Universidade Estadual de Campinas

Faculdade de Engenharia Química

Área de Concentração Desenvolvimento de Processos Biotecnológicos

MODELAGEM E SIMULAÇÃO DE BIORREATORES TIPO TORRE OPERANDO COM LEVEDURAS AUTO-IMOBILIZÁVEIS PARA PRODUÇÃO DE ETANOL

Autor: ROBERTA MIRANDA FERREIRA Orientador: PROF. DR. SILVIO ROBERTO ANDRIETTA

Dissertação de Mestrado apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Química

Campinas – São Paulo Agosto de 2003

UNICAMP BIBLIOTECA CENTRAL

CM00194154-0

667.006 Ciaid

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

F413m	Ferreira, Roberta Miranda Modelagem e simulação de biorreatores tipo torre operando com leveduras auto-imobilizáveis para produção de etanol / Roberta Miranda Ferreira Campinas, SP: [s.n.], 2003.
	Orientador: Silvio Roberto Andrietta Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química.
	1. Modelos matemáticos. 2. Fermentação. 3. Álcool. 4. Bioreatores. I. Andrietta, Silvio Roberto. II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título.

Dissertação de Mestrado defendida por *Roberta Miranda Ferreira* e aprovada em 15 de agosto de 2003 pela banca examinadora constituída pelos doutores:

Prof. Dr. Silvio Roberto Andrietta (Orientador) 11 Prof. Dr.Rubens Maciel Filho (Titular)

Prof. Dr/Francisco Maugeri Filho (Titular)

Dra. Maria da Graça Stupiello Andrietta (Suplente)

000gan .

Este exemplar corresponde à versão final da Dissertação de Mestrado em Engenharia Química.

Silvio Roberto Andrietta (Orientador)

Dedicatória

Aos meus queridos pais, Roberto e Vera, por me apoiarem e acreditarem na minha luta, a minha irmã Anatércia, por me acompanhar nesta jornada com paciência e compreensão e ao meu imão Marcelo, por todo apoio e amor em todos os momentos de minha vida.

Ao meu marido, Mitsuo, por todo amor dedicado, companheirismo, compreensão e por nunca me deixar desistir no caminho.

À minha Tia Silvia e primos Taísa e Eduardo por me acolherem com todo carinho e estarem presentes em minha vida, tornando-a mais feliz.

vii

Agradecimentos

Ao Prof. Dr. Silvio Roberto Andrietta pela orientação, confiança, paciência, dedicação, ensinamentos e grande amizade que foi criada, fazendo deste mestrado um ambiente maravilhoso de trabalho nestes anos de aprendizado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico, pela concessão da bolsa de estudos.

Ao Marcelo por toda dedicação e paciência ao me ensinar operar o sistema de biorreatores, seguida de uma grande amizade que firmou entre nós.

À Dra. Cláudia Steckelberg e Érica pela ajuda profissional em análises cromatográficas. À Milene e Alex por ter me ensinado as técnicas e os procedimentos no laboratório.

A todos os que estiveram comigo no departamento de biotecnologia e processos do CPQBA que contribuíram de alguma forma para o desenvolvimento deste trabalho, além da amizade e carinho nestes dois anos: Silvio, Graça, Cláudia, Marcelo, Milene, Alex, Cláudio, Klaus, Érica, Eriquinha e Gisele.

Às amigas mineiras Fabiana, Cibele e Fernanda, que vieram comigo para concretizar mais um de nossos tantos objetivos. Obrigada pela paciência, dedicação e companheirismo. Somos grandes vencedoras e principalmente amigas inseparáveis. Obrigada Nara e Raquel por tantos anos de amizade. Obrigada Patrícia, Vivian, Fabiana, Catarina por todas as farras...

Aos amigos que iniciaram o mestrado comigo e se fizeram presentes com amizade e ajuda, Ivanildo, Mariana, Raquel, Ana Paula, Amós, Fabiana e Melissa.

À Universidade Estadual de Campinas, Faculdade de Engenharia Química e ao Departamento de Processos Biotecnológicos por ter oferecido a oportunidade de dar continuidade à minha especialização.

Ao CPQBA/UNICAMP pela realização deste trabalho.

A Deus por me guiar sempre e me proporcionar mais uma vitória nesta etapa de minha vida.

E a todas as pessoas que contribuíram direta ou indiretamente com a realização deste trabalho.

Quase...

Ainda pior que a convicção do não, a incerteza do talvez é a desilusão de um "quase". É o quase que me incomoda, que me entristece, que me mata trazendo tudo que poderia ter sido e não foi. Quem quase ganhou ainda joga, quem quase passou ainda estuda, quem quase morreu está vivo, quem quase amou não amou.

Basta pensar nas oportunidades que escaparam pelos dedos, nas chances que se perdem por medo, nas idéias que nunca sairão do papel por essa maldita mania de viver no outono.

Pergunto-me, às vezes, o que nos leva a escolher uma vida morna; ou melhor, não me pergunto, contesto. A resposta eu sei de cor, está estampada na distância e frieza dos sorrisos, na frouxidão dos abraços, na indiferença dos "Bom dia", quase que sussurrados.

Sobra covardia e falta coragem até pra ser feliz.

A paixão queima, o amor enlouquece, o desejo trai.

Talvez esses fossem bons motivos para decidir entre a alegria e a dor, sentir o nada, mas não são. Se a virtude estivesse mesmo no meio termo, o mar não teria ondas, os dias seriam nublados e o arco-íris em tons de cinza.

O nada não ilumina, não inspira, não aflige nem acalma, apenas amplia o vazio que cada um traz dentro de si.

Não é que fé mova montanhas, nem que todas as estrelas estejam ao alcance, para as coisas que não podem ser mudadas resta-nos somente paciência, porém, preferir a derrota prévia à dúvida da vitória é desperdiçar a oportunidade de merecer.

Pros erros há perdão; pros fracassos, chance; pros amores impossíveis, tempo.

De nada adianta cercar um coração vazio ou economizar alma.

Um romance cujo fim é instantâneo ou indolor não é romance.

Não deixe que a saudade sufoque, que a rotina acomode, que o medo impeça de tentar.

Desconfie do destino e acredite em você.

Gaste mais horas realizando que sonhando, fazendo que planejando, vivendo que esperando porque, embora quem quase morre esteja vivo, quem quase vive já morreu!!

Luis Fernando Veríssimo

SUMÁRIO

LISTA	DE FIGURAS xv	
LISTA	DE TABELAS xxi	
NOME	NOMENCLATURA xxiii	
RESUMO xxvii		
ABSTI	XACT xxix	
1.	INTRODUÇÃO1	
2.	REVISÃO BIBLIOGRÁFICA	
2.1	Histórico	
2.1.1	Produção Mundial de Etanol	
2.1.2	Produção de Etanol no Brasil	
2.2	Processos Fermentativos para Produção de Etanol	
2.2.I	Processos Clássicos	
2.2.2	Processos Batelada Alimentada (Melle-Boinot)	
2.2.3	Processos Contínuos	
2.2.3.1.	Tipos de Reatores e Arranjos8	
2.3	Características Bioquímicas da Fermentação Alcoólica10	
2.4	O Fenômeno de Floculação das Leveduras11	
2.5	Cinética dos Processos Fermentativos	
2.5.1	Modelos Cinéticos	
2.6	Biorreatores de Leito Fixo	
2.7	Modelos matemáticos para Reatores de Leito Fixo23	
2.7.1	Descrição dos Principais Modelos Matemáticos	
2.7.2	Modelos Matemáticos aplicados à Fermentação Contínua utilizando Leveduras	
Flocula	ntes	
3.	MATERIAL E MÉTODOS	
3.1	Materiais	
3.1.1	Microrganismos	
3.1.2	Inóculo	
3.1.3	Meio utilizado para obtenção do inóculo28	
3.1.4	Meio utilizado na fermentação28	

3.1.5	Equipamentos
3.1.6	Operação do Reator
3 .1.7	Condução dos Ensaios31
3.2	Métodos Analíticos
3.2.1	Determinação de sólidos solúveis
3.2.2	Preparação das Amostras
3.2.3	Determinação de Sacarose, Glicose, Frutose, Glicerol e Etanol
3.3	Modelagem do biorreator
3.3.1	Modelos cinéticos
3.3.2	Modelagem e Simulação Matemática do Biorreator34
3.3.3	Ajuste dos parâmetros cinéticos
4.	RESULTADOS E DISCUSSÃO
4.1	Dados experimentais
4.2	Determinação dos parâmetros cinéticos61
4.2.1	Ajuste do Modelo de JIN et. al. (1981)60
4.2.2	Ajuste do Modelo de SEVELY et. al. (1981)74
4.2.3	Ajuste do Modelo de TOSETTO & ANDRIETTA (20022)84
4.2.4	Ajuste do Modelo Proposto94
5.	CONCLULOES E SUGESTÕES130
5.1	Conclusões Finais
5.2	Sugestões para trabalhos futuros
6.	REFERÊNCIAS BIBLIOGRÁFICAS132
7.	ANEXO

ÍNDICE DE FIGURAS

Figura 1 -Valores relativos à produção mundial de etanol por Continente
Figura 2- Sistema de Bancada com diluidor em linha e fermentador tipo torre (VIEGAS et
<i>al.</i> , 2002c)21
Figura 3 - Classificação dos modelos para um Reator de Leito Fixo adaptada por TOLEDO
(1999)25
Figura 4 - Representação esquemática do sistema de fermentação
Figura 5 - Esquema dos biorreatores de bancada em paralelo
Figura 6 - Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão
de 9,6 mL/min e brix de 15% para o Reator 0143
Figura 7 - Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão
de 9,6 mL/min e brix de 15% para o Reator 0243
Figura 8 - Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão
de 9,7 mL/min e brix de 18% para o Reator 0145
Figura 9 - Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão
de 9.7 mL/min e brix de 18% para o Reator 02 45
de 3,7 millimit e onix de 1076 para e realer 02
Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores
Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada
 Figura 10 - Zona de transição com grande turbulência no término do leito dos Biorreatores de bancada

Figura 18 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 13 mL/min e brix de 24% para o Reator 0154
Figura 19 - Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 13 mL/min e brix de 24% para o Reator 0254
Figura 20 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 16 mL/min e brix de 15% para o Reator 0156
Figura 21 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 16 mL/min e brix de 15% para o Reator 0256
Figura 22 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 16,5 mL/min e brix de 18% para o Reator 0158
Figura 23 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 16,5 mL/min e brix de 18% para o Reator 0258
Figura 24 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 16,5 mL/min e brix de 28% para o Reator 0160
Figura 25 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com
vazão de 16,5 mL/min e brix de 28% para o Reator 0260
Figura 26 - Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores
Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)
 Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01(a) e 02 (b)

Figura 35 - Gráficos referentes ao Experimento 07 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de JIN72
Figura 36 - Gráficos referentes ao Experimento 08 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de JIN73
Figura 37 - Gráficos referentes ao Experimento 09 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de JIN74
Figura 38 - Gráficos referentes ao Experimento 01 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY75
Figura 39 - Gráficos referentes ao Experimento 02 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY76
Figura 40 - Gráficos referentes ao Experimento 03 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY77
Figura 41 - Gráficos referentes ao Experimento 04 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY78
Figura 42 - Gráficos referentes ao Experimento 05 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY79
Figura 43 - Gráficos referentes ao Experimento 06 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY80
Figura 44 - Gráficos referentes ao Experimento 07 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY81
Figura 45 - Gráficos referentes ao Experimento 08 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY82
Figura 46 - Gráficos referentes ao Experimento 09 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de SEVELY83
Figura 47 - Gráficos referentes ao Experimento 01 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA84
Figura 48 - Gráficos referentes ao Experimento 02 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA85
Figura 49 - Gráficos referentes ao Experimento 03 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA86
Figura 50 - Gráficos referentes ao Experimento 04 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA87

Figura 51 - Gráficos referentes ao Experimento 05 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA88
Figura 52 - Gráficos referentes ao Experimento 06 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA89
Figura 53 - Gráficos referentes ao Experimento 07 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA90
Figura 54 - Gráficos referentes ao Experimento 08 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA91
Figura 55 - Gráficos referentes ao Experimento 09 para os Reatores 01 e 02: a) perfil de
ART; b) perfil do etanol e c) perfil do modelo de TOSETTO & ANDRIETTA92
Figura 56 - Gráficos referentes ao Experimento 01 para o Reator 01 com porosidade 0,5: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol95
Figura 57 – Perfil do Modelo Proposto -Experimento 01, Reator 01, $\varepsilon = 0,5$, vazão = 9,6
mL/min e brix = 15%96
Figura 58 – Gráfico referente ao Experimento 01 para o Reator 02 com porosidade 0,5: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol97
Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, $\varepsilon = 0.5$; vazão = 9,6
Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
 Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, ε = 0,5; vazão = 9,6 mL/min e brix = 15%
Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, $\varepsilon = 0.5$; vazão = 9,6mL/min e brix = 15%Figura 60 – Gráfico referente ao Experimento 02 para o Reator 01 com porosidade 0,6: a)perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol99Figura 61 –Perfil do Modelo Proposto -Experimento 02, Reator 01, $\varepsilon = 0.6$; vazão = 9,7mL/min e brix = 18%100Figura 62 – Gráfico referente ao Experimento 02 para o Reator 02 com porosidade 0,4: a)perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol101Figura 63 –Perfil do Modelo Proposto -Experimento 02, Reator 02, $\varepsilon = 0.4$; vazão = 9,7mL/min e brix = 18%102Figura 64 – Gráfico referente ao Experimento 03 para o Reator 01 com porosidade 0,6: a)perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol102Figura 65 –Perfil do Modelo Proposto -Experimento 03 para o Reator 01 com porosidade 0,6: a)perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol103Figura 65 –Perfil do Modelo Proposto-Reator 01, experimento 03, $\varepsilon = 0.6$; vazão = 10,0mL/min e brix = 20%104Figura 66 – Gráfico referente ao Experimento 03 para o Reator 02 com porosidade 0,4: a)

xviii

Figura 67 – Perfil do Modelo Proposto -Experimento 03, Reator 02, $\varepsilon = 0,4$; vazão = 10
mL/min e brix = 20%
Figura 68 – Gráfico referente ao Experimento 04 para o Reator 01 com porosidade 0,5: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol107
Figura 69 – Perfil do Modelo Proposto -Experimento 04, Reator 01, $\varepsilon = 0.5$; vazão=12,9
mL/min e brix = 16%
Figura 70 - Gráfico referente ao Experimento 04 para o Reator 02 com porosidade 0,4: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol109
Figura 71 – Perfil do Modelo Proposto -Experimento 04, Reator 02, $\varepsilon = 0,4$; vazão = 12,9
mL/min e brix = 16%
Figura 72 - Gráfico referente ao Experimento 05 para o Reator 01 com porosidade 0,5: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol111
Figura 73 – Perfil do Modelo Proposto -Experimento 05, Reator 01, $\varepsilon = 0.5$; vazão=12,7
mL/min e brix = 18%
Figura 74 – Gráfico referente ao Experimento 05 para o Reator 02 com porosidade 0,5: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol113
Figura 75 – Perfil do Modelo Proposto -Experimento 05, Reator 02, $\varepsilon = 0.5$; vazão=12,9
mL/min e brix = 18%
Figura 76 - Gráfico referente ao Experimento 06 para o Reator 01 com porosidade 0,7: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol115
Figura 77 – Perfil do Modelo Proposto -Experimento 06, Reator 01, $\varepsilon = 0,7$; vazão = 13
mL/min e brix = 24%
Figura 78 – Gráfico referente ao Experimento 06 para o Reator 02 com porosidade 0,7: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol117
Figura 79 – Perfil do Modelo Proposto -Experimento 06, Reator 02, $\varepsilon = 0,7$; vazão = 13
mL/min e brix = 24%
Figura 80 – Gráfico referente ao Experimento 07 para o Reator 01 com porosidade 0,5: a)
Figura 80 – Gráfico referente ao Experimento 07 para o Reator 01 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol119
 Figura 80 – Gráfico referente ao Experimento 07 para o Reator 01 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol119 Figura 81 – Perfil do Modelo Proposto -Experimento 07, Reator 01, ε = 0,5; vazão =16

Figura 82 - Gráfico referente ao Experimento 07 para o Reator 02 com porosidade 0,4: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol121
Figura 83 – Perfil do Modelo Proposto -Experimento 07, Reator 02, $\varepsilon = 0,4$; vazão = 16
mL/min e brix = 15%
Figura 84 - Gráfico referente ao Experimento 08 para o Reator 01 com porosidade 0,7: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol123
Figura 85 – Perfil do Modelo Proposto -Experimento 08, Reator 01, $\varepsilon = 0,7$; vazão=16,5
mL/min e brix = 18%
Figura 86 – Gráfico referente ao Experimento 08 para o Reator 02 com porosidade 0,5: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol125
Figura 87 – Perfil do Modelo Proposto -Experimento 08, Reator 02, $\varepsilon = 0.5$; vazão=16,5
mL/min e brix = 18%
Figura 88 – Gráficos referentes ao Experimento 09 para o Reator 01 com porosidade 0,7: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol127
Figura 89 – Perfil do Modelo Proposto -Experimento 09, Reator 01, $\varepsilon = 0,7$; vazão= 16,5
mL/min e brix= 28%
Figura 90 – Gráficos referentes ao Experimento 09 para o Reator 02 com porosidade 0,7: a)
perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etano1128
Figura 91 – Perfil do Modelo Proposto -Experimento 09, Reator 02, $\varepsilon = 0,7$; vazão=16,5

ÍNDICE DE TABELAS

Tabela 1 – Arranjo dos ensaios conduzidos no biorreator
Tabela 2 - Taxas de Aplicação empregadas no sistema de biorreatores41
Tabela 3 – Experimento 01- Vazão de 9,6 mL/min (τ = 2,43 horas) e brix de 15%]42
Tabela 4 - Experimento 02- Vazão de 9,7 mL/min (τ = 2,4 horas) e brix de 18%44
Tabela 5 - Experimento 03- Vazão de 10 mL/min (τ = 2,33 horas) e brix de 20%
Tabela 6 - Experimento 04- Vazão de 12,9 mL/min (τ= 1,81horas) e brix de 15%49
Tabela 7 - Experimento 05- Vazão de 12,7 mL/min (τ = 1,84horas) e brix de 18%51
Tabela 8 - Experimento 06- Vazão de 13 mL/min (τ = 1,94 horas) e brix de 24%53
Tabela 9 - Experimento 07- Vazão de 16 mL/min (τ= 1,46 horas) e brix de 15%55
Tabela 10 - Experimento 08-Vazão de 16,5 mL/min (τ= 1,41 horas) e brix de 18%57
Tabela 11 - Experimento 09-Vazão de 16,5 mL/min (τ = 1,41 horas) e brix de 28%
Tabela 12 – Modelos cinéticos utilizados para a determinação dos parâmetros62
Tabela 13 – Resultado da Simulação dos dados para os 3 modelos para um único
substrato63
Tabela 14 - Resultado da Simulação dos dados dos reatores 1 e 2 para o modelo proposto
para mais de 1 substrato94

NOMENCLATURA

- Ac Área transversal de escoamento (cm^2)
- Ac = Area total
- A_1 = valor exponencial empírico
- A₂ = valor exponencial empírico
- ART = açúcares redutores totais
- F = concentração de frutose
- F Vazão volumétrica na Alimentação (mL/ hora)
- G = concentração de glicose
- K_S = constante de Monod que depende do microrganismo e das condições de cultura
- K₄ = constante de inibição pelo substrato
- $K_{S,X}$ = constante de Monod
- $K_{I,S}$ = constante de inibição pelo substrato
- $K_b = constante empírica$
- K_1 = constante de inibição empírica
- $K_2 = constante de inibição empírica$
- K_i = constante de inibição pelo produto
- K_{SF} = constante de saturação da frutose
- K_{SG} = constante de saturação da glicose
- K_{IF} = constante de inibição pela frutose

K_{IG} = constante de inibição pela glicose

K_{1,Px} = constante de inibição pelo produto

 K_{Px} = constante de inibição pelo produto

- m = valor exponencial empírico
- n = valor exponencial empírico

N = número de pontos

 $P_{X,máx}$ = concentração limite do produto inibidor

 $P_{máx,F}$ = concentração limite do produto inibidor

P_{máx}= concentração limite do produto inibidor

Q = vazão de alimentação

 r_S = velocidade cinética de consumo de substrato

 r_X = velocidade cinética de crescimento de células

 \mathbf{r}_{P} = velocidade cinética de formação de produto

S = concentração do substrato limitante

S_{máx} = máxima concentração de substrato onde não há crescimento celular

 S_{min} = concentração onde se inicia o efeito de inibição.

 $S_{S,max}$ = concentração limite do substrato inibidor

Ta = taxa de aplicação

Tc = taxa de conversão de substrato em produto

V = volume do biorreator

v = velocidade específica da hidrólise da sacarose

 v_{max} = velocidade específica máxima da hidrólise da sacarose

xi = dados calculados pelo modelo

xe = dados experimentais

X_{máx} = concentração limite de célula inibidora

Xd = células inativas (mortas)

Xv = células viáveis

Xt = quantidade total de células viáveis e inativas

 $Y_{X/S}$ = Produção de Células: Massa celular produzida por substrato consumido

Y_{P/S} = Rendimento da Reação: Produto formado por substrato consumido;

 $Y_{X/S}$ = Produção de Células: Massa celular produzida por substrato consumido

 $Y_{P/S}$ = Rendimento da Reação: Produto formado por substrato consumido;

 ϵ = Porosidade do leito de células

•

 μ = velocidade específica de crescimento (h^{-1})

 μ_{max} = valor da velocidade específica máxima de crescimento

 $\mu_{max,i}$ = velocidade específica máxima de crescimento na presença de etanol

 ρ = relação entre a massa seca e o volume de massa úmida

RESUMO

Este trabalho teve como objetivo modelar matematicamente um biorreator tipo torre de leito pseudo-expandido. Diferentes modelos cinéticos foram testados para descrever o comportamento deste biorreator em diferentes condições de operação. A cepa utilizada nos experimentos foi selecionada em função de sua capacidade de floculação, principal requisito para manutenção da linhagem imobilizada no biorreator. Os experimentos foram realizados em dois biorreatores tipo torre operando em paralelo, alimentados de forma independente com mesma vazão e concentração de substrato. Os ensaios consistiram em nove diferentes condições de operação e para cada condição foram coletadas doze amostras de cada reator ao longo de sua altura. A concentração de substrato foi variada de 155 a 279 g/L e a vazão de alimentação de 9,7 a 16,5 mL/min. Os resultados mostraram que as menores concentrações de substrato na saída do reator foram obtidas para ensaios com menores taxas de aplicação de substrato (g de substrato/hora) utilizada. Os níveis de conversão nos biorreatores foram próximos de 80% para a maioria dos experimentos. Para a determinação dos parâmetros cinéticos, foi utilizado um programa computacional desenvolvido em DELPHI 5.0. Os modelos estudados foram: JIN et al. (1981), SEVELY et al. (1981), TOSETTO & ANDRIETTA (2002) que levam em consideração um único substrato (ART). Outro modelo proposto neste trabalho que leva em consideração a presença de duas fontes de substrato e a hidrólise da sacarose foi estudado. O modelo proposto por JIN et. al. (1981) mostrou o melhor ajuste para os dados experimentais; porém, os valores dos parâmetros cinéticos apresentaram grandes variações entre os experimentos. O modelo proposto por TOSETTO & ANDRIETTA (2002) foi o que apresentou menor oscilação nos valores dos parâmetros cinéticos. O modelo proposto neste trabalho foi capaz de descrever satisfatoriamente o consumo de sacarose, glicose e frutose, mostrando a existência do fenômeno de diauxia entre a glicose e frutose.

Palavras-chave: Modelagem matemática, Cinética, Fermentação alcoólica, Reator torre, Leveduras floculantes, Imobilização sem suporte.

ABSTRACT

This work had as objective to model a reactor type tower of pseudo-expanded bed mathematically. Different kinetic models were tested to describe the behavior of the reactor in different operation conditions. The yeast strain used in the experiments was selected in function of its flocculation capacity, main requirement for maintenance of the cell immobilized in the reactor. The experiments were carried out in two tower reactors operating in parallel with independent feeding. The experiments consisted of nine different operation conditions and for each condition twelve samples of each reactor were collected along its height. The substrate concentration was varied of 155 to 279 g/L and the feeding flow rate of 9,7 to 16,5 mL/min. The results of the experiments showed that the smallest substrate concentrations in the out flow of the reactor were obtained when smaller substrate application rate (g substrate per hour) was used. The conversion levels in the reactors were close 80% for all the experiments. For the determination of the kinetic parameters, a software developed in DELPHI 5.0 was used. The studied kinetics models were: JIN et al. (1981), SEVELY et al. (1981), TOSETTO & ANDRIETTA (2002) that take in consideration an only substrate (ART). Another model proposed in this work that takes in consideration the presence of the two substrate source and the hydrolyze of the sucrose was studied. The model proposed by JIN et al. (1981) showed the best adjust to the experimental date, but the values of the model parameters presented great variations among the experiments. The model proposed by TOSETTO & ANDRIETTA (2002) was what presented smaller variation in the values of the parameters among the experiments. The model proposed in this work was able to describe the profile of sucrose, glucose and fructose consumption satisfactorily, showing the existence of the diauxia phenomenon between the glucose and fructose.

Key-words: Mathematics modeling, Kinetics, alcoholic Fermentation, Tower Reactor, flocculanting yeasts, free support Immobilization.

1. INTRODUÇÃO

O aumento do consumo de petróleo nas décadas de 60 e 70 se deu principalmente pela ampliação da industria petroquímica nos parques industriais dos paises em desenvolvimento (ATALA, 2000). Porém, o petróleo, apesar de abundante na natureza, é uma matéria-prima de fonte esgotável, não renovável e que emite poluentes provocando vários danos ambientais.

Na década de 70, em virtude da guerra do Oriente Médio, o preço do barril de petróleo elevou acarretando uma crise energética mundial. Como alternativa, o governo brasileiro criou o Programa Nacional do Álcool (PROÁLCOOL) em 1975 com o objetivo de substituir a gasolina pelo álcool em veículos automotivos.

Com o fim dos subsídios no final da década de 80 e os baixos preços do barril de petróleo, o setor sucroalcooleiro passou por uma crise, inviabilizando assim a produção de etanol. A produção de álcool combustível apresentou considerável aumento, acompanhado de importantes ganhos de produtividade, desde a implantação do PROÁLCOOL. Estudos realizados por **FERREIRA (2002)** mostra que o Setor tem respondido positivamente aos estímulos externos, tanto os governamentais, agora escassos, como os provenientes do mercado de combustíveis. O custo de produção tem diminuído sistematicamente, fato marcante no mercado de energia, no qual quase todos os custos são crescentes. Os estudos mostram haver ainda espaço para o aumento da produtividade da lavoura e da indústria que poderá fazer baixar ainda mais o custo.

Acredita-se que a definição de uma política energética clara e permanente, que leve em consideração os efeitos do uso do álcool sobre a geração de empregos, o balanço de comércio exterior, o desenvolvimento tecnológico, o abatimento do carbono atmosférico e a possibilidade da co-geração, seja suficiente para firmar a posição do álcool na matriz energética brasileira.

A evolução dos processos de fermentação alcoólica nas últimas décadas caminhou para o desenvolvimento da fermentação contínua (ZARPELON & ANDRIETTA, 1992). Atualmente, novas tecnologias estão sendo estudadas com o objetivo de otimizar os processos industriais existentes e ainda desenvolver novos que permitam a minimização de custos e consumo de energia.

VIEGAS (1999) desenvolveu um processo de produção contínua de etanol através da utilização de reatores tipo torre com leveduras floculantes. Em seu trabalho foram obtidos rendimentos na ordem de 93%, alta concentração de etanol no vinho (9,5 GL) e altas produtividades (15,40 g de Etanol/L. h).

A modelagem matemática e simulação por computador são ferramentas de extrema importância para se entender o funcionamento dos biorreatores. Essas também são bastante úteis no estudo de aumento de escala dos mesmos.

A modelagem dos biorreatores tipo torre que operam com células autoimobilizáveis é bastante complexa, porém necessária; pois, a condição de compactação do leito é uma função da taxa de liberação de dióxido de carbono no meio. Para que essa tecnologia de produção de etanol possa ser utilizada industrialmente, vários fatores devem ser analisados já que uma desestabilização do leito em um biorreator industrial é inaceitável, devido ao custo que esse fenômeno pode causar.

O estudo de todos os fatores que podem interferir na estabilidade do biorreator pode ser facilitado através da modelagem do mesmo, o que permite, através de simulações por computador, verificar o comportamento desses em diferentes condições de operação sem que novos ensaios em escala de bancada sejam realizados.

Tendo em vista esses fatos, este trabalho tem por objetivo, modelar matematicamente esse biorreator e encontrar os modelos cinéticos que melhor descrevem o comportamento da cepa de levedura utilizada nos ensaios. Pretende-se ainda encontrar a relação existente entre as taxas de aplicação de substrato e a compactação do leito e conseqüentemente, determinar o perfil de conversão de substrato e produção de etanol ao longo do biorreator para diferentes condições de operação.

2

2. REVISÃO BIBLIOGRÁFICA

2.1 Histórico

2.1.1 Produção Mundial de Etanol

Atualmente a produção de etanol no continente americano representa cerca de dois terços da produção total mundial. Essa produção atingiu em 1998 um valor de 31,2 bilhões de litros. Este valor corresponde a uma produção total do continente americano de 20,3 bilhões de litros, de 5,5 na Ásia, de 4,7 na Europa, de 0,5 em África e de 0,2 na Oceania (**BERG, 1999**). A Figura 1 mostra os índices da produção mundial de etanol em todos os continentes.

Figura 1 -Valores relativos à produção mundial de etanol por Continente.

2.1.2 Produção de Etanol no Brasil

Produzia-se etanol desde o início do século passado, porém com a crise do petróleo ocorrida no início dos anos setenta, o Brasil viu-se obrigado a procurar eventuais substitutos para os combustíveis derivados de petróleo. Então, optou-se pelo álcool originário da cana-de-açúcar que era uma alternativa já conhecida.

O Programa Nacional do Álcool (PROÁLCOOL) foi criado em 1975 com o objetivo de substituir combustíveis derivados de petróleo e também modernizar e valorizar

a produção de açúcar no mercado internacional que não era tão competitivo. Assim, o Brasil tornou-se o primeiro país do mundo a desenvolver um programa alternativo de combustível renovável para a substituição à gasolina.

Em relação ao Proálcool, os seguintes fatores são destacados (SIQUEIRA, 1993):

- Trata-se de energia renovável;
- Combustível com maior grau de octanagem, ou seja, menos poluente;
- Emprega mão-de-obra direta, com fixação do homem no meio rural;
- É um programa de conteúdo estratégico pelo seu caráter nacionalista e pela sua dispersão territorial.

