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RESUMO 

 

A formação do esmalte dentário é um processo biológico complexo, 

sendo dependente do estabelecimento de uma matriz orgânica bem estruturada. 

Evidências recentes indicam que os componentes desta matriz formam uma 

organização supramolecular, cuja significância biológica não é claramente 

entendida. Este fato é devido em parte a dificuldades em observações 

morfológicas diretas da matriz orgânica do esmalte estruturada. A detecção de 

propriedades anisotrópicas de estruturas biológicas tem sido extensivamente 

utilizada para o estudo de organizações supramoleculares em cortes histológicos 

comuns. O objetivo deste trabalho foi estudar a birrefringência da matriz orgânica 

do esmalte durante o desenvolvimento de dentes incisivos e molares de ratos. A 

amostra constituiu de dentes incisivos superiores e hemimandíbulas de ratos 

Wistar machos, pesando aproximadamente 300g. Foi realizada perfusão dos 

animais com paraformaldeído 2% e glutaraldeído 0,5% em solução tampão fosfato 

0,2M, pH 7,2. Neste mesmo fixador, as amostras foram então imersas por 16h. A 

descalcificação foi procedida por imersão dos incisivos superiores e das 

hemimandíbulas em mistura de ácido nítrico 5% e formaldeído 10% durante 6h e 

24h, respectivamente. Realizou-se inclusão em parafina e obtiveram-se cortes 

longitudinais de 5µm, os quais foram tratados com xilol e hidratados. Curvas de 

birrefringência de forma foram obtidas após mensurações de retardos óticos 

utilizando-se fluidos para montagem com diferentes índices de refração. Nossas 

observações mostraram que a matriz orgânica do esmalte de incisivos e molares 

de ratos é fortemente birrefringente. A birrefringência começa nos estágios iniciais 

da fase de secreção e desaparece na fase de maturação. Estes achados revelam 

que a matriz orgânica do esmalte apresenta uma estrutura supramolecular 

altamente ordenada. A análise da birrefringência da matriz orgânica do esmalte 

pode ser utilizada para detectar os efeitos de fatores genéticos e ambientais sobre 

sua orientação supramolecular e sua relação com defeitos no esmalte maduro. 
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 ABSTRACT 

 

The formation of dental enamel is a complex biological process, which 

depends on a well-structured organic matrix. Recent evidences indicate that the 

components of this matrix can interact to form a supramolecular structure. The 

biological significance of this supramolecular organization is not clearly 

understood. In part this occurs due to methodological difficulties to perform direct 

morphological observations of the structured enamel organic matrix. The detection 

of anisotropic properties by polarizing microscopy has been extensively used to 

detect and measure the macromolecular organization in ordinary histological 

sections. The aim of this work was to study the birefringence of enamel organic 

matrix during the development of rat molar and incisor teeth. Wistar rats with 

approximately 300g were anesthetized with chloral hydrate and perfused with 2% 

paraformaldehyde 0.5% glutaraldehyde in 0.2 M phosphate buffer solution, pH 7.2. 

Upper incisor teeth and hemimandibles were then immersed in the fixative solution 

for 16h. Decalcification was performed by immersion of upper incisor teeth and 

hemimandibles in a mixture of 5% nitric acid and 10% formaldehyde for 6h and 

24h, respectively. After dehydration, samples were embedded in paraffin and 5µm 

thick longitudinal sections were obtained. The sections were treated with xylol for 

removal of the paraffin, and hydrated. Form birefringence curves were obtained 

after measurements of optical retardations in imbibing media with different 

refractive indices. Our observation showed that enamel organic matrix of rat incisor 

and molar teeth is strongly birefringent. The birefringence starts at early secretion 

and disappears at maturation phase. The results show that enamel organic matrix 

presents a highly ordered supramolecular structure. The analysis of enamel 

organic matrix birefringence may be used to detect the effects of genetic and 

environmental factors on the supramolecular orientation of enamel matrix and its 

association with enamel defects.   
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INTRODUÇÃO GERAL 

 

O esmalte dentário é um tecido de origem ectodérmica, altamente 

mineralizado, que contém os maiores cristais de hidroxiapatita do corpo 

vertebrado (Eisenmann, 1998; Paine & Snead, 1997). Sua formação ocorre 

extracelularmente com o auxílio de um suporte protéico temporário que controla o 

crescimento, a morfologia e a orientação dos cristais (Moradian-Oldak et al., 2003; 

Paine & Snead, 1997). Este suporte temporário constitui a matriz orgânica do 

esmalte, que é sintetizada, secretada e organizada por células especializadas do 

órgão dentário chamadas ameloblastos. A referida matriz é depositada com 

pequena quantidade de mineral durante a fase de secreção da amelogênese, tem 

sua degradação iniciada na fase de transição, e é extensamente degradada e 

quase completamente substituída por componente mineral na fase de maturação 

(Robinson et al., 1979; Bronckers et al., 1995). Dessa forma, o esmalte maduro é 

constituído por cristais de hidroxiapatita incluídos em pequena quantidade de 

material orgânico.  

Grandes avanços foram obtidos na identificação e clonagem das 

proteínas estruturais e proteinases que constituem a matriz orgânica do esmalte 

em desenvolvimento (Fincham et al., 1999). 

Quatro genes de proteínas da matriz do esmalte já foram clonados e 

caracterizados em diversas espécies. São os genes das proteínas amelogenina 

(Cheng et al., 2004; Snead et al., 1983; Gibson et al., 1992), tufelina (Mão et al., 

2001; Deutsch et al., 1991; Bashir et al., 1997; Dodds et al., 1996), enamelina (Hu 

et al., 1997; Hu et al., 1998; Hu et al., 1998b) e ameloblastina (Toyosawa et al., 

2000; Krebsbach et al., 1996; Simmons et al., 1998), também conhecida como 

amelina ou bainhalina. Tufelinas e enamelinas juntas, ameloblastinas e 

amelogeninas representam 2%, 5% e mais de 90% das proteínas da matriz 

orgânica do esmalte, respectivamente (Termine et al., 1980; Simmer & Hu,  
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2002). Elas interagem entre si e com os cristais de hidroxiapatita em formação 

para guiar o crescimento e modular a morfologia dos mesmos (Fincham et al., 

1999). 

