

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA

IVAN CARLOS FRANCO

CONTROLE PREDITIVO BASEADO EM MODELO NEURO-FUZZY DE SISTEMAS NÃO-LINEARES APLICADO EM SISTEMA DE REFRIGERAÇÃO

Orientador: Prof. Dr. Flávio Vasconcelos da Silva

MODEL PREDICTIVE CONTROL BASED ON NEURO-FUZZY NONLINEAR SYSTEMS APPLIED TO A REFRIGERATION PLANT

> TESE DE DOUTORADO APRESENTADA À FACULDADE DE ENGENHARIA QUÍMICA DA UNIVERSIDADE ESTADUAL DE CAMPINAS, COMO PARTE DOS REQUISITOS PARA OBTENÇÃO DO TÍTULO DE DOUTOR EM ENGENHARIA QUÍMICA NA ÁREA DE CONCENTRAÇÃO: SISTEMAS DE PROCESSOS QUÍMICOS E INFORMÁTICA.

> DOCTORATE THESIS PRESENTED TO THE CHEMICAL ENGINEERING POSTGRADUATION PROGRAMME OF THE SCHOOL OF CHEMICAL ENGINEERING THE UNIVERSITY OF CAMPINAS TO OBTAIN THE Ph.D. GRADE IN CHEMICAL ENGINEERING IN FIELD OF CHEMICAL PROCESSES SYSTEMS AND COMPUTING

ESTE EXEMPLAR CORRESPONDENTE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO IVAN CARLOS FRANCO, E ORIENTADA PELO PROF. DR. FLÁVIO VASCONCELOS DA SILVA

Prof. Dr. Flávio Vasconcelos da Silva (orientador)

CAMPINAS, 2012

IVAN CARLOS FRANCO

"CONTROLE PREDITIVO BASEADO EM MODELO NEURO-*FUZZY* DE SISTEMAS NÃO-LINEARES APLICADO EM SISTEMA DE REFRIGERAÇÃO"

"MODEL PREDICTIVE CONTROL BASED ON NEURO-FUZZY NONLINEAR SYSTEMS APPLIED TO A REFRIGERATION PLANT"

CAMPINAS, 2012

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA

IVAN CARLOS FRANCO

"CONTROLE PREDITIVO BASEADO EM MODELO NEURO-FUZZYDE SISTEMAS NÃO-LINEARES APLICADO EM SISTEMA DE REFRIGERAÇÃO"

Orientador: Prof. Dr. Flávio Vasconcelos da Silva

"MODEL PREDICTIVE CONTROL BASED ON NEURO-FUZZY NONLINEAR SYSTEMS APPLIED TO A REFRIGERATION PLANT"

Tese de doutorado apresentada à faculdade de engenharia química da universidade estadual de campinas, como parte dos requisitos para obtenção do título de doutor em engenharia química na área de concentração: sistemas de processos químicos e informática.

Doctorate thesis presented to the chemical engineering postgraduation programme of the school of chemical engineering the university of campinas to obtain the ph.d. Grade in chemical engineering in field of chemical processes systems and computing

ESTE EXEMPLAR CORRESPONDENTE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO IVAN CARLOS FRANCO, E ORIENTADA PELO PROF. DR. FLÁVIO VASCONCELOS DA SILVA

Prof. Dr. Flávio Vasconcelos da Silva (orientador)

CAMPINAS, 2012

v

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

	Franco, Ivan Carlos
	Controle preditivo baseado em modelo
F848c	neuro-fuzzy de sistemas não-lineares aplicado em
	sistema de refrigeração / Ivan Carlos Franco
	Campinas, SP: [s.n.], 2012.
	Orientador: Flávio Vasconcelos da Silva.
	Tese de Doutorado - Universidade
	Estadual de Campinas, Faculdade de Engenharia
	Química.
	1. Identificação de sistemas. 2. Controle
	preditivo. 3. Refrigeração. 4. Lógica fuzzy. I.
	Silva, Flávio Vasconcelos da. II. Universidade
	Estadual de Campinas. Faculdade de Engenharia
	Química. III. Título.

Título em Inglês: Model predictive control based on neuro-fuzzy nonlinear systems applied to a refrigeration plant

Palavras-chave em Inglês: Identification systems, Predictive control, Refrigeration, Fuzzy systems

Área de concentração: Sistemas de Processos Químicos e Informática Titulação: Doutor em Engenharia Química

Banca examinadora: Luiz Fernando Novazzi, Fábio Delatore, Ana Maria Frattini Fileti, Claudio Kiyoshi Umezu

Data da defesa: 03-07-2012

Programa de Pós Graduação: Engenharia Química

Tese de doutorado defendida por Ivan Carlos Franco e aprovada em 03 de julho de 2012 pela banca examinadora constituída pelos doutores

Prof. Dr. Flávio Vasconcelos da Silva FEQ-UNICAMP

Prof. Dr. Luiz Fernando Novazzi Centro Universitário da FEI

Prof. Dr. Fábio Delatore FATEC-Santo André

maintair

Prof^a Dr^a. Ana Maria Frattini Fileti FEQ-UNICAMP

Clandes Unizen

Prof. Dr. Claudio Kiyoshi Umezu FEAGRI-UINICAMP

DEDICATÓRIA

À minha querida e amada esposa Gisele Aos meus pais amados, José e Marlene Ao meu amigo (orientador) Flávio Vasconcelos da Silva

AGRADECIMENTOS

Agradeço:

A Deus por minha existência.

Minha esposa, Gisele, por todo amor, carinho e incentivo durante esta jornada.

Meus pais José e Marlene por terem realizado esforços hercúleos para que eu conseguisse chegar até aqui.

Minha segunda família, Hermes, Iria e Marcelo por acreditarem em minha vitória.

Ao Prof. Dr. Flávio Vasconcelos da Silva por ter acreditado em meu potencial.

Ao Prof. Lincoln de Camargo Neves Filho por toda atenção à mim concedida.

Aos meus amigos Thiago "Araxá", Thiago Pinelli e Carlos Parreira (Carlão) por todo conhecimento à mim transferido nestes anos de trabalho.

Meus amigos Jones, Thiago "Araxá" e Lívia e João e Daiana por todos os dias de alegria que juntos tivemos

À Faculdade de Engenharia Química por mais esta oportunidade concedida.

Ao apoio financeiro inicial do CNPq.

" O primeiro passo para a sabedoria é reconhecer que somos ignorantes" Sócrates (470-399 a. C)

xiii

RESUMO

Os sistemas de refrigeração estão presentes em diferentes ramos da indústria e caracterizam-se como grandes consumidores de energia com considerável comportamento não-linear. Inúmeros trabalhos vêm sido desenvolvidos para promover a redução dos gastos energéticos e a minimização dos efeitos das não-linearidades nestes sistemas. A aplicação da automação e do controle de processos, particularmente o uso de técnicas avançadas de controle, são estratégias amplamente utilizadas para esta finalidade. O Controle Preditivo baseado em Modelos (MPC) é capaz de estabilizar processos onde há não-linearidades, sendo promissora a sua aplicação em sistemas de refrigeração. Neste trabalho, foi desenvolvido um SIStema de MOnitoramento e Controle Avançado para Refrigeração (SISMOCAR) capaz de monitorar, em tempo real, através da comunicação OPC (*OLE for Process Control*), todas as variáveis envolvidas no ciclo de refrigeração e também realizar o controle das variáveis de interesse. Modelos Takagi-Sugeno (SISO) para a predição das temperaturas de evaporação (Te) e do fluido secundário (Tp) foram desenvolvidos e validados, a partir da técnica ANFIS (Adaptative Network based Fuzzy Inference Systems), com análise de desempenho baseado no cálculo do VAF (Variance accounted for). Os modelos Takagi-Sugeno validados foram utilizados como base para Controladores Preditivos, mais especificamente um Controlador Preditivo Generalizado (GPC). Os controladores GPC's foram desenvolvidos sem restrições na função objetivo da ação do controlador. Foram projetados diferentes controladores preditivos para diferentes regras locais (Regras Fuzzy), sendo a ação global do controlador a integração ponderada dos modelos locais. Foram desenvolvidos três diferentes controladores: GPC1 (controle da temperatura de evaporação utilizando modelo de predição da Te em função da frequência do compressor); GPC2 (controle da temperatura do propilenoglicol utilizando modelo de predição da Tp em função da frequência do compressor) e GPC3 (controle da temperatura do propilenoglicol utilizando o modelo de predição da Tp em função da frequência da bomba do evaporador). Os testes realizados para rastreamento do set-point (± 1 °C), com carga térmica constante de 3000 W, mostraram-se satisfatórios sendo os melhores desempenhos apresentados pelos controladores GPC1 e GPC2 onde o desvio da variável controlada em relação ao set point, dos respectivos controladores, ficou em torno de ± 0.3 °C.

Palavras-chave: identificação de sistemas; modelo Takagi-Sugeno; controle preditivo; refrigeração

ABSTRACT

Refrigeration systems can be found in many different branches of industry and are characterized as great energy consumers with considerable non-linear behavior. Several studies have been developed to promote the reduction of energy costs and to minimize the effects of nonlinearities in these systems. The use of automation and process control, particularly the use of advanced control techniques, is a widely used strategy for this purpose. The Model Predictive Control (MPC) is capable of stabilizing processes in which there are nonlinearities, and it is a promising application in refrigeration systems. In this work, a System for Monitoring and Advanced Control in Refrigeration (SISMOCAR) was developed using OPC (OLE for Process Control) communication. This feature allowed beyond real time monitoring for all variables involved in the refrigeration cycle, the control of the relevant variables. Furthermore, to predict the evaporating (Te) and the secondary fluid (Tp) temperatures, Takagi-Sugeno models (SISO) were developed and validated using the ANFIS (Adaptive Network-based Fuzzy Inference Systems) technique, with performance analysis based on the VAF (Variance accounted for) calculation. The validated Takagi-Sugeno models were used as basis for Predictive Controllers, specifically using Generalized Predictive Controller (GPC) strategy. The GPC controllers were developed without constraints in the objective function of the controller action. Different predictive controllers were designed for different local rules (Fuzzy Rules), being the weighted integration of the local models the controller global action. Three different controllers were developed: GPC1 (evaporating temperature control using the Te predictive model as a function of compressor frequency); GPC2 (control of propylene glycol temperature using the Tp predictive model as a function of compressor frequency) and GPC3 (control of propylene glycol temperature using the Tp predictive model as a function of the frequency of the evaporator pump). The tests performed for the set-point tracking (± 1 °C), with constant thermal load of 3000 W, were considered satisfactory and best performances were those obtained by GPC1 and GPC2 controllers, in which the controlled variable was around ± 0.3 °C.

Keywords: identification systems, Takagi-Sugeno model, predictive control, refrigeration

Sumário

1. Introdução	1
1.1 Motivação	1
1.2 Objetivos	2
2. Revisão Bibliográfica	5
3. Fundamentação Teórica	13
3.1 Ciclos de refrigeração	13
3.2 Comunicação via protocolo OPC	16
3.3 Técnicas Fuzzy e Neuro- <i>fuzzy</i>	22
3.4 Controle Preditivos baseado em Modelos (MPC)	28
3.4.1 Fundamentos do controle preditivo	29
4. Materiais e Métodos	31
4.1 Protótipo experimental	31
4.1.1 Sistema de refrigeração	31
4.1.2 Instrumentação do sistema de refrigeração	34
4.1.3 Sistema Supervisório	36
4.1.4 A Comunicação via Protocolo OPC	37
4.2 Estudo da dinâmica e identificação do sistema	37
4.2.1 Determinação das condições iniciais dos ensaios	37
4.2.2 Verificação da dinâmica das variáveis do sistema	38
4.2.2.1 Verificação da dinâmica no processo de condensação a ar	38
4.2.2.2 Verificação da dinâmica no processo de condensação a água	39
4.2.3 Identificação do sistema	41
4.2.3.1Estabelecimento do tempo de amostragem e tempo de assentamento das va	riáveis
	41
4.2.3.2 Determinação do sinal para a identificação	42
4.2.3.3 Modelagem do Sistema	43
5. Resultados e Discussões	51
5.1 Melhorias no protótipo de refrigeração	51
5.2 Instrumentação do sistema de refrigeração	53
5.3 Monitoramento do sistema de refrigeração – Sistema Supervisório	54
5.3.1 Supervisão com InduSoft Web Studio 6.1	54
5.3.2 Interface de comunicação MATLAB [®] /SIMULINK-Sistema de Refrigeração via	
protocolo OPC	57
5.3.2.1 Configuração do servidor OPC	57
5.3.2.2 Teste da qualidade da comunicação	59
5.3.3 Sistema de supervisão utilizando o MATLAB/SIMULINK	65
5.4 Dinamica das variaveis do sistema sob perturbações	67
5.4.1 Processo de condensação a ar (step compressor: 50-60-50 Hz)	67
5.4.2 Processo de condensação à ar (<i>step</i> compressor 50-70-50 Hz)	72
	xiy

5.4.3 Processo de condensação a ar $(step \text{ compressor: } 50-40-50 \text{ Hz})$	75
5.4.4 Processo de condensação a água (step compressor: 60-70-60 Hz)	78
5.4.5 Processo de condensação a água (step compressor: 60-50-60 Hz)	80
5.4.6 Processo de condensação a água (step carga térmica: 3000-4000-3000 W)	82
5.4.7 Processo de condensação a água (step carga térmica: 3000-2000-3000 W)	84
5.4.8 Processo de condensação a água (step bomba do evaporador: 50-60-50 Hz)	86
5.4.9 Processo de condensação a água (degrau 50-70-50 Hz)	88
5.4.10 Processo de condensação a água (step bomba do evaporador: 50-40-50 Hz)	89
5.4.11 Análise da não-linearidade do sistema de refrigeração	90
5.5 Modelagem utilizando arquitetura ANFIS	92
5.5.1 Agrupamento subtrativo (Subtractive Clustering)	92
5.5.2 Modelos Takagi-Sugeno I (Sistema de refrigeração utilizando compressor aberto)	94
5.5.2.1 Dados para identificação dos modelos de predição da temperatura de conder	isação,
da temperatura de evaporação e da temperatura do propilenoglicol	95
5.5.2.2 Treinamento ANFIS para determinação dos Modelos Takagi-Sugeno	96
5.5.2.3 Validação dos Modelos Takagi-Sugeno do Grupo I	100
5.5.3 Modelos Takagi-Sugeno II (Sistema de refrigeração utilizando compressor semi-	
hermético)	104
5.5.3.1 Obtenção do tempo de assentamento das variáveis do modelo TS	104
5.5.3.2Resultados para identificação dos modelos de predição da temperatura de	
condensação, da temperatura de evaporação e da temperatura do propilenoglicol	107
5.5.3.4 Treinamento ANFIS para a determinação dos Modelos Takagi-Sugeno para	0
Grupo I (Variação na frequência do compressor (FQ101))	109
5.5.3.5 Treinamento ANFIS para a determinação dos Modelos Takagi-Sugeno para	0
Grupo II (Variação na frequência da bomba do evaporador $(FQ201))$	113
5.5.3.6Validação dos Modelos Takagi-Sugeno para predição das temperaturas de	
evaporação e do propilenoglicol em função da frequência do compressor	116
5.5.3.7 Validação dos Modelos Takagi-Sugeno para predição das temperaturas de	
evaporação e do propilenoglicol em função da frequência da bomba do evaporador	118
5.6 Controle Preditivo utilizando modelo Takagi-Sugeno	121
5.6.1 Estrutura do controlador preditivo	121
5.6.2 Modelos preditivos Takagi-Sugeno	126
5.6.3 Implementação do controlador GPC no Matlab/Simulink®	129
$5.6.4$ Resultados obtidos na implementação do controle ${\rm GPC}$	132
5.6.4.1 Controlador GPC para controle da temperatura de evaporação manipulando) a
frequência da bomba do evaporador	133
5.6.4.2 Controlador GPC para controle da temperatura do propilenoglicol manipula	ndo a
frequência do compressor	134
5.6.4.3 Controlador GPC para controle da temperatura do propilenoglicol manipula	indo a
frequência do compressor	136
6. Conclusões e Trabalhos Futuros	138
6.1 Conclusões	138

6.2 Trabalhos futuros	140
7. Referências Bibliográficas	143
APÊNDICE A: Cálculos on-line realizados no SISMOCAR	151
APÊNDICE B: Dinâmica do Sistema de refrigeração para as condições padrô	ies de
ensaio (estado estacionário)	155
APÊNDICE C: Configurações dos itens OPC e informações do SISMOCAR	161
APÊNDICE D: Programação LADDER	173
APÊNDICE E: Representação explícita dos modelos Takagi-Sugeno	181
E.1 Modelos Takagi-Sugeno para o sistema de refrigeração contendo um	
compressor aberto	181
E.1a Representação explícita baseada nos consequentes das regras fuzzy, do modelo T	lakagi-
Sugeno para a temperatura de condensação, $T_{condi} = q_{i1} + q_{i2} + q_{i4} + q_{i0}$	181
${\rm E.1b}$ Representação explícita baseada nos consequentes das regras fuzzy, do modelo ${\rm T}$	lakagi-
Sugeno para a temperatura de evaporação, $T_{evapi} = q_{i1} + q_{i2} + q_{i3} + q_{i4} + q_{i0}$	182
${\rm E.1c}$ Representação explícita baseada nos consequentes das regras fuzzy, do modelo T	`akagi-
Sugeno para a temperatura do propilenoglicol, $T_{propi} = q_{i1} + q_{i2} + q_{i3} + q_{i4} + q_{i0}$	183
E.2 Modelos Takagi-Sugeno para o sistema de refrigeração contendo um	
compressor semi-hermético	184
${\rm E.2a}$ Representação explícita baseada nos consequentes das regras fuzzy, do modelo T	`akagi-
${ m Sugeno} \ { m TS^{Te}_{FQ101}}, \ Te_i {=} \ q_{i1} {+} q_{i2} {+} q_{i3} {+} q_{i4} {+} q_{i5} {+} q_{i0}$	184
E.2b Representação explícita baseada nos consequentes das regras fuzzy, do modelo T	l'akagi-
${ m Sugeno} \ { m TS^{Tp}_{FQ101}}, \ Tp_{i}{=} \ q_{i1}{+}q_{i2}{+}q_{i3}{+}q_{i4}{+}q_{i5}{+}q_{i0}$	185
E.2c Representação explícita baseada nos consequentes das regras fuzzy, do modelo T	akagi-
${ m Sugeno} \ { m TS}^{ m Te}_{ m FQ201}, \ Te_i = \ q_{i1} + q_{i2} + q_{i3} + q_{i4} + q_{i5} + q_{i0}$	186
E.2d Representação explícita baseada nos consequentes das regras fuzzy, do modelo	l'akagi-
${ m Sugeno} \ { m TS^{Tp}_{FQ201}}, \ Tp_{i}{=} \ q_{i1}{+}q_{i2}{+}q_{i3}{+}q_{i4}{+}q_{i5}{+}q_{i0}$	187
ANEXO I: Informações complementares dos equipamentos do sistema de	
refrigeração	189
A.I.1 – Compressor Bitzer série octagon	191
A.I.2 Trocador de calor tipo placas	198
A.I.3 Trocador de calor casco e tubo	200
A.I.4 Unidade condensadora	202
A.I.5 Bomba centrífuga	207
A.I. 6 Bomba de deslocamento positivo	208
A.I.7 Válvula de expansão	211

Índice de Figuras

Figura 3. 1 Representação de um ciclo de refrigeração teórico no gráfico $P \times h$	13
Figura 3. 2 - Representação de um ciclo de refrigeração ideal e real no gráfico P×h	15
Figura 3. 3 - Hierarquia das camadas do modelo de referência OSI. Baseado em informações do mod	lelo
de referência OSI	19
Figura 3. 4 - Acesso a dados de processos com protocolo OPC	21
Figura 3. 5 - Princípios de estimação baseadas em regras e paramétrica, adaptado de (SHAW e	
SIMOÕES, 1999)	25
Figura 3. 6 - Estrutura de um modelo neuro-fuzzy, adaptado de (CAMPOS e SAITO, 2004)	26
Figura 4. 1 – Diagrama do protótipo de refrigeração disponível no LCAP (Laboratório de Controle d	le
Automação de Processos)	32
Figura 4. 2 – Diagrama de instrumentação do protótipo de refrigeração	35
Figura 4. 3 - Sinal randômico utilizado na identificação do sistema ("Uniform Random Nunber")	43
Figura 4. 4 – Estrutura ANFIS adotada para a primeira identificação	45
Figura 4. 5 – Estrutura ANFIS adotada para o Grupo I da segunda identificação	47
Figura 4. 6 – Estrutura ANFIS adotada para o Grupo II da segunda identificação	49
Figura 5. 1 – Módulo de refrigeração: a) original e b) Após primeiro aperfeiçoamento	52
Figura 5. 2 – Módulo de refrigeração após segundo aperfeiçoamento	52
Figura 5. 3 – Tela principal do sistema supervisório (InduSoft Web Studio 6.1)	55
$Figura \ 5. \ 4-a) \ Tela \ do \ processo \ de \ condensa \\ c \tilde{a} \ a \ a \ e \ c) \ Tela$	do
processo de condensação a água	56
Figura 5. 5 - Hierarquia da criação dos grupos e itens da comunicação via protocolo OPC	58
Figura 5. 6 – Mapeamento de itens OPC no sistema real de dados	58
Figura 5. 7 – Qualidade da comunicação para o sensor TT_101 (temperatura de descarga)	61
Figura 5. 8 – Qualidade da comunicação para o sensor TT_106 (temperatura de sucção)	61
Figura 5. 9 – Qualidade da comunicação para o sensor PT_103 (pressão relativa de evaporação)	62
Figura 5. 10 - Qualidade da comunicação para o sensor FQ_101 (frequência do motor do compresso	or). 62
Figura 5. 11 - Pseudo Real-Time: Tempo de envio e recebimento de informações do software e CLP	
utilizando protocolo de comunicação OPC	63
Figura 5. 12 - Real-Time: Tempo real de execução do software e a comunicação com o CLP via pro	to colo
<i>OPC</i>	64
Figura 5. 13 – Tela principal do SISMOCAR (SIStema de MOnitoramento e Controle Avançado par	a
Refrigeração)	66
Figura 5. 14 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com vari	iação
na frequência do compressor (50-60-50 Hz), onde k=10 s	68
Figura 5. 15 - Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporado	$r \ com$
variação na frequência do compressor (50-60-50 Hz), onde k=10 s	68
Figura 5. 16 - Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil com	
variação na frequência do compressor (50-60-50 Hz), onde k=10 s	70

xxiii

Figura 5. 38 - Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação
na frequência da bomba do evaporador (50-60-50 Hz), onde $k=10$ s
Figura 5. 39 – Dinâmica da temperatura do propilenoglicol na entrada e na saída do evaporador com
variação na frequência da bomba do evaporador (50-60-50 Hz), onde k=10s87
Figura 5. 40 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação
na frequência da bomba do evaporador (50-70-50 Hz), onde $k=10$ s
Figura 5. 41 - Dinâmica da temperatura do propilenoglicol na entrada e na saída (Tp) do evaporador com
variação na frequência da bomba do evaporador (50-70-50 Hz), onde k=10 s
Figura 5. 42 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação
na frequência da bomba do evaporador (50-40-50 Hz), onde $k=10$ s
Figura 5. 43 – Dinâmica da temperatura do propilenoglicol na entrada e na saída (Tp) do evaporador
com variação na frequência da bomba do evaporador (50-40-50 Hz), onde k=10s90
Figura 5. 44 – Dados de treinamento utilizado no desenvolvimento dos Modelos Takagi-Sugeno: a)
Frequência do compressor; b) frequência da bomba do evaporador; c) temperatura do propilenoglicol na
entrada do evaporador; d) temperatura de condensação; e) temperatura de evaporação e e) temperatura
do propilenoqlicol
Figura 5. 45 - Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno a) da Temperatura de
condensação, Tcond, b) da temperatura de evaporação, Tevap, e c) da temperatura do propilenoglicol,
<i>Tprop</i>
Figura 5. 46 - Predição, off-line, da temperatura de condensação, Tcond
Figura 5. 47 – Distribuição dos dados reais com os dados preditos pelo modelo Fuzzy da temperatura de
condensação (validação off-line)
Figura 5. 48 – Predição, off-line, da temperatura de evaporação, Tevap
Figura 5. 49 – Distribuição dos dados reais com os dados preditos pelo modelo Fuzzy da temperatura de
evaporação (validação off-line)
Figura 5. 50 - Predição, off-line, da temperatura do propilenoglicol, Tprop
Figura 5. 51 – Distribuição dos dados reais com os dados preditos pelo modelo Fuzzy da temperatura do
propilenoglicol (validação off-line)
Figura 5. 52 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol)
e Te (temperatura de evaporação) para variação na frequência do compressor (60-50-60 Hz) 105
Figura 5. 53 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol)
e Te (temperatura de evaporação) para variação na frequência do compressor (60-70-60 Hz) 105
Figura 5. 54 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol)
e Te (temperatura de evaporação) para variação na frequência da bomba do evaporador (50-60-50 Hz) 106
Figura 5. 55 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol)
e Te (temperatura de evaporação) para variação na frequência da bomba do evaporador (50-70-50 Hz) 106
Figura 5. 56 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoalicol)
e Te (temperatura de evaporação) para variação na frequência da bomba do evaporador (50-40-50 Hz) 107
Figura 5. 57 – Dados para o treinamento ANFIS para a determinação dos Modelos Takaai-Suaeno para
as temperaturas de evaporação e do propilenoglicol (Grupo I: Variação na frequência do compressor
FQ101)

Figura 5. 58 - Dados para o treinamento ANFIS para a determinação dos Modelos Takagi-Sugeno para as
temperaturas de evaporação e do propilenoglicol (Grupo II: Variação na frequência da bomba do
evaporador FQ201)
Figura 5. 59 – Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno da temperatura de
evaporação em função da frequência do compressor
Figura 5. 60 - Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno da temperatura do
propilenoglicol em função da frequência do compressor
Figura 5. 61 – Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno da temperatura de
evaporação em função da frequência da bomba do evaporador
Figura 5. 62 – Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno da temperatura do
propilenoglicol em função da frequência da bomba do evaporador
Figura 5. 63 – Predição, off-line, da temperatura de evaporação utilizando modelo TS em função da
frequência do compressor
Figura 5. 64 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura de
evaporação em função da freguência do compressor) 117
Figura 5. 65 - Predição, off-line, da temperatura do propilenoalicol utilizando modelo TS em função da
frequência do compressor
Figura 5. 66 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura do
propilenoglicol em função da freguência do compressor)
Figura 5, 67 - Predição, off-line, da temperatura de evaporação utilizando modelo TS em função da
frequência da bomba do evaporador
Figura 5. 68 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura do
propilenoglicol em função da freguência do compressor)
Figura 5. 69 - Predição, off-line, da temperatura do propilenoalicol utilizando modelo TS em função da
frequência da bomba do evaporador
Figura 5. 70 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura do
propilenoglicol em função da frequência da bomba do evaporador)
Figura 5. 71 – Implementação do controlador GPC 129
Figura 5. 72 – Calculo das matrizes: (a) y^{old} : (b) Δu^{old}
Figura 5. 73 – Cálculo do ganho do controlador kmpc
Figura 5. 74 – Implementação do modelo $TS_{T_n}^{F101}$: (a) Regra Fuzzy 1; (b) Regra Fuzzy 2; (c) Regra Fuzzy
3; (d) Regra Fuzzy 4; (e) Regra Fuzzy 5; (f) Regra Fuzzy 6
Figura 5. 75 – rastreamento do set-point da temperatura de evaporação do controlador GPC1
Figura 5. 76 – Contribuição das Regras Fuzzy no controlador GPC1 durante o rastreamento do set-point
da temperatura de evaporação
Figura 5. 77 – Rastreamento do set-point da temperatura do propilenoglicol do controlador GPC2 135
Figura 5. 78 – Contribuição das Regras Fuzzy no controlador GPC1 durante o rastreamento do set-point
da temperatura de evaporação
Figura 5. 79 – Rastreamento do set-point da temperatura do propilenoglicol do controlador GPC3 137
Figura 5. 80 - Contribuição das Regras Fuzzy no controlador GPC1 durante o rastreamento do set-point
da temperatura de evaporação

Figura B. 1 – Dinâmica da temperatura de descarga (Td) e de condensação (Tc) com FQ101=60 Hz,	
$FQ201=60 Hz \ e \ Q=300 W \ onde \ k=1 \ s$	155
Figura B. 2 - Dinâmica da temperatura do R22 na entrada (Te) e na saída (Trse) do evaporador com	
$FQ101=60 \text{ Hz}, FQ201=60 \text{ Hz} e Q=300 \text{ W} \text{ onde } k=1 \text{ s} \dots$	156
Figura B. 3 - Dinâmica da temperatura do propilenoglicol na entrada (Tpee) e na saída (Tp) do	
evaporador com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s	156
Figura B. 4 - Dinâmica das pressões de descarga (Pd), de condensação (Pc), de evaporação (Pe) e de	
sucção (Ps) com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s	157
Figura B. 5 - Dinâmica das vazões volumétricas (FR22) e mássicas do R22 (mr) com FQ101=60 Hz,	
$FQ201=60 Hz \ e \ Q=300 W \ onde \ k=1 \ s$	157
Figura B. 6 - Dinâmica das vazões volumétricas (Fp) e mássicas (mp) do propilenoglicol com FQ101=	60
$Hz, FQ201=60 Hz \ e \ Q=300 \ W \ onde \ k=1 \ s$	158
Figura B. 7 - Dinâmica do superaquecimento útil (SAU) e total (SAT) e subresfriamento (SUB) com	
$FQ101=60 \text{ Hz}, FQ201=60 \text{ Hz} e Q=300 W \text{ onde } k=1 \text{ s} \dots$	158
Figura B. 8 - Dinâmica do COP de Carnot (COP _c) e real (COP _R)com FQ101=60 Hz, FQ201=60 Hz e	е
Q=300 W onde k=1 s	159
Figura C. 1 – Configuração dos itens de escrita OPC do compressor	161
$Figura\ C.\ 2\ -\ Configura\ cia \ observe a\ ar$	161
Figura C. 3 – Configuração dos itens de escrita OPC do ventilador da resistência	162
Figura C. 4 - Configuração dos itens de escrita OPC da bomba do evaporador e condensador	162
Figura C. 5 - Configuração dos itens de escrita OPC da bomba da torre de resfriamento	162
Figura C. 6 – Configuração dos itens de escrita OPC do exaustor da bomba de resfriamento	163
Figura C. 7 – Configuração dos itens de leitura OPC das vazões do ciclo de refrigeração	163
Figura C. 8 – Configuração dos itens de leitura OPC das pressões do ciclo de refrigeração	163
Figura C. 9 - Configuração dos itens de leitura OPC das temperaturas das malhas de propilenoglicol e	do
fluido auxiliar de resfriamento	164
Figura C. 10 - Configuração dos itens de leitura OPC para geração dos gráficos de monitoramento	164
Figura C. 11 – Configuração dos itens de leitura OPC para geração do banco de dados (arquivo .m)	165
Figura C. 12 - Configuração dos itens de leitura OPC para o cálculo do subresfriamento,	
superaquecimento útil e total	165
Figura C. 13 – cálculo on-line do subresfriamento e superaquecimento útil e total	166
Figura C. 14 – Configuração dos itens de leitura OPC para o cálculo das vazões mássicas de R22 e	
propilenoglicol	166
Figura C. 15 - Cálculo das vazões mássicas de R22 e propilenoglicol	167
Figura C. 16 - Cálculo do volume específico de R22	167
Figura C. 17 - Cálculo das vazões mássicas de propilenoglicol	167
Figura C. 18 - Cálculo das vazões mássicas de R22	168
Figura C. 19 – Configuração dos itens de leitura OPC para o cálculo do calor de evaporação e de	
condensação trabalho de compressão	168
Figura C. 20 – Cálculo as entalpia do gás saturado e do líquido saturado	169
Figura C. 21 - cálculo do calor de evaporação e de condensação trabalho de compressão	169

$Sum{{\acute{a}}rio}$

Figura C. 22 – Balanço de energia on-line	170
Figura C. 23 – Cálculo do Cp do propilenoglicol	170
Figura C. 24 – Cálculo retirado do propilenoglicol	171
Figura C. 25 – Calor absorvido pelo R22	171
Figura C. 26 – Calculo da potência do compressor	171

Índice de Tabelas

Tabela 4.1 – Equipamentos do ciclo de refrigeração	33
Tabela 4. 2 – Equipamento do sistema secundário de troca de calor	33
Tabela 4. 3 – Acessórios do protótipo de refrigeração e suas funções	34
Tabela 4. 4 – Tipos de sensores utilizados e suas respectivas precisões	35
Tabela 4. 5 – Relação de equipamentos de controle	36
Tabela 4. 6 – Condições iniciais utilizadas no procedimento de levantamento de dados	38
Tabela 4. 7 – Variação na frequência do compressor para condensação a ar	39
Tabela 4. 8 – Variação na frequência do compressor para condensação a água	40
Tabela 4. 9 – Variação na carga térmica para condensação a água	40
Tabela 4. 10 – Variáveis de entrada e de saída da arquitetura ANFIS para os Modelos TS da tempera	tura
de evaporação, de condensação e do propilenoglicol.	44
Tabela 4. 11 - Variáveis de entrada de saída da arquitetura ANFIS para os Modelos TS da temperatur	ra
de evaporação do propilenoglicol do Grupo I	46
Tabela 4. 12 - Variáveis de entrada de saída da arquitetura ANFIS para os Modelos TS da temperatur	ra
de evaporação do propilenoglicol do Grupo II	48
Tabela 5. 1 – Endereçamento das entradas analógicas	53
Tabela 5. 2 – Endereçamento das saídas analógicas	54
Tabela 5. 3 – Endereçamento das saídas digitais	54
Tabela 5. 4 – Representação da qualidade da comunicação para o conjunto de arranjo QQ	59
Tabela 5. 5 – Valores dos estados estacionários das variáveis obtidas com a variação na frequência do	
compressor (50-60-50 Hz)	71
Tabela 5. 6- Valores dos estados estacionários das variáveis obtidas com a variação na frequência do	
compressor (50-70-50 Hz)	74
Tabela 5. 7 - Valores dos estados estacionários das variáveis obtidas com a variação na frequência do	
compressor (50-40-50 Hz)	78
Tabela 5. 8 – Ganhos para os processos de condensação a ar e água do sistema de refrigeração	91
Tabela 5. 9 – Antecedentes das regras fuzzy para os modelos Takagi-Sugeno de predição das	
temperaturas: de condensação; de evaporação e do propilenoglicol	99
Tabela 5. 10 – Consequentes das regras fuzzy para os modelos Takagi-Sugeno de predição das	
temperaturas: de condensação; de evaporação e do propilenoglicol	100
Tabela 5. 11 – VAF (variance accounted for) para os modelos de predição TS	104
Tabela 5. 12 – Antecedentes das regras fuzzy para os modelos Takagi-Sugeno para predição da:	
Temperatura de evaporação e Temperatura do propilenoglicol	112
	xxvii

Tabela 5. 13 - Consequentes obtidos para os modelos Takagi-Sugeno para predição da: Temperatura de
condensação; Temperatura de evaporação e Temperatura do propilenoglicol
Tabela 5. 14 – Antecedentes das regras fuzzy para os modelos Takagi-Sugeno para predição da:
Temperatura de evaporação e Temperatura do propilenoglicol em função da frequência da bomba do
evaporador
Tabela 5. 15 - Consequentes obtidos para os modelos Takagi-Sugeno para predição da: Temperatura de
condensação; Temperatura de evaporação e Temperatura do propilenoglicol em função da frequência da
bomba do evaporador
Tabela 5. 16 – VAF (variance accounted for) para os modelos de predição Takagi-Sugeno 121
Tabela 5. 17 – Ensaios para teste da utilização do controlador GPC utilizando como modelo preditivo um
modelo Takagi-Sugeno

Tabela B. 1 – Estad	o estacionário do	sistema de refrig	jeração para as c	condições padrão, 1	FQ101 = 60 Hz,
FQ201 = 60 Hz e Q =	3000 W				

xxviii

1

1. Introdução

1.1 Motivação

A automação industrial vem crescendo aceleradamente em busca de maior produtividade, eficiência e qualidade. O controle e a automação de sistemas vêm evoluindo e fazendo parte cada vez mais do nosso cotidiano; essa evolução traz consigo novos desafios e a necessidade de novas aplicações, dentre essas, o controle e automação de sistemas de refrigeração.

A refrigeração industrial apresenta, como um desses novos desafios, a redução do consumo de energia elétrica pelo fato de serem grandes consumidores. Pode-se encarar esse desafio como oportunidades. Uma dessas oportunidades é o desenvolvimento de sistemas de controle inteligentes e robustos, utilizando teorias *fuzzy* e neuro-*fuzzy*, atuando em dispositivos de expansão eletrônicos e compressores com rotação variável para a melhoria da eficiência energética. O controle e automação é o principal meio de atingir esse objetivo.

De modo geral, a automação e controle estão evoluindo muito (vêm crescendo em um ritmo acelerado), porém, existem áreas em que sua aplicação ainda está carente, e uma dessas áreas é a refrigeração, que tem suma importância em vários setores da indústria química. Os aumentos nos custos de energia e a contínua ênfase em gerenciar o consumo de energia, estão direcionando as pesquisas para o desenvolvimento de novas tecnologias que sejam economicamente viáveis em sistemas de refrigeração. Diversos fatores vinculados a benefícios econômicos tem aumentando o número de aplicações de controle avançado. Uma análise desses fatores mostra que os processos industriais têm que ser operados de forma apropriada atendendo assim requisitos e normas de qualidades conferidas pela competitividade atual do mercado.

Assim, é de muita importância, *uma linha de pesquisa, onde esses fatores são tratados e analisados experimentalmente*, a fim de levar essa adequação aos processos industriais, fazendo com que os mesmos atendam esses requisitos e normas, com estudos na área de automação e controle avançado de sistemas não-lineares, termodinâmica e ciclos de refrigeração

Este projeto tem como motivação a utilização de técnicas avançadas de controle e automação para o gerenciamento de energia dos sistemas de refrigeração, ou seja, técnicas capazes de apresentar uma redução no consumo de energia por parte destes sistemas.

1.2 Objetivos

O objetivo deste trabalho é o desenvolvimento de controladores avançados aplicados a um sistema de refrigeração utilizando modelos Takagi-Sugeno como modelos para controle preditivo. Para alcançar esse objetivo deve-se:

> ✓ Realizar aperfeiçoamentos em um sistema de refrigeração experimental do LCAP na FEQ/UNICAMP com a implementação de novos dispositivos que permitam a realização, mais consistente, de controle automático.

Dentre os aperfeiçoamentos está a substituição do compressor aberto por um compressor semi-hermético;

- ✓ Desenvolver interface de comunicação MATLAB®-SR(Sistema de Refrigeração) através do padrão OPC para o monitoramento e controle do sistema de refrigeração;
- ✓ Realizar a identificação do sistema de refrigeração (não-linear) a partir de arquiteturas ANFIS;
- ✓ Desenvolver modelos Takagi-Sugeno para serem utilizados como modelos preditivos em controle preditivo.

4

2. Revisão Bibliográfica

Sistemas de refrigeração são amplamente utilizados em diversas indústrias, variando do controle de temperatura das instalações para o conforto humano às condições de armazenamento de alimentos perecíveis, passando também pela indústria química e outras aplicações especiais na indústria de manufatura e construção. Os interesses em diminuir o consumo de energia dos sistemas de refrigeração nas indústrias faz com que elas reavaliem o custo-efetividade dos projetos do sistema e estratégia de operação.

Além de sua vasta utilização, a refrigeração é uma etapa de grande importância na indústria. Levando isso em consideração, a seleção adequada de sistemas de refrigeração, o controle das variáveis e o dimensionamento dos componentes destes sistemas são essenciais para uma operação eficiente com uma redução na perda de energia.

Pelo fato de um sistema de refrigeração ser único e original, o projeto do sistema tende a ser mais uma forma de arte do que uma ciência. Mesmo que um sistema de refrigeração específico possa produzir um resultado desejado, muitos sistemas em campo não estão operando em eficiência máxima (MANSKE et al., 2001).

Os sistemas de refrigeração tanto industrial quanto domésticos são baseados no tradicional sistemas "on-off" com controle de temperatura pobre e limitado pelas condições operacionais. Os sistemas de refrigeração tradicionais, operando continuamente, diminuem a vida útil do compressor e aumentam o consumo de energia.

Esses sistemas operam a maior parte do tempo com carga parcial. Em respostas a esse tipo de operação o controle de velocidade variável do compressor tem sido estudado. Alguns desses estudos estimaram uma redução de energia de até 41% utilizando um controlador de velocidade variável (LENARDUZZI e YAP, 1998).

O desenvolvimento de um sistema de refrigeração com a utilização de um inversor de frequência para o controle de potência compressor do sistema em malha-fechada foi proposto por Buzelin et al. (2005). O sistema com controle de potência em malhafechada apresentou uma variação menor de temperatura e uma redução de 35,24% no consumo de energia elétrica comparado com um sistema de refrigeração com controle tradicional "on-off".

A comparação do desempenho de diferentes compressores de deslocamento positivo, entre eles compressor aberto, compressor semi-hermético e compressor aberto com palhetas rotativas, em aplicações na refrigeração, utilizando inversor de frequência, foi realizada por Tassou e Qureshi (1998). Os resultados indicaram que os compressores, utilizando o inversor de frequência para o controle da velocidade, mostraram uma economia de energia na faixa de 12-24% em relação aos que operaram sem o controle de velocidade.

Vargas et al. (1998) realizaram estudos numéricos no ciclo de operação de refrigeradores por absorção visando controle de temperatura. A operação em malhafechada e em regime transiente do sistema foi simulada e uma significativa redução de consumo de energia foi obtida em comparação ao sistema de controle tradicional "onoff". A Simulação numérica de um sistema de refrigeração com controle da velocidade foi desenvolvida por Koury et al. (2001). Simulações foram realizadas para verificar as possibilidades de controle do sistema de refrigeração e o superaquecimento na saída do evaporador variando a velocidade do compressor. Os resultados apontam que o modelo proposto pode ser utilizado para formular algoritmos de controle de sistemas de refrigeração.

Em refrigeradores residenciais, de supermercados e ar condicionado, um evaporador corretamente controlado desempenha um papel fundamental na obtenção de alto desempenho (do sistema de refrigeração) especificamente sob circunstâncias dinâmicas. O controle apropriado da válvula de expansão assegura a vazão correta de refrigerante para manter uma temperatura de superaquecimento desejável. Por outro lado, a máxima entalpia específica de vaporização será alcançada (NANAYAKKARA et al., 2002).

Nanayakkara et al. (2002) propuseram o desenvolvimento de uma arquitetura de redes neurais dinâmicas para o controle do evaporador para otimizar a transferência de calor e o grau de superaquecimento de um fluido secundário atuando na abertura da válvula de expansão e no fluxo de fluido secundário. Uma arquitetura moderna de redes neurais, caracterizada por funções de ativação com unidades dinâmicas de sinapses (DSUs), foi adotada para controlar um processo de evaporação de amônia.

Também baseado em redes neurais, um modelo de um sistema de refrigeração por compressão de vapor com velocidade variável do compressor foi apresentado por Navarro-Esbri et al. (2007). O modelo neural de estado estacionário desenvolvido prevê com precisão o desempenho do sistema com poucos dados experimentais. Os autores relatam, ainda, que este modelo desenvolvido foi o primeiro passo para futuras pesquisas sobre detecção de falhas e otimização de energia em sistemas de refrigeração com variação da velocidade do compressor.

Manske et al. (2001) estudaram a influência de estratégias de operação de um condensador evaporativo no desempenho total de um sistema de refrigeração, apresentando um procedimento passo a passo para determinar o *set-point* principal do controle de pressão que minimizam o consumo de energia elétrica do sistema.

Cada vez mais a lógica *fuzzy* vem se difundindo no desenvolvimento de controle pelo fato da ação de controle *fuzzy* poder ser descrita de forma quantitativa. Uma ação que torna-se difícil de ser convertida em uma equação matemática pode ser facilmente representada por uma expressão qualitativa na lógica *fuzzy*.

Li et al. (2004), propuseram uma estratégia de Controle de Múltiplos Modelos Preditivos (MMPC) baseado em modelos de predição Takagi-Sugeno desenvolvidos utilizando um algoritmo de agrupamento *fuzzy* satisfatório (FSC) aplicado a um processo de neutralização de pH. A estratégia MMPC foi realizada utilizando método de compensação paralela de distribuição (PDC), ou seja, foram projetados diferentes controladores preditivos para diferentes regras locais. Sendo a ação global do controlador a integração ponderada dos modelos locais.

Algumas estratégias de controle de modelo preditivo (um linear e dois nãolineares) foi proposto por Escaño et al. (2009) para controle da esterilização térmica de comidas enlatadas. Os controladores não-lineares foram baseados em modelo neuro-fuzzy.

8
O controlador com melhor desempenho foi o controle preditivo generalizado (GPC), não linear, baseado em uma rede *fuzzy* recorrente. Uma comparação de consumo de energia, com um controlador PI, foi realizada; apresentando os controladores MPC um menor consumo de energia.

Além dos trabalhos anteriormente citados muitos outros foram realizados utilizando modelos Takagi-Sugeno como modelo preditivo em MPC (LEE, 1990; WANG et al., 1996; SOUSA et al., 1997; SKRJANC e MATKO, 2000; SOUSA e KAYMAK, 2001). As aplicações vão do ar condicionado ao trocador de calor; como também testes de estabilidades ou apenas a proposta da utilização dos modelos em controle.

Aprea et al. (2004) apresentaram um algoritmo de controle, baseado em lógica fuzzy, capaz de selecionar a velocidade mais apropriada do compressor em função da temperatura do espaço a ser refrigerado. Comparando o controle fuzzy para a velocidade do compressor com o controle termostático clássico, obteve-se uma redução de 13% no consumo de energia.

A maioria dos estudos realizados em controle de refrigeração tem como componente principal a válvula de expansão eletrônica. Este tipo de equipamento permite realizar controle no superaquecimento útil e total de um sistema de refrigeração refletindo no coeficiente de performance (COP) do sistema.

Um estudo comparativo entre Controle Preditivo Funcional (PFC) e controle convencional PID aplicado no controle do superaquecimento do evaporador, de um sistema de refrigeração, utilizando uma válvula de expansão eletrônica, foi realizado por Changenet et al. (2008). A comparação realizada indica que o superaquecimento pode ser melhor controlado utilizando um Controle Preditivo Funcional (PFC) elevando a eficiência energética do sistema frigorífico.

Fallahsohi et al. (2010) realizaram uma comparação entre as técnica de Controle Preditivo Funcional (PFC) desenvolvido por Changenet et al. (2008) e um PID no controle da pressão de condensação de um sistema de refrigeração utilizando como fluido refrigerante o R410A. Os autores realizaram uma análise da influência da pressão de condensação no coeficiente de performance (COP) constatando que a utilização do PFC leva a um aumento do COP e uma diminuição de 2% na energia gasta no processo em comparação ao PID.

