

Universidade Estadual de Campinas Faculdade de Engenharia Química Área de concentração: Desenvolvimento de Processos Químicos

Stella Alonso Rocha

Cálculo do equilíbrio sólido-líquido e ajuste de parâmetros para modelos termodinâmicos em misturas binárias e ternárias de ácidos graxos, seus ésteres e triacilgliceróis

Campinas 2011

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

R582c	Rocha, Stella Alonso Cálculo do equilíbrio sólido-líquido e ajuste de parâmetros para modelos termodinâmicos em misturas binárias e ternárias de ácidos graxos, seus ésteres e triacilgliceróis / Stella Alonso RochaCampinas, SP: [s.n.], 2011.	
	Orientador: Reginaldo Guirardello. Tese de Doutorado - Universidade Estadual de Campinas, Faculdade de Engenharia Química.	
	 Equilíbrio sólido-líquido. 2. Gibbs, Energia livre de. 3. Diagramas de fases. 4. Otimização matemática. Ácidos graxos. I. Guirardello, Reginaldo. II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título. 	
Título er	n Inglês: Solid-liquid equilibria calculation and parameters determination in thermodynamic models for binary and ternary mixtures of fatty acids, esters and triacylglycerols	
Palavras	-chave em Inglês: Solid-liquid equilibria, Gibbs free energy, Phase diagrams Mathematical optimizations Fatty acids	
Área de	concentração: Desenvolvimento de Processos Químicos	
Titulaçã	o: Doutor em Engenharia Química	
Banca examinadora: Lúcio Cardozo Filho, Maria Alvina Krähenbühl, Roberta		

Ceriani, Vladimir Ferreira Cabral

Data da defesa: 09/09/2011

Programa de Pós Graduação: Engenharia Química

Stella Alonso Rocha

Cálculo do equilíbrio sólido-líquido e ajuste de parâmetros para modelos termodinâmicos em misturas binárias e ternárias de ácidos graxos, seus ésteres e triacilgliceróis

> Tese de Doutorado apresentada à Faculdade de Engenharia Química como requisito para a obtenção do título de Doutor em Engenharia Química.

Orientador: Reginaldo Guirardello

Campinas 2011

Stella Alonso Rocha

Cálculo do equilíbrio sólido-líquido e ajuste de parâmetros para modelos termodinâmicos em misturas binárias e ternárias de ácidos graxos, seus ésteres e triacilgliceróis

Tese de Doutorado apresentada à Faculdade de Engenharia Química como requisito para a obtenção do título de Doutor em Engenharia Química.

Aprovação em 09/09/2011

a della Prof. Dr. Reginaldo Guirardello - Unicamp Prof. Dr. Lúcio Cardozo Filho - UEM Profa. Dra. Maria Alvina Krähenbühl - Unicamp Cosatalliani Profa. Dra. Roberta Ceriani - Unicamp

Prof. Dr. Vladimir Ferreira Cabral - UEM

Campinas 2011

Stella Alonso Rocha

Cálculo do equilíbrio sólido-líquido e ajuste de parâmetros para modelos termodinâmicos em misturas binárias e ternárias de ácidos graxos, seus ésteres e triacilgliceróis

Este exemplar corresponde à versão final da Tese de Doutorado em Engenharia Química

Quina della

Prof. Dr. Reginaldo Guirardello (Orientador)-Unicamp

Campinas 2011

O que faz você feliz?

Um simples abraço, um nic nic clássico, um bom filme com pipoca, ir na casa da Marloca? Ter paz, ser capaz, tanto faz?

O que faz você feliz?

Panela de brigadeiro com colher, se sentir uma bela mulher, uma viagem pra onde Deus quiser? Rever bons amigos, almoço aos domingos, chorar de tanto rir, rezar antes de dormir?

O que faz você feliz?

Matar a saudade, ter liberdade, verdade, bondade, dignidade? Um belo espetáculo de dança, quilos a menos na balança, uma grande festança?

O que faz você feliz?

Ter a família por perto, dormir coberto, dizer eu te amo macarronada com frango? Cantar tudo errado, dançar, descompassado, terminar o doutorado?

Agora, pense bem e me diz, O que realmente faz você feliz?

(inspirado em "O que faz você feliz" - Seu Jorge/Arnaldo Antunes)

Com todo carinho,

àqueles que muito amo e me fazem feliz.

AGRADECIMENTOS

A Deus, por tudo que me tem feito e proporcionado;

Aos meus Pais, Marlene e Orlando, pelo amor, segurança e confiança;

Ao Lincoln, pelo amor, incentivo, cuidado, paciência e dedicação;

A minha irmã, Fabiana, pela torcida, pouso e amizade;

Ao professor Reginaldo, pela excepcional orientação e por todo conhecimento fornecido;

Aos meus amigos, de perto e de longe, porém todos muito próximos, em especial a Marcela e Gabi, pelas conversas, apoio, noites de sono e caronas; e Aline, por toda arte;

Ao IFGoiano/IFPR, por me permitir continuar a jornada acadêmica e a todos os amigos, que muito me ajudaram a persistir;

A todos do LSOPQ, em especial ao Valter, Larissa e Tony, que me aguardaram em longícuas visitas, com todo respeito e sempre com um lugar reservado;

Ao laboratório EXTRAE, em particular a professora Maria Alvina, por todo apoio e confiança depositada;

RESUMO

ROCHA, S. A., Cálculo do equilíbrio sólido-líquido e ajuste de parâmetros para modelos termodinâmicos em misturas binárias e ternárias de ácidos graxos, seus ésteres e triacilgliceróis. Campinas: UNICAMP, Setembro 2011. 249 fls. Projeto de Tese (Doutorado em Engenharia Química) – Departamento de Processos Químicos da Faculdade de Engenharia Química da Universidade Estadual de Campinas.

O trabalho desenvolvido é de caráter teórico e computacional e tem como objetivo o estudo e aplicação de técnicas de otimização juntamente com análise de convexidade para cálculo do equilíbrio sólido-líquido, utilizando um problema de Programação Não-linear, implementado no software GAMS em conjunto com o software Microsoft Excel, aplicado a misturas graxas binárias e ternárias, de origem natural, compostas por ácidos graxos, triacilgliceróis, ésteres de etila e metila, baseando-se na minimização da energia de Gibbs do sistema. A modelagem das fases foi desenvolvida com dois modelos termodinâmicos, em que a fase sólida foi descrita por uma modificação da equação de Slaughter e Doherty e a líquida, modelada por Margules 2-sufixos. Assim esse trabalho trata da utilização de novas aplicações para a fase líquida, com o Modelo de Margules – 2 sufixos, que passa e ser usado e desenvolvido de dois modos: o primeiro, nomeado Margules Assimétrico, em que os parâmetros de interação de Margules são diferentes, e o outro, chamado Margules Simétrico, neste, os parâmetros são considerados equivalentes; e ainda com aplicação do Modelo de Wilson. Para tal desenvolvimento, a proposta é utilizar dados experimentais de equilíbrio, disponíveis da literatura, em caráter comparativo; e fazer o próprio cálculo dos dados da curva de equilíbrio, com os respectivos ajustes dos parâmetros nos modelos utilizados. Os resultados obtidos são apresentados na forma de diagrama de fases e ajustes de parâmetros dos modelos envolvidos, calculados e comparados pela técnica de minimização dos quadrados dos erros, que por sua vez apresentam-se satisfatória proximidade dos dados experimentais. Os resultados ainda foram comparados entre si e puderam apresentar algumas características de comportamento, para algumas classes de compostos.

Palavras-chave: Equilíbrio sólido-líquido, misturas graxas, ajuste de parâmetros.

ABSTRACT

ROCHA, S. A., Solid-liquid equilibria calculation and parameters determination in thermodynamic models for binary and ternary mixtures of fatty acids, esters and triacylglycerols.
Campinas: UNICAMP, September 2011. 249 fls. Thesis Project (D.Sc. in Chemical Engineering)
Departamento of Chemical Engineering – School of Chemical Engineering, University of Campinas.

This work has theorical and computational character which objectives are the study and application of optimization technique with convexity analysis to calculate solid-liquid equilibrium. This problem was a non-linear program, that was implemented in software GAMS and software Microsoft Excel, which the case studies are binary and ternary mixtures of fatty acids, triglycerides, ethyl and methyl esters using the minimization of Gibbs energy free of the systems. The description of phases was done based in two thermodynamics models, the solid phase was characterized using a modified Slaughter and Doherty model and liquid phase with Margules 2 – suffixes. In this work the on liquid phase, the Margules model assume two forms: Margules Asymmetric, where the Margules parameters are different and Margules Symmetric, with equal Margules parameters, after was used Wilson Model too. Experimental data was used in comparative mode and new equilibrium dates was obtained and the parameters model also was discovery. The results are described in form of phase diagrams, where the equilibrium data and the parameters model was calculated based in the square errors, that are nearly of the experimental data. Comparing the results with each other, in some classes of compounds, there are some similar ways.

Key-words: Solid-liquid equilibrium, fatty mixtures, calculation of parameters.

SUMÁRIO

RESUMO	ix
ABSTRACT	x
Nomenclatura	xix
Capítulo 1 - INTRODUÇÃO	1
1.2 - Objetivos e divisão do trabalho	2
Capítulo 2 - REVISÃO DA LITERATURA	4
- 2.1 - Contextualização	4
2.2 - Equilíbrio de fases sólido-líquido	5
2.3 - Diagrama de Fases	9
2.3.1 - Binários	9
2.3.2 - Ternários	11
2.4 - Modelos termodinâmicos para a determinação do equilíbrio sólido-líquido	12
2.4.1 - UNIQUAC	13
2.4.2 - UNIFAC	15 16
2.4.4 - Margules	10
2.4.5 - Wilson	17
2.4.6 - Slaughter e Doherty	18
2.5 - Propriedades físicas e químicas dos ésteres, ácidos graxos, triacilgliceróis e sua	S
misturas	20
2.6 - Ácidos graxos, seus ésteres e triacilgliceróis	27
Capítulo 3 - MODELAGEM MATEMÀTICA	34
3.1 - Modelos para equações explícitas em T	35
3.2 - Modelo de Margules Assimétrico – Misturas Binárias	46
3.3 - Modelo de Margules Simétrico com temperatura constante – Misturas Binária	s 48
3.4 - Modelo de Wilson – Misturas Binárias	49
3.5 - Cálculo do ponto eutético e ponto peritético - Misturas Binárias	51
3.5.1 - Misturas somente com eutético	52
3.5.2 - Misturas com eutético e peritético	53
3.6 - Modelo de Margules Assimétrico – Mistura Ternária	54
3.7 - Modelo de Wilson – Mistura Ternária	56
3.8 - Análises dos significados físicos do coeficiente de atividade em cada modelo	57
Capítulo 4 - METODOLOGIA	60
4.1 - Misturas Binárias	60

4.2 - Misturas Ternárias	62
4.3 - Ajuste de Curvas	63
Capítulo 5 - RESULTADOS E DISCUSSÕES	64
5.1 - Misturas Binárias	65
5.1.1 - Sistemas formados por ésteres de etila	67
5.1.2 - Sistemas compostos por ésteres de metila	82
5.1.3 - Sistemas compostos por ácidos graxos saturados	85
5.1.4 - Sistemas compostos por ácidos graxos saturados e insaturados	92
5.1.5 - Sistemas compostos por ácidos graxos insaturados	95
5.1.6 - Sistemas compostos por ácidos graxos e triacilgliceróis	97
5.1.7 - Sistemas compostos por triacilgliceróis	. 101
5.2 - Misturas ternárias	. 103
5.2.1 - Sistemas compostos por ésteres de etila e metila	. 104
5.2.1.1 - Sistema 1 – Palmitato com Estearato com Miristato de etila	. 104
5.2.1.2 - Sistema 2 – Laurato com Palmitato com Miristato de etila	. 107
5.2.1.3 - Sistema 3 – Laurato com Caprato com Caprilato de etila	. 111
5.2.1.4 - Sistema 4 – Caprato com Miristato com Caprilato de etila	. 115
5.2.1.5 - Sistema 5 – Caprato com Palmitato com Caprilato de etila	. 119
5.2.1.6 - Sistema 6 – Caprato com Estearato com Caprilato de etila	. 124
5.2.1.7 - Sistema 7 – Estearato com Palmitato com Miristato de Metila	. 127
5.2.2 - Sistemas compostos por ácidos graxos saturados e insaturados	. 131
5.2.2.1 - Sistema 8 – Ácido Mirístico com Palmítico com Cáprico	. 131
5.2.2.2 - Sistema 9 – Ácido Cáprico com Esteárico com Oléico	. 135
5.3 - Cálculo da Média do Desvio de Temperatura	. 140
5.4 - Análise e Comparação dos resultados	. 141
5.4.1 - Análises dos parâmetros ajustados por grupos de mesmo componente 1, variando)
5.4.2 Apólicas das perômetros sinstedas per diference entre pómeros de serbanos per	. 142
5.4.2 - Analises dos parametros ajustados por diferença entre numeros de carbonos nas cadejas carbônicas	148
5 4 3 - Cálculo do coeficiente de atividade a diluição infinita	157
5.4.4 - Cálculo da dependência da temperatura dos parâmetros – a_{ii} de Wilson	. 162
	165
	. 105
Capítulo 7 - REFERENCIAS	. 167
Apêndice 1	. 175
Apêndice 2	. 184
Apêndice 3	. 186
Apêndice 4	. 188
Anexo 1	. 217

Lista de Figuras

Figura 2.1: Diagrama de fases com ponto eutético, sem formação de composto	. 10
Figura 2.2: Diagrama de fases com ponto peritético, com formação de composto sólido	. 11
Figura 2.3: Triângulo de Roozeboom para sistemas ternários	. 12
Figura 2.4: Prisma tridimensional para representação de diagramas de fases ternários	. 12
Figura 2.5: Valores comparativos das propriedades $T_f e \Delta H_f$ de ésteres de etila	. 22
Figura 2.6: Valores comparativos das propriedades $T_f e \Delta H_f de$ ésteres de metila	. 23
Figura 2.7: Valores comparativos das propriedades $T_f e \Delta H_f$ de ácidos graxos saturados	. 23
Figura 2.8: Valores comparativos das propriedades $T_f e \Delta H_f$ de ácidos graxos insaturados.	. 24
Figura 2.9: Valores comparativos das propriedades $T_f e \Delta H_f$ de triacilgliceróis	. 24
Figura 3.1: Representação das regiões do diagrama de fases	. 44
Figura 3.2: Aplicação das propriedades de temperatura para as regiões I (azul), II (vermelho)) e
III (amarelo).	. 46
Figura 3.3: Representação do cálculo do ponto eutético	. 53
Figura 3.4: Representação do cálculo do ponto eutético e peritético	. 54
Figura 3.5: Relação entre coeficiente de atividade e fração molar (para desvio positivo)	. 58
Figura 5.1: Diagramas de equilíbrio sólido-líquido para a mistura de laurato de etila (1) com	
miristato de etila (2)	. 67
Figura 5.2: Diagrama de equilíbrio sólido-líquido para a mistura de laurato de etila (1) com	
palmitato de etila (2)	. 68
Figura 5.3: Diagrama de equilíbrio sólido-líquido para a mistura de laurato de etila (1) com	
estearato de etila (2)	. 69
Figura 5.4: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de etila (1) com	ı
palmitato de etila (2)	. 71
Figura 5.5: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de etila (1) com	ı
estearato de etila (2)	. 72
Figura 5.6: Diagrama de equilíbrio sólido-líquido para a mistura de palmitato de etila (1) com	n
estearato de etila (2)	. 73
Figura 5.7: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) com	n
caprato de etila (2)	. 74
Figura 5.8: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) con	n
laurato de etila (2)	. 75
Figura 5.9: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) con	n
miristato de etila (2)	. 76
Figura 5.10: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) co	m
palmitato de etila (2)	. 77
Figura 5.11: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) co	m
estearato de etila (2)	. 78
Figura 5.12: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com	ı
laurato de etila (2)	. 79
Figura 5.13: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com	ı
miristato de etila (2)	. 80
Figura 5.14: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com	ı
palmitato de etila (2)	. 81

Figura 5.15: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com
estearato de etila (2)
Figura 5.16: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de metila (1)
com palmitato de metila (2)
Figura 5.17: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de metila (1)
com estearato de metila (2)
Figura 5.18: Diagrama de equilíbrio sólido-líquido para a mistura de palmitato de metila (1)
com estearato de metila (2)
Figura 5.19: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com
ácido láurico (2)
Figura 5.20: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com
ácido palmítico (2)
Figura 5.21: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com
ácido mirístico (2)
Figura 5.22: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com
ácido esteárico (2)
Figura 5.23: Diagrama de equilíbrio sólido-líquido para a mistura de ácido mirístico (1) com
ácido palmítico (2)
Figura 5.24: Diagrama de equilíbrio sólido-líquido para a mistura de ácido oléico (1) com ácido
cáprico (2)
Figura 5.25: Diagrama de equilíbrio sólido-líquido para a mistura de ácido oléico (1) com ácido
esteárico (?)
Figura 5 26: Diagrama de equilíbrio sólido-líquido para a mistura de ácido oléico (1) com ácido
pla(dico (2))
Figura 5 27: Diagrama de equilíbrio sólido-líquido para a mistura de ácido linoléico (1) com
ácido oléico (2)
Figura 5.28: Diagrama de equilíbrio sólido-líquido para a mistura de ácido linoléico (1) com
triestearing (2)
Figura 5.20: Diagrama de equilíbrio sólido líquido para a mistura de tricaprilina (1) com ácido
mirístico (2)
Figura 5.30: Diagrama de aquilíbrio sólido líquido para a mistura de ácido palmítico (1) com
triestearing (2)
Figura 5.31: Diagrama de aquilíbrio sólido líquido para a mistura de tripalmitina (1) com
triestegning (2)
Triestearina (2)
rigura 5.52: Diagrama de equilibrio solido-liquido para a mistura de trioleina (1) com
Eigen 5.22. Discourse de faces tem érie actacione de un dura vistas acres a duritate (1) com
Figura 5.55: Diagrama de fases ternario rotacionado em auas vistas para paimitato (1) com (2)
estearato (2) com miristato (3) de etila – Margules Assimetrico
Figura 5.34: Curvas de nivel para temperatura de 290/295/300/305K para palmitato (1) com
estearato (2) com miristato (3) de etila – Margules Assimétrico 105
Figura 5.35: Diagrama de fases ternario rotacionado em duas vistas para palmitato (1) com
estearato (2) com miristato (3) de etila – Wilson
Figura 5.50: Curvas de nivel para temperatura de 290/295/300/305K para palmitato (1) com
estearato (2) com miristato (3) de etila – Wilson
Figura 5.3/: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com
palmitato (2) com miristato (3) de etila – Margules Assimétrico 108

Figura 5.38: Curvas de nível para temperatura de 270/280/290/295K para laurato (1) com	
palmitato (2) com miristato (3) de etila – Margules Assimétrico	109
Figura 5.39: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com	
palmitato (2) com miristato (3) de etila – Wilson	110
Figura 5.40: Curvas de nível para temperatura de 270/280/290/295K para laurato (1) com	
palmitato (2) com miristato (3) de etila – Wilson	111
Figura 5.41: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com	
caprato (2) com caprilato (3) de etila – Margules Assimétrico	112
Figura 5.42: Curvas de nível para temperatura de 240/250/260/270K para laurato (1) com	
caprato (2) com caprilato (3) de etila – Margules Assimétrico	113
Figura 5.43: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com	
caprato (2) com caprilato (3) de etila – Wilson	114
Figura 5.44: Curvas de nível para temperatura de 240/250/260/270K para laurato (1) com	
caprato (2) com caprilato (3) de etila – Wilson	115
Figura 5.45: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com	
miristato (2) com caprilato (3) de etila – Margules Assimétrico	116
Figura 5.46: Curvas de nível para temperatura de 240/250/265/280K para caprato (1) com	
miristato (2) com caprilato (3) de etila – Margules Assimétrico	117
Figura 5.40: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com	
miristato (2) com caprilato (3) de etila – Wilson	118
Figura 5.46: Curvas de nível para temperatura de 240/250/265/280K para caprato (1) com	
miristato (2) com caprilato (3) de etila – Wilson	119
Figura 5.47: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com	
palmitato (2) com caprilato (3) de etila – Margules Assimétrico	120
Figura 5.48: Curvas de nível para temperatura de 255/275/290/295K para caprato (1) com	
palmitato (2) com caprilato (3) de etila – Margules Assimétrico	121
Figura 5.49: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com	
palmitato (2) com caprilato (3) de etila – Wilson	122
Figura 5.50: Curvas de nível para temperatura de 255/275/290/295K para caprato (1) com	
palmitato (2) com caprilato (3) de etila – Margules Assimétrico	123
Figura 5.51: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com	
estearato (2) com caprilato (3) de etila – Margules Assimétrico	124
Figura 5.52: Curvas de nível para temperatura de 250/270/290/305K para caprato (1) com	
estearato (2) com caprilato (3) de etila – Margules Assimétrico	125
Figura 5.53: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com	
estearato (2) com caprilato (3) de etila – Wilson	126
Figura 5.54: Curvas de nível para temperatura de 250/270/290/305K para caprato (1) com	
estearato (2) com caprilato (3) de etila – Wilson	127
Figura 5.55: Diagrama de fases ternário rotacionado em duas vistas para estearato (1) com	
palmitato (2) com miristato (3) de metila – Margules Assimétrico	128
Figura 5.56: Curvas de nível para temperatura de 290/295/300/305K para estearato (1) com	
palmitato (2) com miristato (3) de metila – Margules Assimétrico	129
Figura 5.57: Diagrama de fases ternário rotacionado em duas vistas para estearato (1) com	
palmitato (2) com miristato (3) de metila – Wilson	130
Figura 5.58: Curvas de nível para temperatura de 290/295/300/305K para estearato (1) com	
palmitato (2) com miristato (3) de metila – Wilson	131

Figura 5.59: Diagrama de fases ternário rotacionado em duas vistas para ácido mirístico (1)
com ácido plamítico (2) com ácido cáprico (3) – Margules Assimétrico
Figura 5.60: Curvas de nível para temperatura de 300/310/320/330K para ácido mirístico (1)
com ácido plamítico (2) com ácido cáprico (3) – Margules Assimétrico (1)
Figura 5 61: Diagrama de fases ternário rotacionado em duas vistas, para ácido mirístico (1)
com ácido plamítico (2) com ácido cáprico (3) – Wilson 134
Figura 5 62: Curvas de nível para temperatura de 300/310/320/330K para ácido mirístico (1)
com ácido plamítico (2) com ácido cáprico (3) – Wilson
Figura 5.63: Diagrama de fases ternário rotacionado em duas vistas para ácido cáprico (1) com
ácido esteárico (2) com ácido oléico (3) – Margules Assimétrico 136
Figura 5.64: Curvas de nível para temperatura de 290/305/320/335K para ácido cáprico (1)
com ácido esteárico (2) com ácido oléico (3) – Margules Assimétrico
Figura 5.65: Diagrama de fases ternário rotacionado em duas vistas para ácido cáprico (1) com
\acute{a} cido esteárico (2) com ácido oléico (3) – Wilson 138
Figura 5 66: Curvas de nível para temperatura de 290/305/320/335K para ácido cáprico (1)
com ácido esteárico (?) com ácido oléico (3) – Wilson 139
Figura 5 67: Comparativo entre parâmetros de Margules Assimétrico com a variação de número
de carbonos para misturas com laurato de etila
Figura 5.68: Comparativo entre parâmetros de Wilson com a variação de número de carbonos
nara misturas com laurato de etila
Figura 5 60: Comparativo entre parâmetros de Wilson com a variação de número de carbonos
rigura 5.09. Comparativo entre parametros de wilson com a variação de número de carbonos
Figure 5.70. Comparativo entre parâmetros de Wilson com a variação de rúmero de carbonos
rigura 5.70. Comparativo entre parametros de wilson com a variação de número de carbonos
para misturas com caprilaio de ella
Figura 5.71: Comparativo entre parametros de Margules Assimetrico com a variação de número
<i>Ei curbonos para misturas com caprato de etila</i>
Figura 5.72: Comparativo entre parametros de wilson com a variação de número de carbonos
para misturas com caprato de enta
Figura 5./5: Comparativo entre parametros de Margules Assimetrico com a variação de número
<i>de carbonos para misturas com acido caprico</i>
Figura 5./4: Comparativo entre parametros de Wilson com a variação de número de carbonos
para misturas com ácido cáprico
Figura 5.75: Comparativo entre parâmetros A_{12} e diferença de carbonos para ésteres de etila.
Figura 5.76: Comparativo entre parâmetros A_{21} e diferença de carbonos para ésteres de etila.
Figura 5.77: Comparativo entre parâmetros Λ_{21} e diferença de carbonos para ésteres de etila.
Figura 5.78: Comparativo entre parâmetros Λ_{21} e diferenca de carbonos para ésteres de etila.
151
Figure 5.70: Comparativo entre parâmetros Λ o Λ com diference de carbones para ésteres
Figura 5.79 Comparativo entre parametros $A_{12} \in A_{21}$ com alferença de carbonos para esteres
ae metila
Figura 5.80: Comparativo entre parâmetros Λ_{12} e Λ_{21} com diferença de carbonos para ésteres
<i>de metila</i> 153

Figura 5.81: Comparativo entre parâmetros A_{12} e A_{21} com diferença de carbonos para ácidos	
graxos saturados	4
Figura 5.82: Comparativo entre parâmetros Λ_{12} e Λ_{21} com diferença de carbonos para ácidos	
graxos saturados	4
Figura 5.83: Comparativo entre parâmetros A_{12} e A_{21} com diferença de carbonos para ácidos	
graxos e triacilgliceróis	6
Figura 5.84: Comparativo entre parâmetros Λ_{12} e Λ_{21} com diferença de carbonos para ácidos	
graxos e triacilgliceróis	6

Lista de Tabelas

Tabela 2.1: Diferenças entre as propriedades dos compostos utilizados: $T_f \ e \ \Delta H_f$, com suas	5
respectivas referências.	21
Tabela 2.2: Proriedades dos compostos utilizados: $T_f \in \Delta H_f$, com suas respectivas referênc	cias.
	26
Tabela 2.3: Comparação em ácidos graxos (% massa) nos diferentes óleos vegetais (VIEIRA	, et
al, 2005)	27
Tabela 2.4: Acidos graxos utilizados e suas respectivas estruturas químicas	28
Tabela 2.5: Triacilgliceróis utilizados e suas respectivas estruturas químicas	29
Tabela 2.6: Esteres utilizados e suas respectivas estruturas químicas	31
Tabela 2.7: Estudos de caso:sistemas binários e ternários	32
Tabela 5.1: Resultados comparativos	66
Tabela 5.2: Parâmetros obtidos para mistura de ácido cáprico com ácido láurico	87
Tabela 5.3: Parâmetros obtidos para mistura de ácido cáprico com ácido palmítico	88
Tabela 5.4: Parâmetros obtidos para mistura de ácido cáprico com ácido mirístico	89
Tabela 5.5: Parâmetros obtidos para mistura de ácido cáprico com ácido esteárico	90
Tabela 5.6: Parâmetros obtidos para mistura de ácido mirístico com ácido palmítico	92
Tabela 5.7: Parâmetros obtidos para mistura de ácido oléico com ácido cáprico	93
Tabela 5.8: Parâmetros obtidos para mistura de ácido oléico com ácido esteárico	94
Tabela 5.9: Parâmetros obtidos para mistura de ácido oléico com ácido elaídico	96
Tabela 5.10: Parâmetros obtidos para mistura de ácido linoléico com ácido oléico	97
Tabela 5.11: Parâmetros obtidos para mistura de ácido linoléico com triestearina	98
Tabela 5.12: Parâmetros obtidos para mistura de tricaprilina com ácido mirístico	99
Tabela 5.13: Parâmetros obtidos para mistura de ácido palmítico com triestearina	. 100
Tabela 5.14: Parâmetros obtidos para mistura de tripalmitina com triestearina	. 102
Tabela 5.15: Parâmetros obtidos para mistura de trioleína com tripalmitina	. 103
Tabela 5.16: Resultados obtidos para DMT	. 141
Tabela 5.17: Volumes molares para os componentes	. 159
Tabela 5.18: Valores para os coeficientes de atividade a diluição infinita para os modelos de	?
Margules (M), Wilson (W) e Florry-Huggins (FH)	. 160
Tabela 5.19: Valores obtidos para o parâmetro a _{ij} de Wilson	. 164

Nomenclatura

Letras Latin	as	
А	composto A	
$\mathbf{B}_{\mathbf{i}}$	variável auxiliar modelo	
A _{ij}	parâmetro de Margules	
В	composto B	
С	composto C	
С	átomos de carbono	
c _p	capacidade calorífica	
delta	parâmetro da equação representado por um numero bem pequeno	
e	ponto eutético	
f	Fugacidade	
f(x)	Função	
G	energia de Gibbs	
h	entalpia	
Н	átomo de hidrogênio	
h(x) e g(x)	restrições	
Κ	constante de equilíbrio; unidade de temperatura Kelvin	
L	mistura líquida	
n	número de mols do componente	
NC	número de componentes	
NF	número de fases	
0	átomo de oxigênio	
Р	pressão	
р	ponto peritético	
Р	produto sólido intermediário	
R	constante universal dos gases	
Т	temperatura	
u	multiplicador de Lagrange para restrições de desigualdade	
X	fração molar	
<i>x</i> *	vetor	

Letras gregas

α	fase sólida
β	fase sólida
Δ	variação
Е	número positivo pequeno constante
γ	coeficiente de atividade
γ^{∞}	coeficiente de atividade a diluição infinita
λ	multiplicador de Lagrange para restrições de igualdade
$\Lambda_{_{ij}}$	parâmetro de wilson
μ	potencial químico
v	coeficiente estequiométrico
σ	fase sólida

 ξ grau de avanço

Sobrescritos

ex	excesso
0	total
α L 1	fase líquida
βŚŚ	fase sólida
0	padrão
NF	número de fases

Subscritos

2	composto 2
1	composto 1
В	composto 2
Α	composto 1
p	produto de referência P
R	reação
k	identificador de fase
e	eutético
t	ponto triplo
f	ponto de fusão
i	fase
j	componente
NC	número de componentes

Siglas

CP	Cloud Point
DSC	Calorimetria exploratória diferencial
ESL	Equilíbrio sólido-líquido
GAMS	General Algebric Model System
KT	Kuhn-Tucker
MA	Margules Assimétrico
MS	Margules Simétrico
PNL	Programação Não-Linear
SQE	Soma dos quadrados dos erros
W	Wilson

Capítulo 1 - INTRODUÇÃO

O interesse pela investigação do equilíbrio sólido-líquido de misturas graxas é crescente em várias áreas. O comportamento das fases de misturas dessas cadeias carbônicas é de grande interesse industrial e científico. O estudo desse comportamento influencia vários processos indústrias, tais como: técnicas de purificação, separação, controle de precipitação, entre outros, e o previsão desses diversos processos, envolvendo o conhecimento do comportamento das fases, é aplicado em indústrias farmacêuticas, cosmética, alimentícia e, principalmente, petroquímica (RANGAIAH, 2001, MILHET *et al*, 2005, TUMAKAKA *et al*, 2007, COSTA et al, 2009ab).

No presente trabalho, os sistemas de interesse a serem utilizados são misturas binárias e ternárias de ácidos graxos e triacilgliceróis, constituintes básicos de óleos e gorduras; e esteres de etila e metila. Esses compostos têm destaque importante na elaboração de diversos produtos da indústria química (ROLEMBERG, 2002; SILVA *et al*, 2011 a). Assim, uma produção eficiente, baseada na boa utilização desses compostos graxos, requer um grande conhecimento de suas propriedades e seus comportamentos de fase, vista a necessidade nos processos industriais de separação. Por outro lado, principalmente da indústria alimentícia, o comportamento e descrição das fases e ocorrência de cristalizações de misturas envolvendo compostos graxos são capazes de influenciar na qualidade do produto acabado (COSTA *et al.*, 2009a).

Além das utilidades já citadas, os componentes de óleos e gorduras, atualmente, são matérias-primas para o biodiesel, pelo método da transesterificação, que consiste em um número de reações que utilizam catalisadores alcalinos, onde os triacilgliceróis são convertidos em ésteres graxos pela reação com o álcool (metanol ou etanol) produzindo glicerol como produto secundário (LOPES *et al*, 2007, SILVA *et al*, 2011a b). Para o processamento do biodiesel é necessário conhecer o ponto em que se inicia a cristalização durante o processo de resfriamento, conhecido como *cloud point (CP)*, que pode ser predito através dos dados de equilíbrio sólido-líquido (IMAHARA *et al*, 2006).

O comportamento das fases no equilíbrio sólido-líquido deve ser baseado no desenvolvimento de modelos termodinâmicos adequados, capazes de descrever características, para que seja possível prever fenômenos desse equilíbrio, como pontos eutético e peritético (quando presente), além de descrever os diagramas de fases (HUANG & CHEN, 2000; BOROS, 2005, MILHET *et al*, 2005).

Nesse contexto, esse trabalho busca por novas propostas de modelagens termodinâmicas capazes de descrever o comportamento da fase líquida e também o comportamento não ideal da fase sólida. Essa busca foi feita em um ambiente mais amplo, considerando possibilidades com abrangência para compostos de longas cadeias carbônicas, porém com o intuito de uma aplicabilidade simplificada desses modelos para misturas graxas, sendo então verificada a aplicação dos modelos de Margules, no formato Simétrico e Assimétrico, e Wilson.

Em uma nova caracterização, também se propõem a aplicação dos modelos desenvolvidos para misturas compostas por diferentes componentes da classe dos ésteres de etila e metila, que são bastante realistas do ponto de vista da aplicabilidade industrial, principalmente para a utilização desses cálculos no processo produtivo do biodiesel.

Esse trabalho ainda propõe o ajuste dos parâmetros para os modelos matemáticos estudados com a aplicação de diferentes modelos termodinâmicos.

1.2 - Objetivos e divisão do trabalho

Esse trabalho tem como objetivo a investigação de modelos termodinâmicos capazes de predizer o comportamento da fase líquida e principalmente, verificar a possibilidade de descrever o comportamento não ideal da fase sólida. Baseia-se em uma busca por algumas propostas de modelagem para o equilíbrio sólido-líquido, em misturas binárias e ternárias de compostos formados por cadeias carbônicas, com foco de aplicabilidade em misturas graxas.

A partir de um modelo termodinâmico baseado na aplicação do modelo de Margules 2sufixos para a fase líquida e uma modificação do modelo de SLAUGHTER e DOHERTY (1995) para a fase sólida (ROCHA, 2008) é que se fundamentam as equações matemáticas desenvolvidas neste trabalho que aplica os modelos termodinâmicos de Margules e Wilson, cuja obtenção de ajuste de parâmetros característicos a cada um deles também fazem parte dos objetivos, com base na metodologia de busca pelo equilíbrio a minimização da soma de quadrados de erros de temperatura, com base na minimização da energia de Gibbs.

Com a descoberta dos pontos de transição de fase, ainda se tem como objetivo descrever os diagramas de fases dessas misturas, com a obtenção da linha *liquidus*, para misturas binárias, visto que ela representa parte do diagrama de fases para esse tipo de msituras, e a formação de superfícies de equilíbrio, representantes do equilíbrio para msituras ternárias. Foram estudados e calculados diagramas de fases para misturas binárias e ternárias envolvendo ácidos graxos saturados, insaturados e triacilgliceróis, esses equilíbrios foram calculados utilizando essa nova técnica de ajuste de parâmetros. Também, como foco do trabalho, serão apresentados novos resultados de equilíbrio envolvendo misturas de ésteres de etila e metila com suas respectivas propriedades físicas necessárias para o cálculo do equilíbrio de fases. Essas descobertas, parte dos objetivos específicos, são de grande interesse científico e industrial visto que os valores de equilíbrio binários são de fácil obtenção, comparados aos obtidos experimentalmente, e os ternários, representam uma grande inovação, de caráter totalmente preditivo em misturas graxas.

Para alcançar esses objetivos e descrevê-los esse trabalho foi dividido em sete capítulos. O primeiro deles traz essa introdução ao conteúdo a ser desenvolvido no trabalho. O segundo capítulo descreve os fundamentos teóricos utilizados pelo desenvolvimento deste trabalho, com a descrição dos conceitos de equilíbrio de fases, seus diagramas, as propriedades físicas dos compostos utilizados e suas caracterizações químicas, compondo a revisão da literatura em sua contextualização. O terceiro capítulo descreve como os modelos foram desenvolvidos e obtidos para que os resultados pudessem ser calculados, em que se faz referência ao modelo desenvolvido por ROCHA (2008) e a partir dele, os novos desenvolvimentos para os modelos de Margules – 2 sufixos e Wilson. O quarto capítulo trata da metodologia utilizada neste trabalho. No quinto capítulo estão todos os resultados obtidos e suas respectivas discussões, com a descrição de todos diagramas de fases com seus ajustes de parâmetros e com todos os cálculos comparativos para demonstração da qualidade desses valores obtidos. O sexto capítulo traz as conclusões obtidas com esse trabalho. O sétimo mostra todas as referências que ajudaram a construir e desenvolver esses estudos.

Capítulo 2 - REVISÃO DA LITERATURA

Alguns conceitos teóricos são necessários para o desenvolvimento e compreensão deste trabalho, o intuito deste capítulo - revisão bibliográfica - é esclarecer e mostrar esses conceitos iniciais, tendo em vista a investigação já existente na literatura.

2.1 - Contextualização

A busca pela obtenção do equilíbrio de fases sólido-líquido de misturas graxas se apresenta como foco em muitos estudos e trabalho, vista a grande variadade de aplicabilidade, como a utilização de biodiesel, que se apresenta como fonte de alternativa de combustível renovável, não tóxico e biodegradável, dentre outras características que incentivam a utilização desse produto (NDIAYE *et al*, 2006, FREITAS *et al*, 2011), que mundialmente terá sua porcentagem de utilização aumentada (CANOIRA L., *et al*, 2010); e ainda em outros ramos industriais como farmaceutico, químico e alimentício (NDIAYE, *et al*, 2006, COSTA, *et al*, 2009ab e SILVA *et al*, 2011 a, CERIANI *et al* 2011). Neste cenário, é possível verificar a necessidade de aprimoramento nesses conceitos aplicados a esse tipo de misturas; tanto na descrição desses dados por métodos experimentais, como a partir de cálculos via modelos matemáticos.

Experimentalmente, esses dados de equilíbrio podem ser obtidos pela técnica de calorimetria exploratória diferencial (DSC) (ROLEMBERG, 2002; INOUE et al, 2004 a, b e c; COSTA, 2008, 2009 a e b); pela utilização de espectroscopia infravermelha com transformada de Fourier (FT-IR) (INOUE, et al, 2004 a, b e c) ou pela técnica Raman (FT-Raman) (COSTA, 2008, 2009 a, b e c); ou ainda por difração de raio-X, desenvolvidas pelos mesmos autores. Essas técnicas são caracterizadas por utilização de instrumentação de altos custos e grande dispêndio de materiais e tempo, comparadas as obtenções de dados de equilíbrio por aplicações de modelos termodinâmicos.

A outra forma de obtenção de valores para a descrição do equilíbrio de fases, pela utilização de modelos termodinâmicos, via modelagem matemática, quando aplicados a misturas graxas e outras cadeias carbônicas relacionadas, representam um eficiente método de determinação de equilíbrio. Dentre os modelos de maiores evidências na literatura, que se aplica desde algum tempo à estudos mais recentes, é possível citar o NRTL (Zhu *et al*, 2000, MAEDA

et al, 1999; COUTINHO, 1999, DEJOZ *et al*, 1998), como UNIQUAC (COSTA *et al*, 2007, COUTINHO et al, 2006, DOMANSKA *et al* APUD PENG, 2001, ZHU *et al*, 2000, COUTINHO, 1999), com menor incidência, o modelo UNIFAC (KHIMECHE, 2006), ou ainda equações de estado como Peng-Robinson, Souve-Redlich-Kwong (Zhu *et al*, 2000).

Para este trabalho, a proposta foi utilizar os modelo de Wilson (DOMANSKA *et al* APUD PENG, 2001, DEJOZ *et al*, 1998,) e Margules (ROCHA, 2008 e 2009, VILLAMANAN *et al*, 2006, DEJOZ *et al*, 1998, ROLEMBERG, 2002). Essa escolha se baseia na simplicidade das equações resultantes do desenvolvimento matemático para obtenção do equilíbrio com a apresentação de resultados igualmente relevantes, comparados aos outros modelos já citados. Para esse desenvolvimento, as equações resultam na determinação do quilíbrio sólido-líquido a partir de equações explicitas baseadas somente em temperatura e fração molar como variáveis, aplicadas à misturas graxas. Essa abordagem é baseada na obtenção do equilíbrio pela minimização da energia de Gibbs, na qual uma análise de convexcidade garante a obtenção do mínimo global para garantia do estado de equilíbrio.

Ainda, com o intuito de descrever o equilíbrio de fases em misturas ternárias contendo somente componentes graxos, identificados como ácidos graxos, triacilgliceróis, ésteres de etila e metila, a utilização dos modelos de Margueles e Wilson, desenvolvidas neste trabalho, tem caráter totalmente preditivo, e inédito, visto que determinações experimentais não existem na literatura, o que remete a uma maior relevância das propostas de desenvolvimento deste trabalho.

2.2 - Equilíbrio de fases sólido-líquido

Ao evidenciar o contato entre duas fases, é possível que as mesmas apresentem interações e transferência entre seus componentes, até que ambas atinjam condições de estabilidade. Quando esse estado é alcançado, pode-se dizer que as fases estão em equilíbrio (PRAUSNITZ *et al.*, 1986).

Para um sistema heterogêneo constituídos de *NF* fases e *NC* componentes, é necessário obedecer as seguintes condições para que o sistema seja considerado em equilíbrio de fase (PRAUSNITZ *et al.*, 1986):

$$T^{1} = T^{2} = \dots = T^{NF}$$

$$P^{1} = P^{2} = \dots = P^{NF}$$

$$\mu_{1}^{1} = \mu_{1}^{2} = \dots = \mu_{1}^{NF}$$

$$\mu_{2}^{1} = \mu_{2}^{2} = \dots = \mu_{2}^{NF}$$

$$\dots = \dots = \dots = \dots$$

$$\mu_{NC}^{1} = \mu_{NC}^{2} = \dots = \mu_{NC}^{NF}$$
(2.2.1)

em que T é a temperatura, P a pressão e μ o potencial químico.

Para um sistema com T e P constante, o equilíbrio é atingido quando a energia de *Gibbs* é mínima com relação ao número de mols dos compostos, o que ocorre quando $dG_{P,T} = 0$ e $d^2G > 0$ no ponto de equilíbrio, de tal forma que, para pontos nas vizinhanças da composição de equilíbrio, tem-se que o sistema prossegue de tal forma que:

$$(dG)_{T,P} \le 0 \tag{2.2.2}$$

Isso ainda não é garantia de equilíbrio estável, pois também é satisfeito em condições metaestáveis (mínimos locais). Dessa forma, busca-se o mínimo global da energia de *Gibbs* (O'CONNELL, 2005).

Aplicada na vizinhança dos pontos (com relação ao número de mols), a equação (2.2.2) é a mais útil das possíveis condições de equilíbrio. Essa equação indica que todos os processos irreversíveis, ocorrendo a T e P constantes, prosseguem em uma direção que causa a diminuição da energia de *Gibbs* do sistema. Assim, o estado de equilíbrio de um sistema fechado, considerando fronteiras diatérmicas e flexíveis em contato com reservatório térmico e de pressão, é aquele em que se encontra a menor energia de *Gibbs* total em relação a todas possíveis modificações, para T e P constantes (SMITH *et al.*, 2000).

A fugacidade se relaciona com o potencial químico através da equação (SMITH *et al.*, 2000):

$$\mu_{i} = \mu_{i}^{0}(T) + RT \ln\left(\frac{\hat{f}_{i}}{f_{i0}}\right)$$
(2.2.3)

6

em que $\mu_i^0(T)$ é o potencial químico do composto i em um estado padrão, tal que f_{i0} deve estar definido no mesmo estado. Dessa forma, no equilíbrio pode-se considerar:

$$\hat{f}_i^{\alpha} = \hat{f}_i^{\beta} \tag{2.2.4}$$

Para o equilíbrio sólido-líquido, α representa a fase sólida e β , a fase líquida.

Essa igualdade de equilíbrio também pode ser representada, mantendo T e P constantes, pela definição do coeficiente de atividade:

$$x_i^L \gamma_i^L f_i^L = x_i^S \gamma_i^S f_i^S$$
(2.2.5)

de tal forma que a equação (2.2.5) pode ser rearranjada como:

$$\frac{f_i^L}{f_i^S} = \frac{x_i^S \gamma_i^S}{x_i^L \gamma_i^L}$$
(2.2.6)

Em que x_i^L e x_i^s são, respectivamente, as frações molares da espécie i nas soluções líquida e sólida. A partir dessas equações, é possível obter todas as outras necessárias para descrever as características do equilíbrio sólido-líquido (SMITH *et al.*, 2000).

Dessa forma, o cálculo do equilíbrio termodinâmico corresponde à obtenção do mínimo global da energia de *Gibbs*, que em um sistema multifásico e multicomponente é formulado como a minimização da função de *Gibbs* (RAINGAIAH, 2001):

$$G = \sum_{i=1}^{NC} \sum_{j=1}^{NF} n_{ij} \mu_{ij}$$
(2.2.7)

onde n_{ij} é o número de mols do componente *i* presente na fase *j*, μ_{ij} é o potencial químico do componente *i* na fase *j*, *NC* é o número de componentes e *NF* é o número de fases.

Na minimização da equação (2.2.7), as seguintes restrições devem ser respeitadas:

(a) não negatividade do número de mols:

$$n_{ij} \ge 0, \quad i = 1, ..., NC; \quad j = 1, ..., NF$$
 (2.1.8)

(b) conservação de massa sem reações químicas:

$$\sum_{j=1}^{NF} n_{ij} = n_i , \qquad i = 1, \dots, NC$$
(2.1.9)

onde n_i é o número total de mols do componente *i*.

A razão entre duas fugacidades, no caso, sólida e líquida, pode ser calculada por um caminho termodinâmico, que passa pelo ponto triplo, e relaciona-se com a energia de *Gibbs*, resultando em (PRAUSNITZ *et al.*, 1986), essa é considerada a equação geral do equilíbrio e é citada em inúmeras referências que têm esse tema como abordagem:

$$\ln \frac{f_i^{l,\circ}}{f_i^{s,\circ}} = \frac{\Delta h_f}{R \cdot T_t} \cdot \left(\frac{T_t}{T} - 1\right) - \frac{\Delta c_p}{R} \cdot \left(\frac{T_t}{T} - 1\right) + \frac{\Delta c_p}{R} \cdot \ln \frac{T_t}{T}$$
(2.2.10)

em que as fugacidades são determinadas por propriedades termodinâmicas mensuráreis dos compostos, sendo Δh_f a entalpia molar de fusão do composto i, T_t a temperatura do ponto triplo do composto i, Δc_p a diferença entre a capacidade calorífica do composto *i* nas fases líquida e sólida, T a temperatura de operação, *R* a constante universal dos gases.

Normalmente são feitas duas simplificações na equação (2.2.10), a primeira é a utilização da temperatura de fusão ao invés da temperatura de ponto triplo, que para a maioria das substâncias apresenta uma pequena diferença, também a diferença entre as entalpias dessas duas temperaturas é desprezível. A segunda simplificação vem da diferença de importância entre os três termos apresentados do lado direito da igualdade, sendo que o primeiro deles é predominante entre os demais. Assim, na prática, é possível considerar somente os termos que contêm Δh_f , sendo que os outros podem ser desconsiderados. Essas simplificações acarretam somente erros desprezíveis.

Substituindo a equação (2.2.6) em (2.2.10) e assumindo as simplificações propostas acima:

$$\ln \frac{(x_i^S \gamma_i^S)}{(x_i^L \gamma_i^L)} = \frac{\Delta h_f}{R \cdot T_f} \cdot \left(\frac{T_f}{T} - 1\right)$$
(2.2.11)

Assim, para determinação do equilíbrio sólido-líquido é necessário que de uma mistura, se conheça as variáveis: entalpia de fusão, a temperatura de fusão, as composições na fase líquida e sólida e por fim, o γ_i , o coeficiente de atividade, é esse termo o responsável por representar a não idealidade das fases.

A partir do coeficiente de atividade é que serão determinados modelos termodinâmicos capazes de representar a fase sólida e também a fase líquida, foco desse trabalho.

2.3 - Diagrama de Fases

2.3.1 - Binários

Diagramas de fases binários são mapas do comportamento dos compostos do tipo temperatura ou pressão *versus* composição, que indicam as fases em equilíbrio. O equilíbrio é determinado a partir da influência da temperatura e composição na energia de *Gibbs* (G).

Alguns autores se interessam pelos estudos das propriedades, comportamento e diagramas de fases de ácidos graxos e seus derivados, compostos estes utilizados neste trabalho, de forma que em seus diagramas de fases é verificada a presença de pontos invariantes, como ponto eutético e em alguns casos, a formação de um composto sólido intermediário, instável na temperatura de fusão, caracterizado pelo ponto peritético (BAILEY, 1950; SATO *et al.*, 1999; SATO, 2001, IWAHASHI *et al.*, 2005, COSTA *et al.*, 2007ab e 2009, ROCHA e GUIRARDELLO, 2009)

Para o equilíbrio sólido-líquido propriamente dito, existem diagramas de fases característicos. Na Figura 1, um diagrama de fases é representado para sistemas onde não há formação de compostos na fase sólida, as curvas de equilíbrio e o ponto eutético (e) delimitam as transições de fases. O ponto eutético é definido, segundo SMITH *et al.* (2000), como um estado particular de equilíbrio no qual um líquido com composição x_e coexiste com os sólidos $\alpha \in \beta$, ambos saturados. Abaixo da temperatura T_e tem-se a presença dos dois sólidos miscíveis.

Figura 2.1: Diagrama de fases com ponto eutético, sem formação de composto.

A Figura 2 representa um diagrama de fases com formação de compostos sólidos, em que as curvas de equilíbrio, o ponto peritético (p) e o ponto eutético (e) delimitam as transições de fases. A reação peritética é isotérmica e reversível entre duas fases, líquida e sólida; que resulta em novas fases sólidas, no resfriamento de sistemas binários, ternários ou ainda de maior ordem. Para uma mistura binária, por exemplo: $L + \alpha \leftrightarrow \sigma$, na qual, o sentido da reação indica o resfriamento; o estado de equilíbrio ocorre ao longo da linha peritética, caracterizada pela temperatura peritética. A temperatura, composição e invariantes isobáricas do sistema definem o ponto peritético, que está situado entre as composições da fase L e α (GAMSJÄGER H., *et al*, IUPAC, 2008)

Figura 2.2: Diagrama de fases com ponto peritético, com formação de composto sólido

Ainda, segundo COSTA *et al.* (2007ab, 2009ab) os diagramas de fases, baseados em descobertas mais recentes, se mostram ainda mais complexos abaixo da linha *liquidus*, além dos conhecidos ponto eutético e peritético, podem apresentar ponto metatético, algumas regiões monofásicas ou bifásicas com misturas sólido-sólido e sólido-líquido.

2.3.2 - Ternários

Um sistema ternário, pela regra das fases, é descrito por quatro variáveis, sendo elas a temperatura, pressão e as composições de dois constituintes. Essa formatação sugere a representação em uma figura tridimensional, assim, usualmente um diagrama ternário tem sua base descrita em um triângulo eqüilátero (triângulo de Roozebom) onde cada composto está representado em um vértice, cada lado representa uma mistura binária entre os compostos e cada componente é mensurado ao longo de um dos lados deste triângulo pelas linhas paralelas adjacentes a cada lado (BAILEY, 1950, O'CONNELL, 2005), conforme mostra a Figura 3.

Figura 2.3: Triângulo de Roozeboom para sistemas ternários

Ao incluir a quarta variável, a temperatura é mensurada ao longo de um eixo perpendicular à composição triangular, onde a completa figura tridimensional, que forma o diagrama de fases ternário, é um prisma de base triangular, conforme mostra a Figura 4 (BAILEY,1950).

Figura 2.4: Prisma tridimensional para representação de diagramas de fases ternários

2.4 - Modelos termodinâmicos para a determinação do equilíbrio sólido-líquido

São vários os modelos termodinâmicos capazes representar com exatidão o comportamento de fases. Para as fases líquida e sólida, tratando-se de misturas de longas cadeias carbônicas foram encontradas na literatura algumas opções para o cálculo do coeficiente de

atividade, que então aplicados à equação 2.2.11, juntamente com os valores de entalpia e temperatura de fusão, possibilita o cálculo real do equilíbrio. Assim, os modelos termodinâmicos abaixo descritos são exemplos para o cálculo dos coeficientes de atividade. Esses coeficientes representam o desvio do comportamento das fases em relação ao comportamento ideal dos componentes de uma mistura, sendo que eles estão diretamente relacionados com a Energia de *Gibbs*.

2.4.1 - UNIQUAC

O coeficiente de atividade γ_i^s para a fase sólida pode ser descrito pelo novo modelo preditivo UNIQUAC, proposto inicialmente por COUTINHO *et al* (1999, 2005 e 2006) também utilizado por COSTA *et al* (2007) e posterior a eles, utilizado também por CHEN *et al* (2007). O modelo UNIQUAC pode ser escrito como:

$$\frac{g^{E}}{RT} = \sum_{i=1}^{n} x_{i} \ln\left(\frac{\Phi_{i}}{x_{i}}\right) + \frac{Z}{2} \sum_{i=1}^{n} q_{i} x_{i} \ln\frac{\theta_{i}}{\Phi_{i}} - \sum_{i=1}^{n} x_{i} q_{i} \ln\left[\sum_{j=1}^{n} \theta_{j} \exp\left(\frac{\lambda_{ij} - \lambda_{ii}}{q_{i} RT}\right)\right]$$
(2.4.1)

com

$$\Phi_i = \frac{x_i r_i}{\sum_j x_j r_j} \tag{2.4.2}$$

e

$$\theta_i = \frac{x_i q_i}{\sum_j x_j q_j} \tag{2.4.3}$$

Segundo COUTINHO et al (2005 e 2006) os parâmetros estruturais r e q são dados por:

$$r_{i} = \frac{r_{iorg}}{6,744} = 0.1C_{ni} + 0.0672$$

$$q_{i} = \frac{q_{iorg}}{5,40} = 0.1C_{ni} + 0.1141$$
(2.4.4)

Segundo COSTA *et al* (2007) e COUTINHO *et al* (2005 e 2006), a energia de interação entre duas moléculas idênticas podem ser estimadas pela entalpia de sublimação do cristal da molécula pura, como descrito na equação:

$$\lambda_{ii} = -\frac{2}{Z} \left(\Delta_{sub} H_i - RT \right) \tag{2.4.5}$$

os autores assumiram Z, número de coordenação, igual a 10. A entalpia de sublimação é dada pela soma entre a entalpia de vaporização e de fusão.

A energia de interação entre moléculas diferentes é dada por:

$$\lambda_{ij} = \lambda_{ji} = \lambda_{jj} \left(1 - \alpha_{ij} \right) \tag{2.4.6}$$

O parâmetro α_{ij} apresenta pouco impacto na linha "liquidus" do diagrama de fases, podendo pouco mais importância.