As principais proteinases da matriz do esmalte são a enamelisina 

(MMP-20) e a calicreína 4 (KLK4) (Simmer & Hu, 2002). Estas enzimas catalizam 

o rompimento de ligações peptídicas, estão expressas na matriz em diferentes 

estágios de desenvolvimento do esmalte e apresentam funções distintas. 

Primeiramente, a MMP-20, presente nos estágios iniciais e intermediários da 

amelogênese, altera as interações proteína-proteína e proteína-cristal, protegendo 

os cristais de fusões prematuras e permitindo o crescimento deles em altura e não 

em largura (Moradian-Oldak et al., 1994; Tanabe et al., 1992). Posteriormente, a 

KLK4, presente no estágio de maturação, degrada as proteínas do esmalte, 

facilitando a remoção das mesmas (Moradian-Oldak et al., 1998). Dessa forma, 

ocorre um rápido crescimento dos cristais em largura, levando ao endurecimento 

do esmalte.    

As funções dos componentes da matriz orgânica do esmalte têm sido 

evidencidas até hoje por estudos in vitro e por mutações genéticas em 

camundongos e humanos (FINCHAM et al., 2000; MORADIAN-OLDAK et al., 

1994; MORADIAN-OLDAK et al., 1998; GIBSON et al., 2001; PAINE et al., 2003; 

RAVASSIPOUR et al., 2000; LENCH & WINTER, 1995; COLLIER et al., 1997; 

PAINE et al., 2000; CATERINA et al., 2002). Investigações recentes indicam que 

os referidos componentes podem interagir para formar uma estrutura 

supramolecular (RAVINDRANATH et al., 2004; FINCHAM et al., 1999; WEN et al., 

1999). O significado biológico desta organização supramolecular não é claramente 

entendido, em parte devido a dificuldades para a condução de observações 

morfológicas diretas da matriz orgânica do esmalte estruturada. Portanto, tornam-

se relevantes métodos que permitam a análise in situ da organização 
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supramolecular da matriz orgânica do esmalte nas diversas fases da 

amelogênese. 

A detecção de propriedades anisotrópicas de estruturas biológicas por 

microscopia de polarização tem sido extensivamente usada para o estudo de 

organização macromolecular em cortes histológicos comuns. Dessa forma, o 

presente trabalho teve como objetivo estudar a birrefringência da matriz orgânica 

do esmalte durante o desenvolvimento dos dentes molares e incisivos de ratos. O 

desenho experimental deste estudo foi aprovado pela Comissão de Ética na 

Experimentação Animal do IB/UNICAMP (protocolo nº 744-1) (ANEXO 1).  

O primeiro artigo, uma revisão de literatura, considera o estágio atual de 

conhecimento sobre a biologia estrutural da matriz orgânica do esmalte. 

O segundo artigo mostra que a matriz orgânica do esmalte é altamente 

birrefringente, apresentando uma estrutura supramolecular ordenada, e sugere 

novas possibilidades no estudo da biologia do esmalte.    
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ABSTRACT 

 

Dental enamel is the most mineralized tissue in the vertebrate body and contains the largest 

known biologically formed hydroxyapatite crystals. Its formation occurs extracellularly 

through the collaboration of a proteic transient framework (the enamel organic matrix), 

which controls hydroxyapatite crystal growth, morphology and orientation. This matrix is 

deposited with a small amount of mineral during the secretory stage of amelogenesis. The 

organic components begin to be degraded in the transition stage and are extensively 

corrupted, and almost entirely replaced by the inorganic crystallites during maturation 

stage. The present paper reviews current knowledge on the structural biology of the enamel 

organic matrix.  

 

KEY WORDS 

 

Dental enamel, extracellular matrix, amelogenesis, dental enamel proteins, dental enamel 

proteinases. 
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Introduction 

 

Dental enamel is originated from ectoderm and is the hardest, most mineralized tissue in 

the vertebrate body, containing the largest known biologically formed hydroxyapatite 

crystals1,2. Enamel is noncollagenous and does not undergo resorption and remodeling3. 

This striking example of a highly mineralized structure is exquisitely adapted to absorb 

essential mechanical and abrasive stresses throughout the lifetime of the organism. Enamel 

formation occurs extracellularly through the collaboration of proteins that assemble in order 

to form a transient framework, which is important to control hydroxyapatite crystal growth, 

morphology and orientation2,4. This transient protein framework is known as the enamel 

organic matrix. It is synthesized, secreted and organized by specialized cells of the 

developing tooth organ, called ameloblasts. As these cells migrate outwards they leave 

behind a ribbon of secreted proteins in their wake and play active role in transport of ions 

including Ca2+, HPO4
2-, OH- and H+5,6. Enamel development is didactically divided into 

secretory, transition and maturation stages.  The enamel organic matrix is deposited with 

little amount of mineral during the secretory stage, begins degrading in the transition one, 

and is extensively corrupted and almost entirely replaced by the inorganic crystallites 

during maturation6-8. Thus, despite an embryonic origin in protein, mature enamel is a stiff- 

brittle-ceramic composed of hydroxyapatite crystallites embedded within a small amount of 

organic material distributed among the crystallites. These crystallites are roughly organized 

into bundles called rods or prisms and thus each rod is made of many small individual  
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hydroxyapatite crystals. This paper specifically presents a review of current knowledge on 

the structural biology of the enamel organic matrix.      

 

1. Components of the enamel organic matrix   

 

Great advances have been made regarding the identification and cloning of structural 

enamel matrix proteins and enamel proteinases. The enamel matrix proteins are generally 

grouped into three classes sharing common features, these are: the amelogenin class of 

circa 20-kDa hydrophobic proteins; the enamelin class of circa 65-kDa acidic proteins 

including tuftelin; and the non-amelogenin, non-enamelin class, represented by 

ameloblastin (also called amelin/sheathlin)3,9-11. All three protein classes are proline rich12. 