Beghi et al. (2011) propuseram um estudo do desempenho de controladores PID utilizando um algoritmo de auto-ajuste atuando em válvulas de expansão eletrônicas. Os parâmetros do controlador PID são estimados com base em uma identificação do sistema juntamente com o método Zhauge Atherton. O algoritmo proposto pelos autores apresentou um melhor desempenho em comparação a outras abordagens de auto-ajuste.

O controle do superaquecimento em sistemas de refrigeração é muito importante, pois permite uma operação mais eficiente deste sistema. Elliott e Rasmussen (2010) desenvolveram um algoritmo de controle em cascata para eliminar a maior parte da nãolinearidade existente na dinâmica da válvula de expansão eletrônica. Os resultados obtidos indicam que a não-linearidade foi reduzida porém o desempenho do controlador ficou comprometido ao trabalhar em uma estreita faixa do atuador.

Ekren et al.(2010) realizaram um estudo comparativo entre diferentes algoritmos de controle, tais como o Proporcional, Integral, Derivativo (PID), o baseado em Lógica

10

Fuzzy (LF) e o baseado em Redes Neurais Artificiais (RNAs), todos atuando na variação da velocidade do compressor e na válvula de expansão eletrônica. Os controladores baseados em RNA's apresentaram a menor redução no consumo de energia e manteve o superaquecimento mais estável. A redução de energia do controle baseado em RNA foi de 8,1% em comparação ao PID e 6,6 % em relação ao Fuzzy.

Nas últimas décadas, não somente a refrigeração industrial tem crescido como também a refrigeração automotiva tem experimentado avanços significativos. Jabardo et al. (2002) simularam circuitos de refrigeração de sistemas de ar condicionado de automóveis. Seu modelo incluiu um compressor de capacidade variável e uma válvula de expansão termostática adicionada ao evaporador e um micro condensador de fluxo paralelo.

O controle ótimo de uma planta de refrigeração implica na determinação dos *set*points e formas de operação para que o custo operacional total seja minimizado. O conceito de otimização em sistemas de refrigeração geralmente é reduzido a uma otimização baseada em estado estacionário pré-determinando condições operacionais. Entretanto, na realidade, poucos sistemas operam nas condições pré-determinadas de projetos. A maioria dos sistemas opera sob condições significativamente diferentes do projetado. O desenvolvimento da otimização de sistemas dinâmicos tem sido mais fácil devido aos avanços da tecnologia de controle e automação.

Leducq et al. (2006) apresentaram uma estratégia de otimização dinâmica desenvolvendo um algoritmo ótimo de um controle preditivo não linear em uma planta piloto de um sistema de refrigeração. Os autores obtiveram uma redução de energia entre 8-20%, dependendo do número de atuadores disponíveis na otimização.

•

3. Fundamentação Teórica

3.1 Ciclos de refrigeração

Estudos sobre ciclos de refrigeração vêm se tornando cada vez mais elaborados ao passar dos anos. Desde meados do século XX, quando se descobriu a capacidade frigorífica¹ dos gases estudos sobre aplicações e formas de se utilizar desta propriedade dos gases se tornaram alvos de estudos. Os ciclos de refrigeração passaram a ser um importante componente dentro da indústria alimentícia e também na área residencial. Ciclos de compressão a vapor são os mais utilizados industrialmente.

Um ciclo ideal de refrigeração, Figura 3.1, é composto teoricamente da aspiração de vapor saturado de refrigerante proveniente do evaporador (1), da compressão deste vapor (2), da condensação do vapor. Em seguida ocorre a entrada de refrigerante na forma de líquido saturado no controle de líquido (3) e por fim a alimentação no evaporador a uma pressão reduzida (4).

Figura 3. 1 Representação de um ciclo de refrigeração teórico no gráfico $\mathbf{P} \times \mathbf{h}$

¹ Capacidade do gás de retirar calor do sistema quando submetido a uma expansão

O ciclo ideal de refrigeração (teórico) pode ser descrito como:

A evaporação ocorre entre os pontos (4-1) sob uma pressão *Po* (pressão de evaporação). A mistura bifásica troca calor no evaporador (recebe calor do meio) e passa para o estado vapor, onde o efeito frigorífico por kg de refrigerante deslocado é dado por:

$$q_0 = h_1 - h_4 \tag{Eq. 3.1}$$

Onde: q_0 é o efeito frigorífico; h_1 e h_4 são as entalpias específicas do fluido refrigerante nos pontos 1 e 4 do diagrama P×h.

A compressão do vapor aspirado ocorre entre os pontos (1-2). A compressão é isoentrópica e o calor de compressão por kg de refrigerante deslocado é descrito por:

$$q = h_2 - h_1$$
 (Eq. 3.2)

Onde: $q \neq 0$ calor de compressão; $h_2 \neq h_1$ são as entalpias específicas do fluido refrigerante nos pontos 2 e 1 do diagrama P×h.

Na condensação, ocorre a retirada de calor do vapor superaquecido e posteriormente do vapor saturado estando este na pressão de descarga do compressor (2-3) fazendo com que o vapor passe para o estado líquido. Isto ocorre em uma temperatura de condensação, *Tc.* O calor retirado, por kg, do refrigerante é dado por:

$$q_c = h_2 - h_3 \tag{Eq.3.3}$$

Onde: qc é o calor retirado; h2 e h3 são as entalpias específicas do fluido refrigerante nos pontos 2 e 3 do diagrama P×h.

A expansão do líquido ocorre entre os pontos (3-4) e é um fenômeno isoentálpico. A pressão do líquido passa de P_c (pressão de condensação) para P_{θ} (pressão de evaporação). Para um líquido saturado, quanto menor a pressão de evaporação, menor será a temperatura de evaporação, T_{θ} ; logo, $P_0 = f(T_0)$.

Uma das diferenças, quando se compara um ciclo ideal com um ciclo real de refrigeração, é a existência da queda de pressão nas linhas de descarga, linha de líquido e linha de sução bem como no evaporador e condensador. Essas perdas de carga ΔPd e ΔPs , apresentadas na Figura 3.2.

Outras características peculiares de um ciclo de refrigeração real são o subresfriamento do refrigerante na saída do condensador, ponto (3'),e 0 superaquecimento na sucção, ponto (1'). O superaquecimento tem a finalidade de evitar que o refrigerante entre na fase líquida no compressor. Em um ciclo de refrigeração real nota-se que o processo de compressão é polientrópico $(S_1 \neq S_2)$, diferentemente do apresentado em um ciclo de refrigeração real (isoetrópico). Essa mudança de entropia, do ciclo ideal para o real, faz com que a temperatura de descarga do compressor (T_2) se eleve para (T_2') .

3.2 Comunicação via protocolo OPC

Para realizar o desenvolvimento de sistemas de controle avançados deve-se pensar na melhor maneira de se fazer a comunicação entre os dispositivos e os sistemas de controle e automação proporcionando uma integração, a fim de facilitar a automação e controle. Uma forma é a utilização do padrão OPC^2 (*OLE³ for Process Control*) que é uma maneira eficiente de estabelecer interfaces para aplicações e é considerado hoje o protocolo padrão da indústria. A vantagem mais acentuada em se utilizar esse tipo de padrão de comunicação é a uniformidade de acesso aos *tags*⁴ com sistemas supervisórios⁵ sem a necessidade de utilizar drives proprietários de controladores. Outras vantagens deste padrão de comunicação são: uniformidade de interface para diferentes redes e protocolos; integração plena com a rede; integração entre diferentes ferramentas de supervisão.

Uma dificuldade encontrada quando se trabalha com sistemas de controle é a implementação dos controladores comerciais, pois, os dispositivos de controle são "caixas-pretas", utilizando seu próprio algoritmo, que muitas vezes trata-se de um algoritmo "pobre". Uma forma de resolver esse problema é desenvolver controladores inteligentes, utilizando metodologias avançadas de projeto de algoritmos que permitam o

 $^{^2}$ Protocolo baseado no modelo de componentização criado pela Microsoft e denominado COM (Componet Object Model).

 $^{^3}$ OLE (Object Linking and Embedding) é uma tecnologia desenvolvida para suprir a necessidade de integração de diferentes aplicações dentro da plataforma Windows.

⁴Todas as variáveis numéricas ou alfa numéricas envolvidas na aplicação. Podem executar funções computacionais ou representar pontos de entrada/saída de dados do processo que está sendo controlado.

⁵ Sistemas para monitoramento, rastreamento e manipulação de dados de um processo. Também conhecidos com SCADA (Supervisory Control and Data Aquisition).

aprimoramento de sistemas de controle comparados com técnicas convencionais e fazê-los atuar nos dispositivos de controle através da utilização de um software matemático que vem sendo muito difundido e utilizado nas universidades e indústrias para modelar sistemas dinâmicos, o MATLAB[®], mais precisamente o ambiente SIMULINK[®]. Além de o MATLAB[®] ser um ambiente robusto para cálculos científicos, apresenta também, uma interface gráfica de fácil compreensão.

Um dos grandes problemas de interface de equipamentos e sistemas reside na compatibilidade dos protocolos da camada de aplicação. Atualmente, existe uma preocupação em padronizar protocolos de comunicação para os CLP's de modo a proporcionar que os equipamentos de fabricantes diferentes "conversem" entre si. Isso se aplica não somente a CLPs, mas também a controladores de processos, a sistemas supervisórios, a redes internas de comunicação (CARDOSO e ZANAROTTI, 2005).

O controle de processo na indústria pode ser representando por três níveis distintos (SOUSA et al., 2003):

- Nível de campo: onde a presença de dispositivos inteligentes por redes fieldbus se torna cada vez mais comum;
- 2. Nível de processo: onde sistemas DCS e SCADA disponibilizam dados e;
- 3. Nível gerencial: onde utilizam-se de sistemas de bancos de dados e planilhas. A integração desses níveis é de grande interesse para a indústria. O procedimento usual, para possibilitar essa integração, é o desenvolvimento de *drivers* de comunicação entre diferentes sistemas.

Porém, esse procedimento não é ideal, pois demanda grandes esforços para se desenvolver *drivers* para diversos equipamentos e *softwares*.

O modelo de referência OSI⁶ determina como a parte física (*hardware*) e a parte lógica (*software*) se comunicam. Essa comunicação está baseada nas diferentes camadas existentes entre a parte física e a parte lógica do processo. Cada camada na hierarquia define um subconjunto de funções necessárias para o OSI. Sete camadas foram consideradas suficientes para dividir o sistema em lógicas similares e funções compreensíveis. A hierarquia das camadas do modelo OSI descreve uma hierarquia de funções (MELENDEZ e PETERSEN, 1999). As camadas são apresentadas hierarquicamente da mais baixa (camada física) para a mais alta (camada de aplicação), Figura 3.3.

A camada de aplicação é a camada que a maioria dos programas de rede usa de forma a se comunicar através de uma rede com outros programas. Processos que rodam nessa camada são específicos da aplicação; o dado é passado do programa de rede, no formato usado internamente por essa aplicação, e é codificado dentro do padrão de um protocolo.

 $^{^{6}}$ OSI (Open Systen Interconnection) é o modelo de referência que define normas para a comunicação entre diferentes dispositivos.

Figura 3. 3 - Hierarquia das camadas do modelo de referência OSI. Baseado em informações do modelo de referência OSI

Para compatibilizar essas camadas de aplicação foi criado o protocolo OPC (OLE for Process Control) estabelecendo assim, regras para que sejam desenvolvidos sistemas com interfaces padrão de comunicação dos dispositivos de campo (CLPs, sensores, balanças, medidores de vazão, etc) com sistemas de monitoramento, supervisão e gerenciamento (SCADA⁷, MES⁸, ERP⁹, etc) (FONCECA, 2002).

O protocolo OPC representa uma forte tendência de padronização para essa camada de aplicação e é uma realidade. Todo fabricante de CLP fornece um servidor OPC que permite comunicar o equipamento com sistemas de nível hierárquico mais alto, (FONCECA, 2002). Por sua vez todo sistema SCADA, MES, PIMS¹⁰, sistemas especialistas, LIMS¹¹, oferece um cliente OPC capaz de solicitar dados e enviar comandos para um servidor OPC de nível hierárquico mais baixo

O OPC é um padrão de comunicação de dados para supervisão de processos, onde várias informações localizadas em diversos pontos (controladores, dispositivos de E/S, banco de dados, etc) podem ser conectadas diretamente a um "Cliente", o qual pode executar funções de IHM (Interface Homem-Máquina), supervisão, tratamento gráfico, dentre outras funções. Para realizar essa comunicação, o OPC utiliza-se de um protocolo universal para envio de dados entre "Servers" (fontes de dados) e "Clients" (aplicações), eliminando dentro do possível o uso de "drivers" e conversores, na maioria das vezes proprietários. Esses "drivers" proprietários criam uma dependência, muitas vezes custosa e ineficiente, entre o usuário e o fornecedor daquele sistema proprietário.

 $^{^7}$ SCADA é uma sigla que significa Controle Supervisório e Aquisição de Dados. SCADA refere - se a um sistema que recolhe os dados a partir de diversos sensores de uma fábrica, planta ou em outros locais remotos e, em seguida, envia esses dados para um computador central que, em seguida, gere e controla os dados.

⁸ MES (Manufacturing Execution Systems) é um sistema de chão-de-fábrica orientado para a melhoria de desempenho que complementa e aperfeiçoa os sistemas integrados de gestão (planejamento e controle) da produção.

⁹ ERP (Enterprise Resource Planning) é uma forma de integrar dados e processos em um único sistema.

 $^{^{10}}$ PIMS (Process Information Management System) realiza o armazenamento temporal das variáveis dos processos produtivos.

¹¹ LIMS (Laboratory Information Management System) é uma ferramenta essencial para a redução de custos e para o aumento da eficiência e da produtividade nas atividades laboratoriais.

Quando se utiliza de um padrão OPC, é necessário somente um "driver" padrão que se torna o Servidor (Server). Os dados são convertidos para uma forma que qualquer Cliente (Client) que tenha uma disposição OPC possa se conectar sem qualquer tipo de preparo prévio, Figura 3.4. Resumindo, o OPC proporciona o verdadeiro plug-and-play no campo de supervisão dentro do contexto da moderna automação industrial, (FONCECA, 2002).

Figura 3. 4 - Acesso a dados de processos com protocolo OPC

A OPC Foundation é uma organização que aprimora e amplia as especificações OPC que tem a finalidade orientar os desenvolvedores para a implementação das aplicações cliente e servidor (FONSECA, 2002). Essas especificações permitiram o desenvolvimento de vários produtos para a automação industrial. O uso de OPCs Servers permite que existam algumas vantagens em relação ao desenvolvimento de projetos onde se utilizam drivers (MACIEL, 2003). Algumas delas são:

- ✓ Uniformidade de interface para diferentes redes e protocolos, ou seja, dispensa a necessidade de ajustes dos *drivers* de cada rede, o que costuma levar tempo na configuração;
- ✓ Integração plena com a rede, mesmo quando alterações de protocolo forem implementadas, o OPC será utilizado pelo fabricante;
- \checkmark Elimina a necessidade de *drivers* proprietários de comunicação;
- \checkmark Integração entre diferentes ferramentas de supervisão.

3.3 Técnicas Fuzzy e Neuro-fuzzy

"Os modelos matemáticos de um processo real e complexo serão sempre uma simples representação da realidade". Esta afirmação de Harris et al. (1993), demonstra que todos os conhecimentos disponíveis de um sistema (seja qual for o sistema) não serão providos de informações completas e apresentarão sempre incertezas.

Os modelos baseados em lógica *fuzzy* também são representações simplificadas da realidade. Porém, através da lógica *fuzzy* pode-se *tentar* controlar o processo *imitando* o operador humano através de descrições e experimentos (base de conhecimento heurístico) do processo produzindo assim as ações de controle desejadas.

A primeira etapa de elaboração de um modelo é a definição das variáveis de entrada e saída. Após a definição das variáveis de entrada e saída é definido o seu

universo de discurso¹² e o número de valores linguísticos¹³ necessários (através de uma função de pertinência) de cada variável.

Na base de conhecimento serão atribuídas as informações a respeito do universo de discurso, dos valores linguísticos e das funções de pertinência das variáveis do sistema; associando as variáveis linguísticas de entrada com as de saída. A aquisição de conhecimento poderá ser realizada através de: obtenção manual, modelagem do comportamento do operador; modelagem do processo e extração automática do conhecimento.

Na etapa de raciocínio *fuzzy* são utilizadas as regras juntamente com as variáveis de entrada medidas no processo satisfazendo parcialmente as condições das regras ou os antecedentes das regras. A existência de vários antecedentes em uma regra exige a utilização de um operador mínimo para calcular a ativação do consequente dessa regra.

A próxima etapa é transformar as inferências das regras em valores numéricos que possam ser utilizados em uma ação de controle real, na linguagem *fuzzy* realizar a *defuzzyficação*. Ou seja, transforma uma saída no domínio *fuzzy* para o domínio real. Não existe um meio sistemático para realizar a *defuzzyficação*. Os métodos mais utilizados são:

1. Centro-da-Área ou Centro-de-Gravidade (C-o-A);

 $^{^{12}}$ Matematicamente, o universo de discurso é um conjunto de valores finitos o qual contém todos os valores possíveis das variáveis do sistema.

 $^{^{13}}$ É o número fuzzy definido no universo de discurso. Exemplo de uma variável Temperatura: T_(temperatura)={baixa, média, alta}.

- 2. Centro-do-Máximo (C-o-M),
- 3. Média-do-Máximo (M-o-M).

O método Centro-da-Área (C-o-A), por exemplo, calcula o centro de gravidade desta área pela seguinte equação:

$$u^* = \frac{\sum_{i=1}^{N} u_i \mu_{OUT}(\mu_i)}{\sum_{i=1}^{N} u \mu_{OUT}(\mu_i)}$$
(Eq. 3.4)

Onde $\mu_{OUT}(u_i)$ é a área de uma função de pertinência.

As redes neurais artificiais (RNA's) são sistemas inspirados no funcionamento do cérebro humano. Nestes sistemas estão presentes unidades de processamentos simples (neurônios) que tem a finalidade de computar funções matemáticas. Essas unidades são distribuídas em uma ou mais camadas e integradas por um grande número de conexões. Na maioria das arquiteturas estas conexões estão associadas a pesos sinápticos. Esses pesos armazenam o conhecimento adquirido pela rede e ponderam a entrada recebida por cada neurônio da rede (HAYKIN, 2001).

Dentre os tipos de RNA's estão: Perceptron, Rede de Kohoen, Rede com aprendizagem de Hebb, Rede ADALINE (ADAptive LINear Element), Rede multicamadas e algoritmo de retropropagação, Rede neural de base radial.

Rede neuro-fuzzy é a combinação de redes neurais com lógica fuzzy. Ou seja, modelos neuro-fuzzy combinam a capacidade de aprendizagem das redes neurais com a capacidade de raciocínio dos sistemas fuzzy. Dessa forma, elas formam uma estrutura que atualiza seus parâmetros em função de uma relação entrada-saída desejada (SATO e CAMPOS, 2004).

Na lógica neuro-*fuzzy* estão presentes duas fontes de informações importantes: Sensores e conhecimento humano. Os sensores nos fornecem a medição numérica de uma variável e o conhecimento humano fornece as instruções linguísticas e descrições do sistema.

A estrutura de uma rede neuro-*fuzzy*, Figura 3.5, pode ser desenvolvida por uma topologia baseada em regras, SE-ENTÃO, relacionando entradas *fuzzy* com saídas *fuzzy*; ou em uma topologia na forma paramétrica, onde a parte SE das regras (premissas) são operações lógicas e a parte ENTÃO (consequências) são funções lineares das variáveis de entrada (SHAW e SIMÕES, 1999).

Figura 3. 5 - Princípios de estimação baseadas em regras e paramétrica, adaptado de (SHAW e SIMOÕES, 1999)

Para o desenvolvimento de modelos neuro-*fuzzy* pode-se utilizar uma estrutura baseada na forma de Takagi-Sugeno. A base de conhecimento do modelo é um conjunto de regras na forma de Takagi-Sugeno¹⁴. Desse modo, nestes sistemas de Takagi-Sugeno, cada regra define uma região do espaço de entrada, onde a saída é uma combinação

 $^{^{14}}$ O modelo Takagi-Sugeno é, resumidamente, a geração de \pmb{M} regras fuzzy a partir de \pmb{n} dados de entrada-saída.

linear das variáveis de entrada (CAMPOS e SAITO, 2004). A *defuzzyficação* pode ser obtida pelo método da média ponderada:

$$y_k = \frac{\sum_{i=1}^N \mu_i f_i^k}{\sum_{i=1}^N \mu_i}$$
(Eq. 3.5)

A estrutura do modelo neuro-*fuzzy*, Figura 3.6, é dividida em três partes: premissa (camadas 1 e 2), consequente (camada 3) e decodificação (camadas 4, 5, 6 e 7), onde o consequente é formado por polinômios lineares das variáveis de entrada (premissa) (CAMPOS e SAITO, 2004).

Figura 3. 6 - Estrutura de um modelo neuro-fuzzy, adaptado de (CAMPOS e SAITO, 2004)

Na camada 1, cada nó representará uma variável linguística do espaço de entrada com função de pertinência gaussiana, onde a saída é uma possível antecedente de uma regra *fuzzy*. Os nós $A_{11}(x_1)...A_{1Q}(x_1),...,A_{m1}(x_m)...A_{mR}(x_m)$ são termos linguísticos (ALTO, BAIXO, ...) da variável de entrada $x_1,...,x_m$.

Na camada 2, cada nó representará uma regra fuzzy, tendo como saída a ativação da regra para uma determinada entrada (SE{ $x_1 = A_{11}(x_1)$ } E { $x_m = A_{mR}(x_m)$ } ENTÃO $\mu_{11} = A_{11}(x_1) \cdot A_{mR}(x_m)$).

Na camada 3, cada nó representará um polinômio linear das variáveis de entrada cujos coeficientes são os pesos dos seus termos. A saída é o consequente desejado de uma regra fuzzy associada, (SE{ $x_1 = A_{11}(x_1)$ } E { $x_m = A_{mR}(x_m)$ } ENTÃO {saída $x_k = f_1^k$ }).

Na camada 4, a saída de cada nó será o produto da saída da camada 2 (ativação da regra) pela respectiva saída da camada 3 (consequente da regra).

Na camada 5, a saída de cada nó será o somatório das saídas da camada 2 (as ativações das regras).

Na camada 6, a saída de cada nó será o somatório das saídas da camada 4 (ponderação das saídas das regras pelas respectivas ativações).

Na camada 7, cada nó representará uma saída do sistema, que é a razão entre as camadas 6 e 5:

$$y_k = \frac{\sum_{i=1}^{N} \mu_i f_i^k}{\sum_{i=1}^{N} \mu_i}$$
(Eq. 3.6)

27

3.4 Controle Preditivos baseado em Modelos (MPC)

Uma técnica de controle utilizando-se de modelos preditivos pode e deve ser considerada uma técnica *avançada* de controle porém, antes mesmo de se referir à "implementação de controladores *avançados*", deve-se esclarecer qual a verdadeira descrição deste assunto que vem despontando promissoramente na área de aplicação industrial e acadêmica. Nos anos 40, os controladores avançados, considerados na época, eram controladores convencionais ou clássicos: controle em cascata, *feedforward* e compensadores avanço-atraso. Já na década de 60 essa percepção de "*avançado*" passou a ser qualquer controlador que utilizasse um algoritmo ou estratégia de controle que se diferenciasse do controle PID clássico. Então, essa diferença entre convencional e avançado está no macro de referência adotado.

Agora, de um ponto de vista mais técnico, o projeto de algoritmos de controladores avançados envolve a combinação de uma multidisciplinaridade (engenharia de controle, processamento de sinais, estatística, teoria de decisão, inteligência computacional, etc.), (VARGAS-LARA,2005).

Uma característica importante em um modelo, de controle avançado é que este modelo deve descrever com precisão a dinâmica das variáveis do sistema que sejam essenciais na projeto do controlador, sendo capaz de predizer o comportamento futuro do processo com bom desempenho nas predições.

Varga-Lara (2005), relata que, um modelo explícito e medições inerentes ao sistema podem ser utilizados em controle preditivo baseado em modelo (MPC - Model

Predictive Controller) para predizer o comportamento deste sistema *passos-a-frente*; com a ação de controle calculada a fim de minimizar a diferença entre a resposta predita do sistema e determinadas trajetórias de interesse.

Em geral, os controladores MPC são desenvolvidos com base em modelos empíricos; fazendo com que a etapa de identificação do sistema seja fundamental na implementação destes controladores e também a maior absorvedora de tempo e recursos no projeto de um controlador (RIVERA et al., 1992; SEBORG, 1999; MORARI e LEE, 1999; ZHU, 1998).

Segundo Vargas-Lara (2005) a maioria dos modelos utilizados dentro da estrutura de controle preditivo, para predizer k-passos-à frente da variável de saída, são identificados com algoritmos na forma de mínimos quadrados. E, tendo em vista que estes tipo de erros tendem a se acumular de uma interação a outro, não são obtidas assim boas predições. Uma alternativa é a utilização de modelos via identificação.

Assim, neste trabalho, a fim de reduzir o erro nos preditores, modelos identificados pela técnica ANFIS foram utilizados para orientar controladores preditivos

3.4.1 Fundamentos do controle preditivo

De acordo com Vargas-Lara (2005), os passos principais que descrevem os fundamentos do controle preditivo são:

 Obtenção de dados referentes às entradas e saídas em instantes passados do sistema: u(t-1), u(t-2), ..., u(t-j) e y(t-1), y(t-2), ..., y(t-j).

- Determinação da trajetória de referência a partir da trajetória estipulada para saída do sistema, r(t+k), $k = N_{min}$, ..., N_{max} . Onde N_{min} e N_{max} são, respectivamente, o horizonte de predição mínimo e máximo.
- Utilização de um modelo apropriado para a predição da saída do sistema (calculado sobre o horizonte de predição $Np: [N_{min}, N_{max}]$). A saída predita deve estimar os valores de y(t) nos instantes (t+k), a partir dos valores de entrada e saída medidos até o instante t, e dos sinais futuros do controle.
- Cálculo da sequência de controle, a partir do modelo do sistema, a fim de satisfazer alguma função objetivo: que minimize o desvio da saída predita em relação à trajetória de referência, ao longo do horizonte de predição; e que minimize o esforço de controle para que a saída predita do processo atinja a referência (set-point). Uma solução analítica pode ser encontrada se um critério quadrático é usado, para um modelo linear e sem restrições.
- Adiciona-se no sistema o primeiro elemento da sequência de controle calculada, u(t/t) rejeitando-se os elementos seguinte u(t+1/t), u(t+2/t), ..., u(t+i-1/t). Sendo i = 1, ..., Nc, com Nc o horizonte de controle, levando-se em consideração que após este horizonte os esforços de controle são nulos: u(t+i-1/t) = 0 para i > Nc. A sequência de controle é recalculada no próximo intervalo de amostragem.

4. Materiais e Métodos

4.1 Protótipo experimental

4.1.1 Sistema de refrigeração

O protótipo de refrigeração utilizado neste trabalho, montado no LCAP-FEQ, que foi desenvolvido em conjunto com Pinelli (2008) é composto por um sistema principal, ciclo de refrigeração, e um sistema secundário para a troca de calor quando utiliza-se o processo de condensação a água. O sistema passou por duas modificações, descritas no tópico 5.1, com o objetivo de melhorar seu desempenho e segurança. O diagrama representativo do protótipo pode ser verificado na Figura 4.1.

O protótipo consiste em um ciclo de refrigeração por compressão empregando o R22 como fluido refrigerante e seu objetivo é o resfriamento de líquido, que neste caso é uma solução de propilenoglicol-água (50% V/V). O sistema é composto por um processo de compressão, utilizando um compressor semi-hermético, um processo de evaporação, onde um trocador de calor tipo placas é utilizado como evaporador, um processo de expansão contendo uma válvula de expansão termostática e uma pressostática (neste trabalho o primeiro tipo de válvula foi utilizado) e um processo de condensação a ar, utilizando um trocador de calor tipo tubo ou condensação a água, utilizando um trocador de calor tipo placas. A simulação da carga térmica se dará por meio de uma resistência elétrica. Sendo esta carga térmica constante durante todo ensaio.

Os equipamentos existentes no ciclo de refrigeração podem ser verificados na Tabela 4.1 e no ANEXO I.

Equipamento	Tipo	Modelo	Fabricante		
Compressor	Semi-Hermético	2FC-2.2 (Série Octagon)	Bitzer		
Trocador de Calor ¹	Placas Brasado	CB 26M	Alpha Laval		
Trodador de Calor ²	Placas Brasado	CB 26M	Alpha Laval		
Trocador de Calor ³	Tubos	Parte de uma UC $165/2$	Bitzer		
Ventilador ³	Axial	NW/4-350	Separis		
Válvula de expansão	Termostática	TEX 2	Danfoss		
Válvula de expansão	Pressostática	-	Danfoss		
Bomba^2	Centrífuga	Hydrobloc P500	KSB		
$Bomba^1$	Deslocamento positivo	RZR500	RZR		
Resistência elétrica	Imersão	Termo S	_		
1 Porcesso de evaporação; 2 processo de condensação a água; 3 processo de condensação a ar					

Tabela 4. 1 – Equipamentos do ciclo de refrigeração

O processo de condensação a água conta com um sistema secundário de troca de calor. O sistema secundário se faz necessário devido ao fato de que trocadores de calor a placa brasados apresentam uma forte tendência para o surgimento de incrustações caso não haja a utilização de água tratada no processo. Este sistema secundário é composto por uma torre de resfriamento e um trocador de calor do tipo casco e tubo. O trocador de calor tipo casco e tubo é responsável pela troca de calor em um circuito fechado, onde uma solução de propilenoglicol (que não é incrustante) troca calor com o fluido refrigerante R22 (processo de condensação) e o calor absorvido pelo propilenoglicol é rejeitado no trocador de calor casco e tubo por onde circula água proveniente da torre de resfriamento. Os equipamento envolvidos no sistema secundário de troca de calor podem ser verificados na Tabela 4.2.

Tabela 4. 2 - Equipamento do sistema secundário de troca de calor

Equipamento	Tipo	Modelo	Fabricante
Bomba	Centrífuga	Hydrobloc P500	KSB
Trocador de calor	Casco e tubo	TSEV-1000-3.4F	Evacon
Exaustor	Condor	-	VentiSilva

Além dos equipamentos apresentados nas Tabelas 4.1 e 4.2 o protótipo de refrigeração de líquido possui alguns acessórios que garantem a segurança do sistema e melhoram seu desempenho. Na Tabela 4.3 pode-se observar os acessórios utilizados no protótipo.

Acessório	Função
Filtro secador	Reter umidade e partículas sólidas presentes no fluido refrigerante
Separador de óleo	Impedir a mistura de óleo com o fluido refrigerante (causando perda de eficiência) e retornar óleo ao compressor (mantendo a hubrificação)
Separador de líquido	Impedir a entrada do fluído refrigerante na fase líquida no compressor
Visor de líquido	Permitir a visualização da quantidade de fluido refrigerante no sistema
Pressostato diferencial	Proteger o compressor contra pressões de óleo insuficientes
Pressostato Conjugado (alta/baixa)	Proteger o compressor contra pressões fora dos limites estabelecidos

Tabela 4. 3 – Acessórios do protótipo de refrigeração e suas funções

4.1.2 Instrumentação do sistema de refrigeração

A instrumentação do sistema de refrigeração, Figura 4.2, permite que uma quantidade maior de informações das variáveis de processo e de controle do sistema seja aquisitadas. A instrumentação, aliada à aplicação tecnológica digital de transmissão de dados, faz com que essas informações sejam confiáveis e precisas, possibilitando maior monitoramento das condições de operação.

O desenvolvimento de um sistema de refrigeração onde o consumo de energia seja minimizado necessita de tecnologias inovadoras. Assim sendo, foram instalados no protótipo de refrigeração sensores de temperatura, de pressão e de vazão permitindo uma melhor avaliação e monitoramento do comportamento do sistema. Para a variação da carga térmica foi utilizada uma resistência elétrica modulada por um variador de potência. Os sensores utilizados são resumidos na Tabela 4.4.

Figura 4. 2 – Diagrama de instrumentação do protótipo de refrigeração

Tabela 4. 4 -	- Tipos	de sen	sores	utilizados	e	suas	respectivas	precisões
1 40000 4.4	1 000	<i>uc ocn</i>	00100	0000200000	\mathbf{c}	0000	respectivelle	pr cciooco

Sonsor	Tipo	Bango	Procisãoa	Sinal		
Selisoi	Tibo	Trange	1 16015a0	de saída		
Transmissor de temperatura	Termo resistência Pt100	-50 a 150 $^{\circ}\mathrm{C}$	\pm 0,5 °C	4-20 mA		
Transmissor de pressão	Piezoresistivo	0a 10 bar	\pm 0,05 bar	4-20 mA		
Transmissor de pressão	Piezoresistivo	0 a $40~{\rm bar}$	\pm 0,2 bar	4-20 mA		
Transmissor de vazão volumétrica	Turbina	0,17 a 1,70 m ³ ·h ⁻¹	\pm 0,02 $\mathrm{m}^3{\cdot}\mathrm{h}^{\text{-1}}$	4-20 mA		
Transmissor de vazão volumétrica	Turbina	1,14 a 11,50 L·min ⁻¹	\pm 0,2 L·min ⁻¹	4-20 mA		
Transmissor de vazão volumétrica	Magnético	0,12 a 4,07 m ³ ·h ⁻¹	\pm 0,02 $\mathrm{m}^3{\cdot}\mathrm{h}^{\text{-1}}$	4-20 mA		
Conversor de potência	Pulso	0 a 6.000 W	-	4-20 mA		
a valores obtidos dos respectivos data sheets e certificados de calibração						

Um inversor de frequência também foi utilizado para modular a velocidade de rotação do compressor (neste caso um compressor semi-hermético) e das bombas do evaporador e do condensador, através da variação da frequência da tensão elétrica. Todo 0 gerenciamento do sistema foi realizado via CLP (Controlador Lógico Programável)/Microcomputador sendo as sequências de comandos implementados na plataforma de programação LADDER¹⁵. Na Tabela 4.5 encontra-se a relação dos dispositivos descritos.

Tabela 4. 5 – Relação de equipamentos de controle

Dispositivo	Modelo	Fabricante
Controlador Lógico Programável (CLP)	MCI02-QC	HI Tecnologia
Inversor de frequência	VLT 2815	Danfoss
Inversor de frequência	VLT 2822	Danfoss
Inversor de frequência	VFE-D	Delta

4.1.3 Sistema Supervisório

Sistemas supervisórios monitoram e rastreiam informações de um processo produtivo ou instalações físicas coletadas através de equipamentos de aquisição de dados que podem ser manipulados, analisados, armazenados e apresentados ao usuário posteriormente. Para o monitoramento do sistema de refrigeração, foi utilizado inicialmente o Sistema Supervisório *InduSoft Web Studio 6.1* e posteriormente o MATLAB[®]/SIMULINK, realizando comunicação com um sistema inteligente de equipamentos de controle através de um CLP (Controlador Lógico Programável).

 $^{^{15}}$ Linguagem de programação gráfica que representa ligações físicas entre componentes eletrônicos (sensores e atuadores)

4.1.4 A Comunicação via Protocolo OPC

A obtenção de dados em tempo real proveniente de sensores (temperatura, pressão, vazão, etc), comandos de controle (abrir, fechar, ligar, desligar, etc), *status* de comunicação, dados de desempenho e estatística do sistema será realizada através do padrão OPC.

4.2 Estudo da dinâmica e identificação do sistema

O principal objetivo em se verificar a dinâmica de um sistema é conhecer o comportamento, no tempo, das variáveis que o compõe, a fim de se verificar algumas características básicas deste sistema como: relações causa e efeito, tempos de resposta e efeito de realimentação. Analisando, minuciosamente, a dinâmica pode-se determinar algumas variáveis importantes para a identificação de sistemas como por exemplo: determinação de tempos de amostragem coerentes e tempos de assentamento.

4.2.1 Determinação das condições iniciais dos ensaios

O procedimento realizado na obtenção de dados experimentais, tanto para o levantamento da dinâmica das variáveis do processo, quanto para a identificação do sistema foi o mesmo. O procedimento baseou-se em ligar o sistema de refrigeração sem carga térmica seguindo os valores descritos na Tabela 4.6 e respeitando o tipo de condensação a ser utilizada. Quando as condições iniciais foram atingidas, adicionou-se uma carga térmica de 3000 W no sistema aguardando o primeiro estado estacionário e posteriormente realizou-se perturbações (em malha aberta) no sistema. Foram realizados ensaios utilizando o processo de condensação a ar e condensação a água.

Condensação a ar	
Variável	Valor inicial
Frequência do Compressor (FQ101)	60 Hz
Frequência da Bomba do Evaporador (FQ201)	$60 \mathrm{~Hz}$
Temperatura do propilenoglicol (Tp)	$0 a 5 \ ^{\circ}\mathrm{C}$
Condensação a água	_
Variável	Valor inicial
Frequência do compressor (FQ101)	60 Hz
Frequência da bomba do evaporador (FQ201)	$60 \mathrm{~Hz}$
Frequência da bomba do condensador (FQ301)	$60~\mathrm{Hz}$
Temperatura do propilenoglicol (Tp)	$0 a 5 \ ^{\circ}\mathrm{C}$

Tabela 4. 6 - Condições iniciais utilizadas no procedimento de levantamento de dados

4.2.2 Verificação da dinâmica das variáveis do sistema

Na verificação da dinâmica das variáveis do sistema realizaram-se ensaios seguindo os procedimentos iniciais citado no tópico 4.2.1 de acordo com os valores da Tabela 4.6.

4.2.2.1 Verificação da dinâmica no processo de condensação a ar

Para o processo de condensação a ar foram realizadas perturbações somente na rotação do compressor (FQ101), mantendo constantes a rotação da bomba do evaporador (FQ201) e a carga térmica (Q). As perturbações na frequência do compressor, para o processo de condensação a ar, foram realizadas entre 40 e 70 Hz tomando como frequência de referência 50 Hz, Tabela 4.7. Com o objetivo de analisar melhor a influência da frequência do compressor nas variáveis do sistema realizou-se perturbações com um *step* de 10 Hz e 20 Hz acima da frequência de referência (50 Hz). O mesmo procedimento seria adotado para as variações abaixo da frequência de referência porém, o compressor semi-hermético, apresentou limitações técnicas (problemas de vibrações abaixo de 47 Hz). Um ensaio com frequência de 40 Hz foi realizado mas, para preservar a integridade física do compressor não se realizou outros ensaios abaixo de 50 Hz.

	ipresser para contactivação a ai			
ENSAIO: Variação, acima de 50 Hz, na frequência do compressor (FQ101)				
Variável	Valores			
Frequência da bomba do evaporador (FQ201):	$60~\mathrm{Hz}$			
Carga Térmica (Q):	$3000 \mathrm{W}$			
Frequência do compressor (FQ101)	50-60-50 Hz (variação) ^a			
Frequência do compressor (FQ101) 50-70-50 Hz (variação) ^b				
As perturbações a e b foram realizadas em ensaios diferentes				
ENSAIO: Variação, abaixo de 50 Hz, na frequência do compressor (FQ101)				
Variável Valores				
Frequência da bomba do evaporador (FQ201):	$60 \mathrm{~Hz}$			
Carga Térmica (Q):	$3000 \mathrm{W}$			
Frequência do compressor (FQ101) 50-40 ^c -50 Hz (variação)				
c: as limitações técnicas foram diagnosticada pelo setor de assistência técnica do fabricante				

Tabela 4. 7 – Variação na frequência do compressor para condensação a ar

4.2.2.2 Verificação da dinâmica no processo de condensação a água

Para o processo de condensação a água, realizaram-se perturbações individuais, entre 50 e 70 Hz, na rotação do compressor (FQ101), tomando como rotação de referência 60 Hz, e entre 2000 e 4000 W na carga térmica (Q), adotando-se 3000 W como referência. A das bombas do evaporador (FQ201) e do condensador (FQ301) foram mantidas constantes. As perturbações realizadas no processo de verificação podem ser observadas nas Tabelas 4.8 e 4.9.

ENSAIO: Variação, acima de 60 Hz, na frequência do compressor (FQ101)				
Variável	Valores			
Frequência da bomba do evaporador (FQ201):	60 Hz			
Frequência da bomba do condensador (FQ301):	$60~\mathrm{Hz}$			
Carga Térmica (Q):	$3000 \mathrm{W}$			
Frequência do compressor (FQ101)	60-70-60 Hz (variação)			
ENSAIO: Variação, abaixo de 60 Hz,	na frequência do compressor $(FQ101)$			
Variável	Valores			
Frequência da bomba do evaporador (FQ201):	$60 \mathrm{~Hz}$			
Frequência da bomba do condensador (FQ301):	$60~\mathrm{Hz}$			
Carga Térmica (Q):	$3000 \mathrm{W}$			
Frequência do compressor (FQ101)	60-50-60 Hz (variação)			

Tabela 4. 8 - Variação na frequência do compressor para condensação a água

m 1 1 1	0	T7 · ~			1 ~	/
Tabela 4	g =	Variacao	na caraa	termica par	a condensacao	a aana
1 accora 4.	0	1 01 100 200	nua canga	cornecca par	a contactioação	a agaa

ENSAIO: Variação, acima de 3000 W, na carga térmica (Q)				
Variável	Valores			
Frequência do compressor (FQ101)	60 Hz			
Frequência da bomba do evaporador (FQ201):	$60~\mathrm{Hz}$			
Frequência da bomba do condensador (FQ301):	$60~\mathrm{Hz}$			
Carga Térmica (Q):	3.000-4.000-3.000 W			
ENSAIO: Variação, abaixo de 3000 W, na carga térmica (Q)				
Variável	Valores			
Frequência do compressor (FQ101)	$60 \mathrm{~Hz}$			
Frequência da bomba do evaporador (FQ201):	$60~\mathrm{Hz}$			
Frequência da bomba do condensador (FQ301):	$60~\mathrm{Hz}$			
Carga Térmica (Q):	3.000-2.000-3.000 W			

Além da limitação técnica do compressor em trabalhar com frequências entre 50-70 Hz, deparou-se com um problema relacionado ao processo de condensação a ar. Pelo fato do sistema de refrigeração encontrar-se acomodado dentro do laboratório a temperatura de condensação sofreu muitas interferências do meio, pois a temperatura da sala manteve-se elevada. Assim, optou-se em trabalhar somente com condensação a água. É importante ressaltar que os ensaios realizados, descritos nesta seção foram utilizados apenas para uma análise macroscópica da influência das variáveis frequência do compressor (FQ101) e carga térmica (Q) no sistema de refrigeração. Para o processo de identificação do sistema foram realizados outros ensaios que são descritos na seção 4.2.3.

4.2.3 Identificação do sistema

Quando se deseja realizar uma identificação de sistema para a determinação de um modelo, nem sempre as informações disponíveis nos dados coletados, em condições normais de operação são suficientes, fazendo com que o modelo resultante seja pouco representativo. Assim, projetar sinais para perturbações do sistema é uma importante etapa na identificação de modelos para controle (COSTA, 2010).

Para o projeto de sinal para a identificação do sistema, realizou-se um estudo da dinâmica de suas variáveis, estipulando o tempo de amostragem e tempo de assentamento dos estados estacionários correspondentes a perturbações descritas nas Tabelas 4.8 e 4.9.

4.2.3.1 Estabelecimento do tempo de amostragem e tempo de assentamento das variáveis

O tempo de amostragem foi determinado heuristicamente analisando o desempenho dos modelos Takagi-Sugeno desenvolvidos na identificação ANFIS com tempos de 10 e 60 s.

4.2.3.2 Determinação do sinal para a identificação

Uma tendência cada vez maior é reconhecer a importância que um sinal de perturbação exerce sobre a identificação de sistema. Assim, o projeto de sinais que consigam obter uma varredura relevante para controle (identificando sistemas lineares ou não-lineares) tem sido muito estudado. Por exemplo, Vargas-Lara (2005) realizou um profundo estudo sobre projeto de sinais para a identificação de modelos para controladores preditivos.

Quando não há condições de se obter conhecimento sobre as variáveis de um processo a ser modelado, pode ser interessante o uso de sinais aleatórios. Porém, seu uso apresenta dificuldades práticas como, por exemplo, o comprimento do sinal pode não perturbar a largura de faixa de interesse para controle quando não se tem conhecimento do sistema, (AGUIRRE, 2000). Quando há o conhecimento do sistema, uma solução para esse problema é a utilização de um sinal de entrada do tipo pseudoaleatório. Este tipo de sinal facilita a especificação de uma faixa de frequência que terá influência direta com o controlador (VARGAS-LARA, 2005). Em princípio, um sinal pseudoaleatório foi proposto para a identificação, porém, o comprimento da faixa de varredura, baseada no tempo de assentamento das variáveis Te (temperatura de evaporação) e Tp (temperatura do propilenoglicol), apresentou-se muito extensa (aproximadamente 200 h).

Assim, o projeto de sinal para a identificação do sistema foi baseado em um sinal aleatório. O sinal aleatório foi gerado a partir do bloco "Uniform Random Number" do MATLAB/SIMULINK[®] para as variáveis (Figura 4.3).

Figura 4. 3 – Sinal randômico utilizado na identificação do sistema ("Uniform Random Nunber")

O bloco "Uniform Random Number" gera um sinal contendo números aleatórios uniformemente distribuídos em um intervalo especificado a partir de um ponto específico (seed=semente). Este ponto de partida é reiniciado cada vez que uma simulação começa. A mudança do sinal será dada a partir da Equação 4.1, (SEBORG, 2004).

$$t_{sw} = \frac{t_{st}}{3}$$
(Eq. 4.1)

onde: t_{sw} é o tempo de mudança do sinal, t_{st} é o tempo de assentamento.

4.2.3.3 Modelagem do Sistema

Para identificação do sistema foi utilizada a arquitetura ANFIS (*Adaptative Network based Fuzzy Inference Systems*), proposta por Jang (1993; 1995). Foram determinados dois conjuntos de modelos Takagi-Sugeno (TS) para a identificação do sistema de refrigeração.

Identificação I: A primeira identificação foi realizada no sistema que continha um compressor aberto utilizando o processo de condensação a ar. Os dados utilizados para o

modelo foram obtidos por Dall'Agnol (2010). Esta identificação teve como foco principal a viabilidade da utilização da ferramenta de identificação ANFIS.

A estrutura da arquitetura ANFIS, utilizada para a primeira identificação, Figura 4.4, foi composta por quatro entradas $[x_1, x_2, x_3, x_4]$ e foram desenvolvidos três modelos de predição, onde a saída y é: $y=Tcond_k$ para o modelo de predição da temperatura de condensação, $y=Tevap_k$ para o modelo de predição da temperatura de evaporação e $y=Tprop_k$ para a o modelo de predição da temperatura do fluido água-propilenoglicol. As variáveis da arquitetura ANFIS são descritas na Tabela 4.10.

Tabela 4. 10 – Variáveis de entrada e de saída da arquitetura ANFIS para os Modelos TS da temperatura de evaporação, de condensação e do propilenoglicol.

