

NATÁLIA LEAL VIZOTO

Avaliação da função biológica do sistema de dois componentes SptRS de *Streptococcus mutans*

Piracicaba – SP

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA

NATÁLIA LEAL VIZOTO

Avaliação da função biológica do sistema de dois componentes SptRS de *Streptococcus mutans*

Tese apresentada à Faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutora em Biologia Buco - Dental na Área de Microbiologia e Imunologia.

Orientadora: Prof^a. Dr^a. Renata de Oliveira Mattos Graner

Esse exemplar corresponde à versão final da tese defendida por Natália Leal Vizoto e orientada pela Prof(a). Dr(a) Renata de Oliveira Mattos Graner.

Assinatura da orientadora

Piracicaba - SP

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Faculdade de Odontologia de Piracicaba Marilene Girello - CRB 8/6159

 Vizoto, Natália Leal, 1982-Avaliação da função biológica do sistema de dois componentes SptRS de Streptococcus mutans / Natália Leal Vizoto. – Piracicaba, SP : [s.n.], 2015.
Orientador: Renata de Oliveira Mattos Graner. Tese (doutorado) – Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba.
1. Streptococcus mutans. I. Mattos-Graner, Renata de Oliveira,1971-. II. Universidade Estadual de Campinas. Faculdade de Odontologia de Piracicaba. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Evaluation of biological function of *Streptococcus mutans* two component system SptRS Palavras-chave em inglês: *Streptococcus mutans* Área de concentração: Microbiologia e Imunologia Titulação: Doutora em Biologia Buco-Dental Banca examinadora: Renata de Oliveira Mattos Graner [Orientador] Cristiane Duque Marlise Inêz Klein Tarsila Mendes de Camargo Marcelo Fabiano Gomes Boriollo Data de defesa: 27-02-2015 Programa de Pós-Graduação: Biologia Buco-Dental

UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Odontologia de Piracicaba

A Comissão Julgadora dos trabalhos de Defesa de Tese de Doutorado, em sessão pública realizada em 27 de Fevereiro de 2015, considerou a candidata NATÁLIA LEAL VIZOTO aprovada.

Profa. Dra. RENATA DE OLIVEIRA MATTOS GRANER

Morlin The Klin Profa. Dra. MARLISE INÊZ KLEIN

Farri la Mender de Camango Profa. Dra. TARSILA MENDES DE CAMARGO

Justiane Dieg

Profa. Dra. CRISTIANE DUQUE

Adtt Prof. Dr. MARCELO FABIANO GOMES BORIOLLO

Resumo

Streptococcus mutans é uma espécie bacteriana comum da microbiota bucal de seres humanos envolvida na patogênese da cárie dentária e em endocardites infecciosas promovidas por bacteremias de origem bucal. Para ser transmitido e ocupar seus nichos ecológicos, S. mutans precisa persistir na saliva e se adaptar fisiologicamente a cada fase da colonização, um processo que provavelmente envolve diversas alterações do seu transcriptoma. Para isto, S. mutans utiliza sistemas reguladores de transcrição de dois componentes (SDC). O SDC SptRS foi identificado através de análises in silico do genoma da cepa S. mutans UA159, como ortólogo do sistema SptSR (Spt de Saliva persistence) de Streptococcus pyogenes. O objetivo deste trabalho foi avaliar a função biológica do sistema de dois componentes SptRS de Streptococcus mutans. Para isto, mutantes knockout dos genes sptR e sptS, SMU.927 e SMU.928 respectivamente, foram construídos a partir da cepa UA159 (UAsptR e UAsptS) e comparados com a cepa parental em análises de morfologia, crescimento planctônico sob diferentes condições nutricionais, persistência em saliva humana, formação de biofilme e autólise a 44ºC. Além disto, genes do regulon de SptRS foram pesquisados através de ensaios da Imunoprecipitação de Cromatina seguido de sequenciamento (ChIP-seg), RT-PCR guantitativo (RT-gPCR) e de Ensaios de Retardamento da Mobilidade Eletroforética (EMSA) com proteína recombinante SptRr de S. mutans. Os mutantes sptR e sptS mostraram crescimento planctônico lento em meios de cultura RPMI e em MQD comparados à cepa parental, além de atividade autolítica reduzida em 22,4 e 53,13%, respectivamente. Não foram observadas, entretanto, alterações significativas na morfogênese, formação de biofilmes in vitro, nem na persistência em saliva humana. Os dados de ChIP-seq e RT-qPCR indicaram que SptRS regula genes envolvidos na resposta de estringência (SMU.926), repressão catabólica (ccpA), metabolismo de múltiplos açúcares (SMU.78, SMU.137, SMU.542, SMU.1734), sistemas fosfoenolpiruvato-fosfotransferase (PTS) (SMU.2047, SMU.114, SMU.115) sistemas de transporte do tipo ABC (SMU.182, SMU.880, SMU.905, SMU.1035, SMU.1095, SMU.1178c, SMU.1939) e biogênese de parede celular (SMU.1091, SMU.2147, SMU.609, SMU.1434c, SMU.22). SptR funcionou como um regulador negativo em 86% (37/43) dos genes testados. Análises de RT-gPCR e EMSA indicaram ainda que SptR regula diretamente o regulador de transcrição CovR (SMU.1924), envolvido na repressão de genes de virulência e formação de biofilmes. Este estudo fornece evidências de que SptRS regula diversas funções de S. mutans importantes para a sobrevivência em condições nutricionalmente escassos, aparentemente coordenando o metabolismo com o crescimento bacteriano e com a expressão de genes de virulência.

Palavras-chave: *Streptococcus mutan*s, Sistemas de Dois Componentes, SptRS, CovR, ChIP-seq, biossíntese de parede celular, sistemas de transporte de membrana, saliva, resposta de estringência.

Abstract

Streptococcus mutans is a common bacterial species of the oral microbiota of humans involved in the pathogenesis of dental caries and infectious endocarditis promoted by bacteremia of oral origin. To be transmitted and occupy their ecological niches, S. mutans need to persist in saliva and adapt physiologically to each phase of colonization, a process that probably involves several changes in its transcriptome. To this end, S. mutans uses transcriptional regulatory systems called Two Component System (TCS). The TCS SptRS was identified in an in silico analysis of the genome of S. mutans strain UA159, as an orthologue of the SptRS system (Spt of Saliva persistence) of Streptococcus pyogenes. The aim of this study was to investigate the biological function of the TCS SptRS of Streptococcus mutans. Thus, knockout mutants of sptR and sptS (SMU.927 and SMU.928, respectively) were obtained in strain UA159 (UAsptR, UAsptS) and compared to parental strain regarding morphology, planktonic growth under different nutritional conditions and persistence in human saliva, biofilm formation and autolysis at 44°C. In addition, genes of SptRS regulon were analised by Chromatin Immunoprecipitation followed the sequencing (ChIP-seq), quantitative RT-PCR (RT- qPCR) and Electrophoretic Mobility Shift Assays (EMSA) with S. mutans SptR recombinant protein. Inactivation of sptR/S promotes slow planktonic growth in RPMI and CDM. Reductions of 22.4 to 53.1% were observed respectively in autolysis, but no significant changes in morphogenesis were detected. Mutants did not show significant alterations in biofilm formation or in persistence in human saliva. ChIP-seq and RT-qPCR analyses showed that SptRS regulates genes for stringent response (SMU.926), metabolism of multiple sugars (SMU.78, SMU.137, SMU.542, SMU.1734), catabolite repression (SMU.1591, ccpA), phosphoenolpyruvate phosphotransferase systems (PTS), ABC transport systems (SMU.182, SMU.880, SMU.905, SMU.1035, SMU.1095, SMU.1178c, SMU.1939) and cell wall biogenesis (SMU.22, SMU.609, SMU.1091, SMU.1434c, SMU.2147). SptR worked as a negative regulator of 86% (37/43) of the tested genes. RT-qPCR and EMSA analyses further showed that SptR directly represses expression of the transcriptional regulator CovR (SMU.1924), which is a repressor of genes involved in biofilm formation and virulence. This study provides evidence that SptRS regulates several functions important for S. mutans survival under poor nutritional conditions, apparently coordinating metabolism with bacterial growth and expression of virulence genes.

Key words: *Streptococcus mutans,* two-component system, SptRS, CovR, ChIP-seq, cell wall biogenesis, transport systems, stringent response.

SUMÁRIO

DEDICATÓRIA	XIII
AGRADECIMENTOS	XV
LISTA DE FIGURAS	XVII
LISTA DE TABELAS	XIX
LISTA DE ABREVIATURAS E SIGLAS	XXI
1 INTRODUÇÃO	1
2 REVISÃO DA LITERATURA	3
3 PROPOSIÇÃO	19
4 MATERIAL E MÉTODOS	21
5 RESULTADOS	45
6 DISCUSSÃO	65
7 CONCLUSÃO	73
REFERÊNCIAS	75
ANEXO	85

DEDICATÓRIA

A toda minha família, da qual subtraí momentos preciosos, e especialmente aos meus pais Luiz Carlos e Márcia e minha querida irmã, Mariana. Vocês são responsáveis pela existência e alegria de toda nossa família, pelo meu eu. Obrigada por tudo.

Com carinho, dedico.

AGRADECIMENTOS

À DEUS o meu muito obrigada, pois grandes foram as lutas, os momentos de tensão não foram poucos e houve tempos nos quais as dificuldades pareciam insuperáveis. Muitas vezes desistir parecia o melhor caminho, mas o Senhor esteve sempre presente, tornando-me perseverante. Obrigada por tudo.

À Universidade Estadual de Campinas, e à Faculdade de Odontologia de Piracicaba que me acolheu e possibilitou desenvolver meus estudos voltados à microbiota bucal.

Ao programa de Pós-Graduação de Biologia Buco-Dental da Faculdade de Odontologia de Piracicaba e a secretaria do curso de Pós-Graduação pela colaboração auxiliando nos procedimentos acadêmicos formais.

A CAPES e ao Programa Institucional de Doutorado Sanduiche no exterior PDSE 17244/12-9 pela bolsa de estudo concedida.

A Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo auxilio concedido (Processo Fapesp: 2012/51832-3) que viabilizou a execução do projeto de pesquisa.

Aos voluntários desta pesquisa pela compreensão de dias e dias de dedicação, proporcionando a realização desta pesquisa. Obrigada pela dedicação e amizade.

Aos examinadores que compuseram a banca da tese Prof.^ª Dr.^ª Marlise Inêz Klein, Prof.^ª Dr.^ª Tarsila Mendes de Camargo, Prof. Dr. Marcelo Boriollo e Prof.^ª Dr.^ª Cristiane Duque pela análise, avaliação e colaboração nesse trabalho.

Aos examinadores que compuseram a banca suplente Prof.ª Dr.ª Luciane Martins, Prof.ª Dr.ª Janaina Sardi e Prof. Dr. Rafael Nobrega Stipp.

À Prof.^ª Dr.^ª Renata de Oliveira Mattos-Graner por ter me recebido em seu laboratório, pelo apoio, conselhos e compreensão. Obrigada por toda sua dedicação em nossos experimentos.

Ao Professor da Área de Microbiologia e Imunologia Prof. Dr. José Francisco Höfling, o qual foi o meu primeiro contato na Faculdade de Odontologia e que me incentivou e incentiva em todos os momentos da minha carreira. Muito obrigada.

X٧

Aos professores doutores, aos alunos da pós-graduação e técnicos pela atenção e pelo espaço proporcionado, atenção e carinho da área de Patologia, do Departamento de Diagnóstico Bucal e da Histologia do Departamento de Morfologia entre outros.

A todos os amigos do Laboratório de Microbiologia e Imunologia (em ordem alfabética) Andressa Venturini, Cristiane Duque, Felipe Jóia, Érika Hart Chú, Flávia Sammartino Mariano Rodrigues, Giovana Boni, Ítalo Sarto Rodrigues Peixoto, Janaína Barbosa, Jeferson Junior da Silva, Lívia Araujo, Paula Cristina Aníbal, Manoel Francisco Rodrigues Neto, Rafael Nóbrega Stipp, Simone Busato, Thaís Harder, Thaís Rossini de Oliveira por terem contribuído para meu aprendizado.

Àos Funcionários Valeria Franco, Wilma Ferraz e Anderson Ferreira do Laboratório de Microbiologia e Imunologia da Faculdade de Odontologia de Piracicaba pela amizade, apoio e carinho concedido em todos os momentos da minha caminhada e principalmente me dando forças nos momentos em que mais precisei. Adoro vocês.

Ao *"The Forsyth Institute"* e em especial a Christine Kressier, Daniel Smith, Heike Boisvert, Jodie Scott, Margaret Duncan, Susan, Joice e Vanessa Tubero por me receberem com tanto carinho, sendo tão presentes em minha vida, mais que amigos, minha família americana.

Aos meus amigos em especial a Ana Carolina Kairalla, Cristiane Duque, Erika Hart Chú, Giovana Campos, Heike Boisvert, Jodie Scott, José Eduardo Guercio (meu querido professor de Inglês), Lívia Araújo, Marcela Angeli, Renata Andrade, Renato Telles, Thais Harder e Vanessa Tubero enfim àqueles a quem tenho um imenso carinho e muito admiro, que por muitas vezes mesmo ausente, me compreenderam e me deram forças.

Aos meus avós Galdino Gomes Leal *(in memorian)* e Antonia Leal, a minha tia Renata Leal por sempre me apoiarem e se fazerem presentes em minha vida. Amo vocês.

Ao meu noivo Danilo Dressano por toda atenção, paciência, dedicação, compreensão, amizade, companheirismo, força e apoio que me foi concedido. Te admiro muito. Obrigada por fazer parte da minha vida. Amo muito você.

"Admiramos o mundo através do que amamos" (Lamartine)

xvi

Lista de figuras

		Página
Fig. 1	Sistema de transporte de nutrientes pela membrana. Mecanismo de transporte do tipo ABC.Adaptado de Microbiologia de Brock, 10° edição, 2004.	8
Fig. 2	Sistema de transporte de nutrientes pela membrana. Mecanismo fosfotransferase - PTS. Adaptado de Microbiologia e Imunologia geral e Odontológica, Vol. 1, 2013.	9
Fig. 3	Um SDC típico bactériano. Consiste de um receptor de membrana histidina quinase sensora (geralmente designado pela letra K ou S, ex. <i>spt</i> S) e um regulador de resposta intracelular (geralmente designado pela letra R, ex. <i>sptR</i>). Em resposta a um ou mais estímulos ambientais específicos, o sensor K sofre auto-fosforilação e transfere o grupo fosfato para um resíduo aspartato do R cognato. O R fosforilado adquire uma nova conformação para se ligar às sequências regulatórias (operadoras) de genes alvos (<i>regulon</i>), ativando ou inibindo sua transcrição. Esse esquema básico é adaptável e variável de acordo com sistemas específicos. Adaptado de Microbiologia de Brock, 10 edição, 2004.	
		13
Fig. 4	Organização genômica dos genes <i>sptR</i> e <i>sptS</i> de <i>Streptococcus pyogenes</i> e genes <i>SMU.927</i> e <i>SMU.928</i> identificados em <i>Streptococcus mutans</i> .	17
Fig. 5	Estratégia de inativação gênica utilizando-se a técnica de mutagênese por PCR e ligação. Fonte: adaptado de Lau <i>et al.</i> , 2002.	25
Fig. 6	Gel de agarose (1,5%) contendo 10 μ L de produtos de PCR utilizados para construção dos mutantes UA <i>sptS</i> , UA <i>sptR</i> , UA <i>sptRS</i> . Fig. 6A: Canaletas 1 e 2: produtos obtidos com P1/P2 (769 pb) e P3/P4 (714 pb) a partir de DNA genômico da cepa selvagem das regiões flanqueantes de <i>sptR</i> , respectivamente. Canaletas 3 e 4: produtos obtidos com P1/P2 (759 pb) e P3/P4 (632 pb) a partir de DNA genômico da cepa selvagem das regiões flanqueantes de <i>sptS</i> , respectivamente. Canaleta 5: 0,9 μ g de padrão molecular 250 pb (Invitrogen). Fig. 6 B: Canaleta 6: 0,9 μ g de padrão molecular 100 pb (Invitrogen) e 6 e 7: produto obtido com E1/E2 a partir do pVA838 (1000 pb). Canaleta 8: controle negativo da reação de PCR na ausência de DNA molde.	26
Fig. 7	Análise de RT-PCR dos transcritos contendo as sequências SptRS. Gel de eletroforese com amplificação de fragmentos de cDNA. Canaleta 1: Marcador de 1kb plus (Invitrogen); Canaleta 2: produto de amplificação com <i>primers</i> delineados para <i>SMU.926 - SMU.927</i> com cDNA UA159 (205 pb) - (RNA convertido para cDNA pela reação de transcriptase reversa); Canaleta 3: controle negativo com ausência de DNA molde. Canaleta 5: produto de amplificação para final <i>SMU.926 - SMU.928</i> com cDNA UA159 (687 pb) com cDNA UA159. Canaleta 6: controle negativo com ausência de DNA molde. Canaleta 8: produto de amplificação <i>SMU.927 - SMU.928</i> com cDNA UA159 (506 pb) com cDNA UA159. Canaleta 9: controle negativo com ausência de cDNA molde.	30
Fig. 8	Análise por microscopia de luz das cepas <i>S. mutans</i> UA159 (A), UA <i>sptR</i> (B) e UA <i>sptS</i> (C) com crescimento <i>overnight</i> (coluna 1), A_{550nm} = 0,3 (coluna 2) e A_{550nm} = 0,7 (coluna 3).	00
		46
Fig. 9	Análise por Microscopia Eletrônica de Varredura (Jeol JSM5600 LV, FOP/UNICAMP) das cepas <i>S. mutans</i> UA159 UA <i>sptR</i> , UA <i>sptS</i> e UA <i>sptRS</i> nas A _{550nm} = 0,3, nos aumentos de 5,000x, 9,000x, 13,000x.	

- Fig.10 Análise por Microscopia Eletrônica de Varredura (Jeol JSM5600 LV, FOP/UNICAMP) das cepas *S. mutans* UA159, UA*sptR*, UA*sptS* e UA*sptRS* nas A_{550nm}= 0,7, nos aumentos de 5,000x, 9,000x, 13,000x.
- Fig. 11 Curvas de crescimento em diferentes meios testados. (A) BHI, (B) RPMI C) CDM glicose D) CDM – frutose E) CDM – maltose e F) CDM – sacarose. UA159, — UAsptR, — UAsptS, — UAsptRS. *indicam diferenças significativas das cepas UAsptR e UAsptS em relação a cepa selvagem UA159 (Mann-Whitney). Os símbolos representam médias de três experimentos independentes realizados em duplicata; as barras indicam os desvios padrões.
- Fig.12 Análises da biomassa total do crescimento em biofilme biomassa toatl (A_{595nm}) das cepas UA159, UA*sptR* e UA*sptS* em (1) BHI suplementado com 0,1% sacarose, (2) BHI suplementado com 0,05% sacarose e 0,05% amido e (3) 0,5% sacarose e 1% amido a 37° C, 10% CO₂ por 18 h. (A) placas na ausência de saliva, (B) placas peviamente tratadas com saliva durante 2 horas a 37°C em agitação constante em (C) culturas foram misturadas com saliva (1:100). As colunas representam médias de três experimentos independentes realizados em triplicata. As barras indicam os desvios padrão. * indicam diferenças significativas na quantificação de biomassa de biofilme das cepas mutantes UA*sptR* e UA*sptS* em relação à cepa selvagem UA159 (p<0,05; Mann-Whitney). As colunas representam médias de três experimentos independentes realizados em triplicata. As barras indicam os desvios padrão.</p>
- Fig. 13 Autólise das cepas estudadas incubadas em atmosfera com 10% de CO₂. Diferenças significativas entre a cepa selvagem e mutantes foram observadas com 24, 48 e 72 horas. Linhas representam médias de três experimentos independentes em duplicata. As barras indicam os desvios padrão. * e + indicam diferenças significativas das cepas UA*sptS*[•] e UA*sptR* em relação a cepa selvagem UA159 (* p<0,05 e + p<0.01; Mann-Whitney).</p>
- Fig. 14 Curvas de viabilidade das cepas UA159 (-■-) e UA*sptR* (-▲-) em saliva. Curvas foram obtidas de pools de saliva de seis voluntários. Os pontos representam médias de 3 experimentos independentes, as barras indicam os desvios padrão. Diferenças entre as cepas foram testadas através do teste de Mann-Whitney.
- Fig. 15 Western blot de extratos de *E. coli* contendo o vetor pET22b- (+)::sptR6His (pSptR6His). Canaleta 1: marcador Novex Sharp Pre-Stained Protein Standart (Life Technologies); Canaleta 2: extrato protéico de cultura não induzida de *E. coli* contendo o vetor pSptR6His. Canaleta 2 e 3: Extratos de culturas (A_{550nm} 0,4) induzidas com IPTG por 3 e 4 h, respectivamente. A proteína recombinante rSptR6His (massa molecular: 25 kDa) foi detectada com anticorpo anti 6His.
- Fig. 16 RNAs extraídos e tratados com DNAse Turbo (Ambion, EUA). Amostras de: *S. mutans* UA159 (canaletas 1, 3 e 5), UA*sptR* (canaletas 2, 4 e 6) coletadas de três experimentos independentes.
- Fig. 17 EMSA da regiões promotoras dos genes *SMU.926*, *SMU.1263*, *SMU.1043c*, *SMU.882*, *SMU.54*, *SMU.1924*, *SMU.881*, *SMU.1091*, *SMU.1434c* amplificadas por PCR, marcadas com digoxigenina e incubadas com diferentes concentrações da SptRHis6 recombinante previamente fosforilada. Controle negativo foi realizado utilizando fragmento marcado do gene de *Porphyromonas gingivalis*. Competição especifica foi realizada com excesso de até 120 a 200 vezes de cada fragmento não marcado.

