MARCELO FABIANO GOMES BORIOLLO

ANÁLISE DA DIVERSIDADE GENÉTICA DE AMOSTRAS DE Candida albicans ISOLADAS DA CAVIDADE BUCAL DE CRIANÇAS SAUDÁVEIS POR ELETROFORESE DE ENZIMA MULTILOCO

Tese apresentada à Faculdade de Odontologia de Piracicaba, da Universidade Estadual de Campinas, para obtenção do Título de Doutor em Biologia Buco-Dental. Área de Microbiologia e Imunologia.

PIRACICABA 2004

MARCELO FABIANO GOMES BORIOLLO

ANÁLISE DA DIVERSIDADE GENÉTICA DE AMOSTRAS DE Candida albicans ISOLADAS DA CAVIDADE BUCAL DE CRIANÇAS SAUDÁVEIS POR ELETROFORESE DE ENZIMA MULTILOCO

Tese apresentada à Faculdade de Odontologia de Piracicaba, da Universidade Estadual de Campinas, para obtenção do Título de Doutor em Biologia Buco-Dental. Área de Microbiologia e Imunologia.

Orientador: Dr. José Francisco Höfling.

Banca Examinadora:

Dra. Aline Aparecida Pizzirani Kleiner Dra. Denise Madalena Palomari Spolidorio Dra. Renata de Oliveira Mattos Graner Dr. Edvaldo Antônio Ribeiro Rosa

PIRACICABA 2004

Dedico este trabalho à minha esposa Mirela Farias da Silva Gomes Boriollo, pela compreensão dos momentos ausentes e pela colaboração constante nas profícuas opiniões.

Aos meus pais Laércio e Lourdes, pelo incansável amor proporcionado.

AGRADECIMENTOS

Ao Prof. Dr. José Francisco Höfling, pela participação ativa e direta neste passo gigantesco a caminho do nosso engrandecimento profissional, nos ensinando a conciliar os momentos de austeridade e ternura, fatores primordiais na realização de um trabalho científico, meu eterno agradecimento.

À Faculdade de Odontologia de Piracicaba, na pessoa do seu Diretor, Prof. Dr. Thales Rocha de Mattos Filho, onde tive a oportunidade de dar um importante rumo ao crescimento científico e profissional.

À Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP, pelos meios tradicionais oferecidos para o fomento da pesquisa científica e, de modo especial, aos Assessores Científicos pela insigne contribuição durante o desenvolvimento desta pesquisa.

Ao Prof. Dr. Edvaldo Antônio Ribeiro Rosa, que prestou preciosas informações para a realização deste trabalho.

Aos professores, funcionários e amigos do Laboratório de Microbiologia e Imunologia, da Faculdade de Odontologia de Piracicaba, da Universidade Estadual de Campinas, pela aprendizagem, trabalho e lazer compartilhados.

A todas as pessoas que participaram, contribuindo para a realização deste trabalho, direta ou indiretamente, meu agradecimento.

"Um desejo apaixonado pode realizar cousas impossíveis, ou que assim possam parecer ao frio, ao tímido e ao fraco"

Sir John Simpson

SUMÁRIO

Métodos fingerprinting para estudos epidemiológicos de Candida albicans 3 Resumo 3 Agradecimentos 24 Referências 24 ARTIGOS ORIGINAIS 43 Paridade entre métodos de interpretação genético e numérico por MLEE e análises de agrupamento entre isolados bucais de Candida albicans 45 Resumo 45 Introdução 47 Material e Métodos 49 Proparação des extratos cultares 49 Proparação des extratos cultares 49 Proparação des extratos cultares 49 Antites de agrupamento e similaridade fencica 52 Antites de agrupamento e distancia genética 52 Antites de agrupamento e distancia genética 52 Comparação entre os métodos de interpretação genética 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação genética dos padrões de MLEE 54 Interpretação genética dos padrões de MLEE 55 Análises de agrupamento e distância genética 55 Análises de agrupamento ados de interpretação genética 57 Comparação entre os métodos de interpretação gen	ARTIGO DE REVISÃO	1
Resumo 3 Agradecimentos 24 Referências 24 ARTIGOS ORIGINAIS 43 ARTIGOS ORIGINAIS 43 ARTIGOS ORIGINAIS 43 ARTIGOS ORIGINAIS 43 Material e Métodos 45 Introdução 47 Material e Métodos 49 Preparação dos extratos celulares 49 Preparação dos extratos celulares 49 Interpretação punctica dos padrões de MLEE 50 Antites de agrupamento e distancia genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 55 Antites de agrupamento e distancia genética 56 Antites de agrupamento e distancia genética 56 Antites de agrupamento e distancia genética 56 Antites de agrupamento e dista	Métodos <i>fingerprinting</i> para estudos epidemiológicos de <i>Candida albicans</i>	3
Agradacimentos 24 Referências 24 ARTIGOS ORIGINAIS 43 ARTIGOS ORIGINAIS 43 Paridade entre métodos de interpretação genético e numérico por MLEE e análises de agrupamento entre isolados bucais de Candida albicans 45 Resumo 45 Introdução 47 Material e Métodos 49 Peparação de enzimas específicas 49 Eletroforesce e coloração de enzimas específicas 49 Eletroforesce e coloração de enzimas específicas 49 Eletroforesce e coloração de enzimas específicas 50 Andites de agrupamento e simalridade fenética 52 Andites de agrupamento e simalridade fenética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação quertica dos padrões de MLEE 56 Andites de agrupamento e distincia genética 55 Andites de agrupamento e distincia genética 56 Andites de agrupamento e distincia genética 56 Andites de agrupamento e distincia genética 56 Andites de agrupamento e distincia genética 57 Comparação dos extratos	Resumo	3
ARTIGOS ORIGINAIS 24 ARTIGOS ORIGINAIS 43 Paridade entre métodos de interpretação genético e numérico por MLEE e análises de agrupamento entre isolados bucais de <i>Candida albicans</i> 45 Resumo 45 Introdução 47 Material e Métodos 49 Introdução 49 Eletroforese e coloração de nuzimas específicas 49 Interpretação genética dos padrõs de MLEE 50 Interpretação genética dos padrõs de MLEE 51 Análises de agrupamento e distância genética 52 Análises de agrupamento e distância genética 53 Arafises de agrupamento e distância genética 54 Interpretação genética dos padrões de MLEE 54 Interpretação genética dos padrões de MLEE 54 Análises de agrupamento e distância genética 56 Arafises de agrupamento e distância genética 57 Comparação en	Agradecimentos	24
ARTIGOS ORIGINAIS 43 ARTIGOS ORIGINAIS 43 Paridade entre métodos de interpretação genético e numérico por MLEE e análises de agrupamento entre isolados bucais de <i>Candida albicans</i> 45 Resumo 45 Introdução 47 Material e Métodos 49 Preparação dos extratos celutares 49 Preparação dos extratos celutares 49 Interpretação genética dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Análises de agrupamento e distância genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação numérica dos padrões de MLEE 55 Análises de agrupamento e distância genética 56 Análises de agrupamento e stáncia genética 56 Análises de adrupamento e anterpretação genético e numérico 57 Comparação entre os métodos de interpretação genético e numérico 57 Comparação entre os métodos de interpretação genético e numérico 57 Comparação entres os métodos de interpretaç	Referências	24
ARTIGOS ORIGINAIS 43 Paridade entre métodos bucais de Candida albicans 45 agrupamento entre isolados bucais de Candida albicans 45 Resumo 45 Naterial e Métodos 49 biolados de leveduras 49 Preparação dos extratos celulares 49 Preparação dos extratos celulares 49 Interopretação genética dos padrões de MLEE 50 Interpretação aumérica dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação aumérica dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 57 Comparação entre os métodos de interpretação genético e numérico 56 Análises de adversidade fenética agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 56 Análises de diversidade genética dentro e entre populações de Candida albicans 56 Análises de diversidade genética dentro e entre populações	Keletenetas	24
Paridade entre métodos de interpretação genético e numérico por MLEE e análises de 45 agrupamento entre isolados bucais de Candida albicans 45 Resumo 45 Introdução 47 Material e Métodos 49 Preparação dos estratos celulares 49 Eletroforese e coloração de enzimas específicas 49 Interpretação genética dos padrós de MLEE 50 Interpretação genética dos padrós de MLEE 50 Análises de agrupamento e sitiaficia genética 52 Análises de agrupamento e sitiaficia genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrós de MLEE 55 Análises de agrupamento e sitiaficia genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Análises de agrupamento e distância genética 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 74 Refe	ARTIGOS ORIGINAIS	43
Kesumo 45 Introdução 47 Material e Métodos 49 Isolados de leveduras 49 Preparação dos extratos celulares 49 Eletroforese e coloração de enzimas específicas 49 Interpretação genética dos padrões de MLEE 50 Análises de agrupamento e disfinicia genética 52 Análises de agrupamento e disfinicia genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação genética dos padrões de MLEE 55 Análises de agrupamento e disfinicia genética 52 Análises de agrupamento e disfinicia genética 55 Análises de asimumento e disfinicia genética 56 Análises de agrupamento disfinicia genética 56 Análises de agrupamento disfinicia genética 56 Análises de agrupamento disfinicia genética 57 Comparação onter os métodos de interpretação genética e numérico 60 Discussão 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida </i>	Paridade entre métodos de interpretação genético e numérico por MLEE e análises de agrupamento entre isolados bucais de <i>Candida albicans</i>	45
Introdução 47 Material e Métodos 49 Introdução 49 Preparação dos extratos celulares 49 Peterformes e coloração de enzimas específicas 49 Eletroforese e coloração de enzimas específicas 49 Interpretação penícica dos padrões de MLEE 50 Interpretação pamento e similaridade fenética 52 Análises de agrupamento e distância genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação genética dos padrões de MLEE 54 Interpretação pumérica dos padrões de MLEE 54 Interpretação pumérica dos padrões de MLEE 54 Interpretação entre os métodos de interpretação genético e numérico 57 Comparação entre os métodos de interpretação genético e numérico 66 Agradecimentos 74 Referências 74 MLEEE e análise da diversidade genética dentro e entre populações de Candida albicans 85 isoladas da cavidade bucal de escolares saudáveis 89 Procedência das amostras 89 <t< td=""><td>Resumo</td><td>45</td></t<>	Resumo	45
Material e Métodos 49 Isolados de leveduras 49 Preparação dos extratos celulares 49 Eletroforese e coloração de enzimas específicas 49 Interpretação genética dos padrões de MLEE 50 Interpretação menérica dos padrões de MLEE 50 Análises de agrupamento e similaridade fenética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 55 Análises de agrupamento e similaridade fenética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 55 Análises de agrupamento e distância genética 56 Análises de similaridade fenética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 Referências 89 Preceadção de exitatos celulares 89 Preparação dos estratos celulares 90 El	Introducão	47
Instruction of the decomparation of the d	Material e Métodos	49
Preparação dos extratos celulares 49 Eletroforese c coloração de enzimas específicas 49 Interpretação numérica dos padrões de MLEE 50 Interpretação numérica dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Análises de agrupamento e distância genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação numérica dos padrões de MLEE 54 Interpretação numérica dos padrões de MLEE 54 Interpretação numérica dos padrões de MLEE 55 Análises de agrupamento e distância genética 56 Análises de agrupamento e distância genética 56 Análises de agrupamento e distância genética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 89 Interpretação dos extratos celulares 90 Eletroforese e coloração de enzimas específicas 90 El	Isolados de leveduras	49
Eleroforese e coloração de enzimas específicas 49 Interpretação genética dos padrões de MLEE 50 Interpretação numérica dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Análises de agrupamento e similaridade fenética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação quencia dos padrões de MLEE 55 Análises de agrupamento e distância genética 56 Análises de agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 74 Referências 74 MLEEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 89 Introdução	Preparação dos extratos celulares	49
Interpretação genética dos padrões de MLEE 50 Interpretação numérica dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação genética dos padrões de MLEE 55 Análises de agrupamento e distância genética 55 Análises de agrupamento e distância genética 56 Análises de similaridade fenética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 MLEE e análise da diversidade genética dentro e entre populações de Candida albicans 85 isoladas da cavidade bucal de escolares saudáveis 89 Interpretação genética dentro e entre populações de Candida albicans 89 Preparação dos extratos celulares 90 Eletroforese e coloração de enzimas específicas 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Interpretação genética dos padrõ	Eletroforese e coloração de enzimas específicas	49
Interpretação numérica dos padrões de MLEE 50 Análises de agrupamento e distância genética 52 Análises de agrupamento e similaridade fenética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação numérica dos padrões de MLEE. 55 Análises de agrupamento e distância genética 56 Análises de agrupamento e distância genética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEEE e análise da diversidade genética dentro e entre populações de Candida albicans 85 isoladas da cavidade bucal de escolares saudáveis 89 Introdução 87 Material e Métodos 89 Procedência das amostras 89 Preparação ogenética dos padrões de MLEE 91 Análises d diversidade genética 91 Análises de diversidade genética 91 Análises de diversidade genética 91 Análises de diversidade genética <td>Interpretação genética dos padrões de MLEE</td> <td>50</td>	Interpretação genética dos padrões de MLEE	50
Análises de agrupamento e distância genética 52 Análises de agrupamento e similaridade fenética 53 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação genética dos padrões de MLEE 55 Análises de agrupamento e distância genética 56 Análises de agrupamento e distância genética 56 Análises de similaridade fenética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de Candida albicans 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Preparação de enzimas específicas 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Análises de diversidade genética 91 Interpretação genéti	Interpretação numérica dos padrões de MLEE	50
Análises de agrupamento e similaridade fenética 52 Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação numérica dos padrões de MLEE. 55 Análises de agrupamento e distância genética 56 Análises de similaridade fenética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 74 Introdução 87 Material e Métodos 89 Prozedência das anostras 89 Preparação dos extratos celulares 90 Eletroforses e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Análises de diversidade genética 91 Análises de diversidade genética 93 Interpretação genética dos padrões de MLEE	Análises de agrupamento e distância genética	52
Comparação entre os métodos de interpretação genético e numérico 53 Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação numérica dos padrões de MLEE. 55 Análises de agrupamento e distância genética 56 Análises de agrupamento e distância genética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Preparação dos extratos celulares 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 121 Agradecimentos 130 Referência	Análises de agrupamento e similaridade fenética	52
Resultados 54 Interpretação genética dos padrões de MLEE 54 Interpretação numérica dos padrões de MLEE. 55 Análises de agrupamento e distância genética 56 Análises de similaridade fenética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Procedência das amostras 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 93 Interpretaçã	Comparação entre os métodos de interpretação genético e numérico	53
Interpretação genética dos padrões de MLEE 54 Interpretação numérica dos padrões de MLEE 55 Análises de agrupamento e distância genética 56 Análises de agrupamento e distância genética 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Procedência das amostras 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 121 Agradecimentos 130 Referências	Resultados	54
Interpretação numerica dos padrões de MLEE. 55 Análises de agrupamento e distância a gençúnemo 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Procedência das amostras 89 Procedência dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 130	Interpretação genética dos padrões de MLEE	54
Análises de agrupamento 50 Análises de similaridade fenética e agrupamento 57 Comparação entre os métodos de interpretação genético e numérico 60 Discussão 66 Agradecimentos 74 Referências 74 MLEEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Procedência das amostras 89 Procedência dos padrões de MLEE 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 121 Agradecimentos 130	Interpretação numerica dos padroes de MLEE.	55
Andrises de similaridade felícica e agriguinanto 57 Comparação entre os métodos de interpretação genético e numérico 66 Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Procedência das amostras 89 Procedência dos padrões de MLEE 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 130 Referências 130	Analises de agrupamento e distancia genetica	56
Discussão 66 Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de Candida albicans 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Procedência das amostras 89 Procedência dos extratos celulares 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 121 Agradecimentos 130	Analises de similaridade renefica e agrupamento	57
Agradecimentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 85 Introdução 87 Material e Métodos 89 Procedência das amostras 89 Preparação dos extratos celulares 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Análises de diversidade genética 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 121 Agradecimentos 130 Referências 130	Disquesão	00 66
Agradectmentos 74 Referências 74 MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i> 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Precedência das amostras 89 Preparação dos extratos celulares 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 121 Agradecimentos 130 Referências 130	Association	74
MLEE e análise da diversidade genética dentro e entre populações de Candida albicans 85 isoladas da cavidade bucal de escolares saudáveis 87 Introdução 87 Material e Métodos 89 Procedência das amostras 89 Preparação dos extratos celulares 90 Eletroforese e coloração de enzimas específicas 90 Interpretação genética dos padrões de MLEE 91 Análises de diversidade genética 91 Resultados 94 Interpretação genética dos padrões de MLEE 94 Análises de diversidade genética 103 Discussão 121 Agradecimentos 130 Referências 130	Agradecimentos	74
MLEE e análise da diversidade genética dentro e entre populações de Candida albicans85isoladas da cavidade bucal de escolares saudáveis87Introdução87Material e Métodos89Procedência das amostras89Preparação dos extratos celulares90Eletroforese e coloração de enzimas específicas90Interpretação genética dos padrões de MLEE91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Kererencias	/4
isoladas da cavidade bucal de escolares saudáveisIntrodução87Material e Métodos89Procedência das amostras89Procedência das amostras90Eletroforese e coloração de enzimas específicas90Interpretação genética dos padrões de MLEE91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Discussão103Discussão121Agradecimentos130Referências130	MLEE e análise da diversidade genética dentro e entre populações de Candida albicans	85
Introdução87Material e Métodos89Procedência das amostras89Procedência das amostras90Eletroforese e coloração de enzimas específicas90Interpretação genética dos padrões de MLEE91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	isoladas da cavidade bucal de escolares saudáveis	07
Material e Métodos89Procedência das amostras89Preparação dos extratos celulares90Eletroforese e coloração de enzimas específicas90Interpretação genética dos padrões de MLEE91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Introdução	87
Procedência das amostras89Preparação dos extratos celulares90Eletroforese e coloração de enzimas específicas90Interpretação genética dos padrões de MLEE91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Material e Métodos	89
Preparação dos extratos celulares90Eletroforese e coloração de enzimas específicas90Interpretação genética dos padrões de MLEE91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Procedência das amostras	89
Interpretação genética dos padrões de MLEE91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Preparação dos extratos celulares	90
Análises de diversidade genética91Análises de diversidade genética91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Eleutororese e coloração de enzimas específicas Interpretação genética dos padrões de MIEE	90
Resultados91Resultados94Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Análises de diversidade genética	91
Interpretação genética dos padrões de MLEE94Análises de diversidade genética103Discussão121Agradecimentos130Referências130	Resultados	91 94
Análises de diversidade genética94Discussão103Agradecimentos130Referências130	Interpretação genética dos padrões de MLEE	94
Discussão 121 Agradecimentos 130 Referências 130	Análises de diversidade genética	103
Agradecimentos 130 Referências 130	Discussão	121
Referências 130	Agradecimentos	130
	Referências	130

MLEE e análise da diversidade genética dentro e entre populações de <i>Candida albicans</i>	
socioceonômicos	
Jutan da ce e	
Introdução	
Material e Métodos	
Procedência das amostras	
Preparação dos extratos celulares	
Eletroforese e coloração de enzimas específicas	
Interpretação genética dos padrões de MLEE	
Análises de diversidade genética	
Resultados	
Interpretação genética dos padrões de MLEE	
Análises de diversidade genética	
Discussão	
Agradecimentos	
Referências	

ARTIGO DE REVISÃO

Métodos *fingerprinting* para estudos epidemiológicos de *Candida albicans*

Marcelo Fabiano Gomes Boriollo & José Francisco Höfling

Laboratório de Microbiologia e Imunologia, Departamento de Diagnóstico Bucal, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brasil.

RESUMO

O interesse em adquirir um melhor entendimento sobre a patogênese, epidemiologia, genética e evolução, das infecções causadas por C. albicans, tem conduzido ao desenvolvimento de inúmeras pesquisas, as quais empregaram sistemas fingerprinting, tais como Eletroforese de Enzima Multiloco (MLEE), Cariotipagem Eletroforética (EK), DNA Polimórfico Amplificado ao Acaso (RAPD) e Polimorfismo no Comprimento do Fragmento de Restrição (RFLP) com e sem hibridação. A efetividade destes sistemas tem sido examinada em diferentes níveis de discriminação. Uma estratégia de validação tem sido delineada, a qual compara dois ou mais métodos não relacionados. Para C. albicans, esta estratégia tem validado o emprego de MLEE, RAPD e Ca3 fingerprinting. Entretanto, seus diferentes padrões *fingerprinting* gerados poderiam ser registrados em programas de base de dados e submetidos a uma comparação com os parâmetros dos hospedeiros (i.e., idade, sexo, peso, características médicas, condições predisponentes, artigos protéticos, localização geográfica, fatores socioeconômicos, associação com outros indivíduos,...) e as características do patógeno (i.e., padrões de assimilação de açúcares, antigenicidade, secreção de proteinases, padrões de susceptibilidade as drogas, formação de hifa, *switching* fenotípico,...). Estes procedimentos permitiriam a comparação atual e retrospectiva de uma seleção de linhagens clínicas e epidemiologicamente importantes, as quais poderiam apresentar uma ou várias características do hospedeiro ou patógeno. Adicionalmente, a somatória deste crescente número de informações poderia contribuir ainda mais para o entendimento (i) da dinâmica dos organismos infecciosos em populações humanas, (ii) do complexo relacionamento entre comensalismo e infecção, (iii) dos mecanismos genéticos e evolucionários, ou ainda, (iv) identificar a origem de uma infecção e (v) monitorar a emergência de linhagens resistentes a diversos fatores.

Palavras chave: Candida albicans, epidemiologia molecular, sistemas fingerprinting.

Candida albicans e espécies relacionadas são encontradas de forma ubíqua e comensal na microbiota de cavidades (retal, bucal, vaginal, uretral, nasal, aural) e pele humanas¹⁶⁵. Estas espécies são consideradas patógenos oportunistas capazes de causar infecções variando desde desordens mucocutâneas, não comprometedoras ao individuo, até doenças invasivas, envolvendo quase todos os órgãos. A freqüência das infecções por *Candida* spp. vem aumentando mundialmente devido a uma multiplicidade de fatores predisponentes que facilitam a conversão da forma comensal à existência parasitária^{149,150}. O aumento destas infecções tem sido associado com deficiências imunológicas, conforme as observações de inúmeros casos de candidíase orofaríngea em pacientes com AIDS⁵⁷. A progressão da colonização para infecção em mucosas foi relatada como um processo dependente do mecanismo de defesa do hospedeiro e da habilidade de *Candida* spp. sobrepujar tal mecanismo²⁷. Diferentes manifestações clínicas de candidíase bucal foram descritas, as quais correspondem ao crescimento excessivo de leveduras e a sua penetração através da mucosa epitelial⁶⁵.

Para entender a dinâmica dos organismos infecciosos em populações humanas, interpretar o relacionamento complexo entre comensalismo e infecção, identificar a origem de uma infecção ou monitorar a emergência de linhagens resistentes as drogas, métodos moleculares baseados em sistemas *fingerprinting* genotípicos (marcadores moleculares) devem ser disponibilizados a fim de permitir acessar o relacionamento genético destes organismos de importância epidemiológica^{119,175}. Por definição, um isolado corresponde a um clone coletado independentemente de outros isolados. Dois isolados coletados independentemente podem ser completamente não relacionados ou geneticamente indistinguíveis. Em contraste, uma linhagem refere-se a uma coleção de isolados da mesma espécie, que são altamente relacionados ou geneticamente indistinguíveis. Para classificar dois isolados como pertencentes à mesma linhagem ou como membros de diferentes linhagens, métodos moleculares genotípicos sensíveis devem ser aplicados adequadamente para realizar estas funções. Esta necessidade é especialmente importante quando doenças emanam a partir de organismos comensais, quando linhagens tornam-se especializadas em determinadas localizações do corpo ou condições comprometedoras, quando linhagens sofrem microevolução para rápida adaptação, ou quando linhagens são transmitidas entre

indivíduos. Por sua vez, os sistemas *fingerprinting* genotípicos devem ser examinados quanto à sua efetividade em diferentes níveis de discriminação: (*i*) identificar a mesma linhagem em isolados independentes; (*ii*) identificar mudanças microevolucionárias em uma linhagem (isolados altamente relacionados, porém não idênticos); (*iii*) agrupar isolados moderadamente relacionados; e (*iv*) identificar isolados completamente não relacionados. Além disso, tais sistemas também devem fornecer uma base de dados para a estimativa da probabilidade de uma particular linhagem ser isolada duas vezes ao acaso em determinado local geográfico¹⁷⁵.

Até o momento, nenhum método fingerprinting genotípico tem fornecido uma medida definitiva de distância genética entre dois isolados. Tibayrenc (1998) tem pronunciado a inexistência de meios para determinar por completo a identidade de dois genótipos microbianos, objeção ao seqüênciamento do genoma inteiro¹⁹². Diferentes marcadores moleculares podem apresentar diferentes clocks moleculares (i.e., a velocidade evolucionária a qual eles mudam). Deste modo, um ótimo método fingerprinting genotípico deveria ser baseado em um número de marcadores moleculares. Tal método também deveria ser resistente à homoplasia (i.e., características comuns entre isolados que não apresentam um mesmo ancestral) e fornecer dados quantitativos que refletem distância genética. A comparação dos dados gerados por métodos fingerprinting genotípicos não relacionados, empregando um mesmo grupo de isolados testes, tornou-se um meio para avaliar tais requerimentos mencionados anteriormente^{193,195}. Em adição, a inclusão de isolados idênticos, altamente relacionados (mas não idênticos) e independentes com relacionamentos desconhecidos (incluindo isolados moderadamente relacionados e completamente não relacionados) foram sugeridos em grupos de isolados testes durante analises comparativas entre métodos *fingerprinting* genotípicos¹³⁴. Segundo Soll (2000), quando dois métodos identificam isolados idênticos e não idênticos, mas altamente relacionados, onde geralmente agrupam menos os isolados estritamente relacionados e distingue isolados completamente não relacionados, em essência, os dois métodos apresentam marcas comprovadas para todos os níveis de resolução (i, ii, iii e iv). Contudo, estas comprovações podem ser realizadas somente para espécies com uma estrutura populacional predominantemente clonal¹⁷⁵.

Os dados gerados por determinado método *fingerprinting* genotípico, para uma linhagem (i.e., padrões eletroforéticos em gel), devem ser relativamente estáveis sobre muitas gerações. Para tanto, este fato requer a existência de pouca recombinação entre as seqüências selecionadas para a análise. Em adição, as populações de isolados em análise devem sofrer primariamente reprodução clonal. Por outro lado, quando panmixia ocorre em alta freqüência devido a processos de reprodução sexual e recombinação, os resultados dos estudos epidemiológicos, obtidos por métodos fingerprinting genotípicos padrões, dificultam a interpretação¹⁷⁵. Afortunadamente, muitos agentes fúngicos sofrem recombinação ou mudança gênica em freqüência extremamente baixa¹⁹⁰. Alguns trabalhos têm mostrado o modo de reprodução primariamente clonal em C. albicans, justificando a aplicabilidade dos marcadores moleculares padrões em estudos epidemiológicos^{56,131}. Em adição à estabilidade resultante da reprodução clonal, um método fingerprinting genotípico deve acessar principalmente seqüências que são razoavelmente estáveis sobre o tempo. Por exemplo, a complexa sonda de DNA Ca3 (11kb) de C. albicans^{134,148,176}, a qual contem sequências repetitivas dispersas em toda parte do genoma (RPS repetitive element) e seqüências únicas representadas em apenas um locus^{74,133}. Como conseqüência da existência de grupos de unidades RPS de tamanho natural (full-length RPS sequences)^{31,72}, os quais sofrem freqüentes reorganizações (duplicação e deleção)¹³³, freqüentes alterações ocorrem em padrões de hibridização Ca3 contendo següências RPS de tamanho natural (full-length RPS sequences). Bandas contendo tais seqüências representam, em média, $\frac{1}{5}$ dos padrões gerados por hibridização com sonda Ca3. Os restantes $\frac{4}{5}$ representam seqüências menos variáveis que tendem a estabilizar os padrões¹. Em contraste, uma sonda que consiste inteiramente de elementos RPS tende a gerar um adicional padrão fingerprinting menos estável, quando comparável com a complexa sonda Ca3¹³³, e consequentemente o padrão apresentará baixa efetividade durante o agrupamento de isolados moderadamente relacionados. Entretanto, ambas as sondas full-length Ca3 e RPS restrita podem ser empregadas em estudos que acessam rápidas mudanças devido a microevolução, mas somente a sonda full-length Ca3 pode ser empregada em estudos nos quais isolados moderadamente relacionados devem ser analisados¹⁷⁵.

A tipabilidade, reprodutibilidade e poder discriminatório têm sido desenvolvidos e sugeridos durante a avaliação da eficiência de vários métodos fingerprinting genotípicos^{3,69,119}. A tipabilidade e reprodutibilidade representam sistemas quantitativos que são freqüentemente expressos como medidas percentuais. A tipabilidade de um método corresponde ao percentual de distintas linhagens obtidas. O percentual de linhagens que apresentaram os mesmos resultados sob ensaios repetitivos corresponde à reprodutibilidade, isto é, a habilidade de um método produzir o mesmo resultado quando particular linhagem é repetidamente testada. A reprodutibilidade é especialmente importante para a construção de uma base de dados confiável, a qual apresenta todas as linhagens conhecidas dentro de uma espécie onde organismos desconhecidos podem ser comparados para classificação. Por sua vez, o poder discriminatório de um método corresponde à sua habilidade de diferenciar claramente linhagens não relacionadas, tais como aquelas que são geograficamente distintas a partir de uma fonte de organismos, e demonstrar ao mesmo tempo o relacionamento de todos os organismos isolados a partir de indivíduos infectados diretamente de uma mesma fonte^{3,69,119}.

O interesse em adquirir um melhor entendimento sobre a patogênese, epidemiologia, genética e evolução das infecções causadas por *C. albicans* tem conduzido ao desenvolvimento de inúmeras pesquisas, as quais empregaram sistemas *fingerprinting* tais como MLEE (*Multilocus Enzyme Electrophoresis*), EK (*Electrophoretic Karyotyping*), RAPD (*Random Amplified Polymorphic DNA*), RFLP sem hibridação (*Restriction Length Fragment Polymorphism without hybridization*) ou REA (*Restriction Enzyme Analysis*) e RFLP com hibridação (*Restriction Length Fragment Polymorphism with hybridization*), os quais serão examinados a seguir.

Eletroforese de Enzima Multiloco. O método de eletroforese de enzima multiloco (MLEE ou MEE – *Multilocus enzyme electrophoresis*), também conhecido como tipagem isoenzimática, tem sido empregado durante várias décadas como método padrão para análise genética de populações em eucariotos^{7,88,115,116,137,167}. Trabalhos pioneiros realizados na década de oitenta, empregando MLEE para análise genética de *Escherichia coli* e *Shigella*, despertaram enorme interesse dos microbiologistas médicos^{166,168}. Desde

7

então, numerosos estudos foram realizados com inestimáveis resultados para o conhecimento da historia natural das doenças infecciosas. MLEE tem sido considerado um método *gold standard* para a genética de populações em microrganismos¹⁵. Sua capacidade analítica permite avaliar marcadores codominantes para cada *locus* em organismo diplóide, um requerimento essencial para os biologistas evolucionários que não é alcançado por poucos métodos de DNA *fingerprinting*¹⁷⁵.

No campo da micologia médica, a tipagem isoenzimática tem apresentado grande potencialidade nos estudos de caracterização taxonômica, sistemática, genética, evolutiva e epidemiológica, especialmente para a levedura *C. albicans*^{4,5,8,14,16,17,22-24,29,45,84-87,89,105,131,132,134,140-144,152}. A reação enzimática pode ser evidenciada através de bandas eletroforéticas com atividade enzimática em géis, indicando a existência de isoenzimas ou isozimas¹⁰⁴. Isoenzimas constituem múltiplas estruturas moleculares de uma mesma enzima com afinidade individual para um mesmo substrato, catalisando a mesma reação na célula⁴⁴. Seu controle ocorre geneticamente por um ou vários alelos ou genes, situados em um ou vários *loci*^{59,103,154}. Isoenzimas controladas por alelos de um único *locus* são denominadas de aloenzima ou alozima^{37,129}. Sua migração durante a eletroforese é determinada pela carga eletrostática presente na seqüência de aminoácidos e, conseqüentemente, sua mobilidade variante (eletromorfos ou aloenzimas) pode ser equiparada diretamente com alelos do correspondente *locus* gênico estrutural¹⁶⁸.

A análise isoenzimática na distinção de espécies de fungos depende da variabilidade genética intrapopulacional. Organismos com elevada variabilidade genética podem expressar fenótipos altamente variáveis e, portanto, ocultar diferenças inter ou intraespecíficas. Essas evidências surgem principalmente com diferentes enzimas não-metabólicas que exibem altas variações estruturais em virtude da intensidade da pressão seletiva ambiental^{25,67,73,117,135}. Ao contrário, enzimas metabólicas apresentam baixa vulnerabilidade à seleção ambiental e usualmente são empregadas como marcadores isoenzimáticos²⁰⁵.

Os padrões de bandas eletroforéticas isoenzimáticas são freqüentemente previsíveis, uma vez que dependem das condições genéticas e nucleares de cada organismo.

No entanto, vários micologistas restringiram as interpretações dos resultados eletroforéticos à mera contagem de bandas^{140,141,143,169,170}. A interpretação genética, quando possível, fornece muitas informações adicionais acerca da condição nuclear, genética e taxonômica de um grupo de organismos^{60,111,171}. Neste contexto, diferentes critérios de interpretação têm sido empregados para organismos haplóides ou diplóides^{60,114,122,168}. Baseado nestes critérios, a composição alélica tem sido determinada a partir de um grupo constituído por dez a trinta enzimas metabólicas consideradas representativas do genoma total de um organismo, as quais sustentam os estudos de genética de populações em bactérias, fungos e protozoários^{15,175}.

A interpretação genética dos resultados obtidos por MLEE tem sido aplicada em uma variedade de propósitos no campo da microbiologia médica. Em termos de alelos específicos, as proporções alélicas têm inferido o grau de recombinação genética em populações naturais. Essas proporções também têm sido empregadas na avaliação dos graus de isolamento genético entre populações naturais, causado por regiões geográficas e ecológicas ou por barreiras biológicas. Seu emprego tem apresentado implicações taxonômicas e sistemáticas uma vez que, para microrganismos clonais, os graus de relacionamento inter e intrapopulacional têm sido analisados. Clones espécie-específicos identificados por MLEE também foram associados com padrões e reincidências clínicos, e altos índices de patogenicidade. Tais resultados têm sido empregados em traçados epidemiológicos que permitem melhor entendimento no desenvolvimento de epidemias, o que representa um inestimável complemento aos métodos atuais de tipagem molecular, particularmente nos estudos epidemiológicos em larga escala. Adicionalmente, MLEE tem sido considerado um método de tipagem com alto poder discriminatório e reprodutibilidade^{15,17,68,114,122,134}.

Análises comparativas entre MLEE, RAPD e *Southern blot* hibridação com sonda Ca3 apresentaram forte concordância nos resultados, durante o agrupamento de isolados bucais e outros sítios anatômicos de *C. albicans* provenientes de três regiões geográficas dos Estados Unidos (pacientes HIV-soropositivos e câncer [El Paso, Tex.], vaginite [Ann Arbor, Mich.; Iowa City, Iowa] parceiros sexuais [Ann Arbor, Mich; Iowa

9

City, Iowa] e indivíduos sadios [Iowa City, Iowa]). Três principais grupos contendo isolados de origens não relacionadas foram gerados pelos métodos acima, sem qualquer indicação de que alguns *loci* analisados por MLEE corresponderam às seqüências de amplificação por RAPD ou da sonda por Ca3. Em adição, mudanças microevolucionárias em linhagem de origem relacionada foram reveladas pelas análises de *Southern blot* hibridação com sonda Ca3 (alto poder resolutivo), MLEE (moderado poder resolutivo) e RAPD (moderado poder resolutivo)¹³⁵. Entretanto, MLEE pode ser considerado um ótimo método *fingerprinting* genotípico para infecções fúngicas, uma vez que suas informações são obtidas em todos os níveis de resolução (*i*, *ii*, *iii* e *iv*). Contudo, a única desvantagem desse método é o tempo consumível de trabalho laboratorial relativamente longo, visto que existe a necessidade de laboriosos ensaios enzimáticos e a cuidadosa atenção durante o processamento de dados e sua interpretação genética¹⁷⁵.

Cariotipagem Eletroforética. Com a invenção da eletroforese em gel de campo pulsado (PFGE – *pulsed-field gel electrophoresis*)¹⁶³, e seus respectivos sistemas OFAGE (orthogonal-field-alternative gel electrophoresis), FIGE (field-inversion gel electrophoresis), CHEF (contour-clamped homogeneous electric field) ou TAFE (transverse alternate field electrophoresis), fragmentos cromossômicos de leveduras foram facilmente separados em um gel, consolidando assim a cariotipagem eletroforética (EK *electrophoretic karyotyping*)¹⁷⁵. Em geral, células imersas em *plugs* de agarose geleificados devem ser misturadas diretamente com solução enzimática para remoção da parede celular. Protease e detergente também podem ser adicionados, seguindo a incubação celular para remoção de membranas e proteínas. Logo após, os plugs contendo moléculas de DNA devem ser colocados no interior dos poços existentes nas placas dos géis de agarose, onde a eletroforese deverá ser realizada, de acordo com as especificações de determinado sistema, para a separação cromossômica. Os fragmentos cromossômicos de leveduras são separados de acordo com o tamanho, os quais podem ser visualizados após a coloração por brometo de etídio. Em adição, cromossomos específicos podem ser identificados empregando Southern blot hibridação com sondas de DNA cromossomo-específicas (i.e., rDNA)¹⁷⁵.

As primeiras aplicações de PFGE monstraram variações nos padrões cariotípicos entre isolados de *C. albicans* não relacionados^{79,82,94,98,109,173,187,199} e, por essa razão, proporcionaram um potencial método *fingerprinting* genotípico¹⁷⁵. Apesar da variabilidade cariotípica entre linhagens de *C. albicans*, Thrash-Bingham & Gorman (1992), empregando *Southern blot* hibridação com sondas de genes clonados, demonstraram que (*i*) a organização genômica foi mantida e que (*ii*) processos de translocações contribuíram para aquela variabilidade¹⁹¹. Essencialmente importante foi o fato revelado por Sangeorzan *et al.* (1995), os quais demonstraram padrões de cariotipagem eletroforética altamente reproduzíveis entre experimentos, e não influenciado por permuta (*switching*) fenotípica de alta freqüência em linhagens de *C. albicans*¹⁵³. Entretanto, Holmberg & Feroze (1995) demonstraram variabilidade técnica para o sistema CHEF devido aos reagentes, preparação de amostras e condições de corrida eletroforética⁶³.

Devido ao excelente poder discriminatório e reprodutibilidade^{19,55,100,138,196}, a cariotipagem eletroforética tem sido empregada extensivamente como marcador molecular de *C. albicans*^{6,9-13,20,46-48,50,70,82,90,94,97,98,100,101,109,112,124,173,187,196,197,199,200}. Este método mostrou poder discriminatório superior em comparação com RFLP sem hibridação, durante ensaios entre isolados independentes^{19,100,196}. Contudo, sua eficiência em agrupar linhagens moderadamente relacionadas não foi avaliada cuidadosamente. Outras indicações sugerem que a cariotipagem eletroforética não pode cumprir os requerimentos necessários para análises de DNA fingerprinting em C. albicans, uma vez que estas leveduras podem apresentar reorganizações cromossômicas com altas ou baixas freqüências que, conseqüentemente, induzem alterações cariotípicas elevadas reduzidas, ou respectivamente¹³⁶. Células de linhagem de C. albicans 3153A, que expressam fenótipos variantes (switching), sofrem alterações excessivamente freqüentes no tamanho de dois cromossomos que abrigam *cistrons* de rDNA¹³⁶. A capacidade de uma célula expressar dois padrões de organização cromossômica e, conseqüentemente, dois padrões de alteração cariotípica como resultado da diferenciação reversível, indefere o uso da cariotipagem eletroforética como um método fingerprinting genotípico efetivo para análises de grupos de isolados moderadamente relacionados¹⁷⁵. Em adição aos estudos sobre alterações cariotípicas com freqüências elevadas ou reduzidas em C. albicans, foi demonstrado que os

padrões cariotípicos em linhagens variantes (switching) podem divergir e em outra ocasião convergir^{136,145-147}. A convergência dos padrões cariotípicos conduz a homoplasia, cuja característica é inconsistente com os objetivos de um método fingerprinting genotípico. Quando a divergência é seguida pela convergência de um padrão de DNA fingerprinting, dois cariótipos similares ou idênticos podem ser interpretados como a mesma linhagem quando, na realidade, os isolados comparados podem ser não relacionados¹⁷⁵. As alterações cariotípicas de alta freqüência em C. albicans podem interferir com a capacidade de discriminar linhagens moderadamente relacionadas e não relacionadas, porém a cariotipagem eletroforética pode ser empregada eficazmente para avaliar microevolução dentro de uma linhagem infectante⁹¹. Contudo, as demonstrações de reorganização de alta freqüência e homoplasia reduzem a efetividade da cariotipagem como um método de DNA fingerprinting geral para C. albicans¹⁷⁵. Outros fatores que tem limitado o emprego de PFGE são o elevado custo e o tempo relativamente longo para a realização dos ensaios que, conseqüentemente, reduz a capacidade laboratorial em analisar grandes números de amostras^{119,138}. Ademais, uma versão modificada da cariotipagem eletroforética tem fornecido uma melhor efetividade ao método, a fim de cumprir os requerimentos necessários. O poder de resolução da cariotipagem tem aumentado pela digestão do DNA cromossômico de linhagens de Candida spp. com enzimas de restrição, tais como SfiI, NotI previamente e BssHII, aos ensaios de eletroforese em gel de campopulsado^{21,38,39,42,43,76,90,128,138}

DNA Polimórfico Amplificado ao Acaso. A análise do DNA polimórfico amplificado ao acaso (RAPD – *Random Amplified Polymorphic DNA*) foi primeiramente descrito por Williams *et al.* (1990)²⁰⁸ e Welsh & McClelland (1990)²⁰². Embora uma variedade de estratégias com base na reação da polimerase em cadeia (PCR - *polymerase chain reaction*) tem sido desenvolvidas²⁶, o RAPD tem surgido como o método de DNA *fingerprinting* mais comum para infecções fúngicas^{26,202,208}. Empregando *primers* ao acaso, de aproximadamente 10 bases (oligonucleotídeo), *amplicons* em toda parte do genoma são objetos a serem atingidos e amplificados. Os produtos amplificados são comumente separados em géis de agarose e corados com brometo de etídio^{119,175}. Durante o desenvolvimento de um sistema RAPD para determinada espécie, uma certa quantidade de

primers deve ser testada a fim de selecionar aqueles oligonucleotídeos capazes de fornecer maior variabilidade entre isolados independentes. Um único primer pode gerar um padrão relativamente complexo que varia entre isolados, porém em muitos casos o seu emprego produz uma a três bandas eletroforéticas intensas capazes de diferenciar os isolados. Por essa razão, os primers devem ser selecionados e testados independentemente para cada isolado em questão, e as informações obtidas devem ser combinadas¹⁷⁵. Esta estratégia tem sido objetivo de Pujol et al. (1997), os quais testaram quarenta primers ao acaso (cada um com 10 bases) sobre um número limitado de isolados de C. albicans. Destes, oito primers foram selecionados por fornecer a máxima variabilidade. Porém, apenas os padrões que apresentaram bandas eletroforéticas intensas e reprodutíveis (de uma a seis bandas para cada primer) foram empregados durante análises de agrupamento. Em adição, estes padrões demonstraram paridade com aqueles obtidos por MLEE e Southern blot hibridação com sonda Ca3¹³⁴. Estes pesquisadores também demonstraram que RAPD, MLEE e Ca3 fingerprinting de C. albicans não somente agrupam isolados moderadamente relacionados, mas também fornecem níveis similares de resolução de microevolução dentro de uma população clonal. Contudo, estas mudanças microevolucionárias foram independentes e, conseqüentemente, os três métodos não identificam alterações nos mesmos isolados altamente relacionados. Mais propriamente, estes métodos medem freqüências similares de variantes dentro de uma mesma linhagem¹³⁴.

O método RAPD tem demonstrado grande êxito em estudos sobre infecções fúngicas, especialmente para *C. albicans*^{10,18,19,33,40,58,64,66,85,134,139,181,194}. Apesar da técnica apresentar rapidez, simplicidade e alto poder discriminatório, várias limitações sobre seus procedimentos foram apontadas. A falta de reprodutibilidade inter- e intra- laboratórios que, embora não seja insuperável, tem gerado o desenvolvimento de uma base de dados complexa e de difícil interpretação^{35,55,119,138,175}. Variações dos resultados provenientes de artefatos também podem ocorrer como um resultado de pequenas diferenças na concentração de *primers*, na temperatura de amplificação e na concentração de magnésio da mistura de reação⁴⁹. Alterações destes parâmetros podem afetar notavelmente a presença de bandas de baixa intensidade, a posição e a nitidez de bandas de alta intensidade¹⁷⁵. Em adição, vários pesquisadores demonstraram variações significativas da metodologia RAPD

devido as diferentes fontes da enzima *Taq* polimerase, as quais foram capazes de gerar *pseudoclusters* durante análises de agrupamento^{95,96,110}.

Polimorfismo no Comprimento do Fragmento de Restrição sem Hibridação. Um dos primeiros métodos fingerprinting genotípicos, empregado para analisar o relacionamento de linhagens em infecções fúngicas, foi a análise com enzima de restrição (REA - restriction enzyme analysis) ou a comparação do polimorfismo no comprimento do fragmento de restrição (RFLP - restriction length fragment *polymorphism*), sem sondas de hibridação^{55,138,175}. Esta metodologia tem sido aplicada em uma série de estudos epidemiológicos de várias infecções fúngicas, especialmente para C. albicans^{11,33,34,68,75,100,123,155,172,188,189,196,200}. Esta técnica tem sido considerada uma metodologia segura e confiável. Comumente, DNAs celulares têm sido extraídos a partir de esferoplastos, digeridos com uma ou mais enzimas de restrição (i.e., EcoRI e HinfI), separados em géis de agarose por procedimentos eletroforéticos e visualizados pela coloração com brometo de etídio. A resolução deste método depende da concentração de agarose, do tempo de eletroforese, da voltagem e da endonuclease empregada. No entanto, todas as condições experimentais devem ser determinadas empiricamente. Seus padrões resultam a partir de diferentes comprimentos dos fragmentos de DNA, os quais são determinados pelos sítios de restrição identificados por endonucleases específicas. As variações entre linhagens podem ocorrer em função de alterações nas seqüências dos sítios de restrição, modificações secundárias dos sítios de restrição, deleção dos sítios de reconhecimento ou deleção e inserção em seqüências de DNA localizadas entre sítios de reconhecimento^{55,138,175}

Em infecções fúngicas, a complexidade elevada do genoma eucariótico aumenta o número de bandas obtidas com endonucleases convencionais. Isto diminui a resolução dos padrões de bandas que representam seqüências únicas, uma vez que a complexidade dos padrões de bandeamento gerado por RFLP muitas vezes dificulta a interpretação do relacionamento das linhagens^{138,175}. De modo semelhante a todos os genomas eucarióticos, os genomas fúngicos contém genes rDNA repetitivos com seqüências relativamente homólogas e regiões intergênicas. *Cistrons* ribossômicos

14

eucarióticos são normalmente agrupados em um ou dois cromossomos¹⁷⁵. O genoma de *C. albicans* contem aproximadamente 50 a 130 *cistrons* rDNA por genoma diplóide⁷¹. Os fungos também apresentam muitas cópias do genoma mitocondrial¹⁸³. Seqüências de rDNA¹⁵⁵ e de DNA mitocondrial^{120,209}, este último em menor extensão, representam a maioria das bandas intensas dos padrões RFLP¹⁷⁵. Estudos de *C. albicans* por RFLP apontaram várias evidências da utilidade deste método, tanto na identificação de linhagens idênticas a partir de isolados independentes quanto na discriminação entre isolados não relacionados^{34,123,125,155,172}. RFLP sem uma sonda de hibridação foi considerado um legítimo método para responder seletivas questões epidemiológicas relacionadas a infecções fúngicas. Porém, esta metodologia apresenta a desvantagem para analisar grupos de isolados moderadamente relacionados. Por essa razão, RFLP não tem sido bem apropriado para grandes estudos epidemiológicos. Em adição, este método não foi validado criteriosamente por comparações com outros métodos nos diferentes níveis de resolução (*i, ii, iii* e iv)¹⁷⁵.

Polimorfismo no Comprimento do Fragmento de Restrição com Hibridação. Um padrão RFLP geral de DNA celular eucariótico foi considerado insuficientemente resolvido devido à revelação de todos os fragmentos de restrição¹⁷⁵. No entanto, a metodologia RFLP pode ser ampliada pela transferência dos fragmentos de DNA para membranas de nitrocelulose ou nylon, os quais podem hibridizar com sondas específicas^{52,55,207}. Este procedimento permite visualizar seletivamente um número limitado de fragmentos, e ainda fornece um padrão *fingerprinting* de alta resolução¹⁷⁵. Esta metodologia, nomeada de Southern blot hibridação, foi baseada em sondas de DNA constituídas de seqüências (i.e., radiomarcadas) capazes de reconhecer um ou mais fragmentos correspondentes, presentes em géis de RFLP^{52,55,175,207}. A estringência desta hibridação pode ser controlada pela variação da concentração de sal e/ou temperatura¹⁵¹. Padrões de bandas únicas foram evidenciados quando uma determinada sonda reconhece uma única seqüência específica de DNA (i.e., um único gene). A existência de uma única sequência relativamente intacta, dentro de um fragmento de restrição no gel, tem sido exclusivamente identificada por hibridação com sonda de DNA específica. Em organismos haplóides somente uma banda foi incluída nos padrões RFLP-Southern blot hibridação,

enquanto que em organismos diplóides, tal como *C. albicans*, uma ou duas bandas foram incluídas naqueles padrões. Contudo, o sítio de atuação de determinada endonuclease pode estar contido dentro de uma única seqüência de DNA correspondente ao local de hibridação com uma sonda específica que, conseqüentemente, poderia resultar na existência de mais do que duas bandas incluídas nos padrões RFLP-*Southern blot* hibridação¹⁷⁵.

Várias sondas fungo-específica e espécie-específica foram desenvolvidas com bases nas áreas evolutivamente conservadas de genomas fúngicos e de determinadas espécies fúngicas, respectivamente^{113,121,201}. Sondas que hibridizam com seqüências únicas ou um único gene (single-gene probes) podem discriminar alguns isolados fúngicos com base no polimorfismo alélico. Estas sondas tendem a gerar padrões com uma ou duas bandas que, conseqüentemente, não fornecem um nível de complexidade de dados necessários para avaliar a distância genética. No entanto, várias sondas single-gene empregadas em conjunto podem fornecer resultados similares àqueles obtidos por MLEE e gerar dados complexos o suficiente para refletir distância genética. Deste modo, sondas que hibridizam com seqüências repetitivas dispersas por todo genoma foram alvos de muitas pesquisas, uma vez que estas seqüências podem variar entre linhagens¹⁷⁵. Sonda de rDNA empregada para análises de Southern blot hibridação em DNA celular total de C. albicans demonstrou uma certa resolução em linhagens não relacionadas, cuja complexidade dos padrões de hibridação foi equiparada com as sondas single-gene^{99,107}. Stein et al. (1991) empregaram a sonda rDNA e demonstraram cinco diferentes padrões em dezoito isolados de C. albicans¹⁸². A hibridação com a sonda rDNA do DNA de C. albicans digerido com EcoRI apresentou um padrão com no máximo três bandas, as quais foram comuns para linhagens aparentemente não relacionadas, em uma freqüência relativamente alta, cujo fato também foi sugestivo da existência de homoplasia^{182,203}. rDNA e regiões de espaçamento (spacer regions) de rDNA também foram testados por sondas de DNA fingerprinting em outras infecções fúngicas além de C. albicans, porém em todos os casos não foram gerados padrões complexos o suficiente para considerar tais sondas um sistema de *fingerprinting* eficaz^{28,51,53,179,180}. A digestão de *cistrons* ribossômicos eucarióticos, os quais constituem seqüências repetitivas em tandem dispostas em grupos e normalmente separadas por seqüências de espaçamento^{54,61,164,198}, por endonucleases gera fragmentos de tamanhos

relativamente similares que resulta em padrões mais simples de *Southern blot* hibridação (i.e., padrões com poucas bandas). Conseqüentemente, sondas rDNA não têm sido tão efetivo para sistemas *fingerprnting* genotípicos em fungos¹⁷⁵.

Alguns pesquisadores demonstraram a estrutura circular do genoma mitocondrial de C. albicans, cujo tamanho de 41 kb compreende extensas seqüências repetitivas em menor número de cópias do que o r $DNA^{157,209,210}$. O DNA celular total de C. albicans digerido com EcoRI tem revelado padrões de Southern blot hibridação com sonda para DNA mitocondrial aparentemente mais complexos do que aqueles obtidos com uma sonda rDNA¹⁷⁵. Pesquisas têm demonstrado cinco bandas distintas, cujos padrões variaram entre os isolados de C. albicans, sugerindo que Southern blot hibridação com sonda de DNA mitocondrial apresenta efetividade na identificação de linhagens idênticas entre isolados independentes e na distinção entre linhagens não relacionadas^{120,209}. Durante análise do tipo I e tipo II de Candida stellatoidea, uma espécie filogeneticamente análoga a C. albicans, os padrões de hibridação com sonda de DNA mitocondrial do tipo I foram idênticos, enquanto aqueles do tipo II variaram⁸⁰. Em adição, os padrões de alguns isolados de C. stellatoidea tipo II foram indistinguíveis de alguns isolados de C. albicans, demonstrando uma falta de especificidade da espécie ou baixo poder de resolução do método, caso aceito C. stellatoidea como uma espécie independente⁸⁰. Neste estudo, a hipótese mais provável também foi postulada como C. stellatoidea tipo II representando um subgrupo de C. albicans⁸⁰, conforme sugerido em outros estudos^{81,130}. Por conseguinte, sondas de DNA mitocondrial e rDNA não foram comumente empregadas em amplos estudos epidemiológicos de infecções fúngicas, e nenhum destes métodos foi validado para os diferentes níveis de resolução genética¹⁷⁵.

As sondas de DNA 27A¹⁵⁶ e Ca3^{148,176}, para hibridação específica em genoma de *C. albicans*, foram clonadas quase que ao mesmo tempo durante o final de 1980 e, subseqüentemente, foi demonstrado certa analogia entre tais sondas¹³³. Estas sondas contêm seqüências dos elementos repetitivos RPS e seqüências não-RPS de *C. albicans*^{31,72} que, conseqüentemente, hibridizam grande parte das mesmas bandas durante ensaios de *Southern blot* hibridação¹⁷⁵. Entretanto, estas duas sondas não são idênticas. A sonda 27A

contém seqüências *downstream* dos grupos RPS que hibridizam com bandas únicas, enquanto que a sonda Ca3 contém seqüências *upstream* dos grupos RPS que hibridizam com bandas únicas¹³³. A sonda Ca3 apresenta maior complexidade quando comparada com a sonda 27A, e ainda contém uma seqüência repetitiva adicional chamada seqüência B. Em média, seu padrão também apresenta maior complexidade e satisfaz os quatro requerimentos necessários para um efetivo método de DNA *fingerprinting*^{134,175}. As sondas Ca3 e 27A também foram empregadas em vários estudos epidemiológicos de *C. albicans* e a espécie filogeneticamente relacionada *C. dubliniensis*^{2,36,62,77,78,91,92,106,108,126,127,148,158,159, 161,162,176,178,184,186,204}

A lógica e os métodos empregados para clonar e caracterizar as complexas sondas 27A e Ca3 foram relativamente confiáveis. Assim sendo, um ensaio de Southern blot hibridação de fragmentos digeridos com endonuclease, empregando sondas capazes de identificar seqüências repetitivas dispersas por todo genoma, poderia identificar a variabilidade entre isolados por intermédio de uma diversidade de loci espalhados. Contudo, tais sondas poderiam hibridizar com (i) sequências adicionais menos variáveis, incluindo seqüências que variam como um resultado de polimorfismos alélicos, e com (ii) algumas seqüências hipervariáveis, revelando mudanças microevolucionárias dentro de uma linhagem. Todas estas informações tem sido fornecidas por um único padrão de Southern blot hibridação, o que representa a virtude destas complexas sondas. Uma sonda complexa deve gerar um padrão suficientemente complexo a fim de fornecer medidas correta e sensível capazes de refletir o relacionamento dos isolados. A porção principal do padrão gerado deve ser relativamente estável com o passar do tempo para determinada linhagem. Em adição, a sonda poderia conter uma ou mais seqüências de hibridação com fragmentos monomórficos (i.e., fragmentos que exibem o mesmo tamanho em todas ou na maioria das linhagens dentro de uma espécie). Estas bandas monomórficas poderiam facilitar a normalização num padrão universal, cujo objetivo seria a estocagem computacional de dados (i.e., construção de uma base de dados auxiliada por computador) para subseqüentes estudos comparativos e retrospectivos¹⁷⁵.

Scherer & Stevens (1988) demonstraram que a sonda 27A de 6.7 kb, clonada a partir da linhagem clínica de C. albicans 616, apresenta uma sequência repetitiva dispersa por todo o genoma. Eles analisaram dois clones por Southern blot hibridização com sonda 27A de fragmentos digeridos com Sau3A e demonstraram a existência de uma seqüência comum entre os dois clones e 27A156, a qual foi subseqüentemente identificada como elemento repetitivo RPS por Iwaguchi et al. (1992)⁷². No contexto epidemiológico e taxonômico, padrões de Southern blot hibridação com sonda 27A, de isolados atípicos de C. albicans provenientes de pacientes HIV-soropositivos, demonstraram características genéticas idênticas a C. dubliniensis, sugerindo também uma distribuição geográfica difundida desta espécie¹⁸⁵. Em adição à sonda 27A, seus padrões de Southern blot hibridação também mostraram maior poder discriminatório em linhagens clínicas de C. albicans quando comparados com os padrões de EK, REA com NotI e PCR fingerprinting⁴¹. A sonda Ca3 de 11 kb¹⁷⁷, primeiramente referida como JH3 durante ensaios sobre mudanças fenotípicas (phenotypic switching) em isolados de C. albicans causando vaginite¹⁷⁶, foi clonada a partir de uma linhagem de laboratório 3153A e encontrada dispersa em sete de oito cromossomos de C. $albicans^{148}$. Anderson *et al.* (1993) digeriram a sonda Ca3 com EcoRI e obtiveram sete fragmentos, os quais foram classificados em ordem decrescente de tamanho em A, B, C, D1, D2, E e F¹. Posteriormente, estes fragmentos foram mapeados na direção 5' para 3'¹³³. Quando o DNA da linhagem de C. albicans 3153A foi digerido com EcoRI e analisado pelos fragmentos A (~4.2 kb), B (~3 kb) e C (~2.9 kb) da sonda Ca3, três distintos padrões foram obtidos. No entanto, a combinação destes padrões resultou na identificação de todas as principais bandas obtidas pelos padrões de hibridação com sonda Ca3 íntegra¹. O fragmento A gerou três distintos padrões (~5.8 kb; ~4.5 kb; ~5.8 e 4.5 kb) quando analisados por Southern blot hibridação de DNA digerido com EcoRI de isolados clínicos de C. albicans. Neste caso, o fragmento A identificou apenas um gene, cujos padrões representaram variações alélicas de apenas um locus gênico. O fragmento B gerou um padrão que incluiu mais da metade das bandas obtidas pelos padrões de hibridação com sonda Ca3 íntegra. A maioria dos padrões B foi polimórfica e representativa de muitas bandas moderadamente variáveis, as quais são necessárias para análises de agrupamento¹⁷⁵, ou ainda, foram usadas durante a

demonstração de paridade entre MLEE, RAPD e Ca3 fingerprinting¹³⁴. Finalmente, o fragmento C gerou padrões que incluíram bandas de alta massa molecular fortemente variáveis, as quais têm demonstrado imenso valor em análises microevolucionárias de linhagens infectantes^{91,92,133,159,162}. Durante a determinação da distribuição genômica das sequências que hibridizam com os três principais fragmentos da sonda Ca3 (A, B e C), ensaios de Southern blot hibridação dos cromossomos de C. albicans, separados eletroforeticamente, foram investigados¹. Sete distintas bandas cromossômicas da linhagem de C. albicans 3153A foram obtidas por eletroforese de campo alternado transverso (TAFE - transverse alternating-field electrophoresis) e numeradas em ordem decrescente de tamanho. Como C. albicans possui oito cromossomos²⁰⁶, a sobreposição de bandas possivelmente ocorreu no mínimo em uma posição¹. A sonda Ca3 íntegra mostrou forte hibridação com as bandas 1, 3, 5, 6 e 7. O subfragmento B mostrou forte hibridação com as bandas 5 e 7, e fraca hibridação com a banda 6. O subfragmento C mostrou forte hibridação com as bandas 1, 3 e 6, e fraca hibridação com as bandas 5 e 7. Estes resultados demonstraram que os subfragmentos B e C apresentam següências dispersas em mais do que um cromossomo, sendo que o subfragmento C, o qual contém sequências RPS, foi mais disseminado do que o subfragmento B^1 .

