

,**#**

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA

MARCELO TAVARES DE OLIVEIRA CIRURGIÃO - DENTISTA

Efeito das tecnologias alternativas para preparo cavitário nos procedimentos adesivos com sistemas autocondicionantes

> DISSERTAÇÃO APRESENTADA À FACULDADE DE ODONTOLOGIA DE PIRACICABA, DA UNIVERSIDADE ESTADUAL DE CAMPINAS, PARA OBTENÇÃO DO GRAU DE MESTRE EM CLÍNICA ODONTOLÓGICA – ÁREA DE DENTÍSTICA.

> > PIRACICABA 2005

> > > UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANTE

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA

MARCELO TAVARES DE OLIVEIRA CIRURGIÃO - DENTISTA

Efeitos das tecnologias alternativas para preparo cavitário nos procedimentos adesivos com sistemas

autocondicionantes

DISSERTAÇÃO APRESENTADA À FACULDADE DE ODONTOLOGIA DE PIRACICABA, DA UNIVERSIDADE ESTADUAL DE CAMPINAS, PARA OBTENÇÃO DO GRAU DE MESTRE EM CLÍNICA ODONTOLÓGICA – ÁREA DE DENTÍSTICA.

ORIENTADOR: PROF. DR. MARCELO GIANNINI CO-ORIENTADOR: PROF. DR. SIMONIDES CONSANI

BANCA EXAMINADORA: PROF. DR. CARLOS DE PAULA EDUARDO PROF. DR. MARIO ALEXANDRE COELHO SINHORETI PROF. DR. SIMONIDES CONSANI

Este exemplar foi devidamenta corrigido. de acordo com a contución CCP9-036/83 Man al Ane

PIRACICABA

2005

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANTE

NIDADE / EC - CHAMADA 7///wicome OLUP EX DMBO BC/ 63569 NOC. 6 - 86-05 C D D ⊠ ECO DL 00 NIA L0/05/05 CPD 		
EX DMBO BC/ 63569 NOC. 6 - 86-05 C D D D ECO D C NTA LO/05/05 CPD 		
EX DMB0 BC1 63569 NOC.16-86-05 C D D D NTA LO105/05 CPD bid: 349495	" LHAMADA TIME ON A	
EX DMB0 BC/ 63569 NOC. 16 - 86-05 C D D M NECO DI. 00 NTA L0/05/05 CPD bid: 349495		
EX DMBO BCI 63569 NOC. 6 - 86-05 C D D D NECO 11,00 NTA 10/05/05 CPD 		
MB0 BC/ <u>63569</u> NOC.16-86-05 C D D ⊠ IECO]].00 NTA <u>10/05/05</u> CPD - bid: 349495	EX	
BOC. <u>16-86-05</u> C D D D ECO <u>D</u> . <u>00</u> NIA <u>LO/05/05</u> CPD 	DMBO BCI 63569	
$\frac{c}{b_{1}} \frac{d}{d_{2}} \frac{d}$	100.16 - 86-05	
IECO 11.00 NA 10/05/05 CPD bid: 349495	C口 D区	
CPD bid: 349495	EÇO 11.00	
CPD	TA 10/05/05	
6.0.349495	CPD	
bid: 349495		
	6,1.349495	, }

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA FACULDADE DE ODONTOLOGIA DE PIRACICABA Bibliotecário: Marilene Girello – CRB-8^a, / 6159

Oliveira, Marcelo Tavares de. Efeito das tecnologias alternativas para preparo cavitário nos procedimentos adesivos com sistemas autocondicionantes. / Marcelo Tavares de Oliveira Piracicaba, SP : [s.n.], 2005.
Orientadores: Marcelo Giannini; Simonides Consani Dissertação (Mestrado) – Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba.
1. Dentina. 2. Microscopia eletrônica de varredura. I. Giannini, Marcelo. II. Consani, Simonides. III. Universidade Estadual de Campinas. Faculdade de Odontologia de Piracicaba. IV. Título. (mg/fop)

Título em inglês: Evaluation of alternative cavity preparation techniques on adhesion with self-etching primer systems

Palavras-chave em inglês (*Keywords*): Dentin; Microscopy, electron, scanning Área de concentração: Dentística

Titulação: Mestre em Clínica Odontológica

Banca examinadora: Carlos de Paula Eduardo; Mario Alexandre Coelho Sinhoreti; Simonides Consani

Data da defesa: 25/02/2005

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA

A Comissão Julgadora dos trabalhos de Defesa de Dissertação de MESTRADO, em sessão pública realizada em 25 de Fevereiro de 2005, considerou o candidato MARCELO TAVARES DE OLIVEIRA aprovado.

PROF. DR. SIMONIDES CONSANI ARLOS DE PAULA EDUARDO PROF. DI

PROF. DR. MARIO ALEXANDRE COELHO SINHORETI

Dedicatória

Aos meus pais, que em todos os momentos me apoiaram e se esforçaram para que eu pudesse cumprir mais uma etapa da minha formação.

À minha irmã, Flávia, que nestes anos todos me incentivou com seu carinho e suas palavras amigas.

A Deus, por ter me dado força e iluminado o meu caminho durante a realização deste trabalho.

vii

Agradecimentos

À Faculdade de Odontologia de Piracicaba – UNICAMP, nas pessoas do seu diretor, Prof. Dr. Thales Rocha de Mattos Filho, e do Diretor Associado, Prof. Dr. Mário Fernando de Góes, pela oportunidade da realização deste Curso de Pós-graduação.

Ao Prof. Dr. Pedro Luis Rosalen, Coordenador do Curso de Pós-graduação da FOP - UNICAMP e ao Prof. Dr. Roger Willian Fernandes Moreira, Coordenador no Curso de Pós-Graduação em Clínica Odontológica, pela atenção prestada.

Ao Prof Dr. Marcelo Giannini, por ter acreditado no meu trabalho e pela confiança depositada. Exemplo de responsabilidade e consciência do seu papel como docente, tanto na graduação, como no Curso de Pós-graduação. Obrigado pela oportunidade de trabalharmos juntos.

A Profa. Gláucia Maria Bovi Ambrosano, pela paciência e carinho com que se dedica aos seus alunos, pela elaboração da análise estatística e pela oportunidade de aprender mais.

À Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP, pelo Auxílio à Pesquisa concedido destinado a execução da fase experimental deste trabalho.

À Área de Materiais Dentários, pela presteza e por permitir a utilização do laboratório.

Ao Prof. Dr. Elliot Watanabe Kitajima, do NAP/MEPA – ESALQ/USP, onde foram realizadas as análises microscópicas.

Ao Laboratório Especial de Laser em Odontologia – LELO – USP e a Kavo, por terem cedido e permitido o uso do aparelho Kavo Key Laser 3, para a realização de parte deste trabalho.

Ao Prof. Dr. Carlos de Paula Eduardo, pelo seu tempo, disposição e orientação quanto à utilização do aparelho de laser.

À New Image do Brasil, por ter cedido e permitido o uso do aparelho Air Touch Cavity Detection and Treatment System, para a realização de parte deste trabalho.

Aos Professores que estiveram presentes em minha banca de qualificação, Prof. Dr. Caio Cézar Randi Ferraz, ao Prof. Dr. Lourenço Correr Sobrinho e ao Prof. Dr. Mário Alexandre Coelho Sinhoreti, pelas críticas e sugestões que melhoraram este trabalho.

Aos Professores da Área de Dentística, Giselle Maria Marchi Baron, José Roberto Lovadino, Luis Alexandre Maffei Sartini Paulillo, Luis Roberto Marcondes Martins e Luiz André Freire Pimenta por compartilharem seus ensinamentos, aprimorando a formação dos seus alunos.

Aos Funcionários da Área de Dentística, Fernanda e Pedro Justino, por estarem sempre prontos e dispostos a nos ajudar.

As amigas Patty e Ciça por estarem presentes, pela amizade e pela colaboração no uso do laser em São Paulo.

Х

Aos amigos do mestrado, Ana Paula, Caio, Cecília, Cris, Cris Franco, Débora, Jansen, Vanessa Bueno e Rodrigo, pelos bons momentos que passamos e pela amizade de cada um de vocês.

Aos amigos do doutorado, Alessandra, André carioca, Carol, César, Celso, Denise, Fábio, Flávio, Ricardinho, Vanessinha, Van Ruiva, pela amizade e por dividirem seus conhecimentos e experiência.

.

Aos amigos da iniciação científica, Adriano, André mineiro, Cláudia, Fernanda, Flávia, Maria, Marina e Samira pelos bons momentos.

Aos grandes amigos que conquistei, Sandro e Érica, por estarem sempre presentes compartilhando todos os momentos.

Aos amigos, Eduardo, Fábio, Léo, Marcelo Goiano, Rogério e Sussumu, os quais prezo muito suas amizades desde a época da graduação.

À minha querida Andrea, que com seu sorriso e seu jeito carinhoso e responsável me faz querer ser uma pessoa melhor. Obrigado pela sua paciência e dedicação. Amo você mais a cada dia.

A todos que direta ou indiretamente tornaram possível a concretização deste trabalho.

xi

Sumário

•	
	Página
Resumo	1
ABSTRACT	3
1 INTRODUÇÃO	5
2 REVISÃO DA LITERATURA	9
2.1 HISTÓRICO DOS SISTEMAS ADESIVOS	9
2.2 CARACTERÍSTICAS DO SUBSTRATO DENTINÁRIO E	
TRATAMENTOS SUPERFICIAIS DA DENTINA	11
3 PROPOSIÇÃO	37
4 MATERIAL E MÉTODOS	39
4.1 DELINEAMENTO DO ESTUDO	39
4.2 COLETA, ARMAZENAMENTO E PREPARO DOS DENTES	39
4.3 MATERIAIS SELECIONADOS E GRUPOS EXPERIMENTAIS	41
4.4 PROCEDIMENTO RESTAURADOR	44
4.4.1 Descrição das técnicas de utilização das	
TECNOLOGIAS DE PREPARO CAVITÁRIO	44
4.4.2 Aplicação dos sistemas de união e	
RESTAURAÇÃO DOS DENTES	47
4.5 OBTENÇÃO DOS CORPOS-DE-PROVA	49
4.6 ENSAIO DE MICROTRAÇÃO	50
4.7 ANÁLISE EM MICROSCOPIA ELETRÔNICA DE VARREDURA	51
4.7.1 ANÁLISE DA INTERFACE DE UNIÃO	51
4.7.2 ANÁLISE DOS TRATAMENTOS SUPERFICIAIS DA	
DENTINA	53
4.7.3 ANÁLISE DO PADRÃO DE FRATURA	53
4.8 Análise estatística	54

5 RESULTADOS	55
5.1 RESISTÊNCIA DE UNIÃO	55
5.2 Observação em Microscopia Eletrônica de	
VARREDURA	58
5.2.1 ANÁLISE DO PADRÃO DE FRATURA	58
5.2.2 ANÁLISE DA SUPERFÍCIE DISPONÍVEL PARA A	
UNIÃO	63
5.2.3 ANÁLISE DA INTERFACE DE UNIÃO DENTE-	
COMPÓSITO	67
6 DISCUSSÃO	77
7 Conclusão	85
Referências	87
ANEXOS	93

Resumo

O objetivo deste estudo foi avaliar o efeito de técnicas de preparo cavitário nos procedimentos adesivos com sistemas autocondicionantes. Foram analisadas as resistências à tração da união após os tratamentos, assim como, em microscopia eletrônica de varredura (MEV), as características morfológicas das estruturas formadas na região da união dentina-compósito; a morfologia da superfície produzida pelos tratamentos utilizados para preparar a dentina e o padrão de fratura dos espécimes testados no ensaio de microtração. Foram utilizados 208 terceiros molares humanos, que tiveram a superfície oclusal removida para a exposição de dentina de profundidade superficial e foram divididos aleatoriamente em 32 grupos experimentais. As tecnologias de preparo cavitário foram: ausência de smear layer, abrasionamento com lixas de SiC 600, ponta diamantada (100µm), broca carboneto de tungstênio (10 lâminas), aplicação de jato de óxido de alumínio 27µm, aplicação de laser Er:YAG, ponta diamantada CVD em ultra-som e Carisolv[®]. Após o tratamento superficial foi aplicado um dos sistemas adesivos de acordo com as instruções dos fabricantes (Tyrian, Clearfil SE Bond, Unifil Bond e Single Bond), em seguida restaurados com o compósito Clearfil AP-X. Os dentes foram armazenados em água destilada a 37°C durante 24 horas. Após esse período, os dentes foram seccionados perpedicularmente a interface de união, nos sentidos mésio-distal e vestíbulo-lingual, com a finalidade de se obter palitos com área de secção transversal de 0,7mm². Os espécimes foram testados com o ensaio de microtração numa velocidade de 0,5mm/min até a ruptura. Os resultados foram analisados com ANOVA dois-critérios e teste Tukey. Foi identificada uma interação entre os tratamentos e os sistemas adesivos (p<0,00003). O tratamento com o laser de Er:YAG na condição do experimento e a ponta diamantada CVD em ultra-som apresentaram os piores resultados para todos os sistemas. O Carisolv® apresentou valores de resistência de união

intermediários, porém os adesivos autocondicionantes mostraram resultados inferiores ao Single Bond. A ponta diamantada, a broca carboneto de tungstênio e a lixa de SiC 600 mostraram os resultados semelhantes. A abrasão a ar proporcionou maiores valores de resistência de união para o Clearfil SE Bond que apresentou resultado superior ao Tyrian. Os sistemas Clearfil SE Bond e Single Bond foram superiores, obtendo os maiores valores na ausência de *smear layer*, no entanto, o Unifil Bond foi semelhante ao Single Bond. As análises em MEV revelaram variações na formação da camada híbrida e uma predominância do padrão de fratura com falha adesiva entre o sistema de união e a dentina, e parcialmente coesiva no sistema de união. Foi observado que existe uma forte dependência entre as tecnologias utilizadas para a realização dos preparos cavitários e os sistemas de união, porém a técnica do condicionamento com ácido fosfórico pode reduzir o efeito das tecnologias sobre a resistência de união, exceto pela aplicação do laser de Er:YAG e da ponta diamantada CVD em ultra-som.

Abstract

The aim of this study was to evaluate the effect of alternative cavity preparation techniques on the adhesive procedures with self-etching adhesive systems. Microtensile bond strength tests (µTBS), as well as, analysis under scanning electron microscope (SEM) of the morphological characteristics of the bonded structures, treated dentin surfaces and the failure mode of the tested specimens were performed. 208 third human molars had their Oclusal surface flattened in order to expose superficial dentin. Teeth were randomly assigned to 32 experimental groups. Cavity preparation techniques used in this study were: smear layer free surface, 600-grit SiC paper, diamond bur (100µm), carbide bur (10 blades), air abrasion, Er:YAG laser, CVD diamond bur - sonoabrasion and Carisolv[®] gel. Following each surface treatment, adhesive systems (Tyrian, Clearfil SE Bond, Unifil Bond and Single Bond) were applied according to manufacturer's instructions and 6mm high blocks were incrementally built up with Clearfil AP-X (Kuraray) composite resin. The specimens were stored for 24 hours at 37°C in distilled water and were serially sectioned in both mesio-distal and buccal-lingual directions transversally to the bonded interface to obtain an array of bonded beams with a cross-sectional area of 0.7mm². Beams were tested in tension (0.5mm/min -Instron 4411) and results were analyzed with two-way ANOVA and Tukey's test. It was found an interaction between adhesive systems and surface treatments (p<0.00003). Sonoabrasion and laser treatment yielded the lowest values for the tested adhesive systems; Carisolv[®] gel showed intermediate bond strength, however, self-etching adhesive systems were worse than Single Bond. Diamond bur, carbide bur and 600-grit SiC paper had similar results. Air-abrasion produced improved results for adhesion with Clearfil SE Bond that was significantly better than Tyrian. Clearfil SE Bond and Single Bond were superior, obtaining the highest values of µTBS for the smear layer free surface, although in the comparison

among the adhesive systems Unifil Bond and Single Bond were similar. SEM analysis revealed some variations in the hybrid layer formation and the predominance of an adhesive failure between adhesive system and dentin, and partially cohesive in the adhesive system. It was also observed that there is a strong relationship between cavity preparation techniques and adhesive systems, however, the total-etch technique seems to level the effect over the μ TBS, except for the Er:YAG laser treatment and sonoabrasion.

1 Introdução

A incorporação aos adesivos dentinários de um monômero com baixo pH tem permitido a eliminação da etapa clínica do condicionamento ácido (WATANABE & NAKABAYASHI, 1993). A técnica adesiva com aplicação de ácido fosfórico nas concentrações entre 30 a 40% promove um aumento na permeabilidade da dentina, pois remove a *smear* layer e o conteúdo mineral na superfície da dentina previamente a aplicação de um adesivo contendo solventes. Como resultado, ocorre a formação de uma área de colágeno desprovida de mineral e infiltrada por resina adesiva, denominada camada híbrida ou zona de interdifusão. Entretanto, a penetração dos monômeros utilizando a técnica úmida tem sido descrita como crítica e complexa, e muitas vezes pode resultar em procedimentos com baixa longevidade clínica (SANO *et al.*, 1999; HASHIMOTO *et al.*, 2000; REIS *et al.*, 2004). Sem o ataque ácido, o adesivo autocondicionante deverá ter a capacidade de penetrar e incorporar a *smear layer*, ao mesmo tempo em que infiltra no tecido dentinário mineralizado adjacente (PASHLEY & CARVALHO, 1997).

A simultânea desmineralização e infiltração da dentina forma um complexo hibridizado composto pela incorporação e hibridização da *smear layer* e uma zona subsuperficial de dentina intertubular hibridizada (TAY *et al.,* 2000a). Nos túbulos dentinários, o *smear plug* é dissolvido, hibridizado e mantido no local, reduzindo a sensibilidade à variabilidade regional da dentina, característica não descrita para os sistemas adesivos convencionais (PEREIRA *et al.,* 1999; GIANNINI *et al.,* 2001). Quando comparados aos adesivos com prévio condicionamento ácido, os sistemas autocondicionantes produzem uma fina camada híbrida (PRATI *et al.,* 1998).

Lesões cervicais não cariosas apresentam-se desprovidas de *smear layer* (OWENS & GALLIEN, 1995) e, portanto, podem ser mais favoráveis à aplicação de adesivos autocondicionantes. Se a qualidade do complexo hibridizado depende da infiltração e total polimerização do monômero adesivo no substrato dentinário, na ausência da *smear layer* a falta de acidez do adesivo reduz a preocupação de uma precoce neutralização do monômero. Para que um *primer* ácido não apresente redução do potencial de penetração e consequentemente da resistência de união, um pH máximo de 2,8 tem sido requerido para que o adesivo possa efetivamente desmineralizar a dentina em 30 segundos e formar o complexo hibridizado (TAY *et al.,* 2000a).

Formulações de adesivos contendo diferentes monômeros ácidos têm sido desenvolvidos para restaurações odontológicas estéticas, com o propósito de substituir os complexos procedimentos convencionais de aplicação dos sistemas adesivos (TAY & PASHLEY, 2001). A manutenção do conteúdo mineral, com menor influência do substrato, assim como a redução de etapas de aplicação clínica e a eliminação do controle da umidade pós-condicionamento ácido são as principais vantagens desses sistemas (PASHLEY & CARVALHO, 1997). No entanto, a substituição dos adesivos convencionais por procedimentos mais conservadores e duradouros, depende do comportamento desta classe de materiais frente às variações apresentadas pelo substrato durante os procedimentos restauradores (TAY *et al.*, 2000a, b), pois diferentes métodos empregados no preparo cavitário produzem *smear layers* de diferentes formas e espessuras (TAGAMI *et al.*, 1991).

As condições nas quais os testes de resistência de união são normalmente realizados estão distantes das condições clínicas reais. No laboratório, a utilização de lixas de SiC é muito mais conveniente devido à facilidade de padronização, apesar de nunca serem utilizadas clinicamente (PASHLEY *et al.,* 1995). Clinicamente, os preparos cavitários são comumente realizados com o auxílio de instrumentos rotatórios equipados com pontas diamantadas ou brocas carboneto

de tungstênio (VAN MEERBEEK *et al.*, 2003). Após a confecção destes preparos, uma camada amorfa de restos orgânicos e inorgânicos permanece sobre o dente, denominada *smear layer* (OGATA et al., 2001). A quantidade e a qualidade da *smear layer* mostram grande variação dependendo do tratamento superficial empregado (TAGAMI *et al.*, 1991). Normalmente, as pontas diamantadas produzem uma *smear layer* mais espessa quando comparadas com as brocas carboneto de tungstênio (TAGAMI *et al.*, 1991).

A utilização de métodos alternativos de preparo cavitário se torna mais freqüente nos dias atuais. Entre estas tecnologias, a abrasão a ar ressurge com força como alternativa aos preparos convencionais. Através de uma corrente de ar pressurizada contendo partículas abrasivas microscópicas, rapidamente pode-se remover esmalte, dentina, tecido cariado e restaurações deficientes (SAZAK *et al.,* 2001). As principais vantagens desta tecnologia consistem na redução do desconforto do paciente, diminuindo a pressão, produção de calor, vibração e barulho, eliminando na maioria dos casos a necessidade de anestesia local (CORONA *et al.,* 2001). VAN MEERBEEK *et al.* (2003) relataram que após o jateamento com óxido de alumínio, a superfície dentinária se apresentava de forma irregular e os túbulos dentinários obliterados.

Instrumentos ultra-sônicos também podem ser utilizados para a realização de preparos cavitários. A principal indicação destes instrumentos está na confecção de pequenas cavidades do tipo classe II (HUGO & STASSINAKIS, 1998). Seu mecanismo de ação é baseado no desgaste produzido, devido aos movimentos oscilatórios das pontas diamantadas desenvolvidas para serem acopladas a um aparelho de ultra-som (HUGO & STASSINAKIS, 1998). Desta forma, com o auxílio de pontas especiais pode-se prevenir o desgaste desnecessário de tecidos dentais adjacentes. Superfícies preparadas com o auxílio de instrumentos ultra-sônicos apresentam-se recobertas por uma fina camada de *smear layer* e

com os túbulos dentinários quase completamente obstruídos (VAN MEERBEEK et al., 2003).

A irradiação com o laser de Er:YAG é outra alternativa aos métodos convencionais. Esta irradiação produz uma superfície com micro-crateras e túbulos dentinários abertos, livres de *smear layer* (RAMOS *et al.*, 2002). Tais características parecem propícias para a realização dos procedimentos adesivos, no entanto, devido às diferenças das características morfológicas da dentina irradiada e da dentina tratada com agentes condicionadores, existe uma preocupação com relação à qualidade da união formada (RAMOS *et al.*, 2002; VAN MEERBEEK *et al.*, 2003).

Um novo método químico-mecânico (Carisolv[®]) para remoção de cárie foi recentemente introduzido como alternativa aos métodos mecânicos. Considerando a necessidade de um manejo especial de determinados grupos de pacientes, o Carisolv[®] pode ter sua grande indicação em pacientes pediátricos e idosos. FURE *et al.* (2000) relataram a ausência de sensibilidade dolorosa na maioria dos tratamentos realizados, dispensando a utilização de anestesia local. Isto ocorre, pois o mecanismo de ação do Carisolv[®] é baseado na desnaturação do colágeno da dentina cariada. CEDERLUND *et al.* (1999) relataram que após a aplicação do Carisolv[®] por 5 minutos, a superfície dentinária apresentou uma *smear layer* homogênea e túbulos dentinários obliterados.

Equipamentos e técnicas têm sido desenvolvidos para substituir os instrumentos rotatórios na remoção do tecido cariado e confecção do preparo cavitário. As utilizações dessas técnicas produzem alterações superficiais e tipos de *smear layers* que ainda não foram estudadas para a classe de adesivos autocondicionantes e, portanto, seus efeitos na qualidade da união formada ainda são desconhecidos.

2 Revisão da Literatura

2.1 Histórico dos sistemas adesivos

Em 1952, KRAMER & MCLEAN, descreveram as primeiras evidências que apontaram alterações estruturais no substrato dentinário pela aplicação de um sistema de união. Durante um estudo das alterações pulpares, frente a diversos materiais restauradores, os autores relataram a formação de uma camada com alguns micrômetros de espessura identificada com o auxílio de corantes histológicos, somente na interface entre a resina e a dentina. Essa camada foi formada devido à ação do sistema de união aplicado previamente na dentina.

BUONOCORE, em 1955, relatou, utilizando um método qualitativo simples, a adesão de materiais restauradores acrílicos às superfícies hígidas de esmalte. Era admitido que a solução ácida de fosfomolibídico oxálico e o ácido fosfórico a 85%, aplicados durante 30 segundos, promoveriam uma alteração química no esmalte, conferindo uma maior receptividade à adesão. Os resultados mostraram uma maior retenção da resina acrílica devido as microporosidades causadas pela desmineralização seletiva. Neste trabalho o ácido fosfórico 85% apresentou resultados superiores.

Em 1956, BUONOCORE *et al.*, relataram a primeira tentativa de união ao substrato dentinário utilizando resina acrílica, após o condicionamento ácido. Para a união foi utilizada uma resina a base de ácido glicerofosfórico dimetacrilato, a qual possui uma afinidade química particular pela estrutura dental. As superfícies dentinárias dos dentes extraídos foram tratadas com solução de ácido clorídrico a 7% durante 1 minuto, para em seguida ser feita a aplicação do sistema adesivo. Os resultados do teste de tração mostraram que a adesão aumentou

significativamente, quando comparada às superfícies não condicionadas. Porém, o armazenamento em água promoveu uma redução nos valores de união. No grupo em que a superfície não foi condicionada, o valor inicial foi de 2,74 MPa, reduzindo para 1,47 MPa após três meses de armazenamento. O tratamento da superfície dentinária mostrou valor de resistência de união inicial de 5,19 MPa, diminuindo para 2,74 MPa após cinco meses armazenados. A partir destes resultados, foi sugerido que havia a possibilidade de combinação química entre um dos constituintes da resina e a matriz orgânica da dentina.

FUSAYAMA *et al.*, em 1979, avaliaram as propriedades adesivas de materiais restauradores e de um sistema de união. O estudo demonstrou um aumento significativo nos valores de união, quando foi realizado o condicionamento com ácido fosfórico a 40% durante 30 segundos ao esmalte e a dentina. Os resultados mostraram aumento de 2,58 MPa para 10,93 MPa em esmalte e de 1,65 MPa para 6,10 MPa em dentina quando foi utilizado o sistema Clearfil Bond System F como agente de união. Os autores discutiram a possibilidade de adesão química desse material ao substrato, o que era pretendido pelo fabricante.