São Paulo foi o estado que mais recebeu incentivos fiscais e subsídios financeiros para aumentar sua produção de álcool. A instalação de destilarias anexas às usinas de açúcar já existentes teve como objetivo a produção de álcool anidro, utilizado como aditivo à gasolina. (SINICIO, 1992). Com o sucesso do programa, novas usinas autônomas passaram a produzir álcool hidratado (ANDRADE, 2000).

BERTELLI (1992) destaca que o álcool carburente, em espécies anidro e hidratado, participa aproximadamente com 12% do consumo de derivados de petróleo. Notou-se então, um crescimento progressivo na produção de álcool de 1975 a 1992 de 500 milhões para 12,7 bilhões de litros respectivamente. Pelas perspectivas de **CONCEIÇÃO** (2002), para a safra de 2002/2003, essa produção deve ficar em 11,2 bilhões de litros, com exportações de 450 milhões de litros.

Atualmente o governo brasileiro está se preparando para o relançamento do Proálcool, onde não haverá subsídios para os usineiros e montadoras e nem a mão forte do governo controlando o mercado de combustível que desde o início de 2002 está aberto à concorrência. Além do que, o Protocolo de Kioto determinou a diminuição gradativa das emissões de gases poluentes. Assim como já é feito no Brasil, onde a gasolina é misturada com até 24% de álcool, o mundo caminha para a fórmula mista (STEFANO, 2002). atualmente a proporção de álcool anidro adicionado à gasolina é de 20-24% (v/v) (ZANIN *et al.*, 2000).

2.2 Processos Fermentativos para Produção de Etanol

A obtenção de etanol por via fermentativa se dá por processos descontínuos ou processos contínuos.

Na década de trinta surgiu na França o processo Melle-Boinot (Batelada Alimentada) que proporcionou um grande avanço na produção industrial de etanol (ALMEIDA, 1960).

Os processos de corte e clássicos (pé-de-cuba) eram muito utilizados até a década de sessenta no Brasil. Após essa época, os processos de batelada alimentada começaram a ser implantados. Segundo ZAPERLLON & ANDRIETTA (1992), todas as destilarias instaladas com a criação do Proálcool em 1975, foram equipadas com esse processo.

O processo contínuo surgiu como forma de aperfeiçoamento do processo Melle-Boinot apesar de não ser um desenvolvimento recente (FINGUERUT *et al.*, 1992). Então, a utilização do processo contínuo industrial iniciou-se nos anos setenta. Atualmente, de acordo com ZAPERLLON & ANDRIETTA (1992), cerca de 40% das unidades industriais brasileiras utilizam processos de fermentação contínua.

Uma inovação para os processos fermentativos se deu pela utilização de leveduras floculantes, permitindo eliminar as separadoras centrífugas que têm finalidade de separar as células do vinho fermentado (**BU'-LUCK**, **1983**).

2.2.1 Processos Clássicos

Trata-se de processos de fermentação alcoólica descontínua, também chamados de Batelada Simples, que utilizam um inóculo novo a cada batelada. São processos muito lentos, isto é, perde-se muito tempo nas etapas de limpeza e preparação do reator, seguida pela purificação do etanol através de sucessivas destilações (MAIORELLA *et al.*, 1981).

Dois sistemas podem ser utilizados para esse processo (TOSETTO, 2002):

 Sistema de cortes: consiste em realizar a primeira fermentação, então o volume de mosto é dividido em dois, sendo a metade enviada para a destilação e o restante é utilizado como pé para a próxima fermentação; Sistema de cultura pura ou pé-de-cuba: para cada fermentação, utiliza-se de uma cultura pura, adiciona-se o mosto até completar o volume do reator.

2.2.2 Processos Batelada Alimentada (Melle-Boinot)

No Brasil, processo clássico ainda estava sendo usado no final da década de cinquenta. Após este período este processo passou a ser rapidamente substituído pelo processo Melle-Boinot (DREWS, 1964).

O processo baseia-se na alimentação por pulsos ou contínua do substrato ao fermentador até a capacidade máxima do mesmo, ocorrendo o crescimento da massa celular seguido da taxa de consumo de substrato de maneira que as concentrações de açúcares totais permaneçam constantes (em torno de 1,5 - 3,0 g/l) no reator. Na prática, essas concentrações reduzidas e constantes de açúcares não são observadas, operando-se em concentrações maiores e crescentes no decorrer do enchimento.

Uma inovação do processo, em relação aos convencionais, foi a utilização de um tratamento ácido, com pH entre 2,5 e 4,5 do creme de leveduras para a eliminação de possíveis contaminantes para posterior utilização do inóculo para a próxima batelada (DREWS, 1964).

Entretanto, o processo de fermentação contínua tornou-se mais atrativo por apresentar grande potencial para redução dos custos de produção entre outras vantagens em relação ao batelada alimentada.

2.2.3 Processos Contínuos

Com o esgotamento tecnológico do processo Melle-Boinot, os processos contínuos se firmaram rapidamente como uma alternativa industrialmente viável.

O interesse pelo processo de fermentação alcoólica contínua foi retomado no Brasil a partir da última década, principalmente pela razão dos processos mais recentes serem mais confiáveis e levarem a uma redução de custo de operação (ZAPERLLON & ANDRIETTA, 1992). O processo de fermentação alcoólica contínua pode ser dividido em três etapas, segundo ANDRIETTA (1994):

- Unidade de Tratamento ácido;
- Unidade de separação de células de levedura;
- Fermentadores.

De acordo com ANDRIETTA (1994) as células de leveduras, após terem sido submetidas ao tratamento ácido (fermento tratado), deixam as unidades de tratamento e são misturadas com o meio de alimentação (mosto). Esta mistura é então enviada aos fermentadores. A fração entre a vazão de fermento tratado e a vazão total de alimentação dos fermentadores é chamada taxa de reciclo. Depois de ocorrida a transformação dos açúcares em etanol, o vinho fermentado contendo células de leveduras (vinho bruto) é enviado para a unidade de separação. Esta unidade é constituída de separadoras centrífugas de prato que trabalham a uma velocidade angular de 8000 rpm (rotações por minuto). Estas separadoras recebem o vinho bruto contendo de 30 a 45 g de células por litro de vinho e fornecem dois produtos: uma fase leve e outra pesada. A fase pesada contendo entre 160 a 200 g de células por litro é enviada para a unidade de tratamento ácido. A leve, praticamente isenta de células de levedura (concentração máxima permitida 3 g de células por litro) é chamado de vinho delevedurado e é enviado ao tanque pulmão da unidade de destilação, também chamado de dorna volante.

O número total de dornas de fermentação e o volume relativo de cada uma delas tem sido objeto de estudo para diversos pesquisadores. GHOSE & TYAGI (1979) concluíram que na operação utilizando-se duas dornas iguais em série, o volume total de reatores é 58% menor que se usando um reator. Mais recentemente, em trabalho de simulação, ANDRIETTA (1994) concluiu que o sistema ótimo é constituído por quatro reatores de mistura perfeita ligados em série com 1,5; 1,9; 2,2 e 1,45 horas de tempo de residência.

BORZANI (1960) e **GUERREIRO (1995)** destacaram os beneficios da fermentação contínua. Segundo o último autor, o emprego da fermentação contínua associada à adoção de técnicas como cinética microbiana, otimização, simulação de processos e projetos específicos pode trazer vantagens como: modernização da usina;

aumento na produção; redução dos gastos de mão-de-obra; redução de gastos em análises; aumento da produtividade; condução da fermentação em estado estacionário; redução consumo de insumos; uniformidade do produto; maior controle operacional do processo. **ANDRADE (2000)** também cita outras vantagens como: redução de tempos não produtivos (carga, descarga, limpeza) em cada ciclo do processo conduzindo a um aumento da produção total; não necessita de unidades de armazenamento intermediário; a automação é simplificada, podendo-se basear em uma amostragem em tempo real.

Estudos comparativos e avaliações econômicas de diversos processos utilizados na produção de etanol por fermentação concluíram pelas vantagens do processo de fermentação contínua em relação à batelada tradicional (CYSEWSKI & WILKE, 1978; MAIORELLA *et al.*, 1984). CYSEWSKI & WILKE (1978) demonstraram uma redução de 57% no investimento de capital fixo em destilarias com fermentação contínua quando comparado ao daquelas que utilizam processo batelada. Reduções ainda maiores, da ordem de 68 e 71%, são obtidas para os processos que utilizam reciclo de células e operação a vácuo, respectivamente.

PAIVA et al. (1996) demonstraram que é possível diminuir os custos de produção deste combustível operando com um reator de forma contínua, tipo torre, com altas concentrações de células utilizando decantadores como unidade de separação quando a cepa de levedura utilizada possui características floculantes e ainda obter produtividade de 14,4 g de etanol/L. Em relação à batelada alimentada, esse processo tem apresentado uma maior produtividade, com aumento que pode atingir até 100% (RODRIGUES et al., 1992).

ANDRIETTA (1997) acredita que a re-centrifugação do fermento e processos que não utilizam separadoras centrífugas são as duas alterações mais promissoras aos processos atuais de fermentação contínua.

2.2.3.1 Tipos de Reatores e Arranjos

ZAPERLON & ANDRIETTA (1992) descreveram a utilização de vários processos para fermentação contínua. Os principais processos podem ser divididos em dois grupos: *Fermentação em dorna única* onde todo o processo é realizado numa única dorna,

de mistura completa, onde o teor de açúcares e de álcool é constante e *Fermentação em cascata* onde as dornas individuais são conectadas em série, passando-se consecutivamente de uma para outra, assemelhando-se a uma "cascata".

GHOSE & TYAGI (1979a) concluíram que sistemas de fermentação alcoólica com dois reatores operando em série são mais produtivos que os sistemas constituídos de um único reator.

De acordo com GOMA *et al.*, (1990), na fermentação alcoólica, a máxima produtividade foi alcançada fazendo uma combinação de reatores, sendo o primeiro reator de mistura perfeita, seguido de um reator tubular.

ANDRIETTA & STUPIELLO (1990) e ANDRIETTA (1991) provaram que a produtividade passa de 1,084 g/L.h para 10,092 g/L.h quando se utiliza um sistema constituído de quatro reatores de mistura perfeita com volumes diferenciados ligados em série ao invés de um único. Enquanto que PAIVA *et al.*, (1996) utilizaram sistemas de reatores de leito fluidizado para produção de etanol, obteve produtividades de 14,4 g de Etanol/L. h e rendimentos de 88,3%.

NAGASHIMA *et al.*, (1983) propuseram dois tipos de arranjos para sistemas de fermentação alcoólica contínua. O primeiro arranjo foi a utilização de dois reatores torre de leito fluidizado em série e o segundo arranjo utilizou-se três reatores torre em série todos com relação diâmetro/altura diferentes. A produtividade obtida foi 20 vezes maior que os processos tradicionais com uma conversão de 95% além da boa estabilidade operacional foi obtida por um longo período de tempo.

VIEGAS *et al.*, (2002 a) trabalharam com dois reatores tipo torre ligados em série utilizando leveduras floculantes. Esse processo obteve produtividade máxima de 15,40 g de Etanol/L.h mantendo o rendimento na faixa de 93%.

VIEGAS *et al*, (2002 b) propuseram um processo de fermentação alcoólica utilizando um sistema constituído de três reatores em série obtendo altos rendimentos (92 %), alta concentração de etanol no vinho (9,5 GL) e altas produtividades (21,68 g de Etanol/L. h).

2.3 Características Bioquímicas da Fermentação Alcoólica

As leveduras são organismos eucarióticos e formam uma das classes mais importantes dos fungos. As do tipo *Saccharomyces* são as mais utilizadas na produção de etanol e apresentam-se normalmente na forma unicelular e com 2 a 8 micrômetros de diâmetro. Estas se reproduzem basicamente por gemação (brotamento), onde a célula mãe, após um período de união entre os citoplasmas, dá origem a uma nova célula (STECKELBERG, 2001).

A primeira descrição das leveduras data de 1680 e foi realizada por Antonie van Leeuwenhoek, observando cerveja em fermentação. Pasteur, em estudos divulgados a partir de 1866, provou que a fermentação é fruto da atividade de células vivas, as leveduras, na ausência de oxigênio (MILLER, 1983).

A levedura como entidade viva independente, realiza a fermentação dos açúcares com o objetivo de conseguir a energia química necessária à sua sobrevivência, sendo o etanol apenas e tão somente um subproduto desse processo. A células de levedura possui compartimentos para adequação de sua atividade metabólica. A fermentação alcoólica (glicólise anaeróbia) ocorre no citoplasma, enquanto que a oxidação total do açúcar (respiração), se dá na mitocôndria (AMORIM *et al*, 1996).

O rendimento teórico $(Y_{P/S})$ para a produção de etanol é de 0,511 g/g. Na prática, segundo **OURA (1974)**, este valor não é observado devido à utilização de parte da glicose para produção de glicerol e álcoois superiores, substâncias necessárias para síntese de material celular e manutenção da levedura.

Além da presença ou ausência de oxigênio, a disponibilidade de açúcar pode afetar o metabolismo das leveduras (**OKADA**, **1981**). O efeito Crabree, que é o incremento na produção de etanol em concentrações de glicose superiores a 0,5-1,0 g/L (independentemente da concentração de oxigênio) como prejudicial ao processo de produção de leveduras de panificação, pois parte do açúcar disponível é convertida a etanol e dióxido de carbono em detrimento à biomassa, reduzindo o rendimento.

Assim, frente ao número elevado de reações catalisadas enzimaticamente no metabolismo celular, fatores como pH, temperatura, pressão, concentração de reagentes,

concentração de nutrientes, etc., afetam os parâmetros cinéticos que definem as taxas de reprodução celular, consumo de substrato e produção de etanol.

As leveduras são hoje o mais importante grupo de microrganismos explorados comercialmente (RUSSELL *et al.*, 1987). Esses microrganismos têm sido utilizados na produção de produtos químicos, combustíveis e proteínas microbianas para uso alimentar (ROSE & HARRISON, 1987).

2.4 O Fenômeno de Floculação das Leveduras

A floculação é descrita como um fenômeno reversível em que células de levedura aderem-se uma as outras formando aglomerados (flocos) que se sedimentam rapidamente no meio em que estão suspensos (STEWART, 1976) citado por YU-LAI JIM & SPEERS (1999).

A floculação pode ser considerada como uma estratégia de sobrevivência (STRATFORD, 1992), sendo que as células localizadas na periferia do floco protegem as que estão no centro contra as condições desfavoráveis do meio (ISERENTANT, 1996).

ALCARDE (2001) cita vários autores que descrevem mecanismos responsáveis por provocarem a agregação de células de levedura, entre eles a formação de cadeias (EDDY, 1955), agregação sexual (CALLEJA, 1987), a floculação (STEWART & RUSSEL, 1986), além da adição de lectinas (STRATFORD & BOND, 1992) e a presença de substâncias floculantes de diversas composições podem também acarretar a agregação de células de levedura (NAKAMURA *et. al.*, 1976). Componentes genéticos (ZARATTINE *et. al.*, 1993), proteínas, agitação e tensões (stress), produtos da fermentação como etanol, pH e íons metálicos também são fatores que exercem influência na floculação de leveduras.

No trabalho desenvolvido por JIN & SPEERS (1999), foi constatado que a floculação é um processo controlado geneticamente e cujo mecanismo é muito complexo, o qual é constituído por características genéticas cromossômicas e extracromossômicas. FREDERICK (1994) acredita que a característica floculante em *Saccharomyces cerevisiae*

pode ser controlada por genes dominantes do tipo FLO1, FLO2, FLO4, alelos formando o Lócus FLO1, FLO5, FLO8 e tup1.

Em relação aos aspectos físico-químicos da floculação, muitos estudos têm sido realizados. STRATFORD (1989) verificou que a agitação mecânica é requerida para superar a repulsão eletrostática entre as células. KAMADA & MURATA (1984) verificaram a intensificação da taxa de floculação de cepas de *Saccharomyces* com o aumento da temperatura de 0°C para 30°C e que entre 50°C a 62°C ocorria uma drástica inibição do processo, porém, após retornar a uma temperatura inferior, a floculação era restabelecida. A mudança de pH segundo CALLEJA (1987) acarreta um efeito profundo na floculação, sendo que o pH ótimo é dependente da cepa do microrganismo. O efeito dos sais na floculação é dependente do tipo de cátion presente como manganês, magnésio e cálcio (SOUZA *et al.*, 1992).

Quanto aos mecanismos da floculação, vários são propostos, porém, **STRATFORD (1996)** destaca a importância da hidrofobicidade celular durante a fermentação ou em uma ligação tipo-lectina. **STRAVER** *et al.*, (1993) sustentam que o aumento da hidrofobicidade coincide com a floculação e é causado pela síntese de uma glicoproteína que pode ser a maior causa da floculação de leveduras. Esse aumento se dá pela mudança nas características físico-químicas da parede celular da levedura, bem como a limitação de nutrientes.

ALCARDE (2001) explica que lectinas são proteínas hábeis em ligar resíduos de açúcar. Segundo o mesmo autor, por um mecanismo similar, algumas proteínas da parede celular das leveduras podem se ligar a resíduos de açúcar das glicoproteínas da parede celular de outras células de levedura. Essa ligação induziria a floculação.

ISERENTANT (1996) acredita que a hidrofobicidade e ligação tipo-lectina deveriam ser consideradas como dois aspectos do mesmo mecanismo.

ACARDE (2001) verificou a ocorrência da floculação de leveduras causada por algumas espécies de bactérias contaminantes do processo de produção de álcool nas seguintes condições: reação à presença de álcool no meio, tratamento térmico, tratamento enzimático e tratamento com modificadores químicos de carboidratos. Para industrias produtoras de bebidas fermentadas como cerveja e vinho, o fenômeno de floculação das leveduras é benéfico ao processamento, sendo que esse fenômeno facilita a separação das células de levedura do liquido fermentado (SHINOHARA *et al.*, 1996). Em industrias de álcool, ocorre o contrário, uma vez que este fenômeno leva a uma maior perda de células de levedura no fundo da dorna ou nas centrífugas (YOKOYA & OLIVA-NETO, 1991). Porém VIEGAS (1999) desenvolveu um processo de fermentação contínua para produção de etanol, onde as células de levedura formaram aglomerados e se mantiveram em suspensão, devido à liberação de gases (CO₂) durante o processo, formando um leito pseudo-expandido.

2.5 Cinética dos Processos Fermentativos

De acordo com **TOSETTO (2002)** o estudo da cinética de processos fermentativos tem como propósitos:

- Medir a velocidade de transformação que ocorre durante uma fermentação;
- Estudar a influência dos fatores nestas velocidades (pH, temperatura, etc...);
- Correlacionar por meio de equações empíricas, ou de modelos matemáticos, as velocidades com os fatores que nelas influem;
- Aplicar as equações na otimização e controle do processo.

É possível, através dos estudos cinéticos, quantificar vários parâmetros como: taxa de consumo de substrato, taxa de formação de produto, taxa de crescimento celular, entre outros; e ainda permite compreender a influência de fatores externos como pH, temperatura, inibidores, etc.

Segundo BEILEY & OLLIS (1986), os modelos cinéticos utilizados em fermentação alcoólica foram divididos em:

Não-estruturados e não segregados: as células dos microrganismos são consideradas como um soluto;

- Estruturados e não segregados: as células de microrganismos são tratadas como indivíduos de múltiplos componentes; porém, com composição média semelhante;
- Não-estruturados e segregados: as células de microrganismos são tratadas como seres individuais distintos; porém, descritos por um único componente; e
- Estruturados e segregados, onde as células de microrganismos são consideradas como indivíduos distintos e formados por múltiplos componentes.

2.5.1 Modelos Cinéticos

O estudo cinético de processos de fermentação alcoólica não é recente. MONOD (1949) relacionou a velocidade específica de crescimento de microrganismo com a concentração de substrato Segundo MOULIN *et al* (1980) a cinética da fermentação alcoólica é complexa. A taxa de fermentação muda continuamente com o desaparecimento do substrato e formação do produto.

O tipo de modelo mais encontrado na literatura para descrever a fermentação alcoólica é o tipo não-estruturado e não-segregado. É pouco aconselhável a utilização de modelos mais complexos que consideram as células como indivíduos distintos constituídos de vários componentes. Utilizando modelos mais simples, a imprecisão que possa ocorrer é compensada pela facilidade de obtenção e diminuição do número de parâmetros cinéticos necessários (ANDRIETTA, 1994).

Segundo este mesmo autor, os modelos não-estruturados e não-segregados, em sua maioria, baseiam-se na determinação da velocidade específica de crescimento do microrganismo (μ) ou da produção de etanol pelo decréscimo da velocidade específica máxima ($\mu_{máx}$) através de alguns termos de inibição.

A equação mais simples para se determinar à velocidade específica de crescimento dos microrganismos (μ) é a de Monod, apresentada na equação (1) abaixo:

$$\mu = \mu_{máx} \cdot \frac{S}{S + K_S} \tag{1}$$

Onde:

 μ = velocidade específica de crescimento

 $\mu_{\text{máx}}$ = valor da velocidade específica máxima de crescimento

S = concentração do substrato limitante

 K_{S} = constante de Monod que depende do microrganismo e das condições de cultura

Esta equação é válida somente para sistemas onde não há interferências significativas de inibidores, tais como, baixas concentrações de etanol no meio de fermentação.

Diferentes modelos para descrever o comportamento da fermentação alcoólica estão disponíveis na literatura. ANDRIETTA (1994) faz as seguintes citações: DAUGULIS & SWAINE (1987) e THATIPAMALA (1992), consideram como fatores relevantes a inibição pelo substrato e pelo etanol, desprezando o efeito do substrato limitante. HOPPE & HANSFORD (1982) e MOMBOUQUETTE (1986), assumem a inibição pelo produto e o substrato limitante como fatores de interferência. CHATTAWAY *et al.* (1988), consideraram esses fatores como sendo a inibição pelo produto e pela concentração de células. Modelos complexos foram estudados por LEE *et al.* (1989), JARZEBSKI *et al.* (1989) e MONBOUQUETTE (1992), levam em consideração as inibições pelo produto e pela concentração celular e ainda o efeito do substrato limitante.

KELLER & DUNN (1978), DAUGULIS & SWAINE (1987) e DOURADADO

et al. (1987), propuseram o modelo descrito na equação (2) para representar o termo de inibição pelo substrato:

$$\mu = \mu_{m\alpha x} * \frac{S}{K_s + S + \frac{S^2}{K_A}}$$
(2)

Onde K₄ é a constante de inibição pelo substrato.
Os modelos citados por **BIROL** *et al.* (1998) levando em consideração a inibição pelo substrato são observados nas equações (3, 4 e 5):

Modelo proposto por:

- ANDREWS e NOACK:

$$\mu = \mu_{máx} * \left(\frac{S}{1 + \frac{K_{S,X}}{S} + \frac{S}{K_{I,S}}} \right)$$
(3)

- AIBA:

$$\mu = \mu_{mdx} * \left(\frac{S}{K_{S,X} + S}\right) \exp\left(-\frac{S}{K_{I,S}}\right)$$
(4)

- LUONG:

$$\mu = \mu_{máx} * \left(\frac{S}{K_{S,X} + S}\right) \left(1 - \frac{S}{S_{S,máx}}\right)^n$$
(5)

Onde:

 $K_{S,X}$ = constante de Monod

K $_{1,S}$ = constante de inibição pelo substrato

S _{S,máx} = concentração limite do substrato inibidor

THATHIPAMALA (1992) utiliza o modelo da equação (6):

Onde:

P.

 $S_{m \acute{a} x}$ = máxima concentração de substrato onde não há crescimento celular

 S_{min} = concentração onde se inicia o efeito de inibição.

Para altas concentrações de produto ocorre a inibição da velocidade específica de crescimento pelo etanol, anulando-se o crescimento celular a partir de uma determinada concentração. GHOSE & TYAGI (1979b) e BAZUA & WILKE (1977) concluíram que a inibição pelo etanol afetava $\mu_{máx}$ e não K_S, logo a velocidade de crescimento pode ser representada pela equação (7).

$$\mu = \mu_{max,i} * \frac{S}{S + K_S} \tag{7}$$

Onde $\mu_{m \acute{a}x,i}$ é a velocidade específica máxima de crescimento na presença de etanol.

Uma relação exponencial foi proposta por AIBA et al. (1968), MOULIN et al. (1980) e BONOMI et al. (1981) observada na equação (8);

$$\mu = \mu_{m\alpha x}^{-K_b P} \tag{8}$$

Onde K_b é a constante empírica e μ_{max} possui uma dependência exponencial com

DOMIANO et al. (1985) e LUONG (1985) através da equação (9):

$$\mu = \mu_{máx} * e^{-k_1 P} \tag{9}$$

K₁ é a constante de inibição empírica.

Os modelos citados por **BIROL** et al. (1998) que levam em consideração a inibição pelo produto são observados nas equações (10, 11 e 12):

Os modelos citados por **BIROL** et al. (1998) que levam em consideração a inibição pelo produto são observados nas equações (10, 11 e 12):

- JERUSALIMSKY:

$$\mu = \mu_{max} * \left(\frac{S}{K_{S,X} + S}\right) \left(\frac{K_{I,Px}}{K_{I,Px} + P}\right)$$
(10)

- HINSHELWOOD:

$$\mu = \mu_{max} * \left(\frac{S}{K_{S,X} + S}\right) (1 - K_{P_X} P)$$
(11)

Onde K _{S,X} é a constante de Monod e K _{1,Px} é a constante de inibição pelo produto.

- GHOSE & THYAGI:

$$\mu = \mu_{máx} \left(1 - \frac{P}{P_{X,máx}} \right) \tag{12}$$

Onde $P_{X,máx}$ = concentração limite do produto inibidor.

LUONG (1985) e GROOT et al., (1992) descreveram o modelo descrito na equação (13 e 14) respectivamente, demonstrando a inibição pelo produto:

$$\mu = \mu_{m\acute{a}x} * \left[\left(1 - \frac{P}{P_{m\acute{a}x}} \right) \right]$$
(13)

$$\mu = \mu_{max} * \left[1 - \left(\frac{P_{max}}{P_{max}} \right)^n \right]$$
(14)

$$\mu = \mu_{m\alpha} \left(1 - \frac{P}{P_{m\alpha}} \right)^n \left(\frac{S}{K_S + S} \right)$$
(15)

LEVENSPIEL (1980) demonstrou que para uma concentração de P bem menor que o valor de $P_{máx}$, a equação (15) se reduz à equação (1), que é a cinética de Monod.

CHATTAWAY et al., (1988) decreveram um modelo para o termo de inibição pela concentração celular observado na equação (16):

$$\mu = \mu_{max} \left(1 - \frac{X}{X_{max}} \right) \tag{16}$$

LEE et al. (1983), JARZEBSKI et al. (1989) e MONBOUQUETTE (1992) utilizaram a equação (17) para demonstrar o termo de inibição pela concentração celular:

$$\mu = \mu_{max} \left(1 - \frac{X}{X_{max}} \right)^m \tag{17}$$

DOURADO *et al* (1987) apresentaram um resumo dos modelos cinéticos para fermentação alcoólica, levando em conta tanto o termo de inibição pelo produto quanto de inibição pelo substrato. Os modelos são propostos por vários autores a seguir:

- GHOSE & THYAGI (1979a):

$$\mu = \mu_{máx} \cdot \frac{S}{K_s + S + \frac{S^2}{K_i}} \cdot \left(1 - \frac{P}{P_L}\right)$$
(18)

- SEVELY et al (1981):

$$\mu = \mu_m \cdot \frac{S}{K_S + S} \cdot \frac{Kp}{P + K_P} \cdot \left(1 - \frac{P}{P_m}\right)$$
(19)

- JIN, CHIANG e WANG (1981):

$$\mu = \mu_{max} \cdot e^{(-K_1 \cdot P)(-K_2 \cdot S)} \cdot \frac{S}{K_s + S}$$
(20)

$$\mu = \mu_{max} \cdot e^{(-K_1 \cdot P) \cdot (-K_2 \cdot S)} \cdot \frac{S}{K_s + S}$$
(20)

O modelo desenvolvido por TOSETTO & ANDRIETTA (2002), leva em consideração a presença de 2 (duas) fontes de substrato (Glicose e Frutose). Para glicose, este modelo é baseado no proposto por GHOSE & TYAGI (1979a) onde o valor do expoente do termo de inibição pelo produto pode assumir valores diferentes de 1 (equação 21).

$$\mu = \mu_{máx} \cdot \frac{G}{K_{SG} + G + \frac{G^2}{K_{IG}}} \left(1 - \frac{P}{P_{máx,F}} \right)^n$$
(21)

Para a frutose, este modelo foi acrescido de um termo de Diauxia como mostrado na equação 22.

$$\mu = \mu_{max} \left(1 - \frac{G}{F} \right) \frac{F}{K_{SF} + F + \frac{F^2}{K_{IF}}} \left(1 - \frac{P}{P_{max,F}} \right)^n$$
(22)

Onde:

$$\left(1 - \frac{G}{F}\right)$$
 é o termo de diauxia,

G é a concentração de glicose e F é a concentração de frutose

SCHLEGEL (1990) observou a aparição de duas fases de crescimento ou duplo ciclo de crescimento em meios contendo misturas de substratos. Na mistura de glicose e sorbitol, a *E.coli* consome a glicose em primeiro lugar. A glicose induz a síntese das enzimas, bloqueando ao mesmo tempo o consumo de sorbitol. O sorbitol só será consumido quando toda a glicose for consumida. Este fenômeno é chamado de diauxia.

LEE et al. (1983) citado por ANDRIETTA & MAUGERI (1994) propuseram um modelo (equação 23), que levou em consideração o termo de inibição pelo produto,

$$\mu = \mu_{max} \cdot \frac{S}{K_s + S} \cdot \left(1 - \frac{P}{P_{max}}\right)^n \cdot \left(1 - \frac{X}{X_{max}}\right)^m$$
(23)

Onde m=1, n=1.

JARZEBSKI & MALINOWSKI (1989) apresentaram um modelo (equação 24), considerando a perda da viabilidade celular. O modelo é utilizado quando se tem alta concentração celular:

$$r_{x} = \mu_{0} \left[1 - \left(\frac{P}{P_{máx}} \right)^{A1} \right] \cdot \left[1 - \left(\frac{Xt}{X_{máx}} \right)^{A2} \right] \cdot \frac{S \cdot Xv}{Ks + S}$$
(24)

Onde:

Xt = Xv + Xd Xv - células viáveisXd - células inativas (mortas)

2.6 Biorreatores de Leito Fixo

Um reator de leito fixo consiste em um tubo cilíndrico preenchido de forma compacta por células de microrganismos e o reagente (substrato) escoa através do leito, que é poroso. A Figura 2 esquematiza o reator.

Figura 2- Sistema de Bancada com diluidor em linha e fermentador tipo torre (VIEGAS et al., 2002c)

Os biorreatores de leito fixo possuem muitas vantagens em relação às outras configurações como: simplicidade no seu design e controle operacional (TYAGI *et. al.*, 1992); altas taxas de reação e concentrações de células (DOCHAIN *et. al.*, 1997); facilidade de recuperação dos produtos (FUKUDA, 1994); pouca necessidade de equipamentos auxiliares como centrífugas; fixação das partículas no leito; escoamento tubular; equipamentos de grande capacidade (FROMENNT & BISCHOFF, 1990); entre outras.

