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RESUMO 

Ácidos húmicos (AH) são macromoléculas orgânicas de alta complexidade estrutural. Na 

agricultura, seus efeitos diretos na produtividade e na qualidade de diversos cultivos têm sido 

explorados desde 1940 e na última década houve um grande crescimento no seu emprego na 

medicina e na biologia. Embora suas inúmeras aplicações tenham atraído a atenção de muitos 

pesquisadores, os AH comerciais são ainda extraídos da turfa e do carvão mineral, fontes não 

renováveis de carbono, indicando a necessidade do desenvolvimento de um processo 

biotecnológico para sua produção. Empty-fruit-bunches (EFB) são resíduos do processamento do 

óleo de palma subutilizados ou descartados. Além disso, EFB são fibras constituídas de celulose, 

hemicelulose e lignina, cuja degradação pode ser alcançada por meio da ação de micro-organismos 

com alta capacidade de degradação de material lignocelulósico, como o Trichoderma.  Neste 

contexto, este trabalho visou produção de AH a partir da fermentação de EFB com cepas de 

Trichoderma. Os resultados obtidos demonstraram que aveia é um substrato adequado para 

produção de esporos de Trichoderma em profundidade para sua aplicação como inóculo das 

fermentações submersas (FS) de EFB para produção de AH. A investigação dos precursores dos 

AH dentre os polímeros constituintes do EFB indicaram um efeito sinergético destes polímeros. 

Quanto à substituição do extrato de leveduras por peptonas vegetais nos meios de cultivo, para 

ambas fontes de nitrogênio os resultados encontrados para produção de biomassa e de AH foram 

muito similares. Através da otimização da produção dos AH por FS utilizando ferramentas de 

planejamento experimental foram obtidos 428,4±17,5 mg/L destes ácidos, permitindo um aumento 

de 7 vezes em relação às condições inicialmente utilizadas neste trabalho. A comparação da 

performance de espécies de Trichoderma na produção de AH por FS indicou a superioridade do T. 

reesei na produção destes ácidos. Por fim, a caracterização do processo de produção dos AH por 

fermentação em estado sólido (FES) utilizando colunas de Raimbault, onde foram obtidos 88,1 

±2,9 mg/L destes ácidos, confirmou a relação entre a esporulação do fungo e a produção dos AH, 

assim como a hipótese do efeito sinérgico dos polímeros. Os resultados obtidos demonstraram a 

factibilidade da produção dos AH por processos fermentativos, cuja descrição na literatura ainda é 

muito limitada, o que confere a este trabalho um caráter inovador. 

Palavras chave: ácidos húmicos; empty-fruit-bunch (EFB); Trichoderma; fermentação submersa; 

fermentação em estado sólido. 
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ABSTRACT 

Humic acids (HA) are organic macromolecules of high structural complexity. In agriculture, their 

direct effects on yield and quality of many crops have been exploited since 1940 and the last decade 

there was a large increase in their use in medicine and biology. Although they have attracted the 

attention of many researchers due to their numerous applications, commercials AH are still 

extracted from peat and coal, non-renewable carbon sources, indicating the necessity to develop a 

biotechnological process for their production. Empty-fruit-bunches (EFB) are waste of oil palm 

processing, which are underutilized or discarded, and their accumulation brings environmental 

problems due to the attraction and proliferation of pests. In addition, EFB fibers are composed of 

cellulose, hemicellulose and lignin, whose degradation can be achieved by the action of 

microorganisms with high capacity of lignocellulosic material degradation, such as Trichoderma. 

In this context, this work aimed to produce HA from the fermentation of EFB with Trichoderma 

species. The results showed that oats is a suitable substrate for the production of Trichoderma 

spores to be used as inoculum for application in submerged fermentations (SF) of EFB for the HA 

production. The investigation of the HA precursor among the constituents polymers from the EFB 

indicate a synergistic effect of these polymers. Regarding the replacement of yeast extract by 

vegetable peptones in the culture medium, for both nitrogen sources the results in the production 

of biomass and HA were very similar. Through the optimization of the HA production by SF using 

experimental design, were obtained 428.4 ± 17.5 mg/L of these acids, allowing an increase of 7-

fold compared to initial conditions used in this work.. A comparison of the performance of 

Trichoderma species in the HA production by FS indicated the superiority of the T. reesei in the 

production of these acids. Finally, characterization of HA production process by solid state 

fermentation (SSF) using Raimbault columns, where were obtained 88.1 ±2.9 mg/L of these acids, 

confirmed the relationship between the fungal sporulation and the HA production as well as the 

hypothesis of synergistic effect of the polymers. The results demonstrated the feasibility of the HA 

production by fermentation process, whose description in the literature is still very limited, which 

confers an innovative character to this work. 

Key words: humic acids; empty-fruit-bunch (EFB); Trichoderma; submerged fermentation; solid 

state fermentation. 
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1. INTRODUÇÃO 

Substâncias húmicas (SH) são produtos da degradação oxidativa e subsequente 

polimerização da matéria orgânica animal e vegetal. Devido às inúmeras aplicações das substâncias 

húmicas na agricultura, na indústria, no meio-ambiente e na medicina (Peña-Mendez et al., 2005), 

seu impacto na qualidade de vida humana tem sido cada vez mais reconhecido como um importante 

assunto para pesquisas (Klocking e Helbig, 2005). Elas são constituídas por uma mistura de 

compostos de elevada massa molar com uma grande variedade de grupos funcionais (Rauen et al., 

2002) e operacionalmente classificadas com base em sua solubilidade (Kipton, 1992). Huminas 

são a fração insolúvel em meio aquoso (Rauen et al., 2002), ácidos fúlvicos (AF) são 

completamente solúveis em soluções aquosas e os ácidos húmicos (AH) são solúveis apenas em 

soluções básicas e que se precipitam em soluções ácidas. No entanto, esta divisão operacional entre 

AF e AH não é precisa, havendo um espectro de solubilidade resultante das diferenças de tamanho 

e peso molecular, além das distribuições de grupos funcionais destes ácidos (Kipton, 1992).  

Os AH, um dos mais importantes componentes das SH, possuem propriedades notáveis 

que justificam suas aplicações em várias áreas. Na agricultura, onde suas aplicações são as mais 

estudadas, os AH ajudam a descompactar solos, auxiliam na transferência de micronutrientes do 

solo para as plantas, aumentam a retenção da água e as taxas de germinação das sementes, além de 

estimular o desenvolvimento da população de microflora nos solos e desacelerar evaporação de 

água destes (Peña-Mendez et al., 2005). Nos últimos dez anos, os efeitos terapêuticos e profiláticos 

dos AH e AF foram identificados e o seu potencial uso em medicina vem sendo explorado com 

relação ao aumento da imunidade humana, atividades antiviral, antiinflamatória e estrogênica, 

como anticoagulante, na neutralização e eliminação de toxinas, na prevenção de problemas 

estomacais e intestinais, entre outros (Klocking e Helbig, 2005).  

A potencialidade da produção de AH por fermentação em estado sólido (FES) foi estudada 

no trabalho de Umi Kalsom et al. (2006), utilizando EFB (empty-fruit-bunches), um resíduo da 

produção de óleo de palma, e fungos da espécie Trichoderma viride, isolados do próprio EFB. No 

entanto, o objetivo principal do trabalho de Umi Kalsom et al. (2006) foi somente caracterizar os 

AH produzidos. Nossa proposta de trabalho visa o desenvolvimento do processo biotecnológico a 

partir de resíduo agroindustrial para produção de AH, englobando o delineamento e estudo das 

variáveis importantes ao processo e sua otimização. 
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De acordo com Umi Kalsom et al. (2006), os EFB correspondem a mais de 20% do peso 

da fruta fresca e a abundância deste resíduo tem criado uma importante questão ambiental, devido 

à atração e proliferação de pragas (Law, 2007). Por isso, há uma necessidade crescente de pesquisas 

voltadas para aplicação dos EFB, sobretudo diante do incentivo ao aumento da produção do óleo 

de palma que vem ocorrendo recentemente no Brasil (AmbienteBrasil, 2010). 

Com relação a processos fermentativos em geral utilizando Trichoderma, observa-se que 

há um grande número de trabalhos na literatura em que se emprega este fungo em fermentações 

submersas e em estado sólido, o que demonstra a sua atividade em ambos os processos. A utilização 

do gênero Trichoderma como agente degradante de lignoceluloses tem sido reconhecida desde o 

início de 1960 (Selby e Maitland, 1967). Dentre os trabalhos encontrados com a espécie 

Trichoderma viride, Ui-Haq et al. (2009) estudaram a biossíntese de endoglucanases e Zhou et al. 

(2008) produziram celulases, ambos utilizando FS. A otimização do cultivo de Trichoderma viride 

foi objeto de estudo do trabalho Al-Taweil et al. (2009) também por meio da FS. Estudos com FES 

foram realizados por Tan et al. (2008) utilizando resíduos de ervas com Trichoderma koningii para 

produção de proteínas e por Singhania et al. (2006) com resíduos lignocelulósicos e Trichoderma 

reesei para produção de celulases. 
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2. OBJETIVOS E METAS 

O objetivo deste trabalho foi a produção de AH por fermentação, utilizando como 

substrato resíduos do processamento de óleo de palma (Empty Fruit Bunch – EFB) e espécies de 

Trichoderma. 

O trabalho foi composto pelas seguintes metas: 

 Desenvolvimento de um processo simples e de baixo custo, utilizando aveia como 

substrato, para produção de esporos em profundidade, visando sua aplicação como 

inóculo para as fermentações submersas (FS) de EFB para produção de AH; 

 Investigação do(s) precursor(es) dos AH dentre os polímeros celulose, hemicelulose e 

lignina, através de FS independentes utilizando cepa de Trichoderma viride. 

Comparação dos resultados com a FS utilizando EFB como controle; 

 Estudo do efeito da substituição do extrato de leveduras por peptonas vegetais, 

preservando a concentração total de nitrogênio no meio de cultura; 

 Maximização da produção de AH através da otimização da composição inicial do meio 

de cultura e das condições de processo para FS, utilizando ferramentas de planejamento 

experimental; 

 Comparação da cepa de Trichoderma reesei e da cepa de Trichoderma viride visando 

à seleção daquela com maior capacidade de produção de AH; 

 Realização de FES com a cepa selecionada visando a caracterização do processo. 
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3. REVISÃO DE LITERATURA 

3.1. Humificação 

Humificação é o processo de deterioração envolvendo a transformação de biomoléculas, 

oriundas de organismos em decomposição, e atividade microbiológica onde substâncias húmicas 

são formadas e substâncias não húmicas são decompostas (Bernal et al., 1998; Schnitzer, 1978). 

Em relação à contribuição para o ciclo global do carbono, a humificação é o segundo mais 

importante processo depois da fotossíntese (Hedges e Oades, 1997).  

Embora atualmente o processo de formação de substâncias húmicas esteja sendo 

intensamente estudado, sua origem ainda não foi completamente elucidada. Algumas teorias 

permaneceram durante anos e, atualmente, supõe-se que substâncias húmicas sejam originadas a 

partir de lignina (Oglesby et al., 1967). É evidente que o mecanismo de formação de substâncias 

húmicas pode ser diferente, dependendo das circunstâncias geográficas, climáticas, físicas e 

biológicas (Burdon, 2001; Davies et al., 2001).  

3.2. Substâncias húmicas  

Maccarthy (2001) definiu amplamente substâncias húmicas (SH) como uma categoria de 

materiais encontrados naturalmente ou extraído de solos, sedimentos e águas naturais, resultante 

da decomposição de resíduos vegetais e animais. 

Com o auxílio da técnica de espectroscopia de ressonância magnética nuclear, as SH 

foram definidas como compostos bi ou tridimensionais, formados por estruturas aromáticas, com 

porções de cadeias alifáticas estáveis, unidas por pontes de hidrogênio, contendo grupos 

carboxílicos, carbonilas, fenílicos, alcoólicos, hidroquinonas, entre outras (Schulten e Schnitzer, 

1997). Apesar do importante papel das SH na sustentabilidade da vida, da sua natureza química e 

da sua reatividade, ainda há controvérsias no que diz respeito às suas estruturas moleculares 

(Hardie, 2008). Baseado na solubilidade, as SH podem ser divididas em três principais frações: 

AH, AF e huminas (Senesi e Loffredo, 2001). As huminas são insolúveis em água, os AF solúveis 

em qualquer faixa de pH e os AH solúveis em pH maior que 2 (Lain e Chen, 2001; Hur e 

Schlautman, 2004; Jones e Bryan, 1998). 

A composição média de uma unidade básica para os AH e AF, em termos de fórmula 

química média, é C187 H186 O89 N9 S2 e C135 H182 O95 N5 S2, respectivamente. A razão C/N dos AH 

e AF é superior em 50% à média observada na matéria orgânica do solo, indicando seu menor grau 
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de degradação e conferindo-lhe maior estabilidade no ambiente (quanto menor a razão C/N maior 

é a degradabilidade no solo) (Santos e Camargo, 1999 apud Schnitzer, 1978).  

A caracterização de misturas complexas de AF e AH constitui um dos mais importantes 

itens de pesquisas recentes relativas às substâncias húmicas. Graças ao desenvolvimento de 

técnicas analíticas e tecnologias computacionais, grandes esforços têm sido feitos para elucidar a 

estrutura molecular desses dois ácidos (Peña-Mendez et al., 2005). A Figura 1 (a,b) apresenta um 

modelo de estrutura molecular para os AH (Stevenson, 1982) e AF (Buffle et al., 1977).  

 

 

(a) (b) 

Figura 1. Modelo de estrutura dos AH de acordo com Stevenson (1982); R pode ser alquil, aril ou aralquil (a). 
Modelo de estrutura dos AF de acordo com Buffle et al. (1977) (b). 

3.2.1. Aplicações das substâncias húmicas 

Além de seu tradicional uso como combustíveis e fertilizantes orgânicos, as SH são base 

para preparações farmacêuticas, nutracêuticas e também são materiais de partida para a síntese de 

vários produtos (Klocking e Helbig, 2005). Recentemente, as aplicações dessas substâncias têm 

sido divididas em quatro categorias principais: agricultura, indústria, meio-ambiente e biomedicina 

(Peña-Mendez et al., 2005). 

 Agricultura 

A extensão da agricultura orgânica e da agricultura sustentável tem levado a um aumento 

das aplicações dos fertilizantes orgânicos. Estes fertilizantes orgânicos contêm uma quantidade 

significativa de matéria orgânica, com grande parte composta por SH (Deiana et al., 1990). As SH 

participam de importantes reações que ocorrem nos solos, influenciando a fertilidade pela liberação 

de nutrientes, pela detoxificação de elementos químicos, pela melhoria das condições físicas e 
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biológicas (Santos e Camargo, 1999) e pela produção de substâncias fisiologicamente ativas 

(Guminski, 1968). 

 Indústria 

Húmus e materiais que os contêm, têm sido usados na construção civil como aditivos para 

controlar a taxa de fixação de concreto. As SH também são usadas em indústrias de couro, madeira 

e cerâmica.  

 Meio-ambiente 

A principal função das SH no meio-ambiente químico é a remoção de metais tóxicos, 

produtos químicos orgânicos e outros poluentes da água. (Shin et al., 1999; Lofredo et al., 2000).  

 Biomedicina 

Na última década houve um crescente interesse no emprego de SH na medicina 

(veterinária e humana) e na biologia (Mund-Hoym, 1981; Brzozowski et al., 1994). A principal 

razão deste interesse está na sua atividade antiviral, pró-fibrinolítica, antiinflamatória e estrogênica 

(Yamada et al., 1998).  

Os AH administrados em ratos diminuíram a extensão de danos gástricos induzidos pelo 

etanol (Brzozowski et al., 1994). Pflug e Ziechman (1982) relataram que AH são capazes de 

interagir com a bactéria Micrococcus luteus, protegendo-a contra a ruptura da parede celular pela 

enzima lisozima. Thiel et al. (1981) observaram que a pré-incubação de culturas de células com 

humato de amônio evitou a infecção pelo vírus da herpes. O potencial das SH para formar 

complexos de quelato com metais pesados (como cádmio) possibilita o seu uso na eliminação de 

metais pesados em organismos vivos (Klocking, 1992). Demonstrou-se que em sistemas aquáticos 

e seus sedimentos, as SH estão estreitamente relacionados com a eficácia da hidroterapia e 

balneoterapia (Gadzhieva et al., 1991).  

As propriedades antibacterianas das SH representam novas possibilidades para sua 

aplicação médica (Peña-Mendez et al., 2005). Estudos realizados em hospitais mostraram que 

doenças respiratórias virais graves comuns em crianças são facilmente combatidas com AF na 

suplementação alimentar. As SH, principalmente os AF, atuam também na prevenção e tratamento 

de alguns tipos de câncer (Schneider et al., 1996; Van Rensburg et al., 2002).  

Na Tabela 1 estão resumidas as indicações mais frequentes da turfa (material de origem 

vegetal parcialmente decomposto e que contém SH), atualmente oferecidas por clínicas de saúde 

na Alemanha. 
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Tabela 1. Seleção de indicações de turfa em que substâncias húmicas estão provavelmente envolvidas (Klocking e 
Helbig, 2005). 

Doenças Indicações Maiores efeitos terapêuticos 

Doenças 
musculares e 
esqueléticas 

Artroses degenerativas, Gota, 
Espondilopatias e osteoporoses, 
Reumatismo muscular, Poliartrites, 
Reabilitação após operações e acidentes 

Hipertermia intensa melhora a 
circulação sanguínea e processo de 
regeneração 

Doenças 
ginecológicas 

Doenças de inflamação crônica, 
Desequilíbrio hormonal,  
Lombalgia, Adesões, Esterilidade, 
Queixas da menopausa 

Hipertermia intensa 
Efeito estrogênico e apoio à 
produção de estrógeno endógeno 
Profilaxia da trombose pela 
liberação do ativador tecidual do 
plasminogênio 

Doenças de 
pele  

Eczema crônico, Neurodermatites, 
Psoríase 

Ativação do metabolismo da pele e 
processo de regeneração, aumento 
da circulação sanguínea 

3.3. Ácidos Húmicos  

Dentre as três substâncias húmicas, os AH estão presentes em maior quantidade no meio 

ambiente. Estas macromoléculas orgânicas apresentam estrutura complexa constituída por 

carbono, hidrogênio, oxigênio, pequenas quantidades de nitrogênio e ocasionalmente fósforo e 

enxofre. Os conteúdos individuais dos diferentes elementos e as relações entre eles dependem da 

fonte de matéria orgânica, do grau de humidificação, da cadeia carbônica, do tipo de tratamento 

recebido e das condições ambientais (Terashima et al., 2004; Ramos-Tejada et al., 2003; Rauen et 

al., 2002). 

Apesar dos AH possuírem estrutura complexa com elevado teor de aromáticos e 

grupamentos carboxílicos, não apresentam toxicidade, sendo muito importante para a fertilidade 

dos solos, a sua principal fonte. Os AH comerciais são extraídos da turfa e do carvão mineral, duas 

fontes não renováveis de carbono (Trompowsky, 2006). A extração mais eficiente dos AH é feita 

com álcalis, porém há riscos de alterações estruturais. Agentes de extração mais brandos como 

pirofosfato de sódio, agentes complexantes, ácido fórmico, misturas ácidas e solventes orgânicos 

também têm sido utilizados (Rosa et al., 2000). 
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3.4. Empty-fruit-bunch (EFB) da palma 

O óleo de palma está em situação de destaque no mercado mundial em termos de consumo, 

ocupando atualmente o segundo lugar e com perspectivas de vir a ocupar o primeiro lugar já no 

início da próxima década. Assim como Malásia e Indonésia, que detêm 90% da produção mundial 

de palma, o Brasil tem as condições de clima e solo necessárias para o plantio desta oleaginosa, 

que se desenvolve bem em países de clima tropical (Informativo Rural, 2010). Por esta razão, aliada 

às pesquisas e inovações tecnológicas envolvendo este assunto, foi lançando no Pará em maio do 

corrente ano o Programa Nacional de Óleo de Palma que visa tornar o Brasil o maior produtor 

mundial desse vegetal nos próximos anos, garantindo o suprimento de combustível renovável 

(AmbienteBrasil, 2010). 