Praticamente a mesma abordagem foi proposta por ESMAEILZADEH *et al* (2006), com modificações na equação 2.4.1, considerada pelos autores como versão original, dada por:

$$\ln \gamma_i^S = \ln \left(\frac{\Phi_i}{x_i^S}\right) + 1 - \frac{\Phi_i}{x_i^S} - \frac{Z}{2} q_i \left(\ln \left(\frac{\Phi_i}{\theta_i}\right) + 1 - \frac{\Phi_i}{\theta_i}\right) + q_i - q_i \ln \left(\sum_{j=1}^n \theta_j \tau_{ji}\right) - q_i \sum_{j=1}^n \frac{\theta_j \tau_{ij}}{\sum_{k=1}^m \theta_k \tau_{kj}}$$

$$(2.4.7)$$

sendo que Φ_i e θ_i também são dados pelas equações 2.4.2 e 2.4.3 e τ_{ii} é dado por:

$$\tau_{ji} = \exp\left(-\frac{\lambda_{ji} - \lambda_{ii}}{q_i RT}\right)$$
(2.4.8)

Segundo ESMAEILZADEH *et al* (2006) as correlações para os valores de r e q as cadeias de n-alcanos estudadas são:

$$r_{i} = 0.01148C_{ni} + 0.00996$$

$$q_{i} = 0.0185C_{ni} + 0.0211$$
(2.4.9)

Os valores para λ foram os mesmos utilizados por COSTA *et al* (2007) e COUTINHO *et al* (2005 e 2006).

2.4.2 - UNIFAC

A forma para o coeficiente de atividade pelo modelo UNIFAC (UNIQUAC Functionalgroup Activity Coefficients) é dado pela expressão:

$$\ln \gamma_i = \ln \gamma_i^{\ C} + \ln \gamma_i^{\ R} \tag{2.4.10}$$

Essa equação é formada por duas partes aditivas, um termo combinatorial, γ_i^c , para levar em consideração o tamanho e as diferenças de forma das moléculas e um termo residual, γ_i^R , que considera as interações moleculares (SMITH *et al*, 2000).

A equação 2.4.10 foi aplicada nos estudos de GMEHLING *et al* (1978), HE *et al* (2003) e ESMAEILZADEH *et al* (2006).

O termo combinatorial pode ser escrito como:

$$\ln \gamma_i^c = \ln \frac{\Phi_i}{x_i} + \frac{z}{2} q_i \tag{2.4.11}$$

$$\ln \gamma_i^c = \ln \frac{\Phi_i}{x_i} + \frac{z}{2} q_i \ln \frac{\theta_i}{\phi_i} + l_i - \frac{\phi_i}{x_i} \sum_j x_j l_j$$
(2.4.12)

Onde

$$l_i = \frac{z}{2} (r_i - q_i) - (r_i - 1)$$
(2.4.13)

2.4.3 - NRTL

O modelo *NRTL* (*Non-Random-Two-Liquidis*), utilizado somente para a fase líquida do equilíbrio, pode ser aplicado em líquidos parcialmente miscíveis ou totalmente miscíveis. A equação pela energia de *Gibbs* em excesso é dada por (PRAUNSNITZ *et al*, 1986):

$$\ln \gamma_{i} = x_{j}^{2} \left[\tau_{ij} \left(\frac{G_{ji}}{x_{i} + x_{j} G_{ji}} \right)^{2} + \frac{\tau_{ij} G_{ij}}{\left(x_{j} + x_{i} G_{ij} \right)^{2}} \right]$$
(2.4.14)

onde

$$\tau_{ij} = \frac{\Delta g_{ij}}{RT} \tag{2.4.15}$$

e

$$G_{ij} = \exp(-\alpha_{ij}\tau_{ij}) \tag{2.4.16}$$

onde g_{ij} é o parâmetro de energia característico de interação entre i e j, e α_{ij} está relacionado à não aleatoriedade da mistura , quando esse valor é zero temos um sistema totalmente aleatório, e o modelo se reduz ao modelo de Margules 2-sufixos. O valor normalmente utilizado é de 0,3, já que este parâmetro sempre se encontra no intervalo de 0,2 a 0,47.
2.4.4 - Margules

Neste trabalho optou-se pelo modelo de *Margules* 2-sufixos para a representação da fase líquida, que para uma mistura multicomponente, apresenta a seguinte equação:

$$RT \ln \gamma_k = \frac{1}{2} \sum_{i=1}^{NC} \sum_{j=1}^{NC} (A_{ik} + A_{jk} - A_{ij}) x_i x_j$$
(2.4.17)

Em que A_{ik} , A_{jk} , A_{ij} representam o parâmetro de interação de Margules entre as fases e x as frações molares.

2.4.5 - Wilson

O modelo de *Wilson* é capaz de representar a energia em excesso da mistura para um sistema binário qualquer com n componentes e n(n-1) parâmetros ajustáveis. A equação proposta é (WILSON, 1964):

$$\frac{G^{E}}{RT} = -\sum_{i} x_{i} \ln \left(1 - \sum_{j} x_{j} \Lambda_{j/i} \right)$$
(2.4.18)

onde x_i é a fração molar do componente i e $\Lambda_{i/j}$ são parâmetros ajustáveis ($\Lambda_{ii} = 0$, $\Lambda_{j/i} \neq \Lambda_{i/j}$). De maneira generalizada, para misturas multicomponentes, o coeficiente de atividade, para Wilson, pode ser escrito:

$$\ln \gamma_i = 1 - \ln \sum_j x_j \Lambda_{ij} - \sum_k \frac{x_k \Lambda_{ki}}{\sum_j x_j \Lambda_{kj}}$$
(2.4.19)

Os coeficientes de atividade (γ), para misturas binárias, são calculados por (SMITH *et al*, 2000):

$$\ln \gamma_1 = -\ln(x_1 + x_2 \Lambda_{12}) + x_2 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} - \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}} \right)$$
(2.4.20)

$$\ln \gamma_2 = -\ln(x_2 + x_1 \Lambda_{21}) + x_1 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} - \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}} \right)$$
(2.4.21)

2.4.6 - Slaughter e Doherty

O comportamento das fases de sistemas sólido-líquido, experimentalmente, pode ser visto de maneira mais simplificada, com a presença do ponto eutético, até de forma mais elaborada com a presença do ponto peritético, com formação de novos compostos que podem ser descritos como produtos de uma reação química, conforme já descrito no subitem 2.3. Misturas de componentes que apresentam ponto peritético normalmente não são bem representadas por modelos tradicionais, que conseguem representar com facilidade o comportamento de outras fases. Buscando a representação desse ponto, no diagrama de equilíbrio, SLAUGHTER & DOHERTY (1995), baseando-se em trabalhos de equilíbrio líquido-vapor (UNG & DOHERTY, 1995; BARBOSA & DOHERTY, 1988 apud SLAUGHTER e DOHERTY, 1995) estendem esse método para o equilíbrio sólido-líquido. A constante de equilíbrio, que representa essa suposta reação, é dada por:

$$K = \prod_{i=1}^{NC} \left(x_i^s \gamma_i^s \right)^{\nu_i}$$
(2.4.22)

Em que v_i é o coeficiente estequiométrico para o componente i. A constante de equilíbrio está relacionada com a energia de *Gibbs* da reação de formação por:

$$K = \exp\left(-\frac{\Delta G^0}{RT}\right) \tag{2.4.23}$$

Se for considerado que a fases sólidas são imiscíveis, consequentemente, $x_i^s \gamma_i^s \equiv 1$, a constante de equilíbrio K assume o valor 1, o que seria inconsistente, com $-\frac{\Delta G^0}{RT}$ igualando-se a 0. Para que essa inconsistência fosse contornada, os autores apresentam uma simples equação para o coeficiente de atividade da fase sólida (γ_i^s), na forma:

$$\gamma_i^s = \frac{1}{x_i^s + \varepsilon} \tag{2.4.24}$$

sendo, ε é um número positivo pequeno e constante (0,0001).

Ainda, segundo ROCHA (2008), o modelo para descrever a fase sólida considera uma modificação do modelo proposto por SLAUGHTER & DOHERTY (1995), que obedeça a equação de *Gibbs-Duhem*, e que apresente as seguintes propriedades:

$$\gamma_i^s \cdot x_i^s = 1 \qquad \text{para} \qquad 0 < x_i^s \le 1 \tag{2.4.25}$$

$$\gamma_i^s \cdot x_i^s = 0$$
 para $x_i^s = 0$ (2.4.26)

$$\lim_{x_i^s \to 0} \left(x_i^s \cdot \ln\left(\gamma_i^s \cdot x_i^s\right) \right) = 0$$
(2.4.27)

* * *

Neste trabalho optou-se por aplicar os modelos de Margules 2-sufixos e o modelo Wilson para a descrição da fases líquida, juntamente com o modelo modificado de SLAUGTER & DORERTY (ROCHA, 2008 e 2009) para descrição da fase sólisa. Essa escolha remete á modelos matemáticos capazes de descrever o estado de equilíbrio sólido-líquido para as misturas de interesse com precisão. Também apresentam maior facilidade e simplicidade de aplicação na obtenção de resultados comparados aos outros modelos tradicionalmente utilizados ultimamente (NRTL, UNIQUAC, UNIFAC).

2.5 - Propriedades físicas e químicas dos ésteres, ácidos graxos, triacilgliceróis e suas misturas

Conforme as equações descritas no item 2.1, para o cálculo do equilíbrio sólido líquido faz-se necessário, primeiramente, o conhecimento de algumas propriedades dos componentes puros. Essas propriedades são: entalpia de fusão (ΔH_f) e temperatura de fusão (T_f) .

Se esses valores não forem conhecidos com precisão, a qualidade do ajuste dos parâmetros ficará comprometida. Durante o levantamento desses dados, observou-se uma grande discrepância entre as diferentes fontes consultadas, o que motivou um levantamento mais aprofundado das referências para se certificar da confiabilidade desses valores.

Posterior a identificação de valores para essas propriedades é que será possível o cálculo do coeficiente de atividade das fases líquida e sólida, que serão obtidos pela aplicação de modelos termodinâmicos, já conhecidos e citados no item 2.4, e juntamente com um método de solução baseado em um complexo conjunto de equações não lineares, é que será possível o cálculo do equilíbrio sólido líquido (WESDORP, 1990). Assim, o conhecimento de valores para as propriedades ΔH_f e T_f são indispensáveis e determinantes para o cálculo do equilíbrio.

Devido a essa necessidade, foi feita uma revisão na literatura para a obtenção de ΔH_f e T_f dos compostos presentes nas misturas a serem estudadas nesse trabalho. Os resultados de uma busca inicial estão disponíveis na Tabela 2.1.

Ocorre uma grande dificuldade na obtenção de dados de ΔH_f confiáveis, visto que para alguns casos, foram obtidos valores, com alguma, ou mesmo com bastante discrepância em diferentes referências, como mostra a Tabela 2.1.

respectivas referencias.						
Compostos	T_f (K)	ΔH_f (cal/mol)	Referências			
Palmitato de metila	302,20	3577,92	KING E GARNER (1936) apud NIST			
	304,00	13279,80	CHICKOS E NICHOLS (2001)			
	302,71	14340,10	BOMMEL (2004)			
	310,93	4596,08	KING E GARNER (1936) apud NIST			
Estavrata da matila	312,00	15381,70	CHICKOS E NICHOLS (2001)			
Estearato de metha	309,20	14870,00	KING E GARNER (1936)			
	311,84	15848,40	BOMMEL (2004)			
Laurata da atila	271,45	2225,62	KING E GARNER (1934) apud NIST			
Lauraio de cilla	-	11170,00	KING E GARNER (1934)			
Delmiteto de etile	296,35	3599,43	KING E GARNER (1934) apud NIST			
r amintato de etila	300,00	14310,00	KING E GARNER (1934)			
Á aida aláica	286,50	9460,00	BIOLOGY BUL. apud ROLEMBERG (2002)			
Actuo oterco	289,20	12404,40	SATO et al (1990)			
Ácido esteárico	342,75	14651,05	SATO et al (1990)			
Actuo esteanco	342,65	16359,94	SINGLENTON E WARD (1950) apud NIST			
	304,40	6689,77	GARNER E RANDALL (1924) apud NIST			
Ácido cáprico	304,80	6835,56	INOUE <i>et al</i> (2004)			
	304,20	6690,00	GARNER E RANDALL (1924)			
Ácido mirístico	326,70	10740,00	GARNER E RANDALL (1924)			
Actuo IIIIIIsuco	317,00	8671,13	STOHMANN E WILSING (1885) apud NIST			
Ácido palmítico	336,00	13130,98	PARCOR (1967) apud NIST			
	335,73	13119,02	WARD e SINGLENTON (1952) apud NIST			
	335,30	12980,00	GARNER E RANDALL (1924)			
Ácido caprílico	289,50	5109,94	GARNER E RANDALL (1924) apud NIST			
	289,10	4971,32	INOUE <i>et al</i> (2004)			

Tabela 2.1: Diferenças entre as propriedades dos compostos utilizados: $T_f \in \Delta H_f$, com suas respectivas referências

Mesmo sendo apresentados dados obtidos de diferentes autores, os valores para T_f e ΔH_f , em sua maioria, também foram obtidos de NIST - Livro Eletronico de Química, disponível em www.nist.gov.br.

Com tantas diferenciações, neste trabalho, optou-se por consolidar uma base de dados composta por dados experimentais para a temperatura de fusão do componente puro e uma classificação de dados da literatura para a entalpia de fusão do componente puro. Para obter essa classificação, foram realizadas comparações entre os valores de T_f e ΔH_f para que fosse possível descobrir algum tipo de padronização ou comportamento, utilizando a idéia e método por contribuição de grupos (CERIANI *et al*, 2007 e 2011). Assim, foram contruidos gráficos que relacionam o número de carbonos nas moléculas de uma mesma classe de compostos carbônicos

com as T_f e ΔH_f correspondentes a cada composto, esses gráficos estão disponíveis as Figuras 2.1, 2.2, 2.3, 2.4, 2.5, cujos os valores encontrados se apresentam adequados para os valores dessas propriedades. Nas figuras os compostos estão agrupados em ordem crescente de números carbono e divididos em seus diferentes grupos: ésteres de etila, ésteres de metila, ácidos graxos saturados, ácidos graxos insaturados e triacilgliceróis, respectivamente.

Figura 2.5: Valores comparativos das propriedades $T_f e \Delta H_f$ de ésteres de etila.

Figura 2.6: Valores comparativos das propriedades $T_f e \Delta H_f de$ ésteres de metila.

Figura 2.7: Valores comparativos das propriedades $T_f e \Delta H_f$ de ácidos graxos saturados.

Figura 2.8: Valores comparativos das propriedades $T_f e \Delta H_f$ de ácidos graxos insaturados.

Então, com base nas buscas literárias (BOMMEL, 2004; INOUE *et al*, 2004, SATO *et al*, 1990, CHICKOS E NICHOLS, 2001, KING E GARNER, 1934 e 1936) e nos gráficos, a Tabela 2.2 traz os resultados escolhidos para formar a base de dados utilizada neste trabalho. Para os compostos caprilato de etila, estearato de etila, a entalpia de fusão não foi encontrada na literatura. Entretanto, pelo comportamento aproximadamente linear da relação entre ΔH_f e os números de carbonos, esses compostos tiveram seus valores de entalpia de fusão calculados por uma extrapolação de equações lineares baseadas em compostos de cadeias carbônicas semelhantes. Para o miristato de metila esta também opção escolhida. A Equação 2.5.1 representa os cálculos de ΔH_f , em cal/mol, para os ésteres de etila e a Equação 2.5.2, para os ésteres de metila, obtidas pelos gráficos disponíveis nas Figuras 2.5 e 2.6.

- Para ésteres de etila

$$\Delta H_{f} = 760,25 \times n^{\circ} carbonos + 572,5 \tag{2.5.1}$$

em que $R^2 = 0,9991$

- Para ésteres de metila

$$\Delta H_{f} = 1050,9 \times n^{\circ} carbonos - 4586,3 \tag{2.5.2}$$

Para a equação (2.4.2), o R^2 não representa um valor relevante, pois essa equação de reta foi baseada em apenas dois pontos.

As temperaturas de fusão, como já citadas, são valores experimentais, visto que para os ésteres de etila e de metila esses valores foram coletados por BOROS *et al* (2009) e COSTA *et al* 2010a,b) e para os ácidos graxos saturados, insaturados e triacilgliceróis, esses valores foram obtidos por ROLEMBERG (2002).

Compostos	T_f (K)	ΔH_f (cal/mol)	Referências
caprilato de etila (C10)	228,19	8175,00	CALCULADO
caprato de etila (C12)	253,09	9745,00	KING E GARNER (1936)
laurato de etila (C14)	272,51	11170,00	KING E GARNER (1934)
miristato de etila (C16)	287,27	12680,00	KING E GARNER (1936)
palmitato de etila (C18)	297,74	14310,00	KING E GARNER (1934)
estearato de etila (C20)	305,84	15777,50	CALCULADO
miristato de metila (C15)	291,87	11177,20	CALCULADO
palmitato de metila (C17)	303,30	13279,80	CHICKOS E NICHOLS (2001)
estearato de metila (C19)	312,67	15381,70	CHICKOS E NICHOLS (2001)
égido cáprico (C10)	202.08	6600.00	DOMALSKI E HEARING (1996) apud
acido capileo (C10)	505,90	0090,00	ROLEMBERG (2002)
ácido láurico (C12)	316.65	8760.00	DOMALSKI E HEARING (1996) apud
acido faurico (C12)	510,05	0700,00	ROLEMBERG (2002)
ácido mirístico (C14)	327.07	10800.00	DOMALSKI E HEARING (1996) apud
acido initistico (C14)	527,07	10000,00	ROLEMBERG (2002)
ácido palmítico (C16)	335.02	13100.00	DOMALSKI E HEARING (1996) apud
acido panintico (C10)	555,02	15100,00	ROLEMBERG (2002)
ácido esteárico (C18)	342.25	14630.00	DOMALSKI E HEARING (1996) apud
	572,25	14050,00	ROLEMBERG (2002)
ácido oléico (C18)	286,59	9460,00	ROLEMBERG (2002
ácido linoléico (C18)	267,83	11400,00	JALAL et al apud ROLEMBERG (2002)
ácido elaídico (C18)	316 97	9320.00	BIOLOGY BULLETIN apud
	510,57	<i>)32</i> 0,00	ROLEMBERG (2002)
tricaprilina (C27)	282,75	22690,00	WESDORP (1990)
tripalmitina (C51)	338,79	42870,00	DOMALSKI E HEARING (1996)
triestearina (C57)	345 27	48580.00	BIOLOGY BULLETIN apud
	575,27	+0500,00	ROLEMBERG (2002)
trioleina (C57)	278,43	23885,00	WESDORP (1990)

Tabela 2.2: Proriedades dos compostos utilizados: $T_f \in \Delta H_f$, com suas respectivas referências.

2.6 - Ácidos graxos, seus ésteres e triacilgliceróis

A maioria dos constituintes de óleos e gorduras são os ácidos graxos e triacilgliceróis. Ácidos graxos são constituídos por cadeias retilíneas de grupos alquilas contendo de 6 a 24 átomos de carbono, como: Mirístico (C_{14}) Palmítico (C_{16}) esteárico (C_{18}) que são exemplos típicos de ácidos graxos saturados, os tipicamente insaturados contêm em média 18 átomos de carbono e duplas ligações (WON, 1993).

As diferenças entre os óleos e gorduras são conferidas devido às diferentes composições de ácidos graxos entre eles, desse modo é que se mostra interessante o estudo de misturas entre esses compostos graxos (VIEIRA, *et al*, 2005). A Tabela 2.3 descreve suas porcentagens mássicas de alguns componente graxos para alguns óleos vegetais conhecidos, que também foram estudados como sistemas deste trabalho, com misturas binárias e/ou ternárias.

Ácido Graxo	Soja	Algodão	Milho	Oliva
Ácido Mirístico	0,1	1,0	0,0	0,1
Ácido Palmítico	10,5	25,0	11,5	16,9
Ácido Esteárico	3,2	2,8	2,2	3,9
Ácido Oléico	22,3	17,1	26,6	63
Ácido Linoléico	54,5	52,7	58,7	14,8

Tabela 2.3: Comparação em ácidos graxos (% massa) nos diferentes óleos vegetais (VIEIRA, et

A Tabela 2.4 apresenta a composição e as estruturas químicas dos compostos em estudo neste trabalho.

Nome do composto	Fórmula molecular	Estrutura química
Ácidos graxos saturados		
Ácido Cáprico	$C_{10}H_{20}O_2$	°
Ácido Láurico	$C_{12}H_{24}O_2$	° John State
Ácido Mirístico	$C_{14}H_{28}O_2$	CH CH
Ácido Palmítico	$C_{16}H_{32}O_2$	° Gri
Ácido esteárico	$C_{18}H_{36}O_2$	° Di
Ácidos graxos insaturado	DS	
Ácido Oléico	$C_{18}H_{34}O_2$	
Ácido Elaídico	$C_{18}H_{34}O_2$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ácido Linoléico	$C_{18}H_{32}O_{2}$	γ

Tabela 2.4: Ácidos graxos utilizados e suas respectivas estruturas químicas

Os triacilgliceróis são o produto da esterificação de glicerol juntamente com três moléculas de ácidos graxos, podendo estas, serem idênticas ou não. A Tabela 2.5 apresenta a composição e as estruturas químicas dos compostos em estudo neste trabalho.

Nome do composto	Fórmula molecular	Estrutura química
Tricaprilina	$C_{27}H_{50}O_{6}$	
Tripalmitina	$C_{51}H_{98}O_6$	
Triestearina	$C_{57}H_{110}O_6$	
Trioleína	$C_{57}H_{104}O_6$	

Tabela 2.5: Triacilgliceróis utilizados e suas respectivas estruturas químicas

Esses compostos, quando puros, podem ser cristalizados de três diferentes formas e em três temperaturas diferentes: a forma menos estável α -cristalina (cadeia com agrupamento hexagonal); a β '-modificada, considerada metaestável (ortogonal) e a com maior estabilidade, β -modificada (triclínica). O polimorfismo dos triacilgliceróis é o que torna os estudos de transições de fase bastante complexos. Temperaturas de fusão ou de solidificação de óleos e gorduras são normalmente reportadas sem a correta identificação da formação do estado sólido (WON, 1993).

Os ésteres, classe de compostos também utilizada no desenvolvimento e aplicações desse trabalho, são os maiores constituintes do biodiesel obtido pela transesterificação de alguns óleos vegetais com etanol, ainda, são foco de interesse e motivação para estudos mais detalhados, visto que suas propriedades físico químicas ainda são escassas na literatura, e esse maior detalhamento apresenta grande aplicação no desenvolvimento de processos de separação envolvendo esses compostos, como o caso dos biocombustiveis (SILVA *et al.*, 2011). Na Tabela 2.6 estão disponíveis os ésteres de etila e metila utilizados bem como suas estruturas químicas.

Nome do composto	Fórmula molecular	Estrutura química				
Ésteres etílicos						
Caprilato de Etila	$C_{10}H_{20}O_2$					
Caprato de Etila	$C_{12}H_{24}O_2$					
Laurato de Etila	$C_{14}H_{28}O_2$					
Miristato de Etila	$C_{16}H_{32}O_2$					
Palmitato de Etila	$C_{18}H_{36}O_2$					
Estearato de Etila	$C_{20}H_{40}O_2$					
Ésteres metílicos						
Miristato de Metila	$C_{15}H_{30}O_2$					
Palmitato de Metila	$C_{17}H_{34}O_2$					
Estearato de Metila	$C_{19}H_{38}O_2$					

Tabela 2.6: Ésteres utilizados e suas respectivas estruturas químicas

Os compostos apresentados nas Tabelas 2.4, 2.5 e 2.6, agregados em sistemas binários e ternários, são os constituintes dos estudos de caso deste trabalho (Tabela 2.7):

Sistema	Componentes da Mistura
Binários	
1	Laurato / Miristato de etila
2	Laurato/ Palmitato de etila
3	Laurato / Estearato de etila
4	Miristato / Palmitato de etila
5	Miristato / Estearato de etila
6	Palmitato / Estearato de etila
7	Caprilato / Caprato de etila
8	Caprilato / Laurato de etila
9	Caprilato / Miristato de etila
10	Caprilato / Palmitato de etila
11	Caprilato / Estearato de etila
12	Caprato / Laurato de etila
13	Caprato / Miristato de etila
14	Caprato / Palmitato de etila
15	Caprato / Estearato de etila
16	Miristato / Palmitato de metila
17	Miristato / Estearato de metila
18	Palmitato / Estearato de metila
19	Ácido cáprico / láurico
20	Ácido cáprico / palmítico
21	Ácido cáprico / mirístico
22	Ácido mirístico / palmítico
23	Ácido cáprico / esteárico
24	Ácido oléico / cáprico
25	Acido oléico / esteárico
26	Acido oléico / elaídico
27	Acido linoléico / oléico
28	Acido linoléico / Triestearina
29	Tricaprilina / Acido mirístico
30	Acido palmítico / Triestearina
31	Tripalmitina / Triestearina
32	Trioleína / Tripalmitina
Ternários	
1	Palmitato / Miristato / Estearato de etila
2	Laurato / Miristato / Palmitato de etila
3	Caprilato / Caprato / Laurato de etila
4	Caprilato / Caprato / Miristato de etila
5	Caprilato / Caprato / Palmitato de etila
6	Caprilato / Caprato / Estearato de etila
7	Miristato / Palmitato / Estearato de metila
8	Acido cáprico / mirístico / palmítico
9	Acido oléico / cáprico / esteárico

Tabela 2.7: Estudos de caso:sistemas binários e ternários

Esta base de 32 sistemas binários e 9 sistemas ternários foi sujeita às aplicações dos modelos propostos neste, em que terão seus diagramas de fases definidos juntamente com o ajuste de parâmetros. Os dados experimentais utilizados e suas respectivas referências estão disponíveis no Anexo 1.

Capítulo 3 - MODELAGEM MATEMÀTICA

Como proposta inicial, a modelagem matemática do presente trabalho foi dividida em, basicamente, três etapas, não que estejam estritamente separadas, porém foram desenvolvidas em três momentos diferentes.

Primeiramente, a proposta foi fazer o ajuste de parâmetros do modelo desenvolvido em ROCHA (2008), cuja abordagem para o cálculo do equilíbrio sólido-líquido binário utiliza os modelos de Margules para descrição da fase líquida, e uma modificação ao modelo proposto por SLAUGHTER e DOHERTY (1995) para a fase sólida, que faz uso do conceito de limite para o cálculo do coeficiente de atividade. Em ROCHA (2008), os parâmetros de Margules (A₁₂) e variações da energia de Gibbs de reação (ΔG_R^0) não foram calculados para cada mistura binária estudada, esses valores foram utilizados de resultados de busca literária (ROLEMBERG, 2002).

A proposta para essa primeira etapa do trabalho foi o ajuste desses parâmetros de Margules juntamente com a obtenção dos dados de equilíbrio binários, baseados em comparações com valores obtidos experimentalmente (ROLEMBERG, 2002, BOROS *et al*, 2009; COSTA *et al* 2010a,b), aplicados ao modelo desenvolvido em ROCHA (2008), porém com duas diferentes abordagens: uma delas considerando o modelo de Margules dois sufixos em sua forma assimétrica, com $A_{12} \neq A_{21}$; e uma segunda consideração com o mesmo Modelo de Margules dois sufixos, mas em sua forma simétrica, com $A_{12} = A_{21}$.

Em um segundo momento, propõe-se o desenvolvimento de um modelo matemático diferente, em que se pretende utilizar outra abordagem termodinâmica para o cálculo do coeficiente de atividade, com a aplicação do modelo de Wilson, descrito no subitem 2.4.5, de forma a se obter uma aplicação conveniente e robusta para os cálculos dos diagramas de equilíbrio binário.

A utilização desse novo modelo, também se baseia nas equações explícitas de temperatura obtidas por ROCHA (2008, 2009), porém agora com a utilização de Wilson para descrição da fase líquida e a mesma modificação de Slaughter e Doherty (1995) para a fase sólida, com o equilíbrio determinado pelo ajuste de parâmetros necessários para esse modelo ($\Lambda_{12}, \Lambda_{21}$). Assim, a estrutura e todos os conceitos utilizados para o desenvolvimento das equações explícitas em T permanecem as mesmas nessa nova abordagem, com o diferencial de que os coeficientes de atividade para fase líquida serão os de Wilson, e não mais os de Margules.

Por fim, foram gerados e aplicados, a partir dos modelos generalizados de Margules e Wilson para misturas multicomponentes, os modelos ternários para Margules Assimétrico e Wilson, baseados nos mesmos conceitos utilizados para misturas binárias, partindo dos mesmos princícios descritos por ROCHA (2008,2009). Esses modelos ternários possibilitam o cálculo do equilíbrio sólido-líquido de maneira totalmente preditiva para misturas graxas, visto que inesistem dados experimentais na literatura.

3.1 - Modelos para equações explícitas em T

Segundo ROCHA (2008, 2009), para o cálculo do equilíbrio de fases sólido líquido, aplicando as condições de Kuhn-Tucker (KT) e com uma análise rigorosa de convexidade do modelo, é possível descrever o equilíbrio em 3 regiões (detalhamento descritivo - Apêndice 1). A formulação geral considerada aqui faz utilização do modelo de Margules para a fase líquida e o modelo com reação química para a fase sólida. O equilíbrio é determinado pela minimização de G em relação a n_i^k , para T e P fixos, dada pela equação (3.1.1) e (3.1.2), satisfazendo as restrições dadas por (3.1.3) - (3.1.6)

$$G = \sum_{i=1}^{NC} n_i^0 \cdot \mu_i^{s, \circ} - n_p^o \cdot \Delta G_R^0 + n_p^s \cdot \Delta G_R^0 + R \cdot T \cdot \sum_{i=1}^{NC} \left[n_i^l \cdot \left(B_i + \ln n_i^l - \ln \sum_{j=1}^{NC} n_j^l \right) \right] + \frac{\sum_{i$$

.

$$B_{i} = \frac{\Delta h_{f}}{R \cdot T_{t}} \cdot \left(\frac{T_{t}}{T} - 1\right) - \frac{\Delta c_{p}}{R} \cdot \left(\frac{T_{t}}{T} - 1\right) + \frac{\Delta c_{p}}{R} \cdot \ln \frac{T_{t}}{T}$$
(3.1.2)

$$n_i^s + n_i^l = n_i^o + v_i \cdot \left(n_p^s - n_p^o\right) \qquad \qquad i \neq p \qquad (3.1.3)$$

$$n_p^l = 0 \tag{3.1.4}$$

$$n_i^l \ge 0 \tag{3.1.5}$$

$$n_i^s \ge 0 \tag{3.1.6}$$

Para misturas binárias de componentes 1 e 2 (com composição inicial n_1^0 e n_2^0 , respectivamente), nas quais podem ser formadas o composto intermediário P, composto este existente somente na fase sólida (com $n_p^0 = 0$); o modelo termodinâmico, descrito em sua forma geral, é dada pela equação (3.1.7):

$$G = \left(n_{1}^{0} \cdot \mu_{1}^{s,\circ} + n_{2}^{\circ} \cdot \mu_{2}^{s,\circ}\right) - n_{p}^{0} \cdot \Delta G_{R}^{\circ} + n_{p}^{s} \cdot \Delta G_{R}^{\circ} + R \cdot T \cdot \left[n_{1}^{l} \cdot \left(B_{1} + \ln n_{1}^{l} - \ln \left(n_{1}^{l} + n_{2}^{l}\right)\right) + n_{2}^{l} \cdot \left(B_{2} + \ln n_{2}^{l} - \ln \left(n_{1}^{l} + n_{2}^{l}\right)\right)\right] + \frac{A_{12} \cdot n_{1}^{l} \cdot n_{2}^{l}}{\left(n_{1}^{l} + n_{2}^{l}\right)}$$

$$(3.1.7)$$

com :
$$B_2 = \frac{\Delta h_{f2}}{R \cdot T_{f2}} \cdot \left(\frac{T_{f2}}{T} - 1\right)$$
 e $B_1 = \frac{\Delta h_{f1}}{R \cdot T_{f1}} \cdot \left(\frac{T_{f1}}{T} - 1\right)$.

sujeito as condições:

$$n_1^s + n_1^l - V_1 \cdot n_p^s = n_1^0 \tag{3.1.8}$$

$$n_2^s + n_2^l - \nu_2 \cdot n_p^s = n_2^0 \tag{3.1.9}$$

$$-n_1^l \le 0$$
 (3.1.10)

$$-n_2^l \le 0$$
 (3.1.11)

$$-n_1^s \le 0 \tag{3.1.12}$$

$$-n_2^s \le 0$$
 (3.1.13)

$$-n_p^s \le 0 \tag{3.1.14}$$

Da equação (3.1.7), considerando a minimizaçãode G, aplicada suas restrições (3.1.8 – 3.1.14), é que serão obtidas as expressãoes explícitas em T para cada região.

As condições de Kuhn-Tucker são dadas por (EDGAR et al., 2001; BAZARRA et al, 1993):

-Condições estacionárias:

$$R \cdot T \cdot \left[B_1 + \ln n_1^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_2^l}{n_1^l + n_2^l}\right)^2 + \omega_1 - u_1 = 0$$
(3.1.15)

$$R \cdot T \cdot \left[B_2 + \ln n_2^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_1^l}{n_1^l + n_2^l}\right)^2 + \omega_2 - u_2 = 0$$
(3.1.16)

$$\omega_1 - u_3 = 0 \tag{3.1.17}$$

$$\omega_2 - u_4 = 0 \tag{3.1.18}$$

$$\Delta G_R^{\circ} - \mathbf{v}_1 \cdot \boldsymbol{\omega}_1 - \mathbf{v}_2 \cdot \boldsymbol{\omega}_2 - \boldsymbol{u}_5 = 0 \tag{3.1.19}$$

- Restrições originais:

$$n_1^s + n_1^l - V_1 \cdot n_p^s = n_1^0 \tag{3.1.20}$$

$$n_2^s + n_2^l - \nu_2 \cdot n_p^s = n_2^0 \tag{3.1.21}$$

$$-n_1^l \le 0 \tag{3.1.22}$$

$$-n_2^l \le 0$$
 (3.1.23)

$$-n_1^s \le 0$$
 (3.1.24)

$$-n_2^s \le 0$$
 (3.1.25)

$$-n_p^s \le 0 \tag{3.1.26}$$

- Condições de complementaridade:

$$u_1 \cdot n_1^l = 0 \tag{3.1.27}$$

$$u_2 \cdot n_2^l = 0 \tag{3.1.28}$$

$$u_3 \cdot n_1^s = 0 \tag{3.1.29}$$

$$u_4 \cdot n_2^s = 0 \tag{3.1.30}$$

$$u_5 \cdot n_p^s = 0 \tag{3.1.32}$$

- Restrições dos multiplicadores de Lagrange:

$$u_1 \ge 0 \tag{3.1.33}$$

$$u_2 \ge 0 \tag{3.1.34}$$

$$(3.1.35)$$

$$u_4 \ge 0 \tag{3.1.36}$$

$$u_5 \ge 0 \tag{3.1.37}$$

em que ω_1 , ω_2 , u_1 , u_2 , u_3 , u_4 , e u_5 são multiplicadores de Lagrange associados às restrições: (3.1.20), (3.1.21), (3.1.22), (3.1.23), (3.1.24), (3.1.25) e (3.1.26), respectivamente.

Para o equilíbrio sólido-líquido, essas condições admitem três possíveis regiões:

Região I –
$$n_1^l > 0$$
 $n_2^l > 0$ $n_2^s > 0$ Restrições ativas: $n_1^s = 0$ \Rightarrow $u_3 \ge 0$ (3.1.38) $n_p^s = 0$ \Rightarrow $u_5 \ge 0$ (3.1.39)

Restrições inativas:
$$n_1^l > 0 \implies u_1 = 0$$
 (3.1.40)

$$n_2^l > 0 \qquad \Rightarrow \qquad u_2 = 0 \tag{3.1.41}$$

$$n_2^s > 0 \qquad \Rightarrow \qquad u_4 = 0 \tag{3.1.42}$$

Como conseqüência das condições (3.1.38) – (3.1.42), as condições de Kunh-Tucker conduzem aos seguintes resultados:

$$R \cdot T \cdot \left[B_1 + \ln n_1^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_2^l}{n_1^l + n_2^l}\right)^2 + \omega_1 = 0$$
(3.1.43)

$$R \cdot T \cdot \left[B_2 + \ln n_2^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_1^l}{n_1^l + n_2^l}\right)^2 + \omega_2 = 0$$
(3.1.44)

$$\omega_1 = u_3 \ge 0 \tag{3.1.45}$$

$$\omega_2 = 0 \tag{3.1.46}$$

$$u_5 = \Delta G_R^\circ - v_1 \cdot \omega_1 \ge 0 \tag{3.1.47}$$

$$n_1^l = n_1^0 \tag{3.1.48}$$

$$n_2^s + n_2^l = n_2^0 \tag{3.1.49}$$

Definindo as frações molares para a fase líquida:

$$x_1 = \frac{n_1^l}{n_1^l + n_2^l} \tag{3.1.50}$$

$$x_2 = \frac{n_2^l}{n_1^l + n_2^l} \tag{3.1.51}$$

as restrições podem ser rearranjadas para:

$$\omega_1 = -R \cdot T \cdot [B_1 + \ln x_1] - A_{12} \cdot (1 - x_1)^2$$
(3.1.52)

$$R \cdot T \cdot [B_2 + \ln(1 - x_1)] + A_{12} \cdot x_1^2 = 0$$
(3.1.53)

$$u_3 = \omega_1 \ge 0 \tag{3.1.54}$$

$$u_5 = \Delta G_R^\circ - \nu_1 \cdot \omega_1 \ge 0 \tag{3.1.55}$$

$$n_1^l = n_1^0 \tag{3.1.56}$$

$$n_2^l = \frac{(1-x_1)}{x_1} \cdot n_1^0 \tag{3.1.57}$$

$$n_2^s = n_2^0 - n_2^l \ge 0 \tag{3.1.58}$$

A equação (3.1.53) pode ser usada para encontrar a equação explícita para $T \ge x_1$ para a região I, se a seguinte aproximação for considerada:

$$B_{2} = \frac{\Delta h_{f2}}{R \cdot T_{f2}} \cdot \left(\frac{T_{f2}}{T} - 1\right)$$
(3.1.59)

Assim, equação resultante para a região I é dada por:

$$T_{I} = \frac{\Delta h_{f2} + A_{12} \cdot x_{1}^{2}}{\frac{\Delta h_{f2}}{T_{f2}} - R \cdot \ln(1 - x_{1})}$$
(3.1.60)

Esta equação é valida para pontos (x_1 , T) que não violem a restrição (3.1.54) ($u_3 \ge 0$) ou a restrição (3.1.55) ($u_5 \ge 0$):

$$\omega_1 \ge 0 \tag{3.1.61}$$

$$\boldsymbol{\omega}_{1} \geq \frac{1}{\boldsymbol{\nu}_{1}} \cdot \Delta \boldsymbol{G}_{R}^{\circ} \qquad (\boldsymbol{\nu}_{1} < 0) \tag{3.1.62}$$

Então, a região I é restrita por:

$$-R \cdot T \cdot [B_1 + \ln x_1] - A_{12} \cdot (1 - x_1)^2 \ge \max\left\{0, \frac{1}{v_1} \cdot \Delta G_R^\circ\right\}$$
(3.1.63)

Região II –	$n_1^l > 0$	$n_{2}^{l} > 0$	1	$u_1^s > 0$	
Restrições ativas:	$n_2^s =$	0 =	\Rightarrow ι	$u_4 \ge 0$	(3.1.64)
	$n_p^s =$	0 =	\Rightarrow ι	$u_5 \ge 0$	(3.1.65)
Pastriaãos instivos:	$n^l > 0$	<u> </u>	u = 0		(3 1 66)

Restrições inativas: $n_1^l > 0 \implies u_1 = 0$ $n_2^l > 0 \implies u_2 = 0$ (3.1.66) (2, 1, (5))

$$u_2' > 0 \qquad \Rightarrow \qquad u_2 = 0 \tag{3.1.65}$$

$$n_1^s > 0 \qquad \Rightarrow \qquad u_3 = 0 \tag{3.1.67}$$

Como consequência das condições (3.1.64) - (3.1.67), as condições de Kunh-Tucker conduzem aos seguintes resultados:

$$R \cdot T \cdot \left[B_1 + \ln n_1^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_2^l}{n_1^l + n_2^l}\right)^2 + \omega_1 = 0$$
(3.1.68)

$$R \cdot T \cdot \left[B_2 + \ln n_2^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_1^l}{n_1^l + n_2^l}\right)^2 + \omega_2 = 0$$
(3.1.69)

$$\omega_1 = 0 \tag{3.1.70}$$

$$\omega_2 = u_4 \ge 0 \tag{3.1.71}$$

$$u_5 = \Delta G_R^\circ - v_2 \cdot \omega_2 \ge 0 \tag{3.1.72}$$

$$n_1^s + n_1^l = n_1^0 \tag{3.1.73}$$

$$n_2^l = n_2^0 \tag{3.1.74}$$

Utilizando as frações molares da fase líquida, as restrições podem ser reescritas como:

$$\omega_2 = -R \cdot T \cdot [B_2 + \ln(1 - x_1)] - A_{12} \cdot x_1^2$$
(3.1.75)

$$R \cdot T \cdot [B_1 + \ln x_1] + A_{12} \cdot (1 - x_1)^2 = 0$$
(3.1.76)

$$u_4 = \omega_2 \ge 0 \tag{3.1.77}$$

$$u_5 = \Delta G_R^{\circ} - v_2 \cdot \omega_2 \ge 0 \tag{3.1.78}$$

$$n_2^l = n_2^0 \tag{3.1.79}$$

$$n_1^l = \frac{x_1}{(1-x_1)} \cdot n_2^0 \tag{3.1.80}$$

$$n_1^s = n_1^0 - n_1^l \ge 0 \tag{3.1.81}$$

A equação (3.1.76) pode ser usada para encontrar a equação explícita para $T \ge x_1$ para a região II, se a seguinte aproximação for considerada:

$$B_1 = \frac{\Delta h_{f1}}{R \cdot T_{f1}} \cdot \left(\frac{T_{f1}}{T} - 1\right)$$
(3.1.82)

Resultando na equação que descreve a região II:

$$T_{II} = \frac{\Delta h_{f1} + A_{12} \cdot (1 - x_1)^2}{\frac{\Delta h_{f1}}{T_{f1}} - R \cdot \ln x_1}$$
(3.1.83)

Esta equação é válida para pontos (x_1, T) que não violem a restrição (3.1.77) $(u_4 \ge 0)$ ou a restrição (3.1.78) $(u_5 \ge 0)$:

$$\omega_2 \ge 0 \tag{3.1.84}$$

$$\omega_2 \ge \frac{1}{\nu_2} \cdot \Delta G_R^\circ \qquad (\nu_2 < 0) \tag{3.1.85}$$

Então, a região II é restrita por:

$$-R \cdot T \cdot [B_{2} + \ln(1 - x_{1})] - A_{12} \cdot x_{1}^{2} \ge \max\left\{0, \frac{1}{\nu_{2}} \cdot \Delta G_{R}^{\circ}\right\}$$
(3.1.86)

Região III – $n_1^l > 0$ $n_2^l > 0$ $n_p^s > 0$ Restrições ativas: $n_1^s = 0 \implies u_3 \ge 0$ (3.1.87)

$$n_2^s = 0 \qquad \Rightarrow \qquad u_4 \ge 0 \tag{3.1.88}$$

Restrições inativas:
$$n_1^l > 0 \qquad \Rightarrow \qquad u_1 = 0$$
 (3.1.89)

$$n_2^l > 0 \qquad \implies \qquad u_2 = 0 \tag{3.1.90}$$

$$n_P^s > 0 \qquad \Rightarrow \qquad u_5 = 0 \tag{3.1.91}$$

Como conseqüência das condições (3.1.87) – (3.1.91), as condições de Kunh-Tucker conduzem aos seguintes resultados:

$$R \cdot T \cdot \left[B_1 + \ln n_1^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_2^l}{n_1^l + n_2^l}\right)^2 + \omega_1 = 0$$
(3.1.92)

$$R \cdot T \cdot \left[B_2 + \ln n_2^l - \ln \left(n_1^l + n_2^l\right)\right] + A_{12} \cdot \left(\frac{n_1^l}{n_1^l + n_2^l}\right)^2 + \omega_2 = 0$$
(3.1.93)

$$\omega_1 = u_3 \ge 0 \tag{3.1.94}$$

$$\omega_2 = u_4 \ge 0 \tag{3.1.95}$$

$$\Delta G_R^{\circ} - v_1 \cdot \omega_1 - v_2 \cdot \omega_2 = 0 \tag{3.1.96}$$

$$n_1^l - V_1 \cdot n_p^s = n_1^0 \tag{3.1.97}$$

$$n_2^l - \mathbf{v}_2 \cdot n_p^s = n_2^0 \tag{3.1.98}$$

Utilizando as frações molares da fase líquida, as restrições podem ser reescritas como:

$$\omega_1 = -R \cdot T \cdot [B_1 + \ln x_1] - A_{12} \cdot (1 - x_1)^2 \ge 0$$
(3.1.99)

$$\omega_2 = -R \cdot T \cdot [B_2 + \ln(1 - x_1)] - A_{12} \cdot x_1^2 \ge 0$$
(3.1.100)

$$u_3 = \omega_1 \ge 0 \tag{3.1.101}$$

$$u_4 = \omega_2 \ge 0 \tag{3.1.102}$$

 $v_1 \cdot \left[R \cdot T \cdot \left[B_1 + \ln x_1 \right] + A_{12} \cdot \left(1 - x_1 \right)^2 \right] + v_2 \cdot \left[R \cdot T \cdot \left[B_2 + \ln(1 - x_1) \right] + A_{12} \cdot x_1^2 \right] + \Delta G_R^\circ = 0$ (3.1.103)

$$n_1^l = \frac{\left(n_1^0 \cdot v_2 - n_2^0 \cdot v_1\right) \cdot x_1}{\left(v_1 + v_2\right) \cdot x_1 - v_1} \ge 0$$
(3.1.104)

$$n_{2}^{l} = \frac{\left(n_{1}^{0} \cdot v_{2} - n_{2}^{0} \cdot v_{1}\right) \cdot \left(1 - x_{1}\right)}{\left(v_{1} + v_{2}\right) \cdot x_{1} - v_{1}} \ge 0$$
(3.1.105)

$$n_{p}^{s} = \frac{n_{1}^{0} - (n_{1}^{0} + n_{2}^{0}) \cdot x_{1}}{(\nu_{1} + \nu_{2}) \cdot x_{1} - \nu_{1}} \ge 0$$
(3.1.106)

A equação (3.1.103) pode ser usada para encontrar a equação explícita para $T \ge x_1$ para a região III, se as aproximações dadas pelas equações (3.1.59) e (3.1.82) forem consideradas:

$$T_{III} = \frac{\nu_1 \cdot \Delta h_{f1} + \nu_2 \cdot \Delta h_{f2} + \nu_1 \cdot A_{12} \cdot (1 - x_1)^2 + \nu_2 \cdot A_{12} \cdot x_1^2 + \Delta G_R^\circ}{\nu_1 \cdot \frac{\Delta h_{f1}}{T_{f1}} + \nu_2 \cdot \frac{\Delta h_{f2}}{T_{f2}} - \nu_1 \cdot R \cdot \ln x_1 - \nu_2 \cdot R \cdot \ln(1 - x_1)}$$
(3.1.107)

Esta equação é valida para pontos (x_1, T) que não violem a restrição (3.1.101) $(u_3 \ge 0)$ ou a restrição (3.1.102) $(u_4 \ge 0)$. Além destas, também existe a restrição (3.1.96), então, quando $\omega_1 = 0, \ \omega_2 = \Delta G_R^{\circ} / v_2$, e quando $\omega_2 = 0, \ \omega_1 = \Delta G_R^{\circ} / v_1$.

Assim, a região III é restrita por:

$$0 \le -R \cdot T \cdot [B_1 + \ln x_1] - A_{12} \cdot (1 - x_1)^2 \le \max\left\{0, \frac{1}{\nu_1} \cdot \Delta G_R^\circ\right\}$$
(3.1.108)

$$0 \le -R \cdot T \cdot [B_2 + \ln(1 - x_1)] - A_{12} \cdot x_1^2 \le \max\left\{0, \frac{1}{\nu_2} \cdot \Delta G_R^\circ\right\}$$
(3.1.109)

observe que se $\Delta G_R^{\circ} \ge 0$, a região III não existe.

Com os dados de temperatura de fusão (T_f) , entalpia de fusão (ΔH_f) com os parâmetros de Margules (A_{ij}) , a variação da energia de Gibbs da reação (ΔG_R^0) e a constante universal dos gases (R = 1,9872cal/molK) a partir da composição de mistura facilmente se obtém a temperatura de equilíbrio. Assim, com os modelos apresentados referentes as respectivas regiões, foram desenvolvidas as equações para o ajuste dos parâmetros, descritas nos subitens a seguir.

O diagrama de fases descrito nas três regiões (ROCHA, 2008 e 2009), representado pela Figura 3.1, tem a primeira região, descrita pela linha *liquidus*, com início na fração molar do componente A igual a zero ($x_A = 0$), ou seja, na temperatura de fusão do componente B puro ($T_{f,B}$), até a ocorrência de um fenômeno peculiar ao equilíbrio sólido-líquido, o ponto peritético (p), para misturas com essa característica, ou do próprio ponto eutético (e). A segunda região representa o extremo oposto à região 1, tem início na fração molar máxima do componente A ($x_A = 1$), ou seja, na temperatura de fusão do mesmo ($T_{f,A}$), e segue com a diminuição de fração molar até ocorrer o fenômeno termodinâmico denominado ponto eutético (e). Já a região 3 tem sua existência garantida somente com a presença do ponto peritético, quando este existe em uma mistura. A região 3 então descreve a linha *liquidus* do ponto peritético (p) até o ponto eutético (e), é a região existente entre a 1 e 2. A Figura 3.1, mostra em um diagrama de fases as divisões dessas regiões.

Figura 3.1: Representação das regiões do diagrama de fases

Vale ressaltar que essas equações utilizam os parâmetros de Margules em sua forma mais simples, no formato Simétrico binário (A_{12}), como cálculo do coeficiente de atividade; mas que posteriormente serão substituídas pelos parâmetros do próprio modelo de Margules, porém na

forma Assimétrica binária (A_{12}, A_{21}) e ternária $(A_{12}, A_{21}, A_{13}, A_{31}, A_{23}, A_{32})$; e também pelos parâmetros de Wilson binários $(\Lambda_{12}, \Lambda_{21})$ e ternários $(\Lambda_{12}, \Lambda_{21}, \Lambda_{13}, \Lambda_{31}, \Lambda_{23}, \Lambda_{32})$.

Para todos os modelos desenvolvidos, as seguintes propriedades são observadas:

- região I:

$$T(x_1 = 1) = 0 \tag{3.1.110}$$

- região II:

$$T(x_1 = 0) = 0 \tag{3.1.111}$$

- região III:

100

$$T(x_1 = 0) = 0 \tag{3.1.112}$$

$$T(x_1 = 1) = 0 \tag{3.1.113}$$

$$\frac{dT}{dx_1} = 0$$
 em $x_1 = x_{1C}$ (3.1.114)

$$x_{1C} = \frac{V_1}{V_1 + V_2} \tag{3.1.115}$$

Em que v_i representa o coeficiente estequiométrico dos componentes envolvidos na misturar e x_{1C} a fração molar de ocorrência de formação do composto sólido intermediário.

Graficamente, essas propriedades podem ser visualizadas na Figura 3.2. Esses perfis correspondem ao comportamento da linha *liquidus* representada pelas equações de temperatura sem restrições às referidas regiões.

Figura 3.2: Aplicação das propriedades de temperatura para as regiões I (azul), II (vermelho) e III (amarelo).

Com a aplicação dessas equações, cada temperatura de equilíbrio é calculada pela a equação comparativa:

$$T = \max\{T_{I}, T_{II}, T_{III}\}$$
(3.1.116)

para cada composição x₁, x₂.

3.2 - Modelo de Margules Assimétrico – Misturas Binárias

Com base no modelo de Margules, já citado no subitem 2.4.4, utilizando-se do mesmo na forma dada conforme a equação (3.2.1):

$$\underline{G}_{ex}^{l} = R \cdot T \cdot \sum_{i=1}^{NC} x_{i}^{l} \cdot \ln \gamma_{i}^{l} = x_{1}^{l} \cdot x_{2}^{l} \cdot \left(A_{21} \cdot x_{1}^{l} + A_{12} \cdot x_{2}^{l}\right)$$
(3.2.1)

Os coeficientes de atividade são descritos por:

$$R \cdot T \cdot \ln \gamma_1 = [A_{12} + 2 \cdot (A_{21} - A_{12}) \cdot x_1] \cdot x_2^2$$
(3.2.2)

46

$$R \cdot T \cdot \ln \gamma_2 = [A_{21} + 2 \cdot (A_{12} - A_{21}) \cdot x_2] \cdot x_1^2$$
(3.2.3)

Equações

As equações para as regiões da curva de equilíbrio sólido-líquido são dadas por: - região I:

$$T = \frac{\Delta h_{f2} + [A_{21} + 2 \cdot (A_{12} - A_{21}) \cdot (1 - x_1)] \cdot x_1^2}{\frac{\Delta h_{f2}}{T_{f2}} - R \cdot \ln(1 - x_1)}$$
(3.2.4)

- região II:

$$T = \frac{\Delta h_{f1} + [A_{12} + 2 \cdot (A_{21} - A_{12}) \cdot x_1] \cdot (1 - x_1)^2}{\frac{\Delta h_{f1}}{T_{f1}} - R \cdot \ln x_1}$$
(3.2.5)

- região III:

$$T = \frac{v_1 \cdot \Delta h_{f_1} + v_2 \cdot \Delta h_{f_2} + v_1 \cdot [A_{12} + 2 \cdot (A_{21} - A_{12}) \cdot x_1] \cdot (1 - x_1)^2 + v_2 \cdot [A_{21} + 2 \cdot (A_{12} - A_{21}) \cdot (1 - x_1)] \cdot x_1^2 + \Delta G_R^\circ}{v_1 \cdot \frac{\Delta h_{f_1}}{T_{f_1}} + v_2 \cdot \frac{\Delta h_{f_2}}{T_{f_2}} - v_1 \cdot R \cdot \ln x_1 - v_2 \cdot R \cdot \ln(1 - x_1)}$$
(3.2.6)

Os perfis de temperatura apresentados pelas equações (3.1.110), (3.1.11), (3.1.113) e (3.1.114) foram aplicados e no ponto de composição do composto, $x_1 = x_{1C}$, para o caso em que $\Delta G_R^{\circ} \leq 0$, deve-se obedecer a seguinte restrição:

$$\frac{\Delta h_{f2} + [A_{21} + 2 \cdot (A_{12} - A_{21}) \cdot (1 - x_{1C})] \cdot x_{1C}^2}{\frac{\Delta h_{f2}}{T_{f2}} - R \cdot \ln(1 - x_{1C})} \le \frac{\Delta h_{f1} + [A_{12} + 2 \cdot (A_{21} - A_{12}) \cdot x_{1C}] \cdot (1 - x_{1C})^2 + \frac{1}{\nu_1} \cdot \Delta G_R^\circ}{\frac{\Delta h_{f1}}{T_{f1}} - R \cdot \ln x_{1C}}$$

(3.2.7)

Assim, com a aplicação dessas equações com suas respectivas restrições, cada Temperatura de equilíbrio é calculada pela equação (3.1.116).