Em 1982, NAKABAYASHI *et al.*, realizaram um estudo verificando através do teste de tração a efetividade da solução 4-metacriloxietil-trimetilato-anidrido (4-META) na adesão de um cilindro de acrílico ao esmalte e á dentina humana e bovina, condicionadas com uma solução de ácido cítrico a 10% e cloreto férrico a 3% (solução 10-3), por 30 segundos. Observaram que monômeros resinosos com grupos hidrófobos e hidrófilos, como o 4-META, infiltravam-se entre as fibrilas colágenas expostas pelo tratamento com a solução 10-3 e após a polimerização, constituía uma zona mista de dentina desmineralizada e resina, a qual denominou de camada híbrida. Esta camada promoveu um aumento nos valores de resistência de união da resina (18 MPa), permitindo concluir que a união não se dava exclusivamente pela formação de *tags* no interior dos túbulos dentinários,

mas principalmente pela retenção micro-mecânica dos agentes resinosos com as fibrilas colágenas da dentina intertubular.

2.2 Características do substrato dentinário e

tratamentos superficiais da dentina

TAGAMI et al., em 1991, utilizando terceiros molares humanos, avaliaram a permeabilidade dentinária e a resistência de união, após a aplicação de um instrumento rotatório (ponta diamantada) com e sem irrigação e de lixas de carbeto de silício de granulação 80. A permeabilidade dentinária foi comparada antes e depois do tratamento superficial do dente e os sistemas de união foram comparados entre si. Foram utilizados os seguintes adesivos: Scotchbond DC (não requer a remoção da smear layer), Clearfil Photobond (condicionamento ácido fosfórico 37%) e o Superbond C&B (condicionamento com ácido 10-3). A permeabilidade dentinária teve seus valores reduzidos de 1% a 3% da permeabilidade máxima encontrada nas medições-controle. Porém, ocorreu um maior aumento na permeabilidade dentinária quando se aplicou o ácido fosfórico após a utilização da lixa de carbeto de silício do que quando se utilizou a ponta diamantada. A smear layer e os smear plugs produzidos pela ponta diamantada foram mais resistentes ao condicionamento com o ácido 10-3 do que os criados pela ação da lixa. Os valores de resistência de união para o Superbond foram mais altos quando foi utilizada a ponta diamantada com refrigeração, para os outros dois sistemas não houve diferença significativa na resistência de união. Porém, a permeabilidade dentinária se mostrou bastante influenciada pelo tratamento aplicado à dentina.

WATANABE & NAKABAYASHI, em 1993, investigaram a longevidade de restaurações de compósito unidas à dentina com a presença da smear layer. A

resina adesiva empregada era composta 5% de Fenil-P (monômero promotor da difusão), 0,5% de canforoquinona e 0,5 % de N-fenilglicina como agente redutor. Após a polimerização, o compósito foi adicionado e ativado durante 60 segundos. Os dentes preparados foram armazenados por 1 dia, 6 meses e 1 ano. Os resultados encontrados foram 6,7 MPa, 4,1 MPa e 2,8MPa, respectivamente. Os autores concluíram, após o exame das interfaces, que um longo período de armazenamento enfraqueceu a união pois houve uma difusão insuficiente do monômero resinoso através da *smear layer*.

CHIGIRA, *et al.*, em 1994, testaram a eficácia da união de diversos sistemas de união e o efeito de vários agentes condicionadores no processo de adesão e na dureza da dentina. Cada sistema foi avaliado com a mensuração da fenda de um compósito fotoativado numa cavidade dentinária cilíndrica e determinando-se a resistência de união. Os condicionadores foram investigados com o intuito de determinar se a dureza da dentina seria reduzida após a aplicação. O controle foi à superfície dentinária condicionada com EDTA 0,5M por 1 minuto, neutralizada com solução de hidróxido de sódio, lavada e seca previamente à aplicação de um *primer* experimental. Os resultados mostraram que uma completa adaptação só foi conseguida com o grupo controle e que alta correlação foi observada entre a máxima largura da fenda e redução da dureza nos grupos em que a dentina foi lavada após o condicionamento.

Em 1994, Los & BARKMEIER determinaram a resistência ao cisalhamento utilizando seis sistemas de união após a aplicação do aparelho de abrasão a ar na superfície dentinária com óxido de alumínio (50 µm) e partículas de hidroxiapatita (20-40 µm), sendo o grupo controle representado por superfícies dentinárias planas, abrasionadas com lixas de carbeto de silício de granulação 600. A microscopia eletrônica de varredura foi utilizada para examinar os efeitos da técnica abrasiva e dos condicionadores (*primers*) na superfície dentinária. Como resultados, os autores encontraram que a superfície dentinária tratada com o

aparelho de abrasão a ar, óxido de alumínio ou hidroxiapatita, não aumentou a resistência de união para os sistemas All Bond 2, Prisma Universal Bond 3, Scotchbond Multi-Purpose, Tenure Solution, Amalgambond e Mirage ABC. Ressaltaram, entretanto, que a resistência de união das superfícies dentinárias abrasionadas com óxido de alumínio foram geralmente maior do que aquelas jateadas com hidroxiapatita. As fotomicrografias mostraram que a abrasão a ar com óxido de alumínio criou uma superfícies tratadas com o óxido de alumínio se mostraram mais irregular do que as superfícies lixadas mesmo após o condicionamento e remoção da *smear layer*.

SANO et al., em 1994, testaram a relação entre a área de superfície dentinária unida e a resistência à tração dos materiais adesivos. O esmalte oclusal de terceiros molares humanos foi removido e um bloco de compósito foi unido à superfície dentinária planificada, após a aplicação dos sistemas de união. Vinte e quatro horas depois, os dentes foram seccionados paralelamente ao longo eixo em 10-20 fatias constituídas, na metade superior, por compósito e na metade inferior, por dentina. Estas pequenas secções eram preparadas usando ponta diamantada em alta rotação até aparentar a forma de uma ampulheta, em que a parte mais estreita era a interface de união. A área de união foi alterada variando a espessura e a largura. A resistência à tração foi mensurada utilizando um aparato especial acoplado a uma máquina de ensaio universal. Os resultados mostraram que a resistência à tração foi inversamente relacionada à área de superfície unida. Em áreas menores que 0,4mm² os valores médios de resistência de união foram da ordem de 55 MPa para o Clearfil Liner Bond, 23,8 MPa para o Scotchbond Multi-Purpose e 20 MPa para o Vitremer. Os autores concluíram que este método permite mensurações múltiplas feitas com um único dente, produzindo menor variação nos resultados, além de apresentar falhas adesivas na maioria dos corpos-de-prova testados.

WATANABE *et al.*, em 1994, testaram se o aumento da concentração de 2metacriloxietil-fenil-hidrogênio-fosfato (Fenil-P) em solução de HEMA 30% iria melhorar a união do adesivo à *smear layer*. Quando a concentração deste constituinte era de 5%; a resistência à tração obteve um valor médio de 4,7 MPa, valor semelhante ao encontrado para a concentração de 10% (6,4 MPa). Essa solução variando a concentração do Fenil-p em 20%. 30% e 40% apresentou valores médios de resistência de união de 10,4, 9,7 e 10,6 MPa, respectivamente. As fotomicrografias das *smear layers* fina e grossa, mostram que a acidez determinada pela concentração de Fenil-P 20% em HEMA 30% foi suficiente para desmineralizar a dentina, através da criação, na *smear layer*, de canais de dissolução que estavam contíguos com os canais da matriz dentinária subjacente. Os túbulos dentinários ficaram impregnados com a mistura do monômero e da *smear layer* na camada híbrida e que a acidez não conseguiu remover completamente o *smear plug*, mantendo assim, a permeabilidade dentinária relativamente baixa durante o processo de união.

OWENS & GALLIEN, em 1995, apresentaram uma nova classificação para lesões não cariosas. Eles relataram que lesões cervicais causadas pela fadiga, flexão e deformação da estrutura dental, foram denominadas de "abfração". Estas lesões eram típicas e possuíam ângulos bem definidos. Estas lesões ocorriam sozinhas, porém podiam estar associadas a lesões de abrasão e erosão. Seu tratamento consiste na restauração com compósito ou ionômero de vidro e na remoção da etiologia da lesão. Os autores concluíram ainda que se a estética não for influenciada, várias destas lesões podem ser acompanhadas, desde que o paciente seja informado que o bruxismo ou um problema de maloclusão existem.

PASHLEY *et al.*, em 1995 apresentaram uma revisão de literatura sobre os tipos de testes de resistência de união e a validade dos valores obtidos com os mesmos, enfocando diversos aspectos como substratos para adesão, variáveis envolvidas no condicionamento e aplicação dos *primers* e adesivos, variáveis de

armazenamento e também as variáveis dos testes em si. Considerando que muitos dos sistemas de união apresentavam capacidade de desenvolver resistências de união ao redor de 20 MPa a 30 MPa, tendo como consegüência muitas falhas coesivas em dentina, os autores enfatizaram a importância de se desenvolver novos tipos de testes para avaliar a resistência da união. Dentre estes, destacaram o método de microtração como uma possível solução, pois, segundo os autores, este método permite analisar a adesão sob condições clinicamente relevantes, apresentando valores de união de até 70 MPa e uma maior porcentagem de falhas adesivas do que coesivas; possibilidade de mensuração de resistência de união bem mais elevada; possibilidade de mensuração de resistências de união regionais; possibilidade do cálculo da média e do desvio-padrão em um único dente; possibilidade de testar a resistência em superfícies irregulares e muito pequenas; facilidade da observação em microscopia eletrônica de varredura da área de fratura. Porém, como desvantagens, foram relacionadas à dificuldade do preparo dos corpos-de-prova, dificuldade em mensurar valores de resistência de união inferiores a 5 MPa, necessidade de equipamento especial e a tendência dos espécimes desidratarem rapidamente, devido ao fato de serem pequenos.

MARSHALL *et al.*, em 1997, revisaram os componentes estruturais e as propriedades da dentina, as quais podem variar com a localização. Os autores classificaram várias formas de dentina (secundária, terciária, esclerótica e transparente), analisando as alterações fisiológicas e patológicas, além do seu impacto na união à dentina. Utilizando diversas formas de análise microscópica, eles relacionaram a distribuição de seus componentes (colágeno, matriz orgânica e reforço mineral) às propriedades mecânicas como microdureza (0,25 – 0,8 GPa), resistência compressão (230 – 370 MPa), módulo de elasticidade (10,1 – 19,3 GPa), resistência à tração (31 – 104 MPa) e resistência ao cisalhamento (36 – 139 MPa). Os autores afirmaram que a desmineralização e a união dentinária também se relacionam com a distribuição dos componentes estruturais dentinários.

PASHLEY & CARVALHO, em 1997, apresentaram uma revisão sobre a estrutura dentinária descrevendo a importância da penetração dos monômeros resinosos nos túbulos e nos espaços interfibrilares criados pelo condicionamento ácido para a realização da união. Nessa revisão as vantagens e desvantagens dos procedimentos de ataque ácido, aplicação do *primer* e do adesivo foram discutidas. Os autores concluíram que o procedimento do ataque ácido provoca profundas mudanças na composição química e nas propriedades físicas da matriz dentinária, podendo influenciar na qualidade da união dentina-compósito, em sua resistência e talvez na durabilidade.

AOKI *et al.*, em 1998, compararam a efetividade do laser de Er:YAG em remover a cárie, em relação ao tratamento convencional. Foram utilizados 30 dentes com lesões de cárie cervical. Metade da cárie era tratada com laser e a outra metade recebia o tratamento convencional. Foram feitas medições do tempo para remoção de cárie, análise em microscopia eletrônica de varredura e dureza. Os resultados mostraram que devido ao cuidado para a irradiação do dente, foi utilizado maior tempo para a remoção da cárie, no entanto o laser foi capaz de remover completamente a dentina cariada causando mínimos danos térmicos à dentina adjacente. Além disso, o tratamento com laser promoveu menor vibração do que o realizado com brocas em baixa rotação e o exame em microscopia eletrônica de varredura revelou micro-irregularidades na superfície irradiada. Os autores concluíram que o laser é uma tecnologia promissora no tratamento da cárie.

Em 1998, HUGO & STASSINAKIS, fizeram uma revisão sobre o preparo de cavidades classe II e especialmente sobre pontas diamantadas com formatos especiais montadas em ultra-som. Os autores afirmam que a principal vantagem é a confecção de cavidades menos invasivas e o menor risco de causar danos as estruturas dentais adjacentes.

PRATI *et al.*, em 1998, avaliaram a morfologia da interface dente-compósito e a resistência ao cisalhamento de vários sistemas de união. Cavidades classe I e V foram preparadas e restauradas com compósito. Cada dente restaurado foi seccionado para serem feitas observações da espessura da camada híbrida. Os valores de resistência ao cisalhamento foram medidos logo após a restauração de corpos-de-prova adicionais. Os valores de resistência de união obtidos para os sistemas autocondicionantes foram os mais elevados. Os autores concluíram que a espessura da camada híbrida não está relacionada com os valores de resistência de união.

CEDERLUND et al., em 1999, examinou, em microscopia eletrônica de varredura, a topografia de superfícies dentinárias sadias abrasionadas com lixa de carbeto de silício de granulação 600, em seguida tratadas ou não com Carisolv® e posteriormente condicionadas com ácido fosfórico e com EDTA. Foi observado que os grupos tratados apenas com a lixa e o Carisolv[®] apresentaram uma smear laver homogênea e marcada provavelmente pela lixa, os túbulos dentinários se mostraram fechados. Os grupos tratados com Carisolv[®] e condicionamento com ácido fosfórico e o grupo condicionado com ácido fosfórico apresentaram superfícies livres de smear layer. O grupo controle apresentou exposição de fibrilas colágenas, enquanto o outro grupo apresentou uma superfície erodida e porosa e sem fibrilas colágenas visíveis. O grupo controle condicionado com EDTA se mostrou sem smear layer e semelhantemente ao grupo tratado com ácido fosfórico e Carisolv[®], o grupo tratado com EDTA e Carisolv[®] apresentou uma superfície livre de smear layer e uma superfície intertubular lisa sem exposição de fibrilas colágenas. Nos grupos teste, apenas o topo das fibrilas podiam ser vistos ocasionalmente. Após todas as observações, se faz necessário a realização de estudos para a avaliação da resistência de união e da importância do tratamento superficial, especialmente se a superfície for tratada com Carisolv[®].

PEREIRA et al., em 1999, determinaram a influência da umidade intrínseca da dentina na resistência de união de regiões do dente. Foram utilizados terceiros molares humanos que foram divididos em 3 grupos. G1 - sem pressão pulpar, G2 - pressão pulpar de 15cm de água e G3 - dentina seca por uma noite em dessecador. Os sistemas Clearfil Liner Bond II ou One Step foram aplicados à superfície plana de dentina e restaurados. Após 24 horas os dentes foram seccionados em fatias e separados em três subgrupos, de acordo com a dentina remanescente observada: corno pulpar, centro e periferia. Estas fatias foram preparadas para se obter corpos-de-prova com a forma de ampulheta e em seguida testados em tração. Não foi identificada diferenças significativas entre os grupos 1 e 2 quanto a região para o sistema Clearfil Liner Bond II. No entanto, os valores de resistência de união diminuíram na região do corno pulpar (para o G1 e G2) guando foi utilizado o sistema One Step. Todos os valores de união foram reduzidos para o G3 e não foram encontradas diferenças regionais. Os autores concluíram que o sistema de união deve ser escolhido de acordo com o substrato e região em que será aplicado, visto que existe uma variabilidade na umidade, região e sistema de união.

SANO et al., em 1999, avaliaram a durabilidade da união entre os sistemas adesivos e a dentina, durante 1 ano. Foram preparadas cavidades rasas em 12 dentes intactos de macaco. As cavidades foram restauradas co Clearfil Liner Bond II e com o compósito Clearfil Photo Posterior. Os dentes foram extraídos em três períodos: imediatamente, 180dias e 360 dias depois do tratamento. Os dentes foram seccionados e testados em tração a velocidade de 1mm/min. Os valores de união foram satisfatórios após 1 ano e permaneceram ao redor de 19MPa. A microscopia eletrônica de varredura mostrou falhas no topo da camada híbrida e no adesivo, a porosidade aumentou ao longo do período. Os autores concluíram que estudos longitudinais podem ser avaliados *in vivo*, combinado resistência de união e análise da morfologia em MEV da interface de união.

SHONO et al., em 1999, determinaram a resistência de união dentinacompósito utilizando o teste de microtração. Terceiros molares humanos tiveram o esmalte oclusal removido com o auxílio de um disco diamantado, em seguida os sistemas de união One Step e Mac Bond foram aplicados de acordo com as recomendações dos fabricantes e blocos de resina foram construídos. Após o armazenamento em água a 37°C durante 24 horas, os dentes foram seccionados em fatias de 1mm. Cada fatia foi novamente seccionada perpendicularmente ao primeiro corte, obtendo-se corpos-de-prova de 1X1X8 mm. Foram utilizados dois operadores (A e B) para realizar procedimentos adesivos com o One Step em um estudo paralelo. Os resultados mostraram para o operador A médias de 22 (20) MPa em dentina superficial e 27 (14) MPa em dentina profunda para o sistema One Step e de 41 (13) MPa em dentina superficial e 27 (12) em dentina profunda para o sistema Mac Bond. O operador B obteve média de 56 (13) MPa em dentina superficial e de 57 (12) MPa em dentina profunda com o sistema One Step. Os autores concluíram que dividindo os corpos-de-prova em blocos de 1X1X8 mm, pode-se avaliar a uniformidade das uniões compósito-dentina e que estas podem não ser tão homogêneas como havia sido imaginado previamente, pois este método detectou diferenças regionais. As diferenças encontradas entre os clínicos, para o sistema adesivo One Step, foram relacionadas à técnica de união e não devido ao material.

BANERJEE *et al.*, 2000, analisou as características da dentina remanescente após a utilização de cinco técnicas para preparo cavitário: remoção manual, broca carboneto de tungstênio em baixa rotação, ponta diamantada em ultra-som, abrasão a ar e Carisolv[®] gel. Foram utilizados dentes com lesão de cárie oclusal e após a utilização das tecnologias para preparo cavitário, os corpos-de-prova foram analisados em microscopia eletrônica de varredura. Foi verificado que todas as tecnologias testadas, exceto o Carisolv[®], produziram *smear layers* e obliteraram os túbulos dentinários. Portanto, com estes achados, os autores sugerem que o

Carisolv[®] produziu uma superfície que possivelmente apresenta as características mais favoráveis aos procedimentos adesivos.

FURE et al., em 2000, estudaram um método químico-mecânico para a remoção de cáries em dentes decíduos, verificando a eficiência, o tempo de tratamento e a percepção do paciente. Foram utilizadas 60 lesões de cárie e 34 foram selecionadas para o tratamento químico-mecânico. Os resultados mostraram que todos os dentes tratados com Carisolv® tiveram a remoção completa da cárie, semelhante aos tratados pelo tratamento convencional com brocas. Apenas 4 pacientes (de 34 pacientes) tratados com este método solicitaram a aplicação de anestesia, enquanto isto ocorreu com 6 pacientes (de 26 pacientes) tratados com brocas. Porém, dos pacientes que não solicitaram a anestesia, 12 tiveram alguma dor durante o tratamento; fato que não ocorreu no grupo teste. O tempo de tratamento foi maior no grupo teste 5,9±2,2 min, enquanto o tratamento convencional consumiu 4,5±2,0 min. Todos os 55 dentes examinados após 1 ano se mostraram sensíveis ao teste elétrico. Os autores concluíram que cáries radiculares podem ser efetivamente tratadas com o Carisolv[®] e que o tempo maior para o tratamento pode ser compensado pela menor necessidade de anestesia.

HASHIMOTO *et al.*, em 2000, avaliaram a correlação entre a espessura da camada híbrida e a resistência de união, variando o tempo de condicionamento da dentina. Foram utilizados pré-molares humanos, com a superfície vestibular removida para exposição de dentina. Estes dentes foram condicionados com ácido fosfórico a 35% pelos tempos de 15, 60, 120 e 180 segundos, para aplicação do ScotchBond Multi-Purpose. Os dentes foram armazenados e seccionados para observação em microscopia eletrônica de varredura e para o teste de tração. Os resultados mostraram um aumento significativo na espessura da camada híbrida e uma diminuição nos valores de resistência de união quando a dentina foi condicionada durante 120 e 180 segundos, não existindo diferenças entre eles. Da

÷

mesma forma os tempos de 15 e 60 segundos não diferiram entre si e apresentaram resultados mais altos de resistência de união. As observações em MEV revelaram uma zona desmineralizada que não foi infiltrada pelos monômeros resinosos. Os autores concluíram que uma zona desmineralizada foi formada nas estruturas da união após longos períodos de condicionamento, resultando em baixos valores de união.

Em 2000, TAY et al., utilizando o sistema de união autocondicionante Clearfil Mega Bond, avaliaram a resistência de união a dentinas com presença e ausência de smear layer. Superfícies dentinárias com diferentes espessuras de smear layer foram criadas a partir da metade da coroa clínica de terceiros molares hígidos. O grupo controle foi criofraturado com o intuito de se obter uma superfície de união desprovida de smear layer. Os grupos experimentais foram abrasionados com lixa de carbeto de silício de granulação 60, 180 e 600, em seguida o sistema de união foi aplicado e blocos de compósito confeccionados sobre estas superfícies. Foram feitos palitos com aproximadamente 1 mm² para serem submetidos ao ensaio de microtração. As interfaces foram observadas em MEV e MET. Neste estudo, o sistema de união produziu altos valores de resistência de união em todas as superfícies testadas. Os autores relataram que as observações em MEV falharam na identificação exata das fraturas. No entanto, a análise em MET visualizou-se uma fina camada híbrida formada na dentina livre de smear layer (400nm -500nm) e uma camada híbrida mais espessa nos grupos experimentais testados (1µm – 4µm). Isso incluiu uma smear layer hibridizada e uma fina camada híbrida autêntica subjacente. A separação das duas camadas híbridas não foi evidente nas fraturas. Os autores concluíram que os primers autocondicionantes criam camadas híbridas finas, as quais incorporam a smear layer, que a formação de camadas híbridas autênticas ocorrem independente da espessura da smear layer e que ambas as camadas híbridas podem funcionar como uma entidade única durante o carregamento, sem apresentar separação.

Novamente em 2000, TAY et al., realizaram um estudo para determinar a profundidade e desmineralização da dentina hígida utilizando vários sistemas de união autocondicionantes: Clearfil Liner Bond II (CLBII), Clearfil Liner Bond 2V : (CLB2V) e Clearfil Mega Bond (CMB), os quais possuem diferentes valores de pH (1,4, 2,8 e 2,0, respectivamente). O grupo controle utilizou o sistema All Bond 2 (AB2) (pH 5,2), sem condicionamento com ácido fosfórico. Os autores examinaram, com microscopia eletrônica de transmissão, se a hibridização da dentina hígida, utilizando o CMB, poderia ser afetada pela espessura da smear layer criada com lixas de carbeto de silício nas granulações 60,180 ou 600. Para o controle foram utilizadas superfícies obtidas através de criofraturas. Os resultados mostraram que o sistema AB2 não condicionou a smear layer, ao contrário dos três sistemas autocondicionantes, que formaram camadas híbridas na dentina subjacente. As espessuras das camadas híbridas foram maiores para o CLBII (1,2µm – 1,4µm), porém muito finas para o CLB2V e CMD (500nm). A aplicação do CMB à dentina com diversas espessuras de smear layer produziram smear layer hibridizada em várias espessuras. Entretanto, a espessura da camada híbrida propriamente dita, permaneceu constante para todos os grupos (400nm -500nm). Os autores concluíram que os sistemas de união autocondicionantes incorporam as smear layers e que o conceito de que o conceito de que a das espessura mesmas pode interferir na difusão dos adesivos autocondicionantes na dentina hígida subjacente não pode ser sustentado.

CORONA *et al.*, em 2001, avaliaram a microinfiltração de restaurações de cavidades classe V, realizadas em compósito, após a utilização de brocas carboneto de tungstênio, abrasão a ar e aplicação de laser de Er:YAG com e sem condicionamento com ácido fosfórico posterior a irradiação. Terceiros molares humanos hígidos foram restaurados utilizando o sistema Single Bond e o compósito Z100, armazenados por 7 dias, polidos, termociclados (500 ciclos) e então imersos em solução de rodamina 0,2%. Os dentes foram seccionados e analisados quanto a microinfiltração na oclusal (esmalte) e cervical (dentina). Os

resultados mostraram que o vedamento marginal foi mais fregüente no esmalte. Os maiores valores de infiltração foram observados nas cavidades que foram tratadas exclusivamente com o laser de Er:YAG (em esmalte). Em dentina, o tratado broca carboneto de tungstênio, apresentou grupo resultados significativamente melhores que os outros, no entanto, nenhuma das técnicas eliminou completamente a microinfiltração. Sendo assim, os autores concluíram que as margens em esmalte apresentaram um vedamento marginal melhor que a dentina; a abrasão a ar, o laser de Er:YAG seguido de condicionamento ácido apresentaram comportamento semelhante em esmalte e dentina; o preparo com broca carboneto de tungstênio e condicionamento ácido promoveu o melhor vedamento e que nenhuma das combinações testadas foi capaz de eliminar a microinfiltração das margens desprovidas de esmalte.

GIANNINI et al., em 2001, avaliaram o efeito da densidade e da área ocupada pelos túbulos dentinários na resistência à tração de dois sistemas adesivos: Clearfil Liner Bond 2 e Prime & Bond 2.1. Superfícies oclusais planas em 3 profundidades: rasa, média e profunda foram obtidas com lixas de carbeto de silício de granulação 600. Após a aplicação dos sistemas adesivos, blocos de compósito foram construídos e armazenados por 24 horas. Os dentes foram seccionados para a obtenção de corpos-de-prova com a forma de palitos. O teste de tração foi feito a 0,5 mm/min. A análise de regressão linear mostrou, para o adesivo Prime & Bond 2.1, uma relação inversa e significativa entre a densidade e a resistência à tração, bem como entre a área ocupada pelos túbulos dentinários e a resistência à tração. Nenhuma correlação estatística foi observada entre os dois parâmetros (túbulos dentinários X resistência à tração e área ocupada pelos túbulos dentinários e resistência à tração) para o sistema Clearfil Liner Bond 2. Os resultados sugeriram, que quanto maior a densidade de túbulos dentinários e a área ocupada pelos mesmos, menor a resistência à tração para o adesivo Prime & Bond 2.1. Este adesivo apresentou valores médios de resistência à tração superiores ao adesivo Clearfil Liner Bond 2.