Dos cachos de frutos frescos da palma podem ser extraídos o óleo de palma bruto (20%) 

e o óleo de palmiste (1,5%), resultando em: torta de palmiste (3,5%), cachos vazios (22%), fibras 

(12%), cascas (5%) e efluentes líquidos (50%) (BiodieselBR, 2010). A Figura 2 ilustra o fruto da 

palma. 

Os EFB são compostos de 45-50% de celulose e quantidades iguais de hemicelulose e 

lignina, cerca de 25-35% (Deraman, 2010). Os cachos vazios (EFB), que restam após a produção 

do óleo são em geral descartados, havendo um crescente interesse na sua compostagem, a fim de 

agregar valor, e também de facilitar a redução do seu volume no meio ambiente (Yusri et al., 1995; 

Umi Kalsom et al., 2006).  

 

(a)  

 

(b) 

Figura 2. Cacho do fruto da palma (a) e fruto aberto da palma (b). 
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3.5. Trichoderma 

Trichoderma é um gênero complexo de fungos com importantes aplicações na agricultura 

e na medicina. Esta espécie é caracterizada pelo rápido crescimento de colônias, chegando ao 

diâmetro de 2 a 9 cm depois de 4 dias de crescimento à 20°C. Trichoderma ssp. são colonizadores 

onipresentes de material celulósico (Shuster e Schmoll, 2010). Este gênero é amplamente 

distribuído por todo o mundo e ocorre em quase todos os solos e outros habitats naturais, 

especialmente nos ambientes contendo material orgânico. É também encontrado na superfície de 

raízes de várias plantas e em cascas em decomposição, sobretudo quando estas se encontram 

danificadas ou contaminadas por outros fungos. 

Como Trichoderma é um fungo cosmopolita, é capaz de crescer numa faixa ampla de 

diferentes condições ambientais e substratos. Esta característica confere ao gênero a possibilidade 

de ser utilizado em muitas situações de interesse biotecnológico (Eposito et al., 1998). Muitas 

espécies de Trichoderma têm sido utilizadas para a produção industrial de enzimas e degradação 

de material lignocelulósico (Nevalainen et al., 1994). Com relação à demanda de oxigênio, 

processos fermentativos que envolvem Trichoderma são aeróbios (Verma et al., 2006). 

3.6. Otimização de processos biotecnológicos 

Atualmente, técnicas estatísticas de planejamento experimental e análise de superfície de 

resposta representam uma estratégia muito útil para determinar as condições ótimas de processos 

biotecnológicos, por envolver um número reduzido de experimentos, permitir a quantificação da 

interação entre variáveis e a obtenção de um modelo matemático que explique estatisticamente os 

resultados experimentais. O planejamento de experimentos e otimização das variáveis é um 

processo sequencial. No cultivo de microrganismos, onde se busca nutrientes e condições físicas 

de maior influência, um grande número de fatores é envolvido, e neste caso, inicialmente um 

planejamento Plackett & Burman é o mais adequado para 5 a 12 fatores. Em uma segunda etapa, 

as variáveis significativas identificadas são otimizadas através de um planejamento fatorial 

completo. Finalmente, após a obtenção de um modelo matemático são determinados os valores 

ótimos preditos para as variáveis estudadas (Myers e Montgomery, 1995). 

3.7. Peptonas vegetais 

Peptonas são polipeptídeos que são produtos intermediários na hidrólise das proteínas. 

Dependendo do grau de hidrólise, peptonas podem fornecer nutrientes, componentes de adesão, ou 
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fatores de crescimento análogos. A substituição de todas as substâncias de origem animal por 

componentes de origem vegetal reduz o risco de reações imunogênicas (Sakai et al., 2002).  

De acordo com Weete (1980), fontes orgânicas de nitrogênio são as melhores para o 

crescimento de fungos. No entanto, fontes de nitrogênio de origem animal podem conter agentes 

que causam encefalopatias espongiformes transmissíveis (EET) (Vegetable Peptone, 2012), uma 

família de doenças em humanos e animais caracterizadas por degeneração esponjosa do cérebro 

com graves e fatais sinais e sintomas neurológicos (Zoonoses, 2012). Regulamentos destinados a 

prevenir o risco de contaminação com EET são de grande importância no indústria farmacêutica 

(Subramanian, 2012). Neste contexto, extrato de leveduras e peptonas vegetais são livres de 

componentes animais e são amplamente utilizados para formulações livres destes componentes. 

No entanto, extrato de leveduras possui endotoxinas, que causam doença em seres humanos e que 

são considerados contaminantes, devendo ser evitados ou minimizados na preparação de produtos 

farmacêuticos (Advanced Bioprocessing, 2012). Portanto, a utilização de peptonas vegetais na 

formulação de meios de cultura em linhas de produção industrial poderia reduzir o potencial de 

contaminação por agentes EET e endotoxinas. 
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4. RESULTADOS E DISCUSSÃO 

Esta seção será apresentada na forma de capítulos, contendo os artigos submetidos a 

periódicos científicos selecionados de acordo com a afinidade do periódico com o aspecto 

abordado.  

O primeiro artigo apresentado (Biomass Production from Trichoderma viride in 

Nonconventional Oat Medium) trata-se da produção de esporos de T. viride por FS utilizando aveia 

como substrato. Este trabalho consistiu de um estudo para a produção de esporos a partir de 

substrato de baixo custo, para que os esporos produzidos fossem utilizados como inóculo nas 

fermentações posteriores empregando EFB, que constitui o objetivo principal deste trabalho.  

O segundo artigo (Production of humic acids from oil palm empty fruit bunch by 

submerged fermentation with Trichoderma viride: cellulosic substrates and nitrogen sources) 

aborda o desenvolvimento do processo de FS para produção dos AH a partir do EFB, assim como 

a investigação do substrato celulósico para produção destes ácidos. Sendo o EFB composto por 

celulose, hemicelulose e lignina, foram testados meios de cultura contendo estes três polímeros 

isolados na busca pela identificação do precursor dos AH na fermentação de EFB. 

O terceiro artigo (Statistical optimization of the production of humic acids by 

Trichoderma viride under submerged fermentation, using the oil palm empty fruit bunch as a 

substrate) apresenta a otimizaçao da produção de AH, partindo da composição do meio de cultura 

e das condições de fermentação propostas no segundo artigo, onde foi alcançado um aumento de 

cerca de 7 vezes na produção destes ácidos pela aplicação de ferramentas estatísticas. 

O quarto artigo (Comparison of humic acids produced by Trichoderma viride and 

Trichoderma reesei using the submerged fermentation of oil palm empty fruit bunch) engloba a 

comparação das espécies de Trichoderma, tanto em relação à produção de esporos em meio de 

aveia quanto em relação à produção de AH por FS de EFB. Além disso, através do PB design, este 

estudo indicou as variáveis estatisticamente significativas na produção destes ácidos, assim como 

o efeito causado por elas. 

O quinto artigo (Solid state fermentation for humic acids production by a Trichoderma 

reesei strain using an oil palm empty fruit bunch as the substrate) apresenta os resultados obtidos 

pela FES em colunas de Raimbault para produção de AH. Neste trabalho, foi feita a caracterização 

do substrato e da cinética da SSF em termos de umidade, pH, taxa global de transferência de 

oxigênio, proteínas celulares e constituintes do EFB (celulose, hemicelulose e lignina). 
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4.1. Biomass Production from Trichoderma viride in Nonconventional Oat Medium 

Artigo publicado no Periódico Científico Biotechnology Progress 
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Abstract 

Oatmeal, an alternative, renewable and low-cost substrate, was used for the production of 

Trichoderma viride spores by submerged fermentation. The non-conventional oat medium was 

only supplemented with potato peptone, which is a green source of nitrogen for the microorganism. 

Because particles are suspended in the non-conventional oat medium, the characterization was 

based on viscosity, average particle diameter, size distribution, and porosity of the particles. Due 

to the complexity of the fungal biomass extraction, the dry weight and protein content were used 

as methods for quantifying the growth of Trichoderma viride. The inversion between the proportion 

of mycelia and spores were captured in the microscopic image analysis during the fermentation 

process. After 60 hours, spores began to appear, accounting for most of the form present at 120 

hours of fermentation. The decrease in pH and the increase in glucose concentration during 

fermentation indicate that glucan hydrolysis occurs and that glucose is released into the medium. 

The potential for industrial applications of submerged fermentation with oats for biomass 

production of Trichoderma viride are noted in the results. This simple and easily controllable 

process has several advantages, including the use of low cost substrates for the propagation of a 

microorganism that is widely used in scientific and commercial settings.  

 

Keywords: Trichoderma viride, oat, submerged fermentation, biomass, sporulation. 
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1. Introduction 

Trichoderma is a genus of asexually reproducing fungi with a high level of genetic 

diversity1. They are frequently found growing in soil as well as on other substrates, such as wood, 

bark, and other fungi, demonstrating their high opportunistic potential and their adaptability to 

various ecological conditions2. This characteristic confers the possibility of the genus being used 

in many biotechnological applications3. Filamentous fungi have also received great attention due 

to their ability to produce thermostable enzymes that are of high scientific and commercial value, 

such as amylases, pectinases, xylanases, cellulases, chitinases, proteases, lipases, and β-

galactosidases4,5. Moreover, in recent years, Trichoderma species have been used in commercial 

preparations for the biological control of fungal plant diseases, reducing the use of polluting 

chemicals3. Trichoderma-based biocontrol agents (BCAs) are better able to promote plant growth 

and soil remediation processes than their counterparts (viruses, bacteria, nematodes, and 

protozoa)6. Like the conidial mass of other fungal BCAs, the conidial mass of Trichoderma is the 

most proficient propagule, and it tolerates downstream processing (e.g., air drying)7. 

Trichoderma fermentation is a highly aerobic process8, and the oxygen transfer in 

submerged fermentation is largely affected by the viscosity and morphology of the mycelia and the 

pellet formation9,10. These parameters create heterogeneity in the medium, resulting in the 

compartmentalization of the fermentation broth in terms of dissolved oxygen concentration, pH, 

and substrate availability11,12. 

Many authors have quantified the estimated biomass using indirect methods based on 

specific component measurements, such as protein content, glucosamine, ergosterol, and nucleic 

acids. Protein content is the most readily measured biomass component13. 

Although many studies have reported the use of conventional synthetic media for 

production of Trichoderma sp.14,15, the high cost of the substrates normally limits their commercial 

use. This can be achieved by using low cost agro-industrial residues, such as wheat bran, oat bran, 

and rice straw16.  

Oatmeal (Avena sativa) is produced from oats and only the shells are removed. Therefore, 

oatmeal has all of the nutrients that are found in grains17, such as a high concentration of soluble 

fiber, the β-glucanas18. These fibers are soluble in water with a tendency to form viscous aqueous 

solutions and gels. They also have a high viscosity even at low concentrations and are extremely 

pseudoplastic at concentrations of 0.5% or higher. The increase in the temperature causes the 
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decrease of viscosity of these solutions, causing these solutions to return to a thickened state upon 

cooling19. Then, the utilization of oatmeal as a substrate leads to a non-conventional submerged 

fermentation. 

The aim of this study was to develop a practical and low cost submerged fermentation 

process for the production of Trichoderma viride spores. Whereas most of industrial costs are due 

to the media, oats are low cost and renewable substrate that can be supplemented with minimal 

nutrients. Because cereals usually have low concentrations of nutrients, such as nitrogen20, 

vegetable peptone was used as a supplement to the culture medium. 

2. Methods 

2.1. Microorganisms 

For storage, the T. viride strain culture was grown on potato dextrose agar plates at 24 °C 

for 10 days. After sporulation, the spores were resuspended in a sterile 20% glycerol solution. This 

mixture was stored in 1.2 ml cryotubes at −70 °C.  

The average diameter of the spores was measured using a Zetasizer® Nano (Malvern 

Instruments, United Kingdom) at 25 °C. 

2.2. Preparation and characterization of the fermentation media 

The media was prepared by adding 30 g of oatmeal (Quaker Oats Company®, thin flakes; 

see Table 4.1.1 for detailed composition) into 1 L of distilled water and boiling the suspension for 

90 min at 90 °C with constant stirring. Immediately after heating, the suspension was filtered 

through a sieve (0.150 mm diameter holes). Distilled water was added to the filtrate to achieve the 

final volume of 1 L. Then, 5 g of potato peptone purchased from Sigma-Aldrich was added, and 

the media was adjusted to pH 6.021 prior to autoclaving at 121 °C for 15 min. 
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Table 4.1.1. Composition of oatmeal thin flakes (data collected form manufacturer’s product specification sheet, 
Quaker Oats Company®). 

Constituent Content per 100 g 

Carbohydrate 56.7 

Protein 14.3 

Total fat 7.3 

Fibers 9.7 

      Beta-glucan 4.0 

2.2.1. Water activity 

The water activities of the oatmeal used as the substrate and of the system during 

fermentation were measured using an Aqualab Series 3TE system (Decagon, USA), which uses the 

chilled-mirror dewpoint technique to measure the water activity of a sample. The experiments were 

performed in triplicate at 25 °C, and the standard deviations were calculated. 

2.2.2. Media viscosity and solid content 

Media viscosity assays were performed before inoculation and after 120 hours of 

fermentation using a SV-10 Vibro Viscometer (AND, Japan) at 25 °C. This instrument uses a 

constant frequency of 30 Hz at a constant amplitude. There is a damping effect related to the 

viscosity of the fluid, which reduces the amplitude, and the power required to keep the sensors 

vibrating at the original amplitude is measured and converted into the viscosity.  

The total concentration of solids in the medium was measured before inoculation and after 

120 hours of fermentation. Samples were dried at 105 °C to achieve constant weight and placed in 

a desiccator. Then, the concentration of solids was determined. 

All experiments were performed in triplicate, and the standard deviations were calculated. 

2.2.3. Particle size  

The average mean diameter and particle size distribution of the medium before inoculation 

were determined by laser diffraction using a Mastersizer 2000 (Malvern Instruments, USA).  

To verify the adhesion of the fungus to the oat particles, the particle size distribution was 

determined after 120 hours of fermentation. Because the spores are nanometric, the distribution 
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was determined by laser light scattering using a Zetasizer® Nano instrument (Malvern Instruments, 

United Kingdom).  

The experiments were performed in triplicate at 25 °C, and the standard deviations were 

calculated. 

2.2.4. Scanning electron microscopy (SEM) 

The particle shape and the surface morphology were examined by scanning electron 

microscopy (Leo 440i, LEO Electron Microscopy, England) in high vacuum mode. The 

acceleration voltage was 10 kV. The powder was sprinkled onto an SEM-stub covered by adhesive 

carbon tape and sputter coated (SC7620, VG Microtech, England) with 92 A° thickness of Au. 

Because oatmeal particles are electrically nonconductive, the sample was subjected to low vacuum 

gold sputter coating in the presence of argon gas.  

2.3. Submerged fermentation 

The culture were performed in 500 mL Erlenmeyer flasks containing 300 mL of culture 

media inoculated with 1 mL of a spore suspension inoculum that was prepared as described in item 

2.1. The culture flasks were incubated at 24°C at 150 rpm. During 120 hours of cultivation, samples 

were withdrawn every 12 hours for the analyses. 

2.4. Biomass quantifying 

2.4.1. Dry weight 

According to the methodology adapted of Szijártó et al.22, where optical density was used 

to evaluate T. reesei biomass behavior in delignified pine pulp, the dry biomass concentration of 

the T. viride was evaluated by reading the optical density at 600 nm in a spectrophotometer. The 

absorbance at 600 nm was correlated to the cell dry weight per culture volume. The dry weight was 

determined as follows: fungal biomass was extracted from the culture medium by heating an aliquot 

of known volume after the dilution in distilled water at a ratio of 1:10 at 85 °C under constant 

agitation for 10 min. After heating, the aliquot was filtered through coffee filter paper, and the 

filtrate was collected. The pie was retained, heated and filtered as described above until the green 

color (typical of the spores of Trichoderma) disappeared. The total volume of the filtrate was 

centrifuged at 10,000 g at 5 °C, and the supernatant was discarded. The precipitate was dried at 



 

22 

105 °C to achieve constant weight and placed in a desiccator, and then, the mass of fungus was 

determined.  

2.4.2. Protein quantifying 

Protein quantification was performed according to the adapted methodology of Callow 

and Ju23 in order to quantify only the cellular proteins. 3.0 mL sample was collected and centrifuged 

at 10,000 g for 10 min to obtain a pellet. The supernatant was collected for further processing. The 

pellet was re-suspended and washed twice with de-ionized water. After each wash step, the biomass 

was centrifuged and the water discarded. To release the intracellular proteins, the pellet was 

suspended in 3.0 mL of 1 N sodium hydroxide and heated at 100 °C for 10 min for cell breakage. 

Following cooling, the digested sample was centrifuged at 10,000 g for 10 min to remove cell 

debris and other solids; the supernatant was then collected and protein concentration was 

determined using a commercial kit (Modified Lowry Protein Assay, Thermo Scientific, USA) 

based on the Lowry assay24 and using a standard curve constructed with bovine serum albumin. 

2.5. Glucose consumption 

Glucose concentration was determined using an enzymatic glucose oxidase kit. The 

fermentation medium was centrifuged at 10,000 g for 10 min at 5 °C. A portion of the supernatant 

(25 μL) was mixed with the reagent (2.0 mL) and incubated at 37 °C for 30 min. The absorbance 

was measured at 505 nm using a spectrophotometer, and the glucose content was computed by 

least squares linear regression using a standard curve.  

2.6. Image analysis 

Approximately 10–50 µL samples were taken for smear preparation. Observations of 

mycelia and conidia were carried out using a microscope Reichert-Jung Series 150 (Reichert, USA) 

equipped with a digital camera. 

2.7. Spore counts 

The spores were enumerated by directly counting them using a Neubauer chamber to 

compare the initial concentration of spores inoculated to the spore concentration at the end of 

fermentation. 
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3. Results and Discussion 

3.1. Media characterization 

Particle size and SEM – The particle size distribution of the raw material is one of the key 

parameters affecting the growth of microorganisms during fermentation; particle size distribution 

influences the allocation of nutrients and metabolites as well as the provision of the surface areas 

for the biological activities25. Another important parameter is the porosity, which influences the 

water holding capacity of the substrate and varies significantly with particle size, as well as affects 

the diffusion of nutrients26.  

Figure 4.1.1 shows oatmeal particles used in the culture medium for T. viride strain 

growth. The average diameter of particles in the culture medium before inocultation was 16.8±0.1 

µm, and particles size distribution (diameter versus volume percentage of the particles) is 

represented in Figure 4.1.2 (a). The average diameter of Trichoderma viride spores was 0.3±0.0 

µm, which is approximately 60 times lower than that found for the particles of the medium. 

Moreover, if the average diameter of spores is compared to the diameter of the largest particles 

present in the culture medium (630.6 µm), these particles are approximately 2,200 times greater 

than these spores. The analysis of the particle size distribution of the growth medium after 120 

hours of fermentation (Figure 4.1.2 (b)) revealed that there is a peak comprising particles with 

diameters between 0.2 and 0.6 µm. This peak most likely represents the spores present in the 

medium because the average diameter found for the spores was 0.3±0.0 µm. Although this 

histogram does not include the biggest oatmeal particles, because the maximum size range of the 

equipment used was 0.3 nm to 10 µm, the presence of two distinct peaks comprising particles with 

diameters typical of spores and diameters typical of oatmeal particles indicates that T. viride spores 

are present in a free state in the culture medium after 120 hours of fermentation. 
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Figure 4.1.1. SEM micrographs of oatmeal particles before medium preparation. 

 

Figure 4.1.2. Particle size distribution (with standard deviation) of growth media before inoculation determined by 
laser diffraction using a Mastersizer 2000 (a) and of growth media at 120 hours determined by laser light scattering 

using a Zetasizer® Nano instrument (b) of submerged fermentation with T. viride strain. 
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Water activity - The water activity has a significant effect on the growth rates and the 

types of microorganisms that can grow in a given environment27. According to Hung et al.28, the 

minimum water activity required for fungal growth is 0.61. The addition of solutes can reduce the 

water activity of a system27. In this study, although the water activity value obtained for the oatmeal 

used in the culture media was 0.49±0.01, the value for the medium throughout the fermentation 

process was 1.00±0.00, indicating that there was no decrease in the water activity during 

fermentation and that the water activity remained greater than the limit (0.61). 

