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RESUMO 

Vários relatos na literatura sugerem que a Ciclosporina A (CsA) aumenta a 

remodelação óssea com a reabsorção excedendo a formação, resultando em perda óssea. Os 

mecanismos da perda óssea associada à CsA são complexos e envolvem marcadores ósseos 

celulares e produtos dos osteoblastos e osteoclastos. Dentre os mediadores imunológicos, a 

CsA parece ter efeitos na produção de óxido nítrico (NO), o qual exerce efeitos bifásicos 

sobre o osso. O objetivo do presente trabalho foi avaliar os efeitos da CsA sobre o osso 

através da mensuração da densidade mineral óssea (BMD), análise bioquímica (fosfatase 

alcalina total, cálcio sérico e fósforo) e relacionar com a expressão de NO e TNFa. pelos 

macrófagos peritoniaís de camundongos. 

Sessenta camundongos foram divididos em 4 grupos e receberam injeções 

subcutâneas diárias de CsA 50mglkg peso corporal, durante os períodos de 7, 14, 28 e 60 

dias (n~IO) e o controle recebeu solução salina (n~5). Amostras sanguíneas foram obtidas 

através de punção cardíaca e foram analísados: cálcio séríco, fósforo e fosfatase alcalina. 

Os macrófagos peritoniais foram obtidos de cada camundongo, 3 dias após a injeção 

intraperitonial de tioglicolato de sódio. As células foram incubadas com lipopolossacarídeo 

(LPS) e os sobrenadantes foram usados para o ensaio de produção de NO e TNFa. As 

radiografias digitais dos fêmures foram obtidas através de um sistema de imagem digital, 

CDR R. A densidade mineral óssea (B:MD) foi avaliada com o auxílio do software 

Photoshop 7,0 (Microsoft, 2003). 

A concentração dos marcadores séricos ósseos vanou com o tempo de 

administração da CsA. Houve diminuição de cálcio após 28 dias e fósforo e ALP após 7 

dias. A BMD diminuiu signiftcatívamente na epífise distai dos fêmures, a partir de 14 dias 

e na epífise proximal, somente após 60 dias, nos camundongos submetidos ao tratamento 

com CsA. A produção de NO e TNF-a aumentou significativamente nos camundongos 

tratados com CsA (período de 7 e 14 dias). A partir dos resultados do presente trabalho 

confirmamos que a CsA induziu perda óssea. Houve um sinergismo entre a perda óssea e a 

diminuição de ALP, cálcio e fósforo sérico, assim como o aumento dos níveis de NO e 

TNF-a. 
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ABSTRACT 

Severa} reports suggest that Cyclosporin A (CsA) causes increased bone turnover 

and remodeling with resorption exceeding formatíon, resulting in bone loss. The 

mechanism of CsA-induced bane loss is complex and can involve cellular bane markers 

and osteoblasts anel osteoclasts products. CsA seems to have effects on nitríc oxide (NO) 

production, which has a biphasic effect on osteoclastic bone resorption. The aim of the 

present study was to evaluate the effects of the CsA on bane by Bane Mineral Density 

(BMD), biochemical analysis (Total Alkaline Phosphatase- ALP and serum calcium) and 

to relate them with the expression o f NO and Tumor necrosís factor alpha (TNFa) by 

peritoneal macrophage of rnice. 

Sixty mal e mice were distributed into 4 groups and CsA (Sandimmun Novartis) was 

injected subcutaneously in a daily dose of 50mg!kg body weight during the periods of 7, 

14, 28 and 60 days (n~JO), whereas control mice received saline solution (n~S). Blood 

samples were obtained by dírect cardiac puncture. Serwn calcium and total alkaline 

phosphatase leveis were obtained. Macrophages were obtained from the peritoneal cavities 

of treated and control mice 3 days after íntraperítoneal administration of sodium 

thyoglycollate. Cells were incubated with lipopolysaccharide (LPS). After incubation, the 

culture supernatants were used for NO and TNFa production assays. Digital radiographs of 

femurs were obtained with the use o f a computerized imaging system, CDR R. Bone mineral 

density (BMD) rneasurements were made with the help of the software Photoshop 7,0 

(Microsoft, 2003). 

The concentratíon of serum bone markers varied with the period of CsA 

adminístration. There was a significant decrease in the calcium leveis after 28 days and 

ALP after 7 days. The BMD decreased significantly on distai epiphysis o f femurs af\er 14 

days and on proximal epiphysis after 60 days, in the mice submitted to CsA therapy. NO 

and TNF-a production had a significant increase in mice treated with CsA (7 and 14 days). 

Based on the results of the present study we confirmed that CsA induces borre loss in vivo. 

There was a synergism between the bone loss and the decrease o f alkaline phosphatase, and 

calei um, and the increase ofNO and TNF-a. 
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INTRODUÇÃO 

Os avanços na compreensão dos eventos que controlam o sistema imune, aliados à 

terapia imunossupressora e ao aprimoramento de técnicas cirúrgicas propiciam, de forma 

incontestável, avanços significativos no sucesso da inibição da rejeição dos transplantes. 

A Ciclosporina A (CsA) é uma potente droga imunossupressora, inicialmente 

isolada do fungo Toiypocladium injlatum Gams (Borel & Kís, 1991). O uso da CsA como 

agente imunossupressor no início de 1980 contribuiu para o avanço dos transplantes de 

órgãos. Atualmente, é amplamente usada na terapia de pacientes que receberam 

transplantes de órgãos evitando a rejeição aguda do enxerto e no tratamento de algumas 

doenças autoímunes (Epsteín, 1996). 

A CsA liga-se ao receptor citoplasmático ciclofilina, que inibe a atividade da 

calcineurina, um importante fator limitante na ativação das células T (Jorgensen et ai, 

2003). A calcineurina exerce um papel importante regulando o fator de transcrição NF~AT 

(nuclear factor ofactivated T-cells) durante a ativação e fonnação do linfócito T cítotóxico 

(Hemenway & Heitman, 1999; Stepkowski, 2000). 

O NF-AT em condições fisíológícas regula genes corno o da interleucina 2 (IL-2), 

interleucina 4 (IL-4) e interferon gama (IFNy), causando a transcrição dos mesmos e a 

secreção das referidas citocinas. O bloqueio da calcineurina e, conseqüentemente, do NF­

AT é considerado, portanto, o principal efeito da CsA, causando urna supressão da 

expressão normal destes mediadores e seus receptores (Garcia et al, 2004). Desta fonna, a 

resposta imune celular e hurnoral são reduzidas inibindo a rejeição do enxerto (Mascarell & 

Truffabachi, 2003). Estes efeitos iniciais levam à vários efeitos secundários em macrófagos 

e outras células dependentes de citocinas e linfocinas, produzidas por células T ativadas 

(Tannírandorn et al, 2000). 

A terapia com CsA está amplamente relacionada com diversos efeitos secundários 

indesejáveis como nefrotoxicidade (Lynn et ai., 2001; Grynio & Cruzado, 2004), 

hepatotoxicidade, neurotoxicidade (Gijtenbeek et al., 1999), hipertensão (Koomans & 

Ligtemberg, 2001) e alterações gengivais (Doufexi et al, 2005). Pacientes transplantados 
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tratados com CsA, geralmente apresentam perda óssea com altas taxas de fratura (Ramsey­

Goldman et a!, 1999; Cohen & Shane, 2003). 

Desta forma, a proposta do presente trabalho foi: 

Avaliar a perda óssea induzida pela CsA em camundongos através da determinação 

da concentração de cálcio, fósforo e fosfatase alcalina e da densidade mineral óssea. 

Determinar a produção do óxido nítrico e fator de necrose tumoral alfa (TNF-a.) em 

cultura de macrófagos peritoniais nos camundongos tratados com CsA. 
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Capítulo I 

REVISÃO DA LITERATURA 

Artigo enviado para publicação no periódico 
Oral Diseases, 
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The use of the immunosuppressive drug Cyclosporin A (CsA) has facilitated organ 

transplantation, which has become the management of choice for many patients with 

chronic and life-threatening illnesses (Epstein, 1996). Some immune diseases have been 

treated with CsA (Ponticelli, 2005) 

The molecular mechanisms whereby CsA inhibit T cell activation are well 

understood (Stepkowski, 2000; Shibasaki et ai, 2002). CsA binds to its immunophilin, 

cyclophilin at the cytoplasm to form complexes, which in turn inhibit the phosphatase 

activity o f calcineurin, an important limiting step in the activation o f T cells (Stepkowski, 

2000; Jorgensen et al, 2003). Calcineurin, a serine-threonine specific calcium-calmodulin­

activated phosphatase, plays a key role in regulating the potent nuclear factor of activated 

T-cells (NF-AT) during T-cell activation (Hemenway & Heitman, 1999). By blocking the 

calcineurin activity, CsA prevents the induction of genes encoding for cytokines as 

interleukin-2 (IL-2), which is necessary for the proliferation and maturation of T cells, and 

interferon-gamma (IFN-y), which, in turn, is criticai for the activation of macrophages. 