3.3 - Modelo de Margules Simétrico com temperatura constante – Misturas Binárias

Utilizando-se o modelo de Margules na forma:

$$\underline{G}_{ex}^{l} = R \cdot T \cdot \sum_{i=1}^{NC} x_{i}^{l} \cdot \ln \gamma_{i}^{l} = \frac{1}{2} \cdot \sum_{i=1}^{NC} \sum_{j=1}^{NC} A_{ij} \cdot x_{i}^{l} \cdot x_{j}^{l}$$
(3.3.1)

Sabe-se que os parâmetros de interação binária variam com a temperatura de forma aproximadamente linear (WALAS, 1985):

$$A_{ij} = a_{ij} + b_{ij} \cdot T \tag{3.3.2}$$

O valor médio de A_{ii} para um intervalo (T_{\min}, T_{\max}) é dado por:

$$\overline{A}_{ij} = a_{ij} + \frac{b_{ij}}{2} \cdot (T_{\min} + T_{\max})$$
(3.3.3)

Como a temperatura foi considerada constante, o parâmetro de interação binária se reduz

$$\overline{A}_{ij} = a_{ij} \tag{3.3.4}$$

Equações

a:

As equações para as regiões da curva de equilíbrio sólido-líquido são dadas por: - região I:

$$T = \frac{\Delta h_{f2} + a_{12} \cdot x_1^2}{\frac{\Delta h_{f2}}{T_{f2}} - R \cdot \ln(1 - x_1)}$$
(3.3.5)

- região II:

$$T = \frac{\Delta h_{f1} + a_{12} \cdot (1 - x_1)^2}{\frac{\Delta h_{f1}}{T_{f1}} - R \cdot \ln x_1}$$
(3.3.6)

- região III:

$$T = \frac{\nu_1 \cdot \Delta h_{f_1} + \nu_2 \cdot \Delta h_{f_2} + \nu_1 \cdot a_{12} \cdot (1 - x_1)^2 + \nu_2 \cdot a_{12} \cdot x_1^2 + \Delta G_R^\circ}{\nu_1 \cdot \frac{\Delta h_{f_1}}{T_{f_1}} + \nu_2 \cdot \frac{\Delta h_{f_2}}{T_{f_2}} - \nu_1 \cdot R \cdot \ln x_1 - \nu_2 \cdot R \cdot \ln(1 - x_1)}$$
(3.3.7)

Com a aplicação dos perfis de temperatura apresentados pelas equações (3.1.110), (3.1.11), (3.1.113) e (3.1.114) e especificamente, no ponto de composição do composto, $x_1 = x_{1C}$, para o caso em que $\Delta G_R^{\circ} \leq 0$, deve-se obedecer a seguinte restrição:

$$\frac{\Delta h_{f2} + a_{12} \cdot x_{1C}^2}{\frac{\Delta h_{f2}}{T_{f2}} - R \cdot \ln(1 - x_{1C})} \le \frac{\Delta h_{f1} + a_{12} \cdot (1 - x_{1C})^2 + \frac{1}{\nu_1} \cdot \Delta G_R^\circ}{\frac{\Delta h_{f1}}{T_{f1}} - R \cdot \ln x_{1C}}$$
(3.3.8)

Então, com a aplicação dessas equações com suas restrições, cada Temperatura de equilíbrio é calculada pela comparação entre os máximos de temperaturas.

3.4 - Modelo de Wilson – Misturas Binárias

Mesmo com a obtenção de resultados bastante satisfatórios utilizando os modelos de Margules e a aproximação do modelo de SLAUGHTER E DOHERTY (1995), disponíveis em ROCHA (2008), verifica-se a possibilidade de obtenção dos mesmos com aplicação de outros modelos termodinâmicos.

Essa proposta de novas experimentações para a obtenção do equilíbrio será baseada na utilização dos modelos que também apresentam resultados satisfatórios e que já foram utilizados por outros autores com o mesmo interesse para o cálculo do equilíbrio sólido-líquido.

A escolha desses modelos foi feita em função da adaptação e aplicabilidade correspondente à fase em que serão utilizados e principalmente na capacidade de discrição dos eventos térmicos que ocorrem em cada mistura.

O modelo escolhido foi o modelo de Wilson, cujo detalhamento de sua utilização está a seguir. O coeficiente de atividade será calculado utilizando o modelo termodinâmico de Wilson, descrito pelas equações já citadas na seção 2.3:

$$\ln \gamma_1 = -\ln(x_1 + x_2 \Lambda_{12}) + x_2 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} - \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}} \right)$$
(2.3.20)

$$\ln \gamma_2 = -\ln(x_2 + x_1 \Lambda_{21}) + x_1 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} - \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}} \right)$$
(2.3.21)

Equações:

As equações para as regiões da curva de equilíbrio sólido-líquido são dadas por:

- região I:

$$T = \frac{\Delta h_{f2}}{\frac{\Delta h_{f2}}{T_{f2}} - R \cdot \left(\ln(1 - x_1) - \ln((1 - x_1) + x_1 \Lambda_{21}) + x_1 \left(\frac{\Lambda_{12}}{x_1 + (1 - x_1)\Lambda_{12}} - \frac{\Lambda_{21}}{(1 - x_1) + x_1 \Lambda_{21}} \right) \right)}$$
(3.4.1)

- região II:

$$T = \frac{\Delta h_{f1}}{\frac{\Delta h_{f1}}{T_{f1}} - R \cdot \left(\ln x_1 - \ln(x_1 + (1 - x_1)\Lambda_{12}) + (1 - x_1) \cdot \left(\frac{\Lambda_{12}}{x_1 + (1 - x_1)\Lambda_{12}} - \frac{\Lambda_{21}}{(1 - x_1) + x_1\Lambda_{21}} \right) \right)}$$
(3.4.2)

- região III:

$$T = \frac{v_{1} \cdot \Delta h_{f1} + v_{2} \cdot \Delta h_{f2} + \Delta G_{R}^{\circ}}{v_{1} \cdot \frac{\Delta h_{f1}}{T_{f1}} - v_{1} \cdot R \cdot \left(\ln x_{1} - \ln(x_{1} + (1 - x_{1})\Lambda_{12}) + (1 - x_{1}) \cdot \left(\frac{\Lambda_{12}}{x_{1} + (1 - x_{1})\Lambda_{12}} - \frac{\Lambda_{21}}{(1 - x_{1}) + x_{1}\Lambda_{21}} \right) \right)}{v_{1} \cdot \Delta h_{f1} + v_{2} \cdot \Delta h_{f2} + \Delta G_{R}^{\circ}} + \frac{v_{1} \cdot \Delta h_{f1} + v_{2} \cdot \Delta h_{f2} + \Delta G_{R}^{\circ}}{v_{2} \cdot \frac{\Delta h_{f2}}{T_{f2}} - v_{2} \cdot R \cdot \left(\ln(1 - x_{1}) - \ln((1 - x_{1}) + x_{1}\Lambda_{21}) + x_{1} \left(\frac{\Lambda_{12}}{x_{1} + (1 - x_{1})\Lambda_{12}} - \frac{\Lambda_{21}}{(1 - x_{1}) + x_{1}\Lambda_{21}} \right) \right)}$$
(3.4.3)

Os mesmos perfis de temperatura apresentados pelas equações (3.1.110), (3.1.11), (3.1.113) e (3.1.114) foram utilizados, e no ponto de composição do composto, $x_1 = x_{1C}$, para o caso em que $\Delta G_R^{\circ} \leq 0$, deve-se obedecer a seguinte restrição:

$$\frac{\Delta h_{f2}}{\frac{\Delta h_{f2}}{T_{f2}} - R \cdot \left(\ln(1 - x_{1C}) - \ln((1 - x_{1C}) + x_{1C}\Lambda_{21}) + x_{1C} \left(\frac{\Lambda_{12}}{x_{1C} + (1 - x_{1C})\Lambda_{12}} - \frac{\Lambda_{21}}{(1 - x_{1C}) + x_{1C}\Lambda_{21}} \right) \right) \leq \Delta h_{f1} + \frac{1}{V_1} \cdot \Delta G_R^\circ$$

$$\frac{\Delta h_{f1}}{\frac{\Delta h_{f1}}{T_{f1}} - R \cdot \left(\ln x_{1C} - \ln(x_{1C} + (1 - x_{1C})\Lambda_{12}) + (1 - x_{1C}) \cdot \left(\frac{\Lambda_{12}}{x_{1C} + (1 - x_{1C})\Lambda_{12}} - \frac{\Lambda_{21}}{(1 - x_{1C}) + x_{1C}\Lambda_{21}} \right) \right)}$$

$$(3.4.4)$$

Com a aplicação dessas equações com suas respectivas restrições, cada Temperatura de equilíbrio é calculada pela equação (3.1.116).

3.5 - Cálculo do ponto eutético e ponto peritético - Misturas Binárias

Os pontos eutético e peritético são ocorrências características do equilíbrio sólido-líquido. Pontos estes que possuem características importantes nos diagramas de fases, o primeiro deles representa a transição direta de uma mistura sólida para líquida, em uma menor temperatura possível, inclusive das próprias temperaturas de fusão dos componentes puros; já o ponto peritético, com características semelhantes ao eutético, ainda é representado por uma associação entre os componentes no estado sólido e liquido que se rearranjam e formam outro sólido, único.

Para os cálculos de temperatura e composição molar de tais ocorrências de equilíbrio, este trabalho utiliza algumas equações, também baseadas naquelas obtidas por ROCHA e GUIRARDELLO (2009), explícitas na variável temperatura, cujos ajustes e aproximações são baseados na mesma divisão dos diagramas de fases em três regiões.

Nas misturas binárias graxas, foco neste trabalho, o ponto eutético se apresenta regularmente no comportamento das misturas, e consequentemente em seus diagramas de fases, como já foi tratado, neste tipo de diagrama verifica-se somente a presença das regiões I e II. Já o ponto peritético é um fenômeno que pode estar presente nessas misturas ou não, visto que a modelagem matemática desenvolvida é capaz de detectar a presença deste ponto e o diagrama formado terá a presença das regiões I, II e III.

Assim, o cálculo para os pontos eutético e peritético serão mostrados separadamente para misturas com ocorrência somente de eutético e para àquelas com ocorrência de ambos, mesmo que essa separação não seja a aplicação real do modelo, já que este analisa essas ocorrências como um todo.

3.5.1 - Misturas somente com eutético

Para obtenção do ponto eutético, a proposta é calcular o ponto mínimo da linha liquidus, que para esse caso se resume no ponto onde as regiões I e II se interceptam, ou seja, onde a diferença de temperatura das regiões I e II é igual a zero. Assim, utilizando o *software Microsoft Excel* com o aplicativo *solver*, as temperaturas de ponto eutético foram calculadas, por métodos iterativos, cuja equação que representa essa busca pela temperatura do ponto eutético, descrita abaixo, baseia-se na variável de resposta que é a fração molar de ocorrência desse ponto.

Igual a zero
$$T_E \leftrightarrow T_I - T_{II} = 0$$
 (3.5.1)

Neste ponto, $x_1 = x_E$
Graficamente, a Figura 3.3 mostra um diagrama de fases genérico com ponto eutético (e), localizado pela temperatura eutética (T_E) e fração molar eutética (x_E) , onde as regiões I (linha azul) e II (linha vermelha) se cruzam, ponto onde $T_I = T_{II}$. É notável que a região III (linha amarela) não pertence à linha *liquidus* para esses casos.

Figura 3.3: Representação do cálculo do ponto eutético

3.5.2 - Misturas com eutético e peritético

- Para o ponto eutético:

Para se obter a temperatura do ponto eutético baseada na obtenção da fração molar foi novamente utilizado o *Solver* do *software Microsoft Excel*, cujo aplicativo baseia-se em iterações para obter a diferença entre temperaturas igual a zero.

Igual a zero
$$T_E \leftrightarrow T_{II} - T_{III} = 0$$
 (3.5.2)
Neste ponto, $x_1 = x_E$

- Para o ponto peritético:

Igual a zero
$$T_P \leftrightarrow T_I - T_{III} = 0$$
 (3.5.3)

Assim, $x_1 = x_p$, calculado da mesma maneira que o ponto eutético.

Graficamente, igualar a diferença entre as temperaturas II e III a zero (ponto eutético - e) e I e III (ponto peritético - p), é facilmente verificada pela figura abaixo (Figura 3.4), pois são exatamente onde as linhas correspondentes as regiões II (linha vermelha) e III (linha amarela) se cruzam é que se observa o ponto eutético, e para o ponto peritético, na interceptação das linhas correspondentes às regiões I (linha azul) e III (linha amarela).

Figura 3.4: Representação do cálculo do ponto eutético e peritético

3.6 - Modelo de Margules Assimétrico – Mistura Ternária

O desenvolvimento do modelo de Margules, na forma assimétrica, para uma mistura de três componentes, foi desenvolvida com base no cálculo da temperatura de solidificação para o equilíbrio sólido-líquido em misturas ternárias.

Para uma mistura contendo 3 componentes (A_1, A_2, A_3) , com formação de um composto na fase sólida por reação entre apenas dois componentes:

$$v_1 A_1 + v_2 A_2 \leftrightarrow P$$

A temperatura de solidificação dessa mistura, para uma dada composição (x_1, x_2, x_3) , é dada por:

$$T = \max_{i \in I} \{T_i\} \qquad \text{onde } I = \{1, 2, 3, p\}$$
(3.6.1)

Para um modelo termodinâmico geral para a fase líquida, tem-se:

$$T_{i} = \frac{\Delta h_{i}^{f}}{\frac{\Delta h_{i}^{f}}{T_{i}^{f}} - R \cdot \ln(x_{i} \cdot \gamma_{i})} \qquad i = 1, 2, 3$$

$$T_{p} = \frac{V_{1} \cdot \Delta h_{1}^{f} + V_{2} \cdot \Delta h_{2}^{f} + \Delta G_{R}^{\circ}}{V_{1} \cdot \frac{\Delta h_{1}^{f}}{T_{1}^{f}} + V_{2} \cdot \frac{\Delta h_{2}^{f}}{T_{2}^{f}} - V_{1} \cdot R \cdot \ln(x_{1} \cdot \gamma_{1}) - V_{2} \cdot R \cdot \ln(x_{2} \cdot \gamma_{2})}$$

$$(3.6.2)$$

No caso específico do modelo de Margules assimétrico, tem-se:

$$T_{i} = \frac{\Delta h_{i}^{f} + c_{i}}{\frac{\Delta h_{i}^{f}}{T_{i}^{f}} - R \cdot \ln x_{i}} \qquad i = 1,2,3$$

$$T_{p} = \frac{v_{1} \cdot \Delta h_{f1} + v_{2} \cdot \Delta h_{f2} + v_{1} \cdot c_{1} + v_{2} \cdot c_{2} + \Delta G_{R}^{\circ}}{v_{1} \cdot \frac{\Delta h_{f1}}{T_{f1}} + v_{2} \cdot \frac{\Delta h_{f2}}{T_{f2}} - v_{1} \cdot R \cdot \ln x_{1} - v_{2} \cdot R \cdot \ln x_{2}}$$
(3.6.4)

$$c_{1} = A_{12} \cdot x_{2}^{2} \cdot (1 - 2 \cdot x_{1}) + 2 \cdot A_{21} \cdot x_{1} \cdot x_{2} \cdot (1 - x_{1}) + A_{13} \cdot x_{3}^{2} \cdot (1 - 2 \cdot x_{1}) + 2 \cdot A_{31} \cdot x_{1} \cdot x_{3} \cdot (1 - x_{1})$$

$$- 2 \cdot A_{23} \cdot x_{2} \cdot x_{3}^{2} - 2 \cdot A_{32} \cdot x_{2}^{2} \cdot x_{3} + \left[\frac{1}{2} \cdot (A_{12} + A_{21} + A_{13} + A_{31} + A_{23} + A_{32}) - Q\right] \cdot (x_{2} \cdot x_{3} - 2 \cdot x_{1} \cdot x_{2} \cdot x_{3})$$

(3.6.6)

$$c_{2} = A_{21} \cdot x_{1}^{2} \cdot (1 - 2 \cdot x_{2}) + 2 \cdot A_{12} \cdot x_{1} \cdot x_{2} \cdot (1 - x_{2}) + A_{23} \cdot x_{3}^{2} \cdot (1 - 2 \cdot x_{2}) + 2 \cdot A_{32} \cdot x_{2} \cdot x_{3} \cdot (1 - x_{2}) - 2 \cdot A_{13} \cdot x_{1} \cdot x_{3}^{2} - 2 \cdot A_{31} \cdot x_{1}^{2} \cdot x_{3} + \left[\frac{1}{2} \cdot (A_{12} + A_{21} + A_{13} + A_{31} + A_{23} + A_{32}) - Q\right] \cdot (x_{1} \cdot x_{3} - 2 \cdot x_{1} \cdot x_{2} \cdot x_{3})$$

$$(3.6.7)$$

$$c_{3} = A_{31} \cdot x_{1}^{2} \cdot (1 - 2 \cdot x_{3}) + 2 \cdot A_{13} \cdot x_{1} \cdot x_{3} \cdot (1 - x_{3}) + A_{32} \cdot x_{2}^{2} \cdot (1 - 2 \cdot x_{3}) + 2 \cdot A_{23} \cdot x_{2} \cdot x_{3} \cdot (1 - x_{3}) + 2 \cdot A_{12} \cdot x_{1} \cdot x_{2}^{2} - 2 \cdot A_{21} \cdot x_{1}^{2} \cdot x_{2} + \left[\frac{1}{2} \cdot (A_{12} + A_{21} + A_{13} + A_{31} + A_{23} + A_{32}) - Q\right] \cdot (x_{1} \cdot x_{2} - 2 \cdot x_{1} \cdot x_{2} \cdot x_{3})$$

$$(3.6.8)$$

onde Q é um parâmetro de interação ternária e precisa ser determinado a partir de dados experimentais ternários. Uma aproximação razoável, mas arbitrária, é fazer Q = 0.

3.7 - Modelo de Wilson - Mistura Ternária

O desenvolvimento do modelo deWilson, para uma mistura de três componentes, também foi desenvolvida com base no cálculo da temperatura de solidificação para o equilíbrio sólidolíquido em misturas ternárias, Assim, uma mistura com 3 componentes (A_1, A_2, A_3) , com formação de um composto na fase sólida por reação entre apenas dois componentes:

$$V_1 A_1 + V_2 A_2 \leftrightarrow P$$

A temperatura de solidificação dessa mistura, para uma dada composição (x_1, x_2, x_3) , é dada por:

$$T = \max_{i \in I} \{T_i\} \qquad \text{onde } I = \{1, 2, 3, p\}$$
(3.7.1)

Para um modelo termodinâmico geral para a fase líquida, tem-se:

$$T_{i} = \frac{\Delta h_{i}^{f}}{\frac{\Delta h_{i}^{f}}{T_{i}^{f}} - R \cdot \ln(x_{i} \cdot \gamma_{i})} \qquad i = 1, 2, 3$$

$$(3.7.2)$$

$$T_{p} = \frac{\nu_{1} \cdot \Delta h_{1}^{f} + \nu_{2} \cdot \Delta h_{2}^{f} + \Delta G_{R}^{\circ}}{\nu_{1} \cdot \frac{\Delta h_{1}^{f}}{T_{1}^{f}} + \nu_{2} \cdot \frac{\Delta h_{2}^{f}}{T_{2}^{f}} - \nu_{1} \cdot R \cdot \ln(x_{1} \cdot \gamma_{1}) - \nu_{2} \cdot R \cdot \ln(x_{2} \cdot \gamma_{2})}$$
(3.7.3)

No caso específico do modelo de Wilson, tem-se:

$$\ln \gamma_i = 1 - \ln \sum_j x_j \Lambda_{ij} - \sum_k \frac{x_k \Lambda_{ki}}{\sum_j x_j \Lambda_{kj}}$$
(3.7.4)

56

Assim, o modelo termodinâmico geral passa a ser escrito:

$$T_{i} = \frac{\Delta h_{i}^{f}}{\frac{\Delta h_{i}^{f}}{T_{i}^{f}} - R \cdot \left[\ln x_{i} + \ln \gamma_{i}\right]} \qquad i = 1, 2, 3$$

$$(3.7.5)$$

$$T_{p} = \frac{\nu_{1} \cdot \Delta h_{f1} + \nu_{2} \cdot \Delta h_{f2} + \Delta G_{R}^{\circ}}{\nu_{1} \cdot \frac{\Delta h_{f1}}{T_{f1}} + \nu_{2} \cdot \frac{\Delta h_{f2}}{T_{f2}} - \nu_{1} \cdot R \cdot \left[\ln x_{1} + \ln \gamma_{1}\right] - \nu_{2} \cdot R \cdot \left[\ln x_{2} + \ln \gamma_{2}\right]}$$
(3.7.6)

Em que:

$$\ln \gamma_{1} = 1 - \ln \left(x_{1} + x_{2} \Lambda_{12} + x_{3} \Lambda_{13} \right) - \left(\frac{x_{1}}{x_{1} + x_{2} \Lambda_{12} + x_{3} \Lambda_{13}} + \frac{x_{2} \Lambda_{21}}{x_{1} \Lambda_{21} + x_{2} + x_{3} \Lambda_{23}} + \frac{x_{3} \Lambda_{31}}{x_{1} \Lambda_{31} + x_{2} \Lambda_{32} + x_{3}} \right)$$

$$(3.7.7)$$

$$\ln \gamma_{2} = 1 - \ln(x_{1}\Lambda_{21} + x_{2} + x_{3}\Lambda_{23}) - \left(\frac{x_{1}\Lambda_{12}}{x_{1} + x_{2}\Lambda_{12} + x_{3}\Lambda_{13}} + \frac{x_{2}}{x_{1}\Lambda_{21} + x_{2} + x_{3}\Lambda_{23}} + \frac{x_{3}\Lambda_{32}}{x_{1}\Lambda_{31} + x_{2}\Lambda_{32} + x_{3}}\right)$$

$$(3.7.8)$$

$$\ln \gamma_{3} = 1 - \ln(x_{1}\Lambda_{31} + x_{2}\Lambda_{32} + x_{3}) - \left(\frac{x_{1}\Lambda_{13}}{x_{1} + x_{2}\Lambda_{12} + x_{3}\Lambda_{13}} + \frac{x_{2}\Lambda_{23}}{x_{1}\Lambda_{21} + x_{2} + x_{3}\Lambda_{23}} + \frac{x_{3}}{x_{1}\Lambda_{31} + x_{2}\Lambda_{32} + x_{3}}\right)$$
(3.7.9)

Com γ_1 , γ_2 , γ_3 como coeficientes de atividade dos componentes 1, 2 e 3, respectivamente, representados pelos parâmetros de Wilson Λ_{12} , Λ_{21} , Λ_{13} , Λ_{31} , Λ_{23} , Λ_{32} .

3.8 - Análises dos significados físicos do coeficiente de atividade em cada modelo

O coeficiente de atividade, responsável por descrever a não idealidade das fases em equilíbrio, já definido na seção 2.1 deste trabalho, se relaciona com a fração molar de uma mistura por um gráfico característico descrito pela Figura 3.5 (a) (desvio positivo) e (b) (desvio negativo).

Nestas Figuras (a) e (b), à medida que qualquer um dos dois componentes torna-se diluído o coeficiente de atividade aumenta em (a) e diminui em (b). O que se nota é que ao se ter a

concentração de A tendendo a zero $(x_A \rightarrow 0)$ o coeficiente de atividade tende ao maior valor possível em (a) ou menor valor possível em (b), que corresponde ao coeficiente de atividade em diluição infinita. O mesmo acontece com o coeficiente de atividade ao aumentar em (a) ou diminuir em (b) a concentração de B. Esse comportamento é explicado pela presença majoritária de um e outro componente, o que, fisicamente, se explica pela aproximação da presença de somente um componente, fazendo com que o coeficiente de atividade seja máximo em (a) e mínimo em (b).

Figura 3.5: Relação entre coeficiente de atividade e fração molar (para desvio positivo)

Segundo ROCHA e GUIRARDELLO (2009), o cálculo do coeficiente de diluição infinita apresenta forma relevante de comparação de resultados. Assim, conforme os modelos utilizados para os cálculos dos coeficientes de atividade, a sua forma em diluição infinita também será descrita.

Para o modelo de Margules dois sufixos, o coeficiente de atividade em diluição infinita é descrito por (DECHEMA):

$$R \cdot T \cdot \ln \gamma_i^{\infty} = A_{ii} \qquad (x_i \to 0 \qquad x_i \to 1) \qquad (3.8.1)$$

Com a utilização do modelo de Wilson, o coeficiente de atividade em diluição infinita é descrito por (SMITH *et al.*, 2000):

$$\ln \gamma_i^{\infty} = -\ln \Lambda_{ij} + 1 - \Lambda_{ji} \tag{3.8.2}$$

com a observação de Λ_{ii} e Λ_{ii} serem sempre positivos.

Ainda, o coeficiente de atividade em diluição infinita pode ser calculado por uma equação que faz relevância do comprimento da cadeia carbônica como principal diferença entre os componentes, com vasta utilização em soluções de cadeias poliméricas, utilizadas por WESDORP (1990) e ROCHA e GUIRARDELLO (2009), a equação de Florry - Huggins aplicada a misturas binárias é descrita por:

$$\ln \gamma_i^{\infty} = \ln \left(\frac{\nu_i}{\nu_j} \right) + \left(1 - \frac{\nu_i}{\nu_j} \right) + \chi_{ij}$$
(3.8.3)

Em que v_i e v_j são os volumes molares dos componentes *i* e *j* da mistura e χ_{ij} é um parâmetro de interação.

Esses modelos serão utilizados para os cálculos dos coeficientes a diluição infinita quando se fizer necessário a comparação dos resultados obtidos neste trabalho.

Capítulo 4 - METODOLOGIA

Devido ao caráter teórico e computacional do presente trabalho, para a solução das equações propostas, são utilizados microcomputadores, vinculados a eles tem-se algoritmos desenvolvido em *GAMS* (Apêndice 2), em conjunto e paralelamente a ele, as equações também são aplicadas e calculadas pelo *Microsoft Excel* (Apêndice 3), para a obtenção de resultados desejados.

Como metodologia geral, propõe-se o cálculo do diagrama do equilíbrio de fases sólidolíquido com a presença ou não de compostos sólidos intermediários a partir do método de minimização da energia de *Gibbs*, utilizando técnicas de minimização global, a partir dos modelos descritos no ítem 3.2, 3.3 e 3.4 (binários) e 3.6 e 3.7 (ternários).

4.1 - Misturas Binárias

Para os modelos binários, a utilização do *software GAMS*, com uma única aplicação do respectivo algoritmo, obtém todos os resultados desejados para uma determinada mistura. A partir da minimização das equações da soma dos quadrados dos erros, os parâmetros são ajustados e com esses valores aplicados as equações explícitas em T são obtidos os pontos de equilíbrio que posteriormente formarão os diagramas de fases.

Já a utilização do *software Microsoft Excel* depende do ajuste prévio dos parâmetros dos modelos binários encontrados pelo *GAMS*, e foram feitas em paralelo, pois esse software tem melhor viabilidade econômica e maior praticidade, com a mesma capacidade de cálculos para as temperaturas de equilíbrio para posterior formação de diagramas de fases. Neste software é que são possíveis obtenções dos valores exatos de frações molares e temperaturas dos pontos eutético e peritético através de uma simples aproximação para zero da diferença entre as temperaturas das regiões I e III; e III e II, segundo as equações a seguir.

$$T_I - T_{III} = 0 \rightarrow x_1 = x_p$$
 condição válida para ponto peritético (4.1.1)

$$T_{III} - T_{II} = 0 \rightarrow x_1 = x_e$$
 condição válida para ponto eutético (4.1.2)

60

Esse trabalho faz uso de dados experimentais obtidos por outros autores BOROS *et al*, (2009), COSTA *et al* (2010a,b) e ROLEMBERG (2002), com os experimentos realizados no Laboratório EXTRAE da FEA-UNICAMP, utilizando a técnica DSC. Esses dados são utilizados para comparação com os cálculos de equilíbrio de fases sólido-líquido desenvolvidos neste trabalho.

Os sistemas a serem estudados são misturas de ésteres de etila e metila, ácidos graxos, triacilgliceróis, listados na tabela 2.2, 2.4, 2.5 e 2.6 (Seção 2.5 e 2.6), já com a apresentação dos dados de temperaturas de fusão e suas respectivas entalpias de fusão, encontradas na literatura, experimentalmente, ou ainda obtidas por cálculos de extrapolações de equações obtidas por comparações entre compostos de mesmas características, dados esses estritamente necessários para o cálculo dos diagramas de equiíbrio.

Com a definição das propriedades necessárias, com os dados obtidos experimentalmente por BOROS *et al*, (2009), COSTA *et al* (2010a,b) e ROLEMBERG (2002), baseado nas equações descritas nos subitem 3.2, 3.3 e 3.4 foram desenvolvidos três algoritmos utilizando a linguagem computacional necessária para a resolução em GAMS.

O primeiro deles, para o desenvolvimento do modelo de Margules Assimétrico com 2sufixos, que com a implementação dessas equações, resultando em uma programação não-linear convexa, é possível a obtenção dos parâmetros A_{12} , $A_{21} \in \Delta G^0$, que podem ser obtidos pela minimização da soma dos quadrados dos erros, metodologia mais conhecida como "mínimos quadrados". Esse algoritmo foi aplicado em todas as misturas binárias, mesmo com dificuldade na obtenção das propriedades $T_f \in \Delta H_f$ dos componentes puros, os resultados dessa aplicação serão mostrados nos resultados e discussões.

O segundo algoritmo foi desenvolvido nas mesmas condições que o primeiro, agora, com a aplicação do modelo de Margules Simétrico. A resolução desse modelo baseia-se na obtenção de a_{12} e ΔG^0 . Para esse desenvolvimento, novamente todos os as misturas foram testadas e os parâmetros a_{12} e ΔG^0 foram encontrados para todas as misturas pela minimização da soma dos quadrados dos erros.

Posteriormente, um último algoritmo foi desenvolvido, utilizando o modelo de Wilson, em que a implementação das equações resultou em uma programação não-linear não convexa. Com a aplicação da minimização da soma dos quadrados dos erros os parâmetros, Λ_{12} , Λ_{21} e ΔG^0 foram obtidos, os resultados serão descritos a seguir.

Vale ainda citar que a metodologia foi aplicada em diferentes combinações para oito ésteres de etila, três ésteres de metila, seis ácidos graxos saturados, três insaturados e quatro triacilgliceróis, essas combinações são baseadas nos experimentos desenvolvidos por BOROS *et al* (2009), COSTA *et al* (2010a,b) e ROLEMBERG (2002), totalizando 32 estudos de caso.

4.2 - Misturas Ternárias

Para os modelos ternários, foram utilizados como base misturas que já haviam sido modeladas na forma binária, inclusive faz-se uso dos parâmetros dos modelos ajustados na forma binária. Assim, da junção de três misturas binárias, duas a duas, foram escolhidas e calculadas as misturas ternárias, por exemplo, das misturas de laurato e miristato de etila, laurato e pamitiato de etila e miristato e palmitato de etila, foi formada a mistura ternária laurato, miristato e palmitato de etila.

Nas misturas ternárias, foram desenvolvidos e aplicados os modelos de Margules Assimétrico e Wilson ternários, em que, a partir dos parâmetros dos modelos já ajustados pelo *software GAMS* como misturas binárias, esses resultados foram utilizados como base para os cálculos de equilíbrio ternário calculado e implementado pelos modelos descritos nos itens 3.6 e 3.7 utilizando o *software Microsoft Excel*. Neste *software*, foram desenvolvidas planilhas em que um dos componentes (componente 3) teve sua fração molar fixada e então os equilíbrios binários foi calculado nessa fração, visto que as frações molares da mistura binária variou de 0,02 em 0,02 (para componentes 1 e 2). Assim ao fazer o mesmo para todas as frações molares, com variação de 0,1 em 0,1 (para componente 3). A partir desses cálculos, foram gerados os dados de equilíbrio sólido-líquido dessas misturas, resultados de caráter preditivo, visto que não existe fonte de investigação e/ou comparação para esses resultados. Então, a partir deles, foram feitos os diagramas de equilíbrio ternários, utilizando o *software Statistica*, caracterizados por uma superfície de equilíbrio com base em um prisma triangular.

Esse mesmo procedimento foi feito para todos os sistemas ternários, com diferentes combinações para ésteres de etila, metila, ácidos graxos saturados, insaturados e triacilgliceróis, totalizando 9 estudos de caso.

4.3 - Ajuste de Curvas

Para implementação das equações desenvolvidas no GAMS, a função objetivo a ser minimizada é calculada pelo método da soma dos quadrados dos erros, ou mais comumente nomeada de mínimos quadrados:

$$\min SQE = \sum_{i} (T_i - T_{\exp,i})^2$$
(4.3.1)

A equação (4.3.1) pode ser utilizada de duas formas:

i) Como NLP (Non-Linear Programming), em que os pontos de cada região são previamente definidos, de acordo com caracteristicas experimentais das misturas, baseado na temperatura máxima para escolha da região;

ii) Como DNLP (Discontinuous Non-Linear Programming), os pontos são definidos pela a equação (3.1.116):

$$T = \max\{T_{I}, T_{II}, T_{III}\}$$
(3.1.116)

em que as derivadas são descontínuas nos pontos de intersecção, uma vez que não se estabelece a priori a fronteira das regiões, já que elas dependem dos valores dos parâmetros ajustados.

Capítulo 5 - RESULTADOS E DISCUSSÕES

No presente trabalho, como já mostrado na modelagem matemática utilizada, foram obtidos resultados na forma de curvas de equilíbrio (diagramas de fase) a partir de ajuste de parâmetros, para diferentes misturas, utilizando uma modelagem matemática para a obtenção do equilíbrio de fases com os modelos intitulados Margules Assimétrico (MA), Margules Simétrico (MS) e Wilson (W), para misturas binárias, e Margules Assimétrico e Wilson, para misturas ternárias; e essa mesma organização será utilizada para mostrar todos os resultados obtidos.

O modelo de Margules Assimétrico binário objetiva, além da caracterização do diagrama de fases, a obtenção dos parâmetros de Margules A_{12} e A_{21} , e ainda, caso exista, a determinação do ΔG^0 , como forma de resultado da otimização desse modelo pelo método da soma dos quadrados dos erros (SQE), que ao se basear em diferenças ou erros de temperatura apresenta Kelvin (K) como unidade.

A aplicação do modelo de Margules Simétrico binário tem como resultado o diagrama de fases para a mistura estudada, o ajuste do parâmetro a_{12} , e caso exista, o ΔG^0 utilizando novamente a minimização da soma dos quadrados dos erros (SQE) em K.

O modelo de Wilson binário, também apresenta como resultado um diagrama de fases e mais uma vez, pela minimização da soma dos quadrados dos erros (em K), a obtenção dos parâmetros de Wilson: Λ_{12} , Λ_{21} e também a descrição de ΔG^0 quando existente.

As aplicações dos modelos de Margules Assimétrico e Wilson ternários, apresentam como resultados as superfícies de equilíbrio ternárias, visto que os valores utilizados para os parâmetros dos modelos termodinâmicos utilizados (A_{ij} para Margules e Λ_{ij} para Wilson) bem como os valores de ΔG^0 , são àqueles obtidos dos resultados binários.

Outra subdivisão foi feita na organização dos resultados devido ao grande número de misturas estudadas, agrupando-os em misturas de uma mesma classe de compostos, para que, posteriormente seja facilitada inclusive a discussão dos resultados, que serão feitas por essas mesmas classes.

Ainda, no diz respeito à extender a busca por resultados e principalmente discussão dos mesmos, os resultados foram concatenados de forma a tentar obter um comportamento preditivo dos parâmtros ajustados, com análises comparativas de comportamento de compostos de mesma classe ou por diferença de cadeia carbônica. Também foram realizados cálculos de desvio entre

os valores calculados aqui, comparados aos obtidos em literaturas, para que se comprove a qualidade dos resultados obtidos.

5.1 - Misturas Binárias

Resumidamente, os resultados para todas as 32 misturas estudadas neste trabalho são apresentados na Tabela 5.1. Ela foi feita para geração de uma visão total dos resultados, sendo que os mesmos serão detalhados caso a caso a posteriori. Ao se comparar os valores minimizados para as somas dos quadrados dos erros (SQE), verifica-se, primeiramente, que o Modelo de Margules Simétrico (MS) não é o melhor modelo em nenhum dos casos estudados. Já o modelo de Margules Assimétrico (MA) e o modelo de Wilson, se mostram, de forma balanceada, com os melhores ajustes e conseqüentemente com os melhores diagramas de fases estudados neste trabalho, com 20 melhores ajustes para Margules Assimétrico e 12 melhores ajustes para Wilson, cujas opções estão destacadas em negrito.

Cict	Componentos de Mistur-											
5151.	Componentes da Mistura		MA				MS			V	vilson	
		A_{12}	A_{21}	ΔG^{0}		A_{12}	ΔG^{0}		$\Lambda_{_{12}}$	$\Lambda_{_{21}}$	ΔG^{0}	
		(cal/mol)	(cal/mol)	(cal/mol)	SQE	(cal/mol)	(cal/mol)	SQE	(cal/mol)	(cal/mol)	(cal/mol)	SQE
1	Laurato / Miristato de etila	-346,8112	-581,4406		5,4029	-409,8544		6,0455	4,5653	0,2190		3,9528
2	Laurato/ Palmitato de etila	-512,5786	-1392,5700	-1993,5000	2,5717	-1389,4200	-2592,6100	4,3004	4,4097	0,9370	-2093,8700	3,0413
3	Laurato/ Estearato de etila	624,2072	-79,5186		1,3204	261,6293		17,0962	0,0061	2,1488		3,7148
4	Miristato/Palmitato de etila	-281,4214	136,5190		1,8012	-187,4986		3,3323	2,8381	0,2353		3,9341
5	Miristato/ Estearato de etila	-245,3423	-387,7153		2,6973	-300,3573		2,9938	3,0636	0,3264		2,3082
6	Palmitato/ Estearato de etila	-202,4774	1050,0957		2,0798	128,5692		14,3514	1,8634	0,1010		11,2309
7	Caprilato/ Caprato de etila	-363,0643	-84,6288		1,0699	-288,8020		2,1897	0,6205	2,2474		1,3596
8	Caprilato/ Laurato de etila	-326,1694	-242,7672		7,5656	-278,4051		7,9303	0,9462	1,7390		7,5525
9	Caprilato/ Miristato de etila	-274,2749	-82,3927		1,0111	-172,7305		2,3204	0,4335	2,3067		1,1885
10	Caprilato/ Palmitato de etila	157,6647	-178,7582		2,6847	-54,8681		8,4419	1,6165	0,6186		7,9933
11	Caprilato/ Estearato de etila	-144,2092	-18,7430		0,8375	-78,2260		1,3598	2,8546	0,0919		0,6125
12	Caprato/ Laurato de etila	-379,4146	-31,6668		1,8581	-239,0964		4,8579	0,3718	2,6897		2,3467
13	Caprato/ Miristato de etila	51,3248	-81,7724		10,9372	-28,1160		11,6146	1,3978	0,7154		11,5901
14	Caprato/ Palmitato de etila	184,2185	-141,6529		3,0881	3,8242		7,8464	0,0661	2,7073		4,7328
15	Caprato/ Estearato de etila	-148,1233	-103,4962		1,2730	-122,3578		1,3430	2,9540	0,1190		1,0324
16	Miristato/ Palmitato de metila	-406,9967	-1255,8900	-410,4653	1,3616	-452,1653	-174,1558	6,1571	6,5596	0,0132	-342,9317	1,7377
17	Miristato/ Estearato de metila	-110,0720	-167,4523		1,2982	-128,9535		1,3521	2,0231	0,4943		1,2459
18	Palmitato/Estearato de metila	-878,9172	-1679,1200	-874,1821	8,2850	-754,0201	-588,2902	10,6154	4,0497	1,0145	-782,8017	7,4895
19	Ácido cáprico/láurico	-279,3713	-504,7752	-318,0262	5,0174	-283,2579	-256,6429	6,5961	4,7305	0,0107	-343,0107	4,3138
20	Ácido cáprico/palmítico	-102,0984	-474,5707		4,6878	-289,3542		10,7875	2,7838	0,3592		6,0679
21	Ácido cáprico/mirístico	-210,9053	-652,6044	-245,1315	18,1891	-312,5123		21,7658	3,8987	0,2565	-287,5806	14,7486
22	Ácido mirístico/palmítico	-238,0792	-358,5788	-310,6271	6,0712	-234,1768	-274,6487	6,9472	3,8702	0,0475	-319,1594	6,2014
23	Ácido cáprico/esteárico	19,1477	-177,7369		5,1153	-92,2131		7,1048	1,7469	0,5724		6,5874
24	Ácido oléico/cáprico	-651,4858	-608,0360		8,4388	-647,1875		8,5398	1,5707	1,7371		7,8115
25	Ácido oléico/esteárico	-89,4034	-101,3792		1,3176	-97,4516		1,3288	1,9424	0,4645		1,3566
26	Ácido oléico/elaídico	375,1104	438,5980		5,4351	400,3659		5,6362	0,9211	0,4649		5,3040
27	Ácido linoléico/oléico	-109,4638	-49,0126		0,1663	-94,8743		0,2327	2,5698	0,2056		0,2340
28	Ácido linoléico/Triestearina	721,0543	-26,8962		0,5900	179,8535		6,0359	0,0000	2,2759		1,4342
29	Tricaprilina/Ácido mirístico	145,7931	463,8684		14,9772	356,4386		28,3133	1,7344	0,1572		7,5453
30	Ácido palmítico/Triestearina	331,7761	-169,7630		0,3390	45,9144		1,6570	0,0102	2,7775		0,4168
31	Tripalmitina/Triestearina	-1545,1000	-5403,0200	-2176,6900	2,6106	-437,4882		5,7085	7,5073	0,1332	-512,0880	2,7479
32	Trioleína/Tripalmitina	153,9981	-346,0329		0,1135	-131,7925		1,7157	1,9640	0,5092		1,3759

Tabela 5.1: Resultados comparativos

Nesta seção serão detalhados, por meio de gráficos, os sistemas binários estudados subdivididos em suas respectivas classes de compostos. Os valores geradores de todos os diagramas de fases estão disponíveis no Anexo 1.

5.1.1 - Sistemas formados por ésteres de etila

Sistema 1 – Laurato de Etila com Misitato de Etila

Referente aos resultados obtidos pelos modelos de Margules Assimétrico, Simétrico e Wilson, a Figuras 5.1 apresenta os diagramas de fases referentes a esse sistema.

Figura 5.1: Diagramas de equilíbrio sólido-líquido para a mistura de laurato de etila (1) com miristato de etila (2)

Ao comparar os dados experimentais com os obtidos pelas aplicações dos modelos estudados verifica-se uma grande proximidade entre os resultados, sendo notório um distanciamento entre nos pontos nas proximidades de frações molares entre 0,2 e 0,3, e

novamente entre frações 0,6 a 0,8. O Ponto eutético ocorre na fração molar de 0,7171 para Margules Assimétrico, 0,7158 para Simétrico e 0,7274 para Wilson.

A evidência de um valor nulo para a variação da energia de Gibbs constata a ausência de formação de composto sólido intermediário, ou seja, não existe ponto peritético para essa mistura, conforme visto na Figura 5.1.

Sistema 2 – Laurato de Etila com Palmitato de Etila

Utilizando os modelos de Margules Assimétrico, Simétrico e Wilson para a mistura de laurato de etila com palmitato de etila, foi possível obter os diagramas de fases disponíveis na Figura 5.2

Figura 5.2: Diagrama de equilíbrio sólido-líquido para a mistura de laurato de etila (1) com palmitato de etila (2)

Os valores obtidos com a aplicação do modelo juntamente com o ajuste dos parâmetros mostram-se satisfatoriamente próximos dos resultados obtidos de maneira experimental (BOROS *et al*, 2009; COSTA *et al* 2010a,b), com algum distanciamento próximo as frações 0,2 e 0,7.

Bastante suavemente, mas não imperceptível, essa mistura apresenta ponto peritético, na fração molar 0,3578 para Margules Assimétrico, 0,2181 para Margules Simétrico e 0,2971 para Wilson. O ponto eutético ocorre na fração molar igual a 0,8733 para Margules Assimétrico, 0,8757 para Margules Simétrico e 0,8735 para Wilson, sendo possível notar a presença da região 3 entre esses pontos. O valor da variação da energia de Gibbs menor que zero, comprova a ocorrência da formação de composto sólido intermediário (ponto peritético).

Sistema 3 – Laurato de Etila com Estearato de Etila

Como resultado da aplicação dos modelos de Margules Assimétrico (MA), Simétrico (MS) e Wilson (W), os dados de equilíbrio sólido-líquido estão disponíveis graficamente na Figura 5.3.

Figura 5.3: Diagrama de equilíbrio sólido-líquido para a mistura de laurato de etila (1) com estearato de etila (2).

Esses diagramas de fases apresentam-se em curvas aparentemente contínuas, sendo sua maioria representa da pela região 1, com ausência de ponto peritético e presença do ponto

eutético somente próximo da fração molar 1, exatamente em 0,9592 para MA, 0,9573 para MS e para Wilson, o ponto eutético ocorre em uma fração molar muito próximo da existência do componente 1 puro, tal que proximidade incapacitou a busca por esse ponto. Próximo a fração de 0,9 os modelos MS e W apresentam diferença comparados aos valores experimentais (BOROS *et al*, 2009; COSTA *et al* 2010a,b), ainda para o modelo MS, nas frações de 0,2 a 0,6, se percebe pontos abaixo dos experimentais. Pelos ajustes, verifica-se que a variação da energia de Gibbs é nula, o que comprova a existência somente de ponto eutético, assim para essa mistura não ocorre formação de sólido intermediário, conforme a Figura 5.3.

Sistema 4 – Miristato de Etila com Palmitato de Etila

Para essa mistura, os dados de equilíbrio que formam os diagramas de fases, podem ser vistos na Figura 5.4. O ponto eutético ocorre na fração molar 0,7138 conforme o modelo de Margules assimétrico, 0,7147 conforme Margules Simétrico, e 0,7172 conforme Wilson; não se verifica formação de reação peritética. Ao comparar os valores experimentais com os resultados calculados, nota-se que nas proximidades da ocorrência de ponto eutético, os resultados obtidos se distanciam dos valores experimentais. Ao ver que a variação da energia de Gibbs se iguala a zero, fica evidente que ponto peritético não existe nessa mistura, conforme visto na Figura 5.4.

Figura 5.4: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de etila (1) com palmitato de etila (2).

Sistema 5 – Miristato de Etila com Estearato de Etila

A Figura 5.5 representa o diagrama de fases obtido com a aplicação do modelo de Margules Assimétrico, Simétrico e Wilson para a mistura de miristato de etila com estearato de etila. Os valores obtidos com a aplicação dos modelos juntamente com o ajuste dos parâmetros mostram-se satisfatoriamente próximos dos resultados obtidos de maneira experimental, salvo leves desvios próximos às frações molares de 0,7. O ponto eutético ocorre na fração molar igual a 0,8384 com MA, 0,8431 com MS e 0,8365 com W. O valor variação da energia de Gibbs maior ou igual zero denota e comprova a presença somente de ponto eutético, conforme visto na Figura 5.5.

Figura 5.5: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de etila (1) com estearato de etila (2)

Sistema 6 – Palmitato de Etila com Estearato de Etila

Os dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.6 são os resultados da aplicação do modelo de Margules Assimétrico, Simétrico e Wilson. Nesses diagramas de fases, é possível verificar a presença das três regiões descritas neste trabalho, as cinco primeiras frações molares (de 0 a 0,4) representam a região 1, entre as frações de 0,5 a 0,8 tem-se a região 3, e então, somente a fração igual a 1, é que representa a região 2. Assim, os pontos peritético e eutético ocorrem exata e respectivamente nas frações molares 0,4476 e 0,8133 para MA, 0,4368 e 0,8101 para MA e por fim 0,4921 e 0,8013 para Wilson; como se pode notar graficamente também. Existem algumas diferenças entres os valores calculados com os experimentais, principalmente nas frações iniciais do equilíbrio. Para essa mistura, com o valor variação da energia de Gibbs menor que zero, comprovadamente, ocorre presença de ponto peritético.

Figura 5.6: Diagrama de equilíbrio sólido-líquido para a mistura de palmitato de etila (1) com estearato de etila (2).

Sistema 7 – Caprilato de Etila com Caprato de Etila

Para essa mistura, os dados de equilíbrio sólido líquido formam o diagrama de fases disponível na Figura 5.7. Ao analisa-la, é possível verificar pequenos desvios aleatórios, porém é evidente uma proximidade entre os pontos experimentais e calculados. O ponto eutético ocorre na fração molar de 0,8666 para MA, 0,8461 para MS e 0,8547 para W; não existe formação peritética, comporvado com o resultado de um valor nulo para a variação da energia de Gibbs

Figura 5.7: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) com caprato de etila (2)

Sistema 8 – Caprilato de Etila com Laurato de Etila

O diagrama de fases sólido-líquido para o sistema 8 está descrito na Figura 5.8 Os valores obtidos com a aplicação do modelo juntamente com o ajuste dos parâmetros mostram-se próximos dos resultados obtidos de maneira experimental obtidos por BOROS *et al* (2009), COSTA *et al* (2010a,b), salvo pequenas diferenças em alguns pontos e uma mais evidente próxima a fração molar de 0,7. O ponto eutético ocorre em uma fração molar extremamente próxima a fração molar do componente 1 puro, de maneira com que não foi possível descrevê-lo com exatidão na aplicação dos três modelos; visualmente, o que se verifica é uma curva contínua, sem aparência de ponto eutético. A existência de uma variação da energia de Gibbs igual ou maior que zero denota a ausência do ponto peritético, portanto para essa mistura ocorre somente a formação de ponto eutético

Figura 5.8: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) com laurato de etila (2)

Sistema 9 – Caprilato de Etila com Miristato de Etila

A aplicação dos modelos de Margules Assimétrico, Simétrico e Wilson resultaram em dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.9. Esses diagramas de fases apresentam-se aparentemente em uma única curva, com maioria representada pela região 1. Por essa característica gráfica, o ponto eutético ocorre somente muito próximo da fração molar 1, tanto que para essa mistura não foi possível precisar esse valor em nenhum dos três modelos. Comparados aos valores experimentais obtidos por BOROS *et al* (2009), COSTA *et al* (2010a,b), os valores calculados se apresentam muito próximos, constatando um bom ajuste para essa mistura. Para essa mistura, com o valor variação da energia de Gibbs igual a zero, comprovadamente não ocorre presença de ponto peritético, conforme visto na Figura 5.9.

Figura 5.9: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) com miristato de etila (2)

Sistema 10 – Caprilato de Etila com Palmitato de Etila

Os valores resultantes da aplicação dos modelos, correspondentes aos dados equilíbrio sólido-líquido, formam os diagramas de fases descritos na Figura 5.10.

Para a mistura de caprilato com palmitato de etila, o ponto eutético ocorre em fração molar muito próxima a fração molar do componente 1 puro, o que faz com a que a grande maioria do gráfico seja descrito pelo modelo descrito como região 1, tanto que esse valor não pode ser calculado. Ao comparar os valores experimentais com os resultados calculados, nota-se uma grande proximidade entre eles. Com um valor nulo para a variação da energia de Gibbs se constata a ausência de formação de composto sólido intermediário, ou seja, não existe ponto peritético para essa mistura.

Figura 5.10: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) com palmitato de etila (2)

Sistema 11 – Caprilato de Etila com Estearato de Etila

A Figura 5.11 representa os diagramas de fases obtido com as aplicações dos modelos de Margules Asssimétrico, Simétrico e Wilson para a mistura de caprilato de etila com estearato de etila. Os valores obtidos com a aplicação do modelo juntamente com o ajuste dos parâmetros mostram-se bastante próximos dos resultados obtidos de maneira experimental por BOROS *et al* (2009), COSTA *et al* (2010a,b). Como se pode verificar pela Figura 5.11 não existe ponto peritético e o ponto eutético ocorre em uma fração molar muito próxima à do componente 1 puro, cujo valor exato não pode ser estimado.

Figura 5.11: Diagrama de equilíbrio sólido-líquido para a mistura de caprilato de etila (1) com estearato de etila (2)

Sistema 12 – Caprato de Etila com Laurato de Etila

Os dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.12 são o resultado da aplicação do modelos desenvolvidos neste trabalho. Nesses diagramas de fases, é possível verificar somente a presença das regiões 1 e 2, sendo evidente então a presença somente do ponto eutético na fração molar igual a 0,7787 para MA, 0,7757 para MS e 0,7765 para W, como se pode notar graficamente. Existem pequenas diferenças entres os valores calculados com os experimentais, encontradas nas frações iniciais do equilíbrio (0,2 e 0,3) e também nas proximidades do ponto eutético (0,7 a 0,9). Com o valor variação da energia de Gibbs igual a zero, comprovadamente, ocorre somente o ponto eutético.

Figura 5.12: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com laurato de etila (2)

Sistema 13 – Caprato de Etila com Miristato de Etila

Para essa mistura os dados de equilíbrio formam os diagramas de fases disponível na Figura 5.13. Ao comparar os dados experimentais com os obtidos pela aplicação dos modelos MA, MS e W, verifica-se uma oscilação considerável entre os resultados, sendo notório um distanciamento entre alguns pontos. O ponto eutético ocorre na fração molar de 0,9476 para MA, ao aplicar o modelo MS não foi possível identificar exatamente a fração do ponto eutético, visto que ele ocorre muito próxima a composição do componente 1 puro, o mesmo acontece pra o modelo W. A evidência de um valor nulo para a variação da energia de Gibbs constata a ausência de formação de composto sólido intermediário, ou seja, não existe ponto peritético para essa mistura.

Figura 5.13: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com miristato de etila (2)

Sistema 14 – Caprato de Etila com Palmitato de Etila

A Figura 5.14 representa os diagramas de fases obtido com as aplicações dos modelos de Margules Assimétrico, Simétrico e Wilson para a mistura de caprato de etila com palmitato de etila. Os valores obtidos com a aplicação dos modelos juntamente com os ajustes dos parâmetros mostram-se satisfatoriamente próximos dos resultados obtidos de maneira experimental, com diferenças mais próximas a fração molar 0,8. O ponto eutético, novamente não pode ser calculado devido à proximidade de ocorrência com a fração molar do componente 1 puro.

Figura 5.14: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com palmitato de etila (2)

Sistema 15 – Caprato de Etila com Estearato de Etila

A aplicação do modelo de Margules Assimétrico, Simétrico e Wilson resultaram em dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.15. Esses diagramas de fases apresentam-se em uma curva predominantemente formada pela região 1, com ausência de ponto peritético e presença do ponto eutético somente próximo da fração molar 1. São quase imperceptíveis diferença entre o valor calculado com o experimental obtidos por BOROS *et al* (2009), COSTA *et al* (2010a,b). Pelos ajustes, verifica-se que a variação da energia de Gibbs é nula, o que comprova a existência somente de ponto eutético, assim para essa mistura não ocorre formação peritética.

