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RESUMO 
 

Modelos in vitro e in situ tem sido desenvolvidos para o estudo do biofilme dental. Protocolos 

que simulem episódios de “fartura-miséria” quando açúcares da dieta estão presentes na cavidade 

bucal e permitam avaliação de cárie dental são necessários. Por outro lado, poucos estudos da 

expressão gênica de biofilmes formados in situ foram realizados. Assim, este trabalho teve como 

objetivos: Desenvolver e validar um modelo de formação de biofilme de S. mutans que simule 

episódios de “fartura-miséria” e permita avaliar mudanças no biofilme, e desmineralização do 

esmalte dental. Também, avaliar o efeito da sacarose na expressão de genes gtfB, gtfC, gtfD e 

dexA de biofilme dental formado in vitro e in situ. Para os primeros objetivos, biofilmes de S. 

mutans UA159  cresceram durante 5 dias sobre blocos de esmalte bovino a 37oC, 10% CO2, em  

meio de cultura  ultrapurificado, sendo  avaliado: o efeito de concentração (1 a 20%) de sacarose 

e da freqüência (0 a 8x/dia) de exposição à sacarose. O efeito da clorexidina (0,012 a 0,12%) 

2x/dia e de NaF 0,05% foram testados para validar o modelo. Foram determinadas: viabilidade 

bacteriana, acidogenicidade do biofilme, biomassa e polissacarídeos; e a desmineralização do 

esmalte. Para o último objetivo, no estudo in vitro biofilmes de S. mutans UA159 cresceram nas 

mesmas condições acima citadas e foram expostos à sacarose 1% constante (controle) ou 

sacarose 10% 8x/dia (grupo intermitente) e após 48, 72 e 120 h os biofilmes foram coletados 

para análise gênica de gtfB, gtfC, gtfD e dexA. No experimento in situ, um estudo cruzado de 2 

fases experimentais de 7 dias foi realizado, com 9 voluntários que usaram um dispositivo 

palatino contendo 12 blocos de dentina que foram submetidos 8x/dia a soluções de sacarose de 1, 

5, 10 e 20%. No final, os biofilmes foram coletados para análise microbiológica, bioquímica e de 

expressão gênica de gtfB, gtfC, gtfD e dexA. Os resultados de padronização mostraram que as 

concentrações de sacarose de 10% e 20% e a frequência 8x/dia provocam mudanças no biofilme 

e na demineralização similares ao controle. Clorexidina mostrou efeito dose resposta, 

diminuindo biomassa, viabilidade bacteriana, acidogenicidade do biofilme e demineralização do 

esmalte, NaF 0,05% não mostrou atividade antimicrobiana, mas apresentou similar efeito a 

clorexidina 0,12% na redução da desmineralização. Para o último objetivo, os resultados in vitro 

do grupo intermitente mostraram que a expressão de genes analisados parece ser constante 

enquanto que no controle a expressão desses genes incrementou-se em função ao tempo. No 

estudo in situ, o incremento da concentração de sacarose aumentou os valores de peso úmido do 
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biofilme, lactobacilos e polissacarídeos extracelulares do biofilme. Quanto a expressão gênica, só 

foi possível quantificar o gtfB e não apresentou diferenças entre os grupos. Em conclusão, o 

modelo in vitro apresenta potencial para avaliar o efeito antimicrobiano de substâncias sobre 

biofilmes e desmineralização dental. A quantificação da expressão de genes gtfB, gtfC, gtfD e 

dexA foi possível in vitro, mas in situ somente a expressão de gtfB foi determinada e não parece 

ser regulada pela concentração de sacarose. 

Palavras-chave: Biofilme dental, S. mutans, sacarose, expressão gênica 
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ABSTRACT 

 

In vitro and in situ models have been developed to study dental biofilms. Protocols, that simulate 

the alternations of “feast or famine” episodes that happen in oral environment in the presence of 

dietary carbohydrates and allowing dental caries evaluation, are necessaries. On the other hand, 

few studies about gene expression of dental biofilm formed in situ were performed. Thus, the 

objectives of this research were: To develop and to validate a model of S. mutans biofilm 

formation simulating ‘feast-famine’ episodes that allows biofilms and dental demineralization 

changes assessment. Also, to evaluate the effect of sucrose exposure on expression of gtfB, gtfC, 

gtfD and dexA of in vitro and in situ dental biofilms. For the first objectives, S. mutans UA159 

biofilms were grown during 5 days on bovine enamel slabs at 37oC, 10% CO2 in ultra-purified 

culture media. To develop the model, the effect of sucrose concentration (1 - 20%) 8x/day 

and frequency (0 - 8x/day) exposure were evaluated and to validate the model, chlorhexidine 

(CHX) effect (0.012- 0.12%) 2x/day was tested. Bacterial viability, biofilm acidogenicity, 

biomass and polysaccharides were determined, and enamel demineralization was evaluated by 

surface hardness loss. To the last objective, for in vitro study, S. mutans UA159 biofilms were 

grown in the same conditions of previous experiments and were exposed to 1% sucrose 

constantly (control) or 10% sucrose 8x/day (intermittent group) and after 48, 72 and 120 h the 

biofilms were collected for analysis. For in situ experiment, a crossover study was conducted in 

two phases of 7 days each, with nine volunteers that wore intraoral palatal appliances containing 

12 dental dentin slabs, which were extra orally submitted 8 times/day to sucrose solutions of 1%, 

5%, 10% and 20% . On the 7th day, biofilms were collected for analysis. RNA from the in vitro 

and in situ biofilms were extracted and purified. Gene expression of gtfB, gtfC, gtfD and dexA 

were evaluated by real time PCR. In vitro development and validation results showed that 10% 

and 20% sucrose concentrations and frequency 8x/day provoked biofilm and enamel 

demineralization changes similar to control group. CHX showed dose-response effect decreasing 

biomass, bacterial viability and enamel demineralization (p<0.05). Also, 0.05% NaF did not 

show antimicrobial effect but had similar effect than 0.12% CHX decreasing enamel 

demineralization (p<0.05). With regard to gene expression of in vitro experiment, gene 

expression of intermittent group was constant along the time. In situ results showed that biofilm 
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wet weight, lactobacillus, extracellular polysaccharides values of the biofilm increased according 

to the increase of sucrose exposure. No differences for gtfB gene expression between the groups 

were observed (p<0.05) and no levels of gtfC, gtfD and dexA were detected. In conclusion, the 

model developed and validated has potential to assess substances with antimicrobial effect on 

biofilm and dental demineralization. Quantification of gtfB, gtfC, gtfD and dexA gene expression 

levels were possible for S. mutans biofilms in vitro study but only gtfB gene expression of in situ 

study can be determined and was not regulated by sucrose concentration. 

Key words: Dental biofilm, S. mutans, sucrose, gene expression 
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INTRODUÇÃO 

O biofilme dental é uma complexa comunidade microbiológica embebida em uma matriz 

extracelular e aderido à superfície dental (Marsh, 2003). Na cavidade bucal, os microrganismos 

do biofilme dental são expostos a grandes quantidades de carboidratos e alguns destes 

microrganismos têm a capacidade de metabolizar rapidamente estes carboidratos produzindo 

ácidos e estocando fontes de energia. Após esta rápida exposição de açúcares, a saliva elimina os 

excessos de nutrientes e a microbiota passa longos períodos de tempo na ausência de nutrientes. 

Estes fenômenos são conhecidos como episódios de “fartura-miséria” e podem causar mudanças 

microbiológicas, aumentando a proporção de espécies como S. mutans e S. sobrinus (Loesche, 

1986; Marsh, 2006). 

S. mutans é considerado um importante microrganismo no desenvolvimento da cárie 

dental humana (Hamada and Slade, 1980; Loesche, 1986), porque além de utilizar carboidratos 

fermentáveis da dieta, especialmente a sacarose, para produzir ácidos, ele sintetiza 

polissacarídeos extracelulares insolúveis (PECI) e solúveis (PECS) por meio de três enzimas de 

glucosiltransferases: GTFB, GTFC e GTFD (Colby and Russell, 1997), que são codificadas 

respectivamente pelos genes gtfB, gtfC e gtfD (Kuramitsu, 1993). PECI são importantes factores 

de virulência do S. mutans porque eles têm a importante papel na adesão e no acúmulo de 

microrganismos na superfície dental (Loesche, 1986, Hojo et al., 2009) e formam partes da 

matriz extracelular que é responsável pela integridade estrutural do biofilme dental (Yamashita et 

al., 1993; Schilling and Bowen, 1992, Xiao and Koo, 2009, Koo et al, 2009). PECS servem como 

reservas de energia externos para os microrganismos (Colby e Russell, 1997). Por outro lado, 

existe evidência que a estrutura dos PECI pode ser modificada por dextranases e/ou mutanases, 

remodelando e ramificando a matriz extracelular (Hayacibara et al., 2004). 

 Biofilmes de S. mutans são usados como uma forma de avaliar biofilme dental in vitro 

devido às dificuldades que existem para desenvolver estudos in vivo em situações cariogênicas 

ou que possam ser prejudiciais para os voluntários. Modelos in vitro usam simulações simples de 

situações in vivo para estudar a fisiologia e comportamento de biofilmes frente a diferentes 

condições (Sissons, 1997). 

Embora muitos estudos contribuíram para o entendimento de biofilmes dentais com 

relação a expressão gênica (Li e Burne, 2001; Shemesh, 2007), adaptação ácida (Li et al., 2001); 
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e resistência antimicrobiana (Koo et al., 2006), estes estudos foram executados com protocolos 

de crescimento de biofilme que usam exposição constante de carboidratos como fonte de 

nutrientes que não simula as verdadeiras alternâncias de episódios de “fartura e miséria” que 

acontecem na cavidade bucal na presença de açúcares. Por outro lado, estes modelos não 

utilizam susbtrato dental, impossibilitando a avaliação de desmineralização dental provocada 

pelos biofilmes. 

Outro modelo experimental para o estudo do biofilme dental são os modelos in situ que 

não conseguem controlar todas as condições como os estudos in vitro, mas é conduzido em 

situações reais. Poucos estudos sobre expressão gênica de biofilme dental formado in situ têm 

sido realizados, e um destes estudos (Aires et al., 2008) mostrou o aumento de níveis de PECI 

quando a concentração de exposição à sacarose foi aumentada o que pode indicar que a 

expressão gênica de gtfB, gtfC, gtfD e dexA pode ser modificada nessas condições. 
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PROPOSIÇÃO 

O presente estudo teve como objetivos: 

a) Desenvolver um modelo de crescimento de biofilme de S. mutans que simule episódios 

de “fartura-miséria” que acontecem no ambiente bucal através do efeito da concentração 

e frequência de exposições de sacarose sobre o biofilme dental e sobre a 

desmineralização do esmalte dental. 

b) Validar este modelo através da relação dose resposta da clorexidina sobre biofilmes de S. 

mutans e sobre a desmineralização do esmalte. 

c) Avaliar o efeito da sacarose na expressão gênica de gtfB, gtfC, gtfD e dexA de biofilmes 

dentais formados in vitro e in situ. 

