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Resumo 

O processamento dos dados e a otimização dos processos químicos em tempo real 

ficarão mais importante com a competição crescente entres os produtores. Vários itens 

devem ser considerados para possibilitar a otimização em tempo real, como a medição, a 

confiança da medida e a predição do comportamento do processo. 

Neste trabalho considera-se vários aspectos de um esquema de controle avançado 

destes, quais são a monitorização de medida, identificação de sistema não linear e em 

tempo real (redes neuronais recorrentes) e otimização não linear com restrições. Um 

requisito é que este sistema é capaz de funcionar em condições severas com ruído da 

medição, perturbações não medidas e mudanças de processo, como a desativação de um 

catalisador. 

Todas estas ferramentas foram desenvolvidas na linguagem de programação 

FORTRAN e são disponíveis no laboratório LOPCA/UNICAMP. Utilizaram-se modelos 

validados para simular os processos, porém em alguns casos utilizaram-se dados industriais 

e dados de planta piloto para estudar os algoritmos desenvolvidos nesta tese. 

O ruído Gaussiano fracionário (fGn = fractional Gaussian noise) e o movimento 

Browniano fracionário (fBm = fractional Brownian motion) foram considerados de ser 

modelos adequados para monitorização de medida e foram aplicados nos dados de um 

piloto de um reator air-lift, cujo sinal de pressão demonstra um comportamento complexo e 

não branco (não aleatório). 

Demonstrou-se que o fGn descreve parcialmente os sinais da pressão e é capaz de 

prever os series temporais, porém, o parte que não era previsto bem pode ser previsto por 

um modelo (4,3) auto-regressivo e media móvel (ARMA = auto-regressive and moving 

average). Os modelos de fGn e fBm hão falta número de parâmetros ajustáveis e 

necessários para poderem ser utilizados em previsão de series temporais que tem uma 

função de auto-correlação de tipo senoidal. Portanto, recomenda-se o estudo da extensão do 

modelo ARMA que conhece-se por o modelo ARMA fracionário como algoritmo para 

monitorização da medida e por este via desenvolver uma ferramenta de diagnostica geral da 

confiança da medição. 
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O algoritmo de treinamento de redes neurais baseado no filtro de Kalman (MEKA) 

mostrou se bastante rápido para o ajuste dos parâmetros da rede neural recorrente em casos 

distantes, tanto em casos teóricos tanto em casos práticos de dados industriais. Alem disto, 

as características de generalização das redes neuronais treinados são melhores dos que as 

obtidas com os algoritmos comuns de treinamento de rede neural como standard 

backpropagation (com momentum). 

Demonstrou-se com bastante sucesso que o filtro de Kalman pode ser utilizado em 

otimização com e sem restrições. A otimização sem restrições da função de Rosenbrock 

mostrou que o algoritmo pode ser muito rápido se a matriz de covarianca de ruído do 

processo é manipulada. A otimização com restrições demonstrou se em um escala grande 

de problemas de testes colecionados por Trvzka de Gouvêa e Odloak (), onde em quase 

todos os casos o ponto mínimo global foi encontrado. Alem disto utilizou se o algoritmo em 

um problema industrial que demonstrou que o custo computacional é alto demais ainda e 

que o algoritmo deveria ser modificado para ficar útil em aplicações reais.   
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Summary 

In the continuing competition between it will be more and more necessary to 

optimize current chemical processes in real time. To be able to optimize a plant in real time, 

there have to be various aspects to be fulfilled, such as measurement, reliability of the 

measurement and prediction of the process behaviour. 

In this work some of the aspects of such an advanced control are studied and are 

measurement monitoring, on-line non-linear system identification (recurrent neural 

networks) and constrained non-linear optimisation. It is wanted that this system can work 

under measurement noise, unmeasured disturbance and process changes such as a catalyst 

deactivation.  

All these tools were developed in the FORTRAN programming language and are 

available at the laboratory LOPCA/UNICAMP. Validated models were used to simulate the 

processes, but in some cases real industrial and pilot-plant data were used to study the 

algorithms developed. 

The fractional Gaussian noise (fGn) and fractional Brownian motion (fBm) were 

thought to be models suitable as measurement predictors, and applied to pilot plant data of 

an airlift reactor, whose pressure signal presents a complex non-white behaviour. 

It was shown that the fGn does describe part of the measured signals and is able to 

do some prediction of the time series, but the other part could be explained well by a (4,3) 

Auto-Regressive and Moving Average (ARMA) model. It was noted that the fGn and fBm 

lack parameters to be adjusted and cannot be used for processes having a sinus type of auto-

correlation function (ACF). Therefore an extension of ARMA models known as the 

fractional ARMA (FARMA) models can be used as a measurement monitoring tool, 

allowing the possibility to develop a general diagnostic tool. 

It is shown a various cases (from theoretical to practical industrial data) that the 

MEKA Kalman filter algorithm is a quite fast training algorithm for recurrent neural 

network training, but especially results in better generalisation properties of the neural 

network trained than the other sequential training algorithms (standard backpropagation 

(with momentum)). 
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It was shown that the Kalman filter can be successfully used in unconstrained and 

constrained optimisation. The unconstrained optimisation of the Rosenbrock function 

demonstrates that a very fast optimisation can be obtained by manipulating the process 

noise covariance matrix. The applicability to constrained optimisation was shown in a large 

scope of different test problems and one real industrial problem. 
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C Matriz de correlacão 
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g() restrições de inigualdade 

GEKF Algoritmo de filtro de Kalman estendido Global em treinamento de 

redes neurais (Global Extended Kalman filter algorithm) 
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R/S Alcança ajustado escalado 

S Desvio padrão 

SBP algoritmo de retro-propagação (Standard Back-Propagation algorithm) 

u Variável de entrada 
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v Variável aleatório do erro de processo 

w Variável aleatório do erro de observação 

wk,ji Peso (parâmetro) da rede neural do neurônio i em camada k-1 para 

neurônio j em camada k 

x Variável de estado 

x Variável aleatório x 
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1. Introdução 

Hoje em dia, as empresas vendam os seus produtos no mundo inteiro e hão vários 

competidores (globais). Provavelmente, somente aquelas empresas que oferecem os seus 

produtos com a melhor qualidade através de um processo de produção mais econômica 

conseguirão sobreviver. Controle de alta qualidade será um possível fator chave para a 

manutenção da indústria química, e o sistema de controle deveria incluir idealmente os 

objetivos do gerenciamento ou “business”, como por exemplo, a produção de dia. Além 

disto, um melhor controle de qualidade pode resultar em uma redução de custo também por 

uma formação menor de subprodutos. 

Vários aspectos devem ser considerados em um sistema de controle de um 

processo real (Figura 1); a parte de planejamento da produção feito por um sistema ERP 

não é considerado neste trabalho, mas daria normalmente restrições econômicas como a 

vazão necessária para fazer a produção do dia. 

O sistema de controle deve considerar outros aspectos, além de manter o processo 

no atual ponto de operação.  

 

O sistema de controle deve ser confiável com uma eficiência de operação 

(OEE = Overall Equipment Efficiency) > 95% 

 

O sistema de controle deve ser robusto aos erros de modelação e ao desvio 

permanente da medição 

 

O sistema de controle deve ser capaz de identificar e descartar medições 

errôneas  

Enfatizou-se em alguns itens só deste esquema, e são: a estimação do modelo de 

processo ou maquina com modelos paramétricos ou redes neurais (identificação de sistema 

não linear), a ação de controle calculada por um algoritmo de controle preditivo e a 

validação da medição por determinar a confiança da medição. Um controle “dual” não foi 

implementado, pois este não há uma solução real em muitos casos. A separação de calculo 

de ação de controle e estimação de parâmetros de modelo é coerente com o conceito de 



 

2 

controlador auto-ajustavel de Astrom and Wittenmark (1995) que resulta em uma solução 

viável e sub-otimal. 

Production planning Product OrdersSail Transactions

Distribution
Resources Planning

Manufacturing
Resources planning

Production Receipt

(Over More Batches)
Receipt Adjustment
(In One Batch)

Statistical Quality Management

Quality Control

Set-points

Off-line Measurement
Less Confidential On-

LineMeasurement

Control and Control Action Process / Machine

Sample

Experiments

Confidential On-line measurement

Quality Estimate

Batch report

Diagnosis

Quarding the Process Conditions

Abnormal Conditions

Action

Action
Monitoring

This Work

 

Figura 1: Um esquema simplificado das operações funcionais da indústria 

química (Rijnsdorp, 1993) 

Estes três componentes formam exatamente a base de um controlador preditivo e 

não linear, que pode liderar com mudanças de processo através da possibilidade da 

adaptação do modelo, falha da medição e que implementa a melhor ação de controle 

possível considerando as interações das variáveis do processo.  
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Os principais objetivos desta tese são então: 

- O desenvolvimento de um método não linear da identificação de sistema, cujos 

parâmetros são ajustados pelo filtro de Kalman em tempo real e é baseado em 

redes neurais recorrentes. O filtro de Kalman é um método de estimativa 

recursiva que pode resultar em um treinamento mais veloz e é capaz de 

funcionar em um ambiente com ruído de medida. 

- Avaliação do ruído Gaussiano fracionário e do movimento Browniano 

fracionário como preditores da medida, portanto como monitores da medição. 

- Desenvolvimento de um algoritmo de otimização não linear com e sem 

restrições baseado no filtro de Kalman estendido (EKF = extended Kalman 

filter) por ser um alternativo aos algoritmos de SQP e algoritmos genéticos. O 

algoritmo de EKF poderia ser utilizado em um algoritmo de controle preditivo 

ou utilizado na otimização do melhor ponto de operação do processo.  

A identificação não linear de sistema aplicou-se ao processo de produção de 

Penicilina, que foi simulado através de um modelo detalhado do Rodrigues (1996). Este 

modelo foi validado por ele com dados experimentais do laboratório. 

Um outro caso de estudo considerado é o processo da produção de fenol da Rhodia 

Ltda., qual consiste de uma cascada de quatro reatores air-lift. Este processo é equipado 

com medições em tempo real, que tem que ser desconectado de tempo em tempo para 

manutenção. Somente testes “off-line” foram feitas, mas simula a exploração em tempo real 

dos algoritmos desenvolvidos e como eles reagem com ruído da medida, falha de sensores e 

desvio da medida.  

O ruído Gaussiano fracionário e movimento Browniano fracionário foram 

aplicados aos sinais de pressão do reator piloto de air-lift (Camerasaa et al., 2001), cujo 

sinal mostra um comportamento não aleatório em função das bolhas que passam pela 

coluna. Este piloto foi utilizado para estudos dos reatores industriais de “air-lift” de Rhodia 

Ltda.  
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O algoritmo EKF de otimização testou-se na função de Rosenbrock ou banana, 

que um problema “benchmark” em otimização sem restrições e é incluso no “Matlab 

optimisation’s toolbox”. Os problemas de teste para a otimização com restrições foram 

obtidos de Himmelblau (1998) e Trvska de Gouvêa and Odloak (1998) e formam um set de 

problemas bastante abrangente e de difícil solução. 

Um caso de teste industrial foi a minimização das impurezas através um modelo 

detalhado dos reatores industriais de air-lift (Camarasa et al. 2001). Os resultados foram 

comparados com os do algoritmo comercial de SQP desenvolvido por Bartholows-Biggs da 

universidade de Hettersforth. 

1.1. Organização de tese 

Este tese não há uma organização comum, mas é um conjunto de vários artigos 

publicados em revistos e congressos internacionais, além da publicação de um capitulo de 

livro. Em cada capitulo é mencionado onde foi publicado, alem de haver um resumo em 

português para explicar os principais pontos do capitulo.  

Em anexo 1, revê-se o filtro de Kalman e o filtro de Kalman estendido que é o fio 

vermelho deste tese. Uma introdução é dada sobre alguns aspectos como a teoria estatística 

e a teorema de Bayes, e a teoria de espaço de estado. O filtro de Kalman foi revisto em 

perspectiva determinística, que demonstra a derivação das equações do filtro, enquanto a 

perspectiva estatística demonstra a compreensão do algoritmo. Além disto, a visão 

estatística foi utilizado em desenvolvimentos recentes para melhorar o filtro de Kalman 

estendido. 

Em capitulo 2 o filtro de Kalman é utilizado no treinamento de redes neuronais 

(recorrentes). Este trabalho foi publicado por uma apresentação oral no ESCAPE-10 

(Conferencia internacional de Europian Society on Computers Applied to Process 

Engineering) e pelo capitulo de livro publicado pelo Imperial College em 2001: 

"Application of Neural Network and Other Learning Technologies in Process Engineering 

", Ed. I.M.Mujtaba and M.A. Hussai. 

Em capitulo 3, o filtro de Kalman é utilizado para treinamento de redes neurais, de 

qual a predição é utilizado por um outro filtro de Kalman para estimar a ação de controle. 
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Este esquema de controle é um controle não linear de variância mínima e foi publicado nos 

anais do sexto congresso mundial de engenharia química, Melbourne.  

Em capitulo 4, o ruído Gaussiano fracionário e o movimento Browniano são 

aplicados para predizer o comportamento de sinais de pressão de reatores air lift. Este 

trabalhos foram publicados no CHEMICAL ENGINEERING SCIENCE, 56(2), 2001, pp. 

707 – 711, “The fractional Brownian motion as a model for an industrial airlift reactor” e 

nos anais do 3th Europian Congress on Chemical Engineering. 

O anexo 2 tratará a otimização do filtro de Kalman com e sem restrições. Este 

capitulo será submetido para a revista Computers and Chemical Engineering.   
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2. Modelos não lineares – Treinamento com o filtro de Kalman 

estendido 

Resumo – Buscou-se um algoritmo mais adequado para o treinamento das redes 

neurais de tipo “feed-forward” e de tipos recorrente, especialmente para o uso deles em 

treinamento em tempo real. O algoritmo de treinamento é baseado no filtro de Kalman 

estendido, que é considerado em outras áreas técnicas como algoritmo de treinamento de 

redes neurais mais rápido e que converge para uma mínima global melhor do que os 

algoritmos normais como o algoritmo de retro-prorrogação (standard backpropagation). A 

vantagem da utilização do filtro de Kalman é sua abordagem recursiva e a possibilidade de 

trabalhar em um ambiente com ruídos de medição. As equações do filtro foram adaptados 

para admitir a adaptação ás mudanças de processo, o que faz o adequado para 

treinamento em tempo real. Isto é feito pela re-alimentação do erro de estimação na hora 

da actualização dinâmica da matriz de covariância do erro de processo, o que é visto como 

uma das contribuições deste trabalho na aplicação do filtro de Kalman em treinamento de 

redes neurais. A atualização da matriz de covariância do erro de ruído de processo é feita 

em uma maneira para garantir a estabilidade numérica do filtro. O algoritmo foi testado 

em varias aplicações como a identificação de um processo de penicilina e caso industriais 

(não publicado em artigo).  

Demonstrou-se que o algoritmo de MEKA é bastante rápida, mas especialmente 

resulta em características de generalização melhor de uma rede neural comparado com os 

outros algoritmos de treinamento seqüencial. O algoritmo de backpropagation nunca 

resulta em um erro de treinamento e simulação baixa. Além disto a localização do erro não 

compromete o resultado. Estas habilidade de assegurar um bom treinamento com predição 

adequada dos dinâmicos do processo faz que o filtro de Kalman é um candidato 

preferencial para a identificação de sistema em um algoritmo de controle avançado. 

Os trabalhos reproduzidos aqui são dois artigos, o primeiro foi publicado no 

ESCAPE-10 como apresentação oral, o que resultou no convite para da 2ª  publicação qual 

é  um capitulo no livro "Application of Neural Network and Other Learning 

Technologies in Process Engineering ", Ed. I.M.Mujtaba and M.A. Hussai, publicado 

pelo Imperial College em 2001 
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ABSTRACT 

In this work we evaluate the behaviour of the extended Kalman filter as a 

recursive training algorithm for neural networks in real-time. It shows that the extended 

Kalman filter is a very potential candidate for on-line training of neural networks and as 

fast as the sequential backpropagation algorithm with momentum, but with better global 

convergence properties. It could not be shown that a recurrent neural network with 

external feedback is sufficient to give a dynamic representation of the process. 

INTRODUCTION 

Control of non-linear chemical processes relies on a good dynamical model, which 

usually is linear and has to be continuously updated to follow the process behaviour. In the 

past decade, this has lead to an increased interest for non-linear process control, which can 

be divided in optimisation and transformation methods. Only recently, artificial neural 

networks (ANN) attracted a great deal of attention, providing a simple way to describe non-
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linear processes at low computational cost. If trained by appropriate input/output data, an 

ANN is able to approximate any function mapping of the process input/output behaviour 

insides its training area. So, an ANN can be viewed as a black-box model of the process. 

The classical approach to identify a non-linear dynamical process by an ANN, is to 

augment the number of inputs of the ANN by past values of the input data. For simple 

systems, which can be described by a one-dimensional state space system, this will result in 

a small and workable ANN. But this approach can result in too large ANN`s suitable for 

training more complicated systems, such as fixed-bed reactors, fluidised beds and bubble 

columns, and for systems with slow dynamics. Especially, when the process is subjected to 

environmental or internal changes, such as catalyst deactivation, the ANN should be 

dynamical and be trained in real time to be able to represent the process. 

Therefore, the main objective of this work is the development of a dynamical 

ANN trained by a recursive algorithm as the Kalman filter, which can be used to identify a 

non-linear process on-line and afterwards to be used in a adaptive control scheme. 

THEORY 

The most popular ANN is the feedforwarded network trained by backpropagation 

of Rumelhart et al. (1986), which consists of an input layer, a hidden layer and an output 

layer. The output of a neuron j, yj in the hidden or output layer k is calculated as a function 

of the outputs of the former layer as follows: 

1

0 ,1,,,
kN

i ikjikjkjk ywfvfy (1) 

where wji is the weight for the input xi of neuron j and Nk-1 is the number of inputs 

and the number of neurons in the former layer. The bias or treshold is defined by putting 

input yk-1,0 equal to –1. k ranges from 1 to the number of chosen layers, where layer 0 is the 

input layer. The function f( ) is typically a sigmoidal or tangent hyperbolic function for a 

neuron in the hidden layer and linear for the output layer in case of function approximation. 

If the data is appropriately scaled, the latter can be a non-linear function also. 

The ANN’s output and the desired output define an error, e = dj – yj, which can be 

propagated back through the system. The error for intermediate or hidden neurons is 

calculated by: 
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p

j jkjikjk we
1 ,1,1,

 
(2) 

k,j is the local error gradient for neuron j in layer k and is calculated by: 

jke
dv

vdf

jk

jk

jk ,
,

,
,

 
(3) 

In case of the backpropagation algorithm, this leads to a parameter adjustment 

based on the steepest descent by: 

i,1kynw1nw j,kji,kji,k

 

(4) 

A faster convergence can be obtained by adding a momentum term  (Rumerlhart et 

al., 1986), which makes the backpropagation algorithm more stable. 

Optimization methods, as the conjugate gradients (Fletcher et al., 1964) and the 

method of Levenberg-Marquardt can be used to obtain a much faster convergence using 

second-order gradient information. These methods need a good estimate of the gradient, 

and therefore can only be used in a batch training mode, where an average gradient to the 

weights is calculated over the whole training set.  

A dynamical ANN is known as a recurrent neural network (RNN), where some of 

the neurons in the layer k have a feedback connection with the neurons in layer l, where l < 

k. In this work was chosen only external feedback connections, which lead the outputs from 

the output layer back to the input layer. The advantage of this type of RNN is that during 

the training phase the target values instead of the RNN's outputs, can be fed to the input 

layer, which leads to a faster convergence. When the error of the output is small enough, 

the network outputs are fed to the input layer. In this way non-linear state-space 

approximations are trained by the network. 

As for the ANN an error can be declared comparing the output of the RNN with 

the desired output (d), normally, a quadratic cost function of the error is declared, which 

can be minimised by the gradient methods mentioned above.  
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For on-line applications, the optimisation methods usually do not have a recursive 

calculation scheme and cannot be used, but the backpropagation algorithm is typically 

slowly and forgets the past data. A system identification method such as the Kalman filter 

could be used to update the networks parameters, which has the advantage to take into 

account the past data when it calculates a new optimal estimate with the new arrived data. 

The actualisation of the weight parameters by the Kalman filter is by definition of the 

following dynamical system: 

nrnwnyfnd

N0i)n(qnw1nw

j,k

N

0i

ji,k

T

i,1kj,k

1kji,kji,kji,k

1k

 

(5) 

where qk,ji and rk,j are stochastic variables with a Normal random Gaussian 

distribution, N(0, Q) and N(0,R) respectively. 

According to Shah e Palmieri (1990), the use of multiple extended Kalman filters 

(MEKA) can be used to train a feedforwarded neural network to obtain a much faster 

convergence than with the gradient methods. It has to be found out if this is valid for a 

recurrent network also. Puskorius et al. (1994) successfully implemented a decoupled 

Kalman filter algorithm training recurrent networks and were able to use these networks in 

various control problems. 

An additional advantage is that MEKA can be used in a recursive scheme for 

process identification in a advanced control loop, without the disadvantages of the 

backpropagation algorithm. 

Extended Kalman filter training algorithm 

The training algorithm with the extended Kalman filter falls down into two parts, 

the dynamic actualisation and the actualisation of the observation. The dynamic 

actualisation is done by (5), where the estimates of q and r are 0. In fact, it is the same as 

the feedforwarded pass (1) of the backpropagation algorithm. 

The only difference is that the Kalman filter algorithm needs to update the 

covariance matrix Pk,ji: 

QnP1nP jii,kjii,k

 

(6) 
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Since the states of the dynamical system (5) are parameters, there would be in fact 

no process noise qk,ji, but the addition of a very small process noise (in the order of 0.001) 

makes the filter more stable. A too large a process noise leads to oscillatory and stochastic 

behaviour.  

The errors of the intermediate outputs are calculated by propagating back the error 

(eq 2 and 3). With the errors known for every neuron the multiple extended Kalman filters 

update the weight parameters by: 

TT

jii,k

T

jii,k

T

jii,k
ji,k

T

0,j,k0,j,kN,1k

j,k

j,k

0,1k

j,k

j,k

j,k

1kj,kji,kji,kji,k

KRKKCIPKCIP

RCCP

CP
K

CWwwny
dv

vdf
ny

dv

vdf
nd

N0ine)n(Knw1nw

1k

 

(7) 

The advantage of using a Kalman filter per neuron is that the product (CPCT+R) 

becomes a scalar and therefore no matrix inversion is needed. The only disadvantage of the 

Kalman filter is the memory requirement for the process covariance matrix. 