Southern blot hibridação com a sonda Ca3^{1,148,176} tem sido empregada em vários estudos epidemiológicos e microevolucionários de isolados clínicos de *C. albicans*^{62,77,91-93,102,118,126,159,160,162,174,178,204}. A sonda Ca3 empregada durante ensaios de DNA digerido com *Eco*RI tem identificado acima de 20 bandas, as quais incluíram padrões monomórficos, moderadamente variáveis e hipervariáveis¹⁵⁸. Todos estes padrões foram empregados para avaliar o relacionamento de isolados clínicos, enquanto que os padrões hipervariáveis foram empregados para monitorar microevolução de linhagens infectantes e comensais de *C. albicans*^{60,91,92,162,178}. Análises de RAPD, MLEE e *Southern* hibridização com sonda Ca3 apresentaram forte concordância nos resultados, durante análises de agrupamento de isolados bucais e outros sítios anatômicos de *C. albicans* provenientes de três regiões geográficas dos Estados Unidos (pacientes imunocompretentes e imunocomprometidos). Três principais grupos, contendo isolados de origens não relacionadas, foram gerados pelos métodos acima sem qualquer indicação de que algum

loci analisado por MLEE corresponde às sequências de amplificação por RAPD ou da sonda por Ca3. Em adição, mudanças microevolucionárias dentro de uma linhagem (origem relacionada) foram reveladas pelas análises de Southern hibridização com sonda Ca3 (alto poder resolutivo), MLEE (moderado poder resolutivo) e RAPD (moderado poder resolutivo)¹³⁴. Estas mudanças microevolucionárias também podem envolver reorganizações do tipo inserção ou deleção intracromossomal dos elementos RPS dispersos especificamente por toda parte do genoma de C. albicans¹³³. Isolados de C. albicans de vários sítios anatômicos provenientes de mulheres saudáveis foram comparados por Southern hibridização com sonda Ca3. De onze mulheres que abrigaram linhagens comensais em ambas as cavidades bucal e vaginal, quatro apresentaram linhagens altamente similares, porém não idênticas, em sítios alternativos. Este fato tem sugerido a ocorrência de microevolução entre aquelas linhagens altamente similares, a partir de um progenitor que se adaptou em dois diferentes nichos do corpo. Em adição, tais populações divergentes poderiam ser distinguidas geneticamente¹⁷⁸. Schroeppel et al. (1994) empregaram a mesma técnica para acessar o relacionamento genético de linhagens de C. albicans isoladas de pacientes (linhagens mantidas e substituídas) e seus parceiros sexuais. No paciente em que as linhagens infectantes foram mantidas, houve mínimas mudanças genéticas em episódios sucessivos de candidíase vaginal. No paciente em que as linhagens infectantes foram substituídas por outras, uma infecção de transição envolveu uma população infectante geneticamente mista, e a substituição de linhagens aparentemente tiveram origem a partir da cavidade bucal dos parceiros sexuais. Estes resultados demonstraram que as linhagens de infecções recorrentes de candidíase vaginal são geneticamente instáveis, e que o tratamento com antifúngicos pode resultar em seleção de variantes previamente infectantes, ou substituição por linhagens geneticamente não relacionadas¹⁶².

O relacionamento físico entre a sonda Ca3¹⁴⁸ e os grandes fragmentos genômicos de *Eco*RI que hibridizam com o fragmento C de Ca3^{1,133}, a sonda 27A¹⁵⁶, o fragmento HOK³² e os elementos RPS^{31,72}, foram determinados^{30,32,133}. As sondas Ca3, 27A e HOK apresentam seqüências de elementos RPS e a margem *upstream* de C2 do grupo RPS. Por essa razão, todas estas três sondas identificam um grupo de bandas comuns em

21

um Southern blot do DNA genômico digerido com EcoRI. Portanto, os elementos RPS empregados exclusivamente como sonda de DNA fingerprinting tendem a gerar padrões similares àqueles obtidos com o fragmento C da sonda Ca3^{72,133}. Embora o padrão C apresente valiosa utilidade em análises microevolucionárias, com base na hipervariabilidade no comprimento de suas seqüências RPS localizadas em tandem em determinados locais do genoma¹³³, seu emprego como um método efetivo de DNA fingerprinting produz uma equivocada interpretação de isolados que não são altamente relacionados¹³³. O problema da utilização de uma sonda que contém elementos repetitivos dispersos no genoma foi demonstrado em C. albicans. Lasker et al. (1992) clonaram o elemento repetitivo espécie-específico CARE-2 (1.06 kb) a partir do genoma de C. albicans. Os padrões de Southern blot hibridação demonstraram diferentes números de cópias CARE-2 sobre diferentes cromossomos de C. albicans⁸³. Padrões complexos também foram gerados por Southern blot hibridação com sonda CARE-2, em DNA digerido com *Eco*RI de vários isolados clínicos de *C. albicans*, os quais apresentaram aproximadamente o mesmo número de bandas daqueles padrões obtidos por Southern blot hibridação com sonda Ca3, porém, em contraste com Ca3, cada padrão de banda CARE-2 foi variável¹³⁴. A sonda CARE-2 distinguiu isolados não relacionados e identificou a mesma linhagem em isolados independentes. Entretanto, enquanto MLEE, RAPD e Ca3 *fingerprinting* demonstraram paridade agrupando os isolados clínicos dentro de três grupos altamente similar, dois dos três grupos fragmentaram formando-se grupos de isolados menores e não relacionados no dendrograma CARE-2¹³⁴. Deste modo, os padrões da sonda CARE-2 identificam somente fragmentos hipervariáveis que, conseqüentemente, tornam-se menos efetivo em agrupar isolados moderadamente relacionados¹⁷⁵.

Os resultados obtidos com a sonda CARE-2¹³⁴ apontaram para uma concepção errônea com relação ao emprego de uma sonda de DNA *fingerprinting*. Existe uma certa tendência em reduzir uma sonda complexa de DNA *fingerprinting* a um elemento de repetição simples, como no caso da redução da sonda Ca3 ao elemento RPS, cuja base apoiou-se na noção equivocada de que o padrão mais variável corresponde ao melhor método de DNA *fingerprinting* para linhagens. Por outro lado, os padrões de bandas Ca3, analisados individualmente pelos seus subfragmentos quanto à variabilidade, revelaram

subgrupos com hipervariabilidade, variabilidade moderada, baixa variabilidade e nenhuma variabilidade. Deste modo, estas informações tendem a fortalecer a sonda quanto aos vários níveis de resolução propostos para um método efetivo de DNA *fingerprinting*¹⁷⁵. Em adição, a redução da sonda Ca3 para RPS resulta em uma sonda convenientemente útil para estudos microevolucionários de linhagens (i.e., análise da hipervariabilidade)¹³³.

A evolução da biologia molecular tem aumentado dramaticamente a capacidade dos pesquisadores em estudar inúmeras infecções fúngicas, especialmente aquelas causadas pelo patógeno oportunista C. albicans e outras espécies de Candida. Múltiplos sistemas moleculares encontram-se disponíveis para os propósitos científicos epidemiológicos, genéticos, evolutivos, taxonômicos e sistemáticos. No entanto, o emprego de um sistema adequadamente padronizado, compreendendo vários métodos fingerprinting genotípicos associados a um programa de base de dados universal, tem sido o anseio de muitos micologistas. Para avaliar os níveis de resolução fornecidos por um método fingerprinting genotípico, uma estratégia de validação tem sido delineada a qual compara dois ou mais métodos não relacionados. Para C. albicans, esta estratégia tem validado o emprego de MLEE, RAPD e Ca3, uma vez que estes métodos foram capazes de avaliar todos os níveis de resolução. Dentro do contexto epidemiológico, todos os isolados apresentam uma história, ambos para o hospedeiro e para o patógeno, a qual poderia ser mais explorada. Cada linhagem submetida às análises pelos diferentes métodos fingerprinting genotípicos poderia ser registrada em programas de base de dados e submetida a uma comparação com os parâmetros dos hospedeiros (i.e., idade, sexo, peso, características médicas, condições predisponentes, artigos protéticos, localização geográfica, fatores socioeconômicos, associação com outros indivíduos,...) e as características do patógeno (i.e., padrões de assimilação de açúcares, antigenicidade, secreção de proteinases, padrões de susceptibilidade as drogas, formação de hifa, switching fenotípico,...). Estes procedimentos permitiriam a comparação atual e retrospectiva de uma seleção de linhagens clínicas e epidemiologicamente importantes, as quais poderiam apresentar uma ou várias características do hospedeiro ou patógeno. Em adição, a somatória deste crescente número de informações poderia contribuir ainda mais (i) para o entendimento da dinâmica dos organismos infecciosos em populações humanas, (ii) do complexo relacionamento entre

comensalismo e infecção, (*iii*) dos mecanismos genéticos e evolucionários, ou ainda, (*iv*) identificar a origem de uma infecção e (v) monitorar a emergência de linhagens resistentes aos fatores ambientais impróprios.

AGRADECIMENTOS

Os autores agradecem o suporte financeiro da Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (Proc. 00/03045-5).

REFERÊNCIAS

- 1. Anderson, J.; Srikantha, T.; Morrow, B.; Miyasaki, S.H.; White, T.C.; Agabian, N.; Schmid, J.; Soll, D.R. Characterization and partial nucleotide sequence of the DNA fingerprinting probe Ca3 of *Candida albicans. J. Clin. Microbiol.*, 31: 1472-1480, 1993.
- 2. Anthony, R.M.; Midgley, J.; Sweet, S.P.; Howell, S.A. Multiple strains of *Candida albicans* in the oral cavity of HIV positive and HIV negative patients. *Microbiol. Ecol. Health Dis.*, 8: 23-30, 1995.
- 3. Arbeit, D.R. Laboratory procedures for the epidemiologic analysis of microorganisms. *In*: Murray, P.R.; Baron, E.J.; Pfaller, M.A.; Tenover, F.C.; Yolken, R.H. (edS). *Manual of clinical microbiology*. ASM, Washington, 1995, p.190-208.
- 4. Arnavielhe, S.; Blancark, A.; Mallié, M.; Gouin, F.; Ottomani, A.; Manalli, J.C.; Bastide, J.M. Suivi mycologique d'infections à *Candida albicans* dans divers services hospitaliers. *Path. Biol.*, 44: 447-451, 1996.
- 5. Arnavielhe, S.; Blancark, A.; Mallié, M.; Quilici, M.; Bastide, J.M. Multilocus enzyme electrophoresis analysis of *Candida albicans* isolates from three intensive care units. An epidemiological study. *Mycoses*, 40: 159-167, 1997.
- 6. Asakura, K.; Iwaguchi, S.; Homma, M.; Sukai, T.; Higashide, K.; Tanaka, K. Electrophoretic karyotypes of clinically isolated yeasts of *Candida albicans* and *C. glabrata. J. Gen. Microbiol.*, 137: 2531-2538, 1991.

- 7. Ayala, F.J. Molecular evolution. Sinauer Associates, Sunderland, Mass, 1976.
- Barchiesi, F.; Arzeni, D.; Del Prete, M.S.; Sinicco, A.; Falconi Di Francesco, L.; Pasticci, M.B.; Lamura, L.; Nuzzo, M.M.; Burzacchini, F.; Coppola, S.; Chiodo, F.;. Scalise, G. Fluconazole susceptibility and strain variation of *Candida albicans* isolates from HIV-infected patients with oropharyngeal candidosis. *J. Antimicrob. Chemother.*, 41: 541:548, 1998.
- 9. Barchiesi, F.; Hollis, R.J.; Del Poeta, M.; McGough, D.A.; Scalise, G.; Rinaldi, M.G.; Pfaller, M.A. Transmission of fluconazole-resistent *Candida albicans* between patients with AIDS and oropharyngeal candidiasis documented by pulsed-field gel electrophoresis. *Clin. Infect. Dis.*, 21: 561-564, 1995.
- Bart-Delabesse, E.; van Deventer, H.; Goessens, W.; Poirot, J.L.; Lioret, N.; van Belkum, A.; Dromer, F. Contribution of molecular typing methods and antifungal susceptibility testing to the study of a candidemia cluster in a burn care unit. *J. Clin. Microbiol.*, 33: 3278-3283, 1995.
- 11. Bart-Delabesse, E.; Boiron, P.; Carlotti, A.; Dupont, B. *Candida albicans* genotyping in studies with patients with AIDS developing resistance to fluconazole. *J. Clin. Microbiol.*, 31: 2933-2937, 1993.
- 12. Barton, R.C.; van Belkum, A.; Scherer, S. Stability of karyotype in serial isolates of *Candida albicans* from neutropenic patients. *J. Clin. Microbiol.*, 33: 794-796, 1995.
- 13. Berenguer, J.; Diaz-Guerra, T.M.; Ruiz-Diez, B.; de Quiros, J.C.B.; Rodriguez-Tudela, J.O.; Martinez-Suarez, J.V. Genetic dissimilarity of two fluconazole-resistant *Candida albicans* strains causing meningitis and oral candidiasis in the same AIDS patients. *J. Clin. Microbiol.*, 34: 1542-1545, 1996.
- 14. Bertout, S.; Renaud, F.; Swinne, D.; Mallie, M.; Bastide, J.-M. Genetic multilocus studies of different strains of *Cryptococcus neoformans*: taxonomy and genetic structure. *J. Clin. Microbiol.*, 37: 715-720, 1999.
- 15. Boerlin, P. Applications of multilocus enzyme electrophoresis in medical microbiology. J. Microbiol. Meth., 28: 221-231, 1997.
- 16. Boerlin, P.; Boerlin-Petzold, F.; Durussel, C.; Addo, M.; Pagani, J.-L.; Chave, J.-P.; Bille, J. Cluster of oral atypical *Candida albicans* isolates in a group of human immunodeficiency virus-positive drug users. *J. Clin. Microbiol.*, 33: 1129-1135, 1995.
- Boerlin, P.; Boerlin-Petzold, F.; Goudet, J.; Durussel, C.; Pagani, J.-L.; Chave, J.-P.; Bille, J. Typing *Candida albicans* oral isolates from human immunodeficiency virusinfected patients by multilocus enzyme electrophoresis and DNA fingerprinting. *J. Clin. Microbiol.*, 34: 1235-1248, 1996.

- Bonacorsi, S.P.; Munck, A.; Gerardin, M.; Doit, C.; Brahimi, N.; Navarro, J.; Bingen, E. In situ management and molecular analysis of candidaemia related to a totally implantable vascular access in a cystic fibrosis patient. *J. Infect.*, 33: 49-51, 1996.
- 19. Bostock, A.; Khattak, M.N.; Matthews, R.; Burnie, J. Comparison of PCR fingerprinting, by random amplification of polymorphic DNA, with other molecular typing methods for *Candida albicans. J. Gen. Microbiol.*, 139: 2179-2184, 1993.
- 20. Branchini, M.L.; Geiger, D.C.; Fischman, O.; Pignatari, A.C. Molecular typing of *Candida albicans* strains isolated from nosocomial candidemia. *Rev. Inst. Med. Trop. São Paulo*, 37: 483-487, 1995.
- 21. Branchini, M.L.; Pfaller, M.A.; Rhine-Chalberg, J.; Frempong, T.; Isenberg, H.D. Genotypic variation and slime production among blood and catheter isolates of *Candida parapsilosis. J. Clin. Microbiol.*, 32: 452-456, 1994.
- 22. Brandt, M.E.; Hutwagner, L.C.; Klug, L.A.; Baughman, W.S.; Rimland, D.; Graviss, E.A.; Hamill, R.J.; Thomas, C.; Pappas, P.G.; Reingold, A.L.; Pinner, R.W. Molecular subtype distribution of *Cryptococcus neoformans* in four areas of the United States. Cryptococcal Disease Active Surveillance Group. *J. Clin, Microbiol.*, 34: 912-917, 1996.
- 23. Brandt, M.E.; Hutwagner, L.C.; Kuykendall, R.J.; Pinner, R.W. Comparison of multilocus enzyme electrophoresis and random amplified polymorphic DNA analysis for molecular subtyping of *Cryptococcus neoformans. J. Clin, Microbiol.*, 33: 1890-1895, 1995.
- 24. Brandt, M.E.; Bragg, S.L.; Pinner, R.W. Multilocus enzyme typing of *Cryptococcus* neoformans. J. Clin, Microbiol., 31: 2819-2823, 1993.
- 25. Brown, A.J.L; Langley, C.H. Re-evaluation of level of genic heterozygosity in natural populations of *Drosophila melanogaster* by two-dimensional electrophoresis. *Proc. Natl. Acad. Sci. USA*, 76: 2381-2384, 1979.
- 26. Caetano-Anollés, G. Amplifying DNA with arbitrary oligonucleotide primers. *Genome Res.*, 3: 85-94, 1993.
- 27. Cannon, R.D.; Chaffin, W.L. Oral colonization by *Candida albicans. Crit. Rev. Oral Biol. Med.*, 10: 359–383, 1999.
- 28. Carlotti, A.; Grillot, R.; Couble, A.; Villard, J. Typing of *Candida krusei* clinical isolates by restriction endonuclease analysis and hybridization with the CkF1,2 DNA probe. *J. Clin. Microbiol.*, 32: 1691-1699, 1994.
- 29. Caugant, D.A.; Sandven, P. Epidemiological analysis of *Candida albicans* strains by multilocus enzyme electrophoresis. *J. Clin. Microbiol.*, 31: 215-220, 1993.

- 30. Chibana, H.; Magee, B.B.; Grindle, S.; Ran, Y.; Scherer, S.; Magee, P.T. A physical map of chromosome 7 of *Candida albicans. Genetics*, 149: 1739-1752, 1998.
- Chibana, H.; Iwaguchi, S.-I.; Homma, M.; Chindamporn, A.; Nakagawa, Y.; Tanaka, K. Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of *Candida albicans. J. Bacteriol.*, 176: 3851-3858, 1994.
- 32. Chindamporn, A.; Nakagawa, Y.; Mizuguchi, I.; Chibana, H.; Doi, M.; Tanaka, K. Repetitive sequences in (RPSs) in the chromosomes of *Candida albicans* are sandwiched between two novel stretches, HOK and RB2, common to each chromosome. *Microbiology*, 144: 849-857, 1998.
- 33. Clemons, K.V.; Feroze, F.; Holmberg, K.; Stevens, D.A. Comparative analysis of genetic variability among *Candida albicans* isolates from different geographic locales by three genotypic methods. *J. Clin. Microbiol.*, 35: 1332-1336, 1997.
- 34. Clemons, K.V.; Shankland, G.S.; Richardson, M.D.; Stevens, D.A. Epidemiologic study by DNA typing of a *Candida albicans* outbreak in heroin addicts. *J. Clin. Microbiol.*, 29: 205-207, 1991.
- 35. Cobb, B.D.; Clarkson, J.M. A simple procedure for optimizing the polymerase chain reaction (PCR) using modified Taguchi methods. *Nucleic Acids Res.*, 22: 3801-3805, 1994.
- 36. Coleman, D.C.; Sullivan, D.J.; Bennett, D.E.; Moran, G.P.; Barry, H.J.; Shanley, D.B. Candidiasis: the emergence of a novel species, *Candida dubliniensis*. *AIDS*, 11: 557-567, 1997.
- Conkle, M.T.; Hodgskiss, P.D.; Nunnally, L.B.; Hunter, S.C. Starch gel electrophoresis of conifer seeds; a laboratory manual. Berkeley, Pacific Southwest Forest and Range Experiment Station, U.S. Forest Service, U.S. Department of Agriculture (Gen. tech. rep. PSW-64), 1982.
- 38. Cormican, M.G.; Hollis, R.J.; Pfaller, M.A. DNA macrorestriction profiles and antifungal susceptibility of *Candida (Torulopsis) grablata. Diagn. Microbiol. Infect. Dis.*, 25: 83-87, 1996.
- 39. Defontain, A., M. Coarer, and J.P. Bouchara. 1996. Contribution of various techniques of molecular analysis to strain identification of *Candida grablata*. *Microb. Ecol. H. Dis.*, 9:27-33.
- 40. Del Castilo, L.; Bikandi, J.; Nieto, A.; Quindos, G.; Sentandreu, R.; Ponton, J. Comparison of morphotypic and genotypic methods for strain delineation in *Candida*. *Mycoses*, 40: 445-450, 1997.

- 41. Diaz-Guerra, T.M.; Martinez-Suarez, J.V.; Laguna, F.; Rodriguez-Tudela, J.L. Comparison of four molecular typing methods for evaluating genetic diversity among *Candida albicans* isolates from human immunodeficiency virus-positive patients with oral candidíases. *J. Clin. Microbiol.*, 35: 856-861, 1997.
- 42. Dib, J.C.; Dube, M.; Kelly, C.; Rinaldi, M.G.; Patterson, J.E. Evaluation of pulsedfield gel electrophoresis as a typing system for *Candida rugosa*. Comparison of karyotype and restriction fragment length polymorphisms. *J. Clin. Microbiol.*, 36: 1494-1496, 1996.
- 43. Diekema, D.J.; Messer, S.A.; Hollis, R.J.; Wenzel, R.P.; Pfaller, M.A. An outbreak of *Candida parapsilosis* prosthetic valve endocarditis. Diagn. Microbiol. *Infect. Dis.*, 29:147-153, 1997.
- 44. Dixon, H.; Webb, E.C. Enzymes. Academic Press, NewYork, 1979, 1116 p.
- 45. Doebbeling, B.N.; Lehmann, P.F.; Hollis, R.J.; Wu, L.C.; Widmer, A.F.; Voss, A.; Pfaller, M.A. Comparison of pulsed-field gel electrophoresis with isoenzyme profiles as a typing system for *Candida tropicalis. Clin. Infect. Dis.*, 16: 377-383, 1993.
- 46. Doi, M.; Mizuguchi, I.; Homma, M.; Tanaka, K. Electrophoretic karyotypes of isolates of *Candida albicans* from hospitalized patients. *J. Med. Vet. Mycol.*, 32: 133-140, 1994.
- 47. Doi, M.; Mizuguchi, I.; Homma, M.; Tanaka, K. Electrophoretic karyotypes of *Candida* yeasts recurrently isolated from single patients. *Microbiol. Immunol.*, 38: 19-23, 1994.
- 48. Doi, M.; Homma, M.; Iwaguchi, S.I.; Horibe, K.; Tanaka, K. Strain relatedness of *Candida albicans* strains isolated from children with leukemia and their bedside parent. *J. Clin. Microbiol.*, 32: 2253-2259, 1994.
- 49. Ellsworth, D.L.; Rittenhouse, K.D.; Honeycutt, R.L. Artifactual variation in randomly amplified polymerase DNA banding patterns. *Bio-Techniques*, 14: 214-217, 1993.
- 50. Espinel-Ingroff, A.; Quart, A.; Steele-Moore, L.; Metcheva, I.; Buck, G.A.; Bruzzese, V.L.; Reich, D. Molecular karyotyping of multiple yeast species isolated from nine patients with AIDS during prolonged fluconazole therapy. *J. Med. Vet. Mycol.*, 34: 111-116, 1996.
- Fan, M.; Currie, B.P.; Gutell, R.R.; Ragan, M.A.; Casadevall, A. The 16S-like, 5.8S and 28S-like rRNAs of the two varieties of *Cryptococcus neoformans*: sequence, secondary structure, phylogenetic analysis and restriction fragment polymorphism. *J. Med. Vet. Mycol.*, 32: 163-180, 1994.

- 52. Fox, B.C.; Mobley, H.L.; Wade, J.C. The use of a DNA probe for epidemiology studies of candidíases in immunocompromised hosts. *J. Infect. Dis.*, 159: 488-494, 1989.
- 53. Fraser, V.J.; Keath, E.J.; Powderly, W.G. Two cases of blastomycosis from a common source: use of DNA restriction analysis to identify strains. *J. Infect. Dis.*, 163: 1378-1381, 1991.
- 54. Glover, D.M. *Genes for ribosomal DNA*,. *In*: Maclean, M.; Gregory, S.P.; Flavell, R.A. (eds). *Eukaryotic genes: their structure and regulation*. Butterworth & Co., Cambridge, United Kingdom, 1983, p.207-224.
- 55. Gottfredsson, M.; Cox, G.M.; Perfect, J.R. Molecular methods for epidemiological and diagnostic studies of fungal infections. *Pathology*, 30: 405-418, 1998.
- 56. Gräser, Y.; Volovsek, M.; Arrington, J.; Schönian, G.; Presber, W.; Mitchell, T.G.; Vilgalys, R. Molecular markers reveal that population structure of the human pathogen *Candida albicans* exhibits both clonality and recombination. *Proc. Natl. Acad. Sci.* USA, 93: 12473-12477, 1996.
- 57. Greenspan, D.; Greenspan, J.S. HIV related oral disease. Lancet., 348: 729–733, 1996.
- Gyanchandani, A.; Khan, Z.K.; Farooqui, N.; Goswami, M.; Ranade, S.A. RAPD analysis of *Candida albicans* strains recovered from immunocompromised patients (ICP) reveals an apparently non-random infectivity of the strains. *Biochem. Mol. Biol. Int.*, 44: 19-27, 1998.
- 59. Harris, H. Isoenzymes. Academic Press, NewYork. 1975, vol.4.
- 60. Harris, H.; Hopkinson. D.A. *Handbook of enzyme electrophoresis in human genetics*. North-Holland Publishing Co., Amsterdam, 1976, 374p.
- 61. Hatlan, L.E.; Attardi, G. Preparation of the HeLa cell genome complementary to tRNA and 5SRNA. J. Mol. Biol., 56: 535-554, 1971.
- 62. Hellstein, J.; Vawter-Hugart, H.; Fotos, P.; Schmid, J.; Soll, D.R. Genetic similarity and phenotypic diversity of commensal and pathogenic strains of *Candida albicans* isolated from the oral cavity. *J. Clin. Microbiol.*, 31: 3190-3199, 1993.
- 63. Holmberg, K.; Feroze, F. Comparative study of the GenePath group 4 reagent system and other CHEF systems for karyotype analysis of *Candida* spp. *J. Clin. Lab. Anal.*, 9: 184-192, 1995.
- 64. Holmberg, K.; Feroze, F. Evaluation of an optimized system for random amplified polymorfism DNA (RAPD)-analysis for genotypic mapping of *Candida albicans* strains. *J. Clin. Lab. Anal.*, 10: 59-69, 1996.
- 65. Holmstrup, P.; Axéll, T. Classification and clinical manifestations of oral yeast infections. Acta Odontol. Scand., 48: 57-59, 1990.
- 66. Howell, S.A.; Anthony, R.M.; Power, E. Application of RAPD and restriction enzyme analysis to the study of oral carriage of *Candida albicans*. *Lett. Appl. Microbiol.*, 22: 125-128, 1996.
- 67. Huettermann, A.; Volger, C.; Schorn, R.; Ahnert, G.; Ganser, H.G. Studies on isoenzyme polymorphism in *Fomes annosus. Eur. J. For. Pathol.*, 9: 265-274, 1979.
- 68. Hunter, P.R. A critical review of typing methods for *Candida albicans* and their applications. *Crit. Rev. Microbiol.*, 17: 417-434, 1991.
- 69. Hunter, P.R.; Gaston, M.A. Numerical index of the discriminatory ability of typing systems an application of Simpson's index of diversity. *J. Clin. Microbiol.*, 26: 2465-2466, 1988.
- 70. Iwaguchi, S.; Homma, M.; Tanaka, K. Variation in the electrophoretic karyotype analysed by the assignment of DNA probes in *Candida albicans. J. Gen. Microbiol.*, 136: 2433-2442, 1990.
- 71. Iwaguchi, S., Homma, M.; Tanaka, K. Clonal variation of chromosome size derived from the rDNA cluster region in *Candida albicans. J. Gen. Microbiol.*, 138: 1177-1184, 1992.
- 72. Iwaguchi, S.-L.; Homma, M.; Chibana, H.; Tanaka, K. Isolation and characterization of a repeated sequence (RPS1) of *Candida albicans. J. Gen. Microbiol.*, 138: 1893-1900, 1992.
- 73. Johnson, G.B. Enzyme polymorphism and metabolism. Science, 184: 28-37, 1974.
- 74. Joly, S.; Pujol, C.; Schröppel, K.; Soll, D.R. Development and verification of two species fingerprinting probes for *Candida tropicalis* amenable to computer analysis. *J. Clin. Microbiol.*, 34: 3063-3071, 1996.
- 75. Khatib, R.; Thirumoorthi, M.C.; Riederer, K.M.; Sturm, L.; Oney, L. A.; Baran Jr, J. Clustering of *Candida* infections in the neonatal intensive care unit: concurrent emergence of multiple strains simulating intermittent outbreaks. *Pediatr. Infect. Dis. J.*, 17: 130-134, 1998.
- King, D.; Rhine-Chalberg, J.; Pfaller, M.A.; Moser, S.A.; Merz, W.G. Comparison of four DNA-based methods for strain delineation of *Candida lusitaniae*. J. Clin. Microbiol., 33: 1467-1470, 1995.

- 77. Kleinegger, C.; Lockhart, S.R.; Vargas, K.; Soll, D.R. Frequency, intensity, species and strains of oral yeast vary as a function of host age. *J. Clin. Microbiol.*, 34: 2246-2254, 1996.
- 78. Kuehnert, M.J.; Clark, E.; Lockhart, S.R.; Soll, D.R.; Chia, J.; Jarvis, W.R. *Candida albicans* endocarditis traced to a contaminated aortic valve allograft: implications for regulation of allograft processing. *Clin. Infect. Dis.*, 27: 688-691, 1998.
- 79. Kwon-Chung, K.J.; Wickes, B.L.; Merz, W.G. Association of electrophoretic karyotype of *Candida stellatoidea* with virulence for mice. *Infect. Immune.*, 56: 1814-1819, 1988.
- 80. Kwon-Chung, K.J.; Riggsby, W.S.; Uphoff, R.A.; Hicks, J.B.; Whelan, W.L.; Reiss, E.; Magee, B.B.; Wickes, B.L. Genetic differences between type I and tipy II *Candida stellatoidea*. *Infect. Immun.*, 57: 527-532, 1989.
- 81. Lacher, D.A.; Lehmann, P.F. Application of multidimensional scaling in numerical taxonomy: analysis of isoenzyme types of *Candida* species. *Ann. Clin. Lab. Sci.*, 21: 94-103, 1991.
- 82. Lasker, B.A.; Carle, G.F.; Kobayashi, G.S.; Medoff, G. Comparison of the separation of *Candida albicans* chromosome-sized DNA by pulsed-field gel electrophoresis technique. *Nucleic Acids Res.*, 17: 3783-3793, 1989.
- 83. Lasker, B.A.; Page, L.S.; Lott, T.J.; Kobayashi, G.S. Isolation, characterization, and sequencing of *Candida albicans* repetitive element 2. *Gene*, 116: 51-57, 1992.
- 84. Lehmann, P.F.; Kemker, B.J.; Hsiao, C.-B.; Dev, S. Isoenzyme biotypes of *Candida* species. J. Clin. Microbiol., 27: 2514-2521, 1989.
- 85. Lehmann, P.F.; Lin, D.; Lasker, B.A. Genotypic identification and characterization of species and strains within the genus *Candida* by using random amplified polymorphic DNA. *J. Clin. Microbiol.*, 30: 3249-3254, 1992.
- Lehmann, P.F.; Wu, L. C.; Pruitt, W.R.; Meyer, S.A.; Ahearn, D.G. Unrelatedness of groups of yeasts within the *Candida haemulonii* complex. J. Clin. Microbiol., 31: 1683-1687, 1993.
- 87. Lehmann, P.F.; Wu, L.-C.; Mackenzie, D.W.R. Isozyme changes in *Candida albicans* domestication. *J. Clin. Microbiol.*, 29: 2623-2625, 1991.
- 88. Lewontin, R.C. *The genetic basis of evolutionary change*. Columbia University Press, New York, 1974, 346 p.
- 89. Lin, D.; Wu, L.C.; Rinaldi, M.G.; Lehmann, P.F. Three distinct genotypes within *Candida parapsilosis* from clinical sources. *J. Clin. Microbiol.*, 33: 1815-1821, 1995.

- 90. Lischewski, A.; Ruhnke, M.; Tennagen, I.; Schönian, G.; Morschhauser, J.; Hacker, J. Molecular epidemiology of *Candida* isolates from AIDS patients showing different fluconazole resistance profiles. *J. Clin. Microbiol.*, 33: 769-771, 1995.
- 91. Lockhart, S.; Fritch, J.J.; Meier, A.S.; Schroeppel, K.; Srikantha, T.; Galask, R.; Soll, D.R. Colonizing populations of *Candida albicans* are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. *J. Clin. Microbiol.*, 33: 1501-1509, 1995.
- 92. Lockhart, S.R.; Reed, B.D.; Pierson, C.L.; Soll, D.R. Most frequent scenario for recurrent *Candida* vaginitis is strains maintenance with "substrain shuffling": demonstration by sequential DNA fingerprinting with probes Ca3, C1, and CARE2. *J. Clin. Microbiol.*, 34: 767-777, 1996.
- 93. Lockhart, S.R.; Joly, S.; Vargas, K.; Swails-Wenger, J.; Enger, L.; Soll, D.R. Defenses against oral *Candida* carriage break down in the elderly. *J. Dent. Res.*, 78: 857-868, 1999.
- 94. Lott, T.J.; Boiron, P.; Reiss, E. An electrophoretic karyotype for *Candida albicans* reveals large chromosomes in multiples. *Mol. Gen. Genet.*, 209: 170-174, 1987.
- 95. Loudon, K.W.; Coke, A.P.; Burnie, J.P. "Pseudoclusters" and typing by random amplification of polymorphic DNA of *Aspergillus fumigatus*. J. Clin. Pathol., 48: 183-184, 1995.
- 96. Loudon, K.W.; Coke, A.P.; Burnie, J.P.; Lucas, G.S.; Liu Yin, J.A. Invasive aspergillosis: clusters and sources? J. Med. Vet. Mycol., 32: 217-224, 1994.
- 97. Lupetti, A.; Guzzi, G.; Paladini, A.; Swart, K.; Campa, M.; Senesi, S. Molecular typing of *Candida albicans* in oral candidiasis: karyotype epidemiology with human immunodeficiency virus-seropositive patients in comparison with that with healthy carriers. *J. Clin. Microbiol.*, 33: 1238-1242, 1995.
- 98. Magee, B.B.; Magee, P.T. Electrophoretic karyotypes and chromosome numbers in *Candida* species. J. Gen. Microbiol., 133: 425-430, 1987.
- 99. Magee, B.B.; D'Souza, T.M.; Magee, P.T. Strain and species identification by restriction length polymorphisms in the ribosomal DNA repeat of *Candida* species. *J. Bacteriol.*, 169: 1639-1643, 1987.
- 100. Magee, P.T.; Bowdin, L.; Staudinger, J. Comparison of molecular typing methods for *Candida albicans. J. Clin. Microbiol.*, 30: 2674-2679, 1992.
- 101. Mahrous, M.; Lott, T.J.; Meyer, S.A.; Awant, A.D.; Ahearn, D.G. Electrophoretic kariotyping of typical and atypical *Candida albicans. J. Clin. Microbiol.*, 28: 876-881, 1990.

- 102. Marco, F.; Lockhart, S.R.; Pfaller, M.A.; Pujol, C.; Rangel-Frausto, M.S.; Wiblin, T.; Blumberg, H.M.; Edwards, J.E.; Jarvis, W.; Saiman, L.; Patterson, J.E.; Rinaldi, M.G.; Wenzel, R.P.; Soll, D.R. Elucidating the origins of nosocomial infections with *Candida albicans* by DNA fingerprinting with the complex probe Ca3. J. Clin. Microbiol., 37: 2817-2828, 1999.
- 103. Markert, C.L. *Biology of isoenzymes*. *In*: Markert, C.L. *Isoenzymes*. Academic Press, New York, 1975, p.1-9.
- 104. Markert, C.L.; Moller, F. Multiple forms of enzymes: tissue, ontogenic, and species specific patterns. *Proc. Natl. Acad. Sci. USA*, 45: 753-763, 1959.
- 105. Mata, A.L.; Rosa, R.T.; Rosa, E.A.R.; Gonçalves, R.B.; Höfling, J.F. Clonal variability among oral *Candida albicans* assessed by allozyme electrophoresis analysis. *Oral Microbiol. Immunol.*, 15: 350-354, 2000.
- 106. McCullough, M.J.; Ross, B.C.; Dwyer, B.D.; Reade, P.C. Genotype and phenotype of oral *Candida albicans* from patients infected with the human immunodeficiency virus. *Microbiology*, 140: 1195-1202, 1994.
- 107. Mercure, S.; Montplaisir, S.; Lemay, G. Correlation between the presence of a selfsplicing intron in the 25S rDNA of *C. albicans* and strain susceptibility to 5fluorocytosine. *Nucleic Acids Res.*, 21: 6020-6027, 1993.
- 108. Mercure, S.; Poirier, S.; Lemay, G.; Auger, P.; Montplaisic, S.; Repentigny, L. Application of biotyping and DNA typing of *Candida albicans* to the epidemiology of recurrent vulvovaginal candidíasis. *J. Infect. Dis.*, 168: 502-507, 1993.
- 109. Merz, W.G.; Connelly, C.; Hieter, P. Variation of electrophoretic karyotypes among clinical isolates of *Candida albicans. J. Clin. Microbiol.*, 26: 842-845, 1988.
- 110. Meunier, J.-R.; Grimont, P.A. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. *Res. Microbiol.*, 144: 373-379, 1993.
- 111. Micales, J.A.; Alfenas, A.C.; Bonde, M.R. Izoenzimas na taxonomia e na genética de fungos. In: Alfenas, A.C. (ed). Eletroforese de isoenzimas e proteínas afins. Fundamentos e aplicações em plantas e microrganismos. UFV, Viçosa, 1998, p.477-512.
- 112. Millon, L.; Manteaux, A.; Reboux, G.; Drobacheff, C.; Monod, M.; Barale, T.; Michel-Briand, Y. Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of *Candida albicans* strains with the same genotype. *J. Clin Microbiol.*, 32: 1115-1118, 1994.

- 113. Mitchell, T.G.; Sandin, R.L.; Bowman, B.H.; Meyer, W.; Merz, W.G. Molecular Mycology: DNA probes and applications of PCR technology. J. Med. Vet. Mycol., 32: 351-366, 1994.
- 114. Murphy, R.W.; Sites, J.W.; Buth, D.G.; Haufler, C.H. Proteins I: isoenzyme electrophoresis. *In*: Hillis, D.M.; Moritz, C. (eds). *Molecular systematics*. Sinauer Associates Inc. Publishers, Sunderland, Mass, 1990, p.45-126.
- 115. Nei, M. Molecular polymorphism and evolution. North-Holland Publishing Co., Amsterdam, 1975.
- 116. Nevo, E.; Beiles, A.; Ben-Shlomo, R. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. *Lect. Notes Biomath.*, 53: 13-213, 1980.
- 117. Newman, P. Variation amongst isozymes of *Rhynchosporium secalis*. *Plant Pathol.*, 34: 329-337, 1985.
- 118. Odds, F.; Schmid, J.; Soll, D.R. Epidemiology of *Candida* infections in AIDS, *In*: Bossche, H.V. (ed) *Mycoses in AIDS patients*. Plenum, New York, 1990, p.67-74.
- 119. Olive, D.M.; Bean, P. Principles and applications of methods for DNA-based typing of microbial organisms. *J. Clin. Microbiol.*, 37: 1661-1669, 1999.
- 120. Olivo, P.D.; McManus, E.J.; Riggsby, W.S.; Jones, J.M. Mitochondrial DNA polymorphism in *Candida albicans*. J. Infect. Dis., 156: 214-215, 1987.
- 121. Oren, I.; Manavathu, E.K.; Lerner, S.A. Isolation and characterization of a speciesspecific DNA probe for *Candida albicans*. *Nucleic Acids Res.*, 19: 7113-7116, 1991.
- 122. Pasteur, N.; Pasteur, G.; Bonbomme, F.; Catalan, J.; Britton-Davidian, J. *Manuel technique de génétique par électrophorèse dês protéines. Technique et documentation.* Lavoisier, Paris, 1987, 217p.
- 123. Pfaller, M.A.; Cabezudo, I.; Hollis, R.; Huston, B.; Wenzel, R.P. The use of biotyping and DNA fingerprinting in typing *Candida albicans* from hospitalized patients. *Diag. Microbiol. Infect. Dis.*, 13: 481-489, 1990.
- 124. Pfaller, M.A.; Rhine-Chalberg, J.; Redding, S.W.; Smith, J.; Farinacci, G.; Fothergill, A.W.; Rinald, M.G. Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of *Candida albicans* from patients with AIDS and oral candidíases. *J. Clin. Microbiol.*, 32: 59-64, 1994.
- 125. Pfaller, M.A.; Messer, S.A.; Houston, A.; Rangel-Frausto, M.S.; Wiblin, T.; Blumberg, H.M.; Edwards, J.E.; Jarvis, W.; Martin, M.A.; Neu, H.C.; Saiman, L.; Patterson, J.E.; Dibb, J.C.; Roldan, C.M.; Rinaldi, M.G.; Wenzel, R.P. National

epidemiology of mycoses survey: a multicenter study of strain variation and antifungal susceptibility among isolates of *Candida* species. *Diag. Microbiol. Infect. Dis.*, 31: 289-296, 1998.

- 126. Pfaller, M.A.; Lockhart, S.R.; Pujol, C.; Swails-Wenger, J.A.; Messer, S.A.; Edmond, M.B.; Jones, R.N.; Wenzel, R.P.; Soll, D.R. Hospital specificity, region specificity, and fluconazole-resistance of *Candida albicans* bloodstream isolates. *J. Clin. Microbiol.*, 36: 1518-1529, 1998.
- 127. Pierson, D.L.; Mehta, S.K.; Magge, B.B.; Mishra, S.K. Person-to-person transfer of *Candida albicans* in the spacecraft environment. *J. Med. Vet. Mycol.*, 33: 145-150, 1995.
- 128. Pontieri, E.; Gregori, L.; Gennarelli, M.; Ceddia, T.; Novelli, G.; Dallapiccola, B.; De Bernardis, F.; Carruba, G. Correlation of *SfiI* macrorestriction endonuclease fingerprinting analysis of *Candida parapsilosis* isolates with source of isolation. *J. Med. Microbiol.*, 45: 173-178, 1996.
- 129. Prakash, S.; Lewontin, R.C.; Hubby, J.L. A molecular approach to the study of genic heterozygosity in natural populations. IV patterns of genetic variation in central, marginal and isolated populations of *Drosophila pseudobscura*. *Genetics*, 61: 841-858, 1969.
- 130. Pujol, C.; Renaud, F.; Mallie, M.; Meeus, T.; Bastide, J.M. Atypical strains of *Candida albicans* recovered from AIDS patients. *J. Med. Vet. Mycol.*, 35: 115-121, 1997.
- 131. Pujol, C.; Reynes, J.; Renaud, F.; Mallie, M.; Bastide, J.-M. Genetic analysis of *Candida albicans* strains studies by isoenzyme electrophoresis. *J. Mycol. Med.*, 3: 14-19, 1993.
- 132. Pujol, C.; Reynes, J.; Renaud, F.; Raymond, M.; Tibayrenc, M.; Ayala, F.J.; Janbon, F.; Mallie, M.; Bastide, J.-M. The yeast *Candida albicans* has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. *Proc. Natl. Acad. Sci. USA*, 90: 9456-9459, 1993.
- 133. Pujol, C.; Joly, S.; Notan, B.; Srikantha, T.; Soll, D.R. Microevolutionary changes in *Candida albicans* identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive RPS at specific genomic sites. *Microbiology*, 145: 2635-2646, 1999.
- 134. Pujol, C.; Joly, S.; Lockhart, S.R.; Noel, S.; Tibayrenc, M.; Soll, D.R. Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting *Candida albicans. J. Clin. Microbiol.*, 35: 2348-2358, 1997.

- 135. Racine, R.R.; Langley, C.H. Genetic heterozygosity in a natural population of *Mus musculus* assessed using two-dimensional electrophoresis. *Nature*, 283: 855-857, 1980.
- 136. Ramsey, H.; Morrow, B.; Soll, D.R. An increase in switching frequency correlates with an increase in recombination of the ribosomal chromosomes of *Candida albicans* strain 3153A. *Microbiology*, 140: 1525-1531, 1994.
- 137. Rattazzi, M.C.; Scandalios, J.G.; Whitt, G.S. Isozymes. Current Topics in Biological and Medical Research. Alan R. Liss, New York, 1983.
- 138. Reiss, E.; Tanaka, K.; Bruker, G.; Chazalet, V.; Coleman, D.; Debeaupuis, P.; Hanazawa, R.; Latgés, J.-P.; Lortholary, J.; Makimura, K.; Morrison, C.J.; Murayama, S.Y.; Naoe, S.; Paris, S.; Sarfati, J.; Shibuya, K.; Sullivan, D.; Uchida, K.; Yamaguchi, H. Molecular diagnosis and epidemiology of fungal infections. *Med. Mycol.*, 36: 249-257, 1998.
- 139. Robert, F.; Lebreton, F.; Bougnoux, M.E.; Paugam, A.; Wassermann, D.; Schlotterer, M.; Tourte, S.C.; Dupouy, C.J. Use of random amplified polymorphic DNA as a typing method for *Candida albicans* in epidemiological surveillance of a burn unit. *J. Clin. Microbiol.*, 33: 2366-2371, 1995.
- 140. Rosa, E.A.R.; Pereira, C.V.; Rosa, R.T.; Höfling, J.F. Evaluation of different dehydrogenases to recognize *Candida* species commonly isolated from human oral cavities. *Rev. Argent. Microbiol.*, 31: 165-172, 1999.
- 141. Rosa, E.A.R.; Rosa, R.T.; Pereira, C.V.; Höfling, J.F. Grouping oral *Candida* species by multilocus enzyme electrophoresis. *Int. J. Syst. Evol. Microbiol.*, 50: 1343-1349, 2000.
- 142. Rosa, E.A.R.; Rosa, R.T.; Pereira, C.V.; Höfling, J.F. Inter and Intra-specific genetic variability of oral *Candida* species. *Rev. Iberoam. Micol.*, 18: 60-64, 2001.
- 143. Rosa, E.A.R.; Rosa, R.T.; Pereira, C.V.; Boriollo, M.F.G.; Höfling, J.F. Analysis of parity between protein-based electrophoretic methods for characterization of oral *Candida* species. *Mem. Inst. Oswaldo Cruz*, 95: 801-806, 2000.
- 144. Rosa, E.A.R.; Rosa, R.T.; Boriollo, M.F.G.; Bernardo, W.L.C.; Höfling, J.F. Oral *Candida albicans* and *Candida dubliniensis* differentiation by multilocus enzyme electrophoresis and sodium dodecylsulphate-polyacrylamide gel electrophoresis. *Rev. Argentina Microbiol.*, 35: 24-28, 2003.
- 145. Rustchenko-Bulgac, E.P. Variations of *Candida albicans* electrophoretic karyotypes. *J. Bacteriol.*, 173: 6586-6596, 1991.

- 146. Rustchenko-Bulgac, E.P.; Howard, D.H. Multiple chromosomal and phenotypic changes in spontaneous mutants of *Candida albicans*. J. Gen. Microbiol., 139: 1195-1207, 1993.
- 147. Rustchenko-Bulgac, E.P.; Sherman, F.; Hicks, J.B. Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of *Candida albicans. J. Bacteriol.*, 172: 1276-1283, 1990.
- 148. Sadhu, C.; McEachern, M.J.; Rustchenko-Bulgac, E.P.; Schmid, J.; Soll, D.R.; Hicks, J.B. Telomeric and dispersed repeat sequences in *Candida* yeasts and their use in strain identification. *J. Bacteriol.*, 173: 842-850, 1991.
- 149. Samaranayake, L.P. Oral candidosis: an old disease in new guises. *Dent. Update* 17: 36-38, 1990.
- 150. Samaranayake, Y.H.; Samaranayake, L.P.; Pow, E.H.; Beena, V.T.; Yeung, K.W. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential *Candida albicans* isolates from a human immunodeficiency virus-infected southern Chinese cohort. *J. Clin. Microbiol.*, 39: 3296-3302, 2001.
- 151. Sambrook, J.; Fritsch, E.F.; Maniatis, T. *Molecular cloning: a laboratory manual*. Cold Spring Harbor, New York, 1989, 3v.
- 152. San Millan, R.M.; Wu, L.C.; Salkin, I.F.; Lehmann, P.F. Clinical isolates of *Candida guilliermondii* include *Candida fermentati*. *Int. J. Syst. Bacteriol.*, 47: 385-393, 1997.
- 153. Sangeorzan, J.A.; Zervos, M.J.; Donabedian, S.; Kauffman, C.A. Validity of contourclamped homogeneous electric field electrophoresis as a typing system for *Candida albicans*. *Mycoses*, 38: 29-36, 1995.
- 154. Scandalios, J.G. Genetic control of multiple molecular forms of enzymes in plants; a review. *Biochem. Genet.*, 3: 37-79, 1969.
- 155. Scherer, S.; Stevens, D.A. Application of DNA typing methods to epidemiology and taxonomy of *Candida* species. *J. Clin. Microbiol.*, 25: 675-679, 1987.
- 156. Scherer, S.; Stevens, D.A. A *Candida albicans* dispersed, repeated gene family and its epidemiologic applications. *Proc. Natl. Acad. Sci. USA*, 85: 1452-1456, 1988.
- 157. Scherer, S.; Magee, R.T. Genetics of *Candida albicans. Microbiol. Rev.*, 54: 226-241, 1990.
- 158. Schmid, J.; Voss, E.; Soll, D.R. Computer-assisted methods for assessing *Candida albicans* strain relatedness by Southern blot hybridization with repetitive sequence Ca3. J. Clin. Microbiol., 28: 1236-1243, 1990.

- 159. Schmid, J.; Rotman, M.; Reed, B.; Pierson, C.L.; Soll, D.R. Genetic similarity of *Candida albicans* strains from vaginitis patients and their partners. *J. Clin. Microbiol.*, 31: 39-46, 1993.
- 160. Schmid, J.; Tay, Y.P.; Wan, L.; Carr, M.; Parr, D.; McKinney, W. Evidence for nosocomial transmission of *Candida albicans* obtained by Ca3 fingerprinting. *J. Clin. Microbiol.*, 33: 1223-1230, 1995.
- 161. Schoofs, A.; Odds, F.C.; Colebunders, R.; Ieven, M.; Wouters, L.; Goossens, H. Isolation of *Candida* species on media with and without added fluconazole reveals high variability in relative growth susceptibility phenotypes. *Antimicrob. Agents Chemother.*, 41: 1625-1635, 1997.
- 162. Schroeppel, K.; Rotman, M.; Galask, R.; Mac, K.; Soll, D.R. The evolution and replacement of *C. albicans* strains during recurrent vaginitis demonstrated by DNA fingerprinting. *J. Clin. Microbiol.*, 32: 2646-2654, 1994.
- 163. Schwartz, D.C.; Cantor, C.R.. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. *Cell*, 37: 67-75, 1984.
- 164. Schweizer, E.; MacKechnie, C.; Halvorson, H.D. The redundancy of ribosomal and transfer RNA genes in *Saccharomyces cerevisiae*. J. Mol. Biol., 40: 261-278, 1969.
- 165. Segal, E.; Baum, G.L. *Pathogenic yeasts and yeast infections*. CRC, Boca Raton, Ann Arbor, London, Tokyo, 1994,297.
- 166. Selander, R.K.; Lewin, B.R. Genetic diversity and structure in *Escherichia coli* populations. *Science*, 210: 545-547, 1980.
- 167. Selander, R.K.; Whittam, T.S. Protein polymorphism and the genetic structure of populations. *In*: Nei, M.; Koehn, R.K. (eds) *Evolution of genes and proteins*. Sinauer Associates, Sunderland, Mass, 1983, p.89-114.
- 168. Selander, R.K.; Caugant, D.A.; Ochman, H.; Musser, J.M.; Gilmour, M.N.; Whittam, T.S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. *Appl. Environ. Microbiol.*, 51: 873-884, 1986.
- 169. Shannon, M.C.; Ballal, S.K.; Harris, J.W. Starch gel electrophoresis of enzyme from nine species of *Polyporus*. *Amer. J. Bot.*, 60: 96-100, 1973.
- 170. Shecter, Y. Symposium on the use of electophoresis in the taxonomy of algae and fungi. *Bull. Torrey Bot. Club*, 100: 253-312, 1973.
- 171. Siciliano, M.J.; Shaw, C.R. Separation and visualization of enzymes on gels. *In*: Smith, I. *et al.*, *Chromatographic and electrophoretic techniques*. A.W. Heinemann Medical Books, London, 1976, p.185-209.

- 172. Smith, R.A.; Hitchcock, C.A.; Evans, E.G.; Lacey, C.J.; Adams, D.J. The identification of *Candida albicans* strains by restriction fragment length polymorphism analysis of DNA. *J. Med. Vet. Micol.*, 27: 431-434, 1989.
- 173. Snell, R.G.; Wilkins, R.J. Separation of chromosomal DNA molecules from *C. albicans* by pulsed field gel electrophoresis. *Nucleic Acids Res.*, 14: 4401-4406, 1986.
- 174. Soll, D.R. DNA fingerprinting of Candida albicans. J. Mycol. Med., 3: 37-44, 1993.
- 175. Soll, D.R. The ins and outs of DNA fingerprinting the infectious fungi. *Clin. Microbiol. Rev.*, 13: 322-370, 2000.
- 176. Soll, D.R.; Langtimm, C.J.; McDowell, J.; Hicks, J.; Galask, R. High-frequency switching in *Candida* strains isolated from vaginitis patients. *J. Clin. Microbiol.*, 25: 1611-1622, 1987.
- 177. Soll, D.R.; Staebell, M.; Langtimm, C.J.; Pfaller, M.; Hicks, J.; Rao, T.V.G. Multiple *Candida* strains in the course of a single systemic infection. *J. Clin. Microbiol.*, 26: 1448-1459, 1988.
- 178. Soll, D.R.; Galask, R.; Schmid, J.; Hanna, C.; Mac, K.; Morrow, B. Genetic dissimilarity of commensal strains of *Candida* spp. carried in different anatomical localizations of the same healthy women. *J. Clin. Microbiol.*, 29: 1702-1710, 1991.
- 179. Spitzer, E.D.; Lasker, B.A.; Travis, S.J.; Kobayashi, G.S.; Medoff, G. Use of mitochondrial and ribosomal DNA polymorphisms to classify clinical and soil isolates of *Histoplasma capsulatum*. *Infect. Immun.*, 57: 1409-1412, 1989.
- 180. Spreadbury, C.L.; Bainbridge, B.W.; Cohen, J. Restriction fragment length polymorphisms in isolates of *Aspergillus fumigatus* probed with part of the intergenic spacer region from the ribosomal RNA gene complex of *Aspergillus nidulans*. J. Gen. *Microbiol.*, 136: 1991-1994, 1990.
- 181. Steffan, P.; Vazquez, J.A.; Boikov, D.; Xu, C.; Sobel, J.D.; Akins, R.A. Identification of *Candida* species by randomly amplified polymorphic DNA fingerprinting of colony lysates. *J. Clin. Microbiol.*, 35: 2031-2039, 1997.
- 182. Stein, G.E.; Sheridan, V.L.; Magee, B.B.; Magee, P.T. Use of rDNA restriction fragment length polymorphisms to differentiate strains of *Candida albicans* in women with vulvovaginal candidíases. *Diagn. Microbiol. Infect. Dis.*, 14: 459-464, 1991.
- 183. Su, C.-S.; Meyer, S.A. Characterization of mitochondrial DNA in various *Candida* species: isolation, restriction endonucleases reaction, size and base composition. *Int. J. Syst. Bacteriol.*, 41: 6-14, 1991.

- 184. Sullivan, D.; Bennett, D.; Henman, M.; Harwood, P.; Flint, S.; Mulcahy, F.; Shanley, D.; Coleman, D. Oligonucleotide fingerprinting of isolates of *Candida* species other than *C. albicans* and of atypical *Candida* species from human immunodeficiency virus-positive and AIDS patients. *J. Clin. Microbiol.*, 31: 2124-2133, 1993.
- 185. Sullivan, D.; Haynes, K.; Bille, J.; Boerlin, P.; Rodero, L.; Lloyd, S.; Henman, M., Coleman, D. Widespread geographic distribution of oral *Candida dubliniensis* strains in human immunodeficiency virus-infected individuals. *J. Clin. Microbiol.* 35: 960-964, 1997.
- 186. Sullivan, D.J.; Westerneng, T.J.; Haynes, K.A.; Bennett, D.E.; Coleman, D. *Candida dubliniensis* sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV infected individuals. *Microbiology*, 141: 1507-1521, 1995.
- 187. Suzuki, T.; Kobayashi, I.; Mizuguchi, I.; Banno, I.; Tanaka, K. Electrophoretic karyotypes in medically important *Candida* species. *J. Gen. Appl. Microbiol.*, 34: 409-416, 1988.
- 188. Swanson, H.; Hughes, P.A.; Messer, S.A.; Lepow, M.L.; Pfaller, M.A. *Candida albicans* arthritis one year after successful treatment of fungemia in a healthy infant. *J. Pediatr.*, 129: 688-694, 1996.
- 189. Tanaka, K. Strain-relatedness among different populations of the pathogenic yeast *Candida albicans* analyzed by DNA-based methods. *Nagoya J. Med. Sci.*, 60: 1-14, 1997.
- 190. Taylor, J.W.; Geiser, D.M.; Burt, A.; Koufopanou, V. The evolutionary biology and population genetics underlying fungal strain typing. *Clin. Microbiol. Rev.*, 12: 126-146, 1999.
- 191. Thrash-Bingham, C.; Gorman, J.A. DNA translocations contribute to chromosome length polymorphisms in *Candida albicans. Curr. Genet.*, 22: 93-100, 1992.
- 192. Tibayrenc, M. Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. *Int. J. Parasitol.*, 28: 85-104, 1998.
- 193. Tibayrenc, M.; Neubauer, K.; Barnabé, C.; Guerrini, F.; Skarecky, D.; Ayala, F.J. Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. *Proc. Natl. Acad. Sci. USA*, 90: 1335-1339, 1993.
- 194. Tietz, H.J.; Kussner, A.; Thanos, M.; De Andrade, M.P.; Presber, W.; Schonian, G. Phenotypic and genotypic characterization of unusual vaginal isolates of *Candida albicans* from Africa. *J. Clin. Microbiol.*, 33: 2462-2465, 1995.

- 195. Van Belkum, A.; Melchers, W.; de Pauw, B.E.; Scherer, S.; Quint, W.; Meis, J.F. Genotypic characterization of sequential *Candida albicans* isolates from fluconazole-treated neutropenic patients. *J. Infect. Dis.*, 169: 1062-1070, 1994.
- 196. Vazquez, J.A.; Beckley, A.; Sobel, J.D.; Zervos, M.J. Comparison of restriction enzyme analysis versus pulsed-field gradient gel electrophoresis as a typing system for *Candida albicans. J. Clin. Microbiol.*, 29: 962-967, 1991.
- 197. Vazquez, J.A.; Sobel, J.D.; Demitriou, R.; Vaishampayan, J.; Lynch, M.; Zervos, M. Karyotyping of *Candida albicans* isolates obtained longitudinally in women with recurrent vulvovaginal candidiasis. *J. Infect. Dis.*, 170: 1566-1569, 1994.
- 198. Vlad, M. Quantitative studies of rDNA in amphibians. J. Cell Sci., 24: 109-118, 1977.
- 199. Vollrath, D.; Davis, R.W. Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. *Nucleic Acids Res.*, 15: 7865-7876, 1987.
- 200. Voss, A.; Pfaller, M.A.; Hollis, R.J.; Rhine-Chalberg, J.; Doebbeling, B.N. Investigation of *Candida albicans* transmission in a surgical intensive care unit cluster by using genomic DNA typing methods. *J. Clin, Microbiol.*, 33: 576-580, 1995.
- 201. Weissman, Z.; Berdicevsky, I.; Cavari, B. Molecular identification of *Candida albicans. J. Med. Vet. Mycol.*, 33: 205-207, 1995.
- 202. Welsh, J.; McClelland. M. Fingerprinting genomes using PCR with arbitrary primers. *Nucleic Acids Res.*, 18: 7213-7218, 1990.
- 203. Whelan, W.L.; Kirsch, D.R.; Kwon-Chung, K.J.; Wahl, S.M.; Smith, P.D. *Candida albicans* in patients with the acquired immunodeficiency syndrome: absence of a novel or hypervirulent strain. *J. Infect. Dis.*, 162: 513-518, 1990.
- 204. White, T.C.; Pfaller, M.A.; Rinaldi, M.C.; Smith, J.; Redding, S. Stable azole drug resistance associated with a substrain of *Candida albicans* from an HIV-infected patient. *Oral Dis.*, 3: S102-109, 1997.
- 205. Whittam, T.S.; Ochman, H.; Selander, R.K. Multilocus genetic structure in natural populations of *Escherichia coli*. *Proc. Natl. Acad. Sci. USA*, 80: 1751-1755, 1983.
- 206. Wickes, B.; Staudinger, J.; Magee, B.B.; Kwon-Chung, K.-J.; Magee, P.T.; Scherer, S. Physical and genetic map of *Candida albicans*: several genes previously assigned to chromosome 1 map to chromosome R, the rDNA-containing linkage group. *Infect. Immun.*, 59: 2480-2484, 1991.
- 207. Wilkinson, B.M.; Morris, L.; Adams, D.J.; Evans, E.G.; Lacey, C.J.; Walmsley, R.M. A new, sensitive polynucleotide probe for distinguishing *Candida albicans* strains and

its use with a computer assisted archiving and pattern comparison system. J. Med. Vet. Mycol., 30: 123-131, 1992.

- 208. Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Res.*, 18: 6531-6535, 1990.
- 209. Wills, J.W.; Lasker, B.A.; Sirotkin, K.; Riggsby, W.S. Repetitive DNA of *Candida albicans*: nuclear and mitochondrial components. *J. Bacteriol.*, 157: 918-924, 1984.
- 210. Wills, J.W.; Troutman, W.B.; Riggsby, W.S. Circular mitochondrial genome of *Candida albicans* contains a large inverted duplication. *J. Bacteriol.*, 164: 7-13, 1985.

ARTIGOS ORIGINAIS

Paridade entre métodos de interpretação genético e numérico por MLEE e análises de agrupamento entre isolados bucais de *Candida albicans*

Marcelo Fabiano Gomes Boriollo & José Francisco Höfling

Laboratório de Microbiologia e Imunologia, Departamento de Diagnóstico Bucal, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brasil.