Viscosity and concentration of solids - In general, the high viscosity of fungal broths 

causes heterogeneity and poor mass transfer during the production phase, resulting in limited 

oxygenation inside the fermenter29. Because β-glucan is a hemicellulose that substantially increases 

the viscosity of aqueous solutions even at low concentrations30, it was necessary to measure the 

viscosity of the media and the concentration of solids. According to the table of nutritional 

information supplied by the manufacturer (Table 4.1.1), the oatmeal used in this study is composed 

of 4.0% β-glucan. The media viscosity and the concentration of solids before inoculation were 

4.14±0.02 mPa•s and 34.5±0.9 g/L, respectively. After 120 hours of fermentation, the values found 

were 0.91±0.01 mPa•s and 10.5±0.4 g/L for the media viscosity and the concentration of solids, 

respectively. The problems with submerged fermentation typically caused by high-viscosity media 

were not encountered with the process studied because the initial viscosity was only four times 

greater than the viscosity of water at 25 °C (0.90 mPa•s)31 and the final viscosity was almost equal 

to that of water. Therefore, the concentration of solids decreased 3-fold during the fermentation, 

indicating that Trichoderma viride readily hydrolyzed the available substrates, for example, the β-

glucans. 

3.2. Dry biomass and protein content 

Biomass is a fundamental parameter in the characterization of microbial growth, and its 

measurement is essential for kinetic studies on fermentation. Complete recovery of fungal biomass 

from the substrate is very difficult when the fungal hyphae penetrates into and binds tightly to the 

solid substrate particles13. The present study adopted two methods, one direct and one indirect, for 

biomass quantification. 

Figure 4.1.3 shows that the biomass and protein concentration curves have the same 

behavior along the 120 hours of cultivation. Moreover, the results conclude that the concentration 
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of both protein and biomass remained almost constant from approximately 60 hours of 

fermentation. These results are in agreement with the analysis in Figure 4.1.6 and are discussed in 

item 3.4, which shows that from 60 hours of cultivation Trichoderma viride begins to sporulate.  

Christias et al.32 determined in their work, using the method of Lowry et al.24, the amount 

of protein present in the biomass of five different genera of fungi, and they obtained a range of 

30% to 40%. By applying these results in the present study, it is possible to observe that the ratio 

between protein and biomass concentration is within the range obtained by Christias et al.32. 

Figure 4.1.4 shows the relationship between T. viride biomass concentration and cellular 

protein concentration, where the evidence of a straight light line relationship and strong correlation 

value (0.980) were observed. 
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Figure 4.1.3. Biomass and cellular protein versus time during a submerged fermentation of oatmeal with T. viride 

strain. 
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Figure 4.1.4. Relationship between cell biomass and cellular protein concentration in submerged fermentation of 
oatmeal with T.viride strain. 

3.3. pH and glucose 

Figure 4.1.5 represents the pH behavior and concentration of glucose in the medium 

during the submerged fermentation of oats with Trichoderma viride, where there is a clear decrease 

in pH and an increase in glucose concentration between 36 and 72 hours. Because the β-glucan 

polysaccharides are D-glucose monomers linked by β-glycosidic linkages33, such behavior can be 

explained by the occurrence of a hydrolysis of polysaccharides, causing a decrease in the pH, which 

results in a large release of glucose into the culture medium. 

These results demonstrate the applicability of this fungus in the fermentation of oats for 

the production of enzymes, such as β-1,3-glucanases. According to Giese et al.34, the regulation of 

enzyme expression in Trichoderma can be influenced by the amount of β-glucan that is present in 

the culture medium, because β-glucan acts as a promoter. 
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Figure 4.1.5. Glucose concentration and pH versus time during a submerged fermentation of oatmeal with the T. 

viride strain. 

3.4. Sporulation 

The images shown in Figure 4.1.6 refer only to the range 36 to 120 hours of fermentation 

because only mycelia were present at lower concentrations by 36 hours of fungal culture.  

Observing these images, it is possible to observe the fungus sporulation and the reversal 

of the mycelia to spore ratio during the fermentation process. Sporulation began at approximately 

60 hours of fermentation (Figure 4.1.6 (c)), and after 120 hours (Figure 4.1.6 (h)), the fungus was 

present in the form of spores. 

 
Figure 4.1.6. Trichoderma viride sporulation during submerged fermentation of oats at 36 hours (a); 48 hours (b); 60 

hours (c); 72 hours (d); 84 hours (e); 96 hours (f); 108 hours (g); 120 hours (h).  
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3.5. Spore counts 

The initial concentration of spores in the culture media was 4.20 x 104 spores/mL. After 

120 hours of fermentation, the spore concentration found in the fermentation medium was 3.52 x 

106 spores/mL, indicating that there were two logs of growth during the 5 days of oatmeal-based 

fermentation. 

Watanabe et al.35 used a culture medium containing soluble starch and soybean meal 

supplemented with KH2PO4, KCl, MgSO4•7H2O and FeSO4•7H2O to produce Trichoderma 

asperellum spores by submerged fermentation. They obtained 7.8 x 108 spores/mL after 7 days of 

fermentation starting from an inoculum of 1.0 x 106 spores/mL. Jakubíková et al.36 optimized 

Trichoderma atroviride sporulation in submerged fermentation on cellobiose supplemented with 

NaNO3, K2HPO4, KCl, MgSO4, and FeSO4. The culture medium was inoculated with 1 x 106 

spores/mL, and the spore concentration reached a maximum level of 2.68 x 108 spores/mL after 4 

days of fermentation.  

The comparison of the results obtained in the present work to past results indicates that 

the submerged fermentation of oatmeal is a good alternative for the production of Trichoderma 

viride spores, especially considering that the culture medium used in this study was supplemented 

only with peptone. 

4. Conclusions 

The oats were valuable substrates that can be inoculated for the biomass production from 

Trichoderma viride using a non-conventional heterogeneous submerged fermentation process, 

which is easily controllable. In addition, it showed ability to conidiate under submerged conditions, 

which makes it suitable for the fermentative production of spores and application in biocontrol. 

The protein concentration and dry biomass correlated with cell concentrations in oat medium, 

which was an adequately way to quantify the fungal biomass. Research on the enzymes produced 

by Trichoderma viride during the fermentation using oats as a substrate as well as the optimization 

of the medium composition and process conditions, according to the target product, are important 

topics for future works. 

 



 

30 

Acknowledgements 

This work has been supported by Fapesp (Fundação de Amparo à Pesquisa do Estado de 

São Paulo). 

5. References 

1. Harman, G. E.; Howell, C. R.; Viterbo, A.; Chiet, I.; Lorito, M. Trichoderma species 

opportunistic avirulent plant symbionts. Nat. Rev., 2004; 2:43-56. 

2. Druzhinina, I. S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B. A.; Kenerley, C. M.; 

Monte, E.; Mukherjee, P. K.; Zeilinger, S.; Grigoriev; I. V.; Kubicek, C. P. Trichoderma: the 

genomics of opportunistic success. Nat. Rev. Microbiol, 2011; 9:749-759. 

3. Esposito, E.; Silva, M. Systematics and Environmental Application of the Genus Trichoderma. 

Crit. Rev. Microbiol., 1998; 24:89–98. 

4. Christakopoulos, P.; Macris, B. J.; Kekos, D. Exceptionally thermostable a- and β- 

galactosidases from Aspergillus niger separated in one step. Process Biochem. International, 

1990; 25:210–212. 

5. Martins, E. S.; Silva, D.; Da Silva, R.; Gomes, E. Solid state production of thermostable 

pectinases from thermophilic Thermoascus aurantiacus. Process Biochem., 2002; 37:949–954. 

6. Harman, G. E.; Haynes, C. K.; Lorito, M.; Broadway, R. M.; diPietro, A.; Peterbauer, C. 

Chitinolytic enzymes of Trichoderma harzianum: Purification of chitobiosidase and 

endochitinase. Phytopathology, 1993; 83:313–318. 

7. Amsellem, Z.; Zidack, N. K.; Quimby, P. C.; Gressel, J. Long-term dry preservation of viable 

mycelia of two mycoherbicidal organisms. Crop Prot, 1999; 18:643–649. 

8. Verma, M.; Brar, S. K.; Tyagi, R. D.; Surampalli, R. Y.; Valero, J. R. Dissolved oxygen as 

principal parameter for conidia production of biocontrol fungi Trichoderma viride in non-

Newtonian wastewater. J. Ind. Microbiol. Biotechnol., 2006; 33:941-952. 



 

31 

9. Bhargava, S.; Nandakumar, M. P.; Roy, A.; Wenger, K. S.; Marten, M. R. Pulsed feeding during 

fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein 

expression. Biotechnol. Bioeng., 2003; 81:341– 347. 

10. Olsvik, E.S.; Kristiansen, B. Influence of oxygen tension, biomass concentration, and specific 

growth rate on the rheological properties of a filamentous fermentation broth. Biotechnol. 

Bioeng., 1992; 40:1293–1299. 

11. Humphrey, A. Shake flask to fermentor: what have we learned? Biotechnol. Prog., 1998; 14:3–

7. 

12. Zlokarnik, M. Problems in the application of dimensional analysis and scale-up of mixing 

operations. Chem. Eng. Sci., 1998; 53:3023–3030. 

13. Abd-Aziz, S.; Hung, G. S.; Hassan, M. A.; Karim, M. I. A.; Noraini, S. Indirect Method for 

Quantification of Cell Biomass During Solid-State Fermentation of Palm Kernel Cake Based 

on Protein Content. Asian Journal of Scientific Research 1, 2008; 4:385-393. 

14. Lewis, J. A., Papavizas, G. C. Production of chlamydospores and conidia by Trichoderma spp. 

in liquid and solid growth media. Soil. Biol. Biochem., 1983;  15:351–357. 

15. Gupta, R.; Saxena, R. K.; Goel, S. Short communication: photoinduced sporulation in 

Trichoderma harzianum – an experimental approach to primary events. World J. Microbiol. 

Biotechnol, 1997; 13:249–250. 

16. Kapoor, m.; Nair, L. M.; Kuhad, R. C. Cost-effective xylanase production from free and 

immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis 

juliflora. Biochem. Eng. J., 2008; 38:88–97. 

17. Gutkoski, L. C.; Pedo, I. Aveia: composição química, valor nutricional e processamento. 

Varela, São Paulo, 2000. 

18. De Sá, R. M.; Francisco, A.; Soares, F. C. T. Oat (Avena sativa L.) β-glucan concentration in 

different processing stages. Ciência e Tecnologia de Alimentos, 1998; 18:425-427. 



 

32 

19. Wood, P. J. Physicochemical characteristics and physiological properties of oat (1→ 3),(1→ 

4)-β-D-Glucan. Oat Bran. St. Paul, Minnessota, USA, 1993; p. 83-112. 

20. Demeyer, D. I.; Meulemeester, M.; De Graeve, K.; Gupta, B. W., Med. Fac. Landbouw. 

Rijksuniv. Gent, 1998; 53:1811–1819. 

21. Al-Taweil, H. I.; Osman, M. B.; Aidil, A. H; Yussof, W. M. W. Optimizing of Trichoderma 

viride Cultivation in Submerged State Fermentation. American Journal of Applied Sciences, 

2009; 6:1277-1281. 

22. Szijártó, N.; Szengyel, Z.; Lidén, G.; Réczey, K. Dynamics of Cellulase Production by Glucose 

Grown Cultures of Trichoderma reesei Rut-C30 as a Response to Addition of Cellulose. Appl. 

Biochem. Biotechnol., 2004; 113:115-124. 

23. Callow, N.; Ju, L. Promoting pellet growth of Trichoderma reesei Rut C30 by surfactants for 

easy separation and enhanced cellulase production. Enzyme Microb Technol., 2012; 50:311-

317. 

24. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the folin 

phenol reagent. J. Biol. Chem., 1951; 193:265-275. 

25. Patel, h. m.; Wang, R.; Chandrashekar, o.; Pandiella, s. s.; Webb, c. Proliferation of 

Lactobacillus plantarum in Solid-State Fermentation of Oats. Biotechnol. Prog., 2004; 20:110-

116.  

26. Mudgett, R. E., Controlled gas environments in industrial fermentations. Enzyme Microb. 

Technol., 1980; 2:273-280. 

27. Wallace, C.; Sperber, W.; Mortimore, S. Food Safety for the 21st Century: Managing HACCP 

and Food Safety. Wiley-Blackwell, USA, 2011; p. 352. 

28. Hung, L.; Miller, J. D.; Dillon, H. K. Field guide for the determination of biological 

contaminants in environmental samples. AIHA, 2005; p. 284. 



 

33 

29. Ahn, J.; Jung, J.; Hyung, W.; Haam, S.; Shin, C. Enhancement of Monascus Pigment 

Production by the Culture of Monascus sp. J101 at Low Temperature. Biotechnol. Prog., 2008; 

22:338-340. 

30. De Sá, R. M.; Francisco, A.; Ogliari, P. J.; Bertoldi, F. C. β-glucan content variation in Brasilian 

oat cultivars. Ciência e Tecnologia de Alimentos, 2000; 20:99-102. 

31. Geankoplis, C. Transport Process and Unit Operations. Prentice-Hall, New Jersey, 1993; p. 

937. 

32. Christias, C.; Couvaraki, C.; Georgopoulos, S. G.; Macris, B.; Vomvoyannip, V. Protein 

Content and Amino Acid Composition of Certain Fungi Evaluated for Microbial Protein 

Production. American Society for Microbiology, 1974; 29:250-254. 

33. Laroche, C.; Michaud, P. New Developments and Prospective Applications for β (1,3) Glucans. 

Recent Pat Biotechnol., 2007; 1:59-73. 

34. Giese, E.; Barbosa, A.; Silva, M. L. C. Glucanases fúngicas: produção e aplicações das β-1,3 

e β-1,6-glucanases. Revista de Biotecnologia, Ciência e Desenvolvimento, 2003; 30:97-104.  

35. Watanabe, S.; Kato, H.; Kumakura, K.; Ishibashi, E.; Nagayama, K. Properties and biological 

control activities of aerial and submerged spores in Trichoderma asperellum SKT-1. Journal 

of Pesticide Science, 2006; 31: 375–379. 

36. Jakubíková, L.; Farkas, V.; Kolarova, N.; Nemcov, M. Conidiation of Trichoderma atroviride 

Isolate during Submerged Cultivation in a Laboratory Stirred-Tank Fermenter. Folia 

Microbiol, 2006; 51:209-213. 



 

34 

  



 

35 

4.2. Production of humic acids from oil palm empty fruit bunch by submerged 

fermentation with Trichoderma viride: cellulosic substrates and nitrogen 

sources 

Artigo publicado no Periódico Científico Biotechnology Progress 

 

 

 



 

36 

  



 

37 

Production of humic acids from oil palm empty fruit bunch by submerged fermentation 

with Trichoderma viride: cellulosic substrates and nitrogen sources 

 

Motta FLa, Santana MHAa* 

a Development of Biotechnological Processes Laboratory, School of Chemical Engineering, 

University of Campinas, P.O. Box 6066, 13081-970, Campinas, SP, Brazil 

*Corresponding author: mariahelena.santana@gmail.com; Tel: +55 19 3521 3921 

 

 

Abstract 

The novelty of this study was to produce humic acids by submerged fermentation of empty fruit 

bunch (EFB) with Trichoderma viride and to investigate the effects of the cellulosic substrates and 

the organic sources of nitrogen on the biotechnological production of these acids. The results 

obtained indicate the potential application of EFB, a waste of oil palm processing, for humic acids 

production. Because EFB contains cellulose, hemicellulose and lignin, fermentations were also 

performed using these polymers as carbon sources, separately or in combination. After 120 hours 

of fermentation, significant production of humic acids was observed only in cultures containing 

either EFB or a mixture of the three polymers. Use of either potato peptone or yeast extract as a 

nitrogen source yielded nearly identical patterns of fungal growth and production of humic acids. 

The data obtained from microscopic imaging of Trichoderma viride growth and sporulation in 

EFB, coupled with the determined rates of production of humic acids indicated that the production 

of these acids is related to Trichoderma viride sporulation. 

 

Keywords: Humic acids, Trichoderma viride, submerged fermentation, cellulosic substrate, 

nitrogen source.  
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1. Introduction 

Humification is the process of the decay of dead organisms through microbial activity, 

resulting in the production of humic substances (HS) and the decomposition of nonhumic 

substances.1,2 The mechanisms of formation of HS differ depending on the geographical, climatic, 

physical and biological circumstances. These compounds can be formed in several ways, although 

lignin is important in the majority of the humification processes.3,4 HS are divided into three main 

fractions based on their solubility in acids and alkalis: humic acid (HA), fulvic acid and humin.5  

HA, one of the most important components of HS, consists of a heterogeneous association 

of molecules or small humic sub-units of different chemical natures and origins2 containing a 

variety of functional groups, including carboxylic acid (COOH), phenolic hydroxy (OH), enolic 

(OH), alcoholic (OH), quinone, hydroxylquinone, lactone, and ether.6 The remarkable properties 

of these acids and their applications in agriculture, industry, the environment, and biomedicine7 

have attracted the attention of many investigators.8 They help break up clay in compacted soils, 

assist in transferring micronutrients from soil to plants, enhance water retention, increase seed 

germination rates, and stimulate the development of microflora populations in soils.8 However, the 

main targets for the increased interest in HA are their pharmacological effects with potential use in 

medicine such as their antiviral, estrogenic and desmutagenic activities, the antiinflammatory 

effects and pro-inflammatory properties, and the influence on blood coagulation and fibrinolysis.8,9 

HA are extracted from peat and coal, two sources of non-renewable carbon, in industrial 

processes.10 Liu and Huang11 investigated the catalysis of hydroxy-aluminosilicate ions in the 

oxidative polymerization of catechol and the resultant formation of HS. Litvin et al.12 developed a 

two-step chemical procedure for preparing synthetic HA that is similar to natural HA. However, 

very little research has been performed on the production of these acids by biotechnological 

processes. This is a major gap in the production processes of HA for pharmaceutical applications, 

which require sustainable production and use of controlled and reproducible processes. Therefore, 

the aim of this study was to develop a low-cost fermentation process for producing HA for 

pharmaceutical use. As far as we know, this is the first report of using EFB for HA production by 

Trichoderma viride in submerged fermentation. 

For economic reasons, industrial fermentations involve complex, largely undefined 

substrates, which are often by-products of other industrial processes. In this context, empty fruit 

bunch (EFB), a left-over from palm oil mill processing, is a cellulosic material source consisting 
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of 43.8% cellulose, 35.0% hemicelluloses, and 16.4% lignin13, and is a strong candidate for use as 

a fermentation substrate. EFB, which comprises 23% of the fresh fruit bunch14, is an abundant and 

capacious waste product of oil palm processing and has not been utilized effectively. Considering 

that the global production rate for oil palm has doubled over the last decade, and worldwide demand 

for it is expected to double again by 202015, there is a growing interest in adding value to EFB16 

and also in reducing the amount of this waste to diminish its environmental impact.17  

The potential of Trichoderma species as lignocellulose-degrading agents was recognized 

in the early 1960s.18 Trichoderma species are frequently found growing in soil as well as on other 

substrates, such as wood, bark, and other fungi, demonstrating their high opportunistic capacities 

and their adaptability to various ecological conditions.19 These characteristics make the genus 

useful for many biotechnological applications.20 The conidial mass of Trichoderma is the most 

proficient propagule that tolerates downstream processing.21  Because Trichoderma fermentation 

is a highly aerobic process22, submerged fermentation, whereby the organism is grown in a liquid 

media that is vigorously aerated and agitated23, is widely used for this genus. Furthermore, because 

liquid cultures are homogenous and easy to standardize, maintain, and monitor24; this fermentative 

process is usually preferred for large-scale fermentations.25 

 Because HA precursor(s) has(have) not yet been elucidated, this work also investigated 

the influence of different cellulosic substrate(s) for HA production by fermentation using 

Trichoderma viride. A study comparing the effect of different organic sources of nitrogen on both 

HA production and fungal growth was also performed. Yeast extract was replaced with vegetable 

peptone for the nitrogen source study because the latter is a green product and may be a safer 

supplement for culture media.26 

2. Methods 

2.1. Scanning electron microscopy (SEM) of EFB particles 

The shapes and surface morphologies of particles were examined by scanning electron 

microscopy (Leo 440i, LEO Electron Microscopy, England) in the high-vacuum mode with an 

acceleration voltage of 10 kV. Powders were sprinkled onto SEM stubs topped with adhesive 

carbon tape, and sputter coated (SC7620, VG Microtech, England) with Au to a thickness of 92 

A°. Because EFB particles are electrically nonconductive, the samples were subjected to low-

vacuum gold sputter-coating in the presence of argon gas.  
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2.2. Size of EFB particles 

The average mean diameter of EFB particles used in the culture media was determined by 

laser diffraction using a Mastersizer 2000 (Malvern Instruments, USA).  