To ensure that the Kalman filter still reacts after some time , the matrixes Q or R 

have to be made a function of the error or the derivative of the error. This makes the system 

more sensible to new data. 

The observation covariance matrix, R, has a large effect on the stability of the 

Kalman filter. With a too small value the filter diverges. R has to be increased when the 

number of neurons and or layers are increased, otherwise the filter becomes unstable. 

The matrix R was fixed and only made variable when the total summed square 

error of the outputs became lower than 5.0. If so, R was made equal to the total number of 

neurons multiplied with the total summed error.  

Networks were trained with data obtained from simulation of a fed-batch penicillin 

process. The process model used was validated with experimental and pilot plant data. The 
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RNN`s were trained by the multiple extended Kalman filter, and by the different 

minimisation algorithms as conjugate gradients and Levenberg-Marquardt and the standard 

backpropagation algorithm with momentum in sequential and batch mode. 

RESULTS 

The ANN’s trained with the different training algorithms were all able to give an 

accurate representation of the penicillin production process, when the target values of the 

outputs were not re-fed to the inputs. The convergence of the conjugate gradient method 

was much faster than the Levenberg-Marquardt algorithm, because the latter is much more 

dependent on the local gradient behaviour and the initial shoot (Figure 2). Both were much 

faster than the standard backpropagation algorithm with momentum. The ANN trained with 

the multiple extended Kalman filters was in the initial training phase faster than the 

sequential backpropagation algorithm with momentum, but became slower at the end phase 

(Figure 1).    
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This can mean that the chosen dependence of the Kalman filter to the observation 

covariance matrix should be changed to make the Kalman more sensible in the mid and end 

phases. But from a simple feedforwarded problem with the identification of a bioreactor, it 
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showed that the generalisation performance of the multiple extended Kalman filters was 

two times better than with the backpropation algorithm (Table 1). 

Table 1 Summed square errors of the test set for a simple feedforwarded 

network 

Algorithm Summed square error of the test set 

Sequential Backpropagation ( = 0.00125 e =0.9 ) 10.705 

Multiple extended Kalman filters 5.1281 

Batch Backpropagation ( = 0.0125 e =0.9 ) 26.082 

Gradientes Conjugados 2.0119 

Levenberg-Marquardt 8.4759 

  

In Figure 3, the error during the training of the RNN for the penicillin production 

process are shown, for when the target values were re-fed. It can be seen that the multiple 

extended Kalman filters converge in a low number of iteration, but stays on a higher error 

plane than the sequential Backpropagation algorithm. This does not mean automatically 

that the training by the sequential backpropagation algorithm is better that the extended 

Kalman filter algorithm, as could be seen from the identification of the feedforwarded 

network. 
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Figure 3: Summed square error for the different algorithms for identification of 

the penicillin production process by the RNN  

When the outputs of the RNN were connected to the inputs this resulted in a high 

final error for the training set for all the training algorithms. This indicates that the RNN 

with only an external feedback is not enough to learn the dynamical behaviour of the 

penicillin production process and probably full recurrent network should be used.  

CONCLUSIONS 

It was shown that the multiple extended Kalman filters can be used as a training 

algorithm for neural networks in real-time. The extended Kalman filter converges faster 

and maintains better generalisation properties. It could not be shown that the RNN with 

external feedback can be used as an dynamical identification tool, and probably the RNN 

has to become fully recurrent to better describe non-linear chemical processes.    
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PROCESS IDENTIFICATION OF A FED-BATCH PENICILLIN PRODUCTION 
PROCESS - TRAINING WITH THE EXTENDED KALMAN FILTER   
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LOPCA/DPQ, Faculty of Chemical Engineering, State University of Campinas (UNICAMP), Cidade 

Universitária Zeferino Vaz,  
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Advcanced process control is typically based on a good process model. In this work a recurrent neural network is applied as a 
non-linear identification tool of a fed-batch penicillin process. The process is trained by a multiple-stream extended Kalman 
filter, which allows the process to be identified in real-time. It is shown that the fed batch process can be estimated very 
accurately by a recurrent network and that the extended Kalman filter is a very efficient and rapid training algorithm for non-
linear process identification. The recurrent neural network could be trained to give an one-step ahead prediction for a sample-
time of six minutes. This ensures that the neural network can be used as an identification model in a model predictive control 
loop for calculation of the optimal feeding strategy in real-time.    

1.  Introduction 
Control of non-linear chemical processes relies on a good dynamical model, which usually is linear and has to 
be continuously updated to follow the process behaviour. In the past decade, this has lead to an increased 
interest for non-linear process control, which can be divided in optimisation and transformation methods. 
Only recently, artificial neural networks (ANN) attracted a great deal of attention, providing a simple way to 
describe non-linear processes at low computational cost. If trained by appropriate input/output data, an ANN 
is able to approximate any function mapping of the process input/output behaviour insides its training area. 
So, an ANN can be viewed as a black-box model of the process.  

The classical approach to identify a non-linear dynamical process by an ANN, is to augment the number 
of inputs of the ANN by past values of the input data. For simple systems, which can be described by a one-
dimensional state space system, this will result in a small and workable ANN. But this approach can result in 
too large ANN's suitable for training more complicated systems, such as fixed-bed reactors, fluidised beds and 
bubble columns, and for systems with slow dynamics. Especially, when the process is subjected to 
environmental or internal changes, such as catalyst deactivation, the ANN should be dynamical and be trained 
in real time to be able to represent the process.  

Therefore, the main objective of this work is the development of a dynamical ANN trained by a 
recursive algorithm as the Kalman filter, which can be used to identify a non-linear process on-line and 
afterwards to be used in a adaptive control scheme. The Kalman filter´s parameters as the process and 
measurement noise covariance matrixes are made a function of the error to make the filter useful for on-line 
training.   

2.  Penicillin Production process  
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Figure 4: Fluxogram of the fed-batch production process (Crueger and Crueger, 1984)  

Biochemical processes are mostly very sensitive processes and small changes in the process operation can 
lead to activity loss of the organism. Only basic process variables, such as the temperature, pressure and the 
pH are available at short measurement times. But variables as the bio-mass concentration or dissolved oxygen 
concentration are typically available at large measurement delays only.   

To be able to control such a process a good process model is needed, but suffers from knowledge of the 
organism kinetics, which can depend, in a complicated way, on the process variables. Therefore such systems 
are ideal candidates to be identified by neural networks, which can map the non-linear system behaviour for 
relative large sampling intervals.  

The penicillin production process can be divided into two phases, the growing phase and the production 
phase. The production phase is initiated by changing the feeding strategy. In the growing phase a large 
amount of sugar is added to enhance the growing of the organism. When the bio-mass concentration is high 
enough, the substrate concentration is lowered to encourage the penicillin production. To get a high end-
penicillin concentration and a good final product quality the feeding strategy is essential during the production 
phase.  

Rodrigues (1996) determined an optimal feeding strategy for this studied penicillin process off-line, but 
will be optimal only if the exact specifications can be followed. If the system is subjected to changes this 
strategy will become sub-optimal and there will be another strategy which will be optimal.  

To determine this new optimal feeding strategy, the process model has to be updated to incorporate the 
changes which were not accounted for in the model. If the model is updated, it can be used in an optimisation 
criterion to calculate the new best control actions to be taken. A schematic of this type of control system is 
shown in Figure 5.  
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Figure 5: Schematic of the objected control scheme   

The data of the penicillin process was obtained from a detailed model of Rodrigues (1996), which was 
validated with experimental data. Data of the penicillin process was collected at a sampling time of 6 minutes. 
The operating variables obtained were the substrate feed flow as the input variable and the bio-mass 
concentration, the substrate concentration, the penicillin concentration and the dissolved oxygen concentration 
in the reactor as the state variables. This data was learned to various recurrent neural networks of different 
sizes and architectures.   

3.  Training Neural Networks with the Extended Kalman Filter  

The training of a neural network with the Kalman filter is done in conjunction with  the back-propagation 
algorithm. The back-propagation pass is used to calculate the derivatives and the errors of every neuron in the 
network. The weight adjustment  done with the Extended Kalman Filter, will give a much faster convergence 
than with the back-propagation method as it is a second order method based on the least square principal. But 
the storage and computational requirements may become too high as the network size is increased. In the next 
subsection a short review is given of the standard calculation of the common neural network and the way how 
the recurrent neural network is implemented. Afterwards, the differences are shown for applying the Kalman 
filter theory to the training of neural networks. For those readers unfamiliar with the Kalman filter theory, a 
derivation of the filter is shown in the appendix for a one-dimensional linear system to make the article self-
containing.   

2.1.  Principle calculations of a neural network  

The most popular ANN is the multiple layer perceptron trained by backpropagation of Rumelhart et al. 
(1986), which consists of an input layer, a number of hidden layers and an output layer. The output of a 
neuron j, yj in the hidden or output layer k is calculated as a function of the outputs of the former layer as 
follows:   

1
0 1kN

i i,kji,kj,kj,k ywfvfy (8) 
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where wk,ji is the weight for the connection of input yi with neuron j in layer k and Nk-1 is the number of inputs 
or the number of neurons in the former layer as the network is fully connected. The bias or treshold is defined 
by putting input yk-1,0 equal to –1. k ranges from 0 to the number of chosen layers, where layer 0 is the input 
layer. The function f( ) is typically a sigmoidal or tangent hyperbolic function for a neuron in the hidden layer 
and linear for the output layer in case of function approximation. If the data is appropriately scaled, the latter 
can be a non-linear function also. A signal flow presentation is shown in Figure 6.  

wji(n)

y0=1 wk-1,j0(n)

yk-2,i(n)
yk-1,i(n) -1

dj(n)

( )vk-1,i(n)

wkji(n
ej(n)

yk,j(n)( )vk(n)

neuron i in layer k-1 neuron j in layer k

Yk-2,p(n)

y0=1 

Figure 6: Signal flow diagram of neurons in subsequent layers in a neural network   

The ANN’s output and the desired output define an error, e = dj – yj, which can be propagated back through 
the system. The error for intermediate or hidden neurons is calculated by:   

p
j j,kji,kj,k we 1 11 (9)  

k,j is the local error gradient for neuron j in layer k and is calculated by:   

j,ke
dv

vdf

j,k

j,k
j,k

 

(10)  

In case of the backpropagation algorithm, this leads to a parameter adjustment based on the steepest descent 
by:   

i,kynwnw j,kji,kji,k 11

 

(11) 

A faster convergence can be obtained by adding a momentum term  (Rumerlhart et al., 1986), which makes 
the backpropagation algorithm more stable because of the feedback of the last calculated parameter 
adjustment. 
Optimization methods, as the conjugate gradients (Fletcher et al., 1964) and the method of Levenberg-
Marquardt can be used to obtain a much faster convergence using second-order gradient information. The 
conjugate gradient formula of Polak-Ribiére was used as described by Haykin (1999). A line search is 
conducted in the calculated direction by a quadratic approximation. The Hessian matrix for the Levenberg-
Marquardt method was approximated by the square of the Jacobian matrix, but gives satisfactory results.  
These methods need a good estimate of the gradient, and therefore can only be used in a batch training mode, 
where an average gradient to the weights is calculated over the whole training set.  

A dynamical ANN is known as a recurrent neural network (RNN), where some of the neurons in the layer k 
have a feedback connection with the neurons in layer l, where l < k. In this work was chosen only external 
feedback connections, which lead the outputs from the output layer back to the input layer. The advantage of 
this type of RNN is that during the training phase the target values instead of the RNN's outputs, can be fed to 
the input layer so-called teacher forcing, which leads to a faster convergence. When the error of the output is 
small enough, the network outputs are fed to the input layer. In this way non-linear state-space 
approximations are trained by the network. 
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If re-alimentation of the outputs is not sufficient, then more memory has to be build in the ANN. This can be 
done by applying a tap-delay filter of order q to the inputs and the re-fed outputs as demonstrated in Figure 7 
for a RNN with one input and one output with a tap-delay filter of order 2 for both input and re-fed output. 
The present and past values of the input represent exogenous inputs, while the delayed values of the output 
form the regressive inputs of the recurrent neural network. This non-linear auto regression model with 
exogenous inputs (NARX model) is fed to a multi-layer perceptron (MLP) which calculates the new output of 
the RNN. If this results in a large NARX model order, then the network might become too large and a slow 
down of training occurs. In this case it might be necessary to make the network fully recurrent, which is more 
powerful in acquiring the system dynamics as the MLP is more powerful in function approximation then a 
single-layer perceptron.  

Input

Outputs

z-1 z-1

z-1 z-1

z-1 z-1

z-1 z-1

z-1 z-1

 

Figure 7: A schematic model of a NARX recurrent neural network of order 1  

As for the ANN an error can be declared comparing the output of the RNN with the desired output (d), 
normally, a quadratic cost function of the error is considered, which can be minimised by the gradient 
methods mentioned above.  

For on-line applications, the optimisation methods usually do not have a recursive calculation scheme and 
cannot be used, but the backpropagation algorithm is typically slow and forgets the past data. A system 
identification method such as the Kalman filter could be used to update the network parameters, which has the 
advantage to take into account the past data when it calculates a new optimal estimate with the new arrived 
data.  

2.2. Neural Networks and the Kalman Filter 

One of the first attempts of training neural networks was conducted by Singhal and Wu (1989). Singhal and 
Wu used a Global Extended Kalman Filter (GEKF) to train feedforward neural networks having an excellent 
performance on training the network weights more efficiently at the cost of a large increase in storage and 
computational requirements. Shah et al. (1992) proposed a Multiple Extended Kalman Algorithm (MEKA) to 
train feedforwarded neural networks on a classification algorithm. With this algorithm a local Kalman filter is 
designed for every neuron present in the network. They compared their algorithm with the global extended 
Kalman filter algorithm and concluded that the MEKA algorithm has similar convergence properties but is 
computationally less expensive. Though the last algorithm is adopted in this work, both will be shown to give 
a more complete overview of the training of neural networks with the Kalman filter. Another approach 
adopted by Puskorius and Feldkamp (1994) is due to the observation that some interactions of the weights can 
be neglected, which decreases the memory storage of the error covariance matrix of the filter. This approach 
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is the so-called Decoupled Extended Kalman Filter (DEKF); with full decoupling there is no interaction of the 
weights of one neuron with the weights of  another neuron and will thus become comparable to the MEKA 
algorithm.  

The Kalman filter identifies a linear stochastic dynamical system. To be able to estimate parameters with the 
Kalman filter, the parameters has to be written as a dynamical system. The weights for neuron j in layer k can 
be written as the following dynamical system:   
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where qk,ji and rk,j are stochastic variables with a Normal random Gaussian distribution, N(0, Q) and N(0,R), 
respectively.  

The stochastic process noise, q, would be in fact zero as a parameter has in its definition no stochastic 
noise compound. But in training neural networks it was pointed out by Puskorius and Feldkamp (1994) that 
adding process noise stabilises the Kalman filter and also prevents the algorithm to get stuck in poor local 
minima. A larger process noise also speeds up the training process.  

The Kalman filter provides an elegant and simple solution to the problem of estimating the states of a 
linear stochastic dynamical system. For non-linear problems the Kalman filter is not strictly applicable as the 
linearity plays an important role in its derivation. The extended Kalman filter tries to overcome this problem 
by linearising the stochastic dynamical system about its current state estimation, which first seems to be 
suggested by Kopp & Orford (1963) and Cox (1964). It should be noted that the extended Kalman filter will 
not be optimal in general. Moreover, due to the linear approximation, it is quite possible that the filter may 
diverge and therefore care has to be taken in applying this method (Goodwin and Sin, 1984)  

Expansion of the non-linear dynamical system of the neural network weight parameters around the 
estimate of parameter state vector w(n-1), in this case the weights, at time t leads to:   
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(13)   

Where C(n) is the Jacobian matrix resulting from the Taylor expansion about the state at time n and is 
recalculated at every sampling instance. W

 

is the real paramater and C(n) is given by:   
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As for the linear stochastic system shown in the appendix, a Kalman filter can be set-up to estimate the 
non-linear system and is (Goodwin and Sin, 1984):   
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The update equation for the covariance matrix P is written in most textbooks as: 
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nPnCnKInP j,kj,k 1 (16)   

which is a simplification after substituting the formula for the Kalman gain. But care has to be taken 
with this substitution, because the covariance matrix of Eq. 9 is not positive definitive anymore by definition 
and can lead to numerical instability. This was one of the main reasons for the non popularity of the filter 
some decadades ago.  

The Kalman filter of Eq. 8 is used together with the forward pass of the backpropagation when there is 
no process noise present. The forward pass calculates the new estimates of the observations y, after which the 
innovation (= output – desired output) is used to adjust the weights.  If there is process noise present ( Q 

 

0 ) 
then the error covariance matrix has to be updated during the forward pass by:   

nQnPnP j,kj,k 1 (17)   

The Kalman filter has to be initiated with initial values for the states and the covariance matrixes, while 
the matrixes Q and R are tuning parameters and can be chosen to obtain a certain convergence behaviour (see 
paragraph 2.2.1). The initial value for the states or ANN weight parameters are chosen at random from a 
normal or uniform distribution resulting in weights ranging from –02 to 0.2. The error covariance matrix is set 
initially to a matrix with large values, like 100, on its diagonal.  

The jacobian matrix C(n) is calculated conveniently by the backpropagation method, but differs for the two 
different Kalman training algorithms.   

The MEKA algorithm uses a Kalman filter for every neuron, thus the weights are adjusted by the local 
error, which is calculated in the same way as in the backpropation algorithm. This also has the advantage that 
the denumerator of the Kalman filter equation becomes a scalar and no matrix inversion is needed anymore. 
The matrix C has a dimension of the number of inputs to the neuron  

The GEKF algorithm adjusts all the weights of the neural network by one extende Kalman filter. 
Herefore the weights have to be positioned in W x p matrix, where W is the total number of nodes and p is the 
number of outputs of the network.  

2.2.1 The Tuning Parameters of the Kalman filter  

The process noise covariance matrix Q and the measurement noise covariance matrix R are normally regarded 
as the tuning parameters of the Kalman filter. It was already mentioned that the process noise for a parameter 
would be zero, but accelerates the learning process and helps to avoid local minima. From Eq. 10 it can be 
seen that the error of the state estimation will start to grow after the sampling point until the new measurement 
will arrive. The measurement noise determines how much can be trusted on the new measurement and 
according to this a correction is made by the Kalman filter gain. So a larger value for R will result in a smaller 
adjustment for the weights. The matrix R cannot have any zeros on its diagonal, otherwise this leads to a 
division by zero.  

It can also be shown that if the the matrixes Q and R are constant, then the Kalman gain will converge to 
a constant value. This is exactly what is not wanted for an on-line process identification tool. Therefore a way 
has to be found to keep the filter excited to new data.  

Shah et al. (1992) used a similar formulation as is used for the method of recursive minimum least 
squares.  A forgetting factor is introduced in the minimisation criterion, which results in the following 
equations for the Kalman filter (Shah et al., 1989):  
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(18)   

A more elegant way is to make the process noise covariance matrix and/or the measurement noise 
covariance matrix a function of time. Rivals and Personnaz (1998) made the measurement noise covariance 
matrix a function of the number of epochs, while maintaining the process covariance matrix 0. The function 
used for R is an exponential function and is:   

ff riexprrnr 0 (19)  

where r0 was chosen in the order of one (about the order of the inital mean squared error averaged over the 
number of data), rf a small value like 10-10,  0.5 to 1 and i is the number of epochs.  

Though their function is a function of the number of epochs, it is not in a form suitable for on-line 
training. Therefore it is proposed to make the matrixes a function of the error, in which way the training of a 
neural network can be controlled nicely and a certain convergence behaviour can be obtained depending on 
the characteristics needed for the problem. For example, if a certain measurement is very inaccurate, then the 
measurement covariance matrix can be maintained set to a higher value to give a not so large weight 
adjustment when the prediction error starts to grow.  

Therefore both the process noise covariance matrix and the measurement noise covariance matrix can be 
made a function of the error. The functions are linear or exponential. The process noise covariance matrix will 
be larger in the beginning and go to zero when the error decreases. The measurement noise covariance matrix 
can be made larger in the beginning also to make the weight changes less severe, which is normally wanted in 
the beginning of neural network training as all weights are non-optimal.   

0.1SSE*10*0.1expq)n(q 2
0

 

(20)  

Where SSE is the sum square error of all the outputs and q will become zero when the SSE reaches zero. q0 

was set to 0.1. In this work the SSE was calculated over the whole batchrun. It would be better to make the 
error a function of the absolute local error, which will adjust the weights more if its error is high while 
otherwise the weight change is small. 
It was already shown by Scheffer and Maciel Filho (2000) that training with the Kalman filter was a potential 
candidate of a training algorithm for recurrent neural networks, but that the way the algorithm was 
implemented was computational to heavy due to the memory requirements. To diminish the memory 
requirements, the weight matrix of the network was re-structured into a vector by subsequent numbering of 
the weights. The Kalman filter matrixes were defined from this vector, which reduced the required memory 
reasonably and made algorithm have calculation time a little bit higher than the conjugate gradient method. 
The algorithm becomes slower when the networks dimension grows.  

- figure to summarise the calculation method   

3.  Results  

The data of the penicillin fed-batch process was obtained from the optimal batch run, which was determined 
by Rodrigues (1996). The batch run was obtained with a sampling interval of 6 minutes, which is quite large 
and should be enough for when the neural network would be used in an optimisation scheme. Only a training 
set was made, as the main objective is to create a on-line identification tool. So there is no need for a test set 
to check the generalisation properties of the network. 
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Various recurrent neural networks were trained with variable sizes and different architectures. It was 
noted that some of the states have a quite linear behaviour, while others exhibit a high non-linear response. To 
account for both linear and non-linear behaviour a specific network architecture was created, which is as 
follows: 

 
The activation function of the output layer is a linear function, while the activation functions of 
the hidden layer are non-linear and were chosen as the tangent hyperbolic function.  

 
All the inputs of the recurrent neural network, the re-fed outputs, the input and the time-delayed 
inputs and delayed outputs, are directly connected to the output layer.   