As desvantagens relacionadas ao emprego desses biorreatores são principalmente à transferência de calor (baixa condutividade). Nestes reatores, onde a taxa de reação pode ser relativamente maior na entrada, devido a maior concentração de substrato, em reações exotérmicas a taxa de liberação de energia ao longo da altura do reator não é uniforme (**TOLEDO, 1999**). Outro fator que afeta a transferência de calor é o tamanho das partículas (flocos de células) que não podem ser muito pequenas por causarem entupimentos e alta queda de pressão.

Os reatores de leito fixo são equipamentos largamente utilizados na indústria química, principalmente em reações catalíticas. Porém, atualmente pesquisadores têm se preocupado com a aplicação deste tipo de reator em processos biotecnológicos, onde o microrganismo atua como agente de transformação principalmente pela simplicidade no seu design e controle operacional (TYAGI *et. al.* 1992). Esses autores trabalharam com levedura *Saccharomyces cerevisiae* imobilizadas em gel para produção de etanol.

Segundo FUKUDA (1994), biorreatores com células imobilizadas para produção industrial de etanol vêm sendo aplicados deste 1982. LINKO, *et. al.*, (1981) NAGASHIMA *et al.*, (1983) usaram leveduras *Saccharomyces cerevisiae* imobilizadas em alginato de cálcio como suporte para produção de etanol. NAGASHIMA *et al.*, (1983) obtiveram de uma planta piloto, uma produtividade de etanol 20 vezes mais alta que em um processo sem imobilização. A planta pôde ser operada mais de 4 meses sem esterilização.

GÓDIA et al., (1985) fizeram a imobilização da Saccharomyces cerevisiae para produção contínua de etanol em reator tubular exibindo uma boa performance e alta produtividade (15,8 g /L.h de etanol). BRAVO & GONZALEZ (1991) trabalharam com um reator encamisado tipo torre de leito fluidizado com imobilização de células de Saccharomyces cerevisiae em esferas de alginato e obtiveram uma concentração de etanol de 41 g/L num tempo de residência de 6.64 horas.

Outro método de imobilização utilizado por BLACH *et al.* (1984) foi a imobilização passiva tipo colonização, utilizando um suporte poroso, que foi desenvolvido por ALKINSON *et al.* (1979) para imobilizar a levedura *Saccharomyces cerevisiae* para produção contínua de etanol. WIECZIREK & MICHALSKI (1994) estudaram um processo de fermentação contínua com células altamente floculantes do tipo *Saccharomyces cerevisiae*. Através dos dados obtidos de rendimento e produtividade, podese afirmar que o processo é muito superior aos obtidos quando usados métodos convencionais.

VIEGAS (1999) estudou um sistema de fermentação contínua operando com dois reatores tipo torre ligados em série, utilizando linhagens de leveduras floculantes isoladas de um processo industrial de produção de etanol. As linhagens de leveduras floculantes do tipo *Saccharomyces sp* foram escolhidas em função da sua capacidade de floculação, que é responsável pela permanência destas no reator. Os valores de produtividade foram satisfatórios atingindo até 19,44 mL etanol/L.h (15,40 g etanol/L.h) com rendimentos elevados de 93%.

2.7 Modelos matemáticos para Reatores de Leito Fixo

2.7.1 Descrição dos Principais Modelos Matemáticos

Atualmente, em função do desenvolvimento da informática e da existência e disponibilidade de simuladores industriais ou da possibilidade de serem desenvolvidos, é inconcebível ampliar a escala de reatores sem ao menos um certo grau de modelagem (TOLEDO, 1999).

O modelo pode ser fundamental e baseado em informações separadas de vários aspectos do processo, amarradas e fundidas num conjunto de equações simulando o reator, ou pode ser semi-empírico, baseando-se em experimentação piloto para ajuste dos chamados "parâmetros efetivos do modelo" (FROMENT & HOFMANN, 1987).

Os modelos matemáticos são necessários para a descrição do comportamento estacionário e dinâmico dos biorreatores de leito fixo. De acordo com (KHANNA & SEINFELD, 1987) o tipo de modelo e nível de complexidade na representação do sistema depende do uso para o qual o modelo será desenvolvido. Recentemente, interesses na modelagem de operações em estado estacionário aumentaram significantemente devido a sua importância no design do reator de leito fixo e controle de processos (ZHENG & GU, 1996). Pesquisadores como SMITH (1981), HILL (1977) e BAILEY & OLLIS (1986), estudaram o comportamento dos reatores no estado estacionário.

A principal deficiência na modelagem matemática dos bioprocessos está na cinética microbiana incorreta e imprecisa. Por isso é necessário um modelo que descreva o comportamento da melhor maneira possível, sendo capaz de prever inclusive o comportamento dinâmico. No entanto, **TOLEDO (1999)** ressalta que um modelo dinâmico requer um grande esforço computacional aumentando o tempo de processamento.

DORAISWAMY & SHARMA (1984) propuseram categorias de modelos usados para descrever o comportamento do reator de leito fixo, que são as seguintes: Contínuos Célula de Mistura, Canal e Fluxo Cruzado. Os modelos contínuos são modelos do tipo "Fickianos" com caráter determinístico, os quais são classificados entre modelos pseudohomogêneos e heterogêneos. Os demais modelos são propostos como alternativa aos modelos contínuos.

Para estabelecer uma melhor noção entre os modelos, estes são classificados em pseudo-homogêneos e heterogêneos, onde os modelos pseudo-homogêneos não consideram explicitamente a presença de células no sistema, ou seja, não fazem distinção entre a fase fluida e a fase sólida e os modelos heterogêneos, em contraste, apresentam equações de conservação para o fluido e célula, estes estabelecem equações distintas para ambas as fases. Existem ainda, abordagens pseudo-homogêneas modificadas, as quais incluem implicitamente a presença de células **TOLEDO (1999)**.

A Figura 3 proposta por (FROMENT & HOFMANN, 1987) citada por TOLEDO (1999) classifica em ordem de complexidade, os modelos pseudo-homogêneos e heterogêneos.

Figura 3 - Classificação dos modelos para um Reator de Leito Fixo adaptada por TOLEDO (1999).

O modelo básico AI descreve um escoamento "plug-flow" através do leito; é unidimensional por assumir uniformidade na seção perpendicular ao fluxo, exceto a uma camada fina próxima à parede, onde calor é trocado com a vizinhança. Os modelos unidimensionais consideram então apenas as variações ao longo da direção predominante de escoamento (parâmetros agrupados). O modelo AII se desvia do "plug-flow" pela superimposição da dispersão na direção axial. No modelo AIII, além da dispersão na direção axial, considera-se ainda a dispersão na direção radial, por causa da ocorrência de gradientes de concentração e temperatura, tornando-se um modelo bidimensional. Todos os modelos acima citados são pseudo-homogêneos.

Dentro da categoria de modelos heterogêneos são citados os seguintes modelos: o modelo BI é derivado do modelo básico pseudo-homogêneo, AI, considerando gradientes de concentração e temperatura sobre o filme ao redor das partículas. O segundo modelo BII unidimensional, é acrescido de gradientes intraparticulares. O modelo BIII considera gradientes axial e radial no reator, além de gradientes locais entre e intraparticulares.

Segundo FROMENT & HOFMANN (1987) citado por TOLEDO (1999), os parâmetros de dispersão mássica utilizados são efetivos, o que possibilita a simplificação do modelo e facilita relativamente à determinação de correlações para os parâmetros envolvidos. Para situações não isotérmicas, a transferência de calor é incluída no modelo. No modelo básico pseudo-homogêneo (AI), o calor é considerado ser somente transferido por convecção global. Quando dispersão axial e/ou radial é acrescentada, como nos modelos AII e AIII, calor é também transferido por condução efetiva. Nos modelos heterogêneos, é descrita em termos de mecanismos convectivos. Mecanismos de transporte dentro das partículas são expressos em termos de difusão e condução efetiva, com apropriada difusividade e condutividade efetivas. No modelo BIII a dispersão no leito é considerada por um caminho análogo ao usado no modelo pseudo-homogêneo AIII, porém os mecanismos são separados, ocorrendo na fase fluida e sólida respectivamente.

2.7.2 Modelos Matemáticos aplicados à Fermentação Contínua utilizando Leveduras Floculantes

Muitos pesquisadores estudaram o comportamento de um biorreator contínuo utilizado leveduras floculantes com o objetivo de melhor compreender a dinâmica do processo. ADMASSU *et. al.*, (1985) desenvolveu um sistema contínuo operando com reator tipo torre com altas concentrações de leveduras floculantes e altas produtividades de etanol, obtendo um modelo cinético que leva em consideração a inibição pelo etanol e limitação pelo substrato.

OLIVEIRA *et. al.*, (1998) desenvolveu um modelo matemático para se estimar a performance de uma fermentação contínua num reator tipo torre com reciclo de células floculantes testando diversos modelos incluindo lineares, parabólicos, hiperbólicos, exponenciais e não-lineares. Parâmetros cinéticos foram estimados no estado estacionário para diferentes concentrações de açúcar na alimentação (160, 170, 180, 190, 200 g/L) a temperatura de 30°C e uma taxa de diluição constante de 0,2/h.

Para um reator de leito fluidizado utilizando leveduras floculantes, JONES et. al, (1984) desenvolveu um modelo matemático utilizando as seguintes equações (25) a (27):

$$-\frac{dS}{dz} = \frac{\mu}{Y_{X/S}} * \frac{A}{F}$$
(25)

$$\frac{dP}{dz} = \frac{Y_{P/S}}{Y_{X/S}} * \mu * \frac{A}{F}$$
(26)

$$rp = \nu m * X * \left(1 - \frac{P}{Pm}\right) * \left(\frac{S}{Kp + S}\right)$$
(27)

Onde:

Y_{X/S} - Produção de Células: Massa celular produzida/ substrato consumido;

 $Y_{\ensuremath{P\!/\!S}}$ - Rendimento da Reação: Produto formado/ substrato consumido;

- A Área transversal de escoamento (cm²);
- μ Velocidade de crescimento específica (h⁻¹);
- F Vazão de Alimentação (mL/ hora);

3. MATERIAL E MÉTODOS

3.1 Materiais

3.1.1 Microrganismos

O microrganismo utilizado nos ensaios foi a levedura Saccharomyces sp (cepa 4) isolada da Unidade de Fermentação Industrial da Usina Junqueira.

3.1.2 Inóculo

O inóculo utilizado na partida do sistema foi preparado da seguinte maneira: erlenmeyers de 250 mL contendo 100 mL de meio estéril (15 minutos/121°C), foram inoculados com suspensão de células de levedura desenvolvidas em "slants" de PDA (Potato Dextrose Agar). Os frascos foram incubados em "shaker" por 24 h a 32°C e 150 rpm. Em seguida, o material fermentado contendo as células crescidas foi alimentado aos biorreatores.

3.1.3 Meio utilizado para obtenção do inóculo

O meio utilizado para a obtenção do inóculo foi preparado da seguinte maneira: erlenmeyers de 250 mL contendo 100 mL de meio estéril (15 minutos/121°C), sendo esse meio composto de 150 g/L de Sacarose, 5,0 g/L de Fosfato diácido de potássio, 5,0 g/L de Cloreto de amônio; 1,0 g/L de Sulfato de magnésio heptaidrato, 1,0 g/L de Cloreto de potássio e 6,0 g/L de Extrato de levedo.

3.1.4 Meio utilizado na fermentação

Nos ensaios realizados, foi utilizado meio sintético a base de sacarose, extrato de levedura e sais com a composição básica descrita no item 3.1.3.

3.1.5 Equipamentos

O processo fermentativo se deu em um sistema de dois reatores de bancada com capacidade de 1,4 litros, os quais foram construídos a partir de um projeto baseado em experiências industriais e princípios básicos de engenharia. Os mesmos foram construídos em vidro na forma de torre (5,8 cm diâmetro e 78 cm de altura), contendo uma camisa para controle da temperatura, sendo esta mantida constante a 32 °C por meio de circulação de água.

A fim de tornar o processo o mais próximo possível de uma planta industrial, desenvolveu-se um sistema de preparo do substrato de alimentação, através de diluição em linha do meio concentrado que consiste do meio descrito no item 3.1.3 só que 4 vezes mais concentrado. Este sistema é constituído por duas bombas peristálticas ligadas diretamente a frascos contendo água e solução concentrada de substrato. A concentração desejada de substrato na alimentação dos reatores foi obtida através do ajuste da diluição do meio concentrado. A mistura destas duas linhas eram realizadas em um frasco agitado denominado diluidor. Ajustou-se o nível de trabalho deste diluidor para que o mesmo não alcançasse tempos de retenção superiores a 10 minutos evitando assim altos níveis de contaminação. A Figura 4 mostra esquematicamente o sistema de fermentação utilizado nos ensaios.

Após a diluição do substrato, este com vazão e brix ajustados foi alimentada pelo fundo dos dois reatores de forma independente, através de uma bomba peristáltica. Os efluentes dos dois reatores foram enviados para o tanque de descarte. A utilização de dois reatores em paralelo teve como objetivo obter resultados em duplicata para as diferentes condições de ensaio realizadas.

Figura 4 - Representação esquemática do sistema de fermentação

Figura 5 - Esquema dos Biorreatores de bancada ligados em paralelo

The second se

3.1.6 Operação do Reator

O sistema proposto foi constituído por dois biorreatores tipo torre (Figura 4), sendo que ambos foram alimentados de forma independente com a mesma vazão e mesma concentração de substrato. O vinho fermentado proveniente destes fermentadores foram enviados para o tanque de descarte.

3.1.7 Condução dos Ensaios

Após a inoculação das cepas de levedura e preparo do substrato de alimentação, os ensaios foram conduzidos da seguinte maneira: o inoculo foi adicionado ao sistema pelo topo dos reatores. Iniciou-se a alimentação do substrato do sistema diluidor de forma lenta visando aumentar a massa celular dos reatores. Este processo foi mantido por 5 dias, com aumento gradativo da vazão de alimentação até que os leitos formados pela levedura atingissem cerca de 45 cm de altura. Neste ponto, iniciaram-se os ensaios visando a determinação do perfil de concentração de substrato e produto ao longo do reator. Estes ensaios consistiram em 9 diferentes condições de operação, onde foi variada a concentração de substrato no meio de alimentação e a vazão do mesmo.

A Tabela I mostra as condições nas quais foram realizados os ensaios.

Ensaios	Vazão (mL/min)	Brix (% de sólidos solúveis em solução)	Tempo de Residência (horas)
01	9,6	15	2,43
02	9,7	18	2,40
03	10	21	2,33
04	12,9	16	1,81
05	12,7	18	1,84
06	13	24	1,94
07	16	16	1,46
08	16,5	18	1,41
09	16,5	28	1,41

Tabela 1 – Arranjo dos ensaios conduzidos no biorreator.

Para cada condição ensaiada, foram coletadas 12 amostras de cada reator de cima para baixo, correspondente às alturas de 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, e 60 cm, das quais foram analisadas as concentrações de: etanol, sacarose, glicose, frutose e ART. Para garantir que os biorreatores estavam operando em estado estacionário, esperava-se no mínimo 24 horas (mínimo de 5 tempos de residência) de uma coleta para outra.

3.2 Métodos Analíticos

3.2.1 Determinação de sólidos solúveis

A determinação da quantidade de sólidos solúveis (%) no meio de alimentação foi realizado em refratômetro ótico (Marca: American Optical ABBE Refractometer).

3.2.2 Preparação das Amostras

Após o reator ter atingido o estado estacionário, 5 ml de amostra foram recolhidos de cada ponto do reator. Em seguida, as amostras foram centrifugadas a 3000 rpm por 2 minutos e filtradas através de microfiltros de 0,45 µm e congeladas.

3.2.3 Determinação de Sacarose, Glicose, Frutose, Glicerol e Etanol

As análises de Sacarose, Glicose, Frutose, Glicerol e Etanol no vinho fermentado e no mosto foram feitas utilizando-se Cromatógrafo Líquido de Alta Eficiência (HPLC) nas seguintes condições:

- Eluente H_2SO_4 0,1N a vazão de 0,5 mL/min.
- Volume de injeção 75 μL.
- Temperatura da Coluna 35°C.
- Detector Índice de refração (Waters Modelo 401)
- Padrão utilizado Sigma.

- Coluna utilizada – Metacarb 87H (300 x 7.8 mm)

3.3 Modelagem do biorreator

3.3.1 Modelos cinéticos

Expressões matemáticas que descrevam a cinética microbiana são de extrema importância para um melhor entendimento do comportamento dos biorreatores. Foram testados então pela simplicidade, modelos cinéticos do tipo não estruturados e não segregados levando em consideração a limitação pelo substrato, a inibição pelo substrato, produto e massa celular.

Foram avaliados os seguintes modelos para um único substrato JIN et al. (1981), SEVELY et al. (1981) e TOSETTO & ANDRIETTA (2002).

A equação (19), (20) e (21) descreve o modelo de SEVELY et al., (1981), JIN, et al., (1981) e TOSETTO & ANDRIETTA (2002) respectivamente.

$$\mu = \mu_m \cdot \frac{S}{K_s + S} \cdot \frac{Kp}{P + K_P} \cdot \left(1 - \frac{P}{P_m}\right)$$
(19)

$$\mu = \mu_{\text{máx}} \cdot e^{(-K_1 \cdot P) \cdot (-K_2 \cdot S)} \cdot \frac{S}{K_s + S}$$
(20)

$$\mu = \mu_{máx} \cdot \frac{S}{K_s + S + \frac{S^2}{K_I}} \left(1 - \frac{P}{P_{máx}}\right)^n \tag{21}$$

Estes modelos levam em consideração uma única fonte de substrato.

Um novo modelo foi proposto considerando a hidrolise da sacarose e o consumo de glicose e frutose como fontes independentes de substrato. As equações (28) e (29) representam os modelos cinéticos de consumo de glicose e frutose, os quais foram propostos por TOSETTO & ANDRIETTA (2002). A equação (30) representa a cinética de hidrólise da sacarose proposta neste trabalho.

$$\mu = \mu_{m \dot{a}x} * \frac{G}{K_{SG} + G + \frac{G^2}{K_{IG}}} * \left(1 - \frac{P}{P_{m \dot{a}x,F}}\right)^n$$
(28)

$$\mu = \mu_{m\acute{ax}} * \left(1 - \frac{G}{F}\right) * \frac{F}{K_{SF} + F + \frac{F^2}{K_{IF}}} * \left(1 - \frac{P}{P_{m\acute{ax},F}}\right)^n$$
(29)

onde $\left(1 - \frac{G}{F}\right)$ é o termo de diauxia para a frutose, G é a concentração de glicose e F

é a concentração de frutose.

$$v = v_{m\dot{\alpha}x} * \frac{S}{K_{MS} + S + \frac{S^2}{K_{IS}}} * \left(1 - \frac{G}{G_{m\dot{\alpha}x}}\right) * \left(1 - \frac{F}{F_{m\dot{\alpha}x}}\right) * \left(1 - \frac{P}{P_{m\dot{\alpha}x}}\right)$$
(30)

onde v = velocidade específica da hidrólise da sacarose

 v_{max} = velocidade específica máxima da hidrólise da sacarose

3.3.2 Modelagem e Simulação Matemática do Biorreator

A modelagem matemática de reatores tem sido utilizada por diversos autores com diferentes objetivos. Neste trabalho, modelos matemáticos foram desenvolvidos para reatores de leito fixo tipo torre com o objetivo de descrever o comportamento estacionário para fins de estudos de aumento de escala do mesmo.

A modelagem matemática e simulação de dados experimentais através de métodos computacionais são ferramentas de extrema importância para se entender o comportamento dos biorreatores. Procurou-se então desenvolver um modelo capaz de representar a resposta dos biorreatores às mudanças nas variáveis de operação.

A modelagem de biorreatores tipo torre que operam com células de levedura autoimobilizáveis é bastante complexa e de extrema importância para o estudo de aumento de escala, principalmente pelo efeito de desestabilização do leito que pode ocorrer pela velocidade de geração de dióxido de carbono durante o processo fermentativo. O desenvolvimento de um modelo que possibilite a representação real do comportamento deste reator é fundamental para que se possa determinar as condições de operação dos reatores industrialmente para que este efeito não ocorra, pois seria uma situação inaceitável em um biorreator industrial, devido aos custos que esse fenômeno causaria. Através da modelagem do biorreator é possível desenvolver ferramentas computacionais para verificar o comportamento de todos os fatores que possam interferir na estabilidade do biorreator em diferentes condições de operação, sem que novos ensaios em escala de bancada sejam realizados.

Nesta fase do trabalho, através de uma análise detalhada do sistema de biorreatores, foi desenvolvido um modelo matemático de acordo com as seguintes considerações:

- Modelo pseudo-homogêneo, ou seja, não foi considerada explicitamente a presença de células no sistema;
- Estado estacionário em função de z;
- Escoamento "plug-flow" através do leito;
- Comportamento tubular ideal, desprezando os efeitos de dispersão axial e radial.

Antes de realizar a modelagem algumas variáveis e parâmetros foram classificados como:

a) Variáveis de estado: definem o estado do processo:

X, S, F, G, ART, P

 b) Variáveis operacionais: variáveis cujos valores podem ser alterados pelo operador do processo:

F, S_{Z=0}, P_{Z=0}, X_{Z=0}

c) Variáveis intermediárias: taxas que podem ser expressas em função das variáveis citadas acima:

 $v_{\mathrm{S}}, \mu_{\mathrm{G}}, \mu_{\mathrm{F}}, \mu_{\mathrm{P}}, e \mu_{\mathrm{X}}$

UNICAMP BIBLIOTECA CENTRAL SFCÃO CIRCULANTE d) Parâmetros cinéticos:

KSG, KSF, KIS, KIF, KIG, KM, Mmáx, Vmáx, Pmáx, Xmáx, Smáx, Fmáx, Gmáx, m, n

e) Parâmetros estequiométricos:

$$Y_{x/s}, Y_{x/p}, Y_{p/s}, Y_{x/g}, Y_{x/f}, Y_{x/p}, Y_{p/g}, Y_{p/f}, Y_{g/s}, Y_{f/s}$$

As equações do modelo podem ser obtidas através dos balanços em um elemento de volume do reator:

Balanço de Massa: ٠

Acúmulo = entrada - saída + geração e/ou consumo

$$d\left(\frac{\rho V}{dt}\right) = F_Z \rho_Z - F_{Z+\Delta Z} \rho_Z$$

Sendo $\rho = \text{constante} \implies \rho = \rho_z$

Obs: Não há geração

$$\frac{dV}{dt} = F_Z - F_{Z+\Delta Z}$$

Considerando estado estacionário V = constante

$$\frac{dV}{dt} = 0$$
 então:

Assim:

 $Fz = F_{z+Az}$ (31)

Balanço de Substrato: ۲

Acúmulo = entrada - saída + geração e/ou consumo

$$\left(\frac{dSV}{dt}\right) = S_Z F. - S_{Z+\Delta Z} - r_S \Delta V$$

Considerando estado estacionário: $\left(\frac{dSV}{dt}\right) = 0$ e $\Delta V = A.\Delta z$

$$F(S_Z - S_{Z+\Delta Z} = r_S A\Delta z$$
$$\frac{dS}{dz} = -\frac{r_S A}{F}$$
$$r_S = \frac{1}{Y_{X/S}} * \mu X$$

A =Área total, onde:

$$A = \varepsilon \cdot Ac \tag{32}$$

 ϵ = Porosidade do leito de células

Ac = Area transversal de escoamento

Desenvolvendo-se, tem-se:
$$\frac{dS}{dz} = -\frac{Ac^*\varepsilon}{Y_{X/S}*F}*\mu X$$
 (33)

Para o modelo com mais de um substrato tem-se:

a) Para a sacarose o Balanço fica:
$$\frac{dS}{dz} = -\frac{Ac^*\varepsilon}{F} * v.X$$
 (34)

b) Para a glicose o Balanço fica:
$$\frac{dG}{dz} = 0.526 \cdot \left(S_{i-1} - S_i\right) - \frac{Ac^* \varepsilon}{Y_{X/S} * F} * \mu_G \cdot X \quad (35)$$

c) Para a frutose o Balanço fica:
$$\frac{dF}{dz} = 0.526 \cdot \left(S_{i-1} - S_i\right) - \frac{Ac^* \varepsilon}{Y_{X/S} * F} * \mu_F \cdot X \quad (36)$$

• Balanço de Produto:

Acúmulo = entrada - saída + geração

$$\left(\frac{dPV}{dt}\right) = P_Z F. - P_Z + \Delta z.F + r_P \Delta V$$

Considerando estado estacionário: $\left(\frac{dSV}{dt}\right) = 0$ e $\Delta V = A.\Delta z$

$$F(P_Z - P_{Z + \Delta Z}) = -r_P A \Delta z$$

$$\frac{dP}{dz} = \frac{r_P \cdot A}{F}$$

$$r_P = \frac{Y_{P/S}}{Y_{X/S}} * \mu \cdot X$$

$$\frac{dP}{dz} = -\frac{Y_{P/S}}{Y_{X/S}} * \frac{Ac \cdot \varepsilon}{F} * \mu X$$
(37)

Assim:

• Balanço de Células:

Acúmulo = entrada - saída + geração

$$\left(\frac{dXV}{dt}\right) = F.X_Z - F.X_{Z+\Delta Z} + r_X \Delta V$$

Considerando estado estacionário: $\left(\frac{dXV}{dt}\right) = 0$ e $\Delta V = A.\Delta z$

$$F(X_{Z} - X_{Z+\Delta Z}) = -r_{X} A \Delta z$$
$$\frac{dX}{dz} = \frac{r_{X} A}{F}$$
$$r_{X} = \mu X$$

Assim:

 $\frac{dX}{L} = \frac{Ac.\varepsilon}{E} * \mu X$

(38)

considerando a concentração de celulas constante ao longo do leito, tem-se que a equação (38) se anula.

Nas equações de (31) a (38), V é o volume do biorreator, F é a vazão volumétrica na alimentação, ρ é a relação entre a massa seca e o volume de massa úmida; S, X, e P são as concentrações de substrato (sacarose, glicose, frutose e ART), células e produto respectivamente; r_s, r_x, e r_P são respectivamente as velocidades cinéticas de consumo de substrato, crescimento de células e formação de produto; Y_{x/s} é a produção de células: massa celular produzida por substrato consumido; $Y_{p/s}$ é o rendimento da reação: produto formado por substrato consumido.

3.3.3 Ajuste dos parâmetros cinéticos

Foram realizados ensaios em reatores de bancada em diferentes condições de vazão e brix para obtenção de dados experimentais, para posterior seleção e ajuste de modelos cinéticos. Amostras foram retiradas de 12 pontos ao longo do reator, sendo possível desta forma obter o perfil de concentração de sacarose, frutose, glicose, ART (açúcares redutores totais) e etanol em função da altura do mesmo.

Utilizando os modelos matemáticos e os diferentes modelos cinéticos estudados, foi possível obter os perfis de concentração de sacarose, glicose, frutose, ART e etanol, pela resolução do conjunto de equações diferenciais de primeira ordem. Através de uma rotina de ajuste desenvolvida em DELPHI 5.0, foi possível obter o conjunto de parâmetros cinéticos que melhor se justam aos dados experimentais. O melhor grupo de parâmetros é obtido através da minimização da somatória dos desvios quadrados, calculados como descrito na equação (39), isto é, quanto menor a somatória desses desvios quadrados, melhor será o ajuste dos parâmetros cinéticos aos dados experimentais obtidos.

$$D = \sum_{i=1}^{N} (xi - xe)^2$$
(39)

Onde:

N = número de pontos

xi = dados calculados pelo modelo

xe = dados experimentais

4. **RESULTADOS E DISCUSSÃO**

4.1 Dados experimentais

Sabendo-se que a estabilidade do leito de células é uma função da quantidade de gás carbônico liberado por unidade de tempo e que este, aumenta com a quantidade de substrato alimentado ao reator, definiu-se como taxa de aplicação a quantidade de substrato alimentado ao reator por unidade de tempo. Esta é obtida pela equação (41).

$$Ta = S * Q \tag{41}$$

Onde: Ta = taxa de aplicação

S = concentração de substrato

Q = vazão de alimentação

Para determinar a taxa de conversão do substrato em produto utilizou-se a equação (42):

$$T_{c} = N \sum S \tag{42}$$

Onde: Tc = taxa de conversão

S = concentração de substrato

N = número de pontos

A Tabela 2 mostra os valores para as taxas de aplicação empregadas no sistema de biorreatores.

Vazão de Alimentação	Concentração de Substrato	Taxa de Aplicação		
(L/h)	(g/L)	(g substrato/h)		
0,58	155,79	89,73		
0,58	183,87	107,01		
0,60	192,85	115,71		
0,77	153,84	118,88		
0,76	181,98	138,67		
0,72	242,7	174,74		
0,96	147,19	141,30		
0,99	185,6	183,74		
0,99	279,49	276,69		

Tabela 2 - Taxas de Aplicação empregadas no sistema de biorreatores

Nota-se através da Tabela 2 que a taxa de aplicação foi crescente do primeiro ao último experimento.

As tabelas 3 a 11 apresentam os resultados obtidos experimentalmente dos nove ensaios, para as concentrações de sacarose, frutose, glicose, ART e etanol nas amostras coletadas nas alturas de 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 e 60 cm do reator.

A Tabela 3 mostra os resultados obtidos pelo Experimento 1, onde a vazão de alimentação e a concentração de substrato foram de 9,6 mL/min e 155,79 g/L de ART respectivamente.

Z(cm)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
Reator 1						
~	1 70 0110					
0	150,8119	0	0	0	0	155,7900
05	31,4619	19,9082	27,5297	0	31,4946	80,5556
10	22,9369	21,3623	31,8950	0	33,7701	77,4014
15	19,5269	21,3623	28,9848	0	38,5456	70,9017
20	14,0259	25,2221	37,7740	4,3734	50,3452	77,7603
25	10,6159	14,3164	23,223	3,0371	42,3968	48,7140
30	5,5009	10,6811	17,4026	3,4699	44,4000	33,8742
35	2,0909	5,5918	14,4924	4,5736	58,6141	22,2852
40	0	5,5918	15,2199	4,4005	60,1686	20,8117
45	0	7,0459	18,8577	4,6764	64,6556	25,9036
50	0	7,7729	19,5852	4,1029	63,1973	27,3582
55	0	7,7729	19,5852	4,4870	63,0531	27,3582
60	0	7,7729	19,5852	3,7837	64,5594	27,3582
Reator 2						
0	150,8119	0	0	0	0	155,790
05	38,7484	13,5893	20,3128	2,2906	27,7981	74,6899
10	29,3709	12,1352	19,5852	2,6639	31,6601	62,6372
15	25,9609	12,8623	20,3128	2,5827	35,7625	60,5024
20	12,3209	11,9541	16,6750	3,0263	40,2174	39,5985
25	10,4229	7,1582	11,6115	2,4382	45,6049	29,7412
30	4,45547	5,3405	9,7926	3,6717	53,1683	19,8231
35	2,32422	3,5229	8,3375	4,1505	59,8908	14,3070
40	2,89797	3,1594	8,0650	4,1857	64,1294	14,2223
45	2,32422	3,8864	10,8839	4,1857	65,9402	16,2169
50	2,1231	3,2903	10,2150	3,7993	63,7912	16,2902
55	2,1231	3,1449	10,0284	3,6521	63,8523	15,7083
60	1,9526	3,7357	10,6105	3,9140	64,4034	15,8117

Tabela 3 – Experimento 01- Vazão de 9,6 mL/min (7= 2,43 horas) e brix de 15%)

As Figuras 6 e 7 mostram graficamente estes valores.

