FLUIDODINÂMICA DO LEITO FLUIDIZADO CIRCULANTE PARA PARTÍCULAS DO GRUPO B

Cezar Wagner de Almeida Thober

ORIENTADOR: Prof. Dr. Cesar Costapinto Santana

Tese apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para obtenção do título de Doutor em Engenharia Química

Campinas - 19 de Outubro/1995

ALL A COA CREAME

CM-00112431-3

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

T351f	 Thober, Cezar Wagner de Almeida Fluidodinâmica do leito fluidizado circulante para partículas do grupo B / Cezar Wagner de Almeida ThoberCampinas, SP: [s.n.], 1995.
	Orientador: Cesar Costapinto Santana. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química.
	1. Fluidificação. 2.*Fluidização. Santana, Cesar Costapinto. II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título.

Tese aprovada em 19 de outubro de 1995 pela Banca Examinadora, constituída pelos seguintes professores:

lean

Prof. Dr. Cesar Costapinto Santana (Orientador)

Prof. Dr. José Teixeira Freire

Wearris frene l Profa Dra/Meuris Gurgel Carlos da Silva

Khet juc daw!

Prof. Dr. Roberto Guardani

Katia Cannons Profa. Dra. Kátia Tannous

Esta versão corresponde a redação final da tese de doutorado defendida pelo Eng. Químico Cezar Wagner de Almeida Thober e aprovada pela banca examinadora em 19 de outubro de 1995.

Clean I anto-e_

Prof. Dr. Cesar Costapinto Santana

ÍNDICE

Dedicatória	vii
Agradecimentos	vii
Lista de Figura	viii
Lista de Tabelas	х
Nomenclatura	xi
Resumo e Palavras Chaves	xv
Abstract	xvi
CAPÍTULO I - INTRODUÇÃO	
I.1 - ASPECTOS INICIAIS	1
I.2 - HISTORICO	1
I.3 - APLICAÇÕES DO LFC	4
I.4 - VANTAGENS DO LFC	5
I.5 - DESVANTAGENS DO LFC	7
CAPITULO II - OBJETIVOS E PROPOSTA DE TRABALHO	~
II.1 - JUSTIFICATIVA DO ESTUDO DA FLUIDODINAMICA DO LFC	. 8
II.2 - OBJETIVOS DESTE TRABALHO	., 9
ΟΛΡΊΤΗ Ο Η ΕΕΛΙΣÃΟ DO ΕΣΤΑDO DA ΑΡΤΕ	
$\begin{array}{c} \text{III 1} \text{NITRODUCÃO} \end{array}$	10
HI 2 - CI ASSIFICACÃO DOS SÓI IDOS GRANI ILADOS	10
III.3 = CAPACTERIZACÃO DOS SOLIDOS OKAROLADOS	10
DIAGRAMAS	11
III 3.1 - Diagrama de ZENZ	12
III.3.7 - Diagrama de REH	13
III 3 3 - Diagrama de VERUSCHALMI <i>et alli</i>	17
III 3 4 - Diagrama de BROEDFRMANN	18
III 3 5 - Diagrama de LL e KWALIK	20
III 3 6 - Diagrama de SOUIRES <i>et alli</i>	21
III 3 7 - Diagrama de GRACE	23
III 4 - TRANSIÇÕES NO ESCOAMENTO GÁS-SÓLIDO	25
III 4 1- Definição de LFR e descrição de seus limites	25
III 4 2 - Transição e Colanso (Choking) de um Leito Rápido	28
III 4 3 - Diagrama de MATSEN	31
III 4 4 - Correlações para a Velocidade de Choking	34
III 5 - EOUAÇÕES BÁSIÇAS DO COMPORTAMENTO	~ .
FLUIDODINÂMICO DO LER	35
III.5.1 - Equações Básicas da Fluidodinâmica de um LFR	35
III.6 - PRINCIPAIS MODELOS FLUIDODINÂMICOS PARA OS PERFIS	
DE CONCENTRAÇÃO NO LFC	39
III.6 1 - Considerações sobre as Variáveis Relevantes	39
III.6.2 - Teoria dos "Clusters"	43
III.6.3 - Modelos para Perfis Axiais de Concentração de Sólidos	46
III.6.3.1 - Modelo "Core-Annulus" (1973)	46

III.6.3.2 - Modelo de Fluxo Anular com "Clusters"	. 47
III.6.3.3 - Modelo de Fluxo Anular Homogêneo de "Clusters"	
Esféricos	48
III.6.3.4 - Modelo de LI e KWAUK (1980)	49
III.6.3.5 - Modelo de YANG (1988)	. 53
III.6.3.6 - Modelo de RHODES (1989)	. 55
III.6.3.7 - Modelo da Equações de NAVIER-STOKES para	
Multifases de GIDASPOW (1990)	. 58
III.6.3.8 - Modelo do Movimento Browniano e da Teoria do	
caminho aleatório de ZHANG et alli (1990)	61
III.6.3.9 - Modelo de KUNII e LEVENSPIEL (1990)	. 63
III.6.3.10 - Modelo de LOUGE e CHANG (1990)	. 68
III.6.4 - Modelos para os Perfis Radiais de Concentração de Sólidos	. 70
III.6.4.1 - Aspectos Iniciais e Históricos	. 70
III.6.4.2 - Modelo de RHODES (1990)	. 72
III.6.4.3 - Modelo Semi-empírico de RHODES, ZHOU e	
BENKREIRA (1992)	73
III.6.4.4 - Modelo Semi-empírico de RHODES, WANG,	
CHENG, HIRAMA e GIBBS (1992)	. 77
III.6.4.5 - Modelo de BERRUTI e KALOGERAKIS (1989)	. 80
CAPÍTULO IV - PLANO DE TRABALHO, METODOLOGIAS E MATERIAIS	
UTILIZADOS	
IV.1 - PLANO DE TRABALHO.	. 81
IV.2 - METODOLOGIA	81
IV.2.1 - Medidas dos Perfis Axiais	81
IV.2.2 - Medidas do Perfis Radiais.	82
IV.2.3 - Faixas de Trabalho	82
IV.3 - MATERIAIS UTILIZADOS.	. 82
IV.3.1- Características Físicas dos Materiais	. 82
IV.3.2 - Classificação dos Materiais Escolhidos	83
IV.3.3 - Análise da faixa de Operações	84
IV.3.3.1 - Números Adimensionais e Mapas	. 85
IV.4 - EQUIPAMENTOS E ACESSÓRIOS	. 86
IV.4.1 - Equipamento de Bancada	86
IV.4.2 - Sistema de Amostragem dos Perfis Radiais	. 89
CAPÍTULO V - RESULTADOS OBTIDOS, EOUIPAMENTO E ACESSÓRIOS	
V.1 - INTRODUCÃO	92
V.2 - MEDIDAS DOS PERFIS AXIAIS DE CONCENTRAÇÃO	93
V.2.1 - Considerações sobre a Geometria	93
V.2.2 - Considerações sobre as Medidas Axiais	95
V.2.3 - Resultados Obtidos	95
V.3 - MEDIDAS DOS PERFIS RADIAS DE CONCENTRAÇÃO	110
V.3.1 - Considerações Sobre a Metodologia	110
V.3.1.1 - Quanto ao Tipo de Amostrador Utilizado	110
V.3.1.2 - Quanto à Simetria no Equipamento	111
V.3.1.3 - Considerações sobre o Regime de Fluidização	112
V.3.2 - Considerações Sobre as Medidas Radiais	113

V.3.3 - Metodologia de Cálculo dos Perfis Radiais	116
V.3.4 - Resultados Obtidos	119
CAPITULO VI - ANALISE DOS RESULTADOS	
VI.1 - CONSIDERAÇÕES INICIAIS	128
VI.2 - MEDIDAS AXIAIS	128
VI.2.1 - Efeitos da Geometria do Equipamento	128
VI.2.2 - Regiões no Transportador ("Riser")	129
VI.2.3 - Influência da Velocidade Superficial	130
VI.2.4 - Influência da Taxa de Recirculação	130
VI.2.5 - Influência do Diâmetro e da Densidade das Partículas	130
VI.3 - MEDIDAS RADIAIS	132
VI.3.1 - Influência da Geometria do Equipamento	132
VI.3.1.1 - No Balanço de Massa Global	132
VI.3.1.2 - Nos Perfis Radiais Parciais	136
VI.3.2 - Regiões de Escoamento	138
VI.3.2.1 - Estrutura do Escoamento Radial	138
VI.3.2.2 - Parâmetros Relevantes para as Regiões	139
VI.3.2.2.1 - Efeitos da Geometria	139
VI.3.2.2.2 - Influência da Taxa de Circulação	139
VI 3 2 2 3 - Influência do Diâmetro da Partícula	140
VI.3.3 - Considerações sobre a modelagem do Perfil	142
CAPITULO VII - MODELAGEM MATEMATICA	
VII.1 - ASPECTOS DA MODELAGEM NO PERFIL AXIAL	144
VII.2 - MODELAGEM DO PERFIL RADIAL	145
CAPÍTULO VIII - CONCLUSÕES E SUGESTÕES	
VIII, 1 - Conclusões	156
VIII.1.1 - Quanto ao Perfil Axial	156
VIII.1.2 - Quanto ao Perfil Radial	157
VIII.1.2.1 - Perfil Radial Global	157
VIII 1.2.2 - Perfil Radial Parcial	157
VIII.2 - O Futuro do LFC	158
VIII.3 - Sugestões.	159
20000000000000000000000000000000	
BIBLIOGRAFIA	160

ANEXO - Integração dos Perfis Radiais nas Seções (Método dos Mínimos Quadrados)

DEDICATÓRIA

Dedico este trabalho a minha querida esposa Carmem, agradecendo ao incentivo, a paciência e a compreensão, e também aos meus três filhos, Cezar Augusto, Alexandre Wagner e Cláudio Fernando. Junto segue o meu pedido de desculpas e perdão pelas horas de lazer e convívio que lhes foram furtadas, a fim de que esta obra se tornasse possível.

AGRADECIMENTOS

Agradeço:

A Deus pela vida e a oportunidade de concluir este trabalho;

À Fundação de Ciência e Tecnologia - CIENTEC - e seu corpo de funcionários, pelo apoio recebido e pelo uso de seus laboratórios. Em particular agradeço ao Eng. Gilberto Wagek Amato (Presidente da CIENTEC no início do trabalho), pelo incentivo e apoio; aos Eng. Miguel Pompermayer, Rodnei Gomes Pacheco, Jorge Luiz Castellan e Cláudio José Germanny pelas ajudas e apoios; ao Sr. Carlos Schanz pela consultoria em informática; e aos estagiários Marcelo Isopo, Silvana Maria da Silva e Luciano Vieceli Taveira, pelo auxílio nas operações do equipamento;

À FAPERGS e a CAPES pelos recursos financeiros;

À UFRGS pelo apoio e confiança depositada em minha pessoa;

À UNICAMP e em particular ao Dr. Cezar Costapinto Santana, pelo apoio e incentivo e orientação durante a realização do trabalho.

LISTA DE FIGURAS

CAPITULO I	
Fig. I.1 - Calcinador de hidróxido de Alumínio da LURGI	. 3
CAPÍTULO III	
Fig. III.1 - Classificação das Partículas Sólidas de GELDART	11
Fig. III.2 - Diagrama de Fases de ZENZ	13
Fig. III.3 - Mapa para sistemas de contato gás-sólido - Diagrama de REH	16
Fig. III.4 - Diagrama de Fase de Fluidização de YERUSCHALMI	17
Fig. III.5 - Mapa Qualitativo de Fluidização de YERUSCHALMI	18
Fig. III.6 - Sistemas de Contato Gás-Sólido de BROEDERMANN	19
Fig. III.7 - Diagrama dos Regimes de Fluidização de Alumina fina	21
Fig. III.8 - Diagrama de SQUIRES para partículas finas	22
Fig. III.9 - Diagrama de SQUIRES para sólidos dos Grupos B e D	22
Fig. III.10 - Diagrama de GRACE	24
Fig. III.11 - Diagrama Quantitativo para Catalisadores FCC	25
Fig. III.12 - Movimento dos Sólidos no leito segundo RHODES	27
Fig. III.13 - Diagrama de KARRI e KNOWTON	28
Fig. III.14 - Esquema de regimes de escoamento para material em pó	29
Fig. III.15 - Diagrama do gradiente de pressão na base do LFC - GELDART	30
Fig. III.16 - Diagrama $\Delta P/L$ - G _s - U para sólidos do grupo A	31
Fig. III.17 - Diagrama do escoamento ascendente gás-sólido de MATSEN	33
Fig. III.18 - Efeito da geometria da saída na densidade aparente da mistura	41
Fig. III.19 - Esquema básico do equipamento de GRACE	42
Fig. III.20 - Perfil radial parcial da operação AR2U8G50	43
Fig. III.21 - Perfis radiais de concentração de sólido em três alturas	44
Fig. III.22 - Representação das variáveis no modelo anular Core-Annulus	47
Fig. III.23 - Diagrama do equipamentousado por LI e KWAUK	49
Fig. III.24 - Modelo fisico da fluidização rápida segundo LI e KWAUK	50
Fig. III.25 - Esquema de um LFC transportador-recuperador de YANG	53
Fig. III.26 - Tipos de perfis axiais segundo YANG	54
Fig. III.27 - Modelo de YANG para a fase densa	55
Fig. III.28 - Modelo de arraste de partículas de KUNII e LEVENSPIEL	64
Fig. III.29 - Regiões de concentração no leito por KUNII e LEVENSPIEL	66
Fig. III.30 - Perfis de porosidade axial segundo KUNII e LEVENSPIEL	67
Fig. III.31 - Sonda não isocinética de RHODES	71
Fig. III.32 - Comparação do modelo de RHODES com dados experimentais.	76
Fig. III.33a - Comparação experimental do modelo RHODES et alli	79
Fig. III.33b - Comparação experimental do modelo RHODES et alli	79
CAPÍTULO IV	

Fig. IV.1 - Localização das amostras no Diagrama de pós de GELDART	. 84
Fig. IV.2 - Pontos experimentais no Diagrama de HORIO	. 86
Fig. IV.3 - Pontos experimentais no Diagrama de GRACE	. 87
Fig. IV.4 - Fluxograma básico do Equipamento de Bancada	. 88
Fig. IV.5 - Pontos de medida de pressão e amostragem na bancada	. 90
Fig. IV.6 - Esquema básico do sistema de amostragem dos perfis radiais	. 91

CAPÍTULO V

Fig. V.1 - Dados de perfis axiais com areia AR2	. 94
Fig. V.2abcd - Perfis axiais para areia AR1	. 98
Fig. V.3abcd - Perfis axiais para areia AR2	. 99
Fig. V.3efg - Perfis axiais para areia AR2	. 100
Fig. V.4abcd - Perfis axiais para areia AR3	101
Fig. V.4e - Perfis axiais para areia AR3	102
Fig. V.5e - Perfis axiais para calcário CA2	102
Fig. V5abcd - Perfis axiais para calcário CA2	103
Fig. V.6abcd - Perfis axiais para areia AR1	104
Fig. V.7abcd - Perfis axiais para areia AR2	105
Fig. V.8abc - Perfis axiais para areia AR3	106
Fig. V.8de - Perfis axiais para areia AR3	107
Fig. V.9abc - Perfis axiais para calcário CA2	108
Fig. V.9def - Perfis axiais para calcário CA2	109
Fig. V.10abcde - Taxas de captação de sólidos no Amostrador	111
Fig. V.11 - Variação da densidade no Riser areia AR2	112
Fig. V.12 - Variação de densidade no Riser areia AR3	113
Fig. V.13abc - Perfis radiais para areia AR1	119
Fig. V.14abc - Perfis radiais para areia AR1	120
Fig. V.15abc - Perfis radiais para areia AR1	120
Fig. V.16abc - Perfis radiais para areia AR1	121
Fig. V.17abcd - Perfis radiais para areia AR2	121
Fig. V.18abcd - Perfis radiais para areia AR2	122
Fig. V.19abcd - Perfis radiais para areia AR2	122
Fig. V.20abcd - Perfis radiais para areia AR2	123
Fig. V.21abc - Perfis radiais para areia AR3	123
Fig. V.22abc - Perfis radiais para areia AR3	124
Fig. V.23abc - Perfis radiais para areia AR3	124
Fig. V.24abc - Perfis radiais para areia AR3	125
Fig. V.25abc - Perfis radiais para areia CA2	125
Fig. V.26abc - Perfis radiais para areia CA2	126
Fig. V.27abc - Perfis radiais para areia CA2	126
Fig. V.28abc - Perfis radiais para areia CA2	127

CAPÍTULO VI

Fig. VI. labcd - Variação de densidade em função de dp	131
Fig. VI.2abcd - Variação de densidade em função de dp	131
Fig. VI.3abcd - Variação de densidade em função de dp	132
Fig. VI.4abcd - Medidas parciais dos perfis radiais corrida AR1U7G75	136
Fig. VI.5abcdef - Medidas parciais dos perfis radiais corrida AR3U10G50	138
Fig. VI.6abc - Perfis radiais globais corrida AR1U9	140
Fig. VI.7abc - Perfis radiais globais corrida AR2U9	140
Fig. VI.8abc - Perfis radiais globais corridas AR1, AR2, AR3, CA2	1 41
Fig. VI.9abc - Perfis radiais globais corrida AR1, AR2, AR3, CA2	141

CAPÍTULO VII

Fig.	VII.1 - Con	portamento	experimental of	lo parâmetro	$\tau \operatorname{com} U$	150
Fig.	VII.2 - Con	portamento	do parâmetro	τ com a gran	ulometria	150

Fig.	VII.3 - Limite da região de fluxo ascendente com a região anular	151
Fig.	VII.4ab - Fluxos radiais locais reduzidos, areia e calcário	152
Fig.	VII.5 - Comparação dos limites das regiões central e anular	153

LISTA DE TABELAS

CAPÍTULO I	
Tab. I.1 - Principais Aplicações Industriais do LFC	. 4
CAPÍTULO III	
Tab. III.1 - Principais Equações para o Cálculo da Velocidade de Choking	34
Tab. III.2 - Principais equações para cálculo da velocidade de Choking	. 36
CAPÍTULO IV	
Tab. IV.1 - Materiais selecionados para as medidas	. 83
CAPÍTULO V	
Tab. V.1 - Medidas Efetuadas dos Perfis Axiais de Concentrações	. 94
Tab. V.2 - Medidas de perfis axiais com Gs constante	. 96
Tab. V.3 - Medidas de perfis axiais com U constante	97
Tab. V.4 - Medidas radiais Realizadas	114
Tab. V.5 - Medidas dos perfis radiais operação CA2U8G25	115
Tab. V.5 - Medidas dos perfis radiais operação CA2U8G25 (continuação)	116
Tab. V.6 - Medidas dos perfis radiais operação AR3U10G50	117
Tab. V.6 - Medidas dos perfis radiais operação AR3U10G50 (continuação)	118
CAPÍTULO VI	
Tab. VI.1 - Integração dos perfis radiais	133
Tab. VI.2 - Integração dos perfis radiais	134
Tab. VI.3 - Integração dos perfis radiais	135
CAPÍTULO VII	
Tab. VII.1 - Fluxo reduzido do Riser corridas AR3U7	148
Tab. VII.2 - Fluxo reduzido do Riser corridas CA2U8	148
Tab. VII.3 - Fluxo reduzido do Riser corridas AR1U9	149
Tab. VII.4 - Fluxo reduzido do Riser corridas AR2U10	149
Tab. VII.5 - Síntese de valores do parâmetro τ	149
Tab. VII.6 - Cálculos de Gr/Gs para corridas AR3U9	154
Tab.VII.7 - Cálculos de Gr/Gs para corridas AR1U10	154
Tab. VII.8 - Cálculos de Gr/Gs para corridas CA2U7	155

NOMENCLATURA

A - área da seção transversal do Riser ou do tubo, m²

A_R - área da seção transversal do duto de retorno ou reservatório, m²

a - taxa de decaimento, m⁻¹

a - coeficiente adimensional da equação III.166

a₁ e a₂ - coeficientes da equação VII.5

Ar - Número de ARCHIMEDES, Ar = $g d_p^3 \rho_g (\rho_s - \rho_g)/\mu^2$

B - coeficiente adimensional da equação VII.1

b - coeficiente adimensional da equação III.166

C_D- coeficiente de atrito da partícula

C_{Ds} - coeficiente de atrito da partícula esférica na Equação III.71

D - diâmetro do tubo ou do transportador (Riser), m

d - diâmetro, m

$$d_p$$
 - diâmetro médio da partículas = $\frac{1}{\sum_{i} x_i/d_{pi}}$, m

dp - diferencial de pressão devido ao atrito do gás no leito, N/m²

dP_{fg} - diferencial de pressão devido ao atrito do gás,N/m²

 dP_{fp} - diferencial de pressão devido ao atrito das partículas, N/m²

 dP_{fh} - diferencial de pressão devido a densidade da suspensão, N/m²

f - fator de atrito

fa - fração volumétrica de clusters no leito

F* - parâmetro de freqüência, s⁻¹

F_i - força de interface

Fs - força de arraste exercida pelo gás sobre as partículas por unidade de volume

Fr - Número de FROUD, Ug/(gD)^{0,5}

Fw - força de atrito das partículas e do gás na parede

G_a - fluxo de sólidos descendente na região do anulo, kg/m².s

G_c - fluxo de sólidos ascendente na zona central (core), kg/m².s

G_r - fluxo local de circulação de sólidos na posição radial, kg/m².s

 G_s - fluxo de circulação de sólidos, kg/m².s

G_s (+) - fluxo bulk de circulação de sólidos ascendente no Riser, kg/m².s

G_s(-) - fluxo bulk de circulação de sólidos descendente no Riser, kg/m².s

 G_{sa} - fluxo de sólidos ascendentes no freeboard, kg/m².s

G_{s0a} - fluxo de sólidos ascendentes na superficie do leito, kg/m².s

 G_{sd} - fluxo de sólidos descendentes no freeboard, kg/m².s

G_{s0} - fluxo de circulação de sólidos na superfície do leito fluidizado, kg/m².s

g - aceleração da gravidade, $9,8 \text{ m/s}^2$

gi - taxa de sólidos numa posição radial, g/s

g - vetor aceleração da gravidade

H_f - altura total do "freeboard", m

H_d - altura total da fase densa no fundo do Riser, m

h - altura do leito a partir da interface fase densa/fase diluída, m

I - tensor unitário

K - parâmetro da Equação III.6

K - coeficiente de transferência de sólidos da Equação III.90, m/s

k - volume de Clusters por unidade de volume de sólido na Equação III.69

L - comprimento limitado, altura do transportador (Riser), = $H_f + H_d$, m

- m coeficiente adimensional das equações III.166 e VII.1
- \vec{m} vetor força iterativa entre partículas e fluido na Equação III.45
- m taxa de massa, kg/s
- M parâmetro de Equação III.7
- M massa total circulante no LFC, kg
- n coeficiente adimensional da Equação de Richardson e Zaki, Equação III.69 e III.70
- n relação entre a força de arraste e a força peso na Equação III. 1
- P pressão, N/m^2
- r raio, coordenada radial, m
- ro raio limite entre a região central ascendente (core) e a região anular, m
- R raio do tubo ou transportador (Riser), m
- R constante universal dos gases, kg.m²/s².kmol.K
- Re Número de REYNOLDS, $Ud_p \rho_g / \mu$ ou Ud_p / υ
- T temperatura, K
- t tempo, s
- U velocidade superficial do fluido, m/s
- U_b velocidade de uma bolha isolada no Riser, m/s
- Uc velocidade de Choking, m/s
- U_g velocidade intersticial do gás = U/ ϵ , m/s
- U_s velocidade relativa gás/sólido (slip) = (U/ ϵ)-V, m/s
- Us velocidade de sução no Amostrador de sólidos (probe), m/s
- U_{\mb} velocidade mínima de borbulhamento, m/s
- U_{nf} velocidade mínima de fluidização m/s
- Utr velocidade superficial do fluido na condição de transporte de partículas, m/s
- u velocidade do gás numa direção, m/s
- u1, u2, u3 velocidades nas fases do modelo de KUNII e LEVENSPIEL., m/s
- ur velocidade ascendente do gás a uma distância r do centro do Riser, m/s
- V velocidade superficial da partícula = G_s/ρ , m/s
- V_p velocidade intersticial da partícula = V/(1- ϵ), m/s
- v velocidade do sólido numa direção, m/s
- $v_{\mbox{\scriptsize pr}}$ velocidade local ascendente do sólido no Core na distância r do centro do Riser, m/s
- Vt velocidade terminal da partícula, m/s ou
- V_{tr} velocidade de transporte da partícula, m/s ou
- V_{α} velocidade terminal da partícula, m/s
- W taxa de massa, kg/s
- x fração de sólidos na corrente da mistura
- x_i fração de massa de sólidos com diâmetro $d_{\mathrm{p}i}$
- z altura, coordenada axial, m
- z_i altura do ponto de inflexão do topo do leito, m
- Z₀ comprimento característico de um LFR, definido pela Equação III.80

SÍMBOLOS GREGOS

- α = coeficiente da força de arraste de uma partícula na Equação III.5
- α razão entre o diâmetro da região central (core) e o tubo = d_c/D
- β- coeficiente de fricção fluído-partícula na Equação III.100, kg/m³.s
- β- coeficiente da Equação III.170

- ε porosidade da mistura ou porosidade do leito numa posição axial
- ε porosidade média calculada ao longo do leito pela Equação III.81
- ϵ_a porosidade limite da fase densa
- ε_e porosidade efetiva do Cluster, definida pela Equação III.69
- ε_g fração de volume do gás
- ε_p fração de volume das partículas = 1- ε_g
- $\epsilon_{\text{p,cl}}$ fração de volume das partículas na fase Cluster

ε* - porosidade limite da fase diluída

 ϕ_p - esfericidade da partícula

 ΔP_{imp} - perda de carga imposta na seção do leito, Equação III.87, N/m²

- κ taxa de recirculação de partículas no LFC, Equações III.70 e III.97
- μ viscosidade do fluido, kg/m.s
- ρ massa específica, kg/m³ ou densidade
- ρ_{rp} massa específica real da partícula kg/m³
- $\overline{\rho}$ densidade média da mistura gás-sólido, fase diluída, kg/m³
- $\overline{\rho}_{R}$ densidade média da mistura gás-sólido no freeboard com refluxo completo, kg/m³
- $\overline{\rho}_{R0}$ densidade média da mistura gás-sólido na superfície do leito, kg/m³

 Γ - módulo de tensão (escalar) na Equação III.110, N/m²

- σ = grandeza das Equações III.60 a III.62 igual a dp, m
- τ coeficiente da Equação VII.1
- τ tensão no sólido, relativa a pressão partícula-partícula, N/m²
- $\bar{\tau}_{g}$ tensor força de iteração gás-gás Equação III.100, N/m²
- τ_p tensor força de iteração sólido-sólido na Equação III.46 e III.103, N/m²
- υ viscosidade cinemática = μ/ρ_g , m²/s
- ξ constante de proporcionalidade, coeficiente de difusão, Equação III.74
- ψ constante de proporcionalidade, coeficiente de segregação Equação III.75

SUBSCRITOS

- a região anular
- b fase bolha
- c Choking ou região central (core)
- cl refere-se aos Cluster, agrupamentos ou cachos de partículas
- d refere-se a medida efetuada na região de fase densa do leito
- e referente a medida efetuada na saída do Riser
- f fase fluido
- g fase gás
- i referente a uma fração de partículas
- m mistura gás-sólido no leito expandido
- mf na condição de mínima de fluidização
- o referente a medida efetuada na superficie de um leito fluidizado
- p refere-se a partícula
- s fase sólida, subscrito de slip (escape) ou sução do Amostrador
- r referente a direção radial
- t referente a velocidade terminal
- w referente a parede interna do Riser

SOBRESCRITOS

* - condição de capacidade de carregamento saturada de transporte pneumático

* - condição de grandeza adimensional na equação III.19 a III.24, IV.2 e IV.3

- valor médio
- \rightarrow vetor
- = tensor

OPERADORES

- D Derivada substantiva de uma grandeza
- $\nabla \bullet$ Operador Divergente
- ∇ Operador Gradiente
- Δ Variação de uma grandeza entre dois pontos

RESUMO

Neste trabalho foi realizado um extenso levantamento experimental sobre o comportamento fluidodinâmico de partículas com d_p entre 93 e 160 μ m, de alta densidade ($\rho_p = 2630 - 2820 \text{ kg/m}^3$), caracterizadas como pertencentes ao Grupo B da Classificação de GELDART [18, 19]. Os estudos foram realizados numa coluna de Leito Fluidizado Circulante (LFC) com 6,0 m de altura e 0,102 m de diâmetro interno. O Equipamento possui características de grande flexibilidade para a variação da taxa de circulação de sólidos G_s e da velocidade superficial U.

As medidas foram concentradas no levantamento dos perfis de concentração axial e radial de sólidos ao longo do transportador. A faixa estudada foi de altas velocidades (5 -10 m/s), ao passo que as taxas de circulação variaram entre 0-120 kg/m².s. Os resultados foram analisados à luz da literatura [40], tendo sido proposto uma alteração de um modelo semi-empírico de RHODES *et alli* [22]. Para descrever o perfil radial de concentrações, inseriu-se uma nova variável, τ , que demonstrou ser função apenas da velocidade superficial U, resultando na expressão $G_r/G_s = \tau [1-(r/R)^m]+1$ -B. Os resultados apresentaram um boa concordância com o modelo, apresentando erros médios inferiores a 20%. Foi ainda observada uma variação linear dos limites das regiões "Core-Annulus" com a velocidade superficial nas faixas trabalhadas.

PALAVRAS CHAVES

Leito Fluidizado Circulante, Leito Rápido, Hidrodinâmica da Fluidização, Fluidodinâmica do LFC, Perfis Axiais, Perfis Radiais

ABSTRACT

In this work the results of detailed experimental measurements of the mass flux of solids in fast fludization column (6.0 m and DI 0.102 m) are described and the radial solids concentration are studied. The ranges of superficial gas velocity and mean solids mass flux used were: U= 5-10 m/s, $G_s = 0-100 \text{ kg/m}^2$.s, respectively, and the solids used were sand and dolomite with dp = 0.93-0.160 µm, $\rho s= 2630-2760 \text{ kg/m}^3$ (characterized with belonging to the B Group of Geldart powders classification[18,19]). The results were analised [40] and used in order to modify the empirical model proposed by Rhodes *et alli* [22] based on the radial reduced solids flux profiles. In the radial concentration expression a new parameter was introduced, named, $G_r/G_s = \tau [1-(r/R)^m] + 1$ -B, where τ is a function of the superficial velocity only.

The results produced a expression that is in good agreement with the experimental data, with an error less than 20%. It was observed that the limit of core-annulus regions is a linear function of velocity and an excellent agreement with Rhodes' equation, which calculates the limit of core-annulus structure (r_o/R), was obtained.

KEYWORDS

Circulating Fluidized Bed, Fast Fluidization, Hydrodinamics of Fluidization, Hydrodinamics of LFC, Axial Profiles, Radial Profiles

CAPÍTULO I - INTRODUÇÃO

I.1 - ASPECTOS INICIAIS

A importância industrial do chamado Leito Fluidizado Circulante (LFC), vem crescendo a cada dia no mundo todo, e em particular as suas aplicações nas reações gás-sólido. Por este motivo seu estudo e interesse vêm sendo ampliados, justificando assim as pesquisas que buscam explicar, elucidar, prever e modelar fenômenos fluidodinâmicos, de transferência de calor e massa neste sistema sólido-fluido.

O interesse pelo LFC também tem sido acentuado para os processos de combustão e calcinação, pelas diversas vantagens deste sistema sobre os chamados leitos fluidizados borbulhantes. A aplicação do LFC em grandes caldeiras, na área de termoeletricidade, utilizando combustíveis fósseis, deslocou definitivamente a queima em leito de arraste (ou pulverizado) que imperava absoluta desde 1920. Neste particular, nunca é demais lembrar que o leito fluidizado, e, mais recentemente, o leito fluidizado circulante, alcançaram esta condição pela maior facilidade de controlar as emissões atmosféricas dentro de níveis aceitáveis.

Particularmente para o Brasil, cuja matriz energética se encontra cada vez mais comprometida, esta tecnologia cresce em relevância, pois somos detentores de reservas de carvão fóssil cujas estimativas excedem a 32 x 10° t. [01]. Considerando que a composição média de nosso carvão apresenta grande quantidade de material inorgânico agregado - cinzas, o LFC apresenta-se como um vantajoso processo para o seu aproveitamento. Este motivo tem levado as grandes empresas elétricas brasileiras a desenvolverem programas para implantação de caldeiras de grande porte, utilizando o processo de LFC e o carvão fóssil como combustível [01]. Por outro lado, as reservas de calcário no Brasil viabilizam a sua exploração para fins mais nobres, como a produção de cal química por exemplo, exigindo para isto um processo avançado, homogêneo e isotérmico, capaz de produzir um insumo dentro de padrões internacionalmente aceitos.

Os estudos do LFC ganham assim importância para o Brasil e dão perspectivas de continuidade para pesquisas iniciadas em algumas instituições onde já foram produzidos importantes trabalhos na técnica do leito fluidizado, inclusive com o desenvolvimento de diversos equipamentos industriais hoje em operação.

I.2 - HISTÓRICO

Já há algumas décadas os estudos na área de leito fluidizado vem crescendo de interesse e importância, sempre descobrindo-se novos caminhos e alternativas. Apesar de ser comum o existência de dúvidas ou opiniões diferentes sobre o pioneirismo de determinado processo, segundo um bom número de autores, a primeira planta a usar o regime de leito fluidizado rápido (LFR) teria sido um gaseificador a carvão mineral desenvolvido por Fritz Winkler em 1922 [02]. Em 1939, durante a segunda guerra mundial, surgiu a necessidade imperiosa de produzir grande quantidade de gasolina da aviação. Neste sentido, a Standard Oil of New Jersey (atual EXXON) desenvolveu um processo de craqueamento catalítico do querosene em condições de transporte pneumático, porém com várias dificuldades mecânicas, como o transporte do catalisador através de longas linhas. Na oportunidade os professores W. K. Lewis e E. R. Gilliland, pesquisadores do MIT -Massachussets Institute of Technology, sugeriram a combinação de um leito fluidizado com linhas de transporte pneumático com o objetivo de possibilitar uma maior estabilidade do processo. Como resultado deste trabalho, em 25 de maio de 1942, entrou em operação a primeira unidade comercial de craqueamento catalítico, denominado Up Flow System [03].

Tratava-se de um processo que hoje seria classificado como pertencente ao regime de fluidização rápida. Como os resultados foram promissores, no final de 1943 já existiam diversas unidades em operação. Entretanto como o equipamento apresentasse alguns problemas operacionais, principalmente nos sistemas de coleta de pó e na circulação de sólidos, foi desenvolvido um novo processo denominado Down Flow System, utilizando agora o princípio da fluidização borbulhante. Como este novo sistema obteve êxito, o primeiro processo usando o princípio do LFR foi praticamente esquecido.

Ainda na década de 40 convém lembrar das experiências de companhia Kellogg na produção de combustíveis líquidos apartir de gases de coqueria (CO e H₂), também conhecida como síntese de Fischer-Tropsch [04]. Eles construíram o primeiro reator piloto com 10 cm de diâmetro e 8 m de altura e como os resultados foram positivos em 1948 foi projetado um reator de tamanho comercial que nunca foi instalado nos EUA. Somente em 1955 é que a Sasol adquiriu a tecnologia vindo a instalar duas unidades industriais na África do Sul. O "scale-up" foi da ordem de 500 vezes e diversos foram os problemas operacionais resolvidos, apenas por volta de 1960. Em 1974 com o súbito crescimento do preço do barril de petróleo é que os extensivos estudos das companhias Sasol e Badger, usando agora um "scale-up" de apenas 3 a 4 vezes, permitiram a implantação de 16 unidades industriais para produção de combustíveis líquidos apartir de carvão mineral, nos pólos hoje denominados de Sasol 2 e Sasol 3. Este processo catalítico é conhecido como CFB Synthol.

Desta feita, de 1942 a 1970, muito poucos trabalhos foram desenvolvidos usando o princípio do LFR, de formas que a literatura sobre o assunto é praticamente inexistente. Dentre os poucos, cabe destacar o trabalho desenvolvido pela empresa Lurgi Chemie em conjunto com a Vereinigte Aluminium Werke no final dos anos 60. Na época foi desenvolvido um calcinador de hidróxido de alumina utilizando gás ou óleo combustível atomizado [05]. A calcinação era conduzida entre 1000 e 1100 °C pela injeção de combustível e ar sub-estequiométrico através do distribuidor. O ar de combustão era completado através duma injeção de ar secundário na altura da reinjeção de sólidos. A unidade industrial tinha cerca de 15 a 20 m de altura, operava com velocidade de gás da ordem de 3 m/s e com partículas de alumina entre 50-80 µm.

A Figura I.1 ilustra o esquema do calcinador da LURGI, onde pela reação $2Al(OH)_3 + Energia \rightarrow Al_2O_3 + 3H_2O$ é produzido o óxido de alumínio.

Fig. I.1 - Calcinador de hidróxido de alumínio em leito fluidizado circulante desenvolvido pela LURGI.

A partir da década de 70, o LFR começou a ter grande desenvolvimento e interesse. Sua utilização passou a ser importante na combustão de carvão pela possibilidade de poder operar com baixos níveis de emissão de NO_x e SO_2 . A AHLSTRON COMPANY da Finlândia, considerada uma empresa líder neste campo, no final de 1981 já possuía seis caldeiras em operação, no regime de LFC e mais cinco em construção. Estas caldeiras, cujo processo foi designado por Pyroflow Circulating Fluid Bed Combustion Boiler (PCFBS), podem operam com diversos combustíveis e na época já possuíam equipamentos de até 100 t/h de vapor.

Neste campo, outras grandes companhias vêm dedicando esforços de pesquisa, desenvolvendo e aperfeiçoando suas caldeiras em LFC. Entre muitas outras destacaríamos os trabalhos da GOTAVERKEN, Instituto BATELLE, LURGI, KEELER/DORR-OLIVER e STUDSVIK [05, 06, 07].

Muitos foram os trabalhos e publicações desenvolvidos a partir de então, possibilitando uma melhor compreensão do fenômeno de fluidização rápida, não só em busca da compreensão física do processo como também em vista da sua melhor aplicação tecnológica.

I.3 - APLICAÇÕES DO LFC

As aplicações industriais do LFC têm se ampliado nos últimos anos. Atualmente o LFC vem sendo utilizado em muitos processos que envolvem reações gás-sólido, podendo ser reações exotérmicas, endotérmicas, catalíticas, transferência de calor ou ainda combinações destas. Destacam-se as aplicações nos campos da metalurgia, reações catalíticas nas indústrias químicas e petroquímicas, indústrias cerâmicas, calcinação e ustulação de minérios, geração de energia por termoeletricidade, etc.

Em uma publicação relativamente recente, Lothar REH [08] faz um levantamento sobre as aplicações não catalíticas do LFC no mundo, apresentando onze novas aplicações já na fase industrial do processo e nove outras em fase piloto de experimentação. A Tabela I.1, mostra a síntese deste levantamento. Espera-se que as aplicações do LFC em outros tipos de indústria sejam bastante ampliadas nesta década em função de suas vantagens.

TABELA I.1 - PRINCIPAIS APLICAÇÕES DO LFC EM	ESCALA	TEMP.
PROCESSOS INDUSTRIAIS E DE DEMONSTRAÇÃO	PLANTA	°C
A) PROCESSOS DE ALTA TEMPERATURA		
Calcinação de Al ₂ (OH) ₃	Industrial	650-1450
Pré-calcinação de clinker de cimento	Industrial	850
Calcinação de rocha fosfática	Industrial	650-850
Calcinação de argila	Industrial	650
Síntese de AlF ₃	Industrial	530
Síntese de SiCl ₄	Industrial	400
Decomposição de sulfatos (FeSO ₄ , MgSO ₄)	Piloto	950-1050
Decomposição de cloretos (AlCl ₃ .6H ₂ O)	Piloto	850
Decomposição de carbonatos (CaCO ₃ , MgCO ₃)	Piloto	850
Ustulação de minérios de ferro sulfetados (ZnS, Cu ₂ S)	Piloto	850-950
Combustão de baixa temperatura de xistos	Piloto	700
Combustão de carvão com baixa poluição	Industrial	850
Gaseificação de madeiras e biomassas	Industrial	800-900
Gaseificação de carvão	Piloto	850-1150
Secagem de gás quente de lavador de gás de carvão	Piloto	400-950
Redução de Finos de Minério com carvão	Piloto	1050-1150
Pirohidrólise		1200
B) PROCESSOS DE BAIXA TEMPERATURA		
Secagem de gases de processo de eletrólise de Alumínio (HF)	Industrial	70
Secagem de gases de incineração com HCl, HF, SO ₂	Industrial	150-250
Caldeira Pulverizada com gás residual (SO ₂)	Industrial	100

Dentre as muitas possibilidades propostas na Tabela I.1, destacaríamos a crescente aplicação do LFC como tecnologia de combustão. Este fato deve-se às crescentes exigências de órgãos governamentais, particularmente de países desenvolvidos, em exigir uma maior redução na emissão de gases e particulados poluidores. Exemplificando, lembramos que somente no início dos anos 90 já estavam catalogadas cerca de 223 unidades, utilizando diferentes combustíveis aplicados à geração direta e à co-geração de energia [09].

Cerca de 40 % ou seja, em torno de 90 destas unidades, são caldeiras projetadas e construídas com tecnologia da AHLSTROM PYROFLOW. Nesta relação se incluem unidades pressurizadas de ciclo combinado e alta eficiência em fase experimental de pesquisas, consideradas como fundamentais ao futuro da tecnologia de queima.

Além do aproveitamento das características do LFC que facilitam a obtenção de níveis de controle compatíveis, um outro aspecto fundamental para a sua aceitação e crescimento são os altos coeficientes de transferência de calor obtidos, que reduzem o volume do equipamento relativamente a quantidade de energia gerada [10]. No Brasil já estão avançados os estudos para a implantação deste tipo de unidade, sendo a Eletrosul em Santa Catarina a pioneira nesta frente.

Além da já consagrada e citada aplicação no campo da calcinação [08, 11, 12] as aplicações do LFC como reator catalítico heterogêneo têm crescido consideravelmente nestes últimos anos, primeiramente como conseqüência de sua clássica aplicação nos FCC na indústria petroquímica [13], e em segundo lugar em função do potencial tecnológico já demonstrado em unidades em operação [14].

I.4 - VANTAGENS DO LFC

As principais características que fazem com que os processos de fluidização apresentem um grande número de vantagens estão diretamente relacionadas com a natureza das reações químicas, ou seja, a velocidade das reações gás-sólido que são fortemente dependentes de parâmetros como: área superficial do sólido, transferência de calor e massa, tanto em nível interno quanto externo da partícula, e com as leis do equilíbrio e cinética química no local da reação.

Estas condições são amplamente favorecidas nos processos de fluidização tendo em vista o uso de sólidos finamente granulados, que apresentam uma elevada superficie de contato com o gás e uma reduzida distância entre a região central e a superficie da partícula, favorecendo assim a velocidade das reações. Soma-se a estes, o fato de que a agitação das partículas em movimento aleatório provoca a quebra e o desgaste superficial das mesmas, o que favorece ainda mais as reações.

Por outro lado, REH [08] observou que uma partícula com 1 mm de diâmetro, granulometria usual nos leitos clássicos, apresenta uma superfície bem menor do que uma com 0,1 mm, típica dos leitos fluidizados rápidos e circulantes. Além disso, a velocidade relativa gás-sólido (slip velocity), da qual depende o número de Reynolds de partícula e por conseguinte os coeficientes de transferência de calor e massa, é maior do que a dos leitos fluidizados clássicos, o mesmo acontecendo com os reatores de transporte. A elevada taxa de transferência de calor promove uma uniformidade de temperatura através do reator, permitindo que as reações ocorram nas condições ideais de projeto. Embora cada processo apresente características peculiares, de uma maneira genérica as principais vantagens do leito fluidizado rápido são [11, 15, 16, 17]:

 Altas taxas de reação devido à elevada velocidade do agente fluidizante; o excelente contato gás-sólido devido à inexistência de grandes bolhas; e a utilização de todo o volume do reator;

2) Capacidade de utilizar sólidos com ampla distribuição de densidade e granulometria;

3) Capacidade de operar com sólidos coesivos e de dificil fluidização em leitos borbulhantes (tipo C da classificação de GELDART [18, 19]);

4) Possibilidade de ajustar e variar com precisão o tempo de retenção dos sólidos [20];

5) Altas taxas de transferência de calor e massa como conseqüência de um alto grau de agitação e do movimento descendente dos sólidos;

6) Temperatura homogênea no leito;

7) Capacidade de aquecimento quase instantâneo, do sólido ou gás para a temperatura do leito;

8) Altas taxas de transferência de calor entre o leito e as superfícies imersas, comparáveis aos leitos borbulhantes;

9) Capacidade de manusear partículas finas em condições severas de elutriação;

10) Possibilidade de transferir ou receber calor sensível de outros processos através da circulação de sólidos;

11) Permite mais facilidades no "scale-up" do que o leito fluidizado borbulhante, fato este observado pela Cia. LURGI quando do desenvolvimento dos seus calcinadores [11];

12) Os reatores em LFC são mais baratos de serem construídos, visto que o diâmetro do vaso é fator de custo mais relevante que a altura, especialmente em aplicações com pressões elevadas.

Como conseqüências das vantagens acima mencionadas, os equipamentos em LFC são:

13) Altamente flexíveis quanto às características das matériasprimas alimentadas e/ou combustíveis utilizados quando se tratam de combustores;

14) Apresentam altíssimas eficiências e rendimentos quando exigidos em parâmetros específicos, como por exemplo na remoção de enxofre na

combustão e controle de emissão de efluentes gasosos indesejáveis ao controle do meio ambiente;

15) Facilidades nos equipamentos periféricos de alimentação e remoção de frações;

16) Grande capacidade de variar a carga de produção em curto espaço de tempo, controlando assim a demanda;

17) Permitem a construção de equipamentos mais compactos e eficientes termicamente, pois as superficies do ciclone e do tubo de retorno dos particulados abatidos podem ser somadas com as áreas de transferência de calor.

I.5 - DESVANTAGENS DO LFC

LFC são:

As principais desvantagens ou características menos vantajosas do

1) São sistemas que apresentam uma maior perda de carga quando comparadas com os sistemas fluidizados e de leitos fixos, acarretando maior consumo de energia com os sopradores;

2) As altas velocidades de operação e a presença de partículas sólidas nas correntes gasosas ao longo do equipamento, são fatores que provocam um alto grau de atrito e desgastes das partes internas. Isto requer escolha de materiais com boa resistência a abrasão pois o desgaste prematuro de das partes em contato aumenta o custo de manutenção dos sistemas.

3) Os equipamentos estão sujeitos a problemas de desfluidização e conseqüente paradas técnicas, por efeitos de desfluidização e por empacotamento de partículas, quer seja pela distribuição de tamanhos ou por forças interpartículas existentes antes ou produzidas durante o processamento.

CAPÍTULO II - OBJETIVOS E PROPOSTA DE TRABALHO

II.1 - JUSTIFICATIVAS DO ESTUDO DA FLUIDODINÂMCIA DO LFC

Diversos são os minérios brasileiros que podem ser beneficiados com vantagens utilizando o Leito Fluidizado como processo. Com o objetivo de ampliar as aplicações tecnológicas do Leito Fluidizado na indústria brasileira, diversas Instituições e Empresas têm investido em estudos e pesquisas na área. Dentre os trabalhos mais proficuos destacam-se os realizados na CIENTEC, UNICAMP, IPT, USP, ELETROSUL, CEEE e outras.

Como o Leito Fluidizado Rápido (LFR) é um estágio mais avançado deste processo, o perfeito domínio de sua fluidodinâmica e transferência de calor é condição vital para o desenvolvimento de projetos e equipamentos. Entretanto, apesar dos diversos estudos e trabalhos já realizados sobre este assunto, ainda existem muitas dúvidas sobre o comportamento e modelagem dos chamados LFR. À medida que os estudos avançam, tem se verificado que o número de variáveis relevantes do problema aumenta, limitando portanto os estudos anteriores as condições e características em que foram realizados.

O assunto assume tal dimensão que, ainda hoje, apesar de já terem ocorrido quatro Conferências Internacionais sobre o desenvolvimento da tecnologia do LFC, se discutem ainda os reais limites dos diversos regimes de fluidização, em particular o limite entre o chamado Leito Fluidizado Turbulento (LFT) e o LFR. HORIO *et alli* [15] recentemente apresentaram considerações atualizadas sobre estes limites.