KOIBUCHI et al., em 2001, propôs um trabalho que investigou o efeito das *smear layers* na resistência de união à dentina humana. Para este trabalho, os autores abrasionaram as superfícies déntinárias com lixas de carbeto de silício nas granulações 180 e 600, então aplicaram o sistema de união autocondicionante Clearfil Liner Bond II, para em seguida construírem blocos de resina. Os dentes foram cortados com a finalidade de se obter corpos-de-prova no formato de ampulheta. Estes foram testados em tração a velocidade de 1,0 mm/min. Os resultados mostraram diferenças significativas para as superfícies, mostrando que a superfície abrasionada com lixa de granulação 600 obteve valores de união da ordem de 28,5 (5,2) MPa, enquanto a outra lixa mostrou valores de 10,0 (7,2) MPa. Sendo assim, os autores concluem que a presença e qualidade da *smear layer* gera diferenças na união realizada em testes *in vitro*, apesar de considerar que os valores mais baixos obtidos neste estudo são adequados para a prática clínica.

OGATA *et al.*, em 2001, avaliou o efeito de diferentes tipos de brocas carboneto de tungstênio e uma ponta diamantada na resistência de união de três sistemas adesivos autocondicionantes: Clearfil Liner Bond (CLB), Clearfil Liner Bond 2V (CLB2V) e Clearfil SE Bond (SE). Foram utilizados dentes terceiros molares humanos, com a superfície oclusal removida e abrasionada com lixa de carbeto de silício de granulação 600. Os dentes foram divididos em 4 grupos: broca carboneto de tungstênio para acabamento (12 lâminas), broca carboneto de tungstênio serrilhada, ponta diamantada de granulação média e lixa granulação 600. Foram aplicados os sistemas de união e em seguida blocos de compósito foram construídos. A partir destes dentes foram obtidos os corpos-de-prova no formato de ampulheta para serem testados em tração. A análise estatística revelou diferença apenas para o CLB2V, porém os maiores valores foram obtidos pela lixa, seguido pela broca carboneto de tungstênio para acabamento, broca carboneto de tungstênio serrilhada e ponta diamantada regular. Sendo assim, os

autores concluíram que a seleção da broca ou ponta para a realização do preparo cavitário é um fator importante para a obtenção de uma união adequada quando são utilizados os sistemas de união autocondicionantes.

SAZAK et al., em 2001, examinou o efeito da aplicação do laser Nd:YAG, abrasão a ar e do condicionamento com ácido fosfórico a 37% no conteúdo mineral e na morfologia da superfície do esmalte e da dentina utilizando microscopia eletrônica de varredura. Os corpos-de-prova em esmalte foram irradiados durante 2 segundos com uma potência de 0,75J e freqüência de 15Hz, a abrasão a ar foi feita com jato de óxido de alumínio (50µm) por 2 segundos e o condicionamento com ácido fosfórico foi realizado durante 60 segundos. Os corpos-de-prova em dentina foram submetidos às mesmas condições pela metade do tempo. Áreas não tratadas dos corpos-de-prova serviram como controle. No grupo tratado com laser, foi observado um aumento na rugosidade do esmalte e pequenas regiões em que notou-se um melt do esmalte, a dentina também se apresentou com este melt e com os túbulos parcialmente obstruídos. A abrasão a ar criou superfícies irregulares no esmalte e dentina, com formação de smear laver e com os túbulos fechados. O esmalte condicionado com ácido fosfórico apresentou microporosidades e a dentina condicionada mostrou os túbulos dentinários abertos e sem smear layer. A análise do conteúdo mineral dos substratos testados mostrou que apenas a dentina irradiada apresentou uma diminuição no conteúdo de cálcio. Diante do observado, os autores concluíram que o laser de Nd:YAG criou a superfície mais irregular para ambos os substratos e que a utilização desta tecnologia parece altera a estrutura química do esmalte e da dentina, necessitando determinar exatamente a relação entre o grau de irregularidades formadas, a resistência de união e a microinfiltração.

TAY & PASHLEY, em 2001, examinaram em microscopia eletrônica de transmissão a agressividade de três sistemas autocondicionantes, na penetração da *smear layer* com diferentes espessuras. Foram utilizados discos de dentina de

terceiros molares humanos, que foram abrasionados com lixas de carbeto de silício nas granulações 60 e 600. O grupo controle foi feito realizando a crio fratura da superfície oclusal. Os discos foram unidos ao Clearfil Mega Bond, Non-Rinse Conditioner e Prime & Bond NT e Prompt-L-Pop. Em seguida os dentes foram desmineralizados e preparados para observação em TEM. Os resultados do Clearfil Mega Bond formou finas camadas híbridas variando de 0,4µm – 0,5µm. A smear layer e o smear plug foram retidos e formaram o complexo hibridizado. Os resultados mostraram que o Non-Rinse Conditioner e Prime & Bond NT formou camadas híbridas com espessura variando de 1,2µm - 2,2µm. A smear layer e o smear plug foram completamente dissolvidos, porém foram parcialmente retidos, fazendo parte do complexo hibridizado. Para o Prompt-L-Pop, foram formadas camadas híbridas autênticas com 2,5µm - 5µm de espessura, porém a smear layer e o smear plug foram completamente dissolvidos mesmo nas smear layers mais espessas. Os autores concluíram que os sistemas autocondicionantes atuais podem ser classificados em suaves, moderados e agressivos, tendo em vista a capacidade de desmineralização da dentina subjacente. Quanto mais agressivo o sistema, a smear layer e o smear plug serão completamente dissolvidos e as camadas híbridas se aproximarão das obtidas com o auxílio do ácido fosfórico.

CHAVES *et al.*, em 2002, avaliou a resistência de união de dois sistemas de união autocondicionantes e um sistema com condicionamento ácido prévio quando utilizados sobre superfícies dentinárias que tiveram as *smear layers* tratadas de diversas formas. Terceiros molares humanos tiveram a superfície oclusal removida e a dentina abrasionada com lixas de carbeto de silício de granulação 600. Foram utilizados o Clearfil Mega Bond (CMB), o Etch & Prime 3.0 (EP) e o Prime & Bond NT (PB), os tratamentos das *smear layers* foram o não tratamento, abrasão a ar com óxido de alumínio 50µm por 10 segundos, condicionamento com ácido fosfórico 36% por 15 segundos ou condicionamento com EDTA 0,5M por 2 minutos. Foram criados 12 grupos experimentais e após a aplicação de cada tratamento os procedimentos adesivos foram realizados de
acordo com as recomendações dos fabricantes, para em seguida serem construídos blocos de compósito sobre estas superfícies. Os dentes foram seccionados para a obtenção de palitos e testados em tração. Os sistemas de união foram diferentes entre si, sendo o PB>CMB>EP. Os tratamentos das *smear layers* não apresentaram diferenças entre si quando analisados dentro dos sistemas de união. Os autores puderam concluir que os tratamentos das *smear layers* previamente aos procedimentos adesivos não afetaram os valores de união para os adesivos estudados.

DE MUNCK et al., em 2002, verificou a hipótese de que a superfície irradiada com laser e a tratada com ponta diamantada de granulação média (100µm) são igualmente receptivas para a união. Foram utilizados o Clearfil SE Bond e o Optibond FL (com e sem condicionamento ácido prévio). Os dentes tiveram a superfície oclusal removida para exposição da dentina e foram tratados com o laser de Er:YAG com potência de 80mJ e 10 Hz de freqüência e com a ponta diamantada. Em seguida os adesivos foram aplicados seguindo os protocolos e blocos de compósito foram confeccionados. Os dentes foram seccionados para a obtenção dos corpos-de-prova e testados em tração. Os valores de resistência de união para o Optibond FL sem condicionamento ácido foram: 6,9 (1,2) MPa para o laser de Er:YAG e 27,3 (8,1) MPa para a ponta diamantada; para os grupos do Optibond FL com condicionamento ácido obteve-se: 18,6 (5,5) MPa para o Laser de Er:YAG e 59,6 (16,8) MPa para a ponta diamantada; para o Clearfil SE Bond os valores foram: 12,7 (6,9) MPa para o Laser de Er:YAG e 37, 7 (10,4) MPa para a ponta diamantada. Desta maneira, os autores concluíram que a cavidades preparadas com o laser são bem menos receptivas para a união com os sistemas cavidades preparadas com pontas diamantadas, adesivos do que as independentemente do adesivo utilizado.

Em 2002, KUBO et al., avaliaram a nanoinfiltração ocorrida na dentina afetada por cárie após a utilização de duas tecnologias para preparo cavitário:

Carisolv[®] gel e broca carboneto de tungstênio e Caries detector dye. Os dentes foram restaurados com um dos três sistemas de união utilizados: PermaQuick, Single Bond ou One-up Bond F. Foram preparadas superfícies planas, em seguida realizou-se a remoção da cárie com um dos métodos. A restauração foi feita na superfície escavada e plana adjacente. Após 24 horas, foi realizado o polimento, os dentes foram impermeabilizados ao redor da restauração e imersos em solução de nitrato de prata. Depois do processo de revelação, os dentes foram seccionados e polidos para serem observados em FE-MEV usando o detector de elétrons retro-espalhados. As observações mostraram deposição de prata na base da camada híbrida, porém o Single Bond apresentou a maior densidade de prata na dentina afetada por cárie quando comparado à dentina hígida. O PermaQuick formou uma camada híbrida espessa na dentina afetada por cárie e o One-up Bond F mostrou uma fina camada híbrida na dentina hígida, porém raramente pode ser observada sua formação na dentina afetada por cárie. A partir do que foi relatado, os autores concluíram que nenhum adesivo foi capaz de impedir a nanoinfiltração em dentina sadia e que o padrão é diferente do ocorrido na dentina afetada por cárie. Por isso, o movimento de fluidos nestes espaços pode afetar a performance clínica das restaurações por causa da degradação hidrolítica do adesivo e das fibrilas colágenas, diminuindo a longevidade. Finalmente, os autores relatam que o meto químico-mecânico parece não afetar a união na dentina afetada por cárie.

OGATA *et al.*, em 2002, avaliou o efeito do tipo de broca e do tipo do sistema de união na resistência de união à dentina de terceiros molares humanos. Foram utilizados o adesivo autocondicionante Mac Bond II (MB) e o adesivo com condicionamento ácido prévio Single Bond (SB). Os dentes tiveram a superfície oclusal removida e abrasionada com lixa de carbeto de silício de granulação 600. Os dentes foram divididos e tratados de acordo com os grupos: Lixa de SiC 600 (controle), broca carboneto de tungstênio 12 lâminas (acabamento), broca carboneto de lâminas e ponta diamantada de granulação média (100

μm). Após o tratamento superficial, os adesivos foram aplicados e blocos de compósito foram confeccionados. Os dentes foram seccionados para a obtenção de dos corpos-de-prova no formato de ampulheta e testados em tração. Os resultados mostraram que para o sistema autocondicionante as superfícies produzidas com ponta diamantada promoveram uma redução nos valores de união encontrados. Para o SB, os tratamentos superficiais não influenciaram os valores de resistência adesiva. Sendo assim, os autores concluíram que o método utilizado para o preparo cavitário pode afetar a união dependendo do sistema adesivo utilizado.

RAMOS et al., em 2002, avaliou o efeito do laser de Er:YAG na resistência de união à dentina do sistema autocondicionante Clearfil Liner Bond 2V e dos sistemas com condicionamento ácido prévio Excite e Gluma One Bond. Foram utilizados terceiros molares humanos. Os dentes foram incluídos e a dentina foi exposta com o auxílio de lixas de carbeto de silício nas granulações 120, 400 e 600, para uma homogeneidade da smear layer. A área para a realização da união foi delimitada e os tratamentos aplicados, ou seja, sistemas de união aplicados sobre a smear layer formada pelas lixas ou sobre a dentina irradiada após a aplicação das lixas. Os sistemas de união foram aplicados de acordo com as recomendações dos fabricantes e os dentes foram restaurados para o ensaio de cisalhamento. A análise estatística indicou uma redução significativa nos valores de união para o Excite, porém os outros adesivos também apresentaram uma diminuição dos valores de união nos grupos tratados com laser de Er:YAG. Dessa forma, os autores concluíram que a utilização do laser afeta negativamente, em maior ou menor grau, os valores de união dependendo do sistema de união utilizado.

YAZICI *et al.*, em 2002, com a análise realizada com microscopia eletrônica de varredura avaliaram diferentes métodos para remoção de cárie na dentina humana. A cárie foi removida com instrumentos manuais, broca carboneto de

tungstênio em baixa rotação, abrasão a ar, laser de Nd:YAG, Carisolv[®] gel e ponta diamantada em ultra-som. As superfícies obtidas após a instrumentação foram replicadas, metalizadas com ouro e observadas em MEV, sendo possível identificar diferenças nestas superfícies. Verificou-se que as superfícies tratadas com instrumentos manuais, broca carboneto de tungstênio em baixa rotação e abrasão a ar, apresentaram a formação de uma *smear layer* bem definida e com os túbulos dentinários fechados. A superfície tratada com a ponta diamantada em ultra-som mostrou uma superfície livre de *smear layer* e com os túbulos dentinários desobstruídos e os tratamentos realizados com o laser e o Carisolv[®] gel apresentaram a formação de pouca *smear layer* e poucos túbulos dentinários abertos. Os autores concluíram que o exame em MEV mostrou diferenças na textura e morfologia das superfícies tratadas com as técnicas empregadas e que somente a ponta diamantada em ultra-som foi capaz de não produzir *smear layer* sobre a superfície tratada.

ARRAIS *et al.*, em 2003, verificou a capacidade de oclusão dos túbulos dentinários de três dentifrícios disponíveis no mercado. Para obter uma superfície livre de *smear layer* e com os túbulos abertos, áreas cervical de terceiros molares humanos foram abrasionadas com lixas de carbeto de silício nas granulações 600, 1200 e 2000 e polimento com pastas diamantadas nas granulações de 6µm, 3µm, 1µm e ¼µm e banhos em cuba ultra-sônica por 12 minutos entre cada procedimento e para o enxágüe final. Os grupos foram os seguintes: sem escovação, escovação com Sorriso. Os dentes foram tratados 4 minutos por dia, durante 7 dias em uma máquina de escovação. Após o final do período de escovação, os dentes foram preparados para observação em microscopia eletrônica de varredura. Os resultados mostraram que a porcentagem de túbulos ocluídos quando os corpos-de-prova foram escovados com qualquer um dos dentifrícios testados não diferiram estatisticamente, apenas os grupos que não receberam escovação ou foram escovados sem dentifrício apresentaram uma

diminuição significativa nos valores de oclusão dos túbulos dentinários. Os autores concluíram que o uso dos dentifrícios testados produziu uma maior oclusão dos túbulos, parecendo serem eficazes no tratamento da sensibilidade dentinária.

CEHRELI et al., em 2003, estudaram o efeito de diferentes técnicas de remoção de cárie na resistência de união à dentina afetada por cárie. Foram avaliadas as brocas carboneto de tungstênio em baixa rotação, abrasão a ar, ponta diamantada em ultra-som, e o Carisolv[®] gel. Foram utilizados terceiros molares humanos, que tiveram a superfície oclusal removida para expor a lesão de cárie até que o aparelho Diagnodent[®] indicasse valores entre 40-50. As lesões cariosas foram removidas com uma das técnicas até que o valor da fluorescência laser atingisse o número 15 no centro da lesão. Após a remoção da cárie, os dentes foram restaurados com o sistema Single Bond e restaurados com o compósito P60. Os dentes foram seccionados com o intuito de obter corpos-deprova no formato de ampulheta. O ensaio de tração foi realizado com velocidade de 1 mm/min. Os resultados mostraram que não houve diferença entre as metodologias testadas quanto aos valores de resistência de união. A análise em microscopia eletrônica de varredura mostrou que as camadas híbridas formadas apresentavam cerca de 6µm de espessura, exceto para o grupo tratado com o Carisolv[®] gel que revelou espessuras de até 9µm. Feitas estas observações, os autores concluíram que os valores de resistência de união obtidos com o Single Bond foram semelhantes para todos os grupos testados, embora muito baixos, mostrando que a diferença entre os métodos podem ser compensadas pelo condicionamento com ácido fosfórico.

OLIVEIRA et al., em 2003, determinaram a influência da smear layer na resistência ao cisalhamento, comparando um sistema de união autocondicionante (Clearfil SE Bond) e um com condicionamento ácido prévio (Single Bond). Foram utilizados terceiros molares humanos hígidos que tiveram sua superfície oclusal removida para exposição de dentina. Então, as smear layers foram criadas de acordo com sete métodos: ponta diamantada fina #250.9F, ponta diamantada

grossa #250.9C, broca carboneto de tungstênio #245, polimento com pasta de alumina de granulação 0,05µm e lixas de óxido de silício nas granulações 600, 320 e 240. Todos os procedimentos foram realizados sob irrigação a uma taxa de 25 mL/min. Após a padronização da superfície e da criação das smear layers de acordo com o grupo, os sistemas de união foram aplicados e os dentes restaurados para o ensaio de cisalhamento. Os corpos-de-prova foram armazenados por 24 horas a 37°C e 100% de umidade. O teste de cisalhamento foi realizado a uma velocidade de 5 mm/min em uma máguina de ensaio universal. Os resultados e a análise estatística mostraram diferenças entre os agentes de união, sendo que o Clearfi SE Bond apresentou melhores resultados que o Single Bond. Porém, para este adesivo, o tipo de smear layer sobre a qual ele foi aplicado não influenciou sua performance. O sistema autocondicionante teve seus resultados influenciados apenas quando a smear layer criada era muito grossa. Isto foi suportado pela análise em microscopia eletrônica de varredura que mostrou que a guantidade de túbulos abertos diminuiu com o aumento da espessura da smear layer, o que não foi observado após o tratamento com o ácido fosfórico 35%. Os autores concluíram que apesar do Clearfil SE Bond ter sido afetado pelos diferentes métodos de preparo da superfície dentinária, os valores obtidos foram maiores do que os do Single Bond. Os altos valores de união e a fina camada híbrida produzida pela broca carboneto de tungstênio #245, encoraja o seu uso quando utilizado sistemas autocondicionantes in vivo. Verificou-se também que a lixa de granulação 320 apresentou resultados semelhantes aos da broca carboneto de tungstênio e o seu uso pode ser recomendado no laboratório quando o Clearfil SE Bond for utilizado.

REIS et al., em 2003, avaliaram o efeito de técnicas restauradoras e do uso de compósitos de baixa viscosidade na resistência de união em cavidades Classe II. Molares humanos receberam preparos cavitários proximais, e foram divididos em dez grupos experimentais. O sistema adesivo Single Bond foi aplicado e o compósito foi inserido utilizando uma das técnicas (horizontal vestíbulo-lingual e

oblíqua). Os grupos foram testados com e sem resina de baixa viscosidade. Os dentes foram seccionados e preparados para o ensaio de tração. Não foram encontradas diferenças significativas entre os grupos testados com e sem o compósito flow. Entre as técnicas de inserção, os grupos restaurados, em um só incremento mostraram as menores médias de resistência de união. No entanto, os grupos restaurados pela técnica incremental não diferiram do controle (superfície plana). Os padrões de fratura variaram significativamente entre os grupos restaurados com e sem o compósito flow. Conclui-se que o uso dos compósitos de baixa viscosidade não melhorou os valores de resistência de união apesar de ter influenciado o padrão de fratura da interface de união.

SHOOK et al., em 2003, determinaram se a rugosidade superficial das paredes internas de uma cavidade classe V restaurada com compósito teria algum efeito na microinfiltração destas restaurações. Para o experimento foram utilizados, com a finalidade de promover diferentes rugosidades, broca carboneto de tungstênio, ponta diamantada de granulação fina e ponta diamantada de granulação média para a confecção das cavidades. Após o preparo, foi realizado o condicionamento ácido e em seguida o sistema de união PQ1 foi aplicado de acordo com as instruções do fabricante e as cavidades restauradas com o compósito Vitalescence. Após o acabamento, as superfícies externas foram impermeabilizadas, deixando apenas 1 mm ao redor da restauração desprotegida.Os dentes foram armazenados por 24 horas e termociclados (1200 ciclos). Após a ciclagem os dentes foram colocados em solução de azul de metileno a 5% durante 12 horas. Os dentes foram incluídos e seccionados para a avaliação da microinfiltração. A avaliação foi feita com auxílio de uma lupa estereoscópica com aumento de 10X, tanto em esmalte como em dentina. As superfícies também foram examinadas em MEV e verificou-se um aumento na rugosidade produzida pela ponta diamantada fina em relação à broca carboneto de tungstênio e um pequeno aumento da ponta diamantada regular em relação à ponta diamantada fina. Para os escores de microinfiltração, a análise estatística

não apontou diferenças entre os instrumentos rotatórios, independentemente do substrato observado. Os autores concluíram que a microinfiltração é um problema que pode resultar de vários fatores e que a partir deste estudo pode ser afirmado que a rugosidade da superfície não é um fator determinante. O uso de pontas ou brocas é menos importante do que uma restauração embasada nos princípios e técnicas dos agentes de união e dos compósitos.

VAN MEERBEEK et al., em 2003, investigaram a utilização de tecnologias alternativas aos preparos cavitários realizados com o auxílio de instrumentos rotatórios. Foi testada a hipótese de que a ponta diamantada em ultra-som, a abrasão a ar e o laser de Er:YAG produzem superfícies igualmente receptivas para a adesão as produzidas pela ponta diamantada convencional de granulação regular e pela abrasão com lixa de carbeto de silício de granulação 600, tanto para esmalte quanto para dentina. Foram utilizados dois sistemas de união: um sistema autocondicionante (Clearfil SE Bond - SE) e um sistema de condicionamento ácido total (Optibond FL), que foi utilizado com (OP-C) e sem (OP-S) condicionamento ácido prévio. Após os tratamentos superficiais os dentes foram restaurados, armazenados por 24 horas e seccionados para obtenção de corpos-de-prova cilíndricos. O ensaio de tração foi conduzido a velocidade de 1 mm/min. Os resultados obtidos, em esmalte, mostraram que o SE obteve valores semelhantes independente da superfície; o condicionamento ácido realizado previamente a aplicação do OP melhorou significativamente os valores de união encontrados, exceto para o grupo tratado com abrasão a ar; para os grupos do OP-C e do OP-S, somente quando foi utilizado o laser pôde ser verificada uma diminuição nos valores de união. Em dentina, o SE apresentou os maiores valores de união para a abrasão a ar, seguido da lixa, ponta diamantada, ultra-som e o laser apresentou os valores mais baixos de todos os grupos; o condicionamento ácido aumentou os valores de união quando a superfície foi preparada com abrasão a ar, laser e ponta diamantada; porém, mesmo com o condicionamento o grupo tratado com laser apresentou as menores médias para o OP-C; o grupo OP-C apresentou

resultados mais uniformes quando comparado ao OP-S. Desta forma, os autores concluíram que a tecnologia empregada para o preparo cavitário, em dentina ou esmalte, influi significativamente nos valores de resistência de união, independente do tipo de sistema de união; a adesão após a utilização de ultra-som e abrasão a ar não difere da ponta diamantada, no entanto, a aplicação do laser diminui a eficácia da união devido ao dano causado no processo de ablação.

KOASE et al., em 2004, avaliaram a resistência de união, de dois sistemas autocondicionantes de passo único (Xeno – XE e Adper Prompt – AD) e um experimental e dois passos (ABF), a dois tipos de ponta diamantada (regula e superfina). Foram utilizados pré-molares que tiveram a superfície vestibular abrasionada até a exposição da dentina. Os dentes foram tratados de acordo com os grupos e após a aplicação das pontas diamantadas, realizou-se a união e restauração das superfícies. Os dentes foram armazenados por 24 horas e em seguida foram seccionados para obtenção de corpos-de-prova no formato de ampulhetas. O ensaio de tração foi conduzido à velocidade de 0,5 mm/min. Os resultados mostraram que o XE e AD quando unidos à superfície tratada com ponta diamantada regular, ocorreu uma diminuição dos valores quando comparados com a ponta diamantada superfína. O adesivo ABF não mostrou diferença significativa entre as duas superfícies. Os autores concluíram que os sistemas autocondicionantes de passo único foram mais sensíveis às variações do substrato do que o sistema de dois passos.

REIS *et al.*, em 2004, avaliaram a nanoinfiltração quando utilizados dois sistemas de união autocondicionantes de passo único (Adper Prompt – AD e Oneup Bond F – OB), dois sistemas autocondicionantes de dois passos (Clearfil SE Bond – CF e Unifil Bond – UB) e um sistema com condicionamento ácido prévio (Single Bond – SB). Terceiros molares humanos hígidos tiveram a superfície oclusal removida, e unidas aos sistemas de união citados. Os dentes foram armazenados em água a 37°C por 1 semana e 6 meses. Após os períodos de

armazenamento, os dentes foram seccionados em fatias de 0,8mm de espessura. Estas fatias foram impermeabilizadas, deixando livre somente a área unida e então imersas em solução amoniacal de nitrato de prata por 24 horas. Após o processamento das amostras as secções foram preparadas para a observação em microscopia eletrônica de varredura utilizando elétrons retro-espalhados. Outras fatias foram incluídas e preparadas para serem observadas em microscopia eletrônica de transmissão. Os padrões de nanoinfiltração foram avaliados qualitativamente entre os períodos. A nanoinfiltração foi observada em ambos os períodos. CF e UB apresentaram depósitos de prata predominantemente restritos a fina (0,5µm) camada híbrida (CH) nos dois períodos. Apesar de não ser evidente as diferenças entre os períodos para o UB, CF apresentou maiores áreas de infiltração aos 6 meses. SB acumulou partículas prata aos 7 dias e estes achados se intensificaram aos 6 meses. AD e OB apresentaram um acúmulo macico na CH e na camada de adesivo. Os autores concluíram que não houve diferenças evidentes entre os dois períodos e que a impregnação aumentou para todos os sistemas de união, exceto para o UB.