2.3. Microorganism cultures 

For storage, the T. viride strain culture was grown on potato dextrose agar plates at 24 °C 

for 10 days. After sporulation, the spores were resuspended in a sterile 20% glycerol solution. This 

mixture was stored in 1.2 ml cryotubes at -70 °C.  

The inoculum was prepared in 500 mL Erlenmeyer flasks containing 300 mL of culture 

media comprising 30 g L-1 oatmeal and 5 g L-1 potato peptone, as described in our previous paper.27 

The culture media was inoculated with 1 mL of the spore suspension and incubated for 120 hours 

at 24 °C with agitation of 150 rpm, to allow the formation of large quantities of spores.  

2.4. Fermentation media 

EFB provided by Oil Palm S/A Agro-industrial OPALMA (Bahia, Brazil), were milled to 

produce standardized particles with diameters between 125 and 500 μm (115 and 32 mesh of Tyler 

series, respectively). The composition of the EFB particles was determined with an elemental 

analyzer CNH (Perkin Elmer Series II 2400, USA) indicating that mass percentage of each of these 

elements is 48.0±0.7% of carbon; 2.6±0.1% of nitrogen and 6.1±0.2% of hydrogen. These results 

are expressed as the mean of triplicates and their average deviations. 

Cellulosic substrates study: To investigate the influence of various cellulosic substrates for the 

production of HA by T. viride, five different culture media were prepared (see Table 4.2.1). Three 

separate culture media were prepared with only one of the three cellulosic components of EFB: 

commercial cellulose, hemicellulose or lignin. The fourth culture medium was prepared with a 

mixture of these three components in equal proportions, and the fifth, containing EFB, was the 

control medium. The concentrations of (NH4)2SO4, K2HPO4 and yeast extract were based on the 

work of Kalsom et al.28 The initial pH was adjusted to 6.021 prior to autoclaving at 121 °C for 15 

min. 
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Table 4.2.1. Composition of the culture media used in the cellulosic substrates study. 

Media Carbon source (g L-1) 
Components present in all 
fermentation media (g L-1) 

1 Cellulose 20.0 

(NH4)2SO4 
K2HPO4 

Yeast extract 

0.77 
1.54   
3.85 

2 Xylan* 20.0 

3 Lignin 20.0 

 Cellulose 6.67 

4 Xylan* 6.67 

 Lignin 6.67 

5 EFB 20.0 
*Xylan represents the hemicellulose carbon source. 

Nitrogen sources study Two fermentations were carried out to investigate the effect on fungal 

growth and HA production of substituting yeast extract with vegetable peptone. Both culture media 

contained 0.77 g L-1(NH4)2SO4, 1.54 g L-1 K2HPO4 and 20 g L-1 EFB, with either yeast extract or 

potato peptone at 3.85 g L-1. The pH was adjusted to 6.021 prior to autoclaving at 121 °C for 15 

min. 

2.5. Submerged fermentation 

The cultures were grown in 500 mL Erlenmeyer flasks containing 270 mL of culture 

media and 30 mL of inoculum prepared as described above (see 2.3). The culture flasks were 

incubated at 30 °C with agitation at 150 rpm. Samples withdrawn every 12 hours throughout the 

120 hours of cultivation were processed for determination of the protein and HA concentrations 

and for microscopic imaging. All fermentations were carried out in triplicate and the results 

represent means of three independent experiments ± standard deviation. 

2.5.1. Protein quantification 

Indirect estimation of the fungal biomass was carried out by determining the protein 

concentration. Protein quantification was performed according to the method adapted by Callow 

and Ju23 to quantify only the cellular proteins. Culture samples (3.0 mL) were collected and 

centrifuged at 10,000 g for 10 min to obtain pellets. The supernatants were collected for further 

processing. The pellets were re-suspended and washed twice with de-ionized water. After each 

wash step, the biomass was centrifuged and the water discarded. To release the intracellular 
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proteins, the pellets were suspended in 3.0 mL of 1 N sodium hydroxide and heated at 100 °C for 

10 min. After cooling, the digested samples were centrifuged at 10,000 g for 10 min to remove the 

cell debris and other solids; the supernatants were then collected and their protein concentrations 

were determined with the bicinchoninic acid assay24, using a commercial kit (BCA Protein Assay, 

Thermo Scientific, USA). Standard curves were constructed with bovine serum albumin. 

2.5.2. HA quantification 

Following methods adapted by Badis et al.32, samples were centrifuged at 10,000 g for 15 

min (Rotina 380 R Centrifuge, Hettich Zentrifugen, Tuttlingen, Germany) and the supernatant 

fractions were filtered using the Microfilter syringe system (Thomapor®-Membranfilter, 5FP 

025/1). The supernatant fractions were diluted five-fold with 0.5 M NaOH solution and the 

absorbances at 350 nm at pH 4.5±0.01 were measured. Standard curves were obtained from the 

absorbances at 350 nm of known concentrations of commercial HA (Sigma-Aldrich, United 

Kingdom) in 0.5 M NaOH solution pH 4.5±0.01. 

2.5.3. Image analysis 

Samples of approximately 10–50 µL were taken for smear preparations. Images of the 

mycelia and conidia were obtained using a microscope (Reichert-Jung Series 150, Reichert, USA) 

equipped with a digital camera. 

3. Results and Discussion 

Figure 4.2.1 shows examples of the EFB particles that were utilized for HA production in 

the culture media (Medium 5, Table 4.2.1). These particles had an average diameter of 248.5±0.8 

µm, and became surrounded by both fungal mycelia and conidia during fermentation (Figure 4.2.2).  
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Figure 4.2.1. SEM micrographs of EFB particles used as a carbon source for HA production by T. viride. 
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Figure 4.2.2. T. viride sporulation biomasses present after submerged fermentation of EFB and potato peptone for 24 

hours (a); 36 hours (b); 48 hours (c); 60 hours (d); 72 hours (e); 84 hours (f); 96 hours (g); 108 hours (h); and 120 
hours (i). Magnification 45x. 

Figure 4.2.3 shows the changes in the concentrations of cellular proteins, which represent 

the T. viride biomass, during fermentation in the five different culture media used for the cellulosic 

substrates experiment. Fungal growth was observed in all media employed, as expected because 

strains of Trichoderma can degrade complex substrates such as cellulose, chitin, xylan, and 

lignin.33 The data reveal that the highest rate and amount of cell growth was achieved in the culture 

media containing EFB, whereas the lignin media and the media containing an equal mixture of the 

three polymers supported increasingly slower growth rates. The higher fungal growth found in the 

EFB medium can be related, among other factors, to the residual oil content in EFB, which 

represents at least 0.5% m/m of theses fibers and can be easily recovered34. The lowest cellular 

protein concentrations were reached at similarly slow rates in media containing either cellulose or 
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xylan. Trichoderma produces large quantities of hydrolytic enzymes35, including chitinases, β-1,3-

glucanases36, cellulases, amylases and proteases.37 Moreover, this filamentous fungus is an 

exceptionally efficient producer of cellulases and hemicellulases, which act in synergy to degrade 

lignocellulosic materials.38 Therefore, the high growth rates observed in EFB media and in the 

media containing an equal mixture of the three polymers compared to that in media with a single 

cellulosic substrate source can be explained by the greater diversity of cellulosic material allowing 

the fungus to synergistically use a wider variety of enzymes for its growth. 
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Figure 4.2.3. Cellular protein concentration versus time during submerged fermentations of different cellulosic 

substrates by the T. viride strain. C+L+X: mixture of cellulose, lignin and xylan. 

Figure 4.2.4 demonstrates that fungal synthesis of HA occurred only in media containing 

either the polymer mixture or EFB. The HA concentrations in the media containing cellulose, lignin 

or xylan, separately, was close to zero throughout 120 hours of fermentation, negligible compared 

to that achieved in the other two culture media, where the three polymers were present in the culture 

medium composition. These results indicate the synergistic effect of the three polymeric 

components of EFB on the production of HA during the fermentation processes evaluated in this 

study. Furthermore, the HA production in the media containing the polymer mixture was lower 

than that in the media containing EFB, 42.3 mg L-1 and 52.2 mg L-1, respectively. These results 

indicate that the ratio of cellulose, hemicellulose and lignin in the media influences the rate of 

synthesis of HA by T. viride. 
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Figure 4.2.4. HA concentration versus time during submerged fermentations of different cellulosic substrates by T. 

viride. C+L+X: mixture of cellulose, lignin and xylan. 

Kalsom et al.28 produced HA by solid state fermentation using yeast extract as the nitrogen 

source. According to Weete39, organic nitrogen sources are best for the growth of many fungi. 

However, nitrogen sources of animal origin may contain agents that cause transmissible 

spongiform encephalopathies (TSE)40, a family of diseases of humans and animals characterized 

by spongy degeneration of the brain with severe and fatal neurological signs and symptoms.41 

Regulations aimed at preventing the risk of TSE contamination are highly important in the 

pharmaceutical industry.42 In this context, yeast extract and vegetable peptone are animal-free 

components and are used extensively for many animal-free formulations. However, yeast extract 

have endotoxins, which cause illness in humans and are considered contaminants that must be 

avoided or minimized in the preparation of pharmaceutical products.43 Therefore, using vegetable 

peptone in the culture media on industrial production lines would reduce the potential for 

contamination by TSE agents. Therefore, in the present study, yeast extract was replaced by potato 

peptone, an organic source of nitrogen from vegetables, because the ultimate aim of this work is 

establishing methods to produce HA for pharmaceutical use. 

According to the suppliers' data, the yeast extract (Oxoid, England) used in this study 

contains 10-12.5% w/w of total nitrogen and 5.1% w/w of amino nitrogen, whereas the potato 

peptone used (Fluka, France) contains 9.5% w/w of total nitrogen and 4.5% w/w of amino nitrogen. 

These values indicate that both nitrogen sources would provide similar amounts of nitrogen to T. 

viride, and are consistent with the similar rates of growth (Figure 4.2.5) and HA production (Figure 

4.2.6) in media containing either yeast extract or potato peptone. The cellular protein and HA 
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concentrations reached by 120 hours of fermentation were, respectively 8.7 g L-1 and 64.7 mg L-1 

in the media containing yeast extract, and 9.3 g L-1 and 62.1 mg L-1, in the media containing potato 

peptone. These results demonstrate that replacing yeast extract peptone with vegetable peptone, in 

addition to achieving the main goal of reducing the risks of contamination, does not compromise 

HA production. In the culture media containing peptone, HA production relative to the mass of 

EFB used was 3.1 mg of HA / g of EFB. 
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Figure 4.2.5. Cellular protein concentrations versus time during submerged fermentations of EFB by T. viride using 

different nitrogen sources. 
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Figure 4.2.6. HA concentrations versus time during submerged fermentations of EFB by T. viride using different 

nitrogen sources. 
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Figure 4.2.4 and Figure 4.2.6 show that production of HA by T. viride began at 

approximately 60 hours of fermentation. To investigate the basis for this pattern, samples of culture 

media containing peptone and EFB were examined by microscopy. The microscopic images shown 

in Figure 4.2.2 demonstrated that sporulation was occurring by 60 hours of fermentation and was 

completed by approximately 96 hours. After 96 hours, only spores were observed; mycelia were 

not observed. Comparing the microscopic images with the graphs of HA concentration versus time 

during fermentation with potato peptone for which the images were captured (Figure 4.2.2 and 

Figure 4.2.6) reveals that HA production and T. viride sporulation surge at a very similar time point 

during fermentation, indicating a relationship exists between these processes. As reported by 

Brodhagen and Keller44, who studied the relationship between Aspergillus and Fusarium 

sporulation and mycotoxin production, both regulated by G protein signalling pathways, some 

secondary metabolites are associated temporally and functionally with sporulation. Slepecky and 

Law45 concluded in their work that the synthesis of poly-3-hydroxybutyric acid is connected with 

Bacillus megaterium strain sporulation. Scribner et al.46 investigated the production of pigment by 

Streptomyces venezuelae where found that the medium pigmentation appeared to be closely 

associated with sporulation. Moreover, Siddiqui et al. confirmed through their experiments the 

fungicidal activity of HA isolated from empty fruit bunch of oil palm compost47, which indicates 

that the similarity between the time duration of sporulation and HA production might be a niche 

preservation strategy of the T. viride. 

According to the International Humic Substances Society (IHSS)48, the HA purification 

is not labor intensive and involves inexpensive reagents. The methodology proposed by IHSS 

comprises the acidification of the alkaline extract causing the precipitation of these acids, which 

are removed from the acidified extract by centrifugation and purified (i.e. de ashed) using an 

HCl/HF ash.  

Propagules, like submerged spores, must retain a high level of viability under adverse and 

variable conditions49, where the conidial mass of Trichoderma is the most proficient propagule, 

tolerating downstream processing.50 Moreover, reduction of the mycelia in the liquid culture, 

increasing the spore population, would also be desirable, since mycelia create separation and 

disposal problems.51 

Apart from the extremely low cost of EFB and the advantages of the purification process 

of HA, only spores are present at the end of the studied submerged fermentation, allowing a simple 
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one-step centrifugation promotes the separation of the fungus and the target product, factors that 

increase the economic benefits of the proposed process. 

4. Conclusions 

This study provides crucial information on the production of HA by T. viride. This is the 

first report of using EFB for HA production by T. viride in submerged fermentation and the results 

obtained indicate its potential for industrial applications. Such use offers a valuable alternative to 

simply recycling EFB, not only adding value to this abundant, underutilized waste material but also 

reducing its environmental impact. The studies employing different cellulosic substrates suggest 

that the presence of cellulose, hemicellulose and lignin has synergistic effects because none of 

these polymers used singly supported the production of HA. In addition, the results showed that 

peptone potato can be substituted for yeast extract without compromising HA production; this 

would reduce the risks of contamination caused by the use of animal sources of nitrogen. Further 

improvements in the proposed process are necessary before testing large-scale applications, 

including optimization of the media components and the fermentation conditions, as well as more 

detailed investigations into the inoculum size and the duration of its culture, because HA 

production seems to be related to T. viride sporulation. 
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Abstract 

Statistical analysis were used to optimize the production of humic acids (HA) by a Trichoderma 

viride strain under submerged fermentation, in a medium based on the oil palm empty fruit bunch 

(EFB). The media nutrients and the fermentation conditions were optimized using a sequential 

statistical optimization process. First, the factors that affected the HA production were screened out 

by a Plackett & Burman design (PB). The most significant factors (the temperature and the EFB, 

potato peptone and (NH4)2SO4 concentrations) were further studied by a central composite rotatable 

design (CCRD), which allowed the construction of a prediction model and a response surface. A 

temperature of 40 °C and concentrations of 50 g L-1 EFB, 5.7 g L-1 potato peptone and 0.11 g L-1 

(NH4)2SO4 were indicated by the contour curves as the levels that would maximize HA production. 

The designed model was then validated using those levels and comparing the results with predicted 

values. The HA concentration obtained was 428.4±17.5 mg L-1, compared to a prediction of 412.0 

mg L-1. The results indicate the success of the statistical optimization—HA production can be 

enhanced by optimizing the media and the fermentation conditions.  

 

Keywords: Statistical analysis; humic acids; Trichoderma viride; submerged fermentation; empty 

fruit bunch. 
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1. Introduction 

Humic acids (HA), part of the organic matter in soil, are the soil fraction that is most resistant 

to microbial degradation. They are complex polymeric organic acids with a wide range of molecular 

weights, and they can be heterogeneous mixtures of a variety of organic compounds, including 

aromatic, aliphatic, phenolic, and quinolic functional groups [1]. In addition, HA’s size, chemical 

composition, structure, and functional groups may vary greatly, depending on its origin and the age 

of the material [2]. They are one of most active fractions of organic matter and affect a variety of 

chemical, physical, and biological reactions. From an agricultural point of view, they improve the 

absorption of nutrients by both plants and soil microorganisms, positively affect the dynamic of 

nitrogen and phosphorus in soil, stimulate plant respiration and photosynthesis, and favor the 

formation of soil aggregates, among other benefits [3]. Moreover, they have deservedly received 

growing attention from the field of biomedicine, primarily due to their antiviral, profibrinolytic, anti-

inflammatory and estrogenic activities [9], which are of great importance for pharmaceutical and 

biomedical applications [7]. An important source of HA is leonardite, which contains 40% of these 

acids, as well as black peat and brown coal, both of which contain 10% HA [6]. However, harvesting 

humic acids from such non-renewable carbon resources can be expensive and 

environmentally/ecologically unsustainable. Moreover, the extraction of peat leads to the destruction 

of peatlands, which are important for biodiversity, carbon storage and flood risk management [7]. It 

is thus desirable to use more ecologically sustainable precursors/feedstocks for HA and develop 

cheaper and cleaner methods for the extraction of this valuable product.  

For economic reasons, industrial fermentations involve complex, almost undefinable 

substrates that are often the by-products of other industries. Empty fruit bunch (EFB), a cellulosic 

material source containing 43.8% cellulose, 35.0% hemicelluloses, and 16.4% lignin [13], is a strong 

candidate for use as a fermentation substrate. EFB is the product of oil palm processing, waste that 

has not been completely utilized, and it is produced in large quantities: 23% of the fresh fruit bunch 

[14] used in oil palm production remains as EFB. The global production of oil palm has doubled over 

the last decade, and demand is expected to double again by 2020 [15]. Thus, there is a growing 

interest in making EFB [16] useful, reducing the large volume of waste and its ensuing environmental 

problems [17].  

The potential of the Trichoderma species as lignocellulose degrading agents has been 

recognized since early 1960 [18]. They are frequently found in soil as well as on substrates like wood, 
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bark, and other fungi, demonstrating their high opportunistic potential and their adaptability to 

various ecological conditions [19]. This characteristic allows the genus to be used in many and varied 

biotechnological applications [20]. Moreover, the conidial mass of Trichoderma is a proficient 

propagule and tolerates downstream processing [21]. Because Trichoderma fermentation is a highly 

aerobic process [22], submerged fermentation, in which the organism is grown in a vigorously 

aerated and agitated liquid medium [23], is widely used. Furthermore, liquid cultures are 

homogenous, making them easier to control, maintain, and monitor [24], so this fermentative process 

is often preferred for large-scale fermentations [25]. 

The classical method of medium optimization, changing one variable while fixing the others 

at a certain level, is laborious and time-consuming, particularly when the number of variables is 

large. An alternative and more efficient approach for microbial systems is the use of statistical 

methods [21]. The most popular statistical tools are the Plackett & Burman (PB) [22] design and the 

central composite rotatable design (CCRD) [23]. The PB design is a powerful tool that rapidly 

determines the effects of different variables on the yield of the required product. It is used to 

minimize the number of screening variables needed for optimization studies. Response surface 

methodology is an optimization method primarily based on statistical techniques, and it is a powerful 

and efficient mathematical approach applied to fermentation processes, where CCRD is the most 

popular choice for fitting a second order model [23]. 

In our previous article [24], we proposed a submerged fermentation process with T. viride as 

a biotechnological route for HA production from EFB. In the present study, an investigation was 

carried out to understand the optimum media composition and fermentation conditions for HA 

production, based on the results obtained in our previous work. For this purpose, PB was used to 

screen for the significant parameters, followed by the application of CCRD to determine the response 

surface. Once the culture medium and fermentation conditions were optimized, assays were 

performed in triplicate to validate the results. From these assays, the HA production as well as the 

profiles of the cellular proteins representing the fungal biomass were determined. 

 

2. Material and Methods 

2.1. Microorganisms and inoculum 

For storage, the T. viride strain culture, purchased from Fundação Tropical (São Paulo, 

Brazil), was grown on potato dextrose agar plates at 24 °C for 10 days. After sporulation, the spores 
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were resuspended in a sterile 20% glycerol solution, which was stored in 1.2-mL cryotubes at -70 

°C.  