O desenvolvimento de projetos e de rotinas de operação, por exemplo, de caldeiras termoelétricas, necessita de melhores conhecimentos sobre os parâmetros do leito e da transferência de calor. Existem poucas informações e estudos necessários para compreender e modelar os fundamentos do LFC, fazendo-se uso de equações empíricas na falta de estudos fundamentais. Os modelos matemáticos existentes são divergem pois as publicações são extremamente discordantes quando comparadas umas com as outras [21].

Exemplificando, os estudos sobre o comportamento dos perfis axiais de concentração de sólidos ao longo dos Risers (transportadores) já alcançaram um nível bem razoável, porém os estudos dos perfis radiais estão começando, existindo apenas trabalhos empíricos incipientes. Outro ponto relevante é que os trabalhos já realizados contemplaram basicamente as partículas finas e de bom comportamento na fluidização, classificadas como pertencentes ao Grupo A da classificação de GELDART [18, 19], enquanto as aplicações brasileiras mais emergentes, calcinação e combustão, irão utilizar matérias-primas mais grosseiras classificadas no chamado Grupo B. Por estes motivos, muitos trabalhos ainda necessitam ser realizados com ênfase em outros Grupos de partículas, a fim de generalizar suas aplicações e soluções.

II.2 - OBJETIVOS DESTE TRABALHO

Dentre as inúmeras possibilidades de estudos na área do LFR, o presente trabalho busca realizar um levantamento de dados sobre o comportamento dinâmico dos perfis radiais de concentração de sólidos pertencentes ao Grupo B da classificação de GELDART [18, 19], em um transportador com 102 mm de diâmetro e 6 m de altura, em função de diversos parâmetros operacionais como: velocidade superficial, taxa de circulação externa de sólidos e granulometria das partículas. Tambem foram medidos os perfis axiais de concentração para cada condição radial.

A partir deste levantamento, o trabalho busco analisar e modelar as medidas radiais com base no chamado fluxo radial reduzido de concentração de sólidos. O pondo de partida foi o trabalho iniciado por RHODES e seus colaboradores [22], propondo-se ao final uma expressão capaz de prever o fluxo radial reduzido como função apenas da posição radial, velocidade superficial média e da taxa de circulação externa de sólidos.

CAPÍTULO III - REVISÃO DO ESTADO DA ARTE

III.1 - INTRODUÇÃO

O número de publicações, trabalhos e pesquisas desenvolvidas a partir da década de 70 sobre LFR, tem crescido substancialmente a cada ano. Um levantamento realizado por GELDART e RHODES [23] sobre as pesquisas realizadas em fluidização heterogênea, indicou que no período compreendido entre janeiro de 1989 a dezembro de 1991, um total de 586 publicações foram realizadas em revistas internacionais e em anais de Congressos e Simpósios diversos.

As principais fontes de trabalhos na área entretanto, continuam a ser os anais das quatro Conferências Internacionais já realizadas sobre a Tecnologia do Leito Fluidizado Circulante. Em 1985, em Halifax no Canada, quando da realização do I CFBT (Circulating Fluidized Bed Technology), os anais continham menos de 300 páginas. Três anos depois, na II CFBT em Compiègne, França (1988), os trabalhos produziram 578 páginas. Em 1990 em Nagoya no Japão, a III CFBT publicou 657 páginas, para finalmente em 1993 em Hidden Valley, Pennsylvania (USA), os anais da IV Conferência Internacional sobre LFC produzirem 706 páginas em artigos técnicos.

Muito se avançou nas descobertas sobre o comportamento dos LFR, tendo HORIO [24] realizado um síntese dos avanços especificamente na área da hidrodinâmica do LFC. A seguir realizaremos uma síntese dos principais trabalhos, buscando salientar as colaborações mais importantes, destacando aquelas que são de particular interesse para esta trabalho.

III.2 - CLASSIFICAÇÃO DOS SÓLIDOS PARTICULADOS

Face a importância de bem caracterizar os tipos de sólidos possíveis de uso em sistemas fluidizados, tomaremos como base neste trabalho a consagrada caracterização apresentada por GELDART [18, 19, 25, 26] em 1972.

Seus estudos, baseados no comportamento dos sólidos fluidizados com ar à pressão atmosférica e temperatura ambiente, tem sido vastamente empregada pela sua simplicidade, pois reduziu a quatro os grupos de categorias de sólidos. Em nosso trabalho, as características das areias e do calcário se enquadraram como partículas pertencentes ao grupo B.

A Figura III.1 apresenta as regiões abrangidas por cada grupo, cujas linhas divisórias permitem algumas discussões, já havendo diversos estudos aplicados sobre o assunto. GRACE [27], mais recentemente apresentou uma revisão exaustiva sobre os demais trabalhos no sentido de melhor caracterizar as partículas fluidizadas, inclusive com outros gases.

Figura III.1 - Classificação das Partículas Sólidas por Grupos segundo GELDART [18]

III.3 - CARACTERIZAÇÃO DOS REGIMES DE FLUIDIZAÇÃO

O comportamento dinâmico de um sistema onde partículas sólidas são postas em contato com um fluido em escoamento vertical ascendente, depende fundamentalmente da vazão mássica de sólidos, vazão mássica do fluido e o diâmetro do vaso que contem o sistema.

As relações entre estas três variáveis provocam diferentes regimes de fluidização do sistema, cujos limites e interfaces tem sido objeto de grande discussão e divergências, entre inúmeros pesquisadores, já a algum tempo.

Quando operamos sistemas sólido-fluido em condições mais enérgicas, isto é, com altas velocidades superficiais, atingimos a chamada região de fluidização rápida, onde a discussão sobre os verdadeiros limites de cada regime de fluidização tornam-se ainda mais polêmicos.

YERUSHALMI *et alli* [11], foi quem introduziu o termo "Fast Fluidized Bed" (FFB) para indicar a região onde podemos alterar a velocidade de escorregamento ou de escape (slip velocity) gás-sólido amplamente, através ajuste da taxa de circulação de sólidos, G_s, em um transportador (Riser). Quando eles propuseram o termo, em 1975 no encontro de fluidização em Pacific Grove, este não foi satisfatoriamente aceito. Naquela época não havia ainda muitas evidências das diferenças entre os regimes de fluidização, particularmente entre os regimes turbulento e rápido com o regime de transporte pneumático de fase diluída. Aliás, até hoje, não estão suficientemente claras face as variações nas delimitações de cada regime nos diversos mapas de fluidização até agora publicados [24]. Um exemplo é a opinião de PERALES *et alli* [28], que classifica o chamado Leito Fluidizado Turbulento com sendo um regime de transição entre o regime borbulhante e o de fluidização rápida.

Muitos têm sido os estudos realizados para o escoamento sólidofluido, pela a importância em determinar a queda de pressão, o regime de escoamento e os perfis de porosidade no Riser entretanto, existe controvérsias na literatura a respeito dos modelos apresentados. A necessidade de caracterizar com precisão os limites de cada regime de fluidização, tem levado muitos autores a prepararem diagramas que, baseados em parâmetros físicos e operacionais, buscam mapear as situações operacionais em que ocorre o fenômeno. Um aspecto muito importante é também a predição da velocidade crítica (transição entre o escoamento contracorrente para o concorrente), que por falta de uma predição baseada em equações fundamentais, tem dado espaço para correlações de natureza empírica.

Vários são os enfoques dados a estes estudos, podendo ser específicos, qualitativos, semi-quantitativos ou até abrangentes em termos de região de trabalho. Dentre muitos, citaremos os mais importantes em ordem cronológica, buscando apresentar os resultados obtidos por cada um dos autores.

III.3.1 - DIAGRAMA DE ZENS (1949)

Nos sistemas de escoamento gás-sólido sempre é observada uma relação entre a queda de pressão do fluido, que escoa através das partículas sólidas em movimento ascendente ou descendente, para uma dada altura de leito L e a velocidade superficial do gás. A partir dai, ZENZ [29, 30, 31], preparou um conhecido Diagrama de Fases Sólido-Fluido, cujos parâmetros são as taxas de massa de sólidos.

O diagrama mostra, qualitativamente, as principais características da queda de pressão em vários regimes operacionais, estando dividido em três quadrantes, como podemos observas na Figura III.2. Desta feita, os quadrantes II e III representam as regiões de escoamento sólido-gás concorrentes e descendente. Já o quadrante I representa as regiões de escoamento concorrente ascendente e as regiões de escoamento concorrente.

Este primeiro trabalho buscou organizar as principais condições de escoamento vertical de duas fases (sólido e fluido) simultaneamente, a saber: escoamento concorrente ascendente; concorrente descendente e contracorrente. As condições de cada regime irão existir variando-se a vazão mássica de sólidos e de fluido, resumindo na figura as três situações observáveis num sistema sólido-fluido.

Figura III.2 - Diagrama de fases de ZENS para sistemas gás-sólido em escoamento vertical

III.3.2 - Diagrama de REH (1971)

Um dos trabalhos mais importantes para caracterização dos limites dos regimes de fluidização, nos diferentes sistemas de contato gás-sólido, foi realizado por REH [32]. Ele sintetizou seus estudos num diagrama apresentado na Figura III.3, onde as condições de operação estão delimitadas através do uso de grupos adimensionais.

REH propôs uma visão global do fenômeno de fluidização examinando a velocidade de fluidização como uma função da viscosidade cinemática do gás ($\upsilon = \mu/\rho_g$), do diâmetro médio das partículas d_p e da massa específica do fluido ρ_g . Assim, definiu "*n*" como a relação entre a força de arraste e a força peso individual sobre uma partícula isolada:

$$n = \mathbf{f} \left[\mathbf{\epsilon}, \mathbf{R} \mathbf{e}_{\mathbf{p}}, \mathbf{F} \mathbf{r}_{\mathbf{p}}^{2}, \rho_{\mathbf{g}} / (\rho_{\mathbf{p}} - \rho_{\mathbf{g}}) \right]$$
 III.1

A força relativa n é portanto a relação entre a força viscosa, agindo sobre uma partícula individual e a força peso da partícula. A força n foi então classificada nas várias condições do movimento das partículas sendo, n < 1 na situação de leito fixo, n = 1 para leito fluidizado e n > 1 para transporte pneumático de fase diluída. A força relativa n pode assim ser expressa por:

$$n = \frac{\Delta P}{L(1-\varepsilon)(\rho_p - \rho_g)g} \qquad \qquad \text{III.2}$$

onde ΔP é a perda de carga do fluido dentro do leito de comprimento L. Na equação acima, quando n = 1 teremos a equação da perda de carga para um leito fluidizado.

A porosidade do leito fixo (ϵ) é da ordem de 40% e tende para 100% quando o leito se aproxima do transporte pneumático. O número de Reynolds da partícula (Re_p), e o número de Froude da partícula (Fr_p), ficam referidos a partícula individual pela introdução do diâmetro da partícula d_p como característica do comprimento.

$$Re_{p} = \frac{Ud_{p}\rho_{g}}{\mu}$$
 III.3

$$Fr_{p} = \frac{U^{2}}{gd_{p}}$$
 III.4

Para uma partícula exposta a um fluxo de gás num leito fluido, numa condição de fluidização particulada, é proposta a seguinte expressão para a força relativa *n*:

$$n = \frac{3}{4} \quad \varepsilon^{4,65} \alpha \quad Fr_p^2 \quad \frac{\rho_g}{\rho_p - \rho_g} \qquad \qquad \text{III.5}$$

sendo $\alpha = f(Re_p)$ representando o coeficiente da força de arraste de uma simples partícula. Num leito fluido o padrão gráfico $\frac{3}{4}Fr_p^2\rho_g/\rho_p-\rho_g$ contra Re_p pode ser colocado em um gráfico em relação à expressão da força relativa *n*, isto é, para leitos fixos, fluidizados e transporte pneumático, sendo que as faixas de cada sistema fluido serão representadas pelos índices K e M onde:

$$K = \frac{v^2}{d_p^3 g} \frac{\rho_g}{\rho_p - \rho_g}$$
III.6

$$M = \frac{U^3}{\upsilon g} \frac{\rho_g}{\rho_p - \rho_g}$$
III.7

Os índices K e M são parâmetros de grande auxílio pelos quais é possível eliminar a velocidade U, relativa ao sistema de partículas, e o diâmetro d_p , através da definição das expressões:

$$Fr_p^2 \frac{\rho_g}{\rho_p - \rho_g} = \frac{U^2}{d_p g} \frac{\rho_g}{\rho_p - \rho_g}$$
III.8

$$Re_{p} = \frac{Ud_{p}}{v}$$
 III.9

Resolvendo a equação III.9 para U e substituindo na equação III.8

obtemos:

$$\operatorname{Fr}_{p}^{2} \frac{\rho_{g}}{\rho_{p} - \rho_{g}} = \left\{ \frac{\upsilon^{2} \quad \rho_{g}}{d_{p}^{3} \quad g\left(\rho_{p} - \rho_{g}\right)} \right\} - \operatorname{Re}_{p}^{2} \qquad \operatorname{III.10}$$

Resolvendo a equação III.9 para d_p e substituindo na equação III.8

vem:

$$\operatorname{Fr}_{p}^{2} \frac{\rho_{g}}{\rho_{p} - \rho_{g}} = \left\{ \frac{U^{3}}{\upsilon g} \frac{\rho_{g}}{(\rho_{p} - \rho_{g})} \right\} \frac{1}{\operatorname{Rep}} \qquad \operatorname{III.11}$$

O parâmetro K contém somente parâmetros do sistema fluido, igual ao valor recíproco do número de Archimedes normalmente usado como:

$$Ar = \frac{g d_p^3 \rho_g}{\mu^2} \left(\rho_p - \rho_g \right)$$
 III.12

O índice M é independente do diâmetro da partícula, além disso pode ser demonstrado que o padrão de Diagrama usado por ZENZ e OTHMER [23] com aplicação de $(\text{Re}_p/\text{C}_D)^{1/3}$ contra $(\text{Re}_p^2 \text{ C}_D)^{1/3}$ é idêntico ao gráfico de $(3M/4)^{1/3}$ contra $(3K/4)^{1/3}$, de forma que:

$$\frac{3}{4} \operatorname{Fr}_{p}^{2} \left(\frac{\rho_{g}}{\rho_{p} - \rho_{g}} \right) = \frac{1}{C_{D}}$$
 III.13

Onde C_D é o coeficiente de atrito para os sólidos fluidizados. A Figura III.3 é o resultado gráfico duma construção feita de acordo com os princípios acima discutidos. A linha limite entre o campo do leito fluidizado e o leito fixo é claramente identificado pela linha ($\varepsilon = 0,40$, n = 1). A linha limite entre o leito fluido e o transporte pneumático entretanto é feito por duas linhas, pois existem dois tipos de fluidização já identificados; a particulada e a agregativa. Para a fluidização particulada, onde cada partícula é exposta uniformemente de forma ideal ao fluxo, a linha limite é dada pela forma pontilhada ($\varepsilon \mapsto 1$, n = 1). Na fluidização agregativa, para partículas finas, onde o coeficiente de atrito atribuído a uma única partícula pode ser muito menor

do que na fluidização particulada, a linha limite aparece, contínua, acima da curva pontilhada na Figura III.3.

Figura III.3 - Mapa para sistemas de contato gás-sólido - Diagrama de REH [32]

A região limite entre o leito fluidizado e o transporte pneumático é dado, aproximadamente, pela linha cheia ($\epsilon \mapsto 1$, n = 1), entre o número de Reynolds da partícula menor que 100 e a linha ³/₄ Fr_P² ($\rho_g/\rho_p - \rho_g$) = 1. Já para altos números de Reynolds é limitada pela linha pontilhada da fluidização particulada.

A faixa do leito fluidizado convencional está indicada pelas linhas verticais e a faixa do leito fluidizado circulante é indicadas pelas linhas diagonais. De acordo com o diagrama de REH, a região operação, caracterizada como de leito fluidizado circulante corresponderia então a:

$$0,56 \le \mathrm{Ar} \le 100 \qquad \qquad \mathrm{III.14}$$

$$0,00261 \text{ Ar}^{1,23} \le M \le 4,27 \text{ Ar}^{0,49}$$
 III.15

III.3.3 - Diagrama de YERUSHALMI et alli (1976)

YERUSCHALMI, TURNER e SQUIRES [11], apresentaram um diagrama qualitativo para sistemas gás-sólido para partículas finas, mostrando o comportamento do gradiente de pressão no leito em função do aumento da velocidade superficial, cujo aspecto geral esta sintetizado na Figura III.4.

Este diagrama é muito utilizado quando se deseja introduzir o assunto da fluidização, principalmente pela sua simplicidade. Pela observação da Figura III.4, o LFC estaria situado entre a fluidização turbulenta e o transporte pneumático de fase diluída, num região onde ocorre uma queda de pressão do sistema devido ao aumento da porosidade do leito, fruto o arraste de parte das partículas.

Mais tarde este diagrama foi aprimorado por YERUSHALMI *et alli* [03, 33, 34], apresentando as diversas fases dos regimes de fluidização agora em função da velocidade de escorregamento (slip velocity) e da concentração de sólidos (1- ϵ).

A velocidade de escorregamento é de fundamental importância no regime de fluidização rápida, pois é definida como sendo a velocidade relativa com que o gás se desloca em relação a partícula sólido, sendo portanto um parâmetro fisico relevante no entendimento do fenômeno, podendo ser expressa por:

$$U_s = \frac{U}{\varepsilon} - V \qquad \text{III.16}$$

A Figura III.5, a seguir, mostra o novo diagrama qualitativo de fluidização de partículas finas proposto por YARUSHALMI, mantendo o LFC na mesma

posição do diagrama anterior, porém enfatizando que este regime ocorre numa região onde a velocidade de fluidização esta bem acima da velocidade de carregamento (ou terminal) das partículas.

Figura III.5 - Mapa qualitativo de fluidização de partículas finas, YERUSHALMI et alli

Para os autores fluidização rápida foi definida como uma região acima da velocidade mínima de transporte onde não ocorre o colapso do leito para qualquer alteração na taxa de circulação de sólidos.

III.3.4 - Diagrama de BROEDERMANN (1981)

BROEDERMANN [05] apresentou, em 1981, um diagrama qualitativo onde foi enfatizado o trabalho de YARUSHALMI e o uso da velocidade de escape na definição das regiões de fluidização.

Operando com partículas muito finas, pertencentes ao grupo A da classificação de GELDART, BROEDERMANN descreveu as transições de sistemas de contato para reatores gás-sólido, utilizando a velocidade superficial e a expansão do leito como principais parâmetros. Desta feita seu diagrama, apresentado na Figura III.6, concorda que o Leito Fluidizado Rápido (LFR) situa-se numa região intermediária entre o leito fluidizado borbulhante convencional e o transporte pneumático, numa situação onde as partículas são forçadas a retornar para o leito (ou reator) principal.

Figura III.6 - Condições dos reatores gás-sólido, segundo BROEDERMANN [05]

Com o auxílio dos diagramas das Figuras III.4, III.5 e III.6, podemos concluir que a mudança dos regimes de fluidização é provocada pelo crescimento da velocidade do gás a partir U = 0. Para um leito de partículas finas, inicialmente em repouso, um gás é introduzido na base, através de um distribuidor em baixa velocidade. O leito permanecerá fixo e o gás irá fluir através do espaço intersticial das partículas. Este é o regime denominado de Leito Fixo.

A seguir, com um aumento gradual de U, atingiremos uma condição tal que a força viscosa, exercida pelo gás sobre as partículas, será equivalente à força peso da partícula do leito. Nestas condições U é chamado de velocidade mínima de fluidização U_{mf} e pelo balanço de forças podemos escrever:

$$\frac{dp}{dz} = (1 - \varepsilon_{mf})(\rho_p - \rho_g)g \qquad \text{III.17}$$

Continuando a aumentar U, acima de U_{mf} , o leito de partículas não ira sofrer mais expansão, dependendo dos valores de d_p, ρ_p , ρ_g e μ [26], mas irá adquirir propriedades típicas de uma suspensão fluida [02]. Continuando o aumento de U, verifica-se agora o surgimento de bolhas do gás que atravessam a suspensão fluido gássólido, regime conhecido como Leito Fluidizado Borbulhante. A porosidade do leito é agora da ordem de 50 %.

Com um novo aumento da velocidade do gás o diâmetro e a intensidade das bolhas aumentará consideravelmente, passando o leito para uma nova fase de fluidização denominada de Leito Fluidizado Turbulento, caracterizado pela
intensa agitação, rompimento sistemático das bolhas de maior diâmetro e grandes oscilações no ΔP do leito. Surgem aí algumas discussões sobre a transição do leito borbulhante para o turbulento. YERUSHALMI *et alli* [35], procuram explicar o fenômeno com o conceito de tamanho máximo de bolha estável.

No regime de fluidização turbulenta e na fluidização borbulhante, ainda é possível visualizar uma altura média do leito. Até este regime de escoamento não existe uma influência da vazão de sólidos sobre as condições do escoamento do leito, ou seja, para um determinado sólido (ρ_p , d_p) e para um determinado fluido (ρ_g , μ), as condições fluidodinâmicas serão definidas unicamente pela velocidade do gás U. Apenas o diâmetro e características das bolhas que poderão ser influenciados pelo diâmetro do vaso.

A situação a seguir, com um novo aumento de U, provocará um aumento significativo e brusco na taxa de arraste de material particulado do leito, ou seja, ocorrerá uma expansão do leito, que passa de uma fase densa para uma fase diluída, passando a ocupar todo o volume do vaso ou reator. A velocidade agora é tal que pode arrastar os sólidos para fora do reator, de forma que a massa específica do leito somente poderá ser mantida constante se iniciamos uma alimentação (ou reinjeção) de sólidos no reator. Este regime é o conhecido como de fluidização rápida, ou de leito fluidizado circulante caso ocorra um retorno forçado das partículas ao corpo principal do reator. A porosidade do leito neste momento é superior a 90 %.

Se acima deste regime voltarmos a aumentar U, para uma dada taxa de alimentação de sólidos, a massa específica da suspensão gás-sólido irá diminuir mais ainda até o ponto onde a recirculação interna, natural no próprio regime de fluidização rápida, irá cessar completamente passando as partículas sólidas a serem transportadas num escoamento uniforme, conhecido como transporte em fase diluída (reator de transporte). Trata-se na realidade de um processo clássico de transporte pneumático onde a porosidade do leito é superior a 98 %.

III.3.5 - Diagrama de LI e KWAUK (1980)

Em 1980, contribuído na caracterização dos regimes de fluidização LI e KWAUK [36, 37] apresentaram um diagrama que, apesar de ter sido construído a partir de medidas feitas com pó de óxido de alumínio com diâmetro médio de 54 μ m (grupo A).

A Figura III.7 mostra que a porosidade do leito varia quando a velocidade superficial do gás aumenta, indicando também os pontos de transição entre os regimes já acima identificados. O ponto A representa o ponto de mínima fluidização, **B** o ponto de mínimo borbulhamento, **C** é o início da fluidização rápida e **P** o início do transporte pneumático. A faixa do leito fluidizado rápido está identificada na Figura III.7. Segundo os autores um ponto de inflexão separa a fase densa do fundo do Riser da fase diluída no topo, indicando necessariamente a condição de fluidização rápida

Figura III.7 - Diagrama dos Regimes de Fluidização de Alumina fina

III.3.6 - Diagrama de SQUIRES et alli (1985)

SQUIRES, KWAUK e AVIDAN [38], buscaram realizar uma análise quantitativa dos tipos de contato no escoamento ascendente gás-sólido, caracterizando a transição de cada regime em termos dos parâmetros velocidade do gás U e fração volumétrica de sólidos no leito $(1 - \varepsilon)$.

Num trabalho exaustivo buscaram identificar e integrar, com exemplos aplicados, todos os regimes de fluidização já discutidos nos termos anteriores. Do trabalho resultaram dois diagramas quantitativos aplicáveis para partículas sólidas classificadas como pertencentes aos grupos A (Figura III.8), B e D (Figura III.9) da classificação de GELDART. Também aqui, pode-se observar que o leito fluidizado rápido fica situado entre o leito fluidizado turbulento e o transporte pneumático de fase diluída.

Figura III.8 - Diagrama ilustrativo dos regimes de fluidização para partículas finas, $dp = 100 \ \mu m$ (Grupo A), segundo SQUIRES *et alli* [36]

Figura III.9 - Diagrama ilustrativo dos Regimes de Fluidização de sólidos dos Grupos B e D, segundo SQUIRES et alli [36]

III.3.7 - Diagrama de GRACE (1986)

GRACE [27], também colaborando com os esforços de bem caracterizar os regimes de fluidização, apresentou um importante diagrama de classificação do escoamento gás-sólido. Tomando como ponto de partida os trabalhos de REH [32], GRACE aplicou análise dimensional para criar um mapa das transições entre os regimes fluidodinâmicos.

Assumindo um sistema ideal de partículas sólidas uniformes de diâmetro d_p e massa específica ρ_p , que é posto em contato com um gás ascendente, de viscosidade μ e massa específica ρ_g , em condições de regime estabelecido e na ausência de forças inter-partículas e efeitos de parede, obteve uma equação dimensional para a porosidade que pode ser escrita na forma:

$$\varepsilon = f(\rho_g, g, \Delta \rho, \mu, d_p, U)$$
 onde $\Delta \rho = \rho_p - \rho_g$ III.18

GRACE desconsiderou outras variáveis como o diâmetro do vaso, a geometria do distribuidor, massa de material sólido, distribuição granulométrica, forma e umidade das partículas, ficando assim com sete quantidades e três dimensões básicas na equação III.18. Trabalhando dimensionalmente a expressão obteve quatro grupos adimensionais conhecidos, a saber:

$$\varepsilon = f(d_p^*, U^*, \frac{\Delta \rho}{\rho_g})$$
 III.19

$$d_{p}^{*} = d_{p} \frac{\left[\rho_{g} g \Delta \rho\right]^{\frac{1}{3}}}{\mu^{2}} \qquad \text{III.20}$$

Os grupos $d_p^* \in U^*$ são particularmente úteis pois cada um envolve $d_p \in U$ na primeira potência e parâmetros invariáveis do sistema gás-sólido, bem como

podem ser relacionados com grupos adimensionais bastante conhecidos, a saber:

$$Ar = \rho_g \frac{\Delta \rho_g d_p^3}{\mu^2} = (d_p^*)^3 \qquad \text{III.22}$$

$$\operatorname{Re}_{p} = \frac{\rho d_{p} U}{\mu} = d_{p}^{*} U^{*} \qquad \text{III.23}$$

$$Fr = \frac{\rho U^2}{gd_p \Delta \rho} = \frac{U^{*2}}{d_p^*}$$
III.24

GRACE demonstrou uma similaridade entre os grupos $U^* e d_p^*$ com os sistemas líquido-sólido e suspensões gás-sólido, propondo o Diagrama da Figura

onde

e

е

III.10 específico para um tamanho de coluna. O Diagrama apresenta ainda os limites aproximados para sua aplicação com sólidos classificados nos grupos A, B, C e D de GERDART.

Figura III.10 - Diagrama de GRACE para o escoamento gás-sólido [27]

III.4 - TRANSIÇÕES NO ESCOAMENTO GÁS-SÓLIDO

III.4.1 - Definição de LFR e descrição de seus limites

Como podemos concluir da revisão dos principais diagramas de caracterização dos regimes de fluidização, o Leito Fluidizado Rápido fica delimitado entre o chamado Leito Fluidizado Turbulento, de fase densa, e o transporte pneumático de fase diluída. Já a identificação clara e precisa destes limites tem sido motivo de outra grande controvérsia na literatura.

Quando lidamos com situações bem restritas, estes limites podem até serem definidos de forma clara e didática. É o caso particular apresentado por TAKAUCHI *et alli* [39] que em 1986 propuseram um diagrama de fases específico para partículas de catalisador de um FCC realizando medidas em um equipamento de 0,10 m de diâmetro interno e 5,5 m de altura.

Neste trabalho, que passou a ser uma espécie de referência e um ponto de partida nesta complexa discussão da transição, o catalisador para craqueamento catalítico que foi utilizado pelos autores, possuía as seguintes características: $d_p = 0,057$ mm; $U_{mf} = 0,02$ m/s; $V_t = 0,16$ m/s e $\rho_p = 516$ kg/m³. A faixa de velocidades utilizada esteve entre 1,32 e 3,56 m/s e o fluxo de recirculação de sólidos entre 5,3 e 79,4 kg/m²s. A Figura III.11 mostra o resultado obtido quando foram colocamos num gráfico o fluxo de sólidos (G_s) contra a velocidade superficial do ar (U).

Figura III.11 - Diagrama quantitativo Regimes Operacionais de Catalisador de FCC.

Do ponto de vista experimental, a região de operação de um LFR num sistema gás-sólido pode ser alcançada de duas formas distintas:

- a) partindo do leito fluidizado borbulhante aumentar U;
- b) partindo do transporte pneumático de fase diluída diminuir U;

Enquanto U for menor que a velocidade terminal das partículas, não ocorrerá arraste significativo das partículas, normalmente dos grupos A e C de GELDART, pois o arraste neste caso só ocorrerá quando U for várias vezes maior que V_t , sendo que para partículas mais grosseiras, grupos B e D, este fenômeno ocorrerá só com velocidade próxima de V_t .

Com o aumento de U ocorrerá então uma expansão do leito que passará a ocupar todo o volume da coluna do vaso, como na Figura I.1, não podendo mais ser possível identificar o "leito" propriamente dito, mas uma suspensão de partículas com concentração de sólidos maior na base da coluna, reduzindo-se ao longo da altura. A partir de agora será necessário uma alimentação significativa de sólidos ao leito, G_s , a fim de mantê-lo estável. A massa específica da suspensão passa a não mais depender apenas da velocidade do gás mas também da taxa de alimentação de sólidos G_s , sendo esta crescente com o aumento de G_s ou com a redução de U.

Já no segundo caso, podemos imaginar agora um sólido particulado finamente granulado (grupo A GELDART) sendo arrastado por uma corrente de gás. Se U é suficientemente elevada e a taxa de alimentação G_s é baixa, a massa específica da suspensão será uniforme ao longo da coluna do transportador e pode ser inclusive calculada, considerando-se que os sólidos se deslocam a uma velocidade próxima da diferença entre U e V_t. Este regime é denominado de transporte pneumático de fase diluída, cuja fração de vazios é maior que 98%.

Se ocorrer agora uma redução de U haverá uma transição a partir de um ponto onde os sólidos não poderão mais ser transportados como suspensão diluída de massa específica constante, isto porque, aparecerá uma fase mais densa na base da coluna e uma fase mais diluída sobre esta primeira. Esta é a condição de LFR, onde ocorrerá uma recirculação interna de sólidos, conforme esquema proposto por RHODES *et alli* [40] e ilustrada na Figura III.12.

Pela Figura III.12 a concentração de sólidos pode variar portanto, não só com a altura do leito mas também com a direção radial. O movimento dos sólidos irá dividir o transportador em duas regiões bem distintas; uma central, por onde os sólidos se movimentam de forma ascendente e outra anelar, junto a parede do tubo, por onde parte dos sólidos retornam com movimento descendente. Este movimento é explicado por alguns autores pela existência de uma elevada velocidade relativa (slip velocity) gás-sólido, bem como pela formação de pacotes de partículas os "clusters", que são responsáveis pela queda (recirculação) do material junto a parede. Esta movimentação, denominada de circulação interna de sólidos, é acentuada na região inferior do leito e pequena ou quase nula na parte superior do transportador.

RHODES e GELDART [41] sugeriram a seguinte definição para o regime de LFR: "Fluidização Rápida é o regime de operação de um Leito Fluidizado Circulante onde a velocidade do gás é suficientemente alta para tornar o sistema relativamente insensível às variações de velocidade do gás e da taxa de recirculação de sólidos."

Figura III.12 - Esquema ilustrativo dos movimentos dos sólidos em um Leito Fluidizado Circulante segundo RHODES et alli [40]

No primeiro caso, partindo de um leito borbulhante, um acréscimo gradual de U provoca um acréscimo gradual de agitação do leito, alcançando-se o regime conhecido como de fluidização turbulenta, com a formação de canais e aparecimento de "slugs" que se movimentam no meio da emulsão gás-sólido. A superfície do leito, até então bem definida, torna-se mais difusa, não podendo ser definida com clareza.

MATSEN [42,43], acrescenta a este conceito o que ele chama de critério principal de identificação do leito rápido, ou seja: o LFR deve conter, em equilíbrio, uma fase densa estável e uma fase diluída transportável.

KARRI e KNOWTON [44], em recente trabalho de revisão sobre as definições de Leito Rápido e com base nos dados da literatura, concluíram que a região de fluidização rápida pode ser definida como a existente entre as duas transições de velocidades (para um dado fluxo de recirculação de sólidos), entre os limites das regiões de fluidização de fase densa e o do transporte pneumático de fase diluída. As linhas de velocidades de colapso (ou "choking") de cada regime, onde as velocidades no ponto de mínima perda de carga sobre o diagrama de fases demarcam as regiões estão mostradas na Fig. III.13, de forma muito semelhante ao diagrama proposto por HIRAMA E TAKEUCHI [45].

Velocidade Superficial do Gás, U [m/s]

III.4.2 - Transição e Colapso (Choking) de um Leito Rápido

Um conceito que tem causado grande controvérsia entre os pesquisadores é o fenômeno do colapso do leito. A descrição do fenômeno também varia muito e com freqüência é ambígua.

Segundo YERUSCHALMI e AVIDAN [3], alguns autores confundem o fenômeno inclusive com a recirculação interna do leito rápido, uma de suas características. Para um engenheiro de operação, o "choking" é um fenômeno indesejável pois é um regime instável e com grandes flutuações nas faixas de pressões, característico da transição de regimes estáveis, como por exemplo, do transporte pneumático de fase diluída para a condição de leito fluidizado com "slugging".

Por aspectos históricos, a palavra "choking" tem sido usada para caracterizar o colapso do transporte pneumático de fase diluída quando, por negligência, imperícia ou descuido operacional, este transporte é executado em condições próximas à crítica, representada pela linha ABC da Figura III.11. Naquelas proximidades, se ocorrer uma pequena queda da velocidade do gás ou um pequeno acréscimo da taxa de recirculação (alimentação) de sólidos, a suspensão terá um aumento de concentração, ocorrendo em paralelo uma forte flutuação das medidas de pressão do leito. Esta súbita mudança de regime de fase diluída para fase densa, é igualmente chamada de "choking". Da transição da fase diluída poderá surgir uma fase densa com "slug" ou turbulência com os sólidos formando "clusters" e fluxo descendente num anel junto à parede e ascendente no centro do tubo [46]. Nem todos os sistemas gás-sólido exibem o fenômeno de "choking". MATSEN [42] aponta outros fatores para que o sistema gás-sólido exiba o fenômeno de "choking" a baixas taxas de fluxo de sólidos e não a altas taxas.

Na Figura III.14, CHONG *et alli* [46] apresentam um esquema transacional para os diferentes tipos de transição de regimes que podem ocorrer partindo-se de um transporte pneumático de fase diluída, podendo ocorrer "choking" brusco ou de forma suave (também dita difusa).

De outra parte, estando agora no regime de fluidização rápida, caracterizada pela existência de duas fases em equilíbrio (densa na base e diluída no topo), pode-se verificar uma mudança de regime ou "choking". No primeiro caso poderíamos, mantida uma taxa de sólidos constante, através de um aumento gradual de velocidade do gás U, diminuir a fase densa até esta desaparecer completamente, caracterizando-se aí a troca para o regime de transporte pneumático de fase diluída. Se por outro lado, mantida a taxa de sólidos constante, reduzimos gradualmente a velocidade do gás, haverá um crescimento da fase densa até um ponto de colapso total do regime pelo enchimento completo da coluna.

YERUSHALMI *et alli* [3, 33, 47], apresentaram uma representação gráfica qualitativa bastante didática sobre o fenômeno. A Figura III.15, a seguir, ilustra os dados obtidos para a transição de um leito rápido para transporte pneumático de fase diluída. A condição de "choking" fica perfeitamente caracterizada quando pela redução gradual da velocidade do gás, num dado fluxo de sólidos constante, chegamos a um ponto onde começará a aparecer duas fases. A curva pontilhada OAP representa a linha de saturação da capacidade de carregamento de sólidos para todas as velocidades abaixo da velocidade de transporte, U_{tr} (V_t).

Figura III.15 - Representação qualitativa da medida do gradiente de pressão na base de uma coluna em função do fluxo de sólidos G_s.

Da Figura III.15 concluímos ainda que, se a taxa G_s é menor do que a saturação da capacidade de transporte (G_s , Tr) na velocidade de transporte correspondente, então a velocidade do gás está baixa e o "choking" irá ocorrer colapsando os sólidos em suspensão.

 $A \ velocidade \ de \ ``choking'' \ será \ a \ velocidade \ aquela \ em \ que \ G_s$ está na saturação da capacidade de transporte e as características da suspensão exatamente antes do colapso estão representadas por um ponto na curva pontilhada OAP verticalmente acima de $G_s.$

Ocorrendo colapso, os sólidos formarão um leito fluidizado na base do tubo. Segundo YERUSHALMI as características deste leito fluidizado, o qual

tem agora um fluxo ascendente, irá depender da velocidade relativa U - V_s . Se a velocidade relativa for menor do que velocidade superficial do gás no regime turbulento, o leito apresentará "slugs". Se a velocidade relativa estiver longe deste ponto, o leito obtido estará no regime turbulento. Num último caso o decréscimo adicional na velocidade do gás irá conduzir à condição de "slugging" quando a velocidade relativa torna-se menor do que a V_t .

RHODES e GELDART [41] propuseram um Diagrama $\Delta P/L$ - G_S - U, Figura III.16, onde partindo-se do ponto A1, na região de transporte pneumático em pequeno acréscimo da taxa de alimentação de sólidos provocará uma abrupta elevação de $\Delta P/L$, com a formação de um leito que cresce ao longo da coluna. O leito formado será do tipo "slugging" se o diâmetro da coluna for pequeno e a formação do leito irá ocorrer com grandes flutuações de pressão. Esta é uma característica do "choking" do transporte pneumático. Na região de baixa velocidade o sistema é muito sensível a pequenas variações de G_S e U.

Figura III.16 - Diagrama $\Delta P/L$ - G_s-U típico para sólidos do grupo A de GELDART [18]

III.4.3 - Diagrama de MATSEN (1982)

MATSEN [42] preparou um Diagrama preocupado em mostrar a "linha de transição" (ou linha de "choking") nas interfaces dos tipos de fluidização. Partindo do conceito de velocidade relativa U_s ("slip velocity") e utilizando equações consideradas satisfatórias pela literatura para os diversos tipos de fluidização, MATSEN chegou a um Diagrama que delimita a fase densa da diluída por uma "linha de choking".

Como a velocidade relativa U_s é independente da taxa de sólido e do fluxo de gás, para caso limite onde o tamanho das partículas é uniforme e os efeitos de aceleração das partículas e atrito na parede podem ser negligenciáveis, o que convenhamos são simplificações aceitáveis em particular para equipamentos comerciais

de grande diâmetro e baixa velocidade, podemos expressar a velocidade relativa de um sistema com sendo:

$$U_{s} = \frac{U}{\varepsilon} - \frac{G_{s}}{\rho_{p}(1-\varepsilon)}$$
 III.25

Rescrevendo agora a Equação III.25 vem:

$$\frac{G_s}{\rho_p} = \frac{1-\varepsilon}{\varepsilon} (U-\varepsilon \ U_s)$$
 III.26

Como U_s é função somente de ε , um gráfico G_s/ ρ_p em função de U consistirá de uma família de linhas retas para ε constante, tendo por inclinação (1- ε)/ ε e interseção ε V_s. Aplicando-se agora o conceito para cada tipo de fluidização teremos:

a) Fluidização particulada, utilizando a equação de RICHARDSON-ZAKI [42, 48];

$$U = \varepsilon^{4,65} V_1$$
 III.27

$$U_{a} = \varepsilon^{3,65} V_{t} \qquad \qquad \text{III.28}$$

ou

49];

b) Fluidização densa (borbulhante), equação de MATSEN [42,

$$\frac{\rho_{mf}}{\rho_m} = 1 + \frac{U - U_{mf} - (\varepsilon_{mf}G_s / \rho_{mf})}{U_b + G_s / \rho_{mf}}$$
 III.29

rearranjando obteremos:

$$\frac{G_s}{\rho_p} = \frac{1-\varepsilon}{\varepsilon} \left[U - U_{mf} - U_b \left(\frac{\varepsilon - \varepsilon_{mf}}{1 - \varepsilon} \right) \right]$$
 III.30

onde U_b é a velocidade de uma bolha isolada, que pode ser calculada por $U_b = 0.35\sqrt{g D}$, para pequenos diâmetros do Riser e $U_b = 0.71\sqrt{g D_b}$ para grandes diâmetros[19]. Finalmente obtemos:

$$U_{s} = \frac{U_{b}}{\varepsilon} \left(\frac{\varepsilon - \varepsilon_{mf}}{1 - \varepsilon} \right) + \frac{U_{mf}}{\varepsilon}$$
 III.31

Figura III.17 - Diagrama do escoamento ascendente gás-sólido de MATSEN [42]

c) No fluxo em fase diluída ($\epsilon > 0,99$) as partículas se comportam individualmente e a velocidade de escape torna-se igual à velocidade terminal;

d) Para sedimentação sólido-líquido temos:

$$U_s/V_t = 1$$
 (1- ϵ) < 0,0003 III.32

e) Para arraste gás-sólido é sugerida a seguinte expressão

empírica:

$$U_s/V_t = 10.8 (1 - \epsilon) 0.293$$
 (1 - ϵ) > 0.0003 III.33

O resultado gráfico é mostrado na Figura III.17 que representa uma generalização adimensional do transporte de sólido, velocidade de gás e porosidade para o arrastamento e o "choking" do transporte pneumático diluído e denso e fluxo borbulhante. A região do transporte pneumático diluído localiza-se no lado direito e abaixo do mapa, ao passo que a região borbulhante densa esta do lado esquerdo da Figura III.17. A curva de arrastamento e "choking" é a linha que separa as regiões densas das diluídas.

III.4.4 - Correlações para a Velocidade de Choking

O conhecimento da condição de "choking" é muito importante para a execução de projeto de transportadores pneumáticos, reatores de arraste e de leito fluidizado rápido. Como o mecanismo do "choking" ainda não é perfeitamente compreendido, um grande número de equações empíricas são usadas para sua predição. CHONG e LEUNG [46] apresentaram uma revisão minuciosa sobre este tema listando as equações mais importantes e indicadas, conforme o tipo de sólidos classificados segundo GELDART [18]. A Tabela III.1 apresenta as principais equações, referências bibliográficas, autores e o tipo de partículas que se aplicam as expressões.

Tabela III.1 - Principais Equações para o Cálculo da Velocidade de Choking				
AUTOR(ES)	REF.	EXPRESSÃO	\mathbb{N}^{0}	Sólido Tipo
	BIBL.	MATEMÁTICA	Equação	Grupo [18]
LEUNG et alli	50	$\frac{U_c}{V_t} = 32,3 \frac{U}{V_t} + 0,97 \qquad (\varepsilon = 0,97)$	III.34	B e D
YOUSFI e	51, 52	$\frac{U_c}{\left(gd_p\right)^{0.5}} = 32 \operatorname{Re} p^{-0.06} \left(\frac{W_s}{W_g}\right)^{0.23}$	III.35	
GAU		$\operatorname{Re}_{p} = \frac{\rho_{g} V_{t} d_{p}}{\mu}$	Ш.36	A, B e D
		$U_{\circ} = 1 + \frac{V}{1 - \varepsilon_{\circ}}$	Ш.37	
YANG	53, 54	$\frac{2gD(\varepsilon_{c}^{-4,7}-1)}{(U_{c}-V_{l})} = 6.81 \times 10^{5} \left(\frac{\rho_{g}}{\rho_{s}}\right)^{2,2}$	III.38	D
		assumindo fator de atrito arbitrário igual a 0,01		
PUNWANI et alli	55	$\frac{2gD(\varepsilon_c^{-4,7}-1)}{(U_c-V_t)^2} = 8,743 \times 10^{-3} \rho_g^{0,77}$	III.39	
MATSEN	42	$\frac{U_c}{V_t} = 10,74 \left(\frac{V}{V_t}\right)^{0,227} \text{ para } \frac{U_c}{V_t} > 1,29$	III.40	

III.5 - EQUAÇÕES BÁSICAS DO COMPORTAMENTO FLUIDODINÂMICO DO LFR

Diversos autores têm buscado apresentar uma descrição matemática do leito rápido, partindo das equações básicas de conservação de massa e quantidade de movimento para o gás e partículas. Entretanto, o LFR apresenta características peculiares como grande circulação de sólidos, aceleração das partículas e a presença dos "pacotes" ou aglomerados de partículas ("clusters"), que têm tornado dificil um equacionamento satisfatório e de consenso geral.

No dimensionamento de um sistema gás-sólido, a fim de solucionar o sistema de equações que regem o fenômeno, é fundamental determinar a queda de pressão por unidade de comprimento do vaso, ocorrendo então algumas controvérsias, pois os modelos apresentados na literatura apresentam algumas restrições e limitações. Antes de apresentarmos os principais modelos, vamos relembrar as principais equações de caracterização do LFR.

III.5.1 - Equações Básicas da Fluidodinâmica de um LFR

Partindo da conservação de massa e quantidade de movimento num sistema de gás-sólido concorrente, podemos escrever um sistema de quatro equações, sendo duas de continuidade e duas de quantidade de movimento.

Arbitrando que as variáveis admitem valores positivos no sentido ascendente vertical, sendo a coordenada axial a altura do leito (z), nula no ponto de entrada das partículas no tubo, são assumidas as seguintes hipóteses para escrever as equações, a saber:

a) Escoamento isotérmico;

b) Partículas com forma e diâmetro uniformes;

c) Regime estabelecido; e

d) Escoamento unidimensional.

Aplicando a equação da continuidade ao longo de um tubo para o gás e para o sólido, escrevemos as duas primeiras equações do sistema:

$$\frac{\mathrm{d}}{\mathrm{d}z}\left[(1-\varepsilon)\rho_{\mathrm{s}}V_{\mathrm{p}}\right] = 0 \qquad \qquad \mathrm{III.42}$$

onde U_g e V_p são as velocidades intersticiais locais do gás e do sólido respectivamente, ou seja:

$$U_g = \frac{U}{\varepsilon} = \frac{W_g}{\rho_g A\varepsilon}$$
 III.43

$$V_p = \frac{W_p}{\rho_p A (1-\varepsilon)}$$
 III.44

A terceira expressão que descreve o sistema é obtida através do balanço de quantidade de movimento para o gás e para o sólido. Partindo-se da equação geral do movimento do fluido vem:

$$\epsilon \rho_{g} \frac{DU_{g}}{Dt} = -\nabla P - \vec{m} + \rho_{g} \vec{g} \qquad III.45$$

onde \vec{m} representa a força iterativa entre o sólido e o fluido. Semelhantemente para o sólido escrevemos:

$$(1-\varepsilon)\rho_{p}\frac{DV_{p}}{Dt} = \nabla \cdot \bar{\tau}_{p} + \vec{m} + (1-\varepsilon)\rho_{p}\vec{g} \qquad \text{III.46}$$

onde $\overline{\tau_p}$ é a força de iteração sólido-sólido, pouco conhecida e desprezível no caso de sistemas diluídos. As equações III.45 e III.46 podem ser somadas e assim obtemos:

$$\epsilon \rho_{g} \frac{DU_{g}}{Dt} + (1-\epsilon)\rho_{p} \frac{DV_{p}}{Dt} = -\nabla P + \left[\epsilon \rho_{g} + (1-\epsilon)\rho_{g}\right]\vec{g} \qquad \text{III.47}$$

A equação III.47 passa a ser assim a Equação do Movimento da Mistura. Rescrevendo a equação III.47 para as condições restritas do sistema e acrescentando o termo de atrito da mistura (suspensão) com a parede do tubo (visto não ser um caso ideal) obtemos:

$$\epsilon \rho_{g} U_{g} \frac{dU_{g}}{dz} + (1-\epsilon)\rho_{p} V_{p} \frac{dV_{p}}{dz} = -\frac{dP}{dz} + \epsilon \rho_{g} + \left[(1-\epsilon)\rho_{p}\right]g + F_{w} \qquad \text{III.48}$$

A equação acima ainda pode ser rescrita explicitando-se o termo do perfil de pressões, e obtemos:

$$-\frac{dp}{dz} = \frac{d}{dz} \left[\rho_g \varepsilon U_g^2 + \rho_p (1-\varepsilon) V_p^2 \right] + \left[\varepsilon \rho_g + (1-\varepsilon) \rho_p \right] g + F_w \qquad \text{III.49}$$

Lembrando agora que a perda de carga total de um sistema em LFR é composto de três parcelas: perda de carga devido a suspensão; atrito das partículas com a parede e atrito do gás com a parede, teremos:

$$\frac{dp}{dz} = \frac{dP_{fh}}{dz} + \frac{dP_{fp}}{dz} + \frac{dP_{fg}}{dz}$$
 III.50

Porém o termo F_w da equação III.49 será composto das duas últimas parcelas da equação III.50, isto é:

$$F_w = \frac{dP_{fp}}{dz} + \frac{dP_{fg}}{dz}$$
 III.51

Estas parcelas podem ser calculadas conforme segue:

a) Perda de carga da suspensão gás-sólido:

$$-\frac{dP_{hs}}{dz} = \rho_p g \ (1-\varepsilon)$$
 III.52

b) Queda de pressão devido ao atrito do sólido (baseado em YANG [56]):

$$-\frac{dP_{fp}}{dz} = 0.5 f_p \rho_p (1-\varepsilon) \frac{V_p}{D}$$
 III.53

O fator de atrito da partícula f_p , depende da relação U_g/V_t , podendo ser calculado pelas equações empíricas do transporte pneumático propostas por YANG [56] em 1978.

$$f_p \frac{\varepsilon^3}{(1-\varepsilon)} = 0,0126 \left[(1-\varepsilon) \frac{\operatorname{Re}_t}{\operatorname{Re}_p} \right]^{-0.979} \quad \text{para } \frac{U_g}{V_t} > 1,5 \quad \text{III.54}$$

$$f_p \frac{\varepsilon^3}{(1-\varepsilon)} = 0,0410 \quad \left[(1-\varepsilon) \quad \frac{\operatorname{Re}_t}{\operatorname{Re}_p} \right]^{-1,021} \text{ para } \frac{U_g}{V_t} < 1,5 \qquad \text{III.55}$$

$$Re_{p} = \frac{dp(U_{g} - V_{p})\rho_{g}}{\mu}$$
III.56

$$Re_{t} = \frac{dp V_{t} \rho_{g}}{\mu}$$
 III.57

c) Queda de pressão devido ao atrito do gás com a parede (baseado em SHINGLES [57]) pode ser expresso por:

$$-\frac{dP_{fg}}{dz} = 2\rho_g f_g \frac{U_g^2}{D}$$
 III.58

onde o fator de atrito fg deve ser calculado pela expressão:

onde

e

$$f_{g} = \left[A - \frac{(B - A)^{2}}{(C - 2B + A)}\right]^{-2}$$
 III.59

$$A = -2,0 \log \left[\frac{\sigma/D}{3,7} + \frac{12}{\operatorname{Re}_p}\right]$$
 III.60

$$B = -2,0 \log \left[\frac{\sigma/D}{3,7} + \frac{2,51A}{\operatorname{Re}_p}\right]$$
 III.61

$$C = -2,0 \quad \log \quad \left[\frac{\sigma/D}{3,7} + \frac{2,51D}{\operatorname{Re}_p}\right] \qquad \qquad \text{III.62}$$

onde a grandeza σ é assumida como sendo igual a de d_p.