Modelo TS para predição da temperatura de evaporação		
Variáveis	Descrição	
$x_1 = FQ101$	frequência do compressor	
$x_2 = FQ201$	bomba de evaporação	
$x_3 = T peev$	temperatura do propilenoglicol na entrada do evaporador	
$x_4 = Tevap_{(k-1)}$	temperatura de evaporação no instante k-1	
$y=\mathrm{Tevap}_k$	temperatura de evaporação	
Variáveis do M	odelo TS para predição da temperatura de condensação	
Variáveis	Descrição	
$x_1 = FQ101$	frequência do compressor	
$x_2 = FQ201$	bomba de evaporação	
$x_3 = T peev$	temperatura do propilenoglicol na entrada do evaporador	
$\mathrm{x}_4 = \mathrm{Tcond}_{(\mathrm{k-1})}$	temperatura de condensação no instante k-1	
$y=Tcond_k$	temperatura de condensação	
Variáveis do Mo	delo TS para predição da temperatura do propilenoglicol	
Variáveis	Descrição	
$x_1 = FQ101$	frequência do compressor	
$x_2 = FQ201$	bomba de evaporação	
$x_3 = T peev$	temperatura do propilenoglicol na entrada do evaporador	
$x_4 = \operatorname{Tprop}_{(k-1)}$	temperatura do propilenoglicol no instante k-1	
$y = T prop_k$	temperatura do propilenoglicol	

Figura 4. 4 – Estrutura ANFIS adotada para a primeira identificação

Identificação II: A segunda identificação foi realizada no sistema contendo um compressor semi-hermético, utilizando o processo de condensação a água. Os dados para a determinação dos modelos foram obtidos após a realização de uma análise do sistema e utilizando o sinal aleatório descrito no *Tópico 4.2.3.2*.

Para a segunda identificação foram desenvolvidos 4 modelos SISO (*Single-Input-Single-Output*) para a predição das temperaturas de evaporação (Te) e do propilenoglicol (Tp). Os modelos estão divididos em dois grupos. No *Grupo I* foram desenvolvidos modelos de predição das temperaturas de evaporação e do propilenoglicol, tendo como variável manipulada a frequência do compressor (FQ101); No *Grupo II* desenvolveu-se modelos de predição das temperaturas de evaporação e do propilenoglicol, tendo como variável manipulada a frequência do bomba de evaporação e do propilenoglicol, tendo como variável manipulada a frequência da bomba de evaporação (FQ201).

Para o *Grupo I*, propôs-se uma arquitetura ANFIS composta por cinco entradas $[x_1, x_2, x_3, x_4, x_5]$ e foram desenvolvidos dois modelos de predição Takagi-Sugeno (TS), onde a saída y é: $y=Te_{(k)}$ para o modelo de predição da temperatura de evaporação e $y=Tp_{(k)}$ para o modelo de predição da temperatura do propilenoglicol, Figura 4.5. Na Tabela 4.11 pode-se verificar as variáveis de entradas e saída de cada modelo ANFIS.

Modelo TS para predição da temperatura de evaporação (MV:FQ101)			
Variáveis	Descrição		
$x_1 = FQ101_{(k-1)}$	frequência do compressor no instante k-1		
$x_2 = FQ101_{(k-2)}$	frequência do compressor no instante k-2		
$x_3 = FQ101_{(k-3)}$	frequência do compressor no instante k-3		
$x_4=Te_{(k-1)}$	temperatura de evaporação no instante k-1		
$\mathbf{x}_5 {=} \mathrm{Te}_{(\mathrm{k-2})}$	temperatura de evaporação no instante k-2		
$y = Te_{(k)}$	temperatura de evaporação		
Variáveis do Modelo TS para predição da temperatura do propilenoglicol (MV:FQ101)			
Variáveis	Descrição		
$x_1 = FQ101_{(k-1)}$	frequência do compressor no instante k-1		
$x_2 = FQ101_{(k-2)}$	frequência do compressor no instante k-2		
DO101			
$x_3 = FQ101_{(k-3)}$	frequência do compressor no instante k-3		
$x_3 = FQ101_{(k-3)}$ $x_4 = Tp_{(k-1)}$	frequência do compressor no instante k-3 temperatura de evaporação no instante k		
$\begin{array}{c} x_3{=}FQ101_{(k{-}3)} \\ x_4{=}Tp_{(k{-}1)} \\ x_5{=}Tp_{(k{-}2)} \end{array}$	frequência do compressor no instante k-3 temperatura de evaporação no instante k temperatura de evaporação no instante k-1		

Tabela 4. 11 - Variáveis de entrada de saída da arquitetura ANFIS para os Modelos TS da temperatura de evaporação do propilenoglicol do Grupo I

Figura 4. 5 – Estrutura ANFIS adotada para o Grupo I da segunda identificação

Para o *Grupo II* foi proposta uma arquitetura ANFIS composta por cinco entradas $[x_1, x_2, x_3, x_4, x_5]$ e foram desenvolvidos dois modelos de predição TS, onde a saída y é: $y=Te_{(k)}$ para o modelo de predição da temperatura de evaporação e $y=Tp_{(k)}$ para o modelo de predição da temperatura do propilenoglicol conforme verificado na Figura 4.6. As variáveis de entrada e de saída de cada modelo ANFIS podem ser verificadas na Tabela 4.12.

Modelo TS para predição da temperatura de evaporação (MV:FQ201)			
Variáveis	Descrição		
$x_1 = FQ201_{(k-1)}$	frequência da bomba do evaporador no instante k-1		
$x_2 = FQ201_{(k-2)}$	frequência da bomba do evaporador no instante k-2		
$x_3 = FQ201_{(k-3)}$	frequência da bomba do evaporador no instante k-3		
$\mathrm{x}_4{=}\mathrm{Te}_{(\mathrm{k-1})}$	temperatura de evaporação no instante k-1		
$x_5 = Te_{(k-2)}$	temperatura de evaporação no instante k-2		
$y={ m Te}_{(k)}$	temperatura de evaporação		
Variáveis do Modelo TS para predição da temperatura do propilenoglicol (MV:FQ201)			
Variáveis	Descrição		
$x_1 = FQ201_{(k-1)}$	frequência da bomba do evaporador no instante k-1		
$x_2 = FQ201_{(k-2)}$	frequência da bomba do evaporador no instante k-2		
$x_3 = FQ201_{(k-3)}$	frequência da bomba do evaporador no instante k-3		
$\mathbf{x}_4 = \mathrm{Tp}_{(\mathrm{k-1})}$	temperatura de evaporação no instante k		
$\mathbf{x}_5 = Tp_{(k-2)}$	temperatura de evaporação no instante k-1		
$\mathrm{y}{=}\mathrm{Tp}_{(\mathrm{k})}$	temperatura de evaporação		

Tabela 4. 12 - Variáveis de entrada de saída da arquitetura ANFIS para os Modelos TS da temperatura de evaporação do propilenoglicol do Grupo II

Observando-se as Tabelas 4.11 e 4.12 nota-se que, dentre as variáveis de entrada que compõe a estrutura ANFIS, tanto para os modelos TS para a predição da temperatura do propilenoglicol quanto para a temperatura de evaporação, há a variável de saída medida nos instantes (k-1) e (k-2). Os modelos TS desenvolvidos para as predições da segunda identificação (Grupos I e II) serão utilizados como modelos preditivos para controle da planta de refrigeração e, por isto, os mesmos devem conter as variáveis de saída em instantes anteriores em sua composição.

Figura 4.6– Estrutura ANFIS adotada para
o Grupo II da segunda identificação

[Faculdade de Engenharia Química]

5. Resultados e Discussões

5.1 Melhorias no protótipo de refrigeração

Conforme apresentado por Pinelli (2008), o sistema original apresentava uma estrutura frágil, onde as distribuições de forças atuantes não foram corretamente realizadas, resultando assim em problemas de ruídos e segurança, Figura 5.1(a). Devido a este fato, o primeiro aperfeiçoamento, realizado em conjunto com Pinelli no sistema de refrigeração, foi uma mudança estrutural (com reconfiguração do sistema) e acrescentando novos sensores de medição de temperatura e vazão de R22, Figura 5.1(b). O sistema continha, dentre seus componentes, um compressor Bitzer tipo aberto da série III (1,5 kW). Este tipo de compressor possui o motor separado e isto faz com que os controladores desenvolvidos não apresentem bom desempenho. Isto se observou em trabalhos realizados por Pinelli (2008) e Dall'Agnol (2010).

Um segundo aperfeiçoamento (novamente realizado em conjunto com Pinelli) do sistema de refrigeração se deu adicionando um medidor de vazão tipo turbina para a medição da vazão volumétrica de propilenoglicol e o compressor aberto existente foi substituído por um compressor Bitzer semi-hermético da série octagon, Figura 5.2. Com a substituição do compressor houve a necessidade de se adicionar um novo inversor de frequência mais robusto devido a alta corrente nominal de partida do motor do novo compressor.

[Faculdade de Engenharia Química]

1) tanque de resfriamento de propilenoglicol; 2) bomba de evaporação; 3) evaporador de placas; 4) válvula de expansão manual; 5) válvula de expansão termostática; 6) motor elétrico do compressor; 7) compressor tipo aberto; 8) condensador de tubos; 9) separador de líquido; 10) separador de óleo; 11) medidor de vazão tipo turbina (R22); 12) condensador de placas; 13) medidor de vazão magnético; 14) bomba de condensação

Figura 5. 1 – Módulo de refrigeração: a) original e b) Após primeiro aperfeiçoamento

inversor de frequência para o novo compressor

Figura 5. 2 – Módulo de refrigeração após segundo aperfeiço
amento

5.2 Instrumentação do sistema de refrigeração

Devido às modificações realizadas no protótipo de refrigeração, houve a necessidade de se desenvolver novamente toda a programação do CLP e refazer a identificação de todos os *tags* do sistema de refrigeração. Nas Tabelas 5.1 a 5.3 pode-se verificar identificação dos *tags* e o seus endereçamentos no CLP. O código LADDER encontra-se no $AP \hat{E}NDICE D$.

		Cartao AIM ^a	
Endereço CLP	Tag	Descrição	
E0	FT_{101}	Vazão de R22	
E1	FT_201	Vazão de propilenoglicol no evaporador	
E2	FT_301	Vazão de propilenoglicol (sistema secundário de troca de calor)	
E3	PT_101	Pressão de descarga	
E4	PT_102	Pressão de condensação	
E5	PT_103	Pressão de evaporação	
E6	PT_104	Pressão de sucção	
${ m E7}$	TT_{101}	Temperatura de descarga	
E8	TT_{102}	Temperatura de condensação (água)	
E9	TT_{103}	Temperatura de condensação (ar)	
E10	TT_{104}	Temperatura do R22 na entrada do evaporador (Te)	
E11	TT_{105}	Temperatura de R22 na saída do evaporador	
E12	TT_{106}	Temperatura de sucção	
E13	TT_{201}	Temperatura do propilenoglicol na entrada do evaporador	
E14	TT-201	Temperatura do propilenoglicol na saída do evaporador	
E15	TT_{301}	Temperatura da água na entrada do condensador de placas	
E16	TT_{302}	Temperatura da água na saída do condensador de placas	
E17	TT_{303}	Temperatura da água na entrada do condensador casco e tubo	
E18	TT_{304}	Temperatura da água na saída do condensador casco e tubo	
E19	TT_{401}	Temperatura da água na entrada da torre de resfriamento	
E20	TT_{402}	Temperatura da água na saída da torre de resfriamento	
E21	TE_{101}	Temperatura do R22 na entrada da válvula de expansão	
E22	TE_{102}	Temperatura do R22 na entrada do filtro secador	
E23	TE_{103}	Temperatura do R22 na entrada do medidor de vazão	
E24	IC_101	Corrente do compressor	
a Analogic Input	Memory		

Tabela 5. 1 – Endereçamento das entradas analógicas

Cartão AOM ^b			
Endereço CLP	Tag	Descrição	
S0	FQ_201	Frequência da bomba do evaporador	
S1	FQ_{301}	Frequência da bomba do condensador a placas	
S2	FQ_{101}	Frequência do compressor	
S3	POT_RES	Potência da resistência elétrica	
b Analogic Output Memory			

Tabela 5. 2 – Endereçamento das saídas analógicas

Tabela 5. 3 – Endereçamento das saídas digitais

Cartão DOM ^c -1			
Endereço CLP	Tag	Descrição	
08	$\mathbf{R0}$	Ligar bomba da torre de resfriamento	
O9	R1	Ligar exaustor da torre de resfriamento	
O10	R2	Ligar resistência elétrica	
O11	R3	Ligar ventilador do condensador a ar	
O12	R4	Ligar compressor	
O13	R5	Ligar ventilador do compressor	
d Diaital Output Memory			

5.3 Monitoramento do sistema de refrigeração – Sistema Supervisório

5.3.1 Supervisão com InduSoft Web Studio 6.1

Em princípio foi desenvolvido um novo sistema supervisório, utilizando o *InduSoft Web Studio 6.1*, para realizar a obtenção de dados com o sistema de refrigeração. Essa comunicação é responsável em obter dados em tempo real de sensores de temperatura, pressão, vazão entre outros e realizará comandos de controle tipo liga/desliga do sistema de refrigeração em questão. A fase de engenharia do sistema supervisório foi constituída das seguintes tarefas:

- 1. Definições dos tipos de tags: classes, array;
- 2. Desenvolvimento de telas;
- Desenvolvimento de planilhas e funções matemáticas, alarmes e histórico, gráficos de tendências *on-line* e gráfico de tendência histórico e banco de dados;
- 4. Comunicação com o CLP;
- 5. Configuração do servidor OPC.

A Figura 5.3 apresenta a tela principal do Sistema Supervisório.

Figura 5. 3 – Tela principal do sistema supervisório (InduSoft Web Studio 6.1)

A Interface Homem-Máquina (IHM) foi realizada em todos os processos do ciclo de refrigeração (Processo de Evaporação, Processo de Condensação a Ar e Processo de Condensação a água) apresentados em forma numéricas ou através de gráficos *"real-time"*, Figuras (5.4a-5.4c). A aquisição de dados experimentais foi armazenada em um banco de dados criado na fase de engenharia do sistema supervisório.

Figura 5. 4 – a) Tela do processo de evaporação; b) Tela do processo de condensação a ar e c) Tela do processo de condensação a água.

5.3.2 Interface de comunicação MATLAB[®]/SIMULINK-Sistema de Refrigeração via protocolo OPC

Um sistema de controle moderno necessita mais do que uma simples ferramenta de configuração e monitoramento. Necessita de desenvolvimento de algoritmos utilizando-se de técnicas avançadas de controle. Para isso, a emprego de um *software* matemático iterativo de alta performance apropriada ao desenvolvimento de aplicativos de natureza técnica é fundamental para trabalhos em que se desejam implementar e testar soluções com facilidade e precisão. No presente trabalho, o MATLAB[®] foi utilizado pois, além dele ser *software* iterativo de alta performance para cálculos científicos, apresenta também uma interface gráfica de fácil compreensão e dispõe de uma biblioteca abrangente de funções matemáticas e *"toolboxes"*.

O MATLAB[®] possui *"toolboxes"* com algoritmos pré-programados para conhecimentos específicos. Na comunicação MATLAB[®]/SIMULINK-Sistema de Refrigeração para que os controladores avançados, desenvolvidos também em MATLAB[®], atuem no sistema de controle foi utilizada a *"OPC toolbox"*. A *"OPC toolbox"* é uma coleção de funções que estendem a potencialidade do MATLAB[®] podendo adquirir dados do *"Server OPC"* e escrever dados diretamente ao *"Client OPC"*. Uma vez estabelecida a conexão entre o usuário e o servidor OPC pode-se monitorar e adicionar valores ao servidor OPC.

5.3.2.1 Configuração do servidor OPC

A primeira etapa para a comunicação OPC é ter disponível um servidor OPC instalado local ou remotamente. Neste caso, utilizou-se o servidor OPC

Scada.Server.OPC do InduSoft Web Studio 6.1. Em seguida, deve-se fazer a configuração do servidor OPC DA de escrita (OPC DA Write Server) e do servidor OPC DA de leitura (OPC DA Read Server) criando seus grupos e itens, como apresentado na Figura 5.5. O grupo é uma forma apropriada de organização dos dados utilizados no sistema de controle. A interface do grupo permite à aplicação: adicionar e remover itens do grupo; definir a taxa de leitura dos dados no grupo (cada grupo de dados pode ter uma taxa de leitura específica); ler e escrever valores para os itens do grupo. Os itens são os próprios tags. São os objetos que proporcionam uma conexão com uma entrada física de dados, Figura 5.6.

Figura 5.5 - Hierarquia da criação dos grupos e itens da comunicação via protocolo OPC

Figura 5. 6 – Mapeamento de itens OPC no sistema real de dados

58

5.3.2.2 Teste da qualidade da comunicação

Para a utilização do MATLAB[®] como supervisório no sistema de refrigeração, realizou-se um estudo da qualidade da comunicação quando conectado, o MATLAB[®], via protocolo OPC ao sistema. A obtenção de dados em tempo real proveniente de sensores (temperatura, pressão, vazão, etc.), comandos discretos (abrir, fechar, ligar, desligar, etc.), *status* de comunicação, dados de desempenho e estatística do sistema, foi realizado através da comunicação do MATLAB[®]/SIMULINK-CLP, via padrão OPC.

Todos os sistemas supervisórios têm sua forma particular de apresentar a qualidade de conexão entre o CLP e o processo. Muitos deles apresentam essa qualidade da forma "BAD" (quando não há sinal retornando para o CLP) e "GOOD" (quando há sinal retornando para o CLP). Quando se utiliza o *software* MATLAB[®]/SIMULINK através da comunicação OPC essa qualidade é apresentada por um conjunto de arranjos binários na forma "QQSSSSLL", onde "QQ" representa a qualidade principal da comunicação, "SSSS" representa o substatus da qualidade da comunicação e "LL" representa o *status* do limite da comunicação (MATLAB[®] & SIMULINK, 2004-2007). Na Tabela 5.4 encontra-se descrito o significado do conjunto "QQ" (o mais importante dos arranjos). Os significados dos arranjos "SSSS" e "LL" podem ser verificados em MATLAB[®] & SIMULINK (2004-2007), e não serão descritos aqui por apresentarem muitos valores para análise. Porém, os valores padrão e que demonstram boa qualidade de comunicação são SSSS=0 e LL=0.

Tabela 5. 4 – Representação da qualidade da comunicação para o conjunto de arranjo QQ

Valor	Qualidade	Descrição
0 (zero)	BAD	Quando não há sinal retornando para o CLP
1 (um)	INCERTO	A razão da incerteza é indicada pelo $\mathit{substatus}$ do sinal
3 (três)	GOOD	Quando há sinal retornando para o CLP

Nos resultados apresentados, o valor da qualidade para o teste da comunicação é 192 em decimal, o que equivale à "11000000" em binários (QQ=11, SSSS=0000, LL=00), ou seja, a qualidade principal da comunicação (QQ) é "11" em binário, o equivalente a 3 decimal, o substatus da comunicação (SSSS) é "0000" o equivalente a 0 decimal e o *status* do limite da comunicação (LL) é "00" o equivalente a 0 decimal. Assim, o valor 192 indica boa comunicação entre o *software* e o sistema de refrigeração, via protocolo OPC.

Como exemplo pode-se observar nas Figuras 5.7 a 5.10, os valores obtidos no teste de comunicação para os sensores TT_101 (temperatura de descarga da saída do compressor), TT_104 (temperatura de evaporação), TT_106 (temperatura de sucção do compressor), PT_103 (pressão da saída do evaporador) e FQ_101 (frequência do motor do compressor) respectivamente, onde a qualidade da comunicação apresentada foi de 192, o que representa QQ=GOOD, SSSS=NÃO ESPECIFICADO (Qualidade do sinal GOOD porém não há condições especial de status) e LL=SEM LIMITES, do começo ao fim do andamento do experimento.

Os tags relacionados com os sensores de temperatura (TT_101, TT_104) e TT_106) e pressão (PT_103) representam tags apenas de leitura (recebem informações) no sistema de refrigeração; na comunicação via protocolo OPC são denominadas "read OPC DA itens". Já o tag relacionados com inversores de frequência (FQ_101) representa tags de escrita (enviam informações) no sistema de refrigeração e para o protocolo OPC são denominados "write OPC DA itens". Analisando as Figuras 5.7 a 5.10 verifica-se que tanto os tags de leitura com os de escrita apresentam qualidade na comunicação, pois apresentaram o valor de 192 para em todo o intervalo de amostragem e também pode-se verificar que a comunicação não apresenta distorções (pontos muito fora do perfil da variável lida ou escrita).

Figura 5. 7 – Qualidade da comunicação para o sensor TT_101 (temperatura de descarga)

Figura 5. 8 – Qualidade da comunicação para o sensor TT_106 (temperatura de sucção)

Figura 5. 9 – Qualidade da comunicação para o sensor PT_103 (pressão relativa de evaporação)

Figura 5. 10 – Qualidade da comunicação para o sensor FQ_101 (frequência do motor do compressor)

Quando se estudam sistemas de controle de processos químicos, um dado importante é o tempo de resposta do sistema ao controle. Quando são utilizados sistemas supervisórios convencionais e *drivers* proprietários de controladores, esta resposta (baseando-se em resultados práticos de indústrias) é em tempo real. Mas quando utilizado um *software* matemático para esse fim, deve-se fazer uma análise do tempo necessário para o *software* enviar a informação ao CLP e recebê-la de volta e se o tempo de "simulação" no experimento está compatível com o tempo de execução do *software*. O tempo de "simulação" é o tempo de execução do *software* matemático (ex: Para um experimento de 1 h ou 3600 s o tempo de simulação será 3600 s no software).

No caso do MATLAB[®]/SIMULINK o tempo necessário para o *software* enviar e receber as informações do CLP é fornecido pelo "Pseudo Real-Time". Ele verifica o tempo de espera decorrido do disparo do pulso e a execução no sistema durante cada etapa. Caso o valor do "Pseudo Real-Time" venha a ser negativo, isto indica que a simulação esta muito mais lenta do que o tempo real, com isso devem ser feitas algumas configurações na comunicação OPC, ou seja, configurar parâmetros do bloco OPC mais especificamente o "*speedup*" da simulação. Nas Figuras 5.11 e 5.12, pode-se verificar essa análise de tempo de envio e recebimento de informação entre o *software* e o CLP e o tempo real de execução.

Figura 5. 11 – Pseudo Real-Time: Tempo de envio e recebimento de informações do software e CLP utilizando protocolo de comunicação OPC

Observando a Figura 5.11, nota-se que para um intervalo curto de tempo (30 s) a comunicação do *software* e o CLP via OPC tem valores negativos o que indica que o tempo de simulação está muito mais lento do que o tempo real de execução, ou seja, há uma grande defasagem entre o envio e recebimento de informações entre o CLP e o *software*. Porém, esse curto intervalo de tempo pode ser considerado um tempo mínimo para que o CLP e o *software* estejam em sincronia, podendo ser desprezado. Ainda na Figura 5.11, observa-se que a partir de 30 s, essa defasagem não existe, apresentando um "Pseudo Real-Time" médio de 0,35 s, ou seja, o tempo para o envio e recebimento de informações entre o software e o CLP é de 350 ms fazendo com que o tempo de simulação seja praticamente o tempo real de execução. Na Figura 5.12 pode-se confirmar essa rapidez de troca de informações entre o *software* e o CLP.

Figura 5. 12 – Real-Time: Tempo real de execução do *software* e a comunicação com o CLP via protocolo OPC

Os testes realizados, enfatizando a comunicação do *software*, foram satisfatórios, pois, verifica-se que a comunicação entre o *software* e o processo apresentou uma

qualidade de comunicação muito boa, segundo os critérios de avaliação de qualidade do *software*. Em relação ao tempo necessário para que o *software* envie informações ao CLP e a receba de volta, ou seja, o "Pseudo Real-Time", conclui-se que o tempo de espera decorrido entre o disparo do pulso e a execução no sistema durante de cada etapa é praticamente o tempo real de execução. Assim, o *software* e o CLP através do padrão OPC, fornecem uma troca de informações confiável e com uma velocidade de 350 ms, podendo ser utilizado como um "sistema supervisório", mas não um simples "supervisório" e sim uma ferramenta de monitoramento e desenvolvimento de controles avançados como, por exemplo, controle preditivo baseado em modelo (MPC)

5.3.3 Sistema de supervisão utilizando o MATLAB/SIMULINK

Com a realização dos testes de comunicação entre o *software* e o CLP e a confirmação de que foi viável realizar este tipo de comunicação, foi desenvolvido o SISMOCAR (SIStema de MOnitoramento e Controle Avançado para Refrigeração), supervisório utilizando MATLAB[®]/SIMULINK. A Figura 5.13 representa a tela principal do SISMOCAR¹⁶. O supervisório foi divido em cinco partes distintas: 1) Grupo de escrita: onde estão presentes todas as variáveis manipuladas do processo; 2) Grupo de leitura: onde é realizada toda a aquisição de dados; 3) Cálculos *on-line*: onde são realizados cálculo, em tempo real (on-line) de variáveis importantes do sistema; 4) Monitoramento gráfico: onde são gerados os gráficos em tempo real das variáveis (por aquisição ou cálculo) do sistema.

 $^{^{16}}$ Todas as configurações dos itens OPC do SISMOCAR são apresentadas no APÊNDICE C.

[Faculdade de Engenharia Química]

Figura 5. 13 – Tela principal do SISMOCAR (SIStema de MOnitoramento e Controle Avançado para Refrigeração)

O grupo de escrita destina-se a enviar comandos de acionamento para o compressor, o ventilador do condensador a ar, a bomba do evaporador, a bomba do condensador a água, a bomba da torre de resfriamento, o exaustor da torre de resfriamento e a resistência elétrica.

O grupo de leitura é responsável pela leitura e visualização das vazões de R22 e propilenoglicol, pressões e temperaturas da malhas de R22, de propilenoglicol, fluido auxiliar de troca térmica e água da torre de resfriamento. Os dados são filtrados com auxílio de um filtro gaussiano.

66

O grupo de cálculos on-line realiza cálculos importantes no sistema. Os cálculos em tempo real realizados são: vazão mássica de R22 e propilenoglicol; entalpia de condensação e evaporação e trabalho de compressão; subresfriamento e superaquecimento útil e total; calor retirado do propilenoglicol e calor absorvido pelo R22; COP de Carnot e COP real e; potência requerida do compressor. Os cálculos realizados são descritos no APÊNDICE A.

O monitoramento gráfico mostrou em tempo real a dinâmica das variáveis de interesse.

O *data save* grava os valores de todas as variáveis monitoradas e calculadas em arquivos com a extensão *.mat* para posterior utilização.

5.4 Dinâmica das variáveis do sistema sob perturbações

Ensaios para a verificação da dinâmica das variáveis do sistemas sob perturbação foram realizados para analisar melhor a influência das perturbações sobre as mesmas. No início, foram realizados ensaios, utilizando o processo de condensação a ar e perturbação apenas na frequência do compressor (FQ101), conforme descrito na Tabela 4.7. Posteriormente foram realizados ensaios utilizando o processo de condensação a água e perturbações individuais na frequência do compressor (FQ101) e na carga térmica (Q) como apresentado nas Tabelas 4.8 e 4.9. Também é apresentada a dinâmica do sistema, quando no estado estacionário, para as condições padrões dos ensaios no APÊNDICE B.

5.4.1 Processo de condensação a ar (step compressor: 50-60-50 Hz)

Os resultados obtidos para o processo de condensação a ar com variação 50-60-50

Hz no compressor são apresentados nas Figuras 5.14 a 5.17. Na Figura 5.14, que representa a dinâmica das temperatura do fluido refrigerante R22 na entrada e na saída do evaporador, observa-se que aumentando a frequência do compressor (a rotação) diminui-se a temperatura do R22 na entrada do evaporador e como consequência a temperatura do R22 na saída do evaporador segue a mesma dinâmica. Isto reflete diretamente na temperatura do propilenoglicol que tem sua temperatura reduzida quando aumenta-se a frequência do compressor, Figura 5.15

Figura 5. 14 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência do compressor (50-60-50 Hz), onde k=10 s.

Figura 5. 15 - Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporador com variação na frequência do compressor (50-60-50 Hz), onde k=10 s.

O sistema de refrigeração funciona com uma válvula de expansão termostática da Danfoss com orifício n° 3, que está regulada para atender os valores de superaquecimento útil e total e subresfriamento sugerido pelos Boletins de Engenharia da Bitzer n° 20 e n° 21 (fabricante do compressor utilizado). De acordo com os Boletins de Engenharia da Bitzer os valores recomendados para o superaquecimento útil, SAU, é de 3 a 7 K, para o superaquecimento total, SAT, de 8 a 20 K e para o subresfriamento, SUB, de 3 a 5 K. Valores fora das faixas recomendadas podem ocasionar problemas ao ciclo de refrigeração como:

- ✓ retorno de líquido ao compressor, ocasionado por um superaquecimento total baixo, causando quebra mecânica;
- ✓ altas temperaturas de descarga (que pode carbonizar o óleo do motor do compressor), falta de resfriamento do motor do compressor, e diminuição da capacidade frigorífica e aumento da potência consumida, devido a um superaquecimento total muito alto;
- ✓ perdas de rendimento do sistema frigorífico pela presença indesejável do flash gás (evaporação instantânea do líquido) na linha de líquido.

Verificando o Figura 5.16, observa-se que o ciclo de refrigeração trabalha com os valores de SAU, SAT e SUB dentro do recomendado pelo fabricante do compressor.

Figura 5. 16 - Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil com variação na frequência do compressor (50-60-50 Hz), onde k=10 s.

No sistema foi realizado um balanço de energia, onde os valores de calor retirado do propilenoglicol, Q_p , e calor adicionado ao refrigerante R22, Q_e são calculados "*on-line*" (APÊNDICE A) e comparados com o calor adicionado a propilenoglicol, Q_0 . A Figura 5.17 representa o balanço de energia e nela pode-se verificar um balanço coerente.

Na Tabela 5.5 pode-se observar os estados estacionários obtidos das Figuras 5.13 a 5.17 para variação na frequência do compressor (50-60-50 Hz) utilizando processo de condensação a ar e carga térmica constante em 3000 W.

Figura 5. 17 - Dinâmica do calor retirado do propilenoglicol e calor adicionado ao R22 com variação na frequência do compressor (50-60-50 Hz), onde k=10 s.

Tabela 5. 5 – Valores dos estados estacionários das variáveis obtidas com a variação na frequência do compressor (50-60-50 Hz)

Vaniárial	Perturbações n	Perturbações na frequência do compressor com $Q=3000 W$			
variavei	FQ101 = 50 Hz	FQ101 = 60 Hz	FQ101 = 50 Hz		
Te $[^{\circ}C]$	-10,1	-13,1	-10,0		
Tse $[^{\circ}C]$	-2,8	-5,4	-2,8		
Tpee $[^{\circ}C]$	14,5	12,4	$14,\!8$		
$Tp [^{\circ}C]$	11,4	9,5	$11,\!6$		
SUB [K]	2,6	2,7	2,8		
SAU [K]	$7,\!3$	7,7	$7,\!3$		
SAT [K]	$13,\!6$	13,8	13,7		
Qp [W]	3154,1	3058,7	3266, 6		
Qe [W]	3003,7	3036, 3	2996,2		

Te: temperatura de evaporação; Tse: temperatura R22 na saída do evaporador; Tpee: temperatura do propilenoglicol na entrada do evaporador; Tp: temperatura do propilenoglicol na saída do evaporador; SUB: subresfriamento; SAU: superaquecimento útil; SAT: superaquecimento total; Qp: calor retirado do propilenoglicol; Qe: calor cedido ao R22

Verifica-se na Tabela 5.5 que as variações sofridas pelas variáveis ao se aplicar perturbações não foram muito elevadas, tanto para variação positiva de 10 Hz quanto negativa de 10 Hz. A variável temperatura de evaporação (Te) apresentou a maior variação à perturbação, em torno de 5 °C. A temperatura do propilenoglicol apresentou uma variação, tanto na entrada do evaporador (*Tpee*) quanto na saída do evaporador (*Tp*) de 3 °C aproximadamente. Os valores de SAU, SAT e SUB variaram em torno de 0,1 °C, 2 °C e 1,2 °C respectivamente.

5.4.2 Processo de condensação a ar (step compressor 50-70-50 Hz)

As Figuras 5.18 a 5.21 representam os resultados obtidos em função da amostragem k para o processo de condensação a ar com variação 50-70-50 Hz no compressor.

Nas Figuras 5.18 e 5.19 pode-se observar a influência do aumento da frequência do compressor nas temperaturas de evaporação e do propilenoglicol respectivamente. Quando há o aumento da frequência (aumenta a rotação) aumenta-se a vazão volumétrica de fluido refrigerante no compressor e consequentemente diminui a temperatura de evaporação aumentado o ΔT do propilenoglicol no evaporador. Os valores de *SAU*, *SAT* e *SUB* se mantém dentro do recomendado pelo fabricante do compressor (Figura 5.20) assegurando assim a integridade do sistema. Na Figura 5.21 observa-se que a quantidade de calor adicionada ao propilenoglicol é retirado no evaporador, transferindo-se para o fluido refrigerante R22.

Figura 5. 18 - Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência do compressor (50-70-50 Hz), onde k=10 s.

Figura 5. 19 – Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporador com variação na frequência do compressor (50-70-50 Hz), onde k=10 s.

Figura 5. 20 – Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil com variação na frequência do compressor (50-70-50 Hz), onde k=10 s.

Figura 5. 21 – Dinâmica do calor retirado do propilenoglicol e calor adicionado ao R22 com variação na frequência do compressor (50-70-50 Hz), onde k=10 s

Na Tabela 5.6 pode-se observar os estados estacionários obtidos das Figuras 5.18 a 5.21 para variação na frequência do compressor (50-70-50 Hz) utilizando processo de condensação a ar.

Tabela 5. 6- Valores dos estados estacionários das variáveis obtidas com a variação na frequência do compressor (50-70-50 Hz)

Variável	Perturbações na frequência do compressor $Q=3000 \text{ W}$			
	FQ101 = 50 Hz	FQ101 = 70 Hz	FQ101 = 50 Hz	
Te $[^{\circ}C]$	-10,4	-15,6	-10,9	
Tse $[^{\circ}C]$	-1,8	-5,1	-2,0	
Tpee $[^{\circ}C]$	$14,\!3$	10,8	14,0	
$Tp [^{\circ}C]$	11,1	7,9	10,7	
SUB [K]	2,6	2,5	2,7	
SAU [K]	8,5	10,5	8,9	
SAT [K]	$14,\!4$	16,0	$14,\!8$	
$\operatorname{Qp}[W]$	3215,9	2904,8	3291,7	
Qe [W]	3047,8	3054,7	2988,7	

Te: temperatura de evaporação; Tse: temperatura R22 na saída do evaporador; Tpee: temperatura do propilenoglicol entrada do evaporador; Tp: temperatura do propilenoglicol na saída do evaporador; SUB: subresfriamento; SAU: superaquecimento útil; SAT: superaquecimento total; Qp: calor retirado do propilenoglicol; Qe: calor cedido ao R22

Pode-se verificar na Tabela 5.6 que, ao se aplicar perturbações positiva e negativa de 20 Hz cada, as variáveis do sistema não apresentaram, como anteriormente, variações muito elevadas. O *SAU*, *SAT* e *SUB* permaneceram praticamente inalterados, apresentando uma variação de aproximadamente 0,2 °C. A temperatura do R22 na entrada do evaporador (*Te*) e na saída do evaporador (*Tse*) apresentou uma variação em torno de 3 °C. A variação na temperatura do propilenoglicol (*Tp* e *Tpee*) manteve-se próximas de 2,5 °C.

5.4.3 Processo de condensação a ar (step compressor: 50-40-50 Hz)

Os resultados obtidos para o processo de condensação a ar com variação 50-40-50 Hz no compressor em função da amostragem (k) são apresentados nas Figuras 5.22 a 5.25.

O efeito da variação da frequência do compressor pode ser observado nas temperaturas do R22 na entrada (Te) e na saída do evaporador (Tse). Quando se diminui a frequência, aumenta-se a temperatura de evaporação. Observa-se esse efeito na Figura 5.22 e consequentemente esse mesmo efeito na temperatura do propilenoglicol, Figura 5.23.

Figura 5. 22 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência do compressor (50-40-50 Hz), onde k=10 s.

Figura 5. 23 – Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporador com variação na frequência do compressor (50-40-50 Hz), onde k=10 s.

Nota-se na Figura 5.24 que o superaquecimento útil (SAU), o superaquecimento total (SAT) e o subresfriamento (SUB), não se alteraram quando o sistema foi submetido a uma perturbação na variação do compressor mantendo-se dentro do recomendado pelo fabricante do compressor. As quantidades de calor adicionado e removido também ficaram próximas (Figura 5.25).

Figura 5. 24 – Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil, com variação na frequência do compressor (50-40-50 Hz), onde k=10 s.

Figura 5. 25 – Dinâmica do calor retirado do propilenoglicol e calor adicionado ao R22 com variação na frequência do compressor (50-70-50 Hz), onde k=10 s.

Na Tabela 5.7 pode-se observar os estados estacionários obtidos das Figuras 5.22 a 5.25 para variação na frequência do compressor (50-40-50 Hz), utilizando processo de condensação a ar. A variação mais significativa observada foi na temperatura do fluido refrigerante R22 na entrada e na saída do evaporador, $Te \ e \ Tse$, respectivamente, que ficou próximo a 4,5 °C. O superaquecimento útil e total ($SAU \ e \ SAT$) e subresfriamento (SUB) permaneceram praticamente inalterados com uma variação de 0,1 °C.

Variável	Perturbações na frequência do compressor $\mathbf{Q} = 3000 \ \mathrm{W}$		
	FQ101 = 50 Hz	FQ101 = 40 Hz	FQ101 = 50 Hz
Te [°C]	-10,0	-5,4	-8,9
Tse $[^{\circ}C]$	-1,4	2,8	0,1
Tpee $[^{\circ}C]$	14,7	$18,\!3$	15,8
Tp $[^{\circ}C]$	11,5	15,2	12,5
SUB [K]	2,4	2,6	2,8
SAU [K]	8,6	8,2	8,9
SAT [K]	14,5	$14,\!0$	$14,\!5$
$\operatorname{Qp}[W]$	3190,4	3120,2	3254,7
Qe [W]	3020.7	2966.7	3046.0

Tabela 5. 7 - Valores dos estados estacionários das variáveis obtidas com a variação na frequência do compressor (50-40-50 Hz)

5.4.4 Processo de condensação a água (*step* compressor: 60-70-60 Hz)

Os resultados obtidos para o processo de condensação a água com variação 60-70-60 Hz no compressor, mostrados em função da amostragem (k), são apresentados nas Figuras 5.26 a 5.28.

Nas Figuras 5.26 e 5.27, observa-se a influência da variação na frequência do compressor nas temperaturas do R22 na entrada e na saída do evaporador e do propilenoglicol, tanto na entrada como na saída do evaporador. Com o aumento da frequência, diminui-se as temperaturas. Houve uma variação de aproximadamente 2 °C para a temperatura de evaporação (Te) e uma variação de 1 °C para a temperatura do propilenoglicol (Tp).

Figura 5. 26 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência do compressor (60-70-60 Hz), onde k=10 s.

Figura 5. 27 – Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporador com variação na frequência do compressor (60-70-60 Hz), onde k=10 s.

Um efeito diferente ao causado na condensação a ar é observado no superaquecimento útil e total e subresfriamento do ciclo de refrigeração (Figura 5.28). Ao contrário do observado anteriormente, o superaquecimento total apresentou uma variação de aproximadamente 3 °C, porém mantendo-se dentro do recomendado (Boletim de Engenharia Bitzer). O superaquecimento útil e o subresfriamento não apresentaram mudanças significativas, 0,1 °C.

Figura 5. 28 – Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil com variação na frequência do compressor (60-70-60 Hz), onde k=10 s.

5.4.5 Processo de condensação a água (*step* compressor: 60-50-60 Hz)

Os resultados obtidos, em função da amostragem (k), para o processo de condensação a água, com variação 60-50-60 Hz no compressor, são apresentados nas Figuras 5.29 a 5.31.

As temperaturas de evaporação (Te), (Figura 5.29) e do propilenoglicol (Tp), (Figura 5.31) apresentaram uma variação de 3 °C. Verifica-se também que, ao diminuir a frequência do compressor, aumenta-se a temperatura de evaporação, isto devido ao fato da diminuição da vazão mássica de fluido refrigerante.

Figura 5. 29 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência do compressor (60-50-60 Hz), onde k=10 s.

Figura 5. 30 – Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporador com variação na frequência do compressor (60-50-60 Hz), onde k=10 s.

Observando a Figura 5.31, nota-se que o superaquecimento útil sofre uma variação de aproximadamente 1,4 °C, mantendo-se dentro do recomendado pelo fabricante do compressor e o superaquecimento útil e subresfriamento não apresentam alterações significativas ficando em torno de 0,3 °C.

Figura 5. 31 – Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil com variação na frequência do compressor (60-50-60 Hz), onde k=10 s.

5.4.6 Processo de condensação a água (*step* carga térmica: 3000-4000-3000 W)

Além da variação da frequência do compressor, foram realizadas também perturbações na carga térmica adicionada ao propilenoglicol. Os resultados obtidos para o processo de condensação a água com variação 3.000-4.000-3.000 W na resistência são apresentados nas Figuras 5.32 a 5.34. A amostragem (k) de dados foi de 10 s.

A variação da temperatura de evaporação (Te) apresentou uma significativa mudança de 6,5 °C quando se variou a carga térmica do sistema em 1.000 W; isto pode ser verificado na Figura 5.32. Em consequência obteve-se uma variação de aproximadamente 5 °C na temperatura do propilenoglicol, Figura 5.33.

Figura 5. 32 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na carga térmica (3000-4000-3000 W), onde k=10 s.

Figura 5. 33 – Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporador com variação na carga térmica (3000-4000-3000 W), onde k=10 s.

Verificando a Figura 5.34, nota-se que a o superaquecimento útil, quando da variação da carga térmica de 3.000 W para 4.000 W, ficou acima do recomendado. Isto se deve ao fato da válvula de expansão ajustar o superaquecimento para manter a retirada da carga térmica, de uma certa forma alta, do sistema, visto que o mesmo tem capacidade de um pouco mais de 1 TR (tonelada de refrigeração).

Figura 5. 34 – Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil com variação na carga térmica (3000-4000-3000 W), onde k=10 s.

5.4.7 Processo de condensação a água (*step* carga térmica: 3000-2000-3000 W)

Os resultados obtidos para o processo de condensação a água com variação 3000-2000-3000 W no compressor são apresentados nas Figuras 5.35 a 5.37.

A maior variação encontrada na temperatura de evaporação (Te) e na temperatura do propilenoglicol foi quando diminui-se a carga térmica para 2.000 W. Isto se deve ao fato de que quanto menos carga térmica para se retirar do sistema menos calor para se transferir ao fluido refrigerante R22. Na Figura 5.35, nota-se a variação em torno de 4 °C na temperatura de evaporação e 10 °C na temperatura do R22 na saída do evaporador e, na Figura 5.36, uma variação de 9 °C na temperatura do propilenoglicol (Tp).

Figura 5. 35 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na carga térmica (3000-2000-3000 W), onde k=10 s.

Figura 5. 36 - Dinâmica da temperatura do propilenoglicol na entrada (Tp) e na saída do evaporador com variação na carga térmica (3000-2000-3000 W), onde k=10 s.

A baixa carga térmica fez com que o superaquecimento total do sistema variasse em 16 °C atingindo o mínimo de 1 °C, considerado um superaquecimento muito baixo. O superaquecimento útil também teve uma variação significativa de 6 °C. Isto se deve a atuação da válvula de expansão termostática atuando no sistema (Figura 5.37).

Figura 5. 37 - Dinâmica da temperatura do subresfriamento, do superaquecimento total e útil com variação na carga térmica (3000-2000-3000 W)

5.4.8 Processo de condensação a água (*step* bomba do evaporador: 50-60-50 Hz)

A fim de verificar a influência da variação da vazão mássica de propilenoglicol no evaporador realizou-se ensaios aplicando perturbações na frequência da bomba do evaporador. Os resultados obtidos para os ensaios utilizando condensação a água com perturbações de 50-60-50 Hz na bomba do evaporador são apresentados nas Figuras 5.38 e 5.39.

Na Figura 5.38, pode-se observar que o processo de evaporação, ao sofrer as perturbações, sofre uma variação na temperatura do R22 na entrada (Te) e na saída do evaporador porém, ao atingir o estado estacionário novamente, as temperaturas sempre retornam ao estado inicial.

Figura 5. 38 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência da bomba do evaporador (50-60-50 Hz), onde k=10 s.

Isto se deve ao fato de que as temperaturas do R22 na entrada e na saída do evaporador dependem muito mais da massa deslocada de R22 do que da massa deslocada de propilenoglicol. Como a massa deslocada de R22 se manteve constante (a frequência do compressor se manteve em 60 Hz), a tendência é que atinja as temperaturas do estado inicial.

Já as temperaturas do propilenoglicol na entrada e na saída (Tp) do evaporador apresentam uma variação de aproximadamente 4°C ao se aplicar uma variação de 10 Hz tanto acima como abaixo da frequência padrão de 50 Hz (Figura 5.39).

Figura 5. 39 – Dinâmica da temperatura do propilenoglicol na entrada e na saída do evaporador com variação na frequência da bomba do evaporador (50-60-50 Hz), onde k=10s.

5.4.9 Processo de condensação a água (degrau 50-70-50 Hz)

As Figuras 5.40 e 5.41 representam as dinâmicas das temperaturas do R22 na entrada e na saída do evaporador (Te) e as temperaturas do propilenoglicol na entrada e na saída do evaporador, respectivamente, quando aplicado uma variação na bomba do evaporador de 20 Hz acima da frequência de referência de 50 Hz. Na Figura 5.30, podese observar que, assim como na variação de 50-60-50 Hz, na bomba do evaporador obteve-se o mesmo efeito na temperatura do R22 tanto na entrada quanto na saída do evaporador.

Figura 5. 40 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência da bomba do evaporador (50-70-50 Hz), onde k=10 s.

Analisando a figura 5.41, observa-se que a variação na bomba do evaporador acarreta em uma variação de aproximadamente 4 °C na temperatura do propilenoglicol na entrada e na saída (Tp) do evaporador.

Figura 5. 41 - Dinâmica da temperatura do propilenoglicol na entrada e na saída (Tp) do evaporador com variação na frequência da bomba do evaporador (50-70-50 Hz), onde k=10 s.

5.4.10 Processo de condensação a água (*step* bomba do evaporador: 50-40-50 Hz)

Os resultados obtidos para o processo de condensação a água quando submetido o sistemas a perturbações de 50-40-50 Hz na bomba do evaporador são apresentados nas Figuras 5.42 e 5.43.

Na Figura 5.42, observa-se que a comportamento das temperaturas do R22 na entrada (Te) e na saída do evaporador manteve-se inalterados após atingirem os estados estacionários correspondente a cada frequência da bomba do evaporador. Este efeito ocorreu em todos os ensaios em que o processo de evaporação do ciclo de refrigeração foi submetido a uma perturbação na bomba do evaporador. As temperaturas do propilenoglicol na entrada e na saída (Tp) do evaporador apresentaram uma variação idêntica aos ensaios anteriores para perturbações na bomba do evaporador, ou seja, aproximadamente 4 °C, Figura 5.43.