The results shown here are from a recurrent neural network with a NARX order of 1 and the specific 
architecture mentioned above. The recurrent neural networks without the specific architecture (further on 
specified by RNNlin) were only able to describe the penicillin process with teacher forcing, when the outputs 
were re-fed it resulted in high values for the error. It should be mentioned that the error of the Kalman filter 
was small during the training due to the filtering done during the sequential mode. When the final weights 
were used for network simulation it resulted in high errors.  

The RNNlin networks were much better in modelling the penicillin process, because of their specific 
architecture. The conjugate gradients method only converges to a small error, when the network is pre-trained 
to a very small error in the teacher forcing mode. Otherwise the conjugate gradient method gets stuck in a 
local minima with a much higher error.  

Only results from the RNNlin consisting of a hidden layer with 15 neurons with the tangent function and 
a output layer with 4 neurons with a linear activation function. The order of the NARX model was 1, so the 
present values of input and outputs and 1 past value of the input and outputs are taken into consideration.  

In Figure 8 and Figure 9 the training of this RNNlin is shown for three different implemented training 
algorithms, actually the method of Levenberg-Marquardt was implemented also but showed itself inferior to 
the method of conjugate gradients. Probably due to the approximation of the Hessian used or because it is 
more dependent on the initial shoot.   

The error for the sequential mode is much lower, because for every presented sample an adjustment is 
made for every weight while in the batch training mode the an average adjustment is made over the whole 
training set.  

It can be seen that in the teacher forcing mode the training algorithms behave the same (Figure 8), 
giving a rapid adjustment in the beginning and afterwards a slower fine-tuning of the weights. The 
Backpropagation algorithm with momentum is slower as learning parameter is varied with a fixed step-size.  

From Figure 9 it shows that when the outputs are re-fed the behaviour of the sequential algorithms is 
totally different. The neural network has become dynamical 
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Figure 8: Comparison of the training of a MA1lin-15 network in teacher forcing mode  
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Figure 9: Comparison of the training of a MA1lin-15 network with the network outputs re-fed to the input (network was first trained with 
teacher forcing after which the outputs were re-fed  

which turns the system much more complex for its weight change. The oscillation for the backpropagation 
algorithm with momentum is due to the momentum term. Though the MEKA algorithm takes more 
calculation time, it converges very rapidly, making it a very suitable for a on-line training of recurrent neural 
networks as an system identification tool.  

In Figure 10 to Figure 13 the trained RRNlin networks are shown after several apresentations of the training 
set, one epoch is one apresentation of every training sample of the whole training set. The outputs of the 
network were re-fed  

Very good approximation of the penicillin process is obtained with the RRNlin network, which was 
trained with the Kalman filter. The experimental data was described perfectly and shows the potential of 
multiple Kalman filter training algorithm. It should be mentioned that the Linear RNN, which is a network 
with no hidden layer, the same order of the NARX model and only linear activation functions in the output 
neurons, describes part of the outputs quite reasonable. The more linear outputs, the biomass concentration 
and the penicillin concentration, are described accurately, while the non-linear outputs are predicted worst.  

The RNNlin trained with the backpropagation with momentum algorithm described the penicillin 
process the worst. The backpropagation with momentum algorithm was trained to a final summed square 
error of about 11. It might be that the network can be trained to a smaller error, when the learning parameter is 
lowered. This augments the training time enormously and therefore was not done as it is not the scope of this 
work.  

The RNNlin trained with the conjugate gradients algorithm is not shown because it coincidences with 
the prediction of the RRNlin trained with the Kalman filter. The conjugate gradient method is a fast training 
algorithm also, but has the drawback that a good gradient estimate is needed. So every time that new data 
arrive and the error augments, the network has to be optimised over a time window. This makes the conjugate 
gradients algorithm inappropriate for on-line training applications.   
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Figure 10: Prediction of the biomass concentration A RNNlin with 15 hidden tanh neurons and 4 output linear neurons trained the 
different training algorithms with re-alimentation of the outputs after several presentations   
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Figure 11: Prediction of the substrate concentration A RNNlin with 15 hidden tanh neurons and 4 output linear neurons trained the 
different training algorithms with re-alimentation of the outputs after several presentations 
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Figure 12: Prediction of the penicillin concentration -  A RNNlin with 15 hidden tanh neurons and 4 output linear neurons trained the 
different training algorithms with re-alimentation of the outputs after several presentations 
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Figure 13: Prediction of the dissolved oxygen concentration -  A RNNlin with 15 hidden tanh neurons and 4 output linear neurons trained 
the different training algorithms with re-alimentation of the outputs after several presentations  

Finally a on-line training test was conducted with the RRNlin. Both sequential training algorithms were used 
to learn the dynamics of the fed-batch penicillin process. The RNNlin was not pre-trained by using teacher-
forcing, but directly subjected to training.  

In Figure 14 and Figure 15 the on-line training is shown of the RNNlin, predicting the biomass 
concentration and the dissolved oxygen concentration. The RNNlin weights are adjusted by the filter rapidly 
and gives a quite reasonable estimation of the penicillin fed-batch process regarding that the RNNlin was 
never trained before. The peaks are caused by the steps in the dissolved oxygen concentration, which excite 
the filter to give a rapid adjustment to describe the dissolved oxygen concentration.  

It shows that when the Kalman filter is used as a training algorithm no off-line training is necessary if 
small deviations are allowed for the process to operate apropiately. But in biochemical processes it is vital to 
have little or no deviation, as a small variation affects the organism and the activity of enzymes. 
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Figure 14: Prediction of the biomass concentration - On-line training of a batch run of the RRNlin with the MEKA algorithm   
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Figure 15: Prediction of the dissolved oxygen concentration - On-line training of the RRNlin with the MEKA algorithm  

The on-line training of the RNNlin with the backpropgation algorithm is shown in Figure 16 and Figure 17. 
The backpropagation algorithm cannot cope with on-line training of recurrent neural networks, as the 
dynamics of the process are not followed and the prediction is really bad. If the backpropagation is used on-
line there has to be trained two networks, one is used to predict the process, while the other is trained off-line 
to learn the changes. Switching of the networks will keep the networks updated. 
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Figure 16: Prediction of the biomass concentration - On-line training of a batch run of a RRNlin with the backpropagation with 
momentum algorithm  
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Figure 17: Prediction of the dissolved oxygen concentration - On-line training of a batch run for MA0-lin with the backpropagation with 
momentum algorithm   

4.  Conclusions  

It was shown that the Multiple Extended Kalman filter is a very powerful training algorithm, especially when 
the networks are dynamical. Good process descriptions were obtained with a recurrent neural network which 
has direct connections from the inputs to the outputs. The extended Kalman filter can be used in on-line 
training schemes, giving reasonable process estimations throughout the process, even when the network was 
not trained before.   
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Appendix  

In this appendix it is shown the derivation of the Kalman filter for a one-dimensional linear system. The 
Kalman filter is a very simple, yet powerful method to estimate states like temperatures and so on from a 
noisy signal and a convenient way to estimate parameters very easy and rapidly in a recursive fashion.  

Suppose a very simple linear stochastic process, which has the simple basic equation of    

nvnxnx 1 (21)  

where v is random variable with a normal distribution of (0,Q). In this example 

 

is chosen as 0.9 and Q is 
100.  

Of the process an error can be defined and is estimated by:   

2
nx̂nxEnPk

 

(22)  

Here x(n) would be the real value of x and x̂ the estimation of x, which is done from eq. 13.  There is no 
knowledge of the process error, so it is simply initiated with a high value, for example 40000. On time 0, it is 
measured that the process variable, x0 is 1000, with an error P. An estimation for x(1) at time 1 can be 
calculated from 13. As there is no idea of what would be the value of the stochastic variable v, to the best 
knowledge it can be estimated by its mean of 0.  

The real value equation of x(1) is given by:   

001 vxx

 

(23)   

While the estimated value of x(1) is given by:   

0001 x̂v̂x̂x̂

 

(24)   

The estimation of error for x(1) can be written as a function of the error of x(0):  
22 000111 x̂vxEx̂xEP

  

00020001 22
vx̂xEvEx̂xEP

 

(25)  

The minus is to indicate that this is a calculation before the measurement update. The first term can be 
identified as the covariance of P(0) the second term as the variance of the process noise Q and the last term is 
zero as x and v are independent of each other. Eq 17 can be generalised for P(k+1) as a function of P(k) by:  

QkPkP
T1 (26)  

The error for the simple example becomes P(1) = 32000. Now a measurement is done of variable x and is 
measured with a certain error and suppose that this is given by:   

kwkxCky

 

(27)  

w is again a random variable and normal distributed by (0,R), here C is 1 and R 10000. Assume that the 
measurement has a value of 1200. The estimate of x can now be updated by the measurement.   

kx̂CkykKkx̂kx̂

 

(28)  
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To calculate the optimal value for the Kalman gain K the error is calculated for the state adjusted by the 
measurement:   

22
1111111 x̂CyKx̂xEx̂xEP  

2
1111111 x̂CwCxKx̂xEP  

2
1111111 wKx̂xCKEP  

TT
kKkwkKCkKkPCkKEkP 11 (29)  

The optimal Kalman gain to adjust the weight can be obtained by differentiation of the error covariance 
equation to K and setting the derivative to zero, which leads to the known equation for the Kalman gain.  

RCkPC

kPC
kK T

T

 

(30) 

The Kalman gain for our simple problem is 0.7647. The adjusted estimation of x = 1129 and the new error P 
is 7647. From this it can be seen that the error drops very fast and that the Kalman filter is a very efficient 
estimator.    

The process noise covariance matrix of the Kalman filter is important for the 

parameter adjustment of the Kalman filter, but is normally small. Utilizing a function for 

the process covariance matrix, did not show an improvement and is therefore intuitively 

only.  
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3. O projeto de um controlador não linear da variância mínima – 

Aplicação no processo semi-batelada de Penicilina 

Resumo – Este capitulo mostra um controlador auto-ajustavel de tipo da variância 

mínima. A identificação não linear é feita por uma rede neural recorrente (RNN), cujos 

parâmetros foram ajustados por o algoritmo de filtro de Kalman em tempo real. A 

predição de RNN é alimentado a um filtro de Kalman estendido, que estima os parâmetros 

de controle ou a variável de controle direta. Este controlador de variância mínima foi 

testado com o processo semi-batelado de produção de penicilina, de qual se controlou a 

concentração de oxigênio por manipulação da velocidade de rotação do agitador. A RNN 

nunca foi treinado antes, mas mesmo assim, o filtro de Kalman ajusta os pesos de RNN 

eficiente resultando em uma identificação de sistema eficaz. Mesmo sob mudanças severas 

de processo e ruídos complexos gerados por um ruído fracionário Gaussiano, o 

controlador auto-ajustavel se mostrou estável e calculando passos de controle adequado, 

sempre mantendo a concentração de oxigênio perto de seu consigne. Portanto, este 

controlador auto-ajustável demonstra um potencial para ser aplicado em esquemas 

avançadas de controle como alternativa de controle preditivo.   

Este assunto foi apresentado e publicado nos anais de 6th world congress on 

chemical engineering em Melbourne, Australia (2001) 
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It this paper is presented a non-linear self-tuning controller of the indirect type. A 

non-linear state identification is performed by a recurrent neural network (RNN), whose 

parameters are updated by an extended Kalman filter in real-time. The RNN prediction is 

fed to an extended Kalman filter, which estimates the controller parameter or manipulated 

control variable. The non-linear self-tuning controller was applied to a fed-batch penicillin 

process, controlling the dissolved oxygen concentration by manipulating the rotation speed. 

The RNN was never trained before, but the Kalman filter training algorithm adjusts the 

RNN weights efficiently, which results in a fast process identification The proposed non-

linear self-tuning controller was subjected to severe process changes and a difficult 

measurement noise generated by a fractional Gaussian noise. The non-linear self-tuning 

controller showed itself as being robust and able to cope with the process changes, keeping 

the dissolved oxygen concentration close to its set-point. The self-tuning controller shows a 

great potential for the use in batch processing and continuous processing, when a high 

quality control is demanded. 

INTRODUCTION 

Fed-batch processing is a typical example of a process exhibiting non-linear 

process dynamics. Especially, biochemical processes are known to have a lot of interaction 

between their state variables and are sensible to minor changes in pH, dissolved oxygen 

concentration, and temperature due to the sensitivity of the biochemical catalysts. PID 

control behaves well in case of continuous processing but in batch processing the control 

parameters will never maintain optimal values due to the changing process conditions. 

Therefore a controller implementation needs the self-tuning concept. In most self-tuning 

concepts the model used is linear, which needs to be updated also. In this work it is 

A NEW DESIGN OF A NON-LINEAR SELF-

TUNING CONTROLLER - APPLICATION TO A 

FED-BATCH PENICILLIN PROCESS  

R. Scheffer, J.A.D. Rodrigues and R. Maciel Filho 
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proposed a non-linear self-tuning controller, which is based on neural networks. Neural 

networks are known to approximate any non-linear function and when no new 

measurement data is available, this will result in a better process estimation than in case of 

a linear model. 

THE CONTROLLER 

The proposed controller structure is shown in Figure 18 
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Figure 18: The proposed non-linear Self-tuning controller scheme 

The neural network used is a recurrent neural network with direct connections from the input to the 
output layer, where the activation function in the output layer is a linear function. The linear 
function accounts for the linear part of the data. The network weights are updated in real-time by a 
Multiple Extended Kalman filter algorithm to account for changes in the process, whose 
implementation can be found in Scheffer et al. (2000, 2001b). The only difference between the 
algorithm described in Scheffer et al. (2001b) and this work is the update of the process noise 
covariance matrix is which is done here by the local error of every neuron in the network which is 
described by: 

       2

0 ineuronerrorqQ

 

(3.1)

But in this way the measurement noise is included in the process noise, and 

therefore it might be better to use: 

       noisetmeasuremenvarineuronerrorqQ
2

0

 

(3.2)

 

If Q is lower than zero it will be set to 0. 
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In this way, the dependence of the process covariance noise on the error can be 

seen as a type of covariance resetting as explained by the dynamical update of the Kalman 

filter equation: 

kQkP1kP

 
(3.3)

Where the diagonal elements of the error matrix P are augmented by the elements 

of Q. Care has to be taken to not add to much to the diagonal elements of the error matrix P, 

because the Kalman filter updates the weights of the recurrent neural network, which would 

not have a stochastic component. If Q is too high, the noise will be fitted also, reducing the 

noise filtering capabilities of the Kalman filter. 

The estimate of the recurrent neural network is fed to an extended Kalman filter to 

estimate the controller parameters or directly the manipulated variables. Here, the latter 

approach is chosen and the manipulated variable is directly estimated by the following 

dynamical system: 

kwkm1km

 

(3.4)

kvkyky c,annc

 

(3.5)

where m is the manipulated variable, yc the controlled variable, w and v are 

variables with a Gaussian distribution of (0,Q) and (0,R) respectively. 

The measurement, d, of the controlled variable is the desired set-point of the 

controlled variable. The manipulated variable is one of the inputs of the recurrent neural 

network. In the application of the Kalman filter, the observation equation has to be 

linearised every sampling instance. Thus the derivative of the controlled variable to the 

manipulated variable has to be calculated, which is the derivative to the recurrent neural 

network. The derivative of a neural network can be calculated by applying the chain rule, 

which results for a two layer neural network in: 

1kN

1i i,1kih,1kji,kj,k

h,2k

j,k
v'fw*w*v'f

dy

dy (3.6)

The controlled variable can now be updated by the Kalman filter: 
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(3.7)

THE PENICILLIN PROCESS 

The production of antibiotics for clinical applications is an important industrial 

process and about 60-65% is produced by means of fermentation. The penicillin is 

produced by bacteria or fungi and in this work the process studied is the production of 

Penicillin G, which is done by the fungi Penicillium chrysogenum. 

The emphasis is put on the production phase and not on the growing phase where 

an optimal feeding strategy is essential in obtaining a high concentration of penicillin. But 

it is essential to keep the dissolved oxygen concentration above 30% to ensure life 

conditions to the fungi.  In this work the feeding strategy determined by Rodrigues (1999) 

is used and the control objective is to maintain the dissolved oxygen concentration at about 

55%. The dissolved oxygen concentration is controlled by manipulating the rotation speed 

through the mentioned non-linear self-tuning controller. A PID controller will be used to 

compare the performance of the non-linear self-tuning controller. 

An essential part of the non-linear self-tuning controller is the recurrent neural 

network identification. Three input and four state variables were taken to identify the 

process and are the substrate feed flow, the rotation speed and the air flow as input 

variables and the bio-mass concentration, the substrate concentration, the penicillin 

concentration and the dissolved oxygen concentration as state variables. The mentioned 

Kalman filter algorithm will be compared to the standard backpropagation algorithm.  

RESULTS 

The control system was applied to a simulation of a fed-batch penicillin process. A 

detailed model was obtained from Rodrigues et al. (1999) which was validated with 

industrial data to simulate the penicillin process. The recurrent neural network used in the 

non-linear self-tuning scheme was never trained before to encounter its behaviour in real-

time training. A complicated noise sequence was added to the process variables and 

consisted of a generated fractional Gaussian noise which has a long term dependence 

(Mandelbrot and Van Ness, 1968). Both measures were taken to check the robustness of the 
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developed control algorithm. The applied disturbances to the input variables of the 

penicillin process are shown in Figure 28.  

First it is shown some results from the process identification of the penicillin 

process with and without control of the dissolved oxygen concentration. The recurrent 

neural network was trained either with the Kalman filter either with the backpropagation 

algorithm. From Table 2 it can be seen that the parameters of the Kalman filter have a 

significant influence on the training behaviour. For example the initial value of the error 

covariance matrix P, p0, is significant for the initial phase of the RNN, as the neural 

network is never trained before it is essential to put a large value for P to get a fast initial 

learning and acceptable process estimation in the beginning. The process noise matrix Q 

has a large influence on the training behaviour, in the beginning it will ensure a faster 

convergence of the RNN because the matrix P is maintained large, but at a certain point it 

will prohibit the RNN to converge due to the large changes applied to the weights and thus 

the prediction will start oscillating along with the noise, which should in fact be filtered out 

by the RNN. The measurement noise matrix R would be chosen as the variance of the 

measurement noise to take into account the measurement noise but the internal neurons of 

the neural network contribute to the noise also. The measurement noise could for example 

be divided by the number of the neurons which contribute to the noise of the output 

variable to obtain a better fit of the data.  

Table 2 : Total Summed Square Error (SSE) of all the outputs of the 

recurrent neural network one batch period with and without control of the 

d issolved oxygen concentration for various initial conditions of the training 

algorithms parameters 

Algorithm Paramaters SSE 

kalman filter p0=100, q0=1e-3, r0=1e-6 8.26E+08

kalman filter p0=100, q0=1e-1, r0=1e-6 3.54E+08

kalman filter p0=100, q0=1e-1, r0=1e-1 3.54E+08
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Algorithm Paramaters SSE 

kalman filter p0=1, q0=1e-1, r0=1e-1 1.53E+09

kalman filter p0=1, q0=1e-1*error2, r0=1e-1 2.17E+08

kalman filter p0=100, q0=1e-2, r0=1e-3 8.46E+08

kalman filter p0=100, q0=1e-2*error2, r0=1e-3 7.45E+08

kalman filter p0=100, q0=1e-3*error2, r0=1e-3 8.30E+08

kalman filter p0=100, q0=1e-3*error2/0.05, r0=1e-3 8.26E+08

kalman filter p0=100, q0=1e-3*error2/0.05não lin, 1e-3 linear, 

r0=1e-3 

2.17E+08

kalman filter p0=100, q0=error2/0.05, r0=1e-2 2.17E+08

kalman filter p0=100, q0=error2/0.05, r0=5e-2 2.17E+08

backpropagation learning parameter = 0.01 6.63E+08

backpropagation learning parameter = 0.03 2.64E+08

STC/kalman filter P0=100, q0=0.1*error2/0.05, r0=5e-2  qrps=error^2 5.52E+08

STC/kalman filter P0=100, q0=error2/0.05, r0=5e-2 qrps=0.1*erro^2 4.48E+08

*STC/kalman filter P0=100, q0=0.01*error2/0.05, r0=5e-2 qrps=erro^2 8.37E+08

STC/kalman filter P0=100, q0=(error2-0.05)/0.05, r0=1e-2 qrps=erro^2 1.09E+09

STC/backpropagatio

n 

Learning parameter = 0.001 4.94E+09

*STC/Backpropagati

on 

Learning parameter = 0.004 1.73E+09

The non-linear self-tuning controller for both neural network training algorithms 

are shown is shown in Figure 19 to Figure 26. The used initial conditions for both training 

algorithms are marked with an (*) in Table 2. It can be seen that the non-linear self-tuning 

controller with the Kalman filter controls the system much better than in case of the non-

linear self-tuning controller with the backpropagation algorithm. It should be noted that the 

behaviour of the non-linear self-tuning controller with the Kalman filter depends very much 
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on the values and functions used for the process and measurement covariance matrixes. It 

appears that too large values for Q are not desirable and thus not result in an approval of the 

estimation of the RNN along the batch period. It is better to adjust the controller variable 

more severe. For the chosen settings, it can be seen that the processes becomes better 

controlled along the batch period and that the RNN estimation of the dissolved oxygen 

concentration becomes closer to the real concentration. It is also evident that the self-tuning 

algorithm should not be turned on in the first instances as this leads to a very bad control 

due to the bad estimation of the dissolved oxygen concentration.  

It is evident that the non-linear self-tuning controller gives a much worst control 

than the Kalman filter, although the state estimation of the non-controlled variables is quite 

good. The learning parameter had to be chosen about a 10 times smaller because of the 

more complicated dynamical behaviour. Due to the self-tuning concept there is created one 

more feedback loop for the recurrent neural network, that is the rotation speed is now a 

function of the dissolved oxygen concentration. Thus the dissolved oxygen concentration is 

now a function of two variables turning the estimation problem to difficult for a simple 

estimation algorithm as the backpropagation algorithm justifying the use of a more 

computational demanding estimation method as the multiple extended Kalman filter 

algorithm.   