A última expressão, necessária para resolver nosso sistema, consiste de um balanço energético entre o gás e o sólido existindo muitas controvérsias uma vez que vários autores têm apresentado correlações derivadas de abordagens diferentes, cujas premissas básicas comprometem sua aplicação em sistemas de LFR, onde existe a peculiaridade da grande circulação de sólidos, aceleração de partículas e a presença de aglomerados de partículas.

Uma das formas desta equação, obtida por considerações termodinâmicas, foi proposta por ARASTOOPOUR e GIDASPOW [58] e baseia-se na velocidade relativa gás-sólido. Os autores propuseram a expressão

$$\frac{1}{2}\frac{d}{dz}\left(U_g - V_p\right)^2 = -\frac{F_s}{\rho_p} + \vec{g} \qquad \text{para } \epsilon \ge 0.8 \qquad \text{III.63}$$

onde F_s é a força de arraste exercida pelo gás sobre as partículas por unidade de volume, análoga a \vec{m} na equação III.45 e III.46.

GIDASPOW *et alli* [58, 59, 60, 61] propuseram a seguinte expressão para o cálculo da força de interação sólido-gás F_{S} :

$$F_{s} = \frac{3}{4} \frac{C_{Ds} \rho_{g} (U_{g} - V_{p})^{2} \varepsilon^{-2.65}}{dp}$$
 III.64

onde o coeficiente de arraste do sólido C_{DS} vale:

$$C_{DS} = \frac{24}{\text{Re}_p} [1 + 0.15 \text{ Re}_p^{0.627}] \text{ para } \text{Re}_p < 1000 \text{ III.65}$$

$$C_{DS} = 0,44$$
 para $Re_p > 1000$ III.66

е

Finalmente, o nosso sistema de equações para descrever o escoamento concorrente vertical, tipo um leito fluidizado rápido, será expresso pelas Equações III.41, III.42, III.49 e III.63.

$$\frac{d}{dz} \left[\varepsilon \,\rho_g U_g \right] = 0 \qquad \text{III.41}$$

$$-\frac{dp}{dz} = \frac{d}{dz} \left[\rho_g \varepsilon U_g^2 + \rho_p (1-\varepsilon) V_p^2 \right] + \left[\varepsilon \rho_g + (1-\varepsilon) \rho_p \right] g + F_w \qquad \text{III.49}$$

$$\frac{1}{2}\frac{d}{dz}\left(U_g - V_p\right)^2 = -\frac{F_s}{\rho_p} + \underline{g} \qquad \text{para } \varepsilon \ge 0.8 \qquad \text{III.63}$$

Para solucionarmos o sistema acima proposto, faremos uso das chamadas equações fenomenológicas ou constitutivas, a exemplo da Equação III.64 proposta por ARASTOOPOUR e GIDASPOW [58]. Resta ainda buscar agora expressões capazes de descrever as peculiaridades fluidodinâmicas de um sistema de LFC, mais particularmente, modelos capazes de descrever o perfil axial de porosidade dɛ/dz, sem o que, não será possível resolver as equações do sistema acima proposto. Desta feita, vamos a seguir apresentar os principais modelos já propostos na literatura para a descrição matemática do perfil axial de porosidade (concentração) do LFR.

III.6 - PRINCIPAIS MODELOS FLUIDODINÂMICOS PARA OS PERFIS DE CONCENTRAÇÃO NO LFC

III.6.1 - CONSIDERAÇÕES SOBRE AS VARIÁVEIS RELEVANTES

O perfeito conhecimento dos perfis axiais e radiais de concentração ao longo do Riser (transportador) são fundamentais para um bom dimensionamento e um "scale up" eficaz. Apesar de haverem diversos autores e trabalhos de boa qualidade sobre o assunto, tem se verificado que o problema é bastante complexo tendo em vista o grande número de variáveis envolvidas numa solução geral e abrangente.

Logo que os primeiros modelos fluidodinâmicos foram surgindo, os autores, limitados aos seus equipamentos e faixa de dados, propuseram soluções que desconsideravam outros parâmetros além da velocidade do gás e o fluxo de sólidos. LI e KWAUK em 1980 [36], foram os primeiros a proporem um bom modelo para a distribuição axial da porosidade no leito, sendo seu trabalho ainda válido e usado como ponto de partida por outros autores.

Algum tempo depois, porém, WEINSTEIN *et alli* [62] descobriram que a distribuição longitudinal de porosidade é afetada pela perda de carga do Leito Rápido. RHODES e GELDART [41] em 1985, HARTGE *et alli* [63] em 1985, TAKEUCHI *et alli* [39] em 1986 e outros autores também realizaram vários estudos tratando deste assunto. Entretanto, existem outros parâmetros relacionados com o perfil de porosidade e as relações entre estes são complexas, resultando diferentes pontos de vista nos pesquisadores.

Mais recentemente, GRACE observou que o modelo do perfil em "S", com ponto de inflexão, como proposto por LI e KWAUK [36], dependia e muito da geometria e das condições de operação. Em trabalho publicado em 1990, GRACE [13] mostrou que o perfil padrão fica restrito a uma saída suave com baixa perda de carga onde não ocorre a influência da chamada saída abrupta do Riser. O aumento excessivo da perda de carga na saída do equipamento provoca um aumento de concentração muito significativo na parte superior, alterando assim decisivamente o perfil longitudinal. Outros autores também estudaram a influência da geometria de saída e do diâmetro do leito [45,64,65,66], chegando a conclusões semelhantes.

Buscando sintetizar a bibliografia sobre este tema e destacando os trabalhos de GLICKSMAN *et alli* [67] e BAI *et alli* [65], podemos dizer que as principais variáveis a serem consideradas no estudo de um LFC são:

a) Velocidade do gás e Taxa de Recirculação de sólidos - O fluxo de gás e a taxa de circulação de sólidos são os dois principais parâmetros que influenciam o perfil axial de porosidade. No Capítulo V, reservada aos nossos resultados, serão apresentados perfis de concentração da mistura gás-sólidos ao longo do transportador. Com velocidade constante e um determinado tipo de sólido, observaremos que um acréscimo na taxa de circulação de sólidos, Gs, propiciará um crescimento na concentração e o crescimento do gradiente de concentração em toda coluna. Estes resultados concordam com a literatura [65]. Por outro lado, quando a taxa de circulação é fixa, um aumento do fluxo de gás resulta numa redução no gradiente de concentração e uma redução da diferença de concentração entre as seções do topo e o fundo da coluna. Para altas velocidades, a concentração na coluna irá se aproximar da concentração da saída e o sistema entra no regime de transporte pneumático diluído.

b) Influência do diâmetro e densidade das partículas - Foi observado que quanto maior for o diâmetro médio da partícula maior será o gradiente de concentração, quando comparado com um leito com diâmetro médio menor, ocorrendo uma alta densidade na base do leito e uma baixa densidade na parte superior do Riser.

c) Influência do diâmetro do leito - Outro parâmetro relevante ao perfil de concentração é o diâmetro do Riser. BAI *et alli* [65] apresentam uma compilação de resultados mostrando que a concentração axial de sólidos, nas mesmas condições operacionais, é maior em transportadores de pequeno diâmetro, tornando-se mais uniformes e menores à medida em que o diâmetro do equipamento aumenta.

d) Influência da estrutura da saída do Riser - A influência dos efeitos da saída dos Riser somente passou a ser observada e analisada mais recentemente. GRACE [13] foi quem primeiro levantou o problema mostrando que, nas mesmas condições operacionais, uma saída abrupta provocava um aumento da concentração de sólidos ao longo do transportador e um aumento substancial de concentração próxima à saída do equipamento quando comparada com uma saída de baixa perda de carga. Ele chegou a importante conclusão de que os perfis axiais, oriundo de equipamentos com saídas abruptas (grande perda de carga), deformavam o perfil axial em forma de "S" proposto por LI e KWAUK, pelo acúmulo de material na região superior do leito.

Figura III. 18 - Efeito da geometria da saída na densidade aparente da mistura. Dados obtidos de um Riser com D = 0,152 m; 9,0 m altura; Gs = 73 kg/m².s; $U = 7,1 \text{ m/s}; \text{ dp} = 177 \mu\text{m}; e \rho_s = 2650 \text{ kg/m}^3.$

A Figura III.18 apresenta os perfis obtidos por GRACE, e a Figura III.19 apresenta um esquema do equipamento utilizado em seus estudos. BAI *et alli* [65] mais tarde também estudaram este problema, e demonstraram que o perfil "S" acabava se transformando em um perfil "C", no mesmo equipamento e em condições operacionais semelhantes, tamanha a influência deste parâmetro na composição do perfil. HIRAMA *et alli* [45], num estudo detalhado com diversos tipos de saídas, mostraram que este parâmetro, desconsiderado pelos principais modelos fluidodinâmicos, tem relevância significativa na composição dos perfis, ao ponto de PATIENCE *et alli* [66] afirmarem que somente é possível ignorar os efeitos de saída sobre os perfis de concentração de sólidos em Risers com alturas superiores a 40 m. GLIKSMAN *et alli* [67] chegaram a conclusões similares em seus estudos com um Riser de D = 0,152 m e 7,3 m de altura.

Figura III.19 - Esquema básico do equipamento de GRACE [13], onde foram realizados estudos com saídas suaves e abruptas.

e) Influência da geometria de entrada do Riser - BAI *et alli* [65] também discutem a questão das restrições colocadas junto ao retorno (alimentação) de sólidos junto a base de um LFC. Eles mostraram que um controle no retorno de sólidos indicaram uma alteração nos perfis axiais de concentração na base do Riser, sendo proporcional ao volume de sólidos injetados. Já o perfil localizado na parte superior do Riser apresentou apenas uma leve influência do efeito da restrição de entrada.

f) Influência da massa de sólidos no equipamento - BAI *et alli* [65] apresentaram uma discussão, que também não é considerada nos principais modelos fluidodinâmicos, da quantidade de material que esta em circulação no LFC. Os autores mostraram que o ponto de inflexão do perfil "S" fica substancialmente influenciado pelo volume de sólidos processados, elevando o ponto de inflexão a medida em que o ocorre um aumento do quantidade de sólidos. Entretanto, a porosidade do leito, acima da zona de fase densa permanece praticamente inalterada com o aumento da quantidade de sólidos.

g) Influência da altura do Riser - Concluindo, BAI *et alli* [65] completaram seus estudos mostrando que a influência da altura do Riser é fundamental na distribuição de concentração de sólidos ao longo do leito, pois podem mudar o ponto de inflexão, e também o valores da densidade aparente da mistura ao longo do transportador.

Ao final desta análise seria importante ressaltar os estudos de GLICKSMAN *et alli* [67], que também listaram as diversas variáveis relevantes no estudo de modelos fluidodinâmicos sob a forma de um estudo dimensional, propondo que um modelo fluidodinâmico capaz de levar em considerações todas as variáveis relevantes e fazer cálculos de similaridade em projetos e "scale up" deveriam conter as seguintes variáveis e respeitar a seguinte forma:

$$\frac{\rho_s}{\rho}, \frac{\rho_s U d_p}{\mu}, \frac{U^2}{gD}, \frac{L}{D}, \frac{d_p}{D}, \frac{W_s}{\rho_s U D^2}, geometria \qquad \text{III.68}$$

III.6.2 - TEORIA DOS "CLUSTERS"

Ainda antes de entrarmos nos modelos fluidodinâmicos, propostos para descrever os perfis de concentração de um LFC, seria importante analisar a teoria dos "clusters" ou aglomerados de partículas.

Conforme vimos, um LFC é caracterizado, entre outras coisas, por apresentar uma circulação interna de sólidos. A Figura III.20 apresenta um perfil parcial de concentração de sólidos característico de nossas operações, mostrando as duas correntes de sólidos: uma ascendente, cujo máximo tende a ocorrer no centro do Riser, e uma descendente, onde o máximo sempre ocorre junto a parede e cujo mínimo é sempre zero no centro do transportador. Já a Figura III.21 mostra três perfis radiais totais (soma dos fluxos ascendente e descendente) em três alturas diferentes do Riser.

Raio do Riser (m)

Figura III.20 - Perfil radial parcial (sonda B) da operação AR2U8G50, mostrando o fluxo ascendente e descendente

Considerando que a velocidade de operação do LFR está situada numa faixa até dez vezes maior que a velocidade terminal das partículas individuais que compõem o leito [68], era de se esperar que todo o leito fosse literalmente arrastado até o ponto de não existir nenhuma partícula no transportador. Como então se justifica a existência de partículas para manterem o leito?

Figura III.21 - Perfis radiais de concentração (total) de sólido em três alturas diferentes do transportador

As observações experimentais do fenômeno mostram que, apesar de haver uma fração de sólidos carregada pela força de atrito do gás, uma outra parte permanece no transportador graças ao fluxo de retorno de sólidos junto à parede. Este fenômeno somente é possível de explicação com a aceitação do aparecimento dos chamados cachos (ou grupos) de partículas, os "clusters", na região do topo do transportador. Sem esta premissa, o modelo fluidodinâmico ficaria incompleto, motivo pelo qual, os estudos iniciais os admitiram como teoria, mas hoje porém, sua existência já foi comprovada e os estudos sobre sua natureza, tamanho, formação, características, etc., já tem sido assunto de diversas teses e publicações [15, 68, 69, 70].

YERUSHALMI *et alli* [35] foram os primeiros a aplicarem o conceito em 1978. MATSEN [42] em 1982 usou o conceito para analisar o colapso e os mecanismos de carregamento das partículas no leito. Uma teoria quantitativa de formação dos "clusters" entretanto, foi proposta pela primeira vez por CAPES [71], em 1974, para aplicação em fluidização de partículas finas. Ele partiu do conceito de formação de flocos durante o processo de sedimentação proposto por SCOTT [72], em 1968, e modificou a equação de RICHARDSON e ZAKI [48], incluindo o conceito de porosidade efetiva.

A porosidade efetiva ε_e , é aquela que considera somente o espaço vazio entre os aglomerados (clusters), ao passo que ε , a porosidade aparente da mistura, inclui também o espaço vazio entre as partículas formadoras do "cluster". A grandeza ficou definida pela expressão:

$$\frac{U}{U_t} = \varepsilon_e^n = \left[1 - k\left(1 - \varepsilon\right)\right]^n \qquad \text{III.69}$$

onde k é o volume de clusters por unidade de volume de sólido. YANG [73] em 1984, partindo deste ponto, propôs correlações empíricas para o cálculo das transições entre os regimes de fluidização borbulhante e turbulenta.

Com a formação dos "clusters" no topo do Riser, este agrupamento de partículas passa a se comportar como uma única partícula, de tal forma que o tamanho médio efetivo e a densidade destes "clusters" possuem uma "velocidade terminal do cluster" maior que a velocidade superficial do leito [03, 68]. Desta forma o cluster passa a ter sua força peso superior à força de atrito do gás, justificando a sua queda junto a parede do tubo, local onde o atrito da corrente ascendente é menor, a ponto de ser considerada nula em alguns modelos fluidodinâmicos.

A teoria dos "clusters" abre assim novas possibilidades e formas de definição ao LFR. HORIO [15], por exemplo, afirma que a fluidização rápida deve satisfazer duas condições:

a) O leito deve conter os "clusters";

b) Os "clusters" devem ser suficientemente pequenos a ponto que seu peso possa ser suportado pela fluxo de gás ao seu redor e suficientemente grande para que não sejam imediatamente arrastados pelo fluxo de gás ascendente.

O mesmo autor propõe a seguinte expressão para definir a fluidização rápida com base nesta teoria:

"A fluidização rápida é um suspensão onde a força gravitacional sobre o cluster é compensada pela força de arraste. Em outras palavras, o leito fluidizado rápido é um leito de fluidização de clusters" [24].

HORIO [15], mostrou que esta suspensão somente ocorre no regime de fluidização rápida, não ocorrendo no regime de fluidização turbulenta, mostrando ser este uma característica própria do regime. O próprio modelo "coreannulus" somente tem sentido com a existência dos "clusters".

Utilizando-se de métodos sofisticados, hoje já existem informações sobre a estrutura e a natureza dos "clusters". HORIO *et alli* [15, 69], utilizando uma sonda de fibra ótica, fizeram estudos sobre a influência da velocidade no tamanho do "cluster" e da porosidade do agrupamento. MARZOCCHELLA *et alli* [70], utilizaram um câmara para fazer uma análise do sistema em movimento, e estudaram as modificações dos "cluster" em função das propriedades dos sólidos e da queda de velocidade. A principais conclusões sobre estes estudos específicos foram:

a) O tamanho médio do "cluster" é função da velocidade do gás tal que o comprimento diminui com o crescimento da velocidade;

b) A diferença da porosidade média do "cluster" em diferentes velocidades é pequena, de onde se conclui que a porosidade na fase "cluster" ϵ_{cl} , é independente do tamanho do "cluster";

c) As grandezas características dos "clusters" são mensuráveis e os autores propuseram até algumas expressões para o cálculo destas grandezas.

d) A forma original dos "clusters" é circular, seguindo-se uma forma elíptica, o aparecimento de frente de ondas cuja amplitude cresce com a altura do leito;

e) As modificações da forma e o colapso dos "clusters" depende das propriedades dos sólidos que os formam e da velocidade de queda, de tal forma que é melhor estudar seus comportamentos por Grupos de partículas;

e1) Os "clusters" formados por partículas do Grupo A caem normalmente como corpos rígidos, devido à grande força entre partículas;

e2) Os "clusters", oriundos de partículas dos Grupos A e B, podem ser considerados corpos impermeáveis ao gás, devido ao pequeno tamanho das partículas;

e3) Os "clusters", oriundos de partículas do Grupo D, são caracterizados pelo grande fluxo interno de gás, devido à larga faixa granulométrica e baixo dP/dz do leito.

III.6.3 - MODELOS PARA PERFIS AXIAIS DE CONCENTRAÇÃO DE SÓLIDOS

Em ordem cronológica, os principais modelos propostos para descrever e estrutura de um leito rápido e o perfil de concentração (ou porosidade) de sólidos ao longo da altura do transportador, fundamentais para a solução do sistema de equações que regem um LFC, são os seguintes

III.6.3.1 - MODELO "CORE-ANNULUS" (1973)

Um dois mais importantes modelos estruturais do LFC teve origem nos estudos de NAKAMURA e CAPES sobre o transporte pneumático vertical. Em 1973 os autores publicaram um trabalho [74] onde buscavam explicar o porque do retorno, junto às paredes do tubo, de parte do material transportado, visto que a velocidade de transporte era superior a velocidade terminal das partículas.

A literatura na época sugeria a existência de forças eletrostáticas, porém os autores propuseram, pela primeira vez, um modelo baseado nos efeitos de fricção das partículas com as paredes e recirculação de partículas, sugerindo a existência de duas regiões distintas no transportador: uma central ascendente e uma anular descendente. A Figura III.22 ilustra o esquema proposto na época pelos autores.

Figura III.22 - Representação das variáveis no modelo de fluxo anular "core-annulus"

Escrevendo as equações do balanço de quantidade de movimento para as partículas e para o fluido nas duas fases, desprezando o atrito entre as duas regiões, e as perdas por fricção devido à força da gravidade, os autores chegaram, com o auxílio de dados experimentais, a uma expressão que relaciona as variáveis relevantes do problema:

$$\frac{U}{V_t} = \alpha^2 \varepsilon_c^n + (1 - \alpha^2) \varepsilon_a^n + \frac{\left\{ \left[\varepsilon_c \left(1 - \varepsilon_a \right) + \kappa \left(\varepsilon_c - \varepsilon_a \right) \right] \right\}}{\left\{ (1 - \varepsilon_c) \left(1 - \varepsilon_a \right) \right\} \frac{V}{V_t}} \qquad \text{III.70}$$

A Equação III.70 foi resolvida com auxílio de informações adicionais obtidas de dados experimentais e assumindo a condição de perda de carga mínima no transportador, tornando-se assim o primeiro trabalho a propor um escoamento com duas regiões.

III.6.3.2 - MODELO DE FLUXO ANULAR COM CLUSTERS

YERUSHALMI *et alli* [35], partindo dos trabalhos de NAKAMURA e CAPES [71, 74], propuseram que o modelo de duas regiões no transportador era devido à formação dos "clusters" no topo do transportador. Assumindo que estes aglomerados tinham uma forma esférica e que a fração de espaço livre entre os "clusters", ε_e , satisfazia a equação de RICHARDSON-ZAKI, ampliaram a teoria de NAKAMURA e CAPES propondo uma expressão para o cálculo do diâmetro efetivo dos clusters, d_{el}:

$$d_{cl} = \frac{\left(\frac{3}{4}\right) \left(\frac{\rho_g}{\rho_p}\right) \left[\frac{U}{\varepsilon_e - V / (1 - \varepsilon)}\right]^2}{\varepsilon_e^{2n} \varepsilon_{p,cl}} C_{Ds} \qquad \text{III.71}$$

Assumindo que as suspensões no centro e no ânulo são de diferentes concentrações, porém homogêneas, propuseram uma expressão para o cálculo da espessura, $\alpha = d_c/D$, tal que:

$$1 - \alpha^{2} = \left[\lambda \left(1 - \varepsilon_{c}\right)\left(1 - \varepsilon_{a}\right)\left(-U + \varepsilon_{c}^{n} + \frac{\varepsilon_{c}V}{1 - \varepsilon_{c}}\right)\right]^{0.5}$$
 III.72

onde $\lambda = 2 CU_t/gD$ e C = 0,03 m/s.

III.6.3.3 - MODELO DE FLUXO ANULAR HOMOGÊNEO DE "CLUSTERS" ESFÉRICOS

HORIO *et alli* [69] em 1988, examinando os modelos existente e com o auxílio de um analisador de fluxo de fibras óticas, concluíram que a estrutura de um fluxo anular não pode ser rigorosamente explicada sem levar em conta a presença dos "clusters". Seus cálculos mostraram que as Equações III.71 e III.72, desenvolvidas anteriormente, não se aplicavam amplamente, pois apresentaram resultados inconsistentes com seus experimentos, mostrando a necessidade de ajustar o modelo de NAKAMURA e CAPES.

Assumindo que os "clusters" são partículas esféricas de diâmetro d_{cl} e que contêm partículas cuja fração volumétrica é $\varepsilon_{p,cl}$, propuseram uma nova expressão para o cálculo da porosidade efetiva ε_e no "cluster":

 $1 - \varepsilon_{e} = \left(\frac{1 - \varepsilon}{\varepsilon_{p,cl}}\right)$ III.73

Substituindo o valor de ϵ_e na fase "cluster" e ϵ_e na fase anular na equação III.72 e usando a velocidade terminar do "cluster" $U_{t,cl}$ no lugar de U_t , demonstraram, com seus dados experimentais, que o raio da região central pode ser predito por modelos de suspensão de "clusters" esféricos para $\epsilon_{p,cl} = 0,2$ a 0,3.

HORIO [24] também desenvolveu algumas expressões necessárias à descrição de um LFC com base no Modelo de Fluxo Anular Homogêneo com "Clusters" Esféricos. LI e KWAUK [36, 75, 76], em 1980, apresentaram o primeiro modelo fluidodinâmico de boa aceitação até hoje. A partir de observações em um equipamento transparente de acrílico, com 0,09 m de diâmetro e 8 m de altura, definiram a fluidização rápida como transcorrendo "...diluída no topo e densa no fundo com um possível ponto de inflexão no meio". Propuseram então um modelo baseado na rápida formação e dissolução de aglomerados em forma de longas e densas fibras de partículas ("clusters") dispersas continuamente na fase diluída. A Figura III.23 apresenta o diagrama esquemático do equipamento experimental.

Figura III.23 - Diagrama do equipamento em acrílico usado por LI e KWAUK [75, 76]

Baseados nas evidências experimentais, propuseram um modelo matemático onde, numa dada altura z, os "clusters" se deslocam para o topo do transportador por um mecanismo de difusão, originado no gradiente de concentração provocado pela densidade de "clusters" na base densa do leito. Quando se encontram numa dada região acima de z, onde a densidade do leito é pequena, eles retornam para a base do leito devido a diferença de concentração do leito e dos "clusters". A Figura III.24 apresenta o modelo físico e as curvas características dos perfis axiais de porosidade.

Pelo modelo, uma parte dos sólidos está dispersa uniformemente, formando uma fase diluída contínua, enquanto outra parte está suspensa nesta fase diluída, na forma de "pacotes" de partículas, sujeitas à formação e desaparecimentos muito rápidos.

Figura III.24 - Modelo físico da fluidização rápida segundo LI e KWAUK [75, 76]

Os autores observaram que o perfil de porosidade axial do LFR assemelha-se à forma de um "S', sendo simétrico em relação a um ponto de inflexão (z_i), onde a porosidade tende, de forma assintótica, para um valor mínimo ε_a , no fundo do leito, até um valor máximo ε^* , no topo.

A Figura III.24 apresenta curvas típicas do modelo. A curva 2 ilustra uma distribuição típica normal, ao passo que a curva 1 pode ser entendida como possuindo ponto de inflexão z_i , situado acima do topo do tubo. Igualmente a curva 3, tem z_i abaixo do extremo inferior do tubo.

Com o sistema em equilíbrio, os fluxos difusivo e de segregação necessitam ser iguais. O fluxo por difusão será determinado pelo gradiente de concentração dos "clusters", proporcional a concentração, $\rho_s f_a (1-\epsilon_s)$, ao passo que o fluxo segregativo será representado pela diferença entre a concentração média do leito $(1-\epsilon)$ e dos "clusters" $(1-\epsilon_a)$, através de uma constante de proporcionalidade ψ , assim:

fluxo por difusão =
$$\xi \frac{d}{dz} \left[\rho_p f_a \left(1 - \varepsilon_a \right) \right]$$
 III.74

fluxo descendente =
$$\psi \left[\Delta \rho \left(1 - \varepsilon_a \right) - \Delta \rho \left(1 - \varepsilon \right) \right] f_a \left(1 - \varepsilon_a \right)$$
 III.75

onde, f_a é a fração volumétrica de "clusters"; $\Delta \rho = \rho_s - \rho_g$; ξ = constante de proporcionalidade, coeficiente de difusão e ψ = constante similar, coeficiente de

segregação. A concentração média do sólidos no leito $(1 - \varepsilon)$, em qualquer altura z será dada pela composição entre fase diluída contínua e os "clusters", a saber:

$$(1-\varepsilon) = f_a (1-\varepsilon_a) + (1-f_a) (1-\varepsilon^*)$$
 III.76

Substituindo a Equação III.76 e igualando III.74 a III.75 vem:

$$\frac{d\varepsilon}{\left(\varepsilon^{*}-\varepsilon\right)\left(\varepsilon-\varepsilon_{a}\right)} = \frac{\psi\left(\rho_{s}-\rho_{g}\right)}{\xi \rho_{s}} dz \qquad \text{III.77}$$

A porosidade do leito (ε_i) no ponto de inflexão z_i , será obtida igualam-se a zero a segunda derivada em z da Equação III.77. Então $\varepsilon_i = (\varepsilon^* + \varepsilon_a)/2$. Para facilitar a integração da Equação III.77, fazemos z_i como origem, logo a distância até o topo do leito será $z - z_i$:

$$-\int_{\left(\varepsilon+\varepsilon_{a}\right)^{s}/2}^{\varepsilon} \frac{d\varepsilon}{\left(\varepsilon^{*}-\varepsilon\right)\left(\varepsilon-\varepsilon_{a}\right)} = \frac{\psi \ \Delta \rho}{\xi \ \rho_{s}} \int_{0}^{z-z_{i}} d\left(z-z_{i}\right)$$
 III.78

resultando:

$$\ln \left(\frac{\varepsilon - \varepsilon_a}{\varepsilon^* - \varepsilon}\right) = - \frac{(z - z_i)}{Z_0}$$
 III.79

onde Z₀ é o comprimento característico do leito rápido, definido por:

$$Z_0 = -\frac{\psi \rho_s}{\xi \left(\rho_s - \rho_g\right)} \frac{1}{\left(\varepsilon^* - \varepsilon_a\right)}$$
III.80

A Equação III.80 nos fornece uma curva em forma de "S", atenuada em ε^* , no topo do leito, quando $z \rightarrow -\infty$, e tendendo a ε_a , na base, quando $z \rightarrow +\infty$. Da Equação III.79, podemos construir um gráfico do ln ($\varepsilon - \varepsilon_a$)/($\varepsilon^* - \varepsilon$) em função de z, obtêm-se uma linha reta cujo ponto de inflexão z_i ficará localizado em ln ($\varepsilon - \varepsilon_a$)/($\varepsilon^* - \varepsilon$) = 0. Esta relação linear permite a utilização de dados experimentais para se obter os valores de z_i acima do topo (zi = valor negativo), e abaixo do fundo do leito da coluna fluidizada, correspondendo as curvas 1 e 3 da Figura III.24, respectivamente.

O comprimento característico do leito Z_0 , representa a inclinação da linha reta e seus valores estarão entre $0 < Z_0 < \infty$. Para $Z_0 \rightarrow 0$, o ponto de inflexão será uma linha horizontal, onde haverá uma nítida interface entre as fases densa e diluída, caracterizando uma fluidização particulada; para $Z_0 \rightarrow \infty$, prevalece uma porosidade uniforme através do tubo, caracterizando o transporte pneumático vertical.

A Equação III.77 ainda permite realizar uma integração analítica para calcular a porosidade média $\overline{\epsilon}$ ao longo do leito:

$$\overline{\varepsilon} = \frac{1}{z} \int_0^z \varepsilon \, dz$$
 III.81

resultando:

$$\frac{\overline{\varepsilon} - \varepsilon_a}{\varepsilon^* - \varepsilon_a} = \frac{1}{(z/Z_0)} \ln \left[\frac{1 + \exp(z_i/Z_0)}{1 + \exp(z_i - z)/Z_0} \right]$$
 III.81

A expressão acima pode fornecer um gráfico adimencional para a fluidização rápida, podendo-se comparar o valor de $\overline{\epsilon}$ calculado com os obtidos experimentalmente.

A partir de correlações semi-empíricas baseadas em dados experimentais, LI *et alli* [76] propuseram as seguintes correlações para os parâmetros ε_a , ε^* , z_i , Z_0 :

$$\mathcal{E}_{a} = 0,756 \left[\frac{18 \operatorname{Re}_{p} + 2,7 \operatorname{Re}_{p}^{1,687}}{Ar} \right]^{0,0741}$$
 III.82

$$\varepsilon^* = 0,924 \left[\frac{18 \operatorname{Re}_p - 2,7 \operatorname{Re}_p^{1,687}}{Ar} \right]^{0,0286}$$
 III.83

$$Re_{p} = \frac{d_{p} \rho_{g} (U-V)}{\mu}$$
 III.84

$$z_i = 175,4 \left[\frac{(\rho_p - \rho_g)}{\rho_g} d_p g \right]^{1,922}$$
 III.85

$$Z_0 = 500 \exp\left[-69\left(\epsilon^* - \epsilon_a\right)\right] \qquad \text{III.86}$$

O modelo acima descrito ainda é considerado, por enquanto, o melhor para descrever o comportamento do perfil axial de porosidade num LFC. É preciso salientar, entretanto, que o equipamento utilizado por LI e KWAUK e esquematizado na Figura III.23 é do tipo saída suave, ou seja, não foram sentidos os efeitos de uma saída com perda de carga elevada, que deformaria completamente o perfil, conforme já comentamos e concordando com as observações de GRACE acima.

Tomando-se este cuidado, o modelo pode e tem sido usado por muitos autores como ponto de partida de outros estudos complementares. Os próprios autores [77], observando a influência da pressão no perfil axial, desenvolveram uma expressão para calcular o ponto de inflexão num LFR de duas fases, relacionando-a com a pressão imposta ao leito, propondo:

onde

$$z_{i} = \frac{L \rho_{p} g (1 - \varepsilon_{a}) - \Delta P_{imp}}{(\varepsilon^{*} - \varepsilon_{a}) \rho_{p} g}$$
 III.87

III.6.3.5 - MODELO DE YANG (1988)

YANG [78] apresentou na II^ª Conferência Internacional de Leito Fluidizado Circulante, um modelo onde procura olhar o fenômeno dos leitos recirculantes de uma maneira panorâmica, mostrando que o fenômeno da recirculação é único, podendo variar entre o transporte pneumático de fase diluída (Tipo I) e o transporte pneumático de fase densa (Tipo III), onde o LFR seria apenas uma situação intermediária (Tipo II).

Figura III.25 - Esquema de um circuito de LFC no conceito transportador-recuperador de YANG [78]

Para isto, YANG divide um sistema genérico de fluidização circulante grosseiramente em apenas duas partes, a saber:

a) O "Riser", ou seja, o elevador transportador de sólidos, o corpo do reator onde o fenômeno da fluidização ocorre;

b) O "recovery", ou seja o recuperador de sólidos, responsável pelo retorno do material particulado ao sistema fluidizado.

A Figura III.25 ilustra o conceito do sistema "Transportador-Recuperador", na qual o comportamento dos sólidos em suspensão é dependente do equilíbrio global de pressões que ocorre ao longo de todo sistema integrado, isto é, o transportador com seus acessórios (distribuidor, corpo ou vaso de transporte, alimentador, etc.) e o recuperador de sólidos e demais acessórios (ciclones, reservatório de sólidos, válvula de recirculação, etc.).

O modelo propõe-se a caracterizar independentemente cada região, propondo expressões que descrevam cada perfil. A existência e extensão de cada uma das regiões dependem de condições operacionais como velocidade do gás e taxa de recirculação de sólidos, bem como do equilíbrio de pressões no sistema como um todo

Figura III.26 - Tipos de perfis axiais de porosidade na coluna de elevação de sólidos (Riser) de um LFR, segundo YANG [78]

O LFR seria justamente a situação onde apareceria o maior número de regiões. Para a região de fase densa, YANG propõe um modelo apresentado na Figura III.27. A fase densa se comportaria conforme o modelo anular, onde haveria uma região central de fluxo ascendente, em fase diluída, circundada por uma região anular, em fase densa, junto à parede do tubo, onde o fluxo de sólidos seria descendente. As premissas adotadas foram as seguintes:

1) O núcleo diluído apresenta diâmetro interno variável, transportando as partículas sólidas pneumaticamente sob condições de "choking";

 A porosidade da região anular, na periferia da parede, foi assumida como sendo igual a porosidade de um leito fluidizado clássico, operando na condição de mínimo de fluidização;

3) A velocidade de deslocamento dos sólidos na região anular é a velocidade terminal da partícula individualmente V_t ;

4) Existe uma troca contínua de partículas na interface entre as duas fases que se dá sob a forma de clusters que se formam e desaparecem em regime transiente.

Figura III.27 - Modelo proposto por YANG para a fase densa do LFR

Nestas condições existiriam duas porosidades na seção transversal da fase densa, a saber, ε_{mf} na região anular junto a parede, e ε_c no centro.

Segundo o autor, o modelo apresenta boa concordância com os dados experimentais obtidos por WEINSTEIN *et alli* [79], porém, como o modelo está na prática incompleto, os parâmetros das equações tiveram que ser obtidos dos próprios resultados de WEINSTEIN, o que deixa a comparação prejudicada.

III.6.3.6 - MODELO DE RHODES (1989)

RHODES [80], em 1990, publicou um novo modelo para descrever a estrutura de fluxo de uma suspensão gás-sólido em fluxo ascendente. Este trabalho buscou complementar um modelo estudado por GELDART [81] com base em um balanço de pressões num sistema de LFC completo. RHODES buscou corrigir, em parte, algumas das suas deficiências do modelo, como incluir o inegável refluxo de partículas junto a parede do Riser, chamando-o de Refluxo no Transporte de Fase Diluída
Estudando um grande número de corridas feitas em seu equipamento, onde mediu perfis axiais e radiais de concentração de sólidos em diversas condições operacionais, RHODES apresentou um modelo amplo buscando prever tanto o perfil de concentrações axial como também o radial, que já havia sido detectado por diversos outros pesquisadores. Suas principais premissas foram:

i) A estrutura do fluxo consiste de uma região central onde os sólidos sobem em fase diluída, circundada por um ânulo onde os sólidos descem como um suspensão de fase densa;

ii) Todo o gás passa através do centro, não existindo fluxo de gás na região anular, premissa esta evidenciada e documentada por BADER *et alli* [82];

iii) Em qualquer posição axial existe uma taxa líquida de transferência de sólidos da zona central para o ânulo. Esta taxa de transferência é diretamente proporcional a concentração de sólidos no centro e a área da interface centro/anulo;

iv) As partículas na zona central se comportam como partículas individuais de formas que a velocidade relativa ou a velocidade de escape ("slip velocity") entre o gás e as partículas é igual a velocidade terminal de uma partícula simples;

v) A velocidade superficial é muito maior do que a velocidade terminal de uma simples partícula;

vi) A porosidade na zona central ε_c , não varia com a posição radial. Esta premissa esta baseada nos trabalhos de BADER *et alli* [82], MOROOKA *et alli* [83] e RHODES [84];

vii) A velocidade de queda dos sólidos na região anular é determinada pelo balanço global entre a força gravitacional e a força de fricção com a parede, e permanece constante para uma dada combinação de propriedades das partículas e material da parede;

viii) A porosidade no fluxo descendente da suspensão no anulo ϵ_a , é independente da posição axial no Riser.

Com estas sete primeiras premissas do modelo foi possível escrever as seguintes expressões para o fluxo de gás e de sólido no Riser:

a) Balanço de massa na zona central (premissa iv):

$$W_{c} = \rho_{p} A \alpha^{2} \left(1 - \varepsilon_{c}\right) \left(\frac{U}{\varepsilon_{c} A \alpha^{2}} - V_{t}\right)$$
 III.88

Incorporando a premissa "v" e rearranjando a Equação III.88, é possível obtemos uma expressão para a porosidade no "core":

$$\varepsilon_c = \frac{1}{\frac{W_c}{\rho_p A U} + 1}$$
 III.89

Baseado na premissa "iii", podemos escrever:

$$\frac{\mathrm{dG}_{\mathrm{c}}}{\mathrm{dz}} = -\frac{4\rho_{\mathrm{p}}\mathrm{K}(1-\varepsilon_{\mathrm{c}})}{\mathrm{D}\alpha}$$
 III.90

Derivando a expressão acima usando um incremento finito de altura Δz , obtemos:

$$\Delta G = - \frac{4 \rho_p K (1 - \varepsilon_o)}{D \alpha} \Delta z \qquad \text{III.91}$$

mas também

$$\Delta W_{c} = \Delta G_{c} A \alpha^{2} \qquad \qquad III.92$$

se α é considerado constante numa pequena seção de coluna de altura Δz .

O balanço de massa de sólidos, sobre uma altura Δz , será dado or:

por:

$$\Delta W_{a} = \Delta W_{c} \qquad \qquad \text{III.93}$$

b) Balanço de massa na zona do ânulo:

$$W_{a} = \rho_{p} A(1-\alpha^{2})(1-\varepsilon_{a}) v_{a}$$
 III.94

rearranjando, vem: $\alpha = \left[1 - \frac{W_a}{\rho_p v_a (1 - \varepsilon_a) A}\right]^{\frac{1}{2}}$ III.95

As Equações III.89, III.91, III.92, III.93 e III.95, podem ser resolvidas em seqüência para um dado incremento de altura Δz , usando valores iniciais de W_c, W_a, U e α . Assim, encontrado W_c e W_a, determina-se o valor da taxa líquida de fluxo de sólidos G_s no Riser, e o modelo irá prever as variações de W_c e W_a, ε_c e α com a altura. A concentração de sólidos pode ser expressa por:

$$1 - \varepsilon = (1 - \varepsilon_{c})\alpha^{2} + (1 - \varepsilon_{a})(1 - \alpha^{2})$$
 III.96

A Equação III.96 nos permite concluir que a variação axial da porosidade pode ser predita com a altura do transportador. RHODES obteve diversos perfis radiais de concentração em condições operacionais bem definidas (U, G_s, d_p, D, etc.) e em diferentes alturas do Riser, semelhantes aos nossos resultados exemplificados na Figura III.21. Com estes perfis foi possível determinar W_c, W_a e α para cada posição axial. O valor de α foi determinado na posição radial onde Gs é zero. Os valores de W_c e W_a foram inicialmente determinados na posição radial mais baixa e, estes valores iniciais foram usados no próprio modelo para prever os valores de $W_c e W_a$, $\varepsilon_c e \varepsilon e \alpha$ em novas posições axiais mais acima. Os valores obtidos foram usados para calcular a taxa de recirculação no leito κ , usada por NAKAMURA e CAPES [74], definida como:

$$\kappa = \frac{W_a}{W_a - W_a}$$
 III.97

Segundo RHODES, o modelo conseguiu bem representar os resultados de laboratório, prevendo os efeitos o aumento da velocidade na concentração de sólidos e concordando com os resultados de outros pesquisadores como HERTGE *et alli* [63], RHODES e GELDART [81] e LI e KWAUK [36].

Pelas conclusões do autor, o grau de recirculação de sólidos no regime de refluxo no transporte de fase diluída cresce com o aumento de G_s e decresce com o aumento da velocidade superficial U. As demais conclusões relevantes deste trabalho são:

a) A troca do perfil radial ao longo da altura, detectada nas medidas experimentais indicou existir uma taxa de transferência de massa da região central para a região anular, ao longo do eixo;

b) O valor da taxa de recirculação de sólidos κ , cresce com a queda da velocidade superficial e aumenta com o aumento de G_s. κ cai com a altura do Riser;

c) A fração do diâmetro do transportador ocupado pelo fluxo descendente de sólidos (1- α), cresce com a queda da velocidade e com o aumento de G_s;

d) (1- α) cai com a altura do transportador.

O modelo recebeu ainda mais duas premissas, permitindo assim prever também um perfil radial, porém esta parte do modelo será comenta a seguir, quando discutirmos os modelos radiais.

III.6.3.7 - MODELO DAS EQUAÇÕES DE NAVIER-STOKES PARA MULTIFASES DE GIDASPOW (1990)

GIDASPOW, TSUO e DING [59, 60, 61], propuseram um modelo baseado na solução de um sistema de equações obtidas a partir das Equações de Navier-Stokes, aplicada a um escoamento em uma fase fluida. Foi um aplicação do escoamento clássico onde as equações foram generalizadas para um fluxo multifases aplicada a um Riser de LFC.

Como existe a presença das partículas sólidas, os autores modelaram o escoamento como se este possuísse duas fases distintas: a fase densa, com

a presença marcante dos sólidos; e a fase diluída. Desta combinação surgiu o nome do modelo, denominado Modelo das Equações de Navier-Stokes para Multifases.

As equações foram então aplicadas as fases como se fossem dois fluidos distintos, onde as forças de dissipação de energia, pelo atrito gás-partícula, são consideradas com base num modelo onde inclui-se um termo de "viscosidade do sólido", oriunda dos efeitos das colisões aleatórias entre as partículas. Este trabalho já havia sido desenvolvido por GIPASPOW [85] em 1986, para a fluidização borbulhante, e esta apresentado na literatura [60].

A generalização das equações de Navier-Stokes, para um fluxo multifases, foi obtido tomando-se as seguintes premissas para o escoamento:

a) O gás e o sólido são tratados como dois fluidos interpenetrantes;

b) Todas as partículas sólidas são consideradas idênticas, caracterizadas por um diâmetro médio e uma massa específica;

As equações dos balanços de massa e momento para a fase do fluido e a fase particulada foram resolvidas com o auxílio de um supercomputador. As variáveis dependentes do sistema foram a porosidade, a fração volumétrica de sólidos, a pressão do gás, as componentes das velocidades verticais e horizontais do gás e dos sólidos. O sistema de equações do modelo hidrodinâmico e as equações constitutivas usadas foram as seguintes:

Equações da Continuidade da Fase gasosa:

$$\frac{\partial \left(\rho_{g} \varepsilon_{g}\right)}{\partial t} + \nabla \bullet \left(\rho_{g} \varepsilon_{g} \vec{U}\right) = 0 \qquad \text{III.98}$$

$$\frac{\partial \left(\rho_{p}\varepsilon_{p}\right)}{\partial t} + \nabla \bullet \left(\rho_{p}\varepsilon_{p}\vec{V}\right) = 0 \qquad \text{III.99}$$

Equações da Conservação de Momento no gás:

$$\frac{\partial \left(\rho_{g}\varepsilon_{g}\vec{U}\right)}{\partial t} + \nabla \bullet \left(\rho_{g}\varepsilon_{g}\vec{U}\vec{U}\right) = -\nabla P + \beta \left(\vec{V} - \vec{U}\right) + \nabla \bullet \varepsilon_{g}\vec{\tau}_{g} + \rho_{g}\varepsilon_{g}g \quad \text{III.100}$$

onde

$$\overline{\tau}_{g} = 2 \mu_{g} \nabla^{2} \vec{U} - \frac{2}{3} \mu_{g} \nabla \bullet \vec{U} \overline{\vec{I}}$$
 III.101

$$\nabla^2 \vec{U} = \frac{1}{2} \left[\nabla \vec{U} + (\nabla \vec{U})^T \right]$$
 III.102

Momento no sólido

$$\frac{\partial \left(\rho_{p}\varepsilon_{p}\vec{V}\right)}{\partial t} + \nabla \bullet \left(\rho_{p}\varepsilon_{p}\vec{V}\vec{V}\right) = \beta \left(\vec{U}-\vec{V}\right) - \Gamma \nabla \varepsilon_{p} + \nabla \bullet \varepsilon_{p}\vec{\tau}_{p} + \varepsilon_{p}\rho_{p}g \quad \text{III.103}$$

onde

$$\overline{\tau}_{p} = 2 \mu_{p} \nabla^{2} \vec{V} - \frac{2}{3} \mu_{p} \nabla \bullet \vec{V} \overline{I}$$
 III.104

$$\nabla^2 \vec{V} = \frac{1}{2} \left[\nabla \vec{V} + \left(\nabla \vec{V} \right)^T \right]$$
 III.105

$$\varepsilon_g + \varepsilon_p = 1$$
 III.106

Equações Constitutivas do Modelo:

Gás ideal
$$\rho_g = \frac{P}{RT}$$
 III.107

Coeficiente de Fricção da Interface fluido-partícula da Equação de ERGUN [02, 86]:

para
$$\varepsilon \leq 0.8$$
: $\beta = 150 \frac{\varepsilon_p \mu_g \rho_p}{\left(\varepsilon_g d_p \phi_p\right)^2 \left(\rho_p - \rho_g\right)} + 1.75 \frac{\rho_g \rho_p |U_g - V_p| \varepsilon_p}{\left(\varepsilon_g d_p \phi_p\right) \left(\rho_p - \rho_g\right)}$ III.108

para $\epsilon \ge 0.8$ e baseada no coeficiente de arraste de uma esfera simples:

~ .

$$\beta = \frac{3}{4}C_D \frac{\left|U_g - V_p\right| \rho_p \rho_g \varepsilon_p}{d_p \phi_p (\rho_p - \rho_g)} \varepsilon_g^{-2.65} \qquad \text{III.109}$$

com

$$C_{\rm D} = \frac{24}{\text{Re}} \left(1 + 0.15 \text{ Re}^{0.687} \right) \qquad \text{Re} \le 1.000 \qquad \text{III.65}$$

$$C_{D} = 0,44 \qquad Re \ge 1.000 \qquad III.66$$

$$\mathbf{Re} = \frac{\left| U_g - V_p \right| \quad d_p \rho_g \varepsilon_g}{\mu_g} \qquad \text{III.67}$$

Módulo de Tensão do Sólido:

$$\Gamma \quad \left(\mathcal{E}_{p}\right) = \frac{\partial \tau}{\partial \mathcal{E}_{p}} = 10^{-8.76 \, \varepsilon_{g} + 5.43} \qquad \text{III.110}$$

O Modelo de GIDASPOW, com a generalização das Equações de Navier-Stokes, mostrou-se capaz de prever o regime de fluxo de um LFC, inclusive prevendo uma estrutura tipo "Core-Annulus" para o escoamento. O modelo também prevê a formação dos clusters descendentes na parede, enquanto os sólidos são elevados pelo centro do transportador.