Enamel matrix proteins assemble, interacting with each other and with the hydroxyapatite 

crystallites. These biochemical interactions are important to guide hydroxyapatite crystals 

growth and modulate their morphology. Two major enamel proteinases have been 

identified: matrix metalloproteinase-20 (MMP-20), also known as enamelysin, and 

kallikrein 4 (KLK4), which is a serine proteinase12-17. These proteinases are expressed in 

the developing enamel at different times and have different functions. Their roles are to 

modify and/or to eliminate enamel matrix proteins, which affects the way enamel proteins 

interact with each other and with the developing enamel crystallites12. Sulphated proteins, 

serum albumin and lipids have also been reported as residents of the enamel organic 

matrix3,10. Detailed information about these matrix components and their roles is presented 

in the following sections.  
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1.1. Proteins 

 

Four genes of enamel structural proteins have already been cloned and characterized in 

several species, these are: amelogenin18-20, tuftelin21-24, enamelin25-27 and ameloblastin28-30. 

  

1.1.1.  Amelogenins 

 

Amelogenins are the most studied enamel matrix proteins. They account for more than 90% 

of the matrix proteins in the secretory stage of enamel formation9, cromprising the major 

components of the supramolecular transient framework, which is absolutely necessary for 

normal enamel crystals growth and architecture. This condition may be an explanation for 

significant advances in the knowledge on characteristics and roles of the amelogenins.  

Amelogenins may exhibit various forms due to three main reasons: there are two distinct 

copies of their gene localized in X and Y chromosomes, different amelogenin mRNAs are 

produced by alternative splicing and they are proteolytic processed after being secreted by 

ameloblasts. There is an important debate in the literature regarding the way enamel 

proteins are arranged in order to interact with each other and with the developing 

hydroxyapatite crystals4,12,31. Recent knowledge on amelogenin’s primary and quaternary 

structures has allowed the development of in vitro experimental systems for the study of 

amelogenin-mineral interactions and interpretation of the function of this structural protein 

during amelogenesis4,32-34. Supramolecular assembly of amelogenin has been assumed to be  
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critical for a competent enamel organic matrix formation. Full-length amelogenins contain 

two clearly definable self-assembly domains: the amino-terminal hydrophobic domain-A 

comprising amino-acid residues 1-42; and the carboxy-terminal hydrophilic domain-B 

comprising amino-acid residues 157-1732. Amelogenin binds apatite crystals through its 

hydrophilic domain-B35,36, also known as leucin-rich amelogenin polypeptide (LRAP)36. 

MORADIAN-OLDAK et al.37 have recently found that the apatite-binding domain can be 

narrowed down to the C-terminal 12 or 13 amino acids and further digestion from the C-

terminal does not affect this binding affinity. It seems that the function of domain-B is 

crucial only during the early stage of enamel formation since it is cleaved soon after the 

protein is secreted into the extracellular space4. Prevention of premature crystal-crystal 

fusion at the very early stage of mineral formation is the most likely function for the full-

length amelogenin containing the C-terminal32,38. While the presence of this domain 

appears to be critical for the apatite binding affinity of amelogenin, it does not seem to be 

necessary for the specific modulating effects on crystal morphology. Some studies indicate 

that the lack of hydrophilic C-terminal affects proteins assembly and results in the fusion of 

the hydrophobic nanospheres, which are suggested to arrange in order to provide the 

supramolecular structural framework for the controlled growth of enamel crystals4,39. These 

findings are in agreement with previous report40, which shows that amelogenin is found in 

all compartments throughout the entire thickness of developing enamel and that intact 

amelogenins and their C-terminal cleavage products are only detected within 40 µm of the 

enamel matrix surface. This finding indicates that full-length amelogenins containing the  
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hydrophilic C-terminal and their hydrophobic N-terminal proteolytic products have distinct 

functions.  

The ablation of amelogenin gene in knockout mice results in severe disruptions in enamel 

crystallite architecture, even though a functional mineralized enamel does form41,42. This is 

also true in the enamel of patients with the genetic disease amelogenesis imperfecta in 

which particular mutations of amelogenin have been identified43. These observations imply 

that the presence of this protein is not an absolute requirement for enamel mineralization42. 

However, other evidences indicate a critical dependency of amelogenin self-assembly on 

the microstructural organization of enamel. This process involves amino-terminal 

hydrophobic domain-A and carboxy-terminal hydrophilic domain-B. Amelogenin’s amino 

acid sequence is highly conserved across evolution and this conservation is particularly 

obvious among the amino-terminal residues 1-51 and again in the carboxyl-terminal 

residues 160-1806,44,45. Conservation of amino acid sequence often implies physiologic 

relevance. The physiologic relevance of the highly conserved amelogenin’s amino-terminus 

was identified by LENCH and WINTER46 and confirmed by COLLIER et al.47. These 

authors focused their genetic studies on two unrelated human pedigrees for amelogenesis 

imperfecta and identified single amino acid changes, occuring within the highly conserved 

amino-terminus of amelogenin, as the causative factor for the phenotypic changes in the 

resulting enamel. Some experiments with transgenic animals, containing domain-A, 

domain-B or both domains deleted, indicated that a highly organized enamel organic matrix 

(essential to normal enamel formation) results from undisturbed amelogenin self-

assembly42,48. Mutations in human amelogenin gene located on the X chromosome induce  
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amelogenesis imperfecta (AIH1) with enamel phenotypes broadly characterized as 

hypoplastic or hypomineralized. Documented cases of AIH1 with mutations in the C 

terminus of amelogenin have resulted in a hypoplastic phenotype, whereas mutations 

located within the N terminus have resulted in hypomineralized enamel50,51. Single amino 

acid in vitro mutations, identical to those appearing in AIH1, were able to reduce 

amelogenin self-assembly52. According to PAINE et al.49, a possible explanation for this 

genotype/phenotype relationship observed in vivo may be related to a reduction in the rate 

of amelogenin hydrolysis53 and the subsequent events of mineralization. The proline 

residue at position 169 of mouse amelogenin (M180) seems to play a significant role in 

amelogenin hydrophobic self-assembly, since this process does not occur after removal of 

the C-terminal including the referred amino acid42. However, the importance of this amino 

acid has not been well established and some reasons for this fact are the conflicting results 

of investigations which show that mutating proline-169 within M180 to either a lysine or 

threonine does not influence amelogenin’s domain-A assembly42. 

