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  Resumo 

RESUMO 

Materiais restauradores fluoretados têm demonstrado capacidade de inibir a 

progressão da cárie secundária em dentina radicular in vitro. Entretanto, este potencial 

cariostático ainda necessita ser avaliado em determinados materiais restauradores e 

testado quanto à sua extensão a partir da margem da restauração e à sua efetividade in 

vivo. Este trabalho, apresentado na forma de 4 artigos, teve por objetivos (1) avaliar o 

efeito cariostático in vitro de sistemas adesivos contendo fluoretos (SAF) em dentina 

radicular, (2) determinar a extensão do efeito cariostático in vitro de restaurações 

realizadas com cimento de ionômero de vidro (CIV), ionômero de vidro modificado por 

resina (IVMR), resina composta modificada por poliácidos (RCMP) e resina composta 

fluoretada (RCF) em dentina radicular, (3) desenvolver um modelo in situ para o estudo da 

cárie radicular e (4) testar se o CIV é importante na inibição do desenvolvimento de cárie 

secundária radicular in situ quando um dentifrício fluoretado é constantemente utilizado. 

Os SAFs não demonstraram efeito cariostático. O CIV e o IVMR demonstraram efeito 

cariostático em dentina radicular até 0,3 e 0,15 mm da margem das restaurações, 

respectivamente, contrastando com a ausência de efeitos da RCMP e a RCF. O modelo in 

situ proposto demonstrou ser adequado para o estudo da progressão e inibição da cárie 

radicular. Nenhum efeito cariostático adicional pôde ser atribuído ao CIV ao se utilizar 

dentifrício fluoretado no modelo de cárie radicular in situ. Conclui-se que o efeito 

cariostático, assim como sua extensão em dentina radicular, é dependente do material 

restaurador e apresenta relevância questionável em condições in situ, ao se utilizar 

dentifrício fluoretado freqüentemente.   
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  Abstract 

ABSTRACT 

In vitro studies have shown that fluoride containing restorative materials can 

inhibit root dentin secondary caries. However, questions still arise on the potential of some 

restorative materials, on the extension of the cariostatic effect from the restoration margins 

and on the in vivo ability of such materials to prevent secondary root caries. This thesis, 

comprised by 4 manuscripts, was designed (1) to test the cariostatic effect of fluoride 

containing adhesive systems (FAS) in vitro, (2) to determine the extension of the 

cariostatic effect of a glass-ionomer cement (GIC), a resin-modified glass-ionomer (RMGI), 

a polyacid-modified composite resin (PMCR) and a fluoridated composite resin (FCR) on 

root dentin in vitro, (3) to develop an in situ model for the study of root caries and (4) to 

assess whether the GIC is important or not to prevent secondary root caries in situ when 

fluoride dentifrice is frequently used. The FASs tested showed no evident cariostatic effect. 

The GIC and the RMGI showed cariostatic effect up to 0.3 and 0.15 mm from the margin 

of the restoration, respectively, contrasting to the lack of effect of PMCR and FCR. The in 

situ model tested was proven to be adequate to the study of either root caries progression 

or root caries inhibition. No additional cariostatic effect could be attributed to the GIC when 

fluoride dentifrice was used in situ. It could be concluded that the cariostatic potential as 

well as the extension of this effect on root dentin is dependent of the fluoride containing 

restorative material and may not be relevant in in situ conditions when fluoride dentifrice is 

frequently used. 
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  Introdução Geral 

1. INTRODUÇÃO GERAL 

Cárie radicular secundária define-se como cárie primária adjacente a 

restaurações localizadas em superfície radicular (Thylstrup, 1998; Mjör & Toffenetti, 2000; 

Kidd, 2001). O seu desenvolvimento ocorre devido à metabolização de açúcares 

fermentáveis pela microbiota do biofilme dental, produzindo ácidos orgânicos capazes de 

desmineralizar a dentina (Featherstone, 1994; Wefel, 1994; Fejerskov & Nyvad, 1996). 

Tem-se, assim, um desequilíbrio na dinâmica entre perda e ganho mineral da dentina em 

relação ao microambiente bucal, com aumento da porosidade dentinária e conseqüente 

exposição da matriz orgânica (Wefel, 1994).  Na persistência do desequilíbrio, pode 

ocorrer a degradação da matriz orgânica por enzimas bacterianas seguida por novos 

episódios de desmineralização (Featherstone, 1994), favorecendo a progressão da lesão 

de cárie secundária. Entretanto, em fases iniciais, o equilíbrio mineral pode ser re-

estabelecido através do adequado controle de placa dental e dieta e também pelo uso de 

fluoretos (Nyvad & Fejerskov, 1986).  

Embora a utilização de fluoretos possa ocorrer através de meios coletivos, 

como água de abastecimento ou sal de cozinha, individuais, como dentifrício ou 

suplementos, e profissionais, como solução, gel ou verniz, o material restaurador deve ser 

considerado um meio de destaque para a prevenção da cárie secundária, pois se 

encontra adjacente ao sítio de desenvolvimento da lesão (Erickson, 1994; Burgess, 1995). 

Assim, o potencial cariostático de materiais restauradores que liberam fluoretos tem sido 

comprovado, principalmente em estudos in vitro, destacando-se o cimento de ionômero 

de vidro convencional (CIV) e o ionômero de vidro modificado por resina (IVMR), em 

detrimento da resina composta modificada por poliácidos (RCMP) e da resina composta 
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Introdução Geral   

fluoretada (RCF) (Dionysopoulos et al., 1998; Millar et al., 1998; Torii et al., 2001; Hara et 

al., 2002). 

Outros materiais, tais como os sistemas adesivos fluoretados (SAF), também 

têm demonstrado capacidade de liberar íons flúor (McCabe et al., 2002) e diferenciam-se 

dos demais materiais restauradores devido a sua capacidade de penetrar na dentina, 

podendo constituir uma fonte de fluoretos mais efetiva (Ferracane et al., 1998; Han et al., 

2001; 2002). Entretanto, não se sabe se a concentração de fluoretos liberada seria capaz 

de exercer algum benefício para a dentina, quer seja na inibição da desmineralização ou 

na ativação da remineralização da dentina. Tais questionamentos fundamentaram a 

condução de um estudo avaliando a concentração de fluoretos e o potencial cariostático 

de sistemas adesivos em dentina radicular [Capítulo 1].  

A maior prevalência de cárie secundária em superfícies proximais (Schüpbach 

et al., 1992) e próximas às margens gengivais (Lynch & Beighton, 1994), assim como a 

relativamente maior susceptibilidade à desmineralização da dentina em relação ao 

esmalte (Wefel, 1994), contribui para que materiais restauradores com propriedades 

cariostáticas sejam de especial interesse para cavidades localizadas em superfícies 

radiculares. Embora estudos laboratoriais demonstrem que fluoretos liberados por esses 

materiais interfiram no desenvolvimento da cárie nas adjacências da restauração (Tam et 

al., 1997; Creanor et al., 1998; Dionysopoulos et al., 1998; Millar et al., 1998; Pereira et 

al., 1998a; Hara et al., 2000; Torii et al., 2001; Hara et al., 2002), não se sabe ao certo 

qual a extensão desse efeito. Para avaliar essa capacidade dos materiais restauradores 

fluoretados, um estudo in vitro foi delineado e conduzido [Capítulo 2].     

Embora o efeito cariostático de materiais restauradores fluoretados tenha sido 

demonstrado por estudos in vitro, avaliações in vivo têm falhado em corroborar tais 
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  Introdução Geral 

resultados (Randall & Wilson, 1999; Papagiannoulis et al., 2002). Esta contradição pode 

estar na grande diversidade de fatores capazes de influenciar a variável de resposta em 

questão - potencial cariostático - sob condições clínicas. Assim, modelos experimentais 

de cárie in situ, que atuam como uma “ponte” entre situações clínicas não controladas e 

situações laboratoriais altamente controladas (Zero, 1995), podem ser uma alternativa 

para a análise do efeito cariostático de materiais restauradores. Esses modelos são 

capazes de simular condições intrabucais de desafio cariogênico, permitindo a formação 

de lesões de cárie secundária em esmalte semelhantes às lesões naturais (Benelli et al., 

1993). Um estudo foi realizado com o objetivo de se propor e testar um modelo de cárie 

radicular in situ [Capítulo 3]. 

A utilização do modelo desenvolvido permitiu avaliar, de maneira próxima à 

realidade, se o uso contínuo de outras fontes de íons flúor comuns ao ambiente bucal e 

de grande abrangência, tais como o dentifrício, pode mascarar o efeito cariostático 

proporcionado pelo material restaurador (Donly & Kerber, 1999). Essas fontes de fluoretos 

podem atuar diretamente, interferindo nos processos físico-químicos do desenvolvimento 

da cárie secundária, ou indiretamente, disponibilizando íons flúor a reservatórios em 

potencial, tais como  tecidos moles, saliva e superfície dental - nas formas de fluoreto de 

cálcio - e biofilme bacteriano (Duckworth & Morgan, 1991; Shellis & Duckworth, 1994). A 

liberação de íons flúor desses reservatórios poderia ocorrer como conseqüência de 

ataques cariogênicos, favorecendo a prevenção e paralisação da lesão de cárie. A 

hipótese de que materiais restauradores fluoretados podem não ser importantes na 

prevenção ou paralisação da cárie radicular secundária in situ, devido à presença de 

outras fontes de fluoretos tais como o dentifrício fluoretado, foi sugerida e testada 

[Capítulo 4].   
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  2. PROPOSIÇÃO 

2. PROPOSIÇÃO 

 
Esta tese, apresentada na forma de 4 capítulos - conforme deliberação CCPG 

001/98* (Anexo 1) - teve como objetivo geral avaliar o efeito de materiais restauradores na 

prevenção da cárie secundária em dentina radicular. Os seguintes aspectos foram 

focados: 

1. efeito cariostático de sistemas adesivos fluoretados in vitro, 

2. extensão do efeito cariostático de materiais restauradores fluoretados in 

vitro, 

3. proposição e teste de um modelo in situ para formação de cárie radicular, 

4. efeito cariostático do cimento de ionômero de vidro in situ, sob a influência 

de um dentifrício fluoretado.  

 

 

                                                 
* Deliberação que dispõe a respeito do formato das teses de mestrado e doutorado aprovadas pela UNICAMP. 
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3.1. CAPÍTULO 1   
 

ABSTRACT 

This study tested the fluoride releasing rate and the root caries inhibitory effect 

of dental adhesives. In phase 1, the fluoride released from samples (n=5) of adhesives: A-

Optibond Solo, B-One-up Bond F, C-Prime & Bond NT, D-Tenure Quick and also of the 

controls: [+]-Glass-ionomer and [-]-Non-fluoride releasing adhesive was daily quantified 

during a pH-cycling, simulating caries phenomena. In phase 2, restorations were made in 

bovine root dentine slabs (n=16) with the same adhesives associated with a non-

fluoridated composite. Control [+] restorations were entirely made with glass-ionomer. 

Specimens were thermocycled and submitted to the pH-cycling regimen. Demineralisation 

areas and the presence of wall-lesion (WL) and inhibition zone (IZ) were determined by 

polarizing light microscopy in dentine adjacent to the restoration. Control [+] released the 

highest amount of fluoride followed by A, B and C, all of them differing from each other. No 

detectable amount of fluoride was released by D and [-]. Lower demineralisation areas 

were found to [+], whereas groups A-D and [-] did not differ from each other. No WL was 

detected and higher percentages of IZ were recorded to [+] and A. Although some dental 

adhesives were able to release fluoride, they could not inhibit secondary caries 

development. 

 

KEYWORDS 

Root caries, dental adhesives, cariostatic effect, fluoride releasing 
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  3.1. CAPÍTULO 1 

INTRODUCTION 

The development of adhesive restorative materials has allowed the 

introduction of conservative concepts and techniques to restore root surfaces. 

Consequently, extensive cavity preparations designed to provide mechanical resistance 

and retention to the restoration has been gradually changed by minimally invasive 

procedures, intending to keep the integrity of the teeth. Contrasting to this growing 

conservative approach, a well-known restoration-related problem still remains, as 

frequently showed in clinical citations of secondary caries (1).   

To prevent the occurrence of this pathology, it is essential to consider its 

causative and protective factors (1,2). Fluoride has shown a cariostatic effect on root 

dentine (3), probably by inhibiting the root dentine demineralisation and by enhancing its 

remineralisation as well (4). Since secondary caries may be defined as primary caries 

around the restorations (1,5), it has been hypothesized that fluoridated restorative 

materials could be a source of fluoride to effectively prevent the lesion development (6). 

Among fluoride-containing restorative materials, dental adhesives seem to be especially 

attractive, since they not only closely contact but also may partially diffuse into dentine 

margins of restoration (7,8,9). As a result, fluoride might be present in the specific site of 

secondary caries, potentially reducing its development.  