Outro resultado expressivo foi a previsão da influência da velocidade do gás, do tamanho das partículas e do diâmetro do transportador no fluxo de sólidos. Os autores ainda desenvolveram uma simplificação com um modelo unidimensional, porém este atalho não permitiu prever a formação dos clusters ou seja, o fluxo descendente.

III.6.3.8 - MODELO DO MOVIMENTO BROWNIANO E DA TEORIA DO CAMINHO ALEATÓRIO DE ZHANG et alli (1990)

Com base na equação da difusão, ZHANG *et alli* [87], apresentaram, na III CFBT, um modelo alternativo que apresenta um expressão simples para a distribuição longitudinal de porosidade em um LFC.

Tomando como ponto de partida o trabalho de LI e KWAUK [36, 75, 76], apresentado no item III.6.3.4 - Figura III.24, consideraram que o movimento aleatório das partículas seria similar ao processo de difusão no meio ambiente. Combinaram então os modelos do movimento Browniano e a teoria do movimento aleatório da partícula em um leito fluidizado rápido e encontraram uma expressão, que corresponde a Equação de Fokker-Planck, onde a porosidade média pode ser expressa por:

$$\frac{\partial \varepsilon}{\partial t} = - \frac{\partial (V\varepsilon)}{\partial z} + \xi \frac{\partial^2 \varepsilon}{\partial^2 z^2}$$
 III.111

onde, os dois termos da direita, representam o fluxo convectivo e difusivo respectivamente. No estado estacionário $\frac{\partial \varepsilon}{\partial t} = 0$. Substituindo V = G_s/(1- ε) ρ_p na equação acima vem:

$$\frac{G_s}{\left(1-\varepsilon\right)^2 \rho_p} \quad \frac{d\varepsilon}{dz} = \xi \quad \frac{d^2\varepsilon}{dz^2} \qquad \text{III.112}$$

Propondo agora que $\xi = \frac{V^2}{F^*}$, a expressão acima é rescrita e temos:

$$\frac{G_s}{\rho_v F^*} \quad \frac{d^2 \varepsilon}{d z^2} - \frac{d \varepsilon}{d z} = 0 \qquad \text{III.113}$$

Assumindo que A = $G_s/\rho_p F^*$ e P = $d\epsilon/dz$, teremos que $d^2\epsilon/dz^2$ = P(dP/d\epsilon), e nós iremos obter:

$$AP \left(\frac{dP}{d\varepsilon}\right) - P = 0 \qquad \text{III.114}$$

ou ainda que $dP/d\epsilon = 1/A$, tal que:

$$\frac{d\varepsilon}{dz} = P = \frac{\varepsilon}{A} + C \qquad \text{III.115}$$

onde C é a constante de integração.

Para a fase diluída, ε torna-se ε^* no topo, com $Z \to \infty$, e d $\varepsilon/dz \to 0$, logo C = - ε^*/A . Integrando a Equação III.115 no intervalo (z_i , z), nós obteremos uma expressão simples para a porosidade na fase diluída:

$$\int_{(\varepsilon^*+\varepsilon_a)/2}^{\varepsilon} \frac{d\varepsilon}{\varepsilon-\varepsilon^*} = \frac{1}{A} \int_{z_i}^{z} dz \qquad \text{III.116}$$

$$\frac{1}{A} (z-z_i) = \ln \left| \frac{\varepsilon - \varepsilon^*}{(\varepsilon^* + \varepsilon_a)/2 - \varepsilon^*} \right| = \ln \frac{\varepsilon^* - \varepsilon}{(\varepsilon^* - \varepsilon_a)/2} \qquad \text{III.117}$$

$$\varepsilon = \varepsilon^* - \frac{\varepsilon^* - \varepsilon_*}{2} \cdot e^{-(z-z_i)/A}, \ (z \le z_i)$$
 III.118

Para a fase densa, ε tende a ε_a no fundo, com $Z \rightarrow +\infty$, e d $\varepsilon/dz \rightarrow 0$, correspondentemente, logo a Equação III.119, abaixo irá expressar a porosidade na fase densa do leito:

$$\varepsilon = \varepsilon_{a} - \frac{\varepsilon^{*} - \varepsilon_{a}}{2} \cdot e^{-(z - z_{i})/A}, \quad (z \ge z_{i})$$
 III.119

onde $\varepsilon_a \in \varepsilon^*$, podem ser calculados pelas expressões empíricas propostas por LI *et alli* [76], respectivamente as Equações III.82 e III.83, do item III.6.3.4. O valor do ponto de inflexão z_i será então dado pela expressão:

$$z_{i} = L - 175,4 \left[\frac{(\rho_{p} - \rho_{g})}{\rho_{g}} d_{p} g \right]^{1,922} (U - V_{p})^{-3,844}$$
 III.120

onde $V_p = G_s/[(1-\varepsilon_a) (\rho_p - \rho_g)]$.

O presente modelo pode assim ser chamado de Modelo do Movimento Browniano e da teoria do caminho aleatório. A expressão resultante mantém o perfil tipo "S" proposto por LI e KWAUK. O parâmetro F apresentado no modelo pode ser considerado como um parâmetro de freqüência ligada a forma dos "clusters" no LFC. Segundo os autores, neste particular trabalho o parâmetro mostrou ter seu valor ajustado em torno de $F^* = 0,02 \text{ s}^{-1}$.

III.6.3.9 - MODELO DE KUNII E LEVENSPIEL (1990)

KUNII e LEVENSPIEL [88, 89] também propuseram um modelo descontínuo de duas fases para descrever o LFC. Segundo os autores, o sistema pode ser descrito considerando-se uma fase densa contínua e de porosidade praticamente constante, localizada no fundo do Riser, e uma fase diluída, que se inicia na interface e se estende pelo "freeboard" do Riser, onde a densidade varia com a altura do freeboard H_f.

O trabalho foi dividido em duas partes: primeiramente apresentaram uma generalização do Modelo de Arraste de Sólidos no Freeboard, anteriormente proposto por LEWIS *et alli* [90], e; depois propuseram o aproveitamento deste trabalho na modelagem de um LFC.

Foi com LEWIS que surgiu o conceito do TDH ("Transport Disengaging Height"), isto é, a altura acima da superficie de um Leito Fluidizado Borbulhante, a partir da qual o fluxo de arraste de partículas se torna aproximadamente constante. O foco do problema do arraste se localiza abaixo do TDH, onde a densidade "bulk" da mistura varia com altura do "freeboard" h. Nas condições normais, o altura do "freeboard" deve ser superior ao TDH, situação esta chamada de refluxo completo. Pode ocorrer entretanto, que a altura H_f seja menor que o TDH. Nestes casos possíveis, LEWIS propôs o seguinte:

a) Quando ocorre a situação de refluxo completo, a densidade "bulk" da mistura no "freeboard" cai exponencialmente a partir de um valor inicial igual ao da superfície do leito;

b) Para pequenos H_f , tal que $H_f < TDH$, a densidade da mistura será menor que um valor constante do que no caso em que há refluxo;

$$\overline{\rho}_{\rm R} - \overline{\rho} = {\rm cte}$$
 III.122

c) O fluxo de arraste do leito G_s , é proporcional a densidade dos sólidos na saída, de onde se assume que este arraste cai exponencialmente também;

$$G_{e} = G_{en} e^{-aH_{f}}$$
 III.123

Pelas condições de operação do leito, em qualquer lugar do "freeboard" deve haver um fluxo de sólidos ascendente G_{sa} e um fluxo de sólidos descendente G_{sd} , tal que :

$$G_{s} = G_{sa} - G_{sd}$$
 III.124

KUNII e LEVENSPIEL [88] propuseram uma ampliação do modelo de LEWIS aplicando-o a LFC. Eles postularam a existência de três fase distintas no "freeboard", como é apresentado na Figura III.28.

Na fase 1 as partículas finas estão completamente dispersas na fase diluída e são arrastadas pela corrente de gás com a velocidade u_1 . Na fase 2 aglomerados de partículas são projetadas pela superficie do leito movendo-se para cima com velocidade u_2 . A fase 3 é representada pelas aglomerados de partículas e um fina camada da sólidos junto a parede do Riser, todos movendo-se para a base do leito com velocidade u_3 . Finalmente os aglomerados que se movem para cima são progressivamente dispersos e também trocam de direção retornando para o leito.

Figura III.28 - Modelo de Arraste de Partículas no Freeboard por KUNII e LEVENSPIEL [88, 89]

Resolvendo o sistema de equações diferenciais para este modelo é possível obter uma expressão para a distribuição da densidade média da mistura do fluxo ascendente no "freeboard":

$$\frac{\overline{\rho} - x \overline{\rho}^*}{\overline{\rho}_0 - x \overline{\rho}^*} \cong e^{-ah} \qquad \text{III.125}$$

$$\frac{G_{sa} - xG_s^*}{G_{s0a} - xG_s^*} = e^{-ah} \qquad \text{III.126}$$

$$a \cong \frac{1}{u_2}$$
 III.127

Como a velocidade ascendente dos aglomerados u_2 é proporcional a velocidade superficial, a Equação III.127 pode ser rescrita como:

$$a \propto \frac{1}{U}$$
 ou $aU \cong cte$ III.128

Baseado nas expressões acima, KUNII e LEVENSPIEL [88] estimaram o valor da constante "a" a partir de dados de diversos pesquisadores, chegando as seguintes conclusões:

a) A constante de decaimento cresce com a queda do diâmetro da coluna e com o crescimento do diâmetro da partícula;

b) A constante de decaimento do "freeboard" de um leito fluidizado borbulhante, turbulento ou de fluidização rápida decaem na mesma faixa de valores.

A partir desta importante conclusão, os autores fizeram considerações sobre o projeto de operações em LFC. A Figura III.29 apresenta o perfil padrão proposto nos estudos de KUNII e LEVENSPIEL.

Considerando a região de arrastaste na coluna, a partir da superficie do leito, a Equação III.125, por similaridade, pode ser rescrita como:

e a fração de sólidos na saída da coluna será:

$$\varepsilon_{pe} = \varepsilon_{p}^{*} + \left(\varepsilon_{pd} - \varepsilon_{p}^{*}\right) e^{-sH_{f}} \qquad \text{III.130}$$

onde x = 1, $\varepsilon_p = \frac{\overline{\rho}}{\rho_p}$, $\varepsilon_p^* = \frac{\overline{\rho}^*}{\rho_p} \cong \frac{G_s^*}{\rho_p U}$ III.131

O valor médio de ε_p na região de arraste acima do leito na altura H_f (saída) pode ser calculado da seguinte forma:

onde

$$\overline{\varepsilon}_{p} = \frac{1}{H_{f}} \int_{0}^{H_{f}} \varepsilon_{p} dh \qquad \text{III.132}$$

Substituindo a Equação III.129 na Equação III.132 e integrando obtemos:

Figura III.29 - O LFC e as diferentes regiões de concentração de sólidos

Finalmente, a massa total circulante M, na coluna do Riser de altura total $L = H_d + H_f$, será então:

$$\frac{M}{A\rho_{p}} = H_{d} \varepsilon_{pd} + H_{f} \overline{\varepsilon}_{p} = \frac{\varepsilon_{pd} - \varepsilon_{pe}}{a} + L \varepsilon_{pd} - H_{f} \left(\varepsilon_{pd} - \varepsilon_{p}^{*} \right)$$
 III.134

Desta feita, nós podemos operar um sistema de LFC de quatro maneiras distintas:

I) Massa circulante constante M; U livre para ser alterado;

II) Fluxo de circulação de sólidos G_s; U livre para ser alterado;

III) Fluxo de gás constante (U); G_s livre para ser alterado;

IV) Ambos, G_s e U podendo ser alterados independentemente.

Os autores detalharam as quatro situações acima identificadas. A Figura III.30 mostra os perfis padrões nas quatro situações.

Figura III.30 - Perfis de porosidade em várias condições operacionais, conforme KUNII e LEVENSPIEL [88, 89]

Apesar de simples, existem alguns aspectos negativos deste modelo são, cujos principais são:

a) É mais um modelo que considera constante a densidade da fase densa do LFC, fato este comprovadamente inexistente;

b) È também mais um modelo descontínuo na interseção fase densa/fase diluída;

c) O modelo não acrescenta novidade na modelagem do perfil na fase diluída, apenas muda o nome do coeficiente de ajuste, pois no mais o modelo é na prática uma reedição dos modelos já existentes;

 d) O modelo parte de generalização de um modelo auxiliar de um leito fluidizado borbulhante, o que deixa lacunas muito grandes pelas obvias diferenças nos dois regimes de fluidização.

III.6.3.10 - MODELO DE LOUGE e CHANG (1990)

Tanto em um LFC como no transporte pneumático, a medida do perfil axial de pressões, num tempo médio, é convenientemente inferida pelo uso da porosidade média numa dada seção do Riser. No final do leito, a perda de pressão estática $\Delta P/\Delta z$ pode ser igualada ao peso da mistura na seção do Riser [77, 78, 91]:

$$\frac{dP}{dz} \approx \left[\rho_p (1 - \varepsilon) + \rho_g \varepsilon \right] g \qquad \text{III.135}$$

É sempre bom lembrar que esta expressão desconsidera as perdas com fricção na parede do Riser e a zona de aceleração das partículas.

LOUGE e CHANG [92] propuseram um modelo assumindo que o perfil radial de porosidade e a velocidade observada nos Riser de LFC, não podem contribuir significativamente na transferência de momento na direção vertical. Eles desprezaram as forças de tensão nas fases sólida e gasosa e consideraram um fluxo unidimensional. Com estas premissas as equações de momento para o gás e para o sólido foram simplificadas, resultando as expressões:

$$\rho_{\rm g} \varepsilon U_{\rm p} \ \frac{dU_{\rm p}}{dz} \approx - \varepsilon \ \frac{dP}{dz} - F_{\rm s}$$
III.136

$$\rho_{\rm p} (1-\epsilon) V_{\rm p} \frac{dV_{\rm p}}{dz} \approx -\rho_{\rm p} (1-\epsilon) g_{\rm -} (1-\epsilon) \frac{dP}{dz} + F_{\rm s}$$
 III.137

onde o termo $(1-\epsilon)dP/dz$ representa o efeito do gradiente de pressão sobre as partículas, semelhante a força de empuxo de um fluído.

Como o termo de convecção do gás é muito menor do que seu correspondente na equação do sólido, isto é, $\rho_g \epsilon U(dU/dz) \ll \rho_p(1-\epsilon)V(dV/dz)$, as Equações acima podem ser combinadas resultando:

$$-\frac{dP}{dz} \approx \rho_{p} (1-\epsilon) V_{p} \frac{dV_{p}}{dz} + \rho_{p} (1-\epsilon) g \qquad \text{III.138}$$

Aplicando-se agora a equação da continuidade para um fluxo unidimensional na fase sólida, a equação fica reduzida a:

diferenciando vem:
$$\frac{dV_p}{dz} = -\frac{V_p}{1-\varepsilon}\frac{d(1-\varepsilon)}{dz}$$
 III.140

68

Usando agora a definição de fluxo de sólidos $G_s = \rho_p$ (1- ε), a equação III.140 pode ser substituída na equação III.138, obtendo-se uma equação diferencial ordinária que descreve o perfil de porosidade axial:

$$\frac{d(1-\varepsilon)}{dz} = \frac{\rho_p^2 g}{G_s^2} \left(1-\varepsilon\right)^3 + \frac{\rho_p}{G_s^2} \left(1-\varepsilon\right)^2 \qquad \text{III.141}$$

A solução desta equação requer o conhecimento do perfil axial de pressões e uma condição inicial de porosidade especificada em algum lugar no Riser. Em um LFC típico o perfil de porosidade próxima ao topo é normalmente diluído e plenamente desenvolvido. Os efeitos da aceleração também são negligenciáveis naquela posição e logo a Equação III.135 pode nos dar uma boa estimativa da porosidade próxima ao topo, necessária como condição inicial para solução da equação III.141. A integração da equação nos fornecera os valores de ε com o decréscimo de h.

Entretanto, esta integração precisa ser interrompida bem antes da entrada do retorno de sólidos no fundo do Riser, pois esta injeção provoca sérias distorções no perfil por desconsiderar a aceleração das partículas e a tendência inicial de haver componentes radiais de velocidade. Nestas condições a equação de momento precisa ser rescrita como:

$$\frac{\mathrm{d}}{\mathrm{d}z} \left[\rho_{\mathrm{p}} \left(1 - \varepsilon \right) \, \mathrm{V}_{\mathrm{p}}^{2} \right] \approx -\rho_{\mathrm{p}} \left(1 - \varepsilon \right) \mathrm{g} + \mathrm{F}_{\mathrm{s}} \qquad \mathrm{III.142}$$

A força de atrito, por unidade de volume, pode ser obtida multiplicando-se a força de arraste sobre uma única partícula pelo número de partículas por unidade de volume, assim:

$$F_{s} = C_{d} \left| \frac{U}{\epsilon} - V_{p} \right| \left(\frac{U}{\epsilon} - V_{p} \right) \frac{3}{4} \frac{\rho_{g}}{d_{p}} (1 - \epsilon) \epsilon^{1.8}$$
 III.143

$$C_{\rm D} = \frac{24}{\text{Re}} \left(1+ \ 0.15 \ \text{Re}^{\ 0.687} \right) \text{Re} \le 1.000$$
 III.65

onde

$$Cd = 0,44 \qquad Re \ge 1.000 \qquad III.66$$

Uma solução simples para a equação III.142, é fazer o termo do empuxo - $(1-\epsilon)dP/dz$, ser ignorado pois $(1-\epsilon)^2 \rho_p g < (1-\epsilon)\rho_p g$. Na equação III.143, o termo $\epsilon^{-1.8}$ é uma correlação para a força de arraste sobre uma partícula simples que ocorre na presença de outras partículas. Dados agora os valores de ϵ , G_s e U, podemos

realizar a integração numérica da equação III.142, que nos fornecerá uma estimativa com a parcela da aceleração, excluída nos cálculos anteriores.

Rearranjando a Equação III.141, podemos explicitar o termo do gradiente de pressões:

Desta forma, o gradiente de pressões aparece composto de dois termos: o primeiro é a perda estática da mistura e a segunda representa a contribuição do gradiente de porosidade sobre o gradiente de pressão total. Quando não existir gradiente de porosidade ou para pequenos valores de G_{s} , o segundo termo se torna negligenciável.

III.6.4 - MODELOS PARA OS PERFIS RADIAIS DE CONCENTRAÇÃO

III.6.4.1 - ASPECTOS INICIAIS E HISTÓRICOS

Conforme vimos na revisão dos principais modelos para a determinação do perfil axial de porosidade, a concentração de sólidos não apenas varia ao longo da altura da coluna de transporte, como também em na direção radial. Observações experimentais comprovaram que o movimento dos sólidos é ascendente na região central da coluna e descendente nas proximidades das paredes, sendo que esta movimentação, denominada de circulação interna de sólidos, é mais acentuada na região inferior do leito e pequena ou quase nula na região superior [38].

No início das pesquisas da fluidodinâmica do LFR, não houve preocupações com este fenômeno, tanto que, nos trabalhos iniciais de YERUSHALMI *et alli* [11, 33], foi reportada a existência de variações axiais da concentração de sólidos no transportador, porém os autores assumiram que a concentração radial era uniforme.

BIERL *et alli* [93] em 1980, operando um LFC em condições idênticas às reportadas por YERUSHALMI [11, 33], observaram uma grande variação na concentração radial dos sólidos. Porém, foram WEINSTEIN *et alli* [94, 95], que em 1985, usando raios-X, mediram pela primeira vez as distribuições radiais e axiais de um LFC com 0,15 m de diâmetro e 8 m de altura. Um ano depois, BERKER e TULING [96], apresentaram suas medidas de distribuição radial de sólidos em um Riser de 7,5 polegadas de DI, obtidos com o auxílio de uma câmara de raios gama. HARTGE *et alli* [63], em 1985 e RHODES [84] em 1986, usando sondas apropriadas, completaram o grupo de pioneiros a evidenciar uma estrutura de fluidização tipo centro diluído/anulo denso para a fase diluída do LFC.

Em 1987 DRY [97], utilizando pela primeira vez um amostrador não isocinético de amostragem direta, semelhante ao usado por RHODES, examinou um possível mecanismo de segregação do leito pelo método de dispersão de luz laser, mostrando resultados interessantes quanto à possibilidade de existir uma segregação no tamanho das partículas na região central do leito quando este operava em velocidades elevadas.

Este resultado representou um forte indício para a teoria dos "clusters". Isto porque, o fenômeno não foi observado em velocidades baixas, quando a força de coesão das partículas impedia a segregação. Mais tarde, WHITE e DRY [97], utilizaram um gás traçador para investigar as características de transporte no leito. Eles observaram que a velocidade de transmissão do gás crescia substancialmente quando eram introduzidas partículas sólidas no leito. Neste trabalho, foram usados pós de FCC, Grupo A da classificação de GELDART. Segundo os autores, a configuração centro/anulo, sugerida por RHODES, sofreria um colapso progressivo em altas velocidades. Os resultados, de certa forma, foram concordantes com o modelo proposto por RHODES.

Na mesma época YERUSHALMI *et alli* [35], estavam consolidando sua teoria de "clusters" iniciada em 1978. Muitos outros pesquisadores também observaram variações do perfil radial em leito borbulhante e no transporte pneumático de fase diluída, porém, foram os estudos de RHODES e GELDART [81, 80] que melhor observaram esta variação radial e axial do fluxo de sólidos no leito rápido, identificando aquilo que passou a ser denominado de Refluxo do Transporte de Fase Diluída, isto é, o Modelo de RHODES [80] apresentado em 1989 e já descrito anteriormente.

Os perfis de concentração de sólidos ao longo do raio foram medidos com o auxílio de sondas colocadas ao longo do transportador, cujos tipos e descrição serão tratadas a seguir. As Figuras III.20 e III.21 apresentam perfis radiais obtidos em nossas medidas com amostrador semelhantes ao usado por RHODES [84], cuja esquema básico esta apresentado na Figura III.31.

Como a produção de modelos para descrever os mecanismos de transferência de calor e as reações em LFC requerem um melhor estudo e compreensão

dos movimentos dos sólidos e do gás, os trabalhos desenvolvidos por RHODES contribuíram bastante para uma macro visualização do leito rápido. Com o avanço de seus estudos foi possível melhorar a modelagem dinâmica do LFR. A seguir faremos uma descrição, em ordem cronológica, os principais modelos para descrever os perfis radiais.

III.6.4.2 - MODELO DE RHODES (1990)

Martin Rhodes é atualmente o pesquisador que mais tem se esforçado em contribuir para a modelagem de um LFC. Já tivemos oportunidade de descrever seus estudos para perfis axiais de concentrações, especificamente o que ele denominou de "Regime de Transporte de Fase Diluída com Refluxo". Partindo das considerações já efetuadas no item III.6.3.6 e observando a Figura III.27 do modelo de YANG, RHODES [80] acrescentou ainda as seguintes premissas para incluir também a descrição do perfil radial de um LFC:

ix) O gás que passa pela zona central do Riser exibe um perfil laminar de velocidade;

x) O fluxo de sólidos descendente no anulo está uniformemente distribuído sobre uma área anular.

Desta feita, o modelo nos fornece que, numa dada posição axial particular, a taxa de massa ascendente no zona central, W_c , a porosidade no core ε_c , são independentes da posição radial, e a fração de área da seção transversal ocupada pelo core, α^2 . A premissa "ix" nos fornece a velocidade do gás como uma função da posição radial, tal que:

$$u_r = 2U \left[1 - \frac{r^2}{R^2 \alpha^2} \right]$$
 III.145

A velocidade local da partícula no "core" será então calculada como um função de r. Incorporando a premissa "iv", que propõe partículas individuais no core com velocidade relativa de escape igual a velocidade terminal de uma partícula individual, vem:

$$v_{pr} = 2U \frac{\left[1 - \frac{r^2}{R^2 \alpha^2}\right]}{\varepsilon_c} - V_t \qquad \text{III.146}$$

Assim, o fluxo local de sólidos Gr, será dado por:

$$G_{r} = \left[\frac{2U\left(1-\frac{r^{2}}{R^{2}\alpha^{2}}\right)}{\varepsilon_{c}} - V_{t}\right]\rho_{s}(1-\varepsilon_{c}) \qquad \text{III.147}$$

A Equação acima pode ser usada para calcular o perfil do fluxo radial no "core", isto é, entre r = 0 e $r = \alpha R$, enquanto que o perfil de sólidos na zona anular, G_a, pode ser calculada com o auxílio da premissa "x", logo:

$$G_{a} = \frac{W_{a}}{A(1-\alpha^{2})}$$
 III.148

Este resultado pode ser usado como modelo para expressar perfis como os apresentados na Figura III.21. É evidente que a aproximação fica apenas no razoável, pois o modelo não considerou o fato de haver atrito junto a parede, o que na prática provoca um achatamento do perfil, bem como não considerou a continuidade existente entre os fluxos da duas regiões. O presente modelo apresenta uma descontinuidade inaceitável em termos qualitativos, visto que, o fluxo G_a , em $r = [(1-\alpha)R - \Delta r]$, é igual a G_a em r = R, isto é, constante e máximo, porém em $r = (1-\alpha)R$ (interface) é igual a zero.

A melhor conclusão do modelo, foi propor um perfil radial parabólico para a concentração de sólidos, resultado este que não pode ser generalizado, pois mostrou ser influenciado pelas restrições da saída nos Raisers, como os nossos dados irão mostrar no Capítulo V.

Este é o primeiro modelo completo que busca descrever a estrutura do fluxo da fase densa de um LFR. O trabalho de RHODES mostra boa concordância com seus próprios dados experimentais.

III.6.4.3 - MODELO SEMI-EMPÍRICO DE RHODES, ZHOU E BENKREIRA (1992)

Outra colaboração de RHODES *et alli* [98], foi propor uma expressão semi-empírica, obtida com auxílio de diversos dados experimentais, para prever a segregação radial de sólidos em um fluxo ascendente de uma suspensão gássólido diluída.

O ponto de partida é o modelo "Core-Annulus" do próprio RHODES, que se utilizou de seus dados e de outros pesquisadores, para obter uma equação empírica que relacionasse a porosidade de sólidos como função do raio, obtendo uma expressão simples da forma:

$$\frac{1-\varepsilon}{1-\overline{\varepsilon}} = 2\left(\frac{r}{R}\right)^2$$
 III.149

onde $\overline{\epsilon}$ representa a porosidade média do sólido num raio r do transportador.

A faixa de trabalho, ou validade da equação obtida, fica entre as velocidades superficiais de 1,4 a 15,3 m/s, diâmetro do transportador entre 0,032 e 0,40 m, taxa de recirculação de sólidos entre 6,60 e 207 kg/m².s, diâmetro de partículas entre 32 a 120 μ m e massa específica de 1.000 a 3.500 kg/m³.

As considerações do modelo propõem um sistema fluido-partícula, em estado estacionário, isotérmico, com fluxo ascendente, onde o movimento radial pode ser aproximadamente descrito pelas seguintes equações;

a) Continuidade: Assumindo que $\rho_g \ll \rho_p$ ou consideravelmente mais sólido do que fluido se movimenta na direção radial

$$(1 - \varepsilon) \rho_{v} r_{v_{r}} = C_{1} = cte \qquad \text{III.150}$$

b) Momento: com du_r/dr e $d^2ur/dr^2 \cong 0$, ou pequeno, ou ainda sem haver aceleração na fase fluida na direção radial, então temos:

$$(1-\varepsilon)\rho_{p}v_{r}\frac{dv_{r}}{dr} = -F_{i,r}$$
 III.152

Aqui, F_{ir} é a força de interface que pode ser obtida pela equação da Lei de Stokes e vale:

$$F_{i,r} = \frac{18}{d_p^2} \left(1 - \varepsilon\right) \mu \left(v_r - u_r\right)$$
 III.153

e não leva em consideração o atrito devido ao fato da fase sólida estar em baixa concentração na mistura. As equações acima podem ser combinadas, obtendo-se:

$$0 = \frac{C_1 dv_r}{\mu dr} + \frac{rv_r}{r^2 + M\mu} \cong \frac{C_1}{\mu} \frac{dv_r}{dr} + \frac{v_r}{r}$$
 III.154

onde $M\mu = \frac{d_p^2}{18(1-\epsilon)}$ < < r², para partículas de pequeno tamanho na região de

interesse, isto é, longe do eixo do tubo. A solução geral da Equação III.154 será do tipo:

onde C₂ é outra constante que, como C₁ precisa ainda ser determinada.

O perfil radial de concentração da suspensão pode agora ser obtido combinando-se as Equações III.150 e III.155, resultando:

$$1 - \varepsilon = \frac{1}{\rho_p} \frac{C_1}{C_2} r^{\left(\frac{\mu}{C_1} - 1\right)}$$
 III.156

Introduzindo agora a definição de concentração radial média, $(1-\overline{\epsilon})$, definido pela expressão:

$$1 - \bar{\varepsilon} = \frac{1}{\pi R^2} \int_{0}^{R} 2\pi (1 - \varepsilon) r dr \qquad \text{III.157}$$

podemos eliminar a constante C2 na equação III.156 e obter:

$$\frac{(1-\varepsilon)}{(1-\overline{\varepsilon})} = \frac{1}{2} \left[1 + \frac{\mu}{C_1} \right] \left(\frac{r}{R} \right)^{\left(\frac{\mu}{C_1} - 1 \right)}$$
 III.158

Alternativamente, nós podemos introduzir a expressão (1 - ε_w) como sendo a concentração de sólidos junto a parede do tubo e obtemos:

$$\frac{(1-\varepsilon)}{(1-\varepsilon_W)} = \left(\frac{r}{R}\right)^{\left\lfloor\frac{\mu}{C_1}-1\right\rfloor}$$
III.159

As expressões III.158 e III.159 são a base da comparação com os dados experimentais, e as duas equações combinadas nos fornecem:

$$\frac{(1-\varepsilon_w)}{(1-\overline{\varepsilon})} = \frac{1}{2} \left(1+\frac{\mu}{C_1}\right)$$
 III.160

RHODES e seus colaboradores examinaram os dados de outros pesquisadores nas condições de temperatura e pressão ambientes, como os obtidos por HERB *et alli* [99, 100], MINEO [101], HARTGE *et alli* [102] e BERKER *et alli* [96]. Os dados foram compilados e apresentados na Figura III.32, abaixo, de onde se concluiu que, para regimes de transporte com refluxo de sólidos o termo

$$(1-\varepsilon_{\rm w})/(1-\bar{\varepsilon})=\frac{3}{2}$$
 até $\frac{5}{2}$, em média 2 III.161

assim podemos estabelecer uma média semi-empírica para a constante C_1/μ em torno de 1/3:

$$\frac{C_1}{\mu} = \frac{1}{4} a \frac{1}{2}$$
 em mé dia $\frac{1}{3}$ III.162

assim, a solução geral das equações III.159 e III.160 serão:

$$\frac{(1-\varepsilon)}{(1-\varepsilon_{\rm w})} = \left(\frac{r}{R}\right)^2$$
 III.163

$$\frac{(1-\varepsilon)}{(1-\varepsilon)} = 2\left(\frac{r}{R}\right)^2; \qquad \text{III.164}$$

$$\frac{\mathbf{v}_{\mathrm{r}}}{\mathbf{u}_{\mathrm{r}}} = \left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{\frac{1}{3}}$$
 III.165

Os resultados das expressões acima propõem um perfil radial parabólico para a concentração de sólidos, ocorrendo concentração máxima perto da parede do tubo.

Figura III.32 - Comparação dos resultados teóricos e experimentais para transporte com refluxo em fase diluída

Mais significante ainda é que as expressões indicam um perfil radial de concentração dependente somente da concentração média da seção transversal, independente de condições particulares de operação como; tipo de partícula, propriedades do gás e escala do equipamento. Consequentemente, concluímos que deve existir semelhança no perfil de concentrações de um sistema gás-partícula operando em regime de transporte de fase diluída onde ocorre refluxo de material, como é o caso um "Core-Annulus" de um leito rápido.

Os autores compararam suas considerações também com os dados experimentais obtidos por TUNG *et alli* [103], obtendo um resultado idêntico ao apresentado na Figura III.32, ou seja, os sistemas que tem a mesma concentração média de sólidos na seção transversal, possuem idênticos perfis de concentração, independente do diâmetro do tubo, propriedades das partículas, velocidade superficial e taxa de recirculação de sólidos.

III.6.4.4 - MODELO SEMI-EMPÍRICO DE RHODES, WANG, CHENG, HIRAMA e GIBBS (1992)

RHODES e colaboradores [22], propuseram um interessante modelo semi-empírico, que descreve o comportamento do perfil radial de concentração de um transportador, utilizando como parâmetro base o fluxo de sólidos local G_r . Para os autores, o perfil radial de fluxo de sólidos, numa dada posição radial, pode ser expresso pela em termos do fluxo reduzido de sólidos, definido pela equação:

$$\frac{G_r}{G_s} = a \left[1 - \left(\frac{r}{R} \right)^m \right] + b$$
 III.166

onde "a", "b" e "m" são coeficientes adimensionais.

 $b = 1 - \frac{ma}{m+2}$

O coeficiente "*m*" controla a inclinação do perfil reduzido de sólidos e seu valor depende também das propriedades do leito de sólidos e da geometria do Riser. Já os coeficientes "*a*" e "*b*" podem variar com as condições de operação G_s e U. A média do fluxo reduzido de sólidos, na seção transversal, por definição, deve ser igual a unidade, portanto;

$$\frac{1}{\pi R^2} \int_0^R 2\pi r \frac{G_r}{G_s} dr = 1 \qquad \text{III.167}$$

III.168

onde

Assumindo que o transportador esta dividido em duas regiões,
uma central ascendente ("core"), de
$$r = 0$$
 a $r = r_0$; e outra com fluxo descendente junto a
parede de, $r = r_0$ a $r = R$, então podemos definir r_0 como a distância radial até o limite
entre as duas regiões, dado pela expressão:

$$r_0 = \left[\frac{1}{a} + \frac{2}{m+2}\right]^{1/m} R$$
 III.169

Examinando dados da literatura, os autores perceberam uma certa similaridade entre os perfis de fluxo reduzido e a fração de sólidos, pois ambas apresentavam uma forma parabólica. Desta feita, foi proposto uma expressão para a porosidade do leito onde esta similaridade ficaria definida por:

$$\frac{\rho_p (1 - \varepsilon_r)}{\rho_p (1 - \varepsilon)} = \beta \left(\frac{r}{R}\right)^2 + 1 - \frac{\beta}{2} \qquad \text{III.170}$$

onde

$$\varepsilon_{\rm r} = -(1-\varepsilon)\beta \left(\frac{r}{R}\right)^2 + \varepsilon + \frac{\beta}{2}(1-\varepsilon)$$
 III.171

e β é independente de G_s.

Assumindo que todo o gás passa unicamente pela região central ("core") e que não existe fluxo de gás na região anular, junto a parede, que a velocidade relativa entre o gás e o sólido, na região central, é igual a velocidade terminal de uma partícula isolada, V_t, , tal que:

sendo

e v_r , é a velocidade local da partícula, na direção radial que esta relacionada com a fração de sólidos $(1-\varepsilon_r)$ local e o fluxo de sólidos local G_r , pela expressão:

$$v_r = \frac{G_r}{\rho_p(1 - \varepsilon_R)}$$
 III.174

Do balanço de massa da fase gasosa no transportador podemos

escrever:

$$U = \frac{1}{\pi R^2} \int_{0}^{r} 2\pi r U_r dr$$
 III.175

Combinando as expressões, obtemos uma equação para o cálculo do parâmetro "a", para o perfil de fluxo reduzido de sólidos;

$$a = \frac{\frac{R^2}{2} - \int_0^{r_0} \frac{G\varepsilon_r \, dr}{U\rho_p(1-\varepsilon) \left[\beta \left(\frac{r}{R}\right)^2 + 1 - \frac{\beta}{2}\right]} - \frac{V_t}{U} \int_0^{r_0} \varepsilon_r r \, dr}{\int_0^{r_0} \frac{G\left[\frac{2}{m+2} - \left(\frac{r}{R}\right)^m\right]\varepsilon_r r \, dr}{U\rho_p(1-\varepsilon) \left[\beta \left(\frac{r}{R}\right)^2 + 1 - \frac{\beta}{2}\right]}}$$
III.176

Com o conhecimento das propriedades fisicas dos sólidos e de valores apropriados para "m" e " β ", o valor da constante "a" pode ser calculado de forma iterativa pela expressão acima, para uma dada condição operacional (U e G).

Os valores dos parâmetros "*m*" e " β " devem ser escolhidos para um dado grupo de dados experimentais. RHODES *et alli* [22], verificaram que o valor de *m* = 5 foi satisfatório para descrever os perfis. Já para o valor de " β " foi observado que este deve ser escolhido numa faixa entre 1,3 $\leq \beta \leq 1,9$.

Um estudo de sensibilidade paramétrica indicou que, quando "*m*" cresce, obtemos perfis mais achatados na parte central do transportador e profundos perto da parede. Aumentando-se " β ", os perfis tornam-se geralmente mais planos. Foi também observado que " β " cresce com a velocidade superficial e decresce com o diâmetro do transportador.

Figura III.33A - Comparação do Modelo com dados experimentais obtidos em Riser de 0,152 m DI, U = 3 m/s, (m = 5, $\beta = 1,5$).

Fig. III.33B - Comparação do Modelo com dados experimentais obtidos em Riser de 0,152 m DI, U = 4 m/s, ($m = 5, \beta = 1,7$).

As Figuras III.33A e B, ilustram o ajuste do modelo com os dados experimentais obtidos por BERKER e TULING [96] e HARTGE *et alli* [63] para partículas de 74,9 μ m de diâmetro médio e massa específica de 2.456 kg/m³, obtidas em Riser de 0,152 m de diâmetro, velocidade superficiais de 3 e 4 m/s, respectivamente, e taxa de recirculação de sólidos na ordem 9 a 64 kg/m².s.

III.6.4.5 - MODELO DE BERRUTI E KALOGERAKIS (1989)

Um último modelo radial relevante para ser citado é o modelo proposto por BERRUTI e KALOGERAKIS [104] em 1989. O modelo também esta baseado numa estrutura tipo "Core-Annulus", utilizado escoamento em duas fases (diluída central ascendente e densa anular descendente) e regime estabelecido.

O modelo entretanto é por demais simplista, pois propõe uma estrutura linear para as duas fases, não utilizando nenhum parâmetro experimental para ajustes, e uma estrutura parabólica para o perfil de velocidades.

Os resultados apresentados desconsideram toda a problemática já discutida nos modelos mais complexos, o que deixa o modelo em condições limitadas de aplicação. Os resultados experimentais usados para comparar a teoria, apresentam erros elevados na maioria dos pontos, aliás como era de se esperar, pois ficam distantes das linhas retas teóricas de porosidade e somente apresentam erros baixos para situações muito particulares. Por estes motivos, não iremos pormenorizar este trabalho, reconhecendo no entanto que, ele pode ser utilizado como um espécie de primeira aproximação.

CAPÍTULO IV - PLANO DE TRABALHO, METODOLO-GIA, MATERIAIS UTILIZADOS E EQUIPAMENTO

IV.1 - PLANO DE TRABALHO

Nosso Plano de Trabalho consiste em realizar um estudo da fluidodinâmica de um LFC, utilizando partículas classificadas como pertencentes ao Grupo B da classificação de GELDART [18, 19], aplicando uma metodologia já empregada com partículas do Grupo A, por pesquisadores como RHODES e colaboradores [40].

Nosso trabalho se propõe a colaborar no sentido de:

1) Realizar um revisão bibliográfica do "status quo" dos estudos da fluidodinâmica do tipo fluidização rápida, aliás já apresentada no Capítulo III;

2) Aperfeiçoar, modificar, ampliar e operar um equipamento de bancada em LFC, utilizado por PACHECO [105];

3) Realizar um levantamento de dados sobre os perfis de concentração de sólidos, axiais e radias, utilizando um grupo de partículas, até agora, pouco estudo, visando contribuir para elucidar e enriquecer as interrelações das variáveis de processo, particularmente com a variação da granulometria, tipo de material, velocidade superficial e taxa de recirculação de sólidos, comparando estes resultados aos modelos e teorias atuais;

4) Finalmente, revisar e adaptar os modelos existentes e já propostos na literatura a partir de dados para sólidos do Grupo A, buscando amplia-los para sua utilização com partículas do Grupo B, servindo de ponto de apoio para futuros estudos com outros grupos de partículas.

IV.2 - METODOLOGIA

IV.2.1 - MEDIDAS DOS PERFIS AXIAIS

Neste trabalho, os perfis axiais foram determinados utilizando-se a técnica padrão da variação da pressão ao longo do transportador, desprezando-se os efeitos de aceleração da partícula, na entrada, e o atrito junto a parede.

Para isto, foram instaladas dez tomadas de pressão ao longo do Riser, distribuídas de forma estratégica, isto é, um maior número de pontos na entrada e saída do equipamento, onde sabidamente existem variações maiores do perfil de concentrações.

Assim foram instalados tomadas de pressão a: 0,.30; 0,63; 0,97; 1,30; 1,80; 2,30; 3,30; 4,30; 5,30 e 5,60 m da entrada do Riser, respectivamente. Os dados obtidos foram armazenados e trabalhados em planilha padrão desenvolvida em Excel 5.0.

IV.2.2 - MEDIDAS DOS PERFIS RADIAIS

Já os perfis radias foram determinados através de sondas amostradoras do tipo não isocinético, utilizados por RHODES *et alli* [40] e localizadas a: 1,40; 2,90 e 3,90 m da entrada do Riser. Foram ainda feitas algumas determinações nas posições de 0,57 e 4,90 m da entrada também.

Cada perfil foi levantado através da medida de 8 pontos do fluxo ascendente e 8 do fluxo descendente, na mesma posição radial, de formas a permitir a determinação do fluxo líquido naquele ponto específico. O tempo médio de cada medida foi de aproximadamente dois minutos.

A Figura IV.4 apresenta o esquema do equipamento de bancada utilizado e melhor ilustra a posição e distribuição dos pontos de medida.

IV.2.3 - FAIXAS DE TRABALHO

Foram realizadas medidas dos perfis radiais e axiais em cerca de quatro materiais variando-se o tipo e a granulometria. As faixas de operação foram definidas como de altas velocidades superficiais, na ordem de 5 a 10 m/s com taxas de recirculação entre 0-120 kg/m².s.

IV.3 - MATERIAIS UTILIZADOS

IV.3.1- CARACTERÍSTICAS FÍSICAS DOS MATERIAIS

Foram selecionados seis materiais, três areias e três calcários. Destes foram amplamente utilizados (medidas radias e axiais) apenas quatro, tendo em vista a grande dificuldade prática das medidas. Todas as amostras selecionadas ficaram caracterizadas como pertencentes ao Grupo B da Classificação de GELDART [18]. A Tabela IV.1 apresenta as características fisicas dos materiais selecionados.

Os dados da Tabela IV.1 foram determinados nos laboratórios da Fundação de Ciência e Tecnologia - CIENTEC, usando-se amostras de materiais colhidas após as operações, visto se ter observado variações de até 10% nos resultados em relação ao material inicial por motivos de efeitos da elutriação e geração de finos por atrito.

Na determinação da densidade real da partícula $\rho_{rp,}$ foi empregado o método previsto pela Norma NBR 6508/84, ao passo que a densidade de carregamento ("bulk") $\rho_{p,}$ foi determinada pela Norma NBR 7251/82. Já os diâmetros médios das partículas foram determinadas pelo método de Sauter, ou seja:

$$d_{p} = \frac{1}{\sum \frac{X_{i}}{d_{pi}}}$$
 IV.1

TABELA IV.1 - MATERIAIS SELECIONADOS PARA AS MEDIDAS			
AMOSTRA Tipo	ρ_{rp} (kg/m ³)	$ ho_p$ (kg/m ³)	dp x 10 ⁻⁶ (m)
Areia Tipo 1 (60-80#)	2630	1491	160
Areia Tipo 2 (80-100#)	2640	1491	149
Areia Tipo 3 (0-100#)	2820	1484	120
Calcário Tipo 1 (60-80#)	2660	1455	134
Calcário Tipo 2 (80-100#)	2760	1567	93
Calcário Tipo 4 (35-60#)	2820	1502	341

IV.3.2 - CLASSIFICAÇÃO DOS MATERIAIS ESCOLHIDOS

Com os dados da Tabela IV.1, foi realizada uma análise de Classificação dos Materiais escolhidos utilizando o Diagrama de Classificação dos tipos de pós proposto por GELDART e a seguir apresentado na Figura IV.1.

Pode-se observar que as característica fisicas das partículas selecionadas ficam perfeitamente inseridas na região definida por GELDART como pertencente ao chamado Grupo B.

IV.3.3 - ANÁLISE DA FAIXA DE OPERAÇÕES

Conforme vimos na revisão do Capítulo III, diversos autores desenvolveram estudos e mapas de caracterização dos regimes de fluidização em função das características das partículas, fluido e condições operacionais. A fim de melhor identificar a atual situação dos dados obtidos, realizamos a seguir uma pequena demonstração mostrando como se situam nossos dados à luz das propostas da bibliografia.

Partindo-se de dados da Tabela IV.1, dados fisicos do fluido (ar atmosférico) e condições máximas e mínimas de operação, foram calculados alguns números adimensionais solicitados por dois diagramas característicos propostos por GRACE [27] e HORIO [24]. Os cálculos e resultados são apresentados a seguir, assumindo-se as seguintes condições;

> Dados do Ar : $\rho_g = 1,3 \text{ kg/m}^3$ $\mu_g = 2,3 \times 10^{-5} \text{ kg/m.s}$

Dados do Sólido: $\rho_{rp} = 2630 - 2820 \text{ kg/m}^3$ $d_p = 93 - 341 \times 10^{-6} \text{ m}$

Condições de operação: $U_{min} = 6 \text{ m/s}$ $U_{max} = 10 \text{ m/s}$

Figura IV.1 - Localização das amostras utilizadas no Diagrama de Classificação dos Pós em Grupos de GELDART [18]

IV.3.3.1 - Números Adimensionais e Mapas

Os números adimensionais propostos são, respectivamente, para o diagrama de GRACE:

a) a velocidade superficial adimensional U*; e

b) o diâmetro de partícula adimensional d_p*;

Para o Diagrama de HORIO:

a) o número de Reynolds de partícula Rep; e

b) o número de Archimedes para a partícula Ar_p , definidos conforme as equações IV.2 a IV.5 abaixo apresentadas:

$$U^* = U \left[\frac{\rho^2}{\Delta \rho g \mu} \right]^{\frac{1}{3}}$$
 IV.2

$$d_{p}^{*} = Ar^{\frac{1}{3}} = dp \left[\frac{\rho \Delta \rho g}{\mu^{2}}\right]^{\frac{1}{3}}$$
 IV.3

$$Re_{p} = \frac{d_{p}\rho_{g}U}{\mu_{g}}$$
 IV.4

$$Ar_{p} = \frac{d_{p}^{3} \rho_{g} (\rho_{p} - \rho_{g})g}{\mu^{2}}$$
 IV.5

Aplicando-se as condições do nosso caso chegamos aos seguintes valores mínimos e máximos para os números adimensionais:

 $U^* min = 10,3$ $U^* max = 17,6$ $dp^* min = 5,7$ $dp^* max = 21,5$

Os resultados foram colocados sobre os diagramas e os resultados são apresentados nas Figuras IV.2 e IV.3 respectivamente. No diagrama de GRACE os pontos ocupam parte da região sugerida como de fluidização rápida, enquanto que no diagrama de HORIO a maioria dos pontos caem na região F (Fast Fluidization).