Figura 6 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 9,6 mL/min e brix de 15% para o Reator 01

Figura 7 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 9,6 mL/min e brix de 15% para o Reator 02

Pode-se observar pelos dados contidos na Tabela 3 e Figuras 6 e 7 que os perfis de concentrações de sacarose (S), glicose (G), frutose (F), ART e etanol mostraram ao longo do reator algumas variações que não puderam ser explicadas. Estas concentrações permaneceram constantes quando o leito de células terminou em 45 cm no Reator 1 e 48 cm no Reator 2. Como no reator 2 a altura do leito foi superior, consequentemente a conversão de ART em etanol também foi maior. Isso ocorre devido à baixa concentração de células existente na parte superior do reator onde não há formação de leito, ou seja, após a altura (H) de 45 cm de ambos os reatores, a concentração de etanol apresentou uma zona de estabilização, assim como, as concentrações de açúcares, mas no Reator 2 estas concentrações foram maiores de etanol e menores de açúcares quando comparado com o Reator 1. Pode ser observado ainda nestas figuras que o consumo de glicose é maior que o

consumo de frutose, mostrando um efeito de diauxia, onde o microrganismo consome preferencialmente um substrato quando mais de um estão presentes no meio.

A Tabela 4 mostra os resultados do Experimento 2, onde a vazão de alimentação e a concentração de substrato foram de 9,7 mL/min e 183,87 g/L de ART respectivamente.

Z(cm)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
Destar 1						
Reator 1						
0	174,6819	0	0	0	0	183.8757
05	49,8309	22,3139	31,9536	2,6639	27.2212	106.7212
10	25,1084	20,4033	34,3219	3,3942	37.2684	88.1552
15	13,1734	17,2246	29,0434	2,9939	43,7754	80,1347
20	10,6159	21,5869	37,7740	4,1570	49,7683	80,5355
25	12,1117	25,3344	41,0772	3,8476	47,4794	79,1609
30	12,9804	24,9709	40,7135	3,6853	45,0756	79,3480
35	4,0292	17,7004	34,5293	4,4670	59,7225	56,4710
40	3,1767	14,0651	31,2553	4,6050	63,7528	48,6644
45	1,8979	12,6110	28,7089	4,6374	67,0459	43,3178
50	1,4717	9,3393	21,0696	3,3390	45,4843	31,9581
55	1,4717	9,7028	21,7972	3,3796	47,0948	33,0492
60	1,4717	9,7028	21,7972	3,3093	48,2326	33,0492
Reator 2						
	171 5010	<u>^</u>		_	-	
0	174,6819	0	0	0	0	183,8757
05	58,3559	17,9516	29,0434	2,7775	32,2370	108,4224
10	43,0109	17,9516	30,4985	3,5457	40,7463	93,7248
15	34,4859	17,9516	30,4985	3,6431	46,4031	84,7511
20	28,5184	17,2246	31,2260	4,0109	41,7398	78,4700
25	21,0792	15,5192	29,7089	3,5879	48,3768	66,4168
30	19,8004	15,1557	29,4364	4,0991	55,4118	65,4348
35	3,6029	6,4311	17,0681	4,3372	57,4630	27,2918
40	4,0292	0,4311	17,0681	4,4886	66,997/8	27,7405
45	2,7504	5,5405	15,2492	4,0036	68,6084	23,4850
50	2,7304	4,2337	12,3390	5,4250	55,0521	19,4842
55	2,3242	4,2337	12,3390	3,3/13	57,9678	19,0356
00	1,09/9	4,2337	11,0115	3,4012	55,4968	17,8593

Tabela 4 - Experimento 02- Vazão de 9,7 mL/min (v= 2,4 horas) e brix de 18%

As Figuras 8 e 9 mostram estes dados de forma gráfica.

Figura 8 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 9,7 mL/min e brix de 18% para o Reator 01

Figura 9 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 9,7 mL/min e brix de 18% para o Reator 02

Observa-se pelos dados contidos na Tabela 4 e Figuras 8 e 9, que o perfil de concentração de etanol, após o término do leito sofre uma queda acentuada, passando de 67 g/L para aproximadamente 47 g/L no Reator 1 e de 68 g/L para 55 g/L para o Reator 2. Este fato pode estar relacionado com a amostragem ou então a anomalia do leito, pois nesta região de transição existe um acúmulo excessivo de gás formando canais preferenciais e grande turbulência, como pode ser observado nas Figuras 10 e 11. No entanto, esta variação não foi observada para as concentrações de açúcares, as quais se comportaram como no Experimento 1, ou seja, após o término do leito estas se mantiveram constantes.

Figura 10 - Zona de transição com grande turbulência no término do leio dos biorreatores de bancada

Figura 11 – Detalhe do fluxo de CO2 ao longo do leito

A Tabela 5 mostra os resultados do Experimento 3, onde a vazão de alimentação a concentração de substrato foram de 10 mL/min e 192,85 g/L de ART respectivamente.

Z(cm)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
Reator 1						-
0	183 2060	Λ	0	0	Δ	102 8404
05	51 5350	27 4033	31 0536	2 6152	20.3144	192,0494
10	10 1400	24 4051	30 2201	2,0152	A0 4007	88 87257
15	15 7309	28 8574	43 5044	3 5411	40,0286	88 0106
20	15 6159	25 4057	30 0434	3 7134	49,9260	70 6738
25	13 4067	22,4057	39 2584	3 7258	42 6308	76 1605
30	12 9804	22,7897	30 2584	3 9422	48 6398	75 7118
35	9 9967	22,4262	30 0850	4 1832	46 34 16	72 9350
40	1 8979	12 2475	30 9813	4,1052	60,0270	42,9550
45	1 8979	12,2475	29 8002	4 0706	50 0148	44 4001
50	2 3242	12,6110	29,8002	4,9290	62 3185	44 8578
55	2 3242	12,6110	29,8002	4 8565	61 4692	44,8578
60	1.8979	11,8840	28 7089	4,8505	67 1901	42 5908
~~	1,0070	11,0010	20,7002	7,0105	07,1901	+2,5900
Reator 2						
0	183,2069	0	0	0	0	192,8494
05	86,4884	25,2221	38,5015	3,1345	33,7080	154,7642
10	30,2234	17,2246	29,0434	3,7675	37,8137	78,0821
15	24,2559	16,4975	29,7709	4,1083	45,5377	71,8010
20	19,1409	17,2246	29,7709	3,8757	46,3710	67,1439
25	18,2884	15,7705	29,0434	4,1624	45,6980	64,0649
30	13,4067	15,1557	29,0727	3,8935	51,3094	58,3407
35	6,16047	10,7934	23,6160	4,5157	56,1409	40,8942
40	4,8817	8,2487	19,6145	4,4508	61,5894	33,0019
45	2,7504	5,7041	17,0681	4,6509	68,8567	25,6674
50	2,7504	5,7041	17,0681	4,6077	63,1679	25,6674
55	3,1767	6,0676	17,4319	4,5292	64,1294	26,8434
60	3,1767	5,7041	17,4319	4,5968	66,9818	26,4799

Tabela 5 - Experimento 03- Vazão de 10 mL/min (τ= 2,33 horas) e brix de 20%

Figura 12 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 10 mL/min e brix de 20% para o Reator 01

Figura 13 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 10 mL/min e brix de 20% para o Reator 02

Os perfis mostrados pelas Figuras 12 e 13 são bastante semelhantes a aqueles obtidos para o Experimento 1, não sendo observado a queda de concentração de etanol após o término do leito como ocorrido no Experimento 2. Ao se comparar os resultados obtidos para os Experimentos 1, 2 e 3 observa-se um aumento na concentração de açúcares no final dos Reatores 1 e 2 com o aumento da concentração de açúcares no meio de alimentação. Nota-se ainda, que este aumento foi maior para o Reator 1 quando comparado ao Reator 2. Isto está vinculado com a altura do leito que nestes três experimentos 1, 2 e 3 foram de 82,4; 78,78 e 77,9 respectivamente e para o Reator 2 de 89,8; 90,3 e 86,3. Observa-se por estes dados que a conversão de ART nos Reatores 1 e 2 não sofreram alteração nos

Experimentos 1 e 2, mas caíram para o Experimento 3. Este fato mostra que a taxa de aplicação de substrato no Experimento 3 pode estar alterando a compactação do leito aumentando a porosidade do mesmo, diminuindo assim, a concentração de células, o que acarretaria em uma diminuição na conversão de substrato já que a altura do leito se manteve inalterada.

A Tabela 6 mostra os resultados do Experimento 4, onde a vazão de alimentação e a concentração de substrato foram de 12,9 mL/min e 153,84 g/L de ART respectivamente.

Z(cm)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
Dentor 1						
Reator 1					-	
0	146,1516	0	0	0	0	153,8438
05	46,3533	25,2960	32,2174	0	19,2889	106,3065
10	24,0845	22,9889	32,9865	2,2206	19,2889	81,3276
15	13,3955	19,1436	32,2174	2,7638	41,0684	65,4617
20	11,6140	19,1436	32,2175	2,3071	44,1797	63,5864
25	6,6977	17,2623	31,4898	2,7400	46,9806	55,8023
30	6,9330	17,4921	30,5658	2,7400	45,7579	59,6717
35	6,2520	16,1087	28,7983	2,7400	50,7579	51,4882
40	2,6890	8,8027	18,8003	3,2832	54,7590	30,4341
45	2,2440	7,6491	19,1848	3,2832	50,0920	29,1962
50	2,2440	8,4182	20,3383	3,2832	56,9806	31,1189
55	2,2440	8,4182	20,7238	3,2832	57,8704	31,5034
60	4,4709	8,0337	19,5693	3,2832	53,2033	31,0541
Reator 2						
0	146 1516		0	0	0	150 0400
0	140,1010				0	153,8438
05	41,8995	16,0674	22,9888	2,2206	25,5116	83,1011
10	33,8828	10,0074	25,2960	2,2206	25,5116	77,0290
15	25,8000	15,2980	25,2960	3,30/1	25,5116	07,8210
20	25,8000	10,0075	20,8341	3,30/1	34,8457	70,1291
25	10,9414	13,4170	24,1837	2,7400	32,9796	50,2621
30 25	12,4870	13,0325	24,1837	3,2832	37,9577	30,3021
30	5 2616	9,3/18	19,1849	3,2832	45,4250	30,2788
40 45	3,3010	7,0491	18,8///	3,2832	39,4200	30,1/84
45	4,4709	1,2040	18,8004	3,8204	50,9800	30,7731
3V 55	3,3801 2 5901	5,7265	14,9001	3,2832	53,2033	24,4332
55 60	3,3801	5,7265	14,9551	3,2832	50,0920	24,4332
60	4,0255	5,7265	13,3396	3,2832	50,0920	24,3066

Tabela 6 - Experimento 04- Vazão de 12,9 mL/min (7=1,81horas) e brix de 15%

As Figuras 14 e 15 mostram estes dados na forma gráfica.

Figura 14 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 12,9 mL/min e brix de 15% para o Reator 01

Figura 15 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 12,9 mL/min e brix de 15% para o Reator 02

Os gráficos demonstrados nas Figuras 14 e 15, mostram os perfis de concentração de sacarose, glicose, frutose, ART e etanol para os Reatores 1 e 2 respectivamente e com tempo de residência de 1,81 horas. Pôde-se observar que os perfis de formação de produto e consumo de substrato foram semelhantes aos de tempo de residência de 2,33 horas, onde se observou a total hidrólise da sacarose e consumo preferencial da glicose em relação à frutose. Neste experimento, tanto para o Reator 1 quanto para o Reator 2 se ressaltou uma zona de estabilização após o término do leito onde as concentrações de sacarose, glicose, frutose e etanol se mantiveram constantes.

A Tabela 7 mostra os resultados do Experimento 5, onde a vazão de alimentação e a concentração de ART foram de 12,7 mL/min e 181,97 g/L respectivamente.

Z(cm)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
Deptor 1						
Reator 1				- And		
0	172.8741	0	0	0	0	181 9727
05	79.31105	22,9889	24.5269	0.0477	19,2889	131 0012
10	29,6308	24,5270	37,6008	2.2206	37,9570	93.3182
15	22,3030	25,2960	38,3698	2.2206	37.9570	87,1428
20	15,1770	25,9889	37,6008	3,3071	47,2911	76.5656
25	12,0422	27,6445	34,5635	3,2832	54,7590	74,8841
30	7,5885	19,9540	33,4123	3,7400	58,5363	61.3542
35	4,9162	15,7242	33,0278	3,8264	58,5363	53,9271
40	3,1347	13,0325	26,4909	3,2832	56,3147	42,8232
45	2,2440	7,2646	18,8004	3,2832	56,9806	38,4272
50	2,2440	7,6491	21,1075	3,2832	60,9817	31,1189
55	2,2440	7,6491	20,3385	3,8264	61,8704	30,3498
60	2,2440	7,8027	20,7992	3,8264	65,6487	30,9641
		1				
		al valid for the second se				
Reator 2				A12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Sector Sector Control Sector Se	
<u>^</u>	170.074					
U	1/2,8/4					181,9727
05	00,8403	17,0055	24,5269	1,1342	25,5116	112,4910
10	48,0383	10,00/4	24,5269	2,2206	31,7343	90,6347
15	38,3303	1/,0030	32,9841	3,3071	35,4024	81,9417
20	34,9753	19,1435	31,4484	2,2206	37,9570	76,8818
23	27,0304	26,1040	33,7945	3,8264	46,3147	68,9855
30	12,48/0	23,0355	23,4147	2,7400	50,7579	49,5921
33	10,7061	16,4927	31,8742	3,8264	56,3147	49,6371
40	5,8070	9,1879	19,5694	2,7400	59,9370	34,8694
43	3,1347	6,1119	16,4932	3,2832	57,8704	25,9041
50 55	2,0894	5,3424	15,7242	3,8264	58,5363	23,8972
55	2,0894	5,3424	16,4932	3,8264	59,4260	24,6662
00	2,0894	5,3424	15,7242	3,8264	56,3147	23,8972

Tabela 7 - Experimento 05- Vazão de 12,7 mL/min (r= 1,84horas) e brix de 18%

As Figuras 16 e 17 mostram os dados da Tabela 7 de forma gráfica.

Figura 16 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 12,7 mL/min e brix de 18% para o Reator 01

Figura 17 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 12,7 mL/min e brix de 18% para o Reator 02

Observa-se pelos dados obtidos através da Tabela 7 representados pelas Figuras 16 e 17 em relação aos Reatores 1 e 2, que o perfil de concentração de açúcares não apresentou uma queda brusca. Como no Experimento 2, houve uma estabilização da concentração de etanol no final do leito, onde a concentração média de etanol no Reator 1 foi de aproximadamente 63 g/L e no Reator 2 de 58 g/L. No entanto, observa-se uma menor concentração de substrato na saída do Reator 2 quando comparado com o Reator 1, indicando uma maior conversão de substrato no Reator 2 e um rendimento em etanol menor no Reator 1. Os perfis de sacarose, glicose, frutose, ART e etanol mostraram algumas variações ao longo do reator; como no Experimento 1, que não podem ser explicadas. A Tabela 8 mostra os resultados do Experimento 6, onde a vazão de alimentação foi de 13 mL/min e a concentração de ART de 242,7 g/L.

Z(em)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
_	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
Reator 1						
0	010 1001			-		
0	219,1931	5,9871	5,9871	0	0	242,7040
05	53,4793	31,4485	44,5222	2,2206	31,7343	132,2647
10	35,6643	30,6794	46,0603	3,3071	37,9570	114,2812
15	25,1770	28,3722	47,5984	3,3071	40,4024	91,9465
20	19,6308	28,7579	45,2151	3,3071	44,1797	86,6370
25	20,5215	25,2960	43,7532	4,3935	45,0684	88,6509
30	16,9585	25,2960	44,5222	4,4800	47,2911	87,6694
35	16,0678	25,2960	44,5222	4,3935	49,1797	86,7318
40	8,92465	22,2611	42,6409	4,3696	54,7590	74,2964
45	4,02552	15,7242	36,4885	4,3696	53,2033	56,4501
50	3,13477	15,3397	35,7195	4,3696	57,8704	54,3589
55	3,13477	15,3397	35,3349	4,3696	56,9806	53,9744
60	3,13477	14,9551	34,9504	4,3696	57,8704	53,2054
						-
Reator 2						
0	219,1931	5,98719	5,98719	0	0	242,704
05	55,2608	25,29605	36,062745	3,307115	31,73435	149,5281
10	51,6978	31,44845	53,750895	3,307115	37,95705	139,6181
15	27,64755	25,29605	40,677045	4,393565	41,0684	95,07577
20	23,1938	22,21985	38,369895	4,393565	44,17975	85,00427
25	22,30305	22,21985	38,369895	4,307115	45,95705	84,06663
30	20,52155	22,21985	39,138945	4,393565	47,2911	82,96042
35	17,8493	20,68175	38,369895	4,393565	53,5138	77,84038
40	7,588525	14,95517	32,643323	4,369683	54,75905	55,58642
45	4,916275	11,49445	29,182598	4,369683	57,8704	45,85207
50	4,916275	11,49445	27,259973	4,369683	57,6477	43,92945
55	4,916275	11,49445	28,413548	4,369683	57,8704	45,08302
60	4,916275	11,49445	28,029023	4,369683	53,20338	44,6985

Tabela 8 - Experimento 06- Vazão de 13 mL/min (7= 1,94 horas) e brix de 24%

As Figuras 18 e 19 mostram os dados obtidos na Tabela 8 de forma gráfica.

Figura 18 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 13 mL/min e brix de 24% para o Reator 01

Figura 19 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 13 mL/min e brix de 24% para o Reator 02

O comportamento dos Reatores 1 e 2, que são mostrados pelas Figuras 18 e 19, foram semelhantes; porém no Reator 2 observou-se uma queda brusca na concentração de etanol na altura de 55 cm, que pode ser explicada pelas variações do sistema ou amostragem. As concentrações de sacarose (S), glicose (G) e frutose (F) ficaram constantes a partir da altura 50 cm, onde foi observado o término do leito de ambos os reatores. Como nos ensaios 1, 2 e 3, nos ensaios 4, 5 e 6 houve um aumento da concentração de substrato no meio de alimentação. A diferença entre estes ensaios foi a vazão de alimentação dentro de cada grupo de ensaios (de mesma vazão). Foi observado um aumento da concentração na alimentação. Nos ensaios 4, 5 e 6, as concentrações de substrato tiveram um aumento maior

quando comparadas aos ensaios 1, 2 e 3. Este fato pode estar vinculado com a maior taxa de aplicação a qual pode interferir nas características do meio. No Reator 2, onde esta altura foi maior para os Experimentos 4, 5 e 6, onde as conversões foram de 84,2; 86,9 e 81,6; enquanto que para o Reator 1 as conversões foram de aproximadamente 78.

A Tabela 9 mostra os resultados do Experimento 7, onde a vazão de alimentação foi alterada para 16 mL/min e a concentração de ART foi de 147,19 g/L.

Z(cm)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
_						
Reator 1						
0	00.02/1	07 5005			~	
0	80,2361	27,5205	35,2110		0	147,1907
05	57,0423	36,8318	44,5222	3,3071	22,4003	141,3986
10	24,0845	26,8341	36,0627	3,3071	22,4003	88,2490
15	16,06/8	18,3746	31,4484	3,3071	28,6230	66,7365
20	11,6140	18,3746	30,6793	3,3071	41,0684	61,2793
25	11,6140	15,2984	33,7555	3,3071	41,7343	61,2793
30	11,6140	13,7579	32,2151	3,3071	41,0684	58,1984
35	6,2695	13,7603	29,9103	3,3071	53,5138	50,2701
40	4,0255	11,4944	23,7992	3,2832	49,2023	39,5310
45	2,6894	8,0337	20,7230	3,2832	49,2023	31,5877
50	2,6894	8,6491	19,5694	3,2832	54,7590	30,0496
55	2,6894	8,4182	20,3385	3,2832	53,2033	31,5877
60	2,6894	7,2646	19,5694	3,2832	56,3147	29,6650
Reator 2						
0	80,2361	27,5205	35,2110	0	0	147,1907
05	51,6978	18,3746	29,2960	1,1342	19,2889	98,0893
10	40,1180	19,9127	28,3722	3,3071	19,2889	90,5144
15	25,8660	19,0674	27,6031	3,3071	28,6230	80,8980
20	25,8660	19,1436	30,6793	3,3071	34,8457	77,0504
25	21,4123	16,0674	27,6031	3,3071	38,6230	66,2099
30	13,3955	15,2984	29,1412	3,3071	38,6230	58,5402
35	13,3955	13,7603	26,0650	3,3071	44,1797	53,9259
40	4,91627	8,4182	20,4158	3,2832	51,6477	32,0091
45	4,02552	8,8801	19,5694	3,2832	51,6477	30,6870
50	4,4709	7,6491	19,1849	3,2832	48,5363	31.5403
55	3,5801	7,2646	18,8004	3,2832	51,6477	29,8336
60	3,4709	7,0337	19,9539	3,2832	43,8693	29,6939

Tabela 9 - Experimento 07- Vazão de 16 mL/min (τ= 1,46 horas) e brix de 15%

As Figuras 20 e 21 mostram os dados obtidos na Tabela 9 de forma gráfica.

Figura 20 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 16 mL/min e brix de 16% para o Reator 01

Figura 21 - Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 16 mL/min e brix de 16% para o Reator 02

A Tabela 9 e as Figuras 20 e 21 representam o perfil dos Reatores 1 e 2 num tempo de residência de 1,46 horas. Com a mudança da vazão, pode-se observar um consumo menor de substrato em relação às condições anteriores, onde o tempo de residência era maior. Porém, essas concentrações de açucares e de etanol se mostraram constantes no término do leito de células como os demais experimentos citados acima. Como a altura do término do leito de ambos os reatores foram iguais (50 cm), as concentrações de etanol foram na ordem de 55 g/L para o Reator 1 e 48g/L para o Reator 2; no entanto, a conversão de ART em etanol em ambos os reatores foi próximo de 80. A Tabela 10 mostra os resultados do Experimento 8, onde a vazão de alimentação foi alterada para 16,5 mL/min e a concentração de ART foi de 185,72 g/L.

Z(cm)	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
Reator 1						
0	172 4271		^		0	105 5000
0	1/3,43/1	0	0	0	0	185,7223
05	28,7400	33,7579	41,4460	3,3071	22,4003	105,4543
10	23,1938	26,0651	39,9079	3,3071	34,8457	90,3876
15	18,7400	24,5270	39,1389	3,3071	34,8457	83,3923
20	18,3955	24,5270	39,1389	3,3071	37,9570	78,3232
25	16,0678	22,2198	36,8317	3,3071	37,9570	75,9651
30	15,5075	23,9315	36,1584	5,6184	56,2515	76,4137
35	15,2130	22,1848	30,9183	5,6184	65,0592	69,4269
40	7,7537	13,4941	24,6293	5,8163	64,4569	46,2853
45	6,6167	12,6208	23,3193	5,1177	65,5710	42,9051
50	6,9010	12,8391	23,3193	5,1177	75,8858	43,4226
55	6,9010	10,8741	22,2276	5,1177	74,6164	40,3659
60	6,9010	11,7474	22,2276	5,1177	78,4223	40,2393
Reator 2						
0	173,4371	0	0	0	0	185,7223
05	73,9665	32,9865	46,8294	3,3071	22,4003	157,6755
10	52,5885	31,4484	48,3675	3,3071	37,9570	135,1724
15	41,0088	29,9103	47,5984	3,3071	35,5116	120,6760
20	29,4290	29,9103	46,8294	4,3935	34,8457	107,7177
25	27,6475	27,6032	46,0603	4,3935	62,8478	102,7663
30	26,7568	26,0651	45,2913	4,3935	64.8457	99,5214
35	19,6308	22,9889	41,4460	4,3935	61,0684	85,0989
40	11,1515	19,5694	37,6421	4,9129	64,0931	68,9500
45	13,3784	19,1849	36,8730	4,9129	71,8714	70,1405
50	13,3784	18,4159	36,4885	4,9129	76,5385	68,9870
55	12,0422	18,0313	35,7195	4,9129	76,5385	66,4269
60	11,1515	17,2623	34,9504	4,9129	68,7601	63,9512

Tabela 10 - Experimento 08-Vazão de 16,5 mL/min (r= 1,41 horas) e brix de 18%.

As Figuras 22 e 23 mostram os dados obtidos na Tabela 10 de forma gráfica.

Figura 22 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 16,5 mL/min e brix de 18% para o Reator 01

Figura 23 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 16,5 mL/min e brix de 18% para o Reator 02

Pelos dados contidos na Tabela 10 e Figuras 22 e 23 nota-se que os perfis de sacarose, glicose, frutose, ART e etanol sofreram variações que não podem ser explicadas em ambos os reatores. Neste experimento a altura do leito diminuiu consideravelmente, o que pode ter sido causado pela taxa de aplicação, a qual pode ter excedido o valor máximo possível para manter o leito estável. Contudo, a conversão de ART no Reator 1 foi de 78,3 e no Reator 2 de 65,5, menor que no ensaio anterior (Experimento 7).

A Tabela 11 mostra os resultados do Experimento 9, onde a vazão de alimentação foi alterada para 16,5 mL/min e a concentração de ART foi de 279,49g/L.

	Sacarose	Glicose	Frutose	Glicerol	Etanol	ART
	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
-						
Reator 1						
A	765 5171	0	0	0	0	270 4964
0	110 20/9	26.9219	16 8201	2 2206	v 22 4002	279,4804
10	115,5540	J0,0510	40,0294	4.2025	22,4003	209,3400
10	27 6475	41,4401	66 97 17	4,3933	02,0470	132,0014
15	20,6208	20 6009	66 9247	5,4000	72,1019	135,0004
20	29,0308	39,0000	00,0247	5,4000	76,4040	120,0890
23	10 6200	41,4401	00,3028	5,4000	75,0705	130,7809
25	19,0308	39,1309	09,1318	5,4800	15,2932	128,9348
33	20,1956	39,0000	09,1318	5,4800	00,0201	131,14/3
40	13,3933	39,1389	/0,0099	5,4800	02,8478	123,9095
45	11,0140	38,3099	69,9009	5,4800	78,4046	120,4962
50	12,5048	38,1389	69,4390	3,3664	78,4046	120,7409
55	11,0140	38,3699	/0,4390	5,4800	78,4046	122,0343
6U	11,0140	37,6008	67,5937	5,4800	72,1819	117,4200
Reator 2						
0	265 5121	0	0	0	0	270 4964
05	110/1873	21 1484	16 8201	2 2206	19 6720	2/9,4004 104 5002
10	67 3868	21,4404	40,0294	1 2025	20,0230	194,3603
15	54 3700	J4,J240	57 0771	4,3933	57 2011	157,0221
15	34,3700	40,0770	50 1240	5,4000	57 2011	100,0000
20	21 2105	34,4173 21 4494	57 5061	5,3004	57,2911	127,9555
20	20 4200	22.0965	57,3901	5,4000	63,9392	121,0970
30	29,4290	32,9603	01,4413	5,4800	02,8478	125,4059
33	29,4290	22,9803 21 4494	01,4413	5,4800	03,3138	125,4059
40	21,0413	21,4404	37,3901	5,4800	05,9592	118,1473
43	24,9733	29,9103	56,0580	4,3933	72,1819	112,5382
50 55	23,1938	32,2173	5/,5961	4,3933	/8,1819	109,9512
33	20,3213	30,6794	56,0580	4,3935	81,5159	110,3391
60	20,5215	30,6794	56,0580	4,3935	78,7446	108,3391

Tabela 11 - Experimento 09-Vazão de 16,5 mL/min (7= 1,41 horas) e brix de 28%

As Figuras 24 e 25 mostram os dados obtidos na Tabela 11 de forma gráfica.

Figura 24 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 16,5 mL/min e brix de 28% para o Reator 01

Figura 25 – Perfil das concentrações de Sacarose, Glicose, Frutose, ART e Etanol com vazão de 16,5 mL/min e brix de 28% para o Reator 02

O Experimento 9 cujo tempo de residência foi de 1,41 horas e brix de 28%, apresentou uma baixa conversão de ART nos dois reatores (57,9 e 61,3). Neste experimento, houve um erro na diluição do substrato concentrado, o qual provocou um desvio na concentração de substrato na alimentação do reator. A concentração de deveria ser de 200 g/L, atingiu valores próximos de 280 g/L, aumentando excedendo a taxa de aplicação. Este fato provocou uma desestabilização do leito, comprometendo a conversão do substrato como pode ser visto nas Figuras 24 e 25. Estes resultados mostram que o desempenho dos reatores depende da taxa de aplicação e que a estabilidade do leito fica comprometida quando os valores das taxas de aplicação se aproximam de 200 g/L.

Comparando-se os resultados obtidos para todos os experimentos, observou-se que as menores concentrações de substrato foram alcançadas para ensaios com menor taxa de aplicação. Nota-se a partir da Figura 26 que existe relação entre a taxa de conversão e a taxa de aplicação, ou seja, os níveis de conversão dos biorreatores foram afetados negativamente pela taxa de aplicação.

Figura 26 – Relação entre a Taxa de aplicação e a Taxa de conversão para os Reatores 01 (a) e 02 (b)

4.2 Determinação dos parâmetros cinéticos

De acordo com os ensaios realizados no item 4.1, todos os parâmetros cinéticos foram determinados por rotinas de ajuste desenvolvidas a partir do software DELPHI 5.0. para os quatro diferentes modelos, como descritos na Tabela 12.