48

50

52

53

54

57

60

Lista de tabela

		Página
Tab. 1	Identidade e localização dos genes <i>sptR</i> e <i>sptS</i> e respectivas proteínas codificadas de <i>Streptococcus pyogenes</i> e seus ortólogos identificados por análise de BLAST do genoma da cepa <i>Streptococcus mutans</i> UA159.	
		17
Tab. 2	Genes identificados através de análises de ChIP-sequencing <i>in vitro</i> com o DNA genômico da cepa UA159 e proteína recombinante SptR6His.	58
Tab. 3	Seleção de genes regulados por SptR identificados pelo ensaio ChIP-seq <i>in vitro</i> e outros genes também relacionados com as funções encontradas em ChIP-seq <i>in vitro</i> .	62

Lista de abreviaturas e siglas

°C: grau Celsius.

μg: micrograma.

μI: microlitro.

%: porcentagem

10% CO₂: pressão parcial de dióxido de carbono a 10%.

16RNAr: gene codificador do RNA ribossômico 16S.

23RNAr: gene codificador do RNA ribossômico 23S.

A_{260nm}: absorbância no comprimento de onda de 260 nanômetros.

A_{280nm}: absorbância no comprimento de onda de 280 nanômetros.

A_{550nm}: absorbância no comprimento de onda de 550 nanômetros.

A_{600nm}: absorbância no comprimento de onda de 600 nanômetros.

ACP: acetil fosfato

ATCC: Coleção Americana de tipos de cultura (de <u>American Type Culture Collection</u>)

BHA: BHI comercial acrescido de ágar a 1,6% (peso/volume)

BHI: infusão de cérebro e coração comercial (de <u>Brain Heart Infusion)</u>

BLAST: <u>Basic Local Alignment Search T</u>ool

CaCl₂: cloreto de cálcio

CCR: Carbon Catabolite Repression

cDNA: fragmentos de DNA de fita simples obtidos a partir da transcrição reversa de moldes de DNA

ChIP-seq: Ensaio de Imunoprecipitação da cromatina seguida de sequenciamento

DEPC: reagente <u>*Diethylpyrocarbonate*</u>

DNA: ácido desoxirribonucleico genômico (de <u>D</u>eoxyribo<u>n</u>ucleic <u>A</u>cid)

dNTP: Trifosfatos de desoxirribonucleotídeos

eDNA: DNA do meio extracelular

EDTA: reagente *Ethylenediaminetetraacetic acid*

E1/E2: primers para amplificação do gene de resistência a eritromicina

ermR: fenótipo resistente a eritromicina

espect: fenótipo resistente a espectinomicina

et al.: e outros (de et ali)

Fase log: fase logarítmica de crescimento

ftf: gene frutosiltransferase

g: gramas g/l: gramas por litro gbpB: gene codificador da proteína ligante de glucano B GbpB: proteína ligadora de glucano gDNA: DNA cromossomial, genômico gtfs:genes glicosiltransferases Gtfs: proteinas glicosiltransferases h: horas Hpr: histidine protein HCI: ácido clorídrico HK: histidina kinase HtrA: proteína de resposta a estresse KH₂PO₄: fosfato de potássio dibásico KCI: cloreto de potássio IPTG: Isopropil-beta-D-thiogalactopyranoside I: litro LB: meio de cultura Luria – Bertani M: molar min: minuto MgCl₂: cloreto de magnésio **ml**: mililitro **mM**: milimolar MQD: Meio quimicamente definido MSA: Mitis salivarius Agar MEV: microscopia eletrônica de varredura MOPS: reagente Morpholinopropane sulphonic acid n: número NaCI: cloreto de sódio Ni²⁺: niquel **ORF**: fases abertas de leitura (de <u>Open Reading Frame</u>) pb/bp: pares de base PCR: reação em cadeia de polimerase (de *Polymerase Chain Reaction*)

pDNA: DNA plasmidial

pH: potencial hidrogênico

PMN: polimorfonucleares

ppGpp: guanosina pentafosfato

PTS: sistema fosfoenolpiruvato fosfotransferase

PVDF: membrana de transferência de fluoreto de polivinilideo

qPCR: PCR quantitativo

qRT-PCR: transcrição reversa seguida de PCR quantitativa

rcf: unidade de força centrífuga relativa (de <u>*Relative Centrifugal Force*</u>)

RNA: ácido ribonucleico (de <u>*Ribonucleic Acid*</u>)

RNAm: ácido ribonucleico mensageiro

RPMI: meio RPMI Medium 1640 (GIBCO – Invitrogen Corporation)

rSptR: proteína recombinante SptRS

RT: transcrição reversa que dará origem a cDNA (de <u>*Reverse Transcription*</u>)

RR: regulador de resposta

P1/SP2: primers de amplificação do gene de resistência a espectinomicina

s: segundo

SDC: sistema regulador de transcrição de dois componentes

SptRS: Sistema de Dois Componentes SptRS

SDS-page: gel de poliacrilamida de dodecil-sulfato de sódio

TA: temperatura ambiente

TCS: sistemas reguladores de transcrição de dois componentes (de <u>*Two*</u>

<u>C</u>omponent <u>S</u>ystem)

TE: tampão 10 mM Tris, 1 mM EDTA pH 8.0

THB: Toddy Hewitt Broth

U: unidade (s)

UFC: unidade formadora de colônia

UV: radiação ultravioleta

V: volts

1 INTRODUÇÃO

Streptococcus mutans é uma espécie bacteriana comum da microbiota bucal de humanos envolvida na patogênese da cárie e em endocardites infecciosas promovidas por bacteremias de origem bucal. O maior nicho ecológico de S. mutans em humanos é a superfície dental, embora a cavidade bucal possa funcionar como um reservatório para a colonização bacteriana dos dentes (Marcotte e Lavoie, 1998; Stinson et al., 2003; Alves et al., 2009). A transmissão de S. mutans ocorre nos primeiros anos de vida, através do contato com indivíduos colonizados (Caufield et al., 1993; Berkowitz, 2006), um processo que provavelmente é influenciado por fatores microbianos, do hospedeiro e ambientais, que modulam a competitividade bacteriana e as defesas imunológicas do hospedeiro (Smith e Mattos-Graner, 2008). Para serem transmitidos e ocuparem seus nichos ecológicos, S. mutans precisam persistir na saliva e se adaptar fisiologicamente a cada fase da colonização e patogênese bucal, esses eventos envolvem muitas alterações no transcriptoma bacteriano em resposta a diversa alterações ambientais tais como, pH, tensão de oxigênio e concentração e tipos de nutrientes.

A adaptação de transcriptomas bacterianos em resposta aos estímulos do ambiente (o que inclui fatores do hospedeiro e da complexa microbiota coexistente) é controlada em parte, por sistemas de dois componentes (SDC) (Lamy *et al.*, 2004; Dalton *et al.*, 2006). Um SDC típico é composto por um receptor de membrana, normalmente uma histidina-quinase (HK), e uma proteína reguladora citoplasmática denominada regulador de resposta (RR). A porção externa do receptor de membrana é ativada por um estímulo ambiental específico, o qual sofre fosforilação na sua porção intracelular (Dalton *et al.*, 2006). O grupo fosfato é então transferido para o regulador de resposta intracelular, o qual sofre modificação na sua conformação para se ligar as sequências reguladoras dos genes alvo, o que pode reprimir ou induzir a transcrição dos mesmos. Os genes

que codificam os componentes destes sistemas são frequentemente organizados em *operons*, mas várias HK ou RR são designados "órfãos" quando codificados por genes isolados, sem seu respectivo par. O genoma da cepa de *S. mutans* UA159 contém pelo menos 14 SDC completos (Ajdic *et al.*, 2002). O sistema SptRS (*Spy_0874/Spy_0875*) da espécie *Streptococcus pyogenes* M1 GAS5005, foi descrito e caracterizado por Shelburne *et al.*, (2005), sendo que sua inativação promoveu clara redução na capacidade desta espécie de sobreviver na saliva humana, além de alterar a expressão de diversos genes de virulência implicados na evasão a fatores de defesa do hospedeiro, resposta a estresses ambientais e no metabolismo de carboidrato. Ortólogos destes sistemas foram identificados por nosso grupo em *Streptococcus sanguinis* e *S. mutans*, sendo que na espécie *S. sanguinis*, o sistema SptRS foi recentemente implicado na persistência em saliva e na capacidade de formar biofilmes (Camargo, 2014). No presente estudo investigamos a funções de SptRS na biologia de *Streptococcus mutans*.

2 REVISÃO DE LITERATURA

2.1 Fatores de virulência de Streptococcus mutans

Streptococcus mutans é uma espécie comum da microbiota bucal de humanos, o que indica capacidade de se adaptar e sobreviver a diversos fatores de defesa presentes na cavidade bucal (Kreth *et al.*, 2009). Além do papel importante na etiologia da cárie dentária, *S. mutans* apresenta-se comumente envolvido na etiologia de endocardite bacteriana, outra doença biofilme-dependente, que ocorre em indivíduos susceptíveis que sofrem bacteremia de origem bucal (Nakano *et al.*, 2009; Lockhart *et al.*, 2008). A virulência de *S. mutans* em doenças bucais e sistêmicas é dependente da capacidade deste micro-organismo de detectar e se adaptar a condições de estresse ambiental encontrados durante o processo de colonização e infecção do hospedeiro (Stephenson and Hoch 2002; Duque *et al.*, 2011).

Os principais nichos ecológicos de *S. mutans* são os biofilmes formados sobre as superfícies dentárias (placa dental), mas esta espécie pode também colonizar mucosa bucal (Caufield *et al.*, 1993; Milgrom *et al.*, 2000; Alves *et al.*, 2009). Para colonizar e se estabelecer nos biofilmes dentários *S. mutans* precisa sintetizar e interagir com uma matriz extracelular polissacarídica. Este processo influencia na ecologia dos biofilmes, alterando características ecológicas importantes, como a densidade das populações microbianas, a disponibilidade de nutrientes, a difusão de metabólitos e o escape microbiano a fatores de defesa do hospedeiro (Banas, 2004; Lemos *et al.*, 2005). A formação e maturação de biofilmes é entretanto precedida por estágios em que bactérias livres na saliva sejam capazes de sobreviver a diversos fatores de defesa do hospedeiro presentes na cavidade bucal, de se adaptar fisiologicamente, multiplicar-se e se aderir às superfícies dos dentes (Kreth *et al.*, 2009). Pouco se sabe sobre os fatores que modulam a

adaptação de *S. mutans* a fatores de defesa salivares, durante as fases iniciais de transmissão e colonização dos dentes e outras superfícies bucais.

2.1.1 Glucosiltransferase

Entre as proteínas de virulência de *S. mutans*, as glucosiltransferases (Gtf) são as mais estudadas (Banas and Vickerman, 2003). As Gtfs de S. mutans (GtfB, GtfC e GtfD) sintetizam glucanos com diferentes graus de solubilidade em água a partir da sacarose e atuam promovendo adesão, agregação e acúmulo sobre os dentes. Os glucanos são os principais componentes de matriz extracelular de biofilmes de *S. mutans* e, portanto, são essenciais para o acúmulo bacteriano nos biofilmes dentários (Banas and Vickerman, 2003). Análises da virulência de mutantes knockout dos genes que codificam as Gtfs (gtfB, gtfC e gtfD) em modelos de cárie experimental indicam papel importante das Gtfs na virulência (Yamashita et al., 1993). Além da participação destas enzimas no processo de acúmulo de microorganismos nos biofilmes dentários, sugere-se que as Gtfs e seus produtos influenciem no reconhecimento de S. mutans por fatores de defesa do hospedeiro e adaptação a diversas condições de estresse (Kreth et al., 2009; Duque et al., 2011; Nakano et al., 2006; Alves, 2013). Estudos demonstram que glucanos insolúveis em água são fortes indutores da produção de citocinas inflamatórias por macrófagos murinos e fagócitos polimorfonucleares (PMN) (Okamoto et al., 2007). Além disso, diferenças na produção de Gtfs e de proteínas de superfície ligadoras de glucano foram associadas com diferenças na capacidade de cepas de S. mutans causarem bacteremia e endocardite bactériana (Nomura et al., 2004, Nakano et al., 2006; Nakano et al., 2009;). S. mutans expressam pelo menos quatro proteínas ligadoras de glucanos (Gbps, de Glucan-binding proteins), GbpA, GbpB, GbpC e GbpD, além das Gtfs que também tem essa função (Banas and Vickerman, 2003). As Gbps formam um grupo heterogêneo quanto às suas características moleculares e funcionais e seus papéis específicos na patogenia da cárie dentária e em

bacteremias são pouco compreendidos. Entre estas, a GbpB é secretada ou associada à superfície de *S. mutans*, e consiste em uma proteína imunodominante desde os primeiros anos de vida até a idade adulta (Nogueira *et al.*, 2005; Nogueira *et al.*, 2007). GbpB é essencial para a viabilidade de *S. mutans*, possivelmente por participar do processo de divisão da parede celular (Mattos-Graner *et al.*, 2006; Duque *et al.*, 2011) e está implicada também na capacidade de *S. mutans* formar biofilmes (Duque *et al.*, 2011). A indução de anticorpos contra GbpB protege contra infecção e desenvolvimento de cárie em modelos animais por mecanismos ainda não bem compreendidos (Smith e Mattos-Graner, 2008). Outra proteína ligadora de glucano estruturalmente diferente de GbpB, a GbpC, é covalentemente ligada à parede celular e está envolvida na agregação dependente de dextrano e na resposta ao estresse osmótico e acidogênico (Sato *et al.*, 2000; Biswas *et al.*, 2007). A produção de GbpC foi positivamente associada à virulência em modelos de cárie experimental e à capacidade de *S. mutans* em causar bacteremia (Nomura *et al.*, 2004; Matsumoto-Nakano *et al.*, 2007).

2.1.2 Biossíntese de parede celular e hidrolases de mureína

A parede celular bacteriana é composta principalmente por peptideoglicano (também nomeado mureína) e desempenha diversas funções fisiológicas incluindo a proteção celular e ancoragem de moléculas de superfície envolvidas na adesão a superfícies e/ou interações com componentes externos (Biswas e Biswas, 2006; Senadheera *et al.*, 2005). Para isto, é necessária uma dinâmica remodelação do peptideoglicano durante os processos de divisão celular e/ou colonização de sítios específicos, o que envolve a biossíntese de mureína durante vias intra e extracitoplasmáticas altamente coordenadas (Madigam *et al.*, 2004). Estudos genéticos, bioquímicos e fenotípicos indicam que alterações na forma e estrutura da bactéria influência a patogenicidade permitindo que a ela consiga sobreviver mesmo em condições desfavoráveis nos ambientes dos seu

hospedeiro (Lemos *et al.*, 2005). Assim a diversidade de formas bacterianas, os nichos e os estilos de vida refletem também em diversos mecanismos de regulação de hidrolases e de sintetases de mureína, os quais são essenciais para a manutenção da integridade do peptidoglicano (Frirdich e Gaynor, 2013).

No genoma de *S. mutans*, há mais de 60 proteínas responsáveis pela biogênese de parede celular, incluindo cinco proteínas de ligação à penicilina, 3 transportadores ABC, 10 glicosiltransferases e 6 hidrolases de mureína (*SMU.76*, *SMU.704*, *SMU.707*, *SMU.574*, *SMU.1700*, *SMU.2147*) (Adjic *et al.*, 2002). Estas últimas são responsáveis pela hidrólise sítio-específica do peptidoglicano da parede celular e podem ser classificadas em diferentes grupos de acordo com o tipo de ligação que hidrolisam (Smith, *et al.*, 2000, Adjic *et al.*, 2002). As hidrolases de mureína atuam em complexos multienzimáticos e suas atividades catalíticas desempenham diversas funções fisiológicas, incluindo a expansão do sacúolo de peptideoglicano, divisão celular, ancoragem de moléculas e/ou estruturas de superfície, crescimento em biofilmes e autólise em resposta aos estímulos ambientais (Vollmer *et al.*, 2008).

2.1.3 Transporte e metabolismo de carboidratos

A dieta humana é um fator fortemente associado a patogênese da cárie dentária causada por *S. mutans*, pois consiste na principal fonte de substratos para a síntese de polissacarídeos extracelulares importantes para a formação dos biofilmes dentários e açúcares que sustentam o metabolismo fermentativo acidogênico destes micro-organismos, o que pode levar à desmineralização progressiva dos tecidos dentários (Adjic e Pham, 2007). Os sistemas de transporte e metabolismo de açúcares desempenham um papel fundamental neste processo. Resultados de Adjic e Pham, (2007) demonstraram que *S. mutans* possui sistemas transportadores, cuja expressão é induzida pela disponibilidade dos respectivos açúcares, e outros cinco

PTS sistemas (Sistema de transporte fosfoenolpiruvato-fosfotransferase) continuamente expressos, independentemente da presenca do respectivo acúcar. Os cinco PTS continuamente expressos incluem os sistemas PTS de glicose, frutose, sacarose e maltose. Além disto, S. mutans expressa genes que codificam diversos sistemas dependentes de ATP do tipo ABC (ATP-binding cassette). A capacidade de S. mutans de transportar rapidamente e metabolizar uma grande variedade de acúcares pode estar diretamente relacionado à sua sobrevivência na placa dental e seu potencial cariogênico em seres humanos (Adiic e Phan, 2007). Assim, o transporte de açúcar e metabolismo por esta bactéria estão diretamente relacionados à virulência na patogênese de cárie dentária e portanto dependendo das proteínas requeridas podem parar este processo, sendo assim, importantes alvos para estratégias antimicrobianas. (Adjic e Phan, 2007).

Sistemas transportadores ABC são sistemas de transporte de membrana que consistem normalmente de duas proteínas integrais de membrana que formam o canal para transporte do substrato (permease), duas proteínas periféricas de membrana intracelulares envolvidas na ligação e hidrólise de ATP e uma proteína extracitoplasmática solúvel que é específica ao substrato, a qual pode ser uma lipoproteína ou ser ancorada à superfície celular (Figura 1).

Figura 1: Sistema de transporte de nutrientes pela membrana. Mecanismo de transporte do tipo ABC. Adaptado de Microbiologia de Brock, 10° edição, 2004.

Os PTS são responsáveis pela ligação, transporte transmembrana, e fosforilação de numerosos substratos de açúcar. Estes sistemas também estão envolvidos na regulação de uma variedade de processos metabólicos e transcricionais. Os PTSs consistem de dois componentes intra-citoplasmáticos de acoplamento energético inespecíficos, incluindo-se enzima I (EI) e uma proteína estável ao calor (Hpr, <u>histidine protein</u>), e Enzima II (EII), a enzima substrato-específica, a qual é mais variável na sua estrutura, composta frequentemente por três subunidades: EIIA (ou EIII) a qual é citoplasmática e solúvel, EIIB intracitoplasmática hidrofílica frequentemente associada à terceira subunidade EIIC, uma proteína hidrofóbica transmembrana carboidrato-específica (Madigan *et al.*, 2010). A ativação destes sistemas se inicia pela auto-fosforilação de EI dependente dos níveis fosfoenolpiruvato (PEP) da via glicolítica. O grupo fosfato é então transferido em cadeia para o resíduo de Histidina (His15) de Hpr. Hpr-P

então transfere o grupo fosfato para o domínio EIIB, e este é então transferido para o açúcar durante seu transporte através do domínio EIIC (Gorke e Stulke, 2008). A atividade dos PTSs depende do fluxo da via glicolítica que fornece PEP, o que conecta a atividades destes sistemas à regulação do metabolismo, disponibilidade de energia e condições nutricionais. Em algumas espécies bacterianas, a subunidade EIIA ativa fatores de transcrição de repressão catabólica, enquanto que em outras espécies, esta atividade é realizada por HPr (Gorke e Stulke, 2008). Os sistemas de repressão catabólica (CCR, *Carbon Catabolite Repression*) são sistemas que reprimem genes envolvidos na utilização de açúcares "alternativos", quando da presença de açúcares de uso preferencial, como a glicose (Gorke *et al.*, 2004).

Figura 2: Sistema de transporte de nutrientes pela membrana. Mecanismo fosfotransferase - PTS. Adaptado de Microbiologia e Imunologia geral e Odontológica, Vol. 1, 2013.

S. mutans podem crescer na presença dos componentes da saliva, como a única fonte de carbono e de nitrogênio (Marsh e Martin, 2009). Cerca de 500 a 1500 ml de saliva são secretados na cavidade bucal por dia para desempenhar diversas funções de proteção da cavidade bucal (Lamont e Jenkinson, 2012), o que se deve aos inúmeros fatores de proteção da imunidade inata e adaptativa que protegem a integridade dos tecidos e os micro-organismos que colonizam a cavidade bucal (Marsh e Martin, 2009). A saliva é hipotônica e tem pH de cerca de 6,7 e contém compostos inorgânicos (como íons bicarbonato, cloro, potássio e

sódio) e orgânicos (2-3 g/l de proteínas e glicoproteínas, sendo a enzima amilase uma glicoproteína predominante) (Lamont e Jenkinson, 2012). A saliva é pobre em açúcares livres, sendo que micro-organismos bucais necessitam produzir glicosidases para utilizar açúcares de cadeias laterais de glicoproteínas para seu metabolismo (Marsh e Martin, 2009; Jenkinson e Lamont, 2012). Entretanto variações extremas ocorrem durante as refeições com o grande aumento na disponibilidade de açúcares da dieta. A cariogenicidade de *S. mutans* está intimamente associada ao metabolismo e transporte de açúcares da dieta e com a produção de polissacarídeos intra e extra-celulares, os quais permitem o acúmulo destes micro-organismos nas superfícies dentárias e de reduzir o impacto das variações osmóticas (Banas, 2004). Além disto, *S. mutans* tem a capacidade de produzir ácidos, através de metabolismo fermentativo de diversos carboidratos (acidogenicidade) e tolerar o estresse ácido dos biofilmes dentários acidogênicos (aciduricidade) (Banas, 2004).

