S.E.M. 
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Results 

Verification of the site of injection 

A well defined blue mark was observed at the site of the needle penetration into 

the skin of the animals that received a subarachnoid injection of Evan’s blue dye, but no 

staining was found in the neck muscles. The atlanto-occipital membrane was densely 

stained, and diffuse staining was evident along 8 or 10 mm in the cervical (Figure 2) and 

brain region. 

Pharmacological validation 

The magnitude of nociceptive behavior induced by the TMJ injection of 

formalin was compared to that of previous studies (Roveroni et al. 2001; Gameiro et al. 

2003; Clemente et al. 2004). Morphine injection into subarachnoid space of the medullary 

region produced a dose-dependent suppression of the formalin-induced nociceptive 

behavior (Fig. 3 A). Co-administration of naloxone (15 μg) prevented the antinociceptive 

effect of morphine (9 μg), but had no effect by itself (p<0.05, Tukey test; Fig. 3 B).  

Motor Assessment  

The time of permanence in the rota-rod was 120 seconds (cut-off) for either 

saline or morphine injected rats, suggesting that subarachnoid injection does not induce 

motor impairment. In addition, no signs of catalepsy were observed after the subarachnoid 

injection of the highest concentration of morphine (9 �g) used in the present study.  
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Discussion  

The present study shows a method for direct subarachnoid drug delivery in the 

medullary region of rats without introducing a catheter. The reliability of this method was 

demonstrated by a pharmacological validation. Similarly to previous studies in the paw 

(O'Connor and Abram 1994) and in the upper lip (Grabow and Dougherty 2001), morphine 

administration to the medullary region blocked the nociceptive response to formalin 

injected in the TMJ, an effect that was prevented by co-administration of naloxone. 

Because drugs injected by this method cannot be assumed to remain locally in the 

medullary region, the site of morphine action may include the medullary region as well as 

several regions of the central nervous system. 

The results of the present study were not affected by the anesthetic procedure 

used to perform the subarachnoid injections, as demonstrated by the similar nociceptive 

response of animals exposed to two anesthetic procedures, one for the TMJ formalin 

injection and the other for the subarachnoid injection of saline (current study), and animals 

exposed only to one anesthetic procedure for the TMJ injection of formalin (our previous 

studies: Roveroni et al., 2001; Clemente et al, 2004). However, if more than one 

subarachnoid injection is necessary, experimental protocol testing is recommended. 

A variety of methods for catheterization of the spinal subarachnoid space have 

been extensively used in behavior studies on the effects of drugs on spinal (Yaksh and 

Rudy 1976; LoPachin et al. 1981; Dib 1984; Martin et al. 1984; Gonzalez-Darder et al. 

1989; Storkson et al. 1996; Jasmin and Ohara 2001) and trigeminal (Aigouy et al. 1992; 

Flores et al. 2001; Grabow and Dougherty 2001; Wang et al. 2002) nociceptive 

mechanisms in rats. 

In general, the catheterization methods currently used to study trigeminal 

nociceptive mechanisms by delivering drugs into the medullary cerebrospinal fluid are 

moderately invasive to cranial or upper cervical tissue, which may lead to the sensitization 

of cervicotrigeminal convergent neurons (Hu et al. 1993). Theoretically, this condition may 

limit the application of these methods of drug delivery to the study of trigeminal receptor 
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pharmacology using animal behavioral models of nociception (Grabow and Dougherty 

2001). 

The method proposed in the present study offers many advantages over the 

existing methods for medullary drug delivery with catheter implantation. First, since drug is 

delivered without a catheter implantation the method does not induce the known tissue 

reactivity to chronically implanted catheter, like fibrosis and inflammatory response, which 

have been associated with a decrease in the efficacy of drugs administered through 

subarachnoid catheters (Coombs et al. 1993; Yaksh et al. 1995; Gurun et al. 1997). Second, 

for the same reason, it does not require that rats be housed singly, a situation that results in 

the appearance of a social isolation syndrome (Hatch et al. 1965), which may affect 

nociceptive responses and behavioral test reliability (Jasmin and Ohara 2001). Third, it is 

minimally invasive and may be combined with many models of orofacial pain (Vos et al. 

1994; Clavelou et al. 1995; Roveroni et al. 2001; Chidiac et al. 2002; Hartwig et al. 2003; 

Ogawa et al. 2003), particularly with the orofacial behavioral pain models in which head 

flinch or head withdraw is evaluated (Vos et al. 1994; Anderson and Rao 2001; Christensen 

et al. 2001; Imbe et al. 2001; Roveroni et al. 2001; Benoliel et al. 2002a; Gameiro et al. 

2003; Hartwig et al. 2003; Ogawa et al. 2003; Clemente et al. 2004). In contrast, the 

conventional catheterization methods for medullary drug delivery (Aigouy et al. 1992; 

Flores et al. 2001; Tambeli et al. 2001; Wang et al. 2002) require surgical exposition of 

neck muscles, and implies freeing these muscles from the occipital crest to allow the 

catheter implantation. This procedure may affect the function of these muscles, and 

consequently, the head flinch and head withdraw behavior. Although the method for 

medullary drug administration performed by advancing a lumbar spinal implanted catheter 

to the medullary region (Grabow and Dougherty, 2001) does not require surgical exposition 

of neck muscles, it has the limitations of the catheterization methods. Finally, the method 

proposed does not induce motor impairment as seen in some catheterized animals, and 

reduces animal suffering. Taken together, these features facilitate trigeminal pain studies. 

In summary, this study reports a non-invasive method for subarachnoid drug 

delivery in the medullary dorsal region. The method is easy to be employed, reliable, with 
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no sign of motor impairment and very useful for behavioral trigeminal pain studies, 

particularly when head finch or head withdraw are evaluated. 
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Figure Legends 

Figure 1 - Schematic figure showing the site of injection. The needle is inserted 

closely to occipital bone up to 4mm and slightly inclined in a cranial direction. The needle 

is advanced more 2mm, to perforate the atlanto-occipital membrane and reach the 

medullary subaracnoid space.  

Figure 2 - The subarachoid injection of Even Blue dye (panel B) was performed 

by introducing a needle the suboccipital space (arrow). Only the central nervous system 

was stained (compared with panel A). a: occipital bone; b: medullary region and c: cervical 

spinal cord.   

Figure 3 -  Pharmacological validation of the method for direct subarachnoid 

drug injection in the medullary dorsal horn region.  

A: Formalin injection into the rat TMJ region induced nociceptive behavior. 

Medullary subaracnoid injection (s.i.) of morphine produced a dose-dependent suppression 

of the nociceptive response to TMJ formalin. The symbol “*” indicates significantly 

different (p<0.05, Tukey test) from saline (1rst bar); the symbol “#” indicates significantly 

different (p<0.05, Tukey test) from 1.5% TMJ formalin + s.i. morphine (9 μg, last bar); the 

symbol “+” indicates significantly different (p<0.05, Tukey test) from 1.5% TMJ formalin + 

s.i. vehicle (saline, 2nd bar).  B: Co-administration of Naloxone (15 μg) with morphine (9 

μg) blocked morphine-induced antinociception. Naloxone by itself did not affect formalin-

induced nociception. The symbol “*” indicates significantly different (p<0.05, Tukey test) 

from other groups. Group sample size are shown in parentheses. 
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Abstract 

We have recently demonstrated that the high estradiol level during the proestrus 

phase of the rat estrous cycle and that the administration of estradiol or progesterone in 

ovariectomized female and of testosterone in orchiectomized male rats significantly 

decreases formalin-induced temporomandibular joint nociception. One potential 

mechanism by which sex hormones may decrease temporomandibular joint nociception is 

by increasing opioid system activity in the central and/or peripheral nervous system. To test 

this hypothesis, we investigated whether the administration of the opioid receptor 

antagonist naloxone in the surrounding of trigeminal sensory complex, or in the TMJ 

region, reduces the antinociceptive effect of sex hormones in formalin-induced 

temporomandibular joint nociception. The antinociceptive effect induced by endogenous 

estradiol in proestrus females and by exogenous estradiol in ovariectomized females was 

blocked by the administration of naloxone in the surrounding of trigeminal sensory 

complex, but not in the temporomandibular joint. The antinociceptive effect induced by the 

administration of progesterone in ovariectomized females and of testosterone in 

orchiectomized males was blocked by the administration of naloxone in the surrounding of 

the trigeminal sensory complex and in the temporomandibular joint. These findings suggest 

that central and peripheral opioid mechanisms mediate the antinociceptive effect of 

progesterone and testosterone, while central opioid mechanisms mediate the antinociceptive 

effect of estradiol.  
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Introduction  

Like many other chronic pain conditions (Unruh 1996), temporomandibular 

dysfunctions (TMDs) are less prevalent and severe in men than in women (Carlsson and 

