UNICAMP – UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA

ÁREA DE CONCENTRAÇÃO SISTEMAS DE PROCESSOS QUÍMICOS E INFORMÁTICA

"Estudo Experimental e Modelagem do Volume em Excesso para Sistemas do tipo Água/Acetonitrila/ Eletrólito à Pressão Ambiente na Faixa 283,15 - 308,15K"

Autor: Eng.Químico Gilsinei Marques Campese Orientador: Prof. Dr. Artur Zaghini Francesconi

2007823

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT

Dissertação submetida à comissão de Pós-Graduação da Faculdade de Engenharia Química-UNICAMP como parte dos requisitos necessários para a obtenção do título de Mestre em Engenharia Química.

> Agosto/2000 Campinas - SP

CRICANP CRICANP

UNIDADE B.C. Nº CHAMADA: TUNICAMP C1541又 Ex. ۷. TOMBO BC/ 43158 PROC. 16-278/00 c 📄 0 🔀 PRECE RS 11,00 DATA 06/12/00 N.º CPD

CM-00147213-3

Г

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

٦

C153e	Gilsinei, Marques Campese Estudo experimental e modelagem do volume em excesso para sistemas do tipo água/acetonitrila/eletrólito à pressão ambiente na faixa 283,15-308, 15K / Gilsinei Marques CampeseCampinas, SP: [s.n.], 2000.
	Orientador: Artur Zaguini Francesconi Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química.
	1. Termodinâmica. 2. Solução química. 3. Água. 4. Acetonitrila. 5. Eletrólito. I. Francesconi, Artur Zaguini. II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título.

Esta versão corresponde à redação final da dissertação de mestrado defendida pelo Engenheiro Químico Gilsinei Marques Campese e aprovada pela comissão julgadora em 08/08/2000.

١

Prof. Dr. Artur Zaghini Francesconi

Dissertação defendida e aprovada em 08 de Agosto de 2000, pela banca examinadora constituida pelos professores doutores:

١

Prof. Dr. Artur Zaghini Francesconi

Prof. Dr. Pedro Luiz Onófrio Volpe

h h

Prof. Dr. Roger Josef Zemp

AGRADECIMENTOS

Primeiramente agradeço a Deus pela vida, por todas as oportunidades e pelo caminho que Ele tem me guiado, toda a minha gratidão por tudo que sou, penso, aprendo e vivo.

Ao Professor Dr. Artur Zaghini Francesconi, pela oportunidade de desenvolver este trabalho de mestrado e pelo generoso grau de liberdade para desenvolvê-lo. Principalmente, por sua paciência e pelo exemplo que sua competência dá aos seus alunos.

Ao Professor Dr. Roger Josef Zemp, pela atenção e pelos esclarecimentos de algumas dúvidas durante a realização deste trabalho.

Aos amigos Professor Lúcio Cardozo Filho e ao Edson do departamento de Engenharia Química de Maringá. Pela grande ajuda na elaboração do Programa de otimização.

Ao amigo Ricardo Belchior, por ter me ensinado a fazer as análise no densímetro e por outros comentário que me ajudaram na elaboração deste trabalho. Aos amigos de jornada Alexandre T. Souza, Alexandre Simões, Rodrigo Trostdorf, Heron, André, Amarildo, Arnaldo, Cândice, Tatiana e ao Lineu Carvalho por tantos outros momentos de uma agradável convivência.

Ao CNPQ, pela bolsa de estudo.

"Amanhã será, sem dúvida um belo dia mas, para trabalhar e servir, renovar e aprender boje é melhor..."

Ao meu filho Ibrahin Henrique, fonte de minha alegria, dedicação, perseverânça ...

A minha esposa Samira, com muito Amor e carinho, por sempre estar ao meu lado, mesmo quando estamos distantes e por nunca deixar desistir dos meus objetivos.

Aos meus pais queridos, Euclides e Neuza, aos meus irmãos Benedito, Geovane, Geane, meus cunhados Ivone, José Roberto e aos meus sobrinhos Paula Geovana, Bruno, Rafaela, Valéria e Vinícius.

<u>Minhas desculpas, novamente, pelas minhas ausências forçadas, Ibrahin Henrique e</u> <u>Samira, Eu amo vocês !!!!!!</u> "Para quem tem medo, e a nada se atreve, tudo é ousado e perigoso. (...) Esse medo que se enraiza no coração do homem, impedindo-o de ver o mundo que se descortina para além do muro, como se o novo fosse uma cilada, e o desconhecido tivesse sempre uma armadilha a ameaçar nossa ilusão de segurança e certeza.

(...) Há um tempo em que é preciso abandonar os roupas usadas, que já tem a forma do nosso corpo, e esquecer os nossos caminhos, que nos levam sempre aos mesmos lugares. É o tempo da travessia, e se não ousarmos fazê-la, teremos ficado, para sempre, à margem, aquém de nós mesmos."

Fernando Teixeira de Andrade

RESUMO

Neste trabalho estudou-se o comportamento do volume em excesso para sistemas do tipo água-acetonitrila-eletrólito em função da composição (fração molar do solvente entre 0 e 1, fração molar do sal de 0,001 a 0,003) e da temperatura (283,15K - 308,15K) à pressão ambiente, usando o método de densitometria por oscilação mecânica

O sistema água-acetonitrila foi escolhido por ser um sistema de componentes polares, miscíveis à temperatura ambiente e de natureza química diferente. Os sais cloreto de lítio, cloreto de sódio e cloreto de potássio foram escolhidos pela afinidade por um dos componentes e pela influência de cátions e ânions do mesmo grupo periódico.

Para todos os sistemas salinos estudados o volume em excesso torna-se mais negativo quando comparados ao sistema água-acetonitrila, sendo que os maiores efeitos ocorrem para concentrações maiores de sal. O efeito da temperatura no volume em excesso é tal que um aumento de temperatura torna o volume em excesso menos negativo.

Os dados experimentais foram correlacionados pelo modelo ERAS, para o sistema sem sal e o modelo ERAS modificado (com um termo devido a Hepler), para os sistemas com o sal. Verificou-se que o modelo utilizado não foi capaz de correlacionar os dados experimentais para os sistemas estudados. Através da relação entre o volume em excesso e raio do cátion, verificou-se uma correlação linear entre uma função termodinâmica e uma grandeza característica do cátion.

UNICAMP BIBLIOTECA CENTRAI SEÇÃO CIRCULANTE

.....

ABSTRACT

In this work the behavior of the excess volume of systems of the type wateracetonitrile-electrolyte as a function of the composition (fraction molar of the solvent between 0 and 1, fraction molar of the salt from 0,001 to 0,003) and of the temperature (283,15K - 308,15K) at room pressure, using the a vibrating-tube densimeter was studied.

The system water-acetonitrile was chosen by because the components are highly polar, miscible at room temperature and of different chemical nature. The salts lithium chloride, sodium chloride and potassium chloride were chosen because they interact preferabily with one of the solvents and for the cation influence and anion of the same periodic group.

For all the studied saline systems the excess volume becomes more negative when compared to the system water-acetonitrile, and the largest effects happen for larger concentrations of salt. The effect of the temperature in the excess volume, is such that a temperature increase turns the excess volume in less negative.

The experimental data were correlated by the ERAS model, for the system without salt and by the ERAS model modified (with a term due to Hepler), for the systems with salt. It was verified that the used model was not capable to correlate the experimental data for the studied systems. A linear correlation between the excess volume was established at the minimum point in function of the radius of the cation.

Índice

1 – INTRODUÇÃO	1
1.1 – Relevância do Tema	1
1.2 - Objetivo	2
2 – REVISÃO BIBLIOGRÁFICA	3
2.1 – Introdução	3
2.2 – Sistema Água-Acetonitrila	3
2.3 – Sistema Água-Solvente-Sal	5
3 – FORMALISMO TERMODINÂMICO	8
3.1 – Grandezas em Excesso	8
3.2 – Relações Termodinâmicas	9
4 – MÉTODOS EXPERIMENTAIS	14
4.1 – Introdução	14
4.2 – Métodos Experimentais Diretos ou Dilatometria	14
4.3 – Métodos Experimentais Indiretos	15
4.3.1 – Picnometria	15
4.3.2 – Densitometria de Flutuação Magnética	15
4.3.3 – Densitometria de Oscilação Mecânica	16
5 – MODELAGEM	19
5.1 – Introdução	19
5.2 – Modelo ERAS	20
5.2.1 – Contribuição Física	20
5.2.2 – Contribuição Química	21
5.3 – Modelo de Hepler	22
5.4 – Equações do Modelo ERAS	23

.

6 – MATERIAIS E MÉTODOS	28
6.1 – Metodologia	28
6.2 – Reagentes	28
6.3 – Preparo das Amostras	28
6.4 – Medidas	29
6.5 – Análise das Incertezas	32

7 – RESULTADOS EXPERIMENTAIS, MODELAGEM E DISCUSSÃO 47 7.1 – Resultados Experimentais do Sistema Água-Acetonitrila 47 7.2 - Resultados Experimentais do Sistema Água-Acetonitrila-Sal 52 7.2.1 – Relação entre o volume em excesso e o raio iônico_____73 7.2.2 – Valores experimentais do volume em excesso à fração molar da água igual a 1 75 76 7.3 – Modelagem_____ 7.3.1 – Parâmetros dos componentes puros 76 7.3.2 – Parâmetros reduzidos dos componentes puros 77 7.3.3 – Parâmetros característicos dos componentes puros 78 7.3.4 – Raios iônicos - 78 7.3.5 – Resultados dos Parâmetros Cruzados 79 7.4 – DISCUSSÃO dos RESULTADOS ______ 80 7.4.1 – Sistema água-acetonitrila a 283,15K 80 7.4.2 – Sistema água-acetonitrila a 283,15K _____ 80 7.4.3 – Sistema água-acetonitrila a 283,15K _____ 81 7.4.4 – Sistema água-acetonitrila a 283,15K 81 7.4.5 – Sistema água-acetonitrila a 283,15K _____82 7.4.6 – Sistema água-acetonitrila a 283,15K 83

7.5 – Análise Quanto ao Modelo Utilizado	
7.5.1 – Sistema água-acetonitrila	83
7.5.2 – Sistema água-acetonitrila com cloreto de lítio	83
7.5.3 – Sistema água-acetonitrila com cloreto de sódio	83
7.5.4 – Sistema água-acetonitrila com cloreto de potássio	83
7.6 – Análise do volume em excesso em função do raio do íon	84
7.7 – Análise do volume em excesso para fração molar água igual a 1	84
8 – CONCLUSÕES E SUGESTÕES	85
9 – REFERÊNCIAS BIBLIOGRÁFICAS	87
Apêndice A – Tabelas para o Sistema água/acetonitrila	94
Apêndice B – Tabelas para o Sistema água/acetonitrila/cloreto de lítio	101
Apêndice C – Tabelas para o Sistema água/acetonitrila/cloreto de sódio	113
Apêndice D – Tabelas para o Sistema água/acetonitrila/cloreto de potássio	120
Apêndice E – Exemplo de cálculo para o modelo ERAS	127
Apêndice F –	137

NOMENCLATURA

- a = Constante de calibração do densímetro; coeficiente angular da reta.
- A_{Ha} = Constante de Hepler para ânions.
- A_{Hc} = Constante de Hepler para cátions.
- b = Constante de calibração do densímetro.
- B_{Ha} = Constante de Hepler para ânions.
- B_{Hc} = Constante de Hepler para cátions.
- c = Constante elástica do oscilador vazio.
- C = Concentração molar.
- $C_p = Capacidade calorífica a pressão constante.$
- f = Frequência de oscilação.
- G = Energia livre de Gibbs.
- $\Delta h^* = Entalpia de associação.$
- H = Entalpia.
- K = Constante de associação.
- m = Molalidade; massa, número de experimentos.
- n = Número de moles; grau de polimerização, número de parâmetros do polinômio.
- p = Pressão.
- P = Pressão.
- PM = Massa molar.
- r = Raio iônico.
- $\mathbf{R} = \mathbf{Constante}$ universal dos gases.
- S = Entropia.
- T = Temperatura
- t = Período de oscilação.
- U = Energia interna.
- V = Volume.
- $\overline{\mathbf{V}}_{i}$ = Volume parcial molar do componente i
- $V_{\phi i}$ = Volume aparente molar do componente i.
- Δv_s^* = Variação volumétrica devida ao sal.
- x = Fração molar.
- z = Valência do ion.

Letras gregas:

- α = Coeficiente de expansão térmica.
- β = Compressibilidade isotérmica.
- χ_{AB} = Parâmetro de interação de Flory.
- $\Phi =$ Fração volumétrica.
- $\theta =$ Fração superficial.
- ρ = Massa específica.

Índice Superior

- id = Ideal.
- E = Excesso.
- $^{\circ}$ = Componente puro.
- * = Grandeza característica.
- ~= Grandeza reduzida.
- $\infty =$ Diluição infinita.

Índice Inferior

A = Agua.

- $\mathbf{B} = \mathbf{Acetonitrila}$.
- AB = Cruzado água-acetonitrila.
- f = Fisico.
- H = Hepler.
- i = Componente.
- j = Componente.
- q = Químico.

s = sal.

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT

1 – INTRODUÇÃO

1.1 - Relevância do Tema

O efeito da adição de um sal em uma solução líquida modifica as atividades dos componentes presentes na solução, devido às interações moleculares entre os íons e as substâncias líquidas. Este fenômeno é conhecido há muito tempo e chamado de efeito salino.

Das grandezas em excesso, o volume em excesso é uma das mais difíceis de predizer e também umas das mais importantes, tendo em vista que o seu comportamento está associado não somente às forças de interação, mas também aos efeitos estruturais dos componentes da solução como um todo. Essas dificuldades aumentam quando os componentes presentes na solução apresentam auto associação ou associações cruzadas (solvatação).O volume em excesso por ter pequena magnitude é bastante sensível para testar as teorias de soluções.

O volume em excesso de uma solução pode estar relacionado com um dos seguintes fatores ou com a combinação destes: diferença de tamanho entre as moléculas componentes, diferença de forma entre as moléculas componentes, variações estruturais tais como as orientações moleculares, variações nas energias de interações moleculares tanto entre moléculas iguais quanto entre moléculas distintas, formação de novas espécies químicas.

É importante ressaltar que a grande maioria dos estudos com soluções salinas envolve grandezas em excesso como a entalpia em excesso (Vilcu e Irinei, 1969), energia livre de Gibbs em excesso (Platford 1971), (Robinson 1973) e volume em excesso (Morrone, 1998) em solventes puros, principalmente a água. O volume em excesso de soluções salinas apresenta-se como uma forma para testar modelos mais abrangentes em teorias de soluções Renon et al. (1985), Copeman (1987), e Renon e Fürst (1993).

1

1.2 - Objetivo

O objetivo deste trabalho é estudar o efeito da adição dos sais cloreto de lítio, cloreto de sódio e cloreto de potássio no comportamento do volume em excesso para o sistema água-acetonitrila em função da composição do sal entre a fração molar de 0,001 a 0,003 e temperatura de 283,15 a 308,15K, à pressão ambiente, usando um densimetro de oscilação mecânica (modelo DMA 55, Anton Paar). Os sais foram escolhidos pela afinidade por um dos componentes e pela influência de cátions do mesmo grupo periódico; o sistema água + acetonitrila foi escolhido por ser um sistema de componentes polares, miscíveis a temperatura ambiente e por apresentarem naturezas químicas muito diferentes. Além destes fatores, o comportamento do volume em excesso para o sistema água-acetonitrila é bastante conhecido. Pretende-se testar além disso, o desempenho do modelo ERAS modificado para soluções eletrolíticas, utilizando a equação de Hepler para correlacionar a parte salina..

2 – REVISÃO BIBLIOGRÁFICA

2.1 – Introdução

Foi feita uma revisão bibliográfica a partir de 1975, fazendo-se um levantamento para o sistema água + acetonitrila que é um sistema bastante conhecido, e para sistemas do tipo água + acetonitrila + eletrólito. É importante ressaltar que a grande maioria dos estudos com soluções salinas envolve grandezas em excesso como a entalpia e a energia livre de Gibbs em excesso para solventes puros, principalmente a água.

Esta divisão tem por objetivo permitir uma melhor análise do comportamento do volume em excesso do sistema binário água + acetonitrila e do sistema ternário água + acetonitrila + eletrólito.

2.2 - Sistema Água-Acetonitrila

Um estudo que se preocupou em correlacionar as variações estruturais e o volume em excesso foi o de *Moreau e Douhéret (1975)*. Trabalhando com um picnômetro de incerteza 0,01cm³/mol, fizeram medidas experimentais do volume em excesso numa faixa de temperatura que vai de 278,15 a 308,15K. A conclusão do trabalho foi que a faixa de concentração poderia ser dividida em três regiões distintas:

Região rica em água ($0 < x_{acn} \le 0,2$), em que os espaços vazios da estrutura da água são preenchidos progressivamente pelas moléculas de acetonitrila, sem que ocorra uma modificação na estrutura da água.

Região intermediaria ($0,2 \le x_{acn} \le 0,8$), na qual ocorrem quebras suscessivas na estrutura da água, sendo que esta faixa de concentração também pode ser chamada de "região de microheterogeneidade". Nesta região o tamanho dos agregados é reduzido e o volume em excesso tem o seu valor mínimo (cerca de $-0,6 \text{ cm}^3 \text{ mol}^{-1}$) para uma fração molar de acetonitrila de 0,35 a 298,15K.

Região rica em acetonitrila $(0,8 \le x_{acn} < 1,0)$, na qual a estrutura inicial da acetonitrila é progressivamente perturbada pela adição das moléculas de água.

Handa e Benson (1981), fizeram medidas densitométricas de soluções águaacetonitrila na faixa de 15 a 35°C, usando um densímetro Anton Paar modelo DMA 02C, obtendo dados volumétricos como volumes em excesso, coeficientes de expansão térmica e expansibilidades parciais molares. Encontraram um efeito diferente ao proposto por *Moreau e Douhéret (1975)* na região rica em água, admitindo que ocorrem quebras na estrutura da água. Este comportamento explicaria os máximos obtidos nos coeficientes de expansão térmica e nas expansibilidades nesta região.

Soluções de água-acetonitrila foram previamente investigadas à pressão atmosférica por meio de várias técnicas experimentais, mas poucas informações foram avaliadas para pressões mais altas. Somente no trabalho de *Götze e Schneider (1980)* foi feito um exame quanto à dependência das grandezas em excesso do sistema água-acetonitrila em relação à pressão. Este trabalho foi estendido por *Easteal e Woolf (1982)*, que fizeram medidas densitométricas a 298,15K e numa faixa de pressão que foi totalmente coberta até 250MPa e novamente por *Easteal e Woolf (1985)*, desta vez ampliando as faixas de temperatura de 278,15 a 323,15K e pressão de 0,1 a 280MPa, usando água e metanol. Em 1988 os mesmos pesquisadores usando as mesmas faixas de temperatura e pressão só que desta vez usando água-acetonitrila, calcularam as energias livre de Gibbs em excesso, entalpias e entropias em excesso e o volume molar em excesso. A entalpia em excesso variou com a pressão, isto é, aumentando pressão a entalpia diminuía, a baixas concentrações de acetonitrila, ou seja, a acetonitrila se acomodava na estrutura da água, conforme o que *Moreau e Douhéret* haviam propostos em 1975. O volume em excesso também sofreu variação com a pressão, isto é, aumentando a pressão o volume em excesso diminui.

Usando um densimetro de oscilação mecânica, *Meurs e Somsen (1993)* calcularam os volumes em excesso e volumes aparentes molares do sistema água-acetonitrila, através de medidas de densidades numa faixa de temperatura de 0 a 25°C. Chegaram a conclusão que não houve grande variação nos volumes em excesso quanto à temperatura e reafirmaram a existência das três regiões propostas por *Moreau e Douhéret (1975)*.

Katsutoshi et al. (1997), estudaram o volume em excesso deste sistema a 30°C usando um densímetro de oscilação mecânica. Concluíram que os valores obtidos para o

sistema estudado eram da ordem dos valores apresentados por *Handa e Benson (1981)*, exceto que o mínimo se encontra na região rica em água.

2.3 - Sistema Água-Solvente-Sal

Usando as pressões de vapor de soluções diluídas, *Treiner et al (1975)* estudaram o sistema água-acetonitrila e brometo de tetrabutilamônio a 298,15K. Através destes dados foram calculadas as energias livres de Gibbs e entalpias em excesso e considerando estes dados obtiveram a entropia em excesso. Chegaram a conclusão que a energia livre de Gibbs de transferência do eletrólito é favorecida da água para soluções ricas em água e desfavorecida para regiões ricas em acetonitrila. Os íons dos eletrólitos tem comportamentos diferentes, o cátion requer a criação de uma cavidade no solvente, o que contribui negativamente para a energia livre transferência de Gibbs e para o íon brometo esta mesma energia é positiva.

Em 1979 usando uma cela eletroquímica *Cox et. Al* efetuaram medidas para o sistema água-acetonitrila com os seguintes sais: brometo de prata, iodeto de prata, cloreto de lítio, cloreto de sódio, iodeto de potássio. A partir dessas medidas obtiveram a energia livre de transferência e entalpia de transferência a 298,15K por técnicas calorimétricas, chegaram a conclusão que todos os eletrólitos simples com exceção do iodeto de prata são mais solúveis em água, enquanto que a prata e os íons orgânicos são mais solúveis em acetonitrila.

Patil e Mehta (1987), determinaram o volume em excesso e a compressibilidade de sais em soluções aquosas contendo brometo de sódio e brometo de potássio, brometo de tetrabutilamina e brometo de potássio, brometo de tetrabutilamina a 298,15K. Comparando os volumes em excesso dos sistemas água-brometo de tetrabutilamina-brometo de potássio e água-brometo de tetrabutilamina-brometo de tetrabutilamina, concluíram a presença de uma forte interação cátion-cation nas soluções ternárias.

Usando um densimetro de oscilação mecânica e um microcalorimetro *Hefter et al.* (1990), estudaram volumes aparentes molares e capacidades caloríficas aparentes de

5

soluções de água-acetonitrila com os seguintes sais: cloreto de sódio, potássio e de tetrafenilfosfônio; nitratos de prata e de potássio; iodeto de potássio e tetrafenilboreto de sódio, a 25°C. A discussão do trabalho foi feita em termos das contribuições iônicas e não dos eletrólitos como um todo.

O'Brien et al. (1991), investigaram metais alcalinos em interação com acetonitrila, usando métodos instrumentais como NMR e espectro no infravermelho. E os resultados obtidos foram que, para medidas feitas em espectroscopia no infravermelho, os sais dos metais alcalinos são mais sensíveis à adição de água.

Benko e Vollárová (1994), calcularam as energias livres de Gibbs de transferência, através de medidas de solubilidades de oxiânions (ClO⁻³, BrO⁻³, IO⁻³, ClO⁻⁴, IO⁻⁴) de sais de césio e potássio, a 298,15K para o sistema água-acetonitrila até frações molares de acetonitrila iguais a 0,2. Os resultados foram comparados com os do sistema água-butanol, também medidos por eles para frações molares de butanol até 0,12. Para o álcool, as energias livres de Gibbs de transferência foram todas positivas, isto significa que ocorre uma forte interação dos ânions com a água, conforme a concentração da acetonitrila aumenta. Da mesma forma, a simetria do ânion tem papel importante, sendo menores as energias livres de Gibbs de transferência quanto mais simétrico o ânion. Para a acetonitrila os efeitos nas energias livres de Gibbs de transferência são menos drásticos, chegando a valores negativos para o perclorato e periodato, isto é, os perhaletos são estabilizados com a adição da acetonitrila.

Al-Sahhaf e Kapetanovic (1997), estudaram os efeitos dos sais cloreto de lítio, brometo de sódio e iodeto de potássio no equilíbrio líquido-líquido para o sistema águabutanol-1 a 25°C. Concluíram que o processo de solvatação na fase orgânica é diferente para todos os sais estudados, a solvatação do brometo de sódio é aparentemente afetado pela água e a solubilidade dos sais estudados no butanol-1 em água decresce na seguinte ordem LiCl > NaBr > KI.

Friese et al. (1998), estudaram o efeito do cloreto de sódio nas entalpias em excesso para os sistemas líquidos binários (água- álcool), usando um microcalorimetro numa faixa de temperatura que vai de 298,15 a 323,15K. Novamente *Friese et al (1999)*, estenderam o

trabalho também para o cloreto de potássio, chegaram a conclusão que o valor absoluto da entalpia molar em excesso diminui com o aumento da concentração do cloreto de sódio, isto é, o comportamento exotérmico ou endotérmico, respectivamente é reduzido pela influência da adição do eletrólito.

Morrone (1998) estudou o comportamento experimental do volume em excesso, para o sistema água + acetonitrila + sal em função da composição a temperatura e pressão ambiente, usando um densimetro de oscilação mecânica e correlacionou os dados através de alguns modelos. A conclusão foi que os pontos de mínimo estão situados na região intermediária, os efeitos de contração volumétrica aumentam diretamente com as massas molares dos sais.

> UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANTE

3 - FORMALISMO TERMODINÂMICO

3.1 - Grandezas em Excesso

No estudo termodinâmico de soluções reais é comum descrever os desvios de seu comportamento em relação ao de uma solução considerada ideal por meio das grandezas ou funções em excesso. Esse termo foi introduzido por *Scatchard e Hemer (1934)*, os quais estudaram o comportamento da energia livre de Gibbs, embora o conceito já tinha sido usado anteriormente por *Scatchard (1931)*.

Scatchard definiu uma grandeza em excesso como a diferença entre o valor de uma função termodinâmica de solução em um estado qualquer e o valor dessa para uma solução ideal nas mesmas condições de temperatura, pressão e composição. Logo uma grandeza em excesso para uma solução ideal é zero, contudo essas grandezas representam o excesso (positivo ou negativo) de uma função termodinâmica de solução em relação a uma solução ideal considerada como referência.

O termo grandeza em excesso vinha sendo usado de forma confusa, como foi observado por *Guggenheim (1967)*. Em 1969 *Missen* redefiniu o termo estendendo o conceito e esclarecendo dúvidas a respeito do tipo de função que poderia ser definida como grandeza em excesso, e se as relações termodinâmicas aplicáveis a uma determinada grandeza que poderiam ser estendidas às suas similares em excesso.

O conceito de função em excesso pode ser aplicado para quase todas as grandeza termodinâmica e não é restrito a grandezas extensivas, portanto a definição hoje em dia é amplamente usada no âmbito do estudo da teoria de soluções às grandezas extensivas, intensivas, molares e parciais molares.

Seja M uma grandeza extensiva de um sistema com m componentes; definindo-se o sistema a partir das variáveis independentes T, P, n_1 , n_2 ... n_m , tem-se: M= f(T, P, n_1 , n_2 ... n_m).

Para grandezas extensivas, tem-se :

 $M^{E}(T, P, n_{1}, n_{2}...n_{m}) = M(T, P, n_{1}, n_{2}...n_{m}) - M^{ideal}(T, P, n_{1}, n_{2}...n_{m}),$ (3.1.1) ex. G^E, H^E, V^E Para grandezas molares, tem-se:

$$m^{E}(T, P, x_{1}, x_{2},...x_{(m-1)}) = m(T, P x_{1}, x_{2},...x_{(m-1)}) - m^{ideal}(T, P, x_{1}, x_{2},...x_{(m-1)}),$$
(3.1.2)
ex. g^E, h^E, v^E

Para grandezas parciais molares. tem-se:

$$\bar{\mathbf{m}}_{i}^{E}(T, P, x_{1}, x_{2}, \dots, x_{(m-1)}) = \bar{\mathbf{m}}_{i}(T, P, x_{1}, x_{2}, \dots, x_{(m-1)}) - \bar{\mathbf{m}}_{i}^{ideal}(T, P, x_{1}, x_{2}, \dots, x_{(m-1)}), \quad (3.1.3)$$

ex.
$$\overline{g}_{i}^{E} = \frac{\partial G}{\partial n_{i}} (T, P, n_{1}, n_{2}, \cdots, n_{m}) = RT \ln \gamma_{i}$$
, (3.1.4)

3.2--Relações Termodinâmicas

A maioria das expressões termodinâmicas para grandezas extensivas em excesso, grandezas molares em excesso e parciais molares em excesso apresentam relações análogas às relações termodinâmicas usuais, tais como:

$$H = U + PV \rightarrow H^{E} = U^{E} + PV^{E}, \qquad (3.2.1)$$

$$G = H - TS \rightarrow G^{E} = H^{E} - TS^{E}, \qquad (3.2.2)$$

$$Cp = \left(\frac{\partial H}{\partial T}\right)_{P,x} \rightarrow Cp^{E} = \left(\frac{\partial H^{E}}{\partial T}\right)_{P,x},$$
 (3.2.3)

$$\begin{bmatrix} \frac{\partial \left(\mu_{i} / T \right)}{\partial T} \end{bmatrix}_{P,x} = -\frac{\overline{h}_{i}}{T^{2}} \rightarrow \begin{bmatrix} \frac{\partial \left(\mu_{i}^{E} / T \right)}{\partial T} \end{bmatrix}_{P,x} = -\frac{\overline{h}_{i}^{E}}{T^{2}}, \quad (3.2.4)$$

Relações de Maxwell:

$$\left(\frac{\partial T}{\partial V^{E}}\right)_{S^{E},n} = -\left(\frac{\partial P}{\partial S^{E}}\right)_{V^{E},n},$$
(3.2.5)

$$\left(\frac{\partial \Gamma}{\partial P}\right)_{S^{E},n} = \left(\frac{\partial V^{E}}{\partial S^{E}}\right)_{P,n}, \qquad (3.2.6)$$

As derivadas parciais das funções extensivas em excesso são análogas às das funções extensivas: por exemplo, derivando-se a equação (3.2.2) em relação a T, tem-se:

$$\left(\frac{\partial G^{E}}{\partial T}\right)_{P,n} = -S^{E}, \qquad (3.2.7)$$

Ou substituindo a equação (3.2.1) em (3.2.2) e derivando em relação a P, tem-se:

$$\left(\frac{\partial G^{E}}{\partial P}\right)_{T,n} = V^{E}, \qquad (3.2.8)$$

Utilizando a relação de Maxwell, tem se:

$$\left(\frac{\partial S^{E}}{\partial P}\right)_{T,n} = -\left(\frac{\partial V^{E}}{\partial T}\right)_{P,n}, \qquad (3.2.9)$$

obtém-se:

$$\left(\frac{\partial H^{E}}{\partial P}\right)_{T,n} = V^{E} - T \left(\frac{\partial V^{E}}{\partial T}\right)_{P,n}, \qquad (3.2.10)$$

Para certas grandezas intensivas, não há relação análoga em termos de função em excesso, como é o caso do coeficiente de expansão térmica (α).

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,x}, \qquad (3.2.11)$$

$$\alpha^{\text{ideal}} = \frac{1}{V^{\text{ideal}}} \left(\frac{\partial V^{\text{ideal}}}{\partial T} \right)_{P,x}, \qquad (3.2.12)$$

$$\operatorname{como} \, \alpha^{\mathrm{E}} = \alpha - \alpha^{\mathrm{ideal}} \tag{3.2.13}$$

tem-se então:

$$\alpha^{E} = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,x} - \frac{1}{V^{ideal}} \left(\frac{\partial V^{ideal}}{\partial T} \right)_{P,x}, \qquad (3.2.14)$$

ou

$$\alpha^{E} = \frac{1}{V} \left[\left(\frac{\partial V}{\partial T} \right)_{P,x} - \frac{V}{V^{ideal}} \left(\frac{\partial V^{ideal}}{\partial T} \right)_{P,x} \right], \quad (3.2.15)$$

Substituindo $V = V^{E} + V^{ideal}$, tem-se:

$$\alpha^{e} = \frac{1}{V} \left[\left(\frac{\partial \left(V^{e} + V^{ideal} \right)}{\partial T} \right)_{P,x} - \frac{V^{e} + V^{ideal}}{V^{ideal}} \left(\frac{\partial V^{ideal}}{\partial T} \right)_{P,x} \right], \quad (3.2.16)$$

simplificando a equação acima tem-se a seguinte expressão:

$$\alpha^{E} = \frac{1}{V} \left[\left(\frac{\partial V^{E}}{\partial T} \right)_{P,x} - V^{E} \alpha^{ideal} \right] \neq \frac{1}{V^{E}} \left(\frac{\partial V^{E}}{\partial T} \right)_{P,x}, \quad (3.2.17)$$

Uma grandeza de interesse é o volume aparente molar, o qual foi descrita por Acree (1984), que é usada para tratamento de dados experimentais que envolvem soluções diluídas.

$$V = n_{j}V_{\phi j} + \sum_{\substack{i=1\\i\neq j}}^{i=m} n_{i}V_{i}^{\circ}, \qquad (3.2.18)$$

em que:

V é o volume da solução;

 V_i° é o volume molar do componente i;

 $V_{\phi i}$ é o volume aparente molar do componente j;

n_j é o número de moles do componente j;

n_i é o número de moles do componente i exceto o componente j;

A relação entre $\overline{V_j}$ e V ϕj é :

$$\frac{\partial V}{\partial n_{j}}(T, P, n_{1}, \cdots, n_{m}) = \overline{V_{j}} = V_{\phi j} + n_{j} \frac{\partial V_{\phi j}}{\partial n_{j}}(T, P, n_{1}, \cdots, n_{m}), \qquad (3.2.19)$$

À diluição infinita, as duas grandezas se igualam:

$$\overline{V_{j}^{\infty}} = V_{\phi j}^{\infty}, \qquad (3.2.20)$$

O volume aparente molar é, portanto, uma quantidade que está relacionada ao volume parcial molar. As quantidades aparentes molares podem ser usadas para determinar as quantidades parciais molares.

Por exemplo, conhecendo-se o volume aparente molar de soluto e traçando-se um gráfico desta grandeza em função da molalidade ou da raiz quadrada da molalidade, podese encontrar o volume parcial molar do componente i (*Hefter*, 1990).

$$V_{\phi i} = \frac{PM_{i}}{\rho_{s}} - \frac{1}{m_{i}} \left(\frac{\rho_{s} - \rho_{0}}{\rho_{s} \rho_{0}} \right)$$
(3.2.21)

$$V\phi i = am_i^{1/2} + V_{\phi i}^{\infty}$$
, (3.2.22)

em que:

 $V_{\phi i}$ é o volume aparente molar do componente i;

PMi é a massa molar do componente i;

mi é a molalidade do componente i;

 ρ_s é a massa específica da solução salina;

 ρ_0 é a massa específica da solução sem o sal;

a é o coeficiente angular da reta;

 $\overline{V_i}$ é o volume parcial molar do componente i;

 $V_{\phi i}^{\infty}$ é o volume parcial molar do componente i a diluição infinita.

As equações apresentadas neste tópico serão utilizadas nos capítulos seguintes para a resolução de equações necessária para obter o volume em excesso.

4- - MÉTODOS EXPERIMENTAIS

4.1 - Introdução

O volume em excesso é determinado experimentalmente por dois métodos principais: Direto e o Indireto.

O método direto é realizado observando-se a variação do volume quando dois líquidos são misturados.

O método indireto é feito através de medidas das densidades dos líquidos puros e suas soluções à composição conhecida.

As técnicas diretas são denominadas de dilatometria, destacando-se a dilatometria de batelada ou composição simples e a dilatometria de diluição.

A técnica de medida do volume em excesso por via indireta é denominada de densitometria, tendo como principais métodos a picnometria, densitometria de oscilação mecânica e a densitometria de flutuação magnética.

As composições das soluções são obtidas determinando-se a massa de cada componente, ou pela medida do volume do mesmo. Em medidas em que somente a variação volumétrica é de interesse, a precisão na composição não necessita ser maior que a precisão no volume em excesso. Se as composições são determinadas através das densidades das soluções, então a precisão na composição é relacionada diretamente pela diferença nas densidades dos dois componentes e pela precisão na densidade. Um exemplo foi mostrado por *Mclure e Swinton (1965)*.

4.2 - Métodos Experimentais Diretos ou Dilatometria

Um dos dilatômetros de batelada mais simples foi o apresentado por Duncan, Sheridan e Swinton (1965). Pflug e Benson (1968) apresentaram, mais tarde, um dilatômetro de diluição, Stokes et al (1970) também apresentaram um dilatômetro de diluição, o qual foi modificado por Martin e Murray (1972) para facilitar a limpeza e o procedimento de calibração. Um outro exemplo de dilatômetro de batelada foi apresentado por Stookey et al (1973), o qual foi proposto com o objetivo de detectar e minimizar as fontes de erros, tais como compressibilidade dos líquidos, flutuações térmicas e leituras catetométricas. Outros autores tais como *Bottomley e Scott (1974)* e *Tanaka et al (1975)* também apresentaram dilatômetros de diluição. Em quase todos esses dilatômetros a célula onde ocorre a mistura tem volume de 50cm³, parte do qual é ocupada por mercúrio.

4.3 - Métodos Experimentais Indiretos

4.3.1 - Picnometria

Na determinação da densidade pela técnica de picnometria, é importante determinar a composição da solução com precisão, e em muitos trabalhos tem-se observado simplesmente que os dois componentes são pesados no picnômetro. Esse procedimento está sujeito a muitas incertezas devido às perdas por evaporação. A técnica para superar esse problema é usar um frasco de mistura do tipo descrito por *Wood e Brusie (1943)*, ou uma versão aperfeiçoada desse método descrito por *Battino (1966)*.

As medidas de densidades usando picnômetro são mais baratas e mais simples em termos de equipamentos, embora mais dispendiosa em termos de tempo, e uma fonte frequente de erros é a formação de bolhas. Segundo *Handa e Benson*, os volumes recomendados para o picnômetro está entre 10 a 30 cm³, pois o uso de picnômetro de tamanho inferior a 10 cm³ apresenta dificuldade nas pesagens e calibração do volume, ao passo que o uso de picnômetros de tamanhos maiores que 30 cm³ muitas vezes resultam na perda da sensibilidade.

4.3.2 - Densitometria de Flutuação Magnética

Esses densímetros operam baseados no principio de equilíbrio de efeitos opostos da gravidade, flutuação e campo magnético que atuam sobre um flutuador de ferro. Isso é feito passando uma corrente através de um solenóide localizado abaixo da célula contendo a água. A densidade está relacionada à corrente à medida que o flutuador levanta do fundo da célula. Normalmente, tais densímetros podem cobrir somente uma faixa relativamente pequena de densidade e requerem grandes volumes das amostras para boa precisão. Alguns densímetros de flutuação magnética são descritos na literatura por *Franks e Smith (1967)*, *Masterton e Seiler (1968)*. Detalhes sobre densitometria de flutuação magnética também são encontrados nos trabalhos de *Weeks e Benson (1973)*, *Barmaan e Rahim (1977)*.