3 Proposição

Considerando que existe uma busca no desenvolvimento de tecnologias alternativas para a realização dos preparos cavitários e que estes tratamentos podem afetar a dentina de diferentes modos, os objetivos deste estudo *in vitro* foram:

- Avaliar a resistência de união de quatro sistemas adesivos aplicados ao substrato dentinário que foi tratado com oito diferentes métodos;
- Analisar em microscopia eletrônica de varredura as características morfológicas das estruturas formadas na região da união dentina-compósito para todos os grupos experimentais;
- Analisar em microscopia eletrônica de varredura as características morfológicas das superfícies produzidas pelos tratamentos utilizados para preparar a dentina;
- Analisar em microscopia eletrônica de varredura o padrão de fratura dos espécimes testados no ensaio de microtração.

4 Material e Métodos

4.1 Delineamento do estudo

- Delineamento experimental: inteiramente ao acaso em esquema fatorial 8x4.
- Unidades experimentais:

Duzentos e oito dentes terceiros molares humanos.

- Fatores em estudo:
 - Tratamentos do substrato dentinário, em oito níveis: abrasão a ar, ponta diamantada CVD em ultra-som, lixa SiC 600, laser Er:YAG, Carisolv[®], broca carboneto de tungstênio, ponta diamantada e superfície sem *smear layer (smear-free)*;
 - 2. Sistemas de união, em quatro níveis: Tyrian SPE, Clearfil SE Bond, Unifil Bond e Single Bond.
- Variáveis de resposta:
 - 1. Resistência de união ao teste de microtração (MPa);
 - 2. Análise da morfologia e das características das estruturas formadas pelos sistemas de união em Microscopia Eletrônica de Varredura;
 - 3. Padrão de fratura observado em Microscopia Eletrônica de Varredura.

4.2 Coleta, Armazenamento e Preparo dos dentes

Os dentes foram obtidos após parecer favorável do Comitê de Ética em Pesquisa da Faculdade de Odontologia de Piracicaba – UNICAMP para execução deste projeto (processo nº150/2002 – ANEXO 1). Foram selecionados duzentos e oito terceiros molares humanos hígidos, recém-erupcionados, armazenados a 4ºC em solução contendo grãos de timol, por um período máximo de três meses. A limpeza foi realizada com o auxílio de curetas periodontais Duflex (SS WHITE, RIO DE JANEIRO, RJ, BRASIL) e o polimento foi feito com pedra-pomes (SS WHITE, RIO DE JANEIRO, RJ, BRASIL) e água utilizando escovas tipo Robinson (KG SORENSEN, BARUERI, SP, BRASIL) montadas em contra-ângulo em baixa rotação (KAVO DO BRASIL, JOINVILLE, SC, BRASIL), seguida de lavagem com água destilada.

Após a limpeza, os dentes foram fixados em placas acrílicas com a junção amelo-dentinária perpendicular às placas. Em seguida, as coroas foram seccionadas com auxílio de um disco diamantado de alta concentração (11-4244, BUEHLER LTD., LAKE BLUFF, IL, EUA) acoplado a uma cortadeira de precisão (ISOMET 1000, BUEHLER LTD., LAKE BLUFF, IL, EUA) com a finalidade de expor dentina superficial para a realização dos tratamentos e posterior aplicação dos sistemas de união (Figura 4.2.1).

Figura 4.2.1 – (A) Terceiro molar humano hígido; (B) Placas de acrílico; (C) Cera pegajosa; (D) Dente fixado à placa de acrílico; (E) Disco diamantado de alta concentração e pedra para afiar; (F) Cortadeira de precisão; (G) Dente e placa de acrílico acoplado à cortadeira de precisão; (H) Dente preparado para o estudo.

Avaliação de métodos alternativos para preparo cavitário nos procedimentos adesivos com sistemas autocondicionantes.

4.3 Materiais Selecionados e Grupos Experimentais

Foram selecionados quatro sistemas de união para serem avaliados neste estudo (Figura 4.3.1). Três sistemas autocondicionantes de dois passos: Tyrian SPE (BISCO INC., SCHAUMBURG, IL, USA), Clearfil SE Bond (KURARAY MEDICAL INC., KURASHIKI, OKAYAMA, JAPÃO) e Unifil Bond (GC CORPORATION, TÓQUIO, JAPÃO) e um com condicionamento ácido prévio: Single Bond (3M ESPE, ST. PAUL, MN, EUA).

Os sistemas adesivos selecionados para este estudo, suas classificações, composições, fabricante e lote estão descritos no ANEXO 2.

Figura 4.3.1 – (A) Sistema de união Tyrian SPE e One-Step Plus (Bisco Inc.); (B) Sistema de União Clearfil SE Bond (Kuraray Medical Inc.); (C) Sistema de união Unifil Bond (GC Corp.); (D) Sistema de união Single Bond (3M ESPE).

Oito métodos para o tratamento da superfície dentinária, que envolvem remoção de tecido dental cariado e/ou preparo cavitário foram utilizados neste estudo: ausência de *smear layer*, abrasionamento com lixas de SiC 600

Avaliação de métodos alternativos para preparo cavitário nos procedimentos adesivos com sistemas autocondicionantes.

(CARBORUNDUM ABRASIVOS, RECIFE, PE, BRASIL), pontas diamantadas (KOMET, BRASSELER, ALEMANHA), broca carboneto de tungstênio (KOMET, BRASSELER, ALEMANHA), aplicação de jato de óxido de alumínio 27µm (AIR TOUCH CAVITY DETECTION AND TREATMENT SYSTEM, MIDWEST, DENTSPLY), irradiação de laser Er:YAG (KEY LASER 3, KAVO DENTAL, ALEMANHA), ponta diamantada CVD em ultrasom (CLOROVALE DIAMANTES, SÃO JOSÉ DOS CAMPOS, SP, BRASIL) e Carisolv[®] (MEDITEAM DENTAL AB, GÖTEBORG, SUÉCIA) (FIGURA4.3.2).

Figura 4.3.2 – (A) Aparelho para abrasão a ar; (B) Aparelho de Ultra-som e ponta diamantada CVD; (C) Politriz para o preparo com lixa de SiC 600 e superfície livres de *smear layer*, (D) Broca carboneto de tungstênio 10 lâminas e ponta diamantada de granulação 100µm; (E) Aparelho de Laser de Er:YAG (Equipamento cedido ao LELO-USP pela Kavo Dental – Alemanha, para realização de estudos científicos); (F) Carisolv[®] gel e curetas #2 e #4.

Os grupos experimentais foram obtidos pela combinação dos sistemas de união e das tecnologias de preparo cavitário utilizadas (Quadro 1).

Quadro	1 – Grupos	experimentais	formados	de	acordo	com	а	tecnologia	de
preparo	cavitário e d	os sistemas de	união.						

Grupos	Combinação sistema de união x tratamento			
	Tyrian SPE / Abrasão a ar			
2	Clearfil SE Bond / Abrasão a ar			
3	Unifil Bond / Abrasão a ar			
4	Single Bond / Abrasão a ar			
5	Tyrian SPE / Ponta diamantada CVD em ultra-som			
6	Clearfil SE Bond / Ponta diamantada CVD em ultra-som			
7	Unifil Bond / Ponta diamantada CVD em ultra-som			
8	Single Bond / Ponta diamantada CVD em ultra-som			
9 - Marine 9	Tyrian SPE / Lixa SiC 600			
10	Clearfil SE Bond / Lixa SiC 600			
- 1 1	Unifil Bond / Lixa SiC 600			
12	Single Bond / Lixa SiC 600			
13	Tyrian SPE / Laser Er:YAG			
14	Clearfil SE Bond / Laser Er:YAG			
15	Unifil Bond / Laser Er:YAG			
16	Single Bond / Laser Er:YAG			
17	Tyrian SPE / Carisolv®			
18	Clearfil SE Bond / Carisolv®			
19	Unifil Bond / Carisolv®			
20	Single Bond / Carisolv®			
21	Tyrian SPE / Broca carboneto de tungstênio			
22	Clearfil SE Bond / Broca carboneto de tungstênio			
23	Unifil Bond / Broca carboneto de tungstênio			
24	Single Bond / Broca carboneto de tungstênio			
25	Tyrian SPE / Ponta diamantada			

26	Clearfil SE Bond / Ponta diamantada
27	Unifil Bond / Ponta diamantada
28	Single Bond / Ponta diamantada
29	Tyrian SPE / Smear Free
30	Clearfil SE Bond / Smear Free
31	Unifil Bond / Smear Free
32	Single Bond / Smear Free

4.4 Procedimento restaurador

ĉ

Após o preparo dos dentes e da exposição da dentina de profundidade média, estes foram aleatoriamente distribuídos nos grupos experimentais (n=4) e restaurados de acordo com a combinação restauradora definida no Quadro 1.

A seqüência restauradora foi determinada em sorteio aleatório e as técnicas de utilização das diversas tecnologias de preparo cavitário e de aplicação dos sistemas de união (Quadro 2) foram realizadas de acordo com as instruções preconizadas pelos fabricantes.

4.4.1 Descrição das técnicas de utilização das técnicas de

preparo cavitário

Abrasão a ar

As superfícies planificadas de dentina foram preparadas com o auxílio do aparelho Air Touch Cavity Detection and Treatment System (DENTSPLY). O aparelho foi utilizado com pressão de 50 psi e partículas de óxido de alumínio de 27µm a uma distância de 2mm e uma peça de mão com angulação de 45° e ponta

com diâmetro de 0,46mm. A aplicação foi realizada executando-se movimentos de varredura nas direções mésio-distal e vestíbulo-lingual durante 20 segundos.

• Ponta diamantada CVD em ultra-som

A utilização destas pontas diamantadas CVD com formato cilíndrico foi realizada com o auxílio de um ultra-som Profi II Ceramic (DABI ATLANTE, RIBEIRÃO PRETO, SP, BRASIL), com freqüência de 28KHz, amplitude de vibração da ponta de 0,05mm (Estágio 1), pressão de ar de 4,8bar (70psi) e refrigeração constante com água a uma taxa de 30 mL/min. A aplicação foi realizada durante 60 segundos executando-se movimentos de varredura nas direções mésio-distal e vestíbulo-lingual. As pontas foram substituídas após a realização de 2 preparos.

• Lixa de Carbeto de Silício (SiC) - Granulação 600

As superfícies planificadas de dentina foram abrasionadas com as lixas montadas em politriz (APL-4, AROTEC, COTIA, SP, BRASIL), refrigerada com água durante 30 segundos.

• Laser Er:YAG

As superfícies planificadas de dentina foram irradiadas com o laser de Er:YAG (KEY LASER 3, KAVO DENTAL, ALEMANHA), com comprimento de onda de 2,94µm e largura de pulso de 250-500µs. A peça de mão utilizada foi a #2065, posicionada perpendicularmente à superfície da dentina (90°) e a 12mm da amostra. Neste caso, a área focal (*spot size*) foi de 0,63mm. Foram realizados testes preliminares para determinação do parâmetro a ser utilizado neste estudo. O parâmetro selecionado foi aquele que mostrou, através de MEV as melhores condições morfológicas para a aplicação dos sistemas adesivos. Sendo assim, o parâmetro utilizado foi fixado em 200mJ de energia por pulso e com uma taxa de repetição de 4Hz. A irradiação foi realizada sob refrigeração constante com água a uma taxa de 5 mL/min

Broca carboneto de tungstênio (H297.314.012 – 10 lâminas)

As superfícies planificadas de dentina foram preparadas com broca carboneto de tungstênio montada em caneta de alta-rotação Kavo Extra Torque 605 (KAVO DO BRASIL, JOINVILLE, SČ, BRASIL). A broca utilizada possui um formato cilíndrico com diâmetro de 1,6mm e extensão da parte ativa de 10mm. A broca foi aplicada à superfície horizontalmente da maneira mais regular possível, atingindo toda a superfície dentinária exposta durante 30 segundos, sob refrigeração constante. As brocas foram substituídas após a realização de 2 preparos.

Ponta diamantada (837.314.012 – granulação 100µm)

As superfícies planificadas de dentina foram preparadas com pontas diamantadas montadas em caneta de alta-rotação Kavo Extra Torque 605. A ponta utilizada possui um formato cilíndrico com diâmetro de 1,4mm e extensão da parte ativa de 10mm. A ponta foi aplicada à superfície horizontalmente da maneira mais regular possível, atingindo toda a superfície dentinária exposta durante 30 segundos, sob refrigeração constante. As pontas foram substituídas após a realização de 2 preparos.

Carisolv

As superfícies planificadas de dentina foram preparadas seguindo as instruções do fabricante. O gel preparado, composto por hipoclorito de sódio a 0,475% e solução de amino-ácidos, foi colocado sobre a dentina, aguardou-se 30 segundos para a ação do gel e em seguida foram utilizados instrumentos manuais específicos do fabricante (CURETA CARISOLV[®] #4, MEDITEAM DENTAL AB, GÖTEBORG, SUÉCIA) durante 45 segundos. O gel utilizado foi removido com algodão e o procedimento repetido novamente. Ao final, a superfície foi lavada com jato de água durante 20 segundos.

Smear-Free

As superfícies planificadas de dentina foram abrasionadas com lixas de SiC 600, 1200 e 2000 durante 60 segundos cada. Em seguida, estas superfícies foram polidas com pastas diamantadas de 6µm, 3µm, 1µm e ¼µm (AROTEC, COTIA, SP, BRASIL). Entre as trocas de granulações das lixas e das pastas para polimento, os dentes eram colocados em cuba ultra-sônica com água destilada (ODONTOBRAS, SÃO PAULO, SP, BRASIL) durante 12 minutos para a completa remoção dos resíduos da *smear layer* e abertura dos túbulos dentinários, de acordo com a metodologia proposta por ARRAIS *ET AL*. (2003).

4.4.2 Aplicação dos sistemas de união e restauração dos dentes

Após os procedimentos de preparo da superfície dentinária, executados de acordo com cada técnica proposta neste estudo, passou-se a etapa de aplicação dos sistemas de união, que foi realizada seguindo o protocolo descrito no Quadro 2.

Sistema de União	Técnica de aplicação				
Tyrian SPE / One	Dispensar 1 gota de cada dos frascos A e B no casulo,				
Step Plus	misturar, secar o preparo, aplicar 2 camadas do Tyrian SPE				
	durante 20" cada, remover o excesso deixando a superfície				
	brilhante. Em seguida, aplicar 2 camadas consecutivas do				
	One Step Plus, aplicar leve jato de ar e fotoativar durante				
	10".				
Clearfil SE Bond	Secar o preparo, aplicar o primer durante 20", aplicar leve				
	jato de ar, aplicar a resina fluida, aguardar 10" e fotoativar				
	durante 10".				
Unifil Bond	Secar o preparo, aplicar o primer durante 20", aplicar leve				

Quadro 2 – Descrição das técnicas de aplicação dos sistemas de união.

	jato de ar, aplicar a resina fluida, aguardar 10" e fotoativar
	durante 10".
Single Bond	Secar o preparo, condicionamento com ácido fosfórico 37%
	durante 15", lavagem com água durante 15", remoção do
	excesso de água com papel absorvente, aplicação de 2
	camadas consecutivas, aguardar 20", aplicar leve jato de ar
	durante 2"- 5" e fotoativar durante 10".

Concluída a aplicação e a fotoativação dos sistemas de união, um bloco do compósito Clearfil AP-X (KURARY MEDICAL INC., KURASHIKI, OKAYAMA, JAPÃO), cor A2, com aproximadamente 6mm de altura foi confeccionado sobre as superfícies tratadas, através da técnica incremental, sendo cada camada de 2mm de espessura fotoativada por 40 segundos com intensidade de 550mW/cm² (CURING LIGHT XL3000, 3M ESPE, ST.PAUL, MN, EUA) (Figura 4.4.2.1). A intensidade da luz foi verificada periodicamente com o radiômetro instalado no próprio aparelho. Os dentes restaurados foram armazenados em água destilada a 37°C durante 24 horas.

Figura 4.4.2.1 – (A) Dente preparado de acordo com uma das técnicas para preparo cavitário; (B) Aplicação do sistema de união correspondente ao grupo experimental; (C) Fotoativação do sistema de união; (D) Compósito Clearfil AP-X utilizado para a restauração dos dentes; (E) Restauração finalizada.

4.5. Obtenção dos corpos-de-prova

Após as 24 horas de armazenamento, os dentes foram fixados novamente às placas de acrílico com o auxílio de cera pegajosa (HORUS, DENTSPLY, PETRÓPOLIS, RJ, BRASIL). Este conjunto foi acoplado novamente à cortadeira de precisão e com o auxílio de um disco diamantado de alta concentração (11-4244, BUEHLER LTD., LAKE BLUFF, IL, EUA), procedeu-se a realização das secções dos dentes em intervalos de 1.2mm nas direções mésio-distal е vestíbulo-lingual perpendicularmente a interface de união. Assim, foram obtidos espécimes com o formato de palitos com uma área de secção transversal de aproximadamente 0,7mm² (Figura 4.5.1). Os palitos foram colocados em tubos "eppendorfs" contendo água destilada, identificados e armazenados em estufa por 24 horas até o momento do ensaio de microtração.

Figura 4.5.1 – (A) Dente restaurado de acordo com o grupo experimental; (B) Dente fixado à placa de acrílico; (C) Disco diamantado de alta concentração e pedra para afiar; (D) Cortadeira de precisão; (E) Posicionamento para o corte no sentido vestíbulo-lingual; (F) Cortes realizados no sentido vestíbulo-lingual; (G) Posicionamento para o corte no sentido mésio-distal; (H) Cortes realizados no sentido mésio-distal; (I) Corpos-de-prova finalizados.

4.6. Ensaio de microtração

Para o ensaio de microtração, foram selecionados aleatoriamente 6 palitos da região central de cada dente, totalizando 24 palitos testados por grupo. Com auxílio de uma cola à base de cianoacrilato (SUPER BONDER GEL – LOCTITE BRASIL LTDA., ITAPEVI, SP, BRASIL) e de um acelerador (ZAPIT D.V.A., CORONA, CA, EUA), as amostras foram fixadas ao aparato de microtração, o qual estava acoplado a uma máquina de ensaio universal (INSTRON 4411, CANTON, MA, INGLATERRA)

(FIGURA 4.6.1). A carga de tração foi aplicada perpendicularmente à interface de união, a uma velocidade de 0,5 mm/min até que ocorresse a ruptura da união. Os valores expressos pela máquina (Quilograma-força – Kgf) foram anotados. Após o teste, os espécimes eram cuidadosamente removidos do dispositivo, e as medidas da secção transversal do plano de fratura, realizadas com um paquímetro digital (STARRET 727-6/150, STARRET, SÃO PAULO, SP, BRASIL). Posteriormente, os dados foram utilizados para o cálculo dos valores em Mega Pascal (MPa) e tabulados para a realização da análise estatística.

Os palitos fraturados foram armazenados para que o padrão de fratura pudesse ser avaliado em Microscopia Eletrônica de Varredura.

Figura 4.6.1 - (A) Máquina de ensaio universal; (B) Aparato para microtração.

4.7. Análise em microscopia eletrônica de varredura4.7.1 Análise da interface de união

Para a análise da interface de união em microscopia eletrônica de varredura, 64 dentes adicionais foram tratados e restaurados de acordo com os 32 grupos experimentais deste estudo.

Após a restauração dos dentes, estes foram montados em placas acrílicas com o auxílio de cera pegajosa Horus e em seguida levados a cortadeira de precisão para serem seccionados na direção mésio-distal, com auxílio de um disco diamantado de alta concentração. Foram obtidas 2 ou-3 fatias por dente com 2mm de espessura. Estas fatias foram polidas em politriz (APL-4) sob constante refrigeração com lixas de SiC nas granulações 600, 1200 e 2000 e em seguida, com pastas diamantadas de 6µm, 3µm, 1µm e ¼µm. Entre as trocas de granulações das lixas e das pastas para polimento, os dentes eram colocados em cuba ultra-sônica durante 12 minutos para a completa remoção dos resíduos. Estando a superfície devidamente polida, as amostras foram submetidas ao condicionamento da interface com ácido fosfórico a 37% durante 5 segundos, lavagem com água por 15 segundos, inserção em cuba ultra-sônica por 5 minutos, em solução de hipoclorito a 5%. Finalmente foi realizado o banho final em água destilada, em cuba ultra-sônica durante 15 minutos.

As amostras polidas foram imersas em solução de Karnovsky durante 24 horas, recebendo em seguida três banhos consecutivos de solução de tampão cacodilato de sódio por 10 minutos cada banho, para então serem mantidos em solução de tetróxido de ósmio a 2% por uma hora. As amostras foram lavadas com água destilada e então foi iniciado o processo de desidratação progressiva com a imersão por 10 minutos em solução de álcool em concentrações crescentes de 30%, 50%, 70%, 90% e 3 banhos consecutivos em álcool absoluto.

Terminado o processo de desidratação das amostras, realizou-se a etapa de secagem ao ponto crítico (CPD – 030 – BALZERS, BAL-TEC, FURSTENTUM, LIECHTENSTEIN). As amostras foram montadas em *stubs*, para serem metalizadas (MED – 010 – BALZERS, BAL-TEC, FURSTENTUM, LIECHTENSTEIN) e então analisadas em microscopia eletrônica de varredura (LEO VP 435, LEO ELECTRON MICROSCOPY LTD., CAMBRIDGE, REINO UNIDO).

Concluídos os procedimentos para o preparo das amostras, fotomicrografias com magnificação da ordem de 5000X foram obtidas das regiões mais representativas da região de união.

4.7.2 Análise dos tratamentos superficiais da dentina

Para a observação da superfície resultante dos tratamentos para a união, dentes adicionais foram utilizados. Dezesseis dentes tiveram a oclusal removida, para exposição de dentina superficial e foram aleatoriamente separados em oito grupos. Estes dentes foram submetidos aos tratamentos propostos neste estudo, para em seguida serem metalizados e observados ao microscópio eletrônico de varredura. Fotomicrografias, com magnificação de 500X a 5000X, foram realizadas das regiões mais expressivas.

4.7.3 Análise do padrão de fratura

Para a observação do padrão de fratura, o lado composto pela dentina das amostras foi fixado em *stubs* metálicos, mantendo a face fraturada voltada para cima. Os fragmentos foram cobertos com uma fina camada de ouro (MED – 010) e observados em microscopia eletrônica de varredura (LEO VP 435), com uma magnificação de 200X a 4000X.

O padrão de fratura das amostras foi avaliado e as principais características anotadas. A classificação foi realizada de acordo com quatro tipos (REIS *et al.,* 2003):

Tipo 1: falha adesiva entre o sistema de união e a dentina, e parcialmente coesiva no sistema de união;

Tipo 2: coesiva no sistema de adesivo;

Tipo 3: falha parcialmente coesiva na dentina;

Tipo 4: falha parcialmente coesiva no compósito e adesiva entre o compósito e o sistema de união.

4.8 Análise estatística

A análise estatística foi realizada para comparar as médias de resistência de união dos grupos experimentais.

Os valores de resistência de união em MPa foram analisados no programa estatístico SAS 8.0 (SAS INSTITUTE, CARY, NC, EUA). Os dados foram analisados com a Análise de Variância (ANOVA) em esquema fatorial (8x4), sendo os fatores representados pelas tecnologias de preparo cavitário (em 8 níveis) e pelos sistemas de união (em 4 níveis). Verificada a significância estatística da interação entre os fatores, aplicou-se o teste de Tukey para comparações múltiplas entre as médias. Todos os testes foram realizados com o nível de significância fixado em 5% e os valores de resistência de união obtidos nos grupos testados, bem como a análise estatística completa estão apresentados nos ANEXOS 3 e 4.

5 Resultados

5.1 Resistência de união

Utilizando-se a análise de variância dois-critérios (Tabela 1), avaliou-se o efeito dos fatores "sistema de união" e "tecnologias para preparo cavitário" separadamente, bem como a interação entre eles. Os dados foram submetidos ao teste de normalidade e não foi detectada a necessidade de transformação dos mesmos.

O resultado da análise de variância aponta diferença estatística dos fatores, bem como para a interação entre os sistemas de união e as tecnologias para preparo cavitário (p<0,00003), mostrando uma forte dependência entre eles.

Causas da variação	Graus de	Soma dos	Quadrado		Pr > F
Causas da vallação	liberdade	quadrados	médio		
Sistema de união	3	2254,5403275	751,5134425	28,5276	0,00001
Tratamento	7	6152,5769821	878,9395689	33,3647	0,00001
Sistema*Tratamento	21	2085,9532376	99,3311066	3,7706	0,00003
Resíduo	96	2528,9625107	26,3433595		
Total	127	13022,0330578			<u></u>

Tabela 1 – Resultados da Análise de Variância Dois-Critérios.

Coeficiente de variação: 18,74%

Definido pela análise de variância a interação entre os fatores estudados, aplicou-se o Teste de Tukey, com nível de significância de 5%, para indicar as diferenças encontradas. As médias e o desvio-padrão estão apresentados na Tabela 2.

Tecnologias	Sistemas de União				
para Preparo [–]	Tyrian	Clearfil SE	Unifil Bond	Single Bond	
Cavitário		Bond			
Abrasão à Ar	21,32 (2,72)	33,03 (5,00)	30,12 (8,58)	28,54 (1,30)	
	ABb	BCDa	ABab	ABab	
Ultra-som	20,37 (3,77)	22,96 (0,99)	20,49 (4,65)	24,67 (6,71)	
	ABa	DEa	BCa	Ba	
Lixa SiC 600	29,86 (4,53)	41,48 (2,92)	20,41 (6,40)	33,94 (4,71)	
	Abc	ABa	BCc	ABab	
Laser Er:YAG	14,18 (4,13)	12,60 (4,96)	11,83 (4,46)	12,45 (3,62)	
	Ba	Ea	Са	Ca	
Carisolv	20,66 (4,67)	23,70 (2,53)	22,65 (4,14)	33,56 (6,66)	
	ABb	CDEb	BCb	Aba	
Broca Carbide	25,32 (4,05)	43,47 (7,90)	24,29 (6,00)	34,70 (6,71)	
	ABbc	ABa	Bc	ABab	
P. Diamantada	25,87 (2,09)	34,58 (7,13)	23,89 (7,11)	37,63 (5,98)	
	Abc	BCab	Bc	Aa	
Smear Free	23,75 (1,83)	47,28 (6,94)	37,07 (6,38)	39,52 (1,38)	
	ABc	Aa	Ab	Aab	

Tabela 2 – Médias de resistência de união (desvio-padrão), em MPa, em função dos sistemas de união e das tecnologia para preparo cavitário.

Médias seguidas de letras distintas (maiúscula – vertical e minúscula – horizontal) diferem entre si pela ANOVA e Tukey (p<0,05).