The capacity of dental adhesives to release fluoride has been showed 

(7,8,9,10), however it is not known either the fluoride release in conditions mimicking 

caries development (11) or the effect of this releasing on caries prevention. This study was 

carried out to evaluate the fluoride releasing rate and also the secondary root caries 

inhibition of fluoride containing dental adhesives. 
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3.1. CAPÍTULO 1   
 

MATERIALS AND METHODS 

Experimental design 

This in vitro study was conducted in 2 phases. In phase 1, the capacity of 

dental adhesives to release fluoride was daily tested, during a cariogenic challenge. In 

phase 2, the cariostatic effect of the same adhesives on root dentine was tested. The 

experimental designs of both phases are described in Table 1, as well as the materials in 

Table 2. 

PHASE 1 - FLUORIDE RELEASE   

Specimens preparation 

Five disk-shaped specimens (10.0 mm in diameter and 0.5 mm in thickness) 

were randomly prepared from each material, according to an experimental block design. 

The adhesives were dropped into individual teflon matrices, covered with a polyester strip 

and a glass plate, and light cured for 1 min. Glass-ionomer cement (control [+]) was mixed 

according to manufacturer’s instruction, placed on the matrix, pressed for 1 min with a 

glass-plate under a load of 500 g and let to cure for 7 min. The specimens were removed 

from the matrices and excesses of the material were carefully removed with a surgical 

blade. A small hole (1 mm in diameter) was done on each specimen to allow its 

suspension with orthodontic steel wire. Specimens were individually stored in tubes with 

100% of relative humidity, at 37ºC ± 0.1. 

Fluoride releasing analysis 

The specimens were submitted to an 8-day pH-cycling regimen simulating 

caries development (11). Each day or cycle consisted in the individual immersion of the 

specimen in demineralising (1.4 mM Ca, 0.9 mM P, 0.05 M acetate buffer, pH 5.0, 2 

mL/specimen) and remineralising solutions (1.5 mM Ca, 0.9 mM P, 0.1 M Tris buffer, pH 
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  3.1. CAPÍTULO 1 

7.0, 2 mL/specimen) for, 8 and 16 h, respectively. The solutions were daily renewed and 1 

mL of each was collected for fluoride releasing analysis. TISAB III (total ionic strength 

adjustment buffer, Orion, no. 940911, Boston, MA, USA) was added to the collected 

samples in the proportion of 1 : 10. Quantification of fluoride in the solution was done with 

an ion selective electrode (96-09) connected to an ion analyser (Orion EA-940), which was 

previously calibrated with a series of 8 standard solutions (from 0.03 to 10.0 µg F/mL), in 

triplicates. The daily fluoride released by each specimen was computed by the sum of the 

amounts released in de and remineralisation solutions. The cumulative release was 

computed by the sum of the fluoride released during the 8 testing days. 

PHASE 2 - SECONDARY CARIES INHIBITION EVALUATION 

Specimens preparation     

Root dentine slabs (5 x 5 mm and 3 mm thick) were obtained from bovine 

incisor teeth, previously stored in thymol 0.1 %. Their external surfaces were flattened in a 

polishing machine, with # 600, 1200 grit Al2O3 abrasive papers. Box-shaped cavities (3.3 x 

1.5 mm, 1 mm deep) were prepared on the centre of the slab, with diamond burs (# 2096, 

KG Sorensen, Barueri, SP, Brazil) mounted in a cavity preparation machine (Marcelo 

Nucci ME, São Carlos, SP, Brazil), at high-speed rotation and under water/air spray 

refrigeration.  

Cavities of 96 slabs were randomly restored with the six dental materials 

tested (n = 16), according to an experimental block design. Acid etching was done - when 

requested - and dental adhesives were applied and light cured following the 

manufacturers’ instructions. A non-fluoridated composite-resin (Filtek Z250, 3M Dental 

Products, St Paul, MN, USA) was inserted on the cavity in one increment, pressed with a 

polyester strip and a glass plate for 1 min, under a load of 500 g. The restorative material 

was light cured for 30 s. On the control [+] group, the glass-ionomer cement was mixed 
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following the manufacturer’s instruction, inserted in the cavity with a syringe (Centrix, 

Centrix Inc., Shelton, CT, USA), covered with a polyester trip and a glass plate, pressed 

with a load of 500g and let cure for 7 min. The surface of the glass-ionomer restoration 

was protected with a nail varnish. Specimens were individually stored at 100 % of relative 

humidity, at 37º C ± 0.1. After 24 h, the excesses of restorative materials were removed 

with # 1200 grit Al2O3 abrasive papers under water refrigeration and the surface was 

subsequently polished with abrasive papers and 1 µm diamond suspension on cloths. 

Thermalcycling and chemical caries regimen 

Specimens, separated according to each group, were submitted to thermal 

stress in a thermalcycling machine (MSCT-3, Marcelo Nucci ME, São Carlos, SP, Brazil), 

by the immersion in baths of 5º C ± 1 and 55º C ± 1, for 1 min each. The dwell time 

between baths was 15s. A total of 1,000 cycles were performed.  

Artificial caries challenge was provided to the specimens by the 8-days 

chemical regimen previously described in phase 1. The contents and volumes of the 

demineralising and remineralising solutions as well as the design of the artificial root caries 

cycling regimen were previously defined in preliminary tests. Each day or cycle consisted 

in the individual immersion of the specimen in demineralising (3.12 mL/mm2) and 

remineralising solutions (1.56 mL/mm2) for, 8 and 16 h, respectively. Between the 

immersions and at the end of the cycling, the specimens were rinsed with distilled and 

deionised water and dried. 

Secondary caries inhibition evaluation  

Specimens were cut vertically through the centre of the restoration, with a 

diamond saw under constant water irrigation, in a microtome (Isocut, Buheler Ltd, Lake 

Bluff, IL, USA). Sections of the specimens approximately 150 µm thick were obtained and 

 16



  3.1. CAPÍTULO 1 

reduced by hand polishing to 100 µm ± 10. The sections were embedded in deionised 

water and mounted in glass-slides to be analysed in a polarized light microscope (DM 

LSP, Leica, Wetzlar GmbH, Germany), with a 20 x objective lens. The long axis of dentine 

tubules was orientated at 45º in relation to the crossed polarizers.        

Images were taken to the computer, via digital camera, and analysed with the 

Image-Pro Plus software. The demineralised area around the restoration was determined 

in three zones of 40,000 µm2 (100 µm width x 400 µm depth) apart from the restoration: 

Z1. 0-100 µm, Z2. 101-200 µm and Z3. 201-300 µm. The percentages of specimens with 

wall-lesion (WL) and inhibition zone (IZ) were also calculated. One blinded examiner 

performed all measurements.     

Statistical analysis 

The assumptions of equality of variances and normal distribution of errors were 

respectively checked with the Hartley and Shapiro-Wilks tests for the response variables 

tested. If necessary, data were submitted to transformation (12). Statistical approaches are 

described in Table 1. The significance level was set at 5 %. Analyses were performed with 

the SAS System 6.11 software (SAS Institute Inc., Cary, NC, USA). 

 

RESULTS 

PHASE 1 

Fluoride releasing data were transformed according to a root square function. 

The interaction between Material and Time was significant (p = 0.0001). Higher amounts of 

fluoride were released by control [+], A, B and C groups in the first day, decreasing 

throughout the days according to logarithmic equations (p < 0.0001 / r2 > 0.9) (Graph 1). 

Groups control [-] and D did not release detectable amounts of fluoride during the period 
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tested (Graph 1). With regards to the cumulative amount of fluoride released, they were 

ordered as follows (from the higher to the lower level): control [+] > A > B > C > D = control 

[-] (Table 3).     

PHASE 2 

The interaction between Material and Distance was significant (p = 0.0001), for 

dentine demineralisation area. Within the factor Distance, the control [+] showed the 

lowest demineralised areas in Z1 and Z2, whereas no significant differences were found 

among groups A-D and control [-]. In Z3, no evident effect of the materials could be found, 

although A showed significant higher demineralisation area than other groups 

(comparisons in columns, Table 4). Within the factor Material, Z1 showed lower 

demineralisation area than in Z2 and Z3, which did not differ from each other, for all 

materials (comparisons in rows, Table 4).  No WL was found. IZ was found in all groups, 

but in higher percentages in control [+] and A (Table 3). 

 

DISCUSSION 

All of the dental adhesives tested, excepting Tenure Quick and the control [-], 

released detectable amounts of fluoride during the pH cycling. However, the first null 

hypothesis (H1, table 1) was only accepted for Optibond Solo in the first 3 days of pH-

cycling, when it was able to release fluoride in amounts similar to or higher than the glass-

ionomer control. The fluoride-releasing rate of dental materials may be influenced by the 

solubility and type of the active component, as well as by the phase - organic or inorganic - 

in which it is added (6). Optibond Solo and One-up Bond F have fluorosilicate as the active 

component, which was able to provide a fluoride releasing behaviour quite similar to that of 

the glass-ionomer cement. Prime & Bond NT, which contains cetylamine hydrofluoride, 
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was also effective in release fluoride. Comparisons based on the compositions of the 

tested dental adhesives were limited by the huge differences in their overall formulations 

and also by the lack of data for some adhesives. The implications of the fluoride released 

on the physical properties of the dental adhesives are not known and should be further 

tested. Depending on the mechanism involved, not only the fluoride-releasing rate but also 

the physical properties of the material may be affected (6).    

The results of the 1st phase suggested some cariostatic potential for the 

fluoride releasing adhesives. Nevertheless, this potential was not effective on the 2nd 

phase of this study and the 2nd null hypothesis formulated (H2, Table 1) was rejected for all 

dental adhesives in zones 1 and 2. In fact, although the dentine/restoration interface area 

was the same among groups, the volume of the material was not, since cavities of the 

control [+] group were entirely restored with glass-ionomer cement. This evidently implied 

that more fluoride was available to the latter group, making the comparison experimentally 

unfavourable to the dental adhesives. However, that was done to resemble the clinical 

situation and to provide a comparative parameter.  

The artificial caries regimen used might also have contributed to reduce the 

cariostatic effect of the dental adhesives, by diluting the fluoride amounts released by them 

in the demineralising and remineralising solutions. In clinical conditions, it can be assumed 

that this diluting effect would be minimized by the presence of the dental plaque. 

Additionally, this caries regimen may be considered aggressive, since extensive 

demineralisation was observed in the control [-] group. Possibly, in less severe conditions, 

some effect could be evidenced. However, results comparable to that obtained to the 

glass-ionomer should not be expected, since in a previous study (13) with a less 

aggressive artificial caries model no evident cariostatic effect was found at 50 µm from the 

restoration when using the Prime & Bond NT dental adhesive, even associated to a 
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fluoride-containing composite. In contrast, an inhibition area was found up to 150 µm for 

the glass-ionomer cement (13). Although the fluoride released from dental adhesives 

seemed to be not enough to prevent secondary caries in root dentine, it could not be 

concluded that it is worthless. Fluoride releasing dental adhesives might have some effect 

in the improvement of the acid-resistance of the dentine cavity margins (8,9,14).  

Even though it is not well defined whether the development of a cavity wall 

lesion may or may not be a clinical problem (15), no wall lesion (WL) was detected in any 

group. The constant development of the dental adhesives has allowed the achievement of 

reliable sealing capacity to dentine, even when submitted to artificial cariogenic challenges 

and also to thermal stresses, as done in this study. This result corroborated to that 

reported by ITOTA et al. (14), with regards to the importance of the use of reliable dental 

adhesives to avoid the development of WL. In addition to that, demineralisation inhibition 

zones (IZ) were found in all groups (Fig 1), being the percentage of IZ of Optibond Solo 

even similar to that of the control glass-ionomer group. These data did not imply 

necessarily in cariostatic effect, as showed by the higher demineralisation areas found to 

the dental adhesives in Z1 and Z2, although might suggest the importance in using a 

fluoride-containing dental adhesive to maintain the integrity of the cavity margins.  

It was not clear if the IZ was only related to the fluoride since Tenure Quick and 

control [-], which did not release detectable amounts of fluoride, also presented this zone - 

but in lower percentages. Perhaps, the use of more sensitivity techniques to detect fluoride 

(16) could explain this achievement, since Tenure Quick was expected to release F 

(according to the manufacturer), and Single Bond was previously reported to release small 

amounts of F (17), even though it has not been stated by the manufacturer. Although a 

trend between higher amounts of fluoride released and higher percentages of IZ could be 

suggested (Table 3), other factors should also be considered. The IZs found in this study 
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could also be related to the formation of an effective resin-dentine interdifusion zone - or 

hybrid layer - that is supposed to be more acid-resistant than dentine (18). In fact, the 

tested fluoride releasing dental adhesives were able to keep the integrity of the cavity wall, 

although they could not prevent secondary caries.  

It could be concluded that although some dental adhesives could release 

fluoride they were not able to inhibit the development of secondary caries on root dentine 

surfaces in the conditions of this study.  

 

ACKNOWLEDGEMENTS 

Based on a thesis submitted by the first author to the Faculty of Dentistry of 

Piracicaba, University of Campinas (UNICAMP), in partial fulfilment of the requirements for 

the Doctoral degree in Clinical Dentistry (Restorative Dentistry) degree. The authors would 

like to express their gratitude to Dr. Lourenço Correr Sobrinho, Department of Dental 

Materials, UNICAMP, for the facilities; and to Mrs Mariza de Jesus C. Soares and Mr José 

Alfredo da Silva, Laboratory of Biochemistry, UNICAMP, for the technical assistance. This 

investigation was supported by Research Grant # 00/14278-0 from the State of São Paulo 

Research Foundation / FAPESP, São Paulo, Brazil. 