 

Este trabalho foi realizado no formato alternativo, conforme deliberação número 002/06 

da Comissão Central de Pós-Graduação (CCPG) da Universidade Estadual de Campinas 

(UNICAMP). 
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CAPÍTULO 1 
 
 

Development of an improved S. mutans biofilm model 
 
 
 
 

Ccahuana Vásquez RA, Cury JA. 

Piracicaba Dental School, UNICAMP, Piracicaba, SP, Brazil 
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ABSTRACT 
Since biofilm models should simulate oral environmental conditions, the objective of this 

research was to standardize a model of biofilm formation of S. mutans, simulating ‘feast-famine’ 

episodes of sucrose exposure that happen in the oral cavity and allowing the quantification of 

dental demineralization. S. mutans UA159 biofilms were grown during 5 days on bovine enamel 

slabs at 37oC and 10% CO2 in ultra-purified culture media. To standardize the model, the effect 

of sucrose concentration (1, 5, 10 and 20%) 8x/day and the frequency of exposure (0, 2, 4 and 

8x/day) were evaluated. Bacterial viability, biofilm acidogenicity, biomass and extracellular 

polysaccharides were determined, and enamel demineralization was evaluated by surface 

hardness loss. The results showed that sucrose at 10% or 20% and the frequency of exposure 

8x/day provoked similar changes on biofilms and also enamel demineralization than sucrose 1% 

exposed constantly used as control. The standardized model was sensitive to detect changes in 

the biofilm metabolism in different conditions and the use of 10% sucrose 8x/day is suggested to 

study S. mutans biofilm instead of 1% sucrose exposure constantly. 
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INTRODUCTION 

Dental biofilm is a complex community of microorganisms found on a tooth surface 

embedded in a matrix of polymers of host and bacterial origin (Marsh, 2003; 2006). In oral 

environment, microorganisms of dental biofilm are exposed to large amounts of sugar in a short 

period of time and some microorganisms have the capacity to use these carbohydrates to 

synthesize extracellular polysaccharides, store energy and produce acid. After this rapid sugar 

exposition, dental biofilm passes through to long periods of sugar starvation. These 

phenomenons are known as feast or famine episodes and the high frequency of these episodes 

can cause a microbiological selection, increasing a proportion of acid-tolerant species like S. 

mutans and S. sobrinus (Loesche, 1986; Marsh, 2006). 

S. mutans is one of the most cariogenic microorganisms of dental biofilm due to the 

capacity to use dietary carbohydrates to synthesize extracellular polysaccharide and has acidic 

and acid tolerant properties (Loesche, 1986). Many researches have focused in S. mutans 

biofilms as a way of evaluating cariogenic biofilm due to research difficulties to develop in vivo 

studies in cariogenic situations (Sissons, 1997). 

Sucrose is considered the most cariogenic carbohydrate, because it is fermented by 

cariogenic microorganisms, and serves as a substrate for the synthesis of extracellular (EPS) 

polysaccharides in dental plaque (Paes Leme et al., 2006). EPS are important virulence factors 

because they promote bacterial adherence to the tooth surface (Rölla, 1989; Schilling and 

Bowen, 1992), contribute to the structural integrity of dental biofilms (Koo et al., 2009; Xiao and 

Koo, 2009), change the porosity of the biofilm (Dibdin and Shellis, 1988) and consequently 

increase enamel demineralization (Cury et al. 2000). Also, the presence of sucrose into dental 

biofilm causes  higher demineralization in dental substrate than other sugars like starch (Ribeiro 

et al., 2005, Thunheer et al., 2008) and glucose + fructose (Cury et al., 2000). 

Many studies about gene expression (Shemesh et al., 2007) and antibacterial tests (Koo et 

al., 2006, Coenye et al., 2007; Deng et al., 2009) of S. mutans biofilm used protocols of growth 

with constant sucrose exposure as nutrient source to microorganisms, which does not simulate 

the real alternations of “feast or famine” episodes that happen in oral environment when dietary 

carbohydrates are present in oral cavity. In addition, these protocols do not use dental substrate 

and it does not allow the evaluation of dental caries in different conditions. 
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 Therefore, the aim of this study was to develop a S. mutans biofilm improved model that 

simulates “feast or famine” episodes that allow the evaluation of biofilm changes and dental 

demineralization. 

 

MATERIAL AND METHODS 

Experimental design 

To standardize the model, the effect of biofilm exposition to sucrose concentrations from 

1%, to 20%, 8x/day simulating alternations of abundance and absence of sugar in the oral cavity 

was studied. As control, the biofilm exposed constantly to 1% sucrose was evaluated. Based on 

the results of the first experiment concerning enamel demineralization, the second experiment 

was conducted in which sucrose concentration was fixed and the frequency of sucrose exposure 

from 0x to 8x/day was tested.  

For the two experiments, S mutans UA159 biofilms were formed on saliva-coated bovine 

enamel slabs suspended vertically in ultrafiltered tryptone-yeast extract broth (UTYEB) 

containing 1% sucrose at 37 °C, 10% CO2 during 8 h; then the biofilms were grown in UTYEB 

containing 0.1 mM glucose at 37°C, 10% CO2 during 136 h. Biofilm acidogenicity was 

determined daily through pH measurement of culture media, which was changed daily. In the 

final of each experiment, biofilms were collected and viable cells, biofilm biochemical 

composition and enamel mineral loss were analyzed. For statistical evaluation, each biofilm was 

considered as an experimental block. 

 

Enamel preparation 

Bovine incisor teeth, whose roots were removed, were stored in 2% formol solution for a 

period of at least 30 days (White, 1987). The tooth crown was fixed in an acrylic base and, with 

two parallel disks spaced 4 mm, a longitudinal slice was obtained from the central part of the 

dental specimen. Using two parallel disks spaced 7 mm, this slice was transversally cut. The 

dentin of this 7x4 mm dental slab was totally worn in a grinder machine (Phoenix Beta, Buehler, 

Lake Bluf, IL, USA), using 400-grit aluminum oxide abrasive paper. Enamel surfaces were 

flattened, polished and baseline enamel surface hardness was determined on outer enamel 

surface by making 3 indentations, spaced 100 µm from each other, using a Knoop indenter with 
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a 25 g load for 5 s and a Future-Tech FM microhardness tester coupled to software FM-ARS 

900. Slabs presenting hardness of 333.0 ± 10.7 kg/mm2 were randomly divided in six groups 

(n=4) to sucrose experiment and four groups (n=6) to frequency experiment.  

Each slab was individually placed in 1 mL of a solution containing 0.06 mM Pi and 0.08 

mM Ca++ and sterilized by autoclaving (condition previously standardized). The sterilized slabs 

were anchored vertically in metallic devices and suspended in 24-well culture plate.  

 

Biofilm growth 

UTYEB was used as culture media (Koo et al., 2003) and depending on the experimental 

phase, the media contained 1% glucose, 1% sucrose or 0.1 mM glucose as described further. S. 

mutans UA159 colonies were transferred to UTYEB containing 1% glucose and incubated at 

37°C and 10% CO2 to reactivate the microorganisms. The slabs, on which human salivary 

pellicle was formed, were individually positioned in well containing 2.0 mL of the inoculum and 

were incubated at 37 °C, 10% CO2 to allow bacterial adhesion on acquired pellicle. All these 

procedures were done according to Koo et al. (2003) but after 8 h (previously standardized) 

incubation the slabs were transferred to the fresh UTEYB containing 0.1 mM glucose (salivary 

basal concentration) and incubated for additional 16 h at 37 °C, 10% CO2. On the next day, 

biofilms on enamel slabs were transferred to fresh UTYEB containing 0.1 mM glucose and they 

were exposed 8x/day during 1 min  to 10% sucrose (containing 1.23 mM Ca, 0.74 mM Pi and 

0.023 µg F/mL, previously standardized) at predetermined times (8:00, 9:30, 11:00, 12:30, 

14:00, 15:30, 17:00 and 18:30 h). This procedure was repeated for the next 3 days. After each 

sucrose exposure, the biofilms on enamel slabs were washed 3 times in 0.9% NaCl. The pH of 

the culture media was determined every 24 h and the media was changed to fresh one. 

Treatments 

For the first experiment (n=4) the groups tested were: 1%, 5%, 10% and 20%, 8x/day and 

1% sucrose constant; for the second experiment (n=6) the group tested were 0x (control group), 

2x, 4x and 8x/day of sucrose exposure at 10% concentration. The concentrations and frequencies 

evaluated as a cariogenic challenges were based in previous in situ studies (Aires et al., 2006; 

Ccahuana-Vásquez et al., 2007).  
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Biofilm collection 

After the assigned experimental time of biofilm growth, the enamel slabs containing the 

biofilms were washed 3 times in 0.9% NaCl and individually transferred to microcentrifuge 

tubes containing 1 ml of 0.9% NaCl. The tubes were sonicated at 7 W for 30 s (Branson, Sonifier 

50, USA) to detach the biofilms formed on the slabs (Aires et al., 2008). The slabs were carefully 

removed from the suspension and stored for enamel demineralization determination. Aliquots of 

the suspension were used for determination of biofilm bacterial viability, biomass (dry weight 

and total soluble proteins) and extracellular polysaccharides. 

 

Biomass Determination 

 Biofilm dry weight determination was done according to Koo et al. (2003) from 200 µl of 

the suspension. For total soluble protein determination (Lowry et al., 1951), 50 µl of the 

suspension was transferred to a microcentrifuge tube, to which the same volume of 2M NaOH 

was added. The tube was vortexed and placed at 100°C for 15 min, centrifuged (10000 g for 10 

min, 4°C) and in the supernatant the concentration of soluble protein was determined  (DC 

Protein Assay, Bio-Rad, USA) . 

 

Bacterial viability 

An aliquot of 100 µl of the suspension was diluted in 0.9% NaCl in series up to 10-7 and 

2 drops of 20 µL of each dilution were inoculated on BHI agar (BD, Sparks, USA) to determine 

viable microorganism number (Herigstad et al., 2001). The plates were incubated for 48 h at 

37°C, 10% CO2. Colonies formation units (CFU) were counted and the results were expressed as 

CFU/mg of biofilm dry weight (Aires et al., 2008). 