Both native and recombinant amelogenins are reported to hemagglutinate mouse red blood 

cells3,54. This hemagglutination is inhibited by monomers, dimers and tetramers of N-

acetylglucosamine (GlcNAc) but not by N-acetylgalactosamine or related sugars. This 

activity is retained by TRAP (tyrosine-rich amelogenin polypeptide 45 residues), which 

results from N-terminal cleavage of amelogenin by enamelysin (MMP-20). It was shown 

that [14C]GlcNAc binds to the N-terminal sequence of TRAP (-PYPSYGYEPMGGW) but 

not when the three tyrosyl residues are substituted with phenylalanine or if the third proline 

is substituted with threonine3. This latter modification mimics the point mutation identified  
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in a case of human X-linked amelogenesis imperfecta47. This activity of the TRAP motif of 

amelogenin is known as lectin-like property and may be functionally involved in 

interactions with enamel matrix glycoproteins (enamelin, tuftelin or ameloblastin), 

promoting structural stability of the matrix3 or, alternatively, functioning in a signaling role 

through recognition by cell surface glycoproteins55. Recent studies indicate that amelogenin 

may interact with ameloblastin to form a heteromolecular assembly as a consequence from 

the presence of GlcNAc-mimicking peptides (GMps) at intermittent sites of ameloblastin 

and from the recognized amelogenin-trityrosyl-motif-peptide (ATMP), which is a 

GlcNAc/GMp-binding domain in amelogenin56. In vitro experiments conducted by 

BOUROPOULOS and MORADIAN-OLDAK57 strongly suggest that the 32-kDa enamelin 

and amelogenins cooperate to promote nucleation of apatite crystals and propose a possible 

novel mechanism of mineral nucleation during enamel biomineralization. 

 

1.1.2. Enamelins 

 

The enamelins comprise a class of enamel acidic proteins that include enamelin and 

tuftelin. They account for about 2% of all enamel matrix proteins12. 

 The major secretory product of the human enamelin gene has 1103 amino acids and is 

post-translationally modified, secreted and processed by proteases shortly after being 

secreted58. Unlike other enamel proteins, no enamelin isoforms that are translated from 

alternatively spliced RNA transcripts have been observed3. Porcine enamelin proteolytic 

products were first isolated and characterized by FUKAE and TANABE59. Intact enamelin 

is only found on the enamel surface, within a micrometer of the ameloblast cell membrane,  
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and many enamelin cleavage products appear to be rapidly degraded and are only found in 

the outer enamel layer12. However, stable enamelin proteolytic products are found 

throughout the entire thickness of developing enamel. The best-studied stable enamelin 

cleavage product is the 32-kDa enamelin3,60-63. The porcine 32 kDa-enamelin has 106 

amino acids (residues 174-279), which include two phosphoserines and three glycosylated 

asparagines62-64. Variable glycosilation contributes to the heterogeneity of this enamel 

protein3. 32-kDa enamelin is concentrated in the rod and interrod enamel and is absent from 

the sheath space12. The functional significance of this specific spacial organization in the 

enamel layer is not yet understood. Recent in vitro evidences indicate that 32-kDa enamelin 

and amelogenin cooperation promotes nucleation of apatite crystals57. The importance of 

enamelin for normal enamel formation is indicated by an investigation that shows 

correlation between a mutation in its gene and an autosomal-dominant form of 

amelogenesis imperfecta (AI)65. The mutation is a single-G deletion within a series of 7 G 

residues at the exon 9-intron 9 boundary of the enamelin gene. Another publication reports 

that mutations in this gene cause a severe form of autosomal-dominant smooth hypoplastic 

AI that represents 1.5%, and a mild form of autosomal-dominant local hypoplastic AI that 

accounts for 27% of AI cases in Sweden58. 

A long recognized structure in enamel is the tuft6,66, which may represent residual enamel 

matrices that include proteins responsible for crystals nucleation3,67,68. Enamel tufts occur at 

the dentine enamel junction (DEJ) and appear as ‘tornado-like swirls’ rising from the DEJ 

and into the aprismatic enamel6,68. Protein was recovered from these tufts by micro-

dissection and characterized69. Sixteen years later, a cDNA clone with amino acid  
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sequences that matched the composition of the tuft protein69 was isolated and 

characterized22, and so the name tuftelin was adopted. Since tuftelin is an acidic enamel 

protein, it joined the enamelin class of enamel protein6. Full-length mouse tuftelin cDNA 

has been characterized24. The function of this enamel protein remains unknown but a 

predicted function, as we referred at the beginning of this paragraph, is to nucleate 

hydroxyapatite crystal formation. This prediction is made because of tuftelin’s anionic 

character, its localization to the DEJ and its expression prior to amelogenins during 

development6,22,70,71. Tuftelin can be divided into two domains with distinct physical-

chemical properties: the carboxyl-terminal domain mediating self-assembly and the amino-

terminal domain containing a pronounced anionic motif, which is consistent with tuftelin’s 

proposed role as a crystal nucleator6. The bovine tuftelin gene was also cloned and 

characterized by BASHIR et al.23, showing a cDNA sequence that was different from the 

one reported by DEUTSCH et al.22 at its carboxyl-terminus. The former reported a C-

terminus with only 42 amino acids23 and the second with 9222. Tuftelin thus exists as at 

least two isoforms: the tuftelin A form22 and the tuftelin B form23. The self-assembly 

properties of bovine tuftelin A and B isoforms and mouse tuftelin have been confirmed by 