Modelo cinético	Autores
$\mu = \mu_m \cdot \frac{S}{K_s + S} \cdot \frac{Kp}{P + K_P} \cdot \left(1 - \frac{P}{P_m}\right)$	SEVELY <i>et al.</i> (1981)
$\mu = \mu_{máx} \cdot e^{(-K_1 \cdot P) \cdot (-K_2 \cdot S)} \cdot \frac{S}{K_s + S}$	JIN et al. (1981)
$S \left(\begin{array}{c} P \end{array} \right)^n$	TOSETTO & ANDRIETTA
$\mu = \mu_{max} \cdot \frac{1}{V_{max} + S_{max} + S_{max}^2} \cdot \frac{1}{P_{max}}$	(2002) que é o GHOSE
$\mathbf{K}_{S} + \mathbf{S} + \frac{1}{K_{I}}$	modificado com n \neq 1
(a) $u = u + \frac{G}{G} + \frac{G}{1 - \frac{P}{2}}^{n}$	Modelo para três
$\frac{dJ}{K} \frac{\mu - \mu_{mdx}}{K_{SG} + G + \frac{G^2}{G}} \left(\frac{1}{P_{mdx,G}} \right)$	substratos: equações a)
K_{IG}	e b) são propostas por
b) $\mu = \mu + \left(1 - \frac{G}{G}\right) * \frac{F}{F} * \left(1 - \frac{P}{F}\right)^{n}$	TOSETTO &
$(f) \mu = \mu_{max} \left(\left(\frac{1}{F} \right) \frac{1}{K_{SF} + F + \frac{F^2}{K}} \left(\left(\frac{1}{F} \right) \frac{1}{P_{max,F}} \right)$	ANDRIETTA (2002),
$\kappa_{{\scriptscriptstyle I\!F}}$	e o modelo c) proposto
c)	neste trabalho,
$v = v_{min} * \frac{S}{1 - G} * \left(1 - \frac{G}{1 - F}\right) * \left(1 - \frac{F}{1 - F}\right)$	$\frac{P}{2}$ descreve o consumo de
$K_{MS} + S + \frac{S^2}{K} \left(G_{max} \right) \left(F_{max} \right) \left(P_{max} \right)$	máx) sacarose, glicose e
IN IS	frutose

Tabela 12 - Modelos cinéticos utilizados para a determinação dos parâmetros

Os três primeiros modelos foram utilizados de forma que no meio fermentativo estivesse presente somente uma fonte de substrato (ART). O quarto modelo proposto leva em consideração a glicose e a frutose como dois diferentes substratos onde serão consumidos de forma distinta pela levedura. Este modelo ainda leva em consideração a hidrólise da sacarose, cuja velocidade de consumo foi definida como sendo uma função da concentração de etanol, glicose, frutose, sacarose e células.

Com os resultados obtidos nas tabelas de 2 a 11 para os perfis de concentrações de frutose, glicose, sacarose, ART e etanol foi possível usar modelos matemáticos e cinéticos para descrever o comportamento do reator através da resolução de um conjunto de

equações diferenciais de primeira ordem. Os parâmetros cinéticos que melhor se ajustam aos dados experimentais foram obtidos através da rotina de ajuste.

A Tabela 13 mostra o resultado da simulação dos três modelos: JIN *et al.*, (1981), SEVELY *et al.*, (1981) e TOSETTO & ANDRIETTA (2002), testados para um único substrato (ART) para um valor de porosidade onde se obteve o menor desvio.

Experimentos	Modelos	Reatores	Porosidade (E)	Desvios
Experimento 01	Jin et al., (1981)	R 1	0,4	1342,79
Experimento or		R2	0,6	429,32
	Sevely <i>et al.</i> , (1981)	R1	0,7	1287,45
		R2	0,7	405,74
	Tosetto & Andrietta	R1	0,4	1500,92
	(2002)	R2	0,4	489,56
Experimento 02	Jin <i>et al.</i> , (1981)	R1	0,4	1014,24
Experimento 02		R2	0,3	1272,81
	Sevely <i>et al.</i> , (1981)	R 1	0,7	982,81
		R2	0,7	899,39
	Tosetto & Andrietta	R 1	0,4	1763,41
	(2002)	R2	0,3	1546,26
Evnerimento 83	Jin et al., (1981)	R1	0,7	726,71
Experimento 05		R2	0,3	1436,46
	Sevely <i>et al.</i> , (1981)	R 1	0,7	854,38
		R2	0,3	1562,65
	Tosetto & Andrietta	R 1	0,4	1161,12
	(2002)	R2	0,4	1329,78
Experimente 04	Jin et al., (1981)	R 1	0,3	378,56
Experimento 04		R2	0,4	527,17
	Sevely et al., (1981)	R1	0,4	378,66
		R2	0,7	511,10
	Tosetto & Andrietta	R 1	0,4	437,23
	(2002)	R2	0,4	877,99
Experimento 05	Jin et al., (1981)	R 1	0,3	810,91
Experimento 05		R2	0,3	482,32
	Sevely et al., (1981)	R1	0,7	721,13
		R2	0,7	373,23
	Tosetto & Andrietta	R 1	0,4	1022,14
	(2002)	R2	0,4	813,23
Experimente 06	Jin et al., (1981)	R 1	0,7	2127,10
Experimento ou		R2	0,7	966,65
	Sevely et al., (1981)	R 1	0,7	1177,02
		R2	0,5	893,79
	Tosetto & Andrietta	R 1	0,7	1884,62
	(2002)	R2	0,7	1397,09

Tabela 13 – Resultado da Simulação dos dados para os 3 modelos para um único substrato

Experimentos	Modelos	Reatores	Porosidade (ε)	Desvios
Exportmonto 07	Jin et al., (1981)	R 1	0,3	1480,22
Experimento v/		R2	0,3	621,78
	Sevely et al., (1981)	R 1	0,3	1343,91
		R2	0,7	388,64
	Tosetto & Andrietta	R1	0,4	966,37
	(2002)	R2	0,4	963,32
Ermonimonto A9	Jin et al., (1981)	R 1	0,7	1327,23
Experimento vo		R2	0,3	801,69
	Sevely et al., (1981)	R1	0,7	1470,39
		R2	0,5	258,82
	Tosetto & Andrietta	R 1	0,7	1723,72
	(2002)	R2	0,3	325,03
E	Jin et al., (1981)	R 1	0,7	2357,18
Experimento 09		R2	0,7	1907,85
	Sevely et al., (1981)	R1	0,7	512,99
		R2	0,4	257,83
	Tosetto & Andrietta	R 1	0,7	305,05
	(2002)	R2	0,7	635,79

Para um único substrato (ART), pode ser observado na Tabela 13 e nas Tabelas de 1 a 6 contidas no Anexo 01, que o modelo de **JIN** *et al.*, (1981) apresentou valores de parâmetros mais constantes para todos os ensaios realizados quando comparados ao modelo de **SEVELY** *et al.*, (1981), ou seja, os valores encontrados para as constantes K_S , $K_1 e K_2$ tiveram variações menores de experimento para experimento e as porosidades encontradas foram próximas de 0,4 e 0,5 com exceção do Experimento 6 e 9 onde o menor desvio encontrado foi para porosidade de 0,7. Este fato pode ser devido à alta taxa de aplicação empregada nestes experimento 8, esta se deu com uma concentração de substrato na alimentação próxima a 240 g/L. Este fato mostra que a estabilidade do leito pode também estar associada a densidade e viscosidade do meio de alimentação, que podem causar aumento na porosidade do mesmo. Isto não pôde ser observado no modelo de **SEVELY** *et al.*, (1981), onde a variação dos parâmetros (K_S, P_{máx} e K_P) foi grande e predominou a porosidade de 0,7 na maioria dos ensaios. Porém, os desvios de ambos os modelos se mantiveram na mesma ordem de grandeza para todas as porosidades. O modelo de **TOSETTO & ANDRIETTA (2002)** apresentou desvios menores para porosidades próximas de 0,4 na maioria dos ensaios, observando uma maior estabilidade, tanto da porosidade quanto dos parâmetros cinéticos (K_S, K_I, P_{máx} e Y_N), com exceção de alguns experimentos, como ocorrido para os outros dois modelos.

Os valores dos menores desvios obtidos nos 9 Experimentos para os três modelos utilizados podem ser observados nas Figuras 27 e 28 para os Reatores 01 e 02 respectivamente.

Figura 27 - Comparação entre os modelos utilizados para o Reator 01

Figura 28 – Comparação entre os modelos utilizados para o Reator 02

Pode-se observar através destas que os dois primeiros modelos apresentaram desvios menores na maioria dos experimentos com exceção do último, onde taxa de aplicação foi excedida; neste caso, o modelo de **TOSETTO & ANDRIETTA (2002)** obteve menores desvios em ambos os reatores. Além disto, este modelo apresentou grupos de parâmetros semelhantes para porosidades próximas a 0,4 para todos os ensaios.

4.2.1 Ajuste do Modelo de JIN et. al. (1981)

As Figuras de 29 a 64 representadas de forma gráfica apresentam o melhor ajuste dos dados experimentais com os dados obtidos pelos três modelos propostos acima para os perfis de consumo de substrato (ART) e produção de etanol.

A Figura 29 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 1.

Figura 29 – Gráficos referentes ao Experimento 01 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de JIN

Para o modelo de **JIN** *et al.*, (1981), os perfis de ART e etanol foram semelhantes nos dois reatores, onde apresentaram valores de parâmetros próximos, isto é, os valores encontrados para as constantes K_S (constante de saturação), K_1 (constante de inibição pelo produto) e K_2 (constante de inibição pelo substrato) tiveram pequenas variações, sendo que o menor desvio encontrado para o Reator 01 foi de 1342,79, à porosidade de 0,4. Já o Reator 02, na porosidade de 0,6, o menor desvio foi de 429,32. Nota-se também que alguns pontos experimentais se distanciam do modelo, o que pode ser explicado por erro de amostragem ou analítica.

A Figura 30 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 2.

Figura 30 – Gráficos referentes ao Experimento 02 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de JIN

Nota-se através da Figura 30 que o modelo utilizado se ajustou aos dados experimentais, ressaltando-se alguns desvios na concentração de etanol em ambos os

reatores. Após o término do leito, a queda da concentração de etanol foi observada, porém o modelo não acompanhou esta queda. O desvio encontrado para o Reator 01 foi de 1014,24 a uma porosidade de 0,4 e para o Reator 02 um desvio de 1272,81 para uma porosidade de 0,3.

A Figura 31 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 3.

Figura 31 – Gráficos referentes ao Experimento 03 para os Reatores 01 e 02: a) e c) perfil de ART; b) e d) perfil do etanol; c) e e) perfil do modelo de JIN

No Experimento 03, o modelo testado descreve os perfis para ART e etanol para os Reatores 01 e 02. Até a altura de 20 cm, as concentrações de substrato mantiveram-se constantes. Esse fenômeno pode ser explicado por erro experimental de análise ou amostragem. No entanto, antes da região de transição, observa-se uma tendência de queda dessas concentrações, depois, no final do leito se estabilizam e ficam constantes. Para a concentração de etanol, pode-se observar que no Reator 02, estas foram inferiores aos valores obtidos pelo modelo de **JIN** *et al.* (1981), mostrando que esta concentração obtida

experimentalmente foi menor que a esperada. Os menores desvios encontrados para ambos os reatores foram à porosidades de 0,3 e 0,7 respectivamente.

A Figura 32 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 4.

Figura 32 – Gráficos referentes ao Experimento 04 para os Reatores 01 e 02: a) perfil de ART; b) perfil do etanol e c) perfil do modelo de JIN

A Figura 32 mostra os perfis de ART e etanol para o Experimento 04, onde o modelo testado se ajustou bem aos dados experimentais. O Reator 01 obteve um desvio de 378,56 a uma porosidade de 0,3, valor este inferior aos demais experimentos testados. No entanto, no Reator 02, a queda na concentração de etanol experimental é evidenciada, observando-se um desvio em relação ao modelo. O reator 02, o menor desvio encontrado foi de 527,17 para uma porosidade de 0,4.

A Figura 33 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 5.

Figura 33 – Gráficos referentes ao Experimento 05 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de JIN

Para uma porosidade de 0,3, onde foi encontrado o menor desvio para os Reatores 01 e 02, os parâmetros cinéticos testados no modelo foram iguais, com exceção da constante de saturação (K_s), como pode ser observado no Anexo 01. A Figura 33 demonstra que os desvios obtidos para os dois reatores foram semelhantes para a concentração de ART, porém o desvio em ralação ao etanol foi superior para o Reator 02.

A Figura 34 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 6.

Figura 34 – Gráficos referentes ao Experimento 06 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de JIN

Pela Figura 34 observa-se que o modelo de JIN ajustou-se aos dados experimentais de forma semelhante para o Reator 01 e 02. Apesar do perfil de ART ter se ajustado bem, o de etanol se mostrou muito inferior ao do modelo utilizado, como nos experimentos 03 e 05, sendo que os desvios obtidos neste ensaio foram superiores (2127,1 para o Reator 01 e 996,65 para o Reator 02). Este fato pode ser explicado pela alta taxa de aplicação empregada, onde a concentração utilizada foi de 242,7 g/L. Os melhores desvios foram obtidos numa porosidade de 0,7.

A Figura 35 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 7.

Figura 35 – Gráficos referentes ao Experimento 07 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de JIN

Na Figura 35, pode-se observar que houve discordância de alguns pontos, principalmente para o perfil de etanol em ambos os reatores, que pode ser explicado como erro de análise (algumas não variações ao longo da altura) ou não idealidade do reator, devido à alta taxa de aplicação empregada. No final do leito, o perfil da concentração de etanol no Reator 02 apresentou uma queda. O melhor ajuste do modelo deu-se para valores de porosidade de 0,3 com desvios de 1480,22 para o Reator 01 e 621,78 para o Reator 01, sendo que de todos os experimentos apresentados anteriormente, este foi o que obteve parâmetros iguais para os dois reatores, sendo K_s 55, K₁0,001 e K₂ 0,05.

A Figura 36 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 8.

Figura 36 – Gráficos referentes ao Experimento 08 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de JIN

Neste experimento pode-se observar através da Figura 36 que o comportamento obtido para os reatores foi diferente, onde o Reator 02 se ajustou melhor ao modelo testado. No caso do Reator 02, o perfil de ART apresentou alguns pontos experimentais que estão distantes da curva descrita pelo modelo. Esta discrepância pode estar ligada à alta taxa de aplicação empregada acarretando um desvio da idealidade do reator. Para os perfis de etanol, pode-se concluir que a concentração obtida experimentalmente foi maior que a esperada pelo modelo. Já no Reator 02, os perfis de ART e etanol se ajustaram bem ao modelo. O melhor ajuste se deu a 1327,23 e 801,69 para os Reatores 01 e 02 respectivamente nas porosidades de 0,7 e 0,3.

A Figura 37 mostra os resultados obtidos para o modelo de JIN ajustados para os dados do Experimento 9.

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANTF

Figura 37 – Gráficos referentes ao Experimento 09 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de JIN

Como descrito anteriormente no item 4.1, neste experimento um desvio da concentração de substrato na alimentação provocado por um erro na diluição, excedeu a taxa de alimentação, provocando assim, uma desestabilização do leito. Como pode ser visto na Figura 37, o modelo se ajustou aos dados experimentais, apresentando desvios na ordem de 2357,18 para o Reator 01 e 1907,85 para o Reator 02, ambos à porosidade de 0,7.

4.2.2 Ajuste do Modelo de SEVELY et al. (1981)

Os mesmos estudos foram realizados empregando-se o Modelo de SEVELY *et al.* (1981) para os dois reatores em paralelo. As Figuras de 38 a 46, correspondem aos estudos realizados com os dados obtidos experimentalmente para o modelo em questão.

A Figura 38 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 1.

Figura 38 – Gráficos referentes ao Experimento 01 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

A Figura 38, mostra os perfis de substrato e etanol experimentais e o descrito pelo modelo estudado. O comportamento de ART foi semelhante em ambos os reatores, observando-se uma queda acentuada da concentração para valores de z entre 25 a 40 cm no Reator 02 que pode ter sido causado por erro de amostragem ou análise cromatográfica. A concentração de etanol obtida experimentalmente no Reator 01 foi superior a esperada pelo modelo. O maior desvio de comportamento ocorreu no perfil de etanol do Reator 02. Para este reator observa-se ainda, que alguns pontos experimentais estão distantes da curva descrita pelo modelo, como por exemplo, nas alturas de 10 a 30 cm, com uma tendência de elevação até o final do leito e posterior estabilização. A não variação da concentração destes substratos após o término do leito é devido à baixa concentração de células em suspensão nesta região. Os menores desvios encontrados para os Reatores 01 e 02 foram de 1284,45 e 405,74 respectivamente, a uma porosidade de 0,7.

A Figura 39 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 2.

Figura 39 – Gráficos referentes ao Experimento 02 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

Pela Figura 39, observa-se que o comportamento de substrato e etanol foram semelhantes no Reator 01 e 02. Após o termino do leito, na região de transição, as concentrações experimentais de ART e etanol se mantiveram constantes após uma queda acentuada, porém o perfil encontrado pelo modelo de **SEVELY** *et al.* (1981) não se observou este comportamento, ou seja, não houve estabilização após o termino do leito. Ainda no perfil de etanol, pode-se notar que em algumas alturas as concentrações ficaram constantes e depois voltaram a subir, isso pode estar relacionado a erros de análise cromatográfica ou amostragem. O melhor ajuste do modelo deu-se para valores de porosidade 0,7 para o Reator 01 e 0,3 para o Reator 02.

A Figura 40 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 3.

Figura 40 – Gráficos referentes ao Experimento 03 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

Através dos perfis de ART e etanol obtidos experimentalmente e o perfil descrito pelo modelo mostrado pela Figura 40 é possível notar que o modelo de **SEVELY** *et al.* (1981) se ajustou aos dados experimentais de forma semelh0ante para o Reator 01 e 02. Apesar do perfil de ART ter se ajustado bem, o perfil de etanol se mostrou muito inferior ao do modelo testado. Este fato indica que o rendimento em etanol ($Y_{P/S}$) utilizado no modelo é maior que o obtido experimentalmente. Os melhores desvios foram obtidos numa porosidade de 0,7 para o Reator 01 e 0,3 para o Reator 02.

A Figura 41 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 4.

Figura 41 – Gráficos referentes ao Experimento 04 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

Neste experimento, de uma forma geral, o modelo estudado se ajustou bem aos dados obtidos experimentalmente. Pela Figura 41, verificou-se que as concentrações de etanol no Reator 02 se desviram do modelo em alguns pontos, isto deve estar relacionado a erros experimentais de coleta ou de análise. Nota-se ainda que o perfil encontrado pelo modelo é semelhante nos dois reatores, ressaltando-se que o consumo de ART no primeiro reator foi menos acentuado. Os menores desvios encontrados foram: para o Reator 01 de 378,66 a uma porosidade de 0,4 e no Reator 02 de 511,1 à porosidade de 0,7.

A Figura 42 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do experimento 5.

Figura 42 – Gráficos referentes ao Experimento 05 para os Reatores 01 e 02 a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

Alguns pontos na Figura 42 estão distantes da curva descrita pelo modelo, como por exemplo, a queda na concentração de etanol no Reator 01 na altura de 40 e 45 cm e volta a se observar uma tendência de elevação até o final do leito (50 cm) sem uma posterior estabilização. Esta queda anormal pode estar relacionada a erros de análises cromatográficas ou de amostragem, ou ainda, devido a não idealidade do reator. No perfil de concentração de etanol no Reator 02, alguns pontos também se encontram distantes da curva do modelo, apresentando assim uma tendência de queda que se prolonga até a altura de 50 cm do reator, observando-se mais uma vez que as concentrações de etanol foram inferiores à esperada pelo modelo estudado De uma forma geral, este modelo se ajustou bem aos dados experimentais, onde a variação dos parâmetros K_S, P_{máx} e K_P contidos no Anexo 01 foi muito pequena e a porosidade para ambos os reatores foi de 0,7.

A Figura 43 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 6.

Figura 43 – Gráficos referentes ao Experimento 06 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

Neste experimento, o perfil de etanol se mostrou bastante semelhante nos Reatores 01 e 02, conforme observado na Figura 43. Assim as concentrações obtidas experimentalmente forma inferiores às esperadas. Como em ensaios anteriores o valor do rendimento em etanol ($Y_{P/S}$) utilizado no modelo não corresponde àquele obtido experimentalmente. O melhor ajuste para este experimento foi de 1177,02 para o Reator 01 e 893,79 para o Reator 02, a uma porosidade de 0,7 e 0,5 respectivamente.

A Figura 44 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 7.

Figura 44 – Gráficos referentes ao Experimento 07 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

No Experimento 07, a Figura 44 mostra o mesmo perfil para o Reator 01 e 02, das concentrações de ART e etanol. Esta figura mostra um bom ajuste do modelo aos dados experimentais. Alguns pontos experimentais se desviaram dos obtidos pelo modelo, porém, este fenômeno pode se explicado por erro experimental ou devido a não idealidade do reator. A estabilização das concentrações de substrato e etanol após o término do leito não foi observada para o modelo testado. Os melhores desvios foram encontrados para porosidade de 0,3 e 0,7 para o Reator 01 e 02 respectivamente com grandezas de 1343,91 e 388,64.

A Figura 45 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 8.

Figura 45 – Gráficos referentes ao Experimento 08 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

No Experimento 08, a taxa de aplicação adotada foi elevada, acarretando um maior desvio para a concentração de etanol em relação ao modelo testado. Pode-se notar através da Figura 45 que a concentração de etanol obtida experimentalmente foi superior a encontrada pelo modelo, comportamento este oposto aos obtidos em ensaios anteriores. O perfil de ART para ambos os reatores foi bem descrito pelo modelo de **SEVELY** *et al.* (1981). Apesar da alta taxa de aplicação empregada, este modelo se ajustou bem aos dados experimentais enquanto que no Reator 02 numa porosidade de 0,5, obteve-se um desvio de 285,82, distante do Reator 01 o desvio foi de 1470,39 a uma porosidade de 0,7.

A Figura 46 mostra os resultados obtidos para o modelo de SEVELY ajustados para os dados do Experimento 9.

Figura 46 – Gráficos referentes ao Experimento 09 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de SEVELY

No último experimento realizado, foi possível um ajuste adequado do modelo de **SEVELY** *et al.* (1981) aos dados experimentais tanto para o Reator 01 quanto para o Reator 02, como mostrado na Figura 46. Apesar da altíssima taxa de alimentação e a consequente desestabilização do leito de células, este modelo obteve um perfil de concentração de ART e etanol muito próximo do obtido experimentalmente. No Reator 01, como no Experimento 08, a concentração de etanol foi superior à esperada pelo modelo. Porém, neste experimento pode-se notar que para o modelo utilizado, houve estabilização para as concentrações de ART e etanol no término do leito, estabilização esta que não foi observada nos demais experimentos citados acima. O menor desvio encontrado para o Reator 01 foi de 512,99 a uma porosidade de 0,7 e para o Reator 02 de 257,83 e porosidade de 0,4.

4.2.3 Ajuste do Modelo de TOSETTO & ANDRIETTA (2002)

Depois de testados os modelos de JIN *et al.* (1981) e SEVELY *et al.* (1981), o mesmo estudo foi realizado aplicando-se o modelo de TOSETTO & ANDRIETTA (2002). As Figuras de 47 a 55 mostram os ajustes do modelo aos dados obtidos experimentalmente.

A Figura 47 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 1.

Figura 47 – Gráficos referentes ao Experimento 01 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

Observa-se pela Figura 47 que o modelo utilizado se ajustou bem aos dados experimentais, obtendo-se melhores desvios com valores de porosidade de 0,4 para os Reatores 01 e 02 na ordem de grandeza de 1500,92 e 489,56 respectivamente. O menor

desvio de comportamento ocorreu no perfil de ART. Nota-se ainda neste experimento, que alguns pontos experimentais estão distantes da curva descrita pelo modelo, como por exemplo, no Reator 02, a concentração experimental de etanol nas alturas de 10 a 30 cm, foi inferior a prevista pelo modelo; porém, no término do leito (altura do leito 45 cm), observa-se uma estabilização tanto no Reator 01 quanto no Reator 02. A não variação da concentração de substrato após o término do leito é devido à baixa concentração de células em suspensão nesta região.

A Figura 48 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 2.

Figura 48 – Gráficos referentes ao Experimento 02 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

Pela Figura 48, os perfis de ART e etanol se ajustaram ao modelo de TOSETTO & ANDRIETTA (2002) observando-se desvios de comportamento em alguns pontos que se encontram distantes da curva. Isso pode estar relacionado a erros de análise cromatográfica ou amostragem. Como exemplo, pode-se citar a queda na concentração de etanol após o término do leito tanto no Reator 01 quanto no Reator 02. Este fenômeno pode estar vinculado a grande turbulência que está sujeita esta região devido a grande quantidade de dióxido de carbono desprendido durante o processo de fermentação. O melhor ajuste para o Reator 01 foi à porosidade de 0,4 com desvio de 1763,41 e para o Reator 02, porosidade de 0,3 e 1546,26.

A Figura 49 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 3.

Figura 49 – Gráficos referentes ao Experimento 03 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

Através da Figura 49 pode-se observar que o modelo utilizado teve um melhor ajuste aos dados experimentais para uma porosidade de 0,4 para ambos os reatores. No Reator 01, as concentrações de etanol se mantêm constantes nas alturas de 15 a 35 cm e voltam a ficar inalteráveis nas alturas de 40 e 55 cm após uma elevação; isto pode ser explicado por um erro de análise ou de amostragem ou devido a uma não idealidade do reator. No Reator 02 a produção de etanol foi inferior a esperada pelo modelo. Nota-se ainda que no Reator 01 que não houve estabilização do consumo de substrato, nem de produção de etanol no final do leito; já no Reator 02 esta estabilização é evidente.

A Figura 50 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 4.

Figura 50 – Gráficos referentes ao Experimento 04 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

De acordo com a Figura 50, os perfis de ART e etanol se ajustaram bem ao modelo testado, observando desvios de comportamento, como nos experimentos citados anteriormente. No entanto, o melhor ajuste foi obtido neste ensaio para o Reator 01, quando comparado aos demais, ou seja, 437,23 a uma porosidade de 0,4 e 877,99 para o Reator 02 à mesma porosidade. Esta Figura ainda mostra a semelhança entre os perfis de ART e etanol de ambos os reatores. Os parâmetros cinéticos (K_S,Y_N, K_I e P_{máx}) encontrados pelo
modelo são bem próximos para ambos os reatores, como pode ser observado nas Tabelas 5 e 6 do Anexo 01.

A Figura 51 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 5.

Figura 51 – Gráficos referentes ao Experimento 05 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

Nota-se através da Figura 51 que o modelo **TOSETTO & ANDRIETTA (2002)** se ajustou aos dados experimentais com exceção de alguns pontos experimentais como, por exemplo, a queda anormal da concentração de etanol no Reator 01 a partir da altura de 35 cm, apresentando assim uma tendência de queda que se prolonga até a altura de 45 cm do reator e volta a se observar uma tendência de elevação até o final do leito (50 cm) sem uma posterior estabilização. No perfil de etanol do Reator 02, pode-se notar que o modelo não acompanhou os dados experimentais observando uma queda no final do leito para os dados experimentais e uma estabilização para dos dados obtidos a partir do modelo. Ainda neste

experimento, observa-se a semelhança entre os perfis de ART e etanol de ambos os reatores, como no experimento anterior e os parâmetros cinéticos ($K_S, Y_N, K_I e P_{max}$) encontrados pelo modelo também são bem próximos para ambos os reatores, como pode ser observado nas Tabelas 5 e 6 do Anexo 01. Os melhores ajustes foram encontrados para porosidade de 0,4 em ambos os reatores: 1022,14 e 813,23 para o Reator 01 e 02 respectivamente.

A Figura 52 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 6.

Figura 52 – Gráficos referentes ao Experimento 06 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

De acordo com a Figura 52, observa-se que o perfil de concentração de etanol ficou abaixo do obtido experimentalmente. Este fato é devido ao valor do rendimento em etanol $(Y_{P/S})$ utilizado no modelo ser maior que aquele apresentado experimentalmente. Para o Reator 01 e 02, o comportamento de ART foi semelhante, podendo-se notar que alguns pontos se encontram distante dos do modelo, isto pode ser explicado por erro de

amostragem ou devido a não idealidade do reator, pois esta irregularidade é observada em ambos os reatores na mesma altura. Mais uma vez a concentração de etanol obtida experimentalmente foi inferior a prevista pelo modelo de **TOSETTO & ANDRIETTA** (2002). O melhor ajuste se deu a uma porosidade de 0,7 e com desvios de 1884,62 para o Reator 01 e 1397,09 para o Reator 02. Observando a Tabela 5 e 6 do Anexo 01, pode-se notar que os parâmetros Y_N , e $P_{máx}$ encontrados pelo modelo são bem próximos para ambos os reatores.

A Figura 53 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 7.

Figura 53 – Gráficos referentes ao Experimento 07 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

Conforme demonstrados na Figura 53, os perfis de ART e etanol se ajustaram bem ao modelo testado, observando desvios de comportamento, como nos experimentos citados anteriormente. O melhor ajuste obtido neste ensaio para o Reator 01 foi de 966,37 a uma porosidade de 0,4 e 963,32 para o Reator 02 à mesma porosidade. Observa-se por esta figura, a semelhança entre os perfis de ART e etanol de ambos os reatores. Não houve estabilização da concentração de etanol após o término do leito em ambos os reatores. Já para o perfil de ART, esta estabilização foi observada. Ainda neste experimento, observase a semelhança entre os perfis de ART e etanol de ambos os reatores, mostrando claramente a estabilização das concentrações no final do leito.

A Figura 54 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 8.

Figura 54 – Gráficos referentes ao Experimento 08 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

No Experimento 08, apesar da alta taxa de aplicação adotada, o modelo se ajustou bem aos dados experimentais, acarretando um maior desvio para as concentrações de ART e etanol em relação ao modelo testado. Pode-se notar através da Figura 54 do Reator 01, que a concentração de etanol obtida experimentalmente foi superior a esperada pelo modelo, este fato pode estar ligado ao valor de rendimentos em etanol utilizado no modelo ser menor que o obtido experimentalmente. O perfil de ART para ambos os reatores foi como o esperado pelo modelo utilizado, apresentando alguns pontos que se desviaram. Apesar da alta taxa de aplicação empregada, este modelo se ajustou bem aos dados experimentais para o Reator 02.

A Figura 55 mostra os resultados obtidos para o modelo de TOSETTO & ANDRIETTA ajustados para os dados do Experimento 9.

Figura 55 – Gráficos referentes ao Experimento 09 para os Reatores 01 e 02: a) e d) perfil de ART; b) e e) perfil do etanol; c) e f) perfil do modelo de TOSETTO & ANDRIETTA

No Experimento 09, o modelo de **TOSETTO & ANDRIETTA (2002)** se ajustou bem aos dados experimentais tanto para o Reator 01 quanto para o Reator 02, como mostrado na Figura 55. Apesar da altíssima taxa de alimentação e a consequente desestabilização do leito de células, este modelo obteve um perfil de concentração de ART e etanol próximo do obtido experimentalmente, como para o modelo de **SEVELY** *et al.* (1981). No Reator 01, a concentração de etanol foi superior à esperada pelo modelo, sem uma estabilização desta concentração no término do leito. Porém, neste experimento pode-

se notar que para o modelo utilizado, houve estabilização tanto para as concentrações de ART e etanol. No Reator 02, uma queda brusca da concentração de etanol nas alturas de 30 a 40 cm, seguida de uma posterior inclinação até o final do leito. O melhor ajuste encontrado para o Reator 01 foi de 305,05 e para o Reator 02 de 635,79, ambos a porosidade de 0,7.

Após a realização da simulação dos dados experimentais utilizando os modelos de JIN *et al.* (1981), SEVELY *et al.* (1981) e TOSETTO & ANDRIETTA (2002) foi possível concluir que o melhor ajuste a estes dados foi encontrado para o modelo de TOSETTO & ANDRIETTA (2002), devido a maior estabilidade da porosidade (próximas de 0,4) na maioria dos ensaios e dos parâmetros cinéticos (K_S, K_I, P_{máx} e Y_N). Como nos demais modelos testados alguns experimentos não obtiveram bons ajustes, como por exemplo, os Experimentos 2 e 6. Além do que, dos três modelos testados, este modelo foi o único que obteve ajuste aos dados experimentais acompanhando a estabilização das concentrações no término do leito. Portanto, este foi o modelo que mais se aproximou do comportamento de um biorreator de leito pseudo-expandido.