2.1.4 Resposta de estringência

S. mutans persiste na cavidade bucal sendo capaz de tolerar rapidamente as alterações do ambiente, tais como, alterações bruscas de pH, nutrientes (carboidratos) provenientes da dieta, tensões de oxigênio (Bowden GH e Hamilton, 1998; Burne RA, 1998). Como diversas espécies bacterianas, *S. mutans* enfrenta ainda condições de estresse metabólico e nutricional decorrentes da falta de aminoácidos, alterando os níveis de uma molécula sinalizadora intracelular designada alarmona. As alarmonas são moléculas de guanosina pentafosfato, (p)ppGpp sintetizadas por sintetases de (p)ppGpp denominadas RelA, as quais são associadas a ribossomos (Lemos *et al.*, 2004). RelA é ativada quando o sítio A dos ribossomo é ocupado por um RNAt sem seu respectivo aminoácido, durante a tradução protéica. Em bactérias Gram-negativas, o

restabelecimento dos níveis do aminoácido em falta ativa a enzima fosfatase SpoT, a qual hidrolisa (p)ppGpp (Lemos *et al.*, 2004). Bactérias Gram-positivas normalmente apresentam uma única enzima RelA com ambas as funções, sintetase e hidrolase de (p)ppGpp, sendo classificadas como enzimas do tipo Rel/SpoT e outras sintetases de (p)ppGpp sem os domínios SpoT, designadas RelP e RelQ (Kim *et al.*, 2012; Geiger *et al.*, 2014). (p)ppGpp atua em diversos processos celulares de forma direta ou indireta, que compõem a "resposta de estringência", e que variam dependo da espécie bacteriana (Geiger *et al.*, 2014). Entre estes, (p)ppGpp interfere na estabilidade de RNA polimerases ao DNA, retarda processos de tradução, bloqueia a transcrição de operons de síntese de RNA estáveis (RNAr e RNAt) e proteínas ribossômicas e/ou ativa a transcrição de genes de sistemas de degradação protéica e inibe a replicação do DNA (Lemos *et al.*, 2004).

Em *S. mutans*, ReIP parece ser a fonte primária da produção de (p)ppGpp durante fase exponencial crescimento sem limitações nutricionais. Além disso, ReIP é co-transcrito com o (SDC) ReIRS (Lemos *et al.*, 2007), sugerindo que o *S. mutans* pode utilizar sinais ambientais para otimizar o crescimento e sobrevivência celular de um modo que permita o organismo a equilibrar o crescimento durante a presença de nutrientes, com a capacidade de se adaptatar rapidamente à ausência de nutrientes. Consistente com a função de (p)ppGpp em bactérias, os ortólogos de ReIRS em *Streptocococus pyogenes*, designados SptRS, foram críticos para a sobrevivência desta espécie na saliva (Shelburne *et al.*, 2005). Em *S. mutans*, a intativação de *reIP* e *reIRS* inibe o acúmulo de (p)ppGpp durante o crescimento exponencial, aumentando a velocidade de *S. mutans* coordenar o crescimento com a resposta ao estresse oxidativo (Seaton *et al.*, 2011). Entretanto, pouco ainda se sabe sobre as destes genes na biologia de *S. mutans*.

2.2 Sistemas de Dois Componentes

Mais de 100 reguladores transcricionais foram identificados em no genoma de S. mutans UA159, sendo que 14 destes compõem Sistemas de Dois Componentes (SDC) completos e um regulador de resposta independente (órfão) (Xu et al., 2007; Biswas et al., 2008). Os sistemas de dois componentes (SDC) são importantes para a sobrevivência, virulência e adaptação bacteriana, ativando ou reprimindo a expressão de genes ou grupos de genes em resposta as modificações das condições ambientais (Ajdic et al., 2002). Um SDC típico possui dois componentes (Figura 3), uma proteína de membrana (histidina guinase – K), que tem a função de detectar o estímulo ambiental, sofrendo autofosforição e transferindo então o grupo fosfato para o segundo componente, a proteína reguladora de resposta (RR) (Stock et al., 2000). RR é um fator de transcrição que guando fosforilado tem sua conformação alterada, o que o torna capaz de interagir com sequências regulatórias de diversos genes, induzindo ou inibindo sua transcrição (Stock et al., 2000). Organismos procariontes, tais como as bactérias, possuem a característica de sofrer com pequenas variações do meio ambiente (Stock et al., 2000). Sendo assim, esses organismos necessitam de um maior poder de regulação de seu metabolismo, em prol de uma melhor adaptação às variações do meio. Muito dessa regulação é feita através do controle da transcrição de genes por fatores de transcrição que compõem os sistemas reguladores da transcrição (SDC).

Figura 3: Um SDC típico bacteriano. Consiste de um receptor de membrana histidina quinase sensora (geralmente designado pela letra K ou S, ex. sptS) e um regulador de resposta intracelular (geralmente designado pela letra R, exemplo. *sptR*). Em resposta a um ou mais estímulos ambientais específicos, o sensor K sofre auto-fosforilação e transfere o grupo fosfato para um resíduo aspartato do R cognato. O R fosforilado adquire uma nova conformação para se ligar às sequências regulatórias (operadoras) de genes alvos (*regulon*), ativando ou inibindo sua transcrição. Esse esquema básico é adaptável e variável de acordo com sistemas específicos. Adaptado de Madigan *et al.*, 2010.

Os genes que codificam as proteínas dos SDC normalmente estão organizados na forma de operon, mas existem genes órfãos, que não estão próximos ao seu respectivo gene (do receptor ou regulador de resposta) cognato (Senadheera *et al.*, 2005). Em *S. mutans*, alguns destes genes tem sido investigados em maior detalhe, como o SDC VicRK, e estão envolvidos respectivamente, na regulação positiva de genes para a formação de biofilmes e divisão celular, biossíntese de bacteriocinas e competência (Senadheera *et al.*, 2005; Duque *et al.*, 2011). Além de SDC completos, *S. mutans* apresentam um regulador órfão CovR, também conhecido em *S. mutans* como GcrR (*response regulator GcrR for Glucan Binding protein C*). Em *S. mutans*, CovR reprime os

genes de virulência gtfB/C, gbpC e gbpB (Sato et al., 2000; Biswas e Biswas 2006; Biswas et al., 2007; Stipp et al., 2008). Este mesmo regulador tem sido analisado por nosso grupo. Estudos realizados em S. pyogenes, Streptococcus agalactiae e S. mutans sugerem que fatores do hospedeiro presentes no fluído tecidual, saliva e sangue compreendam estímulos para ativação de CovR (Gryllos et al., 2001; Shelburne et al., 2005b; Gryllos et al., 2007; Gryllos et al., 2008; Negrini et al., 2011). Diferente de *S. mutans*, CovR é parte de um SDC completo (CovRS) nas espécies S. pyogenes e S. agalactiae e regula diversas funções de virulência durante os processos de infecção, as quais também incluem fatores antifagocíticos e genes metabólicos (Graham et al., 2002; Graham et al., 2005; Mereghetti et al., 2008). A inativação de covR aumenta significativamente a formação de biofilmes de S. mutans na presença de sacarose (Stipp et al., 2008). Recentemente, foi verificado que a inativação de *covR* compromete a capacidade de S. mutans de sobreviver e/ou crescer em saliva (Vizoto, 2011) e a fagocitose por PMN em sangue humano (Negrini *et al.*, 2012). Não se sabe, entretanto, quais os receptores de membrana que ativam CovR em S. mutans, mas é provável que este RR interaja com outros SDC importantes para a virulência desta espécie, possivelmente ativados em resposta a saliva, sangue ou outros fatores do hospedeiro. Em *S. pyogenes*, a expressão de *covSR* (regulador negativo de genes de virulência) está negativamente associada a diferentes parâmetros clínicos de infecção (número de micro-organismos, porcentagem de neutrófilos locais, quantidade de proteína C-reativa, tonsilite e faringite) durante as três diferentes fases de infecção (fases de colonização, assintomática e aguda) em modelo de faringite experimental em macacos (Virtaneva et al., 2005). Somente outro SDC foi associado significativamente a diferentes destes parâmetros durante todas as fases de infecções, o regulador correspondente ao SPY.0874 (Virtaneva et al., 2005). Juntamente como SPY.0875 este regulador forma o sistema designado SptRS (Spt de saliva persistence) por Shelburne et al., (2005). A despeito do reconhecimento de S. mutans como micro-organismo comum da cavidade bucal de humanos, até onde sabemos, não há estudos para identificar SDCs

responsivos à saliva, o que é possivelmente, importante para a transmissão e estabelecimento desta espécie na cavidade bucal.

Dentre os diversos SDCs, o sistema SptRS foi caracterizado na espécie Streptococcus pyogenes GAS5005 M1 (Shelburne et al., 2005), como um sistema de adaptação e persistência em saliva humana, pois a inativação deste sistema prejudicou a viabilidade de S. pyogenes em saliva humana. A inativação do sistema SptRS (SPY 0874/SPY 0875) respectivamente, alterou ainda a expressão de diversos genes de virulência implicados na evasão a fatores de defesa do hospedeiro e também genes envolvidos na resposta ao estresse oxidativo e ácido e no metabolismo de carboidratos (Shelburne et al., 2005). Esse sistema SptRS têm recebido a atenção em estudos recentes sobre mecanismos de adaptação e virulência de diversos patógenenos Gram-positivos, incluindo espécies do gênero Streptococcus, Bacillus, Staphylococcus, Enterococcus e têm sido relacionado com regulação, adaptação e virulência. Em S. mutans UA159 o sistema SptRS é composto pelos genes (SMU.927/SMU.928) que possuem 57% e 62% de similaridade com o sistema SptRS de *S. pyogenes* e foi designado ReIRS por Lemos et al., (2007). As características de similaridade e organização genômica dos *loci* SptRS de *S. pyogenes* e *S. mutans* estão resumidas na Tabela 1 e Figura 4, respectivamente. Em Streptococcus gallolyticus subsp. gallolyticus ATCC43143 que pode provocar infecções em humanos e são frequentemente associados com bacteremias, endocardite infecciosa, o sistema SptRS é composto pelos genes SGGB 1273/SGGB 1274 e apresenta 62% e 66% de identidade protéica, respectivamente, com o sistema SptRS de S. mutans, sendo associado a adaptação e virulência com papel na adesão aos tecidos do hospedeiro, conduzindo a infecções persistentes que causam doenças sub-aguda e crônica nos seres humanos (Lin et al., 2011). Em Streptococcus pneumoniae R6 o sistema SptRS é conhecido como CiaRH (SPR 0707/SPR 0708) com 36% e 30% de identidade proteica, respectivamente, e está envolvido em vários processos, tais como o desenvolvimento de competência, autólise, produção de bacteriocinas, colonização do hospedeiro e virulência (Halfmann et al., 2011). Em

está SptRS CiaRH Enterococcus faecium o sistema descrito como (HMPREF0351 11399/HMPREF0351 11400) com 36% e 30% de identidade protéica, respectivamente, com o sistema SptRS de S. mutans e apresenta-se associado à virulência, adaptação e persistência de cepas hospitalares (Qin et al., 2012). Em Streptococcus sanguinis o sistema SptRS (SSA_1794/SSA_1793) tem 66% e 55% de identidade protéica, respectivamente, com o sistema SptRS de S. *mutans* (Camargo, 2014) e regula funções importantes para a morfogênese, crescimento em fase planctônica, formação de biofilmes, capacidade de sobrevivência e adaptação em saliva humana, produção de peróxido de hidrogênio e liberação de DNA genômico para o meio extracelular (Camargo, 2014). Além disso, a proteína SptR apresenta-se conservada entre cepas da espécie Streptococcus mutans apresentando de 99 a 100% de identidade com as cepas de S. mutans sequenciadas (cepas A19, ST6, A9, SM1, 8ID3, 4SM1, GS5, B, OMZ175, NN2025, I5JP3, 3SN1, LJ23, 1ID3, NLML8, 11A1, 1SM1, 2ST1, N29, 5SM3 e U138).

Tabela 1. Identidade e localização dos genes *sptR* e *sptS* e respectivas proteínas codificadas de *Streptococcus pyogenes* e seus ortólogos identificados por análise de BLAST do genoma da cepa *Streptococcus mutans* UA159.

Espécie Bactériana	Gene	Número de	Tamanho da	Similaridade da
(cepa)	(tamanho)	Acesso	proteína	sequência proteica (%)
		(GenBank)		ao ortólogo de S.
				pyogenes
	<i>SPY_0874; spt</i> R	901032	222 22	_
Streptococcus	(669 pb)	301032		-
pyogenes	SPY_0875; sptS	901033	410 aa	
(M1GAS)	(1230 pb)			
	SMU. 927	1028276	228 aa	62 %
Streptococcus	(687 pb)			
mutans	SMU.928	1028283	412 aa	57 %
(UA159)	(1240 pb)			

Figura 4. Organização genômica dos genes *sptR* e *sptS* de *S. pyogenes* e genes *SMU.927* e *SMU.928* identificados em *S. mutans.*

3 PROPOSIÇÃO

O objetivo geral deste projeto é investigar a participação do sistema SptRS em fenótipos importantes para a colonização bucal por *S. mutans*. Para isto, os objetivos específicos deste trabalho incluiram:

1. Construir as cepas mutantes *knockout* dos genes *sptS*, *sptR* e *sptRS* a partir da cepa *S. mutans* UA159, designados respectivamente UA*sptS*, UA*sptR* e UA*sptRS*.

2. Analisar o efeito da inativação de *sptR*, *sptS* e *sptRS* na morfogênese, no crescimento planctônico, formação de biofilmes e autólise.

3. Comparar a viabilidade e crescimento em saliva entre cepas reguladora *knockout* UA*sptR* e cepa parental UA159.

4. Identificar o *regulon* de SptRS de *S. mutans*, através de ensaios de Imunoprecipitação da cromatina e sequenciamento (ChIP-seq) com o genoma de UA159, e ensaios de retardamento da mobilidade eletroforética (EMSA) e das comparações dos perfis de transcrição dos potenciais genes-alvo deste sistema entre as cepa mutante UA*sptR* e a cepa parental.

4 MATERIAL E MÉTODOS

4.1 Cepas e condições de crescimento

A cepa *S. mutans* UA159, cujo genoma é conhecido (Ajdic *et al.*, 2002) foi utilizada para a construção do mutante *knockout spt*S, *spt*R e *spt*RS (*Knockout* duplo – de ambos os genes *spt*R e *spt*S) sendo designado respectivamente UA*sptR*⁻, UA*sptS*⁻, e UA*sptRS*⁻. As cepas *S. mutans* foram cultivadas em BHI (Merck Labs, Alemanha), Meio Quimicamente Definido (MQD) (anexo 1) ou RPMI 1640 (Gibco) acrescidos ou não de eritromicina 10 µg/ml (para manutenção das cepas mutantes) em atmosfera de 10% de CO₂ a 37°C. O plasmídeo pVA838 (Macrina *et al.*, 1982) foi utilizado para a obtenção do gene de resistência a eritromicina.

Para cada ensaio, as cepas foram cultivadas a partir dos estoques congelados mantidos a -20°C em Skim-milk (Difco Labs) ou glicerol (Dinâmica), dos quais foram estriados em MSA (Gold *et al.*,1973) ou MSA acrescido de 10 µg/ml eritromicina (Sigma - Aldrich, EUA) para manutenção das cepas mutantes (MSE) ou estriados em agar *Brain Heart Infusion* (BHA) (Merck Labs, Alemanha) acrescido de 10 µg/ml eritromicina em atmosfera de 10% de CO₂ a 37°C (Water - Jacked CO₂ Incubators/Cole Parmer Instruments, EUA) durante 24 h. Após o crescimento, cinco colônias isoladas foram inoculadas em 5 ml de caldo *Brain Heart Infusion* (BHI) (Difco Labs, EUA), acrescidas ou não de eritromicina 10 µg/ml (BHIerm) e incubadas durante 18 h sob as mesmas condições citadas anteriormente e utilizadas como inóculo *starter* (inóculo inicial proveniente de culturas *overnight*) e que possuíam absorbâncias semelhantes. As leituras de absorbância foram realizadas com comprimento de onda de 550 nanômetros (A_{550nm}) em espectrofotômetro *Genesys 2* (Spectronic Unicam, EUA).

Cepas de *Escherichia coli* DH-5α e BL21 foram cultivadas em *Luria Bertani* (LB caldo ou agar) (Difco Labs, EUA), acrescido ou não 100 µg/ml ampicilina quando necessário, durante 18 h ou menos, à 37ºC, em aerobiose com ou sem agitação.

4.2 Extração de DNA genômico (gDNA), DNA plasmideal e reações de rotina de PCR.

Para a construção dos mutantes do sistema SptRS, o DNA genômico da cepa *S. mutans* UA159 foi extraído e purificado a partir de 1,5 ml de cultura em BHI (18 h, 37°C, 10% CO₂) utilizando-se o sistema *MasterPure* (Epicentre Technologies, EUA) seguindo recomendações dos fabricantes. A qualidade do DNA genômico extraído foi avaliada pela razão das absorbâncias (A₂₈₀/A₂₆₀) e a integridade das amostras de DNA comprovada em gel de 1% de agarose (Sigma-Aldrich, EUA), corado com 0,15 μ l/ml de brometo de etídio, sob luz ultravioleta (UV). Os DNAs genômicos foram estocados a -20°C para posterior utilização.

O DNA plasmidial (pDNA) foi purificado das culturas de *E. coli* por extração alcalina, como descrito por Birnboim e Doly (1979). Resumidamente, a cepa da *E.coli* contendo o plasmídeo pVA838 que confere resistência a eritromicina (Macrina *et al.*, 1982) foi reativada em meio de cultura LB agar contendo 100 μg/ml de eritromicina e incubadas em aerobiose, 37°C/24 h. Colônias isoladas foram transferidas para 5 ml de caldo LB com 100 μg/ml de eritromicina e incubadas a 37°C em aerobiose com agitação constante por 18 h. A seguir as células obtidas foram separadas por centrifugação (11.000 rcf/5 min) lavadas com solução salina (NaCl 0,9%), lisadas pela adição de lisozima (Sigma-Aldrich, EUA) 2 mg/ml, e o pDNA separado do gDNA através de precipitação sob alto pH (12-12.5) e alta concentração de sais (acetato de sódio, 3 M). A seguir, o sobrenadante contendo o pDNA purificado, foi lavado com fenol - clorofórmio e

etanol para a remoção de sais. Após a secagem, o pDNA foi ressuspendido em 40 μ l de solução estéril de TE (Tris- HCl 10 mM pH 8,0; EDTA 1 mM pH 8,0), contendo RNase A (Invitrogen, EUA) na concentração final de 50 μ g/ml. A qualidade do DNA extraído foi avaliada pela razão das absorbâncias (A₂₈₀/A₂₆₀) e a integridade das amostras de DNA comprovada em gel de agarose a 1%, corado com 0,15 μ L/mL de brometo de etídio, sob luz UV.

4.3 Delineamento de *primers* específicos para a construção dos mutantes *knockout* SptRS.

Os pares de *primers* específicos para amplificar os produtos das sequências que flanqueiam *SptRS* de 500 a 700 pb (ANEXO 3) e *primers* específicos para a análises dos transcritos por qPCR, com produtos de tamanhos entre 200 a 300 pb (ANEXO 3) objetivando a quantificação dos respecitvos transcritos a partir do *pool* de cDNA obtido nas reações de transcriptase reversa, foram delineados com auxílio do programa *Primer* 3 (<u>http://frodo.wi.mit.edu</u>). A especificidade dos pares de *primers* foi confirmada através da análise de BLAST (<u>http://www.ncbi.nlm.nih.gov/BLAST</u>) contra o genoma da cepa *S. mutans* UA159 (acesso: NC_009009, em <u>http://www.ncbi.nlm.nih.gov/genome</u>) e a análise do tamanho e especificidade dos amplicons foram obtidos em géis de agarose a 1,5%.

4.4 Estratégia de Clonagem

4.4.1 Confecção dos mutantes *knockout* UA*sptR* e UA*sptS* e UA*sptRS* em *S. mutans*

Os mutantes *knockout* de *sptR, sptS e sptRS* foram obtidos como descrito por Duque *et al.,* (2011), com algumas modificações. Para isto, foi construído um alelo mutado dos *loci sptR* e *sptS*, através da estratégia de PCR e ligação (Lau *et al.,* 2002), conforme ilustrado na Figura 5, com algumas modificações (Duque *et al.,* 2011). Os genes *sptR, sptS e sptRS* foram substituídos por um cassete de resistência à eritromicina (*ermR*). Detalhes da construção dos mutantes são apresentadas utilizando-se resultados obtidos para a cepa UA159.

Para a confecção dos mutantes, o DNA genômico das cepas UA159 e o DNA plasmidial (pVA838) foram extraídos e purificados como descrito no item **4.2.** As regiões flanqueantes *sptR e sptS* foram amplificadas com pares de *primers* específicos (P1/P2 e P3/P4). Os *primers* P2 e E1 contêm nas suas extremidades 5' as sequências do sítio de restrição da endonuclease *Ascl.* Os *primers* P3 e E2 contêm o sítio reconhecido pela endonuclease *Xhol.* O gene *ermR* foi amplificado do plasmídeo pVA838 (gi:13442777), através dos pares de *primers* E1/E2. Os *primers* E1 e E2 contêm na sua extremidade 5', os sítios de restrição de *Ascl* e Xho*l.* As reações de PCR foram realizadas com TaqDNA polimerase de alta fidelidade com atividade *proof reading* (Taq DNA Polymerase High Fidelity, Invitrogen, E.U.A.). Para tal as reações foram compostas, de 74,5 μL de H₂O ultra pura, 10 μL de tampão PCR 10X, 2 uL DNTP 10 mM, 5 uL MgCl₂ 50 mM, 3 μL de *primer Foward* 10 μM, 3 μL de primer Reverse 10 μM, 0,5 μL de Taq DNA Polimerase Hi-Fi e 1 μL de DNA molde. Cada ciclo térmico de amplificação consistiu de desnaturação inicial a 94°C por 60s, seguido por 33 ciclos de

desnaturação a 95°C por 30s, anelamento específico para cada par de *primers* (vide tabela 2 e 3) e extensão a 68°C por 60s. Para a análise da integridade e especificidade das reações, 10 µL dos produtos de PCR foram visualizados em gel de agarose a 1,5%, corado com 0,15 µL/mL de brometo de etídio, sob luz UV, como exemplificado na Figura 6, alelos para construção dos mutantes *sptR* e *sptS*.

Figura 5: Estratégia de inativação gênica utilizando-se a técnica de mutagênese por PCR e ligação. Fonte: adaptado de Lau *et al.*, 2002.