 

 21



3.1. CAPÍTULO 1   
 

REFERENCES*

1. MJÖR IA, TOFFENETTI F. Secondary caries: a literature review. Quintessence Int 

2000; 31:165-169. 

2. KIDD EAM, TOFFENETTI F, MJÖR. Secondary caries. Int Dent J 1992; 42:127-

138. 

3. JENSEN ME, KOHOUT F. The effect of a fluoridated dentifrice on root and coronal 

caries in an older adult population. J Am Dent Assoc 1988; 117:829-832. 

4. MUKAI Y, TEN CATE JM. Reminerlization of advanced root dentin lesions in vitro. 

Caries Res 2002; 36:275-280. 

5. THYLSTRUP A. How should we manage initial and secondary caries? 

Quintessence Int 1998; 29:594-598. 

6. RAWLS HR. Preventive dental materials: sustained delivery of fluoride and other 

therapeutic agents. Adv Dent Res 1991; 5:50-55. 

7. FERRACANE JL, MITCHEM JC, ADEY JD. Fluoride penetration into the hybrid 

layer from a dentin adhesive. Am J Dent 1998; 11:23-28. 

8. HAN L, ABU-BAKR N, OKAMOTO A, IWAKU M. Study of the fluoridated adhesive 

resin cement - fluoride release, fluoride uptake and acid resistance of tooth 

structures. Dent Mater J 2001; 20:114-122. 

9.  HAN L, CRUZ E, OKAMOTO A, IWAKU M. A comparative study of fluoride-

releasing adhesive resin materials. Dent Mater J 2002; 21:9-19. 

10. KAMEYAMA A, TSUMORI M, USHIKI T, MUTO Y, KOGA H, MATSUKUBO T, 

HIRAI Y. Fluoride release from newly developed dental adhesives. Bull Tokyo Dent 

Coll 2002; 43:193-197. 

                                                 
* De acordo com a norma European Journal of Oral Sciences. 

 22



  3.1. CAPÍTULO 1 

11. CARVALHO AS, CURY JA. Fluoride release from some dental materials in 

different solutions. Oper Dent 1999; 24:14-19. 

12. MONTGOMERY DC. Design and analysis of experiments, 3rd ed. New York: 

Wiley, 1991. 

13. HARA AT, TURSSI CP, SERRA MC, NOGUEIRA MC. Extent of the cariostatic 

effect on root dentin provided by fluoride containing restorative materials. Oper 

Dent 2002; 27:480-487. 

14. ITOTA T, NAKABO S, IWAI Y, KONISHI N, NAGAMINE M, TORII Y. Inhibition of 

artificial secondary caries by fluoride-releasing adhesives on root dentin. J Oral 

Rehabil 2002; 29:523-527. 

15. KIDD EAM. Diagnosis of secondary caries. J Dent Educ 2001; 65:997-1000. 

16. McCABE JF, CARRICK TE, SIDHU SK. Determining low levels of fluoride released 

form resin based dental materials. Eur J Oral Sci 2002; 110:380-384. 

17. FRANCCI C, DEATON TG, ARNOLD RR, SWIFT EJ JR, PERDIGÃO J, BAWDEN 

JW. Fluoride release from restorative materials and its effects on dentin 

demineralisation. J Dent Res 1999; 78:1647-1654. 

18. AZZOPARDI A, BARTLETT DW, WATSON TF, SHERRIF M. The measurement 

and prevention of erosion and abrasion. J Dent 2001; 29:395-400. 

 

 23



3.1. CAPÍTULO 1   
 

TABLES 

Table 1. Experimental designs and statistical approaches. 

 Phase 1 Phase 2 

Factors Material: 6 levels (plot) and 
Time: 8 levels (subplot) 

Material: 6 levels (plot) and 
Distance: 3 levels (subplot) 

Design 
Factorial 6 x 8 / randomised 
complete block and split-plot 
design 

Factorial 6 x 3 / randomised 
complete block and split-plot 
design 

Block Period to make the specimens Period to restore the slabs 

Restrictions in the 
randomisation 

Provided by the factor Time Provided by the factor Distance 

Null hyphotesis H1: adhesives release fluoride 
as a glass-ionomer 

H2: adhesives inhibit secondary 
caries as a glass-ionomer 

N 5 16 

Response 
variables 

Fluoride release: µg F/cm2 (daily 
and cumulative) 

Demineralised area: µm2; % of 
WL* and IZ* 

Statistical analysis 
Anova split-plot/Tukey test (F 
daily release); Anova/Tukey test 
(F cumulative release) 

Anova split-plot/Tukey test 
(demineralised area); t-test for 
%s (WL and IZ) 

 
*WL: wall lesion; IZ: inhibition zone. 
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Table 2. Types, batch numbers and manufacturers of the dental materials used. 

Brand Name Groups Batch # Composition*  Manufacturer 

Powder: 013 
Liquid: 0023 

Powder: Strontium fluorosilicate glass, Al, 
La; Liquid: Copolimer acid. 

Espe GmbH 
Seefeld, Germany 

Ketac-fil Plus 
GIC 

control [+] 
Nail varnish: -- -- Colorama - CEIL,      

São Paulo, SP, Brazil 

Optibond Solo Plus F-DA 
Bottle: 107293 
H3PO4 37.5%: 05383 

Ethyl alcohol, Alkyl dimethacrylate resins, 
Barium aluminoborosilicate glass, fumed 

silica, sodium hexafluorosilicate 

Kerr Corp. 
Orange, CA, USA 

One Up bond F F-DA 
Box: 00231E 
A: 034 / B: 531 

A: Methacrylates; B: Methacrylates, Water, 
Fluoroaluminosilicate, Glass filler 

Tokuyama Corp. 
Tokyo, Japan 

Prime & Bond NT F-DA 
Bottle: 0105001127 
H3PO4 34%: 68274 

Di and Trimethacrylate resins, PENTA, 
Nanofillers - amorphous silicon dioxide, 
Photoinitiators, Stabilizers, Cetylamine 

hydrofluoride, Acetone 

Dentsply Caulk 
Milford, DE, USA 

Tenure Quick F-DA 
Bottle: C320010022 
H3PO4 37%: C331010006 

Dimethacrylate resin, Methacrylate resin, 
Acetone, PMDM 

Den-Mat Corp. 
St. Maria, CA, USA 

Single Bond N-DA 
control [-]  

Bottle: 9 DE 
H3PO4 35%: 1WR 

Water, Ethanol, HEMA, BIS-GMA, 
Dimethacrylates 

3M Dental Products 
St. Paul, MN, USA 

Filtek Z250 CR 
Seringe: 1LU 
Color: A2 

Zirconia, silica, TEGDMA, UDMA BIS-EMA 
3M Dental Products 
St. Paul, MN, USA 

 
GIC: glass-ionomer cement; N-DA: non-fluoridated dental adhesive; F-DA: fluoridated dental adhesive; CR: composite resin. 
 
* Based on information provided by the manufacturers (HEMA = hydroxiethyl methacrylate; BIS-GMA = bisphenol glycidyl methacrylate; TEGDMA = 
tetraethyleneglycol dimethacrylate; UDMA = urethane dimethacrylate; BIS-EMA = Bisphenol A polyetheylene glycol diether dimethacrylate; PENTA = 
dipentaerythritol penta acrylate monophosphate; PMDM = pyromellitic dimethacrylate). 
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Table 3. Cumulative fluoride released means (standard-deviation) and percentages of 

specimens with wall-lesions and inhibition-zones. 

Groups 
Cumulative F- release        

µg F/cm2 WL % IZ % 

Ketac-fil Plus 29.19 (2.07) a 0 93.7 a 

Optbond Solo Plus 25.81 (0.84) b 0 68.7 ab 

One Up bond F 5.42 (0.43) c 0 46.6 bc 

Prime & Bond NT 3.56 (0.34) d 0 56.2 bc 

Tenure   Quick -1.30 (0.07) e 0 31.2 bc 

Single Bond -1.05 (0.05) e 0 37.5 c 
 
*WL: wall lesion; IZ: inhibition zone. 
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Table 4. Mean (standard deviation) of the demineralisation areas (µm2), in the three zones 

(100 µm width and 400 µm high) apart from the restoration. 

Groups Z1   Z2    Z3   

a 8492.91 A b 19921.57 A b 21077.34 A  [+]. Ketac-fil Plus 
 (5251.04)    (5250.90)   (4490.68)   

a 16251.82 B b 23881.95 B b 24458.59 B A. Optbond Solo Plus 
 (4438.92)    (4014.07)   (3114.94)   

a 19288.54 B b 24010.32 B b 23836.63 AB B. One Up bond F 
 (3437.25)    (2539.20)   (2525.05)   

a 16489.39 B b 24505.5 B b 23978.81 AB C. Prime & Bond NT 
 (4601.29)    (3533.15)   (3417.16)   

a 20336.37 B b 24270.28 B b 23665.49 AB D. Tenure  Quick 
 (4902.93)    (2878.03)   (3133.59)   

a 18417.86 B b 23103.24 B b 22967.04 AB [-]. Single Bond 
 (2750.80)    (2100.32)   (1931.59)   

 
Statistical differences are expressed by different small letters in rows and capital letters in columns (α = 0.05). 
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FIGURES 

Figure 1. Polarized transmitted light micrographs of: [+]. glass-ionomer, A. Optibond Solo, B. One-up Bond F, C. Prime & Bond 
NT, D. Tenure Quick and [-]. Single Bond. Note extensive demineralisation areas in dentin around restoration (asterisks) 
in all groups, except in [+]. Inhibition Zone (arrows) can be seen in the cavity margin of all groups.     
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Figure 2. Fluoride behaviors. Different letters imply in statistical differences among groups, within each day. Logarithmic 
equations were fit to: Ketac-fil [+], Optibond, One-up and Prime&Bond NT (p<0.0001; r2 > 0.9), showing a higher fluoride 
release in the initial days, which decreased throughout the time. Tenure and Single Bond [-], did not release detectable 
amounts of fluoride. 
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extensive demineralisation areas in dentin around restoration (asterisks) in all 

groups, except in [+]. Inhibition Zone (arrows) can be seen in the cavity margin of all 
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Figure 2. Fluoride behaviors. Different letters imply in statistical differences among groups, 

within each day. Logarithmic equations were fit to: Ketac-fil [+], Optibond, One-up 

and Prime&Bond NT (p<0.0001; r2 > 0.9), showing a higher fluoride release in the 

initial days, which decreased throughout the time. Tenure and Single Bond [-], did not 

release detectable amounts of fluoride. 
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TITLE 

Extent of the cariostatic effect on root dentin provided by fluoride-containing restorative 

materials 

 

RUNNING TITLE 

Extent of the cariostatic effect on root dentin provided by restorations  

 

CLINICAL RELEVANCE  

The extent to which fluoride is effective around a glass-ionomer cement and a 

resin-modified glass-ionomer are estimated to be about 0.3 and 0.15 mm, respectively, in 

root dentin. This could be important for reducing secondary root caries development. 
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SUMMARY 

The aim of this study was to evaluate the extent of the cariostatic effect on root 

dentin provided by four fluoride-containing restorative systems: Ketac-fil/Espe [Ke], Fuji II 

LC Improved/GC Corp. [Fj], Dyract AP/Dentsply [Dy] and Surefil/Dentsply [Su], and one 

without fluoride: Z250/3M [control]. Ninety-five bovine root dentin fragments (5.0x6.0-mm) 

were obtained, embedded in polyester resin and planed. Cavities (1.5x3.5x1.0-mm) were 

made and restored by the five restorative systems (n=19), according to the manufacturers' 

instructions, in a randomized complete block design. After 24-hours, the dentin/restoration 

surface was polished. The restoration surface and an adjacent area of 3.0x3.0-mm were 

demarcated and submitted to a pH-cycling model. Dentin surface Knoop microhardness 

values were obtained (5.0-g, 5.0-s) for ten distances: 50, 100, 150, 300, 600, 900, 1200, 

1500, 1800, 2100-µm from the margin of the restoration. The dentin microhardness means 

for each of the restorative materials at each distance were considered by the ANOVA 

multi-factor split-plot method. The interaction between restorative system and distance 

was statistically significant (pvalue<0.05). The Tukey test and the regression analysis 

showed that the means of [Ke] and [Fj] were similar up to the distance 300-µm, the [Ke] 

means being higher than the [control] at distances 50, 100, 150 and 300-µm. The [Fj] 

means were higher than the [control], at distances 50, 100 and 150-µm. The 

microhardness means of [Dy] and [Su] were not statistically different from the [control], 

remaining steady throughout the studied distances. The study concluded that the extent of 

the cariostatic effect on root dentin was 300-µm for [Ke] and 150-µm for [Fj]. [Dy] and [Su] 

did not show any cariostatic effect. 
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INTRODUCTION 

In vitro studies have shown that fluoride-containing restorative materials can 

inhibit the development of root surface caries adjacent to restorations (Tam, Chan & Yim, 

1997; Pereira & others, 1998; Dionysopoulos & others, 1998; Torii & others, 2001). This 

effect is attributed to fluoride ions released from these materials, which may act mainly by 

inhibiting dentin demineralization and/or by enhancing its remineralization process 

(Featherstone, 1994). In this way, the amount of fluoride released from the restoration 

probably explains the differences in in vitro secondary caries inhibition of various fluoride-

containing restorative materials. Conventional glass-ionomer cements (GIC) generally 

release an equivalent or higher amount of fluoride than resin-modified glass-ionomers 

(RMGI), and both release more fluoride than polyacid-modified composite resins (PMCR) 

and fluoride containing-composite resins (FCR) (Suljak & Hatibovic-Kofman, 1996; 

Vermeersch, Leloup & Vreven, 2001).  