Figura 5. 42 – Dinâmica da temperatura do R22 na entrada (Te) e na saída do evaporador com variação na frequência da bomba do evaporador (50-40-50 Hz), onde k=10 s.

Figura 5. 43 – Dinâmica da temperatura do propilenoglicol na entrada e na saída (Tp) do evaporador com variação na frequência da bomba do evaporador (50-40-50 Hz), onde k=10s.

5.4.11 Análise da não-linearidade do sistema de refrigeração

A partir da análise realizada da dinâmica do sistema de refrigeração observou-se que o sistema apresenta uma não-linearidade. Na Tabela 5.8 pode-se observar os ganhos para as temperaturas de evaporação (Te) e do propilenoglicol (Tp) quando aplicada uma variação na frequência do compressor para o processo de condensação a ar e uma variação na frequência do compressor na carga térmica para o processo de condensação a água.

Processo de condensação a ar						
Variável	Step	Ganhos	Figura			
Ta	50-60 Hz	-0,29 $^{\circ}\mathrm{C/Hz}$	Fig. 5.14			
Te	50-40 Hz	0,46 °C/Hz	Fig. 5.22			
Tr	50-60 Hz	-0,20 °C/Hz	Fig. 5.15			
тр	50-40 Hz	0,37 °C/Hz	Fig. 5.23			
	F	Processo de condensação a água	_			
Variável	Step	Ganhos	Figura			
	60-70 Hz	-0,19 °C/Hz	Fig. 5.26			
m.	$60-50~\mathrm{Hz}$	0,30 °C/Hz	Fig. 5.29			
Te	$3000-4000 \ W$	$0,0056 \ ^{\circ}{ m C/W}$	Fig. 5.32			
	3000-2000 W	-0,0037 °C/W	Fig. 5.35			
Тр	60-70 Hz	-0.05 °C/Hz	Fig. 5.27			
	60-50 Hz	$0,09~^{\circ}\mathrm{C/Hz}$	Fig. 5.30			
	3000-4000 W	$0,0045 \ ^{\circ}{\rm C/W}$	Fig. 5.33			
	3000-2000 W	-0,0065 °C/W	Fig. 5.36			
Te: temperatura de evaporação; Tp: temperatura do propilenoglicol						

Tabela 5. 8 – Ganhos para os processos de condensação a ar e água do sistema de refrigeração

Observando-se a Tabela 5.8 nota-se que o sistema apresenta uma não-linearidade, pois, os ganhos para uma variação positiva é diferente de quando se aplica a mesma variação, porém, negativa. Como exemplo pode-se analisar a variável *Te* (temperatura de evaporação) quando submetido o compressor a uma variação de 10 Hz acima da frequência padrão de 50 Hz e 10 Hz abaixo da frequência padrão para o processo de condensação a água. Para a variação de 60-70 Hz no compressor tem-se um ganho, em valor absoluto, de 0,19 °C/Hz o que para a variação de 60-50 Hz este ganho, em valor absoluto, é de 0,30 °C/Hz. Isto é observado para todas as variação a qual foi submetida o sistema de refrigeração.

5.5 Modelagem utilizando arquitetura ANFIS

Como descrito no Tópico 4.2.2.2, foram realizadas duas identificações para o sistema de refrigeração (uma identificação para o sistema contendo um compressor aberto e uma identificação para o sistema contendo um compressor semi-hermético), ressaltando que se tratam de identificação completamente diferentes. O método do agrupamento subtrativo (*subtractive clustering*) foi utilizado para a desenvolvimentos dos modelos TS para a predição das temperaturas de evaporação (Te) e do propilenoglicol (Tp) para ambas as identificações descritas na seção 4.2.3.3.

5.5.1 Agrupamento subtrativo (Subtractive Clustering)

Quando se desenvolve modelos a partir de identificação de sistemas é importante que se tenha conhecimento de como se organizar e categorizar os dados além de compreendê-los. Uma forma de se realizar esta compreensão é através de algoritmos de agrupamento, (JANG, 1993). Dentre os algoritmos de agrupamento está o agrupamemento subtrativo *(subtractive clustering)*.

O agrupamento subtrativo apresenta uma vantagem em relação ao esforço computacional para seu desenvolvimento, pois a mesma é proporcional a quantidade de dados do conjunto de treinamento (PAIVA; DOURADO, 2004).

O agrupamento subtrativo calcula a densidade dos dados em determinado ponto central do agrupamento, ou seja, considerando um conjunto de n pontos $\{x_1, x_2, ..., x_n\}$, onde cada ponto é um possível centro do agrupamento a densidade no ponto x_i , D_i , pode ser representada pela equação 5.1 (LIMA, 2010).

5. Resultados e Discussões

$$D_{i} = \sum_{j=1}^{n} exp\left(-\frac{\|x_{i}-x_{j}\|^{2}}{\binom{r_{a}}{2}^{2}}\right)$$
Eq. 5.1

Onde r_a (raio) é uma constante positiva que define a vizinhança. Um determinado ponto terá uma alta densidade apresentar muitos pontos em sua vizinhança. Pontos fora do raio r_a contribuem pouco para a medida da densidade.

Após o cálculo da medida da densidade de cada ponto, o primeiro centro do agrupamento é selecionado em função da mais alta medida de densidade. Sendo um ponto selecionado x_{c1} e sua medida de densidade D_{c1} , a medida para cada ponto x_i será expressa pela equação 5.2:

$$D_{i} = D_{i} - D_{c1} exp\left(-\frac{\|x_{i} - x_{c1}\|^{2}}{\binom{r_{b}}{2}^{2}}\right)$$
Eq. 5.2

Onde r_b é uma constante positiva que define a vizinhança que possui diminuição, representativas, em sua densidade de medida fazendo com que esses pontos sejam, provavelmente, descartados como próximos centros de agrupamento. Normalmente a constante r_b é maior que a r_a para evitar agrupamentos com espaços reduzidos. Tipicamente se utiliza $r_b=1,5$ r_a (PAIVA; DOURADO, 2004).

Uma vez revisada a densidade de medida, um novo centro de agrupamento x_{c2} é selecionado e todas as densidades de medidas dos conjunto de pontos são revisadas novamente. Este procedimento é realizado até que um número suficiente de agrupamentos que representem o conjunto de dados seja gerado.

Ao se utilizar o método de agrupamento subtrativo em relação ao dados de entrada e saída de um sistema, cada agrupamento resultante apresenta uma "certa" característica do sistema modelado. Assim, o centro de cada agrupamento será utilizado como centro das regras do modelo TS (LIMA, 2010). O agrupamento c_i de dimensão Mpode ser decomposto em dois vetores p_i e q_i , sendo p_i a parte de entrada contendo os primeiro N elementos de c_i e q_i é parte de saída que contém os últimos M-N elementos de c_i . Logo, dado um vetor de entrada x, o grau de pertinência para o qual a regra Fuzzy RF_i é completada, pode ser definido pela equação 5.3:

$$\mu_i = exp\left(-\frac{\|x-p_i\|^2}{\binom{r_a}{2}^2}\right)$$
Eq. 5.3

5.5.2 Modelos Takagi-Sugeno I (Sistema de refrigeração utilizando compressor aberto)

Na primeira identificação foram determinados três modelos de predição: um Modelo TS para a temperatura de condensação; um modelo TS para a temperatura de evaporação e um modelo Ts para a temperatura do propilenoglicol. As variáveis de entrada utilizadas na determinação dos modelos estão descritas na Tabela 4.10. Para o treinamento ANFIS foram realizados ensaios, nos quais, a dinâmica do processo do sistema de refrigeração foi determinada como descrito na seção 5.5.2.1. 5.5.2.1 Dados para identificação dos modelos de predição da temperatura de condensação, da temperatura de evaporação e da temperatura do propilenoglicol

Ensaio I: Realizou-se um ensaio variando-se a frequência do compressor do sistema de refrigeração de 30Hz a 70Hz com incremento de 10Hz, mantendo-se a frequência da bomba do evaporador fixa em 40Hz. Para cada perturbação atingiu-se o estado estacionário. Ao atingir o estado estacionário na frequência de 70Hz (limite máximo de variação), variou-se novamente a rotação do compressor de 70Hz a 30Hz com perturbações negativas de 10Hz, mantendo a frequência da bomba de evaporação fixa em 40Hz, atingindo-se o estado estacionário para cada perturbação.

Ensaio II: Realizou-se um ensaio variando-se a frequência da bomba de evaporação de 20Hz a 70Hz, com incrementos de 10Hz, mantendo-se a frequência do compressor fixa em 50Hz. Para cada perturbação atingiu-se o estado estacionário. Ao atingir o estado estacionário na frequência de 70Hz (limite máximo de variação) variou-se novamente a rotação da bomba de evaporação de 70Hz a 20Hz com perturbações negativas de 10Hz, atingindo-se o estado estacionário para cada perturbação.

Os resultados obtidos nos ensaios I e II são apresentados nas Figuras 5.44

Figura 5. 44 – Dados de treinamento utilizado no desenvolvimento dos Modelos Takagi-Sugeno: a) Frequência do compressor; b) frequência da bomba do evaporador; c) temperatura do propilenoglicol na entrada do evaporador; d) temperatura de condensação; e) temperatura de evaporação e e) temperatura do propilenoglicol.

5.5.2.2 Treinamento ANFIS para determinação dos Modelos Takagi-Sugeno

Para o treinamento ANFIS referente ao modelo Takagi-Sugeno da temperatura de condensação, agrupou-se os dados dos ensaios I e II, citados anteriormente, obtendo uma dinâmica da temperatura de condensação, onde as variações do compressor e da bomba de evaporação estão presentes. Analogamente, seguiu-se o mesmo procedimento para os modelos da temperatura de evaporação e do propilenoglicol. Para o desenvolvimento dos modelos foram utilizadas as seguintes variáveis linguística: "LL para Low-Low", "LM para Low-Medium", "LH para Low-High", "HL para High-Low", "HM para High-Medium" e "HH para High-High".

O modelo *fuzzy* para a temperatura de condensação, T_{cond} , é composto por quatro entradas (*FQ101*, *FQ201*, *Tpeev* e $Tcond_{(k-1)}$) e seis funções de pertinência para cada entrada . O modelo da temperatura de evaporação, T_{evap} , é composto por quatro entradas (*FQ101*, *FQ201*, T_{peev} e $Tevap_{(k-1)}$) e seis funções de pertinência para cada entrada. O modelo da temperatura do *propilenoglicol*, T_{prop} , é composto por quatro entradas (*FQ101*, *FQ201*, T_{peev} e $Tprop_{(k-1)}$) e seis funções de pertinência para cada entradas (*FQ101*, *FQ201*, T_{peev} e $Tprop_{(k-1)}$) e seis funções de pertinência para cada entrada.

As funções de pertinência e, consequentemente o conjunto Fuzzy correspondente ao modelo Fuzzy da temperatura de condensação, de evaporação e do propilenoglicol, são ilustrados pela Figura 5.45, sendo todos os conjuntos descritos em $\mathcal{R} \rightarrow [0,1]$. Os antecedentes das regras Fuzzy são apresentados na Tabela 5.9.

Figura 5. 45 - Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno a) da Temperatura de condensação, Tcond, b) da temperatura de evaporação, Tevap, e c) da temperatura do propilenoglicol, Tprop

Para modelo da temperatura de condensação, Tcond						
FQ101	FQ201	Tpeev	$Tcond_{k-1}$	Tcond		
HL	LH	$_{ m HL}$	HL	Tcond_1		
LH	HH	LL	LH	Tcond_2		
HM	LL	LM	LM	Tcond_3		
LL	LM	HH	LL	Tcond_4		
HH	$_{\rm HL}$	LH	$_{\rm HM}$	Tcond_5		
LM	HM	HM	HH	Tcond_6		
I	Para o modelo	da temperatura	de evaporação	, Tevap		
FQ101	FQ201	Tpeev	$Tevap_{k-1}$	T_{evap}		
LH	LH	LH	LH	Tevap_1		
HL	HH	LL	HL	Tevap_2		
LM	LM	HM	$_{\rm HM}$	Tevap_3		
HM	LL	HL	LM	Tevap_4		
HH	HL	LM	LL	Tevap_5		
LL	HM	HH	HH	Tevap_6		
Pa	ra o modelo da	a temperatura d	lo propilenoglic	ol, Tprop		
FQ101	FQ201	Tpeev	$Tprop_{k-1}$	T prop		
LH	LH	HL	LH	Tprop_1		
HL	HH	LL	LM	Tprop_2		
HM	LL	LH	LL	Tprop_3		
LM	LM	HM	$_{\rm HL}$	Tprop_4		
LL	$_{\rm HL}$	HH	HH	Tprop_5		
HH	HM	LM	HM	Tprop_6		

Tabela 5. 9 – Antecedentes das regras fuzzy para os modelos Takagi-Sugeno de predição das temperaturas: de condensação; de evaporação e do propilenoglicol

Obteve-se com o treinamento ANFIS os consequentes para os modelos Fuzzy das temperaturas em estudo descritos na Tabela 5.10, onde: q_{ij} são os parâmetros do modelo fuzzy.

N	Iodelo <i>fuzzy</i>	para a tem	peratura de	condensaçã	io, Tcond
T_{cond}	$q_{i heta}$	q_{i1}	q_{i2}	q_{i3}	q_{i4}
Tcond_1	0.00241	0.00355	0.00686	0.9677	0.936
Tcond_2	0.01974	-0.00284	-0.02087	0.9670	0.542
Tcond_3	0.08387	0.03562	-0.01611	0.8705	-0.268
Tcond_4	-0.78470	-0.74240	0.07710	0.8315	57.760
Tcond_5	-0.01241	-0.02293	0.14050	0.7958	8.672
Tcond_6	0.16260	-0.01986	0.06675	0.5487	11.260
1	Modelo <i>fuzz</i>	y para a ten	nperatura de	e evaporaçã	o, Tevap
T_{evap}	q_{i0}	q_{i1}	q_{i2}	q_{i3}	q_{i4}
Tevap_1	-0.00887	-0.00330	0.03935	0.9450	-0.204
Tevap_2	-0.33910	0.01610	-0.03925	0.6374	12.930
Tevap_3	0.00561	0.01635	-0.00202	0.9722	-0.906
Tevap_4	0.04592	-0.05165	0.04465	0.9016	-2.960
Tevap_5	-0.03685	5.61200	0.01489	0.9314	-223.200
Tevap_6	0.16050	0.22200	0.32230	0.3824	-17.780
N	Iodelo <i>fuzzy</i>	para a tem	peratura do	propilenoglic	ol, Tprop
T_{prop}	q_{i0}	q_{i1}	q_{i2}	q_{i3}	q_{i4}
Tprop_1	-0.00741	0.01435	0.21100	0.7455	-0.194
Tprop_2	0.04882	-0.00242	0.34260	0.6507	-2.444
Tprop_3	0.01649	0.02552	0.20530	0.6902	-2.018
Tprop_4	0.00636	0.01027	0.01952	0.9715	-0.564
Tprop_5	-0.04477	-0.15500	0.40750	0.5141	7.997
Tprop_6	-0.57320	-3.30100	0.55280	0.3054	172.900

Tabela 5. 10 – Consequentes das regras fuzzy para os modelos Takagi-Sugeno de predição das temperaturas: de condensação; de evaporação e do propilenoglicol

A representação explicita das regras fuzzy do modelo Takagi-Sugeno, com base nas Tabelas 5.9 e 5.10, encontra-se no Apêndice E.

5.5.2.3 Validação dos Modelos Takagi-Sugeno do Grupo I

A predição *off-line* da temperatura de condensação do sistema de refrigeração pode ser observada na Figura 5.46. O modelo *Fuzzy* prediz de uma forma confiável a temperatura de condensação do sistema, o que pode-se confirmar observando a Figura 5.47. Nesta figura, a distribuição dos dados reais com os preditos apresenta uma dispersão de \pm 0,5 °C, o que está dentro do erro especificado do equipamento de medição (sensores de temperatura tipo Pt100).

Figura 5. 46 - Predição, off-line, da temperatura de condensação, Tcond

Figura 5. 47 – Distribuição dos dados reais com os dados preditos pelo modelo Fuzzy da temperatura de condensação (validação off-line)

Na Figura 5.48 observa-se a predição *off-line* da temperatura de evaporação do sistema de refrigeração. O modelo *Fuzzy* da temperatura de evaporação representa muito bem a dinâmica da temperatura de evaporação. Na Figura 5.49, a representação desta boa predição é observada levando em consideração a dispersão dos dados reais com os predito pelo modelo *fuzzy*, dispersão esta que fica em torno de \pm 0,5 °C.

Figura 5. 48 – Predição, off-line, da temperatura de evaporação, Tevap

Figura 5. 49 – Distribuição dos dados reais com os dados preditos pelo modelo Fuzzy da temperatura de evaporação (validação off-line)

102

Assim com os modelos Fuzzy das temperaturas de condensação e evaporação (*Tcond* e *Tevap*, respectivamente), o modelo Fuzzy da temperatura do propilenoglicol, *Tprop*, apresentou uma predição confiável (Figura 5.50), confirmada pela dispersão dos dados em torno de \pm 0,5 °C, Figura 5.51.

Figura 5. 50 - Predição, off-line, da temperatura do propilenoglicol, Tprop

Figura 5. 51 – Distribuição dos dados reais com os dados preditos pelo modelo Fuzzy da temperatura do propilenoglicol (validação off-line)

Pode-se confirmar a boa predição dos modelos *fuzzy* desenvolvidos apresentando o índice de desempenho de cada um dos modelos através do VAF (*variance accounted for*), Tabela 5.11. Para que um modelo represente de uma forma precisa o sistema real o VAF deve ser maior que 97.0%, (BABUSKA et al. 1998). O VAF é determinado por:

$$VAF = \left[1 - \frac{var(Y - Ym)}{var(Y)}\right] \times 100\%$$
(Eq. 5.4)

Onde: Y é a variável real do processo e Ym a variável predita pelo modelo Fuzzy.

Tabela 5. 11 – VAF (variance accounted for) para os modelos de predição TS

Modelo de predição <i>fuzzy para:</i>	Predição off-line
Temperatura de Condensação	94.26 %
Temperatura de evaporação	97.17~%
Temperatura do propilenoglicol	98.04~%

5.5.3 Modelos Takagi-Sugeno II (Sistema de refrigeração utilizando compressor semi-hermético)

A identificação para o sistema de refrigeração, contendo um compressor semihermético, foi realizada de forma diferente ao sistema de refrigeração utilizando um compressor aberto (descrito anteriormente). Como descrito na seção 4.2.3.3, o sinal gerado para a identificação, foi um sinal aleatório.

5.5.3.1 Obtenção do tempo de assentamento das variáveis do modelo TS

. Para a identificação do sistema, aplicou-se degrau em duas variáveis do processo: a frequência do compressor (FQ101) e da bomba do evaporador (FQ201) e as variáveis analisadas foram a temperatura do propilenoglicol (Tp) e a temperatura de evaporação (Te), que serão as variáveis preditas nos Modelos TS, Figuras 5.52 e 5.56.

Figura 5. 52 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol) e Te (temperatura de evaporação) para variação na frequência do compressor (60-50-60 Hz)

Figura 5. 53 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol) e Te (temperatura de evaporação) para variação na frequência do compressor (60-70-60 Hz)

Figura 5. 54 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol) e Te (temperatura de evaporação) para variação na frequência da bomba do evaporador (50-60-50 Hz)

Figura 5. 55 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol) e Te (temperatura de evaporação) para variação na frequência da bomba do evaporador (50-70-50 Hz)

Figura 5. 56 – Determinação do tempo de assentamento das variáveis Tp (temperatura do propilenoglicol) e Te (temperatura de evaporação) para variação na frequência da bomba do evaporador (50-40-50 Hz)

Os valores obtidos para os tempos de assentamentos, t_{st} , das variáveis (Figuras 5.52 a 5.56) foram utilizados para a determinação dos tempos de mudança, t_{sw} , do sinal aleatório usado na identificação (Equação 4.1).

5.5.3.2 Resultados para identificação dosmodelos depredição dacondensação, datemperatura temperatura dedeevaporação daetemperatura do propilenoglicol

Para o treinamento ANFIS utilizou-se os dados, gerados através do sinal aleatório já descrito anteriormente, apresentados na Figura 5.57 e 5.58. As variáveis para o desenvolvimento dos modelos TS foram utilizadas como variáveis desvio, ou seja, variável medida subtraída do estado estacionário.

Na Figura 5.57 são apresentados os resultados da identificação do sistema quando a frequência do compressor foi submetida a uma perturbação aleatória gerada pelo sinal de identificação.

Figura 5. 57 – Dados para o treinamento ANFIS para a determinação dos Modelos Takagi-Sugeno para as temperaturas de evaporação e do propilenoglicol (*Grupo I*: Variação na frequência do compressor FQ101)

A identificação do sistema, quando da perturbação na frequência da bomba do evaporador, foi realizada com dados de ensaio diferente, por isso não são apresentadas na Figura 5.57 e sim na Figura 5.58.

Figura 5. 58 - Dados para o treinamento ANFIS para a determinação dos Modelos Takagi-Sugeno para as temperaturas de evaporação e do propilenoglicol (*Grupo II*: Variação na frequência da bomba do evaporador FQ201)

5.5.3.4 Treinamento ANFIS para a determinação dos Modelos Takagi-Sugeno para o Grupo I (Variação na frequência do compressor (FQ101))

Para o desenvolvimento dos modelos TS para a predição da temperatura de evaporação (Te) foram utilizadas as seguintes variáveis linguística: "*LM para Low*-

Medium", "M para Medium", "HL para High-Low", "HM para High-Medium" e "HH para High- High".

O modelo fuzzy para a temperatura de evaporação, Te, é composto por cinco entradas ($FQ101_{(k)}$, $FQ101_{(k-1)}$, $FQ101_{(k-2)}$, $Te_{(k-1)}$ e $Te_{(k-2)}$ e quatro funções de pertinência para cada entrada. As funções de pertinência, μ_i , e consequentemente do conjunto fuzzy correspondente ao modelo fuzzy da temperatura de evaporação são ilustrados na Figura 5.59, sendo todos os conjuntos descritos em $\mathcal{R} \rightarrow [0,1]$.

Figura 5. 59 – Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno da temperatura de evaporação em função da frequência do compressor

O modelo *Fuzzy* TS para a temperatura do propilenoglicol, Tp, é composto por cinco entradas ($FQ101_{(k)}$, $FQ101_{(k-1)}$, $FQ101_{(k-2)}$, $Tp_{(k-2)}$ e quatro funções de pertinência para cada entrada, sendo as funções de pertinência, μ_i , e consequentemente do conjunto *fuzzy* correspondente ao modelo *fuzzy* da temperatura do propilenoglicol apresentados na Figura 5.60, todos os conjuntos descritos em $\mathcal{R} \rightarrow [0,1]$.

Figura 5. 60 - Conjunto *Fuzzy* e funções de pertinência do modelo Takagi-Sugeno da temperatura do propilenoglicol em função da frequência do compressor

Os antecedentes das regras Fuzzy, determinadas pelo método do agrupamento subtrativo (*subtractive clustering*) são apresentados na Tabela 5.12. Obteve-se com o treinamento ANFIS os consequentes para os modelos *fuzzy* das temperaturas de evaporação e do propilenoglicol descritos na Tabela 5.13, onde: q_{ij} são os parâmetros do modelo *Fuzzy*.

Modelo TS para temperatura de evaporação							
$FQ101_{(k-1)}$	$FQ101_{(k-2)}$	$FQ101_{(k-3)}$	$Te_{(k-1)}$	$Te_{(k-2)}$	Te		
HL	HL	HL	HL	HM	${\rm Te}_1$		
LM	LM	-	-	-	Te_2		
М	М	М	HM	HL	${\rm Te}_3$		
-	-	LM	-	-	Te_4		
HM	HM	HM	Μ	Μ	${\rm Te}_5$		
Modelo TS para temperatura do propilenoglicol							
$FQ101_{(k)}$	$FQ101_{(k-1)}$	$FQ101_{(k-2)}$	$Tp_{(k-1)}$	$Tp_{(k-2)}$	Tp		
HL	HL	HL	-	HL	Tp_1		
-	_	-	Μ	-	Tp_2		
LM	М	М	HL	HM	Tp_3		
$_{\rm HM}$	HM	HM	-	-	Tp_4		
М	LM	LM	HM	HH	Tp_5		
-	_	-	HH	Μ	Tp_{6}		

Tabela 5. 12 – Antecedentes das regras fuzzy para os modelos Takagi-Sugeno para predição da: Temperatura de evaporação e Temperatura do propilenoglicol

Tabela 5. 13 – Consequentes obtidos para os modelos Takagi-Sugeno para predição da: Temperatura de condensação; Temperatura de evaporação e Temperatura do propilenoglicol

Modelo TS para temperatura de evaporação								
Te	q_{i0}	q_{i1}	q_{i2}	q_{i3}	q_{i4}	q_{i5}		
Te_1	$-108,261 \times 10^{-2}$	$-78,335 \times 10^{-2}$	$149,\!827{ imes}10^{-2}$	$-43,019 \times 10^{-2}$	$-16,741 \times 10^{-2}$	$91,\!239{ imes}10^{-2}$		
Te_2	$8,110 \times 10^{-2}$	$-0,700 \times 10^{-2}$	$-1,803{ imes}10^{-2}$	$1,835{ imes}10^{-2}$	$55,925{ imes}10^{-2}$	$41,\!310{ imes}10^{-2}$		
Te_3	$102,\!881{ imes}10^{-2}$	$28,937{ imes}10^{-2}$	$-90,367{ imes}10^{-2}$	$72,283{ imes}10^{-2}$	$22,549 \times 10^{-2}$	$53,\!374{ imes}10^{-2}$		
Te_4	$9,463{ imes}10^{-2}$	$-0,883 \times 10^{-2}$	$1,\!081\! imes\!10^{-2}$	$-0,104 \times 10^{-2}$	$155,741 \times 10^{-2}$	$-58,552{ imes}10^{-2}$		
Te_5	$-0,696 \times 10^{-2}$	$1,537{ imes}10^{-2}$	$-4,108 \times 10^{-2}$	$2,557{ imes}10^{-2}$	$104,\!013{ imes}10^{-2}$	$-3,890{ imes}10^{-2}$		
	Modelo TS para temperatura do propilenoglicol							
Tp	q_{i0}	q_{i1}	q_{i2}	q_{i3}	q_{i4}	q_{i5}		
Tp_1	$0,\!036{ imes}10^{-2}$	$0,862{ imes}10^{-2}$	$-0,707 \times 10^{-2}$	$67,202{ imes}10^{-2}$	$33,\!879{ imes}10^{-2}$	$-3,511{ imes}10^{-2}$		
Tp_2	$-0,091 \times 10^{-2}$	$-0,009 \times 10^{-2}$	$-0,055{ imes}10^{-2}$	$90,765 \times 10^{-2}$	$9,\!139{ imes}10^{-2}$	$0,\!192{ imes}10^{-2}$		
Tp_3	$0,\!073{ imes}10^{-2}$	$-0,547{ imes}10^{-2}$	$0,\!892{ imes}10^{-2}$	$103,\!053\! imes\!10^{-2}$	$-22,349 \times 10^{-2}$	$29,339{ imes}10^{-2}$		
Tp_4	$-0,235 \times 10^{-2}$	$-0,048 \times 10^{-2}$	$-0,729 \times 10^{-2}$	$75,\!876{ imes}10^{-2}$	$20,\!250{ imes}10^{-2}$	$8,436{ imes}10^{-2}$		
Tp_5	$-0,030 \times 10^{-2}$	$-0,189 \times 10^{-2}$	$-0,058 \times 10^{-2}$	$94,\!478{ imes}10^{-2}$	$-2,577 \times 10^{-2}$	$13,\!195{ imes}10^{-2}$		
Tp_6	-7.062×10^{-2}	$-49,351 \times 10^{-2}$	$51,435 \times 10^{-2}$	$300,506 \times 10^{-2}$	$-288,440 \times 10^{-2}$	78.672×10^{-2}		

5.5.3.5 Treinamento ANFIS para a determinação dos Modelos Takagi-Sugeno para o Grupo II (Variação na frequência da bomba do evaporador (FQ201))

As seguintes variáveis linguísticas utilizadas para o desenvolvimento dos modelos TS para a predição da temperatura de evaporação (Te) são: "LL para Low- Low", "LM para Low-Medium", "LH para Low-High", "M para Medium", "HL para High-Low", "HM para High-Medium" e "HH para High- High".

O modelo fuzzy para a temperatura de evaporação, Te, é composto por cinco entradas $(FQ101_{(k)}, FQ101_{(k-1)}, FQ101_{(k-2)}, Te_{(k-1)} \in Te_{(k-2)}$ e cinco funções de pertinência para cada entrada. As funções de pertinência, μ_i , e consequentemente do conjunto fuzzy correspondente ao modelo fuzzy da temperatura de evaporação são ilustrados na Figura 5.61, sendo todos os conjuntos descritos em $\mathcal{R} \to [0,1]$.

Figura 5. 61 – Conjunto *Fuzzy* e funções de pertinência do modelo Takagi-Sugeno da temperatura de evaporação em função da frequência da bomba do evaporador

O modelo fuzzy TS para a temperatura do propilenoglicol, Tp, é composto por cinco entradas ($FQ101_{(k)}$, $FQ101_{(k-1)}$, $FQ101_{(k-2)}$, $Tp_{(k-1)}$ e $Tp_{(k-2)}$ e quatro funções de pertinência para cada entrada. Sendo as funções de pertinência, μ_i , e consequentemente do conjunto fuzzy correspondente ao modelo fuzzy da temperatura do propilenoglicol apresentados na Figura 5.62, sendo todos os conjuntos descritos em $\mathcal{R} \rightarrow [0,1]$.

Figura 5. 62 – Conjunto Fuzzy e funções de pertinência do modelo Takagi-Sugeno da temperatura do propilenoglicol em função da frequência da bomba do evaporador

Utilizando-se o método do agrupamento subtrativo (*subtractive clustering*), obteve-se os antecedentes das regras Fuzzy apresentados na Tabela 5.14. Os consequentes para os modelos *fuzzy* das temperaturas de evaporação e do propilenoglicol são descritos na Tabela 5.15, onde: q_{ij} são os parâmetros do modelo *fuzzy*.

Tabela 5. 14 – Antecedentes das regras fuzzy para os modelos Takagi-Sugeno para predição da: Temperatura de evaporação e Temperatura do propilenoglicol em função da frequência da bomba do evaporador

Modelo TS para temperatura de evaporação							
$FQ201_{(k-1)}$	$FQ201_{(k-2)}$	$FQ201_{(k-3)}$	$Te_{(k-1)}$	$Te_{(k-2)}$	Te		
LL	LL	LL	LM	LM	${\rm Te}_1$		
LH	LH	LH	LH	LH	Te_2		
HL	HL	HL	HL	HL	${\rm Te}_3$		
HH	HH	HH	М	Μ	Te_4		
Μ	Μ	Μ	-	-	Te_5		
-	_	_	HM	HM	Te_6		
Mod	elo TS para te	emperatura da	propilent	oglicol			
$FQ201_{(k)}$	$FQ201_{(k-1)}$	$FQ201_{(k-2)}$	$Tp_{(k-1)}$	$Tp_{(k-2)}$	Tp		
LL	-	-	Μ	Μ	$Tp_1 \\$		
HL	HL	HL	HM	HM	Tp_2		
HH	HH	HH	LH	LH	Tp_3		
LH	LH	LH	LM	LM	Tp_4		
_	LL	LL	_	_	Tp_5		

Tabela 5. 15 – Consequentes obtidos para os modelos Takagi-Sugeno para predição da: Temperatura de condensação; Temperatura de evaporação e Temperatura do propilenoglicol em função da frequência da bomba do evaporador

Modelo TS para temperatura de evaporação									
Te	q_{i0}	q_{i1}	q_{i2}	q_{i3}	q_{i4}	q_{i5}			
Te_1	-37.752×10^{-2}	-0.344×10^{-2}	0.411×10^{-2}	-1.114×10^{-2}	135.768×10^{-2}	-37.751×10^{-2}			
Te_2	-22.201×10^{-2}	0.100×10^{-2}	-0.954×10^{-2}	-0.367×10^{-2}	136.521×10^{-2}	-38.509×10^{-2}			
Te_3	11.130×10^{-2}	-1.905×10^{-2}	0.799×10^{-2}	-0.053×10^{-2}	196.748×10^{-2}	-100.485×10^{-2}			
Te_4	11.301×10^{-2}	-0.188×10^{-2}	-21.936×10^{-2}	21.003×10^{-2}	178.909×10^{-2}	-81.798×10^{-2}			
Te_5	-5.814×10^{-2}	0.585×10^{-2}	-0.937×10^{-2}	-0.363×10^{-2}	206.312×10^{-2}	-107.262×10^{-2}			
${ m Te}_6$	-10.552×10^{-2}	0.015×10^{-2}	0.511×10^{-2}	-0.058×10^{-2}	132.432×10^{-2}	-28.845×10^{-2}			
	Modelo TS para temperatura do propilenoglicol								
Tp	q_{i0}	q_{i1}	q_{i2}	q_{i3}	q_{i4}	q_{i5}			
Tp_1	78.661×10^{-2}	2.819×10^{-2}	0.402×10^{-2}	-0.262×10^{-2}	180.476×10^{-2}	-78.848×10^{-2}			
Tp_2	-7.966×10^{-2}	5.764×10^{-2}	-5.118×10^{-2}	-1.623×10^{-2}	160.586×10^{-2}	-60.571×10^{-2}			
Tp_3	0.045×10^{-2}	$0.974{ imes}10^{-2}$	-0.993×10^{-2}	0.025×10^{-2}	110.681×10^{-2}	-11.787×10^{-2}			
Tp_4	-22.359×10^{-2}	-0.286×10^{-2}	3.419×10^{-2}	-5.034×10^{-2}	147.972×10^{-2}	-51.965×10^{-2}			
Tp_5	-51.603×10^{-2}	0.171×10^{-2}	-0.272×10^{-2}	-1.751×10^{-2}	154.106×10^{-2}	-53.802×10^{-2}			

A representação explícita das regras fuzzy do modelo Takagi-Sugeno, com base nas Tabelas 5.12 a 5.15, encontra-se no Apêndice E.

5.5.3.6 Validação dos Modelos Takagi-Sugeno para predição das temperaturas de evaporação e do propilenoglicol em função da frequência do compressor

Na Figura 5.63 pode-se observar a predição, *off-line*, da temperatura de evaporação (Te) do sistema de refrigeração tendo como variável manipulada a frequência do compressor (FQ101).

Figura 5. 63 – Predição, off-line, da temperatura de evaporação utilizando modelo TS em função da frequência do compressor

O modelo Takagi-Sugeno da temperatura de evaporação apresentou boa predição da dinâmica da variável. Isto pode ser melhor observado na Figura 5.64, que representa a dispersão dos dados reais com os dados preditos. A dispersão representa \pm 0,25 °C, que estão dentro da precisão do sensor de temperatura (Tabela 4.4).

Figura 5. 64 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura de evaporação em função da frequência do compressor)

A validação, *off-line*, do modelo TS de predição da temperatura do propilenoglicol (Tp), pode ser observada na Figura 5.65.

Figura 5. 65 - Predição, off-line, da temperatura do propilenoglicol utilizando modelo TS em função da frequência do compressor

A boa predição da dinâmica da temperatura do propilenoglicol pode ser verificada na Figura 5.66, que relaciona os valores reais de temperatura com os valores preditos pelo modelo TS. A dispersão de $\pm 0,1$ °C apresenta-se dentro da faixa de precisão do sensor.

Figura 5. 66 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura do propilenoglicol em função da frequência do compressor)

5.5.3.7 Validação dos Modelos Takagi-Sugeno para predição das temperaturas de evaporação e do propilenoglicol em função da frequência da bomba do evaporador

A validação da predição, *off-line*, da temperatura do propilenoglicol (Tp) do sistema de refrigeração tendo como variável manipulada a frequência da bomba do evaporador (FQ201), é representada na Figura 5.67.

Figura 5. 67 - Predição, off-line, da temperatura de evaporação utilizando modelo TS em função da frequência da bomba do evaporador

Na Figura 5.68 pode-se verificar que a dispersão dos dados experimentais com os dados preditos pelo modelo TS é de aproximadamente \pm 0,3 °C.

Figura 5. 68 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura do propilenoglicol em função da frequência do compressor)

Na Figura 5.69 pode-se verificar a validação, *off-line*, do Modelo TS para predição da temperatura do propilenoglicol. A boa predição do modelo pode ser confirmada verificando-se a Figura 5.70, onde a dispersão dos dados está em torno de \pm 0,4 °C.

Figura 5. 69 - Predição, off-line, da temperatura do propilenoglicol utilizando modelo TS em função da frequência da bomba do evaporador

Figura 5. 70 – Distribuição dos dados reais como os dados preditos pelo modelo TS (temperatura do propilenoglicol em função da frequência da bomba do evaporador)

A confirmação da boa predição dos modelos fuzzy desenvolvidos pode ser observada na Tabela 5.16 onde encontram-se os valores do VAF para os modelos desenvolvidos.

Tabela 5. 16 – VAF (variance accounted for) para os modelos de predição Takagi-Sugeno

	Modelo TS em função de	Modelo TS em função de
Modelo de predição TS para:	$ m FQ101^{a}$	$ m FQ201^{b}$
Temperatura de evaporação	99,78~%	99,96~%
Temperatura do propilenoglicol	98,83~%	99,94%
a frequência do compressor; b frequência da bomba do evaporador		

5.6 Controle Preditivo utilizando modelo Takagi-Sugeno

Neste trabalho utilizou-se modelos Takagi-Sugeno desenvolvidos a partir de técnica ANFIS de identificação. A estratégia de controle utilizada foi baseada no uso de Controlador Preditivo Generalizado (GPC - Generalized Predictive Control). Os coeficientes $q_{i,l}$, onde, i=0... $n_{x(entradas)}$ e l o número de Regras Fuzzy (RF) dos modelos identificados compõem os modelos lineares locais no controle GPC.

5.6.1 Estrutura do controlador preditivo

Como dito anteriormente, o controle GPC utilizado neste trabalho é composto por um modelo de predição Takagi-Sugeno, apresentado na Equação 5.4:

$$A_{(q)}y_{(k)} = B_{(q)}u_{(k-1)} + \frac{e_{(k)}}{\Delta}$$
(Eq. 5.4)

Ou pode-se expressar a Equação 5.4 como:

$$\Delta A_{(q)} y_{(k)} = B_{(q)} \Delta u_{(k-1)} + e_{(k)}$$
(Eq. 5.5)

A Equação 5.5 exprime um preditor de um *passo-à-frente*. Porém, Clarke et al. (1987) propõe a predição *j passos-à-frente*, mais adequada levando em consideração dados obtidos até o instante k como:

$$\hat{y}_{(k+j|k)} = G_{j(q)} \Delta u_{(k+j-1)} + F_{i(q)} y_{(k)}$$
(Eq. 5.6)

onde,

$$G_{j(q)} = E_{j(q)}B_{(q)}$$
 (Eq. 5.7)

e $E_{j(q)}$ e $F_{j(q)}$ são polinômios provenientes da solução identidade de *Bézout*, (Equação 5.8).

$$1 = \Delta A_{(q)} E_{j(q)} + q^{-j} F_{j(q)}$$
(Eq. 5.8)

Analogamente ao desenvolvimento do preditor j passos-à-frente a partir da solução da identidade de *Bézout*, Rossiter (2003) estabeleceu o preditor por meio do uso recursivo da Equação, reescrita da seguinte forma:

$$\hat{A}_{(q)}y_{(k)} = B_{(q)}\Delta u_{(k-1)}$$
(Eq. 5.9)

onde:

$$\hat{A}_{(q)} = \Delta A_{(q)} = 1 + \hat{a}_1 q^{-1} + \dots + \hat{a}_{n_a+1} q^{-(n_a+1)}$$
(Eq. 5.10)

Aplicando a Equação 5.10 em 5.9, pode-se expandi-la em:

$$y_{(k)} + \hat{a}_1 y_{(k-1)} + \dots + \hat{a}_{n_a+1} y_{(k-n_a-1)} = b_0 \Delta u_{(k-1)} + b_1 \Delta u_{(k-2)} + \dots + b_{n_b} \Delta u_{(k-n_b-1)}$$
(Eq. 5.11)

122

Utilizando-se a Equação 5.11 é possível realizar iterações do instante $k\!+\!1$ até $k\!+\!H_{\!p}\!\!:$

– Iteração
$$k=k+1$$

$$y_{(k+1)} + \hat{a}_1 y_{(k)} + \dots + \hat{a}_{n_a+1} y_{(k-n_a)} = b_0 \Delta u_{(k)} + b_1 \Delta u_{(k-1)} + \dots + b_{n_b} \Delta u_{(k-n_b)}$$
(Eq. 5.12)

– Iteração
$$k{=}k{+}2$$

$$y_{(k+2)} + \hat{a}_1 y_{(k+1)} + \dots + \hat{a}_{n_a+1} y_{(k-n_a+1)} = b_0 \Delta u_{(k+1)} + b_1 \Delta u_{(k)} + \dots + b_{n_b} \Delta u_{(k-n_b+1)}$$
(Eq. 5.13)

– Iteração $k=k+H_p$

$$y_{(k+H_p)} + \hat{a}_1 y_{(k+H_p+1)} + \dots + \hat{a}_{n_a+1} y_{(k+H_p-n_a-1)} = b_0 \Delta u_{(k+H_p-1)} + b_1 \Delta u_{(k+H_p-2)} + \dots + b_{n_b} \Delta u_{(k+H_p-n_b-1)}$$

(Eq. 5.14)

Escrevendo os termos das iterações na forma matricial tem-se:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ \hat{a}_{1} & 1 & \cdots & 0 \\ \hat{a}_{2} & \hat{a}_{1} & \cdots & 0 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} \hat{y}_{(k+1|k)} \\ \hat{y}_{(k+2|k)} \\ \vdots \\ \hat{y}_{(k+H_{p}|k)} \end{pmatrix} + \begin{pmatrix} \hat{a}_{1} & \hat{a}_{2} & \cdots & \hat{a}_{n_{a}+1} \\ \hat{a}_{2} & \hat{a}_{3} & \cdots & 0 \\ \hat{a}_{3} & \hat{a}_{4} & \cdots & 0 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} \hat{y}_{(k-1)} \\ \vdots \\ \hat{y}_{(k-n_{a})} \end{pmatrix} =$$

$$\begin{pmatrix} b_{0} & 0 & \cdots & 0 \\ b_{1} & b_{0} & \cdots & 0 \\ b_{2} & b_{1} & \cdots & 0 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} \Delta u_{(k+1)} \\ \Delta u_{(k+2)} \\ \vdots \\ \Delta u_{(k+H_{c})} \end{pmatrix} + \begin{pmatrix} b_{1} & b_{2} & \cdots & b_{n_{b}} \\ b_{2} & b_{3} & \cdots & 0 \\ b_{3} & b_{4} & \cdots & 0 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} \Delta u_{(k-1)} \\ \Delta u_{(k-2)} \\ \vdots \\ \Delta u_{(k+n_{b})} \end{pmatrix}$$

$$(Eq. 5.15)$$

que pode ser escrita como:

$$C_A \hat{\mathcal{Y}} + H_A \mathcal{Y}^{old} = C_B \Delta \mathcal{U} + H_B \Delta \mathcal{U}^{old}$$
(Eq. 5.16)

ou

$$\hat{\mathcal{Y}} = C_A^{-1} \{ C_B \Delta \mathcal{U} + H_B \Delta \mathcal{U}^{old} - H_A \mathcal{Y}^{old} \}$$
(Eq. 5.17)

sendo: $\mathcal{G}=\mathcal{C}_A^{-1}\mathcal{C}_B,\,\mathcal{H}_1=\mathcal{C}_A^{-1}H_B$ e $\mathcal{H}_2=\mathcal{C}_A^{-1}H_A,$ tem-se que:

$$\hat{\mathcal{Y}} = \mathcal{G}\Delta\mathcal{U} + \mathcal{H}_1 \Delta\mathcal{U}^{old} - \mathcal{H}_2 \mathcal{Y}^{old}$$
(Eq. 5.18)

$$\operatorname{com} \hat{\mathcal{Y}} = \begin{pmatrix} \hat{\mathcal{Y}}_{(k+1)} \\ \hat{\mathcal{Y}}_{(k+2)} \\ \vdots \\ \hat{\mathcal{Y}}_{(k+H_p)} \end{pmatrix}, \Delta \mathcal{U} = \begin{pmatrix} \Delta u_{(k)} \\ \Delta u_{(k+1)} \\ \vdots \\ \Delta u_{(k+H_c)} \end{pmatrix}, \mathcal{Y}^{old} = \begin{pmatrix} \hat{\mathcal{Y}}_{(k)} \\ \hat{\mathcal{Y}}_{(k-1)} \\ \vdots \\ \hat{\mathcal{Y}}_{(k-n_a)} \end{pmatrix} \ e \ \Delta \mathcal{U}^{old} = \begin{pmatrix} \Delta u_{(k-1)} \\ \Delta u_{(k-2)} \\ \vdots \\ \Delta u_{(k+n_b)} \end{pmatrix}$$

Segundo Costa (2010), as aplicações de MPC são comumente definidas por funções objetivo que "penalizam" desvio entre valores preditos para a variável de saída em relação a uma trajetória de referência. Neste trabalho, utilizou-se, no algoritmo GPC, a função objetivo expressa pela Equação 5.19 onde Hp (horizonte de predição) e Hc (horizonte de controle) foram 10 e 5 respectivamente:

$$\operatorname{argmin}_{\Delta u} J_{MPC} = \sum_{k=H_w}^{H_p} \left(\hat{y}_{(k+j|k)} - y_{ref(k+j)} \right)^2 + \lambda_u \sum_{k=1}^{H_c} \Delta u_{(k+j-1)}^2$$
(Eq. 5.19)

Na Equação 5.19, além do termo que "penaliza" o desvio entre a referência futura e os sinais de saída estimados pelo modelo de predição, há um termo que "penaliza", por meio de uma sequência de pesos (λ_u), a variação brusca na variável manipulada. De acordo com Costa (2010), pode-se aplicar a sequência da função objetivo também para o desvio entre a referência e a saída da planta. Isto resulta em:

5. Resultados e Discussões

$$\operatorname{argmin}_{\Delta u} J_{MPC} = \left\| \hat{\mathcal{Y}} - \mathcal{Y}^{ref} \right\|_{Qy}^{2} + \left\| \Delta \mathcal{U} \right\|_{Qu}^{2}$$
(Eq.5.20)¹⁷

onde: $\mathcal{Y}^{ref} \in \mathcal{R}^{H_p}$ é o vetor que indica a trajetória de referência futura do processo controlado; $Q_y \in \mathcal{R}^{H_p \times H_p}$ é um matriz diagonal que "penaliza" o desvio da variável predita e $Q_u \in \mathcal{R}^{H_c \times H_c}$ uma matriz diagonal que "penaliza" a sequência de controle da variável manipulada. De acordo com Maciejowski (2001), a variável H_w indica o intervalo para qual serão aplicados as "penalidades" no desvio entre o sinal da planta e a referência $H_w \leq k \leq H_p$.