Figura 6: Gel de agarose (1,5%) contendo 10 µL de produtos de PCR utilizados para construção dos mutantes UA*sptS*, UA*sptR*, UA*sptRS*. Fig. 6 A: Canaletas 1 e 2: produtos obtidos com P1/P2 (769 pb) e P3/P4 (714 pb) a partir de DNA genômico da cepa selvagem das regiões flanqueantes de *sptR*, respectivamente. Canaletas 3 e 4: produtos obtidos com P1/P2 (759 pb) e P3/P4 (632 pb) a partir de DNA genômico da cepa selvagem das regiões flanqueantes de *sptR*, respectivamente. Canaletas 3 e 4: produtos obtidos com P1/P2 (759 pb) e P3/P4 (632 pb) a partir de DNA genômico da cepa selvagem das regiões flanqueantes de *sptS*, respectivamente. Canaleta 5: 0,9 µg de padrão molecular 250 pb (Invitrogen). Fig. **6 B:** Canaleta 6: 0,9 µg de padrão molecular 100 pb (Invitrogen) e 2 e 3: produto obtido com E1/E2 a partir do pVA838 (1000 pb). Canaleta 8: controle negativo da reação de PCR na ausência de DNA molde.

A qualidade das reações e tamanhos de fragmentos esperados foi monitorada pela visualização dos *amplicons* em géis de agarose corados com brometo de etídio. A purificação dos produtos de PCR foi realizada utilizando-se o *kit StrataPrep PCR Purification Kit* (Stratagene, EUA), segundo as recomendações do fabricante. Os produtos das reações de PCR com os pares de *primers* P1/P2, P3/P4 e E1/E2 foram purificados e posteriormente digeridos com as endonucleases *Ascl, Xhol* e *Ascl/Xhol*, respectivamente (New England BioLabs, USA), seguindo-se as recomendações do fabricante. Para as reações de digestão foram utilizados 11,5 µL de produto purificado, 21,5 µL de H₂O ultra pura, 4 µL de tampão de reação 10x e 3 µL de enzima. As amostras de digestão foram incubadas a 37°C durante 2 h e a reações paralisadas através de incubação por 5 min a 65°C. Os produtos digeridos foram purificados à reação de ligação com DNA ligase

T4 (Invitrogen). Como DNA molde, foram utilizados 4,2 µL de E1/E2 e 10 µL de P1/P2, ambos digeridos por Ascl (Ligação A) ou 4 µL de E1/E2 e 10 µL de P3/P4, ambos digeridos por Xhol (Ligação B). As ligações A e B foram então individualmente amplificadas com os primers distais. Para a ligação A, foram utilizados os *primers* P1/E2, enquanto que para a ligação B foram utilizados os primers E1/P4. As reações de PCR foram compostas por: 72,9 µL de H₂O ultra pura, 9 µL de Tampão PCR 10X, 2,3 µL de dNTPs Mix 10 mM, 2,0 µL de Primer Forward 10 µM, 2,0 µL de Primer Reverse 10 µM, 1,8 µL de Tag DNA Polimerase HiFi e 1 µL de DNA molde (reação de ligação). Cada ciclo térmico de amplificação consistiu de desnaturação inicial a 95ºC por 3 min, seguido por 30 ciclos de desnaturação a 95ºC por 30 s, anelamento a 58ºC por 30 s e extensão a 68ºC por 60 s. Para a análise da integridade e especificidade das reações, 10 µL dos produtos de PCR foram visualizados em gel de agarose a 1,5%, corado com 0,15 µL/ml de brometo de etídio, sob luz UV. Após a análise da integridade e especificidade das reações, os produtos foram purificados utilizando-se o sistema StrataPrep PCR Purification Kit (Stratagene, EUA) e submetidos a nova amplificação, com primers P1/P4, forçando a interação entre E1/P4 e P1/E2 através da região homóloga presente em ambos os produtos (gene *erm*), o que gerou grandes quantidades de fragmentos recombinantes P1-*erm^r*-P4. A reação de PCR foi composta por: 79 µL de H₂O ultra pura, 9 µL de Tampão PCR 10X, 2,3 µL de dNTPs Mix 10 mM, 2,0 µL de Primer Forward 10 µM, 2,0 µL de Primer *Reverse* 10 µM, 1,8 µL de *Taq DNA Polimerase HiFi* e 1 µL de DNA molde (0,5 µL) de E1/P4 purificado e 0,5 µL de P1/E2 purificado). Como controle positivo da reação de PCR, foi utilizado o DNA da cepa selvagem UA159. Cada ciclo térmico de amplificação consistiu de desnaturação inicial a 95ºC por 60 s, seguido por 30 ciclos de desnaturação a 95ºC por 30 s, anelamento a 58ºC por 30 s e extensão a 68°C por 120 s. Para a análise da integridade e especificidade das reações, 10 μL dos produtos de PCR foram visualizados em gel de agarose a 1,5%, corado com 0,15 µL/mL de brometo de etídio, sob luz UV. O produto P1-ermR-P4 foi purificado, a concentração de DNA determinada em espectrofotômetro (A_{260nm}) e a

seguir o DNA recombinante foi utilizado para transformar a cepa de *S. mutans* (Item **4.5**). Para a construção do mutante duplo regiões flanqueantes de *sptR e sptS* foram amplificadas com pares de *primers* P1/P2 e P3/P4 utilizados para a confecção do mutante *knockout* UA*sptR* e UA*sptS* respectivamente e os mesmos procedimentos realizados para inativação de genes individuais realizados como descrito anteriormente.

4.5 Transformação das cepas UA159 com alelos mutados.

Um total de 10 µg dos fragmentos recombinantes purificados foi utilizado para transformação natural das cepas UA159 segundo metodologia previamente descrita (Perry e Kuramitsu, 1981), com algumas modificações. Para a transformação de S. mutans, 150 µl de soro de cavalo inativado pelo calor foram adicionados a 2 ml de THB a 37°C (Difco Labs, EUA), adicionando - se posteriormente 150 µl de cultura *overnight* (18 h) de *S. mutans*. Essa suspensão foi incubada a 10% CO₂, 37°C por aproximadamente 2 h (A_{550nm}= 0,4). Volumes de 500 µl destas culturas foram adicionados a 500 µl de THB fresco, aos quais imediatamente adicionou-se o DNA recombinante. A seguir, os frascos foram incubados por 150 min, e alíquotas dessas culturas foram semeadas em BHA contendo 10 µg/ml de eritromicina. As placas foram incubadas a 37°C, por 48 h, em atmosfera de 10% CO₂. Através desse protocolo, muitos transformantes foram obtidos para S. mutans. Como controle positivo foi utilizado o plasmídeo pVA 838 como DNA recombinante e como controle negativo a cultura de S. mutans e somente THB fresco. Foi possível a partir do protocolo de transformação recuperar colônias transformantes para os mutantes UAsptS⁻, UAsptR⁻ e UAsptRS⁻. Os transformantes de genes individuais e duplo foram selecionados em BHA contendo 10 µg/ml de eritromicina. Algumas das colônias foram selecionadas e confirmadas por colony - PCR com reação de PCR com o primer da E1/E2, para a confirmação da presença do cassete de resistência a eritromicina. Algumas

dessas colônias foram selecionadas para outros testes confirmatórios, para isso extraiu-se o DNA dessas colônias e foram realizadas as reações de PCR com diferentes combinações de *primers* (P1/P2 e P3/P4, P1P4 e P1/E2 e P4/E1). Os mutantes recuperados foram cultivados em meio de cultura acrescido de 10 µg/ml de eritromicina e estocados a -20°C em meio *Skim milk* (Difco Labs, EUA) e em BHI glicerol. Os mutantes selecionados foram também confirmados por Análise de Sequenciamento de DNA que foi realizado no Centro de Estudos do Genoma Humano - Setor de Sequenciamento de DNA da Universidade de São Paulo – USP. As sequências foram analisadas pelo programa *BioEdit*, conferidas e validadas para a correta inserção do gene de resistência a eritromicina. Além disso análises do número de transcrito dos genes *sptR* e *sptS* foram verificados por ensaios de qPCR nas cepas mutantes e verificou-se a ausência de transcritos nas cepas mutantes.

4.6 Caracterização estrutural do lócus de sptRS

Para investigar se os genes *sptR* e *sptS* são transcritos em um mesmo RNA policistrônico e a possível organização estrutural do locus gênico em *operon* foram utilizados *primers* desenhados a partir do final da região do gene *SMU.926* e *início* do *SMU.927*, final do *SMU.926* e *início* do *SMU.928* e final do *SMU.927* e início do *SMU.928* para identificar que houve formação de produtos entre as regiões *sptR* e *sptS* e, assim, confirmando que *SMU.926, SMU.927 e SMU.928* são co-transcritos em apenas um RNA policistrônico. Dados estes que corroboram com Lemos *et al.* (2007) em que afirma que esses genes são apresentam-se cotranscritos (Figura 7).

Figura 7. Análise de RT-PCR dos transcritos contendo as sequências Spt*RS*. Gel de eletroforese com amplificação de fragmentos de cDNA. Canaleta 1: Marcador de 1kb plus (Invitrogen); Canaleta 2: produto de amplificação com *primers* delineados para *SMU.926 - SMU.927* com cDNA UA159 (205 pb) - (RNA convertido para cDNA pela reação de transcriptase reversa); Canaleta 3: controle negativo com ausência de DNA molde. Canaleta 5: produto de amplificação *SMU.926 - SMU.926 - SMU.926 - SMU.928* com cDNA UA159 (687 pb) com cDNA UA159. Canaleta 6: controle negativo com ausência de DNA molde. Canaleta 8: produto de amplificação *SMU.927 - SMU.928* com cDNA UA159 (506 pb) com cDNA UA159. Canaleta 9: controle negativo com ausência de cDNA molde.

4.7 Análise da morfologia celular pela Microscopia de campo claro e Microscopia Eletrônica de Varredura (MEV)

Para os ensaios de analise de morfologia celular por microscopia de campo claro, as células provenientes de uma cultura de BHI a A_{550nm}= 0,3, A_{550nm}= 0,7 e *overnight* foram coletadas, coradas com a coloração de Gram e submetidas ao microscópio de campo claro para serem avaliadas com a objetiva de imersão. Para os ensaios de analise da morfologia celular por MEV, 500 uL de células provenientes de uma cultura a A_{550nm}= 0.3, A_{550nm}= 0,7 foram coletadas por centrifugação (12.000 rcf), lavadas com solução salina (0.9% NaCl) e ressuspendidas em 1 mL de tampão salina–glutaraldeido 2.5%. As células foram então depositadas sobre a lamínula de vidro para a fixação posicionadas em

placas de 24 poços. Após 24 h em estufa a 60°C. Os espécimes foram desidratados com banhos com concentrações crescentes de etanol (50%, 60%, 70%, 80%, 90% e 100%) por 20 min cada. Espécimes foram secos, metalizados e armazenados em dessecador para a subsequente observação em microscópio de varredura (JEOL, JSM 5600LV, Japão).

4.8 Comparação das características de crescimento planctônico sob diferentes condições nutricionais em 10% CO₂.

As curvas de crescimento de UA159, respectivos mutantes foram determinadas em diferentes meios: BHI, RPMI e MQD acrescidos de 0.5% de diferentes açúcares (glicose, frutose, sacarose e maltose) e acrescidos ou não de 10 µg/ml de eritromicina para manutenção das cepas mutantes 10% de CO₂. Para isto, culturas *overnight* das cepas em BHI, RPMI e MQD acrescido de 0,5% de diversos açúcares (glicose, frutose, sacarose e maltose) a 37°C, 10% de CO₂ foram ajustadas A_{550nm}= 0,035 em meio fresco e incubadas nas mesmas condições por até 10 h. Durante este período, alíquotas das culturas foram coletadas a cada 1 h para a determinação das absorbâncias (A_{550nm}). Três ensaios independentes foram realizados em duplicata.

4.9 Seleção de indivíduos para a coleta de saliva

Para os ensaios de formação de biofilmes na presença de saliva, foram coletadas amostras de saliva estimulada de um voluntário, como descrito em estudos anteriores (Shelburne *et al.*, 2005a) e segundo o protocolo aprovado pelo Comitê de Ética em Pesquisa da FOP/UNICAMP (Processo Nº 133/2012) - Anexo 1. A coleta de saliva foi realizada pelo menos 2 h após ingerir qualquer alimento. Para as coletas das amostras, a salivação foi estimulada através da mastigação

de um filme de parafina e a saliva coletada durante 1 min em frasco mantido em banho de gelo. Um total de 5 ml de cada saliva foi acrescido de 2,5 mM de ditiotreitol (DTT). As salivas foram clarificadas através de centrifugação (6.000 xg) por 15 min, 4°C) e esterilizadas por filtração a vácuo em filtros Steritop-GP com membrana de polietersulfona (PES) de baixa retenção de proteínas, com poros de 0,22 µm de diâmetro (SCGPTO2RE- Millipore). Alíquotas dos *pools* das amostras salivares foram congeladas a -70°C e descongeladas imediatamente antes da sua utilização. Por dia, foi coletado um total de 30 ml de saliva até completarem-se um volume total de 300 ml de saliva.

4.10 Quantificação da biomassa de biofilmes formados durante 18 h em placas de microtitulação tratadas ou não com saliva humana ou em meio de cultura suplementado com saliva.

A capacidade de formação de biofilmes das cepas estudadas foi analisada em diferentes condições de cultivo através de ensaios de formação de biofilmes em placas de poliestireno de 96 poços, segundo método descrito anteriormente para *S. mutans* (Mattos-Graner *et al.*, 2001) com algumas modificações. Resumidamente, culturas de 18 h em meio BHI ou BHI*erm* A_{550nm} ajustadas, foram diluídas em BHI acrescido de 0,1% de sacarose, 0,05% sacarose e 0,05% amido cozido (Amido, solúvel S9965 Sigma Aldrich) e 0,5% sacarose e 1% amido cozido a A_{550nm}= 0,035 acrescido ou não com *erm*. As culturas foram crescidas a A_{550nm}= 0,3 foram transferidas para placas de poliestireno de 96 poços estéreis não tratadas de fundo chato (CralPlast) (200 μ L/poço). As placas foram incubadas por 18 h a 37°C a 10% CO₂. O restante das culturas líquidas diluídas foi incubado novamente sob as mesmas condições, para quantificação do crescimento planctônico. Após incubação por 18 h, as culturas dos tubos foram homogeneizadas em vórtex para leitura da A_{550nm} em espectrofotômetro, como medida do crescimento planctônico. Os biofilmes formados nas placas de

microtitulação foram lavados por 3 vezes com água destilada, para remoção das células fracamente aderidas e corados com solução aquosa de cristal violeta a 1% durante 30 min. A seguir, os biofilmes corados foram lavados por 3 vezes com água destilada e secos em temperatura ambiente durante 1 a 2 h. O corante dos biofilmes foi solubilizado durante incubação com etanol a 100% (200 µL por poço) por 30 min a temperatura ambiente. Volumes de 100 µL da solução foram transferidos para nova placa de microtitulação com fundo chato e as absorbâncias (A_{595nm}) medidas em leitor de ELISA (VersaMAX, Molecular Devices, EUA). Como controles negativos, foram utilizados meios de cultura sem inóculo bacteriano.

Para o experimento com superfície tratada com saliva, as amostras foram coletadas e as placas foram tratadas com 200 μ l de saliva por 2 h 4°C. Após tratamento, a saliva foi retirada com auxílio de ponteira estéril, e seguiu-se o protocolo para o ensaio de formação de biofilme. Para o experimento com meio de cultura com 10% de saliva, foram adicionados 20 μ L de saliva a placa e em seguida foram adicionados 180 μ l de meio BHI acrescido de 1% de sacarose, 0,05% sacarose e 0,05% amido e 0,5% sacarose e 1% amido contendo as culturas bacterianas, sendo homogeneizadas por 3 vezes, em seguida seguiu-se o protocolo de ensaio de formação de biofilme descrito anteriormente.

4.11 Determinação das curvas de viabilidade de *S. mutans* e mutantes na presença de saliva humana.

As análises de viabilidade da cepa UA159, respectivos mutantes em saliva humana foram realizadas como descrito por Shelburne *et al.* 2005a, com algumas modificações propostas por Vizoto (2011). Para isto, culturas *overnight* das cepas em MQD acrescido de glicose (37°C, 10% de CO₂) foram diluídas 1:100 em meio fresco e incubadas nas mesmas condições até a metade da fase exponencial de crescimento (que foi determinada a partir das curvas de

crescimento A_{550nm}= 0,3). Após isto, estas culturas foram novamente diluídas 1:50 em 5 ml de saliva e incubadas nas mesmas condições, sendo que alíquotas foram coletadas para determinação das medidas de absorbância e do número de células viáveis (UFC/ml) nos períodos de 0, 24, 48, 72, 96 h. Para a determinação do número de células viáveis, as alíquotas foram diluídas em série e semeadas em placas agar BHI/BHIerm, as quais foram incubadas a 37°C (10% CO₂) durante 48 a 72 h. Pelo menos três experimentos independentes foram realizados com *pool* de saliva obtido dos voluntários.

4.12 Ensaios de autólise.

A determinação da atividade autolítica das cepas foram realizadas conforme descrito por Duque *et al.*, (2011), com algumas modificações. Para isto, volumes de 20 ml das culturas conforme descrito no item 5.6 com absorbâncias ajustadas (A_{550nm} 0,3) foram centrifugadas (Centrífuga Eppendorf 5810R 11.000 rcf, 5 min, 4°C), e os *pellets* bacterianos ressuspendidos em tampão de autólise contendo 20 mM de KH₂PO₄, 1 mM de KCl, 1 mM de CaCl₂, 1 mM de MgCl₂ e 0,4% de azida sódica (Sigma – Aldrich, EUA), pH 6.5 e ajustadas a A_{550nm}= 0,9. Volumes de 4 mL de cada suspensão foram transferidas para tubos de ensaio de vidro, os quais foram incubados a 44°C, com as tampas fechadas por 72 h em aerobiose. As absorbâncias foram medidas nos tempos de 24, 48 e 72 h, agitando-se o tubo em vórtex e retirando-se alíquotas de 500 µl. Três ensaios independentes foram realizados em duplicata.

4.13 Investigação do *regulon* de SptRS em *S. mutans* através de Imunoprecipitação da Cromatina (ChIP) *in vitro* e sequenciamento (ChIPseq).

Para identificar os genes de *S. mutans* regulados diretamente pelo sistema SptRS, foi utilizado a estratégia de ChIP-seq, através de doutorado sanduíche (bolsa PDSE- CAPES 17244/12-9) no The Forsyth Institute, Cambridge, E.U.A. Para isto, a proteína SptR recombinante contendo a cauda (tag) de seis resíduos de histidina na sua porção C-terminal (rSptR-His) foi construída como descrito no item 4.13.1. Brevemente, rSptR-6His foi incubada com DNA genômico purificado de UA159 e as interações proteína-DNA foram recuperadas com esferas magnéticas, como descrito nos 4.13.2. As sequências dos fragmentos de DNA genômico que interagiram com rSptR-6His foram preparadadas para sequenciamento utilizando-se o kit Library Preparation for Next-Generation Sequencing seguida de sequenciamento pelo equipamento llumuna. Além deste a construção cepa S. mutans UA159 contendo vetores auto-replicativos que expressassem rSptR com tag de 6His fusionado à porção N-terminal e C-terminal de SptR. Para isto, utilizaram-se vetores auto-replicativos em S. mutans pOri23 (Que et al., 2000), pDL278 (Dunny et al., 2001) e pAT32 (Gutekunst et al., 2004). Estes vetores seriam empregados para recuperação de complexos SptR-DNA formados in vivo em UA159. Entretanto, a despeito de inúmeras tentativas, os vetores corretamente construídos (como verificado por ensaios de PCR e sequenciamento) não se mantiveram estáveis em UA159. Diversos transformantes como estes vetores não foram capazes de expressar níveis detectáveis de rSptR-6His, evidenciando a instabilidade destas construção em UA159. Estes resultados sugerem que as versões recombinantes de SptR6His são tóxicas quando superexpressas em UA159.

4.13.1 Construção de proteína SptR recombinante para os ensaios de ChIPseq *in vitro*.

Para a produção de proteína recombinante, a seguência de sptR (*SMU.927*) foi amplificada com primers rSptR-Foward/rSptR-reverse (GGCCATGGCTTTAACGATTTTACTAGCAGAA/GGCTCGAGCCCGCCAATTCTA ACTAAG). Os produtos de PCR foram digeridos com Ncol e Xhol (New England Biolabs, EUA), purificados e ligados ao vetor pET-22b (+) (Novagen), previamente digerido com as mesmas enzimas. O produto da ligação foi transformado em E. coli BL21, para obtenção de clones que expressavam a proteína recombinante com o His tag na porção C-terminal (rSptR). Colônias recuperadas selecionadas em meio com ampicilina (100 ug/mL) foram cultivadas em meio LB (37°C, aerobiose), para purificação dos plasmídeos, os quais foram testados quanto à clonagem correta através de PCR e sequenciamento. Clones com o plasmídeo correto foram cultivados em LB até A_{550nm}≈ 0,8 e induzidos por 3 a 5 h com 1 mM de IPTG. A seguir, extratos celulares de 1 ml das culturas fervidos em tampão Laemmli foram analisadas em géis SDS-PAGE a 12% (25 ul por amostra) e corados com Coomassie blue ou transferidos para membranas PVDF utilizando-se sistema de transferência Trans-Blot Turbo System (Biorad, EUA). Estas membranas foram utilizadas em ensaios de western blot com anticorpo anti-His (QED Bioscience). Para purificação de rSptR, as células induzidas foram lisadas e as amostras submetidas à cromatografia de afinidade em agarose Ni²⁺ (NTA agarose, Qiagen), de acordo com protocolo fornecido pelo fabricante. As concentrações de proteína purificada foram determinadas através do método de Bradford (Biorad). Análise das amostras de rSptR purificada foram realizadas através de western blot utilizando-se anticorpo anti-His.