However, the extent of the cariostatic effect on root dentin surface has not 

been evaluated. Although the use of fluoride-containing restorative materials is frequently 

indicated for preventing caries development at dental restoration margins, it is common to 

observe other sites of high risk of root caries through easy dental plaque accumulation 

(Erickson & Glasspoole, 1995), like proximal root surfaces (Schüpbach,  Lutz & 

Guggenheim, 1992) and root surfaces close to gingival margins (Lynch & Beighton, 1994). 

Therefore, can fluoride-containing restorations extend their cariostatic effect as far as this? 

There is evidence that glass-ionomer cement not only prevents caries formation at the 

cavity wall but also inhibits lesion progression in enamel at a considerable distance from 

the restoration (Tantbirojn, Douglas & Versluis, 1997). Nevertheless, it is not known 

whether glass-ionomer cement restorations placed in root dentin can also show their 
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protective effect and, furthermore, whether other fluoride releasing restorative materials, 

like RMGI, PMCR and FCR, are capable of behaving in the same way. 

This in vitro study was designed to evaluate the extent of the cariostatic effect 

of five restorative systems: a glass-ionomer cement, a resin-modified glass-ionomer, a 

polyacid modified composite resin, a composite resin with fluoride and a composite resin 

without fluoride (control), on root dentin surfaces adjacent to restorations. Specifically, this 

study tested whether there were any differences in dentin microhardness adjacent to 

restorative systems, up to 2.1-mm from the restoration margin. 

 

METHODS AND MATERIALS 

Experimental design 

The factors under study were Restorative system at five levels (Table 1) and 

Distance from restoration at ten levels: 50, 100, 150, 300, 600, 900, 1200, 1500, 1800, 

2100-µm. The experimental units were 95 root dentin fragments (n=19), restored in 19 

blocks of 5 fragments each - one fragment for each restorative system. Within each block, 

the order in which the five materials were used to restore the fragments was randomly 

determined. A randomized complete block design was used to systematically control the 

variability arising from known nuisance sources (Montgomery, 1991). As it was not 

possible to completely randomize the order of the Distance level analysis, a randomization 

restriction was considered, characterizing a factorial 5x10 split-plot design (Montgomery, 

1991). The three basic principles of experimental design: replication, randomization and 

blocking were employed (Montgomery, 1991). The continuous quantitative response 

variable was the Knoop microhardness value. 
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Tooth fragment preparation 

Ninety-five bovine incisor teeth were collected and stored in a 10% neutral 

buffered formalin solution, until they were used. They were cleaned by means of a hand-

scaler and a non-fluoride polishing paste. Defective root surfaces were discarded. The 

crown and the apical region of the root were cut-off with a double-faced diamond disc (# 

7020 - KG Sorensen, São Paulo, SP, Brazil) in a low-speed handpiece, to obtain 95 root 

fragments with approximately 5.0-mm width, 6.0-mm length and 2.0-mm thickness (Fig 

1.1). These fragments were embedded in polyester resin (5061 N - Cray Valley Ltda, 

Taboão da Serra, SP, Brazil) and sanded with a water-cooled mechanical grinder 

(Maxigrind - Solotest, São Paulo, SP, Brazil), using a # 400, 600 and 1000-grit Al2O3 

abrasive paper (Carborundum Abrasivos, Recife, PE, Brazil), in order to expose at least 4-

mm width and 6-mm length area of dentin surface. 

A cavity having 1.5-mm width, 3.5-mm length and 1.0-mm depth was made 

using a diamond bur (# 2096 - KG Sorensen, São Paulo, SP, Brazil) in a high-speed 

handpiece (Dabi Atlante, Ribeirão Preto, SP, Brazil), under a constant water-spray coolant 

(Fig 1.2).  

Restoration and polishing procedures 

The prepared tooth fragments were restored according to the randomized 

complete block design. Nineteen blocks, each with 5 fragments, were made. The 

restorative techniques recommended by manufacturers were followed (Table 2) (Fig 1.3). 

The restored tooth fragments were individually immersed in artificial saliva at 37 ± 1ºC for 

24-hours. After that, the restored surface was polished with a water-cooled mechanical 

grinder (Maxigrind - Solotest, São Paulo, SP, Brazil) with # 1000 Al2O3 abrasive paper 
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(Carborundum Abrasivos, Recife, PE, Brazil). The restored tooth fragments were re-

immersed in artificial saliva at 37 ± 1ºC, for 24-hours. 

pH-cycling model   

The dentin surfaces were covered with an acid resistant varnish (Colorama - 

CEIL, São Paulo, SP, Brazil) leaving exposed only an area of 1.5-mm width x 3.0-mm 

length of the restorations and an adjacent area of 3.0-mm x 3.0-mm of dentin surface (Fig 

1.4).  

The specimens were individually submitted to demineralizing (De) (2.0-mM 

Ca, 2.0-mM P in a buffer solution of 74-mM of acetate at pH 4.3) and remineralizing (Re) 

(1.5-mM Ca and 0.9-mM P in a buffer solution of 20.0mM of Tris (hydroxymethil)-

aminomethane at pH 7.0) solutions, similar to that proposed by Featherstone & others 

(1986) and modified by Serra & Cury (1992) for enamel substrate. As dentin has a lower 

mineral content than enamel, it was necessary to previously determine the number of 

cycles and the specimen immersion-time in each solution, in order to make it possible to 

measure the Knoop surface microhardness after the artificial cariogenic challenge. This 

explains the choice of two 24-hour cycles: 30-min in demineralizing solution, 3-hours in a 

remineralizing solution, 30-min in De and 20-hours in Re (Fig 1.5).  

Microhardness assessment 

The surface microhardness values (KHN) were obtained in a microhardness 

tester (HMV 2000 - Shimadzu, Japan) with a Knoop diamond and a 5-g static-load, which 

was applied for 5-seconds. Ten indentations were sequentially made at 50, 100, 150, 300, 

600, 900, 1200, 1500, 1800, 2100-µm from the margin of the restoration (Fig 1.6).  
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Statistical analysis 

A multi-factor analysis of variance (ANOVA) (α = 0.05) for split-plot design was 

applied. A study of the interaction among the factors analyzed (Restorative system, 

Distance and Block) was made. The interaction of particular interest was Restorative 

system x Distance. Multiple Comparisons Tukey test (α= 0.05) was chosen to check 

differences in means within the factor Distance, and a regression analysis was chosen to 

show the behavior along the distances within the factor Restorative system. The analysis 

was performed with the SAS System 6.11 (SAS Institute Inc., Cary, NC, 27513-2414) and 

the Curve Expert 1.3 (www.ebicom.net/~dhyams/cvxpt.htm) software.  

 

RESULTS 

The data did not present homogeneity of variances. In order to stabilize them, 

they were submitted to a reciprocal transformation (y = 1/x).  

The means (standard deviation) of the transformed Knoop microhardness 

values of each of the fifty groups (10 distances x 5 restorative systems) are given in table 

3. The ANOVA for split plot showed a significant interaction between Restorative system 

and Distance (pvalue = 0.001). Within the factor Distance, the Tukey test showed that 

Ketac-fil and Fuji II LC had similar microhardness values up to the distance 300-µm. 

Ketac-fil had higher microhardness values when compared to the control group (Z250), up 

to the distance 300-µm; and Fuji II LC differed from the control up to the distance 150-µm. 

Beyond these distances, both did not differ from the control. Dyract and Surefil did not 

differ from the control at any of the distances. For Dyract at the distances 600, 1200 and 

2100-µm the microhardness was significantly lower than the control. Only at distance 

1800-µm, all restorative systems showed no significant difference from each other.  
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Within the factor Distance, regression analysis allowed the characterization of  

behavior for each restorative system along the distances from the restoration margins. 

Ketac-fil and Fuji II LC had similar behavior, which can be represented by logarithmic 

curves (y = 0.0192 + 0.0091*lnx, r = 0.97; and y = 0.0297 + 0.0076*lnx, r = 0.97, 

respectively), with high microhardness values close to the restoration (Graphs 1 and 2).  

Surefil behavior could also be represented by a logarithmic curve (y = 0.0713 + 0.0028lnx, 

r = 0.89), however with visually lower microhardness values than Ketac-fil and Fuji II LC, 

at close distances (Graph 3). For Dyract the best curve to explain its behavior was the 

linear (y = 0.0919 + 3.28e-006x, r = 0.85) (Graph 4). For Z250 a linear curve was also 

adjusted (y = 0.0870 + 5.61e-008x), but there was no casual relationship between 

microhardness and distance (r = 0.02) (Graph 5). 

 

DISCUSSION 

Fluoride-releasing restorative materials, like GIC, RMGI and PMCR have 

shown caries inhibition capacity in laboratory studies (Tam & others, 1997; Pereira & 

others, 1998; Dionysopoulos & others, 1998; Millar, Abiden & Nicholson, 1998). However, 

they have not confirmed this behavior in clinical trials (Levy & others, 1989; Kaurich & 

others, 1991). Thus, it has not yet been proven that fluoride-releasing restorative materials 

are capable of preventing secondary caries (Erickson & Glasspoole, 1995; Randall & 

Wilson, 1999). Several aspects should be considered in order to try to explain this fact 

and, within them, the extent of the cariostatic effect can be evidenced. Clinically, the 

cariostatic effect just close to the edge of the restoration may not be sufficient to prevent 

secondary caries development. Apart from the presence of the restoration, other factors 

can also contribute to increasing the risk of root caries adjacent to restorations, such as 
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the nearness to gingival margins and/or to proximal surfaces (Erickson & Glasspoole, 

1995; Mjör & Toffenetti, 2000). Since secondary caries occurs by the development of 

cariogenic conditions adjacent to restorations (Thylstrup, 1998), it is important to study not 

only the cariostatic effect just at the dentin margin of the cavity, but also on dentin surfaces 

along the margins of restorations.   

Differences among restorative systems were evaluated at ten distances along 

the  restoration margin. The dentin microhardness values adjacent to Ketac-fil were higher 

than the control up to distance of 300-µm. For Fuji II LC the higher microhardness values 

were observed only at distances 50, 100 and 150-µm. Probably, the rate of fluoride ions 

released may explain this result, since previous studies have shown that Ketac-fil releases 

more fluoride than Fuji II LC (Vermeersch & others, 2001).  

Surefil behaved in the same way as the control along all distances. The ability 

of Surefil in inhibiting artificial caries development was not observed. This could be 

explained by the relatively low fluoride ion release from fluoride-containing composite 

resins to the surrounding oral micro-environment (Erickson & Glasspoole, 1995; Arends, 

Dijkman & Dijkman, 1995; Karantakis & others, 2000). The dentin microhardness values 

adjacent to Dyract were similar to the control, but at distances 600, 1200 and 2100-µm, 

they have an unexpected behavior, being statistically lower than the control Z250. Some 

cariostatic effect was expected for Dyract, since in demineralizing and remineralizing 

solution the water-free acid group components are expected to ionize and to interact with 

the basic glass components, developing an acid-base reaction with fluoride release 

(Eliades, Kakaboura & Palaghias, 1998; Meyer, Cattani-Lorente & Dupuis, 1998). 

However, Dyract performed equally or worse than the control group. This result did not 
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confirm that reported in the literature, where Dyract demonstrated some caries inhibition 

effect in vitro (Dionysopoulos & others, 1998; Millar & others, 1998).  

Beyond distance 300-µm it was presumed that all groups of restorative 

materials would behave in the same way, but this occurred only at distance 1800-µm. The 

unexpected behavior of Dyract contributed to this, since Ketac-fil, Fuji II LC and Surefil did 

not differ from the control after the distance 300-µm.         

Regression analysis was helpful in explaining the behavior of dentin 

microhardness response as a function of distances, according to mathematical models. 

Logarithmic curves (Graphs 1, 2 and 3) allow the supposition that higher amounts of 

fluoride released from the restorations may interfere with caries development in dentin 

close to the restorative material. Thus, higher microhardness values could be observed at 

initial distances in the Ketac-fil and Fuji II LC graphs. For Surefil the microhardness values 

were not highly pronounced close to restoration. Probably this material had a low 

cariostatic effect, which was not evidenced at the distances analyzed in this study. The 

absence of statistically significant differences between Surefil and control at all distances 

confirm this finding. Throughout distances, the microhardness values dropped until they 

established a constant level, where, presumably, the fluoride cannot extend its effect.  