It can be observed that the backpropagation algorithm is not a bad choice for 

training the neural network either, but probably will need a low pass filter to annihilate the 

noise characteristics. 
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Figure 19 : Estimation of the 

biomass concentration of the non-linear 

self-tuning controller, where the recurrent 

neural network is trained with the 

multiple extended Kalman filter 

algorithm 
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Figure 20 : Estimation of the 

substrate concentration of the non-

linear self-tuning controller, where the 

recurrent neural network is trained 

with the multiple extended Kalman 

filter algorithm 
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Figure 21 : Estimation of the 

Penicillin concentration of the non-linear 

self-tuning controller, where the recurrent 

neural network is trained with the 

multiple extended Kalman filter 

algorithm 
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Figure 22 : Estimation and 

control of the d issolved oxygen 

concentration concentration of the 

non-linear self-tuning controller, 

where the recurrent neural network is 

trained with the multiple extended 

Kalman filter algorithm 
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Figure 23 : Estimation of the 

biomass concentration of the non-linear 

self-tuning controller, where the 

recurrent neural network is trained with 

the backpropagation algorithm 
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Figure 24 : Estimation of the 

substrate concentration of the non-linear 

self-tuning controller, where the 

recurrent neural network is trained with 

the backpropagation algorithm 
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Figure 25 : Estimation of the 

penicillin concentration of the non-

linear self-tuning controller, where the 

recurrent neural network is trained with 

the backpropagation algorithm 
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Figure 26 : Estimation and 

control of the d issolved oxygen 

concentration concentration of the non-

linear self-tuning controller, where the 

recurrent neural network is trained with 

the backpropagation algorithm 
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In Figure 27 it is shown the implementation of a PI controller. It can be seen that if 

it is wanted to control the dissolved oxygen concentration only a PI control might be 

satisfactory, because the proportional and integral action were not fully optimised. Observe 

that it is necessary to filter the dissolved oxygen signal to obtain a smoother control. From 

Figure 22 it is depicted that the non-linear self-tuning control will lead to a very good 

control when the recurrent neural network is fully trained. When the recurrent neural 

network is fully trained, it could be used in a feedforward self-tuning control scheme, 

where the prediction of the neural network can already annihilate the disturbances.  
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Figure 27:  PI control of the 

d issolved oxygen concentration with 

Kc=5 and i=1. 
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Figure 28: The perturbations 

applied to the input substrate flow and 

the airflow. 

CONCLUSIONS 

It was shown that in non-linear control application, such as controlling a fed-batch 

process, it is important to develop an advanced control algorithm as a PID controller cannot 

do the job properly. The developed non-linear self-tuning controller shows an excellent 

control of the dissolved oxygen concentration of the penicillin production process. The 

non-linear self-tuning controller showed itself robust in a difficult regulator problem and 

under noisy measurement conditions. Training of the recurrent neural network, which is the 

non-linear identification tool of the non-linear self-tuning controller, should be done 

preferentially with an advanced training algorithm as the extended Kalman filter algorithm 

instead of the backpropagation algorithm. The changing manipulated variable leads to 
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difficult dynamical system behaviour, but the extended Kalman filter algorithm can 

successfully cope with it. 
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4. O ruído Gaussiano fracionário em modelagem de sistemas 

complexos 

Resumo – O ruído Gaussiano fracionário (fGn) foi proposto como preditor de 

sistemas com um comportamento hidrodinâmico complexo, como colunas de bolhas e 

unidades de craquemento térmico. O sinal de pressão de um piloto de um reator air-lift foi 

medida para varias vazões de ar e utilisado para ajustar os modelos fGn e os modelos 

ARMA. O parâmetro de Hurst foi estimado pelo método de estatístico de R/S e pelo método 

de máxima verossimilhança, onde o último resultou em uma estimativa melhor do 

parâmetro em visto das estatísticas do sinal como a função de auto-correlação. 

Demonstrou-se que o fGn é capaz de descrever os sinais de pressão para vazões de ar 

baixas, mas falha de descrever a função de auto-correlação para vazões altas de ar. Os 

modelos ARMA são capaz de descrever a função de auto-correlação para todas as vazões, 

pelo maior número de parâmetros que podem ser ajustados. Portanto, recomenda-se 

utilizar o modelo ARMA fracionário para ser desenvolvido como modelo geral da 

identificação de erros de medida.  

Este capitulo foi publidado na revista CHEMICAL ENGINEERING 

SCIENCE, 56(2), 2001, pp. 707 – 711, “The fractional Brownian motion as a model for an 

industrial airlift reactor” e nos anais do 3rd  Europian Congress on Chemical 

Engineering (ECCE-3).  
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The fractional Brownian motion as a model for an 

industrial Air-lift Reactor  

R. Scheffer and R. Maciel Filho  

State University of Campinas (UNICAMP), Faculty of Chemical Engineering, 

Cidade Universitária Zeferino Vaz, CP 6066, Campinas - SP – Brazil, CEP 13081-970   

Abstract  

The fractional Brownian motion (fBm) was verified as a model to describe the 

complex behaviour of a commercial air-lift reactor. A pressure signal recorded was 

analysed and predictions were made with the fBm model. It can be concluded that the 

pressure signal air-lift reactor exhibits the features of the fractional Gaussian noise and not 

of the fBm. Modelling of the pressure signal with the fractional Gaussian noise (fGn) can 

be used for control purposes or fault diagnosis. The characteristics of the commercial air-

lift reactor are encountered in various reactors which shows the great potential of the fGn to 

describe pressure signals in such reactors. As the variations of the pressure signal can be 

described by the fGn, the fBm is still a potential candidate to describe variations over the 

longitude of the reactor.  

Keywords: Fractional Brownian motion, Fractional Gaussian noise and air-lift reactor 
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Introduction 

The commercial air-lift reactor studied carries out a slow oxidation reaction. The 

reactor exhibits a complex interacting behaviour between its operating variables and has a 

complex flow characteristic. 

In modelling of air-lift reactors fractal analysis was already used to determine in 

which regime the reactor is operating. Camarasaa et al. (2000) identified different flow 

regimes, heterogeneous or homogeneous, by calculating the parameter of Hurst of a 

pressure signal. Doing so the right parameter dependence can be chosen in rigorous models 

to predict temperatures and so on of the air-lift filter 

Our aim in this research is to develop a model description of the air-lift reactor, 

which describes the complex behaviour of the hydrodynamics in more detail but does not 

result in excessive computational loads for on-line applications. The model could then be 

used in advanced control algorithms to obtain a slightly better control  and therefore a 

reduction in costs. It should also be noted that the modelling of signals could be used in 

fault diagnosis analysis. 

The chosen model is the fractional Brownian motion (fBm) which can be used to 

give a total process description as in a black-box fitter or to predict a part of the process, 

such as the hydrodynamics. In the following paragraphs it is outlined the characteristics of 

the air lift reactor and the fBm to explain why it is such a good candidate to model complex 

systems with chaotic behaviour, as for example fluidised beds. 

Characteristics of the air-lift reactor 

The hydrodynamics of the air lift reactor are highly complex and mostly turbulent. 

Turbulent behaviour is incorporated in for example computation fluid dynamic modelling 

as a Markovian component on the velocity. In less detailed models, the turbulence is 

described by multiple ideally mixed volumes. The turbulence effects variables as the mass 

transfer and the heat transfer directly. 
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The air-lift reactor consists of a riser and a down comer. In the bottom of the riser, 

air is dispersed and absorbed in the liquid phase to be used in the oxidation reaction. At the 

top, the gas and the liquid phase are separated, where the latter phase is recycled to the 

riser. 

The flow of the recycled liquid and the air flow will determine the flow 

characteristics in the column, whether the phases are distributed homogeneously whether 

heterogeneously. 

Both systems are two phase systems and if one wants to describe the 

hydrodynamics in more detail one should not regard turbulence as a random or stochastic 

component and therefore turbulence should be modelled by model which has 

interdependence between its passes like the fractional Brownian motion or fractional 

integrated ARMA models. The fBm could be used for example to predict the temperature 

or a coefficient which is dependent on the turbulence. 

At first the idea was to correlate changes in the bottom of the column to the 

changes observed at the top of the column, because this would be of most interest in 

modelling the column for control purposes. Especially, because the bubbles inserted at the 

bottom will diffuse over the column width. This is modelled by the fBm as its definition 

results in a signal whose variance grows constantly. To incorporate the walls as a physical 

limit, the fBm signal could be limited also. 

Unfortunately, the simple data acquisition simple used did not allow to observe 

more than one variable in time at the same time. Therefore we could only analyse the 

pressure signal at a point in a column and the model could be used for fault detection or 

process monitoring. 

The fractional Brownian motion 

The fractional Brownian motion was introduced by Mandelbrot and van Ness 

(1968), who already mentioned phenomena in hydrology or fluctuations in solids as 

processes to be estimated by the fBm. Actually, the empirical findings of Hurst were the 

main reason for developing the fBm as an explanation for this phenomena. Hurst (1951) 

discovered that for a lot of natural time-series the following relation was valid: 

H
t

S
R

 

(1) 
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Where R is the maximum range (= max - min) of the summed differences of the 

time series and S the standard deviation. H is referred to as the Hurst parameter or the 

parameter of self-similarity.  

Mandelbrot and van Ness (1968) defined the fractional Brownian motion as 

follows: 

,sdBst,sdBsst
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1
,tB,tB
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(2) 

Where (x) is the gamma function and BH(0, ) = b0. Mostly this initial condition 

is 0. 

In simulation it is better to use a discrete version of the fractional Brownian 

motion, where the increment of dB can then be written as n-1/2
i. i is a Gaussian variable 

with zero mean and unit variance. Then, the discrete fractional Brownian increments are 

given in the discrete case by (Feder, 1988). 
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(3) 

Here n is a small number and gives an approximation to the short-term dependence 

of BH(t). These n points are the number of Gaussian variables taken into account between 

the sampling points. M is the number of sampling points used to calculate the long-term 

dependence. The second term in (3) will drop quite fast to zero as i goes to minus infinity. 

Since only M integer time steps are included, it is clear that BH becomes an independent 

Gaussian process for t >> M. Note also that the simulation of a fBm is a sliding average 

over a Gaussian process weighted by a power-law. 

The exponent H is the self-similarity parameter and will determine the behaviour 

of the time-series. If H is 0.5, the increments are independent and form a Gaussian noise 

process. Its integral then forms the well known Brownian motion. If 0.5 < H < 1 and the 

increments increase it is more likely that it will continue to increase. This is called a 

persistent behaviour and is the one of most interest. For 0 < H < 0.5, it is more likely that 

the increments will decrease after a period of increase, which is called anti-persistent. 
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The H of the time-series has to be estimated from experimental data before the 

fractional Brownian motion can be used as a prediction model for the pressure. The R/S 

statistic of Hurst is one of the oldest techniques however also one of the easiest to be 

implemented. The parameter H can be estimated more accurately by the spectral density of 

the time-series using Fourier analysis or wavelets. As it is a preliminary study, only the R/S 

statistic was implemented. 

R/S statistic 

The R/S statistic was introduced by Hurst (1951) when studying data of reservoirs. 

The average of a time series for a time period  is given by: 

1

1

t

t (4) 

The accumulated departure of the time-series from the mean of the time series is: 

1

,
i

itX (5) 

R now is defined as the difference between the maximum and minimum amounts 

accumulated for the time-series. Thus R is defined as 

,min,max
11

tXtXR
tt

 

(6) 

The range R will typically depend on the time span and normally increases when a 

larger time span is considered. 

The standard deviation is estimated from the time-series by: 

2

1

1

21

i

iS (7) 

The rescaled adjusted range R/S is then correlated by equation 1. The parameter H 

is estimated by standard regression techniques. For most natural phenomena H is larger 

than 0.5 and close to 0.73. 
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Results 

A pressure signal from an air lift reactor was recorded at different air flow feed 

rates. The signal was analysed with the R/S statistic to determine its self-similarity 

parameter. Standard statistic analysis was done, such as the sample auto-correlation. 

Simulation of the fractional Brownian motion was carried out and compared to the 

measured pressure signal. 

In Figure 1 the fractal or R/S analysis is shown of one of the pressure signals. The 

points of the lower flow rates lie well on a straight line with a little variation. The 

calculated parameters of Hurst are shown in Table 1 and is for low flow rates correlated 

positively with a parameter H of 0.72.  For higher air flow rates the parameter becomes 

closer to 0.5 and thus closer to an independent process. Due to the higher air flow rates the 

system in the column will become more turbulent. 

table 3: Estimated Hurst 

parameter for different air flows 

Air flow 

(n l/h) 

Hurst 

parameter 

1000 0.6314 

2000 0.7238 

3000 0.7218 

4000 0.6974 

5000 0.6767 

6000 0.6623 

7000 0.6496 

8000 0.6513 

9000 0.6329 

10000 0.6507 
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figure 29: Analysis of the pressure 

signal for na air flow of 3000 with the R/ S 

statistic 

11000 0.6237 
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12000 0.5962 

13000 0.5880 

14000 0.5905 

16000 0.5632 

18000 0.5285 

20000 0.5458 

From Table 1 it can be noted that the parameter of Hurst is at a maximum for the 

lower air flow rates and start to drop when the flow rate increases, which is due to the 

change of the flow regime from homogenous to heterogeneous. 
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Figure 30: The first 2500 samples of the 

pressure signal of air-lift reactor for an air 

flow of 3000 
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Figure 31: A generated sequence of 

fractional Gaussian noise with a H = 0.7 
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Figure 32: Fractional Brownian motion 

generated from the fractional Gaussian 

noirse for H = 0.5 
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Figure 33 : Sample auto-correlation of the 

pressure signal for an airflow of 3000 l/h 
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Figure 34: Sample auto-correlation of a 

simulated fractional Gaussian noise with H = 

0.7 
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Figure 35: Sample auto-correlation of a 

simulated fractional Brownian motion with 

H = 0.7 

 

When looked at the pressure signal and the simulated fractional Brownian motion 

(Figure 2 and 4), it is very clear that the fBm is not a representative model for predicting 

the evolution of the pressure signal in time. The pressure signal is a stationary signal, while 

the fractional Brownian motion is a non-stacionary signal with increasing variance. 

By comparing the sample auto-correlation functions of the process with the one of 

the fBm (Figures 5 and 7) it can be concluded that the pressure signal has a much shorter 
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time memory than the fBm model and cannot be used to described the pressure signal from 

the air lift reactor.  

If the increments of the fBm are regarded, which is called the fractional Gaussian 

noise (Figure 3) the resemblance is remarkable. The scaling of the fBm was different, 

because the events were taken from a normal distribution with zero mean and unit variance, 

but can be easily transformed to obtain the same scaling. It can be seen that the fractional 

Gaussian noise shows the same kind of variation and the little peaks every now and then. 

The sample auto-correlation of the fractional Gaussian noise (Figure 6) shows the 

same development as the sample auto-correlation of the pressure signal (Figure 5). Both 

have a short memory, which can be seen from the fast fall for increasing time lags. For 

large time lags both process and fractional Gaussian noise oscillate around zero, but this 

cannot be given to much value due to noise effects.  

In figure 8 the fractional Gaussian noise is used to estimate a one-step ahead 

prediction of the pressure signal. Equation 3 was used to predict the pressure signal in time. 

The increment from t to t+1 was calculated by evaluating the two summations in equation 

3. The first summation was calculated by generating ten Gaussian variables with zero mean 

and a variance of the pressure signal. The second summation in equation 3 was simply done 

over the time-series of the pressure signal P. This because the increments in the pressure 

signal are already a result of evaluating the integral at past times. The calculated increment 

was added to the past pressure data/ 

It appears that the pressure signal is predicted reasonable with a mean squared 

error of 0.0219 and mean absolute error of 0.0174. It should be emphasised that the 

prediction is based on a stochastic process and therefore never will be able to predict 

exactly the process. Thus it can be concluded that the fractional Gaussian noise is a very 

suitable model to estimate  the pressure signal evolution in time and can thus be used in 

fault diagnosis programs for the reactor or for control purposes.  
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The prediction of the pressure signal can be improved by implementing better 

prediction methods, such as a maximum likelihood estimation, which will be conducted in 

future work  

Model
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Figure 36: Pressure signal (...) and prediction by the fractional Gaussian noise (-)with H = 

0.7218 

 

But the fractional Brownian motion is not out of focus yet as it could be still a very 

good candidate to model changes taking place along the reactor, predicting for example the 

changes in time and place in pressure or temperature. This is true as it is shown in this work 

that the variations measured at a certain height of the reactor are correlated by the fractional 

Gaussian noise, which is step-size of subsequent points of the fractional Brownian motion. 

Conclusions 

It was shown that not

 

the fractional Brownian motion but the fractional Gaussian 

noise is a suitable model to describe the pressure signal evolution in time at a certain height 

of the air-lift reactor. The fractional Gaussian noise has the same statistics as the pressure 

signal and can be used as fault diagnosis tool or in control applications. 
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As the variations of the pressure signal can be described by the fractional Gaussian 

noise, it is pointed out that the fractional Brownian motion is still a potential candidate to 

describe variations along the height of the air-lift reactor. 
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Abstract 

In this work the fractional Gaussian noise (fGn) is proposed as a system identification tool for 

systems with a complex hydrodynamic behaviour, such as bubble columns and fluid catalytic 

cracking units.  A pressure signal of an industrial air-lift reactor was recorded for various air 

flow rates and utilised to fit the fGn and ARMA models. The Hurst parameter of  the fGn was 

estimated by the R/S-statistic and by a maximum likelihood method, where the latter method 

resulted in a better estimate for the parameter when looked at the signal statistics. It is shown 

that the fGn is a model for the pressure signal at low air flow rates, but fails to describe the 

auto-correlation at higher air flow rates. The fitted ARMA models are able to describe the 

auto-correlation for all air flows, but can become non-causal. Therefore these results point 

out to the Fractional ARMA model would be the preferred model for control purposes as a 

fault diagnosis tool.  

Introduction 

Reactors with different phases normally show difficult hydro-dynamical behaviour 

due to interactions of the phases. The interaction between solids-gas in a fluid catalytic 

cracking unit or between liquid-gas in a bubble column or in an air-lift reactor results in 

fluctuations in the pressure signals. The fluctuations of the pressure signal are a result from 

bubbles passing by the pressure transducers probes and the amplitude of the signal is a 

function of the bubble size. The size of the bubbles is a complex function of coalescence, 
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bubble break-up, differences in fluid velocities and height in the reactor. Therefore the past 

of the bubble will typically have an influence on its size. 

Fan et al. (1990) applied a fractal analysis, the rescaled range (R/S) analysis, to the 

pressure fluctuations of a pressure signal of three phase fluidised bed to identify the quality 

of the fluidization. They show that the Hurst parameter H decreases with increasing gas and 

liquid flow and increases with height in the reactor. They concluded that the Hurst 

parameter and fractional Brownian model are proper to analyse the fluidisation of the three 

phase fluidised bed. 

Franca et al. (1991) used the same rescaled range (R/S) analysis to try to identify 

different flow regimes in two-phase flow in a tube. The Hurst parameter shows that the 

system is chaotic and the possibility to discriminate plug-flow regime from other flow 

regimes like annular and slugging flow. 

Drahos et al. (1992) studied pressure fluctuations in bubble columns and were able 

to identify the bubbling regime, homogenous or turbulent bubbling regime, by the rescaled 

range (R/S) analysis. The Hurst parameter becomes closer to 0.5 for the turbulent regime, 

indicating that the turbulent region becomes more independent. 

Camarasaa et al. (2001) used fractal analysis to determine the flow regime of a 

pilot air-lift reactor, determining the Hurst coefficient, which indicates whether the 

bubbling regime of the air lift reactor is in the homogeneous or turbulent regime. 

But with the knowledge of the Hurst coefficient the fractional Gaussian noise 

could be used to predict the fluctuations of the signal, which could be used in advanced 

model control or as a fault diagnosis tool. The last becoming more important as chemical 

processes are becoming more and more computerised.  

The fGn was originally developed by Mandelbrot and Van Ness (1968) to explain 

the Hurst phenomenon. fGn is a long-memory model and the correlation between the 

samples is determined by a self-similarity parameter, H, which is sometimes referred to as 

the parameter of Hurst.  
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Figure 37: Representation of the fractional Brownian motion and the 

fractional Gaussian noise applied to an air-lift reactor and a more detailed drawing 

of the pilot plant reactor used 

In Figure 37 the application of the FGN and the fractional Brownian motion (fBm) 

to the air-lift reactor is shown. The bubbles inserted at the bottom will diffuse over the 

column width, which is modelled by the fBm as its definition results in a signal which 

variance grows constantly. To incorporate the walls as a physical limit, the fBm signal 

could be limited also. The variation of a signal at a certain height is the derivative of the 

fBm and is called the fractional Gaussian noise (fGn). 

Fractional Gaussian noise 

Hurst (1951) discovered that for a lot of natural time-series, such as the Nile river 

and tree rings, the following relation is valid: 

       HH
N

S
Rort

S
R

 

(4.1)
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Where R is the maximum range (= max - min) of the summed differences or 

cumulative departure of the time series and S the standard deviation. H is referred to as the 

Hurst parameter or the parameter of self-similarity.  

Mandelbrot and van Ness (1968) considered a continuous time process BH(t), 

which satisfies the self-similarity property such that for all 

 

and >0, BH(t+ )-BH(t) has 

exactly the same distribution as [BH(t+ )-BH(t)]/ H. From this it is clear that the sequential 

range of BH will increase in time proportionally to NH, where the sequential range is 

defined by: 

rBminrBmaxrange.seq H
Ntrt

H
Ntrt

 

(4.2)

where t is the continuous time and H is the model parameter. If the variable BH(t) 

is Gaussian, then it is called the fractional Brownian motion. The discrete time fractional 

Gaussian noise (FGN) is obtained for a discrete time t with a fixed step size: 

tB1tBz HHt

 

(4.3)

The exponent H is the self-similarity parameter and will determine the behaviour 

of the time-series. If H is 0.5, the increments are independent and form a Gaussian noise 

process. Its integral then forms the well known Brownian motion. If 0.5 < H < 1 and the 

increments increase it is more likely that it will continue to increase. This is called a 

persistent behaviour and is the one of most interest. For 0 < H < 0.5, it is more likely that 

the increments will decrease after a period of increase, which is called anti-persistent. In 

modelling a value of H of 0.5 would probably be identified as a highly turbulent system, 

because of the column being more ideally mixed.  