Thus, humoral and cellular immune responses are reduced enabling allograft acceptance 

(Mascarell & Truffabachi, 2003) (Fig. 1). 

"SlgMI" 

I etU 
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Fig.l - Mechanism of action of 
cyclosporin A 

In the cytoplasm, CsA binds to its 
immunophilin, cyclophylin (CpN), 
forming a complex. The CsA-CpN 
complex binds and blocks the 
function of the enzyme calcineurin 
(CaN), which has a serine/threonine 
phosphatase activity, that fails to 
dephosphmylate the cytoplasrnic 
component of the nuclear factor of 
activated T ceUs (NF-ATc), and 
thereby the transport of NF-ATc to 
the nucleus. Physiologically, the 
NF-ATc- NF-ATn complex binds to 
the promoter of the interleukin 2 
(IL-2) gene and initiates IL-2 
production. Consequently, with 
CsA, T cells do not produce IL-2, 
which is necessary for full T -cell 
activation. (Adapted from 
(Hemenway & Heitman (1999) and 
modified y the autl1ors.) 



CsA therapy is associated with a range of agent-specific side effects: nephropathy 

(Lynn et ai., 2001; Grynio & Cruzado, 2004), hypertension (Koomans & Ligtenberg, 2001), 

hepatic dysfunction, neurologica1 disturbances (Gijtenbeek et ai., 1999) and gingival 

overgrowth (Doufexi et ai, 2005). 

There is much controversy m the literature about the effect of CsA on bone 

metabolism. Treatment with CsA following solid organ transplantations generally results in 

bane loss (Marcen et ai, 2005). Bane loss following transplantation is usually rapid in the 

ear1y phase with stabilization after one year (mean lumbar spine BMD decreases rapidly, 

especially during the first 6 months); although, concealed within this general statement is 

the reality of wide variability between apparently similar patients and also between the 

different categories of organ recipient (Ramsey-Goldman et ai, 1999). Fractures rates are 

variable and often extremely high. Compared with expected rates in the normal population, 

fracture incidence was five times higher in male kidney recipients aged 25 to 64 years. In 

women the incidences were 18- and 34-fold higher in kidney recipients aged 25-44 years 

and 45-64 years, respectively (Ramsey-Goldman et ai, 1999). The high fracture rale 

observed in dialysis patients increases even further after success full kidney transplantation, 

especially in diabetes (Casez et ai, 2002). Bone loss rate following cardiac, liver, and lung 

transplantation is striking1y high during the frrst 6 months with fracture rates to match, 

ranging from 22% to 36%, 24% to 65%, and as high as 73%, respectively (Cohen & Shane, 

2003; Shane et ai, 1996). The possible mechanisms of CsA over bone metabolism wíll be 

discussed in this review. 

Normal Bone Remodeling 

Bone is constantly undergoing the process of remodeling_ In bone remodeling, there 

ts a constant resorption on a particular bony surface, followed by a phase of bone 

formation. There is a balance between the amount of bone resorbed by osteoclasts and the 

amount of bone formed by osteoblasts (Roodman, 1999). The current concept of bone 

remodeling is based on the hypothesis that osteoclastic precursors become active and 

differentiated into osteoclasts, and thus the process ofbone resorption begins. This stage is 

followed by a bone formatíon phase. The terminatíon of bone resorption and the inítiation 
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of bone formation in the resorption lacuna occur through a coupling mechanism. The 

coupling process ensures that the amount of bone removed is equivalent to the amount of 

bone laid down during the subsequent bone formation phase. The nature of the activation 

and coupling mechanism involves various lymphokines, fibroblast growth factor (FGF), 

transforming growth factor beta (TGF-~) and prostaglandins. 

Osteoclastogenesis ts an important factor of the coupling process. 

Osteoclastogenesis is under the control of osteoblasts: factors such as the parathyroid 

hormone (PTH), 1,25 dihydroxyvitamin D,, and prostaglandin E, (PGE2), which promote 

resorption, work initially on osteoblasts and marrow stromal cells to up-regulate the 

expresswn of a cell surface molecule called receptor activator of NF-K-(RANK-L) 

(receptor activator of nuclear factor kappa B ligand). NF-K-(RANK-L) protein belongs to 

the tumor necrosis factor (TNF) family (Teitelbaum, 2000). Once expressed, RANK-L 

binds to RANK, a receptor on osteoclast precursor mononuclear cells of the 

rnonocyte/rnacrophage family, establishing cell-to-cell contact (Roodrnan, 1999). These 

precursor cells fuse to forrn large multinucJeated osteocJasts, whích are the cell ultimately 

responsible for bane destruction. (Wiebe et ai, 1996; Ross, 2000; Teitelbaum, 2000). Thus, 

regulation of RANK-L expression ís the key to the pathogenesis of many osteopenic 

disorders (Wei et ai, 2005). In fact, the ratio ofRANK-L to its soluble, antiosteoclastogenic 

decoy receptor - osteoprotegerin (OPG), is a reasonable indicator of the magnitude of 

systemic bane loss in these pathological conditions (Wei et ai, 2005). 

The resorption phase typically proceeds for about ten days and is then followed by 

several months of bane replacement (Baker, 2000). Osteoclasts disappear and are replaced 

by osteoblasts. Osteoblasts are derived from mesenchymal precursors cells (Puzas, 1993) 

that are attracted chernotactically. Then, bane cells mitogens, including TGF-~, platelet­

derived growth factor (PDGF), bone morphogenetic protein, FGF and insulin-like growth 

factors-I and -II, induce the proliferation and differentiation of osteoblasts (Baker, 2000). 

Osteoblasts secrete bane matrix proteins, including type-1 collagen, proteoglycans, 

osteocalcín, osteopontin and the previously rnentioned growth factors, and later stimulate 

their mineralization (Mundy, 1991-A) 
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Normal Bone Regulatory Factors 

Normal bone remodeling is regulated by several systemic hormones as well as by 

local factors such as NO, prostaglandins, growth factors and cytokines. The intímate 

connections between the immune system and bone remodeling are becoming apparent 

(Baker, 2000) 

Immune cells are present in the bone microenvironment and secrete rnany of the 

factors that regulate bone remodeling. Some of these factors promote bone resorption and 

others inhibit bone resorption or actively induce bone formation. The majority of these, 

even the factors that induce resorption, act on the osteoblast The osteoblast in tum signals 

the actívatíon ofthe osteoclast through the RANK-L described earlier (Baker, 2000) 

The cytokines considered most frequently as active promoters of resorption m 

normal bone are: ínterleukín-1 (IL-1), TNF (including TNF-a and TNF-P) and inter1eukin-

6 (IL-6). All except IL-1 can be secreted by T lymphocytes; IL-1 and TNF-a are also 

produced by macrophages (Baker, 2000). 

On the other hand, TNF is probably the dominant cytokine extant in inflammatory 

osteolysis (Feldmann & Mainí, 2001; Gravallese, 2002; Romas et ai, 2002; Redlich et ai, 

2002; Ritchlin et al, 2003), since TNF-induced osteoclastogenesis requíres at least 

constitutive leveis of RANK-L. This dependency of TNF-mediated osteoclastogenesis on 

attendant RANK-L is underscored by the absence of meaningful osteoclast recruitment or 

bone destruction in the face of experimental inflammatory arthritis in mice in which 

RANK-L receptor has been deleted (Li et ai, 2004). In addition, Wei et ai (2005) have 

shown that TNF induces RANK-L expression by marrow stromal cells. 

Like TNF, IL-1, another major osteoclastogenic cytokine, prometes RANK-L 

expression by marrow stromal cells and osteoblasts (Hofbauer et al, 1999). Recent studies 

have shown that IL-1 mediates TNF-induced RANK-L expression and the consequent 

osteoclastogenesis (Wei et ai, 2005). 

Other important resorptive factors released by stimulated macrophages include 

PGE2, and nitric oxide (NO) (Baker, 2000). Interleukin 8 (IL-8) is chemotactic for 

neutrophíls, and can also induce neutrophils to secrete the resorptive cytokines IL-1 ~ and 

TNF-a. Other T-cell factors inducing resorption are interleukin 3 (!L-3) and IFNy. IFNy 

11 



actual!y induces bone formation in vitro, but bone resorption in vivo, demonstrating that the 

outcome of cytokine induction is difficult to predict, likely due to the complexity of the 

cytokinelbone network (Baker, 2000) 

Other anti-inflammatory cytokines blunt osteoclastogenesis by selectively inhibiting 

RANK-L signaling in osteoclast precursors (Wei et ai, 2002). lnterleukin 4 (IL-4) is an 

abundant anti-inflammatory cytokine, produced mainly by activated T lymphocytes, that 

inhibits TNF and IL-1 induced RANK-L expression. 