Os vetores $\mathcal{Y}^{ref},\,Q_{\mathcal{Y}}$ e Q_{u} são definidos como:

$$\mathcal{Y}^{ref} = \begin{pmatrix} y_{ref}(k) \\ \vdots \\ y_{ref}(k+H_p) \end{pmatrix}, \ Q_y = \begin{pmatrix} \lambda_u(1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_u(H_p) \end{pmatrix} \in Q_u = \begin{pmatrix} \lambda_u(1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_u(H_c) \end{pmatrix}$$

A otimização das funções objetivos do controle preditivo podem ou não apresentar restrições. Quando as funções não apresentam restrições (consideração esta adotada neste trabalho), o controlador tem solução analítica, podendo a variável de decisão Δu calculada explicitamente. Assim, o cálculo das ações do controlador GPC pode ser representado por (COSTA, 2010):

$$\Delta u = \left(\mathcal{G}^T Q_y \mathcal{G} + Q_u\right)^{-1} \mathcal{G}^T Q_y (y^{ref} - y^{RL}) \tag{Eq. 5.21}$$

sendo

$$kmpc = \left(\mathcal{G}^T Q_y \mathcal{G} + Q_u\right)^{-1} \mathcal{G}^T Q_y \tag{Eq. 5.22}$$

 17 A notação $\parallel ~\parallel$ indica a norma euclidiana. Para um vetor X e matriz de pesos Q, tem-se: $\|X\|_Q=\sqrt{X^TQX}$ e $\|X\|_Q^2=X^TQX.$

125

Assim, tem-se que:

$$\Delta u = \operatorname{kmpc} \left(y^{ref} - y^{RL} \right) \tag{Eq. 5.23}$$

onde: $y^{RL} = \mathcal{H}_2 \mathcal{Y}^{old} - \mathcal{H}_1 \Delta \mathcal{U}^{old}$

Como para cada modelo local (Regra Fuzzy) há o cálculo de um ganho para o controlador GPC, houve a necessidade de se ponderar os ganhos, $kmpc_i$. A saída do controlador é dada por:

$$\Delta u(k) = \begin{pmatrix} kmpc_{1(k)} \\ kmpc_{2(k)} \\ \vdots \\ kmpc_{l(k)} \end{pmatrix}^{T} \begin{pmatrix} \overline{w}_{1(k)} \\ \overline{w}_{2(k)} \\ \vdots \\ \overline{w}_{l(k)} \end{pmatrix} (y^{ref} - y^{RL})$$
(Eq. 5.24)

Assim,

$$u(k) = \Delta u(k) + u(k-1)$$
 (Eq. 5.25)

5.6.2 Modelos preditivos Takagi-Sugeno

Os modelos Takagi-Sugeno apresentados nas Tabelas 5.13 e 5.15 serão utilizados no GPC. Pode-se escreve os modelos TS na forma recursiva da seguinte maneira:

Para
$$RF^{(i)}$$
:

$$\left(1 - q_{i,4}k^{-1} - q_{i,5}k^{-2}\right)y(k) = \left(q_{i,1} + q_{i,2}k^{-1} + q_{i,3}k^{-2}\right)u(k)$$
(Eq. 5.26)

onde $i=1,2,\ldots,l$, sendo l o número de Regras Fuzzy.

A partir da Equação 5.26 e com o auxílio das Tabelas 5.13 e 5.15 tem-se que:

126

• Modelo TS_{Te}^{FQ101} : predição da temperatura de evaporação em função da frequência do compressor:

$RF^{(1)}$:	y(k)+ 43.019×10 ⁻² y(k-1)+ 16.741×10 ⁻² y(k-2)= -78.335×10 ⁻² u(k)
	$+149.827{\times}10^{-2}u(k{1){43.019}{\times}10^{-2}u(k{2)}$
$\mathrm{RF}^{(2)}$:	y(k)- 55.925×10 ⁻² y(k-1)- 41.310×10 ⁻² y(k-2)= -0.700×10 ⁻² u(k)
	$-1.803 \times 10^{-2} u (k-1) + 1.835 \times 10^{-2} u (k-2)$
$\mathrm{RF}^{(3)}$:	y(k)- 22.549×10 ⁻² y(k-1)- 53.374×10 ⁻² y(k-2)= 28.937×10 ⁻² u(k)
	$-90.367 \times 10^{-2} u (k-1) + \ 72.283 \times 10^{-2} u (k-2)$
$\mathrm{RF}^{(4)}$:	y(k)- 155.741×10 ⁻² y(k-1) +58.552×10 ⁻² y(k-2)= -0.883×10 ⁻² u(k)
	$+1.081 \times 10^{-2} u(k-1) -0.104 \times 10^{-2} u(k-2)$
$RF^{(5)}$:	y(k)- 104.013×10 ⁻² y(k-1) +3.890×10 ⁻² y(k-2)= 1.537×10 ⁻² u(k)
	$-4.108 \times 10^{-2} u (k-1) + 2.557 \times 10^{-2} u (k-2)$

 Modelo TS_{Tp}^{FQ101}: predição da temperatura do propilenoglicol em função da frequência do compressor:

$RF^{(1)}$:	y(k)- 33.879×10 ⁻² y(k-1)+ 3.511×10 ⁻² y(k-2)= 0.862×10 ⁻² u(k)
	$-0.707 \times 10^{-2} u(k-1) + \ 67.201 \times 10^{-2} u(k-2)$
$RF^{(2)}$:	y(k)- 9.138×10 ⁻² y(k-1)- 0.192×10 ⁻² y(k-2)= -0.009×10 ⁻² u(k)
	$-0.055 \times 10^{-2} u(k-1) + 90.764 \times 10^{-2} u(k-2)$
$RF^{(3)}$:	y(k)+ 22.348×10 ⁻² y(k-1)- 29.338×10 ⁻² y(k-2)= -0.547×10 ⁻² u(k)
	$+0.892 \times 10^{-2} u (k-1) + 103.053 \times 10^{-2} u (k-2)$
$RF^{(4)}$:	$y(k)-20.249 \times 10^{-2}y(k-1)-8.436 \times 10^{-2}y(k-2)=-0.047 \times 10^{-2}u(k) \dots$
	$-0.729 \times 10^{-2} \text{ u(k-1)} + 75.875 \times 10^{-2} \text{y(k-2)}$
$RF^{(5)}$:	$y(k) + 2.576 \times 10^{-2} y(k1) - 13.195 \times 10^{-2} y(k2) = -0.189 \times 10^{-2} u(k) \ \dots$
	$-0.057{\times}10^{-2}u(k{-}1){+}94.477{\times}10^{-2}y(k{-}2)$
$RF^{(6)}$:	$y(k) + 288.439 \times 10^{-2} y(k-1) - 78.671 \times 10^{-2} y(k-2) = -49.351 \times 10^{-2} u(k) \ \dots$
	$+51.434 \times 10^{-2} u(k-1) + 300.506 \times 10^{-2} y(k-2)$

 Modelo TS_{Te}^{F201}: predição da temperatura de evaporação em função da frequência da bomba do evaporador:

$RF^{(1)}$:	$y(k) \text{-} 135.768 \times 10^{\text{-}2} y(k\text{-}1) \text{+} 37.751 \times 10^{\text{-}2} y(k\text{-}2) \text{=-} 0.344 \times 10^{\text{-}2} u(k) \ \dots$
	$+0.411 \times 10^{-2} u (k-1) - 1.114 \times 10^{-2} u (k-2)$
$RF^{(2)}$:	$y(k) \text{-} 136.521 \times 10^{2} y(k\text{-}1) \text{+} 38.509 \times 10^{2} y(k\text{-}2) \text{=} 0.100 \times 10^{2} u(k) \ \dots$
	$-0.954{\times}10^{-2}u(k{-}1){-}0.367{\times}10^{-2}u(k{-}2)$
$RF^{(3)}$:	$y(k) \text{-} 196.748 \times 10^{2} y(k\text{-}1) \text{+} 100.485 \times 10^{2} y(k\text{-}2) \text{=} \text{-} 1.905 \times 10^{2} u(k) \ \dots$
	$+0.799 \times 10^{-2} u (k-1) - 0.053 \times 10^{-2} u (k-2)$
$RF^{(4)}$:	$y(k) \text{-} 178.909 \times 10^{2} y(k\text{-}1) + 81.798 \times 10^{2} y(k\text{-}2) \text{=-} 0.188 \times 10^{2} u(k) \ \dots$
	$-21.936{\times}10^{-2}u(k{-}1){+}21.003{\times}10^{-2}u(k{-}2)$
$RF^{(5)}$:	$y(k)\hbox{-}206.312 \times 10^{2} y(k\hbox{-}1) + 107.262 \times 10^{2} y(k\hbox{-}2) \hbox{=} 0.585 \times 10^{2} u(k) \ \ldots$
	-0.937×10 ⁻² u(k-1)-0.363×10 ⁻² u(k-2)
$RF^{(6)}$:	$y(k) \text{-} 132.432 \times 10^{2} y(k\text{-}1) \text{+} 28.845 \times 10^{2} y(k\text{-}2) \text{=} 0.015 \times 10^{2} u(k) \ \dots$
	$+0.511 \times 10^{-2} u (k-1) - 0.058 \times 10^{-2} u (k-2)$

 Modelo TS_{Tp}^{F201}: para predição da temperatura do propilenoglicol em função da frequência da bomba do evaporador:

$RF^{(1)}$:	$y(k)\text{-}180.476\times10^{2}y(k\text{-}1)\text{+}78.848\times10^{2}y(k\text{-}2)\text{=}2.819\times10^{2}u(k)\ \dots$
	$+0.402 \times 10^{-2} u(k-1)-0.262 \times 10^{-2} u(k-2)$
$RF^{(2)}$:	y(k)-160.586×10 ⁻² y(k-1)+60.571×10 ⁻² y(k-2)=5.764×10 ⁻² u(k)
	$-5.118 \times 10^{-2} u(k-1) - 1.623 \times 10^{-2} u(k-2)$
$RF^{(3)}$:	$y(k)\text{-}110.681\times10^{\text{-}2}y(k\text{-}1)\text{+}11.787\times10^{\text{-}2}y(k\text{-}2)\text{=}0.974\times10^{\text{-}2}u(k)\ \dots$
	$-0.993{\times}10^{2}u(k{-}1){+}0.025{\times}10^{2}u(k{-}2)$
$RF^{(4)}$:	$y(k)\text{-}147.972\times10^{\text{-}2}y(k\text{-}1)\text{+}51.965\times10^{\text{-}2}y(k\text{-}2)\text{=-}0.286\times10^{\text{-}2}u(k)\ \dots$
	$+3.419 \times 10^{-2} u(k-1)-5.034 \times 10^{-2} u(k-2)$
$RF^{(5)}$:	$y(k)\text{-}154.106\times10^{\circ}y(k\text{-}1)\text{+}53.802\times10^{\circ}y(k\text{-}2)\text{=}0.171\times10^{\circ}u(k)\ \dots$
	$-0.272 \times 10^{-2} u(k-1) - 1.751 \times 10^{-2} u(k-2)$

128

5.6.3 Implementação do controlador GPC no Matlab/Simulink[®]

Toda estratégia de controle descrita na secção 5.6.2 foi implementada no Matlab/Simulink[®]. Foram implementados os modelos TS_{Te}^{F101} , TS_{Tp}^{F101} e TS_{Tp}^{F201} . O modelo TS_{Te}^{F201} não foi implementado pois, verificando-se as Figuras 5.42 e 5.43, notouse que ao se perturbar o sistema variando a frequência da bomba do evaporador o estado estacionário da temperatura de evaporação permanece sempre o mesmo, assim, um controle da temperatura de evaporação manipulando-se a frequência do compressor não seria justificada. A Figura 5.71, exemplifica, a implementação do controlador GPC utilizando como modelo preditivo o modelo TS_{Tp}^{F101} .

Figura 5. 71 – Implementação do controlador GPC

5.23.

A Figura 5.72 representa o cálculo das matrizes y
 $^{\rm old}$ e ${\bigtriangleup}^{\rm uold},$ utilizadas na Equação

Figura 5. 72 – Calculo das matrizes: (a) y^{old}; (b) Δu^{old}

Para cada modelo local (Regra Fuzzy) que compõe o modelo implementado, foi calculado um ganho, kmpc. O ganho para o modelo local representado pela $RF^{(1)}$, kmpc1, por exemplo, é representado na Figura 5.73.

Figura 5. 73 – Cálculo do ganho do controlador kmpc

As Regras Fuzzy para o modelo TS_{Tp}^{F101} são representadas na Figura 5.74.

Figura 5. 74 – Implementação do modelo TS_{Tp}^{F101} : (a) Regra Fuzzy 1; (b) Regra Fuzzy 2; (c) Regra Fuzzy 3; (d) Regra Fuzzy 4; (e) Regra Fuzzy 5; (f) Regra Fuzzy 6

5.6.4 Resultados obtidos na implementação do controle GPC

A ideia principal deste trabalho foi a utilização de Modelos Takagi-Sugeno como um modelo de predição em controladores MPC. Como descrito anteriormente, a estratégia de controle foi baseada em um Controlador Preditivo Generalizado (GPC) sem restrições na função objetivo que definem as ações de controle. Para os testes dos controladores GPC foram realizados três ensaios distintos, conforme descrito na Tabela 5.17.

Tabela 5. 17 – Ensaios para teste da utilização do controlador GPC utilizando como modelo preditivo um modelo Takagi-Sugeno

Controle	Variável Controlada	Variável Manipulada	Modelo TS utilizado
GPC1	Те	FQ101	$Modelo\ TS_{Te}{}^{FQ101}$
GPC2	Тр	FQ101	Modelo TS_{Tp}^{FQ101}
GPC3	Тр	FQ201	Modelo TS_{Tp}^{FQ201}
Te: Temperatura de evaporação; Tp: Temperatura do propilenoglicol; FQ101: Frequência do compressor;			
FQ201: Frequência da bomba do evaporador			

Um problema encontrado neste trabalho foi o limite de saturação da variável manipulada FQ101 (frequência do compressor). Os limites máximos e mínimos da variável FQ101 foram 70 Hz e 50 Hz, respectivamente, limitando assim a atuação do compressor no sistema de refrigeração. Com isto, a mudança de set-point no processo ficou limitada em, aproximadamente, ± 1 °C.

5.6.4.1 Controlador GPC para controle da temperatura de evaporação manipulando a frequência da bomba do evaporador

Os resultados obtidos para o controle da temperatura de evaporação tendo como variável manipulada a frequência do compressor utilizando o modelo TS_{Te}^{FQ101} e carga térmica de 3000 W são apresentados na Figura 5.75 e 5.76.

Analisando a Figura 5.75, verifica-se o desempenho no rastreamento do *set-point* do controlador GPC1. Observa-se também um bom desempenho para mudanças na referência do controlador.

Figura 5. 75 – rastreamento do set-point da temperatura de evaporação do controlador
 $$\rm GPC1$$

Na Figura 5.76 é apresentada a contribuição de cada modelo local (RF) no controle GPC1. Nota-se que o modelo local que mais atua no controle é o modelo representado pela Regra *Fuzzy* 4 do modelo TS_{Te}^{FQ101} , seguindo pelo modelo local representado pela Regra *Fuzzy* 5, contribuindo pouco as demais Regras *Fuzzy*.

Figura 5. 76 – Contribuição das Regras *Fuzzy* no controlador GPC1 durante o rastreamento do set-point da temperatura de evaporação

5.6.4.2 Controlador GPC para controle da temperatura do propilenoglicol manipulando a frequência do compressor

Nas Figuras 5.77 e 5.78 são apresentados os resultados obtidos para o controle da temperatura do propilenoglicol, tendo como variável manipulada a frequência do compressor, utilizando o modelo TS_{Tp}^{FQ101} .

Verifica-se na Figura 5.77 o desempenho no rastreamento do *set-point* do controlador GPC2 e pode-se, também, observar um bom desempenho para mudanças na referência do controlador.

Figura 5. 77 – Rastreamento do set-point da temperatura do propile
noglicol do controlador $$\rm GPC2$$

A contribuição de cada modelo local (RF) no controle GPC2 pode ser observada na Figura 5.79. Nota-se que o modelo local que mais atua no controle são os modelos representados pelas Regras Fuzzy 4 e 5 do modelo TS_{Tp}^{FQ101} .

Figura 5. 78 – Contribuição das Regras Fuzzy no controlador GPC1 durante o rastreamento do set-point da temperatura de evaporação

5.6.4.3 Controlador GPC para controle da temperatura do propilenoglicol manipulando a frequência do compressor

Os resultados obtidos para o controle da temperatura do propilenoglicol tendo como variável manipulada a frequência da bomba do evaporador, utilizando o modelo TS_{Tp}^{FQ201} , são apresentados na Figura 5.79 e 5.80.

Além da limitação da frequência do compressor, citada anteriormente, ocorreu também um problema com o servidor OPC do Indusoft (o que realiza a conexão entre o Matlab/Simulink[®] e a planta). Este problema acarretou uma perda de sinal de alguns sensores. Analisando a Figura 5.79, observa-se alguns picos na variável controlada (variável medida) causada pela perda de sinal. Uma solução paliativa foi adicionar um filtro "noise-spike¹⁸" (SEBORG, 1999) para descartar os picos. Porém, quanto havia a perda de sinal, o valor da variável medida atingia valores na grandeza de 10^{30} (característica do Indusoft), fazendo com que, mesmo com o filtro "noise-spike", a variável apresentasse picos em sua leitura.

Mesmo com o problema da perda de sinal, observa-se na Figura 5.79, que o desempenho no rastreamento do *set-point* da temperatura do propilenoglicol do controlador GPC3 não foi "ruim", houve o controle da temperatura do propilenoglicol.

¹⁸ Filtro Noise-Spike: $y_{F(k)} = \begin{cases} y_{m(k)} & if \left(\left| y_{m(k)} - y_{m(k-1)} \right| \le \Delta y \right) \\ y_{F(k-1)} - \Delta y & if \left(y_{F(k-1)} - y_{m(k)} \right) > \Delta y \\ y_{F(k-1)} + \Delta y & if \left(y_{m(k)} - y_{F(k-1)} \right) > \Delta y \end{cases}$, onde: y_m é a variável medida, y_F é a variável filtrada e Δy o incremento de análise da variável.

Figura 5. 79 – Rastreamento do set-point da temperatura do propile
noglicol do controlador $$\rm GPC3$$

Na Figura 5.80, é apresentada a contribuição de cada modelo local (RF) no controle GPC3. Nota-se que o todos os modelos locais influenciam no controlador, sendo o modelo representado pela Regra Fuzzy 4 do modelo TS_{Tp}^{FQ201} a mais atuante.

Figura 5. 80 - Contribuição das Regras *Fuzzy* no controlador GPC1 durante o rastreamento do set-point da temperatura de evaporação

6. Conclusões e Trabalhos Futuros

6.1 Conclusões

Fazendo uma análise passo-a-passo de todos os resultados obtidos pode-se concluir que:

- As melhorias realizadas no sistema de refrigeração contribuíram para um melhora na parte de supervisão e aquisição de dados contudo, a substituição do compressor aberto pelo compressor semi-hermético limitou a variação da frequência entre 50 e 70 Hz ocasionando um efeito não muito significativo no sistema;
- A comunicação OPC é uma ótima alternativa para se desenvolver sistemas supervisórios utilizando de ferramentas não convencionais, como um software matemático pois, a comunicação MATLAB/SIMULINK®-CLP apresentou 0,35 s de "Pseudo Real-Time" (tempo necessário para o software enviar receber informações do CLP). 0 e asMATLAB/SIMULINK[®] mostrou-se um ótimo meio de se supervisionar e de refrigeração consequentemente controlar o sistema visto aspossibilidades de cálculos que se pode realizar com sua utilização;
- A análise da dinâmica do sistema demonstra que perturbações na FQ101 de ±10 Hz acarretaram uma variação, em média, de aproximadamente 4 °C na temperatura de evaporação e 3°C na temperatura do propilenoglicol. Ao se promover perturbações na FQ201 de ±10 Hz observou-se uma

138

variação média de aproximadamente 4 °C. na temperatura do propilenoglicol e manteve inalterada a temperatura de evaporação;

- Os modelos Takagi-Sugeno identificados utilizando-se a técnica ANFIS apresentaram um bom desempenho em suas predições o que foi confirmado pelas validações e pelos cálculos do VAF. Os modelos Takagi-Sugeno para a predição da temperatura de evaporação e do propilenoglicol em função da variação da frequência do compressor, TS_{Te}^{FQ101} e TS_{Tp}^{FQ101} , apresentaram VAF igual a 99,78% e 98,83% respectivamente. Para a predição das temperaturas de evaporação e do propilenoglicol em função da variação da frequência da bomba do evaporador, os modelos TS_{Te}^{FQ201} e TS_{Tp}^{FQ201} apresentaram, respectivamente, VAF igual a 99,96% e 99,94%;
- Como os modelos Takagi-Sugeno apresentaram bom desempenho, os mesmos, foram utilizados como modelos preditivos em MPC, mais especificamente, em GPC. Os controladores GPC1, GPC2 e GPC3 desenvolvidos apresentaram bom desempenho no rastreamento do *set-point* do processo de refrigeração. Os melhores desempenhos foram apresentados pelos controladores GPC1 e GPC2 ficando a variável controlada, dos respectivos controladores, em torno de \pm 0,3 °C do set-point. No caso do controlador GPC3, a perda de sinal, citada anteriormente, influenciou na ação do controlador, contudo, o controlador conseguiu rastrear a mudança de referência da variável controlada. As mudanças de set-point foram de \pm 1 °C;

- O sistema de monitoramento e controle desenvolvido (SISMOCAR) é uma potente ferreamente que pode ser utilizada em outros sistemas de refrigeração mudando apenas o modelo de identificação;
- Um sistema de refrigeração onde a variável manipulada não apresente limitações melhora o desempenho dos controladores GPC.

6.2 Trabalhos futuros

Este trabalho mostrou o grande potencial da utilização de modelos Takagi-Sugeno como modelos preditivos para controle de modelo preditivo (MPC), porém algumas dificuldades foram encontradas ao decorrer do desenvolvimento do trabalho que afetaram os resultados. Assim algumas sugestões são relacionadas a fim de proporcionar bons resultados futuros.

Sugestões quanto ao sistema de refrigeração:

- Realizar a troca do compressor para que a faixa de manipulação do mesmo seja maior que a atual (20 Hz);
- Promover a instalação de uma válvula de expansão eletrônica (VEE) a fim de controlar o superaquecimento do ciclo de refrigeração, variável esta muito importante para o desempenho do ciclo e consequentemente no consumo de energia;
- Promover a instalação de sensores de umidade relativa e temperatura na torre de resfriamento utilizada no processo de condensação a água.

Sugestões quanto à comunicação entre sistema de supervisão e sistema de refrigeração:

 Devido ao fato da frequência de perda de dados pelo servidor OPC utilizado, sugere-se buscar um servidor OPC alternativo ou até mesmo a criação de um servidor OPC próprio por meio de linguagens de programação (Ex: C⁺⁺).

Sugestões quanto a identificação do sistema:

- Adicionar, na identificação, o efeito da umidade relativa na torre de resfriamento;
- Adicionar, na identificação, o efeito de uma carga térmica variável.

Sugestões quanto a implementação do controle:

- Desenvolver modelos Takagi-Sugeno MIMO (*Mult-Input Mult-Output*) para serem utilizados em MPC com restrições na função objetivo da ação de controle realizando a otimização on-line;
- Analisar novos horizonte de predição (Hp) e novos horizontes de controle (Hc) e também analisar as trajetórias da ação de controle;
- Realizar um comparativo entre os controladores GPC desenvolvido e controladores convencionais como PID focando o consumo de energia e a melhoria do coeficiente de performance (COP).

[Faculdade de Engenharia Química]

7. Referências Bibliográficas

AGUIRRE, L. A. (2000). Introdução à identificação de sistemas: técnicas lineares e não-lineares aplicadas a sistemas reais. Belo Horizonte: UFMG.

APREA, C.; MASTRULLO, R.; RENNO, C. (2004). Fuzzy control of the compressor speed in a refrigeration plant. 27, pp. 639-648.

BABUSKA, R.; ROUBOS, J. A.; VER-BRUGGEN, H. B. (1998). *Identification of MIMO systems by input-output TS fuzzy models*. Proceedings of IEE Word Congress on Computational Intelligence and Fuzzy System, Anchorage, USA, pp. 657-662.

BEGHI, A.; CECCHINATO, L.; RAMPAZZO, M. (2011). On-line, auto-tuning control of Electronic Expansion Valves. International Journal of Refrigeration, 34, pp. 1151-1161.

BURACAS, G. T.; BOYNTON, G. M. (2002). Efficient Design of Event-Related fMRI Experiments Using M-Sequences. NeuroImage, 16, pp. 801-813.

BUZELIN, L. O.; AMICO, S. C.; VARGAS, J. V.; PARISE, J. A. (2005). Experimental development of an inteligent refrigeration system. International Journal of Refrigeration, 28(2), pp. 165-175.

CARDOSO, M. C.; e ZANAROTTI, G. S. (2005). *Evolução e tendências*. Mecatrônica Atual – Automação Industrial de Processos e Manufatura, 4(25), pp. 17-21. CHANGENET, C.; CHARVET, J.; GÉHIN, D.; CHARMEL, B. (2008). Study on predictive functional control of an expansion valve for controlling the evaporator superheat. Journal Systems and Control Engineering, 222(Part I), pp. 571-582.

CLARKE, D.; MOHTADI, C.; TUFFS, P. (1987). Generalized predictive control. Part 1: The basic algorithm. Part 2: Extensions and interpretations. Automatica, 23(2), pp. 137-160.

COSTA, T. V. (2010). Controle preditivo baseado em rede de modelos lineares locais aplicado a um reator de neutralização. Campinas, Faculdade de Engenharia Química, UNICAMP, 134 pp, Dissertação de Mestrado.

DALL'AGNOL, M. (2010). Aplicação de controladores feedback em sistema experimental de refrigeração e desenvolvimento de modelo preditivo baseado em redes neurais. Campinas, Faculdade de Engenharia Química, UNICAMP, 101 pp, Dissertação de Mestrado.

EKREN, O.; SAHIN, S.; ISLER, Y. (2010). Comparison of different controllers for variable speed compressor and electronic expansion valve. International Journal of Refrigeration, 33, pp. 1161-1168.

ELLIOTT, M.; RASMUSSEN, P. (2010). On reducing evaporator superheat nonlinearity with control architecture. International Journal of Refrigeration, 33, pp. 607-614.

ESCAÑO, J.; BORDONS, C.; VILAS, C.; GARCÍA, M.; ALONSO, A. (2009). Neurofuzzy model based predictive control for thermal batch processes. Journal of Process Control, 19, pp. 1566-1575. FALLAHSOHI, C.; CHANGENET, C.; PLACÉ, S.; LIGERET, C.; LIN-SHI, X. (2010). Predictive functional control of an expansion valve for minimizing the superheat of an evaporator. International Journal of Refrigeration, 33, pp. 409-418.

FONSECA, M. O. (2002). *Comunicação OPC – uma abordagem*. In: *VI* Seminário de Automação de Processos, Associação Brasileira de Metalurgia e Materiais, pp. 1-12. Vitoria, ES.

HARRIS, C. J.; MOORE, C. G.; e BROWN, M. (1993). Intelligent Control: Aspects of Fuzzy Logic and Neural Nets. Singapura: World Scientific Co. 380 pp.

HAYKIN, S. S. (2001). Redes Neurais - Princípio e Prática. Bookman. 896 pp.

JABARDO, J. M.; MAMANI, W. G.; IANELLA, M. R. (2002). Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor. International Journal of Refrigeration, 25, pp. 1157-1172.

JANG, J. S. (1993). ANFIS: adaptive network based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), pp. 665-685.

JANG, J. S.; SUN, C. T. (1995). *Neuro-fuzzy modeling and control*. Proceedings of the IEEE, *3*, pp. 378-406.

KOURY, R. N.; MACHADO, L; ISMAIL, K. .(2001). Numerical simulation of a variable speed refrigeration system. International Journal of Refrigeration, 24(4), pp. 192-200.

LEDUCQ, D.; GUILPART, J.; TRYSTRAM, G. (2006). Non-linear predictive control of a vapour compression cycle. International Journal of Refrigeration, 29, pp. 761-772.

LEE, C. (1990). Fuzzy logic in control systems: fuzzy logic controller - Part I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), pp. 404-418.

LENARDUZZI, F. J.; YAP, S. S. (1998). Measuring the Performance of a Variable-Speed Drive Retrofit on a Fixed-Speed Centrifugal Chiller. ASHRAE Transaction, 104(parte 2), pp. 658-657.

LI, N.; LI, S. Y.; XI, Y. G. (2004). Multi-model predictive control based an the Yakagi-Sugeno fuzzy models: a case study. Information Sciences, 165, pp. 247-263.

LIMA, F. (2010). Estimador Neuro-Fuzzy de Velocidade aplicado ao controle vetorial sem Sensores de Motores de Indução Trifásico. São Paulo, Escola Politécnica da Universidade de São Paulo, 145 pp. Tese de Doutorado.

MACIEJOWSKI, J. (2001). Predictive control with constraints. London: Prentice Hall.

MACIEL, P. H. (2003). Configuração de OPC Client no Elipse E3. RT 010.03 – Criado: 10.09.2003 – Atualizado: 11.09.2003. Acesso em 4 de 2007, disponível em http://www.elipse.com.br/ download/artigos/rt010.03.pdf.

MANSKE, K. A.; REINDL, D. T.; KLEIN, S. A. (2001). Evaporative Condenser Control in Industrial Refrigeration Systems. International Journal of refrigeration, 24(7), pp. 679-691.

MELENDEZ, W. A.; PETERSEN, E. L. (1999). The upper layers of the ISO OSI reference model (Part II). Computer Standards e Interfaces, 20, pp. 185-199.

NANAYAKKARA, V. K.; IKEGAMI, Y.; UEHARA, H. (2002). Evolutionary design of dynamic neural networks for evaporator control. International Journal of Refrigeration, 25, pp. 813-826.

NAVARRO-ESBRÍ, J.; BERBEGALL, V.; VERDU, G.; CABELLO, R.; LLOPIS, R. (2007). A low data requirement model of a variable-speed vapour compression refrigeration system based on neural networks. International Journal of Refrigeration, 30(8), pp. 1442-1459.

PAIVA, R.; DOURADO, A. (2004). Interpretability and learning in neuro-fuzzy systems.Fuzzy Sets and Systems, 141, pp. 17-38.

PINELLI, T. G. (2008). Automação e analise do consumo de energia de um sistema de refrigeração para resfriamento de liquido. Campinas, Faculdade de Engenharia Química, UNICAMP, 84 pp. Disertação de Mestrado.

ROSSITER, J. (2003). *Model-based predictive control: A Pratical Approach*. Florida: CRC Press, Control Series.

SAITO, K.; CAMPOS, M. N. (2004). Sistemas Inteligentes em Controle e Automação de Processos. Rio de janeiro: Ciência Moderna. 235 pp.

SHAW, I.; SIMÕES, M. (1999). *Controle e modelagem fuzzy.* São Paulo: Edgard Blücher. 200 pp.

SIMULINK, M. e. (2004-2007). OPC ToolboxTM 2 - User's guide. The MathWorksTM.

SKRJANC, I.; MATKO, D. (2000). Predictive functional control based on fuzzy model for heat-exchanger pilot plant. IEEE Transactions on Fuzzy Systems, 8(6), pp. 705-712.

SOUSA, J.; KAYMAK, U. (2001). *Model predictive control using fuzzy decision functions*. IEEE Transactions on Systems, Man, and Cybernetics, 31(1).

SOUSA, J.; BABUSKA, R.; VERBRUGGEN, H. (1997). Fuzzy predictive control applied to an air-conditioning system. Control Engineering Practice, 5(10), pp. 1395-1406.

SOUZA, L. C.; SEIXAS FILHO, C.; PENA, R. T. (1998). Padrão de acesso a dados OPC e sua implementação em um driver OPC-Modbus. In: II Congresso Mineiro de Automação, V Simpósio Regional de Instrumentação da ISA-BH/GRINST-MG, pp. 157-164. Belo Horizonte-MG.

TASSOU, S.; e QURESHI, T. (1998). Comparative performance evaluation of positive displacement compressors in variable-speed refrigeration applications. International Journal of Refrigeration, 21(1), pp. 29-41.

VARGAS-LARA, J. M. (2005). *Identificação de modelos para controle preditivo: aplicação a uma planta de lodos ativados.* Campinas, Faculdade de Engenharia Elétrica, UNICAMP. 187 pp. Tese de Doutorado.

VARGAS, J. V.; HORUZ, I., S. C. T.; FLEMING, J. S.; PARISE, J. (1998). Simulation of the transient response of heat. International Journal of Rerigeration, 24(8), pp. 648-660. WANG, H.; TANAKA, K.; GRIFFIN, M. (1996). An approach to fuzzy control of nonlinear system: stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1), pp. 14-23.

ZHU, Y. C. (1993). Identification of Multivariable Industrial Processes: For Simulation, Diagnosis and Control. London: Springer-Verlag. 187 pp. [Faculdade de Engenharia Química]

APÊNDICE A: Cálculos *on-line* realizados no SISMOCAR

Como citado na *seção* anterior, no grupo de cálculos on-line, foram realizados cálculos em tempo real para algumas variáveis de fundamental importância no ciclo de refrigeração.

Devido a ausência de medidores de vazões mássicas foram criados "instrumentos virtuais" para a realização dos cálculos das vazões mássicas de R22 (\dot{m}_{R22}) e de propilenoglicol (\dot{m}_p). As Equações A.1 e A.2 representam respectivamente as vazões mássicas de R22 e propilenoglicol.

$$\dot{m}_{R22} = FT_{R22} \times \rho_{R22} \tag{Eq. A.1}$$

Sendo: $\rho_{R22} = (1/v_{R22}) \times 1000$. A multiplicação por (1000) corresponde à transformação de unidade de medida, da densidade, de $kg \cdot dm^{-3}$ para $kg \cdot m^{-3}$.

Onde:

\dot{m}_{R22} :	vazão mássica de R22 $[kg \cdot h^{-1}]$
FT_{R22} :	vazão volumétrica de R22 $[m^{\beta} \cdot h^{-1}]$
$ ho_{\scriptscriptstyle R22}$:	densidade do R22 $[kg \cdot m^{-\beta}]$
\mathcal{U}_{R22} :	volume específico do R22 $[m^{3} \cdot kg^{-1}]$.
	O volume específico do R22 $(v_{\tt R22})$ foi estimado a partir de uma interpolação
	da relação do volume específico e temperatura do R22 na entrada do medidor
	de vazão volumétrica (TE_102) [Valores obtidos de: CoolPack Version 4.16.
	Department of Mechanical Engineering Technical University of Denmark].

 $\dot{m}_p = FT_p \times \rho_p$

(Eq. A.2)

Sendo: $\rho_p = (0.9286 - 0.00057 \times T_p + 0.0311 \times \log(\%W)) \times 1000.$ A multiplicação por (1000) corresponde à transformação de unidade de medida, da densidade, de $kg \cdot dm^{-3}$ para $kg \cdot m^{-3}$.

Onde:

vazão mássica de propilenoglicol $[kg \cdot h^{-1}]$
vazão volumétrica de propile noglicol $[m^{3} \cdot h^{-1}]$
densidade do propilenoglicol $[kg \cdot m^{-3}]$
Temperatura do propilenoglicol na entrado do medidor de vazão volumétrico
[°C].
Porcentagem mássica de propilenoglicol

O calor de evaporação (Qe) e de condensação (Qc) e o trabalho de compressão (Wc) foram determinados baseados nas equações 3.1 a 3.3, respectivamente, onde as entalpias h_1 , h_2 , h_3 e h_4 foram estimadas a partir de interpolação de valores relacionando as temperaturas e as pressões específicas de cada ponto do ciclo ideal de refrigeração com o auxílio de tabelas do *CoolPack Version 4.16*.

O calor retirado do propilenoglicol (Q_p) e transferido ao gás refrigerante R22 foi calculado a partir da equação:

$$Q_p = \dot{m}_p C p_p \Delta T \tag{Eq. A.3}$$

Sendo: $Cp_p = 4148,\!43 + 3,\!1445 \times T_p - 3,\!1712 \times (\%w) \times \log(\%w)$

Onde:

\dot{m}_p :	vazão mássica de propilenoglicol $[kg \cdot h^{-1}]$
Cp_p :	calor específico do propile noglicol $[J \cdot kg^{-1} \cdot {}^{\circ}C^{-1}]$
T_p :	Temperatura do propilenoglicol na entrado do medidor de vazão volumétrico
	[°C].
%W	Porcentagem mássica de propilenoglicol

152
O cálculo do superaquecimento útil (SAU), superaquecimento total (SAT) e subresfriamento (SUB) é representado pelas Equações (A.4 a A.6), respectivamente.

$$SAU = T_{se} - T_e \tag{Eq. A.4}$$

Onde:

T_e :	Temperatura do R22 na entrada do evaporador (evaporação) $[\ensuremath{^\circ C}]$	
T_{se} :	Temperatura do R22 na saída do evaporador [°C].	

$$SAT = T_{suc} - T_e \tag{Eq. A.5}$$

Onde:

 T_{suc} :Temperatura do R22 na entrada do compressor (sucção) [°C] T_e :Temperatura do R22 na entrada do evaporador (evaporação) [°C]

$$SUB = T_c - T_{eve}$$
(Eq. A.6)

Onde:

 $\begin{array}{ll} T_{c:} & \text{Temperatura do R22 na entrada do condensador (condensação) } [°C] \\ T_{evc:} & \text{Temperatura do R22 na da válvula de expansão } [°C] \end{array}$

As Equações (A.7 e A.8) representam o cálculo do coeficiente de performance para o ciclo de Carnot (COP_{Carnot}) e o ciclo Real (COP_{Real}), respectivamente.

$$COP_{Carnot} = \frac{Q_e}{W_c}$$
 (Eq. A.7)

Onde:

	Q_c :	Calor de evaporação $[kJ \cdot kg^{-1}]$	
	W_c :	Trabalho de compressão $[kJ\cdot kg^{-1}]$	
$COP_{Real} = \frac{Q_p}{P_{con}}$	np		(Eq. A.8)

Onde:

 Q_p : Calor retirado do propilenoglicol [kW] P_{comp} : Potência requerido do compressor [kW] A potência requerida do compressor (P_{comp}) foi calculado a partir da curva de potência do compressor Bitzer octagon, modelo 2FC-2.2, representada pela Equação (A.9).

(Eq. A.9)

$$P_{comp} = -0.04707 \times \bar{\iota}^2 + 1.191 \times \bar{\iota} - 3.923$$

Sendo $\overline{\iota}=i\sqrt{3}$

Onde:

i:	Corrente do compressor $[A]$
ī:	Corrente do compressor corrigida [A

 $\sqrt{3}$ $\,$ Fator de correção (devido tipo de ligação Y) $\,$

APÊNDICE B: Dinâmica do Sistema de refrigeração para as condições padrões de ensaio (estado estacionário)

APÊNDICE B: Dinâmica do Sistema de refrigeração para as condições padrões de ensaio (estado estacionário)

A dinâmica do sistema de refrigeração para as condições padrões de ensaio, ou seja, FQ101 (frequência do compressor) igual a 60 Hz, FQ201 (frequência da bomba do evaporador) igual a 60 Hz e sendo 3000 W a carga térmica (Q) adicionada ao propilenoglicol é apresentada nas Figuras B.1 a B.8.

Figura B. 1 – Dinâmica da temperatura de descarga (Td) e de condensação (Tc) com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s

Figura B. 2 - Dinâmica da temperatura do R22 na entrada (Te) e na saída (Trse) do evaporador com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s

Figura B. 3 - Dinâmica da temperatura do propile
noglicol na entrada (Tpee) e na saída (Tp) do evaporador com FQ101=60 Hz, FQ201=60 Hz e Q=300 W ond
e $k{=}1~{\rm s}$

APÊNDICE B: Dinâmica do Sistema de refrigeração para as condições padrões de ensaio (estado estacionário)

Figura B. 4 - Dinâmica das pressões de descarga (Pd), de condensação (Pc), de evaporação (Pe) e de sucção (Ps) com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s

Figura B. 5 - Dinâmica das vazões volumétricas (FR22) e mássicas do R22 (mr) com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s

Figura B. 6 - Dinâmica das vazões volumétricas (Fp) e mássicas (mp) do propilenoglicol com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s

Figura B. 7 - Dinâmica do superaque cimento útil (SAU) e total (SAT) e subresfriamento (SUB) com FQ101=60 Hz, FQ201=60 Hz e Q=300 W on de k=1 s

APÊNDICE B: Dinâmica do Sistema de refrigeração para as condições padrões de ensaio (estado

 $estacion{{\acute{a}rio}})$

Figura B. 8 - Dinâmica do COP de Carnot (COP_c) e real (COP_R)com FQ101=60 Hz, FQ201=60 Hz e Q=300 W onde k=1 s

Os valores dos estados estacionários obtidos das Figuras B.1 a B.8 são apresentados na Tabela B.1.

Tabela B. 1 – Estado estacionário do sistema de refrigeração para as condições padrão, FQ101=60 Hz, FQ201=60 Hz e Q=3000 W

Condições padrão de ensaio: FQ101=60 Hz, FQ201=60 Hz e Q=3000 W					
Variável	Estado estacionário	Variável	Estado estacionário	Variável	Estado estacionário
Td [°C]	77,3	$FR22 \ [m^3 \cdot h^{-1}]$	0,1	mr $[kg \cdot h^{-1}]$	68,3
Tc $[^{\circ}C]$	41,6	$\mathrm{Fp}~[\mathrm{m}^3 \cdot \mathrm{h}^{-1}]$	0,9	SUB [K]	2,5
Te $[^{\circ}C]$	-16,0	Pd [bar]	14,7	SAU [K]	8,1
Trse $[^{\circ}C]$	-7,9	Pc [bar]	$14,\! 6$	SAT $[K]$	15,2
Ts $[^{\circ}C]$	-0,8	Pe [bar]	$1,\!6$	$\mathrm{COP}_{\mathrm{C}}$	2,9
Tpee $[^{\circ}C]$	18,0	Ps [bar]	1,4	$\mathrm{COP}_{\mathrm{R}}$	3,1
Tp [°C]	14,9	$mp [kg \cdot h^{-1}]$	958,0		

APÊNDICE C: Configurações dos itens OPC e informações do SISMOCAR

Figura C. 1 – Configuração dos itens de escrita OPC do compressor

Figura C. 2 – Configuração dos itens de escrita OPC do ventilador do condensador a ar

Figura C. 3 – Configuração dos itens de escrita OPC do ventilador da resistência

Figura C. 4 – Configuração dos itens de escrita OPC da bomba do evaporador e condensador

Figura C. 5 - Configuração dos itens de escrita OPC da bomba da torre de resfriamento

Figura C. 6 – Configuração dos itens de escrita OPC do exaustor da bomba de resfriamento

Figura C. 7 – Configuração dos itens de leitura OPC das vazões do ciclo de refrigeração

Figura C. 8 – Configuração dos itens de leitura OPC das pressões do ciclo de refrigeração

Figura C. 9 – Configuração dos itens de leitura OPC das temperaturas das malhas de propilenoglicol e do fluido auxiliar de resfriamento

Figura C. 10 – Configuração dos itens de leitura OPC para geração dos gráficos de monitoramento

Figura C. 11 – Configuração dos itens de leitura OPC para geração do banco de dados (arquivo .m)

Figura C. 12 - Configuração dos itens de leitura OPC para o cálculo do subresfriamento, superaquecimento útil e total.