The theoretical Auto-Correlation Function at lag k of the FGN is given by: 

1kand1H01kk21k
H2H2H2

2
1

k

 

(4.4)

From this the N N correlation matrix of the FGN is given by: 
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jiN HC

 
(4.5)

To define these matrixes, which can be used in a maximum likelihood prediction, 

the self-similarity parameter or the Hurst parameter has to be estimated. 

The H of the time-series has to be estimated from experimental data before the 

fractional Gaussian noise can be used as a prediction model for the pressure. The R/S 

statistic of Hurst is one of the oldest techniques however also one of the easiest to be 

implemented. The parameter H can be estimated more accurately by the spectral density of 

the time-series using Fourier analysis or wavelets.  

A more sound statistical estimator of H can be determined via the maximum 

likelihood estimation of Hipel and Mcleod (1994) and is described further on. 

R/S statistic 

The R/S statistic was introduced by Hurst (1951) when studying data of reservoirs. 

The average of a time series for a time period  is given by: 

1t

t
1 

(4.6)

The accumulated departure of the time-series from the mean of the time series is: 

t

i

itX
1

,

 

(4.7)

 

R now is defined as the difference between the maximum and minimum amounts 

accumulated for the time-series. Thus R is defined as 

,tXmin,tXmaxR
t1t1

 

(4.8)

 

The range R will typically depend on the time span and normally increases when a 

larger time span is considered. 

The standard deviation is estimated from the time-series by: 
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(4.9)

 
The rescaled adjusted range R/S is then correlated by Eq. (4.1). The parameter H is 

estimated by standard regression techniques by plotting the data on a log-log scale. For 

most natural phenomena H is larger than 0.5 and close to 0.73. 

Maximum Likelihood Estimation of the Hurst parameter 

The only link between the fractional Gaussian noise and the time-series are formed 

by the mean, variance and the Hurst parameter, H. By most researchers the R/S-statistic is 

employed or one of its variants, such as the variance plot. But these methods do not take 

into consideration any statistical properties of the fractional Gaussian noise. A least squares 

estimate for H can be formulated by using the sample auto-correlation function, but its 

efficiency and the theoretical foundations were questioned by McLeod and Hipel (1978). 

A more efficient parameter estimation can be developed by employing the 

Maximum Likelihood Estimation (MLE) method. The following MLE was developed by 

McLeod and Hipel (1978). 

Give a historical time series z1, z2, ,zn the log likelihood of , 0, and H in the 

FGN model is: 

H,Slog
2

NHClogHLLog N2

1
max

 

(4.10)

where CN(H) is the correlation matrix as defined in Eq. (4.10). In the log 

likelihood function the norm has to be taken of the correlation matrix and was chosen as the 

Euclidian norm. The function S( ,H) is given by: 

1zHC1zH,S
1

N

T

 

(4.11)

where zT equals z1, ,zN and is a 1 N vector and 1T equals 1, ,1 and is a 1 N 

vector. 

For a fixed H the MLE of the mean  and variance 0 are respectively, 
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(4.12)

and 

H,ˆSN
1

0

 
(4.13)

The MLE estimate of H, Ĥ , can be estimated from above equations by applying 

an inverse quadratic interpolation search method to maximise log Lmax(H). The variance of 

Ĥ can be approximated by differentiation twice the log Lmax by a numerical finite 

difference method, 

ĤH

2

max

2

H

HLlog
1ĤVar

 

(4.14)

As a final check a model adequacy test should be used to see if the model fits the 

data, which can be done by checking the whiteness of the residuals. 

Forecasting with FGN 

For most models a mean square error forecast can be defined and thus so for FGN 

models. For this the covariance matrix, N,  is necessary, which can be obtained by 

substituting the MLE for H from the above section and dividing by the estimated variance. 

Then the one step ahead forecast is given by Hipel and McLeod (1994): 

1ZZZE N

1

N

T

NN1N

 

(4.15)

which can be calculated economically by applying a Cholesky decomposition. 

Results 

A pressure signal of a pilot plant air-lift reactor was sampled every 0.02 seconds 

and 10000 samples were recorded per air-flow. The Hurst parameter was estimated for both 

techniques, the R/S-statistic and the MLE method, where the latter method is done for a 

number of points only. 

In Table 4 the estimated Hurst parameters are shown for both methods and it can 

be seen that there is a large discrepancy between both methods. It appears that the MLE 

estimation method gives a different value and trend of the Hurst parameter: the MLE 
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estimation results in a low value of H for the low air flow rates, while the R/S statistic gives 

a high value for H. For high air flows the MLE estimates a high value for H while the RS-

statistic gives a low value. The difference in the estimated value of H is due to the statistics 

of the underlying model. While the R/S-statistic assumes actually no model, the MLE 

method fits the time-series to the theoretical auto-correlation of the fractional Gaussian 

noise. As was mentioned by Hipel and McLeod (1994), Hurst should have focussed his 

research rather on the Rescaled Adjusted Range than on the Hurst coefficient, as one is only 

a re-scaled function of the other.  
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Table 4: Comparison of the estimated Hurst parameters by the R/ S-

statistic and the Maximum Likelihood Estimation method for the pressure signal of 

a bubble column 

H (MLE of Hipel and McLeod) Airflow 

(n l/h) 

H  

(RS-stat.) n=100 n=300 N=500 N=1000 

1000 0.6174 0.5587 

  

2000 0.7199 0.5453 

  

3000 0.7195 0.5959 

 

0.6001 

4000 0.6790 0.6039 

  

5000 0.6682 0.6143 

  

6000 0.6659 0.6271 

  

7000 0.6468 0.6309 

  

8000 0.6136 0.6474 

  

9000 0.6223 0.6537 

  

10000 0.6131 0.6613 

  

11000 0.5826 0.6687 

  

12000 0.5778 0.6809 

  

13000 0.5610 0.6906 

  

14000 0.5669 0.6930    

16000 0.5498 0.7055 0.7080   

18000 0.4899 0.7111 0.7136   

20000 0.4999 0.7180 0.7228 0.7232  

In Figure 38 the auto-correlation of the pressure signal for an air flow of 3000 nl/h 

is compared to the theoretical auto-correlations of the fGn. It looks like that the auto-

correlations at lower air flows (around 3000 nl/h) of the pressure signal (Figure 37) exhibit 
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the dependence of a theoretical auto-correlation of the fGn and it appears to fall between 

the theoretical auto-correlations of fGn with H=0.5 and H=0.6. Thus the estimation of the 

Hurst coefficient by the R/S-statistic is rather high, compared to the Hurst coefficient 

indicated by the auto-correlation. In (Figure 39) it is shown why the R/S-statistic differs so 

much from the MLE method and is for short ranges comparable to the MLE estimate. 
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Figure 38: Auto-correlation of 

the pressure signal with an airflow of 

3000 nl/ h compared to theoretical 

auto-correlation of the fractional 

Gaussian noise 
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Hurst parameter with the R/ S-statistic 

for the pressure signal with an airflow of 

20000 nl/h 
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correlation of the ARMA (8,4) model 
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correlation of an airflow of 3000 nl/ h 

and the theoretical ACF of the ARMA 

(8,4) model 

 

In Figure 40 the auto-correlation of the pressure signal is shown for an airflow of 

14000 nl/h. For higher flow rates it can be seen that the sample auto-correlation does not 

coincide with the theoretical auto-correlation of the fractional Gaussian noise. The sample 

auto-correlation can be described well by an ARMA (8,4) model. Interesting to see is the 

oscilating long term dependence when the air-flow is increased. This indicates that at 

higher air flows the gas-liquid separator does not work that well and more and more small 

bubbles are recycled by the downcomer to the riser. As shown, this would not be concluded 

from the rescaled range method. Therefore it is important to use a sound statistical based 

method. 

But from Figure 41 it appears that the ARMA (8,4) model is not that good to 

describe the long term dependency for the lower airflow of 3000 nl/h, showing significant 

deviation for larger timelags. Therefore it would be ideal to combine the features of the two 

models. The fGN could also be mixed with another model, for example Neogi et al. (1993) 

used the fGn as a random component in conjunction with a sinus, which was fitted to the 

sample auto-correlation. This because the passage of bubbles will result in a periodic wave 
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component. Another favourite candidate could be the class of fractional ARMA models 

(FARMA), which are able to predict short-time and long-term behaviour.  

Therefore the fractional Gaussian noise cannot be used as a model to predict the 

pressure signal for all air flows, but should be mixed with other models to obtain a model 

valid for all flow rates and the most promising model will be the fractional ARMA models.   
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Figure 42: Pressure signal (...) and prediction by the fractional Gaussian 

noise (-)with H = 0.7218 

For the lower air flows fGn can be used as a model or fault diagnositic tool 

(Scheffer and Maciel, 2001) and is shown in Figure 42. The prediction was done by 

modifying a simulation method mentioned by Feder (1988): 
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The increment from t to t+1 was calculated by evaluating the two summations in 

Eq. (4.16). The first summation was calculated by generating ten Gaussian variables with 

zero mean and a variance of the pressure signal. The second summation in Eq. (4.16) was 

simply done over the time-series of the pressure signal P. This because the increments in 

the pressure signal are already a result of evaluating the integral at past times. The 

calculated increment was added to the past pressure data. 

It appears that the pressure signal is predicted reasonable with a mean squared 

error of 0.0219 and mean absolute error of 0.0174. It should be emphasised that the 

prediction is for a part biased by the prediction with the generation of several Gaussian 

variables. Still it can be seen that the FGN gives a satisfactory prediction and thus is a 

suitable model for measurement monitoring. 

It is believed that the prediction could be improved by employing the maximum 

likelihood of McLeod and Hipel (1994).  

Conclusions 

It was shown that the fractional Gaussian noise (fGn) is not a suitable model to 

describe the pressure signal evolution in time for all airflows at a certain height of the air-

lift reactor. The fractional Gaussian can be used the model the air-lift reactor for low 

airflows only. To obtain a model which is valid for all air flow rates, the fGn has to be 

coupled with other models, which account for the oscillatory behaviour for high air flows. 

A particular interesting model is the fractional ARMA models which can account for short-

term and long-term dependence and is more flexible than the FGN. Therefore modifications 

have to be done to the fGn to be able to use this model as a fault diagnosis tool or in control 

applications and preferably the fractional ARMA model should be used.  
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5. Controle adaptativo, preditivo e não linear com o filtro de 

Kalman 

Resumo – Este trabalho propõe um novo algoritmo preditivo de controle baseado 

em redes neural restritivas. O algoritmo utiliza um algoritmo seqüencial da programação 

quadrática para computar a ação seguinte das variáveis manipuladas do processo. O 

parâmetro preditivo de controle, o fator de supressão é otimizado em linha por um filtro 

padrão de Kalman. O novo algoritmo de controle foi testado em um processo de 

fermentação e observou-se que o fator de supressão pode ser identificado, com resultados 

satisfatórios para ser aplicados em sistemas multivariáveis complexos. 

O algorítmo de controle proposto mostrou-se robusto para as situações estudadas 

sendo, portanto de grande potencial para ser empregado em plantas de grande escala. 

Particularmente a implementação do algoritmo proposto na forma SISO revela seu 

potencial para sistemas multivariáveis onde iterações estão presentes sendo necessária a 

ação do fator de supressão. Pode ser notada a importância dos ajustes deste parâmetro 

para acomodar as mudanças ocorridas no processo. 

Ainda é possível uma melhora no algoritmos de estimação para a correção do 

fator de supressão que pode determinar com sucesso a taxa de mudança no sistema devido 

a ação de controle. Isto irá resultar em um algoritmo de controle com respostas mais 

rápidas e com menores overshoot.  

Este capitulo foi publidado nos anais do ESCAPE -11.  



 

74     

Computer design of a new predictive adaptive 

controller coupling neural networks and kalman filter  

L. Endera, R. Schefferb and R. Maciel Filhob  

aChemical Engineering Department, Regional University of Blumenau, Rua 

Antônio da Veiga 140; CP 1507, Blumenau - SC, Brazil, CEP 89010-971  

bLOPCA/DPQ, Faculty of Chemical Engineering, State University of Campinas 

(UNICAMP), Cidade Universitária Zeferino Vaz, CP 6066, Campinas - SP, Brazil, CEP 

13081-970  

This work proposes a new predictive control algorithm based on constraint neural 

networks. The algorithm utilises a sequential quadratic programming algorithm to compute 

the next action of the manipulated process variables. The predictive control parameter, the 

suppression factor, is optimised on-line by a standard Kalman filter. The new control 

algorithm was tested on a fermentation process and it shows that the suppression factor can 

be identified and shows promising results to be applied in complex multivariable systems.  

INTRODUCTION 

Most process control applications consist of not only keeping controlled variables 

at their set-points but also keeping the process from violating its operating constraints. This 

is particularly important when there are changes in set-points and when the process is 

multivariable and non-linear. While good advances have been obtained using conventional 
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predictive controller algorithms, such as DMC, when high performance operation are 

required, more sophisticated controller are required. In many industrial systems, there exists 

strong interactions among the process variables as well as internal changes, such as 

deactivation of a catalyst. To cope with these changes a model predictive control algorithm 

with self-tuning capabilities is needed. 

control algorithm 

A predictive algorithm is proposed where the constraints in the manipulated and 

controlled variables are considered in the on-line minimisation of a quadratic cost criterion. 

The commonly used minimisation criterion, which compares a reference trajectory, yref, 

with the predicted output, y , taking into account the controller movement, is:  

m
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(1) 

where p is the number of controlled outputs, m the number of manipulated input 

variables, Np the prediction horizon, Nc the controller horizon and j the suppression factor 

of the corresponding manipulated input variable uj. 

The manipulated inputs and controlled outputs are subjected to the following 

constraints:  

maxmin yikŷy
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(4)  

The substitution of the classic models used in the prediction along a horizon for a 

neural network with on-line learning is suggested, due to ability of the nets in representing 

complex dynamic behaviours, taking into account non-linearity features. The neural 
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network is trained in real time by a closed-loop training scheme as developed by Ender and 

Maciel (2000) 

Adopting the descending horizon technique, only the first control action is 

implemented and all the calculations are repeated at each sampling time. The minimisation 

is accomplished by Sequential Quadratic Programming.  

The suppression factor 

 

assures that no exaggerated control action is calculated 

and influences the systems dynamics. A too small 

 

results in large control actions, which 

can result in a instable response, while a too large 

 

results in a sluggish response. It is 

common to regard the suppression factor as a design parameter, but this can result in a sub-

optimal response if the process is subjected to changes. Normally, the parameter is tuned 

manually until a desired process behaviour is obtained, which can be a very time-

consuming procedure. Additionally, different values of 

 

might be needed for other 

operating conditions. 

Therefore it is proposed to create an automatic estimation procedure for 

 

to 

ensure an optimal value of , which will result in a satisfactory control for all process 

situations.  

The neural network 

For the development of this work the feedforward architecture with back-

propagation learning and sigmoidal function were used. In all the used neural network 

configurations, one hidden layer was considered, because Hiecht-Nielsen (1989) proved 

that any continuous function can be approached for any degree of precision using a 

backpropagation neural network with three layers, if there is sufficient number of active 

neurons in the hidden layer. 

The patterns presented to the neural network are composed of information from 

the last inputs/outputs and the current disturbance. This neural network when used in the 
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prediction becomes recurrent. In this case, the weights are adjusted on-line, at the same 

time in such a way that it is used in the predictions.  

Estimation of the suppression factor 

The adjustment or tuning algorithm of the parameter 

 
is based on the standard 

Kalman filter. To be able to adjust 

 
a dynamical system has to be created which can 

observe the state of the parameter  as in:  

kkk

kk1k

vCz

w

 

(5) 

where wk and vk are random variables with a normal distribution of N(0,Q) and 

N(0,R) respectively. zk is the measurement related to the state k. Normally the noise of a 

parameter state is zero, but a small process noise results in a more stable filter. 

The observation equation of the 

 

can be derived from the minimisation criterion J 

in equation 1 assuming that the SQP minimisation was successful. The first derivative of J 

will be zero, when J is in its minimum. It is assumed that only uk, the implemented control 

action, is of importance. The last input, uk-1, is regarded as a constant  This can be validated 

because the receding horizon technique implements the first control action only. This 

results in the following dynamical system:  
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(6)  

The measurement, zk, in equation 6 is represented by a summation of derivatives 

multiplied by the error of the process output with the output reference. The estimation of 

the measurement is done by the right side with E{vk}=0. vk is chosen as random variable 

with a normal distribution of (0,1). As the measurement is actually an mathematical 
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expression, the variance of the measurement noise is chosen 1. This is mainly done to 

prevent a divide by zero in the Kalman filter, which occurs when uk equals uk-1. 

It was already said that for a parameter the process noise wk would be discarded, 

but it can be shown that the Kalman filter converges to a constant gain matrix for linear 

systems (Goodwin and Sin, 1984).  is wanted to change in real-time to cope with changing 

process conditions and an elegant way to do so is to make the process noise a function of an 

error. It is proposed to make the variance of the process noise a function of error between 

the reference and prediction of the process output by the neural network:  

2

i,ANNi,refk yy,0w

 

(7)  

In this way the uncertainty of the parameter will be high if the process is far away 

from its set-point and thus the Kalman filter will be triggered, resulting in a larger 

adjustment of the parameter  by the measurement.  

Results 

A large industrial fermentation process for the production of penicillin is 

considered as a case-study. The simulation is based on a model of Rodrigues (1996), which 

is validated with industrial data. The process is a fed-batch process and falls down in two 

parts, the growing phase and the production phase. In the growing phase a high sugar level 

is maintained, while in the production phase it has to be kept low as it inhibits the penicillin 

production. 

The emphasis is put on the production phase where the feeding strategy of the 

sugar substrate has to be chosen carefully to maximise the penicillin production.  

One input, the substrate feed flow, and four state variables, the bio-mass 

concentration, the substrate concentration, the penicillin concentration and the dissolved 

oxygen concentration, were taken to identify the process. 
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The substrate feed influences directly the cellular concentration, the substrate 

concentration and the penicillin concentration. The dissolved oxygen concentration is also 

influenced, because of the cellular growth which requires oxygen for respiration. 

The dissolved oxygen concentration is a vital variable for a good process 

operation. Rodrigues (1996) mentioned that a dissolved oxygen concentration lower than 

30% causes deterioration of the fungi. The dissolved oxygen concentration can be 

controlled by aeration and stirring, but the latter will destroy the fungi at high rotation 

speeds. This shows the need for an optimisation algorithm which takes into account such 

constraints.  

A single input, single output (SISO) system was set-up to verify the proposed 

process control scheme. The controlled variable was the dissolved oxygen concentration 

which was controlled by the rotation speed. Various constraints are applicable here as, 

maintaining the dissolved oxygen concentration above 30% and avoiding high rotation 

speeds which destroy the fungi. A white noise was imposed on the dissolved oxygen 

concentration to simulate measurement noise.  

It was started with a manual tuning period to determine the stability of the process. 

Unfortunately, the penicillin production process has a very slow dynamics, for which 

 

resulted to be zero. Note that this is valid for most SISO control problems where the 

manipulated variable can change at its maximum rate. In the SISO case the proposed 

control strategy becomes therefore interesting for very sensible and unstable systems only. 

Still it can be interesting to see if the proposed control scheme is stable and to see if a value 

different of zero is found or actually that a value near zero is encountered.  

 

has to be greater or equal to zero, and it can be seen from equation 6 that this 

will not be always the case. Therefore the dynamic system 6 was modified by taking the 
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absolute values of both sides, which will result in positive values for . Another possibility 

is taking the positive value of the resulting lapda. Both strategies were tested  

In Fig. 1 it is shown the convergence of parameter 

 
for various initial values, it 

can be seen that the parameters converge sooner or later to the same value and from then on 

show the same dynamic behaviour. It can be seen from Fig. 2 that there is only a minor 

difference in the beginning for the dissolved oxygen concentration and it looks like that the 

control is better when the initial  is different from zero but not to far away from its optimal 

value otherwise it constrains the input action to much.   

It can be seen that with measurement noise present that the parameter 

 

does not 

stay constant, which is due to the insertion of process noise into the dynamic estimation 

equation of the parameter . But it can be seen that this is also due to the developed 

identification system. After a set-point change the controller movement will become rapidly 

close to zero while the measurement calculation will always be different from zero due to 

the measurement noise, resulting in small changes of . This will be problem when the 

absolute values are  
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Fig. 1: Estimation of suppression factor for 

different initial values 
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Fig. 2: Controlled d issolved 

oxygen concentration for the servo 

problem  

implemented, because this results in a parameter drift until a new set-point change or 

perturbation occurs.  

In Fig. 3 and Fig. 4 the control system is shown for a complex regulation problem, where a 

series of step changes is implemented which maximise the penicillin production. The sugar 

concentration affects the dissolved oxygen concentration due to the cellular growth and due 

to the energy required in the metabolism for the penicillin manufacturing. Even with a 

series of perturbations of every 6 and 6 hours the penicillin process is maintained under 

satisfactory control with an maximum error of 5% after the tuning of the suppression factor. 

It can be seen that the parameter  is never constant, but as in the servo case never diverges 

and never shows instability.  
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Fig. 4: Controlled d issolved 

oxygen concentration for the regulator 

problem, perturbation in the substrate 

feedstream   

A test was done with no measurement noise present to test the behaviour of 

 

and 

to see if it would settle on a constant value or settle to zero. In Fig. 5 a comparison is made 

between the proposed estimation system with the self-tuning method of  and a fixed .  
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Fig. 6: Control of d issolved 

oxygen concentration without 

measurement noise  

First it can be seen from the dissolved oxygen response (Fig. 6) with a fixed 

 

that 

there is actually a need for variable . At some set-point changes the dissolved oxygen 

concentration is controlled vary well, while at other set-point changes the same value of 

 

results in a small overshoot. 

The proposed tuning system is still able to tune the suppression factor but does not 

prevent the small overshoots, which appear with the constant suppression factor. Therefore 

the developed identification method of 

 

has to be modified to successfully identify the 

possible hazard of a overshoot. 

conclusion 

The proposed control algorithm has shown to be robust for the analysed 

disturbances, promising to have a great potential to be used in control strategies of large 

scale systems. Particularly, the application of the proposed algorithm in the SISO case 

reveals its potential for multivariable systems where the interactions and thus the 

suppression factors are more important. It is noted the importance of the adjustment of the 

suppression factor to be able to cope with change in process operations. 
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Still there has to be searched for a better estimation algorithm of the suppression 

factor, which can determine successfully the rate of change of the system due to the control 

action. This will result in a fast control algorithm with little or no overshoot.  
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6. Conclusões e trabalho futuro 

Vários aspectos de um sistema de controle avançado foram estudados com o 

enfoco em identificação de sistemas não-lineares, monitoração da medida, ação de controle 

e a otimização não-linear com restrições. 