4.3.3 - Densitometria de Oscilação Mecânica

Os densímetros do tipo oscilador mecânico são densímetros digitais de fácil operação. Este densímetro tem sido comercializado pela Anton Paar, Graz, Austria. Ele utiliza um tubo feito de vidro (oscilador) montado no centro de uma parede dupla cilíndrica, que é fundida no extremo e preenchido com gás de alta condutividade térmica. Um líquido termostatizado flui entre as paredes desse cilindro ver figura (4.3.3.2). Isso permite que se alcance um equilíbrio térmico rapidamente. A célula da qual o oscilador faz parte é preenchida com a amostra. O volume da amostra necessário para encher a célula é aproximadamente de 1 cm³. Esse tipo de equipamento foi utilizado no presente trabalho, ver figura (4.3.3.1). *Picker, Tremblay e Jolicoeur (1974)* também apresentaram um modelo de densímetro de oscilação mecânica.

Figura 4.3.3.1 - Densímetro Anton Paar (Modelo DMA)

Fonte: Torres, R.B. (1998)

O princípio de operação desse densímetro está na determinação da freqüência ressonante natural de um oscilador excitado mecanicamente. A massa do oscilador é a soma da massa dele vazio e a massa da amostra, que está representada abaixo:

$$m=m_0 + V\rho$$
, (4.4.1)

em que:

m é a massa do oscilador;

m₀ é a massa do oscilador vazio;

V é o volume do oscilador;

ρ é a massa especifica da amostra.

Considerando o oscilador como um corpo suspenso por uma mola de constante elástica c, a freqüência de oscilação é:

$$f = \frac{1}{2\pi} \sqrt{\frac{c}{m}} = \frac{1}{2\pi} \sqrt{\frac{c}{m_0 + V\rho}}, \qquad (4.4..2)$$

em que:

f é a freqüência de oscilador; c é a constante elástica do oscilador vazio; m é a massa do oscilador; m₀ é a massa do oscilador vazio; V é o volume do oscilador; ρ é a massa especifica da amostra.

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT?

Racionalizando-se a expressão acima, com a introdução das constantes: $a=4\Pi^2 V/c e$ b= $4\Pi^2 m/c e$ lembrando que o período de oscilação t=1/f, tem-se:

$$\rho = \left(\frac{t^2 - b}{a}\right),\tag{4.4.3}$$

em que a e b são as constantes de calibração do equipamento e dependem da temperatura, e são determinadas através da medida da freqüência de oscilação de duas substâncias cujas massas específicas são bem conhecidas, normalmente água e ar. Figura 4.3.3.2 – Tubo Oscilador: A – vista lateral; B – vista frontal; 1 – amostra; 2 – gás de alta condutividade térmica; 3 – líquido termostatizado;

4 - orifício para o termistor.

Fonte: Torres, R.B. (1998)

5 – MODELAGEM

5.1 Introdução

Nos estudos dos modelos de grandezas em excesso de sistemas formados por soluções líquidas, devem ser consideradas as associações químicas, bem como as interações físicas assim como a própria geometria das moléculas. Também devem ser consideradas outras grandezas adicionais dos componentes puros, manifestadas pelo seu comportamento através da pressão, do volume e da temperatura.

A utilização das equações de estado dão maior sensibilidade ao modelo quanto às variações volumétricas e de temperatura, além de serem aplicáveis diretamente em relações termodinâmicas exatas, para a obtenção das grandezas em excesso; dessa forma a combinação de uma equação de estado com o modelo de solução associada, permite estender a aplicação desta última a grandezas volumétricas, como o volume em excesso. Modelos combinados tem sido introduzidos por alguns autores dentre eles estão *Brandani-Prausnitz (1981)* e *Aguirre-Ode (1983)*. Em 1985, *Heintz* combinou o modelo de solução associada de *Kretschmer-Wiebe (1954)*, com a equação de estado de *Flory (1964)*, assumindo as hipóteses básicas dos dois modelos e criando dessa maneira o modelo para soluções associadas reais estendidas (ERAS).

A modelagem para o volume em excesso dos sistemas salinos estudados foi feita assumindo a hipótese da aditividade de termos, isto é, o volume em excesso é decorrente da soma de três contribuições distintas: física, representada pelas interações físicas presentes na solução, química resultante das interações específicas entre os componentes, salina, resultante das interações eletrostáticas entre o sal e os solventes. Para os sistemas sem sal usou-se o modelo ERAS, que é decorrente da soma de duas contribuições distintas, a física e a química.

As contribuições químicas e físicas foram obtidas através do modelo ERAS (Extentend Real Associated Solution), enquanto para quantificar o modelo salino utilizouse a abordagem baseada na eletrostricção dos íons proposta por *Hepler (1957)*, ou seja:

> UNICAMP BIBLIOTECA CENT SEÇÃO CIRCULA

$$\mathbf{V}^{\rm E} = \mathbf{V}_{\rm f}^{\rm E} + \mathbf{V}_{\rm g}^{\rm E} + \mathbf{V}_{\rm H}^{\rm E}, \tag{5.1.1}$$

em que:

 V_{f}^{E} é a contribuição física para V^{E} ; V_{q}^{E} é a contribuição química para V^{E} ; V_{H}^{E} é a contribuição eletrostática para V^{E} .

5.2--Modelo ERAS

As grandezas em excesso obtidas através do modelo ERAS são compostas por duas parcelas uma de natureza física e outra de natureza química. Este modelo combina através de uma função partição, a equação de *Flory* com o modelo de associação de *Kretschmer-Wiebe*. Este modelo foi inicialmente aplicado a sistemas do tipo álcool-hidrocarboneto. Tem sofrido recentemente algumas modificações, introduzidas por *Funke e Heintz (1989)*., de modo a torná-lo aplicável a sistemas nos quais os dois componentes formam um complexo de solvatação, além de serem auto-associantes, como é o caso dos álcoois com as aminas.

5.2.1 – Contribuição Física

A equação de estado de *Flory* foi proposta admitindo-se as grandezas características de um fluido formado por segmentos ao invés das grandezas criticas do fluido real. *Flory* considerou que líquidos puros têm diferentes volumes livres, isto é, diferentes graus de expansões térmicas, que devem ser levadas em conta, principalmente se as diferenças de forma e tamanhos dos componentes forem grandes. Esse procedimento permite elaborar uma regra de mistura fisicamente consistente. A equação descrita em termos des suas grandezas reduzidas é a seguinte:

$$\frac{\widetilde{p}\widetilde{V}}{\widetilde{T}} = \frac{\widetilde{V}^{1/3}}{\widetilde{V}^{1/3} - 1} - \frac{1}{\widetilde{V}\widetilde{T}},$$
(5.2.1.1)

em que as grandezas reduzidas \tilde{p} , $\tilde{V}e\tilde{T}$ são definidas pelo quociente entre as grandezas de estado do fluido p, V, T e suas grandezas características p^{*}, V^{*} e T^{*}, isto é:

$$\widetilde{p} = \frac{p}{p^*}$$
, pressão reduzida da solução. (5.2.1.2)
 $\widetilde{T} = \frac{T}{T^*}$, temperatura reduzida da solução. (5.2.1.3)
 $\widetilde{V} = \frac{V}{V^*}$, volume reduzido da solução. (5.2.1.4)

5.2.2 – Contribuição Química

Kretschmer e *Wiebe* assumem algumas hipóteses básicas para o modelo associativo, tais como, a rigidez do modelo ao considerar o volume do oligômero como a soma dos volumes dos monômeros isolados e a associação seqüencial linear dos monômeros. Esta última tem o objetivo de simplificar o modelo. Apesar disso, esse modelo tem sido aplicado com bons resultados, tanto em sistemas de álcoois com alcano, quanto de aminas com alcanos, em que a reação de associação é descrita por:

$$A_{n} + A \xleftarrow{K_{A}} A_{n+1}, \qquad (5.2.2.1)$$

em que:

A é o monômero;

n é o grau de associação do oligômero.

A constante de equilíbrio para essa associação K_A é admitida como independente do comprimento n do oligômero, quando definido em termos das concentrações. A sua dependência com a temperatura é dada pela expressão de vant'Hoff por:

$$K_{A} = K_{A0} e^{\left(\frac{-\Delta h_{A}^{\star}}{R} \left(\frac{1}{T} - \frac{1}{T_{0}}\right)\right)}, \quad (5.2.2.2)$$

em que:

 K_{A0} é a constante de associação a T_0 ;UNICAMP Λh^*_A é a entalpia de associação;BIBLIOTECA CENTRALR é a constante universal dos gases.DECÃO CIRCULANTE

Para aplicação do modelo a sistemas em que ocorrem associações cruzadas entre duas substâncias da solução (solvatação), foi usada a abordagem de *Nath* e *Bender (1983)* de associação de blocos poliméricos. Porém, as inúmeras possibilidades de combinações de **n** monômeros de **A** com **m** monômeros de **B**, para formar o multímero A_nB_m , torna impraticável a descrição dessas reações, assim como a definição de sua constante de equilíbrio. Uma das possibilidades é a associação de dois blocos de multímeros $A_n e B_m$ para formar o multímero $A_n B_m$. Assim tem-se:

$$A_{n} + B_{m} \xleftarrow{K_{AB}} A_{n} B_{m}$$
(5.2.2.3)

Esta equação é denominada modelo de dois blocos ou co-polimerização por blocos e é aplicável a sistemas nos quais um dos componentes possui uma constante de associação baixa, bem inferior ao do outro componente.

5.3 – Modelo de Hepler

O modelo utilizado por *Hepler (1957)* surgiu das tentativas para deduzir teoricamente uma equação que representasse a entropia parcial molar dos íons, que dependia da carga e do raio dos íons. O modelo para se calcular o volume parcial molar de íons foi realizado em paralelo ao modelo para a entropia parcial molar. Através desse trabalho foi apresentado uma equação para o cálculo do volume parcial molar dos íons, que é dado por :

$$\overline{V}_{\text{ion}} = Ar^3 - \frac{Bz^2}{r}, \qquad (5.3.1)$$

em que:

 A_H e B_H são as constantes para os cátions e para os ânions respectivamente, obtidas através de ajustes dos dados experimentais.

r é o raio iônico dos íons em angstrons;

z é a valência dos íons.
Sendo que o termo z^2/r é proporcional a interação íon-solvente (eletrostricção) e o volume da cavidade do íon é proporcional a r³. A constante de proporcionalidade A é estabelecida em função do raio do íon em solução que é maior que o raio do cristal.

Neste trabalho apresentado por Hepler, ele observou que o valor da constante A é maior para cátions do que para ânions, e o fato de que B é maior para ânions do que para cátions, indicando que a interação íon-solvente é grande para ânions e menor para cátions de tamanho maior. Essa idéia está suportada na comparação da energia e entropia de hidratação de ânions e cátions.

em que:

A equação do volume parcial molar devido ao efeito do sal é dado pela seguinte expressão:

$$\overline{\mathbf{V}}_{s} = \overline{\mathbf{V}}_{\text{cation}} + \overline{\mathbf{V}}_{\text{anion}}, \qquad (5.3.2)$$

e a equação para o volume em excesso devido ao efeito do sal é dado por:

$$V_{\rm H}^{\rm E} = \mathbf{x}_{\rm s} \left(\overline{\mathbf{V}}_{\rm s} - \overline{\mathbf{V}}_{\rm s}^{\infty} \right), \tag{5.3.3}$$

em que:

 x_s é a fração molar do sal;

 \overline{V}_s é o volume parcial molar do sal na solução;

 \overline{V}_s^{∞} é o volume parcial molar à diluição infinita do sal.

5.4 - Equações do modelo ERAS

Em seguida são fornecidas as equações para o cálculo das grandezas características dos componentes puros, P^* , $T^*e V^*$.

No apêndice (), encontra-se uma demonstração de resolução para estas equações, tanto para o sistema sem o sal como para o sistema com sal.

A equação do volume característico do componente puro é dada por:

$$\mathbf{V}_{i}^{*} = \mathbf{V}_{i} \left[\frac{1 + \left(\alpha_{i} - \alpha_{i}^{*}\right)\Gamma}{1 + \frac{4}{3}\left(\alpha_{i} - \alpha_{i}^{*}\right)\Gamma} \right]^{3}, \qquad (5.4.1)$$

em que α_i é o coeficiente de expansão térmica (tabelada) e α_i^* é dado por:

$$\alpha_{i}^{*} = \Delta V_{i}^{*} \Delta h_{i}^{*} \left[\frac{(4K_{i} + 1)^{1/2} - 2K_{i}(4K_{i} + 1)^{-1/2} - 1}{2K_{i}V_{i}^{*}RT^{2}} \right]$$
(5.4.2)

A equação da pressão característica do componente puro é dada pela seguinte expressão:

$$p_{i}^{*} = \left(\alpha_{i} - \alpha_{i}^{*}\right) T \widetilde{V}_{i}^{2} \left(\beta_{Ti} - \alpha_{i}^{*} T \frac{\Delta V_{i}^{*}}{\Delta h_{i}^{*}}\right)^{-1}, \qquad (5.4.3)$$

em que β_{Ti} é compressibilidade isotérmica (tabelada).

A temperatura característica é obtida diretamente da equação simplificada de Flory, válida a baixas pressões:

$$T_i^* = \left(\frac{\widetilde{V}_i^{4/3}}{\widetilde{V}_i^{1/3} - 1}\right) T$$
(5.4.4)

As equações paras frações volumétricas dos componentes são dadas através das expressões abaixo:

$$\Phi_{A} = \frac{X_{A}V_{A}^{*}}{X_{A}V_{A}^{*} + X_{B}V_{B}^{*} + X_{S}V_{S}^{*}}$$
(5.4.5)

$$\Phi_{\rm B} = \frac{{\rm x}_{\rm B} {\rm V}_{\rm B}^{*}}{{\rm x}_{\rm B} {\rm V}_{\rm B}^{*} + {\rm x}_{\rm A} {\rm V}_{\rm A}^{*} + {\rm x}_{\rm S} {\rm V}_{\rm S}^{*}}$$
(5.4.6)

$$\Phi_{\rm S} = \frac{{\rm x}_{\rm S} {\rm V}_{\rm S}^*}{{\rm x}_{\rm B} {\rm V}_{\rm B}^* + {\rm x}_{\rm A} {\rm V}_{\rm A}^* + {\rm x}_{\rm S} {\rm V}_{\rm S}^*}, \qquad (5.4.7)$$

em que:

x_A é a fração molar da água;

x_B é a fração molar da acetonitrila;

x_s é a fração molar do sal;

V_A^{*} é o volume característico da água;

 V_B^* é o volume característico da acetonitrila;

 V_{s}^{*} é o volume característico do sal;

 Φ_A é a fração volumétrica da água;

 $\Phi_{\rm B}$ é a fração volumétrica da acetonitrila;

 $\Phi_{\rm S}$ é a fração volumétrica do sal.

As equações para as frações volumétricas dos monômeros A_1 e B_1 , estão representada pelas seguintes expressões abaixo, e devem ser resolvidas simultaneamente para obter os valores de ϕ_{A1} e ϕ_{B1} .

$$\Phi_{A} = \frac{\phi_{A1}}{\left(1 - K_{A}\phi_{A1}\right)^{2}} \left[1 + \frac{V_{A}K_{AB}\phi_{B1}}{V_{B}}\right]$$
(5.4.8)
$$\Phi_{B} = \phi_{B1} \left[1 + \frac{K_{AB}\phi_{A1}}{\left(1 - K_{A}\phi_{A1}\right)}\right]$$
(5.4.9)

As frações volumétricas dos monômeros no líquido puro, $\varphi_{A1}^0 e \varphi_{B1}^0$ devem ser obtidas fazendo-se $\Phi_A=1$ e $\Phi_B=0$ para A puro, $\Phi_A=0$ e $\Phi_B=1$ para B puro, respectivamente.

A equação para se obter a fração superficial do componente **B** (θ_B) num sistema binário é dada em termos das frações volumétricas e das relações de área por volume das moléculas de cada componente é dada por:

$$\theta_{\rm B} = 1 - \theta_{\rm A} = \frac{\left(\frac{{\rm S}_{\rm B}}{{\rm S}_{\rm A}}\right) \Phi_{\rm B}}{\left(\frac{{\rm S}_{\rm B}}{{\rm S}_{\rm A}}\right) \Phi_{\rm B} + \Phi_{\rm A}},$$
(5.4.10)

em que S_A e S_B são as relações entre a área superficial e volume das moléculas A e B, calculadas pelo método de *Bondi (1964)*.

A pressão característica de uma solução binária é calculada através da seguinte relação:

$$p^{*} = p_{A}^{*} \Phi_{A} + p_{B}^{*} \Phi_{B} - \Phi_{A} \theta_{B} \chi_{AB}, \qquad (5.4.11)$$

em que:

 $p_A^* e p_B^*$ são as pressões características de A e B;

 Φ_A e Φ_B são as frações volumétricas de A e B;

 $\theta_{\rm B}$ é a fração superficial do componente B;

 χ_{AB} é o parâmetro de interação física de Flory, que é um parâmetro ajustável.

A equação para se obter a temperatura característica da solução é dada por:

$$T^{*} = \frac{p}{\Phi_{A}p_{A}^{*}T_{A}^{*-1} + \Phi_{B}p_{B}^{*}T_{B}^{*-1}},$$
(5.4.12)

em que T_A^* e T_B^* são as temperaturas características de A (água) e B (acetonitrila).

Com os valores de p^* e T^* , calculados acima encontram-se os valores de \tilde{p} e \tilde{T} . Aplicando-se esses valores na equação de Flory simplificada, determina-se o volume reduzido da solução.

A equação da contribuição física para o volume em excesso de um sistema binário é dada por:

$$\mathbf{V}_{\mathbf{f}}^{\mathbf{E}} = \left(\mathbf{x}_{\mathbf{A}}^{*}\mathbf{V}_{\mathbf{A}}^{*} + \mathbf{x}_{\mathbf{B}}^{*}\mathbf{V}_{\mathbf{B}}^{*}\right)\left(\widetilde{\mathbf{V}} - \boldsymbol{\Phi}_{\mathbf{A}}^{*}\widetilde{\mathbf{V}}_{\mathbf{A}} - \boldsymbol{\Phi}_{\mathbf{B}}^{*}\widetilde{\mathbf{V}}_{\mathbf{B}}\right)$$
(5.4.13)

A equação da contribuição química para o volume em excesso de um sistema binário $A \in B$, considerando-se que o componente A (água) é auto-associante e que o componente B (acetonitrila) não se associa, mas que forma complexo de solvatação com A, é dada por:

$$V_{q}^{E} = X_{A}K_{A}\Delta V_{A}^{*}\widetilde{V}(\varphi_{A1} - \varphi_{A1}^{0}) + X_{A}K_{AB}\Delta V_{AB}^{*}\widetilde{V}\left(\frac{\varphi_{B1}(l - K_{A}\varphi_{A1})}{\left(\frac{V_{B}}{V_{A}} + K_{AB}\varphi_{B1}\right)}\right)$$
(5.4.14)

Nas equações do modelo, os parâmetros com os índices mistos como χ_{AB} , K_{AB} , ΔV_{AB}^{*} , são relacionados com as interações e as associações entre as moléculas não semelhantes e são obtidos através de ajuste aos dados experimentais da grandeza em excesso estudada.

6 - MATERIAIS E MÉTODOS

6.1 - Metodologia

A metodologia usada neste trabalho foi a densitometria por oscilação mecânica, descrita no capítulo 4. Os valores do volume em excesso foram determinados através das medidas de densidade das soluções salinas e dos componentes puros à pressão atmosférica e às temperatura de 283,15K, 298,15K e 308,15K. A temperatura foi medida no tubo oscilador usando um termistor do tipo NTC (0,2cm de diâmetro, 10cm de comprimento e faixa de temperatura de 273 a 353K) fabricado pela (Ahlborn Therm, type 3280, resolução de 1×10^{-2} K).

6.2 - Reagentes

As especificações dos reagentes usados neste trabalho foram as seguintes: Água bidestilada, acetonitrila (Merck, pa, pureza >99,8%), cloreto de lítio (Merck, pa, pureza >99%), cloreto de sódio (Merck, pa, pureza >99%), cloreto de potássio (Merck, pa, pureza >99%).

6.3 – Preparo das Amostras

O sal cloreto de lítio foi seco a 180°C por 2 horas, o cloreto de sódio foi seco a 250°C por 1 hora e o cloreto de potássio foi seco a 110°C por 2 horas (*Assumpção 1968*), antes de serem usados para a realização dos ensaios. Após a secagem os sais foram colocados em um dessecador para alcançar a temperatura ambiente.

Após essa etapa os sais foram pesados para obter as frações molares desejadas (0,001 a 0,003), em frascos de 15 ml e tampados. Os reagentes líquidos foram levados para a pesagem em frascos de mesmo volume separados.

Os reagentes líquidos, assim como os sais foram pesados em balança digital Sartorius (resolução de 0,1mg). Com o propósito de diminuir as perdas por evaporação, os reagentes líquidos eram pesados, logo em seguida misturados no frasco que continha o sal já previamente pesado, para estabelecer a composição desejada. A solução assim que preparada era levada ao equipamento (Densímetro de oscilação mecânica), previamente calibrado com água e ar. Em seguida era injetado no densimetro aproximadamente 0,7ml de solução para medir o período de oscilação, usado para obter a densidade usada para calcular o volume em excesso.

6.4 - Medidas

As soluções eram adicionadas ao densímetro Anton Paar (Modelo DMA 55, faixa de temperatura de -10° a 60°C e pressão de 1bar), através de seringas de 2ml. Após o estabelecimento do equilíbrio térmico (aproximadamente 2 minutos) o período de oscilação era anotado e a massa específica calculada pela seguinte equação:

$$\rho = \left(\frac{t^2 - b}{a}\right),\tag{6.4.1}$$

em que:

 ρ é a massa específica em g. cm⁻³;

t é o período de oscilação;

a e b são constantes de calibração do aparelho.

Os valores experimentais do volume em excesso foram calculados pela equação abaixo:

$$\mathbf{V}^{\mathrm{E}} = \mathbf{V} - \mathbf{V}^{\mathrm{id}},\tag{6.4.2}$$

em que:

 V^{E} é o volume parcial molar em excesso em cm³mol⁻¹;

V é o volume parcial molar da solução em cm³mol⁻¹;

V^{id} é o volume parcial molar da solução ideal em cm³mol⁻¹.

O volume da solução em estudo foi calculado por:

$$V = \sum_{i} x_{i} P M_{i} / \rho, \qquad (6.4.3)$$

em que:

x_i é a fração molar do componente i;

 PM_i é a massa molar do componente i em g mol⁻¹;

 ρ é a massa específica da solução em g cm⁻³.

O volume da solução ideal foi calculado da seguinte forma:

$$V^{id} = x_A V_A^0 + x_B V_B^0 + x_S \overline{V}_S^{\infty},$$
 (6.4.4)

em que:

x_A é a fração molar da água;

x_B é a fração molar da acetonitrila;

x_s é a fração molar do o sal;

 ${V_A}^0$ é o volume molar da água;

 V_B^{0} é o volume molar da acetonitrila;

 \overline{V}_s^{∞} é o volume parcial molar do sal à diluição infinita.

O volume parcial molar do sal à diluição infinita foi obtido através da equação (3.2.22) usando-se o seguinte procedimento:

 os volumes aparentes molares dos sais foram calculados para soluções salinas com frações molares de água variando de 0 a 0,2, e para soluções salinas com frações molares de acetonitrila variando de 0 a 0,2, através da equação (6.4.5):

$$V_{\varphi_{s}} = \frac{PM_{s}}{\rho_{s}} - \frac{1}{m_{s}} \left(\frac{\rho_{s} - \rho_{0}}{\rho_{s} \rho_{0}} \right), \qquad (6.4.5)$$

em que:

 $V\phi_s$ é o volume aparente molar do sal;

PM_s é a massa molar do sal;

 $m_S = 1000 x_s / (x_A PM_A + x_B PM_B)$ é a molalidade do sal (mol Kg⁻¹);

x_A, x_B são as frações molares da água e acetonitrila, respectivamente

PM_A e PM_B são as massa molares da água e acetonitrila, respectivamente.

 ρ_s é a massa específica da solução salina em g cm⁻³;

 ρ_0 é a massa especifica da solução sem o sal em g cm⁻³.

As densidades $\rho e \rho_0$ foram obtidas através das medidas realizadas no equipamento.

- 2) Construíram-se gráficos dos volumes molares aparentes em função da raiz quadrada da molalidade. As retas obtidas foram extrapoladas até molalidade zero, encontrando-se os volumes molares aparentes à diluição infinita que são os próprios volumes parciais molares à diluição infinita.
- Calculou-se o valor médio entre os valores obtidos para soluções ricas em água e ricas em acetonitrila.

A tabela (6.4.4) fornece os valores dos volumes aparentes molares à diluição infinita para os sais para as temperaturas de estudo.

Sais	Massas molares	Volumes Parciais molares	is molares a diluição infinita (cm ³ mol ⁻¹)	
	$(g mol^{-l})$	283,15K	298,15K	308,15K
Cloreto de Lítio	42,394	59,757	76,778 49,550 ^(a)	81,669
Cloreto de Sódio	58,440	99,170	104,034	111,059
Cloreto de Potássio	74,555	117,320	133,228	138,810

Tabela 6.4.4 – Volumes parciais molares à diluição infinita e massas molares dos sais .

(a) - valor obtido por Morrone (1998), para comparação.

6.5 – Análise das incertezas

As incertezas nas medidas dos volumes em excesso para as soluções com os sais estão apresentadas a seguir.

As equações para os cálculos das incertezas nos valores do volume em excesso foram obtidas de *Morrone (1998)*.

Tem-se para sistema ternário água/acetonitrila/sal que:

$$V^{E} = V^{E} (x_{i}, \rho, \rho_{A}, \rho_{B}, \overline{V}_{s}^{\infty}, T)$$
(6.5.1)

A incerteza máxima no volume em excesso é dada por (Schoemaker et al, 1989).

$$\Delta \mathbf{V}^{\mathbf{E}} = \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial \mathbf{x}_{A}} \right| \Delta \mathbf{x}_{A} + \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial \mathbf{x}_{B}} \right| \Delta \mathbf{x}_{B} + \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial \mathbf{x}_{S}} \right| \Delta \mathbf{x}_{S} + \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial p} \right| \Delta \rho + \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial p_{A}} \right| \Delta \rho_{A} + \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial p_{B}} \right| \Delta \rho_{B} + \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial \overline{\mathbf{V}}_{S}^{\infty}} \right| \Delta \overline{\mathbf{V}}_{S}^{\infty} + \left| \frac{\partial \mathbf{V}^{\mathbf{E}}}{\partial T} \right| \Delta \quad (6.5.2)$$

em que:

 Δx_i é a incerteza na fração molar do componentes i;

 $\Delta \rho$ é a incerteza na massa específica da solução;

 $\Delta \rho_i$ é a incerteza na massa específica do componente i

 $\Delta \overline{V}_{s}^{\infty}$ é a incerteza no volume parcial molar à diluição infinita do sal;

 ΔT é a incerteza na temperatura.

As incertezas nas massas específicas, na temperatura e nas massas dos componentes foram consideradas como igual à metade do valor correspondente à menor divisão da escala escala. Considerando-se que a resolução do densímetro é dada como $\pm 1 \times 10^{-5}$ g/cm³, do termistor como $\pm 0,01$ K e da balança analítica como $\pm 0,0001$ g, tem-se

$$\Delta \rho = \Delta \rho_0 = \Delta \rho_A = \Delta \rho_B = \pm 5 \times 10^{-6} \text{ g/cm}^3$$
$$\Delta m_i = \pm 5 \times 10^{-5} \text{ g}$$
$$\Delta T = \pm 5 \times 10^{-3} \text{ K}$$

As incertezas nas frações molares são calculadas através da seguinte expressão:

$$\Delta \mathbf{x}_{i} = \left| \frac{\partial \mathbf{x}_{i}}{\partial \mathbf{m}_{i}} \right| \Delta \mathbf{m}_{i}, \qquad (6.5.3)$$

e com base nas definições das frações molares, tem-se que:

$$x_{A} = \frac{n_{A}}{n_{A} + n_{B} + n_{S}} = \frac{m_{A}}{PM_{A} \left[\frac{m_{A}}{PM_{A}} + \frac{m_{B}}{PM_{B}} + \frac{m}{PM_{S}}\right]}$$
(6.5.4)

$$x_{B} = \frac{n_{B}}{n_{A} + n_{B} + n_{S}} = \frac{m_{B}}{PM_{B} \left[\frac{m_{A}}{PM_{A}} + \frac{m_{B}}{PM_{B}} + \frac{m}{PM_{S}}\right]}$$
(6.5.5)

$$x_{s} = \frac{n_{s}}{n_{A} + n_{B} + n_{s}} = \frac{m_{s}}{PM_{s} \left[\frac{m_{A}}{PM_{A}} + \frac{m_{B}}{PM_{B}} + \frac{m}{PM_{s}} \right]}$$
(6.5.6)

Assim:

$$\frac{\partial x_{A}}{\partial m_{A}} = \frac{m_{B} \frac{PM_{A}}{PM_{B}} + m_{S} \frac{PM_{A}}{PM_{S}}}{\left[m_{A} + m_{B} \frac{PM_{A}}{PM_{B}} + m_{S} \frac{PM_{A}}{PM_{S}}\right]^{2}}$$
(6.5.7)

$$\frac{\partial x_{B}}{\partial m_{B}} = \frac{m_{A} \frac{PM_{B}}{PM_{A}} + m_{S} \frac{PM_{B}}{PM_{S}}}{\left[m_{A} \frac{PM_{B}}{PM_{A}} + m_{B} + m_{S} \frac{PM_{B}}{PM_{S}}\right]^{2}}$$
(6.5.8)

$$\frac{\partial x_{s}}{\partial m_{s}} = \frac{m_{A} \frac{PM_{s}}{PM_{A}} + m_{B} \frac{PM_{s}}{PM_{B}}}{\left[m_{A} \frac{PM_{s}}{PM_{A}} + m_{B} \frac{PM_{s}}{PM_{B}} + m_{s}\right]^{2}}$$
(6.5.9)

em que:

 n_i é o número de moles do componente i;

Pm_i é a massa molar do componente i;

 m_i é a massa do componente i.

A incerteza máxima no volume parcial molar à diluição infinita foi calculada seguindo-se o mesmo princípio aplicado para calcular a incerteza no volume em excesso.

Considerando o volume parcial molar à diluição infinita como função das massas específicas da solução água-acetonitrila e da solução salina, da temperatura e das frações molares:

$$\overline{V}_{S}^{\infty} = \overline{V}_{S}^{\infty} \left(\rho, \rho_{0}, x_{i}, T \right)$$
(6.5.10)

A incerteza máxima no volume parcial molar à diluição infinita é dada por:

$$\Delta \overline{\mathbf{V}}_{\mathbf{S}}^{\infty} = \left| \frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial \rho} \right| \Delta \rho + \left| \frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial \rho_{0}} \right| \Delta \rho_{0} + \left| \frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial x_{\mathbf{A}}} \right| \Delta x_{\mathbf{A}} + \left| \frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial x_{\mathbf{B}}} \right| \Delta x_{\mathbf{B}} + \left| \frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial x_{\mathbf{S}}} \right| \Delta x_{\mathbf{S}} + \left| \frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial \mathbf{T}} \right| \Delta T \quad (6.5.11)$$

As derivadas parciais da equação acima são dadas por:

$$\frac{\partial \overline{V}_{S}^{\infty}}{\partial \rho} = \frac{-PM_{S}}{\rho^{2}} - \frac{\left(x_{A}PM_{A} + x_{B}PM_{B}\right)}{1000x_{S}\rho^{2}}$$
(6.5.12)

$$\frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial \rho_0} = \frac{\left(\mathbf{x}_{\mathbf{A}}^{\mathbf{P}\mathbf{M}_{\mathbf{A}}} + \mathbf{x}_{\mathbf{B}}^{\mathbf{P}\mathbf{M}_{\mathbf{B}}}\right)}{1000\mathbf{x}_{\mathbf{S}}^{\rho_0^2}} \tag{6.5.13}$$

$$\frac{\partial \overline{V}_{S}^{\infty}}{\partial x_{A}} = \frac{PM_{A}}{1000x_{S}} \left(\frac{1}{\rho} - \frac{1}{\rho_{0}} \right)$$
(6.5.14)

$$\frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial \mathbf{x}_{\mathbf{B}}} = \frac{\mathbf{PM}_{\mathbf{B}}}{1000\mathbf{x}_{\mathbf{S}}} \left(\frac{1}{\rho} - \frac{1}{\rho_{\mathbf{0}}} \right)$$
(6.5.15)

$$\frac{\partial \overline{\mathbf{V}}_{\mathbf{S}}^{\infty}}{\partial \mathbf{x}_{\mathbf{S}}} = \frac{\left(\mathbf{x}_{\mathbf{A}}^{\mathbf{P}\mathbf{M}_{\mathbf{A}}} + \mathbf{x}_{\mathbf{B}}^{\mathbf{P}\mathbf{M}_{\mathbf{B}}}\right)}{1000\mathbf{x}_{\mathbf{S}}^{2}} \left(\frac{1}{\rho_{0}} - \frac{1}{\rho}\right)$$
(6.5.16)

Então para calcular a incerteza máxima no volume em excesso, são usadas as derivadas parciais com base na equação (6.5.2):

$$\frac{\partial \mathbf{V}^{\mathrm{E}}}{\partial \mathbf{x}_{\mathrm{A}}} = \mathbf{P}\mathbf{M}_{\mathrm{A}}\left(\frac{1}{\rho} - \frac{1}{\rho_{\mathrm{A}}}\right) \tag{6.5.17}$$

$$\frac{\partial \mathbf{V}^{\mathrm{E}}}{\partial \mathbf{x}_{\mathrm{B}}} = \mathrm{PM}_{\mathrm{B}} \left(\frac{1}{\rho} - \frac{1}{\rho_{\mathrm{B}}} \right)$$
(6.5.18)

$$\frac{\partial \overline{\mathbf{V}}^{\mathrm{E}}}{\partial \mathbf{x}_{\mathrm{S}}} = \frac{\mathrm{PM}_{\mathrm{S}}}{\rho} - \overline{\mathrm{V}}_{\mathrm{S}}^{\infty} \tag{6.5.19}$$

$$\frac{\partial V^{E}}{\partial \rho} = -\frac{x_{A}^{PM}A}{\rho^{2}} - \frac{x_{B}^{PM}B}{\rho^{2}} - \frac{x_{S}^{PM}S}{\rho^{2}}$$
(6.5.20)

$$\frac{\partial V^{E}}{\partial \rho_{A}} = \frac{x_{A}^{PM}A}{\rho_{A}^{2}}$$
(6.5.21)

$$\frac{\partial V^{E}}{\partial \rho_{B}} = \frac{x_{A} P M_{B}}{\rho_{B}^{2}}$$
(6.5.22)

$$\frac{\partial V^{E}}{\partial \overline{V}_{S}^{\infty}} = -x_{S}$$
(6.5.23)

O valor médio de $\partial V^E / \partial T$ foi estimado em 0,002 para o sistema sem o sal e 0,007 para os sistemas salinos.

Os erros experimentais foram obtidos para frações molares de água em torno de 0,65, para o sistema água-acetonitrila.

Os erros experimentais foram obtidos para frações molares de água em torno de 0,65, para o sistema água-acetonitrila cloreto de lítio à frações molares de sal 0,0010 e 0,0020 e 0,003, para o cloreto de sódio e cloreto de potássio à frações molares de sal 0,0010 e 0,0020. E para a fração molar 0,0030 de cloreto de sódio e cloreto de potássio, a fração molar de água foi igual a 0,80, para todas as temperaturas estudadas. Na tabela abaixo encontram-se os valores das massas específicas para a água, acetonitrila, e para os sistema água-acetonitrila com e sem os sais.

Sistema		Massas Específicas	em g cm ⁻³
	283,15K	298,15K	308,15K
Água	0,999699	0,997040	0,994030
Acetonitrila	0,793187	0,777226	0,765912
Água-acetonitrila	0,896730	0,876840	0,871080
Cloreto de Lítio 0,001	0,915617	0,883817	0,884766
Cloreto de Lítio 0,002	0,919269	0,887398	0,887585
Cloreto de Lítio 0,003	0,924843	0,891258	0,888019
Cloreto de Sódio 0,001	0,922702	0,899313	0,893404
Cloreto de Sódio 0,002	0,928556	0,902561	0,898404
Cloreto de Sódio 0,003	0,962436	0,953848	0,944916
Cloreto de Potássio 0,001	0,917784	0,900868	0,893103
Cloreto de Potássio 0,002	0,931844	0,906408	0,897936
Cloreto de Potássio 0,003	0,964213	0,948094	0,948094

Tabela 6.5.1 – Massas específicas a várias temperaturas

Nas tabelas abaixo estão apresentadas as derivadas parciais e incertezas paras as frações molares de 0,0010, 0,0020 e 0,0030 e temperaturas de 283,15, 298,15 e 308,15K.