4.2.4 Ajuste do Modelo Proposto

Para descrever o consumo dos substratos de forma distinta, foi proposto um modelo que leva em consideração a hidrólise de sacarose e consumo preferencial da glicose em redução a frutose. O mesmo modelo foi utilizado para três fontes de substrato (sacarose, glicose e frutose) acrescido do termo de diauxia para a Frutose como no modelo proposto por **TOSETTO & ANDRIETTA (2002)** e para a sacarose um modelo foi desenvolvido. A Tabela 14 mostra o resultado da simulação para os nove experimentos realizados.

Tabela 14 –	Resultado d	a Simulação	dos dados (los Reatores	1 e 2 j	para o	modelo	proposto	para	mais
de um substi	rato.									

			Frutose (F)	Glicose (G)	Sacarose (S)
Experimentos	Reator	3	Desvio de F	Desvio de G	Desvio de S
Experimento 01	R1	0,5	203,77	79,54	1117,3
	R2	0,5	176,78	50,65	1227
Experimento 02	R1	0,6	358,38	321,43	853,98
	R2	0,4	74,68	198,71	4102,4
Experimento 03	R1	0,6	319,89	123,68	1169,7
	R2	0,4	123,14	196,13	746,63
Experimento 04	R1	0,5	166,9	316,99	419,18
	R2	0,4	14,19	34,77	1933,6
Experimento 05	R1	0,5	90,61	76,13	456,19
	R2	0,5	125,25	220,18	1339,8
Experimento 06	R1	0,7	171,23	516,18	5890,2
	R2	0,7	166,98	479,11	4571,7
Experimento 07	R1	0,5	248,56	267,77	541,89
	R2	0,4	34,49	52,26	1158,6
Experimento 08	R1	0,7	103,87	118,92	4095,2
	R2	0,5	35,02	126,17	885,15
Experimento 09	R1	0,7	621,62	34,29	54243
	R2	0,7	235,33	55,25	36484

Para maior compreensão dos resultados, as Figuras de 56 a 91, descrevem os perfis de consumo dos substratos para os nove experimentos realizados, representando através de gráficos o melhor ajuste dos dados experimentais com os dados obtidos pelo modelo proposto neste trabalho para a conversão de glicose, sacarose, frutose e produção de etanol.

A Figura 56 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 1.

Figura 56 – Gráficos referentes ao Experimento 01 para o Reator 01 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Observa-se pela Figura 56 a, b, c e d que de uma forma geral o modelo utilizado se ajustou bem aos dados experimentais. O maior desvio de comportamento ocorreu no perfil de sacarose. Neste experimento, observa-se que alguns pontos experimentais estão distantes da curva descrita pelo modelo, como por exemplo, a concentração de frutose na altura de 20 cm. No entanto, na região de transição, que compreende a parte final do leito (altura do leito 45 cm), observa-se uma variação da concentração de glicose e frutose anormal, saindo de uma tendência de queda até a altura do reator de 35 cm para uma tendência de elevação

até o final do leito e posterior estabilização. A não variação da concentração destes substratos após o término do leito é devido a baixa concentração de células em suspensão nesta região. Já as variações de concentração destes substratos na parte final do leito podem estar vinculadas a grande turbulência que está sujeita esta região devido a grande quantidade de dióxido de carbono desprendido durante o processo de fermentação. Esta turbulência pode proporcionar a formação de canais preferências que acabam carreando estes substratos para a parte superior do leito, mostrando à provável existência de desvios da idealidade no reator. O melhor ajuste do modelo deu-se para valores de porosidade de 0,5, sendo que o determinado experimentalmente em ensaios (VIEGAS, 2003) ficou em torno de 0,3.

A Figura 57 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 1.

A Figura 57 mostra os perfis de conversão da sacarose, glicose e frutose e de produção de etanol em função da altura do reator, descritos pelo modelo proposto para três substratos e porosidade de 0,5. Nota-se pelos perfis que a glicose é consumida preferencialmente, mostrando que o fenômeno da diauxia se faz presente e é capaz de ser descrito pelo modelo utilizado.

A Figura 58 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 1.

Figura 58 – Gráfico referente ao Experimento 01 para o Reator 02 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Na Figura 58 para os perfis a, b, c e d, o modelo utilizado se ajustou melhor aos dados experimentais se comparado ao reator 01 do mesmo experimento. O maior desvio de comportamento ocorreu no perfil de sacarose, como no reator 01. Na região de transição, no final do leito (altura do leito 48 cm), observa-se uma variação da concentração de glicose e frutose anormal, saindo de uma tendência de queda até a altura do reator de 35 cm para uma tendência de elevação até o final do leito e posterior estabilização. No perfil da produção de etanol, o modelo obteve valores mais elevados que os dados experimentais testados, podendo-se concluir que a concentração de etanol obtida experimentalmente foi menor que a esperada, mostrando assim, que o valor de $Y_{P/S}$ pode ser menor que 0,46 g/g utilizado para o ajuste dos parâmetros. O melhor ajuste do modelo deu-se para valores de porosidade de 0,5 como no reator 01.

A Figura 59 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 1.

Figura 59 – Perfil do Modelo Proposto -Experimento 01, Reator 02, $\varepsilon = 0.5$; vazão = 9.6 mL/min e brix = 15%

A Figura 59 mostra os perfis de conversão da sacarose, glicose e frutose e de produção de etanol obtidos a partir do modelo proposto em função da altura do reator, para três substratos e porosidade de 0,5. Nota-se que a sacarose é totalmente hidrolisada e que a glicose é consumida preferencialmente, como no reator 01 do mesmo experimento.

A Figura 60 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 2.

Figura 60 – Gráfico referente ao Experimento 02 para o Reator 01 com porosidade 0,6: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Da mesma forma, a Figura 60 descreve os perfis para sacarose, glicose, frutose e etanol em relação ao modelo utilizado, sendo que este se ajustou aos dados experimentais. No perfil de sacarose, o desvio de comportamento ocorreu a partir da altura de 20 cm em relação ao modelo. Neste experimento, alguns pontos experimentais estão distantes da curva descrita pelo modelo, tanto para a concentração de frutose e glicose, mostrando desvios de comportamento. Esse fato deve estar ligado a não idealidade do reator. Após o termino do leito, na região de transição, as concentrações de glicose e frutose, se mantiveram constantes após uma queda acentuada. A não variação da concentração destes substratos após o término do leito é devido à baixa concentração de células em suspensão nesta região. No perfil de etanol pode-se observar que em algumas alturas as concentrações ficaram constantes e depois voltaram a subir, isso pode estar relacionado a erros de análise cromatográfica ou amostragem. O melhor ajuste do modelo deu-se para valores de

porosidade de 0,6; distanciando do valor determinado experimentalmente em ensaios realizados por **VIEGAS (2003)**, que ficou em torno de 0,3.

A Figura 61 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 2.

Figura 61 –Perfil do Modelo Proposto -Experimento 02, Reator 01, $\varepsilon = 0.6$; vazão = 9,7 mL/min e brix = 18%

A Figura 61 demonstra os perfis de conversão de sacarose, glicose e frutose e de produção de etanol em função da altura do reator, descritos pelo modelo proposto para três substratos e porosidade de 0,6. Mais uma vez o efeito de diauxia pode ser observado, onde o modelo foi capaz de descrever esses perfis.

A Figura 62 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 2.

Figura 62 – Gráfico referente ao Experimento 02 para o Reator 02 com porosidade 0,4: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

A Figura 62 descreve os perfis para sacarose, glicose, frutose e etanol para o modelo testado. Até a altura de 20 cm, as concentrações de glicose e frutose mantiveram-se constantes. Esse fenômeno pode ser explicado por erro experimental de análise ou amostragem. No entanto, antes da região de transição, observa-se uma tendência de queda dessas concentrações, depois, no final do leito se estabilizam e ficam constantes. Para o perfil de produção de etanol, nota-se uma queda brusca da concentração após o término do leito e não é seguido de estabilização. Este fenômeno pode estar vinculado a grande turbulência que está sujeita esta região devido a grande quantidade de dióxido de carbono desprendido durante o processo de fermentação. O maior desvio de comportamento em relação ao modelo, foi observado no perfil de sacarose (4102,4). O melhor ajuste do modelo se deu para valores de porosidade de 0,4.

A Figura 63 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 2.

Figura 63 – Perfil do Modelo Proposto -Experimento 02, Reator 02, $\epsilon = 0.4$; vazão = 9.7 mL/min e brix = 18%

O modelo proposto para três substratos, descreve os perfis de conversão de sacarose, glicose e frutose e de produção de etanol através da Figura 63 em função da altura. Nota-se que a produção de etanol foi elevada em relação aos outros experimentos. O fenômeno da diauxia é observado para a glicose.

A Figura 64 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 3.

Figura 64 – Gráfico referente ao Experimento 03 para o Reator 01 com porosidade 0,6: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

No experimento 03, através da Figura 64 a, b, c e d pode-se observar que o modelo utilizado teve um melhor ajuste aos dados experimentais para uma porosidade de 0,6. O maior desvio de comportamento, como nos demais reatores, ocorreu no perfil de sacarose. Neste experimento observa-se também que um ponto experimental está muito abaixo da curva descrita pelo modelo no perfil de glicose na altura de 15 cm. Outros desvios podem ser observados tanto para o perfil de glicose quanto para o de frutose, onde as concentrações de ambos se mantém constantes nas alturas de 30 a 40 cm; isto pode ser explicado pelo fenômeno de histerese que causa a formação de patamares de concentração ao longo da altura do reator ou ainda devido a uma não idealidade do reator. No final do leito (altura do leito 45 cm), houve uma estabilização. A não variação da concentração destes substratos após o término do leito é devido à baixa concentração de células em suspensão nesta região.

A Figura 65 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 3.

Figura 65 –Perfil do Modelo Proposto-Reator 01, experimento 03, $\varepsilon = 0.6$; vazão = 10,0 mL/min e brix = 20%

A Figura 65 mostra os perfis de conversão da sacarose, glicose e frutose e de produção de etanol em função da altura do reator para a porosidade de 0,6, onde o comportamento dos perfis de glicose e frutose foram semelhantes, com uma estabilização no final do leito; sendo a glicose consumida preferencialmente mostrando a presença do fenômeno de diauxia.

A Figura 66 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 3.

Figura 66 – Gráfico referente ao Experimento 03 para o Reator 02 com porosidade 0,4: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Para uma porosidade de 0,4, observa-se pela Figura 66 a, b, c e d que o modelo utilizado se ajustou bem aos dados experimentais, principalmente para os perfis de glicose e frutose, com exceção de alguns pontos que estão distantes da curva descrita pelo modelo, como por exemplo as concentrações de glicose e frutose na altura de 5 cm. O maior desvio de comportamento ocorreu no perfil de sacarose, porém foi o reator que mais se ajustou comparado aos demais citados acima. Observa-se também na região de transição, uma estabilização da concentração destes substratos que pode ser devido a baixa concentração de células em suspensão nesta região. Quanto ao perfil de produção de etanol, as concentrações experimentais ao longo da altura se mantiveram abaixo da curva descrita pelo modelo, apresentando uma elevação após o término do leito. Isto pode estar vinculado a grande turbulência nesta região provocada pela grande quantidade de dióxido de carbono desprendido durante o processo de fermentação. Além disto, a obtenção de dados experimentais abaixo dos valores esperados da concentração de etanol, pode indicar que o valor de Y_{P/S} é menor que 0,46 g/g, o qual foi utilizado no ajuste dos parâmetros.

A Figura 67 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 3.

Figura 67 – Perfil do Modelo Proposto -Experimento 03, Reator 02, $\varepsilon = 0.4$; vazão = 10 mL/min e brix = 20%

A Figura 67 mostra os perfis de conversão da sacarose, glicose e frutose e de produção de etanol em função da altura do reator, descritos pelo modelo proposto para dois substratos e porosidade de 0,4. Nota-se pelos perfis que a glicose é consumida preferencialmente mostrando que o fenômeno da diauxia, o consumo de glicose e frutose foram superiores ao do reator 01.

A Figura 68 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 4.

Figura 68 – Gráfico referente ao Experimento 04 para o Reator 01 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

A Figura 68 a, b, c e d mostra o comportamento dos perfis de sacarose, glicose, frutose e etanol para uma porosidade de 0,5. O melhor ajuste do modelo aos dados experimentais para o perfil de sacarose, foi obtido neste experimento, quando comparado aos demais, mas continua sendo o maior desvio de comportamento. Uma queda brusca na concentração de glicose a partir da altura de 10 cm até a de 25 cm foi observada, alguns pontos se distanciaram da curva descrita pelo modelo proposto e no final do leito (altura do leito 50 cm), houve uma estabilização. Um maior consumo em relação a concentração de frutose foi constatado. Ainda neste experimento pode-se observar que o perfil de frutose se distanciou do modelo, formando algumas zonas de estabilização ao longo do leito, cujos desvios podem estar relacionados a erros experimentais de amostragem ou mostrando a não idealidade do sistema.

A Figura 69 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 4.

Figura 69 –Perfil do Modelo Proposto -Experimento 04, Reator 01, $\epsilon = 0.5$; vazão=12,9 mL/min e brix = 16%

Na Figura 69 pode-se observar o mesmo comportamento dos demais experimentos citados acima para os perfis de conversão da sacarose, glicose e frutose e de produção de etanol em função da altura do reator e a uma porosidade de 0,5.

A Figura 70 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 4.

Figura 70 – Gráfico referente ao Experimento 04 para o Reator 02 com porosidade 0,4: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

A Figura 70 descreve os perfis de sacarose, glicose, frutose e etanol numa porosidade de 0,4, pode-se notar que o melhor ajuste dos dados experimentais em relação ao modelo foram encontrados para a frutose e glicose; contudo, o maior desvio de comportamento ocorreu no perfil de sacarose. O perfil de concentração do etanol apresentou alguns pontos que se desviaram do modelo proposto, sofrendo uma queda brusca a partir da altura de 40 cm até a região de transição onde há presença de uma grande quantidade de dióxido de carbono desprendido durante o processo de fermentação. Em seguida ocorre a estabilização da concentração do mesmo. O modelo que descreve o comportamento do perfil de etanol pode estar sendo mais influenciado pelo perfil da concentração de sacarose, pois se pode observar neste e em outros experimentos anteriores que o desvio do perfil de etanol é diretamente proporcional ao desvio da sacarose, ou seja, quanto maior o desvio de comportamento da sacarose maior o desvio para etanol, isto para o este modelo. A Figura 71 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 4.

Figura 71 – Perfil do Modelo Proposto -Experimento 04, Reator 02, $\varepsilon = 0.4$; vazão = 12.9 mL/min e brix = 16%

Pode-se observar pela Figura 71 que o comportamento dos perfis de sacarose, glicose, frutose e etanol em função da altura, é semelhante aos demais experimentos citados acima, porém para porosidade de 0,4.

A Figura 72 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 5.

Figura 72 – Gráfico referente ao Experimento 05 para o Reator 01 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Alguns pontos na Figura 72 a, b, c e d estão distantes da curva descrita pelo modelo, como por exemplo, a concentração de frutose na altura de 35 e 45 cm e a concentração de glicose na altura de 30 cm. Este discrepância está relacionada a erros de analíticos ou de amostragem, ou ainda, devido a não idealidade do reator. No perfil de concentração de etanol alguns pontos também se encontram distantes da curva do modelo, no entanto o que se destaca é a queda anormal da concentração a partir da altura de 35 cm, apresentando assim uma tendência de queda que se prolonga até a altura de 45 cm do reator e volta a se observar uma tendência de elevação até o final do leito (50 cm) sem uma posterior estabilização. De uma forma geral, este modelo proposto se ajustou bem aos dados experimentais deste experimento, considerando uma porosidade de 0,5.

A Figura 73 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 5.

Figura 73 – Perfil do Modelo Proposto -Experimento 05, Reator 01, $\epsilon = 0.5$; vazão=12,7 mL/min e brix = 18%

Pode-se observar pela Figura 73 que o comportamento dos perfis de sacarose, glicose, frutose e etanol em função da altura, é semelhante ao do experimento citado anteriormente, onde se pode observar que as concentrações de glicose e frutose são mais elevadas devido ao aumento de açucares no meio. A porosidade que melhor se ajustou para este experimento foi de 0,5.

A Figura 74 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 5.

Figura 74 – Gráfico referente ao Experimento 05 para o Reator 02 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Nota-se através da Figura 74 que o modelo proposto se ajustou aos dados experimentais com exceção de alguns pontos experimentais como, por exemplo, a queda da concentração de glicose nas alturas de 10 a 20 cm e alguns pontos do perfil da frutose. Isto se deve a erro de amostragem experimental ou cromatográfica. No perfil de etanol pode-se notar que o modelo não acompanhou os dados experimentais observando uma queda no final do leito para os dados experimentais e uma estabilização para dos dados obtidos a partir do modelo. Pode-se concluir então, que a concentração de etanol obtida foi menor que a esperada. O melhor ajuste para este experimento foi na porosidade de 0,5.

A Figura 75 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 5.

Figura 75 – Perfil do Modelo Proposto - Experimento 05, Reator 02, $\epsilon = 0.5$; vazão=12.9 mL/min e brix = 18%

A Figura 75 mostra os perfis de conversão de sacarose, frutose e glicose e produção de etanol em função da altura do reator.

A Figura 76 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 6.

Figura 76 – Gráfico referente ao Experimento 06 para o Reator 01 com porosidade 0,7: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Neste experimento a concentração de açucares foi de 242,7 g/L. A Figura 76 descreve o comportamento do perfil de glicose, sacarose, frutose e etanol em relação ao modelo proposto. Nota-se que o desvio de comportamento do perfil da sacarose foi o maior, segundo a Tabela 15. Conseqüentemente, isto pode ter afetado diretamente o perfil da concentração de etanol que se mostrou muito superior se comparado aos dados experimentais. As concentrações de glicose e frutose foram altas, porém o modelo se ajustou bem aos dados obtidos experimentalmente. Houve discordância de alguns pontos, principalmente para o perfil de glicose, que podem ser explicados como erro de análise (algumas não variações ao longo da altura) ou não idealidade do reator. Os melhores desvios foram obtidos numa porosidade de 0,7.

A Figura 77 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 6.

Figura 77 – Perfil do Modelo Proposto -Experimento 06, Reator 01, $\epsilon = 0.7$; vazão = 13 mL/min e brix = 24%

A Figura 77 descreve o comportamento dos perfis de sacarose, glicose, frutose e etanol em função da altura, onde as concentrações de glicose e frutose são mais elevadas devido ao acúmulo de açucares no meio. A porosidade que melhor se ajustou para este experimento foi de 0,7.

A Figura 78 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 6.

Figura 78 - Gráfico referente ao Experimento 06 para o Reator 02 com porosidade 0,7: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Observa-se pelas Figuras 78 a, b, c e d que o modelo utilizado se afasta da relação com dados experimentais. Os maiores desvios de comportamento ocorreram nos perfis de sacarose, glicose e etanol, sendo que o comportamento de frutose apresentou alguns pontos experimentais que estão distantes da curva descrita pelo modelo; é o caso da concentração de frutose na altura de 15 a 30 cm. Este discrepância pode estar ligada a um erro de análise ou de amostragem ou ainda, devido a alta taxa de aplicação empregada acarretando um desvio da não idealidade do reator. No final do leito (altura do leito 50 cm), observa-se uma estabilização para os perfis de sacarose, glicose e frutose. O perfil da concentração de etanol apresentou uma queda no final do leito. O melhor ajuste do modelo deu-se para valores de porosidade de 0,7.

A Figura 79 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 6.

Figura 79 – Perfil do Modelo Proposto -Experimento 06, Reator 02, $\epsilon = 0,7$; vazão = 13 mL/min e brix = 24%

A Figura 79 é semelhante à Figura 77 descrita acima para o mesmo experimento.

A Figura 80 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 7.

Figura 80 – Gráfico referente ao Experimento 07 para o Reator 01 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

No Experimento 07, os desvios de comportamento ocorreram em maior freqüência que nos demais experimentos apresentados acima. Inicialmente isso pode estar ligado a uma grande contaminação no diluidor, onde houve a hidrólise rápida de sacarose, ocasionando a presença de glicose e frutose na entrada do reator (altura zero cm) A Figura 80, através dos perfis em a, b, c e d, mostra os perfis de sacarose, glicose, frutose e etanol. O comportamento de frutose apresentou alguns pontos experimentais que estão distantes da curva descrita pelo modelo; é o caso da concentração de frutose na altura de 15 a 30 cm. Este discrepância pode estar ligada a um erro de análise ou de amostragem ou ainda, devido à alta taxa de aplicação empregada acarretando um desvio da idealidade do reator. No final do leito (altura do leito 50 cm), observa-se uma estabilização para os perfis de sacarose, glicose e frutose. O perfil da concentração de etanol apresentou uma queda no final do leito. O melhor ajuste do modelo deu-se para valores de porosidade de 0,5. A Figura 81 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 7.

Figura 81 – Perfil do Modelo Proposto -Experimento 07, Reator 01, $\epsilon = 0.5$; vazão =16 mL/min e brix = 15%

Através da Figura 81 é possível observar que o perfil de glicose e frutose não iniciaram da concentração zero, como observado na Figura XLVIII onde os dados experimentais se apresentaram da mesma forma. A concentração de glicose e frutose na saída do reator foram elevadas. A porosidade que melhor se ajustou para este experimento foi de 0,5.

A Figura 82 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 7.

Figura 82 – Gráfico referente ao Experimento 07 para o Reator 02 com porosidade 0,4: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Alguns pontos na Figura 82 a, b, c e estão distantes da curva descrita pelo modelo, como a concentração de glicose na altura de 10 cm e frutose na altura 20 e 30 cm. Este discrepância está relacionada a erros de análises cromatográficas ou de amostragem, ou ainda, devido a não idealidade do reator. Isto, a cada experimento que se aumenta a taxa de aplicação, observa-se mais claramente que o reator se comporta como não ideal. No perfil de concentração de etanol alguns pontos também se encontram distantes da curva do modelo, no entanto o que se destaca é uma estabilização no final do leito e uma queda da concentração no ultimo ponto (60 cm). No entanto, este modelo proposto se ajustou bem aos dados experimentais deste experimento, considerando uma porosidade de 0,4, próxima da proposta por **VIEGAS (2003)**.

A Figura 83 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 7.

Figura 83 – Perfil do Modelo Proposto -Experimento 07, Reator 02, $\epsilon = 0.4$; vazão = 16 mL/min e brix = 15%

Através da Figura 83 é possível observar a semelhança com a Figura 81 do mesmo experimento. A porosidade que melhor se ajustou para este experimento foi de 0,4.

A Figura 84 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 01 do Experimento 8.

Figura 84 – Gráfico referente ao Experimento 08 para o Reator 01 com porosidade 0,7: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Alguns pontos na Figura 84 a, b, c e estão distantes da curva descrita pelo modelo, como por exemplo, a concentração de glicose e frutose na altura de 05 cm e a concentração de glicose na altura de 30 cm. Este discrepância está relacionada a erros de análises cromatográficas ou de amostragem. No perfil de concentração de etanol alguns pontos também se encontram distantes da curva do modelo, no entanto o que se destaca é a estabilização da concentração em dois pontos ao longo da altura de 10 a 25 cm, voltando a estabilizar na altura de 35 a 50 cm e por fim, uma alta seguida de uma queda a partir da altura de 55 cm até o final do leito, onde não pôde se observar uma estabilização. Isto pode estar relacionado à turbulência gerada pela grande movimentação das partículas de gás carbônico no meio. De uma forma geral, este modelo proposto se ajustou bem aos dados experimentais deste experimento, considerando uma porosidade de 0,7.
A Figura 85 mostra os resultados calculados para o modelo proposto para o Reator 01 no Experimento 8.

Figura 85 –Perfil do Modelo Proposto -Experimento 08, Reator 01, $\varepsilon = 0.7$; vazão=16,5 mL/min e brix = 18%

Para a porosidade de 0,7, nota-se através da Figura 85 que o consumo de todos os substratos foi menor se comparado aos demais experimentos e este consumo se tornou constante a partir da altura de 30 cm para a sacarose e para a frutose e glicose a partir do final do leito (40 cm). A produção de etanol também se tornou constante a partir do final do leito.

A Figura 86 mostra os resultados obtidos para o modelo proposto ajustados para os dados para o Reator 02 do Experimento 8.

Figura 86 – Gráfico referente ao Experimento 08 para o Reator 02 com porosidade 0,5: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Comparando os dois reatores do Experimento 08, através das Figuras 84 e 86 notase uma semelhança muito grande entre o comportamento dos perfis de concentração de sacarose, glicose, frutose e etanol. Sendo que o melhor ajuste obtidos tanto para sacarose como glicose e frutose, foram para o Reator 02 apresentado na figura acima, só que este a uma porosidade de 0,5.

A Figura 87 mostra os resultados calculados para o modelo proposto para o Reator 02 no Experimento 8.

Figura 87 – Perfil do Modelo Proposto -Experimento 08, Reator 02, $\epsilon = 0.5$; vazão=16,5 mL/min e brix = 18%

A Figura 87 mostra o perfil de concentração do modelo proposto que é semelhante ao da Figura 85. Para a porosidade de 0,5, nota-se que a concentração de etanol produzida foi menor que no Reator 01.

As Figuras de 88 a 91 mostram os resultados obtidos para o modelo proposto ajustados para os Reatores 01 e 02 do Experimento 9.

Figura 88 – Gráficos referentes ao Experimento 09 para o Reator 01 com porosidade 0,7: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Figura 89 –Perfil do Modelo Proposto -Experimento 09, Reator 01, $\varepsilon = 0.7$; vazão= 16,5 mL/min e brix= 28%

Figura 90 – Gráficos referentes ao Experimento 09 para o Reator 02 com porosidade 0,7: a) perfil da sacarose; b) perfil da glicose; c) perfil da frutose e d) perfil do etanol

Figura 91 – Perfil do Modelo Proposto – Experimento 09, Reator 02, $\varepsilon = 0.7$; vazão=16,5 mL/min e brix = 28%

Para o Experimento 09, devido a altíssima taxa de alimentação e a consequente desestabilização do leito de células, não foi possível um ajuste adequado do modelo aos dados experimentais tanto para o Reator 01 quanto para o Reator 02, como mostrado nas Figuras 88, 89, 90 e 91 para os perfis de sacarose, glicose, frutose e etanol.

5. CONCLUSÕES E SUGESTÕES

5.1 Conclusões Finais

- A taxa de conversão de substrato variou linearmente de forma inversa com a taxa de aplicação de substrato para os dois reatores, ou seja, as menores concentrações de substrato na saída do reator foram alcançadas para ensaios com menor taxa de aplicação de substrato (g de substrato / hora).
- Os níveis de conversão foram próximos a 80% para ambos os reatores, com exceção do ultimo experimento.
- Altas taxas de aplicação vinculadas a altas concentrações de substrato, levam à desestabilização do leito de células que pode estar relacionada à densidade e viscosidade do meio de alimentação.
- Os modelos cinéticos estudados neste trabalho mostraram-se capazes de descrever o comportamento dos biorreatores de leito pseudo-expandido.
- O modelo de JIN *et. al.* (1981) foi o que apresentou melhores ajustes aos dados experimentais quando uma única fonte de substrato foi assumida. No entanto, estes modelos mostraram uma grande variabilidade nos valores de seus parâmetros e porosidade para os diferentes ensaios.
- Para ensaios com uma única fonte de substrato, dentre os modelos testados, o de TOSETTO & ANDRIETTA (2002) apresentou desvios menores para porosidades próximas de 0,4 na maioria dos ensaios e maior estabilidade dos parâmetros cinéticos.
- O modelo proposto que leva em consideração o consumo diferenciado dos diversos substratos presentes no meio de fermentação se ajustou satisfatoriamente aos dados experimentais.
- A velocidade de hidrolise da sacarose se mostrou dependente das concentrações de glicose, frutose, sacarose e etanol presentes no meio.
- Foi observada a existência do fenômeno de diauxia no processo fermentativo, sendo que a glicose é consumida preferencialmente a frutose. O modelo proposto foi capaz de descrever este fenômeno.

5.2 Sugestões para trabalhos futuros

Visando a continuidade deste trabalho, seria interessante:

- Desenvolver modelos que levem em consideração as não idealidades do biorreator;
- Desenvolver modelos que descrevam o reator de forma heterogênea; e
- Desenvolver modelos onde a hidrodinâmica do biorreator está associada à cinética da reação.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- ADMASSU, W.; KORUS, R.A; HEIMSCH, R.C. Ethanol fermentation with flocculating yeast. Chem. Eng, Journal. V.31, n.1, p.B1-B8, 1985.
- AIBA, S.; SHODA,M.; NAGATAMI, M. <u>Kinects of product inibition in alcohol</u> <u>fermentation</u>. Biotechnology and Bioengineering, v.10, p. 845-864, 1968.
- ALCARDE, V.E. <u>Avaliação de parâmetros que afetam a floculação de levedura e bactérias</u> isoladas de processos industriais de fermentação alcoólica. Campinas. Tese (Doutor em Engenharia de Alimentos). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas. 91p., 2001.
- AMORIM, H. V. de; BASSO, L.C; ALVES, D. M.G. Processo de Produção de Álcoolcontrole e monitoramento. FERMENTEC/FEALQ/ESALQ-USP. Piracicaba, 1996.
- ANDRIETTA, S.R. <u>Otimização de processo de fermentação alcoólica em múltiplos</u> estágios. Stab.Açúcar, Álcool, Álcool e Subprodutos, v.10, n.2, p. 32-37, 1991.
- ANDRIETTA, S.R. <u>Modelagem, simulação e controle de fermentação alcoólica contínua</u> <u>em escala industrial</u>. Campinas. Tese (Doutor em Engenharia de Alimentos). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas. 178 p., 1994.
- ANDRIETTA, S.R.; MAUGERI, F. Optimum Design of a Continuous fermentation Unit of an Industrial Plant for alcohol Production. Advances in bioprocess engineering, p.47-52, 1994.
- ANDRIETTA, S.R.; STUPIELLO, J.P. <u>Simulação e modelagem para processos de</u> <u>fermentação alcoólica (II) Contínua</u>. Stab.Açúcar, Álcool, Álcool e Subprodutos, v.9, p. 45-51, 1990.
- ALMEIDA, J.R. <u>Processo de recuperação de levedura ou processo Melle-Boinot</u>. SEMANA DA FERMENTAÇÃO ALCOÓLICA. Anais, Piracicaba, p. 254-262, 1960.
- ANDRADE, I.D.<u>Monitorização de um Processo de Fermentação Alcoólica em Contínuo</u>. Coimbra. Projeto Científico. Faculdade de Ciências e Tecnologia, Departamento de Engenharia Química, Universidade de Coimbra, 104 p., 2000.
- ATALA, D.I.P. Fermentação alcoólica com alta densidade celular: modelagem cinética, convalidação de parâmetros e otimização do processo. Campinas. Dissertação (Mestre em Engenharia de Alimentos). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas. 135 p., 2000.
- BAYLEY, J.E. & OLLIS, D.F. <u>Biochemical engineering fundamentals</u>. 2° ed. New York, McGraw Hill, 984p., 1986.
- BERG, CHRISTOPH. World Production and Trade to 2000 and Beyond, 1999. http://www.distill.com/berg/.