LeResche 1995). This lower prevalence of TMD in men may result from a protective effect 

of testosterone. In this regard, we have demonstrated that the injection of 0.5% formalin in 

the temporomandibular joint (TMJ) induces a significant nociceptive behavior in naive 

female and gonadectomized male rats, but not in naive male rats, suggesting that 

testosterone decreases the risk of males developing TMJ pain (Fischer et al. 2007). The 

higher severity of TMD in women may be a consequence of hormonal fluctuation during 

reproductive cycle. In this regard, we have recently demonstrated that TMJ injection of 

1.5% formalin induces a significantly higher nociceptive behavior in female rats during 

diestrus, a phase of the estrous cycle with lower estradiol level, than during proestrus, a 

phase with high estradiol level (Clemente et al. 2004; Fischer et al. in press). This finding 

parallels  the higher TMJ pain in women during low estradiol times of the menstrual cycle 

(LeResche et al. 2003). The similarity between these studies suggests that the TMJ 

formalin model is a useful model to study the mechanisms underlying hormonal 

modulation of clinical TMJ pain. Hormone administration in gonadectomized animals is 

also useful to evaluate these mechanisms because allows to isolate the effect of each 

gonadal hormone, because induces a nonfluctuating hormonal level, and because allows to 

achieve a hormonal level that would maximizes the ability to detect the mechanisms 

underlying hormonal effect. Recently, we have showed that the administration of estradiol 

and progesterone in ovariectomized female (OVX) (Fischer et al. in press) and of 

testosterone in orchiectomized male (ORX) (Fischer et al. 2007) rats significantly decreases 

formalin-induced TMJ nociception. The mechanisms underlying the antinociceptive effect 

of gonadal hormones are presently unknown. However, a central or a peripheral induced 

increase in opioid system activity is a potential one. To test this hypothesis, we investigated 

whether the administration of the opioid receptor antagonist naloxone into the medullary 

subarachnoid space, or into the TMJ, reduces the antinociceptive effect induced by gonadal 

hormones. The TMJ formalin model was used as experimental assay in intact proestrus and 
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diestrus females and in gonadectomized males and females receiving vehicle or hormone 

administration. 
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Material and methods  

Animals 

This study was carried out in 200 - 300g male and female Wistar rats. All 

animal experimental procedures and protocols were approved by the Committee on Animal 

Research of the University of Campinas and are in accordance with IASP guidelines for the 

study of pain in animals (Zimmermann 1983). The animals were maintained on a 

temperature-controlled room (± 23ºC) and were housed in plastic cages with soft bedding 

(five/cage) on a 12:12 light cycle with food and water available ad libitum.  

Estrous phase determination 

Estrous phase was determined by daily microscope examination of vaginal 

smears taken by gentle lavage, between 7 and 8 a.m. Estrous phase was confirmed before 

and immediately after each experiment to ensure that the rats remained in the same phase 

during the experiment. Proestrus phase and the initial phase of diestrus (first 4 h) were 

identified by the predominance (>70%) of nucleated epithelial cells and leukocytes, 

respectively (Butcher et al. 1974) in rats with at least two consecutive regular 4-5 day 

cycles. These phases were chosen because they represent phases of high and low ovarian 

hormonal level, respectively (Butcher et al. 1974). 

Gonadectomy 

Gonadectomy was performed in 45 days old animals (Gordon and Soliman 

1994) under anesthesia induced by an intramuscular injection of a mixture of ketamine 

(55mg/Kg) and xylazine (5.5 mg/Kg). A subcutaneous injection of ketoprofen (5 mg/kg) 

was used for post-operative analgesia (Roughan and Flecknell 2000). Ovariectomy was 

performed through bilateral upper flank incisions. The ovarian bundles were ligated with 4-

O silk sutures and removed, the fascia and the skin were sutured. Orchiectomy was 

performed through a single scrotal incision. The testicular bundles were ligated with 4-O 

silk sutures and removed and the skin was sutured. The efficacy of ovariectomy was 

verified by the absence of estrous cycle verified by observation of vaginal smears during 
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ten days and of orchiectomy was verified by post mortem examination of prostate and 

seminal vesicles atrophy. Sham operated animals underwent a surgical procedure similar to 

that of gonadectomized animals, except that the gonads were not removed. The animals 

were used in experiments 30-45 days after surgery.  

Hormonal Manipulation 

Hormonal administration was performed by daily injection of 17 β-estradiol 

(50μg/kg) (Gordon and Soliman 1994) and progesterone (8mg/Kg) (He et al. 2004) in 

females and of testosterone propionate (1mg) (Campos et al. 2003) in males, during seven 

days. At the seventh day, hormone injection was performed 1 hour prior to the TMJ 

injection of formalin. Hormones were purchased from Sigma Chemicals, St Louis, 

Missouri, USA and dissolved in propyleneglycol.  

Drugs 

Formalin solution was prepared from commercially available stock formalin (an 

aqueous solution of 37% of formaldehyde) further diluted in 0.9% NaCl to a concentration 

of 1.5%. Naloxone was dissolved in 0.9% NaCl and was injected in the subarachnoid 

medullary space, 15µg (Danzebrink et al. 1995), 30 µg or 60 µg or was co-administered, 

10µg (Eisenberg et al. 1996) or 30 µg,  with formalin in the TMJ. Formalin and naloxone 

were purchased from Sigma-Aldrich, St Louis, Missouri, USA.  

Subarachnoid medullary injection 

The injection of naloxone or its vehicle (0.9% NaCl) in the subarachnoid 

medullary space was performed as previously described (Fischer et al. 2005). Ten minutes 

before formalin injection into the TMJ, the rats were briefly anesthetized with halothane, 

and a small skin area overlying the high cervical region was shaved with an electric razor. 

Animals were dorsally positioned, so the suboccipital space could be easily found. A 30-

gauge needle connected to a 50μl Hamilton syringe by a polyethylene cannula was first 

inserted below the occipital bone up to 2 mm, and slightly inclined in a cranial direction. 
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The needle was advanced more 2mm to perforate the atlanto-occipital membrane and reach 

the medullary subarachnoid space. Total injection volume in all experiments was 10μl. All 

injections were performed at a rate of 1μl/s.  

TMJ Injections 

The injection of formalin or its vehicle (0.9% NaCl) in the TMJ region was 

performed as previously described (Roveroni et al. 2001). The animals were briefly 

anesthetized by inhalation of halothane and a 30-gauge needle was introduced into the TMJ 

at the moment of injection. A cannula consisting of a polyethylene tube was connected to 

the needle and also to a Hamilton syringe (50µl) (Roveroni et al. 2001). Each animal 

regained consciousness approximately 30 seconds after discontinuing the anesthetic. At the 

conclusion of the behavior test, each animal was anesthetized by an intraperitoneal 

injection of a mixture of urethane (1g/kg) and α-chloralose (50mg/kg). The Evans blue dye 

(5 mg/kg) was injected systemically and 15 minutes later the animals were perfused 

transcardially with saline (NaCl 0.9%). Since this dye binds to plasma protein, the correct 

site of injection was indicated by the observation that the plasma extravasation induced by 

the TMJ injection of formalin was restricted to the TMJ region (Roveroni et al. 2001).  

Testing procedure for TMJ pain 

Behavior test was performed during light phase (between 09:00 AM and 5:00 

PM) in a quiet room maintained at ± 23ºC. The nociceptive response was assessed by an 

observer blinded to the experimental manipulation. Before the experiments, each animal 

was manipulated for 7 days in the test room (handled for approximately one minute) to be 

habituated to the experimental manipulation. On the day of the experiment, each animal 

was individually placed in a test chamber (30 x 30 x 30 cm mirrored-wood chamber with a 

glass at the front side) for a 15 min habituation period to minimize stress. After TMJ 

injection, the animal was returned to the test chamber for counting nociceptive responses. 

The nociceptive behavior characterized by rubbing the orofacial region and flinching the 

head was counted in blocks of 5 minutes for 45 minutes. For each block of 5 min, the 
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behavior characterized by rubbing the orofacial region was quantified by the amount of 

time that the animal exhibited it and the behavior characterized by flinching the head was 

quantified by its occurrence. Considering that the head flinching behavior follows an 

uniform pattern of 1 s in duration, each flinching was counted as 1 s as previously 

described (Roveroni et al. 2001). Rats did not have access to food or water during the test 

and each animal was used once. 