 

Polysaccharide analyses 

 From 100 µl of the suspension, insoluble and soluble extracellular polysaccharides were 

extracted according to Aires et al. (2008) and analyzed for total carbohydrate according to 

Dubois et al. (1956). The results were normalized by biofilm dry weight. 
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Enamel demineralization assessment 

At the end of each experimental phase, enamel slabs surface hardness (SH) was again 

measured. One row of three adjacent indentations spaced by 100 µm was made 100 µm from the 

three baseline measurements. The mean values of the three baseline indentations and the three 

measurements after treatments were then averaged and the % SHL was calculated (baseline SH – 

SH after in vitro test) x100/baseline SH). Surface hardness loss was used as indicator of enamel 

demineralization (Cury et al., 2000). 

 

 Statistical analysis 

The assumptions of equality of variances and normal distribution of errors were checked 

for all the response variables tested and those that did not satisfy were transformed (Box et al., 

1978). The relationship between sucrose concentrations and frequencies of sucrose exposure 

with variables evaluated was estimated by regression analysis. Variables of viable cells, 

polysaccharides and %SHL of concentration experiment; viable cells, EPS and total proteins of 

frequency experiment were transformed to log10. All the variables were submitted to analysis of 

variance (ANOVA), with the exception of pH of the culture media that was analyzed by repeated 

measured ANOVA followed by Tukey. The software SPSS for Windows 15.0 was used and the 

significance level was fixed at 5%. 

 

RESULTS 
 Regarding to sucrose concentration, statistically significant linear effect among sucrose 

concentration and biofilm dry weight, total soluble proteins, viable bacteria, SEPS and enamel 

demineralization was found (Table 1). No effect on IEPS was observed. Culture media pH of 5% 

sucrose 8x/day was lower than 1% sucrose 8x/day and higher than the other groups at 48, 72, 96 

and 120 h of biofilm growth (Fig. 1A). Dry weight (Fig. 1B) and %SHL (Fig 1D) of 10% and 

20% sucrose groups were higher than 1% and 5% sucrose concentration and similar than control 

group (p<0.05). Total proteins of 1% sucrose were similar to 5% sucrose and lower than the 

other groups (Fig. 1B). Bacterial viability in 1% sucrose was higher than the other groups (Fig. 

1C). IEPS in control group was higher than those in experimental groups (p<0.05) and no 

differences were observed between experimental groups (p>0.05); SEPS of 10% and 20% 
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sucrose were higher than the other groups (p>0.05), which did not differ from each other 

(p<0.05).  

 In relation to the frequency of sucrose exposure following the results of the first 

experiment, 10% sucrose was used as cariogenic challenge. Statistically significant linear effect 

among frequency of sucrose exposure and biofilm dry weight, total soluble proteins, viable 

bacteria, IEPS and enamel demineralization was found (Table 3). No effect on SEPS was 

observed. Culture media pH decreased according to the increase of frequency of sucrose 

exposure at 48, 72, 96 and 120 h of biofilm growth (Fig. 2A). Biomass (Fig. 2B) and IEPS 

(Table 4) increased according to the increase of frequency exposure and all the groups were 

different (p<0.05). Bacterial viability (Fig.2C) values at frequency of 8x/day was lower than the 

other groups (p<0.05). %SHL at frequency of 8x/day was higher than the other groups, which 

did not differ from each other (Fig. 2D). No differences were found among the frequencies to 

SEPS (p>0.05). 

 

DISCUSSION  

The development of in vitro models has contributed to the understanding of different 

aspects of biofilms, such as, matrix frameworks (Sutherland, 2001), channels of nutrient 

transport (Costerton, 1999), quorum sensing (Suntharalingam and Cvitkovitch, 2005), gene 

expression (Shemesh, 2007) and higher resistant to antibacterial compounds compared to 

planktonic cells (Costerton, 1999; Mah and O’Toole, 2001). In spite of these advances in biofilm 

research, improvements can be performed to simulate as close as possible the real conditions that 

happen in vivo biofilm. 

Dose-response effect was observed in both experiments to biomass, viable bacteria and 

enamel demineralization, independent of the way to increase the carbohydrate supply. SEPS in 

concentration experiment and IEPS in frequency experiment showed dose-response effect, 

suggesting that the production of extracellular polysaccharide can be regulated in different ways 

when amount of frequency of sucrose exposure is modified. 

In the presence of sucrose in the experimental concentration 1% sucrose and frequencies 

0x and 2x groups, the microorganisms produced acid low levels above the critical enamel pH. 

Biomass data showed higher values of dry weight and total proteins according to the increase in 
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sucrose exposure in both experiments (Fig. 1B and 2B). Dietary carbohydrates are rapidly 

fermented by S. mutans (Colby and Russell, 1997) and the presence of large amounts of sucrose 

stimulated the increase of metabolism activity and consequently the biomass increased. Viable 

bacteria counts diminished according to the increase of sucrose concentration (Fig 1C) and 

frequency of sucrose exposure (Fig. 2C). These acidic conditions provoked that S. mutans alters 

its physiology to survive activating acid tolerance response to enhance the survival at low pH, 

but these changes did not avoid the decrease of viable number in agreement to Welin-Neislands 

and Svensäter (2007). 

 Levels of enamel mineral loss were higher according to the increase of sucrose 

concentration (Fig. 1D) in agreement to Tehrani et al. (1983) and Aires et al. (2006). However, 

only 10% and 20% sucrose groups showed similar demineralization than control group. The 

lower acid production of 1% and 5% sucrose concentration groups (Fig. 1A) can be responsible 

of lower mineral loss than the other groups. The same profile was observed when frequency of 

sucrose exposure was increased (Fig. 2D). The frequency 8x/day provoked higher 

demineralization than the other groups in agreement with in situ study of Ccahuana-Vásquez et 

al. (2007). 

 The production of EPS is considered the main virulence factor of cariogenic biofilm in 

the development of dental caries (Loesche, 1986), and concentration and frequency experiments 

showed different profiles of EPS production: concentration experiment did not show differences 

in IEPS between the experimental groups and EPS of 10% and 20% groups were higher than the 

other groups. In the other hand, frequency experiment exhibited IEPS high levels according to 

the increase of the frequencies and no differences in the groups were observed to EPS. The way 

of carbohydrate supply to dental biofilm may influence and modified the gene expression of 

glucosyltranferases (Shemesh, 2007) and dextranases (Colby and Rusell, 1997) enzymes 

responsible for the production and degradation of EPS. 

 In conclusion, this in vitro model demonstrated to be sensible to detect differences of S. 

mutans biofilms metabolism in the presence of sucrose in more physiological conditions. The use 

of the concentration of 10% sucrose, and the frequency 8x/day is suggested to study S. mutans 

biofilm instead of culture media containing 1% sucrose constantly. 
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Table 1. Correlation (r) and significance (p) between 
sucrose concentration (1 – 20%) and the response 
variables. 

Variable response r p 

Biofilm dry weight 0.85 <0.001 
Soluble total proteins 0.732 <0.001 

Viable bacteria 0.73 <0.001 
% Surface hardness loss 0.881 0.001 

IEPS 0.31 0.243 
SEPS 0.911 <0.001 

   *IEPS: Insoluble Extracellular Polysaccharides 
     SEPS: Soluble Extracellular Polysaccharides 
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Fig. 1. Sucrose concentration effect on S. mutans biofilms. (A) pH of the culture media (24, 48, 72, 96 and 120 h data). The 
statistical significance among the treatments is described in Results section. (B) Means of biofilm dry weight (mg) and amount of 
soluble proteins (µg x 10-3). (C) Means of viable bacteria (CFU/mg dry weight). (D) Means of enamel demineralization (%SHL). 
Results are according to sucrose treatments. Vertical bars denote standard deviations and significant differences among the groups are 
indicated by different letters (p < 0.05).  

A B 

C D 
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Table 2. Means (n=4) of insoluble (IEPS) and soluble (SEPS) extracellular polysaccharides 
in S. mutans biofilms according to the sucrose concentrations. Significant differences 
among the treatments, for each polysaccharide, are indicated by different letters (p < 0.05). 
 

Sucrose treatment IEPS (ug/mg) SEPS (ug/mg) 

 1% constantly 199.04 ± 15.77a 13.75 ± 1.72a 
1% 8x/day 110.41 ± 47.92b 15.97 ± 3.66a 
5% 8x/day 121.92 ± 11.45b 19.87 ± 4.32a 
10% 8x/day 113.79 ± 16.9b 30.49 ± 3.38b 
20% 8x/day 136.75 ± 14.88ab 40.72 ± 5.96b 
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Table 3. Correlation (r) and significance (p) between 
frequency of sucrose exposure  (0 – 8x/day) and the 
response variables. 

Variable response r p 

Biofilm dry weight 0.963 <0.001 
Soluble total proteins 0.94 <0.001 

Viable bacteria 0.469 0.024 
% Surface hardness loss 0.9 <0.001 

IEPS 0.85 <0.001 
SEPS 0.081 0.72 

*IEPS: Insoluble Extracellular Polysaccharides 
     SEPS: Soluble Extracellular Polysaccharides 
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Fig. 2. Frequency of sucrose exposure  effect on S. mutans biofilms. (A) pH of the culture media (24, 48, 72, 96 and 120 h data). 
The statistical significance among the treatments is described in Results section. (B) Means of biofilm dry weight (mg) and amount of 
soluble proteins (µg x 10-3). (C) Means of viable bacteria (CFU/mg dry weight). (D) Means of enamel demineralization (%SHL). 
Results are according to the frequencies. Vertical bars denote standard deviations and significant differences among the groups are 
indicated by different letters (p < 0.05).

A B 

C D 
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Table 4. Means (n=6) of insoluble (IEPS) soluble (SEPS) extracellular polysaccharides in S. 

mutans biofilms according to the frequency of sucrose exposure. Significant differences 
among the frequencies, for each polysaccharide, are indicated by different letters (p < 
0.05). 
 