Figura C. 13 – cálculo on-line do subresfriamento e superaquecimento útil e total

Figura C. 14 – Configuração dos itens de leitura OPC para o cálculo das vazões mássicas de R22 e propilenoglicol

Figura C. 15 - Cálculo das vazões mássicas de R22 e propilenoglicol

Figura C. 16 - Cálculo do volume específico de R22

Figura C. 17 - Cálculo das vazões mássicas de propilenoglicol

Figura C. 18 - Cálculo das vazões mássicas de R22

Figura C. 19 – Configuração dos itens de leitura OPC para o cálculo do calor de evaporação e de condensação trabalho de compressão

Figura C. 20 – Cálculo as entalpia do gás saturado e do líquido saturado

Figura C. 21 - cálculo do calor de evaporação e de condensação trabalho de compressão

Figura C. 22 – Balanço de energia on-line

Figura C. 23 – Cálculo do Cp do propilenoglicol

Figura C. 25 – Calor absorvido pelo R22

Figura C. 26 – Calculo da potência do compressor

APÊNDICE D: Programação LADDER

plicação: Sistema de Refrigeração LCAP	SPDSW V2.8.07
	[Entrada digital]
Protótipo de Resfriamento de Líquido tipo chiller	[Saida digital]
aboratorio de Automação e Controle de Processos Químicos Sacudade de Engenharia Química	O0001: VLT 01 (Terminal 19)
Jniversidade Estadual de Campinas	00002:
RANCO E PINELLI (2010)	00008:
Antradas e Saídas Digitáis	O0009: O0010:
	00011:
	00013:
0000	00014:
	E0000: Vazão R22
0000	E0001: Vazão de PG no Evaporador
	E0002: Vazao de Fluido secundario no Condensador E0003: Pressão de Descarga
	E0004: Pressão de Condensação
O000	2 EU005: Pressão da Saida do Evaporador E0006: Pressão de Succão
	E0007: Temperatura de Descarga
	[Contato auxiliar]
0000	3 R0000:
	R0001: R0002:
R0000 0000	R0003:
	R0004:
	R0006:
R0001 0000	9 R0011:
	R0013:
	[Memória real (32bits)]
R0002 0001	D D0000: E0 D0001: E1
	D0002: E2
	D0003: E3 D0004: E4
R0003 0001	1 D0005: E5
	D0008: E8 D0007: E7
R0004 0001	2
R0005 0001	3
R0006 R0009 R0011 O001	4
	\vdash
	\vdash
R0013	
Intradae Analógicae (Porne AT_1)	
moradas miatogreas (borne Ar-1)	
רַאַטען רַאָטען רַאָטען רַאָטען דאָטען דאָטען דאָטען דאָטען דאָטען דאָטען דאָטען דאָטען דאַטען דאַטען	
E0000 - E0001 - E0002 - E0003 - E0004 - E0005 - E0006 - E0007	
D0000 D0001 D0002 D0003 D0004 D0005 D0006 D0007	1

Aplicação: Sistema de Refrigeração LCAP

Entradas Analógicas (Borne AI-2) MOV MOV MOV MOV MOV MOV MOV MOV E0008 E0009 E0010 E0011 E0012 E0013 E0014 E0015 D0008 D0009 D0010 D0011 D0012 D0013 D0014 D0015 Entradas Analógicas (Borne AI-3)	[Entrada analógica] E0008: Temperatura de Condensação (Água) E0009: Temperatura de Condensação (Ar) E0011: Temperatura do R22 na Entrada do Evaporador E0011: Temperatura do R22 na Salida do Evaporador E0013: Temperatura do PG na Salida do Evaporador E0013: Temperatura do PG na Entrada do Evaporador E0014: Temperatura do Agua na Entrada do Evaporador E0016: Temperatura da Água na Entrada do Condensa E0016: Temperatura da Água na Salida do Condensa E0017: Temperatura da Água na Salida do Trocador E0018: Temperatura da Água na Salida do Trocador de E0019: Temperatura da Água na Entrada da Torce de F E0020: Temperatura da Água na Entrada da Torce de R E0020: Temperatura da Água na Entrada da Tore de R E0022: Temperatura na Entrada da Válvula de Expansi E0022: Temperatura na Entrada do Filtro Secador E0023: Temperatura na Salida do Filtro Secador
	E0024: Potência da Bomba de Evaporação E0025: Potência da Bomba de Condensação
	E0026: Potência do Compressor E0027:
+E0016 -E0017 -E0018 -E0019 -E0020 -E0021 -E0022 -E0023	E0028: E0029:
	E0030:
D0016 D0017 D0018 D0019 D0020 D0021 D0022 D0023	
	S0000:
Entradas Analógicas (Borne AI-4)	S0001: S0002:
	\$0003:
	[Memória inteira (16bits)]
HE0024 - E0025 - E0026 - E0027 - E0028 - E0029 - E0030 - E0031	M0001: M0002
	M0003:
D0024 D0025 D0026 D0027 D0028 D0029 D0030 D0031	[Memória real (32bits)]
	D0008: E8 D0009: E9
Saídas Analógicas	D0010: E10 D0011: E11
	D0012: E12 D0013: E13
	D0014: E14 D0015: E15
HM0000 M0001 M0002 M0003	D0016: E16
	D0017:E17 D0018:E18
s0000 s0001 s0002 s0003	D0019: E18 D0020: E20
	D0021: E21 D0022: E22
Medidores de Vazão(FT_101;FT_201;FT_301)	D0023: E23 D0024: E24
	D0025: E25 D0026: E26
	D0027: E27
-Q0000 -D0032 -Q0001 -D0034 -Q0002 -D0036	D0029: E29
	D0030:
Q0100 D0000 Q0100 D0001 Q0100 D0002	D0032: D0034:
	D0036: D0000: E0
D0032 D0128 D0034 D0129 D0036 D0130	D0001: E1
	D0128:
Sensores de Pressão (PT_101;PT_102;PT_103;PT_104)	D0130: D0032: E3
	D0004: E4
	D0005: E5 D0006: E6
HD0003 HD0004 HD0005 HD0006	[Constante real]
Q0037 Q0037 Q0038 Q0038	Q0000: Medidor de Vazão Turbina R22 [0.690000] Q0001: Medidor de Vazão Turbina PG [1.720000] Q0002: Medidor de Vazão Magnético [10.200000] Q0100: Constante real, valor = 4095.000000 Q0037: PT 101 e PT 1026 [0.009769]

- D0124 [Correção - D0007 - [- Q0003 q	D0125	D0126 Gensore -D0008 - Q0005	D0127	emperatura [TT_101 e TT_102]	[Memória real (32bits)] D0124: D0125: D0126: D0007: E7 D0008: E8 D0044: D0043: D0043: D0045: D0009: E9 D0046: D0010: E10 D0010: E10 D0048: D0047: D0049: D0011: E11 D0050:
D0042	D0043	D0044	D0045		D0012: E12 D0052: D0051: D0053: D0013: E13
Correção	dos s	Sensore	s de Te	emperatura [TT_103 e TT_104]	D0054: D0014: E14 D0056:
	-ADD-				D0055: D0057:
-D0009 - I	D0046	-D0010	-D0048		D0015: E15 D0058:
- Q0007	Q0008	Q0009	Q0010	O O	D0016: E16 D0060: [Constante real] Q0003: Coeficiente angular TT_101[0.992600] Q0004: Coeficiente linear TT 101[15.964000]
D0046 [D0047	D0048	D0049		Q0005: Coeficiente angular TT_102 [0.997000] Q0006: Coeficiente linear TT_102 [6.349500] Q0007: Coeficiente angular TT_103 [0.986000]
					Q0008: Coeficiente linear TT_103 [28.979000]
Correção	dos S	Sensore	s de Te	emperatura [TT_105 e TT_106]	Q0009: Coeficiente angular T1_104 [0.971500] Q0010: Coeficiente linear TT_104 [46.880001]
MU		MU	مم		Q0011: Coeficiente angular TT_105 [0.981700] Q0012: Coeficiente linear TT_105 [41.529999]
					Q0013: Coeficiente angular TT_106 [0.985700] Q0014: Coeficiente linear TT_106 [36.335999]
	00050		-00052		Q0015: Coeficiente angular TT_201 [0.987800] Q0016: Coeficiente linear TT 201 [8,712700]
Q0011	Q0012	Q0013	Q0014		Q0017: Coeficiente angular TT_202 [0.957100] Q0018: Coeficiente linear TT_202 [62.896999]
D0050	D0051	D0052	D0053		
Correçao	o dos 8	Sensore	s de Te	emperatura [TT_201 e TT_202]	
	-ADD	-MUL-	-ADD-		
	D0054	-D0014	-D0056		
- Q0015	Q0016	Q0017	Q0018		
D0054	D0055	D0056	D0057		
		·			
		ensore	s ae 14	emperatura [TI_301 e TT_302]	-
	-ADD-				
	D0058	D0016	_D0060		_
					1

Aplicação: Sistema de Refrigeração LCAP

	[Memória real (32bits)]
	D0080:
Equações Finais [TT_103 e TT_104]	D0049: D0082
	D0081:
	D0083: D0051:
	D0084:
	D0086:
	D0085:
Q0039 K0000 Q0039 K0000	D0055:
	D0088:
	D0090:
	D0089: D0091:
	D0059:
Equações Finais [TT_105 e TT_106]	D0092: D0061:
	D0094:
	D0095:
D0051 D0084 D0053 D0086	D0063: D0096:
	D0065:
	D0098:
Q0039 K0000 Q0039 K0000	[Constante inteira (16bits)]
	K0000: Constante inteira, valor = 50
	[Constante real]
	Q0039: constate para sensor de temperatura [0.03663 Q0045: Constante real, valor = 0.048840
Empeñas Finnis (TT 201 o TT 202)	
Equações Finais [11_201 e 11_202]	
D0055 D0088 D0057 D0090	
Equações Finais [TT 301 e TT 302]	
MIII- SUB- MIII- SUB-	
D0092 D0093 D0094 D0095	
Equações Finais [TT_303 e TT_304]	
·····	
MULA SUBA MULA SUBA	
Q0045 K0000 Q0045 K0000	

APÊNDICE D: Programação LADDER

Aplicação: Sistema de Refrigeração LCAP

	[Contato auxiliar] R0011:
	[Memória real (32bits)]
D0096 D0097 D0098 D0099	D0096: D0097:
Rousções Finais (TT 401 e TT 402)	D0098: D0099:
	D0067: D0100:
rmulin rsubin rmulin rsubin	D0069: D0102:
–D0067 –D0100 –D0069 –D0102 –	D0101: D0103:
	D0071: D0104:
Q0045 K0000 Q0045 K0000	D0073: D0106:
	D0105: D0107:
D0100 D0101 D0102 D0103	D0075: D0108:
	D0109: D0110:
Equações Finais [TE_101 e TE_102]	D0019: E18 D0111:
	D0112: D0022: E22
	[Constante inteira (16bits)]
	K0000: Constante inteira, valor = 50
	Q0045: Constante real, valor = 0.048840
	Q0039: constade para sensor de temperatura [0.03663 Q0040: Potência do Compressor [1118.549805]
	Q0041: Potência Bomba Evaporação [750.000000]
D0104 D0105 D0106 D0107	
-D0075 -D0108	
Q0039 K0000	
D0108 D0109	
Equação para Potência do Compressor	
LOIN MUL ROOT	
Q0040 D0110	
K0000 D0019	
D0110 D0111	
Equaçao para Potencia da Bomba Evaporação	
Q0041D0112	-
K0000 D0022	
	1

Aplicação: Sistema de Refrigeração LCAP

APÊNDICE D: Programação LADDER

Aplicação: Sistema de Refrigeração LCAP	SPDSW V2.8.07
D0131 D0134 Equação para Resistência Elétrica MUL MOV D0122 D0123 Q0044 M0003	[Contato auxiliar] R0009: R0011: R0007: R0008: R0012: [Memória inteira (16bits)] M0003: [Memória real (32bits)] D0131: D0134: D0122: D0123: D0126: [Constante inteira (16bits)] K0001: Constante inteira, valor = 50
D0123 Segurança TT 201 >=35°C	K0003: Constante inteira, valor = 22 [Constante real] Q0044: Equação para Resistência Elétrica [0.819000]
-D0089	
K0001 R0008 R0007	
Segurança PT_101 00 PT_102 >= 22 BAR Segurança PT_104 =0 BAR -D0126 R0011	
R0012 R0011	
· · · · · · · · · · · · · · · · · · ·	

APÊNDICE E: Representação explícita dos modelos Takagi-Sugeno

E.1 Modelos Takagi-Sugeno para o sistema de refrigeração contendo um compressor aberto

E.1a Representação explícita baseada nos consequentes das regras fuzzy, do modelo Takagi-Sugeno para a temperatura de condensação, $T_{condi} = q_{i1} + q_{i2} + q_{i3} + q_{i4} + q_{i0}$

 $FR^{1:} If (FQ101 is HL) and (FQ201 is LH) and (Tpeev is HL) and (Tcond_{(k-1)} is HL) then$ $Tcond = 0,00355 \cdot FQ101 + 0,00686 \cdot FQ201 + 0,9677 \cdot Tpeev + 0,936 \cdot Tcond_{(k-1)} + 0,00241$ $FR^{2:} If (FQ101 is LH) and (FQ201 is HH) and (Tpeev is LL) and (Tcond_{(k-1)} is LH) then$ $Tcond = -0,00284 \cdot FQ101 - 0,02087 \cdot FQ201 + 0,9670 \cdot Tpeev + 0,542 \cdot Tcond_{(k-1)} + 0,01974$ $FR^{3:} If (FQ101 is HM) and (FQ201 is LL) and (Tpeev is LM) and (Tcond_{(k-1)} is LM) then$ $Tcond = 0,03562 \cdot FQ101 - 0,01611 \cdot FQ201 + 0,8705 \cdot Tpeev - 0,268 \cdot Tcond_{(k-1)} + 0,08387$ $FR^{4:} If (FQ101 is LL) and (FQ201 is LM) and (Tpeev is HH) and (Tcond_{(k-1)} is LL) then$ $Tcond = -0,74240 \cdot FQ101 + 0,07710 \cdot FQ201 + 0,8315 \cdot Tpeev + 57,760 \cdot Tcond_{(k-1)} - 0,78470$ $FR^{5:} If (FQ101 is HH) and (FQ201 is HL) and (Tpeev is LH) and (Tcond_{(k-1)} is HM) then$ $Tcond = -0,02293 \cdot FQ101 + 0,14050 \cdot FQ201 + 0,7958 \cdot Tpeev + 8,672 \cdot Tcond_{(k-1)} - 0,01241$

 FR^{6} : If (FQ101 is LM) and (FQ201 is HM) and (Tpeev is HM) and (Tcond_{(k-1)} is HH) then

 $Tcond = -0.01986 \cdot FQ101 + 0.06675 \cdot FQ201 + 0.5487 \cdot Tpeev + 11.260 \cdot Tcond_{(k-1)} + 0.16260$

E.1b Representação explícita baseada nos consequentes das regras fuzzy, do modelo Takagi-Sugeno para a temperatura de evaporação, $T_{evapi} = q_{i1} + q_{i2} + q_{i3} + q_{i4} + q_{i0}$

FR¹: If (FQ101 is LH) and (FQ201 is LH) and (Tpeev is LH) and (Tevap_(k-1) is LH) then

 $Tevap = -0,00330 \cdot FQ101 + 0,03935 \cdot FQ201 + 0,9450 \cdot Tpeev - 0,204 \cdot Tevap_{(k-1)} - 0,00887$

FR²: If (FQ101 is HL) and (FQ201 is HH) and (Tpeev is LL) and (Tevap_(k-1) is HL) then

 $Tevap = 0.01610 \cdot FQ101 - 0.03925 \cdot FQ201 + 0.6374 \cdot Tpeev + 12.930 \cdot Tevap_{(k-1)} - 0.33910$

FR³: If (FQ101 is LM) and (FQ201 is LM) and (Tpeev is HM) and (Tevap_(k-1) is HM) then

 $Tevap = 0.01635 \cdot FQ101 - 0.00202 \cdot FQ201 + 0.9722 \cdot Tpeev - 0.906 \cdot Tevap_{k-1} + 0.00561$

FR⁴: If (FQ101 is HM) and (FQ201 is LL) and (Tpeev is HL) and (Tevap_(k-1) is LM) then

 $Tevap = -0.05165 \cdot FQ101 + 0.04465 \cdot FQ201 + 0.9016 \cdot Tpeev - 2.960 \cdot Tevap_{(k-1)} + 0.04592$

FR⁵: If (FQ101 is HH) and (FQ201 is HL) and (Tpeev is LM) and (Tevap_(k-1) is LL) then

 $Tevap = 5,61200 \cdot FQ101 + 0,01489 \cdot FQ201 + 0,9314 \cdot Tpeev - 223,200 \cdot Tevap_{k-1} - 0,03685$

FR⁶: If (FQ101 is LL) and (FQ201 is HM) and (Tpeev is HH) and (Tevap_(k-1) is HH) then

 $Tevap = 0.22200 \cdot FQ101 + 0.32230 \cdot FQ201 + 0.3824 \cdot Tpeev - 17.780 \cdot Tevap_{(k-1)} + 0.16050$

E.1c Representação explícita baseada nos consequentes das regras fuzzy, do modelo Takagi-Sugeno para a temperatura do propilenoglicol, $T_{propi} = q_{i1} + q_{i2} + q_{i3} + q_{i4} + q_{i0}$

FR¹: If (FQ101 is LH) and (FQ201 is LH) and (Tpeev is HL) and (Tprop_(k-1) is LH) then

Tprop = $0.01453 \cdot FQ101 + 0.21100 \cdot FQ201 + 0.7455 \cdot Tpeev - 0.194 \cdot Tprop_{(k-1)} - 0.00741$

FR²: If (FQ101 is HL) and (FQ201 is HH) and (Tpeev is LL) and (Tprop_(k-1) is LM) then

 $Tprop = -0.00242 \cdot FQ101 + 0.34260 \cdot FQ201 + 0.6507 \cdot Tpeev - 2.444 \cdot Tprop_{(k-1)} + 0.04882$

FR³: If (FQ101 is HM) and (FQ201 is LL) and (Tpeev is LH) and (Tprop_(k-1) is LL) then

 $Tprop = 0.02552 \cdot FQ101 + 0.20530 \cdot FQ201 + 0.6902 \cdot Tpeev - 2.018 \cdot Tprop_{(k-1)} + 0.01649$

FR⁴: If (FQ101 is LM) and (FQ201 is LM) and (Tpeev is HM) and (Tprop_(k-1) is HL) then

 $Tprop = 0.01027 \cdot FQ101 + 0.01952 \cdot FQ201 + 0.9715 \cdot Tpeev - 0.564 \cdot Tprop_{(k-1)} + 0.00636$

FR⁵: If (FQ101 is LL) and (FQ201 is HL) and (Tpeev is HH) and (Tprop_(k-1) is HH) then

 $Tprop = -0,15500 \cdot FQ101 + 0,40750 \cdot FQ201 + 0,5141 \cdot Tpeev + 7,997 \cdot Tprop_{k-1} - 0,04477$

FR⁶: If (FQ101 is HH) and (FQ201 is HM) and (Tpeev is LM) and (Tprop_(k-1) is HM) then

 $Tprop = -3,3010 \cdot FQ101 + 0,55280 \cdot FQ201 + 0,3054 \cdot Tpeev + 172,900 \cdot Tprop_{(k-1)} - 0,57320$

E.2 Modelos Takagi-Sugeno para o sistema de refrigeração contendo um compressor semi-hermético

E.2a Representação explícita baseada nos consequentes das regras

fuzzy, do modelo Takagi-Sugeno TS $^{\mathrm{Te}}_{\mathrm{FQ101}}$, $Te_i=$ $q_{i1}+q_{i2}+q_{i3}+q_{i4}+q_{i5}+q_{i0}$

*FR*¹: If (*FQ*101_(k-1) is *HL*) and (*FQ*101_(k-2) is *HL*) and (*FQ*101_(k-3) is *HL*) and (*Te*_(k-1) is *HL*) and (*Te*_(k-2) is *HM*) then

 $\begin{aligned} \mathrm{Te}_{1} &= -78,335 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-1)} + 149,827 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-2)} - 43,019 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} - 16,741 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} + 91,239 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} - 108,261 \times 10^{-2} \end{aligned}$

 FR^2 : If $(FQ101_{(k-1)} \text{ is } LM)$ and $(FQ101_{(k-2)} \text{ is } LM)$ then

 $Te_{2} = -0.700 \times 10^{-2} \cdot FQ101_{(k-1)} - 1.803 \times 10^{-2} \cdot FQ101_{(k-2)} + 1.835 \times 10^{-2} \cdot FQ101_{(k-3)} + 55.925 \times 10^{-2} \cdot Te_{(k-1)} + 41.310 \times 10^{-2} \cdot Te_{(k-2)} + 8.110 \times 10^{-2}$

 FR^{3} : If $(FQ101_{(k-1)} \text{ is } M)$ and $(FQ101_{(k-2)} \text{ is } M)$ and $(FQ101_{(k-3)} \text{ is } M)$ and $(Te_{(k-1)} \text{ is } HM)$ and $(Te_{(k-2)} \text{ is } HL)$ then

 $\begin{aligned} \mathrm{Te}_{3} &= 28,937 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-1)} - 90,367 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-2)} + 72,283 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 22,549 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} + 53,374 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} + 102,881 \times 10^{-2} \end{aligned}$

 FR^4 : If $(FQ101_{(k-3)} is LM)$ then

 $\begin{aligned} \mathrm{Te}_{4} &= -0.883 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-1)} + 1.081 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-2)} - 0.104 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 155.741 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} - 58.552 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} + 9.463 \times 10^{-2} \end{aligned}$

*FR*⁵: If (*FQ*101_(k-1) is *HM*) and (*FQ*101_(k-2) is *HM*) and (*FQ*101_(k-3) is *HM*) and (*Te*_(k-1) is *M*) and (*Te*_(k-2) is *M*) then

 $\begin{aligned} \mathrm{Te}_{5} &= 1,537 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-1)} - 4,108 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-2)} + 2,557 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 104,013 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} - 3,890 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} - 0,696 \times 10^{-2} \end{aligned}$

E.2b Representação explícita baseada nos consequentes das regras

fuzzy, do modelo Takagi-Sugeno TS $^{\mathrm{Tp}}_{\mathrm{FQ101}},$ $Tp_i=$ $q_{i1}+q_{i2}+q_{i3}+q_{i4}+q_{i5}+q_{i0}$

 FR^{1} : If $(FQ101_{(k-1)} \text{ is } HL)$ and $(FQ101_{(k-2)} \text{ is } HL)$ and $(FQ101_{(k-3)} \text{ is } HL)$ and $(Tp_{(k-2)} \text{ is } HL)$ then

$$\begin{split} \text{Tp}_1 &= 0.862 \times 10^{-2} \cdot \text{FQ101}_{(k-1)} - 0.707 \times 10^{-2} \cdot \text{FQ101}_{(k-2)} + 67.202 \times 10^{-2} \cdot \text{FQ101}_{(k-3)} + 33.879 \times 10^{-2} \cdot \text{Tp}_{(k-1)} - 3.511 \times 10^{-2} \cdot \text{Tp}_{(k-2)} + 0.036 \times 10^{-2} \end{split}$$

 FR^2 : If $(Tp_{(k-1)} \text{ is } HL)$ then

 $Tp_2 = -0.009 \times 10^{-2} \cdot FQ101_{(k-1)} - 0.055 \times 10^{-2} \cdot FQ101_{(k-2)} + 90.765 \times 10^{-2} \cdot FQ101_{(k-3)} + 9.139 \times 10^{-2} \cdot Tp_{(k-1)} + 0.192 \times 10^{-2} \cdot Tp_{(k-2)} - 0.0912 \times 10^{-2}$

 FR^{3} : If $(FQ101_{(k-1)} \text{ is } LM)$ and $(FQ101_{(k-2)} \text{ is } M)$ and $(FQ101_{(k-3)} \text{ is } M)$ and $(Tp_{(k-1)} \text{ is } HL)$ and $(Tp_{(k-2)} \text{ is } HM)$ then

 $Tp_3 = -0.547 \times 10^{-2} \cdot FQ101_{(k-1)} + 0.892 \times 10^{-2} \cdot FQ101_{(k-2)} + 103,053 \times 10^{-2} \cdot FQ101_{(k-3)} - 22,349 \times 10^{-2} \cdot Tp_{(k-1)} + 29,339 \times 10^{-2} \cdot Tp_{(k-2)} + 0.073 \times 10^{-2}$

 FR^4 : If $(FQ101_{(k-1)} \text{ is } HM)$ and $(FQ101_{(k-2)} \text{ is } HM)$ and $(FQ101_{(k-3)} \text{ is } HM)$ then

$$\begin{split} \text{Tp}_4 &= -0.048 \times 10^{-2} \cdot \text{FQ101}_{(k-1)} - 0.729 \times 10^{-2} \cdot \text{FQ101}_{(k-2)} + 75.876 \times 10^{-2} \cdot \text{FQ101}_{(k-3)} + 20.250 \times 10^{-2} \cdot \text{Tp}_{(k-1)} + 8.436 \times 10^{-2} \cdot \text{Tp}_{(k-2)} - 0.235 \times 10^{-2} \end{split}$$

*FR*⁵: If $(FQ101_{(k-1)} \text{ is } M)$ and $(FQ101_{(k-2)} \text{ is } LM)$ and $(FQ101_{(k-3)} \text{ is } LM)$ and $(Tp_{(k-1)} \text{ is } HM)$ and $(Tp_{(k-2)} \text{ is } HH)$ then

 $Tp_5 = -0.189 \times 10^{-2} \cdot FQ101_{(k-1)} - 0.058 \times 10^{-2} \cdot FQ101_{(k-2)} + 94.478 \times 10^{-2} \cdot FQ101_{(k-3)} - 2.577 \times 10^{-2} \cdot Tp_{(k-1)} + 13.195 \times 10^{-2} \cdot Tp_{(k-2)} - 0.030 \times 10^{-2}$

FR⁶: If $(Tp_{(k-1)} \text{ is } HH)$ and $(Tp_{(k-2)} \text{ is } M)$ then

$$\begin{split} \mathrm{Tp}_6 &= -49,351 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-1)} + 51,435 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-2)} + 300,506 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} - 288,440 \times 10^{-2} \cdot \mathrm{Tp}_{(k-1)} + 78,672 \times 10^{-2} \cdot \mathrm{Tp}_{(k-2)} - 7,062 \times 10^{-2} \end{split}$$

E.2c Representação explícita baseada nos consequentes das regras

$\mathrm{fuzzy}, \mathrm{do} \mathrm{modelo} \mathrm{Takagi-Sugeno} \mathrm{TS}^{\mathrm{Te}}_{\mathrm{FQ201}}, Te_i =$

$q_{i1} + q_{i2} + q_{i3} + q_{i4} + q_{i5} + q_{i0}$

 FR^{1} : If $(FQ201_{(k-1)} \text{ is } LL)$ and $(FQ201_{(k-2)} \text{ is } LL)$ and $(FQ201_{(k-3)} \text{ is } LL)$ and $(Te_{(k-1)} \text{ is } LM)$ and $(Te_{(k-2)} \text{ is } LH)$ then

 $\begin{aligned} \mathrm{Te}_{1} &= -0,344 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-1)} + 0,411 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-2)} - 1,114 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 135,768 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} - 37,751 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} - 37,752 \times 10^{-2} \end{aligned}$

 FR^2 : If $(FQ201_{(k-1)} \text{ is } LH)$ and $(FQ201_{(k-2)} \text{ is } LH)$ and $(FQ201_{(k-3)} \text{ is } LH)$ and $(Te_{(k-1)} \text{ is } LH)$ and $(Te_{(k-2)} \text{ is } LH)$ then

 $\begin{aligned} \mathrm{Te}_{2} &= 0,100 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-1)} - 0,954 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-2)} - 0,367 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 136,521 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} - 38,509 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} - 22,201 \times 10^{-2} \end{aligned}$

 FR^{3} : If $(FQ201_{(k-1)} \text{ is } HL)$ and $(FQ201_{(k-2)} \text{ is } HL)$ and $(FQ201_{(k-3)} \text{ is } HL)$ and $(Te_{(k-1)} \text{ is } HL)$ and $(Te_{(k-2)} \text{ is } HL)$ then

$$\begin{split} \mathrm{Te}_{3} &= -1,905 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-1)} + 0,799 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-2)} - 0,053 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 196,748 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} - 100,485 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} + 11,130 \times 10^{-2} \end{split}$$

 FR^4 : If $(FQ201_{(k-1)} \text{ is } HH)$ and $(FQ201_{(k-2)} \text{ is } HH)$ and $(FQ201_{(k-3)} \text{ is } HH)$ and $(Te_{(k-1)} \text{ is } M)$ and $(Te_{(k-2)} \text{ is } M)$ then

 $\begin{aligned} \mathrm{Te}_{4} &= -0.188 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-1)} - 21,936 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-2)} + 21,003 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 178,909 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} - 81,798 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} + 11,301 \times 10^{-2} \end{aligned}$

 FR^5 : If $(FQ201_{(k-1)} \text{ is } M)$ and $(FQ201_{(k-2)} \text{ is } M)$ and $(FQ201_{(k-3)} \text{ is } M)$ then

$$\begin{split} \text{Te}_5 &= 0.585 \times 10^{-2} \cdot \text{FQ201}_{(k-1)} - 0.937 \times 10^{-2} \cdot \text{FQ201}_{(k-2)} - 0.363 \times 10^{-2} \cdot \text{FQ101}_{(k-3)} + 206.312 \times 10^{-2} \cdot \text{Te}_{(k-1)} - 107.262 \times 10^{-2} \cdot \text{Te}_{(k-2)} - 5.814 \times 10^{-2} \end{split}$$

FR⁶: If $(Te_{(k-1)} \text{ is } HM)$ and $(Te_{(k-2)} \text{ is } HM)$ then

$$\begin{split} \mathrm{Te}_6 &= 0.015 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-1)} + 0.511 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-2)} - 0.058 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 132.432 \times 10^{-2} \cdot \mathrm{Te}_{(k-1)} - 28.845 \times 10^{-2} \cdot \mathrm{Te}_{(k-2)} - 10.552 \times 10^{-2} \end{split}$$

E.2d Representação explícita baseada nos consequentes das regras

fuzzy, do modelo Takagi-Sugeno TS $^{\mathrm{Tp}}_{\mathrm{FQ201}},$ $Tp_i=$ $q_{i1}+q_{i2}+q_{i3}+q_{i4}+q_{i5}+q_{i0}$

 FR^1 : If $(FQ201_{(k-1)} \text{ is } LL)$ and $(Tp_{(k-1)} \text{ is } M)$ and $(Tp_{(k-2)} \text{ is } M)$ then

$$\begin{split} \text{Tp}_1 &= 2,819 \times 10^{-2} \cdot \text{FQ201}_{(k-1)} + 0,402 \times 10^{-2} \cdot \text{FQ201}_{(k-2)} - 0,262 \times 10^{-2} \cdot \text{FQ101}_{(k-3)} + 180,476 \times 10^{-2} \cdot \text{Tp}_{(k-1)} - 78,848 \times 10^{-2} \cdot \text{Tp}_{(k-2)} + 78,661 \times 10^{-2} \end{split}$$

FR²: If $(FQ201_{(k-1)} \text{ is } HL)$ and $(FQ201_{(k-2)} \text{ is } HL)$ and $(FQ201_{(k-3)} \text{ is } HL)$ and $(Tp_{(k-1)} \text{ is } HM)$ and $(Tp_{(k-2)} \text{ is } HM)$ then

 $Tp_2 = 5.764 \times 10^{-2} \cdot FQ201_{(k-1)} - 5.118 \times 10^{-2} \cdot FQ201_{(k-2)} - 1.623 \times 10^{-2} \cdot FQ101_{(k-3)} + 160.586 \times 10^{-2} \cdot Tp_{(k-1)} - 60.571 \times 10^{-2} \cdot Tp_{(k-2)} - 7.966 \times 10^{-2}$

 FR^{3} : If $(FQ201_{(k-1)} \text{ is } HH)$ and $(FQ201_{(k-2)} \text{ is } HH)$ and $(FQ201_{(k-3)} \text{ is } HH)$ and $(Tp_{(k-1)} \text{ is } LH)$ and $(Tp_{(k-2)} \text{ is } LH)$ then

$$\begin{split} \text{Tp}_3 &= 0.974 \times 10^{-2} \cdot \text{FQ201}_{(k-1)} - 0.993 \times 10^{-2} \cdot \text{FQ201}_{(k-2)} + 0.025 \times 10^{-2} \cdot \text{FQ101}_{(k-3)} + 110.681 \times 10^{-2} \cdot \text{Tp}_{(k-1)} - 11.787 \times 10^{-2} \cdot \text{Tp}_{(k-2)} + 0.045 \times 10^{-2} \end{split}$$

*FR*⁴: If (*FQ201*_(k-1) is *LH*) and (*FQ201*_(k-2) is *LH*) and (*FQ201*_(k-3) is *LH*) and (*Tp*_(k-1) is *LM*) and (*Tp*_(k-2) is *LM*) then

$$\begin{split} \mathrm{Tp}_4 &= -0.286 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-1)} + 3.419 \times 10^{-2} \cdot \mathrm{FQ201}_{(k-2)} - 5.034 \times 10^{-2} \cdot \mathrm{FQ101}_{(k-3)} + 147.972 \times 10^{-2} \cdot \mathrm{Tp}_{(k-1)} - 51.965 \times 10^{-2} \cdot \mathrm{Tp}_{(k-2)} - 22.359 \times 10^{-2} \end{split}$$

FR⁵: If $(FQ201_{(k-2)} \text{ is } LL)$ and $(FQ201_{(k-3)} \text{ is } LL)$ then

$$\begin{split} \text{Tp}_5 &= 0.171 \times 10^{-2} \cdot \text{FQ201}_{(k-1)} - 0.272 \times 10^{-2} \cdot \text{FQ201}_{(k-2)} - 1.751 \times 10^{-2} \cdot \text{FQ101}_{(k-3)} + 154.106 \times 10^{-2} \cdot \text{Tp}_{(k-1)} - 53.802 \times 10^{-2} \cdot \text{Tp}_{(k-2)} - 51.603 \times 10^{-2} \end{split}$$
ANEXO I: Informações complementares dos equipamentos do sistema de refrigeração

[Faculdade de Engenharia Química]

A.I.1 – Compressor Bitzer série octagon

-Bitzen

Leistungswerte 50 Hz
bezogen auf Sauggastemperatur 20°C,
ohne Flüssigkeits-Unterkühlung

Mod

Performance data 50 Hz relating to 20°C suction gas tempera-ture, without liquid subcooling

Données de puissance 50 Hz à une température de gaz aspiré de 20°C se référant, sans sous-refroidissement de liquide

- R22

Typ Compressor type	Temp. Cond. temp.		Ká Cơ Pu	ilteleistun ooling cap iissance fi	g acity rigorifique		Qo	[W	'att]	Leistungs Power co Puissance	aufnahme nsumption e absorbée	F	e	[kW	מ
Compresseu type	r Temp. de cond. °C	T	12.5	Verda	mpfungst	emperat	ur°C Ev	aporating	tempera	ature °C	Températu	re d'évap	oration °C	-35	-40
2KC-05.2	30 40 50	Q P Q P Q P	5550 0,78 4860 1,01 4220 1,22	5070 0,79 4430 1,01 3840 1,20	4610 0,80 4020 1,00 3480 1,18	4190 0,80 3640 0,99 3150 1,15	3420 0,80 2960 0,95 2540 1,08	2760 0,78 2370 0,90 2020 1,00	2180 0,75 1850 0,83 1560 0,91	1680 0,70 1400 0,76 1160 0,81	1460 0,63 1270 0,71 1090 0,78	1120 0,56 955 0,61 820 0,65	835 0,48 700 0,50 590 0,54	600 0,39 490 0,40 400 0,42	410 0,31 315 0,31
2JC-07.2	30 40 50	QPQPQP	6780 0,94 5950 1,22 5170 1,50	6210 0,95 5450 1,21 4730 1,48	5670 0,96 4970 1,20 4310 1,45	5170 0,96 4530 1,19 3920 1,42	4280 0,95 3730 1,15 3210 1,34	3500 0,93 3030 1,10 2590 1,25	2820 0,90 2420 1,03 2050 1,15	2230 0,85 1900 0,95 1590 1,04	1900 0,81 1650 0,91 1420 1,00	1460 0,73 1250 0,80 1070 0,86	1100 0,64 920 0,68 770 0,72	795 0,55 645 0,56 530 0,58	550 0,46 425 0,45
2HC-1.2	30 40 50	Q P Q P Q P						4490 1,17 3910 1,41 3370 1,63	3650 1,13 3150 1,33 2710 1,51	2920 1,06 2510 1,22 2140 1,37	2500 1,01 2170 1,14 1880 1,25	1950 0,91 1660 0,99 1420 1,07	1470 0,79 1230 0,83 1030 0,88	1080 0,67 880 0,68 720 0,71 @	755 0,55 585 0,54
2HC-2.2	30 40 50	QP.QP.QP	8600 1,21 7530 1,56 6540 1,92	7880 1,22 6900 1,55 5990 1,89	7210 1,22 6310 1,54 5480 1,86	6590 1,22 5760 1,52 5000 1,82	5470 1,20 4770 1,47 4130 1,73	4490 1,17 3910 1,40 3380 1,62	3640 1,12 3160 1,32 2720 1,50	2910 1,06 2510 1,21 2150 1,35	2290 0,98 1950 1,09 1650 1,19	1750 0,88 1470 0,95 1230 1,00	1300 0,76 1070 0,78@		
2GC-2.2	30 40 50	QPQPQP	10020 1,32 8790 1,76 7650 2,17	9190 1,33 8060 1,75 7020 2,14	8420 1,35 7380 1,74 6420 2,11	7690 1,36 6750 1,73 5870 2,07	6390 1,37 5600 1,69 4870 1,98	5260 1,36 4600 1,63 3990 1,87	4280 1,33 3730 1,56 3230 1,75	3430 1,29 2980 1,46 2570 1,60	2960 1,24 2600 1,37 2260 1,49	2320 1,14 2010 1,24 1720 1,30	1790 1,03 1510 1,08 1270 1,11	1340 0,89 1100 0,92 890 0,93 ()	960 0,75 760 0,73
2FC-2.2	30 40 50	Q P Q P Q P						6360 1,64 5580 1,98 4830 2,27	5200 1,59 4540 1,87 3900 2,10	4200 1,51 3640 1,73 3100 1,89	3640 1,45 3170 1,62 2700 1,73	2880 1,33 2470 1,44 2060 1,49	2240 1,19 1880 1,24 1530 1,27	1700 1,04 1390 1,05 1090 1,06	1250 0,88 985 0,85
2FC-3.2	30 40 50	QPQPQP	11990 1,68 10620 2,21 9290 2,73	11010 1,69 9750 2,20 8510 2,69	10100 1,70 8930 2,18 7790 2,64	9240 1,71 8170 2,15 7110 2,59	7700 1,69 6790 2,09 5890 2,46	6370 1,66 5590 2,00 4820 2,31	5210 1,61 4540 1,89 3890 2,14	4210 1,53 3640 1,76 3090 1,95	3340 1,43 2870 1,60 2400 1,73	2610 1,31 2200 1,42 1820 1,49	1980 1,16 1640 1,22®		
2EC-2.2	30 40 50	QPQPQP						7590 2,06 6650 2,42 5680 2,71	6190 1,94 5370 2,21 4520 2,42	4990 1,80 4270 1,99 3520 2,15	4340 1,71 3810 1,91 3150 2,09	3430 1,56 2960 1,72 2390 1,82	2650 1,40 2250 1,51 1730 1,56	1990 1,23 1640 1,29 1170 1,28	1440 1,05 1140 1,06
2EC-3.2	30 40 50	QPQPQP	14380 1,76 12840 2,53 11260 3,19	13200 1,87 11760 2.56 10290 3,15	12090 1,95 10760 2,56 9380 3,09	11060 2,00 9830 2,55 8530 3,01	9210 2,05 8130 2,48 7000 2,83	7600 2,02 6660 2.35 5670 2,61	6200 1,94 5380 2,18 4510 2,37	4990 1,82 4280 1.99 3510 2,13	3950 1,67 3320 1.80 2640 1,91 ⁽³⁾	3070 1,52 2510 1.61 1910 1,71 [©]	2310 1,37 1810 1,46®		
2DC-2.2	30 40 50	Q P Q P Q P						9110 2,42 7970 2,77 6790 3.08	7430 2,29 6430 2,57 5400 2,80	5980 2,14 5110 2,35 4200 2,53	5150 2,02 4370 2,22 3520 2,40	4030 1,82 3370 1,97 2660 2,09	3100 1,62 2550 1,73 1960 1,80	2330 1,43 1870 1,49 1390 9 1,54	1700 1,24 1330 1,26
2DC-3.2	30 40 50	Q P Q P Q P	17280 2,01 15400 2,89 13490 3,64	15860 2,14 14110 2,92 12320 3,59	14530 2,24 12910 2,93 11230 3,52	13290 2,31 11780 2,92 10220 3,44	11060 2,36 9750 2,84 8380 3,23	9120 2,33 7980 2,69 6780 2,98	7440 2,24 6450 2,50 5390 2,72	5990 2,09 5120 2,28 4190 2,45	4740 1,92 3970 2,06 3160 2,20 @	3670 1,74 3000 1,86 2270 2,00 (*)	2770 1,58 2160 1,70 @		
2CC-3.2	30 40 50	QPQPQP						11350 2,85 9880 3,32 8370 3,73	9290 2,74 8010 3,07 6680 3,39	7500 2,56 6380 2,79 5230 3,04	6390 2,40 5400 2,56 4450 2,79	5040 2,15 4160 2,27 3340 2,46	3890 1,91 3140 2,00 2430 2,19	2940 1,70 2290 1,74 1680 1,90	2160 1,49 1600 1,47
2CC-4.2	30 40 50	Q P Q P Q P	21400 2,48 18960 3,67 16490 4,61	19650 2,63 17380 3,69 15080 4,51	18020 2,74 15910 3,68 13760 4,40	16490 2,83 14540 3,64 12520 4,27	13750 2,91 12050 3,51 10290 3,99	11360 2,88 9890 3,31 8350 3,67	9290 2,78 8020 3,06 6670 3,33	7510 2,61 6390 2,79 5210 <u>3,01</u>	5970 2,40 5000 2,51 3960 2,72 ©	4660 2,17 3800 2,24 2880 2,47 ♥	3550 1,93 2780 2,01 ⊕		
4FC-3.2	30 40 50	Q P Q P Q P						12760 3,25 11220 3,78 9650 4,22	10380 3,07 9030 3,48 7670 3,82	8310 2,86 7140 3,16 5950 3,42	7070 2,68 6010 2,96 4960 3,25	5540 2,43 4650 2,62 3770 2,88	4260 2,17 3510 2,28 2770 2,52	3190 1,93 2560 1,97 1940 2,13	2300 1,71 1790 1,70
22														к	P-100-

KP-100-6

R22 -

Leistungswerte 50 Hz bezogen auf Sauggastemperatur 20°C, ohne Flüssigkeits-Unterkühlung

Performance data 50 Hz relating to 20°C suction gas tempera-ture, without liquid subcooling

Données de puissance 50 Hz à une température de gaz aspiré de 20°C se référant, sans sous-refroidissement de liquide