Figura 5.15: Diagrama de equilíbrio sólido-líquido para a mistura de caprato de etila (1) com estearato de etila (2)

5.1.2 - Sistemas compostos por ésteres de metila

Sistema 16 – Miristato de Metila com Palmitato de Metila

Para essa mistura os dados de equilíbrio que formam os diagramas de fases podem ser vistos na Figura 5.16. Visualmente é perceptível uma inclinação diferenciada no gráfico, a qual denota a presença do ponto peritético, com ocorrência na fração molar 0,5777 em MA, 0,6091 em MS e 0,5966 em W. O ponto eutético ocorre na fração molar 0,7443 em MA, 0,7125 em MS e 0,7487 em W; assim, nesse pequeno intervalo de frações molares, tem-se a presença da região 3. Ao comparar os valores experimentais obtidos por BOROS *et al* (2009), COSTA *et al* (2010a,b) com os resultados calculados, notam-se desvios bastante atenuados, com maiores diferenças para o modelo MS. Com um valor menor que zero para a variação da energia de Gibbs se constata a presença de formação ponto peritético para essa mistura.

Figura 5.16: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de metila (1) com palmitato de metila (2)

Sistema 17 – Miristato de Metila com Estearato de Metila

Os dados de equilíbrio resultantes da aplicação dos modelos de Margules Assimétrico, Simétrico e Wilson para a mistura de miristato de metila com estearato de metila estão representados nos diagramas de fases disponível na Figura 5.17. Os valores obtidos pela correlação do modelo com os dados experimentais se apresenta satisfatória (BOROS *et al*, 2009 e COSTA *et al*, 2010a,b). O ponto eutético ocorre na fração molar igual a 0,8453 para MA, 0,8478 para MS e 0,8453 para W; nota-se ausência de ponto peritético para essa mistura.

Figura 5.17: Diagrama de equilíbrio sólido-líquido para a mistura de miristato de metila (1) com estearato de metila (2)

Sistema 18 – Palmitato de Metila com Estearato de Metila

Com a aplicação dos modelos foi possível obter dados de equilíbrio sólido-líquido para a mistura de palmitato com estearato de metila, que foram os diagramas de fases da Figura 5.18. Nela, verifica-se a presença das três regiões descritas neste trabalho, com presença de ponto peritético, delimitando as regiões 1 e 3, e ponto eutético, marco divisor das regiões 3 e 2. Para a aplicação do modelo de Margules Assimétrico, esses pontos ocorrem respectivamente nas frações molares de 0,4579 e 0,7689, do Margules Simétrico, em 0,4698 e 0,7597 e do Wilson, em 0,4718 e 0,7782. Existem diferenças consideráveis entres os valores calculados com os experimentais, principalmente após o ponto eutético, visto os altos valores obtidos na SQE. Para essa mistura, com o valor variação da energia de Gibbs menor que zero, comprovadamente, ocorre presença de ponto peritético além do eutético.

Figura 5.18: Diagrama de equilíbrio sólido-líquido para a mistura de palmitato de metila (1) com estearato de metila (2)

5.1.3 - Sistemas compostos por ácidos graxos saturados

Sistema 19 – Ácido Cáprico com Ácido Láurico

Os dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.19 são os resultados das aplicações dos modelos MA, MS e W. Nesses diagramas de fases, é possível verificar a presença das regiões 1, 2 e 3 descritas neste trabalho. Os sete primeiros pontos pertencem à região 1, até a ocorrência do ponto peritético, na fração 0,5405 para MA, 0,5459 para MS e 0,5335 para W. Entre as frações de ponto peritético e ponto eutético tem-se a região 3, que ocorre na fração 0,7271 para MA, 0,7161 para MS e 0,7242 para W, composta do oitavo ao décimo primeiros pontos. Então, após o ponto eutético, a partir do décimo segundo ponto, é que se tem a região 2, como se pode notar graficamente. É possível verificar pequenas diferenças entres os valores calculados comparados aos obtidos experimentalmente por ROLEMBERG (2002), principalmente nas frações próximas aos pontos eutético e peritético.

Figura 5.19: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com ácido láurico (2)

Pelos ajustes, verifica-se que a variação da energia de Gibbs é menor que zero, o que comprova a existência de ponto peritético, além de ponto eutético, assim para essa mistura ocorre formação de outra fase sólida. Ainda, para o modelo MS é possível comparar os parâmetros a_{12} e ΔG^0 (MS) com os parâmetros obtidos por ROLEMBERG (2002), com os quais se verifica uma grande proximidade, visto que os encontrados pelo autor foram testados e apresentaram uma soma para o quadrado dos erros ligeiramente maior, os parâmetros do modelo MS, juntamente com ΔG^0 , estão disponíveis na Tabela 5.2.

Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)				
a_{12}	-283,2579	-284,4227				
$\Delta G^{0}(\mathrm{MS})$	-256,6429	-256,6449				

Tabela 5.2: Parâmetros obtidos para mistura de ácido cáprico com ácido láurico

Sistema 20 – Ácido Cáprico com Ácido Palmítico

Utilizando os Modelos MA, MS e W na mistura de ácido cáprico com ácido palmítico, foi possível obter os diagramas de fases disponível na Figura 5.20.

Figura 5.20: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com ácido palmítico (2)

Ao comparar os dados experimentais (ROLEMBERG, 2002) com os resultados obtidos pela aplicação do modelo de Margules Assimétrico, Simétrico e Wilson verifica-se uma satisfatória proximidade entre os resultados. O Ponto eutético ocorre na fração molar de 0,8537 para MA, 0,8598 para MS e 0,8563 para W, para essa mistura não existe formação de ponto peritético. O resultado de um valor nulo para a variação da energia de Gibbs constata a ausência

de formação de nova fase sólida, ou seja, não existe ponto peritético para essa mistura, conforme visto na Figura 5.20. Existem diferenças entre os valores ajustados por ROLEMBERG comparados aos ajustados pelo modelo MS neste trabalho, porém, ao utilizar os ajustes do autor obteve-se uma soma dos quadrados dos erros ainda maior, conforme valores diponíveis na Tabela 5.3.

era elle i arametres contace para mistaria de actac capiteo com actac para						
Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)				
a_{12}	-289,3542	-309,7747				
ΔG^{0}	0,0000	28,2234				

Tabela 5.3: Parâmetros obtidos para mistura de ácido cáprico com ácido palmítico.

Sistema 21 – Ácido Cáprico com Ácido Mirístico

Os dados do equilíbrio sólido líquido que formam os diagramas de fases descrito na Figura 5.21. Os valores obtidos com a aplicação do modelo de ajuste dos parâmetros mostram-se próximos em algumas frações molares e bastante distantes em outras, comparados aos resultados obtidos de maneira experimental (ROLEMBERG, 2002). Nesta mistura, para essa modelagem, tem-se a presença do ponto peritético, que ocorre em $x_1 = 0,6827$ no modelo MA e $x_1 = 0,6720$ para W, com modelo MS não foi possível detectar a formação dessa nova fase; e do ponto eutético, que ocorre em $x_1 = 0,8012$ para MA, $x_1 = 0,7627$ para MS e $x_1 = 0,8076$ para W. Vale ressaltar que somente as frações próximas a 0,7 e 0,8 é que pertence a região 3. Com o valor de ΔG^0 menor que zero para os modelos Margules Assimétrico e Wilson, comprova-se a formação de nova fase sólida (ponto peritético) além do ponto eutético, conforme obtido também por ROLEMBERG (2002), o que diferentemente ocorreu com o Margules Simétrico, no qual se encontrou um valor menor que zero para ΔG^0 , conforme a Tabela 5.4.

Figura 5.21: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com ácido mirístico (2)

	1 / 1	• ,	1 / 1	<i>,</i> .	/ • 1	• • •
Tabela 5 4. Parametros	obfidos i	nara mistura	de acido	caprico.	com acide	miristico
	obliquos	para mistura	uc actuo	capilco	com aciac	, mm isuco

Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
a_{12}	-312,5123	-317,6383
$\Delta G^{0}(\mathrm{MS})$	0,0000	-153,5736

Sistema 22 – Ácido Cáprico com Ácido Esteárico

A aplicação do modelo de Margules Assimétrico, Simétrico e Wilson resultou em dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.22.

Figura 5.22: Diagrama de equilíbrio sólido-líquido para a mistura de ácido cáprico (1) com ácido esteárico (2)

Os diagramas de fases obtido, apresenta somente ponto eutético, localizado na fração molar de 0,9285 para MA, 0,9344 para MS, 0,9332 para W, com somente os dois últimos pontos representando a região 2, com todo o restante pertencente à região 1. Comparados aos valores experimentais obtidos por ROLEMBERG (2002), os valores calculados se apresentam razoavelmente próximos, havendo um maior distanciamento nas frações 0,7 até 0,9.

Para o modelo MS, os dados ajustados neste trabalho comparados aos obtidos por ROLEMBERG (2002) apresentam grande proximidade, porém, para $a_{12} = -92,2131$ a soma dos quadrados dos erros resulta em um valor menor (Tabela 5.5).

Tabela 5.5: Parâmetros obtidos para mistura de ácido cáprico com ácido esteárico.

Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
a_{12}	-92,2131	-93,2254
$\Delta G^{0}(\mathrm{MS})$	0,0000	19030,1712

Sistema 23 – Ácido Mirístico com Ácido Palmítico

Para essa mistura os dados de equilíbrio que formam o diagrama de fases podem ser vistos na Figura 5.23.

Figura 5.23: Diagrama de equilíbrio sólido-líquido para a mistura de ácido mirístico (1) com ácido palmítico (2).

Para a mistura de ácido mirístico com ácido palmítico, é possível verificar tanto a presença de ponto peritético como de ponto eutético. O primeiro, limitador entre as regiões 1 e 3, ocorre na fração molar igual a 0,5207 para MA, 0,5236 para MS e 0,5156 para W; já o eutético, marco entre as regiões 3 e 2, ocorre em fração molar de 0,7071 para MA, 0,6998 para MS e 0,7002 para W. Ao comparar os valores experimentais (ROLEMBERG, 2002) com os resultados calculados, notam-se diferenças razoáveis entre eles, principalmente nas frações molares iniciais até o ponto peritético.

Os resultados obtidos para os parâmetros do modelo de Margules Simétrico estão disponíveis na Tabela 5.6, onde também estão os ajustes de ROLEMBERG (2002), em que ao compará-los, o modelo MS apresenta menor valor para a soma dos quadrados dos erros.

	eenaes para mistara ae	
Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
<i>a</i> ₁₂	-234,1768	-297,2904
$\Delta G^{0}(\mathrm{MS})$	-274,6487	-308,0957

Tabela 5.6: Parâmetros obtidos para mistura de ácido mirístico com ácido palmítico.

Com um valor menor que zero para a variação da energia de Gibbs se constata a formação de nova fase sólida, ou seja, existe ponto peritético para essa mistura, conforme visto na Figura 5.23.

5.1.4 - Sistemas compostos por ácidos graxos saturados e insaturados

Sistema 24 – Ácido Oléico e Ácido Cáprico

Os dados do equilíbrio sólido-líquido que formam o diagrama de fases descrito na Figura 5.24 estão dispostos no Anexo 1. Os valores obtidos com a aplicação dos modelos, juntamente com o ajuste dos parâmetros, mostram-se próximos dos resultados obtidos de maneira experimental por ROLEMBERG (2002), porém em algumas frações específicas (0,2; 0,3 e 0,5), nota-se uma maior diferenciação entre os pontos. Ao verificar a Figura 5.24, não existe ponto peritético, portanto há somente as regiões 1 e 2 que tem seus limites no ponto eutético, que ocorre em $x_1 = 0,5673$ para MA, $x_1 = 0,5690$ para MS, $x_1 = 0,5694$ para W.

Figura 5.24: Diagrama de equilíbrio sólido-líquido para a mistura de ácido oléico (1) com ácido cáprico (2).

Os parâmetros obtidos com o ajuste do modelo de Margules Simétrico estão disponíveis na Tabela 5.7, além daqueles ajustados por ROLEMBERG (2002), em que o mínimo encontrado para MS apresentou um menor valor para a soma dos quadrados dos erros.

Tabela 5.7: Parâme	etros obtidos para mistura c	le ácido oléico com ácido cáprico
Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
a_{12}	-647,1875	-648,5496
ΔG^0	0,0000	0,0000

. 1./.

Sistema 25 – Ácido Oléico com Ácido Esteárico

Os dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.25 são o resultado da aplicação do modelo de Margules Assimétrico, Simétrico e Wilson.

Figura 5.25: Diagrama de equilíbrio sólido-líquido para a mistura de ácido oléico (1) com ácido esteárico (2).

Nesses diagramas de fases, é possível verificar a presença majoritária da região 1, sendo que somente a fração molar do componente 1 puro, em sua respectiva temperatura de fusão, é que pertence a região 2, sendo assim, o ponto eutético também se apresenta nessa faixa, cujo valor não pode ser calculado pela proximidade da fração molar 1. Existem mínimas diferenças entres os valores calculados com os experimentais (ROLEMBERG, 2002), representando, portanto, um bom ajuste. Os parâmetros ajustados para MS estão disponíveis na Tabela 5.8, em que também se encontram os obtidos por ROLEMBERG (2002), comparando os valores obtidos com o modelo MS e pelo autor, esses dois ajustes apresentam valores com grande proximidade, apresentando pequenas diferenças na minimização da soma dos quadrados dos erros.

Tabela 5.8: Parâmetros obtidos para mistura de ácido oléico com ácido esteárico

Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
a_{12}	-97,4516	-98,5937
ΔG^0	0,0000	0,0000

5.1.5 - Sistemas compostos por ácidos graxos insaturados

Sistema 26 – Ácido Oléico com Ácido Elaídico

A aplicação dos modelos descritos neste trabalho resultaram em dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.26. Os diagramas de fases obtido apresentam somente ponto eutético, localizado na fração molar de 0,8968 para MA, 0,8931 para MS e 0,8986 para W, com somente os dois últimos pontos representando a região 2, com todos os outros pontos de equilíbrio pertencentes à região 1. Comparados aos valores experimentais obtidos por ROLEMBERG (2002), os valores calculados se apresentam razoavelmente próximos, havendo um maior distanciamento nas frações 0,6 e 0,2 até 0,4.

Figura 5.26: Diagrama de equilíbrio sólido-líquido para a mistura de ácido oléico (1) com ácido elaídico (2).

Para os modelo MS, os parâmetros ajustados neste trabalho estão disponíveis na Tabela 5.9, juntamente com os obtidos por ROLEMBERG (2002), aos quais, se comparados, apresentam

uma razoável diferença, tal que, para o a_{12} maior, a soma dos quadrados dos erros resulta em um valor menor.

idela 5.9. I arallie	uos oblidos para mistura d	
Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
a_{12}	400,3659	382,4158
ΔG^{0}	0,0000	0,0000

Tabela 5.9: Parâmetros obtidos para mistura de ácido oléico com ácido elaídico.

Sistema 27 – Ácido Linoléico com Ácido Oléico

Para essa mistura, visualmente, os modelos desenvolvidos neste trabalho formam os diagramas de fases disponível na Figura 5.27. Ao comparar os dados experimentais (ROLEMBERG, 2002) com os resultados obtidos pela aplicação do modelo de Margules Assimétrico, Simétrico e Wilson verifica-se uma grande proximidade entre os resultados, com diferenças quase imperceptíveis. O ponto eutético ocorre na fração molar de 0,7369 para MA, 0,7357 para MS e 0,7341 para W, para essa mistura não existe formação de ponto peritético.

Figura 5.27: Diagrama de equilíbrio sólido-líquido para a mistura de ácido linoléico (1) com ácido oléico (2).

Os resultados obtidos para os parâmetros MS estão disponíveis na tabela 5.10, juntamente com os valores obtidos por ROLEMBERG (2002), apresentando valores próximos.

Tabela 5.10: Parâmetros obtidos para mistura de ácido linoléico com ácido oléico

Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
<i>a</i> ₁₂	-94,8743	-95,8218
ΔG^{0}	0,0000	28,2234

5.1.6 - Sistemas compostos por ácidos graxos e triacilgliceróis

Sistema 28 – Ácido Liniléico com Triestearina

A aplicação do modelo de Margules Assimétrico, Simétrico e Wilson resultou em dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.28. Esses diagramas de fases apresentam-se em uma curva predominantemente formada pela região 1, com ausência de ponto peritético e presença do ponto eutético somente muito próximo da fração molar 1, tal proximidade impossibilitou encontrar esse valor. São praticamente imperceptíveis diferença entre o valor calculado com o experimental (ROLEMBERG, 2002).

O parâmetro específico para MS, juntamente com ΔG^0 , estão disponíveis na Tabela 5.11, em que também se encontram os obtidos por ROLEMBERG. Os valores para a_{12} são muito diferentes para essa mistura, visto que o menor valor para a minimização da soma dos quadrados dos erros foi obtido para MS.

Figura 5.28: Diagrama de equilíbrio sólido-líquido para a mistura de ácido linoléico (1) com triestearina (2).

Tal	bela 5.11: Parâr	netros obtidos para mistura d	e ácido linoléico com triestearina	a.
	Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)	
	a_{12}	179,8535	-0,0010	
	ΔG^0	0,0000	0,0000	

Sistema 29 – Tricaprilina com Ácido Mirístico

Os dados de equilíbrio sólido-líquido disponíveis graficamente na Figura 5.29 são os resultados das aplicações dos modelos MA, MS e W.

Figura 5.29: Diagrama de equilíbrio sólido-líquido para a mistura de tricaprilina (1) com ácido mirístico (2).

Nesses diagramas de fases, é possível verificar somente a presença predominante da região 1 e somente o ultimo ponto da região 2, com a presença do ponto eutético na fração molar igual a 0,9650 para MA, 0,9344 para MS e 0,8563 para W. Existe bastante diferença entres os valores calculados com os experimentais (ROLEMBERG, 2002), as mais notáveis estão próximas as frações 0,4, 0,5, 0,7 e 0,8, e também próximo do ponto eutético.

Os parâmetros ajustáveis de MS estão disponíveis na Tabela 5.12 onde também está o parâmetro de Margules ajustado por ROLEMBERG (2002), que apesar de próximos, para o ajuste do autor a soma dos quadrados dos erros apresentou um valor ainda maior.

	lios oblidos para mistura (ue tricaprinina com acido ministr
Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
a_{12}	356,4386	355,3381
ΔG^{0}	0,0000	0,0000

Tabela 5.12: Parâmetros obtidos para mistura de tricaprilina com ácido mirístico.

Sistema 30 – Ácido Palmítico com Triestearina

Para essa mistura os dados de equilíbrio formam os diagramas de fases disponível na Figura 5.30. Ao comparar os dados experimentais (ROLEMBERG, 2002) com os obtidos pela aplicação do modelo de Margules Assimétrico, Simétrico e Wilson; verifica-se uma grande proximidade entre os resultados. O Ponto eutético ocorre na fração molar de 0,9120 para MA, 0,9204 para MS e 0,9166 para W. Os resultados obtidos para os parâmetros MS estão disponíveis na Tabela 5.13, comparativamente aos ajustes obtidos por ROLEMBERG, apresentam menor valor para SQE.

Figura 5.30: Diagrama de equilíbrio sólido-líquido para a mistura de ácido palmítico (1) com triestearina (2).

Tabela 5.13: Par	âmetros obtidos para mistu	ara de ácido palmítico com tries	tearina
Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)	
a_{12}	45,9144	44,8203	
ΔG^0	0,0000	0,0000	

5.1.7 - Sistemas compostos por triacilgliceróis

Sistema 31 – Tripalmitina com Triestearina

Para essa mistura os dados de equilíbrio que formam o diagrama de fases podem ser vistos na Figura 5.31.

Figura 5.31: Diagrama de equilíbrio sólido-líquido para a mistura de tripalmitina (1) com triestearina (2).

Para a mistura de tripalmitina com triestearina, com a utilização do modelo de Margules Assimétrico, Wilson, tem-se a presença do ponto peritético, com ocorrência na fração molar 0,4652 para MA e 0,6528 para W, marco divisor das regiões 1 e 3; com modelo de Margules Simétrico não foi possível detectar essa formação. O ponto eutético ocorre na fração molar 0,8029 para MA, 0,7460 para MS e 0,7992 para W, transição entre as regiões 3 e 2. Ao comparar os valores experimentais (ROLEMBERG, 2002) com os resultados calculados, desvios são visíveis, alguns bastante relevantes. Na Tabela 5.14 estão os valores dos parâmetros obtidos para MS, onde também são apresentados os valores ajustados por ROLEMBERG. Apesar do ajuste do autor também não detectar o ponto peritético, os valores de a_{12} se apresentam bastante diferentes.

Tabela 5.14: Parâmetros obtidos para mistura de tripalmitina com triestearina.ParâmetroResultado (cal/mol)ROLEMBERG (cal/mol) a_{12} -437,4882-1112,5000 ΔG^0 (MS)0,00000,0000

Sistema 32 – Trioleína com Tripalmitina

Os dados do equilíbrio sólido-líquido obtidos pela aplicação dos modelos desenvolvidos neste trabalho formam os diagramas de fases descrito na Figura 5.32.

Figura 5.32: Diagrama de equilíbrio sólido-líquido para a mistura de trioleína (1) com tripalmitina (2).

Os valores obtidos com a aplicação dos modelos juntamente com o ajuste dos parâmetros mostram-se próximos dos resultados obtidos de maneira experimental (ROLEMBERG, 2002). O ponto eutético ocorre em uma fração molar extremamente próxima a fração molar do componente 1 puro, de maneira com que não foi possível descrevê-lo com exatidão, assim esse diagrama é formado predominantemente pela região 1.

Os parâmetros obtidos com o ajuste do modelo MS estão disponíveis na Tabela 5.15, juntamente com os ajustes de ROLEMBERG (2002), que se apresentam bastante próximos, porém com uma soma de quadrados de erro levemente menor para MS.

Tabela 5.15: Parâmetros obtidos para mistura de trioleína com tripalmitina.

Parâmetro	Resultado (cal/mol)	ROLEMBERG (cal/mol)
a_{12}	-131,7925	-132,8125
ΔG^{0}	0,0000	0,0000

5.2 - Misturas ternárias

As superfícies de equilíbrio ternárias foram obtidas por meio dois modelos termodinâmicos diferentes, Margules Assimétrico e Wilson ternários (subitens 3.6 e 3.7), aplicados a 9 sistemas formados por ésteres de etila e metila e ácidos graxos saturados e insaturados, sendo essas as subdivisões dessa seção. Essas superfícies são predições de resultados de equilíbrio sólido líquido para essas misturas e não foram comparadas a resultados experimentais, visto que os mesmos não existem como fonte de estudos de outros autores.

A partir dessas superfícies, também foi possível representar esses resultados em níveis de temperatura, os quais foram escolhidos aleatoriamente distribuídos para cada mistura tendo em vista cada tipo de comportamento, com objetivo de detalhar e melhor representar cada um dos sistemas estudados.

Esses resultados, como predição de dados, contribuem de maneira mais abrangente em aplicações práticas, pois óleos e gorduras apresentam, não somente três, mas a presença de vários desses componentes, em suas composições como descrito no subitem 2.6. Assim esses dados de equilíbrio estão ainda mais próximos da realidade de misturas reais com utilidades industriais das mais diversas.

Os valores obtidos para no equilíbrio, calculados pela aplicação dos modelos, utilizados para formação dos diagramas ternários estão disponíveis no Apêndice 4. Também vale ressaltar que os parâmetros dos modelos termodinâmicos de Margules Assimétrico $(A_{12}, A_{21}, A_{13}, A_{31}, A_{23}, A_{23})$ e Wilson $(\Lambda_{12}, \Lambda_{21}, \Lambda_{13}, \Lambda_{31}, \Lambda_{23}, \Lambda_{23})$, bem como os valores para a variação da energia de Gibbs de reação (ΔG^0) utilizados, foram os mesmos das misturas binárias (Tabela 5.33), porém, agora aplicados para misturas ternárias, dois a dois.

5.2.1 - Sistemas compostos por ésteres de etila e metila

5.2.1.1 - Sistema 1 – Palmitato com Estearato com Miristato de etila

Para essa mistura, a superfície de equilíbrio ternária está disponível na Figura 5.33 para a aplicação do modelo Margules Assimétrico e na Figura 5.34 para o modelo de Wilson.

Figura 5.33: Diagrama de fases ternário rotacionado em duas vistas para palmitato (1) com estearato (2) com miristato (3) de etila – Margules Assimétrico

Figura 5.34: Curvas de nível para temperatura de 290/295/300/305K para palmitato (1) com estearato (2) com miristato (3) de etila – Margules Assimétrico

Tanto para a superfície formada pela aplicação do modelo de Margules Assimétrico (Figura 5.33) quanto Wilson (Figura 5.35), as linhas referentes a variação molar do componente 3, são equivalentes, em suas extremidades, aos equilíbrios binários. Essas superfícies, pela sua inclinação e presença de ΔG^0 menor que zero, apresentam reação peritética.

Nas Figuras 5.34 e 5.36, o mesmo equilíbrio ternário da mistura palmitato com estearato e miristato de etila está representado em 4 patamamares de temperatura: 290, 295, 300 e 305K, para os modelos de Margules Assimétrico e Wilson, respectivamente. Esses patamares de temperatura representam, de forma bastante abrangente, as composições de equilíbrio e evolução das mesmas com a variação de temperatura, vistas de forma diferenciada comparada a superfície de equilíbrio.

Figura 5.35: Diagrama de fases ternário rotacionado em duas vistas para palmitato (1) com estearato (2) com miristato (3) de etila – Wilson.

Figura 5.36: Curvas de nível para temperatura de 290/295/300/305K para palmitato (1) com estearato (2) com miristato (3) de etila – Wilson.

5.2.1.2 - Sistema 2 – Laurato com Palmitato com Miristato de etila

As Figuras 5.37 e 5.39 representam as superfícies de equilíbrio para o sistema 2, respectivamente obtidas pelos modelos de Margules Assimétrico e Wilson.

Figura 5.37: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com palmitato (2) com miristato (3) de etila – Margules Assimétrico

Figura 5.38: Curvas de nível para temperatura de 2/0/280/290/295K para laurato (1) con palmitato (2) com miristato (3) de etila – Margules Assimétrico

Ao analisar a superfície de equilíbrio obtida pela aplicação do modelo de Margules Assimétrico (Figura 5.37) e para a superfície obtida com o Modelo de Wilson (Figura 5.39), de forma bastante atenuada, se verifica a inclinação referente a formação peritética, visto que o valor de ΔG^0 , para essa mistura, é menor que zero. Ao fracionar essas superfícies em diferentes patamares de temperatura, é possível descrever o comportamento das frações molares dos componentes 1, 2 e 3 em cada nível, disponíveis nas Figuras 5.38 e 5.40, para os modelos de Margules Assimétrico e Wilson, respectivamente. Especificamente no patamar de 270 K, pelas características da mistura, se verifica a presença de misturas binárias em três pontos, dois deles ocorrem devido ao ponto eutético na mistura laurato com miristato de etila, o que visulamente não é comum.

Figura 5.39: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com palmitato (2) com miristato (3) de etila – Wilson

5.2.1.3 - Sistema 3 – Laurato com Caprato com Caprilato de etila

Os resultados da aplicação dos modelos de Margules Assimétrico e Wilson para obtenção do equilíbrio ternário na mistura de laurato, caprato e caprilato estão apresentados no formato de uma superfície de equilíbrio (Figuras 5.41 e 5.43, respectivamente). Para essa mistura, as

superfícies resultante da aplicação dos dois modelos termodinâmicos já citados, apresentam somente formação eutética, visto que para esse sistema, o valor para ΔG^0 é maior ou igual a zero.

As Figuras 5.42 e 5.44 apresentam as superfícies ternárias para a mistura de laurato com caprato com caprilato nos patamares de 240, 250, 260 e 270 K, onde se verifica a progressão das frações molares, com o aumento da temperatira, como já evidenciado a superfície ternária.

Figura 5.41: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com caprato (2) com caprilato (3) de etila – Margules Assimétrico

Figura 5.43: Diagrama de fases ternário rotacionado em duas vistas para laurato (1) com caprato (2) com caprilato (3) de etila – Wilson

5.2.1.4 - Sistema 4 – Caprato com Miristato com Caprilato de etila

As superfícies de equilíbrio disponíveis nas Figuras 5.45 e 5.47, que representa o equilíbrio sólido líquido para o sistema 4, são os resultados da aplicação dos modelos Margules Assimétrico e Wilson desenvolvidos neste trabalho.

Figura 5.45: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com miristato (2) com caprilato (3) de etila – Margules Assimétrico

Figura 5.46: Curvas de nível para temperatura de 240/250/265/280K para caprato (1) com miristato (2) com caprilato (3) de etila – Margules Assimétrico

Para as superfícies resultantes deste equilíbrio ternário, com a aplicação de Margules Assimétrico e Wilson, são verificadas superfícies quase uniformes, com apresentação de leve inclinação somente próximo ao equilíbrio binário de caprilato com caprato de etila, resultante da formação eutética. Nas Figuras 5.46 e 5.48, para o modelo de Margules Assinétrico e Wilson respectivamente, são apresentadados, de maneira mais evidente, o comportamento das fraçãoes molares dos componentes desta mistura tendo em vista a progressão nos níveis de temperatura de 240, 250, 265 e 280 K. Nota-se, que desde frações molares bastante próximas a mistura binária entre caprato e caprilato, elas tem caráter aproximadamente linear, devido ao tipo de inclinação já descrita pelas Figuras 5.45 e 5.47.

Figura 5.40: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com miristato (2) com caprilato (3) de etila – Wilson

5.2.1.5 - Sistema 5 – Caprato com Palmitato com Caprilato de etila

Para essa mistura, as superfícies de equilíbrio ternárias estão disponíveis na Figura 5.47 para a aplicação do modelo Margules Assimétrico e na Figura 5.49 para o modelo de Wilson. Neste sistema, devido ás características e disposição das linhas que formam a superfície, o formação eutético ocorre muito próximo a linha do equilíbrio binário caprilato com caprato, sendo imperceptível a inclinação dessa formação, consideração válida para os dois modelos aqui utilizados.

Nas representações em níveis de temperatura, Figuras 5.48 e 5.50 referentes aos modelos de Margules Assimétrico e Wilson, respectivamente; devido as características dessa mistura, os patamares de temperatura foram definidos de maneira não uniforme, com objetido de mostrar a diferença existe na ocorrência de pontos de equilíbrio na região mais próxima ao binário caprilato com caprato de etila. Assim, é possível notar que entre os patamares de temperatura 255 e 275 K, com diferença de 20 K, os pontos pouco se deslocam comparados aos patamares mais altos de temperatura, em que os pontos de equilíbrio apresentam um maior distanciamento com uma diferença de apenas 5 K.

Figura 5.47: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com palmitato (2) com caprilato (3) de etila – Margules Assimétrico

Figura 5.49: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com palmitato (2) com caprilato (3) de etila – Wilson

Figura 5.50: Curvas de nível para temperatura de 255/275/290/295K para caprato (1) com palmitato (2) com caprilato (3) de etila – Margules Assimétrico

5.2.1.6 - Sistema 6 – Caprato com Estearato com Caprilato de etila

O sistema 6 tem seu equilíbrio ternário em superfícies representadas graficamente pelas Figuras 5.51 e 5.53, que respectivamente, são resultados das aplicações dos modelos Margules Assimétrico e Wilson.

Figura 5.51: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com estearato (2) com caprilato (3) de etila – Margules Assimétrico

Nas Figuras 5.52 e 5.54 estão disponíveis, pela aplicação dos modelos de Margules Assimétrico e Wilson, respectivamente, o equilíbrio ternário entre caprato, estearato e caprilato de etila em patamares de temperatura. Nesta disposição é possível verificar que os pontos de equilíbrio apresentam intervalos menores de temperatura quanto mais próximos se encontram da linha caprato com caprilato de etila; isso também se verifica nas superfícies, caracterizada pela inclinação brusca próxima a esse equilíbrio binário.

Figura 5.53: Diagrama de fases ternário rotacionado em duas vistas para caprato (1) com estearato (2) com caprilato (3) de etila – Wilson

5.2.1.7 - Sistema 7 – Estearato com Palmitato com Miristato de Metila

Os resultados da aplicação dos modelos de Margules Assimétrico e Wilson para obtenção do equilíbrio ternário na mistura de 7 estão apresentados no formato de uma superfície de equilíbrio (Figuras 5.55 e 5.57, respectivamente). Nessas superfícies é notável a inclinação referente a formação peritética, devido ao valor menor que zero para ΔG^0 , além da eutética.

As Figuras 5.56 e 5.58 apresentam as composição ternárias para a mistura de estearato com palmitato com miristato de metila nos patamares de 290, 295, 300 e 305 K de temperatura, onde se verifica a progressão das frações molares, com o aumento da temperatura, como já evidenciado a superfície ternária. Devido ao comportamento da mistura, com a presença de reação peritética, as composições se apresentam em formas diferenciadas, com aparência curvada.

Figura 5.55: Diagrama de fases ternário rotacionado em duas vistas para estearato (1) com palmitato (2) com miristato (3) de metila – Margules Assimétrico

palmitato (2) com miristato (3) de metila – Margules Assimétrico

Figura 5.57: Diagrama de fases ternário rotacionado em duas vistas para estearato (1) com palmitato (2) com miristato (3) de metila – Wilson

5.2.2 - Sistemas compostos por ácidos graxos saturados e insaturados

5.2.2.1 - Sistema 8 – Ácido Mirístico com Palmítico com Cáprico

As superfícies de equilíbrio disponíveis nas Figuras 5.59 e 5.61, que representa o equilíbrio sólido líquido para o sistema 8, são os resultados da aplicação dos modelos Margules

Assimétrico e Wilson desenvolvidos neste trabalho. Nas duas Figuras apresentadas, são verificadas inclinações referentes a formações eutéticas e também peritéticas, esta última devido ao valor negativo para variação da energia de Gibbs de reação.

Figura 5.59: Diagrama de fases ternário rotacionado em duas vistas para ácido mirístico (1) com ácido plamítico (2) com ácido cáprico (3) – Margules Assimétrico

com ácido plamítico (2) com ácido cáprico (3) – Margules Assimétrico

As representação do equilíbrio ternário em patamares de temperatura para o sistema 8, disponíveis nas Figuras 5.60 e 5.62, referente aos resultados obtidos com o modelo de Margules Assimétrico e Wilson, respectivamente, apresentam um deslocamento das frações molares com o aumento da temperatura. Essas frações molares apresentam formas curvilíneas capazes de representar as propriedades dessa mistura, visto a presença do ponto eutético e peritético.

Figura 5.61: Diagrama de fases ternário rotacionado em duas vistas para ácido mirístico (1) com ácido plamítico (2) com ácido cáprico (3) – Wilson

5.2.2.2 - Sistema 9 – Ácido Cáprico com Esteárico com Oléico

O sistema 9 tem seu equilíbrio ternário, representado por superfícies, representadas graficamente pelas Figuras 5.63 e 5.65, que respectivamente, são as aplicações dos modelos Margules Assimétrico e Wilson, elas apresentam leve inclinação referente a formação eutética. As linhas que formam a superfície são referentes a variação da fração molar do ácido oléico.

As Figuras 5.64 e 5.66, para o modelo de Margules Assinétrico e Wilson respectivamente, são apresentadados, apresentam o comportamento das fraçãoes molares dos componentes desta mistura tendo em vista a progressão nos níveis de temperatura de 290, 305, 320 e 335 K. Nota-se, que desde frações molares bastante próximas a mistura binária entre ácido cáprico e oleico, elas tem caráter aproximadamente linear, devido ao tipo de inclinação já descrita pelas superfícies ternárias correspondentes.

Figura 5.63: Diagrama de fases ternário rotacionado em duas vistas para ácido cáprico (1) com ácido esteárico (2) com ácido oléico (3) – Margules Assimétrico

com ácido esteárico (2) com ácido oléico (3) – Margules Assimétrico

Figura 5.65: Diagrama de fases ternário rotacionado em duas vistas para ácido cáprico (1) com ácido esteárico (2) com ácido oléico (3) – Wilson

* * *

Ao final da apresentação dos nove sistemas ternários desenvolvidos neste trabalho, é possível considerar que as aplicações dos modelos de Margules Assimétrico e Wilson, se mostram próximas entre si, e ainda condizentes com as formações binárias que as representam.

5.3 - Cálculo da Média do Desvio de Temperatura

Os resultados numéricos obtidos para a temperatura de fusão para cada estudo de caso, com a aplicação dos modelos binários desenvolvidos neste trabalho também foram comparados com os resultados experimentais obtidos por BOROS *et al* (2009), COSTA *et al* (2010a,b) e ROLEMBERG (2002) através do cálculo do Desvio Médio de Temperatura (DMT) segundo ROCHA e GUIRARDELLO (2009), definida por:

$$DMT = \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{\left|T_{i,\exp} - T_{i,\text{calc}}\right|}{T_{i,\exp}} \cdot 100\%$$
(5.3.1)

A Tabela 5.16 apresenta os valores de DMT para todos os estudos de caso binários apresentados neste trabalho, para os três modelos estudados, onde se pode verificar que o desvio obtido para cada mistura são próximos; o que denota a boa representatividade dos modelos e que estes estão próximos dos dados experimentais. Assim, agora numericamente, pode-se novamente afirmar que os diagramas de fases formados apresentam bons resultados com grande proximidade entre si.

Sistema	Componentos de Misture	I I I I I I I I I I I I I I I I I I I		
	Componentes da Mistura	MA	MS	Wilson
1	Laurato / Miristato de etila	0,202	0,209	0,164
2	Laurato/ Palmitato de etila	0,110	0,167	0,128
3	Laurato/ Estearato de etila	0,093	0,364	0,139
4	Miristato/Palmitato de etila	0,103	0,150	0,163
5	Miristato/ Estearato de etila	0,144	0,133	0,136
6	Palmitato/ Estearato de etila	0,091	0,121	0,195
7	Caprilato/ Caprato de etila	0,110	0,157	0,124
8	Caprilato/ Laurato de etila	0,232	0,234	0,231
9	Caprilato/ Miristato de etila	0,085	0,124	0,086
10	Caprilato/ Palmitato de etila	0,133	0,236	0,221
11	Caprilato/ Estearato de etila	0,073	0,091	0,062
12	Caprato/ Laurato de etila	0,122	0,218	0,138
13	Caprato/ Miristato de etila	0,302	0,309	0,309
14	Caprato/ Palmitato de etila	0,142	0,224	0,170
15	Caprato/ Estearato de etila	0,097	0,101	0,087
16	Miristato/ Palmitato de metila	0,073	0,157	0,080
17	Miristato/ Estearato de metila	0,088	0,091	0,086
18	Palmitato/Estearato de metila	0,167	0,188	0,163
19	Ácido cáprico/láurico	0,145	0,164	0,137
20	Ácido cáprico/palmítico	0,142	0,224	0,156
21	Ácido cáprico/mirístico	0,236	0,250	0,201
22	Ácido mirístico/palmítico	0,146	0,142	0,132
23	Ácido cáprico/esteárico	0,161	0,152	0,147
24	Ácido oléico/cáprico	0,195	0,192	0,190
25	Ácido oléico/esteárico	0,071	0,070	0,074
26	Ácido oléico/elaídico	0,169	0,174	0,162
27	Ácido linoléico/oléico	0,031	0,039	0,039
28	Ácido linoléico/Triestearina	0,050	0,186	0,072
29	Tricaprilina/Ácido mirístico	0,259	0,291	0,187
30	Ácido palmítico/Triestearina	0,035	0,090	0,036
31	Tripalmitina/Triestearina	0,090	0,112	0,090
32	Trioleína/Tripalmitina	0,025	0,093	0,087

Tabela 5.16: Resultados obtidos para DMT

5.4 - Análise e Comparação dos resultados

Com o intuito de encontrar um comportamento padrão ou preditivo para os ajustes efetuados para os parâmetros dos modelos binários utilizados foram feitas algumas análises entre os resultados obtidos. Essas análises basearam-se na tentativa de agrupamento por semelhança de

compostos ou mesmo por classes ou ainda por diferenças entre o número de carbonos entre as cadeias carbônicas misturadas.

Essas análises foram aplicadas somente para os modelos de Margules Assimétrico binário e Wilson binário, visto que o modelo de Margules Simétrico não se mostrou com o melhor resultado em nenhuma das misturas binárias estudadas.

Ainda como forma de comparação utilizou-se do artifício da determinação dos coeficientes a diluição infinita, e também, somente para o modelo de Wilson binário, cálculos para verificar a dependência de temperatura dos parâmetros.

5.4.1 - Análises dos parâmetros ajustados por grupos de mesmo componente 1, variando componente 2

Estas análises foram realizadas pontualmente para àquelas misturas em que um mesmo composto aparece pelo menos em três misturas, para que possíveis comportamentos pudessem ser obtidos.

Laurato de Etila (C14)

Esse composto foi utilizado em três diferentes misturas binárias: Miristato (C16 - sistema 1), Palmitato (C18 - sistema 2) e Estearato de Etila (C20 – sistema 3). A relação existente entre os parâmetros de Margules Assimétrico estão na Figura 5.67, em que se verifica um comportamento curvilíneo entre os parâmetros ajustado. Ao comparar o comportamento de A_{12} com A_{21} , aparentemente se apresentam de maneira curvilínea.

A Figura 5.68 descreve a relação entre os parâmetros ajustados para o modelo de Wilson em misturas binárias envolvendo o laurato de etila. Para os parâmetros Λ_{12} obtidos para as misturas com 16, 18 e 20 carbonos não apresentam nenhum tipo de comportamento aparente, mas os valores de Λ_{21} , é possível verificar um comportamento linear, com um valor para R^2 elevado, cuja equação da reta resultante desse comportamento linear está disponível no próprio gráfico.

Figura 5.67: Comparativo entre parâmetros de Margules Assimétrico com a variação de número de carbonos para misturas com laurato de etila

Figura 5.68: Comparativo entre parâmetros de Wilson com a variação de número de carbonos para misturas com laurato de etila

Caprilato de Etila (C10)

O caprilato de etila foi utilizado com a maior variedade de combinações nas misturas binárias aqui estudadas, sendo que este composto foi combinado com: caprato (C12 - sistema 7), laurato (C14 – sistema 8), miristato (C16 – sistema 9), palmitato (C18 – sistema 10) e estearato de etila (C20 – sistema 11). Os parâmetros obtidos com a aplicação do modelo de Margules Assimétrico binário estão na Figura 5.69, em que não se verifica nenhum tipo de comportamento aparente; inicialmente o parâmetro A_{12} comportou-se linearmente, mas para a mistura com palmitato, o valor teve um aumento brusco, com a perda deste comportamento.

Figura 5.69: Comparativo entre parâmetros de Wilson com a variação de número de carbonos para misturas com caprilato de etila

Com a aplicação do modelo de Wilson binário para as mesmas misturas envolvendo o caprilato de etila como componente 1, a Figura 5.70 foi obtida. No âmbito comparativo, nada se pode afirmar sobre algum tipo de comportamento entre os parâmetros de Wilson ajustados, o que se nota é uma certa simetria entre os parâmetros Λ_{12} e Λ_{21} .

Figura 5.70: Comparativo entre parâmetros de Wilson com a variação de número de carbonos para misturas com caprilato de etila

Caprato de Etila (C12)

Neste trabalho, o composto caprato de etila se apresenta misturado aos compostos: laurato (C14 – sistema 12), miristato (C16 – sistema 13), palmitato (C18 – sistema 14), estearato (C20 – sistema 15). A essas misturas binárias, a aplicação do modelo de Margules Assimétrico resultou em parâmetros, disponíveis na Figura 5.71, os quais não apresentam comportamento perceptível.

Figura 5.71: Comparativo entre parâmetros de Margules Assimétrico com a variação de número de carbonos para misturas com caprato de etila

Os parâmetros resultantes da aplicação do modelo de Wilson aplicados às misturas binárias com caprato de etila estão conjuntamente mostrados na Figura 5.72. Esses parâmetros visualizados conjuntamente não apresentam caráter comportamental pré-definido.

Figura 5.72: Comparativo entre parâmetros de Wilson com a variação de número de carbonos para misturas com caprato de etila

Ácido Cáprico (C10)

O ácido cáprico é componente das misturas binárias com: ácido láurico (C12 – sistema 19), mirístico (C14 – sistema 21), palmítico (C16 – sistema 20), esteárico (C18 – sistema 23). Para essas misturas, os resultados obtidos no ajuste dos parâmetros de Margules Assimétrico estão concatenados na Figura 5.73. Nestes sistemas, os parâmetros A_{12} apresentam um comportamento linear, com bom ajuste entre os valores representado pelo alto valor de resultante. Ao agrupar os resultados obtidos do ajuste de parâmetros do Modelo de Wilson, a Figura 5.74 foi construída. Esses parâmetros, resultantes das misturas binárias entre ácidos graxos saturados, se comportam linearmente com uma variação na cadeia carbônica, visto que com o aumento do número de carbonos o parâmetro Λ_{12} decresce, já o Λ_{21} cresce. O comportamento linear resulta em uma aproximação satisfatória, visto que os valores R^2 se aproximam de 1, esses valores e as próprias equações também estão disponíveis na figura abaixo.

Figura 5.73: Comparativo entre parâmetros de Margules Assimétrico com a variação de número de carbonos para misturas com ácido cáprico

Figura 5.74: Comparativo entre parâmetros de Wilson com a variação de número de carbonos para misturas com ácido cáprico

Em uma análise geral, a comparação entre os resultados das misturas bináras com componentes em comum, apresentou bons resultados quando foi possível verificar algum tipo de comportamento entre os parâmetros determinados; tendo em vista que foram obtidas quatro equações de reta capazes de representar os parâmetros, cujas equações podem, inclusive, ser utilizadas para obtenção de outros parâmetros com misturas de mesmo componente com números diferentes de carbonos, com uma simples extrapolação de dados. Aos outros parâmetros, que não apresentaram um comportamento aparente, essa tentativa de comparação não apresentou relevância como resultados neste trabalho.

5.4.2 - Análises dos parâmetros ajustados por diferença entre números de carbonos nas cadeias carbônicas.

Novamente, na busca por uma padronização entre os resultados determinados pelos modelos de Margules Assimétrico binário e Wilson binário, é que foram construídos os gráficos que relacionam os parâmetros dos modelos obtidos comparados a diferença do número de carbonos entre os componentes da mistura. Os resultados foram agrupados por classes de elementos: ésteres de etila, ésteres de metila, ácidos graxos saturados, ácidos graxos e

triacilgliceróis. As misturas contendo somente ácidos graxos saturados com insaturados, ácidos graxos insaturados e as outras somente com triacilgliceróis não se encontram nessa análise pois seus componentes apresentam o mesmo número de carbonos, se diferenciam apenas por arranjos em suas cadeias carbônicas ou ainda são em pequena quantidade, cuja comparação não seria relevante.

Ésteres de Etila

As misturas binárias entre ésteres de etila são bastante numerosas neste trabalho. São 3 sistemas contendo laurato como primeiro componente, 2 com miristato, 5 com caprilato e 4 com caprato. Cada uma dessas misturas apresentam diferenças entre o número de carbonos em suas respectivas cadeias. Assim, com a aplicação do modelo de Margules Assimétrico, foram ajustados os parâmetros A_{12} e A_{21} , de forma que os gráficos contidos nas Figuras 5.75 e 5.76, respectivamente, mostram esses resultados conjuntamente na tentativa de verificar alguma semelhança ou sequência desses resultados.

Figura 5.75: Comparativo entre parâmetros A_{12} e diferença de carbonos para ésteres de etila.

Figura 5.76: Comparativo entre parâmetros A_{21} e diferença de carbonos para ésteres de etila.

O mesmo foi feito para o modelo de Wilson. Os gráficos das Figuras 5.77 e 5.78 mostram a relação entre os parâmetros Λ_{12} e Λ_{21} , respectivamente, comparados às diferenças entre os números de carbonos nas cadeias carbônicas.

Figura 5.77: Comparativo entre parâmetros Λ_{21} e diferença de carbonos para ésteres de etila.

Figura 5.78: Comparativo entre parâmetros Λ_{21} *e diferença de carbonos para ésteres de etila.*

Para os ésteres de etila, os parâmetros ajustados tanto para o modelo de Margules Assimétrico, quanto para o de Wilson, comparados somente a diferença de carbonos, não apresentam qualquer tipo de comportamento ou relação de caráter preditiva. Assim, para essas misturas essa comparação é irrelevante.

Ésteres de Metila

Neste trabalho, apenas três sistemas binário contém esse classe de componentes, proveniente da combinação entre três compostos: miristato de metila, palmitato de metila e esterato de metila. O gráfico representado pela Figura 5.79, mostra os resultados obtidos para os parâmetros do Modelo de Margules Assimétrico (A_{12} e A_{21}) relacionados à diferença entre número de carbonos das cadeias envolvidas. Os sistemas binários contendo miristatos foram separados daquele que contém palmitato, já que este último também apresenta uma diferença de dois carbonos quando misturado ao estearato.

Figura 5.79:- Comparativo entre parâmetros A_{12} *e* A_{21} *com diferença de carbonos para ésteres de metila.*

Os parâmetros ajustados Λ_{12} e Λ_{21} , proveniente da aplicação do modelo de Wilson para os sistemas binários com ésteres de metila, relacionados com a diferença entre carbonos dos componentes envolvidos, estão disponíveis de forma gráfica na Figura 5.80. Novamente, os sistemas envolvendo o palmitato estão diferenciados, pois, apresentam a mesma diferença de carbonos de um dos sistemas do miristato.

Figura 5.80: Comparativo entre parâmetros Λ_{12} e Λ_{21} com diferença de carbonos para ésteres de metila.

Para os ésteres de metila, os gráficos relacionais entre os parâmetros ajustados pelos modelos e as diferenças de números de carbonos entre as cadeias, não apresentam comportamento definido, de forma a não contribuir com o a busca pelo caráter preditivo para determinação de parâmetros.

Ácidos graxos saturados

Com um total de cinco compostos dessa classe, esta análise foi feita para a comparação dos cinco sistemas binários formados relacionando os parâmetros dos modelos de Margules Assimétrico e Wilson com a diferença entre os números de carbono da mistura.

O gráfico da Figura 5.81 mostra o comportamento dos parâmetros A_{12} e A_{21} , referente ao modelo de Margules Assimétrico, em relação a essa diferença de cadeia, onde se verifica a possibilidade de linearização dos parâmetros de interação 12, sendo que o quadrado da regressão resultou em um razoavelmente baixo ($R^2 = 0.9559$).

A Figura 5.82 traz o gráfico referente à relação entre os resultados dos parâmetros obtidos com a aplicação do modelo de Wilson, Λ_{12} e Λ_{21} , comparados com a diferença de carbonos

entre as misturas dos mesmos ácidos graxos saturados, agora ambos os parâmetros se apresentam de maneira linear com a diferença de carbonos, com uma melhor aproximação para Λ_{21} , com um $R^2 = 0.983$; e, de forma menos satisfatória, para Λ_{12} , com um quadrado para regressão um pouco baixo ($R^2 = 0.9018$).

Figura 5.81: Comparativo entre parâmetros A_{12} e A_{21} com diferença de carbonos para ácidos graxos saturados.

Figura 5.82: Comparativo entre parâmetros Λ_{12} *e* Λ_{21} *com diferença de carbonos para ácidos graxos saturados.*

De maneira geral para os ácidos graxos saturados, a comparação e a tentativa de encontrar uma relação entre os parâmetros ajustados baseados na diferença entre os números de carbonos das cadeias se mostraram com uma maior relevância para esses compostos, já que três das quatro relações apresentadas são lineares, com valores razoáveis para o quadrado da regressão.

Ácidos graxos e triacilgliceróis

Os resultados obtidos com o ajuste de parâmetros dos modelos de Margules Assimétrico binário e Wilson binário foram relacionados graficamente com a diferença de número de carbonos entre as cadeias dos compostos misturados, esses resultados estão disponíveis nas Figuras 5.83 e 5.84, respectivamente.

Para o modelo de Margules Assimétrico essa comparação é válida somente para os parâmetros A_{21} , visto que este apresenta um comportamento linear em relação à diferença de carbonos, com uma diminuição do parâmetro diante de um aumento da diferença (Figura 5.83), tal comportamento pode ser medido com o cálculo do quadrado da regressão, que resultou em um valor satisfatório de 0,9769.

Com a aplicação do modelo de Wilson (Figura 5.84), a relação tanto do parâmetro Λ_{12} , quanto do Λ_{21} , é linear com a diferença de números de carbonos entre as cadeias misturadas, em que se verifica uma diminuição de Λ_{12} com o aumento da diferença de carbonos, com o contrário para Λ_{21} , este aumenta juntamente com o aumento da diferença. O comportamento linear tem grande representatividade visto que os valores obtidos para R^2 são bastante próximos de um, respectivamente, 0,9952 e 0,9863.

Figura 5.83: Comparativo entre parâmetros A_{12} e A_{21} com diferença de carbonos para ácidos graxos e triacilgliceróis.

Figura 5.84: Comparativo entre parâmetros Λ_{12} e Λ_{21} com diferença de carbonos para ácidos graxos e triacilgliceróis.

As misturas binárias contendo ácidos graxos e triacilgliceróis, com seus parâmetros ajustados, tanto do modelo de Margules Assimétrico quanto o de Wilson, comparados a diferença

de carbonos apresentam caráter linear em três das quatro possibilidades estudadas, o que facilita a predição e comparação de novos possíveis cálculos envolvendo esse tipo de misturas.

5.4.3 - Cálculo do coeficiente de atividade a diluição infinita

Conforme descrito na seção 3.8, os modelos desenvolvidos e aplicados nas misturas binárias escolhidas para este trabalho: Margules – dois sufixos e Wilson, e de maneira a complementar esse estudo, também a equação Florry-Huggins (WESDORP, 1990), terão os seus coeficientes de atividade calculados em diluição infinita.

Retomando as equações já citadas para Margules - dois sufixos:

$$R \cdot T \cdot \ln \gamma_i^{\infty} = A_{ii} \qquad (x_i \to 0 \qquad x_i \to 1) \tag{3.8.1}$$

Para o modelo de Wilson (SMITH et al., 2000)

$$\ln \gamma_i^{\infty} = -\ln \Lambda_{ij} + 1 - \Lambda_{ji} \tag{3.8.2}$$

E para a equação de Florry-Huggins (WESDORP, 1990 e ROCHA e GUIRARDELLO, 2009)

$$\ln \gamma_i^{\infty} = \ln \left(\frac{\nu_i}{\nu_j} \right) + \left(1 - \frac{\nu_i}{\nu_j} \right) + \chi_{ij}$$
(3.8.3)

De acordo com WESDORP (1990), é necessário conhecer os volumes molares $v_i e v_j$. A partir de uma busca literária (WEAST, 1970, PERRY & CHILTON, 1973 e ROCHA e GUIRARDELLO, 2009), pelos valores de densidade e massa molar, os volumes molares para os componentes envolvidos nos sistemas estudados neste trabalho estão na Tabela 5.17, e foram calculados por:

$$v_i = \frac{MM_i}{\rho_i} \tag{5.4.1}$$

Para o miristato de metila, palmitato de metila e estearato de metila as densidades foram calculadas por uma correlação linear entre densidade e temperatura (CERIANI, 2007), descrita específicamente para cada quantidade de átomos de carbono presente nos compostos.