Frequency/day 
Extracellular Polysaccharides 

IEPS (ug/mg of biofilm dry 
weight) 

SEPS (ug/mg of biofilm dry 
weight) 

0x 24.00 ± 10.15c 25.57 ± 14.99a 
2x 76.50 ± 7.18b 20.31 ± 2.29a 
4x 104.61 ± 11.01a 18.12 ± 4.13a 
8x 111.86 ± 11.62a 26.52 ± 4.31a 
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ABSTRACT 

Background 

Since biofilm models should be validated, this research aimed to validate a model of biofilm 

formation of S. mutans, which simulating ‘feast-famine’ episodes of sucrose exposure that 

happen in the oral cavity, showed dose-response susceptibility to antimicrobials and allowed the 

evaluation of substances with anticaries potential. 

Results 

S. mutans UA159 biofilms were grown during 5 days on bovine enamel slabs at 37 Celsius 

degree, 10% carbon dioxide. To validate the model, the biofilms were treated 2x/day with 

chlorhexidine digluconate at 0.012, 0.024 and 0.12% (concentration with recognized anti-plaque 

effect) and 0.05% NaF (concentration with recognized anti-caries effect). Chlorhexidine 

digluconate showed dose-response effect, decreasing biomass, bacterial viability and enamel 

demineralization (p<0.05). Moreover, 0.05% NaF did not show antimicrobial effect, but had 

similar effect than 0.12% chlorhexidine digluconate, decreasing enamel demineralization 

(p<0.05).  

Conclusion 

The model developed has potential to evaluate the effect of substances on biofilm growth and 

enamel demineralization. 
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BACKGROUND 

 Dental biofilm is an organized microbiologic community enclosed in a matrix of 

extracellular material and attached to dental surfaces [1]. In some conditions, such as high 

carbohydrate consumption, the presence of high amount of sugars can change the biochemical 

and microbiological composition of biofilm, leading to an increase in the proportion of 

pathogenic species, transforming a healthy biofilm in to a cariogenic one and can develop dental 

caries disease [2]. 

  In the oral cavity, microorganisms of dental biofilm are exposed to large amounts of 

sugar during short periods of time and some microorganisms have the capacity to use these 

carbohydrates to produce acid, synthesize extracellular polysaccharides and store energy. After 

this rapid sugar exposure, dental biofilm passes for long periods of sugar starvation. These 

physiological conditions of bacteria growth are known as ‘feast or famine’ episodes [3] and can 

cause microbiological selection, increasing a proportion of acid-tolerant species, like S. mutans 

in biofilm [4, 5]. 

S. mutans is considered the most cariogenic microorganisms of dental biofilm due to its 

capacity to use dietary carbohydrates as sucrose, to synthesize extracellular polysaccharides 

(EPS) and to its acidogenic and aciduric properties [4]. EPS are important virulence factors of S. 

mutans, because they promote bacterial adherence to the tooth surface [6, 7], contribute to the 

structural integrity of dental biofilms [8, 9], change the porosity of the biofilm [10] and 

consequently increase enamel demineralization [11]. Therefore, S. mutans biofilms have been 

used to evaluate its cariogenic properties due to difficulties to develop in vivo studies in 

controlled cariogenic situations [12]. 

However, most S. mutans biofilm  model protocols to evaluate antimicrobial substances 

use sucrose exposure constantly as nutrient source to biofilm growth [13, 14, 15], which subjects 

the biofilm to a constant acid stress, not simulating the real alternations of “feast or famine” 

episodes that occur in the oral cavity. Also, these protocols do not use dental substrates to 

evaluate the effect of antimicrobial substances on dental demineralization provoked by the 

attached biofilm. Furthermore, an important requirement of biofilm models is that they should 

show a dose-response effect against antimicrobial substances. Concerning to oral biofilm 

models, chlorhexidine has been used as ‘gold standard’ because is considered the most efficient 
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topical substance to reduce dental plaque, a kind of biofilm [16]. Also, it is recognized that 

although fluoride is the most important anticaries substance [17], its antibacterial effect is limited 

[18] and a model should simulate the main mechanism of fluoride on dental caries. 

Therefore, this study aimed to validate a S. mutans biofilm model that simulating sucrose 

exposure that occurs in the oral environment allows the evaluation of antimicrobial substances 

on biofilm formation and on enamel demineralization. 

 

METHODS 

Experimental design 

This S. mutans biofilm model was modified from Koo et al. [13] and the main 

modifications were the use of dental substrate and the simulation of ‘feast or famine’ episodes of 

sucrose exposure. Previously, the sucrose concentration and the frequency of exposure were 

standardized (data not shown). The findings showed dose-response effect of sucrose 

concentration and frequency, and 10% sucrose at frequency of 8x/day was chosen to validate the 

model concerning antibacterial dose-response effect on biofilm and enamel demineralization. 

 Therefore, S. mutans UA159 biofilms were formed on saliva-coated bovine enamel slabs 

suspended vertically in ultrafiltered tryptone-yeast extract broth (UTYEB) at 37°C, 10% CO2 

during 5 days [13] but exposed 1 min, 8x/day to 10% sucrose. After 48 h, the growth of some 

biofilms (n=4) was stopped (baseline) and the others (n=4) were grown for more 3 days and 

treated 2x/day during 1 min with one of the following solutions: 1) 0.9% NaCl (Control), 2) 

0.012% CHX, 3) 0.024% CHX, 4) 0.12% CHX and 5) 0.05% NaF. In all biofilms; biomass, 

viable bacteria and biochemical composition were determined, and on enamel slabs mineral loss 

was assessed. The pH of the culture media was determined at 24 h as an indicator of biofilm 

acidogenicity. For statistical evaluation each biofilm was considered as an experimental block. 

 

Enamel preparation 

Bovine incisor teeth, whose roots were removed, were stored in 2% formol solution for a 

period of at least 30 days [19], The tooth crown was fixed in an acrylic base and; with two 

parallel disks spaced 4 mm, a longitudinal slice was obtained from the central part of the dental 

specimen. Using two parallel disks spaced 7 mm, this slice was transversally cut. The dentin of 
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this 7x4 mm dental slab was totally worn in a grinder machine (Phoenix Beta, Buehler, Lake 

Bluf, IL, USA), using 400-grit aluminum oxide abrasive paper. Enamel surfaces were flattened, 

polished and baseline enamel surface hardness was determined on outer enamel surface by 

making 3 indentations, spaced 100 µm from each other, using a Knoop indenter with a 25 g load 

for 5 s and a Future-Tech FM microhardness tester coupled to software FM-ARS 900. Slabs 

presenting hardness of 331.7 ± 13.8 kg/mm2 were randomly divided in six groups (n=4).  

Each slab was individually placed in 1 mL of a solution containing 0.06 mM Pi and 0.08 

mM Ca++ and sterilized by autoclaving (condition previously standardized).  

 

Biofilm growth 

UTYEB was used as culture media [13] and, depending on the experimental phase, the 

media contained 1% glucose, 1% sucrose or 0.1 mM glucose as described further. S. mutans 

UA159 colonies were transferred to UTYEB containing 1% glucose and incubated at 37 °C and 

10% CO2 to reactivate the microorganisms. The sterilized slabs were anchored vertically in 

metallic devices, treated with clarified human saliva to form pellicle acquired, individually 

positioned in each well with 2.0 mL of UTYEB containing 1% sucrose and inoculum and were 

incubated at 37 °C, 10% CO2 to allow bacterial adhesion on acquired pellicle. All these 

procedures were done according to Koo et al. [13]. After 8 h of incubation (previously 

standardized) the slabs were transferred to the fresh UTEYB containing 0.1mM glucose (salivary 

basal concentration) and incubated for additional 16 h at 37 °C, 10% CO2. On the next day, 

biofilms on enamel slabs were transferred to fresh UTYEB containing 0.1 mM glucose and were 

exposed 8x/day during 1 min  to 10% sucrose (containing 1.23 mM Ca, 0.74 mM Pi and 0.023 

µg F/mL, previously standardized) at predetermined times (8:00, 9:30, 11:00, 12:30, 14:00, 

15:30, 17:00 and 18:30 h). This procedure was repeated for the next 3 days. After each sucrose 

exposure, the biofilms on enamel slabs were washed 3 times in 0.9% NaCl. The pH of the culture 

media was determined every 24 h and the media was changed to fresh one.  

 

Treatments 

The CHX solutions were prepared from 20% chlorhexidine digluconate (Sigma, 

Steinheim, Germany) using sterilized distilled water. From 0.12% CHX, solutions 5 (0.024%) 
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and 10 (0.012%) times less concentrated were prepared to evaluate dose-response effect. The 

solution of 0.05% NaF was prepared and sterilized by autoclaving. The treatments were made 

2x/day, after the first and the last sucrose exposure of the day. After each treatment, the biofilms 

on enamel slabs were washed 3 times in 0.9% NaCl. 

 

Biofilm collection 

After the assigned experimental time of biofilm growth, the enamel slabs containing the 

biofilms were washed 3 times in 0.9% NaCl and individually transferred to microcentrifuge 

tubes containing 1 ml of 0.9% NaCl. The tubes were sonicated at 7W for 30 s (Branson, Sonifier 

50, USA) to detach the biofilms formed on the slabs [20]. The slabs were carefully removed 

from the suspension and stored for enamel demineralization determination. Aliquots of the 

suspension were used for determination of biofilm bacterial viability, biomass (dry weight and 

total soluble proteins) and polysaccharides. 

 

Biomass Determination 

 Biofilm dry weight determination was done according to Koo et al. [13] from 200 µl of 

the suspension. For total soluble protein determination [21], 50 µl of the suspension was 

transferred to a microcentrifuge tube, to which the same volume of 2 M NaOH was added. The 

tube was vortexed and placed at 100°C at 15 min, centrifuged (10000 g for 10 min, 4°C) and in 

the supernatant the concentration of soluble protein was determined  (DC Protein Assay, Bio-

Rad, USA). 

 

Bacterial viability 

An aliquot of 100 µl of the suspension was diluted in 0.9% NaCl in series up to 10-7 and 

2 drops of 20 µL of each dilution were inoculated on BHI agar (BD, Sparks, USA) to determine 

viable microorganism number [22]. The plates were incubated for 48 h at 37°C, 10% CO2. CFU 

were counted and the results were expressed as CFU/mg of biofilm dry weight [20]. 
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Polysaccharide analyses 

 From 100 µl of the suspension, insoluble and soluble extracellular polysaccharides were 

extracted according to Aires et al. [20] and analyzed for total carbohydrate according to Dubois 

et al. [23]. The results were normalized by biofilm dry weight. 

 

Enamel Demineralization assessment 

At the end of each experimental phase, enamel slabs surface hardness (SH) was again 

measured. One row of three adjacent indentations spaced by 100 µm was made 100 µm from the 

three baseline measurements. The mean values of the three baseline indentations and the three 

measurements after treatments were then averaged and the percentage of surface hardness loss 

(% SHL) was calculated (baseline SH – SH after in vitro test) x100/baseline SH). Surface 

hardness loss was used as indicator of enamel demineralization [11].                          