Compression Term. Verse	Verdichter Typ Compressor type	Verfl. Temp. Cond. temp.		Kä Co Pu	Iteleistung oling capa issance fr	g acity igorifique	(8	Qo	[W	att]	Leistungs Power cor Puissance	aufnahme sumption absorbée	Ρ	e	[kW]		
U W 125 10 75 5 0 -5 -30	Compresseur type	de cond.			Verda	mpfungst	emperatu	r°C Ev	aporating	tempera	ature °C	Températu	ire d'évap	oration °C			
arc.4.2 iso		°C 30	•	12.5 24400	10 22350	7,5	5 18720	0 15540	-5 12780	-10 10390	-15 8320	-20 6550	-25 5030	-30 3740	-35	-40	
Act Act <th>4FC-5.2</th> <th>40</th> <th>P</th> <th>2,84 21800</th> <th>2,97 19960</th> <th>3,06 18250</th> <th>3,13 16650</th> <th>3,17 13750</th> <th>3,12 11230</th> <th>2,99 9040</th> <th>2,80 7150</th> <th>2,57 5530</th> <th>2,32 4130</th> <th>2,07</th> <th></th> <th></th>	4FC-5.2	40	P	2,84 21800	2,97 19960	3,06 18250	3,13 16650	3,17 13750	3,12 11230	2,99 9040	2,80 7150	2,57 5530	2,32 4130	2,07			
col col 15.00 4.83 4.84 4.72 7.45 7.76 3.77 3.76 3.77 3.76 3.77		50	P	4,00	4,02	4,02	3,99 14530	3,86	3,66	3,40	3,11	2,80	2,49	2,21			
acc box box <th></th> <th>30</th> <th>P</th> <th>5,00</th> <th>4,93</th> <th>4,84</th> <th>4,72</th> <th>4,45</th> <th>4,12</th> <th>3,76</th> <th>3,39</th> <th>3,02@</th> <th>2,67 @</th> <th>5340</th> <th>4010</th> <th>2910</th>		30	P	5,00	4,93	4,84	4,72	4,45	4,12	3,76	3,39	3,02@	2,67 @	5340	4010	2910	
Halo Ho P Add	450.4.2	40	P						3,97	3,78	3,54	3,31	3,07	2,76	2,41	2,09	
b0 p rest res	420-4.2	40	P						4,60	4,28	3,92	3,66	3,32	2,94	2,55	2,17	
dec.6.2 40 Q 23:43 23:90 33:90 33:91 33:73 33:47 34:74 74:77 22:80 23:80 dec.6.2 40 Q 25:75 23:84 33:91 53:37 53:47 53:47 53:47 53:87 23:88 30 Q A3:75 23:84 33:84 33:84 33:84 33:83 33:82 23:88 400:55:0 Q 63:3 62:3 65:3 65:3 65:3 63:9		50	P	20050	27500	25200	22050	10160	5,11	4,68	4,24	4,01	3,57	3,04	2,49 @		
acc-a.2 ioi p 26.3 25.03 25.03 25.03 25.04 550 50 Q 23.440 21.50 1650 1422 53.44 550 54.40 21.50 4DC-5.2 40 Q 23.440 11500	450.6.0	30	P	3,43	3,64	3,79	3,90	3,98	3,91	3,73	3,47	3,17	2,86	2,58			
50 0 2.840 2.1400 195/0 1/210 1/2400	4EC-6.2	40	P	4,97	5,03	5,03	5,00	4,83	4,56	4,22	3,84	3,46	3,12	2,84®			
40C-5.2 40 0 0 19/40 15600 18/10 6020 8100 6280 4860 3280 50 0 p 5 0 p 5 6 6 5 14 4/10 1550 6380 3280 3380		50	Q P	23450 6,31	21450 6,22	19570 6,09	17810 5,94	14630 5,56	11850 5,12	9440 4,65	7350 4,19	5560 3,77®	4020 3,43 ©				
4DC-5.2 40 0 - 16830 12530 10800 8830 8830 5220 3380 2.82 4DC-7.2 40 0 3540 3340 3340 2.82 3380 2.82 5.80 5.80 5.80 5.80 5.80 5.80 5.80<		30	Q P						19140 4,77	15600 4,51	12540 4,21	10300 3,93	8110 3,62	6260 3,27	4690 2,91	3380 2,55	
50 0	4DC-5.2	40	Q P						16830 5,56	13590 5,14	10800 4,70	8830 4,35	6880 3,92	5220 3,49	3820 3,05	2650 2,62	
30 Q 38400 33400 32250 19160 16510 12540 9310 7070 5760 40C-7.2 40 Q 32503 22750 24850 20550 16800 1800 8000 6530 315 315 50 Q 22503 27200 24850 20550 16800 10800 8000 6540 4590 315 610 Q 22800 1710 7.07 6.14 5.66 5.13 4.610 4000 9340 7.070 5.76 6.14 5.60 <th></th> <th>50</th> <th>Q P</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>14480 6,23</th> <th>11550 5,66</th> <th>9020 5,09</th> <th>7280 4,67</th> <th>5570 4,23</th> <th>4120 3,82</th> <th>2920 3,39 Ø</th> <th></th>		50	Q P						14480 6,23	11550 5,66	9020 5,09	7280 4,67	5570 4,23	4120 3,82	2920 3,39 Ø		
40C-7.2 40 Q 32500 22700 24850 2050 6830 13600 18600 8400 6340 4590 50 Q 28500 22100 22800 21700 17330 1440 11660 9030 6850 4970 9340 7011 4474 38.0 33.860 1444 1470 4160 4.039 970 1440 1520 12400 9340 7011 1470 1440 1520 12400 9340 1701 1470 1440 15120 12400 9340 1701 1470		30	Q P	36400 4,21	33400 4,37	30600 4,49	28000 4,57	23250 4,63	19160 4,56	15610	12540 4,15	9910 3,85	7670 3,51	5760 3,15			
50 Q 28500 21700 7730 14480 11560 9030 6850 4970 30 Q 7.28 7.19 7.07 6.33 6.14 5.65 5.13 4.61% 4.00% 7780 7780 578 5.78 5.48 5.12 12000 9330 7780 578 5.44 5.18 4.61% 4.00% 7780 578 5.44 5.18 4.61% 4.00% 7780 578 5.44 5.18 4.61% 4.30% 4.330 3.930 7780 5.01 4.00% 5.030 7780 5.010% 7780 5.010% 7780 5.18 4.77 4.34 3.333 7780 5.18 4.77 4.34 3.333 780 5.18 4.77 4.34 3.333 780 5.18 4.77 4.34 3.333 780 5.18 4.77 4.34 3.333 730 5.18 4.77 4.34 3.333 730 5.18 4.77 4.28	4DC-7.2	40	Q P	32500 5,83	29750 5.86	27200 5.86	24850 5.82	20550 5,66	16830 5,40	13600 5.06	10800 4,67	8400 4,24	6340 3,80	4590 3.36®			
30 p 102 11/2 11/2 10/2<		50	Q	28500	26100	23800	21700	17830	14480	11560	9030	6850 4.61 [@]	4970 4 09 @				
4CC-6.2 (*) 40 0 7780 57760 5777 5777777777 57770 <		30	Q	1,20	1,10	1,07	0,00	0,01	22950	18740	15120	12000	9340	7070			
50 0 7 75 116 117 117 110 100000 10000 100000	4CC-6.2 ®	40	Q						20250	16410	13090	10230	7780	5700			
30 P 43300 39750 38350 27800 2500 1070		50	Q						17510	14010	10990	8390	6160 5.00 @	4,00 -			
4CC-9.2 40 C 33800 3300 2300		30	Q	43300	39750	36450	33350	27800	22950	18750	15120	12000	9330	7060			
50 CP 3/4250 3/4250 2/600 2/100 10/10 10/	4CC-9.2	40	Q	38900	35650	32600	29800	24700	20250	16420	13100	10240	7790	5710			
Avcs-6.2 P 9.27 9.05 8.82 8.57 8.06 7.50 6.92 6.30 5.060 4.99 9 4vcs-6.2 40 Q P 5.96 5.63 5.24 4.79 4.29 3.78 3.23 2.67 50 Q P 2.267 2.000 18140 16710 13350 10600 6730 4360 3280 2.267 50 Q P 7.73 5.84 5.94 5.24 4.79 4.29 3.78 3.23 2.267 50 Q 47700 43800 40150 36750 30600 2250 20600 16630 13170 10220 7700 <t< th=""><th></th><th>50</th><th>Q</th><th>34250</th><th>31350</th><th>28650</th><th>26100</th><th>21500</th><th>17500</th><th>14010</th><th>10990</th><th>8380</th><th>6150</th><th>4,130</th><th></th><th></th></t<>		50	Q	34250	31350	28650	26100	21500	17500	14010	10990	8380	6150	4,130			
4VCS-6.2 40 Q P 5.96 5.53 5.24 4.79 4.29 3.78 3.23 2.267 50 Q P 2200 18140 14620 11600 9010 6730 4850 3280 2.89 60.99 9.20 15610 1280 9660 7320 5340 3670 2860 77.74 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.700 4.33 3.33 2.49 4VCS-10.2 40 Q 42550 3800 3200 32000 22000 12700 12800 9660 7320 5.77 5.52 5.16 4.73 4.21 3.64 60 Q 7.73 8.750 35000 22400 15600 12800 9660 7340 5220 5101 1280 9680 7340 5220 5101 12800 9680 7340 5220 2100 15610 12800 9830 7320 <th></th> <th>30</th> <th>Q</th> <th>9,27</th> <th>9,05</th> <th>8,82</th> <th>8,57</th> <th>8,06</th> <th>25150</th> <th>20600</th> <th>16710</th> <th>13350</th> <th>10480</th> <th>8010</th> <th>5940</th> <th>4210</th>		30	Q	9,27	9,05	8,82	8,57	8,06	25150	20600	16710	13350	10480	8010	5940	4210	
50 0 P 0,89 6,38 5,83 5,82 4,63 4,63 4,60 3,400 2,269 30 0 47700 43800 40150 36750 30600 7,74 7,76 7,66 6,34 5,63 4,90 4,13 3,33 2,49 4VCS-10.2 40 0 42250 38750 35000 32000 22700 22260 18110 14530 11440 8400 6540 577 5,62 5,16 4,73 4,21 3,64 50 0 98750 33000 30200 22400 19200 15640 5,100 4,48 3,840 522 510 4,48 3,840 522 510 4,48 3,840 522 500 16370 1700 5200 770 520 516 4,73 448 3,840 522 2400 1050 16370 1280 9803 7320 5220 400 333 523 4,66	4VCS-6.2	40	Q						5,96 22200	5,63 18140	5,24 14620	4,79	4,29 9010	3,78 6730	3,23 4850	2,67 3280	
P 47700 43800 40150 36750 30000 2250 20650 16630 1370 1020 7700		50	P Q						6,89 19210	6,38 15610	12490	5,24 9660	4,63 7320	4,06 5340	3,40 3670	2,69 2280	
4VCS-10.2 P 5,73 5,84 5,91 5,94 5,92 5,77 5,52 5,16 4,73 4,21 3,64 50 Q 42250 38750 35600 32500 32500 32500 32500 32500 32500 32500 32500 5360 7,73 6,97 6,61 6,17 5,66 5,10 4,48 3,840 60 Q 36900 33800 3905 28250 23400 19200 15540 1280 9600 7340 6 7,730 6,97 12880 9600 7340 5220 2050 15540 12800 9600 7340 5220 466 4,01 3,35 700 P P 7,70 6,91 6,44 5,89 5,29 4,66 4,01 3,35 6,90 P P 6,90 7,70 7,71 7,71 6,90 6,40 4100 3400 3560 22050 1830 12410		30	Q	47700	43800	40150	36750	30600	7,74 25250	7,06	6,34 16630	5,63 13170	4,90	4,13	3,33	2,49	
P 7,41 7,32 7,23 6,97 6,61 6,17 5,66 5,10 4,48 3,84@ 50 P 8,99 8,83 3800 32800 22400 19200 15540 1280 9660 7340 1280 9660 7340 1280 9660 7340 1280 9660 7340 1280 9660 7340 1280 9600 7340 5220 20150 16370 1280 9600 7340 5220 20150 16370 1280 9830 7320 5220 406 0 <th>4VCS-10.2</th> <th>40</th> <th>P</th> <th>5,73 42250</th> <th>5,84 38750</th> <th>5,91 35500</th> <th>5,94 32500</th> <th>5,92 27000</th> <th>5,77 22250</th> <th>5,52 18110</th> <th>5,16 14530</th> <th>4,73</th> <th>4,21 8800</th> <th>3,64 6540</th> <th></th> <th></th>	4VCS-10.2	40	P	5,73 42250	5,84 38750	5,91 35500	5,94 32500	5,92 27000	5,77 22250	5,52 18110	5,16 14530	4,73	4,21 8800	3,64 6540			
P 8.99 8.83 8.65 8.44 7.97 7.43 6.82 6.16 5.46% 4.73% 4TCS-8.2 0 P P 7.30 6.22 6.12 6.42 6.16% 5.46% 4.73% 4TCS-8.2 40 P P 7.30 6.210 6.424 5.89 5.29 4.66 4.01 3.35 50 Q P P 27.10 22150 17840 14150 1100 8200 52.29 4.66 4.01 3.35 60 Q P 9.77 7.11 7.77 7.71 6.12 5.70 5.06 4.31 3.51 30 Q 57100 52400 48100 44000 36700 3030 24800 20501 1530 1446 24100 2410 24200 1773 6.17 7.66 6.90 7.61 7.98 6.195 6.27 5.55 4.46 400 Q 5000		50	P	7,41 36900	7.38	7.32 30950	7.23 28250	6.97 23400	6.61 19200	6.17 15540	5.66	5.10 9660	4.48 7340	3.84@			
ATCS-8.2 40 0 P - - 7,30 6,91 6,44 5,89 5,29 4,66 4,01 3,35 50 Q P -		30	P	8,99	8,83	8,65	8,44	7,97	7,43	6,82 25200	6,16 20450	5,46 ⁽³⁾	4,73 ⁽¹⁾	9830	7320	5220	
ATCS-12. P B T B T T F<	4TCS-8.2	40	P						7,30	6,91 22150	6,44 17840	5,89 14150	5,29	4,66 8200	4,01 5920	3,35 4010	
P 940 8.58 7.73 6.90 6.09 5.25 4.37 3.43 ³ 4TCS-12.2 40 Q 6.90 7.04 7.18 7.17 7.00 6.69 7.73 6.90 6.09 5.25 4.37 3.43 ³ 4TCS-12.2 40 Q 6.90 7.04 7.18 7.17 7.00 6.70 6.28 5.76 5.15 4.46 50 Q 9.07 9.03 8.95 8.84 8.52 2.800 2.1850 17550 13800 10.39 9.90 10.07 10.08		50	P						8,39 23450	7,77	7,11	6,42	5,70	5,06 6640	4,31 4610	3,51 2910	
ATCS-12.2 40 p 6.90 7.704 7.718 7.718 7.717 7.700 6.70 6.28 6.76 6.15 4.46 4TCS-12.2 40 Q 5.0500 4.6650 42750 39100 32550 28260 21850 17550 17860 17850 17860 17850 17860 17850		30	P	57100	52400	48100	44000	36700	9,40	8,58	7,73	6,90 15930	6,09	5,25	4,37	3,43 [©]	
4103/12.2 40 G 6007 6003 8.65 8.84 8.65 2.860 2.756 7.695 7.697 5.55 7.790 50 Q 44400 40700 37250 34050 28200 23150 18770 1890 1730 565 6.95 5.66 ° 9 4PCS-10.2 40 Q P - </th <th>4108-12.2</th> <th>40</th> <th>P</th> <th>6,90</th> <th>7,04</th> <th>7,13</th> <th>7,18</th> <th>7,17</th> <th>7,00</th> <th>6,70</th> <th>6,28</th> <th>5,76</th> <th>5,15</th> <th>4,46</th> <th></th> <th></th>	4108-12.2	40	P	6,90	7,04	7,13	7,18	7,17	7,00	6,70	6,28	5,76	5,15	4,46			
30 Q 11,07 10,67 10,28 10,33 203300 203300 2033	4103-12.2	40 50	P	9,07	9,03	8,95	8,84	8,52	8,09	7,56	6,95	6,27	5,55	4,79@			
30 Q 30000 23000 23000 18340 18000 16300 18340 18000 18340 18000 16300 10000 1000 1000 <th></th> <th>50</th> <th>P</th> <th>11,07</th> <th>10,87</th> <th>10,64</th> <th>10,38</th> <th>9,80</th> <th>9,13</th> <th>8,39</th> <th>7,59</th> <th>6,74@</th> <th>5,86 ®</th> <th>11220</th> <th>0200</th> <th>5000</th>		50	P	11,07	10,87	10,64	10,38	9,80	9,13	8,39	7,59	6,74@	5,86 ®	11220	0200	5000	
arcs-ruz	4000 10 0	30	P						8,44	8,03	7,49	6,86	6,14	5,46	4,70	3,96	
50 Q 27/300 22/300 22/300 1/7/00 138/00 105/10 77/00 533/0 335/0 4905 Q 68400 62800 57600 52700 43800 002 9,94 8,98 7,05 6,01 7,800 5,80 4,94 4,94 4PCS-15.2 40 Q 68400 55200 52700 23750 188/10 14590 11000 14590 11000 14590 11000 14590 11000 14590 11000 14590 11000 14590 11000 14590 11000 14590 11000 14590 11000 14590 11000 1	4PCS-10.2	40	P						9,74	9,03	8,25	7,42	6,56	5,68	4,83	4030	
30 Q 64900 62800 57600 52700 43900 36150 29500 23750 18810 14590 11000 4PCS-15.2 40 Q 60900 55900 51200 48800 38850 31950 28000 20800 16360 12550 3320 50 P 10.65 10.57 10.45 10.29 9.88 9.35 8.72 8.00 7.21 6.36 5.499 50 Q 53300 48900 44700 40800 33800 27700 22400 17860 13940 10610 50 P 12.86 12.58 12.27 11.94 11.23 10.45 9.60 7.40 6.73 9		50	Q P	00.000	00000	F7000	50700	10000	27300	22150 9,94	17700	7,95	10510 6,91	5,89	5330 4,93	3350 4,04©	
4PCS-15.2 40 Q 60900 55900 51200 46800 38850 31950 26000 20800 16360 12550 9320 50 Q 53300 48900 44700 40800 33800 27700 22400 17860 13940 10610 50 P 12.86 12.27 11.94 11.23 10.45 9.60 7.39		30	Q P	68400 8,33	62800 8,45	57600 8,52	52700 8,54	43800 8,45	36150 8,20	29500 7,81	23750 7,28	18810 6,65	14590 5,93	5,14			
50 Q 53300 48900 44700 40800 33800 27700 22400 17860 13940 10610 P 12,86 12,58 12,27 11,94 11,23 10,45 9,60 8,70 7,749 6,73 9	4PCS-15.2	40	Q P	60900 10,65	55900 10,57	51200 10,45	46800 10,29	38850 9,88	31950 9,35	26000 8,72	20800 8,00	16360 7,21	12550 6,36	9320 5,49©			
		50	QP	53300 12,86	48900 12,58	44700 12,27	40800 11,94	33800 11,23	27700 10,45	22400 9,60	17860 8,70	13940 7,74®	10610 6,73@				

Ound ©siehe Seite 25
 Einsatzgrenzen für Direktansaugung "SL(B)" auf Anfrage

④ and ⑤ refer to page 25
 ⑥ Application limits for direct suction 'SL(B)' upon request

et (s) voir page 25
 Limites d'application pour aspiration directe "SL(B)" sur demande

23

KP-100-6

Bitzer

Leistungswerte 50 Hz bezogen auf Sauggastemperatur 20°C, ohne Flüssigkeits-Unterkühlung

Performance data 50 Hz relating to 20°C suction gas tempera-ture, without liquid subcooling

Données de puissance 50 Hz à une température de gaz aspiré de 20°C se référant, sans sous-refroidissement de liquide

- R22

Compressor type	Cond. temp.		Kälteleistung Cooling capacity Puissance frigorifique		(\mathbf{Q}_{o}	[Wa	tt]	Leistungsa Power con Puissance	ufnahme sumption absorbée	P	е	[kW]		
type	de cond. °C	Ť	12.5	Verdan 10	npfungste 7.5	mperatur 5	° C Eva	aporating t	emperat	ture °C -15	Températur -20	e d'évapo -25	ration °C -30	-35	-40
4NCS-12.2	30 40 50	QPQPQ						41150 10,01 36650 11,46 32050	33750 9,46 29950 10,60 26050	27400 8,79 24150 9,66 20850	21900 8,02 19170 8,66 16150	17210 7,16 14910 7,64 12280	12990 6,29 11040 6,66 8980	9600 5,41 7960 5,67 6200	6760 4,55 5400 4,75 3880
4NCS-20.2	30 40 50	PQPQPQ	79100 10,60 70600 13,15 61900	72600 10,62 64800 13,02 56700	66600 10,59 59300 12,85 51900	61000 10,53 54200 12,63 47400	50800 10,29 45000 12,06 39250	12,77 41900 9,92 37000 11,34 32150	11,63 34250 9,41 30100 10,51 26000	10,43 27600 8,77 24100 9,58 20650	9,27 21900 8,02 18920 8,59 16050	8,09 16980 7,15 14500 7,54 12130	6,94 12810 6,18 10750 6,48®	5,84	4,81
4J-13.2	30 40 50	PQPQPQ	15,74	15,40	15,01	14,59	13,65	12,60 45550 10,98 40750 12,86 35950	11,46 37200 10,28 33150 11,91 29100	10.26 30000 9,49 26550 10,83 23150	9,02 ⁽⁹⁾ 23800 8,60 20900 9,65 18020	7,78 ⁽⁹⁾ 18520 7,61 16110 8,41 13620	14140 7,11 11930 7,47 9920	10340 6,15 8440 6,29 6830	7150 5,16 5540 5,08 4280
4J-22.2	30 40 50	PQPQPQ	86700 11,93 78200 14,48 69600	79500 11,81 71700 14,24 63800	72900 11,66 65700 13,97 58300	66700 11,48 60000 13,68 53300	55500 11,05 49900 13,01 44150	14,74 45850 10,52 41000 12,24 36200	13,51 37450 9,89 33350 11,36 29300	12,18 30200 9,17 26750 10,40 23300	10,74 24000 8,35 21100 9,35 18190	9,35 18680 7,45 16240 8,22 13820	7,94 14190 6,45 12150 7,02©	6,50	4,99 [©]
4H-15.2	30 40 50	PQPQPQ	16,90	16,56	16,19	15,79	14,90	13,90 52300 12,73 46850 14,91 41700	12,79 42700 11,93 38100 13,81 33700	11,60 34450 11,01 30500 12,56 26800	10,33® 27350 9,98 24050 11,19 20900	8,98 21300 8,82 18500 9,76 15800 40.05	16400 8,25 13840 8,67 11500	12000 7,13 9800 7,30 7920	8310 5,98 6440 5,90 4970
4H-25.2	30 40 50	PQPQPQD	99300 13,89 89700 16,75 80500	91200 13,74 82300 16,47 73800	83600 13,56 75400 16,16 67600	76500 13,34 68900 15,82 61700	63700 12,84 57300 15,05 51100	17,11 52600 12,22 47150 14,17 41950	15,67 42950 11,48 38350 13,18 33950	14,13 34650 10,63 30800 12,07 27050	12,47 27500 9,67 24250 10,85 21100	10,85 21400 8,59 18670 9,52 16030	9,21 16260 7,41 13940 8,08@	7,53	5,790
4G-20.2	30 40 50	P Q P Q P Q P	19,00	19,10	10,74	10,27	11,25	60000 14,64 53700 17,39 47800 20,10	48950 13,67 43700 16,04 38750 18,40	13,44 39500 12,63 35100 14,60 30950 16,65	31400 11,51 27750 13,07 24200 14,89	24500 10,29 21500 11,42 18350 13,14	18940 9,65 16080 10,35 13390 11,23	13920 8,40 11430 8,75 9230 9 19	9670 7,10 7530 7,14 5790 7,06
4G-30.2	30 40 50	QP QP QP	114200 16,42 103000 19,78 92300 23,40	104800 16,23 94500 19,46 84600 22,90	96000 16,01 86500 19,09 77400 22,30	87800 15,74 79100 18,68 70700 21,70	73100 15,11 65700 17,74 58600 20,40	60400 14,33 54000 16,67 48100 19.04	49300 13,44 44000 15,49 39000 17,57	39800 12,45 35350 14,20 31200 16,05	31650 11,36 27950 12,83 24500 14,49@	24700 10,21 21650 11,40 18810 12,91@	18840 9,00 16330 9,92©	0,10	7,00*
6J-22.2	30 40 50	Q P Q P Q P	20,40				20,70	68300 16,46 61200 19,29 54000 22,10	55800 15,43 49750 17.87 43650 20.30	45000 14,24 39850 16,25 34700 18,27	35700 12,90 31400 14,49 27050 16,11	27800 11,41 24200 12,61 20450 14,05	21200 10,67 17900 11,22 14870 11,92	15520 9,23 12680 9,44 10240 9,73	10740 7,74 8330 7.62 6420 7.48
6J-33.2	30 40 50	Q P Q P Q P	130100 17,91 117400 21,70 104400 25,40	119400 17,72 107600 21,40 95700 24,90	109400 17,50 98600 21,00 87600 24,30	100100 17,23 90100 20,50 80000 23,70	83400 16,58 74800 19,53 66300 22,40	68800 15,79 61600 18,36 54300 20,90	56200 14,85 50100 17,05 43950 19,20	45300 13,76 40150 15,61 35000 17,41	36000 12,54 31650 14,03 27300 15,50 ©	28050 11,18 24400 12,34 20750 13,48©	21300 9,68 18230 10,53®		
6H-25.2	30 40 50	Q P Q P Q P						78500 19,10 70300 22,40 62600 25,60	64100 17,89 57200 20,70 50600 23,50	51700 16,51 45850 18,84 40250 21,20	41050 14,96 36100 16,79 31350 18,68	31950 13,23 27750 14,63 23700 16,28	24600 12,34 20750 13,01 17240 13,81	18010 10,70 14710 10,96 11870 11,27	12460 8,99 9660 8,86 7440 8,66
6H-35.2	30 40 50	Q P Q P Q P	149100 20,90 134600 25,20 120900 29,40	136900 20,60 123500 24,70 110800 28,80	125500 20,40 113200 24,30 101400 28,10	114800 20,00 103500 23,70 92700 27,40	95600 19,27 86000 22,60 76800 25,90	79000 18,34 70800 21,30 63000 24,20	64500 17,24 57600 19,78 51000 22,30	52000 15,96 46200 18,12 40600 20,20	41300 14,52 36400 16,29 31700 17,92@	32200 12,90 28050 14,30 24050 15,50 [@]	24400 11,12 20900 12,14@		
6G-30.2	30 40 50	Q P Q P Q P						90000 22,00 80600 26,10 71700 30,10	73500 20,50 65600 24,10 58200 27,60	59300 18,96 52700 21,90 46500 25,00	47100 17,27 41600 19,61 36300 22,31	36750 15,43 32200 17,14 27500 19,71	28400 14,48 24100 15,50 20050 16,85	20850 12,59 17130 13,10 13840 13,79	14480 10,65 11280 10,68 8670 10,58
6G-40.2	30 40 50	QPQPQP	171300 24,60 154600 29,70 138500 35,20	157200 24,40 141800 29,20 127000 34,40	144100 24,00 129800 28,60 116200 33,50	131800 23,60 118600 28,00 106100 32,60	109700 22,70 98500 26,60 88000 30,70	90600 21,50 81100 25,00 72200 28,60	74000 20,20 66000 23,20 58500 26,40	59700 18,68 53000 21,30 46800 24,10	47500 17,05 41900 19,26 36750 21,70®	37100 15,32 32450 17,11 28200 19,38®	28300 13,51 24500 14,89®		
24														KF	P-100-6

R22 -

Leistungswerte 50 Hz bezogen auf Sauggastemperatur 20°C, ohne Flüssigkeits-Unterkühlung

Performance data 50 Hz relating to 20°C suction gas tempera-ture, without liquid subcooling

Données de puissance 50 Hz à une température de gaz aspiré de 20°C se référant, sans sous-refroidissement de liquide

Bitzer

Verdichter Typ Compressor type	Verfl. Temp. Cond. temp.		Ká Cơ Pu	älteleistun ooling cap uissance f	tung capacity QO refrigorifique			[Watt] vaporating temper		Leistungsaufnahme Power consumption Puissance absorbée		F	e	[kW	Ŋ
Compresseu	r Temp.			Verda	ampfungs	temperat	ur°C Ev	aporating	temper:	ature °C	Températi	ure d'évap	oration °C		
type	°C	Ŧ	12.5	10	7.5	5	0	-5	-10	-15	-20	-25	-30	-35	-40
	30	Q						106100	86800	70100	55900	43800	34000	25100	17600
6F-40.2	40	Q						95300	25,50	23,50 62600	49650	18,92 38700	29150	14,95 20900	12,96 13960
		P						31,90	29,50	27,00	24,30	21,40	18,61	15,80	13,06
	50	Q						85100	69200	55600	43600	33250	24450	17060	10890
	30	P O	201400	184800	169400	155000	129100	106700	87300	70600	56300	44150	33900	16,60	12,94 ~
	00	P	31.90	31.40	30.80	30.20	28,70	27.10	25.30	23.30	21.20	18.97	16.66		
6F-50.2	40	Q	181700	166700	152800	139800	116300	95900	78300	63100	50100	39050	29700		
	50	P	37,60	36,90	36,10	35,20	33,30	31,30	29,00	26,60	24,00	21,30	18,44 @		
	50	S S	163200	149700	13/100	125300	104100	85700	32.80	56000	44250	34250			
	30	Q	249700	230400	212400	195600	165300	139000	116100	96400	79500	20,00 -			
		P	33,30	33,80	34,20	34,40	34,30	33,60	32,30	30,50	28,30				
8GC-60.2	40	Q	225700	208300	192100	177000	149700	125900	105300	87500	61900		0		
	FO	P	42,90	42,80	42,50	42,00	40,60	38,70	36,40	33,70	30,92		~		
	50	P	51 70	50.00	169400	156100	132100	111200	40.60	38.00	49000				
	30	0	287900	265000	243500	223400	187100	155400	127800	103700	82800				
		Ρ	41,60	42,30	42,80	43,00	42,70	41,70	40,00	37,70	35,00				
8FC-70.2	40	Q	259300	238500	218900	200700	167500	138500	113000	90800	71200		Ø		
	50	P	53,70	53,50	53,10	52,50	50,70	48,30	45,20	41,70	37,84		0		
	50	8	230200	211500	194000	177500	14/600	121200	97900	17300	59100				
			04,40	03,40	02,20	60,90	57,70	53,90	49,70	40,22	40,48				
Leistungswe siehe KP-110	rte der Ta).	ndem	-Verdicht	er	Perfo see K	rmance d P-110.	lata of the	tandem c	ompress	ors Do vo	nnées de j ir KP-110.	puissance	des comp	presseur	s tandem

Leistungsdaten für individuelle Eingabewerte und 60 Hz-Betrieb siehe BITZER Software.

see KP-110.

Performance data for individual input data and 60 Hz operation see BITZER Software.

voir KP-110.

Données de puissance pour des données d'entrée individuelles et fonctionnement à 60 Hz voir BITZER Software.

- Daten auf Anfrage Zusatzkühlung + max. Sauggas-Überhitzung 20 K 2 (4)
- 6

Zusatzlüfter + CC-System

KP-100-6

Dauerbetrieb wird bei diesen Bedingungen nicht empfohlen

nicht empionien Zusatzkühlung oder eingeschränkte Sauggas-temperatur VARICOOL-System Zusatzlüfter + geänderte Saugventilposition 'SL(B)'

- © (4)
 - Additional cooling & max. suction superheat 20 K

Data upon request

- Continuous operation with these conditions is not recommended

- Additional cooling or limited suction gas temperature VARICOOL-System Additional fan & position of suction valve changed 'SL(B)' Additional fan & CC system; see page 5
- Données sur demande
- © (4) Refroidissement additionnel + surchauffage à l'a-spiration 20 K max.
- 6 Dans ces conditions, le fonctionnement continu n'est pas recommandé.
- n est pas recommande. Refroidissement additionel ou température du gaz aspiré reduite Systéme VARICOOL ventilation additionelle + position vanne d'aspi-ration modifée 'SL(B)' Ventilation additionelle + Systéme CC'

<12	itzer>
	~

Technische Daten

Technical data

Caractéristiques techniques

Verdichter	Motor	Förder-	Anzahl	Öl-	Gewicht		Rohran	schlüs	se			Elektrisch	e Daten	
Тур	Version	volumen	der Zvlinder	füllung		DL	kleituna	Saur	aleituna	CR Stufen -	Motor- Anschluss	max. Betriebs-	max. Leistungs-	Anlauf-
		1450 min ⁻¹	Zynnoor			Diaci	Rieltung	Joauş	gionarig	-otalen -	Anacinuas	strom	aufnahme	(Rotor
						mm	Zoll	mm	Zoll					blockiert)
Compressor	Motor	Displace- ment at	Number	Oil	Weight	ם ום	Pipe cor ischarge	nnection I SI	ons	CB	Motor	Electrica I Max	al Data IMax	Starting
ype	10101011	1450 min ⁻¹	cylinders	onargo		line	loonargo	Suct	ion line	- Steps -	connection	operating	power con-	current
						mm	inch	mm	inch			current	sumption	(locked
Com-	Version	Volume	Nombre	Charge	Poids		Race	cords			Ca	ractéristique	I Is électrique:	101017
presseur	moteur	balayé à	de	d'huile		DL C	onduite	SL C	onduite	CR	Raccordement	Courant	Puissance	Courant de
type		1450 min- 1	cylinares			de re	IT.	d'as	piration	- Etages -	de moteur	de service max.	absorbee max.	(Rotor blogué)
		m ³ /h		dm ³	kg	mm	pouce	mm	pouce	% 0	Volt @	Amp. ®	kW [©]	Amp. ©
2KC-05.2(Y)	1 + 2	4,06	2	1,0	43	12	1/2	16	5/8	-		4,6/2,7	1,5	20,8/12
2JC-07.2(Y)	1+2	5,21	2	1,0	43	12	1/2	16	5/8	-		6,0/3,5	1,9	25,6/14,8
2HC-1.2(Y)	2	0.51		10	44	10	1/	10	57			6,1/3,5	2,0	28,9/16,7
2HC-2.2(Y)	1	0,51	2	1,0	45	12	12	10	-/8	_		7,4/4,3	2,4	39/22,5
2GC-2.2(Y)	1+2	7,58	2	1,0	45	12	1/2	16	5/8	-		8,1/4,7	2,7	39/22,5
2FC-2.2(Y)	2				45		1.		5.			8,5/4,9	2,8	39/22,5
2FC-3.2(Y)	1	9,54	2	1,0	47	12	1/2	16	5/8	-		10,0/5,8	3,4	44,2/25,5
2EC-2.2(Y)	2				67.5				-		Δ/Υ	9.9/5.7	3.3	45/26
2EC-3.2(Y)	1	11,4	2	1,5	70.5	16	5/8	22	// ₈			12.0/6.9	4.0	60.6/37
2DC-2.2(Y)	2				67.5						220 240 1/	11.9/6.9	3.9	53 7/30 7
2DC-3 2(Y)	1	13,4	2	1,5	70.5	16	5/8	22	7/8	-	200 420V/2/50	13 5/7 8	4.5	64/37
200-3 2(V)	2				70,0						3604201/3/50	14 8/8 5	5.0	64/37
200 0.2(1)	1	16,2	2	1,5	70	16	5/8	22	7/8	- 1	265290 <u>A</u> /	16 1/0 1	5.6	76 6/44 2
4EC 2 2(V)	2				20						440480Y/3/60	15,0/0,0	5,0	70,0/44,2
4FC-3.2(1)	2	18,1	4	2,0	02	16	5/8	22	7/8			10,3/9,2	5,4	107 7/00 0
4FC-5.2(Y)	1				86							18,7/10,8	6,2	107,7/62,2
4EC-4.2(Y)	2	22,7	4	2,0	84	16	5/8	28	11/8	50		18,5/10,7	6,4	92,7/53,2
4EC-6.2(Y)	1				86							22,9/13,2	7,9	107,7/62,2
4DC-5.2(Y)	2	26,8	4	2,0	85,5	22	7/8	28	11/8			23,4/13,5	8,0	107,7/62,2
4DC-7.2(Y)	1			~	88,5							27,5/15,9	9,0	142,8/82,4
4CC-6.2(Y)	2	32.5	4	2.0	90,5	22	7/0	28	1 ¹ / ₉			27,5/15,9	9,0	142,8/82,4
4CC-9.2(Y)	1				90,5		.0	×	.0			34,5/20,0	11,6	142,8/82,4
4VCS-6.2(Y)	2				129							14	8.1	39/68
4VCS-10.2(Y)	1	34.7	4	2.6	139	22	7/8	28	11/8			21	11.3	59/99
4TCS-8.2(Y)	2				134							17	9.4	49/81
4TCS-12.2(Y)	1	41,3	4	2,6	141	28	1 ¹ /8	35	1 ³ /8			24	13.8	69/113
4PCS-10.2(V)	2				130	1		35	13/-		PW [®]	21	11.7	59/99
4PCS-15 2(V)	1	48,5	4	2,6	147	28	1 ¹ /8	42	15/0			31	16.3	81/132
4NCS-12 2(V)	2				141			26	13/.			24	14.1	60/112
4100-12.2(1)	1	56,2	4	2,6	150	28	1 ¹ /8	40	15/	50	380420YY/3/50	24	10.5	07/150
41.12.0(1)	2				170			42	19/8		440.,480YY/3/60	07	19,0	97/100
4J-13.2(Y)	2	63,5	4	4,0	1/9	28	1 ¹ /8	42	1 ⁵ /8			27	15.7	81/132
4J-22.2(Y)	1			10	190			10	451			39	21,5	97/158
4H-15.2(Y)	2	73,7	4	4,0	183	28	1 ¹ /8	42	1%			31	18,1	81/132
4H-25.2(Y)	1			4,5	203		0	54	21/8			45	24,9	116/193
4G-20.2(Y)	2	84.6	4	4.5	192	28	1 ¹ / _o	54	2 ¹ / _e			37	21,5	97/158
4G-30.2(Y)	1	,-			206		8		8			53	30,1	135/220

KP-100-6

A.I.2 Trocador de calor tipo placas

CB20 Comfort Unit

Alfa Laval brazed heat exchanger

The CB20 is a heat exchanger with focus on district heating applications such as tap water heating and comfort heating. Design temperature 175 °C. Design pressure 16 bar.

Due to efficient heat transferring, outer dimensions are minimized. This is a very compact unit, which gives flexibility in design work for heating systems.

A standard range, with most of the units on stock, ensures short delivery time. Connection type on the standard range is 4 pcs outer threaded 1" in stainless steel material.

Auxillaries:

High temperature insulation, maximum temperature 140°C.

Couplings:

Welding type in carbon steel and soldering type in brass material.

Quality assurance

Alfa Laval brazed heat exchangers are subject to several laboratory tests to ensure the performance and quality. Both thermal fatigue and pressure fatigue tests are made to achieve problem-free usage and long lifetime.

CB20 Comfort unit

PD 68207 E 0202

How to contact Alfa Laval Contact details for all countries are continually updated on our website. Please visit www.alfalaval.com to access the information directly.

A.I.3 Trocador de calor casco e tubo

Trocadores de Calor "Casco e Tubos"

Construção

 Casco construído em aço carbono, com tampas removíveis para acesso aos tubos proporcionando fácil limpeza e manutenção. Dimensionados com multi passes garantindo distribuição da água de resfriamento na velocidade necessária para se obter um coeficiente de transmissão de calor ideal; • Tubos em cobre, fixados nos espelhos (aço carbono) através de processo mecânico de mandrilhagem.

Opcionais

- Número de passes do lado do cabeçote variam de 1, 2 ou 4 passes de acordo com a necessidade da aplicação;

- Feixe tubular tipo "F" Fixo : espelhos fixos quado as temperaturas não ultrapassam 80°C;
 Feixe tubular tipo "R" Removível : com tubos em "U";
 Feixe tubular tipo "RF" removível flutuante (espelhos deslizantes) fornecidos sob consulta.

Aplicações • Resfriamento de óleo em : máquinas

injetoras, motores de caixa de engrenagens, redutores, etc;

Resfriadores: de ar ou gases, de óleo de transformadores, de fluídos para

- têmperas;
- · Aquecedores de água com vapor;
- Condensadores de vapor;
- Resfriamento de água com água;
 Unidades hidráulicas.

Outras Aplicações

 Motores ou Conversores marítimos: com feixe tubular em cuproníquel, espe lhos em latão naval e tampas em bronze industrial com anôdos;

 Com fluído refrigerante Amônia (NH3): construídos totalmente em aço carbono; • Projetos especiais: construídos em aço inox.

ГÍ

			SUP.	DIMENS	SÕES EM	MILÍME	TROS	CON	EXÕES E	M POL.	BSP)
	TIPO		TROCA m ²	A	В	C	ØE	2 PA	SSES ØM	4 PA	OM
TSEV -	355	-3.Y.V	0.21	355	220	100			Em		Divi
ISEV -	500	-3-X-Y	0.31	500	375	335					
ISEV -	750	-3-X-Y	0.49	750	625	585	125	3/4"	3/4"	1/2"	3/4"
TSEV -	1000	-3-X-Y	0.67	1000	875	835					
TSEV -	400	-4-X-Y	0.40	355	210	187					
TSEV -	500	-4-X-Y	0.54	500	310	287					
ISEV -	600	-4-X-Y	0.67	750	410	387	160	1"	1"	3/4"	1"
TSEV -	750	-4-X-Y	0.87	1000	560	537					
TSEV -	1000	-4-X-Y	1,20	1000	810	787	1				
TSEV -	500	-5-X-Y	0.87	500	300	265					
TSEV -	600	-5-X-Y	1,08	600	400	365	1				
TSEV -	750	-5-X-Y	1,41	750	550	515					
SEV -	1000	-5-X-Y	1,95	1000	800	765	190	1.1/2"	1.1/2"	1.1/4"	1.1/2
TSEV -	1250	-5-X-Y	2,49	1250	1050	1015]				
TSEV -	1500	-5-X-Y	3,02	1500	1300	1265					
TSEV -	1750	-5-X-Y	3,56	1750	1550	1515	1				
rsev -	600	-6-X-Y	1,51	600	390	335					
TSEV -	750	-6-X-Y	1,98	750	540	485					
TSEV -	1000	-6-X-Y	2,76	1000	790	735				1000	
TSEV -	1250	-6-X-Y	3,53	1250	1040	985	210	2"	2"	1.1/2"	2"
TSEV -	1500	-6-X-Y	4,31	1500	1290	1235					
TSEV -	1750	-6-X-Y	5,10	1750	1540	1485					
ISEV -	2000	-6-X-Y	5,87	2000	1790	1735					
ISEV -	750	-8-X-Y	3,90	750	490	455					
ISEV -	1000	-8-X-Y	5,48	1000	740	705				1	
SEV -	1250	-8-X-Y	7,00	1250	990	955	270	2"	28	20	2"
TSEV -	1500	-8-X-Y	8,65	1500	1240	1205	210	-	-	4	4
TSEV -	1750	-8-X-Y	10,24	1750	1490	1455					
TSEV -	2000	-8-X-Y	11,79	2000	1740	1705					
SEV -	750	-10-X-Y	5,76	750	460	390	1995 199 199				
SEV -	1000	-10-X-Y	8,24	1000	710	640				1000	
ISEV -	1250	-10-X-Y	10,72	1250	960	890	220	2"	2"	28	2"
ISEV -	1500	-10-X-Y	13,21	1500	1210	1140	330	3	3	4	3
ISEV -	1750	-10-X-Y	15,70	1750	1460	1390					
SEV -	2000	-10-X-Y	18,18	2000	1710	1640					

A.I.4 Unidade condensadora

mit halbhermetischen Hubkolbenverdichtern Air-cooled Condensing Units

with Semi-hermetic Reciprocating Compressors Groupos de condensación refrigerados por aire con compresores a pistón semi-herméticos

R134a = R404A = R507A = R22 Version 60 Hz

Standard- Leistungs bezogen au mit Flüssigk	Standard-Verflüssigung Leistungswerte, 60 Hz eezogen auf 20°C Sauggaste nit Flüssigkeits-Unterkühlung Typ Umgeb Temp. Temp.			ssätze emperatur g	Stand Perfo based with lig	lard units rmance da on 20°C sud uid subcool	ata, 60 ction ga	Hz s temperature	Gr Da refe	Grupos estàndar Datos de rendimiento, 60 Hz referidos a una temperatura del gas de 20°C con subenfriamiento de líqu					
Тур Туре	Umgel Temp. Ambie	o nt		Kälteleistu Cooling ca	ng pacity	Qo	v]	Vatt]	Leistung Power co	saufnal	nme tion	Pe®	[kW]		
	temp.			rotencia re	ingerauora				Consum	o de po	terrola				
Tipo	Temp. ambier	nte		Verdamp	fungstempe	ratur °C	Eva	aporation tem	perature °C	2	Temperatura	de evapor	ación °C		
	°C (D Y	Ŧ	10	5	0	-5	-10	-15	-20	-25	-30	-35		
		27	QP		3770	3190	2660	2160	1710	1560	1220	930			
1 1122/21/0	05.2	22	Q	4100	3530	2990	2480	2010	1580	1460	1130	850			
LHJZ/ZRC	-05.2	52	P	1,63	1,48	1,33	1,20	1,06	0,93	0,88	0,74	0,60	-		
		43	P			1,49	1,32	1,16	1,00	0,97	0,80	0,64			
		27	Q			3760	3200	2670	2190	1950	1540	1180			
			P			1,66	1,48	1,32	1,17	1,11	0,95	0,80			
LH32/2JC-	07.2	32	P			1,76	1,56	1,38	1,22	1,16	0,99	0,83			
		43	Q				2510	2080	1670		1210	900			
		07	Q				4310	3610	2970	2630	2090	1610			
		27	Ρ				1,86	1,67	1,49	1,36	1,16	0,98			
LH33/2HC	-1.2 .1 2⊏	32	Q				4030	3370	2770	2460	1940	1480			
LH33/2HC- ③	-1.2E	42	Q				1,50	1,70	1,07	2120	1650	1230	1		
		43	P							1,56	1,31	1,07			
		27	Q		5860	2.05	4320	3620	2980	2400	1880	1420			
1 422/240	22	32	Q		5480	4740	4040	3380	2770	2230	1730	1300			
LH33/2HC-	-2.2	52	P		2,42	2,19	1,97	1,76	1,56	1,35	1,15	0,94			
		43	P				2.23	1.97	1.72	1.47	1430				
		27	Q			5700	4890	4130	3420	3060	2440	1910			
1 422/200	2.2		P			2,46	2,23	2,02	1,82	1,68	1,48	1,29			
LH33/2GC-	-2.2E	32	P			2,60	2,35	2,12	1,89	1,75	1,52	1,32			
3		43	Q					3310	2740		1960	1480	1		
			P	8400	7300	6270	5320	2.32	2,05	3230	1,58 2570	1,35			
		27	P	2,61	2,41	2,23	2,06	1,89	1,73	1,62	1,45	1,27			
LH44/2GC	-2.2	32	Q	7880	6860	5890	4990	4160	3410	3030	2400	1850,00			
LH44/2GC- ③	-2.2E	10	Q	2,81	2,59	2,38	4300	3580	2930	2630	2050	1,30	1		
		43	Ρ		2,97	2,71	2,46	2,22	1,99	1,83	1,57	1,34			
		27	Q				6180	5200	4310	3840	3090	2440			
LH44/2FC-	2.2	20	Q				5780	4860	4010	3580	2870	2250			
LH44/2FC-	2.2E	32	Ρ				2,75	2,47	2,20	2,02	1,75	1,50	_		
3		43	P							2.12	2370	1820			
		27	Q		8350	7220	6170	5200	4310	3510	2800	2170			
		21	P		3,22	2,92	2,64	2,39	2,14	1,91	1,68	1,45			
LH44/2FC-	3.2	32	P		3,44	3,11	2,81	2,52	2,25	1,99	1,73	1,47			
		43	Q				4910	4100	3370	2700	2110				
			P				3,17	2,82	2,47	2,14	1,81 3610	2850			
		27	P				3,23	2,82	2,46	2,34	2,06	1,78			
LH44/2EC-	-2.2	32	QP				6460	5430	4480	4110	3310	2600			
		40	Q				0,01	2,52	2,04	2,44	2640	1980	1		
		43	Ρ								2,23	1,88			
		27	Q	13430	11510	9770 2 99	8210	6800 2.54	5560 2 31	2 08	3500	2670			
LH64/2EC-	-3.2	32	Q	12640	10810	9160	7670	6340	5150	4100	3180	2390			
LH64/2EC-	-3.2E	52	P	3,72	3,46	3,20	2,93	2,66	2,40	2,15	1,92	1,72			
3		43	P	4.34	3,96	3,59	3.23	2.89	2,57	2,28	2430				
		27	Q		-,		8410	7090	5870	5160	4160	3280			
		~'	P				3,66	3,25	2,89	2,69	2,36	2,04			
LH53/2DC-	-2.2	32	P				3,80	3,37	2,98	2,79	2,43	2,10			
		43	Q							3680	2940	2270]		
			Ρ							3,03	2,56	2,18			
18 Vorläufige Werte		te			Tentati	ive data			Val	ores pro	visionales		KP-210-1		

– R22

Abmessungen					1	Dime	nsio	ns		Dimensiones										
Verflüssigungs- satz																	Ansc	hlüsse / (connect	tions /
Тур							A 1										Saug	leitung	Flüssi	gkeits-
Condensing							Abme	essung	gen in	mm									leitung	9
unit							Dime	nsions	in mr	n							Suction	on line	Liquid	line
type							Dime	nsione	es en r	nm							aspira	ación	líquido	D D
Grupo de condensación													SL	Ø Zoll	FL	Ø Zoll				
Tipo			-	-		-	-	_	-					-		-		inch		inch
	A	A ₁	В	B ₁	С	C ₁		E	F	G	н	L	N	R	S			pulgada		pulgada
Standard	050	000	0.07	0.45	400	Stand	ard	505		100	005		1.10	Esta	ndar	100	10	4	10	0.1
LH32/2KC-05.2(Y)	650	630	607	645	466	574	102	505	620	406	605	62	440	82	66	133	12	1/2	10	3/8
LH32/2JC-07.2(1)	650	630	607	645	400	574	102	505	620	406	605	62	440	82	60	133	12	"/2	10	3/8
LH33/2HC-2 2(Y)	650	630	607	645	400	574	102	505	620	400	605	62	440	82	66	133	16	5/.	10	3/.
LH33/2GC-2 2(Y)	650	630	607	645	466	574	102	505	620	406	605	62	440	82	66	133	16	-/8 5/.	10	3/-
LH44/2GC-2.2(Y)	650	630	607	645	516	574	102	505	620	456	605	62	490	82	66	133	16	5/0	10	3/2
LH44/2FC-2.2(Y)	650	630	607	645	516	574	102	505	620	456	605	62	490	82	66	133	16	5/0	10	3/0
LH44/2FC-3.2(Y)	650	630	607	645	516	574	102	505	620	456	605	62	490	82	66	133	16	5/0	10	3/.
LH44/2EC-2.2(Y)	650	630	702	740	516	574	121	600	620	456	700	62	490	146	82	174	22	7/8	10	3/8
LH64/2EC-3.2(Y)	1000	982	672	693	687	915	121	570	970	607	670	72	750	160	102	157	22	7/8	12	1/2
LH53/2DC-2.2(Y)	1000	982	671	693	536	915	121	570	970	456	670	72	750	160	102	157	22	7/ ₈	10	3/8
LH64/2DC-3.2(Y)	1000	982	672	693	687	915	121	570	970	607	670	72	750	160	102	157	22	7/8	12	1/2
LH64/2CC-3.2(Y)	1000	982	672	693	687	915	121	570	970	607	670	72	750	160	102	157	22	7/ ₈	12	1/2
LH84/2CC-4.2(Y)	1000	982	672	693	837	915	121	570	970	757	670	72	850	160	102	157	22	7/ ₈	12	1/2
LH64/4FC-3.2(Y)	1000	982	672	693	687	915	125	570	970	607	670	72	750	129	99	157	22	7/8	12	1/2
LH84/4FC-5.2(Y)	1000	982	672	693	837	915	125	570	970	757	670	72	850	129	99	157	22	7/ ₈	12	1/2
LH64/4EC-4.2(Y)	1000	982	672	693	687	915	125	570	970	607	670	72	750	129	99	157	28	1 ¹ / ₈	12	1/2
LH84/4EC-6.2(Y)	1000	982	672	693	837	915	125	570	970	757	670	72	850	129	99	157	28	1 ¹ / ₈	12	1/2
LH84/4DC-5.2(Y)	1000	982	672	693	837	915	125	570	970	757	670	72	850	129	99	157	28	1 ¹ / ₈	12	1/2
LH64/4CC-6.2(1)	1000	962	0/2	693	037	915	125	570	970	151	670	12	000	129	99	157	20	1 1/8	12	"/ ₂
hone Umgebung	stemp	eratu	r 007	0.45	400	nign a Deza		nt ten	npera	ture	005	60	440	Tem	peratu	ira an	nbient	e elevada	40	24
LH33/2KC-05.2(1)	650	630	607	645	466	574	102	505	620	406	605	62	440	82	60	133	12	1/2	10	3/8 3/
LH44/2HC-1 2(Y)	650	630	607	645	516	574	102	505	620	400	605	62	440	82	66	133	16	-/2 5/	10	3/
LH44/2HC-2 2(Y)	650	630	607	645	516	574	102	505	620	456	605	62	490	82	66	133	16	-/8 5/.	10	3/.
LH53/2GC-2.2(Y)	1000	982	671	693	536	915	102	570	970	456	670	72	750	160	102	139	16	-/8 5/-	10	3/2
LH64/2FC-2.2(Y)	1000	982	672	693	687	915	102	570	970	607	670	72	750	160	102	139	16	5/0	12	1/0
LH64/2EC-2.2(Y)	1000	982	672	693	687	915	121	570	970	607	670	72	750	160	102	157	22	7/0	12	1/2
LH64/2EC-3.2(Y)	1000	982	672	693	687	915	121	570	970	607	670	72	750	160	102	157	22	7/8	12	1/2
LH64/2DC-2.2(Y)	1000	982	672	693	687	915	121	570	970	607	670	72	750	160	102	157	22	7/8	12	1/2
LH64/2DC-3.2(Y)	1000	982	672	693	687	915	121	570	970	607	670	72	750	160	102	157	22	7/8	12	1/2
LH84/2CC-3.2(Y)	1000	982	672	693	837	915	121	570	970	757	670	72	850	160	102	157	22	7/8	12	1/2
LH84/2CC-4.2(Y)	1000	982	672	693	837	915	121	570	970	757	670	72	850	160	102	157	22	7/8	12	1/2
LH84/4FC-3.2(Y)	1000	982	672	693	837	915	125	570	970	757	670	72	850	129	99	157	22	7/8	12	1/2
LH84/4FC-5.2(Y)	1000	982	672	693	837	915	125	570	970	757	670	72	850	129	99	157	22	7/8	12	1/2

Anschluss-Positionen

KP-210-1

- Saugventil
 Druckleitung
 Kondensat-Leitung
 Kältemittel-Austritt
 Anschluss für Druckentlastungs-Ventil: 1 ¹/₄ UNF
- **Connection positions** 1 Suction valve
- Suction Valve
 Discharge line
 Condensate line
 Refrigerant outlet
 Connection for pressure relief valve: 1 ¹/₄ UNF

Posiciones de conexión

- 1 Válvula de aspiración
- Tubo de gas comprimido Tubo de condensado 2 3 4 5
- Salida de refrigerante Conexión para válvula de descarga de presión: 1 $1/_4$ UNF

27

Buzen

28

KP-210-1

A.I.5 Bomba centrífuga

DADOS DE OPERAÇÃO:	BOMBA MODELO					
	KSB HYDROBLOC	KSB HYDROBLOC				
	P 500 / P 1000	C 700 / C 1010				
VAZÕES	até 45 l/min.	até 290 l/min.				
	até 2,7 m³/h	até 17,4 m³/h				
ELEVAÇÕES	até 70 m	até 19,5 m				
ALTURA MÁXIMA DE SUCÇÃO	7 m	7 m				
ALTURA MÁXIMA DE ESCORVA						
MOTOR (Monofásico) - 60 Hz	110 V ou 220 V	110 V / 220 V				
(Trifásico) - 60 Hz	220 / 380 V	220 / 380 V				
TEMPERATURA MÁXIMA DO LÍQUIDO	80 °C	80 °C				
TEMPERATURA MÁXIMA DO AMBIENTE	40 °C	40 °C				

INFORMAÇÕES ADICIONAIS

DADOS DO MOTOR:

			BOMBA MODELO							
	requencia	1: 60 HZ	P 500	P 1000	C 700	C 1010				
GRAU DE PROTEÇÃO			IP 44	IP 44	IP 44	IP 44				
CLA	ASSE DE I	SOLAÇÃO	в	в	В	В				
-ÁSICO	110 V	CORRENTE (A)	5,5	10,4	9,8	11,5				
JONCW	220 V	CORRENTE (A)	2,8	5,2	4,9	5,7				
SICO	220 V	CORRENTE (A)	2,25	3,8	3,3	4,2				
TRIFÁ	380 V	CORRENTE (A)	1,3	2,2	1,9	2,4				

GARANTIA

CARTÃO DE GARANTIA

A KSB Bombas Hidráulicas S. A. garante este produto nas condições expressas no "Termo de Garantia" anexo.