RESUMO

O objetivo desta pesquisa foi avaliar o poder discriminatório e a capacidade de agrupamento dos métodos de interpretação genético (IG) e numérico (IN), a partir dos resultados obtidos por eletroforese de enzima multiloco (MLEE) e análise de agrupamento de amostras de C. albicans isoladas da cavidade bucal de crianças saudáveis. Culturas de leveduras foram submetidas à extração de proteínas por pérolas de vidro. As isoenzimas foram separadas em gel de amido através de procedimentos eletroforéticos e reveladas por métodos descritos previamente para 11 sistemas. A IG dos padrões de MLEE foi realizada seguindo a regra, comumente aceita, que permite a dedução da composição alélica de um organismo diplóide. A IN dos padrões de MLEE foi obtida numericamente por seus valores de mobilidade relativa. A variabilidade genética e a similaridade fenética entre os isolados foram determinadas pelos coeficientes de distância genética d_{ij} de Nei (1972) e de associação S_{ij} de Sokal & Sneath (1963), respectivamente. As matrizes de distância genética e similaridade foram elaboradas e tratadas pelo método SHAN algoritmo UPGMA, a fim de gerar os dendrogramas. O poder discriminatório dos dois métodos de interpretação foi determinado pelo índice de diversidade de Simpson. A concordância entre os valores das matrizes d_{ij} e S_{ij} foi determinada pelo coeficiente de correlação cofenética baseado no produto-momento de Pearson. Os valores de similaridade entre os diferentes fenons ($d_{ij} = x_{76}$ ou $S_{ij} = x_{76}$), grupos de isolados altamente relacionados e indistinguíveis $(x_{76} > d_{ij} \ge 0 \text{ ou } x_{76} < S_{ij} \le 1)$, e grupos de isolados exclusivamente indistinguíveis $(d_{ij} = 0$ ou $S_{ij} = 1$), gerados pelos dois métodos interpretativos e expressos em dendrogramas, foram obtidos pelo coeficiente de associação de Jaccard (S_J) e também visualizados em dendrogramas UPGMA. Os índices discriminatórios obtidos pelos dois métodos de interpretação, baseado na ocorrência de vários subtipos de C. albicans (i.e., 47 ETs produzidos pela IN, e 43 ETs produzidos pela IG) na população de crianças saudáveis,

apresentaram valores muito próximos e acima de 95%. Deste modo, MLEE pode ser considerada uma ferramenta muito valiosa para tipagem de C. albicans em estudos epidemiológicos. Outros índices discriminatórios, baseado na ocorrência de vários (i) alelos polimórficos, (ii) bandas polimórficas, (iii) fenons, (iv) grupos de isolados altamente relacionados e indistinguíveis e (v) grupos de isolados exclusivamente indistinguíveis, mostraram valores entre 84.2% até 95.2%, cujas diferenças entre a IG e IN foram abaixo de 5% em todas as ocasiões mencionadas acima. Tais resultados também refletiram maior discriminação de subtipos e seus relacionamentos, sob a forma de grupos, por parte da IN dos resultados. Consequentemente, sugere-se que isto pode gerar imprecisão sobre muitas informações acerca da condição nuclear e, concomitantemente, superestimar tais resultados. Por outro lado, a IG dos resultados pode gerar maior precisão sobre as informações acerca da condição nuclear, e seus dados podem ser aplicados valiosamente sobre os estudos de genética de populações, epidemiologia, evolução, taxonomia e sistemática de C. albicans. Adicionalmente, tais resultados podem ser adequadamente estocados e acessados durante análises retrospectivas e comparativas. A concordância (r_{dS}) entre os elementos da matrizes d_{ij} e S_{ij} apresentou um valor igual a 0.05548 (~5.6%). Este resultado sugere uma baixa concordância quantitativa e qualitativa entre aqueles elementos, e do mesmo modo quando ocorre a conversão dos valores S_{ij} em d_{ij} . Esta falta de concordância também foi confirmada pelos resultados de similaridade (S_J) entre os grupos de isolados altamente relacionados e indistinguíveis ($x_{76} > d_{ij} \ge 0$ versus $x_{76} < S_{ij} \le 1$), e os grupos de isolados exclusivamente indistinguíveis ($d_{ii} = 0$ versus $S_{ij} = 1$), gerados nos dois dendrogramas UPGMA (S_J). Estes resultados também sugerem uma divergência de fundamentos que, conseqüentemente, podem gerar conclusões epidemiológicas equivocadas, e isto tem grande relevância sobre os diferentes estudos, principalmente durante as descrições de laudos microbiológicos médicos. Finalmente, o conjunto de informações obtido nesta pesquisa sugere o emprego padronizado do método da IG sobre os padrões de MLEE, de modo a favorecer aqueles estudos, especialmente para C. albicans e espécies relacionadas diplóides de importância médica.

Palavras chave: MLEE; interpretação genética; interpretação numérica; poder discriminatório; análise de agrupamento; *Candida albicans*.

INTRODUÇÃO

A eletroforese de enzima multiloco (MLEE ou MEE – *Multilocus enzyme electrophoresis*), também conhecida como tipagem isoenzimática, tem sido empregada durante várias décadas como método padrão para análise genética de populações em eucariotos^{6,58,79,80,89,102}. Trabalhos pioneiros realizados na década de oitenta, empregando MLEE para análise genética de *Escherichia coli* e *Shigella*, despertaram enorme interesse dos microbiologistas médicos^{101,103}. Desde então, numerosos estudos foram realizados com inestimáveis resultados para o conhecimento da historia natural das doenças infecciosas. MLEE tem sido considerado um método *gold standard* para a genética de populações em microrganismos¹⁴. No campo da micologia médica, a tipagem isoenzimática tem apresentado grande potencialidade nos estudos de caracterização taxonômica, sistemática, genética, evolução e epidemiologia, especialmente para a levedura *C. albicans*^{3,4,7,13,15,16,19-21,25,33,53-56,59,69,85-87,93-97}

A reação enzimática pode ser evidenciada por bandas eletroforéticas de atividades enzimáticas em géis, indicando a existência de isoenzimas ou isozimas⁶⁸. Isoenzimas constituem múltiplas estruturas moleculares de uma mesma enzima com afinidade individual para um mesmo substrato, catalisando a mesma reação na célula³². Sua expressão é controlada geneticamente por um ou vários alelos ou genes, situados em um ou vários *loci*^{38,67,98}. Isoenzimas controladas por alelos de um único *locus* são denominadas de aloenzima ou alozima^{27,84}. Sua migração durante a eletroforese é determinada pela carga eletrostática presente na seqüência de aminoácidos e, conseqüentemente, sua mobilidade variante (eletromorfos ou aloenzimas) pode ser equiparada diretamente com alelos do correspondente *locus* gênico estrutural¹⁰³.

A capacidade analítica isoenzimática na distinção de espécies de fungos depende da variabilidade genética intrapopulacional. Organismos com elevada variabilidade genética podem expressar fenótipos altamente variáveis e, portanto, ocultar diferenças inter ou intraespecíficas. Essas evidências surgem principalmente com diferentes enzimas não-metabólicas, que exibem altas variações estruturais em virtude da intensidade

da pressão seletiva ambiental^{22,42,47,81,88}. Ao contrário, enzimas metabólicas apresentam baixa vulnerabilidade à seleção ambiental, sendo usualmente empregadas como marcadores isoenzimáticos¹²⁴. Os padrões de bandas eletroforéticas isoenzimáticas são freqüentemente previsíveis, uma vez que dependem das condições genéticas e nucleares de cada organismo. No entanto, vários micologistas restringiram as interpretações dos resultados eletroforéticos à mera contagem de bandas^{93,94,96,104,105}. A interpretação genética, quando possível, fornece muitas informações adicionais acerca da condição nuclear, genética e taxonômica de um grupo de organismo^{39,73,106}. Neste contexto, diferentes critérios de interpretação têm sido empregados para organismos haplóides ou diplóides^{39,76,83,103}. Baseado nestes critérios, a composição alélica tem sido determinada a partir de um grupo constituído por dez a trinta enzimas metabólicas, consideradas representativas do genoma total^{14,114}.

Levando em consideração que a caracterização de um microrganismo por MLEE é estatisticamente dependente da interpretação inicial dos padrões eletroforéticos isoenzimáticos, o objetivo desta pesquisa foi avaliar o poder discriminatório e a capacidade de agrupamento dos métodos de interpretação genético (IN) e numérico (IN), a partir dos padrões de MLEE e análises de agrupamento de amostras de *C. albicans* isoladas da cavidade bucal de crianças saudáveis.

MATERIAL E MÉTODOS

Isolados de leveduras. O estudo envolveu 75 amostras de *C. albicans* isoladas da cavidade bucal de 75 crianças clinicamente saudáveis, pertencentes a Micoteca do Laboratório de Microbiologia e Imunologia Bucal, da Faculdade de Odontologia de Piracicaba, da Universidade Estadual de Campinas. Estes isolados foram caracterizados por testes bioquímicos, formação de tubo germinativo e produção de clamidósporos⁷⁵ e atualmente sua caracterização tem sido ampliada pelo emprego de MLEE e análise genética de populações.

Preparação dos extratos celulares. Culturas de amostras de *C. albicans* foram desenvolvidas em frascos contendo 50mL de meio YEPD (Extrato de Levedura 1% m/v, Peptona 2% m/v e Glicose 2% m/v) a 37°C por 18 horas, sob agitação constante de 150rpm^{5,24} (Incubadora Shaker mod. NT 712, Nova Técnica Instrumentos e Equipamentos de Laboratório Ltda.) Logo após o crescimento, as células foram centrifugadas a 3.000 × *g* por 5 minutos¹²² e lavadas duas vezes em solução de NaCl 0,9% m/v¹²⁵, submetendo cada lavagem a mesma força centrífuga. Os *pellets* (~500µL) foram transferidos para tubos de 2mL (Biospec Products, Inc.), contendo água destilada gelada e pérolas de vidro (1:1:1). Estas misturas permaneceram em gelo por 5 minutos e, posteriormente, foram agitadas quatro vezes em aparelho BeadBeater[®] (Biospec Products, Inc.) por 30 segundos, com intervalos de 1 minuto. Os fragmentos celulares foram centrifugados a 5.000 × *g* a 4°C por 5 minutos. As fases superiores aquosas resultantes foram aplicadas em papéis de filtro Whatman nº 3 (*wicks*), com dimensões de 12x5mm, e mantidas a -70°C até o momento de uso^{2,93-96}.

Eletroforese e coloração de enzimas específicas. Enzimas foram separadas em gel de amido (Penetrose $30^{\text{®}}$, Refinações de Milho Brasil Ltda) a 13% m/v, com dimensão de 200x120x10mm. Rapidamente, os *wicks* previamente preparados foram embebidos com 5µL de solução de azul-de-bromofenol a 0,02% m/v e aplicados perpendicularmente ao corte longitudinal (20mm) do gel. A eletroforese foi conduzida em sistema horizontal e contínuo, sob tensão de 130 volts a 4°C *overnight* (migração do

corante equivalente a 80mm). Para assegurar a reprodutibilidade dos resultados, a linhagem padrão de C. albicans CBS-562 (Centralbureau voor Schimmelcultures, Delft, The Netherlands) foi sistematicamente colocada nas extremidades de cada gel. Após a corrida eletroforética, o gel foi colocado sobre uma base de acrílico e fatiado em lâminas de 1,5mm de espessura, com auxílio de réguas sobrepostas e fio náilon nº15^{1,107,117}. Cuidadosamente, estas lâminas foram conduzidas ao interior de recipientes de porcelana branca e submetidas ao processo de coloração por métodos descritos previamente para 11 sistemas (15 loci enzimáticos)^{1,87,103}. As atividades enzimáticas analisadas foram: álcool desidrogenase, sorbitol desidrogenase, manitol-1-fosfato desidrogenase, malato desidrogenase, isocitrato desidrogenase, glucose desidrogenase, glucose-6-fosfato desidrogenase, aspartato desidrogenase, catalase, peroxidase e leucina aminopeptidase (Tabela 1). Expressões enzimáticas de malato desidrogenase, isocitrato desidrogenase e sorbitol desidrogenase mostraram dois e três loci geneticamente interpretativos (Mdh-1, Mdh-2 e Mdh-3; Idh-1 e *Idh-2*; *Sdh-1* e *Sdh-2*).

Interpretação genética dos padrões de MLEE. Padrões de MLEE foram interpretados seguindo a regra, comumente aceita, que permite a dedução da composição alélica de um organismo diplóide^{39,83}. Os eletromorfos (bandas) de cada enzima, numerados e/ou ordenados alfabeticamente em disposição decrescente em relação à mobilidade enzimática anodal, foram comparados com os alelos do correspondente *locus* gênico estrutural. A população de *C. albicans* foi caracterizada pelas combinações dos alelos de 15 *loci* gênicos, de modo que distintas combinações alélicas de *loci* polimórficos foram designadas de tipos eletroforéticos (ETs). Deste modo, os índices percentuais de *loci* polimórficos (freqüência do alelo mais comum < 0.99) e monomórficos (\geq 0.99) também foram determinados. A falta de uma demonstrável atividade enzimática foi interpretada como dois alelos nulos do correspondente *locus* gênico^{15,25,51,57,69,77,95,103}.

Interpretação numérica dos padrões de MLEE. Padrões de MLEE foram expressos numericamente por seus valores de mobilidade relativa (*Rf*), dada por: $Rf = d/_D$. 100, onde *d* correspondeu à distância percorrida pela molécula enzimática e *D* correspondeu à distância percorrida pelo corante. Os valores *Rf* foram convertidos em valores binários do

	ENZIMA		TA	AMPÃO		COMPOSTOS	PARA COLO	RAÇÃO	
EC	NOME S	SIMBOLO	ELETRODO ¹	GEL	SUBSTRATO	TAMPÃO	SAI COENZ	IMA	CORANTE CATALISADOR
1.1.1.1.	Álcool desidrogenase	ADH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Etanol (3mL) Isopropanol (2mL)	200mM Tris-HCl pH 8.0 (50mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.14.	Sorbitol desidrogenase	SDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Sorbitol (250mg)	Tris-HCl 50mM pH 8.0 (50mL) ³		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.17.	Manitol-1-fosfato desidrogenase	M1P	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Manitol-1-fosfato (5mg)	Tris-HCl 100mM pH 8.5 (50mL) ⁴		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.37.	Malato desidrogenase	MDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	2M Ácido málico (6mL) ⁵	Tris-HCl 200mM pH 8.0 (40mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.42.	Isocitrato desidrogenase	IDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	1M Ácido isocítrico (2mL) ⁶	Tris-HCl 200mM pH 8.0 (40mL) ²	100mM MgCl ₂ (1mL) ⁷	NADP 1% (1mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.47.	Glucose desidrogenase	GDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	D-glucose (500mg)	Tris-HCl 200mM pH 8.0 (50mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.49.	Glucose-6- fosfato desidrogenase	G6PDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Glicose-6-fosfato (100mg)	Tris-HCl 200mM pH 8.0 (50mL) ²	100mM MgCl ₂ (1mL) ⁷	NADP 1% (1mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.4.3.x.	Aspartato desidrogenase	ASD	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Ácido aspártico (50mg)	Fosfato de sódio pH 7.0 (50mL) ⁸		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.11.1.6.	Catalase ⁹	CAT	Tris-citrato pH 8.0	Tampão do eletrodo 1:29					
1.11.1.7.	Peroxidase	РО	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	H ₂ O ₂ 3% (1mL)	100mM Acetato de sódio pH 4.5 (50mL) ¹⁰			o-dianisidina 2HCl (16mg)
3.4.11.1.	Leucina aminopeptidase	LAP	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	L-leucina β- naftilamida HCl (30 mg)	100mM Fosfato de Potássio pH 5.5 (50mL) ¹¹	100mM MgCl ₂ (1mL) ⁷		Black K (30mg)

Tabela 1. Relação das enzimas metabólicas de *C. albicans* e seus respectivos sistemas eletroforéticos e soluções para coloração.

¹83.2g de C₄H₁₁NO₃ (Tris), 33.09g de C₆H₈O₇.H₂O (Ácido cítrico), 1L def H₂O; ²24.2g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ³6.05g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ⁴12.1g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ⁵26.8g de C₄H₆O₅ (Ácido DL-málico) e 16g de NaOH em 0.1L de H₂O (precaução: reação potencialmente explosiva); ⁶29.41g de C₆H₅O₇Na₃ · 2H₂O (Ácido DL-isocítrico) em 0.1L de H₂O; ⁷2.03g de MgCl₂.6HCl (Cloreto de magnésio) em 0.1L de H₂O; ⁸ Misturar partes iguais de 27.6g de NaH₂PO₄ · H₂O (Fosfato de sódio monobásico monohidratado) em 1L de H₂O e 53.6g de Na₂HPO₄ · 7H₂O (Fosfato de sódio dibásico heptahidratado) em 1L de H₂O, então deliuir a mistura 1:25 com H₂O; ⁹ Incubar a fatia do gel por 30 minutos a 0°C em 50mL de tampão de 0.1M fosfato de sódio pH 7.0, então decantar a solução, e imergir a fatia em 50mL de solução de iodeto de potássio 1.5% (KI) por 2 minutos. Por conseguinte, enxaguar a fatia do gel com água, e imergi-la em 50mL de solução de peróxido de hidrogênio 0.03% (H₂O₂). Misturar cuidadosamente e remover a solução corante quando zonas brancas surgirem sobre o fundo azul escuro; ¹⁰13.61g de C₂H₃O₂Na · 3H₂O (Acetato de sódio), 1L de H₂O; ¹¹

tipo 1 e 0, cujas representações correspondem à presença e ausência de bandas, respectivamente. A população de *C. albicans* foi caracterizada pelas combinações das bandas de todas as atividades enzimáticas, de modo que distintas combinações de bandas polimórficas foram designadas de tipos eletroforéticos (ETs). Deste modo, os índices percentuais de enzimas polimórficas (freqüência dos eletromorfos < 0.99) e monomórficas (≥ 0.99) também foram determinados^{17,25,40,57,87,93,94,96}.

Análises de agrupamento e distância genética. A variabilidade genética entre os isolados bucais de *C. albicans* foi determinada pelo coeficiente de distância genética de

Nei (1972),
$$d_{ij} = -In \left[\frac{\sum_{k} |x_{ki} x_{kj}|}{\sqrt{\sum_{k} x_{ki}^2 x_{kj}^2}} \right]$$
, o qual admite a utilização de dados a partir de

freqüências alélicas ou gênicas⁷⁸. Deste modo, a matriz de distância genética (d_{ij}) foi elaborada e tratada pelo método SHAN algoritmo UPGMA (*Unweighted Pair-Group Method Using an Arithmetic Average*), a fim de gerar o dendrograma^{37,88,108,109}. Para determinar a concordância entre os valores de distância genética, implícitos no dendrograma, e os valores da matriz de distância genética (d_{ij}) foi empregado o coeficiente de correlação cofenética baseado no produto-momento de Pearson

 $r_{ki} = \frac{s_{ki}}{\sqrt{s_k^2 s_i^2}} = \frac{\sum_{j=1}^{p} (y_{ij} - \bar{y}_i)(y_{kj} - \bar{y}_k)}{\sqrt{\sum_{j=1}^{p} (y_{ij} - \bar{y}_i)^2} \sqrt{\sum_{j=1}^{p} (y_{kj} - \bar{y}_k)^2}} \frac{37,48,52,109,111,112}{\sqrt{s_k^2 (y_{kj} - \bar{y}_k)^2}}$

auxílio do programa NTSYS-pc 1.70^{92} . A linhagem-padrão de *C. albicans* CBS-562 foi incluída neste estudo para determinar a correlação cofenética entre os isolados bucais e assegurar a reprodutibilidade^{23,28,29,118}.

Análises de agrupamento e similaridade fenética. A similaridade fenética entre os isolados bucais de *C. albicans* foi determinada pelo coeficiente de associação de Sokal & Sneath (1963), $S_{ij} = \frac{2m}{n+m}$ ou $S_{ij} = \frac{2(a+d)}{2(a+d)+b+c}$, o qual admite a utilização de dados expressos numericamente por valores de mobilidade relativa convertidos binariamente^{52,109,113}. Deste modo, a matriz de similaridade (*S_{ij}*) foi elaborada e tratada pelo

método SHAN algoritmo UPGMA (*Unweighted Pair-Group Method Using an Arithmetic Average*), a fim de gerar o dendrograma^{37,88,108,109}. Para determinar a concordância entre os valores de similaridade, implícitos no dendrograma, e os valores da matriz de similaridade (S_{ij}) foi empregado o coeficiente de correlação cofenética baseado no produto-momento de

Pearson
$$r_{ki} = \frac{s_{ki}}{\sqrt{s_k^2 s_i^2}} = \frac{\sum_{j=1}^p (y_{ij} - \bar{y}_i)(y_{kj} - \bar{y}_k)}{\sqrt{\sum_{j=1}^p (y_{ij} - \bar{y}_i)^2} \sqrt{\sum_{j=1}^p (y_{kj} - \bar{y}_k)^2}}$$
 37,48,52,109,111,112. Essas análises foram

realizadas com o auxílio do programa NTSYS-pc 1.70⁹². A linhagem-padrão de *C. albicans* CBS-562 foi incluída neste estudo para determinar a correlação cofenética entre os isolados bucais e assegurar a reprodutibilidade^{23,28,29,118}.

Comparação entre os métodos de interpretação genético e numérico. O poder discriminatório das análises realizadas em função dos métodos de interpretação genético (IG) e numérico (IN) foi determinado pela aplicação do índice de diversidade de Simpson, $D = 1 - \frac{1}{N(N-1)} \sum_{j=1}^{S} n_j (n_j - 1)$, o qual tem sido empregado satisfatoriamente durante análises comparativas entre sistemas de tipagem para C. albicans^{16,26,44,45}. Para determinar a concordância entre os valores da matriz de distância genética (d_{ij}) e os valores da matriz de similaridade (S_{ij} – este pode ser convertido em d_{ij} conforme a expressão $D = 1 - S_{ij}$) também foi empregado o coeficiente de correlação cofenética baseado no produto-momento de Pearson^{37,48,52,109,111,112}. Medidas de similaridade entre os diferentes fenons $(d_{ij} = x_{76} \text{ ou } S_{ij} = x_{76})$, grupos de isolados altamente relacionados $(x_{76} > d_{ij} \ge 0 \text{ ou } x_{76})$ < $S_{ij} \leq 1$) e grupos de isolados indistinguíveis ($d_{ij} = 0$ ou $S_{ij} = 1$), gerados pelos dois métodos de interpretação e expressos em dendrogramas, foram obtidas pelo coeficiente de associação de Jaccard, $S_J = \frac{a}{a+b+c}$, o qual não admite concordâncias do tipo negativo (ausente) e, neste contexto, seguramente evita uma superestimação incorreta da similaridade entre dois ou mais OTUs (Operational Taxonomic Unit), ou grupos de OTUs^{31,46,52,109}. Tais medidas também foram visualizadas nos dendrogramas UPGMA.

RESULTADOS

Interpretação genética dos padrões de MLEE. Na população constituída por 75 isolados bucais de *C. albicans*, 14 (93.3%) de 15 *loci* enzimáticos foram polimórficos para um, dois ou três alelos (1 alelo: Idh-2 ^{freqüência do alelo b ou c <1% (0,75%)}; 2 alelos: Cat, Gdh ^{freqüência do alelo c ou d <1% (0,67%)}, Mdh-2, Mdh-3 ^{freqüência do alelo a <1% (0,86%)}, Po e Sdh-2 ^{freqüência do alelo c ou d <1% (0,67%)}; 3 alelos: Adh, Asd, G6pdh, Idh-1, Lap, M1p, Mdh-1). Apenas 1 (6,7%) *locus* enzimático foi monomórfico para um alelo (Sdh-1). As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 43 ETs (57,3% dos isolados) nesta população (Figura 1). Esses resultados indicaram que 31 crianças saudáveis abrigaram na cavidade bucal ETs distintos da levedura *C. albicans*. Todavia, 12 ETs foram compartilhados entre 44 crianças (Tabela 2).

Ađh	- •

Asd	•
	•••••••••••••••••••••••••••••••••••••••
Cat	***************************************
G6pđr	······································
Gdh	a
Idh-2	「 ●
Idh-1	
Lър	•••••••••••••••••••••••••••••••••••••••
Mlp	*
	•••••••••••••••••••••••••••••••••••••••
Mdh-3	s[
Mdh-2	
Mdh-)	· [
Po	
	г •
Sah-2 Sah-1	L
	L

Figura 1. Zimograma representativo da expressão enzimática de isolados bucais de *C. albicans* provenientes de 75 crianças saudáveis.

БТ	No. de						Ale	los de 15	5 <i>loci</i> e	nzimáti	icos*					
E I	Isolados	Adh	Asd	Cat	G6pdh	Gdh	Idh-1	Idh-2	Lap	M1p	Mdh-1	Mdh-2	Mdh-3	Ро	Sdh-1	Sdh-2
	CBS-562	bb	bb	aa	сс	bb	аа	aa	aa	bb	ab	ab	сс	ab	aa	bb
1	2	ab	ab	aa	ab	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
2	1	ab	ab	aa	bb	ab	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
3	1	ab	ab	aa	сс	ab	ac	aa	aa	aa	aa	ab	сс	аа	aa	aa
4	2	ab	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	ab
5	1	ab	ab	aa	сс	bb	aa	aa	аа	bb	aa	ab	сс	aa	aa	ab
6	1	ab	ab	aa	сс	bb	aa	aa	аа	bb	aa	ab	сс	aa	aa	bb
7	1	ab	bb	аа	bb	bb	aa	аа	aa	bb	aa	ab	сс	ab	аа	bb
8	1	ab	bb	аа	сс	bb	aa	аа	aa	bb	aa	ab	сс	aa	аа	ab
9	2	ab	bb	aa	сс	bb	aa	aa	аа	bb	aa	ab	сс	aa	aa	bb
10	4	ab	bb	aa	сс	bb	aa	aa	аа	bb	aa	ab	сс	ab	aa	bb
11	1	ab	bb	aa	сс	bb	aa	aa	аа	bb	aa	ab	-	aa	aa	bb
12	1	ab	bb	aa	СС	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	ab
13	1	ab	bb	aa	сс	bb	aa	aa	аа	bb	aa	ab	-	ab	aa	bb
14	1	ab	bb	aa	сс	bb	aa	aa	ab	bb	ab	ab	-	aa	aa	bb
15	1	ab	bb	aa	сс	bb	aa	-	аа	bb	ab	bb	-	ab	aa	bb
16	1	bb	ab	aa	aa	bb	ac	aa	аа	bb	aa	ab	сс	aa	aa	bb
17	1	bb	ab	aa	аа	bb	-	aa	аа	bb	aa	ab	сс	ab	aa	bb
18	1	bb	ab	aa	bb	bb	aa	aa	аа	bb	aa	ab	-	ab	aa	bb
19	1	bb	ab	aa	bb	bb	ac	aa	аа	bb	aa	ab	сс	ab	aa	bb
20	1	bb	ab	aa	СС	ab	ac	аа	аа	ab	aa	ab	сс	aa	aa	bb
21	1	bb	ab	aa	сс	ab	ac	aa	аа	ab	aa	ab	сс	ab	aa	bb
22	1	bb	ab	aa	СС	ab	ac	аа	ab	bb	aa	ab	сс	ab	aa	bb
23	6	bb	ab	aa	СС	bb	aa	aa	аа	bb	aa	ab	сс	aa	aa	bb
24	6	bb	ab	aa	сс	bb	aa	аа	аа	bb	aa	ab	сс	ab	aa	bb
25	1	bb	ab	aa	сс	bb	aa	аа	аа	bb	aa	ab	-	ab	aa	bb
26	1	bb	ab	aa	сс	bb	aa	аа	аа	bc	aa	ab	bb	aa	aa	bb
27	1	bb	ab	aa	СС	bb	ac	аа	аа	bb	aa	ab	сс	aa	aa	bb
28	3	bb	ab	аа	СС	bb	ac	аа	аа	bb	aa	ab	сс	ab	аа	bb
29	1	bb	ab	aa	сс	cd	bb	bc	аа	cc	сс	-	ab	ab	aa	bb
30	1	bb	bb	аа	bb	bb	аа	аа	aa	bc	aa	ab	bb	ab	аа	bb
31	2	bb	bb	aa	сс	bb	aa	aa	аа	bb	aa	ab	сс	aa	aa	bb
32	10	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
33	3	bb	bb	aa	СС	bb	aa	аа	аа	bb	aa	ab	-	aa	aa	bb
34	2	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
35	1	bb	bb	aa	сс	bb	aa	-	аа	bb	aa	ab	сс	aa	aa	bb
36	1	bb	bb	aa	сс	bb	aa	-	аа	bb	aa	ab	сс	ab	aa	bb
37	2	bb	bb	aa	сс	bb	aa	-	аа	bb	aa	ab	-	aa	aa	bb
38	1	bb	bb	aa	СС	bb	aa	-	aa	bb	aa	ab	-	ab	aa	aa
39	1	bb	bb	aa	сс	bb	aa	-	аа	bb	aa	ab	-	ab	aa	bb
40	1	bb	bb	aa	cc	bb	aa	-	aa	bb	aa	bb	-	ab	аа	bb
41	1	bb	cc	bb	bb	ab	ac	aa	aa	ab	aa	ab	сс	ab	-	cd
42	1	bc	bb	aa	сс	bb	аа	-	aa	bb	aa	ab	сс	aa	аа	bb
43	1	сс	bb	aa	сс	bb	аа	aa	сс	bb	aa	ab	сс	bb	аа	bb
∑ 43	∑ 75															

Tabela 2. Perfis alélicos em 43 ETs isoenzimáticos de isolados bucais de *C. albicans* provenientes de 75 crianças saudáveis brasileiras. Interpretação genética.

* Heterozigotos são apresentados como *ab*, *ac*, *bc* e *cd*. (-) alelo nulo.

Interpretação numérica dos padrões de MLEE. Os valores das mobilidades relativas (Rf), extraídos a partir dos perfis eletroforéticos das bandas de atividades isoenzimáticas de cada isolado de *C. albicans*, foram convertidos em valores binários (1 e 0) e comparados. Polimorfismos foram encontrados em todas as enzimas analisadas e 43 tipos de bandas enzimáticas foram expressas pelos isolados (Figura 1). As combinações eletromórficas de 11 ensaios enzimáticos mostraram 47 ETs (62,7% dos isolados) nesta

população. Esses resultados indicaram que 36 crianças saudáveis abrigaram oralmente ETs distintos da levedura *C. albicans*. Todavia, 11 ETs foram compartilhados entre 39 crianças (Tabela 3).

FT	No. de				F	Eletromorfo	s de 11 enzimas [*]			
EI	isolados	Adh	Asd	Cat G6pdh	Gdh	Idh	Lap M1p	Mdh	Po Sdh	
	CBS-562	0 1 0	0 1 0		0 1 0 0 1 0	0 1 0 0	1 0 0 0 1 0 1 1 0	1 0 1 0 0 1		0 0
1	2	1 1 0	1 1 0	0 1 0 1 1 0	0 1 0 0 1 0	0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0 1	111010	0 0
2	1	1 1 0	1 1 0	1 0 0 1 0	1 1 0 0 1 0	0 1 1 0 0	1 0 0 1 0 1 0 0	1 0 1 0 0 1	1 1 1 0 1 0	0 0
3	1	1 1 0	1 1 (1 0 0 0 1	1 1 0 0 1 0	0 1 1 0 0	$1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$	1 1 1 0 0		0 0
4	1	$1 \ 1 \ 0$	1 1 (1 0 0 0 1	1 1 0 0 1 0	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$	1 1 1 0 0 1		0 0
5	1									
7	1	1 1 0								
8	1	1 1 0	0 1 0			0 0 1 0 0	1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0			0 0
9	1	1 1 0	0 1 0		0 1 0 0 1 0	0 0 1 0 0				0 0
10	1	1 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	1 0 0 0 1 0 1 0 0	1 1 1 0 0 1	111010	0 0
11	1	1 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 1 1 0 0 1		0 0
12	1	1 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	111000) 1 1 1 1 1 0	0 0
13	3	1 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0		0 0
14	2	$1 \ 1 \ 0$	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0
15	1			$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
10	1	1 1 0								
18	1	0 1 1		1 0 0 0 1						0 0
19	1	0 1 0	1 1 0		0 1 0 0 1 0	1 1 0 0	1 0 0 0 1 0 1 0 0	1 0 1 0 0 1	1 0 1 0 1 (0 0
20	1	0 1 0	1 1 0	1 0 1 0 0	0 1 0 0 0 0	0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0 1	111010	0 0
21	1	0 1 0	1 1 0	1 0 0 1 0	0 1 0 0 1 0	0 1 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0 1	1 1 1 0 1 0	0 0
22	1	0 1 0	1 1 0	1 0 0 1 0	0 1 0 0 1 0	0 1 0 0	1 0 0 0 1 0 1 0 0	101000) 1 1 1 0 1 0	0 0
23	1	0 1 0	1 1 0	1 0 0 0 1	1 1 0 0 1 0	0 1 1 0 0	1 1 0 0 1 0 1 0 0	1 0 1 0 0		0 0
24	1	0 1 0	1 1 (1 0 0 0 1	1 1 0 0 1 0	0 1 1 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0
25	1			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ \end{array}$				
20	1		1 1 (
28	1	0 1 0	1 1 (1 0 0 0 1	0 1 0 0 1 0					0 0
29	1	0 1 0	1 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	1 0 0 0 1 1 1 0 0	1 0 1 0 1 () 1 0 1 0 1 (0 0
30	1	0 1 0	1 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 1 1 0 0 1	1 1 1 0 1 0	0 0
31	5	0 1 0	1 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0 1	1 <u>1</u> 1010	0 0
32	6	0 1 0	1 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$			0 0
33	1	0 1 0	1 1 (0 0 1 0 0				0 0
34 25	1			$\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$						
36	10									0
37	2	0 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0				0 0
38	2	0 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	1 0 0 0 1 0 1 0 0	1 0 1 0 0 () 1 1 1 0 1 (0 0
39	3	0 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 1 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0 0	10101(0 0
40	1	0 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 0 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 1 0 0 0		0 0
41	1	0 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 0 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0 1		0 0
42	1	0 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 0 0	$1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1 0 1 0 0 1		0 0
43	1	0 1 0	0 1 0	1 0 0 0 1	0 1 0 0 1 0	0 0 0 0 0	1 0 0 0 1 0 1 0 0	1 0 1 0 0 0		0 0
44	2	0 1 0		$\begin{array}{c}1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$		0 0 0 0 0				0 0
45	1									J ()
40 47	1									
47	1	0 0 1								

Tabela 3. Perfis eletromórficos em 47 ETs isoenzimáticos de isolados bucais de *C. albicans* provenientes de 75 crianças saudáveis brasileiras. Interpretação numérica.

* 1 Presença e 0 ausência de bandas eletroforéticas enzimáticas (eletromorfos).

Análises de agrupamento e distância genética. A variabilidade genética entre os isolados de *C. albicans* foi determinada pelos valores expressos na matriz de distância genética d_{ij} (Nei, 1972). Essa matriz foi tratada pelo algoritmo UPGMA e seu dendrograma

forneceu a distinção de 10 grupos (10 de 23 1,2-fenons) de isolados altamente relacionados e indistinguíveis $(0,012 > d_{ij} \ge 0)$ (Figura 2);

Grupo 1: 2 (2,7%) isolados (A30 e A1) com $d_{ij} = 0$. **Grupo 2:** 18 (23,7%) isolados (A52, A55, D21, D32, D5, D19, E10, A21, A15, D25, D23, D36, E8, A10, D14, E32, D6 e A7) com 0,012 > $d_{ij} \ge 0$. **Grupo 3:** 19 (25%) isolados (A20, B56, B23, B13, B11, B5, C36, C40, C44, E57, C17, C48, TS_{CBS.562}, B46, B54, B16, B4, B31 e C5) com 0,012 > $d_{ij} \ge 0$. **Grupo 4:** 3 (3,9%) isolados (B18, C9 e C16) com $d_{ij} = 0$. **Grupo 5:** 2 (2,7%) isolados (E30 e E17) com 0,012 > $d_{ij} \ge 0$. **Grupo 6:** 3 (3,9%) isolados (A17, A24 e A9) com 0,012 > $d_{ij} \ge 0$. **Grupo 7:** 3 (3,9%) isolados (D20, E48 e D13) com $d_{ij} = 0$. **Grupo 8:** 6 (7,9%) isolados (B15, C47 e B24) com $d_{ij} = 0$. **Grupo 10:** 4 (5,3%) isolados (B38, C4, C23 e C20) com 0,012 > $d_{ij} \ge 0$.

Um total de 13 (17,1%) isolados apresentou valores de distância genética igual a 0,148 $\geq d_{ij} \geq$ 0,012 (A48, A40, D28, B32, E43, A61, E7, A33, A23, E39, C12, C33 e A64) – isolados moderadamente relacionados e não relacionados.

Análises de similaridade fenética e agrupamento. A variabilidade fenética entre os isolados de *C. albicans* foi determinada pelos valores expressos na matriz de similaridade fenética S_{ij} (Sokal & Sneath, 1963). Essa matriz foi tratada pelo algoritmo UPGMA e seu dendrograma forneceu a distinção de 11 grupos (11 de 25 97,4-fenons) de isolados altamente relacionados e indistinguíveis (0,974 < $S_{ij} \leq 1$) (Figura 3);

Grupo 1: 18 (23,7%) isolados (**TS**_{CBS-562}, B5, B11, B13, B23, C48, C17, E57, C44, C40, C36, B4, B54, B46, B16, B21, E52 e C47) com 0,974 < $S_{ij} \le 1$. **Grupo 2:** 3 (4%) isolados (C16, C23 e C20) com 0,974 < $S_{ij} \le 1$. **Grupo 3:** 9 (11,8%) isolados (A50, B33, C32, A20, B56, B38, C4, B18 e C9) com 0,974 < $S_{ij} \le 1$. **Grupo 4:** 14 (18,4%) isolados (A10, A55, D19, D5, E10, D32, D21, A15, A21, D23, E8, D25, E25 e D14) com 0,974 < $S_{ij} \le 1$. **Grupo 5:** 3 (4%) isolados (D36, D6 e E32) com 0,974 < $S_{ij} \le 1$. **Grupo 6:** 4 (5,3%) isolados (A7, B31, C5 e B15) com 0,974 < $S_{ij} \le 1$. **Grupo 7:** 2 (2,6%) isolados (A64 e D28) com 0,974 < $S_{ij} \le 1$. **Grupo 9:** 3 (4%) isolados (A1, A30 e B32) com 0,974 < $S_{ij} \le 1$. **Grupo 10:** 2 (2,6%) isolados (A9 e A24) com 0,974 < $S_{ij} \le 1$.

Um total de 14 (18,4%) isolados apresentou valores de similaridade fenética igual a 0,716 $\leq S_{ij} \leq$ 0,974 (A17, E43, A40, A48, C12, E39, B24, C33, A61, A52, E7, D13, A33 e A23) – isolados moderadamente relacionados e não relacionados.

Figura 2. Diversidade genética entre isolados bucais de *C. albicans* provenientes de 75 crianças saudáveis brasileiras. Dendrograma UPGMA ($r_{ki} = 0.92513$) gerado a partir da matriz de distância genética d_{ij} (Nei, 1972). *i*, *ii*, e *iii* correspondem aos grupos de isolados exclusivamente indistinguíveis, grupos de isolados altamente relacionados e indistinguíveis, e fenons, respectivamente.

Figura 3. Similaridade fenética entre isolados bucais de *C. albicans* provenientes de 75 crianças saudáveis brasileiras. Dendrograma UPGMA ($r_{ki} = 0.93031$) gerado a partir da matriz de similaridade S_{ij} (Sokal & Sneath, 1963). *i*, *ii*, e *iii* correspondem aos grupos de isolados exclusivamente indistinguíveis, grupos de isolados altamente relacionados e indistinguíveis, e fenons, respectivamente.

				$x_{76} = 0.974$								
0 <mark>.716</mark>	0.787	0,858	0,929	1.000	S_{ij}	-	ADH ASD CA	AT G6PDH GE	H IDH LAF	MDH	M1P PO	SDH
					1.000			İİ				
				B11	1.000		111					11
				B13 B23	1.000						111	
					1.000							!!
				E57	1.000					i i i i i	111	11
					1.000	1 1						
				C36	0.984		i i i	i i		1111		ii –
					$1.000 \\ 1.000 2$							
					0.988			İİ	ii i	i II i	11	ij.
				B10 B21	1.000							
					0.988_							
				C16	0.988	. Ť.	ï i i		i i	i i i i i	i ii	ii –
					0.982 0.970	2 2						
				A50	1.000	Ī	111	ļļ	ļļ ļ	ЦЦ.	Ιİ.	ļļ.
					0.988							
					$\begin{bmatrix} 1.000 \\ 0.983 \end{bmatrix} 5$	3 3						
				B38	1.000 6		i i i	i i	ļ	111 ·	İİ	ii –
					0.977			İİ		1111		
					0.967	4					 	!!
				A55	1.000		i ii i		ii i	i i i i i	i i	ij.
					1.000 1.000							
				E10	1.000 /		1 11 1	İİ	<u>ii i</u>		İİ	İİ
				D32	0.984	4 4						
				A15 A21	1.000 1.000							
					1.000 8		i ii i	i i	ii i	1111	11	i i
			2		0.988							
				E25	0.986							!!
				D36	0.988	f	i ii i	İİ		İШİ	111	ii –
					1.000 0.961 9	5 5						
			Ь		0.988	Ĩ	i ii i	İİ	ii i		1 I.	İİ
					0.984_10	6 6		i i		i i i i i	i i	11
				B15	0.973	_ +_						
				E30	0.941	7	i ii i	i i	ii i	İÜİ	Ιİ.	İ
			0.50	A17	0.937 0.976]	ູ່ໄ						
					0.964	°						
					0.976_11	9 10	i ii i	ii i	ii i	İ	11	ij
				E43	0.964 0.947	_ 11						
					0.964	$\frac{12}{13}$						
			1	C12	0.964		j ï j	' <u>'</u>	1 i	i iii '	i i i	i
				E39 B24	0.930 0.951							
				C33	0.929		Ĩ	jij	ĬĨ	į	<u>i</u> i i	İİ
				A61 A52	0.901							
	-		_	E7	0.905 0.988 7							
				A24	0.970		i ii i	ļļ	i i i	i ∭ i	Ü !!	i i
1					0.988	11 22						
				D13	0.786 0.716	23 24						
	200 			A23]25	i 11' I	· · · "			"I İ '	
				5'9	ı ll	ill	+					-

Comparação entre os métodos de interpretação genético e numérico. A interpretação genética dos resultados de migração eletroforética isoenzimática permitiu distinguir 15 loci gênicos estruturais a partir de 11 sistemas isoenzimáticos, cujo polimorfismo foi determinado em função das freqüências alélicas. O índice discriminatório obtido a partir destes dados indicou 95,2% de probabilidade de dois alelos polimórficos, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (loci isoenzimáticos). Por outro lado, a interpretação numérica dos resultados permitiu detectar a variabilidade isoenzimática a partir da presença ou ausência de suas respectivas bandas eletroforéticas. Deste modo, o índice discriminatório indicou 90,7% de probabilidade de duas bandas polimórficas, testadas ao acaso a partir da população teste, ser representantes de diferentes tipos (isoenzimas) (Tabela 4).

Tabela 4. Perfis do polimorfismo e monomorfismo dos alelos e bandas isoenzimáticos, provenientes de C. albicans isolados da cavidade bucal de 75 crianças saudáveis, obtidos pelas métodos de interpretação genético e numérico, e seus respectivos poder discriminatório.

Loci		Alelos		T	Band	as
isoenzimáticos	Р	М	F<1%	Isoenzimas	Р	М
Adh	3	-	-	Adh	3	-
Asd	3	-	-	Asd	3	-
Cat	2	-	-	Cat	2	-
G6pdh	3	-	-	G6pdh	3	-
Gdh	2	-	2	Gdh	4	-
Idh-1	3	-	-	Idh	6	-
Idh-2	1	-	2	Lap	3	-
Lap	3	-	-	Mlp	3	-
Mlp	3	-	-	Mdĥ	9	-
Mdh-1	3	-	-	Ро	2	-
Mdh-2	2	-	-	Sdh	5	-
Mdh-3	2	-	1			
Ро	2	-	-			
Sdh-1	2	-	2			
Sdh-2	-	1	-			
Σ15	Σ 34			Σ11	Σ 43	
$D = 1 - \frac{1}{N(N-1)} \sum_{j=1}^{S} n_j (n_j - 1)$	0,951872			$D = 1 - \frac{1}{N(N-1)} \sum_{j=1}^{S} n_j (n_j - 1)$	0,906977	

D. Este índice discriminatório indica 95,2% de probabilidade **D.** Este índice discriminatório indica 90,7% de de dois alelos polimórficos, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (loci isoenzimáticos).

probabilidade de duas bandas eletroforéticas polimórficas, testadas ao acaso a partir da população teste, ser representantes de diferentes tipos (isoenzimas).

P, M e F correspondem ao número de alelos e bandas isoenzimáticos polimórficos (freqüência < 99%), monomórficos (freqüência \geq 99%), e freqüência, respectivamente.

A ocorrência de vários subtipos isoenzimáticos de C. albicans, na população de crianças saudáveis, foi quantitativamente maior (~5%) para o método interpretativo numérico (i.e., 47 $\text{ETs}^{62,6\%}$ produzidos pela IN, contra 43 $\text{ETs}^{57,3\%}$ produzidos pela IG). No entanto, o poder discriminatório de ambos os métodos de interpretação apresentou valores muito próximos e acima de 0,95, ou seja, acima de 95% de probabilidade de dois isolados de *C. albicans*, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (ETs) (Figura 4).

Figura 4. Poder discriminatório e perfil quantitativo dos ETs de *C. albicans*, gerados pelos métodos de interpretação genético e numérico a partir dos ensaios de MLEE.

□ Interpretação genética (IG)

$$D = 1 - \frac{1}{N(N-1)} \sum_{j=1}^{S} n_j (n_j - 1) = 0,966$$

Este índice discriminatório indica 96,6% de probabilidade de dois isolados orais de *C. albicans*, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (ETs).

■ Interpretação numérica (IN)

$$D = 1 - \frac{1}{N(N-1)} \sum_{j=1}^{S} n_j (n_j - 1) = 0,970$$

Este índice discriminatório indica 97% de probabilidade de dois isolados orais de *C. albicans*, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (ETs).

Durante a análise de agrupamento, maior número de fenons, grupos de isolados altamente relacionados e indistinguíveis, e grupos de isolados exclusivamente indistinguíveis, foram observados no dendrograma UPGMA de similaridade (matriz S_{ij}), o qual foi gerado a partir dos dados da IN, mostrando poder discriminatório levemente superior (<5%) ao dendrograma UPGMA de distância genética (matriz d_{ij}) (Tabela 5).

Tabela 5. Poder discriminatório e perfil quantitativo dos fenons, grupos de isolados altamente relacionados e indistinguíveis, e grupos de isolados exclusivamente indistinguíveis de *C. albicans*, obtidos pelos dendrogramas UPGMA (Figura 2 e 3).

			Inte	erpretação genét	ica	Inte	rpretação numé	érica
Fenor [gi	ı (gru rupo	upo d _{ij}) S _{ij}]	76 isolados em 23 1,2-fenons	63 isolados em 10 grupos $x_{76} > d_{ij} \ge 0$	10 grupos $d_{ij} = 0$	76 isolados em 25 97,4-fenons	62 isolados em 11 grupos $x_{76} < S_{ij} \le 1$	11 grupos $S_{ij} = 1$
1		[1]	1	-	-	18	18	10+3+2
2	(1)	[2]	2	2	2	3	3	-
3	. ,	[3]	1	-	-	9	9	3+2+2
4	(2)	[4]	18	18	16	14	14	6+5
5		[5]	1	-	-	3	3	2
6	(3)	[6]	19	19	13+6	4	4	2
7	(4)	[7]	3	3	3	2	2	-
8	(5)		2	2	-	1	-	-
9		[8]	1	-	-	2	2	-
10		[9]	1	-	-	3	3	2
11			1	-	-	1	-	-
12	(6)		3	3	2	1	-	-
13	(7)		3	3	3	1	-	-
14			1	-	-	1	-	-
15			1	-	-	1	-	-
16			1	-	-	1	-	-
17	(8)		6	6	5	1	-	-
18	(9)		3	3	3	1	-	-
19			1	-	-	1	-	-
20	(10)		4	4	3	1	-	-
21		[10]	1	-	-	2	2	-
22		[11]	1	-	-	2	2	-
23			1	-	-	1	-	-
24			-	-	-	1	-	-
25			-	-	-	1	-	-
			Σ 76	$\Sigma 63$	Σ 56	$\sum 76$	Σ 62	Σ39
	1	5	D = 0.874035	D _ 0.01(100	D = 0.846104	D _ 0 805088	D 0.041002	D _ 0.880330

 $D_{2} = 1 - \frac{1}{N(N-1)} \sum_{i=1}^{s} n_{i}(n_{j}-1)$ $D_{1} = 0,874035$ $D_{2} = 0,816180$ $D_{3} = 0,846104$ $D_{4} = 0,895088$ $D_{5} = 0,841883$ $D_{6} = 0,889339$

diversidade de	impson
de	Ś
ndice	

 D_1 . 87,4% de probabilidade de dois isolados, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (1,2-fenons).

D₂. 81,6% de probabilidade de dois isolados, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (grupos $x_{76} > d_{ij} \ge 0$).

D₃. 84,6% de probabilidade de dois isolados, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (grupos $d_{ij} = 0$).

 D_4 . 89,5% de probabilidade de dois isolados, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (97,4-fenons).

D₅. 84,1% de probabilidade de dois isolados, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (grupos $x_{76} < S_{ij} \le 1$).

D_{6.} 88,9% de probabilidade de dois isolados, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (grupos $S_{ij} = 1$).

A concordância entre os valores da matriz de distância genética (d_{ii} – Nei, 1972) e os valores da matriz de similaridade (S_{ij} – Sokal & Sneath, 1963 – pode ser convertida em d_{ii} conforme a expressão $D = 1 - S_{ii}$), determinada pelo coeficiente de correlação cofenética baseado no produto-momento de Pearson, mostrou um valor igual a 0,05548 (~5,6%). Este índice indica uma baixa concordância quantitativa e qualitativa entre os elementos das duas matrizes, e do mesmo modo quando ocorre a conversão dos valores S_{ij} em d_{ij} . A falta de concordância no agrupamento dos isolados também foi evidenciada quando colocados à prova os graus de similaridade (S_I) entre os grupos de isolados altamente relacionados e indistinguíveis ($x_{76} > d_{ij} \ge 0$ versus $x_{76} < S_{ij} \le 1$), gerados nos dendrogramas UPGMA d_{ij} e S_{ij} (Figuras 2 e 3). Através da aplicação do coeficiente de associação de Jaccard, tal similaridade foi de $0^{0\%} \le S_J \le 0,684^{68,4\%}$ e de $S_J = 1^{100\%}$, para 90,5% e 9,5% (2,6% dos isolados) dos grupos de isolados altamente relacionados e indistinguíveis, respectivamente (Figura 5). Adicionalmente, foram encontrados 56 (73,7%) isolados de C. albicans indistinguíveis geneticamente, distribuídos em 10 grupos $d_{ij} = 0$, e 39 (51,3%) isolados de C. albicans indistinguíveis fenotipicamente, distribuídos em 11 grupos $S_{ij} = 1$ (Figura 6). Ainda neste contexto, a similaridade S_J entre os diferentes grupos de isolados indistinguíveis ($d_{ij} = 0$ versus $S_{ij} = 1$), gerados nos dendrogramas UPGMA d_{ij} e S_{ij} (Figuras 2 e 3), foi de $0^{0\%} \le S_J \le 0.769^{76,9\%}$ e de $S_J = 1^{100\%}$, para 90,5% e 9,5% (2,6% dos isolados) dos grupos de isolados indistinguíveis, respectivamente (Figura 7).

Figura 6. Percentual de isolados bucais de *C. albicans* (*i*) indistinguíveis ($d_{ij} = 0$ versus $S_{ij} = 1$), (*ii*) altamente relacionados ($0,012 > d_{ij} > 0$ versus $0,974 < S_{ij} < 1$), e (*iii*) moderadamente relacionados e não relacionados ($0,148 \ge d_{ij} \ge 0,012$ versus $0,716 \le S_{ij} \le 0,974$), dispostos em grupos e/ou fenons de dendrogramas UPGMA (Figuras 2 e 3).

Ir	iterj	pret	açã	o ge	enét	tica	(gr	up	os)	In	ter	pre	taça	ao n	um	éri	ca (gru	pos)	grupo	rupo	jrupo	gupo	rupo podni	unbo din tra	arupo	rupo	rupo	rupo	arupo	
1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10 11	11	; 9 0	0 - 1 0	50	1ω4	3 I	9 0	8 7	רט א	<u>ه</u> ۱	2	
																				0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	00 0.0	67 0.0			00 00						00 1.0	
0	1	0	0	0_	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0 0	000	808	888	16 1 8 1 8	584	388	888	<u>s</u> ss	888	<u> 8</u> 8	8	L
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	0.000		0.050	, 00	0.007).605			0.05			Γ
50 50	1	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{1}$	0	0	0	0	0	0 0	0.00		0.0	0.0	0.20	0.00		0.0	0.00	2		2
7 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	000			5 0 0 0	000				5 0 X	S _		2
) 0 0	0	1	0	0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0 0	000	88		38	888	385	888	388	88			
3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0.00	0.00			0.00				100			
4 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	0.6			0.0	0.0				5			eπ
3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	67 0		888	880	000		805	38				5
) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	80	385	888	38	250 053		388	3				L
) 0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0 0	0.00			0.00	0.00	0.05	1.00					
2 0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	00.0			700	00.1		20					22
, 0 1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	000			88	000	881	3					S.
4 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0 0	.000			<u>8</u> 8	000							
0	0	1	0	0	0	0	0	0	0	1	0	0	0 0	0	0	0	0	0	0 0	0.00	0.00	0.0	0.0	0.00	2						0
1 0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0)00.	000.0	000)))))))	00.0	5						-
30 50	0	1	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0 0	000			<u>s</u> s	<u>8</u> 00							
5 0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0).00C				1.000							2
3 0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0 0	0.0	0.0			0							3
30	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	000			38								4
4 0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0 0	8	385	888	3								
10 20	0	1 0	0	0	0	0	0	0	0	0	0	0	0 0	0	1 0	0	0	0 1	0 0	0.00		1.08									S
3 0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0 0	0 0.0		20									6
30 50	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0 0	000	801	3									7
4 0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	.000	.00										
5 0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0 0	0.00	ξ. ζ										00
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0 0	01.0	5										9
0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0 0	00											10
50	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0 0	Μ	atriz	de si	mila	ridade	S, =	=	а	_			Ŭ
7 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0						5	<i>a</i> +	b+b	С			11
) 0 3 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	1	0	1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0												
2 0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0 0												
30 50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0.0)	0	.25		0.5		0.75	5	1.0	0	
) 0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	-			!		-					1	
4 0 7 0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	Г			!		!					9	
3 0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0				÷		1	Г	<u> </u>			7	
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0	Γ			:							11	
3 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0		_		i		<u> </u>					2	
4 0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0	- F	_		:		1		÷			4	
) 0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0				:							5	
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0				-		+	-	<u> </u>			5	
50 50	1	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	1	0 0	0 0	0 0	0 0	0 0	0 0	Г		_					-			T	
8 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0 0			-	1		-		ļ			2	
20	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0				1		1		1			5	ו
. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	ŀ			÷							7	}
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0				i		<u> </u>		<u> </u>			4	
, 0 7 0	0	0	0	0 1	0	0 0	0	0	0 0	0 0	U 0	0	1	0	0	0	0	0	0 0		Н		j		÷		<u> </u>			8	
5 0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0 0	F	\neg		<u> </u>		<u> </u>					3	
) 0 2 0	0	0	0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	1 0	0 0	0 0	0 0								÷			10	
) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0				ł		+		+			2	
50 30	0	0	0	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0				:		+		÷			6	
2 0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0 0				:				÷			10 0	
1 0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0				1		-					ð	
0																															
2	18	19	3	2	3	3	6	3	4	18	3	9	14	3	4	2	2	3	2 2										-		

Figura 5. Similaridade (S_J) entre os grupos de isolados bucais de C. albicans altamente relacionados e indistinguíveis $(x_{76} > d_{ij} \ge 0$ versus $x_{76} < S_{ij} \le 1$), gerados nos dendrogramas UPGMA d_{ij} e S_{ij} (Figuras 2 e 3).

64

Figura 7. Similaridade (S_J) entre os grupos exclusivamente indistinguíveis ($d_{ij} = 0$ versus $S_{ij} = 1$) de isolados bucais de *C. albicans*, gerados nos dendrogramas UPGMA d_{ij} e S_{ij} (Figuras 2 e 3).
DISCUSSÃO

Procedimentos laboratoriais específicos e adequados são necessários para avaliar o relacionamento genético de microrganismos de interesse médico. Tais procedimentos têm sido essenciais para compreender a dinâmica dos organismos infecciosos em populações de humanos, decifrar o relacionamento complexo entre infecção e comensalismo, identificar a origem de uma infecção ou monitorar a emergência de linhagens resistentes a drogas¹¹⁴. Por definição, uma linhagem refere-se a uma coleção de isolados de uma mesma espécie que são altamente relacionados ou geneticamente indistinguíveis. Por outro lado, um isolado tem sido considerado como um clone coletado independentemente de outros isolados. Dois ou mais isolados coletados independentemente podem ser completamente não relacionados ou geneticamente indistinguíveis¹¹⁴. Vários métodos têm sido empregados para avaliar o relacionamento genético de C. albicans, os eletroforética^{5,8,9,11,34-36,60,63,74,120,121}. cariotipagem análises а de quais incluem RFLP^{10,65,74,119,123}, análises de RAPD^{(9,11,18,41,54,60,91,100}, Southern blot hibridação com uma repetitiva^{30,50,61,66,72,99,115} DNA moderadamente variedade sondas de de e MLEE^{15,16,25,51,53,85,86,90}. Em adição aos perfis eletroforéticos das atividades enzimáticas, MLEE tem apresentado grande potencialidade nos estudos de caracterização epidemiológica, taxonômica, sistemática, genética e evolutiva de leveduras de importância médica, especialmente para C. albicans^{3,4,7,13,15,16,19-21,25,33,53-56,59,69,85-87,93-97}. Na maioria dessas pesquisas, os padrões gerados pelos métodos fingerprinting não foram caracterizados quanto ao poder discriminatório⁸⁷.

A tipabilidade, reprodutibilidade e poder discriminatório têm sido desenvolvidos e sugeridos para verificar a eficiência de vários métodos. A tipabilidade e reprodutibilidade representam sistemas quantitativos e freqüentemente são expressos como medidas percentuais. Neste caso, a tipabilidade de um método corresponde ao percentual de distintas linhagens obtidas e a reprodutibilidade corresponde ao percentual de linhagens que apresentaram os mesmos resultados em ensaios repetitivos⁴⁵. Na presente pesquisa, a reprodutibilidade dos resultados obtidos por MLEE foi determinada, aplicando sistematicamente os extratos celulares da linhagem padrão de *C. albicans* CBS-562 nas

66

extremidades de cada gel. Em todos os ensaios (três repetições para cada gel) foram obtidos os mesmos ETs. Por sua vez, o poder discriminatório de um método corresponde à sua habilidade de diferenciação entre linhagens não relacionadas⁴⁵. O emprego do índice de diversidade de Simpson, baseado na teoria da probabilidade (i.e., dois isolados não relacionados epidemiologicamente, testados ao acaso a partir da população teste, ser representantes de diferentes tipos), tem sido sugerido para comparar o poder discriminatório dos métodos de tipagem fenotípicos e genotípicos de *C. albicans*^{16,26,44,45}.

Os índices discriminatórios obtidos pelos dois métodos de interpretação, baseados na ocorrência de vários subtipos de *C. albicans* (i.e., 47 ETs produzidos pela IN, e 43 ETs produzidos pela IG) na população de crianças saudáveis, apresentaram valores muito próximos e acima de 0,95, ou seja, acima de 95% de probabilidade de dois isolados de *C. albicans*, testados ao acaso a partir da população teste, ser representantes de diferentes tipos (ETs) (Figura 4). Deste modo, os valores discriminatórios mostraram concordância com aquele (0,96) obtido por Boerlin *et al.* (1996), e ainda, foram superiores àquele descrito previamente para MLEE^{16,43}. Contudo, as diferenças nestes valores discriminatórios podem ocorrer em função do emprego de diferentes (*i*) sistemas isoenzimáticos, (*ii*) números de isolados e (*iii*) populações de isolados. Todavia, com probabilidade acima de 95% de diferenciação de isolados, MLEE pode ser considerada claramente uma ferramenta muito valiosa para tipagem de *C. albicans* em estudos epidemiológicos.

Outros índices discriminatórios obtidos pelos dois métodos de interpretação, baseados na ocorrência de vários (*ia*) alelos polimórficos, (*ib*) bandas polimórficas (Tabela 4), (*ii*) fenons, (*iii*) grupos de isolados altamente relacionados e indistinguíveis e (*iv*) grupos de isolados exclusivamente indistinguíveis (Tabela 5), apresentaram valores de 0,842 até 0,952, cujas diferenças entre os métodos de IG (*ia*. 0,952; *ii*. D = 0,874; *iii*. D = 0,816; *iv*. D = 0,846) e de IN (*ib*. D = 0,907; *ii*. D = 0,895; *iii*. D = 0,842; *iv*. D = 0,889) permaneceram abaixo de 5% em todas as ocasiões mencionadas acima, ou seja, 84,2% até 95,2% de probabilidade de dois caracteres (alelos e bandas isoenzimáticos) ou isolados de *C*. *albicans*, testados ao acaso a partir da população teste, ser representantes de diferentes tipos

(ia. loci isoenzimáticos, ib. isoenzimas, ii. fenons, iii. grupos de isolados altamente relacionados e indistinguíveis, e iv. grupos de isolados exclusivamente indistinguíveis). Estes diferentes índices discriminatórios podem ser explicados pelas variações do número de loci gênicos estruturais, fenons, grupos de isolados altamente relacionados e indistinguíveis, e grupos de isolados exclusivamente indistinguíveis, gerados por cada método de interpretação. Tais resultados também refletiram maior discriminação de subtipos e seus relacionamentos, sob a forma de grupos, por parte da IN dos padrões de MLEE (Tabela 3 e Figura 3). Conseqüentemente, sugere-se que isto pode gerar imprecisão sobre muitas informações acerca da condição nuclear e, concomitantemente, superestimar tais resultados. Não obstante, alguns micologistas têm restringido as interpretações dos resultados eletroforéticos isoenzimáticos à mera contagem de bandas (interpretação numérica)^{93,94,96,104,105}. No entanto, os padrões isoenzimáticos eletroforéticos são freqüentemente previsíveis, uma vez que dependem das condições genéticas e nucleares de cada organismo. Por outro lado, a interpretação genética dos resultados refletiram menor discriminação de subtipos e seus relacionamentos, sob a forma de grupos (Tabela 2 e Figura 2). Por conseguinte, isto pode gerar maior precisão sobre as informações acerca da condição nuclear, conforme sugerido por outros pesquisadores^{39,73,106}, as quais podem ser aplicáveis valiosamente sobre os estudos de genética de populações, epidemiologia, evolução, taxonomia e sistemática de C. albicans. Adicionalmente, tais resultados podem ser adequadamente estocados e acessados durante análises retrospectivas e comparativas.