Statistical analysis 

The area under the curve (AUC) over the entire duration of the experiment was 

calculated for each experimental group by summing the nociceptive behaviors induced by 

the TMJ injection of formalin. AUC was defined as the overall response and was used for 

statistical analyses.  To determine if there were significant differences (p< 0.05) between 

the treatment groups in figures 1 - 4, one-way ANOVA using AUC as the dependent 

variable was performed followed by the Tukey post-hoc test. A t test (p< 0.05) was 

performed for comparisons between intact and sham-operated, between gonadectomized 

receiving or not vehicle, between contralateral injection of naloxone and 0.9% NaCl and 

between naloxone and 0.9% NaCl injection in the subarachnoid or in the TMJ region of 

animals receiving injection of 0.9% NaCl in the TMJ. Data are presented in figures as 

means ± S.E.M.  
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Results 

The injection of naloxone in the medullary subarachnoid space or in the TMJ 

did not affect the normal behavior of the animals in any experimental group. This was 

evidenced by the similar behavior induced by the injection of 0.9% NaCl in the TMJ of 

animals receiving subarachnoid or TMJ injection of naloxone or 0.9% NaCl. (t- test, p > 

0.05, data not shown). 

The antinociceptive effect induced by high physiological level of estradiol in 

proestrus females or by estradiol administration in OVX females was reversed by the 

injection of naloxone in the surrounding of the trigeminal sensory complex (Fig 1 A and 2 

A, respectively), but not in the TMJ region (Fig 1 B and 2 B, respectively).  

The antinociceptive effect induced by progesterone administration in OVX 

females and testosterone administration in ORX males was reversed by the injection of 

naloxone in the surrounding of the trigeminal sensory complex (Fig 3 A and 4 A, 

respectively) and in the TMJ (Fig 3 B and 4 B, respectively). 

The injection of naloxone in the contra-lateral TMJ did not affect formalin-

induced TMJ nociception (t- test, p > 0.05), confirming the peripheral action of TMJ 

naloxone. This was assessed by the injection of formalin into the right TMJ and of 

naloxone or 0.9% NaCl into the left TMJ of proestrus females (303,11 + 37,79 vs. 256,00 + 

29,97, respectively), OVX females receiving estrogen (351,19 + 21,97 vs. 278,57 + 22,14, 

respectively) or progesterone (294,02 + 28,72 vs. 244,00 + 21,10, respectively) and in ORX 

males receiving testosterone (218,25 + 58,71 vs. 165,42 + 19,74, respectively).  

Formalin-induced TMJ nociception was similar (t- test, p > 0.05) between intact 

and sham-operated females in diestrus (432,50 + 44,53 vs. 417,80 + 29,65, respectively) 

and proestrus (256,00 + 29,98 vs. 254,00 + 27,95, respectively) phases of the estrus cycle 

and between intact and sham-operated males (281,50 + 25,55 vs. 252,00 + 33,92, 

respectively). This result demonstrates that the surgical procedure did not affect formalin-
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induced TMJ nociceptive behavior. Formalin-induced TMJ nociception was similar (t- test, 

p > 0.05) between OVX females (388,86 + 22,18 vs. 426,60 + 21,75) and ORX males 

(243,40 + 40,87 vs. 287,17 + 30,69) receiving or not vehicle (propyleneglycol)  

administration,  respectively. This result demonstrates that the vehicle administration did 

not affect formalin-induced TMJ nociception. 
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Discussion 

This study demonstrates that sex hormones decrease formalin-induced TMJ 

nociception in male and female rats by increasing endogenous opioid system activity. This 

was evidenced by the blockade of the antinociceptive effect of sex hormones by the non-

selective opioid receptor antagonist naloxone. The subarachnoid administration of naloxone 

in the surrounding of the trigeminal sensory complex blocked the antinociceptive effect 

induced by estradiol and progesterone in females and by testosterone in males. The 

administration of naloxone in the TMJ region also blocked the antinociceptive effect of 

progesterone and testosterone but not that of estradiol. These findings suggest that central 

and peripheral opioid mechanisms mediate the antinociceptive effect of progesterone and 

testosterone, while central opioid mechanisms mediate the antinociceptive effect of 

estradiol. The involvement of central opioid mechanisms in the antinociceptive effect 

induced by estradiol was demonstrated in intact proestrus females, who have high 

physiological level of estradiol and in OVX females receiving estradiol. This finding is in 

accordance with a recent human study showing that women during a high estradiol state 

have lower pain ratings associated with greater activation of central opioid system than 

women during a low estrogen state (Smith et al. 2006). However, it is important to point 

that while 15 µg of subarachnoid naloxone was enough to reverse the antinociceptive effect 

induced by estradiol administration in OVX females, a dose four times higher (60 µg) was 

necessary to induce the same effect in proestrus females. One possible explanation to this 

difference is that the antinociceptive effect induced by endogenous estradiol in proestrus 

females, but not by exogenous estradiol in OVX females, is preferentially mediated by δ 

and κ opioid receptor subtypes. Therefore, because naloxone preferentially blocks µ opioid 

receptor subtypes (Owen et al. 2000), higher doses might be necessary to block δ and κ 

opioid receptors. Consistent with this possibility, it was demonstrated that the efficacy of 

specific opioid receptor agonists is different in normally cycling and OVX females 

receiving estradiol (Stoffel et al. 2005).  

Several lines of evidence have demonstrated that sex hormones interact with the 

opioid system in different brain areas involved in pain modulation (Amandusson et al. 
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1999; Flores et al. 2003; Smith et al. 2006). In this study, naloxone was injected in the 

surrounding of the trigeminal sensory complex, therefore, the trigeminal subnucleus 

caudalis, also knows as medullary dorsal horn, may be a candidate for the site of hormone-

mediated opioid system activation. Subnucleus caudalis is known as a critical site for 

trigeminal pain modulation (Amandusson et al. 1996) and although no previous studies 

appear to have examined the presence androgen and progesterone receptors in this region, 

estrogen receptors are known to be present in opioid peptide-containing neurons in this 

region (Amandusson et al. 1996; Flores et al. 2003). However, other sites could also be 

involved, because naloxone can diffuse in the cerebrospinal fluid and block opioid 

receptors located in other areas of the central nervous system. The central mechanisms by 

which sex hormones modulate the opioid system to decrease TMJ nociception are presently 

unknown. However, the increase in the expression of opioid receptors or in the central 

release of endogenous opioids are potential ones, since sex hormones are known to increase 

the expression of endogenous opioids (Johansson et al. 1997; Amandusson et al. 1999; 

Bernardi et al. 2006) and their corresponding receptors (Petersen and LaFlamme 1997; 

Quinones-Jenab et al. 1997; Harris et al. 2004).  

In contrast to central, peripheral opioid mechanisms do not mediate the 

antinociceptive effect of estradiol. Importantly, the lack of effect of the TMJ injection of 

naloxone in proestrus and OVX females receiving estradiol cannot be attributed to a low 

dose, since the lowest dose used (10 µg) is sufficient to block the effect of 1000 µg of 

morphine in the lip (Eisenberg et al. 1996). Furthermore, a dose higher than 30 µg cannot 

be used in the TMJ because it increases formalin-induced TMJ nociception by itself (60 µg, 

data not shown). The antinociceptive effect of progesterone and testosterone, in contrast to 

that of estradiol is also mediated by peripheral opioid mechanisms. Given that opioid 

receptors are expressed in the peripheral and in the central terminal of the primary sensory 

afferents (Stein et al. 2003), the injection of naloxone in the subarachnoid medullary space 

could block opioid receptors located in the central terminal of the primary afferent 

nociceptors. This possibility could explain why naloxone blocked the antinociceptive effect 

of progesterone and testosterone when injected in the subarachnoid or in the TMJ region. 
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One potential peripheral mechanism by which progesterone and testosterone decrease TMJ 

pain may be by increasing the rate of opioid receptor gene transcription in trigeminal 

ganglion, which results in increased opioid receptor expression in central and peripheral 

terminals of the primary afferent nociceptor. Although opioid receptors are present in 

trigeminal ganglion (Berg et al. 2007; Nunez et al. 2007), further studies are necessary to 

examine the presence of androgen and progesterone receptors in this ganglion. Another 

potential mechanism may be an increase in the release of opioids by inflammatory cells, 

since it is known that inflammatory cells release opioids (Stein et al. 2003) and express 

either progesterone (King et al. 1996) or testosterone receptors (Bebo et al. 1999).  

In summary, this study showed that sex hormones decrease TMJ nociception by 

activating the endogenous opioid system. These findings suggest that the enhanced pain 

sensitivity during low hormonal states in women (LeResche et al. 2003; Smith et al. 2006) 

and animals (Clemente et al. 2004; Fischer et al. in press) may be mediated by a decrease 

in endogenous opioid activity during this period. This suggestion may help to explain the 

higher severity of some pain conditions (Unruh 1996), such as TMDs (Dworkin et al. 1990)  

in women than in men, that have no hormonal fluctuations. More studies are necessary to 

evaluate the mechanisms, pathways and opioid receptors subtypes involved in the 

antinociceptive effect of each sex hormone as well as the potential therapeutic interest of 

developing drugs that mimic or potentiate the effects of sex-hormones on opioid system. 
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Figure Legends  

Figure 1- Central opioid mechanisms in proestrus females. 

A- Naloxone administration in the subarachnoid medullary space blocked the 

antinociceptive effect induced by high physiological level of estradiol in proestrus females. 