PAINE et al.72. Tuftelin interacting proteins (TIPs) have been discovered73,74 and one TIP 

protein, encoding a 39-kDa protein (TIP 39), shows enrichment to the secretory surface of 

Tomes’ processes72, being a candidate molecule linking the ameloblast secretory surface to 

the assembling enamel organic matrix. The abundance of TIP 39 and tuftelin at the DEJ 

suggests that these two proteins may also participate in forming specialized enamel at the 

DEJ. 
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In an attempt to better define a physiological function for tuftelin during amelogenesis, a 

recent investigation was carried out with transgenic mice that overexpress tuftelin in 

ameloblasts and subsequently in the enamel matrix75. Overexpression of this protein was 

shown to impact dramatically upon the enamel crystallite and enamel prismatic structure, 

resulting in gross imperfections in enamel, which apparently reflects from loss of restricted 

growth of enamel crystallites along their a-axis and b-axis. 

 

 

1.1.3. Non-amelogenins, non-enamelins  

 

This third class of enamel proteins is represented by ameloblastin (also called 

amelin/sheathlin)3,9-11, which accounts for about 5% of total enamel proteins12. Its amino 

and carboxyl ends are biochemically different and were discovered separately during 

investigations of pig enamel proteins3. The carboxyl end was represented by two 

polypeptides with apparent molecular weights of 27 and 29 kDa, isolated during a search 

for enamel proteins that bound calcium59. The amino-terminal end of ameloblastin was 

discovered in the same research that isolated and characterized enamelin cleavage 

products76. Ameloblastin’s amino-terminus is represented in the enamel matrix by a group 

of low molecular weight proteolytic products in the range 13-17 kDa with aggregative 

properties76. Two research groups independently cloned and characterized cDNAs encoding 

the rat homologue of the protein that had been studied by FUKAE and TANABE59,76. The 

protein was termed ameloblastin29 and amelin77. Later, the cDNA from pig was cloned and  
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designated as sheathlin25. A cDNA encoding the mouse homologue was cloned and also 

called ameloblastin30, which is the name used in this paper. Human ameloblastin has 

already been cloned and characterized28,78. HU et al.25 observed that ameloblastin 

transcripts undergo a limited amount of alternative splicing, generating two isoforms that 

differ by the deletion or inclusion of a 15 amino acid segment, which is absolutely 

conserved between the pig and the rat. Ameloblastin also is proteolyticly processed after 

secretion into enamel matrix. Intact ameloblastin and its cleavage products containing the 

C-terminal half of the protein are only found in the outer developing enamel, concentrated 

among the crystallites in the rod and interrod enamel12,79. Proteolytic products containing 

the amino-terminal side of the protein are found at all depths within the enamel layer, but 

they are not distributed randomly, being concentrated in the sheath space12. Ameloblastin 

self-assembly could not be demonstrated74, but interactions between ameloblastin and 

amelogenin have already been suggested56. While amelogenin and tuftelin appear to be 

restricted in their expression to ameloblasts engaged in forming enamel, ameloblastin is 

expressed by ameloblasts during amelogenesis, as well as by cells of Hertwig’s epithelial 

root sheath during cementogenesis80,81. This spatial pattern of expression suggests that 

ameloblastin protein participates in the genesis of both tissues74,80,81.  

The significant role for ameloblastin during amelogenesis has been indicated by 

experiments that place its gene loci in the critical region of autosomal-dominant forms of 

amelogenesis imperfecta82. Ameloblastin overexpression in mice has recently been shown 

to influence enamel crystallite and enamel rod morphology, implicating the role of 

ameloblastin gene locus in the etiology of a number of undiagnosed autosomally dominant  
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cases of amelogenesis imperfecta83. Mutant ameloblastin transcripts have also been 

reported to be expressed in human ameloblastomas28.  

 

1.2. Proteinases 

 

Proteinases are present in low abundance in the developing enamel matrix and are not 

likely to participate directly in the mineralization process12. They cleave enamel proteins by 

catalyzing the hydrolysis of peptide bonds. The nature and sequence of proteolytic 

activities during enamel biomineralization are critical and somehow unique to this 

mineralizing tissue3. First, these activities cause changes in structural and physicochemical 

properties of amelogenins, affecting the way they interact with each other and with the 

developing enamel crystallites15,84. Second, the almost complete protein degradation 

appears to be essential for rapid crystal growth, leading to enamel hardening85,86. Several 

proteinases have been detected in the enamel extracellular matrix87. However, two 

enzymes, enamelysin (matrix metalloproteinase-20, MMP-20) and enamel matrix serine 

proteinase 1 (EMSP1), which is now officially designated kallikrein 4 (KLK4), are major 

enamel matrix proteinases12.   

 

1.2.1. Enamelysin (MMP-20) 

 

Enamelysin mRNA has been cloned from pig88, human89, cow90 and mouse91. It exhibits 

two forms (41 and 45 kDa) in zymograms87,88,92. Catalytic domain fragments (21 and 25  

 

CAPÍTULO 1



21 

kDa) of enamelysin have also been described90. This proteinase is expressed during the 

early through middle stages of enamel development12,93 and seems to participate in the 

proteolytic events that allow the crystals to grow in length but not in width or thickness87. 

In vitro, enamelysin catalyzes all of the amelogenin cleavages that are known to occur 

during the secretory stage in vivo12,92, and it is probably the enzyme responsible for the 

processing of all enamel proteins12. Enamelysin’s main function seems to be the gradual 

removal of amelogenin C terminus, changing the physicochemical properties of this 

protein. This cleavage generates the hydrophobic tyrosine-rich amelogenin polypeptide 

(TRAP)94, which is important in the arrangement of amelogenin nanospheres directly 

involved in the regulation of enamel crystals elongation, controlling their growth in width 

and thickness4. Experiments with recombinant enamelysin also indicate that this enamel 

proteinase can degrade itself94,95. 