Empregando o coeficiente de correlação cofenética baseado no produtomomento de Pearson $(r_{dS})^{37,48,52,109,111,112}$, a concordância entre os elementos da matriz de distância genética $(d_{ij})^{78}$ e da matriz de similaridade $(S_{ij})^{52,109,113}$ apresentou um valor foi igual a 0,05548 (~5,6%). Este resultado sugere uma baixa concordância quantitativa e qualitativa entre os elementos das duas matrizes, e do mesmo modo quando ocorre a conversão dos valores S_{ij} em d_{ij} . Esta falta de concordância também foi confirmada pelos resultados de similaridade (S_J) entre os grupos de isolados altamente relacionados e indistinguíveis $(x_{76} > d_{ij} \ge 0$ versus $x_{76} < S_{ij} \le 1$), gerados nos dendrogramas UPGMA d_{ij} e S_{ij} (Figuras 2 e 3). Apenas 9,5% (2,6% dos isolados) desses grupos mostraram $S_J = 1^{100\%}$ (Figura 5). Igualmente, $S_J = 1^{100\%}$ foi encontrada em apenas 9,5% (2,6% dos isolados) dos

grupos de isolados exclusivamente indistinguíveis ($d_{ij} = 0$ versus $S_{ij} = 1$) (Figura 7), gerados nos dendrogramas UPGMA d_{ij} e S_{ij} (Figuras 2 e 3). Estes resultados corroboram com a hipótese mencionada anteriormente. Em adição, sugere-se que uma divergência de fundamentos pode ser produzida a partir das duas análises de agrupamento $(d_{ij} \in S_{ij})$, inicialmente dependentes da IG e IN dos padrões de MLEE. Conseqüentemente, tais fundamentos podem gerar conclusões epidemiológicas equivocadas, e isto tem grande relevância sobre os diferentes estudos, principalmente durante as descrições de laudos microbiológicos médicos. Citando um exemplo prático, tem-se o grupo 1 de isolados indistinguíveis (d_{ij} – Figura 2), apresentando relacionamento genético moderado com os grupos 2 (16 isolados), 3 (13 isolados), 4 (6 isolados), 5 (3 isolados), 6 (2 isolados) e 7 (3 isolados), totalizando 6 grupos e 43 isolados. Por outro lado, tem-se o grupo 11 de isolados indistinguíveis (S_{ij} – Figura 3), correspondente ao grupo 1 (d_{ij} – Figura 2), apresentando relacionamento genético moderado com os grupos 1 (10 isolados), 2 (3 isolados), 3 (2 isolados), 4 (3 isolados), 5 (2 isolados), 6 (2 isolados), 7 (6 isolados), 8 (5 isolados), 9 (2 isolados) e 10 (2 isolados), totalizando 10 grupos e 37 isolados. Adicionalmente, foram encontrados 56 (73,7%) isolados de C. albicans indistinguíveis geneticamente, distribuídos em 10 grupos $d_{ij} = 0$, e 39 (51,3%) isolados de *C. albicans* indistinguíveis fenotipicamente, distribuídos em 11 grupos $S_{ij} = 1$ (Figura 6). Estes resultados ocorreram principalmente em função do emprego dos coeficientes de distância genética⁷⁸ e associação^{52,109,113}, e do método de agrupamento SHAN algoritmo UPGMA^{37,88,108,109}, os quais apresentam propriedades matemáticas peculiares.

Várias análises comparativas entre MLEE e outros métodos *fingerprinting* (DNA e proteínas totais) foram realizadas. A capacidade discriminatória de MLEE e SDS-PAGE foi comparada durante ensaios inter-específicos de *Candida*, provenientes da saliva de indivíduos saudáveis⁹⁶. A existência de grupos espécie-específicos e não específicos, gerados por SDS-PAGE e MLEE, respectivamente, confirmaram a eficiência de MLEE durante análises epidemiológicas intra-específica de *Candida* spp. A eficiência de MLEE também foi confirmada com outros resultados fornecidos pelos métodos REA, com as enzimas *Eco*RI e *Hin*fI, e *Southern blot* hibridação, com sonda de DNA Ca3, durante estudos epidemiológicos de isolados clínicos de *C. albicans* provenientes de pacientes HIV-

positivos. Contudo, nenhuma correlação foi observada entre subtipos de *C. albicans* e estado clínico do paciente ou sensibilidade aos antifúngicos¹⁶. A comparação entre os métodos de RAPD, MLEE e *Southern blot* hibridação, com sondas de DNA Ca3 e CARE2, também foi realizada. Em vários estudos epidemiológicos, esses métodos têm sido considerados efetivos na determinação do relacionamento genético de isolados de *C. albicans*. Além disso, uma forte concordância foi observada no agrupamento de isolados altamente relacionados de *C. albicans*, pelos métodos de RAPD, MLEE e *Southern blot* hibridação com sonda Ca3⁸⁷.

A comparação entre somente métodos de DNA fingerprinting também foi realizada. Vários trabalhos mostraram alto poder discriminatório dos métodos de Southern blot hibridação, usando sondas de DNA moderadamente repetitiva^{82,99,116}, e de cariotipagem eletroforética, usando PFGE^{64,65,71,110,119}. Empregando quinze isolados de C. albicans provenientes de pacientes com candidíase disseminada, Bostock et al. (1993) compararam o poder discriminatório entre os métodos de RFLP, com HindIII-EcoRI, RAPD e PFGE. Nesta pesquisa, os métodos de RAPD (11 subtipos) e PFGE (14 subtipos) revelaram índices discriminatórios muito próximos entre si, e superiores ao índice discriminatório de RFLP, com HindIII-EcoRI (7 subtipos). Contudo, seus resultados mostraram divergências na clonalidade (isolados indistinguíveis) de C. albicans, colonizando um mesmo paciente. A caracterização do relacionamento genético de subtipos clínicos de C. albicans, geograficamente não relacionados (i.e., isolados do Sudeste da Ásia, Europa e Estados Unidos), por métodos de DNA fingerprinting, revelou elevado poder discriminatório para os métodos de REA com EcoRI (D = 0.954) e RAPD (D =0,978), os quais foram superiores ao método de PFGE (D = 0,715). Em adição, grupos de isolados do Sudeste da Ásia, separados dos grupos de isolados da Europa e dos Estados Unidos, apresentaram alta diversidade genética por ensaios de REA com *Eco*RI e RAPD. Entretanto, a maioria dos resultados mostrou inexistência de homologia entre os subtipos ou grupos altamente relacionados de C. albicans, gerados por REA (71 subtipos), RAPD (58 subtipos) e PFGE (18 subtipos)²⁶. Os métodos de REAG-BssHII e de cariotipagem eletroforética tem demonstrado paridades entre si, e incompatibilidades com REAG-SfiI,

conforme observações nas análises de agrupamento genético de isolados hospitalares de C. *albicans*¹²¹.

Recentemente, foi postulado que as mudanças do ambiente intraoral (i.e., xerostomia) induzidas por irradiação, ocorrendo em pacientes com carcinoma nasofaringe, resulta em colonização elevada por Candida spp. Contudo, evidências sobre a propagação e seleção clonal dessas leveduras, de modo especial para C. albicans, não foram completamente elucidadas. Esta parcialidade foi demonstrada pela inexistência de concordância entre resultados de métodos fenotípicos e genotípicos, como biotipagem (API 20C AUX), resistotipagem, PFGE, RFLP com HinfI e RAPD⁴⁹. Por outro lado, comparações entre os métodos de PFGE, RFLP com SfiI, Southern blot hibridação de Ca3 em produtos gerados por RFLP com EcoRI e SfiI, mostraram concordâncias no relacionamento genético de subtipos de C. albicans, colonizando um mesmo paciente HIVpositivo, e discordâncias na clonalidade dessa levedura. Contraditoriamente aos métodos mencionados acima, padrões mais complexos foram gerados por RAPD, resultando em elevado poder discriminatório, durante análises de agrupamento de isolados de C. albicans provenientes de vários pacientes HIV-soropositivos⁶². As diferenças entre os métodos de DNA fingerprinting, empregados em vários trabalhos de pesquisas, podem ser atribuídas às suas características intrínsecas (i.e., diferentes grupos de primers, enzimas de restrição, sondas de DNA, condições gerais do método,...). Entretanto, métodos resultantes em padrões complexos de bandas poderiam (i) proporcionar presumivelmente níveis elevados de discriminação e (*ii*) permitir a detecção de subespécies ou espécies variantes a partir de uma espécie original^{12,87}. Por outro lado, padrões menos complexos de bandas poderiam ser mais úteis para determinar a isogenicidade entre os isolados de um mesmo paciente 62 .

Apesar da dificuldade em provar a existência de isolados homólogos, uma das principais doutrinas da epidemiologia molecular considera o emprego de um ou mais métodos de tipagem para demonstrar convincentemente as diferenças entre dois patógenos clínicos. Para este fim, diferentes métodos moleculares epidemiológicos de poder discriminatório alto (maximizar a detecção de isolados variantes) e baixo (permitir a determinação de isolados isogênicos) poderiam ser usados em combinação, para aumentar o poder discriminatório^{16,62,121}. Hunter & Fraser (1989) têm demonstrado elevado poder discriminatório, durante a tipagem de isolados clínicos de *C. albicans*, através da combinação de resistotipagem e morfotipagem, sugerindo que dois ou mais métodos empregados em paralelo, ou em forma hierárquica, podem ser necessários para os estudos epidemiológicos dessa levedura. Empregando a combinação de métodos de DNA *fingerprinting*, como RFLP e *Southern blot* hibridação com sonda de DNA 27A, Mercuri *et al.* (1993) demonstraram elevado poder discriminatório durante estudos epidemiológicos de candidíase vulvovaginal recorrente. Análises combinatórias, empregando todos os resultados obtidos por cariotipagem eletroforética, REAG-*Bss*HII e REAG-*Sfi*I, também têm demonstrado alto poder discriminatório (elevado número de subtipos originados), durante a avaliação do relacionamento genético de isolados hospitalares de *C. albicans*¹²¹.

A interpretação genética dos padrões de MLEE tem sido aplicada em uma variedade de propósitos no campo da microbiologia médica. Em termos de alelos específicos, as proporções alélicas têm inferido o grau de recombinação genética em populações naturais. Essas proporções também têm sido empregadas na avaliação dos graus de isolamento genético entre populações naturais, causado por regiões geográficas e ecológicas ou barreiras biológicas. Seu emprego tem apresentado relevâncias taxonômicas e sistemáticas, uma vez que, para microrganismos clonais, os graus de relacionamento inter e intrapopulacional têm sido analisados. Clones espécie-específico identificados por MLEE também foram associados com padrões e reincidências clínicos, e altos índices de patogenicidade. Tais resultados têm sido empregados em traçados epidemiológicos que permitem melhor entendimento no desenvolvimento de epidemias, o que representa um inestimável complemento aos métodos de tipagem moleculares atuais, particularmente nos estudos epidemiológicos em larga escala. Adicionalmente, MLEE tem sido considerado um método de tipagem com alto poder discriminatório e reprodutibilidade^{14,16,43,76,83,87}.

Padrões gerados por um único método *fingerprinting*, como aqueles ilustrados na presente pesquisa por MLEE, podem permitir a captura de dados por diferentes medidas de interpretação. Claramente, estas medidas são determinadas dependentemente da natureza genética de cada (micro)organismo (haplóide, diplóide, poliplóide,...), e isto tem

apresentado relevância nos estudos sobre o relacionamento genético de amostras indistinguíveis, altamente relacionadas, moderadamente relacionadas e não relacionadas, conforme as observações desta pesquisa. Inicialmente, os índices discriminatórios obtidos pelos dois métodos de interpretação, baseados na ocorrência de vários subtipos de C. albicans na população de crianças clinicamente saudáveis, apresentaram valores muito próximos e acima de 95%. Deste modo, MLEE pode ser considerada claramente uma ferramenta muito valiosa para tipagem de C. albicans em estudos epidemiológicos. Outros índices discriminatórios, baseados na ocorrência de vários alelos polimórficos, bandas polimórficas, fenons, grupos de isolados altamente relacionados e indistinguíveis, e grupos de isolados exclusivamente indistinguíveis, apresentaram valores que refletiram diferenças abaixo de 5% entre os métodos de IG e IN. Tais resultados também mostraram maior discriminação de subtipos e seus relacionamentos, sob a forma de grupos, por parte da IN dos padrões de MLEE, sugerindo que isto pode gerar imprecisão sobre muitas informações acerca da condição nuclear e, concomitantemente, superestimar tais resultados. Por sua vez, a IG dos padrões de MLEE mostrou menor discriminação de subtipos e seus relacionamentos, sob a forma de grupos, sugerindo sua aplicabilidade significativa sobre os estudos de genética de populações, epidemiologia, evolução, taxonomia e sistemática de C. albicans. Adicionalmente, tais resultados podem ser adequadamente estocados e acessados durante análises retrospectivas e comparativas. Baixa concordância ($r_{dS} = -5,6\%$.), quantitativa e qualitativa, foi observada entre os elementos das matrizes d_{ij} e S_{ij} , e confirmada pelos resultados de similaridade (S_J) entre (i) os grupos de isolados altamente relacionados e indistinguíveis, e (ii) os grupos de isolados exclusivamente indistinguíveis, gerados nos dois dendrogramas UPGMA. Estes resultados foram sugestivos de que uma divergência de fundamentos pode ser produzida a partir das duas análises de agrupamento, inicialmente dependentes da IG e IN dos padrões de MLEE. Conseqüentemente, tais fundamentos podem apresentar conclusões epidemiológicas equivocadas, e isto tem grande relevância sobre os diferentes estudos, principalmente durante as descrições de laudos microbiológicos médicos. Finalmente, o conjunto de informações obtido nesta pesquisa sugere o emprego padronizado do método da IG sobre os padrões de MLEE, de modo a

favorecer os aqueles estudos, especialmente para *C. albicans* e espécies relacionadas diplóides de importância médica.

AGRADECIMENTOS

Este trabalho foi financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (Proc. 00/03045-5).

REFERÊNCIAS

- 1. Alfenas, A. C., 1998 Eletroforese de isoenzimas e proteínas afins; fundamentos e aplicações em plantas e microrganismos. Editora UFV, Viçosa.
- 2. Antonsson, B., S. Montessuit, L. Friedli, M. A. Payton, and G. Paravicini, 1994 Protein kinase C in yeast. Characteristics of the *Saccharomyces cerevisiae* PKC1 gene product. J. Biol. Chem. **269:** 16821-16828.
- 3. Arnavielhe, S., A. Blancark, M. Mallié, F. Gouin, A. Ottomani *et al.*, 1996 Suivi mycologique d'infections à *Candida albicans* dans divers services hospitaliers. Path. Biol. **44**: 447-451.
- 4. Arnavielhe, S., A. Blancark, M. Mallié, M. Quilici, and J. M. Bastide, 1997 Multilocus enzyme electrophoresis analysis of *Candida albicans* isolates from three intensive care units. An epidemiological study. Mycoses **40**: 159-167.
- 5. Asakura, K., S. Iwaguchi, M. Homma, T. Sukai, K. Higashide *et al.*, 1991 Electrophoretic karyotypes of clinically isolated yeasts of *Candida albicans* and *C. glabrata*. J. Gen. Microbiol. **137**: 2531-2538.
- 6. Ayala, F.J., 1976 *Molecular evolution*. Sinauer Associates, Sunderland, Mass.
- Barchiesi, F., D. Arzeni, M. S. Del Prete, A. Sinicco, L. Falconi Di Francesco *et al.*, 1998 Fluconazole susceptibility and strain variation of *Candida albicans* isolates from HIV-infected patients with oropharyngeal candidosis. J. Antimicrob. Chemother. **41**: 541-548.

- 8. Barchiesi, F., R. J. Hollis, M. Del Poeta, D. A. Mcgough, G. Scalise *et al.*, 1995 Transmission of fluconazole-resistent *Candida albicans* between patients with AIDS and oropharyngeal candidiasis documented by pulsed-field gel electrophoresis. Clin. Infect. Dis. **21**: 561-564.
- 9. Bart-Delabesse, E., H. Van Deventer, W. Goessens, J. L. Poirot, N, Lioret *et al.*, 1995 Contribution of molecular typing methods and antifungal susceptibility testing to the study of a candidemia cluster in a burn care unit. J. Clin. Microbiol. **33**: 3278-3283.
- 10. Bart-Delabesse, E., P. Boiron, A. Carlotti, and B. Dupont, 1993 *Candida albicans* genotyping in studies with patients with AIDS developing resistance to fluconazole. J. Clin. Microbiol. **31:** 2933-2937.
- 11. Barton, R. C., A. Van Belkum, and S. Scherer, 1995 Stability of karyotype in serial isolates of *Candida albicans* from neutropenic patients. J. Clin. Microbiol. **33**: 794-796.
- 12. Bean, P. and D. M. Olive, 1999 Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. **37:** 1661-1669.
- 13. Bertout, S., F. Renaud, D. Swinne, M. Mallie, and J.-M. Bastide, 1999 Genetic multilocus studies of different strains of *Cryptococcus neoformans*: taxonomy and genetic structure. J. Clin. Microbiol. **37**: 715-720.
- 14. Boerlin, P., 1997 Applications of multilocus enzyme electrophoresis in medical microbiology. J. Microbiol. Meth. **28**: 221-231.
- 15. Boerlin, P., F. Boerlin-Petzold, C. Durussel, M. Addo, J. -L. Pagani *et al.*, 1995 Cluster of oral atypical *Candida albicans* isolates in a group of human immunodeficiency virus-positive drug users. J. Clin. Microbiol. **33**: 1129-1135.
- Boerlin, P., F. Boerlin-Petzold, J. Goudet, C. Durussel, J. -L. Pagani *et al.*, 1996 Typing *Candida albicans* oral isolates from human immunodeficiency virus-infected patients by multilocus enzyme electrophoresis and DNA fingerprinting. J. Clin. Microbiol. 34: 1235-1248.
- 17. Boriollo, M. F. G., E. A. R. Rosa, R. T. Rosa, and J. F. Höfling, 2000 Criteria for *Candida albicans* numerical analysis based on electrophoretic protein patterns. Rev. argent. Microbiol. **32:** 123-128.
- 18. Bostock, A., M. N. Khattak, R. Matthews, and J. Burnie, 1993 Comparison of PCR fingerprinting, by random amplification of polymorphic DNA, with other molecular typing methods for *Candida albicans*. J. Gen. Microbiol. **139**: 2179-2184.
- 19. Brandt, M. E., L. C. Hutwagner, L. A. Klug, W. S. Baughman, D. Rimland *et al.*, 1996 Molecular subtype distribution of *Cryptococcus neoformans* in four areas of the United

States. Cryptococcal Disease Active Surveillance Group. J. Clin, Microbiol. **34:** 912-917.

- Brandt, M. E., L. C. Hutwagner, R. J. Kuykendall, and R. W. Pinner, 1995 Comparison of multilocus enzyme electrophoresis and random amplified polymorphic DNA analysis for molecular subtyping of *Cryptococcus neoformans*. J. Clin, Microbiol. 33: 1890-1895.
- 21. Brandt, M. E., S. L. Bragg, and R. W. Pinner, 1993 Multilocus enzyme typing of *Cryptococcus neoformans*. J. Clin, Microbiol. **31**: 2819-2823.
- 22. Brown, A. J. L., and C. H. Langley, 1979 Re-evaluation of level of genic heterozygosity in natural populations of *Drosophila melanogaster* by two-dimensional electrophoresis. Proc. Natl. Acad. Sci. USA **76**: 2381-2384.
- 23. Bruneau, S., and R. Guinet, 1989 Rapid identification of medically important yeasts by electrophoretic protein patterns. FEMS Microbiol. Lett. **49:** 329-333.
- 24. Casanova, M., and D. W. L. Chaffin, 1991 Cell wall glycoproteins of *Candida albicans* as released by different methods. J. Gen. Microbiol. **137**: 1045-1051.
- 25. Caugant, D. A., and P. Sandven, 1993 Epidemiological analysis of *Candida albicans* strains by multilocus enzyme electrophoresis. J. Clin. Microbiol. **31:** 215-220.
- 26. Clemons, K. V., F. Feroze, K. Holmberg, and D. A. Stevens, 1997 Comparative analysis of genetic variability among *Candida albicans* isolates from different geographic locales by three genotypic methods. J. Clin. Microbiol. **35:** 1332-1336.
- 27. Conkle, M. T., P. D. Hodgskiss, L. B. Nunnally, and S. C. Hunter, 1982 Starch gel electrophoresis of conifer seeds; a laboratory manual. Berkeley, Pacific Southwest Forest and Range Experiment Station, U.S. Forest Service, U.S. Department of Agriculture (Gen. tech. rep. PSW-64).
- 28. Costas, M., B. Holmes, A. C. Wood, and S. L. W. On, 1989a Numerical analysis of electrophoretic protein patterns of *Providencia rettgeri* strains from human faeces, urine and other specimens. J. Appl. Bact. **67**: 441-452.
- 29. Costas, M., L. L. Sloss, R. J. Owen, and M. A. Gaston, 1989b Evaluation of numerical analysis of SDS-PAGE of protein patterns for typing *Enterobacter cloacae*. Epidem. Infect. **103**: 265-274.
- 30. Cutler, J. E., P. M. Glee, and H. L. Horn, 1988 *Candida albicans* and *Candida stellatoidea* specific DNA fragment. J. Clin. Microbiol. **26:** 1720-1724.

- 31. Dias, L.A.S., 1998 Análises multidimensionais, p. 405-475. In: A.C. Alfenas, Eletroforese de isoenzimas e proteínas afins. Fundamentos e aplicações em plantas e microrganismos. Editora UFV, Viçosa.
- 32. Dixon, H., and E. C. Webb, 1979 Enzymes. Academic Press, NewYork.
- 33. Doebeling, B. N., P. F. Lehmann, R. J. Hollis, L. C. Wu, A. F. Widmer *et al.*, 1993 Comparison of pulsed-field gel electrophoresis with isoenzyme profiles as a typing system for *Candida tropicalis*. Clin. Infect. Dis. **16**: 377-383.
- 34. Doi, M., I. Mizuguchi, M. Homma, and K. Tanaka, 1994a Electrophoretic karyotypes of *Candida* yeasts recurrently isolated from single patients. Microbiol. Immunol. **38**: 19-23.
- 35. Doi, M., M. Homma, A. Chindamporn, and K. Tanaka, 1992 Estimation of chromosome number and size by pulsed-field gel electrophoresis (PFGE) in medically important *Candida* species. J. Gen. Microbiol. **138**: 2241-2251.
- 36. Doi, M., M. Homma, S. I. Iwaguchi, K. Horibe, and K. Tanaka, 1994b Strain relatedness of *Candida albicans* strains isolated from children with leukemia and their bedside parent. J. Clin. Microbiol. **32**: 2253-2259.
- 37. Farris, J.S., 1969 On the cophenetic correlation coefficient. Systematic Zool. **18:** 279-285.
- 38. Harris, H., 1975 Isoenzymes. Academic Press, NewYork.
- 39. Harris, H., and D. A. Hopkinson, 1976 *Handbook of enzyme electrophoresis in human genetics*. (And Supplement 1978) North-Holland Publishing Co., Amsterdam.
- Höfling, J. F., E. A. R. Rosa, C. V. Pereira, M. F. G. Boriollo, and J. A. O. Rodrigues, 2001 Differentiation and numerical analysis of oral yeasts based on SDS-PAGE profiles. Influence of the culture media on the whole-cell protein extracts. Braz. J. Biol. 61: 507-516.
- 41. Holmberg, K., and F. Feroze, 1996 Evaluation of an optimized system for random amplified polymorfism DNA (RAPD)-analysis for genotypic mapping of *Candida albicans* strains. J. Clin. Lab. Anal. **10:** 59-69.
- 42. Huettermann, A., C. Volger, R. Schorn, G. Ahnert, and H.G. Ganser, 1979 Studies on isoenzyme polymorphism in *Fomes annosus*. Eur. J. For. Pathol. **9:** 265-274.
- 43. Hunter, P. R., 1991 A critical review of typing methods for *Candida albicans* and their applications. Crit. Rev. Microbiol. **17:** 417-434.

- 44. Hunter, P. R., and C. A. M. Fraser, 1989 Application of a numerical index of discriminatory power to a comparison of four physiochemical typing methods for *Candida albicans*. J. Clin. Microbiol. **27**: 2156-2160.
- 45. Hunter, P. R., and M. A. Gaston, 1988 Numerical index of the discriminatory ability of typing systems an application of Simpson's index of diversity. J. Clin. Microbiol. **26**: 2465-2466.
- 46. Jaccard, P., 1908 Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. **44:** 223-270.
- 47. Johnson, G. B. (Editor), 1974 Enzyme polymorphism and metabolism. Science **184**: 28-37.
- 48. Kersters, K., and J. De Ley, 1975 Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. J. Gen. Microbiol. **87:** 333-342.
- 49. Keung Leung, W., R. S. Dassanayake, J. Y. Y. Yau, L. J. Jin, W. C. Yam *et al.*, 2000 Oral colonization, phenotypic, and genotypic profiles of *Candida* species in irradiated, dentate, xerostomic nasopharyngeal carcinoma survivors. J. Clin. Microbiol. **38**: 2219-2226.
- 50. Lasker, B. A., L. S. Page, T. J. Lott, and G. S. Kobayashi, 1992 Isolation, characterization, and sequencing of *Candida albicans* repetitive element 2. Gene **116**: 51-57.
- 51. Le Guennec, R., J. Reynes, M. Mallie, C. Pujol, F. Janbon *et al.*, 1995 Fluconazoleand itraconazole-resistant *Candida albicans* strain from AIDS patients: multilocus enzyme electrophoresis analysis and antifungal susceptibilities. J. Clin. Microbiol. **33**: 2732-2737.
- 52. Legendre, L., and P. Legendre, 1983 Numerical Ecology. Elsevier, New York.
- 53. Lehmann, P. F., B. J. Kemker, C. -B. Hsiao, and S. Dev, 1989 Isoenzyme biotypes of *Candida* species. J. Clin. Microbiol. 27: 2514-2521.
- 54. Lehmann, P. F., D. Lin, and B. A. Lasker, 1992 Genotypic identification and characterization of species and strains within the genus *Candida* by using random amplified polymorphic DNA. J. Clin. Microbiol. **30**: 3249-3254.
- 55. Lehmann, P. F., L. C. Wu, W. R. Pruitt, S. A. Meyer, and D. G. Ahearn, 1993 Unrelatedness of groups of yeasts within the *Candida haemulonii* complex. J. Clin. Microbiol. **31:** 1683-1687.
- 56. Lehmann, P. F., L. -C. Wu, and D. W. R. Mackenzie, 1991 Isozyme changes in *Candida albicans* domestication. J. Clin. Microbiol. **29:** 2623-2625.

- 57. Lewin, B., 2000 Genes VII. Oxford University Press and Cell Press.
- 58. Lewontin, R. C., 1974 *The genetic basis of evolutionary change*. Columbia University Press, New York.
- 59. Lin, D., L. C. Wu, M. G. Rinaldi, and P. F. Lehmann, 1995 Three distinct genotypes within *Candida parapsilosis* from clinical sources. J. Clin. Microbiol. **33:** 1815-1821.
- 60. Lischewski, A., M. Ruhnke, I. Tennagen, G. Schönian, J. Morschhauser *et al.*, 1995 Molecular epidemiology of *Candida* isolates from AIDS patients showing different fluconazole resistance profiles. J. Clin. Microbiol. **33**: 769-771.
- 61. Lockhart, S. R., J. J. Fritch, A. S. Meier, K. Schröpel, T. Srikantha *et al.*, 1995 Colonizing populations of *Candida albicans* are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. J. Clin. Microbiol. **33**: 1501-1509.
- 62. López-Ribot, J. L., R. K. Mcatee, W. R. Kirkpatrick, S. Perea, and T. F. Patterson, 2000. Comparison of DNA-based typing methods to assess genetic diversity and relatedness among *Candida albicans* clinical isolates. Rev. Iberoam. Micol. **17:** 49-54.
- 63. Lupetti, A., G. Guzzi, A. Paladini, K. Swart, M. Campa *et al.*, 1995 Molecular typing of *Candida albicans* in oral candidiasis: karyotype epidemiology with human immunodeficiency virus-seropositive patients in comparison with that with healthy carriers. J. Clin. Microbiol. **33**: 1238-1242.
- 64. Magee, B. B., and P. T. Magee, 1987 Electrophoretic karyotypes and chromosome numbers in *Candida* species. J. Gen. Microbiol. **133**: 425-430.
- 65. Magee, P. T., L. Bowdin, and J. Staudinger, 1992 Comparison of molecular typing methods for *Candida albicans*. J. Clin. Microbiol. **30**: 2674-2679.
- 66. Mahrous, M., T. J. Lott, S. A. Meyer, A. D. Awant, and D. G. Ahearn, 1990 Electrophoretic kariotyping of typical and atypical *Candida albicans*. J. Clin. Microbiol. **28**: 876-881.
- 67. Markert, C. L., 1975 *Biology of isoenzymes*, pp. 1-9 in *Isoenzymes*, edited by C. L. Markert, Academic Press, New York.
- 68. Markert, C. L., and F. Moller, 1959 Multiple forms of enzymes: tissue, ontogenic, and species specific patterns. Proc. Natl. Acad. Sci. USA **45**: 753-763.
- 69. Mata, A. L., R. T. Rosa, E. A. R. Rosa, R. B. Gonçalves, and J. F. Höfling, 2000 Clonal variability among oral *Candida albicans* assessed by allozyme electrophoresis analysis. Oral Microbiol. Immunol. **15**: 350-354.

- 70. Mercure, S., S. Poirier, G. Lemay, P. Auger, S. Montplaisir *et al.*, 1993 Application of biotyping and DNA typing of *Candida albicans* to the epidemiology of recurrent vulvovaginal candidiasis. J. Infect. Dis. **168**: 502-507.
- 71. Merz, W. G., 1990 *Candida albicans* strain delineation. Clin. Microbiol. Rev. **3:** 321-334.
- 72. Merz, W. G., C. Connelly and P. Hieter, 1988 Variation of electrophoretic karyotypes among clinical isolates of *Candida albicans*. J. Clin. Microbiol. **26**: 842-845.
- 73. Micales, J. A., A. C. Alfenas, and M. R. Bonde, 1998 Izoenzimas na taxonomia e na genética de fungos, pp. 477-512 in Eletroforese de isoenzimas e proteínas afins. Fundamentos e aplicações em plantas e microrganismos, edited by A. C. Alfenas. Editora UFV, Viçosa.
- 74. Millon, L., A. Manteaux, G. Reboux, C. Drobacheff, M. Monod *et al.*, 1994 Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency viruspositive patients: persistence of *Candida albicans* strains with the same genotype. J. Clin Microbiol. **32**: 1115-1118.
- Moreira, D., D. M. P. Spolidório, J. A. O. Rodrigues, M. F. G. Boriollo, C. V. Pereira *et al.*, 2001 *Candida* spp. Biotypes in the oral cavity of school children from different socioeconomic categories in Piracicaba SP, Brazil. Pesqui. Odontol. Bras. 15: 187-195.
- 76. Murphy, R. W., J. W. Sites, D. G. Buth, and C. H. Haufler, 1990 *Proteins I: isoenzyme electrophoresis*, pp. 45-126 in *Molecular systematics*, edited by Hillis, D. M. and C. Moritz. Sinauer Associates Inc. Publishers, Sunderland, Mass.
- 77. Nébavi, F., S. Arnavielhe, R. Le Guennec, E. Ménan, A. Kacou *et al.*, 1998 Oropharyngeal candidiasisj in AIDS patients from Abidjan (Ivory Coast): antifungal susceptibilities and multilocus enzyme electrophoresis analysis of *Candida albicans* isolates. Path. Biol. **46**: 307-314.
- 78. Nei, M., 1972 Genetic distances between populations. Am. Naturalist. 106: 283-292.
- 79. Nei, M., 1975 *Molecular polymorphism and evolution*. North-Holland Publishing Co., Amsterdam.
- 80. Nevo, E., A. Beiles, and R. Ben-Shlomo, 1980 The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lect. Notes Biomath. **53**: 13-213.
- 81. Newman, P., 1985 Variation amongst isozymes of *Rhynchosporium secalis*. Plant Pathol. **34:** 329-337.

- 82. Olivo, P. D., E. J. Mcmanus, W. S. Riggsby, and J. M. Jones, 1987 Mitochondrial DNA polymorphism in *Candida albicans*. J. Infect. Dis. **156**: 214-215.
- 83. Pasteur, N., G. Pasteur, F. Bonbomme, J. Catalan, and J. Britton-Davidian, 1987 *Manuel technique de génétique par électrophorèse dês protéines*. Technique et documentation. Lavoisier, Paris.
- 84. Prakash, S., R. C. Lewontin, and J. L. Hubby, 1969 A molecular approach to the study of genic heterozigosity in natural populations. IV patterns of genetic variation in central, marginal and isolated populations of *Drosophila pseudobscura*. Genetics **61**: 841-858.
- 85. Pujol, C., J. Reynes, F. Renaud, M. Mallie and J.-M. Bastide, 1993a Genetic analysis of *Candida albicans* strains studies by isoenzyme electrophoresis. J. Mycol. Med. **3**: 14-19.
- 86. Pujol, C., J. Reynes, F. Renaud, M. Raymond, M. Tibayrenc *et al.*, 1993b The yeast *Candida albicans* has a clonal mode of reproduction in a population of infected human immunodeficiency viry-positive patients. Proc. Natl. Acad. Sci. USA **90**: 9456-9459.
- 87. Pujol, C., S. Joly, S. R. Lockhart, S. Noel, M. Tibayrenc *et al.*, 1997 Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting *Candida albicans*. J. Clin. Microbiol. **35**: 2348-2358.
- 88. Racine, R. R., and C. H. Langley, 1980 Genetic heterozygosity in a natural population of *Mus musculus* assessed using two-dimensional electrophoresis. Nature **283**: 855-857.
- 89. Rattazzi, M. C., J. G. Scandalios, and G. S. Whitt, 1983 *Isozymes: current topics in biological and medical research*, vol. 10. Genetic and evolution. Alan R. Liss, Inc., New York.
- 90. Reynes, J., C. Pujol, C. Moreau, M. Mallié, F. Renaud *et al.*, 1996 Simultaneous carriage of *Candida albicans* strains from HIV-infected patients with oral candidiasis: multilocus enzyme electrophoresis analysis. FEMS Microbiol. Lett. **137**: 269-273.
- 91. Robert, F., F. Lebreton, M. E. Bougnoux, A. Paugam, D. Wassermann *et al.*, 1995 Use of random amplified polymorphic DNA as a typing method for *Candida albicans* in epidemiological surveillance of a burn unit. J. Clin. Microbiol. **33**: 2366-2371.
- 92. Rohlf, F. J., 1988 *NTSYS-pc numerical taxonomy and multivariate analysis system*. Exeter Software Publishing, New York.

- 93. Rosa, E. A. R., C. V. Pereira, R. T. Rosa, and J. F. Höfling, 1999 Evaluation of different dehydrogenases to recognize *Candida* species commonly isolated from human oral cavities. Rev. Argent. Microbiol. **31:** 165-172.
- Rosa, E. A. R., R. T. Rosa, C. V. Pereira, and J. F. Höfling, 2000a Grouping oral *Candida* species by multilocus enzyme electrophoresis. Int. J. Syst. Evol. Microbiol. 50: 1343-1349.
- 95. Rosa, E. A. R., R. T. Rosa, C. V. Pereira, and J. F. Höfling, 2001 Inter and Intraspecific genetic variability of oral *Candida* species. Rev. Iberoam. Micol. 18: 60-64.
- 96. Rosa, E. A. R., R. T. Rosa, C. V. Pereira, M. F. G. Boriollo, and J. F. Höfling, 2000b Analysis of parity between protein-based electrophoretic methods for characterization of oral *Candida* species. Mem. Inst. Oswaldo Cruz **95**: 801-806.
- San Millan, R. M., L. C. Wu, I. F. Salkin, and P. F. Lehmann, 1997 Clinical isolates of *Candida guilliermondii* include *Candida fermentati*. Int. J. Syst. Bacteriol. 47: 385-393.
- 98. Scandalios, J.G., 1969 Genetic control of multiple molecular forms of enzymes in plants; a review. Biochem. Genet. **3:** 37-79.
- 99. Scherer, S., and D. A. Stevens, 1988 A *Candida albicans* dispersed, repeated gene family and its epidemiologic applications. Proc. Natl. Acad. Sci. USA **85**: 1452-1456.
- 100. Schönian, G., O. Meusel, H. -J. Tietz, W. Meyer, Y. Gräser *et al.*, 1993 Identification of clinical strains of *Candida albicans* by DNA fingerprinting with the polymerase chain reaction. Mycoses **36**: 171-179.
- 101. Selander, R. K., and B. R. Lewin, 1980 Genetic diversity and structure in *Escherichia coli* populations. Science **210**: 545-547.
- 102. Selander, R. K., and T. S. Whittam, 1983 *Protein polymorphism and the genetic structure of populations*, p.89-114. *In*: NEI, M. and R.K. KOEHN, *Evolution of genes and proteins*. Sinauer Associates, Sunderland, Mass.
- 103. Selander, R. K., D. A. Caugant, H. Ochman, J. M. Musser, M. N. Gilmour *et al.*, 1986 Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. **51**: 873-884.
- 104. Shannon, M. C., S. K. Ballal, and J. W. Harris, 1973 Starch gel electrophoresis of enzyme from nine species of *Polyporus*. Amer. J. Bot. **60**: 96-100.
- 105. Shecter, Y., 1973 Symposium on the use of electophoresis in the taxonomy of algae and fungi. Bull. Torrey Bot. Club **100**: 253-312.

- 106. Siciliano, M. J., and C. R. Shaw, 1976 Separation and visualization of enzymes on gels, p. 185-209. In: SMITH, I., et al., Chromatographic and electrophoretic techniques. A.W. Heinemann Medical Books, London.
- 107. Smithies, O., 1955 Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. Biochem. J. **61:** 629-641.
- 108. Sneath, P. H., and R. Johnson, 1972 The influence on numerical taxonomic similarities of errors in microbiological tests. J. Gen. Microbiol. **72:** 377-392.
- 109. Sneath, P. H. A., and R. R. Sokal, 1973 *Numerical taxonomy*. W.H. Freeman and Company, San Francisco.
- 110. Snell, R. G., I. F. Hermans, R. J. Wilkins, and B. E. Corner, 1987 Chromosomal variations in *Candida albicans*. Nucl. Acid. Res. **15**: 3625.
- 111. Sokal, R. R., and F. J. Rohlf, 1962 The comparison of dendrograms by objective methods. Taxon **11**: 33-40.
- 112. Sokal, R. R., and F. J. Rohlf, 1970 The intelligent ignoramus, an experiment in numerical taxonomy. Taxon 19: 305-319.
- 113. Sokal, R. R., and P. H. A. Sneath, 1963 *Principles of numerical taxonomy*. W.H. Freeman and Company, San Francisco.
- 114. Soll, D. R., 2000 The ins and outs of DNA fingerprinting the infectious fungi. Clin. Microbiol. Rev. **13:** 322-370.
- 115. Soll, D. R., C. J. Langtimm, J. Mcdowell, J. Hicks, and R. Galask, 1987 High-frequency switching in *Candida* strains isolated from vaginitis patients. J. Clin. Microbiol. **25:** 1611-1622.
- 116. Soll, D. R., M. Staebell, C. Langtimm, M. Pfaller, J. Hicks *et al.*, 1988 Multiple *Candida* strains in the course of a single systemic infection. J. Clin. Microbiol. **26**: 1448-1459.
- 117. Val, A. L., A. R. Schwantes, M. L. B. Schwantes, and P. H. De Luca, 1981 Amido hidrolisado de milho como suporte eletroforético. Ciênc. Cult. **33**: 992-996.
- 118. Vancanneyt, M., B. Pot, G. Hennebert, and K. Kersters, 1991 Differentiation of yeast species based on electrophoretic whole-cell protein patterns. Syst. Appl. Microbiol. **14**: 23-32.
- 119. Vazquez, J. A., A. Beckley, J. D. Sobel, and M. J. Zervos, 1991 Comparison of restriction enzyme analysis versus pulsed-field gradient gel electrophoresis as a typing system for *Candida albicans*. J. Clin. Microbiol. **29:** 962-967.

- 120. Vazquez, J. A., J. D. Sobel, R. Demitriou, J. Vaishampayan, M. Lynch *et al.*, 1994 Karyotyping of *Candida albicans* isolates obtained longitudinally in women with recurrent vulvovaginal candidiasis. J. Infect. Dis. **170**: 1566-1569.
- 121. Voss, A., M. A. Pfaller, R. J. Hollis, J. Rhine-Chalberg, and B. N. Doebbeling, 1995 Investigation of *Candida albicans* transmission in a surgical intensive care unit cluster by using genomic DNA typing methods. J. Clin, Microbiol. **33:** 576-580.
- 122. Waters, M. G., and G. Blobel, 1986 Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J. Cell Biol. **102**: 1543-1550.
- 123. Whelan, W. L., D. R. Kirsch, K. J. Kwon-Chung, S. M. Wahl, and P. D. Smith, 1990 *Candida albicans* in patients with the acquired immunodeficiency syndrome: absence of a novel or hypervirulent strain .J. Infect. Dis. **162:** 513-518.
- 124. Whittam, T. S., H. Ochman, and R. K. Selander, 1983 Multilocus genetic structure in natural populations of *Escherichia coli*. Proc. Natl. Acad. Sci. USA **80**: 1751-1755.
- 125. Woontner, M., and J. A. Jaehning, 1990 Accurate initiation by RNA polimerase II in a whole cell extract from *Saccharomyces cerevisiae*. J. Biol. Chem. **265**: 8979-8982.

MLEE e análise da diversidade genética dentro e entre populações de *Candida albicans* isoladas da cavidade bucal de escolares saudáveis

Marcelo Fabiano Gomes Boriollo & José Francisco Höfling

Laboratório de Microbiologia e Imunologia, Departamento de Diagnóstico Bucal, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brasil.

RESUMO

O objetivo dessa pesquisa foi avaliar a diversidade genética dentro e entre (sub)populações de C. albicans isoladas da cavidade bucal de escolares saudáveis, provenientes de oito instituições do ensino fundamental (particulares e públicas) do município de Piracicaba, Estado de São Paulo, Brasil, por meio da eletroforese de enzima multiloco (MLEE), análises de agrupamento e genética de populações. Culturas de leveduras foram submetidas à extração de proteínas por pérolas de vidro. As enzimas foram separadas em gel de amido através de procedimentos eletroforéticos e reveladas por métodos descritos previamente para 15 loci enzimáticos. Os padrões de heterozigotos foram consistentes com a natureza diplóide de C. albicans. Alta diversidade genética foi observada em todas as (sub)populações com predominância de alguns ETs. A inexistência de correlação foi observada entre ET-específico ou grupos de ETs altamente relacionados e (sub)população-específica de escolares. Em adição, todas as (sub)populações de isolados não mostraram divergências significantes entre as freqüências genotípicas observadas e esperadas (teste de equilíbrio de Hardy-Wienberg). Tais observações sugerem a hipótese de que (sub)populações-específicas de escolares saudáveis não correspondem ao fator de seleção (sobrevivência diferencial) de ET-específico ou grupos de ETs altamente relacionados. A existência de um ou mais grupos de ETs altamente relacionados, normalmente predominante dentro e entre (sub)populações de escolares, também foi sugerida pelas análises de agrupamento, contudo, sem correlação com as (sub)populações de escolares. Estes resultados também sugerem a existência de rotas de disseminação diretas e indiretas de C. albicans dentro e entre as (sub)populações de escolares, as quais

poderiam ser determinadas por pesquisas complementares como, por exemplo, o isolamento de C. albicans a partir de ambientes escolares (salas de aula, refeitórios, banheiros, bibliotecas particulares e públicas,...), alunos, professores e funcionários. No contexto microevolucionário, seis (sub)populações de C. albicans mostraram convergência ancestral e duas (sub)populações mostraram baixa divergência ancestral, que em média correspondeu entre >1,2 e <4 substituições alélicas para cada 100 loci, a partir de uma população ancestral comum. Essas observações sugerem a ocorrência de mudanças microevolucionárias em algumas (sub)populações de C. albicans isoladas de escolares saudáveis que apresentam a mesma origem geográfica. Contudo, a investigação de microevolução em (sub)populações de C. albicans comensais, comparativamente com outros parâmetros do hospedeiro (i.e., hábitos nutricionais e higiênicos, alterações hormonais em função da idade,...), poderia ser explorada. Finalmente, MLEE e outros métodos de genotipagem (i.e., Ca3 fingerprinting), análises de agrupamento e genética de populações, poderiam ser empregados para análises atual e retrospectiva de isolados de C. albicans provenientes de indivíduos saudáveis e pacientes imunocomprometidos, a fim de detectar a existência de um grupo ubíquo (i.e., constituído de agentes etiológicos, possivelmente de origem comensal, predominantes em candidíases). Estes procedimentos poderiam conduzir ao desenvolvimento de estratégias para prevenção da transmissibilidade desses agentes entre escolares saudáveis e escolares predispostos a desenvolverem candidíases a partir de uma imunodeficiência congênita ou possivelmente adquirida.

Palavras chave: *Candida albicans*; MLEE; diversidade genética; escolares saudáveis; localizações geográficas.

INTRODUÇÃO

Candida albicans e outras espécies de Candida são encontradas na microbiota de humanos saudáveis. Entretanto, espécies de Candida podem comportar-se como patógenos oportunistas na presença de doenças predisponentes tais como, AIDS, diabetes, leucemia ou câncer⁶⁵. O interesse em adquirir um melhor entendimento sobre a patogênese e epidemiologia de infecções causadas por C. albicans tem conduzido a realização de inúmeras pesquisas, as quais empregaram métodos moleculares, tais como RAPD, REA, Ca3 fingerprinting e cariotipagem eletroforética, para a diferenciação entre linhagens^{2,20,30,34,42-45,47,49,55,58,63,73,79,81-83,92-94,102,104}. MLEE tem sido considerado um método gold standard para de genética de populações em microrganismos¹⁰, com alto poder discriminatório e reprodutibilidade^{10,12,31,51,57,63}. Seus padrões eletroforéticos são freqüentemente previsíveis, uma vez que dependem das condições genéticas e nucleares de cada organismo. Neste contexto, diferentes critérios de interpretação foram empregados para organismos haplóides ou diplóides^{28,51,57,85}. Com bases nestes critérios, a composição alélica tem sido determinada a partir de um grupo constituído por dez a trinta enzimas metabólicas, consideradas representativas do genoma total¹⁰.

Os resultados obtidos por MLEE têm sido aplicados em uma variedade de propósitos no campo da microbiologia médica. Em termos de alelos específicos, as proporções alélicas têm inferido o grau de recombinação genética em populações naturais. Essas proporções também têm sido empregadas para avaliar os graus de isolamento genético entre populações naturais, causado por regiões geográficas e ecológicas ou por barreiras biológicas. Seu emprego tem apresentado relevâncias taxonômicas e sistemáticas uma vez que, para microrganismos clonais, os graus de relacionamento inter e intrapopulacional têm sido analisados. Clones espécie-específico identificados por MLEE também foram associados com padrões e reincidências clínicos, e altos índices de patogenicidade. Finalmente, tais resultados têm sido empregados em traçados epidemiológicos que permitem melhor entendimento no desenvolvimento de epidemias, o que representa um inestimável complemento aos métodos de tipagem moleculares atuais, particularmente nos estudos epidemiológicos em larga escala¹⁰. No campo da micologia

médica, MLEE tem apresentado grande potencialidade nos estudos de caracterização taxonômica, sistemática, genética, evolutiva e epidemiológica, especialmente para a levedura *C. albicans*^{4,5,8,9,11-15,18,24,37-41,48,60,61,63,67-71}.

O objetivo dessa pesquisa foi avaliar a diversidade genética dentro e entre (sub)populações de *C. albicans* isoladas da cavidade bucal de escolares saudáveis, provenientes de oito instituições do ensino fundamental (particulares e públicas) do município de Piracicaba, Estado de São Paulo, por meio da eletroforese de enzima multiloco (MLEE), análises de agrupamento e genética de populações. Resumidamente, os resultados obtidos permitiram avaliar (i) os graus de diversidade genética entre os isolados de cada (sub)população, (ii) os graus de diversidade genética entre todos os isolados, (iii) a existência de subtipos (ETs) e grupos de isolados altamente relacionados, (iv) a distribuição e prevalência destes subtipos e grupos de isolados dentro e entre (sub)populações, (v) a inexistência de correlação entre subtipos ou grupos de isolados e diferentes populações de escolares saudáveis (diferentes regiões geográficas), e (vi) microevolução dentro e entre (sub)populações de isolados.

MATERIAL E MÉTODOS

Procedência das amostras. O estudo envolveu 75 amostras de *C. albicans* isoladas da cavidade bucal de 75 escolares clinicamente saudáveis, com idades variando entre seis e nove anos, de ambos os sexos, provenientes de oito instituições públicas e particulares do ensino fundamental (diferentes localizações geográficas), do município de Piracicaba, estado de São Paulo, Brasil (Tabela 1 e Figura 1)⁵⁰. Estes isolados foram identificados por critérios morfológicos, como formação de tubo germinativo, produção de clamidósporos, crescimento em meio cromogênico CHROMagar Candida[®], e testes de fermentação e assimilação de carboidratos^{50,56,75}.

Tabela 1. Relação das amostras de *C. albicans* isoladas da cavidade bucal de 75 crianças saudáveis, provenientes de oito escolas.

\backslash		Inst	ituiçõ	es de Ei	nsino	Funda	menta	1
\backslash	AV^*	CS	FE	FMC	HF	LAE*	MA	MEP
	A1	D21	A7	B18	A24	A23	A17	B31
	A20	D23	A9	C9	B21	A30	B24	C32
	B4	E7	A10	C47	B33	A33	B56	C33
SI	B5	E8	A15	D5	C12	A40	B54	C36
trc	B32	E10	A21	D6	C16	A48	B46	C40
os	C4	E25	B11	D13	C17	A50	B23	D19
ш		E30	B13	D14	C20	A52		D20
s A		E32	B15	D25	C23	A55		
ła.		E39	B16	D28	C44	A61		
00			C5	D32	C48	A64		
ig				D36		B38		
ód				E17				
C				E43				
				E48				
				E52				
				E57				
n	6	9	10	16	10	11	6	7

^{*} corresponde ao setor privado e *n* corresponde ao número de isolados na população de escolares saudáveis. As siglas AV, CS, FE, FMC, HF, LAE, MA e MEP correspondem ao Colégio Alphaville, E.E.P.G. "Prof. Carlos Sodero", E.E.P.G. "Profa. Francisca Elisa", E.E.P.G. "Prof. Francisco Mariano da Costa", E.E.P.S.G. "Prof. Honorato Faustino", Liceu Colégio Albert Einstein, E.E.P.S.G. "Prof. Elias de Melo Ayres" e E.E.P.S.G. "Prof. Manasses Ephraim Pereira", respectivamente.

Figura 1. Localização geográfica das populações de isolados bucais de *C. albicans*. Município de Piracicaba, estado de São Paulo, Brasil.

Preparação dos extratos celulares. Culturas de amostras de *C. albicans* foram desenvolvidas em frascos contendo 50mL de meio YEPD (Extrato de Levedura 1% m/v, Peptona 2% m/v e Glicose 2% m/v) a 37°C por 18 horas, sob agitação constante de 150rpm^{6,17} (Incubadora Shaker mod. NT 712, Nova Técnica Instrumentos e Equipamentos de Laboratório Ltda.). Logo após o crescimento, as células foram centrifugadas a $3.000 \times g$ por 5 minutos¹⁰⁰ e lavadas duas vezes em solução de NaCl 0,9% m/v¹⁰³, submetendo cada lavagem a mesma força centrífuga. Os *pellets* (~500µL) foram transferidos para tubos de 2mL (Biospec Products, Inc.), contendo água destilada gelada e pérolas de vidro (1:1:1). Estas misturas permaneceram em gelo por 5 minutos e, posteriormente, foram agitadas quatro vezes em aparelho BeadBeater[®] (Biospec Products, Inc.) por 30 segundos, com intervalos de 1 minuto. Os fragmentos celulares foram centrifugados a $5.000 \times g$ a 4°C por 5 minutos. As fases superiores aquosas resultantes foram aplicadas em papéis de filtro Whatman nº 3 (*wicks*), com dimensões de 12x5mm, e mantidas a -70°C até o momento de uso^{3,67-70}.

Eletroforese e coloração de enzimas específicas. Enzimas foram separadas em gel de amido (Penetrose $30^{\text{(P)}}$, Refinações de Milho Brasil Ltda) a 13% m/v, com dimensão de 200x120x10mm. Rapidamente, os *wicks* previamente preparados foram embebidos com 5μ L de solução de azul-de-bromofenol a 0,02% m/v e aplicados perpendicularmente ao corte longitudinal (20mm) do gel. A eletroforese foi conduzida em sistema horizontal e contínuo, sob tensão de 130 volts a 4°C *overnight* (migração do corante equivalente a 80mm). Para assegurar a reprodutibilidade dos resultados, a linhagem padrão de *C. albicans* CBS-562 (Centralbureau voor Schimmelcultures, Delft, The Netherlands) foi sistematicamente colocada nas extremidades de cada gel. Após a corrida eletroforética, o gel foi colocado sobre uma base de acrílico e fatiado em lâminas de 1,5mm de espessura, com auxílio de réguas sobrepostas e fio náilon n°15^{1,87,98}. Cuidadosamente, estas lâminas foram conduzidas ao interior de recipientes de porcelana branca e submetidas ao processo de coloração por métodos descritos previamente para 11 sistemas (15 *loci* enzimáticos)^{1,63,85}. As atividades enzimáticas analisadas foram: álcool desidrogenase, sorbitol desidrogenase, manitol-1-fosfato desidrogenase, malato desidrogenase, isocitrato desidrogenase, glucose desidrogenase, glucose-6-fosfato desidrogenase, aspartato desidrogenase, catalase, peroxidase e leucina aminopeptidase (Tabela 2). Expressões enzimáticas de malato desidrogenase, isocitrato desidrogenase e sorbitol desidrogenase mostraram dois e três *loci* geneticamente interpretativos (*Mdh-1*, *Mdh-2* e *Mdh-3*; *Idh-1* e *Idh-2*; *Sdh-1* e *Sdh-2*).

Interpretação genética dos padrões de MLEE. Padrões de MLEE foram interpretados seguindo a regra, comumente aceita, que permite a dedução da composição alélica de um organismo diplóide. Os eletromorfos (bandas) de cada enzima, numerados e/ou ordenados alfabeticamente em disposição decrescente com relação à mobilidade enzimática anodal, foram comparados com os alelos do correspondente *locus* gênico estrutural. As (sub)populações de *C. albicans* foram caracterizadas pelas combinações dos alelos de 15 *loci* gênicos, de modo que distintas combinações alélicas de *loci* polimórficos foram designadas de tipos eletroforéticos (ETs). O índice percentual de *loci* polimórficos (freqüência do alelo mais comum < 0.99), o número médio de alelos por *locus*, o número médio de alelos por *locus* polimórfico e o número de alelos entre heterozigotos e homozigotos também foram determinados^{28,29,46,57}. A falta de uma detectável atividade enzimática foi interpretada como dois alelos nulos do correspondente *locus* gênico^{1,11,1,8,35,48,52,85}.

Análises de diversidade genética. Freqüências alélicas e freqüências genotípicas observadas e esperadas (teste de Hardy-Weinberg) das (sub)populações de *C. albicans* foram calculadas a partir de cada *locus* enzimático^{7,18,29,46}. Heterozigosidade foi determinada pela equação $h = 1 - \sum_i (p_i^2)$, sendo p_i a freqüência média do alelo *i* na população⁵⁴. A diversidade genética dentro e entre as (sub)populações de isolados bucais foi determinada pelo coeficiente de distância genética de Nei (1972),

$$d_{ij} = -In \left[\frac{\sum_{k} |x_{ki} x_{kj}|}{\sqrt{\sum_{k} x_{ki}^2 x_{kj}^2}} \right], \text{ o qual admite a utilização de dados a partir de freqüências gênicas}$$

ou alélicas⁵³. Deste modo, as matrizes de distância genética (*trellis diagrams*) foram elaboradas e tratadas pelo método de agrupamento SHAN algoritmo UPGMA (*Unweighted*

	ENZIMA		TA	AMPÃO		COMPOSTOS	PARA COLO	RAÇÃO	
EC	NOME S	SIMBOLO	ELETRODO ¹	GEL	SUBSTRATO	TAMPÃO	SAL COENZ	ÍMA	CORANTE CATALISADOR
1.1.1.1.	Álcool desidrogenase	ADH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Etanol (3mL) Isopropanol (2mL)	200mM Tris-HCl pH 8.0 (50mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.14.	Sorbitol desidrogenase	SDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Sorbitol (250mg)	Tris-HCl 50mM pH 8.0 (50mL) ³		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.17.	Manitol-1-fosfato desidrogenase	M1P	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Manitol-1-fosfato (5mg)	Tris-HCl 100mM pH 8.5 (50mL) ⁴		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.37.	Malato desidrogenase	MDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	2M Ácido málico (6mL) ⁵	Tris-HCl 200mM pH 8.0 (40mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.42.	Isocitrato desidrogenase	IDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	1M Ácido isocítrico (2mL) ⁶	Tris-HCl 200mM pH 8.0 (40mL) ²	$\begin{array}{c} 100 mM \ MgCl_2 \\ (1 mL)^{\ 7} \end{array}$	NADP 1% (1mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.47.	Glucose desidrogenase	GDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	D-glucose (500mg)	Tris-HCl 200mM pH 8.0 (50mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.1.1.49.	Glucose-6- fosfato desidrogenase	G6PDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Glicose-6-fosfato (100mg)	Tris-HCl 200mM pH 8.0 (50mL) ²	100mM MgCl ₂ (1mL) ⁷	NADP 1% (1mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.4.3.x.	Aspartato desidrogenase	ASD	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Ácido aspártico (50mg)	Fosfato de sódio pH 7.0 (50mL) ⁸		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)
1.11.1.6.	Catalase ⁹	CAT	Tris-citrato pH 8.0	Tampão do eletrodo 1:29					
1.11.1.7.	Peroxidase	РО	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	H ₂ O ₂ 3% (1mL)	100mM Acetato de sódio pH 4.5 (50mL) ¹⁰			o-dianisidina 2HCl (16mg)
3.4.11.1.	Leucina aminopeptidase	LAP	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	L-leucina β- naftilamida HCl (30 mg)	100mM Fosfato de Potássio pH 5.5 (50mL) ¹¹	$\begin{array}{c} 100mM\ MgCl_2 \\ \left(1mL\right)^7 \end{array}$		Black K (30mg)

Tabela 2. Relação das enzimas metabólicas de *C. albicans* e seus respectivos sistemas eletroforéticos e soluções para coloração.

¹83.2g de C₄H₁₁NO₃ (Tris), 33.09g de C₆H₈O₇.H₂O (Ácido cítrico), 1L def H₂O; ²24.2g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ³6.05g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ⁴12.1g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ⁵26.8g de C₄H₆O₅ (Ácido DL-málico) e 16g de NaOH em 0.1L de H₂O (precaução: reação potencialmente explosiva); ⁶29.41g de C₆H₅O₇Na₃ · 2H₂O (Ácido DL-isocítrico) em 0.1L de H₂O; ⁷2.03g de MgCl₂.6HCl (Cloreto de magnésio) em 0.1L de H₂O; ⁸ Misturar partes iguais de 27.6g de NaH₂PO₄ · H₂O (Fosfato de sódio monobásico monohidratado) em 1L de H₂O e 53.6g de Na₂HPO₄ · 7H₂O (Fosfato de sódio dibásico heptahidratado) em 1L de H₂O, então deliuir a mistura 1:25 com H₂O; ⁹ Incubar a fatia do gel por 30 minutos a 0°C em 50mL de tampão de 0.1M fosfato de sódio pH 7.0, então decantar a solução, e imergir a fatia em 50mL de solução de iodeto de potássio 1.5% (KI) por 2 minutos. Por conseguinte, enxaguar a fatia do gel com água, e imergi-la em 50mL de solução de peróxido de hidrogênio 0.03% (H₂O₂). Misturar cuidadosamente e remover a solução corante quando zonas brancas surgirem sobre o fundo azul escuro; ¹⁰13.61g de C₂H₃O₂Na · 3H₂O (Acetato de sódio), 1L de H₂O; ¹¹

Pair-Group Method Using an Arithmetic Average), a fim de gerar árvores com classificações bidimensionais, denominadas dendrogramas^{25,88,89}. Para determinação da concordância entre os valores de distância genética implícitos nos dendrogramas e os valores de distância genética explícitos nas matrizes foi empregado o coeficiente de correlação cofenética baseado no produto-momento de Pearson,

 $r_{ki} = \frac{s_{ki}}{\sqrt{s_k^2 s_i^2}} = \frac{\sum_{j=1}^p (y_{ij} - \bar{y}_i)(y_{kj} - \bar{y}_k)}{\sqrt{\sum_{j=1}^p (y_{ij} - \bar{y}_i)^2} \sqrt{\sum_{j=1}^p (y_{kj} - \bar{y}_k)^2}} \frac{25,32,36,89-91}{\sqrt{\sum_{j=1}^p (y_{ij} - \bar{y}_i)^2}}.$ Essas análises foram realizadas com o

auxílio do programa NTSYS-pc 1.70^{66} . A linhagem-padrão de *C. albicans* CBS-562 (Centralbureau voor Schimmelcultures, Delft, The Netherlands) foi incluída neste experimento a fim de estabelecer a correlação cofenética entre os isolados bucais de *C. albicans* e determinar a reprodutibilidade^{16,21,22,99}.

RESULTADOS

Interpretação genética dos padrões de MLEE. A interpretação genética dos padrões de MLEE (Figura 2) mostrou características genéticas intrínsecas para cada (sub)população de *C. albicans* (Tabela 3 e Figura 3):

População Total (75 isolados): Quatorze (93,3%) de 15 *loci* enzimáticos foram polimórficos para um, dois ou três alelos (1 alelo: Idh-2 freqüência do alelo *b* ou *c* <1% (0,75%); 2 alelos: Cat, Gdh freqüência do alelo *c* ou *d* <1% (0,67%); 3 alelos: Adh, Asd, G6pdh, Idh-1, Lap, M1p, Mdh-1). Apenas 1 (6,7%) *locus* enzimático foi monomórfico para um alelo (Sdh-1). O número médio de alelos por *locus* foi igual a 2,80, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,92. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 43 (57,3%) ETs nesta população. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, G6pdh, Idh-1, Lap, M1p, Mdh-2, Sugestivo de enzima dimérica). Entre os homozigotos foram observados um alelo nos *loci* Gdh, Idh-2, Mdh-2 e Sdh-1, dois alelos nos *loci* Adh, Asd, Cat, Idh-1, Lap, Mdh-1, Mdh-3, Po e Sdh-2, e três alelos nos *loci* G6pdh e M1p (Tabela 4).