 

 Statistical analysis 

The assumptions of equality of variances and normal distribution of errors were checked 

for all the response variables tested and those that did not satisfy were transformed [24]. The 

relationship between CHX concentrations and the variable evaluated was estimated by regression 

analysis. When significant correlation was found, the data were submitted to ANOVA followed 

by Tukey test, with the exception of acidogenicity that was analyzed by repeated measured. 

Original data were used with the exception of viable cells that were transformed to log10. The 

software SPSS for Windows 15.0 was used and the significance level was fixed at 5%. 

 

RESULTS 

 Statistically significant linear effect between CHX concentration and biofilm dry weight, 

total soluble proteins and viable bacteria, and enamel demineralization was found (Table 1), 

showing dose-response effect for these variables. No effect on polysaccharides was found.   

            Concerning the pH of the culture media (Fig. 1A), the groups did not differ statistically 

after 48 h of the biofilm growth. At 72 h of biofilm growth, the pH of media for the 0.12% CHX 

treatment was similar than NaF 0.05% group but higher than the other groups. At the 72 h and 
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120 h of biofilm growth, the pH of the NaF 0.05% was similar to control group, but lower than 

the other groups (p<0.05). 

         The values of dry weight and proteins (Fig. 1B) showed that biomass of the biofilm treated 

with 0.12% CHX was lower than the control (p<0.05) and did not differ statistically from the 

baseline value (p>0.05). However, the biomass of biofilm treated with 0.05% NaF did not differ 

from the control (p>0.05) and was higher than the baseline values (p<0.05) (Fig. 1B). 

         The counts of viable bacteria in the biofilm (Fig. 1C), normalized by biofilm dry weight, 

was significantly lower (p<0.05) for the treatment with 0.12% CHX compared with the baseline 

and the control group. However, the counts of viable bacteria of biofilm treated with 0.05% NaF 

did not differ from the control and the baseline values (p>0.05). 

           Concerning enamel demineralization (Fig. 1D), 0.12% CHX and 0.05% NaF significantly 

reduced %SHL compared with the control (p<0.05), but these treatments did not differ between 

them (p>0.05). 

 

DISCUSSION  

Biofilm models are important tools to evaluate the biochemical and microbiological 

composition of biofilm formed under different conditions or the changes provoked on the 

substratum surface where the biofilm is attached. Therefore, the conditions of biofilm formation 

and the substratum used must be closer of the real life. 

The improved model of S. mutans biofilm growth was validated and dose-response effect 

of CHX on S. mutans biofilm was showed for most variables (Table 1). Therefore, the model is 

sensible to show biofilm and enamel demineralization changes in the presence of antimicrobial 

substances. The treatment 2x/day with 0.12% CHX showed bactericidal effect, killing a great 

proportion of viable bacteria of the biofilm, decreasing the biofilm capacity of producing acids, 

avoiding the increase of biofilm mass (dry weight and total proteins) and consequently enamel 

demineralization process was stopped (Fig. 1). This effect may be attributed to CHX molecule 

ability to bind to the negatively charged bacterial cell surface, altering  and disrupting the 

integrity of cell membrane, causing bacterial death [25, 26]. The concentration of 0.012% CHX 

had a bacteriostatic effect, without interfering on viable bacteria counts but affected acid 

production level that was lower than control group but it was not able to avoid enamel 
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demineralization. At this sublethal stage, CHX effects are reversible; removal of excess of CHX 

by neutralizers allows the bacterial cell to recover [26]. This implies that the structural damages 

caused by 0.012% CHX was minor than 0.024% and 0.12% CHX. The results found with this 

model are supported by a clinical trial showing that 0.12% CHX is more effective to reduce S. 

mutans CFU than lower concentrations [27]. 

Opposite to CHX, fluoride did not show effect on biofilm formation based on biomass 

(Fig. 1B) and viable bacteria counts (Fig. 1C). It also did not inhibit sucrose fermentation, since 

the pH of media was not different compared with the control (Fig. 1A), however it reduced 

enamel demineralization (Fig. 1D). The findings are supported by the knowledge that it is 

necessary at least 10 ppm of fluoride constantly in the media to inhibit sugar fermentation [28]. 

In this model, simulating the clinical use of mouthrinse, although the biofilm has been treated 

with 225 ppm of fluoride the time was during only 1 min. The absence of antimicrobial effect of 

0.05% NaF but its effect reducing enamel demineralization suggest that the main effect of F on 

caries control is physicochemical [29, 30].  

Also, the findings suggest that CHX did not have direct effect on the synthesis of 

extracellular polysaccharides (Table 1). This result apparently disagrees of Koo et al. [13] but it 

reflects the way as the results were expressed. Koo et al. [13] expressed the results in amount of 

polysaccharides found in the biofilm and in the present study the results were normalized by 

biofilm dry weight. Since the biofilm weight increased (Fig 1B) but the viable bacteria decreased 

(Fig. 1C), the reduction of EPS amount should be attributed to bacterial death and not to a 

specific effect of CHX inhibiting the synthesis of extracellular polysaccharides. 

In conclusion, the results suggest that this S. mutans improved model can be used to test 

the effect of antimicrobials agents on biofilm growth and on enamel demineralization. 
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ABREVIATIONS 

EPS: extracellular polysaccharides, CHX: chlorhexidine digluconate, UTYEB: ultrafiltered 

tryptone-yeast extract broth, CFU: colony forming units, IEPS: Insoluble extracellular 

polysaccharide, SEPS: Soluble extracellular polysaccharide, IPS: intracellular polysaccharide, 

%SHL: percentage of enamel surface hardness loss. 
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FIGURES LEGENDS 

Fig. 1. Baseline group and the effect of the treatments on S. mutans biofilm and on enamel 

demineralization (n=4). (A) pH of the culture media after 48 of biofilm growth in the absence 

of treatments and at each 24 h after beginning the treatments (72, 96 and 120 h data). The 

statistical significance among the treatments is described in Results section. (B) Means of 

biofilm dry weight (mg) and amount of soluble proteins (µg x 10-3) for the baseline and 
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according to the treatments. (C) Means of viable bacteria (CFU/mg dry weight) in the biofilms 

grown 48 h in absence of the treatments (baseline) and after 3 days of treatments described. (D) 

Means of enamel demineralization (%SHL) after 48 h of biofilm growth in absence of the 

treatments (baseline) and after 3 days of the treatments described. Vertical bars denote standard 

deviations and significant differences among the groups are indicated by different letters (p < 

0.05).  

 

TABLES 

 

Table 1. Correlation (r) and significance (p) between 

chlorhexidine concentration (0 – 0.12%) and the response 

variables. 

Variables r p 

Dry weight 0.808 <0.001 

Proteins 0.767 0.001 

Viable bacteria 0.689 0.006 

%SHL 0.628 0.009 

IEPS 0.148 0.615 

SEPS 0.249 0.412 
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ABSTRACT 

Extracellular polysaccharides are considered virulence factors of cariogenic biofilm and their 

production and degradation are regulated by glucosyltransferases and dextranases that are 

decoded by gtfB, gtfC, gtfD and dexA genes. Since there is no consensus about the expression 

regulation of these genes, the objective of this study was to evaluate in vitro the effect of sucrose 

exposure constantly or intermittently on gtfBCD and dexA gene expressions of S. mutans biofilm 

and to evaluate in situ the effect of sucrose exposure on expression of these genes in dental 

biofilm. In the in vitro experiment, S. mutans UA159 biofilms were formed on saliva-coated 

bovine enamel slabs in batch culture and they were grown in ultrafiltered tryptone-yeast extract 

broth at 37oC, 10% CO2 during 5 days. They were exposed to 1% sucrose constantly (control 

group) or 10% sucrose 8x/day (intermittent group) and after 48, 72 and 120 h of growth; the 

biofilms were collected for analysis. For in situ experiment, a crossover, blind study was 

conducted in two phases of 7 days each and nine adult volunteers wore intraoral palatal 

appliances containing root dentin slabs, which were extraorally submitted 8 times/day to sucrose 

solutions at 1%, 5%, 10% and 20% . On the 7th day, dental biofilm were collected for 

microbiological, insoluble (IEPS) and soluble (SEPS) extracellular polysaccharides and gtfB, 

gtfC, gtfD and dexA expression analysis. In vitro results of intermittent group showed in relation 

to control group that gtfB, gtfC, gtfD and dexA expression of intermittent group could be constant 

along the time evaluated different than constant sucrose exposure group in which gene 

expression increased along the time. In situ results showed Lactobacilli (LB), % LB/Total 

microorganisms, IEPS and SEPS increased and RNA crude and purified decreased according to 

the increase of sucrose concentration. However, there were no statistically significant differences 

in gtfB gene expression among the groups and it was not possible to detect levels of gtfC, gtfD 

and dexA gene expression. In conclusion, it was possible to quantify in vitro the expression of 

gtfB, gtfC, gtfD and dexA of S. mutans biofilm but in dental biofilm formed in situ only gtfB 

expression can be determined which does not to regulated by sucrose concentration. 
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INTRODUCTION 

Dental caries is a biofilm sugar dependent disease (Fejerskov, 2004) and its development 

is associated with the presence of cariogenic microorganisms, such as mutans streptococci and 

lactobacilli (van Houte et al., 1994) and high consumption of carbohydrates, like sucrose (Paes 

Leme et al 2006).  

S. mutans is an important microorganism in the development of human dental caries 

(Hamada and Slade, 1980; Loesche, 1986) and use carbohydrates, especially sucrose, as 

substrate to ferment acids and to synthesize extracellular polysaccharides (EPS) through three 

glucosyltransferases: GTFB, GTFC and GTFD (Colby and Russell, 1997), that are encoded 

respectively by glucosyltransferases genes gtfB, gtfC and gtfD (Kuramitsu, 1993). Among EPS, 

insoluble polysaccharides (IEPS) have an important role in the microorganism adhesion and 

accumulation in dental surface (Loesche, 1986; Cross et al., 2007) and establish an extracellular 

matrix that is responsible to the structural integrity of dental biofilm (Yamashita et al., 1993; 

Schilling and Bowen, 1992; Li e Burne, 2001). Soluble polysaccharides (SEPS) serve as external 

energy source to bacteria (Colby and Rusell, 1997). In other hand, there is evidence showing that 

the structure of EPS could be modified by dextranase and/or mutanase during EPS synthesis by 

GTFs causing linkage remodelling and branching, which influences the bacterial binding sites on 

these glucans (Hayacibara et al., 2004). The presence of glucanohydrolases may have an impact 

on the development, physical properties, and bacterial binding sites of the polysaccharide matrix 

in dental biofilms (Colby and Rusell, 1997, Paes Leme et al., 2006). 