Linear curves were adjusted for Dyract (Graph 4) and Z250 (Graph 5). For the 

latter a low correlation coefficient was obtained (r = 0.02) showing no correlation between 

microhardness and distance. However, the aspect of plotted data allowed the supposition 

that the microhardness of dentin adjacent to Z250 remained steady throughout the 

distances in this study. For these materials it was concluded that fluoride could not 

influence dentin microhardness by inhibiting demineralization and/or enhancing 

remineralization processes. 
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In fact, Ketac-fil and Fuji II LC showed an extent of cariostatic effect, that is 

they were capable of inhibiting artificial caries development beyond the restoration 

margins. However, this in vitro study was not able to entirely reproduce clinical conditions 

of cariogenic challenge. The effects of dental plaque - as a mechanical barrier (Erickson & 

Glasspoole, 1995) - and of saliva - as a fluoride disperser by continual replenishment 

(Erickson & Glasspoole, 1995; Tantbirojn & others, 1997) - were not considered in the 

current study, and they seem to be related to the extent of cariostatic effect. Further 

studies reproducing clinical conditions are necessary to confirm the findings obtained in 

the current work. In situ models appear to be a good option. However, the results obtained 

in this study are useful for distinguishing the cariostatic effect among different fluoride-

containing restorative systems. 

Another interesting aspect to be considered is that this analysis was performed 

four days after the restorations were made. Although various fluoride-containing 

restorative materials have different rates and durations of fluoride release, most of the 

major fluoride release usually takes place within the first seven days (Hsu & others, 1998; 

Vermeersch & others, 2001). Thus, the fluoride effect might be amplified by the 

experimental conditions. A study will be carried out evaluating the extent of the cariostatic 

effect of aging restorations. 

To answer the question that encouraged the initiation of this study, Dyract and 

Surefil, did not show a cariostatic effect. The extent to which fluoride was effective around 

Ketac-fil and Fuji II LC was estimated to be about 300 and 150-µm, respectively. Although 

this extent could not be so large as to prevent root caries far from a restoration, it is 

important for reducing secondary root caries development close to the restoration margin.    
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CONCLUSION 

The extent of the cariostatic effect on root dentin was 300-µm for Ketac-fil and 

150-µm for Fuji II LC Improved. Dyract AP and Surefil did not show any cariostatic effect. 
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TABLES 

Table 1. Restorative systems tested. 

Brand Name Type Batch # Manufacturer 

Powder: FW0055787 

Liquid: FW0056696 

Ketac Conditioner: 0004 

Espe GmbH 

Seefeld, Germany 

 

Ketac-fil Plus GIC 

Heliobond*: 0120598 Vigodent S.A. 

Rio de Janeiro, RJ 
Brazil 

Powder: 160291 

Liquid: 260191 

GC Dentin Conditioner: 201241 

GC Corporation. 

Tokyo, Japan 

Fuji II LC 
Improved 

RMGI 

Heliobond*: 0120598 Vigodent S.A. 

Rio de Janeiro, RJ 
Brazil 

Dyract AP PMCR/AS 9904001505 

Prime&Bond NT: 9811001097 

H3PO4 34%: 990417 

Dentsply Caulk 

Milford, DE, USA 

Surefil/Prime & 
Bond NT 

FCR/FAS 990119 

Prime&Bond NT: 9811001097 

H3PO4 34%: 990417 

Dentsply Caulk 

Milford, DE, USA 

Filtek 
Z250/Single 
Bond 

CR/AS 9BX 

Single Bond: 9CY 

H3PO4 35%: 9PD 

3M Dental Products

St. Paul, MN, 
USA 

 
* Used as surface protector. 
GIC = conventional glass-ionomer cement; RMGI = resin-modified glass-ionomer; PMCR = polyacid-modified 
composite resin; AS = adhesive system; FCR = fluoride-containing composite resin; FAS = fluoride-containing 
adhesive system; CR = composite resin.  
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Table 2. Restorative techniques used according to manufacturers’ recommendations. 

Restorative 
System 

Dentin 
Pretreatment 

Dispensing and 
Mixing 

Insertion Light 
Curing 6

Surface 
Protection 

Ketac-fil Plus 
1

Ketac 
Conditioner 1

Powder/Liquid 
ratio of 3/2 (g/g) 
Manually 

Centrix 
Syringe 5

None Heliobond 
7

Fuji II LC 
Improved 2

GC Conditioner 
2

Powder/Liquid 
ratio of 3/2 (g/g) 
Manually 

Centrix 
Syringe 5

20 
seconds 

Heliobond 
7

Dyract 
AP/Prime 
Bond NT 4

H3PO4 34% 4

Prime & Bond 
NT Adhesive 4

None None 40 
seconds 

None 

Surefil/Prime 
& Bond NT 4

H3PO4 34% 4

Prime & Bond 
NT Adhesive 4

None None 40 
seconds 

None 

Filtek 
Z250/Single 
Bond 3

H3PO4 35% 3 

Single Bond 
Adhesive 3

None None 30 
seconds 

None 

 

1 = Espe; 2 = GC Corp; 3 = 3M Dental Products; 4 = Dentsply Caulk; 5 = Centrix Inc; 6 = Light intensity 
ranging from 550~600 mW/cm2; 7 = Vigodent. 
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Table 3. Means and standard deviation of transformed (y = 1/x) microhardness values. 

 50  100  150  300  600  900  1200  1500  1800  2100  

0.05092 A 0.06153 A 0.06747 A 0.07647 A 0.07983 A 0.08255 A 0.08495 A 0.08283 A 0.08586 A 0.09019 AB

Ketac 
0.01258  0.01388  0.01617  0.01864  0.01408  0.01500  0.01404  0.01477  0.01399  0.01387  

0.05692 A 0.06385 A 0.06911 A 0.07774 AB 0.08028 A 0.08323 AB 0.08463 A 0.08440 A 0.08500 A 0.08670 AFuji II 
LC 0.01443  0.01451  0.01700  0.01242  0.01299  0.01418  0.01433  0.01437  0.01477  0.01507  

0.08085 B 0.08345 B 0.08584 B 0.08968 B 0.08964 A 0.09416 BC 0.09156 AB 0.09181 AB 0.09000 A 0.09136 AB

Surefil 
0.01808  0.01511  0.01616  0.01588  0.01731  0.01169  0.01739  0.01581  0.01854  0.01760  

0.08591 BC 0.08408 B 0.08940 B 0.08816 B 0.08777 A 0.08772 ABC 0.08656 A 0.08890 AB 0.08580 A 0.08682 A

Z250 
0.01398  0.01500  0.01298  0.01503  0.01672  0.01781  0.01689  0.02124  0.02116  0.01943  

0.09242 C 0.09147 B 0.09145 B 0.09126 B 0.09574 B 0.09720 C 0.09780 B 0.09546 B 0.09675 A 0.09859 B

Dyract 
0.01113  0.01119  0.01062  0.01435  0.01249  0.01057  0.01158  0.01308  0.01359  0.01251  

 
Statistical differences are expressed by different letters following the means, in COLUMNS (p < 0.05). 
l.s.d. = 0.0109653. 
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ILLUSTRATIONS 

 

Fig 1. 1. Section of a bovine root dentin fragment; 2. Cavity preparation (1.5-mm width, 3.5-mm length and 1.0-mm depth) in an embedded 
and sanded root fragment; 3. Restoration procedures according to manufacturers’ instructions; 4. Restoration (1.5-mm width x 3.0-mm 
length) and dentin (3.0-mm x 3.0-mm) surface areas left exposed to artificial caries development; 5. Artificial caries challenge based 
on pH cycling model; 6. The indentations made at ten distances to obtain the Knoop microhardness values. 
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GRAPHS 

Graph 1. The transformed microhardness values of Ketac-fil were fitted according to a 

logarithm function (y = 0.0192 + 0.0091lnx). 
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Graph 2. The transformed microhardness values of Fuji II LC were fitted according to a 

logarithm function (y = 0.0297 + 0.0076lnx). 
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Graph 3. The transformed microhardness values of Surefil were fitted according to a 

logarithm function (y = 0.0713 + 0.0028lnx). 
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Graph 4. The transformed microhardness values of Dyract were fitted according to a linear 

function (y = 0.0919 + 3.28e-006x). 
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Graph 5. The transformed microhardness values of Z250 were fitted according to a linear 

function (y = 0.0870 + 5.61e-008x). 
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LEGENDS TO TABLES, ILLUSTRATIONS AND GRAPHS 

Table 1. Restorative systems tested. 

Table 2. Restorative techniques used according to manufacturers’ recommendations. 

Table 3. Means and standard deviation of transformed (y = 1/x) microhardness values. 

Fig 1.   

1. Section of a bovine root dentin fragment. 

2. Cavity preparation (1.5-mm width, 3.5-mm length and 1.0-mm depth) in an 

embedded and sanded root fragment. 

3. Restoration procedures according to manufacturers’ instructions. 

4. Restoration (1.5-mm width x 3.0-mm length) and dentin (3.0-mm x 3.0-mm) 

surface areas left exposed to artificial caries development. 

5. Artificial caries challenge based on pH cycling model. 

6. The indentations made at ten distances to obtain the Knoop microhardness 

values. 

Graph 1.The transformed microhardness values of Ketac-fil were fitted according to a 

logarithm function (y = 0.0192 + 0.0091lnx). 

Graph 2. The transformed microhardness values of Fuji II LC were fitted according to a 

logarithm function (y = 0.0297 + 0.0076lnx). 

Graph 3. The transformed microhardness values of Surefil were fitted according to a 

logarithm function (y = 0.0713 + 0.0028lnx). 

Graph 4. The transformed microhardness values of Dyract were fitted according to a linear 

function (y = 0.0919 + 3.28e-006x). 

Graph 5. The transformed microhardness values of Z250 were fitted according to a linear 

function (y = 0.0870 + 5.61e-008x). 
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ABSTRACT 

Since the use of bovine instead of human dentine to evaluate cariogenic and 

anticariogenic substances is not well established, this in situ study was conducted. Eleven 

volunteers wore palatal acrylic devices, containing 4 dentine slabs (2 human and 2 

bovine). Sucrose solution (20%) was dripped over all slabs 4x/day, simulating a cariogenic 

challenge. Dentifrice slurries, fluoridated or not, were dripped over specified dentine slabs 

3x/day to evaluate caries reduction. After 14 days, the biofilm formed on the dentine slabs 

was collected for microbiological analysis. In dentine, mineral loss (∆Z) and lesion depth 

(LD) were determined by cross-sectional microhardness and by polarized light microscopy, 

respectively. The total streptococci and mutans streptococci counts in the biofilm formed 

either on human or on bovine slabs, whether treated or not with fluoride dentifrice, was not 

statistically different. The ∆Z and the LD values of dentine treated with fluoride dentifrice 

were significantly lower than that treated with non-fluoride dentifrice. The differences in the 

∆Z and LD values between the human and bovine dentine were not statistically significant. 

The results suggest that bovine dentine can be used instead of human to evaluate caries 

development and inhibition. 
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INTRODUCTION 

In situ models have been used to evaluate the cariogenic and anticariogenic 

properties of fluoride containing dental products [ten Cate, 1994]. This kind of experiment 

may be considered as an intermediate stage between in vivo and in vitro studies, allowing 

the control of clinical conditions related to the development of caries [Manning and Edgar, 

1992; Zero, 1995; Sønju Clasen and Øgaard, 1999]. However, some experimental 

variables of in situ models need to be standardized [Mellberg, 1992], among them the type 

of dental substrate. Although there is a consensus that the use of human teeth is more 

relevant to in situ studies [Zero, 1995], bovine teeth have also been used [Manning and 

Edgar, 1992; ten Cate and van Duinen, 1995; Zero, 1995; Aires et al., 2002]. The 

advantage of using bovine instead of human teeth is that they are easier to obtain and to 

manipulate [Mellberg, 1992]. Moreover, they have a relatively more uniform chemical 

composition, which allows a lower variation in the experimental response of the cariogenic 

and anticariogenic treatments carried out on the substrate [Mellberg, 1992].  

Although bovine enamel is more porous than human enamel, it has been 

suggested that this discrepancy results only in quantitative and not in qualitative 

differences in behaviour in an in situ model [Mellberg, 1992; Zero, 1995]. Thus, the use of 

bovine enamel has been accepted to evaluate the potential of cariogenic and 

anticariogenic substances [Mellberg, 1992; Zero, 1995]. In contrast, little information has 

been reported regarding the use of root dentine as an experimental substrate. It is not 

known whether bovine root dentine has the same behaviour as that of human, either for 

cariogenic challenges or for treatments with anticariogenic agents - like fluorides - in in situ 

caries models. However, bovine root dentine has been used [ten Cate and van Duinen, 

1995; Aires et al., 2002], considering that the histological and biochemical differences 
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between the human and bovine dentine may not interfere with the mineral content 

variation [ten Cate and van Duinen, 1995]. 

This study was conducted to test whether bovine dentine presents similar 

behaviour to human dentine in  in situ experimental models for root caries progression and 

inhibition, and also to find out whether the biofilm formed on the dentine substrates is 

similar in terms of mutans streptococci counts. 

 

MATERIAL AND METHODS 

Ethical aspects 

This study was approved by the local ethical committee in research (FOP-

UNICAMP, process # 017/2002). Eleven adult volunteers took part in this study after 

signing an informed, written consent (Resolution No. 196 of the National Health Council, 

Health Ministry, Brasília, DF, 10/03/1996).  