O filtro de Kalman foi aplicado em três dos quatro itens mencionados: a 

identificação dos sistemas não lineares em tempo real por redes neuronais treinados com o 

filtro de Kalman, o controlador de variância mínima, que calcula o passo de controle por 

filtro de Kalman e em otimização não linear com restrições. 

Demonstrou-se que a aplicação do filtro de Kalman resulta em uma convergência 

global melhor em menos iterações. Em treinamento em tempo real, encontrou-se que o 

filtro de Kalman resulta em uma predição em tempo real boa com uma aprendizagem das 

características do modelo melhor do que o algoritmo de back-propagacão padrão. No caso 

industrial, o algoritmo funcionou sucedido sob grande erro da medida. Não foi encontrado 

uma grande melhora pela aplicação de matriz de erro do processo em função de erro. Na 

otimização não linear com restrições foram obtidos resultados muitos promissórios para 

obter um algoritmo de convergência global com poucas iterações. Não se encontrou 

divergência para controle com uma rede neural que nunca foi treinado antes. Em algumas 

casos foi necessário de perturbar o matriz de Hessiano, mas mesmo assim foi obtido em 

quase todos os casos o ótimo global. Não houve divergência mesmo no controle em tempo 

real com uma rede neural que nunca foi treinado antes. Porém, a força computacional pode 

ser alto demais para problemas de larga escala e pode diminuir a capacidade da aplicação 

dos algoritmos desenvolvidos. 

Por causa disto é recomendado de utilizar o filtro the “unscented Kalman” no 

treinamento em tempo real e otimização não linear com restrições. Especialmente no ultimo 

caso, haverá a possibilidade de obter-se um algoritmo de otimização não linear com 

restrições rápido e com propriedades de convergência global.    
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O método da monitorização da medida foi visto pelo ruído Gaussiano fracionário, 

que pode ser utilizado para descrever sinais complexos. Os sinais complexos podem ser 

descritos parcialmente por o ruído Gaussiano fracionário, mas o modelo é bastante 

inflexível e portanto não pode ser utilizado como um modelo geral para monitorização de 

sinal de medida.  

Por isto é recomendado de desenvolver os modelos ARIMA fractionarios como 

modelos de monitorização, por causa que estes modelos são capazes de descrever 

dependência de curto e longo prazo e então, serão muito bons modelos para uma ferramenta 

geral para monitorização do sinal de medida.  
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Anexo 1 - The (Extended) Kalman Filter  

Abstract – The Kalman filter takes a central place in most of the works developed 

in this thesis, and therefore a preliminary discussion of the mathematical and statistical 

axioms is needed to understand the work. The filter equations are reviewed from the 

"deterministic" and the "statistic" viewpoints. The deterministic approach reveals the filter 

equations easily, while the statistic approach points out better the improvements which can 

be made. Its characteristics and behaviour will be discussed and some recent insights from 

literature, which can be used in future implementations. The different ways in which the 

Kalman filter can be utilised are state and parameter estimation, neural network training 

algorithm (parameter estimation), controller and constraint optimisation algorithm. 

Introduction 

The Kalman filter is part of the family of the least squares algorithms, which were 

apparently introduced by Gauss in 1795 but first published by Legendre in 1805 (Kailath, 

1974). Even the recursive algorithm seems not be that recent, because Gauss was forced to 

invent it to help astronomers determine the orbit of the asteroid Ceres. The Kalman filter 

incorporates all other recursive least squares algorithms such as the known recursive least 

square algorithm. 

Before Kalman (Figure 43) published his famous paper (Kalman, 1960), the 

filtering problems were mainly approached from the frequency domain, utilizing the auto 

and covariance functions, such as in the celebrated Wiener filter. The replacement of these 

functions by state space models led to a flexible way of estimation and filtering. 

 

Figure 43: Rudolf E. Kalman 
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The reason of the Kalman filters popularity is that it is the optimal linear filter in 

case of Gaussian process and measurement noises. If they are not Gaussian then the 

Kalman filter will still be the best linear filter possible. In the non-linear case the filter will 

be sub-optimal, due to a linearization of the non-linear equations in every prediction and 

correction step. In this case the Kalman filter is denoted as the extended Kalman filter 

(EKF), but in fact the Kalman filter equations are the same. The EKF is a popular method 

as it is less laborious than non-linear state observers which are system dependent. 

The unscented Kalman filter proposed by Julier and Uhlman (1994 and 1997) is an 

improvement of the extended Kalman filter. The unscented Kalman filter obtains a better 

approximation of the post-error covariance distribution, besides the advantage that it is a 

derivative-free technique. The CDF filter proposed by Norgaard, Poulsen and Ravn (2000) 

is based on a central difference interpolation scheme of Stirling and obtains a better 

approximation of the post-error covariance distribution also. It was shown by Wan and van 

der Merwe (2001) that both approaches can be unified in one general scheme. 

Still, after Kalman’s discovery the filter became quite unpopular as it was said to 

diverge. This is mainly due the computer implementation, if done wrong, round off errors 

lead to a non-positive definite error covariance matrix. Several formulations of the Kalman 

filter can prevent this divergence such as the Joseph stabilised version of the measurement 

error covariance update (Lewis, 1986), square root algorithms (Morf and Kailath, 1975) 

and the U-D factorisation (Bierman, 1976). The U-D factorisation is actually a square root 

algorithm also. The price of these stable Kalman filter algorithms is an increased 

computational load. 

Statistical background 

A very good and didactic book on probability and stochastic processes was written 

by Papoulis (1991). The book of Söderström (1994) has a very good summary of the 

statistics needed for Kalman filtering, but to the authors' opinion, the best book written on 

estimation and statistics for Kalman filtering was written by Lewis (1986). 

The probability theory was introduced by Kolmogorov and concerns the study of 

probability spaces and random variables. The latter is introduced in paragraph 0. A 

probability space is defined by a triple ( , S, P): 
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is often called the sample space which contains the empty set 

 
and all 

the possible outcomes of a random experiment 

 
S is a -algebra of the sample space and its members are events. A -

algebra means that it contains , it complements of its events are events 

and that the union of a finite sequence of events is also a event. If 

 
is 

discrete then S and  are the same. 

 

P is the probability measure on , such that its P( ) = 1 

Various events, such as A, B and C or car, apple and bicycle form a set. Sets can 

be submitted to various operations, such as sum or union, product or intersection and 

complement, which are easily visualised in Venn diagrams (Figure 44). 

A B 

A B 

BA

A B 

 

Figure 44: Venn Diagram of Sets A and B with the operations union (A B 

or A+B), intersection (A B or AB) and complement ( AB ) 

The events A, B, AB  and  (the empty set) form the event space. 

From the Venn diagram it is now easily understood that the sum of the 

probabilities of event A and B is given by: 

BAPBPAPBAP

 

(7.1)

If the events are independent, the intersection of event A and B is given by: 

BPAPBAP

 

(7.2)

The conditional probability of B given A is defined as: 
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AP

BAP
ABP

 
(7.3)

which is the probability of event B, when we know that event A happened. For 

example, if we throw a die the probability to obtain a 2 is 1/6. But if we have the additional 

knowledge that the event which happened was even then probability becomes 1/3, because 

the event 2 is one of the possible three even outcomes of the experiment.  

The event A could be divided in various sub-events Ai. The event A is divided in 9 

subsets in Figure 45. 

A1 B A2 

A3 

A4 A5 

A6 
A7 

A8 

A9  

Figure 45: Venn Diagram of Sets A and B where set A is divided in 9 

subsets 

The conditional probability of event Ai given event B is given by the Bayes 

theorem. The index n is 9 for the partition in Figure 45. 

nn

ii

i
APABPAPABP

APABP
BAP

11 

(7.4)

 

The probability of P(Ai) is often called the a priori distribution, while the 

probability of p(Ai|B) is called the a posteriori distribution. These concepts are used in 

Bayesian estimation and are used in the statistical definition of the Kalman filter.  

Random variable 
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A random variable (rv), x, is a function which relates one of the possible outcomes 

from the event space S to a number from the real domain . This random variable is 

defined by the triple (S, F, P). S is the set of all possible outcomes which have a probability 

measure P limited to the value of zero for the impossible event and 1 for the set S. F is a 

Borel Field, which contains all possible sums and intersections of the possible outcomes 

and the empty set. 

If the event is non-countable then it is defined a probability on the real line for the 

event P(x=xi) that can be calculated by the integral: 

ix

ii dxxfxxPxF (7.5)

f(x) is the probability density function on x, which has to satisfy the property: 

1dxxf (7.6)

The expectation of the random variable x is denoted by E{x}. 

dxxfxxE (7.7)

This quantity is normally known as the mean and would be for a dice equal to 3.5. 

The mean is the first moment of the random variable, higher moments are 

calculated by: 

dxxfxxE nn (7.8)

Instead of the second moment, it is used the variance of the random variable x, 

which is defined by: 

dxxfxExxExE
22 (7.9)

A random variable can suffer a (non) linear transformation resulting in a other 

random variable y. 
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xgy

 
(7.10) 

The probability density function of rv y can be calculated from the distribution of 

rv x  

rootsofnumber

i i

iy

y
xg

xf
yf

1 ' 
(7.11) 

where xi is the ith root of the equation g(x) = y. Thus for the equation y = Ax +B, 

the only root is x = (y-B)/A. 

Luckily, the expectation of y can be calculated directly from the probability 

density function of rv x 

dxxfxgxgEyE x (7.12) 

Given two random variables x and y and a function g(x,y), then their joint 

expectation is given by: 

dydxyxfyxgyxgE xy ,,, (7.13) 

Instead of the joint distribution it can be used the conditional distribution of x 

given y. 

dyyfdxyxfyxgyyxEEyxgE yyxyxy ,,,, (7.14) 

The continuous version of the conditional distribution of Eq. (7.3) is given by: 

yf

yxf
yxf

y

xy

yx

),
,

 

(7.15) 

The Bayes theorem of Eq. (7.4) becomes for the continuous case: 

yf

xfxyf
yxf

y

x

yx

) 
(7.16) 
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Estimation Techniques 

Having defined the most important statistical properties it is introduced the 

following estimation techniques, which are used in filtering, state and parameter estimation. 

 

Mean Square estimation 

 

Linear Mean Square Estimation 

All estimation techniques minimises a quadratic cost function of difference 

between the observed value and the predicted value by a function. 

In Mean Square Estimation it is minimized the cost-function. 

dydxyxfxcyxcyEJ xy ,22 (7.17) 

Utilising the definition of the conditional distribution this can be rewritten as: 

dxdyyxfxcyxfxcyEJ xy ,22 
(7.18) 

By setting the derivative of the cost-function to c(x) equal to zero, the minimum 

square estimate is obtained, which is: 

dyyxfyxyExc xy , (7.19) 

Normally, the conditional distribution is not known except for Gaussian 

distributions. This conditional distribution of y|x can be found by defining a vector of [x y]T 

and fill it in the joint normal distribution. With the definition of the conditional distribution 

it is found the expressions of the conditional mean and the conditional covariance as the 

estimate and the error of the estimate. 

The mean square estimation is also denoted as Bayesian estimation and is used in 

explaining the Kalman filter for statisticians by Meinhold and Singpurwalla (1983). The 

conditional distribution of Eq. (7.19) could be viewed in the following way by filling in 

Bayes theorem of Eq. (7.16) in Eq. (7.14). 
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statePstatedataPdatastateP

 
(7.20)  

In Linear Mean Estimation it is assumed that the conditional expectation is a linear 

function of the measurement. The method is reviewed in paragraph 0.  

Thus the difference between the mean square estimate and the linear mean square 

estimate is in the supposition done. In mean square estimation it is needed the conditional 

distribution, which has solution only for Gaussian variables, while in the linear mean 

square estimation the conditional distribution is supposed to be linear.  

Deterministic derivation 

As said one of the basic assumptions of the Kalman filter is the state space model, 

a general state space model can be described by: 

kkkk GwBuAxx 1 (7.21) 

kkk vCxy

 

(7.22) 

wk and vk are random Gaussian variables with a distribution of N(0, Q ) and 

N(0, R ) respectively. uk is a deterministic input. Normally the noises and the states are 

said to be uncorrelated, which means that the expectations E[xw] and E[wv] are 0. The 

expectation of x, E[x], is the mean of x and the expectation of E{[x-E(x)][x-E(x)]T} is 

called the variance of x, whose square root equals the standard deviation for Gaussian 

distributed variables. 

A typical example of x would be a concentration which is measured by a 

temperature. This occurs often in distillation columns, where the concentration can be 

determined by the temperature through a thermodynamic model. 

If no measurement is available then the best estimate of x is given by: 

kkkk BuxAxEx ˆˆ 11 (7.23) 

as the estimate of E{w}=0. 
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The initial estimate, x0, of x is the mean of x. The minus means that the estimate 

(indicated by ^) is done before the measurement, which is also known as the time update or 

prior estimate. 

The core of filtering problems is the error covariance matrix, P, with the error 

defined as the real x minus its estimate and is for the system in Eq. (7.21) given by 

TT

k

T

kkkkk GQGAAPxxxxEP 11111 
(7.24)  

which is the change in the estimation of the error through the dynamics of the 

system. The process noise is sometimes viewed to be originated from the inputs, in that 

case G should be replaced by B. The inverse of the error covariance matrix P is called the 

information matrix. 

Suppose now that a measurement y is available, then it would be possible to 

improve our estimate of the state variable by a error correction of the state: 

kkkkkkkk vxxCKxyyKxx ˆˆˆˆˆ (7.25) 

where K is denoted as the Kalman gain. What to do to determine the Kalman gain? 

Lets calculate the error covariance matrix after the measurement. 

TT

k

TT

kk

TTT

kkkk

TTT

kkkk

T

kkkk

T

kkkkkkkkkk

T

kkkkk

KRKKCIPKCI

KvvKEKCxxxxCEK

KCxxxxExxxxE

vxxCKxxvxxCKxxE

xxxxEP

ˆˆ

ˆˆ2ˆˆ

ˆˆˆˆ

ˆˆ 

(7.26)

This is the measurement update of the error covariance matrix of the Kalman filter 

equations and is a type of Ricatti equation. The Kalman filter gain can now be calculated by 

setting the derivative of  0dKdPk , which results in: 

1
RCCPCPK T

k

T

k 
(7.27) 
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The Kalman filter gain can be substituted in Eq.(7.26), which results in the 

measurement update of the error covariance matrix found in most textbooks. 

kk PKCIP (7.28)  

The version of the Ricatti equation in Eq. (7.26) is obtained without substituting 

the Kalman gain into the Ricatti equation and is called the Joseph stabilised version (Lewis, 

1986). It guarantees that the state error covariance matrix maintains positive semi-definite 

and with round-off in computer implementations it should be the preferred version. Thus 

Eq. (7.28) should be avoided as it cannot be guaranteed to be positive definite.  

Linear Mean Square Estimate 

The statistic derivation is obtained from the linear mean-squares estimates of the 

state based on the assumption that the state can be estimated from the present data by a 

linear dependency: 

bAYYX̂ (7.29) 

It is important to note that this linear dependency should not be thought as a linear 

model for the observation equation of the Kalman filter. It is the estimate of X given data 

Y, thus it is a linear approximation of the conditional distribution. 

bAYdx
yf

yxf
xdxyxfxyxEYX

,ˆ (7.30) 

For almost all cases it is troublesome to calculate this conditional estimate, except 

in the Gaussian case and therefore the linear dependence is mostly used. This also, as the 

linear dependence assures that only first and second moments are necessary for calculating 

the estimate. 

The coefficients A and b of Eq. (7.29) can be obtained by minimisation of the 

mean-square error of x, where the estimate x̂  is given by Eq. (7.29): 
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TT
xxxxtracexxxxJ ˆˆˆˆ

 
(7.31) 

The conditions for a minimum, dJ/dA and dJ/b equal to 0, lead to the optimal 

mean-square estimate: 

YYPPXX zXYLMS

1ˆ (7.32) 

In Eq. (7.32) no assumption is done about the distributions of X and Y, only the 

linear dependence of the estimate of E{X|Y} is considered to be linear and is Linear Mean 

Square Estimate.  

Eq. (7.32) has a very appealing appearance and the behaviour of the Kalman filter 

can be read directly from it. The estimate of X is equal to the mean of X plus a weighting of 

the covariance between X and Y by the variance of Y, which has a direct appealing 

understanding of the estimate. If PXY is small than there is a small dependence of X on Y 

and there will thus be a small gain in the knowledge of X by measuring Y. If the variance 

of the measurement is very large, then the measurement has a small confidence and X will 

be adjusted a little by the measurement Y. 

The linear mean-square estimate is unbiased, which means that: 

XYYPPXYYPPXX zXYzXZLMS

11ˆ (7.33) 

and therefore error covariance associated with the linear mean-square estimate is: 

YXYXYX

T

LMSLMSX PPPPXXXXP 1ˆˆ

 

(7.34) 

From which it can be seen that the error covariance estimate has the same 

properties as the mean, if the correlation between X and Y is low, thus PXY low, then the 

error covariance of X, PX, is not lowered by a small degree as the measurement Y does not 

contain that much information about X. But, if there is a dependence of X on Y, then 

knowledge of the measurements Y lead to a smaller variance of X than when no 

measurement would be made. If all variables are Gaussian, than filling in the mean and 

covariance estimates in Eq. (7.32) and (7.34) lead to the same Kalman filter equations 
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mentioned in Eq. (7.27) and Eq. (7.26). When regarding the state space model mentioned in 

Eq (7.21) and Eq. (7.22), then the covariance of X and Y is given by: 

T

x

TTT

XY CPCXXXXEYYXXEP

 
(7.35) 

because the measurement noise and v and the state x are assumed to be 

independent. The variance of the measurement can be written as a function of the variance 

of x by the measurement equation, which leads to: 

RCCPvCXXvXXCEYYYYEP
T

x

TTTT

Y

 

(7.36) 

Filling in the covariance matrixes of Pxy and Py in the minimum least squares 

estimate it can be seen right away that the familiar Kalman filter equation is obtained. The 

same deduction can be done for the update of the error covariance matrix Px.  

An important thing should be noted (Lewis, 1986): 

If X and Y are Gaussian variables, then the optimal 

mean-square estimate is linear and the Kalman filter 

will be the best linear estimator, since E{X|Y}(mean 

square estimate) and LMSX̂ (linear mean square 

estimate)are the same. 

 

Extended Kalman filter 

The extended Kalman filter equations are not derived as they are the same 

equations as the equations of the standard Kalman filter mentioned in paragraph 0. The 

difference is that the state space model is non-linear and at every time step the derivatives 

of the state transition and observation matrix have to be calculated. Thus if the non-linear 

state space is described by: 

kkkk Gwuxfx ,1 (7.37) 
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kkk vxhy

 
(7.38) 

then the matrixes A and C are given by 

kkkkk xxuuxx
x

xh
C

x

uxf
A

/1/1 ,

,

 
(7.39) 

These matrixes have to be calculated every sampling instance and mean an extra 

computational load. 

In the non-linear case it cannot be guaranteed anymore that the filter is the optimal 

linear mean least square estimator. Therefore it is proposed in the next paragraph to modify 

the process noise covariance Q and make it a function of the prediction error, this might be 

especially advantageous in case of system identification.  

Modification of the Kalman filter 

If the Kalman filter is applied as a parameter estimation or as a non-linear 

identification tool, then it would be preferable that the Kalman adjusts more if its prediction 

error increases due to modelling error or due to non-linearity. From the Kalman filter 

equations it can be seen that the error associated with the state estimate X augments without 

a measurement if Q is non-zero. From the statistical viewpoint this would mean that the 

uncertainty of the state has augmented. Now it can be seen from the Kalman filter that if P 

is bigger the measurement gains more confidence in front of the model confidence: P 

increases, thus K increases and thus a larger correction is made on the basis of the 

measurement. 

Looking at the measurement equation and assuming Gaussian noises it can be 

easily seen that: 

kkkkk vyyCxy

 

(7.40)  
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the prediction error is equal to the Gaussian measurement in the linear case as well 

as the non-linear case. Residual whiteness is mostly used as a measure of the model fit. 

Taking the covariance expectation the associated error becomes: 

RvvEPyyyyE T

kkYp

T

kkkk

 
(7.41)  

If PYp is larger than R then we have a state prediction error, from this it was 

thought to result in a better estimate if the process noise covariance, Q, would be updated in 

relation to the prediction error. It were used both empirical and statistical derivations to 

update the matrix Q. 

Empirical approaches adopted to have an estimate for the process noise error 

matrix Q were: 

2
0 yerrorqQi

 

(7.42) 

RP
dx

df
Q Yp

i

i

2 

(7.43)  

This has a more appealing character as the derivative is used in the extended 

Kalman filter also and in this way it can be used for non-observed states also. Another 

possible and attractive would be to use the Kalman filter, as it already determines how the 

state depends on the measurement Y. In the latter case the function of Q becomes: 

T

Yp KRPKQ

 

(7.44)  

This approach has to be tested still, and is hoped to give a further improvement. 

Recent developments in extended Kalman filtering 

Other new and interesting approaches to the extended Kalman filter include the 

Unscented Kalman filter of Julier and Uhlmann (1997) and the npr-EKF of Nielsen et al. 

(2001). This technique uses a well chosen set of points to calculate the mean and 
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covariance. These points are the sigma-poins (eigenvectors) calculated from the square root 

of the error covariance matrix P. These points are transformed by the non-linear state 

transfer and/or observation function. The sample mean and sample covariance are 

calculated from the transformed points and equal the posterior mean and covariance error 

of the posterior conditional distribution (see Figure 46). 

 

Figure 46: Comparison of the covariance approximation of the unscented 

Kalman filter and the extended Kalman filter (Merwe and Wan, 2001) 

This approach gives an approximation of the second order properties of the 

posterior conditional distribution function, whereas the EKF gives a correct approximation 

to the first order only. Thus the unscented Kalman filter will result in a better non-linear 

estimation, but is not implemented in this work and left as one of the future 

recommendations. 