Nome:	
End.:	
Cidade:	Estado:
N. Fiscal:	Data:
PRODUTO	
Modelo:	
Cário	

Carimbo e assinatura do revendedor

Cartão do Cliente

CARTÃO DE GARANTIA

A KSB Bombas Hidráulicas S. A. garante este produto nas condições expressas no "Termo de Garantia" anexo.

Nome: _____ End.: _____

Cidade:	Estado:
N. Fiscal:	Data:
PRODUTO	
Modelo:	
Série:	

Revendedor

CARTÃO DE GARANTIA

A KSB Bombas Hidráulicas S. A. garante este produto nas condições expressas no "Termo de Garantia" anexo.

Nome: ___ End.: ___

Cidade: _____ Estado: ____ N. Fiscal: _____ Data: _____ PRODUTO Modelo: _____ Série: _____

Carimbo e assinatura do revendedor

Fabricante

A.I. 6 Bomba de deslocamento positivo

RZR 250/RZR 500

O modelos RZR 250/RZR 500 são dois dos mais compactos, e igualmente robustos e silenciosos modelos da família de bombas RZR. Excelente opção para indústria de equipamentos, como componente OEM, nos serviços de transferência, lubrificação, e pressurização de uma ampla variedade de óleos hidráulicos, lubrificantes, óleos de corte (limpos ou contaminados), óleo térmico, e óleos combustíveis desde OC - 1A até AC-4A.

RZR 250			
Conexões	1977년 1978년 1979년 1979년 1979년 1979년 - 1979년 1 1979년 - 1979년 1	Ø ½" BSP	
Peso da bomba		5 kg	
Peso da motobomba		25 kg	
Pressão máxima na sa	ída	30 bar	
Temperatura máxima		250 °C	
Vazão Nominal	Rotação nominal	Potência do motor *	
130 l/h	850 rpm	1/3 CV	
160 l/h	1160 rpm	1/2 CV	
250 l/h	1750 rpm	1 CV	
* Pressão diferencial 15	bar e viscosidade 100 S	ssu	
RZR 500			
Conexões		Ø ½" BSP	
Peso da bomba		5 kg	
Peso da motobomba		25 kg	
Pressão máxima na sa	ída	30 bar	
Temperatura máxima		250 °C	
Vazão Nominal	Rotação nominal	Potência do motor *	
300 l/h	1160 rpm	3/4 CV	
500 l/h	1750 rpm	1 CV	
* Pressão diferencial 1	5 bar e viscosidade 100	SSU	
			2
	RZR 250 Conexões Peso da bomba Peso da motobomba Pressão máxima na sa Temperatura máxima Vazão Nominal 130 l/h 160 l/h 250 l/h * Pressão diferencial 15 RZR 500 Conexões Peso da bomba Peso da bomba Peso da bomba Peso da motobomba Pressão máxima na sa Temperatura máxima Vazão Nominal 300 l/h 500 l/h	RZR 250 Conexões Peso da motobomba Pressão máxima na salda Temperatura máxima Vazão Nominal Rotação nominal 130 l/h 850 rpm 160 l/h 1160 rpm 250 l/h 1750 rpm * Pressão diferencial 15 bar e viscosidade 100 S RZR 500 Conexões Peso da motobomba Pressão máxima na salda Temperatura máxima Vazão Nominal Rotação nominal 300 l/h 1160 rpm 500 l/h 1150 rpm * Pressão diferencial 15 bar e viscosidade 100 CONEX	RZR 250 Ø ½" 85P Peso da bomba 5 kg Peso da motobomba 25 kg Pressão máxima na saída 30 bar Temperatura máxima 250 °C Vazão Nominal Rotação nominal Potência do motor ° 130 l/h 850 rpm 1/3 CV 160 l/h 1160 rpm 1/2 CV 250 l/h 1750 rpm 1 CV * Pressão diferencial 15 bar e viscosidade 100 SSU RZR 500 Conexões Ø ½" 85P Peso da motobomba 25 kg Pressão diferencial 15 bar e viscosidade 100 SSU RZR 500 Conexões Ø ½" 85P Peso da bomba 25 kg Pressão máxima na saída 30 bar Temperatura máxima 250 °C Vazão Nominal Rotação nominal Potênda do motor ° 300 l/h 1160 rpm 3/4 CV 300 l/h 1750 rpm 1 CV * Pressão diferencial 15 bar e viscosidade 100 SSU 250 °C Vazão Nominal Rotação nominal Potênda do motor ° 300 l/h 1160 rpm 3/4 CV 500 l/h 1750 rpm

[Faculdade de Engenharia Química]

RZR 250/RZR 500: bomba e motobomba

A.I.7 Válvula de expansão

antoss

Válvulas de expansão termostática Tipos T, TE e PHT

Introdução														
		As válvula injeção d A injeção superaqu Portanto,	as de exp e líquido é contro reciment as válvu	pansão to prefrigen plada em o do refr las são e	ermostát ante nos i função d igerante ispecialm	ica regul evapora do ente	am a dores.	ade eva sut é p	equadas aporador peraqueo proporcio	para a ir res secos cimento onal à car	njeção de s, nos qua na saída rga do m	e líquidos iis o do evapo esmo.	sem prador	
Característica	 Ampla faixa de temperatura: De -60 a +50°C Podem ser utilizadas em equipamentos com faixa de temperatura nomal, baixa e extra baixa, como refrigeração, congelamento e ar condicionado. Conjunto de orificios intercambiáveis - manuseio mais fácil Conjunto de orificios intercambiáveis - manuseio mais fácil Bulbo de duplo contato patenteado Montagem rápida e simples. Boa transferência de temperatura do tubo ao bulbo. Capacidades nominais de 0,5 a 1.890 kW (0,15 a 540 TR) para R22. Podem ser fornecidas com MOP (Máxima Pressão de Operação). Protege o motor do compressor contra pressões de evaporação excessivas. Bulbo de duplo contato patenteado Montagem rápida e simples. Boa transferência de temperatura do tubo ao bulbo. 							0 <i>kW</i> ontra						
Quadro geral	de válvulas de expa	ansão par	ra refriç	gerante	sfluora	ados								
	Capacidade	Faix	a de Temp	peratura d	e evapora	ção 1)	F	efrigerant	frigerantes		Orificio		Conexõe	s
Тіро	nominal R-22 kW	N	NM	NL	В	A	R-22	R-134a	R-404A R-507	MOP	intercam- biável	Roscas	Soldar cobre ODF	Fila- mento
T 2/TE2	0,5 -> 15,5	x	x	x	x		x	x	x	x	x	x	x	
TE 5	10.5 42	×	×	×	×		~	×	×	×	×	×	×	

про	R-22 kW	N	NM	NL	В	A	R-22	R-134a	R-404A R-507	MOP	biável	
T 2/TE2	0,5 —> 15,5	х	х	x	x		х	x	х	х	x	Γ
TE5	10,5 -> 42	х	х	х	х		х	х	х	х	х	Г
TE 12	15,5 —> 63	x	x	x	×		x	x	x	х	x	Γ
TE20	105	х	х	х	х		х	х	х	х	x	Γ
TE 55	175 -> 295	x			×		x	x	x	х	x	Γ
PHT	105 -> 1890	х			x	x	x	х	х	х		Г

14,5

145

404 >

> 2179

¹) Faixa N: → -40°Ca +10°C Faixa NM: → -40°Ca -5°C Faixa NL: → -40°Ca -15°C Faixa B: → -60°Ca -25°C Faixa A: → +10°Ca +50°C

1 kW = 860 Kcal/h

TQ

PHTQ

1

х

Danfoss

Válvulas de expansão termostática Tipos T, TEe PHT

Dadostécnicos

Temperatura máxima Bulbo, com a válvula montada: 100°C Válvula completa não montada: 60°C Pressão máxima de teste T 2, TE 2: p` = 36 bar TE 5, TE 12, TE 20, TE 55 e PHT: p` = 28 bar

Temperatura mínima - T2 → TE 55:-60°C - PHT:-50°C

Pontos MOP

F

Refrigerante	Faixa N -40°-→+10°C	Faixa N Faixa MN Faixa MN -40°→+10°C -40°→-5°C -40°→		Faixa B -60° —► -25°C					
	Ponto MOP na temperatura de evaporação te e pressão de evaporação pe								
	aprox.+15°C/ +60°F	aprox.0°C/ +32°F	aprox10°C/ 15°F	aprox20°C/ -4°F					
R-22	100 psig	60 psig	35 psig	20 psig					
R-134a	55 psig	30 psig	15 psig						
R-404A / R-507 / R-402B	120 psig	75 psig	50 psig	30 psig					

MOP = Máxima pressão de operação

Dimensionamento

- expansão dependem do seguinte:
- carga máxima do evaporador
- temperatura de evaporação
- temperatura de condensação
- subresfriamento do líquido

expansão é a diferença entre as pressões de condensação e evaporação do compressor, menos a perda de carga na tubulação da linha de líquido e perda de carga nos acessórios da linha de líquido. (Ex.: filtro secador, registro, válvula solenóide, etc...)

Danfois

Válvulas de expansão termostática com conexões rosca, tipos T 2 e TE2
Válvulas Completas

Especificações	Faixa N (sem MC	₽):-40a+10°C	R-22 ,	R-134	a, R-4 0)4 A /R-	507/F	R-402B
Válvulas completas T 2 e TE 2 com conexões rosca	Befrigerante	Tipo de	Capacidade	Número	Equalização	Conexões e	Conexões em polegada	
	Terrigerance	válvula	kW ')	orifício	pressão	Entrada	Saída	Código
(TX 2-0.15	0.5	0X	Int	3/8	1/2	068Z320609
_ <u>_</u>		TX 2-0.3	1.0	00	Int	3/8	1/2	068Z320610
		TX 2-0.7	2.5	01	Int	3/8	1/2	068Z320601
I Wi H		TX 2-1.0	3.5	02	Int	3/8	1/2	068Z320602
W U		TX 2-1.5	5.2	03	Int	3/8	1/2	068Z320603
u		TX 2-2.3	8.0	04	Int	3/8	1/2	068Z320604
		TX 2-3.0	10.5	05	Int	3/8	1/2	068Z320605
	R-22	TX 2-4.5	15.5	06	Int	3/8	1/2	068Z320606
		TEX 2-0.15	0.5	0X	Ext	3/8	1/2	068Z320909
		TEX 2-0.3	1.0	00	Ext	3/8	1/2	068Z320910
		TEX 2-0.7	2.5	01	Ext	3/8	1/2	068Z320901
		TEX 2-1.0	3.5	02	Ext	3/8	1/2	068Z320902
		TEX 2-1.5	5.2	03	Ext	3/8	1/2	068Z320903
		TEX 2-2.3	8.0	04	Ext	3/8	1/2	068Z320904
		TEX 2-3.0	10.5	05	Ext	3/8	1/2	068Z320905
		TEX 2-4.5	15.5	06	Ext	3/8	1/2	068Z320906
		TN 2-0.25	0.9	00	Int	3/8	1/2	068Z334610
		TN 2-0.5	1.8	01	Int	3/8	1/2	068Z334601
		TN 2-0.8	2.6	02	Int	3/8	1/2	068Z334602
		TN 2-1.3	4.6	03	Int	3/8	1/2	068Z334603
		TN 2-1.9	6.7	04	Int	3/8	1/2	068Z334604
		TN 2-2.5	8.6	05	Int	3/8	1/2	068Z334605
	R134a	TN 2-3.0	10.5	06	Int	3/8	1/2	068Z334606
		TEN 2-0.25	0.9	00	Ext	3/8	1/2	068Z334810
		TEN 2-0.5	1.8	01	Ext	3/8	1/2	068Z334801
		TEN 2-0.0	2.0	02	Ext	3/8	1/2	0687334802
		TEN 2-1.3	4.0	03	Ext	3/8	1/2	0687334804
		TEN 2-2.5	86	04	Ext	3/8	1/2	0687334805
		TEN 2-3.0	10.5	06	Ext	3/0	1/2	068Z334806
		TS2-0.21	0.7	00	Int	3/8	1/2	068Z340010
		TS2-0.45	1.6	01	Int	3/8	1/2	068Z340001
		TS2-0.6	2.1	02	Int	3/8	1/2	068Z340002
		TS2-1.2	4.2	03	Int	3/8	1/2	068Z340003
		TS2-1.7	6.0	04	Int	3/8	1/2	068Z340004
	R-404A/	TS2-2.2	7.7	05	Int	3/8	1/2	068Z340005
	R-507/	TS2-2.6	9.1	06	Int	3/8	1/2	068Z340006
	R-402B	TES2-0.21	0.7	00	Ext	3/8	1/2	068Z340310
1) A capacidade nominal está baseada:		TES2-0.45	1.6	01	Ext	3/8	1/2	068Z340301
 Na temperatura de evaporação 		TES2-0.6	2.1	02	Ext	3/8	1/2	068Z340302
t _e =+5°C		TES2-1.2	4.2	03	Ext	3/8	1/2	068Z340303
 Na temperatura de condensação + = +32°C 		TES2-1.7	6.0	04	Ext	3/8	1/2	068Z340304
- Na temperatura do refrigerante antes		TES2-2.2	7.7	05	Ext	3/8	1/2	068Z340305
da válvula t _l = +28°C		TES2-2.6	9,1	06	Ext	3/8	1/2	068Z340306
	Interpretação da Exemplo:TEN 2-(T = Válvula de E = Equalizaçã N = Refrigeran (X= R-22) (S= R-404, 2- = Tamanho (0.5 = Qanacidari	Nomenclatura),5 expansão term io de pressão ex te R-134a, A) da válvula e nominal em 1	nostática kterna 1/4"/ 6	mm	<i>Tabelas de cap</i> . Ver as tabelas	<i>acidade</i> s de capacidade	s detalhadas	

1 kW = 860 Kcal/h

Danfoss

Válvulas de expansão termostática Tipos T 2 e TE 2

Especificações, componentes com conexões rosca x rosca

Elemento termostático com braçadeira de sensor sem orifício, filtro e porcas.

				Con	exão			N° de o	ódigo		
Refrigerante	Tipo de Válvula	Equalização de pressão	Tubo capilar	Entrada x Saída		Faixa N -40 a +10℃		Faixa NM -40 a -5°C	Faixa NL -40 a -15°C	Fai: -60 a	xa B -25°C
			m	pol.x pol.	mm x mm	Sem MOP	Com MOP	Com MOP	Com MOP	Sem MOP	Com MOP
R-22	TX2	Int.	1.5	3/8 x 1/2	10 x 12	068Z3206	068Z3208	068Z3224	068Z3226	068Z3207	068Z3228
1422	TEX 2	Ext.	1.5	3/8 x 1/2	10 x 12	068Z3209	068Z3211	068Z3225	068Z3227	068Z3210	068Z3229
P.124a	TN 2	Int.	1.5	3/8 x 1/2	10 x 12	068Z3346	068Z3347	068Z3393	068Z3369		
N=134a	TEN 2	Ext.	1.5	3/8 x 1/2	10 x 12	068Z3348	068Z3349	068Z3392	068Z3370		
R-404A/	TS2	Int.	1.5	3/8 x 1/2	10 x 12	068Z3400	068Z3402	068Z3406	068Z3408	068Z3401	068Z3410
R-507/R-402B	TES2	Ext.	1.5	3/8 x 1/2	10 x 12	068Z3403	068Z3405	068Z3407	068Z3409	068Z3404	068Z3411

Obs.: Nas válvulas com conexões em polegadas, a conexão para equalização de pressão é 1/4".

Conjunto de orifício com filtro

Faixa N:-40 a +10°C

A canacidade nominal está baseada:	Número	Capacidade	nominal em to	neladas (TR)	Capacidade nominal em kW				
Na temperatura de evaporação $t_p = +5^{\circ}C$ na faixa N e $t_p = -30^{\circ}C$ para a faixa B.	de orifício	R-22	R-134a	R404A / R507/ R402B	R-22	R-134a	R-404A/ R-507		
Na temperatura de condensação	0X	0.15	0.11	0.11	0.5	0.4	0.38		
t _c = +32°C	00	0.3	0.25	0.21	1.0	0.9	0.7		
Na temperatura do refrigerante antes da válvula	01	0.7	0.5	0.45	2.5	1.8	1.6		
$t_1 = +28^{\circ}C$	02	1.0	0.8	0.6	3.5	2.6	2.1		
	03	1.5	1.3	1.2	5.2	4.6	4.2		
	04	2.3	1.9	1.7	8.0	6.7	6.0		
	05	3.0	2.5	2.2	10.5	8.6	7.7		
	06	4.5	3.0	2.6	15.5	10.5	9.1		

Faixa B: -60 a -25°C

0X	0.15	0.11	0.5	0.38	068-2002
00	0.2	0.21	0.7	0.7	068-2003
01	0.3	0.45	1.0	1.6	068-2010
02	0.6	0.6	2.1	2.1	068-2015
03	0.8	1.0	2.8	3.5	068-2006
04	1.2	1.4	4.2	4.9	068-2007
05	1.5	1.7	5.2	6.0	068-2008
06	2.0	1.9	7.0	6.6	068-2009

Exemplo: Uma válvula de expansão termostática consiste de dois elementos + porcas se necessário: - 1 elemento termostático - 1 conjunto de orifícios e porcas flangeadas

Ao especificar-se uma válvula de expansão termostática TEX 2 com orifício 01, cinco números de códigos são necessários - 1 elemento termostático, 06823209 - 1 conjunto de orifício 01,068-2010

N° de código 068-2002 068-2003

068-2010 068-2015 068-2006 068-2007 068-2008 068-2009

4

1 kW = 860 Kcal/h

Danfoss

Válvulas de expansão termostática Tipos T 2 e TE 2

Especificações, componentes com conexões rosca x solda

Bemento termostático com braçadeira de sensor sem orifício, filtro e porcas.

					Conexão				N° de código		
Refrigerante	Tipo de Válvula	Equalização de pressão	Tubo capilar	Entradas rosca	ntradas Saída solda a rosca cobre ODF			(a N +10°C	Faixa NL -40 a -15°C	Faixa B -60 a -25°C	
		process	m	pol.	pol.	mm	Sem MOP	Com MOP	Com MOP	Sem MOP	Com MOP
	TX2	Int.	1.5	3/8	1/2		068Z3281	068Z3287		068Z3357	068Z3319
P.22	TX2	Int.	1.5	3/8		12	068Z3302	068Z3308	068Z3366	068Z3361	068Z3276
14-22	TEX 2	Ext.	1.5	3/8	1/2		068Z3284	068Z3290		068Z3359	068Z3320
	TEX2	Ext.	1.5	3/8		12	068Z3305	068Z3311	068Z3367	068Z3363	068Z3277
	TN 2	Int.	1.5	3/8	1/2		068Z3383	068Z3387			
P.134a	TN 2	Int.	1.5	3/8		12	068Z3384	068Z3388			
191344	TEN 2	Ext.	1.5	3/8	1/2		068Z3385	068Z3389			
	TEN 2	Ext.	1.5	3/8		12	068Z3386	068Z3390			
R-4044/	TS2	Int.	1.5	3/8	1/2		068Z3414	068Z3416	068Z3429	068Z3418	068Z3420
R-507/	TS2	Int.	1.5	3/8		12	068Z3435	068Z3423	068Z3436	068Z3425	068Z3427
R-402B	TES2	Ext.	1.5	3/8	1/2		068Z3415	068Z3417	068Z3430	068Z3419	068Z3421
	TES2	Ext.	1.5	3/8		12	068Z3422	068Z3424	068Z3437	068Z3426	068Z3428

Nas válvulas com conexões em polegadas, a conexão para a equalização de pressão é de 1/4". As válvulas com conexões em mm têm conexão de equalização de pressão de 6 mm.

Adaptador para solda Π

O adaptador é utilizado nas válvulas de expansão termostática T 2 e TE 2 com conexões alargada x soldada de cobre. Se o adaptador é montado corretamente, cumpre os requisitos de fechamento da norma DIN 8964.

- O adaptador ten as seguintes vantagens: Permite trocar o conjunto de orifício. Permite trocar ou limpar o filtro.

Adaptador para solda de cobre sem conjunto de orifício nem filtro

Conexão soldada de cobre ODF	N° de código
1/4 polegadas	068-2062
6 mm	068-2063
³ /8 polegadas	068-2060
10 mm	068-2061
Filtro para adaptador para solda d	le cobre
Descrição	N de codigo
Filtro sem o conjunto de orifício	068-0015

O orifício padrão das válvulas T 2 e TE2 pode ser utilizado com o adaptador soldado de cobre quando o filtro da válvula de expansão for trocado quanto o mito da varvia de expanseo for rocado por outro filto específicado em separado. Somente assim serão cumpridos os requisitos de fechamento da norma DIN 8964. Também há um adaptador soldado de cobre para filtros secadores.

Conjunto de orifício com filtro para adaptador soldado de cobre

Número do orifício	N° de código
0X	068-2089
00	068-2090
01	068-2091
02	068-2092
03	068-2093
04	068-2094
05	068-2095
06	068-2096

Danfoss

Tabelas de capacidade para válvulas de expansão termostática Tipos T, TE e PHT

	NP do		Que	da de pre	essão atra	avés da v	/álvula∆r	bar			Que	da de nr	essão atr	avés da v	/álvula ∆i	bar	
Tipo de válvula	orifício	2	4	6	8	10	12	14	16	2	4	6	8	10	12	14	16
			Te	emperat	ura de ev	/aporaçã	ăo +10°C	:				Temper	atura de	evapora	ação 0°C		
TX2/TEX 2-0.15	0X	0.37	0.48	0.55	0.60	0.63	0.65	0.65	0.67	0.37	0.48	0.55	0.59	0.63	0.65	0.66	0.
TX2/TEX 2-0.3	01	2.2	2.8	3.2	3.4	3.6	3.7	3.8	3.8	1.9	2.4	2.7	3.0	3.1	3.2	3.3	
TX2/TEX 2-1.0	02	3.0	4.0	4.7	5.1	5.4	5.6	5.8	5.8	2.6	3.4	4.0	4.3	4.6	4.8	4.9	
TX2/TEX 2-1.5	03	5.4	7.2	8.3	9.1	9.7	10.0	10.2	10.3	4.6	6.1	7.1	7.8	8.2	8.5	8.7	8
IX2/ IEX 2-2.3 IX2/ IEX 2-3.0	04	8.1	10.8	12.5	13.8	14.5	15.0	15.4	15.5	6.9	9.1	10.5	11.5	12.2	12.7	13.0	1
TX2/TEX 2-4.5	06	12.6	16.7	19.3	21.0	22.3	23.1	23.5	23.7	10.8	14.2	16.3	17.8	18.9	19.6	20.0	20
TEX 5-3	01	12.4	16.3	18.8	20.5	21.7	22.4	22.8	23.0	12.8	16.7	19.1	20.8	22.0	22.7	23.2	23
TEX 5-4.5	02	17.2	22.5	25.9	28.1	29.7	30.6	31.1	31.3	17.7	22.9	26.1	28.3	29.9	30.9	31.5	31
IEX 5-7.5 TEX 5-12	03	25.3	32.8	37.4	40.6	42.6	43.9	44.5	44./ 63.0	25.9	33.0	37.5	40.6	42.8	63.2	45.0	4:
TEX 3-12	04	33.0	40.0	00.4	00.0	00.0	02.0	03.0	03.9	30.0	47.0	04.5	00.0	01.2	03.2	04.5	04
TEX 12-4.5 TEX 12-7.5	01	16.8	36.4	26.1 42.1	28.6	30.3	31.4	32.1	32.3	16.1	21.2	24.5	26.8	28.5	29.6	30.3	30
TEX 12-12	03	40.2	53.3	61.6	67.2	71.1	73.5	74.9	75.5	38.7	50.8	58.5	63.9	67.7	70.3	71.9	72
TEX 12-18	04	53.2	70.2	80.9	88.1	93.0	96.1	97.8	98.5	51.7	67.6	77.8	85.0	90.2	93.7	95.8	96
TEX 20-30	01	72.0	94.4	108	118	124	129	131	132	66.3	86.0	98.5	107	113	118	120	12
TEX 55-50 TEX 55-85	01 02	158 239	209 313	241 360	263 391	278 412	287 425	293 432	295 434	145 221	190 286	218 326	237 355	251 375	260 388	265 395	26
PHTX 85	1	67.3	95.0	112	124	133	139	142	144	56.7	76.6	93.4	103	111	115	119	12
PHTX 85	2	109	151	178	196	209	217	222	224	94.4	131	153	169	180	188	194	1
PHTX 85	3	174	244	287	316	336	349	356	360	147	206	241	265	283	295	303	3
PHTX 85	4	299	422	493	542 803	876	927	957	982	230	573	698	432	460	480	495	8
PHTX 300	1	786	1048	1211	1317	1387	1432	1455	1476	671	887	1022	1110	1182	1216	1250	127
PHTX 300	2	1290	1688	1935	2096	2202	2269	2302	2327	1133	1471	1685	1827	1941	1997	2048	207
							×- 1000					-			~	-	
TY2/TTY 2 0 45	ox	0.07	0.47	emperat	ura de e	vaporaç	ao -10°C	0.64	0.64	Temperatura de evaporação -20°C 0.44 0.50 0.54 0.57 0.59 0.61 0.61							
TX2/TEX 2-0.15	00	0.37	0.47	1.1	1.2	1.2	1.3	1.3	1.3		0.44	1.0	1.1	1.1	1.2	1.2	0.0
TX2/TEX 2-0.7	01	1.6	2.0	2.3	2.5	2.6	2.7	2.8	2.8		1.7	1.9	2.0	2.2	2.3	2.3	2
TX2/TEX 2-1.0	02	2.2	2.9	3.3	3.6	3.8	4.0	4.1	4.1		2.4	2.7	2.9	3.1	3.2	3.3	3
TX2/TEX 2-1.5	03	3.9	5.1	5.9	6.4	6.8	7.1	10.8	7.3		4.2	4.8	5.2	5.5	5.8	5.9	6
TX2/TEX 2-3.0	05	7.4	9.6	11.0	12.0	12.8	13.3	13.6	13.8		7.9	9.0	9.8	10.3	10.8	11.0	11
TX2/TEX 2-4.5	06	9.1	11.8	13.5	14.7	15.6	16.2	16.6	16.8		9.6	11.0	11.9	12.6	13.1	13.5	13
TEX 5-3	01	11.1	14.3	16.3	17.7	18.8	19.5	19.9	20.1		11.5	13.0	14.1	15.0	15.6	16.0	16
TEX 5-4.5	02	15.4	19.7	22.4	24.3	25.7	26.7	27.3	27.6		15.9	18.1	19.6	20.8	21.6	22.1	22
TEX 5-12	04	32.3	41.1	46.8	51.0	54.1	56.3	57.7	58.4		33.2	37.7	41.1	43.7	45.7	47.0	47
TEX 12-4.5	01		18.7	21.4	23.4	24.8	25.8	26.4	26.6		15.9	18.1	19.6	20.8	21.6	22.1	22
TEX 12-7.5	02		30.4	34.8	37.9	40.2	41.8	42.8	43.2		25.9	29.4	32.0	33.9	35.2	36.1	36
TEX 12-12	03		44.5	50.9	55.6	59.0	61.4	62.9	63.7		37.7	42.9	46.7	49.6	51.7	53.1	53
TEX 12-18	04		59.1 75.4	95.0	74.0	18.1	82.1	84.3 106	107		49.9	57.0	70.0	00.4	09.0	71.8	73
TEX 55-50	01		166	189	205	217	225	229	231		140	158	171	181	187	191	1
TEX 55-85	02		251	285	309	327	339	346	349		213	240	260	275	285	291	29
PHTX 85	1	46.0	64.0	74.9	82.9	88.4	92.9	94.5	97.4		49.6	57.8	63.3	68.2	71.5	73.1	75
PHIX 85 PHTX 85	2	78.4	108	126	139	148	156	159	163		85.6	99.5	109	117	123	125	1
PHTX 85	4	153	231	276	310	334	350	361	368		139	165	187	205	215	230	2
PHTX 125	1	381	505	582	637	677	707	727	730		403	465	511	541	567	585	5
PHTX 300	1	552	723	827	898	957	1002	1034	1040		570	648	711	751	789	821	8
H1X 300	2	953	1228	1401	1522	1620	1695	1747	1757		990	1124	1233	1304	1370	1425	14
orreção devido à v	ariação	2	As capac	idades d	e evapor	ação terã	o que se	r do 4K		capacidade necessária de evaporação pelo fator de							
subresfriamento Δt _{sub} Corrigidas se o subrestriamento for diferente de 4K. A capacidade corrigida pode ser obtida dividindo-se a										correção a seguir. Podera, então, ser reita a seleção com as tabelas anteriores.							

Δt_{sub}	4 K	10 K	15 K	20 K	25 K	30 K	35 K	40 K	45 K	50 K
Fator de correção	1.00	1.06	1.11	1.15	1.20	1.25	1.30	1.35	1.39	1.44
<i>Exemplo</i> Refrigerante = Capacidade de	R-22 evaporaçã	o Q _e = 5 kW	1		Subre Fator Capa	esfriamento de correção cidade corri	= 10 K segundo a igida = 5 ÷ 1	tabela = 1,0 1,07 = 4,67 k	7 W	

1 kW = 860 Kcal/h

Nota: Um subresfriamento insuficiente pode produzir evaporação instantânea (flash gas), o que poderá causar danos aos controles

Danfoss

Tabelas de capacidade para válvulas de expansão termostática Tipos T, TE e PHT

Capacidade em kW par	ra a faixa	a N: -40 a	a+10℃													R	-22	
Tipo de válvula	Nº do		Que	da de pr	essão atra	avés da v	/álvula ∆p	bar			Que	da de pre	essão atra	avés da v	álvula ∆p	bar		
npo de valvula	orifício	2	4	6	8	10	12	14	16	2	4	6	8	10	12	14	16	
Temperatura de evaporação -30°C												Temperatura de evaporação -40°C						
TX2/TEX 2-0.15 TX2/TEX 2-0.3 TX2/TEX 2-0.7 TX2/TEX 2-1.0 TX2/TEX 2-1.5 TX2/TEX 2-2.3 TX2/TEX 2-3.0 TX2/TEX 2-3.0 TX2/TEX 2-4.5	0X 00 01 02 03 04 05 06		0.40 0.79 1.4 1.9 3.4 5.0 6.4 7.8	0.45 0.90 1.5 2.2 3.9 5.7 7.2 8.8	0.49 0.96 1.7 2.7 4.2 6.2 7.8 9.6	0.52 1.0 1.8 2.5 4.4 6.5 8.3 10.1	0.55 1.1 1.8 2.6 4.6 6.8 8.6 10.5	0.56 1.1 1.9 2.6 4.7 7.0 8.8 10.8	0.57 1.1 1.9 2.7 4.8 7.1 9.0 11.0			0.42 0.80 1.3 1.7 3.1 4.6 5.8 7.1	0.45 0.86 1.4 1.9 3.4 4.9 6.3 7.7	0.48 0.92 1.4 2.0 3.5 5.2 6.6 8.1	0.50 0.95 1.5 2.0 3.7 5.4 6.9 8.4	0.52 0.98 1.5 2.1 3.8 5.6 7.1 8.7	0.53 0.99 1.6 2.1 3.8 5.7 7.2 8.8	
TEX 5-3 TEX 5-4.5 TEX 5-7.5 TEX 5-12	01 02 03 04		9.0 12.6 18.3 26.3	10.2 14.3 20.8 29.8	11.1 15.4 22.7 32.5	11.7 16.4 24.2 34.6	12.2 17.0 25.4 36.3	12.5 17.5 26.2 37.5	12.7 17.8 26.8 38.2		>	7.9 11.1 16.2 23.2	8.5 12.0 17.7 25.3	9.0 12.7 19.0 27.1	9.4 13.3 19.9 28.5	9.7 13.7 20.7 29.5	9.8 13.9 21.2 30.2	
TEX 12-4.5 TEX 12-7.5 TEX 12-12 TEX 12-18	01 02 03 04			14.8 24.2 35.1 46.6	16.0 26.2 38.1 51.0	16.9 27.7 40.5 54.6	17.6 28.8 42.4 57.4	18.0 29.5 43.7 59.6	18.3 29.9 44.5 61.0			11.9 19.4 28.1 37.4	12.8 21.0 30.6 41.1	13.5 22.2 32.6 44.2	14.0 23.1 34.1 46.8	14.4 23.7 35.3 48.8	14.6 24.1 36.1 50.3	
TEX 20-30	01			59.2	64.5	68.8	72.0	74.4	75.8			47.5	51.8	55.4	58.2	60.4	61.9	
TEX 55-50 TEX 55-85	01 02			129 197	139 212	146 224	151 232	155 237	156 240			102 158	110 170	116 178	120 185	122 189	123 191	
PHTX 85 PHTX 85 PHTX 85 PHTX 85 PHTX 125 PHTX 300 PHTX 300	1 2 3 4 1 2		36.6 64.1 95.3 100 310 429 759	42.8 74.7 112 120 358 487 862	46.8 81.7 124 134 390 536 949	49.8 86.9 132 145 413 570 1011	52.2 91.1 138 153 434 598 1062	54.3 94.6 144 158 449 621 1104	55.9 97.4 147 161 461 627 1115			30.6 54.0 79.9 84.7 266 364 655	33.6 59.2 88.5 95.5 289 399 719	36.1 63.7 94.7 103 309 430 775	38.0 66.9 99.7 111 321 454 820	39.4 69.4 104 119 339 467 844	40.2 70.4 107 119 340 474 857	

Correção devido à variação do subresfriamento ∆t_{sub}

As capacidades de evaporação terão que ser corrigidas se o subresfriamento for diferente de 4K A capacidade corrigida pode ser obtida dividindo-se a

10 K

1.06

15 K

1.11

20 K

1.15

25 K

1.20

capacidade necessária de evaporação pelo fator de correção a seguir. Poderá, então, ser feita a seleção com as tabelas anteriores.

40 K

1.35

45 K

1.39

50 K

1.44

35 K

1.30

Nota: Um subresfriamento insuficiente pode produzir evaporação instantânea (flash gas), o que poderá causar danos aos controles

1.00

∆t_{sub} 4 K

Fator de

correção

Subresfriamento = 10 K Fator de correção segundo a tabela = 1,06 Capacidade corrigida = 5 + 1,06 = 4,72 kW

30 K

1.25

1 kW = 860 Kcal/h

Danfoss

Tabelas de capacidade para válvulas de expansão termostática Tipos T, TE e PHT

Capacidade em kW par	ra a faixa	a B:-60 a	+10°C													R	-22
Tipo de válvula	№ do		Que	da de pr	essão atr	avés da v	⁄álvula ∆p	bar			Que	da de pr	essão atr	avés da v	álvula ∆p	bar	
npo de valvula	orifício	2	4	6	8	10	12	14	16	2	4	6	8	10	12	14	16
			Т	emperat	ura de e	vaporaç	ão -25°C					Tempera	tura de e	evapora	;ão -30°(:	
TX2/TEX 2-0.2 TX2/TEX 2-0.3 TX2/TEX 2-0.6 TX2/TEX 2-0.6 TX2/TEX 2-0.8 TX2/TEX 2-1.2 TX2/TEX 2-1.5 TX2/TEX 2-2.0	00 01 02 03 04 05 06	0.69 1.2 1.7 3.0 4.4 5.6 6.8	0.83 1.5 2.1 3.8 5.6 7.1 8 7	0.94 1.7 2.4 4.3 6.4 8.1 9.8	1.0 1.9 2.6 4.7 6.9 8.7 10.7	1.1 2.0 2.8 5.0 7.3 9.3 11.3	1.1 2.0 2.9 5.2 7.6 9.6 11.8	1.1 2.9 5.3 7.8 9.9 12 1	1.2 2.1 3.0 5.3 7.9 10.0 12.3	0.66 1.1 1.5 2.7 3.9 5.0 6.1	0.79 1.4 1.9 3.4 5.0 6.4 7.8	0.89 1.5 2.2 3.9 5.7 7.2 8.8	0.96 1.7 2.3 4.2 6.2 7.8 9.6	1.0 1.8 2.5 4.4 6.5 8.3 10.1	1.1 1.8 2.6 4.6 6.8 8.6 10.5	1.1 1.9 2.6 4.7 7.0 8.8 10.8	1.1 1.9 2.7 4.8 7.1 9.0 11.0
TEX 5-3 TEX 5-4.5 TEX 5-7.5 TEX 5-7.5 TEX 5-12	01 02 03 04	8.1 11.3 16.4 23.5	10.2 14.2 20.7 29.6	11.6 16.1 23.5 33.6	12.5 17.4 25.6 36.6	13.3 18.5 27.3 39.0	13.8 19.2 28.6 40.8	14.2 19.7 29.5 42.1	14.4 20.0 30.0 42.8	7.2 10.1 14.6 20.9	9.0 12.6 18.3 26.3	10.2 14.3 20.8 29.8	11.1 15.4 22.7 32.5	11.7 16.4 24.2 34.6	12.2 17.0 25.4 36.3	12.5 17.5 26.2 37.5	12.7 17.8 26.8 38.2
TEX 12-4.5 TEX 12-7.5 TEX 12-12 TEX 12-18	01 02 03 04	11.3 18.5 26.8 35.4	14.5 23.6 34.2 45.3	16.4 26.8 38.9 51.7	17.8 29.0 42.3 56.6	18.8 30.7 45.0 60.4	19.6 31.9 46.9 63.4	20.0 32.7 48.3 65.6	20.3 33.2 49.1 67.0	10.2 16.8 24.3 32.0	13.1 21.4 30.9 40.8	14.8 24.2 35.1 46.6	16.0 26.2 38.1 51.0	16.9 27.7 40.5 54.6	17.6 28.8 42.4 57.4	18.0 29.5 43.7 59.6	18.3 29.9 44.5 61.0
TEX 20-20 TEX 55-35 TEX 55-60	01 01 02	46.0 100 154	58.0 127 194	66.0 143 218	72.0 155 236	76.0 163 249	80.0 169 258	82.0 173 264	83.0 174 267	41.0 91.0 140	52.0 115 175	59.0 129 197	65.0 139 212	69.0 146 224	72.0 151 232	74.0 155 237	76.0 156 240
							×- 1000					_			~		
TX2/TEX 2-0.2 TX2/TEX 2-0.3 TX2/TEX 2-0.6	00 01 02	0.60 0.90 1.2	0.71 1.1 1.6	0.80 1.3 1.7	0.86 1.4 1.9	0.92 1.4 2.0	0.95 1.5 2.1	0.98 1.5 2.1	0.99 1.6 2.1	0.54 0.74 1.0	0.65 0.92 1.3	0.72 1.0 1.4	0.78 0.78 1.1 1.5	0.82 1.2 1.6	20.85 0.85 1.2 1.7	0.87 1.3 1.7	0.88 1.3 1.7
TX2/TEX 2-0.8 TX2/TEX 2-1.2 TX2/TEX 2-1.5 TX2/TEX 2-2.0	03 04 05 06	2.2 3.2 4.1 5.0	2.8 4.0 5.1 6.3	3.1 4.6 5.8 7.1	3.4 4.9 6.3 7.7	3.5 5.2 6.6 8.1	3.7 5.4 6.9 8.4	3.8 5.6 7.1 8.7	3.8 5.7 7.2 8.8	1.8 2.6 3.4 4.1	2.3 3.3 4.2 5.1	2.6 3.7 4.7 5.8	2.7 4.0 5.1 6.2	2.9 4.2 5.4 6.6	3.0 4.4 5.6 6.9	3.1 4.5 5.8 7.1	3.1 4.6 5.9 7.2
TEX 5-3 TEX 5-4.5 TEX 5-7.5 TEX 5-12	01 02 03 04	5.6 7.9 11.4 16.3	7.0 9.9 14.3 20.5	7.9 11.1 16.2 23.2	8.5 12.0 17.7 25.3	9.0 12.7 19.0 27.1	9.4 13.3 19.9 28.5	9.7 13.3 20.7 29.5	9.8 13.9 21.2 30.2		5.5 7.7 11.2 16.0	6.1 8.7 12.7 18.2	6.6 9.4 13.9 19.9	7.0 9.9 14.9 21.3	7.3 10.4 15.8 22.5	7.5 10.7 16.4 23.4	7.7 10.9 16.9 24.1
TEX 12-4.5 TEX 12-7.5 TEX 12-12 TEX 12-18	01 02 03 04	8.3 13.7 19.6 25.5	10.5 17.2 24.8 32.6	11.9 19.4 28.1 37.4	12.8 21.0 30.6 41.1	13.5 22.2 32.6 44.2	14.0 23.1 34.1 46.8	14.4 23.7 35.3 48.8	14.6 24.1 36.1 50.3		8.5 13.9 19.8 25.9	9.5 15.5 22.5 29.9	10.2 16.8 24.5 33.1	10.8 17.7 26.2 35.9	11.2 18.5 27.6 38.2	11.5 19.0 28.6 40.2	11.7 19.4 29.4 41.6
TEX 20-20 TEX 55-35 TEX 55-60	01 01 02	33.0 73.0 114	42.0 92.0 141	47.0 102 158	52.0 110 170	55.0 116 178	58.0 120 185	60.0 122 189	62.0 123 191		33.0 73.0 113	38.0 81.0 126	42.0 87.0 135	45.0 91.0 142	47.0 94.0 147	49.0 96.0 150	51.0 97.0 151
			Т	emperat	ura de e	vaporaç	ão -55°C					Tempera	tura de e	evapora	ão -60°(;	
TX2/TEX 2-0.2 TX2/TEX 2-0.3 TX2/TEX 2-0.6 TX2/TEX 2-0.8 TX2/TEX 2-1.2 TX2/TEX 2-1.5 TX2/TEX 2-2.0	00 01 02 03 04 05 06)					0.50 0.64 0.9 1.6 2.2 2.9 3.5	0.60 0.79 1.1 1.9 2.8 3.6 4.4	0.66 0.88 1.2 2.2 3.1 4.0 4.9	0.71 0.95 1.3 2.3 3.4 4.3 5.3	0.75 1.0 1.4 2.4 3.6 4.6 5.6	0.77 1.0 1.4 2.5 3.7 4.8 5.8	0.79 1.1 1.4 2.6 3.8 4.9 6.0	0.80 1.1 1.4 2.6 3.9 5.0 6.1
TEX 5-3 TEX 5-4.5 TEX 5-7.5 TEX 5-12	01 02 03 04										4.4 6.2 9.0 12.9	4.9 7.0 10.3 14.7	5.3 7.4 11.3 16.1	5.6 8.0 12.1 17.3	5.9 8.4 12.9 18.3	6.1 8.6 13.5 19.2	6.2 8.8 13.9 19.8
TEX 12-4.5 TEX 12-7.5 TEX 12-12 TEX 12-18	01 02 03 04		7.6 12.5 17.8 23.3	8.5 14.0 20.3 27.0	9.2 15.1 22.1 30.0	9.7 16.0 23.7 32.6	10.1 16.7 25.0 34.8	10.4 17.2 26.0 36.7	10.5 17.5 26.7 38.2								
TEX 20-20	01		30.0	34.0	37.0	40.0	43.0	45.0	46.0								
TEX 55-30 TEX 55-60	01 02		66.0 102	73.0	78.0	82.0 127	84.0 131	86.0 134	87.0 135								
Correção devido à va do subresfriamento		As capac corrigida A capaci	idades d as se o su dade cor	le evapor Ibresfrian rigida po	ação terá nento for ode ser ol	io que se diferente otida divi	r e de 4K. dindo-se	а	ca co as	pacidade rreção a tabelas a	e necessá seguir. Po anteriores	ria de eva oderá, ent 8.	aporação ão, ser fe	pelo fate ita a sele	or de ção com		
Nota: Um subresfriamento	D		∆t _{su}	b	4 K	10 K	15	к	20 K	25 K	30	к	35 K	40 K	45	к	50 K
insuficiente pode produzi evaporação instantânea (o que poderá causar danc	r (flash gas) os aos),	Fator	de ção	1.00	1.06	1.1	1	1.15	1.20	1.2	5	1.30	1.35	1.3	9	1.44
o que podera causar danos aos controles.			Exemplo Refrigera Capacida	ante = R . ade de e	22 vaporaçã	o Q _e = 5	kW			Su Fa Ca	bresfrian tor de co pacidade	nento = 1 rreção se e corrigid	l0 K gundo at a = 5 ÷ 1	abela = 1 ,06 = 4,7	1,06 2 kW		

1 kW = 860 Kcal/h