Analisando a Tabela 2 pode-se verificar que os grupos que apresentaram os menores valores de resistência de união foram aqueles tratados com o Laser de Er:YAG nas condições do experimento, não sendo encontrada diferença entre os sistemas de união neste tratamento. No entanto, outras tecnologias para preparo cavitário, quando observado o comportamento dentro dos sistemas de união, apresentaram comportamento semelhante aos grupos tratados com laser, exceto os grupos do sistema de união Single Bond, onde o laser apresentou o pior resultado.

Outra tecnologia que reduziu os valores de resistência de união para os sistemas testados foi a ponta diamantada CVD em ultra-som. Porém, de forma semelhante ao laser de Er:YAG, os sistemas de união se comportaram de maneira uniforme. Para os dentes que foram tratados com o Carisolv[®], pôde ser observado que os sistemas de união autocondicionantes foram afetados, pois seus valores de resistência de união são inferiores, estatisticamente, aos valores obtidos com o Single Bond. Porém, o Carisolv[®], quando analisado dentro de cada sistema de união, apresenta um comportamento intermediário quando comparado às outras tecnologias. Da mesma maneira, ponta diamantada, broca carboneto de tungstênio e lixa de SiC 600 mostraram os resultados semelhantes.

O aparelho de abrasão a ar proporcionou maiores valores de resistência de união para o sistema de união Clearfil SE Bond, apresentando resultado superior ao Tyrian. Os sistemas Unifil Bond e Single Bond foram intermediários, não diferindo estatisticamente do Clearfil SE Bond e do Tyrian.

Os dentes que receberam o tratamento para simular uma superfície livre de *smear layer* foram os que apresentaram as maiores médias de resistência de união independente dos sistemas utilizados. Porém, quando os adesivos são comparados, é possível observar que o Clearfil SE Bond e o Single Bond, apresentam resultados similares. O Unifil Bond possui comportamento intermediário, sendo inferior ao Clearfil SE Bond. O adesivo Tyrian apresentou os piores valores de resistência de união neste tipo de superfície, quando comparado aos outros sistemas de união.

A Figura 5.1 mostra as médias dos valores de resistência de união obtidos pelos grupos experimentais determinados neste estudo.

Figura 5.1 – Gráfico de barras das médias de resistência de união e desvio-padrão dos grupos testados.

5,2 Observações em Microscopia Eletrônica de Varredura 5.2.1 Análise do padrão de fratura

Para a análise do padrão de fratura, as observações foram feitas em MEV e a classificação realizada de acordo com a predominância ocorrida em cada superfície.

Os resultados da análise do padrão de fratura dos corpos-de-prova testados estão apresentados nas figuras a seguir.

Figura 5.2.1.1 – Distribuição do padrão de fratura para os corpos-de-prova tratados com abrasão à ar.

Figura 5.2.1.5 – Distribuição do padrão de fratura para os corpos-de-prova tratados com Carisolv[®].

Figura 5.2.1.2 – Distribuição do padrão de fratura para os corpos-de-prova tratados com ultra-som.

Figura 5.2.1.8 – Distribuição do padrão de fratura para os corpos-de-prova tratados sem *smear layer*.

A observação do padrão de fratura demonstra uma predominância da falha da união entre o sistema adesivo e a dentina e parcialmente coesiva no sistema adesivo. As falhas tipos 2 e 4 ocorreram em menor número e as falhas tipo 3 foram as mais raras, exceto pelos grupos tratados com o Laser de Er:YAG.

Pode ser verificado uma falha do tipo 1 na Figura 5.2.1.9. Os corpos-deprova testados, classificados com este tipo de falha apresentaram um padrão semelhante ao da Figura 5.2.1.9, com grande parte de túbulos abertos e outra porção do corpo-de-prova examinado recoberto por parte do sistema de união que falhou coesivamente.

A Figura 5.2.1.10 ilustra o padrão da falha tipo 2. Este tipo de fratura ocorreu ocasionalmente, estando distribuído de forma semelhante a falha tipo 4, representada na Figura 5.2.1.12. A Figura 5.2.1.11 apresenta a falha tipo 3, ocorrida em maior quantidade apenas no grupo tratado com laser de Er:YAG.

Figura 5.2.1.9 – (A) Fotomicrografia representativa da falha tipo 1, apresentada por uma unidade experimental do grupo tratado com abrasão à ar e restaurado com o sistema de união Unifil Bond (230X). (B) Aumento maior da região delimitada, mostrando a transição da falha entre o sistema de união e a dentina, para a região da falha coesiva no sistema de união (1500X). (D – Dentina, SA – Sistema Adesivo).

Figura 5.2.1.10 – (A) Fotomicrografia representativa da falha tipo 2, apresentada por uma unidade experimental do grupo tratado com ponta diamantada CVD em ultra-som e restaurado com o sistema de união Clearfil SE Bond (360X). (B) Aumento maior da região delimitada (1500X). (SA – Sistema Adesivo).

Figura 5.2.1.11 – (A) Fotomicrografia representativa da falha tipo 3, apresentada por uma unidade experimental do grupo tratado com ponta diamantada CVD em ultra-som e restaurado com o sistema de união Clearfil SE Bond (500X). (B) Aumento maior da região delimitada (5000X). (D – Dentina).

Figura 5.2.1.12 – Fotomicrografia representativa da falha tipo 4, apresentada por uma unidade experimental do grupo tratado com ponta diamantada e restaurado com o sistema de união Single Bond (270X). (D – Dentina, RC – Resina Composta, SA – Sistema Adesivo).

5.2.2 Análise da superfície disponível para união

As Figuras 5.2.2.1 a 5.2.2.8 ilustram as superfícies tratadas para união após a utilização das tecnologias utilizadas para os preparos cavitários neste estudo. Analisando estas fotomicrografias pode-se observar que apenas os dentes tratados com o laser de Er:YAG e os dentes que foram tratados para obter uma superfície livre de *smear layer* se apresentaram com a maioria dos túbulos dentinários abertos. Os outros tratamentos produziram *smear layers* com diferentes características.

As superfícies que foram tratadas com o aparelho de abrasão à ar, apresentaram uma superfície irregular e com os túbulos dentinários completamente obstruídos, como pode ser observado na Figura 5.2.2.1.

Figura 5.2.2.1 – (A) Fotomicrografia representativa das superfícies tratadas com o aparelho de abrasão à ar (1000X). (B) Aumento maior da região observada (5000X).

As pontas diamantadas CVD utilizadas em ultra-som produziram uma superfície relativamente regular, com uma camada de *smear layer* fina, aparentemente compacta e com os túbulos dentinários completamente obstruídos (Figura 5.2.2.2). Outra tecnologia que apresentou comportamento semelhante
foram as brocas carboneto de tungstênio (Figura 5.2.2.6), que apresentaram aspecto similar ao ultra-som.

Figura 5.2.2.2 – (A) Fotomicrografia representativa das superfícies tratadas com as pontas diamantadas CVD em ultra-som (1000X). (B) Aumento maior da região observada (5000X).

As curetas especiais fornecidas para a utilização juntamente com o Carisolv[®] mostraram uma superfície uniforme, com os túbulos completamente fechados (Figura 5.2.2.5). No entanto, as superfícies que foram tratadas com as pontas diamantadas convencionais se apresentaram com riscos profundos na dentina e uma camada de *smear layer* densa, obstruindo todos os túbulos dentinários das regiões observadas em MEV (Figura 5.2.2.7). Os dentes que foram lixados produziram superfícies com riscos menos profundos que os produzidos pelas pontas diamantadas convencionais, porém mesmo assim foi verificada uma *smear layer* densa e o os túbulos fechados (Figura 5.2.2.3).

Figura 5.2.2.3 – (A) Fotomicrografia representativa das superfícies tratadas com as lixas de SiC de granulação 600 (1000X). (B) Aumento maior da região observada (5000X).

Figura 5.2.2.4 – (A) Fotomicrografia representativa das superfícies tratadas com laser de Er:YAG (5000X). (B) Aumento maior da região observada (15000X).

Figura 5.2.2.5 – (A) Fotomicrografia representativa das superfícies tratadas com Carisolv[®] (1000X). (B) Aumento maior da região observada (5000X).

Figura 5.2.2.6 – (A) Fotomicrografia representativa das superfícies tratadas com as brocas carboneto de tungstênio (1000X). (B) Aumento maior da região observada (5000X).

Por outro lado, as superfícies tratadas com o laser de Er:YAG apresentaram-se livres de *smear layer* e com a maioria dos túbulos dentinários visivelmente abertos. Esta superfície apresentou uma topografia bastante irregular (Figura 5.2.2.4). Sendo assim, a principal diferença notada entre estes tratamentos foi a regularidade da superfície polida com lixas e pasta de diamante (Figura 5.2.2.8).

Figura 5.2.2.7 – (A) Fotomicrografia representativa das superfícies tratadas com as pontas diamantadas convencionais (1000X). (B) Aumento maior da região observada (5000X).

Figura 5.2.2.8 – (A) Fotomicrografia representativa das superfícies tratadas para obtenção de uma superfície livre de *smear* layer (1000X). (B) Aumento maior da região observada (5000X).

5.2.3 Análise da interface união dente/compósito

A morfologia da interface de união dente/compósito pode ser observada nas Figuras 5.2.3.1 a 5.2.3.8. As fotomicrografias apresentam camada híbrida formadas e a variação proporcionada por cada tecnologia utilizada para realização de preparos cavitários.

Ao analisar as fotomicrografias correspondentes aos grupos tratados com o aparelho de abrasão à ar, pode-se verificar a formação de camada híbrida e *tags* resinosos em todos os sistemas de união testados, verificando uma espessura semelhante entre eles.

Figura 5.2.3.1 — Aspecto das interfaces de união produzidas após a utilização do aparelho de abrasão a ar e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Híbrida, D – Dentina, RC – Resina Composta, T – Tags).

As pontas diamantadas CVD montadas em ultra-som proporcionaram uma variação nas interfaces produzidas. É possível verificar a ausência da formação de *tags* resinosos quando os sistemas de união Clearfil SE Bond e Unifil Bond foram aplicados para a realização dos procedimentos adesivos. No entanto, quando foram utilizados os sistemas Tyrian e Single Bond, nota-se e formação da camada híbrida juntamente com *tags* resinosos (Figura 5.2.3.2).

A ausência da formação de *tags* resinosos, quando o sistema Unifil Bond foi utilizado, repetiu-se nos tratamentos com lixa de SiC 600 (Figura 5.2.3.3) e Carisolv[®] (Figura 5.2.3.5). Esta formação mostrou-se bem reduzida quando a

ponta diamantada convencional (Figura 5.2.3.7) foi empregada, sendo o mesmo comportamento verificado para o Clearfil SE Bond, quando utilizou-se o laser (Figura 5.2.3.4).

Figura 5.2.3.2 – Aspecto das interfaces de união produzidas após a utilização das pontas diamantadas CVD em ultra-som e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Híbrida, D – Dentina, RC – Resina Composta, T – Tags).

Quando foram empregadas tecnologias como brocas carboneto de tungstênio (Figura 5.2.3.6), Carisolv[®], lixa de SiC 600 e as pontas diamantadas convencionais pode ser verificada uma ligeira variação na espessura das camadas híbridas formadas. Porém, a observação dos corpos-de-prova, que foram preparados para obter-se uma superfície livre de *smear layer* (Figura 5.2.3.8),

mostrou a menor camada hibrida uniformemente produzida por todos os sistemas de união testados. Os grupos que foram tratados com laser apresentaram uma camada híbrida pouco definida, prevalecendo a formação de *tags* resinosos, exceto para o Clearfil SE Bond.

Figura 5.2.3.3 – Aspecto das interfaces de união produzidas após a utilização de lixas de SiC de granulação 600 e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Híbrida, D – Dentina, RC – Resina Composta, T – Tags).

Figura 5.2.3.4 – Aspecto das interfaces de união produzidas após a utilização do laser de Er:YAG e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Hibrida, D – Dentina, RC – Resina Composta, T – Tags).

Figura 5.2.3.5 – Aspecto das interfaces de união produzidas após a utilização do Carisolv[®] e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Híbrida, D – Dentina, RC – Resina Composta, T – Tags).

Figura 5.2.3.6 – Aspecto das interfaces de união produzidas após a utilização de brocas carboneto de tungstênio e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Híbrida, D – Dentina, RC – Resina Composta, T – Tags).

Figura 5.2.3.7 – Aspecto das interfaces de união produzidas após a utilização de pontas diamantadas convencionais e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Híbrida, D – Dentina, RC – Resina Composta, T – Tags).

Figura 5.2.3.8 – Aspecto das interfaces de união produzidas após a obtenção de superfícies livres de *smear layer* e posterior aplicação dos sistemas de união Tyrian (A), Clearfil SE Bond (B), Unifil Bond (C) e Single Bond (D). (CH – Camada Híbrida, D – Dentina, RC – Resina Composta, T – Tags).

6 Discussão

Os sistemas de união autocondicionantes e diversas tecnologias alternativas para preparo cavitário foram introduzidos no mercado odontológico quando os cirurgiões-dentistas buscavam uma técnica adesiva mais fácil e menos complexa, assim como, métodos mais eficazes e menos dolorosos para a confecção dos preparos cavitários. Apesar destas qualidades serem muito atrativas na busca pela simplificação da prática clínica, cuidados devem ser considerados na avaliação de como estes sistemas irão interagir com a superfície dentinária preparada com o auxílio destes métodos. Isto é, devido ao fato de que os sistemas de união autocondicionantes têm um pH mais elevado, quando comparado ao ácido fosfórico, e que estes materiais não são lavados com água, a *smear layer* e os seus componentes podem afetar o processo de hibridização da dentina.

Dessa forma, os objetivos propostos neste estudo foram: avaliar a resistência de união de diferentes sistemas adesivos à dentina, após a utilização de tecnologias para confecção do preparo cavitário e remoção do tecido cariado, comparando os valores de resistência de união obtidos e relacionando-os com as observações feitas durante as análises realizadas em microscopia eletrônica de varredura.

Os sistemas autocondicionantes testados neste estudo combinam o condicionamento da superfície e a aplicação do *primer* em um procedimento único. Estes *primers* condicionantes são aplicados na *smear layer*, seguido de um leve jato de ar e aplicação da resina fluida. Por não apresentarem a etapa da lavagem, estes sistemas promovem uma desmineralização através da *smear layer* e se difundem a uma pequena profundidade na dentina subjacente, resultando na

criação de uma camada híbrida fina, porém com altos valores de resistência de união (WATANABE et al., 1994; CHIGIRA et al., 1994). Os primers autocondicionantes possuem uma capacidade diminuída de condicionar o substrato, por isso, acreditase que a união destes sistemas pode ser afetada pelas diferenças na guantidade e na qualidade da smear layer. WATANABE et al. (1994) reportaram a influência da smear layer produzida com diferentes granulações de lixas nos valores de resistência de união à dentina. TOIDA et al. (1995) também verificaram que os valores de resistência de união à dentina diminuíram significativamente quando os corpos-de-prova foram preparados com pontas diamantadas e brocas carboneto de tungstênio, ao contrário do observado guando se utilizou a lixa de SiC 600. Porém, apesar de alguns trabalhos relatarem uma alteração nos valores de resistência de união, dos sistemas autocondicionantes, quando as superfícies dentinárias são preparadas com pontas diamantadas (CORONA et al., 2001; KOASE et al., 2004), o único sistema de união que apresentou uma redução nos valores no nosso estudo, quando comparado com a lixa e a broca carboneto de tungstênio foi o Clearfil SE Bond. As análises das fotomicrografias das superfícies tratadas com lixas de SiC 600 (Fig. 5.2.2.3) e com pontas diamantadas (Fig. 5.2.2.7) diferem principalmente na profundidade dos riscos da superfície e na aparência mais grosseira e cheia de debris desta última. No entanto, a maioria dos sistemas adesivos infiltrou na smear layer e formou uma camada híbrida no tecido dentinário. CEHRELI et al. (2003), utilizaram brocas carboneto de tungstênio, carisolv®, ponta diamantada em ultra-som e um aparelho para abrasão à ar para os preparos das superfícies e o sistema de união Single Bond para a realização dos procedimentos adesivos e não verificaram diferenças entre as tecnologias testadas, fato que foi atribuído ao efeito do condicionamento com ácido fosfórico previamente a aplicação do adesivo.

As condições nas quais os testes de adesão são realizados usualmente diferem das situações clínicas verdadeiras. O uso de lixas é bastante conveniente nos estudos de laboratório (PASHLEY *et al.*, 1995), produzindo uma superfície

regular e homogênea para a adesão em laboratório (OLIVEIRA et al., 2003). A união dos sistemas adesivos às estruturas dentais submetidas à ação de lixas de SiC 600 parece promover a formação de uma camada híbrida bem definida, fato que não pôde ser observado para o Unifil Bond em nosso estudo. Os sistemas autocondicionantes foram capazes de atravessar a smear layer produzida e infiltrar na dentina subjacente em diferentes profundidades. Estudos têm relatado que a profundidade de desmineralização da dentina está associada com a acidez do adesivo (CHIGIRA et al., 1994). TAY et al. (2000), em um estudo de microscopia eletrônica de transmissão, verificaram que um pH igual a 2,8 é suficiente para que um adesivo autocondicionante desmineralize a dentina efetivamente em 30 segundos. Portanto, um valor de pH máximo é necessário para que a solução do primer não seja precocemente neutralizada pela smear layer e conseqüentemente, limite a sua infiltração. Tal observação pode ser levada em consideração guando verificamos que o Unifil Bond, aparentemente, não conseguiu infiltrar ou teve uma penetração bastante discreta na dentina hígida, após a utilização de algumas tecnologias. Desta forma, pode-se sugerir que a forma de aplicação (passiva) e o tempo de ação do seu primer devam ser alterados para uma ação mais eficiente deste sistema de união.

Desta forma, como em nosso estudo, os sistemas de união tiveram a adesão influenciada pelos diferentes substratos testados. Os procedimentos para o preparo da superfície realizados nos grupos tratados com o aparelho de abrasão a ar produziram uma superfície bastante irregular. Também foi observado que o jateamento produziu uma *smear layer*, que obliterava os túbulos dentinários (Los & BARKMEIER, 1994; SAZAK *et al.*, 2001; YAZICI *et al.*, 2002; VAN MEERBEEK *et al.*, 2003). Entretanto, este aumento da superfície disponível para a união não promoveu um aumento significativo da resistência de união para nenhum dos adesivos testados, assim como os resultados encontrados por Los & BARKMEIER (1994), CHAVES *et al.* (2002) e VAN MEERBEEK *et al.* (2003). É provável que as irregularidades dificultem o contato do adesivo com o substrato.

Exceto para o sistema de união Tyrian, os valores de resistência de união obtidos pelos outros adesivos estiveram entre os mais baixos quando se realizou o preparo da superfície com a ponta diamantada CVD em ultra-som. Este sistema não corta fisicamente a dentina, mas abrasiona a superfície com a ponta de diamante oscilando na freqüência do ultra-som. VAN MEERBEEK et al. (2003) relataram a escassez de estudos com valores de resistência de união para os preparos feitos com o ultra-som, sendo assim, este trabalho concorda com a diminuição encontrada nos valores de união. Porém, estudos analisando as superfícies tratadas com esta tecnologia apresentam resultados diversos. BANERJEE et al. (2000), relatou que a superfície se apresentava recoberta por smear layer, porém a aplicação da ponta diamantada produziu ranhuras na dentina mostrando a orientação no ato da remoção do tecido. YAZICI et al. (2002) verificaram que após a utilização do ultra-som os túbulos dentinários se mostraram abertos e a superfície dentinária livre da smear layer. Em nosso estudo, foi verificada a produção de uma camada relativamente uniforme que obliterou completamente os túbulos dentinários (Fig 5.2.2.2). Baseado nesta observação e nos menores valores de resistência de união presumiu-se que esta camada afetou a ação dos primers condicionadores, prejudicando a união dos sistemas adesivos, principalmente para o Clearfil SE Bond.

Diferentemente destas tecnologias apresentadas, o laser de Er:YAG possui a capacidade de ablacionar a dentina. Esta propriedade é atribuída ao seu comprimento de onda de 2,94µm, o qual coincide com a absorção pela água e pela hidroxiapatita. Devido ao grande conteúdo de água em sua composição, a dentina possui grande afinidade pelo laser. A radiação incidente é altamente absorvida pelas moléculas de água presentes nas estruturas dentinárias (principalmente o fluido intratubular e as fibrilas colágenas), levando a um súbito aquecimento e evaporação da água. A pressão resultante proporciona sucessivas micro-explosões com remoção da dentina, o que faz com que a superfície

irradiada tenha a aparência de micro-crateras, com os túbulos dentinários abertos e sem *smear layer* (RAMOS *et al.*, 2002).

Não obstante, o impacto potencial do laser de Er:YAG na rede de colágeno ainda não foi descoberto completamente. Porém, existem evidências que as alterações microestruturais causadas pelo laser podem efetivamente comprometer a interação dos sistemas de união com a dentina irradiada. Esta especulação é baseada no fato de que o principal mecanismo de união dos sistemas adesivos reside na retenção micromecânica entre os monômeros hidrófilos e as fibrilas colágenas. Além disso, é importante salientar que a irradiação com o laser de Er:YAG pode agir sobre o conteúdo mineral da dentina, provocando fusão e áreas de recristalização (AOKI et al., 1998; CORONA et al., 2001). Esta morfologia peculiar da superfície irradiada com o laser, resultante de um processo termo-mecânico de ablação pode interferir negativamente nas propriedades de ácido-resistência do substrato dentinário, visto que os agentes condicionadores poderão não ser efetivos na dissolução mineral necessária aos procedimentos adesivos. Por essas razões, a formação de uma camada híbrida bem definida, similar às apresentadas por outras tecnologias, torna-se improvável. De acordo com AOKI et al. (1998), estas análises levam a hipótese de que os valores de resistência de união se originam fundamentalmente da penetração de tags resinosos nos túbulos dentinários, pois não houve formação de camada híbrida evidente. Estes fatos relatados estão de acordo com os achados deste estudo, que apresentou nos grupos irradiados, os valores mais baixos de resistência união de independentemente dos sistemas adesivos utilizados. As observações em microscopia eletrônica de varredura também revelam a dificuldade em remover o conteúdo mineral e consequentemente, de infiltrar os monômeros resinosos entre as fibrilas colágenas. Assim, não foi observada a formação de camada híbrida para os adesivos testados.

Os dentes preparados livres de smear layer (Fig 5.2.2.8) obtiveram os maiores valores de resistência de união do estudo. TAY et al. (2000) trabalhou com superfícies criofraturadas para obter dentina sem smear layer, no entanto, o próprio autor relata a obtenção de uma superfície irregular que poderia superestimar os valores por ele obtidos. Este estudo utilizou a técnica descrita por ARRAIS et al. (2003) e ao proceder o exame da superfície em microscopia eletrônica de varredura, observou-se uma superfície extremamente regular e com os túbulos dentinários desobstruídos, sugerindo uma superfície livre de smear layer. Com as observações dessas superfícies, poderia ser esperado um aumento da espessura da camada híbrida, porém a limitada penetração dos sistemas adesivos autocondicionantes ocorre provavelmente pela boa capacidade tampão da matriz mineralizada de dentina e a baixa porosidade da dentina intertubular intacta (MARSHALL et al., 1997). Apesar das finas camadas híbridas observadas (Fig. 5.2.3.8), os altos valores de resistência de união indicam que estas zonas de inter-difusão não necessitam ser espessas para serem resistentes, desde que a rede de colágeno desmineralizada seja completamente infiltrada (PRATI et al., 1998) e o adesivo atinja alto grau de polimerização. OLIVEIRA et al. (2003) também trabalhou com superfícies polidas simulando a ausência de smear layer ou a sua presença em uma espessura extremamente reduzida e corroborando com os achados deste estudo, observou que os sistemas de união Clearfil SE Bond e Single Bond apresentaram comportamento similar, juntamente com os maiores valores de resistência ao cisalhamento obtido em seu estudo.

O gel Carisolv[®] utilizado neste estudo proporcionou valores menores de união para os sistemas autocondicionantes, não exercendo nenhuma alteração para o Single Bond, visto que este apresentou comportamento semelhante para a maioria das tecnologias testadas. As análises das fotomicrografias (Fig. 5.2.2.5) mostram uma superfície recoberta por *smear layer* que pode ter dificultado a ação dos sistemas autocondicionantes pela possível presença de hipoclorito de sódio residual. Estes resíduos podem ter diminuído o grau de conversão dos sistemas

de união, diminuindo a sua resistência. Tal fato não foi verificado durante a utilização do Single Bond, provavelmente devido à remoção desta camada pelo condicionamento ácido prévio. CEHRELI *et al.* (2003) também observou a ausência de efeito negativo na utilização deste sistema para remoção de cárie, quando utilizados com sistemas de união que necessitam de condicionamento com o ácido fosfórico.

Ao analisar os resultados deste estudo notaram-se diferenças significativas nos valores de resistência de união das diversas tecnologias para preparo cavitário e os sistemas de união utilizados, demonstrando existir uma dependência entre estes fatores.

7 Conclusão

De acordo com as condições em que o presente estudo foi desenvolvido e com base na análise estatística aplicada aos valores obtidos, pode ser concluído que:

- Existe uma forte dependência entre as tecnologias utilizadas para a realização dos preparos cavitários e os sistemas de união;
- A técnica do condicionamento com ácido fosfórico pode reduzir o efeito das técnicas sobre a resistência de união, exceto para aplicação do laser de Er:YAG e da ponta diamantada CVD em ultra-som;
- As superfícies produzidas pelas tecnologias para preparo cavitário possuem características próprias que as diferenciam, entretanto a morfologia obtida pela ponta diamantada CVD em ultra-som, broca carboneto de tungstênio e Carisolv[®] apresentam alguma semelhança;
- A morfologia da zona de inter-difusão é influenciada pelas tecnologias para preparo cavitário, porém sua espessura não está relacionada com os valores de resistência de união.
- O padrão de fratura predominantemente observado nos grupos experimentais foi a falha adesiva entre o sistema de união e a dentina, e parcialmente coesiva no sistema de união.

Referências*

AOKI A, ISHIKAWA I, YAMADA T, OTSUKI M, WATANABE H, TAGAMI J *et al.* Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro. *J Dent Res.* 1998; 77(6): 1404-14.

ARRAIS CAG, MICHELONI CD, GIANNINI M, CHAN DCN. Occluding effect of dentifrices on dentinal tubules. *J Dent.* 2003; 31(8): 577-84.