	0		
Derivadas		Temperatura (K)	
	283,15	298,15	308,15
$\partial V^{E}/\partial x_{A} (cm^{3} mol^{-1})$	2,0693	2,4769	2,5580
$\partial V^E / \partial x_B \ (cm^3 \ mol^{-1})$	-5,9763	-6,0008	-6,4715
$\partial V^{E}/\partial \rho (cm^{3})^{2} (mol.g)^{-1}$	32,4311	33,9191	34,3692
$\partial V^{E}/\partial \rho_{A} \left(cm^{3} ight)^{2} \left(mol.g ight)^{-1}$	11,7168	11,7794	11,8508
$\partial V^{E} / \partial \rho_{B} \left(cm^{3} \right)^{2} \left(mol.g \right)^{-1}$	22,8388	23,7864	24,4943
$\partial V^E / \partial T \text{ cm}^3 (\text{mol.}K)^{-1}$	0,0020	0,0020	0,0020
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01943	0,01943	0,01943
$\partial x_{B}/\partial m_{B} (g^{-1})$	0,01587	0,01587	0,01587
Δx_A	9,715x10 ⁻⁷	9,715x10 ⁻⁷	9,715x10 ⁻⁷
Δx_{B}	7,937x10 ⁻⁷	7,937x10 ⁻⁷	7,937x10 ⁻⁷
$\Delta V^{E} (cm^{3} mol^{-1})$	3,517x10 ⁻⁴	3,646x10 ⁻⁴	3,707x10 ⁻⁴

Tabela 6.5.4 – Derivadas parciais e incertezas no volume em excesso para o sistema água - acetonitrila

	Frações molares do sal	<u></u>
0,001	0,002	0,003
1,6548	1,5767	1,4586
-6,9070	-7,0851	-7,3543
-13,4560	-13,6399	-13,9179
-31,0646	-30,8319	-29,1877
11,7457	11,7366	11,7511
42,4966	42,464	42,5162
-0,001	-0,0020	-0,003
-0,0054	-0,0054	-0,0051
0,0070	0,0070	0,0070
0,0050	0,0050	0,0050
0,01934	0,01935	0,01936
0,01589	0,01587	0,01589
0,02357	0,02350	0,02347
9,67x10 ⁻⁷	9,68 x10 ⁻⁷	9,68 x10 ⁻⁷
7,95 x10 ⁻⁷	7,94 x10 ⁻⁷	7,946 x10 ⁻⁷
1,18 x10 ⁻⁶	1,18 x10 ⁻⁶	1,18 x10 ⁻⁶
4,952x10 ⁻⁴	5,054x10 ⁻⁴	$5,070 \times 10^{-4}$
	0,001 1,6548 -6,9070 -13,4560 -31,0646 11,7457 42,4966 -0,001 -0,0054 0,0070 0,0050 0,01934 0,01589 0,02357 $9,67x10^{-7}$ $7,95 x10^{-7}$ $1,18 x10^{-6}$ $4.952x10^{-4}$	Frações molares do sal $0,001$ $0,002$ $1,6548$ $1,5767$ $-6,9070$ $-7,0851$ $-13,4560$ $-13,6399$ $-31,0646$ $-30,8319$ $11,7457$ $11,7366$ $42,4966$ $42,464$ $-0,001$ $-0,0020$ $-0,0054$ $-0,0054$ $0,0070$ $0,0070$ $0,0050$ $0,0050$ $0,01934$ $0,01935$ $0,01589$ $0,01587$ $0,02357$ $0,02350$ $9,67x10^{-7}$ $7,94 x10^{-7}$ $1,18 x10^{-6}$ $1,18 x10^{-6}$ $4.952x10^{-4}$ $5.054x10^{-4}$

Tabela 6.5.5 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila - cloreto de lítio a 283,15K

Derivadas		Frações molares do sal	
	0,001	0,002	0,003
$\partial V^{E}/\partial x_{A} (cm^{3} mol^{-1})$	2,3147	2,3224	2,1445
$\partial V^{E} / \partial x_{B} (cm^{3} mol^{-1})$	-6,3258	-6,5133	-6,7137
$\partial V^{E} / \partial x_{S} (cm^{3} mol^{-1})$	-28,8111	-29,0046	-29,2115
$\partial V^{E} / \partial \rho (cm^{3})^{2} (mol.g)^{-1}$	-32,8093	-33,0734	-32,7892
$\partial V^{E} / \partial \rho_{A} \left(cm^{3} \right)^{2} \left(mol.g \right)^{-1}$	12,1346	11,8084	11,8084
$\partial V^{E}/\partial \rho_{B} \left(cm^{3} ight)^{2} \left(mol.g ight)^{-1}$	45,4301	44,2088	44,2088
$\partial V^E / \partial V_S^{\infty}$	-0,0010	-0,0020	-0,0030
ΔV_{s}^{∞} (cm ³ mol ⁻¹)	-0,0069	-0,0035	-0,0031
$\partial V^{E}/\partial T \text{ cm}^{3} (\text{mol.K})^{-1}$	0,0070	0,0070	0,0070
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01833	0,01934	0,01934
$\partial x_{B} / \partial m_{B} (g^{-1})$	0,01633	0,01592	0,01595
$\partial x_{S} / \partial m_{S} (g^{-1})$	0,02356	0,02354	0,02355
Δx_A	9,164 x10 ⁻⁷	9,669 x10 ⁻⁷	9,669 x10 ⁻⁷
Δx_B	8,166 x10 ⁻⁷	7,960 x10 ⁻⁷	7,97 x10 ⁻⁷
Δx_{S}	1,778 x10 ⁻⁶	1,77 x10 ⁻⁶	1,176 x10 ⁻⁶
$\Delta V^{E} (cm^{3} mol^{-1})$	5,045x10 ⁻⁴	5.625x10 ⁻⁴	3,445 x10 ⁻⁴

Tabela 6.5.6 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de lítio a 298,15K

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT

Derivadas		Frações molares do sal	
	0,001	0,002	0,003
$\partial V^{E}/\partial x_{A} (cm^{3} mol^{-1})$	2,2381	2,1734	2,1635
$\partial V^{E}/\partial x_{B} (cm^{3} mol^{-1})$	-7,2661	-7,3479	-7,3705
$\partial V^{E} / \partial x_{S} \ (cm^{3} \ mol^{-1})$	-33,7535	-33,9057	-33,9290
$\partial V^{E} / \partial \rho (cm^{3})^{2} (mol.g)^{-1}$	-32,3829	-32,1792	-32,1494
$\partial V^{E} / \partial \rho_{A} \left(cm^{3} \right)^{2} \left(mol.g \right)^{-1}$	12,4288	12,4288	12,4288
$\partial V^{E} / \partial \rho_{B} \left(cm^{3} \right)^{2} \left(mol.g \right)^{-1}$	47,7080	47,7080	47,7080
$\partial V^E / \partial V_S^\infty$	-0,0010	-0,0020	-0,0030
ΔV_{s}^{∞} (cm ³ mol ⁻¹)	-0,0066	-0,0041	-0,0031
$\partial V^{E}/\partial T \text{ cm}^{3} (\text{mol.K})^{-1}$	0,0070	0,0070	0,0070
$\Delta T(K)$	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01767	0,01767	0,01767
$\partial x_{B}/\partial m_{B}~(g^{-1})$	0,01663	0,01665	0,01668
$\partial x_S / \partial m_S (g^{-1})$	0,02356	0,02354	0,02352
Δx_A	8,835 x10 ⁻⁷	8,835 x10 ⁻⁷	8,835 x10 ⁻⁷
Δx_B	8,315 x10 ⁻⁷	8,833x10 ⁻⁷	8,340 x10 ⁻⁷
Δx_{S}	1,178 x10 ⁻⁶	1,177 x10 ⁻⁶	1,176 x10 ⁻⁶
$\Delta V^{E} (cm^{3} mol^{-1})$	7,606 x10 ⁻⁴	5,712 x10 ⁻⁴	5,630 x10 ⁻⁴

Tabela 6.5.7 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de lítio a 308,15K

40

Derivadas		Frações molares do sal	
	0,001	0,002	0,003
$\partial V^{E} / \partial x_{A} (cm^{3} mol^{-1})$	1,5037	1,3806	0,6977
$\partial V^E / \partial x_B \ (cm^3 \ mol^{-1})$	-7,2651	-7,5456	-9,1019
$\partial V^{E}/\partial x_{S} (cm^{3} mol^{-1})$	-35,8343	-36,2357	-38,4491
$\partial V^E / \partial \rho \ (cm^3)^2 \ (mol.g)^{-1}$	-30,4242	-30,0694	-24,4422
$\partial V^{E}/\partial \rho_{A} \left(cm^{3}\right)^{2} \left(mol.g\right)^{-1}$	11,8682	11,8682	14,4427
$\partial V^E / \partial \rho_B (cm^3)^2 (mol.g)^{-1}$	42,9630	42,9630	52,3007
$\partial V^E / \partial V_S^{\infty}$	-0,0010	-0,0020	-0,0030
$\Delta V_{\rm S}^{\infty} ({\rm cm}^3{\rm mol}^{-1})$	-0,0054	-0,0038	-0,0032
$\partial V^{E} / \partial T \text{ cm}^{3} (\text{mol.}K)^{-1}$	0,0070	0,0070	0,0070
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01896	0,01893	0,01018
$\partial x_{B}/\partial m_{B} (g^{-1})$	0,01606	0,01609	0,01957
$\partial x_S / \partial m_S (g^{-1})$	0,01709	0,01708	0,01708
Δx_A	9,480 x10 ⁻⁷	9,465 x10 ⁻⁷	5,090 x10 ⁻⁷
Δx_{B}	8,030 x10 ⁻⁷	8,045 x10 ⁻⁷	9,785 x10 ⁻⁷
Δx_{S}	8,545 x10 ⁻⁷	8,545 x10 ⁻⁷	8,545 x10 ⁻⁷
$\Delta V^{E} (cm^{3} mol^{-1})$	3,879x10 ⁻⁴	5,131 x10 ⁻⁴	5,522 x10 ⁻⁴

Tabela 6.5.8 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de sódio a 283,15K

Derivadas		Frações molares do sal	
	0,001	0,002	0,003
$\partial V^{E}/\partial x_{A} (cm^{3} mol^{-1})$	1,9634	1,8913	0,8172
$\partial V^{E} / \partial x_{B} (cm^{3} mol^{-1})$	-7,1708	-7,3351	-9,7808
$\partial V^{E} / \partial x_{S} (cm^{3} mol^{-1})$	-39,0511	-39,2849	-42,7664
$\partial V^E / \partial \rho (cm^3)^2 (mol.g)^{-1}$	-32,0415	-31,8365	-24,8793
$\partial V^{E}/\partial \rho_{A} \left(cm^{3}\right)^{2} \left(mol.g\right)^{-1}$	11,9225	11,9207	14,5285
$\partial V^E / \partial \rho_B \left(cm^3 \right)^2 \left(mol.g \right)^{-1}$	44,7117	44,7049	54,4845
$\partial V^E / \partial V_S^\infty$	-0,0010	-0,0020	-0,0030
$\Delta V_{s}^{\infty} (cm^{3} mol^{-1})$	-0,0062	-0,0042	-0,0031
$\partial V^E / \partial T \text{ cm}^3 \text{ (mol.K)}^{-1}$	0,0070	0,0070	0,0070
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01897	0,01899	0,01101
$\partial x_{B}/\partial m_{B}~(g^{-1})$	0,01605	0,01607	0,01960
$\partial x_S / \partial m_S \ (g^{-1})$	0,01709	0,01708	0,01706
Δx_A	9,485x10 ⁻⁷	9,495 x10 ⁻⁷	5,510 x10 ⁻⁷
Δx_{B}	8,025 x10 ⁻⁷	8,035 x10 ⁻⁷	9,800 x10 ⁻⁷
Δx_{S}	8,545 x10 ⁻⁷	8,544 x10 ⁻⁷	8,530 x10 ⁻⁷
$\Delta V^{E} (cm^{3} mol^{-1})$	5,318 x10 ⁻⁴	5,354 x10 ⁻⁴	2,460 x10 ⁻³

Tabela 6.5.9 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de sódio a 298,15K

Derivadas		Frações molares do sal	MANANESI II
	0,001	0,002	0,003
$\partial V^{E}/\partial x_{A} (cm^{3} mol^{-1})$	2,0959	1,9837	0,9967
$\partial V^E / \partial x_B (cm^3 mol^{-1})$	-7,6481	-7,9039	-10,1532
$\partial V^{E} / \partial x_{S} (cm^{3} mol^{-1})$	-45,6463	-46,0103	-49,2122
$\partial V^{E}/\partial \rho \ (cm^{3})^{2} \ (mol.g)^{-1}$	-31,7913	-32,1422	-24,8793
$\partial V^E / \partial \rho_A \ (cm^3)^2 \ (mol.g)^{-1}$	12,4215	11,9858	14,5948
$\partial V^{E} / \partial \rho_{B} \left(cm^{3} ight)^{2} \left(mol.g ight)^{-1}$	47,6782	46,0057	56,0200
$\partial V^E / \partial V_S^{\infty}$	-0,0010	-0,0020	-0,0030
$\Delta V_{\rm S}^{\infty} ({\rm cm}^3{\rm mol}^{-1})$	-0,.0063	-0,0043	-0,0034
$\partial V^{E}/\partial T \text{ cm}^{3} (\text{mol.}K)^{-1}$	0,0070	0,0070	0,0070
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01769	0,01902	0,01107
$\partial x_{\rm B} / \partial m_{\rm B} ({\rm g}^{-1})$	0,01662	0,01606	0,01957
$\partial x_{S} / \partial m_{S} (g^{-1})$	0,01709	0,01708	0,01706
Δx_A	9,845 x10 ⁻⁷	9,510 x10 ⁻⁷	5,540 x10 ⁻⁷
$\Delta x_{ m B}$	8,310 x10 ⁻⁷	8,030 x10 ⁻⁷	9,780 x10 ⁻⁷
Δx_{S}	8,545 x10 ⁻⁷	8,540 x10 ⁻⁷	8,530 x10 ⁻⁷
$\Delta V^{E} (cm^{3} mol^{-1})$	1,753 x10 ⁻³	5,504 x10 ⁻⁴	2,457 x10 ⁻³

Tabela 6.5.10 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de sódio a 308,15K

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT⁵

Derivadas		Frações molares do sal	
	0,001	0,002	0,003
$\partial V^{E} / \partial x_{A} (cm^{3} mol^{-1})$	1,6083	1,3122	0,6632
$\partial V^E / \partial x_B \ (cm^3 \ mol^{-1})$	-7,0263	-7,7016	-9,1806
$\partial V^{E}/\partial x_{S} (cm^{3} mol^{-1})$	-36,0863	-37,3120	-39,9979
$\partial V^{E} / \partial \rho \ (cm^{3})^{2} \ (mol.g)^{-1}$	-30,9836	-29,9032	-24,4166
$\partial V^{E}/\partial \rho_{A} (cm^{3})^{2} (mol.g)^{-1}$	11,7276	11,8574	14,4549
$\partial V^{E} / \partial \rho_{B} \left(cm^{3} \right)^{2} \left(mol.g \right)^{-1}$	42,4540	42,9238	52,2681
$\partial V^E / \partial V_S^{\infty}$	-0,0010	-0,0020	-0,0030
$\Delta V_{\rm S}^{\infty} ({\rm cm}^3{\rm mol}^{-1})$	-0,0062	-0,0046	-0,0042
$\partial V^{E} / \partial T \text{ cm}^{3} (\text{mol.K})^{-1}$	0,0070	0,0070	0,0070
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01938	0,01899	0,01105
$\partial x_{B}/\partial m_{B}~(g^{-1})$	0,01587	0,01607	0,01958
$\partial x_S / \partial m_S \ (g^{-1})$	0,01340	0,01340	0,01330
Δx_A	9,690 x10 ⁻⁷	9,495 x10 ⁻⁷	5,523 x10 ⁻⁷
$\Delta \mathrm{x}_\mathrm{B}$	7,935 x10 ⁻⁷	8,035 x10 ⁻⁷	9,790 x10 ⁻⁷
Δx_{S}	6,695 x10 ⁻⁷	6,690 x10 ⁻⁷	6,685 x10 ⁻⁷
$\Delta V^{E} (cm^{3} mol^{-1})$	5,045 x10 ⁻⁴	3,194 x10 ⁻⁴	$5,520 \times 10^{-4}$
i			

Tabela 6.5.11 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de potássio a 283,15K

Derivadas		Frações molares do sal	
	0,001	0,002	0,003
$\partial V^{E}/\partial x_{A} \ (cm^{3} \ mol^{-1})$	1,9288	1,8066	0,6339
$\partial V^E / \partial x_B (cm^3 mol^{-1})$	-7,2240	-7,4850	-10,4232
$\partial V^{E} / \partial x_{S} (cm^{3} mol^{-1})$	-50,5309	-51,0368	-55,8903
$\partial V^{E} / \partial \rho \ (cm^{3})^{2} \ (mol.g)^{-1}$	-31,9282	-31,5854	-24,4283
$\partial V^{E} / \partial \rho_{A} \left(cm^{3} \right)^{2} \left(mol.g \right)^{-1}$	11,9370	11,9334	14,5430
$\partial V^{E}/\partial \rho_{B} \left(cm^{3} ight)^{2} \left(mol.g ight)^{-1}$	44,7226	44,6854	54,5752
$\partial V^E / \partial V_S^{\infty}$	-0,0010	-0,0020	-0,0030
ΔV_{s}^{∞} (cm ³ mol ⁻¹)	-0,0067	-0,0047	-0,0040
$\partial V^{E}/\partial T \text{ cm}^{3} (\text{mol.}K)^{-1}$	0,0070	0,0070	0,0070
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A (g^{-1})$	0,01895	0,01896	0,01096
$\partial x_{B}/\partial m_{B}~(g^{-1})$	0,01607	0,01609	0,01962
$\partial x_{S} / \partial m_{S} (g^{-1})$	0,01339	0,01338	0,01337
Δx_A	9,475 x10 ⁻⁷	9,480 x10 ⁻⁷	5,480 x10 ⁻⁷
Δx_B	8,035 x10 ⁻⁷	8,045 x10 ⁻⁷	9,810 x10 ⁻⁷
Δx_{S}	6,695 x10 ⁻⁷	6,690 x10 ⁻⁷	6,685 x10 ⁻⁷
$\Delta V^{E} (cm^{3} mol^{-1})$	3,551 x10 ⁻⁴	3,548 x10 ⁻⁴	2,317 x10 ⁻³

Tabela 6.5.12 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de potássio a 298,15K

Derivadas		Frações molares do sal	
i	0,001	0,002	0,003
$\partial V^E / \partial x_A \ (\text{cm}^3 \ \text{mol}^{-1})$	2,0480	1,9394	0,8781
$\partial V^E / \partial x_B \ (\text{cm}^3 \ \text{mol}^{-1})$	-7,6336	-7,8811	-10,2998
$\partial V^{E}/\partial x_{S} \ (cm^{3} \ mol^{-1})$	-55,3314	-55,7807	-60,1733
$\partial V^{E}/\partial \rho \ (cm^{3})^{2} \ (mol.g)^{-1}$	-32,5204	-32,2128	-25,2718
$\partial V^{E} / \partial \rho_{A} (cm^{3})^{2} (mol.g)^{-1}$	11,9876	11,9876	14,5911
$\partial V^{E} / \partial \rho_{B} \left(cm^{3} \right)^{2} \left(mol.g \right)^{-1}$	46,0144	46,0144	56,0081
$\partial V^E / \partial V_S^{\infty}$	-0,0010	-0,0020	-0,0030
$\Delta V_{\rm S}^{\infty} ({\rm cm}^3{\rm mol}^{-1})$	-0,0069	-0,0052	-0,0042
$\partial V^{E}/\partial T \text{ cm}^{3} (\text{mol.}K)^{-1}$	0,0070	0,0070	0,0070
ΔT (K)	0,0050	0,0050	0,0050
$\partial x_A / \partial m_A \ (g^{-1})$	0,01901	0,01901	0,01109
$\partial x_{B} / \partial m_{B} \ (g^{-1})$	0,01604	0,01606	0,01957
$\partial x_S / \partial m_S (g^{-1})$	0,01339	0,01338	0,01337
Δx_A	9,505 x10 ⁻⁷	9,505 x10 ⁻⁷	5,545 x10 ⁻⁷
$\Delta x_{ m B}$	8 ,020 x10 ⁻⁷	8,030 x10 ⁻⁷	9,785 x10 ⁻⁷
Δx_{S}	6,695 x10 ⁻⁷	6,690 x10 ⁻⁷	6,685 x10 ⁻⁷
$\Delta V^{E} (cm^{3} mol^{-1})$	3,618x10 ⁻⁴	1,461 x10 ⁻³	2,330 x10 ⁻³

Tabela 6.5.13 – Derivadas parciais e incertezas no volume em excesso para o sistema água-acetonitrila-cloreto de potássio a 308,15K

7 – RESULTADOS EXPERIMENTAIS, MODELAGEM E DISCUSSÃO

Os resultados estão divididos em quatro partes: na primeira parte estão apresentados os gráficos dos dados experimentais para o sistema água - acetonitrila nas temperaturas de trabalho, assim como a comparação com dados encontrados na literatura e os ajustes dos dados experimentais para o sistema água - acetonitrila; na segunda parte estão apresentados os gráficos dos dados para os sistemas água-acetonitrila-eletrólito, comparação das massas específicas das soluções salinas para as frações molares de sal 0,001, 0,002 e 0,003 entre 283,15 a 308,15K. E na terceira parte estão relacionados os dados referentes ao modelo utilizado. E para finalizar na quarta parte tem-se a discussão dos resultados.

7.1 – Resultados Experimentais do Sistema Água-Acetonitrila

As massas específicas experimentais para a água e acetonitrila medidas neste trabalho a várias temperaturas estão relacionados na tabela abaixo, em comparação com os valores encontrados na literatura.

T(K)		ρ (g.cm ⁻³)	
	CH₃CN		H_2O	
	Obs.	Lit.	Obs.	Lit
283,15	0,79334	0,79133 ⁽¹⁾	0,99969	0,99968 ⁽¹⁾
298,15	0,77701	0,77670 ⁽²⁾ 0,77614 ⁽¹⁾ 0,77632 ⁽³⁾	0,99705	0,997048 ⁽⁵⁾
308,15	0,76593	0,76600 ⁽²⁾ 0,76590 ⁽⁴⁾ 0,76560 ⁽⁵⁾	0,99403	0,994035 ⁽⁵⁾

Tabela 7.1.1 – Massas específicas da água e acetonitrila a várias temperaturas.

(1)- van Meurs e Somsen, (2)- Schäfer, C.R. et al, (3)- De Visser et. al., (4) Sandhu, J.S.,

^{(5) -}Handa e Benson.

Os gráficos apresentados a seguir expressam os resultados experimentais para o volume em excesso comparados com os dados da literatura.

Gráfico 3. – Comparação entre os dados do volume em excesso em função da fração molar da água deste trabalho e os dados Handa e Benson

para o sistema água-acetonitrila a 308,15K

O gráfico abaixo mostra os resultados experimentais do volume em excesso para o sistema água-acetonitrila entre 283,15 a 308,15K.

Gráfico 4 - Dados experimentais do Volume em excesso em função da fração molar da água para o sistema água-acetonitila para as temperaturas de trabalho

Os gráficos abaixo mostram os dados experimentais para o sistema água-acetonitrila para as temperaturas de trabalho em comparação com os dados calculados pelo modelo ERAS.

Gráficos 5 – Gráficos dos dados experimentais e do modelo para o sistema águaacetonitrila nas temperaturas de trabalho.

50

O ajuste do volume em excesso para o sistema água-acetonitrila sem o sal foi obtido através da equação de Redlich-Kister que é dada pela equação (7.1.), obtendo-se um polinômio de quarto grau. Os valores dos parâmetros estão mostrados nas tabelas abaixo.

$$V^{E} = x_{A} (1 - x_{A}) \sum_{j=0}^{n} A_{j} (1 - 2x_{A})^{j}, \qquad (7.1)$$

em que A_j são os parâmetros obtidos através do método dos mínimos quadrados.

Os desvios padrões para o sistema água-acetonitrila foram calculados através da expressão 7.2 (*Treszczanowicz*, 1983) e estão representados nas tabelas a seguir.

$$\sigma = \left(\sum_{i=1}^{m} (V_{exp}^{E} - V_{cal}^{E})^{2} / (m-n)\right)^{1/2},$$
(7.2)

em que:

m é o número de experimentos,

n é o numero de parâmetros do polinômio,

 V_{exp}^{E} é o volume em excesso obtido experimentalmente,

 V_{cal}^{E} é o volume em excesso obtido através do polinômio da equação (7.1).

Tabela 7.1.1 – Parâmetros da Equação Redlich-Kister para o sistema água-acetonitrila a 283,15K.

A ₀	A_1	A ₂	A ₃	A ₄	σ (cm ³ mol ⁻¹)
-0,776	1,086	-0,971	1,481	-0,272	0,004

Tabela 7.1.2.- Parâmetros da Equação Redlich-Kister parao sistema água-acetonitrila a 298,15K.

A_0	A ₁	A ₂	A ₃	A4	σ (cm ³ mol ⁻¹)
-0,958	1,182	-0,595	1,041	-0,453	0,002

v sistema agua-acctontina a 500,151X.						
\mathbf{A}_{0}	A ₁	A ₂	A3	A4	σ (cm ³ mol ⁻¹)	
-0,889	1,214	-0,567	1,113	-0,487	0,003	

 Tabela 7.1.3 - Parâmetros da Equação Redlich-Kister para

 o sistema água-acetonitrila a 308 15K

7.2 – Resultados Experimentais dos Sistema Água-Acetonitrila-Sal

As massas específicas dos sais usadas nos cálculos para os sistemas salinos foram obtidas pela seguinte relação:

$$\rho(t) = \rho_{m} - k(t - t_{m}),$$
 (7.2.1)

em que $\rho(t)$ é a densidade a temperatura T, ρ_m é a densidade a temperatura t_m , k é uma constante e t_m é a temperatura de referência. fonte: Handbook of Chemistry and Physical, 76th edition, CRC Press,

A tabela abaixo fornece dados para os valores de ρ_m , k, t_m e t_{max} que representa a temperatura máxima para a validade da expressão acima.

Sal	Sal t _m		k	t _{max}	`
	(°C)	$(g \text{ cm}^{-3})$	$(g \text{ cm}^{-3} \text{ s}^{-1})$	(°C)	
LiCl	610,0	1,502	0,000432	781	•
NaCl	800,7	1,556	0,000543	1027	
KCl	771,0	1,527	0,000583	939	

Tabela 7.2.1 – Parâmetros da equação 7.2.1

Os gráficos abaixo mostram os resultados experimentais e do modelo para o volume em excesso para o sistema água-acetonitrila-cloreto de lítio para as frações molares de sal entre 0,0010 a 0,0030entre 283,15 a 308,15K.

Gráfico 6 – Volume em excesso em função da fração molar da água para o sistema água/acetonitrila/cloreto de lítio para x_s=0,0010 a 283,15K.

Gráfico 8 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de lítio para x_s=0,0030 a 283,15K.

Gráfico 9 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de lítio para x_s=0,0010 a 298,15K.

54

Gráfico 10 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de lítio para $x_s=0,0020$ a 298,15K.

Gráfico 11 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de lítio para x_s=0,0030 a 298,15K.

Gráfico 12 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de lítio para x_s=0,0010 a 308,15K.

Gráfico 13 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de lítio para x_s=0,0020 a 308,15K.

Gráfico 14 – Volume em excesso em função Da fração molar para o sistema água/acetonitrila/cloreto de lítio para x_s=0,0030 a 308,15K.

para as frações molares de sal 0,001 a 0,003

Gráfico 16 – Dados do Volume em Excesso Experimental em função da fração molar da água para o sistema água/acetonitrila/cloreto de lítio a 298,15K

para as frações molares de sal 0,001 a 0,003

Gráfico 17 – Dados do Volume em Excesso Experimental em função da fração molar da água para o sistema água/acetonitrila/cloreto de lítio a 308,15K para as frações molares de sal 0,001 a 0,003

58
Os gráficos abaixo mostram os resultados experimentais e do modelo para o volume em excesso para o sistema água-acetonitrila-cloreto de sódio para as frações molares de sal entre 0,0010 a 0,0030entre 283,15 a 308,15K.

Gráfico 19 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de sódio para x_s=0,0020 a 283,15K.

Gráfico 20– Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de sódio para $x_s=0,0030$ a 283,15K.

Gráfico 21 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de sódio para x_s=0,0010 a 298,15K.

60

Gráfico 22 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de sódio para x_s=0,0020 a 298,15K.

Gráfico 23 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de sódio para x_S=0,0030 a 298,15K.

 $Gráfico 25 - Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de sódio para x_s=0,0020 a 308,15K.$

Gráfico 26 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de sódio para x_s=0,0030 a 308,15K.

Os gráficos abaixo mostram os resultados experimentais e do modelo para o volume em excesso para o sistema água-acetonitrila-cloreto de potássio para as frações molares de sal entre 0,0010 a 0,0030 entre 283,15 a 308,15K.

Gráfico 27.– Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_S=0,0010 a 283,15K.

Gráfico 27 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_s=0,0020 a 283,15K.

Gráfico 28 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_s=0,0030 a 283,15K.

Gráfico 29.- Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_s=0,0010 a 298,15K.

Gráfico 30 - Volume em ecesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_S=0,0020 a 298,15K.

Gráfico 31– Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_s=0,0030 a 298,15K.

Gráfico 32 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_s=0,0010 a 308,15K.

Gráfico 33 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para $x_s=0,0020$ a 308,15K.

Gráfico 34 – Volume em excesso em função da fração molar para o sistema água/acetonitrila/cloreto de potássio para x_s=0,0030 a 308,15K.

O ajuste do volume em excesso para o sistema água-acetonitrila-sal foi obtido através da equação de Redlich-Kister que é dada pela equação (7.1), obtendo-se um polinômio de quarto grau, em que o valor dos parâmetros estão mostrados nas tabelas abaixo.

Os desvios padrões para as soluções salinas foram obtidos através da equação (7.2), e os valores estão mostrados a seguir nas tabelas:

Xs	A ₀	\mathbf{A}_1	A_2	A ₃	A_4	σ (cm ³ mol ⁻¹)
0,001	-2,583	2,149	-0,597	-0,543	0,002	0,002
0,002	-2,929	2,576	-0,338	-1,359	0,374	0,003
0,003	-3,152	2,626	-0,349	-1,159	0,245	0,006

Pari	ìmetros	do	polinômio	para	cloreto	de lí	tio a	283,1	5K
			-						

Xs	A ₀	\mathbf{A}_1	A ₂	A ₃	A ₄	σ (cm ³ mol ⁻¹)
0,001	-2,216	1,284	-0,854	0,920	0,020	0,0003
0,002	-2,757	1,837	-1,284	-2,257	0,025	0,004
0,003	-2,854	1,470	-1,408	1,158	0,145	0,008

	-2,054	1,470	-1,400	1,150	0,140	
-						

Parâmetros do polinômio para cloreto de lítio a 298,15K

Parâmetros do polinômio para cloreto de lítio a 308,15K

Xs	A ₀	Aı	A ₂	A ₃	A_4	σ (cm ³ mol ⁻¹)
0,001	-2,332	1,225	-0,854	0,920	0,121	0,005
0,002	-2,443	1,837	-1,284	-1,158	0,015	0,002
0,003	-2,576	1,470	-1.408	-1,153	0,008	0,004

Parâmetros do polinômio para cloreto de sódio a 283,	<u>15</u>	ŀ	Ś
--	-----------	---	---

X _s	A ₀	A ₁	A ₂	A ₃	A ₄	σ (cm ³ mol ⁻¹)
0,001	-1,756	-3,060	-40,573	-42,803	0,000	0,001
0,002	-1,891	-3,314	-44,251	-45,615	0,111	0,002
0,003	-1,927	-3,521	-47,640	-47,629	0,045	0,006

Parâmetros do polinômio para cloreto de sódio a 298,15K									
Xs	A ₀	A ₁	A_2	A ₃	A_4	σ (cm ³ mol ⁻¹)			
0,001	-1,543	-3,164	-41,695	-40,558	0,003	0,002			
0,002	-1,757	-3,278	-43,708	-42,933	0,003	0,003			
0,003	-18,641	-25,313	23,487	44,887	0,010	0,002			

	Parâmetros do polinômio para cloreto de sódio a 308,15K									
Xs	A ₀	A ₁	A ₂	A ₃	A_4	σ (cm ³ mol ⁻¹)				
0,001	-1,579	-3,182	-41,335	-40,849	0,042	0,003				
0,002	-1,648	-3,511	-43,466	-43,047	0,021	0,005				
0,003	-16,224	-22,029	17,462	35,943	0,315	0,002				
	1									

Parâmetros do polinômio para cloreto de potássio a 283,15K

Xs	A ₀	A ₁	A_2	A ₃	A4	σ (cm ³ mol ⁻¹)
0,001	-2,155	-3,777	-40,576	-42,711	0,215	0,003
0,002	-2,089	-3,705	-41,609	-44,817	0,030	0,006
0,003	-19,110	-25,946	16,795	37,977	0,000	0,004

Parâmetros do polinômio para cloreto de potássio a 298,15K

Xs	A ₀	\mathbf{A}_1	A2	A ₃	A_4	σ (cm ³ mol ⁻¹)
0,001	-1,893	-2,983	-42,956	-43,313	0,005	0,004
0,002	-1,531	-3,099	-43,691	-45,759	0,421	0,001
0,003	-16,355	-22,205	14,263	33,808	0,312	0,001

Parâmetros do polinômio para cloreto de potássio a 308,15K

Xs	A ₀	A_1	A_2	A ₃	A ₄	σ (cm ³ mol ⁻¹)
0,001	-1,893	-3,121	-42,437	-45,594	0,032	0,004
0,002	-1,950	-3,484	-43,055	-47,920	0,213	0,006
0,003	-18,903	-25,667	19,885	41,560	0,001	0,003

A seguir é feito uma comparação do comportamento experimental da massas específicas das soluções salinas, através de gráficos para as frações molares de sal 0,001, 0,002 e 0,003, e para as temperaturas de trabalho. Os valores das densidades estão mostradas pelas tabelas descritas anteriormente.

Gráfico 35 - Massas específicas em função da fração molar para o sistema águaacetonitrila-cloreto de lítio para as temperaturas de 283,15K, 298,15K e 308,15K.

Gráficos 36 - Massa específicas em função da fração molar para o sistema águaacetonitrila-cloreto de sódio para as temperaturas de 283,15K, 298,15K e 308, 15K.

Gráfico 37 - das massas específicas em função da fração molar para o sistema águaacetonitrila-cloreto de potássio para as temperaturas de 283,15K, 298,15K e 308, 15K.

7.2.1 - Relação entre o volume em excesso e o raio iônico.

Neste tópico estão relacionados os dados do volume em excesso das soluções salinas água-acetonitrila-sal no ponto de mínimo, isto é, em que o volume em excesso apresenta seu valor mais negativo com o raio iônico dos cátions deste trabalho e o raio iônico dos ânions cloreto, oxalato e tetrafenilboreto do trabalho *(Morrone, 1998)* para soluções com o cloreto de lítio para todas as frações molares de sais estudadas, para soluções com o cloreto de sódio e com cloreto de potássio apenas para as frações molares de 0,001 e 0,002, devido ao fato do sal a fração molar de sal 0,003 ser solúvel apenas na região rica em água. Verifica-se que a correlação é aproximadamente linear, como se pode observar nos gráficos (7.2.6.1) e (7.2.6.2) o volume em excesso versus raio do cátion e raio do ânion, respectivavente.

Tabela7.2.1.1 – Dados do Volume em Excesso de soluções salinas em função do raio iônico dos cátions, no ponto de mínimo a 283,15K

Sal	Raio Iônico (A°)	V^{E} (cm ³ mol ⁻¹)				
		0,001	0,002	0,003		
LiCl	0,76	-0,752	-0,857	-0,932		
NaCl	1,02	-0,798	-0,879			
KCl	1,38	-0,829	-0,925			

Tabela7.2.1.2– Dados do Volume em Excesso de soluções salinas em função do raio iônico dos cátions no ponto de mínimo a 298.15K

		ponteo no ponteo c			
Sal	Raio Iônico (A°)		V^{E} (cm ³ mol ⁻¹)		
		0,001	0,002	0,003	
LiCl	0,76	-0,625	-0,726	-0,804	
NaCl	1,02	-0,683	-0,787		
KCl	1,38	-0,757	-0,853	į	

Tabela7.2.1.3 – Dados do Volume em Excesso de soluções salinas em função do raio iônico dos cátions no ponto de mínimo a 308,15,15K

Sal	Raio Iônico (A°)			
		0,001	0,002	0,003
LiCl	0,76	-0,610	-0,709	-0,802
NaCl	1,02	-0,659	-0,757	
KCl	1,38	-0,708	-0,816	

água-acetonitrila-sal

Gráfico 39 – Volume em Excesso versus raio do ânion para soluções de água-acetonitrila-sal

7.2.2 – Valores experimentais do volume em excesso à fração molar da água igual a 1.

Para todos os sais estudados foi feita uma extrapolação do volume em excesso até a fração molar da água igual a 1. Observa-se pelas tabelas abaixo que o volume em excesso para o cloreto de lítio extrapolado fica por volta de (-0,150) para todas as temperaturas, e para o cloreto de sódio aproximadamente por volta de (-0,200) e para o cloreto de potássio também tende-se a aproximar de (-0,200).

Granco	7.2.2.1 -	- Dados de	volume	em ex	cesso	extrapolado	para	fração	molar	da água
			igual a	1 par	a o clo	oreto de lítio				

Xs	V ^E				
	283,15K	298,15K	308,15K		
0,001	-0,129	-0,101	-0,092		
0,002	-0,152	-0,135	-0,108		
0,003	-0,172	-0,167	-0,123		

Gráfico 7.2.2.2 – Dados de volume em excesso extrapolado para fração molar da água igual a 1 para o cloreto de sódio

Xs	VE				
	283,15K	298,15K	308,15K		
0,001	-0,150	-0,220	-0,175		
0,002	-0,193	-0,257	-0,204		
0,003	-0,223	-0,306	-0,238		

Gráfico 7.2.2.3 – Dados de volume em excesso extrapolado para fração molar da água igual a 1 para o cloreto de potássio

Xs	V ^E					
	283,15K	298,15K	308,15K			
0,001	-0,192	-0,141	-0,223			
0,002	-0,231	-0,168	-0,262			
0,003	-0,265	-0,221	-0,301			
	•					

7.3 – Modelagem

7.3.1 – Parâmetros dos componentes puros.

A tabela a seguir mostra os parâmetros, relação entre a área superficial e o volume das moléculas (S), volume do componente (V), coeficiente de expansão térmica (α), coeficiente de compressibilidade isotérmica (β) e constante de associação (K) para as temperaturas de trabalho.

Componentes	T (K)	S (nm ⁻¹)	$V (cm^3 mol^{-1})$	$\alpha 10^{4}(K^{-1})$	$\beta 10^4 (MPa)^{-1}$	K
Água	283,15	18,9 ⁽³⁾	18,02 ⁽¹⁾	0,8797 ⁽⁴⁾	4,78 ⁽⁴⁾	3980 ⁽¹⁾
	298,15	18,9 ⁽⁵⁾	18,07 ⁽¹⁾	2,5721 ⁽⁴⁾	4,53 ⁽⁴⁾	2306 ⁽⁵⁾
	308,15	18,9 ⁽³⁾	18,12 ⁽¹⁾	3,4573 ⁽⁴⁾	4,44 ⁽⁴⁾	1647 ⁽¹⁾
Acetonitila	283,15	15,19 ⁽²⁾	51,88 ⁽¹⁾	13,46 ⁽²⁾	9,29 ⁽²⁾	0
	298,15	15,19 ⁽²⁾	52,84 ⁽¹⁾	13,68 ⁽²⁾	10,70 ⁽²⁾	0
	308,15	15,19 ⁽³⁾	53,60 ⁽¹⁾	13,83 ⁽³⁾	11,64 ⁽³⁾	0

Tabela 7.3.1.1 - Dados dos Componentes Puros

(1) – Medido, (2) – Torres (1998), (3) – por extrapolação, (4) – Kell (1975), (5) – Morrone (1998)

A tabela a seguir mostra os valores do coeficiente de expansão térmica (α), do volume molar (V°), do volume característico (V^{*}) e do volume reduzido (\widetilde{V}) para os sais.

Os volumes dos sais foram obtidos pela relação entre a densidade calculada e a massa molar dos sais.

O volume característico para os sais foi obtido através da equação (5.4.1), considerando-se equação (5.4.2) igual a zero. O coeficiente de expansão térmica (α) da equação (5.4.1) foi admitido como sendo uma ordem de grandeza menor do que o valor do coeficiente de expansão térmica da água, devido ao fato de não se ter encontrado dados na literatura par estes sais.