The essential role of enamelysin during enamel formation was evidenced by a recent 

investigation that showed an amelogenesis imperfecta phenotype caused by enamelysin 

gene deletion in mice93. The mice homozygous for this mutation did not process 

amelogenin properly, showed altered enamel matrix and rod pattern, had hypoplastic 

enamel and deteriorating enamel organ morphology as development progressed. These 

alterations, however, were not beared by heterozygous mice (enamelysin+/-), indicating that 

the phenotype observed for mutations in the enamelysin gene is autosomal-recessive. These 

findings are in accordance with previous data of THOMPSON et al.96, which indicates that 

the most autosomal-recessive anomalies are caused by mutations in enzyme genes. The 

lack of amelogenin processing in the enamelysin null mice observed by CATERINA et al.93  
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likely eliminates necessary changes in the physicochemical properties of amelogenin that 

are essential for the proper enamel development. 

 

1.2.2. Kallikrein 4 (KLK4) 

 

Kallikrein 4 (KLK4) has been cloned from pig97, human98 and mouse99. The first KLK4 

cDNA was isolated from a pig-tooth-specific cDNA library and designated as enamel 

matrix serine proteinase 1 (EMSP1)12,97. This proteinase is found in the enamel matrix 

exhibiting these two forms: 30 and 34 kDa12,100. Different from enamelysin, KLK4 

degrades enamel proteins during early maturation stage of amelogenesis, which facilitates 

their removal from the matrix and makes way for hardening of the enamel layer12. In vitro 

incubation experiments using a fraction rich in KLK4 activity have demonstrated complete 

degradation of the recombinant amelogenin substrate to peptides as small as 147 Da3,101. 

Theoretically, if KLK4 failed to function enamel matrix would not be reabsorbed 

efficiently and the crystallites would not be able to thicken fully, resulting in a 

hypomaturation form of amelogenesis imperfecta12. Experiments with engineered KLK4 

knockout mice, which can prove this hypothesis, have not been published yet.   

 

1.3. Other enamel matrix components 

 

Serum albumin has been detected in the enamel organic matrix especially throughout the 

secretory and transition stages of amelogenesis102-105. However, this protein is not  
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synthesized or secreted by ameloblasts106. Radiolabeled serum albumin injected into rabbits 

did not incorporate into the enamel layer, suggesting a physiological barrier between the 

extravascular fluid and the enamel matrix107. Furthermore, ingress of albumin into enamel 

from dentin is restricted, particularly during the secretory stage108. As SHAPIRO and 

AMDUR109 demonstrated that red pigmentation observed in extracted developing bovine 

teeth was probably derived from hemoglobin adsorbed post mortem from the dental sac 

fluid, FINCHAM et al.3 suggest that albumin would be likely to exhibit the same behavior.  

Lipids have been demonstrated to represent some 0.2% of the developing enamel matrix3. 

Entombed membrane fragments of the Tomes’ processes in the matrix were suggested to 

contribute to the overall lipid content in this tissue110. A group of short-lived sulfated 

proteins (49 and 25 kDa), which are rapidly degraded after secretion, has also been 

identified in the enamel matrix and suggested to interact functionally with nascent 

amelogenins111. The role of lipids and sulfated proteins in the enamel organic matrix 

remains poorly understood3. 

 

2. Concluding remarks  

 

Enamel formation is a highly complex process. The major enamel organic matrix proteins 

and proteinases have already been cloned and characterized, and their association with 

several cases of amelogenesis imperfecta has evidenced their importance in the 

development of enamel. However, there is an important debate in the literature about the 

enamel proteins processing and the way they arrange in order to interact with each other  
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and with the developing enamel crystallites. Amelogenin supramolecular self-assemblies 

appear to be essential for normal enamel formation. On the other hand, the mechanisms by 

which non-amelogenin proteins and enamel proteinases contribute to this formation should 

be better established.  
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Abstract 

 

Enamel biosynthesis is initiated by the secretion, processing and self-assembly of a 

complex mixture of proteins. This super molecular ensemble controls the nucleation of the 

crystalline mineral phase. The detection of anisotropic properties by polarizing microscopy 

has been extensively used to detect macromolecular organizations in ordinary histological 

sections. The aim of this work was to study the birefringence of enamel organic matrix 

during the development of rat molar and incisor teeth. Incisor and molar teeth of rats were 

fixed in 2% paraformaldehyde 0.5% glutaraldehyde in 0.2 M PBS, pH 7.2 and decalcified 

in 5% nitric acid 10% formaldehyde. After paraffin embedding, 5µm thick sections were 

obtained, treated with xylol and hydrated. Form birefringence curves were obtained after 

measurements of optical retardations in imbibing media with different refractive indices. 

Our observation showed that enamel organic matrix of rat incisor and molar teeth is 

strongly birefringent and so presents a highly ordered supramolecular structure. The 

birefringence starts at early secretion and disappears at maturation phase. The analysis of 

enamel organic matrix birefringence may be used to detect the effects of genetic and 

environmental factors on the supramolecular orientation of enamel matrix and their effects 

on the structure of mature enamel.   
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Introduction 
 

The formation of dental enamel is a complex biological process. It begins with 

the secretion of a protein-rich matrix. This matrix is proteolytically cleaved and replaced by 

mineral ions, which deposit to form hydroxyapatite crystals. Enamel mineralization is 

further completed with the elongation of the hydroxyapatite crystals, to give rise to the 

most mineralized tissue of the organism (1, 2). These events take place in a time- and 

space-restricted pattern, as distinct zones of secreting, maturing and mature enamel are 

clearly distinguished (3). 