Segundo CERIANI (2007), as densidades desses ésteres de metila podem ser calculadas por:

Miristato de Metila (C15) $\rightarrow \rho = 0,882 - 0,00076T$ (5.4.2)

Palmitato de Metila (C17)
$$\rightarrow \rho = 0,880 - 0,00074T$$
 (5.4.3)

Estearato de Metila (C19) $\rightarrow \rho = 0,880 - 0,00073T$ (5.4.4)

Para a tricaprilina foi utilizada uma razão entre as massas molares, em uma substituição aproximada para a razão entre os volumes molares, conforme necessário para aplicação do modelo de Florry-Huggins.

Ainda segundo WESDORP (1990), o parâmetro χ_{ij} pode ser considerado aproximadamente zero para misturas de triacilgliceróis, mas para o cálculo de γ_i^{∞} pela equação de Florry-Huggins (FH), utilizou-se uma aproximação para o cálculo desse parâmetro baseado nos γ_i^{∞} obtidos para Margules (MA) e Wilson (W), aplicados a própria equação 3.8.3.

Assim, os coeficientes de atividade a diluição infinita foram calculados com a utilização das equações 3.8.1, 3.8.2 e 3.8.3 e estão disponíveis na Tabela 5.18, onde também estão os cálculos dos desvios relativos entre esses modelos aplicados.

Composto	ρ (g/cm ³)*	<i>MM</i> (g)	$v(g/cm^3)$	Referências		
caprilato de etila	$0,869^{20}$	172,270	198,171	WEAST (1970)		
caprato de etila	$0,865^{20}$	200,330	231,595	WEAST (1970)		
laurato de etila	$0,862^{20}$	228,380	265,003	WEAST (1970)		
miristato de etila	$0,857^{25}$	256,430	299,113	WEAST (1970)		
palmitato de etila	$0,858^{25}$	284,490	331,689	WEAST (1970)		
estearato de etila	$0,897^{25}$	312,540	348,312	WEAST (1970)		
miristato de metila	$0,863^{25}$	242,398	280,878	CERIANI (2007)		
palmitato de metila	$0,862^{25}$	270,451	313,930	CERIANI (2007)		
estearato de metila	$0,862^{25}$	298,504	346,393	CERIANI (2007)		
ácido cáprico	$0,875^{50}$	172,260	196,846	ROCHA (2009)		
ácido láurico	$0,869^{50}$	200,320	230,651	ROCHA (2009)		
ácido mirístico	$0,853^{70}$	228,400	267,761	ROCHA (2009)		
ácido palmítico	$0,849^{70}$	256,420	302,026	ROCHA (2009)		
ácido esteárico	$0,845^{25}$	284,470	336,619	PERRY (1973)		
ácido oléico	$0,854^{78}$	282,460	330,749	ROCHA (2009)		
ácido linoléico	$0,903^{18}$	280,440	310,565	PERRY (1973)		
ácido elaídico	$0,852^{78}$	282,450	331,631	ROCHA (2009)		
tripalmitina	$0,875^{70}$	807,290	922,406	ROCHA (2009)		
tristearina	$0,862^{80}$	891,450	1034,165	ROCHA (2009)		
trioleina	$0,879^{70}$	885,400	1006,823	ROCHA (2009)		

Tabela 5.17: Volumes molares para os componentes

* - os números sobrescritos aos valores de densidade correspondem a temperatura (°C) de referência dos mesmos.

Sistema	Componentes da Mistura	МА		Wilson		Florry-Huggins - MA		Florry-Huggins - Wilson		Desvio relativo (%)			
		γ_1^{∞}	γ_2^∞	γ_1^∞	γ_2^∞	γ_1^∞	γ_2^∞	γ_1^∞	γ_2^∞	1 – MA/FH	2 – MA/FH	1 - W/FH	2 - W /FH
1	Laurato / Miristato de etila	0,545	0,342	0,478	0,129	0,545	0,342	0,478	0,129	0,000	0,000	0,000	0,000
2	Laurato/ Palmitato de etila	0,420	0,076	0,242	0,035	0,420	0,076	0,242	0,035	0,000	0,000	0,000	0,000
3	Laurato/ Estearato de etila	2,793	0,863	52,281	1,257	2,793	0,232	52,281	0,338	0,000	73,136	0,000	73,136
4	Miristato/Palmitato de etila	0,622	1,272	0,757	0,676	0,622	1,272	0,757	0,676	0,000	0,000	0,000	0,000
5	Miristato/ Estearato de etila	0,670	0,505	0,640	0,389	0,670	0,505	0,640	0,389	0,000	0,000	0,000	0,000
6	Palmitato/ Estearato de etila	0,718	6,007	1,319	4,174	0,718	6,007	1,319	4,174	0,000	0,000	0,000	0,000
7	Caprilato/ Caprato de etila	0,486	0,830	0,463	0,650	0,486	0,830	0,463	0,650	0,000	0,000	0,000	0,000
8	Caprilato/ Laurato de etila	0,548	0,588	0,505	0,607	0,548	0,588	0,505	0,607	0,000	0,000	0,000	0,000
9	Caprilato/ Miristato de etila	0,619	0,835	0,624	0,764	0,619	0,835	0,624	0,764	0,000	0,000	0,000	0,000
10	Caprilato/ Palmitato de etila	1,305	0,676	0,906	0,873	1,305	0,676	0,906	0,873	0,000	0,000	0,000	0,000
11	Caprilato/ Estearato de etila	0,790	0,960	0,869	1,702	0,790	0,960	0,869	1,702	0,000	0,000	0,000	0,000
12	Caprato/ Laurato de etila	0,496	0,939	0,496	0,697	0,496	0,939	0,496	0,697	0,000	0,000	0,000	0,000
13	Caprato/ Miristato de etila	1,094	0,850	0,951	0,939	1,094	0,850	0,951	0,939	0,000	0,000	0,000	0,000
14	Caprato/ Palmitato de etila	1,365	0,756	2,743	0,940	1,365	0,756	2,743	0,940	0,000	0,000	0,000	0,000
15	Caprato/ Estearato de etila	0,785	0,815	0,817	1,191	0,785	0,815	0,817	1,191	0,000	0,000	0,000	0,000
16	Miristato/ Palmitato de metila	0,509	0,115	0,409	0,292	0,509	0,115	0,409	0,292	0,000	0,000	0,000	0,000
17	Miristato/ Estearato de metila	0,838	0,749	0,820	0,727	0,838	0,749	0,820	0,727	0,000	0,000	0,000	0,000
18	Palmitato/Estearato de metila	0,243	0,062	0,243	0,047	0,243	0,062	0,243	0,047	0,000	0,000	0,000	0,000
19	ácido cáprico/láurico	0,641	0,434	0,569	2,248	0,641	0,434	0,569	2,248	0,000	0,000	0,000	0,000
20	ácido cáprico/palmítico	0,858	0,456	0,682	0,468	0,890	0,481	0,539	0,215	-3,771	-5,512	20,871	54,069
21	ácido cáprico/mirístico	0,723	0,339	0,539	0,215	0,697	0,322	0,682	0,468	3,634	5,224	-26,375	-117,718
22	ácido mirístico/palmítico	0,699	0,576	0,670	1,193	0,624	0,488	0,878	0,828	10,804	15,294	-31,063	30,641
23	ácido cáprico/esteárico	1,029	0,745	0,878	0,828	1,153	0,880	0,670	1,193	-12,113	-18,055	23,701	-44,178
24	ácido oléico/cáprico	0,340	0,344	0,305	0,325	0,340	0,344	0,305	0,325	0,000	0,000	-0,004	-0,004

Tabela 5.18: Valores para os coeficientes de atividade a diluição infinita para os modelos de Margules (M), Wilson (W) e Florry-Huggins (FH).
Tabela 5.18:	Continua	ação
--------------	----------	------

						Florry-Hu	ggins -	Florry-Hug	igins -				
Sistema	Componentes da Mistura	N	1A	Wilso	n	MA		Wilso	n		Desvio rela	ativo (%)	
	·	γ_1^{∞}	γ_2^∞	γ_1^∞	γ_2^∞	γ_1^∞	γ_2^{∞}	γ_1^{∞}	γ_2^∞	1 – MA/FH	2 – MA/FH	1 - W/FH	2 - W /FH
25	ácido oléico/esteárico	0,877	0,837	0,879	0,839	0,877	0,837	0,879	0,839	0,000	0,000	-0,002	-0,003
26	ácido oléico/elaídico	1,814	2,160	1,854	2,328	1,814	2,160	1,854	2,328	0,000	0,000	0,000	-0,002
27	ácido linoléico/oléico	0,825	0,912	0,861	1,012	0,825	0,912	0,861	1,012	0,000	0,000	-0,002	-0,013
28	ácido linoléico/triestearina	2,860	0,951	51892117	1,194	2,860	0,951	51893467	1,194	0,000	0,000	-0,003	-0,001
29	tricaprilina/ácido mirístico	1,251	2,283	1,339	3,052	6,051	2,283	6,475	3,051	-383,486	0,000	-383,474	0,021
30	ácido palmítico/triestearina	1,622	0,775	16,575	0,969	1,622	0,775	16,623	0,969	0,000	0,000	-0,295	-0,003
31	tripalmitina/triestearina	0,105	0,000	0,317	0,011	0,105	0,000	0,317	0,011	0,000	0,000	0,000	-0,001
32	trioleina/tripalmitina	1,257	0,535	0,832	0,749	1,257	0,535	0,832	0,749	0,000	0,000	-0,004	-0,008

5.4.4 - Cálculo da dependência da temperatura dos parâmetros – a_{ii} de Wilson

A dependência dos parâmetros de Wilson binário, $\Lambda_{12} \in \Lambda_{21}$, ou ainda genericamente, Λ_{ii} , segundo SMITH (2000) é dada por:

$$\Lambda_{ij} = \frac{v_j}{v_i} \exp \frac{-a_{ij}}{RT}$$
(5.4.2)

Em que v_i e v_j são os volumes molares na temperatura *T* dos compostos *i* e *j* puros e a_{ij} é uma constante independente.

Rearranjando, temos:

$$\frac{\Lambda_{ij}V_i}{V_j} = \exp\frac{-a_{ij}}{RT}$$
(5.4.3)

Com a aplicação do logarítmo neperiano, a equação 5.9.3 passa a ser escrita por:

$$\ln\!\left(\frac{\Lambda_{ij}\nu_i}{\nu_j}\right) = \frac{-a_{ij}}{RT}$$
(5.4.4)

Que mais uma vez rearranjada, a constante independente a_{ij} pode ser calculada por:

$$a_{ij} = -RT \ln\left(\frac{\Lambda_{ij}V_i}{V_j}\right)$$
(5.4.5)

Assim, pela busca por mais relações que demonstrem a qualidade dos resultados obtidos, essas constantes independentes, a_{ij} , foram calculadas para todas as misturas binárias estudadas neste trabalho, visto que apresentam relação direta com os parâmetros de Wilson ajustados.

Os valores utilizados para os volumes molares são os mesmos já utilizados nos cálculos dos coeficientes de atividade a diluição infinita, a constante universal dos gases utilizada foi de R = 1,9872cal / molK e a temperatura utilizada foi baseada em uma média entre a máxima temperatura de equilíbrio e a mínima.

Os valores obtidos para a constante independente a_{ij} estão disponíveis na Tabela 5.19, juntamente com os outros dados necessários aos cálculos. O que se pode ressaltar é a presença notória de uma simetria entre doze dos trinta e dois sistemas estudados; para eles, a constante independente de Wilson obedece à igualdade:

$$a_{12} = -a_{21}$$

o que facilita a obtenção e aproximação desses parâmetros, vista a possibilidade da descoberta de ambos a partir de somente um.

		T_{\min}	$T_{m \acute{a} x}$	$T_{m \acute{e} dio}$	Λ_{12}		Λ_{21}	
Sistema	Compostos	(K)	(K)	(K)	(cal/mol)	a_{12}	(cal/mol)	a_{21}
1	Laurato / Miristato de etila	266,01	287,27	276,64	4,565	-768,20	0,219	768,20
2	Laurato/ Palmitato de etila	269,51	297,74	283,63	4,410	-709,80	0,937	-89,84
3	Laurato/ Estearato de etila	272,51	305,84	289,18	0,006	3090,89	2,149	-596,63
4	Miristato/Palmitato de etila	281,08	297,74	289,41	2,838	-540,47	0,235	772,71
5	Miristato/ Estearato de etila	282,99	307,93	295,46	3,064	-567,95	0,326	567,95
6	Palmitato/ Estearato de etila	294,98	307,93	301,45	1,863	-343,55	0,101	1343,87
7	Caprilato/ Caprato de etila	226,15	253,09	239,62	0,621	301,46	2,247	-459,81
8	Caprilato/ Laurato de etila	230,14	272,51	251,33	0,946	172,76	1,739	-421,48
9	Caprilato/ Miristato de etila	230,14	287,27	258,71	0,434	641,34	2,307	-641,34
10	Caprilato/ Palmitato de etila	230,14	297,74	263,94	1,617	18,25	0,619	-18,25
11	Caprilato/ Estearato de etila	228,19	307,93	268,06	2,855	-258,34	0,092	970,93
12	Caprato/ Laurato de etila	249,98	272,59	261,29	0,372	583,70	2,690	-583,70
13	Caprato/ Miristato de etila	252,42	287,27	269,84	1,398	-42,42	0,715	42,42
14	Caprato/ Palmitato de etila	267,71	297,74	282,72	0,066	1727,91	2,707	-761,37
15	Caprato/ Estearato de etila	254,51	307,93	281,22	2,954	-377,25	0,119	961,68
16	Miristato/ Palmitato de metila	284,65	303,30	293,98	6,560	-1033,83	0,013	2463,87
17	Miristato/ Estearato de metila	288,70	312,67	300,69	2,023	-295,76	0,494	295,76
18	Palmitato/Estearato de metila	297,18	312,67	304,92	4,050	-787,87	1,014	-68,35
19	ácido cáprico/láurico	293,45	316,65	305,05	4,731	-845,98	0,011	2656,42
20	ácido cáprico/palmítico	299,14	335,02	317,08	2,784	-375,37	0,359	375,37
21	ácido cáprico/mirístico	295,99	327,07	311,53	3,899	-651,86	0,256	651,87
22	ácido mirístico/palmítico	319,45	335,02	327,24	3,870	-801,72	0,048	1903,09
23	ácido cáprico/esteárico	302,07	342,25	322,16	1,747	-13,65	0,572	13,65
24	ácido oléico/cáprico	273,95	303,98	288,96	1,571	-557,26	1,737	-19,10
25	ácido oléico/esteárico	286,59	342,25	314,42	1,942	-403,83	0,464	468,12
26	ácido oléico/elaídico	284,95	316,97	300,96	0,921	50,73	0,465	456,51
27	ácido linoléico/oléico	264,05	286,59	275,32	2,570	-481,93	0,206	831,07
28	ácido linoléico/triestearina	267,83	345,27	306,55	0,000	12331,88	2,276	-1233,78
29	tricaprilina/ácido mirístico	282,75	327,07	304,91	1,734	-704,00	0,157	1491,30
30	ácido palmítico/triestearina	333,53	345,27	339,40	0,010	3924,74	2,778	-1519,13
31	tripalmitina/triestearina	336,19	345,27	340,73	7,507	-1287,50	0,133	1287,54
32	trioleina/tripalmitina	278,43	338,79	308,61	1,964	-467,65	0,509	467,64

Tabela 5.19: Valores obtidos para o parâmetro a_{ij} de Wilson.

Capítulo 6 - CONCLUSÃO

Ao final de todo desenvolvimento e estudos realizados neste trabalho, tendo em vista os objetivos propostos inicialmente, se verifica o cumprimento do que foi sugerido.

A nova aplicação da modelagem termodinâmica, utilizando o modelo de Wilson, e a reformulação do modelo de Margules – 2 sufixos, com a utilização dos modelos de Margules Assimétrico e Simétrico, se mostraram modelos bastante robustos e capazes, com fiel representação, de realizar cálculos do equilíbrio de fases binário, sendo possível detectar fenômenos presentes na linha liquidus, como ponto eutético e, mais especificamente, ponto peritético. Comparativamente, os modelos de Margules Assimétrico e Wilson, apresentaram um desempenho bastante parecido, sendo hora um deles, hora outro, demonstraram os melhores resultados obtidos, com base na minimização dos quadrados dos erros. Já o modelo de Margules Simétrico não se mostrou como melhor resultado em nenhum sistema estudado.

A aplicação desses modelos binários já citados promoveu, como outro objetivo deste trabalho, o cálculo e a determinação dos parâmetros necessários para a utilização dos mesmos, sendo eles: A_{12} e A_{21} utilizado no modelo de Margules Assimétrico, somente o primeiro deles representando Margules Simétrico e Λ_{12} e Λ_{21} , no modelo de Wilson, assim, para os 32 sistemas mostrados neste trabalho, se obteve o ajuste desses parâmetros, visto que essa base de dados é de grande interesse no meio acadêmico e industrial para aplicação e busca pelo equilíbrio. Esses resultados se mostraram de grande confiabilidade vista proximidade dos resultados comparados aos obtidos experimentalmente por BOROS *et al* (2009), COSTA *et al* (2010a,b) e ROLEMBERG (2002).

Ainda, vale ressaltar, que dentre os diagramas de fases determinados neste trabalho, além das misturas de ácidos graxos e triacilgliceróis, foram obtidos os diagramas para os ésteres de etila e metila, compostos de grande destaque e interesse pela utilização e motivação aos biocombustíveis. Esses resultados, determinados matematicamente, com uso de modelos termodinâmicos, são de simples obtenção e rapidez, comparados aos obtidos experimentalmente, com a garantia de precisão satisfatória na caracterização e determinação da linha *liquidus*.

Quanto as misturas ternárias, a obtenção de superfícies de equilíbrio para tais, se mostra com vasta aplicabilidade industrial, vista diferenciação de composições dos óleos e gorduras;

com possibilidade de verificar seus comportamentos e descobrir pontos e/ou linhas importantes de equilíbrio.

Ao verificar as discussões feitas entre os resultados, ainda se pode notar algumas possibilidades de definição de comportamento entre os parâmetros dos modelos; visto que para algumas classes de compostos, esses parâmetros ajustados se apresentam com comportamento linear, sendo então possível utilizar essa característica como forma de predição, ou pelo menos de aproximação, de novos ajustes para misturas de mesma classe.

Assim, ao final deste trabalho, ficam as propostas para que novos diagramas de fases possam ser calculados utilizando a mesma metodologia, com os respectivos ajustes de parâmetros, tendo em vista os modelos utilizados e ainda mais, para que essa metodologia possa ser aplicada a misturas com presença de compostos pertencentes novas classes de cadeias carbônicas. Também, como sugestão ainda mais desafiadora, é possível propor a utilização desses modelos e suas metodologias, em cálculos para obtenção de dados de equilíbrio para misturas com mais de três componentes, sendo necessárias modificações no algoritmo desenvolvido em GAMS e utilizado neste trabalho.

Capítulo 7 - REFERÊNCIAS

BAILEY, A.E.; Melting and Solidification of Fats, Interscience Publishers, NewYork, 1950.

BAZARRA, M. S.; SHERALI, H. D.; SHETTY, C. M.; *Nonlinear Programming – Theory and Algorithms*, John Wiley & Sons, Second Edition, 1993.

BOMMEL M. J. V, OONK H. A. J., MILTENBURG J. C. V., Heat Capacity Measurements of 13 Methyl Esters of n-Carboxylic Acids from Methyl Octanoate to Methyl Eicosanoate between 5 K and 350 K, J. Chem. Eng. Data 2004, 49, 1036-1042

BOROS, L. A. D., *Modelagem Matemática e Termodinâmica do Equilíbrio Sólido-Líquido de Sistemas Graxos*, Dissertação de Mestrado em Engenharia Química – FEQ – Unicamp (2005).

BOROS, L.; BATISTA, M. L. S.; VAZ, R. V.; FIGUEIREDO, B. R.; FERNANDES, V. F. S.; COSTA, M. C.; KRAHENBUHL, M. A.; MEIRELLES, A. J. A.; COUTINHO, J. A. P., *Crystallization Behavior of Mixtures of Fatty Acid Ethyl Esters with Ethyl Stearate*. Energ Fuel 2009, 23, 4625-4629.

CANOIRA L., GALEÁN J. G., ALCÁNTARA R., LAPUERTA M., GARÍA-CONTRERAS R., Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties, Renewable Energy 35, 208–217, 2010.

CERIANI R., GONÇALVES C. B., COUTINHO J. A. P., Prediction of Viscosities of Fatty Compounds and Biodiesel by Group Contribution, Energy Fuels 25, 3712–3717, 2011.

CERIANI R.; GONÇALVES C. B.; RABELO J.; CARUSO M.; CUNHA A. C. C.; CAVALERI, F. W.; BATISTA, E. A. C.; MEIRELLES, A. J. A., *Group contribution model for predicting viscosity of fatty compounds*. J. Chem. Eng. Data, 52, 965–972, 2007.

CHEN W.; ZHAO Z.; ZHANG X.; WANG L.; *Thermodynamic phase equilibria of wax precipitation in crude oils;* Fluid Phase Equilibria, vol. 255, pag. 31–36, 2007

CHICKOS, J., NICHOLS G., The Estimation of Melting Points and Fusion Enthalpies Using Experimental Solubilities, Estimated Total Phase Change Entropies, and Mobile Order and Disorder Theory; J. Chem. Inf. Comput. Sci.

COSTA, M. C.; KRÄHENBÜHL, M. A.; MEIRELLES, A. J. A.; DARIDON, J. L.; PAULY, J.; COUTINHO, J. A. P.; *High pressure solid–liquid equilibria of fatty acids*, Fluid Phase Equilibria, vol. 253, pag. 118–123, 2007.

COSTA, M. C.; Determinação Experimental do Equilíbrio Sólido-lìquido de Sistemas Binários de ácidos graxos saturados: estudo detalhado da fase sólida, Tese de Doutorado em Engenharia Química – FEQ – Unicamp (2008).

COSTA, M. C.; ROLEMBERG, M. P.; MEIRELLES, A. J. A.; COUTINHO, J. A. P.; KRÄHENBÜHL, M.A.; *The solid–liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms*, Thermochimica Acta 496 (2009) 30–37 a

COSTA, M. C.; SARDOB, M.; ROLEMBERG, M. P.; COUTINHO, J. A. P.; MEIRELLES, A. J. A.; RIBEIRO-CLARO, P.; KRÄHENBÜHL, M.A.; *The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids*, Chemistry and Physics of Lipids 160 (2009) 85–97 b

COSTA, M. C.; BOROS, L.; BATISTA, M. L. S.; COUTINHO, J. A. P.; KRÄHENBÜHL, M. A.; MEIRELLES, A. J. A., *Phase diagrams of mixtures of ethyl palmitate with fatty acid ethyl esters*. Fuel Process. Technol. 2010, submitted a.

COSTA, M. C.; BOROS, L. A. D.; COUTINHO, J. A. P.; KRÄHENBÜHL, M. A.; MEIRELLES, A. J. A.; *Low temperature behavior of biodiesel: Solid-liquid phase diagrams of binary mixtures composed of fatty acid methyl esters.* Fuel, 2010, submitted b.

COUTINHO, J. A. P.; *Predictive local composition models: NRTL and UNIQUAC and their application to model solid–liquid equilibrium of n-alkanes*, Fluid Phase Equilibria, vol. 158–160, pag. 447–457, 1999.

COUTINHO, J. A. P.; GONÇALVES, C.; MARRUCHO I. M.; PAULY, J.; DARIDON, J. L.; *Paraffin crystallization in synthetic mixtures: Predictive local composition models revisited,* Fluid Phase Equilibria, vol. 233, pag. 28–33, 2005.

COUTINHO, J. A. P.; MIRANTE, F.; PAULY, J.; *A new predictive UNIQUAC for modeling of wax formation in hydrocarbon fluids*, Fluid Phase Equilibria, vol. 247, pag. 8–17, 2006.

DEJOZ A., GONZFILEZ-ALFARO V., LLOPIS F.J., VAZQUEZ M.I. Phase equilibria and variation of the azeotropic composition with pressure for binary mixtures of 1-propanol + chlorobenzene and 1-butanol + chlorobenzene, Fluid Phase Equilibria 145 287-299, 1998.

EDGAR, T. F.; HIMMELBLAU, D. M.; LASDON L. S., *Optimization of chemical processes*, McGraw-Hill, 2nd edition, New York, 2001

ESMAEILZADEH F.; KALJAHI J. F.; GHANAEI E.; *Investigation of different activity coefficient models in thermodynamic modeling of wax precipitation*, Fluid Phase Equilibria, vol. 248, pag. 7–18, 2006.

FREITAS S. V. D., PRATAS M. J., CERIANI R., LIMA A. S., COUTINHO J. A. P.; *Evaluation of Predictive Models for the Viscosity of Biodiesel*, Energy Fuels, 25, 352–358, 2011

GARNER, W.E.; RANDALL, F.C., Alternation in the heats of crystallization of the normal monobasic fatty acids. Part I., J. Chem. Soc., 1924, 125, 881-896.

GMEHLLNG J. G.; ANDERSON T. F; PRAUSNLTZ J. M.; *Solid-Liquid Equilibria Using UNIFAC*, Ind. Eng. Chem. Fundam., Vol. 17, No. 4, 1978.

HE B.; MARTIN V.; SETTERWALL F.; *Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage,* Fluid Phase Equilibria, vol. 212, pag. 97–109, 2003.

GAMSJÄGER H., LORIMER J. W., SCHARLIN P., SHAW D. G.; *Glorrary of terms related to solubility*, IUPAC Recommendations, Pure Appl. Chem., Vol. 80, No. 2, pp. 233–276, 2008.

HUANG, C. C.; CHEN, Y. P., *Measurements and model prediction of the solid}liquid equilibria of organic binary mixtures*, Chemical Engineering Science, vol. 55, pp. 3175-3185, 2000.

IMAHARA, H.; MINAMI, E.; SAKA, S., *Thermodynamic study on cloud point of biodiesel with its fatty acid composition*, Fuel, vol. 85, pp. 1666-1670, 2006.

INOUE T., HISATSUGUA Y., SUZUKIB M., WANGC Z., ZHENG L., Solid–liquid phase behavior of binary fatty acid mixtures 3. Mixtures of oleic acid with capric acid (decanoic acid) and caprylic acid (octanoic acid) Chemistry and Physics of Lipids 132 pp 225–234, 2004 a

INOUE T., HISATSUGUA Y., YAMAMOTO R., SUZUKI M., Solid–liquid phase behavior of binary fatty acid mixtures 1. Oleic acid/stearic acid and oleic acid/behenic acid mixtures, Chemistry and Physics of Lipids, 127, 143–152, 2004 b

INOUE T., HISATSUGUA Y., ISHIKAWA R., SUZUKI M., Solid–liquid phase behavior of binary fatty acid mixtures 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid, Chemistry and Physics of Lipids, 127, 161–173, 2004 c

IWAHASHI, M.; TAKEBAYASHI, S.; TAGUCHI, M.; KASAHARA, Y.; MINAMI, H.; MATSUZAWA, H.; Dynamical dimer structure and liquid structure of fatty acids in their binary liquid mixture: decanoic/octadecanoic acid and decanoic/dodecanoic acid systems. Chem. Phys. Lipids. 133 (2005), 113–124.

KHIMECHE K., BOUMRAH Y., BENZIANE M., DAHMANI A., Solid–liquid equilibria and purity determination for binary n-alkane + naphthalene systems, Thermochimica Acta, 444, 166–172, 2006.

KING, A.M.; GARNER, W.E., *The heats of crystallisation of the ethyl esters of the monobasic aliphatic acids*, J. Chem. Soc. pp 1449-1456, 1934.

KING, A.M.; GARNER, W.E., *The heats of crystallisation of methyl and ethyl esters of monobasic fatty acids*, J. Chem. Soc., pp 1372-1376, 1936.

LOPES, J. C. A.; BOROS, L.; KRÄHENBÜHL, M. A.; MEIRELLES, A. J. A.; DARIDON, J. L.; PAULY J.; MARRUCHO, I. M.; COUTINHO, J. A. P.; *Prediction of Cloud Points of Biodiesel*, Energy & Fuels, 2007.

MAEDA K., KASHIMOTO T., FUKUI K., HIROTA S.; Solid–liquid equilibria and binodals of liquid–liquid equilibria for the quaternary systems aqueous solutionqbinary fatty acids, Fluid Phase Equilibria 162, 193–209, 1999

MILHET, M.; PAULY, J.; COUTINHO, J. A. P.; DIRAND, M.; DARIDON, J. L.; *Liquid–solid* equilibria under high pressure of tetradecane + pentadecane and tetradecane + hexadecane binary systems, Fluid Phase Equilibria, vol 235, ppp 173–18, 2005.

NDIAYE P.M., FRANCESCHI E., OLIVEIRA D., DARIVA C., TAVARES F.W., OLIVEIRA J. V., *Phase behavior of soybean oil, castor oil and their fatty acid ethyl esters in carbon dioxide at high pressures*, J. of Supercritical Fluids 37, 29–37, 2006.

O'CONNELL J., HAILE J. M., *Thermodynamics – Fundamentals for Applications*, Cambridge University Press, 2005.

PENG C., HONGLAI L., HU Y., *Solid–liquid equilibria based on an equation of state for chain fluids*, Fluid Phase Equilibria 180 299–311, 2001.

PETERS, M. S.; TIMMERHAUS, K. D.; WEST, R. E.; *Plant Design and Economics for Chemical Engineers, Fifth Edition*, McGraw-Hill, New York, 2003.

PERRY R.H.; CHILTON C.H., Chemical Engineers Handbook, 5th ed., McGraw-Hill, 1973.

PRAUSNITZ, J. M.; LICHTENTALER, R. N.; AZEVEDO, E. G., *Molecular Thermodynamics* of Fluid-phase Equilibria, Second Edition, Prentice-Hall PTR, 1986.

RANGAIAH, G.P., *Evaluation of genetic algorithms and simulated annealing for phase equilibrium and stability problems*, Fluid Phase Equilibria, vol. 187-188, pp. 83-109, 2001.

ROCHA, S. A., *Cálculo do Equilíbrio de Fases Sólido-Líquido em Misturas binárias por meio de Técnicas de Minimização e Análise de Convexidade*, Dissertação de mestrado em Engenharia Química – FEQ – Unicamp, 2008.

ROCHA, S. A.; GUIRARDELLO R.; An approach to calculate solid–liquid phase equilibrium for binary mixtures, Fluid Phase Equilibria 281 (2009) 12–21

ROLEMBERG, M. P., Equilíbrio Sólido-Líquido de Ácidos Graxos e Triglicerídios: Determinação Experimental e Modelagem Tese de Doutorado em Engenharia Química – FEQ – Unicamp (2002).

SATO K., UENO, S.; YANO, J.; *Molecular interactions and kinetic properties of fats*, Progress in Lipid Research 38 (1999) 91-116

SATO K.; Crystallization behaviour of fats and lipids - a review, Chem. Eng. Sci. 56 (2001) 2255–2265.

SILVA, L. Y.; FALLEIRO, R. M.; MEIRELLES, A. J. A.; KRÄHENBÜHL, M. A.; *Determination of the vapor pressure of ethyl esters by Differential Scanning Calorimetry*, J. Chem. Thermodynamics (2011), doi: 10.1016/j.jct.2011.01.017 a

SILVA, L. Y.; FALLEIRO, R. M.; MEIRELLES, A. J. A.; KRÄHENBÜHL M. A.; Vapor-liquid equilibrium of fatty acid ethyl esters determined using DSC; Thermochimica Acta 512 (2011) 178–182 b

SLAUGHTER, D. W.; DOHERTY, M. F., Calculation of Solid-liquid Equilibrium and Crystallization Paths for Melt Crystallization Processes, Chemical Engineering Science, Vol 50, N° 11, pp 1679-1694, 1995.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M., Introdução à Termodinâmica da Engenharia Química, Quinta Edição, Editora LTC, 2000.

TUMAKAKA, F.; PRIKHODKO, I. V.; SADOWSKI, G.; *Modeling of solid–liquid equilibria for systems with solid-complex phase formation*, Fluid Phase Equilibria, vol. 260, pp 98–104, 2007.

VIEIRA, F.C.V., PIERRE, C.T., CASTRO, H.F.; *Influência da composição em ácidos graxos de diferentes óleos vegetais nas propriedades catalíticas de uma preparação comercial de lípase pancreática*, VI Congresso Brasileiro de Engenharia Química em Iniciação Científica, 2005.

VILLAMÃNÁN R.M., CHAMORRO C.R., MARTÍN M.C., SEGOVIA J.J., Phase equilibria properties of binary and ternary systems containing di-isopropyl ether + isobutanol + benzene at 313.15K, Fluid Phase Equilibria 239 (2006) 178–182

WALAS S. M., *Phase Equilibria in Chemical Engineering*, Butterworth Publishers, Boston – USA, 1985.

WESDORP L. H.; *Liquid-Multiple Solid Phase Equilibria in Fats – theory and experiments*, Ph.D. dissertation, Delft University, Netherlands, 1990.

WEAST R.C., Handbook of Chemistry and Physics, 51th ed., CRC, 1970.

WILSON, G. M., Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., vol. 86, pp. 127–130, 1964.

WON, K. W. *Thermodynamic model of liquid-solid equilibria for natural fats and oils*. Fluid Phase Equilibria, Vol. 82, pp. 261-273, 1993.

ZHU Y., WEN H., XU Z., *Global stability analysis and phase equilibrium calculations at high pressures using the enhanced simulated annealing algorithm*, Chemical Engineering Science, 55, 3451-3459, 2000.

NIST - Chemistry Webbook, http://webbook.nist.gov/chemistry, www.nist.gov, 2008.

Apêndice 1

Parte I

A1. Modelo termodinâmico

Neste trabalho, foi utilizado a metodologia da minimização de Energia de Gibbs, com o respective número de mols de cada componente em cada fase correspondente, para temperatura e pressão constantes.

A energia de GIbbs, é dada por:

$$G = \sum_{k=1}^{NF} \sum_{i=1}^{NC} n_i^k \cdot \mu_i^k$$
(01)

Em que o potencial químico e a fugacidade são escritos por:

$$\mu_i^k = \mu_i^{k,\circ} + R \cdot T \cdot \ln \frac{\hat{f}_i^k}{f_i^{k,\circ}}$$
(02)

$$\hat{f}_i^k = f_i^{k,\circ} \cdot x_i^k \cdot \gamma_i^k \tag{03}$$

Ao considerer o equilíbrio sólido-líquido neste trabalho, o estado é utilizado como estado de referência escolhido ($f_i^{k,\circ} = f_i^{s,\circ}$ e $\mu_i^{k,\circ} = \mu_i^{s,\circ}$). Ao utilizar a equação do equilíbrio sólido-líquido:

$$\ln \frac{f_i^{l,\circ}}{f_i^{s,\circ}} = \frac{\Delta h_{fi}}{R \cdot T_{ti}} \cdot \left(\frac{T_{ti}}{T} - 1\right) - \frac{\Delta c_{pi}}{R} \cdot \left(\frac{T_{ti}}{T} - 1\right) + \frac{\Delta c_{pi}}{R} \cdot \ln \frac{T_{ti}}{T}$$
(04)

Com o parâmetro B_i definido por:

$$B_i = \ln \frac{f_i^{l,\circ}}{f_i^{s,\circ}} \tag{05}$$

A energia de Gibbs para uma mistura sólido-líquido pode ser escrita como:

$$G = \sum_{i=1}^{NC} \left(n_i^l + n_i^s \right) \cdot \mu_i^{s,\circ} + R \cdot T \cdot \left[\sum_{i=1}^{NC} n_i^l \cdot \left(B_i + \ln x_i^l + \ln \gamma_i^l \right) + n_i^s \cdot \left(\ln x_i^s + \ln \gamma_i^s \right) \right]$$
(06)

A2. Modelo para fase líquida

A fase líquida foi modelada considerando o modelo de Margules 2-sufixos, escrito por:

$$\underline{G}_{ex}^{l} = R \cdot T \cdot \sum_{i=1}^{NC} x_i^{l} \cdot \ln \gamma_i^{l} = \frac{1}{2} \cdot \sum_{i=1}^{NC} \sum_{j=1}^{NC} A_{ij} \cdot x_i^{l} \cdot x_j^{l}$$
(07)

assim:

$$R \cdot T \cdot \sum_{i=1}^{NC} n_i^l \cdot \ln \gamma_i^l = \sum_{i=1}^{NC} n_i^l \cdot \frac{\sum_{j=1}^{NC} A_{ij} \cdot n_j^l}{\sum_{j=1}^{NC} n_j^l}$$
(08)

Considerando $A_{ii} = 0$ e $A_{ij} = A_{ji}$:

$$R \cdot T \cdot \sum_{i=1}^{NC} n_i^l \cdot \ln \gamma_i^l = \frac{\sum_{i < j}^{NC} A_{ij} \cdot n_i^l \cdot n_j^l}{\sum_{j=1}^{NC} n_j^l}$$
(09)

A3. Modelo para fase sólida

A fase sólida foi modelada considerando uma modificação ao modelo proposto por Slaughter e Doherty (1995).

Ao utilizar esse modelo, deve-se ressaltar algumas considerações.

Segundo Slaughter e Doherty (1995), o coeficiente de atividade para fase sólida é dado por:

$$\gamma_i^s = \frac{1}{x_i^s + \varepsilon} \tag{10}$$

Embora esse modelo não obedeça exatamente a equação de Gibbs-Duhem, como apontados pelos autores, essa condição mantém as fases sólidas próximas a imiscibilidade. O parâmetro ε é fixo em um valor pequeno ($\varepsilon = 0.001$).

Se a equação (10) for aplicada na expressão da energia de Gibbs, a fase sólida pode ser dada por:

$$R \cdot T \cdot \sum_{i=1}^{NC} n_i^s \cdot \left(\ln x_i^s + \ln \gamma_i^s \right) = R \cdot T \cdot \sum_{i=1}^{NC} n_i^s \cdot \ln \frac{n_i^s}{n_i^s + \varepsilon \cdot \sum_{j=1}^{NC} n_j^s}$$
(11)

É interessante observer que na equação (11) se o limite de $\varepsilon \to 0$, o lado direito da equação também tende a zero. Se por outro lado, $n_i^s \to 0$ para algum componente *i* (mas não todos os *i*), o lado direito da equação novamente tem seu limite tendendo a zero. Se todos $n_i^s = 0$, a fase sólida não existe.

Considerando a energia de Gibbs em excesso e relacionando com o coeficiente de atividade, tem-se:

$$G_{\text{ex}}^{k} = R \cdot T \cdot \sum_{i=1}^{NC} n_{i}^{k} \cdot \ln \gamma_{i}^{k}$$
(12)

$$\ln \gamma_i^k = \frac{\partial}{\partial n_i^k} \left[\frac{G_{\text{ex}}^k}{R \cdot T} \right]_{T, P, n_j^k}$$
(13)

O resultado para o coeficiente de atividade é:

$$\ln \gamma_i^k = -\ln(x_i^s + \varepsilon) + \varepsilon \cdot \left[\frac{1}{x_i^s + \varepsilon} - \sum_{j=1}^{NC} \frac{x_j^s}{x_j^s + \varepsilon} \right]$$
(14)
$$\gamma_i^s = \frac{1}{x_i^s + \varepsilon} \cdot \exp\left[\varepsilon \cdot \left(\frac{1}{x_i^s + \varepsilon} - \sum_{j=1}^{NC} \frac{x_j^s}{x_j^s + \varepsilon} \right) \right]$$
(15)

A equação (15) é próxima a (10) pelo pequeno valor para ε (exceto para $x_i^s \ll \varepsilon$). Ela obedece a equação de Gibbs-Duhem e mantém as fases sólidas próximas da imiscibilidade. Entretando, no limite quando $x_i^s \rightarrow 1$ também se tem $\gamma_i^s \rightarrow 1/(1+\varepsilon)$ tentendo a 1, e ainda, quando o se tem $\varepsilon \rightarrow 0$ o resultado é $\gamma_i^s \rightarrow 1$.

O pequeno valor para ε usado por Slaughter e Doherty apresenta alguns problemas numéricos para o cálculo da constante de equilíbrio, porém, neste trabalho é utilizada uma nova metodologia para o cálculo de equilíbrio, em que se faz uso do limite de $\varepsilon \rightarrow 0$ para a energia de Gibbs.

Assim, o modelo para a fase sólida, utilizado neste trabalho, obedece a equação de Gibbs-Duhem e tem as seguintes propriedades:

$$\gamma_i^s \cdot x_i^s = 1 \qquad \text{para} \quad 0 < x_i^s \le 1 \tag{16}$$

$$\gamma_i^s \cdot x_i^s = 0 \qquad \text{para} \quad x_i^s = 0 \tag{17}$$

$$\lim_{x_i^s \to 0} \left(x_i^s \cdot \ln\left(\gamma_i^s \cdot x_i^s\right) \right) = 0 \tag{18}$$

Como resultado dessas condições, tem-se que:

$$R \cdot T \cdot \sum_{i=1}^{NC} n_i^s \cdot \left(\ln x_i^s + \ln \gamma_i^s \right) = 0$$
⁽¹⁹⁾

É importante ressaltar que esse modelo não considera uma mistura ideal para a fase sólida, mas com a energia de Gibbs em excesso, dada por:

$$G_{\text{ex}}^{s} = -R \cdot T \cdot \sum_{i=1}^{NC} n_{i}^{s} \cdot \ln x_{i}^{s}$$
(20)

O modelo resulta em total imiscibilidade para os ocmponentes da fase sólida, se mais de um componente *i* se solidificar, então cada n_i^s pode ser considerado uma fase sólida diferente.

A4. Reação na fase sólida

Para a modelagem do ponto peritético, foi considerado a formação de um composto na fase sólida (reação peritética), com uma proporção estequiométrica, como uma reação química própriamente dita. O balanço dessa reação é:

$$n_i = n_i^0 + \nu_i \cdot \xi \qquad \qquad i = 1, \dots, NC \tag{21}$$

Para reagentes $v_i < 0$, para produtos $v_i > 0$, e para espécies inertes $v_i = 0$. Considerando a formação de um composto sólido nomeado p, então $v_p = 1$, tem-se que:

$$n_p = n_p^0 + \xi \tag{22}$$

Tomando como estado de referência o composto puro na fase sólida, $\mu_i^0 = \mu_i^{s,\circ}$. Assim, o primeiro termo da equação (06) pode ser escrito como:

$$\sum_{i=1}^{NC} (n_i^l + n_i^s) \cdot \mu_i^{s,\circ} = \sum_{i=1}^{NC} n_i \cdot \mu_i^{s,\circ}$$
(23)

Ao aplicar a equação (21) na equação (23), tem-se:

$$\sum_{i=1}^{NC} n_i \cdot \mu_i^{s,\circ} = \sum_{i=1}^{NC} \left(n_i^0 + v_i \cdot \xi \right) \cdot \mu_i^{s,\circ}$$
(24)

Substituindo a equação (22) na equação (24):

$$\sum_{i=1}^{NC} \left(n_i^0 + v_i \cdot \xi \right) \cdot \mu_i^{s,\circ} = \sum_{i=1}^{NC} n_i^0 \cdot \mu_i^{s,\circ} + \left(n_p - n_p^0 \right) \cdot \sum_{i=1}^{NC} v_i \cdot \mu_i^{s,\circ}$$
(25)

A variação da energia de Gibbs de reação é definida por:

$$\Delta G_R^\circ = \sum_{i=1}^{NC} \boldsymbol{v}_i \cdot \boldsymbol{\mu}_i^{s,\circ}$$
(26)

Também considera-se que o produto sólido é formado somente na fase sólida, então ele não existe na fase líquida:

$$n_p^l = 0 \tag{27}$$

$$n_p = n_p^s \tag{28}$$

Assim, a primeira parte da equação (06) pode ser escrita como:

$$\sum_{k=1}^{NF} \sum_{i=1}^{NC} n_i^k \cdot \mu_i^{s,\circ} = \sum_{i=1}^{NC} n_i^0 \cdot \mu_i^{s,\circ} - n_p^0 \cdot \Delta G_R^0 + n_p^s \cdot \Delta G_R^\circ$$
(29)

Parte II

A6. Condições de Kuhn-Tucker (Condições Necessárias para o Ótimo Global)

As condições de Kuhn-Tucker podem ser utilizadas para encontrar o ótimo global. São consideradas condições necessárias para obtenção deste ponto (EDGAR *et al.*, 2001), porém não são suficientes. Essa série de condições necessárias para otimização de problemas de programação não linear são baseadas no conceito de que mudanças não permitidas nas variáveis do problema podem melhorar a função objetivo para obtenção do ótimo local (PETERS *et al*, 2003).

Para problemas que contém, juntamente com a função objetivo, equações e inequações como restrição, as condições de Kuhn-Tucker são declaradas como segue (EDGAR *et al.*, 2001):

Tomando o problema:

Minimização:
$$f(\mathbf{x})$$

sujeita as condições: $h_i(\mathbf{x}) = b_i$ $(i = 1,...,m)$ (30)
 $g_i(\mathbf{x}) \le c_i$ $(j = 1,...,r)$

Os multiplicadores de Lagrange são definidos como λ_i , associado com as igualdades, e u_i para as desigualdades, e da função Lagrangiana, tem-se:

$$L(\mathbf{x},\lambda,u) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i [h_i(\mathbf{x}) - b_i] + \sum_{j=1}^{r} u_j [g_j(\mathbf{x}) - c_j]$$
(31)

Então, se x^* é um mínimo local do problema definido, existe os vetores dos multiplicadores de Lagrange λ^* e u^* , tal que x^* é um ponto estacionário da função $L(\mathbf{x}, \lambda^*, u^*)$, que é:

$$\nabla_{x}L(x^{*},\lambda^{*},u^{*}) = \nabla f(x^{*}) + \sum_{i}^{m}\lambda_{i}^{*}\nabla h_{i}(x^{*}) + \sum_{j=1}^{r}u_{j}^{*}\nabla g_{j}(x^{*}) = 0$$
(32)

E como uma influência complementar as desigualdades:

$$u_{j}^{*} \ge 0 u_{j}^{*} \cdot [g_{j}(x^{*}) - c_{j}]$$
 (33)

Conceitualmente, as condições de Kuhn-Tucher, primeiramente, significam que todo movimento ou tendência de mudança da função objetivo são equilibradas para o ótimo. Além disso, a solução ótima de um problema de programação não linear deve satisfazer todas as restrições do problema. E ainda, em caso de igualdade, o ponto ótimo deve existir na restrição de igualdade; e em caso de desigualdade, a influência das restrições de desigualdade é unidirecional. E, por fim, restrições adicionais são muitas vezes necessárias, um uso comum desse tipo é que as restrições do gradientes tem que ser linearmente dependentes (PETERS *et al*, 2003).

Para um problema de otimização na forma:

$$\min f(\mathbf{z}) \tag{34}$$

sujeito às condições:

$$h_j(\mathbf{z}) = 0 \qquad \qquad j = 1, \dots, m \tag{35}$$

$$g_j(\mathbf{z}) \le 0 \qquad \qquad j = m+1, \dots, n \tag{36}$$

onde $f(\mathbf{z})$ é convexo, $h_j(\mathbf{z})$ são lineares, e $g_j(\mathbf{z})$ são convexas, pode-se afirmar que o mínimo local é também o mínimo global (EDGAR *et al.*, 2001; BAZARRA *et al*, 1993). Considerando estas condições, ainda, se as condições de Kuhn-Tucker forem satisfeitas no ponto $\overline{\mathbf{z}}$, essa solução $\overline{\mathbf{z}}$ é o mínimo global (BAZARRA *et al*, 1993).

O modelo termodinâmico, descrito em sua forma geral, é dado por:

$$G = \left(n_{1}^{0} \cdot \mu_{1}^{s,\circ} + n_{2}^{\circ} \cdot \mu_{2}^{s,\circ}\right) - n_{p}^{0} \cdot \Delta G_{R}^{\circ} + n_{p}^{s} \cdot \Delta G_{R}^{\circ} + R \cdot T \cdot \left[n_{1}^{l} \cdot \left(B_{1} + \ln n_{1}^{l} - \ln \left(n_{1}^{l} + n_{2}^{l}\right)\right) + n_{2}^{l} \cdot \left(B_{2} + \ln n_{2}^{l} - \ln \left(n_{1}^{l} + n_{2}^{l}\right)\right)\right] + \frac{A_{12} \cdot n_{1}^{l} \cdot n_{2}^{l}}{\left(n_{1}^{l} + n_{2}^{l}\right)}$$
(37)

sujeito ás condições:

,

$$n_1^s + n_1^l - \mathcal{V}_1 \cdot n_p^s = n_1^0 \tag{38}$$

$$n_2^s + n_2^l - V_2 \cdot n_p^s = n_2^0 \tag{39}$$

$$-n_1^l \le 0 \tag{40}$$

$$-n_2^l \le 0 \tag{41}$$

$$-n_1^s \le 0 \tag{42}$$

$$-n_2^s \le 0 \tag{43}$$

$$-n_n^s \le 0 \tag{44}$$

Da equação (37) aplicada suas restrições (38 – 44), é que serão obtidas as expressãoes explícitas em T para cada região.

O vetor \mathbf{z} é dado por:

$$\mathbf{z}^{t} = \left(n_{1}^{t}, n_{2}^{t}, n_{1}^{s}, n_{2}^{s}, n_{p}^{s}\right)$$
(45)

As restrições (38) - (44) são lineares e também convexas. Para verificar a convexidade de G, considera-se que:

$$f(\mathbf{z}) = f_1(\mathbf{z}) + f_2(\mathbf{z}) \tag{46}$$

Se ambos, $f_1(\mathbf{z})$ and $f_2(\mathbf{z})$ são convexos, então $f(\mathbf{z})$ é convexo (porém o inverso pode não ser verdadeiro), considerando então:

$$f_{1}(\mathbf{z}) = \left(n_{1}^{0} \cdot \mu_{1}^{s,\circ} + n_{2}^{\circ} \cdot \mu_{2}^{s,\circ}\right) - n_{p}^{0} \cdot \Delta G_{R}^{\circ} + n_{p}^{s} \cdot \Delta G_{R}^{\circ}$$

$$f_{2}(\mathbf{z}) = R \cdot T \cdot \left[n_{1}^{l} \cdot \left(B_{1} + \ln n_{1}^{l} - \ln \left(n_{1}^{l} + n_{2}^{l}\right)\right) + n_{2}^{l} \cdot \left(B_{2} + \ln n_{2}^{l} - \ln \left(n_{1}^{l} + n_{2}^{l}\right)\right)\right] + \frac{A_{12} \cdot n_{1}^{l} \cdot n_{2}^{l}}{\left(n_{1}^{l} + n_{2}^{l}\right)}$$

$$(47)$$

$$(47)$$

$$(47)$$

$$(47)$$

Nota-se que $f_1(\mathbf{z})$ é convexa, desde que $f_1(\mathbf{z})$ seja uma função linear em n_p^s . A convexidade de $f_2(\mathbf{z})$ pode ser analisada por uma matriz Hessiana, dada por:

$$\mathbf{H}_{f_{2}} = \begin{bmatrix} \frac{R \cdot T}{n_{1}^{l}} - \frac{R \cdot T}{\left(n_{1}^{l} + n_{2}^{l}\right)} - 2 \cdot \frac{A_{12} \cdot \left(n_{2}^{l}\right)^{2}}{\left(n_{1}^{l} + n_{2}^{l}\right)^{3}} & -\frac{R \cdot T}{\left(n_{1}^{l} + n_{2}^{l}\right)} + 2 \cdot \frac{A_{12} \cdot n_{1}^{l} \cdot n_{2}^{l}}{\left(n_{1}^{l} + n_{2}^{l}\right)^{3}} \\ - \frac{R \cdot T}{\left(n_{1}^{l} + n_{2}^{l}\right)} + 2 \cdot \frac{A_{12} \cdot n_{1}^{l} \cdot n_{2}^{l}}{\left(n_{1}^{l} + n_{2}^{l}\right)^{3}} & \frac{R \cdot T}{n_{2}^{l}} - \frac{R \cdot T}{\left(n_{1}^{l} + n_{2}^{l}\right)} - 2 \cdot \frac{A_{12} \cdot \left(n_{1}^{l}\right)^{2}}{\left(n_{1}^{l} + n_{2}^{l}\right)^{3}} \end{bmatrix}$$
(49)

desde que a matriz dependa somente de n_1^l e n_2^l (exatamente, a matriz é de ordem 5x5, mas todos os outros elementos são nulos).

A função é convexa se, e somente se, a matriz Hessiana for positiva definida (BAZARRA *et al*, 1993), e a matriz Hessiana é positiva definida se, e somente se, os auto-valores forem não negativos (BAZARRA *et al*, 1993). A matriz descrita em (49) tem os auto-valores:

$$\lambda_1 = 0 \tag{50}$$

$$\lambda_{2} = \frac{\left(n_{1}^{l}\right)^{2} + \left(n_{2}^{l}\right)^{2}}{\left(n_{1}^{l} + n_{2}^{l}\right)^{2}} \cdot \left[\frac{\left(n_{1}^{l} + n_{2}^{l}\right)^{2}}{n_{1}^{l} \cdot n_{2}^{l}} - 2 \cdot \frac{A_{12}}{R \cdot T}\right]$$
(51)

Para qualquer combinação entre $n_1^l > 0$ e $n_2^l > 0$, tem-se:

$$\frac{\left(n_{1}^{l}+n_{2}^{l}\right)^{2}}{n_{1}^{l}\cdot n_{2}^{l}} \ge 4$$
(52)

Portanto, o valor do auto-valor λ_2 será não negativo ($\lambda_2 \ge 0$) para qualquer valor de $n_1^l > 0$ e $n_2^l > 0$, se:

$$\frac{A_{12}}{R \cdot T} \le 2 \tag{53}$$

É possível modelar o equilíbrio líquido-líquido ou sólido-sólido com o modelo de Margules caso A_{12} viole a restrição (53) (WALAS, 1985, O'CONNELL, 2005). Entretanto, esse tipo de equilíbrio não é o foco deste trabalho.

Portanto, se a restrição (53) for satisfeita, o problema é considerado convexo e desta forma, as condições de Kuhn-Tucker são necessárias e suficientes para encontrar o mínimo global e o ponto de equilíbrio (EDGAR *et al.*, 2001; BAZARRA *et al*, 1993, O'CONNELL, 2005).

Apêndice 2

Os cálculos desenvolvidos no GAMS, foram realizados e seguem os padrões do algoritmo descrito a seguir.