The inoculum was prepared in 500 mL Erlenmeyer flasks, each of which contained 300 mL 

of culture media with 30 g L-1 oats and 5 g L-1 peptone, prepared as described in our previous article 

[27]. The culture flask was inoculated with 1 mL of the spore suspension (1.26 x 107 spores) and 

incubated at 24 °C and 150 rpm for 120 hours to produce a large number of spores.  

 

2.2. Submerged fermentation 

EFB (provided by Oil Palm S/A - Agro-industrial OPALMA, Bahia, Brazil) was milled to 

achieve a standardized particle size of between 125 and 500 μm (115 and 32 Tyler series mesh, 

respectively). The composition of the EFB particles was determined by a CNH elemental analyzer 

(Perkin Elmer Series II 2400, Maryland, USA). The mass percentages were 48.0±0.7% carbon, 

2.6±0.1% nitrogen and 6.1±0.2% hydrogen. These results are the means of triplicates with their 

average deviations. Potato peptone was purchased from Fluka Analytical (France); (NH4)2SO4 and 

K2HPO4 were purchased from Ecibra (Brazil). 

The fermentation cultures were housed in 500 mL Erlenmeyer flasks that contained 270 mL 

of culture media inoculated with 30 mL of inoculum (3.52 x 106 spores mL-1), prepared as described 

in section 2.3. The culture flasks were incubated at 150 rpm. Over the course of 120 hours of 

cultivation, samples were withdrawn every 24 hours for analysis. 

 

2.3. Statistical analysis 

Plackett & Burman design: This design was used to screen for the selected variables that 

significantly affected the HA production. Six variables were screened: pH, temperature (°C), EFB (g 

L-1) as a carbon source, potato peptone (g L-1) as an organic nitrogen source, and K2HPO4 (g L-1) and 

(NH4)2SO4 (g L-1) as inorganic nitrogen sources (Table 4.3.1). Each factor of this statistical analysis 

was examined at three levels—low (−), high (+) and central (0)—to evaluate both the linear and 

curvature effects of the variables. The samples that were withdrawn every 24 hours throughout the 

cultivation were processed to determine their HA concentrations, and the values obtained after 120 

hours of fermentation were used as the response variables. Table 4.3.2 shows the PB experiment 

design, with 16 trials that varied each of the six factors, and the resulting HA amounts produced. 

This statistical design does not consider the interactions between the selected variables and follows 
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a linear approach to screen the factors [22]. The effects of the variables are summarized in Table 

4.3.3, as obtained by Statistica software, version 8.0 (Statsoft, Oklohoma, USA). The variables that 

were considered to have a significant effect on the response (p-value<0.1) were then optimized by 

CCRD, a response surface methodology.  

Table 4.3.1. The lower (-1), higher (+1) and central (0) levels of the six variables screened by the PB design. 

Variables Units Experimental values 
-1 0 +1 

EFB g L-1 10.0 20.0 30.0 
Peptone  g L-1 1.00 3.85 6.70 
pH - 4.0 6.0 8.0 
Temperature  °C 25.0 30.0 35.0 
K2HPO4  g L-1 0.28 1.54 2.80 
(NH4)2SO4 g L-1 0.24 0.77 1.30 
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Table 4.3.2. The experimental PB design used to screen six variables, with their real and code values (in parentheses) 
and the observed values of the HA production response. 

Trial Experimental values HA  
(mg L-1)a 

EFB  
(g L-1) 

Peptone 
(g L-1) 

pH Temperature 
(°C) 

K2HPO4  

(g L-1)  
(NH4)2SO4 

(g L-1) 
Observed 

1 30.0 (+1) 1.00 (-1) 8.0 (+1) 25.0 (-1) 0.28 (-1) 0.24 (-1) 12.6 
2 30.0 (+1) 6.70 (+1) 4.0 (-1) 35.0 (+1) 0.28 (-1) 0.24 (-1) 85.2 
3 10.0 (-1) 6.70 (+1) 8.0 (+1) 25.0 (-1) 2.80 (+1) 0.24 (-1) 48.9 
4 30.0 (+1) 1.00 (-1) 8.0 (+1) 35.0 (+1) 0.28 (-1) 1.30 (+1) 38.3 
5 30.0 (+1) 6.70 (+1) 4.0 (-1) 35.0 (+1) 2.80 (+1) 0.24 (-1) 107.0 
6 30.0 (+1) 6.70 (+1) 8.0 (+1) 25.0 (-1) 2.80 (+1) 1.30 (+1) 44.3 
7 10.0 (-1) 6.70 (+1) 8.0 (+1) 35.0 (+1) 0.28 (-1) 1.30 (+1) 46.9 
8 10.0 (-1) 1.00 (-1) 8.0 (+1) 35.0 (+1) 2.80 (+1) 0.24 (-1) 46.9 
9 10.0 (-1) 1.00 (-1) 4.0 (-1) 35.0 (+1) 2.80 (+1) 1.30 (+1) 10.3 
10 30.0 (+1) 1.00 (-1) 4.0 (-1) 25.0 (-1) 2.80 (+1) 1.30 (+1) 3.3 
11 10.0 (-1) 6.70 (+1) 4.0 (-1) 25.0 (-1) 0.28 (-1) 1.30 (+1) 47.6 
12 10.0 (-1) 1.00 (-1) 4.0 (-1) 25.0 (-1) 0.28 (-1) 0.24 (-1) 20.2 
13 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 58.8 
14 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 58.1 
15 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 57.5 
16 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 60.8 

a HA concentrations were obtained after 120 hours of fermentation. 
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Table 4.3.3. A summary of the estimated effects of the PB-tested variables. 
Factor Estimated 

effect 
Standard 
error 

t(8) p-value 

Mean/Interc. 42.6 3.1 13.6 <0.0001 
Curvature 32.3 12.5 2.6 0.0323 
EFB 11.6 6.3 1.9 0.0998 
Peptone  41.4 6.3 6.6 0.0002 
pH -6.0 6.3 -1.0 0.3671 
Temperature  26.3 6.3 4.2 0.0030 
K2HPO4  1.7 6.3 0.3 0.7984 
(NH4)2SO4 -21.7 6.3 -3.5 0.0085 

 

Central composite rotatable design: After screening the significant variables, a CCRD was 

used to optimize four variables: the temperature (°C) and the levels of EFB (g L-1), potato peptone 

(g L-1), and (NH4)2SO4 (g L-1). Each variable was studied at five coded levels (−2, −1, 0, +1, +2), 

and the model included 28 runs with four replicates at the center value, as shown in Table 4.3.4. A 

multiple regression analysis of the model and the construction of response surface graphs were 

performed by Statistica, version 8.0 (Statsoft, Oklohoma, USA). The quality of the regression 

equation was determined by the coefficient of determination (R2), and its significance was judged by 

an F test. The fitted second order polynomial equation was explained in the form of three-

dimensional graphs to show the relationship between the response and the experimental variables. 

The point optimization method was used to optimize the maximum response of each variable. The 

samples withdrawn every 24 hours throughout the cultivation were processed to determine their HA 

concentrations, and the values obtained after 120 hours of fermentation were used as the response 

variables. 
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Table 4.3.4. The experimental CCRD design of the media nutrients and physical parameters, with both the real and 
coded values (in parentheses) and the observed values of the HA production response. 

Trial Experimental values HA  
(mg L-1)a 

HA  
(mg L-1) 

Relative 
deviation (%) 

EFB  
(g L-1) 

Peptone 
(g L-1) 

Temperature 
(°C) 

(NH4)2SO4 

(g L-1) 
Observed Predicted  

1 20.0 (-1) 2.00 (-1) 25.0 (-1) 0.44 (-1) 45.4 89.1 49.0 
2 20.0 (-1) 2.00 (-1) 25.0 (-1) 1.10 (+1) 51.1 67.2 24.0 
3 40.0 (+1) 2.00 (-1) 25.0 (-1) 0.44 (-1) 89.8 49.8 -80.3 
4 40.0 (+1) 2.00 (-1) 25.0 (-1) 1.10 (+1) 16.9 27.9 39.3 
5 20.0 (-1) 5.70 (+1) 25.0 (-1) 0.44 (-1) 70.3 69.8 -0.7 
6 20.0 (-1) 5.70 (+1) 25.0 (-1) 1.10 (+1) 79.0 47.9 -65.1 
7 40.0 (+1) 5.70 (+1) 25.0 (-1) 0.44 (-1) 44.9 83.6 46.3 
8 40.0 (+1) 5.70 (+1) 25.0 (-1) 1.10 (+1) 27.4 61.7 55.6 
9 20.0 (-1) 2.00 (-1) 35.0 (+1) 0.44 (-1) 112.3 79.4 -41.5 
10 20.0 (-1) 2.00 (-1) 35.0 (+1) 1.10 (+1) 75.4 57.5 -31.1 
11 40.0 (+1) 2.00 (-1) 35.0 (+1) 0.44 (-1) 87.5 127.5 31.4 
12 40.0 (+1) 2.00 (-1) 35.0 (+1) 1.10 (+1) 91.7 105.6 13.1 
13 20.0 (-1) 5.70 (+1) 35.0 (+1) 0.44 (-1) 157.2 145.6 -7.9 
14 20.0 (-1) 5.70 (+1) 35.0 (+1) 1.10 (+1) 61.0 123.7 50.7 
15 40.0 (+1) 5.70 (+1) 35.0 (+1) 0.44 (-1) 239.9 246.9 2.8 
16 40.0 (+1) 5.70 (+1) 35.0 (+1) 1.10 (+1) 269.6 225.0 -19.8 
17 30.0 (0) 3.85 (0) 20.0 (-2) 0.77 (0) 46.3 40.2 -15.1 
18 30.0 (0) 3.85 (0) 40.0 (+2) 0.77 (0) 172.2 193.8 11.2 
19 30.0 (0) 0.15 (-2) 30.0 (0) 0.77 (0) 6.8 1.0 -600.7 
20 30.0 (0) 7.55 (+2) 30.0 (0) 0.77 (0) 117.4 101.0 -16.2 
21 10.0 (-2) 3.85 (0) 30.0 (0) 0.77 (0) 74.8 86.0 13.1 
22 50.0 (+2) 3.85 (0) 30.0 (0) 0.77 (0) 152.7 148.0 -3.2 
23 30.0 (0) 3.85 (0) 30.0 (0) 0.11 (-2) 142.3 138.9 -2.4 
24 30.0 (0) 3.85 (0) 30.0 (0) 1.43 (+2) 98.5 95.1 -3.6 
25 30.0 (0) 3.85 (0) 30.0 (0) 0.77 (0) 137.5 117.0 -17.5 
26 30.0 (0) 3.85 (0) 30.0 (0) 0.77 (0) 136.3 117.0 -16.5 
27 30.0 (0) 3.85 (0) 30.0 (0) 0.77 (0) 139.4 117.0 -19.2 
28 30.0 (0) 3.85 (0) 30.0 (0) 0.77 (0) 136.8 117.0 -16.9 

a HA concentrations were obtained after 120 hours of fermentation.
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Statistical model validation: To validate the optimization of the media composition and 

fermentation conditions that were determined by the statistical analysis, an experiment using the 

optimized variables was conducted in triplicate for 120 hours. The mean values were used to 

confirm the results of the CCRD analysis. Moreover, the samples withdrawn every 24 hours 

throughout the cultivation were processed to determine their HA and cellular protein 

concentrations. Graphs were constructed to represent the behavior of the parameters during the 

optimized fermentation process. 

 

2.4. HA quantification 

The following methods were adapted from Badis et al. [26]. The samples were centrifuged 

at 10,000 g for 15 min (Rotina 380 R Centrifuge, Hettich Zentrifugen, Tuttlingen, Germany), and 

the supernatant fractions were filtered using the Microfilter syringe system (Thomapor®-

Membranfilter, 5FP 025/1). The supernatant fractions were diluted 5-fold with a 0.5 M NaOH 

solution at pH 4.5±0.01, and the absorbances at 350 nm were measured. Standard curves were 

obtained from the absorbances at 350 nm of known concentrations of commercial HA (Sigma-

Aldrich, United Kingdom) in a 0.5 M NaOH solution at pH 4.5±0.01. 

 

2.5. Protein quantification 

An indirect estimation of the fungal biomass was made by determining the protein 

concentration. Protein quantification was performed according to the method adapted by Callow 

and Ju [23] to quantify only the cellular proteins. Culture samples (3.0 mL) were collected and 

centrifuged at 10,000 g for 10 min to obtain pellets. The supernatants were collected for further 

processing. The pellets were re-suspended and washed twice with de-ionized water. After each 

wash step, the biomass was centrifuged and the water discarded. To release the intracellular 

proteins, the pellets were suspended in 3.0 mL of 1 N sodium hydroxide and heated at 100 °C for 

10 min. After cooling, the digested samples were centrifuged at 10,000 g for 10 min to remove 

the cell debris and other solids; the supernatants were then collected and their protein 

concentrations were determined via the bicinchoninic acid assay [28], using a commercial kit 
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(BCA Protein Assay, Thermo Scientific, USA). Standard curves were constructed using bovine 

serum albumin. 

 

3. Results and Discussion 

Selection of critical media components and fermentation conditions: Six variables were 

screened by PB, as shown in Table 4.3.1. The temperature and the concentrations of EFB, peptone 

and (NH4)2SO4 were the four of those screened variables that were considered to have a 

statistically significant effect on the HA production by presenting a p-value<0.1 (Table 4.3.3). 

Among these four variables, only the (NH4)2SO4 concentration had a negative effect on HA 

production. The peptone concentration had the greatest positive effect on HA production, 

followed by temperature and EFB concentration. These four variables were selected for further 

optimization by CCRD to maximize the HA production. K2HPO4 concentration and pH had no 

significant effect on HA production at the confidence level studied (90%). According to 

Bhattiprolu [29], T. viride is able to grow under wide range of pH (4.0 to 9.0), which may explain 

the fact that this factor have not been statistically significant. Regarding to the K2HPO4 

concentration, the average chemical formula of HA elucidated by Schnitzer and Khan [30] is C187 

H186 O89 N9 S2, which do not contain phosphorus and potassium, explaining the absence of 

significant effect of this factor. 

Media components and fermentation conditions optimization: Following the variable 

screening, a CCRD optimization including 28 experiments was performed to determine the 

optimal levels of the four significant factors (the temperature and the EFB, peptone and 

(NH4)2SO4 concentrations) that affected HA production. The real and coded values of each 

variable used in the trials, as well as the resulting HA concentration obtained after 120 hours of 

fermentation, are shown in Table 4.3.4. The values of the parameters considered not statistically 

significant by the PB (the pH and K2HPO4 concentration) were fixed at the central level (code 0) 

shown in Table 4.3.1.  

According to the regression analysis of the CCRD (Table 4.3.5), the model terms 

temperature (Q), EFB (Q), (NH4)2SO4 (L), (NH4)2SO4 (Q), temperature (L) by (NH4)2SO4 (L), 

peptone (L) by EFB (L), peptone (L) by (NH4)2SO4 (L) and EFB (L) by (NH4)2SO4 (L) were not 
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significant (p>0.10). However, the terms (NH4)2SO4 (L) and peptone (L) by EFB (L) were 

ultimately included in the model because their p-values were very close to 0.10.  

 

Table 4.3.5. A summary of the regression coefficients for the CCRD. 

Factor Regression 
coefficients 

Standard 
error 

t(13) p-value 

Mean/Interc. 137.5 18.0 7.6 <0.0001 
Temperature (L) 38.4 7.3 5.2 0.0002 
Temperature (Q) -8.1 7.3 -1.1 0.2879 
Peptone (L) 25.0 7.3 3.4 0.0047 
Peptone (Q) -19.9 7.3 -2.7 0.0178 
EFB (L) 15.5 7.3 2.1 0.0549 
EFB (Q) -7.0 7.3 -1.0 0.3573 
(NH4)2SO4 (L) -10.9 7.3 -1.5 0.1598 
(NH4)2SO4 (Q) -5.3 7.3 -0.7 0.4793 
Temperature (L) by Peptone (L) 21.4 9.0 2.4 0.0333 
Temperature (L) by EFB (L) 21.9 9.0 2.4 0.0303 
Temperature (L) by (NH4)2SO4 (L) -1.5 9.0 -0.2 0.8732 
Peptone (L) by EFB (L) 13.3 9.0 1.5 0.1635 
Peptone (L) by (NH4)2SO4 (L) 1.5 9.0 0.2 0.8671 
EFB (L) by (NH4)2SO4 (L) 3.9 9.0 0.4 0.6717 
Explained variance (R2) = 83.8% 

The linear effect of the temperature variable was the most significant, with a p-value < 

0.0002, which can be explained by the fact that enzyme activities as well as regulation and 

transport systems are in generally affected enormously by the temperature in microbial systems 

[31]. The linear effect of EFB concentration, as well as of temperature, was positive, once this 

component was the main carbon source for HA production by T. viride in the studied media. 

Regarding the nitrogen sources, both peptone (L) and (NH4)2SO4 (L) concentration had 

significant effect on HA production although the first had a positive effect and the second a 

negative effect. Juwon and Emmanuel [32] tested in their work the influence of nitrogen sources 

in growth and enzymes production by T. viride strain, where they observed that organic nitrogen 

substrates, like peptone, supported better biomass yield and enzyme activity of the fungus as 

compared to the inorganic nitrogen substrates tested.  
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The interactions temperature (L) by peptone (L), temperature (L) by EFB (L) and peptone 

(L) by EFB (L) had positive coefficients, increasing HA production, whereas the (NH4)2SO4 (L) 

and Peptone (Q) terms had negative coefficients, decreasing HA production. 

A nine-variable quadratic polynomial regression model (Eq. 4.3.1) was used to predict the 

HA production as a function of the four process parameters, including the temperature (T, ◦C), 

peptone concentration (P, g L-1), EFB concentration (EFB, g L-1) and (NH4)2SO4 concentration 

((NH4)2SO4, g L-1). The equation was constructed from the statistically significant terms and 

includes (NH4)2SO4 (L) and peptone (L) by EFB (L). The values for the independent variables in 

Eq. 4.3.1 are the coded values. 

HA (g L-1) = 117.02 + 38.40*T + 25.01*P - 16.50*P2 + 15.49*EFB - 

10.95*(NH4)2SO4 + 21.40*T*P + 21.86*T*EFB + 13.28*P*EFB 

Eq. 4.3.1 

 

The statistical significance of the model was checked by an F test (ANOVA), and the 

results are shown in Table 4.3.6. The F test value (10.27) for the regression was highly significant 

(5.1 times higher than the critical value of 2.02), and the percent of variation in the model was 

suitable (R2=81.2%). Taking into account the inherent variability of bioprocesses, the model 

could be considered predictive and was therefore used to generate a contour plot and a response 

surface (Figure 4.3.1) for HA production.  

Table 4.3.6. ANOVA results for the proposed model. 