População da escola AV (6 isolados): Cinco (33,3%) de 15 *loci* enzimáticos foram polimórficos para dois e três alelos (2 alelos: Adh, Asd, Mdh-2 e Po; 3 alelos: G6pdh). Dez (66,7%) *loci* enzimáticos foram monomórficos (Cat, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-1, Mdh-3, Sdh-1 e Sdh-2). O número médio de alelos por *locus* foi igual a 1,40, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,25. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 6 (100%) ETs. Heterozigotos revelaram duas bandas enzimáticas (Adh, Asd, G6pdh, Mdh-2 e Po). Entre os homozigotos foram observados um alelo nos *loci* Adh, Asd, Cat, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-1, Mdh-3, Po, Sdh-1 e Sdh-2, e dois alelos no *locus* G6pdh (Tabela 5).

População da escola CS (9 isolados): Sete (46,7%) de 15 *loci* enzimáticos foram polimórficos para dois e três alelos (2 alelos: Asd, Idh-1, Lap, Mdh-2, Po e Sdh-2; 3 alelos: Adh). Oito (53,3%) *loci* enzimáticos foram monomórficos (Cat, G6pdh, Gdh, Idh-2, M1p, Mdh-1, Mdh-3 e Sdh-1). O número médio de alelos por *locus* foi igual a 1,53, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,17. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 7 (77,8%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Asd, Idh-1, Mdh-2, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Asd, Cat, G6pdh, Gdh, Idh-1, Idh-2, M1p, Mdh-1, Mdh-3, Sdh-1 e Sdh-2, e dois alelos nos *loci* Adh, Lap e Po (Tabela 6).

População da escola FE (10 isolados): Sete (46,7%) de 15 *loci* enzimáticos foram polimórficos para dois alelos (Adh, Asd, Gdh, Idh-1, M1p, Mdh-2 e Po). Oito (53,3%) *loci* enzimáticos foram monomórficos (Cat, G6pdh, Idh-2, Lap, Mdh-1, Mdh-3, Sdh-1 e Sdh-2). O número médio de alelos por *locus* foi igual a 1,47, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 8 (80%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, Gdh, Idh-1, M1p, Mdh-2 e Po; 3 bandas: Mdh-2). Entre os homozigotos foram observados somente um alelo nos *loci* Adh, Asd, Cat, G6pdh, Gdh, Idh-1, Idh-2, Lap, M1p, Po, Mdh-1, Mdh-3, Sdh-1 e Sdh-2 (Tabela 7).

População da escola FMC (16 isolados): Nove (60%) de 15 *loci* enzimáticos foram polimórficos para dois e três alelos (2 alelos: Asd, G6pdh, Gdh, Idh-1, M1p, Mdh-2, Po e Sdh-2; 3 alelos: Adh). Seis (40%) *loci* enzimáticos foram monomórficos (Cat, Idh-2, Lap, Mdh-1, Mdh-3 e Sdh-1). O número médio de alelos por *locus* foi igual a 1,67, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,12. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 13 (81,2%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, G6pdh, Gdh, Idh-1, M1p, Mdh-2, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Adh, Asd, Cat, Gdh, Idh-1, Idh-2, Lap, Mdh-1, Mdh-3, Po e Sdh-1, e dois alelos nos *loci* G6pdh, M1p e Sdh-2 (Tabela 8).

População da escola HF (10 isolados): Sete (46,7%) de 15 *loci* enzimáticos foram polimórficos para dois alelos (Asd, Gdh, Idh-1, M1p, Mdh-2, Po e Sdh-2). Oito (53,3%) *loci* enzimáticos foram monomórficos (Adh, Cat, G6pdh, Idh-2, Lap, Mdh-1, Mdh-3 e Sdh-1). O número médio de alelos por *locus* foi igual a 1,47, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 8 (80%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Asd, Gdh, Idh-1, M1p, Mdh-2, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Adh, Asd, Cat, G6pdh, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-1, Mdh-2, Mdh-3, Po e Sdh-1, e dois alelos no *locus* Sdh-2 (Tabela 9).

População da escola LAE (11 isolados): Treze (86,7%) de 15 *loci* enzimáticos foram polimórficos para dois, três e quatro alelos (2 alelos: Adh, Cat, Mdh-1, Mdh-2 e Po; 3 alelos: Asd, G6pdh, Idh-1, Idh-2, M1p, Mdh-3 e Sdh-2; 4 alelos: Gdh). Dois (13.3%) *loci* enzimáticos foram monomórficos (Lap e Sdh-1). O número médio de alelos por *locus* foi igual a 2,47, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,75. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 11 (100%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, Gdh, G6pdh, Idh-1, Idh-2, M1p, Mdh-2, Mdh-3, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Adh, Gdh, Idh-2, Lap, Po, Sdh-1 e Sdh-2, dois alelos nos *loci* Asd, Cat, Idh-1, M1p, Mdh-1 e Mdh-3, e três alelos no *locus* G6pdh (Tabela 10).

População da escola MA (6 isolados): Oito (53,3%) de 15 *loci* enzimáticos foram polimórficos para dois alelos (Adh, Asd, Gdh, Idh-1, Lap, Mdh-1, Mdh-2 e Po). Sete (46,7%) *loci* enzimáticos foram monomórficos (Cat, G6pdh, Idh-2, M1p, Mdh-3, Sdh-1 e Sdh-2). O número médio de alelos por *locus* foi igual a 1,53, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 5 (83,3%) ETs. Heterozigotos revelaram duas bandas enzimáticas (Adh, Asd, Gdh, Idh-1, Lap, Mdh-1, Mdh-2 e Po). Entre os homozigotos foram observados somente um alelo nos *loci* Adh, Asd, Cat, G6pdh, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-1, Mdh-3, Po, Sdh-1 e Sdh-2 (Tabela 11).

População da escola MEP (7 isolados): Nove (60%) de 15 *loci* enzimáticos foram polimórficos para dois alelos (Adh, Asd, Gdh, Idh-1, M1p, Mdh-1, Mdh-2, Po e Sdh-2). Seis (40%) *loci* enzimáticos foram monomórficos (Cat, G6pdh, Idh-2, Lap, Mdh-3 e Sdh-1). O número médio de alelos por *locus* foi igual a 1,60, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 6 (85,7%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, Gdh, Idh-1, M1p, Mdh-1, Mdh-2, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados somente um alelo nos *loci* Adh, Asd, Cat, G6pdh, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-1, Mdh-2, Po, Sdh-1 e Sdh-2 (Tabela 12).

Figura 2. Zimograma representativo da expressão enzimática de isolados bucais de *C. albicans* provenientes de 75 escolares saudáveis.

Migração de enzimas ocorre a partir do pólo negativo (catodo) para o pólo positivo (anodo). Da esquerda para direita tem-se a amostra A10, A9, A15, A21, A7, A64, A50, A55, A20, A24, A17, A61, A52, A23, A33, A40, A1, A30, A48, B4, B31, B24, B38, B21, B5, B33, B11, B13, B56, B18, B16, B54, B15, B46, B23, B32, C5, C47, C16, C23, C48, C17, C12, C32, C4, C20, C44, C40, C33, C36, C9, CBS562, E7, E17, E39, E52, E57, E10, E48, E25, E32, D36, D19, D6, D13, D28, D23, D25, D5, D32, D14, D21, D20, E30, E43 e E8.

	Loci	Polimá	orficos		Média	Е	Ts	Н	h
Populações	n	%	n alelos	alelos/ <i>locus</i>	alelos/ <i>locus</i> polimórfico	n	%	n bandas	n alelos
AV	5	33,3	2-3	1,40	2,25	6	100	2	1-2
CS	7	46,7	2-3	1,53	2,17	7	77,8	2-3	1-2
FE	7	46,7	2	1,47	2	8	80	2-3	1
FMC	9	60	2-3	1,67	2,12	13	81,2	2-3	1-2
HF	7	46,7	2	1,47	2	8	80	2-3	1-2
LAE	13	86,7	2-3-4	2,47	2,75	11	100	2-3	1-2-3
MA	8	53,3	2	1,53	2	5	83,3	2	1
MEP	9	60	2	1,60	2	6	85,7	2-3	1
Média	8,125	-	-	1,642	2,161	-	86	-	-
Desvio Padrão	$\pm 2,356$	-	-	±0,344	$\pm 0,256$	-	± 8,95	-	-
TOTAL	14	93,3	1-2-3	2,80	2,92	43	57,3	2-3	1-2-3

Tabela 3. Características genéticas das (sub)populações de C. albicans.

ETs, H e h correspondem aos tipos eletroforéticos, heterozigotos e homozigotos, respectivamente.

Figura 3. Características genéticas das (sub)populações de *C. albicans: i.* Número de *locus* polimórfico; *ii.* Índice percentual do número de ETs; *iii.* Número médio de alelos por *locus*; *iv.* Número médio de alelos por *locus* polimórfico.

Tais resultados indicaram que 31 escolares saudáveis (AV = 1; CS = 4; FE = 4; FMC = 7; HF = 5; LAE = 7; MA = 2; MEP = 1) abrigaram na cavidade bucal diferentes ETs de *C. albicans*. Contudo, ETs idênticos foram encontrados em escolares das escolas AV e LAE (ET1_{A1-A30} e ET37_{B38-C4}), AV e MA (ET31_{A20-B56}), AV, FE, FMC, HF, MA e MEP (ET32_{B5-B11-B13-B23-C17-C36-C40-C44-C48-E57}), AV, FE e MA (ET10_{B4-B16-B46-B54}), CS, FE e FMC (ET24_{A15-A21-D23-D25-D36-E8}), CS e FMC (ET28_{D6-D14-E32}), CS, FMC, LAE e MEP (ET23_{A55-D5-D19-D21-D32-E10}), FE e MEP (ET9_{B31-C5}), FMC e HF (ET34_{B21-E52}), FMC e MEP (ET4_{D20-E48}) e, finalmente, em escolares das escolas HF, LAE e MEP (ET33_{A50-B33-C32}). ETs idênticos não foram identificados em escolares das escolas AV e CS, CS e HF, CS e MA, FE e LAE, LAE e MA, ou ainda, em escolares que freqüentaram somente as escolas AV ou LAE (Tabela 13 e Figura 4).

ЕТ	No. de					Alei	LOS D	е 15	Loci	Enz	ZIMÁT	ICOS*				
21	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
1	2	ab	ab	aa	ab	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
2	1	ab	ab	aa	bb	ab	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
3	1	ab	ab	aa	сс	ab	ac	aa	aa	aa	aa	ab	сс	aa	aa	aa
4	2	ab	ab	aa	cc	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	ab
5	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
6	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
7	1	ab	bb	aa	bb	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
8	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
9	2	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
10	4	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
11	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
12	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	ab
13	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
14	1	ab	bb	aa	сс	bb	aa	aa	ab	bb	ab	ab	-	aa	aa	bb
15	1	ab	bb	aa	сс	bb	aa	-	aa	bb	ab	bb	-	ab	aa	bb
16	1	bb	ab	aa	aa	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
17	1	bb	ab	aa	aa	bb	-	aa	aa	bb	aa	ab	сс	ab	aa	bb
18	1	bb	ab	aa	bb	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
19	1	bb	ab	aa	bb	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
20	1	bb	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	bb
21	1	bb	ab	аа	сс	ab	ac	aa	aa	ab	aa	ab	сс	ab	aa	bb
22	1	bb	ab	aa	сс	ab	ac	aa	ab	bb	aa	ab	сс	ab	aa	bb
23	6	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
24	6	bb	ab	аа	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
25	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
26	1	bb	ab	aa	сс	bb	aa	aa	aa	bc	aa	ab	bb	aa	aa	bb
27	1	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
28	3	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
29	1	bb	ab	aa	сс	cd	bb	bc	aa	сс	сс	-	ab	ab	аа	bb
30	1	bb	bb	aa	bb	bb	aa	aa	aa	bc	aa	ab	bb	ab	aa	bb
31	2	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	аа	bb
32	10	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
33	3	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
34	2	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	аа	bb
35	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	aa	aa	bb
36	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	ab	aa	bb
37	2	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	aa	аа	bb
38	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	ab	aa	aa
39	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	ab	aa	bb
40	1	bb	bb	aa	сс	bb	аа	-	aa	bb	aa	bb	-	ab	aa	bb
41	1	bb	сс	bb	bb	ab	ac	aa	aa	ab	aa	ab	сс	ab	-	cd
42	1	bc	bb	aa	сс	bb	aa	_	aa	bb	aa	ab	сс	aa	aa	bb
43	1	сс	bb	aa	сс	bb	aa	aa	сс	bb	aa	ab	сс	bb	aa	bb
$\Sigma 43$	Σ 75															

Tabela 4. Perfis alélicos em 43 ETs enzimáticos de C. albicans provenientes de 75 escolares saudáveis.

* Heterozigotos são apresentados como *ab*, *ac*, *bc* e *cd*. (-) alelo nulo.

FT	No. de					Alei	LOS D	DE 15	Loci	EN7	ZIMÁT	ICOS				
	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	2 MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
1	1	ab	ab	aa	ab	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
7	1	ab	bb	aa	bb	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
10	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
31	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
32	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
37	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	aa	aa	bb

Tabela 5. Perfis alélicos em 6 ETs enzimáticos de *C. albicans* isolados de 6 escolares saudáveis, provenientes da escola AV.

* Heterozigotos são apresentados como ab. (-) alelo nulo.

Tabela 6. Perfis alélicos em 7 ETs enzimáticos de *C. albicans* isolados de 9 escolares saudáveis, provenientes da escola CS.

ЕТ	No. de					ALEI	LOS D	е 15	Loci	ENZ	ZIMÁT	'ICOS				
L	isolados	ADH	ASD	CAT	G6PDH	Gdh	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	2 MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
5	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
12	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	ab
23	2	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
24	2	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
25	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
28	1	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
43	1	сс	bb	aa	сс	bb	aa	aa	сс	bb	aa	ab	сс	bb	aa	bb

* Heterozigotos são apresentados como ab e ac. (-) alelo nulo.

Tabela 7. Perfis alélicos em 8 ETs enzimáticos de *C. albicans* isolados de 10 escolares saudáveis, provenientes da escola FE.

ЕТ	No. de					Alei	LOS D	DE 15	Loci	ENZ	ZIMÁT	'ICOS*				
1/1	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
6	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
9	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
10	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
11	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
20	1	bb	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	bb
24	2	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
27	1	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
32	2	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb

* Heterozigotos são apresentados como *ab* e *ac*. (-) alelo nulo.

FТ	No. de					Alei	LOS D	е 15	Loci	Enz	ZIMÁT	ICOS*				
	isolados	ADH	ASD	CAT	G6PDH	Gdh	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
2	1	ab	ab	aa	bb	ab	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
3	1	ab	ab	aa	сс	ab	ac	aa	aa	aa	aa	ab	сс	aa	aa	aa
4	1	ab	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	ab
8	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
13	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
19	1	bb	ab	aa	bb	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
23	2	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
24	2	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
28	2	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
32	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
34	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
35	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	aa	aa	bb
42	1	bc	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	aa	aa	bb

Tabela 8. Perfis alélicos em 13 ETs enzimáticos de *C. albicans* isolados de 16 escolares saudáveis, provenientes da escola FMC.

* Heterozigotos são apresentados como *ab*, *ac* e *bc*. (-) alelo nulo.

Tabela 9. Perfis alélicos em 8 ETs enzimáticos de *C. albicans* isolados de 10 escolares saudáveis, provenientes da escola HF.

FТ	No. de					Alei	LOS D	DE 15	Loci	y Enz	ZIMÁT	'ICOS	•			
171	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	2 MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
21	1	bb	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	ab	aa	bb
32	3	bb	bb	aa	cc	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
33	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
34	1	bb	bb	aa	cc	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
36	1	bb	bb	aa	cc	bb	aa	-	aa	bb	aa	ab	сс	ab	aa	bb
38	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	ab	aa	aa
39	1	bb	bb	aa	cc	bb	aa	-	aa	bb	aa	ab	-	ab	aa	bb
40	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	bb	-	ab	aa	bb

 * Heterozigotos são apresentados como ab e ac. (-) alelo nulo.

FT	No. de					Alei	LOS D	DE 15	Loci	i Enz	ZIMÁT	'ICOS*				
	isolados	ADH	ASD	CAT	G6PDH	Gdh	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
1	1	ab	ab	aa	ab	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
16	1	bb	ab	aa	aa	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
17	1	bb	ab	aa	aa	bb	-	aa	aa	bb	aa	ab	сс	ab	aa	bb
18	1	bb	ab	aa	bb	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
23	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
26	1	bb	ab	aa	cc	bb	aa	aa	aa	bc	aa	ab	bb	aa	aa	bb
29	1	bb	ab	aa	сс	cd	bb	bc	aa	сс	сс	-	ab	ab	aa	bb
30	1	bb	bb	aa	bb	bb	aa	aa	aa	bc	aa	ab	bb	ab	aa	bb
33	1	bb	bb	aa	cc	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
37	1	bb	bb	aa	cc	bb	aa	-	aa	bb	aa	ab	-	aa	aa	bb
41	1	bb	сс	bb	bb	ab	ac	aa	aa	ab	aa	ab	сс	ab	-	cd

Tabela 10. Perfis alélicos em 11 ETs enzimáticos de *C. albicans* isolados de 11 escolares saudáveis, provenientes da escola LAE.

* Heterozigotos são apresentados como *ab*, *ac*, *bc* e *cd*. (-) alelo nulo.

Tabela 11. Perfis alélicos em 5 ETs enzimáticos de *C. albicans* isolados de 6 escolares saudáveis, provenientes da escola MA.

ЕТ	No. de					Alei	LOS D	е 15	Loci	' Enz	ZIMÁT	'ICOS	•			
121	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	2 MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
10	2	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
14	1	ab	bb	aa	сс	bb	aa	aa	ab	bb	ab	ab	-	aa	aa	bb
22	1	bb	ab	aa	сс	ab	ac	aa	ab	bb	aa	ab	сс	ab	aa	bb
31	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
32	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb

* Heterozigotos são apresentados como *ab* e *ac*. (-) alelo nulo.

Tabela 12. Perfis alélicos em 6 ETs enzimáticos de *C. albicans* isolados de 7 escolares saudáveis, provenientes da escola MEP.

FТ	No. de					Alei	LOS D	е 15	Loci	ENZ	ZIMÁT	ICOS	ŀ			
ĽI	isolados	ADH	ASD	САТ	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	2 MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
4	1	ab	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	ab
9	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
15	1	ab	bb	aa	сс	bb	aa	-	aa	bb	ab	bb	-	ab	aa	bb
23	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
32	2	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
33	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb

* Heterozigotos são apresentados como ab e ac. (-) alelo nulo.
Tabela 13. Distribuição de 43 ETs enzimáticos de C. albicans em 75 escolares saudáveis, provenientes de oito escolas.

Figura 4. Perfil quantitativo dos ETs enzimáticos de C. albicans.

freqüentaram instituições do ensino fundamental e - corresponde à ausência do ET.

NÚMERO DE ISOLADOS

Análises de diversidade genética. A heterozigosidade média da população total de isolados (Tabela 14) foi igual a 0,191. Heterozigosidade média igual a 0,391, 0,332, 0,277, 0,301, 0,221, 0,334, 0,274 e 0,236, foi observada em (sub)populações de *C. albicans* isoladas de escolares provenientes das escolas AV, CS, FE, FMC, HF, LAE, MA e MEP, respectivamente (Tabelas 15 a 22 e Figura 5). Em todas as (sub)populações avaliadas pelo teste de equilíbrio de Hardy-Wienberg não ocorreu divergência significante entre as freqüências genotípicas observadas e esperadas (Tabelas 23 a 31).

Tabela 14. Freqüências alélicas e heterozigosidades resultantes da população total de *C. albicans* isolada de 75 escolares saudáveis.

Logi		Alel	os		и
Loci Adh Asd Cat G6pdh Gdh Idh-1 Idh-2 Lap M1p Mdb-1	p(a)	p(b)	p(c)	p(d)	11
Adh	0,138	0,842	0,020	0	0,272
Asd	0,224	0,763	0,013	0	0,367
Cat	0,987	0,013	0	0	0,026
G6pdh	0,040	0,092	0,868	0	0,237
Gdh	0,052	0,934	0,007	0,007	0,125
Idh-1	0,894	0,013	0,093	0	0,192
Idh-2	0,984	0,008	0,008	0	0,032
Lap	0,974	0,013	0,013	0	0,051
M1p	0,046	0,928	0,026	0	0,136
Mdh-1	0,967	0,020	0,013	0	0,064
Mdh-2	0,487	0,513	0	0	0,500
Mdh-3	0,009	0,042	0,949	0	0,098
Po	0,684	0,316	0	0	0,432
Sdh-1	1,000	0	0	0	0
Sdh-2	0,059	0,927	0,007	0,007	0,137

H média (loci polimórficos) = 0,191

Tabela 16. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola CS.

Loci		Alel	os		н
Loci	p(a)	p(b)	p(c)	p(d)	- 11
Adh	0,11	0,78	0,11	0	0,367
Asd	0,39	0,61	0	0	0,476
Cat	1,00	0	0	0	0
G6pdh	0	0	1,00	0	0
Gdh	0	1,00	0	0	0
Idh-1	0,94	0	0,06	0	0,113
Idh-2	1,00	0	0	0	0
Lap	0,89	0	0,11	0	0,196
M1p	0	1,00	0	0	0
Mdh-1	1,00	0	0	0	0
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0	0	1,00	0	0
Ро	0,61	0,39	0	0	0,476
Sdh-1	1,00	0	0	0	0
Sdh-2	0,11	0,89	0	0	0,196

H média (loci polimórficos) = 0,332

Tabela 15. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola AV.

Loci -		Alel	os		ц
LOCI	p(a)	p(b)	p(c)	p(d)	- 11
Adh	0,25	0,75	0	0	0,375
Asd	0,08	0,92	0	0	0,152
Cat	1,00	0	0	0	0
G6pdh	0,08	0,25	0,67	0	0,486
Gdh	0	1,00	0	0	0
Idh-1	1,00	0	0	0	0
Idh-2	1,00	0	0	0	0
Lap	1,00	0	0	0	0
M1p	0	1,00	0	0	0
Mdh-1	1,00	0	0	0	0
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0	0	1,00	0	0
Ро	0,67	0,33	0	0	0,444
Sdh-1	1,00	0	0	0	0
Sdh-2	0	1,00	0	0	0

H média (loci polimórficos) = 0,391

Tabela 17. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola FE.

Loci		Alel	os		н
Loci -	p(a)	p(b)	p(c)	p(d)	- 11
Adh	0,20	0,80	0	0	0,320
Asd	0,25	0,75	0	0	0,375
Cat	1,00	0	0	0	0
G6pdh	0	0	1,00	0	0
Gdh	0,05	0,95	0	0	0,095
Idh-1	0,90	0	0,10	0	0,180
Idh-2	1,00	0	0	0	0
Lap	1,00	0	0	0	0
M1p	0,05	0,95	0	0	0,095
Mdh-1	1,00	0	0	0	0
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0	0	1,00	0	0
Po	0,75	0,25	0	0	0,375
Sdh-1	1,00	0	0	0	0
Sdh-2	0	1,00	0	0	0

H média (loci polimórficos) = 0,277

Tabela 18. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola FMC.

Loci – Adh Asd Cat G6pdh Gdh Idh-1 Idh-2 Lap M1p Mdh-1 Mdh-2 Mdh-3 Po		Alel	os		н
	p(a)	p(b)	p(c)	p(d)	- 11
Adh	0,16	0,81	0,03	0	0,317
Asd	0,31	0,69	0	0	0,428
Cat	1,00	0	0	0	0
G6pdh	0	0,12	0,88	0	0,211
Gdh	0,09	0,91	0	0	0,164
Idh-1	0,81	0	0,19	0	0,308
Idh-2	1,00	0	0	0	0
Lap	1,00	0	0	0	0
M1p	0,09	0,91	0	0	0,164
Mdh-1	1,00	0	0	0	0
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0	0	1,00	0	0
Ро	0,72	0,28	0	0	0,403
Sdh-1	1,00	0	0	0	0
Sdh-2	0,12	0,88	0	0	0,211

H média (loci polimórficos) = 0,301

Tabela 20. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola LAE.

Loci		Alel	os		н
Loci	p(a)	p(b)	p(c)	p(d)	. 11
Adh	0,04	0,96	0	0	0,077
Asd	0,32	0,59	0,09	0	0,541
Cat	0,91	0,09	0	0	0,164
G6pdh	0,23	0,32	0,45	0	0,642
Gdh	0,05	0,85	0,05	0,05	0,270
Idh-1	0,80	0,10	0,10	0	0,340
Idh-2	0,90	0,05	0,05	0	0,185
Lap	1,00	0	0	0	0
M1p	0,05	0,77	0,18	0	0,372
Mdh-1	0,91	0	0,09	0	0,164
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0,06	0,31	0,63	0	0,503
Ро	0,73	0,27	0	0	0,394
Sdh-1	1,00	0	0	0	0
Sdh-2	0	0,90	0,05	0,05	0,185

H média (loci polimórficos) = 0,334

Tabela 22. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola MEP.

Loci		Alel	05		н
Loci	p(a)	p(b)	p(c)	p(d)	п
Adh	0,21	0,79	0	0	0,332
Asd	0,14	0,86	0	0	0,241
Cat	1,00	0	0	0	0
G6pdh	0	0	1,00	0	0
Gdh	0,07	0,93	0	0	0,130
Idh-1	0,93	0	0,07	0	0,130
Idh-2	1,00	0	0	0	0
Lap	1,00	0	0	0	0
M1p	0,07	0,93	0	0	0,130
Mdh-1	0,93	0,07	0	0	0,130
Mdh-2	0,43	0,57	0	0	0,490
Mdh-3	0	0	1,00	0	0
Ро	0,71	0,29	0	0	0,412
Sdh-1	1,00	0	0	0	0
Sdh-2	0,07	0,93	0	0	0,130

H média (loci polimórficos) = 0,236

Tabela 19. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola HF.

Loci -		Alelos					
Loci	p(a)	p(b)	p(c)	p(d)	п		
Adh	0	1,00	0	0	0		
Asd	0,05	0,95	0	0	0,095		
Cat	1,00	0	0	0	0		
G6pdh	0	0	1,00	0	0		
Gdh	0,05	0,95	0	0	0,095		
Idh-1	0,95	0	0,05	0	0,095		
Idh-2	1,00	0	0	0	0		
Lap	1,00	0	0	0	0		
M1p	0,05	0,95	0	0	0,095		
Mdh-1	1,00	0	0	0	0		
Mdh-2	0,45	0,55	0	0	0,495		
Mdh-3	0	0	1,00	0	0		
Ро	0,55	0,45	0	0	0,495		
Sdh-1	1,00	0	0	0	0		
Sdh-2	0,10	0,90	0	0	0,180		

H média (loci polimórficos) = 0,221

Tabela 21. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de escolares saudáveis provenientes da escola MA.

Loci		Alel	os		н
Loci	p(a)	p(b)	p(c)	p(d)	п
Adh	0,25	0,75	0	0	0,375
Asd	0,08	0,92	0	0	0,147
Cat	1,00	0	0	0	0
G6pdh	0	0	1,00	0	0
Gdh	0,08	0,92	0	0	0,147
Idh-1	0,92	0	0,08	0	0,147
Idh-2	1,00	0	0	0	0
Lap	0,83	0,17	0	0	0,282
M1p	0	1,00	0	0	0
Mdh-1	0,92	0,08	0	0	0,147
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0	0	1,00	0	0
Ро	0,67	0,33	0	0	0,442
Sdh-1	1,00	0	0	0	0
Sdh-2	0	1,00	0	0	0

H média (loci polimórficos) = 0,274

Figura 5. Perfis da heterozigosidade média (*loci* polimórficos) de diferentes (sub)populações de *C. albicans*.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	cia (ETS)	χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0,020		0	0.033	
	bb	0,693	0,706		0,590	0,614	
	сс	0,013	<0,001		0,023	0,001	
	ab	0,281	0,236		0,364	0,285	
	ac	0	0,005		0	0,013	
	bc	0,013	0,033		0,023	0,054	
		Σ1,0	Σ 1,0	Σ 0,465	Σ 1,0	Σ1,0	Σ 0,486
Asd	aa	0	0,051		0	0,057	
	bb	0,534	0,578		0,500	0,545	
	сс	0,013	<0,001		0,023	0,001	
	ab	0,453	0,345		0,477	0,352	
	ac	0	0,006		0	0,011	
	bc	0	0,020		0	0,034	
		Σ1,0	Σ1,0	Σ 1,089	Σ1,0	Σ1,0	Σ 1,104
Cat	aa	0,987	0,974		0,977	0,955	
	bb	0,013	<0,001		0,023	<0,001	
	ab	0	0,026		0	0,045	
		Σ1,0	Σ 1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0
G6pdh	aa	0,027	0,002		0,045	0,003	
-	bb	0,080	0,009		0,136	0,022	
	сс	0,866	0,750		0,796	0,633	
	ab	0,027	0,007		0,023	0,017	
	ac	0	0,070		0	0,090	
	bc	0	0,162		0	0,235	
		Σ1,0	Σ 1,0	Σ 1,273	Σ 1,0	Σ1,0	Σ 1,516
Gdh	aa	0	0,003		0	0,008	
	bb	0,880	0,871		0,795	0,785	
	сс	0	<0,001		0	<0,001	
	dd	0	<0,001		0	<0,001	
	ab	0,107	0,100		0,182	0,161	
	ac	0	0,001		0	0,002	
	ad	0	0,001		0	0,002	
	bc	0	0,012		0	0,021	
	bd	0	0,012		0	0,021	
	cd	0,013	<0,001		0,023	<0,001	
		Σ1,0	Σ1,0	Σ 2,003	Σ 1,0	Σ1,0	Σ 2,011
Idh-1	aa	0,797	0,795		0,698	0,701	
	bb	0,014	<0,001		0,023	0,001	
	СС	0	0,009		0	0,019	
	ab	0	0,025		0	0,039	
	ac	0,189	0,168		0,279	0,234	
	bc	0	0,003	P 1 011	0	0,006	F 1 020
		Σ 1,0	Σ 1,0	Σ 1,011	Σ 1,0	Σ 1,0	Σ 1,028
Idh-2	aa	0,985	0,970		0,972	0,946	
	bb	0	<0,001		0	<0,001	
	сс	0	<0,001		0	<0,001	
	ab	0	0,015		0	0,027	
	ac	0	0,015		0	0,027	
	bc	0,015	<0,001	F 3 666	0,028	<0,001	F 3 000
		2, 1,0	<u>2</u> 1,0	Σ 2,000	£ 1,0	2 1,0	Σ 2,000

Tabela 23. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (14 polimórficos/1 monomórfico), resultantes da população total de *C. albicans* isolada de 75 escolares saudáveis.

Tabela 23. Continuação.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	cia (ETS)	χ^2
Enzimáticos	-	Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Lap	aa	0,960	0,948		0,932	0,912	
1	bb	0	<0,001		0	<0,001	
	сс	0,013	<0,001		0,023	<0,001	
	ab	0,027	0,026		0,045	0,043	
	ac	0	0.025		0	0.044	
	bc	0	< 0.001		0	0.001	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,001
M1p	aa	0,013	0,002		0,023	0,006	
1	bb	0.880	0.859		0.795	0.765	
	сс	0.013	0.001		0.023	0.002	
	ab	0.067	0.086		0.114	0.140	
	ac	0	0.003		0	0.007	
	bc	0.027	0.049		0.045	0.080	
		Σ1,0	Σ1,0	Σ 0,287	Σ 1,0	Σ1,0	Σ 0,283
Mdh-1	aa	0.960	0.948	- / -	0.932	0.911	.,
	hh	0	<0.001		0	0.001	
	00 CC	0.013	<0,001		0.023	0.001	
	ah	0.027	0.026		0.045	0.043	
	ac	0,027	0,025		0,045	0.043	
	hc	0	<0.001		0	0.001	
		Σ 1,0	Σ 1,0	Σ1,0	Σ 1,0	Σ 1,0	Σ 1,001
Mdh-2	aa	0	0.237	,	0	0.227	,
	hh	0.027	0.264		0.047	0.274	
	ah	0.973	0.499		0.953	0.499	
	uo	Σ 1,0	Σ 1,0	Σ 0,898	Σ 1,0	Σ 1,0	Σ 0,828
Mdh-3	aa	0	<0.001	,	0	<0.001	,
intuit o	bb	0.035	0.002		0.065	0.007	
	60 60	0,035	0,899		0,003	0.815	
	ah	0,040	0,001		0,032	0,013	
	ac	0,017	0,001		0,052	0,005	
	hc	0	0.082		0	0,029	
	bt	Σ 1,0	Σ 1,0	Σ 1.038	Σ 1,0	Σ 1,0	Σ 1.039
Po	<i>aa</i>	0.374	0.463	_ ,	0.409	0.480	_ ,
10	bb	0,013	0,403		0,402	0,480	
	ab	0,613	0,102		0,568	0,426	
	ub	Σ 1.0	Σ 1.0	Σ 0.168	Σ 1.0	Σ 1.0	Σ.0.112
Sdb-1	aa	1	1	2 0,100	1	1	_ 0,112
Sull-1	uu	Σ 1.0	Σ.1.0	Σ00	Σ.1.0	Σ 1.0	ΣΟΟ
Sdb 2		0.027	0.004	20,0	0.045	0.011	20,0
Sull-2	44	0,027	0,004		0,043	0,011	
	DD	0,895	0,838		0,818	0,700	
	cc	0	<0,001		0	<0,001	
	da _1	0.067	0.112		0 114	NU,001	
	ab	0,007	0,112		0,114	0,179	
	ac	U	0,001		U	0,002	
	ad	U	0,001		U	0,002	
	bc	0	0,012		0	0,020	
	bd	0 012	0,012		0 022	0,020	
	cd	0,013	<0,001 510	F 2 160	0,023 S 1 0	<0,001 510	5 2 1 4 1
		2.1,0	21,0	2 2,168	2 1,0	2 1,0	2,141

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	tia (ETS)	χ^2
Enzimáticos		Observada	Esperada*	v=k-1 P=0,01	Observada	Esperada*	v=k-1 P=0,01
Adh	aa	0	0,062		0	0,062	
	bb	0,500	0,563		0,500	0,563	
	ab	0,500	0,375		0,500	0,375	
		Σ1,0	Σ1,0	Σ 0,111	Σ1,0	Σ1,0	Σ 0,111
Asd	aa	0	0,007		0	0,007	
	bb	0,833	0,840		0,833	0,840	
	ab	0,167	0,153		0,167	0,153	
		Σ 1,0	Σ1,0	Σ 0,008	Σ 1,0	Σ1,0	Σ 0,008
Cat	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
G6pdh	aa	0	0,007		0	0,007	
	bb	0,167	0,063		0,167	0,063	
	сс	0,666	0,444		0,666	0,444	
	ab	0,167	0,042		0,167	0,042	
	ac	0	0,111		0	0,111	
	bc	0	0,333		0	0,333	
		Σ1,0	Σ1,0	Σ 1,111	Σ 1,0	Σ1,0	Σ 1,111
Gdh	bb	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
Idh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
Idh-2	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Lap	aa	1	1		1	1	
-		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
M1p	bb	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
Mdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
Mdh-2	aa	0	0.250		0	0.250	
	hh	0	0,250		0	0,250	
	ah	1	0,500		1	0,500	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0
Mdh-3	cc	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
Po	aa	0 333	0 444		0 333	0 444	
	bb	0	0.111		0	0.111	
	ab	0.667	0.445		0.667	0.445	
		Σ1,0	Σ1,0	Σ 0,250	Σ 1,0	Σ1,0	Σ 0,250
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ0,0
Sdh-2	bb	1	1		1	1	
		Σ1.0	Σ 1.0	Σ.0.0	Σ 1.0	Σ1.0	Σ.0.0

Tabela 24. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (5 polimórficos/10 monomórficos), resultantes da (sub)população de *C. albicans* isolada de escolares saudáveis provenientes da escola AV.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	tia (ETS)	χ^2
Enzimáticos	0 P .	Observada	Esperada [*]	v = k - 1 P = 0.01	Observada	Esperada [*]	v = k - 1 P = 0.01
Adh		0	0.012	,.	0	0.020	
Auli	aa bb	0	0,012		0 571	0,020	
	00 66	0,007	0,005		0,143	0,020	
	ah	0.222	0,012		0,145	0,020	
	ac	0,222	0.025		0,200	0.041	
	bc	0	0.173		0	0.204	
		Σ1,0	Σ1,0	Σ 1,020	Σ 1,0	Σ1,0	Σ 1,040
Asd	aa	0	0.152		0	0.128	
	bb	0.222	0.373		0.286	0.413	
	ab	0,778	0,475		0,714	0,459	
		Σ 1,0	Σ1,0	Σ 0,405	Σ 1,0	Σ1,0	Σ 0,308
Cat	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
G6ndh	cc	1	1		1	1	
oopun		Σ 1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Gdh	hh	1	1	,.	1	1	,.
Gui	00	Σ 1,0	Σ 1,0	Σ 0.0	Σ 1,0	Σ1,0	Σ 0.0
Idh-1	<i>aa</i>	0.880	0.802	_ 0,0	0.857	0.862	_ 0,0
Iuli-1	aa	0,889	0,092		0,857	0,802	
		0 111	0,005		0 143	0,005	
	uc	Σ 1.0	Σ 1.0	Σ 0.003	Σ 1.0	Σ 1.0	Σ.0.006
Idh 2		- ,	- /	- 0,000	1	- ,-	_ 0,000
1uii-2	aa	Σ10	Σ10	2 0 000	$\Sigma 10$	Σ10	200
T		21,0	2 1,0	20,000	21,0	2 1,0	20,0
гар	aa	0,889	0,791		0,857	0,735	
	cc	0,111	0,012		0,143	0,020	
	uc	Σ.1.0	0,197 Σ1.0	Σ10	Σ.1.0	0,243 Σ.1.0	Σ10
M1n	1.1		,-	21,0	,-		21,0
wiip	DD	Γ Σ10	Γ Σ10	200	Γ Σ10	Γ Σ10	200
M.H. 1		21,0	2 1,0	20,0	2 1,0	2 1,0	20,0
Man-1	aa	[510	[510	F 0 0	[510	1 510	200
		21,0	21,0	2.0,0	2 1,0	21,0	2.0,0
Mdh-2	aa	0	0,250		0	0,250	
	bb	0	0,250		0	0,250	
	ab	Γ Σ10	0,500 Σ10	5 10	1 510	0,500 510	510
		21,0	21,0	21,0	21,0	21,0	21,0
Mdh-3	сс	1	1	F 0 0	1	1	200
		21,0	21,0	2.0,0	21,0	21,0	2.0,0
Po	aa	0,333	0,373		0,286	0,327	
	bb	0,111	0,151		0,143	0,184	
	ab	0,556	0,476	5 0020	0,571	0,489 S 1 0	Z 0 038
		21,0	21,0	2.0,029	21,0	21,0	2.0,028
Sdh-1	aa	1	1	-	1	1	
		<u>2</u> 1,0	£ 1,0	Σ 0,0	Σ 1,0	Σ 1,0	Σ 0,0
Sdh-2	aa	0	0,012		0	0,020	
	bb	0,778	0,791		0,714	0,735	
	ab	0,222	0,197		0,286	0,245	
		Σ 1,0	Σ 1,0	Σ 0.016	Σ 1,0	Σ 1,0	$\Sigma 0.028$

Tabela 25. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (7 polimórficos/8 monomórficos), resultantes da (sub)população de *C. albicans* isolada de escolares saudáveis provenientes da escola CS.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Fregüêna	ia (ETS)	χ^2	
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01	
Adh	aa	0	0.040		0	0.063		
- Tun	hh	0,600	0,640		0 500	0,562		
	ah	0.400	0.320		0,500	0,302		
	ub	Σ 1,0	Σ 1,0	Σ 0.063	Σ 1,0	Σ 1,0	Σ 0.111	
Acd	22	0	0.063	,	0	0.063	,	
Asu	uu bb	0 500	0,003		0 500	0,003		
		0,500	0,302		0,500	0,302		
	av	0,500 Σ1.0	0,373 Σ1.0	Σ0111	0,300 Σ.1.0	0,375 Σ.1.0	Σ0111	
Cat		_ 1,0	_ 1,0	20,111	_ 1,0	_ 1,0	20,111	
Cat	aa	1	1		[510	1	500	
		2 1,0	2 1,0	2.0,0	2 1,0	21,0	2.0,0	
G6pdh	сс	1	1		1	1		
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0	
Gdh	aa	0	0,003		0	0,004		
	bb	0,900	0,902		0,875	0,879		
	ab	0,100	0,095		0,125	0,117		
		Σ1,0	Σ1,0	Σ 0,003	Σ 1,0	Σ1,0	Σ 0,004	
Idh-1	aa	0,800	0,810		0,750	0,765		
	сс	0	0,010		0	0,016		
	ac	0,200	0,180		0,250	0,219		
		Σ 1,0	Σ1,0	Σ 0,012	Σ 1,0	Σ1,0	Σ 0,020	
Idh-2	aa	1	1		1	1		
		Σ 1,0	Σ1,0	Σ 0.0	Σ 1,0	Σ1,0	Σ 0.0	
Lon	22	1	1		1	1		
Lap	uu	Σ 1.0	Σ 1.0	Σ00	Σ.1.0	Σ 1.0	ΣΟΟ	
M1			= -,= 0.002	20,0	,-	_ -,-	20,0	
MIP	aa	0	0,003		0	0,004		
	bb	0,900	0,902		0,875	0,879		
	ab	0,100	0,095	F 0 002	0,125	0,117	F 0 004	
		21,0	21,0	2 0,003	21,0	21,0	2.0,004	
Mdh-1	aa	1	1		1	1		
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ 1,0	Σ 0,0	
Mdh-2	aa	0	0,250		0	0,250		
	bb	0	0,250		0	0,250		
	ab	1	0,500		1	0,500		
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0	
Mdh-3	сс	1	1		1	1		
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0	
Ро	aa	0.500	0.562		0.625	0.660		
	bb	0	0.063		0	0.035		
	ab	0.500	0.375		0.375	0.305		
		Σ1,0	Σ1,0	Σ 0,111	Σ 1,0	Σ1,0	Σ 0,053	
Sdh-1	00	1	1	/	1	1	,	
Juil 1	ш	Σ 1.0	Σ 1.0	Σ 0.0	Σ 1.0	Σ 1.0	Σ 0.0	
Sdh 2	11	,~	,.	_ 0,0	_ 1,0	,~	- 0,0	
Sull-2	DD	1	1	5 00	[510	1 510	E 0 0	
		Z 1,0	2 1,0	20,0	2 1,0	2 1,0	2,0,0	

Tabela 26. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (7 polimórficos/8 monomórficos), resultantes da (sub)população de *C. albicans* isolada de escolares saudáveis provenientes da escola FE.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	cia (ETS)	χ^2	
Enzimáticos	·· r ·	Observada	Esperada [*]	v=k-1 P=0,01	Observada Esperada [*]		v=k-1 P=0,01	
Adh	aa	0	0.024		0	0.037		
	bb	0.625	0.660		0.538	0.591		
	сс сс	0	0.001		0	0.001		
	ab	0.312	0.254		0.385	0.296		
	ac	0	0,010		0	0.015		
	bc	0.063	0.051		0.077	0.060		
		Σ1,0	Σ1,0	Σ 0,053	Σ 1,0	Σ1,0	Σ 0,090	
Asd	aa	0	0.098	,	0	0.072	,	
	bb	0.375	0.473		0.462	0.534		
	ab	0,625	0,429		0,538	0,394		
		Σ 1,0	Σ1,0	Σ 0,207	Σ 1,0	Σ1,0	Σ 0,135	
Cat	aa	1	1	,	1	1	,	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0	
G6pdh	bb	0,125	0,016		0,154	0,024		
	сс	0,875	0,765		0,846	0,715		
	bc	0	0,219		0	0,261		
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0	
Gdh	aa	0	0,009	,	0	0,013	,	
	bb	0,812	0,821		0,769	0,783		
	ab	0.188	0.170		0.231	0.204		
		Σ1,0	Σ 1,0	Σ 0,011	Σ 1,0	Σ1,0	Σ 0,017	
Idh-1	aa	0,625	0,660		0,615	0,652		
	сс	0	0,035		0	0,037		
	ac	0.375	0.305		0.385	0.311		
		Σ1,0	Σ1,0	Σ 0,053	Σ 1,0	Σ1,0	Σ 0,057	
Idh-2	aa	1	1	,	1	1	,	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0	
Lap	aa	1	1		1	1		
-		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0	
M1p	aa	0,063	0,009		0,077	0,013		
	bb	0,874	0,820		0,846	0,783		
	ab	0,063	0,171		0,077	0,204		
		Σ1,0	Σ1,0	Σ 0,399	Σ 1,0	Σ1,0	Σ 0,388	
Mdh-1	aa	1	1		1	1		
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0	
Mdh-2	aa	0	0,250		0	0,250		
	bb	0	0,250		0	0,250		
	ab	1	0,500		1	0,500		
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0	
Mdh-3	сс	1	1		1	1		
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0	
Ро	aa	0,438	0,517		0,462	0,534		
	bb	0	0,079		0	0,072		
	ab	0,562	0,404		0,538	0,394		
		Σ1,0	Σ 1,0	Σ 0,153	Σ 1,0	Σ1,0	Σ 0,135	
Sdb-1	0.2	1	1		1	1		
Sull-1	uu	Σ 1.0	Σ _{1.0}	Σ00	Σ 1.0	Σ ₁ .0	ΣΟΟ	
Sdh-2	0.2	0.063	0.016	20,0	0.077	0.024	2 0,0	
5ull-2	uu bb	0.812	0,010		0,077	0,024		
	ah	0.125	0,705		0,709	0,710		
	uv	5,125 Σ10	5,219 Σ10	Σ 0 185	5,134	5,200 Σ10	Σ 0 167	

Tabela 27. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (9 polimórficos/6 monomórficos), resultantes da (sub)população de *C. albicans* isolada de escolares saudáveis provenientes da escola FMC.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüêno	cia (ETS)	χ^2
Enzimáticos	-	Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	bb	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ1,0	Σ1,0	Σ 0,0
Asd	aa	0	0,003		0	0,004	
	bb	0,900	0,903		0,875	0,879	
	ab	0,100	0,094		0,125	0,117	
		Σ1,0	Σ1,0	Σ 0,003	Σ 1,0	Σ1,0	Σ 0,004
Cat	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
G6pdh	сс	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Gdh	aa	0	0,003		0	0,004	
	bb	0,900	0,903		0,875	0,879	
	ab	0,100	0,094		0,125	0,117	
		Σ1,0	Σ1,0	Σ 0,003	Σ 1,0	Σ1,0	Σ 0,004
Idh-1	aa	0,900	0,903		0,875	0,879	
	сс	0	0,003		0	0,004	
	ac	0,100	0,094		0,125	0,117	
		Σ1,0	Σ1,0	Σ 0,003	Σ 1,0	Σ1,0	Σ 0,004
Idh-2	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Lad	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
M1n	aa	0	0.003		0	0.004	
p	bb	0.900	0.903		0.875	0.879	
	ab	0.100	0.094		0.125	0.117	
		Σ1,0	Σ1,0	Σ 0,003	Σ 1,0	Σ1,0	Σ 0,004
Mdh-1	aa	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0.0	Σ1,0	Σ1,0	Σ 0.0
Mdh-2	aa	0	0.203	,	0	0 191	,
Widii-2	uu bb	0.100	0,203		0 125	0,191	
	ab	0,900	0,302		0.875	0.492	
	uo	Σ 1,0	Σ 1,0	Σ 0,669	Σ 1,0	Σ 1,0	Σ 0,605
Mdh-3	<i></i>	1	1	,	1	1	_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Widii-5	<i>cc</i>	$\Sigma 1.0$	Σ1.0	Σ.0.0	Σ 1.0	Σ1.0	Σ.0.0
Po		0.100	0.302	_ 0,0	0.125	0.317	_ 0,0
10	aa bb	0,100	0,302		0,125	0,317	
	ob ab	0 000	0,205		0.875	0,191	
	uv	Σ 1.0	Σ1,0	Σ 0.669	Σ 1.0	Σ 1,0	Σ 0.605
Sdb-1	0.2	1	1	,	1	1	,
Sull-1	uu	Σ Σ 1.0	Σ Σ 1.0	Σ00	Σ Σ 1.0	Σ Σ 1.0	Σ.0.0
Sah 2		0.100		- 0,0	0.125	0.016	- 0,0
Sull-2	<i>aa</i>	0,100	0,010		0,125	0.765	
	DD ab	0,900	0,810		0,875	0,703	
	μD	Σ 10	0,180 Σ10	S 10	5 10	5,219 510	5 10

Tabela 28. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (7 polimórficos/8 monomórficos), resultantes da (sub)população de *C. albicans* isolada de escolares saudáveis provenientes da escola HF.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	tia (ETS)	χ^2
Enzimáticos		Observada	Esperada*	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0,002		0	0,002	
	bb	0,909	0,911		0,909	0,911	
	ab	0,091	0,087		0,091	0,087	
		Σ1,0	Σ1,0	Σ 0,002	Σ 1,0	Σ1,0	Σ 0,002
Asd	aa	0	0.101		0	0.101	
	bb	0.273	0.349		0.273	0.349	
	сс	0,091	0,008		0,091	0,008	
	ab	0,636	0,376		0,636	0,376	
	ac	0	0,058		0	0,058	
	bc	0	0,108		0	0,108	
		Σ1,0	Σ1,0	Σ 1,290	Σ1,0	Σ1,0	Σ 1,290
Cat	aa	0,909	0.827		0.909	0.827	
	bb	0,091	0,008		0,091	0,008	
	ab	0	0,165		0	0,165	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0
G6pdh	aa	0.182	0.052		0.182	0.052	
	bb	0,273	0,101		0,273	0,101	
	сс	0,454	0,206		0,454	0,206	
	ab	0,091	0,145		0,091	0,145	
	ac	0	0,207		0	0,207	
	bc	0	0,289		0	0,289	
		Σ1,0	Σ 1,0	Σ 1,432	Σ 1,0	Σ1,0	Σ 1,432
Gdh	aa	0	0,002		0	0,002	
	bb	0,818	0,745		0,818	0,745	
	сс	0	0,002		0	0,002	
	dd	0	0,002		0	0,002	
	ab	0,091	0,079		0,091	0,079	
	ac	0	0,004		0	0,004	
	ad	0	0,004		0	0,004	
	bc	0	0,079		0	0,079	
	bd	0	0,079		0	0,079	
	cd	0,091	0,004		0,091	0,004	
		Σ1,0	Σ 1,0	Σ 2,003	Σ 1,0	Σ1,0	Σ 2,003
Idh-1	aa	0,700	0,640		0,700	0,640	
	bb	0,100	0,010		0,100	0,010	
	сс	0	0,010		0	0,010	
	ab	0	0,160		0	0,160	
	ac	0,200	0,160		0,200	0,160	
	bc	0	0,020		0	0,020	
		Σ1,0	Σ1,0	Σ 1,016	Σ 1,0	Σ1,0	Σ 1,016
Idh-2	aa	0,900	0,809		0,900	0,809	
	bb	0	0,003		0	0,003	
	сс	0	0,003		0	0,003	
	ab	0	0,090		0	0,090	
	ac	0	0,090		0	0,090	
	bc	0,100	0,005	_	0,100	0,005	_
		Σ1,0	Σ1,0	Σ 2,0	Σ 1,0	Σ1,0	Σ 2,0
Lap	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ1,0	Σ1,0	Σ 0,0

Tabela 29. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (13 polimórficos/2 monomórficos), resultantes da (sub)população de *C. albicans* isolada de escolares saudáveis provenientes da escola LAE.

Tabela 29. Continuação.

Loci	Genótipo	Freqüência	(Isolados)	χ^2 Freqüência (ETS)		cia (ETS)	χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
M1p	aa	0	0,002		0	0,002	
	bb	0,636	0,597		0,636	0,597	
	сс	0,091	0,033		0,091	0,033	
	ab	0,091	0,070		0,091	0,070	
	ac	0	0,017		0	0,017	
	bc	0,182	0,281		0,182	0,281	
		Σ1,0	Σ1,0	Σ 0,163	Σ1,0	Σ1,0	Σ 0,163
Mdh-1	aa	0,909	0,827		0,909	0,827	
	сс	0,091	0,008		0,091	0,008	
	ac	0	0,165		0	0,165	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0
Mdh-2	aa	0	0,250		0	0,250	
	bb	0	0,250		0	0,250	
	ab	1	0,500		1	0,500	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0
Mdh-3	aa	0	0,004		0	0,004	
	bb	0,250	0,098		0,250	0,098	
	сс	0,625	0,391		0,625	0,391	
	ab	0,125	0,039		0,125	0,039	
	ac	0	0,078		0	0,078	
	bc	0	0,390		0	0,390	
		Σ1,0	Σ1,0	Σ 1,040	Σ1,0	Σ1,0	Σ 1,040
Ро	aa	0,455	0,529		0,455	0,529	
	bb	0	0,074		0	0,074	
	ab	0,545	0,397		0,545	0,397	
		Σ1,0	Σ1,0	Σ 0,140	Σ1,0	Σ1,0	Σ 0,140
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ1,0	Σ1,0	Σ 0,0
Sdh-2	bb	0,909	0,826		0,909	0,826	
	сс	0	0,002		0	0,002	
	dd	0	0,002		0	0,002	
	bc	0	0,083		0	0,083	
	bd	0	0,083		0	0,083	
	cd	0,091	0,004		0,091	0,004	
		Σ1,0	Σ1,0	Σ 2,0	Σ 1,0	Σ1,0	Σ 2,0

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	cia (ETS)	χ^2
Enzimáticos	•	Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	22	0	0.062		0	0.040	
Aun	uu bb	0 500	0,002		0 600	0,640	
	ab	0,500	0,305		0,000	0,040	
	ub	Σ 1.0	Σ 1.0	Σ0111	Σ 1.0	Σ 1.0	Σ 0.063
Asd	aa	0	0.007	20,111	0	0.010	20,005
1150	bb	0.833	0,840		0.800	0,810	
	ab	0,855	0,040		0,800	0,810	
	ub	Σ 1.0	Σ1.0	5 0 008	Σ 1.0	Σ 1.0	50012
Cat	aa	1	1	20,000	1	1	20,012
Cat	uu	Γ Γ 1 0	Σ10	F 0 0	Γ Γ10	Σ10	500
Condh		21,0	2 1,0	2.0,0	2 1,0	2 1,0	2 0,0
Gopun	cc	1 5 1 0	1 5 1 0	-	1	1	-
a 11		2 1,0	2.1,0	Σ 0,0	2 1,0	21,0	Σ 0,0
Gdh	aa	0	0,007		0	0,010	
	bb	0,833	0,840		0,800	0,810	
	ab	0,167	0,153		0,200	0,180	
		Σ1,0	Σ1,0	Σ 0,008	Σ 1,0	Σ1,0	Σ 0,012
Idh-1	aa	0,833	0,840		0,800	0,810	
	сс	0	0,007		0	0,010	
	ac	0,167	0,153		0,200	0,180	
		Σ1,0	Σ1,0	Σ 0,008	Σ 1,0	Σ1,0	Σ 0,012
Idh-2	aa	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Lap	aa	0,667	0,694		0,600	0,640	
	bb	0	0,028		0	0,040	
	ab	0,333	0,278		0,400	0,320	
		Σ1,0	Σ1,0	Σ 0,040	Σ 1,0	Σ1,0	Σ 0,063
M1p	bb	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Mdh-1	aa	0,833	0,840		0,800	0,810	
	bb	0	0,007		0	0,010	
	ab	0,167	0,153		0,200	0,180	
		Σ 1,0	Σ1,0	Σ 0,008	Σ 1,0	Σ1,0	Σ 0,012
Mdh-2	aa	0	0,250	ŕ	0	0,250	,
	bb	0	0.250		0	0.250	
	ab	1	0.500		1	0.500	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0
Mdh-3	сс	1	1	<i>,</i>	1	1	,
		Σ1,0	Σ1,0	Σ.0.0	Σ1,0	Σ1,0	Σ.0.0
Ро	aa	0.333	0.444	_ 0,0	0.400	0.490	_ 0,0
-	hh	0	0 1 1 1		0	0,090	
	ah	0 667	0.445		0 600	0.420	
		Σ 1,0	Σ 1,0	Σ 0.250	Σ 1,0	Σ 1,0	Σ 0.184
Sdh-1	<i>aa</i>	1	1	,	1	1	- 3,101
		Σ 1.0	Σ 1.0	200	Σ 1.0	Σ 1.0	2 00
Sdh-2	hh	,- 1	,- 1	20,0	,- 1	,- 1	20,0
Sali-A	50	$\Sigma 10$	Σ10	200	Σ10	Σ 10	200
		21,0	21,0	2,0,0	21,0	21,0	2,0,0

Tabela 30. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (8 polimórficos/7 monomórficos), resultantes da (sub)população de *C. albicans* isolada de escolares saudáveis provenientes da escola MA.

Tabela	31.	Freqüências	genotípicas	observada	e	esperada	em	15	loci	enzimáticos	(9	polimórfico	s/6
monomá	órfico	os), resultantes	s da (sub)po	pulação de	С.	albicans	isolad	a de	e esco	olares saudáv	/eis	provenientes	da
escola N	IEP.												

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	cia (ETS)	χ^2
Enzimáticos	-	Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0,046		0	0,062	
	bb	0,571	0,617		0,500	0,563	
	ab	0,429	0,337		0,500	0,375	
		Σ 1,0	Σ1,0	Σ 0,075	Σ1,0	Σ1,0	Σ 0,111
Asd	aa	0	0,020		0	0,028	
	bb	0,715	0,736		0,667	0,694	
	ab	0,285	0,244		0,333	0,278	
		Σ 1,0	Σ1,0	Σ 0,028	Σ1,0	Σ1,0	Σ 0,040
Cat	aa	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0.0	Σ 1,0	Σ1,0	Σ 0.0
Géndh	<i>CC</i>	1	1	_ •,•	1	1	,-
Oopun		Σ 1.0	Σ 1.0	Σ.0.0	Σ 1.0	Σ 1.0	Σ.0.0
Cab		_ 1,0	0.005	20,0	_ 1,0	0.007	20,0
Gan	aa bb	0 857	0,005		0 822	0,007	
	DD ab	0,857	0,802		0,855	0,840	
	ab	0,145	0,155	F 0.007	0,107	0,155	F 0 000
_		Z 1,0	2.1,0	2.0,006	21,0	Z 1,0	2 0,008
Idh-1	aa	0,857	0,862		0,833	0,840	
	сс	0	0,005		0	0,007	
	ac	0,143	0,133		0,167	0,153	
		Σ 1,0	Σ1,0	Σ 0,006	Σ1,0	Σ1,0	Σ 0,008
Idh-2	aa	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0,0	Σ1,0	Σ1,0	Σ 0,0
Lap	aa	1	1		1	1	
-		Σ 1,0	Σ1,0	Σ 0.0	Σ1,0	Σ1,0	Σ 0.0
M1n	aa	0	0.005	- , -	0	0.007	-) -
mp	hh	0.857	0.862		0.833	0.840	
	ah	0.143	0.133		0,055	0,153	
	uo	Σ 1.0	Σ 1.0	Σ.0.006	Σ1.0	Σ 1.0	Σ.0.008
Mah 1		0.857	0.862	- 0,000	0.833	0.840	_ 0,000
Iviuii-i	uu bb	0,857	0,802		0,855	0,840	
	ab	0 1/3	0,005		0 167	0,007	
	ub	5.10	5,155	Σ 0.006	5.10	5,10 Σ10	2 0 008
Мльа		2 1,0	21,0	20,000	21,0	21,0	20,000
Ivian-2	44	0 142	0,185		0 167	0,174	
	<i>DD</i>	0,145	0,327		0,107	0,340	
	ab	0,857	0,490	E 0.5(2	0,833	0,480	E 0 510
Mua		2 1,0	21,0	2 0,502	21,0	21,0	20,510
Mdh-3	сс	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Po	aa	0,429	0,510		0,500	0,562	
	bb	0	0,082		0	0,063	
	ab	0,571	0,408		0,500	0,375	
		Σ 1,0	Σ1,0	Σ 0,160	Σ1,0	Σ1,0	Σ 0,111
Sdh-1	aa	1	1		1	1	
		Σ 1,0	Σ1,0	Σ 0,0	Σ1,0	Σ1,0	Σ 0,0
Sdh-2	aa	0	0,005		0	0,007	
	bb	0,857	0,862		0,833	0,840	
	ab	0,143	0,133		0,167	0,153	
		Σ 1,0	Σ1,0	Σ 0,006	Σ1,0	Σ1,0	Σ 0,008

A diversidade genética entre todos os isolados bucais de *C. albicans*, provenientes da população total de escolares saudáveis, observada no dendrograma UPGMA permitiu distinguir 10 grupos principais (10 de 23 1,2-*phenons*) com 0,012 > $d_{ij} \ge$ 0 (Figura 6);

Grupo I: 2 (2,7%) isolados (A30 e A1) com $d_{ij} = 0$, cuja composição foi heterogênea (diferentes origens geográficas/institucionais) – LAE₁ e AV₁.

Grupo II: 18 (24%) isolados (A52_{LAE}, A55_{LAE}, D21_{CS}, D32_{FMC}, D5_{FMC}, D19_{MEP}, E10_{CS}, A21_{FE}, A15_{FE}, D25_{FMC}, D23_{CS}, D36_{FMC}, E8_{CS}, A10_{FE}, D14_{FMC}, E32_{CS}, D6_{FMC} e A7_{FE}) com 0,012 > $d_{ij} \ge$ 0, cuja composição foi heterogênea (diferentes origens geográficas/institucionais) e homogênea (idênticas origens geográficas/institucionais) – CS₅, FE₄, FMC₆, LAE₂ e MEP₁.