Sal	Т	$\alpha 10^4$	V	\mathbf{V}^{*}	$\widetilde{\mathbf{v}}$
	(K)	(K ⁻¹)	(cm ³ mol ⁻¹)	(cm^3mol^{-1})	
LiCl	283,15	0,0878	24,07	24,01	1,003
	298,15	0,2572	24,16	23,98	1.007
	308,15	0,3457	24,22	23,97	1,010
NaCl	283,15	0,0878	29,44	29,37	1,002
	298,15	0,2572	29,56	29,34	1,007
	308,15	0,3457	29,64	29,32	1,011
KCl	283,15	0,0878	37,83	37,73	1,003
	298,15	0,2572	38,00	37,72	1,007
	308,15	0,3457	38,11	37,71	1,011

Tabela 7.3.1.2 – Dados para os sais a várias temperaturas

7 3.2 – Parâmetros reduzidos dos componentes puros.

A tabela a seguir mostra os parâmetros calculados através do modelo ERAS, volume, temperatura e pressão reduzidos para as temperaturas de trabalho.

Componentes	T (K)	ĩ	\widetilde{P}	$\widetilde{\mathrm{T}}$
Água	283,15	1,0290	0.001810	0,00767
	298,15	1,0403	0,000504	0,02160
	308,15	1,0641	0,000338	0,02830
Acetonitrila	283,15	1,3019	0,000145	0,06460
	298,15	1,3185	0,000151	0,06680
	308,15	1,3294	0,000155	0,06810

Tabela 7.3.2.1 – Dados dos parâmetros Reduzidos

77

7.3.3 - Parâmetros característicos dos componentes puros.

A tabela na sequência mostra os valores das grandezas características do modelo ERAS, volume (V^*), pressão (P^*), coeficiente de expansão térmica (α^*), temperatura (T^*), variação volumétrica devida à associação (ΔV^*) e entalpia de formação da associação (Δh^*).

Componentes	T	\mathbf{V}^{*}	P *	T*	$\alpha^* 10^4$	ΔV^*	Δh^*
	K	cm ³ mol ⁻¹	J cm ⁻³	K	K ⁻¹	cm ³ mol ⁻¹	J mol ⁻¹
Água	283,15	17,60 ⁽¹⁾	55,25 ⁽¹⁾	30722 ⁽¹⁾	0,806(1)	-5,60 ⁽³	-25600 ⁽³
	298,15	16,84 ⁽¹⁾	100,30 ⁽¹⁾	23707 ⁽¹⁾	1.188 ⁽¹⁾	-5,60 ⁽⁴⁾	-25600 ⁽⁴⁾
	308,15	16,48(1)	174,31 ⁽¹⁾	16020(1)	1.282 ⁽¹⁾	-5,60 ⁽³	-25600 ⁽³
Acetonitrila	283,15	39,71 ⁽²⁾	695,35 ⁽²⁾	4378 ⁽²⁾	0	0	0
	298,15	40,03 ⁽²⁾	662,70 ⁽²⁾	4464 ⁽²⁾	0	0	0
	308,15	40,26 ⁽³⁾	544,59 ⁽³⁾	4523 ⁽³⁾	0	0	0

Tabela 7.3.3.1 – Dados dos Parâmetros Característicos

(1) calculados, (2) Torres (1998), (3) por extrapolação, (4) Nagamachi (1996).

7.3.4 – Raios iônicos

Para esta tabela os valores dos raios iônicos para cátions e ânions foram obtidos de Hepler et. al (1956).

Íons	Raio iônico em A°
Li ⁺	0,76
Na^+	1,02
\mathbf{K}^+	1,38
Cl ⁻¹	1,81

Tabela 7.3.4.1 - Dados de raios iônicos para os íons

Os parâmetros cruzados K_{AB} , ΔV_{AB} e χ_{AB} foram ajustados aos dados experimentais dos sistemas água-acetonitrila e para os sistemas água-acetonitrila-sal, usando o método de

otimização de *Nelder-Mead (1968)*, tendo como função objetivo
$$F = \sum \left[\frac{V_{iexp}^E - V_{imodelo}^E}{V_{iexp}^E} \right],$$

em que o volume em excesso do modelo foi obtido usando o mesmo método de otimização citado acima.

7.3.5 - Resultados dos Parâmetros Cruzados

Os valores numéricos dos parâmetros cruzados K_{AB} , X_{AB} , Δv^*_{AB} , para as temperaturas de 283,15K, 298,15K e 308,15K para o sistema sem o sal estão relacionados na tabela abaixo.

Parâmetros	Temperatura (K)			
Cruzados	283,15	298,15	308,15	
K _{AB}	1445,59	1945,65	1356,90	
$X_{AB} (J \text{ cm}^{-3})$	8,76	8,99	9,88	
$\Delta \mathbf{v}_{AB}^{*}(\mathrm{cm}^{3} \mathrm{mol}^{-1})$	-9,98	-10,96	-8,02	

Os valores numéricos dos parâmetros cruzados K_{AB} , X_{AB} , Δv^*_{AB} para o sistema água-acetonitrila-sal estão representados abaixo:

Parâmetros	Temperatura (K)		
Cruzados	283,15	298,15	308,15
K _{AB}	1412,05	1579,12	1475,25
$X_{AB} (J \text{ cm}^{-3})$	9,76	12,01	10,25
$\Delta \mathbf{v}_{AB}^{*}(\mathrm{cm}^{3} \mathrm{mol}^{-1})$	-10,12	-10,96	-9,87

Os parâmetros de Hepler ajustados são:

Constantes	Resultados
$\mathbf{A}_{\mathbf{H}\mathbf{A}} (\mathrm{cm}^3 \mathrm{mol}^{-1} \mathrm{A}^{-3})$	6,75
$\mathbf{B}_{\mathbf{HA}} (\mathbf{A} \ \mathbf{cm}^3 \ \mathbf{mol}^{-1})$	18,16
$\mathbf{A_{HC}}(\mathrm{cm}^3 \mathrm{mol}^{-1} \mathrm{A}^{-3})$	5,66
$\mathbf{B}_{\mathbf{HC}}(\mathbf{A} \mathbf{cm}^3 \mathbf{mol}^{-1})$	5,77

7.4 - Discussão dos Resultados

A discussão dos resultados está dividida da seguinte forma: comportamento experimental do sistema água-acetonitrila a 283,15K, 298,15K e 308,15K, comportamento experimental do sistema água-acetonitrila-sal nas mesmas temperaturas e desempenho do modelo.

7.4.1 – Sistema água-acetonitrila a 283,15K.

Analisando o sistema água-acetonitrila, pode-se constatar que os dados experimentais deste trabalho apresentaram-se de boa qualidade em comparação aos dados encontrados na literatura estudados por van Meurs e Somsen em 1993, como é apresentado pela tabela (7.1.1.3).

Os valores dos volumes em excesso no ponto de mínimo para o sistema águaacetonitrila a 283,15K foi o seguinte:

	X _A	V^{E} (cm ³ mol ⁻¹)
Neste trabalho	0,7019	-0,610
Van Meurs e Somsen	0,6977	-0,593

7.4.2 – Sistema água-acetonitrila a 298,15K.

Através do dados experimentais para o sistema água-acetonitrila a 298,15K, pode-se constatar que estes em comparação com os dados de Handa e Benson (1981) foram de excelente qualidade, coincidindo no ponto de mínimo. Quando comparados com os dados encontrados na literatura de Moreau e Douhéret (1975), e com os dados de van Meurs e Somsen (1993) e com os dados apresentados por Morrone (1998) pode-se considerar que foram de boa qualidade, como pode ser visto pela tabela (7.1.1.5).

Os valores dos volumes em excesso no ponto de mínimo para o sistema águaacetonitrila a 298,15K foi o seguinte:

	X _A	V ^E (cm ³ mol ⁻¹)
Neste trabalho	0,7017	-0,567
Moreau e Douhéret	0,6500	-0,545
Handa e Benson	0,70069	-0,5645
Van Meurs e Somsen	0,6512	-0,570
Morrone	0,6510	-0,581

7.4.3 – Sistema água-acetonitrila a 308,15K.

Analisando os dados para o sistema água-acetonitrila a 308,15K, quando comparados com os dados apresentados por Handa e Benson na mesma temperatura, estes foram muito bons coincidindo em alguns pontos.

Os valores dos volumes em excesso no ponto de mínimo para o sistema águaacetonitrila a 308,15K foi o seguinte:

	X _A	V ^E (cm ³ mol ⁻¹)
Neste trabalho	0,6488	-0,583
Handa e Benson	0,6715	-0,5618

Analisando os dados experimentais pode-se observar em relação à temperatura, que a medida que a mesma aumenta o valor do volume em excesso no ponto de mínimo tornase menos negativo, para a fração molar de água em torno de 0,70.

Os valores dos volumes em excesso no ponto de mínimo para o sistema águaacetonitrila para as temperatura de trabalho foram as seguintes:

Temperatura (K)	X _A	V ^E (cm ³ mol ⁻¹)
283,15	0,7019	-0,610
298,15	0,7017	-0,567
308,15	0,7024	-0,561

7.4.4 - Sistema água-acetonitrila-cloreto de lítio.

As curvas para o sistema água-acetonitrila-cloreto de lítio apresentam aspectos de uma parábola, sendo que quanto maior a fração molar de sal, maior foi a contração e à medida que a temperatura aumenta o valor do volume em excesso no ponto de mínimo torna-se menos negativo.

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT Os valores dos volumes em excesso no ponto de mínimo para o sistema águaacetonitrila-cloreto de lítio para as frações molares do sal e para as temperatura de trabalho foram as seguintes:

X _s	V ^E (cm ³ mol ⁻¹)		
	283,15K	298,15K	308,15K
0,000	-0,610	-0,567	-0,561
0,001	-0,752	-0,625	-0,609
0,002	-0,875	-0,727	-0,709
0,003	-0,932	-0,804	-0,802

7.4.5 - Sistema água-acetonitrila-cloreto de sódio.

Não foi possível obter dados experimentais para a faixa total de concentração de água, devido à separação de fases que ocorreu com a mudança do sal utilizado

Foram obtidos dados experimentais para o sistema água-acetonitrila-cloreto de sódio para frações molares de água acima de 0,4000 para as concentrações de sal 0,001 e 0,002. Para a concentração de sal 0,003 foram feitas medidas para fração molar de água superior a 0,8000.

As curvas para o sistema água-acetonitrila-cloreto de sódio apresentam aspectos de uma parábola para as concentrações de sal 0,001 e 0,002. A medida que a concentração do sal aumenta o volume em excesso no ponto de mínimo torna-se mais negativo, e à medida que a temperatura aumenta o valor do volume em excesso no ponto de mínimo torna-se menos negativo.

	Os valores dos	volumes em	excesso no	ponto de r	ninimo par	a este sistema,	para as
frações	molares do sal	e para as tem	peratura de	trabalho fo	ram as segu	uintes:	

V^{E} (cm ³ mol ⁻¹)			
283,15K	298,15K	308,15K	
-0,610	-0,567	-0,561	
-0,798	-0,683	-0,659	
-0,879	-0,787	-0,757	
	283,15K -0,610 -0,798 -0,879	V ^E (cm ³ mol ⁻¹) 283,15K 298,15K -0,610 -0,567 -0,798 -0,683 -0,879 -0,787	

82

7.4.6 - Sistema água-acetonitrila-cloreto de potássio.

Não foi possível obter dados experimentais para a faixa total de concentração de água, devido à separação de fases que ocorreu com a mudança do sal utilizado.

Foram obtidos dados experimentais para o sistema água-acetonitrila-cloreto de potássio para frações molares de água acima de 0,4000 para as concentrações de sal 0,001 e 0,002, para a concentração de sal 0,003 conseguiu-se medidas para fração molar de água superior a 0,8000.

As curvas para o sistema água-acetonitrila-cloreto de potássio apresentam aspectos de uma parábola para as concentrações de sal 0,001 e 0,002. A medida que a concentração do sal aumenta o volume em excesso no ponto de mínimo torna-se mais negativo, e a medida que a temperatura aumenta o valor do volume em excesso no ponto de mínimo torna-se menos negativo.

Os valores dos volumes em excesso no ponto de mínimo para este sistema, para as frações molares do sal e para as temperatura de trabalho foram as seguintes:

Xs	V^{E} (cm ³ mol ⁻¹)		
	283,15K	298,15K	308,15K
0,000	-0,610	-0,567	-0,561
0,001	-0,829	-0,757	-0,708
0,002	-0,925	-0,853	-0,816

O efeito salino foi mais pronunciado para a fração molar do sal de 0,002 a 283,15K.

7.5 Análise Quanto ao Modelo Utilizado

7.5.1 – Sistema água-acetonitrila

Para esse sistema foi utilizado o modelo ERAS proposto por Heintz (1985), considerando-se a auto-associação da água e a existência da associação cruzada entre a água e acetonitrila. Os resultados para a faixa de temperaturas estudada não foram muito bons, apresentando desvios muito grandes em relação aos dados experimentais, isto é, o programa computacional utilizado não conseguiu otimizar os parâmetros.

7.5.2 - Sistema água-acetonitrila com cloreto de lítio

Para esse sistema salino foi utilizado o modelo de ERAS modificado,. O modelo correlacionou os dados experimentais para uma pequena faixa de fração molar da água na região rica em acetonitrila e mostrou-se grandes desvios para a faixa intermediária e na região rica em água para todas as frações molares de sais e temperaturas estudadas.

7.5.3 – Sistema água-acetonitrila com cloreto de sódio

Em relação a esse sistema o modelo não conseguiu correlacionar os dados experimentais para as frações molares de sais a 0,001 e 0,002 para todas as faixas de temperaturas estudadas. Apresentou-se bons resultados para a fração molar do sal a 0,003 para as temperaturas em estudo.

7.5.4 – Sistema água-acetonitrila com cloreto de potássio

Analogamente ao sal anterior, o modelo não conseguiu correlacionar os dados experimentais para as frações molares de sais a 0,001 e 0,002 para todas as faixas de temperatura. Apresentou-se bons resultados para a fração molar do sal a 0,003 para as temperatura estudadas.

7.6 – Análise do volume em excesso em função do raio do íon

Através dos dados experimentais foram feitas análises do comportamento do volume em excesso para as soluções salinas estudadas em relação a grandezas específicas dos sais; observou-se uma relação aproximadamente linear entre o valor da grandeza termodinâmica (V^E) e o valor do raio do cátion e do ânion,. Através desta correlação há possibilidades de fazerem interpolações e extrapolações desta grandeza para outros sais da família periódica, nas mesmas condições de trabalho.

7.7 – Análise do volume em excesso quando a fração molar da água é igual a 1.

Através dos dados experimentais foi feita análise do comportamento do volume em excesso extrapolando a fração molar da água até a unidade, observou-se que o volume em excesso para o cloreto de lítio ficou por volta de (-0,150), o cloreto de sódio a (-0,200) e o cloreto de potássio a (-0,200).

84

8 – CONCLUSÕES E SUGESTÕES

Neste trabalho foi estudado o comportamento do volume em excesso com a adição dos sais cloreto de lítio, cloreto de sódio e cloreto de potássio para o sistema águaacetonitrila em função da composição do sal entre 0,001 a 0,003 e temperatura de 283,15 a 308,15K, à pressão ambiente, usando um densimetro de oscilação mecânica (modelo DMA 55, Anton Paar).

Verificou-se que a adição dos sais ao sistema água-acetonitrila gerou uma contração volumétrica, cuja intensidade está diretamente relacionada ao tipo de sal adicionado. Constatou-se que quanto maior o raio do cátion maior foi a contração no volume em excesso.

A análise dos dados experimentais e dos valores calculados pela modelagem permitem as seguintes conclusões:

Os aspectos das curvas do volume em excesso em função da fração molar da água são semelhantes para o sistema água-acetonitrila para todas as temperatura estudadas, apresentando pontos de mínimo torno da fração molar 0,6 de água, e quanto mais alta foi a temperatura menor a contração no volume em excesso.

Em relação ao sal cloreto de lítio, os pontos de mínimo estão situados em frações molares de água próximas a 0,65, e a contração volumétrica é maior para a fração molar de sal maior, ao contrário da temperatura que quanto maior ela é, menor é a contração no volume em excesso.

Para os sais cloreto de sódio e cloreto de potássio, tem-se conclusões análogas ao cloreto de lítio.

Em termos dos raios do cátions verificou-se que os efeitos de contração foram aumentando diretamente com o tamanho dos sais, isto é, $Li^+ < Na^+ < K^+$.

Em relação as concentrações dos sais, observou-se também que ocorreu uma contração maior quanto maior era a concentração do sal.

Em relação a temperatura de trabalho, verificou-se que a contração no volume em excesso é maior para a temperatura mais baixa.

UNICAMP BIBLIOTECA CENTRAL SECÃO CIRCULANTS O efeito salino foi mais pronunciado para o sistema agua-acetonitrila-cloreto de potássio a 283,15K.

Os resultados do volume em excesso quando a fração volumétrica da água tende para 1 foram próximos de (-0,200).

Através da relação entre volume em excesso versus raio do íon, verificou-se também que há uma linearidade entre uma função termodinâmica e uma grandeza característica do íon. Essa correlação pode permitir interpolações e extrapolações desta grandeza para outros sais da família periódica, nas mesmas condições de trabalho.

Quanto ao modelo utilizado para os sistemas salinos, verificou-se que ele não foi capaz de correlacionar os dados experimentais, isto é, o programa computacional não conseguiu otimizar os parâmetros.

É importante salientar que este trabalho teve uma contribuição importante na geração de dados experimentais de volume em excesso para o sistema água-acetonitrila a 283,15K e 308,15K, pois há poucos dados deste sistema para essas temperaturas na literatura.

Para o sistema água-acetonitrila-sal foi muito importante a geração de dados experimentais para o volume em excesso, pois para essa grandeza termodinâmica há poucos trabalhos publicados. E o volume em excesso apresenta-se como um subsídio para testar modelos mais abrangentes em teorias de soluções.

Sugerem-se estudos com outros sais da mesma família periódica ou com valência maior, e também a utilização de outros modelos para tentar predizer melhor os dados experimentais.

9 - REFERÊNCIAS BIBLIOGRÁFICAS

Acree Jr, W. E.; "Thermodynamic properties of non-electrolyte solutions"; Academic Press; London; 19-21; 1984.

Aguirre-Ode, F; "Thermodynamics of Associated Solutions with Volume effects"; Fluid Phase Equilibria; v.13;321-329; 1983.

Al-Sahhaf, A. T. e *Kapetanovic*, E.; "Salt Effects of Lithium Choride, Sodium Bromide, or Potassium Iodide on Liquid-Liquid Equilibrium in the System Water+1-Butanol" J.Chem. Eng. Data; v.42; 74-77; 1997.

Assumpção, R.M.V.; "Manual de soluções, Reagentes Solventes", Editora Edgard Blücher LTDA, 58 e 59,1968.

Battino, R.; "Thermodynamics of Binary Solutions of Nonelectrolytes with 2,2,4-Trimethylpentane. I. Volume of Mixing (25°) and Vapor-liquid Equilibrium (35-75°) with cyclohexane", J. Phys. Chem. v.70, 3408-3416, (1966).

Barman, B. N.; Rahim, Z.; "Magnetic Float Densimeter for Wide Range Density Measurements", Rev. Sci. Instrum., v.48, n.12, 1695-1698, (1977).

Benko, J. e *Vollárová*, O.; "Transfer Gibbs Energies for ClO₃", BrO₃", IO₃", ClO₄" and IO₄" anions for water-acetonitrile and water-tert-butyl alcohol mixtures"; J. Chem. Soc. Faraday Trans.; v.90(6); 855-858; 1994.

Bondi, A.; "van de Waals volumes and radii" J. Phys. Chem.; v.68; 441-451; 1964.

Bottomley, G. A.; Scott, R. L.; "A Grease-Free Continuous Dilution Dilatometer; Excess Volumes for Benzene+carbon tetrachloride", J. Chem. Thermodynamics, v.6, 973-981, (1974).

Brandani, V e *Prausnitz*, J. M.; "A Free Volume, non randon-mixing Theory for liquid mixtures", Fluid Phase Equilibria; v.7; 233-257; 1981.

87

Brown, I.; Lane; J. E.; "Recommended Reference Material for Realization of Physicochemical Properties", Pure Appl. Chem., v.45, 1-9, (1976).

Copeman, T., W., "A Perturbed Hard-Sphere Equation of State for Solutions Containing Electrolyte", Fluid Phase Equilibria, 35, 165-187, 1987.

Cox, G. B. e *Natarajan*, R. *Waghorne*, W. E.; "Thermodynamics Properties for Transfer of electrolytes from water to acetonitrile and acetonitrile + water mixtures"; J. Chem. Soc. Faraday Trans.; v.75; 86-95; 1979.

De Visser, C.; Wim, J.M.; Lawrence, A. D.; Somsen, G.; "Some Properties of Binary Aqueous Liquid Mixtures", J. Chem. Soc. Faraday Trans., 1159-1165, 1978.

Duncan, W. A.; Sheridan, J. P.; Swinton, F. L.; "Thermodynamics Properties of Binary Systems Containing Hexafluorobenzene", Trans. Faraday Soc., v.62, 1090-1096 (1966).

Easteal, J.A.; *e Woolf*, A.L.; "Measurements of (p,V,x) for (water + acetonitrile) at 298.15K"; J. Chem. Thermodynamics. V.14;755-762; 1982.

Easteal, J.A.; *e Woolf*, A.L.; "(p, V_m ,T,x) Measurements for [(1-x)H₂O + xCH₃OH] in the range 278 to 323K and 0.1 to 280MPa"; J. Chem. Thermodynamics. V.17; 69-82; 1985.

Easteal, J.A.; *e Woolf*, A.L.; "(p,V_m,T,x) Measurements for [(1-x)H₂O + xCH₃CN] in the range 278 to 323K and 0.1 to 280MPa"; J. Chem. Thermodynamics. V.20; 701-706; 1988.

Flory, P. J.; "Thermodynamics of heterogeneous polymer and their Solutions" Journal Chemical Physical; v.12;425-438; 1944.

Flory, P. J.; *Orwoll*, R. A. e *Vrij*, A.; "Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons"; J. Am. Chem. Soc.; v.86; 3507-3520; 1964.

Franks, F.; Smith, H. T.; "Apparent Molal Volumes and Expansibilities of Electrolytes in Dilute Aqueous Solution", Trans. Faraday Soc., v.63, 2586-2598, (1967).

Friese, T.; *Ulbig*, P.; *Schulz*, S.; *Wagner*, K.; "Effect of NaCl on the excess enthalpies of binary liquid system"; Thermochimica Acta; 310; 87-94; 1998.

Friese, T.; *Ulbig*, P.; *Schulz*, S.; *Wagner*, K.; "Effect of NaCl or KCl on the Excess Enthalpies of Alkanol+Water Mixtures at various Temperatures and Salt Concentrations"; J. Chem. Eng. Data; v. 44; 701-714; 1999.

Funkel, H.; *Wenzel*, M.e *Heintz*, A.; "New applications of the ERAS model" Pure Appl. Chem.; v.61;1429-1439; 1989.

Götze, G.; e *Schneider*, G. M.; "Excess Volumes of Liquid Mixtures at high pressure IV. Pressure dependence of excess Gibbs, excess entropies, and excess enthalpies of aqueous non-electrolyte mixture up to 250MPa.", J. Chem. Thermodynamics; v.12; 661-672; 1980.

Guggenheim, E. A.; "Thermodynamics", 5^a₋edição, 171-191 e 221, North-Holland Publishing Company, 1967.

Handa, Y. P.; e *Benson*, C. G.; "Thermodynamics of Aqueous Mixture of Nonelectrolytes. IV. Excess Volumes of Water-Acetonitrile mixture from 15 to 35°C" J. of Solution Chemistry; v.10; n.4; 291-300; 1981.

Handbook of Chemistry and Physical, 76th edition, CRC Press, 1995-1996.

Heintz, A.; "A new Theoretical Approach for Predicting Excess Properties of Alkanol/Alkane Mixtures" Ber. Bunsenges Phys. Chem.; v.89; 172-181; 1985.

Hefter, G.T.; *Grolier*, J. P. E.; *Roux*, A. H.; e *Roux-Desgranges*, G.; "Apparent Molar Heat Capacities and Volumes of Electrolytes and Ions in Acetonitrile-Water Mixtures" J. of Solution Chemistry; v.19; n.3; 207-223; 1990.

Hepler, G. L.; "Partial molal volumes of aqueous ions" J. Phys. Chem.; v.61; 1426-1428; 1957.

Katsutoshi, T.; *Nakamura*, M. e *Murakami*, S.; "Excess Volumes of Water+Acetonitrile at 30°C and the Effect of the Excess Thermal Expansivity Coefficients on Derived Thermodynamic Properties" J. of Solution Chemistry; v. 26; n.12; 1199-1207; 1997.

Kell, G. S., "Density, Thermal Expansivity, and Compressibility of liquid Water from 0° to 150°: Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale", J. of Chem. Eng. Data, v. 20, n. 1, p. 97-105, 1975.

Kretschmer, C. R. e *Wiebe*, R.; "Thermodynamics of alcohol-hydrocarbon mixtures" J. Chem. Phys.; v.22; 1697-1701; 1954.

Martin, M. L.; Murray, R. S.; "Excess Volumes of Hexafluorobenzene + Aliphatic Ethers", J. Chem. Thermodynamics, v.4, 723-729, (1972).

Masterton, W. L.; Seiler, H. K.; "Apparent and Partial Volumes of Water in Organic Solvents", J. Phys.Chem., v.72, n.12, 4257-4262 (1968).

Mclure, I. A.; Swinton, F. L.; "Excess Volumes of Mixing", Trans. Faraday Soc., v.61, 421-428, (1965).

Millero, Jr, F, J.; "High Precision Magnetic Float Densimeter", Rev. Sci. Instrum., v.38, n.10, 1441-1444, (1967).

Missen, R. W.; "Use of the Term Excess Function", I&EC Fundamentals, v.8, n.1, 81-84, 1969.

Moreau, C.; e *Douhéret*, G.; "Thermodynamic Behavior of Water-Acetonitrile Mixtures" Thermochimica Acta; v.13; 385-392; 1975.

Morrone, S. R., "Estudo experimental e modelagem do volume em excesso de soluções salinas de água e acetonitrila a 298,15K", Dissertação de Doutorado, FEQ, Unicamp, 1998.

Nagamachi, M. Y., "Modificações e testes de um calorímetro de mistura e a obtenção de dados da entalpia em excesso para o sistema água-sec-butilamina a 298,15K, com aplicação do modelo ERAS", Dissertação de Mestrado, FEQ, Unicamp, 1996.

Nath, A. e *Bender*, E.; "On the Thermodynamics of associated solutions. I. An analytical method for determining the enthalpy and entropy of association and equilibrium constant for pure liquid substances", Fluid Phase Equilibria; v.7; 275-287; 1981.

O'Brien, F. J.; *Johnson*, W. D.; *Kuehne*r, K.; *Brewer*, R. T.e *Keil*, G.; "Investigation of alkali metal-water interaction in acetonitrile" Inorganica Chimica Acta; v.183;113-118; 1991.

Patil, K.e Mehta, G.; "Volume and Compressibility Changes in Mixed-salt Solutions at 25°C" J. Chem. Soc., Faraday Trans. I; v.83 (8); 2467-2474; 1987.

Pflug, H. D.; Benson, G. C.; "Molar Excess Volumes of Binary n-alcohol Systems at 25°C", Can. J. Chem., v.46, 287-294, (1968).

Picker, P.; Tremblay, E.; Jolicoeur, C.; " A High-Precision Digital Readout Flow Densimeter for Liquids", J. Sol. Chem., v.3, n.5, 377-484, (1974).

Platford, R. F., "Thermodynamics of mixed salt solutions: excess Gibbs energies of mixing for the six ternary systems formed from aqueous MgCl₂, CaCl₂ at 25°C", J. Chem. Thermobynamics 3, 319-324, 1971.

Radojkovic, N.; Tasic, A.; Djordjevic, B.; Grozdanic, D.; "Mixing Cell for Indirect Measurements of Excess Volume", J. Chem. Thermobynamics, v.8, 1111-1114, (1976).

Redlich, O.; *Kister*, A. T., "Algebraic Representation of Thermodynamics Properties and the Classification of Solutions", Ind. Eng. Chem., v.40, p.345, 1948.

Renon, H., *Fürst*, W., "Representation of Excess Properties of Electrolyte Solutions Using a New Equation of State", AIChe Journal, v. 39, n.2, 335-342, 1993.

Renon, H., *Ball*, F-X, *Planche*, H., *Fürst*, W., "Representation of Deviation from Ideality in Concentrated Aqueous Solutions of Electrolytes Using a Mean Spherical Approximation Molecular Model", AIChe Journal, v. 31, n.8, 1233-1240, 1985.

Robinson, R. A., "Excess Gibbs energies of mixing of solutions of lithium choride and cesium choride in water and deuterium oxide", J. Chem. Thermodynamics 5, 819-827, 1973.

91

Sandhu, J. S. "Excess Molar of i-Alkanol (C_1 - C_5) Binary Mixture with Aceonitrile", J. Chem., Eng. Data, 31, 152-154, 1986.

Scatchard, G.; *Hamer*, W. J.; "The Aplication of Equations for the Chemical Potentials to Partially Miscible Solutions" J. Am. Chem. Soc. v.57; 1805-1809; 1935.

Scatchard, G. "Equilibria in Non- Electrolyte Solutions in Relations to the Vapor Pressures and Densities of the Components", Chem. Rev. v.8,321; 1931.

Schäfer, C. R.; Davolio, F.and Katz, M.; "Molar Excess Volumes of 1,4-Dioxane + Acetonitrile, n-butylamine + acetonitrile and n-butylamine + 1,4-Dioxane at different temperatures", J. of Solution Chemistry, v. 19, n.3, 289, 1990.

Senter, J. P.; "Magnetic Densimeter Utilizing Optical Sensing", Rev. Sci. Instrum., v.40, n.2, 334-338, (1969).

Schoemaker, D. P., Garland, C. W., Nibler, J.W. "Experiments in Physical Chemistry", 5th ed, Mcgraw-Hill Co NY, 1989, cap.2.

Stookey, D. J.; Sallak, H. M.; Smith, B. D.; 'Excess volumes of some Aromatic + Cycloparaffin Mixtures. Analysis of Experimental Error in Dilatometers Using V-Shaped Cells", J. Chem. Thermodynanics, v.5, 741-751, (1973).

Stokes, R. H.; Levien; Barbara, J.; Marsh, K. N.; "A Continuous Dilution Dilatometer. The Excess Volume for the System Cyclohexane+Benzene", J. Chem. Thermodynamics, v.2,43-52, (1970).

Tanaka, R.; Kiyohara, O.; D'arcy, P. J.; Benson G. C.; 'A Micrometer Syringe Dilatometer: Application to the Measurement of the Excess Volumes of some Ethylbenzene Systems at 298,15K", Can. J. Chem., v.53, 2262-2267, (1975).

Torres, R. B., "Estudo experimental do volume molar em excesso de soluções de dietilamina/acetonitrila e s-butil-amina/acetonitrila na faixa de 298,15K a 308,15K, à pressão atmosférica, com aplicação do modelo ERAS", Dissertação de Mestrado, FEQ, Unicamp, 1998. *Treiner*, C.; *Tzias*, P. e *Chemla*, M.; "Solvation of Tetrabutylammonium Bromide in Water+Acetonitrile Mixtures at 298.15K from Vapour Pressure Measurements of Dilute Solutions" J. Solution Chem., 2007-2015; 1975.

van Meurs, N. e *Somsen*, G. "Excess and Apparent Molar Volumes of Mixtures of Water and Acetonitrile Betweem 0 and 25°C" J. Solution Chemistry; v.22; n.5;427-435; 1993.

Treszczanovicz, A. J.; *Treszczanovicz*, T.; *Benson*, G. C.; "Review of Experimental and Recomended Data for the Excess Molar volumes of 1-Alkanol + n-Alkane Binary Mixtures", Fluid Phase Equilibria, v. 83, 31-56, 1993.

Vilcu, R., *e Irenei*, F., "Excess thermodynamic functions for the system NaBr+KBr+H₂O", J. Chem. Thermodynamics 1, 409-412, 1969

Weeks, I. A.; Benson, G. C.; "Determination of the Excess Volume of Cyclohexane + Benzene by Means of a Magnetic Float Densimeter", J. Chem. Thermodynamics, v.5, 107-115, (1973).

Wood, S. E.; Brusie, J. P.; "The volume of Mixing an the Thermodynamic Functions of Benzene Tetrachloride carbon Mixtures", J. Amer. Chem. Soc., v.65, 1891-1895, (1943).

Apêndice A – Tabelas para o Sistema água/acetonitrila

As tabelas mostrados na seqüência expressam os resultados experimentais para o volume em excesso e valores calculados através do modelo, para o sistema água/acetonitria sem sal para a seguintes temperaturas 283,15K, 298,15K e 308,15K.

Para melhor entender as tabelas a nomenclatura utilizada foi a seguinte:

x_A fração molar da água;

V^E_{exp} é o volume em excesso experimental;

 V_{H}^{E} é o volume em excesso do modelo de Hepler;

V^E_{ERAS} é o volume em excesso do modelo ERAS;

ρ é a massa específica da solução.