Source of 
variance 

Sum of 
squares 

Degrees of 
freedom 

Mean squares F testa 

Regression 84,304.38 8 10,538.05 10.27 
Residual 19,501.66 19 1,026.40  
Total 103,806.04 27   
Explained variance (R2) = 81.2%; aF0.10; 8; 19 (Ftabulated) = 2.02 

Eq. 4.3.1 was used to plot 3-D response surfaces and their corresponding 2-D contours in 

Statistica 8.0 to show how the HA production would be affected by different levels of the four 

process variables. The surface and contour plots are shown in Figure 4.3.1. The response surfaces 

can be used to explain how two process parameters interact with each other when the other two 
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parameters are fixed at their central levels. Each 3-D response surface curve has a corresponding 

2-D contour curve, representing an infinite number of points for two independent process 

parameters. In the contour curves, the color level represents the different responses; the darker 

area demonstrates the conditions that lead to a higher HA production. Figure 4.3.1 (f) and (l) show 

that there are no significant interactions between the (NH4)2SO4 concentration and either the 

temperature or the EFB concentration, when the other two process parameters are fixed at their 

central levels. Figure 4.3.1 (b), (d) and (f) show that the highest temperature level (+2) is required 

to achieve a high HA production. The same analysis can be performed for the EFB concentration, 

and according to Figure 4.3.1 (d), (h) and (l), a high HA production is achieved when 50 g/L EFB 

is used. On the other hand, the best (NH4)2SO4 concentration level is -2, both economically and 

for HA production. No increase is seen when the peptone concentration is raised from 5.70 g L-1 

(+1) to 7.55 g L-1 (+2), justifying its use at the +1 level to reduce the fermentation cost. 
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Figure 4.3.1. Response surface plots for HA production showing the interactive effects of:  

(a) the temperature and the peptone concentration, keeping the EFB and (NH4)2SO4 concentrations at central values (3D); (b) the temperature and the peptone concentration, 
keeping the EFB and (NH4)2SO4 concentrations at central values (2D); (c) the temperature and the EFB concentration, keeping the peptone and (NH4)2SO4 concentrations at 

central values (3D); (d) the temperature and the EFB concentration, keeping the peptone and (NH4)2SO4 concentrations at central values (2D); (e) the temperature and the 
(NH4)2SO4 concentration, keeping the peptone and EFB concentrations at central values (3D); (f) the temperature and the (NH4)2SO4 concentration, keeping the peptone and 
EFB concentrations at central values (2D); (g) the peptone and EFB concentrations, keeping the temperature and the (NH4)2SO4 concentration at central values (3D); (h) the 
peptone and EFB concentrations, keeping the temperature and the (NH4)2SO4 concentration at central values (2D); (i) the peptone and (NH4)2SO4 concentrations, keeping 

the temperature and the EFB concentration at central values (3D); (j) the peptone and (NH4)2SO4 concentrations, keeping the temperature and the EFB concentration at 
central values (2D); (k) the EFB and (NH4)2SO4 concentrations, keeping the temperature and the peptone concentration at central values (3D); (l) the EFB and (NH4)2SO4 

concentrations, keeping the temperature and the peptone concentration at central values (2D).
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Statistical model validation: With the help of special CCRD features, the point prediction 

and optimum values of the four fermentation variables were determined to maximize the 

production of HA. According to the 2D contour curves shown in Figure 4.3.1, the highest levels 

(+2) of temperature and EFB and the lowest level (-2) of (NH4)2SO4 lead to the highest HA 

production. Both the +1 and +2 levels of peptone lead to a higher HA production. Therefore, the 

model validation was carried out using the +2 levels for the EFB concentration and temperature, -

2 for the (NH4)2SO4 concentration and +1 for the peptone concentration, which is the best option 

economically. The real values used were 40 °C , 50 g L-1 EFB, 5.7 g L-1 peptone and 0.11 g L-1 

(NH4)2SO4. Experiments were carried out in triplicate with the predicted conditions and 

concentrations to validate the model. The similarity between the predicted response of HA 

production (412.0 mg L-1) and the experimental value (428.4±17.5 mg L-1) proves the validity of 

the model. Moreover, the relative deviations in the Table 4.3.4 trials that had similar levels to those 

used in the model validation (trials 18, 20, 22 and 23) were low, with a high degree of similarity 

between the predicted and experimental values, further validating the model. 

Comparing the amount of HA produced after optimization with that produced in our 

previous work [24], which is, as far we know, the first submerged fermentation process proposed 

for HA production, a 7.3-fold increase was achieved. This is a high value when compared to the 

other bioprocess optimization methods using Trichoderma seen in literature. Singhania et al. [33] 

used process optimization to improve the cellulase production by T. reesei RUT C30 under solid-

state fermentation, resulting in a 6.2-fold increase in production. El-Sayed [34] increased by 2.2-

fold the production of L-glutaminase by T. koningii, using wheat bran as a substrate. Alan et al. 

[35] reached an approximately 1.5-fold increase in cellulase activity by statistically optimizing the 

process conditions in a liquid state bioconversion using T. harzianum. 

The time profiles of HA production are represented in Figure 4.3.2 which shows that the 

production of HA by T. viride in the optimized culture media increases substantially after 96 hours 

of fermentation. Moreover, it is possible to observe that the concentration of these acids increases 

throughout the fermentation time due to its accumulation in the medium. According to Aiken et al. 

[1], HA are the fraction of the organic matter that is most resistant to microbial degradation, which 

may explain the observed accumulation. This confirms that the HA concentration after 120 hours 

of fermentation was the appropriate variable to choose as the response in the statistical analysis 

(both PB and CCRD). 
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Figure 4.3.2. The cellular proteins and HA concentration over time during submerged fermentations using the T. 

viride strain and the parameters optimized by CCRD. 

The concentration of cellular proteins, an indirect method of biomass estimation, indicates 

fast growth of the fungus between 0 and 48 hours of fermentation and mild growth between 48 and 

120 hours (Figure 4.3.2). Christias et al. [32] determined in their work the amount of protein present 

in the biomasses of five different genera of fungi, obtaining a range of 30% to 40%. By applying 

these results to the present study, it is estimated that the T. viride biomass began at approximately 

4.7-6.2 g L-1, relative to the biomass from the inoculum, and reaches 34.6-46.1 g L-1, a population 

increase of nearly 7.4-fold. 

According to the Figure 4.3.2, the HA formation seems to be not coupled with energy 

metabolism, since the cellular proteins and HA concentration curves have different behavior along 

the 120 hours of cultivation. 

4. Conclusions 

The present study demonstrated that T. viride successfully produced HA via the submerged 

fermentation of EFB. HA production levels were influenced by the temperature as well as the EFB, 

peptone and (NH4)2SO4 concentrations, and these parameters were successfully optimized using a 

statistics-based response surface model. The screening and optimization methodologies described 

here represent valuable tools for the development of cost-effective industrial fermentation media, 

particularly because the carbon source is an underutilized residue, adding value to the procedure. 

The profile of HA production obtained by the validation assays throughout the fermentation 
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duration indicates that cultivation studies beyond 120 hours can yield even more of these acids. 

Furthermore, the production of HA in a bioreactor as well as its purification would aid the 

characterization of this process. 
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Abstract 

The remarkable properties of humic acids (HA) have generated a broad spectrum of applications 

in pharmaceutical, cosmetic and agricultural fields, and encouraged fermentation studies focusing 

on HA production. This work compares the HA production of Trichoderma (viride and reesei) 

species using empty fruit bunch (EFB) as the substrate during submerged fermentation. The 

performance of each species was compared by examining spore production in oat medium, and the 

significant medium components and fermentation conditions were identified using Plackett and 

Burman statistical design. For both Trichoderma species, the results indicated that HA production 

can be enhanced by increasing the temperature, EFB and peptone concentrations and by decreasing 

the (NH4)2SO4 concentration. T. reesei performed better than T. viride, generating 3-fold more HA. 

 

Keywords: humic acids; Trichoderma reesei; Trichoderma viride; submerged fermentation; 

empty fruit bunch; Plackett & Burman   
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1. Introduction 

Trichoderma is a genus of asexually reproducing fungi with a high level of genetic 

diversity (Harman et al. 2004). They are frequently found growing in soil as well as on other 

substrates, such as wood, bark, and other fungi, demonstrating their high opportunistic potential 

and their adaptability to various ecological conditions (Druzhinina 2011). These characteristics 

indicate that this genus could be used in many biotechnological applications (Esposito and Silva 

1998). The genus Trichoderma is widely used in industrial applications, because they produce 

extracellular lignocellulose-degrading hydrolases in large amounts (Paulo and Gubitz 2003), which 

can be useful for recycling cellulosic waste materials as well as producing useful by-products 

(Samuels 1996). 

Humic acids (HA), a component of the organic matter in soil, are the soil fraction that is 

most resistant to microbial degradation. They are complex polymeric organic acids with a wide 

range of molecular weights and exist as heterogeneous mixtures of a variety of organic compounds, 

including aromatic, aliphatic, phenolic, and quinolic functional groups (Aiken 1985). They are one 

of the most active fractions of organic matter and affect a variety of chemical, physical, and 

biological reactions. Previously recognized for agricultural applications, they have received 

growing attention from the biomedical field due primarily to their antiviral, profibrinolytic, anti-

inflammatory and estrogenic activities (Yamada et al. 1998), which are of great importance for 

pharmaceutical and biomedical applications (von Borstel et al. 1994). Important sources of HA are 

leonardite, which contains 40% HA, and black peat and brown coal, both of which contain 10% 

HA (Lester 2009). However, harvesting HA from non-renewable carbon resources can be 

expensive and environmentally/ecologically unsustainable. Moreover, the extraction of peat leads 

to the destruction of peatlands, which are important for biodiversity, carbon storage and flood risk 

management (Alexander 2010). Thus, it is desirable to use more ecologically sustainable 

precursors/feedstocks for HA and to develop cheaper and cleaner methods for the extraction of this 

valuable product.  

For economic reasons, industrial fermentation involves complex, almost indefinable 

substrates that are often the by-products of other industries. Empty fruit bunch (EFB), a cellulosic 

material source containing 43.8% cellulose, 35.0% hemicelluloses, and 16.4% lignin (Hamzah et 

al. 2011), is a strong candidate for use as a fermentation substrate. EFB is the product of oil palm 

processing and is produced in large quantities, but it is a waste product that has not been completely 
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utilized: 23% of the fresh fruit bunch (Law et al. 2011) used in oil palm production remains unused 

as EFB. Thus, there is a growing interest in identifying uses for EFB (Thambirajah et al. 1995) and 

reducing the large volume of waste and ensuing environmental problems (Sudiyani 2009).   

Although no quantitative studies have been performed previously, Trichoderma spp. is a 

suitable genus for the production of HA from EFB. These fungi have been recognized for their 

extreme facility in producing a large variety of extracellular enzymes and the degradation of 

lignocellulose (Kirk and Farrell 1987). Furthermore, T. viride and T. reesei are the most extensively 

studied fungi in the field of cellulosic material degradation (Cullen and Kersten 1992). 

In our previous work, we demonstrated the production of HA from EFB using a T. viride 

strain (Motta and Santana 2013). This work extends our previous findings by comparing the 

performance of T. reesei and T. viride in HA production from EFB, as well as evaluating medium 

components and fermentation conditions. Spores from both species were produced by submerged 

fermentation in oat medium as previously described for T. viride (Motta and Santana 2012). The 

effects of medium components and fermentation conditions were compared using Plackett and 

Burman (PB) statistical design (Plackett & Burman 1946).  

 

2. Materials and Methods 

2.1. Microorganism maintenance 

For storage, the T. reesei culture, purchased from Fundação Tropical (São Paulo, Brazil), 

was grown on potato dextrose agar plates at 24 °C for 10 days. After sporulation, the spores were 

resuspended in a sterile 20% glycerol solution. This mixture was stored in 1.2 ml cryotubes at −70 

°C.  

2.2. Production of T. reesei spores in oat medium 

The spore production and fermentation analysis for T. reesei were performed as previously 

described by Motta and Santana (2012) for T. viride. 

The medium was prepared by adding 30 g of oatmeal (Quaker Oats Company®, thin 

flakes; see Table 4.4.1 for detailed composition) into 1 L of distilled water and boiling the 

suspension for 90 min at 90 °C with constant stirring. Immediately after heating, the suspension 

was filtered through a sieve (0.150 mm diameter holes). Distilled water was added to the filtrate to 

achieve a final volume of 1 L. Then, 5 g of potato peptone purchased from Sigma-Aldrich was 
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added, and the media was adjusted to pH 6.0 (Al-Taweil et al. 2009) prior to autoclaving at 121 °C 

for 15 min. 

Table 4.4.1. Composition of oatmeal thin flakes (data collected from the manufacturer’s product specification sheet, 
Quaker Oats Company®). 

Constituent Content per 100 g 

Carbohydrate 56.7 

Protein 14.3 

Total fat 7.3 

Fibers 9.7 

β-glucan 4.0 

The cultures were grown in 500 mL Erlenmeyer flasks containing 300 mL of oatmeal 

culture media inoculated with the spore suspension prepared as described in the previous section 

(2.1. Microorganism maintenance). To obtain the same initial concentration of spores as in our 

previous work with T. viride, 0.4 ml of the spore suspension were used. The culture flasks were 

incubated at 24°C at 150 rpm. During 120 hours of cultivation, samples were collected every 24 

hours for dry biomass estimation and cellular protein quantification, which are direct and indirect 

method for fungal biomass determination, respectively. Image analysis was performed every 24 

hours, and spore counts were performed at 0 and 120 hours of fermentation. 

 

2.2.1. Dry weight biomass 

Based on the methodology adapted by Szijártó et al. (2004), in which the optical density 

was used to evaluate T. reesei biomass behavior in delignified pine pulp, the dry biomass 

concentration of T. reesei was evaluated by reading the optical density at 600 nm in a 

spectrophotometer. The absorbance at 600 nm was correlated to the cell dry weight per culture 

volume. To determine the dry weight, the fungal biomass was extracted from the culture medium 

by heating an aliquot of known volume at 85 °C under constant agitation for 10 min after dilution 

in distilled water at a ratio of 1:10. After heating, the aliquot was filtered through coffee filter paper, 

and the filtrate was collected. The solids were retained, heated and filtered as described above until 

the green color (typical of Trichoderma spores) disappeared. The total volume of the filtrate was 

centrifuged at 10,000 g at 5 °C, and the supernatant was discarded. The precipitate was dried at 
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105 °C to achieve a constant weight and placed in a desiccator; then, the fungal mass was 

determined.  

2.2.2. Cellular protein quantification 

Indirect estimation of the fungal biomass was performed by determining the protein 

concentration in each sample. Protein quantification was performed according to the method 

adapted by Callow and Ju (2012) to quantify only the cellular proteins. Culture samples (3.0 mL) 

were collected and centrifuged at 10,000 g for 10 min to obtain pellets. The supernatants were 

collected for further processing. The pellets were resuspended and washed twice with deionized 

water. After each wash step, the biomass was centrifuged and the water was discarded. To release 

intracellular proteins, the pellets were suspended in 3.0 mL of 1 N sodium hydroxide and heated at 

100 °C for 10 min. After cooling, the digested samples were centrifuged at 10,000 g for 10 min to 

remove the cell debris and other solids; the supernatants were then collected, and the protein 

concentrations were determined by the bicinchoninic acid assay (Smith et al. 1985) using a 

commercial kit (BCA Protein Assay, Thermo Scientific, USA). Standard curves were generated 

with bovine serum albumin. 

2.2.3. Spore counts 

The spores were directly counted using a Neubauer chamber. After mycelia and conidia 

were observed with a Reichert-Jung Series 150 microscope (Reichert, USA), indicating that fungal 

sporulation had been completed at 120 hours of fermentation, the spore count was performed at 0 

and 120 hours to compare the initial concentration of spores to the spore concentration at the end 

of fermentation. 

2.3. HA production 

The HA production for both species was analyzed and compared according to the results 

obtained with the PB assay as well as the effect of medium components and fermentation 

conditions.  

2.3.1. Submerged fermentation 

EFB was provided by Oil Palm S/A - Agro-industrial OPALMA (Bahia, Brazil) and was 

milled to a standardized particle size between 125 and 500 μm (115 and 32 mesh in the Tyler series, 
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respectively). The composition of the EFB particles was determined with an elemental analyzer 

CNH (Perkin Elmer Series II 2400, USA) and indicated that the elemental mass percentage is 

48.0±0.7% carbon, 2.6±0.1% nitrogen and 6.1±0.2% hydrogen. These results are expressed as the 

mean of triplicates and the average deviation. Potato peptone was purchased from Fluka Analytical 

(France); (NH4)2SO4 and K2HPO4 were purchased from Ecibra (Brazil). 

T. reesei and T. viride were cultured in 500 mL Erlenmeyer flasks containing 270 mL of 

culture media inoculated with 30 mL of inoculum, which consisted of spores produced in oat 

medium for both species (item 2.3). The culture flasks were incubated at 150 rpm, and samples 

were withdrawn at 120 hours of fermentation for HA quantification.  

2.3.2. HA quantification 

According to the methods adapted by Badis (2010), the samples were centrifuged at 

10,000 g for 15 min (Rotina 380 R Centrifuge, Hettich Zentrifugen, Tuttlingen, Germany), and the 

supernatant fractions were filtered using the Microfilter syringe system (Thomapor®-

Membranfilter, 5FP 025/1). The supernatant fractions were diluted five-fold with 0.5 M NaOH 

solution, and the absorbances at 350 nm at pH 4.5±0.01 were measured. Standard curves were 

obtained from the absorbance at 350 nm of known concentrations of commercial HA (Sigma-

Aldrich, United Kingdom) in 0.5 M NaOH solution, pH 4.5±0.01. 

2.3.3. PB design 

The PB design was used for screening the selected variables, which had significant effects 

on HA production. Six variables were screened: EFB (g L-1) as a carbon source; potato peptone (g 

L-1) as an organic nitrogen source; pH; temperature (°C); and K2HPO4 (g L-1) and (NH4)2SO4 (g L-

1) as inorganic nitrogen sources (Table 4.4.2). Each factor in this experimental design was 

examined at three levels: low (−), high (+) and central (0) to evaluate the linear and curvature 

effects of the variables (Table 4.4.2).  
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Table 4.4.2. Six variables screened using PB design at lower (-1), higher (+1) and central (0) levels. 

Variables Units Experimental values 

-1 0 +1 

EFB g L-1 10.0 20.0 30.0 

Peptone  g L-1 1.00 3.85 6.70 

pH - 4.0 6.0 8.0 

Temperature  °C 25.0 30.0 35.0 

K2HPO4  g L-1 0.28 1.54 2.80 

(NH4)2SO4 g L-1 0.24 0.77 1.30 

Table 4.4.3 shows the design with 16 PB trials along the levels. This statistical design 

does not involve the interactions between the selected variables and follows a linear approach for 

screening the factors (Plackett and Burman 1946). 

Table 4.4.3. Experimental PB design used to screen six variables with real and code values (parentheses) for the 
response of HA production along with its observed values. 

Trial Experimental values HA 
(mg L-1)* 

EFB  
(g L-1) 

Peptone 
(g L-1) 

pH             
 

Temperature 
(°C) 

K2HPO4   

(g L-1)  
(NH4)2SO4 

(g L-1) 
Observed 
for T. 

reesei 

Observed 
for T. 

viride 

1 30.0 (+1) 1.00 (-1) 8.0 (+1) 25.0 (-1) 0.28 (-1) 0.24 (-1) 128.1 12.6 
2 30.0 (+1) 6.70 (+1) 4.0 (-1) 35.0 (+1) 0.28 (-1) 0.24 (-1) 318.7 85.2 
3 10.0 (-1) 6.70 (+1) 8.0 (+1) 25.0 (-1) 2.80 (+1) 0.24 (-1) 112.6 48.9 
4 30.0 (+1) 1.00 (-1) 8.0 (+1) 35.0 (+1) 0.28 (-1) 1.30 (+1) 189.1 38.3 
5 30.0 (+1) 6.70 (+1) 4.0 (-1) 35.0 (+1) 2.80 (+1) 0.24 (-1) 182.9 107.0 
6 30.0 (+1) 6.70 (+1) 8.0 (+1) 25.0 (-1) 2.80 (+1) 1.30 (+1) 159.8 44.3 
7 10.0 (-1) 6.70 (+1) 8.0 (+1) 35.0 (+1) 0.28 (-1) 1.30 (+1) 113.7 46.9 
8 10.0 (-1) 1.00 (-1) 8.0 (+1) 35.0 (+1) 2.80 (+1) 0.24 (-1) 75.4 46.9 
9 10.0 (-1) 1.00 (-1) 4.0 (-1) 35.0 (+1) 2.80 (+1) 1.30 (+1) 27.1 10.3 
10 30.0 (+1) 1.00 (-1) 4.0 (-1) 25.0 (-1) 2.80 (+1) 1.30 (+1) 1.1 3.3 
11 10.0 (-1) 6.70 (+1) 4.0 (-1) 25.0 (-1) 0.28 (-1) 1.30 (+1) 85.5 47.6 
12 10.0 (-1) 1.00 (-1) 4.0 (-1) 25.0 (-1) 0.28 (-1) 0.24 (-1) 0.6 20.2 
13 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 143.4 58.8 
14 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 142.3 58.1 
15 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 139.7 57.5 
16 20.0 (0) 3.85 (0) 6.0 (0) 30.0 (0) 1.54 (0) 0.77 (0) 147.1 60.8 

* HA concentration obtained after 120 hours of fermentation. 
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3. Results  

3.1. Spores production in oatmeal medium 

As shown in Figure 4.4.1, the biomass and protein concentration curves have the same 

behavior over 120 hours of cultivation for both T. viride (Motta and Santana 2012) and T. reesei. 