 S. mutans biofilms are used as a way of evaluating dental biofilm in vitro due to research 

difficulties to develop in vivo studies in cariogenic situation (Sissons, 1997). In vitro models use 

simplified simulations of the in vivo situation in order to be able to study biofilm physiology in 

the laboratory. The advantage of these models is that the growth conditions of the cells can be 

defined and controlled much better than in vivo. The disadvantage is that there is not one general 

model that can be used to study all aspects of biofilms (Luppens and ten Cate, 2005). Although 

studies about gtfs gene expression of S. mutans contributed to the knowledge of changes in 

cariogenic microorganisms, theses studies were performed with planktonic bacteria (Fujiwara et 

al., 2002) or with biofilms that used protocols of growth that use sucrose exposure constantly as 

nutrient source (Li e Burne, 2001; Yoshida and Kuramitsu, 2002; Koo et al., 2006), which do not 



 

39 

 

simulate the real alternations of “feast or famine” episodes that happens in oral environment in 

the presence of sugars.  

Other experimental model to study dental biofilm is in situ model that do not have all 

conditions controlled as in vitro biofilm model but is conducted in real situations (Zero et al., 

1995). The effect of sucrose on the biochemical composition of dental formed in situ has been 

extensively studied (Cury et al., 2000, Ccahuana- Vásquez et al., 2007) concerning EPS but there 

are few data about the expression of the genes (Aires et al., 2008) that decoded the enzymes 

responsible for the synthesis and degradation of these polysaccharides. 

Therefore, the objectives of this study were to evaluate the effect of sucrose concentration 

on gtfB, gtfC, gtfD and dexA gene expression in vitro using S. mutans biofilm growth model and 

in more real situation on dental biofilm formed in situ. 

  

MATERIALS AND METHODS 

In vitro study 

Experimental Design 

An in vitro study was performed, in which S. mutans UA159 biofilms were subjected to 

1% sucrose constantly (control) or 10% sucrose intermittently (1 min, 8x/day) simulating “feast 

and famine” episodes that happen in the oral environment. These biofilms were formed on 

saliva-coated bovine enamel slabs suspended vertically in ultrafiltered tryptone-yeast extract 

(UTYE) broth at 37°C, 10% CO2 and were collected after 48 h, 72 h and 120 h of growth to gene 

expression analysis. 

 

Enamel preparation 

Bovine incisor teeth, whose roots were removed, were stored in 2% formol solution for a 

period of at least 30 days (White, 1987). The tooth crown was fixed in an acrylic base and with 

two parallel disks spaced 4 mm a longitudinal slice was obtained from the central part of the 

dental specimen. Using two parallel disks spaced 7 mm, this slice was transversally cut. The 

dentin of this 7x4 mm dental slab was totally worn in grinder machine (Phoenix Beta, Buehler, 

Lake Bluf, IL, USA), using 400-grit aluminum oxide abrasive paper. Enamel surfaces were 

flattened and polished. Each slab was individually placed in 1 mL of a solution containing 0.06 
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mM Pi and 0.08 mM Ca++ and sterilized by autoclaving (condition previously standardized). The 

sterilized slabs were anchored vertically in metallic devices and two were slabs suspended in 

each well of 24-culture plate. 

 

Biofilm growth and collection 

UTYEB was used as culture media (Koo et al., 2003) and depending on the experimental 

phase, the media contained 1% glucose, 1% sucrose or 0.1 mM glucose as described further. S. 

mutans UA159 colonies were transferred to UTYEB containing 1% glucose and incubated at 

37°C, 10% CO2 to reactivate the microorganisms. The slabs, on which human salivary pellicle 

was formed, were individually positioned in well containing the inoculum and were incubated at 

37 °C, 10% CO2 to allow bacterial adhesion on acquired pellicle. All these procedures were done 

according to Koo et al. (2003) but 8 h (previously standardized) after incubation the slabs were 

transferred to the fresh UTEYB containing 0.1 mM glucose (salivary basal concentration) and 

incubated for additional 16 h at 37°C, 10% CO2. On the next day, biofilms on enamel slabs were 

transferred to fresh UTYEB containing 0.1 mM glucose and they were exposed 8x/day during 1 

min  to 10% sucrose (containing 1.23 mM Ca, 0.74 mM Pi and 0.023 µg F/mL, previously 

standardized) at predetermined times (8:00, 9:30, 11:00, 12:30, 14:00, 15:30, 17:00 and 18:30 h). 

Biofilms of both groups grew during 48 h, 72 h and 120 h. The culture media were changed 

daily. The concentration of 10% sucrose and a frequency 8x/day of experimental group were 

used as a cariogenic challenge based in previous in vitro study (data not shown). After each 

sucrose exposure, biofilms on slabs were washed 3 times in 0.9% NaCl to remove sugar excess. 

In the final of each phase, biofilms were washed 3 times in 0.9% NaCl and transferred 4 biofilms 

on slabs to 1 ml RNA later solution and stored until analysis (n=4 to each time of growth). 

 

In situ study 

Experimental Design 

This study was approved by the Research and Ethics Committee of FOP-UNICAMP 

(Protocol N° 042/2006). During two phases of 7 days each, 9 volunteers wore acrylic palatal 

appliances, containing twelve bovine dentine slabs (six on each side for each treatment). The 

volunteers were randomly assigned in two groups and were instructed to extraorally treat the 
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slabs with 2 concentrations in the same appliance: 1% and 10% or 5% and 20% sucrose solution. 

The use of two treatments in the same intra-oral appliance (split-mouth design) was supported by 

the absence of a cross-effect in previous in situ studies (Pecharki et al., 2005; Ccahuana-Vásquez 

et al., 2007). In the final of each phase, gtfB, gtfC, gtfD and dexA gene expression of the biofilms 

were analyzed. After a washout period, new dentin slabs were placed in the appliance for the 

next experimental phase. All volunteers did all the treatments assigned in the final of two phases. 

For the statistical analysis, the volunteer was considered as an experimental block. This study 

was double blind with respect to the examiner and the volunteers; examiner analyzed samples 

previously coded to ensure blindness, since the volunteers were instructed to follow the 

concentrations of sucrose exposure. 

 

Dentin Slabs and Palatal Appliance Preparation 

Two hundred and sixteen dentin slabs (5 X 5 X 2 mm) were obtained from the upper third of 

bovine incisor root. The outer and inner surfaces of dentin were polished or flattened, and the 

slabs were randomly divided according to the concentrations of sucrose use. An acrylic resin 

intra-oral palatal appliance, containing two lateral cavities measuring 16 X 11 X 3 mm, in which 

six dentin slabs were placed on each side, was made for each volunteer. Plastic meshes were 

fixed over the cavities to protect the dentin slab surfaces from mechanical attrition, leaving a 1-

mm space for accumulation of dental biofilm. Colourless or red acrylic resin was used to fix the 

meshes, indicating the different treatments used at the different sides of the appliances (Pecharki 

et al., 2005; Ccahuana-Vásquez et al, 2007).  

 

Volunteers 

Nine volunteers (24 – 35 years old), who fulfilled inclusion (mean stimulated saliva flow 

rate ≥ 0.7 ml/min and ability to comply with the experimental protocol) and exclusion criteria 

(antibiotic use for the last 2 months before starting the study, use of any form of medication that 

modifies salivary secretion, use of fixed or removable orthodontic appliance, periodontal disease, 

general/systemic illness, participated in this study. They were informed about the procedures and 

written consent was obtained prior to the commencement of the study. 
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Treatments 

Solutions of 1%, 5%, 10% and 20% sucrose and frequency of 8x/day were used as 

cariogenic challenge according to previous studies (Aires et al., 2006; Ccahuana- Vásquez et al. 

2007). The volunteers were instructed to remove the appliances from the oral cavity and drip one 

drop of the solution on each dentin slab at the following time: 8.00, 9.30, 11.00, 12.00, 13.30, 

14.30, 16.00 and 17.30 h. The excess of fluid was removed with gauze and five minutes later the 

device was re-inserted in the mouth. A wash-out interval of one week was established between 

the experimental phases. The volunteers were also instructed to wear the appliances all the time, 

removing them only during the meals (Cury et al, 2000). Throughout the entire experiment, 

volunteers brushed their natural teeth and the appliance, except the area of enamel slabs, with a 

dentifrice containing 1450 μg F/g. Brushing was carried out three times a day after the main 

mealtimes. The volunteers lived in an optimally fluoridated city (0.7 mg F/ L, for the region), 

drank and consumed foods prepared with this water. Considering the crossover design of this 

study, no restriction was made with regard to the volunteers diet. They also received oral and 

written information to refrain from using any antibacterial substance. 

 

Biofilm collection 

 On day 7 of each experimental phase, after 20 minutes of the last sucrose exposure of the 

day, the biofilm formed on the slabs were collected. Then, at least, 5 mg of dental biofilm was 

weighed to ±0.01 mg (Analytical Plus AP 250D, Ohaus Corp., Florham Park, N.J., USA) in 

sterile microcentrifuge tubes, suspended in 1 ml of 0.9% NaCl solution and sonicated at 7 W for 

60 s using a Digital Sonifier Unit, model S-150D (Branson Ultrasonics Corp., Danbury, Conn., 

USA) to microbiological and extracellular polysaccharides analyses. To gene expression 

analysis, the rest of biofilm was collected, weighed and kept in RNA Later solution (Ambion, 

Austin, Tex., USA) to preserve the integrity of the RNA. 

 

Microbiological analysis 

 An aliquot of 100 µl of the sonicated suspension was diluted in 0.9% NaCl and serial 

decimal dilutions were inoculated in duplicate by the drop-counting technique in the following 

culture media: blood agar for total microbiota (TM); mitis salivarius agar to determine total 
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streptococci (TS)  mitis salivarius agar plus 0.2 units bacitracin per ml and 15% sucrose (MSB), 

for mutans streptococci group (MS) (Gold et al., 1973); Rogosa SL agar, for lactobacillus (LB), 

and CFAT medium (Zylber and Jordan, 1982), for Actinomyces (AC). The plates were incubated 

in 10% CO2 at 37°C for 48 h (blood agar, MSB, Rogosa) or 72 h (CFAT). The colony-forming 

units (CFU) were counted and the results expressed as CFU/mg dental biofilm wet weight and as 

proportions of total streptococci (%TS/TM), mutans streptococci (%MS/TM), lactobacilli 

(%LB/TM), and Actinomyces (%AC/TM) in relation to total microorganisms. 