Figura IV.2 - Diagrama de HORIO mostrando a região dos pontos experimentais. Na região temos: P- leito fixo; H- fluidização homogênea; B fluidização borbulhante; Tb- fluidização turbulenta; F- fluidização rápida; e Ttransporte diluído.

IV. 4 - EQUIPAMENTO E ACESSÓRIOS

IV.4.1 EQUIPAMENTO DE BANCADA

As medidas do presente trabalho foram realizadas em um equipamento de bancada instalado na CIENTEC no Campus de Cachoeirinha-RS. Após ser utilizado por PACHECO [105], o equipamento foi modificado, adaptado, melhor instrumentado e ampliado para viabilizar o plano de trabalho anteriormente descrito

Figura IV. 3- Diagrama de GRACE mostrando as regiões de nossas operações

Trata-se de uma bancada de LFC operando em condições atmosféricas e à temperatura ambiente. Sua configuração básica não difere muito dos equipamentos descritos na literatura. A Figura IV.4 apresenta o fluxograma básico da unidade.

O equipamento foi projetado para operar com ar atmosférico oriundo de um compressor tipo "roots" (1), VS6 da OMEL. É um sistema contínuo que utiliza circulação externa de sólidos (17 e 18) realimentados automaticamente de volta ao Riser. A velocidade superficial máxima é superior a 10 m/s e a taxa externa de recirculação de sólidos G_s , pode chegar a mais de 200 kg/m².s.

Figura IV.4 - Fluxograma básico do Equipamento de Bancada

O corpo do transportador (Riser) (7) foi construído com um tubo de 4", "schedule" 40, com DI de 102 mm e uma altura total de 6 m. No corpo principal foram instaladas dez tomadas de pressão, com o objetivo de medir o perfil ao longo do Riser, bem como 6 pontos para instalação das sondas amostradoras de captação de amostras para a determinação dos perfis radiais de concentração de sólidos. Destes apenas três são utilizados sistematicamente, dois apenas esporadicamente, e o sexto ponto ficou como reserva técnica.

As medidas do gradiente de pressão ao longo do leito e da perda de carga nos ciclones são realizadas através de um conjunto de manômetros de coluna d'água ligados em série de forma a registrarem pressões diferenciais para trechos bem definidos ($\Delta P/L$), facilitando a medida da porosidade média ε .

O corpo de retorno de sólidos ou reservatório (9), foi construído com um tubo de aço-carbono de 6" com DI de 148 mm e também com 6 m de altura. Próximo a metade do reservatório esta instalada uma válvula borboleta (10), utilizada para interromper o fluxo de sólidos e permitir a medida da taxa de recirculação, feita com o auxílio de um visor de acrílico (12), com escala, situado abaixo da válvula borboleta. Na base do reservatório foi instalada uma válvula fluidizada tipo J (13) cujo objetivo é efetuar a recirculação de sólidos, de uma zona de baixa para uma zona de alta pressão, de forma a controlar o retorno à base do Riser (7). Esta válvula é composta de dois compartimentos separados por uma lâmina móvel (19) capaz de modificar o fluxo de sólidos. As câmaras são fluidizadas por ar (14) e o fluxo controlado por rotâmetros independentes (6).

A bancada está ainda equipada com um reservatório auxiliar de sólidos (11), ligado ao reservatório principal (9) por uma válvula esfera (20), com a função específica de repor o material retirado do leito sem interromper a operação.

O transportador (7) e o reservatório (9) estão ligados no topo por uma saída abrupta (8) de tal maneira que o topo do reservatório funciona como ciclone primário de abate do material arrastado. Esta opção geométrica é característica de muitas aplicações do LFR com sólidos do Grupo B de GELDART, como os combustores [13] de LFC, por exemplo. Esta disposição do equipamento mostrou influir grandemente na formação dos perfis radiais, tendo sido verificada influência dos efeitos da saída nos mesmos. Na saída superior do reservatório existe um segundo ciclone (16) cujas partículas abatidas são a seguir reinjetadas (17) na base do reservatório (9) para retornarem à recirculação com o auxílio de ar secundário.

O ar principal tem sua vazão controlada por uma placa de orificio (4) e é injetado na base do transportador que funciona sem um distribuidor especial, apenas com um cone de expansão. O ar de processo é instrumentado com manômetros e termômetros para as correções de fluxo.

As posições detalhadas das medidas de pressão e dos amostradores radiais, estão melhor apresentadas na Figura IV.5.

Os pontos de tomada de pressão foram protegido contra entupimentos com o auxílio de telas sobrepostas de 200 e 325 "mesh", sendo que as medidas são centralizadas num painel onde foram colocadas todas as mangueiras de coluna de água. Também foram utilizadas tomadas especiais equipadas com um pequeno reservatório de coleta de sólidos buscando minimizar um dos maiores problemas operacionais, os entupimentos das tomadas de pressão por arraste de partículas muito finas.

IV.4.2 - SISTEMA DE AMOSTRAGEM DOS PERFIS RADIAIS

O sistema de amostragem dos perfis radiais é um ponto muito importante do equipamento, visto que é um método de medida direta da concentração de sólidos no Riser, num ponto de raio e altura determinada.

Figura IV.5 - Localização dos pontos de medida de pressão e de amostragem radial de sólidos no equipamento de bancada

O amostrador é do tipo não isocinético muito semelhante ao utilizado por RHODES [40] e colaboradores em trabalhos recentes. A Figura IV.6 ilustra o esquema básico.

O amostrador é composto de um tubo inox ANSI 304 de 1/4" e com DI de 4,0 mm. Sua forma geométrica em forma de U busca garantir que as medidas de captação de sólidos, tanto no fluxo ascendente como no descendente, sejam realizadas

exatamente na mesma posição axial, eliminando-se assim possíveis interferências de altura.

Figura IV.6 - Esquema básico de amostragem dos perfis radiais

A velocidade de sução é controlada por uma válvula agulha e um rotâmetro OMEL na faixa de 0-10 l/min, colocados na linha de ação da bomba de vácuo PRIMAR de ½ hp responsável pela sução. A sonda amostradora esta conectado a um vidro de volume na ordem de 1,0 l, cuja tampa possui um filtro que impede o arraste de material particulado através da linha de sução, o que certamente iria produzir desgaste excessivo nas palhetas da bomba.

O amostrador possui em seu corpo uma haste balizadora que, com o auxílio de um paquímetro, possibilita determinar a exata localização da ponta de captação ao longo do raio. A coleta de material, na condição desejada, é feita de forma ininterrupta do centro para a periferia do Riser, primeiramente do fluxo ascendente e em seguida, e de igual forma, do fluxo descendente. A conexão entre o amostrador e o vidro de captação é feito com o auxílio de uma mangueira flexível de 1/4".
CAPÍTULO V - RESULTADOS OBTIDOS

V.1 - INTRODUÇÃO

O trabalho experimental desenvolvido nesta tese, face a escassez de recurso instrumentais e a simplicidade dos métodos de medida, nos exigiram uma grande concentração de esforços e cuidados a fim de obtermos dados confiáveis e precisos. A estes problemas, somaram-se as dificuldades observadas no comportamento do LFC. Face as características de sua própria classificação entre os processos de fluidização, isto é, uma situação intermediária entre o leito fluidizado turbulento e o transporte pneumático de fase diluída, verificou-se que o comportamento, durante longos períodos, é crítico, isto é, ocorrem flutuações permanentes dentro de uma faixa sem comprometer o que chamamos de regime estabelecido.

Mesmo em regime, o LFC apresenta grandes turbulências e perturbações, digamos, "características" de seu regime crítico. Por este motivo as medidas precisaram ser realizadas com muito cuidado afim de serem representativas daquela condição. Esta dificuldade nos obrigou a realizar sistematicamente uma analise crítica de cada resultado obtido, usando muitas vezes o recurso de repetir varias vezes algumas medidas a fim de obter um valor médio dentro de padrões aceitáveis, isto é, erros inferiores a 30% entre as medidas.

As medidas dos perfis axiais foram realizadas sem grandes dificuldades, exceto o cuidado permanente para detectar algum entupimento nas diversas tomadas de pressão, visto serem mais comumns e frequentes que nos leitos fluidizados convencionais.

Já as medidas radiais se apresentaram muitas vezes mais complexas de serem realizadas. Dentre as maiores dificuldades citaríamos:

leito;

a) As características de flutuações instantâneas nos parâmetros do

b) Possibilidade de ocorrerem entupimentos nas sondas de captação (sucção) de massa;

c) Dificuldades operacionais nas medidas dos perfis radiais, que exigiram sempre duas pessoas, bem treinadas, para garantir uma medida precisa;

d) Grande dificuldade com as tomadas de pressão, devido à facilidade de entupirem em condições onde $G_s > 50 \text{ kg}/\text{m}^2$.s e velocidades altas, U > 8 m/s, que exigiram dos operadores paciência nas medidas em condições críticas.

Observando a literatura, verificamos que, sempre quando foram utilizados amostradores semelhantes aos nossos, poucos trabalhos foram realizados em faixas de Gs > 50 kg /m².s e U > 5,0 m/s, justamente pelas dificuldades com os entupimentos em condições mais drásticas.

Para diminuir os entupimentos nas tomadas de pressão foi desenvolvida uma tomada de pressão com "reservatório" e visor de vidro para recolher os pós arrastados nas tomadas. Graças a este acessório foi possível medir um grande número de pontos em condições críticas. Entretanto, mesmo assim tivemos problemas em condições onde U > 9,0 m/s e $G_s > 50 \text{ kg} / \text{m}^2$.s, pois seu reservatório de sólidos enchia rapidamente nestas condições.

Apesar dos problemas descritos, estamos convictos de que os dados obtidos são de boa qualidade, pois mostraram boa concordância, coerência e reprodutibilidade com veremos a seguir. Pode-se antever futuras dificuldades quando forem realizadas medidas com os pós finos e coesivos, como os pertencentes ao Grupo C por exemplo, a menos que sejam usados dispositivos de desentupimento automáticos nas tomadas de pressão ou então medidores e amostradores indiretos que são a tendência atual neste tipo de medida.

V.2 - MEDIDAS DOS PERFIS AXIAIS DE CONCENTRAÇÃO

V.2.1 - CONSIDERAÇÕES SOBRE A GEOMETRIA

As medidas axiais apresentaram um perfil muito influenciado pela saída abrupta de nosso equipamento. O principal modelo da literatura, proposto por LI e KWAUK em 1980 [36],onde o perfil axial de porosidade assemelha-se a forma de um "S" simétrico em relação a um ponto de inflexão e tendendo de forma assintótica para um valor mínimo na base até um valor máximo no topo do leito, foi observado apenas parcialmente em nossas medidas.

Nosso perfil axial padrão tem a forma de "C", conforme analisou BAI *et alli* [65], visto que, a estrutura geométrica do Riser é determinante na forma do perfil axial. GRACE [13] e HIRAMA *et alli* [45] também advogaram que o perfil "S" somente aparece sob determinadas condições, enfatizando a questão da geometria de saída e condições particulares de velocidades e tipo de partículas. Estes aspectos geométricos já foram discutidos no item III.6.1, e a Figura III.18 apresenta esta influência nos dados de GRACE [13]. Assim, nosso perfil em "C" é uma consequência do acúmulo de sólidos no topo do leito devido ao estrangulamento geométrico da saída [82]. A Figura V.1 apresenta um exemplo de curvas tipo "C" obtidas em nossas operações, mostrando que o perfil axial se deforma próximo ao topo, mais exatamente a partir de 4 m de altura, devido a geometria do Riser.

Nos primeiros resultados, achamos estar ocorrendo um erro sistemático nas medidas. Somente após analisar algumas publicações mais recentes e descobrir resultados semelhantes também obtidos por outros autores [45, 64, 65, 66, 67, 105, 106] é que tivemos a certeza de que estávamos medindo corretamente.

A Tabela V.1, apresenta a relação das medidas axiais efetuadas neste trabalho, com materiais escolhidos da Tabela IV.1 e com G_s entre 0 - 150 kg/m².s.

Figura V.1 - Dados de perfis axiais obtidos com areia AR2 (80-100#), U = 9,0 m/s e $Gs = 20 - 132 \text{ kg/m}^2.\text{s}$

TABELA V.1 -	Medidas Ef	etuadas dos	Perfis Axia	is de Conce	ntrações
VELOCIDADES					
(m/s)	6	7	8	9	10
MATERIAIS]				
AREIAS					
0-100 # (tipo 3)	X		X	Х	X
80-100# (tipo 2)	Х	X	X	Х	X
60-80 # (tipo 1)	X	X	X	X	X
CALCÁRIOS					
80-100 # (tipo 2)	X	X	X	Х	X

Os dados obtidos são apresentados, a seguir, sob a forma de planilhas informatizadas, onde as medidas axiais foram tabuladas e sistematizadas para mostrarem a variação da porosidade do leito sob a forma da variação da massa específica aparente da mistura, ρ_m , versus a altura do transportador.

Os dados são apresentados de duas formas distintas: primeiramente mantendo-se constante a taxa externa de recirculação de sólidos, G_s , e variando-se a velocidade superficial; e num segundo momento, a variação da densidade aparente da mistura mantendo-se constante a velocidade superficial do fluido e variandose a taxa externa de recirculação de sólidos G_s .

V.2.2 - CONSIDERAÇÕES SOBRE AS MEDIDAS AXIAIS

Todos os cálculos efetuados para construir os perfis axiais de concentração de sólidos, determinaram a massa específica média da mistura com a altura, pela expressão proposta por YANG *et alli* [77, 78, 91]. O método relaciona a pressão estática do leito, entre dois pontos, como sendo proporcional ao peso do volume da massa contida naquela seção do Riser. Assim podemos escrever a seguinte expressão:

$$\frac{dP}{dz} \approx \left[\rho_p (1-\varepsilon) + \rho_g \varepsilon \right] g \qquad \text{III.135}$$

onde $\rho_p e \rho_g$ são as massas específicas das partículas e do gás, respectivamente, e ϵ a porosidade média da mistura na seção. Entretanto, é preciso lembrar que esta expressão despreza os termos de atrito das partículas com as parede do Riser e a aceleração das partículas que são introduzidas no Riser com velocidade igual a zero.

Apesar de alguns autores entenderem que em determinadas situações estes termos não são desprezíveis, este tem sido o procedimento padrão da maioria dos autores, pela sua simplicidade [107]. Lembrando agora que:

onde ρ_m é a massa específica da mistura, podemos finalmente escrever:

V.2.3 - RESULTADOS OBTIDOS

A seguir apresentamos todos os resultados obtidos nas medidas dos perfis axiais de concentração. Face ao grande número de dados, os resultados serão apresentados de forma gráfica e sintética, mostrando a variação do perfil de duas formas distintas: dados com G_s constante e U variável e dados com U constante e G_s variável. Considerações complementares sobre os resultados serão apresentadas em separado no Capítulo VI.

As Tabelas V.2 e V.3 apresentam dois exemplos de como foi armazenado os dados em Excel 5.0, mostrando as Planilhas PAAR1G30.XLS e PAXAR1U7.XLS, respectivamente, medidas dos perfis axiais para areia 60-80 # (AR1) obtidas com $G_s \cong 30 \text{ kg/m}^2$ s e velocidades superficiais de 7,0, 8,0, 9,0 e 10,1 m/s e

medidas para as mesma areia mantendo-se a velocidade superficial U \cong 7 m/s variando G_s de 14 a 111 kg/m².s.

As Figuras V.2a a V.5e, a seguir, apresentam as medidas realizadas com G_s = cte. Já as Figuras V.6a a V.9f mostram as medidas com U = cte.

Figura V.2 abcd - Perfis Axiais para Areia AR! (60-80 #); dp= 160 µm; pp= 2630 kg/m³, para Gs= 25 (a), 50 (b), 70 (c) e 75 (d) kg/m².s e U = 6 - 10 m/s

Figuras V.3 abcd - Perfis Axiais para Areia AR2 (80-100 #); dp= 149 µm; pp= 2640 kg/m³, para Gs= 25 (a), 30 (b), 50 (c) e 80 (d) kg/m².s e U = 7 - 10 m/s

Figuras V.3 efg - Perfis Axiais para Areia AR2 (80-100 #); dp= 149 µm; ρ_p = 2640 kg/m³, para Gs= 90 (e), 100 (f), 115 (g) e 80 (d) kg/m².s e U= 7 - 10 m/s

Figura V.4 abcd - Perfis Axiais para Areia AR3 (0-100 #); dp= 120 µm; pp= 2820 kg/m³, para Gs= 25 (a), 30 (b), 50 (c) e 75 (d) kg/m².s e U = 5 - 10 m/s

Figura V.5 e - Perfis Axiais para Calcário CA2 (80-100 #); dp= 93 μ m; ρ_p = 2760 kg/m³, para Gs= 30 (e), 50 (b) kg/m².s e U = 6 - 10 m/s

Figura V.5 abcd - Perfis Axiais para Calcário CA2 (80-100 #); dp= 93 µm; pp= 2760 kg/m³, para Gs= 25 (a), 50 (b), 75 (c) e 80 (d) kg/m².s e U = 5 - 10 m/s

Figura V.6 abcd - Perfis Axial para Areia AR1 (60-80 #); dp= 160 µm; pp= 2630 kg/m³, para U= 7 (a), 8 (b), 9 (c) e 10 (d) m/s e Gs= 14 - 144 kg/m².s

Figura V.7 abcd - Perfis Axiais para Areia AR2 (80-100 #); dp= 149 µm; pp= 2640 kg/m³, para U= 7 (a), 8 (b), 9 (c) e 10 (d) m/s e Gs= 20 - 150 kg/m².s

Figura V.8 abc - Perfis Axiais para Areia AR3 (0-100 #); dp= 120 μm; ρ_p= 2820 kg/m³, para U= 6 (a), 7 (b) e 8 (c) m/s e Gs= 9 - 110 kg/m².s

Figura V.8 de - Perfis Axiais para Arela AR3 (0-100 #); dp= 120 μ m; pp= 2820 kg/m³, para U= 9 (d) e 10 (e) m/s e Gs= 11 ~ 99 kg/m².s

107

\$<u>\$</u>\$\$

 $\{|\mathbf{x}|\} \in \{1\}$

Figura V.9 abc - Perfis Axiais para Calcario CA2 (80-100 #); dp= 93 μm; ρ_p= 2760 kg/m³, para U= 5 (a), 6 (b) e 7 (c); Gs= 11 - 115 kg/m².s

Figura V.9 def - Perfis Axiais para Calcario CA2 (80-100 #); dp= 93 μm; ρ_p= 2760 kg/m³, para U= 8 (d), 9 (e) e 10 (f); Gs= 11 - 115 kg/m².s

V.3 - MEDIDAS DOS PERFIS RADIAS DE CONCENTRAÇÃO

V.3.1 - CONSIDERAÇÕES SOBRE A METODOLOGIA

V.3.1.1 - Quanto ao Tipo de Amostrador Utilizado

Conforme descrito no item IV.2, o método de medida dos perfis radiais de concentração longo do raio foram efetuadas utilizando amostradores não isocinéticos, isto é, sondas de aço inox similares as utilizadas por RHODES [40], com intervalos de tempo de cada coleta de material da ordem de dois minutos, utilizando-se tempos eventualmente maiores ou menores em alguns casos limites.

Inicialmente foi verificada a influência da variação da velocidade de sução da sonda, U_s, na da taxa coletada. Para este fim, foram realizadas medidas com diversas partículas em diferentes posições radiais e com diversas velocidades de sução.

Os resultados obtidos são a seguir apresentados de forma gráfica. As Figuras V.10 a,b,c,d,e, mostram as medidas de g_i (g/s) com Areia tipo 3 (0-100 #), em diferentes posições radiais, onde a velocidade de sução foi aumentada gradualmente. As condições externas de operação foram: $U_S = 7,2$ m/s; $G_s = 49,9$ kg/m².s. Da observação desta Figura concluímos que:

a) A velocidade de captação dos sólidos no amostrador, U_s , não tem influência na taxa de captação para valores de raio "r" distantes da parede, Figura V.10 c,d,e;

b) A velocidade de captação dos sólidos é relevante para valores de "r" próximos a parede, entretanto, como os valores meidos formam retas paralelas (Figura V.10a,b), podemos assumir que o valor da taxa líquida, isto é, $G_s = G_s(+) - G_s$ (-), pode ser considerado como constante pois não altera o valor absoluto quando feito o cálculo da diferença;

c) Foi observado que o valor da velocidade de captação U_s deve ser maior que a velocidade superficial do Riser para não ocorrer, com certeza, interferência na taxa de captura. Os pontos medidos abaixo da velocidade superficial indicaram um distorção para $U_s <$ que U.

Estes resultados foram objeto de um trabalho publicado [108], demonstrando não haver influência da velocidade de captação na taxa líquida em qualquer r, desde que seja obedecida a restrição de $U_S > U_c$

V.3.1.2 - Quanto à Simetria no Equipamento

Durante nossas medidas, foi admitido existir simetria radial e axial em todo o equipamento. Esta simplificação se faz necessária para facilitar as medidas e os cálculos. Entretanto, é importante salientar que esta simplificação, embora admitida por muitos autores, foi criticada por RHODES e LAUSSMANN [107] pelos seguintes motivos:

a) A realimentação de sólido no Riser nem sempre é homogênea, como em nosso caso onde é efetuada apenas por um lado do equipamento;

b) Existem imperfeições na superfície interna dos tubos, fato este de menor importância em nosso caso face ao padrão do material utilizado, isto é, um tubo "schedule" 40 de 3" e boa procedência e qualidade;

c) O tipo de saída do equipamento, que no caso de saída abrupta modifica sensivelmente principalmente os perfis axiais. Este fato foi notório em nosso trabalho, conforme já foi mostrado e comentado;

d) A magnitude da diminuição da simetria aumenta com a escala do equipamento, ou seja, em equipamentos industriais esta falta de simetria aumenta consideravelmente, conforme foi constatado por trabalhos de AZZI *et alli* [106]. Este parâmetro não nos é relevante tendo em vista a nossa escala de trabalho, um bancada com diâmetro de 3". Todos estes fatores no entanto, nos autorizam a trabalhar com valores médios, pois desta forma diminuímos o erro.

V.3.1.3 - Considerações sobre o Regime de Fluidização

Durante todas a medidas radiais e axiais, foram mantidas condições operacionais dentro dos mapas de fluidização nas regiões pertencentes ao LFR. Aproveitando o trabalho desenvolvido por YERUSHALMI *et alli* [3, 33, 47], foram relacionados dados sobre o regime das operações em termos da variação da pressão do Riser na base do leito, em função da velocidade superficial do gás e da taxa de recirculação de sólidos.

As Figuras III.15 e III.16, sintetizam a discussão sobre a necessidade de manter a operação longe da região de "choking", mostrando que, a medida que a velocidade do Riser aumenta, mais nos afastamos da região crítica. As Figuras V.11 e V.12, a seguir, nos mostram uma síntese das regiões de medida dos dados radiais, exemplificando as regiões de trabalho coma as areia AR2 (80-100 #) e AR3 (0-100 #).

Figura V.11 - Variação da densidade da mistura na base do Riser com a velocidade e a Taxa de Recirculação de sólidos para a Areia 80-100 # (AR2)

Da observação visual destas duas figuras, ficam confirmadas que as faixas de operação neste trabalho foram escolhidas com níveis de G_s bem acima do ponto G_s Tr da Figura III.15, bem como também apresentam semelhança com a Figura III.16 dos estudos de RHODES e GELDART [41].

Figura V.12 - Variação da densidade da mistura na base do Riser com a velocidade e a Taxa de Recirculação de sólidos para a Areia 0-100 # (AR3)

V.3.2 - Considerações Sobre as Medidas Radiais

Da Tabela IV.1 foram selecionados 4 materiais para um mapeamento de medidas radiais, sendo três areias e um calcário. A Tabela V.4, apresenta uma relação completa das operações realizadas com os materiais escolhidos. Os números que aparecem em cada quadro referem-se as taxas de recirculação de sólidos médias realizadas nos diversos níveis de cada ponto.

Com o objetivo de padronizar as medidas, foram definidas valores constantes para a velocidade superficial U, com uma variação de 1 m/s. Assim as velocidades 7, 8, 9 e 10 m/s foram selecionadas como padrão para as medidas.

De igual forma, as taxas de recirculação externas de sólidos, G_s , foram escolhidas para terem uma variação padrão de 25 kg/m².s. Desta feita, os valores de G_s 25, 50 e 75 kg/m².s foram definidos como padrão de medida. Foram obtidos apenas alguns poucos dados adicionais fora destes valores.

Também os valores radiais durante as medidas foram mantidas constantes, depois de se considerar alguns critérios para a sua definição como, por exemplo, da necessidade de haver maior número de medidas junto a parede onde os valores das taxas, ascendentes e descendentes, são muito significativos. Desta feita, os raios 0,0; 10,2; 20,4; 30,6; 40,8; 43,4; 4 5,9 e 47,8 mm, referidos respectivamente, aos raios relativos (r/R) iguais a: 0,0; 0,2; 0,4; 0,6; 0,8; 0,85; 0,9 e 0,94. Estes raios foram usados como padrões em todas as medidas, totalizando assim dezesseis por nível de altura escolhido, sendo oito no fluxo ascendente e oito no respectivo fluxo descendente, num total de oito posições radiais.

TABELA V.4		Medidas	Radiais	Realizadas			
Velocidade (m/s)	7	8	9	10	OBS:		
Material							
e Gs (kg/m ² .s)							
	18	21	26	22			
	40				17		
Areia Tipo 2	49	49	48	51			
(80-100 #)	80	80	80	81	Pontos		
	102	101	102	101			
Areia Tipo 1	27	28	26	27			
(60-80 #)	54	53	51	50	12		
	76	76	75	77	Pontos		
Areia Tipo 3	25	25	24	25	12		
	50	49	48	50			
(0-100 #)	75	75	74	75	pontos		
Calcário	27	26	26	25	13		
Tipo 2	53	50	50	50			
(80-100 #)	74	75	75	75	pontos		

As medidas da taxa externa de recirculação G_s , foram efetuadas com a interrupção do fluxo do reservatório da Bancada, através da válvula borboleta, tomando sempre como referência o mesmo intervalo de descida do nível de sólidos de retorno observada na parte do reservatório onde foi instalado um visor em acrílico, com uma distância sempre igual a 0,18 m.

A fim de facilitar o manuseio dos dados, foram criadas planilhas usando o software Excel, versão 5.0. As planilhas foram programadas para, recebendo os dados de entrada realizarem um análise completa da operação executando:

a) o cálculo das taxas e fluxos ascendentes e descendentes em cada ponto e nível;

b) o cálculo do fluxo líquido diferencial, construção de gráficos parciais dos perfis ascendente e descendente para cada onda (nível), um gráfico de todos os perfis medidos naquela operação;

c) o cálculo dos valores de G_s médio obtidos por integração gráfica (método dos trapézios) ; perfil de pressões ao longo do Riser e outros dados relevantes.

Os valores da integração gráfica foram reconfirmados pelo método polinomial (mínimos quadrados) usando o software Mathcad 4.0, chamado ao final de cada atualização da planilha e lançando-se os valores na coluna apropriada. Os cálculos dos valores médios de Gs, obtidos a partir dos perfis radiais esta demonstrado e explicado no item V.3.3 a seguir.

Observe-se que, foram realizadas medidas dos perfis radiais em, no mínimo, três níveis distintos, a saber 1,4; 2,90 e 3,90 m da entrada. Em alguns casos porem, visando ampliar as informações sobre os perfis foram realizadas medidas complementares nos níveis 0,54 e 4,90 m.

A seguir apresentamos as Tabelas V.5 e V.6, duas tabelas completas onde a primeira apresenta uma corrida onde foram medidos os perfis radiais em três níveis apenas e a segunda apresenta um exemplo de corridas onde foram medidos os perfis em cinco níveis diferentes.

A Tabela V.5 refere-se à corrida CA2U8G25, realizada em 03/11/94 com Calcário tipo 2 (80-100), nas condições de Gs = 25 kg/m^2 .s e U = 8 m/s, mostra as medidas realizadas em três níveis. Já a Tabela V.6 mostra a corrida AR3U10G50, realizada em 14/07/94 com areia tipo 3 (0-100#), nas condições de

Para fins de ilustração, foi colocado ao final, como Anexo 1, um exemplo completo do desenvolvimento de cálculo executado na planilha elaborada no Mathcad 4.0. Estes cálculos foram efetuados para cada operação ao final dos cálculos executados no Excel 4.0.

V.3.3 - Metodologia de Cálculo dos Perfis Radiais

A taxa de circulação de sólidos média, ao longo de cada seção transversal do transportador, $\overline{G_s}$, foi calculada usando a definição:

V.4

Corrida	a:	AR3U10G50	Data:	14/07/94	Sólido	Tipo:	TIPO 3								
Vazão de J	Ar (%):	69	Sólido:	AREIA 0-1	00	Taxa Ar(Kg/h):	379,1	Vazão de	Ar (%):	69	Sólido:	AREIA 0-1	00	Taxa Ar(kg/h):	38
Pressão Total	(mesti _z O)	2000	Densidedià (I	og/m ^a j	1306	U (m/s):	10,1	Pressão Yota	(mmH_2O)	2000	Densidade (P	(g/m²)	1306	U (m/s):	10
temperat do	uar (IC)	43	L	i (m):	0,18	Gs (kg/m².s):	49,5	Temperat, do	A7 (C)	40	6	i (m):	0,18	Gs (kg/m ² .s):	45
Temp. 8 (C)		33	٥	⊧ { {\$}:	9,73	PROBE:	0	Tamp S(C).		29	۵	, t (s):	9,70	PROBE:	A
r/R	Tempo de	Massa	Taxa	Fluxo	luxo Diferenci	Obs:	`]	r/R	Tempo de	Massa	Таха	Fluxo	luxo Diferenci	Obs:	٦
	Colota(s)	Coletada(g)	(g/s)	(kg/m2.s)	(kg/m2.s)		_		Coleta(s)	Cointeda(g)	(g/s)	(kg/m2.s)	(kg/m2.s)		
0.94	125,3	339	2,700	215,234	447.99	+	-	0,94	130	150	1,154	91,793		<u>+</u> +	
0,90	123,5	197	1,595	126,900	1 -117,00	+	-	0.90	130.1	130	0,781	79,493	20,03		
0,90	123,8	377	3,045	242,281	-115,36	-	1	0,90	147,7	75	0,508	40,396	39,10	-	
0,85	122,8	150	1,221	97,175		+]	0,85	143	135	0,944	75,103		+	
0.85	122,9	159	1,375	109,395	-12,22	<u> </u>	4	0.85	133	30	0,226	17,945	57,16	<u> </u>	-1
0.80	143.4	82	0.572	45,491	40.94		-	0.80	124.8	10	0,852	6.375	61.39	<u> </u>	
0,60	145,9	86	0,589	46,893		+	-	0,60	138,8	100	0,720	57.316		+	~~
0,60	114,8	3	0,026	2,079	44,81	-]	0,60	135	0	0,000	0,000	57,32	-	
0,40	1 124,4	57	0,458	36,452	0.045	+	4	0,40	152,9	95	0,621	49,429	1	+	4
0.40	124,9		0,000	35.814	36,45	<u> </u>	4	0.40	723,4	76	0,000	41 701	49,43		-
0,20	134.7		0,000	0,000	35,81		1	0,20	107	6	0,010	0.000	41,29	÷	-
0,00	200,9	97	0,483	38,411		+	1	0,00	167	90	0,539	42,873		+	
0,00	121,4	0	0,000	0,000	38,41]	0,00	92,3	0	0,000	0,000	42,87		
p Leito	1-2	2-3	3-4	4-5	5-6	6-7]	Δπ Λειτο	1-2	2-3	3-4	4-5	5-6	6-7	
cm H ₂ O)	3	2	1 Batacatorisconomen	1	1,8	2		(cm H ₂ O)	3,7	2,9	1,5	1,2	1	1,2	
	gunani dan kana	****	pitabasi pitabasi anti	·		Ap Total						Y		Ap Total	
	7-8	8-9	9-10	10-11	11-Atm	(anta H ₂ O)			7-8	8-9	9-10	10-11	11-Atm	(mm H ₂ O)	
Varaðin eta															
	Ar (%)	69	Sólido:	ARFIA 0.1	nn	Taua Ankum)	380.9	Vazão de	Ar /%):	69.5	Sólida		n	Taxa Arikohi:	3
messáo Totsi	Ar (%): 8 (maul ₂ O)	69 2000	Sólido: Densidade (l	AREIA 0-1	00 1306	Taxa Ar(kg/h): U (m/s):	380,9 10,1	Vazão de Pressio Tota	Ar (%): (nonity0);	69,5 2050	Sólido: Densidade (k	AREIA 0-1	00 1306	Taxa Ar(kg/h): U (m/s):	34 11
Presiséo Tota Femperati do	Ar (%): 8 (maul ₂ 0) (Ar (C)	69 2000 40	Sólido: Denudade (I A	AREIA 0-1	00 1306 0,18	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s):	380,9 10,1 50,1	Vazão de Presséc Tola Temperat do	Ar (%): (mmHyO) Ar (C)	69,5 2050 34	Sólido: Densidade (k	AREIA 0-1	00 1306 0,18	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s):	34 10 50
Presisión Tota Temperat i do Ismp B (C)	Ar (%): 8 (mert ₂ 0) 1 Ar (C)	69 2000 40 30	Sólido: Denvidade (I <u>Á</u>	AREIA 0-1 (g/n ^p) ({ (m): (t (s):	00 1306 0,18 9,62	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	380,9 10,1 50,1 B	Vazão de Presido Tola Temp B (C)	Ar (%): (nunity0) Ar (C)	69,5 2050 34 25	Sólidio: Densidade (k Å	AREIA 0-1 gm ³]: 1 (m): 1 t (s):	00 1306 0,18 9,47	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	36 10 50 C
Presisão Tota Tempional do Iomp B (C) In/R	Ar (%): 8 (mmH ₂ O) (Ar (C) Tempo de	69 2000 40 30	Sólido: Dervidade (1 6 7	AREIA 0-1 (g/m ²) (+ (m): (t (s): Fluxo	00 1306 0,18 9,62 Tuxo Diteranci	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs:	380,9 10,1 50,1 B	Vazão de Pressée Tola Temperat do Temp B (C)	Ar (%): (nonH ₂ O) Ar (C) Tempo de	69,5 2050 34 25 Massa	Sólido: Densidade (k A Taxa	AREIA D-1 gm ²⁴ : (1 (m): (1 (5): Fluxo	00 1306 0,18 9,47	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs:	3i 11 5 C
Pressión Tota Temperat i do Temp B (C) t/R	Ar (%): 8 (mmH ₂ O) 1 Ar (C) Tempo de Coleta(s)	69 2000 40 30 Massa Coletada(9)	Sólido: Densidade () <u>A</u> Taxa (g/s)	AREIA 0-1 (m ²) (m): (m): (s): Fluxo (kg/m2.s)	00 1306 0,18 9,62 Iuxo Diferenci (kg/m2.s)	Таха Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs:	380,9 10,1 50,1 B	Vazão de Prespéc Tota Temperat do Temp B (C)	Ar (%): (nonH ₂ O) Ar (C) Tempo de Colete(s)	69,5 2050 34 25 Massa Coletade(g)	Sálido: Densidade (k A Taxa (g/5)	AREIA 0-1 gm ² : i 1 (m): i 1 (s): Fluxo (kg/m2.s)	00 1306 0,18 9,47 10x0 Diferencia (kgan2.s)	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs:	3 1' 5 C
nessáo Tots iemperat do emp B (C) t/R 0,94	Ar (%): s (mort ₂ O) Ar (C) Tempo de Coleta(s) 147,5	69 2000 40 30 Massa Coletata(g) 65	Sólido: Densidade () 2 7 axa (g/s) 0,441	AREIA 0-1 (m ²): ((m): (t (s): Fluxo (kc/m2.s) 35,058	00 1306 0,18 9,62 (luco Diferenci (kgm2.s)	Таха Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs: +	380,9 10,1 50,1 B	Vazão de Pressão Tola Temperat do Temp B (C) 1/R 0,94	Ar (%): (nonH ₂ O) Ar (C) Tempo de <u>Caketa(s)</u> 139,9	69,5 2050 34 25 Massa Coletade(g) 85	Sólido: Densidade (k & Taxa (g/s) 0,465	AREIA 0-1 g(m ²): 1 (m): 1 (s): Fluxo (kg/m2.s) 36,962	00 1306 0,18 9,47 Juxo Diferenci (kg#n2.s)	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs: +	3 1 5 C
nesselo Tots emperat do emp θ (C) r/R 0,94 0,94	Ar (%): # (mmH20) #Ar (C) Tempo de Coleta(s) 147,5 119,8	69 2000 40 30 Massa Coleteta(g) 65 78	Sófiido: Derrudate () 2 Taxa (0/5) 0,441 0,651	AREIA 0-1 (m): (m): t (s): Fluxo (kg/m2.s) 35,058 51,796 55,772	00 1306 0,18 9,62 1uxo Diteranci (tegin2.s) -16,74	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs:	380,9 10,1 50,1 B	Vazão de Pressão Tola Temperat do Temp B (C) #/R 0,94 0,94	Ar (%): (nonH ₂ O) Ar (C) Tempode Calote(s) 139,9 138,4 126 1	69,5 2050 34 25 Massa Coletade(g) 65 100	Stálido: Densidade (k 	AREIA 0-1 g/m ² · i (m): i t (s): Fluxo (kg/m2.s) 36,962 57,481 50,470	00 1306 0,18 9,47 1000 Diferencia (Rgan2.s) -20,52	Taxa Ar(kgh): U (m/s): Gs (kg/m ² .s): PROBE: Obs:	3 11 5 C
resset Tots emperat do emp θ (0) r/R 0,94 0,94 0,90 0,90	Ar (%): # (ment ₂ O) # (C) Tempo de Coleta(s) 119.8 120.9 121	69 2000 40 30 Massa Coletata(j) 65 78 84 84	Sófiido: Derozidade () 2 Taxa (g/s) 0,441 0,651 0,695 0,886	AREIA 0-1	00 1308 0,18 9,62 Iuxo Diferenci (kgm2.s) -16,74	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .e): PROBE: Obs:	380,9 10,1 50,1 B	Vazão de Prespéc Tota Temperat do Temp B (C) #/R 0,94 0,94 0,90 0,90	Ar (%): (nomt_0) Ar (C) Tempo de Colecte(s) 138,4 126,1 149	69,5 2050 34 25 Massa Coletada(g) 65 100 80 90	Stálido: Densidade (k 2 2 3 3 4 3 3 4 3 5 3 4 6 5 3 4 6 3 4 3 5 3 4 5 5 4 5 4 5 4 5 4 5 5 1 5 1 5 1 5 1 5	AREIA 0-1 g/m ² - i (m): i (s): Fluxo (kg/m2.s) 36,962 57,481 50,470 48,053	00 1306 0,18 9,47 1000 Diferencia (Rgin2.s) -20,52 2,42	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs:	3 1 5 C
rressão Tota emporati do emp B (C) r/R 0,94 0,94 0,90 0,90 0,90 0,95	Ar (%): ar (%): ar (C) Tempo de Coleiz(s) 147,5 119,8 120,9 121 150,8	69 2000 40 30 Massa Coletica(g) 65 78 84 84 83 110	Sólido: Denudade () 2 Taxa (g/s) 0,441 0,695 0,695 0,695 0,695	AREIA 0-1 (m ²) (m): t (s): Fluxo (kg/m2.s) 35,058 51,796 55,273 54,570 58,030	00 1306 0,18 9,62 10xx Diferenci (kgm2.s) -16,74 -0,70	Taxa Ar(kg/h): U (m/s): Gs (kg/m².s): PROBE:	380,9 10,1 50,1 B	Vazão de Pressée Tota Temperat do Temp B (C) #/R 0,94 0,94 0,96 0,96 0,96 0,96	Ar (%): (nunt;0) Ar (C) Tempo de <u>Coleta(s)</u> 138,4 126,1 149 158,9	69,5 2050 34 25 Massa Cottade(g) 65 100 80 90 140	Sólido: Densidade (A A Taxa (g/s) 0,465 0,723 0,634 0,604 0,604	AREIA 0-1 g/m ² : 1 (m): 1	00 1306 0,18 9,47 10x0 Diferencia (kgán2.s) -20,52 2,42	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: Obs: + +	3 11 5 C
ress.do Tots empored Ax smp B (C) r/R 0,94 0,94 0,90 0,95 0,85 0,85	Ar (%): # (med_50) (Ar (C) Tempo de Coleta(s) 147,5 119,6 120,9 121 150,8 168,6	69 2000 40 30 Massa Coleteda(9) 65 78 84 83 110 10	Sólido: Denudade () 2 7 axa (g/s) 0,441 0,651 0,695 0,695 0,695 0,695	AREIA 0-1 g/m ²) (m): t (s): Fluxo (kg/m2.s) 35,058 51,796 55,273 54,570 58,030 4,719	00 1306 0,18 9,62 turo Diterenci (kgtm2.s) -16,74 -0,70 53,31	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² :s): PROBE:	380,9 10,1 50,1 B	Vazão de Pressée Tele Temperat do Temp B (C) #/R 0,94 0,94 0,90 0,95 0,85	Ar (%): (runt;0) Ar (C) Tempo de Coletats 139,9 138,4 126,1 149 158,9 169	69,5 2050 34 25 (Massa Coletada(g) 85 100 80 90 140 50	Sólido: Densidade (k 2 2 3 3 3 3 4 3 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 5 5 5	AREIA 0-1 (m ²): 1 (m): 1 (s): 1	00 1306 0,18 9,47 Iuxo Diferenci (kg/m2.s) -20,52 2,42 46,55	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	3 1 ¹ 5 C
resolution Tots (emperatulation emp θ (C) 1/R 0,94 0,94 0,90 0,90 0,90 0,85 0,85 0,85 0,85	Ar (%): # (math_0) # (Tempo de Coleta(s) 147,5 119,8 120,9 121 150,8 168,6 161,4 161,4	69 2000 40 30 Coleteda(g) 65 78 84 83 110 10 10	Sólido: Denudade () 2 2 3 3 3 3 4 4 3 4 4 5 3 5 4 5 4 5 4 5 4 5	AREIA 0-1 (m): 1 (m): 1 (s): Fluxo (kg/m2.s) 35.055 51.796 55.273 54.370 54.370 630.330 4.719 71.470 2.901	00 1306 9,18 9,62 10/0 Diferenci (kgm2.s) -16,74 -0,70 53,31	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	380,9 10,1 50,1 B	Vazão de Prespér Tota Temperat do Temp B (C) t/R 0,94 0,94 0,94 0,94 0,95 0,85 0,85 0,85	Ar (%); (numHyO) Ar (C) Tempo de Coleta(s) 138,4 126,1 138,4 126,1 138,9 138,4 138,9 138,4 138,9 138,5 138,5	69,5 2050 34 25 (Massa Coletasia(p) 100 80 90 140 50 125 15	Sòlido: Densidade (A 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AREIA 0-1 gen ² · i (m); i (s); Fluxo (kg/m2.s) 36,962 57,441 50,470 48,053 77,0325 23,537 73,335 9,862	00 1306 0,18 9,47 huxo Diferenci (kg/m2.s) -20,52 2,42 46,55	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: + + + + + + +	3 1 5 C
Preside Tots (empleme) omp θ (C) r/R 0,94 0,94 0,94 0,90 0,85 0,85 0,80 0,80 0,80 0,80 0,80 0,80	Ar (%): a (math_0) a) (math_0) ar (C) Tempo de Coleta(s) 147,5 119,8 120,9 121 150,8 168,6 161,4 142 201 0	69 2000 40 30 65 78 84 83 110 10 145 5 210	Sólido: Denudade () 2 2 3 3 3 3 4 4 3 4 4 1 0,655 0,655 0,655 0,655 0,729 0,059 0,059 0,059 0,059	AREIA 0-1 (m): (m): (s): Fluxo (kg/m2,s) 35,058 51,796 55,273 54,570 54,570 54,370 71,470 2,801 82,740	00 1306 9,18 9,62 10/00 Diterance (rkgm2.s) -16,74 -0,70 53,31 68,67	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	380.9 10,1 50,1 B	Vazão de Prestelo Tole Temperat do Temperat do Temperat do Temperat do Temperat do Temperative 0,94 0,94 0,94 0,94 0,94 0,94 0,94 0,94	Ar (%): (rumH_O) Ar (C) Tempo de Coleta(s) 138,4 126,1 149 135,8 135,8 135,8 137,9	69,5 2050 34 25 (Massa Coletade(p) 405 100 80 90 140 50 125 15 125	Sòlido: Densidade (k 2) 0,465 0,723 0,634 0,634 0,634 0,286 0,286 0,922 0,109 1,282	AREIA 0-1 gen ² - (m): (m): (s): Fluxo (kg/m2.s) 36,962 57,481 50,470 48,053 70,092 23,537 73,335 8,653 101,992	00 1306 0,18 9,47 huo Diferenci (kg/m2.s) -20,52 2,42 46,55 64,68	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	
Press/or Tota emperate do smp θ (C) r/R 0,94 0,94 0,94 0,95 0,85 0,85 0,85 0,85 0,86 0,80 0,60	Ar (%): # (metLO) (Ar (C) Tempo de Coleta(s) 147,5 120,9 121 150,8 168,6 161,4 142 201,9 360,6 161,4	69 2000 40 30 Massa Coleteda(j) 65 78 84 83 110 10 10 10 5 210 0 0	Sólido: Denudede () 7 axa (g/s) 0,441 0,695 0,695 0,685 0,729 0,059 0,688 0,035 1,040 0,000	AREIA 0-1 (m): (m): t (s): Fluxo (kg/m2.s) 35,058 51,796 55,273 54,570 54,570 54,570 2,801 82,746 0,060	00 1306 0,18 9,62 10x0 Diteranci (kgm2.s) -16,74 -0,70 53,31 68,67 82,75	Taxa Ar(kg/h): U (m/s): Gs (kg/m².s): PROBE:	380,9 10,1 50,1 B	Vazão de Presido Tola Feriperat do Tamp B (C) 1/R 0,94 0,90 0,90 0,85 0,85 0,80 0,80 0,60 0,60	Ar (%): (runt-j0) Ar (C) Tempo de Colekts1 139,9 138,4 126,1 149 135,8 137,9 144,3 137,9 144,3	69,5 2050 34 25 Massa 65 100 85 100 80 140 50 125 15 185 2	Sòlido: Densidate № Δ Δ 1 Taxa (g/s) 0,465 0,723 0,634 0,634 0,634 0,624 0,624 0,522 0,109 1,282 0,019	AREIA 0-1 gm²l: 1 (m): 1 (m): 1 (s): 36,962 57,481 50,470 48,063 70,092 23,537 77,3335 8,663 101,992 1,303	00 1306 0,18 9,47 1000 Diferenci (kg/m2.9) -20,52 2,42 46,55 64,68 100,69	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	3 1 ¹ 5 ¹ C
ressour Tota emperative emp	Ar (%): # (meH_0) # (r (C) Tempo de Coleta(s) 147,5 120,9 121 150,8 168,6 161,4 142 201,9 360,6 145,3	69 2000 40 30 Coletata(g) 65 78 84 84 83 110 10 145 5 210 0 0	Sólido: Denudece () 2 7 Taxa (g/s) 0,441 0,655 0,686 0,729 0,059 0,068 0,025 1,040 0,005 1,204	AREJA 0-1 (m ²) (m): t (s): Fluxo (tog/m2.s) 35,058 51,756 54,570 54,570 54,570 54,370 54,370 54,370 2,801 82,746 0,000 95,815	00 1306 0,18 9,62 10±0 Diference (Kg/m2.s) -16,74 -0,70 53,31 68,67 82,75	Taxa Ar(kgh): U (m/s): Gs (kg/m².s): PROBE:	380,9 10,1 50,1 B	Vazão de Presisio Tota Feriperat do Temp B (C) 1/R 0,94 0,90 0,90 0,80 0,80 0,85 0,85 0,80 0,80 0,80 0,8	Ar (%): (ranit_G) Ar (C) Tempo de Coletats) 138,4 126,1 149 158,9 135,8 137,9 144,3 135,5	69,5 2050 34 25 Massa Coleto2(g) 85 100 80 90 140 50 140 50 125 15 185 125 15	Sòlido: Densidade IA 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AREIA 0-1 (pm ²]: 1 (m): 1 (s): Fluxo (kg/m2.s) 36,962 57,481 50,470 48,063 70,092 23,537 73,353 8,653 101,992 1,003 84,121	00 1306 0,18 9,47 Plavo Diferenci (legén2.s) -20,52 2,42 46,55 64,68 100,69	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: + + + - - + - - + - - + +	3 1 5 C
rescác Tolá (enpent do emp 0 (C) r/R 0,94 0,94 0,90 0,90 0,85 0,85 0,85 0,85 0,85 0,80 0,80 0,60 0,60 0,60 0,40	Ar (%): # (math_0) # (r c) Tempode Coteta(s) 147,5 119,8 120,9 121 150,8 168,6 161,4 142,2 01,9 360,6 141,25 142,25 110,4	69 2000 40 30 Coletata(0) 65 78 84 83 110 10 145 5 5 5 7 8 210 0 0	Sólido: Densidede () 2 7 Taxa (g/s) 0,451 0,655 0,685 0,729 0,059 0,886 0,729 0,059 0,886 0,729 0,059 0,886 0,729 0,000 1,204 0,000	AREIA 0-1 ymf) 1 (m): 1 (s): 1 (s): 1 (s): 1 (s): 55,273 54,570 54,570 54,570 71,470 2,801 71,470 2,803 4,719 71,470 2,803 62,746 82,746 82,746 82,746 95,815 0,000	00 1306 9,18 9,62 10±0 Diferenci (kgtn2:s) -16,74 -0,70 53,31 68,67 82,75 95,82	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	380,9 10,1 50,1 B	Vazão de Presisio Tida Teriperat do Temp 51(C) 1//R 0,94 0,90 0,80 0,80 0,80 0,80 0,80 0,80 0,80	Ar (%): (runHt_O): Ar { C) Tempo de Coleta(s) 138,9 138,9 136,1 149 135,6 135,9 135,8 137,9 144,3 122,1 144,3 122,1 144,3 122,1 144,3 122,1 145,5 90	69,5 2050 34 25 (Massa Costade(g) 65 100 80 80 90 125 15 185 2 2 175 0 0	Sółłdo: Densidate (k 2 2 2 2 3 3 3 3 3 4 5 5 2 5 3 4 5 3 4 5 5 2 5 5 5 5 5 4 5 5 2 5 5 5 5 5 5 5	AREIA 0-1 (m ²): 1 (m): 1 (s): Fluxo (kg/m2.s) 36,962 57,461 50,470 48,053 70,092 23,537 73,335 8,653 101,992 1,303 84,121 0,000	00 1306 0,18 9,47 1000 Diferenti (kptn2 s) -20,52 2,42 46,55 64,68 100,69 84,12	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: + + + + + + + + + + - - + + - - + + - -	
Pressón Tota emprenation amp B (C) r/R 0,94 0,94 0,95 0,85 0,85 0,85 0,85 0,85 0,85 0,86 0,86 0,60 0,60 0,60 0,40 0,40 0,20	Ar (%): # (math_0) # (rath_0) # (C) Tempode Coleta(s) 147,5 119,6 121 150,8 168,6 161,4 142 201,9 360,6 145,3 110,4 245,3 24	69 2000 40 30 Massa Coleteta(0) 68 78 83 110 145 5 210 0 145 5 210 0 175 0 220 2	Sélido: Densdede () 2 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4 5 3 5 3 5 4 5 4	AREJA 0-1 grift) 1 (m): 1 (s): 1 (s): Fluxo (kg/m2.s) 35.055 51.766 55.273 54.370 54.370 54.370 71.470 2.801 82.744 0.000 95.815 0.000 80.048	00 1306 0,18 9,62 10/20 Diference (kgm/2 s) -16,74 -0,70 53,31 68,67 82,75 95,82	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	380,9 10,1 50,1 B	Vazão de Presisio Tda Feriperat do Temp B (C) 1/R 0,94 0,90 0,85 0,85 0,85 0,85 0,80 0,80 0,80 0,8	Ar (%): (rumH;0): Ar (C) Tampo de Colets(s) 138,4 158,9 135,6 137,9 135,6 137,9 144,3 122,1 165,5 90 144,9 129,1 129,1 100,5 129,1 120,1 100,5 120,1 100,5	69,5 2050 34 25 (Massa Coletata(g) 85 100 80 90 140 125 15 15 125 125 125 175 0 0 115	Sölido: Densidade () 2 ∆ 2 ∆ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓	AREIA 0-1 pm ² I; i (m); i (s); Fluxo (kg/m2.s) 36,962 57,481 50,470 48,063 70,092 23,537 77,3335 8,653 101,992 1,303 84,121 0,000 63,138	00 1306 0,18 9,47 1000 Diferenci (kg/m2.s) -20,52 2,42 46,55 64,68 100,69 84,12 63.14	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	
Press (so T of a femperation of amp θ (C) r/R 0,94 0,94 0,95 0,85 0,85 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,40 0,20 0,20 0,00	Ar (%): # (mnd4,0) # (mnd4,0) # (C) Tempode Coleta(s) 147,5 119,6 120,9 121 150,8 161,4 142 201,9 360,6 145,3 156,4 145,3 14	69 2000 40 30 65 78 84 83 110 10 145 5 210 0 0 176 0 176 0 265	Sólido: Denvidede () 2 2 7 axa (9/5) 0,451 0,655 0,729 0,055 0,056 0,056 0,056 0,056 0,056 0,056 0,056 0,005 1,040 0,000 1,082 0,000	AREJA 0-1 ((m): 1 (m): 1 (s): Fluxo ((cgm2,s) 35,055 51,796 55,273 54,570 50,0000 50,000 50,0000 50,0000 50,0000 50,0000 50,00	00 1306 0,18 9,62 10/0 Diteranci (kg/m2.s) -16,74 0,70 53,31 68,67 82,75 95,82 86,05	Taxa Ar(kgh): U (m/s): Gs (kg/m ² .s): PROBE: 	380,9 10,1 50,1 B	Vazão de Presiséo Tota Feriperat do Temp B {C} 17mp B {C} 17mp B {C} 0,94 0,90 0,90 0,85 0,80 0,80 0,80 0,80 0,80 0,80 0,8	Ar (%): (rent_JO) Ar (C) Tempo de Coletats) 136,9 136,9 136,9 136,9 136,9 135,6 137,9 144,3 122,1 165,5 90 144,9 123,6 139,8	69,5 2050 34 25 Massa Coletada(0) 85 100 80 90 140 50 140 50 140 50 140 50 140 50 140 50 140 50 140 50 140 50 140 50 140 50 50 50 50 50 50 50 50 50 50 50 50 50	Sòlido: Densidade () A A C Taxa (g/s) 0,465 0,723 0,634 0,624 0,624 0,624 0,624 0,624 0,624 0,624 0,625 0,0109 1,282 0,0109 1,282 0,0109 1,282 0,0109 1,282 0,000 0,774 0,000	AREIA 0-1 p ^{m²]} : i (m): i (s): Fluxo (kg/m2.s) 36,962 57,461 50,470 48,063 70,092 23,537 70,092 23,537 70,092 23,537 101,992 1,303 84,121 0,000 63,133 0,000	00 1306 0,18 9,47 1000 Diferenci (kgán2.s) -20,52 2,42 46,55 64,68 100,69 84,12 63,14	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	
rescén Tota emperat 20 amp 9 (C) 17/R 0,94 0,94 0,94 0,94 0,94 0,90 0,85 0,80 0,85 0,80 0,85 0,80 0,80 0,8	Ar (%): a (mady0) a (mady0) ar (C) Tempo de Coleta(s) 147,5 147,5 147,5 147,5 147,5 147,5 146,6 146,2 161,4 145,2 110,4 245,5 165,6 145,2 10,4 145,2 10,4 145,2 10,4 145,2 10,4 145,2 10,4 145,2 10,4 145,2 10,4 145,2 147,5 145,2	69 2000 40 30 0 65 78 8 84 83 110 10 145 5 210 0 175 0 175 0 0 175 0 0 0 0 0 0 0 0 0	Sólido: Densidede () 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AREJA 0-1 spref) ((m): t (s): Fluxo ((cgrup 2, s) 35,055 51,796 55,273 54,570 50,0000 50,000 50,000 50,000 50,000 50,00	00 1306 0,18 9,62 10/0 Diteranci (kg/m2.s) -16,74 0,70 53,31 68,67 82,75 95,82 86,05 77,14	Taxa Ar(kgh): U (m/s): Gs (kg/m ² .s): PROBE: 	380,9 10,1 50,1 B	Vazão de Presiséo Tota Feriperat do Temp B {C} 17mp B {C} 0,94 0,90 0,90 0,85 0,80 0,80 0,80 0,80 0,80 0,80 0,8	Ar (%): (rent_JO) Ar (C) Tempo de Coleta(s) 136,9 136,9 136,9 136,9 136,6 137,9 144,3 137,9 144,3 137,9 144,3 122,1 165,5 90 144,9 123,6 139,8 80	69,5 2050 34 25 Massa Coletada(a) 85 100 80 100 80 140 125 15 185 2 2 175 0 115 0 775 0	Sòlido: Densidade () A A C Taxa (g/s) 0,465 0,723 0,634 0,624 0,624 0,624 0,624 0,624 0,624 0,624 0,626 0,626 0,657 0,000 0,784 0,636 0,600	AREIA 0-1 p ^{m²];} i (m); i (s); Fluxo (kg/m2.s) 36,962 57,461 50,470 48,063 70,092 23,537 70,092 23,537 70,092 23,537 101,992 1,303 84,121 0,000 63,133 0,000 42,679 0,000	00 1306 0,18 9,47 1000 Diferenci (kgán2.s) -20,52 2,42 46,55 64,68 100,69 84,12 63,14 42,88	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	
Pressión Tota Temperat do Temp B (C) r/R 0,94 0,90 0,94 0,90 0,90 0,90 0,90 0,90	Ar (%): # (med_0): # (C) Tempo de Coleta(s): 147,5 119,8 120,9 121, 150,8 168,6 161,4 145,2 110,4 145,2 110,4 145,2 130,4 145,2 130,4 145,2 130,4 145,2 14	69 2000 40 30 Coletata(g) 65 78 84 83 110 10 145 5 210 0 145 5 210 0 145 5 210 0 145 5 210 0 145 5 210 0 0 145 178 0 178 6 5 210 0 10 10 10 10 10 10 10 10 10 10 10 10	Sólido: Dernudede () 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AREIA 0-1 ym ²) 1 (m): 1 (s): 1 (s): 1 (s): 1 (s): 55,273 54,570 55,273 54,570 54,570 54,570 54,570 1,400 1,400 1,470 1,400	00 1306 9,18 9,62 1000 Ditersec: (kgtn2.s) -16,74 0,70 53,31 68,67 82,75 95,82 86,05 77,14	Taxa Ar(kgh): U (m/s): Gs (kg/m².s): PROBE:	380,9 10,1 50,1 B	Vazão de Priestilo Tota Famperat do Tamp B (C) 17/R 0,94 0,90 0,90 0,90 0,80 0,80 0,80 0,80 0,80	Ar (%): (runHt_O): Ar (C) Tempo de Coletats) 138,4 126,1 149,9 136,4 158,9 137,9 144,3 122,1 122,1 144,9 122,6 139,8 80 144,9 123,6 139,8 80 144,9 123,6 139,8 144,9	69,5 2050 34 25 Massa Cotetase(g) 65 100 80 90 140 50 125 15 125 125 125 0 0 75 0	Sòlido: Densidade IA ∆ Taxa (g/s) 0,465 0,723 0,634 0,604 0,604 0,624 0,624 0,626 0,626 0,609 1,282 0,0109 1,282 0,0109 1,282 0,0109 1,057 0,000 0,536 0,000 0,536 0,000	AREIA 0-1 (pm ²): 1 (m): 1 (s): Fluxo (l(g/m2.s) 36,962 57,461 50,470 48,053 70,092 23,537 73,335 8,653 101,992 11,992 44,121 0,000 63,138 0,000 12,6	00 1306 0,18 9,47 1000 Diferenci (hgpan2.s) -20,52 2,42 46,55 64,68 100,69 84,12 63,14 42,68	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	
Pressão Tola Temperat do Temp B (C) r/R 0,94 0,94 0,94 0,94 0,94 0,95 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,8	Ar (%): a (mash_0) Ar (C) Tempo de Coleta(s) 147,5 119,8 120,9 121 150,8 166,4 144,5 116,6 161,4 144,2 201,9 360,6 145,2 110,4 165,5 110,6 165,5 10,	69 2000 40 30 Coletata(0) 65 78 84 83 110 10 145 5 5 210 0 0 205 0 0 160 0 0 225 0 2 23	Sólido: Denudede () 2 7 axa (g/s) 0,441 0,695 0,685 0,685 0,685 0,685 0,688 0,088 0,088 0,088 0,088 0,088 0,000 1,204 0,000 1,204 0,000000	AREJA 0-1 yrrf) 1 (m): 1 (s): 1 (s): 1 (s): 1 (s): 56,273 54,570 54,570 54,570 54,570 71,470 2,801 71,470 2,800 82,746 82,746 82,746 82,746 95,815 0,000 77,143 0,000	00 1305 9,18 9,62 1000 Diferencis (legtm2.s) -18,74 0,70 53,31 68,67 82,75 95,82 86,05 77,14 5-6 1	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	380,9 10,1 50,1 B	Vazão de Presido Tda Feriperat do Temp B (C) 1/R 0,94 0,90 0,80 0,80 0,80 0,80 0,80 0,80 0,80	Ar (%): (runH_0)? Ar (C) Tempo de Coleta(s) 138,9 138,9 138,9 138,9 136,8 137,9 144,3 122,1 165,5 90 144,9 123,6 139,8 80	69,5 2050 34 25 (Massa 65 100 80 90 100 80 90 125 15 125 125 125 125 0 125 0 125 0 125 0 0 115 0 0 2,75 0 0 2,3 0 7 2	Skölldo: Densidade B ∆ ∆ 1 Taxa (g/s) 0,465 0,723 0,634 0,881 0,226 0,922 0,109 1,282 0,016 1,057 0,000 0,536 0,000 0,000 0,536 0,000	AREIA 0-1 90771 1 (m): 1 (m): 1 (s): Fluxo (kg/m2.s) 36,962 57,461 50,470 48,065 70,002 23,537 73,335 8,863 101,992 1,303 84,121 0,000 42,679 0,000 42,679 0,000 42,679 0,000	00 1308 0,18 9,47 1000 Diferenci (kg/m2.s) -20,52 2,42 46,55 64,68 100,69 84,12 63,14 42,68 5 6 1	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: + - - - - - - - - - - - - -	
Pressão Tota Temperat 20 19mp 8 (C) 17mp 8 (C) 0,94 0,94 0,94 0,95 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,8	Ar (%): # (meet_0) # (meet_0) Ar (C) Tempo de Coleta(s) 147,5 119,6 120,9 121 150,8 165,4 144,5 161,4 144,5 110,4 165,4 145,5 110,6 144,5 110,6 110,6 144,5 110,6 110,6 144,5 110,6 110,7 110,6 110,7 110,6 110,7 10,7 10,7 10,7 10,7 10,7 10,7 10,7 10,7 10,7	69 2000 40 30 Coletata(0) 66 78 84 83 110 10 145 5 210 0 175 0 0 285 0 0 180 0 2.23 2.8	Sólido: Densidede () 2 2 3 3 4 3 4 3 4 3 4 5 5 5 5 7 29 5 0,6856 0,6856 0,6856 0,6856 0,6856 0,6856 0,6856 0,6856 0,6856 0,0659 0,0650 0,000000	AREJA 0-1 graft 1 (m): 1 (s): Fluxo (kg/m2.s) 35.055 51.766 55.273 54.570 2.801 32.746 0.000 95.815 0.000 77.143 0.000 77.143 0.000	00 1305 0,18 9,62 1000 Diference (teptn2 s) -16,74 0,70 53,31 68,67 82,75 95,82 86,05 77,14 5-6 1	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: + + + + + + + + + + + + + + + + + +	380.9 10,1 50,1 B	Vazão de Presisio Tda Feriperat do Temp B (C) 1/R 0,94 0,90 0,80 0,80 0,80 0,80 0,80 0,80 0,80	Ar (%): (runH;0) Ar (C) Tampo de Coleta(s) 138,4 128,9 138,4 158,9 135,6 137,9 144,3 122,1 165,5 90 144,9 122,6 139,8 80 1-2 4	69,5 2050 34 25 Coletata(g) 85 100 80 90 140 50 125 15 18 18 2 175 0 115 15 18 2 2 175 0 115 0 2-3 2 2	Stölldo: Densklade () ∆ ∆ ∆ 1 Taxa (g/s) 0,465 0,723 0,634 0,881 0,295 0,604 0,626 0,526 0,029 1,282 0,016 1,057 0,000 0,794 0,000 0,536 0,000 0,794 1,77	AREIA 0-1 pm ² I; i (m): i (s): Fluxo (kg/m2.s) 36,962 57,481 50,470 48,063 70,092 23,537 77,3335 8,653 101,992 1,303 84,121 0,000 63,138 0,000 63,138 0,000 64,2679 0,000 42,679 0,000	00 1306 0,18 9,47 1uso Diferenci (kg/m2.s) -20,52 2,42 46,55 64,68 100,69 84,12 63,14 42,68 5-6 1	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	
Pressão Tols Tempent do Tempent do 7emp 8 (C) 7/R 0,94 0,90 0,90 0,90 0,90 0,90 0,90 0,90	Ar (%): a (mast_0) Ar (C) Tempo de Coleta(s) 147,5 119,6 120,9 121 150,8 168,6 161,4 144, 201,9 360,6 1445,3 110,4 142,5 110,6 1445,3 110,5 521,5 521,5 7-8	69 2000 40 30 Massa Coletos(0) 65 78 84 65 78 84 85 210 10 145 5 210 0 175 0 275 0 285 210 0 285 210 285 205 285 205 205 205 205 205 205 205 20	Sólido: Densidede () 2 2 3 3 3 4 3 3 4 3 3 4 3 5 5 5 5 5 5 5 5 5	AREJA 0-1 (spre) (kgrn2,s) 35,055 51,768 55,273 54,570 54,570 54,570 54,570 54,570 54,570 54,570 54,570 0,000 95,315 0,000 82,744 0,000 82,744 0,000 82,744 1 0,000 82,048 0,000 1 77,143 0,000 1 1 1 1 1 1 1 1 1 1 1 1 1	00 1306 0,18 9,62 10/0 Diterance (kgm2.s) -16,74 0,70 53,31 68,67 82,75 95,82 86,05 77,14 5-6 1	Таха Ал(kg/h): U (m/s): Gs (kg/m ² .s): PROBE:	380.9 10,1 50.1 B	Vazão de Presiséo Tota Feriperat do Tamp B (C) 1787 0,94 0,90 0,90 0,80 0,80 0,80 0,80 0,80 0,80	Ar (%): (rent;0) Ar (C) Tempo de Colesta; 139,4 139,4 139,4 139,4 139,6 137,9 144,3 137,9 144,3 137,9 144,3 122,1 165,5 90 144,9 123,6 133,6 132,6	69,5 2050 34 25 Massa Coletata(g) 85 100 80 140 50 145 50 140 50 145 145 145 145 145 145 145 145 145 145	Stolido: Densklade (P A A C Traxa (g/s) 0.4655 0.723 0.634 0.783 0.634 0.783 0.681 0.286 0.782 0.109 1.282 0.109 1.282 0.019 1.282 0.019 1.282 0.000 0.794 0.0000 0.0000 0.0000 0.000000	AREIA 0-1 pm ² I i (m): i (s): Fluxo ((sg/m2.s) 36,962 57,481 50,470 48,063 70,092 23,537 77,3335 8,663 101,992 1,303 84,121 0,000 63,138 0,000 63,138 0,000 42,679 0,000 4-5 0,8 10-11	00 1306 0,18 9,47 1000 Diferenci (kepin2.s) -20,52 2,42 46,55 64,68 100,69 84,12 63,14 42,68 5-6 1 11-ATM	Taxa Ar(kg/h): U (m/s): Gs (kg/m ² .s): PROBE: - - + - - + - - - + - - - + - - - - + -	3 1 5 C

TARFI & V.6., Medida do Perfil Radial de Concentração

logo

$$\overline{G_s} = \frac{\int_A \dot{m}(r) dA}{A^2}$$

Agora definindo o elemento de área dA como:

$$dA = 2\pi r dr$$
 V.6

V.5

logo

e

$$\overline{G_{s}} = \frac{2\pi \int_{0}^{R} \dot{m}(r)r \, dr}{\pi^{2}R^{4}} = \frac{2}{\pi R^{4}} \int_{0}^{R} \dot{m}(r)r \, dr \qquad V.8$$

ou ainda

$$\overline{G_s} = \frac{2}{\pi R^4} \sum \overline{m_i}(r) r_i \qquad V.9$$

onde $\overline{\mathbf{m}_{i}}(\mathbf{r}) = \frac{\mathbf{m}_{i} + \mathbf{m}_{i+1}}{2}$

Nas condições experimentais onde foi medido diretamente G_{si}(r) a expressão fica:

$$\overline{G_{s}} = \frac{\sum \overline{G_{si}}(r)(r_{i}^{2} - r_{i+1}^{2})}{R^{2}} = \frac{1}{R^{2}} \sum \overline{G_{si}}(r)(r_{i}^{2} - r_{i+1}^{2})$$
 V.10

Os cálculos acima foram sistematizados e lançados em planilha preparada no software Excel 5.0, conforme já foi comentado e exemplificado.

V.3.4 - Resultados Obtidos

A seguir apresentaremos os demais resultados das medidas dos perfis radiais de concentração. Novamente faremos uso da apresentação sob forma gráfica sintética, face ao volume do trabalho. Considerações complementares sobre os resultados também serão apresentadas em separado no Capítulos VI.

As Figuras V.13 a V.28 a seguir, irão mostrar os resultados obtidos em três e cinco níveis de altura, obtidos com G_s de 25, 50 e 75 kg/m².s e respectivamente, com velocidades superficiais de 7, 8, 9 e 10 m/s.

Os resultados gráficos foram portanto extraídos das figuras dos perfis totais de Tabelas idênticas as V.5 e V.6, acima exibidas, que são não serão publicadas na íntegra por serem muito extensas. Ficarão armazenadas em disquetes para consultas futuras de interessados.

Figuna V.13 abc - Perfis Radiais para Areia AR! (60-80 #); dp= 160 μm; ρ₀= 2630 kg/m², para Gs= 25 (a), 50 (b) e 75 (c) kg/m². e U = 7 m/s

0,4

Raio Relativo r/R

0,6

0,8

0,2

-100 -200

Figura V.14 abc - Perfis Radiais para Areia ARI (60-80 #); dp= 160 µm; p= 2630 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 8 m/s

Figura V.15 abc - Perfis Radials para Areia AR1 (60-80 #); dp= 160 μ m; p_F= 2630 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 9 m/s

Figura V.16 abc - Perfis Radiais para Areia AR1 (60-80 #); dp= 160 μ m; ρ_{p} = 2630 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 10 m/s

Figura V.17 abc d- Pertis Radiais para Arela AR2 (80-100 #); dp= 149 µm; pp= 2640 kg/m², para Gs= 17 (a), 50 (b) e 80 (c) kg/m².s e U = 7 m/s

Figura V.18 abcd- Perfis Radiais para Arela AR2 (80-100 #); dp= 149 µm; ps= 2640 kg/m³, para Gs= 25 (a), 50 (b), 80 (c) e 100 (d) kg/m². s e U = 8 m/s

Figura V.19 abc d- Perfis Radiais para Arela AR2 (80-100 #); dp= 149 µm; pp= 2640 kg/m³, para Gs= 25 (a), 50 (b), 80 (c) e 100 (d) kg/m².s e U = 9 m/s

Figura V.20 abcd- Perfis Radiais para Areia AR2 (80-100 #); dp= 149 µm; $\rho_0= 2640 \text{ kg/m}^3$, para Gs= 25 (a), 50 (b),e 80 (c) e 100 (d) kg/m²,s e U = 10 m/s

Figura V.21 abc- Perfis Radiais para Areia AR3 (0-100 #); dp= 120 µm; pp= 2820 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 7 m/s

Figura V.22 abc- Perfis Radiais para Areia AR3 (0-100 #); dp= 120 µm; p_p= 2820 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 8 m/s

Figura V.23 abc- Perfis Radiais para Areia AR3 (0-100 #); dp= 120 µm; ps= 2820 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m² s e U = 9 m/s

Figura V.24 abc- Perfis Radiais para Arela AR3 (0-100 #); dp= 120 µm; $\rho_{p^{22}}$ 2820 kg/m², para Ge= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 10 m/s

Figura V.25 abc- Perfis Radiais para Calcário CA2 (80-100 #); dp= 93 µm; ρ_{a} = 2760 kg/m², para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U < 7 m/s

Figura V.26 abc- Perfis Radiais para Calcário CA2 (80-100 #); dp= 93 μm; ρ_p= 2760 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 8 m/s

Figura V.27 abc- Perfis Radiais para Calcário CA2 (80-100 #); dp= 93 μm; ρ₀= 2760 kg/m³, para Gs= 25 (8), 50 (b) e 75 (c) kg/m².s e U = 9 m/s

0,4

Raio Relativo n/R

0,6

8,0

-50 4

-100 -150 0,2

Figura V.28 abc- Perfis Radiais para Calcário CA2 (80-100 #); dp= 93 µm; ps= 2760 kg/m³, para Gs= 25 (a), 50 (b) e 75 (c) kg/m².s e U = 10 m/s
CAPÍTULO VI - ANÁLISE DOS RESULTADOS

VI.1 - CONSIDERAÇÕES INICIAIS

Apesar dos problemas e dificuldades operacionais, já descritos nos capítulos anteriores, as medidas efetuadas durante o trabalho apresentaram boa consistência e os resultados obtidos mostraram-se coerentes com a literatura. Também houve boa reprodutividade e coerência. A margem de erro, considerando-se os recursos utilizados foi aceitável e na faixa entre 20 a 30 %, visto que mesmo técnicas mais avançadas apresentam erros relativamente elevados para este tipo de medida.

Todos os dados foram obtidos em regime estabelecido e numa região longe do "choking", conforme bem caracterizou as Figuras V.11 e V.12, reprodução da Figura III.16 proposta por GELDART [18]. A Figura V.5e mostra um exemplo típico de fluidização em baixa velocidade, mostrando como a densidade da mistura aumenta rapidamente para uma pequena variação de U, aproximando-se da região do "choking". Nas demais Figuras dos perfis axiais, da V.2 a V.9, observamos permanentemente que os perfis são geometricamente semelhantes.

VI.2 - MEDIDAS AXIAIS

Como subproduto das condições operacionais para as medidas dos perfis radiais, foi possível obter um grande número de dados para a variação axial da concentração da mistura ao longo do eixo. Sempre é bom lembrar que, os resultados apresentados nas Figuras V.2 a V.9, não levaram em consideração possíveis desvios em função da falta de simetria no leito, já identificada por RHODES e LAUSSMANN [107], considerando sempre os valores médios na seção de medida.

Vamos a seguir fazer uma análise dos resultados axiais obtidos, fazendo considerações sobre os principais parâmetros que influenciaram os resultados.

VI.2.1 - EFEITOS DA GEOMETRIA DO EQUIPAMENTO

Na observação dos resultados axiais o primeiro ponto a ser ressaltado é a grande influência da geometria do equipamento na forma do perfil. No Capítulo III foi discutido que o modelo de LI e KWAUK [36], considerado um bom modelo axial, somente pode ser reproduzido se realizado em equipamentos de boa altura e com saída com baixa perda de carga. A Figura III.18, obtida por GRACE [13], foi confirmada por nossos dados, pois para velocidades superficiais acima de 7 m/s, sempre ocorriam deformações na parte superior do perfil, devido a concentração de sólidos no topo em razão do estrangulamento do ciclone primário antes do reservatório de sólidos. Desta feita, nosso perfil padrão, ao invés do "S" proposto por LI e KWAUK conforme a Figura III.24, passou sistematicamente a ser um "C", conforme observou BAI *et alli* [65], HIRAMA *et alli* [45] e GLIKSMAN *et alli* [67].

As Figuras V.9a e V.9b, confirmaram que, em condições mais amenas, isto é, baixas velocidades (5-6 m/s) e baixas taxas de recirculação de sólidos, ainda é possível obter perfis axiais onde a interferência da saída abrupta passa desapercebida porém, a maioria dos resultados, obtidos em condições mais drásticas, concorda com a literatura quanto a forma geométrica do perfil.

VI.2.2 - REGIÕES NO TRANSPORTADOR (RISER)

As Figuras V.2 a V.9 nos permitem identificar e definir três regiões bem distintas observadas no Riser transportador:

a) Região de Aceleração/Alimentação - Compreendida entre o início do equipamento, no ponto de injeção de ar, até no mínimo 1,5 m de altura. É uma zona de alta densidade e com um gradiente de concentrações elevado. Esta região, característica do LFC, é formada devido a dois fatores principais: 1) é nesta região onde ocorre a realimentação de sólidos no leito, oriundos do reservatório, que são reconduzidos ao Riser com velocidade axial nula, sofrendo portanto uma aceleração intensa nesta região, e; 2) é onde o fluxo descendente característico do LFC que desce junto às paredes do Riser, atinge sua maior taxa (como mostram as Figuras III.12 e III.22) e muda sua trajetória de escoamento, passando para a região ascendente do "core" no transportador;

b) Região de Fluxo Desenvolvido - Esta compreendida entre o final da zona de aceleração e a região do topo do Riser. Em média fica compreendida entre 1,5 e 4 m da altura do Riser. É uma região de fluxo plenamente desenvolvido, com densidade da mistura praticamente constante, e onde o perfil de concentração está livre das interferências da entrada e da saída do equipamento. A faixa exata das dimensões desta região é flexível, como se pode observar das Figuras V.2 a V.9, dependendo das condições operacionais de cada caso;

c) Região de Topo - Fica compreendida entre o final da zona de fluxo desenvolvido e o final do transportador, localizando-se, em média, entre 4 e 6 m da altura do transportador. É caracterizada por ser uma região de alta densidade, onde ocorre um gradiente de concentração, podendo este ser até maior que o da Região de Aceleração. Esta região, característica do nosso equipamento, deve-se exclusivamente à perda de carga imposta pelo ciclone interno do reservatório de sólidos ao fluxo, que retém o material no topo e deforma significativamente o perfil axial.

Nossos resultados confirmam as observações de BAI *et alli* [65] quanto ao formato do perfil e confirmam resultados semelhantes obtidos por muitos autores.

VI.2.3 - INFLUÊNCIA DA VELOCIDADE SUPERFICIAL

Um dos parâmetros mais relevantes, junto com a taxa de recirculação de sólidos, no perfil axial é a influência da velocidade superficial U. As Figuras V.2 a V.5 apresentam nossos resultados em função de uma faixa de velocidades entre 5 e 10 m/s, mantendo-se G_s constante.

Nestas condições podemos concluir que a concentração no leito aumenta quando a velocidade diminui, isto é, mantendo-se a taxa de circulação inalterada, a concentração de sólidos aumenta porque o gás perde sua capacidade de arrastar as partículas. Por outro lado, quando a taxa de circulação é fixa, um aumento do fluxo de gás resulta numa redução no gradiente de concentração e uma redução da diferença de concentração entre as seções do topo e o fundo da coluna.

Foi observado também que, para altas velocidades, a concentração na coluna irá se aproximar da concentração da saída, porque o sistema tende a entrar no regime de transporte pneumático diluído. As Figuras V.3efg mostram este fenômeno nitidamente.

VI.2.4 - INFLUÊNCIA DA TAXA DE RECIRCULAÇÃO

As Figuras V.6 a V.9 apresentam o comportamento dos perfis axiais quando submetidos a variações da taxa de circulação de sólidos, mantendo-se a velocidade do gás constante. Das Figuras observamos nitidamente que, um acréscimo na taxa de circulação de sólidos G_s, propicia um crescimento na concentração e o crescimento do gradiente de concentração em toda a coluna. Estes resultados concordam com a literatura [65].

VI.2.5 - INFLUÊNCIA DO DIÂMETRO E DA DENSIDADE DAS PARTÍCULAS

Considerando que as densidades das partículas utilizadas são da mesma ordem de grandeza (CA2 $\rho_p = 2760$, AR1 $\rho_p = 2630$, AR2 $\rho_p = 2640$ e AR3 $\rho_p = 2820 \text{ kg/m}^3$), foi analisada a variação do perfil axial, nas mesmas condições de taxa de circulação de sólidos e velocidade superficial. Os resultados, tabulados a partir dos dados do Capítulo V, estão apresentados nas Figuras VI.1 a VI.3, mostradas a seguir:

As Figuras apresentam os perfis axiais medidos em três faixas de recirculação distintas, a saber 25, 50 e 75 kg/m².s. Nos três casos, foram mostrados os perfis em quatro velocidades distintas, 7, 8, 9 e 10 m/s.

Apesar de não haver uma faixa granulométrica muito ampla, podemos das Figuras observar que:

a) Quanto menor for o diâmetro médio da partícula maior será a densidade média da mistura. Esta tendência fica bastante evidenciada nas regiões inferior do leito na zona de aceleração e na região de fluxo plenamente desenvolvido;

b) A influência do diâmetro da partícula parece ser pouco relevante em condições operacionais mais amenas, isto é, velocidades menores que 8 m/s e taxas de recirculação inferiores a 30 kg/m² s;

c) O efeito do diâmetro aparece particularmente muito distorcido na região do topo do transportador, não mantendo sistematicamente as observações acima que são válidas para as duas primeiras regiões do leito. Isto pode ser explicado pela própria natureza da alteração do perfil axial, ou seja, uma concentração de partículas devido ao estrangulamento do equipamento que, conforme a literatura propõe [65], é seguida de uma grande turbulência naquela região. Isto bem que poderia perfeitamente mascarar um pouco os efeitos do diâmetro das partículas pelos altos coeficientes de mistura, consequência da turbulência naquela região do transportador.

Em todas as medidas verificou-se que ocorre uma alta densidade da mistura na base do leito e uma baixa densidade na região de fluxo plenamente desenvolvido, voltando a crescer e muito na parte superior do Riser devido aos efeitos de saída.

VI.3 - MEDIDAS RADIAIS

Os principais problemas operacionais das medidas radiais já foram discutidos no Capítulo V. Os aspectos de uma possível influência da falta de simetria também já foram comentados [107]. No caso específico das medidas radiais os resultados apresentados nas Figura V.14 a V.28 foram realizadas, sistematicamente, medindo-se apenas um lado do equipamento, sendo o resultado rebatido simetricamente para a outra metade do diâmetro. Também aqui, apesar das dificuldades operacionais, obteve-se boa reprodutividade e coerência nos resultados, sendo que a margem de erro experimental foi pequena considerando-se o método empregado.

Quanto à metodologia de medida, os resultados apresentados na Figura V.10abcde deixaram clara a eficiência do amostrador não isocinético neste tipo de medida, apesar de sua grande dificuldade operacional quando comparado com métodos mais modernos.

Os dados radiais foram obtidos em condições de regime estabelecido e os resultados usados para a modelagem matemática ficaram restritos as medidas da sonda B, localizada, conforme vimos, na região de regime plenamente desenvolvido. A seguir, vamos realizar uma análise dos resultados radiais obtidos, fazendo considerações sobre os resultados.

VI.3.1 - INFLUÊNCIA DA GEOMETRIA DO EQUIPAMENTO

VI.3.1.1 - No Balanço de Massa Global

Uma conclusão imediata nos dados das Figuras V.22abc e V.24abc é a deformação produzida nos perfis radiais em função da região onde foi

TABELA V	1.1 - INT	Egração	DOS PERFI	ls radiai	S - Corri	da AR3U8(525, AR308	IG50 e AR	3V8G75		
1											
	AREA				Gs Liquido Me	edio dos Prob	esA, B, C, O e	D (kg/m2.s) -	AR3U8G25		
ri	Anular	A	(1,4m)	1	(2, 2 m)	<u>ر</u>	(3,0 m)	0	(0,54 m)	C	(4,9 m)
(m)	(m2)	G médio	Gm*Aanul	G médio	Gm*Aanular	G médio	Gm*Aanular	G médio	Gm*Aanul	G médio	Gm*Aanul
0	0,00032685	23,7	0,00775177	76,6	0,02504175	80,0	0,0261369	22,4	0,0073245	164,1	0,05362015
0,0102	0,00098056	26,3	0,0258234	74,2	0,07279121	101,0	0,09906777	19,6	0,01923772	164,6	0,16142514
0,0204	0,00163426	34,2	0,05597019	54,7	0,08935333	93,7	0,1531318	18,9	0.03092141	118,5	0,19368403
0,0306	0,00228796	38,3	0,08764306	27,1	0,06209136	42,2	0,09644904	20,0	0,04571667	31,1	D,07114951
0,0408	0,00068776	29,5	0,02029745	-5,0	-0,00345152	-3,7	-0,00256874	9,6	0,00658719	-40,5	-0,02787752
0,0434	0,00070136	12,5	0,00878779	-31,0	-0,02170937	-34,2	-0,02398695	-4,0	-0,00280364	-81,5	-0,05714133
0,0459	0,0005593	-1,4	-0,00077096	-38,6	-0,02156259	-61,9	-0,03461896	-1,6	-0,00091312	-105,3	-0,05890338
0,0478	0,00099325	-5,7	-0,0056611	-35,1	-0,03486783	~70,3	-0,06979775	4,9	0,00485615	-108,4	-0.10764693
0,051											
G integral Mé	t Trapézios =	1	24,5		20,5		29,8		13,6		27,9
G medido		#	26,0		25,9		26,3		24,2		24,1
ERRO RELA	ATIVO (%)		6,1	and granted on the second s	20,7		13,5	*****	44,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15,8
G Integral Mé	t Min. Quad.	21	24.0		18.3		28,7		11,1		30,3
ERRO RELA	ATIVO (%)		7.7		29.3	<i>د</i>	9.2		54.2		25,6
1	T		1	·	<u> </u>						
5	AREA		and the second sec		Gs Llauido Me	dio dos Prob	esA.B.C.Oe	D (ka/m2.s) -	AR3U8G50		**************************************
ri	Anular	Ą	(1.4m)	20	(29 m)	C	(3.9 m)	0	(0.64 m)	C	(4.9 m)
(m)	(m2)	G médio	Gm*Aanul	Gmédio	Gm*Aanular	G médio	Gm*Aanular	G média	Gm*Aanul	G médio	Gm*Aanul
<u> </u>	0.00032685	611	0.01671643	145 1	0.04743829	134.4	0.04393376	53.1	0.01735786	320.6	0 10480304
0.0102	0,00002000	57 A	0.05626227	163.6	0 16042385	1720	0 16860830	53.5	0.05244218	358.4	0 35141507
0.0204	0,00033030	62.7	0.10226766	152.8	0.24031726	162.6	0.26572871	50,0 ES 0	0.02005778	2641	0 43168898
0,0204	0,00100420	67 7	0.12005888	01.6	0.19660817	70.8	0 10162672	37.4	0.08658307	<u>x04,1</u>	0 11442212
0,0000	0,00220130	746	0,73083866	61,0	0,10000011	45.5	0,101084942	45.7	0.04079479	115 0	0 07087017
0,0400	0,00008776	60	0,02373630	-0,0	-0,00376580	-10,0	-0.04265176	-10,7	-0.01070470	-110,0	-0.07507017
0,0454	0,00070130		0.0401441	407.2	0.06002274	105.6	0.05006272	-101 8	-0.05895244	-207,0	-0.15079438
0,0408	0,00000000	-32,7	0,01031408	-107,5	0 120968501	+72.4	0 10064220	69.1	-0.05773894	203,0	0 27032281
0,0470	0,00036323		-0,000000000	~ 67,0	-0, :0000000	-120,4	-0,12204020		-0,00770004	-201,2	-0,21004401
C integral Mé	t Tropózion		32.0		- 40.2		10.6		6.2		12.5
C modido	113062103 -		30,0		50.0		40,0		50.4		42,5
	ATING (0L)		40,0	· · ·	1 00,0				077		17.6
C Internel MA	*11VO (20)		00,0		48.0		47.5	····	26		27.0
Cono PEU	CIVITI, QUAD.		32,2		40,8		47,3		405.0	*****	
ERRO RED	11VW (76)		33,8		0,2	····	4,3		100,2		2.0,39
<u> </u>	ABEA		<u> -</u>		Calimida M	idia dea Drob	DO A B C Do	D Grain 2 al	AE/21/0075	······	
	ARCA	A		12	105 LIQUIDO MI	5010 005 1100	66 M, D, C, U 6	D (RUM12.5)*	MR300310		74 0 00
(m)	Allast	Cmádia	Conthonul	C mádia	Con th enulat	C módia	Com *A onutor	Cmódia	Conthonul	Cmédio	Cm [*] Aanul
<u> </u>	0.00020696	O medio		(ED E	0.04089729	465.7		70.9	0.00000000	220.2	0 1109793
0 0100	0,00032865	90,1	0,03129110	102,0	0,04863723	100,2	0,00073800	70,0	0.02008062	479.4	0.40003265
0,0102	0,00096056	111,0	0,10930137	166,9	0,10004060	219,1	0,21484503	70.0	0.01707642	4470	0,42003200
0,0204	0,00163420	133,3	0,21791024	170,2	0,27814795	230,3	0,38449364	/6,6	0.12014094	417,0	0,06100992
0,0306	0,00228796	128,4	0,29379767	110,5	0,25288225	133,5	0,30543065	23,2	0,05303921	1/1,0	0,39229479
0,0408	0,0008778	87,8	0,06041317	12,1	0,00874689	2,8	0,00190751	-00,/	-0,04080822	-/ 1,0	-0,04004400
0,0434	0,00070136	14,1	0,00985871	-62,9	-0,04413482	-87,6	-0,06143282	-162,8	-0,1141978	-243,9	-0,17108748
0,0459	0,0005593	-51,8	-0,02897802	-99,5	~0,0556692	-145,3	-0,08128971	-158,7	-0,0887505	-415,2	-0,23222318
0,0478	0,00099325	-71,3	-0,07081763	-104,9	-0,10414824	-160,2	-0,15908727	-92,8	-0,09221615	-464,9	-0,48176199
0,051	<u> </u>	**********			L		L	·····	L		
G integral Mé	t Trapézios =	-	76,2		67,5		80,2		-6,9		84,5
G medido		-	74,4		73,1		76,9		74,7		74,9
ERRO REL	ATIVO (%)	23	2,4		7,7		4,4		109,2	-	12,9
G integral Mé	t Min. Quad.		75,1		61,1	and the second s	74,3		-20,0	**************************************	78,0
ERRO REL	ATIVO (%)	-	0,9		16,4		3,4		126,7	table wheek concerning and	4,2

medido. Observa-se que as medidas realizadas pela sonda D, localizada a uma altura de 4,9 m, e portanto já na região de topo influenciada pela saída abrupta do equipamento, apresentou a maior variação em magnitude de fluxo, G_s . As demais medidas, realizadas a 0,54 m (sonda 0), 1,4 m (sonda A), 2,9 m (sonda B) e 3,9 m (sonda C), mantiveram uma sequência em relação à concentração de sólidos nas regiões em que foram medidos.