Moreover, it is possible to observe by both biomass estimation methods that there is effectively no 

fungal growth after 96 hours of fermentation, with the largest growth rate observed between 24 and 

72 hours of fermentation. 

With regard to the relationship between T. viride (Motta and Santana 2012) and T. reesei 

biomass concentration and cellular protein concentration, as described by Eq. 4.4.1 and Eq. 4.4.2 

respectively, there is a strong correlation value (0.98) for both species. 

Biomass (g L-1) = 3.78 * Protein (g L-1) + 0.11 Eq. 4.4.1 
 

  

Biomass (g L-1) = 2.33 * Protein (g L-1) + 0.23 Eq. 4.4.2 
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Figure 4.4.1 Biomass and cellular protein concentration over time during the submerged fermentation of oatmeal 

with T. viride (Motta and Santana 2012) and T. reesei. 
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Using image analysis with optical microscopy, it was observed that at 120 hours of 

fermentation the T. reesei strain completed its sporulation phase, and only spores are present in the 

culture medium at 120 hours, as was observed for the T. viride strain by Motta and Santana (2012). 

The initial concentration of spores in the culture medium was 4.54 x 104 spores mL-1, and after 120 

hours of fermentation, the spore concentration found in the fermentation medium was 6.36 x 106 

spores mL-1.  

3.2. HA production 

Six variables were screened using PB, as shown in Table 4.4.3, which reports the HA 

concentration for each trial and for both species. Trials 13 to 16 consisted of the center points, 

which were the same conditions used in our previous work in which we demonstrated the 

production of HA using EFB and the T. viride strain (Motta and Santana 2013). According to the 

values obtained for these center points, the average production of HA was 143.1±3.0 mg L-1 and 

58.8±1.4 mg L-1 for T. reesei and T. viride, respectively. The largest HA production by T. reesei 

was observed in Trial 2 (318.7 mg L-1), which used the highest level for EFB, peptone and 

temperature, and the lowest level (-1) for pH, K2HPO4 and (NH4)2SO4. For T. viride, Trial 5 

generated the highest HA production (107.0 mg L-1), which used the highest level for EFB, peptone, 

temperature and K2HPO4, and the lowest level (-1) for pH and (NH4)2SO4. 

From the summary of effects shown in Table 4.4.4 and obtained using Statistica version 

8.0 (Statsoft, Oklahoma, USA), the temperature and the concentration of EFB, peptone, (NH4)2SO4 

and K2HPO4 were the statistically significant variables with an effect on HA production in T. reesei 

(p-value<0.1). Among these five variables, (NH4)2SO4 and K2HPO4 concentration had a negative 

effect on HA production, presenting similar estimated effect values (-40.3 and -46.1, respectively). 

The EFB concentration had the greatest positive effect on HA production, followed by peptone 

concentration and temperature. EFB, peptone and temperature have a highly significant effect on 

HA production, with a p-value much smaller than 0.1. For T. viride, four of the six variables 

screened were significant, because unlike T. reesei, K2HPO4 levels were not statistically 

significant. For T. viride, (NH4)2SO4 concentration had a negative effect on HA production (-21.7), 

and the peptone concentration had the greatest positive effect on HA production, followed by 

temperature. 
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Table 4.4.4. Summary of estimated effects from the PB. 
Factor  T. reesei T. viride 

 Estimated 
effect 

Standard 
error 

t(8) p-value Estimated 
effect 

Standard 
error 

t(8) p-value 

Mean/Interc.  116.2 10.2 11.4 <0.0001 42.6 3.1 13.6 <0.0001 
Curvature  53.8 40.7 1.3 0.2229 32.3 12.5 2.6 0.0323 
EFB  94.1 20.3 4.6 0.0017 11.6 6.3 1.9 0.0998 
Peptone   92.0 20.3 4.5 0.0019 41.4 6.3 6.6 0.0002 
pH  27.1 20.3 1.3 0.2188 -6.0 6.3 -1.0 0.3671 
Temperature   69.9 20.3 3.4 0.0089 26.3 6.3 4.2 0.0030 
K2HPO4   -46.1 20.3 -2.3 0.0530 1.7 6.3 0.3 0.7984 
(NH4)2SO4  -40.3 20.3 -2.0 0.0828 -21.7 6.3 -3.5 0.0085 

 

Using the Pareto Chart for both Trichoderma species (Figure 4.4.2), we can identify the 

variables that do or do not significantly affect HA production by comparing the value of the statistic 

(tcal) for each variable, represented by the length of the bar, and the critical value (tcrit = 1.860), 

represented by the red line. Variables with tcal > tcrit have a statistically significant effect on HA 

production, and the variables with tcal < tcrit are not considered statistically significant. With respect 

to the curvature, it was not statistically significant for T. reesei (tcalc = 1.322 < tcrit = 1.860) but was 

statistically significant for T. viride (tcalc = 2.586 > tcrit = 1.860). 

 
Figure 4.4.2 Pareto chart of the standardized effects of independent variables. Response HA mg L-1 and alpha = 0.10. 
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4. Discussion 

Biomass is a fundamental parameter in the characterization of microbial growth, and its 

measurement is essential for kinetic studies on fermentation. Complete recovery of fungal biomass 

from the substrate is very difficult when the fungal hyphae penetrates into and binds tightly to the 

solid substrate particles (Abd-Aziz et al. 2008). Based on our previous work (Motta and Santana 

2012), substrate particles are suspended in the oat medium used for Trichoderma spores 

production, creating a non-conventional heterogeneous medium based on the viscosity, average 

particle diameter, size distribution and porosity of the particles. The present study, as well as our 

previous work, adopted two methods for biomass quantification, one direct and one indirect, 

consisting of dry biomass and cellular proteins quantification, respectively.  

Christias et al. (1974) determined in their work the amount of protein present in the 

biomass of five different genera of fungi, and they obtained a range of 30% to 40%. By applying 

these results to the present study, it is possible to observe that the ratio between protein and biomass 

concentration is within the range obtained by Christias et al. (1974). 

According to the optical microscopy image analysis, after 120 hours of fermentation the 

sporulation phase is complete, and only spores are present in the culture medium. Therefore, the 

spore counts were performed at 0 and 120 hours of fermentation to determine the increase in the 

fungal population using oat medium for submerged fermentation. The comparison between the 

initial concentration of spores in the culture and after 120 hours of fermentation indicated that there 

were two phases of log growth during the 5 days of oatmeal-based fermentation.  

Watanabe et al. (2006) used a culture medium containing soluble starch and soybean meal 

supplemented with KH2PO4, KCl, MgSO4•7H2O and FeSO4•7H2O to produce T. asperellum spores 

by submerged fermentation. They obtained 7.8 x 108 spores/mL after 7 days of fermentation from 

a starting inoculum of 1.0 x 106 spores/mL. Jakubíková et al. (2006) optimized T. atroviride 

sporulation in submerged fermentation on cellobiose supplemented with NaNO3, K2HPO4, KCl, 

MgSO4, and FeSO4. The culture medium was inoculated with 1 x 106 spores/mL, and the spore 

concentration reached a maximum level of 2.68 x 108 spores/mL after 4 days of fermentation. 

Comparing the results obtained in the present work to past results indicates that the 

submerged fermentation of oatmeal is a good alternative for the production of T. reesei spores. 

Moreover, the culture medium used in this study for spore production was supplemented only with 

peptone, a safe supplement for culture media that is animal- and endotoxin-free. These compounds 
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can cause illness in humans and are considered contaminants that must be avoided or minimized 

in the preparation of pharmaceutical products. 

Because both species were grown under identical conditions, T. reesei in this work and T. 

viride in a previous study (Motta and Santana 2013), and are completely transformed into spores 

after 120 hours of fermentation, it is possible to make a comparison between the two species 

regarding growth in oat medium. For T. viride, the initial concentration of spores (0 h) was 4.20 x 

104 spores mL-1, reaching 3.52 x 106 spores mL-1 at the end of the fermentation (120 hours) (Motta 

and Santana 2012). With respect to the T. reesei spore concentration, the initial and final values 

were 4.54 x 104 and 6.36 x 106, respectively. Therefore, we observed that there was an 84-fold 

increase in the population of T. viride and a 140-fold increase in the population of T. reesei after 

120 hours of cultivation under the same conditions. The highest growth potential for T. reesei with 

respect to T. viride can also be observed by comparing the biomass concentration (g L-1) throughout 

the fermentation for both species (Figure 4.4.1). Trichoderma species produces large quantities of 

hydrolytic enzymes (Papavizas 1985) including chitinases, β-1,3-glucanases (Howell et al. 2000), 

cellulases, amylases and proteases (Bastos 1996), which explains the high growth capability of 

each species. However, T. reesei is regarded in the literature as one of the main producers of 

endoglucanases, secreting at least five types of these enzymes and justifying the increased growth 

in culture compared to T. viride, because the oat media is comprised of β-glucans that can be 

hydrolyzed to glucose, providing the fungus with a readily usable carbon source for growth 

(Herpoël-Gimbert et al. 2008). 

The T. reesei and T. viride spores were then used in the submerged fermentation of EFB 

for HA production. By performing the PB trials, the species were compared in terms of the HA 

produced as well as analyzed for of the effect of fermentation conditions on the production of HA.  

By comparing the central points of the PB for both species, we observed that T. reesei HA 

production was 2.4-fold greater than T. viride. With respect to the highest HA production for each 

species (Trial 2 for T. reesei and Trial 5 for T. viride), this value increases to 3-fold. Although many 

species of Trichoderma have previously been used for industrial enzyme production and 

lignocellulosic degradation (Nevalainen et al., 1994), T. reesei is known to be the main producer 

of cellulases and hemicellulases acting in synergy to degrade lignocellulosic materials (Herpoël-

Gimbert et al. 2008), which explains its increased production of HA.  
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To understand the effect of the variables involved in the proposed process, we used PB 

statistical analysis, in which the response variable (HA concentration) was examined at 120 hours, 

because HA accumulated in the culture medium, due to the resistance of HA to microbial 

degradation compared to other organic materials (Aiken 1985). This idea is confirmed by the work 

of Motta and Santana (2013), in which the production of HA by submerged EFB fermentation was 

studied. The profile obtained for HA concentration increased as fermentation time increased, 

demonstrating accumulation in the media. 

The Pareto chart (Figure 4.4.2) distinguishes the statistically significant variables from the 

statistically insignificant among the factors studied, as previously discussed, by comparing the 

value of the statistic (tcal) for each variable to the critical value (tcrit = 1.860).  

Center points were added in the statistical analysis, allowing the performance of explicit 

statistical significance tests of curvature. These values were not statistically significant for T. 

reesei, indicating that there is a linear relationship between the factors and the dependent variable. 

For T. viride, the curvature was statistically significant, meaning that at least one variable is 

involved at an order higher than one. 

Among the analyzed variables, only pH was considered to have no effect on HA 

production at the confidence level studied (90%) for both Trichoderma species. According to 

Bhattiprolu (2008), T. viride is able to grow in wide range of pH (4.0 to 9.0), which may explain 

the fact that this factor was not been statistically significant for either species in this work. 

Regarding the nitrogen sources, peptone (L) and (NH4)2SO4 (L) concentration had a 

significant effect on HA production by both species, although the first had a large positive effect 

and the second a negative effect. Juwon and Emmanuel (2012) tested the influence of nitrogen 

sources on growth and enzyme production in T. viride and observed that organic nitrogen 

substrates, like peptone, supported increased biomass yield and enzyme activity of the fungus 

compared to the inorganic nitrogen substrates tested. 

The variable that affected HA production the least in T. reesei was K2HPO4 concentration, 

and its effect was not significant in T. viride. According to the average chemical formula elucidated 

by Schnitzer and Khan (1978) (C187 H186 O89 N9 S2) HA does not contain phosphorus and 

potassium, explaining the minimal influence of this compound on the production of HA. 

Temperature has a large effect on both species, likely because enzyme activity as well as 

regulation and transport systems are generally largely affected by temperature in microbial systems 
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(Anastassiadis 2006). The linear effect of EFB concentration was larger in T. reesei than in T. viride 

and had the largest effect on this species. Although this component is the main carbon source for 

HA production in the studied media for both species, its effect was greater for T. reesei, possibly 

because this species is capable of utilizing the best carbon and energy source available when 

exposed to a mixture of carbon sources and downregulates the expression of genes involved in the 

degradation of less favorable and complex carbon sources (Seiboth et al. 2011).  
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Abstract 

Empty fruit bunch (EFB), an underutilized waste product of oil palm processing, was studied as a 

substrate for the production of humic acids (HA) by a Trichoderma reesei strain by solid state 

fermentation (SSF) in Raimbault columns. HA are one of the most widely spread groups of natural 

organic substances that have attracted the attention of many investigators due to their applications 

in agriculture, industry, the environment, and biomedicine. Commercial HA are currently 

chemically extracted from peat and coal, which are non-renewable carbon sources. 

Biotechnological processes are important for its sustainable and controlled production, with SSF 

being especially promising for mimicking the natural habitat of fungi. Trichoderma sporulation 

and HA production are related, and the results of this study showed that SSF stimulated fast 

sporulation, and the mycelia were not detected since the beginning of fermentation. Significant 

oxygen consumption was also observed. The productivity related to HA was much higher than that 

of the biomass, indicating an efficient utilization of EFB. These findings, added to the low-cost of 

EFB, make SSF an attractive process for HA production. 

 

Keywords: humic acids, Trichoderma reesei, solid state fermentation, empty fruit bunch. 
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1. Introduction 

Humic acids (HA), one of the most important components of humic substances, consist of 

a heterogeneous association of molecules or small humic sub-units of different chemical natures 

and origins (Schnitzer, 1978) containing a variety of functional groups, including carboxylic acid 

(COOH), phenolic hydroxyl (OH), enolic (OH), alcoholic (OH), quinone, hydroxylquinone, 

lactone, and ether (Sposito, 1986). The remarkable properties of these acids and their applications 

in agriculture, industry, the environment, and biomedicine (von Borstel et al., 1994) have attracted 

the attention of many investigators (Peña-Mendez et al., 2005). These acids help break up clay in 

compacted soils, assist in transferring micronutrients from the soil to plants, enhance water 

retention, increase seed germination rates, and stimulate the development of microflora populations 

in the soil (Peña-Mendez et al., 2005). However, the main target for the increased interest in HA is 

their pharmacological effects with potential uses in medicine, such as their antiviral, estrogenic and 

desmutagenic activities; their anti-inflammatory effects; their pro-inflammatory properties; and 

their influence on blood coagulation and fibrinolysis (Peña-Mendez et al., 2005; Yamada, 1998). 

An important source of HA is leonardite, which contains 40% of these acids, and other sources are 

black peat and brown coal, both of which contain 10% HA (Lester, 2009). However, harvesting 

HA from such non-renewable carbon resources can be expensive and environmentally/ecologically 

unsustainable. Moreover, the extraction of peat leads to the destruction of peatlands, which are 

important for biodiversity, carbon storage and flood risk management (Alexander, 2010). Liu and 

Huang (2002) investigated the catalysis of hydroxy-aluminosilicate ions in the oxidative 

polymerization of catechol and the resultant formation of HS. Litvin et al. (2012) developed a two-

step chemical procedure for preparing synthetic HA that are similar to natural HA. However, very 

little research has been performed on the production of these acids by biotechnological processes. 

This omission is a major gap in the production of HA for pharmaceutical applications, which 

require sustainable production and the use of controlled and reproducible processes.  

Solid state fermentation (SSF) has emerged as a potential technology for the production 

of microbial products, such as feed, fuel, food, industrial chemicals and pharmaceutical products. 

Currently, with a better understanding of biochemical engineering aspects, particularly 

mathematical modeling and the design of bioreactors, SSF processes can be scaled up, and some 

designs have been developed for commercialization. The utilization of agro-industrial residues as 
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substrates in SSF processes provides an alternative avenue and value-addition to these otherwise 

under- or non-utilized residues (Pandey, 2003). 

In this context, empty fruit bunch (EFB), a by-product of palm oil mill processing, is a 

strong candidate for use as a fermentation substrate. EFB, which comprises 23% of the fresh fruit 

bunch (Law et al., 2011), is an abundant and capacious waste product of oil palm processing and 

has not been utilized effectively. Considering that the global production rate for oil palm has 

doubled over the last decade and that its worldwide demand is expected to double again by 2020 

(Levin, 2012), there is a growing interest in adding value to EFB (Thambirajah et al., 1995) and in 

reducing the amount of this waste to diminish its environmental impact (Sudiyani, 2009). 

Commonly, SSF involves the cultivation of filamentous fungi on natural solid substrates 

in which the carbon source constitutes their structure (Mitchell et al., 2004; Saucedo-Castañeda et 

al., 1994; Ooijkaas et al., 1998). The potential of Trichoderma species as lignocellulose-degrading 

agents was recognized in the early 1960s (Selby and Maitland, 1967). Trichoderma species are 

frequently found growing in soil and on other substrates, such as wood, bark, and other fungi, 

demonstrating their high opportunistic capacity and their adaptability to various ecological 

conditions (Druzhinina, 2011). These characteristics make the genus useful for many 

biotechnological applications (Esposito and Silva, 1998). The conidial mass of Trichoderma is the 

most proficient propagule that tolerates downstream processing (Al-Taweil, 2009). Because 

Trichoderma fermentation is a highly aerobic process (Verma, 2006), oxygen transfer is 

undoubtedly the most important phenomenon to sustain microbial activity. The rate of oxygen 

transfer to the cells is often the limiting factor that determines the rate of biological conversion. An 

insufficient oxygen transfer leads to a decrease in the microbial growth and product formation 

(Thibault et al., 2000). 

Therefore, the aim of this study was to develop a low-cost fermentation process for 

producing HA using Trichoderma reesei, a microorganism with a high capacity for lignocellulosic 

material degradation. The promise of a higher yield by SSF involves the creation of an environment 

similar to the natural habitat of Trichoderma. In addition, the SSF system was incremented with 

forced aeration to favor both fungal growth and the production of the target compound. The 

performance of the production of HA from the EFB substrate was analyzed in terms of the main 

fermentation parameters.  
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2. Methods 

2.1. Microorganism and maintenance 

For storage, the T. reesei culture, purchased from Fundação Tropical (São Paulo, Brazil), 

was grown on potato dextrose agar plates at 24 °C for 10 days. After sporulation, the spores were 

resuspended in a sterile 20% glycerol solution. This mixture was stored in 1.2 mL cryotubes at -70 

°C.  

2.2. Solid state substrate 

The EFB, provided by Oil Palm S/A Agro-industrial OPALMA (Bahia, Brazil), was 

characterized according to the criteria and methods outlined below.  

2.2.1. EFB composition  

The composition of the EFB particles was determined with a CNH elemental analyzer 

(Perkin Elmer Series II 2400, USA), indicating the mass percentages of carbon, nitrogen and 

hydrogen. The results are expressed as the mean of triplicates and their average deviations.  

2.2.2. Particle size 

The EFB average diameter and particle diameter distribution were determined by Tyler 

sieves with mesh sizes of 16, 24, 32 and 42, corresponding to opening sizes of 1000, 710, 500 and 

355 µm, respectively.  

2.2.3. Water activity (aw) 

The water activity of the EFB used as the substrate was measured using an Aqualab Series 

3TE system (Decagon, USA), which uses the chilled-mirror dew point technique to measure the 

water activity of the sample. The experiments were performed in triplicate at 25 °C, and the 

standard deviations were calculated. 

2.2.4. Moisture content 

The EFB moisture, on a dry basis, was determined by drying a known amount of EFB to 

a constant weight in an oven at 105 °C.   

2.2.5. Apparent density 
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The EFB was dried at 105 °C to achieve a constant weight and then placed in a desiccator. 

The dry weight was determined, and its density was calculated as the ratio of weight/volume. 

2.2.6. Maximum capability for water absorption 

The EFB was submerged in distilled water at 30 °C to saturation. The retained water was 

determined by subtracting the weight of the dry EFB from the weight of the saturated EFB. The 

maximum capability of water absorption was the ratio between the retained water and the total 

weight of the EFB before saturation, which was expressed as a percentage. 

2.3. Solid state fermentation 

The SSF was performed in the experimental setup outlined in Figure 4.5.1, composed of 

six fixed bed columns (modified Raimbault columns) (Raimbault and Alazard, 1980) with a 

diameter of 3 cm and height of 15 cm, and each one was coupled to a primary humidifier (Figure 

4.5.2). The system was aerated with saturated air supplied by a dental compressor and humidified 

by bubbling into water before entering the column. The air flow was calibrated by a rotameter 

placed at the outlet of the system. To control the temperature, the columns were placed in a 

bacteriological incubator at 30 °C. An internal fan was used to better homogenize the temperature. 