 

Polysaccharide analyses 

An aliquot of biofilm suspension (200 µl) was centrifuged at 10000 g for 10 min at 4°C, 

then the supernatant was collected to analysis of soluble extracellular polysaccharide (SEPS) 

(Aires et al., 2008). To the precipitate, 200 µl of 1 M NaOH was added for extraction of 

insoluble EPS (Cury et al., 2000). After 3 h at room temperature under constant agitation, 

supernatant was collected for analysis (Aires et al., 2008). Supernatants containing the 

polysaccharides were precipitated with 75% ethanol at -20°C, 30 min and analyzed for total 

carbohydrate according to Dubois et al. (1956). 

 

Laboratorial Analyses 

RNA extraction and purification 

The RNA extraction and purification analyses were performed according to Cury and 

Koo (2007), and modifications of Aires et al., (2008) regarding to washing/sonication steps were 

made using 1.0 ml phosphate-buffered saline (PBS) and homogenization in NAES was made by 

sonication using one 10-second pulse at 6 W. The slabs were removed after the first 

washing/sonication in phosphate-buffered saline and biofilm wet weight determined after the 

first centrifuged (Analytical Plus AP 250D, Ohaus Corp., Florham Park, N.J., USA). The 

quantification of RNA extracted and its purification were made essentially as described by Cury 

and Koo (2007). Extracted RNA samples were joined to purification procedure forming pools. 
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Real Time quantitative PCR 

Real-time quantitative RT-PCR was performed to evaluate gene expression of gtfB, gtfC, 

gtfD and dexA 1.0 µg of RNA and specific primers (Fujiwara et al., 2002) were used to generate 

cDNA (iScript cDNA synthesis kit, Bio-Rad Laboratories, Ca, USA). For each sample, a mock 

reaction without addition of reverse transcriptase was performed (negative RT control) to check 

for DNA contamination. The resulting cDNAs and negative controls were amplified by a 

MiniOpticon real-time PCR detection system with iQ SYBR Green Supermix (Bio-Rad 

Laboratories, Inc., Calif., USA) and specific primers for gtf B , gtf C, gtf D and dexA as described 

by Koo et al . (2006). Standard curves for each gene were prepared as described by Yin et al. 

(2001) and Koo et al. (2006). Total cDNA abundance was normalized using S. mutans 

specific16S rRNA gene as a housekeeping control (Koo et al., 2006). 

 

Statistical analysis 

The assumptions of equality of variances and normal distribution of errors were checked 

for the response variables tested and those that did not satisfy were transformed (Box et al., 

1978). To in vitro study, biofilm wet weight data were analyzed by unpaired t test (p<0.05). 

RNA extraction, purification and gene expression data were presented by descriptive statistic 

because biofilms were mixed to form pools. 

From in situ study, the data of wet weight and purified RNA and gtfB were transformed 

into log10 and the original data of crude RNA and %DNA removed were submitted to analysis of 

variance (ANOVA) followed by the Tukey test. Also, the relationship between biofilm wet 

weight, concentration of sucrose and crude RNA, purified RNA and gene expression were 

estimated by regression analysis. The software SPSS for Windows 15.0 was used and the 

significance level was fixed at 5%.  

 

RESULTS 

With regard to in vitro study, biofilm wet weight of constant group was higher than 

intermittent group in all times evaluated (Fig. 1). The quantity of crude and purified RNA of 

control group (1% sucrose constant) showed lower values than experimental group at the three 

times (Table 1). Regarding to gene expression, gtfB expression of constant group increased 
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according to the time and was higher than the intermittent group in all times evaluated. gtfC and 

gtfD expression showed similar profiles: constant and intermittent groups were similar at 48 h, 

constant group was higher to 72 h and lower to 120 h than intermittent group. dexA expression of 

the constant group increased according to the time and was lower than intermittent group in all 

the times (Fig. 2). 

For in situ study, statistically significant linear effect among sucrose concentration and 

biofilm wet weight, LB, % LB/TM, SEPS, IEPS, crude RNA and purified RNA were found 

(Table 2). No effects in the other variables were observed. TS, LB, LB/TM (Table 3), wet 

weight, IEPS and SEPS (Table 4), showed the values of 20% sucrose concentration were higher 

than 1% sucrose concentration (p<0.05). The other microbiological variables did not show 

differences between the groups (Table 3). Also, there were not differences among the groups to 

crude RNA, %DNA removed and purified RNA (p>0.05) (Table 5). gtfB gene expression (Fig. 

3) increased according to the increase of sucrose concentration, but was not statistically 

significant (p>0.05). None gtfC, gtfD and dexA gene expression levels were detectable. 

 

DISCUSSION 

 Dental in vivo studies have been difficult to perform in extreme situations as high 

cariogenic challenge due to risk of exposing volunteers or patients to conditions that could 

damage their health. In vitro and in situ models have received increasing recognition as tools for 

the study of both fundamental and applied aspects of dental caries (Zero, 1995; Sissons, 1997). 

However, in vitro and in situ models of dental biofilm formation have limitations about biofilm 

amount and these circumstances are challenges to molecular biology methodologies. 

Regarding to the first experiment, biofilms formed in four slabs (total growth area of 224 

mm2) were joined to obtain enough amount of RNA to perform extraction process. Biofilm 

weight of intermittent sucrose exposure was lower than control (p<0.05) at all times (Fig.1). The 

constant supply of sucrose activates the biofilm metabolic activity increasing biofilm mass in 

comparison to intermittent sucrose exposure. The formation of pools, after RNA extraction, was 

necessary to perform PCR real time analysis. The descriptive results about crude and purified 

RNA showed that the constant exposure of carbohydrate on S. mutans biofilm provoked lower 

RNA concentration in comparison to intermittent exposure (Table 2). The presence of higher 
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values of IEPS in constant sucrose exposure than intermittent can influence the extraction and 

purification of RNA from dental biofilms decreasing RNA concentration values (Cury and Koo, 

2007; Cury et al., 2008). The expression of genes evaluated showed different profiles among the 

groups due to S. mutans biofilm gene expression is altered to environment and nutritional factors 

as culture media, amount of sucrose (Shemesh et al., 2007) and  type of carbohydrate used in 

sugar metabolism (Duarte et al., 2008).  The expression of gtfB in both groups evaluated was 

lower than the other genes probably due to high levels of gtfB expression are related with the 

initial stages of biofilm formation, in the presence of carbohydrate, because IEPS are important 

factor in microbial adhesion (Loesche, 1986). dexA expression showed high levels than the other 

genes in the three times evaluated and dexA expression of intermittent group was higher than the 

constant group in all times suggesting that in “feast or famine” episodes exists a permanent 

activity in the remodelling of polysaccharides of biofilm matrix. The genes evaluated showed 

constant expression in all times evaluated indicated continous production of EPS and constant 

remodellation.  

Regarding to in situ study, low levels of MS and %MS/TS were shown in all groups 

(Table 3). MS are encountered less frequently at the advancing front of dentin caries where 

lactobacilli, prevotellae and Bifidobacterium are more prevalent (Aas et al., 2008; Takahashi and 

Nyvad, 2008). However, the changes provoked by these microorganisms into the dental biofilm 

can be considered more relevant than their abundance (Ccahuana-Vásquez et al., 2007). Also, it 

is suggested that other acidogenic and aciduric bacteria than MS, including ‘low-pH’ non-MS 

and Actinomyces (van Houte et al., 1994; Sansone et al., 1993, Marsh 2006) can be responsible 

for the initiation of caries. 

LB and %LB/TM increased according to the increase of sucrose concentration (Table 3). 

The presence of carbohydrates in high frequency provoke, in the biofilm internal environment, 

constants drop of pH that can be favourable to the predominance of microorganisms aciduric 

different to MS as LB, non-MS, Bifidobacterium or Actinomyces (van Houte et al., 1996). Also, 

LB are not implicated in caries initiation and these findings can be more important for caries 

progression since these microorganisms are found in high counts in caries lesions (Loesche and 

Syed, 1973, Preza et al, 2008, Preza et al, 2009). 
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The increase of sucrose concentrations did not influence on AC variables (Table 3), this 

result is in agreement with Mikx et al. (1975) in which no effect of the sucrose concentration in 

the diet on AC counts was observed in animal study. The %AC/TM in all groups (means 

between 14.46 -26.82%) indicate that these microorganisms are among the most predominant 

bacteria in dental biofilm associated with root caries according to Hoshino (1985) and Preza et 

al. (2008). However, a recent research that used molecular microarray analysis concluded that 

AC are not prevalent in root caries (Preza et al., 2009). 

Biomass and extracellular polysaccharides increased according to the increase the sucrose 

concentration is similar than dental biofilm formed on enamel dental (Aires et al., 2006).. The 

increase of amount of sucrose caused a higher metabolic activity and consequently more 

production of biofilm mass and polysaccharides. The decrease of RNA extracted and purified 

values and the increase of IEPS and EPS values according to the increase of sucrose 

concentration (Table 5) confirms the influence of matrix EPS on extraction and purification of 

RNA from biofilms (Cury and Koo, 2007; Cury et al., 2008). No differences were observed 

among the groups to gtfB expression (Fig. 3) similar to Shemesh et al. (2007) did not observe 

differences in gtfB expression of S. mutans biofilms formed in vitro in Triptone-Yeast culture 

media when compared the growth in 1% and 4% sucrose concentration. However, IEPS and EPS 

values increased according to the increase of sucrose concentration (Table 4). Extracellular 

polysaccharides can be produced by other microorganisms different of S. mutans (Banas and 

Vickerman, 2003; Vacca-Smith et al., 2000). The absence of gtf C, gtfD and dexA values can be 

due to the low levels of S. mutans in relation to the other microorganisms of dental biofilm 

formed in situ under high cariogenic challenge and high levels of sugars (Ccahuana-Vásquez et 

al., 2007) and consequently small quantity of RNA was produced referent of this gene and RT 

PCR analysis was not able to detect (Aires et al., 2008).  