- BERTELLI, L.G. <u>Dezesseis anos de Proálcool</u>. Stab. Açúcar, Álcool e Sub-produtos, v.11, n.1, p.19-20, 1992.
- BIROL, G.; DORUKER, B.; ÖNSAN, Z.I.; 6ULGEN, K. <u>Mathematical description of</u> <u>ethanol fermentation by immobilised Saccharomyces cerevisiae</u>. Process Biochemistry, v.33, n.7, p.763-771, 1998.
- BONONI, A.; ABOUTBOUL, H.; SCHIMITELL. W. <u>Simulation of continuous</u> <u>fermentation of manioc hydrolisate</u>. Biotechnology and Bioengineering Symposim, v.11, p.333-357, 1981.
- BORZANI, W. Fermentação alcoólica contínua. In: Semana da Fermentação Alcoólica, 1, Piracicaba. Anais. p. 263-276, 1960.
- BRAVO, P.; GONZALEZ, G. <u>Continuous Ethanol Fermentation by Immobilized Yeast</u> <u>Cells in a Fluidized-Bed Reactor</u>. J. Chem. Tech. Biotechnology, v.52, p.127-134, 1991.
- BU'LUCK, J.D. Pratical advantages of very flocculent yeast for alcohol production in single and multiple continuous systems. Int. Spec. Symp. Yeat. England, v.8, a.186, 1983.
- CALLEJA, G. B. <u>Cell Aggregation. In The Yeast</u>. ed. A. H. Rose and J. S. Harrison, v. 2, 2nd edn, p. 165-238.Academic Press, London, 1987.
- CARVALHO, B.S. <u>Efeito da temperatura na cinética de morte celular e em fermentação</u> <u>alcoólica contínua com reciclo de células</u>. Campinas. Dissertação (Mestre em Engenharia de Alimentos). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 83p., 1996.
- CHATTAWAY, T; GOMA, G.; RENAUD, P.Y. <u>Modeling ethanol and secondary</u> <u>inhibitions of ethanol fermentation in a multistage reactor</u>. Biotechnology and Bioengineering, v.32, n.3, p. 271-276, 1988.
- CONCEIÇÃO, <u>A. Cana: setor aposta no álcool para crescer.</u> 2002. http://www.estadao.com.br/safra/2003/culturas_002.htm
- CYSEWSKY, G.R.; WILKE, C.R. Process design and economic studies of alternative methods for the production of ethanol. Biotechol. Bioeng., v.20, n.9, p.1421-1444, 1978.
- DAUGULIS, A. J.;SWAINE, D.E. Examination of substrate and product inhibition kinetics on the production of ethanol by suspended and immobilized cell reactor. Biotechnology and Bioengineering, v.29, p.639-45, 1987.
- DOMIANO, D.; CHIN, C.S.; JU, N.; WANG, S.S. <u>Performance, kinetics and substrate</u> <u>utilization in a continuous yeast fermentation with cell recycle by ultrafiltration</u> <u>membranes</u>. Apppl. Microbiol. Biotechhnol., v.21, p.69-77, 1985.

- DOURADO, A.; GOMA, G.; ALBUQUERQUE, U.; SEVELY, Y. Modeling and statistic optimization of the ethanol production in a cascade reactor. 1. Modeling. Biotechnology and Bioengineering, v.29, n.2, p.187-194, 1987.
- DREWS, W.A.A. <u>A fermentação do melaço da cana-de-açúcar no Brasil. Simpósio de fermentação</u>. Anais. p. 313-222, 1964.
- EDDY, A. A. Flocculation characteristics of yeasts. I. Comparative survey of various strains of *Saccharomyces cerevisiae*. J. Inst. Brew. v.61, p.307-312, 1955.
- FERREIRA, O.C. <u>Avaliação preliminar do potencial de produção de etanol da cana de açúcar</u>. n.34, 2002. http://ecen.com/eee34/limites_alcool.htm
- FINGUERUT, J.; CÉSAR, A.R.P.; LEINER, K.H.; VAZ ROSSEL, C.E. Fermentação contínua em múltiplos estágios. STAB Açúcar, Álcool e Subprodutos, v.10, n.3, p.41-42, 1992.
- FREDERICK, M.K.B. Estudo genético, fisiológico e molecular de Lactobacillus fermentum envolvidos na floculação de leveduras. Campinas. Tese (Doutor em Engenharia de Alimentos). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas. 64p., 1994.
- FROMENT,NG. F. and BISCHOFF, H. P. K. <u>Chemical Reaction and Reactor Engeneering</u>, <u>Design of Fixed-Bed Gas-Solid Catalytic Reactors</u> Ed. Carbery & Varma, Marcel Deckker, New York, p.373-440, 1987.
- GÒDIA, F.; CASAS, C.; SOLA, C. <u>Alcoholic Fermentation by Immobilised Yeast Cells</u>. J. Chem. Tech. Biotechnology, v. 35B, p. 139-144, 1985.
- GOMA, G.; RENAUD, P.Y.; CHAMILOTHORIS, G.; DAHHOU, B.; POURCIEL, J.B. <u>Adaptative control of a multistage fermentation processes</u>. Biotechnology and Bioengineering, v.35, p.217-223, 1990.
- GHOSE, T. K.; TYAGI, R. D. <u>Rapid ethanol fermentation of cellulose hydrolisate. I. Bach</u> versus continuous systems. Biotechnology and Bioengineering, v.21, n.8, p.1387-1400, 1979a.
- GHOSE, T. K.; TYAGI, R. D. <u>Rapid ethanol fermentation of cellulose hydrolisate. II.</u> <u>Product and substrate inhibition and optimization of fermentor design</u>. Biotechnology and Bioengineerig, v.21, n.8, p.1401-1420, 1979b.
- GROOT, W.J.; SIKKENK, C.M.; WALDRAM, R.H.; VAN ER LANS, R.G.J.M.; LUYBEN, K.C.A.M. <u>Kinetics of ethanol production by baker's yeast in an integrated</u> process of fermentation and microfiltration. Bioprocess Eng., v.8, p.39-47, 1992.
- GUERREIRO, M.A. Desenvolvimento de um sistema especialista para o projeto de unidades industriais de produção de álcool. Campinas. Dissertação (Mestre em Engenharia de Alimentos). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 98p., 1995.

- HOPPE, G.K. & HANSFORD, G.S. <u>Ethanol inhibition of continuous anaerobic yeast</u> growth. Biotechnology letters, v.4, n.1, p.39-44, 1982.
- ISERENTANT, D. Practical aspects of yast flocculation. Belguim Journal fo Brewing and Biotechnology. v.21, n.3, p.30-33, 1996
- JARZEBSKI, A.B; MALINOWSKI, J.J.; GOMA, G. Modeling of ethanol fermentation at <u>high yeast concentrations</u>. Biotechnology and Bioengineering, v.34, n.9, p.1225-1230, 1989.
- JIN, C.K.; CHIANG, H.L.; WANG, S.S. <u>Steady-state analysis of the enhancement in</u> <u>ethanol productivity of a continuous fermentation process employing a protein-</u> <u>phospholipid complex as a protecting agent</u>. Enzyme and Microbial Technology, v.3, n. 3, p.249-257, 1981.
- JIN, YU-LAI, SPEERS, A. <u>Flocculation of Sacchamomyces cerevisiae</u>. Food Research International, v. 31, n. 6-7, p. 421-440, 1999.
- JONES, S.T.; ADMASSU, W.; KORUS, R.A.; HEIMSCH, R.C. Ethanol Fermentation in a Continuous Tower Fermentor. Biotechnol. Bioeng. V.26, n.7, pp.742-747, 1984.
- KAMADA, K. & MURATA, M. On the mechanism of brewers yeast flocculation. Agric. Biol. Chem. V.48, n.10, p. 2423-2433, 1984.
- KELLER, R.; DUNN, J. Computer of the biomass production rate of cyclic fed batch continuous culture. J. Appl. Chem. Biotechnol, v.28, p. 784-790, 1978.
- LEE, J. M.; POLLARD, J.F.; COULMAN, G. A. Ethanol fermentation with cell recycling: computer and simulation. Biotechnology and Bioengineering, v.25, n.2, p.497-511, 1983.
- LEVENSPIEL, O. <u>Monod equation: a revised and a generalization to product inibition</u> <u>situations</u>. Biotechnology and Bioengineering, v.22, n.8, p.1671-1687, 1980.
- LUONG, J. H. T. <u>Kinetics of ethanol inhibition in alcohol fermentation</u>. Biotechnology and Bioengineering, v.27, n.3, p.285, 1985.
- MAIORELLA, B.L.; BLANCH, H.W.; WILKE, C.R. <u>Alcohol production and recivery.</u> Avantages in biocemical engineering, v.20, p. 41-73, 1981.
- MAIORELLA, B.L.; BLANCH, H.W.; WILKE, C.R. Economic evaluation of alternative ethanol fermentation processes. Biotechol. Bioeng., v.26, n.9, p. 1003-1025, 1984.
- MILLER, M.V. <u>Yeasts</u>. In: REED, G. <u>Industrial Microbiology</u>, Westport: AVI, p.15-43, 1983.
- MOMBOUQUETTE, G.H. Models for high cell density bioreactors must consider biomass volume fraction. Cell recycle example. Biotechnology and Bioengineering, v.29, n.9, p. 1075-1080, 1987.

- MOMBOUQUETTE, G.H. <u>Modeling high-biomass-density cell recycle fermenters.</u> Biotechnology and Bioengineering v.39, n.5, p. 498-503, 1992.
- MONOD, J. <u>The growth of bacterial culture</u>. Annual Review of Microbiology, Palo Alto, v.3, p.371-394, 1949.
- MOULIN, G.; BOZE, H.; GALZY, P. Inhibition of alcoholic fermentation by substrate and ethanol. Biotechnology and Bioengineering, v.22, p.2375-2381, 1980.
- NAGASHIMA, M.; AZUMA, M.; NOGUCHI, S.; INUZUKA, K.; SAMEJIMA, H. <u>Continuous fermentation using immobilized yeast cells.</u> Biotechnology Bioengineering, v.26, n.8, p.992-997, 1984.
- NAKAMURA, J.; MIYASHIRO, S.; HIROSE, Y. Screening isolation, and some properties of microbial cell flocculants. Agric. Biol. Chem. V.40, n.2, p. 377-383, 1976.
- OLIVEIRA, S.C; PAIVA, T.C.B.; VISCONTI, A.E.S; GIUDICI, R. <u>Discrimination</u> between ethanol inhibition models in a continuous alcoholic fermentation process <u>using flocculating yeast</u>. Applied Biochemistry and Biotechnology. V.74, n.3, pp. 161-172, 1998.
- OKADA, W.; FUKUDA, H.; MORIKAWA, H. <u>Kinetic expressions of ethanol production</u> rate and ethanol consumption rate in baker's yeast cultivation. J. Ferment. Technol., v.59, p.103-109, 1981.
- OURA, E. Effect of aeration intensity on the biochemical composition of baker's yeast. I factors affecting the type of metabolism.Biotechnology and Bioengineering, v.26, n.6, p.1197-1212, 1974.
- PAIVA, T.C.B.; SATO S.; VISCONTI, A.E.S.; CASTRO, L.A.B. <u>Continuous alcoholic</u> <u>fermentation process in a tower with recycling of flocculanting yeast</u>. Applied Biochemistry and Biotechnology, v.57, n.58, p.535-541, 1996.
- RODRIGUES, M.I.; ANDRIETTA, S.R.; MAUGERI FILHO, F. Simulação da produtividade e rendimento em fermentação alcoólica contínua, para reatores em fermentação alcoólica contínua, para reatores operando em condições ideais e não ideais de mistura. Stab. Açúcar, Álcool e Sub-produtos, v.10, n.5, p. 35-47, 1992.
- ROSE, A.H.; HARRISON, J.S. Biology of Yeast. London, Academic Press, p.1-4, 1987.
- RUSSELL, I.; JONES, R.; STEWART, G.G. <u>Yeast-The primary industrial microrganism</u>. Biological Research on Industrial Yeasts. Boca Raton: CRC Press, p.2-4, 1987.
- SEVELY, Y.; PORCIEL, J.P.; RAUZY, G.R.; BABANS, J.P. Paper presented at the 8th IFAC Trienal Congress, Kyoto, Japan, Aug., 1981.
- SINICIO, M.F. <u>Demanda e conservação de energéticos nas usinas de açúcar e álcool</u> <u>paulistas</u>. Campinas. Tese (Doutorado em Engenharia Mecânica). Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 273p., 1992.

- SIQUEIRA, A.M. Proposta de otimização para destilarias autônomas. Stab. Açúcar, Alcool e Subprodutos, v.11, n.5, p.33-38, 1993.
- SOUZA, M.J.; TEIXEIRA, J.A.; MOTA, M. Differences in the flocculation mechanism of <u>Kluyveromices marxianus and Saccharomyces cerevisiae</u>. Biothecnology Letters, v.14, n.3, p.213-218, 1992.
- STECKELBERG, C. <u>Caracterização de leveduras de processos de fermentação alcoólica</u> <u>utilizando atributos de composição celular e características cinéticas</u>. Campinas. Tese (Doutorado em Engenharia Química). Faculdade de Engenharia de Química, Universidade Estadual de Campinas. 215p., 2001.
- STEFANO, F. <u>A volta do Projeto PROÀLCOOL</u>. Revista Isto É Dinheiro, v. 248, p. 28-31, 2002.
- STEWART, G.G. & RUSSEL, I. <u>Centenary review one hundred years of yeast research</u> <u>and development in the brewing industry.</u> Journal of the Institute of Brewing, v.92, p.537-558, 1986.
- STRATFORD, M. <u>Yeast flocculation: reconciliation of physiology and genetics</u> viewpoints. Yeast, v.8, n.1, p.25-38, 1992.
- STRATFORD, M & BOND, C.J. <u>Selective separation of microorganisms by lectins: yeast</u> and concanavalin A as a model system. Biotechnol. Bioeng., v.40, p.835-843, 1992.
- STROPPA, T.C. Dinâmica populacional de leveduras caracterizadas por eletro-cariótipo e desempenho fermentativo em processos de fermentação alcoólica. Campinas. Tese (Doutorado em Engenharia de Alimentos). Faculdade de Engenharia de Engenharia de Alimentos, Universidade Estadual de Campinas. 133p., 2002.
- STEWART, G. G., GORING, T. E. Effects of same monovalent and divalent metal ions on the flocculation of brewer's yeast strains. J. Inst. Brew. v.82, p. 341-342, 1976.
- STRAVER, M.H.; SMIT, G.; EN KIJNE, J.W. Induced cell surface hydrofobicity influences flocculation of brewer's yeast in a flocculation assay. Colloids and Sufaces B: Bioointerfaces, v.2, p.173-180, 1994.
- THATIPAMALA, R.; ROHANI, S.; HILL, G.A. <u>Effectes of high product and substrate</u> inhibition on the kinetics in biomass and product yields during ethano batch fermentation. Biotechnology and Bioengineering, v.40, p. 289-297, 1992.
- TOLEDO, E.C.V. Modelagem, Simulação e Controle de Reatores Catalíticos de Leito Fixo. Campinas. Tese (Doutor em Engenharia Química). Faculdade de Engenharia Química, Universidade Estadual de Campinas. 337p., 1999.
- TOSETTO,G.<u>Influência da matéria prima no comportamento cinético de levedura na</u> produção de etanol. Dissertação (Mestre em Engenharia Química). Faculdade de Engenharia Química, Universidade Estadual de Campinas. 118 p., 2002.

- TOSETTO, G.; ANDRIETTA, S.R. <u>Influência da matéria-prima no comportamento</u> <u>cinético de levedura na produção de etanol</u>. Apresentado no VII Seminar on Enzymatic Hidrolysis of Biomass – SHEB, Maringá, 2002.
- VIEGAS, M.C. Desenvolvimento de um reator de bancada de leito fluidizado para produção de etanol utilizando linhagens de leveduras floculantes. Dissertação (Mestre em Engenharia Química). Faculdade de Engenharia Química, Universidade Estadual de Campinas. 86 p., 1999.
- VIEGAS, M.C.; ANDRIETTA, M.G.S.; ANDRIETTA, S.R.; <u>Utilização de Reatores Tipo</u> <u>Torre Com Leveduras Auto-Imobilizáveis Para Produção Contínua De Etanol</u> Apresentado no VII Seminar on Enzymatic Hidrolysis of Biomass – SHEB, Maringá, 2002 (a).
- VIEGAS, M.C.; ANDRIETTA, M.G.S.; ANDRIETTA, S.R.;. Use of tower reactors for continuous ethanol production. Brazilian Journal of Chemical Engeneering. v. 19, n. 2, p. 167-173, 2002 (b).
- VIEGAS, M.C.; ANDRIETTA, M.G.S.; ANDRIETTA, S.R. <u>Caracterização do</u> comportamento cinético de reator tipo torre utilizando leveduras com características <u>floculantes</u>. Apresentado no VII Seminar on Enzymatic Hidrolysis of Biomass – SHEB, Maringá, 2002 (c).
- VILELA FILHO, T. Discurso Senado Federal, 19/10/2001. http://senado.gov.br.
- WARREN, R.K.; HILL, G.A.; MACDONALD, D.G. <u>Continuous cell recycle fermentation</u> to produce ethanol Trans I.Chem.E. 72, part C, p.149-157, 1994.
- YOKOYA, F.; OLIVA-NETO, P. <u>Características da floculação de leveduras por</u> Lactobacillus fermentum. Revista de Microbiologia, v.22, p.12-16, 1991.
- ZARATTINE, R.; WILLIANS, J.W.; ERNANDES, J.R. <u>Bacterial induced flocculation in</u> <u>selected brewing strains of Saccharomyces</u>. Cerevisia and Biotechnology, v.8, n.4, p.65-70, 1993.
- ZANIN, G. M.; SANTANA, C.C.; BOM, E.P.S.; GIORDANO, R.C.L.; MORAES, F.F.; ANDRIETTA, S.R.; CARVALHO NETO, C.C.; MACEDO I.C.; LAHR F.O.D.; RAMOS L.P. <u>Brasilian bioethanol program.</u> Apllied Biochemistry and Biotechonology, v. 84-86, p. 1147-1161, 2000.
- ZAPERLON, F.; ANDRIETTA, S. R. Fermentação contínua para a produção de álcool. Stab. Açúcar, Álcool e Sub-produtos. V.10, n.4, p.23-28, 1992.

ANEXO

Modelo de Jin								
R1	Porosidade (ε)	Ks	K ₂	K ₁	Desvio			
	ε = 0,3	47	0,001	0.05	1383,21			
	$\varepsilon = 0,4$	37	0,001	0.06	1342,79			
Experimento 01	$\varepsilon = 0,5$	62	0,001	0.06	1374,43			
	$\varepsilon = 0.6$	88	0,001	0.06	1403,10			
	$\varepsilon = 0.7$	55	0,001	0.07	1475,62			
	$\varepsilon = 0.3$	30	0.001	0.05	1069.07			
	$\varepsilon = 0.4$	15	0.001	0.06	1014.24			
Experimento 02	$\varepsilon = 0.5$	41	0,001	0.06	1084,35			
	$\varepsilon = 0.6$	12	0,001	0.07	1138,84			
	$\varepsilon = 0.7$	29	0,001	0,07	1222,07			
	$\varepsilon = 0.3$	68	0.001	0.04	1397.18			
	$\varepsilon = 0.4$	47	0.001	0.05	937,02			
Experimento 03	$\varepsilon = 0.5$	81	0.001	0.05	857,29			
	$\varepsilon = 0.6$	42	0,001	0,06	730,98			
	$\varepsilon = 0.7$	63	0,001	0,06	726,71			
	$\varepsilon = 0.3$	48	0.001	0.05	378.56			
	$\varepsilon = 0.4$	41	0,001	0,06	406,75			
Experimento 04	$\varepsilon = 0.5$	70	0,001	0.06	449,48			
	$\varepsilon = 0.6$	47	0,001	0,07	574,85			
	$\varepsilon = 0.7$	68	0,001	0,07	624,95			
	$\varepsilon = 0,3$	57	0,001	0,04	810,91			
	$\varepsilon = 0,4$	33	0,001	0,05	956,70			
Experimento 05	$\varepsilon = 0.5$	12	0,001	0,06	1192,26			
	$\varepsilon = 0.6$	31	0,001	0,06	1370,71			
	$\varepsilon = 0,7$	40	0,001	0,06	1587,59			
	ε = 0,3	0,1	0,001	0,03	6798,86			
	$\varepsilon = 0,4$	22	0,001	0,03	4741,44			
Experimento 06	$\varepsilon = 0,5$	0,1	0,001	0,03	3744,69			
	$\varepsilon = 0,6$	4	0,001	0,04	2551,21			
	ε = 0,7	21	0,001	0,04	2127,10			
	$\varepsilon = 0,3$	55	0,001	0,05	1480,22			
	$\varepsilon = 0,4$	54	0,001	0,06	1908,60			
Experimento 07	$\varepsilon = 0,5$	43	0,001	0,07	2327,59			
	$\varepsilon = 0,6$	60	0,001	0,07	2490,76			
	ε = 0,7	46	0,001	0,08	2846,63			
	$\varepsilon = 0,3$	18	0,001	0,04	3007,2			
	$\varepsilon = 0,4$	6	0,001	0,05	2110,77			
Experimento 08	$\varepsilon = 0,5$	27	0,001	0,05	1822,69			
-	ε = 0,6	4	0,001	0,06	1436,11			
	ε = 0,7	17	0,001	0,06	1327,23			
	$\varepsilon = 0,3$	0,1	0,001	0,03	6329,69			
	$\varepsilon = 0,4$	18,1	0,001	0,04	4278,22			
Experimento 09	$\varepsilon = 0,5$	19,1	0,001	0,04	3364,06			
	$\varepsilon = 0,6$	53,1	0,001	0,04	2995,24			
	$\varepsilon = 0,7$	0,1	0,001	0,05	2357,18			

Tabela 01 - Parâmetros cinéticos para o modelo de JIN et al.(1981) para reator 01

Modelo de Jin									
R2	Porosidade (ε)	Ks	K ₂	K ₁	Desvio				
	$\varepsilon = 0.3$	41	0,001	0.04	662,59				
	$\varepsilon = 0.4$	31	0,001	0.05	481,32				
Experimento 01	$\varepsilon = 0.5$	51	0,001	0.05	437,06				
•	$\varepsilon = 0.6$	29	0,001	0.06	429,32				
	$\varepsilon = 0.7$	42	0,001	0,06	446,13				
	$\varepsilon = 0.3$	40	0,001	0.04	1272,81				
	$\varepsilon = 0.4$	22	0,001	0,04	1463,23				
Experimento 02	$\varepsilon = 0.5$	47	0,001	0,05	1704,37				
1	$\varepsilon = 0.6$	15	0,001	0,06	1899,76				
	$\varepsilon = 0.7$	31	0,001	0,06	2119,93				
*****	$\varepsilon = 0.3$	84	0.001	0.03	1436,46				
	$\varepsilon = 0.4$	58	0,001	0,04	1658,80				
Experimento 03	$\varepsilon = 0.5$	90	0,001	0,04	1801,97				
	$\varepsilon = 0.6$	49	0,001	0,05	2239,25				
	$\varepsilon = 0.7$	71	0,001	0,05	2395,89				
	$\varepsilon = 0,3$	32	0,001	0,05	650,19				
	$\varepsilon = 0,4$	24	0,001	0,06	527,17				
Experimento 04	$\varepsilon = 0.5$	47	0,001	0,06	536,85				
	$\varepsilon = 0.6$	27	0,001	0,07	543,92				
	$\varepsilon = 0,7$	43	0,001	0,07	581,96				
	ε = 0,3	29	0,001	0,04	482,32				
	$\varepsilon = 0,4$	57	0,001	0,04	507,18				
Experimento 05	$\varepsilon = 0.5$	31	0,001	0,05	586,72				
	$\varepsilon = 0.6$	53	0,001	0,05	698,80				
	$\varepsilon = 0,7$	20	0,001	0,06	849,80				
	ε = 0,3	44	0,001	0,02	3526,78				
	ε = 0,4	12	0,001	0,03	1815,09				
Experimento 06	$\varepsilon = 0,5$	38	0,001	0,03	1306,79				
	ε = 0,6	67	0,001	0,03	1080,65				
	$\epsilon = 0,7$	96	0,001	0,03	966,65				
	ε = 0,3	55	0,001	0,05	621,78				
	$\varepsilon = 0.4$	55	0,001	0,06	774,17				
Experimento 07	$\varepsilon = 0,5$	43	0,001	0,07	968,49				
	$\varepsilon = 0,6$	68	0,001	0,07	1050,56				
	$\varepsilon = 0,7$	46	0,001	0,08	1245,97				
	$\varepsilon = 0,3$	23	0,001	0,06	801,69				
	$\varepsilon = 0,4$	20	0,001	0,07	1235,31				
Experimento 08	$\varepsilon = 0,5$	55	0,001	0,07	1383,42				
	$\varepsilon = 0,6$	80	0,001	0,07	1506,88				
	ε = 0,7	59	0,001	0,08	1881,55				
	ε = 0,3	3,1	0,001	0,03	5075,08				
	$\varepsilon = 0,4$	0,1	0,001	0,04	4138,45				
Experimento 09	$\varepsilon = 0.5$	1,1	0,001	0,04	2241,40				
	$\varepsilon = 0,6$	30,1	0,001	0,04	1853,97				
	$\varepsilon = 0,7$	0,1	0,001	0,05	1907,85				

Tabela 02 – Parâmetros cinéticos para o modelo de JIN et al.(1981) para reator 02

Modelo de SEVELY (1981)								
R 1	Porosidade (ε)	Ks	Pmásx	K _P	Desvio			
	$\varepsilon = 0.3$	2	69					
	$\varepsilon = 0.4$	23	73	9	1348,03			
Experimento 01	$\epsilon = 0.5$	5	70	8	1331,21			
	s = 0.6	6	71	5	1302,14			
	a = 0.7	1	72	4	1291,82			
	ε-0,7			3	1287,45			
	$\varepsilon = 0,3$	0,1	80	9	1130,50			
	$\varepsilon = 0,4$	0,1	82	6	1062,53			
Experimento 02	$\varepsilon = 0,5$	11,1	86	5	1032,30			
	$\varepsilon = 0.6$	11,1	87	4	1007,37			
	$\varepsilon = 0.7$	0,1	86	3	982,81			
	$\varepsilon = 0.3$	10	77	15	1069.74			
	$\epsilon = 0.4$	27	73	14	943.53			
Experimento 03	$\epsilon = 0.5$	35	74	11	898.81			
	s = 0.6	31	75	8	870.77			
	s = 0.7	35	75	7	854.38			
	$\frac{0}{2} = 0.3$	16	70	11	281.02			
	c = 0.4	10	70		278 66			
E-manimanta 04	12 = 0,4	15	71		270.57			
Experimento 04	$\varepsilon = 0,5$	10	74	5	280.71			
	$\varepsilon = 0.6$	12	74	4	386.04			
	$\varepsilon = 0,7$		/+		300,04			
	$\varepsilon = 0,3$	0,1	94	9	748,50			
	$\varepsilon = 0,4$	0,1	99	6	733,83			
Experimento 05	$\varepsilon = 0,5$	6,1	100	5	732,36			
	$\varepsilon = 0,6$	6,1	102	4	730,15			
	ε = 0,7	0,1	105	3	721,13			
	$\varepsilon = 0,3$	0,1	86	150	2408,19			
	$\varepsilon = 0,4$	0,1	83	104	1666,90			
Experimento 06	$\varepsilon = 0,5$	9,1	84	60	1420,39			
	$\varepsilon = 0,6$	24,1	85	7	1273,46			
	$\varepsilon = 0.7$	33,1	85	39	1177,02			
	$\varepsilon = 0.3$	35	140	8	1343.91			
	$\varepsilon = 0.4$	29	140	5	1435.42			
Experimento 07	$\varepsilon = 0.5$	10	140	3	1485.00			
	$\epsilon = 0.6$	26	140	3	1521.22			
	$\epsilon = 0.7$	10	140	2	1546.59			
	e = 0.3	30	27	30	3034.46			
	s = 0.4		22	27	1887 57			
Experimente 09	c = 0.5	ند 18	22	10	1678.07			
Experimento vo	c = 0, 3	18	18	10	1535.07			
	c = 0.0	16	14	13	1470 30			
	$\frac{ \varepsilon - 0, j }{ \varepsilon - 0, 2 }$		**	17	*****			
	8-0,5	0,1	15	200	659,67			
	$\varepsilon = 0,4$	20,1	73	200	458,85			
Experimento 09	$\varepsilon = 0,5$	84,1	74	200	465,25			
	$\varepsilon = 0,6$	125,1	74	160	492,29			
	ε = 0,7	170,1	/4	140	512,99			

Tabela 03 – Parâmetros cinéticos para o modelo de SEVELY et al.(1981) para reator 01

Modelo de SEVELY (1981)								
R2	Porosidade (ε)	Ks	P _{másx}	K _P	Desvio			
	$\epsilon = 0,3$	2	68	19	446,91			
	$\varepsilon = 0,4$	6	69	13	427,76			
Experimento 01	$\varepsilon = 0.5$	3	69	9	413,16			
	$\varepsilon = 0.6$	1	69	7	406,19			
	$\varepsilon = 0.7$	5	70	6	405,74			
	$\varepsilon = 0.3$	1.1	116	8	1007,40			
	$\varepsilon = 0.4$	0.1	109	6	947.58			
Experimento 02	$\varepsilon = 0.5$	0.1	128	4	954,79			
	$\epsilon = 0.6$	4,1	11	4	930,68			
	$\varepsilon = 0.7$	2,1	122	3	899,39			
	$\epsilon = 0.3$	12	97	15	1562.65			
	$\varepsilon = 0.4$	14	100	10	1627,81			
Experimento 03	$\varepsilon = 0.5$	8	100	7	16.79.98			
F	$\varepsilon = 0.6$	12	100	6	1711.83			
	$\varepsilon = 0.7$	12	100	5	1740,43			
	$\varepsilon = 0.3$	6	68	12	636.25			
	$\varepsilon = 0.4$	6	69	8	575.86			
Experimento 04	$\varepsilon = 0.5$	12	72	5	526,00			
P. P	$\epsilon = 0.6$	7	70	6	544,03			
	$\varepsilon = 0.7$	8	71	4	511,10			
	$\varepsilon = 0.3$	0.5	89	14	456.68			
	$\varepsilon = 0.4$	0.5	92	9	405,79			
Experimento 05	$\varepsilon = 0.5$	0.5	91	7	383,03			
	$\varepsilon = 0.6$	7.5	95	6	382,73			
	$\varepsilon = 0,7$	0,5	96	4	373,23			
	$\varepsilon = 0,3$	1	97	40	976,21			
	$\varepsilon = 0,4$	2	97	40	975,15			
Experimento 06	$\varepsilon = 0.5$	2	99	26	893,79			
	$\varepsilon = 0.6$	10	93	30	1154,11			
	$\varepsilon = 0,7$	10	91	30	1697,02			
	ε = 0,3	5	96	6	413,84			
	$\varepsilon = 0,4$	7	112	40	395,69			
Experimento 07	$\varepsilon = 0,5$	9	129	3	386,06			
	ε = 0,6	29	149	3	402,90			
	$\varepsilon = 0,7$	8	150	2	388,64			
	ε = 0,3	29,1	177	6	296,39			
	$\varepsilon = 0,4$	24,1	180	4	333,67			
Experimento 08	$\varepsilon = 0,5$	20,1	180	3	258,82			
	$\varepsilon = 0,6$	0,1	180	2	365,47			
	ε = 0,7	16,1	180	2	390,04			
	$\varepsilon = 0,3$	0,1	79	150	512,76			
	$\varepsilon = 0,4$	0,1	78	80	257,83			
Experimento 09	ε = 0,5	19,1	77	70	250,56			
-	$\varepsilon = 0,6$	19,1	76	65	502,93			
	$\varepsilon = 0,7$	19,1	75	65	959,33			