The dissolved oxygen concentration was previously measured after passing through the primary 

humidifier to determine its concentration in the column inlet and during the fermentation at the 

outlet of the columns. 
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Figure 4.5.1. Schematic of the experimental setup. A: dental compressor; B: rotameter; C: bacteriological incubator; 
D: packed bed columns and air humidifier; E: fan; F: oximeter. 

 

Figure 4.5.2. Packed bed with forced aeration system. A: inlet air in moisturizer; B: distilled water; C: EFB bed; D: 
outlet of air from the columns. 

Each column received 30 g of culture medium prepared as follows: 100 g of the EFB was 

amended with 100% (v/w) distilled water, 2.5% (w/w) peptone, 1% (w/w) (NH4)2SO4 and 0.2% 

(w/w) K2HPO4, and the pH was adjusted to 6.0. The columns were sterilized by autoclaving at 121 

°C for 15 min, and after cooling at room temperature, the substrate mixture was inoculated with 1 

mL of a spore suspension that was prepared as described in item 2.1. The fixed bed of each column 
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was measured, resulting in a value of 7.4 ± 0.6 cm. The cultivations were conducted for 120 hours, 

and the samples were withdrawn every 24 hours for the analysis, which were performed in 

triplicate. 

2.3.1. Moisture content 

The moisture content, on a wet basis, was determined by drying a known amount of 

fermented sample to a constant weight in an oven at 105 °C.  

2.3.2. pH 

The pH of the medium was measured by a pH meter after vigorously shaking 5.0 g of 

fermented medium and 5.0 mL of distilled water, pH 7.0, in vortex equipment. 

2.3.3. Protein quantification 

The indirect estimation of the fungal biomass was performed by determining the protein 

concentration. The protein quantification was performed according to the method adapted by 

Callow and Ju (2012) to quantify only the cellular proteins. The culture samples (5.0 g) were mixed 

with 5.0 mL of distilled water, pH 7.0, and agitated vigorously in vortex equipment. Then, they 

were centrifuged at 10,000 g for 10 min to obtain pellets. The supernatants were collected for 

further processing. The pellets were re-suspended and washed twice with de-ionized water. After 

each wash step, the biomass was centrifuged, and the water was discarded. To release the 

intracellular proteins, the pellets were suspended in 3.0 mL of 1 N sodium hydroxide and heated at 

100 °C for 10 min. After cooling, the digested samples were centrifuged at 10,000 g for 10 min to 

remove the cell debris and other solids; the supernatants were then collected, and their protein 

concentrations were determined with the bicinchoninic acid assay developed by Smith et al. (1985) 

using a commercial kit (BCA Protein Assay, Thermo Scientific, USA). Standard curves were 

constructed with bovine serum albumin. 

2.3.4. HA quantification 

Following the methods adapted by Badis et al. (2010), the supernatant fractions obtained 

after the first centrifugation described in the item 2.3.3 were filtered using the Microfilter syringe 

system (Thomapor®-Membranfilter, 5FP 025/1). The supernatant fractions were diluted five-fold 
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with a 0.5 M NaOH solution, and the absorbances at 350 nm at pH 4.5±0.01 were measured. 

Standard curves were obtained from the absorbances at 350 nm of known concentrations of 

commercial HA (Sigma-Aldrich, United Kingdom) in a 0.5 M NaOH solution, pH 4.5±0.01. 

2.3.5. Cellulose, Hemicellulose and lignin quantification 

The determination of the cellulose, hemicellulose and lignin contents was made using the 

Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF) methods of the AOAC 

(Association of Official Analytical Chemists).  

2.3.6. Overall rate of oxygen transfer 

The oxygen concentration at the inlet and outlet of the column was measured by a oximeter 

(YSI Model 5300, Yellow Springs, USA), calibrated for the temperature and humidity used. The 

rate of oxygen consumption was calculated from the oxygen balance in the column according to 

Eq. 4.5.1 adapted from Doran (1995). 

NO2 =  (Fin × C02in −  Fout × C02out)VL  
Eq. 4.5.1 

where Fin and Fout are the air flow in the inlet and outlet, respectively, which have the same value 

in this process; Co2in and Co2out are the oxygen concentrations in the inlet and outlet column, 

respectively; and VL is the volume of liquid in the fermenter, which was calculated considering the 

moisture content (found by item 2.3.1) present in the volume of medium.  

2.3.7. Scanning electron microscopy (SEM) 

The samples were examined by scanning electron microscopy (Leo 440i, LEO Electron 

Microscopy, England) in the high-vacuum mode with an acceleration voltage of 10 kV. Powders 

were sprinkled onto SEM stubs topped with adhesive carbon tape and were sputter coated (SC7620, 

VG Microtech, England) with Au to a thickness of 92 A°. Because EFB particles are electrically 

nonconductive, the samples were subjected to low-vacuum gold sputter-coating in the presence of 

argon gas.  
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2.3.8. Spore counts 

The spores were enumerated by direct counting with a Neubauer chamber to compare the 

initial concentration of inoculated spores to the spore concentration at the end of fermentation. 

2.3.9. Optical microscopy 

Images of the EFB particles throughout the fermentation were obtained using a 

microscope (Reichert-Jung Series 150, Reichert, USA) equipped with a digital camera. 

2.3.10. Fermentation productivity 

The yield parameters were obtained by the slopes of the curves relating the product and 

substrate (YP/S), the biomass and substrate (YX/S), and the product and biomass (YP/X). 

2.3.11. Fermentation productivity 

The evaluation of the fermentation productivity was performed in terms of the biomass 

and product, according to Eq. 4.5.2 and Eq. 4.5.3, respectively. 

𝑃𝑥 = 𝑋𝑚𝑎𝑥 − 𝑋0𝑡𝑓  
Eq. 4.5.2 

 

𝑃𝑝 = 𝑃𝑚𝑎𝑥 − 𝑃0𝑡𝑓  
Eq. 4.5.3 

where Px is the fermentation productivity in terms of the fungal biomass; X0 and Xmax are the initial 

and maximum biomass concentrations achieved at time tf, respectively; Pp is the fermentation 

productivity in terms of the product (HA); and P0 and Pmax are the initial and maximum product 

concentrations achieved at time tf, respectively.  

3. Results and Discussion 

3.1. Solid substrate characterization 

Generally, in SSF, the substrate is a non-soluble material that acts both as a physical 

support and nutrient source, and it may be the byproducts of agricultural activities or the products 
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obtained after the processing of agricultural materials (Manpreet et al., 2005). In this work, the 

cellulosic substrate utilized was a waste of oil palm processing that was utilized as substrate for T. 

reesei growth and HA production and as a solid support for fermentation.  

Although some of the substrates used in SSF may require pretreatment to increase the 

accessibility of the carbon source to the microorganism, our previous work on HA production by 

submerged fermentation (SF) from EFB demonstrated that none of the three constituent polymers 

(cellulose, hemicellulose and lignin) of this fiber alone was able to promote the fungal growth and 

HA production (Motta and Santana, 2013a). In addition, the medium consisting of EFB promoted 

a greater production of HA and biomass than the medium composed of a blend of the three 

polymers. Therefore, EFB has been proven to be an adequate substrate for HA production by SSF 

because, in addition to having a very low cost, it promotes HA production and acts as a solid 

support.  

Table 4.5.1 expresses the elemental composition of the EFB used as the substrate, 

demonstrating a high concentration of carbon, which is essential to HA production and fungal 

growth. In addition, the latter is favored by the presence of nitrogen in the EFB. 

Table 4.5.1. Elemental composition of EFB used as substrate of the SSF. 
Element  (%m/m)  
Carbon 48.0 (±0.7)* 

Nitrogen 2.6 (±0.1) * 
Hydrogen 6.1 (±0.2) * 

*Results expressed as the mean of triplicates and their average deviations. 

Physical factors affecting the utilization of a solid substrate include the accessibility of the 

substrate to the microrganisms (with porosity and particle size affecting the amount of surface area 

accessible by the organisms), film effect and mass effect. The size of the substrate particles affects 

the extent and rate of microbial colonization, aeration, CO2 removal and downstream extraction. 

The optimum particle size often represents a compromise between the accessibility of the nutrients 

and the availability of oxygen (Manpreet et al., 2005). The particle size of EFB used as the substrate 

was measured by laser diffraction, revealing a mean value of 634.1 µm, with the largest population 

between 500 and 1,000 µm, especially between 710 and 1,000 µm (Figure 4.5.3). According to 

Pandey (1991), the enzyme productivities in SSF using a genus of fungi were higher with a 
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substrate that contains particles of mixed size varying from 180 µm to 1.4 mm, showing that the 

range and average diameter of the EFB particles herein possibly favored the production of HA. 
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Figure 4.5.3. Particle size distribution of the EFB used as a substrate in SSF determined by laser diffraction using a 
Mastersizer 2000. 

A low apparent density was determined for EFB (0.356 g cm-3), which indicated the 

presence of irregularly sized particles that leads to the formation of a large number of empty spaces 

in the fermentation bed (Sousa and Correia, 2010). The irregular size of the EFB particles was 

confirmed by the SEM images (Figure 4.5.4). Low-density substrates tend to compact more 

difficultly, a feature that facilitates their water absorption capacity and possibly the transport of 

enzymes and metabolites between the medium and the microorganism (Viniegra-Gonzalez, 1997). 
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Figure 4.5.4. SEM micrographs of EFB particles before medium preparation. 

The EFB used as the substrate had its moisture content measured, which was 8.93% with 

respect to its dry mass. Considering this value, the maximum capability for the water absorption of 

EFB was measured, resulting in a value of 258%, which means that each 100 g of EFB is capable 

of absorbing 258 mL of distilled water, considering a water density of 1 g/cm3. Thus, the culture 

medium was prepared by adding 100 mL to each 100 g of EFB (100%) to respect the SSF principle 

of the absence of free water. 

The water activity is also a determinant environmental variable for the growth of 

microorganisms in SSF. According to Hung et al. (2005), the minimum water activity required for 

fungal growth is 0.61. In this study, although the water activity value obtained for the EFB used in 

the culture media was 0.60±0.01, the capability of water absorption by the EFB ensured a large 

amount of water available for T. reesei, enhancing the conversion of the substrate to fungal 

biomass. 

3.2. Characterization of the fermentation process 

Figure 4.5.5 shows the kinetic characterization of the SSF in terms of the moisture content, 

pH, overall rate of oxygen transfer, cellular proteins, and EFB constituent polymers (cellulose, 

hemicellulose and lignin).  
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According to Figure 4.5.5 (a), the moisture content in the fermented medium remained 

between 64 and 72% during the cultivation, which agreed with the advised range, between 40 and 

80% (w/w) (Doelle et al., 1992). Moreover, an increase in the moisture content was observed over 

the 120 hours of fermentation, which was due to the metabolism of the fungi as the forced 

humidification of the used system was constant. 

According to Kredics et al. (2003), Trichoderma isolates are capable of growing at pH 

levels of 2.0 to 6.0. Figure 4.5.5 (b) shows that the pH ranged from 4.55 to 5.87 during the 

fermentation for HA production, which is within the range of the fungal growth capacity. 

Moreover, our previous work on the statistical optimization of HA production by T. viride using 

EFB (Motta and Santana, 2013b) demonstrated that there was no significant influence of pH on the 

production of these acids.  

During microbial growth, the fungi penetrate into and bind tightly to the solid substrate 

particle, making it usually impossible to independently weigh the biomass of the residual substrate. 

Thus, indirect growth measurements have been described in the literature based on specific 

component measurements, such as protein, glucosamine, ergosterol, and nucleic acid contents 

(Abd-Aziz et al., 2008). In this study, the cellular protein content was measured by the BCA assay 

to estimate the fungal biomass. The cellular proteins increased between 0 and 72 hours of 

fermentation, with a sharp increment within 48 to 72 hours, which represents the region of greatest 

slope of the curve of the cellular protein concentration versus time (Figure 4.5.5 (c)). After 72 

hours, the T. reesei cellular protein concentration became almost constant at 4.92 g / 100 g of EFB 

in 120 hours.  

The overall rate of oxygen transfer is presented in Figure 4.5.5 (d). Initially (0 hours of 

fermentation), the high rate of transfer was due to the saturation of the liquid films around the 

particles in the bed. Between 24 to 72 hours, an increment of the rate of oxygen transfer was 

observed, due to the fungal growth in accordance with the kinetic behavior of the estimated biomass 

(Figure 4.5.5 (c)). After 72 hours, the fungal growth appeared to cease once the oxygen transfer 

starts to decrease, which may be an indication of cell death.  

The HA production basically occurred between 0 and 72 hours, which appeared to be 

associated with the fungal growth. In our previous work (Motta and Santana, 2013a), the 

comparison of the microscopic images with the graphs of HA concentration versus time during SF 

revealed that the HA production and T. viride sporulation surged at a very similar time point, 
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indicating a clear relationship between growth and sporulation. However, although sporulation was 

observed only after 60 hours in SF, both sporulation and HA production were observed at the 

beginning of the fermentation in SSF (Figure 4.5.6). Other works have already described the 

relationship between fungal sporulation and metabolite production. Moreover, Siddiqui et al. 

(2009) confirmed through their experiments the fungicidal activity of HA isolated from the EFB 

of oil palm compost, which indicated that the similarity between the time duration of sporulation 

and HA production might be a fungal niche preservation strategy. 

 Figure 4.5.5 (f) represents the behavior of the polymer constituents of the EFB (cellulose, 

hemicellulose and lignin) versus time. The profiles showed there was a decrease in the cellulose 

and hemicellulose concentrations and an increase in the lignin concentration throughout 

fermentation. In reality, the lignin remained constant or decreased slightly because according to 

the methodology used, the amount of lignin was considered to be that that remained after digestion 

of the sample with sulfuric acid and relative to the total weight of the sample. Thus, if the amount 

of cellulose and hemicellulose decreased over time, the quantity of lignin would increase.  

In a previous work (Motta and Santana, 2013a), we demonstrated the fungal synthesis of 

HA occurs only in media containing either the mixture of the three commercial polymers or EFB. 

The HA concentrations in the media containing cellulose, lignin or hemicellulose separately was 

close to zero throughout 120 hours of fermentation, which was negligible compared with the 

concentrations that were achieved in the other two culture media. In the other two culture media, 

the three polymers were present in the culture medium composition, indicating a synergistic effect 

of the three polymeric components of EFB on the production of HA by fermentation with T. viride. 

In the present work, similar conclusions can be drawn, given that cellulose and hemicellulose are 

consumed, although lignin requires further investigation for a more conclusive analysis. 

  





 

114 
 

fungal sporulation. Figure 4.5.6 also demonstrates that the increase in the spore’s population was 

greater between 0 and 72 hours of fermentation, with little change in this population after 72 hours. 

Moreover, a spore counts was conducted immediately after inoculation and after 120 hours of 

fermentation, showing 2.16 x 108 spores/100 g of EFB and 4.41 x 1011 spores/100 g of EFB, 

respectively. Therefore, three logs of growth were achieved after five days of EFB-based 

fermentation, which represents good growth, especially compared with that observed in other 

works in the literature. Santos-Villalobos et al. (2012) produced T. asperellum spores in a mango 

industrial waste medium, obtaining two logs of growth after eight days of SSF. Sargin et al. (2013) 

utilized wheat bran to produce T. harzianum spores by SSF, and after four days of cultivation, they 

obtained two logs of growth.  

 
Figure 4.5.6. T. reesei growth during the SSF of EFB at 0 hours (a), 24 hours (b), 48 hours (c), 72 hours (d), 96 

hours (e), and 120 hours (f). 

Figure 4.5.7 shows darkening of the EFB particle throughout the SSF, which may be due 

to the HA production, as shown in Figure 4.5.5 (e), given that HA are dark brown to black in color. 
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Figure 4.5.7. Optical microscopy of the EFB particles during SSF for HA production at 0 hours (a), 24 hours (b), 48 

hours (c), 72 hours (d), 96 hours (e), and 120 hours (f). Mag 50 X. 

The productivity was calculated at 72 hours of fermentation to compare the present results 

with those obtained by SF in our previous work. In terms of the product, the productivity was 0.73 

mg of HA / 100 g of EFB / h, and in terms of the biomass, the estimation was 0.07 mg of cellular 

proteins / 100 g of EFB / h. Regarding the productivity of the product with respect to the 

productivity of the biomass, it was possible to observe that there was a good use of the EFB 

substrate by T. reesei, given that the product productivity was eleven times greater than the biomass 

productivity. 

4. Conclusions 

The characterization of the EFB in terms of its main physical-chemical parameters related 

to its use in SSF indicated that it is suitable for use as a substrate and solid support. Both the HA 

production and fungal growth occurred between 0 and 72 hours of fermentation. A decrease in the 

cellulose and hemicellulose was observed during the process, whereas lignin showed a slight 

decrease or constant behavior. After 120 hours, three log cycles of spore production were achieved, 

and a product productivity greater than the biomass productivity was achieved, indicating an 

effective use of the substrate by the fungus in the SSF. 
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5. CONCLUSÕES 

Os resultados obtidos para o crescimento do fungo em aveia demonstraram que este meio 

de cultura pode ser utilizado para produção em profundidade de esporos de Trichoderma. Além 

disso, de acordo com estes resultados, o tempo de cultivo deve ser de 120 horas para que apenas 

esporos estejam presentes no meio, servindo de inóculo para as fermentações seguintes com EFB. 

Nos ensaios de produção dos AH, os resultados demonstraram-se promissores, uma vez 

que os valores encontrados indicaram que o EFB é o melhor substrato celulósico, dentre os 

estudados neste trabalho, para produção destes ácidos. Além disso, a substituição do extrato de 

leveduras por peptonas vegetais não teve influência sobre o crescimento do fungo e sobre a 

produção dos AH, demonstrando que o objetivo principal deste projeto, que é a produção de AH 

para aplicações farmacêuticas, pode ser atingido pela utilização de peptonas vegetais, as quais 

reduzem o risco da ocorrência de reações imunogênicas. 

A otimização do meio de cultivo e das condições da FS para a cepa de T. viride permitiu 

que a produção fosse aumentada de aproximadamente 7 vezes, uma vez que nas condições centrais 

do PB a produção média foi de 58,8±1,4 mg/L e passou para 428,4±17,5 mg/L após a otimização 

pelo DCCR, indicando a eficiência do planejamento experimental empregado. 

A comparação das espécies de Trichoderma em termos da produção de esporos em aveia 

por FS e da produção de AH por FS de EFB indicaram que a espécie T. reesei é a mais adequada 

nos dois aspectos estudados. Além disso, para ambas espécies os resultados obtidos pela análise do 

PB indicaram que a produção de AH pode ser favorecida pelo aumento da temperatura e da 

concentração de EFB e peptona e pela diminuição da concentração de (NH4)2SO4. 

Na FES, a caracterização do EFB em termos dos principais parâmetros físico-quimicos 

indicou que essas fibras são adequadas ao uso como suporte sólido. Além disso, foram observados 

durante o processo um significante consume de oxigênio e um decréscimo na concentração de 

celulose e hemicelulose, enquanto a lignina apresentou uma concentração constante ou um pequeno 

decréscimo. A produtividade em relação aos AH foi muito maior que a produtividade em relação 

à biomassa, indicando uma utilização eficiente do EFB pelo T. reesei. 

Os resultados obtidos deste trabalho contribuirão para o aproveitamento de resíduos 

industriais na produção de compostos de expressivo valor agregado e aplicações nas áreas de 

cosméticos e farmacêutica, além de abrir oportunidades de estudos adicionais sobre AH produzidos 

por processos fermentativos, cuja descrição na literatura ainda é muito limitada. 
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6. SUGESTÕES PARA TRABALHOS FUTUROS 

 Otimização da produção de AH por T. reesei por FS e FES e seleção do melhor processo; 

 Estudo da influência da aeração forçada, da concentração de substrato (inibição) e do 

diâmetro das partículas de EFB utilizadas como substrato no processo selecionado; 

 Estudo da influência do tamanho e do tempo de produção de inóculo; 

 Estudos de modelagem do processo fermentativo selecionado. 
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