BANERJEE A, KIDD EAM, WATSON TF. Scanning electron microscopic observations of human dentin after mechanical caries excavation. *J Dent.* 2000; 28(3): 179-86.

BUONOCORE MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. *J Dent Res.* 1955; 34(6): 849-53.

BUONOCORE MG, WILEMAN W, BRUDEVOLD F. A report on a resin composition capable of bonding to human dentin surfaces. *J Dent Res.* 1956; 35(6): 846-51.

CEDERLUND A, LINDSKOG S, BLOMLÖF J. Effect of chemo-mechanical caries removal system (Carisolv®) on dentin topography of non-carious dentin. *Acta Odontol Scand.* 1999; 57(4): 185-89.

CEHRELI ZC, YAZICI AR, AKCA T, ÖZGÜNALTAY G. A morphological and micro-tensile bond strength evaluation of a single-bottle adhesive to caries-affected human dentin after four different caries removal techniques. *J Dent.* 2003; 31(6): 429-35.

CHAVES P, GIANNINI M, AMBROSANO GMB. Influence of smear layer pretreatments on bond strength to dentin. *J Adhes Dent.* 2002; 4(3): 191-96.

CORONA SAM, BORSATTO MC, PALMA DIBB RG, RAMOS RP, BRUGNERA JR A, PÉCORA JD. Microleakage of class V resin composite restorations after bur, air-abrasion or Er:YAG laser preparation. *Oper Dent.* 2001; 26(5): 491-97.

^{*}DE ACORDO COM A NORMA DA FOP/UNICAMP, BASEADA NO MODELO VANCOUVER. ABREVIATURA DOS PERIÓDICOS EM CONFORMIDADE COM O MEDLINE.

DE MUNCK J, VAN MEERBEEK B, YUDHIRA R, LAMBRECHTS P, VANHERLE G. Microtensile bond strength of two adhesives to Erbium:YAG-lased vs. bur-cut enamel and dentin. *Eur J Oral Sci.* 2002; 110(4): 322-29.

FURE S, LINGSTROM P, BIRKHED D. Evaluation of Carisolv® for the chemomechanical removal of primary root caries in vivo. *Caries Res.* 2000; 34(3): 275-80.

FUSAYAMA T, NAKAMURA M, KUROSAKI N, IWAKU M. Non-pressure adhesion of a new adhesive restorative resin. *J Dent Res.* 1979; 58(4): 1364-70.

GIANNINI M, CARVALHO RM, MARTINS LRM, DIAS CTS, PASHLEY DH. The influence of tubule density and area of solid dentin on bond strength of two adhesive systems to dentin. *J Adhes Dent.* 2001; 3(4): 315-24.

HASHIMOTO M, OHNO H, KAGA M, ENDO K, SANO H, OGUCHI H. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. *J Dent Res.* 2000a; 79(6): 1385-91.

HASHIMOTO M, OHNO H, ENDO K, KAGA M, SANO H, OGUCHI H. The effect of hybrid layer thickness on bond strength: demineralized dentin zone of the hybrid layer. *Dent Mater.* 2000b; 16(6): 406-11.

HUGO B, STASSINAKIS A. Preparation and restoration of small interproximal carious lesions with sonic instruments. *Pract Periodont Aesthet Dent.* 1998; 10(3): 353-59.

KOASE K, INOUE S, MAMORU N, TANAKA T, KAWAMOTO C, TAKAHASHI A *et al.* Effect of bur-cut dentin on bond strength using two all-in-one and one two-step adhesive systems. *J Adhes Dent.* 2004; 6(2): 97-104.

KOIBUCHI H, YASUDA N, NAKABAYASHI N. Bonding to dentin with a self-etching primer: the effect of smear layers. *Dent Mater.* 2001; 17(2): 122-26.

KRAMER IRH, MCLEAN JW. Alterations in the staining reactions of dentin resulting from a constituent of a new self-polymerizing resin. *Br Dent J.* 1952; 93(6): 150-53.

KUBO S, LI H, BURROW MF, TYAS MJ. Nanoleakage of dentin adhesive systems bonded to Carisolv-treated dentin. *Oper Dent.* 2002; 27(4): 387-95.

Los SA, BARKMEIER WW. Effects of dentin air abrasion with aluminum oxide and hydroxyapatite on adhesive bond strength. *Oper Dent.* 1994; 19(5): 169-75.

MARSHALL JR. GW, MARSHALL SJ, KINNEY JH, BALOOCH M. The dentin substrate: structure and properties related to bonding. *J Dent.* 1997: 25(6): 441-58.

NAKABAYASHI N, KOJIMA K, MASUHARA E. The promotion of adhesion by the infiltration of monomers into tooth substrates. *J Biomed Mater Res.* 1982; 16(3): 265-73.

OGATA M, HARADA N, YAMAGUCHI S, NAKAJIMA M, PEREIRA PNR, TAGAMI J. Effects of different burs on dentin bond strengths of self-etching primer bonding systems. *Oper Dent.* 2001; 26(4): 375-82.

OGATA M, HARADA N, YAMAGUCHI S, NAKAJIMA M, TAGAMI J. Effect of self-etching primer vs phosphoric acid etchant on bonding to bur-prepared dentin. *Oper Dent.* 2002; 27 (5): 375-82.

OLIVEIRA SSA, PUGACH MK, HILTON JF, WATANABE LG, MARSHALL SJ, MARSHALL JR. GW. The influence of the dentin smear layer on adhesion: a self-etching primer vs. a total-etch system. *Dent Mater.* 2003; 19(8): 758-67.

OWENS BM, GALLIEN GS. Noncarious dental "abfraction" lesions in an aging population. *Compend Contin Educ Dent.* 1995; 16(6): 552-54.

PASLEY DH, SANO H, CIUCCHI B, YOSHIYAMA M, CARVALHO RM. Adhesion testing of dentin bonding agents: A review. *Dent Mater.* 1995; 11(2): 117-25.

PASHLEY DH, CARVALHO RM. Dentine permeability and dentine adhesion. *J Dent.* 1997; 25(5): 355-72.

PEREIRA PN, OKUDA M, SANO H, YOSHIKAWA T, BURROW MF, TAGAMI J. Effect of intrinsic wetness and regional difference on dentin bond strength. *Dent Mat.* 1999; 15(1): 46-53.

PRATI C, CHERSONI S, MONGIORGI R, PASHLEY DH. Resin infiltrated dentin layer formation of new bonding systems. *Oper Dent.* 1998; 23(4): 185-94.

RAMOS RP, CHIMELLO DT, CHINELATTI MA, NOKADA T, PÉCORA JD, DIBB RGP. Effect of Er:YAG laser on bond strength to dentin of a self-etching primer and two single-bottle adhesive systems. *Lasers Surg Med.* 2002; 31(3): 164-70.

REIS AF, GIANINNI M, AMBROSANO GMB, CHAN DCN. The effects of filling technique and a low-viscosity composite liner on bond strength to class II cavities. *J Dent.* 2003; 31(1): 59-66.

REIS AF, ARRAIS CA, NOVAIS PD, CARVALHO RM, DE GOES MF, GIANNINI M. Ultramorphological analysis of resin-dentin interfaces produced with water-based single-step and two-step adhesives: nanoleakage expression. *J Biomed Mater Res.* 2004; 71B(1): 90-8.

SANO H, SHONO T, SONODA H, TAKATSU T, CIUCHHI B, CARVALHO RM *et al.* Relationship between surface area for adhesion and tensile bond strength – Evaluation of a microtensile bond test. *Dent Mater.* 1994; 10(4): 236-40.

SANO H, YOSHIKAWA T, PEREIRA PN, KANEMURA N, MORIGAMI M, TAGAMI J *et al.* Long-term durability of dentin bonds made with a self-etching primer, in vivo. *J Dent Res.* 1999; 78(4): 906-11.

SAZAK H, TÜRKMEN C, GÜNDAY M. Effects of Nd:YAG laser, air-abrasion and acidetching on human enamel and dentin. *Oper Dent.* 2001; 26(5): 476-81.

SHONO Y, OGAWA T, TERASHITA M, CARVALHO RM, PASHLEY EL, PASHLEY DH. Regional measurement of resin-dentin bonding as an array. *J Dent Res.* 1999; 78(2): 699-705.

SHOOK LW, TURNER EW, ROSS J, SCARBECZ M. Effect of surface roughness of cavity preparations on the microleakage of class V resin composite restoration. *Oper Dent.* 2003; 28(6): 779-85.

TAGAMI J, TAO L, PASHLEY DH, HOSODA H, SANO H. Effects of high-speed cutting on dentin permeability and bonding. *Dent Mater.* 1991; 7(4): 234-39.

TAY FR, SANO H, CARVALHO RM, PASHLEY EL, PASHLEY DH. An ultrastructural study of the influence of acidity of self-etching primers and smear layer thickness on bonding to intact dentin. *J Adhes Dent.* 2000a; 2(2): 83-98.

TAY FR, CARVALHO RM, SANO H, PASHLEY DH. Effects of smear layer on the bonding of a self-etching primer to dentin. *J Adhes Dent.* 2000b; 2(2): 99-116.

TAY FR, PASHLEY DH. Agressiveness of contemporary self-etching systems. I: Depth of penetration beyond dentin smear layers. *Dent Mater.* 2001; 17(4): 296-308.

VAN MEERBEEK B, DE MUNCK J, MATTAR D, VAN LANDUYT K, LAMBRECHTS, P. Microtensile bond strength of an etch&rinse and self-etch adhesive to enamel and dentin as a function of surface treatment. *Oper Dent.* 2003; 28(5): 647-60.

WATANABE I, NAKABAYASHI N. Bonding durability of photocured phenyl-P in TEGDMA to smear layer-retained bovine dentin. *Quintessence Inter.* 1993; 24(5): 335-42.

YAZICI AR, ÖZGÜNALTAY G, DAYANGAÇ B. A scanning electron microscopic study of different caries removal techniques on human dentin. *Oper Dent.* 2002; 27(4): 360-66.

COMITÊ DE ÉTICA EM PESQUISA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA UNICAMP CERTIFICADO Certificamos que o Projeto de pesquisa intitulado "Efeito da smear layer nos procedimentos adesivos com sistemas autocondicionantes", sob o protocolo nº 150/2002, do Pesquisador Marcelo Tavares de Oliveira, sob a responsabilidade do Prof. Dr. Marcelo Giannini, está de acordo com a Resolução 196/96 do Conselho Nacional de Saúde/MS, de 10/10/96, tendo sido aprovado pelo Comitê de Ética em Pesquisa - FOP. Piracicaba, 17 de fevereiro de 2003 We certify that the research project with title "Effect of the smear layer on the adhesive procedures with selfetching or self-priming systems", protocol nº 150/2002, by Researcher Marcelo Tavares de Oliveira, responsibility by Prof. Dr. Marcelo Giannini, is in agreement with the Resolution 196/96 from National Committee of Health/Health Department (BR) and was approved by the Ethical Committee in Research at the Piraccaba Dentistry School/UNICAMP (State University of Campinas). Piracicaba, SP, Brazil, February 17 2003 See. Prof. Dr. Pedro Luiz Rosalen Prof. Dr. Antonio Bento Alves de Moraes Secretário CEP/FOP/UNICAMP Coordenador CEP/FOP/UNICAMP

Material	Classificação	Composição	Fabricante	Lote
Scotchbond	Gel de ácido	Ácido Fosfórico 35%, sílica coloidal. (pH 0,2)*	3M ESPE, St. Paul,	3BR
Etchant	Fosfórico		MN, EUA	
Single	Sistema	Bis-GMA, HEMA, PAA, etanol e água. (pH 5) *	3M ESPE, St. Paul,	2GK
Bond	adesivo		MN, EUA	
Tyrian SPE	Sistema	Parte A; Etanol. (pH 5-7)*	Bisco Inc,	0300014630
	adesivo	Parte B: Ácido 2-Acrilamido-2-metil-propano-sulfonico,	Schaumburg, IL,	
		Bis (2-metacriloiloxi)etil-fosfato, Etanol. (pH < 1)*	EUA	
Clearfil SE	Sistema	Primer: MDP, HEMA, metacrilato hidrofílico,	Kuraray Medical	00447A
Bond	adesivo	Canforoquinona, Dietanol-p-toluidina, Água. (pH 2)**	Inc.	00610A
		Bond: MDP, Bis-GMA, HEMA, Metacrilato hidrofílico,	Kurashiki,	
		Canforoquinona, Di-etanol-p-toluidina, Sílica coloidal.	Okayama,Japan	
Unifil	Sistema	Primer: HEMA, 4-metacriloxietiltrimelitato anidrido,	GC Corporation,	0302251
Bond	Adesivo	álcool. (pH 2)**	Tóquio,	0302281
		Bond: 2-HEMA, UDMA	Japão	
Clearfil	Resina	Bis-GMA, TEGDMA, vidro de bário silanizado, sílica	Kuraray Medical	816BA
AP-X	composta	silanizada, sílica coloidal silanizada, canforoquinona.	Inc.	
			Kurashiki,	
			Okayama,Japan	

Anexo Z

Quadro – Materiais utilizados neste estudo: classificação, composição, fabricante e lote.

Abreviações: Bis-GMA – bisfenol A-glicidil metacrilato; HEMA – 2-hidroxietil metacrilato; PAA – copolímero do ácido polialcenóico; TEGDMA – trietilenoglicol dimetacrilato; UDMA – uretano dimetacrilato; MDP -10-metacriloiloxidecil dihidrogeno fosfato.

* De acordo com o fabricante ** De acordo com fita de pH Merck

ANEXO 3

RESULTADOS OBTIDOS NO ENSAIO DE MICROTRAÇÃO

Abrasão a ar

	KgF	Lado	Lado	Área	MPa	Média
Tyrian						
1.1	2.389	0.83	0.87	0.7221	32.44438	23.8507144
1.2	1.576	0.85	0.89	0.7565	20.42998	
1.3	1,722	0.87	0.79	0.6873	24.57013	
1.4	1.871	0.89	0.82	0.7298	25.14147	
1.5	1.181	0.84	0.89	0.7476	15.49178	
1.6	1.865	0.84	0.87	0 7308	25.02655	
4.0	*******	0.01	0.07	0.7500	20102020	
21	2 174	0.93	0.96	0 8928	73 87954	18 775342
2.2	1 733	0.03	0.00	0.0520	10 86317	10070042
2.2	2 010	0.00	0.92	0.0000	25 21022	
2.5	1 210	0.92	0.00	0.702	15 45612	
2.4	1.210	0.04	0.92	0.7720	10.40013	
2.5	1.024	0.93	0.88	0.8184	12.2703	
2.0	1.205	0.85	0.92	0.782	15.8637	
3.1	1.287	0.82	0.83	0.6806	18.54416	18.9792884
3.2	1.315	0.82	0.83	0.6806	18.94761	
3.3	2,146	0.81	0.85	0.6885	30.56655	
3.4	0.596	0.82	0.88	0.7216	8.099728	
35	1.316	0.8	0.88	0 704	18.33175	
3.6	1 313	0.82	0.81	0.6642	10 38503	
5.0	1.0+0	0.02	0.01	0.0042	10.00000	
4.1	1.748	0.92	0.84	0.7728	22.18171	23.3156581
4.2	2.302	0.88	0.9	0.792	28.50367	
4.3	3.004	0.83	0.9	0.747	39.43665	
4.4	1.405	0.9	0.9	0.81	17.0103	
4.5	1.68	0.86	0.9	0.774	21.28575	
4.6	1.056	0.94	0.96	0.9024	11.47587	
	KaF	Lado	Lado	Área	MPa	
Clearfil						
1.1	2.589	0.97	0.99	0.9603	26.43905	19 8990409
1.2	2.261	0.82	0.84	0.6888	32,19053	1910990 /09
13	0.978	0.02	0.77	0.616	15.56965	
14	0.979	0.89	0.76	0.010	13 46802	
15	0.929	0.05	0.70	0.0704	17 79594	
1.5	1 3/19	0.0	0.09	0.712	10 44034	
1.0	1.340	0.0	0.65	0.68	19.44024	
2.1	2,127	0.98	0.87	0.8526	24.46487	35.4590147
2.2	4,874	0.94	0.88	0.8272	57.78241	
2.3	3.723	0.88	0.92	0.8096	45.09654	
2.4	2.415	0.98	0.87	0.8526	27.77746	
2.5	2.43	0.91	0.83	0.7553	31.55059	
2.6	2.349	0.92	0.96	0.8832	26.08222	
210	£	v • v &-	0.00	0.0002		
3.1	1.951	0.98	0.89	0.8722	21.93622	26.911218
3.2	1.907	0.9	0.84	0.756	24.73714	
3.3	1.171	0.88	0.86	0.7568	15.17387	

3.4	1.657	0.86	0.72	0.6192	26.24292	
3.5	1.886	0.86	0.89	0.7654	24.16428	
3.6	2.74	0.84	0.65	0.546	49.21286	
4.1	3.499	0.98	0.87	0.8526	40.24568	38.413759
4.2	3.361	0.85	0.9	0.765	43.08516	
4.3	4.013	0.81	0.86	0.6966	56.49453	
4.4	2.107	0.84	0.91	0.7644	27.03115	
4.5	2.209	0.9	0.84	0.756	28.65462	
4.6	2.482	0.8	0.87	0.696	34.97142	
Unifil	KgF	Lado	Lado	Área	MPa	
$1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6$	0.842 1.987 2.431 3.84 3.493 1.924	0.83 0.87 0.88 0.9 0.84 0.9	0.86 0.8 0.83 0.9 0.8 0.8	0.7138 0.696 0.7304 0.81 0.672 0.72	11.56795 27.99686 32.6396 46.49079 50.97415 26.20555	32.6458149
2.1 2.2 2.3 2.4 2.5 2.6	2.357 2.411 1.029 3.377 4.189 2.199	0.92 0.81 0.9 0.8 0.8	0.87 0.91 0.87 0.8 0.87 0.89	0.8004 0.7371 0.7047 0.72 0.696 0.712	28.8784 32.07683 14.31963 45.99591 59.02307 30.28767	35.0969202
3.1	2.061	0.9	0.81	0.729	27.72497	35.3493549
3.2	1.954	0.85	0.82	0.697	27.49239	
3.3	2.546	0.87	0.87	0.7569	32.98683	
3.4	2.808	0.74	0.83	0.6142	44.83405	
3.5	3.197	0.95	0.75	0.7125	44.00261	
3.6	2.859	0.86	0.93	0.7998	35.05528	
4.1	1.676	0.91	0.92	0.8372	19.63204	17.3819765
4.2	1.091	-0.79	0.92	0.7268	14.72077	
4.3	1.378	0.89	0.93	0.8277	16.32664	
4.4	1.689	0.83	0.88	0.7304	22.67721	
4.5	1.136	0.88	0.91	0.8008	13.91153	
4.6	1.203	0.9	0.77	0.693	17.02367	
S. Bond	KgF	Lado	Lado	Área	MPa	
1.1	2.021	0.92	0.98	0.9016	21.9823	28.9101601
1.2	2.362	0.86	0.87	0.7482	30.95871	
1.3	2.843	0.84	0.74	0.6216	44.85249	
1.4	3.067	0.88	0.94	0.8272	36.36	
1.5	1.856	0.75	0.88	0.66	27.57749	
1.6	0.716	0.82	0.73	0.5986	11.72997	
2.1	2.654	0.9	0.96	0.864	30.12367	29.7569309
2.2	1.69	1	0.84	0.84	19.73005	
2.3	2.421	0.86	0.86	0.7396	32.101	
2.4	3.185	1	0.84	0.84	37.18355	
2.5	1.934	0.88	0.8	0.704	26.94043	
2.6	2.251	0.85	0.8	0.68	32.4629	
3.1	2.78	0.8	0.9	0.72	37.86457	28.7945664
3.2	3.734	0.94	0.83	0.7802	46.93416	
3.3	1.277	0.96	0.87	0.8352	14.99412	
3.4	1.355	0.82	0.84	0.6888	19.29154	

.

3.5	1.93	0.89	0.81	0.7209	26.25445	
3.6	2.044	0.87	0.84	0.7308	27.42856	
4.1	2.667	0.89	0.99	0.8811	29.68373	26.7003439
4.2	2.667	0.86	0.75	0.645	40.54936	
4.3	2.075	0.9	0.81	0.729	27.9133	
4.4	2.004	0.88	0.73	0.6424	30.59235	
4.5	1.417	0.8	0.9	0.72	19.30003	
4.6	0.864	0.81	0.86	0.6966	12.16329	
			Ultra-som			
Tyrian 1.1 1 2	KgF 1.785 1.362	Lado 0.84 0.86	Lado 0.79 0.87	Área 0.6636 0.7482	MPa 26.37865 17.85172	Média 18.8973985
1.3	1.041	0.79	0.84	0.6636	15.38385	
1.4	1.272	0.86	0.82	0.7052	17.68868	
1.5	0.9953	0.79	0.82	0.6478	15.06724	
1.6	1.548	0.84	0.86	0.7224	21.01425	
2.1	1.455	0.84	0.89	0.7476	19.08598	21.0679255
2.2	1.433	0.85	0.84	0.714	19.68197	
2.3	1.874	0.88	0.89	0.7832	23.46484	
2.4	1.855	0.82	0.89	0.7298	24.92647	
2.5	1.754	0.86	0.81	0.6966	24.6926	
2.6	1.085	0.85	0.81	0.731	14.5557	
3.1	2.466	0.88	0.88	0.7744	31.2283	25.2254398
3.2	1.387	0.87	0.88	0.7656	17.76623	
3.3	1.63	0.79	0.83	0.6557	24.37828	
3.4	2.42	0.87	0.86	0.7482	31.71892	
3.5	0.9385	0.87	0.79	0.6873	13.39086	
3.6	2.479	0.86	0.86	0.7396	32.87005	
4.1	0.7157	0.94	0.86	0.8084	8.682112	16.3041477
4.2	0.438	0.9	0.84	0.756	5.681631	
4.3	1.871	0.8	0.87	0.696	26.36242	
4.4	1.307	0.82	0.86	0.7052	18.1754	
4.5	1.389	0.79	0.82	0.6478	21.02723	
4.6	1.211	0.84	0.79	0.6636	17.8961	
Clearfil	KgF	Lado	Lado	Área	MPa	
1.1	1.277	0.84	0.88	0.7392	16.94141	22.5704017
1.2	1.697	0.88	0.83	0.7304	22.78462	
1.3	1.634	0.83	0.85	0.7055	22.71306	
1.4	1.336	0.84	0.87	0.7308	17.92787	
1.5	3.157	0.87	0.89	0.7743	39.98398	
1.6	1.109	0.88	0.89	0.7216	15.07147	
2.1	1.623	0.84	0.82	0.6888	23.10713	23.146917
2.2	1.27	0.94	0.83	0.7802	15.96314	
2.3	2.254	0.82	0.82	0.6724	32.87357	
2.4	1.599	0.84	0.78	0.6552	23.9329	
2.5	2.224	0.9	0.94	0.846	25.78013	
2.6	1.21	0.83	0.83	0.6889	17.22463	
3.1	1.654	0.86	0.84	0.7224	22.45321	24.2367694
3.2	1.972	0.88	0.83	0.7304	26.47688	
3.3	1.483	0.87	0.81	0.7047	20.63752	

3.4	1.796	0.83	0.74	0.6142	28.67591	
3.5	1.077	0.89	0.8	0.712	14.83394	
3.6	2.152	0.75	0.87	0.6525	32.34316	
4.1 4.2 4.3 4.4 4.5 4.6	2.992 1.911 1.515 1.321 0.6961 1.463	0.85 0.88 0.84 0.86 0.81 0.87	0.88 0.85 0.86 0.84 0.87 0.87	0.748 0.748 0.7224 0.7224 0.7047 0.7569	39.2266 25.05416 20.56627 17.9327 9.686972 18.95512	21.9036367
Unifil	KgF	Lado	Lado	Área	MPa	
1.1	2.32	0.74	0.81	0.5994	37.957	23.1927385
1.2	1.683	0.86	0.81	0.6966	23.69307	
1.3	1.411	0.74	0.83	0.6142	22.52879	
1.4	0.6234	0.83	0.86	0.7138	8.564676	
1.5	1.846	0.88	0.88	0.7744	23.37691	
1.6	2.007	0.89	0.96	0.8544	23.03599	
2.1 2.2 2.3 2.4 2.5 2.6	1.742 0.7826 1.428 0.9323 0.4573 1.096	0.88 0.83 0.91 0.92 0.9	0.92 0.82 0.8 0.8 0.82 0.79	0.8096 0.6806 0.664 0.728 0.7544 0.711	21.10077 11.27635 21.09021 12.55871 5.944567 15.11686	14.5145772
3.1	0.6056	0.81	0.76	0.6156	9.647348	19.2462342
3.2	0.6894	0.88	0.92	0.8096	8.350673	
3.3	1.8	0.82	0.86	0.7052	25.03115	
3.4	1.138	0.88	0.8	0.704	15.85223	
3.5	1.301	0.81	0.92	0.7452	17.12084	
3.6	3.081	0.89	0.86	0.7654	39.47516	
4.1	1.263	0.86	0.94	0.8084	15.32137	25.0172332
4.2	1.585	0.85	0.79	0.6715	23.14749	
4.3	2.732	0.86	0.92	0.7912	33.86219	
4.4	1.982	0.76	0.91	0.6916	28.10408	
4.5	2.167	0.86	0.78	0.6708	31.6801	
4.6	1.45	0.93	0.85	0.7905	17.98816	
S Bond	KgF	Lado	Lado	Área	MPa	
1.1	2.346	0.91	0.89	0.8099	28.40647	20.1322006
1.2	1.01	0.86	0.77	0.6622	14.95729	
1.3	1.82	0.84	0.86	0.7224	24.70668	
1.4	1.001	0.92	0.85	0.782	12.55301	
1.5	1.766	0.89	0.83	0.7387	23.44462	
1.6	1.274	0.83	0.9	0.747	16.72513	
2.1	1.722	0.88	0.8	0.704	23.98729	32.4428803
2.2	1.927	0.87	0.9	0.783	24.13463	
2.3	3.066	0.81	0.87	0.7047	42.66665	
2.4	2.815	0.82	0.83	0.6806	40.56086	
2.5	2.844	0.82	0.96	0.7872	35.42951	
2.6	1.982	0.83	0.84	0.6972	27.87834	
3.1	2.04	0.85	0.91	0.7735	25.86369	28.0274668
3.2	2.113	0.88	0.9	0.792	26.16345	
3.3	2.211	0.83	0.84	0.6972	31.0994	
3.4	1.55	0.82	0.83	0.6806	22.33369	

3.5	3.208	0.93	0.82	0.7626	41.25326	
3.6	1.83	0.94	0.89	0.8366	21.45131	
4.1	1.168	0.78	0.85	0.663	17.27627	18.0986108
4.2	1.724	0.89	0.88	0.7832	21.58665	
4.3	0.9423	0.9	0.78	0.702	13.16354	
4.4	0.8293	0.9	0.86	0.774	10.50731	
4.5	1.932	0.89	0.88	0.7832	24.19107	
4.6	1.603	0.79	0.91	0.7189	21.86682	
			Lixa SiC 600			
Tvrian	KgF	Lado	Lado	Área	MPa	Média
1.1	1.94	0.74	0.84	0.6216	30.60634	32.5811468
1.2	1.817	0.82	0.8	0.656	27.16263	
1.3	1.648	0.86	0.88	0.7568	21.35486	
1.4	3.468	0.89	0.87	0.7743	43.92285	
1.5	2.303	0.74	0.8	0.592	38.14986	
1.6	2.291	0.78	0.8	0.6552	34.29035	
2.1	2.173	0.86	0.92	0.7912	26.93358	26.7072458
2.2	2.266	0.86	0.79	0.6794	32.70808	
2.3	1.29	0.82	0.81	0.6642	19.04634	
2.4	1.617	0.82	0.86	0.7052	22.48632	
2.5	2.338	0.85	0.9	0.765	29.97117	
2.6	2.169	0.85	0.85	0.731	29.09798	
3.1	2.77	0.76	0.84	0.6384	42.55078	34.7797312
3.2	3.285	0.85	0.85	0.7225	44.58802	
3.3	1.456	0.86	0.85	0.731	19.53281	
3.4	3.231	0.82	0.85	0.697	45.45952	
3.5	1.507	0.88	0.86	0.7568	19.52778	
3.6	2.952	0.92	0.85	0.782	37.01948	
4.1	2.181	0.93	0.83	0.7719	27.70865	25,381
4.2	1.898	0.77	0.84	0.6468	28.77709	
4.3	2.262	0.79	0.86	0.6794	32.65034	
4.4	1.212	0.78	0.81	0.6318	16.598	
4.5	2.034	0.91	0.83	0.7553	27,796	
4.6	1.464	0.84	0.78	0.6552	18,757	
Clearfil	KgF	Lado	Lado	Área	МРа	
1.1 1.2 1.3 1.4 1.5 1.6	0.9664 5 0.9584 3.631 3.426 3.217	0.9 0.9 0.87 0.83 0.84 0.84	0.8 0.8 0.79 0.91 0.83	0.72 0.72 0.7656 0.6557 0.7644 0.6972	13.1627 68.10174 12.27625 54.30524 43.95288 45.24956	39.5080612
2.1	3.142	0.84	0.84	0.7056	43.6685	40.9305591
2.2	3.157	0.81	0.86	0.6966	44.44386	
2.3	4.22	0.82	0.84	0.6888	60.08139	
2.4	2.361	0.82	0.86	0.7052	32.83253	
2.5	2.197	0.75	0.87	0.6525	33.01948	
2.6	1.945	0.84	0.72	0.6048	31.53759	
3.1	3.289	0.8	0.85	0.68	47.43246	39.7239366
3.2	4.325	0.85	0.87	0.7395	57.35465	

.