The current knowledge on the biochemical and morphological events that 

occur during the formation of enamel is largely based on in vitro studies and genetic 

mutations in mice and humans (4-13). These studies indicate that the organization and 

growth of the hydroxyapatite crystals are regulated by interactions with the components of 

enamel organic matrix. Enamel organic matrix is composed mainly by amelogenins (14), 

but several other protein components, present in smaller quantities, can also influence its 

biological properties. Recent evidences indicate that the components of enamel organic 

matrix can interact to form a supramolecular structure (15-17). The biological significance 

of this supramolecular organization is not clearly understood. In part this occurs due to 

methodological difficulties to perform direct morphological observations of the structured 

enamel organic matrix. The field would, therefore, greatly benefit from methods allowing in 

situ analysis of the supramolecular organization of enamel organic matrix in the diverse 

phases of amelogenesis.  

The detection of anisotropic properties of biological structures by polarizing 

microscopy has been extensively used to study the macromolecular organization in 
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ordinary histological sections. The aim of this work was to study the birefringence of 

enamel organic matrix during the development of rat molar and incisor teeth.  

 

Material and methods 

 

Wistar rats with approximately 300g were anesthetized with chloral hydrate 

and perfused with 2% paraformaldehyde 0.5% glutaraldehyde in 0.2 M phosphate buffer 

solution, pH 7.2. Upper incisor teeth and hemimandibles were then immersed in the 

fixative solution for 16h. Decalcification was performed by immersion of upper incisor teeth 

and hemimandibles in 5% nitric acid and 10% formaldehyde for 6h and 24h, respectively. 

After dehydration, samples were embedded in paraffin and 5µm thick longitudinal sections 

were obtained. The sections were treated with xylol for removal of the paraffin, and 

hydrated.  

Form birefringence curves were obtained after determining optical retardations 

of the area that showed the highest birefringence brightness, as a function of each 

refractive index (n) of the following imbibing media: water, 30%, 40%, 60% and 80% 

aqueous glycerin, 100% glycerin, nujol and immersion oil (Leica Microsystems Inc., 

Wetzlar, Germany). These fluids were used in the sequence they are quoted. Their 

correspondent refractive indices are reported in figure 2. Sections were immersed in the 

imbibing media for 30 min before measuring optical retardations, which were determined in 

nanometers (nm). Leica DM LP microscope (Leica Microsystems Inc., Wetzlar, Germany) 

equipped with polarizing filters, Brace-Köhler compensator (Wild Leitz GMBH Inc., 

Wetzlar, Germany) and polychromatic light was used. 
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When a change of the imbibing medium had to be secured, the section was air 

dried, rinsed in the next fluid to be used and finally covered with it for the time reported 

above, before measurement. After 100% glycerin was removed from sections, they were 

rinsed twice in distilled water for 10 min and then carefully air dried in order to be ready for 

immersion in nujol. The sections were rinsed with absolute ethanol after the period they 

were imbibed in nujol and immersion oil. 

Measurements of optical retardations were performed in early secretory 

enamel, late secretory and maturing enamel (3). All the measurements in the present work 

were always carried out at the same point of the tissue in order to avoid variations on 

optical retardations due to thickness fluctuation. Forty measurements were performed in 

each region.   

Hemimandibles from a newborn (0 day), 4 day-old and 9 day-old Wistar rats 

were also fixed and decalcified as described above. After dehydration, samples were 

embedded in paraffin and 5µm sectioned. The sections were used to investigate the 

birefringence of enamel organic matrix during the development of rat molar tooth. 

 

Results 

 

The analysis of rat incisor enamel matrix showed that it exhibits a positive 

birefringence. The maximum birefringence occurs when prisms are aligned at 450 with the 

polarizer and analyzer (Fig. 1). The analysis of optical retardation in upper incisor enamel 

matrix as a function of each refractive index (n) of the imbibing media is shown in figure 2. 

The highest and smallest retardations for the reported refractive indices correspond 

respectively to n=1.435 (80% aqueous glycerin) and n=1.518 (Leica oil). Optical 
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retardation values increased progressively from water to 80% aqueous glycerin and 

decreased progressively when the sections were immersed in 100% glycerin, nujol and 

Leica oil.  

The arithmetic means of optical retardations on early secretory enamel, in the middle 

portion of secretory, and intermediate zone of enamel matrix imbibed in 80% aqueous 

glycerin are shown in Figure 3. The birefringence brightness begins to be evident in the 

early secretory stage, in the region corresponding to the distal root of the third molar  (Fig. 

4A). It appears initially as a thin layer near dentin-enamel junction and expands 

progressively towards enamel surface. The highest values of birefringence were found in 

the late secretory stage in a region that corresponds to the distal root of the second molar. 

In this region enamel has already reached full thickness (Fig. 4B). Birefringence decreases 

in maturation stage of amelogenesis, in a region that corresponds to the middle portion of 

the second molar. In this area the birefringence of enamel organic matrix exhibited a 

granular pattern and its maximum brightness was observed when the prisms were aligned 

at 90º with the polarizer (Fig. 4C). The birefringence starts to disappear near enamel 

surface and progressively extends to the dentin-enamel junction. Analysis of extracted 

teeth showed that the loss of birefringence occurred in the so called intermediate 

maturation zone when an opaque boundary can be distinguished on developing enamel 

after a 5 min drying time (18). These aspects are compatible with the degradation and 

removal of enamel organic matrix that occur in this area. No birefringence was observed in 

the region that corresponds to the mesial root of the second molar, even though enamel 

organic matrix is still present. This indicates that disorganization of enamel organic matrix 

precedes its nearly complete removal during maturation stage.  

The analysis of rat first molar showed that the enamel matrix of 4 day-old animals 

also exhibited a strong birefringence in the areas of secretory enamel (Fig. 5). The enamel 
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of 0 day-old animals, which had a thin layer of enamel; and of 9 day-old animals, which 

was already in the maturation phase did not exhibit any birefringence.  

 

Discussion 

 

Anisotropic substances exhibit double refraction (19). Hence, when passing through 

these substances polarized light propagates as two wave fronts. Birefringence is the 

anisotropy caused by the difference between the two refractive indices of a substance. 

The relative displacement of these two polarized wave fronts is called optical retardation. 