The symbol “*” indicates a nociceptive behavior significantly lower than that induced by 

TMJ injection of formalin in diestrus females. The symbol “+” indicates a nociceptive 

behavior significantly greater than that induced by injection of formalin in the TMJ of 

proestrus females receiving subarachnoid injection 0.9% NaCl or low doses (15 and 30µg) 

of naloxone, Tukey test, p<0.05, s.a. = subarachnoid   

B- Naloxone co-administered with formalin in the TMJ did not affect the 

antinociceptive effect induced by high physiological level of estradiol in proestrus females. 

The symbol “*” indicates a nociceptive behavior significantly lower than that induced by 

TMJ injection of formalin in diestrus females. The symbol “+” indicates a nociceptive 

behavior significantly greater than that induced by injection of formalin co-administered 

with 0.9% NaCl or the lower dose of naloxone (10 µg) in proestrus females, Tukey test, 

p<0.05.  

Figure 2- Central opioid mechanisms in OVX females receiving estradiol. 

A- Naloxone administration in the subarachnoid medullary space blocked the 

antinociceptive effect induced by estradiol administration in OVX females. The symbol “*” 

indicates a nociceptive behavior significantly lower than that induced by TMJ injection of 

formalin in OVX+V females. The symbol “+” indicates a nociceptive behavior 

significantly greater than that induced by injection of formalin in the TMJ of OVX+E 

females receiving subarachnoid injection 0.9% NaCl, Tukey test, p<0.05, s.a. = 

subarachnoid; OVX+V = ovariectomized receiving vehicle; OVX+E = ovariectomized  

receiving estradiol. 

  B- Naloxone co-administered with formalin in the TMJ did not affect the 

antinociceptive effect induced by estradiol administration in OVX females. The symbol “*” 

indicates a nociceptive behavior significantly lower than that induced by TMJ injection of 
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formalin in OVX+V females. The symbol “+” indicates a nociceptive behavior 

significantly greater than that induced by TMJ injection of formalin co-administered with 

0.9% NaCl or with the lower dose of naloxone (10 µg) in OVX+E females, Tukey test, 

p<0.05, s.a. = subarachnoid; OVX+V = ovariectomized  receiving vehicle; OVX+E = 

ovariectomized  receiving estradiol. 

Figure 3- Central and peripheral opioid mechanisms in OVX females receiving 

progesterone. 

A- Naloxone administration in the subarachnoid medullary space blocked the 

antinociceptive effect induced by progesterone administration in OVX females. The symbol 

“*” indicates a nociceptive behavior significantly lower than that induced by TMJ injection 

of formalin in OVX+V females. The symbol “+” indicates a nociceptive behavior 

significantly greater than that induced by injection of formalin in the TMJ of OVX+P 

females receiving subarachnoid injection 0.9% NaCl, Tukey test, p<0.05, s.a. = 

subarachnoid; OVX+V = ovariectomized  receiving vehicle; OVX+P = ovariectomized  

receiving progesterone.  

B- Naloxone co-administered with formalin in the TMJ blocked the 

antinociceptive effect induced by progesterone administration in OVX females. The symbol 

“*” indicates a nociceptive behavior significantly lower than that induced by TMJ injection 

of formalin in OVX+V females. The symbol “+” indicates a nociceptive behavior 

significantly greater than that induced by TMJ injection of formalin co-administered with 

0.9% NaCl in OVX+P females, Tukey test, p<0.05, s.a. = subarachnoid; OVX+V = 

ovariectomized  receiving vehicle; OVX+P = ovariectomized  receiving progesterone.  

Figure 4- Central and peripheral opioid mechanisms in ORX males receiving 

testosterone. 

A- Naloxone administration in the subarachnoid medullary space blocked the 

antinociceptive effect induced by testosterone administration in ORX males. The symbol 

“*” indicates a nociceptive behavior significantly lower than that induced by TMJ injection 

of formalin in ORX+V males. The symbol “+” indicates a nociceptive behavior 
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significantly greater than that induced by injection of formalin in the TMJ of ORX+T males 

receiving subarachnoid injection 0.9% NaCl, Tukey test, p<0.05, s.a. = subarachnoid; 

ORX+V = orchiectomized receiving vehicle; ORX+T = orchiectomized receiving 

testosterone.  

B- Naloxone co-administered with formalin in the TMJ blocked the 

antinociceptive effect induced by testosterone administration in ORX males. The symbol 

“*” indicates a nociceptive behavior significantly lower than that induced by TMJ injection 

of formalin in ORX+V males. The symbol “+” indicates a nociceptive behavior 

significantly greater than that induced by TMJ injection of formalin co-administered with 

0.9% NaCl in ORX+T males, Tukey test, p<0.05, s.a. = subarachnoid; ORX+V = 

orchiectomized receiving vehicle; ORX+T = orchiectomized receiving testosterone.  
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Abstract  

Recently, we have reported that systemic estradiol decreases formalin-induced 

temporomandibular joint nociception in female rats. However, the mechanisms underlying 

the antinociceptive effect of estradiol are presently unknown. In this study, we used the 

TMJ formalin model in rats to investigate whether the antinociceptive effect of estradiol is 

mediated by a peripheral non-genomic mechanism, and if so, whether this mechanism is 

mediated by the activation of the NO-cGMP signaling pathway and of opioid receptors. Co-

administration of estradiol with formalin significantly reduced formalin-induced 

temporomandibular joint nociception in ovariectomized and diestrus females but not in 

males. The antinociceptive effect of estradiol was mimicked by estradiol conjugated with 

bovine serum albumin, which does not diffuse through the plasma membrane, and was 

blocked by the peripherally restricted estrogen receptor antagonist ICI 182-780. Co-

administration of the nitric oxide synthase Nitro-L-arginine or of the guanilato cyclase 1H-

(1,2,4)-oxadiasolo (4,2-a) quinoxalin-1-one inhibitor blocked the antinociceptive effect of 

estradiol and E-BSA, while the opioid receptor antagonist naloxone had no effect. These 

findings suggest that estradiol decreases TMJ nociception in female rats through a 

peripheral non-genomic activation of the nitric oxide – cyclic guanosine monophosfate 

signaling pathway.  
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Introduction 

The majority of chronic pain conditions (Unruh 1996) such as 

temporomandibular dysfunctions (Dworkin et al. 1990) are more prevalent and severe in 

women than in men, suggesting a role of gonadal hormones in pain modulation. In fact, 

TMJ pain in women (LeResche et al. 2003) and formalin-induced TMJ nociception in 

female rats (Clemente et al. 2004) are lower during high estradiol levels of the reproductive 

cycle. These findings suggest that estradiol decreases TMJ pain and are further supported 

by other animal (Gaumond et al. 2002; Ceccarelli et al. 2003; Pajot et al. 2003; Kuba et al. 

2006; Mannino et al. 2007) and human (Smith et al. 2006) studies showing an 

antinociceptive effect of estradiol. Although not yet tested, the antinociceptive effect of 

estradiol might result from a peripheral non-genomic mechanism. This idea is supported by 

“in vitro” studies showing that estradiol inhibits calcium channel currents in neurons of the 

dorsal root ganglia via a non-genomic mechanism mediated by membrane estrogen 

receptors (Lee et al. 2002; Chaban et al. 2003). The activation of these receptors activates 

the oxide nitric - cyclic guanosine mono-phosphate (cGMP) signaling pathway (NO-

cGMP), as demonstrated in endothelial cells (Stefano et al. 2000). The activation of this 

pathway in primary nociceptive afferents has been associated with the antinociceptive 

effect of anti-inflammatory drugs (Deciga-Campos and Lopez-Munoz 2004; Ventura-

Martinez et al. 2004) and opioids (Durate et al. 1990; Pol 2007). Furthermore, peripheral 

opioid mechanisms mediate the antinociceptive effect induced by estradiol and 

progesterone in the TMJ of pregnant rats (Arthuri et al. 2005). Therefore, in this study we 

used the TMJ formalin model in rats to investigate whether the antinociceptive effect of 

estradiol is mediated by a peripheral non-genomic mechanism, and if so, whether this 

mechanism is mediated by the activation of the NO-cGMP signaling pathway and of opioid 

receptors.  
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Material and methods  

Animals  

This study was carried out in 200- 300g ovariectomized (OVX) and diestrus 

female and male Wistar rats. We used OVX females because the depletion of systemic 

estradiol possibly facilitates the assessment of peripheral estrogen-mediated effect. We 

also used normally cycling diestrus females (low physiological estradiol level) to control 

for a possible change in estrogen receptor expression following ovariectomy (Pajot et al. 