Experimental design 

The study involved a factorial 2x2 split-mouth design of caries induction by 

plaque accumulation and sucrose use, performed in one phase of 14 days. The factors 

under evaluation were: substrate at 2 levels (human and bovine dentine) and treatment at 

2 levels (non-fluoride containing and fluoride-containing dentifrice), to simulate free caries 

progression and inhibited caries progression, respectively. Four experimental groups were 

obtained (2 substrates x 2 treatments), as follows. Group 1: human dentine and non-

fluoride dentifrice; Group 2: human dentine and fluoride dentifrice; Group 3: bovine dentine 

and non-fluoride dentifrice and Group 4: bovine dentine and fluoride dentifrice. Each group 

comprised 11 dentine slabs or experimental units (n = 11), randomly assigned to the 11 

volunteers, which were considered as statistical blocks. The null hypothesis was that there 
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was no difference between human and bovine dentine, in caries progression, in caries 

inhibition or in the composition of the biofilm formed on each tissue. To test this null 

hypothesis, the following response variables were evaluated: variation in the dentine 

mineral content (∆Z) and lesion depth (LD). Additionally, the total streptococci (TS) and 

mutans streptococci population counts (MS) were analysed in the biofilm formed on the 

dentine substrates.   

Specimen preparation 

Root dentine slabs were obtained from human third molars and from bovine 

incisor teeth, which were sterilized by storage in 10% buffered formalin solution, pH 7, for 

7 days [Dominici et al., 2001]. Using two parallel diamond disks separated by a 3 mm 

spacer, a root slice was cut (Isomet 1000, Buehler) from the cementoenamel junction. The 

root slices were sectioned mesiodistally and dentine slabs were obtained from the buccal 

and lingual root surfaces [Aires et al., 2002] (Fig 1A). Thirty slabs (3x3x2 mm) of each type 

of substrate were obtained. They were flattened and polished, by using 400, 600, 1200 

grades of Al2O3 papers and polishing cloths with 1 µm diamond paste, respectively (Fig 

1B). The slabs were immersed in artificial saliva containing 1.5 mM Ca, 0.9 mM P, 150 mM 

KCl, 0.1 M Tris, pH 7.0 [Delbem and Cury, 2002], for 24 h, in order to minimize further 

ionic changes between the slab and the oral environment [Aires et al., 2002]. The surface 

microhardness of the 60 dentine slabs was determined (3 indentations in the centre of the 

slab, 5 g, 5 s). Twenty-two slabs of human and bovine dentine were selected, after having 

discarding eight slabs of each substrate that presented outlier values of average 

microhardness. 
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Palatal device preparation 

Acrylic custom-made palatal devices were made with four sites (4x4x4 mm), in 

which the dental slabs were positioned and fixed with wax (Fig 1C). In order to allow 

plaque accumulation and to protect it from mechanical disturbance, a plastic mesh was 

fixed to the acrylic resin, leaving a 1 mm space from the surface of the specimen [Benelli 

et al., 1993; Cury et al., 2000] (Fig 1D). In groups 1 and 3, the mesh was fixed with a red 

acrylic resin, to show the volunteers where the non-fluoride dentifrice slurry should be 

dripped [Cury et al., 2001]. The order in which the experimental units were assigned in the 

palatal device took into consideration that both groups 1 and 3 should be on the same side 

of the acrylic device and, consequently, groups 2 and 4 on the opposite side (Fig 1E), to 

avoid the carry-across effect [Hujoel and DeRouen, 1992] in groups 1 and 3 by the 

treatment with fluoride dentifrice performed on groups 2 and 4. Within each side of the 

palatal device, the positions of the specimens were randomly determined.  

Intraoral phase  

During a one-week lead-in period, and throughout the entire experimental 

phase, the volunteers brushed their teeth with a non-fluoride silica-based formulation 

(Kolynos do Brasil Ltd) prepared for this study. Next, all volunteers started to wear the 

palatal devices.  

To provide a cariogenic challenge, the volunteers were instructed to remove 

the device and to drip 20% sucrose solution onto all blocks 4 x/day (8:00, 11:00, 15:30, 

19:00 h). Five minutes later the device was re-inserted in the mouth.  

The dentifrice treatment was carried out after the main mealtimes, 3 x/day 

(7:30, 12:30, 20:00 h), during the volunteers’ habitual oral hygiene. The device was 

removed and slurries (1 : 3 w/v) of non-fluoride dentifrice (silica-based / Kolynos do Brazil 

Ltd) and fluoride dentifrice (1100 ppm NaF, silica-based / Kolynos do Brazil Ltd) were 
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dripped onto and remained on the specimens of groups 1 and 3, and 2 and 4, respectively, 

while the volunteers brushed their teeth with a non-fluoride dentifrice. After that, the device 

was washed in tap water and re-inserted in the mouth. The volunteers were instructed to 

wear the intraoral devices the whole time for 14 consecutive days, removing them only to 

perform the procedures described above and during meals.  

Microbiological analysis 

On the day 15 of the intraoral phase, 12 and 13 h after the last application of 

the dentifrice slurries and of the sucrose solution, respectively, the volunteers stopped 

wearing the intraoral device. The plastic mesh was removed and the biofilm formed on the 

specimens was collected with sterilized plastic curettes (Fig 1F, 1G). The biofilm was 

weighed (± 0.01 mg) in pre-weighed microcentrifuge tubes, in which 0.9% NaCl solution 

was added (1 mL/mg plaque). The tubes were sonicated (Vibra Cell, Sonics & Materials 

Inc) [Rosalen et al., 1996] and the suspension was serially diluted (1:1, 1:10 and 1:100) 

with 0.9% NaCl solution. Samples were automatically plated (Spiral plater, DW Scientific 

Ltd) in duplicate in mitis salivarius agar containing 20% sucrose (MSA), to determine total 

streptococci, and in mitis salivarius agar plus 0.2 bacitracin/mL (MSB), to determine 

mutans streptococci [Gold et al., 1973]. The plates were kept for 48 h at 37o C in an 

anaerobic incubator (IG 150, Jouan) containing 10% CO2. Representative colonies with 

typical morphology of mutans streptococci were counted using a colony counter. The total 

streptococci and mutans streptococci population counts were determined and expressed 

in CFU per mg wet plaque weight. 

Polarized light microscopy and microhardness analysis 

The specimens were removed from the device and longitudinally sectioned in 

their central area, in order to obtain a section of 100 µm (± 10) (Fig 1F, 1H, 1I). These 

sections were mounted for examination under a polarizing light microscope at 200x 
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magnification (DMLSP, Leica) after imbibition in deionised water (Fig 1J). Digital images 

were taken, and the lesion depths were measured at three sites with Image-Pro Plus 

software (Media Cybernetics). Three measurements were made for each specimen and 

averaged. 

One of the remaining halves of each dentine slab was randomly selected. It 

was embedded in acrylic resin, the cut surface being exposed, for subsequent flattening 

and polishing with 400, 600 and 1200 grades of Al2O3 papers and polishing cloths with 1 

µm diamond paste, respectively. Microhardness was measured using a Knoop indenter 

with 5 g load for 5 s and a Future-Tech FM microhardness tester coupled to software FM-

ARS (Fig 1.K.). Two lanes of eight indentations each were made in duplicate at depths: 10, 

20, 30,40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 and 300 µm from the outer 

surface of dentine in the central region of the dental slab. The distance between the lanes 

was 100 µm. Knoop microhardness numbers were obtained and transformed to volume 

fraction of mineral [Featherstone et al., 1983]. Volume fraction of mineral was plotted 

against depth for each specimen and the integrated mineral content of the dentine lesion 

was calculated. A mean value mineral content for depths > 90 µm was used as a measure 

of the integrated mineral content of inner sound dentine. To compute ∆Z values, the 

integrated mineral content of the lesion was subtracted from that of sound dentine.  

Statistical analysis  

The assumptions of equality of variances and normal distribution of errors were 

checked with the Hartley and Shapiro-Wilks tests for the response variables data: mineral 

loss (∆Z), lesion depth (µm) and total streptococci (TS) and mutans streptococci 

population counts  (MS). The assumptions were satisfied for the ∆Z and LD data and two-

way analysis of variances (α = 0.05) was applied. The assumptions were not satisfied for 
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the bacterial counts, so the two-way Friedman nonparametric test (α = 0.05) was used for 

these data. The analyses were performed with the SAS System 6.11 software (SAS 

Institute Inc.).  

RESULTS 

The microhardness of sound human dentine were higher than sound bovine 

dentine for either surface (52.3 (5.9) and 39.0 (5.3), p < 0.0000) or inner (51.9 (9.5) and 

43.4 (12.0), p = 0.0123) evaluations. 

The ∆Z, LD, TS and MS data for each group are shown in table 1. For the 

response variables ∆Z and LD, two-way ANOVA revealed no significant interaction 

between substrate and dentifrice, a non-significant substrate effect and a significant 

dentifrice effect (Table 2). ∆Z and LD were lower in groups 2 and 3, treated with the 

fluoride dentifrice (tables 1 and 2). For the TS and MS counts, the two-way Friedman test 

revealed no significant effect for either substrate or for dentifrice (table 2). The null 

hypothesis formulated was accepted for all the response variables tested, for both free and 

inhibited caries progression.  

 

DISCUSSION 

The suggestion that caries development in human and in bovine dentine may 

be considered, in a qualitative analysis, as a similar process [Mellberg, 1992; Zero, 1995] 

was confirmed by this study, since the differences in dentine mineral loss and lesion depth 

between both bovine and human dentine substrate were not statistically significant. 

Moreover, the inhibition of root caries, by fluoride dentifrice application, was similar to both 

tested substrates. Nevertheless, these results does not imply that there are no structural 
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differences between them, since the microhardness values of sound human root dentine 

were higher than sound bovine dentin, for either surface or inner analysis.  

Fluoride-containing dentifrice has proven to be capable of reducing root caries 

development in vitro [Mukai et al., 2001], in situ [Nyvad et al., 1997] and in vivo [Jensen 

and Kohout, 1988; Baysan et al., 2001]. This anticaries capacity has been related to 

physicochemical effects, by inhibiting demineralisation and enhancing remineralisation 

processess [Featherstone, 1994], and also to antibacterial effects, by inhibiting the critical 

metabolic processess of mutans streptococci and by preventing the development of 

favourable low pH environments for cariogenic bacteria in the biofilm [Bradshaw et al., 

2002]. In the current study, although the fluoride dentifrice inhibited the caries 

development, both in human and bovine root dentine, it was not able to reduce TS and MS 

counts by the fluoride dentifrice application. This suggests that the inhibition of 

demineralisation and enhancement of remineralisation [Featherstone, 1994] were more 

important caries-preventive factors than the absolute reduction of these cariogenic 

microrganisms.  

Different methods have been used to assess the caries progression on root 

dentine. Among them, microhardness is the only one that considers alterations on both 

organic and inorganic content of dentine. However, this method is limited by the shrinkage 

after the drying necessary for microhardness measurement. This could have introduced 

error into the dentine mineral content in the lesion. However, even causing undesirable 

effects, drying of specimens did not influence the results, since the lack of differences in 

the caries development between human and bovine dentine was also confirmed by 

polarized light microscopy, another recognized method that allow the specimens to be kept 

in wet conditions during evaluation [Wefel, 1995].  
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It is important to consider that the sterilization method by aldehyde solutions, 

such as formaldehyde - that was used in this study - or glutaraldehyde may stabilize 

collagen by fixing the protein [Haller et al., 1993; DeWald, 1997], possibly altering the 

demineralising and remineralising behaviours in the root caries processes [Arends et al., 

1989; Boonstra et al., 1993; Kawasaki and Featherstone, 1997]. Arends et al. [1989] 

suggested that this fixative effect is limited to the dentine surface, but this has not yet been 

proved and further work is required.  

 An important aspect that should be considered prior to the use of bovine teeth 

in in situ studies is the occurrence of an infectious disease called spongiform 

encephalopathy, or mad cow disease [Institute of Food Science and Technology, 2001]. 

This disease attacks bovines and produces a progressive neuro-degenerative lesion, by 

means of an infectious prion [Prusiner, 1982]. This prion cannot be eliminated by 

irradiation, heat or chemical sterilization methods [Taylor et al., 1994]. Although there are 

no cases reported in the literature of the transmission of this disease in humans, the use of 

bovine teeth in countries where spongiform encephalopathy has been diagnosed should 

be carefully analysed. Until now, there has been no effective treatment for this disease 

[Institute of Food Science and Technology, 2001]. 

As a conclusion, bovine dentine substrate can be used as a substitute for 

human dentine substrate in in situ caries models for studies of cariogenic and 

anticariogenic agents. 
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TABLES 

Table 1. Mean ∆Z, LD, TS and MS (standard deviation in parenthesis) for the experimental 
groups (n = 11). 