Tabela 04 - Parâmetros cinéticos para o modelo de SEVELY et al.(1981) para reator 02

Modelo de TOSETTO & ANDRIETTA(2002)							
	para	um único sul	ostrato (AR]	ſ)			
R1	Porosidade (ε)	Ks	Y _N	Kı	P _{máx}	Desvio	
	ε = 0,3	83	2,5	200	89	1528,50	
_	$\varepsilon = 0,4$	176	2,5	200	95	1500,92	
Experimento 01	$\varepsilon = 0,5$	129	2,5	130	82	1595,28	
	ε = 0,6	90	2,5	90	75	1734,54	
	$\epsilon = 0,7$	90	2,5	90	72	1891,20	
	$\varepsilon = 0,3$	80	2,3	200	95	1829,39	
	$\varepsilon = 0,4$	129	2,5	200	92	1763,41	
Experimento 02	$\varepsilon = 0,5$	130	2,5	190	85	1846,31	
_	$\varepsilon = 0,6$	130	2,5	190	81	2011,15	
	$\varepsilon = 0,7$	130	2,5	190	80	2286,15	
	$\varepsilon = 0.3$	01	2,4	200	83	1362.08	
	$\varepsilon = 0.4$	2.1	2,6	200	81	1161.12	
Experimento 03	$\varepsilon = 0.5$	6.1	2,5	142	78	1190.90	
	$\epsilon = 0.6$	6.1	2,5	96	78	1210.63	
	$\epsilon = 0.7$	6,1	2,5	78	77	1221,60	
	$\epsilon = 0.3$	15	2.2	85	71	575 17	
Experimento 04	$\epsilon = 0.4$	1,5	2.6	77	72	437.23	
	e = 0.5	5,5	2,5	75	67	575.07	
	c = 0.6	5,5	2,5	75	65	790 35	
	s = 0.7	5.5	2,5	75	65	1231.79	
	e = 0.3	<u>01</u>	2.3	100	88	1107.12	
	e = 0.4	0.1	2,5	80	89	1022.14	
Experimento 05	e = 0.5	20.1	2.3	55	85	1110.85	
Lapormence ve	c = 0.6	38.1	2.3	46	85	119.51	
	s = 0.7	50,1	2.3	38	85	1128,59	
	$\varepsilon = 0.3$	01	0.9	200	82	1687.36	
	e = 0.4	0,1	12	200	84	2826 19	
Experimento 06	c = 0.5	0,1	1,2	200	84	1980 34	
Laper miente ou	s = 0.6	01	13	200	84	2320.85	
	c = 0.0	0.1	1.4	200	83	1884.62	
	c = 0.3	40		72	75	072.27	
	a = 0, 3	40 60	17	15	69	975,57	
Experimente 07	c = 0, 4	41	1,7	70	75	1040.47	
Experimento 07	z = 0, 5	40	2,5	70	70	1340,47	
	$\varepsilon = 0,0$	40	2,5	70	70	2587,90	
	$\varepsilon = 0, 7$	- TV	2,5	,1	10	3.540,04	
	$\varepsilon = 0,3$	0,1	1,3	200	68	3326,62	
F ' (00	$\varepsilon = 0,4$	0,1	1,8	200	72	2516,71	
Experimento 08	$\varepsilon = 0.5$	0,1	2,2	200	75	2109,42	
	$\varepsilon = 0,6$	0,1	2,5	200		1000,95	
	$\varepsilon = 0,7$	V,1	2,1	200		1/13,72	
	$\varepsilon = 0,3$	0,1	0,9	200	80	5945,98	
	$\varepsilon = 0,4$	0,1	0,9	200	75	2291,07	
Experimento 09	$\varepsilon = 0,5$	0,1	0,9	200	73	790,84	
	$\varepsilon = 0,6$	0,1	0,9	200	72	558,89	
	$\varepsilon = 0,7$	0,1	1,0	178	72	305,05	

Tabela 05 - Parâmetros cinéticos para o modelo de TOSETO & ANDRIETTA (2002) para reator 01

Modelo de TOSETTO & ANDRIETTA(2002)							
	Porosidade		YN		_		
R2	(2)	Ks		Kı	P _{máx}	Desvio	
	$\varepsilon = 0.3$	1	2.0	150	74	614.08	
	c = 0.4	1	2,0	1/0	78	/80 56	
Exparimente 01	c = 0.5	2	2,0	88	75	527 60	
Experimento vi	$\varepsilon = 0, 5$	1	2,4	68	75	522,09	
	$\varepsilon = 0,0$	1	2,5	55	75	522,00	
	$\varepsilon = 0, 7$	1	2,5		/4		
	$\varepsilon = 0,3$	0,1	2,7	71	98	1546,26	
	$\varepsilon = 0,4$	0,1	2,7	116	100	1571,16	
Experimento 02	$\epsilon = 0,5$	0,1	2,7	53	96	1584,65	
	$\varepsilon = 0,6$	0,1	2,7	42	95	1592,87	
	$\varepsilon = 0,7$	0,1	2,7	33	95	1597,94	
	$\varepsilon = 0.3$	2	1,8	95	90	1555.06	
	$\epsilon = 0.4$	$\overline{2}$	2,3	91	94	1329.78	
Experimento 03	$\varepsilon = 0.5$	10	2,5	85	95	1438.78	
	c = 0.6	10	2,5	85	90	1817.41	
	c = 0.7	10	2.5	91	90	1986 35	
	2-0,7		24	100		1,00,55	
	$\varepsilon = 0,3$	2	2,4	120	74	1031,65	
Experimento 04	$\varepsilon = 0,4$		2,5	120	70	877,99	
	$\varepsilon = 0,5$	5	2,5	100	68	946,24	
	$\epsilon = 0,6$	2	2,4	12	65	1013,09	
	ε = 0,7	5	2,3	65	65	1028,13	
	ε = 0,3	0,1	1,8	100	85	1318,89	
	$\varepsilon = 0,4$	0,1	2,5	101	93	813,23	
Experimento 05	$\varepsilon = 0.5$	0,1	2,5	80	89	836,2	
-	$\varepsilon = 0.6$	36,1	2,3	60	88	942,11	
	$\varepsilon = 0.7$	25,1	2,4	50	87	929,11	
	$\varepsilon = 0.3$	0.1	0.8	150	94	6132.18	
	$\varepsilon = 0.4$	0,1	13	150	03	3178.96	
Experimento 06	c = 0.5	0,1	1,2	150	03	2016 14	
EAPCI IIICIIIO 00	c = 0, 5	3.0	1,5	145	95	1453 44	
	$\varepsilon = 0,0$	70	1,	150	08	1307 00	
	$\varepsilon = 0, 7$	10	1,0	1.50	70	1397,07	
	$\varepsilon = 0.3$	36,1	2,5	77	90	990,23	
	ε = 0,4	,01	2,5	45	79	963,32	
Experimento 07	$\varepsilon = 0,5$	1,1	2,5	35	77	968,13	
	ε = 0,6	4,1	2,5	35	71	1043,13	
	ε = 0,7	6,1	2,5	35	70	1346,0	
	$\varepsilon = 0,3$	9	2,5	65	102	325,03	
	ε = 0,4	17	2,5	45	100	326,91	
Experimento 08	ε = 0,5	25	2,5	40	91	371,44	
	ε = 0.6	25	2,5	40	90	1230,05	
	$\varepsilon = 0.7$	30	2,5	30	90	715,54	
	$\varepsilon = 0.3$	0.1	0.9	150	96	8079 82	
	$\varepsilon = 0.4$	0.1	0.9	150	87	3835.01	
Experimento AQ	e = 0.5	01	0,0	150	78	1755 72	
Lapor interio U/	s = 0.6	01	0,9	150	76	896 04	
	c = 0.7	0,1	1	150	77	635 79	
	$10 = V_{*}/$	~ 9 *		+++++		1 VV V 1 1	

Tabela 06 – Parâmetros cinéticos para o modelo de TOSETO & ANDRIETTA (2002) para reator 02

Modelo Proposto							
B1	para mais d	e um substra	to (frutose, g	licose e saca	rose)		
KI nara Frutose	Porosidade	K _{SF}	KIF	Y _{NF}	P _{máxF}	Desvio	
para r atose	c = 0.3	24	16	1.4	71	210.52	
	c = 0.4	24	16	1,4	71	103.30	
Experimente 01	c = 0,4	25	10	1,5	70	202 77	
Experimento or	8-0,5	25	15	1,5	70	203,77	
	$\varepsilon = 0.0$	25	15	1,5	70	466.81	
	$1\varepsilon = 0, 7$	2.5	1.0	1,5	70	400,01	
	$\varepsilon = 0,3$	28	12	1,3	74	514,18	
	ε = 0,4	29		1,3	74	191,47	
Experimento 02	$\varepsilon = 0,5$	29		1,3	73	245,75	
	$\varepsilon = 0,6$	29	11	1,3	73	358,38	
	$\varepsilon = 0,7$	29	11	1,3	13	1005,0	
	ε = 0,3	27	22	1,2	77	160,06	
	$\epsilon = 0,4$	28	22	1,3	76	90,88	
Experimento 03	$\epsilon = 0,5$	28	21	1,3	76	126,06	
	$\varepsilon = 0,6$	28	21	1,3	76	319,89	
	$\varepsilon = 0,7$	28	21	1,3	76	587,63	
	$\varepsilon = 0.3$	20	28	1.5	79	230.59	
	$\varepsilon = 0.4$	21	28	1.6	78	245.06	
Experimento 04	$\varepsilon = 0.5$	21	28	1.6	78	316,99	
	$\epsilon = 0.6$	21	28	1.6	78	637,02	
	e = 0.7	21	28	1,6	78	1091.7	
	e = 0.3	18	26	1 1	27	130.34	
	e = 0.4	18	20	1,1	37	63 71	
Experimento 05	c = 0.5	17	25	1,1	37	90.61	
Experimento 05	c 0,5	18	26	1,3	36	185 18	
	c = 0,0	18	26	14	36	261 77	
	$\frac{16-0,7}{10-0,2}$	10				074.54	
	$\epsilon = 0.3$	42	33	0,8	89	9/4,54	
Emporte Of	8-0,4	43	33	0,8	89	302,91	
Experimento oo	$\varepsilon = 0.5$	43	22	0,9	00	204,/1	
	$\varepsilon = 0, \delta$	42	33	1,0	00	203,55	
	$\epsilon = 0,7$	42		1,1	00	270,00	
	$\varepsilon = 0,3$	18	26	1,0	59	261,53	
	$\varepsilon = 0,4$	19	25	1,0	59	210,58	
Experimento 07	$\varepsilon = 0,5$	19	25	1,1	58	267,77	
	$\varepsilon = 0,6$	19	25	1,1	58	412,68	
	ε = 0,7	19	25	1,1	58	549,38	
	$\varepsilon = 0,3$	28	12	0,8	75	1216,9	
	$\varepsilon = 0,4$	28	12	0,8	75	317,02	
Experimento 08	$\varepsilon = 0,5$	29	10	0,8	74	147,64	
4	$\varepsilon = 0.6$	29	12	1,0	• 74	120,34	
	$\varepsilon = 0,7$	28	12	0,9	74	118,92	
	$\varepsilon = 0.3$	67	2	0.4	84	768.01	
	$\varepsilon = 0.4$	67	2	0.3	84	277.88	
Experimento 09	$\epsilon = 0.5$	67		0.3	84	80.94	
	e = 0.6	67	$\frac{1}{2}$	0.4	.85	27.57	
	s = 0.7	60	4	0.4	85	34.29	
L	<u>10-V,/</u>	L		<u>`,`</u>	<u> </u>	L	

Tabela 07 – Parâmetros cinéticos para o modelo proposto para a frutose - Reator 01

Modelo Proposto							
	para mais d	e um substra	to (frutose, g	licose e saca	rose)	3	
R2	Porosidade	Ken	Km	V	P / n	Desvio	
para Frutose	(8)	38	IF	- NF	* maxr		
	ε = 0,3	17	24	1,2	72	356,34	
	$\epsilon = 0,4$	17	24	1,2	71	176,76	
Experimento 01	$\varepsilon = 0,5$	18	24	1,3	71	176,78	
	$\varepsilon = 0,6$	18	24	1,3	71	239,25	
	$\varepsilon = 0.7$	18	24	1,3	71	286,29	
	$\varepsilon = 0.3$	24	20	1.3	75	904.21	
	$\varepsilon = 0.4$	25	20	1.3	75	147.18	
Experimento 02	$\varepsilon = 0.5$	24	20	1.3	75	101.02	
•	$\varepsilon = 0.6$	24	20	1.3	75	118,76	
	$\varepsilon = 0.7$	24	20	1,3	74	213,94	
	c = 0.3	21	28	1.2	01	725.56	
4	c = 0, 3	21	20	1,2	04	106.12	
Experimente 83	z = 0,4	21	27	1,5	0.5	204.75	
Experimento 05	8-0,5	21	27	1,5	82	106.37	
	$\varepsilon = 0.0$	21	28	1,5	83	190,57	
	$\varepsilon = 0, 7$	2.1		1,0	0.5	175,11	
	$\varepsilon = 0,3$	20	30	1,3	65	94,26	
	ε = 0,4	20	30	1,3	64	34,77	
Experimento 04	$\epsilon = 0,5$	21	30	1,3	64	80,81	
	ε = 0,6	21	29	1,3	64	169,10	
	$\varepsilon = 0,7$	21	50	1,3	64	265,57	
	ε = 0,3	11	31	1,1	77	149,64	
	$\epsilon = 0,4$	11	31	1,1	77	139,76	
Experimento 05	$\epsilon = 0,5$	10	32	1,1	77	125,25	
	ε = 0,6	10	32	1,1	76	1029,6	
	ε = 0,7	10	32	1,1	76	1574,2	
	ε = 0,3	40	45	0,8	97	927,65	
	$\varepsilon = 0.4$	41	45	0,8	95	473,36	
Experimento 06	ε = 0,5	41	45	1,0	95	439,67	
-	$\epsilon = 0,6$	41	45	1,1	95	427,91	
	$\varepsilon = 0.7$	41	45	1,1	95	479,11	
	$\varepsilon = 0.3$	18	24	0.8	57	98.37	
	$\varepsilon = 0.4$	18	23	1.0	57	52.26	
Experimento 07	$\varepsilon = 0.5$	19	23	1.1	57	51,16	
	$\epsilon = 0.6$	19	23	1.2	57	78,91	
	$\epsilon = 0.7$	19	23	1,3	57	105,13	
	$\varepsilon = 0.3$	33	10	0.9	79	602 33	
	$\varepsilon = 0.4$	33	8	0.9	78	249 33	
Experimento 08	$\varepsilon = 0.5$	33	8	11	79	126.17	
Lapor intento oo	s = 0.6	33	8	11	78	73 72	
	c = 0.7	33	8	1.1	78	416.67	
	c = 0.2	<u> </u>				710 70	
	e = 0.5	01	5	0,2	15	113,70	
E-manimarta 80	$\varepsilon = 0.4$	0U ∡1	4	0,4	15 72	282,30	
влениение оч	8 - 0,5	01 61		0,2	73	103,20	
	$\varepsilon = 0,6$	61	4 E	0,2	13 77	33,92	
	$\epsilon = 0,7$	01	>	v,>	13	33,23	

Tabela 08 – Parâmetros cinéticos para o modelo proposto para a frutose - Reator 02

R1 P	orosidade	ue um substi	rato (irutose,	glicose e sac	arose)					
KI P	orosidade	D1 Davasidada								
Para Glicose	(8)	K _{sg}	K _{IG}	Y _{NG}	P _{máxG}	Desvio				
:3	= 0,3	24	4	1.5	70	156.15				
8=	= 0.4	24	3	1.4	70	76.32				
Experimento 01 8 =	= 0.5	24	3	1.5	70	79.54				
	= 0.6	24	3	1.5	70	191.33				
6	= 0.7	24	3	1.5	70	345.15				
e :	= 0.3	28	72	12	72	204.70				
	= 0.4	28 28	73	1,3	72	107 72				
Experimente 02	-0,4	20	72	1,5	73	160.49				
Experimento 02 g	- 0,5	28	72	1,5	72	321.43				
ε	- 0,0	28	72	1,5	72	902 73				
	= 0, /	20		1,5	,2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
13	= 0,3	34	3	1,2	75	187,51				
-3	= 0,4	34		1,2	75	107,17				
Experimento 03 ε =	= 0,5	34	4	1,3	75	102,45				
8=	= 0,6	34	. 4	1,3	74	123,68				
= 3	= 0,7		4	1,3	1/4	181,05				
6 -	= 0,3	30	4	1,5	72	388,22				
£ =	= 0,4	30	4	1,5	71	181,13				
Experimento 04 ε =	= 0,5	30	4	1,6	71	166,90				
£ =	= 0,6	31	4	1,6	71	207,89				
53	= 0,7	30	3	1,6	71	292,41				
8=	= 0,3	37	6	1.1	72	160.68				
£ =	= 0.4	37	5	1.1	72	79.82				
Experimento 05 ε =	= 0.5	37	5	1.3	72	76.13				
	= 0.6	36	4	1.3	72	134,40				
6	= 0.7	36	4	1,4	72	177,94				
	= 0.3		Q	0.0	02	370.50				
e =	= 0.4	40	7	0,9	01	222.05				
Experimento 06	= 0.5	49	8	11	01	209.18				
	= 0.6	49	7	1,1	91	238 33				
	-0.7	49	6	11	91	327.69				
6	- 0,7			-,-		202,00				
5	- 0,5	77			64	323,29				
-3	- 0,4	/8 70	6	1	62	203,00				
Experimento \mathbf{U} $\varepsilon =$	= 0,5	/ð 79	5	1	62	248,50				
E =	= 0,6	70	5	1,1	62	247,52				
= 3	= U, /	/0	3	1,1	02	300,24				
5 =	= 0,3	85	5	1	77	316,55				
	= 0,4	85	4	1	77	195,60				
Experimento 08 ε =	= 0,5	86	4	1	76	129,68				
£ =	• 0,6	86	3	1	76	103.62				
= 3	= 0,7	86	3	1,1	76	103,87				
ε=	= 0,3	84	2	0,5	86	293,10				
ε=	= 0,4	84	2	0,5	86	166,48				
Experimento 09 ε =	= 0,5	84	2	0,6	85	162,51				
- = 3	- 0,6	85	2	0,6	85	277,48				
ε=	= 0,7	85	2	0,6	85	621,62				

Tabela 09 – Parâmetros cinéticos para o modelo proposto para a glicose - Reator 01

Modelo Proposto							
	para	mais de um	<u>substrato (fru</u>	utose, glicose	e sacarose)	
R2	Porosidade	Kee	Kic	YNG	Pmáno	Desvio	
Para Glicose	(3)		**IG	* ING	- maxer		
	$\varepsilon = 0,3$	25	4	1,2	72	40,60	
	$\varepsilon = 0,4$	25	4	1,2	71	34,98	
Experimento 01	ε = 0,5	25	4	1,3	71	50,65	
	$\varepsilon = 0,6$	26	4	1,3	71	119,88	
	$\varepsilon = 0,7$	26	3	1,3	71	163,25	
	$\varepsilon = 0.3$	28	4	1.3	73	401.53	
	$\varepsilon = 0.4$	28	4	1.3	73	77.78	
Experimento 02	$\varepsilon = 0.5$	29	4	1.3	72	73,79	
	$\varepsilon = 0.6$	29	4	1,3	72	115,03	
	$\epsilon = 0.7$	29	4	1,3	72	169,25	
	$\epsilon = 0.3$	34	8	10	70	146.26	
	e = 0.4	34	9	13	70	173.14	
Experimenta 02	c = 0.5	34	8	13	78	123,14	
TRAPPERED AN	c = 0.6	33	8	1,5	70	96 44	
	z = 0.0	34	9	1,5	79	88.49	
	$\frac{a-0,7}{a-0.2}$		7	1 4	/	01.00	
	$\varepsilon = 0.3$	27	6	1,4	65	21,85	
E	$\varepsilon = 0,4$	27	6	1,4	64	14,19	
Experimento 04	$\varepsilon = 0.5$	27	6	1,5	64	24,02	
	$\varepsilon = 0, 6$	20	6	1,5	64	(41,17 (66.00	
	$\varepsilon = 0, 7$	20	L	1,5	04	00,29	
	$\varepsilon = 0,3$	29	5	1,1	71	145,16	
	$\varepsilon = 0,4$	29	4	1,1	71	131,93	
Experimento 05	$\epsilon = 0,5$	29	3	1,1	71	220,18	
	$\epsilon = 0,6$	27	3	1,1	71	331,63	
	ε = 0,7	29	3	1,1	71	454,23	
	ε = 0,3	48	11	0,9	92	373,54	
	ε = 0,4	49	10	0,9	92	181,17	
Experimento 06	ε = 0,5	49	10	1,0	91	174,26	
	$\varepsilon = 0,6$	49	10	1,1	91	175,81	
	$\varepsilon = 0,7$	49	11	1,3	92	166,98	
	ε = 0,3	71	7	1,1	69	122,91	
	$\varepsilon = 0,4$	72	6	1,1	68	34,49	
Experimento 07	$\varepsilon = 0.5$	72	6	1,3	68	53,35	
	$\varepsilon = 0.6$	72	6	1,3	68	215,22	
	$\varepsilon = 0.7$	72	6	1,3	68	442,58	
	$\varepsilon = 0.3$	86	4	0.8	81	150 68	
	$\varepsilon = 0.4$	86	4	0.8	81	62.09	
Experimento 08	$\varepsilon = 0.5$	86	4	1.0	80	35.02	
Experimento oo	$\varepsilon = 0.6$	86	3	1.0	80	190.13	
	$\epsilon = 0.7$	86	3	1.0	80	1220.1	
	$\epsilon = 0.3$	85	3	0.6	85	176.06	
	s = 0.4	85	2	0,0	84	174.06	
Experimente AQ	c = 0.5	8.5 8.4	2		85	21/4,20	
Evhermenta az	c = 0.5	84	2	0.7	86	237.05	
	0-07	84	2	0.6	85	232,95	
	$\varepsilon = 0, /$	04	~	0,0	40	L. L	

Tabela 10 – Parâmetros cinéticos para o modelo proposto para a glicose - Reator 02

Modelo Proposto								
D1 Dependence and substrate (frutesc, gncose e sacarose)								
R1 para Sacarose	rorosidade (ε)	K _{IS}	K _{MS}	G _{MÁXS}	F _{MÁXS}	P _{MÁXS}	Desvio	
	ε = 0,3	66	18	51	50	64	2829,0	
	$\varepsilon = 0,4$	66	18	51	50	64	1517,5	
Experimento 01	$\varepsilon = 0.5$	65	18	51	50	64	1117,3	
*	$\varepsilon = 0.6$	65	18	51	50	65	967,20	
	$\varepsilon = 0.7$	65	17	51	50	65	987,50	
	ε = 0,3	69	9	55	55	64	6038,0	
	$\varepsilon = 0.4$	69	8	55	55	64	2846,4	
Experimento 02	$\epsilon = 0.5$	69	8	55	55	65	1544,1	
· · ·	$\epsilon = 0.6$	69	9	55	55	65	853,98	
	$\varepsilon = 0.7$	70	8	56	56	65	2327,9	
	$\epsilon = 0.3$	80	12	63	63	78	6303.8	
	$\epsilon = 0.4$	80	12	63	63	78	2992.9	
Experimento 03	e = 0.5	80	12	63	63	78	1818 5	
Experimence of	s = 0.6	80	12	63	63	78	1169 7	
	e = 0.7	80	12	63	63	78	984,16	
	$\epsilon = 0.3$	83	20	60	60	73	1795.0	
	s = 0.4	83	20	60	60	73	685 53	
Experimento (14	c = 0.5	83	20	60	60	73	419.18	
Experimento 04	c = 0, 5	83	20	60	60	73	415,10	
	2 = 0.0	83	20	60	60	73	708 34	
	$\frac{\varepsilon - 0, 7}{\varepsilon - 0, 2}$	00	10	60	60	73	100,51	
*	$\varepsilon = 0, 5$	93	18	62	62	74	2106,1	
F	$\varepsilon = 0,4$	93	18	62	62	/4	694,12	
Experimento 05	$\varepsilon = 0,5$	92	18	61	62	74	450,19	
	$\varepsilon = 0,6$	93	18	62	62	74	090,40	
	$\varepsilon = 0,7$	93	10	02	02	/4	1101,5	
	$\varepsilon = 0,3$	127	11	88	73	114	25558	
	$\varepsilon = 0,4$	127	11	88	73	114	13633	
Experimento 06	$\varepsilon = 0,5$	127	11	88	73	114	8688	
	$\varepsilon = 0,6$	127		88	73	114	5983	
	$\epsilon = 0,7$	126	11	88	73	114	4464	
	$\varepsilon = 0,3$	35	14	80	54	70	1032,6	
	$\varepsilon = 0,4$	35	14	80	54	70	575,80	
Experimento 07	$\varepsilon = 0,5$	35	14	81	54	70	541,89	
	ε = 0,6	35	14	81	55	70	787,13	
	$\varepsilon = 0,7$	35	14	81	55	70	1143,20	
	ε = 0,3	98	14	89	52	58	17075	
	$\varepsilon = 0,4$	99	15	89	52	58	10070	
Experimento 08	$\varepsilon = 0.5$	99	14	90	52	59	6844,9	
-	$\varepsilon = 0,6$	99	14	90	52	59	4967,8	
	$\varepsilon = 0,7$	98	14	89	52	59	4095,2	
	$\varepsilon = 0.3$	141	7	131	75	75	1.44*10 ⁵	
	$\varepsilon = 0.4$	141	7	131	75	75	1.00*105	
Experimento 09	$\varepsilon = 0.5$	141	7	131	75	75	86466	
I	$\epsilon = 0.6$	141	7	131	74	75	76085	
	$\epsilon = 0.7$	140	8	130	75	75	54243	
	L	1	(L			1	

Tabela 11 – Parâmetros cinéticos para o modelo proposto para a sacarose - Reator 01

Modelo Proposto							
	para ma	is de um su	ibstrato (fr	utose, glico	se e sacaros	ie)	
R2 para Sacarose	Porosidad e (ε)	K _{IS}	K _{MS}	G _{MÁXS}	F _{MÁXS}	P _{MÁXS}	Desvio
	$\varepsilon = 0,3$	63	20	50	48	65	2092.8
	$\epsilon = 0,4$	63	20	50	48	66	1310.0
Experimento 01	$\varepsilon = 0.5$	63	20	50	48	65	1227,0
•	$\varepsilon = 0.6$	63	19	50	48	65	1391,6
	$\varepsilon = 0,7$	63	20	50	48	65	1452,2
	$\varepsilon = 0,3$	65	16	53	53	65	3350.8
	$\varepsilon = 0.4$	65	16	53	53	65	2553,7
Experimento 02	$\varepsilon = 0.5$	66	16	53	53	66	2565,0
	$\epsilon = 0.6$	65	16	53	53	66	2498,0
	$\varepsilon = 0.7$	66	15	54	54	66	3771,5
	$\epsilon = 0.3$	86	20	62	62	73	1815.4
	$\varepsilon = 0.4$	86	20	62	61	73	746.63
Experimento 03	$\varepsilon = 0.5$	86	19	62	62	74	1149.1
	$\varepsilon = 0.6$	86	20	61	61	73	1737.0
	$\varepsilon = 0.7$	86	20	61	61	73	2627,2
······································	$\varepsilon = 0.3$	80	24	52	50	67	2459
	$\varepsilon = 0.4$	80	24	52	50	67	1933,6
Experimento 04	$\varepsilon = 0.5$	80	24	52	50	67	1928,2
*	$\varepsilon = 0.6$	80	24	52	50	67	2214,0
	$\varepsilon = 0.7$	80	24	52	50	67	2563,4
	$\varepsilon = 0,3$	89	15	55	51	63	2614,3
	$\varepsilon = 0.4$	88	16	56	50	63	1362,8
Experimento 05	$\varepsilon = 0.5$	88	14	55	50	64	1339,8
	$\varepsilon = 0.6$	88	15	56	51	64	4654,7
	$\varepsilon = 0,7$	89	15	56	51	64	8392,6
	$\varepsilon = 0,3$	126	11	88	73	110	19232
	$\varepsilon = 0,4$	126	11	88	73	110	11175
Experimento 06	$\varepsilon = 0.5$	126	11	88	73	110	7370,2
	$\epsilon = 0,6$	126	11	88	73	110	5502,0
	$\epsilon = 0,7$	125	11	88	73	110	4571,7
	$\epsilon = 0,3$	30	14	71	43	66	1208,9
	$\varepsilon = 0,4$	30	14	71	43	66	1158,6
Experimento 07	$\varepsilon = 0.5$	30	14	71	43	66	1437,3
	$\varepsilon = 0.6$	30	14	71	43	66	1850,7
August 1997	$\epsilon = 0,7$	30	15	71	43	66	2218,0
	$\varepsilon = 0,3$	104	14	91	58	56	3536,2
	$\varepsilon = 0.4$	104	12	91	59	58	1189,6
Experimento 08	$\varepsilon = 0.5$	104	12	91	59	59	885,15
	$\varepsilon = 0.6$	104	13	91	59	58	1099,4
	$\varepsilon = 0.7$	104	12	91	59	58	1523,0
	$\epsilon = 0.3$	136	7	126	70	72	1.07*10 ⁵
	$\varepsilon = 0.4$	136	7	126	70	72	75529
Experimento 09	$\varepsilon = 0.5$	136	7	126	70	72	59480
*	$\varepsilon = 0.6$	136	7	126	70	73	42358
	$\varepsilon = 0.7$	135	8	125	70	73	36484
	· · · · · ·		E	L	1	I	L

Tabela 12 – Parâmetros cinéticos para o modelo proposto para a sacarose - Reator 02