Optical retardation is given as a length in nanometers and is directly proportional to the 

thickness of the sections. Then, thicker sections of the same sample show higher optical 

retardations. Sections of biological structures formed by filamentous, orderly arrayed and 

parallel macromolecules, exhibit a significant birefringence when examined through 

polarized light microscopy (20, 21). Birefringence reveals ordered supramolecular 

organization. In biological samples birefringence is observed in filamentous actin (F-actin), 

intermediate filaments, myosin and collagen (20-22). During secretory phase the enamel 

organic matrix is composed mainly by amelogenins, which account for more than 90% of 

the protein content in this tissue (23). These proteins can form globular structures known 

as nanospheres (5). Evidences indicate that nanospheres align with the side faces of 

hydroxyapatite crystallites during enamel development (24). This polymerization of 

amelogenin nanospheres may account for the birefringence of the enamel organic matrix 

detected in the present study.  In this sense, the organization of enamel matrix may be 

similar to F-actin, whose birefringence is imparted by an ordered polymerization of globular 

molecules of G-actin (21, 25). 
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There are few data in the literature about the appearance of the enamel organic 

matrix when examined through polarized light microscopy. Previous studies reported that 

demineralized developing enamel ground sections were shown to exhibit a maximum 

birefringence ranging from 0.0003 to 0.0009 (26, 27). Considering that birefringence (B) is 

expressed by the formula B=OR/E, where OR= optical retardation, and E= thickness of the 

section in nm, the enamel matrix analysed in the present study was about 4-fold more 

birefringent than the 0.0009 value reported by ANGMAR-MÅNSSON (27). In fact, this author 

considered that the organic matrix of developing enamel was poorly crystalline. It was 

concluded that enamel organic matrix was formed by a disordered protein gel filling the 

spaces between apatite crystallites. The  discrepancy found between the present and 

previous studies may be explained by the fact that the birefringence of this tissue is 

extremely vulnerable to fixation and demineralization processes. Rat incisor teeth should 

be rapidly extracted and immediately immersed in fixative solution. Rat hemimandibles 

should be perfused for proper preservation of the enamel organic matrix. The rapid loss of 

birefringence may result by the activity of the enamel proteases, which are present during 

all stages of amelogenesis. The fixing solution used in the present study (10% 

paraformaldehyde, 0.5% glutaraldehyde) provides a good structural preservation and an 

effective enzyme inactivation (28). Demineralization was also critical for enamel organic 

matrix preservation. Demineralization in 5% nitric acid, 10% formaldehyde allowed rapid 

removal of the mineral contents and preservation of the protein scaffold. 

The results presented here indicate that enamel organic matrix is highly 

birefringent, presenting an ordered supramolecular structure. This finding opens new 

possibilities in the study of enamel biology. The analysis of enamel organic matrix 

birefringence may be a useful method to investigate the effects of genetic and 

environmental factors on enamel organic matrix and its association with enamel defects.   
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Figure legends 

 

Figure 1. Birefringence brightness in secretory region of the enamel organic matrix of 

Wistar rat incisor imbibed in 80% aqueous glycerin. Analyzer and polarizer are signalized 

by crossed bars. A. Position of maximum birefringence (arrow at 450 with the polarizer and 

analyzer). B. The same section rotated 450, showing the minimum birefringence  

(extinction position).   

 

Figure 2. Optical retardations (nm) of the highest birefringence in unstained 5µm thick 

sections of the enamel organic matrix of the Wistar rat incisor, as a function of each 

refractive index (RI) of the imbibing media. Measurements of optical retardations were 

made with Brace-Köhler compensator with polychromatic light. Results are expressed as 

mean ± standard deviation (SD). Each point in the curve is the average of 40 

measurements. Vertical bars represent SD. Note that the highest and the smallest 

retardations for the series of refractive indices correspond respectively to n=1.435 (80% 

aqueous glycerin) and n=1.518 (Leica oil).  

 

Figure 3. Form birefringence of enamel organic matrix of rat incisor. Eighty percent 

aqueous glycerin was used as the imbibing medium. Measurements of optical retardations 

(OR) were made with Brace-Köhler compensator with polychromatic light, on three 

different areas corresponding to early secretory, late secretory and maturation stage of 

enamel development. Results are expressed as mean ± standard deviation (SD). Each 

point in the curve is the average of 40 measurements. Vertical bars represent SD. Note 

that the highest birefringence brightness was observed in middle secretory enamel. The 
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lowest OR was observed in transition stage where extensive corruption of the organic 

matrix begins to occur. 

 

Figure 4. Birefringence of enamel organic matrix of rat incisor. A. Early secretory stage. B.  

Late secretory stage. C. Maturation stage . Arrows indicate dentin-enamel-junction (DEJ). 

Note that birefringence starts near DEJ in early secretory stage and disappears 

progressively during transition phase of enamel development. 

 

Figure 5. Birefringence of the enamel organic matrix of molar tooth from 4 day-old Wistar 

rat. Analyzer and polarizer are signalized by crossed bars. Arrow at 450 with the polarizer 

and analyzer indicates the position of maximum birefringence. 
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Figures 
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Figure 2
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OR=optical retardation. 
1=water (n=1.333*), 2=30% aqueous glycerin (n=1.372*), 3=40% aqueous 
glycerin (n=1.386*), 4=60% aqueous glycerin (n=1.413*), 5=80% aqueous 
glycerin (n=1.435*), 6=100% glycerin (n=1.461*), 7=nujol (n=1.478*), 
8=Leica oil (n=1.518). 
 
n=refractive index. 
*According to Vidal BC et al. (1975). 
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Figure 5 
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CONCLUSÃO GERAL 

 

Os achados deste estudo mostram que a matriz orgânica do esmalte de 

molares e incisivos de ratos é altamente birrefringente, apresentando uma 

estrutura supramolecular ordenada. Esta descoberta abre novas possibilidades no 

estudo da formação do esmalte dentário, pois permite investigar os efeitos de 

fatores genéticos e ambientais sobre a organização supramolecular da sua matriz 

orgânica e correlacionar com defeitos em sua estrutura madura.    
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