3.3	2.823	0.98	0.87	0.8526	32.47029	
3.4	1.505	0.87	0.84	0.7308	20.19569	
3.5	3.952	0.86	0.85	0.731	53.01762	
3.6	2.126	0.88	0.85	0.748	27.87291	
4.1 4.2 4.3 4.4 4.5 4.6	2.609 2.242 4.235 3.239 3.715 2.392	0.75 0.83 0.82 0.81 0.79 0.81	0.8 0.83 0.81 0.86 0.81	0.6 0.664 0.6806 0.6561 0.6794 0.6561	42.64258 33.11221 61.0214 48.41295 53.62335 35.75294	45.7609071
Unifil	KgF	Lado	Lado	Área	MPa	
1.1	1.767	0.82	0.91	0.7462	23.22213	24.8508157
1.2	1.387	0.78	0.86	0.6708	20.27702	
1.3	1.91	0.73	0.81	0.5913	31.67715	
1.4	0.9393	0.85	0.84	0.714	12.9011	
1.5	2.165	0.84	0.84	0.7056	30.08985	
1.6	2.279	0.84	0.84	0.7224	30.93765	
2.1	0.6489	0.85	0.77	0.6545	9.722743	10.9657168
2.2	0.6333	0.83	0.83	0.6889	9.015171	
2.3	0.5399	0.77	0.83	0.6391	8.284479	
2.4	0.7216	0.77	0.86	0.6622	10.68632	
2.5	1.125	0.86	0.83	0.7138	15.45598	
2.6	0.9082	0.82	0.86	0.7052	12.62961	
3.1 3.2 3.3 3.4 3.5 3.6	3.56 1.644 1.202 1.583 0.8999 1.146	0.81 0.83 0.82 0.83 0.83 0.85 0.8	0.83 0.87 0.8 0.85 0.83 0.83	0.6723 0.7221 0.656 0.7055 0.7055 0.696	51.92871 22.32673 17.96889 22.00415 12.50887 16.14716	23.8140845
4.1	0.8744	0.81	0.84	0.6804	12.60278	22.0305163
4.2	0.6354	0.89	0.81	0.7209	8.643564	
4.3	1.136	0.84	0.88	0.7392	15.07083	
4.4	2.705	0.79	0.83	0.6557	40.45598	
4.5	1.126	0.89	0.82	0.7298	15.13057	
4.6	2.793	0.85	0.8	0.68	40.27937	
S. Bond	KgF	Lado	Lado	Área	MPa	
1.1	2.271	0.73	0.89	0.6497	34.27875	39.827562
1.2	2.083	0.84	0.79	0.6636	30.78248	
1.3	3.409	0.9	0.79	0.711	47.01951	
1.4	2.58	0.82	0.79	0.6478	39.05705	
1.5	2.791	0.85	0.72	0.612	44.72281	
1.6	3.101	0.85	0.83	0.7055	43.10478	
2.1	2.288	0.88	0.84	0.7392	30.35392	33.6865388
2.2	2.678	0.81	0.86	0.6966	37.70056	
2.3	3.377	0.8	0.82	0.656	50.48332	
2.4	2.342	0.91	0.82	0.7462	30.77885	
2.5	1.086	0.88	0.81	0.7128	14.94111	
2.6	2.596	0.82	0.81	0.6724	37.86149	
3.1	2.659	0.85	0.84	0.714	36.52084	28.3012853

3.2	1.097	0.84	0.79	0.6636	16.21142	
3.3	2.482	0.81	0.79	0.6399	38.03736	
3.4	2.264	0.83	0.8	0.664	33.43713	
3.5	1.465	0.78	0.9	0.702	20.46544	
3.6	1.787	0.84	0.83	0.6972	25.13552	
4.1	3.5910	0.88	0.76	0.6688	52.65502	33.9507372
4.2	2.499	0.86	0.84	0.7224	33.92417	
4.3	1.135	0.82	0.89	0.7298	15.2515	
4.4	3.231	0.83	0.83	0.6889	45.99403	
4.5	1.593	0.85	0.79	0.6715	23.26432	
4.6	2.368	0.8	0.89	0.712	32.61538	
			Laser Er:YAG			
Tyrian	KgF	Lado	Lado	Área	MPa	Média
1.1	1.562	0.86	0.87	0.7482	20.47312	17.4039555
1.2	0.9557	0.86	0.82	0.7052	13.29015	
1.3	1.274	0.86	0.89	0.7654	16.32306	
1.4	1.026	0.82	0.86	0.7052	14.26776	
1.5	2.297	0.83	0.91	0.7553	29.82375	
1.6	0.6438	0.79	0.78	0.6162	10.2459	
2.1	1.73	0.87	0.85	0.7395	22.94186	13.990807
2.2	1.044	0.81	0.84	0.6804	15.04724	
2.3	0.4576	0.8	0.84	0.672	6.677862	
2.4	0.8507	0.85	0.86	0.731	11.41247	
2.5	1.338	0.81	0.91	0.7371	17.80125	
2.6	0.7621	0.79	0.94	0.7426	10.06416	
3.1	1.199	0.88	0.9	0.792	14.84618	16.9387248
3.2	0.996	0.81	0.85	0.6885	14.18653	
3.3	1.767	0.84	0.85	0.714	24.2694	
3.4	0.7138	0.87	0.82	0.7134	9.812149	
3.5	1.519	0.82	0.87	0.7134	20.88071	
3.6	1.33	0.85	0.87	0.7395	17.63738	
4.1	0.4354	0.84	0.78	0.6552	6.516812	8.41430493
4.2	0.7026	0.78	0.86	0.6708	10.27154	
4.3	0.5761	0.93	0.86	0.7998	7.06378	
4.4	0.6905	0.81	0.87	0.7047	9.609042	
4.5	0.7289	0.87	0.89	0.7743	9.231651	
4.6	0.5809	0.85	0.86	0.731	7.793	
Clearfil	KgF	Lado	Lado	Área	MPa	
1.1	1.267	0.84	0.88	0.7392	16.80875	12.8471497
1.2	0.7085	0.84	0.92	0.7728	8.990698	
1.3	1.613	0.85	0.85	0.7225	21.8936	
1.4	0.4048	0.93	0.8	0.744	5.335661	
1.5	0.6722	0.87	0.79	0.6873	9.591198	
1.6	1.016	0.83	0.83	0.6889	14.46299	
2.1	1.432	0.87	0.86	0.7482	18.76921	19.4726045
2.2	1.258	0.82	0.77	0.6314	19.53875	
2.3	1.219	0.91	0.9	0.819	14.59622	
2.4	0.4348	0.82	0.77	0.6314	6.753138	
2.5	1.77	0.79	0.76	0.6004	28.91034	
2.6	1.914	0.83	0.8	0.664	28.26796	

31	0 4985	0.82	0.88	0 7216	6.774688	8,19525652
3.2	0.1505	0.86	0.00	0.7210	11 50776	0.19525052
3.2	0.6703	0.00	0.01	0.000	0 103168	
3.3	0.0703	0.07	0.03	0.7221	10 20012	
3.4 7 E	0.7557	0.62	0.07	0.7134	10.30012	
3.5	0.3141	0.9	0.81	0.729	4.220034	
3.6	0.5793	0.99	0.8	0.792	/.1/29/	
4 1	0.8223	0.92	0 79	0 7268	11.09522	9 88976283
4.7	1 089	0.92	0.86	0 7912	13 49778	5.0057.0200
43	0 4196	0.84	0.00	0.672	6 123319	
4.4	0.8341	0.87	0.0	0.07205	11 06116	
45	0.0011	0.07	0.05	0.7728	3 704142	
4.5	1 1 20	0.92	0.85	0.7720	13 85696	
4.0	1.129	0.94	0.05	0.799	19.09090	
	KgF	Lado	Lado	Área	MPa	
Unifil						
1.1	0.9302	0.79	0.84	0.6636	13.74645	15.653363
1.2	1.882	0.84	0.86	0.7224	25.54833	
1.3	0.6491	0.84	0.87	0.7308	8.710313	
1.4	1.456	0.85	0.86	0.731	19.53281	
1.5	1.285	0.86	0.91	0.7826	16.10215	
1.6	0.7925	0.9	0.84	0.756	10.28012	
			0,0,1			
2.1	0.4368	0.81	0.76	0.6156	6.958325	15.5012763
2.2	1.836	0.86	0.84	0.7224	24.92388	
2.3	1.023	0.9	0.87	0.783	12.81252	
2.4	1.142	0.82	0.82	0.6724	16.65555	
2.5	0.3608	0.82	0.77	0.6314	5.6038	
2.6	1.657	0.77	0.81	0.6237	26.05358	
⇒ +	0.0100	0.04	0.07	0 7200	10 00005	6 70000170
3.1	0.8129	0.84	0.87	0./308	10.90835	0./20931/3
3.2	0.2793	0.85	0.81	0.0900	3.331321	
3.3	0.4689	0.84	0.85	0.714	0.44025	
3.4	0.282	0.84	0.83	0.6972	3.966545	
3.5	0.5082	0.82	0.88	0.7216	6.906513	
3.6	0.5879	0.85	0.83	0.7055	8.171977	
4.1	0.5981	0.85	0.9	0.765	7.667134	9.4481697
4.2	1.236	0.81	0.81	0.6561	18.47435	
4.3	0.4768	0.82	0.93	0 7626	6.131407	
44	0 5522	0.93	0.86	0 7998	6.770733	
45	0.8921	0.85	0.81	0.6885	12,70663	
4.6	0.3762	0.83	0.9	0.747	4.938771	
~ ~ .	KgF	Lado	Lado	Área	MPa	
S. Bond						
1.1	1.216	0.82	0.85	0.697	17.10888	17.1871439
1.2	1.674	0.88	0.82	0.7216	22.74 9 91	
1.3	1.077	0.81	0.81	0.6561	16.09779	
1.4	1.56	0.84	0.86	0.7224	21.17715	
1.5	0.5466	0.94	0.85	0.799	6.70878	
1.6	1.274	0.8	0.81	0.648	19.28036	
21	0 9715	0.84	0.81	0 6804	13 43577	9 471 70436
2.1	1 176	0.04	0.01	0.0004	16 50075	7.4/1/0430
<u> </u>	1,100	0.75	0.00 0 00	0.0713	10.33023 20667E	
2.3	0.0323	0,24	0.02	0.7700	5.500043 E E00944	
2.4 7 E	0.3313	0.70	U./9 0.00	0.0102	3.33V841 9 384A83	
2.3	0.7704	0.98	0.93	0.9114	0.334032	
2.0	0.3///	0.99	0.82	0.8118	4,302005	

3.1	1.37	0.82	0.82	0.6724	19.98083	9.76950093
3.2	0.7546	0.84	1.01	0.8484	8.722416	
3.3	0.564	0.96	0.83	0.7968	6.941454	
3.4	0.1854	0.84	0.81	0.6804	2.672182	
3.5	0.7248	0.78	0.78	0.6084	11.68287	
3.6	0.6564	0.83	0.9	0.747	8.617249	
4.1	0.709	0.84	0.88	0.7392	9.406	13.3870584
4.2	1.053	0.85	0.83	0.7055	14.637	
4.3	0.6958	0.95	0.8	0.76	8.978246	
4.4	1.25	0.87	0.82	0.7134	17.18294	
4.5	1.39	0.84	0.79	0.6636	20.54136	
4.6	0.625	0.8	0.8	0.64	9.576807	
			Carisolv			
Tyrian	KgF	Lado	Lado	Área	МРа	Média
1.1	1.662	0.83	0.84	0.6972	23.3773	16.5520283
1.2	0.6265	0.82	0.83	0.6806	9.027132	
1.3	1.419	0.82	0.81	0.6642	20.95097	
1.4	1.635	0.9	0.78	0.702	22.84027	
1.5	0.4421	0.83	0.89	0.7387	5.869121	
1.6	1.197	0.83	0.82	0.6806	17.24737	
2.1	0.5195	0.83	0.77	0.6391	7.971452	19.218152
2.2	0.8344	0.85	0.83	0.7055	11.5984	
2.3	2.491	0.89	0.81	0.7209	33.88593	
2.4	1.275	0.89	0.84	0.7476	16.72482	
2.5	1.51	0.81	0.75	0.6075	24.37538	
2.6	1.577	0.92	0.81	0.7452	20.75293	
3.1	2.103	0.79	0.87	0.6873	30.00638	27.376404
3.2	1.798	0.83	0.79	0.6557	26.89089	
3.3	1.684	0.83	0.92	0.7636	21.62703	
3.4	2.33	0.84	0.84	0.7056	32.38307	
3.5	2.099	0.79	0.84	0.6636	31.01892	
3.6	1.421	0.8	0.78	0.624	22.33213	
4.1	0.9023	0.92	0.81	0.7452	11.87405	19.5057599
4.2	1.156	0.81	0.86	0.6966	16.27403	
4.3	2.262	0.79	0.86	0.6794	32.65034	
4.4	0.8115	0.93	0.77	0.7161	11.11311	
4.5	2.189	0.78	0.92	0.7176	29.91466	
4.6	1.187	0.89	0.86	0.7654	15.20838	
Clearfil	KgF	Lado	Lado	Área	MPa	
1.1	0.8153	0.92	0.8	0.736	10.86326	21.8681219
1.2	1.608	0.85	0.87	0.7395	21.32399	
1.3	2.532	0.87	0.86	0.7482	33.1869	
1.4	1.033	0.9	0.76	0.684	14.81034	
1.5	1.117	0.8	0.82	0.656	16.69821	
1.6	2.495	0.81	0.88	0.7128	34.32603	
2.1	1.385	0.84	0.8	0.672	20.21162	26.1042467
2.2	1.67	0.8	0.81	0.648	25.27331	
2.3	1.389	0.87	0.86	0.7482	18.20561	
2.4	2.199	0.8	0.86	0.688	31.34422	
2.5	2.078	0.86	0.81	0.6966	29.25383	
2.6	2.297	0.86	0.81	0.6966	32.33689	
3.1 3.2 3.3 3.4 3.5 3.6	0.9765 0.9826 2.154 1.836 1.485 1.428	0.81 0.89 0.86 0.76 0.87 0.89	0.8 0.78 0.82 0.88 0.88 0.81	0.648 0.712 0.6708 0.6232 0.7656 0.7209	14.77808 13.53373 31.49005 28.89122 19.02152 19.42557	21.1900279
---	--	--	--	---	--	------------
4.1 4.2 4.3 4.4 4.5 4.6	$2.556 \\ 1.421 \\ 1.621 \\ 1.103 \\ 2.156 \\ 1.623$	0.83 0.85 0.82 0.93 0.86 0.76	0.85 0.76 0.83 0.77 0.78 0.78	0.7055 0.646 0.6806 0.7161 0.6708 0.5928	35.52912 21.57159 23.35671 15.10506 31.51929 26.84918	25.6551599
Hnifil	KgF	Lado	Lado	Área	MPa	
1.1 1.2 1.3 1.4 1.5 1.6	2.388 2.697 1.49 2.439 2.137 1.033	0.9 0.82 0.85 0.84 0.81 0.84	0.88 0.88 0.76 0.89 0.89 0.92	0.792 0.7216 0.646 0.7476 0.7209 0.7728	29.56854 36.65263 22.61905 31.99361 29.07034 13.10853	27.1687819
2.1 2.2 2.3 2.4 2.5 2.6	$1.64 \\ 1.636 \\ 0.8652 \\ 1.698 \\ 1.192 \\ 1.642$	0.83 0.87 0.85 0.78 0.87 0.87	0.83 0.78 0.83 0.82 0.84 0.8	0.6889 0.6786 0.7055 0.6396 0.7308 0.64	23.34578 23.64232 12.02653 26.03454 15.99552 25.16019	21.0341452
3.1 3.2 3.3 3.4 3.5 3.6	1.189 1.501 1.18 1.127 1.3 1.239	0.82 0.87 0.9 0.92 0.86 0.81	0.83 0.75 0.81 0.8 0.91 0.77	0.6806 0.6525 0.729 0.736 0.7826 0.6237	17.1321 22.55905 15.87359 15.01643 16.29012 19.48122	17.7254191
4.1 4.2 4.3 4.4 4.5 4.6	0.913 2.636 1.951 2.843 1.062 1.289	0.84 0.89 0.83 0.81 0.83 0.85	0.89 0.81 0.84 0.83 0.82 0.92	0.7476 0.7209 0.6972 0.6723 0.6806 0.782	11.97629 35.85841 27.4423 41.47004 15.30218 16.16467 MPa	24.7023145
S. Bond 1.1 1.2 1.3 1.4 1.5 1.6	1.842 3.082 3.074 2.573 1.944 0.3766	0.9 0.87 0.89 0.89 0.82 0.82	0.83 0.84 0.78 0.87 0.79 0.76	0.747 0.7308 0.6942 0.7743 0.6478 0.6308	24.18186 41.35755 43.42501 32.58751 29.42903 5.854763	29.4726208
2.1 2.2 2.3 2.4 2.5 2.6	2.373 2.969 2.926 2.291 2.84 1.63	0.78 0.9 0.88 0.8 0.83 0.83	0.85 0.78 0.83 0.83 0.84 0.76	0.663 0.702 0.7304 0.664 0.6972 0.6308	35.09982 41.4757 39.28568 33.8359 39.94677 25.34058	35.8307409

3.1	1.604	0.81	0.83	0.6723	23.39709	27.0626689
3.2	2.364	0.85	0.8	0.68	34.09253	
3.3	2.329	0.83	0.81	0.6723	33.97246	
3.4	2	0.87	0.86	0.7482	26.21398	
3.5	2.017	0.82	0.84	0.6888	28.71663	
3.6	1.291	0.89	0.89	0.7921	15.98332	
4.1 4.2 4.3 4.4 4.5 4.6	3.04 3.146 3.789 3.44 2.464 3.263	0.88 0.98 0.89 0.89 0.89 0.87 0.9	0.85 0.86 0.87 0.79 0.76 0.84	0.748 0.8428 0.7743 0.7031 0.6612 0.756	39.8559 36.60622 47.98837 47.9802 36.54505 42.32685	41.8837649
			Carbide			
Tyrian	KgF	Lado	Lado	Área	MPa	Média
1.1	1.615	0.85	0.84	0.714	22.18171	25.7059236
1.2	1.756	0.86	0.91	0.7826	22.00419	
1.3	1.897	0.86	0.81	0.6966	26.70574	
1.4	2.021	0.86	0.84	0.7224	27.43527	
1.5	2.222	0.92	0.89	0.8188	26.61257	
1.6	2.081	0.86	0.81	0.6966	29.29606	
2.1	1.966	0.83	0.75	0.6225	30.97168	27.4784609
2.2	2.481	0.84	0.91	0.7644	31.82928	
2.3	2.062	0.84	0.87	0.7308	27.6701	
2.4	1.732	0.81	0.76	0.6156	27.59116	
2.5	2.055	0.9	0.76	0.684	29.46296	
2.6	1.464	0.93	0.89	0.8277	17.34558	
3.1	1.987	0.87	0.91	0.7917	24.61262	19.503749
3.2	0.9297	0.88	0.82	0.7216	12.63476	
3.3	1.426	0.82	0.84	0.6888	20.30239	
3.4	1.868	0.86	0.87	0.7482	24.48386	
3.5	1.111	0.82	0.8	0.656	16.60852	
3.6	1.291	0.82	0.8	0.6888	18.38035	
4.1	1.606	0.86	0.83	0.7138	22.06428	28.5977409
4.2	2.85	0.91	0.79	0.7189	38.87739	
4.3	3.079	0.85	0.84	0.714	42.28946	
4.4	2.071	0.82	0.82	0.6724	30.2046	
4.5	1.154	0.75	0.74	0.555	20.39076	
4.6	1.217	0.8	0.84	0.672	17.75996	
Clearfil	KgF	Lado	Lado	Área	MPa	
1.1	2.479	0.85	0.8	0.68	35.75101	43.6761123
1.2	2.392	0.8	0.81	0.648	36.19986	
1.3	4.259	0.88	0.86	0.7568	55.18832	
1.4	3.336	0.83	0.87	0.7221	45.30534	
1.5	2.741	0.85	0.88	0.748	35.93587	
1.6	3.815	0.85	0.82	0.697	53.67628	
2.1	4.137	0.84	0.85	0.714	56.82088	35.853651
2.2	1.799	0.86	0.85	0.731	24.13429	
2.3	2.409	0.86	0.86	0.7396	31.94189	
2.4	3.027	0.8	0.84	0.672	44.1737	
2.5	2.809	0.82	0.85	0.697	39.52207	
2.6	1.333	0.85	0.83	0.7055	18.52908	

3.1	4.23	0.78	0.82	0.6396	64.85636	54.3080028
3.2	4.357	0.88	0.84	0.7392	57.80245	
3.3	3.404	0.9	0.8	0.72	46.36366	
3.4	3.446	0.89	0.87	0.7743	43.64422	
3.5	4.42	0.88	0.78	0.6864	63.14888	
3.6	3.43	0.88	0.83	0.6723	50.03244	
4.1 4.2 4.3 4.4 4.5 4.6	1.826 2.027 4.024 4.106 1.924 2.787	0.83 0.8 0.75 0.89 0.84	0.84 0.95 0.75 0.89 0.9 0.84	0.6972 0.76 0.6 0.6675 0.801 0.7056	25.68408 26.15537 65.76993 60.32375 23.55555 38.7346	40.0372142
Unifil	KgF	Lado	Lado	Área	MPa	
1.1	2.858	0.77	0.87	0.6699	41.83819	26.0269399
1.2	1.652	0.84	0.88	0.7392	21.91638	
1.3	1.195	0.77	0.86	0.6622	17.69699	
1.4	1.677	0.84	0.84	0.7056	23.30747	
1.5	2.201	0.87	0.85	0.7395	29.18788	
1.6	1.754	0.87	0.89	0.7743	22.21473	
2.1	0.923	0.79	0.81	0.6399	14.14524	17.0392821
2.2	0.9785	0.8	0.82	0.656	14.62775	
2.3	1.215	0.81	0.83	0.6723	17.72286	
2.4	1.06	0.78	0.83	0.6474	16.05661	
2.5	1.55	0.82	0.88	0.7216	21.06473	
2.6	1.37	0.82	0.88	0.7216	18.6185	
3.1	1.091	0.77	0.87	0.6699	15.97112	22.7402883
3.2	1.575	0.82	0.83	0.6806	22.69391	
3.3	1.725	0.87	0.8	0.696	24.30527	
3.4	1.144	0.83	0.7	0.581	19.30948	
3.5	1.208	0.81	0.8	0.648	18.28153	
3.6	2.166	0.74	0.8	0.592	35.88041	
4.1 4.2 4.3 4.4 4.5 4.6	2.093 2.83 2.091 2.674 1.436 2.976 KaF	0.9 0.82 0.92 0.84 0.82 0.94	0.86 0.88 0.84 0.91 0.76 0.78	0.774 0.7216 0.7728 0.7644 0.6232 0.7332	26.5185 38.46012 26.5343 34.30531 22.59684 39.80441 MPa	31.3699117
S. Bond 1.1 1.2 1.3 1.4 1.5 1.6	2.102 2.831 1.266 2.109 1.929 2.95	0.85 0.83 0.82 0.76 0.8 0.93	0.85 0.8 0.85 0.81 0.85 0.85 0.88	0.7225 0.664 0.697 0.6156 0.68 0.8184	28.5309 41.81118 17.81237 33.59686 27.81916 35.34899	30.8199107
2.1	2.123	0.78	0.85	0.663	31.40199	27.4715381
2.2	1.091	0.85	0.79	0.6715	15.93307	
2.3	1.917	0.8	0.82	0.656	28.65754	
2.4	1.04	0.78	0.83	0.6474	15.75365	
2.5	2.044	0.89	0.88	0.7832	25.59345	
2.6	2.984	0.79	0.78	0.6162	47.48952	