Grupo III: 18 (24%) isolados (A20_{AV}, B56_{MA}, B23_{MA}, B13_{FE}, B11_{FE}, B5_{AV}, C36_{MEP}, C40_{MEP}, C44_{HF}, E57_{FMC}, C17_{HF}, C48_{HF}, TS_{CBS-562}, B46_{MA}, B54_{MA}, B16_{FE}, B4_{AV}, B31_{MEP} e C5_{FE}) com 0,012 > $d_{ij} \ge 0$, cuja composição foi heterogênea e homogênea – AV₃, FE₄, FMC₁, HF₃, MA₄ e MEP₃.

Grupo IV: 3 (4%) isolados (B18_{FMC}, C9_{FMC} e C16_{HF}) com $d_{ij} = 0$, cuja composição foi heterogênea e homogênea – HF₁ e FMC₂.

Grupo V: 2 (2,7%) isolados (E30_{CS} e E17_{FMC}) com 0,012 > d_{ij} > 0, cuja composição foi heterogênea – CS₁ e FMC₁.

Grupo VI: 3 (4%) isolados (A17_{MA}, A24_{HF} e A9_{FE}) com 0,012 > $d_{ij} \ge 0$, cuja composição foi heterogênea – FE₁, HF₁ e MA₁.

Grupo VII: 3 (4%) isolados (D20_{MEP}, E48_{FMC} e D13_{FMC}) com $d_{ij} = 0$, cuja composição foi heterogênea e homogênea – FMC₂ e MEP₁.

Grupo VIII: 6 (8%) isolados (A50_{LAE}, B33_{HF}, C32_{MEP}, B21_{HF}, E52_{FMC} e E25_{CS}) com 0,012 > $d_{ij} \ge 0$, cuja composição foi heterogênea e homogênea – CS₁, FMC₁, HF₂, LAE₁ e MEP₁.

Grupo IX: 3 (4%) isolados (B15_{FE}, C47_{FMC} e B24_{MA}) com $d_{ij} = 0$, cuja composição foi heterogênea – FE₁, FMC₁ e MA₁.

Grupo X: 4 (5,3%) isolados (B38_{LAE}, C4_{AV}, C23_{HF} e C20_{HF}) com 0,012 > $d_{ij} \ge 0$, cuja composição foi heterogênea e homogênea – AV₁, HF₂ e LAE₁.

Um total de 13 (17,3%) isolados apresentou valores de distância genética entre

 $0,148 \ge d_{ij} \ge 0,012$ (A48_{LAE}, A40_{LAE}, D28_{FMC}, B32_{AV}, E43_{FMC}, A61_{LAE}, E7_{CS}, A33_{LAE}, A23_{LAE}, E39_{CS}, C12_{HF}, C33_{MEP} e A64_{LAE}) – isolados moderadamente relacionados ou não relacionados.

Figura 6. Diversidade genética entre todos os isolados bucais de *C. albicans* provenientes de 75 escolares saudáveis. Dendrograma UPGMA ($r_{ki} = 0.92513$) gerado a partir da matriz de distância genética d_{ij} (Nei, 1972).

Com efeito, a composição dos grupos, gerados no dendrograma UPGMA (Figura 6), mostrou a coexistência de subtipos de *C. albicans* altamente relacionados ou indistinguíveis ($0,012 > d_{ij} \ge 0$) na maioria das diferentes (sub)populações de escolares saudáveis (locais geográficos) (Figura 7);

População da escola AV: 83,3% dos isolados mostraram alto relacionamento genético (0,012 > $d_{ij} \ge 0$) entre si (33,3% de 83,3%) e com outros das populações FE (40%), FMC (6,3%), HF (50%), LAE (18,2%), MA (66,7%) e MEP (42,9%). Tal relacionamento não foi observado entre isolados das populações AV e CS.

População da escola CS: 77,8% dos isolados mostraram alto relacionamento genético (0,012 > $d_{ij} \ge 0$) entre si (55,6% de 77,8%) e com outros das populações FE (40%), FMC (50%), HF (20%), LAE (27,3%) e MEP (28,6%). Tal relacionamento não foi observado entre isolados das populações CS e AV ou CS e MA.

População da escola FE: 100% dos isolados mostraram alto relacionamento genético (0,012 > $d_{ij} \ge 0$) entre si (80% de 100%) e com outros das populações AV (50%), CS (55,6%), FMC (50%), HF (40%), LAE (18,2%), MA (100%) e MEP (57,1%).

População da escola FMC: 87,5% dos isolados mostraram alto relacionamento genético (0,012 $> d_{ij} \ge 0$) entre si (62,5% de 87,5%) e com outros das populações AV (50%), CS (77.8%), FE (90%), HF (60%), LAE (27,3%), MA (83,3%) e MEP (85,7%).

População da escola HF: 90% dos isolados mostraram alto relacionamento genético (0,012 > $d_{ij} \ge 0$) entre si (70% de 90%) e com outros das populações AV (66,7%), CS (11,1%), FE (50%), FMC (25%), LAE (18,2%), MA (83,3%) e MEP (57,1%).

População da escola LAE: 45,5% dos isolados mostraram alto relacionamento genético (0,012 > $d_{ij} \ge 0$) entre (18,2% de 45,5%) si e com outros das populações AV (33,3%), CS (66,6%), FE (40%), FMC (43,8%), HF (40%) e MEP (28,6%). Tal relacionamento não foi observado entre isolados das populações LAE e MA.

População da escola MA: 100% dos isolados mostraram alto relacionamento genético (0,012 > $d_{ij} \ge 0$) entre si (66,7% de 100%) e com outros das populações AV (50%), FE (60%), FMC (12,5%), HF (40%) e MEP (42,9%). Tal relacionamento não foi observado entre isolados das populações MA e CS ou MA e LAE.

População da escola MEP: 85,7% dos isolados mostraram alto relacionamento genético (0,012 > $d_{ij} \ge 0$) entre (28,6% de 87,5%) si e com outros das populações AV (50%), CS (66,7%), FE (80%), FMC (62,5%), HF (50%), LAE (27,3%) e MA (66,7%).

Figura 7. Subtipos de *C. albicans* altamente relacionados ou indistinguíveis $(0,012 > d_{ij} \ge 0)$ coexistentes na maioria das (sub)populações de escolares saudáveis.

A diversidade genética dos isolados dentro de suas respectivas (sub)populações de escolares saudáveis também foi avaliada por meio dos dendrogramas UPGMA (Figura 8). Tais resultados mostraram a coexistência de subtipos de C. albicans altamente relacionados ou indistinguíveis $(0,012 > d_{ij} \ge 0)$ em alguns escolares saudáveis provenientes da mesma escola (origem geográfica). Contudo, variações quanto ao número de isolados altamente relacionados ou indistinguíveis $(0,012 > d_{ij} \ge 0)$, e moderadamente relacionados ou não relacionados ($d_{ij} \ge 0,012$) foram observadas dentro de cada (sub)população de escolares. Nesse sentido, maior índice percentual de polimorfismo ($d_{ij} \ge 0,012$) ocorreu entre os isolados de escolares saudáveis provenientes da escola LAE (100%), seguido daqueles das escolas AV (50%), CS (44,4%), MEP (42,8%), MA (33,3%), HF (20%), FE (20%) e FMC (18,7%), cujos índices de distância genética foram de 0,157 $\ge d_{ij} \ge 0,012$, $0,155 \ge d_{ij} > 0, 0,137 \ge d_{ij} > 0, 0,146 \ge d_{ij} > 0, 0,125 \ge d_{ij} > 0, 0,131 \ge d_{ij} > 0, 0,133 \ge d_{ij} > 0$ e $0,147 \ge d_{ij} > 0$, respectivamente. A análise da diversidade genética entre as (sub)populações de isolados mostrou uma convergência ancestral em seis (sub)populações (CS, FE, FMC, HF, MA e MEP) de C. albicans. Entretanto, uma baixa divergência genética ancestral foi detectada em duas (sub)populações (AV e LAE), que em média correspondeu entre >1,2 e <4 substituições alélicas para cada 100 loci, a partir de uma população ancestral comum.

Figura 8. Diversidade genética dentro e entre (sub)populações de *C. albicans* isoladas da cavidade bucal de escolares saudáveis, provenientes de oito instituições do ensino fundamental. Dendrogramas UPGMA (0,93280 $\leq r_{ki} \leq 0.95630$) gerados a partir das matrizes de distância genética (Nei, 1972).

DISCUSSÃO

A delineação de linhagens por eletroforese de enzima multiloco (MLEE) tem permitido avaliar a diversidade e estrutura genética de populações^{51,57}, bem como tem fornecido alto poder discriminatório e reprodutibilidade^{10,12,31,51,57,63}. Considerados como marcadores neutros (i.e., invariáveis quando sofrem pressões seletivas ambientais), as isoenzimas metabólicas têm apresentado grande potencialidade nos estudos de caracterização taxonômica, sistemática, genética, evolutiva e epidemiológica de *C. albicans*^{4,5,8,9,11-15,18,24,37-41,48,60,61,63,67-70,74}.

O polimorfismo genético tem sido encontrado em quase todas populações naturais e em todos os níveis de organização genética, desde características genotípicas até traços fenotípicos. As possíveis razões de sua existência tem sido o objeto de um longo debate em genética de populações e evolução molecular^{26,27,33}. Determinado *locus* gênico estrutural tem sido definido como polimórfico quando a freqüência de seu alelo mais comum apresenta um valor abaixo de 0,99 (99%). Algumas medidas normalmente empregadas para quantificar essa variabilidade em populações de organismos diplóides têm sido as freqüências alélicas e gênicas, o índice percentual de loci polimórficos, o número médio de alelos por locus, o número médio de alelos por locus polimórfico e a heterozigosidade^{7,28,29,46,54,57}. Na presente pesquisa, variações quantitativas e qualitativas de loci polimórficos (5 a 13, média de 8,125 ±2,356), da média de alelos por locus (1,40 a 2,47, média de 1,642 $\pm 0,344$) e da média de alelos por *locus* polimórfico (2 a 2,75, média de 2,161 ±0,256), foram observadas em todas as (sub)populações de C. albicans provenientes de escolares saudáveis. Estas variações tem sido observadas em vários estudos de diversidade genética de populações de C. albicans isoladas de pacientes imunocomprometidos e imunocompetentes^{11,12,18,35,48,61,63}. Pujol *et al.* (1993) relataram que diferentes freqüências alélicas em diferentes populações podem estar associadas com o isolamento geográfico, mesmo quando cada população separada permanece em panmixia 60 .

A heterozigosidade média encontrada na população total de *C. albicans* foi igual a 0,191 (Tabela 14). Subpopulações de *C. albicans* isoladas de escolares saudáveis

provenientes das escolas AV, CS, FE, FMC, HF, MA, LAE e MEP mostraram valores de heterozigosidade média iguais a 0,391, 0,332, 0,277, 0,301, 0,221, 0,334, 0,274 e 0,236, respectivamente (Tabelas 15 a 22 e Figura 5). De modo similar aos resultados de prévios estudos por MLEE^{12,18,61}, os padrões de heterozigosidade obtidos na presente análise foram consistentes com a natureza diplóide de *C. albicans*⁷⁶. Em adição, a redução da heterozigosidade na estrutura populacional de determinados organismos pode ser interpretada como um grupo de linhagens interconectadas²⁹.

As combinações dos alelos existentes em 15 loci enzimáticos mostraram 43 ETs (57,3% dos isolados) na população total de escolares saudáveis, o que sugere a existência de alta diversidade genética (14 de 15 loci enzimáticos sendo polimórficos) de isolados bucais de C. albicans. Este fato também foi observado dentro de cada (sub)população (AV = $6 \text{ ETs}^{100\%}$, CS = $7 \text{ ETs}^{77,8\%}$, FE = $8 \text{ ETs}^{80\%}$, FMC = $13 \text{ ETs}^{81,3\%}$, HF = 8 ETs^{80%}, LAE = 11 ETs^{100%}, MA = 5 ETs^{83,3%} e MEP = 6 ETs^{85,7%}), juntamente com a predominância de alguns ETs (ET1, ET4, ET9, ET10, ET23, ET24, ET28, ET31, ET32, ET33, ET34 e ET37) dentro e entre (sub)populações de escolares. Estes resultados também sugerem a existência de grupos de linhagens selecionados e melhores adaptados do que outros na cavidade bucal desses escolares saudáveis. Soll et al. (1991) também demonstraram a existência de linhagens de Candida spp. selecionadas e melhores adaptadas em determinado nicho humano⁹⁴. Embora determinados ETs foram identificados exclusivamente em certas (sub)populações de escolares, nenhuma correlação foi observada entre ET-específico ou grupos de ETs altamente relacionados e (sub)população-específica de escolares. Em adição, todas as (sub)populações de isolados não mostraram divergências significantes entre as freqüências genotípicas observadas e esperadas (teste de equilíbrio de Hardy-Wienberg) (Tabelas 23 a 31). Tais observações sugerem a hipótese de que (sub)populações-específicas de escolares saudáveis não correspondem ao fator de seleção (sobrevivência diferencial) de ET-específico ou grupos de ETs altamente relacionados.

A tipagem isoenzimática de isolados bucais de *C. albicans*, provenientes de crianças clinicamente saudáveis (Piracicaba, Brasil), tem revelado um modo multiclonal de colonização por essas leveduras⁴⁸. Empregando a cariotipagem eletroforética, RAPD e

REA com HinfI e EcoRI, Mehta et al. (1999) têm analisado a distribuição de genótipos de C. albicans em membros familiares saudáveis de uma mesma cidade (Estados Unidos). Seus resultados demonstraram a existência de uma identidade genotípica intrafamiliar (i.e., cada membro dentro de uma família abriga um mesmo genótipo). Contudo, distintos genótipos também foram observados inter e intrafamiliarmente⁴⁹. Pujol et al. (1993) identificaram 41 ETs enzimáticos de C. albicans (74,5% dos isolados de orofaríngea) em pacientes HIV-soropositivos de uma área geográfica restrita (Montpellier, França)⁶¹. Esses pesquisadores sugeriram que a alta diversidade genética (11 de 21 loci enzimáticos sendo polimórficos) pode estar correlacionada com a existência de algumas linhagens clonais que apresentam ampla distribuição geográfica, como é o caso de algumas bactérias^{84,86} e protozoários⁹⁵⁻⁹⁷. Importantes conseqüências biológicas e médicas também foram apontadas com o modo de reprodução clonal, uma vez que a correlação entre a composição genética e as características médicas poderiam facilitar a seleção de métodos efetivos para o controle da expressão patológica de C. albicans em indivíduos imunocomprometidos⁶¹. O alto número de diferentes cariótipos de isolados bucais de C. albicans encontrado em pacientes HIV-soropositivos, em comparação com indivíduos saudáveis, também foi sugestivo de uma substituição de linhagens comensais em pacientes imunocomprometidos⁴⁵.

Em contraste com a alta diversidade genética de *C. albicans* observada em populações de escolares saudáveis, uma baixa diversidade genética tem sido detectada em pacientes imunocomprometidos. A análise epidemiológica de isolados de *C. albicans*, provenientes de sete pacientes (Oslo, Noruega) submetidos ao transplante de medula óssea, mostrou a existência de oito ETs (13,1% dos isolados) e uma baixa diversidade genética entre aquelas leveduras (4 de 10 *loci* enzimáticos sendo polimórficos). A colonização por um ou mais ETs em diferentes sítios anatômicos de alguns pacientes permaneceu durante o acompanhamento médico. Entretanto, nenhuma correlação foi observada entre aqueles ETs e sensibilidade a certos antifúngicos (AMB e flucitosina) ou sítios anatômicos (cavidade bucal, virilha e fezes)¹⁸. Boerlin *et al.* (1995) identificaram três ETs (23% dos isolados) de *C. albicans* atípicas colonizando a cavidade bucal de pacientes (usuários de drogas) HIV-soropositivos assintomáticos (Lausanne, Switzerland). Essa baixa diversidade genética (1 de 16 *loci* enzimáticos sendo polimórfico) entre os isolados também foi observada sem

correlação com os parâmetros clínicos, e confirmada por ensaios de *Southern blot* hibridação com sonda Ca3. Tais resultados foram sugestivos de uma provável colonização por subtipos de *C. albicans* atípicos, a partir de diferentes origens e sem existência de uma única fonte limitada de contaminação¹¹. Populações de *C. albicans* isoladas de pacientes HIV-soropositivos (Lausanne, Switzerland) com e sem sintomas de candidíase orofaríngea, de pacientes com candidíase invasiva e de indivíduos saudáveis não puderam ser distinguidas por ensaios de MLEE, uma vez que foi encontrada uma baixa diversidade genética (10 de 18 *loci* enzimáticos sendo polimórficos) entre os isolados. Em adição, 52 ETs (27,5% dos isolados) foram identificados sem correlação com os aspectos clínicos e sensibilidade reduzida *in vitro* ao fluconazol (FCZ)¹².

A ocorrência simultânea de linhagens de C. albicans geneticamente distintas na cavidade bucal de pacientes (homossexuais, heterossexuais, usuários de drogas) HIVsoropositivos (Montpellier, França), sofrendo de candidíase orofaríngea, também foi demonstrada por MLEE. Uma baixa diversidade genética (10 de 21 loci enzimáticos sendo polimórficos) entre os isolados e 20 ETs (12,5% dos isolados) foram identificados naquela população de pacientes. Contudo, houve predominância de um único tipo genético de C. albicans na cavidade bucal daqueles pacientes. Este fato poderia resultar da competição intraespécies, o qual poderia ser alterado por pressão seletiva dos tratamentos antifúngicos⁶⁴. Empregando MLEE, Nébavi et al. (1998) também demonstraram que a maioria dos pacientes HIV-soropositivos (Abdjan, Costa do Marfim), sofrendo de candidíase orofaríngea, foram colonizados por ETs de C. albicans idênticos ou variantes durante terapia antifúngica (AMB, KTZ, NYS). Esses pesquisadores identificaram 27 ETs (40,3% dos isolados) e uma baixa diversidade genética (10 de 21 loci enzimático sendo polimórfico) entre os isolados⁵². Análises de MLEE também foram realizadas em isolados de C. albicans, provenientes de pacientes (Montpellier, França) sofrendo de candidíase orofaríngea recorrente, que sucessivamente desenvolveram resistência clínica ao fluconazol (FCZ) e itraconazol (ITZ). Essas análises revelaram que a infecção dos pacientes ocorreu por um ou mais ETs durante a terapia antifúngica, os quais poderiam ser (i) selecionados a partir de uma população mista ou (ii) adquiridos a partir de uma fonte exógena. Ademais, 14 ETs (14,3% dos isolados) e baixa diversidade genética (12 loci enzimáticos

polimórficos) foram identificados na população de isolados de *C. albicans*, sem correlação com os testes de sensibilidade antifúngica³⁵.

O coeficiente de correlação cofenética baseado no produto-momento de Pearson $(r_{ki})^{25,32,36,89-91}$ foi empregado durante a avaliação da concordância entre os elementos d_{ij}, das matrizes de distância genética (Nei, 1972), e os elementos C_{jk} , das matrizes de correlação derivadas dos dendrogramas UPGMA. Nossos resultados mostraram valores r_{ki} variáveis entre 0,92513 (Figura 6) e 0,95630 (Figura 8), os quais compreendem valores de concordância satisfatórios^{89,91}, em conformidade com os resultados de estudo prévio onde foi observado a constante maximização dos valores r_{ki} pelo algoritmo UPGMA (SHAN *clustering method*)²⁵. Deste modo, a análise de agrupamento por meio dos dendrogramas UPGMA permitiu acessar a diversidade genética dentro e entre as (sub)populações de isolados bucais de *C. albicans* provenientes de escolares saudáveis.

Na população total (Figura 6) foram observados 62 isolados (82,7%) distribuídos em 10 principais grupos (10 de 23 1,2-*phenons*), com $0,012 > d_{ij} \ge 0$ (em média, <1,2 substituições alélicas para cada 100 loci), cuja composição foi heterogênea (i.e., contém amostras de C. albicans isoladas de escolares provenientes de diferentes origens geográficas/institucionais) e/ou homogênea (i.e., contém amostras de C. albicans isoladas de escolares provenientes de idênticas origens geográficas/institucionais). Esses resultados mostraram a coexistência de subtipos altamente relacionados ou indistinguíveis $(0,012 > d_{ij})$ ≥ 0) na maioria das (sub)populações de escolares, e a inexistência desses subtipos em algumas (sub)populações (AV e CS; CS e MA; LAE e MA) (Figura 7). Deste modo, nenhum grupo de C. albicans altamente relacionado foi correlacionado com alguma origem geográfica/institucional específica. Em adição, os isolados altamente relacionados poderiam surgir a partir de uma linhagem ancestral comum, como conseqüência da perda de um alelo por recombinação mitótica ou rearranjo cromossômico^{64,76}. Os restantes 13 isolados (17,3%) apresentaram valores de distância genética entre 0,148 $\geq d_{ij} \geq 0,012$ (em média, entre ≥1,2 e ≤14,8 substituições alélicas para cada 100 *loci*) – isolados moderadamente relacionados ou não relacionados. A diversidade genética dos isolados dentro de suas respectivas (sub)populações também foi avaliada por meio dos dendrogramas UPGMA (Figura 8). A coexistência de subtipos de *C. albicans* altamente relacionados ou indistinguíveis $(0,012 > d_{ij} \ge 0)$ foi observada em alguns escolares saudáveis provenientes da mesma escola (origem geográfica), os quais também poderiam surgir a partir de uma linhagem ancestral comum^{64,76}. Os resultados descritos acima sugerem a existência de um ou mais grupos de isolados bucais de *C. albicans* altamente relacionados normalmente predominantes em (sub)populações de escolares saudáveis. Em adição, tais resultados também sugerem a existência de rotas de disseminação diretas e indiretas de *C. albicans* dentro e entre (sub)populações de escolares, as quais poderiam ser determinadas por pesquisas complementares como, por exemplo, o isolamento de *C. albicans* a partir de ambientes escolares (salas de aula, refeitórios, banheiros, bibliotecas particulares e públicas,...), alunos, professores e funcionários.

Schmid et al. (1999) mostraram alta similaridade genética entre grupos de C. albicans geograficamente não relacionados por Southern blot hibridação com sonda Ca3. Seus resultados foram sugestivos de que outrora houve uma pequena propagação radial de linhagens entre regiões geograficamente adjacentes⁸¹. Os mecanismos freqüentes e comuns envolvidos na diversidade genética de espécies de *Candida* poderiam explicar esta similaridade genética. Estes compreendem rearranjos cromossômicos, alterações cromossômicas e controle da expressão gênica^{35,71,72}. Além disso, seqüências repetitivas em tandem e seqüências subteloméricas e teloméricas podem estar envolvidas na organização e rearranjos cromossômicos^{19,73}. Empregado MLEE e análises de agrupamento, outros pesquisadores também demonstraram a existência de grupos de isolados de C. albicans altamente relacionados, provenientes de pacientes saudáveis e imunocomprometidos (Montpellier, França; Lausanne, Switzerland; Abidjan, Costa do Marfim), sem qualquer correlação com aspectos clínicos, sensibilidade antifúngica ou regiões geográficas^{12,35,52,63}. Lupetti et al. (1995) empregaram a cariotipagem eletroforética e identificaram dois grupos similares de C. albicans com prevalência em indivíduos saudáveis e pacientes HIVsoropositivos (Pisa, Itália). Suas observações foram sugestivas de que linhagens comensais podem ser prováveis agentes de subseqüente candidíase bucal em pacientes imunocomprometidos, conforme também sugerido por outros pesquisadores^{59,101}, embora também possa ocorrer a substituição de linhagens⁴⁵. Durante análises de agrupamento e

REA com *Eco*RI ou RAPD, alto grau de diversidade genética foi encontrado entre os isolados de *C. albicans*, provenientes de indivíduos saudáveis e pacientes clínicos assintomáticos, do Sudeste da Ásia e Europa ou Estados Unidos²⁰. Contudo, a existência de um único grupo contendo todas as linhagens de uma mesma origem geográfica não foi encontrada. A clonalidade dentro e entre populações de *C. albicans* isoladas de pacientes HIV-soropositivos geograficamente distintos (Durham, D.C. e Vitória, Brasil) também foi observada durante análises de agrupamento e PCR *fingerprinting*¹⁰⁴.

Alterações evolucionárias correspondem às alterações nas freqüências gênicas numa população durante um certo período. Para que essas alterações sejam adaptativas, elas devem ser causadas por (i) seleção natural direcionada a sobrevivência diferencial, ou (ii) reprodução de indivíduos que diferem em genótipos. Em adição, mudanças nas freqüências gênicas não relacionadas às mudanças fenotípicas podem elucidar o fato da evolução natural ter operado, e que mudanças microevolucionárias foram produzidas no ambiente²³. Vários estudos epidemiológicos e microevolutivos de isolados clínicos de C. albicans foram realizados empregando Southern blot hibridação com sonda de DNA Ca3^{2,30,34,42-} 44,47,55,58,73,79,82,83,92,93,94,102 Em adição, fortes concordâncias epidemiológicas e microevolutivas foram demonstradas pelos resultados de Ca3 fingerprinting e análises de MLEE e RAPD, durante a caracterização de isolados bucais e outros sítios anatômicos de C. albicans, provenientes de pacientes imunocomprometidos e imunocompetentes de três regiões geográficas dos Estados Unidos⁶³. Mudancas microevolucionárias podem envolver reorganizações do tipo inserção ou deleção intracromossomal dos elementos RPS, dispersos especificamente por toda parte do genoma de C. albicans⁶². Isolados de vários sítios anatômicos de C. albicans, provenientes de mulheres clinicamente saudáveis, foram comparados por Southern blot hibridação com sonda Ca3. De 11 mulheres que abrigaram comensais nas cavidades bucais e vaginais, quatro apresentaram linhagens altamente similares, porém não idênticas, em sítios alternativos. Este fato tem sugerido a ocorrência de microevolução entre aquelas linhagens altamente similares, a partir de um progenitor que se adaptou em dois diferentes nichos do corpo. Em adição, tais populações divergentes poderiam ser distinguidas geneticamente⁹⁴. Schröppel *et al.* (1994) empregaram a mesma técnica para acessar o relacionamento genético de linhagens de C. albicans isoladas de

pacientes (linhagens mantidas e substituídas) e seus parceiros sexuais. No paciente em que as linhagens infectantes foram mantidas, houve mínimas mudanças genéticas em episódios sucessivos de candidíase vaginal. No paciente em que as linhagens infectantes foram substituídas por outras, uma infecção de transição envolveu uma população infectante geneticamente mista, e aparentemente a substituição de linhagens tiveram origem a partir da cavidade bucal dos parceiros sexuais. Estes resultados demonstraram que as linhagens de infecções recorrentes de candidíase vaginal são geneticamente instáveis, e que o tratamento com antifúngicos pode resultar em seleção de variantes previamente infectantes ou substituição por linhagens geneticamente não relacionadas⁸³.

No contexto microevolucionário, nossas análises de diversidade genética entre (sub)populações mostraram convergência ancestral em seis (sub)populações de C. albicans (CS, FE, FMC, HF, MA e MEP), e baixa divergência genética ancestral em duas (sub)populações (AV e LAE), que em média correspondeu entre >1,2 e <4 substituições alélicas para cada 100 loci, a partir de uma população ancestral comum (Figura 8). Estes resultados sugerem que mudanças microevolucionárias podem ocorrer em algumas (sub)populações de C. albicans isoladas de escolares saudáveis que apresentam uma mesma origem geográfica. Contudo, a investigação de microevolução em (sub)populações de C. albicans comensais, comparativamente com outros parâmetros do hospedeiro (i.e., hábitos nutricionais e higiênicos, alterações hormonais em função da idade,...), poderia ser explorada. Análises de Ca3 fingerprinting têm mostrado (i) que um único grupo de linhagens de C. albicans, geneticamente relacionado causando infecções, normalmente predominam em uma determinada população de pacientes em um determinado local geográfico^{30,58,78-80,82}, e (ii) que as distâncias genéticas observadas entre isolados de diferentes regiões excederam as distâncias genéticas observadas entre isolados da mesma região, indicando especificidade regional de C. albicans^{58,77}. Estudos epidemiológicos, usando Southern blot hibridação com sonda Ca3, têm mostrado a existência de um grupo, denominado A (diferente de outros dois grupos – B e C), constituído de subgrupos de C. albicans geneticamente similares, e altamente prevalentes em uma variedade de tipos de infecções de vários pacientes localizados em diferentes regiões geográficas. Tais resultados foram indicativos da existência de um grupo ubíquo, que compreende o agente etiológico

predominante das candidíases, o qual poderia originar a partir de sua alta prevalência como comensal. Estes estudos também sugeriram que a especificidade regional de *C. albicans* poderia ser causada por evolução clonal, independentemente da existência de grupos de linhagens ancestrais não selecionados de modo ubíquo⁸¹.

Empregando MLEE, análises de agrupamento e genética de populações, os resultados obtidos na presente pesquisa mostraram alta diversidade genética entre todos os isolados bucais de C. albicans, com predominância de alguns ETs e grupos de ETs altamente relacionados dentro e entre as (sub)populações de escolares clinicamente saudáveis, do município de Piracicaba, estado de São Paulo, Brasil. A inexistência de correlação foi observada entre ET-específico ou grupos de ETs altamente relacionados e (sub)população-específica de escolares. Todas as (sub)populações de isolados não mostraram divergências significantes entre as freqüências genotípicas observadas e esperadas (teste de equilíbrio de Hardy-Wienberg). Tais observações sugerem a hipótese de que (sub)populações-específicas de escolares saudáveis não correspondem ao fator de seleção (sobrevivência diferencial) de ET-específico ou grupos de ETs altamente relacionados. A existência de um ou mais grupos de ETs altamente relacionados, normalmente predominante dentro e entre (sub)populações de escolares, também foi sugerida pelas análises de agrupamento, contudo, sem correlação com as (sub)populações de escolares. Estes resultados também sugerem a existência de rotas de disseminação diretas e indiretas de C. albicans dentro e entre as (sub)populações de escolares, as quais poderiam ser determinadas por pesquisas complementares como, por exemplo, o isolamento de C. albicans a partir de ambientes escolares (salas de aula, refeitórios, banheiros, bibliotecas particulares e públicas,...), alunos, professores e funcionários. Dentro do contexto microevolucionário, nossas análises de diversidade genética entre (sub)populações mostraram convergência ancestral em seis (sub)populações de C. albicans, e baixa divergência genética ancestral em duas (sub)populações, que em média correspondeu a >1,2 e <4 substituições alélicas para cada 100 loci, a partir de uma população ancestral comum. Estes resultados sugerem que mudanças microevolucionárias podem ocorrer em (sub)populações de C. albicans isoladas de escolares saudáveis que apresentam uma mesma origem geográfica. Contudo, a investigação de microevolução em

(sub)populações de *C. albicans* comensais, comparativamente com outros parâmetros do hospedeiro (i.e., hábitos nutricionais e higiênicos, alterações hormonais em função da idade,...), poderia ser explorada. Finalmente, MLEE e outros métodos de genotipagem (i.e., Ca3 *fingerprinting*), análises de agrupamento e genética de populações, poderiam ser empregados para análises atual e retrospectiva de isolados de *C. albicans* provenientes de indivíduos saudáveis e pacientes imunocomprometidos, a fim de detectar a existência de um grupo ubíquo (i.e., constituído de agentes etiológicos, possivelmente de origem comensal, predominantes em candidíases). Estes procedimentos poderiam conduzir ao desenvolvimento de estratégias para prevenção da transmissibilidade desses agentes entre escolares saudáveis e escolares predispostos a desenvolverem candidíases a partir de uma imunodeficiência congênita ou possivelmente adquirida.

AGRADECIMENTOS

Este trabalho foi financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Proc. 00/03045-5).

REFERÊNCIAS

- 1. Alfenas, A.C. (1998). Eletroforese de isoenzimas e proteínas afins; fundamentos e aplicações em plantas e microrganismos. Editora UFV, Viçosa.
- Anderson, J., Srikantha, T., Morrow, B., Miyasaki, S.H., White, T.C., Agabian, N., Schmid, J. & Soll, D.R. (1993). Characterization and partial nucleotide sequence of the DNA fingerprinting probe Ca3 of *Candida albicans*. *J Clin Microbiol* 31,1472-1480.
- 3. Antonsson, B., Montessuit, S., Friedli, L., Payton, M.A. & Paravicini, G. (1994). Protein kinase C in yeast. Characteristics of the *Saccharomyces cerevisiae* PKC1 gene product. *J Biol Chem* 269, 16821-16828.

- 4. Arnavielhe, S., Blancark, A., Mallié, M., Gouin, F., Ottomani, A., Manalli, J.C. & Bastide, J.M. (1996). Suivi mycologique d'infections à *Candida albicans* dans divers services hospitaliers. *Path Biol* 44, 447-451.
- 5. Arnavielhe, S., Blancark, A., Mallié, M., Quilici, M. & Bastide, J.M. (1997). Multilocus enzyme electrophoresis analysis of *Candida albicans* isolates from three intensive care units. An epidemiological study. *Mycoses* **40**, 159-167.
- 6. Asakura, K., Iwaguchi, S., Homma, M., Sukai, T., Higashide, K. & Tanaka, K. (1991). Electrophoretic karyotypes of clinically isolated yeasts of *Candida albicans* and *C. glabrata. J Gen Microbiol* 137, 2531-2538.
- 7. **Ayala, F.J. & Kiger, J.A. (1984).** Modern genetics. 2nd Ed Menlo Park. Benjamin/Cummings Co.
- Barchiesi, F., Arzeni, D., Del Prete, M.S., Sinicco, A., Falconi Di Francesco, L., Pasticci, M.B., Lamura, L., Nuzzo, M.M., Burzacchini, F., Coppola, S., Chiodo, F. & Scalise, G. (1998). Fluconazole susceptibility and strain variation of *Candida albicans* isolates from HIV-infected patients with oropharyngeal candidosis. J *Antimicrob Chemother* 41, 541:548.
- 9. Bertout, S., Renaud, F., Swinne, D., Mallie, M. & Bastide, J.-M. (1999). Genetic multilocus studies of different strains of *Cryptococcus neoformans*: taxonomy and genetic structure. *J Clin Microbiol* **37**, 715-720.
- 10. Boerlin, P. (1997). Applications of multilocus enzyme electrophoresis in medical microbiology. *J Microbiol Meth* 28, 221-231.
- Boerlin, P., Boerlin-Petzold, F., Durussel, C., Addo, M., Pagani, J.-L. Chave, J.-P. & Bille, J. (1995). Cluster of oral atypical *Candida albicans* isolates in a group of human immunodeficiency virus-positive drug users. *J Clin Microbiol* 33, 1129-1135.
- Boerlin, P., Boerlin-Petzold, F., Goudet, J., Durussel, C., Pagani, J.-L., Chave, J.-P. & Bille, J. (1996). Typing *Candida albicans* oral isolates from human immunodeficiency virus-infected patients by multilocus enzyme electrophoresis and DNA fingerprinting. *J Clin Microbiol* 34, 1235-1248.
- Brandt, M.E., Hutwagner, L.C., Klug, L.A., Baughman, W.S., Rimland, D., Graviss, E.A., Hamill, R.J., Thomas, C., Pappas, P.G., Reingold, A.L. & Pinner, R.W. (1996). Molecular subtype distribution of *Cryptococcus neoformans* in four areas of the United States. Cryptococcal Disease Active Surveillance Group. *J Clin Microbiol* 34, 912-917.
- 14. Brandt, M.E., Hutwagner, L.C., Kuykendall, R.J. & Pinner, R.W. (1995). Comparison of multilocus enzyme electrophoresis and random amplified polymorphic

DNA analysis for molecular subtyping of *Cryptococcus neoformans*. J Clin Microbiol **33**, 1890-1895.

- 15. Brandt, M.E., Bragg, S.L. & Pinner, R.W. (1993). Multilocus enzyme typing of *Cryptococcus neoformans. J Clin Microbiol* **31**, 2819-2823.
- 16. Bruneau, S. & Guinet, R. (1989). Rapid identification of medically important yeasts by electrophoretic protein patterns. *FEMS Microbiol Lett* **49**, 329-333.
- 17. Casanova, M. & Chaffin, D.W.L. (1991). Cell wall glycoproteins of *Candida albicans* as released by different methods. *J Gen Microbiol* 137, 1045-1051.
- 18. Caugant, D.A. & Sandven, P. (1993). Epidemiological analysis of *Candida albicans* strains by multilocus enzyme electrophoresis. *J Clin Microbiol* **31**, 215-220.
- 19. Chibana, H., Iwaguchi, S.-I., Homma, M., Chindamporn, A., Nakagawa, Y. & Tanaka, K. (1994). Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of *Candida albicans*. *J Bacteriol* 176, 3851-3858.
- 20. Clemons, K.V., Feroze, F., Holmberg, K. & Stevens, D.A. (1997). Comparative analysis of genetic variability among *Candida albicans* isolates from different geographic locales by three genotypic methods. *J Clin Microbiol* **35**, 1332-1336.
- 21. Costas, M., Holmes, B., Wood, A.C. & On, S.L.W. (1989). Numerical analysis of electrophoretic protein patterns of *Providencia rettgeri* strains from human faeces, urine and other specimens. *J Appl Bact* 67, 441-452.
- 22. Costas, M., Sloss, L.L., Owen, R.J. & Gaston, M.A. (1989). Evaluation of numerical analysis of SDS-PAGE of protein patterns for typing *Enterobacter cloacae*. *Epidem Infect* 103, 265-274.
- 23. **Dhondt, A.A. (1988).** The necessity of population genetics for understanding evolution: an ecologist' view, p. 14-18. *In*: De Jong, G., Population genetics and evolution. Springer-Verlag Berlin Heidelberg. Brühlsche Universitätsdruckerei, Giessen.
- 24. Doebeling, B.N., Lehmann, P.F., Hollis, R.J., Wu, L.C., Widmer, A.F., Voss, A. & Pfaller, M.A. (1993). Comparison of pulsed-field gel electrophoresis with isoenzyme profiles as a typing system for *Candida tropicalis*. *Clin Infect Dis* 16, 377-383.
- 25. **Farris, J.S. (1969).** On the cophenetic correlation coefficient. *Systematic Zool* **18**, 279-285.
- 26. **Gillespie**, **J.H.** (1991). The causes of molecular evolution. Oxford University Press, N.Y.

- 27. Golding, B. (ed.). (1994). Non-neutral evolution. Chapman and Hall, N.Y.
- 28. Harris, H. & Hopkinson, D.A. (1976). Handbook of enzyme electrophoresis in human genetics. (And Supplement 1978) North-Holland Publishing Co., Amsterdam.
- 29. Hartl, D.L. & Clark, A.G. (1997). Principles of population genetics. Sinauer Associates, Inc. Publishers Suderland, Mass.
- 30. Hellstein, J., Vawter-Hugart, H., Fotos, P., Schmid, J. & Soll, D.R. (1993). Genetic similarity and phenotypic diversity of commensal and pathogenic strains of *Candida albicans* isolated from the oral cavity. *J Clin Microbiol* **31**, 3190-3199.
- 31. Hunter, P.R. (1991). A critical review of typing methods for *Candida albicans* and their applications. *Crit Rev Microbiol* 17, 417-434.
- 32. Kersters, K. & De Ley, J. (1975). Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. *J Gen Microbiol* **87**, 333-342.
- 33. **Kimura, M. (1983).** The neutral theory of molecular evolution. Cambridge University Press, U.K.
- 34. Kleinegger, C., Lockhart, S.R., Vargas, K. & Soll, D.R. (1996). Frequency, intensity, species and strains of oral yeast vary as a function of host age. *J Clin Microbiol* 34, 2246-2254.
- 35. Le Guennec, R., Reynes, J., Mallie, M., Pujol, C., Janbon, F. & Bastide, J.-M. (1995). Fluconazole- and itraconazole-resistant *Candida albicans* strain from AIDS patients: multilocus enzyme electrophoresis analysis and antifungal susceptibilities. *J Clin Microbiol* 33, 2732-2737.
- 36. Legendre, L. & Legendre, P. (1983). Numerical Ecology. Elsevier, New York.
- 37. Lehmann, P.F., Kemker, B.J., Hsiao, C.-B. & Dev, S. (1989). Isoenzyme biotypes of *Candida* species. *J Clin Microbiol* 27, 2514-2521.
- 38. Lehmann, P.F., Lin, D. & Lasker, B.A. (1992). Genotypic identification and characterization of species and strains within the genus *Candida* by using random amplified polymorphic DNA. *J Clin Microbiol* **30**, 3249-3254.
- 39. Lehmann, P.F., Wu, L. C., Pruitt, W.R., Meyer, S.A. & Ahearn, D.G. (1993). Unrelatedness of groups of yeasts within the *Candida haemulonii* complex. *J Clin Microbiol* **31**, 1683-1687.
- 40. Lehmann, P.F., Wu, L.-C. & Mackenzie, D.W.R. (1991). Isozyme changes in *Candida albicans* domestication. *J Clin Microbiol* 29, 2623-2625.

- 41. Lin, D., Wu, L.C., Rinaldi, M.G. & Lehmann, P.F. (1995). Three distinct genotypes within *Candida parapsilosis* from clinical sources. *J Clin Microbiol* 33, 1815-1821.
- 42. Lockhart, S., Reed, B. & Soll, D.R. (1996). Most frequent scenario for recurrent *Candida* vaginitis is strains maintenance with "substrain shuffling": demonstration by sequential DNA fingerprinting with probes Ca3, C1, and CARE2. *J Clin Microbiol* **34**, 767-777.
- 43. Lockhart, S., Fritch, J.J., Meier, A.S., Schroeppel, K., Srikantha, T., Galask, R. & Soll, D.R. (1995). Colonizing populations of *Candida albicans* are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. *J Clin Microbiol* **33**, 1501-1509.
- 44. Lockhart, S.R., Joly, S., Vargas, K., Swails-Wenger, J., Enger, L. & Soll, D.R. (1999). Defenses against oral *Candida* carriage break down in the elderly. *J Dent Res* 78, 857-868.
- 45. Lupetti, A., Guzzi, G., Paladini, A., Swart, K., Campa, M. & Senesi, S. (1995). Molecular typing of *Candida albicans* in oral candidiasis: karyotype epidemiology with human immunodeficiency virus-seropositive patients in comparison with that with healthy carriers. *J Clin Microbiol* **33**, 1238-1242.
- 46. Lynch, B. & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sinauer Associates, Inc. Publishers Sunderland, Mass.
- 47. Marco, F., Lockhart, S.R., Pfaller, M.A., Pujol, C., Rangel-Frausto, M.S., Wiblin, T., Blumberg, H.M., Edwards, J.E., Jarvis, W., Saiman, L., Patterson, J.E., Rinaldi, M.G., Wenzel, R.P. & Soll, D.R. (1999). Elucidating the origins of nosocomial infections with *Candida albicans* by DNA fingerprinting with the complex probe Ca3. J Clin Microbiol 37, 2817-2828.
- 48. Mata, A.L., Rosa, R.T., Rosa, E.A.R., Gonçalves, R.B. & Höfling, J.F. (2000). Clonal variability among oral *Candida albicans* assessed by allozyme electrophoresis analysis. *Oral Microbiol Immunol* **15**, 350-354.
- 49. Mehta, S.K., Stevens, D.A., Mishra, S.K., Feroze, F. & Pierson, D.L. (1999). Distribuition of *Candida albicans* genotypes among family members. *Diagn Microbiol Infect Dis* 34, 19-25.
- Moreira, D., Spolidório, D.M.P., Rodrigues, J.A.O., Boriollo, M.F.G., Pereira, C.V., Rosa, E.A.R. & Höfling, J.F. (2001). *Candida* spp. Biotypes in the oral cavity of school children from different socioeconomic categories in Piracicaba – SP, Brazil. *Pesqui Odontol Bras* 15, 187-195.

- 51. Murphy, R.W., Sites, J.W., Buth, D.G. & Haufler, C.H. (1990). Proteins I: isoenzyme electrophoresis, p. 45-126. *In*: Hillis, D.M., and C. Moritz, Molecular systematics. Sinauer Associates Inc. Publishers, Sunderland, Mass.
- 52. Nébavi, F., Arnavielhe, S., Le Guennec, R., Ménan, E., Kacou, A., Combe, P., Aoussi, E., Mallié, M., Koné, M. & Bastide, J.M. (1998). Oropharyngeal candidiasisj in AIDS patients from Abidjan (Ivory Coast): antifungal susceptibilities and multilocus enzyme electrophoresis analysis of *Candida albicans* isolates. *Path Biol* **46**, 307-314.
- 53. Nei, M. (1972). Genetic distances between populations. Am Naturalist 106, 283-292.
- 54. Nei, M. (1987). Molecular evolutionary genetics. New York. Columbia University Press.
- 55. Odds, F., Schmid, J. & Soll, D.R. (1990). Epidemiology of *Candida* infections in AIDS, p. 67-74. *In*: Bossche, H.V. Mycoses in AIDS patients. New York, Plenum.
- 56. Odds, F.C. & Bernaerts, R. (1994). CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. *J Clin Microbiol* 32, 1923-1929.
- 57. **Pasteur, N., Pasteur, G., Bonbomme, F., Catalan, J. & Britton-Davidian, J. (1987).** Manuel technique de génétique par électrophorèse dês protéines. Technique et documentation. Lavoisier, Paris.
- 58. Pfaller, M.A., Lockhart, S.R., Pujol, C., Swails-Wenger, J.A., Messer, S.A., Edmond, M.B., Jones, R.N., Wenzel, R.P. & Soll, D.R. (1998). Hospital specificity, region specificity, and fluconazole resistence of *Candida albicans* bloodstream isolates. *J Clin Microbiol* **36**, 1518-1529.
- 59. Powderly, W.G., Robinson, K. & Keath, E.J. (1992). Molecular typing of *Candida albicans* isolated from oral lesions of HIV-infected individuals. *AIDS* **6**, 81-84.
- 60. Pujol, C., Reynes, J., Renaud, F., Mallie, M. & Bastide, J.-M. (1993). Genetic analysis of *Candida albicans* strains studies by isoenzyme electrophoresis. *J Mycol Med* **3**, 14-19.
- 61. Pujol, C., Reynes, J., Renaud, F., Raymond, M., Tibayrenc, M., Ayala, F.J., Janbon, F., Mallie, M. & Bastide, J.-M. (1993). The yeast *Candida albicans* has a clonal mode of reproduction in a population of infected human immunodeficiency viry-positive patients. *Proc Natl Acad Sci USA* **90**, 9456-9459.
- 62. **Pujol, C., Joly, S., Notan, B., Srikantha, T. & Soll, D.R. (1999).** Microevolutionary changes in *Candida albicans* identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive RPS at specific genomic sites. *Microbiology* **145**, 2635-2646.

- 63. **Pujol, C., Joly, S., Lockhart, S.R., Noel, S., Tibayrenc, M. & Soll, D.R. (1997)** Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting *Candida albicans. J Clin Microbiol* **35**, 2348-2358.
- Reynes, J., Pujol, C., Moreau, C., Mallié, M., Renaud, F., Janbon, F. & Bastide, J.-M. (1996). Simultaneous carriage of *Candida albicans* strains from HIV-infected patients with oral candidiasis: multilocus enzyme electrophoresis analysis. *FEMS Microbiol Lett* 137, 269-273.
- 65. **Rippon, J.W. (1988).** Medical mycology. 3rd ed. Philadelphia: W.B. Saunders, pp. 532-581.
- 66. **Rohlf, F.J. (1988).** NTSYS-pc numerical taxonomy and multivariate analysis system. Exeter Software Publishing, New York.
- 67. Rosa, E.A.R., Pereira, C.V., Rosa, R.T. & Höfling, J.F. (1999). Evaluation of different dehydrogenases to recognize *Candida* species commonly isolated from human oral cavities. *Rev Argent Microbiol* **31**, 165-172.
- 68. Rosa, E.A.R., Rosa, R.T., Pereira, C.V. & Höfling, J.F. (2000). Grouping oral *Candida* species by multilocus enzyme electrophoresis. *Int J Syst Evol Microbiol* **50**, 1343-1349.
- 69. Rosa, E.A.R., Rosa, R.T., Pereira, C.V. & Höfling, J.F. (2001). Inter and Intraspecific genetic variability of oral *Candida* species. *Rev Iberoam Micol* 18, 60-64.
- 70. Rosa, E.A.R., Rosa, R.T., Pereira, C.V., Boriollo, M.F.G. & Höfling, J.F. (2000). Analysis of parity between protein-based electrophoretic methods for characterization of oral *Candida* species. *Mem Inst Oswaldo Cruz* **95**, 801-806.
- 71. Rustchenko, E.P., Howard, D.H. & Sherman, F. (1994). Chromosomal alterations of *Candida albicans* are associated with the gain and loss of assimilating functions. *J Bacteriol* 176, 3231-3241.
- 72. Rustchenko-Bulgac, E.P., Sherman, F. & Hicks, J.B. (1990). Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of *Candida albicans*. *J Bacteriol* 172, 1276-1283.
- 73. Sadhu, C., McEachern, M.J., Rustchenko-Bulgac, E.P., Schmid, J., Soll, D.R. & Hicks, J.B. (1991). Telomeric and dispersed repeat sequences in *Candida* yeasts and their use in strain identification. *J Bacteriol* 173, 842-850.
- 74. San Millan, R.M., Wu, L.C., Salkin, I.F. & Lehmann, P.F. (1997). Clinical isolates of *Candida guilliermondii* include *Candida fermentati*. *Int J Syst Bacteriol* **47**, 385-393.

- 75. Sandven, P. (1990). Laboratory indentification and sensitivity testing of yeast isolates. *Acta odont Scand* 48, 27-36.
- 76. Scherer, S. & Magee, P.T. (1990). Genetics of *Candida albicans*. *Microbiol Rev* 54, 226-241.
- 77. Schmid, J. (1993). Candidiasis: conclusions from DNA fingerprinting. *Clin Adv Treatment Fungal Infect* 4, 12-16.
- 78. Schmid, J., Voss, E. & Soll, D.R. (1990). Computer-assisted methods for assessing strain relatedness in *Candida albicans* by fingerprinting with the moderately repetitive sequence Ca3. *J Clin Microbiol* 28, 1236-1243.
- 79. Schmid, J., Rotman, M., Reed, B., Pierson, C.L. & Soll, D.R. (1993). Genetic similarity of *Candida albicans* strains from vaginitis patients and their partners. *J Clin Microbiol* 31, 39-46.
- 80. Schmid, J., Hunter, P.R., White, G.C., Nand, A.K. & Soll, R.D. (1995). Physiological traits associated with success of *Candida albicans* strains as commensal colonizers and pathogens. *J Clin Microbiol* **33**, 2920-2926.
- 81. Schmid, J., Herd, S., Hunter, P.R., Cannon, R.D., Yasin, M.S.M., Samad, S., Carr, M., Parr, D., McKinney, W., Schousboe, M., Harris, B., Ikram, R., Harris, M., Restrepo, A., Hoyos, G. & Singh, K.P. (1999). Evidence for a general-purpose genotype in *Candida albicans*, highly prevalent in multiple geographical regions, patient types and types of infection. *Microbiology* 145, 2405-2413.
- 82. Schmid, J., Tay, Y.P., Wan, L., Carr, M., Parr, D. & McKinney, W. (1995). Evidence for nosocomial transmission of *Candida albicans* obtained by Ca3 fingerprinting. *J Clin Microbiol* 33, 1223-1230.
- 83. Schroeppel, K., Rotman, M., Galask, R., Mac, K. & Soll, D.R. (1994). The evolution and replacement of *Candida albicans* strains during recurrent vaginitis demonstrated by DNA fingerprinting. *J Clin Microbiol* **32**, 2646-2654.
- 84. Selander, R.K. & Levin, B.R. (1980). Genetic diversity and structure in *Escherichia coli* populations. *Science* 210, 545-547.
- 85. Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N. & Whittam, T.S. (1986). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. *Appl Environ Microbiol* **51**, 873-884.
- 86. Selander, R.K., Musser, J.M., Caugant, D.A., Gilmour, M.N. & Whittam, T.S. (1987). Population genetics of pathogenic bacteria. *Microb Pathog* 3, 1-7.
- 87. Smithies, O. (1955). Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. *Biochem J* 61, 629-641.
- 88. Sneath, P.H. & Johnson, R. (1972). The influence on numerical taxonomic similarities of errors in microbiological tests. *J Gen Microbiol* 72, 377-392.
- 89. Sneath, P.H.A. & Sokal, R.R. (1973). Numerical taxonomy. W.H. Freeman and Company, San Francisco.
- 90. Sokal, R.R. & Rohlf, F.J. (1962). The comparison of dendrograms by objective methods. *Taxon* 11, 33-40.
- 91. Sokal, R.R. & Rohlf, F.J. (1970). The intelligent ignoramus, an experiment in numerical taxonomy. *Taxon* 19, 305-319.
- 92. Soll, D.R. (1993). DNA fingerprinting of Candida albicans. J Mycol Med 3, 37-44.
- 93. Soll, D.R., Langtimm, C.J., McDowell, J., Hicks, J. & Galask, R. (1987). High frequency switching in *Candida* strain isolated from vaginitis patients. *J Clin Microbiol* 25, 1611-1622.
- 94. Soll, D.R., Galask, R., Schmid, J., Hanna, C., Mac, K. & Morrow, B. (1991). Genetic dissimilarity of commensal strains of *Candida* spp. carried in different anatomical localizations of the same healthy women. *J Clin Microbiol* **29**, 1702-1710.
- 95. **Tibayrenc, M., Kjellberg, F. & Ayala, F.J. (1990).** A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. *Proc Natl Acad Sci USA* **87**, 2414-2418.
- 96. Tibayrenc, M., Kjellberg, F., Arnaud, J., Oury, B., Breniere, S.F., Darde, M.L. & Ayala, F.J. (1991). Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. *Proc Natl Acad Sci USA* **88**, 5129-5133.
- 97. **Tibayrenc, M., Ward, P., Moya, A. & Ayala, F.J. (1986).** Natural populations of *Trypanosoma cruzi*, the agent of Chagas disease, have a complex multiclonal structure. *Proc Natl Acad Sci USA* **83**, 115-119.
- 98. Val, A.L., Schwantes, A.R., Schwantes, M.L.B. & De Luca, P.H. (1981). Amido hidrolisado de milho como suporte eletroforético. *Ciênc Cult* **33**:992-996.
- 99. Vancanneyt, M., Pot, B., Hennebert, G. & Kersters, K. (1991). Differentiation of yeast species based on electrophoretic whole-cell protein patterns. *Syst Appl Microbiol* 14, 23-32.

- 100. Waters, M.G. & Blobel, G. (1986). Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. *J Cell Biol* 102, 1543-1550.
- 101. Whelan, W.L., Kirsch, D.R., Know-Chung, K.J., Wahl, S.M. & Smith, P.D. (1990). *Candida albicans* in patients with the aquired immunodeficiency syndrome: absence of a novel or hypervirulent strain. *J Infect Dis* 162, 513-518.
- 102. White, T.C., Pfaller, M.A., Rinaldi, M.C., Smith, J. & Redding, S. (1997). Stable azole drug resistance associated with a substrain of *Candida albicans* from an HIV-infected patient. *Oral Dis* **3**, S102-109.
- 103. Woontner, M. & Jaehning, J.A. (1990). Accurate initiation by RNA polimerase II in a whole cell extract from *Saccharomyces cerevisiae*. *J Biol Chem* 265, 8979-8982.
- 104. Xu, J., Vilgalys, R. & Mitchell, T.G. (1999). Lack of genetic differentiation between two geographically diverse samples of *Candida albicans* isolated from patients infected with human immunodeficiency virus. *J Bacteriol* 181, 1369-1373.

MLEE e análise da diversidade genética dentro e entre populações de *Candida albicans* isoladas da cavidade bucal de crianças saudáveis classificadas em diferentes classes socioeconômicas

Marcelo Fabiano Gomes Boriollo & José Francisco Höfling

Laboratório de Microbiologia e Imunologia, Departamento de Diagnóstico Bucal, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brasil.

RESUMO

O objetivo dessa pesquisa foi avaliar a diversidade dentro e entre (sub)populações de C. albicans isoladas da cavidade bucal de crianças saudáveis, classificadas em cinco categorias socioeconômicas (A, B, C, D e E) do município de Piracicaba, Estado de São Paulo, Brasil, por meio da eletroforese de enzima multiloco (MLEE), análises de agrupamento e genética de populações. Culturas de leveduras foram submetidas à extração de proteínas por pérolas de vidro. As enzimas foram separadas em gel de amido através de procedimentos eletroforéticos e reveladas por métodos descritos previamente para 15 loci enzimáticos. Os padrões de heterozigotos foram consistentes com a natureza diplóide de C. albicans. Alta diversidade genética foi observada em todas as (sub)populações com predominância de alguns ETs. A inexistência de correlação foi observada entre ET-específico ou grupos de ETs altamente relacionados e (sub)populaçãoespecífica de crianças. Em adição, todas as (sub)populações de isolados não mostraram divergências significantes entre as freqüências genotípicas observadas e esperadas (teste de equilíbrio de Hardy-Wienberg). Tais observações sugerem a hipótese de que (sub)populações de crianças saudáveis, de diversas classes socioeconômicas, não correspondem ao fator de seleção (sobrevivência diferencial) de ET-específico ou grupos de ETs altamente relacionados. A existência de um ou mais grupos de ETs altamente relacionados, normalmente predominante dentro e entre (sub)populações de crianças, também foi sugerida pelas análises de agrupamento, contudo, sem correlação com qualquer (sub)população de crianças de determinada condição socioeconômica. Estes resultados também sugerem a existência de rotas de disseminação diretas e indiretas de C. albicans

dentro e entre as (sub)populações de crianças, as quais poderiam ser determinadas por pesquisas complementares como, por exemplo, o isolamento de C. albicans a partir de ambientes de convivência socioeconômica (escolas de educação e esportes particulares ou públicas e seus respectivos ambientes e profissionais,...). No contexto microevolucionário, a convergência ancestral foi observada entre as (sub)populações de C. albicans isoladas das (sup)populações de crianças da classes socioeconômicas B e C (média/alta), e D e E (média/baixa). A divergência genética ancestral foi observada entre as (sub)populações de isolados provenientes de crianças das classes socioeconômicas A (alta) e BC (média/alta), A (alta) e DE (média/baixa), e BC (média/alta) e DE (média/baixa), que em média correspondeu entre >1 e <2,3 substituições alélicas para cada 100 loci, a partir de uma população ancestral comum. Essas observações sugerem a ocorrência de mudanças microevolucionárias em algumas (sub)populações de C. albicans isoladas de crianças saudáveis que apresentam a mesma condição socioeconômica. Ainda, uma baixa transição de subtipos de C. albicans pode estar ocorrendo entre determinadas (sub)populações de crianças (i.e., baixa transição entre A e BC, A e DE, e BC e DE), o que também pode ser explicado pelas suas próprias características socioeconômicas e culturais. Contudo, a investigação de microevolução em (sub)populações de C. albicans comensais, comparativamente com outros parâmetros do hospedeiro (i.e., hábitos nutricionais e higiênicos, alterações hormonais em função da idade,...), poderia ser explorada. Finalmente, MLEE e outros métodos de genotipagem (i.e., Ca3 fingerprinting), análises de agrupamento e genética de populações, poderiam ser empregados para análises atual e retrospectiva de isolados de C. albicans provenientes de indivíduos saudáveis e pacientes imunocomprometidos, a fim de detectar a existência de um grupo ubíquo (i.e., constituído de agentes etiológicos, possivelmente de origem comensal, predominantes em candidíases). Estes procedimentos poderiam conduzir ao desenvolvimento de estratégias para prevenção da transmissibilidade desses agentes entre crianças saudáveis e crianças predispostas a desenvolverem candidíases a partir de uma imunodeficiência congênita ou possivelmente adquirida, independentemente de suas condições socioeconômicas e culturais.

Palavras chave: *Candida albicans*; MLEE; diversidade genética; crianças saudáveis; categorias socioeconômicas.

INTRODUÇÃO

Candida albicans e espécies relacionadas são encontradas, de modo ubíquo e comensal, na microbiota de cavidades (retal, bucal, vaginal, uretral, nasal, aural) e pele humana¹¹⁷. As razões pelas quais pessoas saudáveis abrigam tais espécies permanecem desconhecidas. Entretanto, fatores nutricionais, interações com a microbiota bacteriana e presença de anticorpos salivares foram sugeridos para influenciar a incidência dessas leveduras¹³¹. Em adição, estas espécies são consideradas patógenos oportunistas capazes de causar infecções, variando desde desordens mucocutâneas não comprometedoras ao individuo até doenças invasivas envolvendo quase todos os órgãos. A freqüência das infecções por *Candida* vem aumentando mundialmente devido a uma multiplicidade de fatores predisponentes (i.e. AIDS, diabetes, leucemia, câncer,...)^{54,92}, que facilita a conversão da forma comensal à existência parasitária^{103,104}. O aumento destas infecções tem sido associado com deficiências imunológicas, conforme as observações de inúmeros casos de candidíase orofaríngea em pacientes com AIDS⁴¹. A progressão da colonização para infecção em mucosas foi relatada como um processo dependente do mecanismo de defesa do hospedeiro e da habilidade de *Candida* spp. sobrepujar tal mecanismo²⁵.

O interesse em adquirir um melhor entendimento sobre a patogênese, epidemiologia, genética e evolução das infecções causadas por *C. albicans* tem conduzido ao desenvolvimento de inúmeras pesquisas, as quais empregaram métodos moleculares, tais como MLEE (*Multilocus Enzyme Electrophoresis*)^{4,5,8,14,16,17,21-23,27,35,57-60,61,71,87,88,90,95-98,100}, RAPD (*Random Amplified Polymorphic DNA*)^{10,18,19,29,32,33,42,46,47,90,93,99,137}, REA (*Restriction Endonuclease Analysis*)^{11,29,48,51,69,83,108,121,132,133,140}, Ca3 *fingerprinting* (*Southern blot hibridization with probe* Ca3)^{2,45,53,64-66,70,80,85,90,102,112,115,116,128-130,144} e EK (*Electrophoretic Karyotyping*)^{6,9-13,20,29,36,37,62,67,72-74,84,102,107,132,141}.