AREA Ce Liguido Médio dos Probes A. B. C. (kg/m2.s) - AR1U8G25 n Anular Genédio	TABELA V	I.2 - INT	'EGRAÇÃO I	OS PERFIS	RADIAIS	- Corrid	as AR1U90	;25 ₇
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· ·		AR1U9G50	e AR1U9G	75			· · · · · ·
In Anular A(1.4m) B(2.9m) C C(2.3 m) (m) (m2) G médio Gm*Aanular G 0.00227056 S3.8 0.00227054 S3.6 0.06628238 S7.0 0.14220321 0.0006 0.00028776 S5.5 0.022666 S3.6 0.00067765 S3.8 0.01251276 0.01251276 0.01251276 0.01251276 0.01251277 0.01251276 0.01251276 0.01251277 0.01251277 0.01251277 0.01251276 0.00156136 0.00156136 0.00156136 0.00156136 0.01251277 0.012713168 0.0016414 9.6 0.0016414 0.0016414 0.0016414 0.0016414 0.0016416 0.0016416 0.012713168 0.01271546 0.01271546 0.01271546 0.01773168 0.01271546 0.00171368 0.01271546 0.00171368 0.01271546 0.00171566 0.02017166 0.02017166 0.02017166 <td< td=""><td></td><td>AREA</td><td></td><td>Gs Líquido M</td><td>édio dos Prob</td><td>es A. B. C (ka/</td><td>m2.s) - AR1U</td><td>9G25</td></td<>		AREA		Gs Líquido M	édio dos Prob	es A. B. C (ka/	m2.s) - AR1U	9G25
(m) (m2) Cm/4anul Cm/4anul Cm/4anular	ri	Anular	A	(1,4m)	8	(2.9 m)	C	(3.9 m)
0 0.0022685 38.3 0.01250516 55.3 0.0174267 93.8 0.026676 0.0204 0.00163425 41.5 0.0468064 60.0468044 60.01220321 0.0306 0.00228796 41.0 0.0327054 23.2 0.05305755 53.8 0.1220771 0.0408 0.00068776 41.0 0.02264638 8.3 0.00672844 18.2 0.01251776 0.0408 0.00058973 2.7 0.01256664 8.3 0.00686221 12.6 0.0015131 0.4045 0.00059325 23.7 0.02256611 -17.9 -0.01773196 -21.6 0.02141626 0.0511 - - - - 24.2 42.3 - 0.02141626 0.0511 - - - 24.2 - 42.3 - 24.2 0.0175 - - - 24.4 23.1 74.9 - 24.2 0.0170140 - - 44.4 20.3 185.5 <td< td=""><td>(m)</td><td>(m2)</td><td>G médio</td><td>Gm*Aanul</td><td>G médio</td><td>Gm*Aanular</td><td>Gmédio</td><td>Gm*Aanular</td></td<>	(m)	(m2)	G médio	Gm*Aanul	G médio	Gm*Aanular	Gmédio	Gm*Aanular
	0	0,00032685	38,3	0,01250516	53.3	0.0174087	93.8	0.03067458
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0102	0,00098056	41,5	0,04065069	49,6	0.04860414	94.6	0.09272094
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0204	0,00163426	43,3	0,0706955	36,9	0,06028239	87,0	0,14220321
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0306	0,00228796	41,0	0,09370266	23,2	0,05305755	53,8	0.1230797
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0408	0,00068776	36,5	0,02508536	8,3	0,00572694	18,2	0,01251276
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0434	0,00070136	32,7	0,02296409	-6,6	-0,00462247	2,3	0,00158134
0.0476 0.0099325 23,7 0.02356611 -17,9 -0,01773196 -21,6 -0,02141626 0.051	0,0459	0,0005593	27,8	0,0155566	-15,5	-0,00868921	-12,6	-0,00704409
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0478	0,00099325	23,7	0,02355611	-17,9	-0,01773196	-21,6	-0,02141626
	0,051				i ana in			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G integral Mé	t Trapézios	II	37,3		18,9		45,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	G medido			25,8		23,7		24,2
G Integral Mét Min. Quad = $37,4$ $18,2$ $42,3$ ERRO RELATIVO (%) = $44,8$ $23,1$ $74,9$ AREA Gs Liquido Médio dos Probes A. B. C. (kg/m2.s) - AR1U9G50 C $(3,9,m)$ (m) (m2) G médio Gm*Aanul G médio Gm*Aanular G médio 0 0,00032685 54,3 0,01773546 104,3 0,03409868 116,5 0,03008224 0,0102 0,00042626 63,3 0,01634615 73,0 0,11933854 125,6 0,20530706 0,0306 0,00228796 60,8 0,1390393 43,5 0,09961828 76,2 0,17424641 0,0434 0,0000593 51,6 0,0286645 15,4 0,00863533 -17,7 -0,00987428 0,0478 0,0000593 51,6 0,0286645 15,4 0,0163533 -17,7 -0,00987428 0,0474 0,0000593 51,6 0,02805645 15,4 0,02120107 -22,5 -0,02239642 <t< td=""><td>ERRO RELA</td><td>ATIVO (%)</td><td></td><td>44,4</td><td></td><td>20,3</td><td></td><td>89,5</td></t<>	ERRO RELA	ATIVO (%)		44,4		20,3		89,5
ERRO RELATIVO (%) = 44,8 23,1 74,9 AREA Gs Liquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G50 AREA Gs Liquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G50 m Anular A (1,4m) B (2,9 m) C (3,9 m) (m) (m2) G médio Gm*Aanular G médio Gm*Aanular 0 0,0002865 54,3 0,01773546 104,3 0,03409886 116,5 0,0308324 0,0102 0,0009666 57,7 0,05658188 96,2 0,04309374 138,4 0,32682576 0,0300 0,0026776 55,9 0,038047193 28,7 0,01974453 28,8 0,02047015 0,0434 0,000070136 54,3 0,02885845 15,4 0,00863533 -17,7 -0,00987428 0,0478 0,00099325 50,9 0,05057117 12,4 0,01230107 -22,5 -0,02239642 0,051 = 16,1 1,0 38,3 G G Gmedio = 49,8 48,9	G Integral Mé	t Min. Quad		37,4		18,2		42,3
AREA Gs Liquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G50 ri Anular A(1,4m) B(2,9m) C(3,9m) (m) (m2) G médio Gm*Aanul G médio Gm*Aanular 0 0,00032685 54,3 0,01773546 104,3 0,03409886 116,5 0,0380824 0,0102 0,000656 57,7 0,0568188 96,2 0,09430374 138,4 0,1386827 0,0204 0,00163426 63,3 0,1034615 73,0 0,11933854 125,6 0,20530706 0,0306 0,000228796 60,8 0,1390393 43,5 0,09961828 76,2 0,17424641 0,4048 0,0005593 51,6 0,0288545 15,4 0,00863533 -17,7 -0,00987428 0,0478 0,00099325 50,9 0,06057117 12,4 0,01230107 -22,5 -0,02239642 0,0478 0,00099325 50,9 0,06057117 12,4 0,01230107 -22,5 -0,02239642 0,0478 0,00093265 50,9 <td>ERRO RELA</td> <td>ATIVO (%)</td> <td>4445454674,224887878797974 West Meter</td> <td>44,8</td> <td></td> <td>23,1</td> <td></td> <td>74,9</td>	ERRO RELA	ATIVO (%)	4445454674,224887878797974 West Meter	44,8		23,1		74,9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								Contraction of the local division of the loc
n Anular A (1,4m) B (2,9m) C (3,9m) (m) (m2) G médio Gm*Aanular G médio Gm*Aanular G médio Gm*Aanular 0 0,00032685 54,3 0,01773546 104,3 0,03409886 116,5 0,0308824 0,0102 0,00068426 63,3 0,1034615 73,0 0,11833844 125,6 0,2030706 0,0306 0,0026796 60,8 0,1390393 43,5 0,09981828 76,2 0,17424844 0,0408 0,00068776 55,9 0,03806478 22,2 0,01576117 0,4 0,0003508 0,0434 0,0000593 51,6 0,0288545 15,4 0,0086333 -17,7 -0,002239422 0,0478 0,000593 51,6 0,0288748 22,2 0,01230107 -22,5 -0,02239422 0,051 Image: S7,9 49,4 66,3 Gmedio = 49,8 48,9 47,9 ERRO RELATIVO (%) = 15,6 0,3 35,0 -0 <t< td=""><td></td><td>ÁREA</td><td></td><td>Gs Líquido Me</td><td>édio dos Probe</td><td>es A, B, C (kg/</td><td>m2.s) - AR1U</td><td>9G50</td></t<>		ÁREA		Gs Líquido Me	édio dos Probe	es A, B, C (kg/	m2.s) - AR1U	9G50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ri	Anular	Α	(1,4m)	£	(2,9 m)	C	(3,9 m)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(m)	(m2)	G médio	Gm*Aanul	G médio	Gm*Aanular	G médio	Gm*Aanular
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0,00032685	54,3	0,01773546	104,3	0,03409886	116,5	0,03808324
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0102	0,00098056	57,7	0,05658188	96,2	0,09430374	138,4	0,13568279
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0204	0,00163426	63,3	0,1034615	73,0	0,11933854	125,6	0,20530706
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0306	0,00228796	60,8	0,1390393	43,5	0,09961828	76,2	0,17424641
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0408	0,00068776	55,9	0,03847193	28,7	0,01974453	29,8	0,02047015
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0434	0,00070136	54,3	0,03806478	22,2	0,01556117	0,4	0,00030508
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0459	0,0005593	51,6	0,02885845	15,4	0,00863533	-17,7	-0,00987428
0,051 Gintegral Mét Trapézios = 57,9 49,4 66,3 G medido = 49,8 48,9 47,9 ERRO RELATIVO (%) = 16,1 1,0 38,3 G Integral Mét Min. Quad. = 57,6 49,0 64,7 ERRO RELATIVO (%) = 15,6 0,3 35,0 AREA Gs Líquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G75 - - ri Anular A (1,4m) $\mathbb{B}[2,9m)$ C (3,9 m) (m) (m2) G médio Gm*Aanul G médio Gm*Aanular 0 0,00032685 78,0 0,0254986 128,9 0,04212823 102,2 0,03341365 0,0102 0,0008056 86,9 0,98521819 127,6 0,12508571 128,2 0,12570038 0,0204 0,00163426 98,9 0,16170769 114,0 0,18625034 136,8 0,22364719 0,0306 0,00228796 92,1 0,21082917 76,0 0,17393704 100,2 0,22935388 0,0408 0,00068776 64,6 0,04441042	0,0478	0,00099325	50,9	0,05057117	12,4	0,01230107	-22,5	-0,02239642
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,051						0-2014 0 100 particular de la composition de la	and the second
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	G integral Mé	t Trapézios 🔅		57,9		49,4		66,3
ERRO RELATIVO (%) = 16,1 1,0 38,3 G Integral Mét Mín. Quad. = 57,6 49,0 64,7 ERRO RELATIVO (%) = 15,6 0,3 35,0 AREA Gs Líquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G75 - - - - ri Anular A(1,4m) B (2.9 m) C (3,9 m) C (3,9 m) (m) (m2) G médio Gm*Aanul G médio Gm*Aanular G médio 0 0,00032685 78,0 0,0254986 128,9 0,04212823 102,2 0,03341365 0,0102 0,00098056 86,9 0,08521819 127,6 0,12508571 128,2 0,12570038 0,0204 0,00163426 98,9 0,16170769 114,0 0,18625034 136,8 0,22364719 0,0306 0,002287986 92,1 0,21082917 76,0 0,17393704 100,2 0,22935388 0,0408 0,00068776 64,6 0,04441042 3,8 0,00268919 -1,5 -0,0017201 0,0434	G medido			49,8		48,9	and the strength of the state o	47,9
G Integral Mét Min. Quad. = 57,6 49,0 64,7 ERRO RELATIVO (%) = 15,6 0,3 35,0 AREA Gs Líquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G75 $(1,4m)$ $B(2.9m)$ C (3,9m) (m) (m2) G médio Gm*Aanul G médio Gm*Aanular G médio 0 0,00032685 78,0 0,0254986 128,9 0,04212823 102,2 0,03341365 0,0102 0,00098056 86,9 0,08521819 127,6 0,12508571 128,2 0,12570038 0,0204 0,00163426 98,9 0,16170769 114,0 0,18625034 136,8 0,22364719 0,0306 0,00228796 92,1 0,21082917 76,0 0,17393704 100,2 0,2295388 0,0408 0,00068776 64,6 0,04441042 36,4 0,02506397 46,3 0,03186345 0,0434 0,00070136 26,1 0,01831542 3,8 0,00268919 -1,5 -0,00107201 0,0459 0,0005593 1,3 0,00070752 -18,2 -0,01015594 -48,1 <	ERRO RELA	<u>ATIVO (%)</u>		16,1		1,0	and the first state of the second state of the second	38,3
ERRO RELATIVO (%) = 15,6 0,3 35,0 AREA Gs Liquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G75 C (3,9 m) C (3,9 m) (m) (m2) G médio Gm*Aanul G médio Gm*Aanular 0 0,00032685 78,0 0,0254986 128,9 0,04212823 102,2 0,0341365 0,0102 0,00098056 86,9 0,08521819 127,6 0,12508571 128,2 0,12270038 0,0204 0,00163426 98,9 0,16170769 114,0 0,8625034 136,8 0,22935388 0,0408 0,00068776 64,6 0,04441042 36,4 0,02560397 46,3 0,03186345 0,0434 0,00070136 26,1 0,01831542 3,8 0,00268919 -1,5 -0,00107201 0,0459 0,0005593 1,3 0,00070752 -18,2 -0,01015594 -48,1 -0,02691026 0,051	G Integral Mé	t Mín. Quad		57,6	and the second secon	49,0	anninint to i definity an even device the intervent of the second and the intervent of the second and	64,7
AREA Gs Líquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G75 ri Anular A(1,4m) B (2,9m) C (3,9m) (m) (m2) G médio Gm*Aanul G médio Gm*Aanular 0 0,00032685 78,0 0,0254986 128,9 0,04212823 102,2 0,03341365 0,0102 0,00098056 86,9 0,08521819 127,6 0,12508571 128,2 0,12570038 0,0204 0,00163426 98,9 0,16170769 114,0 0,18625034 136,8 0,22364719 0,0306 0,00228796 92,1 0,21082917 76,0 0,17393704 100,2 0,22935388 0,0408 0,00068776 64,6 0,04441042 36,4 0,02506397 46,3 0,03186345 0,0434 0,00070136 26,1 0,01831542 3,8 0,00268919 -1,5 -0,00107201 0,0459 0,0005593 1,3 0,00070752 -18,2 -0,01015594 -48,1 -0,02691026 0,0478 0,0009325 1	ERRO RELA	<u> (%) (%)</u>		15,6		0,3		35.0
AREA Gs Líquido Médio dos Probes A, B, C (kg/m2.s) - AR1U9G75 ri Anular A(1,4m) B (2,9m) C (3,9m) (m) (m2) G médio Gm*Aanul G médio Gm*Aanular G médio Gm*Aanular 0 0,00032685 78,0 0,0254986 128,9 0,04212823 102,2 0,03341365 0,0102 0,0008056 86,9 0,08521819 127,6 0,12508571 128,2 0,12570038 0,0204 0,00163426 98,9 0,16170769 114,0 0,18625034 136,8 0,22364719 0,0306 0,00228796 92,1 0,21082917 76,0 0,17393704 100,2 0,22935388 0,0408 0,00068776 64,6 0,04441042 36,4 0,02506397 46,3 0,03186345 0,0434 0,00070136 26,1 0,01831542 3,8 0,00268919 -1,5 -0,00107201 0,0459 0,00099325 1,5 0,00147901 -20,3 -0,02015301 -67,7 -0,06722278 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
riAnular $A/(1,4m)$ $B/(2,9m)$ $C/(3,9m)$ (m)(m2)G médioGm*AanulG médioGm*AanularG médioGm*Aanular00,0003268578,00,0254986128,90,04212823102,20,033413650,01020,0009805686,90,08521819127,60,12508571128,20,125700380,02040,0016342698,90,16170769114,00,18625034136,80,223647190,03060,0022879692,10,2108291776,00,17393704100,20,229353880,04080,0006877664,60,0444104236,40,0250639746,30,031863450,04340,0007013626,10,018315423,80,00268919-1,5-0,001072010,04590,00055931,30,00070752-18,2-0,01015594-48,1-0,026910260,04780,000993251,50,00147901-20,3-0,02015301-67,7-0,067222780,05164,267,2G integral Mét Trapézios =67,164,267,267,2G medido=73,371,772,1ERRO RELATIVO (%)=8,510,46,8G Integral Mét Min. Quad.=65,262,166,2ERRO RELATIVO (%)=11,213,48,2		AREA		Gs Líquido Me	édio dos Probe	es A, B, C (kg/	<u>m2.s) - AR1U</u>)G75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>ri</u>	Anular	<u> </u>	(<u>1,4m</u>)	B	(2,9 m)	C	(3,9 m)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(m)	(m2)	<u>G médio</u>	Gm*Aanul	G médio	Gm*Aanular	Gmédio	Gm*Aanular
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0,00032685	78,0	0,0254986	128,9	0,04212823	102,2	0,03341365
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0102	0,00098056	86,9	0,08521819	127,6	0,12508571	128,2	0,12570038
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0204	0,00163426	98,9	0,16170769	114,0	0,18625034	136,8	0,22364719
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0306	0,00228796	92,1	0,21082917	76,0	0,17393704	100,2	0,22935388
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0408	0,00068776	64,6	0,04441042	36,4	0,02506397	46,3	0,03186345
0,04590,00055931,30,000/0/52 $-18,2$ $-0,01015594$ $-48,1$ $-0,02691026$ 0,04780,000993251,50,00147901 $-20,3$ $-0,02015301$ $-67,7$ $-0,06722278$ 0,051 $64,2$ $67,2$ G integral Mét Trapézios = $67,1$ $64,2$ $67,2$ G medido= $73,3$ $71,7$ $72,1$ ERRO RELATIVO (%) = $8,5$ $10,4$ $6,8$ G Integral Mét Min. Quad. = $65,2$ $62,1$ $66,2$ ERRO RELATIVO (%) = $11,2$ $13,4$ $8,2$	0,0434	0,000/0136	26,1	0,01831542	3,8	0,00268919	-1,5	-0,00107201
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0459	0,0005593	1,3	0,00070752	-18,2	-0,01015594	-48,1	-0,02691026
0,051 1 64,2 67,2 G integral Mét Trapézios = 67,1 64,2 67,2 G medido = 73,3 71,7 72,1 ERRO RELATIVO (%) = 8,5 10,4 6,8 G Integral Mét Min. Quad. = 65,2 62,1 66,2 ERRO RELATIVO (%) = 11,2 13,4 8,2	0,0478	0,00099325	1,5	0,00147901	-20,3	-0,02015301	-67,7	-0,06/22278
G integral Mét Trapézios = 67,1 64,2 67,2 G medido = 73,3 71,7 72,1 ERRO_RELATIVO (%) = 8,5 10,4 6,8 G Integral Mét Min. Quad. = 65,2 62,1 66,2 ERRO_RELATIVO (%) = 11,2 13,4 8,2	0,051	-				······································		
G medido = $73,3$ $71,7$ $72,1$ ERRO RELATIVO (%) = $8,5$ $10,4$ $6,8$ G Integral Mét Min. Quad. = $65,2$ $62,1$ $66,2$ ERRO RELATIVO (%) = $11,2$ $13,4$ $8,2$	G integral Mé	t Trapézios =		67,1		64,2	1007811119300001660091450000000000000000000000000000000000	67,2
ERRO RELATIVO (%) = 8,5 10,4 6,8 G Integral Mét Min. Quad. = 65,2 62,1 66,2 ERRO RELATIVO (%) = 11,2 13,4 8,2	G medido	10mg/m/s/14/14/14/00/00/00/00/00/00/00/00/00/00/00/00/00	. <u>1997</u>	73,3		71,7	an a	72,1
G Integral Mét Mín. Quad. = 65,2 62,1 66,2 ERRO RELATIVO (%) = 11,2 13,4 8,2	ERRO RELA	ATIVO (%)		8,5		10,4		6,8
ERRO RELATIVO (%) = 11,2 13,4 8,2	G Integral Mé	t Min. Quad.		65,2		62,1		66,2
	ERRO RELA	ATIVO (%)		11,2	and the and the second s	13,4		8,2

Note-se, que o balanço de massa foi respeitado em todas as seções transversais. Porém, a magnitude das medidas na região central ascendente e na região anular descendente, foram maiores e/ou menores, de forma a se compensarem.

TABELA V	1.3 - INT	EGRAÇÃO	DOS PERFI	S RADIAI	S - Corri	das CA2U8	G25,
	· · · · · · · · ·	CA2U8G50	E CA2U8G	75			
	AREA		Gs Líquido M	édio dos Prob	es A, B, C (kg/	m2.s) - CA2U	3G25
ri	Anular	A	(1,4m)	<u> </u>	(2,9 m)	Ć	(3,9 m)
(m)	(m2)	G médio	Gm*Aanul	G médio	Gm*Aanular	G médio	Gm*Aanular
0	0,00032685	27,0	0,00882666	71,7	0,02344984	78,1	0,02553022
0,0102	0,00098056	28,6	0,02807752	80,8	0,07918246	91,7	0,0898867
0,0204	0,00163426	36,0	0,05891261	83,7	0,13686666	92,7	0,15157282
0,0306	0,00228796	38,0	0,08694445	48,9	0,11193875	49,4	0,11308619
0,0408	0,00068776	32,7	0,02248346	1,9	0,00133448	-11,0	-0,00758275
0,0434	0,00070136	17,0	0,01189093	-28,5	-0,01995516	-43,9	-0,03075857
0,0459	0,0005593	-6,3	-0,00352604	-44,7	-0,02498819	-80,3	-0,0448928
0,0478	0,00099325	-15,8	-0,01568365	-47,9	-0,0475687	-105,6	-0,10491807
0,051							
G integral Mé	t Trapézios =	····	24,2		31,9		23,5
G medido		-	24,6		25,7		25,8
ERRO REL	ATIVO (%)		1,5		24,1		9,0
G Integral Mé	t Min. Quad.		24,8		28,9		22,1
ERRO REL	ATIVO (%)		0,9		12,5		14,2
	ÁREA		Gs Líquido Me	édio dos Prob	es A, B, C (kg/	m2.s) - CA2U(3G50
ri	Anular	A	(1,4m)	[1]	(2,9 m)	C	(3,9 m)
(m)	(m2)	G médio	Gm*Aanul	G médio	Gm*Aanular	G médio	Gm*Aanular
0	0,00032685	62,6	0,02045287	121,1	0,03957082	118,7	0,03878373
0,0102	0,00098056	65,2	0,06390294	140,3	0,13752897	144,5	0,14169953
0,0204	0,00163426	69,4	0,11344381	133,6	0,21838305	155,6	0,25434361
0,0306	0,00228796	72,1	0,16494798	97,7	0,22350527	99,8	0,22837904
0,0408	0,00068776	56,2	0,03862498	40,6	0,02790018	18,7	0,01287834
0,0434	0,00070136	26,5	0,01855389	-13,4	-0,00939676	-57,8	-0,04054734
0,0459	0,0005593	3,8	0,0021532	-48,8	-0,02728311	-121,5	-0,06796854
0,0478	0,00099325	-4,6	-0,00454783	-71,2	-0,07074887	-138,6	-0,13766738
0,051					[
G integral Mé	t Trapézios 😑		51,1		66,0		52,6
G medido	*****	***	48,4	40000000000000000000000000000000000000	50,0		51,6
ERRO RELA	ATIVO (%)	naka natu Dala	5,6		32,1		2,0
G Integral Mé	t Min. Quad.		50,5		64,1		49,4
ERRO REL/	ATIVO (%)		4,3		28,3		4,2
	ÁREA		Gs Líquido Me	édio dos Prob	es A, B, C (kg/	m2.s) - CA2U8	3G75
<u>ri</u>	Anular	A	(1,4m)	. 8	(2,9 m)	C	(3,9 m)
[<u>(m)</u>	(m2)	G médio	Gm*Aanul	G médio	Gm*Aanular	G médio	Gm*Aanular
0	0,00032685	109,3	0,03572723	179,8	0,05878351	165,7	0,05417256
0,0102	0,00098056	116,9	0,1146381	202,2	0,19823234	196,9	0,193087
0,0204	0,00163426	130,1	0,2126108	221,9	0,36267907	196,2	0,32067467
0,0306	0,00228796	133,4	0,30515795	171,4	0,3921301	130,7	0,29906368
0,0408	0,00068776	123,1	0,08466161	74,1	0,05094885	51,4	0,03535391
0,0434	0,00070136	80,2	0,05624214	-9,9	-0,00694722	-30,6	-0,02146944
0,0459	0,0005593	6,7	0,00377106	-70,7	-0,03956649	-126,0	-0,0704819
0,0478	0,00099325	-29,5	-0,02927216	-88,5	-0,08793405	-161,4	-0,1602968
0,051					L		
G integral Mé	t Trapézios =	na en 1. A a anticipation autoritation de la companya de	95,9		113,6		79,6
[G medido			75,0	a to a substantiant and the second	74,9		76,0
ERRO RELA	ATIVO (%)		27,9		51,8		4,6
G Integral Mé	t Mín. Quad.	***		****	108,6		79,6
ERRO RELA	NTIVO (%)	111 ••••••••••••••••••••••••••••••••••	32,3		45,0	NOTION OF BRIDE STREET, STREET	4,7

A Tabela VI.1 apresenta os detalhes das medidas referentes às Figuras V.22abc e apresentam os resultados de G_s, medidos e calculados, bem como os erros relativos nos cinco níveis de medida, mostrando que o balanço foi fechado dentro do erro experimental.

Analogamente, as Tabelas VI.2 e VI.3, nos apresentam os cálculos dos balanços de massa para as Figuras V.15 e V.26 respectivamente.

Estes dois exemplos novamente mostram resultados similares, típicos durante as operações. Apesar da magnitude dos resultados parciais, a geometria do equipamento não consegue altera o resultado global, isto é, os perfis tendem a se acomodar às condições locais de medida, sem porém comprometerem o balanço de massa global e a condição de regime estabelecido.

VI.3.1.2 - Nos Perfis Radiais Parciais

Como nossas medidas foram realizadas, em sua maioria, em três níveis distintos do transportador, sendo possível observar como os perfis parciais ficaram influenciados por se encontrarem, respectivamente, nas regiões de alimentação/aceleração, regime plenamente desenvolvido e topo.

A Figura VI.4abc, a seguir, nos mostra os perfis radiais parciais do fluxo ascendente e descendente da operação AR1U7G75 (cujos perfis totais foram apresentados na Figura V.13c, reproduzida outra vez).

A Figura acima é característica para nossas medidas. Como os três perfis estão na mesma escala, as seguintes observações podem ser feitas:

a) O fluxo ascendente existe sempre e em toda região radial independentemente da condição operacional;

b) O fluxo ascendente, junto à parede, devido a grande concentração de sólidos naquela região, pode alcançar valores de magnitude maior que na parte central do Riser;

c) Na Região do fluxo plenamente desenvolvido (sonda B) o perfil ascendente tende a ser constante na região anular e cresce em direção ao eixo axial;

d) As três medidas ilustram como a região do leito altera o perfil radial parcial, pois os três perfis não apresentam nenhuma semelhança física, apesar de representarem o mesmo valor global em termos de G_s .

e) O fluxo descendente apresenta sempre um perfil "padrão" do tipo: é invariavelmente zero no centro do Riser; mantêm-se zero até bem próximo à região anular e cresce à medida em que se aproxima da parede, dando a impressão de ocorrer um máximo junto à parede, fato este não confirmado, visto que o último ponto possível de ser medido está em r = 0,0478 m, ou seja, r/R = 0,94. Por limitações físicas não é possível medir, com este tipo de sonda, em r = 0,051 m (parede);

d) O fluxo descendente apresentou sempre, invariavelmente, um perfil tipo parabólico com um valor mínimo no centro (zero) e máximo junto à parede.

A Figura VI.5, a seguir, mostra mais um exemplo das conclusões acima, exibindo agora os perfis radiais parciais em cinco níveis obtidos na corrida AR3U10G50.

Desta Figura, observamos que os perfis para as sondas A, B e C praticamente mantêm as mesmas características, porém das sondas 0 e D podemos acrescentar o seguinte:

e) Todos os perfis radiais não apresentam semelhança física;

f) As medidas feitas na região de aceleração/alimentação VI.5a, mostram fluxos ascendentes junto à parede muito maiores que os medidos no centro, demonstrando assim a grande concentração de material no fundo do leito;

g) O fluxo descendente permanece com seu perfil padrão em qualquer situação extrema;

h) A espessura da região anular é grandemente influenciada pelos efeitos de entrada e saída do Riser. Da Figura VI.5f concluímos que, neste caso específico, a espessura do ânulo descendente, em termos globais, varia entre 0,8 a 0,96 do raio relativo.

A Figura VI.4d, por sua vez, mostra uma variação da região anular entre 0,75 a 0,83 do raio relativo.

VI.3.2 - REGIÕES DE ESCOAMENTO

VI.3.2.1 - Estrutura do Escoamento Radial

Um resultado muito significativo em nossas medidas foi a confirmação proposta no modelo de escoamento dividido em duas regiões bem características da seção transversal do transportador: a região central, com fluxo de sólidos ascendente, e a região anular com fluxo de sólidos descendente.

Este modelo, proposto primeiramente por NAKAMURA e CAPES [71, 74] e depois aperfeiçoado com a teoria dos "clusters" por YERUSHALMI *et alli* [35] (e já ilustrada pela Figura III.12), mostrou-se muito apropriado para descrever o comportamento dos nossos dados.

Nossas medidas radiais parciais, no entanto, nos permitem criticar este modelo na micro-escala, isto é, o resultado de um fluxo anular e um central são, na realidade, o resultado de uma soma de dois perfis radiais parciais. Conforme as conclusões do item anterior, o fluxo ascendente parcial existe sempre, podendo ter seu máximo inclusive na região anular, ao passo que o fluxo descendente é o único a atender bem o modelo visto que: é parabólico, nulo em toda região central em qualquer condição e apresenta um máximo junto à parede do transportador.

Foi possível também observar visualmente o comportamento do leito em sua base, graças à existência de um visor em acrílico que se estende desde a válvula J. Neste particular foi possível verificar a existência de duas regiões, ao menos na base do transportador, sendo possível visualizar os "clusters" na descendente, junto à parede.

VI.3.2.2 - Parâmetros Relevantes para as Regiões

VI.3.2.2.1 - Efeitos da Geometria

A observação das Figuras V.13 a V.28, bem como as Figuras VI.4 e VI.5, nos levam a uma conclusão imediata: a espessura das regiões anular e central ficam afetadas pelos efeitos de entrada e saída do equipamento.

Somente em condições amenas e sempre longe das regiões de entrada e saída é que foi observado, na região de fluxo plenamente desenvolvido, que a espessura da região anular permanecia constante. É por este motivo que, no Capítulo VII, a seguir, iremos considerar apenas os resultados obtidos com a sonda B, localizada a 2,9 m da entrada, e portanto na região que apresentou plenamente estável em todas as nossas medidas.

Se considerarmos o modelo "Core-Annulus" clássico, isto é, levando em consideração apenas o valor global dos fluxos (soma do ascendente e descendente), podemos chegar à conclusão que a região anular pode não existir em certas condições. É o que fica caracterizado nas Figuras V.15ab, V16abc, V.19b, V.20ab e V.24a.

Observe-se que, este aparente fenômeno, somente toma vulto em condições de baixas concentrações no leito, tais como, altas velocidades e baixas taxas de recirculação. A observação pelos perfis radias parciais, entretanto, não nos deixam em dúvida que as duas regiões existem em todas as circunstâncias, até porque sua origem esta alicerçada na formação dos "clusters" que ocorrem na região superior do duto.

VI.3.2.2.2 - Influência da Taxa de Circulação

Um estudo comparativo dos resultados dos perfis radiais globais, em três alturas diferentes, variando-se a taxa de circulação de sólidos G_s, mantendo-se constante a velocidade superficial no leito, está apresentado nas Figuras VI.6 e VI.7, a seguir.

É possivel observar que um aumento de G_s provoca um correspondente aumento da região anular do transportador, pela diminuição do valor r_0/R de intercessão com o eixo do raio relativo r/R. Analogamente, a região anular diminui sua espessura com a queda do fluxo de sólidos.

VI.3.2.2.3 - Influência do Diâmetro da Partícula

De forma semelhante, um estudo comparativo dos resultados dos perfis radiais globais, em três alturas diferentes, mantidos constantes a velocidade superficial no leito e a taxa de circulação de sólidos, nos dá uma idéia da influência do diâmetro da partícula na estrutura do escoamento.

As Figuras VI.8 e VI.9, nos indicam que à medida em que ocorre um aumento de d_p , mantidas as mesmas condições operacionais, ocorre um correspondente aumento da região anular, visto que diminui a dimensão de r_0/R . Analogamente, para pequenos d_p temos uma região anular de menor espessura.

VI.3.3 - CONSIDERAÇÕES SOBRE A MODELAGEM DO PERFIL

No Capítulo III, item III.6.4.2, apresentamos aquele que é, até o momento, o trabalho mais desenvolvido para descrever os perfis radiais. São os estudos de RHODES [80] para modelar os perfis axiais e radiais.

Sem entrar em aspectos mais aprofundados, a partir dos dados do nosso trabalho podemos observar que alguns aspectos ainda necessitarão ser melhor estudados e aplicados a um modelo teórico em nível radial, a saber:

a) O perfil radial é influenciado pelos efeitos de entrada, saída e alimentação no Riser como sugere a literatura [13, 45, 65, 82, 107];

b) O perfil radial parabólico perfeito, conforme proposto por RHODES, só pode ser observado em condições particulares, isto porque, nossos resultados indicaram que o valor de magnitude máxima, na maioria das medidas, ficou localizado longe do centro, numa região compreendida entre 0,4 e 0,8 do raio relativo. Segundo a literatura, o perfil parabólico se deforma rapidamente com o aumento do diâmetro do Riser [106];

c) O fluxo radial nunca se mostrou constante na região anular, conforme propõe RHODES, pelo contrário, sempre apresentou um valor negativo com tendência a apresentar um mínimo junto à parede;

d) A magnitude dos perfis radiais globais com a altura, conforme proposto por RHODES [40], mostrou ter sido afetado pelos efeitos geométricos do equipamento, pois em nossas medidas somente em algumas condições é que foi mantida a ordem decrescente de magnitude dos perfis, isto é, na maioria das vezes o perfil obtido pela sonda C se sobrepôs aos demais por estar próximo à saída do transportador, zona portanto de maior massa específica que a parte central do Riser;

e) Foi observado que, apesar do descrito no item anterior, que o valor de G_s, em cada seção, era mantido constante, isto é, foi respeitado o balanço de massa em condições de regime estabelecido dentro do erro experimental;

f) Foi observado consistência dos dados para com a equação da continuidade no fluxo na seção, uma vez que em todas as experiências os valores de integração dos perfis, por dois métodos, ficaram com erros médios inferiores a 30 % (quando comparados com o valor de G_s medido externamente), valor este que pode ser considerado baixo para este tipo de medida em particular. Segundo a literatura, métodos mais avançados como tomografia computadorizada e raios X mostraram erros de discordância entre si da ordem de mais de 30% [106];

g) Um perfil em forma de "orelha de gato", foi obtido pelo rebatimento das medidas para todo o diâmetro e mostrou ser adequado para representar a maioria dos perfil radiais por nós medidos. Outrossim, resultados similares também foram obtidos por outros pesquisadores [22, 102, 106]; h) Foi observado que o perfil radial global nada mais é do que uma soma de dois perfis radiais parciais, um ascendente e outro descendente;

i) O perfil parcial ascendente existe em toda a seção transversal do leito, inclusive junto à parede, podendo inclusive ser máximo nesta região em algumas condições;

j) O perfil parcial descendente apresenta um comportamento padrão independente das condições operacionais, forma parabólica perfeita, apresentando sempre valor nulo na região central e máximo junto à parede do tubo transportador;

l) Foi confirmado um estrutura de escoamento tipo "Core-Annulus" em todo transportador, bem como a presença dos "clusters", responsáveis pela recirculação interna de sólidos;

m) Pela análise das figuras verificou-se que a região anular ocupou sistematicamente da ordem de 15% do raio. Este percentual mostrou crescer com a queda da velocidade do gás e com o crescimento da taxa de recirculação de sólidos G_s .

CAPÍTULO VII - MODELAGEM MATEMÁTICA

VII. 1 - ASPECTOS DA MODELAGEM DO PERFIL AXIAL

O comportamento fluidodinâmico do transportador é fundamental para a qualidade do projeto de equipamentos e particularmente dos reatores, visto que o perfil de concentração influência a taxa de reação e o padrão de contato dos reagentes envolvidos num determinado processo.

A Revisão Bibliográfica do Capítulo III não deixou dúvidas de que a modelagem dos perfis axiais está avançada, mas ainda apresentam alguns problemas. A principal deficiência dos modelos atuais é que, apesar de levarem em consideração os principais parâmetros que envolvem o processo, desconsideram completamente os aspectos da geometria do equipamento.

O modelo ideal deveria necessariamente levar em consideração este aspecto, como comentaram HIRAMA e TAKEUCHI [42] e GRACE [13]. Mais recentemente já encontramos trabalhos onde este aspecto é considerado, como nas observações de SCHNITZLEIN e WEINSTEIN [64] e de GLICKSMAN *et alli* [67]. Estes autores mostram como a configuração do projeto do sistema de LFR afeta diretamente o desempenho, exemplificando especificamente como o projeto dos sistemas de entrada e saída dos gases podem influenciam tanto a velocidade superficial, como também a taxa de recirculação de sólidos e principalmente a porosidade ao longo do leito.

PATIENCE e CHAOUKI [66] chegam a afirmar que os efeitos da geometria de saída em um Riser somente se tornam menos importantes, isto é, apresentam erros menores que 10%, quando estes possuem alturas superiores a 40 m. Estes autores buscam considerar em parte estes aspectos em seus estudos sobre o "scale up" de unidades de LFC [66, 67].

As alternativas de saídas de Riser, podemos ser resumidamente classificadas em três principais grupos, a saber: suaves, abruptas e retas [45]. Estas geometrias modificam a concentração de sólidos no Riser apartir de uma altura significativa e dependendo das condições operacionais pode "deformar" o perfil mesmo antes da metade do Riser. Por isso qualquer modelo que desconsidere esta característica esta incompleto.

Esta preocupação já tem feito alguns novos pesquisadores do assunto buscarem modelos de cálculos do tempo de residência médio, como uma conseqüência dos tempos de residência parciais em cada uma das zonas do Riser. Esta nova linha de pesquisas tem em ZETHRAEUS e LJUNGDAHL [109] uma contribuição importante tomando como base o Modelo "Core-Annulus".

Por falta de modelos melhores, muitos setores da indústria têm usado modelos antigos e incompletos para o dimensionamento e projeto de reatores, como por exemplo no caso dos importantes FCC da indústria do petróleo, que até bem pouco tempo atrás eram obrigados a fazer seus dimensionamentos de Risers utilizando o superado modelo de "plug flow". Neste sentido alguns trabalhos mais recentes buscam aproveitar os estudos básicos da fluidodinâmica dos leitos rápidos como um novo ponto de partida, a exemplo do trabalho de MARTIN *et alli* [110] onde o modelo "Core-Annulus" é aplicado para o dimensionamento de um reator de craqueamento catalítico.

Nosso trabalho não dará maior ênfase aos modelos axiais, visto que nossas medidas foram realizadas para investigar os perfis radiais. Gostaríamos apenas de comentar que, considerando a observação visual das nossas medidas axiais, fica muito clara a forte contribuição do efeito da saída abrupta do equipamento.

Se algum trabalho fosse proposto para estudo dos perfis axiais nossa recomendação e escolha recairia, por hora, sobre o modelo de LI e KWAUK [36], tomando-se o cuidado de desprezar os últimos pontos das medidas junto ao topo, pois estas sempre e sistematicamente foram afetadas pela geometria.

VII.2 - MODELAGEM DO PERFIL RADIAL

Nosso trabalho se propos a estudar o comportamento da concentração radial de sólidos em um Riser em diferentes condições operacionais, utilizando um grupo de partículas classificadas numa faixa granulométrica pertencente ao Grupo B da classificação de GELDART.

Conforme verificamos nos capítulos anteriores, os estudos atuais da fluidodinâmica do LFR estão concentrados nos modelos que descrevem os perfis axiais de concentração, verificando-se uma pobreza de trabalhos de modelos do comportamento radial de concentração de sólidos.

O presente trabalho busca deixar uma contribuição aos estudos sobre as características da concentração das partículas ao longo do raio em condições operacionais clássicas.

Dentre os poucos trabalhos realizados utilizamos como ponto de partida um dos trabalhos de RHODES e seus colaboradores [22] iniciado em 1992 e ainda não concluído. Conforme descrição realizada no Capítulo III, item III.6.4.4, tratase de um modelo semi-empírico onde aparecem três coeficientes de ajuste da equação básica que descreve o chamado fluxo radial reduzido G_r/G_s.

As principais premissas assumidas neste modelo semi-empírico

foram:

a) O escoamento no Riser ocorre segundo o modelo "Core-Annulus", ocorrendo um fluxo de transporte ascendente de material pela região central (core) e um fluxo descendente numa região anular junto à parede (annulus); b) O transportador está dividido em duas regiões: a região central ascendente (core), de r = 0 até $r = r_0$, e uma região de fluxo descendente junto a parede entre $r = r_0$ e r = R, onde r_0 é definido como a distância radial até o limite das duas regiões, dado pela expressão:

$$r_0 = \left[\frac{1}{a} + \frac{2}{m+2}\right]^{1/m} R$$
 III.169

c) A média do fluxo reduzido de sólidos na seção transversal, por definição, deve ser igual à unidade, isto é;

$$\frac{1}{\pi R^2} \int_{0}^{R} 2\pi r \frac{G_r}{G_s} dr = 1$$
 III.167

d) O escoamento de gás ocorre unicamente pela região central, assim pelo balanço de massa do gás no transportador teremos:

$$U = \frac{1}{\pi R^2} \int \int_{0}^{r} 2\pi r U_r dr \qquad \text{III.175}$$

e) O comportamento do perfil radial pode ser expresso em termos do fluxo radial reduzido, isto é, a razão entre o fluxo de sólidos numa dada posição radial G_r pelo fluxo total da seção G_s pela expressão:

$$\frac{G_r}{G_s} = a \left[1 - \left(\frac{r}{R}\right)^m \right] + b$$
 III.166

onde "a", "b" e "m" são coeficientes adimensionais.

Conforme vimos no Capítulo III, o valor de "m" controla a inclinação do perfil reduzido de sólidos e depende também das propriedades do leito de sólidos e da geometria do Riser. Os coeficientes "a" e "b" podem variar com as condições de operação, G_s e U. O parâmetro "b" é responsável pelas características geométricas do Riser e o coeficiente "a" responsável pelo ajuste final da expressão.

RHODES definiu o coeficiente "b" como função de "a" e "m"

onde :

$$b = 1 - \frac{ma}{m+2}$$
 III.168

Segundo os autores, o valor do parâmetro "m" deve ser escolhido para um dado grupo de dados experimentais. RHODES *et alli* [22], verificaram que o valor de m = 5 foi considerado satisfatório para descrever os perfis em condições muito semelhantes as nossas, isto é, Risers com diâmetro interno entre 0,152 e 0,305 m, velocidade superficial entre 3 a 5 m/s e partículas de faixa granulométrica semelhante. Um estudo de sensibilidade indicou que quando "m" cresce obtemos perfis mais achatados na parte central do transportador e profundos perto da parede.

Após uma análise dos estudos de RHODES observamos que estes ainda não são conclusivos e utilizam métodos e critérios no mínimo discutíveis. Desta feita, optamos por utilizar uma expressão similar onde foi incluído um novo parâmetro denominado " τ ", que pode ser expresso como uma função apenas da velocidade superficial U.

f) " τ " é um parâmetro de ajuste que é função exclusiva da velocidade superficial.

Desta feita, nosso modelo possui a rigor três parâmetros, sendo um obtido com o auxílio dos trabalhos de RHODES e os outros dois fixados por um ajuste de uma expressão que reproduza o parâmetro " τ " para as condições de nossos dados experimentais.

Assumindo um perfil semelhante ao proposto com um valor de m = 5, como sugerido por RHODES, rescrevemos a equação III.166 introduzindo agora o novo parâmetro " τ ". Desta feita, propomos a seguinte expressão para o fluxo radial local:

$$\frac{G_{r}}{G_{s}} = \tau \left[1 - \left(\frac{r}{R} \right)^{m} \right] + 1 - B$$
 VII.1

onde $\tau = \overline{\tau}$ (U) a ser determinada com o auxílio de nossos dados experimentais.

Semelhante à equação III. 168, B será um parâmetro expresso em função de " τ " e "m", isto é:

$$B = 1 - \frac{m\tau}{m+2}$$
 VII.2

A expressão VII.1 pode assim ser rescrita fornecendo:

$$\frac{G_{r}}{G_{s}} = \tau \left[1 - \left(\frac{r}{R}\right)^{m} \right] + 1 - \frac{m\tau}{m+2}$$
 VII.3

Com base nos trabalhos de RHODES assumimos o valor de m = 5. Assim a equação VII.3 passa a ter como incógnita apenas o parâmetro " τ ". Desta feita, resta-nos agora propor uma expressão de " τ " compatível com as condições operacionais.

Iniciamos assim um trabalho de ajuste com os dados experimentais obtidos. Da expressão acima pode-se obter a expressão explícita para " τ ", a saber:

$$\tau = \frac{\left(\frac{\mathbf{Gr}}{\mathbf{Gs}} - 1\right)}{\left[0.2857 - \left(\frac{\mathbf{r}}{\mathbf{R}}\right)^{5}\right]}$$

As tabelas VII.1, VII.2, VII.3 e VII.4 a seguir, foram selecionadas dentre as muitas que foram construídas, agrupando-se os dados experimentais por tipo, velocidade superficial e taxa de recirculação externa de sólidos G_s . Elas exemplificam os cálculos de " τ " usando-se a expressão VII.4.

TABELA V	II.1 - Fluxo R	eduzido do	Riser (D= 0),102 m)		**************************************
	Corridas:	AR3U7G25	, 50 e 75	Material:	Areia 0-100	d _p = 120x10⁻ ⁶ m
	Gs = 24,66	Gs = 49,85	Gs = 75,16	U = 7,0 m/s	r₀/R =	= 0,834
r/R	Gr/Gs	Gr/Gs	Gr/Gs	τ médio rev .	ľo	OBS:
0,94	-2,981	-2,652	-1,953	7,873	0,0427	
0,9	-3,155	-2,151	-1,473	10,695	0,0420	
0,85	-0,698	-0,885	-0,269	10,235	0,0421	
0,8	0,860	0,568	0,321	9,943	0,0422	
0,6	2,255	2,219	2,642	6,598	0,0432	**
0,4	3,451	3,246	3,031	8,141	0,0426	
0,2	3,974	3,083	2,584	7,757	0,0428	
Ó	4,047	2,748	2,137	6,921	0,0431	
	·		Média	8,521	0,0425	

TABELA V	/II.2 - Fluxo R	eduzido do	Riser (D= 0),102 m)		
	Corridas:	CA2U8G25	, 50 e 75	Material: C	Calcario 80-100	d _p ≕ 93x10 ⁻⁶ m
	Gs = 25,67	Gs = 49,99	Gs = 74,86	U = 8,0 m/s	r ₀ /R =	0,853
r/R	Gr/Gs	Gr/Gs	Gr/Gs	τ médio rev.	ro	OBS:
0,94	-1,866	-1,424	-1,182	5,557	0,0438	
0,9	-1,616	-0,526	-0,708	6,399	0,0433	
0,85	-0,600	-0,010	0,442	4,962	0,0442	ಹ್ಮೆ
0,8	0,752	1,632	1,536	5,916	0,0436	**
0,6	3,058	2,277	3,043	8,619	0,0425	
0,4	3,467	3,071	2,887	7,773	0,0428	
0,2	2,824	2,541	2,514	5,698	0,0437	
Ó	2,765	2,303	2,291	5,085	0,0441	
[-	//////////////////////////////////////	Média	6,251	0,0434	

VII.4

TABELA	VII.3 - Fluxo R	eduzido do	Riser (D= 0	,102 m)		<u>, / , ¹¹¹ 11 11 11 11 11 11 1</u>
	Corridas:	AR1U9G25	, 50 e 75	Material: /	Areia 60-80 #	d _p = 160x10 ⁻⁶ m
	Gs = 23,66	Gs = 48,91	Gs = 71,69	U = 9,0 m/s	r ₀ /R =	0,8977
r/R	Gr/Gs	Gr/Gs	Gr/Gs	τ médio rev .	ro	OBS:
0.04	_0 757	n 754	. ስ ኃይვ	0 91¢	0 0467	
0,04	-V,IVI A EEA	0,204	-0,200	2,010	0,0407	
0,9	-0,558	0,378	-0,223	3,722	0,0453	
0,85	0,000	0,530	0,331	4,515	0,0445	
0,8	0,702	0,644	0,686	***		nfo nfo nfo
0,6	1,260	1,135	1,435	2,094	0,0483	++
0,4	1,860	1,850	1,745	2,971	0,0464	
0,2	2,329	2,081	1,815	3,767	0,0453	
0	2,173	2,184	1,781	3,660	0,0454	
			Média	3,363	0,0458	

TABELA \	/II.4 - Fluxo F	Reduzido do	Riser (D= 0,	102 m)			
	Corridas:	AR2U0G25	, 50, 80 e 100	Material:	Areia 80-100 d	_p = 149x10 ⁻⁶ m	
	Gs = 23,25	Gs = 49,62	Gs = 81,64	Gs = 101,73	U = 10,0 m/s	r₀/R =	0,913
r/R	Gr/Gs	Gr/Gs	Gr/Gs	Gr/Gs	τ médio rev.	ro	OBS:
0,94	0,348	0,401	-0,420	-0,605	2,734	0,0468	÷
0,9	0,533	0,556	-0,282	-0,124	2,720	0,0468	
0,85	0,766	0,709	0,732	0,226	2,479	0,0473	
0,8	1,079	0,955	0,893	1,046	2,552	0,0472	***
0,6	1,454	1,308	1,720	1,655	2,569	0,0471	
0,4	2,116	2,003	1,792	1,750	3,322	0,0458	
0,2	2,193	2,447	1,742	1,590	3,480	0,0456	
Ó	2,348	2,273	1,498	1,487	3,156	0,0461	
			Média		2,876	0,0465	

A construção destas tabelas acima, a partir de dados experimentais, foi realizada utilizando com o cuidado de desprezar as poucas experiências onde " τ " estava fora do intervalo 1,4 < τ > 2x τ _{médio}. Estes pontos estão identificados na coluna de observações aparecendo um sinal "+".

Por esta metodologia, foi possível obter um valor médio de " τ " para cada grupamento de condições operacional, observando-se o seu comportamento com os parâmetros variados. A Tabela VII.5, abaixo, apresenta a síntese dos resultados:

TABE	LA VII.5 - Sír	ntese dos r	valores do pa	arâmetro ",	r" nas divers	as condiç	ões operaci	onais	
	Material: Corridas Tipo:	Areia 0-100 AR3	Material: Corridas Tipo:	Areia 80-100 AR2	Material: Corridas Tipo:	Areia 60-80 AR1	Material: Corridas Tipo:	Calcario CA2	80-100
	dp x10-6(m)=	120	dp x10-6(m) =	149	dp x10-6(m) =	160	dp x10-6(m) =	93	Desvio
U (m/s)	τ (médio)	r√R	τ (médio)	r₀/R	τ (médio)	r₀/R	τ (médio)	r₀/R	Padrão
7	8,52	0,83	9,08	0,83	7,53	0,84	8,78	0,83	0,5806
8	7,08	0,84	5,54	0,86	5,27	0,86	6,25	0,85	0,7002
9	3,95	0,88	3,73	0,89	3,36	0,90	4,19	0,88	0,3041
10	2,98	0,91	2,88	0,91	2,68	0,92	3,78	0,89	0,4207

Analisando os resultados obtidos, à luz da Tabela VII.5 e das equações VII.2 e III.169, podemos concluir que:

a) O valor de " τ " sempre deve ser > 1,4 afim de satisfazer a condição física de que r_0 não pode ser um valor negativo, o que não teria sentido físico;

Figura VII.1 - Comportamento experimental do parâmetro τ com a velocidade Superficial U ao longo das operações

Figura VII.2 - O comportamento do parâmetro "τ" em função das granulometrias usadas para diferentes velocidades superficiais

b) O parâmetro " τ " é fortemente dependente da velocidade superficial U, de forma que " τ " diminui enquanto U cresce. A Figura VII.1, mostra nitidamente esta dependência para a nossa faixa de trabalho experimental;

c) " τ " é, aparentemente, independente do diâmetro médio da partícula d_p, ao menos na faixa de dados em que trabalhamos. A Figura VII.2 melhor ilustra este resultado obtido apartir dos dados da Tabela VII.5;

Figura VII.3 - Limite da região do fluxo ascendente com a região anular em função da velocidade superficial.

d) O limite entre as regiões central e anular se mostra também dependentes apenas da velocidade U e independentes dos valores das taxas externas de recirculação de sólidos G_s . A Figura VII.3 apresenta os valores destes limites, isto é, o r_0/R onde ocorre a interface entre as regiões de fluxo ascendente e descendente. Os dados da Tabela VII.5 mostram haver uma variação linear entre o raio relativo limite com o valor da velocidade;

e) Os raios relativos de mudança de região, calculados com o auxílio da equação III.169 mostraram uma boa concordância com os valores experimentais. As Figuras VII.4A e VII.B exemplificam as duas regiões do Riser observadas ao longo das corridas.

As medidas da Figura VII.4A referem-se às partículas de areia 0-100 #. O fluxo externo de recirculação de sólidos, G_s , foi medido em três condições (25, 50 e 75 kg/m².s), a uma velocidade superficial de 9,0 m/s. Já a Figura VII.4B foi obtida com calcário 80-100 # e com U= 8,0 m/s.