2003). We also included male rats in this study to evaluate if the peripheral administration 

of estradiol induces a sex specific antinociceptive effect, as it does the systemic 

administration. All animal experimental procedures and protocols were approved by the 

Committee on Animal Research of the University of Campinas and are in accordance with 

IASP guidelines for the study of pain in animals (Zimmermann 1983). The animals were 

maintained on a temperature-controlled room (± 23ºC) and were housed in plastic cages 

with soft bedding (five/cage) on a 12:12 light cycle (lights on at 06:00 A.M.) with food and 

water available ad libitum.  

Drugs 

Formalin was prepared from commercially available stock formalin (an aqueous 

solution of 37% of formaldehyde) further diluted in 0.9% NaCl to a concentration of 1.5%; 

(Roveroni et al. 2001); Estradiol (17β-estradiol, 0.4μg, 1.2μg; (Ceccarelli et al. 2004) and 

3.6μg) was dissolved in propileneglycol; Estradiol coupled to  bovine serum albumin (E-

BSA, 1.2 μg of estradiol plus BSA) was dissolved in 0.9% NaCl; the selective estrogen 

receptor antagonist ICI 182-780 (0.16μg, 1μg and 6μg; (Ceccarelli et al. 2004) was 

dissolved in dimethyl sulfoxide (DMSO); the NO synthase inhibitor Nitro-L-arginine (L-

NNA 22μg; (Toda et al. 1993), was dissolved in 0.9% NaCl; the guanilato cyclase inhibitor 

1H-(1,2,4)-oxadiasolo (4,2-a) quinoxalin-1-one (ODQ 0.8 and 8μg; (Cunha et al. 1999), 

was dissolved in DMSO; the opioid receptor antagonist Naloxone (10μg; (Eisenberg et al. 

1996) and 30μg),  was dissolved in 0.9% NaCl. Formalin; estradiol; E-BSA; naloxone and 
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L-NNA were purchased from Sigma-Aldrich St. Louis, MO, USA; ODQ and ICI182-780 

were purchased from Tocris Bioscience, St. Louis, MO, USA. 

Steroid hormones conjugated with bovine serum albumin have been extensively 

used to assess their non-genomic effects (Kelly and Levin 2001). However, it was 

suggested that E-BSA has biological activity not observed with estradiol (Stevis et al. 

1999). For this reason, the experiments were performed using both 17β-estradiol and E-

BSA. The dose-response curves of all drugs were performed in OVX females and the most 

effective dose was selected for further experiments. 

Estrous phase determination   

Estrous phase was determined by daily microscope examination of vaginal 

smears between 7 and 8 a.m. The initial phase of diestrus (first 4 hours) was identified by 

the predominance (>70%) of leukocytes (Butcher et al. 1974) in rats with at least two 

consecutive regular 4-5 day cycles and was confirmed before and immediately after each 

experiment, to ensure that the rats remained in diestrus. This phase was chosen because it 

is characterized by low physiological levels of estradiol (Butcher et al. 1974). 

Gonadectomy 

Ovariectomy (45 days old females; (Gordon and Soliman 1994) was performed 

through bilateral upper flank incisions. The ovarian bundles were tied off with 4-O silk 

sutures and the ovaries removed. The fascia and the skin were closed with 4-O silk sutures 

(Waynforth and Flecknell 1992a). Sham operated animals underwent a surgical procedure 

similar to that of OVX animals, except that the ovaries were not removed. The procedures 

were carried out under anesthesia induced by an intramuscular injection of a mixture of 

ketamine (55mg/Kg) and xylazine (5.5 mg/Kg). A subcutaneous injection of ketoprofen (5 

mg/kg) was used for post-operative analgesia (Roughan and Flecknell 2000). OVX and 

sham-operated rats were used in experiments when they were three months of age. The 

efficacy of ovariectomy was confirmed by the absence of estrous cycle determined by 

observation of vaginal smears during ten days.  
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TMJ Injections 

The animals were briefly anesthetized by inhalation of halothane to allow the 

TMJ injection; each animal regained consciousness approximately 30 seconds after 

discontinuing the anesthetic. The TMJ injection was performed with a 30-gauge needle 

introduced into the TMJ at the moment of injection. A cannula consisting of a polyethylene 

tube was connected to the needle and also to a Hamilton syringe (50μl) (Roveroni et al. 

2001). The volume injection was 15μl per drug. At the conclusion of the behavior test, 

each animal was anesthetized by an intraperitoneal injection of a mixture of urethane 

(1g/kg) and α-chloralose (50mg/kg). The Evans blue dye (5 mg/kg) was systemically 

injected and 15 minutes later the animals were submitted to cardiac perfusion with normal 

saline. Since this dye binds to plasma protein, the correct site of injection was indicated by 

the observation that the plasma extravasation induced by the TMJ injection of formalin 

was restricted to the TMJ region (Haas et al. 1992).  

Testing procedure for TMJ pain 

Behavior test was performed during light phase (between 09:00 AM and 5:00 

PM) in a quiet room maintained at ± 23ºC (Rosland 1991). The nociceptive response was 

assessed by an observer blinded to the experimental manipulation. Before the experiments, 

each animal was manipulated for 7 days in the test room (handled for approximately one 

minute) to be habituated to the experimental manipulation. On the day of the experiment, 

each animal was individually placed in a test chamber (30 x 30 x 30 cm mirrored-wood 

chamber with a glass at the front side) for a 15 min habituation period to minimize stress. 

After the TMJ injection, the animal was returned to the test chamber for counting 

nociceptive responses. The nociceptive behavior characterized by rubbing the orofacial 

region and flinching the head was counted in blocks of 5 minutes for 45 minutes. For each 

block of 5 min, the behavior characterized by rubbing the orofacial region was quantified 

by the amount of time that the animal exhibited it and the behavior characterized by 

flinching the head was quantified by its occurrence. Considering that the head flinching 

behavior follows an uniform pattern of 1 second in duration, each flinching was counted as 
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1 second as previously described (Roveroni et al. 2001). Rats did not have access to food 

or water during the test and each animal was used once. 

Statistical analysis  

The area under the curve (AUC) was calculated for each treatment group by 

summing the behaviors recorded in each block of 5 min during the entire duration of the 

experiment. To determine if there were significant differences (p < 0.05) between the 

treatment groups, one-way ANOVA using AUC as the dependent variable was performed. 

If there was a significant between-subjects main effect of treatment group, post-hoc 

contrasts, using the Tukey method test were performed to determine the basis of the 

significant difference. Data are expressed in figures as means ± S.E.M. 
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Results 

Co-administration of estradiol or estradiol conjugated with bovine serum 

albumin (E-BSA) with formalin into the rat’s TMJ significantly decreased formalin-

induced TMJ nociception in OVX (Fig. 1 A) and diestrus (Fig. 1 B) females, but did not 

affect TMJ nociception in males, even at a dose three times higher than that used in females 

(Fig. 1 C). Formalin-induced TMJ nociception was similar (t- test, p > 0.05) in intact (422.5 

+ 15.5) and sham-operated diestrus females (415.8 + 17.6). 

To discard that the antinociceptive effect induced by the TMJ injection of 

estradiol could derivate from a non-specific action, we evaluated the involvement of 

estrogen receptors in estradiol-induced antinociception by assessing the effect of the 

estrogen receptor antagonist ICI 182-780. Co-administration of ICI 182-780 blocked the 

antinociceptive effect of estradiol and of E-BSA in OVX (Fig. 2A and B, respectively) and 

of estradiol in diestrus females (Fig. 2C).  

Co-administration of the NO synthase L-NNA or of the guanilato cyclase ODQ 

inhibitor blocked the antinociceptive effect of estradiol and E-BSA in OVX (Fig. 3A and B 

and Fig. 4 A and B, respectively) and of estradiol in diestrus (Fig. 3C and 4C, respectively) 

females.  

The opioid receptor antagonist naloxone did not affect estradiol-induced TMJ 

antinociception in OVX (Fig. 5 A) and diestrus (Fig. 5 B) females.  
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Discussion  

This study demonstrated that estradiol decreases TMJ nociception in female rats 

through a peripheral non-genomic mechanism mediated by the activation of the NO-cGMP 

signaling pathway but not of opioid receptors. The evidences are that the administration of 

estradiol or E-BSA into the TMJ of female rats significantly decreased formalin-induced 

TMJ nociception. This antinociceptive effect was blocked by the estrogen receptor 

antagonist ICI 182-780 and by the NO synthase and the guanilato cyclase inhibitors, L-

NNA and ODQ, respectively, but not by the opioid receptor antagonist naloxone. Both ICI 

182-780 (Clark et al. 2003) and E-BSA do not cross the blood-brain barrier, confirming the 

peripheral action of estradiol. The higher dose of ICI 182-780 required to block estradiol 

induced-antinociception in OVX than in diestrus females might result from an increased 

estrogen receptor expression in trigeminal primary afferent neurons after ovariectomy, as 

previously demonstrated in neurons of the trigeminal subnucleus caudalis (Pajot et al. 