Other approaches are the use of Monte Carlo methods to generate the probability 

functions of the anterior and posterior distributions leading to the so called particle filters 

(Gordon et al. 1993, Doucet et al. 2001). Both unscented Kalman filter and particle filters 

are based on the principle that it is easier to approximate a probability function than a non-

linear function. 
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Anexo 2 - Otimização com o filtro de Kalman estendido 

Resumo – O filtro de Kalman foi utilizado em um ampla gala de problemas para 

testar a viabilidade dele como algoritmo alternative de otimização aos algoritmos de SQP 

e algoritmos genéticos. Em problemas sem restrição o filtro de Kalman é mais rápida 

enquanto com restrições a solução global é encontrada mais vezes.   

Este anexo será submetido á revista Computers and Chemical Engineering.  
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Abstract 

In this chapter it is searched for a novel optimisation algorithm with lies in the 

continuation of the identification methods applied in this work. It was shown (Scheffer and 

Maciel Filho (2001) that the training of recurrent neural networks can be sped up by the 

application of a system identification technique, such as the (extended) Kalman filter. It is 

common to use optimisation techniques for the training of neural networks and therefore it 

appears that the extended Kalman filter could also be a very effective tool in unconstrained 

and constrained optimisation.  In such a way, the extended Kalman filter could be used to 

calculate the optimal control action in a model predictive control algorithm or find the 

most economical set-point in a real-time optimisation algorithm. Probably it is needed 

more computational resources and thus it has to be analysed if it results in a faster 

convergence and a better quality of solution. 

In the next paragraphs the procedure is pointed out of how to use the Kalman 

filter in an optimisation scheme, further on some simple examples and the famous banana 

function of Rosenbrock is shown. The fast solution encountered by the extended Kalman 

filter algorithm of the Rosenbrock's function shows its high potential for utilisation in more 

complex constrained optimisation. 

It were solved various constrained optimization problems taken from the work of 

Trvska and Odloak (1998), which they selected because of the occurrence of non-consisted 

optimisation problems. Therefore these problems seem to be a very suitable set of problems 

to test the developed Kalman filter optimisation algorithm. 

The Kalman filter algorithm shows to be a very stable algorithm without having 

convergence problems. Some of the problems reach a better global solution, but the 

solution obtained depends on the initial parameters (P, Q and R) and the way the process 

noise covariance matrix Q is updated. The convergence speed depends on these parameters 

also. 

Further development of the algorithm should be by application of the “unscented 

Kalman filter” algorithm, which will avoid the computation of gradienst. 

Introduction 

A normal minimisation problem can be stated as follows: 
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(7.45)

where g(x) are the inequality constraints and h(x) the equality constraints with j 

and i as their indexes.  

Eq. (7.45) can be resolved by applying the Langrange multiplier technique. The 

Langrangian for the problem in Eq. (7.45) is: 

n

j

jj

m

i

ii xguxhxfxL
11

 

(7.46)

 

and u are the Langrange multipliers for the equality and inequality constraints 

respectively. Every constraint gets its own Langrange multiplier. 

The minimum, x*, of problem in Eq. (7.45) can thus be resolved by finding the 

minimum of the langrangian function shown in Eq. (7.46). The necessary conditions and 

sufficient conditions for this point x* to be a local minimum are summarised in Table 5. 
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Table 5: Necessary and sufficient conditions for x* to be a local minimum 

for problem in Eq. (7.45) (Edgar and Himmelblau, 1989) 

The necessary conditions for x* to be a local minimum of f(x) are:
a) f(x), hj(x), gi(x) are all twice differentiable at x*
b) The so-called "second-order constraint qualification" holds (it contains information about the curvature of the

constraints that is taken into account at x*; the sufficient conditions for this requirement are that the gradients
of the binding constraints (gj(x*)=0), gj(x*), and the equality constraints, hi(x*), because hi(x*)=0, are
linearly independent.

c) The Lagrange multipliers exist; they do if (b) holds
d) The constraints are satisfied

(1) hi(x*)=0
(2) gj(x*) 0

e) The Lagrange multipliers uj* (at x*) for the inequality constraints are positive ( i can be positive or negative) 

0u*

j

f) The binding (active) inequality constraints are zero; the inactive equality constraints are <0, and the associated
uj's are 0 at x* 

0xgu *

j

*

j

g) The Langrangian function is at a stationary point 

0u,,xL
***

h) The Hessian matrix of L is positive semi-definite for those v's for which 0xgv *

j

T , and

0xhv *

i

T , that is for all the active constraints

0vu,,xLv
***2T

The sufficient conditions x* to be a local minimum are:
a) The necessary conditions (a), (b) by implication, (c), (d), (e), (f), and (g)
b) Plus a modification of necessary condition (h):

The Hessian matrix of L is positive definite for these vectors v such that

sintconstrabindingthefor
0xhv

0xgv
*

i

T

*

j

T

sintconstrainactivethefor0xgv *

j

T

0vu,,xLv
***2T

 

These conditions are known as the (Karish)-Kuhn-Tucker conditions, and have to 

be satisfied for a local or global minimum. Some methods use these conditions as a 

stopping criterion, while other tries to solve them directly. The well known SQP algorithm 

and the here developed extended Kalman filter algorithm solve the Kuhn-Tucker conditions 

directly. Thus, it should be noted that a local or global minimum cannot be distinct by 

methods using the Kuhn-Tucker conditions and also not by the here developed extended 

Kalman filter algorithm. Optimisation methods based on genetic engineering seem to have 

better global convergence properties but these algorithms need a lot of iterations to 
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converge. Other global optimisation methods as the branching method (Ryoo and Sahinidis, 

1995) need a large number of iterations to reach the optimum. 

It is hoped that the extended Kalman filter algorithm will be fast and able to avoid 

local minimum, where both can be controlled by adding process noise to the state equations 

(Puskorius and Feldkamp, 1994, Rivals and Personnaz, 1998; Scheffer and Maciel Filho, 

2000 and 2001). 

The extended Kalman filter algorithm 

The key-point in developing a minimisation algorithm using the Kalman filter is 

the dynamic system or the state-space equations, which describe the behaviour of the 

variable to be optimised and the way to observe the state to move it in the direction of the 

desired state. The starting point for the dynamic system is the Langrangian function of Eq. 

(7.46), from which two type of state variables can be pointed out, x, the variable to be 

optimised and i, ui, the Langrangian multipliers. These variables are optimal if the 

derivative of the Langrangian and the derivatives of the active constraints are zero, which 

are mentioned in Table 5 as the necessary conditions for x = x* to be a local minimum. So 

the states could be adjusted according to the difference from the derivatives to zero. This 

leads to the following dynamical system, which can be identified by an extended Kalman 

filter: 
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(7.47)
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(7.48)

 

Only the active constraints are taken into account in Eq. (7.47) and Eq. (7.48), and 

consist of all equality constraints and binding inequality constraints. It is clear from Eq. 

(7.48) that the observations of the states are the derivatives of the Langrangian to all state 

variables and need to be zero for a local minimum, which are the necessary condition g and 

the sufficient condition b when the constraints are binding and u>0. Therefore the 

"measurement", d, in this case is 0. 

The process noise, wi, and the measurement noise, vi are normally distributed 

Gaussian variables. The measurement noise is determined by the type of measurement 

equipment used. In this case the observation is a mathematical expression, thus the variance 

of the measurement noise could be chosen as N(0,1). It has to be non-zero to prevent a 

divide by zero in the matrix inversion in the calculation of the Kalman filter. 

The process noise would be zero in case of a parameter, but as mentioned earlier it 

can be used to influence convergence speed and to avoid local minima. Therefore the 

variance of the process noise is made an function of the error between the "artificial 

measurement 0" and the gradient of the Langrangian. Thus the process noise is distributed 

as the following Gaussian random variable: 

errorN w,0 (7.49)
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Because of the process noise present, the error covariance matrix has to be updated 

in the dynamic actualisation of the Kalman filter algorithm as mentioned in chapter 0. 

Another way to update the covariance matrix Q is intuitive in that the initial 

estimate of the parameter to be optimised is bad and thus has a large error. As more 

adjustments are done the estimate gets better and thus its error and or variance get lower. 

One of these functions would be: 

iQQiQ *exp* 10

 

(7.50)

Where Q0 and Q1 are parameters to be adjusted, i is the current iteration.  

The Kalman filter now adjusts every step the state by: 

kykKkxkx 01 (7.51)

To calculate the Kalman filter the observation Eq. (7.48) has to be linearised at 

every sampling moment, which is in this case every calculation step. Linearisation of Eq. 

(7.48) leads to the second derivative, thus the matrix C of the Kalman filter is in fact the 

Hessian matrix: 
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(7.52)

Taking in mind that the matrix C is the Hessian matrix, then it appears from Eq. 

(7.51) that the adjustment of the states is according to the negative gradient of the 
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Langrangian multiplied by the Hessian matrix. This is just as in Newtons method or as in 

the SQP algorithm, which is also shown by Bertsekas (1994). The difference is that the here 

developed Kalman filter algorithm is of a stochastic nature due to the error fed to the states, 

which can lead to a quadratic convergence and can avoid local minima. 

The Kalman gain could be seen as a kind of Newtonian line search method to 

reach the current local minimum. 

Descending direction 

As the matrix C is the Hessian matrix it has to be checked if the calculated 

direction or adjustment results in a smaller value for the objective function. To be a 

minimisation direction the Hessian matrix has to be positive definite. Eq. (7.52) shows that 

the matrix C is symmetric for continuous functions and thus the Cholesky decomposition, 

C=LLT, can be used to factor matrix C into a lower triangular matrix L. In fact the 

objective function f( ) should be analytic. If the Cholesky decomposition fails, the matrix C 

is not positive definite, and so the diagonal elements of C should be raised until the 

Cholesky decomposition succeeds. 

Only the elements of the variables x of the original objective function f( ) should 

be augmented. This because only the variables x are minimised and not the Langrangian 

multipliers. Only a value of the Langrangian multipliers of the binding constraints has to be 

found which satisfies the sufficient condition b, so a non-zero value for the equality 

constraints and a postive value for the binding inequality constraints. 

The usage of the positive definiteness can result in small oscillations around the 

optimum if the second gradient is very high at the minimal solution. This occurs due to the 

inequality constraints, which are activated or deactivated in these oscillations. 

Initialisation of the algorithm 

Some optimisation problems can have a linear dependence for some initial point 

and therefore not reach the optimal solution, for example, problem 3 of the selected 

problems by Tvrzka de Gouvea and Odloak (1998) Anexo 3. The initialisation of the error 

covariance matrix, P, can prevent this problem, if the P matrix is not initialised equally for 

all diagonal elements. For now the P matrix is initialised by: 
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(7.53)

 

Where P0 is a initialisation parameter. 

Active constraint set 

It has to be checked if the active inequality constraints fulfil the necessary KKT 

conditions. This can be done by checking the sign of the Langrange multipliers of the 

inequality constraints, which have to be positive. If the calculated multiplier is negative, 

then it has to deleted from the active constraint set. But it was pointed out by Tvrzka de 

Gouvea and Odloak (1998) that the active inequality constraint set can be very important 

for the convergence of the SQP algorithm. Tvrzka de Gouvea and Odloak (1998) resolved 

an extended KKT algorithm using a type of Graham-Schmidt or QR decomposition of the 

Hessian matrix. In this way it could be identified the linear dependent constraints and 

project them into the null space. 

It was chosen to use every inequality constraint in the active set and thus in the 

Langrangian function to use all the information about the system at the current value. The 

non-equal initialisation of the P matrix with the positive definite check avoids this problem 

and thus it might be more interesting to have the full active set at the current x. 

Stopping criteria 

The stopping criteria can be based on the absolute or relative difference of the 

optimal value found or on the gradient difference from zero. In our case the system is 

stopped on the gradient difference and is: 

610max tolerancexL
x 

(7.54)

Numerical calculation of the derivatives 

The first and second derivatives are calculated numerically to make the algorithm 

as general as possible. It was implemented a central difference scheme to calculate the 

Jacobian and Hessian matrix. In the calculation of the derivatives it should be checked if 
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the derivative can be calculated at the x-value. If the initial point is zero, and one of the 

terms is the root of x, than the pass (x-h) leads to an unreal value. 

The first gradient was calculated by: 

h

hxfhxf
xf

2

 
(7.55)

The second gradient was calculated by the following two equations. The diagonal 

elements are calculated by 
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while the off-diagonal elements are calculated by: 
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(7.57)

Actually both equations are the same. 

The step size cannot be any number and has to chosen as small as possible, but 

higher than the machine precision. The step size h should be at least be as high as the root 

from the machine precision (Numerical Recipes, year) for a backward or forward difference 

calculation. As it is used the central difference technique, it must be used the 0.25th root. In 

checking the precision in function of the root taken, it was seen that the square root had a 

better precision than the 0.25th root. An additional check is done for the current x values 

according to the lecture syllabus of Trvska de Gouvea (1999). These two considerations 

lead to the following step size calculation. 

5.0*,1max machineexh

 

(7.58)

So if the maximum x is lower than 1, the step size will be as large as the machine 

precision. 

Block scheme with all the steps of the Kalman filter algorithm 
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In Figure 47 every step of the extended Kalman filter algorithm in optimization is 

shown. 

Initialise algorithm
Inform nf, nh & ng 

Put objective function, equality and inequality constraints 
Choose P0, Q0 & R0 

Select kind of update for Q0 

Tolerance 

If 
Max( f(x) 

< 
tolerance) 

Stop and Print 
solution and 
constraints on screen

SIM 

Dynamic actualisation
P = P + Q  

Initialise elements of P by 
P(i,i) = P0 * i/(nx+nh+ng) 

F(x) & h(x)G(x) 

Active? 
y = L(x) 

h(x) 
g(x) 

CT  = 2L(x) h(x) g(x)  
h(x) 0 0  
g(x) 0 0 

K=(CPCT+R)-1

 

PCT

 

Xk+1=xk+ K*(0-y) 2L(x) = 
P.D. ?

SIM 

SIM 

2L(x) = 
2L(x) +I

 

Figure 47: Schematic representation of the extended Kalman filter SQP algorithm 

It is emphasised that the gradient is calculated by finite differences. The finite 

difference algorithm is not optimised yet and can result in a too early stop when the 

gradient becomes very small. The gradient calculation has a high computational cost for the 

Kalman filter algorithm as it is needed to calculate the full Hessian matrix. A possibility is 

to use a Quasi-Newton method to update the Hessian matrix with the gradient vector, but its 

effect on the stability of the algorithm is not known. Certainly the Unscented Kalman Filter 
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mentioned in paragraph 0 will reduce enormously the computational costs of the algorithm 

and then result in a fast alternative to SQP algorithms. 

Results and Discussion 

It are shown results from small test problems, which were all taken from Edgar 

and Himmelblau (1989). Two unconstrained minimisation problems are shown, where the 

second is known as the Rosenbrock or Banana function. This is because of its characteristic 

form, which is a canyon in the form of the Banana. This problem is interesting as the 

gradient in the canyon is very small and leads in case of the steepest gradient method to a 

slow convergence. The other problem shows the constrained optimisation in two different 

cases. 

Unconstrained minimisation 

In Figure 48 and Figure 49 the unconstrained optimisation of the following 

function are shown: 

522, 1
2
1

2
2

2
12

4
121 xxxxxxxxf (7.59)

The two figures differ in initial conditions, but it can be seen that in both cases x1 

and x2 converge fast to the optimal solution. In both cases it appears that the initial 

converge is rapid but then delays to fulfil the stopping criteria. Thus it can be concluded 

that the function for the variance of the process noise should be modified to obtain a rapid 

convergence in initial and end-phase. 
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Figure 49: Unconstrained 
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minimisation with the Kalman filter, q = 

f(error) = (d-y)2 

minimisation with the Kalman filter, q 

= f(error) = (d-y)0.5, other initial 

conditions 

The minimisation of the Rosenbrock function can be seen in Figure 50, Figure 51 

and Figure 52, where different functions for the variance of the process noise are used. A 

quadratic function results in a fast adjustment in the beginning but delays too much to reach 

the stopping criteria (Figure 50). This is because of squaring the error, which results in even 

smaller variance for errors below 1, so the error covariance matrix P will not become larger 

to make more adjustment. From Figure 51 it appears that a square root function results in a 

faster end-phase training: the stopping criteria is reached in this case within 40 iterations 

instead of 100. Therefore the two functions are combined in the following way: 
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2

errorerrorN
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errorfN w

 

(7.60)

It is hoped that this combination leads to an overall faster convergence in both 

phases. This can be verified in Figure 52, showing that the combination results in a little bit 

faster convergence though close to the result of the square root function. Therefore more 

test are necessary to find the best function for the process noise variance.  
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Figure 50: Minimisation of the 

Rosenbrock's function by the extended 

Kalman filter, q = (d-y)2 
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Kalman filter, q = (d-y)0.5 

0 10 20 30

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 Rosenbrock's function = 100(x
2
-x

1

2
)

2
+(1-x

1
)

2

 x
1

 x
2

v
a

lu
e
 o

f 
x

iteration

Figure 52: Minimisation of the 

Rosenbrock's function by the extended 

Kalman filter, q = (d-y)2 if (d-y)>1 and q 

= (d-y)0.5 if (d-y)<1 
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Figure 54: Minimisation of the Rosenbrock's 

function by the extended Kalman filter (Q = 

constant, 14 function evaluations) and the 

BFGS algorithm (Matlab, 54 function 

evaluations) 

P = 100, Q = 10, R = 10 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

x1

x
2

Minimization of the Banana function

Start Point

Solution

Figure 55: Minimisation of the 

Rosenbrock's function by the extended 

Kalman filter comparing analytical versys 

numerical gradients 



 

123  

Curiously the optimisation with the EKF did not differ that much when the 

functions were changed. The optimisation path changes if the observation noise is raised, 

which results in smaller adjustments. The optimisation in Matlab uses analytical gradients, 

which explains the small difference in solution obtained.   

From Figure 55 it can be seen that the calculation of the numerical gradients is still 

short-coming, especially when the gradient becomes small and the stepsize should be 

increased to gain accuracy. For the moment the numerical gradient algorithm was not 

further developed as it is wanted to see the behaviour of the EKF in constrained non-linear 

optimisation.   

Edgar & Himmelblau (1989) show the convergence of various optimisation 

methods, such as the conjugate gradients method and the Broyden-Flethcher-G-S method. 

Edgar and Himmelblau mention function evaluations and iterations. For example the 

conjugate gradient method made 90 function evaluations in the line search method. The 

Kalman filter algorithm uses positive definite checks for the matrix C to assure a negative 

direction, which can be seen as function evaluations also.  

In Figure 56 and Figure 57 the convergence is shown for the various methods. It 

can be seen that in the Kalman filter is a very fast minimisation algorithm. In only about 4 

iterations it is close to the minimum, but than delays to reach the final stopping criteria. As 

it is not known what the stopping criteria of Edgar and Himmelblau (1989) was, it is 

difficult to compare final convergence. Comparing values mentioned in their book shows 

that the Kalman filter algorithm is faster, but as in the other case a better variance function 

should be found to fasten convergence in the end-phase.  
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It is interesting to see that the path taken by the extended Kalman filter algorithm 

is totally different than the other algorithms. The initial adjustment is very large due to the 

high initial value for the P matrix. Then it rapidly settles to the optimal solution.  

Constrained optimisation 

The first constraint minimisation problem showed here was taken of Edgar and 

Himmelblau (1988) and is described by the following system of equations: 

min 124 2
21 xxxf (7.61)

s.t. 025 2
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11 xxxh (7.62)
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Observe in Eq (7.63) that the second inequality constraint is only active in the 

point (3,1). The results are shown in Figure 58, Figure 59 and Table 6. Observe the 
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differences in convergence for the different functions used for Q and R. It appears that 

some process noise has to be added for a fast convergence and that making Q a function of 

the error results in a faster convergence and less oscillation about the optimal solution. 
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Figure 58: Q = Q0 (P0 = 100, Q0 

= 1 & R0 = 1) (Edgar & Himmelblau, 

1989) 

-2 -1 0 1 2 3 4 5 6 7 8
-2

-1

0

1

2

3

4

5

6

7

8
Q = Q0*error2 / P0 = 100 / Q0 = 1 / R0 = 1

Figure 59: Q = Q0*error2 (P0 = 

100, Q0 = 1 & R0 = 1) (Edgar & 

Himmelblau, 1989) 
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Figure 62: Q = Q0*e(-iteration/10) 

(P0 = 100, Q0 = 1 & R0 = 1) (Edgar & 

Himmelblau, 1989)  

 

The fixed process noise covariance (Figure 58) goes rapidly to the optimal solution 

also, but as it comes close to the optimal solution it ultra-passes a little bit the optimal 

solution and the binding inequality constraint becomes non-active. This results in the peak 

to x = (-1,6), but only happens after about 60 iteration. 

It is interesting to see how the solution path and the convergence rate change by 

making the process noise a function. It seems that the approach of Q = Q0*K*e*eT*KT 

(Figure 60) is the most promising approach as it goes directly to the right solution. 

The process covariance noise as a function of the square error, seems to be an 

alternative approach which might interesting in view of its solution path in global 

optimization algorithms. As it does not go directly to the closest minimum, but visits all 

regions around the optimal solution.  

Diminishing the process covariance noise by the number of iterations (Figure 62) 

prevents the oscillation, which was observed for a fixed process noise covariance.  

Table 6 : Constrained minimisation with d ifferent functions for Q and R 

applied to the problem of Edgar and Himmelblau (1989) 
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Q R n° 

iterations 

x1 x2 1 ui 

Eq. (7.60) 1.0 562 1.9990 4.5830 -1.0000 u3= 7.9985 

Eq. (7.60) 0.001 159 2.0002 4.5825 -1.0000 u3= 7.9992 

1.0 0.001 8 4.7555 1.5445 0.4533 u1= -0.6477

0.0 0.001 42176* 4.7556 1.5444 0.4462 u1=-0.6455 

1.0 1.0 1107 2.0004 4.5824 -1.0000 u3=7.9998 

1000.0 1.0 499 2.0000 4.5826 -1.0000 u3=8.0010 

* was ended early because of slow convergence  

Test problem from Trvska de Gouvea & Odloak (1998) 

It were taken various test problems from Trsvka de Gouvea and Odloak (1998), 

which are known to have convergence problems. These problems include infeasible 

quadratic sub-problems, singularities and non-convex problems, for which various known 

SQP-algorithms do not converge (Trvska de Gouvea and Odloak, 1998). 