4.13.2 Ensaios *in vitro* de ChIP e sequenciamento (ChIP-seq)

Os ensaios de ChIP-seq foram realizados segundo metodologia descrita pelo grupo de M.J. Duncan do The Forsyth Institute (Nishikawa et al., 2004), para identificação das sequências de DNA que interagem com rSptR. Para isto 50 ul das suspensões de esferas magnéticas (HisPur NiNTA magnetic beads -Thermo Fisher Scientific) foram lavadas 3 vezes com 500 uL de tampão de ligação (10 mM Tris, 100 mM NaCl, 20 mm Imidazol) por 5 min. A seguir, 25 uL das suspensões das esferas tratadas foram incubadas com 125 ug de proteínas recombinante rSptR, 50 mM acetil fosfato (ACP) para fosforilação de rSptR em um volume final de 500 uL de reação. Estas amostras foram então homogeneizadas a 4°C por 1 h. A solução tampão contendo os produtos que não se ligaram às esferas foram removidos e as esferas lavadas com 500 uL de tampão de interação (20 mM Tris HCl, 10 mM MgCl₂, 100 mM KCl e 20 mM Imidazol) por 5 min para remoção de proteína fracamente ligada às esferas. As esferas previamente ligadas com proteína, adicionaram-se 37,5 ug de amostras de DNA genômico (previamente sonicados para geração de fragmentos de DNA de tamanho entre 250 a 1000 pb), e 50 mM ACP em um volume de 500 uL em tampão de interação. As amostras foram incubadas por 30 min em temperatura ambiente sob constante agitação. Após a interação da proteína recombinante com o DNA, as esferas foram lavadas por 3 vezes (10 min cada, temperatura ambiente) com tampão de interação contendo 500 mM NaCl, 10 mM de EDTA e 40 mM de Imidazol. Os complexos DNA-SptR foram eluídos com incubação em temperatura ambiente por 5 min com 50 uL de NaCl 1,25 M, seguido da separação das esferas em estante de microtubos magnética (MagRack6 GE Healthcare Life Sciences) e remoção das soluções através de pipetagem. Como proteína controle, utilizou-se a proteína recombinante rSMU.924 S. mutans a qual tem tamanho semelhante à SptR (161 aa.) e codifica uma peroxidase de hidroperóxidos lipídicos e não possui capacidade de se ligar a DNA.

As amostras foram então preparadas para sequenciamento utilizandose *NEBNext Chip-seq Library Prep Reagent Set for Illumina* (New England Biolabs), de acordo com recomendações do fabricante.

4.13.3 Análises in silico dos resultados de ChIP-seq

Os resultados do sequenciamento foram analisados com auxílio do software Galaxy https://usegalaxy.org, com a finalidade de identificar as sequências ligadas à proteína rSptR. A seguir foi utilizado o programa *Genome-View* (genomeview.org) para identificar os genes obtidos utilizando-se o genoma de *S. mutans* (UA159) como referência. Possíveis funções e domínios conservados das proteínas codificadas pelos genes encontrados foram investigadas usandos o banco de dados NCBI (http://www.ncbi.nlm.nih.gov/gene), através do qual informações do GeneRIF (*Gene Reference into Function*). Domínios funcionais foram pesquisados usando-se *Non-redundant protein sequence database* (RefSeq) e *Conserved Domain Database* do NCBI.

4.14 Análise de expressão gênica por RT-PCR quantitativo (qPCR)

4.14.1 Extração e purificação do RNA total

Para a extração do RNA total das cepas *S. mutans* foram utilizadas culturas ao final da fase logarítmica de crescimento ($A_{550nm} = 0,7$) em 10% CO₂. Para isto, as cepas foram reativadas em placas de MSA/MSE agar e posteriormente inoculadas em meio BHI, BHIerm e BHIerm/espect, e incubadas por 18 h para a obtenção da cultura *overnight* de cada cepa. As culturas foram normalizadas ($A_{550nm} = 0,035$) em 25 ml de caldo BHI e BHIerm e incubadas em

10% CO₂ até A_{550nm}= 0.7. Os tubos contendo as células foram centrifugados (Centrífuga eppendorf 5810R; 3.000 rcf, 5 min, 4°C) e os *pellets* ressuspendidos em 1 ml de solução salina (NaCl 0,9%) e as células foram transferidas para tubos de microcentrífuga com rosca de capacidade de 2 ml (*Screw Tube, Axygen*, EUA), sendo então centrifugadas (11.000 rcf, 1 min, 4°C). O sobrenadante das culturas foi descartado, e os *pellets* congelados em ultra-freezer -70°C para posterior purificação do RNA.

Para a extração do RNA total, as células foram lisadas na presença de aproximadamente de 0,16 g de esferas de zircônia (0,1 mm de diâmetro) (Biospec, EUA) adicionadas de 200 µl de TE (Tris- HCl 10 mM pH 8,0; EDTA 1 mM pH 8,0) em aparelho Mini-bead beater (Biospec, EUA) em força máxima (2 ciclos de 30 s com 30 s de descanso em gelo). A purificação do RNA total foi feita utilizando o Kit *RNeasy Mini Kit* (Qiagen, Alemanha) seguindo o protocolo do fabricante. O RNA purificado foi tratado com 10 U de Turbo *DNase* (Invitrogen), para a eliminação total de DNA genômico.

A leitura para a determinação da concentração e pureza das amostras foi feita em aparelho Nanodrop (Thermo Scientific, EUA). A faixa limite para a consideração das amostras puras foi a razão entre as leituras A_{260nm}/A_{280nm} (> 1,8). A integridade das amostras de RNA foi avaliada em géis de agarose a 1,2% (com 1,8% de formaldeído), contendo 0,15 µg/ml de brometo de etídio, após separação eletroforética em tampão de corrida contendo 20 mM MOPS, 5 mM de acetato de Sódio e 1 mM de EDTA. Imagens dos géis foram obtidas sob luz UV (fotodocumentador) e a presença de duas bandas definidas, correspondentes aos RNAs ribossômicos (23S e 16S) indicaram a integridade das amostras.

4.14.2 Obtenção de cDNA

As reações de transcriptase reversa foram realizadas com as amostras de RNAs total utilizando-se os primers (Invitrogen, Brasil) arbitrários Ea1 (5'-TTTTATCCAGC-3'), Ea7 (5'-TCTTTTTACC-3'), Es1 (5'-GCTGGAAAAA-3'), Es3 (5'-GAAGTGCTGG-3') e Es8 (5'TGCCGATGAA-3'), como descrito em estudos anteriores (Stipp, 2010). As reações de transcrição reversa foram posteriormente preparadas com o sistema SuperScript III (Invitrogen), sequindo as recomendações do fabricante. Para isto, foram realizadas misturas contendo 2 µg de RNA total livre de DNA, 3 µl da mistura dos primers arbitrários (concentração final de 2 μ M para cada oligo), 2 μ I de 10 mM DNTP mix e H₂O DEPC qsp 26 μ I. Cada mistura inicial foi aquecida a 65°C por 5 min, e resfriada por 1 min em gelo. Um segundo microtubo, contendo 8 µl Buffer 5X, 2 µl de 0.1M DTT, 2 µl de RNase OUT (40 U/µl) e 2 µl de SuperScript III (200 U/µl) por amostra, foi preparado como solução mãe, sendo 14 µl desta solução transferidas para cada tubo resfriado. As reações de RT ocorreram com incubação a 25°C durante 10 min, a 50°C por 3 h e a 85°C por 5 min em termociclador (Thermoblock T1, Biômetra, Alemanha). Os cDNAs obtidos foram estocados a -20°C, para posterior utilização nas reações de PCR quantitativo. Para controle da contaminação por DNA genômico, foram conduzidos em paralelo ensaios para cada amostra de RNA tratado, sob as mesmas condições, substituindo-se 2 µl de SuperScript III (200 U/µl) por 2 µl de H₂O DEPC. Estas amostras foram incluídas, como controle de contaminação, nas reações de PCR quantitativo.

4.14.3 Ensaios de qPCR

As reações de qPCR foram realizadas a partir do *pool* de cDNA obtido em uma única reação de RT, para cada tempo de cada amostra bacteriana testada, para quantificar a expressão dos genes estudados, como descrito em estudos anteriores (Duque et al. 2011). Para isto, pares de primers específicos para cada gene foram delineados com o auxílio do programa *Primer 3*, a partir das seguências do genoma da cepa UA159 disponíveis no banco de dados de Los Alamos National Laboratory Bucal Pathogens Sequence Database (<u>http://www.bucalgen.lanl.gov</u>). Cada par de *primer* amplificou sequências entre 200 e 300 pb, como descrito no item 4.3. Como gene de referência, foi utilizado o 16S, que apresentou número de transcritos constante na fase de crescimento planctônico testada (A_{550nm}=0,7). Os *primers* delineados para esses experimentos se encontram no ANEXO 3.

Para a quantificação dos transcritos de cada gene teste, reações de qPCR contendo cDNA (30 ng), 30 μM de cada par de primer e SYBR-Green PCR Master Mix (Applied Biosystems) em volume total de 10 µl foram realizadas através do sistema PCR quantitativo StepOne (Applied Biosystems). Cada ciclo térmico de amplificação consistiu de desnaturação inicial a 95°C por 10 min, seguida de 40 ciclagens de desnaturação a 94°C por 15 s, anelamento por 15 s e extensão a 72°C por 30 s. Os ensaios de gPCR foram realizados em triplicata, a partir de amostras cDNA obtidas em três experimentos independentes. Como um dos controles negativos da reação, misturas sem cDNA sem transcriptase reversa foram incluídas para assegurar a ausência de DNA contaminante. Para cada corrida, curvas de amplificação de DNA de *S. mutans* em quantidades crescentes (0,03; 0,3; 3; 30 e 300 ng/poço) foram realizadas. Os valores de expressão de cada gene teste foram normalizados pelo gene 16S. A seguindo o modelo matemático proposto por Pfaffl et al., 2001. Também foram foram realizadas análises do número de transcritos para a confirmação da deleção dos genes *SMU.927* (*sptR*) e *SMU.928* (*sptS*).

4.15 Ensaios de Retardamento da Mobilidade Eletroforética (EMSA).

A confirmação da regulação direta dos genes alvo identificados nos ensaios de ChIP-seg e RT-gPCR, foi determinada em ensaios de EMSA. Para isto, pares de primers foram delineados para incluir as prováveis regiões promotoras dos genes selecionados. Os produtos de PCR foram purificados, marcados com cauda de digoxigenina e armazenados a -20°C, de acordo com as instruções e reagentes do DIG Gel Shift Kit (Roche, EUA). Para fosforilação de SptR, as proteínas foram incubadas com 50 mM acetil fosfato por 15 min a 25°C (Biswas e Biswas, 2006). Os ensaios de EMSA ocorreram em reações de 25 µl, contendo 0.8 pmol/ul de DNA que foi incubado com concentrações crescentes de r-SptR (0.25 a 1 pmoles) fosforilados ou não em 15 uL de binding buffer (50 mM Tris HCl, pH 8.0; 750 mM KCl; 2.5 mM EDTA; 0.5% Triton-X; 2.5% glycerol; 1.0 mM acetyl phosphate, 1 mM DTT). Após incubação de 20 min. A temperatura ambiente as reações foram misturadas com Hi-Density TBE Sample Buffer (Invitrogen). As misturas foram incubadas por 25 min a 25°C. Os complexos proteína-DNA foram separados eletroforeticamente (80 V, 3 h) em géis de poliacrilamida a 6% em condições não desnaturantes (Novex DNA Retardation Gels, Invitrogen). Os fragmentos foram transferidos para membrana de nylon positivamente carregada (Amersham GE Healthcare, E.U.A) utilizando-se o aparato de transferência semi-seca Trans-Blot SD (Bio-Rad, E.U.A). Após transferência, a membrana foi exposta a luz UV para fixação dos fragmentos. Os fragmentos foram detectados através do sistema DIG Wash and Block (Roche), de acordo com as instruções do fabricante. A especificidade das ligações proteína fragmento foi confirmada com a adição de excesso de 120 ou 200 vezes de fragmentos de DNA não marcados.

4.16 Forma de análise dos resultados

As comparações fenotípicas foram mensuradas através de análise de variância não paramétrica Mann-Whitney utilizando-se o programa BioEstat 5.0. As comparações de crescimento planctônico (A_{550nm}), entre as cepas foram realizadas para cada tempo estudado utilizando-se os valores médios de (A_{550nm}) ou o log de UFC/ml. Comparações dos níveis de transcritos dos genes estudados foram realizados pela quantidade em ng, normalizados pelo gene de referência 16S e seguidos pela análise de variância Kruskal-Wallis seguido do teste Dunn utilizando-se o programa BioEstat 5.0.

5 RESULTADOS

5.1 A inativação de *sptR* e *sptS* isoladamente e a inativação dupla *sptRS* não altera a morfologia microscópica de *S. mutans* UA159.

Análises da morfologia foram realizadas pela metodologia de microscopia de luz e MEV. A inativação dos genes *sptS*, *sptR* e *sptRS* não promoveu alterações na morfologia; o fenótipo das mutantes mostrou-se muito semelhante ao da cepa selvagem UA159, em culturas em BHI *overnight* nas fases de crescimento correspondentes à metade da fase exponencial (A_{550nm} = 0,3) e final da fase exponencial (A_{550nm} = 0,7) sob condição de 10% CO₂. Não foram observadas claras diferenças na morfologia e formação de cadeias entre a cepa selvagem UA159 e respectivos mutantes, através de microscopia de luz (Figura 8). Análise de microscopia eletrônica de varredura realizadas com descrito anteriormente (Duque *et al.*, 2011) não revelaram diferenças significativas na morfogênese entre as cepas (Figura 9 e 10).

Figura 8: Análise por microscopia de luz das cepas *S. mutans* UA159 (A), UA*sptR*[•] (B), UA*sptS*[•] (C) e UA*sptRS*[•] (D) com crescimento *overnight* (coluna 1), A_{550nm}= 0,3 (coluna 2) e A_{550nm}= 0,7 (coluna 3). Aumento de 1,000x.

Figura 9: Análise por Microscopia Eletrônica de Varredura (Jeol JSM5600 LV, FOP/UNICAMP) das cepas *S. mutans* UA159 UA*sptR*, UA*sptS* e UA*sptRS* nas A_{550nm}= 0,3, nos aumentos de 5,000x, 9,000x, 13,000x.

Figura 10: Análise por Microscopia Eletrônica de Varredura (Jeol JSM5600 LV, FOP/UNICAMP) das cepas *S. mutans* UA159 UA*sptR*, UA*sptS* e UA*sptRS* nas A_{550nm}= 0,7, nos aumentos de 5,000x, 9,000x, 13,000x.
5.2 A inativação de *sptR* ou *sptS* promove crescimento planctônico lento em meio RPMI e em MQD acrescido de diferentes açúcares sob 10% CO₂, mas não em BHI.

Nas condições testadas os mutantes UA*sptS* e UA*sptR* não diferiram significativamente quanto ao crescimento em meios BHI a 10% CO₂ (Figura 11A). Entretanto, os mutantes apresentaram menor velocidade de crescimento, quando comparados à cepa selvagem em meio RPMI e em MQD acrescido de diferentes açúcares (glicose, frutose, maltose e sacarose) (37°C, 10% CO₂). RPMI apresenta concentrações de aminoácidos, bases nitrogenadas e outros componentes orgânicos cerca de 10 a 10.000 vezes inferiores ao meio MQD (anexo 2).

Figura 11: Curvas de crescimento em diferentes meios testados. (A) BHI, (B) RPMI C) MQD – glicose D) MQD – frutose E) MQD – maltose e F) MQD – sacarose. — UA159, — UA*sptR*, — UA*sptS*, — UA*sptRS*. Asteriscos indicam diferenças significativas entre as cepas UA*sptR* em relação a cepa selvagem UA159 (Mann-Whitney, p<0,05). Os símbolos " † " indicam diferenças significativas entre as cepas UA*sptS* em relação a cepa selvagem UA159 (Mann-Whitney, p<0,05). Os valores representam médias de três experimentos independentes realizados em duplicata; as barras indicam os desvios padrão.

5.3 Não há alterações significativas na formação de biofilme entre as cepas mutantes UA*sptR*, UA*sptS* e a cepa parental.

O efeito da inativacao de *sptR* e *sptS* na formação de biofilme durante 18 h de crescimento foi avaliado sob diversas condições nutricionais (meios BHI acrescido de 0,1% de sacarose, 0,05% sacarose mais 0,05% amido, ou 0,5% sacarose mais 1% amido) e na presença ou não de saliva. Pequenos aumentos na biomassa de biofilmes de UA*sptS* (Figura 12A) e UA*sptR* (Figura 12B) formaram biofilmes de maior biomassa do que a cepa UA159, mas sob diferentes exposições à saliva. Foi observado também que na presença de amido houve uma maior formação da biomassa de biofilme para todas as cepas testadas.

Figura 12: Análises do crescimento em biofilme (A_{595nm}) das cepas \Box UA159, \blacksquare UA*sptR* e \blacksquare UA*sptS* em (1) BHI suplementado com 0,1% sacarose, (2) BHI suplementado com 0,05% sacarose e 0,05% amido e (3) 0,5% sacarose e 1% amido a 37° C, 10% CO₂ por 18 h. (A) placas na ausência de saliva, (B) placas peviamente tratadas com saliva durante 2 h a 37°C em agitação constante em C) culturas foram misturadas com saliva (1:100). As colunas representam médias de três experimentos independentes realizados em triplicata. As barras indicam os desvios padrão. * indicam diferenças significativas na quantificação de biomassa de biofilme das cepas mutantes UA*sptR* e UA*sptS* em relação à cepa selvagem UA159 (p<0,05; Mann-Whitney). As colunas representam médias de três experimentos independentes realizados em triplicata.

5.4 A inativação dos genes *spt*S e *spt*R reduziu a atividade de autolítica de *S. mutans* UA159.

A Figura 13 ilustra a dinâmica de autólise das cepas selvagem (UA159) e mutantes (UA*sptR*, UA*sptS*) durante os períodos analisados. Os mutantes apresentaram-se significativamente mais susceptíveis à autólise do que a cepa selvagem. Reduções da atividade autolítica de 50% foram observadas em ambos os mutantes em relação à UA159. Estes resultados sugerem a participação do sistema SptRS no metabolismo de parede celular.

Figura 13: Autólise das cepas estudadas. Diferenças significativas entre a cepa selvagem e mutantes foram observadas com 24, 48 e 72 h. Linhas representam médias de três experimentos independentes em duplicata. As barras indicam desvio padrão. * e ⁺ indicam diferenças significativas das cepas UA*spt*S⁻ e UA*spt*R⁻ em relação a cepa selvagem UA159 (* p<0,05 e + p<0.01; Mann-Whitney).

5.5 A inativação do gene *sptR* não afeta a capacidade de UA159 de sobreviver em saliva.

Os resultados dos ensaios de viabilidade das cepas estudadas em saliva podem ser observados na Figura 14. A inativação dos genes *sptR*, não resultou nenhuma diferença na capacidade bacteriana de sobreviver em amostras

de saliva do *pool* de saliva de seis voluntários. Estes resultados sugerem que a o sistema SptRS de *S. mutans* não regula funções importantes para a adaptação e sobrevivência em saliva humana.

Figura 14. Curvas de viabilidade das cepas UA159 (- \blacksquare -) e UA*sptR* (-▲-) em saliva. Curvas foram obtidas de *pool* de saliva de seis voluntários. Os pontos representam médias de 3 experimentos independentes, as barras indicam os desvios padrão. Diferenças entre as cepas foram testadas através do teste de Mann-Whitney.

5.6 O sistema SptRS de *S. mutans* regula sistemas de transporte de membrana, metabolismo de açúcar, resposta a estresses, reparo de DNA e biogênese do envelope celular.

A proteína recombinante rSptR-6His obtida em vetor pET-22b (+) foi utilizada nos ensaios de ChIP-seq *in vitro* (Figura 15). Os resultados de quatro experimentos independentes de ChIP-*sequencing in vitro*, indicam que o sistema SptRS de *S. mutans* participa da regulação de genes que codificam inúmeros

sistemas de transporte de membrana (incluíndo-se sistemas fosfotransferases PTS, antiporter e transportadores ABC), resposta de estringência mediada pela alarmona ReIR, proteínas de reparo de DNA, além de diversos genes metabólicos. Em cada um dos 4 experimentos independentes, cerca de 200 a 300 genes foram identificados como regulados diretamente por SptR. Um total de 75 genes foram identificados em todos os 4 experimentos. Variações desta magnitude entre os experimentos de ChIP são esperadas, uma vez que diferentes grupos de fragmentos de DNA genômico são empregados em cada experimento. Entretanto, nas condições experimentais utilizadas, há alta especificidade de interação entre proteínas reguladoras com seus fragmentos alvos. Portanto, entre os genes identificados nos 4 ensaios (n = 75), alguns (n = 22) foram selecionados, com base na sua classificação funcional, para análises de RT-qPCR, para comparação dos níveis de transcritos entre as cepas selvagem UA159 e mutante UA*sptR*. A Tabela 2 mostra a classificação funcional destes 75 genes identificados.