2003). The finding that the membrane impermeable compound E-BSA (Kelly and Levin 

2001) mimicked the antinociceptive effect induced by estradiol suggests that membrane 

estrogen receptors mediate estradiol-induced TMJ antinociception. In fact, the 

antinociceptive effect observed in the current study is incompatible with the classic 

genomic effects of estradiol that take hours to days to occur (McEwen 2001). In males, in 

contrast to females, formalin-induced TMJ nociception was not affected by estradiol, 

confirming our previous findings that the antinociceptive effect of estradiol is sex-specific 

(Fischer et al. 2007). The mechanisms underlying the sex-specificity of estradiol-induced 

TMJ antinociception are unknown, however, organizational effects of estradiol during 

female development (Jost 1983) may contribute to that.  

Our finding that estradiol induces TMJ antinociception through a non-genomic 

peripheral activation of the NO-cGMP signaling pathway is supported by the finding that 

estradiol increases the activity of the NO synthase (Chen et al. 1999; Simoncini et al. 2000) 

and guanilato cyclase (Fiorelli et al. 1996) by non-genomic mechanisms. The increased 

activity of these enzymes results in an increased level of cGMP, which has been associated 

with peripheral antinociception (Durate et al. 1990; Qian et al. 1996; Almeida and Duarte 
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2007). Although it has been demonstrated that the peripheral analgesic effect of opioids is 

mediated by the activation of NO-cGMP signaling pathway (Granados-Soto et al. 1997; Pol 

2007) and that estradiol modulates the opioid system through non-genomic mechanisms 

(Lagrange et al. 1995; Brown et al. 2007) the findings of the current study suggest that the 

peripheral non-genomic antinociceptive effect induced by estradiol in the TMJ is not 

mediated by opioid mechanisms.    

The peripheral activation of the NO-cGMP pathway by estradiol may 

contributes to the decreased TMJ pain induced by high physiological estradiol level in the 

TMJ of female rats (Clemente et al. 2004) and women (LeResche et al. 2003). However, in 

physiological conditions, other mechanisms are probably involved in estradiol-induced 

antinociception, since estrogen receptors are widely distributed in areas of the central 

nervous system involved in pain transmission and modulation (McEwen 2001).  

In summary, this study shows that estradiol decreases TMJ nociception in 

female rats through a peripheral activation of the NO-cGMP signaling pathway. These 

findings suggest that the NO-cGMP signaling pathway may be a valuable molecular target 

for the development of drugs, such as estrogen receptor ligands devoid of classic estrogenic 

activity and of side effects related to anti-inflammatory and opioids, which also activate this 

pathway to induce peripheral antinociception.   
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Figure Legends 

Figure 1- Effect of intra-articular administration of estradiol on formalin-

induced TMJ nociception. 

A- 17β-estradiol or E-BSA significantly reduced formalin-induced TMJ 

nociception in OVX females. The symbol “*” indicates a nociceptive response significantly 

greater than that induced by the TMJ injection of 0.9% NaCl. The symbol “+” indicates a 

nociceptive response significantly lower than that induced by the TMJ injection of formalin 

plus vehicle (propyleneglycol) (Tukey test, p< 0.05). In this and subsequent figures, data 

are plotted as mean ± s.e.m., group sample sizes are shown in parentheses; see Methods for 

additional details regarding data presentation and analysis. Abbreviations: OVX = 

Ovariectomized; E-BSA = Estradiol coupled to bovine serum albumin. 

B- 17β-estradiol or E-BSA significantly reduced formalin-induced TMJ 

nociception in diestrus females. The symbol “*” indicates a nociceptive response 

significantly greater than that induced by the TMJ injection of 0.9% NaCl. The symbol “+” 

indicates a nociceptive response significantly lower than that induced by the TMJ injection 

of formalin plus vehicle (propyleneglycol) (Tukey test, p< 0.05).  

C- 17β-estradiol did not affect formalin-induced TMJ nociception in males. The 

symbol “*” indicates a nociceptive response significantly greater than that induced by the 

TMJ injection of 0.9% NaCl (Tukey test, p< 0.05). 

Figure 2- Effect of intra-articular administration of the estrogen receptor 

antagonist ICI 182-780 on the antinociceptive effect induced by estradiol in the TMJ. 

A- ICI 182-780 blocked the antinociceptive effect induced by estradiol in OVX 

females. The symbol “*” indicates a nociceptive response significantly lower than that 

induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” 

indicates a nociceptive response significantly greater than that induced by the TMJ 

injection of formalin plus estradiol plus DMSO (dimethylsulfoxide, ICI182-780 vehicle) 

(Tukey test, p< 0.05).  



 
 

117

B- ICI 182-780 blocked the antinociceptive effect induced by E-BSA in OVX 

females. The symbol “*” indicates a nociceptive response significantly lower than that 

induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” 

indicates a nociceptive response significantly greater than that induced by TMJ injection of 

formalin plus E-BSA plus DMSO (dimethylsulfoxide, ICI182-780 vehicle), (Tukey test, p< 

0.05).  

C- ICI 182-780 blocked the antinociceptive effect induced by estradiol in 

diestrus females. The symbol “*” indicates a nociceptive response significantly lower than 

that induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol 

“+” indicates a nociceptive response significantly greater than that induced by the TMJ 

injection of formalin plus estradiol plus DMSO (dimethylsulfoxide, ICI182-780 vehicle) 

(Tukey test, p< 0.05).  

Figure 3- Effect of intra-articular administration of the NO synthase inhibitor L-

NNA on the antinociceptive effect induced by estradiol in the TMJ. 

A- L-NNA blocked the antinociceptive effect induced by estradiol in OVX 

females. The symbol “*” indicates a nociceptive response significantly lower than that 

induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” 

indicates a nociceptive response significantly greater than that induced by the TMJ 

injection of formalin plus estradiol (Tukey test, p< 0.05).  

B- L-NNA blocked the antinociceptive effect induced by E-BSA in OVX 

females. The symbol “*” indicates a nociceptive response significantly lower than that 

induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” 

indicates a nociceptive response significantly greater than that induced by the TMJ 

injection of formalin plus E-BSA (Tukey test, p< 0.05).  

C- L-NNA blocked the antinociceptive effect induced by estradiol in diestrus 

females. The symbol “*” indicates a nociceptive response significantly lower than that 

induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” 
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indicates a nociceptive response significantly greater than that induced by the TMJ 

injection of formalin plus estradiol (Tukey test, p< 0.05). 

Figure 4- Effect of intra-articular administration of the Guanilato cyclase 

inhibitor ODQ on the antinociceptive effect induced by estradiol in the TMJ. 

A- ODQ blocked the antinociceptive effect induced by estradiol in OVX 

females. The symbol “*” indicates a nociceptive response significantly lower than that 

induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” 

indicates a nociceptive response significantly greater than that induced by the TMJ 

injection of formalin plus estradiol plus DMSO (dimethylsulfoxide, ODQ vehicle) (Tukey 

test, p< 0.05).  

B- ODQ blocked the antinociceptive effect induced by E-BSA in OVX females. 

The symbol “*” indicates a nociceptive response significantly lower than that induced by 

the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” indicates a 

nociceptive response significantly greater than that induced by the TMJ injection of 

formalin plus E-BSA plus DMSO (dimethylsulfoxide, ODQ vehicle) (Tukey test, p< 0.05).  

C- ODQ blocked the antinociceptive effect induced by estradiol in diestrus 

females. The symbol “*” indicates a nociceptive response significantly lower than that 

induced by the TMJ injection of formalin plus vehicle (propyleneglycol). The symbol “+” 

indicates a nociceptive response significantly greater than that induced by the TMJ 

injection of formalin plus estradiol plus DMSO (dimethylsulfoxide, ODQ vehicle) (Tukey 

test, p< 0.05). 

Figure 5- Effect of intra-articular administration of the opioid receptor 

antagonist naloxone on the antinociceptive effect induced by estradiol in the TMJ. 

A- Naloxone did not affect the antinociceptive effect induced by estradiol in 

OVX females. The symbol “*” indicates a nociceptive response significantly lower than 

that induced by the TMJ injection of formalin plus vehicle (propyleneglycol) (Tukey test, 

p< 0.05). 
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B- Naloxone did not affect the antinociceptive effect induced by estradiol in 

diestrus females. The symbol “*” indicates a nociceptive response significantly lower than 

that induced by the TMJ injection of formalin plus vehicle (propyleneglycol) (Tukey test, 

p< 0.05). 
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DISCUSSÃO 

Os resultados desse estudo demonstram que os níveis fisiológicos de 

testosterona diminuem o risco de ratos desenvolverem nocicepção da ATM e os de 

estrógeno diminuem a nocicepção da ATM em ratas. Além disso, a nocicepção da ATM 

também é diminuída pela administração de estrógeno e progesterona em ratas 

gonadectomizadas e de testosterona em ratos gonadectomizados. O efeito antinociceptivo 

induzido pelo estrógeno e pela progesterona em fêmeas e pela testosterona em machos é 

mediado por mecanismos opióides centrais, enquanto mecanismos opióides periféricos 

também medeiam o efeito da progesterona e da testosterona, mas não do estrógeno. 