\$offlisting

\$include dados03

\$include pontos03

\$include curvas03

\$include pesos03

parameter

xc1 composica
o de formaca
o do composto - componente 1 ;
 xc1 = nu('1')/(nu('1')+nu('2')) ;

parameter

xc2 composica
o de formacao do composto - componente 2;
xc2 = nu('2')/(nu('1')+nu('2')) ;

variables

a12 parametro de Margules12
a21 parametro de Margules21
DGR energia de Gibbs da reacao
aux1(k) variavel auxiliar 1
aux2(k) variavel auxiliar 2
T1(k) temperatura para curva 1
T2(k) temperatura para curva 2
T3(k) temperatura para curva 3
Tc(k) temperatura calculada

S soma do quadrado dos erros ;

equations eaux1(k) equacao auxiliar 1 eaux2(k) equacao auxiliar 2 EC1(k) equacao para a curva 1 EC2(k) equacao para a curva 2 EC3(k) equacao para a curva 3 ETC(k) equacao para a temperatura calculada SQE soma do quadrado dos erros ;

eaux1(k).. aux1(k) = e = DH('1') + (a12+2*(a21-a12)*x(k,'1'))*x(k,'2')*x(k,'2');

eaux2(k) .. aux2(k) =e= DH('2')+(a21+2*(a12-a21)*x(k,'2'))*x(k,'1')*x(k,'1');

EC1(k) .. T1(k) = e = aux2(k)/((DH('2')/Tf('2'))-R*log(x(k,'2')));

EC2(k) .. T2(k) = e = aux1(k)/((DH('1')/Tf('1'))-R*log(x(k,'1')));

$$\begin{split} & EC3(k) \dots & T3(k) = e = (nu('1')*aux1(k)+nu('2')*aux2(k)+DGR)/sum(j,nu(j)*((DH(j)/Tf(j))-R*log(x(k,j)))); \end{split}$$

$$\begin{split} & \text{ETC}(k) \ .. & \text{Tc}(k) = e = c1(k) * T1(k) + c2(k) * T2(k) + c3(k) * T3(k) \ ; \\ & \text{*ETC}(k) \ .. & \text{Tc}(k) = e = max(T1(k), T2(k), T3(k)) \ ; \end{split}$$

SQE .. S = e = sum(k,w(k)*(Tc(k)-Te(k))*(Tc(k)-Te(k)));

model MQ /all/;

option solprint = off;

option limcol = 0;

option limrow = 0;

option decimals = 6;

solve MQ using NLP minimizing S; *solve MQ using DNLP minimizing S;

display a12.1, a21.1, DGR.1;

display Tc.l;

display Te;

display T1.l;

display T2.1;

display T3.l;

Apêndice 3

Os cálculos desenvolvidos no *Microsooft Excel*, para as misturas binárias, foram realizados e seguem os padrões das Tabelas A1 juntamente com sua auxiliar, Tabela A2. Essas planilhas foram desenvolvidas de forma a facilitar o ajuste e deixá-lo mais prático.

Tabela AP1: Mostra de cálculos efetuados para obtenção de dados de equilíbrio pela minimização da soma do quadrado dos erros.

							-			
Δh_{f1}	T _{f1}	ν_1		Δh_{f2}	T _{f2}	ν_2		A ₁₂	A ₂₁	ΔG_R
8175,0	228,19	-1,00		9745,0	253,09	-1,00		-363,064	-84,629	0,000
X _{exp}	T _{exp}	T ₁	T ₂	T ₃	T_{calc}	e _r (%)	qe			
0,0000	253,090	253,09	0,00	0,00	253,090	0,0000	0,0000			
0,1079	251,980	251,43	197,11	223,75	251,433	0,2172	0,2997			
0,2018	250,010	249,63	205,49	227,54	249,627	0,1534	0,1470	Х _Р	T ₃	T_1 - T_3
0,2865	248,010	247,75	210,69	229,42	247,746	0,1063	0,0695	0,866569	226,4505	0,00000
0,4333	244,100	243,99	217,03	230,88	243,987	0,0462	0,0127			
0,4975	242,000	242,15	219,10	231,02	242,147	0,0608	0,0217			
0,6102	238,140	238,57	222,01	230,67	238,572	0,1816	0,1870	x _{1C}	x _{2C}	T ₃
0,7195	234,720	234,47	224,18	229,63	234,470	0,1067	0,0627	0,50000	0,50000	231,0207
0,9219	227,710	221,16	227,19	223,89	227,191	0,2280	0,2696			
1,0000	228,190	0,00	228,19	0,00	228,190	0,0000	0,0000			
								XE	T ₃	$T_2 - T_3$

Ν	10		AAD (%
		-	MAD (%

AD (%)	0,1100		
1AD (%)	0,2280		
	SQE	1,0699	

0,866569

226,4505

0,00000

ĺ	x _{exp}	T_{exp}	Δh_{f2} +Aux ₂	$\Delta h_{f1} + Aux_1$	$\Delta h_{f1}/T_{f1}\text{-}R^*Inx_1$	$\Delta h_{f2}/T_{f2}\text{-}R^*Inx_2$	Х _Р
	0,0000	253,090	9745,00	7811,94		38,5041	0,866
	0,1079	251,980	9738,23	7933,88	40,2500	38,7310	
	0,2018	250,010	9723,45	8015,28	39,0059	38,9520	X _{1C}
	0,2865	248,010	9705,44	8071,39	38,3094	39,1749	0,500
	0,4333	244,100	9669,86	8135,89	37,4874	39,6327	
	0,4975	242,000	9654,79	8153,28	37,2128	39,8716	
	0,6102	238,140	9632,66	8171,47	36,8070	40,3763	X _E
	0,7195	234,720	9620,33	8177,96	36,4796	41,0302	0,866
	0,9219	227,710	9636,11	8175,92	35,9870	43,5710	
	1,0000	228,190	9660,37	8175,00	35,8254		
	0,8666	Р	9625,651	8177,1276	36,1100	42,5066	
ĺ	0,5000	С	9654,234	8153,8428	37,2028	39,8815	
	0,8666	Е	9625,651	8177,1276	36,1100	42,5066	

 $\Delta h_{f1}/T_{f1}$

35,8254

 $\Delta h_{f2}/T_{f2}$

38,5041

Tabela AP2 -	- Tabela d	e cálculos	auxiliar	a tabela	AP1
--------------	------------	------------	----------	----------	-----

-363,0643

 A_{21} -84,6288

A₁₂

Х _Р	T ₃	T_1 - T_3
0,8666	226,450	0,000
X _{1C}	X _{2C}	T ₃

	0,5000	0,5000	231,021
-			

X _E	T ₃	T_2 - T_3
0,8666	226,450	0,000

Apêndice 4

Os cálculos desenvolvidos para as misturas ternárias no *Microsooft Excel*, seguem os padrões das tabelas a seguir, nas quais, para cada fração molar do componente 3, foram geradas linhas de equilíbrio, tanto para o modelo de Margules Assimétrico ternário, quanto para Wilson ternário, e a junção das mesmas formam a superfície de equilíbrio ternário. Vale ressaltar que a para as fações molares iguais a 1 e igual a 0, para componente 3, não serão apresentadas nestas tabelas, visto que as mesmas representam sistemas binários.

		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
		MA	W			MA	W			MA	W			MA	W
<i>x</i> ₁	x_2	T(K)	T(K)	x_1	<i>x</i> ₂	T(K)	T(K)	x_1	<i>x</i> ₂	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,90	306,6513	306,4809	0,00	0,80	305,1641	304,6627	0,00	0,70	303,4020	302,5768	0,00	0,60	301,2838	300,2392
0,02	0,88	306,3363	306,2092	0,02	0,78	304,7765	304,3427	0,02	0,68	302,9315	302,1961	0,02	0,58	300,7159	299,7845
0,04	0,86	306,0011	305,9285	0,04	0,76	304,3703	304,0112	0,04	0,66	302,4432	301,8006	0,04	0,56	300,1303	299,3106
0,06	0,84	305,6464	305,6385	0,06	0,74	303,9461	303,6676	0,06	0,64	301,9378	301,3895	0,06	0,54	299,5269	298,8163
0,08	0,82	305,2730	305,3386	0,08	0,72	303,5046	303,3113	0,08	0,62	301,4157	300,9617	0,08	0,52	298,9059	298,3001
0,10	0,80	304,8816	305,0283	0,10	0,70	303,0464	302,9413	0,10	0,60	300,8771	300,5162	0,10	0,50	298,2672	297,7605
0,12	0,78	304,4731	304,7070	0,12	0,68	302,5721	302,5570	0,12	0,58	300,3225	300,0519	0,12	0,48	297,6106	297,1957
0,14	0,76	304,0480	304,3742	0,14	0,66	302,0822	302,1575	0,14	0,56	299,7521	299,5674	0,14	0,46	296,9358	296,6039
0,16	0,74	303,6072	304,0292	0,16	0,64	301,5771	301,7418	0,16	0,54	299,1661	299,0615	0,16	0,44	296,2422	295,9829
0,18	0,72	303,1511	303,6713	0,18	0,62	301,0575	301,3088	0,18	0,52	298,5644	298,5325	0,18	0,42	295,5292	295,3303
0,20	0,70	302,6805	303,2998	0,20	0,60	300,5235	300,8575	0,20	0,50	297,9470	297,9788	0,20	0,40	294,7957	294,6434
0,22	0,68	302,1958	302,9137	0,22	0,58	299,9755	300,3866	0,22	0,48	297,3137	297,3985	0,22	0,38	294,0405	293,9193
0,24	0,66	301,6977	302,5123	0,24	0,56	299,4138	299,8948	0,24	0,46	296,6642	296,7896	0,24	0,36	293,2619	293,1545
0,26	0,64	301,1865	302,0945	0,26	0,54	298,8384	299,3806	0,26	0,44	295,9980	296,1498	0,26	0,34	292,4578	292,3450
0,28	0,62	300,6628	301,6593	0,28	0,52	298,2495	298,8423	0,28	0,42	295,3142	295,4766	0,28	0,32	292,0690	291,4863
0,30	0,60	300,1269	301,2056	0,30	0,50	297,6469	298,2783	0,30	0,40	294,6119	294,7670	0,30	0,30	292,0578	291,1772
0,32	0,58	299,5791	300,7321	0,32	0,48	297,0304	297,6864	0,32	0,38	293,9283	294,0178	0,32	0,28	291,9925	291,1096
0,34	0,56	299,0195	300,2375	0,34	0,46	296,3998	297,0646	0,34	0,36	293,9577	293,2375	0,34	0,26	291,8737	290,9823
0,36	0,54	298,4484	299,7202	0,36	0,44	295,7543	296,4103	0,36	0,34	293,9449	293,2037	0,36	0,24	291,7002	290,7923
0,38	0,52	297,8658	299,1786	0,38	0,42	295,6043	295,7207	0,38	0,32	293,8908	293,1236	0,38	0,22	291,4697	290,5350
0,40	0,50	297,2716	298,6109	0,40	0,40	295,6235	295,1846	0,40	0,30	293,7958	292,9956	0,40	0,20	291,1777	290,2041
0,42	0,48	297,0407	298,0149	0,42	0,38	295,6090	295,1429	0,42	0,28	293,6593	292,8170	0,42	0,18	290,8174	289,7903
0,44	0,46	297,0762	297,3886	0,44	0,36	295,5615	295,0630	0,44	0,26	293,4801	292,5845	0,44	0,16	290,3784	289,2812
0,46	0,44	297,0828	297,0705	0,46	0,34	295,4814	294,9432	0,46	0,24	293,2558	292,2934	0,46	0,14	289,8453	288,6589
0,48	0,42	297,0614	297,0344	0,48	0,32	295,3686	294,7814	0,48	0,22	292,9829	291,9376	0,48	0,12	289,1943	287,8976
0,50	0,40	297,0128	296,9667	0,50	0,30	295,2225	294,5746	0,50	0,20	292,6560	291,5093	0,50	0,10	288,4749	287,7384
0,52	0,38	296,9374	296,8659	0,52	0,28	295,0419	294,3193	0,52	0,18	292,2674	290,9981	0,52	0,08	288,8982	288,3710
0,54	0,36	296,8354	296,7304	0,54	0,26	294,8249	294,0110	0,54	0,16	291,8061	290,3902	0,54	0,06	289,2994	288,9880
0,56	0,34	296,7068	296,5576	0,56	0,24	294,5687	293,6440	0,56	0,14	291,2560	289,6664	0,56	0,04	289,6807	289,5898
0,58	0,32	296,5509	296,3449	0,58	0,22	294,2690	293,2113	0,58	0,12	290,5926	289,7341	0,58	0,02	290,0441	290,1764
0,60	0,30	296,3668	296,0888	0,60	0,20	293,9203	292,7040	0,60	0,10	290,8823	290,3004	0,60	0,00	290,3916	290,7477
0,62	0,28	296,1529	295,7852	0,62	0,18	293,5144	292,1105	0,62	0,08	291,2501	290,8528	-	-	-	-
0,64	0,26	295,9071	295,4289	0,64	0,16	293,0399	291,4159	0,64	0,06	291,6026	291,3907	-	-	-	-
0,66	0,24	295,6262	295,0139	0,66	0,14	292,4803	291,5908	0,66	0,04	291,9415	291,9134	-	-	-	-

Tabela AP3: Dados de equilíbrio para a mistura de palmitato (1) com estearato (2) com miristato (3) de etila - 1

1a	bela Al	F5. Commu	açao													
0,68	0,22	295,3059	294,5323	0,68	0,12	292,7093	292,0993	0,68	0,02	292,2685	292,4198	-	-	-	-	
0,70	0,20	294,9401	293,9748	0,70	0,10	293,0455	292,5932	0,70	0,00	292,5851	292,9085	-	-	-	-	
0,72	0,18	294,5207	293,3290	0,72	0,08	293,3699	293,0714	-	-	-	-	-	-	-	-	
0,74	0,16	294,0359	293,4131	0,74	0,06	293,6840	293,5322	-	-	-	-	-	-	-	-	
0,76	0,14	294,3445	293,8671	0,76	0,04	293,9892	293,9735	-	-	-	-	-	-	-	-	
0,78	0,12	294,6470	294,3042	0,78	0,02	294,2872	294,3926	-	-	-	-	-	-	-	-	
0,80	0,10	294,9404	294,7221	0,80	0,00	294,5792	294,7857	-	-	-	-	-	-	-	-	
0,82	0,08	295,2262	295,1180	-	-	-	-	-	-	-	-	-	-	-	-	
0,84	0,06	295,5058	295,4884	-	-	-	-	-	-	-	-	-	-	-	-	
0,86	0,04	295,7806	295,8288	-	-	-	-	-	-	-	-	-	-	-	-	
0,88	0,02	296,0519	296,1332	-	-	-	-	-	-	-	-	-	-	-	-	
0,90	0,00	296,3210	296,3941	-	-	-	-	-	-	-	-	-	-	-	-	

Tabela AP3: Continuação

		$x_3 = 0.5$		- 1	<u></u>	$x_3 = 0.6$	<u> </u>	- (-) -		$x_3 = 0,7$		(-)		$x_3 = 0.8$	
		MA	W			MA	W			MA	W			MA	W
x_1	<i>x</i> ₂	T(K)	T(K)	x_1	<i>x</i> ₂	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,50	298,7028	297,6082	0,00	0,40	295,5046	294,5772	0,00	0,30	291,4307	290,9270	0,00	0,20	285,9492	286,1596
0,02	0,48	298,0162	297,0599	0,02	0,38	294,6632	293,9016	0,02	0,28	290,3641	290,0562	0,02	0,18	284,4822	284,9205
0,04	0,46	297,3095	296,4860	0,04	0,36	293,7946	293,1895	0,04	0,26	289,2512	289,1257	0,04	0,16	282,9046	283,5541
0,06	0,44	296,5820	295,8846	0,06	0,34	292,8968	292,4371	0,06	0,24	288,0853	288,1274	0,06	0,14	282,7870	282,8838
0,08	0,42	295,8331	295,2532	0,08	0,32	291,9671	291,6404	0,08	0,22	286,8578	287,0510	0,08	0,12	282,8685	282,9050
0,10	0,40	295,0618	294,5895	0,10	0,30	291,0024	290,7945	0,10	0,20	285,5572	285,8839	0,10	0,10	282,9435	282,9173
0,12	0,38	294,2668	293,8905	0,12	0,28	289,9984	289,8937	0,12	0,18	284,2004	284,6092	0,12	0,08	283,0129	282,9198
0,14	0,36	293,4466	293,1531	0,14	0,26	288,9498	288,9310	0,14	0,16	284,2213	283,2782	0,14	0,06	283,0779	282,9116
0,16	0,34	292,5990	292,3734	0,16	0,24	287,8500	287,8982	0,16	0,14	284,0464	283,2474	0,16	0,04	283,1398	282,8914
0,18	0,32	291,7215	291,5472	0,18	0,22	287,3756	286,7848	0,18	0,12	283,6773	283,0195	0,18	0,02	283,1996	282,8579
0,20	0,30	290,8106	290,6694	0,20	0,20	287,3119	286,3995	0,20	0,10	283,0937	282,5729	0,20	0,00	283,2586	282,8099
0,22	0,28	289,9031	289,7341	0,22	0,18	287,1361	286,3060	0,22	0,08	282,2451	281,8557	-	-	-	-
0,24	0,26	289,9042	288,9582	0,24	0,16	286,8463	286,0934	0,24	0,06	281,6315	281,1940	-	-	-	-
0,26	0,24	289,8300	288,9196	0,26	0,14	286,4332	285,7506	0,26	0,04	281,7049	281,1466	-	-	-	-
0,28	0,22	289,6816	288,8019	0,28	0,12	285,8782	285,2574	0,28	0,02	281,9009	281,0821	-	-	-	-
0,30	0,20	289,4572	288,6015	0,30	0,10	285,1477	284,5789	0,30	0,00	282,5118	281,7126	-	-	-	-
0,32	0,18	289,1523	288,3119	0,32	0,08	284,1817	283,6538	-	-	-	-	-	-	-	-
0,34	0,16	288,7583	287,9226	0,34	0,06	283,9261	282,9169	-	-	-	-	-	-	-	-
0,36	0,14	288,2610	287,4176	0,36	0,04	284,4715	283,7442	-	-	-	-	-	-	-	-
0,38	0,12	287,6382	286,7728	0,38	0,02	284,9761	284,5429	-	-	-	-	-	-	-	-
0,40	0,10	286,8533	285,9499	0,40	0,00	285,4440	285,3157	-	-	-	-	-	-	-	-
0,42	0,08	286,2978	285,5075	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	286,7699	286,2224	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	287,2128	286,9175	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	287,6291	287,5941	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	288,0217	288,2531	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP4: Dados de equilíbrio para a mistura de palmitato (1) com estearato (2) com miristato (3) de etila – 2 (cont.)

		$x_3 = 0,9$	
		MA	W
X_1	x_2	T(K)	T(K)
0,00	0,10	284,2857	284,3666
0,02	0,08	284,3405	284,3867
0,04	0,06	284,3886	284,3985
0,06	0,04	284,4311	284,4009
0,08	0,02	284,4691	284,3931
0,10	0,00	284,5038	284,3742

Tabela AP5: Dados de equilíbrio para a mistura de palmitato (1) com estearato (2) com miristato (3) de etila – 3 (cont.)

Tabela AP6: Dados de equilíbrio para a mistura de laurato (1) com palmitato (2) com miristato (3) de etila - 1

		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
		MA	W												
x_1	x_2	T(K)	T(K)												
0,00	0,90	296,5461	296,3941	0,00	0,80	295,3375	294,7857	0,00	0,70	293,9734	292,9085	0,00	0,60	292,2991	290,7477
0,02	0,88	296,2932	296,0818	0,02	0,78	295,0512	294,4173	0,02	0,68	293,6256	292,4821	0,02	0,58	291,8577	290,2552
0,04	0,86	296,0340	295,7565	0,04	0,76	294,7527	294,0346	0,04	0,66	293,2588	292,0393	0,04	0,56	291,3894	289,7434
0,06	0,84	295,7667	295,4176	0,06	0,74	294,4397	293,6368	0,06	0,64	292,8706	291,5795	0,06	0,54	290,8916	289,2110
0,08	0,82	295,4892	295,0645	0,08	0,72	294,1102	293,2233	0,08	0,62	292,4588	291,1017	0,08	0,52	290,3618	288,6570
0,10	0,80	295,1996	294,6965	0,10	0,70	293,7621	292,7933	0,10	0,60	292,0211	290,6048	0,10	0,50	289,7972	288,0797
0,12	0,78	294,8956	294,3130	0,12	0,68	293,3931	292,3460	0,12	0,58	291,5550	290,0880	0,12	0,48	289,1949	287,4779
0,14	0,76	294,5753	293,9131	0,14	0,66	293,0010	291,8805	0,14	0,56	291,0581	289,5499	0,14	0,46	288,5520	286,8497
0,16	0,74	294,2367	293,4961	0,16	0,64	292,5837	291,3959	0,16	0,54	290,5279	288,9894	0,16	0,44	287,8653	286,3463
0,18	0,72	293,8775	293,0611	0,18	0,62	292,1389	290,8911	0,18	0,52	289,9617	288,4051	0,18	0,42	287,1316	286,2259
0,20	0,70	293,4957	292,6072	0,20	0,60	291,6642	290,3649	0,20	0,50	289,3569	288,1713	0,20	0,40	286,6099	286,0423
0,22	0,68	293,0891	292,1335	0,22	0,58	291,1572	289,8433	0,22	0,48	288,7107	288,0322	0,22	0,38	286,3301	285,8001
0,24	0,66	292,6556	291,6388	0,24	0,56	290,6156	289,7390	0,24	0,46	288,3839	287,8449	0,24	0,36	285,9811	285,5018
0,26	0,64	292,1929	291,2163	0,26	0,54	290,0641	289,5934	0,26	0,44	288,1407	287,6117	0,26	0,34	285,5627	285,1484
0,28	0,62	291,6988	291,1080	0,28	0,52	289,8942	289,4082	0,28	0,42	287,8421	287,3335	0,28	0,32	285,0732	284,7395
0,30	0,60	291,3768	290,9645	0,30	0,50	289,6788	289,1844	0,30	0,40	287,4869	287,0108	0,30	0,30	284,5099	284,2734
0,32	0,58	291,2183	290,7863	0,32	0,48	289,4171	288,9224	0,32	0,38	287,0738	286,6430	0,32	0,28	283,8688	283,7473
0,34	0,56	291,0214	290,5739	0,34	0,46	289,1080	288,6219	0,34	0,36	286,6005	286,2290	0,34	0,26	283,1447	283,1572
0,36	0,54	290,7850	290,3271	0,36	0,44	288,7498	288,2825	0,36	0,34	286,0640	285,7669	0,36	0,24	282,3310	282,4974
0,38	0,52	290,5077	290,0454	0,38	0,42	288,3405	287,9030	0,38	0,32	285,4609	285,2542	0,38	0,22	281,4192	281,7604
0,40	0,50	290,1879	289,7280	0,40	0,40	287,8778	287,4819	0,40	0,30	284,7870	284,6876	0,40	0,20	280,3984	280,9363

Та	bela AF	P6: Continua	ição												
0,42	0,48	289,8236	289,3738	0,42	0,38	287,3589	287,0175	0,42	0,28	284,0372	284,0629	0,42	0,18	279,2545	280,0120
0,44	0,46	289,4128	288,9814	0,44	0,36	286,7808	286,5072	0,44	0,26	283,2054	283,3748	0,44	0,16	277,9687	278,9694
0,46	0,44	288,9531	288,5491	0,46	0,34	286,1398	285,9482	0,46	0,24	282,2844	282,6167	0,46	0,14	276,5151	277,7835
0,48	0,42	288,4420	288,0748	0,48	0,32	285,4318	285,3369	0,48	0,22	281,2652	281,7802	0,48	0,12	274,8563	276,4177
0,50	0,40	287,8766	287,5561	0,50	0,30	284,6524	284,6693	0,50	0,20	280,1364	280,8547	0,50	0,10	274,4600	274,8161
0,52	0,38	287,2538	286,9901	0,52	0,28	283,7959	283,9401	0,52	0,18	278,8837	279,8262	0,52	0,08	274,2056	272,9036
0,54	0,36	286,5703	286,3735	0,54	0,26	282,8562	283,1434	0,54	0,16	277,4881	278,6762	0,54	0,06	273,9147	272,6227
0,56	0,34	285,8221	285,7025	0,56	0,24	281,8257	282,2716	0,56	0,14	275,9234	277,3790	0,56	0,04	273,5856	272,3074
0,58	0,32	285,0052	284,9726	0,58	0,22	280,6951	281,3157	0,58	0,12	274,1524	275,8976	0,58	0,02	273,2163	271,9550
0,60	0,30	284,1145	284,1787	0,60	0,20	279,4533	280,2641	0,60	0,10	272,1183	274,1760	0,60	0,00	272,8049	271,5626
0,62	0,28	283,1448	283,3146	0,62	0,18	278,0856	279,1022	0,62	0,08	269,7348	272,1216	-	-	-	-
0,64	0,26	282,0894	282,3732	0,64	0,16	276,5732	277,8105	0,64	0,06	269,3308	269,5643	-	-	-	-
0,66	0,24	280,9409	281,3457	0,66	0,14	274,8901	276,3626	0,66	0,04	268,8848	267,5731	-	-	-	-
0,68	0,22	279,6901	280,2218	0,68	0,12	272,9990	274,7212	0,68	0,02	268,3948	267,0303	-	-	-	-
0,70	0,20	278,3256	278,9886	0,70	0,10	270,8437	272,8296	0,70	0,00	267,8592	266,4271	-	-	-	-
0,72	0,18	276,8332	277,6299	0,72	0,08	268,3313	270,5958	-	-	-	-	-	-	-	-
0,74	0,16	275,1939	276,1247	0,74	0,06	267,1555	267,8513	-	-	-	-	-	-	-	-
0,76	0,14	273,3821	274,4451	0,76	0,04	267,7739	266,7524	-	-	-	-	-	-	-	-
0,78	0,12	271,3608	272,5520	0,78	0,02	268,3548	267,3954	-	-	-	-	-	-	-	-
0,80	0,10	269,0744	270,3879	0,80	0,00	268,8962	268,0248	-	-	-	-	-	-	-	-
0,82	0,08	268,9990	268,2253	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	269,5446	268,8472	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	270,0509	269,4487	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	270,5162	270,0263	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	270,9384	270,5756	-	-	-	-	-	-	-	-	-	-	-	-

		$x_3 = 0,5$			-	$x_3 = 0,6$				$x_3 = 0,7$				$x_3 = 0.8$	
		MA	W			MA	W			MA	W			MA	W
<i>x</i> ₁	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	<i>x</i> ₂	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,50	290,1351	288,2531	0,00	0,40	287,2537	285,3157	0,00	0,30	283,3235	281,7126	0,00	0,20	283,9353	282,8099
0,02	0,48	289,5608	287,6778	0,02	0,38	286,4928	284,6247	0,02	0,28	282,2879	281,0498	0,02	0,18	284,0345	282,8406
0,04	0,46	288,9497	287,0778	0,04	0,36	285,6807	283,8992	0,04	0,26	282,0666	281,0937	0,04	0,16	284,1233	282,8636
0,06	0,44	288,2986	286,4515	0,06	0,34	284,8127	283,1358	0,06	0,24	282,1750	281,1296	0,06	0,14	284,1996	282,8786
0,08	0,42	287,6043	285,7968	0,08	0,32	283,8837	282,3308	0,08	0,22	282,2743	281,1572	0,08	0,12	284,2617	282,8851
0,10	0,40	286,8631	285,1114	0,10	0,30	282,8877	281,5063	0,10	0,20	282,3625	281,1760	0,10	0,10	284,3076	282,8828
0,12	0,38	286,0711	284,3929	0,12	0,28	281,8182	281,3812	0,12	0,18	282,4378	281,1856	0,12	0,08	284,3354	282,8712
0,14	0,36	285,2241	284,0975	0,14	0,26	281,4326	281,1282	0,14	0,16	282,4982	281,1854	0,14	0,06	284,3432	282,8498
0,16	0,34	284,4680	283,9286	0,16	0,24	280,9320	280,7620	0,16	0,14	282,5420	281,1751	0,16	0,04	284,3292	282,8181
0,18	0,32	284,1442	283,6783	0,18	0,22	280,4430	280,2881	0,18	0,12	282,5671	281,1539	0,18	0,02	284,2914	282,7755
0,20	0,30	283,7293	283,3523	0,20	0,20	280,4940	279,7051	0,20	0,10	282,5718	281,1214	0,20	0,00	284,2279	282,7215
0,22	0,28	283,2243	282,9529	0,22	0,18	280,5278	279,2181	0,22	0,08	282,5542	281,0769	-	-	-	-
0,24	0,26	282,6275	282,4795	0,24	0,16	280,5426	279,1860	0,24	0,06	282,5123	281,0198	-	-	-	-
0,26	0,24	281,9347	281,9293	0,26	0,14	280,5364	279,1406	0,26	0,04	282,4443	280,9492	-	-	-	-
0,28	0,22	281,1392	281,2968	0,28	0,12	280,5074	279,0811	0,28	0,02	282,3482	280,8646	-	-	-	-
0,30	0,20	280,2318	280,5738	0,30	0,10	280,4536	279,0067	0,30	0,00	282,2223	280,7649	-	-	-	-
0,32	0,18	279,1993	279,7483	0,32	0,08	280,3734	278,9165	-	-	-	-	-	-	-	-
0,34	0,16	278,1146	278,8034	0,34	0,06	280,2647	278,8096	-	-	-	-	-	-	-	-
0,36	0,14	278,0416	277,7149	0,36	0,04	280,1257	278,6849	-	-	-	-	-	-	-	-
0,38	0,12	277,9416	276,5486	0,38	0,02	279,9545	278,5413	-	-	-	-	-	-	-	-
0,40	0,10	277,8128	276,4151	0,40	0,00	279,7494	278,3776	-	-	-	-	-	-	-	-
0,42	0,08	277,6534	276,2602	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	277,4614	276,0825	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	277,2351	275,8806	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	276,9725	275,6526	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	276,6719	275,3967	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP7: Dados de equilíbrio para a mistura de laurato (1) com palmitato (2) com miristato (3) de etila – 2 (cont.)

		$x_3 = 0,9$	
		MA	W
x_1	X_2	T(K)	T(K)
0,00	0,10	285,7749	284,3742
0,02	0,08	285,8306	284,3866
0,04	0,06	285,8707	284,3913
0,06	0,04	285,8932	284,3878
0,08	0,02	285,8962	284,3759
0,10	0,00	285,8779	284,3551

Tabela AP8: Dados de equilíbrio para a mistura de laurato (1) com palmitato (2) com miristato (3) de etila – 3 (cont.)

Tabela AP9: Dados de equilíbrio para a mistura de laurato (1) com caprato (2) com caprilato (3) de etila - 1

		1000				ie paia a illi		1000 (1) •••••		oni oupina			-	
		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
х.	X ₂	MA	W	х.	Xa	MA	W	x.	x,	MA	W	X.	X	MA	W
1		T(K)	T(K)		·••2	T(K)	T(K)]		T(K)	T(K)]		T(K)	T(K)
0,00	0,90	253,1617	253,0907	0,00	0,80	251,6814	251,4447	0,00	0,70	249,9460	249,5156	0,00	0,60	247,8190	247,2257
0,02	0,88	252,8485	252,7971	0,02	0,78	251,3185	251,1118	0,02	0,68	249,5206	249,1229	0,02	0,58	247,3141	246,7491
0,04	0,86	252,5165	252,4802	0,04	0,76	250,9368	250,7515	0,04	0,66	249,0757	248,6994	0,04	0,56	246,7877	246,2380
0,06	0,84	252,1663	252,1421	0,06	0,74	250,5368	250,3664	0,06	0,64	248,6116	248,2477	0,06	0,54	246,2399	245,6949
0,08	0,82	251,7986	251,7847	0,08	0,72	250,1190	249,9586	0,08	0,62	248,1285	247,7698	0,08	0,52	245,6705	245,1216
0,10	0,80	251,4140	251,4095	0,10	0,70	249,6839	249,5296	0,10	0,60	247,6267	247,2674	0,10	0,50	245,0793	244,5195
0,12	0,78	251,0130	251,0175	0,12	0,68	249,2318	249,0808	0,12	0,58	247,1063	246,7418	0,12	0,48	244,4659	243,8895
0,14	0,76	250,5962	250,6099	0,14	0,66	248,7631	248,6132	0,14	0,56	246,5673	246,1937	0,14	0,46	245,5405	244,6098
0,16	0,74	250,1641	250,1873	0,16	0,64	248,2782	248,1276	0,16	0,54	247,0268	246,3674	0,16	0,44	247,2828	246,4398
0,18	0,72	249,7171	249,7503	0,18	0,62	248,3398	247,9422	0,18	0,52	248,6347	248,0196	0,18	0,42	248,8492	248,0846
0,20	0,70	249,5730	249,3568	0,20	0,60	249,8399	249,4399	0,20	0,50	250,0981	249,5213	0,20	0,40	250,2721	249,5768
0,22	0,68	250,9831	250,7165	0,22	0,58	251,2179	250,8138	0,22	0,48	251,4404	250,8968	0,22	0,38	251,5745	250,9407
0,24	0,66	252,2877	251,9731	0,24	0,56	252,4913	252,0817	0,24	0,46	252,6789	252,1640	0,24	0,36	252,7741	252,1948
0,26	0,64	253,5002	253,1405	0,26	0,54	253,6736	253,2579	0,26	0,44	253,8271	253,3375	0,26	0,34	253,8843	253,3535
0,28	0,62	254,6312	254,2298	0,28	0,52	254,7753	254,3535	0,28	0,42	254,8959	254,4287	0,28	0,32	254,9159	254,4285
0,30	0,60	255,6893	255,2501	0,30	0,50	255,8052	255,3779	0,30	0,40	255,8937	255,4468	0,30	0,30	255,8778	255,4292
0,32	0,58	256,6816	256,2087	0,32	0,48	256,7704	256,3387	0,32	0,38	256,8279	256,3998	0,32	0,28	256,7770	256,3636
0,34	0,56	257,6142	257,1120	0,34	0,46	257,6769	257,2423	0,34	0,36	257,7046	257,2942	0,34	0,26	257,6196	257,2384
0,36	0,54	258,4921	257,9652	0,36	0,44	258,5299	258,0942	0,36	0,34	258,5288	258,1356	0,36	0,24	258,4110	258,0592
0,38	0,52	259,3198	258,7730	0,38	0,42	259,3338	258,8990	0,38	0,32	259,3050	258,9288	0,38	0,22	259,1555	258,8309
0,40	0,50	260,1012	259,5392	0,40	0,40	260,0925	259,6609	0,40	0,30	260,0371	259,6779	0,40	0,20	259,8570	259,5579

Ta	bela AF	9: Continua	ição												
0,42	0,48	260,8396	260,2673	0,42	0,38	260,8094	260,3833	0,42	0,28	260,7287	260,3867	0,42	0,18	260,5192	260,2437
0,44	0,46	261,5382	260,9603	0,44	0,36	261,4877	261,0696	0,44	0,26	261,3828	261,0583	0,44	0,16	261,1450	260,8916
0,46	0,44	262,1997	261,6210	0,46	0,34	262,1302	261,7223	0,46	0,24	262,0022	261,6955	0,46	0,14	261,7373	261,5047
0,48	0,42	262,8267	262,2517	0,48	0,32	262,7393	262,3440	0,48	0,22	262,5896	262,3010	0,48	0,12	262,2988	262,0853
0,50	0,40	263,4215	262,8545	0,50	0,30	263,3174	262,9370	0,50	0,20	263,1471	262,8769	0,50	0,10	262,8316	262,6360
0,52	0,38	263,9862	263,4314	0,52	0,28	263,8667	263,5031	0,52	0,18	263,6770	263,4254	0,52	0,08	263,3381	263,1587
0,54	0,36	264,5228	263,9841	0,54	0,26	264,3892	264,0442	0,54	0,16	264,1814	263,9483	0,54	0,06	263,8202	263,6552
0,56	0,34	265,0333	264,5141	0,56	0,24	264,8867	264,5619	0,56	0,14	264,6621	264,4472	0,56	0,04	264,2799	264,1274
0,58	0,32	265,5194	265,0228	0,58	0,22	265,3612	265,0577	0,58	0,12	265,1208	264,9236	0,58	0,02	264,7190	264,5768
0,60	0,30	265,9827	265,5117	0,60	0,20	265,8141	265,5329	0,60	0,10	265,5594	265,3790	0,60	0,00	265,1390	265,0046
0,62	0,28	266,4249	265,9817	0,62	0,18	266,2472	265,9888	0,62	0,08	265,9794	265,8145	-	-	-	-
0,64	0,26	266,8475	266,4341	0,64	0,16	266,6619	266,4265	0,64	0,06	266,3823	266,2314	-	-	-	-
0,66	0,24	267,2519	266,8699	0,66	0,14	267,0598	266,8470	0,66	0,04	266,7696	266,6307	-	-	-	-
0,68	0,22	267,6395	267,2899	0,68	0,12	267,4422	267,2512	0,68	0,02	267,1427	267,0134	-	-	-	-
0,70	0,20	268,0118	267,6949	0,70	0,10	267,8105	267,6401	0,70	0,00	267,5031	267,3803	-	-	-	-
0,72	0,18	268,3700	268,0859	0,72	0,08	268,1660	268,0145	-	-	-	-	-	-	-	-
0,74	0,16	268,7153	268,4635	0,74	0,06	268,5101	268,3751	-	-	-	-	-	-	-	-
0,76	0,14	269,0492	268,8283	0,76	0,04	268,8439	268,7226	-	-	-	-	-	-	-	-
0,78	0,12	269,3726	269,1811	0,78	0,02	269,1687	269,0576	-	-	-	-	-	-	-	-
0,80	0,10	269,6870	269,5223	0,80	0,00	269,4857	269,3808	-	-	-	-	-	-	-	-
0,82	0,08	269,9934	269,8526	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	270,2929	270,1725	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	270,5867	270,4823	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	270,8759	270,7827	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	271,1615	271,0740	-	-	-	-	-	-	-	-	-	-	-	-
		$x_3 = 0,5$			-	$x_3 = 0,6$				$x_3 = 0,7$				$x_3 = 0.8$	
-------	-------	-------------	----------	-------	-------	-------------	----------	-------	-------	-------------	----------	-------	-------	-------------	----------
		MA	W												
x_1	x_2	T(K)	T(K)												
0,00	0,50	245,1388	244,4628	0,00	0,40	241,6968	241,0556	0,00	0,30	237,1812	236,7144	0,00	0,20	231,0072	230,8614
0,02	0,48	244,5300	243,8706	0,02	0,38	240,9448	240,3004	0,02	0,28	236,2118	235,7136	0,02	0,18	229,6393	229,4283
0,04	0,46	243,8956	243,2389	0,04	0,36	240,1583	239,4972	0,04	0,26	235,1863	234,6457	0,04	0,16	231,0868	230,0621
0,06	0,44	243,2349	242,5697	0,06	0,34	239,3350	238,6466	0,06	0,24	235,7145	234,3679	0,06	0,14	235,2406	234,3830
0,08	0,42	242,5470	241,8644	0,08	0,32	239,0342	237,7481	0,08	0,22	238,8436	237,6794	0,08	0,12	238,3026	237,6119
0,10	0,40	241,8307	241,1233	0,10	0,30	241,5996	240,3570	0,10	0,20	241,3501	240,3581	0,10	0,10	240,7433	240,2059
0,12	0,38	243,7745	242,6288	0,12	0,28	243,7566	242,6699	0,12	0,18	243,4489	242,6135	0,12	0,08	242,7774	242,3751
0,14	0,36	245,6918	244,6722	0,14	0,26	245,6220	244,6762	0,14	0,16	245,2567	244,5607	0,14	0,06	244,5216	244,2357
0,16	0,34	247,3876	246,4814	0,16	0,24	247,2665	246,4468	0,16	0,14	246,8445	246,2710	0,16	0,04	246,0469	245,8590
0,18	0,32	248,9083	248,1035	0,18	0,22	248,7366	248,0287	0,18	0,12	248,2589	247,7919	0,18	0,02	247,3998	247,2929
0,20	0,30	250,2862	249,5714	0,20	0,20	250,0647	249,4553	0,20	0,10	249,5320	249,1569	0,20	0,00	248,6126	248,5709
0,22	0,28	251,5444	250,9095	0,22	0,18	251,2741	250,7512	0,22	0,08	250,6875	250,3908	-	-	-	-
0,24	0,26	252,7007	252,1365	0,24	0,16	252,3824	251,9351	0,24	0,06	251,7430	251,5123	-	-	-	-
0,26	0,24	253,7685	253,2670	0,26	0,14	253,4033	253,0219	0,26	0,04	252,7121	252,5365	-	-	-	-
0,28	0,22	254,7588	254,3128	0,28	0,12	254,3476	254,0233	0,28	0,02	253,6057	253,4752	-	-	-	-
0,30	0,20	255,6803	255,2835	0,30	0,10	255,2242	254,9492	0,30	0,00	254,4326	254,3382	-	-	-	-
0,32	0,18	256,5402	256,1871	0,32	0,08	256,0403	255,8075	-	-	-	-	-	-	-	-
0,34	0,16	257,3446	257,0303	0,34	0,06	256,8021	256,6051	-	-	-	-	-	-	-	-
0,36	0,14	258,0989	257,8189	0,36	0,04	257,5147	257,3477	-	-	-	-	-	-	-	-
0,38	0,12	258,8074	258,5579	0,38	0,02	258,1828	258,0404	-	-	-	-	-	-	-	-
0,40	0,10	259,4741	259,2516	0,40	0,00	258,8103	258,6874	-	-	-	-	-	-	-	-
0,42	0,08	260,1025	259,9036	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	260,6959	260,5174	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	261,2569	261,0958	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	261,7882	261,6415	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	262,2921	262,1567	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP10: Dados de equilíbrio para a mistura de laurato (1) com caprato (2) com caprilato (3) de etila – 2 (cont.)

		$x_3 = 0.9$	
		MA	W
x_1	x_2	T(K)	T(K)
0,00	0,10	228,6275	226,7145
0,02	0,08	228,6549	226,7559
0,04	0,06	230,2775	230,0032
0,06	0,04	234,3522	234,2039
0,08	0,02	237,3385	237,3104
0,10	0,00	239,7058	239,7812

Tabela AP11: Dados de equilíbrio para a mistura de laurato (1) com caprato (2) com caprilato (3) de etila – 3 (cont.)

Tabela AP12: Dados de equilíbrio para a mistura de caprato (1) com miristato (2) com caprilato (3) de etila - 1

			100010			- 1	10 p u	, , , , , , , , , , , , , , , , , , , 	1000 (1	.) •••••		, t om t upin	(e)			
			$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
-	<i>x</i> ₁	<i>x</i> ₂	MA T(K)	W T(K)	<i>x</i> ₁	<i>x</i> ₂	MA T(K)	W T(K)	<i>x</i> ₁	<i>x</i> ₂	MA T(K)	W T(K)	<i>x</i> ₁	<i>x</i> ₂	MA T(K)	W T(K)
-	0.00	0.00	295.0209	295 9016	0.00	0.80	284 4421	204 2174	0.00	0.70	202 7107	202 /007	0.00	0.60	280.6560	290 2674
	0,00	0,90	200,9290	205,0910	0,00	0,00	204,4421	204,3174	0,00	0,70	202,7107	202,4907	0,00	0,00	200,0000	200,3074
	0,02	0,00	205,0571	285 3158	0,02	0,70	204,1457	204,0037	0,02	0,00	282,3855	202,1402	0,02	0,56	200,2000	279,9000
	0,04	0,00	205,5790	205,5150	0,04	0,70	203,0413	203,0021	0,04	0,00	202,0407	201,7074	0,04	0,50	279,0000	279,0040
	0,00	0,04	200,0970	200,0179	0,00	0,74	203,5209	203,3520	0,00	0,04	201,0030	201,4107	0,00	0,54	279,4433	279,1209
	0,00	0,02	204,0091	204,7130	0,00	0,72	203,2072	203,0131	0,00	0,62	201,3130	201,0324	0,00	0,52	279,0025	270,0002
	0,10	0,00	204,0140	204,4000	0,10	0,70	202,0750	202,0049	0,10	0,00	200,9202	200,0370	0,10	0,50	270,0412	270,2220
	0,12	0,70	204,2132	204,0009	0,12	0,00	202,0000	202,3009	0,12	0,56	200,0279	200,2200	0,12	0,40	270,0070	277,7430
	0,14	0,70	203,9041	203,7329	0,14	0,00	202,1799	201,9300	0,14	0,50	200,1112	279,0002	0,14	0,40	277,000	277,2400
	0,10	0,74	203,3000	203,4105	0,10	0,64	201,0140	201,0092	0,10	0,54	279,6769	279,3691	0,10	0,44	277,0176	276,7255
	0,18	0,72	283,2605	283,0711	0,18	0,62	281,4349	281,1684	0,18	0,52	279,2235	278,9162	0,18	0,42	276,4569	276,1825
	0,20	0,70	282,9245	282,7165	0,20	0,60	281,0416	280,7652	0,20	0,50	2/8,/49/	278,4462	0,20	0,40	275,8660	275,6141
	0,22	0,68	282,5780	282,3520	0,22	0,58	280,6331	280,3490	0,22	0,48	2/8,2541	277,9579	0,22	0,38	275,2422	275,0180
	0,24	0,66	282,2203	281,9771	0,24	0,56	280,2082	279,9189	0,24	0,46	277,7347	277,4499	0,24	0,36	274,5826	274,3913
	0,26	0,64	281,8503	281,5913	0,26	0,54	279,7659	279,4739	0,26	0,44	277,1898	276,9205	0,26	0,34	273,8835	273,7306
	0,28	0,62	281,4673	281,1938	0,28	0,52	279,3047	279,0130	0,28	0,42	276,6173	276,3678	0,28	0,32	273,1409	273,0321
	0,30	0,60	281,0702	280,7841	0,30	0,50	278,8232	278,5351	0,30	0,40	276,0148	275,7897	0,30	0,30	272,3499	272,2912
	0,32	0,58	280,6581	280,3612	0,32	0,48	278,3200	278,0388	0,32	0,38	275,3795	275,1837	0,32	0,28	271,5049	271,5023
	0,34	0,56	280,2298	279,9244	0,34	0,46	277,7932	277,5228	0,34	0,36	274,7085	274,5470	0,34	0,26	270,5989	270,6587
	0,36	0,54	279,7840	279,4727	0,36	0,44	277,2411	276,9852	0,36	0,34	273,9983	273,8763	0,36	0,24	269,6235	269,7521
	0,38	0,52	279,3196	279,0051	0,38	0,42	276,6615	276,4244	0,38	0,32	273,2446	273,1677	0,38	0,22	268,5681	268,7721
	0,40	0,50	278,8351	278,5205	0,40	0,40	276,0520	275,8381	0,40	0,30	272,4428	272,4167	0,40	0,20	267,4193	267,7053

Та	bela AF	P12: Continu	ıação												
0,42	0,48	278,3288	278,0174	0,42	0,38	275,4099	275,2238	0,42	0,28	271,5871	271,6176	0,42	0,18	266,1597	266,5345
0,44	0,46	277,7993	277,4945	0,44	0,36	274,7323	274,5789	0,44	0,26	270,6706	270,7637	0,44	0,16	264,7659	265,2362
0,46	0,44	277,2444	276,9502	0,46	0,34	274,0155	273,8999	0,46	0,24	269,6849	269,8467	0,46	0,14	263,2056	263,7780
0,48	0,42	276,6622	276,3825	0,48	0,32	273,2555	273,1831	0,48	0,22	268,6193	268,8563	0,48	0,12	261,4319	262,1129
0,50	0,40	276,0503	275,7894	0,50	0,30	272,4475	272,4237	0,50	0,20	267,4605	267,7791	0,50	0,10	259,3732	260,1689
0,52	0,38	275,4060	275,1683	0,52	0,28	271,5858	271,6163	0,52	0,18	266,1911	266,5978	0,52	0,08	256,9110	257,8268
0,54	0,36	274,7262	274,5166	0,54	0,26	270,6634	270,7541	0,54	0,16	264,7878	265,2891	0,54	0,06	253,8272	254,8672
0,56	0,34	274,0074	273,8308	0,56	0,24	269,6719	269,8288	0,56	0,14	263,2181	263,8204	0,56	0,04	249,6425	250,8075
0,58	0,32	273,2455	273,1071	0,58	0,22	268,6008	268,8301	0,58	0,12	261,4352	262,1449	0,58	0,02	246,0258	245,4367
0,60	0,30	272,4358	272,3410	0,60	0,20	267,4366	267,7447	0,60	0,10	259,3675	260,1905	0,60	0,00	246,4718	245,8856
0,62	0,28	271,5724	271,5268	0,62	0,18	266,1620	266,5552	0,62	0,08	256,8967	257,8383	-	-	-	-
0,64	0,26	270,6485	270,6579	0,64	0,16	264,7536	265,2383	0,64	0,06	253,8045	254,8686	-	-	-	-
0,66	0,24	269,6557	269,7260	0,66	0,14	263,1790	263,7617	0,66	0,04	249,6119	250,7993	-	-	-	-
0,68	0,22	268,5833	268,7208	0,68	0,12	261,3915	262,0785	0,68	0,02	248,1993	247,7648	-	-	-	-
0,70	0,20	267,4181	267,6289	0,70	0,10	259,3194	260,1166	0,70	0,00	248,5767	248,1506	-	-	-	-
0,72	0,18	266,1425	266,4331	0,72	0,08	256,8445	257,7573	-	-	-	-	-	-	-	-
0,74	0,16	264,7333	265,1102	0,74	0,06	253,7485	254,7811	-	-	-	-	-	-	-	-
0,76	0,14	263,1581	263,6277	0,76	0,04	249,6273	250,7064	-	-	-	-	-	-	-	-
0,78	0,12	261,3700	261,9388	0,78	0,02	249,9662	249,7220	-	-	-	-	-	-	-	-
0,80	0,10	259,2976	259,9718	0,80	0,00	250,2931	250,0586	-	-	-	-	-	-	-	-
0,82	0,08	256,8224	257,6078	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	253,7264	254,6280	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	251,1655	251,0861	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	251,4663	251,3896	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	251,7569	251,6865	-	-	-	-	-	-	-	-	-	-	-	-

		$x_3 = 0,5$			-	$x_3 = 0,6$				$x_3 = 0,7$				$x_3 = 0.8$	
		MA	W			MA	W			MA	W			MA	W
<i>x</i> ₁	<i>x</i> ₂	T(K)	T(K)	x_1	<i>x</i> ₂	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,50	278,1242	277,8229	0,00	0,40	274,9430	274,7066	0,00	0,30	270,8236	270,7417	0,00	0,20	265,1908	265,3536
0,02	0,48	277,6579	277,3552	0,02	0,38	274,3569	274,1363	0,02	0,28	270,0406	269,9990	0,02	0,18	264,0224	264,2595
0,04	0,46	277,1676	276,8679	0,04	0,36	273,7346	273,5357	0,04	0,26	269,1961	269,2023	0,04	0,16	262,7196	263,0401
0,06	0,44	276,6515	276,3595	0,06	0,34	273,0726	272,9016	0,06	0,24	268,2818	268,3435	0,06	0,14	261,2502	261,6634
0,08	0,42	276,1074	275,8280	0,08	0,32	272,3667	272,2300	0,08	0,22	267,2871	267,4121	0,08	0,12	259,5676	260,0828
0,10	0,40	275,5330	275,2713	0,10	0,30	271,6121	271,5164	0,10	0,20	266,1986	266,3951	0,10	0,10	257,6003	258,2270
0,12	0,38	274,9256	274,6869	0,12	0,28	270,8032	270,7552	0,12	0,18	264,9990	265,2749	0,12	0,08	255,2305	255,9782
0,14	0,36	274,2821	274,0721	0,14	0,26	269,9330	269,9397	0,14	0,16	263,6649	264,0285	0,14	0,06	252,2411	253,1190
0,16	0,34	273,5990	273,4235	0,16	0,24	268,9931	269,0616	0,16	0,14	262,1640	262,6236	0,16	0,04	248,1551	249,1722
0,18	0,32	272,8722	272,7372	0,18	0,22	267,9728	268,1105	0,18	0,12	260,4495	261,0133	0,18	0,02	241,4983	242,6630
0,20	0,30	272,0970	272,0087	0,20	0,20	266,8589	267,0732	0,20	0,10	258,4500	259,1260	0,20	0,00	229,8171	229,6924
0,22	0,28	271,2675	271,2323	0,22	0,18	265,6339	265,9322	0,22	0,08	256,0472	256,8431	-	-	-	-
0,24	0,26	270,3768	270,4013	0,24	0,16	264,2744	264,6643	0,24	0,06	253,0235	253,9463	-	-	-	-
0,26	0,24	269,4166	269,5075	0,26	0,14	262,7481	263,2371	0,26	0,04	248,9006	249,9556	-	-	-	-
0,28	0,22	268,3762	268,5404	0,28	0,12	261,0082	261,6037	0,28	0,02	242,2004	243,3880	-	-	-	-
0,30	0,20	267,2423	267,4867	0,30	0,10	258,9830	259,6922	0,30	0,00	235,9353	235,4856	-	-	-	-
0,32	0,18	265,9974	266,3291	0,32	0,08	256,5543	257,3836	-	-	-	-	-	-	-	-
0,34	0,16	264,6181	265,0442	0,34	0,06	253,5039	254,4589	-	-	-	-	-	-	-	-
0,36	0,14	263,0721	263,5996	0,36	0,04	249,3530	250,4366	-	-	-	-	-	-	-	-
0,38	0,12	261,3126	261,9482	0,38	0,02	242,6210	243,8289	-	-	-	-	-	-	-	-
0,40	0,10	259,2679	260,0182	0,40	0,00	240,4092	239,7814	-	-	-	-	-	-	-	-
0,42	0,08	256,8195	257,6904	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	253,7494	254,7453	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	249,5782	250,7007	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	243,2782	244,0665	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	243,8183	243,1525	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP13: Dados de equilíbrio para a mistura de caprato (1) com miristato (2) com caprilato (3) de etila – 2 (cont.)

		$x_3 = 0.9$	
		MA	W
<i>x</i> ₁	X_2	T(K)	T(K)
0,00	0,10	256,3652	256,8602
0,02	0,08	254,0361	254,6562
0,04	0,06	251,0894	251,8476
0,06	0,04	247,0502	247,9612
0,08	0,02	240,4504	241,5350
0,10	0,00	228,6275	226,7145

Tabela AP14: Dados de equilíbrio para a mistura de caprato (1) com miristato (2) com caprilato (3) de etila – 3 (cont.)