A delineação de linhagens por eletroforese de enzima multiloco (MLEE) tem permitido avaliar a diversidade e estrutura genética de populações^{76,82}. Em termos de alelos específicos, as proporções alélicas têm inferido o grau de recombinação genética em populações naturais. Essas proporções também têm sido empregadas na avaliação dos graus

de isolamento genético entre populações naturais, causado por regiões geográficas e ecológicas ou barreiras biológicas. Seu emprego tem apresentado relevâncias taxonômicas e sistemáticas uma vez que, para microrganismos clonais, os graus de relacionamento inter e intrapopulacional têm sido analisados. Clones espécie-específico identificados por MLEE também foram associados com padrões e reincidências clínicos, e altos índices de patogenicidade. Tais resultados têm sido empregados em traçados epidemiológicos, que permitem melhor entendimento no desenvolvimento de epidemias, o que representa um inestimável complemento aos métodos atuais de tipagem molecular, particularmente nos estudos epidemiológicos em larga escala. Adicionalmente, MLEE tem sido considerado um método de tipagem com alto poder discriminatório e reprodutibilidade^{15,17,48,76,82,90}. Considerados como marcadores neutros (i.e., invariáveis quando sofrem pressões seletivas ambientais), as isoenzimas metabólicas têm apresentado grande potencialidade nos estudos de caracterização taxonômica, sistemática, genética, evolutiva e epidemiológica de *C. albicans*^{4,5,8,14,16,17,21-23,27,35,57-61,71,87,88,90,95-98,105}.

O objetivo dessa pesquisa foi avaliar a diversidade genética dentro e entre (sub)populações de *C. albicans* isoladas da cavidade bucal de crianças saudáveis, classificadas em cinco categorias socioeconômicas (A, B, C, D e E) do município de Piracicaba, Estado de São Paulo, por meio da eletroforese de enzima multiloco (MLEE), análises de agrupamento e genética de populações. Resumidamente, os resultados obtidos permitiram avaliar (i) os graus de diversidade genética entre os isolados de cada (sub)população, (ii) os graus de diversidade genética entre todos os isolados, (iii) a existência de subtipos (ETs) e grupos de isolados altamente relacionados, (iv) a distribuição e prevalência destes subtipos e grupos de isolados dentro e entre (sub)populações, (v) a inexistência de correlação entre subtipos ou grupos de isolados e diferentes populações de crianças saudáveis (diferentes classes socioeconômicas), e (vi) microevolução dentro e entre (sub)populações de isolados.

MATERIAL E MÉTODOS

Procedência das amostras. O estudo envolveu 75 amostras de *C. albicans* isoladas da cavidade bucal de 75 crianças clinicamente saudáveis, com idades variando entre seis e nove anos, de ambos os sexos, classificadas em cinco categorias socioeconômicas (A, B, C, D e E), do município de Piracicaba, estado de São Paulo (Tabela 1 e Figura 1)⁷⁵. Estes isolados foram identificados por critérios morfológicos, como formação de tubo germinativo, produção de clamidósporos, crescimento em meio cromogênico CHROMagar Candida[®], e testes de fermentação e assimilação de carboidratos^{75,81,106}.

Tabela 1. Relação das amostras de *C. albicans* isoladas da cavidade bucal de 75 crianças saudáveis, provenientes de cinco categorias socioeconômicas.

	C	Classes S	Socioeco	onômica	s
\backslash	Α	В	С	D	Ε
	A1	B4	C4	D5	E7
	A7	B5	C5	D6	E8
	A9	B11	C9	D13	E10
	A10	B13	C12	D14	E17
S	A15	B15	C16	D19	E25
tra	A17	B16	C17	D20	E30
osi	A20	B18	C20	D21	E32
ш	A21	B21	C23	D23	E39
A	A23	B23	C32	D25	E43
as	A24	B24	C33	D28	E48
q	A30	B31	C36	D32	E52
20	A33	B32	C40	D5	E57
dig	A40	B33	C44		
20	A48	B38	C47		
\cup	A50	B46	C48		
	A52	B54			
	A55	B56			
	A61				
	A64				
п	19	17	15	12	12

n corresponde ao número de isolados. As classes socioeconômicas foram determinadas previamente pelos critérios da Associação Brasileira de Anunciantes e do Instituto de Pesquisa de Mercado (ABA-ABIPEME).

Figura 1. Localização geográfica das populações de isolados bucais de *C. albicans*. Município de Piracicaba, estado de São Paulo, Brasil.

Preparação dos extratos celulares. Culturas de amostras de *C. albicans* foram desenvolvidas em frascos contendo 50mL de meio YEPD (Extrato de Levedura 1% m/v, Peptona 2% m/v e Glicose 2% m/v) a 37°C por 18 horas, sob agitação constante de 150rpm^{6,26} (Incubadora Shaker mod. NT 712, Nova Técnica Instrumentos e Equipamentos de Laboratório Ltda.). Logo após o crescimento, as células foram centrifugadas a $3.000 \times g$ por 5 minutos¹⁴² e lavadas duas vezes em solução de NaCl a 0,9% m/v¹⁴⁵, submetendo cada lavagem a mesma força centrífuga. Os *pellets* (~500µL) foram transferidos para tubos de 2mL (Biospec Products, Inc.), contendo água destilada gelada e pérolas de vidro (1:1:1). Estas misturas permaneceram em gelo por 5 minutos e, posteriormente, foram agitadas quatro vezes em aparelho BeadBeater[®] (Biospec Products, Inc.) por 30 segundos, com intervalos de 1 minuto. Os fragmentos celulares centrifugados a $5.000 \times g$ a 4°C por 5 minutos. As fases superiores aquosas resultantes foram aplicadas em papéis de filtro Whatman nº 3 (*wicks*), com dimensões de 12x5mm, e mantidas a -70°C até o momento de uso^{3,95-98}.

Eletroforese e coloração de enzimas específicas. Enzimas foram separadas em gel de amido (Penetrose $30^{\text{(P)}}$, Refinações de Milho Brasil Ltda) a 13% m/v, com dimensão de 200x120x10mm. Rapidamente, os *wicks* previamente preparados foram embebidos com 5μ L de solução de azul-de-bromofenol a 0,02% m/v e aplicados perpendicularmente ao corte longitudinal (20mm) do gel. A eletroforese foi conduzida em sistema horizontal e contínuo, sob tensão de 130 volts a 4°C *overnight* (migração do corante equivalente a 80mm). Para assegurar a reprodutibilidade dos resultados, a linhagem padrão de *C. albicans* CBS-562 (Centralbureau voor Schimmelcultures, Delft, The Netherlands) foi sistematicamente colocada nas extremidades de cada gel. Após a corrida eletroforética, o gel foi colocado sobre uma base de acrílico e fatiado em lâminas de 1,5mm de espessura, com auxílio de réguas sobrepostas e fio náilon nº15^{1,122,138}. Cuidadosamente, estas lâminas foram conduzidas ao interior de recipientes de porcelana branca e submetidas ao processo de coloração por métodos descritos previamente para 11 sistemas (15 *loci* enzimáticos) ^{1,90,119}. As atividades enzimáticas analisadas foram: álcool desidrogenase, sorbitol desidrogenase, manitol-1-fosfato desidrogenase, malato desidrogenase, isocitrato desidrogenase, glucose desidrogenase, glucose-6-fosfato desidrogenase, aspartato desidrogenase, catalase, peroxidase e leucina aminopeptidase (Tabela 2). Expressões enzimáticas de malato desidrogenase, isocitrato desidrogenase e sorbitol desidrogenase mostraram dois e três *loci* geneticamente interpretativos (*Mdh-1*, *Mdh-2* e *Mdh-3*; *Idh-1* e *Idh-2*; *Sdh-1* e *Sdh-2*).

Interpretação genética dos padrões de MLEE. Padrões de MLEE foram interpretados seguindo a regra, comumente aceita, que permite a dedução da composição alélica de um organismo diplóide. Os eletromorfos (bandas) de cada enzima, numerados e/ou ordenados alfabeticamente em disposição decrescente com relação à mobilidade enzimática anodal, foram comparados com os alelos do correspondente *locus* gênico estrutural. As (sub)populações de *C. albicans* foram caracterizadas pelas combinações dos alelos de 15 *loci* gênicos, de modo que distintas combinações alélicas de *loci* polimórficos foram designadas de tipos eletroforéticos (ETs). O índice percentual de *loci* polimórficos (freqüência do alelo mais comum < 0.99), o número médio de alelos por *locus*, o número médio de alelos por *locus* polimórfico e o número de alelos entre heterozigotos e homozigotos também foram determinados^{43,44,68,82}. A falta de uma detectável atividade enzimática foi interpretada como dois alelos nulos do correspondente *locus* gênico^{1,16,27,55,71,77,119}.

Análises de diversidade genética. Freqüências alélicas e freqüências genotípicas observadas e esperadas (teste de Hardy-Weinberg) das (sub)populações de *C. albicans* foram calculadas a partir de cada *locus* enzimático^{7,27,44,68}. Heterozigosidade foi determinada pela equação $h = 1 - \sum_i (p_i^2)$, sendo p_i a freqüência média do alelo *i* na população⁷⁹. A diversidade genética dentro e entre as (sub)populações de isolados bucais foi determinada pelo coeficiente de distância genética de Nei (1972),

$$d_{ij} = -In \left[\frac{\sum_{k} |x_{ki} x_{kj}|}{\sqrt{\sum_{k} x_{ki}^2 x_{kj}^2}} \right], \text{ o qual admite a utilização de dados a partir de freqüências gênicas}$$

ou alélicas⁷⁸. Deste modo, as matrizes de distância genética (*trellis diagrams*) foram elaboradas e tratadas pelo método de agrupamento SHAN algoritmo UPGMA (*Unweighted*

	ENZIMA		TA	AMPÃO	COMPOSTOS PARA COLORAÇÃO						
EC	NOME S	SIMBOLO	ELETRODO ¹	GEL	SUBSTRATO	TAMPÃO	SAL COENZ	ÍMA	CORANTE CATALISADOR		
1.1.1.1.	Álcool desidrogenase	ADH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Etanol (3mL) Isopropanol (2mL)	200mM Tris-HCl pH 8.0 (50mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.1.1.14.	Sorbitol desidrogenase	SDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Sorbitol (250mg)	Tris-HCl 50mM pH 8.0 (50mL) ³		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.1.1.17.	Manitol-1-fosfato desidrogenase	M1P	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Manitol-1-fosfato (5mg)	Tris-HCl 100mM pH 8.5 (50mL) ⁴		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.1.1.37.	Malato desidrogenase	MDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	2M Ácido málico (6mL) ⁵	Tris-HCl 200mM pH 8.0 (40mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.1.1.42.	Isocitrato desidrogenase	IDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	1M Ácido isocítrico (2mL) ⁶	Tris-HCl 200mM pH 8.0 (40mL) ²	100mM MgCl ₂ (1mL) ⁷	NADP 1% (1mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.1.1.47.	Glucose desidrogenase	GDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	D-glucose (500mg)	Tris-HCl 200mM pH 8.0 (50mL) ²		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.1.1.49.	Glucose-6- fosfato desidrogenase	G6PDH	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Glicose-6-fosfato (100mg)	Tris-HCl 200mM pH 8.0 (50mL) ²	100mM MgCl ₂ (1mL) ⁷	NADP 1% (1mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.4.3.x.	Aspartato desidrogenase	ASD	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	Ácido aspártico (50mg)	Fosfato de sódio pH 7.0 (50mL) ⁸		NAD 1% (2mL)	PMS 1% (500µL) MTT 1.25% (1mL)		
1.11.1.6.	Catalase ⁹	CAT	Tris-citrato pH 8.0	Tampão do eletrodo 1:29							
1.11.1.7.	Peroxidase	РО	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	H ₂ O ₂ 3% (1mL)	100mM Acetato de sódio pH 4.5 (50mL) ¹⁰			o-dianisidina 2HCl (16mg)		
3.4.11.1.	Leucina aminopeptidase	LAP	Tris-citrato pH 8.0	Tampão do eletrodo 1:29	L-leucina β- naftilamida HCl (30 mg)	100mM Fosfato de Potássio pH 5.5 (50mL) ¹¹	$\begin{array}{c} 100mM\ MgCl_2 \\ \left(1mL\right)^7 \end{array}$		Black K (30mg)		

Tabela 2. Relação das enzimas metabólicas de *C. albicans* e seus respectivos sistemas eletroforéticos e soluções para coloração.

¹83.2g de C₄H₁₁NO₃ (Tris), 33.09g de C₆H₈O₇.H₂O (Ácido cítrico), 1L def H₂O; ²24.2g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ³6.05g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ⁴12.1g de C₄H₁₁NO₃ (Tris), 1L de H₂O (pH ajustado com HCl); ⁵26.8g de C₄H₆O₅ (Ácido DL-málico) e 16g de NaOH em 0.1L de H₂O (precaução: reação potencialmente explosiva); ⁶29.41g de C₆H₅O₇Na₃ · 2H₂O (Ácido DL-isocítrico) em 0.1L de H₂O; ⁷2.03g de MgCl₂.6HCl (Cloreto de magnésio) em 0.1L de H₂O; ⁸ Misturar partes iguais de 27.6g de NaH₂PO₄ · H₂O (Fosfato de sódio monobásico monohidratado) em 1L de H₂O e 53.6g de Na₂HPO₄ · 7H₂O (Fosfato de sódio dibásico heptahidratado) em 1L de H₂O, então deliuir a mistura 1:25 com H₂O; ⁹ Incubar a fatia do gel por 30 minutos a 0°C em 50mL de tampão de 0.1M fosfato de sódio pH 7.0, então decantar a solução, e imergir a fatia em 50mL de solução de iodeto de potássio 1.5% (KI) por 2 minutos. Por conseguinte, enxaguar a fatia do gel com água, e imergi-la em 50mL de solução de peróxido de hidrogênio 0.03% (H₂O₂). Misturar cuidadosamente e remover a solução corante quando zonas brancas surgirem sobre o fundo azul escuro; ¹⁰13.61g de C₂H₃O₂Na · 3H₂O (Acetato de sódio), 1L de H₂O; ¹¹

Pair-Group Method Using an Arithmetic Average), a fim de gerar árvores com classificações bidimensionais, denominadas dendrogramas^{38,123,124}. Para determinação da concordância entre os valores de distância genética implícitos nos dendrogramas e os valores de distância genética explícitos nas matrizes foi empregado o coeficiente de correlação cofenética baseado no produto-momento de Pearson,

 $r_{ki} = \frac{s_{ki}}{\sqrt{s_k^2 s_i^2}} = \frac{\sum_{j=1}^p (y_{ij} - \bar{y}_i)(y_{kj} - \bar{y}_k)}{\sqrt{\sum_{j=1}^p (y_{ij} - \bar{y}_i)^2} \sqrt{\sum_{j=1}^p (y_{kj} - \bar{y}_k)^2}} \frac{38,50,56,124-126}{\sqrt{\sum_{j=1}^p (y_{ij} - \bar{y}_i)^2}}.$ Essas análises foram realizadas com o

auxílio do programa NTSYS-pc 1.70^{94} . A linhagem-padrão de *C. albicans* CBS-562 (Centralbureau voor Schimmelcultures, Delft, The Netherlands) foi incluída neste experimento a fim de estabelecer a correlação cofenética entre os isolados bucais de *C. albicans* e determinar a reprodutibilidade^{24,30,31,139}.

RESULTADOS

Interpretação genética dos padrões de MLEE. A interpretação genética dos padrões de MLEE (Figura 2) mostrou características genéticas intrínsecas para cada (sub)população de *C. albicans* (Tabela 3 e Figura 3):

População Total (75 isolados): Quatorze (93,3%) de 15 *loci* enzimáticos foram polimórficos para um, dois ou três alelos (1 alelo: Idh-2 freqüência do alelo *b* ou *c* <1% (0,75%); 2 alelos: Cat, Gdh ^{freqüência} do alelo *c* ou *d* <1% (0,67%), Mdh-2, Mdh-3 ^{freqüência} do alelo *a* <1% (0,86%), Po e Sdh-2 ^{freqüência} do alelo *c* ou *d* <1% (0,67%); 3 alelos: Adh, Asd, G6pdh, Idh-1, Lap, M1p, Mdh-1). Apenas 1 (6,7%) *locus* enzimático foi monomórfico para um alelo (Sdh-1). O número médio de alelos por *locus* foi igual a 2,80, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,92. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 43 (57,3%) ETs nesta população. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, G6pdh, Idh-1, Lap, M1p, Mdh-2, Mdh-3, Po e Sdh-2; 3 bandas: Mdh-2 ^{sugestivo} de enzima dimérica</sup>). Entre os homozigotos foram observados um alelo nos *loci* Gdh, Idh-2, Mdh-2 e Sdh-1, dois alelos nos *loci* Adh, Asd, Cat, Idh-1, Lap, Mdh-1, Mdh-3, Po e Sdh-2, e três alelos nos *loci* G6pdh e M1p (Tabela 4).

População da classe socioeconômica A (19 isolados): Quatorze (93,3%) de 15 *loci* enzimáticos foram polimórficos para dois, três ou quatro alelos (2 alelos: Adh, Cat, Lap, Mdh-1, Mdh-2 e Po; 3 alelos: Asd, G6pdh, Idh-1, Idh-2, M1p, Mdh-3 e Sdh-2; 4 alelos: Gdh). Apenas 1 (6,7%) *locus* enzimático foi monomórfico (Sdh-1). O número médio de alelos por *locus* foi igual a 2,53, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,69. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 17 (89,4%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, G6pdh, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-2, Mdh-3, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Adh, Gdh, Idh-2, Lap, Po, Sdh-1 e Sdh-2, dois alelos nos *loci* Asd, Cat, Idh-1, M1p, Mdh-1 e Mdh-3, e três alelos no *locus* G6pdh (Tabela 5).

População da classe socioeconômica B (17 isolados): Seis (40%) de 15 *loci* enzimáticos foram polimórficos para dois alelos (Adh, G6pdh, Lap, Mdh-1, Mdh-2 e Po). Nove (60%) *loci* enzimáticos foram monomórficos (Asd, Cat, Gdh, Idh-1, Idh-2, M1p, Mdh-3, Sdh-1 e Sdh-2). O número médio de alelos por *locus* foi igual a 1,40, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 11 (64,7%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, G6pdh, Lap, Mdh-1, Mdh-2 e Po; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Adh, Asd, Cat, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-1, Mdh-3, Po, Sdh-1 e Sdh-2, e dois alelos no *locus* G6pdh (Tabela 6).

População da classe socioeconômica C (15 isolados): Cinco (33,3%) de 15 *loci* enzimáticos foram polimórficos para dois ou três alelos (2 alelos: Mdh-1, Mdh-2, Po e Sdh-2; 3 alelos: Adh). Dez (66,7%) *loci* enzimáticos foram monomórficos (Asd, Cat, G6pdh, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-3 e Sdh-1). O número médio de alelos por *locus* foi igual a 1,40, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,20. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 11 (73,3%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Mdh-1, Mdh-2, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Adh, Asd, Cat, G6pdh, Gdh, Idh-1, Idh-2, Lap, M1p, Mdh-1, Mdh-2, Mdh-3, Po e Sdh-1, e dois alelos no *locus* Sdh-2 (Tabela 7).

População da classe socioeconômica D (12 isolados): Nove (60%) de 15 *loci* enzimáticos foram polimórficos para dois alelos (Adh, Asd, G6pdh, Gdh, Idh-1, M1p, Mdh-2, Po e Sdh-2). Seis (40%) *loci* enzimáticos foram monomórficos (Cat, Idh-2, Lap, Mdh-1, Mdh-3 e Sdh-1). O número médio de alelos por *locus* foi igual a 1,60, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 6 (50%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, Gdh, Idh-1, M1p, Mdh-2, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Adh, Cat, Gdh, Idh-1, Idh-2, Lap, Mdh-1, Mdh-3, Po e Sdh-1, e dois alelos nos *loci* G6pdh, M1p e Sdh-2 (Tabela 8).

População da classe socioeconômica E (12 isolados): Dez (66,7%) de 15 *loci* enzimáticos foram polimórficos para dois ou e três alelos (2 alelos: Asd, G6pdh, Gdh, Idh-1, Lap, M1p, Mdh-2, Po e Sdh-2; 3 alelos: Adh). Cinco (33,3%) *loci* enzimáticos foram monomórficos (Cat, Idh-2, Mdh-1, Mdh-3 e Sdh-1). O número médio de alelos por *locus* foi igual a 1,73, enquanto que o número médio de alelos por *locus* polimórfico foi igual a 2,11. As combinações dos alelos existentes em 15 *loci* enzimáticos mostraram 12 (100%) ETs. Heterozigotos revelaram duas e três bandas enzimáticas (2 bandas: Adh, Asd, Gdh, Idh-1, M1p, Mdh-2, Po e Sdh-2; 3 bandas: Mdh-2). Entre os homozigotos foram observados um alelo nos *loci* Asd, Cat, Gdh, Idh-1, Idh-2, M1p, Mdh-1, Mdh-3, Sdh-1 e Sdh-2, e dois alelos nos *loci* Adh, G6pdh, Lap e Po (Tabela 9).

Figura 2. Zimograma representativo da expressão enzimática de isolados bucais de *C. albicans* provenientes de 75 crianças saudáveis.

Migração de enzimas ocorre a partir do pólo negativo (catodo) para o pólo positivo (anodo). Da esquerda para direita temse a amostra A10, A9, A15, A21, A7, A64, A50, A55, A20, A24, A17, A61, A52, A23, A33, A40, A1, A30, A48, B4, B31, B24, B38, B21, B5, B33, B11, B13, B56, B18, B16, B54, B15, B46, B23, B32, C5, C47, C16, C23, C48, C17, C12, C32, C4, C20, C44, C40, C33, C36, C9, CBS562, E7, E17, E39, E52, E57, E10, E48, E25, E32, D36, D19, D6, D13, D28, D23, D25, D5, D32, D14, D21, D20, E30, E43 e E8.

	Loci	Polimá	órficos		Média	Е	Ts	Н	h
Populações	n	%	<i>n</i> alelos	alelos/ <i>locus</i>	alelos/ <i>locus</i> polimórfico	n	%	n bandas	n alelos
A	14	93,3	2-3-4	2,53	2,69	17	89,5	2-3	1-2-3
В	6	40	2	1,4	2	11	64,7	2-3	1-2
С	5	33,3	2-3	1,4	2,2	11	73,3	2-3	1-2
D	9	60	2	1,6	2	6	50	2-3	1-2
Е	10	66,7	2-3	1,73	2,11	12	100	2-3	1-2
Média	8,8	-	-	1,732	2,2	-	75,5	-	-
Desvio Padrão	$\pm 3,56$	-	-	±0,468	$\pm 0,286$	-	±19,8	-	-
TOTAL	14	93,3	1-2-3	2,80	2,92	43	57,3	2-3	1-2-3

Tabela 3. Características genéticas das (sub)populações de C. albicans.

ETs, H e h correspondem aos tipos eletroforéticos, heterozigotos e homozigotos, respectivamente.

Figura 3. Características genéticas das (sub)populações de *C. albicans: i.* Número de *locus* polimórfico; *ii.* Índice percentual do número de ETs; *iii.* Número médio de alelos por *locus*; *iv.* Número médio de alelos por *locus* polimórfico.

Tais resultados indicaram que 31 crianças saudáveis (A = 12; B = 4; C = 7; D = 2; E = 6) abrigaram na cavidade bucal diferentes ETs de *C. albicans*. Todavia, ETs idênticos foram encontrados em crianças classificadas somente na classe socioeconômica A (ET1_{A1-A30}) ou B (ET10_{B4-B16-B46-B54}), ou ainda, nas classes socioeconômicas A e B (ET31_{A20-B56}), A, B e C (ET33_{A50-B33-C32}), A, D e E (ET23_{A55-D5-D19-D21-D32-E10} e ET24_{A15-A21-D23-D25-D36-E8}), B e C (ET9_{B31-C5} e ET37_{B38-C4}), B, C e E (ET32_{B5-B11-B13-B23-C17-C36-C40-C44-C48-E57}), B e E (ET34_{B21-E52}), e, finalmente, nas classes D e E (ET4_{D20-E48} e ET28_{D6-D14-E32}). ETs idênticos não foram identificados em crianças das classes socioeconômicas B e D, C e D, ou ainda, em crianças classificadas apenas na classe socioeconômica E (Tabela 10, Figura 4).

ЕТ	No. de					Alei	LOS D	е 15	Loci	Enz	ZIMÁT	ICOS*				
21	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
1	2	ab	ab	aa	ab	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
2	1	ab	ab	aa	bb	ab	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
3	1	ab	ab	aa	сс	ab	ac	aa	aa	aa	aa	ab	сс	aa	aa	aa
4	2	ab	ab	aa	cc	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	ab
5	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
6	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
7	1	ab	bb	aa	bb	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
8	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
9	2	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
10	4	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
11	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
12	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	ab
13	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
14	1	ab	bb	aa	сс	bb	aa	aa	ab	bb	ab	ab	-	aa	aa	bb
15	1	ab	bb	aa	сс	bb	aa	-	aa	bb	ab	bb	-	ab	aa	bb
16	1	bb	ab	aa	aa	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
17	1	bb	ab	aa	aa	bb	-	aa	aa	bb	aa	ab	сс	ab	aa	bb
18	1	bb	ab	aa	bb	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
19	1	bb	ab	aa	bb	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
20	1	bb	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	bb
21	1	bb	ab	аа	сс	ab	ac	aa	aa	ab	aa	ab	сс	ab	aa	bb
22	1	bb	ab	aa	сс	ab	ac	aa	ab	bb	aa	ab	сс	ab	aa	bb
23	6	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
24	6	bb	ab	аа	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
25	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
26	1	bb	ab	aa	сс	bb	aa	aa	aa	bc	aa	ab	bb	aa	aa	bb
27	1	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
28	3	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
29	1	bb	ab	aa	сс	cd	bb	bc	aa	сс	сс	-	ab	ab	аа	bb
30	1	bb	bb	aa	bb	bb	aa	aa	aa	bc	aa	ab	bb	ab	aa	bb
31	2	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	аа	bb
32	10	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
33	3	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
34	2	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	аа	bb
35	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	aa	aa	bb
36	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	ab	aa	bb
37	2	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	aa	аа	bb
38	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	ab	aa	aa
39	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	ab	aa	bb
40	1	bb	bb	aa	сс	bb	аа	-	aa	bb	aa	bb	-	ab	aa	bb
41	1	bb	сс	bb	bb	ab	ac	aa	aa	ab	aa	ab	сс	ab	-	cd
42	1	bc	bb	aa	сс	bb	aa	_	aa	bb	aa	ab	сс	aa	aa	bb
43	1	сс	bb	aa	сс	bb	aa	aa	сс	bb	aa	ab	сс	bb	aa	bb
$\Sigma 43$	Σ 75															

Tabela 4. Perfis alélicos em 43 ETs enzimáticos de C. albicans provenientes de 75 crianças saudáveis.

 * Heterozigotos são apresentados com
o $ab,\,ac,\,bc$ ecd.(-) alelo nulo.

FT	No. de	ALELOS DE 15 LOCI ENZIMÁTICOS [*]														
	isolados	ADH	ASD	CAT	G6PDH	Gdh	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	аа	aa	bb	ab	ab	сс	ab	aa	bb
1	2	ab	ab	aa	ab	bb	aa	аа	aa	bb	aa	ab	сс	ab	aa	bb
6	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
16	1	bb	ab	aa	aa	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
17	1	bb	ab	aa	aa	bb	-	aa	aa	bb	aa	ab	сс	ab	aa	bb
18	1	bb	ab	aa	bb	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
20	1	bb	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	bb
21	1	bb	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	ab	aa	bb
22	1	bb	ab	aa	сс	ab	ac	aa	ab	bb	aa	ab	сс	ab	aa	bb
23	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
24	2	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
26	1	bb	ab	aa	сс	bb	aa	aa	aa	bc	aa	ab	bb	aa	aa	bb
27	1	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	aa	aa	bb
29	1	bb	ab	aa	сс	cd	bb	bc	aa	сс	cc	-	ab	ab	aa	bb
30	1	bb	bb	aa	bb	bb	aa	aa	aa	bc	aa	ab	bb	ab	aa	bb
31	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
33	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
41	1	bb	сс	bb	bb	ab	ac	aa	aa	ab	aa	ab	сс	ab	-	cd

Tabela 5. Perfis alélicos em 17 ETs enzimáticos de *C. albicans* isolados de 19 crianças saudáveis, provenientes da classe socioeconômica A.

* Heterozigotos são apresentados como *ab*, *ac*, *bc* e *cd*. (-) alelo nulo.

Tabela 6. Perfis alélicos em 11 ETs enzimáticos de *C. albicans* isolados de 17 crianças saudáveis, provenientes da classe socioeconômica B.

FT	No. de	ALELOS DE 15 LOCI ENZIMÁTICOS [®]														
	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	cc	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
7	1	ab	bb	aa	bb	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
9	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
10	4	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
11	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
14	1	ab	bb	aa	сс	bb	aa	aa	ab	bb	ab	ab	-	aa	aa	bb
31	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
32	4	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
33	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
34	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
35	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	aa	aa	bb
37	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	aa	aa	bb

* Heterozigotos são apresentados como *ab*. (-) alelo nulo.

ЕТ	No. de					Alei	LOS D	е 15	Loci	' Enz	ZIMÁT	'ICOS				
171	isolados	Adh	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	аа	aa	bb	ab	ab	сс	ab	aa	bb
9	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	cc	aa	aa	bb
13	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
15	1	ab	bb	aa	сс	bb	aa	-	aa	bb	ab	bb	-	ab	aa	bb
32	5	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	cc	ab	aa	bb
33	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	aa	aa	bb
36	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	сс	ab	aa	bb
37	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	aa	aa	bb
38	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	ab	aa	aa
39	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	ab	-	ab	aa	bb
40	1	bb	bb	aa	сс	bb	aa	-	aa	bb	aa	bb	-	ab	aa	bb
42	1	bc	bb	aa	сс	bb	aa	-	аа	bb	aa	ab	сс	aa	aa	bb

Tabela 7. Perfis alélicos em 11 ETs enzimáticos de *C. albicans* isolados de 15 crianças saudáveis, provenientes da classe socioeconômica C.

* Heterozigotos são apresentados como *ab* e *bc*. (-) alelo nulo.

Tabela 8. Perfis alélicos em 6 ETs enzimáticos de *C. albicans* isolados de 12 crianças saudáveis, provenientes da classe socioeconômica D.

ЕТ	No. de	Alelos de 15 <i>Loci</i> Enzimáticos*														
121	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	аа	aa	bb	ab	ab	сс	ab	аа	bb
3	1	ab	ab	aa	сс	ab	ac	aa	aa	aa	aa	ab	сс	aa	aa	aa
4	1	ab	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	ab
19	1	bb	ab	aa	bb	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
23	4	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
24	3	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
28	2	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb

* Heterozigotos são apresentados como *ab* e *ac*. (-) alelo nulo.

Tabela 9. Perfis alélicos em 12 ETs enzimáticos de *C. albicans* isolados de 12 crianças saudáveis, provenientes da classe socioeconômica E.

FТ	No. de	ALELOS DE 15 LOCI ENZIMÁTICOS [*]														
121	isolados	ADH	ASD	CAT	G6PDH	GDH	IDH-1	IDH-2	LAP	M1P	MDH-1	MDH-2	MDH-3	РО	SDH-1	SDH-2
	CBS-562	bb	bb	aa	сс	bb	aa	aa	aa	bb	ab	ab	сс	ab	aa	bb
2	1	ab	ab	aa	bb	ab	ac	aa	aa	bb	aa	ab	cc	ab	aa	bb
4	1	ab	ab	aa	сс	ab	ac	aa	aa	ab	aa	ab	сс	aa	aa	ab
5	1	ab	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
8	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	ab
12	1	ab	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	ab
23	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	aa	aa	bb
24	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
25	1	bb	ab	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
28	1	bb	ab	aa	сс	bb	ac	aa	aa	bb	aa	ab	сс	ab	aa	bb
32	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	сс	ab	aa	bb
34	1	bb	bb	aa	сс	bb	aa	aa	aa	bb	aa	ab	-	ab	aa	bb
43	1	сс	bb	aa	сс	bb	aa	aa	cc	bb	aa	ab	сс	bb	aa	bb

 * Heterozigotos são apresentados como ab e ac. (-) alelo nulo.

Tabela 10. Distribuição de 43 ETs enzimáticos de *C. albicans* entre 75 crianças saudáveis, provenientes de cinco categorias socioeconômicas.

Figura 4. Perfil quantitativo dos ETs enzimáticos de *C. albicans*.

Análises de diversidade genética. A heterozigosidade média da população total (Tabela 11) de isolados foi igual a 0,191. Heterozigosidade média igual a 0,276, 0,251, 0,275, 0,290 e 0,284, foi observada em (sub)populações de *C. albicans* isoladas de crianças provenientes das classes socioeconômicas A, B, C, D e E, respectivamente (Tabelas 12 a 16 e Figura 5). Em todas as (sub)populações avaliadas pelo teste de equilíbrio de Hardy-Wienberg não ocorreu divergência significante entre as freqüências genotípicas observadas e esperadas (Tabelas 17 a 22).

Tabela 11. Freqüências alélicas e heterozigosidades resultantes da população total de *C. albicans* isolada de 75 crianças saudáveis.

Loci		Alel	os		н
Loci	p(a)	p(b)	p(c)	p(d)	11
Adh	0,138	0,842	0,020	0	0,272
Asd	0,224	0,763	0,013	0	0,367
Cat	0,987	0,013	0	0	0,026
G6pdh	0,040	0,092	0,868	0	0,237
Gdh	0,052	0,934	0,007	0,007	0,125
Idh-1	0,894	0,013	0,093	0	0,192
Idh-2	0,984	0,008	0,008	0	0,032
Lap	0,974	0,013	0,013	0	0,051
M1p	0,046	0,928	0,026	0	0,136
Mdh-1	0,967	0,020	0,013	0	0,064
Mdh-2	0,487	0,513	0	0	0,500
Mdh-3	0,009	0,042	0,949	0	0,098
Ро	0,684	0,316	0	0	0,432
Sdh-1	1,000	0	0	0	0
Sdh-2	0,059	0,927	0,007	0,007	0,137

H média (loci polimórficos) = 0,191

Tabela 13. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica B.

Loci		Alel	os		н
Loti	p(a)	p(b)	p(c)	p(d)	11
Adh	0,24	0,76	0	0	0,365
Asd	0	1,00	0	0	0
Cat	1,00	0	0	0	0
G6pdh	0	0,06	0,94	0	0,113
Gdh	0	1,00	0	0	0
Idh-1	1,00	0	0	0	0
Idh-2	1,00	0	0	0	0
Lap	0,97	0,03	0	0	0,058
M1p	0	1,00	0	0	0
Mdh-1	0,97	0,03	0	0	0,058
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0	0	1,00	0	0
Ро	0,71	0,29	0	0	0,412
Sdh-1	1,00	0	0	0	0
Sdh-2	0	1,00	0	0	0

H média (loci polimórficos) = 0,251

Tabela 12. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica A.

Loci		Alel	OS		н
LUCI	p(a)	p(b)	p(c)	p(d)	- 11
Adh	0,08	0,92	0	0	0,147
Asd	0,40	0,55	0,05	0	0,535
Cat	0,95	0,05	0	0	0,095
G6pdh	0,16	0,21	0,63	0	0,533
Gdh	0,10	0,84	0,03	0,03	0,283
Idh-1	0,78	0,05	0,17	0	0,360
Idh-2	0,94	0,03	0,03	0	0,115
Lap	0,97	0,03	0	0	0,058
M1p	0,08	0,82	0,10	0	0,311
Mdh-1	0,95	0	0,05	0	0,095
Mdh-2	0,50	0,50	0	0	0,500
Mdh-3	0,03	0,15	0,82	0	0,304
Ро	0,71	0,29	0	0	0,412
Sdh-1	1,00	0	0	0	0
Sdh-2	0	0,94	0,03	0,03	0,115

H média (loci polimórficos) = 0,276

Tabela 14. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica C.

Loci		Alel	os		— н	
Loci	p(a)	p(b)	p(c)	p(d)	п	
Adh	0,10	0,87	0,03	0	0,232	
Asd	0	1,00	0	0	0	
Cat	1,00	0	0	0	0	
G6pdh	0	0	1,00	0	0	
Gdh	0	1,00	0	0	0	
Idh-1	1,00	0	0	0	0	
Idh-2	1,00	0	0	0	0	
Lap	1,00	0	0	0	0	
M1p	0	1,00	0	0	0	
Mdh-1	0,97	0,03	0	0	0,058	
Mdh-2	0,43	0,57	0	0	0,490	
Mdh-3	0	0	1,00	0	0	
Ро	0,63	0,37	0	0	0,466	
Sdh-1	1,00	0	0	0	0	
Sdh-2	0,07	0,93	0	0	0,130	

H média (loci polimórficos) = 0,275

Tabela 15. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica D.

Loci		Alel	os		— Н	
Loti	p(a)	p(b)	p(c)	p(d)	п	
Adh	0,08	0,92	0	0	0,147	
Asd	0,50	0,50	0	0	0,500	
Cat	1,00	0	0	0	0	
G6pdh	0	0,08	0,92	0	0,147	
Gdh	0,08	0,92	0	0	0,147	
Idh-1	0,79	0	0,21	0	0,332	
Idh-2	1,00	0	0	0	0	
Lap	1,00	0	0	0	0	
M1p	0,12	0,88	0	0	0,211	
Mdh-1	1,00	0	0	0	0	
Mdh-2	0,50	0,50	0	0	0,500	
Mdh-3	0	0	1,00	0	0	
Ро	0,71	0,29	0	0	0,412	
Sdh-1	1,00	0	0	0	0	
Sdh-2	0,12	0,88	0	0	0,211	

 Tabela 16. Freqüências alélicas e heterozigosidades resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica E.

Loci		Alel	os		– Н	
Loti	p(a)	p(b)	p(c)	p(d)		
Adh	0,21	0,71	0,08	0	0,445	
Asd	0,29	0,71	0	0	0,412	
Cat	1,00	0	0	0	0	
G6pdh	0	0,08	0,92	0	0,147	
Gdh	0,08	0,92	0	0	0,147	
ldh-1	0,88	0	0,12	0	0,211	
ldh-2	1,00	0	0	0	0	
Lap	0,92	0	0,08	0	0,147	
M1p	0,04	0,96	0	0	0,077	
Mdh-1	1,00	0	0	0	0	
Mdh-2	0,50	0,50	0	0	0,500	
Mdh-3	0	0	1,00	0	0	
Po	0,62	0,38	0	0	0,471	
Sdh-1	1,00	0	0	0	0	
Sdh-2	0,17	0,83	0	0	0,282	

H média (*loci* polimórficos) = 0,290

H média (*loci* polimórficos) = 0,284

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	ia (ETS)	χ^2
Enzimáticos	-	Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0.020		0	0.033	
	bb	0,693	0,706		0,590	0,614	
	сс	0,013	<0,001		0,023	0,001	
	ab	0,281	0,236		0,364	0,285	
	ac	0	0,005		0	0,013	
	bc	0,013	0,033		0,023	0,054	
		Σ1,0	Σ1,0	Σ 0,465	Σ 1,0	Σ1,0	Σ 0,486
Asd	aa	0	0,051		0	0,057	
	bb	0,534	0,578		0,500	0,545	
	сс	0,013	<0,001		0,023	0,001	
	ab	0,453	0,345		0,477	0,352	
	ac	0	0,006		0	0,011	
	bc	0	0,020		0	0,034	
		Σ1,0	Σ1,0	Σ 1,089	Σ 1,0	Σ1,0	Σ 1,104
Cat	aa	0,987	0,974		0,977	0,955	
	bb	0,013	<0,001		0,023	<0,001	
	ab	0	0,026		0	0,045	
		Σ1,0	Σ 1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0
G6pdh	aa	0,027	0,002		0,045	0,003	
1	bb	0,080	0,009		0,136	0,022	
	сс	0,866	0,750		0,796	0,633	
	ab	0,027	0,007		0,023	0,017	
	ac	0	0,070		0	0,090	
	bc	0	0,162		0	0,235	
		Σ1,0	Σ 1,0	Σ 1,273	Σ1,0	Σ1,0	Σ 1,516
Gdh	aa	0	0,003		0	0,008	
	bb	0,880	0,871		0,795	0,785	
	сс	0	<0,001		0	<0,001	
	dd	0	<0,001		0	<0,001	
	ab	0,107	0,100		0,182	0,161	
	ac	0	0,001		0	0,002	
	ad	0	0,001		0	0,002	
	bc	0	0,012		0	0,021	
	bd	0	0,012		0	0,021	
	cd	0,013	<0,001		0,023	<0,001	
		Σ1,0	Σ1,0	Σ 2,003	Σ1,0	Σ1,0	Σ 2,011
Idh-1	aa	0,797	0,795		0,698	0,701	
	bb	0,014	<0,001		0,023	0,001	
	сс	0	0,009		0	0,019	
	ab	0	0,025		0	0,039	
	ac	0,189	0,168		0,279	0,234	
	bc	0	0,003		0	0,006	
		Σ1,0	Σ1,0	Σ 1,011	Σ 1,0	Σ1,0	Σ 1,028
Idh-2	aa	0,985	0,970		0,972	0,946	
	bb	0	<0,001		0	<0,001	
	сс	0	<0,001		0	<0,001	
	ab	0	0,015		0	0,027	
	ac	0	0,015		0	0,027	
	bc	0,015	<0,001		0,028	<0,001	
		Σ1,0	Σ1,0	Σ 2,000	Σ 1,0	Σ1,0	Σ 2,000

Tabela 17. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (14 polimórficos/1 monomórfico), resultantes da população total de *C. albicans* isolada de 75 crianças saudáveis.

Tabela 17. Continuação.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	cia (ETS)	χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Lap	aa	0,960	0,948		0,932	0,912	
-	bb	0	<0,001		0	< 0,001	
	сс	0,013	<0,001		0,023	<0,001	
	ab	0,027	0,026		0,045	0,043	
	ac	0	0,025		0	0,044	
	bc	0	<0,001		0	0,001	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,001
M1p	aa	0,013	0,002		0,023	0,006	
	bb	0,880	0,859		0,795	0,765	
	сс	0,013	0,001		0,023	0,002	
	ab	0,067	0,086		0,114	0,140	
	ac	0	0,003		0	0,007	
	bc	0,027	0,049		0,045	0,080	
		Σ1,0	Σ1,0	Σ 0,287	Σ1,0	Σ1,0	Σ 0,283
Mdh-1	aa	0,960	0,948		0,932	0,911	
	bb	0	<0,001		0	0,001	
	сс	0,013	<0,001		0,023	0,001	
	ab	0,027	0,026		0,045	0,043	
	ac	0	0,025		0	0,044	
	bc	0	<0,001		0	0,001	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,001
Mdh-2	aa	0	0,237		0	0,227	
	bb	0,027	0,264		0,047	0,274	
	ab	0,973	0,499		0,953	0,499	
		Σ1,0	Σ1,0	Σ 0,898	Σ1,0	Σ1,0	Σ 0,828
Mdh-3	aa	0	<0,001		0	<0,001	
	bb	0,035	0,002		0,065	0.007	
	сс	0,948	0,899		0,903	0,815	
	ab	0,017	0,001		0,032	0,003	
	ac	0	0,016		0	0,029	
	bc	0	0,082		0	0,146	
		Σ1,0	Σ1,0	Σ 1,038	Σ1,0	Σ1,0	Σ 1,039
Ро	aa	0,374	0,463		0,409	0,480	
	bb	0,013	0,102		0,023	0,094	
	ab	0,613	0,435		0,568	0,426	
		Σ1,0	Σ1,0	Σ 0,168	Σ1,0	Σ1,0	Σ 0,112
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Sdh-2	aa	0.027	0.004		0.045	0.011	
	bb	0.893	0.858		0.818	0.766	
	cc	0	<0.001		0	< 0.001	
	dd	0	<0,001		0	<0,001	
	ab	0,067	0,112		0,114	0,179	
	ac	0	0,001		0	0,002	
	ad	0	0,001		0	0,002	
	bc	0	0,012		0	0,020	
	bd	0	0,012		0	0,020	
	cd	0,013	<0,001		0,023	<0,001	
		Σ1,0	Σ1,0	Σ 2,168	Σ1,0	Σ1,0	Σ 2,141

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	tia (ETS)	χ^2
Enzimáticos	•	Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0,006		0	0,003	
	bb	0,842	0,848		0,882	0,886	
	ab	0,158	0,146		0,118	0,111	
		Σ1,0	Σ 1,0	Σ 0,007	Σ1,0	Σ1,0	Σ 0,004
Asd	aa	0	0,155		0	0,146	
	bb	0,158	0,305		0,176	0,312	
	сс	0,053	0,003		0,059	0,004	
	ab	0,789	0,436		0,765	0,427	
	ac	0	0,042		0	0,045	
	bc	0	0,059		0	0,066	
		Σ1,0	Σ1,0	Σ 1,510	Σ1,0	Σ1,0	Σ 1,469
Cat	aa	0.947	0.897		0.941	0.885	
0	bb	0.053	0.003		0.059	0.004	
	ah	0	0,000		0	0,111	
	uo	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0	Σ 1,0	Σ1,0
Géndh		0.105	0.025	_ ,:	0.118	0.022	_ ,:
Gopun	aa bb	0,103	0,023		0,118	0,022	
	00	0,138	0,044		0,170	0,042	
	ct ab	0,032	0,400		0,047	0,419	
	ao	0,105	0,000		0,039	0,000	
	uc bc	0	0,199		0	0,191	
	DC	Σ 1,0	5,200 Σ 1,0	Σ 1,174	Σ 1,0	5,200 Σ 1,0	Σ1,431
Gdh	aa	0	0,011		0	0,014	
	bb	0,737	0,709		0,706	0,678	
	сс	0	<0,001		0	<0,001	
	dd	0	<0,001		0	<0,001	
	ab	0,210	0,177		0,235	0,194	
	ac	0	0,006		0	0,007	
	ad	0	0,006		0	0,007	
	bc	0	0,045		0	0,049	
	bd	0	0,045		0	0,049	
	cd	0,053	0,001		0,059	0,002	
		Σ1,0	Σ1,0	Σ 2,016	Σ 1,0	Σ1,0	Σ 2,020
Idh-1	aa	0,611	0,605		0,563	0,563	
	bb	0,056	0,003		0,062	0,004	
	сс	0	0,028		0	0,035	
	ab	0	0,087		0	0,093	
	ac	0,333	0,259		0,375	0,282	
	bc	0	0,019		0	0,023	
		Σ1,0	Σ 1,0	Σ 1,046	Σ 1,0	Σ1,0	Σ 1,062
Idh-2	aa	0,947	0,897		0,941	0,885	
	bb	0	0,001		0	0,001	
	сс	0	0,001		0	0,001	
	ab	0	0,050		0	0,056	
	ac	0	0,050		0	0,056	
	bc	0,053	0,001		0,059	0,001	
		Σ1,0	Σ 1,0	Σ 2.0	Σ 1,0	Σ1,0	Σ 2.0

Tabela 18. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (14 polimórficos/1 monomórfico), resultantes da (sub)população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica A.

Tabela	18.	Continuação

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	cia (ETS)	χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Lap	aa	0,947	0,948		0,941	0,942	
	bb	0	<0,001		0	0,001	
	ab	0,053	0,052		0,059	0,057	
		Σ1,0	Σ1,0	Σ 0,001	Σ 1,0	Σ1,0	Σ 0,001
M1p	aa	0	0,006		0	0,008	
	bb	0,684	0,665		0,647	0,630	
	сс	0,053	0,011		0,059	0,014	
	ab	0,158	0,129		0,176	0,140	
	ac	0	0,017		0	0,021	
	bc	0,105	0,172		0,118	0,187	
		Σ 1,0	Σ1,0	Σ 0,214	Σ 1,0	Σ1,0	Σ 0,210
Mdh-1	aa	0,947	0,897		0,941	0,886	
	сс	0,053	0,003		0,059	0,003	
	ac	0	0,100		0	0,111	
		Σ 1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0
Mdh-2	aa	0	0,250		0	0,250	
	bb	0	0,250		0	0,250	
	ab	1	0,500		1	0,500	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0
Mdh-3	aa	0	0,001		0	0,001	
	bb	0,118	0,022		0,133	0,028	
	сс	0,823	0,677		0,800	0,640	
	ab	0,059	0,009		0,067	0,011	
	ac	0	0,048		0	0,054	
	bc	0	0,243		0	0,266	
		Σ1,0	Σ1,0	Σ 1,040	Σ 1,0	Σ1,0	Σ 1,040
Ро	aa	0,421	0,505		0,471	0,541	
	bb	0	0,084		0	0,070	
	ab	0,579	0,411		0,529	0,389	
		Σ1,0	Σ1,0	Σ 0,166	Σ 1,0	Σ1,0	Σ 0,129
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Sdh-2	bb	0,947	0,897		0,941	0,885	
	сс	0	0,001		0	0,001	
	dd	0	0,001		0	0,001	
	bc	0	0,050		0	0,056	
	bd	0	0,050		0	0,056	
	cd	0,053	0,001		0,059	0,001	
		Σ1,0	Σ1,0	Σ 2,000	Σ 1,0	Σ1,0	Σ 2,000

Tabela 19. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (6 polimórficos/9 monomórficos), resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica B.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	tia (ETS)	χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0,056		0	0,052	
	bb	0,529	0,584		0,545	0,597	
	ab	0,471	0,360		0,455	0,351	
		Σ1,0	Σ1,0	Σ 0,095	Σ1,0	Σ1,0	Σ 0,087
Asd	bb	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Cat	aa	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
G6pdh	bb	0,059	0,003		0,091	0,008	
	сс	0,941	0,886		0,909	0,827	
	bc	0	0,111		0	0,165	
		Σ1,0	Σ1,0	Σ1,0	Σ1,0	Σ1,0	Σ1,0
Gdh	bb	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Idh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Idh-2	aa	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Lap	aa	0,941	0,942		0,909	0,911	
	bb	0	0,001		0	0,002	
	ab	0,059	0,057		0,091	0,087	
		Σ1,0	Σ1,0	Σ 0,001	Σ 1,0	Σ1,0	Σ 0,002
M1p	bb	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Mdh-1	aa	0,941	0,942		0,909	0,911	
	bb	0	0,001		0	0,002	
	ab	0,059	0,057		0,091	0,087	
		Σ1,0	Σ1,0	Σ 0,001	Σ 1,0	Σ1,0	Σ 0,002
Mdh-2	aa	0	0,250		0	0,250	
	bb	0	0,250		0	0,250	
	ab	1	0,500		1	0,500	
		Σ 1,0	Σ1,0	Σ 1,0	Σ 1,0	Σ 1,0	Σ 1,0
Mdh-3	СС	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Ро	aa	0,412	0,498		0,636	0,669	
	bb	0	0,086		0	0,033	
	ab	0,588	0,416		0,364	0,298	
		Σ1,0	Σ1,0	Σ 0,173	Σ 1,0	Σ1,0	Σ 0,050
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ1,0	Σ1,0	Σ 0,0
Sdh-2	bb	1	1		1	1	
		Σ 1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	tia (ETS)	χ^2
Enzimáticos	-	Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0.010		0	0.019	
	bb	0.733	0.751		0.636	0.670	
	cc	0	0.001		0	0.002	
	ab	0.200	0.173		0.273	0.223	
	ac	0	0,007		0	0,012	
	bc	0,067	0,058		0,091	0,074	
		Σ1,0	Σ 1,0	Σ 0,024	Σ1,0	Σ1,0	Σ 0,050
Asd	bb	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Cat	aa	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
G6pdh	СС	1	1		1	1	
•		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Gdh	bb	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Idh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Idh-2	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Lap	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
M1p	bb	1	1		1	1	
r		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Mdh-1	aa	0,933	0,934		0,909	0,911	
	bb	0	0,001		0	0,002	
	ab	0,067	0,065		0,091	0,087	
		Σ1,0	Σ 1,0	Σ 0,001	Σ 1,0	Σ1,0	Σ 0,002
Mdh-2	aa	0	0.188		0	0.167	
	bb	0,133	0,321		0,182	0,350	
	ab	0,867	0,491		0,818	0,483	
		Σ1,0	Σ 1,0	Σ 0,586	Σ 1,0	Σ1,0	Σ 0,479
Mdh-3	СС	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Ро	aa	0,267	0,401		0,364	0,465	
	bb	0	0,134		0	0,101	
	ab	0,733	0,464		0,636	0,434	
		Σ1,0	Σ1,0	Σ 0,335	Σ 1,0	Σ1,0	Σ 0,217
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Sdh-2	aa	0,067	0,004		0,091	0,008	
	bb	0,933	0,871		0,909	0,827	
	ab	0	0,125		0	0,165	
		Σ1,0	Σ 1,0	Σ 1,0	Σ 1,0	Σ1,0	Σ1,0

Tabela 20. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (5 polimórficos/10 monomórficos), resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica C.

Tabela 21. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (9 polimórficos/6 monomórficos), resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica D.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüênc	tia (ETS)	χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0.007		0	0.028	
	bb	0.833	0.840		0.667	0.694	
	ab	0,167	0,153		0,333	0,278	
		Σ1,0	Σ1,0	Σ 0,008	Σ 1,0	Σ1,0	Σ 0,040
Asd	aa	0	0,250		0	0,250	
	bb	0	0,250		0	0,250	
	ab	1	0,500		1	0.500	
		Σ1,0	Σ 1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0
Cat	aa	1	1	,	1	1	,
		Σ 1,0	Σ1,0	Σ 0.0	Σ 1,0	Σ1,0	Σ 0.0
G6ndh	hh	0.083	0.007	,.	0 167	0.028	,.
oopun	66 66	0.917	0.841		0.833	0.694	
	bc	0	0.152		0	0.278	
	be	Σ 1.0	Σ 1.0	Σ1.0	Σ 1.0	Σ 1.0	Σ10
Gdh			0.007	21,0		0.028	21,0
ouii	bb	0 833	0,007		0 667	0,028	
	DD ab	0,855	0,040		0,007	0,095	
	ab	0,107 Σ10	0,133 Σ10	2 0 008	0,555 Σ10	0,277 Σ10	5 0 040
Idh 1		2 1,0	21,0	20,000	0.222	21,0	20,040
1011-1	aa	0,385	0,627		0,335	0,444	
	сс	0	0,043		0	0,111	
	ac	0,417	0,330	F 0.070	0,007	0,445	F 0.250
T II . A		2.1,0	2.1,0	2 0,069	2.1,0	21,0	2.0,250
1dn-2	aa	1	1		1	1	
•		2 1,0	2 1,0	2 0,0	2 1,0	21,0	2.0,0
Lap	aa	1	1		1	1	
2.64		2.1,0	2.1,0	Σ 0,0	2.1,0	21,0	Σ 0,0
МІр	aa	0,084	0,016		0,167	0,063	
	bb	0,832	0,764		0,666	0,562	
	ab	0,084	0,220		0,167	0,375	
		Σ 1,0	Σ 1,0	Σ 0,383	Σ 1,0	Σ1,0	Σ 0,308
Mdh-1	aa	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Mdh-2	aa	0	0,250		0	0,250	
	bb	0	0,250		0	0,250	
	ab	1	0,500		1	0,500	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ1,0
Mdh-3	сс	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Po	aa	0,417	0,502		0,333	0,444	
	bb	0	0,085		0	0,111	
	ab	0,583	0,413		0,667	0,445	
		Σ1,0	Σ1,0	Σ 0,169	Σ 1,0	Σ1,0	Σ 0,250
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Sdh-2	aa	0,084	0,016		0,167	0,063	
	bb	0,832	0,764		0,666	0,562	
	ab	0,084	0,220		0,167	0,375	
		Σ1,0	Σ 1,0	Σ 0,383	Σ 1,0	Σ 1,0	Σ 0,308

Tabela 22. Freqüências genotípicas observada e esperada em 15 *loci* enzimáticos (10 polimórficos/5 monomórficos), resultantes da população de *C. albicans* isolada de crianças saudáveis provenientes da classe socioeconômica E.

Loci	Genótipo	Freqüência	(Isolados)	χ^2	Freqüêno	cia (ETS)	χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Adh	aa	0	0,043		0	0,043	
	bb	0,500	0,502		0,500	0,502	
	сс	0,083	0,007		0,083	0,007	
	ab	0,417	0,295		0,417	0,295	
	ac	0	0,035		0	0,035	
	bc	0	0,118		0	0,118	
		Σ1,0	Σ1,0	Σ 1,087	Σ1,0	Σ1,0	Σ 1,087
Asd	aa	0	0,085		0	0,085	
	bb	0,417	0,502		0,417	0,502	
	ab	0,583	0,413		0,583	0,413	
		Σ1,0	Σ1,0	Σ 0,169	Σ1,0	Σ1,0	Σ 0,169
Cat	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
G6pdh	bb	0,083	0,007		0,083	0,007	
	сс	0,917	0,841		0,917	0,841	
	bc	0	0,152		0	0,152	
		Σ1,0	Σ 1,0	Σ1,0	Σ1,0	Σ1,0	Σ1,0
Gdh	aa	0	0,007		0	0,007	
	bb	0,833	0,840		0,833	0,840	
	ab	0,167	0,153		0,167	0,153	
		Σ1,0	Σ 1,0	Σ 0,008	Σ 1,0	Σ1,0	Σ 0,008
Idh-1	aa	0,750	0,766		0,750	0,766	
	сс	0	0,015		0	0,015	
	ac	0,250	0,219		0,250	0,219	
		Σ1,0	Σ1,0	Σ 0,020	Σ1,0	Σ1,0	Σ 0,020
Idh-2	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Lap	aa	0,917	0,841		0,917	0,841	
	сс	0,083	0,007		0,083	0,007	
	ac	0	0,152		0	0,152	
		Σ1,0	Σ1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0
M1p	aa	0	0,002		0	0,002	
	bb	0,917	0,919		0,917	0,919	
	ab	0,083	0,079		0,083	0,079	
		Σ1,0	Σ1,0	Σ 0,002	Σ 1,0	Σ1,0	Σ 0,002
Mdh-1	aa	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Mdh-2	aa	0	0,250		0	0,250	
	bb	0	0,250		0	0,250	
	ab	1	0,500		1	0,500	
		Σ1,0	Σ 1,0	Σ1,0	Σ 1,0	Σ1,0	Σ 1,0
Mdh-3	сс	1	1		1	1	
		Σ1,0	Σ 1,0	Σ 0,0	Σ 1,0	Σ1,0	Σ 0,0
Ро	aa	0,333	0,391		0,333	0,391	
	bb	0,083	0,140		0,083	0,140	
	ab	0,584	0,469		0,584	0,469	
		Σ1,0	Σ 1,0	Σ 0,060	Σ 1,0	Σ1,0	Σ 0,060

Tabela	22.	Continuação.
Labera		Communquo.

Loci	Genótipo	Freqüência (Isolados)		χ^2	Freqüência (ETS)		χ^2
Enzimáticos		Observada	Esperada [*]	v=k-1 P=0,01	Observada	Esperada [*]	v=k-1 P=0,01
Sdh-1	aa	1	1		1	1	
		Σ1,0	Σ1,0	Σ 0,0	Σ1,0	Σ1,0	Σ 0,0
Sdh-2	aa	0	0,028		0	0,028	
	bb	0,667	0,695		0,667	0,695	
	ab	0,333	0,277		0,333	0,277	
		Σ1,0	Σ1,0	Σ 0,040	Σ 1,0	Σ1,0	Σ 0,040

A diversidade genética entre todos os isolados bucais de *C. albicans*, provenientes da população total de crianças saudáveis, observada no dendrograma UPGMA permitiu distinguir 10 grupos principais (23 1,2-*phenons*) com 0,012 > $d_{ij} \ge 0$ (Figura 6);

Grupo I: 2 (2,7%) isolados (A30 e A1) com $d_{ij} = 0$, cuja composição homogênea (idênticas origens socioeconômicas).

Grupo II: 18 (23,7%) isolados (A52, A55, D21, D32, D5, D19, E10, A21, A15, D25, D23, D36, E8, A10, D14, E32, D6 e A7) com $0,012 > d_{ij} \ge 0$, cuja composição foi heterogênea (diferentes origens socioeconômicas) e homogênea (idênticas origens socioeconômicas).

Grupo III: 19 (25%) isolados (A20, B56, B23, B13, B11, B5, C36, C40, C44, E57, C17, C48, TS_{CBS-562}, B46, B54, B16, B4, B31 e C5) com $0,012 > d_{ij} \ge 0$, cuja composição foi heterogênea e homogênea.

Grupo IV: 3 (3,9%) isolados (B18, C9 e C16) com $d_{ij} = 0$, cuja composição foi heterogênea e homogênea.

Grupo V: 2 (2,7%) isolados (E30 e E17) com 0,012 > d_{ij} > 0, cuja composição foi homogênea.

Grupo VI: 3 (3,9%) isolados (A17, A24 e A9) com 0,012 > $d_{ij} \ge 0$, cuja composição foi homogênea.

Grupo VII: 3 (3,9%) isolados (D20, E48 e D13) com $d_{ij} = 0$, cuja composição foi heterogênea e homogênea.

Grupo VIII: 6 (7,9%) isolados (A50, B33, C32, B21, E52 e E25) com $0,012 > d_{ij} \ge 0$, cuja composição foi heterogênea e homogênea.

Grupo IX: 3 (3,9%) isolados (B15, C47 e B24) com $d_{ij} = 0$, cuja composição foi heterogênea e homogênea.

Grupo X: 4 (5,3%) isolados (B38, C4, C23 e C20) com $0,012 > d_{ij} \ge 0$, cuja composição foi heterogênea e homogênea

Um total de 13 (17,1%) isolados apresentou valores de distância genética igual

a $0,148 \ge d_{ij} \ge 0,012$ (A48, A40, D28, B32, E43, A61, E7, A33, A23, E39, C12, C33 e

A64) – isolados moderadamente relacionados e não relacionados.

Figura 6. Diversidade genética entre todos os isolados bucais de *C. albicans* provenientes de 75 crianças saudáveis. Dendrograma UPGMA ($r_{ki} = 0.92513$) gerado a partir da matriz de distância genética d_{ij} (Nei, 1972).

Com efeito, a composição dos grupos, gerados no dendrograma UPGMA (Figura 6), mostrou a coexistência de subtipos de *C. albicans* altamente relacionados ou indistinguíveis ($0,012 > d_{ij} \ge 0$), na maioria das diferentes (sub)populações de crianças saudáveis (categorias socioeconômicas) (Figura 7);

População da classe socioeconômica A: 42,1% dos isolados mostraram forte relacionamento genético (0,012 > $d_{ij} \ge 0$) entre si e com as populações B (70,6%), C (46,7%), D (75%) e E (50%). Um total de 26,3% dos isolados da população de classe socioeconômica A se relacionaram exclusivamente nos grupos I e VI.