A despeito de diversas tentativas de expressar *sptR6His* em *S. mutans* UA159 a partir de diferentes plasmídeos, para os ensaios *in vivo*, não se obteve sucesso na detecção de níveis detectáveis de proteína rSptR6His nas cepas *S. mutans* transformantes, embora os vetores contendo *sptR6His* (C-terminal ou N-terminal) propagados em *E. coli* demonstrassem fusões corretas pelas análises de PCR e sequenciamento. Estes dados sugerem que alterações na produção de SptR em *S. mutans* comprometem a viabilidade e crescimento desta espécie bacteriana nas condições testadas, possivelmente por afetar a expressão de genes do *regulon* de SptR. Outra possibilidade, é que a adição de cauda 6His a SptR promovesse alterações estruturais neste fator de transcrição, as quais favorecessem sua interação com regiões promotoras de genes vitais de forma inespecífica. Para contornar este problema, construções fusionando a cauda 6His nos sítios correspondentes às extremidades N-terminal e C-terminal de SptR foram realizadas. Entretanto, ambas as construções se mostraram instáveis em *S. mutans*. Os dados *in vitro* indicando que SptRs regula diversos genes

metabólicos e sistemas de transporte de membrana, proteínas resposta a estresses e de reparo de DNA são compatíveis com a instabilidade de vetores que expressam sptRS. Streptococcus mutans é reconhecidamente uma espécie que requer um grande número de fatores de crescimento para cultivo in vitro. Alterações na regulação dos sistemas de transporte destes fatores de crescimento poderiam portanto comprometer significativamente o crescimento espécie e/ou ativar sistemas de recombinação desta genética que comprometeriam a estabilidade dos vetores utilizados. Esta hipótese é ainda compatível com o crescimento lento dos mutantes sptR/S de S. mutans em RPMI (Figura 11B), o qual é pobre em diversos aminoácidos, bases nitrogenadas e outros componentes orgânicos quando comparados com os presentes em MQD (concentrações de 100 a 10.000 vezes menor comparado a MQD). Como mostrado na Tabela 2, os ensaios de ChIP-seq também detectaram o gene SMU.926, o qual codifica a alarmona ReIP envolvida na paralisação da tradução protéica em resposta a carência de nutrientes (Lemos et al. 2002), além de regular a expressão de diversas proteínas ribossômicas e o regulador transcricional de genes de resposta a estresses (HtrA). Assim, os dados desta pesquisa revelam que os sistema SptRS de fato regula a resposta de estringência. Análises de transcrição por RT-qPCR dos genes identificados puderam explicar o crescimento mais lento dos mutantes UAsptR/S em RPMI comparados com a cepa selvagem.

Figura 15. Western blot de extratos de *E. coli* contendo o vetor pET-22b (+)::*sptR6His* (pSptR6His). Canaleta 1: marcador *Novex Sharp Pre-Stained Protein Standart* (Life Technologies); Canaleta 2: extrato protéico de cultura não induzida de *E. coli* contendo o vetor rSptR6His. Canaleta 2 e 3: Extratos de culturas (A_{550nm} 0,4) induzidas com IPTG por 3 e 4 h, respectivamente. A proteína recombinante rSptR6His (massa molecular: 25 kDa) foi detectada com anticorpo anti 6His.

		FUNÇÂO PROVÁVEL		
ATEGORIA	GENE	(nomenclatura na língua inglesa)		
Transporte	SMU.160	Metallopeptidase		
	SMU.182	sloA-iron ABC transporter ATP-binding protein		
	SMU.484	pknB-serine/threonine protein kinase		
	SMU.629	sodD- manganese-type superoxide dismutase, Fe/Mn-SOD		
	SMU.755	prolipoprotein diacylglyceryl transferase		
	SMU.880	msmG- multiple sugar-binding ABC transporter permease MsmG		
	SMU.905	ABC transporter ATP-binding protein		
	SMU.974	potB- spermidine/putrescine ABC transporter permease		
	SMU.1035	ABC transporter ATP-binding protein		
	SMU.1095	choline ABC transporter, osmoprotectant binding protein		
	SMU.1178c	amino acid ABC transporter ATP-binding protein		
	SMU.1708	trkA- potassium transporter peripheral membrane protein		
	SMU.1942c	amino acid binding protein		
	SMU.1939c	ABC transporter ATP-binding protein		
	SMU.2047	PTS system glucose-specific transporter subunit IIABC		
Genes metabólicos				
Metabolismo de	SMU.78	fruA- exo-beta-D-fructosidase		
carbono e nitrogênio				
	SMU.114	PTS system fructose-specific transporter subunit IIBC		
	SMU.115	PTS system fructose-specific transporter subunit IIA		
	SMU.137	mleS- malate dehydrogenase		
	SMU.542	glk- glucose kinase		
	SMU.1734	accA- acetyl-CoA carboxylase subunit alpha		
Metabolismo de lipídeo	SMU.1702c	Phosphatase		
Metabolismo e				
biossíntese de aminoácidos	SMU.233	ilvC- ketol-acid reductoisomerase		
	SMU.376	Aminotransferase		
	SMU.536	trpF- N-(5'-phosphoribosyl)anthranilate isomerase		
	SMU.838	gshR- glutathione reductase		
	SMU.664	bifunctional ornithine acetyltransferase/N-acetylglutamate synthase		
	SMU.665	argB- acetylglutamate kinase		
	SMU.838	gshR – glutathione reductase		
	SMU.1270	bifunctional histidinal dehydrogenase/ histidinol dehydrogenase		
	SMU.1271	hisG- ATP phosphoribosyltransferase		
	SMU.1734	accA- acetyl-CoA carboxylase subunit alpha		
	SMU.1737	(3R)-hydroxymyristoyl-ACP dehydratase		

Tabela 2. Genes identificados (N= 75) através de análises de ChIP-*sequencing in vitro* com o DNA genômico da cepa UA159 e proteína recombinante SptR6His.

CATEGORIA	GENE	FUNÇÃO PROVÁVEL		
	GENE	(nomenclatura na língua inglesa)		
Resposta de estringência	SMU.926	GTP-pyrophosphokinase		
Outras	SMU.646	Phosphatase		
	SMU.1034	site-specific tyrosine recombinase XerS		
Biogênese de parede celular	SMU.1091	cell wall protein, WapE		
Proteína ribossômicas	SMU.170	30S ribosomal protein S9		
	SMU.816	30S ribosomal protein S21		
Resposta a estresse	SMU.121	damage-inducible protein DinF		
	SMU.504	site-specific DNA-methyltransferase		
	SMU.764	alkyl hydroperoxide reductase		
	SMU.892	restriction endonuclease		
	SMU.2067	csbB- stress response protein		
	SMU.2164	serine protease HtrA		
Reparo e replicação de DNA	SMU.48	phosphoribosylamineglycine ligase		
	SMU.96	rpoE- DNA-directed RNA polymerase subunit delta		
	SMU.123	DNA polymerase III PolC		
	SMU.159	hypothetic protein		
	SMU.351	GTPase RsgA		
	SMU.463	trxB- thioredoxin reductase		
	SMU.696	cytidylate kinase		
	SMU.1032	transposon integrase; Tn916 ORF3-like		
	SMU.1662	holB- DNA polymerase III subunit delta'		
	SMU.1921	dnal- primosomal protein Dnal		
Reguladores de transcrição	SMU.136c	transcriptional regulator		
	SMU.161	transcriptional regulator		
	SMU.356	purR- pur operon repressor		
	SMU.927	response regulator		
	SMU.1038c	response regulator		
Proteína hipotética	SMU.217	hypothetic protein		
	SMU.406	hypothetic protein		
	SMU.510c	hypothetic protein		
	SMU.541	hypothetic protein		
	SMU.554	yImF- hypothetic protein		
	SMU.607	hypothetic protein		
	SMU.627	hypothetic protein		
	SMU.746	hypothetic protein		
	SMU.1369	hypothetic protein		
	SMU.1604	hypothetic protein		

CATEGORIA	GENE	FUNÇÃO PROVÁVEL		
		(nomenclatura na língua inglesa)		
	SMU.1703c	hypothetic protein		
	SMU.1760	hypothetic protein		
	SMU.1764	hypothetic protein		
	SMU.1906c	hypothetic protein		
	SMU.1907	hypothetic protein		

5.7 Extração de RNA e análises de qPCR

Um total de 6 amostras foram utilizadas para a extração do RNA total das cepas em estudo. Estas amostras equivalem a culturas das cepas em A_{550nm} = 0,7 (10% CO₂). Os RNAs foram extraídos e tratados com 10 U de *Turbo Dnase* (Ambion, EUA). A Figura 16 ilustra a qualidade das amostras de RNA utilizadas nos ensaios de RT-qPCR.

Figura 16: RNAs extraídos e tratados com DNAse Turbo (Ambion, EUA). Amostras de: *S. mutans* UA159 (canaletas 1, 3 e 5), UA*sptR* (canaletas 2, 4 e 6) coletadas de três experimentos independentes.

5.8 A inativação de *sptR* altera a expressão de genes relacionados ao metabolismo e transporte de açúcares, aminoácidos, proteínas de síntese de parede celular, fatores de estringência e fatores de transcrição.

As alterações nas quantidades relativas de transcritos de diversos genes investigados nas cepas mutantes UA*sptR* em relação a cepa selvagem, estão ilustradas na tabela 3. Os genes que sofreram aumento significativo no mutante UA*sptR* em relação à cepa parental estão relacionados com a biogênese de parede celular, fatores de estringência, metabolismos açúcares, aminoácidos e sistemas de membrana de transporte (ABC e PTS), biogênese de matriz extracelular. Outros genes alterados no mutante codificam fatores de transcrição.

Tabela 3. Seleção de genes regulados por SptR identificados pelo ensaio ChIP-seq *in vitro* e outros genes também relacionados com as funções encontradas em ChIP-seq *in vitro*.

Função e gene (NCBI)	ng normalizado pelo 16S		Valores relativos de expressão em relação à cepa parental UA159 (final da fase log. Assome=0.7)
	UA159	UA <i>sptR</i>	
Biogenêse de parede celular			
SMU.1091 (wapE)	7.30 (17.7)	18.95 (14.5)	<u>1.23^b (1.0)</u>
SMU.2146	16.30 (3.5)	18.47 (4.4)	1.13 ^b (0.14)
SMU.2147 (lysM)	265.33 (27.4)	713.6 (79.0)	2.69 ^b (0.15)
SMU.609 (smaA)	76.62 (37.5)	51.28 (24.7)	0.66 ^b (0.1)
SMU.1434c	46.51 (23.5)	215.30 (35)	5.90 ^b (3.87)
SMU.1437 (epsC)	185.84 (83.6)	486.86 (93.67)	3.1 ^b (1.62)
SMU.22 (gbpB)	461.89 (135.95)	586.68 (90.68)	1.33 [°] (0.34)
Fatores de estringência			
SMU.2044(relA)	50.51 (11.37)	149.44 (61.74)	3.22 ^b (1.78)
SMU.926(relP)	22.51 (7.8)	81.9 (24.9)	<u>4.21 ^b (2.7)</u>
SMU.1046c(relQ)	16.35 (6.5)	64.30 (15)	4.9 ^b (3.6)
Transporte			
SMU.182	82.75 (24.5)	149.01 (78.3)	<u>2.16° (1.8)</u>
SMU.876 (msmR)	34.00 (7.3)	55.93 (17.4)	1.66 [°] (0.51)
SMU.880	50.51 (11.37)	149.44 (61.74)	<u>3.22^b (1.7)</u>
SMU.882 (msmK)	54.30 (3.4)	74.23 (21.5)	1.36° (0.33)
SMU.1095	55.8 (15.7)	171.90 (26.9)	<u>3.33^b (1.4)</u>
SMU.1568 (malX)	26.03 (10.1)	28.12 (13)	1.12 [°] (0.36)
SMU.2038 (pttB)	82.44 (54.2)	28.12 (13)	0.32 ^c (0.1)
Metabolismo			
SMU.114	7.28 (1.7)	12.38 (3)	<u>1.74^b (0.4)</u>
SMU.115	2.25 (0.4)	4.83 (0.8)	<u>2.15^b (0.29)</u>
SMU.1596 (ptcC)	6.59 (1.8)	9.70 (1.7)	<u>1.57 [°] (0.58)</u>
SMU.1737	185.84 (83.6)	486.86 (93.6)	<u>3.36^b (2.75)</u>
Biossíntese de aminoácido			
SMU.1271	14.39 (2.4)	17.09 (1.3)	<u>1.20 ° (0.15)</u>
SMU.665	65.76 (7.7)	131.59 (28.6)	<u>2.03 ° (0.6)</u>
SMU.233	231.99 (50.8)	414.05 (95.2)	<u>1.87^b (0.71)</u>
SMU.123	17016.09 (18960.9)	101718.11 (47771.3)	<u>13.18 ^b (11.28)</u>

Função e gene (NCBI)	ng normalizado pelo 16S		Valores relativos de expressão em relação à cepa parental UA159 (final da fase log, A _{550nm} =0,7)
	UA159	UAsptR	
Reguladores de transcrição			
SMU.1924 (covR)	21.91 (2.7)	49.27 (12.11)	<u>2.31 ^b (0.8)</u>
SMU.1591 (ccpA)	174.31 (60.11)	470.00 (74.4)	<u>3.09^b (1.73)</u>
Resposta a estresse			
SMU.2067(csbB)	13.50 (3.7)	25.87 (3.6)	1.5 ^b (0.1)
SMU.2164 (htrA)	13.50 (3.7)	25.87 (3.6)	<u>2.03 ^b (0.61)</u>
SMU.121	10.64 (0.1)	25.09 (11.7)	<u>2.35^b (1.1)</u>
SMU.892	30.21 (3.4)	70.05 (19.5)	<u>2.36 ^b (0.8)</u>
Reparo de DNA			
SMU.1032	5.78 (1.3)	13.62 (2.7)	<u>2.49 ^b (0.93)</u>
SMU.351	43.93 (15.1)	102.79 (19.8)	<u>2.72 ^b (1.67)</u>
SMU.463	30.46 (6.3)	64.71 (15.6)	<u>2.14 ^b (0.47)</u>
SMU.1662	4.73 (6.5)	31.59 (6.5)	<u>6.11^b (3.39)</u>

^a valores representam a média de três experimentos independentes realizados em duplicata.

^bP<0.05 Kruskal-Wallis seguido do teste Dunn

° Não significante

Valores sublinhados indicam interação de proteína recombinante rSptR com a seqüência promotora do respectivo gene, em ensaiso de EMSA.

5.9 SptR interage com as sequências promotoras de genes envolvidos na biogênese de parede celular, resposta de estringência, metabolismo de carbono e aminoácido, biossíntese de aminoácido, sistema de transporte e fatores de transcrição.

A proteína StpR6His foi capaz de interagir com as regiões promotoras dos genes envolvidos na resposta de estringência (*SMU.926 relP*), biossíntese de aminoácido (*SMU.1263*), metabolismo de carbono (*SMU.1043c*), ABC transportes (*SMU.882*), metabolismo de aminoácido (*SMU.54*), metabolismo de amido e sacarose (*SMU.881*) biogênese de parede celular (*SMU.1091, SMU.1434c*) e fator de trancrição (*SMU.1924 covR*), confirmando que estes genes são diretamente regulados pelo SDC SptRS.

Figura 17. EMSA da regiões promotoras dos genes *SMU.926*, *SMU.1263*, *SMU.1043c*, *SMU.882*, *SMU.54*, *SMU.1924*, *SMU.881*, *SMU.1091*, *SMU.1434c* amplificadas por PCR, marcadas com digoxigenina e incubadas com diferentes concentrações da SptRHis6 recombinante previamente fosforilada. Controle negativo foi realizado utilizando fragmento marcado do gene nqrA de Porphyromonas gingivalis. Competição específica foi realizada com excesso de ate 120 a 200 vezes de cada fragmento não marcado.

6 DISCUSSÃO

Os dados apresentados nesta tese revelam que o SDC SptRS participa da regulação de genes que codificam inúmeros sistemas de transportes de membrana (incluindo sistemas fosfotransferase (PTS) e transportadores ABC; ABC de <u>ATP-binding cassette</u>), proteínas de resposta de estringência, proteínas de reparo de DNA, além de diversos genes metabólicos e alguns fatores de transcrição. Estes dados são compatíveis com o potencial papel de *S. mutans* sobreviver na saliva e/ou persistir na cavidade bucal. A capacidade de *S. mutans* de transportar e metabolizar diferentes tipos de açúcares contribui para sua acidogenicidade, característica de virulência implicada na patogenia da cárie dentária (Webb *et al.*, 2008). Em *S. mutans*, os sistemas PTS são os principais sistemas de transporte de açúcares. Além disto, os PTSs também participam da regulação de metabolismo em resposta à disponibilidade de carboidratos, como discutido a seguir. Os dados de ChIP-seq indicam que os sistemas PTS potencialmente regulados por SptRS incluem os específicos para glicose (*SMU.2047*; *ptsG*) e frutose (*SMU.114*; *SMU.115*).

Além dos sistemas PTS, *S. mutans* utiliza pelo menos quatro sistemas de transporte dependentes de ATP (ABC) para transporte de açúcares, os quais incluem o sistema de metabolismo de múltiplos açúcares (MSM) (Ajdic e Pham, 2007). Este último foi identificado como regulado por SptR, uma vez que SptR6His se liga à sequência montante de *SMU.882* (*msmK, multiple sugar-binding ABC transporter*) do operon *msm* (Tabela 2) e em ensaios de RT-qPCR indicam uma super-expressão de genes *msm* no mutante UA*sptR* (Tabela 3). Os sistemas ABC apresentam uma organização geral comum com três tipos de componentes moleculares. Em bactérias Gram-positivas, os sistemas ABC tipicamente possuem duas proteínas de membrana integrais (permeases), duas proteínas de membrana periféricas, as quais se ligam e hidrolisam ATP, e um receptor de soluto extracitoplasmático, o qual pode ser uma lipoproteína ancorada à superfície celular ligada à superfície externa da membrana citoplasmática, através de

interações eletrostáticas (Ajdic e Pham, 2007). O genoma de UA159 contém mais de 60 sistemas ABC com especificidades para diversos outros tipos de substratos, incluindo-se aminoácidos, oligopeptídeos, compostos osmoprotetores, íons inorgânicos, bacteriocinas e DNA (Ajdic et al., 2001). Destacam-se os cinco possíveis transportadores ABC de glutamina, sugerindo que este aminoácido consista na fonte principal de nitrogênio e/ou para a síntese de aminoácidos (Ajdic et al., 2001). Nos ensaios de ChIP-seq, verificamos que a proteína SptR recombinante se ligou a sequências a montante de diversos sistemas ABC envolvidos no transporte de aminoácidos (SMU.1178c; amino acid ABC transporter ATP-binding protein; SMU.1942c), compostos osmoprotetores (SMU.1095; opuBc choline ABC transporter), ions inorgânicos (SMU.182; sloA iron ABC transporter ATP-binding protein; SMU.1939c), produtos da degradação de aminoácidos (SMU.974; potB) e múltiplas drogas (SMU.905; mdlB; SMU.1035, glrA). O grande número de sistemas de transporte do tipo PTS e ABC identificados nos ensaios de ChIP-seq nos levaram a investigar o padrão de crescimento das cepas mutantes e parental sob diversas condições nutricionais, incluindo o meio MQD (anexo 2) suplementado ou não com diversos açúcares monossacarídicos (frutose e glicose) e dissacarídeos (maltose e sacarose), o meio RPMI e o meio complexo BHI (anexo 2). Não foram detectadas diferenças relevantes no crescimento em meio BHI entre as cepas (Figura 11A). Porém, nos meios MQD e principalmente RPMI (mais pobre do que MQD), os mutantes UAsptR⁻ e UAsptS⁻ apresentaram crescimento significativamente mais lento (Figura 11). Estes dados demonstram a importância do sistema SptRS no crescimento sob condições nutricionais limitadas.

A resposta de estrigência é uma resposta a condições de estresse (como falta de aminoácidos, limitações de carbono, nitrogênio e fosfato, ácidos graxos, ferro, calor, entre outras mediada pelos níveis da alarmona (p)ppGpp, a qual altera a expressão de inúmeros genes, atuando através da inibição da síntese de rRNA e tRNA estáveis, ribossomos e proteínas (Godfrey *et al.*, 2002;

Lemos et al., 2007) permitindo a persistência do micro-organismo sob as condições adversas (Lemos *et al.*, 2005). A alarmona (p)ppGpp é sintetizada pela proteína associada ao ribossomo ReIA, codificada por relA (SMU.2044c) (Lemos et al., 2004). Além disto, o genoma de UA159 contém mais três genes codificadores de proteínas semelhantes a RelA incluindo-se SMU.1046c, SMU.1206c e SMU.926, este último também designado relP por Lemos et al. (2007). relP está a jusante dos genes sptRS, e foi identificado nos ensaios de ChIP-seq (Tabela 2). Resultados desta tese (Figura 7) e de Lemos et al. (2007) indicam que *relP* é co-transcrito com os genes *sptRS*. Os ensaios de RT-qPCR indicam que SptR reprime *relP*, assim como de *relA* e *SMU.1046c*, porque estes genes são super-expressos no mutante UAsptR⁻ (Tabela 3). Os ensaios de RTgPCR foram realizados no final da fase logaritimica de UA*sptR*/UA159, pois nesta fase, observamos a maior expressão de *sptR* na cepa parental UA159. Entretanto, RelP foi demonstrada como a principal fonte de (p)ppGpp em S. mutans durante crescimento exponencial sem limitações nutricionais, sendo seus níveis regulados por SptRS, também designado ReISR (Seaton et al., 2011; Kim et al., 2012). Os diversos genes envolvidos na síntese de (p)ppGpp indicam que S. mutans aplica a resposta de estringência sob diferentes condições de crescimento, mas o papel biológico das diferentes sintetases de alarmonas na virulência e persistência em saliva ainda precisa ser elucidada nesta espécie.

Genes relacionados ao metabolismo de polissacarídeos extracelulares também apresentaram regulados pela proteína SptR (Tabela 2). Estes incluem *SMU.78 (fruA)*, o qual codifica a enzima frutanase que hidrolisa de frutanos. Os frutanos são polissacarídeos extracelulares de frutose sintetizados a partir da sacarose por enzimas frutosiltransferases (Ftf) (Banas, 2004). Os frutanos aparentemente funcionam como reservas extracelulares de açúcar de pronta utilização, sendo degradados por FruA secretadas ou ligadas à superfície da parede celular (Banas, 2004). As moléculas de frutose devem ser então transportadas para o citoplasma para, então, serem metabolizadas. A proteína

SptR recombinante também interage com as regiões reguladoras dos genes *SMU.114* e *SMU.115* os quais codificam as subunidades das EII frutose-específica do PTS da frutose, genes estes super-regulados no mutante UA*sptR* (Tabela 3). Estes dados reforçam a importância do SDC SptRS na regulação da utilização das reservas de frutanos.