Osteoporosis and Cyclosporin A 

Osteoporosis is characterized by low bone mass accompanied by abnonnalities of 

bone architecture. Osteopenia describes a state of reduced bone mass. The National 

Institute of Health (NlH) defines osteoporosis as "a skeletaJ disorder characterized by 

compromised bone strength predisposing to an increased risk of fracture. Bone strength 

reflects the integration of two main features - borre density and borre quality." Thus, 

osteoporosis is generally measured in transplanted patients implying the diagnosis of bane 

mineral density (BMD) (Cunningham, 2005). 

It is generally accepted that CsA causes bone loss in humans (Josephson et al, 2004; 

Cueto-Manzano et ai, 1999) contríbuting to post-transplantation bone disease. CsA has 

complex and incompletely understood actions on bone (Epstein, 1996). Several clinicai 

studíes in transplant patients indicate that CsA therapy induces bone loss. However, since it 

is difficult to be certain, since glucocorticoids and CsA are used almost universally as a 

combined therapy of glucocorticoids (Tannirandorn & Epstein, 2000). Treatment with CsA 

following solid organ transplantations, such as heart or liver, generally results in bane Joss. 

The pathagenesis af post-transplantation bone disease is only partially understaod. 

Clinically, in organ transplant recipients, bane 1oss occurs rapidly within the first year after 

transplantation (mean lumbar spine HMD decreases rapidly, especially during the first 6 

months) (Shane et al, 1993; Sambrook et al, 1994; Cunninghan, 2005) and continues, 

partícularly in the fernoral neck (Sambrook et al, 1994). Clinicai investigation with bone 

marrow transplanted patients that receíved CsA treatment showed an osteoclast stimulation 
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and asteoblast suppression with marked retardatian af mineral appasitian and law bane 

formation rates (Lee et ai, 2002). 

There are convincing evidences, with histological observations, that CsA causes 

increased bone tumover and remodeling with resorption exceeding formation, resulting in 

bane loss in animal experiments. In vivo experiments have shown that CsA produces severe 

asteoporosis in the rat (Epstein et ai, 1990; Movsawitz et ai, 1990; Epstein, 1996) that is 

dependent on dose and duration (Movsowitz et al, 1988). This high tum over osteopenia is 

characterized by a rapid remodeling wíth an increased serum osteocalcin, a decrease in 

bane mass, loss of cancellous bone and increased osteoblast activíty and recruítment 

(Movsowitz et ai, 1988; Schlosberg et al, 1989; Epstein et a!, 2001; Buchinsky et a!, 1996). 

CsA has been associated with a reduced bane mass, decreased trabecular number 

and increased trabecular separation. With regard to kinetic histomorphometric indices, CsA 

treated rats showed an increased percent mineralizing surface, mineral apposition rate, bone 

formation rate/tissue volume, and bone formation rate/bone volume (Epstein et al, 2001). 

Fu et a! (1999) found that CsA decreased bane formation and induced a massive 

resorption ofthe alveolar bone. Bone histomorphometry has shown a decreased percent of 

trabecular bone volume, increased multinucleated osteoclast number (increased resorption) 

and increased parameters on bone formation. Osteopenia was characterized by scattered 

and thin trabecular bone (Pu et ai, 2001; Abdelhadi et al, 2002). 

Besides the clinicai evidences of bone loss after treatment with CsA in human and 

animais, in vitro studies have shown that CsA inhibits bone resorption. In vitro studies have 

demonstrated an inhibitory effect of CsA on bane resorption stimu1ated by PTH, IL-1, 

PGE2 and 1,25 dihydroxyvitamin D,(Stewart et a1, 1986; K1aushofer et ai, 1987; Sasagawa 

et a1, 1989; Chowdhury et a1, 1991; Mccauley et ai, 1991). In human osteoblast-like cells, 

CsA has a selective inhíbitory effect on IL-1 (Skjodt et ai, 1984). However, isolated culture 

systems may not represent the in vivo environment, as it ís known that, in vivo, T 

lymphocytes are criticai for CsA-induced bone resorption (Epstein, 1996) as well as in 

some in vitro systems (Buchinsky et al, 1996; Zahner et al, 1997). 
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Mechanism of Action ofthe CsA-Induced Bone Loss 

The pathogenesis of post-transplantation bone disease is only partially understood. 

Increased serurn PTH and decreased serum calcitriol (25(0H)D3) leveis are among 

previously reported causes (Compston et a4 1996). The influence of CsA on severa! 

parameters may be related with the pathogenesis of CsA-induced post-transplantat1on bane 

loss. Mechanistically, it is likely that these effects are largely mediated by the alteration of 

the balance between RANK-L and OPG, with CsA increasing RANK-L and decreasing 

OPG (Hofbauer et ai, 2001; Cunninghan, 2005) (Fig. 2). Severa! factors can be involved 

and will be discussed in this review. 

CsA CsA 

• • tRANKL J.. osteonrote!!erin 

/ 
t osteoclasto2enesis 

~ 
t Bone resorntioo 

Figure 2. Proposed role of RANKL (receptor activat.or of NFKbeta ligand) and osteoprotegerin in the 
mediation of CsA toxicity. Figure based on Cunningham J. Posttransplantation Bone Disease Transplantation 

2005; 79:629-634. Al1 rights reserved to the author. 

CsA and T Lymphocyte 

It is thought that the CsA~induced osteoporosis may be mediated primarily by the 

presence of T lymphocytes, since CsA did not produce osteopenia in the T-cell-depleted 

nude rat (Buchinsky, 1996} In addition, the criticai role of T lymphocytes on human 

osteoclastogenesis has been confirrned in vitro by Zahner et a1 ( 1997). T cells are known to 

be capable of producing a wide variety of citokines, including TGF-p, IFNy, IL-4, 

interleukin 10 (IL-10), interleukin 13 (lL-13) and granu1ocyte-macrophage co1ony­

stimulating factor (GM-CSF), which ínhibit osteoclastogenesis, and IL-6, interleukin 7 (IL-

7) and TNF-a, which stimulate this process (Shinoda et ai, 2003). Shinoda et ai (2003) 

demonstrated that resting T cells negative1y regulated the osteoclast generation via 
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production GM-CSF and IFNy by CD4 T cells, and that CsA-induced bone loss may be due 

to the inhibition ofthese T-cell cytokines. In addition, previous reports have suggested that 

activated T cells stimulate osteoclast generation by expressing the key osteoclastogenic 

molecule, receptor activator of NF-KB ligand (RANKL) (Shinoda et al, 2003), Recent 

studies have reported that RANK-RANKL signa1ing induces NF-AT nuclear translocation 

from cytoplasm and CsA inhibits RANKL-induced NF-AT activation and osteoclast 

fonnation (lshida et al, 2002; Takayanagi et al, 2002), These data suggest the T cells 

involvernent in CsA-induced bone loss_ 

CsA-Induced Bone Loss and Parathyroíd Hormone (PTH) 

PTH íncrease has been proposed to be very important in post-transplantation bone 

disease in humans_ Huang et ai (1995) demonstrated that trabecular bone loss in human 

post-transplantation was associated with a significant increase in serum PTH. However, 

human studies are difficult to interpret since transplanted patients usually receive a cocktail 

of immunosuppressants and may have underlying disease. (Epstein et a!, 200 I) 

The influence of CsA on PTH can be modulated by systemic factors since chronic 

renal failure is associated with a reduced glomerular filtration rate caused by CsA. 

However, secondary hyperparathyreoidism develops in response to ímpaired renal failure 

and intestinal calei um absorption and increased calciuria (Cunningham, 2005), 

There is an interaction between CsA and circulating PTH leveis resulting m a 

modifted hístomorphometric picture in parathyroidectomized (PTX) rats (Epstein et ai, 

2001). CsA and PTX have generally opposite effects on bone mineral metabolísm, 

producing respectively, high tumover osteopenia or increased bone density. The individual 

effect of CsA negates the effect ofPTX resulting in an indistinguishable histomorphometric 

picture with the BMD o f normal rats (Epstein et ai, 2001), Epstein et a~ 2001 proposed that 

CsA and PTX could exert their effect via separate mechanisms, negating each other, 

resulting in a net effect similar to control. Another possible explanatíon is that to 

demonstrate the profound accelerated bone loss ( cancellous bone) produced by CsA in 

nonnal rats, normal circulating leveis of PTH must be present. That situation was 

demonstrated in Epstein's experiment, where there was no increase in circulating PTH with 
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CsA administration. In this experiment, the authors suggest that PTH, as part of a 

secondary hyperparathyroidísm, may be involved in the bane disease caused by the cocktail 

of immunosuppressants used to prevent organ rejection, and they suggest that controlling 

post-transplantation leveis of PTH may decrease the high tum over state and lessen risks 

and effects oftransplantation bane disease. 