In conclusion, it was possible to quantify in vitro the expression of gtfB, gtfC, gtfD and 

dexA of S. mutans biofilm  in physiological conditions of sucrose exposure but in dental biofilm 

formed in situ only gtfB expression can be determined which seems not be regulated by sucrose 

concentration. 
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Fig 1. S. mutans biofilm (n=4) wet weight (mg) according to the time of biofilm formation 
and the sucrose treatment. Different letter indicate statistical differences among the 
treatments in each time (p < 0.05). 
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Table 1. Extraction and purification of RNA from S. mutans biofilms according to 
treatments and the times (mean ± SD) 
 

Treatment Frequency Time 
(h) 

*crude RNA(µg/mg 
biofilm wet weight) 

DNA removed 
(%) 

**purified RNA 
(µg/mg biofilm wet 

weight)

10% 
Sucrose  8x/day 

48 2.72 ± 0.32 75.63 ± 6.47 0.65 ± 0.10

72 3.26 ± 0.40 72.90 ± 3.75 0.89 ± 0.23

120 2.47 ± 0.94 86.68 ± 3.61 0.33 ± 0.16

1% 
 Sucrose  constantly 

48 2.66 ± 0.38 96.20 ± 1.20 0.10 ± 0.02

72 1.18 ± 0.03 89.62 ± 3.00 0.12 ± 0.04

120 0.83 ± 0.04 81.15 ± 0.60 0.16 ± 0.01
*n=4; **n=2 or 3 (pools were formed) 
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Fig 2. Gene expression of S. mutans biofilm after 48, 72 and 120 h of biofilm growth according to the sucrose exposure. 
Vertical bars denote standard deviations. 
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Table 2. Correlation (r) and significance (p) between sucrose concentration 
(1 – 20%) and the response variables. 

Variable r p 

Biofilm wet weight 0.343 0.041 

Total microorganisms (TM) 0.015 0.932 

Total streptococci (TS) 0.019 0.425 

Mutans streptococci (MS) 0.213 0.213 

MS/ TS (%) 0.116 0.505 

Lactobacillus  (LB) 0.35 0.046 

LB/TM (%) 0.359 0.046 

Actinomyces  0.029 0.870 

AT/TM (%) 0.009 0.959 

Insoluble extracellular polysaccharides 0.629 <0.001 

Soluble extracellular polysaccharides 0.483 0.003 

RNA crude 0.322 0.040 

RNA purified 0.378 0.020 

gtfB 0.217 0.246 
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Table 3. Colony forming-unit (CFU) and percentage of microorganisms on dental biofilm according to the sucrose 
concentrations 

Variables  
Sucrose concentration 

1% 5% 10% 20% 
TM ( x 105) 308.13 ± 179.59 a 330.57 ± 130.10 a 352. 46 ± 160.68 a 308.76 ± 258.55 a 

TS ( x 105) 188.39 ± 103.09a 154.07 ± 111.81ab 144.93 ± 8.89ab 80.56 ± 45.58b 

MS( x 102) 24.78 ± 55.07a 31.31 ± 59.74a 34.42 ± 51.42a 113.98 ± 27.54a 

MS/ TS (%) 0.03 ± 0.06a 0.03 ± 0.05a 0.04 ± 0.07a 0.11 ± 0.2a 

LB ( x 104) 3.20 ± 7.94a 14.18 ± 28.91ab 73.34 ± 173.83ab 121.77 ± 191.75b 

LB/TM (%) 0.06 ± 0.13a 0.51 ± 1.11ab 2.58 ± 6.05ab 3.95 ± 5.70b 

AT ( x 105) 41.28 ± 33.66a 79.44 ± 57.49a 90.21 ± 101.97a 33.58 ± 26.30a 

AT/TM (%) 14.46 ±9.11a 26.82 ± 17.29a 26.15 ± 20.50a 14.49 ± 11.66a 
*n=9; TM: Total microorganisms, TS: Total Streptococci, MS: Mutans Streptococci, LB: Lactobacillus, AT: Actinomyces; sucrose concentrations whose means are 
followed by distinct letters differ statistically (p < 0.05). 
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Table 4. Wet weight (mg), insoluble extracellular polysaccharide [IEPS] (µg/mg biofilm wet 
weight) and soluble extracellular polysaccharides [SEPS] (µg/mg biofilm wet weight) 
concentration according to sucrose concentration for in situ study (n=9). 

Variable 
Sucrose concentration 

1% 5% 10% 20% 

Wet weight 46.06 ± 41.77a 56.77 ± 41.98a 65.97 ± 41.98ab 76.80 ± 38.62b 
IEPS 6.20 ± 5.78 a 7.83 ± 5.20 a 10.22 ± 7.27 a 25.28 ± 11.59 b 
SEPS 3.84 ± 1.24 a 4.05 ± 1.86a 5.70 ± 2.60ab 10.17 ± 7.87b 
*Sucrose concentrations whose means are followed by distinct letters differ statistically (p < 0.05). 
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Table 5. Extraction and purification of RNA from dental biofilm according to sucrose 
concentration (mean ± SD; n = 7) 

Sucrose 
concentration 

RNA crude 
(µg/mg wet 

weight) 
% DNA removed 

RNA purified 
(µg/mg wet 

weight) 

1% 1.79 ± 0.46  72.86 ± 12.13 0.51 ± 0.29  
5% 1.51 ± 0.78  68.13 ± 9.28    0.48 ± 0.26  
10% 1.47 ± 0.47  73.45 ± 14.00 0.40 ± 0.26  
20% 1.24 ± 0.53  72.98 ± 13.69  0.28 ± 0.08  

*No differences  statistically significant were found (p > 0.05). 
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Fig. 3. Means (n=7) of gtf B gene expression of dental biofilm according to the 
concentrations of sucrose exposure. Vertical bars denote standard deviations. Significant 
differences were not observed among the groups (p > 0.05). 
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CONSIDERAÇÕES FINAIS 
 
 Modelos in vitro e in situ têm contribuído muito para o conhecimento da fisiologia e o 

comportamento do biofilme dental frente a diferentes tipos de estresses (Sissons, 1997; Zero, 

1995). Vários modelos in vitro de crescimento microbianos foram utilizados para estudar a 

fisiologia (Bradshaw e Marsh, 1998), quorum sensing (Li et al., 2002), expressão de genes (Li e 

Burne, 2001; Shemesh et al., 2007) e resposta a antimicrobianos (Shapiro et al., 2002, Koo et al., 

2003) de biofilmes de S. mutans. No capítulo 1 e 2, foram apresentados os processos de 

desenvolvimento e validação de um modelo de biofilme de S. mutans de fácil manipulação que 

simula satisfatoriamente episódios de “fartura e miséria” que acontecem quando os carboidratos 

da dieta estão presentes no ambiente bucal e no qual pode ser avaliada a desmineralização do 

substrato dental provocado pelo biofilme.  

 Os resultados do primeiro capítulo indicam que o modelo de biofilme proposto teve 

sensibilidade para mostrar diferenças de variáveis bioquímicas e pode ser utilizada para 

quantificar desmineralização do esmalte, característica que outros modelos não apresentam. 

Valores de acidogenicidade do biofilme, biomassa e desmineralização aumentaram quando a 

concentração de sacarose incrementou. A presença de maior quantidade de sacarose no biofilme 

provoca um aumento do metabolismo bacteriano que estimula a produção de ácidos e 

consequentemente causa maior desmineralização da superfície de esmalte. As concentrações de 

sacarose 10% e 20% expostas 8x/dia em condições fisiológicas mostraram os mesmos níveis de 

desmineralização que o grupo controle 1% fornecido constantemente. No segundo capítulo, para 

a validação do modelo foram utilizadas concentrações de digluconato de clorexidina (CHX) de 

0,012% a 0,12%. e também foi testado o efeito do NaF 0,05%. O modelo mostrou efeito dose 

resposta para CHX, diminuindo os valores de biomassa, acidogenicidade, viabilidade bacteriana 

e desmineralização do esmalte. O F não mostrou efeito antimicrobiano, mas diminuiu a 

desmineralização em níveis iguais a CHX 0,12%. 

 O efeito da sacarose na expressão de gtfB, gtfC, gtfD e dexA no modelo in vitro 

desenvolvido no capitulo 1 e no biofilme formado in situ foi abordado no capitulo 3. No estudo 

in vitro foi comparado a expressão gênica de biofilme de S. mutans formados na presença de 

sacarose constante (controle) e intermitente (episódios “fartura e miséria”). Os resultados 

mostraram valores maiores de RNA extraído e purificado do grupo exposto à sacarose 
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intermitente que o controle e que a expressão de gtfB, gtfC, gtfD e dexA foi constante ao longo do 

tempo. Com relação ao estudo in situ, os resultados do estudo in situ mostraram valores de 

Lactobacilos (LB), % LB/Microrganismos totales, PECI e PECS aumentaram e RNA bruto e 

purificado diminuiram de acordo com aumento da concentração de sacarose confirmando que o 

aumento de níveis de PECI da matriz diminui a concentração de RNA (Cury e Koo, 2008). Os 

níveis de expressão do gtfB de biofilme dental mostrou que não é regulada pelo concentração de 

sacarose e não se conseguiu quantificar os genes gtfC, gtfD e dexA. Os baixos níveis de S. 

mutans presentes em biofilmes formados in situ sob alto desafio cariogênico (Cury et al., 2001, 

Ccahuana-Vásquez et al., 2007, Vale et al., 2007) podem ser responsáveis de valores baixos de 

RNA referente aos genes avaliados o que impossibilitou a análise gênica. 
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CONCLUSÃO 

  O modelo padronizado de crescimento de biofilme de S. mutans é capaz de avaliar não 

só mudanças bioquímicas, microbiológicas e de expressão gênica no biofilme de S. mutans 

quando crescido sob diversas condições como também avaliar a consequente desmineralização 

do substrato dental. Para tal, sacarose 10% 8x/dia deve ser usado ao invés de 1% sacarose 

constante como fonte de energia. O modelo validado tem potencial para avaliar não só 

susbtâncias com efeito antimicrobiano no biofilme como na desmineralização do substrato dental 

onde biofilme estiver aderido. 

 Quanto à expressão gênica foi possível quantificar in vitro a expressão de gtfB, gtfC, gtfD 

e dexA, sugerindo expressão constante destes genes em condições fisiológicas de exposição a 

sacarose. Entretanto, no estudo in situ somente a expressão de gtfB foi quantificável e parece não 

ser regulada pela concentração de sacarose. 
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APÊNDICE 1 – Disposição dos blocos no modelo de crescimento de biofilme de S. mutans 
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APÊNDICE 2 – Fotografías do crescimento de biofilmes de S. mutans de acordo com os 
tratamentos com sacarose 
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ANEXO 1 – Deliberação da defesa em formato alternativo 
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