As frações molares de acetonitrila (x_B) são obtidas pela diferença entre a unidade e a soma das frações molares da água (x_A) e dos sais (x_S) , sendo que as frações molares dos sais são fixas (0,001, 0,002 e 0,003).
Experimento	X	0	V ^E evn	VEFRAS
		$(g \text{ cm}^{-3})$	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$
1	0,0000	0,79335	0,000	0,000
2	0,0206	0,79478	-0,041	-0,035
3	0,0426	0,79769	-0,049	-0,075
4	0,0629	0,79885	-0,061	-0,104
5	0,0846	0,80106	-0,079	-0,135
6	0,1020	0,80404	-0,087	-0,163
7	0,1220	0,80606	-0,120	-0,196
8	0,1449	0,80868	-0,154	-0,235
9	0,1608	0,81123	-0,175	-0,269
10	0,1992	0,81552	-0,251	-0,386
11	0,2203	0,81897	-0,272	-0,447
12	0,2417	0,82281	-0,312	-0,531
13	0,2650	0,82402	-0,347	-0,586
14	0,2867	0,82728	-0,377	-0,646
15	0,3032	0,83062	-0,394	-0,696
16	0,3242	0,83441	-0,414	-0,735
17	0,3861	0,84699	-0,471	-0,864
18	0,4014	0,84978	-0,487	-0,903
19	0,4423	0,85785	-0,516	-0,965
20	0,4828	0,85879	-0,552	-1,045
21	0,4963	0,86106	-0,556	-1,084
22	0,5022	0,86206	-0,562	-1,102
23	0,5207	0,86839	-0,569	-1,123
24	0,5331	0,86977	-0,575	-1,145
25	0,5639	0,87419	-0,582	-1,168
26	0,5848	0,87954	-0,586	-1,179
27	0,5927	0,88159	-0,588	-1,186
28	0,6047	0,88412	-0,593	-1,184
29	0,6239	0,88652	-0,597	-1,163
30	0,6415	0,89673	-0,601	-1,143
31	0,6818	0,90146	-0,606	-1,098
32	0,7019	0,90741	-0,610	-1,064
33	0,7457	0,91831	-0,599	-1,028
34	0,7592	0,92283	-0,587	-0,943
35	0,8050	0,93663	-0,553	-0,789
36	0,8204	0,94878	-0,539	-0,686
37	0,8816	0,96797	-0,434	-0,492
38	0,9019	0,97212	-0,387	-0,387
39	0,9214	0,97647	-0,320	-0,277
40	0,9427	0,98345	-0,251	-0,192
41	0,9619	0,98922	-0,182	-0,144
42	0,9846	0,99552	-0,087	-0,109
43	0,9928	0,99751	-0,037	-0,065

Tabela 1 – Sistema ág	a-acetonitrila a 283,15K
-----------------------	--------------------------

XA	V ^E _{exp} (cm ³ mol ⁻¹)	X _A	$\frac{\mathbf{V}^{\mathbf{E}}_{\text{van Meurs}}}{(\mathbf{cm}^{3} \mathbf{mol}^{-1})}$
0,1020	-0,087	0,1000	-0,095
0,1992	-0,251	0,1940	-0,223
0,3032	-0,394	0,2983	-0,352
0,4014	-0,487	0,3977	-0,458
0,4423	-0,516	0,4537	-0,498
0,5022	-0,562	0,5070	-0,534
0,5331	-0,575	0,5480	-0,558
0,5927	-0,588	0,5989	-0,574
0,6415	-0,601	0,6507	-0,589
0,7019	-0,610	0,6977	-0,593
0,7457	-0,599	0,7491	-0,587
0,8050	-0,553	0,8044	-0,567
0,9019	-0,387	0,9011	-0,433
0,9427	-0,251	0,9519	-0,259

Tabela .1.1 – Comparação entre os dados deste trabalho e os dados de Van Meurs e Somsen para o sistema água/acetonitrila a 283,15K

	I docia.2	- oisteina agua-at		
Número do		ρ		V ^L _{ERAS}
experimento		(g cm ⁻³)	(cm ³ mol ⁻¹)	(cm ³ mol ⁻¹)
1	0,0000	0,77701	0,000	0,000
2	0,0206	0,77978	-0,087	-0,068
3.	0,0491	0,78238	-0,034	-0,114
4	0,0698	0,78418	-0,042	-0,152
5	0,0725	0,78453	-0,049	-0,185
6	0,1015	0,78749	-0,080	-0,205
7	0,1475	0,79654	-0,135	-0,364
8	0,1607	0,79418	-0,158	-0,412
9	0,1895	0,79743	-0,182	-0,496
10	0,1901	0,80153	-0,184	-0,516
11	0,2253	0,80373	-0,216	-0,625
12	0,2460	0,80552	-0,245	-0,665
13	0,2640	0,80898	-0,271	-0,702
14	0,3080	0,81539	-0,330	-0,792
15	0,3288	0,81862	-0,359	-0,823
16	0,3563	0,82415	-0,404	-0,893
17	0,3769	0,82736	-0,421	-0,945
18	0,4007	0,82999	-0,438	-0,975
19	0,4314	0,83859	-0,471	-1,027
20	0,4879	0,84358	-0,495	-1,103
21	0,5132	0,84859	-0,513	-1,139
22	0,5197	0,84995	-0,518	-1,148
23	0,5406	0,85419	-0,527	-1,152
24	0,5624	0,86165	-0,542	-1,167
25	0,5917	0,86523	-0,548	-1,164
26	0,6408	0,87684	-0,555	-1,149
27	0,6844	0,88867	-0,564	-1,115
28	0,7017	0,89359	-0,567	-1,098
29	0,7246	0,91362	-0,558	-1,042
30	0,7435	0.91926	-0,551	-0,995
31	0,7931	0,93169	-0,530	-0,823
32	0,8001	0,93465	-0,523	-0,775
33	0,8176	0,93766	-0,510	-0,689
34	0,8366	0,94662	-0,484	-0,586
35	0,8681	0,95179	-0,408	-0,518
36	0,8804	0,95673	-0,394	-0,462
37	0,9004	0,96247	-0,322	-0,357
38	0,9233	0,96711	-0,260	-0,242
39	0,9449	0,97983	-0,218	-0,171
40	0,9629	0,98424	-0,184	-0,135
41	0,9887	0,99270	-0,051	-0,075
42	0,9965	0,99579	-0,017	0,000

Tabela.2 – Sistema água-acetonitrila a 298,15K

Tabela 2.1 - Comparação entre os dados deste trabalho e os dados de Moreau e

Douhéret, van Meurs e Somsen e Morrone para o sistema água/acetonitrila a

X _A	V ^E exp	X _A	V ^L _{Moreau}	X _A	V ^E van Meurs	XA	V ^E Morrone
	(cm [°] mol ⁻¹)		(cm ³ mol ⁻¹)		(cm [°] mol ⁻¹)		(cm ³ mol ¹)
0,0206	-0,087					0,0210	-0,018
0,0491	-0,034	0,050	-0,039			0,0440	-0,033
0,0698	-0,042					0,0640	-0,052
0,1015	-0,080	0,100	-0,089	0,1007	-0,083	0,1190	-0,121
0,1475	-0,135	0,150	-0,143			0,1510	-0,157
0,1607	-0,158					0,1700	-0,169
0,1895	-0,182					0,1890	-0,197
0,1901	-0,184	0,200	-0,201	0,1957	-0,204	0,2140	-0,231
0,2253	-0,216					0,2220	-0,237
0,2460	-0,245	0,250	-0,261			0,2480	-0,262
0,2640	-0,271					0,2650	-0,291
0,3080	-0,330	0,300	-0,320	0,2964	-0,329	0,3040	-0,340
0,3288	-0,359					0,3230	-0,350
0,3563	-0,404	0,350	-0,377			0,3620	-0,406
0,3769	-0,421					0,3750	-0,411
0,4007	-0,438	0,400	-0,427	0,3997	-0,432	0,3980	-0,427
0,4314	-0,471	0,450	-0,470	0,4476	-0,478	0,4250	-0,444
0,4879	-0,495			0,4992	-0,515	0,4890	-0,460
0,5132	-0,513	0,500	-0,504			0,5070	-0,484
0,5406	-0,527	0,550	-0,527	0,5485	-0,539		
0,5624	-0,542					0,5630	-0,518
0,5917	-0,548	0,600	-0,541	0,5982	-0,554	0,5970	-0,544
0,6408	-0,555	0,650	-0,545	0,6512	-0,570	0,6510	-0,581
0,7017	-0,567	0,700	-0,538	0,7000	-0,568	0,7080	-0,566
0,7435	-0,551	0,750	-0,519	0,7493	-0,559	0,7570	-0,558
0,8001	-0,523	0,800	-0,485	0,8000	-0,537		
0,8176	-0,510					0,8230	-0,520
0,8366	-0,484	0,850	-0,430	0,8485	-0,491	0,8540	-0,489
0,8681	-0,408						
0,9004	-0,322	0,900	-0,342	0,8988	-0,405	0,8990	-0,413
0,9233	-0,260					0,9210	-0,348
0,9449	-0,218	0,950	-0,206	0,9490	-0,251	0,9470	-0,262
0,9629	-0,184					0,9630	-0,190
0,9887	-0,051					0,9720	-0,151

298,15K

Número do	X _A	ρ	V ^E _{exp}	V ^E ERAS
experimento		$(g \text{ cm}^{-3})$	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	(cm ³ mol ⁻¹)
1	0,0000	0,76593	0,000	0,000
2	0,0251	0,77081	-0,012	-0,145
3	0,0541	0,77185	-0,026	-0,299
4	0,0694	0,77317	-0,029	-0,375
5	0,1004	0,77786	-0,158	-0,516
6	0,1363	0,78026	-0,101	-0,661
7	0,1899	0,78658	-0,164	-0,839
8	0,2265	0,79129	-0,212	-0,937
9	0,2675	0,79678	-0,258	-1,023
10	0,3082	0,80279	-0,314	-1,085
11	0,3223	0,80546	-0,358	-1,102
12	0,3607	0,81114	-0,382	-1,134
13	0,4007	0,81798	-0,430	-1,147
14	0,4275	0,82250	-0,446	-1,145
15	0,4876	0,83397	-0,481	-1,112
16	0,5128	0,83919	-0,504	-1,087
17	0,5412	0,84513	-0,527	-1,052
18	0,5945	0,85704	-0,534	-0,965
19	0,6224	0,86381	-0,541	-0,912
20	0,6488	0,87108	-0,553	-0,854
21	0,7024	0,88145	-0,561	-0,664
22	0,7264	0,89300	-0,554	-0,567
23	0,7627	0,90466	-0,546	-0,468
24	0,7989	0,91741	-0,525	-0,365
25	0,8242	0,92541	-0,501	-0,284
26	0,8792	0,94442	-0,426	-0,185
27	0,9004	0,95512	-0,384	-0,139
28	0,9216	0,96360	-0,320	-0,105
29	0,9447	0,97276	-0,252	-0,066
30	0,9740	0,98374	-0,122	-0,025
31	1,0000	0,99403	0,000	0,000

Tabela 3 – Sistema água-acetonitrila a 308,15K

T	abe	la	3.	1 -	- Con	iparad	âo	entre	05	dados	deste	trabalho	e og	s dados
_				_					~~~					~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Handa e Benson para o sistema água-acetonitrila a 308,15K

X _A	$\frac{\overline{V}_{exp}^{E}}{(cm^{3} mol^{-1})}$	X _A	V ^E _{Handa} (cm ³ mol ⁻¹)
0,0251	-0,012	0,02315	-0,0134
0,0541	-0,026	0,05150	-0,0349
0,0694	-0,029	0,06969	-0,0513
0,1004	-0,101	0,09705	-0,0807
0,1363	-0,158	0,15414	-0,1473
0,1899	-0,164	0,18472	-0,1849
0,2265	-0,212	0,21066	-0,2178
0,2675	-0,258	0,27189	-0,2940
0,3082	-0,314	0,30055	-0,3278
0,3223	-0,358	0,33100	-0,3616
0,3607	-0,382	0,36135	-0,3932
0,4007	-0,430	0,38906	-0,4206
0,4275	-0,446	0,41584	-0,4449
0,4876	-0,501	0,48312	-0,4954
0,5128	-0,524	0,51428	-0,5142
0,5412	-0,537	0,54171	-0,5279
0,6224	-0,561	0,61408	-0,5544
0,6488	-0,583	0,64196	-0,5600
0,7264	-0,574	0,73467	-0,5531
0,7627	-0,565	0,76228	-0,5523
0,7989	-0,554	0,79250	-0,5263
0,8242	-0,501	0,82189	-0,5004
0,8792	-0,426	0,88196	-0,4182
0,9216	-0,320	0,92248	-0,3238
0,9447	-0,252	0,94224	-0,2612
0,9740	-0,122	0,97701	-0,1174

Apêndice B – Tabelas para o sistema água/acetonitrila/cloreto de lítio

Neste apêndice estão mostrados as tabelas dos resultados experimentais e modelo para o sistema água/acetonitrila/cloreto de lítio para as frações molares de sal entre 0,001 a 0,003 e temperatura de 283,15 a 308,15K.

As tabelas apresentadas a seguir mostram os valores experimentais da fração molar da água (x_A), massas específicas das soluções salinas (ρ), a molalidade do sal (m_s), volume aparente molar (V_{ϕ}), o volume da solução ($V_{Solução}$), volume ideal (V_{ideal}), assim como o volume em excesso experimental (V_{exp}^E) e volume em excesso do modelo ERAS modificado (V_{Modelo}^E), cujo o cálculo foi abordado no item referente ao modelo.

Exp	X _A	ρ	ms	Vφ	V _{solução}	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm ³ mol ¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹
	0.0550	0.500.50	0.0050	50 0 50 1	10	10.00.00		
	0,0576	0,79852	0,0252	53,0704	49,7526	49,8266	-0,074	-0,087
2	0,0789	0,80076	0,0255	52,8878	48,9980	49,1060	-0,108	-0,105
3	0,1052	0,80339	0,0259	52,6383	48,0854	48,2214	-0,136	-0,174
4	0,1738	0,81110	0,0270	52,0479	45,6799	45,9079	-0,228	-0,290
5	0,2214	0,81693	0,0278	51,6482	44,0116	44,3026	-0,291	-0,364
6	0,2547	0,82133	0,0284	51,3985	42,8416	43,1796	-0,338	-0,413
7	0,3019	0,82799	0,0293	51,0356	41,1838	41,5878	-0,404	-0,485
8	0,3952	0,84238	0,0313	50,0930	37,9284	38,4414	-0,513	-0,525
9	0,4312	0,84880	0,0321	49,7276	36,6643	37,2273	-0,563	-0,527
10	0,4682	0,85565	0,0330	49,3073	35,3745	35,9795	-0,605	-0,512
11	0,5086	0,86365	0,0341	48,8110	33,9691	34,6171	-0,648	-0,495
12	0,5370	0,86960	0,0349	48,6269	32,9843	33,6593	-0,675	-0,431
13	0,5742	0,87780	0,0359	47,8605	31,6998	32,4048	-0,705	-0,388
14	0,6035	0,88458	0,0368	46,8611	30,6930	31,4167	-0,723	-0,345
15	0,6312	0,89157	0,0377	46,3927	29,7375	30,4825	-0,745	-0,275
16	0,6516	0,89672	0,0384	46,0343	29,0425	29,7945	-0,752	-0,225
17	0,6778	0,90329	0,0393	45,8605	28,1630	28,9110	-0,748	-0,189
18	0,7023	0,90968	0,0402	45,6653	27,3447	28,0840	-0,740	-0,145
19	0,7613	0,92570	0,0426	45,3900	25,4030	26,0950	-0,692	-0,075
20	0,8120	0,94047	0,0448	44,8426	23,7622	24,3852	-0,623	0,009
21	0,8492	0,95151	0,0466	44,2165	22,5857	23,1307	-0,545	0,065
22	0,8739	0,95870	0,0478	43,8483	21,8227	22,2977	-0,475	0,105
23	0,9183	0,97364	0,0503	43,1819	20,4373	20,8003	-0,363	0,165
24	0,9468	0,98353	0,0520	42,8016	19,5642	19,8392	-0,275	0,195
25	0,9654	0,99190	0,0532	42,4970	18,9669	19,2119	-0,245	0,213
26	0,9735	0,99349	0,0538	42,4651	18,7487	18,9387	-0,190	0,239
27	0,9870	0,99920	0,0547	42,4509	18,3305	18,4835	-0,153	0,263
28	0,9910	1,00055	0,0550	42,6197	18,2440	18,3486	-0,105	0,277

Tabela 4 – Sistema água/acetonitrila/cloreto de lítio para x_S=0,0010 a 283,15K.

	Tabela	<u> </u>	ia agua/a	ccontri na/	cioreto de n	no para xs-	-0,0020 a 20.	J,IJK.
Exp	XA	ρ	ms	Vø	$\mathbf{V}_{solução}$	Videal	V ^L _{exp}	V ^E Modelo
-		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,0579	0,79832	0,0504	53,0113	49,7576	49,8426	-0,085	-0,125
2	0,0787	0,80051	0,0510	52,8292	49,0232	49,1412	-0,118	-0,193
3	0,1052	0,80328	0,0518	52,5680	48,0935	48,2475	-0,154	-0,250
4	0,1736	0,81118	0,0540	51,9504	45,6828	45,9408	-0,258	-0,365
5	0,2214	0,81714	0,0557	51,6027	44,0018	44,3288	-0,327	-0,462
6	0,2546	0,82150	0,0560	51,3341	42,8371	43,2091	-0,372	-0,542
7	0,3012	0,82834	0,0587	50,9430	41,1876	41,6376	-0,450	-0,605
8	0,3270	0,83215	0,0598	50,6733	40,2845	40,7675	-0,483	-0,645
9	0,3956	0,84323	0,0627	50,0120	37,8810	38,4540	-0,573	-0,725
10	0,4310	0,84971	0,0644	49,7170	36,6322	37,2602	-0,628	-0,748
11	0,4682	0,85675	0,0662	49,2859	35,3306	36,0056	-0,675	-0,735
12	0,5084	0,86485	0,0683	48,4841	33,9289	34,6499	-0,721	-0,702
13	0,5346	0,87061	0,0697	47,9504	33,0114	33,7664	-0,755	-0,681
14	0,5744	0,87983	0,0721	47,6373	31,6231	32,4241	-0,801	-0,645
15	0,6043	0,88709	0,0739	46,7037	30,5878	31,4158	-0,828	-0,564
16	0,6318	0,89416	0,0757	46,2047	29,6374	30,4884	-0,851	-0,489
17	0,6511	0,89908	0,0770	45,6402	28,9805	29,8375	-0,857	-0,432
18	0,6733	0,90465	0,0785	45,3253	28,2368	29,0888	-0,852	-0,385
19	0,7019	0,91185	0,0806	44,9330	27,2913	28,1243	-0,833	-0,312
20	0,7613	0,92637	0,0853	44,4016	25,3861	26,1211	-0,735	-0,209
21	0,8121	0,94214	0,0898	44,0246	23,7189	24,4079	-0,689	-0,118
22	0,8499	0,95396	0,0934	43,5279	22,5122	23,1332	-0,621	-0,058
23	0,8722	0,96107	0,0957	43,3384	21,8111	22,3811	-0,570	-0,002
24	0,9171	0,97540	0,1007	43,0463	20,4289	20,8669	-0,438	0,068
25	0,9464	0,98459	0,1043	42,6070	19,5538	19,8788	-0,325	0,105
26	0,9652	0,99207	0,1067	42,4006	18,9698	19,2448	-0,275	0,110
27	0,9815	0,99486	0,1089	42,2024	18,5391	18,6951	-0,156	0,135

Tabela 5– Sistema água/acetonitrila/cloreto de lítio para x_s=0,0020 a 283,15K.

Exp	X _A	ρ	m _s	V¢	V _{solução}	V _{ideal}	V ^E _{exp}	VE Modelo
		g cm ⁻³	mol Kg ⁺	cm [°] mol ⁻¹	cm [°] mol ⁺	cm [*] mol [*]	cm° mol^	cm° mol *
1	0,0579	0,79832	0,0757	52,0038	49,7770	49,8710	-0,094	-0,058
2	0,0787	0,80051	0,0766	51,7964	49,0349	49,1729	-0,138	-0,123
3	0,1052	0,80328	0,0778	51,5072	48,1046	48,2826	-0,178	-0,213
4	0,1736	0,81118	0,0812	50,9482	45,7016	45,9826	-0,281	-0,374
5	0,2214	0,81714	0,0839	50,6629	44,0121	44,3571	-0,345	-0,475
6	0,2546	0,82150	0,0855	50,4103	42,8365	43,2375	-0,401	-0,523
7	0,3012	0,82834	0,0881	50,0019	41,1943	41,6693	-0,475	-0,618
8	0,3270	0,83215	0,0898	49,7385	40,2725	40,7925	-0,520	-0,654
9	0,3956	0,84323	0,0942	49,0870	37,8712	38,489	-0,618	-0,754
10	0,4310	0,84971	0,0967	48,7413	36,6168	37,2818	-0,665	-0,798
11	0,4682	0,85675	0,0995	48,3689	35,3110	36,0340	-0,723	-0,843
12	0,5084	0,86485	0,1026	47,5864	33,9021	34,6851	-0,783	-0,889
13	0,5346	0,87061	0,1048	46,9653	32,9765	33,8015	-0,825	-0,917
14	0,5744	0,87983	0,1082	46,6240	31,5853	32,4593	-0,874	-0,946
15	0,6043	0,88709	0,1110	45,8719	30,5212	31,4442	-0,923	-0,953
16	0,6318	0,89416	0,1137	45,4522	29,5888	30,5168	-0,928	-0,948
17	0,6511	0,89908	0,1157	45,0488	28,9069	29,8389	-0,932	-0,934
18	0,6733	0,90465	0,1180	44,7700	28,1892	29,1172	-0,928	-0,904
19	0,7019	0,91185	0,1211	44,4188	27,2477	28,1527	-0,905	-0,845
20	0,7613	0,92637	0,1282	43,7348	25,2955	26,1495	-0,854	-0,721
21	0,8121	0,94214	0,1349	43,2373	23,6667	24,4397	-0,773	-0,605
22	0,8499	0,95396	0,1405	42,7680	22,4870	23,1750	-0,688	-0,435
23	0,8722	0,96107	0,1439	42,5359	21,7811	22,4061	-0,625	-0,383
24	0,9171	0,97546	0,1515	42,1384	20,4453	20,8953	-0,450	-0,280
25	0,9464	0,98459	0,1568	41,7245	19,5339	19,9139	-0,380	-0,231
26	0,9652	0,99207	0,1604	41,4804	18,9735	19,2765	-0,303	-0,191
27	0,9815	0,99486	0,1637	41,3052	18,4895	18,7235	-0,234	-0,147

Tabela 6 – Sistema água/acetonitrila/cloreto de lítio para x_s=0,0030 a 283,15K.

Tabela 7 – Sistema	água/acetonitrila/cloreto de lítio	para x.=0.0010 a 298.15K.
		put any offered a softeness

Exp	XA	ρ	ms	Vø	V _{solucão}	\mathbf{V}_{ideal}	V ^E _{exp}	V ^E Modelo
· ·		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,0206	0,77657	0,0246	54,4628	52,2558	52,2855	-0,029	-0,070
2	0,0399	0,77838	0,0249	54,3048	51,5636	51,6114	-0,048	-0,136
3	0,0577	0,78006	0,0251	54,1853	50,9266	50,9896	-0,063	-0,177
4	0,0787	0,78220	0,0254	54,0035	50,1685	50,2561	-0,087	-0,220
5	0,0892	0,78328	0,0256	53,9533	49,7904	49,8893	-0,099	-0,239
6	0,1052	0,78494	0,0258	53,8053	49,2154	49,3304	-0,115	-0,266
7	0,1230	0,78686	0,0261	53,6442	48,5747	48,7087	-0,134	-0,292
8	0,1728	0,79279	0,0269	53,2090	46,7641	46,9691	-0,205	-0,347
9	0,1891	0,79481	0,0272	53,1393	46,1728	46,3998	-0,227	-0,359
10	0,2058	0,79694	0,0275	52,9506	45,5664	45,8164	-0,250	-0,369
11	0,2217	0,79913	0,0278	52,8422	44,9830	45,2610	-0,278	-0,376
12	0,2547	0,80363	0,0284	52,5585	43,7853	44,1083	-0,323	-0,382
13	0,2880	0,80847	0,0290	52,1844	42,5742	42,9452	-0,371	-0,379
14	0,3022	0,81055	0,0293	52,0673	42,0611	42,4491	-0,388	-0,375
15	0,3285	0,81442	0,0298	51,8676	41,1175	41,5305	-0,413	-0,362
16	0,3462	0,81713	0,0302	51,6607	40,4822	40,9122	-0,430	-0,351
17	0,3639	0,81988	0,0306	51,5004	39,8489	40,2939	-0,445	-0,338
18	0,3957	0,82505	0,0313	51,1343	38,7112	39,1832	-0,472	-0,331
19	0,4098	0,82740	0,0316	50,9989	38,2086	38,6906	-0,482	-0,308
20	0,4318	0,83144	0,0321	50,7017	37,4132	37,9222	-0,509	-0,292
21	0,4645	0,83736	0,0329	50,2839	36,2489	36,7799	-0,531	-0,266
22	0,4846	0,84116	0,0334	50,1674	35,5348	36,0778	-0,543	-0,223
23	0,5083	0,84581	0,0340	49,9245	34,6940	35,2500	-0,556	-0,222
24	0,5367	0,85167	0,0348	49,2571	33,6870	34,2580	-0,571	-0,192
25	0,5736	0,85968	0,0359	48,8184	32,3840	32,9690	-0,585	-0,154
26	0,5862	0,86266	0,0363	48,7544	31,9359	32,5289	-0,593	-0,153
27	0,6172	0,87018	0,0372	48,1069	30,8391	31,4461	-0,607	-0,142
28	0,6322	0,87399	0,0377	48,0752	30,3091	30,9221	-0,613	-0,105
29	0,6518	0,87915	0,0384	47,7789	29,6175	30,2375	-0,620	-0,072
30	0,6696	0,88402	0,0390	47,3998	28,9907	29,6157	-0,625	-0,038
31	0,6879	0,88892	0,0396	47,2378	28,3565	28,9765	-0,620	-0,009
32	0,7022	0,89287	0,0401	46,9530	27,8620	28,4770	-0,615	0,045
33	0,7255	0,89966	0,0410	46,6298	27,0551	27,6631	-0,608	0,074
34	0,7623	0,91082	0,0425	46,1286	25,7927	26,3777	-0,585	0,112
35	0,7808	0,91677	0,0433	45,827	25,1605	25,7317	-0,571	0,147
36	0,7994	0,92291	0,0441	45,3885	24,5288	25,0818	-0,553	0,181
37	0,8104	0,92652	0,0446	45,1649	24,1595	24,6975	-0,538	0,209
38	0,8361	0,93510	0,0457	44,7034	23,3048	23,7998	-0,495	0,237
39	0,8508	0,93999	0,0466	44,5739	22,8233	23,2863	-0,463	0,252
40	0,8784	0,94966	0,0480	44,0212	21,9213	22,3223	-0,401	0,313
41	0,8931	0,95501	0,0488	43,9111	21,4438	21,8088	-0,365	0,339

	Iabua	0 - Sister	na agua/a	convulti iia/		nio para As	-0,0020 4 270	J,1.J1X.
Exp		ρ	m _s	$V\phi$	V _{solução}	V _{ideal}	V_{exp}^{r}	V ^L Modelo
	X _A	g cm	mol Kg ⁻¹	cm'mol ⁻¹	cm'mol ⁻¹	cm [°] mol ⁻¹	cm [°] mol ⁻¹	cm' mol ⁻¹
1	0,0206	0,77978	0,0492	54,3485	52,0425	52,0765	-0,034	-0,080
2	0,0399	0,78175	0,0498	54,2507	51,3427	51,4067	-0,064	-0,126
3	0,0575	0,78343	0,0503	54,1191	50,7148	50,7958	-0,081	-0,164
4	0,0777	0,78553	0,0509	53,9533	49,9867	50,0947	-0,108	-0,202
5	0,0893	0,78679	0,0512	53,8693	49,5671	49,6921	-0,125	-0,222
6	0,1003	0,78796	0,0516	53,7799	49,1723	49,3103	-0,138	-0,239
7	0,1228	0,79048	0,0523	53,3111	48,3594	48,5294	-0,170	-0,270
8	0,1728	0,79645	0,0539	53,0512	46,5509	46,7939	-0,243	-0,319
9	0,1893	0,79860	0,0545	52,9208	45,9493	46,2213	-0,272	-0,329
10	0,2059	0,80054	0,0550	52,5987	45,3601	45,6451	-0,285	-0,337
11	0,2218	0,80267	0,0556	52,2425	44,7833	45,0933	-0,310	-0,342
12	0,2547	0,80710	0,0568	51,9492	43,5984	43,9514	-0,353	-0,346
13	0,2876	0,81182	0,0580	51,7340	42,4115	42,8095	-0,398	-0,348
14	0,3028	0,81407	0,0586	51,5208	41,8639	42,2819	-0,418	-0,348
15	0,3286	0,81776	0,0597	51,2219	40,9484	41,3864	-0,438	-0,343
16	0,3420	0,82028	0,0602	51,1036	40,4463	40,9213	-0,475	-0,340
17	0,3634	0,82374	0,0611	50,8514	39,6776	40,1786	-0,501	-0,334
18	0,4091	0,83154	0,0632	50,6675	38,0394	38,5924	-0,553	-0,321
19	0,4314	0,83552	0,0642	50,5773	37,2434	37,8184	-0,575	-0,315
20	0,4847	0,84590	0,0669	49,9617	35,3345	35,9685	-0,634	-0,312
21	0,5086	0,85080	0,0681	49,6863	34,4840	35,1390	-0,655	-0,295
22	0,5366	0,85686	0,0697	49,3162	33,4871	34,1671	-0,680	-0,249
23	0,5742	0,86523	0,0718	48,9214	32,1621	32,8621	-0,700	-0,222
24	0,6165	0,87537	0,0744	47,8016	30,6760	31,3940	-0,718	-0,215
25	0,6516	0,88440	0,0760	47,6526	29,4487	30,1757	-0,727	-0,166
26	0,6705	0,88927	0,0781	47,3159	28,7977	29,5197	-0,722	-0,147
27	0,6882	0,89402	0,0793	47,0704	28,1884	28,9054	-0,717	-0,109
28	0,7030	0,89797	0,0804	46,7917	27,6847	28,3917	-0,707	-0,062
29	0,7250	0,90435	0,0821	46,3885	26,9291	27,6281	-0,699	0,042
30	0,7615	0,91529	0,0850	45,8387	25,6883	26,3613	-0,673	0,081
31	0,8093	0,93099	0,0892	45,0713	24,0722	24,7022	-0,630	0,150
32	0,8306	0,93875	0,0912	44,7617	23,3505	23,9630	-0,613	0,186
33	0,8508	0,94591	0,0932	44,5985	22,6819	23,2619	-0,580	0,244
34	0,8784	0,95694	0,0960	44,0395	21,7559	22,3039	-0,548	0,282
35	0,8931	0,96172	0,0976	43,8874	21,2957	21,7937	-0,498	0,339
36	0,9180	0,97232	0,1004	43,4127	20,4735	20,9295	-0,456	0,389
37	0,9482	0,98597	0,1041	42,9971	19,4843	19,8813	-0,397	0,397
38	0,9622	0,98935	0,1058	42,6941	19,0917	19,3954	-0,304	0,404
39	0,9875	0,99887	0,1092	42,4083	18,2583	18,5173	-0,259	0,408
40	0,9906	1,00259	0,1097	42,4082	18,2547	18,4097	-0,155	0,413

Tabela 8 – Sistema água/acetonitrila/cloreto de lítio para x_s=0.0020 a 298,15K.

I	V	~	m	174	V.	V.	VE	VE
Exp	л _а	ρ	m_s	νφ 	V solução	Videal	² exp	V Modelo
	0.0000	<u>g cm</u>	11101 Kg	cm moi				
1	0,0206	0,77999	0,0492	54,3485	52,0285	52,0765	-0,048	-0,129
	0,0399	0,78205	0,0499	54,2507	51,3237	51,4067	-0,083	-0,189
3	0,0575	0,78333	0,0503	54,1191	50,6828	50,7958	-0,113	-0,239
	0,0777	0,78609	0,0509	53,9533	49,9517	50,0947	-0,143	-0,290
5	0,0893	0,78732	0,0512	53,8693	49,5341	49,6921	-0,158	-0,317
6	0,1003	0,78910	0,0516	53,7799	49,1013	49,3103	-0,209	-0,341
7	0,1228	0,79225	0,0523	53,3111	48,2514	48,5294	-0,278	-0,385
8	0,1728	0,79750	0,0539	53,0512	46,4894	46,7939	-0,304	-0,459
9	0,1893	0,79952	0,0545	52,9208	45,8963	46,2213	-0,325	-0,476
10	0,2059	0,80174	0,0550	52,5987	45,2921	45,6451	-0,353	-0,491
11	0,2218	0,80435	0,0556	52,2425	44,6903	45,0933	-0,403	-0,502
12	0,2547	0,80872	0,0568	51,9492	43,5114	43,9514	-0,440	-0,517
13	0,2876	0,81310	0,0580	51,7340	42,3445	42,8095	-0,465	-0,521
14	0,3028	0,81567	0,0586	51,5208	41,7819	42,2819	-0,500	-0,519
15	0,3286	0,81942	0,0597	51,2219	40,8654	41,3864	-0,521	-0,511
16	0,3420	0,82170	0,0602	51,1036	40,3763	40,9213	-0,545	-0,504
17	0,3634	0,82587	0,0611	50,8514	39,5756	40,1786	-0,603	-0,492
18	0,4091	0,83318	0,0632	50,6675	37,9644	38,5924	-0,628	-0,450
19	0,4314	0,83806	0,0642	50,5773	37,1304	37,8184	-0,688	-0,425
20	0,4847	0,84792	0,0669	49,9617	35,2505	35,9685	-0,718	-0,385
$\frac{1}{21}$	0.5086	0,85255	0,0681	49,6863	34,4130	35,1390	-0,726	-0,356
22	0.5366	0,85860	0,0697	49,3162	33,4191	34,1671	-0,748	-0,321
23	0.5742	0,86733	0,0718	48,9214	32,0841	32,8621	-0,778	-0,274
24	0.6165	0,87769	0,0744	47,8016	30,5950	31,3940	-0,799	-0,234
25	0.6516	0.88671	0,0768	47,6526	29,3717	30,1757	-0,804	-0,175
26	0.6705	0,89162	0,0781	47,3159	28,7217	29,5197	-0,798	-0,142
27	0.6882	0,89644	0.0793	47.0704	28,1124	28,9054	-0,793	-0,118
28	0.7030	0.90051	0.0804	46,7917	27,6067	28,3917	-0,785	-0,090
29	0.7250	0.90684	0.0821	46,3885	26.8551	27,6281	-0,773	-0.062
30	0.7615	0.91751	0.0850	45,8387	25.6263	26,3613	-0,735	-0.025
31	0.8093	0.93254	0.0892	45.0713	24.0322	24,7022	-0,670	0,046
32	0.8306	0.93966	0.0919	44,7617	23.3280	23,9630	-0.635	0.078
33	0.8508	0.94678	0.0932	44,5985	22,6609	23.2619	-0.601	0.122
34	0.8784	0.95711	0.0960	44,0395	21,7519	22,3039	-0.552	0.147
35	0.8931	0.96271	0.0976	43,8874	21,2737	21,7937	-0.520	0,192
36	0.9180	0.97265	0.1004	43,4127	20,4665	20,9295	-0,463	0.229
37	0.9482	0.98425	0.1041	42,9971	19,5183	19.8813	-0.363	0.264
38	0.9622	0.98984	0.1058	42,6941	19.0824	19.3954	-0.313	0,280
30	0.9875	1.00012	0.1092	42,4083	18,3033	18.5173	-0.214	0.302
40	0,9906	1,00063	0,1097	42,4082	18,2227	18,4097	-0,187	0,315

Tabela 9 – Sistema água/acetonitrila/cloreto de lítio para x_s=0,0030 a 298,15K.

Tabela 9.1– Comparação entre os dados do volume em excesso para sistema água/acetonitrila/cloreto de lítio deste trabalho com os mesmos sistemas fornecidos por Morrone (1998) a 298,15K.

	para x _s	s =0,001		para x _S =0,002				
XS XA	=0,001 V_{exp}^{E}	X _A	V ^E _{Morrone} cm ³ mol ⁻¹	X _A X _S	=0,002 V_{exp}^{E}	X _A	V ^E Morrone cm ³ mol ⁻¹	
0.0577	-0.063	0.0576	-0.064	0.0575	-0.081	0.0523	-0.041	
0,0377	-0.087	0.0786	-0.113	0.0777	-0.108	0.0695	-0.064	
0.1052	-0.115	0.1052	-0.141	0.1003	-0.138	0.1101	-0.116	
0,1728	-0.205	0,1743	-0.228	0.1728	-0.243	0.1501	-0.182	
0,1891	-0.227			0.1893	-0.272	0.1843	-0.261	
0.2058	-0,250			0.2059	-0.285	0.2036	-0.300	
0.2217	-0,278	0,2212	-0,295	0.2218	-0.310	0.2178	-0.325	
0,2547	-0,323	0,2553	-0,332	0.2547	-0.353	0.2501	-0.373	
0,3022	-0,388	0,3024	-0,387	0.3028	-0.418			
0,3285	-0,413	0,3286	-0,409	0.3286	-0.438	0.3243	-0.470	
0,3462	-0,430	0,3464	-0,427	0.3420	-0.475			
0,3639	-0,445			0.3634	-0.501	0.3663	-0.517	
0,4318	-0,509	0,4314	-0,510	0.4314	-0.575			
0,5083	-0,556	0,5087	-0,560	0.5086	-0.655	0.5006	-0.662	
0,5367	-0,571	0,5370	-0,580	0.5366	-0.680			
0,5736	-0,585	0,5744	-0,591	0.5742	-0.700	0.5789	-0.698	
0,6172	-0,607			0.6165	-0.718			
0,6518	-0,620	0,6510	-0,621	0.6516	-0.727	0.6457	-0.680	
0,6696	-0,625			0.6705	-0.722	0.6748	-0.667	
0,6879	-0,620	0,6889	-0,609	0.6882	-0.717			
0,7022	-0,615	0,7023	-0,607	0.7030	-0.707	0.7160	-0.647	
0,7623	-0,585	0,7619	-0,587	0.7615	-0.673	0.7511	-0.631	
0,8104	-0,538	0,8117	-0,565	0.8093	-0.630	0.7970	-0.609	
0,8508	-0,463	0,8497	-0,520	0.8508	-0.580	0.8481	-0.561	
0,8784	-0,401	0,8739	-0,490	0.8784	-0.548			
0,8931	-0,365			0.8931	-0.498	0.8989	-0.495	
0,9180	-0,310	0,9179	-0,394	0.9180	-0.456			
0,9482	-0,238	0,9480	-0,251	0.9482	-0.397	0.6458	-0.318	

Tabela 9.2– Comparação entre os dados do volume em excesso para o sistema água/acetonitrila/cloreto de lítio deste trabalho com os mesmos sistemas fornecidos por Morrone (1998) a 298,15K. Para xs=0.003

X _A	V_{exp}^{E}	X _A	V ^E Morrone
	cm' mol ⁻¹		cm ³ mol ⁻¹
0,0575	-0,113	0,0575	-0,030
0,0777	-0,143	0,0785	-0,067
0,1003	-0,209	0,1050	-0,090
0,1228	-0,278	0,1278	-0,123
0,1728	-0,304	0,1740	-0,188
0,2059	-0,353	0,2042	-0,231
0,2218	-0,403	0,2208	-0,248
0,2547	-0,440	0,2548	-0,300
0,2876	-0,465	0,2842	-0,334
0,3028	-0,500	0,3015	-0,389
0,3286	-0,521	0,3279	-0,437
0,3420	-0,545	0,3457	-0,466
0,3634	-0,603	0,3634	-0,484
0,4091	-0,628	0,3951	-0,560
0,4314	-0,688	0,4303	-0,597
0,4847	-0,718	0,4802	-0,697
0,6165	-0,799	0,6151	-0,713
0,6516	-0,804	0,6497	-0,714
0,7030	-0,785	0,7064	-0,700
0,7615	-0,735	0,7605	-0,655
0,8093	-0,670	0,8102	-0,624
0,8508	-0,601	0,8480	-0,581
0,8784	-0,552	0,8723	-0,545
0,8931	-0,520	0,8982	-0,509
0,9180	-0,463	0,9160	-0,453
0,9482	-0,363	0,9460	-0,374

109

Exp	XA	ρ	ms	Vφ	V _{solução}	Videal	VEexp	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,0252	0,76999	0,0247	55,1135	52,7015	52,7355	-0,034	-0,038
2	0,0504	0,77135	0,0251	54,8198	51,7784	51,8414	-0,063	-0,057
3	0,0893	0,77413	0,0257	54,6153	50,3763	50,4613	-0,085	-0,085
4	0,1008	0,77844	0,0258	54,3143	49,9383	50,0533	-0,115	-0,109
5	0,1381	0,78165	0,0264	54,0112	48,5770	48,7300	-0,153	-0,132
6	0,1894	0,78855	0,0273	53,7155	46,7079	46,9099	-0,202	-0,165
7	0,2266	0,79221	0,0279	53,3302	45,3401	45,5901	-0,250	-0,200
8	0,2671	0,79886	0,0287	52,9459	43,8543	44,1533	-0,299	-0,222
9	0,3079	0,80338	0,0295	52,7069	42,3628	42,7058	-0,343	-0,259
10	0,3287	0,80682	0,0299	52,3707	41,6018	41,9678	-0,366	-0,277
11	0,3614	0,81294	0,0306	51,8887	40,4087	40,8077	-0,399	-0,288
12	0,4003	0,81933	0,0315	51,4564	38,9946	39,4276	-0,433	-0,291
13	0,4274	0,82320	0,0321	51,2180	38,0031	38,4661	-0,463	-0,289
14	0,4879	0,83503	0,0336	50,5158	35,8067	36,3197	-0,513	-0,283
15	0,5113	0,83998	0,0342	50,1272	34,9595	35,4895	-0,530	-0,270
16	0,5418	0,84842	0,0351	49,6769	33,8594	34,4074	-0,548	-0,258
17	0,5950	0,85885	0,0366	49,2070	31,9360	32,5200	-0,584	-0,224
18	0,6218	0,86663	0,0375	48,6171	30,9701	31,5691	-0,599	-0,207
19	0,6471	0,87225	0,0383	48,2632	30,0645	30,6715	-0,607	-0,185
20	0,6817	0,88076	0,0395	47,7891	28,8350	29,4440	-0,609	-0,142
21	0,7028	0,88571	0,0403	47,4302	28,0914	28,6954	-0,604	-0,119
22	0,7258	0,89263	0,0412	47,0427	27,2884	27,8794	-0,591	-0,097
23	0,7630	0,90889	0,0427	46,3040	26,0096	26,5596	-0,550	-0,068
24	0,7984	0,91870	0,0442	45,7848	24,8087	25,3037	-0,495	-0,051
25	0,8363	0,92936	0,0460	45,1863	23,5261	23,9591	-0,433	-0,034
26	0,8782	0,94861	0,0481	44,4994	22,1235	22,4725	-0,349	-0,010
27	0,9005	0,95702	0,0493	44,0876	21,3774	21,6814	-0,304	0,014
28	0,9200	0,96779	0,0505	43,1937	20,7285	20,9895	-0,261	0,036
29	0,9442	0,97196	0,0519	42,9261	19,9290	20,1310	-0,202	0,056
30	0,9742	0,98817	0,0539	42,7560	18,9296	19,0666	-0,137	0,079

Tabela 10 – Sistema água/acetonitrila/cloreto de lítio para x_s=0,0010 a 308,15K.