Serum Osteocalcin and CsA 

Serum osteocalcin (BGP) is a vitamín K-dependent non-collagenous protein product 

of mature osteoblasts. Increases in serum BGP may be an useful marker of osteoblast 

function. Serum BGP have raised in rats treated with CsA (Goodman et al, 2001; 

Movsowitz et al, 1988; Epstein et al, 2001) reflecting increased histomorphometric 

parameters of bane formation. Serum BGP was decreased when the combination of CsA 

and TGF-P was administered to the rats. (Goodman et al, 2001) 

Serum 1,25-dihydroxyvitamin D3 (1,25-(0H),D) and CsA 

Serum1,25-dihydroxyvitamin D3, a potent resorption inducer can be secreted by 

both monocytes and macrophages. Serum 1,25-(0H)zD levei has raised with CsA therapy 

in rats during 14 and 28 days(Goodman et ai, 2001; Epstein et al, 2001). 1,25-(0H)2D is 

known to be a stimulator of BGP gene expression (Kemer et al, 1989; Lian et ai, 1989). 

CsA increases lcx-hydroxylase activity and therefore produces significant elevations in 

serum 1,25-(0H)2D leveis in both rats and mice wíth a dose-dependent efl'ect (Stein et a1, 

199!). 

CsA and cytokines 

The mechanism by which CsA affects the bone may involve the immune system. 

The pathogenetic role of cytokines in bone in post-transplanted patients is uncertain 

In rat bone, CsA has been shown to increase mRNA expression o f IL-1, IL-6 and 

TNF-a, cytokines known to be involved in bone resorption (Marshall et aL 1995} In vitro 

studies have shown that, in human osteoblast-like cells, CsA has a selective inhibitory 

effect on IL-1 (Skjodt et ai, 1984). Severa] investigators have shown that IL-6 is modulated 

16 



by PTH (Littlewood et ai, 1991; Papanicolaou et ai, !998), thus providing a possible link 

among PTH, IL-6, CsA and osteoporosis. 

CsA and TGF-P 

Transforming growth factor-beta (TGF-f)), a member of a closely related 

multifunctional growth regulatory peptide family, is reported to be one of lhe key factors 

involved in the coupling ofbone formation to previous bone resorption (Mundy, 1991-B} 

This potent osteotropic polypeptide is abundant in the bone matrix, and is produced in 

response to factors that stimulate osteoclastic bone resorption (Centrella et al~ 1991; 

Mundy, 1991-B, Mundy & Bonewald, 1992). It is a potent stimulator of osteoblastic bane 

formation, causing chemotaxis, proliferation, and differentiation in osteoblasts. TGF-B has 

some complex effects on bone resorption, either stirnulating or inhibiting bane resorption. 

In vitro studies have shown that TGF-P exerts its effects on both the proliferation as well as 

the differentiation and fusion of progenitors into mature mu1tinucleated osteoclasts 

(Hattersley & Chambers, 1991; Mundy & Bonewald, 1992), suggesting that TGF-P may 

play a role in the stimulation ofthe osteoclasts (Hattersley & Chambers, 1991). However, it 

is thought that TGF-B does not directly stimulate osteoclast activity, but rather stimulates 

resorption through the coupling of osteoclast stimulation to previous osteoblast stimulation 

(Erlebacher & Derynck, !996; Filvaroff et ai, 1999; Hattersley & Chambers, 1991). In fact, 

it has been found that TGF-~ I ínhibits osteoclast generation from murine bone marrow 

cells (Hattersley & Chambers, 1991). In addition, TGF-B can also down regulate osteoclast 

activity (Hock et ai, 1990). 

Recent work has shown that CsA stimulates the expression of TGF-~ 1 in both ín 

vitro and in vivo models, (Khanna et al, 1997) It has been shown that CsA stimulates in 

vivo secretion of TGF-P-1 in humans, which, while improving imrnunosuppression, may 

also contribute to renal fibrosis (renal toxicity) (Pankewycz et al, 1996; Shin et al, 1997; 

Suthanthíran & Strom, !994). 

Goodman et ai (200!) have shown that TGF-P administration alone did not alter 

bane mineral metabolism in rats. The combination of TGF-P and CsA administration 
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resulted in increased of bone formation parameters (increased percent of mineralizing 

surface and percent of osteoid perimeter) that may indicate an increase in osteoblast activity 

and recruitment and/or decrease ín osteoclast function. Besides, TGF-D counteracted the 

increase in BGP induced by CsA. Thus, it appears as i f TGF-P administration may have a 

potential in modulating the deleterious bone effects of CsA However, the use of TGF-P in 

conjunction with CsA must be studied carefully with the monitoring of renal function. 

CsA and Nitric Oxide (NO) 

Severa! studies showed that CsA has an important inhibitory effect on production o f 

nitric oxide synthase (NOS) enzyme and, consequently, nitric oxide (NO). NO is a mediator 

produced by various cells, which partícipates in inflammatory and autoimmune-mediated 

tissue destruction (Nathan, 1997} 

NO is generated by the NOS enzymes from molecular oxygen (Feelish & Stamler, 

1996). Three isoforms of NOS have been identified: a neuronal form (nNOS), an 

endothelial form ( eNOS) and an inducible form (iN OS). Both nNOS and eNOS are 

constitutively expressed. The narnes used reflect the tissues of origin for the original protein 

and cDNA isolates, however it is known that ali three isoforms are much more widely 

distributed (Looms et ai, 2002). Recent data from several groups have shown that eNOS is 

widely expressed on a constitutive basis in bone marrow stromal cells, osteoblasts, 

osteocytes and osteoclasts (Brandi et ai, 1995; Helfrich et al, 1997; Macpherson et al, 1999) 

Expression of iNOS has been observed in fetal bane (Hukkanen et a1, 1999) 

suggesting a role in skeletal development, but iNOS does not appear to be expressed 

constitutively in normal adult borre (Helfrich et ai, 1997). Regulation ofiNOS takes place at 

the levei of gene transcription. Transcriptíon of the iNOS gene is activated by pro­

inflammatory cytokines such as JL-1, IL-6, TNFa, y!FN and endotoxin, whereas 

glucocorticoids and the anti-inflammatory cytokines IL-4, IL-10 and TGF-{3 are inhibitory 

(Damoulis & Hauschka, 1997; Vant Hof & Ralston, 2001). 

The effects ofthe free radical NO on bone has received a great attention because of 

its important function on bone cells. Several studies suggests that NO has biphasic effects 

on osteoclastic bone resorption. (Ralston et ai, 1995; Vant Hof & Ralston, 2001) 
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Low concentrations of NO have been shown to potentiate IL-1-induced bone 

resorption, based on the observation that NOS inlúbitors inhibit IL-1 induced bone 

resorption in vitro (Ralston et ai, 1995). Constitutive production of NO within osteoclasts 

has been suggested to be essential for normal osteoclast function, based on the observation 

that NOS inhibitors reduce actívity and motility of isolated osteoclasts (Brandi et al, 1995). 

Nonetheless, exarnination ofbones frorn animais with iNOS or eNOS deficiency has shown 

no major defect in bone resorption under physiological conditions, which suggests that 

these isoforms are not essential for osteoclast fonnation or activíty (Vant Hof & Ralston, 

2001). However, evidences suggest that the iNOS pathway plays an important role in 

cytokine and inflammation induced osteoporosis (Annour et a~ 1999). Recent studies have 

shown that actívation of the i NOS is essential for IL-1 -stimulated bone resorption, both in 

vívo and ín vitro. These studies suggest that IL-1 prirnarily acts on osteoblasts increasing 

NO synthesís by activatíon of the íNOS pathway and that this, in turn, prometes nuclear 

translocation of the transcription factor NF~KB in osteoclast progenitors. (Vant Hof et ai, 

2000). 