Figura VII.4 A -Fluxo Radial Local Reduzido Areia 0 -100, U = 9,0 m/s

Figura VII.4 B- Fluxo Radial Local Reduzido Calcário 80 -100, U =8,0 m/s.

Observe-se que as linhas das três condições de fluxo cortam o eixo em $r_0/R = 0.87$ e 0.85, enquanto que a equação III.169 nos forneceu valores de 0.88 e 0.85, respectivamente. A Figura VII.5 ilustra a dispersão destes resultados

Figura VII.5 - Comparação dos limites das regiões central e anular no Riser: Calculados pela expressão III.169 e os obtidos experimentalmente

f) A variação de τ para as areias foi de apenas 17%, ao passo que para o calcário foi de até 30%.

Finalmente restou-nos realizar um estudo para melhor definir a expressão da função $\tau = \overline{\tau}(U)$, isto é, a Figura VII.1. Entre as diversas expressões testadas optamos pelo uso de uma expressão linear por alguns motivos, entre os principais citaríamos:

1) ser uma expressão simples com apenas dois parâmetros;

2) foi a expressão que apresentou o menor erro relativo médio para os dados experimentais, ou seja, a expressão que em média melhor reproduziu a tendência dos dados.

As Tabelas VII.6, VII.7 e VII.8 apresentam exemplos dos estudos realizados com outras expressões e os erros obtidos, assim temos:

TABELA V	I.6 - Cái	culos de Gr	/Gs com	as diversas	express	ões Alternat	ivas de	Cálculo	**********************
	Corridas:	AR3U9G25	, 50 e 75	Areia 0-100 #		U (m/s) =	9		
					AUOTEO			577 8 1797 8 1 /A	
	HPUS D	E EAPRESSU	ES USAD	AS PARA US	AJUSTES	DOS DADOS	EXPERI	MENTAIS	
Linear	Erro (%)	Logarítmica	Erro (%)	Exponencial	Erro (%)	Polinômio(2)	Erro (%)	Potência	Erro (%)
(1)		(2)		(3)		(4)		(5)	
-0,99	31,72	-0,94	24,85	-0,85	13,35	-0,79	5,09	-0,81	8,59
-0,35	8,78	-0,32	18,06	-0,26	33,27	-0,22	44,42	-0,23	39,54
0,30	5,99	0,32	13,12	0,35	24,15	0,37	32,70	0,36	28,65
0,81	13,45	0,82	14,48	0,83	15,70	0,84	16,92	0,83	16,17
1,92	9,62	1,90	8,48	1,86	6,25	1,83	4,87	1,84	5,30
2,22	2,54	2,19	1,28	2,14	1,12	2,10	2,64	2,12	2,14
2,26	9,44	2,23	8,07	2,18	5,47	2,14	3,81	2,16	4,36
2,26	16,39	2,23	14,93	2,18	12,16	2,15	10,39	2,16	10,98
Média	12,24	Média	12,91	Média	13,93	Média	15,10	Média	14,47
Média Corrig.	12,24	Média Corrig.	12,91	Média Corrig.	13,93	Média Corrig.	15,10	Média Corrig.	14,47
(1)	Gr/Gs= 7	.005 - 0.5262	U + (1.843	2 U - 21.018)(i	r/R)5				
(2)	Gr/Gs= 1	2.053 - 4.469	in (U) - 38.	687 (r/R)5 + 1	5.641 (r/R)5 ln (U)			
(3)	Gr/Gs= 1	+ [27.932 - 97	761 (r/R)	5] e -0.3516 U	•				
(4)	Gr/Gs= 1	5.686 - 51.402	? (r/R)5 + [-2.6052 + 9.11	182 (r/R)5	U + [0.1223 -	0.4279 (n	(R)5] U2	
(5)	Gr/Gs= 1	+ [778.1 - 272	23.4 (r/R)5	U -2.9633	. , ,			,	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TABELA VI	I.7 - Cál	culos de Gr	Gs com	as diversas	express	ões Alternat	ivas de l	Cálculo	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Corridas:	AR1U0G25	, 50 e 75	Areia 60-80 #	•	U (m/s) =	10		
TIPOS DE EXPRESSÕES USADAS PARA OS AJUSTES DOS DADOS EXPERIMENTAISLinearErro (%)LogarítmicaErro (%)ExponencialErro (%)Polinômio(2)Erro (%)PotênciaErro (%)(1)(2)(3)(4)(5)-0,16146,16-0,20156,24-0,30185,62-0,35197,80-0,33193,030,2155,260,1860,250,1175,360,0981,370,1079,190,599,530,5811,160,5416,710,5318,640,6318,130,8911,000,8910,940,889,810,889,760,889,501,5324,521,5526,231,6030,231,6332,321,6231,211,710,771,742,361,806,191,838,121,827,131,7317,911,7616,601,8313,421,8611,811,8512,631,7413,881,7612,511,839,161,867,481,858,34Média34,88Média37,04Média60;311,867,481,858,34MédiaCorrig.20,01MédiaCorrig.22,98MédiaCorrig.23,73(1)Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5(2)Gr/Gs= 1 + [27.932 - 97.761(r/R)5 + 15.641(r/R)5 In (U)(3)Gr/Gs= 1 + [27.932 - 97.761(r/R)5 + 15.641 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_							
Linear Erro (%) Logarítmica Erro (%) Exponencial Erro (%) Polinômio(2) Erro (%) Potência Erro (%) (1) (2) (3) (4) (5) -0,16 146,16 -0,20 156,24 -0,30 185,62 -0,35 197,80 -0,33 193,03 0,21 55,26 0,18 60,25 0,11 75,36 0,09 81,37 0,10 79,19 0,59 9,53 0,58 11,16 0,54 16,71 0,53 18,64 0,53 18,13 0,89 11,00 0,89 10,94 0,88 9,81 0,88 9,76 0,88 9,50 1,53 24,52 1,55 26,23 1,60 30,23 1,63 32,32 1,62 31,21 1,71 0,77 1,74 2,36 1,80 6,19 1,83 8,12 1,82 7,13 1,73 17,91 1,76 16,60 1,83 13,42 1,86 11,81 1,85 12,63 1,74 13,88 1,76 12,51 1,83 9,16 1,86 7,48 1,85 8,34 Média 34,88 Média 37,04 Média 43,31 Média 45,91 Média 44,89 Média Corrig. 18,98 Média Corrig. 20,01 Média Corrig. 22,98 Média Corrig. 24,21 Média Corrig. 23,73 (1) Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5 (2) Gr/Gs= 12.053 - 4.469 In (U) - 38.687 (r/R)5 + 15.641 (r/R)5 In (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e -0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633		TIPOS D	E EXPRESSŐ	ES USAD	AS PARA OS	AJUSTES	DOS DADOS	EXPERI	MENTAIS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Linoar	Erro(94)	Logorítmico	Erro (%)	Evenencial	Erro (94)	Dolinâmia(2)	Erro (94)	Datânaia	Erra (0/)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	EIIO (70)	(2)	EIIO (70)	(3)	ENO (70)	(A)	Eno (70)	rotencia (S)	CHO (70)
0,10 110,10 0,20 100,21 0,01 100,21 0,02 10,02 10,02 0,00 101,00 0,00 0	-0.16	146 16	-0.20	156 24	-0.30	185.62	-0.35	197.80	-0.33	193.03
0,59 9,53 0,58 11,16 0,54 16,71 0,53 18,64 0,53 18,13 0,89 11,00 0,89 10,94 0,88 9,81 0,88 9,76 0,88 9,50 1,53 24,52 1,55 26,23 1,60 30,23 1,63 32,32 1,62 31,21 1,71 0,77 1,74 2,36 1,80 6,19 1,83 8,12 1,82 7,13 1,73 17,91 1,76 16,60 1,83 13,42 1,86 11,81 1,85 12,63 1,74 13,88 1,76 12,51 1,83 9,16 1,86 7,48 1,85 8,34 Média 34,88 Média 37,04 Média 43,31 Média 45,91 Média 44,89 Média Corrig. 18,98 Média Corrig. 20,01 Média Corrig. 22,98 Média Corrig. 24,21 Média Corrig. 23,73 (1) Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5 (2) Gr/Gs= 12.053 - 4.469 In (U) - 38.687 (r/R)5 + 15.641 (r/R)5 In (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e - 0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633	0.21	55 26	0 18	60 25	0 11	75.36	0,09	81 37	0.10	79 19
0,89 11,00 0,89 10,94 0,88 9,81 0,88 9,76 0,88 9,50 1,53 24,52 1,55 26,23 1,60 30,23 1,63 32,32 1,62 31,21 1,71 0,77 1,74 2,36 1,80 6,19 1,83 8,12 1,82 7,13 1,73 17,91 1,76 16,60 1,83 13,42 1,86 11,81 1,85 12,63 1,74 13,88 1,76 12,51 1,83 9,16 1,86 7,48 1,85 8,34 Média 34,88 Média 37,04 Média 43,31 Média 45,91 Média 44,89 Média Corrig. 18,98 Média Corrig. 20,01 Média Corrig. 22,98 Média Corrig. 24,21 Média Corrig. 23,73 (1) Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5 (2) Gr/Gs= 12.053 - 4.469 In (U) - 38.687 (r/R)5 + 15.641 (r/R)5 In (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e - 0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633	0.59	9.53	0.58	11.16	0.54	16.71	0.53	18.64	0.53	18.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.89	11.00	0.89	10,94	0.88	9.81	0.88	9,76	0.88	9,50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,53	24,52	1,55	26,23	1,60	30,23	1,63	32,32	1,62	31,21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,71	0,77	1,74	2,36	1,80	6,19	1,83	8,12	1,82	7,13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,73	17,91	1 76	16,60	1,83	13,42	1,86	11,81	1,85	12,63
Média 34,88 Média 37,04 Média 43,31 Média 45,91 Média 44,89 Média Corrig. 18,98 Média Corrig. 20,01 Média Corrig. 22,98 Média Corrig. 24,21 Média Corrig. 23,73 (1) Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5 (2) Gr/Gs= 12.053 - 4.469 In (U) - 38.687 (r/R)5 + 15.641 (r/R)5 In (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e -0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633	1,74	13,88	1,76	12,51	1,83	9,16	1,86	7,48	1,85	8,34
Média Corrig. 18,98 Média Corrig. 20,01 Média Corrig. 22,98 Média Corrig. 24,21 Média Corrig. 23,73 (1) Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5 (2) Gr/Gs= 12.053 - 4.469 In (U) - 38.687 (r/R)5 + 15.641 (r/R)5 In (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e -0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633	Média	34,88	Média	37,04	Média	43,31	Média	45,91	Média	44,89
 (1) Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5 (2) Gr/Gs= 12.053 - 4.469 In (U) - 38.687 (r/R)5 + 15.641 (r/R)5 In (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e -0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633 	Média Corrig.	18,98	Média Corrig.	20,01	Média Corrig.	22,98	Média Corrig.	24,21	Média Corrig.	23,73
(1) Gr/Gs= 7.005 - 0.5262 U + (1.8432 U - 21.018)(r/R)5 (2) Gr/Gs= 12.053 - 4.469 ln (U) - 38.687 (r/R)5 + 15.641 (r/R)5 ln (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e -0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633										
 (2) Gr/Gs= 12.053 - 4.469 ln (U) - 38.687 (r/R)5 + 15.641 (r/R)5 ln (U) (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e -0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U - 2.9633 	(1)	Gr/Gs= 7	.005 - 0.5262	U + (1.843	2 U - 21.018)(i	/R)5				
 (3) Gr/Gs= 1 + [27.932 - 97.761 (r/R)5] e -0.3516 U (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U -2.9633 	(2)	Gr/Gs= 1	2.053 - 4.469	n (U) - 38.	.687 (r/R)5 + 1	5.641 (r/R)5 In (U)			
 (4) Gr/Gs= 15.686 - 51.402 (r/R)5 + [-2.6052 + 9.1182 (r/R)5] U + [0.1223 - 0.4279 (r/R)5] U2 (5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U -2.9633 	(3)	Gr/Gs= 1	+ [27.932 - 97	.761 (r/R)	5] e -0.3516 U					
(5) Gr/Gs= 1 + [778.1 - 2723.4 (r/R)5] U -2.9633	(4)	Gr/Gs= 1	5.686 - 51.402	(r/R)5 + [-2.6052 + 9.11	82 (r/R)5	U + [0.1223 -	0.4279 (ri	/R)5] U2	
	(5)	<u>Gr/Gs= 1</u>	+ [778.1 - 272	23.4 (r/R)5	U -2.9633					

$$\tau = \overline{\tau} (U) = a_1 U + a_2 \qquad (VII.5)$$

Os coeficientes a1 e a2 resultaram iguais a:

$$a_1 = -1,8432 \text{ (m/s)}$$

 $a_2 = 21,018$

A equação VII.3 ficou assim com seus três coeficientes calculados e resultaram a expressão:

$$\frac{G_r}{G_s} = 7,005 - 0,5262 \text{ U} + (1,8432 \text{ U} - 21,018) \left(\frac{r}{R}\right)^5$$
(VII.6)

TARELA VI	1 8 . Cál	rulos de Gr/	Ge com	ac divareae	overace	ñac Altornat	ivee de l	Cáloulo	
I MULLAN	n.o - van		55 COIII	as uiversas	expiess	Ves Alternat	1705 UC 1	valculo	
	Comdas:	GAZU/GZO	, ou e /o	Calcareo ou-1	UU #	U (m/s) =	1		
	2000 D	- munneaaă	~~ 11~ A ~		6 11 Las 78107 at				
	HPUS DI	E EXPRESSO	ES USAD	AS PARA US	AJUSTES	5 DOS DADOS	EXPERI	VENTAIS	
Linear	Erro (%)	Logarítmica	Erro (%)	Exponencial	Erro (%)	Polinômio(2)	Erro (%)	Potência	Erro (%)
(1)		(2)	. ,	(3)		(4)		(5)	
-2,64	16,54	-2,70	19,13	-2,74	20,90	-2,83	24,77	-2.82	24,57
-1,48	18,64	-1,52	16,48	-1,54	14,99	-1,60	11 74	-1,60	11.87
-0,28	58,31	-0,30	55,48	-0,32	53,48	-0,35	49,13	-0,35	49,18
0,66	18,08	0,65	18,54	0,65	18,92	0,64	19,74	0,64	19,90
2,68	11,42	2,72	10,42	2,73	9,77	2,78	8,34	2,77	8,50
3,23	14,21	3,27	13,17	3,30	12,48	3,35	10,98	3,35	11,13
3,31	5,28	3,35	4,12	3,38	3,35	3,44	1,67	3,43	1,84
3,32	3,91	3,36	5,19	3,38	6,03	3,44	7,87	3,44	7,69
Média	18,30	Média	17,82	Média	17,49	Média	16,78	Média	16,84
Média Corrig.	18,30	Média Corrig.	17,82	Média Corrig.	17,49	Média Corrig.	16,78	Média Corrig.	16,84
(1)	Gr/Gs= 7	.005 - 0.5262	U + (1.843	2 U - 21.018)(I	·/R)5				
(2)	Gr/Gs= 1:	2.053 - 4.469	n (U) - 38.	687 (r/R)5 + 1	5.641 (r/R	.)5 In (U)			
(3)	Gr/Gs= 1	+ [27.932 - 97	7.761 (r/R)	5] e -0.3516 U					
(4)	Gr/Gs= 1	5.686 - 51.402	: (r/R)5 + [-2.6052 + 9.11	82 (r/R)5] U + [0.1223 -	0.4279 (r <i>i</i>	/R)5] U2	
(5)	Gr/Gs= 1	+ [778.1 - 272	3.4 (r/R)5	U -2.9633					

A expressão VII.6 é uma equação empírica obtida a partir de uma modificação dos trabalhos de RHODES e colaboradores [22]. A sua aplicação resultou um erro médio menor do que 20% quando usada para fazer uma previsão de G_r/G_s em nossos dados.

CAPÍTULO VIII - CONCLUSÕES E SUGESTÕES

Finalizando nosso trabalho, gostaríamos de deixar uma síntese de nossas conclusões, bem como as sugestões para a continuidade do mesmo e uma análise do futuro do Leito Fluidizado Circulante como processo.

VIII.1 - CONCLUSÕES

Nosso estudo sobre a Fluidodinâmica do Leito Fluidizado Circulante para Partículas do Grupo B, nos permitiu chegar às seguintes conclusões:

VIII.1.1 - QUANTO AO PERFIL AXIAL DE CONCENTRAÇÃO

a) A geometria do transportador é fator importante para definir a forma do perfil axial de concentrações ao longo do leito;

b) Somente para transportadores com grandes alturas e isentos de efeitos de saídas abruptas é que podemos observar perfis de porosidade média da mistura nos termos dos principais modelos da literatura, como o perfil em "S" de LI e KWAUK;

c) O transportador pode ser dividido em três regiões distintas:

- 1) Região de aceleração/alimentação;
- 2) Região de fluxo plenamente desenvolvido;
- 3) Região de topo (ou saída);

d) A velocidade superficial é parâmetro importante para definir o perfil axial, pois a concentração do leito aumenta com a queda da velocidade, mantida a taxa de circulação de sólidos constante;

e) Mantido G_s constante, o aumento do fluxo de gás provoca a redução do gradiente de concentração e a redução da diferença entre as concentrações do topo e do base do transportador;

f) A taxa de circulação de sólidos, juntamente com a velocidade superficial, são os dois mais importantes parâmetros a influenciar o perfil axial;

g) O crescimento da taxa de circulação de sólidos provoca o crescimento da concentração axial e o crescimento do gradiente de concentração em toda a coluna;

h) Quanto menor for o diâmetro médio das partículas, maior é a densidade média da mistura;

VIII.1.2 - QUANTO AO PERFIL RADIAL DE CONCENTRAÇÃO

VIII.1.2.1 - Perfil Radial Global (Líquido)

i) O perfil radial líquido, é composto pela soma de dois perfis parciais, um ascendente e outro descendente no Riser;

j) A geometria do equipamento influencia as magnitudes das medidas do perfil radial líquido, sem comprometer o fechamento do balanço material na seção;

l) O perfil radial líquido é influenciado, em magnitude, pelos efeitos de entrada, saída e realimentação do transportador;

m) O fluxo radial líquido não é constante na região anular, e pelo contrário, apresentou sempre um valor negativo com tendência de apresentar um máximo (negativo) junto à parede;

n) O fluxo radial líquido não tende a ser uma parábola perfeita, pois sobre influência da geometria e da realimentação;

o) O fluxo radial líquido, quando rebatido ao longo de todo diâmetro, apresentou a tendência de exibir um perfil em forma de "orelha de gato";

 p) A velocidade de captação de sólidos não é relevante na medida local da concentração radial global, quando usamos amostradores não isocinéticos, desde que esta velocidade de captação seja superior a velocidade superficial no transportador;

VIII.1.2.2 - Perfil Radial Parcial

q) O fluxo ascendente de sólidos existe sempre em toda região radial, independentemente da condição operacional;

r) O comportamento da soma dos perfis parciais, permite dizer que o perfil líquido global divide a seção transversal do leito em duas regiões: uma central de fluxo líquido ascendente e uma anular de fluxo líquido descendente, confirmando assim o modelo "Core-Annulus" para todas as nossas medidas;

s) O valor máximo do fluxo radial ascendente varia em função das condições geométricas e operacionais, podendo estar localizado inclusive na região anular, junto à parede do transportador;

t) A espessura da região anular/central é grandemente influenciada pela geometria do equipamento. Em nossas medidas a região anular ocupou sistematicamente da ordem de 15% do raio. Este percentual mostrou crescer com a queda da velocidade do gás e com o crescimento da taxa de recirculação. A espessura anular também mostrou ser influenciada pela geometria e efeitos de entrada; u) O fluxo parcial descendente apresenta sempre um perfil parabólico "padrão" do tipo: é invariavelmente zero no centro do tubor, mantêm-se zero até bem próximo da região anular e cresce à medida em que se aproxima da parede, dando a impressão de ocorrer um máximo junto à parede;

v) O perfil ascendente mostrou ser praticamente constante na região anular e crescer na direção do centro do tubo somente na região de fluxo plenamente desenvolvido;

VIII.2 - O FUTURO DO LFC

Ao darmos nossa modesta contribuição à área, gostaríamos de lembrar que as possibilidades de aplicações da tecnologia de Leito Fluidizado Circulante crescem a cada dia, conforme já discutimos na introdução.

Para tanto muitas questões deverão ser melhor pesquisadas a fim de se estabelecer um quadro geral completo sobre a hidrodinâmica do LFC. Dentre os assuntos a de importância para futuras pesquisas citaríamos;

a) Maiores informações sobre as questões do balanço de pressões no equipamento como um todo;

b) Melhores e mais abrangentes modelos para descrever os perfis axiais e principalmente os radiais de concentração de sólidos;

c) Estudar a interligação entre as distribuições de velocidades dos sólidos e dos gases no Riser;

d) Estudar as interligações dos balanços de massa e momento em todo o circuito do equipamento do LFC;

e) Formulação teórica para prever o comportamento dos "clusters", realizando medidas de seu tamanho, forma, movimento, densidade e porosidade;

f) Pesquisar o comportamento dos "clusters" nas fronteiras do "Core-Annulus" e sua modelagem;

g) Desenvolvimento de modelos matemáticos que contemplem o circuito completo do LFC;

h) Estudos mais avançados na área de transferência de calor;

i) Ampliação dos estudos em escalas industriais e unidades à quente, verificando o comportamento de sistemas com partículas maiores e mais pesadas;

j) Estudar os regimes de transição em grandes sistemas;

l) Estudar critérios de scale up mais seguros e consistentes;

m) Estudar as características especiais de aplicação desta tecnologia em seguimentos já identificados como promissores como: combustão, pirólise, calcinação e ustulação de minérios, e reatores catalíticos;

VIII.3 - SUGESTÕES

Concluindo, gostaria de sugerir que este trabalho fosse continuado no Brasil, tendo em vista existir tão poucos pesquisadores trabalhando nesta área.

De imediato, seria interessante melhorar nosso equipamento nos seguintes aspectos: altura do Riser, melhorias na instrumentação das medidas de pressão (incluindo um sistema automático de purga e medidas nas tomadas de pressão para evitar entupimentos e medidas mascaradas), vazões e fluxos. Quando as medidas da estrutura do leito, seria conveniente buscar acoplar um equipamento mais sofisticado, que não apresentasse interferência no fluxo, tais como tomógrafo, raios gama, fotografias de alta velocidade e similares.

Qaunto aos materiais, seria interessante buscar ampliar a faixa de granulometria nas medidas e iniciar estudos para medidas com partículas dos Grupos C e D, incluindo-se também outros minérios de aplicação industrial potencial.

BIBLIOGRAFIA

- [01] CEEE, Anais do Seminário Brasil-Europa, Porto Alegre, novembro 1991.
- [02] KUNII, D. and LEVENSPIEL, O., Fluidization Engineering, John Willey and Sons, New York, 1969.
- [03] YERUSHALMI, J. and AVIDAN, A, <u>High-Velocity Fluidization</u>, Fluidization, Academic Press, Second Edition, Cap. 7, 225-291, 1985.
- [04] SHINGLES, T. and McDONALD, A. F., Commercial Experience with Synthol <u>CFB Reactors</u>, Circulating Fluidized Bed Technology II, Pergamon Press, 43-50, 1988.
- [05] BROEDERMANN, P., Calcining of Fine-Grained Materials in the Circulating Fluid Bed., Lurgi Express Information - C1384 / 3.81, 1-29, 1981.
- [06] KULLENDORFF, A. and ANDERSON, S., <u>A General Review of</u> <u>Combustion in Circulating Fluidized Beds</u>, *Circulating Fluidized Bed Technolog II, Pergamon Press*, pp. 83-96, 1988.
- [07] DRY, R. J. and LA NAUZE, R. D., Combustion in Fluidized Beds, Chem. Eng. Progress, 31-47, 1990.
- [08] REH, L., <u>The Circulating Fluid Bed Reactor- its Main Features and Applications</u>, Chem. Eng. Process., 20,. 117-127, 1986.
- [09] ENGSTROM, F. and LEE, Y. Y., Future Challenges of Circulating Fluidized Bed Combustion Technology, Circulating Fluidized Bed Technology III, Pergamon Press, 15-26, 1990.
- [10] LECKNER, B., <u>Heat Transfer in Circulating Fluidized Bed Boilers</u>, *Circulatin Fluidized Bed Technology III*, Pergamon Press, 27-37, 1990.
- [11] YERUSHALMI, J.; TURNER, D. H. and SQUIRES, A. M., <u>The Fast Fluidized</u> Bed, Ind. Eng. Chem., Process. Des. Dev., 15 (1), 47-53, 1976.
- [12] REH, L., <u>The Lurgi-VAW Circulating Fluid Bed Process for Calcining Aluminium</u> <u>Trihydrate</u>, *Lurgi Express Information* - C. 1143/1.76, Frankfurt, 1975.
- [13] GRACE, J. R., <u>High-Velocity Fluidized Bed Reactors</u>; Chem. Eng. Science, Vol. 45, N. 8, 1953-1966, 1990.

 [14] CONTRACTOR, R. M. and CHAOUKI, J., <u>Circulating Fluidized Bed as a</u> <u>Catalytuic Reactor</u>, *Circulating Fluidized Bed Technology III*, Pergamon Press, 39-48, 1990. [15] HORIO, M.; ISHII, H. and NISHIMURO, M., On the Nature of Turbulent and Fast Fluidized Beds, Powder Technology, 70, 229-236, 1992.

...

[16] YERUSHALMI, J., An Overview of Commercial Circulating Fluidized Bed Boilers, 1st. International Conference on Circulating Fluidized Beds, Halifax, Nova Scotia, Canada, Pergamon Press, 1-10, 1985.

- [17] YERUSHALMI, J., Circulating Fluidized Bed Boilers, Fuel Processing Technology, 5, pp. 25-63, 1981.
- [18] GELDART, D., Characterization of Fluidized Powders, Gas Fluidization, Jonh Willey and Sons, Cap. 3, 33-51, 1986.
- [19] GELDART, D., Characterization of Fluidized Powders, Gas Fluidization, Jonh Willey and Sons, Cap. 4, 53-95, 1986.

[20] LYNGFELT, A. and LECKNER, B., <u>Residence Time Distribution of Sorbent</u> <u>Particles in a Circulanting Fluidised Bed Boiler</u>, *Powder Technology*, 70, 285-292, 1992.

[21] WU, R. L.; GRACE, J. R.; LIM, C.J. and BRERETON, C. M. H., <u>Suspension-to-Surface Heat Transfer in a Circulating Fluidized Bed Combustor</u>, AIChE J., 35 (10), 1685-1691, 1985.

- [22] RHODES, M. J.; WANG, X. S.; CHENG, H.; HIRAMA, T. and GIBBS, B. M., <u>Similar Profiles of Solids Flux in Circulating Fluidized-bed Risers</u>; Chem. Eng. Sci. 47, 1635-1643, 1992.
- [23] GELDART, D. and RHODES, M. J., Survey of Current Word-wide Research in Gas Fluidization (January 1989- December 1991), Powder Technology 71, 1-14, 1992.

[24] HORIO, M, Hydrodynamics of Circulating Fluidization - Present Status and <u>Research Needs</u>, Circulating Fluidized Bed Technology III, Pergamon Press, 3-14, 1990.

[25] GELDART, D., <u>The effect of Particle Size and Size Distribuition on Behaviour of</u> <u>Gas-Fluidized Beds</u>, Powder Technology, 6, 201-205, 1972.

[26] GELDART, D., Types of Gas Fluidization, Powder Technology, 7, 285-292, 1973.

 [27] GRACE, J. R., Contacting Modes and Behaviour Classification of Gas-Solid and Other Two-Phase Suspensions, The Canadian J. of Chem. Eng., Vol. 64, 353-363, 1986.

[28] PERALES, J.F.; COLL, T.; LLOP, M. F.; PUIGJANER, L.; ARNALDOS, J. and CASAL, J., On the Transition from Bubbling to Fast-Fluidization Regimes, Circulating Fluidized Bed Technology III, Pergamon Press, 73-78, 1990.

- [29] ZENZ, F.A; <u>Two-Phase Fluid-Solid Flow</u>, *Ind. and Eng. Chemistry*, n⁰ 12, Vol 41, 2801-2806, 1949.
- [30] ZENZ, F.A; <u>Regimes of Fluidized Behavior</u>, *Edited by Davidson & Harrison*, Academic Press, New York, 1-23, 1971.
- [31] SANTANA, C.C.; <u>Fenômenos de Transporte no Contato Gás-Sólido: Leitos</u> <u>Móveis em Fase Diluída</u>, Tópicos Especiais de Sistemas Particulados, Editado por J.T. Freire e J.C. Gubulin, Vol. 2, 289-346, 1986.
- [32] REH, L., Fluidized Bed Processing, Chem. Eng. Progress, 67(2), pp. 58-63, 1971.
- [33] YERUSHALMI, J. and CANKURT, N. T., Further Studies of the Regimes of Fluidization, Powder Technology, 24, 187-205, 1979.
- [34] YERUSHALMI, J. and CANKURT, N. T., <u>High-Velocity Fluid Beds</u>, Chemtech September, 564-572, 1978.
- [35] YERUSHALMI, J.; CANKURT, N. T.; GELDART, D. and LISS, B., Flow <u>Regimes in Vertical Gas-Solid Contact Systems</u>, AIChE Symposium Series, 176 (74), 1-13, 1978.
- [36] LI Y. and KWAUK, M., The Dynamics of Fast Fluidization, Ed. J.R. Grace and J.M. Matsen, Plenum, New York, 537-544, 1980.
- [37] KWAUK, M.; WANG, N.; LI YOUCHOU; CHEN, B. and SHEN, Z., Circulating Fluidized Bed Technology, Pergamon Press, 33-62, 1985
- [38] SQUIRES, A. M.; KWAUK, M. and AVIDAN, A., Fluid Beds: At Last, Challenging Two Entrenched Practices, Science Reprint Series, 20, 1329-1337, 1985.

[39] TAKEUCHI, H.; HIRAMA, T.; CHIBA, T.; BISWAS, J. and LEUNG, L. S., <u>A Quantitative Definition and Flow Regime Diagram for Fast Fluidization</u>, *Powder Technology*, 47, 195-199, 1986.

[40] RHODES, M. J.; LAUSSMANN, P.; VILLAIN, F. and GELDART, D., Mensurement of Radial and Axial Solid Flux Variations in the Riser of Circulanting Fluidized Bed, Circulating Fluidized Bed Technology II, Pergamon Press, 155-164, 1988.

[41] RHODES, M. J. and GELDART, D., <u>The Hydrodynamics of Re-circulating</u> <u>Fluidized Beds</u>; *Circulating Fluidized Bed Technology I*, Pergamon Press, 193-200, 1985.

[42] MATSEN, J. M., <u>Mechanisms of Choking and Entrainment</u>, *Powder Technology*, 32, 21-33, 1982.

[43] MATSEN, J. M., <u>The Rise and Fall of Recurrent Particles: Hydrodynamics of</u> <u>Circulation</u>, <u>Circulating Fluidized Bed Technology II</u>, Pergamon Press, pp. 3-11,1988.

[44] KARRI, S. B. R. and KNOWLTON, T. M., <u>A Practical Definition of Fast</u> <u>Fluidization Regime</u>, *Circulating Fluidized Bed Technology III*, Pergamon Press, 67-72, 1990.

[45] HIRAMA, T.; TAKEUCHI, H. and CHIBA, T., Regime Classification of Macroscopic Gas-Solid Flow in a Circulating Fludized Bed Riser; Powder Technology 70, 215-222, 1992.

 [46] CHONG, Y. O. and LEUNG, L. S., Comparisen of Choking Velocity Correlations in Vertical Pneumatic Conveying, Powder Technology, 47, 43-50, 1986.

- [47] YERUSHALMI, J., High Velocity Fluidized Beds, Gas Fluidization Technology, John Wiley & Sons, Edited by D. Geldart, Cap. 7, 155-196, 1986.
- [48] RICHARDSON, J.F. and ZAKI, W. N.; <u>Sedimentation and Fluidization: Part I</u>, *Trans. Inst. Chem. Eng.*, 32, 34-53, 1954.
- [49] MATSEN, J. M., Powder Technology, 7, 93, 1973.
- [50] LEUNG, L. S.; WILWS, R. J. and NICKLIN, D. J., Ind. Eng. Chem. Process Des. Develop., 10, 183, 1971
- [51] YOUSFI, Y. and GAU, G., <u>Aerodynamique de L'Ecoulement Vertical de</u> <u>Suspensions Concentrees Gaz-Solides - I: Regimes D'Ecoulment et Satabilite</u> Aerodynamique, *Chem. Eng. Sci.*, 29, pp. 1939-1946, 1974.

[52] YOUSFI, Y. and GAU, G., <u>Aerodynamique de L'Ecoulement Vertical de</u> <u>Suspensions Concentrees Gaz-Solides - II: Chute de Pression et Vitesse Relative</u> <u>Gaz-Solide</u>, Chem. Eng. Sci., 29, pp. 1947-1953, 1974.

- [53] YANG, W. C., AIChE J., 21, 1013, 1975.
- [54] YANG ,W. C., Criteria for Choking in Vertical Pneumatic Conveying Lines, Powder Technology, 35, 143-150, 1983.

[55] PUNWANI, D. V., MODI, M. V. and TARMAN, P. B.; Proc. Int. Powder and Bulk Solids Handling and Processing Conference, Powder Advisory Center, Chicago, p.p. 01, 1976.

[56] YANG, W. C., AIChE J., 24 (3), 548-552, 1978.

[57] SHINGLES, T. K., Chemical Engineering, Vol 91 (5), 63-64, 1984.
- [58] ARASTOOPOUR, H. and GIDASPOW, D., Powder Techenology, vol 22, 77-87, 1979.
- [59] TSUO, Y. P. and GIDASPOW, D., Computation of Flow Patterns in Ciculating Fluidized Beds, A. I.Ch. E. Journal, 36 (6), pp. 885-96, 1990.
- [60] GIDASPOW, D., Viscous Flow and Circulating Fluidized Beds, Multiphase Flow and Fluidization Cap. 8, Academic Press Inc., 197-238, 1994.
- [61] GIDASPOW, D.; YSUO, Y.P. and DING, J., <u>Hydrodynamics of Circulating and Bubling Fluidized Beds</u>, Department of Chemical Engineering Illinois Institute of Techenology, notes IL 60616 Chicago.
- [62] WEINSTEIN, H. and others, Proc. 4th International Conference of Fluidization, Japan, 1983.

[63] HARTGE, E. -U., LI, Y. and WERTHER, J., <u>Analysis of the Structure of the Two-Phase Flow in a Fast Fluidized Bed</u>, *I International Conference of CFB*, Halifax, Nova Scotia, Pergamon Press, 153-160, 1985.

[64] SCHNITZLEIN, M. G. and WEINSTEIN, H., Design Parameters Determining Solid Hold-up in Fast Fluidized Bed System, Circulating Fluidized Bed Technology II, Pergamon Press, 205-211, 1988.

[65] BAI, D. -R.; YU, Z.Q.; and ZHU, J. -X., <u>The Axial Distribution of the Cross-sectionally Averaged Voidage in Fast Fluidized Bed</u>, *Power Technology* 71, 51-58, 1992.

[66] PATIENCE, G. S.; CHAOUKI, J.; BERRUTI, F. and WONG, R., Scaling Considerations for Circulating Fluidized Bed Risers, Powder Technology, 72, pp. 31-37, 1992.

[67] GLICKSMAN, L. R.; WESTPHALEN, D.; BRERETON, C. and GRACE, J., Verification of the Scaling Laws for Circulating Fluidized Beds, Circulating Fluidized Bed Technology III, Pergamon Press, 119-124, 1990.

[68] FUJIMA, Y.; TAGASHIRA, K.; TAKAHASHI, Y.; OHME, S.; ICHIMURA, S. and ARAKAWA, Y., Conceptual Study on fast Fluidization Formation, Circulating Fluidized Bed Technology III, Pergamon Press, 85-90, 1990.

[69] HORIO, M.; MORISHITA, K.; TACHIBANA, O. and MURATA, N., Solid Distribution and Movement in Circulating Fluidized Beds, Circulating Fluidized Bed Technology II, Pergamon Press, 147-154, 1988.

[70] MARZOCCHELLA, A.; AARENA, U.; CAMMAROTA, A. and MASSIMILLA, L., Break-up of Cylindrical Clusters of solid Particles under Gravity flow in a Two-Dimensional Columm, Powder Technology, 65, 453-460, 1991.

- [71] CAPES, C. E., Particle Agglomeration and the Value of the Exponent n in the Richardson-Zaki Equation, Powder Technology, 10, 303, 1974.
- [72] SCOTT, K. J., <u>The Thickening of Calcioum Carbonate Slurries</u>, Ind. Eng. Chem. Fundamentals, 1, 484, 1968
- [73] YANG, W. C., Mechanistic Models for Trasitions between Regimes of Fluidization, AIChE Journal, vol. 30, 6, 1025-1027, 1984.

[74] NAKAMURA, K. and CAPES, C. E., <u>Vertical Penumatic Conveying: A</u> <u>Theorical Study of Uniform and Annular Particle Flow Models</u>, *Canadian J. Chem.* Eng., Vol 51, 39-46, 1973.

- [75] LI, Y.; CHEN, B.; WANG, F.; WANG, Y. and GUO, M., <u>Rapid Fluidization</u>, International Chem. Eng., 21 (4), 670-678, October 1981.
- [76] LI, Y.; CHEN, B.; WANG, F. and WANG, Y., Hydrodynamic Correlations for Fast Fluidization, Fluidization, Science and Techenology China, 124-134, 1982.

[77] LI, J., TUNG, Y. and KWAUK, M., <u>Axial Voidage Profiles of Fast Fluidized</u> <u>Beds in Differente Operating Regions</u>, *Circulatin Fluidized Bed Technology II*, Pergamon Press, 193-203, 1988.

[78] YANG, W. C., <u>A Model for the Dynamics of a Circulating Fluidized Bed Loop</u>, *Circulating Fluidized Bed Technology II*, Pergamon Press, 181-191, 1988.

[79] WEINSTEIN, H.; GRAFF, R. A.; MELLER, M. and SHAO M.J., Fluidization, Engineering Foundation, by D. Kunii and R. Toli (Eds.), Annual AIChE Meeting, Los Angeles, Califórnia, 1983.

- [80] RHODES, M. J., Modelling the Flow Structure of Upward-Flowing Gas-Solids Suspensions, Powder Technology, 60, 27-38, 1990.
- [81] RHODES, M. J. and GELDART, D., <u>A Model for the Circulating Fluidized Bed</u>, Powder Technology, 53, 155-62, 1987.
- [82] BADER, R.; FINDLAY, J. and KNOWLTON, T.M., Gas/Solids Flow Patterns in a 30.5 cm Diameter Circulating Fluidized Bed, Circulating Fluidized Bed Technology II, Pergamon Press, 123-137, 1988.
- [83] MOROOKA, S. K.; KAWAZUISHI, K. and KATO, Y. Powder Technology, 26, 75, 1980.
- [84] RHODES, M. J., Ph.D. Thesis, University of Bradford, U.K., 1986.
- [85] GIDASPOW, D., <u>Hydrodynamics of Fluidization and Heat Transfer</u>: <u>Supercomputer Modeling</u>, *Applied Mechanic Review*, 39, n. 1, 1-23, 1986.
- [86] ERGUN, S., Chemical Engineering Progress, Vol 48, 89, 1952.

[87] ZHANG, H.; XIE, Y.; CHEN, Y. and HASATANI, M., <u>Mathematical Modelling</u> for Longitudinal Voidage Distribuition of Fast Fluidizesd Beds, Circulating Fluidized Bed Technology III, Pergamon Press, 151-156, 1988.

[88] KUNII, D. and LEVENSPIEL, O., Entrainment of Solids from Fluidized Beds: I-Hold-up of Solids in the Freeboard; II- Operation of Fast Fluidized Beds, Powder Technology, 61, 193-206, 1990.

[89] KUNII, D. and LEVENSPIEL, O., Flow Modeling of Fast Fluidized Beds, Circulating Fluidized Bed Technology III, Pergamon Press, 91-98, 1990.

[90] LEWIS, W. K.; GILLILAND, E. R. and LANG, P.M., <u>Entrainment from</u> <u>Fluidized Beds</u>, Chemical Engineering Progress Symposium Series, Vol. 58, n⁰. 38, 65-76, 1962.

[91] YANG, W. C., J. Powder & Bulk Solids Technology, Vol 1, 89-95, 1977.

- [92] LOUGE, M. and CHANG, H., Pressure and Voidage Gradients in Vertical Gas-Solid Risers, Powder Technology 60, 197-201, 1990.
- [93] BIERL, T.; GAJDOS, I. J.; Mc IVER, A. E. and Mc GOVERN, J. J., D.O.E. Report n. EE 2449-11, 1980.

 [94] WEINSTEIN, H.; SHAO, M. and WASSERZUG, L., <u>Radial Solid Density</u> <u>Variation in a Fast Fluidized Bed</u>, *Aiche Symposium Series*, 80 (241), 117-121, 1985.

[95] WEINSTEIN, H.; SHAO, M. J. and SCHNITZLEIN, M., <u>Radial Variation in</u> <u>Solid Density in High Fluidization</u>, Circulating Fluidized Bed Technology I, Pergamon Press, 201-206, 1985.

[96] BERKER, A. and TULIG, T. J., Hydrodynamics of Gas-Solid Flow in a Catalytic Cracker Riser: Implications for Reactor Selectivity Performance, Chem. Eng. Sci., 41, 821-827, 1986.

- [97] DRY, R. J., <u>Radial Particle Size Segregation in a Fast Fluidised Bed</u>, *Powder Technology*, 52, 7-16, 1987.
- [98] RHODES, M. J.; ZHOU, S. and BENKREIRA, H., Flow of Diluite Gas- Particle Suspensions, A. I.Ch.E. Journal, 38 (12), 1913-1915, 1992.
- [99] HERB, B.; DOU, S.; TUZLA, K. and CHEN, J., Solid Mass Fluxes in Circulating Fluidized Beds, Powder Technology, 70, 197-205, 1992.

[100] HERB, B; TUZLA, K. and CHEN, J. C., Distribution of Solid Concentration in CFB, Fluidization VI, J. R. Grace, L. W. Shemilt and M.A. Bergounou, eds., Eng. Foundation, New York, 65, 1989. [101] MINEO, H., High Velocity Circulating Fluidized Beds, Ph. D. Thesis, University of Tokyo, 1989.

[102] HARTGE, E.U., RENSNER, D. and WERTHER, J.; Solids Concentration and Velocity Patterns in Circulating Fluidized beds; Circulating Fluidized Bed Technology II, Pergamon Press, 165-180, 1988.

[103] TUNG, Y.; ZHANG, Z.; WANG, X. LUI and QIN, Z., Eng. Chem. Met. (China), 10(2), 17, 1989

[104] BERRUTI, F. and KALOGERAKIS, N., Modelling the internal Flow Structure of Circulating Fluidized Beds, The Canadian J. Chem. Eng 67, 1010-1014, 1989.

[105] PACHECO, R. G., <u>Um Estudo sobre a Fluidodinâmica do LFC</u>, *Tese de Mestrado*, PROMEC, UFRGS, 1992.

[106] AZZI, M.; TURLIER, P.; LARGE, J. F. and BERNARD, J. R., Use a Momentum Probe and Gammadensitometry to study Local Propprieties of Fast Fluidized Beds, Circulating Fluidized Bed Technology III, Pergamon Press, 189-194, 1990.

[107] RHODES, M. J. and LAUSSMANN, <u>Characterising non-uniformities in Gas-Particle Flow in the Riser of a Circulating Fluidized Bed</u>, *Powder Technology*, 72, 277-284, 1992

[108] THOBER, C. W. A.; PACHECO, R. G. e SANTANA, C. C., Medida da Variação Radial do Fluxo de Sólidos em Leito Fluidizado Circulante, Anais do 9² Congresso Brasileiro de Engenharia Química, Vol. 1, 400-407, 1992

[109] ZETHRAEUS, B. and LJUNGDAHL, B., <u>A Model for Particle Residence Time</u> Distributions in different Regions in a Circulating Fuid Bed, Antagen till Europeiska konferense om fluidisering, Gran Canaria 16-19 Feb., 1-9, 1994.

[110] MARTIN, M. P.; DEROUIN, C.; TURLIER, P.; FORISSIER, M.; WILD, G. and BERNARD, J. R., <u>Catalytic Cracking in Riser Reactors: Core-Annulus</u> and Elbow Effects, Chem. Eng. Sci., Vol. 47, 9-11, 2319-2324, 1992.

ANEXO 1

PLANILHA MODELO, EXEMPLIFICATIVA, DA METODOLOGIA DE CÁLCULO DA TAXA DE RECIRCULAÇÃO DE SÓLIDOS, USANDO MÉTODO POLINOMIAL COM O AUXÍLIO DO SOFTWARE MATHCAD 4.0 DA MATHSOFT

INTEGRAÇÃO DOS PERFIS RADIAIS NAS SEÇÕES MÉTODO DOS MÍNIMOS QUADRADOS (ALTERADA PARA A IMPORTAÇÃO DE DADOS DA PLANILHA EXCEL)

operaçao: Ar2u8650		DATA: 30/08/93
GS- 50 KG/M2.S	U= 8,0 M/S	SÓLIDO: AREIA 80-100 (TIPO 2)
		L = 07

DEFINIÇÃO DO NÚMERO DE PONTOS EXPERIMENTAIS DE $G_S \ge R_I$:

ÁREA DE IMPORTAÇÃO DE DADOS DA PLHANILHA EXCEL - VETOR AUXILIAR Y

MEDIDAS DOS GS AO LONGO DO RISER (PROBE A, B, C) E RESPECTIVAS CURVAS EXPERIMENTAIS:

CÁLCULO DAS CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

definição do termos do determinate do vetor m:

$$A0 := 8$$

$$A1 := \overline{\Sigma(R)}$$

$$A2 := \overline{\Sigma(R^2)}$$

$$A3 := \overline{\Sigma(R^3)}$$

$$B0 := \overline{\Sigma}FA$$

$$B1 := \overline{\Sigma(R^+FA)}$$

$$A4 := \overline{\Sigma(R^+)}$$

$$B2 := \overline{\Sigma(R^-FA)}$$

$$B3 := \overline{\Sigma(R^-FA)}$$

DEFINIÇÃO E CÁLCULO DOS COEFICIENTES E GRÁFICOS PARCIAIS

DEFINIÇÃO DO INTERVALO GRÁFICO PARA O RAIO:

R := 0,0.001..0.051

PROBE A

$$M := \begin{bmatrix} A0 & A1 & A2 & A3 \\ A1 & A2 & A3 & A4 \\ A2 & A3 & A4 & A5 \\ A3 & A4 & A5 & A6 \end{bmatrix} N := \begin{bmatrix} B0 \\ B1 \\ B2 \\ B3 \end{bmatrix} PA := M^{-1} \cdot N$$

$$PA_0 = 64.258$$

$$PA_1 = -3.266 \cdot 10^3$$

$$PA_2 = 2.796 \cdot 10^5$$

$$PA_3 = -5.02 \cdot 10^6$$

$$PA_4 = -5.02 \cdot 10^6$$

PROBE B

$$D0 := \sum FB$$

$$D1 := \sum (R \cdot FB)$$

$$A2 := \sum (R^{2})$$

$$D2 := \sum (R^{2} \cdot FB)$$

$$A3 := \sum (R^{3})$$

$$D3 := \sum (R^{3} \cdot FB)$$

$$N := \begin{bmatrix} D0 \\ D1 \\ D2 \\ D3 \end{bmatrix}$$

$$PB := M^{-1} \cdot N$$

$$PB_{0} = 64.258$$

$$PB_{1} = -3.266 \cdot 10^{3}$$

$$PB_{2} = 2.796 \cdot 10^{5}$$

$$PB_{2} = 2.796 \cdot 10^{5}$$

$$PB_{3} = -5.02 \cdot 10^{6}$$

$$FB(R) := PB_{0} + PB_{1} \cdot R + PB_{2} \cdot R^{2} + PB_{3} \cdot R^{3}$$

$$PB_{3} = -5.02 \cdot 10^{6}$$

$$IFB := \int_{0}^{0.051} FB(R) \cdot 2 \cdot \pi \cdot R DR$$

$$IFB = 0.413$$

$$\frac{PB(R)}{\pi \cdot 0.051^{2}}$$

$$FB(R) = 2 \cdot \pi \cdot R DR$$

$$\frac{PB(R)}{\pi \cdot 0.051^{2}}$$

$$FB(R) = 2 \cdot \pi \cdot R DR$$

$$\frac{PB(R)}{\pi \cdot 0.051^{2}}$$

$$FB(R) = 50.512$$

GRÁFICO PADRÃO DOS PERFIS RADIAIS - PROBE A, B, C