Diversos genes relacionados ao metabolismo e transporte (SMU.880, SMU.2047, SMU.78, SMU.114, SMU.115 e SMU.542) identificados nos ensaios de ChIP-seq também foram indentificados como regulados por CcpA (Catabolite control protein A) (Abranches et al., 2008). Embora não identificado nos ensaios de ChIP-seq, a transcrição de ccpA é aumentada em 3,09 vezes no mutante UAsptR (Tabela 3). CcpA é o principal regulador transcricional dos sistemas de repressão catabólica (CCR) em espécies de Firmicutes. Em diversas espécies de Firmicutes, CcpA deve se ligar a proteínas HPr fosforiladas de sistemas PTS na presença de glicose, para então se ligar às sequências promotoras dos genes alvo, as quais contém regiões conservadas designadas cre (de catabolite responsive elements) (Gorke e Stulke, 2008). Entretanto, a repressão catabólica em S. mutans parece ser independente de CcpA e envolver principalmente os sistema as subunidades intracelulares A e B da enzima II do sistema PTS manose-específico (codificada por manL). Não indentificamos entretanto o gene manL nos ensaios de ChIP-seq, o qual foi anotado como ptnA no genoma de UA159 (GenBank).

Diversos genes envolvidos na biossíntese de aminoácidos foram identificados nos ensaios de ChIP-seq (Tabela 2). Estes incluem *ilvC* (*SMU.233*), o qual é ativado em *S. mutans* em resposta ao estresse ácido (Len *et al.*, 2004) e cuja inativação reduz a tolerância a ácido (Santiago *et al.*, 2014), uma característica importante na virulência de *S. mutans*. Não foi identificado diferenças significativas na tolerância ao estresse ácido entre as cepas mutantes *sptR* ou *sptS* e UA159 (dados não apresentados).

Dados de ChIP-seg e RT-gPCR indicam que os genes de resposta a estresses SMU.2164 (htrA) e SMU.2067 (csbB) são regulados pelo SDC SptRS (Tabelas 2 e 3). Até o presente, não há informações sobre a importância de csbB na biologia de S. mutans, sendo seu ortólogo investigado em Bacillus subtilis. HtrA (*de high temperature requirement A*) é uma serina-protease também com atividade de chaperona presente em diversas espécies de bactérias Gram-positivas e Gram-negativas (Ahn et al., 2005). Na espécie de S. mutans, a inativação de htrA, aumenta a sensiblidade a altas temperaturas, reduz o crescimento planctônico, inibe a competência, a formação de biofilmes na presença de sacarose em meio quimicamente definido BM, acrescido de 20 mM de sacarose (Ahn et al., 2005). As análises da formação de biofilmes dos mutantes *sptS* e *sptR* em BHI acrescido de 0,1% (2,9 mM) de sacarose não demonstraram diferenças significativas da biomassa de biofilmes de 18 h em relação à cepa parental (Figura 12A), exceto pelo pequeno aumento nos biofilmes de UAsptS⁻. Análises comparativas da formação de biofilmes precisarão ser realizadas em meios mais pobres, onde observamos crescimento mais lento nos mutantes comparados à UA159 (Figura 11), acrescidos ou não de sacarose em maiores concentrações como utilizadas por Ahn et al. (2005). A despeito das diferentes metodologias de formação de biofilmes entre nosso e o estudo de Ahn et al. (2005), uma vez que a inativação de htrA reduz a formação de biofilmes em UA159, observou-se uma maior expressão deste gene no mutante UAsptR, dados estes que são compatíveis com os fenótipos de formação de biofilmes observados no presente estudo. Os dados de ChIP-seq indicaram ainda função do sistema SptRS na regulação de genes envolvidos na biossíntese de nucleotídeos, replicação, recombinação e reparo de DNA (Tabelas 2 e 3), podem refletir na participação deste SDC em mecanismos de proteção e reparo de DNA, normalmente necessários sob condições de estresse ambiental (Lemos et al., 2005)

Sacarose e amido são importantes carboidratos da dieta que potencializam a virulência e formação de biofilmes por *S. mutans* na presença de α -amilase salivar (Vacca-Smith *et al.*, 1986; Klein *et al.*, 2010), dados estes

compatíveis com os fenótipos observados no presente estudo em que houve uma intensa formação de biofilmes de 18 h por UA159 na presença de 1% de amido e saliva em comparação com a ausência de saliva (Figura 12). A formação de biofilme dependente de amido é mediada pela α -amilase salivar, que digere o amido em maltose, maltodextrina e outros oligossacarídeos, os quais podem ser incorporados durante a síntese extracelular de glucanos a partir da sacarose (Klein *et al.*, 2010). Dados de ChIP-seq e de RT-qPCR sugeriram ainda que SptR regula os sistema ABC de transporte de maltose (Tabelas 2 e 3). A despeito do possível papel de SptRS na utilização e metabolismo de açúcares e na sobrevivêcia em saliva observados em espécies como *S. pyogenes* (Shelburne *et al.*, 2008), a inativação de *sptR* ou *sptS* em UA159 não afetaram significativamente a formação de biofilmes na presença de saliva em meio contendo amido e sacarose (Figura 12).

Além disto, estudos paralelos realizado indicam que os sistema SptRS de S. mutans desempenha papel diferente na sobrevida em saliva humana em comparação com outra espécie dos biofilmes dentários competidora, S. sanguinis (Camargo, 2014). Mutantes knockout de sptRS em S. sanguinis SK36 apresentam sobrevida significativamente menor em saliva humana em comparação à cepa parental, fenótipo este completamente restaurado nos mutantes complementados com cópia intacta do gene inativado (Camargo, 2014). Os dados de ChIP-seg (Tabela 2), RT-qPCR (Tabela 3) e EMSA (Figura 17) indicaram que o SDC SptRS regula diretamente wapE, gene envolvido na biogênese da parede celular, também inibido pelo regulador órfão CovR (Stipp et al., 2013). Portanto, comparamos a expressão de *covR* e de outros genes de mesma classe funcional regulados por CovR (SMU.1434c, epsC, lysM). O aumento significativo na expressão de covR (2,31 vezes em relação a UA159) (Tabela 3) e a capacidade da proteína SptR se ligar à região promotora do *covR* (Figura 17) indicam que o SDC SptRS regula diretamente a expressão do regulador órfão CovR. A despeito da grande importância de CovR na regulação de fatores de virulência de S. mutans (Biswas et al., 2007; Stipp et al., 2013), até hoje não foram identificadas as

proteínas histidinas quinases de SDC capazes de ativar CovR em *S. mutans*. Ensaios com o mutante UA*spt*S⁻ deverão ser realizados para melhor investigar este ponto. CovR reprime genes envolvidos na síntese de glucanos extracelulares insolúveis a partir da sacarose (*gtfB/C*) e na interação da superfície bacteriana com estes polímeros (*gbpB*, *gbpC*) (Biswas *et al.*, 2007; Duque *et al.*, 2011). Seria esperado que a super expressão de *covR* no mutante UA*sptR* reduzisse a capacidade de formação de biofilmes do mutante *sptR*, o que não foi verificado no presente trabalho (Figura 12). Estas inconsistências poderiam resultar da maior expressão de outros genes implicados na formação de biofilmes. Em *S. sanguinis*, a inativação de *sptRS* promove aumento significativo da formação de biofilmes associada à maior liberação de DNA para o meio extracelular (Camargo, 2014). A expressão dos genes gtfB/C no mutante *sptR* precisa ainda ser investigada, assim como a liberação de DNA para o meio externo nos mutantes UA*sptR/S*.

Diversos genes implicados na formação de biofilmes e virulência de *S. mutans* são regulados de forma coordenada por mais de um SDC (Stipp *et al.*, 2013). A despeito do aumento da expressão de *covR*, observaram-se aumentos significativos na expressão de dois genes reprimidos diretamente por este regulador, *SMU.1434c* (aumento de 5,9 vezes) e *SMU.1437 epsC* (aumento de 3,1 vezes), este último envolvido na síntese de polissacarídeos de superfície e estruturação da matriz extracelular de biofilmes durante as fases iniciais de formação, autólise e liberação de DNA para o meio extracelular (Stipp *et al.*, 2013). Assim, serão necessários estudos investigando a interação direta da proteína SptR com as sequências promotoras destes genes isoladamente e em conjunto como CovR. Além disto, outros fatores de transcrição gênica de função ainda desconhecida foram identificados como regulados por SptR (Tabela 2).

Além de *wapE* e *epsC*, quatro outros genes envolvidos na biogênese de parede celular estiveram super-regulados no mutante (*smaA* e *lysM*), todos estes com função lítica sobre peptideoglicano (ou mureína) (Stipp *et al.*, 2013). O processo de divisão celular em bactérias envolve diversas hidrolases de mureína, algumas destas denominadas autolisinas. Bactérias normalmente expressam um

grupo de hidrolases de mureína que podem ter funções específicas e/ou redundantes e que desempenham diferentes funções fisiológicas. Estas funções incluem o remodelamento da parede celular durante o crescimento, a separacão de células, a autólise, a montagem de estruturas de superfície celular e formacão de biofilmes (Vollmer *et al.*, 2008). A maior expressão de genes codificadores de hidrolases de mureína é compatível com o aumento significativo da atividade autolítica dos mutantes UA*sptR* e UA*sptS*⁻ em relação a UA159 (Figura 13).

Em resumo, o sistema SptRS de *S. mutans* regula diversas funções importantes para a sobrevivência em condições nutricionalmente pobres, incluindo-se a resposta de estringência, o sistema de regulação catabólica e o transporte de açúcares e de diversos outros compostos orgânicos e inorgânicos, além de fatores relacionados à sobrevivência sob diferente estresses ambientais. Além disto, este sistema regula o CovR e diversas proteínas regulados por CovR importantes para a formação de biofilmes e virulência de *S. mutans*, indicando que o sistema SptRS participa da coordenação do metabolismo e crescimento de *S. mutans* necessários para à persistência e virulência nos sítios bucais. Estes dados deverão contribuir para decifrar as complexas redes de regulação transcricional que modulam a viabilidade e virulência de *S. mutans* em resposta aos estímulos do hospedeiro.

7 CONCLUSÕES

A inativação de *spt*RS promove crescimento planctônico lento em RPMI e em MQD, diminui a atividade autolítica, mas não afeta significativamente a morfogênese de *Streptococcus mutans*, nas condições experimentais testadas.

A inativação do sistema SptRS em UA159 não afeta significativamente a formação de biofilmes *in vitro* ou a persistência em saliva humana em ensaios *ex vivo*.

O sistema SptRS desempenha função de regulação de genes de biossíntese de parede celular, fatores de estringência, repressão catabólica, sistemas de transportes do tipo ABC e PTS, metabolismo de múltiplos açúcares e aminoácidos e sistemas de reparo de DNA.

A proteína SptR atua como regulador negativo para a maioria dos seus genes alvo.

SptR reprime diretamente a expressão de CovR, um regulador negativo de diversos genes de virulência implicados na formação de biofilmes na presença de sacarose.

Referências

- Abranches J, Nascimento MM, Zeng L, Browngardt CM, Wen ZT, Rivera MF, et al. CcpA regulates central metabolism and virulence gene expression in *Streptococcus mutans*. J Bacteriol. 2008 Apr;190(7):2340–9.
- Ahn S-J, Lemos JAC, Burne RA. Role of HtrA in growth and competence of *Streptococcus mutans* UA159. J Bacteriol. 2005 May;187(9):3028–38.
- Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, *et al.* Genome sequence of *Streptococcus mutans* UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14434–9.
- 4. Ajdić D, Pham VTT. Global transcriptional analysis of *Streptococcus mutans* sugar transporters using microarrays. J Bacteriol. 2007 Jul;189(14):5049–59.
- Alves AC, Nogueira RD, Stipp RN, Pampolini F, Moraes ABA, Gonçalves RB, et al. Prospective study of potential sources of *Streptococcus mutans* transmission in nursery school children. J Med Microbiol. 2009 Apr;58(Pt 4):476–81.
- 6. Alves LA. Estudo da participação dos reguladores de transcrição gênica VicKR e CovRS na evasão de *Streptococcus mutans* ao sistema complemento. 2014. UNICAMP/FOP.
- Banas JA, Vickerman MM. Glucan-binding proteins of the bucal streptococci. Crit Rev Bucal Biol Med Off Publ Am Assoc Bucal Biol. 2003;14(2):89–99.
- Banas JA. Virulence properties of *Streptococcus mutans*. Front Biosci J Virtual Libr. 2004 May 1;9:1267–77.
- Berkowitz RJ. Mutans streptococci: acquisition and transmission. Pediatr Dent. 2006 Apr;28(2):106–9; discussion 192–8.
- 10.Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–23.

^{*} De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors. Abreviatura dos periódicos em conformidade com o Medline.

- 11.Biswas S, Biswas I. Regulation of the glucosyltransferase (gtfBC) operon by CovR in *Streptococcus mutans*. J Bacteriol. 2006 Feb;188(3):988–98.
- 12.Biswas I, Drake L, Biswas S. Regulation of gbpC expression in *Streptococcus mutans*. J Bacteriol. 2007 Sep;189(18):6521–31.
- 13.Biswas I, Drake L, Erkina D, Biswas S. Involvement of sensor kinases in the stress tolerance response of *Streptococcus mutans*. J Bacteriol. 2008 Jan;190(1):68–77.
- 14. Bowden, GH and Hamilton IR. Survival of oral bacterial. Crit Rev Oral Biol Med.1998;9(1):54-85.
- 15.Burne, R. A. Oral streptococci... products of their environment. J. Dent. Res. 1998. 77:445-452.
- 16.Camargo TM. Caracterização do sistema de dois componentes sptrs de *streptococcus sanguinis* com possível papel na viabilidade em saliva humana. 2014. FOP/UNICAMP.
- 17.Caufield PW, Cutter GR, Dasanayake AP. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res. 1993 Jan;72(1):37–45.
- Dalton TL, Hobb RI, Scott JR. Analysis of the role of CovR and CovS in the dissemination of Streptococcus pyogenes in invasive skin disease. Microb Pathog. 2006 May;40(5):221– 7.
- 19. Dunny GM, Lee LN, LeBlanc DJ. Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol. 1991 Apr;57(4):1194–201.
- 20.Duque C, Stipp RN, Wang B, Smith DJ, Höfling JF, Kuramitsu HK, *et al.* Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of *Streptococcus mutans*. Infect Immun. 2011 Feb;79(2):786–96.
- 21.Frirdich E, Gaynor EC. Peptidoglycan hydrolases, bacterial shape, and pathogenesis. Curr Opin Microbiol. 2013 Dec;16(6):767–78.
- 22.Geiger T, Kästle B, Gratani FL, Goerke C, Wolz C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol. 2014 Feb;196(4):894–902.

- 23.Graham MR, Smoot LM, Migliaccio CAL, Virtaneva K, Sturdevant DE, Porcella SF, et al. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13855–60.
- 24.Graham MR, Virtaneva K, Porcella SF, Barry WT, Gowen BB, Johnson CR, et al. Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am J Pathol. 2005 Feb;166(2):455–65.
- 25.Gryllos I, Cywes C, Shearer MH, Cary M, Kennedy RC, Wessels MR. Regulation of capsule gene expression by group A Streptococcus during pharyngeal colonization and invasive infection. Mol Microbiol. 2001 Oct;42(1):61–74.
- 26.Gryllos I, Grifantini R, Colaprico A, Jiang S, Deforce E, Hakansson A, *et al.* Mg(2+) signalling defines the group A streptococcal CsrRS (CovRS) regulon. Mol Microbiol. 2007 Aug;65(3):671–83.
- 27.Gryllos I, Tran-Winkler HJ, Cheng M-F, Chung H, Bolcome R, Lu W, et al. Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16755–60.
- 28.Godfrey HP, Bugrysheva JV, Cabello FC. The role of the stringent response in the pathogenesis of bacterial infections. Trends Microbiol. 2002 Aug;10(8):349–51.
- 29. Gold OG, Jordan HV, Van Houte J. A selective medium for Streptococcus mutans. Arch Oral Biol. 1973 Nov;18(11):1357-64.
- 30.Görke B, Fraysse L, Galinier A. Drastic differences in Crh and HPr synthesis levels reflect their different impacts on catabolite repression in Bacillus subtilis. J Bacteriol. 2004 May;186(10):2992–5.
- 31.Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008 Aug;6(8):613–24.
- 32.Gutekunst H, Eikmanns BJ, Reinscheid DJ. The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells. Infect Immun. 2004 Jun;72(6):3495–504.

- 33.Halfmann A, Schnorpfeil A, Müller M, Marx P, Günzler U, Hakenbeck R, et al. Activity of the two-component regulatory system CiaRH in Streptococcus pneumoniae R6. J Mol Microbiol Biotechnol. 2011 Apr;20(2):96–104.
- 34.Kim JN, Ahn S-J, Seaton K, Garrett S, Burne RA. Transcriptional organization and physiological contributions of the relQ operon of *Streptococcus mutans*. J Bacteriol. 2012 Apr;194(8):1968–78.
- 35.Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AH-M, *et al.* Dynamics of *Streptococcus mutans* transcriptome in response to starch and sucrose during biofilm development. PloS One. 2010;5(10):e13478.
- 36.Kreth J, Merritt J, Qi F. Bacterial and host interactions of bucal streptococci. DNA Cell Biol. 2009 Aug;28(8):397–403.
- 37.Lamont RJ and Jenkinson HF. Bucal Microbiology at a Glance. 1 ed. Wiley-Backwell; 2010.
- 38.Lamy M-C, Zouine M, Fert J, Vergassola M, Couve E, Pellegrini E, *et al.* CovS/CovR of group B *streptococcus*: a two-component global regulatory system involved in virulence. Mol Microbiol. 2004 Dec;54(5):1250–68.
- 39.Lau PCY, Sung CK, Lee JH, Morrison DA, Cvitkovitch DG. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods. 2002 Apr;49(2):193–205.
- 40.Lemos JAC, Burne RA. Regulation and Physiological Significance of ClpC and ClpP in *Streptococcus mutans*. J Bacteriol. 2002 Nov;184(22):6357–66.
- 41.Lemos JAC, Brown TA, Burne RA. Effects of ReIA on key virulence properties of planktonic and biofilm populations of *Streptococcus mutans*. Infect Immun. 2004 Mar;72(3):1431–40.
- 42.Lemos JAC, Abranches J, Burne RA. Responses of cariogenic *streptococci* to environmental stresses. Curr Issues Mol Biol. 2005 Jan;7(1):95–107.
- 43.Lemos JA, Lin VK, Nascimento MM, Abranches J, Burne RA. Three gene products govern (p)ppGpp production by *Streptococcus mutans*. Mol Microbiol. 2007 Sep;65(6):1568–81.
- 44.Lemos JA, Burne RA. A model of efficiency: stress tolerance by *Streptococcus mutans*. Microbiol Read Engl. 2008 Nov;154(Pt 11):3247–55.

- 45.Len ACL, Harty DWS, Jacques NA. Stress-responsive proteins are upregulated in *Streptococcus mutans* during acid tolerance. Microbiol Read Engl. 2004 May;150(Pt 5):1339–51.
- 46.Lin I-H, Liu T-T, Teng Y-T, Wu H-L, Liu Y-M, Wu K-M, *et al.* Sequencing and comparative genome analysis of two pathogenic *Streptococcus gallolyticus* subspecies: genome plasticity, adaptation and virulence. PloS One. 2011;6(5):e20519.
- 47.Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK. Bacteremia associated with toothbrushing and dental extraction. Circulation. 2008 Jun 17;117(24):3118–25.
- 48.Macrina FL, Tobian JA, Jones KR, Evans RP, Clewell DB. A cloning vector able to replicate in *Escherichia coli* and *Streptococcus sanguis*. Gene. 1982 Oct;19(3):345–53.
- 49.Madigan MT, Martinko JM, Dunlap PV, Clark DP. Microbiologia de Brock. 12 ed. Porto Alegre. Artmed; 2010
- 50.Marcotte H, Lavoie MC. Bucal microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev MMBR. 1998 Mar;62(1):71–109.
- 51.Mereghetti L, Sitkiewicz I, Green NM, Musser JM. Extensive adaptive changes occur in the transcriptome of *Streptococcus agalactiae* (group B streptococcus) in response to incubation with human blood. PloS One. 2008;3(9):e3143.
- 52.Milgrom P, Riedy CA, Weinstein P, Tanner AC, Manibusan L, Bruss J. Dental caries and its relationship to bacterial infection, hypoplasia, diet, and bucal hygiene in 6- to 36-month-old children. Community Dent Bucal Epidemiol. 2000 Aug;28(4):295–306.
- 53.Mattos-Graner RO, Jin S, King WF, Chen T, Smith DJ, Duncan MJ. Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun. 2001 Nov;69(11):6931– 41.
- 54.Mattos-Graner RO, Porter KA, Smith DJ, Hosogi Y, Duncan MJ. Functional analysis of glucan binding protein B from *Streptococcus mutans*. J Bacteriol. 2006 Jun;188(11):3813– 25.

- 55.Matsumoto-Nakano M, Fujita K, Ooshima T. Comparison of glucan-binding proteins in cariogenicity of *Streptococcus mutans*. Bucal Microbiol Immunol. 2007 Feb;22(1):30–5.
- 56.Marsh PD, Martin MV. Bucal Microbiology. 5 ed. Churchill Livingstone, Elsevier; 2009.
- 57.Nakano S, Fukuda M, Mashima T, Katahira M, Morii T. Structural aspects for the function of ATP-binding ribonucleopeptide receptors. Nucleic Acids Symp Ser 2004. 2009;(53):259–60.
- 58.Nakano K, Tsuji M, Nishimura K, Nomura R, Ooshima T. Contribution of cell surface protein antigen PAc of *Streptococcus mutans* to bacteremia. Microbes Infect Inst Pasteur. 2006 Jan;8(1):114–21.
- 59.Nakano K, Nomura R, Taniguchi N, Lapirattanakul J, Kojima A, Naka S, *et al.* Molecular characterization of *Streptococcus mutans* strains containing the cnm gene encoding a collagen-binding adhesin. Arch Bucal Biol. 2010 Jan;55(1):34–9.
- 60.Nascimento Nakano K, Inaba H, Nomura R, Nemoto H, Takeda M, Yoshioka H, *et al.* Detection of cariogenic *Streptococcus mutans* in extirpated heart valve and atheromatous plaque specimens. J Clin Microbiol. 2006 Sep;44(9):3313–7.
- 61.Negrini TC, Duque C, Vizoto NL, Stipp RN, Mariano FS, Höfling JF, *et al.* Influence of VicRK and CovR on the interactions of *Streptococcus mutans* with phagocytes. Bucal Dis. 2012 Jul;18(5):485–93.
- 62.Nishikawa K, Yoshimura F, Duncan MJ. A regulation cascade controls expression of *Porphyromonas gingivalis* fimbriae via the FimR response regulator. Mol Microbiol. 2004 Oct;54(2):546–60.
- 63.Nogueira RD, Alves AC, Napimoga MH, Smith DJ, Mattos-Graner RO. Characterization of salivary immunoglobulin A responses in children heavily exposed to the bucal bacterium *Streptococcus mutans*: influence of specific antigen recognition in infection. Infect Immun. 2005 Sep;73(9):5675–84.
- 64.Nogueira RD, Alves AC, King WF, Gonçalves RB, Höfling JF, Smith DJ, et al. Age-specific salivary immunoglobulin A response to *Streptococcus mutans* GbpB. Clin Vaccine Immunol CVI. 2007 Jun;14(6):804–7.