These sample tests are very interesting due to the problems mentioned and 

therefore form an ambiguous set to submit the Kalman filter algorithm and encounter its 

performance in terms of its stability and convergence behaviour.  

In comparison with normal SQP algorithms, it has to be emphasised that no line-

search is conducted with the Kalman filter algorithm. Even though in some cases the 

Kalman filter can converge more rapidly to the optimal solution. All problems are 

mentioned in Anexo 3. It was chosen a maximum of 1000 iterations for convenience 

purposes, sometimes it was run some more iterations to see if the solution was stable or not.   

In the next paragraphs a discussion is given of the influence of the tuning 

parameters P0, Q0 and R0 and the type of update function chosen for the process noise 

covariance matrix Q. 
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In Table 7, it are shown only the best solutions obtained by the SQP-EKF 

algorithm. The complete overview of the results can be conferred Anexo 4. In these tables 

it can be conferred the influence of the different process covariance noise matrixes and of 

the intial parameters.  

It can be seen that the convergence speed and the solution obtained is very 

dependent on the initial parameters. Depending on the parameters the system can even 

converge to an infeasible solution. 

Normally the convergence speed increases if the Q is large and the R small, the 

initial value has some influence on the convergence but seems to have no definite value. 

Sometimes a small initial value of P leads to a high convergence speed also  

Most problems have the largest convergence speed with Q is constant, only very 

sensitive functions have problems with a large Q and need to have a small value.  

In particular it should be mentioned problem 6, which is very difficult due to 

initial condition chosen. The x’s first have to get into the feasible region, but to this was 

possible only by adding the identity matrix to the matrix CT. The only theoretical basis was 

to make the CT matrix positive definite, but by accident the identity matrix was added 

every iteration. To reduce its influence, the identity matrix was devided by the number of 

iterations done. 
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Figure 63: Solution path for problem 6 by adding the matrix added 

devided by the number of iterations from the point [0, 0, 0, 0] to point [6.29343, 

3.82184, 201.15930, 0.00000] 

 

Though the addition of the identity matrix to the CT matrix resolved a very 

difficult problem, which leads to a non-feasible solution or local minimum for various 

algorithms, it also resulted in oscillations for some other problems, making it necessary to 

make it available as a option in the program. It this case it was sufficient to add the identity 

matrix for the equality and inequality equations to reach the wanted solution. 

In Figure 64 it is shown the solution of problem 7, which was solved with the 

addition of the identity matrix also. Interesting is the capability of crossing the quadrants as 

the second inequality constraint is not continuous at the origin. In this case it was sufficient 

also to add the identity matrix for the equality and inequality equations to reach the wanted 

solution. 
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Figure 64: Solution path for problem 7 by adding the matrix added 

devided by the number of iterations from the point [0, 0, 0] (filled black circle) to 

point [0.129, 0.483, 0] (open black circle) 

In Table 7 of Anexo 4, a full overview is shown of the solutions obtained with the 

extended Kalman filter constrained optimisation algorithm. The first important thing which 

can be noted is that the Kalman filter algorithm leads normally to the Global solution. Some 

problems were not solved due to the combination of initial point and the numerical gradient 

algorithm calculation implemented. The number of iterations is in the constrained case 

larger than the SQP algorithm, which makes the calculation time much larger due to the 

first and second numerical gradient calculation. The iterations are also larger as it is 

perturbed the Hessian matrix with the identity matrix, but this is necessary to obtain the 

global solution and can make the algorithm contour constraints. 

In some cases it can be seen that the number of iterations can become prohibitive 

large for more complex problems. Therefore it is thought that this work should be 

continued in developing a Unscented Kalman filter constrained optimisation algorithm (see 
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paragraph 0), which does not need the calculation of derivatives and use direct function 

calculations and thus resulting in a tremendous speed-up of the algorithm. 

But as can be seen in Figure 65 for problem 4 of the list in Anexo 3, the Kalman 

filter algorithm normally leads to a rapid adjustment in the beginning and that in a lot of 

cases the number of iterations is a function of the stopping criteria used. 
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Figure 65: Solution path of the Kalman filter algorithm and Excel Solver 

(SQP) for problem 4  

 

Constrained optimisation of the phenol oxidation section 

It was used the detailed model of the phenol oxidation section developed by 

Camarasa et al. (2001), which is a validated model with industrial data and propriety of 

Rhodia Brasil Ltda. The model consists of a hydrodynamic model and a kinetic model of 

the main reactions occurring in air lift reactions where the oxidation occurs of Cumeno to 

Cumen Hydro-Peroxide (CHP) mentioned in mentioned in paragraph. The main impurities 

formed are the DiMethyl Phenyl Carbinol (DMPC), Acetophenone (ACPH) and 

DiCumylPeroxide (DCP) (Messina et al., 1986). The main point is to minimise the 

impurities formed in the cumune oxidation subjected to the wanted production, total 

allowable airflow and the maximum allowed oxygen concentration in the reaction. 
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Thus the minimisation problem can be described by: 

0%%

0

0

min

max,,2,,2

,,

,

reactorcalcreactor

compressormcalcm

tsetpoincalcout

OOg

g

CHPCHPh

ACPHPDCDMPCf

 
(7.64)

 

The problem was resolved with the Bartholew-Biggs algorithm called OPALQP, 

which is a type of SQP algorithm. But with recent model modifications the algorithm was 

not optimising anymore. 

All data shown in this paragraph was kindly liberated by Rhodia Brasil Ltda. but 

scaled for proprietary reasons. 

To obtain convergence it had to be turned off the addition of the identity matrix to 

the Hessian or C matrix. Therefore we conclude that the optimisation algorithm has to be 

tested for every problem if the addition of identity matrix improves the global convergences 

or not. In the case the phenol optimisation the gradients are very small and the addition of 

the identity matrix perturbs makes the algorithm go to no impurities and thus also no 

reaction, as the equality constraint is not obeyed by the summing of the identity matrix! 

In Figure 66 and Figure 67 it is shown the convergence of the Kalman filter 

algorithm and the SQP/OPALQP algorithm. It can be seen that the Kalman filter is faster in 

the beginning but than slows down its convergence and becomes slower than the OPALQP 

algorithm. The Kalman filter approaches in one step the feasible region, but then its 

convergence slows down. This can be a problem of the initial covariance matrixes, but the 

testing time up to convergence becomes too large. One other reason can be the weighting of 

the constraints, which is done by the OPALQP algorithm and influences the convergence 

properties. Including weighing or scaling factors for the constraints in the EKF algorithm 

might increase its convergence speed also.  

One of the weaknesses of using the actual EKF optimisation algorithm, is its 

computational costs to run the algorithm due to the second gradient calculation of the 

Hessian or C-matrix of the extended Kalman filter. Thus it should be simplified the Hessian 



 

133 

matrix calculation by the BFGS-algorithm or implement the Unscented Kalman filter 

algorithm, which does not need a gradient calculation. 
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Figure 66: Objective function and equality constraint evolution 

(production constraint) in case of the Kalman filter algorithm (EKF P0 = 100, Q0 = 

1, R0 = 1 and Qupdate = constant / EKF 2 P0 = 10, Q0 = 10, R0 = 0.01 and Qupdate = 

constant) and the SQP/OPALQP algorithm for the industrial optimization 
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Figure 67: Inequality constraints evolution (oxygen content in top of the reactor) in case of 
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the Kalman filter algorithm (EKF P0 = 100, Q0 = 1, R0 = 1 and Qupdate = constant / EKF 2 P0 

= 10, Q0 = 10, R0 = 0.01 and Qupdate = constant) and the SQP/OPALQP algorithm for the 

industrial optimization 

 
Due to the mentioned high computational load it was implemented the forward 

difference method for the gradient calculation. In Figure 68 it is shown that the accuracy of 

the gradient calculation has a large influence on the convergence behaviour. The central 

difference method does in 1 iteration 8.1 times the step of the forward difference method 

coming close to the wanted production constrained. The central difference method needs 

about 3.6 times more function calls but, even if we compare the convergence in function 

calls then the central difference method does 7.9 times the step of the forward difference 

method. 

If the perturbation step is increased the convergence is improved but remains 

worse than the central difference gradient calculation. This fact is due to the Hessian or C 

matrix, whose accuracy is much more sensible to this calculation.  
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Figure 68: Objective function and equality constraint evolution in case of 

the Kalman filter algorithm with grad ient and Hessian calculation by the central 

or forward differencing technique 
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Although there are some problems still with the implementation of the Kalman 

filter algorithm, its implementation resulted in understanding why the OPALQP algorithm 

was not working correctly and therefore the OPALQP algorithm could be corrected to work 

properly as for the moment its solution is still faster than the Kalman filter algorithm.  

Conclusions and future work 

It was shown that the Kalman filter can be successfully used in unconstrained and 

constrained optimisation. The unconstrained optimisation of the Rosenbrock function 

demonstrates that a very fast optimisation can be obtained by manipulating the process 

noise covariance matrix. The applicability to constrained optimisation was shown in a large 

scope of different test problems and one real industrial problem. For some of the 

constrained optimalisation problems it was needed to add the identity matrix to the Hessian 

matrix to obtain convergence. 

In constrained optimisation it was needed more function calls, but by right tuning 

of the covariance error matrixes it is possible to obtain a better convergence and reach the 

global minimum, where other algorithms had problems in reaching the global minimum. 

The way the process noise covariance matrix Q has to be updated is not clear, 

constant or a function of the error, but it is essential to get a good convergence to the global 

minimum. 

One of the remaining problems is the need for the calculation of the Hessian 

matrix which is very time consuming, therefore it is proposed to implement a method like 

the BFGS to diminish the time for the Hessian matrix calculation. 

More preferentially it should be implemented the algorithm of the Unscented 

Kalman filter which is a gradient free algorithm and therefore could result in a fast 

optimisation algorithm with the same or even better global convergence properties. 
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Anexo 3 - Sample problems from Trvska and Odloak (1998) 
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Problem 1 (Biegler and Cuthrell, 1985): 

Min 2
32 2

1
xx

 
s.t 01 2

21 xx  

01 2
21 xx  

2
1

2x  

Problem 2 (Biegler and Cuthrell, 1985) 

Min 2
32 2

1
xx

 

s.t 02 3
1

2
12 xxx  

0112 3
1

2
12 xxx  

Problem 3 (Edgar and Himmelblau, 1989) 

Min 2
321 2

1
xxx

 

s.t 0252
2

2
1 xx  

021 xx  

Problem 4 (Schmid and Biegler, 1994) 

Min 2
43121

2
3

2
2

2
1 2

1
21000 xxxxxxxx

 

s.t 0252
3

2
2

2
1 xxx  

562148 321 xxx 
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Problem 5 (Ryoo and Sahindis, 1995) 

Min 2
321 2

1
xxx

 
s.t 421xx  

4,60 x  

Problem 6 (Ryoo and Sahindis, 1995) 

Min 2
43 2

1
xx

 

s.t 0630250 2
113 xxx  

01220300 2
223 xxx  

05.0150 2
213 xxx  

42.267,903.5,422.90 x  

Problem 7 (Ryoo and Sahindis, 1995) 

Min 2
321 2

1
2 xxx

 

s.t 0116 21xx  

0144 2
2

2
1 xx  

1,10,0 x  

Problem 8 (Ryoo and Sahindis, 1995) 

Min 2
321 2

1
xxx
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s.t 036224 2121 xxxx  

1,10,0 x  

Problem 9 (Ryoo and Sahindis, 1995) 

Min 2
3

2
221 2

1
712 xxxx

 

s.t 022 2
4
1 xx  

3,20,0 x  

Problem 10 (Ryoo and Sahindis, 1995) 

Min 2
321 2

1
xxx

 

s.t 042
2

2
1 xx  

01 2
2

2
1 xx  

0121 xx  

0112 xx  

2,22,2 x  

Problem 11 (Ryoo and Sahindis, 1995) 

Min 2
6321 2

1
xxxx

 

s.t 0
300120100100000 414

a

xxx  

0
40080100000 5245

a

xxxx 
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0
50060040500100000 35

a

xx  

400,300,10000,36250,15834100,100,100,100,100 x 

a = 1 or a = 100000  

Problem 12 (Ryoo and Sahindis, 1995) 

Min 2
5431

6.0
2

6.0
1 2

1
346 xxxxxx

 

s.t 033 321 xxx  

042 31 xx  

024 42 xx  

1,2,4,30,0,0,0 x  

Problem 13 (Ryoo and Sahindis, 1995) 

Min 2
4

6.0
2

6.0
1 2

1
3535

100
1

xxx

 

s.t 0500050600 3131 xxxx  

01500050600 32 xx  

300,17,34100,0,0 x  

Problem 14 (Ryoo and Sahindis, 1995) 

Min 2
321 2

1
184.29 xxx

 

s.t 02458.06
2

2
1

1
x

x
x  

30,8.115,0 xa 
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a = 0 or a = 0.00001  

Problem 15 (Ryoo and Sahindis, 1995) 

Min 2
74 2

1
xx

 

s.t 01 5111 xxkx  

062212 xxkxx  

01 53313 xxkxx  

06441234 xxkxxxx  

045.0
6

5.0
5 xx 

16,16,1,1,1,10 x 

k1 = 0.09755988 

k2 = 0.9 * k1 

k3 = 0.0391908 

k4 = 0.9 * k3  

Problem 16 (Psiaki and Park, 1995)  

Min 2
32 2

1
xx

 

s.t 00625.01100001
22

2
2
1

2
2

2
1 xxxx  

Problem 17 (Psiaki and Park, 1995) 

Min 2
813242

1
xxxxx

 

s.t 042151346 xxxxxxxx 
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02475 xxxx  

01376 xxxx  

012
6

2
5 xx  

01jx  j = 1,2  

0jx  j = 3,4,5,6,7  
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Anexo 4 - Tables with the influence of P, Q and R and the type of process noise covariance 

update on the convergence properties of the SQP-EKF algorithm 
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Table 7 : Comparison of the results of Tvrska and Gouvea (1998) with the results of the extended Kalman filter 

algorithm 

problem 0 1 Iter Type of algorithm P Q R Iteration

- 1 2 3 4 5 6 7 8 0 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 0 1 1 0 1 0 Global 10 0 1 0 Global Q=q0, P  = P0/i (i=1-nx) 10 0.001 0.0001 23

1 24 5 0 1 1 0 1 0 Global 9 0 1 0 Global Q=q0, P  = P0/i (i=1-nx) 10 0.001 0.0001 20

2 0 0 0 0 0 0.500 0.375 0 Global 3 0.500 0.375 0 Global Q=q0, P  = P0/i (i=1-nx) 10 0.001 0.0001  21

2 0.8 1 0 0 0 0.500 0.375 0 Global 4 0.500 0.375 0 Global Q=q0, P  = P0/i (i=1-nx) 10 0.001 0.0001  35

2 -0.6 1 0 0 0 -0.618 1 0 Local 5 0.500 0.375 0 Global Q=q0, P  = P0/i (i=1-nx) 1 0.001 0.0001  26

2 1.7 1 0 0 0 1.618 1 0 Local 4 0.500 0.375 0 Global Q=q0, P  = P0/i (i=1-nx) 10 0.001 0.0010  24

3 0 0 0 1 1 -3.536 3.536 0 Global 5 -3.536 3.536 0 Global Q=q0, P  = P0/i (i=1-nx) 100 10 0.01      38

4 0 0 0 0 0 0 4.242 1.847 -1.896 0 Local 21 3.137 1.707 3.499 0 Global Q=q0, P  = P0/i (i=1-nx) 10 0.001 0.0001  20

5 0 0 0 0.9 0.9 2 2 0 Local 6 6 0.667 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 100 0.0001  83

5 3 2 0 0 0 6 0.667 0 Global 6 6 0.667 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 100 0.0001  49

6 9.422 5.903 267.42 0 0 0 6.293 3.822 201.2 0 Global 7 6.293 3.822 201.159 0.000 Global Q=q0, P  = P0/i (i=1-nx) 0.1 1       1          35

6 0 0 0 0 0 0 0 0 150 0 Infeasible 6 6.293 3.822 201.159 0.000 Global Q=q0, P  = P0/i (i=1-nx) 0.1 1       1          857

6 0 0 0 0 0 0 6.293 3.822 201.2 0 Global 4

6 9.422 5.903 267.42 0 0 0 6.293 3.822 201.2 0 Global 7

7 0.5 0.5 0 0.2 0.2 0.447 0.224 0 Stationary 6 0.1294 0.483 0.00 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 0.001 0.001 0.1       77

7 0.5 0.5 0 0 0 0.483 0.1294 0 Local 8 0.1294 0.483 0.00 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 0.001 0.001 0.1       77

7 0.5 0.5 0 0.1 0.1 0.129 0.483 0 Global 7

7 0.5 0.5 0 0 0 0.129 0.483 0 Global 7

7 1E-05 0 0 0 0 0.483 0.1294 0 Local 7 0.1294 0.483 0.00 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 0.001 0.001 0.1       27

7 1E-05 0 0 1 1 0.129 0.483 0 Global 8

7 1E-05 0 0 0 0 0.129 0.483 0 Global 8

8 0 0 0 0 0 0.5 0.5 0 Global 7 0.5 0.5 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 1 1 29

9 0 0 0 0 0 0.718 1.47 0 Global 6 0.7175 1.4698 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 1 1 37

9 1 1.5 0 0 0 0.718 1.47 0 Global 11 0.7175 1.4698 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 1 1 30

10 0 0 0 0 0 1 0 0 Local 8 -1.414 -1.414 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 0.1 0.0001 1000

10 -2 -2 0 0 0 -1.41 -1.414 0 Global 7 -1.414 -1.414 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 0.1 0.0001 1000

10 2 2 0 0 0 1 0 0 Local 7 -1.414 -1.414 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 0.1 0.0001 1000

11 9700 18125 5000 200 25 0 1 1 579.3 1360 5110 182 295.6 0 Global 6 579.3 1 360.0 5 110.0 182.0 295.6 0.0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 10 10 1.00E-06 20339

11 9700 18125 5000 200 25 0 1 1 579.3 1360 5110 182 295.6 0 Global 47

11 0 0 0 100 100 0 1 1 579.3 1360 5110 182 295.6 0 Global 56 595.0 1 354.8 5 099.6 183.3 296.0 0.0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 1 0.001 0.1       100000

11 0 0 0 100 100 0 1 1 579.3 1360 5110 182 295.6 0 Global 28

12 0 0 0 0 0 0 0 0.049 4 1.284 0 0 Stationary 32 due to numerical gradient calc

12 1.5 2 1 0.5 0 0 0 1.33 4 0 0 0 Global 22 1.33 4.00 0.00 0.00 0.00 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 10 10 107

12 3 4 2 1 0 0 0 1.33 4 0 0 0 Global 3 1.33 4.00 0.00 0.00 0.00 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 100 10 10 59

13 0 0 100 0 0 0 33.33 0 300 0 Global 3 0 16 100 0

14 57.9 15 0 0 0 8.17 7.56 0 Global 12 8.17 7.56 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 1 0.01  0.001    27

14 0 1E-05 0 0 0 8.17 7.56 0 Global 14 8.17 7.56 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 1 0.01  0.001    26

15 0 0 0 0 0 0 0 0 0 0.963 0.499 0.03681 0.3858 0.3981 11.35 0 Local 21 due to numerical gradient calc

15 0 0 0 0 0 0 0 1 1 0.772 0.517 0.2042 0.389 3.037 5.096 0 -0.3746 Global 28

15 0.5 0.5 0.5 0.5 8 8 0 0 0 1 0.393 0 0.3881 16 0 0 Local 13 0.791 0.511 0.189 0.392 2.716 5.532 0.0 -0.392 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 1 0.001 0.1       7907

15 0.5 0.5 0.5 0.5 8 8 0 1 1 0.391 0.391 0.3746 0.3746 16 0 0 Local 24 0.791 0.511 0.189 0.392 2.716 5.532 0.0 -0.392 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 1 0.001 0.1       7907

16 0 0.99 0 0 0  not converge - 17 0.9687 -0.2481 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 1 0.01  0.001    430

16 0 0.99 0 1 1 0.969 -0.248 0 Global 300 0.9687 -0.2481 0 GlobalQ=q0, P  = P0/(nx-i) (i=1-nx 1 0.01  0.001    360

16 0 0.99 0 1 1 0.969 -0.248 0 Global 218

17 -2 -3 6 6 6 6 6 0 1 1  not converge - 61 ht that there is some error in the mentioned problem

17 -2 -3 6 6 6 6 6 0 0 0 -1 -1 2.41 2.41 0.707 0.707 0.207 0 Global 300

17 -2 -3 6 6 6 6 6 0 0 1 -1 -1 2.41 2.41 0.707 0.707 0.207 0 Global 78

17 -1 -1 0 0 0 0 0 0 0 0 -1 -1 2.41 2.41 0.707 0.707 0.207 0 Global 21

x0 Solution Trvska & Odloak (1998) Solution of Kalman filter algorithm Type of 

sol

Type of 

sol
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Anexo 5 – Developed programs in this thesis 

In this work there were developed various Fortran programs, which are available 

on a CD with the orientador of this thesis at the laboratory LOPCA/UNICAMP. 

1. External Recurrent Neural Network training program with the training 

algorithms, backpropagation, backpropagation with momentum, the 

Multiple Extended Kalman filter algorithm and the Global Extended 

Kalman filter algorithm. The backpropagation algorithms can be used in a 

batch or sequential training mode. Teacher-forcing can be used in the 

recurrent neural network mode. 

2. STABLE (Extended) Kalman filter algorithm for state adjustment or 

parameter adjustment. The algorithm is stable as the Joseph stabilised 

version is used 

3. Constrained non-linear optimization algorithm based on the Extended 

Kalman filter algorithm 

4. Fractional Gaussian Noise modeling and Hurst’s parameter estimation by 

the Maximum Likelihood method. It can be used simulate fractional 

landscapes also. 

5. A model to simulate the penicillin process  

One of the programs is not available as it is propriety of Rhodia Brasil Ltda.. 

6. A model to simulate the phenol oxidation section 
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