População da classe socioeconômica B: 93,3% dos isolados mostraram forte relacionamento genético $(0,012 > d_{ij} \ge 0)$ entre si e com as populações A (5,7%), C (80%) e E (8,3%). Tal relacionamento não foi observado entre isolados das populações B e D.

População da classe socioeconômica C: 86,7% dos isolados mostraram forte relacionamento genético $(0,012 > d_{ij} \ge 0)$ entre si e com as populações A (10,5%), B (94,1%) e E (25%). Tal relacionamento também não foi observado entre isolados das populações C e D.

População da classe socioeconômica D: 91,7% dos isolados mostraram forte relacionamento genético $(0,012 > d_{ij} \ge 0)$ entre si e com as populações A (31,6%) e E (33,3%). Tal relacionamento não foi observado entre isolados das populações D e C ou D e B.

População da classe socioeconômica E: 58,3% dos isolados mostraram forte relacionamento genético $(0,012 > d_{ij} \ge 0)$ entre si e com as populações A (42,1%), B (80%), C (46,7%) e D (91,7%). Um total de 16,7% dos isolados da população da classe socioeconômica E se relacionaram exclusivamente no grupo V.

Figura 7. Subtipos de *C. albicans* altamente relacionados ou indistinguíveis $(0,012 > d_{ij} \ge 0)$ coexistentes na maioria das (sub)populações de crianças saudáveis.

Inexistência de subtipos de *C. albicans* altamente relacionados e indistinguíveis $(0,012 > d_{ij} \ge 0)$.

Classes socioeconômicas

- A □ B ■ C □ D
- □ E

A diversidade genética dos isolados dentro de suas respectivas (sub)populações de crianças saudáveis também foi avaliada por meio dos dendrogramas UPGMA (Figura 8). Tais resultados mostraram a coexistência de subtipos de C. albicans altamente relacionados ou indistinguíveis $(0,012 > d_{ij} \ge 0)$ em algumas crianças saudáveis provenientes da mesma categoria socioeconômica. Contudo, variações quanto ao número de isolados altamente relacionados ou indistinguíveis $(0,012 > d_{ij} \ge 0)$, e moderadamente relacionados e não relacionados ($d_{ij} \ge 0.012$) foram observadas dentro de cada (sub)população. Nesse sentido, maior índice percentual de polimorfismo ocorreu entre os isolados de crianças saudáveis provenientes da classe socioeconômica A (47,3%), seguido daqueles das classes sociais E (33,3%), B (17,6%), C (13,3%) e D (8,3%), cujos índices de distância genética foram de $0,151 \ge d_{ij} \ge 0, \ 0,148 \ge d_{ij} > 0, \ 0,123 \ge d_{ij} > 0, \ 0,127 \ge d_{ij} > 0 \ e \ 0,039 \ge d_{ij} > 0,$ respectivamente. A análise da diversidade genética entre as (sub)populações de isolados mostrou uma convergência ancestral nas (sub)populações B e C, e D e E. Entretanto, uma baixa divergência genética ancestral foi detectada nas (sub)populações A e BC, A e DE, e BC e DE, que em média correspondeu entre >1 e <2,3 substituições alélicas para cada 100 *loci*, a partir de uma população ancestral comum.

Figura 8. Diversidade genética dentro e entre (sub)populações de *C. albicans* isoladas da cavidade bucal de crianças saudáveis, provenientes de cinco categorias socioeconômicas. Dendrogramas UPGMA $(0,92980 \le r_{ki} \le 0,94560)$ gerados a partir das matrizes de distância genética (Nei, 1972).

DISCUSSÃO

A eletroforese de enzima multiloco (MLEE) tem sido considerada um método *gold standard* para a genética de populações em microrganismos¹⁵, com alto poder discriminatório e reprodutibilidade^{15,17,48,76,82,90}. Os padrões de bandas eletroforéticas isoenzimáticas são freqüentemente previsíveis, uma vez que dependem das condições genéticas e nucleares de cada organismo. Neste contexto, diferentes critérios de interpretação foram empregados para organismos haplóides ou diplóides^{43,76,82,119}. Com base nestes critérios, a composição alélica tem sido determinada a partir de um grupo constituído por dez a trinta enzimas metabólicas, consideradas representativas do genoma total¹⁵. Os resultados obtidos por MLEE têm sido aplicados em uma variedade de propósitos no campo da microbiologia médica¹⁵, especialmente para a levedura *C. albicans*^{4,5,8,14,16,17,21-23,27,35,57-61,71,76,82,87,88,90,95-98,100}.

O polimorfismo genético tem sido encontrado em quase todas populações naturais e em todos os níveis de organização genética, desde características genotípicas até traços fenotípicos. As possíveis razões de sua existência tem sido o objeto de um longo debate em genética de populações e evolução molecular^{39,40,52}. Determinado *locus* gênico estrutural tem sido definido como polimórfico quando a freqüência de seu alelo mais comum apresenta um valor abaixo de 0,99 (99%). Algumas medidas normalmente empregadas para quantificar essa variabilidade, em populações de organismos diplóides, têm sido as freqüências alélicas e gênicas, o índice percentual de *loci* polimórficos, o número médio de alelos por *locus*, o número médio de alelos por *locus* polimórfico e a heterozigosidade^{7,43,44,68,79,82}. Na presente pesquisa, variações quantitativas e qualitativas de *loci* polimórficos (5 a 14, média de 8,8 \pm 3,56), da média de alelos por *locus* (1,40 a 2,53, média de 1,732 \pm 0,468), e da média de alelos por *locus* polimórfico (2 a 2,69, média de 2,2 $\pm 0,286$) foram observadas em todas as (sub)populações de C. albicans provenientes de crianças saudáveis. Estas variações tem sido observadas em vários estudos de diversidade genética de populações de C. albicans isoladas de pacientes imunossuprimido (HIVsoropositivo, transplante de medula óssea, usuários de drogas, câncer, vaginite) e imunocompetentes (pacientes saudáveis)^{16,17,27,55,71,88,90}. Pujol *et al.* (1993) relataram que diferentes freqüências alélicas em diferentes populações podem estar associadas com o isolamento geográfico, mesmo quando cada população separada permanece em panmixia⁸⁷.

A heterozigosidade média encontrada na população total de *C. albicans* isoladas de crianças saudáveis foi igual a 0,191 (Tabela 11). Subpopulações de *C. albicans* isoladas de crianças saudáveis provenientes das categorias socioeconômicas A, B, C, D e E mostraram valores de heterozigosidade média iguais a 0,276, 0,251, 0,275, 0,290 e 0,284, respectivamente (Tabelas 12 a 16 e Figura 5). De modo similar aos resultados de prévios estudos por MLEE^{17,27,88}, os padrões de heterozigosidade obtidos na presente análise foram consistentes com a natureza diplóide de *C. albicans*¹⁰⁹. Em adição, a redução da heterozigosidade na estrutura populacional de determinados organismos pode ser interpretada como um grupo de linhagens interconectadas⁴⁴.

As combinações dos alelos existentes em 15 loci enzimáticos mostraram 43 ETs (57,3% dos isolados) na população total de crianças saudáveis, o que sugere a existência de alta diversidade genética (14 de 15 loci enzimáticos sendo polimórficos) de isolados bucais de C. albicans. Este fato também foi observado dentro de cada (sub)população (A = 17 ETs^{89,5%}, B = 11 ETs^{64,7%}, C = 11 ETs^{73,3%}, D = 6 ETs^{50%} e E = 12 ETs^{100%}), juntamente com a predominância de alguns ETs (ET1, ET4, ET9, ET10, ET23, ET24, ET28, ET31, ET32, ET33, ET34 e ET37) dentro e entre (sub)populações de crianças saudáveis. Estes resultados também sugerem a existência de grupos de linhagens selecionados e melhores adaptados do que outros na cavidade bucal de dessas crianças. Soll et al. (1991) também demonstraram a existência de linhagens de Candida spp. selecionadas e melhores adaptadas em determinado nicho humano¹³⁰. Embora determinados ETs foram identificados exclusivamente em certas (sub)populações de crianças, nenhuma correlação foi observada entre ET-específico ou grupos de ETs altamente relacionados e (sub)população-específica de crianças. Adicionalmente, todas as (sub)populações de isolados não mostraram divergências significantes entre as freqüências genotípicas observadas e esperadas (teste de equilíbrio de Hardy-Wienberg) (Tabelas 17 a 22). Tais observações sugerem a hipótese de que (sub)populações de crianças saudáveis, de diversas
classes socioeconômicas, não correspondem ao fator de seleção (sobrevivência diferencial) de ET-específico ou grupos de ETs altamente relacionados.

Alguns pesquisadores têm demonstrado a prevalência de C. albicans (60% a 95%) e Candida spp. em aproximadamente 50% das populações de indivíduos saudáveis^{49,75,131}, e independentemente de seus fatores socioeconômicos⁷⁵. A tipagem isoenzimática de isolados bucais de C. albicans, provenientes de crianças clinicamente saudáveis (Piracicaba, Brasil), tem revelado um modo multiclonal de colonização por essas leveduras⁷¹. Empregando a cariotipagem eletroforética, RAPD e REA com *Hin*fI e *Eco*RI, Mehta et al. (1999) têm analisado a distribuição de genótipos de C. albicans em membros familiares saudáveis de uma mesma cidade (Estados Unidos). Seus resultados demonstraram a existência de uma identidade genotípica intrafamiliar (i.e., cada membro dentro de uma família abriga um mesmo genótipo). Contudo, distintos genótipos também foram observados inter e intrafamiliarmente⁷². Pujol et al. (1993) identificaram 41 ETs enzimáticos de C. albicans (74,5% dos isolados de orofaríngea) em pacientes HIVsoropositivos de uma área geográfica restrita (Montpellier, Franca)⁸⁸. Esses pesquisadores sugeriram que a alta diversidade genética (11 de 21 loci enzimáticos sendo polimórficos) pode estar correlacionada com a existência de algumas linhagens clonais que apresentam ampla distribuição geográfica, como é o caso de algumas bactérias^{118,120} e protozoários¹³⁴⁻ ¹³⁶. Importantes conseqüências biológicas e médicas também foram apontadas com o modo de reprodução clonal, uma vez que a correlação entre a composição genética e as características médicas poderiam facilitar a seleção de métodos efetivos para o controle da expressão patológica de C. albicans em indivíduos imunocomprometidos⁸⁸. O alto número de diferentes cariótipos de isolados bucais de C. albicans encontrado em pacientes HIVsoropositivos, em comparação com indivíduos saudáveis, também foi sugestivo de uma substituição de linhagens comensais em pacientes imunocomprometidos⁶⁷.

Em contraste com a alta diversidade genética de *C. albicans* observada em (sub)populações de crianças saudáveis, classificadas em diferentes classes socioeconômicas, uma baixa diversidade genética tem sido detectada em pacientes imunocomprometidos. A análise epidemiológica de isolados de *C. albicans*, provenientes

de sete pacientes (Oslo, Noruega) submetidos ao transplante de medula óssea, mostrou a existência de oito ETs (13,1% dos isolados) e uma baixa diversidade genética entre aquelas leveduras (4 de 10 loci enzimáticos sendo polimórficos). A colonização por um ou mais ETs em diferentes sítios anatômicos de alguns pacientes permaneceu durante o acompanhamento médico. Entretanto, nenhuma correlação foi observada entre aqueles ETs e sensibilidade a certos antifúngicos (AMB e flucitosina) ou sítios anatômicos (cavidade bucal, virilha e fezes)²⁷. Boerlin *et al.* (1995) identificaram três ETs (23% dos isolados) de C. albicans atípicas colonizando a cavidade bucal de pacientes (usuários de drogas) HIVsoropositivos assintomáticos (Lausanne, Switzerland). Essa baixa diversidade genética (1 de 16 loci enzimáticos sendo polimórfico) entre os isolados também foi observada sem correlação com os parâmetros clínicos, e confirmada por ensaios de Southern blot hibridação com sonda Ca3. Tais resultados foram sugestivos de uma provável colonização por subtipos de C. albicans atípicos, a partir de diferentes origens e sem existência de uma única fonte limitada de contaminação¹⁶. Populações de C. albicans isoladas de pacientes HIV-soropositivos (Lausanne, Switzerland) com e sem sintomas de candidíase orofaríngea, de pacientes com candidíase invasiva e de indivíduos saudáveis não puderam ser distinguidas por ensaios de MLEE, uma vez que foi encontrada uma baixa diversidade genética (10 de 18 loci enzimáticos sendo polimórficos) entre os isolados. Em adição, 52 ETs (27,5% dos isolados) foram identificados sem correlação com os aspectos clínicos e sensibilidade reduzida *in vitro* ao fluconazol (FCZ)¹⁷.

A ocorrência simultânea de linhagens de *C. albicans* geneticamente distintas na cavidade bucal de pacientes (homossexuais, heterossexuais, usuários de drogas) HIV-soropositivos (Montpellier, França), sofrendo de candidíase orofaríngea, também foi demonstrada por MLEE. Uma baixa diversidade genética (10 de 21 *loci* enzimáticos sendo polimórficos) entre os isolados e 20 ETs (12,5% dos isolados) foram identificados naquela população de pacientes. Contudo, houve predominância de um único tipo genético de *C. albicans* na cavidade bucal daqueles pacientes. Este fato poderia resultar da competição intraespécies, o qual poderia ser alterado por pressão seletiva dos tratamentos antifúngicos⁹¹. Empregando MLEE, Nébavi *et al.* (1998) também demonstraram que a maioria dos pacientes HIV-soropositivos (Abdjan, Costa do Marfim), sofrendo de

candidíase orofaríngea, foram colonizados por ETs de *C. albicans* idênticos ou variantes durante terapia antifúngica (AMB, KTZ, NYS). Esses pesquisadores identificaram 27 ETs (40,3% dos isolados) e uma baixa diversidade genética (10 de 21 *loci* enzimático sendo polimórfico) entre os isolados⁷⁷. Análises de MLEE também foram realizadas em isolados de *C. albicans*, provenientes de pacientes (Montpellier, França) sofrendo de candidíase orofaríngea recorrente, que sucessivamente desenvolveram resistência clínica ao fluconazol (FCZ) e itraconazol (ITZ). Essas análises revelaram que a infecção dos pacientes ocorreu por um ou mais ETs durante a terapia antifúngica, os quais poderiam ser (i) selecionados a partir de uma população mista ou (ii) adquiridos a partir de uma fonte exógena. Ademais, 14 ETs (14,3% dos isolados) e baixa diversidade genética (12 *loci* enzimáticos polimórficos) foram identificados na população de isolados de *C. albicans*, sem correlação com os testes de sensibilidade antifúngica⁵⁵.

O coeficiente de correlação cofenética baseado no produto-momento de Pearson $(r_{ki})^{38,50,56,124\cdot126}$ foi empregado durante a avaliação da concordância entre os elementos d_{ij}, das matrizes de distância genética (Nei, 1972), e os elementos C_{jk} , das matrizes de correlação derivadas dos dendrogramas UPGMA. Nossos resultados mostraram valores r_{ki} variáveis entre 0,92513 (Figura 6) e 0,94560 (Figura 8), os quais compreendem valores de concordância satisfatórios^{124,126}, em conformidade com os resultados de estudo prévio onde foi observado a constante maximização dos valores r_{ki} pelo algoritmo UPGMA (SHAN *clustering method*)³⁸. Deste modo, a análise de agrupamento por meio dos dendrogramas UPGMA permitiu acessar a diversidade genética dentro e entre as (sub)populações de isolados bucais de *C. albicans*, provenientes de crianças saudáveis classificadas em diferentes categorias socioeconômicas.

Na população total (Figura 6) foram observados 62 isolados (82,7%) distribuídos em 10 de 23 1,2-phenons, com 0,012 > $d_{ij} \ge 0$ (em média, <1,2 substituições alélicas para cada 100 loci), cuja composição foi heterogênea (i.e., contém isolados bucais de C. albicans provenientes de crianças saudáveis classificadas em diferentes classes socioeconômicas) e/ou homogênea (i.e., contém isolados bucais de C. albicans provenientes de crianças saudáveis classificadas na mesma classe socioeconômica). Esses resultados mostraram a coexistência de subtipos altamente relacionados e indistinguíveis $(0,012 > d_{ij} \ge 0)$ na maioria das (sub)populações de crianças saudáveis, e a inexistência desses subtipos em algumas (sub)populações (B e D; C e D) (Figura 7). Deste modo, nenhum grupo de C. albicans foi correlacionado com alguma (sub)população de crianças de determinada classe socioeconômica específica. Em adição, os isolados altamente relacionados poderiam surgir a partir de uma linhagem ancestral comum, como conseqüência da perda de um alelo por recombinação mitótica ou rearranjo cromossômico^{91,109}. Os restantes 13 isolados (17,3%) apresentaram valores de distância genética entre 0,148 $\ge d_{ij} \ge 0,012$ (em média, entre $\ge 1,2$ e $\le 14,8$ substituições alélicas para cada 100 loci) - isolados moderadamente relacionados e não relacionados. A diversidade genética dos isolados dentro de suas respectivas (sub)populações também foi avaliada por meio dos dendrogramas UPGMA (Figura 8). A coexistência de subtipos de C. albicans altamente relacionados e indistinguíveis $(0,012 > d_{ij} \ge 0)$ foi observada em algumas criancas saudáveis provenientes da mesma classe socioeconômica, os quais também poderiam surgir a partir de uma linhagem ancestral comum^{91,109}. Os resultados descritos acima sugerem a existência de um ou mais grupos de isolados bucais de C. albicans altamente relacionados normalmente predominante em (sub)populações de crianças saudáveis de diferentes categorias socioeconômicas. Em adição, tais resultados também sugerem a existência de rotas de disseminação diretas e indiretas de C. albicans dentro e entre as (sub)populações de crianças, as quais poderiam ser determinadas por pesquisas complementares como, por exemplo, o isolamento de C. albicans a partir de ambientes de convivência socioeconômica (escolas de educação e esportes particulares ou públicas e seus respectivos ambientes e profissionais,...).

Schmid et al. (1999) mostraram alta similaridade genética entre grupos de C. albicans geograficamente não relacionados por Southern blot hibridação com sonda Ca3. Seus resultados foram sugestivos de que outrora houve uma pequena propagação radial de linhagens entre regiões geograficamente adjacentes¹¹⁴. Os mecanismos freqüentes e comuns envolvidos na diversidade genética de espécies de Candida poderiam explicar esta similaridade genética. Estes compreendem rearranjos cromossômicos, alterações cromossômicas e controle da expressão gênica^{55,100,101}. Além disso, seqüências repetitivas em tandem e sequências subteloméricas e teloméricas podem estar envolvidas na organização e rearranjos cromossômicos^{28,102}. Empregado MLEE e análises de agrupamento, outros pesquisadores também demonstraram a existência de grupos de isolados de C. albicans altamente relacionados, provenientes de pacientes saudáveis e imunocomprometidos (Montpellier, França; Lausanne, Switzerland; Abidjan, Costa do Marfim), sem qualquer correlação com aspectos clínicos, sensibilidade antifúngica ou regiões geográficas^{17,55,77,90}. Lupetti et al. (1995) empregaram a cariotipagem eletroforética e identificaram dois grupos similares de C. albicans com prevalência em indivíduos saudáveis e pacientes HIV-soropositivos (Pisa, Itália). Suas observações foram sugestivas de que linhagens comensais podem ser prováveis agentes de subseqüente candidíase bucal pacientes imunocomprometidos, conforme em também sugerido por outros pesquisadores^{86,143}, embora também possa ocorrer a substituição de linhagens⁶⁷. Durante análises de agrupamento e REA com EcoRI ou RAPD, alto grau de diversidade genética foi encontrado entre os isolados de C. albicans, provenientes de indivíduos saudáveis e pacientes clínicos assintomáticos, do Sudeste da Ásia e Europa ou Estados Unidos²⁹. Contudo, a existência de um único grupo contendo todas as linhagens de uma mesma origem geográfica não foi encontrada. A clonalidade dentro e entre populações de C. albicans isoladas de pacientes HIV-soropositivos geograficamente distintos (Durham, D.C. e Vitória, Brasil) também foi observada durante análises de agrupamento e PCR fingerprinting¹⁴⁶.

Alterações evolucionárias correspondem às alterações nas freqüências gênicas numa população durante um certo período. Para que essas alterações sejam adaptativas, elas devem ser causadas por (*i*) seleção natural direcionada a sobrevivência diferencial, ou (*ii*)

reprodução de indivíduos que diferem em genótipos. Em adição, mudanças nas freqüências gênicas não relacionadas às mudanças fenotípicas podem elucidar o fato da evolução natural ter operado, e que mudanças microevolucionárias foram produzidas no ambiente³⁴. Vários estudos epidemiológicos e microevolutivos de isolados clínicos de C. albicans foram realizados empregando Southern blot hibridação com sonda de DNA Ca3^{2,45,53,63,64,66,70,80,85,102,112,115,116,127,129,130,144} Em adição, fortes concordâncias epidemiológicas e microevolutivas foram demonstradas pelos resultados de Ca3 fingerprinting e análises de MLEE e RAPD, durante a caracterização de isolados bucais e outros sítios anatômicos de C. albicans, provenientes de pacientes imunocomprometidos e imunocompetentes de três regiões geográficas dos Estados Unidos⁹⁰. Mudanças microevolucionárias podem envolver reorganizações do tipo inserção ou deleção intracromossomal dos elementos RPS, dispersos especificamente por toda parte do genoma de C. albicans⁸⁹. Isolados de vários sítios anatômicos de C. albicans, provenientes de mulheres clinicamente saudáveis, foram comparados por Southern blot hibridação com sonda Ca3. De 11 mulheres que abrigaram comensais nas cavidades bucais e vaginais, quatro apresentaram linhagens altamente similares, porém não idênticas, em sítios alternativos. Este fato tem sugerido a ocorrência de microevolução entre aquelas linhagens altamente similares, a partir de um progenitor que se adaptou em dois diferentes nichos do corpo. Em adição, tais populações divergentes poderiam ser distinguidas geneticamente¹³⁰. Schröppel et al. (1994) empregaram a mesma técnica para acessar o relacionamento genético de linhagens de C. albicans isoladas de pacientes (linhagens mantidas e substituídas) e seus parceiros sexuais. No paciente em que as linhagens infectantes foram mantidas, houve mínimas mudanças genéticas em episódios sucessivos de candidíase vaginal. No paciente em que as linhagens infectantes foram substituídas por outras, uma infecção de transição envolveu uma população infectante geneticamente mista, e aparentemente a substituição de linhagens tiveram origem a partir da cavidade bucal dos parceiros sexuais. Estes resultados demonstraram que as linhagens de infecções recorrentes de candidíase vaginal são geneticamente instáveis, e que o tratamento com antifúngicos pode resultar em seleção de variantes previamente infectantes ou substituição por linhagens geneticamente não relacionadas¹¹⁶.

No contexto microevolucionário, nossas análises mostraram convergência ancestral nas (sub)populações de C. albicans isoladas das (sup)populações de crianças da classes socioeconômicas B e C (média/alta), e D e E (média/baixa). A divergência genética ancestral foi observada entre as (sub)populações de isolados provenientes de crianças das classes socioeconômicas A (alta) e BC (média/alta), A (alta) e DE (média/baixa), e BC (média/alta) e DE (média/baixa), que em média correspondeu entre >1 e <2,3 substituições alélicas para cada 100 loci, a partir de uma população ancestral comum.(Figura 8). Essas observações sugerem a ocorrência de mudanças microevolucionárias em algumas (sub)populações de C. albicans isoladas de crianças saudáveis que apresentam a mesma condição socioeconômica. Ainda, uma baixa transição de subtipos de C. albicans pode estar ocorrendo entre determinadas (sub)populações de crianças (i.e., baixa transição entre A e BC, A e DE, e BC e DE), o que também pode ser explicado pelas suas próprias características socioeconômicas e culturais. Contudo, a investigação de microevolução em (sub)populações de C. albicans comensais, comparativamente com outros parâmetros do hospedeiro (i.e., hábitos nutricionais e higiênicos, alterações hormonais em função da idade,...), poderia ser explorada. Análises de Ca3 fingerprinting têm mostrado (i) que um único grupo de linhagens de C. albicans, geneticamente relacionado causando infecções, normalmente predominam em uma determinada população de pacientes em um determinado local geográfico^{45,85,111-113,115}, e (ii) que as distâncias genéticas observadas entre isolados de diferentes regiões excederam as distâncias genéticas observadas entre isolados da mesma região, indicando especificidade regional de C. albicans^{85,110}. Estudos epidemiológicos, usando Southern blot hibridação com sonda Ca3, têm mostrado a existência de um grupo, denominado A (diferente de outros dois grupos - B e C), constituído de subgrupos de C. albicans geneticamente similares, e altamente prevalentes em uma variedade de tipos de infecções de vários pacientes localizados em diferentes regiões geográficas. Tais resultados foram indicativos da existência de um grupo ubíquo, que compreende o agente etiológico predominante das candidíases, o qual poderia originar a partir de sua alta prevalência como comensal. Estes estudos também sugeriram que a especificidade regional de C. albicans poderia ser causada por evolução clonal,

independentemente da existência de grupos de linhagens ancestrais não selecionados de modo ubíquo¹¹⁴.

Empregando MLEE, análises de agrupamento e genética de populações, os resultados obtidos na presente pesquisa mostraram alta diversidade genética entre todos os isolados bucais de C. albicans, com predominância de alguns ETs e grupos de ETs altamente relacionados dentro e entre as (sub)populações de crianças clinicamente saudáveis, classificadas em cinco classes socioeconômicas (A, B, C, D e E), do município de Piracicaba, estado de São Paulo, Brasil. A inexistência de correlação foi observada entre ET-específico ou grupos de ETs altamente relacionados e (sub)população-específica de crianças. Em adição, todas as (sub)populações de isolados não mostraram divergências significantes entre as freqüências genotípicas observadas e esperadas (teste de equilíbrio de Hardy-Wienberg). Tais observações sugerem a hipótese de que (sub)populações de crianças saudáveis, de diversas classes socioeconômicas, não correspondem ao fator de seleção (sobrevivência diferencial) de ET-específico ou grupos de ETs altamente relacionados. A existência de um ou mais grupos de ETs altamente relacionados, normalmente predominante dentro e entre (sub)populações de crianças, também foi sugerida pelas análises de agrupamento, contudo, sem correlação com qualquer (sub)população de crianças de determinada condição socioeconômica. Estes resultados também sugerem a existência de rotas de disseminação diretas e indiretas de C. albicans dentro e entre as (sub)populações de crianças, as quais poderiam ser determinadas por pesquisas complementares como, por exemplo, o isolamento de C. albicans a partir de ambientes de convivência socioeconômica (escolas de educação e esportes particulares ou públicas e seus respectivos ambientes e profissionais,...). No contexto microevolucionário, a convergência ancestral foi observada entre as (sub)populações de C. albicans isoladas das (sup)populações de crianças da classes socioeconômicas B e C (média/alta), e D e E (média/baixa). A divergência genética ancestral foi observada entre as (sub)populações de isolados provenientes de crianças das classes socioeconômicas A (alta) e BC (média/alta), A (alta) e DE (média/baixa), e BC (média/alta) e DE (média/baixa), que em média correspondeu entre >1 e <2,3 substituições alélicas para cada 100 loci, a partir de uma população ancestral comum. Essas observações sugerem a ocorrência de mudanças

microevolucionárias em algumas (sub)populações de C. albicans isoladas de crianças saudáveis que apresentam a mesma condição socioeconômica. Ainda, uma baixa transição de subtipos de C. albicans pode estar ocorrendo entre determinadas (sub)populações de crianças (i.e., baixa transição entre A e BC, A e DE, e BC e DE), o que também pode ser explicado pelas suas próprias características socioeconômicas e culturais. Contudo, a investigação de microevolução em (sub)populações de C. albicans comensais, comparativamente com outros parâmetros do hospedeiro (i.e., hábitos nutricionais e higiênicos, alterações hormonais em função da idade,...), poderia ser explorada. Finalmente, MLEE e outros métodos de genotipagem (i.e., Ca3 fingerprinting), análises de agrupamento e genética de populações, poderiam ser empregados para análises atual e retrospectiva de isolados de C. albicans provenientes de indivíduos saudáveis e pacientes imunocomprometidos, a fim de detectar a existência de um grupo ubíquo (i.e., constituído de agentes etiológicos, possivelmente de origem comensal, predominantes em candidíases). Estes procedimentos poderiam conduzir ao desenvolvimento de estratégias para prevenção da transmissibilidade desses agentes entre crianças saudáveis e crianças predispostas a desenvolverem candidíases a partir de uma imunodeficiência congênita ou possivelmente adquirida, independentemente de suas condições socioeconômicas e culturais.

AGRADECIMENTOS

Este trabalho foi financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Proc. 00/03045-5).

REFERÊNCIAS

1. Alfenas, A.C. 1998. Eletroforese de isoenzimas e proteínas afins; fundamentos e aplicações em plantas e microrganismos. Editora UFV, Viçosa.

- Anderson, J., T. Srikantha, B. Morrow, S.H. Miyasaki, T.C. White, N. Agabian, J. Schmid, and D.R. Soll. 1993. Characterization and partial nucleotide sequence of the DNA fingerprinting probe Ca3 of *Candida albicans*. J. Clin. Microbiol. 31:1472-1480.
- 3. Antonsson, B., S. Montessuit, L. Friedli, M.A. Payton, and G. Paravicini. 1994. Protein kinase C in yeast. Characteristics of the *Saccharomyces cerevisiae* PKC1 gene product. **J. Biol. Chem. 269:16821-16828**.
- 4. Arnavielhe, S., A. Blancark, M. Mallié, F. Gouin, A. Ottomani, J.C. Manalli, and J.M. Bastide. 1996. Suivi mycologique d'infections à *Candida albicans* dans divers services hospitaliers. **Path. Biol. 44:447-451**.
- 5. Arnavielhe, S., A. Blancark, M. Mallié, M. Quilici, and J.M. Bastide. 1997. Multilocus enzyme electrophoresis analysis of *Candida albicans* isolates from three intensive care units. An epidemiological study. **Mycoses 40:159-167**.
- 6. Asakura, K., S. Iwaguchi, M. Homma, T. Sukai, K. Higashide, and K. Tanaka. 1991. Electrophoretic karyotypes of clinically isolated yeasts of *Candida albicans* and *C. glabrata*. J. Gen. Microbiol. 137:2531-2538.
- 7. Ayala, F.J., and J.A. Kiger. 1984. Modern genetics. 2nd Ed Menlo Park. Benjamin/Cummings Co.
- Barchiesi, F., D. Arzeni, M.S. Del Prete, A. Sinicco, L. Falconi Di Francesco, M.B. Pasticci, L. Lamura, M.M. Nuzzo, F. Burzacchini, S. Coppola, F. Chiodo, and G. Scalise. 1998. Fluconazole susceptibility and strain variation of *Candida albicans* isolates from HIV-infected patients with oropharyngeal candidosis. J. Antimicrob. Chemother. 41:541:548.
- Barchiesi, F., L.F. Di Francesco, P. Compagnucci, D. Arzeni, O. Cirioni, and G. Scalise. 1997. Genotypic identification of sequential *Candida albicans* isolates from AIDS patients by polymerase chain reaction techniques. Eur. J. Clin. Microbiol. Infect. Dis. 16:601-605.
- Bart-Delabesse, E., H. van Deventer, W. Goessens, J.L. Poirot, N, Lioret, A. van Belkum, and F. Dromer. 1995. Contribution of molecular typing methods and antifungal susceptibility testing to the study of a candidemia cluster in a burn care unit. J. Clin. Microbiol. 33:3278-3283.
- 11. Bart-Delabesse, E., P. Boiron, A. Carlotti, and B. Dupont, 1993. *Candida albicans* genotyping in studies with patients with AIDS developing resistance to fluconazole. J. Clin. Microbiol. 31:2933-2937.

- 12. Barton, R.C., A. van Belkum, and S. Scherer. 1995. Stability of karyotype in serial isolates of *Candida albicans* from neutropenic patients. J. Clin. Microbiol. 33:794-796.
- 13. Berenguer, J., T.M. Diaz-Guerra, B. Ruiz-Diez, J.C. Bernaldo de Quiros, J.L. Rodrigues-Tudela, and J.V. Martinez-Suarez. 1996. Genetic dissimilarity of two fluconazole-resistent *Candida albicans* strains causing meningitis and oral candidiasis in the same AIDS patient. J. Clin. Microbiol. 34:1542-1545.
- 14. Bertout, S., F. Renaud, D. Swinne, M. Mallie, and J.-M. Bastide. 1999. Genetic multilocus studies of different strains of *Cryptococcus neoformans*: taxonomy and genetic structure. J. Clin. Microbiol. 37:715-720.
- 15. Boerlin, P. 1997. Applications of multilocus enzyme electrophoresis in medical microbiology. J. Microbiol. Meth. 28:221-231.
- Boerlin, P., F. Boerlin-Petzold, C. Durussel, M. Addo, J.-L. Pagani, J.-P. Chave, and J. Bille. 1995. Cluster of oral atypical *Candida albicans* isolates in a group of human immunodeficiency virus-positive drug users. J. Clin. Microbiol. 33:1129-1135.
- Boerlin, P., F. Boerlin-Petzold, J. Goudet, C. Durussel, J.-L. Pagani, J.-P. Chave, and J. Bille. 1996. Typing *Candida albicans* oral isolates from human immunodeficiency virus-infected patients by multilocus enzyme electrophoresis and DNA fingerprinting. J. Clin. Microbiol. 34:1235-1248.
- 18. Bonacorsi, S.P., A. Munck, M. Gerardin, C. Doit, N. Branhimi, J. Navarro, and E. Bingen. 1996. In situ management and molecular analysis of candidaemia related to a totally implantable vascular access in a cystic fibrosis patient. J. Infect. 33:49-51.
- 19. Bostock, A., M.N. Khattak, R. Matthews, and J. Burnie. 1993. Comparison of PCR fingerprinting, by random amplification of polymorphic DNA, with other molecular typing methods for *Candida albicans*. J. Gen. Microbiol. 139:2179-2184.
- Branchini, M.L., D.C. Geiger, O. Fischman, and A.C. Pignatari. 1995. Molecular typing of *Candida albicans* strains isolated from nosocomial candidemia. Rev. Inst. Med. Trop. São Paulo 37:483-487.
- Brandt, M.E., L.C. Hutwagner, L.A. Klug, W.S. Baughman, D. Rimland, E.A. Graviss, R.J. Hamill, C. Thomas, P.G. Pappas, A.L. Reingold, and R.W. Pinner. 1996. Molecular subtype distribution of *Cryptococcus neoformans* in four areas of the United States. Cryptococcal Disease Active Surveillance Group. J. Clin, Microbiol. 34:912-917.
- 22. Brandt, M.E., L.C. Hutwagner, R.J. Kuykendall, and R.W. Pinner. 1995. Comparison of multilocus enzyme electrophoresis and random amplified polymorphic DNA

analysis for molecular subtyping of *Cryptococcus neoformans*. J. Clin, Microbiol. 33:1890-1895.

- 23. Brandt, M.E., S.L. Bragg, and R.W. Pinner. 1993. Multilocus enzyme typing of *Cryptococcus neoformans*. J. Clin, Microbiol. 31:2819-2823.
- 24. Bruneau, S., and R. Guinet. 1989. Rapid identification of medically important yeasts by electrophoretic protein patterns. **FEMS Microbiol. Lett. 49:329-333**.
- 25. Cannon, R.D., and W.L. Chaffin. 1999. Oral colonization by *Candida albicans*. Crit. Rev. Oral Biol. Med. 10:359–383.
- 26. Casanova, M., and D.W.L. Chaffin. 1991. Cell wall glycoproteins of *Candida albicans* as released by different methods. J. Gen. Microbiol. 137:1045-1051.
- 27. Caugant, D.A., and P. Sandven. 1993. Epidemiological analysis of *Candida albicans* strains by multilocus enzyme electrophoresis. J. Clin. Microbiol. 31:215-220.
- 28. Chibana, H., S.-I. Iwaguchi, M. Homma, A. Chindamporn, Y. Nakagawa, and K. Tanaka. 1994. Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of *Candida albicans*. J. Bacteriol. 176:3851-3858.
- 29. Clemons, K.V., F. Feroze, K. Holmberg, and D.A. Stevens. 1997. Comparative analysis of genetic variability among *Candida albicans* isolates from different geographic locales by three genotypic methods. J. Clin. Microbiol. 35:1332-1336.
- 30. Costas, M., B. Holmes, A.C. Wood, and S.L.W. On. 1989. Numerical analysis of electrophoretic protein patterns of *Providencia rettgeri* strains from human faeces, urine and other specimens. J. Appl. Bact. 67:441-452.
- 31. Costas, M., L.L. Sloss, R.J. Owen, and M.A. Gaston. 1989. Evaluation of numerical analysis of SDS-PAGE of protein patterns for typing *Enterobacter cloacae*. Epidem. Infect. 103:265-274.
- 32. Dahl, K.M., E.J. Keath, V.J. Fraser, and W.G. Powderly. 1997. Molecular epidemiology of mucosal candidiasis in HIV-positive women. AIDS Res. Hum. Retroviruses 13:485-491.
- Del Castillo, L., J. Bikandi, A. Nieto, G. Quindos, R. Sentandreu, and J. Ponton. 1997. Comparison of morphotypic and genotypic methods for strains delineation in *Candida*. Mycoses 40:445-450.
- 34. Dhondt, A.A. 1988. The necessity of population genetics for understanding evolution: an ecologist' view, p. 14-18. *In*: De Jong, G., Population genetics and evolution. **Springer-Verlag Berlin Heidelberg. Brühlsche Universitätsdruckerei, Giessen**.

- 35. Doebeling, B.N., P.F. Lehmann, R.J. Hollis, L.C. Wu, A.F. Widmer, A. Voss, and M.A. Pfaller. 1993. Comparison of pulsed-field gel electrophoresis with isoenzyme profiles as a typing system for *Candida tropicalis*. Clin. Infect. Dis. 16:377-383.
- Doi, M., I. Mizuguchi, M. Homma, and K. Tanaka. 1994. Electrophoretic karyotypes of *Candida* yeasts recurrently isolated from single patients. Microbiol. Immunol. 38:19-23.
- Doi, M., M. Homma, S.I. Iwaguchi, K. Horibe, and K. Tanaka. 1994. Strain relatedness of *Candida albicans* strains isolated from children with leukemia and their bedside parent. J. Clin. Microbiol. 32:2253-2259.
- Farris, J.S. 1969. On the cophenetic correlation coefficient. Systematic Zool. 18:279-285.
- 39. Gillespie, J.H. 1991. The causes of molecular evolution. Oxford University Press, N.Y.
- 40. Golding, B. (ed.). 1994. Non-neutral evolution. Chapman and Hall, N.Y.
- 41. Greenspan, D., and J.S. Greenspan. 1996. HIV related oral disease. Lancet 348:729–733.
- 42. Gyanchandani, A., Z.K. Khan, N. Farooqui, M. Goswami, and S.A. Ranade. 1998. RAPD analysis of *Candida albicans* strains recovered from immunocompromised patients (ICP) reveals an apparently non-random infectivity of the strains. **Biochem. Mol. Biol. Int. 44:19-27**.
- 43. Harris, H., and D.A. Hopkinson. 1976. Handbook of enzyme electrophoresis in human genetics. (And Supplement 1978) North-Holland Publishing Co., Amsterdam.
- 44. Hartl, D.L., and A.G. Clark. 1997. Principles of population genetics. Sinauer Associates, Inc. Publishers Suderland, Mass.
- 45. Hellstein, J., H. Vawter-Hugart, P. Fotos, J. Schmid, and D.R. Soll. 1993. Genetic similarity and phenotypic diversity of commensal and pathogenic strains of *Candida albicans* isolated from the oral cavity. J. Clin. Microbiol. 31:3190-3199.
- 46. Holmberg, K., and F. Feroze. 1996. Evaluation of an optimized system for random amplified polymorfism DNA (RAPD)-analysis for genotypic mapping of *Candida albicans* strains. J. Clin. Lab. Anal. 10:59-69.
- 47. Howel, S.A., R.M. Anthony, and E. Power. 1996. Application of RAPD and restriction enzyme analysis to the study of oral carriage of *Candida albicans*. Lett. Appl. Microbiol. 22:125-128.

- 48. Hunter, P.R. 1991. A critical review of typing methods for *Candida albicans* and their applications. **Crit. Rev. Microbiol. 17:417-434**.
- 49. Jorge, A.O.C., N.Q. Almeida, C.S. Unterkircher, M.T. Shimizu. 1987. Influence of the use of orthodontic apparatus in presence of Candida albicans in oral cavity. **Rev.** Assoc. Paul. Cir. Dent. 41:308-310.
- 50. Kersters, K., and J. De Ley. 1975. Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. J. Gen. Microbiol. 87: 333-342.
- Khatib, R., M.C. Thirumoorthi, K.M. Riederer, L. Sturm, L.A. Oney, and J. Baran Jr. 1998. Clustering of *Candida* infections in the neonatal intensive care unit concurrent emergence of multiple strains simulating intermittent outbreaks. Pediatr. Infect. Dis. 17:130-134.
- 52. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, U.K.
- 53. Kleinegger, C., S.R. Lockhart, K. Vargas, and D.R. Soll. 1996. Frequency, intensity, species and strains of oral yeast vary as a function of host age. J. Clin. Microbiol. 34:2246-2254.
- 54. Kwon-Chung, K.J., and J.E. Bennett. 1992. Medical mycology. Lea and Febiger, Philadelphia.
- 55. Le Guennec, R., J. Reynes, M. Mallie, C. Pujol, F. Janbon, and J.-M. Bastide. 1995. Fluconazole- and itraconazole-resistant *Candida albicans* strain from AIDS patients: multilocus enzyme electrophoresis analysis and antifungal susceptibilities. J. Clin. Microbiol. 33:2732-2737.
- 56. Legendre, L., and P. Legendre. 1983. Numerical Ecology. Elsevier, New York.
- 57. Lehmann, P.F., B.J. Kemker, C.-B. Hsiao, and S. Dev. 1989. Isoenzyme biotypes of *Candida* species. J. Clin. Microbiol. 27:2514-2521.
- 58. Lehmann, P.F., D. Lin, and B.A. Lasker. 1992. Genotypic identification and characterization of species and strains within the genus *Candida* by using random amplified polymorphic DNA. J. Clin. Microbiol. 30:3249-3254.
- 59. Lehmann, P.F., L. C. Wu, W.R. Pruitt, S.A. Meyer, and D.G. Ahearn, 1993. Unrelatedness of groups of yeasts within the *Candida haemulonii* complex. J. Clin. Microbiol. 31:1683-1687.
- 60. Lehmann, P.F., L.-C. Wu, and D.W.R. Mackenzie. 1991. Isozyme changes in *Candida albicans* domestication. J. Clin. Microbiol. 29:2623-2625.

- 61. Lin, D., L.C. Wu, M.G. Rinaldi, and P.F. Lehmann. 1995. Three distinct genotypes within *Candida parapsilosis* from clinical sources. J. Clin. Microbiol. 33:1815-1821.
- 62. Lischewski, A., M. Ruhnke, I. Tennagen, G. Schönian, J. Morschhauser, and J. Hacker. 1995. Molecular epidemiology of *Candida* isolates from AIDS patients showing different fluconazole resistance profiles. J. Clin. Microbiol. 33:769-771.
- 63. Lockhart, S.R., B. Reed, and D.R. Soll. 1996. Most frequent scenario for recurrent *Candida* vaginitis is strains maintenance with "substrain shuffling": demonstration by sequential DNA fingerprinting with probes Ca3, C1, and CARE2. J. Clin. Microbiol. 34:767-777.
- 64. Lockhart, S.R., J.J. Fritch, A.S. Meier, K. Schröpel, T. Srikantha, R. Galask, and D.R. Soll. 1995. Colonizing populations of *Candida albicans* are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. J. Clin. Microbiol. 33:1501-1509.
- 65. Lockhart, S.R., S. Joly, K. Vargas, J. Swails-Wenger, L. Enger, and D.R. Soll. 1998. Natural defenses against *Candida* colonization break down in the oral cavity of the elderly. **J. Dent. Res. 78:857-868**.
- Lockhart, S.R., S. Joly, K. Vargas, J. Swails-Wenger, L. Enger, and D.R. Soll. 1999. Defenses against oral *Candida* carriage break down in the elderly. J. Dent. Res. 78:857-868.
- 67. Lupetti, A., G. Guzzi, A. Paladini, K. Swart, M. Campa, and S. Senesi. 1995. Molecular typing of *Candida albicans* in oral candidiasis: karyotype epidemiology with human immunodeficiency virus-seropositive patients in comparison with that with healthy carriers. **J. Clin. Microbiol. 33:1238-1242**.
- 68. Lynch, B., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Inc. Publishers Sunderland, Mass.
- 69. Magee, P.T., L. Bowdin, and J. Staudinger. 1992. Comparison of molecular typing methods for *Candida albicans*. J. Clin. Microbiol. 30:2674-2679.
- 70. Marco, F., S.R. Lockhart, M.A. Pfaller, C. Pujol, M.S. Rangel-Frausto, T. Wiblin, H.M. Blumberg, J.E. Edwards, W. Jarvis, L. Saiman, J.E. Patterson, M.G. Rinaldi, R.P. Wenzel, and D.R. Soll. 1999. Elucidating the origins of nosocomial infections with *Candida albicans* by DNA fingerprinting with the complex probe Ca3. J. Clin. Microbiol. 37:2817-2828.
- 71. Mata, A.L., R.T. Rosa, E.A.R. Rosa, R.B.Gonçalves, and J.F. Höfling. 2000. Clonal variability among oral *Candida albicans* assessed by allozyme electrophoresis analysis. **Oral Microbiol. Immunol. 15:350-354**.

- 72. Mehta, S.K., D.A. Stevens, S.K. Mishra, F. Feroze, and D.L. Pierson. 1999. Distribution of *Candida albicans* genotypes among family members. **Diagn.** Microbiol. Infect. Dis. 34:19-25.
- 73. Merz, W.G., C. Connelly, and P. Hieter. 1988. Variation of electrophoretic karyotypes among clinical isolates of *Candida albicans*. J. Clin. Microbiol. 26:842-845.
- 74. Millon, L., A. Manteaux, G. Reboux, C. Drobacheff, M. Monod, T. Barale, and Y. Michel-Briand. 1994. Fluconazole-resistent recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of *Candida albicans* strains with the same genotype. J. Clin. Microbiol. 32:1115-1118.
- Moreira, D., D.M.P. Spolidório, J.A.O. Rodrigues, M.F.G. Boriollo, C.V. Pereira, E.A.R. Rosa, and J.F. Höfling. 2001. *Candida* spp. Biotypes in the oral cavity of school children from different socioeconomic categories in Piracicaba – SP, Brazil. Pesqui. Odontol. Bras. 15:187-195.
- 76. Murphy, R.W., J.W. Sites, D.G. Buth, and C.H. Haufler. 1990. Proteins I: isoenzyme electrophoresis, p. 45-126. *In*: Hillis, D.M., and C. Moritz, Molecular systematics. Sinauer Associates Inc. Publishers, Sunderland, Mass.
- 77. Nébavi, F., S. Arnavielhe, R. Le Guennec, E. Ménan, A. Kacou, P. Combe, E. Aoussi, M. Mallié, M. Koné, and J.M. Bastide. 1998. Oropharyngeal candidiasisj in AIDS patients from Abidjan (Ivory Coast): antifungal susceptibilities and multilocus enzyme electrophoresis analysis of *Candida albicans* isolates. Path. Biol. 46:307-314.
- 78. Nei, M. 1972. Genetic distances between populations. Am. Naturalist. 106:283-292.
- 79. Nei, M. 1987. Molecular evolutionary genetics. New York. Columbia University Press.
- 80. Odds, F., J. Schmid, and D.R. Soll. 1990. Epidemiology of *Candida* infections in AIDS, p. 67-74. *In*: Bossche, H.V. Mycoses in AIDS patients. New York, Plenum.
- Odds, F.C., and R. Bernaerts. 1994. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 32:1923-1929.
- 82. Pasteur, N., G. Pasteur, F. Bonbomme, J. Catalan, and J. Britton-Davidian. 1987. Manuel technique de génétique par électrophorèse dês protéines. **Technique et documentation. Lavoisier, Paris**.
- 83. Pfaller, M.A., I. Cabezudo, R. Hollis, B. Huston, and R.P. Wenzel. 1990. The use of biotyping and DNA fingerprinting in typing *Candida albicans* from hospitalized patients. **Diag. Microbiol. Infect. Dis. 13:481-489**.

- 84. Pfaller, M.A., J. Rhine-Chalberg, S.W. Redding, J. Smith, G. Farinacci, A.W. Fothergill, and M.G. Rinaldi. 1994. Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of *Candida albicans* from patients with AIDS and oral candidíases. J. Clin. Microbiol. 32:59-64.
- Pfaller, M.A., S.R. Lockhart, C. Pujol, J.A. Swails-Wenger, S.A. Messer, M.B. Edmond, R.N. Jones, R.P. Wenzel, and D.R. Soll. 1998. Hospital specificity, region specificity, and fluconazole resistence of *Candida albicans* bloodstream isolates. J. Clin. Microbiol. 36:1518-1529.
- 86. Powderly, W.G., K. Robinson, and E.J. Keath. 1992. Molecular typing of *Candida albicans* isolated from oral lesions of HIV-infected individuals. **AIDS 6:81-84**.
- 87. Pujol, C., J. Reynes, F. Renaud, M. Mallie, and J.-M. Bastide. 1993. Genetic analysis of *Candida albicans* strains studies by isoenzyme electrophoresis. J. Mycol. Med. 3:14-19.
- 88. Pujol, C., J. Reynes, F. Renaud, M. Raymond, M. Tibayrenc, F.J. Ayala, F. Janbon, M. Mallie, and J.-M. Bastide. 1993. The yeast *Candida albicans* has a clonal mode of reproduction in a population of infected human immunodeficiency viry-positive patients. **Proc. Natl. Acad. Sci. USA 90:9456-9459**.
- 89. Pujol, C., S. Joly, B. Notan, T. Srikantha, and D.R. Soll. 1999. Microevolutionary changes in *Candida albicans* identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive RPS at specific genomic sites. **Microbiology 145:2635-2646**.
- 90. Pujol, C., S. Joly, S.R. Lockhart, S. Noel, M. Tibayrenc, and D.R. Soll. 1997. Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting *Candida albicans*. J. Clin. Microbiol. 35:2348-2358.
- Reynes, J., C. Pujol, C. Moreau, M. Mallié, F. Renaud, F. Janbon, and J.-M. Bastide. 1996. Simultaneous carriage of *Candida albicans* strains from HIV-infected patients with oral candidiasis: multilocus enzyme electrophoresis analysis. FEMS Microbiol. Lett. 137:269-273.
- 92. Rippon, J.W. 1988. Medical mycology. 3rd ed. Philadelphia: W.B. Saunders, pp. 532-581.
- 93. Robert, F., F. Lebreton, M.E. Bougnoux, A. Paugam, D. Wassermann, M. Schlotterer, C. Tourte-Schaefer, and J. Dupouy-Camet. 1995. Use of random amplified polymorphic DNA as a typing method for *Candida albicans* in epidemiological surveillance of a burn unit. J. Clin. Microbiol. 33:2366-2371.

- 94. Rohlf, F.J. 1988. NTSYS-pc numerical taxonomy and multivariate analysis system. **Exeter Software Publishing, New York**.
- 95. Rosa, E.A.R., C.V. Pereira, R.T. Rosa, and J.F. Höfling. 1999. Evaluation of different dehydrogenases to recognize *Candida* species commonly isolated from human oral cavities. **Rev. Argent. Microbiol. 31:165-172**.
- Rosa, E.A.R., R.T. Rosa, C.V. Pereira, and J.F. Höfling. 2000. Grouping oral *Candida* species by multilocus enzyme electrophoresis. Int. J. Syst. Evol. Microbiol. 50:1343-1349.
- 97. Rosa, E.A.R., R.T. Rosa, C.V. Pereira, and J.F. Höfling. 2001. Inter and Intra-specific genetic variability of oral *Candida* species. **Rev. Iberoam. Micol. 18:60-64**.
- 98. Rosa, E.A.R., R.T. Rosa, C.V. Pereira, M.F.G. Boriollo, and J.F. Höfling. 2000. Analysis of parity between protein-based electrophoretic methods for characterization of oral *Candida* species. **Mem. Inst. Oswaldo Cruz 95:801-806**.
- Ruhnke, M., L. Grosch-Worner, A. Steinmuller, and A. Neubauer. 1997. Molecular epidemiology of *Candida* infections in HIV-infected mothers and their offspring. Wien. Med. Wochenschr. 147:446-449.
- 100. Rustchenko, E.P., D.H. Howard, and F. Sherman. 1994. Chromosomal alterations of *Candida albicans* are associated with the gain and loss of assimilating functions. J. Bacteriol. 176:3231-3241.
- 101. Rustchenko-Bulgac, E.P., F. Sherman, and J.B. Hicks. 1990. Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of *Candida albicans*. J. Bacteriol. 172:1276-1283.
- 102. Sadhu, C., M.J. McEachern, E.P. Rustchenko-Bulgac, J. Schmid, D.R. Soll, and J.B. Hicks. 1991. Telomeric and dispersed repeat sequences in *Candida* yeasts and their use in strain identification. J. Bacteriol. 173:842-850.
- 103. Samaranayake, L.P. 1990. Oral candidosis: an old disease in new guises. Dent. Update 17:36-38.
- 104. Samaranayake, Y.H., L.P. Samaranayake, E.H. Pow, V.T. Beena, and K.W. Yeung. 2001. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential *Candida albicans* isolates from a human immunodeficiency virus-infected southern Chinese cohort. J. Clin. Microbiol. 39:3296-3302.
- 105. San Millan, R.M., L.C. Wu, I.F. Salkin, and P.F. Lehmann. 1997. Clinical isolates of *Candida guilliermondii* include *Candida fermentati*. Int. J. Syst. Bacteriol. 47:385-393.

- 106. Sandven, P. 1990. Laboratory indentification and sensitivity testing of yeast isolates. Acta odont. Scand. 48:27-36.
- 107. Sangeorzan, J.A., M.J. Zervoz, S. Donabedian, and C.A. Kauffman. 1995. Validity of contour-clamped homogeneous electric field electrophoresis as a typing system for *Candida albicans*. **Mycoses 38:29-36**.
- 108. Scherer, S., and D.A. Stevens. 1987. Application of DNA typing methods to epidemiology and taxonomy of *Candida* Species. J. Clin. Microbiol. 25:675-679.
- 109. Scherer, S., and P.T. Magee. 1990. Genetics of *Candida albicans*. Microbiol. Rev. 54:226-241.
- 110. Schmid, J. 1993. Candidiasis: conclusions from DNA fingerprinting. Clin. Adv. Treatment Fungal Infect. 4:12-16.
- 111. Schmid, J., E. Voss, and D.R. Soll. 1990. Computer-assisted methods for assessing strain relatedness in *Candida albicans* by fingerprinting with the moderately repetitive sequence Ca3. J. Clin. Microbiol. 28:1236-1243.
- 112. Schmid, J., M. Rotman, B. Reed, C.L. Pierson, and D.R. Soll. 1993. Genetic similarity of *Candida albicans* strains from vaginitis patients and their partners. J. Clin. Microbiol. 31:39-46.
- 113. Schmid, J., P.R. Hunter, G.C. White, A.K. Nand, and R.D. Soll. 1995. Physiological traits associated with success of *Candida albicans* strains as commensal colonizers and pathogens. J. Clin. Microbiol. 33:2920-2926.
- 114. Schmid, J., S. Herd, P.R. Hunter, R.D. Cannon, M.S.M. Yasin, S. Samad, M. Carr, D. Parr, W. McKinney, M. Schousboe, B. Harris, R. Ikram, M. Harris, A. Restrepo, G. Hoyos, and K.P. Singh. 1999. Evidence for a general-purpose genotype in *Candida albicans*, highly prevalent in multiple geographical regions, patient types and types of infection. Microbiology 145:2405-2413.
- 115. Schmid, J., Y.P. Tay, L. Wan, M. Carr, D. Parr, and W. McKinney. 1995. Evidence for nosocomial transmission of *Candida albicans* obtained by Ca3 fingerprinting. J. Clin. Microbiol. 33:1223-1230.
- 116. Schroeppel, K., M. Rotman, R. Galask, K. Mac, and D.R. Soll. 1994. The evolution and replacement of *Candida albicans* strains during recurrent vaginitis demonstrated by DNA fingerprinting. J. Clin. Microbiol. 32:2646-2654.
- 117. Segal, E., and G.L. Baum. 1994. Pathogenic yeasts and yeast infections. CRC Press, Inc., Boca Raton, Ann Arbor, London, Tokyo.

- 118. Selander, R.K., and B.R. Levin. 1980. Genetic diversity and structure in *Escherichia coli* populations. Science 210:545-547.
- 119. Selander, R.K., D.A. Caugant, H.Ochman, J.M. Musser, M.N. Gilmour, and T.S. Whittam. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. **Appl. Environ. Microbiol. 51:873-884**.
- 120. Selander, R.K., J.M. Musser, D.A. Caugant, M.N. Gilmour, and T.S. Whittam. 1987. Population genetics of pathogenic bacteria. **Microb. Pathog. 3:1-7**.
- 121. Smith, R.A., C.A. Hitchcock, E.G. Evans, C.J. Lacey, and D.J. Adams. 1989. The identification of *Candida albicans* strains by restriction fragment length polymorphism analysis of DNA. J. Med. Vet. Micol. 27:431-434.
- 122. Smithies, O. 1955. Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. **Biochem. J. 61:629-641**.
- 123. Sneath, P.H., and R. Johnson. 1972. The influence on numerical taxonomic similarities of errors in microbiological tests. J. Gen. Microbiol. 72:377-392.
- 124. Sneath, P.H.A., and R.R. Sokal. 1973. Numerical taxonomy. W.H. Freeman and Company, San Francisco.
- 125. Sokal, R.R., and F.J. Rohlf. 1962. The comparison of dendrograms by objective methods. Taxon 11:33-40.
- 126. Sokal, R.R., and F.J. Rohlf. 1970. The intelligent ignoramus, an experiment in numerical taxonomy. **Taxon 19:305-319**.
- 127. Soll, D.R. 1993. DNA fingerprinting of *Candida albicans*. J. Mycol. Med. 3:37-44.
- 128. Soll, D.R. 2000. The ins and outs of DNA fingerprinting the infectious fungi. Clin. Microbiol. Rev. 13:322-370.
- 129. Soll, D.R., C.J. Langtimm, J. McDowell, J. Hicks, and R. Galask. 1987. High frequency switching in *Candida* strain isolated from vaginitis patients. J. Clin. Microbiol. 25:1611-1622.
- 130. Soll, D.R., R. Galask, J. Schmid, C. Hanna, K. Mac, and B. Morrow. 1991. Genetic dissimilarity of commensal strains of *Candida* spp. carried in different anatomical localizations of the same healthy women. J. Clin. Microbiol. 29:1702-1710.
- 131. Stenderup, A. 1990. Oral mycology. Acta Odont. Scand. 48:3-10.

- 132. Swanson, H., P.A. Hughes, S.A. Messer, M.L. Lepow, and M.A. Pfaller. 1996. *Candida albicans* arthritis one year after successful treatment of fungemia in a healthy infant. **J. Pediatr. 129:688-694**.
- 133. Tanaka, K. 1997. Strain-relatedness among different populations of the pathogenic yeast *Candida albicans* analyzed by DNA-based methods. Nagoya J. Med. Sci. 60:1-14.
- 134. Tibayrenc, M., F. Kjellberg, and F.J. Ayala. 1990. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. **Proc. Natl. Acad. Sci. USA 87:2414-2418**.
- 135. Tibayrenc, M., F. Kjellberg, J. Arnaud, B. Oury, S.F. Breniere, M.L. Darde, and F.J. Ayala. 1991. Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. **Proc. Natl. Acad. Sci. USA 88:5129-5133**.
- 136. Tibayrenc, M., P. Ward, A. Moya, and F.J. Ayala. 1986. Natural populations of *Trypanosoma cruzi*, the agent of Chagas disease, have a complex multiclonal structure. **Proc. Natl. Acad. Sci. USA. 83:115-119**.
- 137. Tietz, H.J., A. Kussner, M. Thanos, M.P. De Andrade, W. Presber, and G. Schonian. 1995. Phenotypic and genotypic characterization of unusual vaginal isolates of *Candida albicans* from Africa. J. Clin. Microbiol. 33:2462-2465.
- 138. Val, A.L., A.R. Schwantes, M.L.B. Schwantes, and P.H. De Luca. 1981. Amido hidrolisado de milho como suporte eletroforético. Ciênc. Cult. 33:992-996.
- 139. Vancanneyt, M., B. Pot, G. Hennebert, and K. Kersters. 1991. Differentiation of yeast species based on electrophoretic whole-cell protein patterns. Syst. Appl. Microbiol. 14:23-32.
- 140. Vazquez, J.A., A. Beckley, J.D. Sobel, and M.J. Zervos. 1991. Comparison of restriction enzyme analysis versus pulsed-field gradient gel electrophoresis as a typing system for *Candida albicans*. J. Clin. Microbiol. 29:962-967.
- 141. Vazquez, J.A., J.D. Sobel, R. Demitriou, J. Vaishampayan, M. Lynch, and M. Zervos. 1994. Karyotyping of *Candida albicans* isolates obtained longitudinally in women with recurrent vulvovaginal candidiasis. **J. Infect. Dis. 170:1566-1569**.
- 142. Waters, M.G., and G. Blobel. 1986. Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J. Cell Biol. 102:1543-1550.

- 143. Whelan, W.L., D.R. Kirsch, K.J. Know-Chung, S.M. Wahl, and P.D. Smith. 1990. *Candida albicans* in patients with the aquired immunodeficiency syndrome: absence of a novel or hypervirulent strain. J. Infect. Dis. 162:513-518.
- 144. White, T.C., M.A. Pfaller, M.C. Rinaldi, J. Smith, and S. Redding. 1997. Stable azole drug resistance associated with a substrain of *Candida albicans* from an HIV-infected patient. **Oral Dis. 3:S102-109**.
- 145. Woontner, M, and J.A. Jaehning. 1990. Accurate initiation by RNA polimerase II in a whole cell extract from *Saccharomyces cerevisiae*. J. Biol. Chem. 265:8979-8982.
- 146. Xu, J., R. Vilgalys, and T.G. Mitchell. 1999. Lack of genetic differentiation between two geographically diverse samples of *Candida albicans* isolated from patients infected with human immunodeficiency virus. **J. Bacteriol. 181:1369-1373**.