 

Groups ∆Z            
(vol % min.µm)

LD         
(µm) 

TS           
(106 CFU/mg)

MS          
(106 CFU/mg)

1: Human / non fluoride 243.4 (173.3) 35.8 (23.5) 17.6 (6.2) 2.0 (3.6) 

2: Human / fluoride 55.6 (77.2) 7.7 (10.5) 20.4 (6.5) 1.1 (1.7) 

3: Bovine / non fluoride 211.7 (113.0) 31.1 (17.6) 19.7 (5.9) 0.6 (1.0) 

4: Bovine / fluoride 2.8 (107.6) 8.3 (8.0) 17.6 (7.6) 1.0 (1.7) 
 
∆Z: mineral loss, LD: lesion depth, TS: total streptococci, MS: mutans streptococci, CFU: colony forming unit. 
 
 
 
Table 2. P-values obtained for each response variable tested according to the factors 

under study. 
 

Factors ∆Z*          LD*          TS**         MS**        

Substrate x Dentifrice*** 0.7262 0.3351 --- --- 

Substrate 0.3600 0.4528 0.1797 0.3710 

Dentifrice 0.0001 0.0004 0.6547 1.0000 
 
∆Z: mineral loss, LD: lesion depth, TS: total streptococci count, MS: mutans streptococci population  count. 
Significance level adopted: 0.05. 
 * Two-way ANOVA. 
** Friedman non-parametric test. 
*** Interaction of interest. 
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ILLUSTRATION 

 

Fig 1. A. Human and bovine dentine slabs obtainment; B. Flattened and polished slabs; C. Palatal device preparation; D. Scheme of the slab position in the 
palatal device. Note that 1 mm was left between the mesh and the slab surface; E. Intraoral phase; F. After 14 days, the mesh was removed; G. The 
biofilm was collected for microbiological analysis; H,I. The dentin slab was sectioned in the central area; J.A dentin section was analysed by polarized 
light microscopy; K. One of the remaining halves was randomly assigned to cross-sectional microhardness measurements. 
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LEGENDS 

Fig 1.  

A. Human and bovine dentine slabs obtainment. 

B. Flattened and polished slabs. 

C. Palatal device preparation. 

D. Scheme of the slab position in the palatal device. Note that 1 mm was left 

between the mesh and the slab surface. 

E. Intraoral phase. 

F. After 14 days, the mesh was removed.  

G. The biofilm was collected for microbiological analysis. 

H, I. The dentin slab was sectioned in the central area. 

J. A dentin section was analysed by polarized light microscopy. 

K. One of the remaining halves was randomly assigned to cross-sectional 

microhardness measurements. 
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ABSTRACT 

This study tested the hypothesis that fluoride-releasing restorations, either 

aged or un-aged, do not prevent secondary root caries, when fluoride dentifrice is 

frequently used. Sixteen volunteers wore palatal appliances in 2 phases of 14 days, 

according to a 2x2 cross-over design. In each phase the appliance was loaded with bovine 

root dentine slabs restored with either glass-ionomer or resin composite, either aged or un-

aged. Specimens were exposed to cariogenic challenge 4x/day and to fluoridated 

dentifrice 3x/day. The fluoride content in the biofilm (FB) formed on slabs and the mineral 

loss (∆Z) around the restorations were analyzed. No differences were found between 

restorative materials regarding the FB and the ∆Z, for both aged (p=0.792 and p=0.645, 

respectively) and un-aged (p=1 and p=0.278, respectively) groups. Under the cariogenic 

and fluoride dentifrice exposure conditions of this study, the glass-ionomer restoration 

either aged or un-aged did not provide additional protection against secondary root caries. 
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INTRODUCTION 

Fluoride has shown an important role in the control of root caries, since it may 

interfere in related physicochemical (Featherstone, 1994) and microbiological (Bradshaw 

et al., 2002) processes, not only reducing the caries progress rate but also allowing the 

arrestment of active lesions (Nyvad and Fejerskov, 1986). Common and affordable 

sources of fluoride, such as dentifrices may reduce root caries development, as previously 

showed in situ (Hara et al., 2003) and in vivo (Jensen and Kohout, 1988). Possibly, this 

effect may be extended to secondary root caries as well, since this entity has been 

considered as primary caries adjacent to restorations (Thylstrup, 1998; Mjör and Toffenetti, 

2000).  

Intending to provide fluoride to the specific site at risk of secondary caries 

occurrence, fluoride-releasing restorative materials were developed. Their cariostatic effect 

on root dentine has been reported in in vitro studies (Tam et al., 1997; Dyonisopoulos et 

al., 1998; Pereira et al., 1998). However, these findings were not evidenced in a 

systematic review of clinical studies of secondary caries around glass-ionomer cement 

restorations (Randall and Wilson, 1999). This suggests that fluoride-containing 

restorations do not prevent secondary caries. Intending to clarify this controversy, it was 

hypothesized in this study that fluoride coming from another sources, like dentifrice, could 

replace that released by the restoration; or, that the cariostatic potential of restorations 

could be reduced as their fluoride releasing rate declines through the aging process 

(Carvalho and Cury, 1999).  

In the present study, these above-mentioned hypotheses were tested in well-

controlled clinical conditions, provided by in situ caries model (Zero, 1995). A previously 

described root caries model (Hara et al., 2003) was used including fluoridated dentifrice 

exposures and specimens with restorations.   
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MATERIAL AND METHODS 

Ethical aspects 

The research protocol was approved by the local ethical committee in research 

(FOP-UNICAMP, process # 041/2001). Sixteen adult volunteers took part in this study 

after signing an informed, written consent (Resolution No. 196 of the National Health 

Council, Health Ministry, Brasília, DF, 10/03/1996). 

Experimental design 

The study was conducted according to a factorial 2×2 cross-over design, 

performed in two phases of 14 days. The factors under evaluation were restorative 

material, at 2 levels: glass-ionomer cement (GIC) and resin composite (RC); and age of 

restoration, at 2 levels: aged (A) and un-aged (U), resulting in 4 experimental groups: 1-

GIC/A, 2-GIC/U, 3-RC/A and 4-RC/U. Each group comprised 32 restored dentine slabs in 

duplicates or 16 experimental units (n = 16). They were randomly assigned to the 16 

volunteers, which were considered as experimental blocks. In phase 1, eight volunteers 

wore appliances with specimens of groups 1 and 2 and eight with groups 3 and 4, avoiding 

a possible carry-across effect (Hujoel and DeRouen, 1992) of GIC on RC. In phase 2, 

volunteers that had worn appliances with specimens of groups 1 and 2, wore appliances 

loaded with specimens of groups 3 and 4 and vice-versa. The main responses variables 

were fluoride concentration in the biofilm formed over the slabs (FB: µg F/g biofilm) and 

mineral loss (∆Z: vol % min x µm). The null hypotheses tested were that there were no 

differences between the GIC and RC, either aged or un-aged, with regards to their ∆Z and 

FB, when submitted to cariogenic conditions in the presence of regular fluoridated 

dentifrice exposures.  
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Specimen preparation 

Two hundred and fifty six bovine root dentine slabs (5 x 5 x 2 mm) were cut, 

stored in 10 % buffered formalin solution for 1 week and grinded as described by Hara et 

al. (2003). Box-shaped cavities (3.3 x 1.5 x 1 mm) were prepared on the center of each 

slab, with diamond burs at high-speed rotation and under water/air spray cooling.  

A hundred twenty eight slabs in duplicates (or 64 experimental units) were 

randomly assigned to each phase. They were restored with either GIC (Ketac-fil plus, 

Espe GmbH, Seefeld, Germany) or RC (Filtek Z 250/Single Bond, 3M Dental Products, St 

Paul, MN, USA), following the manufacturers’ instructions, and stored for 24 h in 100 % 

relative humidity, at 37 oC ± 1. To remove any possible excess of restorative material, 

specimens were ground with # 1200 grit Al2O3 abrasive papers, under water-cooling. 

Subsequently, specimens were polished with 1 µm diamond suspension on cloths and 

sonicated for 1 min in cleaning solution.  

Specimens aging and palatal device preparation 

Specimens of groups 1 and 3 were prepared prior than those of groups 2 and 

4, and they were individually immersed in artificial saliva (10 mL/specimen; 1.5 mM Ca, 0.9 

mM P, 0.1 M Tris buffer, pH 7.0), at 37 oC ± 1. The solution was changed daily for 14 

consecutive days, in order to simulate an aging process (Hsu et al., 1998). Fluoride 

released in the artificial saliva was measured (Hayacibara et al., 2004) and values of 

cumulative release of fluoride (CF: µg F/cm2) were computed. A dentine surface area (5 x 

1.75 mm) adjacent to the restoration was covered with an acid-resistant varnish to act as a 

control (Figure).  

Acrylic custom-made palatal devices were built with four sites (6 x 6 x 4 mm), 

in which the dental slabs were positioned and fixed with resin composite. In order to allow 
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plaque accumulation and to protect it from mechanical disturbance, a plastic mesh was 

fixed to the acrylic resin, leaving a 1 mm space from the surface of the specimen (Hara et 

al., 2003).  

Intraoral phase  

Volunteers followed a one-week lead-in period before inserting the palatal 

devices. During this period and throughout the experimental phase, they brushed their 

teeth with a silica-based dentifrice (Sorriso Fresh Mint, Kolynos do Brasil Ltd), containing 

1100 µg F/g (w/w) as NaF.  

The cariogenic challenge to the specimens was provided by dripping a solution 

of 20% sucrose onto all blocks 4 times a day (8:00, 11:00, 15:30, 19:00 h) that was kept in 

contact for 5 min (Hara et al., 2003). Toothbrushing with the fluoride dentifrice was 

performed after the main mealtimes, 3 times a day (7:30, 12:30, 20:00 h). Volunteers were 

instructed to use a pea-size amount of dentifrice and to start brushing the buccal surface 

of upper teeth with the appliance still in the mouth. After the slurry of dentifrice and saliva 

reached the plastic mesh over the specimens (approximately 10 s), the appliance was 

removed and kept without rinse until the volunteers finished their habitual oral hygiene. 

After that, the device was washed in tap water, removing all dentifrice/saliva slurry, and re-

inserted in the mouth. Volunteers were instructed to wear the intraoral devices the whole 

intraoral phase, except during brushing procedures and meals. At these times, the devices 

were kept moist in boxes that were provided. 

Fluoride measurement in the dental biofilm 

After each phase, 12 h after the last brushing procedure, the plastic meshes of 

the appliances were removed and the biofilm formed on specimens was collected with 

plastic curettes and frozen. The biofilm was dried in a vacuum atmosphere in the presence 

of P2O5, for 24 h. Then, the dry weight of each sample was determined in pre-weighed 
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tubes before 0.5 M HCL was added (0.25 mL/mg of biofilm). After extraction for 3 h at 

room temperature under constant agitation, the same volume of TISAB II, pH 5.0 

(containing 20 g NaOH/L), was added to the tube as a buffer (Benelli et al., 1993; Cury et 

al., 2000). The samples were centrifuged (11,000 g) for 1 min and the amount of acid-

soluble F in the supernatant was determined using an ion-selective electrode Orion 96-09 

and an ion analyzer Orion EA-940.   

Transverse microradiography analysis 

The specimens were removed from the palatal device and sectioned through 

the center of the restoration, in order to obtain sections of 160 µm ± 20. The sections were 

x-rayed together with an aluminum stepwedge, at 20 kV and 30 mA for 65 min. 

Microradiographic plates were processed and the radiographic images were taken and 

analyzed with dedicated computer software (TMR Version 1.26, Inspektor Research 

Systems BV, The Netherlands). ∆Z measurements were made in three zones (50 µm wide 

and 300 µm deep) 50, 150 and 300 µm apart from the restoration in both exposed and 

control sides (Figure). Average values of ∆Z in each side were computed and the net ∆Z 

value (∆Znet = ∆Zexposed - ∆Zcontrol) was obtained and submitted to the statistical analysis.   

Statistical analysis 

The cumulative fluoride released during the aging process was evaluated by 

the Student-t test. The presence of carry-over and phase effects in the responses was 

checked. The FB and ∆Z were tested independently in both aged (1 and 3) and un-aged (2 

and 4) groups. Comparisons between the aging effects in the variable responses were 

made to either GIC or RC restorations on the phase 1 data of this study. Statistical 

analyses were performed by the Wilcoxon non-parametric test, with 5% of significance 

level.  
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RESULTS 

During the aging process, group 1 released significantly higher amounts of 

fluoride than group 3 (p < 0.01) (Table). There were no carry-over and phase effects to 

both aged and un-aged restorations (p < 0.05). No differences were found in the FB 

between GIC and RC, either aged (W = 28, p = 0.792) or un-aged (W = 30, p = 1), as well 

as in the ∆Z between GIC and RC, either aged (W = 63, p = 0.645) or un-aged (W = 57, p 

= 0.278) (Table). No significant differences were found when comparisons were done 

between the ∆Z of aged and un-aged restorations to either the GIC (W = 64, p = 0.798) or 

RC (W = 65, p = 0.729). All null hypotheses formulated were accepted. 

 

DISCUSSION 

The in situ caries model used in the current study, based on biofilm 

accumulation and sucrose exposure, was previously reported to be cariogenic to bovine 

root dentine (Aires et al., 2002; Hara et al., 2003). Our experimental model included the 

use of fluoride-containing dentifrice, since most of the marketed dentifrices have been 

reported to be fluoride containing (Donly and Nelson, 1997). The contact of the dentifrice 

slurry with the biofilm/specimen during the brushing procedure modeled the clinical 

situation of fluoride (dentifrice) exposure to surfaces at risk of caries (Dugall et al., 2001). 