Consistente com a ausência de envolvimento do sistema opióide periférico no efeito 

antinociceptivo do estrógeno, demonstramos que administração de estrógeno na ATM 

reduz a nocicepção através de um mecanismo periférico não genômico, mediado pela 

ativação da via do óxido nítrico-GMPc, mas não pela ativação do sistema opióide.  

Os resultados apresentados nos dois primeiros capítulos desse estudo replicam e 

ajudam a explicar três importantes características clínicas da modulação da dor da ATM 

pelos hormônios sexuais. Primeiro, a menor prevalência das condições dolorosas da ATM 

no sexo masculino (Carlsson and LeResche 1995) poderia ser explicada por um efeito 

protetor da testosterona que diminui o risco de desenvolvimento dor na ATM. Essa idéia é 

suportada pelos dados experimentais que demonstraram que a administração de formalina 

na ATM em uma concentração (0,5%) que não induziu nocicepção em machos intactos, 

induziu em machos gonadectomizados e em fêmeas intactas (Cap 1, Fig 2, pg 24). 

Segundo, a maior severidade das condições dolorosas da ATM no sexo feminino (Carlsson 

and LeResche 1995) poderia ser explicada pelo fato de que nas mulheres, ao contrário do 

que ocorre nos homens, os níveis hormonais não são constantes. Períodos de altos níveis 

hormonais são seguidos por quedas bruscas desses níveis e durante o período de baixos 

níveis hormonais a dor da ATM poderia ser exacerbada. Essa idéia é suportada pelos dados 

experimentais que demonstraram que a resposta nociceptiva induzida pela injeção de 

formalina na ATM de machos é significativamente menor que àquela induzida na ATM de 

fêmeas em diestro, fase do ciclo estral com baixos níveis de estrógeno, mas semelhante 
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àquela induzida na ATM de fêmeas em proestro, fase do ciclo estral com altos níveis de 

estrógeno (Cap 2, Fig 2, pg 52). Terceiro, o aumento da dor da ATM em mulheres durante 

os períodos de baixos níveis séricos de estrógeno (LeResche et al. 2003) poderia ser 

explicado pela interrupção do efeito antinociceptivo induzido pelo estrógeno. Essa idéia é 

suportada pelos dados experimentais que demonstraram que a nocicepção induzida pela 

injeção de formalina na ATM de fêmeas na fase diestro do ciclo estral, é maior que aquela 

induzida em fêmeas na fase proestro (Cap 2, Fig 2, pg 52) 

Esses resultados, juntamente com aqueles que demonstraram que a 

administração de estrógeno e progesterona em fêmeas gonadectomizadas diminui a 

nocicepção induzida pela injeção de formalina na ATM (Cap 2, Fig 5, pg 55) contrastam 

não só com a idéia clássica de que a maior prevalência e severidade das condições 

dolorosas da ATM em mulheres é resultado de um efeito pró-nociceptivo dos hormônios 

ovarianos (LeResche 1997; Warren and Fried 2001; Craft et al. 2004; Cairns 2007), mas 

também com estudos que sugeriram um efeito pró-nociceptivo do estrógeno na nocicepção 

experimental da ATM em ratos (Bereiter 2001; Cairns et al. 2002; Okamoto et al. 2003; 

Flake et al. 2005). A idéia de que um efeito pró-nociceptivo dos hormônios ovarianos seria 

responsável pela maior prevalência e severidade das condições dolorosas da ATM no sexo 

feminino provavelmente resulta de estudos que demonstraram que a dor da ATM é mais 

intensa em mulheres (Pullinger et al. 1988; Magnusson et al. 2000; Wolf et al. 2001; Etoz 

and Ataoglu 2007). No entanto, é importante salientar que na maioria desses estudos 

(Pullinger et al. 1988; Magnusson et al. 2000; Wolf et al. 2001; Etoz and Ataoglu 2007) a 

fase do ciclo menstrual das mulheres não é levada em consideração. Como o período em 

que os níveis hormonais estão baixos é maior que quando estão elevados, a chance de 

analisar mulheres durante o período de baixo nível hormonal é maior, o que poderia levar a 

observação de que a dor da ATM é sempre maior no sexo feminino. Essa observação, 

juntamente com dados epidemiológicos, de que as DTMs são duas vezes mais comuns em 

mulheres, pode levar a conclusão de que são os hormônios ovarianos aumentam a 

sensibilidade dolorosa e conseqüentemente são os responsáveis pela maior prevalência das 

DTMs no sexo feminino. Por outro lado, a discrepância entre o presente estudo e aqueles 

que apontam para um efeito pró-nociceptivo do estrógeno na nocicepção experimental da 
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ATM em ratos (Bereiter 2001; Cairns et al. 2002; Okamoto et al. 2003; Flake et al. 2005) 

poderia ser explicada por diferenças nas metodologias experimentais. Conforme discutido 

no capítulo 2 (pg 40), uma possível explicação é o estado de consciência do animal, uma 

vez que todos esses estudos utilizaram animais anestesiados e que já foi demonstrado que a 

anestesia geral altera as propriedades eletrofisiológicas de neurônios em áreas envolvidas 

na modulação e transmissão da informação nociceptiva (Heym et al. 1984; Collins and Ren 

1987; Oliveras et al. 1991; McGaraughty et al. 1995; Montagne-Clavel et al. 1995; Shaw et 

al. 2001).  

É importante salientar que em nenhum dos estudos que avaliou o efeito do 

estrógeno na nocicepção experimental da ATM em ratos (Bereiter 2001; Cairns et al. 2002; 

Okamoto et al. 2003; Flake et al. 2005) o agente nociceptivo utilizado foi a formalina. Por 

esse motivo, decidimos avaliar o efeito dos hormônios ovarianos utilizando também o 

glutamato, que é o agente nociceptivo utilizado no estudo que demonstrou que o estrógeno 

aumenta a resposta eletromiográfica dos músculos mastigatórios induzida pela injeção de 

glutamato na ATM de ratas (Cairns et al. 2002). A influência do sexo e dos hormônios 

ovarianos na nocicepção induzida pela injeção de glutamato ou de formalina na ATM foi 

exatamente a mesma, o que demonstra que os resultados obtidos com o teste da formalina 

na ATM não são estritamente relacionados a nocicepção induzida por esse agente 

nociceptivo. O fato de termos obtidos resultados semelhantes utilizando dois agentes 

nociceptivos diferentes e de que esses resultados replicam estudos clínicos sugere que o 

modelo comportamental de nocicepção da ATM pode ser útil e confiável para estudar os 

mecanismos envolvidos no efeito antinociceptivo dos hormônios sexuais na ATM de ratos. 

Um procedimento experimental muito útil para o estudo desses mecanismos é a 

administração de drogas no líquido cefalorraquidiano da região de complexo sensorial 

trigeminal (Flores et al. 2001). Nesse contexto, a técnica que permite a injeção direta de 

drogas nessa região, sem a necessidade de procedimentos cirúrgicos (capítulo 3, pg 57), 

contribui especialmente com os estudos que utilizam a análise do comportamento 

nociceptivo para investigar os mecanismos envolvidos no efeito antinociceptivo dos 

hormônios sexuais. Evidentemente, essa é uma técnica útil para todos os experimentos, 
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relacionados ou não com nocicepção e com hormônios sexuais, em que faz necessária a 

administração de drogas na região do complexo sensorial trigeminal.   

Os hormônios sexuais desempenham um papel complexo, envolvendo quase 

todas as estruturas do corpo (Aloisi and Bonifazi 2006). Seus receptores estão amplamente 

distribuídos no sistema nervoso, tanto central (Simerly et al. 1990; Amandusson et al. 

1996; Voisin et al. 1997; Alves et al. 1998; VanderHorst et al. 1998; Kastrup et al. 1999; 

McEwen 2001; Francis et al. 2002) quanto periférico (Keast and Gleeson 1998; Koenig et 

al. 2000; Chaban and Micevych 2005), em células inflamatórias (King et al. 1996; Bebo et 

al. 1999; Phiel et al. 2005) e nos tecidos da região da ATM (Aufdemorte et al. 1986; 

Abubaker et al. 1993; Yamada et al. 2003). Portanto, esses hormônios podem afetar a 

nocicepção da ATM através da ativação de diferentes mecanismos em diferentes regiões 

envolvidas na transmissão e modulação da informação nociceptiva. Nesse estudo, 

demonstramos que o aumento da atividade opióide endógena, no sistema nervoso central, 

medeia o efeito antinociceptivo induzido pelo estrógeno e progesterona na ATM de fêmeas 

e pela testosterona na ATM de machos (Cap 4, figs 1-4, pgs 94-97). Embora vários estudos 

tenham demonstrado que os hormônios sexuais modulam o sistema opióide endógeno em 

áreas envolvidas na transmissão da informação nociceptiva (Dawson-Basoa and Gintzler 

1993; Quinones-Jenab et al. 1997; Amandusson et al. 1999; Chang et al. 2000; Flores et al. 