Fyn	X.		m.	Va	V···	Viait	VE	VE
тър	214	g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,0250	0,77084	0,0495	55,1050	52,7196	52,7706	-0,051	-0,108
2	0,0503	0,77325	0,0502	54,8045	51,7880	51,8730	-0,085	-0,153
3	0,0894	0,77506	0,0514	54,6089	50,3788	50,4858	-0,107	-0,178
4	0,1006	0,77932	0,0517	54,3209	49,9475	50,0885	-0,141	-0,205
5	0,1382	0,78343	0,0529	53,9928	48,5695	48,7545	-0,185	-0,229
6	0,1895	0,78981	0,0546	53,7017	46,6955	46,9345	-0,239	-0,275
7	0,2266	0,79409	0,0559	53,3103	45,3352	45,6182	-0,283	-0,323
8	0,2670	0,79972	0,0574	52,9506	43,8519	44,1849	-0,333	-0,348
9	0,3080	0,80465	0,0590	52,6974	42,3493	42,7303	-0,381	-0,366
10	0,3286	0,80886	0,0599	52,3463	41,5944	41,9994	-0,405	-0,376
11	0,4001	0,82078	0,0630	51,4706	38,9737	39,4627	-0,489	-0,377
12	0,4274	0,82794	0,0643	51,1616	37,9712	38,4942	-0,523	-0,368
13	0,4878	0,83857	0,0673	50,4875	35,7723	36,3513	-0,579	-0,339
14	0,5112	0,84267	0,0685	50,1290	34,9131	35,5211	-0,608	-0,319
15	0,5419	0,85181	0,0702	49,6800	33,7939	34,4319	-0,638	-0,303
16	0,5951	0,86080	0,0734	49,2187	31,8715	32,5445	-0,673	-0,256
17	0,6218	0,86995	0,0751	48,6282	30,9092	31,5972	-0,688	-0,231
18	0,6470	0,87786	0,0767	48,2467	30,0022	30,7032	-0,701	-0,205
19	0,6817	0,88258	0,0792	47,8224	28,7631	29,4721	-0,709	-0,179
20	0,7028	0,88869	0,0807	47,4547	28,0185	28,7235	-0,705	-0,167
21	0,7258	0,89567	0,0825	47,0786	27,2095	27,9075	-0,698	-0,145
22	0,7631	0,90995	0,0855	46,3695	25,9391	26,5841	-0,645	-0,124
23	0,7982	0,92875	0,0886	45,7570	24,7579	25,3389	-0,581	-0,111
24	0,8361	0,93194	0,0921	45,2215	23,4912	23,9942	-0,503	-0,086
25	0,8782	0,94692	0,0964	44,5537	22,0876	22,5006	-0,413	-0,056
26	0,9007	0,95959	0,0989	44,0744	21,3418	21,7023	-0,361	-0,043
27	0,9202	0,96966	0,1012	43,2818	20,6995	21,0105	-0,311	-0,023
28	0,9441	0,97865	0,1041	42,9141	19,9086	20,1626	-0,254	0,001
29	0,9743	0,98996	0,1080	42,7173	18,9321	19,0911	-0,159	0,006

Tabela 11 – Sistema água/acetonitrila/cloreto de lítio para x_s=0,0020 a 308.15K.

Exp	X	ρ	m,	Vo	Vsolucão	Videal	V ^E evn	V ^E Modelo
	- 4	g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹	$cm^3 mol^{-1}$	cm ³ mol ⁻¹
1	0,0249	0,77286	0,0743	54,9973	52,7353	52,8117	-0,076	-0,093
2	0,0505	0,77679	0,0754	54,6344	51,7923	51,9033	-0,111	-0,125
3	0,0892	0,77845	0,0772	54,3634	50,3926	50,5301	-0,137	-0,172
4	0,1010	0,78146	0,0777	54,1666	49,9424	50,1114	-0,169	-0,184
5	0,1382	0,78671	0,0795	53,4832	48,5734	48,7914	-0,218	-0,233
6	0,1893	0,79121	0,0820	53,5604	46,7002	46,9782	-0,278	-0,271
7	0,2265	0,79608	0,0840	53,1736	45,3362	45,6582	-0,322	-0,308
8	0,2658	0,80208	0,0862	52,7401	43,8907	44,2637	-0,373	-0,343
9	0,3082	0,80566	0,0887	52,4553	42,3272	42,7592	-0,432	-0,367
10	0,3281	0,81264	0,0899	52,1586	41,5693	42,0531	-0,483	-0,384
11	0,4008	0,82290	0,0946	51,2946	38,9265	39,4735	-0,547	-0,393
12	0,4270	0,83153	0,0965	50,9609	37,9628	38,5438	-0,581	-0,394
13	0,4875	0,84095	0,1010	50,3201	35,7431	36,3971	-0,654	-0,381
14	0,5115	0,84796	0,1029	49,9131	34,8635	35,5455	-0,682	-0,369
15	0,5421	0,85563	0,1055	49,4424	33,7447	34,4597	-0,715	-0,342
16	0,5950	0,86884	0,1102	48,9661	31,8206	32,5826	-0,762	-0,309
17	0,6219	0,87262	0,1128	48,4421	30,8451	31,6281	-0,783	-0,295
18	0,6472	0,87969	0,1153	48,0662	29,9374	30,7304	-0,793	-0,271
19	0,6818	0,88601	0,1189	47,6444	28,7007	29,5027	-0,802	-0,249
20	0,7028	0,89223	0,1213	47,2976	27,9575	28,7575	-0,800	-0,237
21	0,7256	0,89899	0,1239	46,9322	27,1635	27,9485	-0,785	-0,221
22	0,7632	0,91019	0,1285	46,2655	25,8533	26,6143	-0,761	-0,199
23	0,7982	0,92999	0,1331	45,5716	24,6504	25,3724	-0,722	-0,172
24	0,8360	0,93241	0,1384	45,0930	23,3871	24,0311	-0,644	-0,145
25	0,8781	0,97979	0,1449	44,5391	22,0143	22,5373	-0,523	-0,115
26	0,9006	0,96368	0,1486	43,9546	21,2849	21,7389	-0,454	-0,096
27	0,9202	0,97141	0,1521	43,2387	20,6484	21,0434	-0,395	-0,067
28	0,9444	0,98114	0,1565	42,8972	19,8627	20,1847	-0,322	-0,047
29	0,9742	0,99146	0,1623	42,7195	18,9433	19,1273	-0,184	-0,025

abela 12 – Sistema água/acetonitrila/cloreto de lítio para x = 0.0030 a 308.15K.

Apêndice C - Tabelas para o sistema água/acetonitrila/cloreto de sódio

Este apêndice mostra as tabelas dos resultados experimentais e modelo para o sistema água/acetonitrila/cloreto de sódio para as frações molares de sal entre 0,001 a 0,003 e temperatura de 283,15 a 308,15K.

As tabelas apresentadas a seguir mostram os valores experimentais da fração molar da água (x_A), massas específicas das soluções salinas (ρ), a molalidade do sal (m_s), volume aparente molar (V_{ϕ}), o volume da solução ($V_{Solução}$), volume ideal (V_{ideal}), assim como o volume em excesso experimental (V_{exp}^E) e volume em excesso do modelo ERAS modificado (V_{Modelo}^E), cujo o cálculo foi abordado no item referente ao modelo.

Exp	X _A	ρ	ms	Vø	V _{solução}	Videal	V ^E _{exp}	V ^E Modelo
•		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,4088	0,84374	0,0317	69,0387	37,5150	38,0180	-0,503	-1,029
2	0,4280	0,84712	0,0321	68,6097	36,8432	37,3702	-0,527	-0,974
3	0,4495	0,85103	0,0326	68,2264	36,0919	36,6449	-0,553	-0,906
4	0,4858	0,85804	0,0335	67,5535	34,8222	35,4202	-0,598	-0,830
5	0,5061	0,86219	0,0341	67,3909	34,1123	34,7353	-0,623	-0,775
6	0,5234	0,86611	0,0345	67,3559	33,4976	34,1516	-0,654	-0,695
7	0,5475	0,87157	0,0352	66,8763	32,6505	33,3385	-0,688	-0,622
8	0,5819	0,88001	0,0362	66,3216	31,4370	32,1780	-0,741	-0,572
9	0,6040	0,88564	0,0369	66,1570	30,6624	31,4324	-0,772	-0,512
10	0,6230	0,89041	0,0375	65,5348	30,0063	30,7913	-0,785	-0,482
11	0,6390	0,89446	0,0380	64,2048	29,4585	30,2515	-0,793	-0,412
12	0,6584	0,89942	0,0387	63,1465	28,7990	29,5970	-0,798	-0,365
13	0,6932	0,90842	0,0399	62,7401	27,6309	28,4229	-0,792	-0,295
14	0,7205	0,91545	0,0410	62,1267	26,7319	27,5019	-0,770	-0,243
15	0,7525	0,92372	0,0422	61,7590	25,6943	26,4223	-0,728	-0,165
16	0,7853	0,93240	0,0436	61,4932	24,6447	25,3157	-0,671	-0,102
17	0,8018	0,93700	0,0444	61,1783	24,1180	24,7590	-0,641	-0,086
18	0,8206	0,94194	0,0452	60,8454	23,5317	24,1247	-0,593	-0,045
19	0,8432	0,94841	0,0463	60,5204	22,8223	23,3623	-0,540	0,002
20	0,8646	0,95496	0,0474	59,8461	22,1493	22,6403	-0,491	0,023
21	0,9013	0,96678	0,0494	59,4398	21,0041	21,4021	-0,398	0,092
22	0,9225	0,97438	0,0506	59,1246	20,3388	20,6868	-0,348	0,124
23	0,9442	0,98211	0,0519	58,8491	19,6697	19,9547	-0,285	0,168
24	0,9624	0,98957	0,0531	58,5100	19,0977	19,3407	-0,243	0,182
25	0,9827	0,99816	0,0544	58,1486	18,4648	18,6558	-0,191	0,232
26	0,9906	1,00135	0,0550	58,0063	18,2243	18,3893	-0,165	0,237

Tabela 13– Sistema água/acetonitrila/	cloreto de sódio para x _s =0,0010 a 283,15K.

Tubera II Sisteria again actionation action action para As 0,0000 a 200,10								
Exp	X _A	ρ.	m _s	Vø	V _{solução}	Videal	V ^E exp	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,4088	0,84349	0,0634	69,0778	37,5466	38,0726	-0,526	-1,262
2	0,4281	0,84706	0,0643	68,7384	36,8635	37,42146	-0,558	-1,207
3	0,4497	0,85120	0,0653	68,2848	36,0997	36,69272	-0,593	-1,139
4	0,4858	0,85850	0,0672	67,6602	34,8238	35,47479	-0,651	-1,006
5	0,5061	0,86288	0,0682	67,5481	34,1049	34,78991	-0,685	-0,985
6	0,5234	0,86672	0,0692	67,3782	33,4942	34,20624	-0,712	-0,923
7	0,5475	0,87238	0,0705	66,6741	32,6402	33,39316	-0,753	-0,848
8	0,5832	0,88116	0,0726	66,2360	31,3817	32,18872	-0,807	-0,735
9	0,6051	0,88695	0,0740	65,8172	30,6079	31,44986	-0,842	-0,675
10	0,6225	0,89148	0,0751	64,4478	30,0028	30,86282	-0,860	-0,570
11	0,6421	0,89658	0,0764	64,2140	29,3286	30,20156	-0,873	-0,486
12	0,6584	0,90085	0,0775	63,4874	28,7726	29,65163	-0,879	-0,442
13	0,6937	0,91000	0,0800	62,9316	27,5897	28,46068	-0,871	-0,365
14	0,7208	0,91696	0,0821	62,4203	26,6994	27,54639	-0,847	-0,298
15	0,7525	0,92553	0,0846	61,9410	25,6629	26,47690	-0,814	-0,221
16	0,7853	0,93422	0,0874	61,6319	24,6153	25,3703	-0,755	-0,135
17	0,8016	0,93872	0,0889	61,2453	24,0974	24,82037	-0,723	-0,102
18	0,8208	0,94417	0,0907	60,9350	23,4896	24,17260	-0,683	-0,056
19	0,8436	0,95072	0,0929	60,5413	22,7754	23,40338	-0,628	-0,025
20	0,8646	0,95693	0,0950	59,9645	22,1219	22,69488	-0,573	-0,002
21	0,9015	0,97058	0,0990	59,1261	20,9350	21,44996	-0,515	0,065
22	0,9223	0,97573	0,1014	58,8208	20,3332	20,74821	-0,415	0,125
24	0,9625	0,99040	0,1064	58,1846	19,0969	19,39195	-0,295	0,145
25	0,9824	0,99782	0,1091	57,8747	18,4956	18,72056	-0,225	0,178
26	0,9912	1,00141	0,1103	57,6795	18,2267	18,42367	-0,197	0,225

Tabela 14– Sistema água/acetonitrila/cloreto de sódio para x_s=0,0020 a 283,15K.

Sec.

Exp	X _A	ρ	m _s	Vφ	Vsolução	Videal	V ^E exp	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm [°] mol ⁻¹	cm [°] mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹
1	0,8015	0,94235	0,1335	61,1838	24,0254	24,8294	-0,804	-0,804
2	0,8211	0,94790	0,1363	60,8350	23,4082	24,1682	-0,760	-0,760
3	0,8438	0,95497	0,1396	60,4166	22,6873	23,4023	-0,715	-0,715
4	0,8646	0,96147	0,1428	59,8884	22,0356	22,7006	-0,665	-0,665
5	0,9016	0,97305	0,1488	59,1380	20,8973	21,4523	-0,555	-0,555
6	0,9224	0,97940	0,1524	58,7878	20,2725	20,7505	-0,478	-0,478
7	0,9447	0,98703	0,1565	58,4340	19,5952	19,9982	-0,403	-0,403
8	0,9625	0,99362	0,1600	58,1470	19,0527	19,3977	-0,345	-0,345
9	0,9821	1,00087	0,1639	57,8377	18,4634	18,7364	-0,273	-0,273
10	0,9912	1,00393	0,1658	57,6324	18,1984	18,4294	-0,231	-0,231

Tabela 15 – Sistema água/acetonitrila/cloreto de sódio para x_s=0,0030 a 283,15K.

Tabela 16 - Sistema água/acetonitrila/cloreto de sódio para x_s=0,0010 a 298,15K.

Exp	X _A	ρ.	m _s	Vø	Vsolução	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm'mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹
1	0,4098	0,82926	0,0317	70,1812	38,1424	38,6344	-0,492	-0,875
2	0,4291	0,83254	0,0321	69,9513	37,4577	37,9637	-0,506	-0,857
3	0,4499	0,83622	0,0326	69,6149	36,7198	37,2408	-0,521	-0,832
4	0,4862	0,84310	0,0335	68,9854	35,4283	35,9793	-0,551	-0,778
5	0,5082	0,84761	0,0341	68,7494	34,6418	35,2148	-0,573	-0,740
6	0,5235	0,85084	0,0345	68,5486	34,0960	34,6830	-0,587	-0,711
7	0,5477	0,85611	0,0352	68,1806	33,2350	33,8420	-0,607	-0,664
8	0,5826	0,86432	0,0362	66,8194	31,9892	32,6292	-0,640	-0,612
9	0,6032	0,86934	0,0369	66,2639	31,2583	31,9133	-0,655	-0,571
10	0,6244	0,87458	0,0376	65,8683	30,5125	31,1765	-0,664	-0,523
11	0,6422	0,87937	0,0381	65,5046	29,8799	30,5579	-0,678	-0,485
12	0,6579	0,88355	0,0387	65,2857	29,3293	30,0123	-0,683	-0,453
13	0,6934	0,89302	0,0399	64,6325	28,1026	28,7786	-0,676	-0,394
14	0,7205	0,90060	0,0410	64,2379	27,1728	27,8368	-0,664	-0,342
15	0,7524	0,90924	0,0422	63,7057	26,1061	26,7281	-0,622	-0,287
16	0,7857	0,91996	0,0436	63,2452	24,9679	25,5709	-0,603	-0,237
17	0,8015	0,92502	0,0444	62,2918	24,4378	25,0218	-0,584	-0,201
18	0,8248	0,93357	0,0454	61,9027	23,6390	24,2120	-0,573	-0,167
19	0,8432	0,93824	0,0463	61,4132	23,0696	23,5726	-0,503	-0,142
20	0,8652	0,94589	0,0474	60,8302	22,3470	22,8080	-0,461	-0,107
21	0,9016	0,96010	0,0494	60,2787	21,1430	21,5430	-0,400	-0,065
22	0,9234	0,96914	0,0507	59,8584	20,4274	20,7854	-0,358	-0,042
23	0,9446	0,97886	0,0519	59,2693	19,7257	20,0487	-0,323	-0,021
24	0,9914	1,00254	0,0550	58,1471	18,1842	18,4222	-0,238	-0,003

Exp	XA	ρ.	ms	Vø	Vsolução	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm ⁵ mol ⁻¹			
1	0,4096	0,82904	0,0633	70,2995	38,1790	38,6950	-0,516	-0,976
2	0,4290	0,83242	0,0642	69,8276	37,4868	38,0208	-0,534	-0,957
3	0,4497	0,83644	0,0652	69,6526	36,7364	37,3014	-0,565	-0,933
4	0,4862	0,84367	0,0671	69,0733	35,4250	36,0330	-0,608	-0,878
5	0,5060	0,84786	0,0681	68,5642	34,7119	35,3449	-0,633	-0,844
6	0,5236	0,85173	0,0691	66,0587	34,0782	34,7332	-0,655	-0,802
7	0,5476	0,85719	0,0704	67,9339	33,2161	33,8991	-0,683	-0,762
8	0,5831	0,86576	0,0725	66,7262	31,9424	32,6654	-0,723	-0,725
9	0,6036	0,87095	0,0738	65,4227	31,2100	31,9530	-0,743	-0,675
10	0,6244	0,87651	0,0751	65,9777	30,4651	31,2301	-0,765	-0,643
11	0,5417	0,85851	0,0701	66,4318	33,3232	34,1042	-0,781	-0,597
12	0,6578	0,88564	0,0773	65,2681	29,2824	30,0694	-0,787	-0,564
13	0,6933	0,89521	0,0799	64,6720	28,0557	28,8357	-0,780	-0,505
14	0,7205	0,90281	0,0819	64,2848	27,1254	27,8904	-0,765	-0,448
15	0,7525	0,91229	0,0845	63,6857	26,0353	26,7783	-0,743	-0,389
16	0,7857	0,92304	0,0873	63,0985	24,9035	25,6245	-0,721	-0,325
17	0,8017	0,92654	0,0887	62,3353	24,4115	25,0685	-0,657	-0,297
18	0,8200	0,93226	0,0904	61,8086	23,8095	24,4325	-0,623	-0,256
19	0,8432	0,93982	0,0927	61,4168	23,0492	23,6262	-0,577	-0,215
20	0,8652	0,94766	0,0949	60,8840	22,3237	22,8617	-0,538	-0,172
21	0,9013	0,96142	0,0988	60,2793	21,1391	21,6071	-0,468	-0,132
22	0,9440	0,97933	0,1038	58,9229	19,7482	20,1232	-0,375	-0,088
23	0,9910	1,00144	0,1100	58,0098	18,2308	18,4898	-0,259	-0,067

Tabela 17– Sistema água/acetonitrila/cloreto de sódio para x_s=0,0020 a 298,15K.

Tabela 18 – Sistema água/acetonitrila/cloreto de sódio para x_s=0,0030 a 298,15K.

Exp	X _A	ρ,	m _s	Vφ	Vsolução	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm'mol	cm ³ mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹
1	0,8017	0,92905	0,1336	62,2815	24,3644	25,0934	-0,729	-0,785
2	0,8212	0,93524	0,1363	61,7479	23,7227	24,4157	-0,693	-0,747
3	0,8430	0,94258	0,1395	61,3653	23,0051	23,6581	-0,653	-0,685
4	0,8652	0,95019	0,1429	60,8252	22,2826	22,8866	-0,604	-0,623
5	0,9014	0,96394	0,1488	60,0968	21,0996	21,6286	-0,529	-0,542
6	0,9235	0,97325	0,1526	59,6629	20,3745	20,8605	-0,486	-0,462
7	0,9442	0,98236	0,1564	58,8321	19,7002	20,1412	-0,441	-0,421
8	0,9623	0,99040	0,1599	58,4712	19,1191	19,5121	-0,393	-0,374
9	0,9832	1,00040	0,1641	58,2062	18,4468	18,7858	-0,339	-0,308
10	0,9911	1,00378	0,1658	57,9502	18,2032	18,5112	-0,308	-0,283

Exp	X _A	ρ	m _s	Vφ	V _{solução}	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,4090	0,81774	0,0317	71,0257	38,7021	39,1471	-0,445	-0,674
2	0,4491	0,82523	0,0326	70,5136	37,2314	37,7244	-0,493	-0,659
3	0,4857	0,83251	0,0335	69,5072	35,8929	36,4259	-0,533	-0,636
4	0,5064	0,83676	0,0341	69,2822	35,1406	35,6916	-0,551	-0,621
5	0,5227	0,84024	0,0345	69,0474	34,5483	35,1133	-0,565	-0,606
6	0,5480	0,84583	0,0352	68,6085	33,6307	34,2157	-0,585	-0,581
7	0,5827	0,85390	0,0362	68,1696	32,3766	32,9846	-0,608	-0,543
8	0,6049	0,85933	0,0369	67,7849	31,5771	32,1971	-0,620	-0,517
9	0,6219	0,86375	0,0375	67,2516	30,9619	31,5939	-0,632	-0,494
10	0,6404	0,86865	0,0381	66,4171	30,2966	30,9376	-0,641	-0,469
11	0,6575	0,87339	0,0387	65,7895	29,6809	30,3309	-0,650	-0,445
12	0,6813	0,88023	0,0395	65,0447	28,8276	29,4866	-0,659	-0,421
13	0,7193	0,89126	0,0409	64,6442	27,4885	28,1385	-0,650	-0,401
14	0,7525	0,90109	0,0422	63,8974	26,3396	26,9606	-0,621	-0,375
15	0,7850	0,91088	0,0436	63,2515	25,2346	25,8076	-0,573	-0,354
16	0,8002	0,91566	0,0443	62,9160	24,7203	25,2683	-0,548	-0,302
17	0,8199	0,92233	0,0452	62,6137	24,0494	24,5694	-0,520	-0,294
18	0,8442	0,9308	0,0464	61,9274	23,2293	23,7073	-0,478	-0,276
19	0,8639	0,93782	0,0474	61,3621	22,5714	23,0084	-0,437	-0,255
20	0,9005	0,95220	0,0493	60,3643	21,3450	21,7100	-0,365	-0,237
21	0,9425	0,97130	0,0518	59,4430	19,9289	20,2199	-0,291	-0,205
22	0,9615	0,98038	0,0530	58,9809	19,2979	19,5459	-0,248	-0,173
23	0,9813	0,99102	0,0544	58,5737	18,6095	18,8115	-0,202	-0,156

Tabela 19 – Sistema água/acetonitrila/cloreto de sódio para x _s =0,001	0 a 308,15K.
---	--------------

Exp	XA	ρ,	m _s	Vø	$V_{solução}$	Videal	V ^E _{exp}	V^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm'mol	cm [°] mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹
1	0,4090	0,81826	0,0634	71,0250	38,6985	39,2065	-0,508	-0,729
2	0,4491	0,82588	0,0653	70,5515	37,2229	37,7839	-0,561	-0,714
3	0,4857	0,83324	0,0672	69,6296	35,8824	36,4854	-0,603	-0,692
4	0,5064	0,83770	0,0682	69,4706	35,1221	35,7511	-0,629	-0,677
5	0,5227	0,84134	0,0691	69,0618	34,5238	35,1728	-0,649	-0,662
6	0,5480	0,84709	0,0706	68,6046	33,6012	34,2752	-0,674	-0,637
7	0,5827	0,85564	0,0726	68,0705	32,3311	33,0441	-0,713	-0,599
8	0,6049	0,86134	0,0740	67,6937	31,5235	32,2565	-0,733	-0,572
9	0,6219	0,86572	0,0751	67,1570	30,9114	31,6534	-0,742	-0,549
10	0,6405	0,87070	0,0763	66,0790	30,2426	30,9936	-0,751	-0,525
11	0,6574	0,87535	0,0774	65,7081	29,6370	30,3940	-0,757	-0,501
12	0,6819	0,88206	0,0792	65,0999	28,7718	29,5248	-0,753	-0,480
13	0,7198	0,89255	0,0820	64,5191	27,4552	28,1802	-0,725	-0,466
14	0,7525	0,90194	0,0846	63,9111	26,3341	27,0201	-0,686	-0,409
15	0,7850	0,91166	0,0874	63,2761	25,2321	25,8671	-0,635	-0,381
16	0,8002	0,91624	0,0887	62,8905	24,7238	25,3278	-0,604	-0,355
17	0,8199	0,92262	0,0906	62,5996	24,0609	24,6289	-0,568	-0,336
18	0,8442	0,93076	0,0929	61,9244	23,2488	23,7668	-0,518	-0,313
19	0,8639	0,93790	0,0949	61,3627	22,5879	23,0679	-0,480	-0,302
20	0,9001	0,95199	0,0988	60,1435	21,3777	21,7837	-0,406	-0,282
21	0,9217	0,96133	0,1013	59,7621	20,6523	21,0173	-0,365	-0,261
22	0,9427	0,97095	0,1039	59,1754	19,9493	20,2723	-0,323	-0,230
23	0,9616	0,98000	0,1063	58,9505	19,3208	19,6018	-0,281	-0,203
24	0,9822	0,99065	0,1090	58,3521	18,6340	18,8710	-0,237	-0,171
25	0,9918	0,99543	0,1104	58,1692	18,3224	18,5304	-0,208	-0,141

Tabela 20 – Sistema água/acetonitrila/cloreto de sódio para x_s=0,0020 a 308,15K.

Tabela 21 – Sistema água/acetonitrila/cloreto de sódio para x_s=0,0030 a 308,15K.

Exp	X _A	ρ	m _s	Vø	V _{solução}	Videal	V ^E exp	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm'mol ⁻¹	cm'mol ⁻¹	cm' mol ⁻¹	cm ³ mol ⁻¹
1	0,8005	0,91877	0,1334	62,8349	24,6671	25,3701	-0,703	-0,756
2	0,8199	0,92457	0,1361	62,5210	24,0289	24,6819	-0,653	-0,712
3	0,8442	0,93328	0,1397	61,8669	23,2048	23,8198	-0,615	-0,652
4	0,8639	0,94055	0,1427	61,3504	22,5429	23,1209	-0,578	-0,615
5	0,9001	0,95423	0,1486	60,2119	21,3456	21,8366	-0,491	-0,534
6	0,9216	0,96338	0,1523	59,7505	20,6288	21,0738	-0,445	-0,475
7	0,9427	0,97266	0,1562	59,2019	19,9322	20,3252	-0,393	-0,412
8	0,9616	0,98126	0,1598	58,8717	19,3137	19,6547	-0,341	-0,352
9	0,9822	0,99132	0,1639	58,3565	18,6389	18,9239	-0,285	-0,275
10	0,9918	0,99595	0,1659	58,1437	18,3303	18,5833	-0,253	-0,239

Apêndice D - Tabelas para o sistema água/acetonitrila/cloreto de potássio

Este apêndice mostra as tabelas dos resultados experimentais e modelo para o sistema água/acetonitrila/cloreto de potássio para as frações molares de sal entre 0,001 a 0,003 e temperatura de 283,15 a 308,15K.

As tabelas apresentadas a seguir mostram os valores experimentais da fração molar da água (x_A), massas específicas das soluções salinas (ρ), a molalidade do sal (m_s), volume aparente molar (V_{ϕ}), o volume da solução ($V_{Solução}$), volume ideal (V_{ideal}), assim como o volume em excesso experimental (V_{exp}^E) e volume em excesso do modelo ERAS modificado (V_{Modelo}^E), cujo o cálculo foi abordado no item referente ao modelo.

14		Sistenia "Bau actionity in control of potumoso para its offort a positive						
Exp		ρ	ms	Vφ	$\mathbf{V}_{solução}$	Videal	V ^E exp	V ^E Modelo
-		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,4087	0,84414	0,0316	87,6995	37,5188	38,0458	-0,527	-1,134
2	0,4491	0,85178	0,0326	87,3127	36,0898	36,6828	-0,593	-1,105
3	0,4859	0,85923	0,0335	86,1575	34,7902	35,4412	-0,651	-1,057
4	0,5063	0,86347	0,0341	85,9475	34,0750	34,7530	-0,678	-1,019
5	0,5234	0,86717	0,0345	85,5286	33,4751	34,1761	-0,701	-1,005
6	0,5481	0,87274	0,0352	84,8586	32,6098	33,3428	-0,733	-0,975
7	0,5830	0,88100	0,0363	84,1516	31,3913	32,1653	-0,774	-0,945
8	0,6050	0,88649	0,0369	83,3225	30,6251	31,4231	-0,798	-0,915
9	0,6219	0,89074	0,0375	81,8865	30,0419	30,8529	-0,811	-0,883
10	0,6409	0,89569	0,0381	81,4221	29,3869	30,2119	-0,825	-0,856
11	0,6506	0,89821	0,0384	80,4700	29,0556	29,8846	-0,829	-0,835
12	0,6940	0,90935	0,0400	79,8928	27,6004	28,4204	-0,820	-0,753
13	0,7210	0,91632	0,0410	79,1860	26,7115	27,5095	-0,798	-0,702
14	0,7524	0,92531	0,0422	78,6537	25,6701	26,4501	-0,780	-0,632
15	0,7852	0,93255	0,0436	78,4076	24,6605	25,3435	-0,683	-0,568
16	0,8001	0,93651	0,0443	77,9292	24,1898	24,8408	-0,651	-0,502
17	0,8206	0,94221	0,0452	77,4600	23,5422	24,1492	-0,607	-0,456
18	0,8435	0,94896	0,0463	77,0646	22,8186	23,3766	-0,558	-0,398
19	0,8640	0,95542	0,0474	76,2116	22,1700	22,6850	-0,515	-0,326
20	0,9021	0,96840	0,0494	75,5151	20,9666	21,3996	-0,433	-0,245
21	0,9222	0,97554	0,0506	75,3729	20,3384	20,7214	-0,383	-0,185
22	0,9431	0,98349	0,0519	74,7863	19,6843	20,0163	-0,332	-0,123
23	0,9825	0,99998	0,0544	74,0194	18,4520	18,6870	-0,235	-0,045

Tabela 22– Sistema água/acetonitrila/cloreto de potássio para x.=0.0010 a 283.15K.

Exp	XA	ρ	ms	Vø	V _{solução}	Videal	V ^E _{exp}	V ^E Modelo
-		g cm ⁻³	mol Kg ⁻¹	ст ³ тоГ ¹	cm ³ mol ⁻¹			
1	0,4087	0,84381	0,0634	87,5391	37,5733	38,1263	-0,553	-1,168
2	0,4491	0,85180	0,0653	87,1194	36,1283	36,7633	-0,635	-1,127
3	0,4859	0,85948	0,0672	86,3660	34,8188	35,5218	-0,703	-1,086
4	0,5064	0,86405	0,0682	86,0162	34,0881	34,8301	-0,742	-1,035
5	0,5233	0,86796	0,0692	85,6125	33,4860	34,2600	-0,774	-1,014
6	0,5480	0,87394	0,0706	84,9148	32,6056	33,4266	-0,821	-0,983
7	0,5832	0,88243	0,0726	84,1415	31,3731	32,2391	-0,866	-0,964
8	0,6049	0,88807	0,0740	83,3328	30,6110	31,5070	-0,896	-0,936
9	0,6224	0,89243	0,0751	82,1191	30,0095	30,9165	-0,907	-0,905
10	0,6403	0,89716	0,0763	81,5011	29,3916	30,3126	-0,921	-0,878
11	0,6578	0,90168	0,0775	80,8343	28,7972	29,7222	-0,925	-0,856
12	0,6940	0,91120	0,0801	80,0648	27,5809	28,5009	-0,920	-0,773
13	0,7204	0,91807	0,0821	79,5221	26,7122	27,6102	-0,898	-0,741
14	0,7520	0,92636	0,0846	78,9910	25,6871	26,5441	-0,857	-0,653
15	0,7851	0,93545	0,0874	78,3530	24,6224	25,4274	-0,805	-0,588
16	0,8010	0,93975	0,0888	78,0757	24,1200	24,8910	-0,771	-0,522
17	0,8208	0,94493	0,0907	77,6162	23,5050	24,2230	-0,718	-0,476
18	0,8437	0,95149	0,0929	77,1410	22,7884	23,4504	-0,662	-0,412
19	0,8639	0,95786	0,0949	76,4654	22,1509	22,7689	-0,618	-0,356
20	0,9002	0,96891	0,0989	75,7632	21,0352	21,5442	-0,509	-0,246
21	0,9430	0,98462	0,1039	74,8850	19,6982	20,1002	-0,402	-0,205
22	0,9617	0,99184	0,1063	74,4112	19,1203	19,4693	-0,349	-0,143
23	0,9825	1,00003	0,1091	73,9438	18,4845	18,7675	-0,283	-0,098

Tabela 23- Sistema água/acetonitrila/cloreto de potássio para x_s=0,0020 a 283,15K.

Tabela 24– Sistema água/acetonitrila/cloreto de potássio para x_s=0,0030 a 283,15K.

Exp	X _A	ρ	ms	Vø	$\mathbf{V}_{solução}$	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,8001	0,94655	0,1333	77,3370	24,0039	24,8909	-0,887	-0,933
2	0,8212	0,95248	0,1363	76,9263	23,3440	24,1790	-0,835	-0,871
3	0,8435	0,95887	0,1396	76,4322	22,6527	23,4267	-0,774	-0,804
4	0,8641	0,96514	0,1427	75,9816	22,0137	22,7317	-0,718	-0,745
5	0,9010	0,97628	0,1487	75,3378	20,8918	21,4868	-0,595	-0,635
6	0,9222	0,98356	0,1524	75,0086	20,2406	20,7716	-0,531	-0,548
7	0,9430	0,99076	0,1562	74,6557	19,6099	20,0699	-0,460	-0,476
8	0,9617	0,99747	0,1598	74,2961	19,0460	19,4390	-0,393	-0,368
9	0,9824	1,00550	0,1640	73,7278	18,4196	18,7406	-0,321	-0,259
10	0,9911	1,0085	0,1658	73,4767	18,1661	18,4471	-0,281	-0,186

	\$7			* 7 1	X7	X 7	TTE	x7E
Exp	XA	ρ	m _s	V¢	V solução	Videal	V ⁻ exp	V Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm [°] mol ⁻¹	cm [°] mol ⁻¹	cm [°] mol ⁻¹	cm ³ mol ⁻¹
1	0,4097	0,82980	0,0317	89,2231	38,1395	38,6515	-0,512	-0,982
2	0,4291	0,83328	0,0321	88,9338	37,4438	37,9778	-0,534	-0,963
3	0,4499	0,83731	0,0326	88,8162	36,6915	37,2555	-0,564	-0,939
4	0,4855	0,84459	0,0335	88,0695	35,4042	36,0192	-0,615	-0,886
5	0,5082	0,84690	0,0341	87,6932	34,6899	35,2309	-0,541	-0,846
6	0,5243	0,85283	0,0346	86,8430	34,0138	34,6718	-0,658	-0,815
7	0,5468	0,85788	0,0352	85,9200	33,2095	33,8905	-0,681	-0,767
8	0,6038	0,87151	0,0369	85,1666	31,1830	31,9110	-0,728	-0,654
9	0,6239	0,87665	0,0375	83,7358	30,4720	31,2130	-0,741	-0,612
10	0,6458	0,88244	0,0383	82,8738	29,7005	30,4525	-0,752	-0,552
11	0,6587	0,88594	0,0387	82,4447	29,2475	30,0045	-0,757	-0,511
12	0,6923	0,89506	0,0399	82,0443	28,0847	28,8377	-0,753	-0,442
13	0,7209	0,90319	0,0410	81,5272	27,1025	27,8445	-0,742	-0,375
14	0,7531	0,91213	0,0423	80,8103	26,0233	26,7263	-0,703	-0,308
15	0,7853	0,92108	0,0436	79,6177	24,9650	25,6080	-0,643	-0,245
16	0,8038	0,92644	0,0445	79,3016	24,3606	24,9656	-0,605	-0,198
17	0,8250	0,93223	0,0454	78,6949	23,6854	24,2294	-0,544	-0,154
18	0,8657	0,94538	0,0475	77,6774	22,3640	22,8160	-0,452	-0,104
19	0,9015	0,95812	0,0494	76,6881	21,2058	21,5728	-0,367	-0,035
20	0,9234	0,96710	0,0507	75,9759	20,4872	20,8122	-0,325	-0,015
21	0,9442	0,97548	0,0519	75,2917	19,8199	20,0899	-0,270	0,025
22	0,9632	0,98423	0,0531	74,8748	19,1991	19,4301	-0,231	0,075
23	0,9822	0,99318	0,0544	74,2038	18,5853	18,7703	-0,185	0,123
24	0,9876	0,99600	0,0548	74,1006	18,4078	18,5828	-0,175	0,154

Tabela 25– Sistema água/acetonitrila/cloreto de potássio para x_s=0,0010 a 298,15K.

Exp	X _A	ρ	ms	Vø	V _{solução}	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	ст ³ тоГ ¹	cm ³ mol ⁻¹			
1	0,4097	0,82976	0,2518	89,6057	38,1820	38,7160	-0,534	-0,983
2	0,4291	0,83356	0,2536	89,0881	37,4716	38,0426	-0,571	-0,961
3	0,4497	0,83782	0,2556	88,4432	36,7145	37,3275	-0,613	-0,948
4	0,4855	0,84545	0,2591	87,5765	35,4078	36,0848	-0,677	-0,896
5	0,5082	0,85047	0,2614	87,0114	34,5838	35,2968	-0,713	-0,873
6	0,5243	0,85411	0,2631	86,6503	34,0019	34,7379	-0,736	-0,841
7	0,5470	0,85930	0,2655	85,9812	33,1879	33,9499	-0,762	-0,808
8	0,5826	0,86842	0,2694	84,8516	31,8951	32,7141	-0,819	-0,753
9	0,6043	0,87376	0,2719	84,1925	31,1279	31,9609	-0,833	-0,712
10	0,6235	0,87885	0,2742	83,6681	30,4444	31,2944	-0,850	-0,685
11	0,6423	0,88365	0,2764	83,1799	29,7888	30,6418	-0,853	-0,648
12	0,6585	0,88782	0,2784	82,7506	29,2284	30,0794	-0,851	-0,612
13	0,6927	0,89696	0,2828	81,9216	28,0522	28,8922	-0,840	-0,556
14	0,7207	0,90460	0,2865	81,1733	27,1023	27,9203	-0,818	-0,502
15	0,7529	0,91352	0,2910	80,3275	26,0255	26,8025	-0,777	-0,456
16	0,7859	0,92376	0,2957	79,4429	24,9140	25,6570	-0,743	-0,369
17	0,8025	0,92794	0,2983	78,9745	24,3897	25,0807	-0,691	-0,343
18	0,8248	0,93490	0,3017	78,3476	23,6586	24,3066	-0,648	-0,299
19	0,8432	0,93997	0,3047	77,9489	23,0799	23,6679	-0,588	-0,274
20	0,8652	0,94540	0,3083	77,4249	22,4112	22,9042	-0,493	-0,248
21	0,9013	0,95964	0,3146	76,3111	21,2121	21,6511	-0,439	-0,155
22	0,9184	0,96455	0,3177	75,9178	20,6955	21,0575	-0,362	-0,110
23	0,9632	0,98177	0,3263	74,6776	19,2813	19,5023	-0,221	-0,052
24	0,9876	0,99422	0,3313	73,9094	18,4743	18,6553	-0,181	-0,021

Tabela 26- Sistema água/acetonitrila/cloreto de potássio para x_s=0,0020 a 298,15K.