When there is a high-level production, NO inhibits osteoclast formation and 

activity. Pro-inflammatory cytokínes such as IFNy in combination with IL-1 and/or TNF-a. 

cause activation of the iNOS pathway in bone cells and the high NO leveis derived from 

tlús pathway inhibit bone resorption (Brandi et al, 1995; Ra1ston et ai, 1995; Vant Hof & 

Ralston, 2001). It has been shown that high NO concentrations are responsible for the 

inhibitory effect of!FNy on IL-1 and TNF-cx stimulated resorption (Ralston et ai, 1995). 

The inhibitory effect ofhigh NO leveis appears to be dueto the inhibition ofboth osteoclast 

formation and activity and NO-induced apoptosis of osteoclast progenitors (Vant Hof & 

Ralston, 1997). NO seems also to have biphasic effects on osteoblast activity. In vitro 

studies have indicated that the small amounts ofNO, which are produced constitutively by 

osteoblasts., may act as autocrine stimulators of osteoblast growth and cytokine production 

(Riancho et a!, 1995). Some investigators have shown that slow release NO donors 

stimulate osteoblast growth and differentiation ín vitro (Mancini et al, 2000; Buttery et al, 

1999; Koyama et ai, 2000). High concentrations of NO have potent inhibitory effects on 

osteoblast growth and differentiation (Mancini et ai, 2000). Recent evidence suggests that 
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this may be partly due to pro-apoptotic effect of NO on osteablasts, (Damoulis & 

Hauschka, 1997; Mogi et a!, 1999) and that these effects are mediated in part by cGMP 

(Mancini et al, 2000). 

Based on the fuct that NO is closely related in bone remodeling, the effects of CsA 

on NO concentrations may contribute to the bone loss induced by CsA. CsA ínhibited NO 

production ín human T84 epíthelial cells and in murine J774 rnacrophages, measured as 

nitrite accumulation into the culture rnediurn, in a dose-dependent manner in both cell lines 

(Hamalainen et al, 2002). 

Strestikova et a!. (2001) have shown that CsA exhibits dose-dependent inhibitory 

effects on NO production in rat peritoneal macrophage culture experirnents. The 

measurements of nitrite accumulation were made in supernatants of LPS-stimulated 

macrophages. The authors suggests that iNOS expression down-regulation by CsA occurs 

post-transcriptionally. In previous study, CsA inhibited cumulative nítrite accumulation and 

iNOS rnRNA at leve! o fiNOS transcription (Attur et al. 2000). CsA has shown to suppress 

iNOS expression via nuclear factor Kl3 (NF-KB) transcriptional pathway in kidney (Kunz et 

a!, 1995), whereas CsA was shown to inhibit iNOS expression by NF-KB-independent 

manner in human endothelial cell and J774 macrophage (Raffie et ai, 2002; Hàmãlãinen et 

a1, 2002). Kim et a1 (2004) has found that iNOS expression and NO production are 

inhibited by CsA ín LPS stimulated macrophages. They showed that iNOS promoter 

activity and NF-KB activity are inhibited by CsA 

In vitro studies with two co-cultures of osteoclast-rich neonatal rat long-bone 

marrow cells and dentin sections with neonatal-rat calvarial osteoblasts incubated with CsA 

showed 90% ofbone resorption ínhibition. When L-arginine (NO substrate) were added ít 

reversed this inhibition by 90%. The application NOS inhibitor L-NAME inhibited bone 

resorption by 87%. It demonstrated that NO-cGJVIP pathway is involved in CsA induced 

bane 1oss (Wimalawansa, 2000). 

This inhibition of NO production by CsA may have an important function on the 

pathogeny of osteoporosis índuced by CsA, since low concentrations of NO lead to bone 

resorption associated with IL-1, as described in this review. 
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ABSTRACT 

Several reports suggest that Cyclosporin A (CsA) causes increased bone turnover 

and remodeling with resorption exceeding formation, resulting in bane loss. The 

mechanism of CsA-induced bane loss is complex and can involve cellular bone markers 

and osteoblasts and osteoclasts products. CsA have effects on nitric oxide (NO) production, 

which has a biphasic effect on osteoclastic bane resorptíon. The aim of the present study 

was to evaluate the effects of the CsA on bone by Bone Mineral Density (BMD), 

biochemical analysis (Total Alkaline Phosphatase- ALP and serum calcium) and to relate 

thern wíth the expression of NO and Tumor necrosis factor alpha (TNF-a) by peritoneal 

macrophage of rnice. 

Sixty mal e mice were distributed ínto 4 groups and CsA (Sandimmun Novartis) was 

injected subcutaneously in a daily dose of 50mg/kg body weight during the periods of 7, 

14, 28 and 60 days (n=lO), whereas control míce received saline solution (n=S} Blood 

samples were obtained by direct cardiac puncture_ Serum calcium and total alkaline 

phosphatase leveis were obtained. Macrophages were obtained from the peritoneal cavities 

of treated and control mice 3 days after intraperitoneal admínistration of sodium 

thyoglycollate. Cells were incubated with lipopolysaccharide (LPS). After incubation, the 

culture supernatants were used for NO and TNF-a production assays. Digital radiographs 

of femurs were obtaíned with the use of a computerized imaging system, CDRR. Bone 

mineral density (BMD) measurements were made with the help ofthe software Photoshop 

7,0 (Microsoft, 2003). 

The concentration of serum bone markers varied with the períod of CsA 

administration. There was a significant decrease in the calcium leveis after 28 days and 

ALP after 7 days. The BMD decreased significantly on distai epiphysis of femurs after 14 

days and on proximal epiphysis after 60 days, in the mice submitted to CsA therapy. NO 

and TNF-a production had a significant increase in mice treated with CsA (7 and 14 days). 

Based on the results of the present study we confirmed that CsA induces bone loss in vivo. 

There was a synergisrn between the bone 1oss and the decrease of alkaline phosphatase, and 

calciurn, and the increase ofNO and TNF-a. 
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INTRODUCTION 

CsA has improved graft survival after transplantation and some autoimmune 

diseases (Starzl et ai, 1980; Borel, 1988). A frequent complicatian reported in patients 

follawing kidney, liver and heart transplantation is the development of bane lass and 

pathalagic fractures (Shane et ai, 1996; Ramsey-Goldman et ai, 1999; Casez et ai, 2002; 

Cohen et ai, 2003; Marcen et ai, 2005). The effect afthe CsA on bane metabolism has been 

extensively investigated, but the positive and negative effects on bone mineral metabolism 

are still obscure. However, strong observations in human and animal studíes have shown 

that CsA therapy induces bane loss (Movsowitz et ai, 1988; Schlosberg et ai, 1989; Derfus 

et ai, 1991; Goodman et ai., 2001; Fu et ai, 1999; Epstein et ai, 2001; Fu et ai, 2001).lt is 

suggested that CsA causes increased bone turnover and remodeling with resorption 

exceeding formation, resulting in bone loss. Osteopenia is characterized by scattered and 

thin trabecular bane (Fu et ai, 2001; Goodman et ai., 2001}. 

The prabable mechanism af CsA-induced bane loss seems to be complex and can 

involve bane markers, as alkaline phasphatase (ALP) an<llar serum asteocalcin (BGP) 

(Movsawitz et ai, 1988; Withald, 1994; Bannin, 1997; Gaadman et ai, 2001), besides 

immune system and consequently the function of osteoblasts and osteoclasts (Chowdhury 

et al 1991; Mccauley et ai, 1991). Companents afthe immune system have been shown to 

constitute and to partially integrate fracture healing, bone graft incorporation, and bone 

mineral metabolism. Cytokines secreted by inflammatory T -cells and activated 

macrophages have a high potential to induce bone resorption. For example, in rats, CsA has 

been shown to íncrease mRNA expression o f interleukin 1 (IL-1) and interleukin 6 (IL-6), 

which are cytokínes known to be involved in bone resorption (Marshall et ai. 1995). CsA 

inhibits gene transcriptíon and synthesis including interleukin-2 (IL-2), interleukin 3 (IL-3) 

and interleukin 4 (IL-4) (Kahan, 1989; Suthanthiran & Strom, 1994). 

On the other hand, CsA seems to have an important inhibítory effect on nitric oxide 

synthase enzyme (NOS) production anel., consequently, on nitric oxide (NO) in in vitro 

studies (Strestikova et al, 2001). NO is generated by the nitric oxide synthase enzymes 

(NOS) from molecular oxygen (Feelish et ai, 1996). The transcription ofthe iNOS gene is 
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activated by pro-ínflammatory cytokines such as IL-1, tumor necrosís factor alpha (TNF­

a), gamma interferon (IFNy) and endotoxin, whereas glucocorticoids and the anti­

inflammatory cytokines IL-4, interleukin I O (!L-I O) and transforming growth factor beta 

(TGF-P) are inhibitory (Vant Hof & Ralston, 200!). Therefore, due the inhibitory effects of 

iNOS and NO, other chemical mediators can be eventually altered and, consequently, 

change bone metabolism. 