3.1	1.512	0.93	0.88	0.8184	18.11786	38.498228
3.2	3.268	0.9	0.84	0.756	42.39171	
3.3	3.988	0.82	0.89	0.7298	53.58855	
3.4	4.317	0.91	0.89	0.8099	52.27227	
3.5	1.739	0.85	0.88	0.748	22.79915	
3.6	3.264	0.86	0.88	0.7654	41.81984	
4.1	3.035	0.92	0.93	0.8556	34.78633	42.0213408
4.2	3.922	0.89	0.79	0.7031	54.703	
4.3	3.055	0.76	0.9	0.684	43.80017	
4.4	3.451	0.9	0.91	0.819	41.32204	
4.5	2.87	0.76	0.79	0.6004	46.87722	
4.6	2.357	0.82	0.92	0.7544	30.63928	

ŗ

P. Diamantada

	KgF	Lado	Lado	Área	MPa	Média
Tyrian						
1.1	2.45	0.8	0.88	0.704	34.12826	26.18525169
1.2	1.76	0.81	0.89	0.7209	23.94188	
1.3	2.159	0.89	0.78	0.6942	30.49922	
1.4	1.607	0.79	0.83	0.6557	24.03429	
1.5	1.666	0.82	0.82	0.6724	24.29786	
1.6	1.558	0.84	0.9	0.756	20.21	
2.1	1,798	0.84	0.84	0.7056	24.98917	23.0706575
2.2	1.322	0.81	0.83	0.6723	19.28364	
2.3	1.134	0.76	0.84	0.6384	17.41971	
2.4	1.201	0.85	0.77	0.6545	17.99509	
2.5	1.999	0.83	0.79	0.6557	29.89705	
2.6	1.788	0.8	0.76	0.608	28.83929	
3.1	1.635	0.78	0.89	0.6942	23.09691	28.1575171
3.2	2.579	0.87	0.8	0.696	36.33815	
3.3	2.085	0.82	0.78	0.6396	31.96821	
3.4	1.774	0.87	0.86	0.7482	23.2518	
3.5	2.416	0.81	0.79	0.6399	37.02589	
3.6	1.242	0.85	0.83	0.7055	17.26415	
4.1	2.027	0.83	0.86	0.7138	27.84825	26.06738372
4.2	0.8156	0.82	0.84	0.6888	11.61194	
4.3	2.758	0.84	0.84	0.7056	38.33155	
4.4	2.052	0.79	0.83	0.6557	30.68971	
4.5	2.026	0.86	0.78	0.6708	29.61877	
4.6	1.317	0.84	0.84	0.7056	18.30408	
	KgF	Lado	Lado	Área	MPa	
Clearfil						
1.1	3.22	0.83	0.82	0.6806	46.39643	41.60431593
1.2	1.685	0.8	0.83	0.664	24.88585	
1.3	1.94	0.83	0.85	0.7055	26.96655	
1.4	3.689	0.82	0.84	0.6888	52.52139	
1.5	2.479	0.8	0.83	0.664	36.61248	
1.6	3.859	0.76	0.8	0.608	62.24319	
2.1	2,189	0.86	0.79	0.6794	31.59664	35.52999703
2.2	1.9	0.89	0.77	0.6853	27.18902	
2.3	4,538	0.86	0.85	0.731	60.87904	
2.4	2.391	0.8	0.8	0.64	36.63703	
2.5	2.016	0.83	0.83	0.6889	28.69822	

.*

2.6	2.15	0.86	0.87	0.7482	28.18003	
3.1	0.9785	0.87	0.84	0.7308	13,13055	24 6527741
3.2	1 072	0.84	0.77	0.6468	15 51052	
3.2	2.020	0.04	0.77	0.0400	E1 06402	
3.3	3.368	0.84	0.77	0.6468	51.00493	
3.4	1.094	0.83	0.85	0.7055	15.20691	
3.5	1.205	0.84	0.76	0.6384	18.51036	
3.6	2.332	0.78	0.85	0.663	34.49338	
4.1	1.689	0.87	0.84	0,7308	22.66479	36.57120093
4.2	2 436	0.84	0.82	0 6888	34,68205	
43	3 / 96	0.82	0.78	0.6306	53 449	
4.5	3.400	0.02	0.70	0.0330	22.772	
4.4	2,340	0.00	0.02	0.7052	32.031/3	
4.5	2.812	0.83	0.85	0.7055	39.08/6	
4.6	2.718	0.85	0.85	0.7225	36.89201	
1 E 1 <i>4</i> 71 1	KgF	Lado	Lado	Área 🚽	MPa	
	2 420	0.00	0.92	0 6724	25 41130	20 12024414
7.7	2.428	0.82	0.82	0.0724	33,41128	30.12034414
1.2	2.858	0.91	0.91	0.8281	33.84544	
1.3	2.435	0.81	0.86	0.6966	34.27963	
1.4	1.009	0.78	0.83	0.6474	15.28407	
1.5	2.214	0.89	0.82	0.7298	29.75051	
1.6	2.312	0.86	0.82	0.7052	32.15113	
2.1	0.97	0.83	0.81	0.6723	14.14912	20.97235648
2.2	1.49	0.78	0.81	0.6318	23.12743	
2.3	1.613	0.81	0.81	0.6561	24.10932	
2.4	2.131	0.83	0.79	0.6557	31.87124	
25	0.974	0.92	0.84	0 7728	11.72534	
2.6	1 411	0.79	0.84	0.6636	20.85169	
2.0	1.411	0.79	0.04	0.0000	20.03103	
3.1	0.548	0.84	0.86	0.7224	7.439153	15.20096508
3.2	1.156	0.79	0.81	0.6399	17.71603	
33	1 227	0.87	0.78	0.6786	17.73174	
34	0.8545	0.86	0.78	0.6709	17 40777	
25	1 76	0.00	0.70	0.0700	76 20651	
3.3	1.70	0.01	0.01	0.0501	20.50051	
3.0	0.6446	0.8	0.83	0.664	9.52013	
4.1	2.103	0.78	0.81	0.6318	32.64227	29.27208083
4.2	1.589	0.81	0.87	0.7047	22.11263	
4.3	1.55	0.84	0.81	0.6804	22.34025	
4 4	3 100	0.85	0.84	0 714	43 93764	
1.1	2.100	0.05	0.07	0.667	22 22065	
4.5	1 252	0.70	0.00	0.003	33.33903	
4.0	1.353	0.79	0.79	0.6241	21.20005	
	KgF	Lado	Lado	Área	MPa	
S. Bond						
1.1	1.885	0.81	0.83	0.6723	27.49596	31.93123557
12	3 1 7 3	0.89	0.83	0 7387	47,12333	
1 7	2 2 2 2	0.09	0.86	0.6709	27 5124	
د.ي ۸ ۲	2.224	0.70	0.00	0.0700	32,3234 33 1703	
1.4 . m	2.200	0.01	0.03	0.0723	32.1/85	
1.5	1.553	0.83	0.84	0.6972	21.84413	
1.6	2.639	0.83	0.88	0.7304	35.4323	
2.1	2,765	0.88	0.81	0.7128	38.04067	45,49272882
2.2	3 46	0.86	0.79	0 6794	49.94261	
 	2 604	0.00	0.79	0.07 24	10 0320	
2.3	2.004	0.8	0.70	0.024	40.9239	
2.4	2.958	0.89	0.79	0./031	41.25739	
2.5	2.785	0.85	0.79	0.6715	40.67241	
2.6	3 002	0 77	0.8	0.616	67 1194	

34.22628224	33.60321	0.6006	0.78	0.77	2.058	3.1
	31.48685	0.6391	0.83	0.77	2.052	3.2
	43.92906	0.7128	0.81	0.88	3.193	3.3
	32.43089	0.697	0.82	0.85	2.305	3.4
	24.02374	0.6715	0.85	0.79	1.645	3.5
	39.88395	0.731	0.86	0.85	2,973	3.6
38.88973702	48.05001	0.6084	0.78	0.78	2.981	4.1
	45.47359	0.697	0.82	0.85	3,232	4.2
	37.5046	0.672	0.8	0.84	2.57	4.3
	39.6304	0.68	0.85	0.8	2.748	4.4
	24.81913	0.697	0.85	0.82	1.764	4.5
	37.8607	0.7395	0.85	0.87	2.855	4.6

-			Smear Free	_		
	KgF	Lado	Lado	Área	MPa	Média
Tyrian						
1.1	0.9307	0.8	0.87	0.696	13.11358	22.0840924
1.2	1.512	0.82	0.78	0.6396	23.1827	
1.3	1.748	0.83	0.85	0.7055	24.2977	
1.4	2.217	0.79	0.82	0.6478	33.56181	
1.5	1.065	0.88	0.83	0.7304	14.29913	
1.6	1.648	0.8	0.84	0.672	24.04964	
21	1 697	0.83	0.82	0.6806	24.45179	23 9311261
22	1 588	0.00	0.8	0.576	27 03639	20,0011202
2.2	1 778	0.72	0.82	0.570	25 31301	
2.5	1 671	0.84	0.02	0.0000	22,21027	
2.7	0.9544	0.04	0.00	0.0972	14 80078	
2.5	2.023	0.8	0.85	0.68	29.17478	
. .	A 7074					
3.1	0.7871	0.85	0.8	0.68	11.3512	26.24/9955
3.2	1.478	0.72	0.83	0.5976	24.25406	
3.3	1.968	0.79	0.73	0.576/	33.46538	
3.4	1.848	0.82	0.81	0.6642	27.28499	
3.5	1.862	0.83	0.82	0.6806	26.82924	
3.6	2.295	0.81	0.81	0.6561	34.3031	
4.1	1,564	0.99	0.77	0.7623	20.12016	22.7354198
4.2	2,317	0.8	0.78	0.624	36.41347	
4.3	0.456	0.8	0.73	0.584	7.657247	
4.4	1,729	0.78	0.88	0.6864	24.70236	
4.5	2.246	0.88	0.87	0.7656	28.76925	
4.6	1.364	0.82	0.87	0.7134	18.75003	
	KaF	Lado	Lado	Área	MPa	
Clearfil	-					
1.1	2,911	0.79	0.93	0.7347	38.85553	37,6061843
1.2	1.752	0.8	0.79	0.632	27,18552	
1.3	3.18	0.84	0.8	0.672	46.40647	
1.4	4.055	0.81	0.81	0.6561	60.60961	
15	2 487	0.79	0.89	0 7031	34.68801	
1.6	1.081	0.79	0.75	0.5925	17.89196	
~ -	1.005	0.0	0.70	0.000	20 40 440	40 7776000
2.1	1.895	0.8	0.79	0.632	29.40443	48.///6888
2.2	4.393	0.85	0.82	0.69/	01.80863	
2.3	1.933	0.83	0.82	0.6806	27.85227	
2.4	4,753	0.87	0.85	0.7395	63.03044	
2.5	2.974	0.8	0.8	0.64	45.57028	

.

2.6	4.189	0.79	0.8	0.632	65.00009	
3.1	4.306	0.85	0.73	0.6205	68.05388	54.1595804
3.2	3.502	0.8	0.75	0.6	57.23815	
3.3	2.651	0.83	0.77	0.6391	40.67819	
3.4	2.769	0.78	0.8	0.624	43.51701	
3.5	4.268	0.82	0.86	0.7052	59.35165	
3.6	3.481	0.77	0.79	0.6083	56.11861	
4.1	3.089	0.83	0.82	0.6806	44.50888	48.5805659
4.2	4.783	0.82	0.85	0.697	67.29585	
4.3	2.764	0.84	0.82	0.6888	39.35189	
4.4	2.519	0.78	0.84	0.6552	37.70292	
4.5	4.413	0.83	0.85	0.7055	61.34195	
4.6	2.82	0.77	0.87	0.6699	41.28191	
Unifil	KgF	Lado	Lado	Área	MPa	
1.1	2.694	0.75	0.8	0.6	44.03186	27.7445598
1.2	2.138	0.81	0.76	0.6156	34.05883	
1.3	1.248	0.83	0.86	0.7138	17.14584	
1.4	1.189	0.82	0.8	0.656	17.77455	
1.5	2.005	0.8	0.81	0.648	30.34311	
1.6	1.581	0.78	0.86	0.6708	23.11317	
2.1	2.319	0.85	0.83	0.7055	32.23476	38.4253084
2.2	3.282	0.81	0.82	0.6642	48.45743	
2.3	3.266	0.83	0.77	0.6391	50.11504	
2.4	2.467	0.83	0.82	0.6806	35.54658	
2.5	3.015	0.8	0.89	0.712	41.52676	
2.6	1.849	0.8	0.93	0.7998	22.67129	
3.1	2.716	0.84	0.77	0.6468	41.17944	40.1373119
3.2	1.856	0.77	0.84	0.6468	28.14029	
3.3	2.97	0.76	0.84	0.6384	45.62304	
3.4	2.574	0.77	0.83	0.6391	39.49666	
3.5	3.843	0.82	0.82	0.6724	56.04842	
3.6	1.977	0.83	0.77	0.6391	30.33601	
4.1	1.379	0.91	0.73	0.6643	20.35732	41.9760507
4.2	3.193	0.81	0.78	0.6318	49.56099	
4.3	2.715	0.76	0.77	0.5852	45.49736	
4.4	2.432	0.77	0.79	0.6083	39.20725	
4.5	2.737	0.72	0.8	0.576	46.59861	
4.6	3.383	0.84	0.78	0.6552	50.63476	
S Rond	KgF	Lado	Lado	Área	MPa	
1.1	2.948	0.82	0.85	0.697	41.47777	38.0882795
1.2	3.672	0.82	0.84	0.6888	52.27935	
1.3	2.403	0.87	0.8	0.696	33.8583	
1.4	1.999	0.85	0.81	0.6885	28.47276	
1.5	2.819	0.78	0.84	0.6552	42.19314	
1.6	2.074	0.82	0.82	0.6724	30.24835	
2.1	2.481	0.76	0.84	0.6384	38.11137	40.9098262
2.2	2.434	0.84	0.77	0.6468	36.90381	
2.3	3.258	0.78	0.79	0.6162	51.85016	
2.4	2.652	0.8	0.79	0.632	41.15069	
2.5	1.691	0.76	0.82	0.6232	26.60951	
2.6	3.558	0.78	0.88	0.6864	50.83342	

3.1	3.162	0.85	0.84	0.714	43.42945	40.4945451
3.2	1.595	0.87	0.82	0.7134	21.92544	
3.3	2.96	0.79	0.82	0.6478	44.80964	
3.4	1.919	0.88	0.74	0.6512	28.8989	
3.5	4.021	0.84	0.79	0.6636	59.42215	
3.6	3.313	0.83	0.88	0.7304	44.4817	
4.1	3.881	0.75	0.8	0.6	63.43268	38.6241596
4.2	3.452	0.88	0.9	0.792	42.74313	
4.3	1.187	0.89	0.77	0.6853	16.98598	
4.4	1.594	0.88	0.71	0.6248	25.01889	
4.5	2.558	0.83	0.81	0.6723	37.31282	
4.6	2.76	0.77	0.76	0.5852	46.25146	

-

Anexo 4

ANÁLISE ESTATÍSTICA SAÍDA SAS

Class Level Information

Class	Levels	Va	alı	ies	3					
Adesivo	4	1	2	3	4					
Tratamento	8	1	2	3	4	5	6	7	8	
Repeticao	4	1	2	3	4					

Number of observations 128

Dependent Variable: MPa

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	31	10493.07030	338,48614	12.85	<.0001
Error	96	2528.96265	26.34336		
Corrected Total	127	13022.03295			

	R-Square	Coeff	Var	Root	MSE	MPa	Mean		
	0.805794	18.7	4476	5.132	2578	27.3	8141		
Source		DF	Type I S	SS	Mean	Square	F	Value	Pr > F
Adesivo Tratamento Adesivo*Tratament	0	3 7 21	2254.5398 6152.5769 2085.9534(91 97 09	751. 878. 99.	513297 939571 331115		28.53 33.36 3.77	<.0001 <.0001 <.0001
Source		DF	Type III S	SS	Mean	Square	F	Value	Pr > F
Adesivo Tratamento Adesivo*Tratament	0	3 7 21	2254.53989 6152.57699 2085.95340	91 97 09	751. 878. 99.	513297 939571 331115		28.53 33.36 3.77	<.0001 <.0001 <.0001

SAÍDA SANEST

**	* * * * * * * * * * * * * * * * * * * *	*
*	SANEST - SISTEMA DE ANALISE ESTATISTICA	*
*	Autores: Elio Paulo Zonta – Amauri Almeida Machado	*
*	Empresa de Pesquisa Agropecuaria de Minas Gerais-EPAMIG	*
*	ANALISE DA VARIAVEL MPA - ARQUIVO: TESECORR	*
**	* * * * * * * * * * * * * * * * * * * *	*

CODIGO DO PROJETO: TESE

RESPONSAVEL: MARCELO T OLIVEIRA

DELINEAMENTO EXPERIMENTAL: INTEIRAMENTE AO ACASO

OBSERVACOES NAO TRANSFORMADAS

NOME DOS FATORES

FATOR NOME A ADESIVO B TECNOLOG

QUADRO DA ANALISE DE VARIANCIA

CAUSAS DA VARIACAO	G.L.	S.Q.	Q.M.	VALOR F	PROB.>F
ADESIVO TECNOLOG ADE*TEC RESIDUO	3 7 21 96	2254.5403275 6152.5769821 2085.9532376 2528.9625107	751.5134425 878.9395689 99.3311066 26.3433595	28.5276 33.3647 3.7706	0.00001 0.00001 0.00003
TOTAL	127	13022.0330578			

MEDIA GERAL = 27.381407

COEFICIENTE DE VARIACAO = 18.745 %

TESTE DE TUKEY PARA MEDIAS DE ADESIVO

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	18
1	2	SE BOND	32	32.391250	32.391250	a	A
2	4	S BOND	32	30.629688	30.629688	а	A
3	3	UNIFIL	32	23.846562	23.846562	b	в
4	1	TYRIAN	32	22.658125	22.658125	b	В

MEDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NIVEL DE SIGNIFICANCIA INDICADO D.M.S. 5% = 3.35255 - D.M.S. 1% = 4.09201

TESTE DE TUKEY PARA MEDIAS DE ADESIVO DENTRO DE ABRASAO DO FATOR TECNOLOG

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	 5%	 1%
1	2	SE BOND	4	33.037498	33.037498	a	А
2	3	UNIFIL	4	30.119999	30.119999	ab	AB
3	4	S BOND	4	28.540001	28,540001	ab	AB
4	1	TYRIAN	4	21.232500	21.232500	b	В

TESTE DE TUKEY PARA MEDIAS DE ADESIVO DENTRO DE ULTRA-SOM DO FATOR TECNOLOG

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	1%
1	л	C ROND	л — — — — — — — — — — — — — — — — — — —	24 674000	24 674000		
+	4	3 BOND	*	24.0/4999	24.0/4333	a	12
2	2	SE BOND	4	22.965000	22.965000	a	A
3	3	UNIFIL	4	20.492500	20.492500	a	А
4	1	TYRIAN	4	20.375000	20.375000	а	А

TESTE DE TUKEY PARA MEDIAS DE ADESIVO DENTRO DE SIC 600 DO FATOR TECNOLOG

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	1%
1 2 3 4	2 4 1 3	SE BOND S BOND TYRIAN UNIFIL	4 4 4 4	41.480000 33.942501 29.862499 20.414999	41.480000 33.942501 29.862499 20.414999	a ab bc c	A AB BC C

TESTE DE TUKEY PARA MEDIAS DE ADESIVO DENTRO DE LASER DO FATOR TECNOLOG

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	1%
1	1	TYRIAN	4	14.185000	14.185000	a	 A
2	2	SE BOND	4	12.602500	12.602500	а	A
3	4	S BOND	4	12.455000	12.455000	а	А
4	3	UNIFIL	4	11.830000	11.830000	a	A

TESTE DE TUKEY PARA MEDIAS DE ADESIVO

DENTRO	υĽ	CARTSOLV	DQ	FATOR	TECNULUG	

							444 **** ****
NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	18
1	4	S BOND	4	33.560001	33.560001	а	A
2	0	OF ROND	А	22 705002	22 705002	h	ΔD
4	4	SE DOND	**	23.700002	23.103002	υ	MD
3	3	UNIFIL	4	22.657501	22.657501	b	AB
4	1	TYRIAN	4	20.664999	20.664999	b	B
						-	

TESTE DE TUKEY PARA MEDIAS DE ADESIVO

DENTRO DE CARBONETO DE TUNGSTÊNIO DO FATOR TECNOLOG

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	1%
1	2	SE BOND	4	43.470001	43.470001	a	A
2	4	S BOND	4	34.702499	34.702499	ab	AB
3	1	TYRIAN	4	25.322500	25.322500	bc	в
4	З	UNIFIL	4	24.295000	24.295000	С	в

TESTE DE TUKEY PARA MEDIAS DE ADESIVO DENTRO DE DIAMANT DO FATOR TECNOLOG

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	58	18
1	4	S BOND	4	37.634998	37.634998	a	A
2	2	SÉ BOND	4	34.587502	34.587502	ab	AB
3	1	TYRIAN	4	25.872499	25.872499	bc	В
4	3	UNIFIL	4	23.889999	23.889999	¢	В

TESTE DE TUKEY PARA MEDIAS DE ADESIVO DENTRO DE SMEAR DO FATOR TECNOLOG

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	18
1	2	SE BOND	4	47.282501	47.282501	a	A
2	4	S BOND UNIFIL	4 4	39.527500 37.072498	39.527500	ab b	A A
4	1	TYRIAN	4	23.750000	23.750000	С	В

MEDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NIVEL DE SIGNIFICANCIA INDICADO D.M.S. 5% = 9.48244 - D.M.S. 1% = 11.57396

		TESTE	DE TUKEY I	PARA MEDIAS DE	TECNOLOG		
NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	1%
1	8	SMEAR	16	36.908125	36.908125	a	A
2	6	CARBIDE	16	31.947500	31.947500	ab	AB
3	3	SIC 600	16	31.425000	31,425000	ab	ABC
4	7	DIAMANT	16	30.496250	30.496250	bc	ABC
5	1	ABRASAO	16	28.232500	28.232500	bc	BCD
6	5	CARISOLV	16	25.146876	25,146876	cđ	CD
7	2	ULTRA-SOM	16	22,126875	22.126875	d	D
8	4	LASER	16	12.768125	12.768125	e	Е
MEDIAS SEG D.M.S. 5%	UIDAS POR	LETRAS DIS ⁴ 60478 -	TINTAS DIFE	CREM ENTRE SI A	AO NIVEL DE SIGNIFIC	ANCIA I	NDICADO

TESTE DE TUKEY PARA MEDIAS DE TECNOLOG

DENTRO DE TYRIAN DO FATOR ADESIVO

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	1%
1	3	SIC 600	4	29.862499	29.862499	a	A.
2	7	DIAMANT	4	25.872499	25.872499	а	AB
3	6	CARBIDE	4	25.322500	25,322500	ab	AB
4	8	SMEAR	4	23.750000	23.750000	ab	AB
5	1	ABRASAO	4	21.232500	21.232500	ab	AB
6	5	CARISOLV	4	20.664999	20.664999	ab	AB
7	2	ULTRA-SOM	4	20.375000	20.375000	ab	AB
8	4	LASER	4	14.185000	14.185000	b	В

TESTE DE TUKEY PARA MEDIAS DE TECNOLOG DENTRO DE SE BOND DO FATOR ADESIVO

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	18
1	8	SMEAR	4	47.282501	47.282501	a	A
2	6	CARBIDE	4	43,470001	43.470001	ab	AB
3	3	SIC 600	4	41.480000	41.480000	ab	AB
4	7	DIAMANT	4	34.587502	34.587502	bc	ABC
5	1	ABRASAO	4	33.037498	33.037498	bcd	BC
6	5	CARISOLV	4	23.705002	23.705002	cde	CD
7	2	ULTRA-SOM	4	22.965000	22.965000	de	CD
8	4	LASER	4	12,602500	12.602500	e	D

TESTE DE TUKEY PARA MEDIAS DE TECNOLOG DENTRO DE UNIFIL DO FATOR ADESIVO

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	 5%	18
1	8	SMEAR	4	37.072498	37.072498	a –	A
2	1	ABRASAO	4	30.119999	30.119999	ab	AB
3	6	CARBIDE	4	24.295000	24.295000	b	ABC
4	7	DIAMANT	4	23.889999	23.889999	b	BC
5	5	CARISOLV	4	22.657501	22.657501	bc	BC
6	2	ULTRA-SOM	4	20.492500	20.492500	bc	BC
7	3	SIC 600	4	20.414999	20.414999	bc	BC
8	4	LASER	4	11.830000	11.830000	С	С

TESTE DE TUKEY PARA MEDIAS DE TECNOLOG DENTRO DE S BOND DO FATOR ADESIVO

NUM.ORDEM	NUM.TRAT.	NOME	NUM.REPET.	MEDIAS	MEDIAS ORIGINAIS	5%	1%
1	8	SMEAR	4	39.527500	39.527500	a	A
2	7	DIAMANT	4	37.634998	37.634998	a	AB
3	6	CARBIDE	4	34.702499	34.702499	ab	AB
4	3	SIC 600	4	33.942501	33.942501	ab	AB
5	5	CARISOLV	4	33.560001	33.560001	ab	AB
6	1	ABRASAO	4	28.540001	28,540001	ab	AB
7	2	ULTRA-SOM	4	24.674999	24.674999	b	BC
8	4	LASER	4	12.455000	12.455000	С	С

MEDIAS SEGUIDAS POR LETRAS DISTINTAS DIFEREM ENTRE SI AO NIVEL DE SIGNIFICANCIA INDICADO D.M.S. 5% = 11.20955 - D.M.S. 1% = 13.17276