Tabela AP15: Dados de equilíbrio para a mistura de caprato (1) com palmitato (2) com caprilato (3) de etila - 1

		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
		MA	W												
x_1	x_2	T(K)	T(K)												
0,00	0,90	296,3558	296,4272	0,00	0,80	294,7042	294,9395	0,00	0,70	292,8348	293,2502	0,00	0,60	290,7794	291,3149
0,02	0,88	296,0985	296,2511	0,02	0,78	294,4358	294,7493	0,02	0,68	292,5541	293,0242	0,02	0,58	290,4809	291,0349
0,04	0,86	295,8416	296,0700	0,04	0,76	294,1646	294,5413	0,04	0,66	292,2670	292,7745	0,04	0,56	290,1710	290,7263
0,06	0,84	295,5843	295,8778	0,06	0,74	293,8899	294,3146	0,06	0,64	291,9723	292,5012	0,06	0,54	289,8481	290,3898
0,08	0,82	295,3256	295,6717	0,08	0,72	293,6104	294,0686	0,08	0,62	291,6686	292,2046	0,08	0,52	289,5106	290,0253
0,10	0,80	295,0645	295,4498	0,10	0,70	293,3251	293,8032	0,10	0,60	291,3547	291,8850	0,10	0,50	289,1566	289,6332
0,12	0,78	294,8001	295,2115	0,12	0,68	293,0328	293,5184	0,12	0,58	291,0292	291,5425	0,12	0,48	288,7843	289,2130
0,14	0,76	294,5313	294,9565	0,14	0,66	292,7324	293,2142	0,14	0,56	290,6906	291,1771	0,14	0,46	288,3917	288,7645
0,16	0,74	294,2572	294,6847	0,16	0,64	292,4228	292,8908	0,16	0,54	290,3374	290,7888	0,16	0,44	287,9765	288,2868
0,18	0,72	293,9766	294,3961	0,18	0,62	292,1025	292,5482	0,18	0,52	289,9679	290,3773	0,18	0,42	287,5363	287,7790
0,20	0,70	293,6885	294,0908	0,20	0,60	291,7703	292,1863	0,20	0,50	289,5804	289,9422	0,20	0,40	287,0684	287,2398
0,22	0,68	293,3917	293,7688	0,22	0,58	291,4249	291,8050	0,22	0,48	289,1731	289,4830	0,22	0,38	286,5698	286,6674
0,24	0,66	293,0851	293,4302	0,24	0,56	291,0647	291,4040	0,24	0,46	288,7437	288,9987	0,24	0,36	286,0372	286,0597
0,26	0,64	292,7675	293,0749	0,26	0,54	290,6883	290,9831	0,26	0,44	288,2903	288,4883	0,26	0,34	285,4667	285,4142
0,28	0,62	292,4377	292,7028	0,28	0,52	290,2939	290,5417	0,28	0,42	287,8103	287,9507	0,28	0,32	284,8539	284,7275
0,30	0,60	292,0942	292,3138	0,30	0,50	289,8800	290,0792	0,30	0,40	287,3010	287,3841	0,30	0,30	284,1939	283,9956
0,32	0,58	291,7359	291,9074	0,32	0,48	289,4445	289,5947	0,32	0,38	286,7596	286,7867	0,32	0,28	283,4805	283,2137
0,34	0,56	291,3611	291,4835	0,34	0,46	288,9855	289,0873	0,34	0,36	286,1826	286,1562	0,34	0,26	282,7068	282,3755
0,36	0,54	290,9684	291,0413	0,36	0,44	288,5008	288,5557	0,36	0,34	285,5662	285,4896	0,36	0,24	281,8640	281,4734
0,38	0,52	290,5562	290,5804	0,38	0,42	287,9879	287,9986	0,38	0,32	284,9062	284,7837	0,38	0,22	280,9414	280,4977
0,40	0,50	290,1227	290,0999	0,40	0,40	287,4443	287,4142	0,40	0,30	284,1975	284,0342	0,40	0,20	279,9256	279,4357

Ta	bela AF	P15: Continu	ıação												
0,42	0,48	289,6661	289,5989	0,42	0,38	286,8670	286,8004	0,42	0,28	283,4341	283,2360	0,42	0,18	278,7991	278,2709
0,44	0,46	289,1843	289,0763	0,44	0,36	286,2525	286,1548	0,44	0,26	282,6089	282,3831	0,44	0,16	277,5386	276,9809
0,46	0,44	288,6752	288,5308	0,46	0,34	285,5973	285,4744	0,46	0,24	281,7134	281,4675	0,46	0,14	276,1121	275,5345
0,48	0,42	288,1364	287,9608	0,48	0,32	284,8969	284,7558	0,48	0,22	280,7368	280,4794	0,48	0,12	274,4732	273,8860
0,50	0,40	287,5653	287,3646	0,50	0,30	284,1463	283,9947	0,50	0,20	279,6659	279,4061	0,50	0,10	272,5510	271,9655
0,52	0,38	286,9588	286,7400	0,52	0,28	283,3396	283,1860	0,52	0,18	278,4832	278,2311	0,52	0,08	270,2290	269,6573
0,54	0,36	286,3138	286,0845	0,54	0,26	282,4699	282,3233	0,54	0,16	277,1656	276,9318	0,54	0,06	267,2919	266,7471
0,56	0,34	285,6263	285,3951	0,56	0,24	281,5284	281,3989	0,56	0,14	275,6810	275,4769	0,56	0,04	263,2668	262,7635
0,58	0,32	284,8923	284,6682	0,58	0,22	280,5046	280,4028	0,58	0,12	273,9835	273,8209	0,58	0,02	256,6900	256,2455
0,60	0,30	284,1066	283,8996	0,60	0,20	279,3853	279,3223	0,60	0,10	272,0025	271,8939	0,60	0,00	246,4718	245,8856
0,62	0,28	283,2633	283,0840	0,62	0,18	278,1530	278,1407	0,62	0,08	269,6216	269,5801	-	-	-	-
0,64	0,26	282,3555	282,2152	0,64	0,16	276,7848	276,8356	0,64	0,06	266,6268	266,6653	-	-	-	-
0,66	0,24	281,3747	281,2851	0,66	0,14	275,2489	275,3757	0,66	0,04	262,5468	262,6785	-	-	-	-
0,68	0,22	280,3103	280,2840	0,68	0,12	273,4992	273,7153	0,68	0,02	255,9231	256,1597	-	-	-	-
0,70	0,20	279,1489	279,1991	0,70	0,10	271,4656	271,7847	0,70	0,00	248,5767	248,1506	-	-	-	-
0,72	0,18	277,8735	278,0137	0,72	0,08	269,0324	269,4679	-	-	-	-	-	-	-	-
0,74	0,16	276,4611	276,7053	0,74	0,06	265,9859	266,5513	-	-	-	-	-	-	-	-
0,76	0,14	274,8799	275,2425	0,76	0,04	261,8568	262,5640	-	-	-	-	-	-	-	-
0,78	0,12	273,0842	273,5800	0,78	0,02	255,1916	256,0475	-	-	-	-	-	-	-	-
0,80	0,10	271,0040	271,6477	0,80	0,00	250,2931	250,0586	-	-	-	-	-	-	-	-
0,82	0,08	268,5240	269,3301	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	265,4314	266,4136	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	261,2582	262,4278	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	254,5552	255,9156	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	251,7569	251,6865	-	-	-	-	-	-	-	-	-	-	-	-

		Tuo oliu Th	10. Duu 05	ac equi	nono p	ard a mistar	a ao oaprai	(1) 00	in pui	intuto (2) 00	in ouprinato	(3) 40 0		(00110)	
		$x_3 = 0,5$			-	$x_3 = 0,6$				$x_3 = 0,7$				$x_3 = 0,8$	
		MA	W			MA	W			MA	W			MA	W
x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,50	288,5408	289,0605	0,00	0,40	286,0672	286,3616	0,00	0,30	283,1922	282,9826	0,00	0,20	279,4515	278,4009
0,02	0,48	288,2108	288,7032	0,02	0,38	285,6758	285,8895	0,02	0,28	282,6719	282,3226	0,02	0,18	278,6217	277,3700
0,04	0,46	287,8620	288,3115	0,04	0,36	285,2532	285,3728	0,04	0,26	282,0951	281,5953	0,04	0,16	277,6619	276,2020
0,06	0,44	287,4922	287,8853	0,06	0,34	284,7957	284,8099	0,06	0,24	281,4532	280,7942	0,06	0,14	276,5395	274,8667
0,08	0,42	287,0989	287,4243	0,08	0,32	284,2988	284,1983	0,08	0,22	280,7351	279,9104	0,08	0,12	275,2073	273,3198
0,10	0,40	286,6795	286,9276	0,10	0,30	283,7574	283,5349	0,10	0,20	279,9273	278,9324	0,10	0,10	273,5936	271,4921
0,12	0,38	286,2308	286,3940	0,12	0,28	283,1655	282,8150	0,12	0,18	279,0121	277,8442	0,12	0,08	271,5798	269,2687
0,14	0,36	285,7496	285,8216	0,14	0,26	282,5158	282,0343	0,14	0,16	277,9657	276,6241	0,14	0,06	268,9482	266,4363
0,16	0,34	285,2320	285,2083	0,16	0,24	281,7995	281,1843	0,16	0,14	276,7558	275,2415	0,16	0,04	265,2198	262,5241
0,18	0,32	284,6736	284,5510	0,18	0,22	281,0060	280,2561	0,18	0,12	275,3353	273,6514	0,18	0,02	258,9140	256,0726
0,20	0,30	284,0693	283,8460	0,20	0,20	280,1215	279,2377	0,20	0,10	273,6327	271,7842	0,20	0,00	229,8171	229,6924
0,22	0,28	283,4130	283,0886	0,22	0,18	279,1284	278,1127	0,22	0,08	271,5298	269,5245	-	-	-	-
0,24	0,26	282,6977	282,2730	0,24	0,16	278,0033	276,8591	0,24	0,06	268,8092	266,6583	-	-	-	-
0,26	0,24	281,9146	281,3915	0,26	0,14	276,7138	275,4458	0,26	0,04	264,9933	262,7143	-	-	-	-
0,28	0,22	281,0529	280,4346	0,28	0,12	275,2130	273,8276	0,28	0,02	258,6042	256,2314	-	-	-	-
0,30	0,20	280,0992	279,3899	0,30	0,10	273,4296	271,9346	0,30	0,00	235,9353	235,4856	-	-	-	-
0,32	0,18	279,0358	278,2409	0,32	0,08	271,2460	269,6512	-	-	-	-	-	-	-	-
0,34	0,16	277,8394	276,9653	0,34	0,06	268,4453	266,7632	-	-	-	-	-	-	-	-
0,36	0,14	276,4778	275,5319	0,36	0,04	264,5514	262,7990	-	-	-	-	-	-	-	-
0,38	0,12	274,9043	273,8953	0,38	0,02	258,0904	256,2969	-	-	-	-	-	-	-	-
0,40	0,10	273,0479	271,9856	0,40	0,00	240,4092	239,7814	-	-	-	-	-	-	-	-
0,42	0,08	270,7914	269,6870	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	267,9188	266,7851	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	263,9554	262,8085	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	257,4324	256,2956	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	243,8183	243,1525	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP16: Dados de equilíbrio para a mistura de caprato (1) com palmitato (2) com caprilato (3) de etila – 2 (cont.)

		$x_3 = 0,9$	
		MA	W
x_1	X_2	T(K)	T(K)
0,00	0,10	273,2488	270,9932
0,02	0,08	271,3332	268,8262
0,04	0,06	268,7999	266,0460
0,06	0,04	265,1695	262,1832
0,08	0,02	258,9600	255,7813
0,10	0,00	228,6275	226,7145

Tabela AP17: Dados de equilíbrio para a msitura de caprato (1) com palmitato (2) com caprilato (3) de etila – 3 (cont.)

Tabela AP18: Dados de equilíbrio para a mistura de caprato (1) com estearato (2) com caprilato (3) de etila - 1

		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
		MA	W			MA	W			MA	W			MA	W
<i>x</i> ₁	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,90	306,6927	306,9182	0,00	0,80	305,3317	305,6846	0,00	0,70	303,7829	304,1027	0,00	0,60	301,9673	302,1753
0,02	0,88	306,4286	306,7491	0,02	0,78	305,0395	305,4472	0,02	0,68	303,4537	303,7720	0,02	0,58	301,5878	301,7334
0,04	0,86	306,1555	306,5348	0,04	0,76	304,7365	305,1718	0,04	0,66	303,1111	303,4068	0,04	0,56	301,1912	301,2558
0,06	0,84	305,8733	306,2899	0,06	0,74	304,4224	304,8661	0,06	0,64	302,7546	303,0108	0,06	0,54	300,7766	300,7440
0,08	0,82	305,5818	306,0219	0,08	0,72	304,0969	304,5346	0,08	0,62	302,3838	302,5861	0,08	0,52	300,3433	300,1985
0,10	0,80	305,2807	305,7347	0,10	0,70	303,7596	304,1797	0,10	0,60	301,9980	302,1340	0,10	0,50	299,8902	299,6189
0,12	0,78	304,9699	305,4307	0,12	0,68	303,4101	303,8030	0,12	0,58	301,5967	301,6548	0,12	0,48	299,4163	299,0045
0,14	0,76	304,6492	305,1109	0,14	0,66	303,0482	303,4052	0,14	0,56	301,1792	301,1483	0,14	0,46	298,9201	298,3540
0,16	0,74	304,3182	304,7761	0,16	0,64	302,6732	302,9865	0,16	0,54	300,7446	300,6141	0,16	0,44	298,4003	297,6658
0,18	0,72	303,9766	304,4263	0,18	0,62	302,2848	302,5467	0,18	0,52	300,2920	300,0513	0,18	0,42	297,8552	296,9376
0,20	0,70	303,6241	304,0617	0,20	0,60	301,8823	302,0855	0,20	0,50	299,8206	299,4585	0,20	0,40	297,2830	296,1669
0,22	0,68	303,2604	303,6818	0,22	0,58	301,4651	301,6020	0,22	0,48	299,3292	298,8343	0,22	0,38	296,6813	295,3507
0,24	0,66	302,8850	303,2863	0,24	0,56	301,0325	301,0953	0,24	0,46	298,8165	298,1769	0,24	0,36	296,0477	294,4854
0,26	0,64	302,4974	302,8745	0,26	0,54	300,5838	300,5644	0,26	0,44	298,2810	297,4841	0,26	0,34	295,3791	293,5669
0,28	0,62	302,0973	302,4459	0,28	0,52	300,1180	300,0080	0,28	0,42	297,7211	296,7536	0,28	0,32	294,6720	292,5903
0,30	0,60	301,6839	301,9995	0,30	0,50	299,6342	299,4245	0,30	0,40	297,1349	295,9824	0,30	0,30	293,9220	291,5500
0,32	0,58	301,2567	301,5344	0,32	0,48	299,1312	298,8122	0,32	0,38	296,5202	295,1675	0,32	0,28	293,1240	290,4394
0,34	0,56	300,8150	301,0497	0,34	0,46	298,6078	298,1691	0,34	0,36	295,8744	294,3051	0,34	0,26	292,2718	289,2505
0,36	0,54	300,3580	300,5440	0,36	0,44	298,0625	297,4931	0,36	0,34	295,1945	293,3910	0,36	0,24	291,3576	287,9739
0,38	0,52	299,8848	300,0162	0,38	0,42	297,4937	296,7817	0,38	0,32	294,4769	292,4203	0,38	0,22	290,3716	286,5979
0,40	0,50	299,3944	299,4647	0,40	0,40	296,8994	296,0320	0,40	0,30	293,7173	291,3873	0,40	0,20	289,3012	285,1083

Ta	bela AF	P18: Continu	ıação												
0,42	0,48	298,8857	298,8878	0,42	0,38	296,2775	295,2408	0,42	0,28	292,9107	290,2854	0,42	0,18	288,1301	283,4869
0,44	0,46	298,3574	298,2839	0,44	0,36	295,6253	294,4044	0,44	0,26	292,0507	289,1067	0,44	0,16	286,8361	281,7098
0,46	0,44	297,8081	297,6507	0,46	0,34	294,9399	293,5188	0,46	0,24	291,1295	287,8416	0,46	0,14	285,3884	279,7453
0,48	0,42	297,2360	296,9861	0,48	0,32	294,2176	292,5790	0,48	0,22	290,1375	286,4787	0,48	0,12	283,7422	277,5482
0,50	0,40	296,6394	296,2874	0,50	0,30	293,4543	291,5794	0,50	0,20	289,0621	285,0037	0,50	0,10	281,8286	275,0512
0,52	0,38	296,0160	295,5517	0,52	0,28	292,6447	290,5136	0,52	0,18	287,8867	283,3984	0,52	0,08	279,5336	272,1454
0,54	0,36	295,3632	294,7756	0,54	0,26	291,7827	289,3737	0,54	0,16	286,5895	281,6393	0,54	0,06	276,6466	268,6335
0,56	0,34	294,6779	293,9553	0,56	0,24	290,8604	288,1503	0,56	0,14	285,1394	279,6944	0,56	0,04	272,7028	264,0855
0,58	0,32	293,9567	293,0864	0,58	0,22	289,8680	286,8321	0,58	0,12	283,4918	277,5190	0,58	0,02	266,2611	257,1753
0,60	0,30	293,1952	292,1636	0,60	0,20	288,7931	285,4048	0,60	0,10	281,5780	275,0458	0,60	0,00	246,4718	245,8856
0,62	0,28	292,3883	291,1809	0,62	0,18	287,6192	283,8506	0,62	0,08	279,2838	272,1660	-	-	-	-
0,64	0,26	291,5298	290,1309	0,64	0,16	286,3243	282,1458	0,64	0,06	276,3989	268,6822	-	-	-	-
0,66	0,24	290,6118	289,0048	0,66	0,14	284,8775	280,2587	0,66	0,04	272,4590	264,1644	-	-	-	-
0,68	0,22	289,6246	287,7919	0,68	0,12	283,2341	278,1444	0,68	0,02	266,0240	257,2848	-	-	-	-
0,70	0,20	288,5557	286,4786	0,70	0,10	281,3253	275,7354	0,70	0,00	248,5767	248,1506	-	-	-	-
0,72	0,18	287,3887	285,0475	0,72	0,08	279,0374	272,9225	-	-	-	-	-	-	-	-
0,74	0,16	286,1014	283,4757	0,74	0,06	276,1599	269,5068	-	-	-	-	-	-	-	-
0,76	0,14	284,6631	281,7319	0,76	0,04	272,2289	265,0549	-	-	-	-	-	-	-	-
0,78	0,12	283,0291	279,7717	0,78	0,02	265,8055	258,2279	-	-	-	-	-	-	-	-
0,80	0,10	281,1306	277,5275	0,80	0,00	250,2931	250,0586	-	-	-	-	-	-	-	-
0,82	0,08	278,8538	274,8891	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	275,9883	271,6548	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	272,0706	267,3827	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	265,6623	260,7048	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	251,7569	251,6865	-	-	-	-	-	-	-	-	-	-	-	-

		$x_3 = 0,5$			-	$x_3 = 0,6$				$x_3 = 0,7$				$x_3 = 0.8$	
		MA	W			MA	W			MA	W			MA	W
<i>x</i> ₁	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,50	299,7795	299,8714	0,00	0,40	297,0650	297,0959	0,00	0,30	293,5628	293,6363	0,00	0,20	288,7326	288,9925
0,02	0,48	299,3290	299,2927	0,02	0,38	296,5075	296,3366	0,02	0,28	292,8271	292,6115	0,02	0,18	287,6394	287,5005
0,04	0,46	298,8554	298,6725	0,04	0,36	295,9163	295,5230	0,04	0,26	292,0344	291,5044	0,04	0,16	286,4197	285,8481
0,06	0,44	298,3573	298,0104	0,06	0,34	295,2883	294,6519	0,06	0,24	291,1770	290,3061	0,06	0,14	285,0428	284,0027
0,08	0,42	297,8330	297,3050	0,08	0,32	294,6200	293,7194	0,08	0,22	290,2452	289,0053	0,08	0,12	283,4637	281,9175
0,10	0,40	297,2807	296,5543	0,10	0,30	293,9070	292,7202	0,10	0,20	289,2263	287,5879	0,10	0,10	281,6137	279,5227
0,12	0,38	296,6981	295,7559	0,12	0,28	293,1444	291,6483	0,12	0,18	288,1040	286,0356	0,12	0,08	279,3787	276,7046
0,14	0,36	296,0826	294,9065	0,14	0,26	292,3257	290,4960	0,14	0,16	286,8561	284,3244	0,14	0,06	276,5478	273,2574
0,16	0,34	295,4313	294,0024	0,16	0,24	291,4431	289,2539	0,16	0,14	285,4516	282,4215	0,16	0,04	272,6563	268,7336
0,18	0,32	294,7405	293,0388	0,18	0,22	290,4870	287,9107	0,18	0,12	283,8458	280,2808	0,18	0,02	266,2624	261,7555
0,20	0,30	294,0060	292,0103	0,20	0,20	289,4448	286,4520	0,20	0,10	281,9698	277,8331	0,20	0,00	229,8171	229,6924
0,22	0,28	293,2226	290,9104	0,22	0,18	288,2999	284,8594	0,22	0,08	279,7094	274,9666	-	-	-	-
0,24	0,26	292,3841	289,7312	0,24	0,16	287,0303	283,1089	0,24	0,06	276,8535	271,4783	-	-	-	-
0,26	0,24	291,4827	288,4633	0,26	0,14	285,6051	281,1681	0,26	0,04	272,9372	266,9276	-	-	-	-
0,28	0,22	290,5086	287,0952	0,28	0,12	283,9794	278,9913	0,28	0,02	266,5173	259,9573	-	-	-	-
0,30	0,20	289,4493	285,6123	0,30	0,10	282,0844	276,5101	0,30	0,00	235,9353	235,4856	-	-	-	-
0,32	0,18	288,2882	283,9965	0,32	0,08	279,8058	273,6139	-	-	-	-	-	-	-	-
0,34	0,16	287,0034	282,2240	0,34	0,06	276,9327	270,1025	-	-	-	-	-	-	-	-
0,36	0,14	285,5638	280,2625	0,36	0,04	272,9999	265,5405	-	-	-	-	-	-	-	-
0,38	0,12	283,9248	278,0666	0,38	0,02	266,5643	258,5859	-	-	-	-	-	-	-	-
0,40	0,10	282,0173	275,5688	0,40	0,00	240,4092	239,7814	-	-	-	-	-	-	-	-
0,42	0,08	279,7274	272,6595	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	276,8441	269,1401	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	272,9024	264,5790	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	266,4600	257,6448	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	243,8183	243,1525	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP19: Dados de equilíbrio para a mistura de caprato (1) com estearato (2) com caprilato (3) de etila – 2 (cont.)

		$x_3 = 0,9$	
		MA	W
X_1	x_2	T(K)	T(K)
0,00	0,10	280,9564	281,5798
0,02	0,08	278,7545	278,8345
0,04	0,06	275,9568	275,4518
0,06	0,04	272,0994	270,9759
0,08	0,02	265,7430	264,0037
0,10	0,00	226,7016	226,7145

Tabela AP20: Dados de equilíbrio para a mistura de caprato (1) com estearato (2) com caprilato (3) de etila – 3 (cont.)

Tabela AP21: Dados de equilíbrio para a mistura de estearato (1) com palmitato (2) com miristato (3) de metila - 1

		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
		MA	W												
x_1	x_2	T(K)	T(K)												
0,00	0,90	301,4167	301,4168	0,00	0,80	298,6626	298,3966	0,00	0,70	295,2411	295,0885	0,00	0,60	291,3358	291,6460
0,02	0,88	301,0246	301,0074	0,02	0,78	298,1675	297,8912	0,02	0,68	294,6505	294,5014	0,02	0,58	290,6522	290,9735
0,04	0,86	300,6204	300,5806	0,04	0,76	297,6563	297,3679	0,04	0,66	294,0389	293,8938	0,04	0,56	289,9417	290,2763
0,06	0,84	300,2021	300,1364	0,06	0,74	297,1267	296,8259	0,06	0,64	293,4041	293,2646	0,06	0,54	289,2017	289,5530
0,08	0,82	299,7677	299,6742	0,08	0,72	296,5768	296,2643	0,08	0,62	292,7437	292,6127	0,08	0,52	290,5707	289,6716
0,10	0,80	299,3152	299,1935	0,10	0,70	296,0042	295,6823	0,10	0,60	292,9872	291,9370	0,10	0,50	291,6017	290,7476
0,12	0,78	298,8425	298,6937	0,12	0,68	295,4070	295,0789	0,12	0,58	293,8416	292,7736	0,12	0,48	292,3910	291,5791
0,14	0,76	298,3475	298,1741	0,14	0,66	295,5524	294,5626	0,14	0,56	294,5272	293,5115	0,14	0,46	293,0069	292,2336
0,16	0,74	297,8283	297,6340	0,16	0,64	296,1838	295,2486	0,16	0,54	295,0850	294,1155	0,16	0,44	293,4895	292,7511
0,18	0,72	297,2826	297,0723	0,18	0,62	296,7174	295,8281	0,18	0,52	295,5404	294,6116	0,18	0,42	293,8637	293,1568
0,20	0,70	297,7840	297,3256	0,20	0,60	297,1703	296,3192	0,20	0,50	295,9103	295,0173	0,20	0,40	294,1458	293,4675
0,22	0,68	298,2578	297,8286	0,22	0,58	297,5543	296,7344	0,22	0,48	296,2061	295,3447	0,22	0,38	294,3464	293,6944
0,24	0,66	298,6751	298,2660	0,24	0,56	297,8775	297,0830	0,24	0,46	296,4356	295,6025	0,24	0,36	294,4724	293,8450
0,26	0,64	299,0419	298,6452	0,26	0,54	298,1455	297,3718	0,26	0,44	296,6039	295,7965	0,26	0,34	294,5281	293,9242
0,28	0,62	299,3622	298,9717	0,28	0,52	298,3622	297,6055	0,28	0,42	296,7144	295,9311	0,28	0,32	294,5157	293,9348
0,30	0,60	299,6388	299,2496	0,30	0,50	298,5301	297,7879	0,30	0,40	296,7692	296,0090	0,30	0,30	294,4358	293,8781
0,32	0,58	299,8736	299,4822	0,32	0,48	298,6509	297,9214	0,32	0,38	296,7692	296,0318	0,32	0,28	294,2876	294,3870
0,34	0,56	300,0678	299,6717	0,34	0,46	298,7252	298,0077	0,34	0,36	296,7143	296,0003	0,34	0,26	295,2557	295,3661
0,36	0,54	300,2218	299,8198	0,36	0,44	298,7533	298,0479	0,36	0,34	296,6039	295,9142	0,36	0,24	296,2368	296,3106
0,38	0,52	300,3356	299,9275	0,38	0,42	298,7346	298,0422	0,38	0,32	296,4363	296,1350	0,38	0,22	297,1864	297,2237
0,40	0,50	300,4089	299,9954	0,40	0,40	298,6684	297,9905	0,40	0,30	296,9155	297,0235	0,40	0,20	298,1063	298,1084

Ta	bela AF	21: Continu	ıação												
0,42	0,48	300,4410	300,0238	0,42	0,38	298,5533	297,8920	0,42	0,28	297,8268	297,8860	0,42	0,18	298,9975	298,9669
0,44	0,46	300,4308	300,0123	0,44	0,36	298,3875	297,7454	0,44	0,26	298,7128	298,7245	0,44	0,16	299,8609	299,8012
0,46	0,44	300,3771	299,9603	0,46	0,34	298,1971	298,4372	0,46	0,24	299,5740	299,5408	0,46	0,14	300,6969	300,6127
0,48	0,42	300,2782	299,8667	0,48	0,32	299,0743	299,2428	0,48	0,22	300,4106	300,3362	0,48	0,12	301,5059	301,4026
0,50	0,40	300,1323	299,7301	0,50	0,30	299,9295	300,0292	0,50	0,20	301,2227	301,1118	0,50	0,10	302,2877	302,1718
0,52	0,38	299,9372	299,5662	0,52	0,28	300,7626	300,7974	0,52	0,18	302,0099	301,8686	0,52	0,08	303,0422	302,9207
0,54	0,36	299,9700	300,3353	0,54	0,26	301,5730	301,5482	0,54	0,16	302,7721	302,6069	0,54	0,06	303,7691	303,6496
0,56	0,34	300,8212	301,0889	0,56	0,24	302,3605	302,2823	0,56	0,14	303,5086	303,3273	0,56	0,04	304,4679	304,3581
0,58	0,32	301,6514	301,8276	0,58	0,22	303,1243	303,0001	0,58	0,12	304,2189	304,0296	0,58	0,02	305,1379	305,0458
0,60	0,30	302,4600	302,5517	0,60	0,20	303,8639	303,7017	0,60	0,10	304,9024	304,7137	0,60	0,00	305,7784	305,7116
0,62	0,28	303,2461	303,2617	0,62	0,18	304,5783	304,3872	0,62	0,08	305,5581	305,3790	-	-	-	-
0,64	0,26	304,0088	303,9575	0,64	0,16	305,2667	305,0563	0,64	0,06	306,1853	306,0246	-	-	-	-
0,66	0,24	304,7471	304,6392	0,66	0,14	305,9282	305,7085	0,66	0,04	306,7830	306,6491	-	-	-	-
0,68	0,22	305,4602	305,3064	0,68	0,12	306,5617	306,3429	0,68	0,02	307,3501	307,2506	-	-	-	-
0,70	0,20	306,1469	305,9586	0,70	0,10	307,1663	306,9583	0,70	0,00	307,8857	307,8267	-	-	-	-
0,72	0,18	306,8062	306,5951	0,72	0,08	307,7408	307,5531	-	-	-	-	-	-	-	-
0,74	0,16	307,4368	307,2148	0,74	0,06	308,2840	308,1253	-	-	-	-	-	-	-	-
0,76	0,14	308,0376	307,8163	0,76	0,04	308,7948	308,6720	-	-	-	-	-	-	-	-
0,78	0,12	308,6074	308,3979	0,78	0,02	309,2719	309,1900	-	-	-	-	-	-	-	-
0,80	0,10	309,1448	308,9572	0,80	0,00	309,7142	309,6747	-	-	-	-	-	-	-	-
0,82	0,08	309,6487	309,4913	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	310,1177	309,9965	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	310,5504	310,4684	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	310,9456	310,9011	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	311,3017	311,2874	-	-	-	-	-	-	-	-	-	-	-	-

		$x_3 = 0,5$		_	-	$x_3 = 0,6$			_	$x_3 = 0,7$				$x_3 = 0.8$	
		MA	W			MA	W			MA	W			MA	W
<i>x</i> ₁	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,50	287,0973	288,0299	0,00	0,40	283,3675	284,1065	0,00	0,30	286,4105	285,9015	0,00	0,20	288,6347	288,2675
0,02	0,48	286,3150	287,2551	0,02	0,38	283,5698	283,2030	0,02	0,28	286,5352	286,0604	0,02	0,18	288,6980	288,3694
0,04	0,46	285,5568	286,4491	0,04	0,36	283,7835	283,7230	0,04	0,26	286,6502	286,2058	0,04	0,16	288,7485	288,4559
0,06	0,44	287,5572	287,0602	0,06	0,34	285,7073	285,6256	0,06	0,24	286,7535	286,3368	0,06	0,14	288,7841	288,5261
0,08	0,42	288,8962	288,4194	0,08	0,32	286,9654	286,8702	0,08	0,22	286,8432	286,4528	0,08	0,12	288,8028	288,5787
0,10	0,40	289,8603	289,4047	0,10	0,30	287,8401	287,7333	0,10	0,20	286,9172	286,5526	0,10	0,10	288,8028	288,6125
0,12	0,38	290,5768	290,1412	0,12	0,28	288,4556	288,3373	0,12	0,18	286,9737	286,6353	0,12	0,08	288,7820	288,6260
0,14	0,36	291,1127	290,6951	0,14	0,26	288,8763	288,7457	0,14	0,16	287,0105	286,6998	0,14	0,06	288,7383	288,6177
0,16	0,34	291,5068	291,1051	0,16	0,24	289,1377	288,9940	0,16	0,14	287,2836	287,7750	0,16	0,04	288,7004	288,9203
0,18	0,32	291,7827	291,3951	0,18	0,22	289,2594	289,1020	0,18	0,12	288,9085	289,3283	0,18	0,02	290,3887	290,4925
0,20	0,30	291,9551	291,5801	0,20	0,20	289,2510	289,6428	0,20	0,10	290,4174	290,7629	0,20	0,00	291,9584	291,9456
0,22	0,28	292,0329	291,6693	0,22	0,18	290,6104	290,9683	0,22	0,08	291,8315	292,1010	-	-	-	-
0,24	0,26	292,0205	291,6680	0,24	0,16	291,9034	292,2139	0,24	0,06	293,1663	293,3592	-	-	-	-
0,26	0,24	292,0390	292,2846	0,26	0,14	293,1310	293,3922	0,26	0,04	294,4334	294,5499	-	-	-	-
0,28	0,22	293,1864	293,3981	0,28	0,12	294,3017	294,5128	0,28	0,02	295,6412	295,6827	-	-	-	-
0,30	0,20	294,2858	294,4616	0,30	0,10	295,4222	295,5833	0,30	0,00	296,7963	296,7652	-	-	-	-
0,32	0,18	295,3424	295,4813	0,32	0,08	296,4974	296,6099	-	-	-	-	-	-	-	-
0,34	0,16	296,3600	296,4622	0,34	0,06	297,5311	297,5974	-	-	-	-	-	-	-	-
0,36	0,14	297,3415	297,4082	0,36	0,04	298,5263	298,5497	-	-	-	-	-	-	-	-
0,38	0,12	298,2890	298,3228	0,38	0,02	299,4852	299,4699	-	-	-	-	-	-	-	-
0,40	0,10	299,2043	299,2086	0,40	0,00	300,4095	300,3605	-	-	-	-	-	-	-	-
0,42	0,08	300,0886	300,0676	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	300,9425	300,9017	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	301,7666	301,7119	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	302,5612	302,4991	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	303,3261	303,2636	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP22: Dados de equilíbrio para a msitura de estearato (1) com palmitato (2) com miristato (3) de metila – 2 (cont.)

		$x_3 = 0,9$	
		MA	W
X_1	X_2	T(K)	T(K)
0,00	0,10	290,3536	290,2245
0,02	0,08	290,3722	290,2708
0,04	0,06	290,3748	290,2993
0,06	0,04	290,3593	290,3084
0,08	0,02	290,3238	290,2967
0,10	0,00	290,2663	290,2624

Tabela AP23 – Dados de equilíbrio para a mistura de estearato (1) com palmitato (2) com miristato (3) de metila – 3 (cont.)

Tabela AP24: Dados de equilíbrio para a mistura de ácido mirístico (1) com palmítico (2) com cáprico (3) - 1

		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
		MA	W												
x_1	x_2	T(K)	T(K)												
0,00	0,90	333,0392	333,0208	0,00	0,80	330,5573	330,5632	0,00	0,70	327,6457	327,7461	0,00	0,60	324,3529	324,5789
0,02	0,88	332,6426	332,6482	0,02	0,78	330,1071	330,1407	0,02	0,68	327,1363	327,2576	0,02	0,58	323,7730	324,0065
0,04	0,86	332,2366	332,2645	0,04	0,76	329,6463	329,7047	0,04	0,66	326,6143	326,7520	0,04	0,56	323,1769	323,4123
0,06	0,84	331,8203	331,8691	0,06	0,74	329,1742	329,2544	0,06	0,64	326,0788	326,2285	0,06	0,54	322,5633	322,7947
0,08	0,82	331,3933	331,4616	0,08	0,72	328,6899	328,7890	0,08	0,62	325,5287	325,6859	0,08	0,52	321,9306	322,1522
0,10	0,80	330,9548	331,0412	0,10	0,70	328,1925	328,3077	0,10	0,60	324,9627	325,1231	0,10	0,50	321,2770	321,4832
0,12	0,78	330,5040	330,6075	0,12	0,68	327,6813	327,8097	0,12	0,58	324,3796	324,5388	0,12	0,48	320,6005	320,7856
0,14	0,76	330,0404	330,1596	0,14	0,66	327,1551	327,2940	0,14	0,56	323,7782	323,9317	0,14	0,46	319,8991	320,0573
0,16	0,74	329,5630	329,6969	0,16	0,64	326,6131	326,7595	0,16	0,54	323,1568	323,3003	0,16	0,44	319,1705	319,2959
0,18	0,72	329,0710	329,2185	0,18	0,62	326,0540	326,2053	0,18	0,52	322,5139	322,6428	0,18	0,42	318,4119	318,4988
0,20	0,70	328,5637	328,7237	0,20	0,60	325,4768	325,6299	0,20	0,50	321,8479	321,9576	0,20	0,40	317,6204	317,6630
0,22	0,68	328,0401	328,2115	0,22	0,58	324,8801	325,0322	0,22	0,48	321,1567	321,2426	0,22	0,38	316,7926	316,7849
0,24	0,66	327,4993	327,6810	0,24	0,56	324,2627	324,4107	0,24	0,46	320,4382	320,4955	0,24	0,36	315,9248	315,8607
0,26	0,64	326,9402	327,1310	0,26	0,54	323,6231	323,7638	0,26	0,44	319,6902	319,7138	0,26	0,34	315,0124	314,8858
0,28	0,62	326,3619	326,5604	0,28	0,52	322,9598	323,0898	0,28	0,42	318,9100	318,8949	0,28	0,32	314,0503	313,8549
0,30	0,60	325,7630	325,9681	0,30	0,50	322,2709	322,3867	0,30	0,40	318,0946	318,0354	0,30	0,30	313,0325	312,7619
0,32	0,58	325,1425	325,3525	0,32	0,48	321,5547	321,6525	0,32	0,38	317,2407	317,1318	0,32	0,28	311,9516	311,5993
0,34	0,56	324,4989	324,7123	0,34	0,46	320,8089	320,8848	0,34	0,36	316,3446	316,1800	0,34	0,26	310,8890	310,3583
0,36	0,54	323,8309	324,0458	0,36	0,44	320,0314	320,0809	0,36	0,34	315,4017	315,1754	0,36	0,24	310,7238	309,8879
0,38	0,52	323,1369	323,3512	0,38	0,42	319,2194	319,2380	0,38	0,32	314,4069	314,1123	0,38	0,22	310,4779	309,6143
0,40	0,50	322,4152	322,6266	0,40	0,40	318,3701	318,3527	0,40	0,30	314,0364	313,2300	0,40	0,20	310,1433	309,2463

Та	bela AF	24: Continu	ıação												
0,42	0,48	321,6638	321,8698	0,42	0,38	317,4802	317,4212	0,42	0,28	313,8814	313,0559	0,42	0,18	309,7085	308,7723
0,44	0,46	320,8808	321,0784	0,44	0,36	316,9127	316,4393	0,44	0,26	313,6641	312,8141	0,44	0,16	309,1571	308,1758
0,46	0,44	320,0639	320,2498	0,46	0,34	316,8098	316,1792	0,46	0,24	313,3794	312,4991	0,46	0,14	308,4653	307,4332
0,48	0,42	319,3556	319,3808	0,48	0,32	316,6587	316,0173	0,48	0,22	313,0205	312,1038	0,48	0,12	309,0041	307,9925
0,50	0,40	319,2845	319,0327	0,50	0,30	316,4569	315,7997	0,50	0,20	312,5781	311,6184	0,50	0,10	309,8626	308,8920
0,52	0,38	319,1735	318,9272	0,52	0,28	316,2008	315,5224	0,52	0,18	312,0394	311,0299	0,52	0,08	310,6977	309,7676
0,54	0,36	319,0210	318,7775	0,54	0,26	315,8860	315,1805	0,54	0,16	312,1740	311,0462	0,54	0,06	311,5110	310,6210
0,56	0,34	318,8252	318,5812	0,56	0,24	315,5066	314,7673	0,56	0,14	312,9666	311,8819	0,56	0,04	312,3038	311,4531
0,58	0,32	318,5836	318,3351	0,58	0,22	315,0551	314,2746	0,58	0,12	313,7386	312,6975	0,58	0,02	313,0771	312,2650
0,60	0,30	318,2929	318,0355	0,60	0,20	315,0790	314,0441	0,60	0,10	314,4911	313,4937	0,60	0,00	313,8320	313,0574
0,62	0,28	317,9493	317,6778	0,62	0,18	315,8155	314,8262	0,62	0,08	315,2247	314,2709	-	-	-	-
0,64	0,26	317,5479	317,2562	0,64	0,16	316,5328	315,5899	0,64	0,06	315,9402	315,0297	-	-	-	-
0,66	0,24	317,6410	317,0638	0,66	0,14	317,2316	316,3354	0,66	0,04	316,6383	315,7702	-	-	-	-
0,68	0,22	318,3276	317,7970	0,68	0,12	317,9124	317,0628	0,68	0,02	317,3195	316,4922	-	-	-	-
0,70	0,20	318,9955	318,5120	0,70	0,10	318,5755	317,7717	0,70	0,00	317,9842	317,1957	-	-	-	-
0,72	0,18	319,6451	319,2084	0,72	0,08	319,2215	318,4618	-	-	-	-	-	-	-	-
0,74	0,16	320,2768	319,8858	0,74	0,06	319,8506	319,1323	-	-	-	-	-	-	-	-
0,76	0,14	320,8909	320,5430	0,76	0,04	320,4631	319,7823	-	-	-	-	-	-	-	-
0,78	0,12	321,4874	321,1791	0,78	0,02	321,0592	320,4105	-	-	-	-	-	-	-	-
0,80	0,10	322,0666	321,7923	0,80	0,00	321,6391	321,0151	-	-	-	-	-	-	-	-
0,82	0,08	322,6287	322,3809	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	323,1736	322,9424	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	323,7016	323,4738	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	324,2125	323,9714	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	324,7065	324,4308	-	-	-	-	-	-	-	-	-	-	-	-

		$x_3 = 0,5$			-	$x_3 = 0,6$				$x_3 = 0,7$				$x_3 = 0.8$	
		MA	W			MA	W			MA	W			MA	W
<i>x</i> ₁	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)	x_1	x_2	T(K)	T(K)
0,00	0,50	320,6891	321,0017	0,00	0,40	316,5939	316,8711	0,00	0,30	311,8584	311,8935	0,00	0,20	305,8907	305,4040
0,02	0,48	320,0169	320,3195	0,02	0,38	315,7872	316,0340	0,02	0,28	310,8271	310,8106	0,02	0,18	304,4004	303,8445
0,04	0,46	319,3221	319,6078	0,04	0,36	314,9450	315,1537	0,04	0,26	309,7308	309,6547	0,04	0,16	302,7540	302,1228
0,06	0,44	318,6023	318,8643	0,06	0,34	314,0628	314,2259	0,06	0,24	308,5586	308,4155	0,06	0,14	300,9105	300,1987
0,08	0,42	317,8550	318,0863	0,08	0,32	313,1355	313,2455	0,08	0,22	307,2972	307,0799	0,08	0,12	298,8104	298,0145
0,10	0,40	317,0770	317,2711	0,10	0,30	312,1568	312,2065	0,10	0,20	305,9294	305,6313	0,10	0,10	298,1566	297,7906
0,12	0,38	316,2651	316,4152	0,12	0,28	311,1196	311,1020	0,12	0,18	304,4331	304,0480	0,12	0,08	298,1457	297,7784
0,14	0,36	315,4153	315,5148	0,14	0,26	310,0151	309,9231	0,14	0,16	302,7786	302,3011	0,14	0,06	298,1324	297,7556
0,16	0,34	314,5233	314,5655	0,16	0,24	308,8324	308,6594	0,16	0,14	300,9249	300,3506	0,16	0,04	298,1161	297,7215
0,18	0,32	313,5838	313,5621	0,18	0,22	307,5583	307,2978	0,18	0,12	298,8124	298,1386	0,18	0,02	298,0964	297,6751
0,20	0,30	312,5907	312,4986	0,20	0,20	306,1756	305,8217	0,20	0,10	297,9773	297,1252	0,20	0,00	298,0726	297,6157
0,22	0,28	311,5369	311,3677	0,22	0,18	304,6622	304,2092	0,22	0,08	297,0699	296,2025	-	-	-	-
0,24	0,26	310,4134	310,1608	0,24	0,16	303,1872	302,4449	0,24	0,06	295,6404	294,7605	-	-	-	-
0,26	0,24	309,2097	308,8673	0,26	0,14	302,8081	302,0432	0,26	0,04	295,8282	295,0058	-	-	-	-
0,28	0,22	307,9122	307,4737	0,28	0,12	302,2307	301,4388	0,28	0,02	297,1412	296,3632	-	-	-	-
0,30	0,20	307,1833	306,4099	0,30	0,10	301,4059	300,5840	0,30	0,00	298,3876	297,6506	-	-	-	-
0,32	0,18	306,8886	306,0884	0,32	0,08	300,2477	299,3942	-	-	-	-	-	-	-	-
0,34	0,16	306,4679	305,6355	0,34	0,06	301,0092	300,2713	-	-	-	-	-	-	-	-
0,36	0,14	305,8997	305,0300	0,36	0,04	302,0940	301,3973	-	-	-	-	-	-	-	-
0,38	0,12	305,1504	304,2389	0,38	0,02	303,1384	302,4802	-	-	-	-	-	-	-	-
0,40	0,10	304,6616	303,7945	0,40	0,00	304,1466	303,5242	-	-	-	-	-	-	-	-
0,42	0,08	305,6316	304,8056	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	306,5710	305,7845	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	307,4824	306,7338	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	308,3680	307,6557	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	309,2298	308,5523	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP25: Dados de equilíbrio para a mistura de ácido mirístico (1) com palmítico (2) com cáprico (3) – 2 (cont.)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$x_3 = 0,9$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			MA	W
0,000,10301,2035301,05500,020,08301,1962301,06870,040,06301,1907301,07390,060,04301,1864301,07010,080,02301,1828301,05660,100,00301,1795301,0329	X_1	x_2	T(K)	T(K)
0,020,08301,1962301,06870,040,06301,1907301,07390,060,04301,1864301,07010,080,02301,1828301,05660,100,00301,1795301,0329	0,00	0,10	301,2035	301,0550
0,040,06301,1907301,07390,060,04301,1864301,07010,080,02301,1828301,05660,100,00301,1795301,0329	0,02	0,08	301,1962	301,0687
0,060,04301,1864301,07010,080,02301,1828301,05660,100,00301,1795301,0329	0,04	0,06	301,1907	301,0739
0,08 0,02 301,1828 301,0566 0,10 0,00 301,1795 301,0329	0,06	0,04	301,1864	301,0701
0,10 0,00 301,1795 301,0329	0,08	0,02	301,1828	301,0566
	0,10	0,00	301,1795	301,0329

Tabela AP26: Dados de equilíbrio para a mistura de ácido mirístico (1) com palmítico (2) com cáprico (3) – 3 (cont.)

Tabela AP27: Dados de equilíbrio para a mistura de ácido cáprico (1) com esteárico (2) com oléico (3) - 1

		$x_3 = 0,1$				$x_3 = 0,2$				$x_3 = 0,3$				$x_3 = 0,4$	
		MA	W												
x_1	x_2	T(K)	T(K)												
0,00	0,90	340,5560	340,5470	0,00	0,80	338,6356	338,6064	0,00	0,70	336,4478	336,3969	0,00	0,60	333,9316	333,8657
0,02	0,88	340,2329	340,2501	0,02	0,78	338,2994	338,3000	0,02	0,68	336,0860	336,0537	0,02	0,58	333,5262	333,4587
0,04	0,86	339,9048	339,9380	0,04	0,76	337,9550	337,9731	0,04	0,66	335,7120	335,6853	0,04	0,56	333,1031	333,0215
0,06	0,84	339,5709	339,6112	0,06	0,74	337,6015	337,6262	0,06	0,64	335,3246	335,2922	0,06	0,54	332,6606	332,5539
0,08	0,82	339,2303	339,2698	0,08	0,72	337,2380	337,2595	0,08	0,62	334,9227	334,8744	0,08	0,52	332,1971	332,0556
0,10	0,80	338,8824	338,9140	0,10	0,70	336,8635	336,8734	0,10	0,60	334,5050	334,4318	0,10	0,50	331,7108	331,5259
0,12	0,78	338,5262	338,5438	0,12	0,68	336,4769	336,4676	0,12	0,58	334,0700	333,9642	0,12	0,48	331,1997	330,9639
0,14	0,76	338,1608	338,1592	0,14	0,66	336,0771	336,0422	0,14	0,56	333,6163	333,4712	0,14	0,46	330,6614	330,3683
0,16	0,74	337,7853	337,7598	0,16	0,64	335,6630	335,5967	0,16	0,54	333,1424	332,9520	0,16	0,44	330,0937	329,7378
0,18	0,72	337,3989	337,3454	0,18	0,62	335,2334	335,1309	0,18	0,52	332,6466	332,4058	0,18	0,42	329,4938	329,0704
0,20	0,70	337,0004	336,9158	0,20	0,60	334,7870	334,6441	0,20	0,50	332,1270	331,8316	0,20	0,40	328,8587	328,3639
0,22	0,68	336,5889	336,4703	0,22	0,58	334,3225	334,1358	0,22	0,48	331,5815	331,2280	0,22	0,38	328,1850	327,6156
0,24	0,66	336,1632	336,0086	0,24	0,56	333,8383	333,6050	0,24	0,46	331,0082	330,5937	0,24	0,36	327,4688	326,8225
0,26	0,64	335,7223	335,5299	0,26	0,54	333,3329	333,0508	0,26	0,44	330,4044	329,9267	0,26	0,34	326,7056	325,9808
0,28	0,62	335,2649	335,0337	0,28	0,52	332,8047	332,4721	0,28	0,42	329,7675	329,2251	0,28	0,32	325,8904	325,0859
0,30	0,60	334,7897	334,5190	0,30	0,50	332,2517	331,8677	0,30	0,40	329,0946	328,4864	0,30	0,30	325,0171	324,1324
0,32	0,58	334,2955	333,9851	0,32	0,48	331,6721	331,2360	0,32	0,38	328,3822	327,7078	0,32	0,28	324,0785	323,1139
0,34	0,56	333,7807	333,4309	0,34	0,46	331,0636	330,5754	0,34	0,36	327,6264	326,8859	0,34	0,26	323,0661	322,0222
0,36	0,54	333,2438	332,8554	0,36	0,44	330,4239	329,8840	0,36	0,34	326,8229	326,0169	0,36	0,24	321,9692	320,8474
0,38	0,52	332,6832	332,2572	0,38	0,42	329,7502	329,1594	0,38	0,32	325,9666	325,0960	0,38	0,22	320,7749	319,5770
0,40	0,50	332,0969	331,6349	0,40	0,40	329,0396	328,3992	0,40	0,30	325,0514	324,1179	0,40	0,20	319,4664	318,1951

Та	bela AF	27: Continu	ıação												
0,42	0,48	331,4831	330,9870	0,42	0,38	328,2886	327,6005	0,42	0,28	324,0701	323,0758	0,42	0,18	318,0222	316,6808
0,44	0,46	330,8396	330,3116	0,44	0,36	327,4936	326,7597	0,44	0,26	323,0143	321,9616	0,44	0,16	316,4135	315,0058
0,46	0,44	330,1639	329,6068	0,46	0,34	326,6500	325,8729	0,46	0,24	321,8733	320,7653	0,46	0,14	314,6003	313,1310
0,48	0,42	329,4535	328,8703	0,48	0,32	325,7528	324,9354	0,48	0,22	320,6343	319,4743	0,48	0,12	312,5248	310,9998
0,50	0,40	328,7053	328,0994	0,50	0,30	324,7960	323,9416	0,50	0,20	319,2805	318,0727	0,50	0,10	310,0988	308,5251
0,52	0,38	327,9160	327,2911	0,52	0,28	323,7724	322,8847	0,52	0,18	317,7906	316,5394	0,52	0,08	307,1766	305,5633
0,54	0,36	327,0819	326,4419	0,54	0,26	322,6736	321,7567	0,54	0,16	316,1357	314,8463	0,54	0,06	303,4901	301,8493
0,56	0,34	326,1984	325,5478	0,56	0,24	321,4892	320,5473	0,56	0,14	314,2760	312,9542	0,56	0,04	298,4506	296,8008
0,58	0,32	325,2606	324,6041	0,58	0,22	320,2060	319,2442	0,58	0,12	312,1540	310,8066	0,58	0,02	290,2405	288,6187
0,60	0,30	324,2625	323,6051	0,60	0,20	318,8077	317,8311	0,60	0,10	309,6816	308,3166	0,60	0,00	286,4121	286,2323
0,62	0,28	323,1970	322,5440	0,62	0,18	317,2729	316,2871	0,62	0,08	306,7136	305,3406	-	-	-	-
0,64	0,26	322,0557	321,4126	0,64	0,16	315,5728	314,5840	0,64	0,06	302,9825	301,6142	-	-	-	-
0,66	0,24	320,8282	320,2009	0,66	0,14	313,6678	312,6829	0,66	0,04	297,9011	296,5562	-	-	-	-
0,68	0,22	319,5015	318,8963	0,68	0,12	311,5006	310,5270	0,68	0,02	291,2152	291,0797	-	-	-	-
0,70	0,20	318,0594	317,4827	0,70	0,10	308,9835	308,0298	0,70	0,00	292,1555	291,9552	-	-	-	-
0,72	0,18	316,4803	315,9391	0,72	0,08	305,9718	305,0480	-	-	-	-	-	-	-	-
0,74	0,16	314,7360	314,2375	0,74	0,06	302,1990	301,3176	-	-	-	-	-	-	-	-
0,76	0,14	312,7868	312,3387	0,76	0,04	297,0799	296,2587	-	-	-	-	-	-	-	-
0,78	0,12	310,5758	310,1863	0,78	0,02	296,1365	296,0622	-	-	-	-	-	-	-	-
0,80	0,10	308,0156	307,6938	0,80	0,00	296,9394	296,8027	-	-	-	-	-	-	-	-
0,82	0,08	304,9622	304,7181	-	-	-	-	-	-	-	-	-	-	-	-
0,84	0,06	301,1504	300,9959	-	-	-	-	-	-	-	-	-	-	-	-
0,86	0,04	299,4806	299,5270	-	-	-	-	-	-	-	-	-	-	-	-
0,88	0,02	300,1798	300,1785	-	-	-	-	-	-	-	-	-	-	-	-
0,90	0,00	300,8573	300,8102	-	-	-	-	-	-	-	-	-	-	-	-

		$x_3 = 0,5$			-	$x_3 = 0,6$				$x_3 = 0,7$				$x_3 = 0.8$	
		MA	W												
x_1	x_2	T(K)	T(K)												
0,00	0,50	330,9915	330,9235	0,00	0,40	327,4674	327,4152	0,00	0,30	323,0610	323,0464	0,00	0,20	317,1135	317,1629
0,02	0,48	330,5147	330,4200	0,02	0,38	326,8717	326,7651	0,02	0,28	322,2532	322,1562	0,02	0,18	315,8617	315,8024
0,04	0,46	330,0117	329,8788	0,04	0,36	326,2353	326,0643	0,04	0,26	321,3740	321,1864	0,04	0,16	314,4485	314,2747
0,06	0,44	329,4802	329,2989	0,06	0,34	325,5537	325,3096	0,06	0,24	320,4129	320,1277	0,06	0,14	312,8339	312,5410
0,08	0,42	328,9173	328,6789	0,08	0,32	324,8218	324,4971	0,08	0,22	319,3568	318,9681	0,08	0,12	310,9600	310,5450
0,10	0,40	328,3202	328,0170	0,10	0,30	324,0335	323,6217	0,10	0,20	318,1888	317,6921	0,10	0,10	308,7383	308,2000
0,12	0,38	327,6854	327,3106	0,12	0,28	323,1816	322,6773	0,12	0,18	316,8875	316,2792	0,12	0,08	306,0231	305,3624
0,14	0,36	327,0089	326,5571	0,14	0,26	322,2574	321,6563	0,14	0,16	315,4237	314,7015	0,14	0,06	302,5459	301,7667
0,16	0,34	326,2864	325,7528	0,16	0,24	321,2505	320,5491	0,16	0,14	313,7573	312,9202	0,16	0,04	297,7180	296,8293
0,18	0,32	325,5127	324,8934	0,18	0,22	320,1475	319,3434	0,18	0,12	311,8306	310,8787	0,18	0,02	289,7223	288,7473
0,20	0,30	324,6817	323,9737	0,20	0,20	318,9319	318,0235	0,20	0,10	309,5548	308,4900	0,20	0,00	281,9809	281,9469
0,22	0,28	323,7862	322,9873	0,22	0,18	317,5819	316,5687	0,22	0,08	306,7842	305,6102	-	-	-	-
0,24	0,26	322,8176	321,9264	0,24	0,16	316,0687	314,9509	0,24	0,06	303,2497	301,9738	-	-	-	-
0,26	0,24	321,7654	320,7811	0,26	0,14	314,3521	313,1312	0,26	0,04	298,3619	296,9968	-	-	-	-
0,28	0,22	320,6164	319,5390	0,28	0,12	312,3742	311,0528	0,28	0,02	290,3007	288,8753	-	-	-	-
0,30	0,20	319,3540	318,1843	0,30	0,10	310,0464	308,6286	0,30	0,00	278,7802	278,7630	-	-	-	-
0,32	0,18	317,9564	316,6960	0,32	0,08	307,2228	305,7148	-	-	-	-	-	-	-	-
0,34	0,16	316,3949	315,0461	0,34	0,06	303,6345	302,0458	-	-	-	-	-	-	-	-
0,36	0,14	314,6294	313,1955	0,36	0,04	298,6915	297,0377	-	-	-	-	-	-	-	-
0,38	0,12	312,6019	311,0874	0,38	0,02	290,5730	288,8871	-	-	-	-	-	-	-	-
0,40	0,10	310,2241	308,6348	0,40	0,00	274,9350	274,9915	-	-	-	-	-	-	-	-
0,42	0,08	307,3500	305,6938	-	-	-	-	-	-	-	-	-	-	-	-
0,44	0,06	303,7111	301,9990	-	-	-	-	-	-	-	-	-	-	-	-
0,46	0,04	298,7176	296,9673	-	-	-	-	-	-	-	-	-	-	-	-
0,48	0,02	290,5495	288,7967	-	-	-	-	-	-	-	-	-	-	-	-
0,50	0,00	279,5752	279,5505	-	-	-	-	-	-	-	-	-	-	-	-

Tabela AP28: Dados de equilíbrio para a mistura de ácido cáprico (1) com esteárico (2) com oléico (3) – 2 (cont.)