NO has received a great attention because of its effects on bane cells. Severa! 

studies suggest that NO has biphasic effects on osteoclastic bone resorption. Low 

concentrations ofNO have been shown to potentiate IL-1 induced bone resorption in vitro 

(Ralston et al, 1995). Constitutivo production o f NO within osteoclasts has been suggested 

to be essential for normal osteoclast function (Brandi et al, 1995) but not essential for 

osteoclast formation or activity (Vant Hof & Ralston, 2001). However, evidences suggest 

that the iNOS pathway plays an ímportant role in cytokine and inflammation induced 

osteoporosis (Armour et ai, 1999). 

When there is a high-level production, NO inhibits osteoclast formation and 

activity. Pro inflammatory cytokines, such as fFNy in combínation with IL-1 and/or TNF­

a, cause the activation of the iNOS pathway in bane cells and the high leveis of NO 

derived from this pathway inhibit bone resorption (Brandi et al, 1995; Ralston et al, 1995; 

Vant Hof & Ralston, 2001). Based on the fuct that NO is closely related in bone 

remodeling, the effects of CsA on NO concentrations could contribute to the bane loss 

induced by CsA. 

The purpose of the present study was to evaluate the effects of the CsA on bone by 

Bone Mineral Density (BMD) and biochemical analysis (Total Alkaline Phosphatase -

ALP and serum calcium (CAL-L) and to relate them with the production ofNO and TNF-a 

by peritoneal macrophage of mice. 
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MATERIAL AND M.ETHODS 

Animais 

Sixty male mice Swiss (Mus musculus), with 4 weeks old, were housed under 

similar condítions and maintained on diet and water ad libitum. The mice were distributed 

into eight groups: four groups often animais were treated with CsA and four groups offive 

animais each were used as control. 

Cyclosporin A 

CsA (Sandimmun Novartis) was injected subcutaneously in a daily dose of50mglkg 

body weight during the periods 7, 14, 28 and 60 days. Contrai mice were daily injected 

subcutaneously with saline solutíon. All mice were killed after the mentioned period. 

Biochemical analysís 

At the corresponding end-time points, the animais were anesthetized with O, 1 

mg/1 OOg body weight ketamine (Francotar®, Virbac do Brazil Ind. Com. LTDA, São 

Paulo, São Paulo, Brazil) anesthesia and 1 ml of blood was obtained by direct cardiac 

puncture. The blood samples were centrifuged and the serum was assayed at Araraquara 

Pharmacy School - UNESP - SP - Brazil. Total Serum calcium and total alkaline 

phosphatase (ALP) leveis were obtained for each animaL 

Total ALP activity was measured colorimetrically (ALP kit- Sera Pak, Bayer AG, 

Elitech, France) using paranitrophenyl phosphatase as the substrate. ALP activity was 

measured by the absorbance at 405nm, using a Technicon SMA-24 spectrophotometer 

(Technicon, Domont, France)- The units (U/dl) of enzyme activity in experimental sample 

were calculated from this standard ofBayer units. 
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Perítoneal Macrophage cultores 

Macrophages were obtained from the peritoneal cavities oftreated and control mice 

3 days after intraperítoneal administration of 3,0 ml sodium thyoglycollate (Difco). The 

cells were plated at concentration of 5 x 106 cells per ml in RPMI-1640 (GIBCO) 

supplemented with 1 O% fetal calf serum, 100 U/ml penicillin-streptomycin, I mM L­

glutamine and P-mercapte (GIBCO Laboratoríes); this was named complete RPMI 1640 

(1640-C). After incubation for Ih at 37"C in 5% CO, (95% humidity), non-adhering cells 

were washed off and the plates with adhering cells incubated with .RPMI 1640-C plus 

10~g/mllipopolysaccharide (LPS) (E. coli 0111, B, DIFCO). Contrai wells were incubated 

only with RPMI-1640. After incubation for 24h at 37'C in 5% C02, the culture 

supernatants were colleted and used for NO and TNF-a production assays. 

MTT assay (Viabilitycell measurement) 

1 00~1 (5mg/ml) of [3-( 4,5-dimethyltiazol-2-yl)-(2,5- diphenyltetrazolium bromide] 

(MTT) were added to the supernatants on the adhered cells on the wells and incubated for 

2h in culture. After incubation, the absorbance was recorded at 570nm with the 620nm 

filter of reference using an ELISA reader. The colorimetric assay o f MTT have been used 

to detect living, but not dead cells and the signal generated is dependent on the degree of 

activatíon of the cells. This method is used to measure cytotoxicity, proliferation or 

activation ofcells. (Mossmann, 1983) 

Nitric Oxide (NO) Production 

The nitríc oxide production was determined by measunng nitrite, a stable 

degradation product ofnitric oxide, according to the method ofGreen et aL (1982). Briefly, 

50 ~ of cell supernatant was removed from each well and incubated with Griess reagent 

(1% sulfanil-amide, 0.1% naphtylethylendiamíne, 2.5% H3P04) at roorn temperature, for 10 

minutes. The absorbance was determined with an ELISA reader (multiskan Ascent, 

Labsystem Research Tech. Helsinki, Finland) at 540nm. The nitrite concentration was read 

from a standard curve generated with sodium nitrite. The value obtained was expressed in 

~ ofN0/5xl05 cells. 
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Detennination ofTNF-a. (Tumoral Necrosis Factor-a.) Production 

The leveis of TNF-a were measured in macrophage culture supernatants by enzyme 

Jinked assay (ELISA), employing a commercially available Kit (Mouse TNF mono/poly 

ELISA set kit • BD Biosciences Pharmingen, CA-USA), following the manufacturer's 

instructions. 

Densitometric analysis 

Femurs were carefully removed and soaked in 10% formalin. Standardized digital 

radiographs were obtained with the use of a computerized imaging systern, CDRR 

(Holzhausen et ai, 2002; Nassar et ai, 2004). Electronic sensors were exposed at 60KV and 

lOMa for 10 seconds. The source-to-film distance was always set at 30 em. 

Bone mineral density measurements were made with the help of the software 

Photoshop 7,0 (Microsoft, 2003). Eleven points in radiographic images were made from 

femoral bone (three points on proximal epiphysis, three point on distai epiphysis and five 

points on diaphysis) (Fig.l). BMD was measured by the tool Histogram ofthe Photoshop 

software. 

Figure. I - Schematic points ofrneasurement of femoral bone mineral density in mice. 
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Statistical analysis 

Summary statistics included mean ± SEM. Comparisons between groups were 

determined by Kruskal Wallis and Wilcoxon tests. Significance levei was always set at 

95%. 

RESULTS 

Biochemical analysis 

In the contrai groups, the serum calcium leveis ranged from 8,08 ± 0,4 mg/dL to 

12,00 ± 0,3 mgldL. The CsA treated groups showed a signíficant decrease in the calcium 

leveis in lhe periods of28 and 60 days, respectively (12,00 ±0,33 mg/dL to 10,54 ± 0,17 

mg/dL and 10.60 ± 0.17 mg/dL to 8,92 ± 0,33 mg/dL; p<O,OS) (Fig.2A). The mice treated 

with CsA, a significant decrease (p<O,OS) in serum ALP was observed on the 7"' and l41
h 

days (260,1 ± 27,1 U/L and 318,19 ± 19,99 U/L, respectively) compared to the control 

group (397,2 ± 42,1 UIL and 404,6 ± 16,26 UIL, respectively). After 28 and 60 days, serum 

ALP values returned to the normal values (Fig.2B). 
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Fig. 2 - Serum calcium (A) and semm ALP (B) from míce control and treated with CsA, in the different 

periods ofthe experiment 
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Borre Mineral Density 

In the contrai group, the BMD at the distai epiphysis region were 64.23 ± 0.96, 65.1 

± 1.17, 72.4 ± 1.15 and 72.83 ± 1.77, in the periods of7, 14,28 and 60 days respectiveiy. 

The distai epiphysis BMD decreased significantly in the mice submitted to CsA therapy 

(62.02 ± 0.8, 62.15 ± 0.9, 66.15 ± 0.9 and 66.52 ± 0.9, p<O,OS, respectiveiy) when 

compared to contrai (Fig.3-A). The values for distai epiphysis were statistically lower in 

the periods of 14, 28 and 60 days. At the proximal epiphysis, the BMD values of femurs in 

the contrai group were respectiveiy, 51.4 ± 0.99, 53.47 ± 0.96, 59± 1.24 and 63.87 ± 1.11 

for the periods of 7, 14, 28 and 60 days. The vaiues for the CsA-treated mice were lower 

than contra! groups (50.26 ± 0.8, 51.41 ± 0.83, 57.26 ± 0.93 and 59.06 ± 0.81) but there 

was a statistically significant decrease ofBMD oniy in the period of 60 days (63,87 ± 1,11 

to 59,06 ± 0,81, p<0,05) (Fig.3-B). In the diaphysis, there was a small decrease between 

contra! groups and the CsA-treated groups, but it was not statistically significant (p>O,OS). 