Tabela 27- Sistema água/acetonitrila/cloreto de potássio para x_s=0,0030 a 298,15K.

Exp	X _A	ρ_	ms	Vø	V _{solução}	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,8025	0,93039	0,1337	78,5028	24,3614	25,1744	-0,813	-0,707
2	0,8248	0,93752	0,1368	77,9598	23,6280	24,3990	-0,771	-0,690
3	0,8432	0,94333	0,1395	77,4828	23,0333	23,7593	-0,726	-0,606
4	0,8652	0,95075	0,1429	76,9330	22,3203	22,9943	-0,674	-0,570
5	0,9013	0,96353	0,1488	76,0475	21,1611	21,7391	-0,578	-0,514
6	0,9184	0,96982	0,1517	75,6415	20,6175	21,1445	-0,527	-0,453
7	0,9445	0,97970	0,1565	75,0986	19,7960	20,2370	-0,441	-0,362
8	0,9624	0,98659	0,1599	74,5699	19,2396	19,6146	-0,375	-0,319
9	0,9831	0,99489	0,1641	73,9472	18,5999	18,8949	-0,295	-0,285
10	0,9910	0,99725	0,1658	73,7614	18,3732	18,6202	-0,247	-0,245

Exp	X _A	ρ	ms	V¢	V _{solução}	Videal	VEexp	V ^E Modelo
*		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,4093	0,81801	0,0317	90,3330	38,7005	39,1675	-0,467	-0,732
2	0,4491	0,82533	0,0326	89,6998	37,2464	37,7554	-0,509	-0,707
3	0,4858	0,83277	0,0335	88,4882	35,8984	36,4534	-0,555	-0,684
4	0,5064	0,83710	0,0341	88,0804	35,1455	35,7225	-0,577	-0,664
5	0,5227	0,84070	0,0345	87,7914	34,5482	35,1442	-0,596	-0,654
6	0,5481	0,84663	0,0352	87,1354	33,6151	34,2431	-0,628	-0,628
7	0,5827	0,85509	0,0362	86,5360	32,3505	33,0155	-0,665	-0,586
8	0,6019	0,86005	0,0368	86,0009	31,6494	32,3344	-0,685	-0,563
9	0,6184	0,86428	0,0374	85,3727	31,0550	31,7490	-0,694	-0,546
10	0,6371	0,86922	0,0380	83,9731	30,3825	31,0855	-0,703	-0,527
11	0,6575	0,87474	0,0387	83,4283	29,6538	30,3618	-0,708	-0,497
12	0,6816	0,88130	0,0395	82,6862	28,8027	29,5067	-0,704	-0,475
13	0,7191	0,89211	0,0409	81,9413	27,4853	28,1763	-0,691	-0,431
14	0,7528	0,90212	0,0422	81,2350	26,3197	26,9807	-0,661	-0,391
15	0,7855	0,91222	0,0436	80,3446	25,2025	25,8205	-0,618	-0,354
16	0,7992	0,91665	0,0442	79,8561	24,7365	25,3345	-0,598	-0,335
17	0,8202	0,92368	0,0452	79,4813	24,0245	24,5895	-0,565	-0,315
18	0,8415	0,93122	0,0462	78,6352	23,3028	23,8338	-0,531	-0,284
19	0,8619	0,93884	0,0473	77,9513	22,6130	23,1100	-0,497	-0,265
20	0,9008	0,95456	0,0494	76,2374	21,3019	21,7299	-0,428	-0,234
21	0,9427	0,97425	0,0518	75,0862	19,8804	20,2434	-0,363	-0,216
22	0,9820	0,99408	0,0544	74,1325	18,5731	18,8491	-0,276	-0,192
23	0,9916	0,99953	0,0550	73,9415	18,2505	18,5085	-0,258	-0,165

Tabela 28– Sistema água/acetonitrila/cloreto de potássio para x_s=0,0010 a 308,15K.

Exp	X _A	ρ	ms	Vφ	V _{solução}	Videal	V ^E exp	V ^E Modelo
_		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹				
1	0,4092	0,81829	0,0634	90,4172	38,7311	39,2501	-0,519	-0,847
2	0,4493	0,82604	0,0653	89,7388	37,2494	37,8274	-0,578	-0,833
3	0,4858	0,83368	0,0672	88,6310	35,8994	36,5324	-0,633	-0,811
4	0,5062	0,83823	0,0682	88,1800	35,1437	35,8087	-0,665	-0,794
5	0,5226	0,84197	0,0691	87,9013	34,5388	35,2268	-0,688	-0,783
6	0,5480	0,84801	0,0706	87,1668	33,6027	34,3257	-0,723	-0,763
7	0,5826	0,85655	0,0726	86,4306	32,3371	33,0981	-0,761	-0,727
8	0,6019	0,86166	0,0738	85,9099	31,6294	32,4134	-0,784	-0,705
9	0,6183	0,86616	0,0748	85,3425	31,0286	31,8316	-0,803	-0,685
10	0,6370	0,87113	0,0761	84,1107	30,3571	31,1681	-0,811	-0,653
11	0,6575	0,87672	0,0774	83,5914	29,6248	30,4408	-0,816	-0,631
12	0,6815	0,88336	0,0791	82,9356	28,7763	29,5893	-0,813	-0,602
13	0,7192	0,89405	0,0820	82,0795	27,4608	28,2518	-0,791	-0,546
14	0,7529	0,90398	0,0847	81,3339	26,3002	27,0562	-0,756	-0,486
15	0,7855	0,91384	0,0874	80,4858	25,1946	25,8996	-0,705	-0,432
16	0,8003	0,91865	0,0888	79,9757	24,6915	25,3745	-0,683	-0,408
17	0,8202	0,92518	0,0906	79,5011	24,0215	24,6685	-0,647	-0,386
18	0,8415	0,93258	0,0927	78,7469	23,3048	_23,9128	-0,608	-0,354
19	0,8618	0,94019	0,0947	78,0791	22,6186	23,1926	-0,574	-0,321
20	0,9008	0,95536	0,0989	76,5831	21,3190	21,8090	-0,490	-0,263
21	0,9419	0,97356	0,1038	75,3268	19,9478	20,3508	-0,403	-0,234
24	0,9821	0,99370	0,1090	74,1920	18,6116	18,9246	-0,313	-0,214
23	0,9915	0,99845	0,1103	74,0121	18,3061	18,5911	-0,285	-0,192

Tabela 29– Sistema água/acetonitrila/cloreto de potássio para x_s=0,0020 a 308,15K.

Tabela 30- Sistema água/acetonitrila/cloreto de potássio para x_s=0,0030 a 308,15K.

Exp	X _A	ρ	ms	Vø	V _{solução}	Videal	V ^E _{exp}	V ^E Modelo
		g cm ⁻³	mol Kg ⁻¹	cm ³ mol ⁻¹	cm'mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹	cm ³ mol ⁻¹
1	0,8003	0,92170	0,1334	79,8913	24,6460	25,4700	-0,824	-0,886
2	0,8202	0,92822	0,1362	79,4437	23,9790	24,7640	-0,785	-0,823
3	0,8415	0,93540	0,1393	78,6679	23,2703	24,0083	-0,738	-0,765
4	0,8618	0,94241	0,1423	78,0439	22,6011	23,2881	-0,687	-0,708
5	0,9008	0,95669	0,1487	76,6928	21,3244	21,9044	-0,580	-0,586
6	0,9218	0,96505	0,1523	76,0697	20,6384	21,1594	-0,521	-0,502
7	0,9419	0,97337	0,1560	75,4979	19,9863	20,4463	-0,460	-0,426
8	0,9620	0,98235	0,1599	75,0074	19,3322	19,7332	-0,401	-0,356
9	0,9821	0,99228	0,1639	74,2733	18,6720	19,0200	-0,348	-0,284
10	0,9915	0,99656	0,1659	74,0082	18,3745	18,6865	-0,312	-0,243

Apêndice E – Exemplo de cálculo para o modelo ERAS

I) Exemplo de Cálculo para o Modelo ERAS

Sistema água(A)-acetonitrila(B) a 298,15K

Dados para fração molar da água, acetonitrila, temperatura e pressão.

x _A =0,0206	x _B =0,9794
T=298,15K	$P=0,1 (J \text{ cm}^{-3})$

O volume dos componentes puros foi obtido pela relação entre massa molar e densidade

$$V_A = PM_A / \rho_A = 18,012/0,99705 = 18,07 \text{ (cm}^3 \text{ mol}^{-1})$$

 $V_B = PM_B / \rho_B = 41,054/0,77701 = 52,78 \text{ (cm}^3 \text{ mol}^{-1})$

Cálculo do volume característico

$$V_{i}^{*} = V_{i} \left[\frac{1 + (\alpha_{i} - \alpha_{i}^{*})\Gamma}{1 + \frac{4}{3}(\alpha_{i} - \alpha_{i}^{*})\Gamma} \right]^{3}$$

Volume característico da água:

$$V_{A}^{*}=18,07[(1+(2,572.10^{-4}-1,188.10^{-4})298,15)/(1+4/3(2,572.10^{-4}-1,188.10^{-4})298,15]^{3}$$

 $V_{A}^{*}=17,37 \text{ (cm}^{3} \text{ mol}^{-1})$

Volume característico da acetonitrila:

$$V_B^* = 52,78[(1+13,68.10^4 298,15)/(1+4/3(13,68.10^4)298,15]^3$$

 $V_B^* = 40,03 \text{ (cm}^3 \text{ mol}^{-1})$

Cálculo do volume reduzido para os componentes:

$$\widetilde{V}_{A} = \frac{V_{A}}{V_{A}^{*}} = 18,07/17,37 = 1,0403$$

$$\widetilde{V}_{B} = \frac{V_{B}}{V_{B}^{*}} = 52,78/40,03 = 1,3185$$

Cálculo da Temperatura característica:

$$\mathbf{T}_{i}^{*} = \left(\frac{\widetilde{\mathbf{V}}_{i}^{4/3}}{\widetilde{\mathbf{V}}_{i}^{1/3} - 1}\right) \mathbf{T}$$

para a água

 $\mathbf{T_A}^* = (1,0403^{4/3} / (1,0403^{1/3} - 1)) .298,15 = 23706,85 \mathbf{K}$

Para acetonitrila

$$\mathbf{T_B}^* = (1,3185^{4/3}/(1,3185^{1/3} - 1)) .298,15 = 4464,87 \mathrm{K}$$

Cálculo da pressão característica:

$$p_{i}^{*} = \left(\!\alpha_{i} - \alpha_{i}^{*}\right)\!T\widetilde{V}_{i}^{2}\!\left(\beta_{Ti} \!-\! \alpha_{i}^{*}T\frac{\Delta V_{i}^{*}}{\Delta h_{i}^{*}}\right)^{\!-\!1}$$

para água

 $p_A^* = (2,572.10^{-4}-1,188.10^{-4})298,15.1,0403^2(4,53.10^{-10}-1,188.10^{-4}298.15(-5,60/2560010^6)^{-1},$ em que o valor da pressão característica é dado em Pa, transformando para (J cm⁻³) e resolvendo a equação, tem-se:

$$p_{A}^{*}=100,30 (J \text{ cm}^{-3})$$

para acetonitrila

$$p_{A}^{*} = 13,68.10^{-4} 298,15^{*}1,3185^{2} (10,70.10^{-10} - 0)^{-1}$$

em que o valor de α^* da acetonitrila é zero, o valor da pressão característica é dado em Pa, transformando para (J cm⁻³) e resolvendo a equação, tem-se:

$$p_{B}^{*}=662,67 (J \text{ cm}^{-3})$$

A constante de associação KA foi obtida pela equação de vant'Hoff

$$\mathbf{K}_{A} = \mathbf{K}_{A0} \mathbf{e}^{\left(\frac{-\Delta \mathbf{h}_{A}^{*}}{R} \left(\frac{1}{T} - T_{0}\right)\right)}$$

 $1036 = K_{A(298,15)} \exp(-(-25600/8,314)(1/323,15 - 1/298,15))$ $K_{A(298,15)} = 2303,30$ em que os valores de K_A e T foram obtidos de **(Nath e Bender, 1981)** Os parâmetros cruzados K_{AB} , $\chi_{AB} e \Delta v_{AB}$ foram obtido através do método de otimização de Nelder-Mead, e os valores são:

$$K_{AB}=1579,33$$
 $\chi_{AB}=12,01 (J \text{ cm}^{-3})$ $\Delta v_{AB}=-10,96 (\text{cm}^{3} \text{ mol}^{-1})$

Cálculo das frações volumétricas

$$\Phi_{A} = \frac{x_{A}V_{A}^{*}}{x_{A}V_{A}^{*} + x_{B}V_{B}^{*}} = 0,0206*17,37 / (0,0206*17,37 + 0,9794*40,03) = 0,00904$$

$$\Phi_{\rm B} = \frac{{\rm x}_{\rm B}{\rm V}_{\rm B}^*}{{\rm x}_{\rm B}{\rm V}_{\rm B}^* + {\rm x}_{\rm A}{\rm V}_{\rm A}^*} = 0,9794*40,03 / (0,0206*17,37+0,9794*40,03) = 0,99096$$

As frações volumétricas dos monômeros $\phi_{A1} e \phi_{B1}$ foram obtidas pela resolução simultânea das expressões abaixo:

$$\Phi_{A} = \frac{\phi_{A1}}{(1 - K_{A}\phi_{A1})^{2}} \left[1 + \frac{V_{A}K_{AB}\phi_{B1}}{V_{B}} \right]$$

$$\Phi_{\rm B} = \phi_{\rm B1} \Biggl[1 + \frac{K_{\rm AB} \phi_{\rm A1}}{\left(1 - K_{\rm A} \phi_{\rm A1}\right)} \Biggr]$$

em que os valores são:

$$\phi_{A1} = 1,604.10^{-5} \qquad \qquad \phi_{B1} = 0,9656$$

para o monômero puro ϕ°_{A1} foi obtido fazendo $\Phi_A = 1$ e $\Phi_B = 0$ para o componente A, e o valor encontrado foi:

$$\varphi^{\circ}_{A1} = 4,251.10^{-4}$$

Cálculo da fração superficial do componente B.

$$S_{A}=18,90 \text{ nm}$$
 $S_{B}=15,19 \text{ nm}$

$$\theta_{\rm B} = 1 - \theta_{\rm A} = \frac{\left(\frac{S_{\rm B}}{S_{\rm A}}\right) \Phi_{\rm B}}{\left(\frac{S_{\rm B}}{S_{\rm A}}\right) \Phi_{\rm B} + \Phi_{\rm A}} = \frac{\frac{15,19}{18,90} \, 0,9656}{\left(\frac{15,19}{18,90} \, 0,9656 + 0,00904\right)} = 0,9885$$

Cálculo das grandezas características e reduzidas da solução.

Cálculo da pressão característica

Cálculo da temperatura característica

$$T^{*} = \frac{p^{*}}{\Phi_{A}p_{A}^{*}T_{A}^{*-1} + \Phi_{B}p_{B}^{*}T_{B}^{*-1}}$$

$$T^{*} = 640,70 / (0,00904*100,3/23706,85 + 0.9656*662,70/4464,87)$$

$$T^{*} = 4469,24K$$

$$\widetilde{T} = T / T^{*} = 298,15/4469,24 = 6,336*10^{-2}$$

O volume reduzido da solução foi obtido pela equação de Flory

$$\frac{\widetilde{p}\widetilde{V}}{\widetilde{T}} = \frac{\widetilde{V}^{1/3}}{\widetilde{V}^{1/3} - 1} - \frac{1}{\widetilde{V}\widetilde{T}}$$

resolvendo a equação tem-se

Cálculo da contribuições física para o volume em excesso

$$V_{f}^{E} = \left(x_{A}V_{A}^{*} + x_{B}V_{B}^{*}\right)\left(\widetilde{V} - \Phi_{A}\widetilde{V}_{A} - \Phi_{B}\widetilde{V}_{B}\right)$$

$$V_{f}^{E} = (0,0206^{*}17,37 + 0,9794^{*}40,03).(1,3179 - 0,00904^{*}1,0403 - 0,99096^{*}1,3185)$$

$$V_{f}^{E} = 0,075 \text{ (cm}^{3} \text{ mol}^{-1})$$

Ũ=1,3179

Cálculo da contribuições química para o volume em excesso

$$V_{q}^{E} = X_{A}K_{A}\Delta V_{A}^{*}\widetilde{V}(\varphi_{A1} - \varphi_{A1}^{0}) + X_{A}K_{AB}\Delta V_{AB}^{*}\widetilde{V}\left(\frac{\varphi_{B1}(1 - K_{A}\varphi_{A1})}{\left(\frac{V_{B}}{V_{A}} + K_{AB}\varphi_{B1}\right)}\right)$$

 $V_{q}^{E} = 0,0206*2303,3*(-5,60)*1,3179*(1,604.10^{-5} - 4,251.10^{-4}) + 0,0206*1579,33*(10,60)*1,3179*0,9656*(1-2303,3*1,604.10^{-5}) / (52,78/18,07 + 1579,33*0,9656)$

$$V_q^E = -0,1427 \text{ (cm}^3 \text{ mol}^{-1}\text{)}$$
Somando as contribuições física e química, tem-se:

 $V_{ERAS}^{E} = -0,068 \ (cm^{3} \ mol^{-1})$

Volume em excesso experimental é igual a:

 V^{E}_{Exp} = -0,087 (cm³ mol⁻¹)

II) Exemplo de Cálculo para o Modelo ERAS modificado

Sistema água(A)-acetonitrila(B)-cloreto de lítio a 298,15K

Dados para fração molar da água, acetonitrila, temperatura e pressão.

$$x_A=0,0206$$
 $x_B=0,9784$ $x_s=0,0010$
T=298,15K P=0,1 (J cm⁻³)

O volume dos componentes puros foi obtido pela relação entre massa molar e densidade

$$V_{A}=PM_{A}/\rho_{A}=18,012/0,99705=18,07 \text{ (cm}^{3} \text{ mol}^{-1})$$
$$V_{B}=PM_{B}/\rho_{B}=41,054/0,77701=52,78 \text{ (cm}^{3} \text{ mol}^{-1})$$
$$V_{S}=PM_{S}/\rho_{S}=42,394/1,75472=24,16 \text{ (cm}^{3} \text{ mol}^{-1})$$

Cálculo do volume característico

$$\mathbf{V}_{i}^{\star} = \mathbf{V}_{i} \left[\frac{1 + \left(\alpha_{i} - \alpha_{i}^{\star}\right)\Gamma}{1 + \frac{4}{3}\left(\alpha_{i} - \alpha_{i}^{\star}\right)\Gamma} \right]^{3}$$

Volume característico da água:

 $V_{A}^{*}=18,07[(1+(2,572.10^{-4}-1,188.10^{-4})298,15)/(1+4/3(2,572.10^{-4}-1,188.10^{-4})298,15]^{3}$ $V_{A}^{*}=17,37 \text{ (cm}^{3} \text{ mol}^{-1})$

Volume característico da acetonitrila:

 $V_{B}^{*}=52,78[(1+13,68.10^{-4}298,15)/(1+4/3(13,68.10^{-4})298,15]^{3}$ $V_{B}^{*}=40,03 \text{ (cm}^{3} \text{ mol}^{-1})$

Volume característico do sal:

 $V_{s}^{*}=24,16[(1+0,2572.10^{-4}298,15)/(1+4/3(0,2572.10^{-4})298,15]^{3}$ $V_{s}^{*}=23,98 \text{ (cm}^{3} \text{ mol}^{-1})$

> UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANT

Cálculo do volume reduzido para os componentes:

132

$$\widetilde{V}_{A} = \frac{V_{A}}{V_{A}^{*}} = 18,07/17,37 = 1,0403$$
$$\widetilde{V}_{B} = \frac{V_{B}}{V_{B}^{*}} = 52,78/40,03 = 1,3185$$
$$\widetilde{V}_{S} = \frac{V_{S}}{V_{S}^{*}} = 24,16/23,98 = 1,0075$$

Cálculo da Temperatura característica:

 $T_i^* = \left(\frac{\widetilde{V}_i^{4/3}}{\widetilde{V}_i^{1/3} - 1}\right) T$

para a água

$$\mathbf{T_A}^* = (1,0403^{4/3} / (1,0403^{1/3} - 1)) .298,15 = 23706,85 \mathrm{K}$$

Para acetonitrila

$$\mathbf{T_B}^* = (1,3185^{4/3}/(1,3185^{1/3}-1)).298,15 = 4464,87K$$

Cálculo da pressão característica:

$$\boldsymbol{p}_{i}^{*}=\left(\boldsymbol{\alpha}_{i}-\boldsymbol{\alpha}_{i}^{*}\right)\!T\widetilde{\boldsymbol{V}}_{i}^{2}\!\left(\boldsymbol{\beta}_{Ti}\!-\!\boldsymbol{\alpha}_{i}^{*}T\frac{\Delta\boldsymbol{V}_{i}^{*}}{\Delta\boldsymbol{h}_{i}^{*}}\right)^{\!-\!1}$$

para água

 $p_A^* = (2,572.10^{-4}-1,188.10^{-4})298,151,0403^2(4,53.10^{-10}-1,188.10^{-4}298.15(-5,60/2560010^6)^{-1},$ em que o valor da pressão característica é dado em Pa, transformando para (J cm⁻³) e resolvendo a equação, tem-se:

$$p_{A}^{*}=100,30 (J \text{ cm}^{-3})$$

para acetonitrila

 $p_{A}^{*} = 13,68.10^{-4}298,151,3185^{2} (10,70.10^{-10} - 0)^{-1}$

em que o valor de α^* da acetonitrila é zero, o valor da pressão característica é dado em Pa, transformando para (J cm⁻³) e resolvendo a equação, tem-se:

 $p_{B}^{*}=662,67 \text{ (J cm}^{-3})$

UNICAMP BIBLIOTECA CENTRA SEÇÃO CIRCULANT A constante de associação KA foi obtida pela equação de vant'Hoff

$$\mathbf{K}_{A} = \mathbf{K}_{A0} \mathbf{e}^{\left(\frac{-\Delta \mathbf{h}_{A}}{R} * \left(\frac{1}{T} - \mathbf{T}_{0}\right)\right)}$$

 $1036 = K_{A(298,15)} * \exp(-(-25600/8,314)*(1/323,15 - 1/298,15))$ $K_{A(298,15)} = 2303,30$ em que os valores K_A e T foram obtidos de **(Nath e Bender, 1981)**

Os parâmetros cruzados K_{AB} , χ_{AB} e Δv_{AB} e os parâmetros de Hepler A_{HA}, B_{HA}, A_{HC}, B_{HC} foram obtido através do método de otimização de Nelder-Mead, e os valores são:

 K_{AB} =1945,653 χ_{AB} =8,99 (J cm⁻³) Δv_{AB} =-9,62(cm³ mol⁻¹) AH_A =6,76 BH_A =18,07 AH_C =5,96 BH_C =4,79

Cálculo das frações volumétricas

$$\Phi_{A} = \frac{X_{A}V_{A}^{*}}{X_{A}V_{A}^{*} + X_{B}V_{B}^{*} + X_{S}V_{S}^{*}} = 0,0206*17,37 / (0,0206*17,37 + 0,9794*40,03) = 0,00904$$

$$\Phi_{\rm B} = \frac{{\rm x}_{\rm B}{\rm V}_{\rm B}^{*}}{{\rm x}_{\rm B}{\rm V}_{\rm B}^{*} + {\rm x}_{\rm A}{\rm V}_{\rm A}^{*} + {\rm x}_{\rm S}{\rm V}_{\rm S}^{*}} = 0,9794*40,03 / (0,0206*17,37+0,9794*=40,03) = 0,9904$$

$$\Phi_{\rm S} = 1 - \Phi_{\rm A} - \Phi_{\rm B} = 0,00055$$

As frações volumétricas dos monômeros $\varphi_{A1} e \varphi_{B1}$ foram obtidas pela resolução simultânea das expressões abaixo:

$$\Phi_{A} = \frac{\phi_{A1}}{\left(1 - K_{A}\phi_{A1}\right)^{2}} \left[1 + \frac{V_{A}K_{AB}\phi_{B1}}{V_{B}}\right]$$
$$\Phi_{B} = \phi_{B1} \left[1 + \frac{K_{AB}\phi_{A1}}{\left(1 - K_{A}\phi_{A1}\right)}\right]$$

em que os valores são:

$$\varphi_{A1} = 1,321.10^{-5}$$
 $\varphi_{B1} = 0,9648$

para o monômero puro φ°_{A1} foi obtido fazendo $\Phi_A = 1$ e $\Phi_B = 0$ para o componente A, e o valor encontrado foi:

$$\varphi^{\circ}_{A1} = 4,252.10^{-4}$$

Cálculo da fração superficial do componente B.

S_A=18,90 nm

$$\theta_{\rm B} = 1 - \theta_{\rm A} = \frac{\left(\frac{S_{\rm B}}{S_{\rm A}}\right) \Phi_{\rm B}}{\left(\frac{S_{\rm B}}{S_{\rm A}}\right) \Phi_{\rm B} + \Phi_{\rm A}} = \frac{\frac{15,19}{18,90} \, 0,9904}{\left(\frac{15,19}{18,90} \, 0,9904 + 0,00905\right)} = 0,9888$$

Cálculo das grandezas características e reduzidas da solução.

Cálculo da pressão característica

Cálculo da temperatura característica

$$T^{*} = \frac{p^{*}}{\Phi_{A}p_{A}^{*}T_{A}^{*-1} + \Phi_{B}p_{B}^{*}T_{B}^{*-1}}$$

$$T^{*} = 657,17 / (0,00905^{*}100,3/23706,85 + 0,9904^{*}662,70/4464,87)$$

$$T^{*} = 4469,37K \qquad \qquad \widetilde{T} = T / T^{*} = 298,15/4469,37 = 6,671^{*}10^{-2}$$

O volume reduzido da solução foi obtido pela equação de Flory

$$\frac{\widetilde{p}\widetilde{V}}{\widetilde{T}} = \frac{\widetilde{V}^{1/3}}{\widetilde{V}^{1/3} - 1} - \frac{1}{\widetilde{V}\widetilde{T}}$$

resolvendo a equação tem-se

Ũ=1,3175

Cálculo da contribuição física para o volume em excesso

$$\overline{V_{f}^{E}} = \left(x_{A}V_{A}^{*} + x_{B}V_{B}^{*}\right)\left(\widetilde{V} - \Phi_{A}\widetilde{V}_{A} - \Phi_{B}\widetilde{V}_{B}\right)$$

$$V_{f}^{E} = (0,0206^{*}17,37 + 0,9784^{*}40,03).(1,3175 - 0,00904^{*}1,0403 - 0,99096^{*}1,3185)$$

$$V_{f}^{E} = 0,089 \text{ (cm}^{3} \text{ mol}^{-1})$$

Cálculo da contribuição química para o volume em excesso

$$V_{q}^{E} = x_{A}K_{A}\Delta V_{A}^{*}\widetilde{V}(\varphi_{A1} - \varphi_{A1}^{0}) + x_{A}K_{AB}\Delta V_{AB}^{*}\widetilde{V}\left(\frac{\varphi_{B1}(1 - K_{A}\varphi_{A1})}{(V_{B}V_{A} + K_{AB}\varphi_{B1})}\right)$$
$$V_{q}^{E} = 0,0206^{*}2303,3^{*}(-5,60)^{*}1,3175^{*}(1,321.10^{-5} - 4,252.10^{-4}) + 0,0206^{*}1945,66^{*}(-9,62)^{*}1,3175^{*}0,9648^{*}(1-2303,3^{*}1,321.10^{-5}) / (52,78/18,07 + 1945,66^{*}0,9648)$$

$$V_q^E = -0,1085 (cm^3 mol^{-1})$$

Cálculo da contribuição salina para o volume em excesso

$$V_{\rm H}^{\rm E} = 0,001(A_{\rm HA}r_{\rm A}^3 - \frac{B_{\rm HA}z^2}{r_{\rm A}} + A_{\rm HC}r_{\rm C}^3 - \frac{B_{\rm HC}z^2}{r_{\rm C}} - \overline{V}_{\rm S}^{\infty})$$

$$V_{\rm H}^{\rm E} = 0,001.(6,76.(1,81)^3 - 18,07.(1)^2/1,81 + 6,76.(0,76)^3 - 4,79.(1)^2/0,76 - 76,778)$$

 $V_{\rm H}^{\rm E} = -0,0504 \ ({\rm cm}^3 \ {\rm mol}^{-1})$

Somando as contribuições física, química e salina tem-se: $V_{ERAS}^{E} = -0,070 \text{ (cm}^{3} \text{ mol}^{-1}\text{)}$

Volume em excesso experimental é igual a: $V_{Exp}^{E} = -0,029 \text{ (cm}^{3} \text{ mol}^{-1})$

APÊNDICE F

Neste tópico é realizado o cálculo para o ajuste dos parâmetros cruzados K_{AB}, $\chi_{AB} e \Delta v^*_{AB}$, usando uma calculadora, em vez de utilizar o programa de computação. O cálculo será feito para as três temperaturas para o sistema água/acetonitrila e para o sistema água/acetonitrila/sal também será utilizada as três temperaturas e para algumas frações molares de sal.

1.a – Sistema água/acetonitrila a 283,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$V_A = 18,02 \text{ cm}^3 \text{ m}$	nol ^{-1,}	$V_B = 51,70 \text{ cm}^3 \text{ mol}^{-1}$					
$V_{A}^{*}=17,51 \text{ cm}^{3}$	mol ⁻¹ ,	$V_B^*=39,71 \text{ cm}^3 \text{ mol}^{-1}$					
$\widetilde{V}_{A}^{*} = 1,029$,		$\widetilde{V}_{B}^{*}=1,3$	019				
T [*] _A =30722K,	Т [*] _В =4378К,	$p_{A}^{*}=55,25 \text{ J cm}^{-3},$	$p_{A}^{*}=695,35 \text{ J cm}^{-3}$				
K ₄ =3980							

Tabela dos resultad	os para o sistem	a água/acetonitrila	a 283	.15K

					Fração	Molar	da	Água	(x _A)			
	0,0206	0,0698	0,1015	0,2253	0,3080	0,4007	0,5132	0,6408	0,7017	0,8001	0,9004	0,9965
XB	0,9794	0,9302	0,8985	0,7747	0,6920	0,5993	0,4868	0,3592	0,2981	0,1999	0,0996	0,0035
K _A	3980	3980	3980	3980	3980	3980	3980	3980	3980	3980	3980	3980
K _{AB}	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Δv_{AB}^{*}	-10,11	-10,11	-10,11	-10,11	-10,11	-10,11	-10,11	-10,11	-10,11	-10,11	-10,11	-10,11
χав	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0
$\widetilde{\mathrm{V}}$	1,3012	1,3012	1,3012	1,3012	1,3012	1,3012	1,3012	1,3012	1,3012	1,3012	1,3012	1,3012
Φ_{A}	0,00904	0,0315	0,0467	0,1119	0,1616	0,2246	0,3135	0,4359	0,5049	0,6342	0,7966	0,9919
$\Phi_{\rm B}$	0,99096	0,9685	0,9534	0,8881	0,8384	0,7754	0,6865	0,5641	0,4951	0,3658	0,2034	0,0081
φ _{ΑΙ}	1,60.10 ⁻⁵	7,2.10 ⁻⁵	9,7.10 ⁻⁵	1,7 10 ⁻⁵	2,1 10-4	2,5 10-4	2,9 10-4	3,3 10-4	3,4 10-4	3,6 10-4	3,8 10-4	4,2 10-4
ϕ_{B1}	0,9656	0,8919	0,8477	0,6913	0,5958	0,4935	0,3747	0,2465	0,1886	0,1220	0,0750	0,0012
V^{E}_{f}	0,075	0,305	0,450	1,039	1,431	1,872	2,409	3,023	3,318	3,797	4,293	4,775
V_{q}^{E}	-0,184	-0,466	-0,782	-1,524	-2,015	-2,467	-3,184	-3,828	-4,105	-4,492	-4,782	-4,985
$V^{\text{E}}_{\text{eras}}$	-0,109	-0,161	-0,312	-0,485	-0,584	-0,675	-0,775	-0,805	-0,787	-0,695	-0,489	-0,210
$V^{E}_{\text{Exp.}}$	-0,027	-0,042	-0,080	-0,216	-0,330	-0,438	-0,513	-0,555	-0,567	-0,523	-0,352	-0,017

APÊNDICE – F

Em que os parâmetros ajustáveis são:

 $K_{AB}=1000$, $\chi_{AB}=9,00 \text{ J cm}^{-3}$, $\Delta v_{AB}^*=-10,11 \text{ cm}^3 \text{ mol}^{-1}$

2.a – Sistema água/acetonitrila a 298,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$$V_{A}=18,07 \text{ cm}^{3} \text{ mol}^{-1}, V_{B}=52,78 \text{ cm}^{3} \text{ mol}^{-1}$$

$$V_{A}^{*}=17,37 \text{ cm}^{3} \text{ mol}^{-1}, V_{B}^{*}=40,03 \text{ cm}^{3} \text{ mol}^{-1}$$

$$\widetilde{V}_{A}^{*}=1,0403, \widetilde{V}_{B}^{*}=1,3185$$

$$T_{A}^{*}=23707 \text{K}, T_{B}^{*}=4464 \text{K}, p_{A}^{*}=100,30 \text{ J cm}^{-3}, p_{A}^{*}=662,70 \text{ J cm}^{-3}$$

$$K_{A}=2303$$

Tabela dos resultados para o sistema água/acetonitrila a 298,15K

					Fração	Molar	Da	Água	(x _A)			
	0,0206	0,0629	0,1020	0,2203	0,3032	0,4014	0,5022	0,6047	0,7019	0,8050	0,9019	0,9928
XB	0,9794	0,9371	0,8980	0,7797	0,6968	0,5986	0,4978	0,3953	0,2981	0,1950	0,0981	0,0072
K _A	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303
K _{AB}	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Δv_{AB}^{*}	-9,61	-9,61	-9,61	-9,61	-9,61	-9,61	-9,61	-9,61	-9,61	-9,61	-9,61	-9,61
Хав	9,85	9,85	9,85	9,85	9,85	9,85	9,85	9,85	9,85	9,85	9,85	9,85
$\widetilde{\mathbf{V}}$	1,3175	1,3175	1,3175	1,3175	1,3175	1,3175	1,3175	1,3175	1,3175	1,3175	1,3175	1,3175
$\Phi_{\rm A}$	0,00924	0,0289	0,0473	0,1113	0,1617	0,2291	0,3090	0,4041	0,5107	0,6466	0,8029	0,9830
$\Phi_{ m B}$	0,99076	0,9711	0,9527	0,8887	0,8383	0,7709	0,6910	0,5959	0,4893	0,3534	0,1971	0,0170
ϕ_{A1}	3,4 10 ⁻⁵	3,3 10 ⁻⁵	3,4 10 ⁻⁵	1,2 10-4	1,4 10-4	1,6 10-4	1,8 10-4	1,9 10-4	2,1 104	2,2 10-4	2,3 10-4	2,5 10-4
$\phi_{\rm B1}$	0,9537	0,9345	0,9158	0,7227	0,8363	0,7286	0,4312	0,3269	0,2283	0,1276	0,0454	0,0012
V^{E}_{f}	0,062	0,272	0,493	1,050	1,318	1,940	2,433	2,931	3,401	3,893	4,351	4,770
\mathbf{V}_{q}^{E}	-0,183	-0,502	-0,818	-1,530	-1,888	-2,586	-3,125	-3,657	-4,151	-4,594	-4,881	-4,965
$V^{E}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	-0,121	-0,230	-0,325	-0,480	-0,570	-0,646	-0,692	-0,726	-0,750	-0,701	-0,530	-0,195
V ^E _{Exp.}	-0,041	-0,061	-0,087	-0,272	-0,394	-0,487	-0,562	-0,593	-0,610	-0,539	-0,387	-0,037

Em que os parâmetros ajustáveis são:

$$K_{AB}=1000$$
 , $\chi_{AB}=9,85 \text{ J cm}^{-3}$, $\Delta v_{AB}^{*}=-9,61 \text{ cm}^{3} \text{ mol}^{-1}$

.

3.a – Sistema água/acetonitrila a 308,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$V_A = 18,12 \text{ cm}^3$	mol ^{-1,}	V_{B} =53,52 cm ³ mol ⁻¹					
$V_{A}^{*}=17,03 \text{ cm}^{3}$	mol ⁻¹ ,	$V_B^*=40,26 \text{ cm}^3 \text{ mol}^{-1}$					
$\widetilde{V}_{A}^{*}=1,0640$,		$\tilde{V}_{B}^{*}=1,3294$					
T [*] _A =16020K,	Т [*] _в =4523К,	p [*] _A =174,31 J cm ⁻³ ,	$p_{A}^{*}=544,39 \text{ J cm}^{-3}$				
K _A =1647,	p=0,1 J cm ⁻³						

Tabela dos resultados para o sistema água/acetonitrila a 308,15K

					Fração	Molar	da	Água	(\mathbf{x}_{A})			
	0,0251	0,0694	0,1004	0,2265	0,3082	0,4007	0,5128	0,6224	0,7024	0,8242	0,9004	0,9740
XB	0,9749	0,9306	0,8996	0,7735	0,6918	0,5993	0,4872	0,3776	0,2976	0,1758	0,0996	0,0260
K _A	1647	1647	1647	1647	1647	1647	1647	1647	1647	1647	1647	1647
K_{AB}	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Δv^*_{AB}	-6,93	-6,93	-6,93	-6,93	-6,93	-6,93	-6,93	-6,93	-6,93	-6,93	-6,93	-6,93
χав	11,48	11,48	11,48	11,48	11,48	11,48	11,48	11,48	11,48	11,48	11,48	11,48
$\widetilde{\mathrm{v}}$	1,3252	1,3252	1,3252	1,3050	1,2980	1,2950	1,2960	1,3005	1,2975	1,2992	1,2980	1,2970
Φ_{A}	0,0114	0,0296	0,0437	0,1070	0,1542	0,2149	0,3011	0,4029	0,4914	0,6574	0,7873	0,9388
$\Phi_{\rm B}$	0,9886	0,9704	0,9563	0,8930	0,8458	0,7851	0,6989	0,5971	0,5086	0,3426	0,2127	0,0612
ϕ_{A1}	3,1 10 ⁻⁵	6,6 10 ⁻⁵	8,9 10 ⁻⁵	1,6 10-4	1,9 10-4	2,1 10-4	2,5 10-4	2,8 10-4	3,1 10-4	3,6-10-4	4,1 10-4	4,2 10-4
ϕ_{B1}	0,9896	0,9031	0,8661	0,7350	0,6583	0,5952	0,4929	0,3888	0,3088	0,1797	0,0957	0,0256
$V^{E}_{\ f}$	-0,060	0,055	0,093	0,154	0,346	0,564	1,234	1,845	2,247	2,907	3,245	3,610
V_{q}^{E}	0,010	-0,159	-0,236	-0,456	-0,798	-1,051	-1,797	-2,463	-2,885	-3,407	-3,796	-3,821
$V^{\text{E}}_{\ \text{eras}}$	-0,040	-0,104	-0,143	-0,302	-0,412	-0,487	-0,565	-0,618	-0,638	-0,560	-0,451	-0,211
$V^{E}_{\ Exp.}$	-0,012	-0,029	-0,101	-0,212	-0,314	-0,430	-0,504	-0,541	-0,561	-0,501	-0,384	-0,122

Em que os parâmetros ajustáveis são:

 $, \chi_{AB} = 11,48 \text{ J cm}^{-3}$

 $\Delta v_{AB}^{*} = -6,93 \text{ cm}^{3} \text{ mol}^{-1}$

Gráficos dos dados experimentais e do modelo para o sistema água-acetonitrila em função da fração molar da água nas temperaturas de trabalho.