		$x_3 = 0.9$	
<i>x</i> ₁	<i>x</i> ₂	$ MA \\ T(K) $	W T(K)
0,00	0,10	307,5858	307,7357
0,02	0,08	304,9287	304,9502
0,04	0,06	301,5122	301,4051
0,06	0,04	296,7492	296,5177
0,08	0,02	288,8274	288,4875
0,10	0,00	284,5771	284,5606

Tabela AP29: Dados de equilíbrio para a mistura de ácido cáprico (1) com esteárico (2) com oléico (3) – 3 (cont.)

Anexo 1

Legenda:

 x_{exp} : são as frações molares experimentais, obtidos por BOROS *et al* (2009), COSTA *et al* (2010a,b) para os ésteres de etila e metila e por ROLEMBERG (2002) para os ácidos graxos saturados insaturados e triacilgliceróis;

 T_{exp} (K): São as temperaturas experimentais em kelvin (K) correspondentes à transição de fase nas respectivas frações molares (BOROS *et al*, 2009; COSTA *et al*, 2010a,b; e ROLEMBERG, 2002);

 T_{calc} (K): São as temperaturas calculadas pelo Microsoft Excel correspondentes à transição de fase nas respectivas frações molares;

 T_{GAMS} (K): São as temperaturas calculadas pelo software GAMS correspondentes à transição de fase nas respectivas frações molares;

MA: Valores correspondentes ao modelo de Margules Assimétrico;

MS: Valores correspondentes ao modelo de Margules Simétrico;

W: Valores correspondentes ao modelo de Wilson.

Tabela A1: Dados de equilíbrio para mistura de laurato de etila com miristato de etila

<i>x</i> _{exp}	T (V)	MA	MA	MS	MS	W	W	
	λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
	0,0000	287,2700	287,2700	287,2700	287,2700	287,2700	287,2700	287,2700
	0,1134	285,0900	285,6597	285,6738	285,6030	285,6030	285,6652	285,6650
	0,2029	283,1500	284,1407	284,1753	283,9883	283,9883	284,1673	284,1670
	0,2893	281,5500	282,4076	282,4572	282,1548	282,1548	282,4725	282,4720
	0,3858	279,7900	280,0863	280,1338	279,7489	279,7489	280,2047	280,2040
	0,4881	277,1900	277,0674	277,0752	276,7156	276,7157	277,2159	277,2149
	0,6161	273,3400	272,2121	272,0915	272,0208	272,0209	272,2150	272,2136
	0,7114	266,6500	267,4958	267,2065	267,5990	267,5991	267,0516	267,0497
	0,8169	268,1900	269,3560	269,2727	269,5321	269,5321	268,4787	268,4783
	0,9010	270,8300	270,9835	270,9565	271,0421	271,0421	270,5992	270,5990
	1,0000	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100

Tabela A2: Dados de equilíbrio para mistura de laurato de etila com palmitato de etila

X_{exp}	$T_{\rm ave}(\mathbf{K})$	MA	MA	MS	MS	W	W
 λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400
0,1331	296,4800	296,0408	296,0408	295,4829	295,4829	295,8198	295,8196
0,1828	295,3300	295,3069	295,3069	294,3174	294,3174	294,9367	294,9365
0,2871	293,1800	293,3982	293,3982	293,3624	293,3624	292,7153	292,7148
0,3906	292,2300	292,1181	292,1181	292,3251	292,3251	291,7514	291,7503
0,5007	290,1200	290,3108	290,3108	290,0048	290,0048	289,9609	289,9596
0,5965	287,4200	287,6147	287,6147	286,9498	286,9498	287,3871	287,3855
0,6904	282,3200	283,6460	283,6460	282,9040	282,9040	283,5963	283,5945
0,7760	279,1100	278,5000	278,5000	278,0742	278,0742	278,5181	278,5158
0,8652	270,4800	270,8169	270,8169	271,2482	271,2482	270,4845	270,4815
1,0000	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100

	$T_{\rm exp}$ (K)	MA	MA	MS	MS	W	W
<i>X</i> _{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	305,8400	305,8400	305,8400	305,8400	305,8400	305,8400	305,8400
0,2037	304,7700	304,0100	304,0100	303,3884	303,3884	304,7921	304,7920
0,3121	303,1600	303,1492	303,1492	301,9821	301,9821	303,5849	303,5847
0,3999	302,1000	302,2659	302,2659	300,7353	300,7353	302,2786	302,2783
0,4963	300,5500	300,8966	300,8966	299,1857	299,1857	300,4727	300,4722
0,6089	298,0400	298,4323	298,4323	296,9806	296,9806	297,7514	297,7506
0,6815	296,3900	296,1094	296,1094	295,1857	295,1857	295,5155	295,5145
0,7567	293,3500	292,8151	292,8151	292,8015	292,8015	292,5954	292,5941
0,8807	283,6400	283,9162	283,9162	286,3237	286,3237	285,0817	285,0798
1,0000	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100

Tabela A3: Dados de equilíbrio para mistura de laurato de etila com estearato de etila

Tabela A4: Dados de equilíbrio para mistura de miristato de etila com palmitato de etila

x_{exp}	T (V)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400
0,0992	296,6100	296,3338	296,3338	296,4212	296,4212	296,4368	296,4367
0,1876	294,9100	294,8102	294,8102	295,0680	295,0680	295,1178	295,1175
0,2875	292,7300	292,8462	292,8462	293,3067	293,3067	293,4062	293,4058
0,3680	291,1400	291,1130	291,1130	291,6778	291,6778	291,8158	291,8152
0,4886	288,0500	288,3011	288,3011	288,8011	288,8011	288,9708	288,9699
0,5843	285,3600	285,8664	285,8664	286,0271	286,0271	286,1782	286,1771
0,6877	283,5000	282,9018	282,9018	282,3106	282,3106	282,3752	282,3737
0,7995	282,3600	283,2521	283,2521	282,7370	282,7370	282,6631	282,6628
0,8863	283,8600	284,3370	284,3370	284,1495	284,1495	284,1294	284,1292
1,0000	285,7400	285,7400	285,7400	285,7400	285,7400	285,7400	285,7400

Tabela A5: Dados de equilíbrio para mistura de miristato de etila com estearato de etila

x_{exp}	$T_{\rm even}(\mathbf{K})$	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	307,9300	307,9300	307,9300	307,9300	307,9300	307,9300	307,9300
0,1154	305,8800	306,4374	306,4374	306,3948	306,3948	306,4329	306,4327
0,2386	303,9900	304,5206	304,5206	304,3782	304,3782	304,5185	304,5182
0,3054	302,8600	303,2975	303,2975	303,0993	303,0993	303,3062	303,3058
0,4045	300,9500	301,1785	301,1785	300,9211	300,9211	301,2160	301,2153
0,5069	298,2500	298,5042	298,5042	298,2452	298,2452	298,5765	298,5755
0,6355	294,9700	294,1773	294,1773	294,0527	294,0527	294,2487	294,2474
0,7054	291,7400	291,1777	291,1777	291,2098	291,2098	291,1858	291,1842
0,7822	286,4000	287,0708	287,0708	287,3565	287,3565	286,9078	286,9058
0,8830	283,3700	284,0043	284,0043	284,0645	284,0645	283,8814	283,8812
1,0000	285,7400	285,7400	285,7400	285,7400	285,7400	285,7400	285,7400

	T (V)	MA	MA	MS	MS	W	W
X _{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,000	0 307,9300	307,9300	307,9300	307,9300	307,9300	307,9300	307,9300
0,098	0 305,9600	306,4985	306,4985	306,5698	306,5698	306,6680	306,6679
0,203	2 303,6400	304,4561	304,4561	304,6703	304,6733	305,0731	305,0728
0,276	3 302,8100	302,7865	302,7865	303,0648	303,0648	303,7806	303,7802
0,377	4 300,5600	300,2056	300,2056	300,4235	300,4235	301,6726	301,6720
0,536	5 298,7900	298,3038	298,3038	298,7210	298,7210	298,6386	298,6376
0,610	9 297,7800	297,9859	297,9859	298,3056	298,3056	298,2741	298,2730
0,706	3 296,8200	297,1242	297,1242	297,0955	297,0955	297,1449	297,1438
0,800	5 295,6700	295,6471	295,6471	294,9331	294,9331	295,0010	294,9997
1,000	0 297,7400	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400

Tabela A6: Dados de equilíbrio para mistura de palmitato de etila com estearato de etila

Tabela A7: Dados de equilíbrio para mistura de caprato de etila com caprilato de etila

x_{exp}	T (V)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	253,0900	253,0900	253,0900	253,0900	253,0900	253,0900	253,0900
0,1079	251,9800	251,4326	251,4326	251,5205	251,5205	251,4299	251,4297
0,2018	250,0100	249,6265	249,6265	249,8778	249,8778	249,6473	249,6469
0,2865	248,0100	247,7463	247,7463	248,1510	248,1510	247,8140	247,8135
0,4333	244,1000	243,9871	243,9871	244,5149	244,5149	244,1394	244,1386
0,4975	242,0000	242,1472	242,1472	242,6168	242,6168	242,3057	242,3046
0,6102	238,1400	238,5724	238,5724	238,6913	238,6913	238,6350	238,6337
0,7195	234,7200	234,4695	234,4695	233,8643	233,8643	234,2424	234,2407
0,9219	227,7100	227,1908	227,1908	227,1164	227,1164	227,1452	227,1451
1,0000	228,1900	228,1900	228,1900	228,1900	228,1900	228,1900	228,1900

Tabela A8: Dados de equilíbrio para mistura de caprilato de etila com laurato de etila

X_{exp}	$T_{\rm avn}$ (K)	MA	MA	MS	MS	W	W
 λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100	272,5100
0,1070	270,6200	270,9142	270,9142	270,9457	270,9457	270,8923	270,7922
0,2137	268,4000	268,9585	268,9585	269,0637	269,0637	268,8962	268,8958
0,2929	266,6900	267,2643	267,2643	267,4337	267,4337	267,1752	267,1747
0,3809	265,6100	265,1221	265,1221	265,3561	265,3561	265,0146	265,0139
0,4916	261,2100	261,9864	261,9864	262,2670	262,2670	261,8776	261,8766
0,6270	256,3900	257,2839	257,2839	257,5272	257,5272	257,2086	257,2071
0,7237	255,2300	253,0397	253,0397	253,1654	253,1654	253,0112	253,0094
0,8041	248,3300	248,5239	248,5239	248,4806	248,4806	248,5526	248,5504
0,9000	239,9300	240,5321	240,5321	240,1950	240,1950	240,6744	240,6715
1,0000	230,1400	230,1400	230,1400	230,1400	230,1400	230,1400	230,1400

			1 1		1			
	24	T (V)	MA	MA	MS	MS	W	W
	X_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
	0,0000	287,2700	287,2700	287,2700	287,2700	287,2700	287,2700	287,2700
	0,1088	285,8300	285,6747	285,6747	285,7419	285,7419	285,6799	285,6798
	0,1657	285,2500	284,6976	284,6976	284,8394	284,8394	284,7172	284,7170
	0,2750	282,4300	282,5612	282,5612	282,8786	282,8786	282,6358	282,6353
	0,3559	280,1900	280,7638	280,7638	281,2051	281,2051	280,8925	280,8919
	0,5083	276,7200	276,8356	276,8356	277,3935	277,3935	277,0420	277,0410
	0,6113	273,7500	273,6672	273,6672	274,1449	274,1449	273,8573	273,8560
	0,7099	270,2400	270,0145	270,0145	270,2415	270,2415	270,0949	270,0932
	0,7905	266,5900	266,2310	266,2310	266,0995	266,0995	266,1319	266,1300
	0,8675	260,8600	261,2280	261,2280	260,6108	260,6108	260,8744	260,8720
	1,0000	230,1400	230,1400	230,1400	230,1400	230,1400	230,1400	230,1400
_								

Tabela A9: Dados de equilíbrio para mistura de caprilato de etila com miristato de etila

Tabela A10: Dados de equilíbrio para mistura de caprilato de etila com palmitato de etila

x_{exp}	T (V)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400
0,1163	296,6900	296,3421	296,3421	296,2103	296,2103	296,2131	296,2130
0,2028	295,6100	295,2789	295,2789	294,9292	294,9292	294,9358	294,9355
0,2918	294,5300	294,0723	294,0723	293,4564	293,4564	293,4660	293,4656
0,3923	292,1300	292,4542	292,4542	291,5600	291,5600	291,5689	291,5688
0,4483	291,5800	291,3795	291,3795	290,3701	290,3701	290,3753	290,3745
0,5558	289,6800	288,8215	288,8215	287,7333	287,7333	287,7214	287,7204
0,7126	282,2100	283,2897	283,2897	282,5915	282,5915	282,5215	282,5201
0,8201	277,1000	277,2675	277,2675	277,3047	277,3047	277,1671	277,1652
0,9359	265,5600	265,1494	265,1494	266,4711	266,4711	266,2494	266,2466
1,0000	230,1400	230,1400	230,1400	230,1400	230,1400	230,1400	230,1400

Tabela A11: Dados de equilíbrio para mistura de miristato de etila com estearato de etila

r	T (V)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	307,9300	307,9300	307,9300	307,9300	307,9300	307,9300	307,9300
0,1152	306,5900	306,4131	306,4131	306,4550	306,4550	306,4493	306,4492
0,2026	304,9300	305,0759	305,0759	305,1876	305,1876	305,1658	305,1655
0,2978	303,2300	303,4320	303,4320	303,6313	303,6313	303,5745	303,5741
0,4301	301,3300	300,7864	300,7864	301,0815	301,0815	300,9383	300,9376
0,4804	299,5800	299,6496	299,6496	299,9611	299,9611	299,7736	299,7728
0,6000	296,8700	296,5542	296,5542	296,8317	296,8317	296,5304	296,5293
0,6849	293,3700	293,8718	293,8718	294,0434	294,0434	293,6971	293,6957
0,7739	290,1100	290,3075	290,3075	290,2772	290,2772	290,0377	290,0360
0,8824	283,8800	283,6492	283,6492	283,2286	283,2286	283,8827	283,8805
1,0000	228,1900	228,1900	228,1900	228,1900	228,1900	228,1900	228,1900

	T (V)	MA	MA	MS	MS	W	W
x_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	272,5900	272,5900	272,5900	272,5900	272,5900	272,5900	272,5900
0,0967	271,0100	271,1023	271,1023	271,1979	271,1979	271,1098	271,1096
0,1979	268,7400	269,1482	269,1482	269,4796	269,4796	269,2167	269,2164
0,2901	266,5100	267,0733	267,0733	267,6517	267,6517	267,2434	267,2429
0,3901	264,7900	264,5534	264,5534	265,3395	265,3395	264,8400	264,8392
0,4996	261,5800	261,4973	261,4973	262,3259	262,3259	261,8406	261,8396
0,6000	258,1300	258,3862	258,3862	258,9814	258,9814	258,6330	258,6317
0,7105	255,0900	254,4248	254,4248	254,3541	254,3541	254,3059	254,3041
0,7955	250,2500	250,6145	250,6145	249,6795	249,6795	249,9751	249,9730
0,9160	252,5900	253,4036	253,4036	253,3125	253,3125	253,3368	253,3367
1,0000	254,5100	254,5100	254,5100	254,5100	254,5100	254,5100	254,5100

Tabela A12: Dados de equilíbrio para mistura de caprato de etila com laurato de etila

Tabela A13: Dados de equilíbrio para mistura de caprato de etila com miristato de etila

~	T (V)	MA	MA	MS	MS	W	W
\mathcal{X}_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	287,2700	287,2700	287,2700	287,2700	287,2700	287,2700	287,2700
0,1264	285,8100	285,5871	285,5871	285,5228	285,5228	285,5244	285,5242
0,1891	283,8400	284,6920	284,6922	284,5619	284,5618	284,5649	284,5634
0,2786	284,0800	283,2988	283,2988	283,0590	283,0590	283,0641	283,0637
0,3822	279,6100	281,4415	281,4415	281,0826	281,0826	281,0889	281,0883
0,4854	278,1500	279,2134	279,2134	278,7815	278,7815	278,7864	278,7856
0,7006	274,3500	272,4543	272,4543	272,1797	272,1797	272,1677	272,1663
0,7830	269,0900	268,4698	268,4698	268,4164	268,4164	268,3920	268,3902
0,9006	258,2600	259,3030	259,3030	259,7557	259,7557	259,7123	259,7097
1,0000	253,0900	253,0900	253,0900	253,0900	253,0900	253,0900	253,0900

Tabela A14: Dados de equilíbrio para mistura de caprato de etila com palmitato de etila

r	T (V)	MA	MA	MS	MS	W	W
\mathcal{X}_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathrm{K}\right)$
0,0000	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400	297,7400
0,1595	296,0200	295,8296	295,8296	295,6182	295,6182	296,2185	296,2184
0,2280	295,4600	294,9750	294,9750	294,5922	294,5922	295,3315	295,3313
0,3318	293,8200	293,5202	293,5202	292,8668	292,8668	293,6499	293,6494
0,4192	291,3000	292,0451	292,0451	291,2117	291,2117	291,9198	291,9192
0,5203	289,1400	289,8980	289,8980	288,9842	288,9842	289,5214	289,5206
0,6107	287,4400	287,3992	287,3992	286,5908	286,5908	286,9255	286,9244
0,6875	284,9100	284,6600	284,6600	284,1139	284,1139	284,2542	284,2529
0,7895	280,7200	279,6637	279,6637	279,7646	279,7646	279,6312	279,6295
0,9039	269,5800	270,2257	270,2257	271,5096	271,5096	271,0760	271,0736
1,0000	254,5100	254,5100	254,5100	254,5100	254,5100	254,5100	254,5100

		T (V)	MA	MA	MS	MS	W	W
	x_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathrm{K}\right)$
	0,0000	307,9300	307,9300	307,9300	307,9300	307,9300	307,9300	307,9300
	0,0951	306,3500	306,7088	306,7088	306,7196	306,7196	306,7220	306,7218
	0,2201	304,6400	304,8274	304,8274	304,8749	304,8749	304,8779	304,8776
	0,2980	304,0100	303,4775	303,4775	303,5524	303,5524	303,5467	303,5463
	0,3975	301,3900	301,5199	301,5199	301,6255	301,6255	301,5899	301,5893
	0,4842	299,9100	299,5542	299,5542	299,6755	299,6755	299,5908	299,5900
	0,6190	295,4300	295,8303	295,8303	295,9394	295,9394	295,7396	295,7384
	0,7137	292,7400	292,4604	292,4604	292,5238	292,5238	292,2561	292,2546
	0,8208	286,6500	287,2078	287,2078	287,1725	287,1725	287,0253	287,0233
	0,8960	281,8200	281,4559	281,4559	281,3179	281,3179	281,7191	281,7167
	1,0000	254,5100	254,5100	254,5100	254,5100	254,5100	254,5100	254,5100
Tab	ela A16:	Dados de e	quilíbrio par	a mistura de	e miristato de	e metila con	n palmitato d	e metila
	r	T (K)	MA	MA	MS	MS	W	W
	λ_{exp}	$I_{exp}(\mathbf{R})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathrm{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathrm{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}(\mathbf{K})$
	0,0000	303,3000	303,3000	303,3000	303,3000	303,3000	303,3000	303,3000
	0,1062	301,4800	301,8294	301,8248	301,6464	301,6464	301,7021	301,7019
	0,1916	299,7600	300,4969	300,4835	300,0246	300,0246	300,1838	300,1835
	0,2970	297,9700	298,4018	298,3739	297,6288	297,6288	297,9333	297,9328
	0,3976	295,7500	295,6572	295,6146	294,8842	294,8842	295,2640	295,2632
	0,4719	293,5600	292,9827	292,9305	292,5236	292,5236	292,8473	292,8463
	0,5703	288,0000	288,3364	288,2749	288,8671	288,8671	288,8292	288,8278
	0,6795	286,4100	286,4404	286,4100	286,4100	286,4100	286,4115	286,4100
	0,7851	286,1300	286,1788	286,1856	287,7125	287,7125	285,9601	285,9596
	0,8638	288,5800	288,7685	288,7720	289,4518	289,4518	288,6665	288,6662
	0,8986	289,8300	289,7436	289,7457	290,1389	290,1389	289,7584	289,7582
	0,9526	291,1000	291,0179	291,0184	291,1099	291,1099	291,1628	291,1628
	0,9686	291,2900	291,3349	291,3351	291,3760	291,3760	291,4644	291,4644
	1,0000	291,8700	291,8700	291,8700	291,8700	291,8700	291,8700	291,8700

Tabela A15: Dados de equilíbrio para mistura de caprato de etila com estearato de etila

Tabela A17: Dados de equilíbrio para mistura de miristato de metila com estearato de metila

x_{exp}	T (V)	MA	MA	MS	MS	W	W
	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	312,6700	312,6700	312,6700	312,6700	312,6700	312,6700	312,6700
0,1235	310,7400	310,9933	310,9933	310,9742	310,9742	310,9875	310,9874
0,1975	309,3900	309,8563	309,8563	309,8142	309,8142	309,8447	309,8444
0,3053	307,6700	307,9721	307,9721	307,8951	307,8951	307,9539	307,9534
0,4239	305,5000	305,4945	305,5371	305,3958	305,4376	305,4759	305,4947
0,5547	302,2200	302,0708	302,0708	301,9944	301,9944	302,0597	302,0587
0,5711	301,4000	301,5737	301,5737	301,5050	301,5050	301,5639	301,5628
0,6694	298,6300	298,1594	298,1594	298,1643	298,1643	298,1546	298,1532
0,7613	293,7900	294,0066	294,0066	294,1303	294,1303	293,9979	293,9961
0,8594	288,4100	288,9941	288,9941	289,0349	289,0349	288,9727	288,9725
0,9445	289,9800	290,4932	290,4932	290,5004	290,5004	290,4883	290,4882
1,0000	291,3700	291,3700	291,3700	291,3700	291,3700	291,3700	291,3700

abela A18:	ibera A18. Dados de equinorio para inistura de parinitato de metra com estearato de metra								
	T (V)	MA	MA	MS	MS	W	W		
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$		
0,0000	312,6700	312,6700	312,6700	312,6700	312,6700	312,6700	312,6700		
0,0755	311,1800	311,6586	311,6586	311,5945	311,5945	311,6236	311,6235		
0,2396	308,1900	308,7149	308,7149	308,3780	308,3780	308,5881	308,5877		
0,3415	305,9000	306,0232	306,0232	305,7230	305,7230	306,0236	306,0229		
0,3889	304,8000	304,4576	304,4576	304,2981	304,2981	304,6022	304,6014		
0,4864	302,1600	301,8290	301,8290	301,5866	301,5866	301,7115	301,7101		
0,6068	300,7600	301,2010	301,2010	301,1226	301,1226	301,1760	301,1745		
0,6823	299,9700	299,8601	299,8601	300,1818	300,1818	300,0080	300,0064		
0,7934	298,6200	298,0745	298,0745	299,4200	299,4200	297,7068	297,7063		
0,9017	298,7200	301,3722	301,3722	301,7167	301,7167	301,1429	301,1427		
1,0000	303,3000	303,3000	303,3000	303,3000	303,3000	303,3000	303,3000		

Tabela A18: Dados de equilíbrio para mistura de palmitato de metila com estearato de metila

Tabela A19: Dados de equilíbrio para mistura de ácido cáprico com ácido láurico

	T (V)	MA	MA	MS	MS	W	W
x_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	316,6500	316,6500	316,6500	316,6500	316,6500	316,6500	316,6500
0,0977	314,5700	314,2951	314,2951	314,2317	314,2317	314,2606	314,2604
0,2060	311,5200	311,2672	311,2672	311,0613	311,0613	311,1532	311,1526
0,2989	308,6600	308,1796	308,1796	307,8818	307,8818	307,9983	307,9974
0,3986	304,7900	304,1969	304,1969	303,9221	303,9221	303,9579	303,9567
0,4457	302,8000	302,0189	302,0189	301,8235	301,8235	301,7540	301,7526
0,5131	297,1500	298,5034	298,5034	298,5217	298,5217	298,1906	298,1889
0,5530	296,7700	296,8479	296,8479	296,7291	296,7291	296,8952	296,8932
0,5986	296,3100	296,4121	296,4121	296,3360	296,3360	296,4475	296,4455
0,6529	295,3300	295,5087	295,5087	295,5341	295,5341	295,5058	295,5037
0,7003	294,6900	294,3298	294,3298	294,5004	294,5004	294,2570	294,2548
0,7516	294,3500	294,6497	294,6497	295,5651	295,5651	294,8807	294,8798
0,7990	297,7400	296,7925	296,7925	297,4336	297,4336	297,2502	297,2495
0,9015	301,6900	300,8607	300,8607	301,0365	301,0365	301,6482	301,6480
1,0000	303,9800	303,9800	303,9800	303,9800	303,9800	<u>303,98</u> 00	303,9800

	T (V)	MA	MA	MS	MS	W	W
X_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	335,0200	335,0200	335,0200	335,0200	335,0200	335,0200	335,0200
0,1207	332,8800	332,9110	332,9110	332,7371	332,7371	332,7885	332,7883
0,1981	331,2300	331,4247	331,4247	331,0157	331,0157	331,1427	331,1423
0,2993	328,8800	329,1785	329,1785	328,4207	328,4207	328,6726	328,6720
0,3991	326,0600	326,4601	326,4601	325,4181	325,4181	325,7892	325,7883
0,5032	322,7500	322,8647	322,8647	321,7087	321,7087	322,1498	322,1485
0,5998	317,9900	318,5700	318,5700	317,5774	317,5774	317,9732	317,9716
0,7043	313,4800	312,4473	312,4473	312,0284	312,0284	312,1663	312,1641
0,7496	310,1300	309,1272	309,1272	309,1095	309,1095	309,0388	309,0363
0,7937	304,6000	305,3557	305,3557	305,8260	305,8260	305,4808	305,4781
0,8484	299,2900	299,6358	299,6358	300,8500	300,8500	300,0533	300,0501
0,9009	299,7200	300,8005	300,8005	301,0144	301,0144	300,8047	300,8044
0,9502	302,8400	302,4935	302,4935	302,5519	302,5519	302,4888	302,4886
1,0000	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800

Tabela A20: Dados de equilíbrio para mistura de ácido cáprico com ácido palmítico

Tabela A21: Dados de equilíbrio para mistura de ácido cáprico com ácido mirístico

	T (V)	MA	MA	MS	MS	W	W
x_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathrm{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	327,0700	327,0700	327,0700	327,0700	327,0700	327,0700	327,0700
0,0986	325,0100	325,0815	325,0815	324,9480	324,9480	324,9819	324,9816
0,1968	322,4800	322,8784	322,8784	322,4507	322,4507	322,5600	322,5596
0,2997	319,7700	320,1146	320,1146	319,3728	319,3728	319,5539	319,5532
0,3985	316,5600	316,7956	316,7956	315,9031	315,9031	316,0769	316,0759
0,4979	311,3200	312,5419	312,5419	311,7961	311,7961	311,7903	311,7888
0,6490	304,7500	303,5733	303,5733	303,9336	303,9336	302,9913	302,9891
0,6996	300,2900	300,5559	300,5559	300,6761	300,6761	300,5887	300,5866
0,7992	296,7800	296,5116	296,5116	297,3886	297,3886	296,4817	296,4793
0,8475	296,8500	298,5062	298,5062	299,1799	299,1799	297,9282	297,9276
0,9013	297,2400	300,7126	300,7126	301,0172	301,0172	300,3711	300,3707
0,9503	302,3000	302,4698	302,4698	302,5523	302,5523	302,3519	302,3518
1,0000	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800

	T (V)	MA	MA	MS	MS	W	W
x_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	342,2500	342,2500	342,2500	342,2500	342,2500	342,2500	342,2500
0,1013	340,6600	340,6011	340,6011	340,5370	340,5370	340,5436	340,5434
0,1989	338,6200	338,8837	338,8837	338,6731	338,6731	338,6945	338,6941
0,2967	336,6200	336,9411	336,9411	336,5533	336,5533	336,5924	336,5918
0,3950	334,2800	334,6528	334,6528	334,1082	334,1082	334,1613	334,1605
0,5032	330,8100	331,5727	331,5727	330,9411	330,9411	330,9963	330,9952
0,5972	327,7900	328,2160	328,2160	327,6309	327,6309	327,6680	327,6666
0,7044	324,4300	323,2250	323,2250	322,8858	322,8858	322,8691	322,8673
0,8012	317,9300	316,9535	316,9535	317,0547	317,0547	316,9519	316,9495
0,9002	305,7800	306,7606	306,7606	307,5521	307,5521	307,3305	307,3274
0,9500	301,7200	302,5385	302,5385	302,5682	302,5682	302,5607	302,5606
1,0000	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800

Tabela A22: Dados de equilíbrio para mistura de ácido cáprico com ácido esteárico

Tabela A23: Dados de equilíbrio para mistura de ácido mirístico com áciod palmítico

r	$T_{\rm exp}$ (K)	MA	MA	MS	MS	W	W
X _{exp}		$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	335,0200	335,0200	335,0200	335,0200	335,0200	335,0200	335,0200
0,1010	334,0600	333,1801	333,1801	333,1562	333,1562	333,1713	333,1712
0,1510	332,8500	332,1669	332,1669	332,1205	332,1205	332,1494	332,1491
0,2020	331,8400	331,0502	331,0502	330,9801	330,9801	331,0222	331,0218
0,2517	330,4900	329,8704	329,8704	329,7811	329,7811	329,8311	329,8306
0,3027	329,4100	328,5535	328,5535	328,4530	328,4531	328,5009	328,5003
0,3491	328,0200	327,2499	327,2499	327,1509	327,1509	327,1830	327,1822
0,4002	325,9800	325,6829	325,6829	325,6025	325,6025	325,5959	325,5950
0,4499	322,5100	324,0089	324,0089	323,9678	323,9678	323,8956	323,8945
0,5023	321,7300	322,0598	322,0598	322,0876	322,0876	321,9079	321,9066
0,5505	321,1200	321,2360	321,2361	321,1891	321,1891	321,2661	321,2647
0,6044	320,9300	320,8708	320,8708	320,8448	320,8476	320,8887	320,8873
0,6498	320,1700	320,3446	320,3446	320,3526	320,3526	320,3414	320,3400
0,6984	319,7600	319,5279	319,5279	319,5932	319,5932	319,4886	319,4870
0,7203	320,2800	319,7807	319,7807	320,1931	320,1931	320,1483	320,1476
0,8499	323,8900	323,6005	323,6005	323,7416	323,7416	324,0995	324,0992
0,9004	325,3800	324,8820	324,8820	324,9479	324,9479	325,3119	325,3118
1,0000	327,0700	327,0700	327,0700	327,0700	327,0700	327,0700	327,0700

		1 1				1	
	T (V)	MA	MA	MS	MS	W	W
X_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800	303,9800
0,0997	301,0800	300,8173	300,8173	300,8348	300,8438	300,7742	300,7738
0,2029	297,5600	296,6389	296,6389	296,6941	296,6941	296,5216	296,5208
0,2999	289,5400	291,8510	291,8510	291,9369	291,9369	291,7026	291,7014
0,3993	285,7400	286,0337	286,0337	286,1241	286,1241	285,9395	285,9378
0,5006	280,1800	279,0660	279,0660	279,1115	279,1115	279,1521	279,1498
0,5999	274,5100	275,2169	275,2169	274,9919	274,9919	275,2097	275,8086
0,6993	279,3400	278,9650	278,9650	278,8135	278,8135	278,9073	278,9065
0,8017	282,0300	282,1427	282,1427	282,0659	282,0659	282,0910	282,0906
0,8998	284,3500	284,6066	284,6066	284,5842	284,5842	284,5862	284,5860
0,9501	285,3000	285,6668	285,6668	285,6609	285,6609	285,6608	285,6607
1,0000	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900

Tabela A24: Dados de equilíbrio para mistura de ácido oléico com ácido cáprico

Tabela A25: Dados de equilíbrio para mistura de ácido oléico com ácido esteárico

r	T (V)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	342,2500	342,2500	342,2500	342,2500	342,2500	342,2500	342,2500
0,1032	340,8300	340,5059	340,5059	340,5016	340,5016	340,5094	340,5092
0,2017	338,9800	338,6255	338,6255	338,6112	338,6112	338,6372	338,6369
0,3038	336,4000	336,4040	336,4040	336,3770	336,3770	336,4271	336,4265
0,3987	334,1600	334,0279	334,0279	333,9899	333,9899	334,0613	334,0605
0,5017	330,7900	331,0049	331,0049	330,9593	330,9593	331,0454	331,0443
0,6025	327,3600	327,4272	327,4272	327,3817	327,3817	327,4665	327,4651
0,7028	322,8600	322,9448	322,9448	322,9099	322,9099	322,9713	322,9694
0,8008	316,8700	317,0222	317,0222	317,0104	317,0104	317,0251	317,0227
0,9000	308,2900	307,4628	307,4628	307,4890	307,4890	307,4440	307,4409
0,9501	297,9800	298,5315	298,5315	298,5821	298,5821	298,5251	298,5213
1,0000	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900

Tabela A26: Dados de equilíbrio para mistura de ácido oléico com ácido elaídico

24	T (V)	MA	MA	MS	MS	W	W
\mathcal{X}_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	316,9700	316,9700	316,9700	316,9700	316,9700	316,9700	316,9700
0,1012	315,2100	314,8129	314,8129	314,8392	314,8392	314,8084	314,8081
0,2061	313,2400	312,5823	312,5823	312,6713	312,6713	312,5602	312,5598
0,3048	311,4500	310,4490	310,4490	310,6033	310,6033	310,3996	310,3989
0,3998	309,1300	308,3032	308,3032	308,5027	308,5027	308,2241	308,2233
0,5004	305,5500	305,8219	305,8219	306,0269	306,0269	305,7223	305,7212
0,6008	301,2600	302,9315	302,9315	303,0755	303,0755	302,8452	302,8438
0,6973	299,8000	299,4061	299,4061	299,4092	299,4092	299,3909	299,3893
0,8012	294,2600	293,9058	293,9058	293,6502	293,6502	294,0523	294,0502
0,9010	285,0500	284,9470	284,9470	284,9207	284,9207	284,9882	284,9880
1,0000	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900

~	T (V)	MA	MA	MS	MS	W	W
X _{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathrm{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathrm{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900	286,5900
0,0997	284,7300	284,7421	284,7421	284,7609	284,7609	284,7658	284,7656
0,2013	282,3700	282,5874	282,5874	282,6488	282,6488	282,6633	282,6629
0,3000	280,2200	280,2088	280,2088	280,3123	280,3123	280,3331	280,3325
0,4033	277,4500	277,3710	277,3710	277,4966	277,4966	277,5149	277,5140
0,4992	274,5200	274,3413	274,3413	274,4478	274,4478	274,4543	274,4531
0,6069	270,0600	270,3181	270,3181	270,3357	270,3357	270,3304	270,3289
0,6999	266,1400	266,0461	266,0461	265,9135	265,9135	265,9357	265,9338
0,7973	264,9900	265,0147	265,0147	264,9365	264,9365	265,0915	265,0912
0,9010	266,6000	266,5326	266,5326	266,5110	266,5110	266,5840	266,5839
1,0000	267,8300	267,8300	267,8300	267,8300	267,8300	267,8300	267,8300
Tabela A2	8: Dados de o	equilíbrio par	a mistura de	e ácido linolé	eico com trie	estearina	
1 40 614 1 12		equinono pui	a mistara a			ostourina	
x	T (K)	MA	MA	MS	MS	W	W
x _{exp}	$T_{\rm exp}({\rm K})$	MA T _{calc} (K)	$\frac{MA}{T_{GAMS}(K)}$	MS T _{calc} (K)	$\frac{MS}{T_{GAMS}(K)}$	W T _{calc} (K)	W T _{GAMS} (K)
<i>x</i> _{exp} 0,0000	$T_{\rm exp}$ (K) 345,2700	$\frac{MA}{T_{calc}(K)}$ 345,2700	MA <i>T_{GAMS}</i> (K) 345,2700	MS <i>T_{calc}</i> (K) 345,2700	$\frac{MS}{T_{GAMS} (K)}$ 345,2700	W <i>T_{calc}</i> (K) 345,2700	W <i>T_{GAMS}</i> (K) 345,2700
<i>x</i> _{exp} 0,0000 0,1213	<i>T</i> _{exp} (K) 345,2700 345,2900	MA <i>T_{calc}</i> (K) 345,2700 344,7750	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750	MS <i>T_{calc}</i> (K) 345,2700 344,6593	MS <i>T_{GAMS}</i> (K) 345,2700 344,6593	W <i>T_{calc}</i> (K) 345,2700 345,1036	W <i>T_{GAMS}</i> (K) 345,2700 345,1036
x _{exp} 0,0000 0,1213 0,2076	<i>T</i> _{exp} (K) 345,2700 345,2900 344,8400	MA <i>T_{calc}</i> (K) 345,2700 344,7750 344,4927	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750 344,4927	MS <i>T_{calc}</i> (K) 345,2700 344,6593 344,1939	MS <i>T_{GAMS}</i> (K) 345,2700 344,6593 344,1939	W <i>T_{calc}</i> (K) 345,2700 345,1036 344,8117	W <i>T_{GAMS}</i> (K) 345,2700 345,1036 344,8116
<i>x</i> _{exp} 0,0000 0,1213 0,2076 0,3078	<i>T</i> _{exp} (K) 345,2700 345,2900 344,8400 344,3100	MA <i>T_{calc}</i> (K) 345,2700 344,7750 344,4927 344,1609	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750 344,4927 344,1609	MS <i>T_{calc}</i> (K) 345,2700 344,6593 344,1939 343,6058	MS <i>T_{GAMS}</i> (K) 345,2700 344,6593 344,1939 343,6058	W <i>T_{calc}</i> (K) 345,2700 345,1036 344,8117 344,3162	W <i>T_{GAMS}</i> (K) 345,2700 345,1036 344,8116 344,3161
x _{exp} 0,0000 0,1213 0,2076 0,3078 0,3977	<i>T</i> _{exp} (K) 345,2700 345,2900 344,8400 344,3100 343,8400	MA <i>T_{calc}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908	$\begin{array}{c} \text{MS} \\ T_{calc} \left(\text{K} \right) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \end{array}$	$\begin{array}{c} \text{MS} \\ \overline{T_{GAMS}}\left(\mathrm{K}\right) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \end{array}$	W <i>T_{calc}</i> (K) 345,2700 345,1036 344,8117 344,3162 343,7314	W <i>T_{GAMS}</i> (K) 345,2700 345,1036 344,8116 344,3161 343,7313
<i>x</i> _{exp} 0,0000 0,1213 0,2076 0,3078 0,3977 0,4976	<i>T</i> _{exp} (K) 345,2700 345,2900 344,8400 344,3100 343,8400 343,0100	MA <i>T_{calc}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908 343,2085	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908 343,2085	$\begin{array}{c} \text{MS} \\ T_{calc} \ (\text{K}) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \end{array}$	$\begin{array}{c} \text{MS} \\ \overline{T_{GAMS}}\left(\mathrm{K}\right) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \end{array}$	$\begin{array}{c} W \\ T_{calc} (K) \\ 345,2700 \\ 345,1036 \\ 344,8117 \\ 344,3162 \\ 343,7314 \\ 342,9105 \end{array}$	$\begin{array}{c} W \\ T_{GAMS} \left({\rm K} \right) \\ 345,2700 \\ 345,1036 \\ 344,8116 \\ 344,3161 \\ 343,7313 \\ 342,9103 \end{array}$
<i>x</i> _{exp} 0,0000 0,1213 0,2076 0,3078 0,3977 0,4976 0,6032	T _{exp} (K) 345,2700 345,2900 344,8400 344,3100 343,8400 343,0100 342,0600	MA <i>T_{calc}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908 343,2085 342,2672	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908 343,2085 342,2672	$\begin{array}{c} \text{MS} \\ T_{calc} (\text{K}) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \end{array}$	$\begin{array}{c} \text{MS} \\ T_{GAMS} (\text{K}) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \end{array}$	$\begin{array}{c} W \\ T_{calc} (K) \\ 345,2700 \\ 345,1036 \\ 344,8117 \\ 344,3162 \\ 343,7314 \\ 342,9105 \\ 341,7980 \\ \end{array}$	$\begin{array}{c} W \\ T_{GAMS} \left({\rm K} \right) \\ 345,2700 \\ 345,1036 \\ 344,8116 \\ 344,3161 \\ 343,7313 \\ 342,9103 \\ 341,7976 \end{array}$
<i>x</i> _{exp} 0,0000 0,1213 0,2076 0,3078 0,3977 0,4976 0,6032 0,7013	$T_{\rm exp} ({\rm K})$ $345,2700$ $345,2900$ $344,8400$ $344,3100$ $343,8400$ $343,0100$ $342,0600$ $341,0000$	MA <i>T_{calc}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908 343,2085 342,2672 340,9198	$\begin{array}{c} \text{MA} \\ T_{GAMS} \left(\text{K} \right) \\ 345,2700 \\ 344,7750 \\ 344,4927 \\ 344,1609 \\ 343,7908 \\ 343,2085 \\ 342,2672 \\ 340,9198 \end{array}$	$\begin{array}{c} \text{MS} \\ \hline T_{calc} (\text{K}) \\ \hline 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \end{array}$	$\begin{array}{c} \text{MS} \\ \hline \\ T_{GAMS} (\text{K}) \\ \hline 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \\ \end{array}$	$\begin{array}{c} W \\ T_{calc} (K) \\ 345,2700 \\ 345,1036 \\ 344,8117 \\ 344,3162 \\ 343,7314 \\ 342,9105 \\ 341,7980 \\ 340,4380 \end{array}$	$\begin{array}{c} W \\ T_{GAMS} ({\rm K}) \\ 345,2700 \\ 345,1036 \\ 344,8116 \\ 344,3161 \\ 343,7313 \\ 342,9103 \\ 341,7976 \\ 340,4375 \end{array}$
<i>x</i> _{exp} 0,0000 0,1213 0,2076 0,3078 0,3977 0,4976 0,6032 0,7013 0,8010	T _{exp} (K) 345,2700 345,2900 344,8400 344,3100 343,8400 343,0100 342,0600 341,0000 338,9800	$\begin{array}{r} \text{MA} \\ \hline T_{calc} \left(\mathrm{K} \right) \\ \hline 345,2700 \\ 344,7750 \\ 344,4927 \\ 344,1609 \\ 343,7908 \\ 343,2085 \\ 342,2672 \\ 340,9198 \\ 338,7800 \\ \end{array}$	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908 343,2085 342,2672 340,9198 338,7800	$\begin{array}{c} \text{MS} \\ T_{calc} (\text{K}) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \\ 338,3746 \end{array}$	$\begin{array}{c} \text{MS} \\ \hline \text{MS} \\ \hline T_{GAMS} (\text{K}) \\ \hline 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \\ 338,3746 \\ \end{array}$	$\begin{array}{c} W \\ T_{calc} (K) \\ 345,2700 \\ 345,1036 \\ 344,8117 \\ 344,3162 \\ 343,7314 \\ 342,9105 \\ 341,7980 \\ 340,4380 \\ 338,4966 \end{array}$	$\begin{array}{c} W\\ T_{GAMS}(K)\\ 345,2700\\ 345,1036\\ 344,8116\\ 344,3161\\ 343,7313\\ 342,9103\\ 341,7976\\ 340,4375\\ 338,4959\\ \end{array}$
<i>x</i> _{exp} 0,0000 0,1213 0,2076 0,3078 0,3977 0,4976 0,6032 0,7013 0,8010 0,9019	$\begin{array}{c} T_{\rm exp}({\rm K})\\ \hline 345,2700\\ 345,2900\\ 344,8400\\ 344,3100\\ 343,8400\\ 343,0100\\ 343,0100\\ 342,0600\\ 341,0000\\ 338,9800\\ 334,7700 \end{array}$	$\begin{array}{r} \text{MA} \\ \hline T_{calc} \left(\mathrm{K} \right) \\ \hline 345,2700 \\ 344,7750 \\ 344,4927 \\ 344,1609 \\ 343,7908 \\ 343,2085 \\ 342,2672 \\ 340,9198 \\ 338,7800 \\ 334,9784 \end{array}$	MA <i>T_{GAMS}</i> (K) 345,2700 344,7750 344,4927 344,1609 343,7908 343,2085 342,2672 340,9198 338,7800 334,9784	$\begin{array}{c} \text{MS} \\ T_{calc} (\text{K}) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \\ 338,3746 \\ 335,3143 \end{array}$	$\begin{array}{c} \text{MS} \\ \hline \\ T_{GAMS} (\text{K}) \\ \hline 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \\ 338,3746 \\ 335,3143 \\ \end{array}$	$\begin{array}{c} W \\ T_{calc} (K) \\ 345,2700 \\ 345,1036 \\ 344,8117 \\ 344,3162 \\ 343,7314 \\ 342,9105 \\ 341,7980 \\ 340,4380 \\ 338,4966 \\ 335,1729 \end{array}$	$\begin{array}{c} W\\ T_{GAMS}(K)\\ 345,2700\\ 345,1036\\ 344,8116\\ 344,3161\\ 343,7313\\ 342,9103\\ 341,7976\\ 340,4375\\ 338,4959\\ 335,1719\\ \end{array}$
<i>X</i> _{exp} 0,0000 0,1213 0,2076 0,3078 0,3977 0,4976 0,6032 0,7013 0,8010 0,9019 0,9910	$T_{exp} (K)$ 345,2700 345,2900 344,8400 344,3100 343,8400 343,0100 342,0600 341,0000 338,9800 334,7700 323,7300	$\begin{array}{r} \text{MA} \\ \hline T_{calc} \left(\mathrm{K} \right) \\ \hline 345,2700 \\ 344,7750 \\ 344,4927 \\ 344,4927 \\ 344,1609 \\ 343,7908 \\ 343,2085 \\ 342,2672 \\ 340,9198 \\ 338,7800 \\ 334,9784 \\ 323,6444 \\ \end{array}$	$\begin{array}{c} \text{MA} \\ T_{GAMS} (\text{K}) \\ \hline 345,2700 \\ 344,7750 \\ 344,7750 \\ 344,4927 \\ 344,1609 \\ 343,7908 \\ 343,2085 \\ 343,2085 \\ 342,2672 \\ 340,9198 \\ 338,7800 \\ 334,9784 \\ 323,6444 \\ \end{array}$	$\begin{array}{c} \text{MS} \\ T_{calc} (\text{K}) \\ 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \\ 338,3746 \\ 335,3143 \\ 324,9094 \end{array}$	$\begin{array}{c} \text{MS} \\ \hline \\ T_{GAMS} (\text{K}) \\ \hline 345,2700 \\ 344,6593 \\ 344,1939 \\ 343,6058 \\ 343,0160 \\ 342,2590 \\ 341,2798 \\ 340,0947 \\ 338,3746 \\ 335,3143 \\ 324,9094 \\ \end{array}$	$\begin{array}{c} W \\ T_{calc} (K) \\ 345,2700 \\ 345,1036 \\ 344,8117 \\ 344,3162 \\ 343,7314 \\ 342,9105 \\ 341,7980 \\ 340,4380 \\ 338,4966 \\ 335,1729 \\ 324,5023 \\ \end{array}$	$\begin{array}{c} W\\ T_{GAMS}({\rm K})\\ 345,2700\\ 345,1036\\ 344,8116\\ 344,3161\\ 343,7313\\ 342,9103\\ 341,7976\\ 340,4375\\ 338,4959\\ 335,1719\\ 324,5003\\ \end{array}$

Tabela A27: Dados de equilíbrio para mistura de ácido linoléico com ácido oléico

Tabela A29: Dados de equilíbrio para mistura de tricaprilina com ácido mirístico

r 7	T (K)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	327,0700	327,0700	327,0700	327,0700	327,0700	327,0700	327,0700
0,1019	325,3400	324,9346	324,9346	325,0795	325,0795	324,9844	324,9842
0,1549	324,4300	323,7375	323,7375	324,0469	324,0469	323,8319	323,8316
0,2031	322,8200	322,6085	322,6085	323,1009	323,1009	322,7397	322,7393
0,2459	322,4600	321,5790	321,5790	322,2493	322,2493	321,7322	321,7317
0,2993	321,1700	320,2639	320,2639	321,1625	321,1625	320,4217	320,4211
0,3989	318,9800	317,7300	317,7375	319,0156	319,0156	317,8001	317,7992
0,5241	315,4900	314,3624	314,3624	315,9176	315,9176	314,1096	314,1084
0,6063	312,2800	311,9461	311,9461	313,4537	313,4537	311,3757	311,3742
0,7010	306,7200	308,7124	308,7124	309,8608	309,8608	307,7830	307,7812
0,7997	302,3700	304,1540	304,1540	304,5070	304,5070	303,1599	303,1577
0,9015	295,6400	295,7000	295,7000	294,7330	294,7330	295,7531	295,7503
0,9488	289,0300	287,4206	287,4206	285,6894	285,6894	288,7415	288,7381
1,0000	282,7500	282,7500	282,7500	282,7500	282,7500	282,7500	282,7500

r	T (V)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	345,2700	345,2700	345,2700	345,2700	345,2700	345,2700	345,2700
0,0580	345,2900	344,9974	344,9974	344,9800	344,9800	345,1698	345,1698
0,1463	344,7500	344,6046	344,6046	344,5074	344,5074	344,8977	344,8976
0,2325	344,3500	344,2141	344,2141	344,0020	344,0020	344,4750	344,4749
0,2998	344,0700	343,8793	343,8793	343,5700	343,5700	344,0540	344,0539
0,3997	343,3100	343,2867	343,2867	342,8510	342,8510	343,2917	343,2915
0,5004	342,3600	342,5029	342,5029	341,9998	341,9998	342,3464	342,3461
0,5999	341,3100	341,4448	341,4448	340,9760	340,9760	341,1958	341,1954
0,6992	340,0800	339,9605	339,9605	339,6665	339,6665	339,7367	339,7362
0,7989	337,7400	337,7634	337,7634	337,8254	337,8254	337,7296	337,7288
0,8999	334,0200	334,0132	334,0132	334,6558	334,6558	334,3825	334,3815
0,9510	334,4800	334,1287	334,1287	334,1696	334,1696	334,1610	334,1609
1,0000	335,0200	335,0200	335,0200	335,0200	335,0200	335,0200	335,0200

Tabela A30: Dados de equilíbrio para mistura de ácido palmítico com triestearina.

Tabela A31: Dados de equilíbrio para mistura de tripalmitina com triestearina.

ae 11a 1 10 1	. 2	- quinente pui	a mistara a	• unpunnunu		••••	
34	T (V)	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathrm{K} ight)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	345,2700	345,2700	345,2700	345,2700	345,2700	345,2700	345,2700
0,1038	344,8600	344,8520	344,8520	344,7030	344,7030	344,7142	344,7141
0,1992	344,0900	344,4082	344,4082	344,0671	344,0671	344,0974	344,0973
0,3045	343,2000	343,4843	343,4843	343,2215	343,2215	343,2570	343,2568
0,4003	342,2400	341,9172	341,9172	342,2998	342,2998	342,2898	342,2895
0,4994	341,2200	340,3385	340,3385	341,1605	341,1605	340,9935	340,9931
0,5997	339,6900	339,9246	339,9246	339,7585	339,7546	339,2126	339,2120
0,6497	338,8900	339,3355	339,3355	338,9362	338,9362	338,0614	338,0607
0,7000	338,4200	338,4176	338,4176	337,9990	337,9990	337,6125	337,6119
0,7503	336,2300	337,1142	337,1142	337,0538	337,0538	337,0263	337,0256
0,7992	336,0900	335,4095	335,4096	337,4627	337,4627	336,1855	336,1847
0,8492	336,2500	336,4711	336,4711	337,8441	337,8441	336,9280	336,9279
0,9010	337,5800	337,5792	337,5792	338,2024	338,2024	337,6780	337,6779
1,0000	338,7900	338,7900	338,7900	338,7900	338,7900	338,7900	338,7900

24	T (\mathbf{V})	MA	MA	MS	MS	W	W
λ_{exp}	$I_{exp}(\mathbf{K})$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$	$T_{calc}\left(\mathbf{K}\right)$	$T_{GAMS}\left(\mathbf{K}\right)$
0,0000	338,7900	338,7900	338,7900	338,7900	338,7900	338,7900	338,7900
0,1141	338,2900	338,2021	338,2021	338,1331	338,1331	338,1377	338,1377
0,2072	337,8400	337,7102	337,7102	337,5146	337,5146	337,5278	337,5277
0,3038	337,3100	337,1282	337,1282	336,7787	336,7787	336,8020	336,8018
0,4041	336,4700	336,3778	336,3778	335,8892	335,8892	335,9203	335,9201
0,5013	335,4500	335,4283	335,4283	334,8694	334,8694	334,9002	334,8998
0,5985	334,0300	334,1583	334,1583	333,6356	333,6356	333,6519	333,6514
0,7011	332,1500	332,3047	332,3047	331,9819	331,9819	331,9586	331,9579
0,8002	329,7800	329,7114	329,7114	329,7826	329,7826	329,6868	329,6859
0,9005	325,4600	325,4173	325,4173	326,1269	326,1269	325,9123	325,9110
1,0000	278,4300	278,4300	278,4300	278,4300	278,4300	278,4300	278,4300

Tabela A32: Dados de equilíbrio para mistura de ácido palmítico com triestearina.