A B 

" lO ---- ~- - ~----~-- ~- -
••···················································· ' 

~ 75 ----.... -- -=-' !> 65 ------- --.-~ 
h -------· L_ 

i e~ t~:~j .. 
!" 

"I - - -
1drrjo Hd"!" Ulilay< óll~"!"• 

P<rloii(ÓOI)') 

C Radíogrnphk dmity (díaphyú!) 

P<ri!>d(~) 

Figure 3 - Bone mineral density of different regions o f femur from mice control and treated with CsA in the 
dífferent periods. Distai eplphysis (panel A), Proximal epiphysis (pane! B) and Diaphysis (panel C). 
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A 

MTT Nitric Oxide and TNF-a. Measurernents 

MTT assay perforrned to verify the cell viabilíty, by death cell measurement, 

revealed a cell viability above 90%. 

The nitric oxide production in contrai groups were 46.19 ± 7.42, 33.67 ± 2.23, 51.09 

± 4.87 and 62.18 ± 5.71 11M ofN0/5x105 cells, respective1y for the periods of7, 14, 28 and 

60 days. In the CsA-treated rnice, there was a significant increase in NO production was 

observed on the 7'' (70.46 ± 8.52 11M ofN0/5x105 cells) and 14" days (65.62 ± 4.97 11M of 

N0/5x105 cells). 

The values for TNF-a production in control groups were 11.22 ± 1.91, 12.99 ± 0.92, 

9.5 ± 2.15 and 9.15 ± 3.24 pg/ml, respectively for the periods of 7, 14, 28 and 60 days. 

There was also an increase in the CsA-treated groups on the 7ili (17.25 ± 2.07 pg/ml) and 

14ili days (18.27 ± 1.89 pg/ml). The results obtained in the period of28 days reveled that 

both, NO and TNF-a, increased but these values was not significant (p>O,OS). The Jowest 

values were observed after 60 days o f the treatment, whose values returned to normal. 

~,.. ................................................................. , 

7 ~ay~ 14 ~ayo 28 d•Y• 60 day• 
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Figure 4. Nitric oxide (A) and TNF-a. (B) production in mice control and treated with CsA in lhe different 

periods. 
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DISCUSSION 

In the present study, we investigated the effects of lhe CsA on bane mass by 

biochemical and densitometry analysis in a mouse model and in different experimental 

periods. Animal model is an excellent protocol to study various side effects induced for 

drugs, because many variable are better controlled, such as genetic predisposition, gender, 

age, dose and duration of treatment (Kataoka et al, 2000). In accordance to Jee & Yao 

(2001), it was verified that the mouse is a good model for the study of osteoporosis. 

The routes and dosage of CsA used in the present work was based on other works 

developed in our laboratory (Spolidorio et ai, 2001; Spolidorio et al, 2004; Nassar et al, 

2004) as well as described by others authors (Wassefet ai, 1985; Morisaki et al, 1993) 

The experimental treatment period with CsA was based on previous studies 

(Goodman et ai, 2001; Fu et ai, 1999, Fu et ai, 2001 ), particularly on the study of 

Scholesberg et ai (1989), who showed that the effect of CsA on bane and mineral 

metabolism is dependent o f the duration o f the treatment. They suggested an increased bane 

resorption, represented by a significant increase in the number of osteoclast-like cells, 

accompanied by a 79% reductíon ín bone volume within 28 days of CsA treatment. 

Our results suggested that there was bone loss after 14 days of treatment. At the 

sarne time, there was a stability of the bone loss in the periods between 28 and 60 days. Our 

findings are in line with the findings ofother authors (Fu et ai, 1999; Fu et ai, 2001; Epstein 

et ai, 2001; Erben et al, 2003; Spolidorio et ai, 2004; Nassar et al, 2004), that bone loss is 

dependent on treatment duration (Movsowitz et al, 1988; Schlosberg et al, 1989; Fu et al, 

1999; Erben et ai, 2003) 

In the present study, we verified that bone regions are important for the study of 

bone metabolism and that the epiphysis was the maín site altered after CsA treatment. 

There was a decrease ofBMD at the sites of distai epiphysis in the first periods (as ofthe 

14 day-period, and sustained for the 28- and 60-days periods) and at proximal epiphysis 

within longer periods (60 days). According to the Food and Drug Administration (FDA) 

guidelines for pre-clinica1 osteoporosis research, biomechanical investigation o f two sites 

are requíred: the vertebral bodies and the femoral cortical bone (FDA, 1994). However, the 
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femoral neck site is very important from a clinicai point of view, and ít has been suggested 

that this site be included as a general test site (Mosekilde, 1995). In addition, as the 

proximal tíbia! or the dista! femoral metaphysis are sites of choice concerning the 

assessment of dynamic and static histomorphometric changes due to ovriectomy (OVX) 

and treatment regimens (Kalu, 1991), one of these sites is recommended to merit 

mechanical assessrnent and longitudinal measurements of bone changes by use of 

densitometric analysis (Wronski et al, !993; Noland et al, !997). 

Giavaresi et ai (2002) investigated the mechanical and structural characteristics of 

cancellous bone from the femoral dista! epiphysis. The data from this study showed 

osteopenia occurring in the rat distai femur after OVX and provided methodology for 

further investigations on osteoporosis and osteopenic bane. It showed that densitometric 

rneasurements decreased amounting 13-20% in the BMD and histomorphometric analysis 

showed a significant cancellous bone loss and the trabecular bone volume (BV/TV). 

The findings obtained ín the present work are in line with the findings of Erben et 

ai. (2003) that showed a reduction of tibiae BMD in rats treated with CsA during 4 months. 

Clinically, in organ transplanted recipients bone loss occurs within the first year after 

transplantation (Shane et al, 1993; Sambrook et al, 1994; Lee et al, 2004). Lee et al (2004) 

showed that BMD decreased 4.8% at the lumbar spine and 12.3% at the proximal femur in 

patients treated with CsA They point out that Bl'viD decreased significantly with the 

cumulative CsA dose_ 

Indeed, there are severa! parameters that must be considered regarding the 

pathogenesis o f CsA-induced bone loss, but it is suggested by several authors that it can be 

controlled by enhancing antiresorptíon molecule production from osteogenic cells (Suda et 

ai, 1995). It is suggested that CsA-induced bone loss is mediated by alteration of the 

balance between the receptor activator of NF-K-(RANK-L) (receptor activator of nuclear 

factor kappa B ligand) and osteoprotegerin (OPG), with CsA increasing RANK-L and 

decreasing OPG (Hofbauer et al, 2001; Cunninghan, 2005). OPG and RANK-L produced 

by osteogenic strornal cells play irnportant roles in regulating osteoclastogenesis. NF-K­

(RANK-L) is involved in the dífferentiation and fusion of osteoclastic precursor 

mononuclear cells (Roodman, 1999). These precursor cells fuse to form large 
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multinucleated osteoclasts, which are the cell ultimately responsible for bone destruction. 

(Wiebe et ai, 1996; Teitelbaum, 2000; Ros~ 2000). OPG acts as a decoy receptor by 

blockíng the interaction of RANK-L with its functional receptor RANK, thereby inhibiting 

osteoclastogenesis (Hofbauer et al, 2000). Therefore, regulation ofthe RANK-L expression 

is the key to the pathogenesis ofmany osteopenic disorders (Wei et ai, 2005). The ratio of 

RANK-L to its soluble, antiosteoclastogenic decoy receptor, OPG is an indicator of the 

magnitude of systemic bone loss in pathological conditions (Wei et ai, 2005). As CsA 

increases RANK-L, it directly increases osteoclast differentiatíon. The concept of bone 

remodeling is based on the hypothesis that osteoclastic precursors become actived and 

differentiated into osteoclasts, and thus the process ofbone resorption begins. This phase is 

followed by a bane formation phase. The termination of bone resorption and the initiation 

ofbone formation occur through a coupling mechanisrn that involves various lymphokines. 

Osteoclastogenesis is an ímportant factor of the coupling process that can be modulated by 

CsA action. 