Thus, the current in situ model was considered suitable for the test of the proposed 

hypotheses.  

No differences were found between the net mineral losses in root dentin 

around restorations with the tested materials, accepting the stated hypothesis that the 

glass-ionomer cement might not be necessary to prevent secondary caries in root dentine, 

when fluoride dentifrice is frequently used. This suggests an effect of the dentifrice in 
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secondary caries. Although it has already been shown that the use of fluoridated dentifrice 

can inhibit root caries (Jensen and Kohout, 1988), no clinical evidences of this effect on 

secondary root caries prevention have been previously reported. The current results seem 

to corroborate earlier in vitro studies (Donly and Kerber, 1999; Hara et al., 2002), where a 

significant effect of fluoride-containing dentifrice on secondary root caries inhibition was 

found. However, these in vitro studies have not considered the relevance of the dental 

biofilm in cariogenic and fluoride-retention processes, as it was done in the present study.  

The fluoride concentration found in the dental biofilm was comparable with a 

previous study that used similar cariogenic challenge and dentifrices (Paes Leme et al., 

2004), and was not significantly influenced by the restorative materials tested. Exposure to 

fluoride may cause an increase in the fluoride levels of saliva, soft tissues and biofilm 

(Paes Leme et al., 2004; Hossain et al., 2003), creating a fluoride reservoir for further 

cariogenic attacks (Duckworth and Morgan, 1991). Furthermore, fluoride has shown to 

reduce the cariogenicity of biofilm formed in vitro (Bradshaw et al., 2002). The obvious 

advantage of using topical fluoride delivery vehicles, like dentifrices, is that in addition to 

preventing caries around the margins of restorations, they can reach any other site in the 

mouth at risk for caries.     

The hypothesis that the restoration aging process could be related to the 

absence of the cariostatic effect was not proven to be true. Significant amount of fluoride 

was released by the GIC during this process, however it did not influence either the ∆Z or 

the FB. It seems that the amount of fluoride released by the material, even considering 

periods of higher releasing rate during the first days after the restorative procedures 

(Carvalho and Cury, 1999), has little or no influence in secondary root caries prevention, 

when fluoride dentifrice is used with a frequency of 3 times a day. Although this study was 

not specifically designed to test the rechargeability of the GIC restorations, it was expected 
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to occur during the dentifrice exposure (Freedman and Diefenderfer, 2003). However, 

based on the current results it is unclear if this reported GIC property might be relevant to 

secondary caries prevention.  

Subjects that participated in our study were not considered to be of high-risk 

for caries, since they presented normal salivary flow, normal fluoride exposure and no 

current caries activity, except for the specimens in the micro-environment created by the in 

situ model. Clinical evaluations of xerostomic patients have shown secondary caries 

inhibition around both fluoridated and non-fluoridated cervical restorations when fluoride 

gel was daily used (Wood et al., 1993; McComb et al., 2002). These data and evidence 

from a in vitro study (Donly and Kerber, 1999) and a systematic review (Randall and 

Wilson, 1999) have suggested that glass-ionomer cement restorations may not be 

important to prevent secondary root caries, depending on the balance between the risk for 

caries and the fluoride exposure. Accordingly, the choice of the restorative material for root 

lesions may not be guided by its supposed cariostatic potential, when the individual 

requirement of fluoride is fulfilled by another sources. Instead, it should consider the 

mechanical and adhesive properties of the restorative as well as its surface and esthetics 

characteristics.  

It can be concluded that in this experiment glass-ionomer restoration, either 

aged or un-aged, provided no additional effect in preventing secondary root caries in the 

presence of regular exposures to fluoridated dentifrice. 
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TABLES 

Table 1. Summary of results (mean (SD); median) and statistical analysis.  

Cumulative Fa Fluoride in the biofilmb Mineral lossc

Groups 
Mean t-test Mean Median Wd Mean Median W 

1. GIC/ 
aged 

34.67 
(15.70) 

311.88 
(349.34) 

190.32
128.73 

(191.31) 
50.69 

3. RC/ 
aged 

-1.31 
(3.49) 

SIGe

278.11 
(166.27) 

269.43

NSf

151.32 
(268.62) 

21.18 

NS 

2. GIC/ 
un-aged 

--- 
254.19 

(241.27) 
136.71

123.81 
(144.55) 

116.33

4. RC/ 
un-aged 

--- 

--- 
240.01 

(204.44) 
199.59

NS 
155.26 

(287.45) 
24.38 

NS 

 
a µg F/cm2; b µg F/g of dry biofilm; c %vol min.µm; d Wilcoxon non-parametric test; e 
statistically significant (α = 0.05); f statistically non-significant (α = 0.05) 
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FIGURES 

Figure 1. Section obtaining from the specimen and transverse microradiography analysis. 
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FIGURES LEGENDS 

Figure 1. Section obtaining from the specimen and transverse microradiography analysis. 
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4. DISCUSSÃO GERAL 

Os diferentes resultados obtidos na análise in vitro do efeito cariostático dos 

materiais restauradores fluoretados - Capítulos 1 e 2 - parecem estar relacionados à 

liberação de fluoretos durante o desafio cariogênico. O CIV e o IVMR, cujas capacidades 

de liberar fluoretos têm sido descritas (Eichmiller & Marjenhoff, 1998; Carvalho & Cury, 

1999; Karantakis et al., 2000; Vermeersch et al., 2001), inibiram a progressão de cárie 

artificial em dentina radicular em considerável distância a partir das margens das 

restaurações. Por outro lado, materiais como a RCF e a RCMP, que têm apresentado 

liberação de fluoretos em concentrações relativamente menores (Eichmiller & Marjenhoff, 

1998; Carvalho & Cury, 1999; Karantakis et al., 2000; Vermeersch et al., 2001), não foram 

capazes de evidenciar tal efeito. Este resultado contradiz estudos anteriores que 

atribuíram algum efeito cariostático à RCF (Dionysopoulos et al., 1998; Torii et al., 2001) e 

principalmente à RCMP (Dionysopoulos et al., 1998; Donly & Grandgenett, 1998; Millar et 

al., 1998). Possivelmente, tal diferença esteja relacionada às marcas comerciais avaliadas 

e também aos procedimentos experimentais, devido ao emprego de diferentes modelos 

de cárie artificial e diferentes métodos para quantificação da lesão. Os modelos de cárie in 

vitro utilizados nos Capítulos 1 e 2, fundamentados em ciclos de des-remineralização, 

foram escolhidos por reproduzirem a dinâmica de formação de cárie e por serem de 

execução relativamente rápida e simples (Featherstone, 1996). 

Determinados SAFs foram capazes de liberar fluoretos em quantidades 

similares ao CIV, ao serem testados com dimensões e volumes similares. Entretanto, ao 

serem associados a um material restaurador simulando condições clínicas, nenhum dos 

SAFs foi capaz de inibir o desenvolvimento de cárie artificial. Provavelmente, a 

importância dos SAFs na inibição de cárie resume-se à proteção da zona de interdifusão 
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resina-dentina - denominada “camada híbrida” (Nakabayashi et al., 1991) - frente à 

infiltração marginal e também à desmineralização, evitando o desenvolvimento de lesões 

de parede (Kidd, 2001). Porém, ao se considerar que lesões de parede relacionam-se 

principalmente com restaurações não adesivas e tem pouco ou nenhum envolvimento 

com o desenvolvimento da cárie secundária natural (Thylstrup, 1998), sugere-se que 

nenhum efeito cariostático significativo possa ser atribuído aos SAFs, em condições 

clínicas.  

Embora os resultados obtidos no Capítulo 2 demonstrem o potencial de 

determinados materiais restauradores para inibir a cárie radicular secundária in vitro, a 

reprodução clínica dessa propriedade cariostática tem sido questionada (Randall & 

Wilson, 1999). Com o intuito de conferir relevância clínica para a análise do efeito 

cariostático de materiais restauradores foi desenvolvido um modelo de cárie radicular in 

situ - Capítulo 3 - capaz de avaliar a desmineralização e remineralização da dentina 

humana e bovina em condições próximas às encontradas clinicamente. O modelo de cárie 

proposto, com base no acúmulo de biofilme e na aplicação de sacarose, demonstrou ser 

suficientemente cariogênico para produzir lesões de cárie mensuráveis. Além disso, o uso 

de soluções fluoretadas nesse modelo produziu respostas significativas quanto à 

remineralização da cárie radicular. O comportamento semelhante entre os substratos 

humano e bovino frente às condições impostas pelo experimento confirmou a 

possibilidade do uso da dentina radicular bovina para o estudo da cárie radicular.  

Modelos de cárie in situ reproduzem a dinâmica envolvida no desenvolvimento 

da cárie permitindo analisar de maneira controlada o efeito de tratamentos na prevenção 

ou inibição das lesões cariosas. Entretanto, limitações existem quanto ao estudo de 

diversos fatores e níveis experimentais (Jones & Kenward, 1989). Optou-se, então, pela 
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análise apenas do CIV no Capítulo 4 devido à melhor efetividade deste material na 

inibição da cárie radicular secundária in vitro, conforme observado nos Capítulos 1 e 2 e 

em outros estudos relatados na literatura (Dionysopoulos et al., 1998; Pereira et al., 

1998b; Hara et al., 2002). A projeção do desempenho obtido pelo CIV para outros 

materiais restauradores deve ser feita de maneira indireta. Os resultados observados no 

Capítulo 4 reforçam a hipótese de que as diferenças entre estudos in vitro e in vivo para 

análise do efeito cariostático de materiais restauradores podem estar relacionadas ao uso 

constante de fontes de fluoretos, tais como o dentifrício, que levaria a formação de 

reservatórios de íons flúor tornando desnecessário o uso de materiais restauradores 

fluoretados (Duckworth & Morgan, 1991; Shellis & Duckworth, 1994). Embora a freqüência 

ótima para a utilização de fluoretos em função do risco de cárie radicular não tenha sido 

ainda determinada, optou-se pela exposição dos espécimes ao dentifrício fluoretado por 3 

x/dia, considerando ser esta uma freqüência passível de ser reproduzida clinicamente.    

Sob as condições cariogênicas e de uso de fluoretos adotados no experimento 

não houve proteção adicional contra a cárie radicular secundária proporcionada pelo uso 

de um material restaurador fluoretado. Resultados semelhantes foram encontrados 

clinicamente ao se observar que a aplicação tópica diária de gel fluoretado inibiu o 

desenvolvimento de cárie radicular ao redor de restaurações, fluoretadas ou não, em 

pacientes xerostômicos (Wood et al., 1993; McComb et al., 2002). Sugere-se que a 

indicação de materiais restauradores fluoretados pode não ser relevante, se existir um 

equilíbrio no balanço entre o risco individual de cárie radicular secundária e a exposição a 

fluoretos, independentemente das fontes de íons flúor envolvidas. Embora os materiais 

restauradores fluoretados contribuam para o alcance desse equilíbrio, isso ocorrerá 

apenas nas adjacências da restauração, numa extensão aproximada de até 0,3 mm, 
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conforme observado no Capítulo 2. Por outro lado, o uso de fontes de íons flúor mais 

abrangentes, tais como o dentifrício, soluções de bochecho e géis, em concentrações e 

freqüência adequadas ao risco individual de cárie, permitirá a prevenção não apenas da 

cárie radicular secundária mas também de qualquer outro processo carioso existente. 

Esses dados e os resultados do Capítulo 4 permitem questionar a relevância do material 

restaurador como fonte de fluoretos estrategicamente posicionada adjacente ao sítio de 

desenvolvimento da cárie secundária.  

Conseqüentemente, a escolha do material restaurador para lesões radiculares 

deve considerar o risco de cárie do paciente, o grau de exposição deste a outras fontes 

de fluoretos e as particularidades de cada material restaurador. Para indivíduos com 

exposição de fluoretos compatível com o risco de cárie (Cury, 2001) pode-se priorizar as 

propriedades físico-mecânicas e adesivas do material restaurador, assim como suas 

características superficiais e estéticas, em detrimento do potencial cariostático. 

 

 

 94



  5.CONCLUSÃO GERAL 
 

5. CONCLUSÃO GERAL 

Conclui-se, com base nos estudos realizados nesta tese, que: 

1. sistemas adesivos fluoretados, embora capazes de liberar íons flúor, não 

apresentam potencial anticariogênico com relação à dentina radicular, em 

condições in vitro; 

2. a extensão in vitro do efeito cariostático do CIV e do IVMR foi de 

aproximadamente 0,30 e 0,15 mm, respectivamente, a partir das margens 

da restauração, sendo que nenhum efeito cariostático foi observado para a 

RCMP e a RCF;   

3. o modelo in situ de cárie em dentina radicular bovina, fundamentado no 

acúmulo de biofilme e uso de sacarose, demonstrou ser adequado para 

estudo da progressão e inibição - por fluoreto - da cárie radicular; 

4. o CIV parece não influenciar o desenvolvimento da cárie radicular 

secundária, se dentifrício fluoretado for utilizado freqüentemente. 
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