4.a – Sistema água/acetonitrila/cloreto de lítio para x_s=0,001 a 283,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$V_A=18,02 \text{ cm}^3 \text{ mol}$	$V_{\rm B} = 51$	$,70 \text{ cm}^3 \text{ mol}^{-1}$	$V_{\rm S}=24,07 \text{ cm}^3 \text{ mol}^{-1}$
$V_{A}^{*}=17,51 \text{ cm}^{3} \text{ mo}$	V_{B}^{-1} , $V_{B}^{*}=39$	$9,71 \text{ cm}^3 \text{ mol}^{-1}$	$V_{S}^{*}=24,01 \text{ cm}^{3} \text{ mol}^{-1}$
$\widetilde{V}_{A}^{*} = 1,0290$,	$\widetilde{V}_{B}^{*}=1,2$	3019	$\tilde{V}_{s}^{*}=1,003$
$\overline{V}^{\infty}_{s}$ =59,757 cm ³ r	mol^{-1} , $r_a=1,8$	$r_{c}=0,76A$	^c o
T [*] _A =16020K,	Т [*] _в =4523К,	$p_{A}^{*}=174,31 \text{ J cm}^{-3},$	$p_{A}^{*}=544,39 \text{ J cm}^{-3}$
K _A =3980, p=	$=0,1 \text{ J cm}^{-3}$		

Tabela dos resultados para o sistema água/acetonitrila/cloreto de lítio para x_s=0,001 a 283,15K

					Fração	Molar	Da	Agua	(x _A)			
	0,0576	0,1052	0,2214	0,3019	0,4312	0,5086	0,6035	0,6516	0,7023	0,8120	0,9183	0,9910
XB	0,9524	0,8938	0,7776	0,6971	0,5678	0,4904	0,3955	0,3474	0,2967	0,1870	0,0807	0,0080
K _A	3980	3980	3980	3980	3980	3 9 80	3980	3980	3980	3980	3980	3980
K _{AB}	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Δv_{AB}^{*}	-7,83	-7,83	-7,83	-7,83	-7,83	-7,83	-7,83	-7,83	-7,83	-7,83	-7,83	-7,83
χав	10,58	10,58	10,58	10,58	10,58	10,58	10,58	10,58	10,58	10,58	10,58	10,58
$\mathbf{A}_{h\acute{a}}$	6,90	6,90	6,90	6,90	6,90	6,90	6,90	6,90	6,90	6,90	6,90	6,90
$\mathbf{B}_{h\dot{a}}$	18,93	18,93	18,93	18,93	18,93	18,93	18,93	18,93	18,93	18,93	18,93	18,93
A_{Hc}	5,92	5,92	5,92	5,92	5,92	5,92	5,92	5,92	5,92	5,92	5,92	5,92
B_{Hc}	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
$\widetilde{\mathrm{v}}$	1,2800	1,2800	1,2800	1,2800	1,2800	1,2800	1,2800	1,2800	1,2800	1,2800	1,2800	1,2800
Φ_{A}	0,0261	0,0496	0,1120	0,1609	0,2516	0,3146	0,4031	0,4335	0,5115	0,6573	0,8335	0,9808
$\Phi_{\rm B}$	0,9719	0,9498	0,8873	0,8384	0,7476	0,6845	0,5960	0,5455	0,4875	0,3416	0,1653	0,0178
ϕ_{A1}	4,5 10 ⁻⁵	6,7 10-5	1,0 10-4	1,2 10-4	1,4 10-4	1,5 10-4	1,6 10-4	1,7 10-4	1,8 10-4	1,9 10-4	2,1 10-4	2,3 10-4
ϕ_{B1}	0,9170	0,8635	0,7495	0,6768	0,5618	0,4917	0,4028	0,3588	0,3053	0,1904	0,0748	0,0004
$V^{E}_{\ f}$	-0,162	0,019	0,333	0,7563	1,441	1,851	2,350	2,872	3,126	3,451	4,011	4,397
$\mathbf{V}_{\mathbf{q}}^{E}$	0,085	-0,213	-0,652	-1,177	-1,995	-2,451	-2,917	-3,389	-3,587	-3,792	-4,224	-4,467
$V^{E}_{\ H}$	-0,035	-0,035	-0,035	-0,035	-0,035	-0,035	-0,035	-0,035	-0,035	-0,035	-0,035	-0,035
$V^{E}_{\ Mod}$	-0,112	-0,195	-0,354	-0,456	-0,589	-0,635	-0,602	-0,552	-0,496	-0,376	-0,248	-0,132
$V^{E}_{Exp.}$	-0,074	-0,136	-0,291	-0,404	-0,563	-0,648	-0,723	-0,752	-0,740	-0,623	-0,363	-0,105

Em que os valores ajustáveis são:

 K_{AB} =1100 , χ_{AB} = 10,58 J cm⁻³

$$\Delta v_{AB}^* = -7,83 \text{ cm}^3 \text{ mol}^{-1}$$

CAMPESE, G.M	<u>1</u>			APÊNDICE -
$A_{ha} = 6,90$, B _{há} =18,93	, A _{Hc} =5,92	, B _{Hc} =6,17	

5.a – Sistema água/acetonitrila/cloreto de sódio para x_s=0,001 a 283,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

F

 $\begin{array}{lll} V_{A} = 18,02 \ cm^{3} \ mol^{-1}, & V_{B} = 51,70 \ cm^{3} \ mol^{-1} & V_{S} = 29,44 \ cm^{3} \ mol^{-1} & \\ V_{A}^{*} = 17,51 \ cm^{3} \ mol^{-1}, & V_{B}^{*} = 39,71 \ cm^{3} \ mol^{-1} & V_{S}^{*} = 29,37 \ cm^{3} \ mol^{-1} & \\ \widetilde{V}_{A}^{*} = 1,0290 \ , & \widetilde{V}_{B}^{*} = 1,3019 & \widetilde{V}_{S}^{*} = 1,002 & \\ \overline{V}_{S}^{\infty} = 99,170 \ cm^{3} \ mol^{-1} \ , & r_{a} = 1,81 \ A^{\circ}, & r_{c} = 1,02 \ A^{\circ} & \\ T_{A}^{*} = 16020 \ K, & T_{B}^{*} = 4523 \ K, & p_{A}^{*} = 174,31 \ J \ cm^{-3}, & p_{A}^{*} = 544,39 \ J \ cm^{-3} & \\ K_{A} = 3980, & p = 0,1 \ J \ cm^{-3} & \\ \end{array}$

Tabela dos resultados para o sistema água/acetonitrila/cloreto de sódio para x_s=0,001 a 283,15K

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0,9442 0,0548 3980 1100	0,9906 0,0084 3980 1100
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0,9442 0,0548 3980 1100	0,9906 0,0084 3980 1100
x _B 0,5902 0,5495 0,4929 0,4515 0,3950 0,3406 0,2785 0,1972 0,1558 0,0977 K _A 3980 3980	0,0548 3980 1100	0,0084 3980 1100
K _A 3980 3980 3980 3980 3980 3980 3980 3980	3980 1100	3980 1100
	1100	1100
K _{AB} 1100 1100 1100 1100 1100 1100 1100 11	<i></i>	
Δv_{AB}^{*} -5,32 -5,32 -5,32 -5,32 -5,32 -5,32 -5,32 -5,32 -5,32 -5,32 -5,32	-5,32	-5,32
χ_{AB} 8,96 8,96 8,96 8,96 8,96 8,96 8,96 8,96	8,96	8,96
A _{há} 7,10 7,10 7,10 7,10 7,10 7,10 7,10 7,10	7,10	7,10
B _{há} 19,10 19,10 19,10 19,10 19,10 19,10 19,10 19,10 19,10 19,10 19,10	19,10	19,10
A _{He} 6,15 6,15 6,15 6,15 6,15 6,15 6,15 6,15	6,15	6,15
B _{Hc} 6,35 6,35 6,35 6,35 6,35 6,35 6,35 6,35	6,35	6,35
$\widetilde{V} \qquad 1,2300 1,2$	1,2300	1,2300
Φ_{A} 0,2347 0,2658 0,3124 0,3492 0,4035 0,4607 0,5335 0,6423 0,7048 0,8023	0,8828	0,9796
$\Phi_{\rm B}$ 0,7644 0,7332 0,6865 0,6497 0,5954 0,5379 0,4653 0,3564 0,2802 0,1890	0,1156	0,0187
φ_{A1} 1,3 10 ⁻⁴ 1,4 10 ⁻⁴ 1,47 10 ⁻⁴ 1,52 10 ⁻⁴ 1,60 10 ⁻⁴ 1,66 10 ⁻⁴ 1,7 10 ⁻⁴ 1,85 10 ⁻⁴ 1,9 10 ⁻⁴ 2,0 10 ⁻⁴	2,1 10-4	2,3 10-4
$\phi_{B1} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,0474	0,0046
V_{f}^{E} -0,205 0,058 0,421 0,684 1,043 1,400 1,787 2,306 2,943 3,127	3,216	3,512
V_{q}^{E} -0,286 -0,636 -1,078 -1,403 -1,791 -2,098 -2,398 -2,765 -3,301 -3,338	-3,327	-3,610
V_{H}^{E} -0,067 -0,000 -0,	-0,067	-0,067
V_{Mod}^{E} -0,558 -0,645 -0,724 -0,786 -0,815 -0,765 -0,678 -0,526 -0,425 -0,278	-0,178	-0,058
$V_{Exp.}^{E}$ -0,503 -0,553 -0,623 -0,688 -0,772 -0,798 -0,770 -0,641 -0,540 -0,398	-0,285	-0,165

Em que os valores ajustáveis são:

CAMPESE, G.M	•		APÊNDICE	F
K _{AB} =1100	, χ _{AB} = 8,96 J	cm ⁻³	$, \Delta v_{AB}^* = -5,32 \text{ cm}^3 \text{ mol}^{-1}$	
A _{Ha} = 7,10	, B _{Há} =19,10	, A _{Hc} =6,15	, B _{Hc} =6,35	

6.a – Sistema água/acetonitrila/cloreto de potássio para x_s=0,001 a 283,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$$\begin{split} & V_{A} = 18,02 \text{ cm}^{3} \text{ mol}^{-1}, & V_{B} = 51,70 \text{ cm}^{3} \text{ mol}^{-1} & V_{S} = 37,83 \text{ cm}^{3} \text{ mol}^{-1} \\ & V_{A}^{*} = 17,51 \text{ cm}^{3} \text{ mol}^{-1}, & V_{B}^{*} = 39,71 \text{ cm}^{3} \text{ mol}^{-1} & V_{S}^{*} = 37,73 \text{ cm}^{3} \text{ mol}^{-1} \\ & \widetilde{V}_{A}^{*} = 1,0290, & \widetilde{V}_{B}^{*} = 1,3019 & \widetilde{V}_{S}^{*} = 1,003 \\ & \overline{V}_{S}^{\infty} = 99,170 \text{ cm}^{3} \text{ mol}^{-1}, & r_{a} = 1,81A^{\circ}, & r_{c} = 1,38A^{\circ} \\ & T_{A}^{*} = 16020K, & T_{B}^{*} = 4523K, & p_{A}^{*} = 174,31 \text{ J cm}^{-3}, & p_{A}^{*} = 544,39 \text{ J cm}^{-3} \\ & K_{A} = 3980, & p = 0,1 \text{ J cm}^{-3} \end{split}$$

Tabela dos resultados para o sistema água/acetonitrila/cloreto de potássio para x_s=0,001 a 283,15K

				Fração	Molar	da	água	(x _A)		
0,4087	0,5063	0,5481	0,6050	0,6506	0,7210	0,8001	0,8435	0,9021	0,9222	0,9825
0,5903	0,4927	0,4509	0,3940	0,3484	0,2780	0,1989	0,1555	0,0969	0,0768	0,0165
3980	3980	3980	3980	3980	3980	3980	3980	3980	3980	3980
1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
-7,44	-7,44	-7,44	-7,44	-7,44	-7,44	-7,44	-7,44	-7,44	-7,44	-7,44
9,25	9,25	9,25	9,25	9,25	9,25	9,25	9,25	9,25	9,25	9,25
7,30	7,30	7,30	7,30	7,30	7,30	7,30	7,30	7,30	7,30	7,30
19,45	19,45	19,45	19,45	19,45	19,45	19,45	19,45	19,45	19,45	19,45
6,38	6,38	6,38	6,38	6,38	6,38	6,38	6,38	6,38	6,38	6,38
6,95	6,95	6,95	6,95	6,95	6,95	6,95	6,95	6,95	6,95	6,95
1,2320	1,2320	1,2320	1,2320	1,2320	1,2320	1,2320	1,2320	1,2320	1,2320	1,2320
0,2345	0,3125	0,3496	0,4044	0,4522	0,5339	0,6396	0,7050	0,8034	0,8402	0,9615
0,7642	0,6862	0,6490	0,5942	0,5463	0,4645	0,3587	0,2932	0,1947	0,1579	0,0364
1,3 10-4	1,4 10-4	1,5 10-4	1,6 10-4	1,7 10-4	1,7 10-4	1,8 10-4	1,9 10-4	2,0 10-4	2,1 10-4	2,2 10-4
0,5816	0,4936	0,4551	0,4071	0,3568	0,2861	0,2030	0,1561	0,0922	0,0705	0,0109
-0,129	0,486	0,798	1,112	1,402	1,848	2,349	2,624	2,995	3,121	3,504
-0,371	-1,148	-1,523	-1,857	-2,108	-2,450	-2,848	-3,032	-3,280	-3,349	-3,676
-0,073	-0,073	-0,073	-0,073	-0,073	-0,073	-0,073	-0,073	-0,073	-0,073	-0,073
-0,573	-0,735	-0,798	-0,818	-0,779	-0,675	-0,572	-0,481	-0,358	-0,301	-0,184
-0,527	-0,678	-0,733	-0,798	-0,829	-0,798	-0,651	-0,558	-0,433	-0,383	-0,235
	0,4087 0,5903 3980 1100 -7,44 9,25 7,30 19,45 6,38 6,95 1,2320 0,2345 0,7642 1,310 ⁴ 0,5816 -0,129 -0,371 -0,073 -0,573 -0,527	0,40870,50630,59030,49273980398011001100-7,44-7,449,259,257,307,3019,456,386,386,951,23201,23200,23450,31250,76420,68621,3 1041,4 1040,58160,4936-0,1290,486-0,371-1,148-0,073-0,073-0,573-0,735-0,527-0,678	0,40870,50630,54810,59030,49270,4509398039803980110011001100-7,44-7,44-7,449,259,259,257,307,307,3019,4519,4519,456,386,386,386,956,956,951,23201,23201,23200,23450,31250,34960,76420,68620,64901,3 1041,4 1041,5 1040,58160,49360,4551-0,1290,4860,798-0,371-1,148-1,523-0,073-0,073-0,073-0,573-0,735-0,798-0,527-0,678-0,733	$0,4087$ $0,5063$ $0,5481$ $0,6050$ $0,5903$ $0,4927$ $0,4509$ $0,3940$ 3980 3980 3980 3980 1100 1100 1100 1100 $-7,44$ $-7,44$ $-7,44$ $-7,44$ $9,25$ $9,25$ $9,25$ $9,25$ $7,30$ $7,30$ $7,30$ $7,30$ $19,45$ $19,45$ $19,45$ $19,45$ $6,38$ $6,38$ $6,38$ $6,38$ $6,95$ $6,95$ $6,95$ $6,95$ $1,2320$ $1,2320$ $1,2320$ $1,2320$ $0,2345$ $0,3125$ $0,3496$ $0,4044$ $0,7642$ $0,6862$ $0,6490$ $0,5942$ $1,310^4$ $1,410^{-4}$ $1,510^{-4}$ $1,610^{-4}$ $0,5816$ $0,4936$ $0,798$ $1,112$ $-0,371$ $-1,148$ $-1,523$ $-1,857$ $-0,073$ $-0,073$ $-0,073$ $-0,073$ $-0,527$ $-0,678$ $-0,733$ $-0,798$	Fração0,40870,50630,54810,60500,65060,59030,49270,45090,39400,34843980398039803980398011001100110011001100-7,44-7,44-7,44-7,449,259,259,259,259,257,307,307,307,307,3019,4519,4519,4519,4519,456,386,386,386,386,386,956,956,956,951,23201,23201,23201,23200,23450,31250,34960,40440,45220,76420,68620,64900,59420,54631,3 10 ⁻⁴ 1,4 10 ⁻⁴ 1,5 10 ⁻⁴ 1,6 10 ⁻⁴ 1,7 10 ⁻⁴ 0,58160,49360,45510,40710,3568-0,1290,4860,7981,1121,402-0,371-1,148-1,523-1,857-2,108-0,073-0,073-0,073-0,073-0,073-0,573-0,735-0,798-0,818-0,779-0,527-0,678-0,733-0,798-0,829	FraçãoMolar0,40870,50630,54810,60500,65060,72100,59030,49270,45090,39400,34840,27803980398039803980398039803980110011001100110011001100-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,257,307,307,307,307,307,3019,4519,4519,4519,4519,456,386,386,386,386,386,956,956,956,956,951,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,76420,68620,64900,59420,54630,46451,3 10 ⁴ 1,4 10 ⁴ 1,5 10 ⁻⁴ 1,6 10 ⁻⁴ 1,7 10 ⁴ 1,7 10 ⁴ 0,58160,49360,45510,40710,35680,2861-0,1290,4860,7981,1121,4021,848-0,371-1,148-1,523-1,857-2,108-2,450-0,073-0,073-0,073-0,073-0,073-0,073-0,573-0,735-0,798-0,818-0,779-0,675-0,527-0,678-0,733-0,798-0,829-0,798	FraçãoMolarda0,40870,50630,54810,60500,65060,72100,80010,59030,49270,45090,39400,34840,27800,1989398039803980398039803980398039801100110011001100110011001100-7,44-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,259,257,307,307,307,307,307,307,3019,4519,4519,4519,4519,4519,456,386,386,386,386,386,386,386,956,956,956,956,956,951,23201,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,63960,76420,68620,64900,59420,54630,46450,35871,3 10 ⁴ 1,4 10 ⁴ 1,5 10 ⁴ 1,6 10 ⁴ 1,7 10 ⁴ 1,8 10 ⁴ 0,58160,49360,45510,40710,35680,28610,2030-0,1290,4860,7981,1121,4021,8482,349-0,073-0,073-0,073-0,073-0,073-0,073-0,073-0,573-0,735-0,798-0,818-0,779-0,675-0,572-0,527-0,678-0,733-0,798-0,829 <t< th=""><th>FraçãoMolardaágua0,40870,50630,54810,60500,65060,72100,80010,84350,59030,49270,45090,39400,34840,27800,19890,15553980398039803980398039803980398039803980110011001100110011001100110011001100-7,44-7,44-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,259,259,257,307,307,307,307,307,307,307,3019,4519,4519,4519,4519,4519,4519,456,386,386,386,386,386,386,386,386,956,956,956,956,956,956,951,23201,23201,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,63960,70500,76420,68620,64900,59420,54630,46450,35870,29321,31041,41041,51041,61041,71041,71041,81041,91040,58160,49360,45510,40710,35680,28610,20300,1561-0,371-1,148-1,523-1,857-2,108-2,450-2,848-3,032-0,073-0,073-0,</th><th>FraçãoMolardaágua(x_{A})0,40870,50630,54810,60500,65060,72100,80010,84350,90210,59030,49270,45090,39400,34840,27800,19890,15550,09693980398039803980398039803980398039803980110011001100110011001100110011001100-7,44-7,44-7,44-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,259,259,259,257,307,307,307,307,307,307,307,307,3019,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,451,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,63960,70500,80340,76420,68620,64900,59420,54630,46450,35870,29320,19471,31041,41041,51041,61041,71041,71041,81041,91042,01040,58160,49360,47981,1121,4021,8482,34</th><th>FraçãoMolardaágua(x_A)0,40870,50630,54810,60500,65060,72100,80010,84350,90210,92220,59030,49270,45090,39400,34840,27800,19890,15550,09690,07683980398039803980398039803980398039803980398039801100110011001100110011001100110011001100-7,44-7,44-7,44-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,259,259,259,259,257,307,307,307,307,307,307,307,307,307,307,3019,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,451,3201,23201,23201,23201,23201,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,63960,70500,80340,84020,76420,68620,64900,59420,54630,46450,35870,29320,19470,15791,31041,41041,51041,61041,71041,71041,81041,91042,01042,11040,58160,49360,45510,40710,35680,28610,20300,1561<td< th=""></td<></th></t<>	FraçãoMolardaágua0,40870,50630,54810,60500,65060,72100,80010,84350,59030,49270,45090,39400,34840,27800,19890,15553980398039803980398039803980398039803980110011001100110011001100110011001100-7,44-7,44-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,259,259,257,307,307,307,307,307,307,307,3019,4519,4519,4519,4519,4519,4519,456,386,386,386,386,386,386,386,386,956,956,956,956,956,956,951,23201,23201,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,63960,70500,76420,68620,64900,59420,54630,46450,35870,29321,31041,41041,51041,61041,71041,71041,81041,91040,58160,49360,45510,40710,35680,28610,20300,1561-0,371-1,148-1,523-1,857-2,108-2,450-2,848-3,032-0,073-0,073-0,	FraçãoMolardaágua (x_{A}) 0,40870,50630,54810,60500,65060,72100,80010,84350,90210,59030,49270,45090,39400,34840,27800,19890,15550,09693980398039803980398039803980398039803980110011001100110011001100110011001100-7,44-7,44-7,44-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,259,259,259,257,307,307,307,307,307,307,307,307,3019,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,451,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,63960,70500,80340,76420,68620,64900,59420,54630,46450,35870,29320,19471,31041,41041,51041,61041,71041,71041,81041,91042,01040,58160,49360,47981,1121,4021,8482,34	FraçãoMolardaágua (x_A) 0,40870,50630,54810,60500,65060,72100,80010,84350,90210,92220,59030,49270,45090,39400,34840,27800,19890,15550,09690,07683980398039803980398039803980398039803980398039801100110011001100110011001100110011001100-7,44-7,44-7,44-7,44-7,44-7,44-7,44-7,449,259,259,259,259,259,259,259,259,259,257,307,307,307,307,307,307,307,307,307,307,3019,4519,4519,4519,4519,4519,4519,4519,4519,4519,4519,451,3201,23201,23201,23201,23201,23201,23201,23201,23201,23200,23450,31250,34960,40440,45220,53390,63960,70500,80340,84020,76420,68620,64900,59420,54630,46450,35870,29320,19470,15791,31041,41041,51041,61041,71041,71041,81041,91042,01042,11040,58160,49360,45510,40710,35680,28610,20300,1561 <td< th=""></td<>

CAMPESE, G.M.

APÊNDICE – F

Em que os valores ajustáveis são:

$$K_{AB}$$
=1100, χ_{AB} = 9,25 J cm⁻³, Δv^*_{AB} = -7,44 cm³ mol⁻¹ A_{Ha} = 7,30, B_{Ha} =19,45, A_{Hc} =6,38, B_{Hc} =6,95

Gráficos dos dados experimentais e do modelo para o sistema água-acetonitrila-sal para xs=0,001 em função da fração molar da água a 283,15K.

7.a – Sistema água/acetonitrila/cloreto de lítio para x_s=0,002 a 298,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$V_A=18,07 \text{ cm}^3 \text{ mol}^{-1}$	$V_B = 52,78 \text{ cm}^3 \text{ mol}^{-1}$	$V_{S}=24,16 \text{ cm}^{3} \text{ mol}^{-1}$
$V_{A}^{*}=17,37 \text{ cm}^{3} \text{ mol}^{-1},$	$V_B^*=40,03 \text{ cm}^3 \text{ mol}^{-1}$	$V_{S}^{*}=23,98 \text{ cm}^{3} \text{ mol}^{-1}$
$\widetilde{V}_{A}^{*}=1,0403$,	$\widetilde{V}_{B}^{*}=1,3185$	$\widetilde{V}_{s}^{*}=1,007$
$\overline{V}^{\infty}_{s}$ =104,034 cm ³ m	ol ⁻¹ , r _a =1,81A°, r _c	=0,76A°
T [*] _A =23707K, T [*]	$p_{B}=4464K$, $p_{A}^{*}=100,30 J$	cm^{-3} , $p_{A}^{*}=662,70 J cm^{-3}$
K _A =2303, p=0,	1 J cm ⁻³	

Tabela dos resultados para o sistema água/acetonitrila/cloreto de lítio para x = 0.002 a 298.15K

				1								
					Fração	Molar	da	água	$(\mathbf{x}_{\mathbf{A}})$			
	0,0206	0,0575	0,1003	0,2059	0,3028	0,4091	0,5086	0,6516	0,7030	08093	0,9180	0,9906
XB	0,9774	0,9405	0,8977	0,7921	0,6952	0,5889	0,4894	0,3464	0,2950	0,1887	0,0800	0,0074
K _A	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303
K _{AB}	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Δv^{*}_{AB}	-6,59	-6,59	-6,59	-6,59	-6,59	-6,59	-6,59	-6,59	-6,59	-6,59	-6,59	-6,59
χав	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
$A_{h\dot{a}}$	6,75	6,75	6,75	6,75	6,75	6,75	6,75	6,75	6,75	6,75	6,75	6,75
$\mathbf{B}_{\mathrm{h}\acute{a}}$	18,06	18,06	18,06	18,06	18,06	18,06	18,06	18,06	18,06	18,06	18,06	18,06
A_{Hc}	5,66	5,66	5,66	5,66	5,66	5,66	5,66	5,66	5,66	5,66	5,66	5,66
B_{Hc}	6,77	6,77	6,77	6,77	6,77	6,77	6,77	6,77	6,77	6,77	6,77	6,77
$\widetilde{\mathrm{V}}$	1,2905	1,2905	1,2905	1,2905	1,2905	1,2905	1,2905	1,2905	1,2905	1,2905	1,2905	1,2905
$\Phi_{\rm A}$	0,0268	0,0250	0,0448	0,0980	0,1546	0,2258	0,3037	0,4409	0,4996	0,6419	0,8263	0,9798
$\Phi_{\rm B}$	0,9900	0,9737	0,9539	0,9002	0,8439	0,7726	0,6946	0,5572	0,4984	0,3558	0,1711	0,0177
ϕ_{A1}	2,6 10-5	5,5 10-5	8,3 10 ⁻⁵	1,3 10-4	1,9 10-4	2,0 10-4	2,3 10-4	2,6 10-4	2,7 10-4	3,0 10-4	3,4 10 ⁻⁴	4,0 10-4
ϕ_{B1}	0,9632	0,9165	0,8651	0,7546	0,6628	0,5653	0,4738	0,3376	0,4980	0,1775	0,0647	0,0025
V_{f}^{E}	-0,056	0,007	0,212	0,376	0,607	1,110	1,640	2,401	2,675	3,243	3,822	4,200
V^{E}_{q}	0,085	0,025	-0,311	-0,555	-1,005	-1,567	-2,076	-2,740	-2,958	-3,415	-3,903	-4,194
V^{E}_{H}	-0,106	-0,106	-0,106	-0,106	-0,106	-0,106	-0,106	-0,106	-0,106	-0,106	-0,106	-0,106
$V^{E}_{\ \text{Mod}}$	-0,077	-0,124	-0,205	-0,389	-0,505	-0,563	-0,542	-0,445	-0,389	-0,278	-0,187	-0,100
V ^E _{Exp.}	-0,034	-0,081	-0,138	-0,285	-0,418	-0,553	-0,655	-0,727	-0,707	-0,630	-0,456	-0,155
	Fm	me os v	alores ai	ustáveis.	ജ്വ.							

Em que os valores ajustáveis são:

 K_{AB} =1200 , χ_{AB} = 10,50 J cm⁻³

$$\Delta v_{AB}^* = -6,59 \text{ cm}^3 \text{ mol}^{-1}$$

 $A_{Ha} = 6,75$, $B_{Ha} = 18,06$, $A_{Hc} = 5,66$, $B_{Hc} = 5,77$ 145

8.a – Sistema água/acetonitrila/cloreto de sódio para x_s=0,002 a 298,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$V_A = 18,07 \text{ cm}^3$	mol ^{-1,}	$V_{\rm B}$ = 52,78 cm ³	mol ⁻¹	$V_{s}=24,16 \text{ cm}^{3} \text{ mol}^{-1}$			
$V_{A}^{*}=17,37 \text{ cm}^{3}$	mol ⁻¹ ,	$V_B^*=40,03 \text{ cm}^3$	³ mol ⁻¹	$V_{S}^{*}=23,98 \text{ cm}^{3} \text{ mol}^{-1}$			
$\tilde{V}_{A}^{*}=1,0403$,		$\tilde{V}_{B}^{*}=1,3185$		$\tilde{V}_{s}^{*}=1,007$			
$\overline{\mathrm{V}}^{\infty}{}_{\mathrm{S}}$ =76,778 cm	$m^3 mol^{-1}$,	r _a =1,81A°,	r _c =1,02A ^c	5			
T [*] _A =23707K,	T [*] _B =4464	$4K, p_{A}^{*}=10$)0,30 J cm ⁻³ ,	p [*] _A =662,70 J cm [*]			
K _A =2303,	p=0,1 J cm	3					

Tabela dos resultados para o sistema água/acetonitrila/cloreto de sódio para x=0.002 a 298.15K

				<u>k</u>	Fração	Molar	da	água	(x _A)		······
	0,4096	0,4497	0,5060	0,5476	0,6036	0,6578	0,7205	0,8017	0,8432	0,9013	0,9910
XB	0,5884	0,5483	0,4920	0,4504	0,3944	0,3402	0,2775	0,1960	0,1548	0,0967	0,0070
KA	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303
K _{AB}	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Δv_{AB}^{*}	-7,99	-7,99	-7,99	-7,99	-7,99	-7,99	-7,99	-7,99	-7,99	-7,99	-7,99
χав	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
$A_{h\acute{a}}$	6,89	6,89	6,89	6,89	6,89	6,89	6,89	6,89	6,89	6,89	6,89
$\mathbf{B}_{\mathrm{h}\dot{\mathrm{a}}}$	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56
A _{Hc}	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95	5,95
\mathbf{B}_{Hc}	5,86	5,86	5,86	5,86	5,86	5,86	5,86	5,86	5,86	5,86	5,86
$\widetilde{\mathrm{V}}$	1,2545	1,2545	1,2545	1,2545	1,2545	1,2545	1,2545	1,2545	1,2545	1,2545	1,2545
Φ_{A}	0,2261	0,2560	0,3014	0,3377	0,3908	0,4475	0,5207	0,6304	0,6942	0,7943	0,9801
$\Phi_{\rm B}$	0,7720	0,7420	0,6966	0,6602	0,6070	0,5501	0,4767	0,3669	0,3029	0,2026	0,0165
φ _{A1}	1,8 10-4	1,9 10 ⁻⁴	2,0 10-4	2,1 10-4	2,3 10-4	2,4 10-4	2,5 10-4	2,8 10-4	2,9 10-4	3,1 10-4	3,8 10-4
Фв1	0,5925	0,5565	0,5052	0,4665	0,4131	0,3596	0,2955	0,2084	0,1622	0,0967	0,0041
$V^{E}_{\ f}$	0,043	0,291	0,635	0,892	1,236	1,572	1,959	2,455	2,712	3,068	3,617
V^{E}_{q}	-0,501	-0,787	-1,195	-1,487	-1,864	-2,227	-2,578	-2,941	-3,400	-3,323	-3,656
$V^{E}_{\ H}$	-0,146	-0,146	-0,146	-0,146	-0,146	-0,146	-0,146	-0,146	-0,146	-0,146	-0,146
$V^{E}_{_{Mod}}$	-0,604	-0,642	-0,706	-0,741	-0,774	-0,801	-0,765	-0,632	-0,542	-0,401	-0,185
$V^{E}_{\ Exp.}$	-0,516	-0,565	-0,633	-0,683	-0,743	-0,787	-0,765	-0,657	-0,577	-0,468	-0,259

 K_{AB} =1200 , χ_{AB} = 10,50 J cm⁻³

 $\Delta v_{AB}^* = -7,99 \text{ cm}^3 \text{ mol}^{-1}$

CAMPESE, G.M.

 $A_{Ha} = 6,89$, $B_{Ha} = 18,56$, $A_{Hc} = 5,95$, $B_{Hc} = 5,86$

9.a – Sistema água/acetonitrila/cloreto de potássio para x_s=0,002 a 298,15K

os valores dos volumes (dos componentes puros, característicos e reduzidos), foram obtidos das tabelas do capítulo 7.

$$\begin{split} & V_{A} = 18,07 \text{ cm}^{3} \text{ mol}^{-1}, & V_{B} = 52,78 \text{ cm}^{3} \text{ mol}^{-1} & V_{S} = 24,16 \text{ cm}^{3} \text{ mol}^{-1} \\ & V_{A}^{*} = 17,37 \text{ cm}^{3} \text{ mol}^{-1}, & V_{B}^{*} = 40,03 \text{ cm}^{3} \text{ mol}^{-1} & V_{S}^{*} = 23,98 \text{ cm}^{3} \text{ mol}^{-1} \\ & \widetilde{V}_{A}^{*} = 1,0403, & \widetilde{V}_{B}^{*} = 1,3185 & \widetilde{V}_{S}^{*} = 1,007 \\ & \overline{V}_{S}^{\infty} = 76,778 \text{ cm}^{3} \text{ mol}^{-1}, & r_{a} = 1,81A^{\circ}, & r_{c} = 1,02A^{\circ} \\ & T_{A}^{*} = 23707 \text{K}, & T_{B}^{*} = 4464 \text{K}, & p_{A}^{*} = 100,30 \text{ J cm}^{-3}, & p_{A}^{*} = 662,70 \text{ J cm}^{-3} \\ & \text{K}_{A} = 2303, & p = 0,1 \text{ J cm}^{-3} \end{split}$$

Tabela dos resultados para o sistema água/acetonitrila/cloreto de potássio para x_s=0,002 a 298,15K

					Fração	Molar	da	água	(X _A)		
	0,4097	0,4497	0,5082	0,5470	0,6043	0,6423	0,7207	0,8025	0,8432	0,9013	0,9876
XB	0,5883	0,5483	0,4898	0,4510	0,3937	0,3557	0,2773	0,1955	0,1548	0,0967	0,0104
K _A	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303	2303
K _{AB}	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Δv_{AB}^{*}	-7,62	-7,62	-7,62	-7,62	-7,62	-7,62	-7,62	-7,62	-7,62	-7,62	-7,62
χав	9,65	9,65	9,65	9,65	9,65	9,65	9,65	9,65	9,65	9,65	9,65
$A_{h\hat{a}}$	6,70	6,70	6,70	6,70	6,70	6,70	6,70	6,70	6,70	6,70	6,70
$\mathbf{B}_{\mathrm{h}\acute{a}}$	18,76	18,76	18,76	18,76	18,76	18,76	18,76	18,76	18,76	18,76	18,76
A_{Hc}	5,80	5,80	5,80	5,80	5,80	5,80	5,80	5,80	5,80	5,80	5,80
B_{Hc}	6,06	6,06	6,06	6,06	6,06	6,06	6,06	6,06	6,06	6,06	6,06
$\widetilde{\mathbf{V}}$	1,2515	1,2515	1,2515	1,2515	1,2515	1,2515	1,2515	1,2515	1,2515	1,2515	1,2515
$\Phi_{\rm A}$	0,2260	0,2559	0,3030	0,3369	0,3912	0,4304	0,5206	0,6311	0,6936	0,7936	0,9713
$\Phi_{\rm B}$	0,7715	0,7416	0,6943	0,6603	0,6059	0,5666	0,4762	0,3654	0,3027	0,2024	0,0243
ϕ_{A1}	1,8 10-4	1,9 10-4	2,0 10-4	2,1 10-4	2,3 10-4	2,4 10-4	2,5 10-4	2,8 10-4	2,9 10-4	3,1 10-4	3,7 10-4
φ _{B1}	0,5658	0,5297	0,4766	0,4409	0,3874	0,3511	0,2743	0,1908	0,1484	0,0875	0,0066
V^{E}_{f}	-0,025	0,221	0,587	0,829	1,184	1,420	1,907	2,415	2,669	3,030	3,563
V_{q}^{E}	-0,393	-0,710	-1,157	-1,441	-1,812	-2,009	-2,373	-2,744	-2,908	-3,133	-3,500
$V^{E}_{\ H}$	-0,186	-0,186	-0,186	-0,186	-0,186	-0,186	-0,186	-0,186	-0,186	-0,186	-0,186
$V^{E}_{\ Mod}$	-0,604	-0,675	-0,756	-0,798	-0,814	-0,775	-0,652	-0,515	-0,425	-0,289	-0,123
$V^{E}_{Exp.}$	-0,534	-0,613	-0,713	-0,762	-0,833	-0,853	-0,818	-0,691	-0,588	-0,439	-0,181

APĒNDICE - F

Em que os valores ajustáveis são:

$$\begin{split} K_{AB} = & 1200 \qquad , \ \chi_{AB} = 9,65 \ J \ cm^{-3} \qquad , \ \Delta v^*_{AB} = -7,62 \ cm^3 \ mol^{-1} \\ A_{Ha} = 6,70 \qquad , \ B_{Ha} = & 18,76 \qquad , \ A_{Hc} = & 5,80 \qquad , \ B_{Hc} = & 6,06 \end{split}$$

Gráficos dos dados experimentais e do modelo para o sistema água-acetonitrila-sal para xs=0,002 em função da fração molar da água a 298,15K.

148