Biochemical factor can also be involved with CsA-induced bone loss. In our 

findings, the biochemical assessment of biomarkers of bone turnover is in tine wíth the 

radiographic findings. Our present experiment showed a significant decrease in serum 

calcium levei, which, according to Mason (1990) and Ryffel (1986) could be a non-specific 

effect of CsA due to an íncreased excretion by the kidney. The data of the present study 

showed that there was a decrease in ALP level. Similar results were observed by Nassar et 

ai. (2004). 

In human renal transplant patients, an ínsignificant decrease in ALP was noted 1 

week after CsA adminístration; the enzyme returned to normal 1 month after CsA therapy 

and then increased significantly 3-6 months after the drug was given (Withold et al., 1994). 

Símilarly, in the rat model, there was a tendency of ALP to decrease 1-2 weeks after CsA 

administration and then return to normal at 4 weeks (Klein et aL, 1994). 

Besides the biochemical parameters, the measurement of imrnune markers like NO 

and TNF-a. expression showed to be a relevant parameter in the CsA-induced bone loss. 

NO is a free radical generated by the nitric oxide synthase enzymes (NOS) that has 

important functions on bone cells (Feelish et ai, 1996). 
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The experimental model of peritoneal macrophages cultures and Bl\.1D measures 

employed in the present study are commonly used in various research protocols 

(Strestikova et a!, 200 I; Kim et a!, 2004). In the present study, we verified that NO and 

TNF-a amounts increased in the first periods o f treatment (7 and 14 days) and then they 

returned to amounts similar to the centro! animais. Severa} studies showed that a hígh-level 

production ofNO inhibíts osteoclast formation and activíty (Vant Hof & Ra!ston, 2001) 

and low doses ofNO induced bone resorption in vitro (Ralston et al, 1995). 

There are a lot of controversial findings about the role ofNO on bone metabolism. 

In vitro studies suggest that the inhibition of íNOS wíth L-NIL prevents TNF-a-induced 

osteoclast differentiatíon (Lee et ai, 2004). Previous studies have demonstrated that NO can 

induce apoptosis of osteoclast progenitors ín inflammatory cytokine-stimulated bone 

marrow cell cultores (Vant Hof & Ralston, 1997). However, Wang et ai (2004) showed 

that NO donors (NOC-18) increased OPG leveis, but not RANK-L mRNA expression in 

bone marrow stromal cells culture. The authors suggested that an optimal dose ofNO donor 

is required to promete cell prolíferation and OPG mRNA and protein leveis since a la.rge 

amount of NO from a higher dose of NOC-18 suppressed OPG synthesis and cell 

proliferatíon. The results of this study support those of previous studies showing that NO 

has a biphasic effect on the proliferation and apoptosis of rat osteoblasts (Mancini et ai, 

2000; Chen et al, 2002). Therefore, the authors speculated that inhibitory effects ofNO on 

osteoclast forrnation may be dependent on the rnodel system used, the NO concentration, 

and the developmental potential of osteoclastogenic cells (Wang et ai, 2004), suggesting 

that there are multiple osteoclastogenesis inhibitory pathways probably responsible for NO-

modulated osteoclast formation. 

Recent studies have added support to the theory that iNOS can promete osteoclast 

function. There is evidence that low leveis of constitutive NO production may be essential 

for normal osteoclast function and rnaturation (Brandi et ai, 1995), whereas other studies 

have shown that rnoderate induction o f NO potentiates bone resorption induced by IL-1 and 

TNF (Ralston et ai, 1995; Vant Hof & Ralston, 1997). Evidences suggest that the iNOS 

pathway plays an important role in cytokine- and inflammation-induced osteoporosis 

(Armour et al, 1999). Armour and colegues (1999) used an in vivo animal model of 
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ínflammation-induced osteoporosis (IMO) and found a decrease in the B:MD of rats that 

had a high produclion ofNO. They also found lhal lhe BIV!D was associaled with aclivalion 

of iN OS, reduced osteoblast and decreased osteoclasts numbers. These clinicai evidences 

are in accordance with the current work, where we found an increase in NO leveis 

associated with B:rviD decrease. 

Moreover, recent studies have shown that activation of the iN OS is essential for IL-

1-slimulaled bone resorplion, bolh in vivo and in vitro. These studies suggesl lhal IL-1 

primarily acts on osteoblasts increasíng NO synthesis by activation of the iNOS pathway 

and that this in turn prometes nuclear translocation of the transcription factor NFKB in 

osteoclasl progenitors. (V ANT HOF & Ralslon, 1997 (B); Vanl Hofel ai, 2000). 

Gyurko et ai (2005) suggests lhal iNOS-generaled NO is required for normal 

skelelai and alveolar bane development and thal NO promoles bane resorplion 1ocally and 

that iNOS is an important signal for normal osteoclast differentiation. The mechanism 

suggesled by which iNOS perform lhese funclions is by enhacing M-CSF and RANK-L­

induced osteoclast differentiation. Thus, similar to the CsA mechanism, the balance of 

RANK-L and OPG is also involved in the mechanism ofNO-mediated bone functions. 

Regulation of iNOS transcription is activated by pro-inflarnmatory cytokines such 

as IL-1, ll..-6, TNF-a, IFNy and endotoxin (Damoulis & Hauschka, 1997; Vant Hof & 

Ralston, 2001), recognized in bone resorption. Recent studies showed that TNF-a -

important in inflammatory osteolysis (Ritchilin et al, 2003) - requires constítutive leveis of 

RANK-L. Wei al ai (2005) showed lhal TNF-a induces RANK-L expression by marrow 

stromal cells. Like TNF, IL-1, another major osteoclastogenic cytokine, prometes RANK-L 

expression by marrow stromal cells and osteoblasts (Hotbauer et al, 1999), 

In this study we found that TNF-a leveis increased simultaneously with the 

increase ofNO leveis, suggesting an important factor in NO concentrations. Based on the 

facl thal NO is closely relaled in bane remodeling, lhe effecls of CsA on NO 

concentrations may contribute to the CsA-induced borre loss. 

However, in vitro studies suggest that CsA inhibits NO production in several 

mode1s of culture cells (Attur el aL 2000; Kim et ai, 2004). Cyclosporin A inhibited NO 

production in human T84 epihtelial cells and ín muríne J774 macrophages, measured as 
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nitrite accumulation into the culture medium, in a dose-dependent manner in both celllines 

(Hiimãiãinen et ai, 2002). Strestikova et aL (2001) have shown that CsA exhibit dose­

dependent inhibitory effect on NO production in rat peritoneal macrophage culture 

experiments suggesting that iNOS expression down-regulation by CsA occurs post­

transcriptionally. CsA has shown to suppress iNOS expression via NF-KB transcriptional 

pathway in kidney (Kunz et ai, 1995), whereas CsA was shown to inhibit rNOS expression 

by NF-KB-independent manner in human endothelia1 cell and J774 rnacrophage (Raffie et 

ai, 2002; Hamaiainen et a1, 2002). It is important to consider that not always do modei 

cultures correspond to in viva model experiments. 

In addition, an ín vitro study with two co-cultures of osteoclast-rich neonatal rat 

long-bone marrow cells and dentin sections with neonatal-rat calvarial osteoblasts 

incubated with CsA showed 90% of bone resorption inhibition. When L-arginine (NO 

substrate) was added, it reversed this inhibitíon by 90%. The application of NOS inhibitor 

L-NAME inhibited bone resorption by 87%. It demonstrated that NO-cGMP pathway is 

involved in CsA-induced bone loss (Wimalawansa et ai, 2000). The exact mechanism that 

modulates CsA-induced bone loss and the association ofNO modulation in BMD in in vivo 

studies are not very well stablished. We suggest that NO synthesis has an important 

function in the modulation of CsA-induced bone loss since both, NO and CsA mechanisms 

interact in the balance of RANK-L and OPG with CsA increasing RANK-L and decreasing 

OPG (Hofbauer et ai, 2001; Cunninghan, 2005) and NO enhacing RANKL-induced 

osteoclast differentiation. We suggest that the increase ofNO production associated with 

CsA and the decreased bone rnass, in this in vivo model, is due to uncoupling of bone 

resorptíon from bone formation process, mediated by the balance of RANK-L and OPG. 

Based on the results ofthis study, we confirmed that CsA induced bone loss, in accordance 

with the period of administration. There was a synergism between bane loss and the 

decrease of ALP and calcium, in addition to the íncrease ofNO and TNF-a. 
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CONCLUSÕES GERAIS 

A partir dos resultados do presente trabalho, podemos condu ir que: 

A CsA induziu perda óssea nos camundongos de aeordo eom o período de 

administração; 

Houve um sinergismo entre a perda óssea e a diminuição dos níveis de 

fosfatase alcalina e cálcio, assim como com o aumento do óxido nítrico e 

TNFa. 
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