2003; Foradori et al. 2005; Smith et al. 2006), poucos estudos avaliaram a participação 

direta do sistema opióide no efeito antinociceptivo desses hormônios. Um estudo recente, 

realizado em mulheres, demonstrou que altos níveis circulantes de estrógeno estão 

relacionados à diminuição da dor induzida experimentalmente na região orofacial e à maior 

ativação do sistema opióide no sistema nervoso central (Smith et al. 2006). Além de 

mecanismos opióides centrais, mecanismos opióides periféricos também medeiam o efeito 

antinociceptivo da progesterona e da testosterona, mas não do estrógeno (Cap 4, figs 1-4, 

pgs 94-97). De fato, dados apresentados no capítulo 5 demonstram que a administração de 

estrógeno na ATM diminui a nocicepção por meio de um mecanismo periférico não 

genômico (Cap 5, figs 1 e 2, pgs 116-18) mediado pela ativação da via do óxido nítrico-

GMPc (Cap 5, figs 3 e 4, pgs 119-21), mas não do sistema opióide periférico (Cap 5, fig 5, 

pgs 122). Esse resultado é consistente com estudos que demonstram que a ativação 
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periférica da via do óxido nítrico-GMPc induz antinocicepção e que o estrógeno ativa as 

enzimas dessa via (Fiorelli et al. 1996; Chen et al. 1999; Simoncini et al. 2000) e reduz a 

atividade da fibra nociceptiva primária (Lee et al. 2002; Chaban et al. 2003; Ma et al. 

2005) por meio de mecanismos não genômicos.  

Esse estudo dá um passo inicial para o entendimento dos mecanismos 

envolvidos na modulação da nocicepção da ATM pelos hormônios sexuais. No entanto, 

estudos adicionais são necessários tanto para compreender a via envolvida na ativação 

desses mecanismos, ou seja, desde a ativação do receptor hormonal até a redução efetiva da 

nocicepção, quanto para avaliar o envolvimento de outros possíveis mecanismos. Com 

relação aos mecanismos descritos nesse estudo, por exemplo, é necessário determinar o 

local onde os hormônios sexuais ativam do sistema opióide, no sistema nervoso central. 

Conforme discutido no capitulo 4 (pg 85), o subnúcleo caudal, que é o correspondente 

trigeminal do corno dorsal da medula espinhal, pode estar envolvido, principalmente 

porque a naloxona é injetada próximo a essa região. No entanto, como a naloxona pode se 

difundir no líquido cefalorraquidiano, não se pode descartar o envolvimento de outras 

regiões. Uma possibilidade bem aceitável seria de que os hormônios sexuais ativassem 

algum sistema de modulação descendente (Gebhart 2004). Independente do local onde essa 

ativação está ocorrendo, para determinar a via neuronal envolvida é importante determinar 

os subtipos de receptores opióides envolvidos e a sua localização, pré ou pós-sináptica. No 

sistema nervoso periférico, a progesterona e a testosterona poderiam modular o sistema 

opióide principalmente por meio de dois mecanismos. Conforme sugerido no capítulo 4 (pg 

85), uma possibilidade é de que esses hormônios aumentem a transcrição dos genes que 

codificam os receptores opióides nas células do gânglio trigeminal. Nesse caso, a expressão 

desses receptores estaria aumentada tanto no terminal central, quanto no terminal periférico 

da fibra nociceptiva aferente primária. Esse mecanismo explicaria porque a injeção de 

naloxona induziu o mesmo efeito quando administrada no sistema nervoso central e na 

ATM. No entanto, não se pode descartar a possibilidade de que esses hormônios aumentem 

a liberação de opióides endógenos pelas células inflamatórias que migraram para a região 

da ATM após a injuria tecidual. Com relação ao efeito antinociceptivo periférico não 

genômico do estrógeno também ainda há muito para se estudar. Inicialmente, seria 
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interessante comprovar que o estrógeno aumenta a ativação, mas não a expressão, das 

enzimas da via do óxido-nítrico. Também é necessário determinar os mecanismos 

bioquímicos e moleculares envolvidos tanto na ativação dessas enzimas pelo estrógeno, 

possivelmente pela ativação de vias intracelulares de proteína quinases (Chen et al. 1999; 

Simoncini et al. 2000), quanto na diminuição da transmissão nociceptiva aferente pelo 

GMPc, possivelmente pela da ativação de uma proteína quinase G (Ropero et al. 1999) e da 

abertura de canais de potássio (Sachs et al. 2004; Ortiz et al. 2006).  

Embora os hormônios sexuais sejam apenas um dos vários fatores que 

modulam a dor, os mecanismos envolvidos no efeito antinociceptivo desses hormônios são 

de grande interesse terapêutico. O tratamento das  DTMs (Carlsson 1999; Shankland 2004), 

assim como da maioria das condições de dor crônica (Schnitzer 2006) é marcado por um 

alto índice de insucessos. Apesar de nosso conhecimento sobre os mecanismos nociceptivos 

ter evoluído muito nos últimos anos, os fármacos utilizados para o controle da dor hoje 

pertencem a mesma classe de fármacos utilizados há décadas. São basicamente 

antiinflamatórios e analgésicos opióides que induzem inúmeros efeitos colaterais que se 

intensificam com o uso crônico. O aumento da eficácia desses fármacos e principalmente, o 

desenvolvimento de novas classes de fármacos mais efetivos e que apresentem menos 

efeitos colaterais aumentaria os índices de sucesso nos tratamentos e a qualidade de vida do 

paciente que sofre de dor crônica. O estudo dos mecanismos pelos quais os hormônios 

sexuais reduzem a dor contribuirá tanto para o desenvolvimento de novas classes de 

fármacos quanto para aprimorar aquelas já existentes. Por exemplo, os resultados desse 

estudo sugerem que a maior sensibilidade dolorosa em mulheres durante os períodos em 

que os níveis de estrógeno estão baixos poderia ser mediada por uma diminuição da 

atividade opióide central (capítulo 4), e/ou por uma diminuição da ativação periférica da via 

do óxido nítrico-GMPc (capítulo 5). Portanto, uma alternativa terapêutica viável e eficaz 

para o controle da dor, especialmente no sexo feminino poderia ser o desenvolvimento de 

agonistas opióides específicos, que compensem os efeitos induzidos pela diminuição dos 

níveis de estrógeno no sistema nervoso central, ou de antiinflamatórios e opióides que 

compensem uma possível diminuição da ativação da via do óxido nítrico (importante 

salientar que essa via medeia os efeitos antinociceptivos periféricos tanto de 
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antiinflamatórios (Deciga-Campos and Lopez-Munoz 2004; Ventura-Martinez et al. 2004) 

quanto de opióides (Durate et al. 1990; Pol 2007)). Mais interessante ainda é a 

possibilidade de desenvolver moduladores de receptores de estrógeno que não induzam 

efeitos estrogênicos clássicos, mas que mimetizem ou potencializem as ações do estrógeno 

sobre os mecanismos nociceptivos, por exemplo, sobre o sistema opióide ou sobre a via do 

óxido nítrico-GMPc. O desenvolvimento desse tipo de fármaco para o controle da dor se 

encontra em fase de experimentação animal (Keith et al. 2005). 
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 CONCLUSÕES 

Os resultados apresentados nesse estudo em ratos sugerem que:  

(1) Os níveis fisiológicos de testosterona exercem um efeito protetor em 

machos, diminuindo o risco de desenvolvimento da dor na ATM. Os níveis 

suprafisiológicos de testosterona em machos reduzem a dor da ATM já instalada.  

(2) O alto nível fisiológico de estrógeno durante a fase proestro do ciclo estral e 

a adminstração de estrógeno e progesterona em fêmeas ovariectomizadas diminui a 

nocicepção induzida pela injeção de formalina ou de glutamato na ATM. 

(3) A técnica de injeção direta de drogas no espaço subaracnóide da região de 

complexo sensorial trigeminal facilitará o estudo dos mecanismos nociceptivos trigeminais.  

(4) Mecanismos opióides no sistema nervoso central medeiam o efeito 

antinociceptivo do estrógeno, da progesterona e da testosterona, enquanto  mecanismos 

opióides periféricos medeiam o efeito antinociceptivo da progesterona e da testosterona. 

(5) A co-administração de estrógeno com formalina na ATM de fêmeas reduz a 

nocicepção induzida pela formalina através de um mecanismo não genômico periférico 

envolvendo a ativação da via do óxido nítrico-GMP cíclico.  
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