- 65.Nomura R, Nakano K, Ooshima T. Contribution of glucan-binding protein C of *Streptococcus mutans* to bacteremia occurrence. Arch Bucal Biol. 2004 Oct;49(10):783–8.
- 66.Okamoto S, Terao Y, Kaminishi H, Hamada S, Kawabata S. Inflammatory immune responses by water-insoluble alpha-glucans. J Dent Res. 2007 Mar;86(3):242–8.
- 67.Perry D, Kuramitsu HK. Genetic transformation of *Streptococcus mutans*. Infect Immun. 1981 Jun;32(3):1295–7.
- 68.PfaffI MW. A new mathematical model for relative quantification in real-time RT-PCR. PNucleic Acids Res. 2002 May 1;30(9):e36.
- 69.Qin X, Galloway-Peña JR, Sillanpaa J, Roh JH, Nallapareddy SR, Chowdhury S, *et al.* Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol. 2012;12:135.
- 70.Que YA, Haefliger JA, Francioli P, Moreillon P. Expression of Staphylococcus aureus clumping factor A in *Lactococcus lactis* subsp. *cremoris* using a new shuttle vector. Infect Immun. 2000 Jun;68(6):3516–22.
- 71.Santiago B, MacGilvray M, Faustoferri RC, Quivey RG. The branched-chain amino acid aminotransferase encoded by *ilv*E is involved in acid tolerance in *Streptococcus mutans*. J Bacteriol. 2012 Apr;194(8):2010–9.
- 72.Sato Y, Yamamoto Y, Kizaki H. Construction of region-specific partial duplication mutants (merodiploid mutants) to identify the regulatory gene for the glucan-binding protein C gene in vivo in *Streptococcus mutans*. FEMS Microbiol Lett. 2000 May 15;186(2):187–91.
- 73.Seaton K, Ahn S-J, Sagstetter AM, Burne RA. A transcriptional regulator and ABC transporters link stress tolerance, (p)ppGpp, and genetic competence in *Streptococcus mutans*. J Bacteriol. 2011 Feb;193(4):862–74.
- 74.Senadheera MD, Guggenheim B, Spatafora GA, Huang Y-CC, Choi J, Hung DCI, et al. A VicRK signal transduction system in *Streptococcus mutans* affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol. 2005 Jun;187(12):4064–76.

- 75.Shelburne SA, Granville C, Tokuyama M, Sitkiewicz I, Patel P, Musser JM. Growth characteristics of and virulence factor production by group A *Streptococcus* during cultivation in human saliva. Infect Immun. 2005(A) Aug;73(8):4723–31.
- 76.Shelburne SA, Sumby P, Sitkiewicz I, Granville C, DeLeo FR, Musser JM. Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc Natl Acad Sci U S A. 2005(B) Nov 1;102(44):16037–42.
- 77.Shelburne SA, Keith DB, Davenport MT, Horstmann N, Brennan RG, Musser JM. Molecular characterization of group A *Streptococcus* maltodextrin catabolism and its role in pharyngitis. Mol Microbiol. 2008 Jul;69(2):436–52.
- 78.Smith DJ, Mattos-Graner RO. Secretory immunity following mutans streptococcal infection or immunization. Curr Top Microbiol Immunol. 2008;319:131–56.
- 79.Smith TJ, Blackman SA, Foster SJ. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiol Read Engl. 2000 Feb;146 (Pt 2):249–62.
- Spolidorio DMP, Duque C. Microbiologia e Imunologia geral e Odontológica. Vol. 1. São Paulo. Artes medicas; 2013.
- 81.Stephenson K, Hoch JA. Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol. 2002 Oct;2(5):507–12.
- 82.Stinson MW, Alder S, Kumar S. Invasion and killing of human endothelial cells by viridans group streptococci. Infect Immun. 2003 May;71(5):2365–72.
- 83.Stipp RN, Gonçalves RB, Höfling JF, Smith DJ, Mattos-Graner RO. Transcriptional analysis of gtfB, gtfC, and gbpB and their putative response regulators in several isolates of *Streptococcus mutans*. Bucal Microbiol Immunol. 2008 Dec;23(6):466–73.
- 84.Stipp RN. Caracterização dos regulons de CovR e VicRK em *Streptococcus mutans.* 2010. UNICAMP/FOP.
- 85.Stipp RN, Boisvert H, Smith DJ, Höfling JF, Duncan MJ, Mattos-Graner RO. CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in *Streptococcus mutans*. PloS One. 2013;8(3):e58271.

- 86.Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183–215.
- 87.Vacca-Smith AM, Venkitaraman AR, Quivey RG, Bowen WH. Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite. Arch Bucal Biol. 1996 Mar;41(3):291–8.
- 88. Virtaneva K, Porcella SF, Graham MR, Ireland RM, Johnson CA, Ricklefs SM, et al. Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):9014–9.
- 89. Vizoto NL. Influência do regulador COVR na resposta de *Streptococcus mutans* ao contato com saliva e sague. 2011. UNICAMP/FOP.
- 90.Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev. 2008 Mar;32(2):259–86
- 91.Webb AJ, Homer KA, Hosie AHF. Two closely related ABC transporters in *Streptococcus mutans* are involved in disaccharide and/or oligosaccharide uptake. J Bacteriol. 2008 Jan;190(1):168–78.
- 92.Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, *et al.* Genome of the opportunistic pathogen *Streptococcus sanguinis*. J Bacteriol. 2007 Apr;189(8):3166–75.
- 93. Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK. Role of the *Streptococcus mutans* gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun. 1993 Sep;61(9):3811–7.
ANEXO 1

Comitê de Ética – FOP

ANEXO 2

Composição Meio RMPI

		Concentração	
Componentes	Peso Molecular	(mg/L)	mМ
Amino Ácidos			
Glycine	75.0	10.0	0.13333334
L-Arginine	174.0	200.0	1.1494253
L-Asparagine	132.0	50.0	0.37878788
L-Aspartic acid	133.0	20.0	0.15037593
L-Cystine 2HCI	313.0	65.0	0.20766774
L-Glutamic Acid	147.0	20.0	0.13605443
L-Glutamine	146.0	300.0	2.0547945
L-Histidine	155.0	15.0	0.09677419
L-Hydroxyproline	131.0	20.0	0.15267175
L-Isoleucine	131.0	50.0	0.3816794
L-Leucine	131.0	50.0	0.3816794
L-Lysine hydrochloride	183.0	40.0	0.21857923
L-Methionine	149.0	15.0	0.10067114
L-Phenylalanine	165.0	15.0	0.09090909
L-Proline	115.0	20.0	0.17391305
L-Serine	105.0	30.0	0.2857143
L-Threonine	119.0	20.0	0.16806723
L-Tryptophan	204.0	5.0	0.024509804
L-Tyrosine disodium salt dihydrate	261.0	29.0	0.11111111
L-Valine	117.0	20.0	0.17094018
Vitaminas			
Biotin	244.0	0.2	8.1967213E-4
Choline chloride	140.0	3.0	0.021428572
D-Calcium pantothenate	477.0	0.25	5.24109E-4
Folic Acid	441.0	1.0	0.0022675737
Niacinamide	122.0	1.0	0.008196721
Para-Aminobenzoic Acid	137.0	1.0	0.00729927
Pyridoxine hydrochloride	206.0	1.0	0.004854369
Riboflavin	376.0	0.2	5.319149E-4
Thiamine hydrochloride	337.0	1.0	0.002967359
Vitamin B12	1355.0	0.0050	3.690037E-6
i-Inositol	180.0	35.0	0.19444445
Sais Inorganicos			
Calcium nitrate (Ca(NO3)2 4H2O)	236.0	100.0	0.42372882
Magnesium Sulfate (MgSO4-7H2O)	246.0	48.84	0.19853659
Potassium Chloride (KCI)	75.0	400.0	5.3333335
Sodium Chloride (NaCl)	58.0	6000.0	103.44827
Sodium Phosphate dibasic (Na2HPO4-7H2O)	268.0	800.0	2.9850745
Outros Componentes			
D-Glucose (Dextrose)	180.0	2000.0	11.111111
Glutathione (reduced)	307.0	1.0	0.0032573289
Phenol Red	376.4	5.0	0.013283741

ANEXO 2 cont.

	Peso	Molecular	Concentração	
Componentes	(g/mol)		(mg/L)	mM
Amino Ácidos				
L-Arginine HCI	210.66		210.66	1
L-Cysteine hydrochloride	175.63		228.31	1.3
L-Glutamic Acid	147.13		588.52	4
L-Tryptophan	204.23		20	0.1
Vitaminas Vitaminas				
Biotin	244.0		100	0.4
Choline Chloride	477.0		100	0.2
Folic Acid	441.0		100	0.22
Niacinamide	122.0		100	0.81
Para-Aminobenzoic Acid	137.14		100	0.73
Pyridoxine hydrochloride	206.0		100	0.48
Riboflavin	376.0		10	0.26
Thiamine hydrochloride	337.0		100	0.29
D-Pantothenic Acid+1/2 Ca	476.53		100	0.21
myo-Inositol	180.0		200	1.11
Sais Inorganicos				
Potassium phosphate dibasic	174.18		10100.0	58
Monobasic potassium phosphate	136.09		2040	15
Sodium Chloride (NaCl)	58.0		8500.0	146
Amoniun Sulfate	132.14		1321.4	10
Manganese(II) chloride	95.211		9.5211	0.1
Casein Hydrolysate	-		2	
Outros Componentes				
D-Glucose (Dextrose)	180.15		5000.0	20

Meio Quimicamente Definido - MQD

ANEXO 2 cont.

Meio Complexo - BHI (DIFCO)

BactoTM Brain Heart Infusion

Approximate Formula* Per Liter

Calf Brains, Infusion from 200 g	7.7 g
Beef Heart, Infusion from 250 g	9.8 g
Proteose Peptone	10.0 g
Dextrose	2.0 g
Sodium Chloride	5.0 g
Disodium Phosphate	. 2.5 g

ANEXO 3

Nome	Sequência (5' – 3')	pb/Tm
Contrução dos mutantes		
E1-Ascl	TTGGCGCGCCTGGCGGAAACGTAAAAGAAG	1000 pb/59%C
E2-Xhol	TTCTCGAGGGCTCCTTGGAAGCTGTCAGT	
sptR/P1	GTAACCTCATTATGGCTTGGA	769 dd/55ºC
sptR/P2-Ascl	TTGGCGCGCCGACAACTGCTCTTCGTCTTCT	
sptR/P3- <i>Xho</i> l	TTCTCGAGGTGTCAGGCAATTCTATTCGT	714 pb/55ºC
sptR/P4	GAGTAGCATCCAAGACAACAAC	11 00,000
sptS/P1	CGATTTTACTAGCAGAAGACGA	759 pb/55%C
sptS/P2-Ascl	TTGGCGCGCCCCCACAAAAGAAATGAGGATAC	75a pb/55-C
sptS/P3- <i>Xho</i> l	TTCTCGAGCTAGGTTAGAAGAGCAGCCG	
sptS/P4	TTCTTGTTGCTGCGTATGG	632 pb/55ºC
RNA-policistrônico		
926-927 F	TGGATTCTTGGGCTAGTTTGG	205 pb/54ºC
926-927 R	GACAACTGCTCTTCGTCTTCT	200 p2/01 0
927-928F	TTAGGAGAAGAGAATGGCGAT	506 pb/54%C
927-928R	ACGAGTAGCATCCAAGACAAC	300 pb/34-0
926-928F	TAGACACGCCATTTGAGGATT	
926-928R	CGAATAGAATTGCCTGACACC	687 pb/54*C
qPCR		
16SF	CGGCAAGCTAATCTCTGAAA	200-300 pb/54°C
16SR	GCCCCTAAAAGGTTACCTCA	
SMU.2146F	AATCTGTTCTTGCTCACACTGC	200 200 pb/54%C
SMU.2146R	ACATTATCAGTTGGTTCAGTTGCT	200-300 pb/34 0
SMU.2147F	TTATCAGAGATTGCTTCAACACA	200 200 ~ / (54%)
SMU.2147R	CTGAGGTTTCTGCTTCATTTATG	200-300 pb/34-C
SMU.609F	TGGAAGAGAAGATGTAACAATGA	
SMU.609R	ACACAGCCAATTAAAACAGATG	200-300 pb/54×C
SMU.1434cF	TTGGTCTATTTAAGCCAGGTGT	
SMU.1434cR	AGTAAGCCAATAAGGCAATCC	200-300 pb/54×C

Tabela 4. Oligonucleotídeos utilizados no presente estudo

Nome	Sequência (5' – 3')	pb/Tm
SMU.1437F (epsC)	GCAAATACAGAGCGTATCCATC	200-300 pb/54⁰C
SMU.1437R (epsC)	TAAAGTCCCTGCTGCTACTCC	
SMU.1091F (wapE)	TATTCCTGTGCCTTCTGTTGA	200 200 pb/54%
SMU.1091R (wapE)	GCCTTCTTGACTTTTGGATTG	200-300 pb/34-0
SMU.22F (gbpB)	TTGACAGCTTATCCTTTAAATG	200-300 pb/54º0
SMU.22R (gbpB)	TTTACAGCTGATAATGTTGTCG	200 000 pb/01 0
SMU.2044F (relA)	TGCATCAAGTGGCTGAATAT	200-300 pb/54°C
SMU.2044R (relA)	TCCAACCTGTGTATGAATGG	200 000 pb/04 0
SMU.926F (relP)	GTAAACAGCTGCCTCTAACG	200 200 pb/54%
SMU.926R (relP)	CAATCCTCAAATGGCGTGTC	200-300 pb/34-C
SMU.1046cF (relQ)	GGTTATCGCTCTTATCACGT	
SMU.1046cR (relQ)	ACACCATCGTTTAGCTTTCT	200-300 pb/54≚C
SMU.876F (msmR)	CTCATTGAAGAATTTCCTC	200, 200 pb/54%
SMU.876R (msmR)	TAACTTCGACTAAGATTCAG	200-300 pb/54*C
SMU.970F (folA)	CTGTTGAATGAATAGCAC	200, 200 ph/54%
SMU.970R (folA)	CATATGAAACAAGAATTTGTAGA	200-300 pb/34-0
SMU.1263F	CACAATCTGTCTTGATG	200 200 pb/54%
SMU.1263R	TGGCCTATTACCAGTTA	200-300 pb/34-0
SMU.1592F (pepQ)	TATTTCCCTTAATGCCAC	200 200 pb/54%
SMU.1592R (pepQ)	CACTGACATAGCCTGTA	200-300 pb/34-C
SMU.1996F (ipk)	AACCAACATCAATTAGTTC	200 200 pb/54%
SMU.1996R (ipk)	GATACCATATCTCAACGG	200-300 pb/34-C
SMU.882F (msmK)	CAGCTGATTTATCTGGAG	200 200 pb/54%
SMU.882R (msmK)	GTTTGGTCATGGGTAAC	200-300 pb/34 C
SMU.1568F (malX)	AAACAAGTTAATGCCTATG	200 200 ph/54%
SMU.1568R (malX)	TCAAGATTGACAAAGCC	200-300 pb/34-C
SMU.2038F (pttB)	CTATTGATACGCAATTAGTAG	200-300 pb/54ºC
SMU.2038R (pttB)	GATAAGCTGAGATAGTGG	
SMU.1596F (ptcC)	TCATCTGTGACAACTCTTA	
		200-300 pb/54°C
SMU.1596R (ptcC)	TTATTACCCAATTGCGT	

SMU.1924F (covR)	ACGAAATATGGCACGAACAC	
SMU.1924R (covR)	CAGAGATGGACGGGTATGAA	200-300 pb/54ºC
SMU.764F	TTGCAATCTTTAGGTGTGGA	
SMU.764R	CATCTGCATTGACTTCCATC	200-300 pb/54≚C
SMU.121F	CGATCTGTCTGAATGCCTCT	
SMU.121R	GCACTTGTTCCAAAGCTGTT	200-300 pb/54ºC
SMU.880F	CTGATGGTGTTGGAGGCTAT	200-300 pb/54°C
SMU.880R	CCCACGTAAAGGAAGAGTGT	
SMU.2047F	ACTTCAGGACGTAATGGCAA	200-300 pb/54%C
SMU.2047R	CCTTAGGACCATAAACGGCT	200-300 μb/34-0
SMU.1095F	AAGTGGGAGCGACTGAAAA	200-300 pb/54%C
SMU.1095R	GCCCAAACCAATCAACATGA	200-300 μb/34-0
SMU.182F	GGCAATGTGTTCAAGAAGCA	200, 200 pb/54%C
SMU.182R	GCAGAACGTGATCAAAGTAAGT	200-300 pb/34-C
SMU.78F	GCGGACACAAGGCTAAATTT	200, 200, ph/54%C
SMU.78R	AAGACCAAAGTGTCCCTCAG	200-300 pb/54*C
SMU.114F	ACAGGAATGGTTATGGCTGT	200, 200 pb/54%C
SMU.114R	TTTCTAAAAGCAGTGGTCGC	200-300 pb/34 0
SMU.542F	TGCCCCAATAATACCAGCG	200-300 pb/54°C
SMU.542R	CTGTTATGCCGGGTGTTCT	200 000 pb/04 0
SMU.1737F	CTGTTATGCCGGGTGTTCT	200, 200 pb/54%C
SMU.1737R	TTTCCCATCTACTTCTGCCTT	200-300 pb/34-0
SMU.1662F	GATCCGTGATTTGCTGCG	200, 200 pb/54%C
SMU.1662R	GCTAGTATTTCTGCTTGGCTTT	200-300 pb/34-0
SMU.123F	TTATGGCAAGTTTTACCGCG	200, 200 pb/54%C
SMU.123R	ACCAGACAAATCCTGCAACT	200-300 pb/34-0
SMU.463F	TGAAAATGCATGAACCACTTGA	200, 200 pb/54%C
SMU.463R	AGTAAGAAACACCGCGACTA	200-300 pb/34-C
SMU.233F	CCTATGAAGTGGGTGAAGCT	200-300 ph/54%C
SMU.233R	TACGACGTACAAGATGGCC	200-300 pb/34-C
SMU.1271F	GCTTGTTAAGGCACCAGATG	200 200
SMU.1271R	GGCAATTTCCACACTTCCTT	200-300 pb/34-C
Nome	Sequência (5' – 3')	pb/Tm

SMU.665F	GTCAAATCAAGAACTGGCAGG	200-300 pb/54ºC	
SMU.665R	ATCGCCGACATAGCCATAG		
SMU.2164F	ATGGGCTTTGCAATTCCTTC	200-300 pb/54%C	
SMU.2164R	AGATCGCTGATAGACGCTAC	200-300 pb/34-0	
SMU.2067F	TGATTGAGAAGACCCACAGT	200-300 pb/54%C	
SMU.2067R	CTTGGAATGAGAGCAGGAGG	200 000 pb/04 0	
SMU.356F	TGTGCGTCGAGATTTGAAGA	200-300 pb/54ºC	
SMU.356R	CACTCCAACCAACTGACTGT	200 000 pb/04 0	
SMU.1032F	TGGGATTGATGTTATCGGCA	200-300 pb/54ºC	
SMU.1032R	AAAATGAAGCTCGCAGTGAC	·····	
SMU.351F	CCCCTGATTTGGCACTAGAA	200-300 pb/54ºC	
SMU.351R	/ATGAGTGCAGGAACGAAACT		
EMSA			
SMU.926F	CGCTAATGACTGATTAAACCACAAA	228 pb/58ºC	
SMU.926R	GTGACATAATTCATCCTTCTTACATGC	·	
01/11/0005	000000000000000000000000000000000000000		
SMU.1263F	GUGAAATTCTCCTGACAAGC	255 pb/58ºC	
SMU.1263R	AICICACCICGATTCCATGC		
SMU.1043cF	ACGGTGATATCGCCTTGGT		
SMU.1043cR	CGCTATCAAGGTCTTCTGTCAA	231 pb/58ºC	
SMU.882F	AAGAAGGCCGCAATATCAAC	014-1-(5000	
SMU.882R	GCTTTTGCGATATGACTGC	214 pb/58≌C	
SMU.54F	TCGTCAACGCTTTTGTGGA	226 ph /5000	
SMU.54R	AGGCCGATTGTTTTCATAGC	220 hb/30+C	
SMU.1924F	AGATGTCCTCTACCCATTGAAAAATGG	356 ph/58%	
SMU.1924R	AACCTCATATCCTTCATGTTGTAATTCTAAAG	000 hb/00-0	
SMU.881F	CAATGGAGCTGTGAAGTGAG	246 pb/58ºC	
SMU.881R	CATTTTTACCCAAACTGTCTG		
SMU.1091F	GCTTCCGAACATTGATCTTATT	324 pb/58ºC	
SMU.1091R	GTCGTTAAAATAGCTCCACAAAG		
SMU.1434cF	ACATIGGICIIGGCAICAGI	247 pb/58ºC	
SMU.1434cR	CTGGCAAAGGGCTAGTATCA		